

Parallel and distributed systems (PADS) have evolved from the early days of computational
science and supercomputers to a wide range of novel computing paradigms, each of
which is exploited to tackle specific problems or application needs, including distributed
systems, parallel computing, and cluster computing, generally called high-performance
computing (HPC). Grid, Cloud, and Fog computing patterns are the most important of
these PADS paradigms, which share common concepts in practice.

Many-core architectures, multi-core cluster-based supercomputers, and Cloud
Computing paradigms in this era of exascale computers have tremendously influ-
enced the way computing is applied in science and academia (e.g., scientific comput-
ing and large-scale simulations). Implementing Parallel and Distributed Systems
presents a PADS infrastructure known as Parvicursor that can facilitate the construc-
tion of such scalable and high-performance parallel distributed systems as HPC, Grid,
and Cloud Computing.

This book covers parallel programming models, techniques, tools, development
frameworks, and advanced concepts of parallel computer systems used in the con-
struction of distributed and HPC systems. It specifies a roadmap for developing high-
performance client-server applications for distributed environments and supplies
step-by-step procedures for constructing a native and object-oriented C++ platform.

FEATURES:

	 •	 Hardware and software perspectives on parallelism
	 •	 Parallel programming many-core processors, computer networks and storage

systems
	 •	 Parvicursor.NET Framework: a partial, native, and cross-platform C++ imple-

mentation of the .NET Framework
	 •	 xThread: a distributed thread programming model by combining thread-level

parallelism and distributed memory programming models
	 •	 xDFS: a native cross-platform framework for efficient file transfer
	 •	 Parallel programming for HPC systems and supercomputers using message

passing interface (MPI)

Focusing on data transmission speed that exploits the computing power of multi-core
processors and cutting-edge system-on-chip (SoC) architectures, it explains how to imple-
ment an energy-efficient infrastructure and examines distributing threads amongst Cloud
nodes. Taking a solid approach to design and implementation, this book is a complete
reference for designing, implementing, and deploying these very complicated systems.

Implementing Parallel and
Distributed Systems

https://taylorandfrancis.com

Implementing Parallel and
Distributed Systems

Alireza Poshtkohi
M. B. Ghaznavi-Ghoushchi

Cover Image Credit: Mr. Amir Sadeghian

First Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologise to copyright holders if permission to publish in this form
has not been obtained. If any copyright material has not been acknowledged, please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilised in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-45867-0 (hbk)
ISBN: 978-1-032-15122-9 (pbk)
ISBN: 978-1-003-37904-1 (ebk)

DOI: 10.1201/9781003379041

Typeset in Garamond
by SPi Technologies India Pvt Ltd (Straive)

Please access the Instructor and Student Resources: https://routledge.com/9781032151229.

http://dx.doi.org/10.1201/9781003379041
https://routledge.com/9781032151229

“If I have seen further than others, it is by standing upon the shoulders of
giants.”

Isaac Newton

The first author would like to dedicate this book to his parents,
Effat and Abdollah,

Also for all leading pioneers in
computer science,

particularly
Dennis M. Ritchie, Ian T. Foster and Charles Babbage

The second author wishes to thank his parents, family, teachers and professors.

https://taylorandfrancis.com

vii

Contents

Preface .. xv
Acknowledgement ... xxi
Authors .. xxiii

 1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 History of Computing ... 2

 1.2.1 Analogue Computers... 3
 1.2.2 Digital Computers: Modern Hardware Advances in

Computer Architectures .. 6
 1.3 A Brief Introduction to Parallel and Distributed Systems 8
 1.4 Conclusion ... 13
Notes ... 13
Reference .. 13

 2 IoT and Distributed Systems ... 15
 2.1 Introduction ... 15
 2.2 CPS and IoT ... 16
 2.3 Internet of Things (IoT) .. 16
 2.4 Distributed Systems and Distributed Computing via IoT 18
Reference .. 22

 3 Advanced Operating System Concepts in Distributed Systems Design ... 23
 3.1 Introduction ... 24
 3.2 An Introduction to Modern Operating Systems 24

 3.2.1 Process Management .. 27
 3.2.2 Memory Management ... 28
 3.2.3 Storage Management (SM) .. 29
 3.2.4 Userspace and Kernel Space ... 29

 3.3 Memory Hierarchy Models .. 30
 3.3.1 Main Memory .. 30

 3.4 A Brief Review on Modern OS Kernels .. 33
 3.4.1 Microkernel Operating System ... 33
 3.4.2 Monolithic Operating System ... 34
 3.4.3 Hybrid Operating System ... 34
 3.4.4 Exokernel Operating System .. 34
 3.4.5 Object-Oriented Operating System (O3S) 35
 3.4.6 Language-Based Operating System (LOS) 36

viii ◾ Contents

 3.4.7 System Calls to Request Linux and Windows OS Services 37
 3.4.8 System Calls in the Linux Operating System 39
 3.4.9 Costs Due to the Mode Switch of System Calls 40
 3.4.10 Costs Due to the Footprints of System Calls 40
 3.4.11 Effect of System Calls on the Userspace IPC 40
 3.4.12 Critical Overheads due to Frequent Copies 40
 3.4.13 System Calls in the Windows Operating System 41
 3.4.14 Timeline of Operating System Evolution 43

 4 Parallelism for the Many-Core Era: Hardware and Software Perspectives ... 45
 4.1 Introduction ... 45
 4.2 Exploiting Instruction-Level Parallelism (ILP) by Hardware and

Software Approaches .. 45
 4.2.1 Superscalar Processors .. 50
 4.2.2 The Downside of Instruction-Level Parallelism and Power

Consumption Problem .. 52
 4.3 Thread-Level Parallelism (TLP) and Multi-Processor and

Multi-Core Parallelism ... 53
 4.3.1 Introduction .. 53
 4.3.2 Thread-Level Parallelism ... 55
 4.3.3 Multi-Processor Parallelism ... 59
 4.3.4 Multi-Core Parallelism ... 62

 4.4 Heterogenous Computing on Many Cores ... 64
 4.5 Latest Optimal Approaches in Synchronisation 73

 4.5.1 Deadlock ... 75
 4.5.2 Race Condition .. 86
 4.5.3 Priority Inversion .. 87
 4.5.4 Starvation ... 88
 4.5.5 Livelock ... 89
 4.5.6 Convoying ... 89

 4.6 Installation Steps of the Integrated Development Environment
(IDE) Code::Blocks on Unix-Like Operating Systems Such as Linux 89

References ... 92

 5 Parallelisation for the Many-Core Era: A Programming Perspective 93
 5.1 Introduction ... 93
 5.2 Building Cross-Platform Concurrent Systems Utilising

Multi-Threaded Programming on Top of the Parvicursor.NET
Framework for Distributed Systems ... 93
 5.2.1 Introduction .. 93
 5.2.2 Thread Creation and Management in the Parvicursor.NET

Framework .. 94
 5.2.3 Implementing the System::Threading::Timer Class

of the ECMA Standard Based on the Thread Class in the
Parvicursor.NET Framework ... 97

 5.2.4 Synchronisation in the Parvicursor.NET Framework 99
 5.2.5 Two Concurrency Examples Relied on Synchronisation

Classes in the Parvicursor.NET Framework 103

Contents ◾ ix

 5.2.6 Thread Pools: Design and Implementation of the
System::Threading::ThreadPool Class of the ECMA
.NET Standard Based on the Parvicursor.NET Framework 107

 5.2.7 Four Examples of Concurrency and Parallel Processing
Based on the ThreadPool Class ... 112

 5.2.8 Low-Level Implementation of Threads in the Linux
Operating System: Userspace Fibres 121

 5.2.9 A Practical Implementation of Synchronisation: Linux
Futexes .. 126

 5.3 Non-Blocking Synchronisation and Transactional Memory 129
 5.3.1 Introduction .. 129
 5.3.2 Non-Blocking Synchronisation Algorithms 130
 5.3.3 Transactional Memory ... 153

References ... 155

 6 Storage Systems: A Parallel Programming Perspective.......................... 157
 6.1 Introduction ... 157
 6.2 Storage Systems and Disc Input/Output Mechanisms for Use in

Distributed Systems ... 157
 6.2.1 Introduction .. 157
 6.2.2 Disc Drives from a Hardware Perspective 158
 6.2.3 Disc Input/Output Scheduler in Operating Systems 160
 6.2.4 Benchmarking the Performance and Throughput of Disc

I/O Based on the IOzone Tool ... 160
 6.3 Cross-Platform Disc I/O Programming and Manipulation of

Folders Based on the Parvicursor.NET Framework for Distributed
Systems ... 162
 6.3.1 Storage and Retrieval of Data Files Based on the

FileStream Class ... 163
 6.3.2 Two Non-Concurrent and Concurrent Examples for Using

the FileStream Class ... 164
 6.3.3 Management of Files and Folders Based on the Two

Classes Directory and File ... 166
 6.3.4 Two Examples of Non-Concurrent and Concurrent

Use of the Directory Class .. 171
Reference .. 178

 7 Computer Networks: A Parallel Programming Approach 179
 7.1 Substantial Concepts of Computer Networks for Distributed

Systems Design .. 179
 7.1.1 Introduction .. 179

 7.2 An Introduction to Modern Computer Networks 180
 7.3 OSI Model and TCP/IP and UDP Protocol Suite to Structure

Communications in Computer Networks ... 184
 7.3.1 The OSI Reference Model ... 184
 7.3.2 The TCP/IP Protocol Suite .. 187

x ◾ Contents

 7.4 Network Programming Based on TCP Sockets and Thread-Level
Parallesim to Develop Distributed Client-Server Programs
Atop the Parvicursor.NET Framework .. 189
 7.4.1 An Introduction to the Socket Programming Model 189
 7.4.2 A General Description of Network Programming Classes

in the Parvicursor.NET Framework .. 191
 7.4.3 A Short Overview of the HTTP Protocol 193
 7.4.4 Example 1: A Simple Client Program of the HTTP

Protocol to Retrieve a Web Page .. 196
 7.4.5 Example 2: A Concurrent Client/Server Program Based on

Threads to Upload a File from a Client to a Server 198
 7.5 Asynchronous Methods in Parvicursor Platform: An Optimum

Computing Paradigm to Exploit the Processing Power of Multi/
Many-Core Systems for Increasing the Performance of Distributed
Systems .. 204
 7.5.1 Introduction .. 204
 7.5.2 Example: Asynchronous Translation of Domain Names to

IP Addresses Based on an Asynchronous DNS Resolver 205
 7.5.3 Implementation of an Asynchronous DNS Resolver Based

on the Parvicursor.NET Framework 206
 7.6 Addressing the Scalability Issue of Communication Systems in the

Parvicursor Platform.. 209
 7.6.1 Introduction .. 209
 7.6.2 Design Strategies of Client-Server Applications 211
 7.6.3 Asynchronous Sockets in Parvicursor Platform as a

Proposed Standard to Develop Highly Scalable Optimum
Communication Systems for Distributed Systems 215

 7.6.4 Example 1: An Asynchronous Echo Client-Server 219
 7.6.5 Example 2: The Design and Implementation of a Highly

Concurrent and Scalable HTTP Proxy Server Supporting
Tens of Thousands of Client Connections 225

Notes ... 235
References ... 236

 8 Parvicursor.NET Framework: A Partial, Native, and Cross-Platform
C++ Implementation of the .NET Framework .. 237
 8.1 Introduction ... 237
 8.2 Common Language Infrastructure (CLI) ... 238
 8.3 Parvicursor.NET Framework ... 239
 8.4 The Compilation and Loading Process of .NET-CLI-Based

Application Programs .. 252
 8.4.1 AOT and JIT Compilations .. 254
 8.4.2 Cross-Mode Execution Switches (C++/CLI Managed/

Unmanaged Interop Transitions) .. 255
 8.4.3 Platform Invocation Services (P/Invoke) 257
 8.4.4 .NET Memory Footprint .. 260

Contents ◾ xi

 8.5 The Compilation and Loading Process of Native
Parvicursor.NET-Based Application Programs 261

 8.6 Parvicursor.NET Socket Interface (PSI) .. 263
 8.7 Parvicursor Object Passing Interface (POPI) over PSI 264
 8.8 Cross-Process, Cross-Language and Cross-Platform

Parvicursor.NET Remoting Architecture (PR) 264
 8.9 Parvicursor.NET Framework Programming Reference Guide 267

 8.9.1 Using Namespace System ... 268
 8.9.2 Using Namespace System::IO ... 271
 8.9.3 Using Namespace System::Threading 272
 8.9.4 Using Namespace System::Collections 273
 8.9.5 Using Namespace System::Net .. 274
 8.9.6 Using Namespace System::Net::Sockets 275
 8.9.7 Using Namespace Parvicursor::Net ... 276
 8.9.8 Using Namespace Parvicursor::Serialisation 276

 8.10 Presented Parvicursor.NET Sample Usages .. 277
References ... 277

 9 Parvicursor Infrastructure to Facilitate the Design of Grid/Cloud
Computing and HPC Systems .. 279
 9.1 Parvicursor: A Native and Cross-Platform Peer-to-Peer Framework

to Design the Next-Generation Distributed System Paradigms 279
 9.1.1 Introduction .. 279

 9.2 Cross-Platform and High-Performance Parvicursor Platform to
Develop the Next-Generation Distributed Middleware Systems 280
 9.2.1 Network Communication .. 281
 9.2.2 Heterogeneity .. 281
 9.2.3 Scalability .. 282
 9.2.4 Standardisation .. 282
 9.2.5 Performance .. 283
 9.2.6 Resource Sharing... 283
 9.2.7 Concurrency Support of Multicore Processors and

Distributed Threading ... 283
 9.3 Peer-to-Peer Paradigms and the Use of the Parvicursor Platform to

Construct Large-Scale P2P Distributed Middleware Platforms such
as Supercomputers and Traditional Distributed Systems 284

 9.4 xThread Abstraction: The Distributed Multi-threaded Programming
Model Proposed by Parvicursor Platform for Distributed Systems 287

 9.5 Practical Examples Using the xThread Abstraction 295
 9.5.1 Example 1: A Simple Sum of Two Numbers Based on a

Distributed P2P Architecture with Two Nodes 295
 9.5.2 Example 2: Calculating the Value of the Number π to n

Decimal Places Grounded on a Distributed P2P Master/
Slave Architecture with m+1 Nodes 300

xii ◾ Contents

 9.6 The Proof of Concept of the Philosophy behind the Parvicursor
Project as a New Standard to Build the Next-Generation
Distributed P2P Middleware Systems: The Design and
Implementation of a Middleware Supporting Third-Party Data
Transfers in xDFS Framework atop the Parvicursor Platform 303

 9.7 Our Future Works to Extend the Parvicursor Platform 314
Notes ... 315
References ... 315

 10 xDFS: A Native Cross-Platform Framework for Efficient File
Transfers in Dynamic Cloud/Internet Environments 317
 10.1 Introduction ... 317
 10.2 The Next-Generation Requirements of Grid-Based File Transport

Protocols .. 319
 10.2.1 Towards a Low-Cost, Low-Power and Low-Overhead Data

Transfer Protocol for Sensor and Ad Hoc Networks 320
 10.2.2 Universality and Interoperability Issues and Scenario-

Based Complexity Reduction .. 321
 10.2.3 Towards a Service-Oriented Approach (SOA) for Secure

File Transfers ... 322
 10.3 High-Performance Server Design Architectures for Grid-Based

File Transfer Protocols .. 322
 10.3.1 Data Copies ... 323
 10.3.2 Memory Allocation .. 324
 10.3.3 Context Switching ... 324
 10.3.4 Synchronisation Issues .. 325

 10.4 Some Proposed xDFS Server Architectures in FTSM
Upload Mode ... 326
 10.4.1 Multi-Processed xDFS Server Architecture 327
 10.4.2 Multi-Threaded xDFS Server Architecture 329
 10.4.3 Multi-Threaded Event-Driven Pipelined xDFS Server

Architecture ... 331
 10.5 DotDFS and xDFS File Transport Protocols ... 333

 10.5.1 Overall xDFS Features .. 334
 10.5.1.1 Transport Independence 334
 10.5.1.2 Flexible Connectivity ... 334
 10.5.1.3 Feature Negotiation and Prerequisites 334
 10.5.1.4 Resource Access ... 334
 10.5.1.5 Unicode File Name Support 335
 10.5.1.6 Distributed File System Mode (DFSM) 335
 10.5.1.7 Path Mode (PathM) .. 335
 10.5.1.8 Authentication, Data Integrity, and Data

Confidentiality .. 335
 10.5.2 xDFS xFTSM Protocol ... 335

 10.6 The Native, Cross-Platform, and Cross-Language
Implementation of xDFS Protocol .. 340
 10.6.1 The Architecture of xDFS Implementation in Download

and Upload Modes .. 340

Contents ◾ xiii

 10.6.2 A Novel Hybrid Concurrency Pattern for xDFS POSIX-
AIO-Enabled Implementation (PHCP) 347

 10.6.3 Some Important Points Regarding the Implementation of
the xDFS Protocol ... 349
 10.6.3.1 The Overheads of Exception Handling 349
 10.6.3.2 Vectored I/O .. 350
 10.6.3.3 Cross-Language, Cross-Runtime and Cross-

Platform Parvicursor.NET Wrappers 350
 10.6.3.4 Parvicursor.NET Inline Expansion 351
 10.6.3.5 Parvicursor.NET Runtime Profiler 351

 10.7 Comparison of xDFS Protocol with DotDFS, FTP, GridFTP and
HTTP Protocols ... 351
 10.7.1 Some Major Criticisms on FTP and GridFTP Protocols

and xDFS/DotDFS Protocol Alternatives over Them 354
 10.8 Experimental Studies ... 356

 10.8.1 Single Stream Performance in Download Mode 357
 10.8.2 Single Stream Performance in Upload Mode 360
 10.8.3 Harnessing Parallelism in Download Mode 361
 10.8.4 Harnessing Parallelism in Upload Mode 363
 10.8.5 Full xDFS/DotDFS Runtime Characterisation 365

 10.9 Conclusion and Future Works ... 365
References ... 367

 11 Parallel Programming Languages for High-Performance
Computing ... 371
 11.1 Introduction ... 371
 11.2 A Brief History of Supercomputing .. 372
 11.3 Parallel Programming Models and Languages for HPC 373

 11.3.1 MPI .. 374
 11.3.2 Charm++ .. 374
 11.3.3 Partitioned Global Address Space (PGAS) 375

 11.4 A Concise Introduction to the MPI Standard in C Language 375
 11.4.1 MPI Setup Routines ... 376
 11.4.2 MPI Blocking Point-to-Point Communication Routines 376
 11.4.3 MPI Non-Blocking Point-to-Point Communication

Routines ... 377
 11.4.4 MPI Collective Operation Routines .. 378

 11.5 Case Studies ... 379
 11.5.1 A Warm-Up MPI Example ... 380
 11.5.2 Scalability of MPI Programs .. 383
 11.5.3 Parallel Sparse Matrix-Vector Multiplication 388
 11.5.4 Parallel Sparse Matrix-Matrix Multiplication 391

Index ... 397

https://taylorandfrancis.com

xv

Preface

This book arrives at a critical time when Moore’s Law is fading, and the develop-
ment of distributed systems and high-performance computing is of unprecedented
demand and importance. The book aims to convey necessary knowledge, principles,
and software practices that underly the development of a vast majority of parallel
and distributed systems, particularly Grid/Cloud Computing and supercomputers.
Advanced topics relevant to computer architecture, operating systems, and paral-
lel programming techniques and models for many-core processors, supercomputers,
and computer networks are provided to allow readers in order to gain incremen-
tal experience to implement their own platforms from scratch. The text helps you
gradually think parallel through a programming language that had been primarily
intended to model distributed systems!

Over the past seven decades, computers have created a dramatic revolution in
civilisation. Parallel and distributed systems (PADS) have evolved from their first uses
in the early days of computational science and supercomputers into a wide range of
novel computing paradigms, each of which is exploited to tackle particular problems
or application needs, including distributed systems, parallel computing and cluster
computing generally called high-performance computing (HPC). The simultaneous
growth in the availability of scientific demands, big data, and the number of simul-
taneous users on the Internet places particular pressure on the need to carry out
computing tasks in parallel, distributed fashion or simultaneously both. PADS takes
place across many different topic areas in computer science and applied mathemat-
ics, including algorithms, computer architecture, networks, operating systems, soft-
ware engineering, and scientific computing. Since the year 2007, all the commercial
processors have been multi/many-core processors, each core operates in parallel
with others. This enables the era of computer networks just inside a tiny computer
chip. This is the third revolution in human society after the industrial and agricul-
tural revolutions. This revolution is considerably influencing on our life, science, and
technology trends. Commodity clusters revolutionised HPC when they first appeared
three decades ago. As scale and complexity have grown, new challenges such as
energy efficiency and optimisation and software complexity have emerged. Petascale
clusters are increasingly common and dominate the Top500 list of the world’s most
powerful computers. Recently, the world’s fastest supercomputers are emerging as
exascale systems. The push towards exascale computing has enabled science appli-
cations to run complex simulations. However, the gap between computation and
I/O has grown wider, even as applications seek to generate and persist increasing
amounts of data. Optimising I/O is challenging and remains a bottleneck at scale.

xvi ◾ Preface

Additionally, the results of academic research and industrial applications have
turned into new generations of distributed computing paradigms. Grid, Cloud, and
Fog computing patterns are the most important of them. All of these PADS paradigms
have practically many concepts in common. Parallelism on different levels is becom-
ing ubiquitous in today and tomorrow’s computers. Programmers are facing with
hundreds of hardware threads per processor chip to leverage thread-level parallel-
ism. The trend in many-core architectures, multi-core cluster-based supercomputers,
and Cloud Computing paradigms altogether towards the era of exascale comput-
ers has tremendously influenced on the way that the application of computing is
being used in science and academia, such as scientific computing and large-scale
simulations. In this book, we present our experiences to build a PADS infrastructure
referred to as Parvicursor from the ground up that can facilitate the construction
of scalable and high-performance parallel distributed systems such as HPC, Grid,
and Cloud Computing. With computers and computer networks getting cheaper and
cheaper, our lives are under continual change more and more.

The authors of the current book have realised the lack of a complete reference
for designing, implementing, and deploying these types of systems that have very
complicated structures. In other words, to create a distributed environment or each
of the expressed technologies above, a developer, a student, or a researcher, to cre-
ate customised software or participate in a large design project, has to spend several
years learning about many practical and research results and a variety of references
towards getting familiar with available development methods. By recognising this
need for the scientific community, we decided to publish our experiences in the con-
text of a technical, academic book. The present book attempts to express the experi-
ences of its authors from different angles to the reader.

The book covers parallel programming models, techniques, tools, development
frameworks, and advanced concepts of parallel computer systems used in the con-
struction of distributed and HPC systems. It describes how to specify a roadmap for
developing high-performance client-server applications for distributed environments
and supplies step-by-step procedures for constructing a native and object-oriented
C++ platform. Focusing on data transmission speed that exploits the computing
power of multi-core processors and cutting-edge System-on-Chip (SoC) architectures,
it explains how to implement an energy-efficient infrastructure and examines distrib-
uting threads amongst Cloud nodes. We take a solid approach to describe what we
have carried out to design and implement a large number of research projects for
PADS. It is worthwhile to note that such a book is unique in its own right because
scholars do not usually provide a precise and detailed guideline on how they have
implemented their platforms at the source-code level and only present a high-level
structure of their work. There is almost no reference not only how to develop distrib-
uted systems from an architectural point of view but rather from the ground-up. The
text will strive to give the opportunity to the readers to gradually practise what they
are learning through the several chapters of the book as a series of case studies. What
will be published by the authors in this book is the result of 15 years of learning,
researching, and implementing a wide array of distributed applications ranging from
HPC to complex realistic systems such as Grid and Cloud computing.

Preface ◾ xvii

There is no single best sequence in which to approach the chapters of this book,
except that all readers are supposed to start with Chapter 1. If you do not want to
read everything and have basic knowledge of computer science, you may skip read-
ing Chapters 1 through 3. It is worth noting that many chapters of the current book
have been successfully taught to both undergraduate and postgraduate students in
computer science and electrical engineering over years by the first author.

The authors also provide a comprehensive package for rapid application devel-
opment using the frameworks introduced in this book, including a Linux image, a
Windows development package, the latest source codes, etc. The readers are strongly
recommended to benefit from this package that can be found on the GitHub page
below: https://github.com/poshtkohi/pads

Additionally, the book structure is given as follows:

Chapter
No.

Chapter Title Chapter Description

1. Introduction This chapter presents a historical overview of the
development of computing from its origins in analogue
computers to digital computers. Current and future
status of computing in distributed systems and high-
performance computing (HPC) paradigms are discussed.
Some theoretical aspects of computing are also provided.

2. IoT and Distributed
Systems

This chapter attempts at giving the necessity and a high-
level overview of the current status of distributed systems.

3. Advanced Operating
System Concepts in
Distributed Systems
Design

Operating systems have been at the heart of parallel and
distributed systems for more than half a century. This
chapter first lays a conceptual framework for operating
systems. Then, a comprehensive classification of
operating systems is given, which plays major roles in the
future of exascale computers; to name a few, exokernel
OSes and language-based OSes. A number of hardware
and software aspects of optimal design concerns in
operating systems are also presented.

4. Parallelism for the
Many-Core Era:
Hardware and
Software Perspectives

Many-core processor architectures are now an integral
part of modern computing systems ranging from
embedded systems to supercomputers. This chapter lays
the foundation of the book in order to define parallelism
at different levels of abstraction from instruction-level
parallelism and thread-level parallelism to heterogenous
hardware accelerators and transactional memory.
Software aspects underlying the hardware concepts are
also given, including many-core OSs, synchronisation,
deadlocks, graph theory, and so on. The emphasis here
is on many-core processors. The chapter concludes
by instructing the reader to set up a Linux-based
Code::Blocks environment needed to develop parallel
programs throughout the next chapters.

https://github.com

xviii ◾ Preface

Chapter
No.

Chapter Title Chapter Description

5. Parallelism for the
the Many-Core Era:
A Programming
Perspective

Parallel programming is a non-trivial task and is often
much more complex compared to standard sequential
programming models. This chapter prepares the reader
to take his long journey into the world of parallel
programming through thread-level parallelism for many-
core machines. The reader gradually becomes familiar
with a C++ library for parallel programming which is part
of the Parvicursor.NET Framework explained in Chapter
8. Since the Parvicursor.NET Framework is a partial
C++ implementation of the Microsoft.NET standard,
a programmer having minimal knowledge of the C#
programming language can quickly dive into the chapter.
Parvicursor.NET applications seamlessly run on many
operating systems including Windows, Linux, and Android!
Threads, mutual exclusion primitives, barriers, condition
variables, fibres, implementation aspects of thread pools
and lock-free data structures, and several other parallel
programming constructs are introduced through several
examples. The chapter concludes with an introduction to
programming transactional memory systems.

6. Storage Systems: A
Parallel Programming
Perspective

Although parallel computers have enabled science
applications to run complex simulations, the gap between
computation and I/O has grown wider. Optimising I/O
is challenging and remains a bottleneck at scale. This
chapter deals with storage systems. First, a hardware
view of the underlying storage systems and their
profiling is described. Then, programming interfaces
from the Parvicursor.NET Framework, which are widely
used to manipulate files and directories in Chapter 10,
are discussed. The chapter shows several examples of
concurrent file/ directory operations whose underlying
procedures are implemented using threads, condition
variables, and thread pools. The examples aim to combine
I/O with concurrency that is heavily employed in the
Parvicursor infrastructure (e.g., Chapter 10).

7. Computer Networks: A
Parallel Programming
Approach

Complex network architectures are an integral part
of distributed systems. This chapter begins with an
introduction to principles used in network layers.
Major network protocols and network architectures are
elaborated, including TCP/IP stack, InfiniBand hardware
and HTTP protocol. A major part of the chapter is devoted
to developing optimal network programming strategies,
where parallelism is made explicit to the developer. Multi-
threaded client-server examples are aimed at preparing
the reader for advanced network programming concepts.
Next, the chapter takes an asynchronous parallel approach

Preface ◾ xix

Chapter
No.

Chapter Title Chapter Description

to network programming. An asynchronous event-driven
I/O library based on the ECAM.NET standard is designed
and implemented in the native C++ code. The framework
makes heavy use of thread pools and asynchronous
sockets from the Linux kernel. We give several practical
examples of using its powerful programming interface.
The asynchronous framework comes up with several
many-core programming constructs that allow the
programmer to efficiently manage the execution of
network sessions across processor cores. The chapter
closes by developing a fully-fledged concurrent HTTP
proxy server that supports hundreds of thousands of
network requests.

8. Parvicursor.NET
Framework: A
Partial, Native, and
Cross-Platform C++
Implementation of the
.NET Framework

This chapter explains step-by-step procedures that guide
the reader towards constructing an object-oriented C++
platform called Parvicursor.NET Framework. In fact, the
Parvicursor.NET Framework is a native and cross-platform
implementation of the standard .NET CLI (Common
Language Infrastructure) profiles and libraries relied upon
the standard ISO C++. It provides fundamental framework
libraries and classes easily to develop/port .NET-based
applications in/into native C++ on most contemporary
platforms, including Microsoft Windows operating
systems and POSIX-compliant operating systems like
Linux.

9. Parvicursor
Infrastructure to
Facilitate the Design of
Grid/Cloud Computing
and HPC Systems

In this chapter, we present the Parvicursor infrastructure,
a low-level middleware system grounded on a
specialised concept of distributed objects and native
ECMA.NET-compliant execution for highly concurrent
distributed systems, to make writing middleware easier
on heterogeneous platforms. It takes care of low-level
network programming interfaces for Grid/Cloud-specific
platforms and allows the middleware architects to focus
their efforts on their middleware logic with the help of
the integrated, scalable, Parvicursor Execution System.
Specifically, the xThread parallel programming model is
introduced that provides the capability of remote code
execution, dynamic distributed object registration and
activation, transparent communication on the underlying
transport protocols, data marshalling and unmarshalling,
distributed operation dispatching, checkpoint/restore, etc.

xx ◾ Preface

Chapter
No.

Chapter Title Chapter Description

10. xDFS: A Native Cross-
Platform Framework
for Efficient File
Transfers in Dynamic
Cloud/Internet
Environments

This chapter describes a highly concurrent file transfer
protocol on top of the Parvicursor infrastructure.
We introduce multi-threaded event-driven pipelined
server architecture for the protocol. The position of
the xDFS protocol is detailed amongst existing file
transfer protocols widely used in Cloud environments.
High-performance client-server design plays a key
role in satisfying the performance needs of different
applications in distributed systems. In this chapter, we
specify a roadmap to performantly program client-server
applications.

11. Parallel Programming
Languages for
High-Performance
Computing

This chapter reviews the state-of-the-art parallel
programming languages, models, and frameworks to
develop large-scale parallel systems in high-performance
computing and supercomputers. Subsequently, it
provides a brief introduction to advanced features
in the latest version of the Message Passing Interface
(MPI) standard. We will implement several interesting
example problems using MPI such as scalability of
parallel programs and parallel applications for scientific
computing systems. The necessary mathematical
background is likewise given.

xxi

Acknowledgement

The authors wish to give special thanks to Mr. Amir Sadeghian for providing the
book cover image, which was taken from the world-renowned building of Nasir-ol-
Molk located in the ancient city of Shiraz, Iran.

https://taylorandfrancis.com

xxiii

Authors

Alireza Poshtkohi applies computer science and mathematics to tackle grand
research challenges in engineering, physics, and medicine. He has worked interna-
tionally in both academia and industry in many different roles ranging from com-
puter scientist, neuroscientist, university lecturer, electronics engineer, software
engineer, IT consultant and data centre architect, to full-stack developer. He holds
BSc and MSc degrees and a PhD in electrical and electronics engineering and com-
putational neuroscience, respectively. To date, he has taught 17 courses—such as
parallel algorithms, advanced algorithms, operating systems, and computer networks,
to name just a few—in electrical and computer engineering departments at different
universities. His current research interests include applied mathematics, biophysics,
high-performance computing, and theoretical physics.

M. B. Ghaznavi-Ghoushchi holds a BSc degree from Shiraz University, Shiraz, Iran
(1993), and MSc and PhD both from Tarbiat Modares University (TMU), Tehran, Iran,
in 1997 and 2003, respectively. During 2003–2004, he was a researcher at TMU
Institute of Information Technology. He is the founder and director of High-
Performance and Cloud Computing (HPCC) and Integrated Circuits and Systems
(ICS) laboratories at Shahed University. He is currently an associate professor at
Shahed University, Tehran, Iran. His interests include VLSI Design; Low Power and
Energy-Efficient circuits and systems; Computer-Aided Design Automation for Mixed
Signal; and UML-based designs for SoC and Mixed-Signal.

https://taylorandfrancis.com

1DOI: 10.1201/9781003379041-1

Chapter 1

Introduction

Computers are incredibly fast, accurate and stupid; humans are incredibly
slow, inaccurate and brilliant; together they are powerful beyond imagination.

Albert Einstein

1.1 Introduction
We welcome you to this book and are delighted to have the opportunity to share our
experiences from different perspectives on the world of computer systems (particu-
larly the de facto distributed systems). This branch of science is rapidly changing.
In this book, we try to focus on the systems that allow us to take advantage of the
available hardware to solve problems in science that cannot be easily tackled based
on traditional computation techniques. This broad scientific field is called parallel
and distributed systems, which we will define in the most general form with its sub-
branches relied on our experiences. We believe that all new generations of computing,
such as Grid and Cloud Computing, are a subset of distributed systems.

Computers have created the third revolution in humanity after agricultural and
industrial ones. In this chapter, we attempt to encourage readers to follow our book
by describing a brief history of computing and computers and their impact on the
human life. This text is the outcome of our 15- year development of distributed soft-
ware infrastructures ranging from simple networked programs to complex real- world
Grid and Cloud applications.

Computers are transforming societies, and time is collapsing. Distance is no lon-
ger an obstacle. We can navigate oceans with a click of a mouse. Computers are
almost considered the most important technological achievement of humankind in
the twentieth and twenty- first centuries. Using computers, we can solve problems
without which they are impossible to cope. Due to the broad effects of computer
capabilities, they are constantly making significant achievements in different societ-
ies, particularly in medicine, education, astronomy, engineering, and our daily lives.

It is undeniable that computers have revolutionised medical services and sci-
ences in recent decades. Computers can go halves with the heavy tasks of a medical

http://dx.doi.org/10.1201/9781003379041-1

2 ◾ Implementing Parallel and Distributed Systems

doctor and save lives. Ever since computers were invented, computer- aided therapies
have been progressively advancing to cure millions of patients. Also, computers with
other medical peripheral devices can detect diseases in a short amount of time. In
addition, computers have found excellent applications in gene analysis. Nowadays,
scientists have many tools in their hands to investigate organic structures for new
drug discoveries. Moreover, understanding information processing and storage in the
human nervous system depends on an accurate view of the structure and function of
neurons. Since the brain possesses both properties of digital and analogue comput-
ers, the complete understanding of its computational structures for medical scientists
can shed light on the way for discovering the human mind.

Over the recent decades, the use of computers in education has increased dra-
matically, and many educational computer programs have been designed and imple-
mented for classroom and individual use. Virtual universities are one of the specific
applications of computers in recent years.

Computers have tremendously contributed to astronomy by which astronomers
unravel the underpinnings of our universe. From their use to store and analyse big
data to control spacecrafts outside of the Earth’s atmosphere, our knowledge relative
to the universe has broadened. There are billions of galaxies in the universe, every
of which has ten million to one trillion stars. For example, the machine learning
code models relying on the human brain are employed to accurately and effectively
classify galaxies [1]. Although the human eye is very efficient in identifying patterns,
intelligent computational methods that produce this behaviour are vital as astrono-
mers strive to pull the frontiers aside until they can discover farther galaxies through
a more visible universe.

Computers have entered almost all families and have effectively influenced our
lives. Families can use computers to talk to each other via email or other services
like online chat and Voice over IP1. Social networks like Facebook and Twitter have
enabled us to keep in touch online. Cloud services like Gmail and online spread-
sheets are another view of the pervasive power of computers.

Obviously, the advances in this technology have more or less affected all aspects of
human societies. Hardware advances have allowed computer programmers to design
powerful software to tell us that computers are extraordinary. Future computers
can be fallen into three major classes based on recent technological advancements.
Quantum computing depends on the strange and highly mathematical calculations
of quantum mechanics for information processing. DNA2 computers will make use of
DNA to encode and store information. Optical (or photonic) computers are of other
generations of computing devices that will use the motion of electrons into and out
of transistors based on semiconductor technologies for performing logic operations.

In the next section, we will take a brief look at the history of computing. We will
also shortly examine distributed systems from a software’s point of view. The chapter
closes with a conclusion.

1.2 History of Computing
We do not intend to comprehensively touch on the history of computing because it
requires a book with several hundred pages by itself. This history can be divided into

Introduction ◾ 3

two: classical and modern times. Computing is principally related to the presenta-
tion of numbers. However, abstracts, such as numbers, had been created before that.
Mathematical concepts existed in different civilisations.

1.2.1 Analogue Computers

The first device discovered to perform computations was the abacus, which is believed
to emerge about 2400 BC in the ancient city of Babylon in Iraq. The method of
employing an abacus was by using lines drawn on sand and marking them. Advances
in numerical systems and mathematical symbols ultimately resulted in the discovery
of mathematical operations such as addition, subtraction, multiplication, division,
square, square root, and so on.

In the fourteenth century, the engineering ruler was invented and used as a man-
ual computing instrument consisting of a simplified form of a ruler and an interme-
diate movable piece calibrated by logarithmic scales. In 1642, Blasé Pascal invented
the mechanical machine, for which the Pascal programming language was named
after him in his respect. Analogue computing in two mechanical and electronic forms
became two influential classes of computing throughout the period before the emer-
gence of digital computers.

For more than 40 years, early mechanical analogue computers were being
employed in the US Navy along with fire control systems for missile launches and fuse
adjustment on bullets to destroy ground and aerial targets. The history of mechani-
cal analogue devices dates back at least to Vitruvius’s time, who described using a
wheel to measure the length along a curve. Of other analogue devices, differential
gears were notably employed to add and subtract two variables. The discovery of
the device is usually accredited to Leonardo da Vinci, but Gottfried Wilhelm Leibniz
is also cited for the idea of this device in the late seventeenth century relative to a
similar triangular device to solve the root equation.

The first mechanical analogue device was built by B. H. Hermann for calculating
an integral under a curve or a closed area inside a closed curve in 1841. Hermann
integrator was essentially a pressed wheel in front of a disc shown in Figure 1.1.
There was a secondary disc on the first one, which compressed the wheel between
them. The wheel rotation rate is dependent on the product of the disc rotation rate
and the radial position of the wheel’s contact point on the disc.

The angular displacement rate of the wheel z is given by Equation (1.1). In this
equation, z is the integral of y variable multiplied by a constant number. x is the
angular disc position, and k is a scaling coefficient. It is necessary to note that vari-
ables are linear and angular positions in this device. The initial application of such
integrators was the integral of force along the length to measure work. Mechanical
analogue computers were referred to also as differential analysers.

dz
dt

ky
dx
dt

=

(1.1)

The decline of mechanical analogue computers as computers used in fire control
systems began before World War II.

4 ◾ Implementing Parallel and Distributed Systems

Shrinking the price of electrical devices, increasing their accuracy, reducing their
weight, and their resilience against noise and blow were of those major players that
made mechanical analogue computers completely obsolete for ten years between the
1950s and 1960s.

The similarity between linear mechanical components, such as springs and dash-
pots, and electrical components, such as capacitors, inductors, and resistors, is remark-
able in mathematics. Modern analogue computers get built by electronic operational
amplifier circuits. Early operational amplifiers (often abbreviated as opamp) were
enjoyed from vacuum tubes. Modern opamps depend on semiconductor integrated
circuits. Those circuits that use these opamps can precisely carry out mathematical
operations such as integration, multiplication, subtraction, and inversion employed
in systems described by differential equations. This technology was embedded into
the research and development of military, aerospace, economics, and engineering
sectors in the 1950s.

In this section, to help the reader understand how an electronic analogue com-
puter works, the solution of a simple linear ordinary differential equation is consid-
ered in Equation (1.2).

a

d y
dt

b
dy
dt

y x t
2

2 � � � � �

(1.2)

Suppose that x and y are two signals as functions of time, where x and y are input
and output signals, respectively. Also, let’s require that, for the analogue computer in
question, the following three assumptions apply:

	 •	 They have an infinite voltage gain (A
V
V

= out

in

, where Vin and Vout are input and
output voltages, respectively).

	 •	 They have an infinite input resistance (or, in other words, a zero- input current).
	 •	 They have a zero- output resistance (or infinite output current property).

X

Y

Figure 1.1 Hermann integrator.

Introduction ◾ 5

According to these assumptions, an ideal opamp appears in Figure 1.2.
For deriving the transfer function (or network function), we take the Laplace

transform of Equation (1.2) to arrive at Equation (1.3). From T(s), a network of linear
electrical components can be constructed by using an ideal opamp. For example,
using the Sallen- Key topology, this network function can be realised relied on the
filter and synthesis circuit theory in Figure 1.3.

as Y bsY Y X s T S

Y S

X S as bs
2

2

1
1

� � � � � � � � � � �
� �

�
� �

(1.3)

By solving this circuit according to Kirchhoff’s laws of voltage and current (and
replacing all the capacitance values by the values of their respective Laplace trans-
forms, namely,

1
Cs

), and deriving T(s) and comparing it with Equation (1.3), we can

calculate a and b coefficients based on Equation (1.4).

 a R R C C b C R R� � �� �1 2 1 2 2 1 2, (1.4)

Ideal
opamp

+

–

Vout

V1

V2

V1 = V2 = Vin

I1 = I2 = 0

I1

I2

Figure 1.2 Scheme of an ideal opamp.

Ideal
opamp

+

–

Vout = y

Vin = x
R1 R2

C1

C2

Figure 1.3 The realisation of an electronic analogue computer relied on the ideal opamp,
capacitors, and resistors.

6 ◾ Implementing Parallel and Distributed Systems

Figure 1.4 illustrates the configuration of an analogue computer to solve such
a problem (input and output signals also appear on the oscilloscope). In fact, the
realisation of the circuit in Figure 1.3 involves the necessary wirings and potentiator
adjustments on the analogue computer in Figure 1.4.

1.2.2 Digital Computers: Modern Hardware Advances in Computer
Architectures

In the late 1940s, the first generation of digital computers using electronic compo-
nents emerged. The developers of these systems were unaware that the conceptual
and functional traits of these electronic computers had been constructed virtually a
hundred years earlier, principally developed by Charles Babbage, an English mathe-
matician. Charles Babbage, in 1821, was intrigued to automate the printing and com-
putation of mathematical formulas. He managed to build a small apparatus called
the difference engine, thereby capable of calculating consecutive values of simple
mathematical functions by applying finite differences to them. After the invention
of modern electronic systems, electric currents replaced mechanical moving com-
ponents of primitive computers. The developers of the first- generation computers
hardwired them, and the underlying circuits were their computer programs. Through
the years, computer architectures have made incremental progress.

After 1956, vacuum tubes, which had formed the basis of Eniac computers, were
replaced by semiconductor transistors, and therefore the second generation of digital
computers arose. The discovery of transistors had an impact on the third generation
of computers because it was a more reliable technology. The life of the transistor era
was short until 1964 when integrated circuits (ICs) became the de facto development
in the semiconductor industry. The evolution of computers accelerated as computers

Figure 1.4 An example of an input signal simulation relied on analogue computers and output
signal observation using an oscilloscope.

Introduction ◾ 7

got faster and more energy efficient. The advent of IC technology with operating
systems created the third- generation computer technology allowing the average per-
son to buy affordable computer machines. The fourth generation began with the
advent of microprocessors in 1971 and still is the current generation of computers
in use. Thousands of ICs come with microprocessors on a silicon chip comprising
of central processing unit (CPU), random access memory (RAM), and input/output
(I/O) control subsystems. The rising widespread of computer networks (followed by
the invention of distributed systems) led to the age of the Internet. It is surprising to
contemplate how a flat- filled computer transformed into a small machine, which is
still used today at home and in the workplace!

Computers have changed scientific research on how data compiles and is then
analysed. Computers can evaluate a large amount of data at speeds impossible to be
traced with a scientist’s naked eye. As a highly beneficial example use of modern
computers, complex mathematical equations are solved by computers numerically
to find whether data is valid or not. Large- scale mathematical models run on super-
computers to model how experimental data expressed by mathematical equations
can manifest itself in the future. These predictions in a wide range of fields of sci-
ence, such as computational biology and climate modelling, are practical to letting us
understand the nature of the problems in question.

Figure 1.5(a) shows a modern single- processor system which relies on the stored
program concept. In this conceptual framework, data and executable programs are
stored in individual areas of memory, of course, treated similarly. This simple but
powerful architecture makes developing computers much easier by reprogramming.
In this idea, there are three basic structural units. The control unit (CU) is responsible
for handling all the control signals issued by the processor. It manages the flow of
input and output transactions, fetches instruction codes, and, finally, takes control of
how data circulates the entire system. An arithmetic logic unit (ALU) handles all basic
calculations, such as addition and comparisons, and performs logical operations and

CPU CPU CPU

Cache CacheCache

Control Unit

Arithmetic Logic Unit (ALU)

Registers

Central Processing Unit (CPU)

Memory I/O

Interconnection Network

(a)

(b)

Figure 1.5 The classic organisation of (a) a single-processor system and (b) a shared-memory
multi-processor system.

8 ◾ Implementing Parallel and Distributed Systems

bit shifting. Registers store results calculated by the ALU, keep track of the address
of the next instruction needed to fetch from memory, and so on.

On one side of the coin, classically, the number of transistors on ICs doubles
every two months based on Moore’s law. However, it is difficult to shrink silicon-
based transistors below 1 nm because critical physical problems governed by quan-
tum mechanical phenomena emerge. On the other side of the coin, another principle
called Dennard scaling states that the energy required to run transistors stays nearly
constant in a specific unit of volume as the transistor count rises. Transistors have
shrunk such that Dennard scaling is no longer valid. Therefore, the power at which
transistors operate is increasing. Thermal problems are also a big challenge in IC
design. When billions of transistors are rapidly switched on and off on a single chip,
it creates a large amount of heat. This heat can quickly deteriorate the precision and
speed of the underlying silicon wafers. Sophisticated cooling systems are needed
when more transistors accumulate on the chip. Due to all such hurdles, the processor
technology has been founded on adding more cores on the chip since 2007 instead
of increasing the CPU clock frequency in order to manage the power- related issues.
Manufacturers are dramatically adding more processor cores to computing systems.
As Moore’s law is fading and scientific and industrial compute- bound applications
demand unprecedented compute cycles, software design still has not accustomed
itself adequately to this trend. The following chapters try to familiarise the reader to
engage with software- based parallel design principles.

Figure 1.5(a) shows a simple architecture of a single processor made up of an
arithmetic logic unit (ALU), a control unit (CU), and registers. The CU manages all
processor- relevant control signals by handling input/output (I/O) operations, fetch-
ing machine code for instructions and taking care of how data moves in the entire
system hardware. The ALU is the heart of the processor for performing arithmetic
and logical operations such as multiplication and comparison. Registers are small
temporary memory units to store and retrieve data from the main memory and the
results of calculations by the ALU. Figure 1.5(b) illustrates a shared memory multi-
processor system. Given the difficulty in writing parallel programs, this architecture
provides a single physical address space that all processes share to ease program-
ming of the parallel applications. By contrast, a separate address space is assigned
to every processor, in which data sharing is explicit, and message passing must be
used for program development (see Chapter 11). In Figure 1.5(b), all processes com-
municate through shared variables. When all processors work in parallel on such a
system, only a single processor can use the memory whilst other processors must
wait through a coordination mechanism called synchronisation. Therefore, a proces-
sor claiming a shared memory area must acquire and lock it. Despite all this long
history in computing, the industry is now building future technology using parallel
computing for an unforeseeable time.

1.3 A Brief Introduction to Parallel and Distributed Systems
After the advent of modern microprocessors, the development of high- speed net-
works—such as local- area networks (LANs) and wide- area networks (WANs)—allowed
the construction of highly scalable computing systems by connecting thousands of

Introduction ◾ 9

machines. These results enable computers to operate across geographically dispersed
deployments to form the so- called distributed system. The scale of a distributed sys-
tem can range from a few nodes to thousands or millions of computers. The under-
lying connection network can be wired and/or wireless. Therefore, a distributed
system is a collection of autonomous computers by which we aim to solve a large-
scale problem or support massive collaboration over the Internet. In such a system,
there is no shared memory, but computers communicate with one another through
explicit message exchanges. On the contrary, in parallel systems, multiple processes
execute multiple tasks concurrently. Of course, a parallel computer might be thought
as a particular type of distributed systems, where exploiting distributed system prin-
ciples with a high- speed interconnection network can increase the system capacity
(parallel and distributed systems share many intertwined fundamental characteris-
tics). A trait of distributed systems is that their nodes can interact independently;
therefore, there is no global notion of time called a global clock (namely, each node
sees its own local clock). This fundamental principle regarding time leads to critical
issues of coordinating actions between multiple nodes of a distributed system (which
is studied by synchronisation algorithms). Due to the complex nature of distributed
systems, they are constructed by a concept known as middleware. A middleware is a
set of software layers to assist in developing highly complex distributed applications.
The layers are placed on top of an intended operating system and encapsulate many
features which are in common with distributed system principles. Comparatively, an
operating system takes care of low- level hardware, whilst a middleware takes over
sharing and managing resources across a computer network.

Several design features make a distributed system worthwhile to use. The facilita-
tion of a distributed system must simplify access to heterogeneous resources, what-
ever they are (a file, service, network, etc.). Distributed systems export their resources
to users that may reside across geographically different areas on heterogeneous com-
puters. On the other hand, a primary duty of a distributed system is to hide the under-
lying details to end users; that is, they can transparently access distributed entities.
With the rising number of services hosted by different types of distributed systems,
such as the cloud and devices connected to such computer networks, scalable dis-
tributed systems are becoming a critical issue for developers and service providers. A
distributed system should be scalable to service on- demand requests, including com-
putational and storage capacity and network resources/infrastructure. Organisations
enjoy computers for communicating their needs through a network, in which pro-
grams operate on behalf of their users. Therefore, an essential aim of distributed sys-
tems is to be open to a broad spectrum of services and operating systems. It means
that components of a distributed application must comply with a set of pre- agreed
and standard rules by which they can reach one another without paying attention to
the internal details of other components. One of the popular methods is to define the
interaction points via interfaces described by an interface definition language (IDL).
In this regard, only the way components call each other is specified by a collection of
interface functions, whilst the internal detail is hidden. Interoperability and portabil-
ity are two significant features of open distributed systems. The former indicates that
two implementations of a single service can interoperate as specified by an agreed
standard. In fact, the extent to which a distributed application can be either compiled
or executed on another distributed platform is referred to by the latter.

10 ◾ Implementing Parallel and Distributed Systems

There are various types of distributed systems; however, a complete treatment of
all of them is beyond the scope of this book. A prominent class of distributed sys-
tems used ubiquitously is high- performance distributed computing systems, includ-
ing Cluster Computing, Grid Computing, and Cloud Computing.

Cluster Computing is an arrangement of computers connected through a high-
speed communication fabric, in which every processing element is called a node.
Figure 1.6 presents a simplified architecture of a typical cluster. A node can consist
of simple or advanced multi- processor systems that function on top of an operating
system and connects to other nodes through a LAN interconnect. Clusters usually
offer incredible computing power and storage capacity to solve complicated compu-
tational problems. The whole computers try to provide a uniform execution system
whose program operations appear to reside on a single virtual machine. This kind of
transparency is reached by leveraging networking technologies and distributed sys-
tem principles. Cluster Computing systems are cost- effective (concerning their per-
formance), highly available (fault tolerant), and expandible/flexible (easily extensible
to additional nodes). Although Cluster Computing facilities are widely employed to
run challenging problems, they are classified relying on their use. High- performance
computing (HPC) clusters exploit high- end clusters and supercomputers to tackle
problems whose size is interactable on a single node or requires enormous cycles
of processing power. On the other side, load- balancing clusters are leveraged to
distribute incoming requests evenly for resources on a farm of cluster nodes, each
of which runs similar programs. This strategy removes the burden on a single node

High-Speed Communication Switch

High-End Computer 1 High-End Computer 2 High-End Computer 3 High-End Computer N

Cluster Middleware (Single-System Image)

Legacy sequential programs

Parallel programs

Parallel Programming Runtime and
Libraries

Figure 1.6 A typical cluster architecture.

Introduction ◾ 11

by dispatching a proportionate amount of tasks to several nodes. Web hosting envi-
ronments often employ load- balancing clusters to increase their uptime. The third
cluster class introduces redundant nodes for high availability (HA) when a failure
occurs. Critical services benefit from HA clusters, such as complex relational data-
bases and networked file systems. Therefore, uninterrupted access to data is offered
to the end- users.

A key feature of conventional Cluster Computing platforms is that they are com-
posed of homogenous hardware in the specification and almost usually host the
same operating system through the same network. Nevertheless, we have observed
an inclination towards heterogeneous architectures emerging from the fact that the
Internet paradigm is changing the notion of computing. These needs led to a new
type of distributed architecture known as Grid Computing, by which different admin-
istrative domains seamlessly work together with no assumption on the underlying
hardware, operating systems, security policies, etc. A grid infrastructure brings com-
puters (clusters, supercomputers, servers, etc.) together to create a massive resource
capacity of computation, storage, and network. Grids are employed to solve large-
scale computational problems. Despite the enormous processing power delivered
by HPC clusters, Grid Computing harnesses internationally or nationally scattered
compute and storage resources for aggregating more performance and throughput.
Figure 1.7 portrays a layered grid architecture. The user applications run on the top
layer of the grid platform. These applications require a group of collective services
such as collective computing and communication. The next layer in this architecture
corresponds to hardware and software resources that sit under the collection layer.
Beneath the resource layer, the connectivity layer supports connecting the resources
through establishing direct physical links or virtual networks. Note that this layer
must precisely take care of the fabric layer, such as virtual private channels and
physical network links. The fabric accommodates all aspects of hardware resources
or their software- based management components, such as operating systems, stor-
age systems, and network connections. This layered grid architecture closely corre-
sponds to the layered Internet protocol stack (which includes application, transport,
Internet, and network access layers). An essential issue in Grid Computing is that

Applications

Collective
(Collaboration and Coordination)

Resource (Distributed Resource Access)

Connectivity (Security and Networks)

FabricOperating Systems Network Storage

Application Programming Interfaces (APIs) ...

Figure 1.7 A layered grid architecture.

12 ◾ Implementing Parallel and Distributed Systems

individual organisations take part in sharing their resources in pursuit of collabora-
tion and solving problems. This coordination is achieved by virtual organisations,
each of which defines its own access rights to resources.

Whilst computational grids got restructured to be easily accessible, vendors and
IT companies were dealing with strategies to outsource their resources to their
customers. As a result, these endeavours gave rise to forming the basis of Cloud
Computing. In fact, Cloud Computing is defined as on- demand access to resources,
especially over the Internet, without the direct involvement of end- users in managing
the behind- the- scenes preparations of the cloud service provider. Major cloud solu-
tions often own powerful data centres scattered over the globe, and their customers
benefit from their services using a pay- as- you- go model.

Clouds are, in practice, arranged in a four- layer model shown in Figure 1.8. The
lowest layer, the Cloud Resources layer, includes all the necessary hardware utilities
(such as processors, routers, storage systems, etc.) to form the fabric of the cloud
data centre. The key next layer is Cloud Infrastructure, which provides the founda-
tion of most cloud platforms by deploying virtualisation technologies, namely virtual
machines (VMs). A VM is the virtualisation of a computer system grouped into sev-
eral virtual entities composed of a limited amount of CPU usage, memory, storage,
and so on. The platform layer provides the developers with vendor- specific APIs to
build their own applications. In a similar approach to operating systems, the platform
layer presents a comprehensive set of tools and libraries that enable the program-
mers to write code easier for cloud platforms. Finally, the Cloud Application Layer is
where the end- users receive a myriad of software services. It is necessary to note that
most of these applications are vendor- specific, and thus, interoperability between
vendors is hard to obtain.

Cloud
InfrastructuresOS Virtual Machine (VM)

VM Manager Distributed File Systems ...

Cloud
Resources

CPU Cluster Storage

Network Memory ...

Cloud
Applications

Scientific Computing Apps.

Email CDNs ...

Cloud
Platforms

Programming Languages Libraries

Databases Web 2.0 ...

Ia
aS

Pa
aS

Sa
aS

Figure 1.8 A typical cloud architecture.

Introduction ◾ 13

Based on the layers introduced above, cloud providers often classify their services
into three primary models: (a) infrastructure- as- a- service (IaaS), which incorporates
resource and infrastructure layers; (b) platform- as- a- service (PaaS), which covers the
platform layer; and (c) software- as- a- service (SaaS), which offers real applications.
Cloud is still an area of intense research and is no longer a hype. On the one hand,
strategists and big IT companies are looking for the exploitation of cloud technol-
ogy in minimising their costs and risk of service outages. On the other hand, local
enterprises are looking at the cloud paradigm as a profound option to outsource
their computing infrastructures. Despite the maturity of Cloud Computing, several
significant obstacles remain, such as security and privacy issues.

1.4 Conclusion
In this chapter, we briefly introduced a journey in computing towards the recent
advancements in distributed systems. Without a doubt, we are at the beginning stage
of a paradigm shift in computing that allows complex industrial, societal, and scien-
tific applications to emerge or evolve. Most importantly, semiconductor technology
is finding an unprecedented role in the future of energy- efficient computing systems.
New computer technologies, such as quantum and neuromorphic computers coupled
with existing parallel and distributed systems, will lead to the ability of humankind
to experience unseen applications and cope with previously unsolved problems. We
expect the traditional computer architectures will coexist and instead continue to
help us with advanced hybrid computers. The following chapters will lay the foun-
dation for developers and researchers who want to get involved in the research and
construction of next- generation distributed systems in the coming years.

Notes
 1 Internet protocol.
 2 Deoxyribonucleic acid.

Reference
 [1] Computers Automatically Classify Galaxy Shapes. 2010; Available from: https://astronomy.com/

news- observing/news/2010/06/computers%20automatically%20classify%20galaxy%20shapes.

https://astronomy.com
https://astronomy.com

https://taylorandfrancis.com

15DOI: 10.1201/9781003379041-2

Chapter 2

IoT and Distributed Systems

If you think that the internet has changed your life, think again. The IoT is about
to change it all over again!

Brendan O’Brien

2.1 Introduction
In the traditional viewpoint, the Internet was designated for Internetworking of
homogenous and heterogeneous computers, servers, hosts, applications, and ser-
vices. But the surge of tiny smart device production and diverse scope of applica-
tions directed to a new paradigm in connectivity of smart devices. Thanks to Moore’s
law, the advancements in the semiconductor industry led to electronic devices with
a form factor of a coin at the capabilities of one- decade- ago computers. This really is
a revolutionised, rather than evolved, achievement.

On the other side, the orchestra of tiny connected devices embraced the era of
smart distributed systems. Now, we consider that the ease of access, open protocols,
and higher- speed data transfer rates to face the actual problems gain many interest-
ing application scopes.

The term Cybernetics, or control and communication between animal and machine,
is then virtually revised to interact with a physical system as an environment or infor-
mation exchange. This led to the term Cyber- Physical Systems (CPS). The extension
of connectivity amongst tiny devices as new connected “Things” also led to the term
Internet of Things (IoT). IoT is a term to represent CPS with engineering- like details
and approaches.

Finally, merging all the above items, a new topic is resulted with the name
“Distributed Systems and Internet of Things.” This new term represents an insight
into where the Internet is extended into real- world entities and objects. Distributed
systems are tightly related to distributed computing.

http://dx.doi.org/10.1201/9781003379041-2

16 ◾ Implementing Parallel and Distributed Systems

2.2 CPS and IoT
In the system modelling approach and considering the universe as an ensemble of
systems with a set of specified subset as corporative systems, any CPS is a superset
for a target IoT. Figure 2.1 depicts a hierarchical aspect in this regard. Whilst the
theoretical basis for CPS has very good support for technical issues in IoT, in prac-
tice we are more interested in IoT implementation aspects than the CPS concepts in
engineering fields. This selection enables us to have very clear application scenarios.

For example, as shown in Figures 2.2 and 2.3 [1], it seems that an unseen event
for an observer (sensor) is a seen event for another connected observer (sensor)
that may be corporate to enable its visibility to the unseen ones. This is a very good
system- level anticipated- like application.

2.3 Internet of Things (IoT)
Although IoT is stacked on top of many individual factors, including open protocols,
device communication standards, and systems- level modelling in electronic devices
and tools, it is projected to have automated integration into almost all fields and envi-
ronments. In this case, various types of centralised, decentralised, and distributed
systems are the subject of influence.

This means more efforts are required to engage with modelling, programming,
and management. Whilst in distributed computing groups of networked computers

Systems

Internet-of-Things

Cyber-Physical-Systems

Internet-of-Things

Systems of Systems (Universe)

Things

Things

Things

Figure 2.1 Internet of Things is an actual subsystem of Cyber-Physical-Systems in modelling
perspectives.

IoT and Distributed Systems ◾ 17

are used for a predefined computational goal, in distributed computing it deals with
and treats major concerns with concurrent and parallel computing mostly dominated
in scientific areas.

In this way, normally different technologies related to distributed computing are
utilised. Some of the most important utilisations amongst them are the following:

	 •	 Cross- hardware and cross- operating system migration with hardware
virtuali sa tion.

	 •	 Complexity and platform- insensitive open- access or service- oriented
architectures.

Figure 2.2 A scenario of connected devices and sensors (Picture adopted from [1].)

Figure 2.3 An interesting application scenario on the benefits of connected devices and
cooperate sensing augmentation [1].

18 ◾ Implementing Parallel and Distributed Systems

	 •	 Resource management by inspection of the complexity and behaviour of the
target application.

	 •	 Investigation of novel algorithms and techniques to utilise in the era of “as
a service” (i.e., Platform as a Service (PaaS), Hardware as a Service (HaaS),
Software as a Service (SaaS), etc.

	 •	 Initiate or promote open- source technologies to boost the development of
diverse applications for actual situations. This spans from smart- grids manage-
ment to smart cities and smart homes, to Personal Area Network (PAN) and
Body Area Network (BAN).

2.4 Distributed Systems and Distributed Computing via IoT
To have distributed computing over a distributed system of connected IoT Devices
(IoTD), it is required to bear a set of factors in mind. This is because of new problems
and unknown or unspecified situations due to the diverse nature of target applica-
tions or systems or environment interactions.

Whilst the conventional Internet is based on TCP/IP and connection/connection-
less packet switching, different aspects such as IoT, Industrial IOT (IIoT), Narrow-
Band IoT (NBIoT) and other technologies like LoRA, LoRAWAN, Zigbee, IEEE
802.15.4, and many others are also considered, and they are the reasons why the
traditional approach is not sufficient to mitigate the challenges. This means not only
that one must consider software and hardware issues but also that the conventional
Internet requires to have new architectures or revised and modified architectures. To
have a good look and consider the situation in more detail, it is required to under-
stand and take into account the newly adopted factors. Most of these factors are
related to Edge, Cloud, and Fog Computing.

 1. The need to have scalable systems dealing with big data:
The nature of IoT is directly related to the ecosystem of connected smart sen-
sors. This implies that the sensors are not only connected but also transferring
a sort of reasonable volume of data. This is not the main problem; the main one
is the high volume of sensor count. This means conventional approaches may
fail in treating a huge set of data. Therefore, it is required to have systems with
the real meaning of being scalable. This system needs to store/process not only
current time data but also its historical footprints of data. This is a key feature
for future investigation, which later showed its effectiveness in emerging fields
of Industrial IoT for predictive maintenance and conditional monitoring.

 2. Need to have online/offline processing with real- time answer capability:
In most diverse situations in IoT- related applications, there is an urgent need
for real- time operations to handle events in progress to produce an on- time
response. One of the obvious samples of this scenario one may call the multi-
media stream processing in audio/video. Another one is the security checking
and packet inspection in video/audio or TCP/IP ICMP packets.

 3. High- performance Edge/Fog/Cloud Computing:
The basic hierarchy of Edge/Fog/Cloud Computing with annotated major deci-
sive factors annotation is depicted in Figure 2.4 as a simple stacked layer and in

IoT and Distributed Systems ◾ 19

Figure 2.5 with more details and inner layers. As shown in Figure 2.5 detailed
layers map, in the Edge layer the main issues are the sensors and their differ-
ent types of data conversion, local storage, and local processing. In the Fog
layer, data transfer, protocols, and communication issues are the major factors.
Interestingly, in the newly coming 6G mobile communication basis, the core
network, which roughly could be considered as the virtual Fog is to be con-
sidered with mobility support. This is a very attractive point from the basics of
Edge/Fog/Cloud computing for 6G. Therefore, it will require many innovations
in this regard. In the third layer or the topmost layer of Cloud Computing, the
main issues are heavy process, extra storage, information retrieval, data model-
ling, and application of recent development of machine learning to apply stored
data to have value- added services.

 4. Non- uniform distributed systems:
IoT systems come with two distinct properties: One is the ensemble of nodes,
sensors, and actuators with different and diverse goals of sensing and actuat-
ing. This means that we must not only be engaged with different resolutions,
bit width, power consumptions, signal, and noise conditions for a huge set of
scenarios but also interact with different communication protocols and genera-
tions. On the other side, handling the different data types and satisfying the
timing for real- time and offline situations must also be issued. The complexity
in hardware and software at the edge is dictating the storage and processing
boundaries from fog and cloud.

Moreover, the heterogeneous structure needs to have gateways to control in/
out data transfer amongst them. This not only impacts the uniformity but also
implies additional complexity on software and hardware in turn.

 5. Data integrity/data security/data privacy/data availability:
The elements of IoT are considered alive as long as they are connected. It
means they are net- worked if connected and not- worked if not connected.
The main soul in this point is the unique interpretation of data for a subject.

Figure 2.4 The main hierarchy of Edge/Fog/Cloud Computing.

20 ◾ Implementing Parallel and Distributed Systems

It means the update/modify must be handled with care and data integrity is a
key concept.

Integrity must be ensured with the confidence of data security and privacy.
The insecure or non- trusted elements in a trusted network must be identified
and labelled or reduced in critical situations.

KPN SD-FSM

P6

P7

P1

P2

P3

P4

P5

RTP

Individual
parameters

P5

Local
constraints

Case-specified
parameters

C B A A C

A E E E B

B B D D A

C B A B C

Process

Memory
T1
T2
T3

T4

T5

Model Graph
Representation

Scenario 1 Scenario 2

Condition M

Scenario 3

Condition 1

LP1

LP3

LP2

LP4

LP6

LP7

LP5

Domain specification

interoperability standards

Accuracy Temperature

network

cost

Sense
intervals

Power

limits

Privacy of data

Storage

Misc.

Region 1

Distributed Sensor / Actuator Network

Region 2

Edge Zone
Sensors / actuators

Engineering Teams

M*N

Ad Hoc
Networks

Cloud

Managing Teams

Model to execute

Region i Region NGlobe

FS / DB

Condition 2

Condition M

Condition 1

Condition 2

Condition M

Condition 1

Condition 2

Condition 3

Condition 4

Scenario Managers

Process Stack

Figure 2.5 A detailed layered stack model Edge/Fog/Cloud Computing.

IoT and Distributed Systems ◾ 21

The rise of a huge set of data, its live stream, and higher speeds in transfer
may violate data privacy even in unintended situations. Privacy is also a must
for value- added services and the protection of individuals.

All of these concerns must be considered but not at the cost of availability.
Availability must be addressed as a key performance index. It is the final goal
of connected systems and services, and the goal must be supported by privacy,
integration, etc.

Considering the basic items of security/privacy as confidentiality, to have
a sustainable system, one must encounter three items at once. This is usually
called CIA. Triangle. Sometimes, the share and impact of each item may not be
equal as the others. This is artificially illustrated in Figure 2.6, which shows that
there are different aspects of biased elements arrangement with less or more
gained factor (shown as the different side sizes).

 6. Centralised, distributed, decentralised, and peer- to- peer networks
To have a clear look at the different types of networks, a hierarchical viewpoint
is the best suited. This is illustrated in Figure 2.7. Semantically speaking, the
networks may be divided into two main categories of centralised and other
networks.

The former, or centralised, is a widely used model with direct management
and control of its sub- units via a central agent or unit. In this structure, all of the
connected elements directly rely on star- like centric node connectivity.

In a centralised system, the single control node is mainly responsible for fail-
ures and heavy- duty storage and processing.

The latter one or other networks are divided into three subsets of classifica-
tions: distributed, decentralised, and peer- to- peer networks.

The main specifications in the characterisation of these three networks are
physical location of the nodes, Inter- Intra organisation sub- networking, differ-
ent ownership policies, hardware and software, anonymous and private access,
communication layers and protocols, and many other individual factors.

There are other forms of networking, such as ad hoc networks that may be
considered for a special area of applications and situations.

C I

A

I

A

I

A

I

A

C
C

C

Figure 2.6 The CIA Triangle and different aspects of biased elements.

22 ◾ Implementing Parallel and Distributed Systems

In all of the above- mentioned networks, there is a process and resource-
hungry situation that needs to be overcome. The more the diversity and com-
plexity in the networking and processing, the more there is difficulty in rapid
and efficient code development. The main aim of this book is to deal with this
problem.

In the present book, we introduce Parvicursor infrastructure, a low- level middleware
system grounded on a specialised concept of distributed objects and native ECMA.
NET- compliant execution for highly concurrent distributed systems, to make writing
middleware easier on heterogeneous platforms. It takes care of low- level network
programming interfaces for Grid/Cloud- specific platforms and allows the middle-
ware architects to focus their efforts on their middleware logic with the help of the
integrated, scalable Parvicursor Execution System. xThread provides the capability
of remote code execution, dynamic distributed object registration and activation,
transparent communication on the underlying transport protocols, data marshalling
and unmarshalling, distributed operation dispatching, checkpoint/restore, etc. xSec
introduces techniques for authentication of users and secure communication. xDFS
proposes utilities and libraries for transmitting, storing, and managing massive data
sets. Parvicursor Concurrent Asynchronous Sockets (PCAS) presents interfaces for
designing optimised and highly concurrent network services.

Reference
 [1] CPS/IoT Ecosystem. 2022; Available from: https://cpsiot.at

Figure 2.7 The hierarchical perspective of centralised, distributed, decentralised, and peer-to-
peer networks. (Adopted from pngwing.)

https://cpsiot.at

23DOI: 10.1201/9781003379041-3

Chapter 3

Advanced Operating System
Concepts in Distributed
Systems Design

UNIX is basically a simple operating system, but you have to be a genius to
understand the simplicity.

Dennis M. Ritchie

WHO WAS DENNIS RITCHIE?

When I (Alireza Poshtkohi) started working on this
book, unfortunately I heard of a late scientist’s death,
so I decided to write a short memoir to thank him for
his impact on my scholarly life. After being admitted
to the university as an electrical engineering student
in 2001, I took a module on the C programming lan-
guage, towards which I developed hatred after a
while and thought to withdraw from that module.
One day, the module lecturer spoke about one of the
C language’s creators, a man called Dennis M. Ritchie.
After the class, I researched Dennis’s life, and in the
following weeks I was fascinated by his scientific

personality. This event led me to step into the world of software and operating
systems, and after ten years, the idea of developing this book emerged in 2011.
The C language changed my scientific life somehow.

http://dx.doi.org/10.1201/9781003379041-3

24 ◾ Implementing Parallel and Distributed Systems

3.1 Introduction
Since the input interface to work with hardware is operating systems (OSs), this
abstraction is the lowest level with which every software (such as a distributed sys-
tem) must interact. As we are aware, all distributed systems and their middleware are
implemented based on OS interfaces through application programming interfaces
(APIs). This book aims to teach you how a distributed system and its middleware
are built. So, you are supposed to take advantage of OS capabilities in your favou-
rite programming language. In this chapter, we try our best to draw an image of OS
concepts, which mainly affect the design and implementation of distributed systems.
Familiarity with these essential concepts helps the reader from two different points
of view. First, learning these concepts makes programming styles relied on the OS
APIs easier to understand. It can improve the learning process and ease the combi-
nation of concepts at different abstraction levels for problem- solving and coming up
with new ideas for unapproachable areas through conventional methods. Second,
a milestone that paved the way for the emergence of distributed computing was to
tackle problems unsolvable on a single processor. Instead, we must have harnessed
the processing power of many systems within a network of computers to solve a
computationally hard problem. Therefore, how optimal a system is designed for
improving the performance and throughput of applications is studied in distributed
systems. It is a fact that when we do not know about advanced concepts in operat-
ing systems, a poorly designed system either incurs a lot of overhead or even fails
to achieve the performance of a single processor. Designing such systems requires
several years of study and direct involvement in systems software development with
a background in distributed applications.

In this chapter, we make an effort to briefly discuss the key concepts in operat-
ing systems that we encountered over the years in designing systems and distributed
software.

3.2 An Introduction to Modern Operating Systems
A computer system is a collection of hardware and software components that work
together to run a computer program. System implementations at different abstraction

Ritchie was born on 9 September 1941 in the Brownsville neighbourhood
of New York City. His name is associated with great works such as the C pro-
gramming language and Unix operating system. Currently, the C program-
ming language plays a fundamental role in many famous programs and big
projects worldwide: operating systems such as Linux, Solaris, BSD, Mac OS,
Windows, and other variants, and programming languages such as C++, C#,
Java, JavaScript, and many more. It can be said that operating systems, such as
Windows and Linux that would become too controversial, could not have been
created without the C language. The world of open- source software certainly is
familiar with its fathers.

Advanced Operating System Concepts in Distributed Systems Design ◾ 25

levels change over time, but basic concepts do not. All computer systems have similar
hardware and software components that perform similar tasks. An operating system
(OS) is a collection of programs that manage computer hardware resources and
provides shared services for application software. The operating system is by far the
most critical type of systems software in a computer system. Especially in distributed
systems, middleware, or composition of OS services, based on the definitions and
requirements of distributed environments, supply developers in order to hide the
complexity of low- level OS from the developer’s sight.

OS executes programs and makes a computer system more optimal and suitable
for use. In this section, we briefly look at a modern operating system’s concepts and
functions. Figure 3.1 shows the holistic view of a modern computer system consist-
ing of software and hardware components.

Busses are a set of electrical wires that transfer bytes of information back and
forth between components of a computer system. They are usually designed to trans-
fer data fragments with a fixed size of bytes known as words. The number of bytes
in a word is a basic system- wide parameter which varies in different systems. For
instance, this number can be 8 bytes for 64- bit processors.

Input/output (I/O) devices are connections of the system to the external world.
Each I/O device connects to the I/O buss by either a controller or an adaptor. The dif-
ference between these two is mainly due to their packaging method. Controllers are

L1
cache ALU

memory interface I/O bridge
main

memory
(DRAM)

L2
cache

USB
controller

GPU
controller

storage system
controller network adaptor

memory bussystem bus
cache bus

register file
CPU integrated circuit

I/O bus

Hardware

storage
management

memory
management

process
management ...

Software

Operating System

OS API / OS System Calls
Middleware

Operating System

Applications

Hardware Abstraction Layer

Figure 3.1 The software/hardware view of a modern computer system.

26 ◾ Implementing Parallel and Distributed Systems

a collection of chips in the device itself or placed on the main printed circuit board
of the system (often called the mainboard). An adaptor is a card plugged into a slot
on the mainboard. Each of these devices is used to transfer information back and
forth between the I/O bus and an I/O device. Of course, research has recently been
conducted on moving the adaptor into the network- on- chip (NoC) in the processor
design cycle in order to eliminate the communication overheads of I/O busses.

Main memory is a volatile storage device which holds a program with the data
it manipulates, whilst the processor is running the program. Physically, the main
memory is made up of a set of dynamic random- access memory (DRAM) chips.
Logically speaking, the main memory is organised as a linear array of bytes, each
of which owns its unique address (array index) that starts from the index zero.
Each machine instruction that forms a program could be composed of a variable
number of bytes.

The central processing unit (CPU), or the processor, is an integrated device that
executes instructions stored in physical memory. Within each processor, there is a
storage device with the size of words (or registers) called the program counter (PC).
At any moment of time, the PC points to the address of the next machine instruction.
From the time at which the electrical power is connected to the systems until it is
disconnected, the processor frequently repeats this basic operation blindly and auto-
matically. The processor reads the instruction from the memory location to which
the program counter points. Then, it interprets the instruction bits, executes the
simple operation dictated by that instruction, and eventually updates the PC value to
the next instruction pointer, where the address of this pointer to that instruction in
memory may be contiguous or not. The register file is an array of processor registers
to store instructions and data fetched from the physical memory or data generated
by programs. These file registers are made using static RAMs with multiple ports.
Certain operations exist in which the processor employs the arithmetic logic unit
(ALU). The ALU calculates the address values and new data. A typical example of an
operation that a processor performs is listed below:

	 •	 Load: copies a single byte or word from the main memory into a register, whilst
the previous register content is being overwritten.

	 •	 Store: copies a single byte or word from a register to a location in the main
memory, whilst the previous content of that location is overwritten.

	 •	 Update: copies the content of two registers to the ALU, and the ALU adds two
words and stores the result in a register, whilst the previous contents of that
register is overwritten.

	 •	 Read I/O: copies a single byte or word from an I/O device into a register.
	 •	 Write I/O: copies a single byte or word from a register to an I/O device.
	 •	 Jump: extracts a word from the instruction and copies it into PC, whilst the

previous PC value is overwritten.

As seen in this example, the instructions to fetch and store data from/to the main
memory are one of those frequently occurring operations. These frequent copies cre-
ate critical overheads. Reliant on the laws of physics, larger devices are slower than
smaller devices. Faster dices are more costly than slower ones. As a good example, a
register file that can store up to several hundred bytes of information, as compared

Advanced Operating System Concepts in Distributed Systems Design ◾ 27

to the main memory for millions of bytes, is almost a hundred times faster than the
main memory. The more semiconductor technology progresses, the more and more
this gap widens. Processors are equipped with small faster devices referred to as
caches to address this problem. Cache memory is a component that transparently
stores data in order for future requests to be delivered faster. The data stored within a
cache may be values that were calculated previously or a repetition of the original val-
ues stored elsewhere. If the requested data is in the cache (cache hit), this request can
be serviced immediately simply by reading from the cache, which is also often very
fast. Otherwise (cache miss), data has to be recomputed or fetched from their original
storage location, which is relatively a slow operation (i.e., the more requests delivered
from the cache, the better is the overall system performance). Several factors, such
as software transactional memory (STM), multi- core architectures like non- uniform
memory access (NUMA), symmetric multi- processor (SMP) architectures, and concur-
rent programming (which will also take up much of this book), will affect the future of
cache- based platforms. In distributed systems, particularly Cloud and Grid Computing,
software-based caching plays a vital role in implementing distributed systems.

Having founded the hardware framework of modern computer systems, we now
pay closer attention to a number of essential concepts in operating systems that you
will encounter throughout this book. In the following, we consider the software part
shown in Figure 3.1.

3.2.1 Process Management

A process is an instance of a computer program that runs. A process can consist of
multiple threads of execution that execute the instructions simultaneously. In this
book, we only make use of the multi- threaded abstraction to build a distributed
system and creating processes frequently is highly avoided; consequently, the reader
will understand the reason behind this strategy, which is due to the heavy overhead
of using processes. However, since the concepts of processes and threads are very
similar, a concise overview of process management is thus given.

A process involves more things than the program code, known as a text section.
Every process involves current activity expressed by the PC value and the contents of
processor registers. Also, every process contains a process stack, which stores tempo-
rary information (such as function parameters, return addresses and local variables)
and a data section. A process also often has a heap memory dynamically allocated
to at runtime.

An operating system keeps track of all information of a process for execution, as
stated earlier. This information is known as a context. At any moment in time, each
processor core just has a running process. When the operating system decides to
transfer the processor control from a process to another, at this time a context switch
is issued by storing the context of the current process, the context of the new process
is loaded, and the execution control is finally transferred to the new process. Context
switching the processes often poses a lot of overhead, because the system does not
perform any useful work in completing this operation. This overhead depends on
various metrics, including the memory speed, the number of registers that must be
copied, and the presence of specific instructions (e.g., a single instruction for loading
and storing all registers).

28 ◾ Implementing Parallel and Distributed Systems

Concurrent programming and multi- core systems aim to achieve maximum CPU
utilisation by keeping all programs running. Since there are many processes on
processors, scheduling techniques should be used to allocate processor time to dif-
ferent processes. This method is called a process scheduler. Whilst processes run for
the first time, they are placed inside a work queue which has a list of all OS pro-
cesses. The process residing in the main memory waiting to run is kept in a linked
list known as the ready queue. The status of the processes that are in sleep mode is
changed to runnable state by the OS on some occasions, such as the occurrence of
an interrupt or a specific event like the completion of an I/O request.

A wide range of scheduling algorithms have been proposed, including first
in first out (FIFO), shortest job first (SJF), fixed priority pre- emptive scheduling
(FPPS), round- robin scheduling (RRS), and multi- level queue scheduling. Three
major metrics are taken into account in the design and use of process schedulers.
The first is throughput, which is the number of processes that complete their exe-
cution for each unit of time. The second is latency, which depends on two quanti-
ties, turnaround time and response time. The former is the total time between the
submission of a process and its completion. The latter is the amount of time that is
taken in order for a submitted request to generate a response for the first time. The
third is fairness, which is the equal amount of time of a processor that is allocated
to each process.

Practically, these goals (e.g., throughput against latency) are in conflict with each
other, and so a scheduler must consider a trade- off between them at the implementa-
tion time. Given the user’s needs and the OS’s goals, a preference is given to each of
these three metrics.

3.2.2 Memory Management

Memory management is the function of handling the memory of a computer sys-
tem and is very critical. In a general schema, this unit of OS provides methods
to allocate parts of the memory for programs if requested. Virtual memory is an
abstraction pretending to each process that is exclusively using the main memory.
Each process sees a memory from its own point of view which is referred to as
the virtual address space or logical address space; this address is generated by the
processor. By contrast, physical address space is the address of the real location
of memory hardware that is owned by the memory management unit (MMU). The
quality of the virtual memory manager has a significant impact on the overall sys-
tem performance. The memory management subsystem is responsible for several
main tasks as follows:

	 •	 Large address spaces: OS changes the system in such a way that programs
think the system really has a large amount of memory.

	 •	 Memory mapping: is used to map files and other storage systems onto the
address space of processes. In this manner, the contents of a file are directly
mapped onto a process’s address space.

	 •	 Protection: each process in the system has its own virtual address space. These
address spaces are completely separate, and therefore a running process cannot
affect other processes. Hardware mechanisms implemented for virtual memory

Advanced Operating System Concepts in Distributed Systems Design ◾ 29

enable the OS to protect any arbitrary segments of the memory against writes
made by other processes. This procedure gives rise to the protection of code
and data that are likely to be overwritten by malicious programs.

	 •	 Fair physical memory allocation: The MMU allows each running process in
the system to use a fair share of the system’s physical memory.

	 •	 Shared virtual memory: although virtual memory makes processes own sepa-
rate virtual address spaces, there are some cases in which processes must share
a part of the memory. Applications of this method include dynamic libraries
(which let an executable code be shared between several processes) and inter-
process communication (IPC) (where two or more processes have a privilege to
exchange information through a shared segment of memory).

3.2.3 Storage Management (SM)

Often, not only is the main memory small to store all data of programs, but it is
also volatile. Computer systems make secondary storage systems such as hard discs
accessible to programs for coping with this issue. A file system, as the most essential
abstraction of an SM, provides the ability to access and store data and programs on
hard discs. The essence of a file consists of a collection of information relevant to
it. OS maps files into physical devices. A set of files are organised as a hierarchical
structure referred to as folders. Storage systems ground different specifications on
hardware and network technologies. Some of them can only be accessed sequentially
or randomly. Some of these systems transmit data synchronously and others asyn-
chronously. A storage system managed through an OS stores the security of its data
by exploiting software techniques in file metadata in the form of file permissions
(i.e., permission bits) and access control lists (ACLs).

In addition to conventional physical disc- based storage systems, distributed
storage technologies are of significance, including network attached storage (NAS),
storage area network (SAN), clustered NAS, and parallel network file system (pNFS).

3.2.4 Userspace and Kernel Space

Userspace is part of the system memory in which user processes run. Contrary to
this definition, kernel space is a part of memory in that OS kernel processes run.
A primary duty of the OS kernel is to manage these two spaces and prevent them
from interfering with each other. The kernel is a program that constitutes the central
heart of an operating system. A kernel is not a process but rather a process control-
ler, which has complete control over everything that happens in the system. In the
kernel’s address space, we can directly access all addresses that belong to the threads
of execution by using C language pointers.

Kernel space features are accessible to user processes through system calls. A
system call is a request by which an active process can receive services as a unit
of execution from the kernel, such as I/O and creation of a new process. An active
process is a process that is moving ahead on the processor, as compared with a pro-
cess waiting for its processing on the processor. The program I/O is an operation or
a device that transmits data to/from the processor and to/from an auxiliary device
(such as discs and network cards).

30 ◾ Implementing Parallel and Distributed Systems

3.3 Memory Hierarchy Models
What is stated up to here was a model of a computer system that has different proces-
sors for executing instructions and a memory system that keeps data and instructions
for processors. So far, we have assumed that the memory system is a linear array of
bytes, and the CPU is able to access every memory location within a constant value of
time. However, this is not a model used in practice. In essence, a memory system is a
hierarchy of storage devices with a broad range of capacities, costs, and access times.
A key method to increase system efficiency is to minimise data manipulation time.
In the era of many- core processors, this issue becomes more complicated for pro-
grammers because of memory contention between processors. Processor registers
keep frequently used data. Fast, small caches near the CPU act relatively slower as a
settling region for a collection of data and instructions stored in the main memory.
Main memory hosts the data stored on large and slow discs, which, in place of discs,
act as the settling regions for the data stored on discs or other machines connected
by networks.

As a programmer, we need to be able to understand the memory hierarchy because
it has a significant impact on the performance of our programs. For example, if our
program data has been stored in the CPU registers, then they can be accessed in zero
cycles during the execution of that instruction. If stored in the cache, they can be
accessed from 1 to 30 cycles, and if stored in the main memory, their access time is
between 50 and 200 cycles; however, this number can be tens of millions of cycles.
If we can know how the system transfers data up and down the memory hierarchy,
we will be able to write programs that always strive to store their data at the highest
level of the hierarchy, where processors can access them much faster. This idea in
programming principles is known as the locality of reference. Programs with good
locality incline to access the same set of data items repeatedly, or they tend to access
sets of data items close to themselves. Programs with good locality tend to have
more access to data items from higher levels of the hierarchy and, thus, run faster.
For instance, the execution time of various matrix multiplication kernels that perform
the same number of mathematical operations, but have different degrees of locality,
is highly likely non- identical.

In Section 3.2 of this chapter, caches were discussed (particularly in multi-
processor systems). In the following section, main memory is examined, and in the
next chapters, we will introduce storage systems based on disc drives.

3.3.1 Main Memory

Integrated circuits are utilised to make the main memory of modern computer sys-
tems. The most general form of the main memory of a computer system is ran-
dom access memory (RAM). RAMs exist normally in two variants: static (SRAM) and
dynamic (DRAM). SRAM is faster and significantly more expensive than DRAM. SRAM
is used as caches inside or outside CPUs and buffers in disc drive devices. DRAM
is used as the main memory in the system as well as the frame buffer of a graphics
system.

SRAM stores every bit in a bistable cell. Every cell is implemented as an electronic
circuit made up of six transistors. This circuit has a feature that can indefinitely stay

Advanced Operating System Concepts in Distributed Systems Design ◾ 31

in two voltages or states. Every other state will be unstable and causes the circuit to
move quickly towards its stable states. Due to such a bistability, an SRAM memory
cell will maintain its value until it is supplied electrically. Even when chaos, such as
electrical noise, occurs, the circuit returns to a stable value if the chaos is removed.
Figure 3.2 shows the structure of a typical SRAM cell. Each bit is stored in four tran-
sistors (M1 to M4), which consist of two inverters. Two extra transistors (M5 and M6)
control access to a storage cell during read and write operations. Access to every cell
is activated through a word line (WL) that controls these two transistors. Bit line (BL)
and its negated line (BL) are used to transfer data for both read and write operations.
During read accesses, BLs are actively pulled up and down by the inverters in the
SRAM cell.

DRAM has a very simpler structure than SRAM. The basic structure of a DRAM
cell for modern computers is illustrated in Figure 3.3. It only consists of a transistor
and a capacitor. This big difference in complexity shows that DRAM functions very
different from SRAM. A DRAM cell holds its state in the capacitor C. The transistor M
is in charge of guarding access to that state. To read the cell state, the access line (AL)
is raised, which results in either a current flow over the data line (DL) or nothing,
depending on the capacitor charge. For writing to a cell, the DL is properly adjusted,
and then AL is pulled up for a long enough time to charge or discharge the capacitor.
The use of a capacitor means that reading a cell discharges its capacitor. This proce-
dure cannot be repeated indefinitely because the capacitor must recharge at some
points. Various sources of leakage currents bring a cell about losing its charge. In
a quest to resolve this problem in modem computers, each cell is usually refreshed

VDD

M 6M 5

M 2 M 4

M 3M 1

WL

BLBL

Q
Q

Figure 3.2 An SRAM cell comprising of six transistors for storing a single bit.

M
C

AL

DL

Figure 3.3 A DRAM memory cell is made up of a transistor and a capacitor to store a single bit.

32 ◾ Implementing Parallel and Distributed Systems

every 64ms by the memory subsystem. In the refreshing cycle, the memory is not
accessible. Reading a cell makes a capacitor discharge. It, in turn, signifies that read-
ing the contents of the memory requires extra power and, most importantly, addi-
tional time. In a DRAM cell, since every capacitor charges and discharges with an RC
time constant, unlike SRAMs, we must wait for the cell contents to become available
(prepared). This delay always limits how fast a DRAM can perform. Because DRAMs
are much cheaper than SRAMs, programmers must try figuring out how to cope with
this type of main memory and write optimal programs.

To sum up this section’s subject matter, we explain the high- level view of a DRAM
chip. Figure 3.4 shows the high- level view of a 128- bit (16 × 8) DRAM chip. Cells
(bits) in the DRAM chip are divided into supercells. Every supercell has the respective
number of bits equal to the number of a word. In this example, an 8- bit DL is shown,
which is indicative of every DRAM cell being 8 bits. Each DRAM is connected to a
circuit referred to as the memory controller that can transfer the bits of a supercell at
a time to/from the DRAM chip. To read the contents of (i, j) supercell, the memory
controller first sends the address of row i, and then the address of column j to DRAM.
DRAM finally responds by sending the contents of (i, j) supercell to the control-
ler. The address of the i row and j column is usually called a row memory strobe
(RAS) request and a column access strobe (CAS) request, respectively. Generally, as
presented in this example, DRAM circuit designers organise it as a two- dimensional
array instead of a linear array to reduce the number of address bases needed on the
chip. For this purpose, in this example, a 2- bit address line that addresses at most a
value between 0 and 3 is used. As long as a linear array was employed, we would
have to avail of a 4- bit address line for addressing the locations of 0 to 15. The dif-
ficulty of using a two- dimensional array is that the address must be sent within two
individual steps, which increases the access time instead.

memory
controller

Columns

R
ow

s

0 1 2 3

0

1

2

3

Internal row buffer

8

data line

2

address
line

Supercell
(1, 2)to CPU

D
R

A
M

 chip

Figure 3.4 A high-level view of a 128-bit (16 × 8) DRAM chip.

Advanced Operating System Concepts in Distributed Systems Design ◾ 33

3.4 A Brief Review on Modern OS Kernels
This book does not aim to teach the design of a modern operating system, but
rather we try to assist the reader on how to efficiently use common program-
ming interfaces of the existing operating systems to build a distributed software
infrastructure. Hence, having some insight into the OS classification will aid the
reader to implement a distributed framework, middleware, or software optimally
by exploiting common OS APIs such as POSIX and Win32/64 in their place. In the
computer systems literature, operating systems are generally fallen into six major
families: microkernel, monolithic kernel (like Unix and Linux), hybrid kernel
(like Windows), exokernel, objected- oriented kernel, and language- based kernel.

3.4.1 Microkernel Operating System

This type of operating systems contains the minimum amount of code necessary to
implement fundamental OS services in the kernel space. As shown in Figure 3.5,
these services include low- level address space management, thread management,
and inter- process communication. OSs provide hierarchical protection domains,
called protection rings, for different levels of access to hardware resources. This pro-
tective enforcement is usually satisfied by those processor architectures that provide
CPU modes at the microcode level. In ring 0, the kernel code runs with the highest
privilege and is in direct interaction with physical hardware through this method.
Device drives execute in rings 1 and 2 based on access- level privileges, which have
a lower level of security than ring 0 of execution. Userspace programs run in ring 3.
A microkernel is the only software code that runs in ring 0. In a microkernel, some
operations, such as device drivers, protocol stacks, and file systems, are moved to the
kernel space from userspace.

In microkernels, IPC mechanisms are used to send messages to different pro-
cesses to establish communication between them. IPC allows an operating system
to get made up of a number of small programs referred to as servers. Since IPCs are
employed in microkernels by defining message sends instead of shared memory,

System Calls, VFS, ...

File System, IPC

Virtual Memory, Scheduler

Dispatcher, Device Drivers, ...

Hardware Abstraction Layer
Hardware

Virtual Memory, Scheduler, Basic IPC, ...

POSIX
Server

File
Server

Device
Drivers

Application
IPC

Virtual Memory, Scheduler, Basic IPC, ...

Device
Drivers

Application
IPC

Application Software/Middleware Layer

File
Server

ke
rn

el
 s

pa
ce

ke
rn

el
 s

pa
ce

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

us
er

 s
pa

ce

us
er

 s
pa

ce

us
er

 s
pa

ce

POSIX
Server

Monolithic Kernel Operating System Microkernel Operating System Hybrid-Kernel Operating System

Figure 3.5 Comparison of three types of the OS classification: monolithic kernel, microkernel,
and hybrid kernel.

34 ◾ Implementing Parallel and Distributed Systems

sensitive applications that frequently execute IPC operations can experience criti-
cal overheads. In microkernels, an intended service is requested by sending an IPC
message to a server program in userspace (which implements that service like a file
server), and the result generates another IPC message for a new response. In this
manner, if the intended drivers have been implemented as processes in userspace,
it requires a context switch or system call (so long as these drivers have been pro-
grammed as procedures). Likewise, transferring actual data to a server (i.e., reading/
writing a file or sending/receiving over a network socket) and receiving the response
can incur extra copy overheads. Performance is a vital issue in microkernel operating
systems. QNX and L4, to name a few, are amongst microkernel OSs.

3.4.2 Monolithic Operating System

In this classification of operating systems, all OS functions run merely in userspace
and ring 0 through 2. A monolithic operating system is different from a microkernel
and defines only a high- level virtual interface on top of computer hardware. System
calls are used to access all implemented OS services in the kernel space (such as pro-
cess, memory and concurrency management, and device drivers). One of the benefits
of monolithic kernels is to establish high efficiency during the implementation, as
compared to microkernels, because all OS services are managed within the uniform
kernel address space. Of course, putting most of the basic services in monolithic
kernels has three major drawbacks: kernel size, lack of extensibility, and poor main-
tainability. Fixing bugs or adding new features means recompiling the entire kernel.
However, using loadable kernel modules in operating systems like Linux and Unix
can highly alleviate this shortcoming. These modules can be dynamically loaded (and
unloaded) in kernel space at runtime.

3.4.3 Hybrid Operating System

A hybrid operating system as pronounced by its name is an admixture of a mono-
lithic kernel and a microkernel. Unlike a microkernel where everything happens in
servers and userspace drivers, the designers of a hybrid kernel may decide to keep
many components inside the kernel and a few others outside. Several factors exist
for such a design policy, such as simplicity, performance, and vendor lock- in. The
design of most hybrid kernels begins as monolithic kernels, and then components
are moved to userspace, one of the typical applications of this approach is to relo-
cate malicious or buggy drivers. As shown in Figure 3.1, in the design of this typical
hybrid kernel, disc drivers and bus controllers are kept inside the kernel, but the
file server has been implemented as a userspace application. The main advantage
of such a system is to preserve performance and design principles of a monolithic
kernel. We can refer to Windows and Mac OS X (XNU) as examples of hybrid operat-
ing systems.

3.4.4 Exokernel Operating System

Exokernels are an attempt to separate security from abstraction. The goal is to avoid
forcing any specific abstraction on applications; instead, applications are allowed to

Advanced Operating System Concepts in Distributed Systems Design ◾ 35

use or implement whatever abstractions that have the best fit for their work without
layering them on top of other abstractions, which may impose limitations or extra
overheads. This is achieved by moving abstractions into untrusted userspace librar-
ies, called library operating systems, which are linked to applications and invoke the
operating system on their behalf. The graphical view of an exokernel is portrayed in
Figure 3.6.

Let us consider the typical abstraction of a file. Files, as application programs
see them, do not exist on the disc. There are sectors only on the disc. The operating
system abstracts the reality of the disc to create a better image of files. Security is
also often provided at this level. ACLs and permissions are applied to files. Security
combines with abstraction.

In exokernels, security is provided on an unabstracted hardware level, in this
example, to disc sectors. Library operating systems provide the requested abstrac-
tions on this interface. Non- overridable security is placed inside the microkernel, and
overridable abstractions are implemented in a library operating system. Security is
separated from abstraction.

The main strength of exokernels is to allow userspace applications to implement
operations like access to files (by directly accessing the raw disc) and optimal mem-
ory management (by having direct memory access) by themselves. This method can
lead to a dramatic increase in the performance of the network and distributed appli-
cations. The design of exokernel interfaces is very difficult. Designers must develop
adequate and suitable interfaces for low- level hardware.

3.4.5 Object-Oriented Operating System (O3S)

Objected- oriented technology eliminates a major part of the complexity in traditional
and procedure- oriented programming. Most traditional operating systems are pro-
cedure oriented (such as Unix, Linux, and Windows) and present native procedural
interfaces. Therefore, the services provided by these operating systems can only
be accessed through procedures defined by their respective procedural interfaces.
If a program requires to access one of the services provided by these procedural
operating systems, that program must execute a command to reach the service by
calling an appropriate OS procedure. This is the path that the intended software
must take, whether objected- oriented or procedure- oriented. Thus, the benefits of
objected- oriented technology disappear when an object- oriented program is devel-
oped in a procedure- oriented environment. This is because all classes in an object-
oriented environment must warp their native procedural interfaces. Hence, some of

Software

H
ar

dw
ar

e

Li
br

ar
y

Kernel

Figure 3.6 A graphical view of an exokernel.

36 ◾ Implementing Parallel and Distributed Systems

the features of maintainability, and the benefits of reusability and modularity in the
expression of classes, objects, and other aspects of objected- oriented systems are
destroyed.

O3Ss internally use object- oriented methodologies. In contrast, some object-
oriented languages or frameworks are built on top of non- objected- oriented operat-
ing systems like Linux and Windows. One of the optimal languages for designing
this type of language is the native C++ language. Three key factors justify the need
to use an object- oriented OS: efficiency, flexibility and portability. An O3S provides
resources through objects. H/W tools, and entities such as processes, files, system
data structures, resource allocation management, policies, etc., are encapsulated by
an O3S.

3.4.6 Language-Based Operating System (LOS)

LOSs take advantage of language features to stratify security rather than hardware
mechanisms. In these systems, the code referenced as a trusted base is responsible
for agreeing to run programs, ensuring that they cannot perform operations harmful
to the stability of the system without first being detected and dealt with. One com-
mon way to provide such a mechanism is to use high- level languages (HLLs) such as
C# and Java. LOSs prevent dangerous structures; most of their code is written in an
HLL, and a small amount of low- level code is likely used. Because LOSs make use of
ahead- of- time (AOT) techniques in the compilation phase that cannot harm the sys-
tem (such as dangling pointers in the C language that do not point to a valid object
of an appropriate type; for example, when in C language a memory allocated to a
pointer is not set to a null value after being freed), in addition to maintaining execut-
able code security, expensive address space switching can be avoided to increase
performance.

One of the most important recent experimental LOSs is the Singularity operat-
ing system developed by the Microsoft research department. Singularity is a highly
dependable operating system in which the kernel, device drivers, and applications
are entirely written in managed code. One of the key aspects of this OS is to propose
a model based on software- isolated processes (SIPs). SIPs encapsulate components
of an application or a system and provide information hiding. SIPs are actually OS
processes in Singularity. Singularity is a microkernel operating system that runs SIPs
in a uniform address space. Figure 3.7 demonstrates the Singularity OS architecture.

The lowest level of interrupt dispatch in x86 architecture is written directly in
assembly and C languages. This code invokes the kernel. The kernel runs the runtime
and garbage collector (GC) written in Sing# language (Sing# is an extended version
of the Spec# programming language, which is itself an extension of the C# language).
The hardware abstraction layer (HAL), as shown in Figure 3.1 at the beginning of
this chapter, is a set of software routines that simulate platform- specific details and
allow applications to access hardware resources directly. Since HAL operates at a
level between hardware and operating system, applications and device drivers do
not require to have knowledge about hardware- specific information. HALs hide
hardware- dependent details, such as I/O interfaces, interrupt controllers, and multi-
processor communication mechanisms. Singularity’s HAL is written in C++ language
and runs in protected mode. During the process of OS installation, opcodes (operand

Advanced Operating System Concepts in Distributed Systems Design ◾ 37

codes) of the common intermediate language (CIL) are translated directly into the
code of native ×86 architecture operators using the Bartok compiler.

3.4.7 System Calls to Request Linux and Windows OS Services

System calls are the de facto standard interfaces to the operating system kernel. They
are used to request services offered and implemented by the operating system ker-
nel. Whilst different operating systems present a variety of services, the underlying
mechanism of basic system calls has been common in all multi- processor operating
systems for decades.

System call invocation typically involves writing arguments to proper registers
and then issuing a machine- specific instruction that raises a synchronous exception.
This exception immediately transfers the execution of an user- mode code to a kernel-
mode exception handler. Two important properties in designing a conventional sys-
tem call are as follows: (1) a processor exception to make a communication with
the kernel is used and (2) a model of synchronous execution is exerted, whilst the
application is waiting for the completion of the system call before recovering from
the user- mode execution. Both effects give rise to performance degradation, which
is elaborated in this section. The main purpose of this book is to develop distributed
systems on top of the Linux and Windows operating systems (and those that comply
with the POSIX standard); therefore, system calls in these OSs are examined.

Hardware

Runtime

Page Manager

Scheduler
IO Manager
Channel
Manager

Kernel Class
Library (KCL)

Hardware Abstraction Layer (HAL)

Runtime

CLR
Class

Library

Disc Driver

Runtime

CLR
Class

Library

File System

Runtime

CLR
Class

Library

Extension

Runtime

CLR
Class

Library

Application

Use Land

Kernel Space

Figure 3.7 The architecture of an LOS operating system is called singularity.

38 ◾ Implementing Parallel and Distributed Systems

System calls are usually classified into five main categories, and you will get
gradually acquainted with most of their functions in this book. They are: process
control (load, execution, creation, termination, and setting or finding process attri-
butes, memory location, and release), file management (creating, removal, open-
ing, closing, reading, writing, repositioning, setting, and finding file attributes),
device management (requesting, releasing, reading, writing, repositioning, setting
or finding attributes, and logically attaching or detaching devices), information
maintenance (adjusting or finding time or date, setting/finding system data, and
setting/finding processes, files, or device properties), and communication (creating/
removing a connection, sending/receiving messages, exchanging status information,
and connecting or disconnecting remote devices). This categorisation is graphically
shown in Figure 3.8.

Load
Execute
Create
Terminate
Get/set
attributes
Allocate,
free memory

Process Control Create
Delete
Open
Close
Read
Write
Reposition
Get/set
attributes

File Mgm

Request
Release
Read
Write
Attach
Detach
Get/set
attributes

Device Mgm

Get/set time
or date.
Get/set
system data.
Get/set
process, file
or device
arrtibutes.

Information
Maintenance

Create
Delete
Send
Receive
Attach/
detach
remote
devices.

Communication

Figure 3.8 A general classification of system-call operations.

Advanced Operating System Concepts in Distributed Systems Design ◾ 39

3.4.8 System Calls in the Linux Operating System

Implementation of system calls in Linux can be different for distinct architectures. For
instance, the older x86 processors use an interrupt mechanism to migrate from user-
land to kernel, but new Intel and AMD processors provide instructions that optimise
this transition to protect ring 0 (sysenter/sysexit and syscalls are used respectively in
Intel and AMD processor lines). In this section, we will only look at interrupt- based
system calls to avoid the complexity of different underlying mechanisms.

A hardware interrupt forces the processor to store its current state of execution
and start executing an interrupt handler. Software interrupts are usually implemented
as instructions in the instruction set, which lead to context switches to software
handlers similar to hardware interrupts. The function of interrupting is referred to
as interrupt request (IRQ). Part of a program that deals with interrupts are known
as interrupt service routine (ISR). Interrupts provide low overhead and good laten-
cies in low offered load, but severely reduce at high interrupt rates unless several
pathologies take place. Under critical conditions, a large number of interrupts may
completely stall the system.

Figure 3.9 illustrates the steps involved in the execution of a system call to read
from a userspace function inside the main() function. Every arrow in this figure
represents a jump in the CPU instruction flow. In the Linux operating system, every
system call is multiplexed into the kernel through a single- entry point. The eax reg-
ister is used to identify a specific system call that should be invoked; this routine is
located in the C library (for each call from the userspace). When the C library loads
the system call index and its arguments, a software interrupt is invoked (interrupt
0x80), which makes the function syscall execute through the interrupt handler. This
function handles all system calls, as detected by eax contents. After a few simple
tests, the actual system call is invoked by using syscall_table and the index available
in eax. The file object must first be looked up, reliant on the file descriptor that the
user program has passed to the system call. The method read() for the file object

User application C-Library Kernel System call
…
push arguments
_libc_read() load args to regs

EAX=_NR_read
Int 0x80

SAVE_ALL
check limit of EAX .
syscall_table[EAX]()

check destination.
retrieve data.
copy data.
return.

file=fget(fd)
file->f_op->read()

copy kernel buffer to
user.
fput(file)
returnhandle signals.

Possibly schedule.
RESTOTE_ALL
iretpop arguments

...

User space Kernel space

Figure 3.9 The steps involved in a read() system call within the Linux operating system.

40 ◾ Implementing Parallel and Distributed Systems

ultimately executes, and the data transfer from the storage system to the kernel buf-
fer completes. After copying the kernel buffer into the user buffer, in the end the
execution within the C library is resumed, and the execution flow returns to the user
mode. Every jump in this diagram may require flushing the prefetch queue and prob-
ably a cache miss event.

Transitions between user and kernel spaces are very important, whilst they are
the most expensive in terms of processing time and prefetching behaviour. As seen,
a system call is processed in the kernel, which is carried out by changing the mode
of CPU execution to a more privileged ring, but in this transition, a context switch is
unnecessary. Hardware views the world in terms of execution mode according to the
processor status register, and processes are just an abstraction provided by the oper-
ating system. A system call does not mandate a context switch to another process, but
rather is processed in the context of the process that has invoked it. Consequently,
the overheads caused by a system call have to be sought in other sources. Here we
look at four noticeable sources of overhead in system calls.

3.4.9 Costs Due to the Mode Switch of System Calls

Traditionally, the performance cost attributed to systems calls is the time taken by
mode switches. This time consists of the time required to execute the system call
instruction in user mode, resume execution in the protective ring 0 (kernel space),
and return control to user mode. Modern processors implement this mode switch as
a CPU exception: clearing the user mode pipeline, storing a few numbers of registers
into the process stack, changing the protection domain, and redirecting the execu-
tion to an exception handler. Consequently, returning from the exception is neces-
sary for the execution resumption in user mode.

3.4.10 Costs Due to the Footprints of System Calls

During execution in kernel space, processor structures, including instruction and L1
data caches, translation look- aside buffers (TLBs), branch prediction tables, prefetch-
ing buffers, along with larger uniform caches (L2 and L3), are occupied by the special
state of the kernel. Replacement of the processor mode in userspace by the proces-
sor mode in kernel space caused by system calls is referred to as processor mode
pollution.

3.4.11 Effect of System Calls on the Userspace IPC

Ideally, userspace IPC is not supposed to be increased because of system call invo-
cation. In practice, however, user- mode IPC is affected by two sources of overhead:
direct overhead in which the processor exception associated with the system call
instruction flushes the CPU pipeline and indirect overhead in which the system call
pollution is created on processor structures.

3.4.12 Critical Overheads due to Frequent Copies

As illustrated in Figure 3.9, an extra copy operation is performed from the kernel buf-
fer to the user buffer during the completion of the read() system call. Each time the

Advanced Operating System Concepts in Distributed Systems Design ◾ 41

data crosses the boundary of kernel and user spaces, it must be copied, which con-
sumes many CPU cycles and too much memory bandwidth. Even a simple analysis of
data processing paths in the kernel indicates that data is repeatedly transferred from
one buffer to another. Measurements reveal that memory operations are responsible
for a significant amount of processing costs. Therefore, these system- call overheads in
distributed environments can have much more negative impacts on applications com-
pared to the former three sources explained above. In the userspace, the so- called
zero- copy methods can be used in that the processor does not perform the task of
data copy from one memory region to another. These methods are often employed to
save computing power and use memory when sending files over a network.

3.4.13 System Calls in the Windows Operating System

System calls are also present in Windows OS but have strictly been hidden from
users. Windows has a set of hidden APIs that are used by the OS internally. This API
is known as Native API. The Native API reveals nuances that have not been docu-
mented by Microsoft. This API follows one goal: as means of invoking OS services
in kernel mode in a controlled way. Native API is equivalent to system calls on a
Linux operating system. The main language of Windows API is Win32, and the Win32
architecture illustrates this well. The Win32 execution environment is split into a
processor server—CSRSS.EXE (Client/Server Runtime SubSystem)—and client- side
dynamic- link libraries (DLLs) linked to programs that use the Win32 API.

When a Win32 program calls a Win32 API, control is transferred into the address
space of one of these client- side Win32 DLLs. This DLL can perform one or more of
the following operations:

	 •	 Immediately returns to the caller.
	 •	 Sends a message to the Win32 server requesting for help.
	 •	 Invokes the Native APIs to do that operation.

The latter is usually employed for system calls. The KERNEL32.DLL file has functions
that directly invoke Native APIs. This file includes I/O functions (such as CreateFile(),
ReadFile(), and WriteFile()), synchronisation routines (such as WaitForSingleObject()
and SetEvent()), and memory management functions (such as VirtualAlloc() and
VirtualProtect()). Figure 3.10 shows the control flow from a Win32 application run-
ning system calls through the KERNEL32 and NTDLL files into kernel mode, where
system service execution control (like NtCreateFile) is transferred.

The Native API is presented to user- mode programs by the NTDLL.DLL library,
which also contains user- mode entry points of Native API. The control transfer to the
kernel mode is achieved by executing a software exception. If we take a close look
at a piece of code for Native API in NTDLL inside a debugger on x86 architecture,
the information shown in Figure 3.11 can be obtained. The first instruction is to load
a register with the index number of the Native API. Every Native API has a unique
index number, which is automatically generated by a script that runs a part of the
Windows build process. Therefore, the index number for a particular function can
vary from one build of Windows to another, whilst Native APIs are added or removed
incrementally.

42 ◾ Implementing Parallel and Distributed Systems

The second instruction loads a register with a pointer to the call parameters. The
next instruction is related to software exceptions. Windows registers a kernel- mode
exception handler to handle Native API exceptions. In x86, this exception is the num-
ber 0x2E. The last instruction pops off parameters from the call stack. All Native APIs
begin with Nt. The export table in NTDLL.DLL also makes the Native API accessible
through an auxiliary naming convention, in which instruction names start with Zw
instead of Nt. So, ZwCreateFile() is an alias for NtCrteateFile().

User Land

K
ernel Space

Application

KER
N

EL32.D
LL

N
TD

LL.D
LL

KiSystemService

NtCreateFile

NtReadFile

NtClose

System Service Table

Figure 3.10 Execution flow of system calls in Windows operating system.

Figure 3.11 Assembly code in debug mode for NtCreateFile() function.

Advanced Operating System Concepts in Distributed Systems Design ◾ 43

3.4.14 Timeline of Operating System Evolution

Over the course of five decades, the evolution of three major types of operating sys-
tems (including Unix, Linux, and Windows) has created a revolution in the computer
industry and humankind. Figure 3.12 shows a timeline for the evolution of operating
systems in the period from 1969 to 2021.

In 1969, Unix emerged on a DEC PDP- 7 at AT&T Bell Labs. When AT&T decided
to withdraw Multics (Multiplexed Information and Computing Service) operating
system, Ken Thompson and Dennis M. Ritchie cobbled together an operating sys-
tem to play a space travel game developed by Thompson. One of their colleagues
gave the operating system a jockey name, UNICS, which was later changed to UNIX.
Between 1969 and 1973, Ritchie developed the general- purpose C language for the
Unix operating system. In 1973, Unix was rewritten in the C language. Computer
Systems Research Group at the University of UC Berkeley released an open- source
version of Unix called BSD in 1977.

In 1983, Richard Stallman announced his plan to support GNU free software, as
a Unix- like operating system that did not contain any propriety software. In 1985,
version 1 of Windows went on sale just for $99. This version of Windows was mar-
keted as a graphical user interface that extended the DOS operating system. Andrew
Tenenbaum created the MINIX operating system in 1987 for educational purposes,
which was a Unix- like OS with a microkernel architecture. In 1991, Linus Benedict
Torvalds curious about operating systems, whilst attending the University of Helsinki,
was frustrated by the MINIX copyright, which limited it to educational use only. Linus
started working on his own operating system, which eventually turned into the Linux
kernel.

44
◾

Im
p

lem
en

tin
g Parallel an

d
 D

istrib
u

ted
 System

s

1969

1971

1972

1974

1977

1978 1982

1983

1985

1987

1988

1991

1992

1994

1995

1996

1998

2000

2001

2003

2004

2006

2008

Thompson and
Ritchie create

AT&T Unix

Unix version 1
rewritten in B

Unix version 2
rewritten in C

Unix version 4
written

BSD released
(Berkeley Software

Distribution)

Unix
Timesharing
System V7

AT&T First
Commercial Unix

System (System III)

Richard Stallman
launches GNU

1. Richard Stallman
creates the FSF
2. Windows 1.0

released.

Andy Tannenbaum
creates MINIX

1. Richard Stallman
creates the GPL.
2. Windows 2.1

released.

Linus Torvalds
creates i386 Linux

1. Linux licensed
under the GPL.
2. Windows 3.1
released and NT

kernel-based
created.

Linux version 1
written

Windows 95
released

Linux version 2
written

Windows 98
released

Windows 2000
released

1. Linux version 2.4
written.

2. Windows XP
released.

Windows Server
2003 released

Linux version
2.6 written

Windows Vista
released

2011

Linux version 3
written

2009

Windows
Server 2008

released

Windows 7
released

Windows 10
released

Windows 11
released

2014 2021

2015

Linux version 4
written

2019

Linux version 5
written

Figure 3.12 Timeline of the evolution of Unix, Linux, and Windows operating systems.

45DOI: 10.1201/9781003379041-4

Chapter 4

Parallelism for the Many-
Core Era: Hardware and
Software Perspectives

Scientifically, happiness is a choice. It is a choice about where your single-
processor brain will devote its finite resources as you process the world.

Shawn Achor

4.1 Introduction
In this chapter, we will gradually prepare you to step into the real world of parallel-
ism that forms the basis of today’s computing, such as Grid and Cloud Computing. By
combining the hardware and software perspectives of single- processor architectures
in Section 4.2, we attempt to give the reader a deeper understanding of the current
generation of multi- core processing in Section 4.3.

4.2 Exploiting Instruction-Level Parallelism (ILP) by Hardware
and Software Approaches

It is important to note that a complete survey on all ILP approaches is beyond the
scope of this book, as our sole purpose in this chapter is to acquaint the reader with
the basic concepts of ILP. All processors have been benefitting from pipelining tech-
niques since 1985 to overlap the execution of multiple instructions and improve the
overall system performance. A pipeline is like an assembly line. In a car assembly
production line, there are many steps, every of which is dedicated to constructing
part of the car. Every step is performed in parallel with the other steps on a dif-
ferent car. In a processor pipeline, every step of the pipeline completes part of an

http://dx.doi.org/10.1201/9781003379041-4

46 ◾ Implementing Parallel and Distributed Systems

instruction. In this method, different steps complete different parts of the instructions
in parallel. Each of these steps is called a pipeline stage. The stages are connected
consecutively to form a pipeline. Instructions enter from one side and exit from the
other end after passing through the stages.

The time it takes to move an instruction from one step to another in the pipeline
is called the processor cycle. The pipelining approach reduces the average execution
time per instruction. This reduction can be thought of an increase in the number of
clock cycles per instruction (CPI) or a decrease in the clock cycle time. A pipeline is
an implementation method in which parallelism between instructions is exploited in
a sequential instruction stream. One of the most significant advantages of the pipelin-
ing technique is that it is not visible to the programmer.

The basic idea of the pipelining method is to split the processing of an instruction
into a series of steps along with storage at the end of each step. To better understand
this approach, we take the classic pipeline of Reduced Instruction Set Computer
(RISC) processors into account. This pipeline is broken into five stages:

	 •	 Instruction Fetch (IF): The program counter is sent to memory and the current
instruction is fetched from memory. The PC value is updated to the next PC that
points to the next instruction.

	 •	 Instruction Decode and Register Fetch (ID): The instruction is decoded and
the registers corresponding to the registers referring to source registers are read
from the register file. Whilst the registers are being read, they are examined for
a probable branch. Decoding is done in parallel with reading the registers.

	 •	 Execution (EX): ALU operates on operands prepared in the previous cycle
and operations such as memory referral, register- register ALU instruction, and
register- immediate ALU instruction.

	 •	 Memory Access (MEM): If the instruction is a load (from memory to a regis-
ter), the memory performs a read operation using the effective address calcu-
lated in the previous cycle. If the instruction is a store, the memory writes the
data of registers into memory.

	 •	 Write- back (WB): In register- to- register ALU instructions or the load instruc-
tion, the following operation is carried out: the calculation result is written into
the register files, whether from the system memory (for one load) or the ALU
(for one ALU instruction).

Figure 4.1 shows a five- stage pipeline of classic RISC machines. In the fourth clock
cycle, the first instruction is in the MEM stage, and the last instruction has not yet

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

Pipeline StagesInstruction Number
1
2
3
4
5

Clock Cycle 1 2 3 4 5 6 7 8 9

Figure 4.1 The basic five-stage pipeline of a classic RISC machine.

Parallelism for the Many-Core Era ◾ 47

entered the pipeline. As can be seen in this figure, in pipeline architecture, opera-
tions related to five instructions are somewhat overlapping in nine clock cycles. The
chequered story of parallelism begins with this very simple pipeline architecture.

When a programmer (or compiler) writes assembly code, he assumes that each
instruction is executed before the execution of the next instruction begins. This
assumption is invalidated by the pipeline. This factor causes a program to behave
incorrectly and is usually referred to as a hazard. Hazards are divided into three
general categories of structural hazards, data hazards, and control hazards, which can
be resolved by adding possible data paths at the hardware level.

A structural hazard is a situation in which the hardware cannot support a
combination of instructions that must be executed in the same clock cycle. For
example, if two instructions attempt to use a single source at the same time, a
structural hazard occurs. Data hazards take place when a pipeline must be stalled
because one stage must wait for another to complete. Data hazards are created due to
the dependency of an instruction on another preceding one. Control hazards happen
because of conditional and unconditional branches. Hazards can lead to many stalls
occurring in the pipeline. Avoiding a hazard often requires that some instructions
in the pipeline are allowed to continue whilst other instructions are delayed. These
stalls will deteriorate the pipeline performance from its ideal state.

Such a potential overlapping in pipeline architecture is known as instruction-
level parallelism because instructions can be evaluated in parallel. There are two
completely different ways to exploit ILP. One is a hardware- dependent method that
helps to dynamically discover and harness parallelism. Another approach relies on
software methodologies that find parallelism statically at compile time. The degree
of parallelism available inside a basic block, like a sequence of straightforward code
with no jumps, is small. To achieve maximum efficiency, ILP must be applied between
multiple basic blocks.

Instruction scheduling in loops is one of the most important methods of ILP
because many programs spend most of their execution time within loops. One
widely used technique for enlarging the basic blocks is loop unrolling. The iterative
operations of an algorithm are usually expressed as a loop to obtain a compact and
elegant form of code. Nevertheless, the same algorithm could be expressed equiva-
lently by explicitly repeating a number of loop bodies. Figure 4.2 demonstrates an
example of loop unrolling to exploit ILP in accordance with the classic five- stage
RISC architecture.

In this example, it can be seen that a single instruction of a loop is broken into
five instructions, and this state is executed in parallel for the converted loop in a five-
stage pipeline. When the assembly code of a loop is generated, branch instructions
are used to implement the loop iteration mode; so, if loop unrolling is not performed,
frequent control hazards can introduce many stalls into the pipeline and perfor-
mance is seriously degraded. Other ways exist to transform loop codes such as loop
peeling, loop fusion, loop distribution, and software pipelining. Since instruction
scheduling is of paramount importance in the ILP method, we describe an example
at the assembly code level to examine how scheduling can eliminate hazards to a
large extent by removing stalls and helping increase ILP parallelism. First, for a better
picture of the three hazards stated in this section, we consider them in three different
examples in the context of a RISC processor, as shown in Figure 4.3.

48 ◾ Implementing Parallel and Distributed Systems

In the data hazard case, since the MUL instruction requires ADD instruction, three
stalls must be inserted in the pipeline so that in the WB stage the data calculated
in the ADD instruction is prepared for the next instruction. In a structural hazard,
because two instructions have to use a single ALU, a stall must be inserted in the EX
stage. In the control hazard, since there is no store register for the branch instruc-
tion, two stalls have been introduced, but the first instruction that uses ALU in this
architecture to calculate the PC cannot be used by ADD instruction.

3 stalls

IF WBMEMEXID

IF WBMEMEXID

time

instructions

add $r1,$r2,$r3 //$r1 is the destination
mul $r4,$r1,$r1 //$r4 is the destination

Pipeline Stages

Code

1 stall

IF WBMEMEXID

IF WBMEMEXID

time

instructions

mul $r1,$r2,$r3 //Suppose multiplies takes two cycles
mul $r4,$r5,$r6

Pipeline Stages

Code

EX

EX

2 stalls

IF WBMEMEXID

IF WBMEMEXID

time

instructions

bz $r1, label //if $r1==0, branch to label
add $r4,$r1,$r1

Pipeline Stages

Code

Data Hazard Structural
Hazard

Contrtol Hazard

Figure 4.3 Three examples of data, structural and control hazards in the pipeline model of the
RISC processor.

for(i=0;i<100;i++)
x[i]=x[i]+s;

for(i=0;i<100;i+=5)
{

x[i]=x[i]+s;
x[i+1]=x[i+1]+s;
x[i+2]=x[i+2]+s;
x[i+3]=x[i+3]+s;
x[i+4]=x[i+4]+s;

}

i

i+3

i+2

i+1

i+4

i

i++

Figure 4.2 Unrolling a loop for ILP exploitation corresponding to the five-stage architecture
explained in the text.

Parallelism for the Many-Core Era ◾ 49

Now that we have gained some insight about hazards, a practical example is given
to see how code scheduling at the assembly language level (statically at compile time
by software) or native machine language (dynamically at runtime by hardware) can
reduce the number of stalls by code motion or transformation and make use of the
maximum parallelism within the pipeline structure. Suppose in the intended pipeline,
hazards are created in two other cases: load instruction (ld) is immediately followed
by an ALU operation; a store instruction (st) is immediately followed by a load instruc-
tion. Figure 4.4 illustrates a piece of assembly code for the RISC architecture. With the
assumptions taken, hazards are marked with a square. As seen, for example, the first
instruction has a data dependence with the seventh instruction in the $r2 register. To
display all data dependencies of this example, we compare each line of code with oth-
ers and then draw a directional graph known as a dependence graph.

This graph is a directional tree whose nodes represent instructions and
edges(x1,x2) represent a dependency between two x1 and x2 instructions, where x1
must be executed before x2. This graph is usually called a data dependence graph or
data flow graph. As shown on the left side of this figure, this code has four hazards.
Consequently, our goal is to schedule the code to reduce the number of stalls that
must be inserted by hardware or software in the code incurred by these hazards.
Different scheduling algorithms exist to solve this problem. Figure 4.5 demonstrates
a typical instruction scheduling algorithm to reduce stalls in a pipeline architecture. If
we apply this algorithm to the graph in Figure 4.4, the scheduling code in Figure 4.6
is generated that has only a single hazard.

1 2 3

6

7

4 5

9

8

Dependence Graph1 addi $r2,5,$r1
2 addi $sp,1,$sp
3 st a, $r0
4 ld $r3,–4($sp)
5 ld $r4,–8($sp)1
6 addi $sp,8,$sp
7 st 0($sp),$r2
8 ld $r5, a
9 addi $r4,5,$r4

RISC Assembly Code Sample

Hazards
(3,4), (5,6),(7,8), (8,9)

Figure 4.4 An example of the topological dependence graph to examine the pipeline stalls of
the RISC architecture before scheduling.

Figure 4.5 A typical instruction scheduling algorithm to reduce stalls in pipeline architecture.

50 ◾ Implementing Parallel and Distributed Systems

In the literature on optimal compiler design, scheduling algorithms are split into
two local and global types. Algorithms that only schedule single acyclic basic blocks
are known as local schedulers. Algorithms that jointly schedule multiple basic blocks
are called general scheduling algorithms. Acyclic global scheduling algorithms (like
the given example) usually deal with control flow graphs that do not include any
cycles.

4.2.1 Superscalar Processors

Superscalar processing is the ability to initiate multiple instructions during the same
clock cycle. A typical superscalar processor fetches and decodes the input instruc-
tion stream at a time. As part of instruction fetch, the results of conditional branches
are usually predicted in advance to ensure a continuous stream of instructions. The
input instruction stream is then analysed for data dependence, and the instructions
are dispatched, often in accordance with the instruction type, to functional units. In
the next step, instructions begin, mainly based on the existence of data operands in
the order of their original program, for parallel execution. This important property is
referred to as dynamic instruction scheduling in many superscalar implementations.
After completion, the instruction results are re- sequenced so that they can be used to
update the process state in the correct order of the main program when an interrupt
condition occurs. Because single instructions are entities running in parallel, supers-
calar processors make the maximum exploitation of IPL methods.

Figure 4.7 shows the method used in most superscalar processors. Instructions
are initiated in a static program. After fetch operation and branch prediction, instruc-
tions are dispatched into the window of execution. Other instructions in the window
of execution are not expressed in sequential order, but rather are sorted partially
relied on their data dependence. Instructions are issued from the window in a certain
order by correct data dependencies and the existence of hardware resources. Finally,
after execution, instructions are conceptually placed into the order of the sequential
program (whilst they are removed from execution) and their results update the state
of the constructed process.

With the exception of processors used for low- power applications, embedded sys-
tems, and battery- powered devices, all general- purpose processors have been built

1 addi $r2,5,$r1
2 addi $sp,1,$sp
3 st a, $r0
4 ld $r3,–4($sp)
5 ld $r4,–8($sp)1
6 addi $sp,8,$sp
7 st 0($sp),$r2
8 ld $r5, a
9 addi $r4,5,$r4

Original Code

3 st a, $r0
2 addi $sp,1,$sp
5 ld $r4,
4 ld $r3,
8 ld $r5, a
1 addi $r2,5,$r1
6 addi $sp,8,$sp
7 st 0($sp),$r2
9 addi $r4,5,$r4

Scheduled Code

–4($sp)
–8($sp)1

Figure 4.6 A scheduling code that only has a hazard in (8,1).

Parallelism for the Many-Core Era ◾ 51

in a form of superscalars as of 1998. These processors have several functional units,
such as ALUs, FPUs, and SIMDs, for the maximum leverage of ILP. Figure 4.8 por-
trays a simple example of a superscalar processor. In this example, two instructions
(with different types such as FPU, ALU, and SIMD) are fetched and dispatched at the
same time, so a maximum of two instructions can be completed per cycle. Here, ten
instructions are completed in nine clock cycles.

Static
Program

Instruction Fetch &
Branch Prediction

Instruction
Dispatch

Instruction
Issue

Instruction
Execution

Instruction Reorder
& Commit

The Window of
Execution

Figure 4.7 A view of superscalar execution. Processing phases are listed above in the figure.

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

Pipeline StagesInstruction Number
1 (ALU)
2 (FPU)
3 (SIMD)
4 (FPU)
5 (ALU)

Clock Cycle 1 2 3 4 5 6 7 8 9

6 (SIMD)
7 (ALU)
8 (FPU)
9 (ALU)

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

10 (ALU)
IF ID EX MEM WB
IF ID EX MEM WB

Figure 4.8 A simple pipeline for a RISC superscalar architecture.

52 ◾ Implementing Parallel and Distributed Systems

4.2.2 The Downside of Instruction-Level Parallelism and Power
Consumption Problem

As of 2000, single- processor designers have focused more on design optimisation
and sometimes higher clock rates. However, power consumption problems have
forced them to keep processor clocks constantly low. The period of progress on ILP
exploitation is almost over. Since the advent of the first processors in 1971, silicon
technology has consistently allowed doubling the number of transistors on the same
die every 18 or 24 months based on Moore’s law. Technology scaling has led to
larger and faster circuits being implemented on silicon and integrating powerful
capabilities into processors.

Technology scaling and increase in the pipeline depth improved the processor
frequency from 108 KHz in 1971 to approximately 4 GHz in 2005. But raising the
frequency has increased the power dissipation. In the past, low- cost cooling solu-
tions controlled the temperature produced by processors, and power dissipation was
not considered as an important limiting factor in the early processors. In addition,
in manufacturing processes below 0.13 μm, due to the more CMOS technology scal-
ing and the ever- increasing complexity of processors, power density has increased
exponentially. Increasing constraints on the power budget have created the need for
low- power architectures without compromising efficiency.

The power dissipation in CMOS integrated circuits is mainly due to two com-
ponents of dynamic (switching) power and static power. The total power is shown
in Equation (4.1). Equation (4.2) shows the dynamic power in which C parameter
is the switching capacitance in every clock cycle, V is the applied voltage, and f is
the switching frequency. As the frequency changes, dynamic power varies linearly.
Dynamic power does not constitute the total chip power, but in the manufactur-
ing process of recent years with very small dismissions it exhibits static power in
itself, which is mainly due to different leakage current components—including
subthreshold leakage current, gate- induced leakage (GIDL) current, punchthrough
leakage current, and band- to- band and reverse bias p- n junction leakage currents.
The smaller the feature size and the lower the threshold voltage of transistors,
the more important the leakage current has become in recent years. In the lat-
est advances in deep submicron technology, two- thirds of power consumption is
related to the dynamic power and the rest has been reported arising from the
leakage power. Therefore, increasing the frequency to improve the pipeline per-
formance of single processors has faced an ultimate limitation in terms of power
consumption.

 P P Ptotal switching static� � (4.1)

 P V f Cdd Lswitching = 2. . (4.2)

To achieve a low CPI and a high clock rate, a processor must switch more
transistors faster, which significantly increases the dynamic power. Issuing mul-
tiple instructions in superscalar processors is an important source of overhead that
grows faster than the issue growth rate. The number of transistor switching is pro-
portional to the maximum issue rate. Consequently, the energy consumed per unit

Parallelism for the Many-Core Era ◾ 53

of efficiency increases. On the other hand, since increasing the frequency elevates
power consumption, deep pipelines cause extra overheads with higher switching
rates.

Besides these hardware inefficiencies, code compilation has become too complex
to exploit the high ILP of processors. Not only does a compiler have to support a
wide range of complex transformations, but also it is very difficult to set up a com-
piler to achieve optimal performance for a vast array of applications.

These technical issues have led to instead focusing on multi- core and thread- level par-
allelism, and in the coming years, multi- core processors will move the computer industry
revolution ahead. We will comprehensively deal with this issue in the next section.

4.3 Thread-Level Parallelism (TLP) and Multi-Processor
and Multi-Core Parallelism

4.3.1 Introduction

As stated in the previous sections, over the past decades, general- purpose single-
core processors evolved to exploit a low degree of instruction- level parallelism in
sequential programs. Whilst clock frequencies rose, wire delays in these processors
restricted scalability. At a higher clock frequency, the chip area that a signal can reach
in a single clock cycle becomes smaller. In addition to these problems, the power
consumption constraint has brought a new trend about seamlessly concentrating on
instruction- level multi- processor and multi- core computing.

Besides these technical issues which have grounds in electronically manufactured
processors, other intrinsic trends further the TLP revolution, some of which we point
out herein. Many of the phenomena happening in the universe, and a variety of
branches in science own inherent parallelism that cannot be described on the basis
of ILP, like the simulation of brain neurons in a living creature, or the simulation of
electronic devices through hardware description languages (HDLs) such as Verilog
and SystemC. There has always been a strong interest in TLP in servers and server
applications and increasing their performance, particularly data centre energy con-
sumption is accounted as a growing challenge in the server industry. In the Cloud
Computer industry, virtualisation has recently been of great importance; virtualisa-
tion platforms provide a virtual version of anything in the computing world, such as
an operating system, a hardware platform, a storage device, and network resources.
One of the other fundamental advantages of TLP is a cost- effective design for replica-
tion versus a unique design. Another trend originates from the system- on- chip (SoC)
industry, SoC is a technology that allows a variety of digital devices to be integrated
into a single chip; multi- core architectures in the mobile industry based on SoCs that
have low- power, high- performance characteristics are vital.

As it is clear from all the previous paragraphs, the main motivation behind TLP
is to reduce power consumption. Here, we look at a simple example to examine
how a multi- processor system can significantly reduce the power consumption of an
application program in tandem with maintaining its performance. Suppose that a task
requires the time with a T window to complete as demonstrated in Figure 4.9. The
single- processor system in Figure 4.9(a) works with F frequency. By this assumption

54 ◾ Implementing Parallel and Distributed Systems

that this work can be made parallel, in Figure 4.9(a) with a quad- core processor,
the frequency of each core must be equal to f 4, whilst its applied voltage is also
reduced by the same amount. The reason for this ¼ coefficient is due to Figure 4.9(b)
becoming smaller compared to Figure 4.9(a); in the semiconductor industry, this
dimension reduction is known as a scaling factor, in which frequencies and volt-
ages are scaled with a 1 k coefficient. Of course, this coefficient leads to a continual
increase in the circuit speed and complexity per unit area of the chip.

Accordingly, the multi- core system in this example consumes 1 16 less power
than a single- core processor for this processing task. As a result, the overall system
performance can be improved by parallel processing mechanisms without increasing
the clock frequency, whilst a significant reduction in power consumption is made.
One of the main challenges in parallel computing is to design optimal algorithms that
can apply parallelism to the code of a sequential or inherently parallel program. This
simple example has established the foundation for the processor industry revolution.

Monolithic Processor

time

frequency

T

Core 1

time

frequency

T

Core 2

Core 3

Core 4

F

F/4

F/4

F/4

F/4

2

1 .() .
4 4

ddV FP ��

2

2 .() .
4 4

ddV FP ��

2

3 .() .
4 4

ddV FP ��

2

4 .() .
4 4

ddV FP ��

2. .uni ddP V F��

4

1 1
16

i
i

ratio

uni

P

P
P
�� �
�

Quad-Core Processor

(a)

(b)

Figure 4.9 Calculation of the reduced amount of power consumption in a quad-core processor
(a) with respect to a single-processor system (b) for a task with T size of the execution time.

Parallelism for the Many-Core Era ◾ 55

In the rest of this section, we introduce general concepts of ILP, multi- processors, and
multi- core processors.

4.3.2 Thread-Level Parallelism

In this section, the concept of a multi- threaded model is first introduced from a
software perspective, and with the description of a specific type of TLP which is
implementable using functional ILP hardware components, we prepare the reader to
delve into the fascinating topic of current processor revolution.

A thread is a path of execution through a program. It is a runnable entity that
belongs to one and only one process. Each process has at least one thread of execution,
which is automatically formed when that process is created. The original program
runs in the first thread. In certain conditions, a particular application may require
performing several tasks. For instance, a file server accepts client requests for various
files. If this server, which simultaneously serves many clients, ran traditionally with
a single- threaded process, it would be only able to service a single client at a time.
A fundamental solution for this problem could be to create a process for every input
connection. However, as you will see during this book, the creation of processes
is time- consuming and resource intensive. Generally, it is optimal to use a single
process having multiple threads.

Figure 4.10 shows the structure and data in a heavyweight process consisting of
multiple threads of execution. All threads of a process share information, such as
shared variables, files, and open sockets, with one another. Of course, in order to
have simultaneous access to this shared information, special mechanisms like locks
must be introduced. Each thread has its own activation records and a copy of its
own CPU registers, including a stack pointer and a program counter, which totally
describe the execution state of that thread.

Registers

Stack

Mask

TSD

Registers

Stack

Mask

TSD

Registers

Stack

Mask

TSD

Process address space
Other global process data
Files, sockets, pipes,

Shared
information
amongst all

threads

Local
information

for each
thread

Threads

Heavyweight Process

Figure 4.10 Structure of a multi-threaded process.

56 ◾ Implementing Parallel and Distributed Systems

In single- core processors, the multi- threaded mode is done by time- division mul-
tiplexing, where the processor switches between different threads. These context
switches are repeatedly performed as if the user feels all threads or tasks are run-
ning concurrently. In multi- processor or multi- core systems, threads or tasks really
run at a time, whilst each processor or core runs a certain thread or task. An operat-
ing system usually supports a mixture of time- sliced threading and multi- processing
through a process scheduler. Operating system kernels provide system call interfaces
that allow programmers to work with threads. In Chapter 5, we will introduce POSIX
multi- threading for this purpose. The main advantages of thread abstraction can be
noted as follows:

	 •	 Thread Management: Creating and managing the execution of threads require
lower system resources than processes. For example, creating a thread just
needs allocation of a private thread area which is usually a constant value, such
as 64 KB, and two system calls. The creation of a process is much more expen-
sive because the entire address space of the parent process must be duplicated.
Context switches between threads of a process are much cheaper and faster
than context switching of multiple processes.

	 •	 Multi- Processor and Multi- Core Systems: As stated earlier, threads in multi-
processor or multi- core systems are executed simultaneously on processors or
multiple cores. Therefore, multi- threaded programs can run much faster than on
a single processor. They can also be faster than programs using multiple proces-
sors because threads require fewer system resources and create less overhead.
One major benefit of threads is that a single multi- threaded program will work
on a single- processor system but can naturally avail of a multi- processor system
without recompilation.

	 •	 Inter- thread Communication (ITC): ITC is much more efficient and easier to
use relative to IPC because all threads share the same address space within
a process; they do not need to use shared memory. Protecting shared data
from simultaneous access is guaranteed by mutexes and other synchronisation
primitives.

We can define different thread design patterns based on the intended application,
including the following:

	 •	 Master/Slave Model: In this classic model, a separate thread is created for each
request which leads to excessive simplicity. But this pattern has disadvantages,
including no extent exists for the number of slave threads, it has the potential for
contention between threads if requests have interdependency, and an overhead
is caused by the creation of a thread for each request. One can define various
practical use cases based on the master/slave model. If slave threads are created
at a certain number and placed inside a ready- to- work pool, the model is called
a thread pool. Another model is known as producer/consumer in which slaves
are waiting (like sleeping on a conditional variable), and the master puts the
work inside a queue and signals the salves that are in sleep.

	 •	 Pipeline Model: Similar to the role of the pipeline in a single processor, every
thread is part of a long chain in a processing factory. Each thread works on the

Parallelism for the Many-Core Era ◾ 57

data processed by the preceding thread and hands the data over to the next
stage thread. In designing this model, sufficient care must be taken to evenly
distribute works and perform additional steps to ensure non- blocking behav-
iour in order for the model to avoid stalls. The overall throughput in this model
is limited by the slowest stage. A pipeline model can be very well suited for
sensitive applications that need to be spread over a network and to communi-
cate with each other. Since network I/O and storage systems exist in such an
environment, blocking I/O mechanisms cannot be used in the threaded pipe-
line stages. In Figure 4.11, we propose a novel architecture to solve this probc-
lem for I/O- bound tasks. In this model, a stream of data with the operations
defined for them (through a finite state machine implementation inside every
pipeline thread) is performed one after the other with a sequence of stages of
S1, S2,…, Sn; if a stage requires I/O operation, the state offloads it to the thread
pool below for further management. If the relevant task is only CPU bound, its
processing is completed, and its generated data along with the operation that
must be performed by the next stage is placed inside an intermediate queue
(such as a circular buffer). In this mode, if the queue is full, the thread of the
current stage has to create a stall to wait until there is an adequate place in the
intermediate queue. Adjusting the size of this intermediate queue along with the
number of pipeline stages can be somewhat challenging, and profiling methods
may be used to set this number. However, the existence of an intermediate queue
between the pipeline stages can significantly increase or balance the through-
put and performance of this architecture logically in comparison with a case
in where there is no such a queue. At the lowest level of this architecture, OS’s
asynchronous I/O methods, which are non- blocking, are used. In Chapters 7 and
10, event- driven and asynchronous approaches are discussed in detail.

	 •	 Work Crew Model: In this model, multiple threads work together on a single
task. The task is broken horizontally into pieces that run in parallel, and each
thread operates on one piece.

S1
Circular
buffer

Circular
buffer

...Input
sequence

Output
sequence

Pipeline stage 1 Pipeline stage 2 Pipeline stage 3 Pipeline stage n

I/O-bound Helper Thread Pool

Event Dispatcher

Operating System Asynchronous I/O Abtsraction

S2 S3 Sn

Figure 4.11 A novel architecture proposed for the threaded pipeline model, in which using
a thread pool and event-driven techniques tries to avoid possible stalls in the pipeline for I/O-
bound components.

58 ◾ Implementing Parallel and Distributed Systems

	 •	 Role- Specific Models: These models can be used as customised for a specific
design. For example, in services utilising network sockets, either a thread per
connection or a dedicated thread to accept the incoming connections, and a
thread pool to service them, may be used.

	 •	 Upcall Model: This model is a way in which we organise an application in
such a way that calls can be made from the bottom- up. There is a thread pool
in each layer. This model is especially used in the implementation of transport
protocols and the open systems interconnection (OSI) model in operating sys-
tems. Asynchronous network events must be handled by a mechanism that can
initiate an independent control flow in an ordered sequence of procedural invo-
cations upwards through the protocol stack. The upcall programming method-
ology requires a language mechanism that allows the upper layer to bind local
routines that are components of the upcall sequence to the adjacent lower layer.
The conventional method to access this binding is based on language support
for defining higher- order functions. In C language, one can make use of the
possibility to pass functions as arguments to other functions (function point-
ers). In the network protocol stack, the upper layers are clients of the services
provided by the lower layers. In a layered file system, the hierarchy layer is cre-
ated on the vnode, which is built on the inode and the disc block layers instead.
In the upcall method, higher levels of handler functions are passed into lower
layers. These handler functions are called when a lower layer needs to inform
the higher level of something. Upcalls can be used for synchronous control
flow transfer mechanisms as well as a tool for organising programs. A major
drawback of this approach is that it complicates programming, for instance, in
synchronisation when a lower layer is invoked.

In single processors, special techniques have been used to realise TLP at the instruc-
tion level by employing multiple functional units on a single core. From this point of
view, there are two main multi- threading methods.

In fine- grained multi- threading (FMT), threads are context- switched on every
instruction (in a rotating form—an instruction from process A, an instruction from
process B, another from process A, etc.); to implement this method, every process
must be able to switch in every clock cycle. This type of multi- threading is used in
situations where multiple threads share a single pipeline or are running on a single-
issue CPU. One of the main advantages of this method is that it can hide the through-
put loss that is caused by short and long stalls because instructions from other
threads can be executed when a thread is stalled. This method slows the execution
of individual threads down because the threads that are ready to run without stalls
are postponed by instructions from other threads.

Another type is coarse- grained multi- threading (CMT). CMT lets a thread run until
it executes an instruction that causes a delay (a cache miss), and then the processor
swaps another thread whilst memory access is being completed. If a thread does
not require memory access, it will continue to run until its time limit has not been
reached. One main problem with this method is that it cannot overcome throughput
losses well. This may be due to the costs of initiating the CMT pipeline. Because
a CMT processor issues instructions from a single thread, when a stall occurs, the
pipeline must be flushed or frozen.

Parallelism for the Many-Core Era ◾ 59

One of the practical processors that use the above two methods is the simultaneous
multi- threading (SMT) processor. SMT is a technique to improve the overall perfor-
mance of superscalar processors by exploiting hardware multi- threading approaches.
In SMT, instructions from more than one thread can be executed in each given pipe-
line at a time. This is done by a few tweaks to the base processor architecture, which
requires the ability to fetch instructions from multiple threads in a single cycle, and a
larger register file to hold the data of multiple threads. During every clock cycle, all
threads are allowed to have access to all resources (probably except the fetch unit). A
potential disadvantage of this design type is that it leaves contention of threads free,
and, as a result, it may lead to contention for undesirable resources or interference.

On the other hand, single- threaded performance is an important criterion that
must not be overlooked. Although modern operating systems eminently help with
the widespread use of multi- threading, an application must often be executed with
maximum priority without being affected by other processes. The hardware must
provide mechanisms so that the operating system can achieve its desired behaviour
in every specific scenario. If certain priority schemes are made accessible by an
SMT processor, all of these requirements must be handled effectively. Since a
dynamically scheduled superscalar processor is likely to have a deep pipeline, SMT
is unlikely to be able to benefit greatly from performance if the CMT method is
used in its design base.

4.3.3 Multi-Processor Parallelism

As mentioned in the previous sections, the most key factor, namely power consump-
tion, has made the microprocessor architecture shift towards multi- processors. An
attempt is made in this section to examine the general concepts of multi- processors.

In multi- processor systems, all processors may become identical, or some of
them are utilised for specific purposes. For example, a processor in a system may
respond to all hardware interrupts, whereas all other tasks of the system are dis-
tributed between the remaining processors. The execution of the kernel mode code
is restricted to a single processor, and the userspace code is distributed between all
processors. If such restrictions apply, the design of these systems becomes easier,
but in the meantime, they will take advantage of less- efficient systems than systems
that are using all processors evenly. Systems that deal with all processors equally
are called symmetric multi- processing (SMP) systems. In systems where all proces-
sors are not identical, system resources may be divided in different ways, such
as asymmetric multi- processing (ASMP) or non- uniform memory access (NUMA)
multi- processing.

The main idea of using multi- processors dates back to the first electronic
computers. In 1966, Flynn introduced a simple way to classify all computers that are
still in widely use today. Flynn’s taxonomy is based on a stream of information, two
types of information flow into a processor: instructions and data. The instruction
stream is defined as a sequence of instructions run by the processing unit. The
data stream is expressed as a sequence of data traffic between the memory and the
processing unit. Based on this classification, each of the instructions or data streams
can be single or multiple.

60 ◾ Implementing Parallel and Distributed Systems

	 •	 Single Instruction Stream, Single Data Stream (SISD): All single processors
are within this classification.

	 •	 Single Instruction Stream, Multiple Data Streams (SIMD): In this category,
an instruction is executed by multiple processors using different data streams.
These computers exploit data- level parallelism by applying the same operation
to multiple items of data in parallel. Every processor has its own data memory,
but there is a single instruction memory and control processor, which fetches
and broadcasts instructions. SIMD architecture can be very efficient for applica-
tions that exhibit data- level parallelism. One of the downsides of this method is
that a large part of the system stays idle when running programs or system tasks
are unable to be divided into units so as to be processed in parallel. This archi-
tecture has found a wide range of use cases in a wide spectrum of applications,
such as computer simulations, vector processors, and graphic applications, but
has had little use in general- purpose computing environments like desktop
computers.

	 •	 Multiple Instruction Streams, Single Data Stream (MISD): This architecture
is employed to achieve high redundancy, in which multiple processing units
perform unit works on single data. This method reduces wrong results in the
event of a failure of a functional unit. This architecture is very costly, and so far
its commercial version has not been made. MISDs are used in array processors
and implemented in machines resistant to faults. For instance, the processing
units inside critical controllers of missiles where single data is handled by differ-
ent processors to prevent faults created at runtime by processing elements. This
structure is also beneficial to computations in that input must be placed under
different operations.

	 •	 Multiple Instruction Streams, Multiple Data Streams (MIMD): In this
model, every processor fetches its own data and functions on its own data.
MIMD processors leverage TLP techniques and multiple threads run in parallel
within them. For this sake and ease of implementation, MIMD dominates the
multi- processor industry. This architecture introduces issues like deadlock and
resource contention. MIMD requires special coding approaches in the operat-
ing system but does not consider any requirements for changing applications
unless the programs themselves use multiple threads through the operating
system APIs.

Multi- processors are usually built based on a combination of these four classifications.
Existing MIMD multi- processors are fallen into two general families relied on the
count of their processors, which in turn this count dedicates a memory architecture
and an interconnection policy.

The first category is shared- memory architectures that deploy a modest number of
processors (let’s say, less than 200 cores). A typical architecture of this type is shown
in Figure 4.12. With larger caches, a single memory can account for a small number
of memory requests from processors. Since there is a single main memory that has
a symmetric correspondence to all processors, and this system has a uniform access
time to the memory from every processor, these multi- processors are often called
symmetric multi-processors (SMPs). Processors are connected to the main memory by
a system bus or a crossbar system (a crossbar switch is a device that connects multiple

Parallelism for the Many-Core Era ◾ 61

inputs to multiple outputs in a matrix form). Every processor has a high- speed cache
that accelerates access to the main memory and reduces system bus traffic.

Therefore, the use of multi- level caches can vitally decrease memory bandwidth
requests and significantly increase performance. SMP machines usually support two
private and shared caches. Private data is used by a single processor, whilst shared
data is utilised by multiple processors. The latter usually operates to provide inter-
processor communication through reading and writing from/to shared data. Shared
data caching creates a technical issue, which is referred to as cache coherence. When
a cache is updated with the information that may be used by other processors, this
change must also be notified to other processors, otherwise they will work on inco-
herent data. Several coherence protocols can mitigate this problem for highly effi-
cient access to shared information between multiple processors. Two general classes
of coherence protocols are as follows:

	 •	 Snooping Protocols: In this technique, any cache that has a copy of a cache
block, as well as its shared status, but there is no centralised status, is kept.
The snooping protocol broadcasts a message across the bus whenever a word
is modified in the cache. This technique also intercepts the bus to detect
such messages from other processors. When a processor learns that another
processor has changed a value in an existing address within its cache, the
snooping protocol invalidates that entry in its cache. This invalidation reminds
the processor of the invalid state of the value in the cache in order to look
for the true value somewhere else (in the main memory or another processor
cache). As the number of processors in a multi- processor system or the memory
requests of each processor grows, system resources can turn into a bottleneck.
Because this invalidation method increases cache misses and the snooping
protocol contributes to bus traffic, solving the coherency protocol reduces the
performance and scalability of SMP systems. As processors become faster and
the count of cores per processor increases, designers are steadily trying to
abandon these protocols due to broadcast limitations.

	 •	 Directory- based Protocols: In this method, a directory state of a block that
may be cached is kept. The available information in this directory includes

CPU

cache MMU

CPU

cache MMU

CPU

cache MMU

CPU

cache MMU

Bridge Main Memory

System Functions (timer,
BIOS, reset)

Network

GPU

Hard disc

I/O subsystem INT

System/Memory Bus

Figure 4.12 An architecture of a shared-memory multi-processor.

62 ◾ Implementing Parallel and Distributed Systems

which cache has copies of that block, whether it is dirty, and so on. A directory-
based protocol can be used to decrease bandwidth requests in an SMP system.
This variant is mostly employed in distributed shared- memory multi- processor
systems, which are discussed as follows.

The major issues with SMP machines can be pointed out as memory contention,
limited bus bandwidth, I/O contention, and cache coherency.

The second category is distributed shared- memory multi- processors in that every
processor has its own cache, main memory and I/O subsystem. The architecture of
this classification is illustrated in Figure 4.13. In this architecture, in order to realise
a large number of processors, memory must be distributed separately amongst all
processors. In this type of processor, a communication switch connects all compo-
nents of the system, so high- bandwidth inter- communication mechanisms are highly
influential in increasing or decreasing the efficiency of this class of multi- processors.
This architecture can significantly reduce latencies in accessing local memory. One of
the downsides of this structure is that due to the use of a distributed memory archi-
tecture, data communication between processors becomes very complex, which even
requires making use of software layers for reducing the complexity.

4.3.4 Multi-Core Parallelism

Chip multi- processor (CMP), also known as multicore processor in the computer
industry, has recently become the only way to build high- performance, cost- effective
microprocessors, which solve many of the problems stated for single processors.
In CMPs, a processor die is filled with multiple, relatively simpler processor cores
instead of a large core. The full size of cores of a CMP can vary from very simple
pipelines to relatively complex superscalar processors, but once a core is selected for
the intended performance of a CMP, we can easily reach more cores in generations of
the silicon manufacturing process by simply copying that core. The low- latency inter-
processor communication (because all cores are built on a silicon wafer) between
cores in a CMP leads to making a wider range of practical applications for parallel

Communication Switch

CPU

cache MMU

Memory I/O

CPU

cache MMU

Memory I/O

CPU

cache MMU

Memory I/O

CPU

cacheMMU

MemoryI/O

CPU

cacheMMU

MemoryI/O

CPU

cacheMMU

MemoryI/O

Figure 4.13 An architecture of a distributed shared-memory multi-processor.

Parallelism for the Many-Core Era ◾ 63

execution with respect to traditional multi- processor multi- chips. Furthermore, the
possibility to change the number and clock frequencies of processors allows the
same hardware to operate at very different price points.

Figure 4.14 shows a floorplan of a quad- core processor in its microelectronic
design. Every core is made of a superscalar processor that is connected to other
cores by a crossbar switch, which allows the cores to share the cache on the L2 chip.
On the die, four cores are arranged in a grid. Each of the cores has data caches, and
single- port and single- bank caches of 32 KB. In this architecture, since four cores
share a single L2 cache, the cache requires additional latency to allow the time for
inter- processor operations and crossbar switch delay.

In CMP processors, identical cores on the die let the cache coherence circuits
operate at much higher clock rates than in multi- processors, where signals must
travel outside the chip. These processors allow snooping protocols to be capable of
increasing performance dramatically because signals travel much shorter distances
and therefore their strength is not reduced (so that they need to be amplified and
dissipate a lot of energy). CMP chips can deliver higher performance at lower power
consumption. This key factor makes them very suitable for mobile devices that run
on batteries. One of the key issues in designing applications for CMP processor gen-
erations is that new algorithms and methods must be devised to make the use of
threads highly beneficial, which will be the only tool available to new generations
of processors, and to increase the performance of an application program. The art

Core 1 Core 2

Core 3 Core 4

D-Cache 1 (32K) D-Cache 2 (32K)

D-Cache 3 (32K) D-Cache 4 (32K)

External
Interface

15mm

15mm

O
n-

C
hi

p
L2

 C
ac

he
 (5

12
KB

)

L2
 C

om
m

un
ic

at
io

n
C

ro
ss

ba
r

I-Cache 1 (32K) I-Cache 2 (32K)

I-Cache 3 (32K) I-Cache 4 (32K)

C
locking and Pads

Figure 4.14 Floorplan of a quad-core processor with cache on the L2 chip.

64 ◾ Implementing Parallel and Distributed Systems

of multi- processor programming is much more complicated than single- processor
machines and requires a deep understanding of new programming paradigms, algo-
rithms, and principles. Multi- core processors also provide flexible ways for dealing
differently with each core to adjust a mapped application, supply voltage and clock
rate. For instance, when a processor in a chip is much slower than the rest, a slow
workload can be mapped into it without compromising the system performance.

CMP processors are taking over the world of general- purpose computing. In the
near future, these processors will have more impact on latency- sensitive computing.
Three basic techniques that have been used for decades to increase the performance
of applications are: increasing the clock frequency, issuing superscalar instructions,
and multi- processors. The first two methods have come to an end, and it is only the
last method that will advance the processor industry in the coming years. CMPs with
a large number of cores will revolutionise the server industry and data centres in the
future years. We will study this paradigm shift in the next section.

4.4 Heterogenous Computing on Many Cores
As mentioned, the trend in the processor industry has shifted to multi- core proces-
sors. Homogenous or heterogenous processors with many cores will soon become
available. These processors will require fundamentally new architectures, compilers,
and programming models along with a new generation of operating systems. Busses
in these systems will grow insufficiently and be replaced by interconnection net-
works in which the underlying networks are connected by routers. Cores (or clusters
of cores) will have their own clocks, which will be synchronised by protocols running
along the interconnections. Figure 4.15 portrays a possible architecture of thousands
of heterogenous cores in future processors. For example, in this architecture, a core

Core

Cache

Core

Cache

Memory

Core

Cache

Core

Cache

Memory

Core

Cache

Core

Cache

Memory

Core

Cache

Core

Cache

Memory

Core

Cache

Core

Cache

Memory

Core

Cache

Core

Cache

Memory

Figure 4.15 A probable schematic of thousands of heterogenous cores in future processors.

Parallelism for the Many-Core Era ◾ 65

could be a superscalar processor, another a GPU, an SMT processor, and so forth. As
seen, interconnection topologies play a major role in this model.

The most advanced multi- core chips available benefit from two methods to deal
with interconnection costs. Multi- core chips with a small number of cores exploit a
single bus. Another scalable approach used by some multicores is to employ a peer-
to- peer network architecture where software takes control of communication. No
matter which existing network topology is used, dynamic communication patterns
that lead to network contention make these architectures very difficult in order to
coordinate hundreds or thousands of processors in an ordered structure. Even simple
functions such as issuing instructions to all cores are very challenging. A promising
method, that the industry is moving towards, is to use optical communication chan-
nels on the chip instead of electrical channels. Compared to electrons, optical pho-
tons are much faster and give more bandwidth, for example light traverses a direct
distance of 30 cm in just 1 ns. Optical devices can be fabricated using standard CMOS
manufacturing techniques, and in the near future silicon wires will be replaced by
optical busses. The use of optical interconnect technology in chips will solve many
of the existing grand challenges in processors with a large count of cores.

One of the current realised methods in the revolution of many- core processors is
accelerated processing units (APUs), which provide additional processing capabili-
ties to accelerate computations with different types outside of a CPU. An APU can be
composed of a combination of a graphics processing unit (GPU) used for general-
purpose processing, a field- programmable gate array (FPGA), or other special-
purpose processing systems. Recently, APUs are described as processing units that
integrate a CPU and a GPU on a shared die, where data transmission rates between
components reduce power consumption in addition to improving efficiency.

A GPU is a dedicated circuit designed to quickly manipulate and change memory
in a way to speed up making images in a frame buffer intended for output to the
screen. Today’s GPUs are very efficient to manipulate computer graphics, and their
very parallel structure makes them much more effective than general- purpose
CPUs for algorithms, where the processing of large blocks of data is carried out
in parallel. General- Purpose GPU (GPGPU) is a method in which a GPU that is
usually used for graphic tasks is exploited to perform computations in application
programs conventionally handled only by CPUs. Also, the use of graphics cards or
a lot of graphics chips adds to the parallelism of GPUs. Like the vector processor
architecture, GPUs can only work well with data- level parallelism. Both have scatter/
gather transfer operations and mask registers, and GPUs even have many more
registers than vector processors. Unlike many vector architectures, GPUs are only
based on multi- threading inside a multi- threaded SIMD processor to hide memory
latency. GPGPU applications have to adhere to an intensely high operating capacity,
otherwise the latency of memory access (e.g., copy from a GPU memory to the main
memory of the system and vice versa) will greatly limit any computational speedup.

Figure 4.16 shows the GPU architecture of NVIDIA GTX580. This device has 16
cores, each of which has 2 SIMD arrays with 16 lanes (processing elements) in every
core. Every core has a shared memory, an L1 cache, and a separate array of specific
functional units to perform complex operations. The fine- grained scheduler selects
the hardware threads to map to each SIMD array whilst they get ready to run. To
achieve a high memory bandwidth, a large number of pins are allocated to memory

66 ◾ Implementing Parallel and Distributed Systems

traffic, and Graphics Double Data Rate 5 (GDDR5) memory (this type of memory
is a DRAM memory of a graphics card that is used for computer applications that
require high bandwidth) is used to increase the memory bandwidth per pin at a
higher latency cost.

These processors use SIMD arrays to maximise the throughput of mathematical
operations for a number of issued instructions. It also executes a vector with a length
of 32 over two cycles. Unlike most system processors, the aim of the NVIDIA com-
piler’s instruction set is an abstraction of the hardware instruction set. Parallel thread
execution (PTX) provides a stable instruction set for compilers with compatibility
amongst GPU generations. This instruction set architecture (ISA) is hidden from pro-
grammer. The NVIDIA GPU programming language is an extension of the ISO C99
language standard, called compute unified device architecture (CUDA). CUDA allows
developers to access the virtual instruction set and processing elements in GPUs.

To further understand this description, we consider a simple example in which an
operation on two arrays is performed in two ways: traditionally on a CPU, and on a
GPU using the CUDA language. Figures 4.17 and 4.18 illustrate this example. As seen
in the traditional method, after filling two arrays a and b, addition is carried out in
a loop by traversing the array elements one by one, and its value is printed on the
output screen at the end. In this case, no apparent TLP technique has been applied
by the programmer and ILP parallelisation is likely to be done by the compiler and
the hardware in a single- processor pipeline. However, the CUDA example shows
an inherently different parallel coding style. First, the desired memory on the GPU

L2 Cache

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

L1/SM
SFU

Scheduler

SI
M

D
Ar

ra
y

SI
M

D
Ar

ra
y

Shader
Core

G
D

D
R5

M
em

ory
SystemTh

re
ad

Sc
he

du
le

r

Figure 4.16 The architecture of the NVIDIA GTX580 graphics processing unit.

Parallelism for the Many-Core Era ◾ 67

is allocated by the cudaMalloc function, and then the values of the two arrays are
copied into the GPU memory by the cudaMemcpy function. In the literature on CUDA
language, a GPU is called a device and a local system with its host processor. In line 7,
the keyword __global__ is used to denote that ADD function must be translated by
the CUDA compiler and executed on the device. In CUDA language, data are divided
into N blocks (each block runs in one of the SIMD processors), each of which has
M threads that perform operations on the data of each block. The block and thread

1: #define N 10
2: #include <stdio.h>
3:
4: void FillArrays(int *a, int *b){
5: // fill the arrays 'a' and 'b' on the CPU

6: for (int i=0; i<N; i++) {
7: a[i] = i;
8: b[i] = i * (i - 10);
9: }

10: }
11:
12: void DisplayArrays(int *a, int *b, int *c){
13: for (int i = 0; i < N; i++) {
14: printf("%d + %d = %d\n", a[i], b[i], c[i]);
15: }
16: }
17:
18: void add(int *a, int *b, int *c) {
19: int tid = 0; // this is array index

20: while (tid < N) {
21: c[tid] = a[tid] + b[tid];
22: tid += 1; // we have one CPU, so we increment by one

23: }
24: }
25:
26: int main(void) {
27: int a[N], b[N], c[N];
28:
29: // fill the arrays 'a' and 'b' on the CPU

30: FillArrays(a, b);
31:
32: add(a, b, c);
33:
34: // display the results

35: DisplayArrays(a, b, c);
36:
37: return 0;
38: }

Figure 4.17 A simple C program to add two arrays stored on a traditional processor.

68 ◾ Implementing Parallel and Distributed Systems

1: #define N 10
2: #include <stdio.h>
3:
4: void FillArrays(int *a, int *b);
5: void DisplayArrays(int *a, int *b, int *c);
6:
7: __global__ void add(int *a, int *b, int *c) {
8: int tid = blockIdx.x; // this thread handles the data at its thread id

9: if (tid < N)
10: c[tid] = a[tid] + b[tid];
11: }
12:
13: int main(void) {
14: int a[N], b[N], c[N];
15: int *dev_a, *dev_b, *dev_c;
16:
17: // allocate the memory on the GPU

18: cudaMalloc((void**)&dev_a, N * sizeof(int));
19: cudaMalloc((void**)&dev_b, N * sizeof(int));
20: cudaMalloc((void**)&dev_c, N * sizeof(int));
21:
22: // fill the arrays 'a' and 'b' on the CPU

23: FillArrays(a, b);
24:
25: // copy the arrays 'a' and 'b' to the GPU

26: cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
27: cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
28:
29: add<<<N,1>>>(dev_a, dev_b, dev_c);
30:
31: // copy the array 'c' back from the GPU to the CPU

32: cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
33:
34: // display the results

35: DisplayArrays(a, b, c);
36:
37: // free the memory allocated on the GPU

38: cudaFree(dev_a);
39: cudaFree(dev_b);
40: cudaFree(dev_c);
41:
42: return 0;
43: }

Figure 4.18 Modified program of adding two arrays to run on a GPU using the CUDA
programming language.

Parallelism for the Many-Core Era ◾ 69

structure are shown in Figure 4.19. As shown in line 29 of the CUDA code, there are
N blocks in this example, of which a single thread operates on the data. In this example,
since each cell in the array is assigned to a block, in add function in line 7, the current
location of each block that in fact operates on the i’th index of the array is obtained
from blockIdx.x instruction. After performing the calculations, the result is copied
from the device memory into the host memory by using the cudaMemcpy function, and,
finally, the allocated memory on the device is released by calling the cudaFree func-
tion. An example of running a CUDA flow is demonstrated in Figure 4.20 for an off- chip
GPU for the explained case.

N blocks

M threads M threads M threads M threads

M threads M threads M threads

...

Figure 4.19 Structure of blocks and threads in CUDA language.

Host
Memory

Device
Memory

1
2

3

4

G
PU

 D
ev

ic
eFlow description:

1. Copy data from host memory to device memory.
2. CPU instructs the process to GPU device.
3. GPU executes parallel in each core.
4. Copy the result from device memory to host
memory.

CPU

Figure 4.20 An example of execution of a CUDA flow for an off-chip GPU.

70 ◾ Implementing Parallel and Distributed Systems

One of the fundamental methods in multi- processors with multiple and many
cores that have been used for many years in the design of embedded systems is the
system on chip (SoC) methodology. This technology allows all the components of a
computer or any other electronic system to be integrated into a single chip. Multi-
processor SoCs (MPSoCs) in particular employ multiple and multi- core processors.
MPSoCs combine multiple processor memories, accelerators, and I/Os through a
dedicated infrastructure to provide a complete system. In general, MPSoCs consist of
a large number of processing elements (PEs) that are connected by intercommunica-
tion structures as shown in Figure 4.21.

PEs are mostly connected by a network- on- chip (NoC). NoC is a principal tech-
nique for designing communication subsystems between Intellectual Property (IP)
cores in an SoC. NoC employs network theory and on- chip communication methods
and provides significant improvements with respect to crossbar and bus intercom-
munication strategies. Research has also been done on optical NoCs. An SoC is made
up of multiple point- to- point data links interconnected via switches (or the so- called
routers) and brings the messages about being able to be transmitted from any source
module to any destination module over multiple links, where decisions are made in
switches. To ensure energy efficiency, PEs are divided into voltage/frequency islands.
PEs make use of dynamic voltage and frequency scaling (DVFS) to control perfor-
mance and power dissipation based on the equation of dynamic power discussed
in this chapter to optimise power. In many advanced MPSoCs, a set of sensors inte-
grated into every PE provide information about power consumption, temperature,
performance, or any other characteristics needed for DVFS management.

The design of scalable operating systems for many- core processors has posed
significant challenges in the development of future generations of operating systems,
and it is universally accepted that operating system concepts must undergo funda-
mental changes to meet the requirements of future- generation applications. One of

DVFS

Async.
Router

Network Interface

Processing
ElementSe

ns
or

s

V/F Island

MPSoC

Figure 4.21 A general MPSoC architecture.

Parallelism for the Many-Core Era ◾ 71

the main hurdles for new generations of processors stems from the basic structure
of the shared- memory operating system kernel along with data structures protected
by locks. Moreover, kernel heterogeneity indicates that kernels can no longer share
a single OS kernel instance because there are different performance conditions for
these kernels and each kernel has a different ISA.

Task scheduling and load balancing have become challenging for such devices. The
scheduler must take care of the heterogeneity issue, such as different ISAs, the per-
formance of cores, and the characteristics of cache hierarchy. For example, it could
assign and schedule sequential parts of application programs demanding critical per-
formance to more powerful, higher- clocked cores and parallel tasks to weaker cores.
Furthermore, the operating system must play a more fundamental role in power man-
agement. In the future, thermal power limitation issues in processor design will likely
prevent us from using all the cores at the same time with maximum speed. For instance,
non- critical tasks in terms of performance (or tasks with memory- bound performance)
could be performed at lower frequencies with higher energy efficiency. To deal with
these dilemmas, the operating system should be aware of hardware features such as
cores, caches, interconnects, and static and dynamic power consumption. Additionally,
the operating system must look after the behaviour of tasks at runtime, estimate and
measure power in finer granulations, and control finer power stages in core granulation
through new interfaces. We believe that, besides these issues, the separation of the two
user and kernel spaces that were created in single- processor operating systems can lead
to many overheads in future systems. To give an instance, frequent context switches
and invalidation of TLB entries can be accounted as cases of these overheads. We sug-
gest that future operating systems make use of the architecture of a single address
space OS and languages such as Java and C# for the implementation of applications in
pursuit of secure execution (because these languages lack pointers, and the security of
applications is satisfied by the underlying intermediate language and runtime). In the
following, we review five types of research projects for designing many- core operating
systems; it is worth noting that, despite rapid advances in processor hardware, the num-
ber of these research operating systems is very small:

	 •	 Barrelfish: This operating system uses a multi- kernel model where instances of
multiple independent OSs communicate with others via explicit messages [1].
Its architecture is shown in Figure 4.22. Barrelfish distributes the OS instance
on each core into a privileged CPU driver and differentiated userspace monitor
process. CPU drivers are all on a single local core, and all coordinations between
kernels is done by monitors. The distributed system of monitors and their depen-
dent CPUs encapsulate the functions found in a typical monolithic kernel, such
as scheduling, communication, and low- level resource allocation. The rest of
Barrelfish is made up of driver tools and system services (such as network stacks,
memory allocators, etc.), which run in user- mode processes as a microkernel.
Hardware interrupts are sent to appropriate kernels, demultiplexed by the CPU
driver of that kernel, and delivered to the process driver as a message.

	 •	 Factored Operating System (FOS): FOS is a new operating system that consid-
ers many- core systems with scalability as a primary design parameter, where
space sharing replaces time sharing to increase scalability [2]. FOS is built on a
message exchange scheme and is inspired by a set of Internet services. Each OS

72 ◾ Implementing Parallel and Distributed Systems

service is factorised into a set of communication servers that collectively imple-
ment a system service. These servers are mostly designed in the way that distrib-
uted Internet services are designed, but instead of providing high- level Internet
services, these servers provide traditional kernel services and replace traditional
kernel data structures in a factorised fashion and spatially distributed. In other
words, FOS servers bind to individual processing kernels and do not fight with
end- user applications for implicit resources such as TLBs and caches.

	 •	 Helios: It is an operating system designed to simplify the writing, deployment
and configuration of applications for heterogeneous platforms [3]. Helios intro -
duces satellite kernels which export a single uniform set of OS abstractions
across CPU architectures and inhomogeneous performance features. Access to
I/O services, like file systems, is made transparent by remote message exchange,
which extends a standard microkernel message passing abstraction to a satellite
kernel architecture. Helios retargets applications to existing ISAs by compiling
from an intermediate language.

	 •	 Corey: In this operating system, applications should control sharing and the
kernel should organise every data structure so that only a single processor
needs to be updated [4]. Based on this research work, three OS abstractions are
proposed (address boards, kernel cores, and subscriptions) that let applications
control cross- kernel sharing and benefit from the abundance of cores by assign-
ing cores to specific functions of the operating system. Hardware event counters

x86

Cache

x64

Cache

Memory

MIPS

Cache

ARM

Cache

Memory

GPU

Cache

GPU

Cache

Memory

SPARC

Cache

Atom

Cache

Memory

FPGA

Cache

APU

Cache

Memory

Core

Cache

Core

Cache

Memory

Heterogeneous
many-core die

State
replica

OS node

State
replica

OS node

State
replica

OS node

State
replica

OS node

Async messages

...Architecture-
specific assembly

code

Agreement
algorithms

Application Application Application Application

Figure 4.22 Architecture of the Barrellfish operating system.

Parallelism for the Many-Core Era ◾ 73

confirm that the improvements made by the Corey architecture are due to the
avoidance of operations that are expensive on multi- core machines.

	 •	 Tessellation: This operating system is based on two fundamental ideas: space-
time partitioning (STP) and bilevel scheduling [5]. STP provides performance
separation and robust segregation of resources between interactive software
components called cells. Bilevel scheduling separates general decisions about
resource allocation to cells from special- use resource scheduling within cells.

4.5 Latest Optimal Approaches in Synchronisation
A cooperative process can either influence other processes running on the system or
be affected by them. They either can share a logical address space (code and data)
directly or are allowed to share data only through messages or files. Concurrent
access to shared data may lead to data inconsistency. In this section, we discuss a vari-
ety of techniques that fulfil the correct and fair execution of cooperative processes,
which share a logical address space, thus maintaining consistency. Synchronisation
is a cooperative action of two or more threads guaranteeing that each thread reaches
a known point of operations in relation to other threads before continuation. An
attempt for resource sharing without a proper use of synchronisation is one of the
most common causes of damage to program data. In the rest of this chapter, the two
terms process and thread are used interchangeably from a conceptual point of view,
unless their dissection is explicitly stated.

An atomic operation is the one that appears to the remainder of the system to
happen instantly. Atomicity is to guarantee separation from concurrent processors.
This operation is effectively performed as a single step and is a very important fea-
ture in algorithms that deal with multiple processors, both in synchronisation and in
algorithms that update shared data without requiring synchronisation. This type of
hardware operation ensures that at any moment of time only one thread can access
a memory location without interference of any other threads.

The most key hardware capability to build primitive synchronisation instruc-
tions (and then higher- level software routines) is to use uninterruptible instructions
or a sequence of instructions that are able to atomically retrieve and change a value.
Software synchronisation mechanisms are subsequently constructed on top of these
primitive structures. In many- core systems or high- contentious situations, synchronisa-
tion turns into a performance bottleneck because contention creates redundant latency
which is much higher in multi- processors. The key ability to implement synchronisa-
tion in multi- processors is a set of hardware primitives that can atomically read and
modify a memory location. Without having such a mechanism, the construction of
basic synchronisation primitives will give rise to heavy overheads, whilst the number
of processors increases these overheads become much higher. We succinctly refer to
a number of these approaches (these primitives are usually utilised to make non-
blocking locks):

	 •	 Atomic Exchange: This instruction exchanges a value in a register with the
value of a location in memory. This exchange is indivisible, and two simul-
taneous exchanges are ordered by write serialisation mechanisms (through

74 ◾ Implementing Parallel and Distributed Systems

hardware queues). A spin lock is designed in this section using this primitive.
One of the x86 assembly instructions is XCHG for this purpose. If two processes
use this instruction to set a synchronisation variable, it is impossible for both
the processes to concurrently set the location as if it appears to both of them
that they are simultaneously performing this operation.

	 •	 Test- and- Set: This instruction, which is available on old processors, is used to
write to a memory location and return its old value as an atomic operation. tsl
is one of the x86 assembly instructions for this objective.

	 •	 Fetch- and- Add: This instruction returns the value of a memory location and
atomically adds a value to it.

	 •	 Compare- and- Swap (CAS): This operation atomically compares the value of
the first operand’s pointer with the value of the second operand’s pointer. If
they are equal, the value of the swap operand’s pointer is stored in the second
location of the compare operand, otherwise the value of the second compare
operand’s pointer is stored in the location of the first compare operand. Figure
4.23 shows the idea of a typical pseudocode for this operation in the C lan -
guage: note that the structure in line 3 means the code block between lines
4 and 10 is performed atomically. A widely used x86 assembly instruction is
cmpxchg, which implements this mechanism.

	 •	 Load- Linked/Store- Conditional (LL/SC): The implementation of a single
atomic memory operation leads to obstacles because it requires writing and
reading to/from memory in a linearisable (atomic, indivisible, or uninterrupt-
ible) instruction. As a matter of course, this issue complicates the implementa-
tion of coherence protocols because hardware cannot allow performing any
other operation between a read and a write. A solution is to take advantage of a
pair of LL/SC instructions. LL returns the current value of a memory location.
An SC instruction will subsequently store a new value to the same memory loca-
tion if no update has taken place since the execution of the LL instruction. Also,
if the processor performs a context switch between these two instructions, the
SC instruction will fail.

1: bool compare_and_swap(int *accum, int *dest, int newval)
2: {
3: atomic {
4: if (*accum == *dest) {
5: *dest = newval;
6: return true;
7: } else {
8: *accum = *dest;
9: return false;

10: }
11: }
12: }

Figure 4.23 A pseudocode implementation of CAS operation in the C language.

Parallelism for the Many-Core Era ◾ 75

Concurrency control is the activity of coordinating concurrent access to shared
objects, that is, controlling the relative order of conflicting operations from different
threads. Synchronisation techniques are algorithms that perform such a concurrency
control based on the hardware primitives mentioned. In the following, we examine
high- level methods in software- based synchronisation.

Suppose there is a set of asynchronous processes, each of which alternately executes
a critical section and a non- critical part. These processes must be synchronised so
that two processes never run their critical sections simultaneously. Mutual exclusion
ensures that two processes or threads cannot be in each other’s critical section at
the same time. A critical section is the time interval during which a thread accesses
a shared resource. Since a critical section is a subjective model for reasoning about
concurrency, it is one of the most popular methods for coordinating correct access to
shared data and has been widely studied over the years. Almost all formal concurrent
processing models are based on the hardware assumption of mutually exclusive
atomic operations.

Lock- based synchronisation algorithms are the use of a software variable, referred
to as a lock, to protect the right to enter a critical section of the code. The lock guar-
antees that only a single thread in the critical section has access to the shared data
within that critical section. A lock is a software structure that depends on a shared
object and determines whether that shared object is recently available or not. Once
a process acquires the lock, no other process will be able to continue its execution
until the current lock owner releases that lock. The process that tends to run the
critical section must first acquire the corresponding lock. After handling the lock, the
current lock owner is guaranteed that no other process will have access to the loca-
tions used inside the critical section. When the lock owner completes its own critical
section, it releases the lock and allows other processes to see the updates made by
the current committed critical section.

One of the simplest locks but widely used inside OS kernels is the spin lock. In
this locking technique, a thread waits in a loop and repeatedly checks to see if a lock
exists or not; at this time, the thread is currently waiting and does not do any useful
work. Therefore, spin locks are only useful when they need to be blocked for a short
period of time, and they also prevent context switching overheads and involving OS
process rescheduling. Proper implementation of spin locks is possible through the
hardware primitives stated earlier. Figure 4.24 illustrates a typical implementation
of a spin lock in assembly language. As can be seen, the use of xchg instruction is
required to create an indivisible operation. The spin_lock label is for the code of
lock operation and the spin_unlock label is associated with the code for unlock
operation. Spin locks without the requirement for an OS scheduler using hardware
primitives make the process go to sleep if the indented resource is busy.

In the following, we first discuss the problems that arise from using threads and
their synchronisation and then introduce common high- level software approaches to
satisfy mutual exclusion.

4.5.1 Deadlock

A computer resource is any type of physical or virtual component with limited avail-
ability within a computer system. Each piece of device equipment connected to

76 ◾ Implementing Parallel and Distributed Systems

a computer system is a resource. Each component of the internal system is also
a resource. Virtual system resources include files, network connections, and mem-
ory regions. Deadlocks arise when the members of a group of processes that hold
resources are indefinitely blocked from accessing resources held by other pro-
cesses within the group. When no member of the group relinquishes control over
its resources after it has completed its acquisition, a deadlock is inevitable and can
only be broken by involving an external force. A set of processes comes to a dead-
lock as an outcome of exclusive access and circular wait. The simplest picture of this
circumstance involves only two processes, each of which holds a different resource
for exclusive access and requests access to the resource held by the other. The result
is a circular wait that cannot be broken until one of these processes abandons its
resource or cancels its request.

An example of a deadlock may occur in a database system. Client applications
using the database may require exclusive access to a table and request a lock to take
advantage of their exclusive access. If a client application holds a lock on a table and
tries to acquire the lock on a second table that was previously held by a second client
application, this situation may lead to a deadlock if the second application attempts
to acquire the lock held by the first lock.

We show this example more clearly in the code snippet of Figure 4.25. Here,
Process P tries to acquire the locks M and N respectively, whilst Process Q tries to
acquire the N and M locks respectively. In line 4, both processes have a critical sec-
tion. In this state, Process P acquires the M lock, whilst Process Q acquires the M lock.
Even though a deadlock is possible in this example, a deadlock does not happen if

lock: ; The lock variable. 1 = locked, 0 = unlocked.

dd 0

spin_lock:
mov eax, 1 ; Set the EAX register to 1.

xchg eax, [lock] ; Atomically swap the EAX register with the lock variable.

; This will always store 1 to the lock, leaving the previous value in the EAX register.

test eax, eax ; Test EAX with itself. Amongst other things, this will

; set the processor's Zero Flag if EAX is 0.

; If EAX is 0, then the lock was unlocked and

; we just locked it. Otherwise, EAX is 1 and we didn't acquire the lock.

jnz spin_lock ; Jump back to the XCHG instruction if the Zero Flag is

; not set; the lock was previously locked, and so

; we need to spin until it becomes unlocked.

ret ; The lock has been acquired, return to the calling function.

spin_unlock:
mov eax, 0 ; Set the EAX register to 0.

xchg eax, [lock] ; Atomically swap the EAX register with the lock variable.

ret ; The lock has been released.

Figure 4.24 Implementation of a spin lock based on ×86 assembly code.

Parallelism for the Many-Core Era ◾ 77

Process P can acquire and release the M and N locks before Process Q tries to acquire
the locks. This matter shows that it is difficult to identify and test the deadlocks that
may occur under certain conditions.

In a state of deadlock, processes never finish their execution, and system resources
become busy, which will prevent other tasks on the system from starting. In the most
general state, deadlocks occur if any of the following conditions are met, so the best
way to avoid deadlocks is to consider these parameters when programming concur-
rent systems. These conditions are referred to as deadlock prevention parameters:

	 •	 Mutual Exclusion: At least one resource must be kept in a non- shared mode,
only one process at a time can use the resource. If another process requests
that resource, the requesting process must be postponed until the resource is
released.

	 •	 Hold and Wait: A process must be holding at least one resource and waiting to
acquire additional resources that are currently being held by other processes.

	 •	 No Pre- emption: Resources cannot be pre- empted; a resource can only be
released voluntarily by its holding process after that process has finished its
work.

	 •	 Circular Wait: Two or more processes form a circular chain in where each pro-
cess waits for a resource that the next process holds in the chain.

By guaranteeing that at least one of these conditions cannot be maintained, we are
able to prevent a deadlock from happening. So, we have the following:

	 •	 Elimination of the mutual exclusion means that no process may have exclusive
access to a resource. Algorithms that avoid mutual exclusion are called non-
blocking synchronisation algorithms, which will be discussed in this section.

	 •	 The hold- and- wait condition may be prevented before it starts by forcing pro-
cesses to request all the resources they will need.

	 •	 This prognosis is often difficult to satisfy due to inefficient use of resources.
Another way is to require processes to release all their resources before request-
ing all the resources before that they will need. Of course, this method is also
often impractical.

	 •	 The no- pre- emption condition may be difficult or impossible to avoid whilst a
process has to be able to have a resource for a certain amount of time, or the
processing result may be inconsistent or thrashing happens (this refers to two or
more processes for frequent access to a shared resource, in which state system

1: // Code for Process Q

2: Lock(N);
3: Lock(M);
4: CriticalSection();
5: Unlock(M);
6: Unlock(N);

1: // Code for Process P

2: Lock(M);
3: Lock(N);
4: CriticalSection();
5: Unlock(N);
6: Unlock(M);

Figure 4.25 An example of a deadlock based on using an improper lock sequence to access a
critical section of code.

78 ◾ Implementing Parallel and Distributed Systems

performance degradation occurs because the system spends a disproportionate
amount of time to access the shared resource). However, the inability to force
pre- emption may interfere with a priority algorithm. Algorithms that allow pre-
emption include lock- free and wait- free algorithms, and optimistic concurrency
control.

	 •	 Algorithms that avoid circular waits include disabling interrupts during critical
sections, using hierarchy to specify an incomplete sequence of resources, and
Dijkstra’s solution.

Deadlock prevention is one of the main ways to develop concurrent systems. Providing
that a system has been already designed, another set of methods called deadlock
avoidance can be used. Deadlocks can be avoided if certain information about the
process is available before resources are allocated. For each resource request, the
system examines whether granting the request would mean that the system enters an
unsafe state that leads to a deadlock. The system then only grants those requests that
will lead to safe states. In order for the system to be able to determine whether the next
state will be safe or unsafe, the system must always be aware in advance of the number
of types of all resources in existence, available, and requested. One of the well- known
algorithms used for deadlock avoidance is Banker’s algorithm, which requires knowing
the resource usage limit beforehand. However, it is impossible for many systems to know
earlier what each processor will request. This also means that it is often impossible to
avoid a deadlock. To better understand this description, we consider a two- dimensional
Cartesian projection example for two threads T1 and T2 shown in Figure 4.26.

request

T1

T2

i6

i7

i1 i2 i3 i4 i5

i8

i9

Resource A

Resource B

R
es

ou
rc

e
A

R
es

ou
rc

e
B

safe safe safe safe safe

safe

safe

safe

unsafe unsafe

unreachable

request
request

release
release

request

release

release

start

end

Figure 4.26 A two-dimensional Cartesian illustration for a better understanding of deadlock
avoidance.

Parallelism for the Many-Core Era ◾ 79

These two threads deal with two resources. The horizontal and vertical axes
represent the execution sequence of instructions in both threads T1 and T2. For
example, thread T1 in instruction i3 requests resource A and in i5 releases it. Boxes
displayed as hatched are overlapped areas that are being used by both threads from
two resources A or B. If we suppose that these two threads run on at least a dual-
core processor, then the existence of two horizontal and vertical axes is necessary.
Since processes cannot go back in time, the trajectory in this two- dimensional dia-
gram is only possible towards the north and east. Two unsafe regions exist in this
diagram, and if we travel the path in this diagram and enter these two regions, then
the occurrence of a deadlock is definite because we can only move in the north
and east directions; if we move in these two areas, then the state of both processes
transitions to the hatched, forbidden regions. A possible and safe route is shown as
a dotted zigzag path from start to end.

The difference between deadlock prevention and deadlock avoidance strategies
can be summarised as follows:

	 •	 Deadlock Prevention: Preventing deadlocks is achieved by constraining how
requests can be made for resources in the system and how they are handled
(system design). The goal is to ensure that at least one of the requirements for
a deadlock is never met.

	 •	 Deadlock Avoidance: The system dynamically takes the request into account
and decides whether it is safe to grant at this point. The system requires extra
a priori information about the overall potential use of each resource for each
process. Also, deadlock avoidance makes more concurrency possible.

Deadlock detection and prevention are widely recognised as the best practices for
precisely engineered concurrent software. But these two methods cannot always be
used. For example, these methods are not applicable to those systems that are highly
complex and dynamically composed (composition is the ability to put two entities
alongside in order to form a larger and complex entity, which in turn is abstracted
into a single composite entity), especially those that are not equipped to deal with
deadlocks (such as transaction processing systems including databases and trans-
actional memory synchronisation and hosted or plug- in software). In such systems,
deadlock detection techniques and process restart are used by an algorithm that
keeps track of resource allocations and process states. In this approach, one or more
processes are rolled back and restarted for eliminating the deadlock. It is easy to
detect a deadlock that has already occurred because the resources that have been
locked by each process or recently requested are known to resource scheduler or
operating system.

For a practical description of how a deadlock detection system works, we intro-
duce a dynamic deadlock detection system in which deadlocks are identified from a
specific resource, namely locks, because locks are the most key element in synchro-
nised access to resources and variables or shared objects. This method is particularly
useful for problems in previously developed codes and fixing parts of the lock hier-
archy that are causing a deadlock. First, a graph model is described for modelling
deadlocks.

80 ◾ Implementing Parallel and Distributed Systems

Deadlocks can be modelled based on directed graphs. These graphs have two
types of nodes in which processes are represented as circles and resources as
squares. A directed edge from a resource node to a process node means that the
resource has already been requested by the process and the system has granted it,
and so the process has held the resource. A directed edge from a process side to a
resource indicates that the process is recently waiting for the resource. These two
modes are shown in Figure 4.27(a) and (b). In Figure 4.27(c), which represents a
deadlock that has occurred in Figure 4.25, the Q process is for the resource N (in
this example, a lock), which is recently held by the P process. The P process cannot
abandon the resource N because it is waiting for the resource M, which is held by Q.
Both processes will be waiting indefinitely. In this example, a cycle is formed. This
shows that there is a deadlock comprised of processes and resources; of course, in
this section for simplicity, we assume that only one resource (lock) exists per type.
Here, the cycle formed is M- Q- N- P- M.

Following this section, we describe a method for dynamically identifying dead-
locks based on the concepts of resource graphs and cycles indicating deadlocks
within the graph. In a concurrent system where locks are used to synchronise the
access of threads to shared objects, the existing lock routines such as lock() and
unlock() functions must be placed inside new routines (e.g., new_lock and
new_lock). Each time that a request arrives for lock operation through the invo-
cation of the new_lock routine, the code checks at runtime whether this lock has
previously been held or not. If the intended lock is not held, this lock along with
the thread identifier requesting the lock is added to a linked list data structure,
which keeps the lock graph information. If this lock is already held by a thread,
the code inside the new_lock routine first forms a lock graph at runtime and then
checks if there is a cycle in the graph. If there is no cycle, nothing has happened
and the execution of the new_lock routine completes successfully. Otherwise, it
is dynamically notified to the application program, usually by throwing an excep-
tion in its address space if the last thread has caused a cycle in the lock graph, and
a deadlock has happened, and the thread must manage the circumstance through
a particular way.

R P

P R

N

M

Q P

(a)

(b)

(c)

Figure 4.27 Resource allocation graphs: (a) keeping a resource, (b) requesting a resource, and
(c) deadlock.

Parallelism for the Many-Core Era ◾ 81

This management can be handled comprehensively by a deadlock detection sys-
tem. Therefore, such a system must provide two basic functions:

	 •	 An optimal algorithm to reduce overheads created at runtime that checks the
system state to determine if a deadlock has occurred (for instance, by forming
a resource graph). If the resource graph- based detection method is used in this
case, existing algorithms in graph theory can be exploited to find cycles.

	 •	 An algorithm for deadlock recovery.

In this section, we examine how to find a cycle in a graph dynamically and then
briefly describe deadlock recovery strategies. Figure 4.28 illustrates an undirected
graph and a directed graph (digraph). A graph is a pair of G = (V, E)consisting
of a V set of vertices and an E set of edges. The sets of vertices and edges of G1
and G2 graphs are shown in Figure 4.28. As seen, for the G2 digraph, a pair (U,
v) reparents the presence of an edge exiting from vertex U and entering vertex V.

a

b c

d

(1)
G1=(V1, E1)
V1={a, b, c, d}
E1={(a, b), (a, c), (a, d), (b, a), (b, c), (b, d),

(c, a), (c, b), (c, d), (d, a), (d, b), (d, c)}

a

b

c

d

b c d

a c d

a b d

a b c

The adjacency list of
vertex a.

d
b

a

c

(2)
G2=(V2, E2)
V2={a, b, c, d}
E2={(a, b), (b, c), (c, a), (c, d), (d, b), (b, d)}

a

b

c

d

b

c

a d

b

The adjacency list of
vertex c.

Cycles={acda, abda, abdca, abca, bdcb, bdacb, cdabc}

Cycles={abca, dbcd}

Figure 4.28 Two graphs containing cycles along with their adjacency lists: (1) an undirected
graph and (2) a directed graph.

82 ◾ Implementing Parallel and Distributed Systems

A cycle is referred to as a closed path in a graph. If repeated edges are allowed,
this cycle is usually known as a closed walk. If the path is a simple path along with no
repeated vertices or edges except the starting and ending vertices, this path is called
a simple cycle, circuit, circle, or polygon. A cycle in a digraph is called a directed
cycle. In this example, G1 and G2 have seven and two cycles, respectively. In order to
find an algorithmic approach to identifying cycles, we must be able to traverse them
deeply and completely. One of the algorithms that helps to find cycles is the depth-
first search algorithm (DFS). In this algorithm, a graph must be represented as an
adjacency list. This dynamic list (like a link list) stores the vertices in that colours are
used to keep track of search progress in each vertex. All vertices start with white and
later probably become grey and then black. A vertex that is discovered for the first
time during a visit gets a non- white colour; hence, the grey and black vertices have
already been discovered. Figure 4.29 show a typical DFS algorithm for finding cycles
in directed and undirected graphs. This algorithm applies to the definitions shown
in the graphs in Figure 4.28.

In this algorithm, the outward edges of the last discovered edge v, which still
has its leaves, unexplored edges, are examined. When all edges of v are explored,
the search process is repeated to examine the edges leaving the vertex that was
discovered from v. This process continues until all vertices that are accessible from
the main source vertex are discovered. If undiscovered vertices remain, then one of
them is selected as a new source and the search is repeated from that source. All this
process is repeated until all vertices are discovered. In the DFS- VISIT function, a
recursive call is used to traverse all the outward paths from a vertex u. In line 3 of the
DFS- VISIT pseudocode, the expression Adj{u} means the adjacency list of the ver-
tex u. The time complexity of this DFS algorithm is equal to O(|V|+|E|) in which
the absolute notation is indicative of number. It can be proved that in undirected and
directed graphs respectively, the existence of forward/cross edge and back edge is
a necessary and sufficient condition for the presence of a cycle in the G graph. In
lines 4 and 6 of the DFS- VISIT function, these two conditions are shown to find the
first edge with black and grey colours. In the following, the implementation of this
very important algorithm is presented to find deadlocks in the C++ language, the full
code of this example is available in the “/Parvicursor/Parvicursor/Samples/
GraphSample” path of the companion resources of this book.

1: DFS-VISIT(u, GraphType)
2: color{u} := GRAY //White vertex u has just been

discovered.

3: for each v in Adj{u} //Explore edge(u, v).

4: do if GraphType == Undirected AND color{v} == BLACK
5: then CycleDetected := TRUE
6: if GraphType == Directed AND color{v} == GRAY
7: then CycleDetected := TRUE
8: if color{v} == WHITE
9: then DFS-VISIT(v)

10: color{u} := BLACK /*Blacken u, it is finished.*/

1: DFS(G, GraphType)
2: for each vertex u in V{G}
3: do color{u} := WHITE
4: CycleDetected := FALSE
5: for each vertex u in V{G}
6: do if color{u} == WHITE
7: then DFS-VISIT(u, GraphType)

Figure 4.29 DFS algorithm to find cycles in directed and undirected graphs.

Parallelism for the Many-Core Era ◾ 83

It is necessary to make a note on the understandability of the programming
examples in this book. The reader is supposed to have adequate and previous
acquaintance with the C++ language, and the Parvicrusor.NET Framework and its
programming environment, which are presented in Chapter 8 and in Section 4.6 at
the end of this chapter.

Figure 4.30 shows the class implementation for the two vertex and graph data
structures in the C++ programming language. Each vertex has its own adjacency
list (as a dynamic array list used from the Parvicursor.NET Framework’s classes)
and colour. The explanation of all fields and methods come directly in the code.
The graph class has an array list to store the vertices associated with the graph.
The implementation of DFS() and DFS_visit() methods is shown in Figure 4.31,
which is related to the algorithm implementation of Figure 4.29 to find cycles in
undirected and directed graphs.

Let’s take a look at how to benefit from the class above and its methods for find-
ing cycles in G1 and G2 graphs as shown in Figure 4.28. The implementation of this
example inside two main() functions is presented in Figure 4.32. For instance, in
the directed graph case, after instantiating four vertices a, b, c and d using the Add_
AdjacentVertex() method, we add the vertices vi, which has a common edge
with a vertex u, to the linked list of the vertex u. As an example, lines 12 through

1: class Vertex : public Object
2: {
3: /*---------------------fields----------------*/

4: private: ArrayList *adjacency_list; // The adjacency list of the current vertex.

5: private: VertexColor color; // The colour of the current vertex that represents the recently explored status of

this vertex.

6: /*---------------------methods----------------*/

7: public: Vertex();
8: public: ~Vertex();
9: public: void set_Color(VertexColor color); // Set the vertex color.

10:
11:
12:
13:
14:

public: VertexColor get_Color(); // Get the vertex colour.

public: void Add_AdjacentVertex(Vertex *vertex); // Add a vertex instance to the current vertex.

public: void Remove_AdjacentVertex(Vertex *vertex); // Remove a vertex instance to current vertex.

public: Int32 get_AdjacencyList_Count(); // Get the number of available slots in the adjacency_list.

public: Vertex *get_AdjacentVertexAt(Int32 index); // Get an adjacent vertex at the specified index.

15: };

1: class Graph : public Object
2: {
3: /*---------------------fields----------------*/

4: private: ArrayList *vertices; // The vertices of the graph.

5: private: bool has_cycle;
6: private: GraphType type; // The type of the graph instance.

7: /*---------------------methods----------------*/

8: public: Graph(GraphType type); // Graph constructor.

9: public: ~Graph();// Graph destructor.

10:
11:
12:
13:
14:

public: void Add_Vertex(Vertex *vertex); // Add a vertex to the graph.

public: void Remove_Vertex(Vertex *vertex); // Remove a vertex from the graph.

public: void DFS(); // Do the depth-first search algorithm.

private: void DFS_visit(Vertex *u); // Perform the recursive traversal of the graph from the vertex u.

public: bool has_Cycle(); // Get whether the graph contains at least one cycle.

15: };

Figure 4.30 The Vertex and Graph C++ classes.

84 ◾ Implementing Parallel and Distributed Systems

25 add three vertices a, d and c to the adjacency list of the vertex b. In line 30, the
DFS() method must be called at first from the graph object to determine if the graph
has a cycle after traversing it. In line 37, those objects that had been instantiated are
freed by using the new operator.

Once the existence of a deadlock is attained based on the theory outlined above,
procedures must be provided to restore the system to its state before the dead-
lock. One of the easiest ways to come up with an approach to deadlock detection
due to improper programming of locks is to report it to the programmer as saving
a log which contains the topology of graph G, for code modification and process
termination.

Another approach is to use checkpoint and rollback mechanisms. Checkpointing
a thread means that its state is periodically saved in physical memory or on hard

1: void Graph::DFS()
2: {
3: if(this->vertices != null)
4: {
5: this->has_cycle = false;
6: for(Int32 i = 0 ; i < this->vertices->get_Count() ; i++)
7: {
8: Vertex *u = (Vertex *)this->vertices->get_Value(i);
9: u->set_Color(WHITE);

10: }
11: for(Int32 i = 0 ; i < this->vertices->get_Count() ; i++)
12: {
13: Vertex *u = (Vertex *)this->vertices->get_Value(i);
14: if(u->get_Color() == WHITE)
15: this->DFS_visit(u);
16: }
17: }
18: }

1: void Graph::DFS_visit(Vertex *u)
2: {
3: u->set_Color(GRAY);
4: for(Int32 i = 0 ; i < u->get_AdjacencyList_Count() ; i++)
5: {
6: Vertex *v = u->get_AdjacentVertexAt(i);
7:
8: if(this->type == Undirected && v->get_Color() == BLACK) // for undirected graph

9: this->has_cycle = true;
10: if(this->type == Directed && v->get_Color() == GRAY) // for directed graph (digraph)

11: this->has_cycle = true;
12: if(v->get_Color() == WHITE)
13: DFS_visit(v);
14: }
15: u->set_Color(BLACK);
16: }

Figure 4.31 Implementation of DFS() and DFS_visit() methods.

Parallelism for the Many-Core Era ◾ 85

disc. As mentioned in this chapter, the state of a multi- threaded program is divided
into a private state (such as stack pointer, registers, and program counter) and a
shared state (anything common to all threads in a process). Therefore, a checkpoint
mechanism must store and retrieve both shared and private states. There are three
forms of checkpointing: kernel level (where modifications to the kernel threads are
carried out), userspace level (where no kernel mode modification is required), and
the third type of application level that requires the programmers to make modifi-
cations to their code. In Chapter 9, whilst describing the xThread component of
Parvicursor infrastructure, we will refer to a very flexible sample of this level in a dis-
tributed environment like Grid). When a deadlock is detected, it is easy to determine
which resources are needed based on resource graph information. In the rollback

1: int main(int argc, char* argv[])
2: { // for the directed graph G2.

3: Vertex *a = new Vertex();
4: Vertex *b = new Vertex();
5: Vertex *c = new Vertex();
6: Vertex *d = new Vertex();
7:
8: a->Add_AdjacentVertex(b);
9:

10: b->Add_AdjacentVertex(c);
11:
12: c->Add_AdjacentVertex(a);
13: c->Add_AdjacentVertex(d);
14:
15: d->Add_AdjacentVertex(b);
16:
17: Graph *graph = new Graph(Directed);
18: graph->Add_Vertex(a);
19: graph->Add_Vertex(b);
20: graph->Add_Vertex(c);
21: graph->Add_Vertex(d);
22:
23: graph->DFS();
24:
25: if(graph->has_Cycle())
26: cout << "Cycle detected." << endl;
27: else
28: cout << "No cycle detected." << endl;
29:
30: delete a; delete b; delete c; delete d;

delete graph;
31:
32: return 0;
33: }

1: int main(int argc, char* argv[])
2: { // for the undirected graph G1.

3: Vertex *a = new Vertex();
4: Vertex *b = new Vertex();
5: Vertex *c = new Vertex();
6: Vertex *d = new Vertex();
7:
8: a->Add_AdjacentVertex(b);
9: a->Add_AdjacentVertex(c);

10: a->Add_AdjacentVertex(d);
11:
12: b->Add_AdjacentVertex(a);
13: b->Add_AdjacentVertex(d);
14: b->Add_AdjacentVertex(c);
15:
16: c->Add_AdjacentVertex(a);
17: c->Add_AdjacentVertex(b);
18: c->Add_AdjacentVertex(d);
19:
20: d->Add_AdjacentVertex(a);
21: d->Add_AdjacentVertex(b);
22: d->Add_AdjacentVertex(c);
23:
24: Graph *graph = new Graph(Undirected);
25: graph->Add_Vertex(a);
26: graph->Add_Vertex(b);
27: graph->Add_Vertex(c);
28: graph->Add_Vertex(d);
29:
30: graph->DFS();
31:
32: if(graph->has_Cycle())
33: cout << "Cycle detected." << endl;
34: else
35: cout << "No cycle detected." << endl;
36:
37: delete a; delete b; delete c; delete d;

delete graph;
38:
39: return 0;
40: }

Figure 4.32 The way to use two vertex and graph classes to find cycles in G1 and G2 graphs.

86 ◾ Implementing Parallel and Distributed Systems

operation, a thread or process that owns a required resource is rolled back to a point
in time before it acquired that resource by starting one of its previous checkpoints.
If the restarted process tries to retake the resource, it will have to wait until the
resource becomes available.

4.5.2 Race Condition

In concurrent systems and multi- threaded programs, time- dependent failures
known as race conditions can occur if access to shared memory is not properly
synchronised. Race conditions take place when different processes access shared
data without explicit synchronisation. Because these races can cause the program
to behave unexpectedly from a programmer’s point of view, finding them is an
important aspect of debugging tools. Two different types of race can occur. General
races lead to nondeterministic execution and are failures in a program intended to
run deterministically. A general race exists in the execution of a P program if two
events a and b have data conflicts and their access order is not guaranteed by the
synchronisation of that execution. Data races cause the atomic execution of criti-
cal sections and are failures in nondeterministic programs in that critical sections
access and update shared data. General races are much less common to happen
but much harder to find. Race circumstances are usually symptoms that result from
careless code design such as bad logic or bad coding style. The challenging nature
of general race conditions and deadlocks have encouraged many researchers to
study an alternative approach called transactional memory, which is examined at
the end of Chapter 5.

Let us now consider an example of when a general race condition occurs and how
it can be resolved. Figure 4.33 shows this example. A function is used that can be
executed by threads simultaneously. An obj variable is removed from the src array
list and added to the dest array list. The left function has no data race because it
locks two shared variables src and dest by two critical sections using two different

1: // A general and data race-free method.

2: void thread_fucnction(ArrayList *src, ArrayList
*dest, Object *obj) {

3: // The expensive lock M.

4: Lock(M);
5: {
6: // Remove obj from src.

7: src->Remove(obj);
8:
9: /* Here is the secure code section to execute. */

10:
11: // Add obj to dest.

12: dest->Add(obj);
13: }
14: Unlock(M);
15: }

1: // A data-race-free but general-race non-free method.

2: void thread_fucnction(ArrayList *src, ArrayList
*dest, Object *obj) {

3: // Remove obj from src.

4: Lock(M);
5: src->Remove(obj);
6: Unlock(M);
7:
8: /* Here is a transitory state which may cause a

general race condition */

9:
10: // Add obj to dest.

11: Lock(M);
12: dest->Add(obj);
13: Unlock(M);
14: }

Figure 4.33 An example of a method in which a general race condition might occur. The left-
hand-side function has a general race condition. The function on the right lacks any general race
because of using a single lock for two separate operations on two shared variables.

Parallelism for the Many-Core Era ◾ 87

locks. Consequently, to eliminate a data race, synchronisation mechanisms like locks
must be employed.

If there is some code in line 8 that is a transition between the two critical sec-
tions, a general race condition may take place. If another thread exists working on
the obj variable, the thread may lose the obj object because the object is homeless
at that critical time. For example, if the address of the obj variable is changed by the
first thread in line 8 of the right code whilst the second thread is reading from this
variable, the first thread will find a wrong value of obj. In the worst case, if the first
thread changes the value of obj to null, the second thread, when accessing the vari-
able obj, causes a segmentation fault, resulting in the termination of the process. To
solve this problem, we have to put the whole body of the function inside a lock, as
shown in the code on the right. However, this lock will be very expensive because,
as we know, critical sections must not take much in terms of execution time, and if
an operation is done in line 9 of the code on the right that consumes a lot of time,
then the M lock will become too expensive.

4.5.3 Priority Inversion

This phenomenon occurs when a lock or a critical section held by a lower priority
thread delays the execution of a higher priority thread whilst both are contending for
the same resource. We consider an example of how priority inversion can severely
impair system performance. Figure 4.34 shows time transition diagram for this
example. Suppose a system has three threads: a high- priority thread (HPT thread),
a medium- priority thread (MPT thread), and a low- priority thread (LPT thread). The
HPT and MPT threads are in sleep or blocked in the time before t1. At time t1, the
LPT thread executes and enters a critical section. At time t2, the MPT thread starts
its execution and pre- empts the MPT thread. Therefore, the LPT thread continues to
own the critical section. At time t3, the HPT thread starts its execution and pre- empts
the MPT thread. The HPT thread tries to enter the critical section that is in posses-
sion of the LPT thread, but because it is owned by another thread, the MPT thread
is blocked and waits for that critical section. At time t4, the MPT thread starts to
execute because it has a higher priority than the LPT thread and the HPT thread is
not also running. The LPT thread never leaves the critical section for which the HPT
thread is waiting because the MPT thread continues executing.

Therefore, the highest- priority thread, the HPT thread, is blocked in the time
interval t4,�� � and waits forever for the lower- priority thread to run. In t4,�� �, a nega-
tive phenomenon known as priority inversion occurs.

Contrary to the unfavourable state of deadlocks, no complete proof has yet been
given to fully predict priority inversion occurrences. Since this phenomenon usually
happens in real- time operating systems (RTOSs), methods that prevent priority inver-
sion mostly are implemented and used in such systems. An RTOS is used to service
the requests of real- time applications such as embedded systems. One of the key
features of an RTOS is its level of consistency with the amount of time it takes to
accept and complete a task. Therefore, one of the vital issues in designing RTOSs is
the use of appropriate process scheduling algorithms that are able to prevent prior-
ity inversion.

88 ◾ Implementing Parallel and Distributed Systems

One of the most common ways to prevent this phenomenon in RTOSs is priority
inheritance. Here, the problem is resolved by dynamically modifying the priorities of
threads that cause a blocking state. In particular, when the T1 thread is blocked on a
shared resource, it conveys its priority to the T2 thread that is holding the resource.
In this method, T2 will execute its critical section with the priority of the T1 thread.
Overall, T2 inherits the highest priority amongst the threads that block it. Additionally,
priority inheritance is transferrable, so if thread T3 blocks thread T2, which in turn
blocks T1, then T3 inherits the priority of T1 and T2. There are other methods, such as
the priority ceiling, that are beyond the scope of this book.

4.5.4 Starvation

If a thread is not granted CPU time because other threads gain this time, this state
is called starvation. That thread is left to starve to death because other threads are
instead allowed to use the CPU time. The solution to starvation is called fairness. Most
operating system schedulers have the concept of thread priority. High- priority threads
always swallow the whole CPU time from low- priority threads. To solve this issue in
a simple manner, the priority can be assumed to be equal by default. Starvation can
also occur by synchronised methods or functions based on hardware synchronisation
primitives. Assume an object provides a synchronised primitive method that often

threads

time

LPT

MPT

HPT

t1 t3 t4t2

LPT runs and
enters a critical
section

priority inversion occurred

M
PT runs and

preem
pts LPT

H
PT runs,

preem
pts M

PT,
and tries to enter
the critical section

M
PT runs and

preem
pts H

PT

Figure 4.34 Time transient diagram for three threads: high-priority thread (HPT), middle-
priority thread (MPT), and low-priority thread (LPT). The priority inversion phenomenon has
occurred in the time interval t4,�� �.

Parallelism for the Many-Core Era ◾ 89

takes a long time to return from its call point. If a thread invokes this method
repeatedly, other threads that also need to have synchronised repeated access to the
object are often blocked and a starvation state is created for them as a result. To solve
this problem, rather than placing the entire body of the method inside a hardware
synchronisation primitive block, we must use ready- made operating system locks
through system calls or APIs so that the responsibility to schedule and synchronise
threads is allotted to the OS process scheduler. In the most general case, starvation
can be avoided by using a first- come, first- served resource allocation policy.

4.5.5 Livelock

Assume a lock or a routine to acquire a critical section is built solely based on hard-
ware primitives without the help of an operating system scheduler. Consider the
example in Figure 4.25. Suppose the two locks M and N are of the type of a spin lock
shown in Figure 4.24. If the process P is executed first and acquires the lock M and
then the process Q is executed and acquires the lock N, none of the processes pro-
gresses further and neither is blocked. They use their processor quantum over and
over again without any progress and being blocked. In this case, there is no deadlock
because no process is blocked, such a negative incident is called a livelock.

4.5.6 Convoying

A lock convoy occurs when multiple threads with equal priority repeatedly compete
for a single lock. Unlike deadlocks and livelocks, threads make progress in very close
tandem, but each time a thread attempts to acquire a lock and fails, it relinquishes the
rest of its scheduling quantum and exerts a context switch. Frequent context switch-
ing overheads and underutilisation of quanta scheduling impair overall efficiency.
This destructive situation does not exist in non- blocking systems such as lock- free
algorithms, which are discussed in Chapter 5.

4.6 Installation Steps of the Integrated Development
Environment (IDE) Code::Blocks on Unix-Like
Operating Systems Such as Linux

Code::Blocks is a free, open- source and cross- platform IDE environment that allows
programmers to compile C or C++ codes based on a wide range of compilers. You can
always get the latest version of this environment at http://www.codeblocks.org for
Windows, Linux and Unix operating systems. Because the codes in this book are
based on Code::Blocks in Linux and Microsoft Visual Studio in Windows, Linux users
can take advantage of Code::Blocks to develop, modify, and deploy their codes.
Figure 4.35 illustrates a shell file that, according to its description, you can easily
compile and run this environment from source code on a Linux operating system.
Note that in order for Code::Blocks to work properly, all installation tasks must be
taken step by step and carefully. Figure 4.36 shows a screenshot of the execution of
this IDE in Linux.

http://www.codeblocks.org

90 ◾ Implementing Parallel and Distributed Systems

(Continued)

Figure 4.35 A shell file with full instructions for installing a cross-platform integrated
development environment (IDE) known as Code::Blocks in Unix-like operating systems such as
Linux.

#!/bin/bash

#All rights reserved to Alireza Poshtkohi. (C) 2001-2023.
#Contact: arp@poshtkohi.info

As a first step, create this directory for our installation process.
mkdir ~/devel

Because codeblocks makes use of wxWidgets for its graphical user
#interface GUI), we first must also install it. Download it from
wxWidgets website at http://www.wxwidgets.org/.
Copy the wxWidgets source code into ~/devel.
cp wxWidgets-2.8.12.tar.gz ~/devel/wxWidgets-2.8.12.tar.gz

Next, download codeblocks source codes at http://www.codeblocks.org.
Copy the codeblocks source code into ~/devel.
cp codeblocks-10.05-src.tar.bz2 ~/devel/codeblocks-10.05-src.tar.bz2

Change your current directory to ~/devel.
cd ~/devel

Now we unzip the copied files at directory ~/devel contained above.
tar zxf wxWidgets-2.8.12.tar.gz
tar jxf codeblocks-10.05-src.tar.bz2

Here, we build the wxWidgets.
Change directory to wxWidgets source.
cd wxWidgets-2.8.12
Here we will create a separate build directory instead of building from

the src
directory, so that we can easily rebuild with different options (unicode

/ ansi,
monolithic / many libs, etc). The documentation says the default is for

gtk2 to
use unicode and wx > 2.5 to build as a monolithic library. This doesn't

appear
#to be the case, so these flags are passed to configure
Bulid wxWidgets libraries with the following commands.
mkdir build_gtk2_shared_monolithic_unicode
cd build_gtk2_shared_monolithic_unicode
../configure --prefix=/opt/wx/2.8 --enable-xrc --enable-monolithic --

enable-unicode
make
make install

Add /opt/wx/2.8/bin to the PATH to ~/.bashrc (if this file does not
exist create it

with a text editor or vi command in the shell)
Add the following line to the ~/.bashrc file
export PATH=/usr/bin:/opt/wx/2.8/bin:$PATH

Add /opt/wx/2.8/lib to /etc/ld.so.conf (nano /etc/ld.so.conf) then run:
ldconfig
source /etc/profile

That's it. Now the linker will look at /opt/wx/2.8/lib for wx libraries
and you will

Parallelism for the Many-Core Era ◾ 91

have a monolithic shared library unicode build.
To check that things are working, type:
wx-config --prefix
which should give you /opt/wx/2.8
wx-config --libs
which should have at least -L/opt/wx/2.8/lib -lwx_gtk2-2.8 but can

contain other flags as well.
which wx-config

Finally, we build the codeblocks.
cd ~/devel/codeblocks-10.05-release
./configure
make
make install

Add the following line to the file /etc/ld.so.conf:
/usr/local/lib
and then run:
ldconfig

Figure 4.35 (Continued) A shell file with full instructions for installing a cross-platform
integrated development environment (IDE) known as Code::Blocks in Unix-like operating
systems such as Linux.

Figure 4.36 A screenshot of the Code::Blocks environment within a typical Parvicursor platform
project in the OpenSUSE Linux operating system.

92 ◾ Implementing Parallel and Distributed Systems

References
 [1] A. Baumann, P. Barham, P.E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schupbach, and A.

Singhania, The multikernel: A new OS architecture for scalable multicore systems, In Proceedings of
the 22nd ACM Symposium on OS Principles, Big Sky, MT, USA, October 2009.

 [2] D. Wentzlaff, and A. Agarwal, Factored operating systems (FOS): The case for a scalable operating sys-
tem for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85, 2009.

 [3] E.B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt, Helios: Heterogeneous
Multiprocessing with Satellite Kernels, In ACM, SOSP‟09, Big Sky, Montana, USA, October 11–14,
2009.

 [4] O. Mao, F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, Corey:
An operating system for many cores, In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation OSDI ‘08, San Diego, California, 2008.

 [5] J.A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf, S. Hofmeyr, K. Asanovic, and J.
Kubiatowicz, Resource management in the tessellation manycore OS, In Proceedings of 2nd USENIX
Workshop on Hot Topics in Parallelism (HotPar’10), Berkeley, CA, USA, 2010.

93DOI: 10.1201/9781003379041-5

Chapter 5

Parallelisation for the Many-
Core Era: A Programming
Perspective

The way the processor industry is going, is to add more and more cores, but
nobody knows how to program those things. I mean, two, yeah; four, not really;
eight, forget it.

Steve Jobs

5.1 Introduction
This chapter focuses on software aspects of parallel programming for many-core sys-
tems, as discussed in Chapter 4. Several examples are also given such as multithreaded
programming, concurrent systems, parallel algorithms and lock-free data structures.

5.2 Building Cross-Platform Concurrent Systems Utilising
Multi-Threaded Programming on Top of the Parvicursor.NET
Framework for Distributed Systems

5.2.1 Introduction

In the previous chapters, the theory of concurrent systems was examined. Abstractions
such as thread, synchronisation, and concurrency were frequently discussed without a
deep dive at software and code levels. In this and the next sections, we will teach the
reader how to design and program concurrent systems. A rich set of examples given
will help the reader to have thorough experience in designing concurrent systems and
have a better understanding of the principles of concurrency and parallel processing for

http://dx.doi.org/10.1201/9781003379041-5

94 ◾ Implementing Parallel and Distributed Systems

use in distributed systems. As mentioned earlier, this chapter assumes that the reader
is relatively familiar with programming based on the Parvicursor.NET Framework; oth-
erwise, please refer to Chapter 8 before continuing to study this chapter.

In this section, we first introduce the details of classes in the System::Threading
namespace. This namespace provides several classes and utilities for multi-threaded
programming. The implemented classes are responsible for synchronising thread
activity and accessing data (such as mutex, barriers, and conditional variables). This
namespace also includes a ThreadPool class that allows using a pool of threads
and a Timer class that executes a callback on a given thread. All of these classes
are implemented on a cross-platform basis and allow to run target applications on
the most recent operating systems. These native C++ classes, in the background, are
based on the POSIX Thread standard in Unix/Linux operating systems and Win32
APIs on Windows operating systems. The implementation of these classes is tightly
close to the ECMA.NET standards as much as possible. For example, we designed
the Resume() and Suspend() methods of the Threading class, which unlike the
Windows APIs are not directly presented in the POSIX-compliant Thread standard.

The interested reader can refer to the “/Parvicursor/Parvicursor/System.
Threading” path from the companion resources of the book to look at the full
implementation of these classes. Numerous examples given are designed in such
a way that the reader can easily generalise them to distributed systems. For exam-
ple, this section will present a concurrent producer/consumer model, which we will
generalise in Chapter 6 to utilise an asynchronous file copy concept. In addition,
based on the content presented in Chapter 7, we will take benefit of this generalised
example to design a concurrent architecture to support high-speed InfiniBand-based
network transfers for xDFS file transfer framework in Chapter 10.

5.2.2 Thread Creation and Management in the Parvicursor.NET
Framework

Creating and managing threads in the Parvicursor.NET Framework is done directly
through the Thread class. Threads take pointers to arbitrary functions and their cor-
responding input arguments and execute them. Table 5.1 describes the methods and
the constructor of this class.

Given the description of the Thread class, as the first sample, we provide an
example in which the main() function of the program spawns two threads and
repeatedly suspends and resumes them. Each thread also prints a message to the
output at the same time. Figure 5.1 shows our first example in this section.

The code for this example is located in the “/Parvicursor/Parvicursor/
Samples/Threading” path. Line 2 provides the program with the System::
Threading namespace. The Display() method of the TestThread class repeat-
edly prints threadID of the thread which is executing it in an infinite loop to
the output. In line 13, the current thread execution is suspended for 1 millisecond,
because otherwise the CPU utilisation will eventually reach 100% pointlessly. Since
a native C-type function pointer must be specified in the Thread class constructor,
we cannot give the address of the C++ non-static Display() member function as the
start argument. The static function Wrapper_To_Call_Display() (treated by
the compiler as a native C language function) solves this problem. The pt2Object

Parallelisation for the Many-Core Era ◾ 95

pointer in line 17 as the input argument contains the address of the TestThread
class’s instance whose Display() method must be called, and in line 19 is con-
verted to the type of the TestThread class. In line 21, the Display() method is
invoked indirectly through the myself object.

In the main() function, threads are initialised. The test1 and test2 objects
are instantiated in lines 27 and 28, and in lines 29 and 30 their Wrapper_To_Call_
Display() method’s addresses are passed to the Thread class constructor along
with the addresses of these objects. In lines 31 through 34, these two threads are
executed, and their state is set as detached. This operation causes the main() func-
tion not to be blocked, and the flow of the main()function reaches the while loop

Table 5.1 Methods and Constructor of the Thread Class in Parvicursor.NET Framework

Name Description

Thread(void *(*start)
(void *), void *arg)

The Thread class constructor initialises an instance of this
class. The start variable specifies a function pointer that will
be executed by this thread. The arg pointer fills the input
arguments of the start pointer function.

void Start() Causes the operating system to change the state of the current
thread instance to a running state.

bool get_IsAlive() Returns a value indicative of the current thread execution status.

void Abort() Raises an abnormal thread termination request in the thread on
which it is invoked, and the termination process of that thread
begins. This is a dangerous method because the clean-up
handler is not performed on the thread. If the target thread
locks a mutex, that thread ends with the locked mutex. Because
a mutex cannot be unlocked on another thread, the application
must be fully prepared to release the mutex. This means that
any other threads that might be waiting for the released mutex
will continue to wait for the mutex indefinitely unless they are
also terminated by calling the Abort() method. It is strongly
recommended not to use this method in applications as much
as possible.

void Join() Blocks the caller (parent) thread until a running thread (child)
terminates.

void SetDetached() Sets the thread mode to detached. If you already know that
a thread never needs to join another thread, call this method
after invoking the Start() method right away. In fact, by
invoking this method, the caller thread will never wait for the
execution of the thread to end.

void Resume() Resumes a suspended thread.

void Suspend() Either suspends the thread or, if the thread has already been
suspended, it has no effect.

static void
Sleep(Int32 ms)

This static method suspends the current thread for a specified
time in milliseconds.

96 ◾ Implementing Parallel and Distributed Systems

Figure 5.1 The way to create threads in the Parvicursor.NET Framework and to use the Thread
class methods. In this example, the execution of two threads is repeatedly suspended and
resumed.

1: using namespace System;
2: using namespace System::Threading;
3:
4: class TestThread : public Object {
5: private: Int32 threadID;
6: public: TestThread(Int32 threadID) {
7: this->threadID = threadID;
8: }
9: public: void Display(const char *message) {

10: Int32 i = 0;
11: while(true) {
12: printf("I'm thread %d. Message: %s. i: %d\n", threadID, message, i);
13: Thread::Sleep(1); // Suspends the current thread for 1ms.

14: i++;
15: }
16: }
17: public: static void *Wrapper_To_Call_Display(void *pt2Object) {
18: // explicitly cast to a pointer to TestThread

19: TestThread *mySelf = (TestThread *)pt2Object;
20: // call member

21: mySelf->Display("Hello World");
22: return pt2Object;
23: }
24: };
25:
26: int main(int argc, char* argv[]) {
27: TestThread test1 = TestThread(0);
28: TestThread test2 = TestThread(1);
29: Thread t1 = Thread(test1.Wrapper_To_Call_Display, (void *)&test1);
30: Thread t2 = Thread(test2.Wrapper_To_Call_Display, (void *)&test2);
31: t1.Start();
32: t2.Start();
33: t1.SetDetached();
34: t2.SetDetached();
35: Thread::Sleep(1);
36: while(true) {
37: t1.Suspend();
38: t2.Resume();
39: Thread::Sleep(2000); // Suspends the main() thread for 2 seconds.

40: t1.Resume();
41: t2.Suspend();
42: Thread::Sleep(2000);
43: }
44: return 0;
45: }

Parallelisation for the Many-Core Era ◾ 97

in line 36 (this would never have happened if the two threads had been joined). In
this loop, the first thread is suspended, and the second thread is resumed, and after
a two-second delay in line 39 (by calling the Sleep() method) the first thread is
resumed, and the second thread is suspended. According to this scenario, only one
thread displays its message on the output screen every two seconds. It is impor-
tant to note that in this simple example the Suspend() and Resume() methods
are repeatedly used, despite the correct operation of the example, but should not
be used for thread synchronisation purposes. Calling the Suspend() method on a
thread that holds a synchronisation object, such as a mutex, can lead to a deadlock if
the calling thread tries to acquire a synchronisation object possessed by a suspended
thread. These two methods are commonly used in debuggers. In addition, as noted
in Chapter 9, we will benefit from the unique feature of these two methods for imple-
menting a new checkpoint and rollback (restore) mechanism in distributed environ-
ments such as grid and cloud for Parvicursor infrastructure. In such an application,
to activate this mechanism for simplification in favour of the developers, it will be
assumed that the developed applications consist of fine-grained threads that do not
hold any locks (this assumption is not mandatory and is only for simplification).
However, to avoid such a deadlock state, a thread within an application should signal
another thread to suspend itself. The target thread should be designed to monitor
and respond appropriately to this signal. For this purpose, conditional variables that
are discussed later in this chapter can be used.

5.2.3 Implementing the System::Threading::Timer Class of the
ECMA Standard Based on the Thread Class in the Parvicursor.
NET Framework

Timers often play an important role in both client applications and server-based
components. A timer invokes a specific code regularly. It executes a method every
few seconds or minutes. This feature is especially powerful for monitoring the health
of an important application along with diagnostics. Another example of using this
class is to report the throughput of file and data transfers on the client side of the
xDFS framework in Chapter 10. In this use case, a timer calculates the amount of
transmitted data during a one-second interval in order to find the resultant throughput
in terms of megabits per second.

Timers are usually made up of two objects, a TimerCallback and a Timer.
TimerCallback defines an action that executes at a specified interval, whilst Timer
object performs a counting mechanism. Figure 5.2 shows a typical prototype for
defining the TimerCallback and Timer objects and implementing a number of
the Timer class members. Line 2 defines the Callback function pointer using
the typedef keyword. The TimerCallback class stores a variable of the type of
Callback. The Timer class constructor in line 33 takes a TimerCallback vari-
able as an argument. In this constructor, the state variable represents the object
that will be passed to the TimerCallback callback class when getting invoked.
The dueTime variable indicates the amount of time delay after which a callback is
called. The period variable specifies the time interval between callback invocations
in milliseconds. Inside the timer class constructor, after assigning variables, a thread
of the Thread class is created for the worker variable, and after starting it, its state

98 ◾ Implementing Parallel and Distributed Systems

Figure 5.2 The prototype for defining TimerCallback and Timer objects and implementing
several members of the Timer class.

1: // The Callback definition.

2: typedef Object *(*Callback)(Object *);
3:
4: class TimerCallback : public Object {
5: private: Callback callback;
6: public: TimerCallback(Callback &callback);
7: public: TimerCallback();
8: public: Callback &get_BaseCallback();
9: };

10:
11: class Timer : public Object {
12: // A TimerCallback delegate representing a method to be executed.

13: private: TimerCallback callback;
14: // An object containing information to be used by the callback method, or null.

15: private: Object *state;
16: // The amount of time to delay before callback is invoked, in milliseconds. Specify Timeout::Infinite to prevent

the timer from starting.

17: private: Int32 dueTime;
18: // The time interval between invocations of callback, in milliseconds. Specify Timeout::Infinite to disable

periodic signalling.

19: private: Int32 period;
20: private: Thread worker;
21: // Initialises a new instance of the Timer class, using a 32-bit signed integer to specify the time interval .

22: public: Timer(const TimerCallback &callback, Object *state, Int32 dueTime, Int32 period);
23: // Class destructor.

24: public: ~Timer();
25: // A static method that will be executed by the worker thread.

26: private: protected: static void *Wrapper_To_Call_Worker(void* timer);
27: // Changes the start time and the interval between method invocations for a timer,

28: public: bool Change(Int32 dueTime, Int32 period);
29: // Releases all resources used by the current instance of Timer.

30: public: void Dispose();
31: };
32:
33: Timer::Timer(const TimerCallback &callback, Object *state, Int32 dueTime, Int32 period) {
34: // ...

35: worker = Thread(Wrapper_To_Call_Worker, (void *)this);
36: worker.Start();
37: worker.SetDetached();
38: }
39:
40: void *Timer::Wrapper_To_Call_Worker(void *timer) {
41: // explicitly cast to a pointer to Timer

42: Timer *_timer = (Timer*) timer;
43: while(true) {
44: _timer->callback.get_BaseCallback()(_timer->state); // Executes the timer callback.

45: Thread::Sleep(_timer->period); // Suspends the Timer based on period.

46: }
47: return timer;
48: }

Parallelisation for the Many-Core Era ◾ 99

is changed to a detached type. This thread executes the static method Wrapper_
To_Call_Worker(), which itself repeatedly executes the callback of the passed
Timer object in an infinite loop. To realise the periodic execution mode in defining
functionality of the timer class, this method suspends the execution of the worker
thread after the execution of each callback equal to period by calling the Sleep()
method in line 45. For brevity’s sake, parts of this code have been removed from the
implementation shown in Figure 5.2. To take a closer look at the full implementation
of these classes, refer to “/Parvicursor/Parvicursor/System.Threading/
Timer” from the companion resources of the book.

Figure 5.3 shows a simple way to use the designed timer. In this example, a call-
back named test prints the string passed to the output. TimerCallback is pre-
pared in lines 11 and 12, and the timer object is instantiated in line 13. This timer
invokes a callback every second. The while loop allows the program to run forever.
The full code for this example can be found in the “/Parvicursor/Parvicursor/
Samples/Timer” path.

5.2.4 Synchronisation in the Parvicursor.NET Framework

Chapter 4 stated that when data is shared in a multi-threaded environment, a syn-
chronisation issue may arise. Furthermore, threads in a concurrent system are often
interdependent or interact with other threads to achieve a practical task. In this
section, we discuss how to program synchronisation techniques in the Parvicursor.
NET Framework. In the next section, examples are provided that teach how to use
C++ classes for this section. This section forms the basis for the following sections of

Figure 5.3 An example of using the Timer class.

1: static Int32 counter = 0; // Our counter.

2: // Our timer callback.

3: Object *test(Object *obj) {
4: printf("%s, %d\n", ((String *)obj)->get_BaseStream(), counter);
5: counter++;
6: return obj;
7: }
8:
9: int main(int argc, char *argv[]) {

10: String s = "Alireza Poshtkohi";
11: Callback callback = test;
12: TimerCallback timerDelegate(callback);
13: Timer timer(timerDelegate, &s, 0, 1000);
14: while(true)
15: Thread::Sleep(10); // Sleeps for 10ms.

16: return 0;
18: }

100 ◾ Implementing Parallel and Distributed Systems

this chapter. Before going into the main discussion, let us distinguish between two
different, but very related, classifications of synchronisation:

	 •	 Data Synchronisation: Shared resources, including memory, must be protected
so that threads using the same resource do not interfere with each other in
parallel. Such interferences can give rise to problems ranging from crashes to
data corruptions, and worse, to the production of random results (a program
may produce correct results once but not again). Using mutual exclusion, such
as a mutex in the Parvicursor.NET Framework, and lock-free methods given in
Section 5.3, these requirements are met.

	 •	 Control Synchronisation: Threads can depend on one another’s progress
through control flow and program state space. A thread often needs to
wait until another thread, or a set of threads, has reached a certain point in
the execution of the program. Control synchronisation in the Parvicursor.
NET Framework is performed by conditional variables and barriers. Also,
the Join() method of the Thread class is another provider of this type of
synchronisation.

Data synchronisation is necessarily performed through the Mutex class. Mutex is a
synchronisation primitive that grants exclusive access to shared resources to only
one thread at a time. If a thread acquires a mutex, the second thread that wants to get
that mutex is suspended until the first thread releases the mutex. Table 5.2 describes
the methods and the constructor of this class.

The most basic mechanism for supporting control synchronisation within the
Parvicursor.NET Framework is the conditional variable class. Consider this conun-
drum: How does a thread deal with a situation in which it is waiting for a con-
dition to become true. The thread could lock and unlock a mutex sequentially
and check a shared data structure for a certain value each time. But this method
is a waste of time and resources, and this form of busy polling is very inefficient.
The best way to cope with this is to call the Wait() method of the conditional
variable class. Conditional variables allow threads to be synchronised to a single
value from a shared resource. Typically speaking, conditional variables serve as a

Table 5.2 Methods and Constructor of the Mutex Class in the Parvicursor.NET Framework

Name Description

Mutex() The constructor of the Mutex class initialises a new
instance.

void Lock() Locks the mutex instance.

bool TryLock() This method does the same as the Lock() method,
except that if the mutex object is already locked, it returns
immediately.

void UnLock() Unlocks the mutex instance.

void Close() Releases all resources held by the mutex object.

Parallelisation for the Many-Core Era ◾ 101

notification system between threads. Table 5.3 describes the methods and construc-
tor of the ConditionVariable class. To use the constructor of this class when
being instantiated, we must pass an instance object instantiated from the Mutex class
to it. Understanding how the Wait() method works is crucial, as it is at the heart
of the conditional variable signalling system and is the most difficult part of multi-
threaded programming to comprehend. When using conditional variables, we must
always place part of the code they use inside the critical section of the mutex object.

Let’s consider a scenario in which a thread locks a mutex object to inspect a
linked list, and this list accidentally becomes empty. This particular thread can do
nothing because it has been designated to remove a node from the list whilst there
is no node. Whilst the mutex lock is still being held, our thread invokes the Wait()
method. Calling Wait() is somewhat complicated, so we follow this scenario step
by step to better understand it. The first thing that Wait()does is to simultaneously
unlock the mutex and wait for the conditional variable object (until Wait() wakes
up when it is signalled by another thread). Now that the mutex is unlocked, other
threads can access and modify the linked list, possibly to add items to it. At this
point, the Wait()call has not yet returned. Mutex unlocking occurs immediately,
but waiting on the conditional variable object is normally a blocking operation,
meaning that our thread will go to sleep, and no CPU cycle will be consumed when
the thread wakes up. This is exactly what we want to happen. The thread is asleep
and waits for a certain condition to become true, without doing any busy polling
that wastes CPU time. From our thread’s point of view, it is simply waiting for the
Wait() call to be returned. Now, let’s assume that another thread with an ID of 2
locks the mutex and adds an item to our linked list. Immediately after unlocking the
mutex, Thread 2 calls the Broadcast() method. With this operation, Thread 2 will
cause all threads waiting on the conditional variable object to wake up immediately.
This signifies that our first thread that is in the middle of a Wait() call will now
wake up.

Table 5.3 Methods and Constructor of the ConditionVariable Class in the
Parvicursor.NET Framework

Name Description

ConditionVariable(Mutex
*mutex)

The constructor of the ConditionVariable class initialises
a new instance of this class; to specify this constructor, we
must pass a pre-created mutex object to it.

void Wait() This method blocks the conditional variable on the current
instance.

void TimedWait(Long
seconds, Long
nanoseconds)

This method is the same as the Wait() method, except
that it blocks the conditional variable only on the current
instance based on the time specified.

void Signal() This method unblocks at least one of the threads that are
blocked on the current conditional variable instance.

void Broadcast() This method unblocks all recently blocked threads on the
current instance of the conditional variable.

102 ◾ Implementing Parallel and Distributed Systems

Now, let’s look at what happens to our first thread. After Thread 2 calls the
Broadcast() method, we may think that it will return the Wait() of Thread 1
immediately. But this does not take place; instead, Wait()will perform a final opera-
tion: it will lock the mutex object again. Once Wait() has the lock, it will then return
it, allowing Thread 1 to continue running. At this point, it can check the list for any
changes. The operation of conditional variables is very similar to the way an operat-
ing system serves I/O requests to programs. An I/O request from a user application
due to a system call may complete immediately. If this happens, the operating system
may delay the I/O service and serve another user until the I/O operation completes.
The operating system then resumes the I/O service.

The last synchronisation class we are willing to examine in this section is the
Barrier class of the Parvicursor.NET Framework. This synchronisation structure
allows many threads to meet at one point in time. In many applications and espe-
cially numerical applications, whilst part of the algorithm can be paralleled, the
other parts are inherently sequential. That algorithm can use barriers to synchronise
parallel and sequential segments. For example, we might generate a set of matrices
with a strictly linear computation and perform operations on those matrices that use
a parallel algorithm. We then use the results of these operations to generate another
set of matrices, operate in parallel on these matrices, and so on. The nature of paral-
lel algorithms for such computations requires very little synchronisation, which is
required during the computations. However, the synchronisation of all threads is
required to ensure that sequential computations occur before parallel computations
begin. The barrier forces all threads that are doing parallel computations to wait until
all the threads involved reach that barrier.

Table 5.4 shows the methods and constructor of the Barrier class. When instan-
tiating this class, we must pass the number of threads that are intended to take part
in the barrier-based synchronisation. In Figure 5.4, a Barrier object with a value of
3 causes the SignalAndWait() method to be blocked until that method is called
three times. This feature allows multiple threads to be held in step with each other as
they process a series of tasks. Note that the barrier object cannot be used again after
all threads have reached it, but, if necessary, the barrier object must be re-instantiated
for later uses.

Table 5.4 Methods and Constructor of the Barrier Class in the Parvicursor.NET Framework

Name Description

Barrier(Int32 count) The constructor of the Barrier class initialises a new
instance of this class; the count value specifies the number
of participating threads.

void SignalAndWait() Informs that one participant has reached the barrier object
and is also waiting for all other participants to reach the
barrier.

Parallelisation for the Many-Core Era ◾ 103

5.2.5 Two Concurrency Examples Relied on Synchronisation Classes
in the Parvicursor.NET Framework

In this section, we present two examples, a concurrent counter and a multiple
producer/consumer system, to prepare the reader for the development of concurrent
systems in later sections. These examples use the synchronisation classes described
in the previous section.

First, let’s design a concurrent counter in which multiple threads may change
the value of the counter simultaneously. We tend to have an observer thread always
aware of any change in the counter. Figure 5.5 shows part of the implementation
code for this concurrent counter. In this example, two threads are created in the
Run() method. The counter_thread thread increments the count value, and
the watcher_thread thread is used to asynchronously inform us of changing the
count variable by the first thread. Both threads are joined after starting, and this
program will always run. Consider the Counter_proc() method, in which the
count variable is incremented in line 20, and this is done in an infinite while loop.
Since the variable count is a shared data between threads, it is placed in a critical
section created by the mutex object between lines 19 through 22 of the code. In line
21, since the count value has been updated, we will notify the watcher_thread
thread by invoking the Signal() method from the conditional variable object cv.
As mentioned earlier, a conditional variable object always depends on an object of
the type of the Mutex class, so, as can be seen, the object cv is placed between the
protected critical section according to the Lock() and Unlock() methods of the
mutex object. In the Watcher_proc method within the while loop, every time
after calling the Lock() method we must wait for the cv object through the Wait()

Figure 5.4 An example of three threads reaching a barrier object. Execution of every thread is
blocked when reaching the barrier. When all threads arrive at the barrier, the execution of all of
them is restored.

Thread 1

Thread 3

Thread 1

Thread 2

Thread 3
Blocked

Blocked

Blocked

Blocked

Barrier

SignalAndWait()

SignalAndWait()

Blocked

Thread 2

time

104 ◾ Implementing Parallel and Distributed Systems

method in line 31; whenever this method returns, it indicates that the value of the
variable count has been changed by another thread. Ultimately, after getting noti-
fied of this change, the current value of count is printed in line 31. Note that in the
Watcher_proc() method the conditional variable and the read operation of the
count variable are protected by a critical section created by the mutex object, as
explained for the Counter_proc() method.

Our second example is a producer/consumer system with support for multiple
threads but limited to only two threads because it is also used in Chapters 6 and
10 for concurrently copying files, respectively, locally, and locally/remotely. The
producer/consumer problem, also known as the bounded-buffer problem, consists
of two classes of threads: (1) producer threads, which generate data items and insert
them into a buffer, and (2) consumer threads, which remove data items from the
buffer and consume them one by one. Producer and consumer threads are constantly

Figure 5.5 A concurrent counter based on mutex and conditional variables.

1: class ConcurrentCounterTest : public Object {
2: /*---------------------fields----------------*/

3: private: Thread *counter_thread, *watcher_thread;
4: private: Int32 count;
5: private: Mutex *mutex;
6: private: ConditionVariable *cv;
7: /*---------------------methods----------------*/

8: //...

9: public: void Run() {
10: counter_thread = new Thread(ConcurrentCounterTest::Wrapper_To_Call_Counter, (void *)this);
11: watcher_thread = new Thread(ConcurrentCounterTest::Wrapper_To_Call_Watcher, (void *)this);
12: counter_thread->Start();
13: watcher_thread->Start();
14: counter_thread->Join();
15: watcher_thread->Join();
16: }
17: private: void *Counter_proc(void *ptr) {
18: while(true) {
19: mutex->Lock();
20: count++;
21: cv->Signal();
22: mutex->Unlock();
23: Thread::Sleep(1);
24: }
25: return ptr;
26: }
27: private: void *Watcher_proc(void *ptr) {
28: while(true) {
29: mutex->Lock();
30: cv->Wait();
31: printf("%d\n", count);
32: mutex->Unlock();
33: }
34: return ptr;
35: }
36: //...

37: };

Parallelisation for the Many-Core Era ◾ 105

in need of accessing shared buffers, and both classes of threads operate at their own
individual speeds. The main issue here is to synchronise the activity between all
threads.

In this example, the shared buffer has n slots and is a circular buffer of constant
size. A circular buffer is a data structure that uses a buffer as if it was connected
from end to end. Figure 5.6 shows a multiple producer/consumer architecture with a
fixed-length circular buffer and its full and empty slots. The simplest implementation
of a circular buffer requires two integer numbers start and end. The start value
represents the valid starting point of the data, and the end value represents the valid
data end point. A circular buffer can be very conveniently used as a queue or FIFO
buffer. This example has two limitations: (a) producer threads cannot insert a data
item into the buffer when the buffer is full, and (b) consumer threads cannot remove
a data item from the buffer when the buffer is empty. The synchronisation operation
to insert/remove a data item into/from a slot in the buffer must be made atomic and
protected by a mutual exclusion mechanism due to synchronising the threads.

To solve the stated two problems, we will make use of a mutex object when
threads want to concurrently access the circular buffer and of two conditional vari-
able objects to inform the producer and consumer threads of whether the buf-
fer is full or empty. Figure 5.7 shows the implementation of this circular buffer
as a ConcurrentCircularBuffer class. This class has two threads, producer_
thread and consumer_thread. Our circular buffer is allocated as an array of char-
acters with n holes set to BUFFER_SIZE in line 7. In this example, a character with a
length of one byte is stored and retrieved in each buffer hole. The bufferNotFull
and bufferNotEmpty conditional variables are respectively used by producers and
consumers. In the Run() method, threads are joined after getting created and started
by the Join() method.

In the producer() method, in lines 28–31, the Wait() method is called using
the bufferNotFull conditional variable until the buffer is full. The condition inside
the while loop in line 28 holds until the buffer is full. In line 33, since the buffer is

Figure 5.6 A multi-producer/multi-consumer architecture around a circular buffer for
concurrent data storage and retrieval.

Circular
Buffer

data
data

data

data

Em
pt

y
Sl

ot
s

start

end

Producer Threads

Consumer Threads C
on

te
nt

 B
ou

nd
ar

y

Insert items

Remove items

106 ◾ Implementing Parallel and Distributed Systems

half full or empty, a random character is created and in line 34 is inserted at the end of
the buffer; in line 35, the new end of the circular buffer is stored in the end variable.
In line 40, since data was recently inserted into the buffer, the Signal() method
is invoked from the bufferNotEmpty object to wake it up if the previous thread
is asleep. In this example, the System::Random class uses the Parvicursor.NET

Figure 5.7 An implementation of the concurrent circular buffer with the use of a mutex and
conditional variables for the multiple producers/consumers problem.

1: class ConcurrentCircularBuffer : public Object {
2: /*---------------------fields----------------*/

3: private: Thread *producer_thread;
4: private: Thread *consumer_thread;
5: private: Mutex *mutex;
6: private: ConditionVariable *bufferNotEmpty, *bufferNotFull;
7: private: char circular_buffer[BUFFER_SIZE]; // A buffer with BUFFER_SIZE slots.

8: private: Int32 start, end; // Integers to index circular_buffer.

9: /*---------------------methods----------------*/

10: // ...

11: public: void Run() {
12: producer_thread = new Thread(ConcurrentCircularBuffer::Wrapper_To_Call_producer, (void

*)this);
13: consumer_thread = new Thread(ConcurrentCircularBuffer::Wrapper_To_Call_consumer, (void

*)this);
14: producer_thread->Start();
15: consumer_thread->Start();
16: producer_thread->Join();
17: consumer_thread->Join();
18: }
19: private: void *producer(void *ptr) {
20: static const char *str = "abcdefghiklmnopqrstvxyzABCDEFGHIKLMNOPQRSTVXYZ0123456789";
21: static Random rnd = Random();
22: while(true) {
23: Thread::Sleep(1); // Simulates some work.

24: mutex->Lock();
25: {
26: // Use modulo as a trick to wrap around the end of the buffer back to the beginning

27: // Wait until the buffer is full

28: while((end + 1) % BUFFER_SIZE == start) {
29: // Buffer is full - sleep so consumers can get items.

30: bufferNotFull->Wait();
31: }
32:
33: char c = str[rnd.Next(0, 55)]; // strlen(str) - 1 = 56 – 1 = 55

34: circular_buffer[end] = c;
35: end = (end + 1) % BUFFER_SIZE;
36:
37: }
38: mutex->Unlock();
39: // If a consumer is waiting, wake it.

40: bufferNotEmpty->Signal(); //

41: }
42: return ptr;
43: }
44: private: void *consumer(void *ptr) {
45: while(true) {

(Continued)

Parallelisation for the Many-Core Era ◾ 107

Framework to generate random characters; the values of these characters are stored
in line 20 in a static string variable.

In the consumer() method, we wait by invoking the Wait() method of the
bufferNotEmpty object until the buffer is empty. The while loop condition holds
in line 49 as long as the buffer is empty. When the loop is half full or full, the code
execution reaches line 53 by ending the loop execution in line 49. At this time, we
take our data out of the beginning of the buffer, which marks the beginning of it, and
changes the new value of the start variable in line 54. In line 59, if the producer
thread is already waiting, we wake it up. This example runs forever because both
producer and consumer methods are embedded in two infinite while loops. In this
example, the mutex object satisfies the task of protecting the beginning and end of
the circular buffer when simultaneously being accessed by multiple threads.

5.2.6 Thread Pools: Design and Implementation of the
System::Threading::ThreadPool Class of the ECMA .NET
Standard Based on the Parvicursor.NET Framework

Simultaneous work units are often relatively short, mostly independent, and often for
a short period of time before results are produced and the execution cycle ends. For
example, many server applications, such as web and file servers, are oriented towards

46: mutex->Lock();
47: {
48: // Wait until the buffer is empty

49: while(end == start) {
50: // Buffer is empty - sleep so producers can create items.

51: bufferNotEmpty->Wait();
52: }
53: char temp = circular_buffer[start];
54: start = (start + 1) % BUFFER_SIZE;
55: printf("c: %c\n", temp);
56: }
57: mutex->Unlock();
58: // If a producer is waiting, wake it.

59: bufferNotFull->Signal();
60: // Simulate processing of the item.

61: Thread::Sleep(1);
62: }
63: return ptr;
64: }
65: // ...

66: };

Figure 5.7 (Continued) An implementation of the concurrent circular buffer with the use of a
mutex and conditional variables for the multiple producers/consumers problem.

108 ◾ Implementing Parallel and Distributed Systems

a wide range of short-term tasks that come from a remote source. Creating a dedi-
cated thread for each piece of code is a very bad idea, as it pays significant execution
time costs (both in time and space) for each thread that is created and destroyed.
In addition to these performance overhead pressures, other overheads include more
time spent in the scheduler to perform context switches when the number of threads
exceeds the processor count, pressure on cache locality due to the threads that have
to be moved from one processor to another, and the increase in the work set result-
ing from multiple threads to discretely access to virtual memory pages actively at the
same time. Whilst thread pools have turned into a powerful mechanism for organis-
ing multi-threaded applications, they are not without risks. Programs built on thread
pools are also vulnerable to all the risks that any multi-threaded program is exposed
to, such as synchronisation errors and deadlocks. There are a number of risks spe-
cifically associated with thread pools, such as thread pool deadlocks, displacement
status (thrashing), and thread leakage:

	 •	 Deadlock: Whilst deadlocks have become a major drawback of multi-threaded
programs, thread pools offer another opportunity to create deadlocks, where
all pool’s threads are performing tasks that, due to waiting for the results of
another task, are blocked on the task queue, but another task cannot be exe-
cuted because there is no unoccupied thread space. This can happen when
thread pools are used to implement simulations in that many interactive objects
are involved, and the simulated objects can send queries to each other and then
these queries are executed as enqueued tasks, and the querying object waits for
a response at the same time.

	 •	 Displacement Status: An advantage associated with thread pools is that they
generally work well against alternative scheduling mechanisms. But this is
true when the size of the thread pool is properly adjusted. Threads consume
a variety of resources, including memory and other system resources. If the
thread pool was too large, the resources consumed by those threads could
put a lot of pressure on system performance. Time is wasted whilst switching
between threads, and having more threads than necessary may lead to resource
starvation problems, as the pool’s threads are consuming resources that could
have been more efficiently exploited by other tasks.

	 •	 Thread Leakage: An important hazard in all types of thread pools is thread
leakage, which occurs when a thread is removed from the pool to perform
a task but is not returned to the pool when the task is complete. One way
in which this problem occurs is when a task throws an exception (note that
within the Parvicursor.NET Framework all exceptions inherit from the base
System::Exception class). If the thread pool class or the return function
specified by the program code written by the developer does not catch these
exceptions, then the thread is simply removed, and the thread pool size decre-
ments by one. When this happens often enough, the thread pool is eventually
empty, and the system will stop because there are no threads to process tasks.
Permanently stopped tasks can also cause an equivalent thread leakage. If a
thread is consumed permanently with such a task, it is definitely removed from
the thread pool. Such tasks should either be given a separate thread from the
pool’s threads or just wait for a limited time.

Parallelisation for the Many-Core Era ◾ 109

The following is an implementation of the System::Threading::ThreadPool
class of the ECMA .NET standard based on the Parvicursor.NET Framework, and at
the end, we come up with guidelines for more efficient use of thread pools. Figure 5.8
shows the implementation architecture of our ThreadPool class. We will first describe
this abstraction and then its implementation in C++ on top of the Parvicursor.NET
Framework. The task submission threads employ the QueueUserWorkItem()
method to place their tasks at the end of the task queue (it is a type of FIFO queue).
Each task, which is executed by a thread from the thread pool, has two attributes that
are passed to this method: a callback method that will be invoked by a worker thread
from the thread pool and a state object reference that contains information used by
the callback method. The thread pool contains running and idle threads. Idle threads
always take a task out of the task queue and execute its callback method, at which
time an idle thread becomes an executable thread. Since multiple threads have access
to this shared queue at once, and they must be waiting or waking up depending on
whether the task queue is empty or full, synchronisation techniques must be lever-
aged in this architecture. The synchronisation bar in Figure 5.8 provides these two
features through a mutex and two conditional variables.

Figure 5.9 shows the prototype for defining our thread pool class. Callback decla-
ration is carried out using function pointers in line 1. In the TaskInfo structure, the
state and callback passed are defined as an argument to the QueueUserWorkItem()
method. In line 10, the variable q indicates the task queue. The two conditional vari-
ables poolNotEmpty and poolNotFull are employed by threads to fall asleep or
wake up other threads when the queue is full or empty. In this implementation for
simplicity, we statically create the threads, where their count is equal to numThreads,
and store their reference in the array workers when the thread pool class is instanti-
ated. The queueMaxSize variable dictates the maximum number of tasks that can

Figure 5.8 The ThreadPool class architecture implemented in the Parvicursor.NET Framework.

Idle Threads Running Threads

Task Submission Threads

Thread Pool

Task Queue

Task Information:
1. Callback
2. State

Synchronization Bar: (Mutex + Condition Variables)

QueueUserWorkItem()

110 ◾ Implementing Parallel and Distributed Systems

be stored and retrieved in the task queue. The Worker() method is executed in
the ThreadPool class constructor after the threads are instantiated by them. The
WaitOnTaskQueue() method allows the caller thread to wait until the task queue
is empty. This method is used to synchronise applications that use the ThreadPool
class and require it. It takes advantage of the waitcv object to achieve this function.

Figure 5.10 illustrates the implementation of a number of thread pool class
methods. Refer to path “/Parvicursor/Parvicursor/System.Threading/
ThreadPool” for full implementation. All threads in the constructor of this class
are created as detached. The QueueUserWorkItem() method’s body is placed
between the critical section of the mutex object. In line 4, we have to wait for the
poolNotFull object until the task queue is full. Otherwise, in lines 6 through 8, the
task object is prepared and placed inside the queue. If the queue is empty, in line
10 we must invoke the Signal() method of the poolNotEmpty object to wake
up the threads if they are sleeping because of an empty task queue. The Worker()
method is a pointer to a function that is executed by all the pool’s threads. All
threads run in an infinite while loop. Inside the Worker() method, we wait on the
poolNotEmpty object in lines 25 and 26 until the task queue is empty. In line 27, we
dequeue a task from the queue and execute a callback in line 32 by passing its state

Figure 5.9 The prototype of the ThreadPool class definition.

1: // Represents a callback method to be executed by a ThreadPool thread.

2: typedef void (*WaitCallback)(Object *);
3:
4: class ThreadPool : public Object {
5: /*---------------------fields----------------*/

6: private: struct TaskInfo : public Object {
7: Object *state;
8: WaitCallback callback;
9: };

10: private: Queue q; // The ThreadPool task queue.

11: private: Mutex *mutex;
12: private: ConditionVariable *poolNotEmpty, *poolNotFull, *waitcv;
13: private: UInt32 numThreads;
14: private: UInt32 queueMaxSize;
15: private: Thread **workers;
16: /*---------------------methods----------------*/

17: // ThreadPool Class constructor.

18: public: ThreadPool(UInt32 numThreads, UInt32 queueMaxSize);
19: // ThreadPool Class destructor.

20: public: ~ThreadPool();
21: // Gets the number of elements available in the ThreadPool.

22: public: Int32 get_Count();
23: // Queues a method for execution, and specifies an object containing data to be used by the method.

24: // The method executes when a thread pool thread becomes available.

25: // If the method is successfully queued, true will be returned.

26: public: bool QueueUserWorkItem(WaitCallback callBack, Object *state);
27: // Waits on the ThreadPool task queue until the queue is empty.

28: public: void WaitOnTaskQueue();
29: private: void *Worker(void *ptr);
30: };

Parallelisation for the Many-Core Era ◾ 111

Figure 5.10 Implementation of the ThreadPool class’s methods.

1: bool ThreadPool::QueueUserWorkItem(WaitCallback callBack, Object *state) {
2: mutex->Lock();
3: {
4: while(q.get_Count() == queueMaxSize)
5: poolNotFull->Wait();
6: TaskInfo *task = new TaskInfo();
7: task->callback = callBack;
8: task->state = state;
9: if(q.get_Count() == 0) {

10: q.Enqueue(task);
11: poolNotEmpty->Signal();
12: }
13: else
14: q.Enqueue(task);
15: }
16: mutex->Unlock();
17: return true;
18: }
19:
20: void *ThreadPool::Worker(void *ptr) {
21: TaskInfo *task;
22: while(true) {
23: mutex->Lock();
24: {
25: while(q.get_Count() == 0)
26: poolNotEmpty->Wait();
27: task = (TaskInfo *)q.Dequeue();
28: if(q.get_Count() == queueMaxSize - 1)
29: poolNotFull->Broadcast();
30: }
31: mutex->Unlock();
32: task->callback(task->state);
33: waitcv->Broadcast();
34: delete task;
35: }
36: return ptr;
37: }
38:
39: void ThreadPool::WaitOnTaskQueue() {
40: mutex->Lock();
41: {
42: while (q.get_Count() != 0)
43: waitcv->Wait();
44: }
45: mutex->Unlock();
46: }

112 ◾ Implementing Parallel and Distributed Systems

object. This region shows the main role of the thread pool class in executing the tasks.
In line 28, if the queue is full, we will notify all the task submission threads (which
have called the QueueUserWorkItem() method) by invoking the Broadcast()
method of the poolNotFull object (because the number of these threads can be
more than one, the Broadcast() method is used instead of Signal()). In line
33, since the work of a task taken out of the task queue is complete, we need
to invoke the Broadcast() method from the waitcv object, this will cause the
threads that have fallen asleep on the WaitOnTaskQueue() method to be informed
of this change. In the WaitOnTaskQueue() method, the Wait() method is called
from the waitcv object until the task queue is empty. As seen in this implementa-
tion, all three conditional variables poolNotEmpty, poolNotFull, and waitcv use
a single shared mutex object.

Finally, here are some important guidelines to keep in mind when working with
the ThreadPool class:

	 •	 Whilst thread pools are usually the best way to add multi-threading to pro-
grams for performance purposes, there are some situations where they are not
appropriate. The thread pool scheduler used is non-pre-emptive. Thread pools
are therefore intended for high-performance algorithms that are non-blocking.
They still work well if tasks are rarely blocked. However, if tasks are blocked
repeatedly, there is a severe loss of performance because one task is blocked.
Blocking typically occurs whilst waiting for I/O or mutexes for long periods
of time. If your tasks are waiting for a resource, such as completion of an I/O,
use a maximum waiting time (or asynchronous I/O methods), then fail and re-
queue the task to run at another time (the TimedWait() method of the Mutex
class makes this property possible).

	 •	 To effectively adjust the size of your thread pool, you need to understand the
tasks that are being queued and what they are doing. You should check if they
are CPU or I/O bound.

	 •	 Do not queue tasks that are waiting synchronously for results from other tasks.
This can lead to a type of deadlock described at the beginning of this section,
where all threads are occupied with tasks that they instead cannot be executed
for the results of other enqueued tasks because all threads are busy.

5.2.7 Four Examples of Concurrency and Parallel Processing Based on
the ThreadPool Class

In this section, we describe several examples of using the introduced thread pool
to give the reader a better understanding of its power to implement concurrent
applications and parallel processing algorithms. The first example is the traditional
“Hello World” program, but simultaneously. The second and third examples
describe matrix multiplication and prime number calculation atop parallel pro-
cessing algorithms. Finally, the fourth example will implement a scenario to com-
bine the use of the Barrier class and conditional variables with the implemented
thread pool. The code for these examples is available in the path “/Parvicursor/

Parallelisation for the Many-Core Era ◾ 113

Parvicursor/Samples/Concurrency/Concurrency/ThreadPool” from the
companion resources of the book.

In the first example, we want a certain number of threads within a thread pool
to output the phrase “Hello world”, n times at the same time. We will wait in
the main() function of the program until this time is over to terminate the pro-
gram. Figure 5.11 demonstrates this flow. The MethodInfo structure shows the
state object that is passed to the Print() callback method via the state argument.
In the Print() method, after converting the type of state variable from Object
to MethodInfo in line 14, the message and ID of the callback, which has already
been placed in the thread pool’s task queue by the caller thread, are printed in the
output. In the main() function, the pool object is instantiated in line 25. The static
get_ProcessorCount() method, a member of the Environment class, finds the
number of cores (or processors) of the current machine; in this example, the number
of pool’s threads is four times this value. In lines 26–39, 1,000 dummy methods are
instantiated to print the phrase “Hello World” in a for loop, the callback of these
methods along with their state objects are placed in the thread pool’s task queue
in line 38. A conditional variable and a mutex are used to wait in line 42 on the cv
object until all methods execute. Between lines 16 and 20 in the callback method, a
value of one is always added to the counter, and if its value is equal to methodNum,
the Broadcast() method is called from the cv object to inform other threads of
this matter, especially the main() function’s thread. Here, the mutex, cv, and coun
ter variables (via its address in the counter_addr pointer, which is a member of
the MethodInfo structure) are shared between the pool’s threads and the main()
function’s thread.

In the second example, we perform multiplication of two square matrices (n×n)
based on the thread pool in parallel. Figure 5.12 shows this multiplication for two
typical 4-by-4 matrices. Suppose here that the multiplication operation is performed
by two threads. The matrix A is divided into two rows. Each segment divided by a
thread is multiplied by matrix B and placed in the corresponding row segment in
matrix C. This algorithm then can be generalised to n threads for multiplying square
matrices.

Figure 5.13 shows the algorithm and implementation for multiplying the two
matrices A and B, which are taught to students in traditional C programming text-
books. n denotes the number of rows and columns of the input and output square
matrices. The only difference between this algorithm and those in the textbooks is
that rather than using a two-dimensional array, it is allocated as a one-dimensional
array for the purpose of increasing efficiency due to contiguous memory allocation.
Thus, the element A[i][j] (a two-dimensional array) in this example is expressed
as A[i×n+j] (a one-dimensional array). Now, based on this simple algorithm and
the method discussed in Figure 5.12, we implement a parallel algorithm for multiply-
ing two square matrices reliant on a thread pool.

Figure 5.14 shows the parallel multiplication of two matrices A and B based on
the thread pool. The MatrixMultiplyCallback() callback method is the same
as the sequential multiplication algorithm of two matrices, except that the range
of the split row block of the matrix A for parallel multiplication is passed to the
MethodInfo structure through the slice variable. Lines 19 and 20 calculate this

114 ◾ Implementing Parallel and Distributed Systems

Figure 5.11 Concurrent “Hello World” example utilising the ThreadPool class.

1: class ThreadPoolExample1 : public Object {
2: /*---------------------fields----------------*/

3: private: struct MethodInfo : public Object {
4: Int32 methodID;
5: char *message;
6: Int32 methodNum;
7: Int32 *counter_addr;
8: Mutex *mutex;
9: ConditionVariable *cv;

10: };
11: /*---------------------methods----------------*/

12: private: static void Print(Object *state) {
13: MethodInfo *info = (MethodInfo *)state;
14: printf("I'm method %d. Method Message: %s\n", info->methodID, info->message);
15:
16: info->mutex->Lock();
17: (*info->counter_addr)++; // Increment the counter value by its address

18: if(*info->counter_addr == info->methodNum)
19: info->cv->Broadcast(); // Signals the main thread of all methods' completion.

20: info->mutex->Unlock();
21: }
22: /*---*/

23: public: static int Parvicrursor_main(int argc, char *argv[]) {
24: // Initialises the thread pool instance.

25: ThreadPool pool = ThreadPool(Environment::get_ProcessorCount()*4, 10000);
26: const Int32 methodNum = 1000;
27: MethodInfo methods[methodNum];
28: Int32 counter = 0;
29: Mutex *mutex = new Mutex();
30: ConditionVariable *cv = new ConditionVariable(mutex);
31: for(Int32 i = 0 ; i < methodNum ; i++) {
32: methods[i].methodID = i;
33: methods[i].message = "Hello World";
34: methods[i].methodNum = methodNum;
35: methods[i].counter_addr = &counter;
36: methods[i].mutex = mutex;
37: methods[i].cv = cv;
38: pool.QueueUserWorkItem(Print, &methods[i]);
39: }
40:
41: // Waits on counter until all methods complete.

42: mutex->Lock();
43: cv->Wait();
44: mutex->Unlock();
45:
46: // Releases the mutex and cv objects.

47: delete mutex;
48: delete cv;
49: return 0;
50: }
51: };

Parallelisation for the Many-Core Era ◾ 115

range, and this method, which is executed by one of the pool’s underlying threads,
calculates the corresponding block and stores the result in the C matrix. In the
main() function, after allocating the memory of the matrices in lines 43–45, the
cells of the matrices A and B are randomly filled by the MatrixFillRandom()
method. In the for loop, all the tasks are prepared, in line 55 the slice variable of
each task is filled with index i, which is actually the desired thread of execution’s
ID. In lines 65–68, we wait for the conditional variable cv until all the threads are
done, and after printing the values of the matrices to the output, the allocated mem-
ory regions are freed.

In the third example of this section, we calculate prime numbers in parallel. A
first number is a natural number that is not divisible by any number except itself
and 1. The only exception is the number 1, which is not included in these numbers.
If a number is not natural and greater than 1, it is a compound. The abbreviation
for these numbers is n. Sieve of Eratosthenes is a simple algorithm that can be used
to find prime numbers between different integers. The discovery of this method is

Figure 5.12 Parallel multiplication of two matrices A and B by two threads of control.

11 12 13 14 11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44 41 42 43 444 4 4 4 4 4

..

a a a a b b b b c c c c

a a a a b b b b c c c c
C A B

a a a a b b b b c c c c

a a a a b b b b c c c c

Figure 5.13 Sequential multiplication of two matrices A and B.

1: void MatrixMultiplySequential(Float *A, Float *B , Float *C, Int32 n) {
2: register Int32 i, j, k;
3: Float temp;
4: for(i = 0 ; i < n ; i++) {
5: for(j = 0 ; j < n ; j++) {
6: temp = 0;
7: for(k = 0 ; k < n ; k++)
8: temp += A[i*n + k]*B[k*n + j];
9: C[i*n + j] = temp;

10: }
11: }
12: }

116 ◾ Implementing Parallel and Distributed Systems

Figure 5.14 Implementing the parallel multiplication of two matrices A and B based on the
thread pools.

1: class ThreadPoolExample2 : public Object {
2: /*---------------------fields----------------*/

3: private: struct MethodInfo : public Object {
4: Float *A, *B, *C;
5: Int32 rows, columns, slice, methodNum;
6: Int32 *counter_addr;
7: Mutex *mutex;
8: ConditionVariable *cv;
9: };

10: /*---------------------methods----------------*/

11: private: static void MatrixMultiplyCallback(Object *state) {
12: MethodInfo *info = (MethodInfo *)state;
13: Float *A, *B ,*C;
14: A = info->A; B = info->B; C = info->C;
15: Int32 rows = info->rows;
16: Int32 columns = info->columns;
17: Int32 methodNum = info->methodNum;
18: Int32 s = (Int32)info->slice;
19: Int32 from = (s * rows)/methodNum; // note that this 'slicing' works fine

20: Int32 to = ((s + 1) * rows)/methodNum; // even if rows(n) is not divisible by methodNum

21: register Int32 i , j, k; Float temp;
22: printf("computing slice %d (from row %d to %d)\n", s, from, to - 1);
23: for(i = from ; i < to ; i++) {
24: for(j = 0 ; j < rows ; j++) {
25: temp = 0.0;
26: for(k = 0 ; k < rows ; k++)
27: temp += A[i*rows + k]*B[k*rows + j];
28: C[i*rows + j] = temp;
29: }
30: }
31: printf("finished slice %d\n", s);
32: info->mutex->Lock();
33: (*info->counter_addr)++; // Increment the counter value by its address

34: if(*info->counter_addr == methodNum)
35: info->cv->Signal(); // Singnal the main thread of all methods's completion.

36: info->mutex->Unlock();
37: }
38: public: static int Parvicrursor_main(int argc, char *argv[]) {
39: const Int32 methodNum = 10;
40: ThreadPool pool = ThreadPool(methodNum, 10000); // Intilizes the thread pool instance.

41: const Int32 rows = 2000, columns = 2000; // This example only works on square matrices, i.e., the n*n

matrices.

42: MethodInfo methods[methodNum];
43: Float *A = new Float[rows*columns];
44: Float *B = new Float[rows*columns];
45: Float *C = new Float[rows*columns];
46: MatrixFillRandom(A, rows, columns);
47: MatrixFillRandom(B, rows, columns);
48: Mutex *mutex = new Mutex();
49: ConditionVariable *cv = new ConditionVariable(mutex);
50: Int32 counter = 0; // The main thread waits on the value of this shared counter.

(Continued)

Parallelisation for the Many-Core Era ◾ 117

attributed to the ancient Greek scientist Eratosthenes. Let’s assume that we want to
look for prime numbers between 2 and an integer number n. First, we write integers
from 2 to n in a row. The first prime number is equal to 2; below the number 2, we
draw a line on all multiples of 2 (even numbers). The first number that remains is 3.
Below it, we draw a line as a prime number and cross multiples of 3 out. The first
remaining number is 5 (the number 4 has already been crossed out.). Below this
number, we draw a line as a prime number and cross the rest of every other four out
(numbers that are multiples of 5), and so on, until the end. All numbers that are not
crossed out are prime. We use this simple mechanism to calculate prime numbers in
parallel.

Figure 5.15 shows the parallel implementation of Eratosthenes sieve for cal-
culating prime numbers based on a thread pool. To find all prime numbers from
2 to n, we must first list all the numbers in the prime array, then delete mul-
tiples of 2, then 3, and so on. Whatever is left at the end are prime numbers. The
SieveCallback()method uses three main items stored in the MethodInfo struc-
ture as input arguments: the variable n, which indicates the upper range; the shared
variable nextbase (this variable is shared via its address), which specifies the next

51: for(register Int32 i = 0 ; i < methodNum ; i++) {
52: methods[i].A = A;
53: methods[i].B = B;
54: methods[i].C = C;
55: methods[i].slice = i;
56: methods[i].rows = rows;
57: methods[i].columns = columns;
58: methods[i].methodNum = methodNum;
59: methods[i].counter_addr = &counter;
60: methods[i].mutex = mutex;
61: methods[i].cv = cv;
62: pool.QueueUserWorkItem(MatrixMultiplyCallback, &methods[i]);
63: }
64:
65: // Waits on counter until all methods complete.

66: mutex->Lock();
67: cv->Wait();
68: mutex->Unlock();
69:
70: MatrixPrint("A", A, rows, columns);
71: MatrixPrint("B", B, rows, columns);
72: MatrixPrint("C", C, rows, columns);
73: delete A; delete B; delete C; delete mutex; delete cv;
74: return 0;
75: }
76: };

Figure 5.14 (Continued) Implementing the parallel multiplication of two matrices A and B
based on the thread pools.

118 ◾ Implementing Parallel and Distributed Systems

Figure 5.15 Parallel implementation of the Eratosthenes sieve for calculating prime numbers
based on a thread pool.

1: class ThreadPoolExample3 : public Object {
2: /*---------------------fields----------------*/

3: private: struct MethodInfo : public Object {
4: Int32 n, methodNum;
5: Int32 *prime;
6: Int32 *nextbase;
7: Mutex *nextbaselock, *mutex;
8: Int32 *counter_addr;
9: ConditionVariable *cv;

10: };
11: /*---------------------methods----------------*/

12: private: static void crossout(Int32 *prime, Int32 k, Int32 n) {
13: for (Int32 i = k ; i*k <= n ; i++)
14: prime[i*k] = 0;
15: }
16: private: static void SieveCallback(Object *state) {
17: MethodInfo *info = (MethodInfo *)state;
18: register Int32 lim, base;
19: lim = Math::Sqrt(info->n); // no need to check multipliers bigger than sqrt(n)

20: while(true) {
21: info->nextbaselock->Lock();
22: (*info->nextbase) += 2; // Increment two units to the counter value by its address.

23: base = (*info->nextbase);
24: info->nextbaselock->Unlock();
25: if (base <= lim) {
26: // don't bother with crossing out if base is known to be

27: // composite

28: if (info->prime[base])
29: crossout(info->prime, base, info->n);
30: }
31: else
32: break;
33: }
34:
35: info->mutex->Lock();
36: (*info->counter_addr)++; // Increment the counter value by its address

37: if(*info->counter_addr == info->methodNum)
38: info->cv->Signal(); // Singnal the main thread of all methods's completion.

39: info->mutex->Unlock();
40: }
41: public: static int Parvicrursor_main(int argc, char *argv[]) {
42: // Shared variables

43: const Int32 methodNum = 100;
44: const Int32 n = 100000000; // upper bound of range in which to find primes

45: Int32 *prime = new Int32[n + 1]; // in the end, prime[i] = 1 if i prime, else 0

46: Int32 nextbase = 1; // next sieve multiplier to be used

47: Mutex *nextbaselock = new Mutex();
48:
49: for(Int32 i = 2 ; i <= n; i++)
50: prime[i] = 1;

(Continued)

Parallelisation for the Many-Core Era ◾ 119

number from where the coefficients must be eliminated; and the array pointer prime,
which denotes whether the number has been eliminated or not. In every iteration of
the while loop, a deletion multiplier is fetched for processing in the base variable,
and then all base coefficients from the range 2 to n are removed. Updating the value
of the nextbase shared variable is protected inside a Mutex object block.

The fourth and final example in this section is how to use the Barrier class
coupled with the thread pool. In Figure 5.16, in line 32, the barrier object is instan-
tiated with the desired number of threads, and in line 38, its reference is inserted into
the thread pool’s task queue within the for loop for all thread pool functions. In
the MethodCallback() method, when the code execution reaches line 16 because
the SignalAndWait() method has been invoked from the barrier object, the

51: crossout(prime, 2, n);
52:
53: // Intilises the thread pool instance.

54: ThreadPool pool = ThreadPool(methodNum, 10000);
55: MethodInfo methods[methodNum];
56: Mutex *mutex = new Mutex();
57: ConditionVariable *cv = new ConditionVariable(mutex);
58: Int32 counter = 0; // The main thread waits on the value of this shared counter.

59: for(register Int32 i = 0 ; i < methodNum ; i++) {
60: methods[i].n = n;
61: methods[i].prime = prime;
62: methods[i].nextbaselock = nextbaselock;
63: methods[i].methodNum = methodNum;
64: methods[i].nextbase = &nextbase;
65: methods[i].counter_addr = &counter;
66: methods[i].mutex = mutex;
67: methods[i].cv = cv;
68: pool.QueueUserWorkItem(SieveCallback, &methods[i]);
69: }
70: // Waits on counter until all methods complete.

71: mutex->Lock();
72: cv->Wait();
73: mutex->Unlock();
74:
75: // Report results

76: Int32 nprimes = 0; // number of primes found

77: for(Int32 i = 2 ; i <= n ; i++)
78: if(prime[i])
79: nprimes++;
80: printf("the number of primes found was %d\n",nprimes);
81: delete prime; delete nextbaselock; delete mutex; delete cv;
82: return 0;
83: }
84: };

Figure 5.15 (Continued) Parallel implementation of the Eratosthenes sieve for calculating prime
numbers based on a thread pool.

120 ◾ Implementing Parallel and Distributed Systems

Figure 5.16 Using the Barrier class synchronisation in thread pools.

1: class ThreadPoolExample4 : public Object {
2: /*---------------------fields----------------*/

3: private: struct MethodInfo : public Object {
4: Int32 methodID, methodNum;
5: Barrier *barrier;
6: Int32 *counter_addr;
7: Mutex *mutex;
8: ConditionVariable *cv;
9: };

10: /*---------------------methods----------------*/

11: private: static void MethodCallback(Object *state) {
12: MethodInfo *info = (MethodInfo *)state;
13: printf("I'm thread %d at phase 1\n", info->methodID);
14: Thread::Sleep(1000);
15:
16: info->barrier->SignalAndWait();
17:
18: printf("I'm thread %d at phase 2\n", info->methodID);
19:
20: info->mutex->Lock();
21: (*info->counter_addr)++; // Increments the counter value by its address

22: if(*info->counter_addr == info->methodNum)
23: info->cv->Signal(); // Signals the main thread of all methods‛ completion.

24: info->mutex->Unlock();
25: }
26: public: static int Parvicrursor_main(int argc, char *argv[]) {
27: const Int32 methodNum = 2;
28: ThreadPool pool = ThreadPool(Environment::get_ProcessorCount()*4, 1000); // Initialises the thread

pool instance.

29: MethodInfo methods[methodNum];
30: Mutex *mutex = new Mutex();
31: ConditionVariable *cv = new ConditionVariable(mutex);
32: Barrier *barrier = new Barrier(methodNum);
33: Int32 counter = 0; // The main thread waits on the value of this shared counter.

34: for(Int32 i = 0 ; i < methodNum ; i++) {
35: methods[i].methodID = i;
36: methods[i].methodNum = methodNum;
37: methods[i].counter_addr = &counter;
38: methods[i].barrier = barrier;
39: methods[i].mutex = mutex;
40: methods[i].cv = cv;
41: pool.QueueUserWorkItem(MethodCallback, &methods[i]);
42: }
43:
44: // Waits on counter until all methods complete.

45: mutex->Lock();
46: cv->Wait();
47: mutex->Unlock();
48:
49: delete mutex; delete cv; delete barrier;
50: return 0;
51: }
52: };

Parallelisation for the Many-Core Era ◾ 121

execution of the thread that runs this method stops. When all the threads reach this
point, the execution of all the threads that were previously fallen asleep at this point
(in line 16) is restored, and at this time the expression of phase 2 is printed in the
output.

5.2.8 Low-Level Implementation of Threads in the Linux Operating
System: Userspace Fibres

In the previous sections, we used the Thread class as the most essential structure
for implementing concurrency and parallel processing algorithms on multi-processor
systems based on the Parvicursor.NET Framework. This class itself has been imple-
mented according to the POSIX multi-threading standard. In this section, we will take
a brief look at how threads are implemented in the Linux operating system by using
a multi-threading system call, as this abstraction provides powerful possibilities for
designing higher-level multi-threading standards. In Linux, threads and processes
are treated almost identically. Both are considered as tasks. The only difference is
that the threads share the same memory space. In Linux, kernel threads are created
by calling the clone() system. Figure 5.17 shows the prototype of the clone()
system call definition. fn is a function pointer that is executed by clone(). The
arg argument is passed to the fn function. When the function fn(arg) returns, the
child process terminates. The child_stack argument specifies the location of stack
used by the child process. The least significant byte of flags contains the termina-
tion signal number sent to the parent when the child dies. The flags argument may
also get bitwise with zero or more constants to specify what is between the calling
process and the child process. For example, if CLONE_VM is set, the calling process
and the child process run in the same memory space. The best way to allocate stack
memory is to use the system function mmap(), but for simplicity in this book we only
use the malloc() function.

Figure 5.18 shows an example in which ten threads are created by the clone()
function and the main() function waits until all of them complete their execution.
The stack size of each thread is 64 KB, which is allocated to all threads by the mal
loc() function in lines 19–30. Threads are created in lines 33–39, this way of coding
to create threads is very similar to how to use the Thread class. Because in most
processors the stack grows downwards, adding a constant value of THREAD_STACK
to the stack pointer of each thread in line 34 causes the stack in each thread to point
to the highest address in the memory space. CLONE_SIGHAND tells the kernel that
signals are shared between the child and parent process. In lines 43–50, we wait
for the completion of each thread, the waitpid() system function here plays the
same role as the Join() method of the Thread class. In the end, in lines 53–54,
the space allocated by the malloc() function for each thread is freed by calling
the free() function. Each thread performs the thread_proc() function. Line 14

Figure 5.17 Prototype of the clone() system call definition.

1: int clone(int (*fn)(void *), void *child_stack, int flags, void *arg);

122 ◾ Implementing Parallel and Distributed Systems

Figure 5.18 Creating threads based on the clone() system function.

1: #include <malloc.h>
2: #include <sys/types.h>
3: #include <sys/wait.h>
4: #include <signal.h>
5: #include <sched.h>
6: #include <stdio.h>
7: #include <stdlib.h>
8: #include <unistd.h>
9: // 64kB stack

10: #define THREAD_STACK 1024*64
11: #define Thread_Num 10
12: // The child thread will execute this function

13: int thread_proc(void *arg) {
14: printf("I'm child thread %d with pid %d\n", (int)arg, getpid());
15: return 0;
16: }
17:
18: int main(int argc, char *argv[]) {
19: void *stack[Thread_Num];
20: pid_t pid[Thread_Num];
21: int i;
22:
23: // Allocate the stack

24: for(i = 0 ; i < Thread_Num ; i++) {
25: stack[i] = malloc(THREAD_STACK);
26: if(stack[i] == NULL) {
27: perror("malloc: could not allocate stack");
28: exit(1);
29: }
30: }
31:
32: printf("Creating children threads\n");
33: for(i = 0 ; i < Thread_Num ; i++) {
34: pid[i]= clone(&thread_proc, (char *)stack[i] + THREAD_STACK,
35: SIGCHLD | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_VM, (void *)i);
36: if(pid[i] == -1) {
37: perror("clone");
38: exit(2);
39: }
40:
41: }
42:
43: for(i = 0 ; i < Thread_Num ; i++) {
44: // Wait for the child thread to exit

45: pid[i] = waitpid(pid[i], 0, 0);
46: if(pid[i] == -1) {
47: perror("waitpid");
48: exit(3);
49: }
50: }
51:
52: // Wait for the children threads to exit

53: for(i = 0 ; i < Thread_Num ; i++)
54: free(stack[i]);
55: printf("Child threads returned and stack was freed.\n");
56:
57: return 0;
58: }

Parallelisation for the Many-Core Era ◾ 123

uses the getpid() system function to print the current thread’s ID to the output.
The code for this example can be found in the “/Parvicursor/Parvicursor/
Samples/CloneThread” path.

What we have used so far for multi-threaded programming is based on pre-
emptive scheduling and kernel threads. In pre-emptive multi-tasking, the operating
system kernel can create an interrupt for one task and force it to switch its context to
another task, the current task state is saved before the new task starts. Not only does
this mechanism allow the scheduler to assign an active time slot reliably, but also the
system to deal quickly with important external events such as input data, which may
require immediate attention by one or more processes.

Contrary to the above is cooperative multi-tasking in which one thread voluntarily
gives its execution to another thread. In this mechanism, the term fibre refers
to threads. Fibre is a unit of execution that must be manually scheduled by the
application. Fibres run in the contexts of the kernel threads that schedule them.
Fibres are not scheduled exclusively. We must schedule a fibre by means of switching
from one to another. Like threads, each fibre has a set of execution modes that can
be run on the hardware: a user mode stack and a context (which includes the state
of CPU registers when a fibre is switched).

Besides, fibres are lightweight. The operation for switching from one fibre to
another is performed by several instructions to load and save the processor state
without involving the operating system kernel. This means that if you have a lot of
small tasks to do, fibres may be a better choice, as threads involve kernel calls and
scheduler invocations. Fibres run in the time slot of the thread in which they are
running, thereby avoiding context switches between a large number of threads with
short blocking computations in the kernel. Eliminating synchronisation structures
(such as spin locks and atomic operations) in in most cases eliminates the need for
involving operating system scheduler and synchronisation primitives and increases
efficiency. Simplicity in using fibres closely resembles using threads. Instead of
having to write intricate code that tries to do multiple things at once, we write simple
code that does just one thing and takes advantage of multiple fibres to do different
works. Fibres are used in conjunction with non-blocking I/O methods. Fibres cannot
employ multi-core processors without the use of pre-emptive threads; of course, N:M
threading models can provide an alternative solution to this issue, which is discussed
below.

By using fibres, we can implement highly customised algorithms for our domain-
specific applications and operational needs. For example, we can have a pool of
threads with the number of processors in our machine, each of which will be respon-
sible for switching and scheduling between fibres. This approach leads to giving a
lot of complexity and scheduling responsibilities to the programmer, which is called
M:N threading. Finally, fibres can be used to implement dynamically scalable sched-
ulers (especially for service-oriented network applications) and useful abstractions
such as coroutines and agent-based simulators. Table 5.5 demonstrates the methods
and constructor of the designed fibre class in the Parvicursor.NET Framework. The
constructor of this class is very similar to the constructor of the Thread class. The
start_routine function pointer specifies the address of the function that will be
executed by the fibre object; the arg pointer specifies the input of this function
when it is called.

124 ◾ Implementing Parallel and Distributed Systems

At the end of this section, we take a look at two examples of using fibres. The code
for these examples is available in the “/Parvicursor/Parvicursor/Samples/
Concurrency/Concurrency/Fibre” path. Figure 5.19 shows a simple example of
creating two fibres and using a single function pointer by them. In the main() func-
tion in lines 26 and 27, two fibre objects are instantiated, the identifier of each fibre
is specified as a number in the input argument of its function pointer, and also the
value of zero for the stack size tells the Parvicursor.NET Framework that the default
value should be used to allocate the stack space. Both fibres run the static fibre_
proc() method. By calling the ConvertThreadToFibre() method, in addition to
storing the current state in a fibre (fib object), we provide the ability to change the
main() function’s fibre to fib1 by calling the SwitchToFibre() method from in
line 30 (i.e., to jump to fib1 that executes the fibre_proc() method). The flow
of code execution is now transferred to line 8. After converting the arg pointer to
a fibreID variable type, we make an intended decision for which the fibre is cur-
rently running. For example, if the first fibre is running inside the infinite while
loop, after printing a message to the output, we switch the context to the second
fibre using the SwitchToFibre() method, so if fibreID is equal to 2, then we are
in the second fibre and we issue a context switch to the first fibre in line 19.

In the second example, we describe the implementation of a finite state machine
(FSM) in terms of fibres. An FSM is a mathematical model for designing computer
programs, transmission protocols, and digital logic circuits. This computational
model is composed of a set of states, a set of inputs, and a function that maps the
ordered pair (input, state) to a new state, and the operations executed in each
state. Suppose that we want to write a program that has three states. The program
takes a character from the input and determines the next FSM state based on a

Table 5.5 Methods and Constructor of the Fibre Class in Parvicursor.NET Framework

Name Description

Fibre(Long stackSize,
void *(*start_routine)
(void *), void *arg)

Allocates a fibre object, assigns a stack, and sets the
execution up to start at the address of the function specified
by start_routine. This pointer does not schedule a fibre
function.

static void
SwitchToFibre(const
Fibre &from, const Fibre
&to)

This static method stores the from fibre’s state information
and restores the to fibre’s state. This method can be called
with a fibre created by a different thread. To perform this
operation, you must use an appropriate synchronisation.

static Fibre
ConvertThreadToFibre()

This static method converts the current thread into a fibre.
We have to convert a thread into a fibre before we can
schedule other fibres. Only fibres can run other fibres.

static void
ConvertFibreToThread()

This static method converts the current fibre into
a thread. It frees up resources allocated by the
ConvertThreadToFibre() method. After invoking this
method, fibre functions cannot be called from inside that
thread.

Parallelisation for the Many-Core Era ◾ 125

lowercase letter (state 0), an uppercase letter (state 1) or a number (state 2).
Figure 5.20 illustrates the FSM of this scenario. In the first run of the program, the
program state is set to 0. For example, if in state 0 a character with a lowercase letter
has been entered in the input, the next state will be zero, if the input is of a capital
character, the next state will transition to state 1, and so forth. In either case, if the
input character is @, the next state is Exit and the program terminates.

The implementation of this FSM comes in Figure 5.21 based on fibres. The
FibreInfo structure stores global information accessible by all fibres as well as

Figure 5.19 A simple example of two fibres running a shared function pointer.

1: static Fibre *fib;
2: static Fibre *fib1;
3: static Fibre *fib2;
4:
5: class FibreExample1 : public Object {
6: /*---------------------methods----------------*/

7: private: static void *fibre_proc(void *arg) {
8: Int32 fibreID = (Int32)arg;
9: if(fibreID == 1) {

10: while(true) {
11: printf("I'm fibre %d\n", fibreID);
12: Fibre::SwitchToFibre(*fib1, *fib2);
13: Thread::Sleep(1000);
14: }
15: }
16: if(fibreID == 2) {
17: while(true) {
18: printf("I'm fibre %d\n", fibreID);
19: Fibre::SwitchToFibre(*fib2, *fib1);
20: Thread::Sleep(1000);
21: }
22: }
23: return arg;
24: }
25: public: static int Parvicrursor_main(int argc, char *argv[]) {
26: fib1 = new Fibre(0, fibre_proc, (void *)1);
27: fib2 = new Fibre(0, fibre_proc, (void *)2);
28:
29: fib = &Fibre::ConvertThreadToFibre();
30: Fibre::SwitchToFibre(*fib, *fib1);
31: Fibre::ConvertFibreToThread();
32:
33: delete fib1;
34: delete fib2;
35: return 0;
36: }
37: };

126 ◾ Implementing Parallel and Distributed Systems

specific fields (such as identifiers) of every fibre. In the main() function and lines
36–45, all fibres are instantiated. The stack size of every fibre (of which represents
a state of the FSM) in this example is set to 4 KB. The mainFib object stores the
fibre corresponding to the main() function; if the @ character is entered in the pro-
gram, the execution of the program is transferred to line 49 (Exit state from FSM)
and the program terminates. In line 46, by calling the SwitchToFibre() method,
the program state is transferred to state 0 in line 13, which is executed by the fibre
0 via the fibre_proc() method. After reading a character using the getch()
function and specifying the type of the entered character through the islower(),
isupper(), or isdigit() functions, we decide what the next FSM state will be.
For example, if we assume that an uppercase character is entered in the current
state, we change the execution context in line 21 by calling the SwitchToFibre()
method from the current fibre (whose identifier is fibreID) to the fibre 1 (which
represents state 1).

5.2.9 A Practical Implementation of Synchronisation: Linux Futexes

In the previous sections, different synchronisation techniques were introduced
through several classes such as Mutex, ConditionVariable, and Barrier. Since
synchronisation is one of the most important topics in concurrent systems and oper-
ating systems for modern multi-core processors and has occupied a major part of
this chapter, in this section we make an attempt to examine a real implementation

Figure 5.20 A sample finite state machine that is implemented using fibres.

0 1

2

Exit

uppercase

lowercase

uppercaselowerca
se

@ @

@

upperca
sedigit

digit

digit

lowercase

Parallelisation for the Many-Core Era ◾ 127

Figure 5.21 An implementation of a finite state machine relied upon fibres.

51: for(Int32 i = 0 ; i < FibNum ; i++)
52: delete fibs[i];
53: delete fibs;
54: return 0;
55: }
56: };

1: class FibreExample2 : public Object {
2: /*---------------------fields----------------*/

3: private: struct FibreInfo {
4: Int32 fibreID;
5: Fibre *mainFib;
6: Fibre **fibs;
7: };
8: /*---------------------methods----------------*/

9: private: static void *fibre_proc(void *arg) {
10: FibreInfo *info = (FibreInfo *)arg;
11: Int32 c;
12: while(true) {
13: printf("\n------\nCurrent state: %d\nEnter a charachter: ", info->fibreID);
14: c = getch();
15: printf("%c", c);
16: if(islower(c)) {
17: Fibre::SwitchToFibre(*info->fibs[info->fibreID], *info->fibs[0]);
18: continue;
19: }
20: if(isupper(c)) {
21: Fibre::SwitchToFibre(*info->fibs[info->fibreID], *info->fibs[1]);
22: continue;
23: }
24: if(isdigit(c)) {
25: Fibre::SwitchToFibre(*info->fibs[info->fibreID], *info->fibs[2]);
26: continue;
27: }
28: if(c == '@')
29: Fibre::SwitchToFibre(*info->fibs[info->fibreID], *info->mainFib);
30: else
31: printf("\nInvalid charachter");
32: }
33: return arg;
34: }
35: public: static int Parvicrursor_main(int argc, char *argv[]) {
36: const Int32 FibNum = 3;
37: FibreInfo infos[FibNum];
38: Fibre **fibs = new Fibre*[FibNum];
39: Fibre *mainFib = &Fibre::ConvertThreadToFibre();
40: for(Int32 i = 0 ; i < FibNum ; i++) {
41: infos[i].fibreID = i;
42: infos[i].mainFib = mainFib;
43: infos[i].fibs = fibs;
44: fibs[i] = new Fibre(4*1024, fibre_proc, (void *)&infos[i]);
45: }
46: Fibre::SwitchToFibre(*mainFib, *fibs[0]);
47: Fibre::ConvertFibreToThread();
48:
49: printf("\nThe program is to terminate ...\n");
50:

128 ◾ Implementing Parallel and Distributed Systems

of synchronisation constructs briefly. For this purpose, we describe synchronisation
in the Linux operating system based on the futex() system function. As a typi-
cal example, an implementation of the mutex abstraction through this function is
detailed. The main purpose is to prepare the reader to design high-level synchronisa-
tion constructs with high flexibility, efficiency, and scalability. A very small number of
programmers directly use this method for synchronisation in their programs.

A futex is made up of a kernel space wait queue that is connected to an aligned
integer number. Multiple threads on the integer operate perfectly in userspace (with
atomic primitives) and resort to relatively expensive system calls only to request
operations on the wait queue. A futex-based programmed mutex (lock) will not use
system calls unless when the mutex is contended. The implementation and opera-
tion of futexes are similar to the critical sections in the Windows operating system.
Figure 5.22 defines the futex() system function’s prototype. The uaddr argument
must point to an aligned integer that holds the counter. The operation on this value
is passed by the op argument to be executed. The state of a lock can be defined as
0 (unlocked) and 1 (locked). To acquire the lock, an atomic test-and-set instruction
(like CAS) can be used to test 0 and set 1. In this case, the locking thread acquires
the lock without contention. When the next thread tries to take over the lock, the test
for zero will fail and there will be a need to involve the kernel. The blocking thread
can then use the futex() system call with the FUTEX_WAIT opcode to put itself to
sleep on the futex, which is carried out by passing the address of the futex state vari-
able in the uaddr argument. To release the lock, its owner changes the lock mode
to zero and issues the FUTEX_WAKE opcode, which wakes the blocked thread up to
return to the userspace and acquire the lock.

Now, based on these explanations, we consider implementing a mutex. Figure 5.23
demonstrates a simple library to implement the mutex synchronisation construct. The
functions Parvicursor_mutex_init() and Parvicursor_mutex_destroy(),
by simply setting the value of the mutex pointer to zero, initialise and destroy the
mutex pointer, respectively. In this implementation, the built-in functions of the GCC
compiler such as __sync_val_compare_and_swap and __sync_fetch_and_
sub are employed. The implementation of such built-in functions as CAS for x86
and x64 processors will be discussed in detail in Section 5.3. The futex() sys-
tem call is realised directly by calling the syscall() function and passing the
SYS_futex system call number. Figure 5.24 shows a typical example of using the
designed mutex object. This is a generalised example of Figure 5.18 in which threads
are created based on the clone() system call. The pieces of code shown by the
three-dot symbol are omitted sections in the example within Figure 5.18. The shared
variable counter is incremented between the Parvicursor_mutex_lock() and
Parvicursor_mutex_unlock() functions, which have been placed to establish a
mutual exclusion, within an infinite loop.

Figure 5.22 Prototype of futex() system call definition.

1: int futex(int *uaddr, int op, int val, const struct timespec *timeout, int *uaddr2, int val3);

Parallelisation for the Many-Core Era ◾ 129

5.3 Non-Blocking Synchronisation and Transactional Memory
5.3.1 Introduction

As stated in the previous sections and chapters, in traditional multi-threaded
programming, a variety of mutual exclusion constructs such as critical sections,
mutexes, and semaphores are used to synchronise and ensure that regions of code do
not run concurrently. If a thread attempts to acquire a lock that was previously held
by another thread, that thread will be blocked until the lock is released. When one
thread is blocked, it can do no other work. In addition, in most operating systems,
including microkernels, to achieve such a function, a context switch must be made
from userspace to kernel in order to acquire the desired lock; if a lock is attempted

Figure 5.23 Implementation of the mutex synchronisation using the futex() system call in the
Linux operating system and atomic hardware primitives.

1: #include <unistd.h>
2: #include <limits.h>
3: #include <sys/syscall.h>
4: #include <linux/futex.h>
5: typedef unsigned int volatile Parvicrursor_mutex_t;
6:
7: void Parvicrursor_mutex_init(Parvicrursor_mutex_t *mutex) {
8: *mutex = 0;
9: }

10:
11: void Parvicrursor_mutex_destroy(Parvicrursor_mutex_t *mutex) {
12: *mutex = 0;
13: }
14:
15: static inline void Parvicrursor_mutex_lock(Parvicrursor_mutex_t *mutex) {
16: unsigned int c;
17: if((c = __sync_val_compare_and_swap(mutex, 0, 1)) != 0) {
18: do {
19: if((c == 2) || __sync_val_compare_and_swap(mutex, 1, 2) != 0)
20: syscall(SYS_futex, mutex, FUTEX_WAIT_PRIVATE, 2, NULL, NULL, 0);
21: } while((c = __sync_val_compare_and_swap(mutex, 0, 2)) != 0);
22: }
23: }
24:
25: static inline void Parvicrursor_mutex_unlock(Parvicrursor_mutex_t *mutex) {
26: if(__sync_fetch_and_sub(mutex, 1) != 1) {
27: *mutex = 0;
28: syscall(SYS_futex, mutex, FUTEX_WAKE_PRIVATE, 1, NULL, NULL, 0);
29: }
30: }

130 ◾ Implementing Parallel and Distributed Systems

to be acquired by multiple threads many times (namely, in a highly contended
environment, as stated in Chapter 4), context switching overheads become very
serious.

In addition, as noted in Chapter 4, the use of traditional blocking synchronisation
methods poses several problems, such as deadlock, contention, and priority inver-
sion, especially in highly concurrent environments. Using locks also creates a trade-
off between coarse-grained synchronisation, which greatly reduces parallelism, and
fine-grained synchronisation, which requires careful design and increases locking
overhead and is prone to faults.

Two very popular methods that look at thread synchronisation from a totally
different angle, which are much more efficient than mutual exclusion methods,
include non-blocking synchronisation algorithms and transactional memory (TM).
In the following, we will examine the first method thoroughly and then take a brief
look at the second method.

5.3.2 Non-Blocking Synchronisation Algorithms

Non-blocking synchronisation is a multi-threaded programming model that avoids
the nature of blocking and the problems stated for mutual exclusion. In turn, differ-
ent synchronisation methods are used, which aim to provide certain progress guar-
antees even if some threads are arbitrarily delayed for a long time. This method is
primarily employed to implement concurrent data structures such as stacks, queues,
linked lists, and hash tables. Designing non-blocking concurrent data structures are

Figure 5.24 An example using the designed mutex relied on futexes in a multi-threaded
application.

1: ...
2: static int counter = 0;
3: static Parvicrursor_mutex_t mutex;
4: // The child thread will execute this function

5: int thread_proc(void *arg) {
6: while(true) {
7: Parvicrursor_mutex_lock(&mutex);
8: counter++;
9: Parvicrursor_mutex_unlock(&mutex);

10: printf("I'm child thread %d with pid %d counter %d\n", (int)arg, getpid(), counter);
11: }
12: return 0;
13: }
14:
15: int main(int argc, char *argv[]) {
16: Parvicrursor_mutex_init(&mutex);
17: ...
18: Parvicrursor_mutex_destroy(&mutex);
19: return 0;
20: }

Parallelisation for the Many-Core Era ◾ 131

much more difficult than their sequential counterparts, which are developed based
on blocking synchronisation constructs but can be more efficient in the presence of
high contention between threads.

As mentioned, non-blocking implementations are exploited to overcome the
many problems associated with the use of locks. To formalise this idea, several non-
blocking progress conditions are discussed in the literature, such as wait-freedom,
lock-freedom, and obstruction-freedom.

	 •	 In a wait-free operation, each running thread is guaranteed to complete its
operation, regardless of the speed of execution of other threads. Wait freedom
ensures the absence of livelock and starvation.

	 •	 A lock-free operation ensures that a number of operations are completed after
a finite number of steps. Lock freedom guarantees the absence of livelock, but
not starvation.

	 •	 An obstruction-free operation is guaranteed to be completed within a finite
number of its own steps after interfering with a collision from another operation.

Clearly, wait-freedom is a stronger condition than lock-freedom, and lock-freedom
is instead stronger than obstruction-freedom. However, all of these conditions are
strong enough to prevent the use of blocking structures such as locks. Whilst stron-
ger progress conditions seem desirable, implementations that create weaker guar-
antees are generally simpler, more efficient in most cases, and easier to design and
validate as well. It is difficult to argue about the correctness of concurrent programs
because all possible interactions between running threads must be considered simul-
taneously. This is especially true for non-blocking algorithms in which threads inter-
act in subtle ways through dynamically allocated data structures. Other advantages
of non-blocking synchronisation algorithms are as follows:

	 •	 Non-blocking synchronisation minimises interference between process
scheduling and synchronisation. For example, the highest-priority process
can access a synchronised data structure without being delayed or blocked
by a lower-priority process. Compared to blocking synchronisation, a low-
priority process holding a lock can delay a higher-priority process, effectively
neutralising the process schedule. Blocking synchronisation can also cause a
process to be delayed by another process holding a lock that involves a page
fault or a cache miss. This delay can be hundreds of thousands of cycles for a
page fault. Non-blocking synchronisation also forms a lock convoy.

	 •	 Non-blocking synchronisation allows synchronised code to be executed any-
where, for example executable code at an interrupt or asynchronous signal
handler without the risk of deadlock because synchronisation is handled by
hardware.

	 •	 Non-blocking synchronisation aims at fault tolerance. They only allow a small
inconsistency window (a window over which a data structure is in an incon-
sistent state). By contrast, in lock-based synchronisation methods, the incon-
sistency window may surround the entire locked critical section. These larger
critical sections and lock protocols also increase the risk of deadlock or failure
to release locks on certain code paths.

132 ◾ Implementing Parallel and Distributed Systems

	 •	 Non-blocking synchronisation can reduce interrupt latencies. Systems that per-
form blocking synchronisation can avoid disabling interrupts for long periods
of time. Instead, interrupts can make progress, and recently running operations
will be re-attempted. Blocking algorithms dynamically give the system the abil-
ity to make decisions about a task with higher priority.

	 •	 Non-blocking algorithms support system maintainability. Independently
designed modules can be combined without knowledge of their internal details
(because synchronisation is universally handled by hardware based on the
architectural specifications of a processor for all tasks).

	 •	 Non-blocking synchronisation increases the overall throughput of the system
by allowing processes to proceed even if a single process modifying a shared
data structure is delayed. It allows synchronisation even where mutual exclu-
sion is prohibited due to the need to resolve confinement issue. (The confine-
ment issue requires a system to suspend a program during its execution so that
it cannot communicate with anyone other than its caller. Mutual exclusion on
a shared resource provides a mechanism by which readers can modulate as a
signal to establish a covert channel behind the writer, even if the information
flow is unidirectional; in a non-blocking algorithm with the unidirectional flow
of information, readers have no way of signalling the writer [1].

In the following, we will study in detail how non-blocking algorithms are imple-
mented, and, as a result, the reader will have the ability to step into this attractive
and promising avenue in terms of research and production. We first look at how a
low-level non-blocking synchronisation routine is built on hardware synchronisation
primitives for x86 and x64 processor architectures on Unix-like operating systems
(such as Linux) and Windows. Then, based on this implemented single routine, we
design and implement a counter, a stack (designed by the authors of this book), a
dynamic memory allocator (designed by the authors of this book), and an array list
(published using an existing algorithm). In this way, we will address many of the
challenges that we faced during the implementation of these data structures.

The hardware primitive used here is the atomic compare-and-swap (CAS) opera-
tion shown in Figure 4.23. Let’s first modify the definition prototype of the com
pare_and_swap function and then implement it in the assembly language. Figure
5.25 shows this prototype in line 9 for 32-bit and 64-bit x86 and x64 processors
(such as Intel or AMD processors) for the Windows operating system (in the text of

Figure 5.25 The definition prototype of the compare_and_swap function used in this book.

1: // Define the long data type for x86 and x64 architectures targeting the Windows OS.

2: #if defined _M_IX86
3: typedef signed long Long;
4: #else if (defined _M_X64)
5: typedef signed long long Long;
6: #endif
7:
8: // The prototype of the function Parvicrursor_AtomicCompareAndSwap().

9: static inline bool Parvicrursor_AtomicCompareAndSwap(void volatile *accum, void volatile *dest, Long
newval);

Parallelisation for the Many-Core Era ◾ 133

the book, we only describe the details of the implementation of this function for the
Microsoft Visual C++ compiler). All the code for implementing this function on
the Linux operating system, which is compiled using GCC, is also available in the
“/Parvicursor/Parvicursor/atomic” path from the companion resources of
this book (moreover, the implementation of a cross-platform CAS is available in this
path and average readers can easily understand the assembly codes through its anno-
tations). In this function, if the values pointed by the accum and dest pointers are
equal, the value of newval is placed in the address of dest pointer and this func-
tion returns a value of true; otherwise, if these two values are inequal, or if another
thread is updating the dest location, the value in the address of dest pointer is
copied into the address of accum pointer and returns a value of false.

Since CAS function works on addresses in memory, this function must be used
on 32-bit systems on values and pointers of four bytes, and 64-bit systems on values
and pointers with eight-byte length, which in fact is indicative of the length of the
address space that can be accessed by processes and threads. The Long data type for
this purpose in x86 and x64 processors is defined as signed long and signed
long long in Figure 5.25 using C pre-processors. Since the type of both accum and
dest pointers is defined as void in the definition of CAS function, the compiler dur-
ing the translation of C or C++ language codes based on the platform for which the
code is compiled takes the length of the void data type as four or eight bytes into
account. The inline keyword instructs the compiler to replace the contents of the
CAS function directly where it is called, thus avoiding the overhead due to frequent
function calls.

It is essential to explain the role of the volatile keyword in the CAS function
prototype because in most textbooks of the C programming language, the role of this
keyword is described by merely one or two lines. This keyword has special properties
related to code optimisation by the compiler and threading. This keyword tells the
compiler to avoid any optimisations to the guarded by it that assume the values of the
variables cannot be changed on their own. In one sentence, this keyword prevents
the compiler from optimising the code containing the volatile objects. A volatile vari-
able should be to be declared volatile whenever its value could change unexpectedly.
When using the CAS function, since the two addresses dest and accum are accessed
randomly and indefinitely by multiple threads, they must be declared volatile.

With these principles in hand, we now implement the Parvicursor_
AtomicCompareAndSwap function in assembly code for 32-bit and 64-bit Windows
operating systems. Figures 5.26 and 5.27 show this implementation. From lines 10
to 32 of Figure 5.26, the implementation of this function for 32-bit x86 processors is
seen as an inline assembly code. Inline assembly is a C-compiler feature that allows
very low-level code written in assembly language to be embedded in C or C++ codes.
This embedding is commonly used for a variety of purposes, such as improving pro-
gram performance, reducing memory requirements, and controlling hardware. This
method likewise allows us to embed assembly language instructions directly into our
program’s codes without additional assembly and linking steps. An inline assembly is
built into the compiler, so there is no need to use a separate assembler like MASM for
Windows or NASM for Linux. In line 13, the address of the accum variable is loaded
into the edx register. In line 14, the value of variable accum is loaded into the eax
register. The cmpxchg instruction, which is made atomic using the atomic lock

134 ◾ Implementing Parallel and Distributed Systems

prefix, performs an exchange-and-swap operation by comparing the value in the
location of the address stored in the ebx register (which holds the address of dest
pointer) and the ecx register value (which stores the value of the newval variable in
itself). The result of this operation is stored by the processor in the ZF flag as a bit,
in line 18; if this operation fails, a jump is made to line 26, which contains the label
Unsuccessful. If the cmpxchg instruction succeeds in line 20, the value 1, which
is true, returns as a value inside the eax register. If the cmpxchg operation in line
27 fails, we copy the contents of the eax register (which contains the current value
of the dest pointer, which is atomically filled by the processor) into the location to
where the edx register points (which is actually the address of the accum pointer)

Figure 5.26 Implementation of the Parvicursor_AtomicCompareAndSwap function for
x86 and x64 architectures used in this book based on the MASM assembly language.

1: /*

2: The C's prototype of the Parvicrursor_AtomicCompareAndSwap function for x64 architectures.

3: In x64 architectures, use the assembly file atomic_x64.asm for the following CAS function in Windows OS.

4: We did this because Microsoft C++ Compiler for x64 architectures does not support assembly inlining.

5: */

6: extern "C" inline bool Parvicrursor_AtomicCompareAndSwap_x64(void volatile *accum, void volatile
*dest, Long newval);

7:
8: static inline bool Parvicrursor_AtomicCompareAndSwap(void volatile *accum, void volatile*dest, Long

newval)
9: {

10:
11: #ifdef _M_IX86
12: __asm {
13: mov edx,accum // Load the address of the accum variable into edx.

14: mov eax,[edx] // Load the value of the accum variable into eax.

15: mov ebx,dest // Load the address of the dest variable into ebx.

16: mov ecx,newval // Load the value of the newval variable into ecx.

17: lock cmpxchg [ebx],ecx // Atomic compare and exchange between [ebx] and ecx.

18: jne Unsuccessful // If the values are not equal or the operation was failed

19: // due to concurrent access of threads, then jump if ZF=0.

20: mov eax,1 // Here, we must fill eax with the true values due to the successful

21: // operation of the cmpxchg instruction.

22: jmp End
23: // Don't call the ret instruction from the inline assembly, otherwise you'll skip the

24: // epilog code that the compiler puts at the end of the function to clean the stack.

25:
26: Unsuccessful:
27: mov [edx],eax // Copy the eax content (the value of the location pointed by the dest)

28: // within the address of the pointer accum.

29: mov eax,0 // Here, we must fill eax with the value false due to the unsuccessful

30: // operation of the cmpxchg instruction and return with result in eax.

31: End:
32: }
33: #elif defined _M_X64
34: return Parvicrursor_AtomicCompareAndSwap_x64(accum, dest, newval);
35: #else
36: #error Parvicrursor_AtomicCompareAndSwap function is only compiled for x86/x64 CPU architectures.
37: #endif
38: }

Parallelisation for the Many-Core Era ◾ 135

and the function returns by filling a zero value (which indicates false value) into
the eax register. It is worth noting that the return value of a function in the MASM’s
inline assembly structure (whether a numeric value or the address of a variable) must
be placed inside the eax register in the x86 architecture.

We now consider the implementation of the Parvicursor_Atomic
CompareAndSwap_x64 function for 64-bit x64 architectures. This implementation is
very different from what was stated for the 32-bit x86 architecture. In particular, on a
64-bit Windows operating system, it is not possible to use an inline assembly via the
Microsoft Visual C++ compiler (such a problem does not exist for GCC compiler, and
we implemented the CAS function for the Linux operating system based on inline
assembly). Microsoft’s abandonment of support for inline assembly coding for 64-bit
platforms appears to further simplify the task of optimisation and development of
newer versions of the C++ compiler.

Therefore, to implement a CAS function, you must either have intrinsic functions
[2] (intrinsic functions are those whose implementation is handled by the compiler.
They replace a sequence of automatically generated instructions to call the main
function in the code, similar to an inline function), or link the external assembly
files (by compiling the assembly file, an object file is generated that is linked to
the output executable using a linker program). According to the prototype of the
Parvicursor_AtomicCompareAndSwap function definition, we use the second

Figure 5.27 Assembly implementation of the Parvicursor_AtomicCompareAndSwap_x64
function for 64-bit x64 processors.

1: PUBLIC Parvicrursor_AtomicCompareAndSwap_x64
2:
3: .code
4: Parvicrursor_AtomicCompareAndSwap_x64 PROC uses rdx
5: ;The Microsoft x64 calling convention (for long mode on x86-64) takes advantage of additional register

6: ; space in the AMD64/Intel 64 platform. The registers RCX, RDX, R8, R9 are used for integer and pointer

7: ; arguments (in that order left to right), and XMM0, XMM1, XMM2, XMM3 are used for floating point arguments.

8: ; Additional arguments are pushed onto the stack (right to left). Integer return values (similar to x86) are

9: ; returned in RAX if 64 bits or less. Floating point return values are returned in XMM0. Parameters less than 64

10: ; bits long are not zero extended; the high bits contain garbage.

11:
12: mov rax,[rcx] ; Load the value of the accum variable into rax. The rcx register contains the address of the

accum.

13: lock cmpxchg [rdx],r8 ; The r8 register contains the value of newval and rdx contains the address of the

dest.

14: jne Unsuccessful ; Jump if ZF=0

15: mov rax,1
16: ret
17:
18: Unsuccessful:
19: mov [rcx],rax ;Copy the rax content into the location pointed by accum.

20: mov rax,0
21: ret
22:
23: Parvicrursor_AtomicCompareAndSwap_x64 ENDP
24:
25: End

136 ◾ Implementing Parallel and Distributed Systems

method, which in addition to being fully compatible with the concepts stated for
implementing the CAS function based on inline assembly and mentions interesting
points about the 64-bit processor architecture for a better understanding of the reader.

Figure 5.27 shows the implementation of the CAS function in an external assem-
bly code for x64 platforms. As can be seen, this code is very different from the inline
assembly code of the CAS function for 32-bit x86 architectures. Since the number of
CPU registers in x64 architectures is very large (the number of registers is 16, includ-
ing, rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, and r8 to r15 registers), so the func-
tion calling convention is faster and more different than their x86 counterparts. In
32-bit x86 architectures, the calling convention describes the calling code interface.
One of the most important parts of this agreement is how parameters are passed
when calling a function, pushed on the stack, placed in registers, or a combination
of both. Since the number of registers in x64 architectures is large, the stack space
usage can be completely ignored, and when calling a function, a number of its argu-
ments can be placed directly into registers. For example, in a 64-bit Windows oper-
ating system, up to four input arguments of a function for integer values or pointer
addresses are inserted into the four registers rcx, rdx, r8, and r9 from left to the
right side, and if there are more arguments, then more pushing on the stack is used.
In Unix-style operating systems, calling convention benefits from six registers rdi,
rsi, rdx, rcx, r8, and r9 for integer values or pointer addresses. Based on a simple
experiment done on the GCC compiler for x64 platforms, we obtained a 1.4- to-
1.5-fold performance increase on the same machine with the same C language code
for a function call with two input arguments, indicating that the x64 platforms have
taken an important step forward. In addition, the address space of 64-bit architec-
tures is a maximum of 264 as compared to 232 for 32-bit processors.

After compiling the assembly code shown in Figure 5.27 (which is available in
the “/Parvicursor/Parvicursor/atomic/atomic_x64.asm” path from the
companion resources in this book), an object file is created, which must eventually
be linked with the main executable program by a linker. For this purpose, when
using the function written in assembly language in C codes, the definition prototype
of this function should be declared as shown in line 6 of Figure 5.26. The extern
“C” expression tells the compiler that the marked function must be compiled in a
C style to combine with the implementation in the external assembly, and, in fact,
this function has a C linkage. The value of the newval variable and the addresses
of accum and dest pointers are set by C compiler to the three registers rcx,
rdx, and r8, respectively. The implementation description of the Parvicursor_
AtomicCompareAndSwap_x64 function written in the assembly language is the
same as the implemented function in Figure 5.26; so, we will refrain from re-expla-
nation. Now that the CAS function is fully implemented, we can develop several non-
blocking algorithms for concurrent data structures. All code for these algorithms is
available in the “/Parvicursor/Samples/LockFree” path.

Before giving examples of lock-free algorithms that leverage the developed CAS
function, it is worthwhile to briefly address one of the key problems that you must
bear in mind when designing such algorithms. Of course, all the examples described
below do not suffer from this problem. When using the CAS function to design a
lock-free algorithm, a problem called ABA may occur, so non-blocking algorithms
must be designed to be ABA-free. This problem occurs when a thread reads an A

Parallelisation for the Many-Core Era ◾ 137

value from a shared location, and then other threads change that location to a differ-
ent value, say B, and then change it to A.

The first, very simple lock-free (non-blocking) algorithm is to implement a coun-
ter based on the CAS function. Figure 5.28 shows the prototype of the counter class’s
definition. Since the variable count must be updated or accessed by the CAS function,
we define it as volatile. The two main methods of this class are Increment()
and Decrement(), which add or subtract a one to the count variable. In a block-
ing implementation, these two functions’ bodies must be placed inside a critical sec-
tion such as a mutex, which, as mentioned, has many disadvantages and overheads.
Figure 5.29 illustrates the non-blocking implementation of these two methods. In
the counter class’s constructor, the count variable is filled by a value of zero for the
first time. For an easier understanding of the implementation of the Increment()
method, first, suppose that only a single thread has invoked it. It is important to note
that since the first argument of the CAS function is defined as volatile, the vola
tile keyword is added to the temp1 variable in line 7 of Figure 5.29 as well. The
value of temp1 is chosen to be 10 before coming at the loop in line 10 so that it
is not equal to the value of the count variable when entering this method, and this
makes the code execution flow to enter the while loop.

Since these two values are not equal, the CAS function sets the current value of
the count variable to temp1, and in line 11 the temp2 value is added to this read
value, and the loop continues; this time because the count and temp1 values are
equal, the CAS function places the temp2 value into the address of count variable,
and the code execution flow jumps out of the while loop. Now suppose that two or
more threads invoke the Increment() method concurrently, since in this example
only one location of memory is accessed and modified by the CAS function, so if

Figure 5.28 Prototype definition of the lock-free counter class.

1: // A simple, straightforward, lock-free counter.

2: class LockFreeCounter : public Object
3: {
4: /*---------------------fields----------------*/

5: private: Long volatile count;
6: /*---------------------methods----------------*/

7: // LockFreeCounter Class constructor.

8: public: LockFreeCounter();
9: // Gets the current value of the count variable.

10: public: inline Long get_Count();
11: // Incerements the count variable.

12: public: inline void Increment();
13: // Decrements the count variable.

14: public: inline void Decrement();
15: // Gets the current value of the count variable and increments it.

16: public: inline Long get_Count_And_Increment();
17: // Gets the current value of the count variable and decrements it.

18: public: inline Long get_Count_And_Decrement();
19: };

138 ◾ Implementing Parallel and Distributed Systems

the CAS function fails due to concurrent access to multiple threads, the while loop
repeats until the value of temp2 variable is successfully and indivisibly placed into the
address of count variable. Implementing the rest of the lock-free counter class’s meth-
ods is available in the “/Parvicursor/Parvicursor/Samples/LockFree” path.

Now let’s consider implementing a lock-free stack. A stack is an abstract last-in
first out (LIFO) data and a linear data structure. A stack can contain any abstract data
type as an element and has two fundamental operations called push and pop. The
push operation adds a new item to the top of the stack. If the stack is full and does
not have enough space to accept a new item, in the simplest case the push operation
can return a false value to indicate the stack is full. The pop operation removes an
item from the top of the stack; if the stack is empty, a false value returns indicating
that the stack is empty. The following is an implementation of a lock-free concur-
rent stack that relies on a doubly linked list. Figure 5.30 shows our designed data
structure. In this implementation, to separate the logic of the proposed algorithm
from memory operations, we now omit to describe dynamic memory allocation and
assume that the stack elements have already been allocated, and, consequently, we
discuss an implementation of a bounded stack (hereinafter, this problem is consid-
ered in full, and a lock-free dynamic memory allocator will be designed).

In this doubly linked list, the next and prev references point respectively to
a successor node and a predecessor node of each element (or node) of the stack.

Figure 5.29 Lock-free implementation of the Increment() and Decrement() methods of
the counter class.

1: LockFreeCounter::LockFreeCounter() {
2: count = 0;
3: }
4:
5: void LockFreeCounter::Increment() {
6:
7: Long volatile temp1 = -10;
8: Long temp2 = -10;
9:

10: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, &count, temp2)) {
11: temp2 = temp1 + 1;
12: }
13: }
14:
15: void LockFreeCounter::Decrement() {
16:
17: Long volatile temp1 = -10;
18: Long temp2 = -10;
19:
20: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, &count, temp2)) {
21: temp2 = temp1 - 1;
22: }
23: }

Parallelisation for the Many-Core Era ◾ 139

For simplicity, we suppose that each node stores an integer data type. The first
node points to the beginning and the last node to the end of the doubly linked
list. n indicates the length of the bounded stack. The accompanying head reference
points to the end of our main stack from where either a push or a pop operation is
always performed. The stack is full when the head reference points to last, and the
stack is empty when the prev field of the head reference points to null; otherwise,
the stack is half full and the head pointer is located somewhere between the address
of the first and last pointers. Figure 5.31 shows the prototype of the lock-free
stack class definition. The PreAllocate() method is used in the constructor of this
class to allocate the doubly linked list data structure. Figure 5.32 shows a lock-free
implementation of the Push() and Pop() methods. The reader can refer to the “/
Parvicursor/Parvicursor/Samples/LockFree” path to see the implementa-
tion of the rest of the methods for this class.

Since the head pointer’s location only changes in this lock-free implementation,
this pointer is used in the CAS function. The first time that line 4 executes, the cur-
rent value of the head is read and placed into the current pointer; if the pointer
is null, then the stack is empty, and the head address must be updated to the
first node. Otherwise, if the next node of current is not null, the value of the
temp variable is changed to the next node of current, and in the next iteration
of the while loop, this value replaces the previous pointer of head. At this point,
head points to a new location on the right-hand side of the stack. Because in this
operation only one memory location is updated, in concurrent access of two or more

Figure 5.30 A specialised data structure designed as a doubly linked list to implement the lock-
free stack.

data

data

data

data

data

data…..null null

push

popdata
data

next

prev

next

prev

next

prev

next

prev

next

prev

headfirst last

1 2 3 4 5 n

140 ◾ Implementing Parallel and Distributed Systems

threads to the head pointer, this loop is executed atomically and there is no need to
prove the functional correctness of the Push() method. In the Pop() method, some
mechanisms are performed, but the difference is that this method uses the prev
reference of the stack elements, using the CAS function shown between lines 18
and 29. In the Pop() method, the return value of the integer type is placed into the
pointer of the data argument. The Out parameter in the Pop() method definition
is just an empty predefined macro, which means that the argument is an output, not
an input. The implementation of a test class (LockFreeStackTest class) to check
the functionality of our lock-free stack can be found in the file “LockFreeStack/

Figure 5.31 Prototype definition of the lock-free stack.

1: //The lock-free stack is implemented as a doubly linked list.

2: class LockFreeStack : public Object {
3: /*---------------------fields----------------*/

4: // The node definition.

5: private: struct Node {
6: Int32 data;
7: Int32 index;
8: struct Node volatile *prev; // The predecessor node with respect to this node.

9: struct Node volatile *next; // The successor node with respect to this node.

10: };
11: private: Node volatile *head; // The head pointer.

12: private: Node volatile *first; // The first pointer.

13: private: Node volatile *last; // The last pointer.

14: private: Int32 stackSize; // The stackSize is equivalent to the n.

15: private: bool disposed; // For destructor use.

16: private: Node *dummy; // A dummy node used in the stack implementation.

17: private: LockFreeCounter counter; // Stores the number of elements in the stack.

18: /*---------------------methods----------------*/

19: // LockFreeStack Class constructor.

20: public: LockFreeStack(UInt32 stackSize);
21: // LockFreeStack Class destructor.

22: public: ~LockFreeStack();
23: // Preallocates the bounded doubly linked list.

24: private: void PreAllocate();
25: // Deallocates the bounded doubly linked list.

26: private: void DeAllocate();
27: // Inserts an element at the top of the stack.

28: // This method is an O(1) operation.

29: public: bool Push(Int32 data);
30: // Removes and returns the element at the top of the stack.

31: // This method is an O(1) operation.

32: public: bool Pop(Out Int32 *data);
33: // Gets the number of elements available in the stack.

34: public: Long get_Count();
35: };

Parallelisation for the Many-Core Era ◾ 141

LockFreeStack.h,” where two threads named pusher and popper constantly
invoke the Push() and Pop() methods for an object instance of the stack class
simultaneously.

As stated in the lock-free stack design, we did not use dynamic memory alloca-
tion in the Push() and Pop() methods, and instead employed a pre-allocated data
structure. In this section, we address the issue of concurrent dynamic memory alloca-
tion, and design and implement a memory allocator with fixed-size blocks for use in
non-blocking concurrent systems such as lock-free data structures.

Dynamic memory management routines (malloc and free) are heavily used
in C and C++ applications. This pair of routines are considered sufficiently fast and
without performance bottlenecks for sequential programs. However, the dynamic
memory allocator may severely degrade the performance of multi-threaded applica-
tions if it is not scalable [3]. To create a safe execution in multi-threaded environ-
ments, current allocators avail of mutual exclusion locks in a variety of ways, ranging
from the use of a single lock wrapped around the malloc and free functions, to
the distributed use of locks in order to let more concurrency and higher scalability.
Using locks, in addition to the problems stated due to mutual exclusion, imposes
limitations on efficiency, availability, robustness, and programmability. A desirably
alternative method but challenging for achieving multi-threaded safety is lock-free
synchronisation. First, let’s look at why lock-free synchronisation makes dynamic

Figure 5.32 Lock-free implementation of the Push() and Pop() methods of the stack class.

1: bool LockFreeStack::Push(Int32 data) {
2: Node volatile *temp = null;
3: Node volatile *current = dummy;
4: while(!Parvicrursor_AtomicCompareAndSwap(¤t, &head, (Long)temp)) {
5: if(current == null) // The beginning of the stack was reached.

6: temp = first;
7: else {
8: if(current->next == null)
9: return true; // The stack is full.

10: temp = current->next;
11: }
12: temp->data = data;
13: }
14: counter.Increment();
15: return false; // The stack is not full.

16: }
17:
18: bool LockFreeStack::Pop(Out Int32 *data) {
19: Node volatile *temp = null;
20: Node volatile *current = dummy;
21: while(!Parvicrursor_AtomicCompareAndSwap(¤t, &head, (Long)temp)) {
22: if(current == null)
23: return false; // The stack is empty.

24: *data = current->data;
25: temp = current->prev;
26: }
27: counter.Decrement();
28: return true; // The stack is not empty.

29: }

142 ◾ Implementing Parallel and Distributed Systems

memory management too difficult. The key problem is that a memory block (such
as a node in a linked list) cannot be freed unless we can guarantee that no thread
will subsequently modify that block. Otherwise, a thread might modify the memory
block with potentially dangerous consequences after it has already been reallocated
for another purpose. In those data structures that use locks, a common pattern is
to ensure that a thread can obtain a pointer to a particular block only after it has
been locked, and this warrants that there is only one active pointer to that block.
Conversely, in lock-free data structures, it may be hard for a thread whilst releasing
a block to ensure that no other thread has that pointer in a local variable. There are
several benefits to using a non-blocking synchronisation in the design of a memory
allocator, including below:

	 •	 To provide a general-purpose memory allocator for use in lock-free algorithms
and data structures that employ dynamic memory.

	 •	 To improve scalability in highly contended concurrent systems, especially where
the number of running threads exceeds the number of processors.

	 •	 To increase fault tolerance whilst the failure of one thread cannot block the
progress of other threads.

In the following, we describe the design and implementation of a lock-free memory
allocator. To reduce the complexity of a comprehensive allocator with arbitrarily vari-
able size of data (because it is outside the scope of this book), we present a fixed-size
allocator based on a memory pool model. A memory pool is a technique of pre-allo-
cating a number of blocks of the same size that provides dynamic memory allocation
comparable to the malloc function. A memory pool is a memory allocation with
constant runtime and no memory fragmentation (memory fragmentation takes place
when most of the memory is allocated to a large number of blocks or non-contiguous
chunks, which leaves a high percentage of the whole memory unallocated, but this
memory becomes unusable for most scenarios). Using a pair of malloc and free
functions, when memory is severely fragmented, memory allocations are likely to
take longer because the memory allocator has to do more to find suitable space for
the new object. To design a dynamic memory allocator relied on a memory pool,
there are at least four objectives that must be met:

	 •	 Requires a large contiguous memory block. This block can be allocated in dif-
ferent ways in an operating system such as heaps (e.g., calling the traditional
malloc function) or by file mapping based on the mmap system function in
Unix-style operating systems.

	 •	 Requires an algorithm to allocate the memory unit to the program code from
the memory block. This is a non-trivial task and is discussed in great detail in
operating system textbooks. For the implementation of a memory pool in this
book, we divide the memory blocks into equally sized units.

	 •	 Furthermore, an algorithm must be considered to reclaim the memory unit from
the program code. Exactly the same issue that is associated with the allocation
of the memory unit.

	 •	 A more fundamental issue in designing a dynamic memory allocator is the syn-
chronisation issue. Standard system memory allocators use a mutex to prevent

Parallelisation for the Many-Core Era ◾ 143

simultaneous access to the allocator’s data structures and to maintain the con-
sistency of these structures. Locking a mutex invokes only a handful of atomic
instructions, and when there is no lock conflict, it is not accounted as a perfor-
mance problem. But on multiple processors and multi-core platforms, multiple
threads invoke the memory allocator simultaneously, which leads to spending a
lot of processing time in performing context switches. Even if the threads work
autonomously in an application (each thread is only accessing objects created
by itself) and therefore do not require synchronisation, there is still only one
memory allocator, and this results in a lot of conflict between threads. The result
is that instead of increasing the expected linear performance, the addition of
processors leads to an exponential decline in performance. Therefore, using a
lock-free algorithm in designing a memory allocator on top of a memory pool
is critical.

Figure 5.33 shows the data structure designed for the memory allocator based on
our memory pool. A singly linked list is used to structure and organise memory slots.
Each node in this list is called a Header, and its next reference points to the next
node. After the pointer address of each node, a memory space with a fixed length
equal to slotSize begins. Figure 5.34 shows the class prototype that implements
this structure. Each time a memory slot is assigned to the program code (which may
require one thread, or two or more threads simultaneously), each node must have a
free flag indicating whether the slot is free for allocation or not. The simplest way to
do this is to go through the beginning of the free linked list and check each node’s
flag, and if this value is false, we will assign it to the requesting thread’s code. This
practically forces us to traverse the entire free linked list from scratch, which will be
corrected in later lines in our proposed algorithm for memory allocation and release.
The first reference points to the beginning and the last reference to the last
node of the linked list. The head reference is used to allocate and free the memory.
After each memory allocation, the reference of the head pointer refers to the next
location of its current value in the hope that the new location will have a free mem-
ory slot; moreover, the free flag of the memory slot relative to the true value must

Figure 5.33 Dedicated data structure designed as a free singly linked list for our memory
allocator based on memory pools.

Header

free flag

1 Header

free flag

2 Header

free flag

3 Header

free flag

4 Header

free flag

n….. null

Memory
Slot 1

Memory
Slot 2

Memory
Slot 3

Memory
Slot 4

Memory
Slot n

Memory Block

Fr
ee

 L
in

ke
d

Li
st

…..

first lasthead

next next next nextnext

144 ◾ Implementing Parallel and Distributed Systems

be modified (i.e., the absence of this slot). Whenever the address of the head pointer
is released, it is updated to the node, and, as a result, the free flag of the correspond-
ing memory slot must be changed to false (i.e., the presence of this slot). As can be
seen, in both memory allocation and release operations, two words of memory must
be updated, the first being the pointer of head reference and the other the free flag.
Therefore, we cannot simply use a standard atomic CAS routine for this update, as
seen in the implementation of the lock-free stack. There are three ways to solve this
problem at first glance.

The first method is to use a double CAS (CAS2) routine that can update two dif-
ferent locations of memory in a routine at once and atomically, but it is practically
impossible to be used at the hardware level because almost all processors currently
lack support for such an assembly-level instruction, and it is almost unlikely that it
will be supported in future, as it has been proved that the CAS function has a perva-
sive generality. At the software level, the CAS2 function can be implemented based
on the CAS function, but in practice this method has an overhead and can severely

Figure 5.34 Prototype definition of the lock-free memory pool class.

1: // A lock-free memory pool based on a singly free linked list.

2: class LockFreeMemoryPool : public Object {
3: /*---------------------fields----------------*/

4: private: struct Header { // The header definition.

5: struct Header volatile *next; // The successor node with respect to this node.

6: // bool isFree;

7: // Actually, this struct can locate in one word; we can use LSB of the next pointer as the free flag.

8: };
9: private: Header volatile *first; // The first pointer.

10: private: Header volatile *last; // The last pointer.

11: private: Header volatile *head; // The head pointer.

12: private: Header volatile *dummy; // A dummy node used in the pool implementation.

13: private: Header volatile *_dummy;
14: private: bool disposed; // For destructor use.

15: private: UInt64 poolSlots; // The number of slots within the memory block.

16: private: UInt64 slotSize; // The fixed size of the allocated memory associated with every slot.

17: private: void volatile *buffer; // The allocated memory for the memory block and free linked list.

18: private: LockFreeCounter counter; // Indicates the number of non-free slots in the memory pool.

19: /*---------------------methods----------------*/

20: // LockFreeMemoryPool Class constructor.

21: public: LockFreeMemoryPool(UInt64 slotSize, UInt64 poolSlots);
22: // LockFreeMemoryPool Class destructor.

23: public: ~LockFreeMemoryPool();
24: // Pre-allocates the entire memory block and free linked list.

25: private: void PreAllocate();
26: // Deallocates the whole allocated memory regions.

27: private: void DeAllocate();
28: // Returns a void pointer to the allocated space or null if there is insufficient memory available.

29: public: void *Malloc();
30: // Deallocates or frees a memory slot.

31: public: void Free(void *memslot);
32: // Gets the number of non-free slots in the memory pool.

33: public: Long get_Count();
34: };

Parallelisation for the Many-Core Era ◾ 145

affect the performance of the memory allocator. Since the free flag is a Boolean value
and in practice just needs the space of a single bit, the third method can be to find a
way in which the next reference of each node and the free flag can be updated simul-
taneously during a single invocation of the CAS function. The only practical method
available for the third solution is to use the special and unique property of tagged
pointers. This technique allows the value of the free flag of a node in the linked list to
be smuggled (encoded) in the least significant bit (LSB) of the next reference of that
node. Often a pointer to certain types of data is aligned as much as that data (such
as four bytes, eight bytes, etc.), leaving a small number of bits unused. Therefore, the
pointer can be tagged with additional information to the number of unused bits.

One of the advantages of tagged pointers, in addition to saving the occupied space
(like our free linked list in this section), is to guarantee the atomicity of an operation
that updates both the pointer and its tag within a single instruction. Besides its applica-
tion in our memory pool example, this method can have a very efficient performance
benefit, especially in operating systems. In 32-bit processor architectures, the number
of these bits is equal to 2 and in 64-bit processors equal to 16. Figure 5.35 shows
several functions to work with tagged pointers. The TaggedPointer_Smuggle

Figure 5.35 The implementation of typical functions to work with tagged pointers in C and C++
languages.

1: static inline void *TaggedPointer_Smuggle(void *ptr, Int32 value) {
2: return (void *)((Long)ptr | (value & 3));
3: }
4:
5: static inline Int32 TaggedPointer_RecoverData(void *ptr) {
6: return (Long)ptr & 3;
7: }
8:
9: static inline void *TaggedPointer_RecoverPointer(void *ptr) {

10: return (void *)((Long)ptr & (~3));
11: }
12:
13: /* Gets the last bit of the LSB */

14: static inline bool is_marked_reference(void *ptr) {
15: return TaggedPointer_RecoverData(ptr) & 1;
16: }
17:
18: /* Sets the last bit of the LSB */

19: static inline void *get_marked_reference(void *ptr) {
20: return TaggedPointer_Smuggle(ptr, 1);
21: }
22:
23: /* Clears the last bit of the LSB */

24: static inline void *get_unmarked_reference(void *ptr) {
25: return TaggedPointer_RecoverPointer(ptr);
26: }

146 ◾ Implementing Parallel and Distributed Systems

function smuggles a two-bit numeric value into two bits of the ptr pointer’s LSB. The
TaggedPointer_RecoverData function retrieves the value of two bits smuggled
into the ptr pointer. The TaggedPointer_RecoverPointer function retrieves the
original pointer whose LSB has already been manipulated. The three functions is_
marked_reference, get_marked_reference, and get_unmarked_reference
are written to make it easier to work with tagged pointers because in this book we only
need one bit as a free flag for our free linked list.

We now discuss the implementation of the LockFreeMemoryPool class’s meth-
ods as shown in Figure 5.36. In line 2, the traditional malloc system function is
used to allocate the region needed to store the entire space of the free singly linked
list data structure and memory slots in the buffer pointer. In every iteration of the
for loop in line 8, we use the allocated memory in the buffer pointer to create
the linked list and the memory slot associated with it. In the Malloc() method in
line 23, we return the null value by checking the counter value if our memory
pool does not have free space to allocate a slot. In line 33, the current location
of head, which is required to prevent searching for free memory slots from the
beginning of the linked list upon entering the Malloc() method, is placed in the
entrance pointer via the CAS function. Inside the while loop and in line 40, if
current is null, which indicates that we have reached the end of the linked list,
we decide whether to search from the beginning of the list to find a free slot or
return a value of null because no slot is free. In lines 47–55, we check to see if
this slot is empty based on the LSB stored in the next reference of the current
pointer. If it is empty, this free flag must be atomically modified to a true value
so that no other thread can access it; this is done in line 50, and the loop iteration
is used to update the free flag. If this operation fails due to simultaneous access of
threads to the current>next address or the current slot is not free, in line 58
the location of the current pointer is changed to the next node of the link list. If
a free slot is found for allocation, in lines 60–65, after changing the head reference
to the current value in line 65, the free slot address is returned to the requesting
thread’s code.

The implementation of the Malloc() method is now complete, and, as can be
seen, the proposed algorithm is very complex. Since in this method the free flag and
the next reference are updated in one atomic operation and the head reference is
updated in another atomic operation (namely, the head value is not read at all in
line 63) and these two CAS operations have no data dependencies, the Malloc()
method is ABA-free.

To complete the implementation of the LockFreeMemoryPool class, we con-
sider developing the Free() method. In line 74, we first find the address of the
header reference, which is actually the address of the node in our linked list based
on the address of the memslot pointer, a simple subtraction is used to find the
location of this node because we had used the sum operation on the pointers in
line 9 of the PreAllocate() method. To release the header pointer after its cal-
culation, we must atomically change the LSB of the next reference as its free flag
in line 80 to a value of false (indicating that this slot is free). Finally, we require
to change the address of the head reference to the header value so that we can
allocate this free memory slot to another thread without probably looking a free slot
up in the linked list when using the Malloc() method. In line 88, we decrement

Parallelisation for the Many-Core Era ◾ 147

Figure 5.36 The implementation of the lock-free memory pool class’s methods.

1: void LockFreeMemoryPool::PreAllocate() {
2: buffer = (void volatile *)::malloc(poolSlots * (slotSize + sizeof(struct Header)));
3: Header volatile *node = null;
4: Header volatile *temp = null;
5: head = null;
6: dummy = (struct Header volatile*)::malloc(sizeof(struct Header));
7: _dummy = dummy;
8: for(UInt64 i = 0 ; i < poolSlots ; i++) {
9: struct Header volatile *node = (struct Header volatile *)((char *)buffer + i*(slotSize +

sizeof(struct Header)));
10: head = node;
11: if(temp != null)
12: temp->next = node;
13: temp = node;
14: if(i == 0)
15: first = (Header *)head;
16: }
17: head->next = null;
18: last = (Header *)head;
19: head = first;
20: }
21:
22: void *LockFreeMemoryPool::Malloc() {
23: if(counter.get_Count() == poolSlots)
24: return null;
25: Header volatile*temp1 = dummy;
26: Header volatile *temp2 = null;
27: Header volatile *current;
28: Header *entrance;
29: bool found = false;
30: bool fullySearched = false;
31: bool lsb = false;
32:
33: Parvicrursor_AtomicCompareAndSwap(&temp1, &head, (Long)temp2);
34: current = temp1;
35: entrance = (Header *)temp1;
36: while(true) {
37: if(current == null) {
38: if(fullySearched)
39: return null;
40: if(entrance <= last && entrance > first) {
41: current = first;
42: fullySearched = true;
43: }
44: else
45: return null;
46: }
47: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, ¤t->next, (Long)temp2)) {
48: lsb = is_marked_reference((void *)temp1);
49: if(!lsb) {
50: temp2 = (Header *)get_marked_reference((void *)temp1); // Set the LSB.

51: found = true;
52: }

(Continued)

148 ◾ Implementing Parallel and Distributed Systems

the value of the counter field due to the release of this slot. An implementation of
a test class (LockFreeMemoryPoolTest class), to check that the lock-free mem-
ory pool class is properly functioning, comes in the file “LockFreeMemoryPool/
LockFreeMemoryPool.h”, in which n threads of control are concurrently allocating
and releasing memory by invoking the Malloc() and Free() methods successively.

At the end of our journey into the fascinating world of lock-free programming,
we explore the implementation of a non-blocking algorithm for an array list that
relies on a lock-free singly linked list [4]; we will make use of our developed lock-
free memory allocator for this array list. Linked lists are one of the most basic data
structures used in designing application programs, so building a lock-free linked list
is of great interest. For example, a linked list can be used to construct more complex
data structures, such as hash tables, graphs, and trees. Figure 5.37 demonstrates our
implemented data structure for the lock-free array list. Following this section, we

53: else
54: break;
55: }
56: if(found)
57: break;
58: current = (Header *)get_unmarked_reference((void *)temp1);
59: }
60: if(found) {
61: temp1 = dummy;
62: temp2 = current;
63: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, &head, (Long)temp2));
64: counter.Increment();
65: return (void *)((char *)current + sizeof(struct Header));
66: }
67: else
68: return null;
69: }
70:
71: void LockFreeMemoryPool::Free(void *memslot) {
72: if(memslot == null)
73: return;
74: Header *header = (struct Header *)((char *)memslot - sizeof(struct Header));
75: if(header == null)
76: return;
77: Header volatile *temp1 = dummy;
78: Header volatile *temp2 = null;
79: /* Safely clear the head->next to indicate that this slot was freed. */

80: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, &header->next, (Long)temp2)) {
81: temp2 = (Header volatile *)get_unmarked_reference((void *)temp1); // Clear the LSB.

82: }
83: /* Atomically update the head to the header (head = header;) */

84: temp1 = dummy;
85: while(!Parvicrursor_AtomicCompareAndSwap(&temp1, &head, (Long)temp2)) {
86: temp2 = header;
87: }
88: counter.Decrement();
89: }

Figure 5.36 (Continued) The implementation of the lock-free memory pool class’s methods.

Parallelisation for the Many-Core Era ◾ 149

will further explain the non-blocking linked list algorithm designed by Harris [4] and
develop our own array list utilising it. In this figure, the two sentinel nodes, head and
tail hold the beginning and ending references of the linked list without storing an
element of the array list. A sentinel node is the one dedicated to be used in linked
lists and trees as a traversal path terminator. Such a node does not hold actual data.
Sentinels are used as an alternative method, instead of a null terminator, to speed
up operations, and to reduce algorithmic complexity and code size.

Here node w is being added between nodes x and y of the linked list. The opera-
tion for adding an element is straightforward. After allocating a new node using our
designed memory pool, this new node is added to the list using a single CAS opera-
tion on the next reference of the previous node. But removing a node from the link
list is not so simple, because when physically deleting a node other threads may be
deleting the predecessor nodes and before this node at the same time; hence, the
deletion operation is inherently complicated.

The technique proposed by Harris for removing a node from the linked list is
to use two separate CAS operations (similar to the one we employed in implement-
ing the LockFreeMemoryPool class). The first is used to mark the next reference
of the deleted node (logical removal), and the second is to delete the actual dele-
tion (physical removal) of the node. Figures 5.38 and 5.39 show the prototype for
defining and implementing the LockFreeArrayList class. Lines 29–33 of Figure
5.38 are the modified methods of Harris’s original algorithm. For example, line 18
of Figure 5.39 shows Harris’s CAS implementation based on the Parvicursor_
AtomicCompareAndSwap function. The Malloc() and Free() methods of the
memory pool object in lines 25, 33, and 67 of Figure 3.58 are used to allocate and
release dynamic memory to create and delete nodes.

The Add() method uses Harris’s modified insert function to add a unique
object to an array list. In Harris’s original algorithm, each node has a unique key;
here we consider this key to be the address of objects. Therefore, our array list only
allows the addition of unique objects that do not already exist in the linked list. If the
address of the object requested to be added to the array list already exists, the Add()
method returns the DuplicateData value. The insert method instead uses the

Figure 5.37 The data structure designed for the singly-linked-link-based array list. Here node w
is being added between nodes x and y of the linked list.

Node Node

Node

Node Node…..

head tail

nextnext next

next
next

w

x y

150 ◾ Implementing Parallel and Distributed Systems

search function to locate pairs of nodes between new nodes that must be inserted.
The update itself occurs in a single CAS function in line 37 from Figure 5.39, which
changes the reference in left_node>next from right_node to a new node.
The Contain() method uses Harris’s modified find function to check whether the
object is present as an input argument in the array list. The Remove() method uses
Harris’s technique to remove an object from the array list. The _delete method
uses the search function to locate the node to be deleted and then a two-step pro-
cess to perform the final deletion. For more details on Harris’s algorithm and how
the search method works, we refer interested readers to the main reference of the
Harris algorithm [4]. An implementation of a test class (LockFreeArrayListTest
class) to check the proper functioning of a lock-free array list class can be found
in the “LockFreeArrayList/LockFreeArrayList.h” file, in which n threads
repeatedly invoke the Add() and Remove() methods of the LockFreeArrayList
class to dynamically add/remove objects.

Figure 5.38 Prototype definition of the lock-free array list class.

1: struct Node {
2: Object *data;
3: struct Node volatile *next;
4: };
5:
6: // A lock-free array list based on a lock-free singly linked list designed by Harris.

7: class LockFreeArrayList : public Object {
8: /*---------------------fields----------------*/

9: private: Node volatile *head; // The head sentinel node.

10: private: Node volatile *tail; // The tail sentinel node.

11: private: UInt32 maxCapacity; // The maximum capacity of a LockFreeArrayList is the number of elements

that the LockFreeArrayList can hold.

12: private: LockFreeCounter counter; // Indicates the number of non-free slots in the LockFreeArrayList.

13: private: bool disposed; // For destructor use.

14: private: LockFreeMemoryPool *pool; // The memory pool used to allocate and deallocate nodes.

15: /*---------------------methods----------------*/

16: // LockFreeArrayList Class constructor.

17: public: LockFreeArrayList(UInt32 maxCapacity);
18: // LockFreeArrayList Class destructor.

19: public: ~LockFreeArrayList();
20: // Adds an object to the end of the LockFreeArrayList.

21: public: Status Add(Object *data);
22: // Removes the occurrence of a specific object from the LockFreeArrayList.

23: public: void Remove(Object *data);
24: // Gets the number of elements actually contained in the LockFreeArrayList.

25: public: Long get_Count();
26: // Determines whether an element is in the LockFreeArrayList.

27: public: bool Contains(Object *data);
28: // Our methods based on Timotht L. Harris's modified methods.

29: private: static inline bool CAS(void volatile *address, Long old, Long _new);
30: private: Status insert(Object *data);
31: private: bool find(Object *data);
32: public: Status _delete(Object *data);
33: private: Node volatile *search(Object *data, Node volatile **left_node);
34: };

Parallelisation for the Many-Core Era ◾ 151

Figure 5.39 Implementation of the lock-free array list class methods.

1: Status LockFreeArrayList::Add(Object *data) {
2: Status status = insert(data);
3: if(status == Success)
4: counter.Increment();
5: return status;
6: }
7:
8: void LockFreeArrayList::Remove(Object *data) {
9: Status status = _delete(data);

10: if(status == Success)
11: counter.Decrement();
12: }
13:
14: bool LockFreeArrayList::Contains(Object *data) {
15: return find(data);
16: }
17:
18: bool LockFreeArrayList::CAS(volatile void *address, Long old, Long _new) {
19: if(Parvicrursor_AtomicCompareAndSwap(&old, address, _new))
20: return true;
21: return false;
22: }
23:
24: Status LockFreeArrayList::insert(Object *data) {
25: Node *new_node = (Node *)pool->Malloc();
26: if(new_node == null)
27: return ArrayListIsFull;
28: new_node->data = data;
29: volatile Node *right_node, *left_node;
30: do {
31: right_node = search(data, &left_node);
32: if ((right_node != tail) && (right_node->data == data)) { /*T1*/

33: pool->Free(new_node);
34: return DuplicateData;
35: }
36: new_node->next = right_node;
37: if(CAS(&(left_node->next), (Long)right_node, (Long)new_node)) /*C2*/

38: return Success;
39: } while (true); /*B3*/

40: }
41:
42: bool LockFreeArrayList::find(Object *data) {
43: Node volatile *right_node;
44: Node volatile *left_node;
45: right_node = search(data, &left_node);
46: if((right_node == tail) || (right_node->data != data))
47: return false;
48: else
49: return true;
50: }
51:
52: Status LockFreeArrayList::_delete(Object *data)
53: {

(Continued)

152 ◾ Implementing Parallel and Distributed Systems

54: Node volatile *right_node;
55: Node volatile *right_node_next;
56: Node volatile *left_node;
57: do {
58: right_node = search(data, &left_node);
59: if ((right_node == tail) || (right_node->data != data)) /*T1*/

60: return NoSuchData;
61: right_node_next = right_node->next;
62: if(!is_marked_reference((void *)right_node_next)) {
63: if(CAS(&(right_node->next), /*C3*/ (Long)right_node_next, (Long)get_marked_reference((void

*)right_node_next))) {
64: if(!CAS(&(left_node->next), (Long)right_node, (Long)right_node_next)) /*C4*/

65: right_node = search(right_node->data, &left_node);
66:
67: pool->Free((void *)right_node);
68: return Success;
69: }
70: }
71: } while (true); /*B4*/

72: }
73:
74: volatile Node *LockFreeArrayList::search(Object *data, volatile Node **left_node) {
75: Node volatile *left_node_next;
76: Node volatile *right_node;
77: ch_again:
78: do {
79: Node volatile *t = head;
80: Node volatile *t_next = head->next;
81: /* 1: Find left_node and right_node */

82: do {
83: if(!is_marked_reference((void *)t_next)) {
84: (*left_node) = t;
85: left_node_next = t_next;
86: }
87: t = (Node *)get_unmarked_reference((void *)t_next);
88: if(t == tail)
89: break;
90: t_next = t->next;
91: } while (is_marked_reference((void *)t_next) || (t->data != data)); /*B1*/

92: //} while (is_marked_reference(t_next) || (t->data < data)); /*B1*/

93: right_node = t;
94: /* 2: Check nodes are adjacent */

95: if (left_node_next == right_node) {
96: if ((right_node != tail) && is_marked_reference((void *)right_node->next))
97: goto search_again; /*G1*/

98: else
99: return right_node; /*R1*/

100: }
101: /* 3: Remove one or more marked nodes */

102: if(CAS(&((*left_node)->next), (Long)left_node_next, (Long)right_node)) { /*C1*/

103: if ((right_node != tail) && is_marked_reference((void *)right_node->next))
104: goto search_again; /*G2*/

105: else
106: return right_node; /*R2*/

107: }
108: } while (true); /*B2*/

109: }

Figure 5.39 (Continued) Implementation of the lock-free array list class methods.

Parallelisation for the Many-Core Era ◾ 153

5.3.3 Transactional Memory

Transactional memory (TM) has been proposed as a mechanism for thread synchro-
nisation. TM alleviates many lock-related problems and offers the benefits of transac-
tions without posing its overhead found in relational databases. TM forces memory,
which is shared by a thread, to behave like a database in a transactional manner.
The key goal is to simplify the development of concurrent applications, which are
increasingly growing due to the orientation of technology towards many-core proces-
sors and multi-processor systems.

Transactions provide an alternative way to coordinate concurrent threads. An
application can wrap a computation inside a transaction. Failure atomicity ensures
that the computation completes successfully and commits its result or aborts abnor-
mally. Transactions replace critical sections in codes with atomic executable units.
Suppose we have a BankAccout abstraction with a m_balance property that is
updated by a ModifyBalance() method (see Figure 5.40). If BankAccout is acces-
sible by threads at once, then we need to put the body of the ModifyBalance()
method inside an indivisible block (rather than a lock). The atomic keyword is desir-
able from a programmer’s point of view, but the compiler must convert the code inside
this guarded region before compilation and using the TM system. The code on the
right-hand side, which has a while loop, shows such a conversion. The StartTM()
function begins a new transaction in the current thread. The ReadTM() function is
used to read the value of the m_balance variable via its address and returns the
data view of the transaction at the address. WriteTM() takes the m_balance vari-
able’s address and writes the newly calculated balance value to the address from the
transaction’s point of view. The set of places that a transaction can read and write
is referred to as readable-set and writable-set, respectively. At the end of the while
loop, the CommitTM() function attempts to commit the current transaction, which, if
it succeeds, returns a value of true and, if it fails, returns a value of false.

A TM framework must perform three basic concurrency control operations for
synchronisation. First, a conflict occurs when two transactions perform conflict-
ing operations on the same data (e.g., a transaction writing to shared data and
another reading from the data or writing twice simultaneously). Second, this conflict
is detected when the TM framework determines that a conflict has occurred. Third,
this conflict is resolved when the TM framework decides to prevent the conflict.
A TM system uses two methods (or a combination of them) to implement this con-
currency control. In a pessimistic concurrency control, when a transaction tries to
reach a location in memory, the system detects a conflict and resolves it. In fact, this

Figure 5.40 A transactional method that runs inside the body of an indivisible block.

1: public: void ModifyBalance(Int32 amount) {
2: do {
3: StartTM();
4: Int32 balance = ReadTM(&(m_balance));
5: balance = balance + amount;
6: WriteTM(&(m_balance), balance);
7: } while(!CommitTM());
8: }

1: class BankAccount {
2: private: Int32 m_balance;
3: public: void ModifyBalance(Int32 amount) {
4: atomic {
5: m_balance = m_balance + amount;
6: }
7: }
8: }

154 ◾ Implementing Parallel and Distributed Systems

type of concurrency control requires dedicated ownership of the data before it can
be executed, which in turn prevents other transactions from doing anything on the
data. If conflicts are frequent, then pessimistic concurrency control is very useful,
because when a transaction has its own lock, it can be executed for completion. In
an optimistic concurrency control, conflict detection and resolution can occur after a
conflict takes place. This type of concurrency allows multiple transactions to access
data simultaneously and continue to execute even if they interfere, and as long as the
TM framework detects and resolves these conflicts before it commits a transaction.
If conflicts are rare in a concurrent environment, optimistic concurrency control is
usually faster because it significantly avoids locking overhead and can increase con-
currency between transactions.

A TM system must provide mechanisms for managing temporary writes that con-
current transactions are performing, which is called version management. The first
method is eager version management, in which a transaction directly modifies data
in memory. Each transaction maintains an undo-log record that holds the values
overwritten. This log allows old values to be written to the previous value if that
transaction subsequently ends abnormally. The second method is lazy version man-
agement, in which updates are delayed until a transaction is committed. The transac-
tion keeps its temporary writes in a private-transaction redo-log record. Updates to a
transaction are buffered in this log, and the reads of a write must use the log so that
the older writes are seen. When a transaction commits, it updates the actual locations
from these private copies.

Two methods of software and hardware transactional memory (STM and HTM)
approaches have been developed to realise TM. STM is a software system that equips
programmers with a transaction model through a library interface or compiler. STM
has several advantages over HTM. Software is easier to modify and allows the imple-
mentation of a wider range of complex algorithms due to its flexibility. Nevertheless,
in practice, STM systems suffer from complexity problems in implementation.
Although STM can be fast, TM hardware support clearly promises significant per-
formance improvements. Most HTM systems rely on direct modifications to cache
coherency protocols. When a thread reads or writes a memory location on behalf of a
transaction, the cache entry is flagged as a transaction. Transaction writes are stored
in a cache or a write buffer but are not written to the memory whilst the transac-
tion is active. If another thread invalidates a transaction entry, a data conflict occurs,
thereby resulting in the transaction getting abnormally terminated and restarted.

If a transaction ends without any of its entries being invalidated, then the transac-
tion is committed by marking its transaction entries as valid or dirty, allowing dirty
entries to be written to the memory normally. One of the main limitations of HTM
is that in-cache transactions are limited in size and scope. Most HTMs require the
programmer to be aware of platform-specific resource constraints such as buffer
and cache sizes, scheduling quanta, and the effects of context switching and process
migration.

Finally, it should be noted that since TM is a general mechanism, a direct non-
blocking implementation of specific data structures will likely be more efficient than
a TM-based implementation, although their non-blocking implementation will be
very difficult as seen in the previous section. For more information on TM, interested
readers are encouraged to refer to [5].

Parallelisation for the Many-Core Era ◾ 155

References
 [1] B.W. Lampson, A note on the confinement problem. Communications of the ACM, 16(5): 613–615,

1973.
 [2] Compiler Intrinsics, Microsoft MSDN Library, Available from: http://msdn.microsoft.com/en-us/

library/26td21ds.aspx
 [3] U. Drepper, What every programmer should know about memory, 2022, 21 November 2007; Available

from: http://www.akkadia.org/drepper/cpumemory.pdf.
 [4] T. Harris, A pragmatic implementation of non-blocking linked-lists, In Proceedings of Fifteenth

International Symposium on Distributed Computing (DISC 2001), volume 2180 of Lecture Notes
in Computer Science, Springer-Verlag, Lisbon, Portugal, pp. 300–314, 2001.

 [5] T. Harris, A. Cristal, O. S. Unsal, E. Ayguad, F. Gagliardi, B. Smith, and M. Valero, Transactional mem-
ory: An overview. IEEE Micro, 27(3): 8–29, 2007.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.akkadia.org

https://taylorandfrancis.com

157DOI: 10.1201/9781003379041-6

Chapter 6

Storage Systems: A Parallel
Programming Perspective

The human brain has a vast amount of memory storage. It made us curious
and very creative. Those were the characteristics that gave us an advantage –
curiosity, creativity and memory. And that brain did something very special. It
invented an idea called “the future.”

David Suzuki

6.1 Introduction
In this chapter, storage systems are introduced with a major emphasis on their par-
allel programming for distributed systems. We will discuss the structural underpin-
nings of storage system hardware and then delve into overlapping disc I/O with
concurrency through the techniques presented in the earlier chapters.

6.2 Storage Systems and Disc Input/Output Mechanisms for Use
in Distributed Systems

6.2.1 Introduction

Physical data storage and retrieval are one of the most important issues in operating
systems and file systems, in terms of both hardware and software perspectives. In
this section, we try to give the reader a first look at how their data is stored through
the operating system on the hardware of a permanent storage system. Familiarity
with these principles helps us design systems that are highly efficient with respect
to input-output and meet our needs, especially in highly data-intensive and distrib-
uted environments. From an operating system’s point of view, a general view of disc
input/output mechanisms can be imagined. This view is shown in Figure 6.1.

http://dx.doi.org/10.1201/9781003379041-6

158 ◾ Implementing Parallel and Distributed Systems

	 •	 Application programs are running in userspace. They initiate I/O transfers
through the operating system’s system calls by accessing memory pages mapped
to files. These procedures will be fully explored in Section 6.3.

	 •	 File system translates requests from userspace into one or more block I/O
requests. The file system also implements block allocation strategies, which
specify physical placement on the disc and fragmentation. File systems will be
discussed further in Section 6.3.

	 •	 Page cache is responsible for hiding a set of disc blocks that are likely being
reused.

	 •	 Disc scheduler sorts, merges, and prioritises I/O requests, and then dispatches
them to the disc.

	 •	 Physical disc services requests. Discs usually provide another caching layer to
increase performance. With features like native command queuing (NCQ) and
tagged command queuing (TCQ), discs can queue multiple requests, and rear-
range them to minimise search time and increase efficiency.

6.2.2 Disc Drives from a Hardware Perspective

Ever since the introduction of personal computers, rotating hard discs have been the
most common type of storage systems. One such disc is a unit containing a number
of platters in a stack. They can be installed in a horizontal or vertical position. Figure
6.2 shows a view of a rotating disc. Electromagnetic read/write heads are located
at the top and bottom of every platter. As the platters rotate, the drive heads move
towards the inside of the central level and outside of the edge. In this method, the
drive heads reach the entire surface of every platter. On each rotating hard disc, data
is stored in thin, concentric bands called tracks. One end of the disc reads from or
writes to a track. Tracks are made up of sectors, and sectors are the smallest physical
storage units. A sector is always typically 512 bytes in size.

Figure 6.1 An overview of disc input/output layers in an operating system.

Physical Disc

I/O Scheduler

Page Cache

File System

K
er

ne
l S

pa
ce

Applications
User Space

Storage Systems ◾ 159

In contrast to traditional rotating discs are solid state drives (SSDs). An SSD is a
data storage device that uses integrated circuits as its underlying memory to store
data permanently. The SSD technology employs electronic interfaces compatible with
traditional block I/O hard drives. SSDs do not use any moving mechanical compo-
nents and therefore differ from rotating discs in that they have read/write heads.
Compared to mechanical rotating discs, SSDs are less vulnerable to physical shocks,
are quieter, and have less access time and latency. SSDs are mostly based on volatile
DRAMs or non-volatile NAND flash memories. The performance of an SSD can be
increased by the number of parallel NAND flash chips.

In evaluating the performance of both types of these discs, there are a number of
features that we should know:

	 •	 Access Time: Access time or response time of a rotating disc is the time it takes
before the disc actually transfers data. Factors that control this time are largely
dependent on the mechanical nature of discs and moving heads. For SSDs, this
time does not rely on moving parts, but on electrical connections to solid state
memory, so access time is very fast and stable.

	 •	 Seek Time: In rotating discs, seek time is a measure of the time that is taken by the
drive to reach the platter where data will be read or written. When a disc needs
to read or write data to a specific sector, it identifies which platter is located at
the sector, and then moves the head to the particular platter. If the original loca-
tion was at the top of the platter, then seek time would be zero. If the start platter
was the farthest edge of the disc and the target platter was at the innermost edge,
then seek time would be the longest for that disc. Seek times for rotating discs
are non-linear. Since SSDs do not have removable parts, measuring seek time
for them will only be possible by testing electronic circuits that are preparing

Figure 6.2 A view of the structure of a rotating disc.

Head
Track

Sector

Platter Rotation

160 ◾ Implementing Parallel and Distributed Systems

a specific location on the memory. Sample SSDs have a typical time of between
0.08 and 0.16 ms. Seek time, which is an important factor in random access to
files (see Section 6.3) of SSDs, makes them beneficial to applications in which
disc I/O parallelisation (especially when combined with network I/O) can lead
to dramatic performance improvements.

	 •	 Rotational Latency: It is a wait latency for disc rotation to bring the required
disc part under reading/writing from/to rotating discs. This latency is the rota-
tional speed of the electric motor of the disc, which is measured in revolutions
per minute (RPM).

	 •	 Data Transfer Rate: Data transfer rate (throughput) of a disc refers to the inter-
nal rate (data transfer between the disc surface and the disc controller) and
the external rate (data transfer between the controller on the disc and the host
system). The data transfer rate can be measured as the lower value of these two
rates.

6.2.3 Disc Input/Output Scheduler in Operating Systems

As shown in Figure 6.1, one of the key services of an operating system is disc input/
output scheduler. This scheduler passes all I/O requests to the disc. It implements
policies that specify when I/O requests should be sent to the disc, and in which
order. The I/O scheduler should make a balanced choice between general through-
put, latency, and priority. On a rotating disc, for example, servicing a single random
request may take 5 ms, whilst processor can execute millions of clock cycles per
second. This means that there could be an opportunity to spend some CPU time
scheduling I/O to improve overall system performance, and that is one of the chief
tasks of an I/O scheduler. Another task of the scheduler is to implement a policy
about how resources on a shared disc should be shared between multiple system
processes.

One of the simplest I/O schedulers is the first-come, first-served (FCFS) scheduler,
in which each request is sent to the disc in the same direction it arrives. FCFS effi-
ciency is not suitable for random access on rotating discs because no attempt is made
to reduce seeks. But this method is very suitable for SSD drives which are random
devices. This simple example shows that the design of I/O schedulers and different
scheduling algorithms is critical to different disc architectures and different for each
architecture. For a more in-depth study of I/O disc schedulers, the interested reader
can refer to operating system textbooks.

6.2.4 Benchmarking the Performance and Throughput of Disc I/O
Based on the IOzone Tool

Now that we are familiar with the different concepts of disc input and output, we
are going to test the performance of a general system based on a standard tool such
as IOzone. IOzone allows us to monitor the performance of our file system based
on how changing the size of records (block size) affects it. To download and install
this tool, visit its website at [1]. With IOzone we can get detailed information for

Storage Systems ◾ 161

read, write, read/write randomly, and so forth. IOzone is very effective in finding
areas where I/O files may not work well as expected. IOzone runs in a shell and
can export its output to an Excel spreadsheet, and by using Excel software we can
draw stylish and expressive 3D charts. In this example, we intend to make a 3D
diagram with a report as a triplet (throughput, file size, record size)
on the Linux operating system. To find the specifications of your disc drive, use
the hdparm command in the shell as shown in Figure 6.3. As it is clear, the disc in
question is a rotating HDD with 16 heads and a volume of 500 GB. Now we use the
IOzone command to store the benchmark results in a file called output.xls. This
command is illustrated in Figure 6.4. The -a parameter tells IOzone to perform all
default tests. The -g parameter indicates that the maximum file size tested in this
example is 2 GB. Figure 6.5 shows a 3D surface diagram for random writes gener-
ated by the IOzone tool and drawn in the Excel software. The throughput axis is
measured in kilobits per second, and the other two axes are measured in kilobytes.

Figure 6.3 Using hdparm shell command in Linux operating system to recover our disc drive
data.

1: [root@~]# hdparm -I /dev/sda
2:
3: /dev/sda:
4:
5: ATA device, with non-removable media
6: Model Number: Hitachi HDS721050CLA362
7: Serial Number: JPF570HK0D5XKR
8: Firmware Revision: JP2OA3MA
9: Standards:

10: Supported: 8 7 6 5
11: Likely used: 8
12: Configuration:
13: Logical max current
14: cylinders 16383 16383
15: heads 16 16
16: sectors/track 63 63
17: --
18: CHS current addressable sectors: 16514064
19: LBA user addressable sectors: 268435455
20: LBA48 user addressable sectors: 976773168
21: device size with M = 1024*1024: 476940 MBytes
22: device size with M = 1000*1000: 500107 MBytes (500 GB)

Figure 6.4 The use of iozone command to test a file system on the Linux operating system.

1: ./iozone -a -b output.xls -g 2G

162 ◾ Implementing Parallel and Distributed Systems

As can be seen, throughput is maximised for record sizes between 1024 to 4096 KB
and for files larger than 500 MB.

6.3 Cross-Platform Disc I/O Programming and Manipulation
of Folders Based on the Parvicursor.NET Framework for
Distributed Systems

File system is one of the most important components of an operating system for
most users, especially programmers. File systems provide mechanisms for storing
and accessing data and applications on the OS. This section describes programming
files and folders based on the Parvicursor.NET Framework. The capabilities of the
classes in the System::IO namespace are presented for this purpose, and then vari-
ous examples, including the combination of concurrency with these classes, will be
described. File system features are even more important in distributed systems.

Figure 6.5 Throughput of random writes based on the IOzone tool.

64

256

1024

4096

16384

0

500000

1000000

1500000

2000000

2500000

IOzone Benchmark - Random Write
0-500000 500000-1000000 1000000-1500000 1500000-2000000 2000000-2500000

Th
ro

ug
hp

ut
 (

Kb
/s

)

File size (KB)

Storage Systems ◾ 163

6.3.1 Storage and Retrieval of Data Files Based on the FileStream
Class

Files are an abstraction mechanism that provides a way to store information on a
secondary storage (such as a disc) and read it at a necessary time. The operating
system provides an interface through which information is stored and retrieved in
such a way that the user does not need to know the details of how and where this
information is stored. The most important and basic feature in working with files is
the way they are named, which is different in each system. When a program needs to
work with a file, it passes the file name to a system function, and after opening the
file, it writes or reads it, and finally closes the file. The data of a file can be stored in
any structure by the programmer and the operating system will have no knowledge
of this structure. For example, the layout of a file can be structured by a programmer
as a byte sequence, a record sequence, and a tree.

Locating an offset within a file can be complicated for an operating system. Disc
storage systems typically have a well-defined block size determined by the size of a
sector. All I/O activities are performed in units of one block (a physical record), and
all blocks are of the same size. Logical records are user data records that are stored
within these logical records. It is unlikely that the size of the physical record will
match the size of a desired logical record. Logical records can even be variable in
length. Packing a number of logical records into physical blocks is a common solu-
tion to this problem. In Unix-like operating systems, for example, a file is simply
defined as a stream of bytes. Each byte can be addressed individually by offsetting
from the beginning (or end) of the file. In this scenario, the logical record size is one
byte. The file system automatically packs or unpacks bytes into the physical blocks
of the disc (like blocks 512 bytes long). The easiest way to access files is through
sequential access. The information in the file is processed sequentially, one after the
other. This access mode is one of the mostly common techniques used by applica-
tions. An operation reads the next part of the file and automatically moves the file
pointer forward, which tracks the I/O location. Similarly, a write operation appends
to the end of the file and moves the file pointer to the end of the new written con-
tent. Another method is random access in that bytes or records of a file can be read
and written out of order. This type of access is required in many applications, for
example, databases. Figure 6.6 shows an example for sequential and random access
to a file. In the random method, direct (random) jumps are sought from each byte
of the file to another. Random access provides a special operation called seek to set
the current position of the file pointer. After a seek, the file can be read or written
sequentially from its current position. In implementing the xDFS protocol in Chapter
10, random-access property is used to achieve parallel transfers of a large file over
multiple network channels.

Sequential access is much faster than random access because hardware works in
the former way. Because random reads involve a higher number of seek operations
than sequential ones, they deliver a lower throughput rate. This is also true for ran-
dom writes. For workloads with high I/O rates, it is necessary to consider stripped
sets because they add physical discs, thus increasing the system’s ability to handle
simultaneous disc requests.

164 ◾ Implementing Parallel and Distributed Systems

In the Parvicursor.NET Framework, the FileStream class can be used to
work with random and sequential files. Table 6.1 shows the methods and con-
structor of this class. If an error occurs whilst using any of the methods in this
class, an exception with a type of Exception, ArgumentNullException,
Argument Exception, ArgumentOutOfRangeException, IOException, or
ObjectDisposedException is thrown by the Parvicursor.NET Framework. The
constructor of this class has two features, FileMode and FileAccess. FileAccess
has the following three values: Read—data can only be read from a file, write—
data can only be written to a file, and ReadWrite—data can be written to or read
from a file. FileMode values that specify how the file is opened by the operating
system are listed in Table 6.2.

6.3.2 Two Non-Concurrent and Concurrent Examples for Using
the FileStream Class

In this section, we describe two practical examples of the FileStream class, specifi-
cally oriented to use in file transfer systems such as xDFS. In the first example, we
save a local file to another local file on a hard disc. Figure 6.7 portrays this example.
Here, threads of control are not used and therefore it is a synchronous or sequential
program. A file named readFilename is copied through the fsRead object to a file
named writeFilename via the fsWrite object. Because the readFilename file
must exist, we instantiate it in line 10 with Open mode and Read access to read it.
The writeFilename file is modelled with OpenOrCreate mode (as this file may
or may not exist) and with Write access to write to it. To perform a copy operation,
lines 19–35 in a loop read the fsRead object repeatedly and the read contents are
stored in the buffer, and the amount of data read in the buffer is written on line 24
to the fsWrite object with a read length. If the read value is zero, we are at the
end of the fsRead file and jump out of the loop. In lines 36 and 37, the instance
objects of open files are closed, and we free up the allocated memory. If in the execu-
tion of every step of the code an exception is thrown through the Parvicursor.NET
Framework, we catch it with the C++ catch keyword, and after printing the cor-
responding error, we terminate the execution of the program by returning from

Figure 6.6 An example of sequential and random access to files.

1 2 3 4 5 6 7 8 9 …..

1 2 3 4 5 6 7 8 9 …..

Sequential access

Random access

Storage Systems ◾ 165

the main() function. The code for this example is available in the “/Parvicursor/
Parvicursor/Samples/FileStream” path.

The second example, as shown in Figure 6.8, is to perform the copy operation of
the previous exercise using two threads simultaneously. This example is a combina-
tion of the codes in Figures 6.7, and 5.7. One thread reads the data of the read-
Filename file block by block and puts it inside our circular queue. In this example,
each circular buffer cell shown in Figure 5.6 is a cell data structure defined in line 3.
Each cell contains a buffer and the size of the actual contents read by the producer
thread (which is responsible for reading the blocks of the file readFilename). In
the ConcurrentFileCopy class constructor and lines 26 through 31, we allocate the
memory of our circular buffer. Since in this and previous examples the Read() and

Table 6.1 Methods and Constructor of the FileStream Class in the Parvicursor.NET
Framework

Name Description

FileStream(String
path, FileMode mode,
FileAccess access, Int32
bufferSize)

A new instance of FileStream class initialises the
specified path, creation mode, access method, and buffer
length (used for internal data file buffering).

Int32 Read(char array[],
Int32 offset, Int32
count)

Reads a block of bytes from the file stream and writes it
to array. This operation is performed on array from
its offset to the length of count. This method returns
a value of zero if the end of the stream is reached. This
method will block if there is no existing data from the
stream.

void Write(const char
array[], Int32 offset,
Int32 count)

Writes a block of bytes stored inside array to this stream.

void Close() Closes the stream and frees up consumed resources (such
as file handles and allocated internal memory).

void Flush() Clears all buffers associated with this instance and causes
any buffered data to be written to the underlying file system.

void Lock(Int64
position, Int64 length)

Prevents other processes or threads from changing the
open file from position to length. However, they are
allowed to read in this range.

void UnLock(Int64
position, Int64 length)

Unlocks the range specified by a process or owner thread
and allows other processes to modify this range.

void Seek(Int64 offset,
SeekOrigin origin)

Performs a seek operation on the file and changes the
current position of the file pointer to offset location
based on origin. origin can be one of the following
three values: Begin—indicates the beginning of the file,
Current—states the current position of the file, End—
states the end of the file.

Int64 get_Length() Finds the length of bytes in the file instance.

166 ◾ Implementing Parallel and Distributed Systems

Write() methods from the FileStream class block until their works are complete,
the two intermediate buffers, buffer_producer and buffer_consumer, together
as temporary storage that is between the circular_buffer circular queue and
the two producer and consumer threads, are allocated to improve as much concur-
rency as possible (otherwise, the buffer variable takes up too much time by one
thread). For example, in line 48, the buffer_producer buffer is used to read the
file blocks, in line 48 to read a single block via the fsRead->Read() method, and
in line 88 the contents of this buffer are used by the memmove() system function.
The last circular buffer cell is copied (circular_buffer[end].buff). The same
thing happens with buffer_producer in the consumer thread. Two Boolean flags
StopRequested and EndOfFileReached are added to this example as shown in
Figure 5.6. The producer thread may be done, but the loop buffer is still full and
should be written by the consumer thread to the fsWrite file. In the execution of
each thread, if an exception is caught, the Boolean StopRequested flag is used to
terminate the execution of the other thread. This somewhat complex example makes
the strength of the Parvicursor.NET Framework clearer to the reader for easier and
uniform construction of distributed systems. The full code for this example is in the “/
Parvicursor/Parvicursor/Samples/DiscIO/ConcurrentFileCopy” path.

6.3.3 Management of Files and Folders Based on the Two Classes
Directory and File

Operating systems store files on discs. A system may have millions of files. To manage
such a volume, we must be able to manage them. Folders are used for this purpose

Table 6.2 Possible FileMode Values for Use in the FileStream Class Constructor

Name Description

CreateNew Specifies that the operating system should create a new file. If the file
exists, an IOException will be thrown.

Create Specifies that the operating system should create a new file. If the file
already exists, it will be overwritten.

Open Specifies that the operating system should open an existing file. The
ability to open depends on the value specified by FileAccess.

OpenOrCreate Specifies that the operating system should open a file if it exists;
otherwise, a new file should be created.

Truncate Specifies that the operating system should open an existing file. Once
this file is opened, the file should be truncated so that its size becomes
zero of bytes. Trying to read from a file opened in this mode throws an
exception.

Append Opens the specified file if it exists, then seeks to the end of it, or creates
a new file. FileMode.Append can only be used in conjunction with
FileAccess.Write. Attempting to seek for a position before the end of
the file will throw an IOException, and any attempt to read will fail and
a NotSupportedException is thrown.

Storage Systems ◾ 167

by an OS. A directory can be thought of a symbol table that translates file names
into their directory entries. So, the directory itself can be organised in different ways.
Such a system should allow to insert and delete entries, search for a named entry,
and list all the entries within the directory. A complete reference for these operations
is shown in Table 6.3, which is provided by the Parvicursor.NET Framework through
the Directory class.

Directory systems are usually stored as a hierarchy (i.e., a tree of folders). In
this method, there can be many folders whilst being used to group files in different
ways. Figure 6.9 shows this technique. Folders are displayed by squares and files by
circles. This directory system has a root node, which, for example, could be the name
of a drive or file system partition. For example, the directory F is the parent of two

Figure 6.7 Local, non-concurrent copy of one file to another using the FileStream class.

1: int main(int argc, char *argv[]) {
2: FileStream *fsRead, *fsWrite;
3: String readFilename = "C:/test.dat"; //to change

4: String writeFilename = "C:/test1.dat"; //to change

5: printf("Copying %s to %s\n", readFilename.get_BaseStream(), writeFilename.get_BaseStream());
6: Int32 bufferSize = 256*1024;
7: char *buffer = new char[bufferSize];
8: Int32 read = 0;
9: try {

10: fsRead = new FileStream(readFilename, System::IO::Open, System::IO::Read, 8*1024);
11: fsWrite = new FileStream(writeFilename, System::IO::OpenOrCreate, System::IO::Write, 8*1024);
12: }
13: catch(Exception &e) {
14: printf("1. Exception Message: %s\n", e.get_Message().get_BaseStream());
15: char s[12];
16: scanf("%s", s);
17: return 0;
18: }
19: while(true) {
20: try {
21: read = fsRead->Read(buffer, 0, bufferSize);
22: if(read <= 0)
23: break;
24: fsWrite->Write(buffer, 0, read);
25: printf("\r...");
26: }
27: catch(IOException &e) {
28: printf("2. Exception Message: %s\n", e.get_Message().get_BaseStream());
29: return 0;
30: }
31: catch(Exception &e) {
32: printf("3. Exception Message: %s\n", e.get_Message().get_BaseStream());
33: return 0;
34: }
35: }
36: fsWrite->Close(); fsRead->Close();
37: delete fsRead; delete fsWrite; delete buffer;
38: return 0;
39: }

168 ◾ Implementing Parallel and Distributed Systems

Figure 6.8 Local, concurrent copy of a file to another using the FileStream class.

1: class ConcurrentFileCopy : public Object {
2: /*---------------------fields----------------*/

3: private: struct Cell {
4: Int32 size;
5: char *buff;
6: };
7: private: ConditionVariable *bufferNotEmpty, *bufferNotFull;
8: private: Cell *circular_buffer;
9: //integers to index circular_buffer

10: private: char *buffer_producer;
11: private: char *buffer_consumer;
12: private: FileStream *fsRead, fsWrite;
13: private: Int32 bufferSize;
14: private: Int32 cells;
15: private: bool StopRequested;
16: private: bool EndOfFileReached;
17: ...
18: /*---------------------methods----------------*/

19: public: ConcurrentFileCopy(FileStream *fsRead, FileStream *fsWrite, Int32 bufferSize, Int32 cells,
Barrier *barrier)

20: {
21: ...
22: start = 0;
23: end = 0;
24: buffer_producer = new char[bufferSize];
25: buffer_consumer = new char[bufferSize];
26: circular_buffer = new Cell[cells];
27: for(Int32 i = 0 ; i < cells ; i++)
28: {
29: circular_buffer[i].buff = new char[bufferSize];
30: circular_buffer[i].size = -1;
31: }
32: ...
33: }
34:
35: public: void Run() {
36: producer_thread = new Thread(ConcurrentFileCopy::Wrapper_To_Call_producer, (void *)this);
37: consumer_thread = new Thread(ConcurrentFileCopy::Wrapper_To_Call_consumer, (void *)this);
38: producer_thread->Start();
39: consumer_thread->Start();
40: producer_thread->SetDetached();
41: consumer_thread->SetDetached();
42: }
43:
44: private: void *producer(void *ptr) {
45: Int32 read;
46: while(true) {
47: try {
48: read = fsRead->Read(buffer_producer, 0, bufferSize);
49: if(read <= 0) {
50: mutex->Lock();
51: {
52: EndOfFileReached = true;

(Continued)

Storage Systems ◾ 169

53: // Wait until the consumer thread completes its execution.

54: while(end != start && !StopRequested)
55: bufferNotEmpty->Wait();
56: }
57: mutex->Unlock();
58: break;
59: }
60: }
61: catch(IOException &e) {
62: printf("3. Exception Message: %s\n", e.get_Message().get_BaseStream());
63: mutex->Lock();
64: StopRequested = true;
65: mutex->Unlock();
66: break;
67: }
68: catch(Exception &e) {
69: printf("4. Exception Message: %s\n", e.get_Message().get_BaseStream());
70: mutex->Lock();
71: StopRequested = true;
72: mutex->Unlock();
73: break;
74: }
75: mutex->Lock();
76: {
77: // Use modulo as a trick to wrap around the end of the buffer_producer back to the beginning

78: // Wait until the buffer_producer is full

79: while((end + 1) % cells == start && !StopRequested) {
80: // Buffer is full - sleep so consumers can get items.

81: bufferNotFull->Wait();
82: }
83: if(StopRequested) {
84: mutex->Unlock();
85: break;
86: }
87: circular_buffer[end].size = read;
88: memmove(circular_buffer[end].buff, buffer_producer, read);
89: end = (end + 1) % cells;
90: }
91: mutex->Unlock();
92: // If a consumer is waiting, wake it.

93: bufferNotEmpty->Signal(); //

94: }
95: // for (StopRequested==true)

96: bufferNotFull->Signal();
97: bufferNotEmpty->Signal();
98:
99: barrier->SignalAndWait(); // Synchronizes with other threads before the completion of its execution.

100: return ptr;
101: }
102:
103: private: void *consumer(void *ptr) {
104: Int32 write_bytes;
105: while(true) {

Figure 6.8 (Continued) Local, concurrent copy of a file to another using the FileStream class.

(Continued)

170 ◾ Implementing Parallel and Distributed Systems

106: mutex->Lock();
107: {
108: if(end == start && EndOfFileReached && !StopRequested) {
109: mutex->Unlock();
110: break;
111: }
112: // Wait until the buffer_producer is empty

113: while(end == start && !StopRequested && !EndOfFileReached) {
114: // Buffer is empty - sleep so producers can create items.

115: bufferNotEmpty->Wait();
116: }
117: if(StopRequested) {
118: mutex->Unlock();
119: break;
120: }
121: write_bytes = circular_buffer[start].size;
122: if(write_bytes != -1)
123: memmove(buffer_consumer, circular_buffer[start].buff, write_bytes);
124: circular_buffer[start].size = -1;
125: start = (start + 1) % cells;
126: }
127: mutex->Unlock();
128: bufferNotFull->Signal(); // If a producer is waiting, wake it.

129: if(write_bytes <= 0)
130: continue;
131: try {
132: fsWrite->Write(buffer_consumer, 0, write_bytes);
133: printf("\r...");
134: }
135: catch(IOException &e) {
136: printf("5. Exception Message: %s\n", e.get_Message().get_BaseStream());
137: mutex->Lock();
138: StopRequested = true;
139: mutex->Unlock();
140: break;
141: }
142: catch(Exception &e) {
143: printf("6. Exception Message: %s\n", e.get_Message().get_BaseStream());
144: mutex->Lock();
145: StopRequested = true;
146: mutex->Unlock();
147: break;
148: }
149: }
150: // for (StopRequested==true)

151: bufferNotFull->Signal();
152: bufferNotEmpty->Signal();
153:
154: barrier->SignalAndWait(); // Synchronizes with other threads before the completion of its execution.

155: printf("...\r");
156: return ptr;
157: }
158:

Figure 6.8 (Continued) Local, concurrent copy of a file to another using the FileStream class.

(Continued)

Storage Systems ◾ 171

folders, G and H, whilst the directory D is the parent of this directory. The ability of
programs to create any number of subdirectories provides a powerful tool for organ-
ising files. At the end of this section, to complete the capabilities of the FileStream
and Directory classes, we bring Table 6.4. The File class has three main methods,
all of which are described in this table. It is also worth noting that the Directory
and File class methods, as stated in the FileStream class, throw an exception if
an error occurs whilst being invoked.

6.3.4 Two Examples of Non-Concurrent and Concurrent Use
of the Directory Class

The first example of using the Directory class deals with listing all files under
folders of a particular directory. As mentioned, the structure of a directory system
is a hierarchical tree. Therefore, to find all files in this example, we must meet all
the nodes of the tree and find files in the subdirectory whenever we visit. As a
result, we will use a recursive function to fully traverse this tree structure. The imple-
mentation of this example comes in Figure 6.10. Inside the main() function, the
RecursiveDirectoryTreeTraversal() function is used to find all the files under
the dir directory. In this example, the dir directory is, in fact, our root directory to
which the traversal is performed. In implementing this function in line 2, we first find
the subdirectories of the dir folder. Then in a for loop (line 5) with the number
of subdirectories found, we first locate the files in it; this is done in line 7 using the

159: public: static int Parvicursor_main(int argc, char *argv[]) {
160: Int32 bufferSize = 256*1024, cells = 10;
161: FileStream *fsRead = null, fsWrite = null;
162: Barrier *barrier = new Barrier(3); // main thread + producer and consumer threads.

163: String readFilename = "c:/test.exe"; //to change

164: String writeFilename = "c:/test1.exe"; //to change

165: printf("Copying %s to %s\n", readFilename.get_BaseStream(), writeFilename.get_BaseStream());
166: try {
167: fsRead = new FileStream(readFilename, System::IO::Open, System::IO::Read, 8*1024);
168: fsWrite = new FileStream(writeFilename, System::IO::OpenOrCreate, System::IO::Write,

8*1024);
169: }
170: catch(Exception &e) {
171: ...
172: }
173: catch(...) {
174: ...
175: }
176: ConcurrentFileCopy cfc = ConcurrentFileCopy(fsRead, fsWrite, bufferSize, cells, barrier);
177: cfc.Run();
178: barrier->SignalAndWait(); // Waits until the completion of other threads' execution.

179: delete barrier; delete fsRead;delete fsWrite;
180: return 0;
181: }
182: };

Figure 6.8 (Continued) Local, concurrent copy of a file to another using the FileStream class.

172 ◾ Implementing Parallel and Distributed Systems

GetFiles() method. In lines 7 through 13, if the current directory contains a file,
we print its name. Since in each iteration of the first for loop each subdirectory may
contain subdirectories, we invoke the RecursiveDirectoryTreeTraversal()
method again each time we repeat the loop of line 5 in line 17 to return subdirec-
tories. This can be found under the directory. According to those tips explained in
Table 6.3, the allocated memory objects are freed in lines 12, 14, 15, 18, 20, and 21
by these two static methods.

Table 6.3 Static Methods of the Directory Class

Name Description

static void
CreateDirectory(const
String &path)

Creates the given directory. It will throw an exception if at
least one of the parent folders of the path variable does
not exist. If the specified directory exists, this method does
nothing.

static void Delete(const
String &path, bool
recursive)

Deletes the specified directory. If the recursive value is
true, folders, subdirectories, and files in the path will be
deleted.

static void Delete(const
String &path)

Removes an empty directory from the specified path. If the
directory has at least one file or subdirectory, an exception
is thrown.

static bool Exists(const
String &path)

Specifies whether the given path refers to a directory on
disc. If such a directory does not exist, this method returns
a false value.

static ArrayList
*GetDirectories(const
String &path)

Finds the subdirectories in the path variable. If there is
no subdirectory, a null value returns. Otherwise, the
pointer is an array list containing subdirectories, each
link list element stores the reference of an instance of the
memory-allocated String object in itself. Note that after
using this class, we must delete all the elements in this array
list by calling the delete keyword. Since the return value
of this method is of pointer type, so because the memory
allocation for the returned instance is an array list, after
finishing our work with the return array, we must delete it
from the memory (using the delete operator) as well.

static ArrayList
*GetFiles(const String
&path)

Returns names of files in the path directory. If there is no
file, a null value returns. The procedure for freeing up
allocated memory in this function is exactly the same as the
GetDirectories() method.

static void Move(const
String &sourceDirName,
const String
&destDirName)

Moves a directory and its contents from the
sourceDirName path to the new destDirName location.

static String
GetCurrentDirectory()

Finds the current application directory.

Storage Systems ◾ 173

In the second and last example of this section, we describe a concurrent imple-
mentation of the cp shell command. Using this command on the command prompt
of the Windows operating system or the shell of Unix systems such as Linux, one
can completely copy a source directory (with all subdirectories and files in it) to a
destination directory locally. Figure 6.11 shows the architecture of this example. Its
implementation is shown in Figure 6.12. In the main() function, we want to copy
the src directory to the dest directory. First, we create the src directory using
the CreateDirectoryEx() method, then use the FindRootDirectoryFiles()
method to find the files in the src directory; after finding each file in this directory
on lines 96 and 97 using the data structure MethodInfo, we add the corresponding

Table 6.4 Static Methods of the File Class

Name Description

static void Delete(const
String &path);

Deletes the specified file. If the file does not exist,
an exception is thrown.

static bool Exists(const
String &path);

Specifies whether the given file exists or not. If
such a file does not exist, this method returns a
false value.

static void Move(const String
&sourceFileName, const String
&destFileName);

Moves a file from the existing sourceFileName
path to the new destFileName location.

Figure 6.9 A hierarchical directory system.

A

B

D

E

I
C

F

m

n

p

o

K

G
H

q r w

Root directory

Subdirectories

Files

174 ◾ Implementing Parallel and Distributed Systems

Figure 6.11 Architecture of the implemented code to concurrently copy one directory to
another based on the ThreadPool class.

Main Thread

CreateDirectoryEx()

FindRootDirectoryFiles()

RecursiveDirectoryTreeTraversal()

Thread Pool
MethodCallback()

MethodCallback()

MethodCallback()

MethodCallback()

…
…

…
..

pool.WaitOnTaskQueue()

MethodCallback()

Figure 6.10 Listing all files in the subdirectory of a directory by recursively traversing it.

1: void RecursiveDirectoryTreeTraversal(const String &dir) {
2: ArrayList *dirs = Directory::GetDirectories(dir);
3: if(dirs == null)
4: return;
5: for(Int32 i = 0 ; i < dirs->get_Count() ; i++) {
6: String *s = (String *)dirs->get_Value(i);
7: ArrayList *files = Directory::GetFiles(*s);
8: if(files != null) {
9: for(Int32 j = 0 ; j < files->get_Count() ; j++) {

10: String *ss = (String *)files->get_Value(j);
11: printf("%s\n", ss->get_BaseStream());
12: delete ss;
13: }
14: files->Clear();
15: delete files;
16: }
17: RecursiveDirectoryTreeTraversal(*s);
18: delete s;
19: }
20: dirs->Clear();
21: delete dirs;
22: }
23:
24: int main(int argc, char *argv[]){
25: String dir = "C:/"; // root director - to change

26: RecursiveDirectoryTreeTraversal(dir);
27: return 0;
28: }

Storage Systems ◾ 175

Figure 6.12 Concurrent implementation of the directory copy operation reliant on the
Directory, FileStream, and ThreadPool classes of the Parvicursor.NET Framework.

1: class ConcurrentCP : public Object {
2: /*---------------------fields----------------*/

3: private: struct MethodInfo : public Object {
4: String *readFilename, *writeDir;
5: Int32 bufferSize;
6: public: MethodInfo(String *readFilename, String *writeDir, Int32 bufferSize) {
7: this->readFilename = readFilename;
8: this->writeDir = writeDir;
9: this->bufferSize = bufferSize;

10: }
11: public: ~MethodInfo() {
12: if(readFilename != null) // allocated in FindRootDirectoryFiles or RecursiveDirectoryTreeTraversal

13: delete readFilename;
14: if(writeDir != null) // allocated in FindRootDirectoryFiles or RecursiveDirectoryTreeTraversal

15: delete writeDir;
16: }
17: };
18: /*---------------------methods----------------*/

19: private: static void MethodCallback(Object *state) {
20: MethodInfo *info = (MethodInfo *)state;
21: String writeFilename = String(*info->writeDir) + "/" + info->readFilename->Substring(info-

>readFilename->LastIndexOf("/") + 1);
22: FileStream *fsRead = null, fsWrite = null;
23: printf("Copying '%s' to '%s'\n", info->readFilename->get_BaseStream(),

writeFilename.get_BaseStream());
24: try {
25: fsRead = new FileStream(*info->readFilename, System::IO::Open, System::IO::Read, 8*1024);
26: fsWrite = new FileStream(writeFilename, System::IO::OpenOrCreate, System::IO::Write,

8*1024);
27: }
28: catch(Exception &e) {
29: ...
30: return ;
31: }
32: catch(...) {
33: ...
34: return ;
35: }
36: Int32 read;
37: if(info->bufferSize <= 0)
38: info->bufferSize = 256*1024;
39: char *buffer = new char[info->bufferSize];
40: while(true) {
41: try {
42: read = fsRead->Read(buffer, 0, info->bufferSize);
43: if(read <= 0)
44: break;
45: fsWrite->Write(buffer, 0, read);
46: }
47: catch(IOException &e) {
48: ...
49: break;
50: }

(Continued)

176 ◾ Implementing Parallel and Distributed Systems

51: catch(Exception &e) {
52: ...
53: break;
54: }
55: catch(...) {
56: ...
57: break;
58: }
59: }
60: delete fsRead; delete fsWrite; delete buffer;
61: delete info; // allocated in FindRootDirectoryFiles or RecursiveDirectoryTreeTraversal

62: return;
63: }
64: /*---*/

65: private: static void RecursiveDirectoryTreeTraversal(const String &dir, const String &newdir, const
String &root, ThreadPool *pool, Int32 bufferSize) {

66: ArrayList *dirs = Directory::GetDirectories(dir);
67: if(dirs == null)
68: return;
69: for(Int32 i = 0 ; i < dirs->get_Count() ; i++) {
70: String *s = (String *)dirs->get_Value(i);
71: String newstr = newdir + s->Substring(root.get_Length());
72: if(!Directory::Exists(newstr))
73: Directory::CreateDirectory(newstr);
74: ArrayList *files = Directory::GetFiles(*s);
75: if(files != null) {
76: for(Int32 j = 0 ; j < files->get_Count() ; j++) {
77: String *ss = (String *)files->get_Value(j);
78: MethodInfo *info = new MethodInfo(ss, new String(newstr), bufferSize);
79: pool->QueueUserWorkItem(MethodCallback, info);
80: }
81: files->Clear();
82: delete files;
83: }
84: RecursiveDirectoryTreeTraversal(*s, newdir, root, pool, bufferSize);
85: delete s;
86: }
87: dirs->Clear();
88: delete dirs;
89: }
90: /*---*/

91: private: static void FindRootDirectoryFiles(const String &newdir, const String &root, ThreadPool
*pool, Int32 bufferSize) {

92: ArrayList *files = Directory::GetFiles(root);
93: if(files != null) {
94: for(Int32 j = 0 ; j < files->get_Count() ; j++) {
95: String *ss = (String *)files->get_Value(j);
96: MethodInfo *info = new MethodInfo(ss, new String(newdir), bufferSize);
97: pool->QueueUserWorkItem(MethodCallback, info);
98: }
99: files->Clear();

100: delete files;
101: }

Figure 6.12 (Continued) Concurrent implementation of the directory copy operation reliant on
the Directory, FileStream, and ThreadPool classes of the Parvicursor.NET Framework.

(Continued)

Storage Systems ◾ 177

102: }
103: /*---*/

104: // Creates a recursive directory pattern, e.g., /a/b/c/d/e.

105: private: static void CreateDirectoryEx(const String &path) {
106: String str = path;
107: String temp;
108: Int32 n = 0;
109: while(true) {
110: n = str.IndexOf("/", n + 1);
111: if(n <= 0)
112: break;
113: temp = str.Substring(0, n);
114: if(!Directory::Exists(temp))
115: Directory::CreateDirectory(temp);
116: }
117: if(!Directory::Exists(path))
118: Directory::CreateDirectory(path);
119: }
120: /*---*/

121: public: static int Parvicursor_main(int argc, char *argv[]) {
122: Int32 bufferSize = 256*1024;
123: Int32 threadNum = Environment::get_ProcessorCount()*4;
124: String src = "C:/Users/Administrator/Desktop/Matrix Multiplication"; // to change

125: String dest = "C:/test/c"; // to change

126: if(!Directory::Exists(src)) {
127: printf("src does not exist.\n");
128: return 0;
129: }
130: ThreadPool pool = ThreadPool(threadNum, 10000); // Initialises the thread pool instance.

131: try {
132: if(!Directory::Exists(dest))
133: CreateDirectoryEx(dest);
134: FindRootDirectoryFiles(dest, src, &pool, bufferSize);
135: RecursiveDirectoryTreeTraversal(src, dest, src, &pool, bufferSize);
136: }
137: catch(Exception &e) {
138: ...
139: }
140: catch(...) {
141: ...
142: }
143: pool.WaitOnTaskQueue(); // Waits until all methods (or threads within the ThreadPool) complete.

144: return 0;
145: }
146: /*---*/

147: };

Figure 6.12 (Continued) Concurrent implementation of the directory copy operation reliant on
the Directory, FileStream, and ThreadPool classes of the Parvicursor.NET Framework.

178 ◾ Implementing Parallel and Distributed Systems

file to the instance of our thread pool using the QueueUserWorkItem() method.
In this example, the number of threads in our pool is chosen four times the count
of the machine processor cores on line 123. The CreateDirectoryEx() method
creates the desired path (like /a/b/c/d/e) in a loop by identifying the characters in
path. After completing these steps, the RecursiveDirectoryTreeTraversal()
method is called, and as in the example in Figure 6.10, in addition to finding the file,
and like the FindRootDirectoryFiles() method (lines 78 and 79), it puts them
in the thread pool’s work queue and also creates subdirectories. Our thread pool
implements the MethodCallback() callback method for copying files.

What follows in the implementation of this method in lines 19–23 is exactly the
example code in Figure 6.7 of the FileStream class used to copy one file locally
to another. In the end, we invoke the WaitOnTaskQueue() method of our thread
pool class. This leads to waiting in the main() function for the completion of all
operations until the thread pool’s work queue still is not empty (namely, all files have
not been copied by the thread pool yet). The complete source code examples of this
section can be found in the “/Parvicursor/Parvicursor/Samples/DiscIO/
DiscIO” path.

Reference
 [1] IOzone Filesystem Benchmark, 2022; Available from: https://www.iozone.org

https://www.iozone.org

179DOI: 10.1201/9781003379041-7

Chapter 7

Computer Networks:
A Parallel Programming
Approach

Major power and telephone grids have long been controlled by computer net-
works, but now similar systems are embedded in such mundane objects as elec-
tric meters, alarm clocks, home refrigerators and thermostats, video cameras,
bathroom scales, and Christmas tree lights – all of which are, or soon will be,
accessible remotely.

Charles C. Mann

7.1 Substantial Concepts of Computer Networks for Distributed
Systems Design

7.1.1 Introduction

In the definition of a distributed system, it comes that a distributed system is com-
posed of distributed processes in a computer network that communicate with one
another through a computer network. Therefore, taking communication issues into
account is fundamental to constructing a distributed system. Of course, it should be
noted that the emergence and advancement of computer networks, as an indispens-
able part of distributed systems, has conducted distributed systems to their current
form. In this chapter, we first examine necessary concepts in computer networks and
then instruct the reader with different software techniques to implement communica-
tions in software and middleware layers. We also attempt, unlike traditional books in
distributed systems that mostly discuss communications from high-level and algorith-
mic aspects, to arrive at two different approaches. First, we teach you to directly take
your hands into coding and design communication protocols by yourself (we will
not at all use ready methods such as RPC; rather, we build such a feature). Second,

http://dx.doi.org/10.1201/9781003379041-7

180 ◾ Implementing Parallel and Distributed Systems

unlike network programming books available on the market which rarely investigate
the design of highly complex concurrent client-server systems (and it is not usu-
ally examined), in this chapter we only deal with this type of complex systems to
leverage the processing power of modern multi/many-core processors throughout
Sections 7.4–7.6. Although this complexity may lead to a steep learning curve for the
reader, but the performance achieved from such systems can be a motivational fac-
tor for you to follow up on the hard materials within this chapter. In this respect, we
will design a highly asynchronous and concurrent framework from the ground up.
In Section 7.6, we teach our experience gained from constructing this framework to
the interested readers. The section can become a standard candidate to build higher-
level communication systems, because this framework has been designed based on
optimum exploitation of the computing power available in multi/many-core systems
to properly and performantly handle highly scalable communication mechanisms.
In this chapter, we assume the reader has enough skills with the concepts of com-
puter networks and even network programming, and we teach him/her with more
advanced topics. However, since this book is intended for a broad audience of read-
ers with various interests and experiences, we will discuss those topics in a nutshell
that are needed from computer networks and network programming (i.e., socket
programming).

7.2 An Introduction to Modern Computer Networks
A computer network consists of a collection of computers (or any computing entity
such as portable mobile devices) and other hardware components that are connected
by communication channels and allow sharing of resources and information. In the
topology created within this computer network, threads (or processes) can send and
receive messages and information. Communication protocols in computer networks
provide the rules and structures of data to exchange information and create a basis
for network programming which are discussed in detail herein.

There are two transport technologies: broadcast links and point-to-point links.
Point-to-point links connect individual pairs of machines. This type of transport is
usually referred to as unicast. In a broadcast network, the communication channel is
shared between all the machines on the network, and packets sent by any machine
are received by all other machines. Some broadcast systems support transmission to
a subset of machines, which is known as multicast. In this chapter, we explain unicast
transports entirely grounding upon TCP/IP protocol, because the book’s skeleton
exclusively utilises this type of transport. Multicast or broadcast transports based on
such protocols as UDP are commonly used for transferring messages and collective
communications of dozens of network nodes. Because the concepts covered in this
book do not require multicast transports, which are outside the scope of the book,
we omit to describe them and refer the interested reader to references like [1].

Computer networks are classified into four major categories based on distance
and speed parameters: local-area networks1, metropolitan-area networks2, wide-area
networks3, and high-speed networks such as InfiniBand interconnects.

LANs are computer networks that are formed from joining a set of machines
in a restricted local region like a university. Amongst the most significant cabling

Computer Networks ◾ 181

approaches used to construct LAN networks is Ethernet. The wiring of LAN networks
is done in different varieties, including, bus, ring, star, tree, mesh, and so on. Some
of these topologies appear in Figure 7.1.

In the bus topology, a single cable is used for all devices on the network. This
cable is often referred to as the term network backbone. When a connection happens
between nodes, the sender device broadcasts its message to all nodes, but only the
intended recipient picks that message up (this action is done by a unique hardware
address called MAC4 address for each device on the network). This topology makes
the installation of cables very easy but limits overall network performance in a large
number of nodes.

In the ring topology, every node is connected to other nodes on the network,
whilst the first and last nodes are connected to each other. Messages from one node
to others travel from the originator towards the destination through a set of inter-
mediary nodes. The intermediary nodes function as active repeaters for messages
intended for other nodes. In this topology, messages can move both clockwise and
counterclockwise. The ring topology usually creates relatively long transmission
times in comparison with the bus topology, and has a much more compact effect on
network communication in the event of a cable failure between any two nodes.

Figure 7.1 Three typical types of topologies used in the wiring of a LAN network: (a) bus
topology, (b) ring topology, and (c) star topology.

(a)

n1 n2 n4

n3 Bus
Terminator

Bus
Interface

Bus

Nodes

n1

n7

n5

n3

n2

n4

n8

n6

Nodes

Ring

Ring
Interface

(b)

n4

n1

n2

n3

n6
n5

Switch

Nodes

(c)

182 ◾ Implementing Parallel and Distributed Systems

In the star topology, a upper-level central node is used in that all other nodes are
connected to it. This central node can be a computer or simply a switch. Messages
received by the central node either can be broadcast to all available nodes in the net-
work or are only sent to a target node. The internode delay of messaging is reduced
in this configuration. If one of the connections between a node and the central node
goes down, the entire network will not be disrupted. Because of these benefits, this
topology is more used in contrast to the bus and ring topologies in LAN networks.
Of course, this configuration requires more wirings as compared with the two other
methods. Also, should the central device fail, the whole communications of the net-
work will stop. This topology has also restrictions concerned with the scalability of
the number of network nodes. Due to these problems, other topologies such as tree
and mesh structures are generally used, which are beyond the theme of this book.

A metropolitan-area network usually surrounds an area or a city, which often con-
nects a few LANs by using high-speed backbone technologies like fibre-optic links.
A MAN often provides communications to a wide-area network or the Internet. A
WAN network encloses a wide geographical area such as a country or a continent. In
practice, WANs operate more as computer networking technologies to transmit data
over long distances, and between LANs and different WANs. Figure 7.2 shows an
example of a client/server on a WAN network that is connected by a cloud of rout-
ers. Routers are the WNAs’ building blocks. Today the largest WAN network is the
Internet, which connects a network of large WAN networks worldwide. In the next
section, we will examine how a client and server can communicate with each other
on top of a transport protocol such as Transmission Control Protocol (TCP/IP). One
of the important issues in WANs, particularly Cloud environments and the Internet,
is the transmission optimisation problem because it has a big impact on the network
throughput in addition to a large number of users and long distances. Most of them
that are mainly caused by TCP protocol include throughput, bandwidth require-
ments, latency, protocol optimisation, congestion (in lost packets), and the scalability

Figure 7.2 A client and server on different LANs are connected via a WAN link.

clinet
program

host
with

TCP/IP

server
program

host
with

TCP/IP

router

router router router

router router router

router

WAN

LAN LAN

Computer Networks ◾ 183

issue. WAN optimisation has been one of the subjects of extensive academic research
almost since the emergence of WANs. In this chapter and in Chapter 10, we will
discuss this issue in detail, especially at the application layer, protocol design, and
operating system.

In the last classification of computer networks, we briefly refer to high-speed
networks that are built reliant on InfiniBand communication links. InfiniBand is a
switched fabric communication link in High-Performance Computing, enterprise data
centres, and Cloud Computing. The dramatic increase in the performance of modern
processors requires I/O subsystems to satisfy the ability in data delivery with a rate
that is needed by the processor subsystem. In order to achieve higher performance
and scalability with lower costs, system architects have encountered concepts like
clustering, grid and cloud computing. To achieve the benefits of these new technolo-
gies, the protocol used for communications between physical machines must supply
high bandwidth and low latency. Unfortunately, fully-fledged network protocols such
as TCP (as we extensively examine it within this book), to achieve a good perfor-
mance on LANs and WANs, have become so complicated that they cause significant
latencies. InfiniBand is the answer to this key issue in data transmission.

In transmitting a piece of data from one machine to another, the latency due to
the overhead and the latencies that are added to the time needed for actual data
transfer exhibit themselves. The most important contributors to this latency can be
studied from three aspects: (a) the execution overhead of network transport protocol
inside the operating system kernel, (b) several context switchings to move inside
and outside of the kernel for sending and receiving data, and (c) extra data copies
between userspace buffers and NIC memory.

A typical topology of an InfiniBand network looks like the star topology shown in
Figure 7.1. Communications between nodes, switches, and routers are point-to-point
and serial connections. InfiniBand specification defines the raw bandwidth of base
connection 1x to 2.5 Gb per second, and also other bases such as 4x, 12x, and so on
are specified. In this specification, channel adapters are divided into Host Channel
Adapters5 and Target Channel Adapters6. Figure 7.3 illustrates the InfiniBand com-
munication stack. If an application wants to communicate with another application
over InfiniBand, it must first create a work queue that is comprised of Queue Pair7.

Figure 7.3 InfiniBand communication stack.

Packet Relay

Port Port

Consumer

Port

CQE

Send Recv

QP

Channel
Adaptor

Consumer

Port

CQE

Send Recv

QP

Channel
Adaptor

184 ◾ Implementing Parallel and Distributed Systems

The application to be able to perform an operation must put a Work Queue Element8
into the work queue. From there, that operation is selected by the channel adapter.
Thus, the work queue establishes a communication medium between applications
and channel adaptors and relieves the operating system from having to deal with
this responsibility. Each process may create one or more QP(s) for communication
purposes with another application. Instead of having to use a single queue of an NIC
card in a typical operating system, each queue pair has a context associated. Because
both the protocol and the structures are all very clearly defined, queue pairs can
be implemented in hardware, and in this way, most of the work is offloaded from
the CPU. As soon as a WQE is properly processed, a Completion Queue Element9 is
created and the WQE is placed into the CQE. The advantage of using a completion
queue for notifying the caller of the completed WQEs is to reduce interrupts that may
otherwise be generated. For the receive queue, only a type of operation is defined:
Post Receive Buffer. The list of the operations supported by InfiniBand architecture
at the transport level for send queue comes as follows:

 1. Send/Receive: supports the typical send/receive operations where one node
submits one message and another node receives the message. A difference
between the implementation of the send/receive operations in InfiniBand archi-
tecture and conventional networking protocols is that InfiniBand defines the
send/receive operations as operating along the queue pairs.

 2. RDMA10-Send/Receive: these operations allow a node to write/read directly to/
from the memory buffer on a remote node. The remote node must already have
some registered memory buffers for remote access.

 3. RDMA Atomics: perform atomic CAS operations, which were discussed in
Chapter 5, with RDMA type on a remote node.

Other transports are also supported in InfiniBand, including multicast and transac-
tional operations. On the whole, InfiniBand provides high throughput, low latency,
quality of service11, high scalability, and failover.

7.3 OSI Model and TCP/IP and UDP Protocol Suite to Structure
Communications in Computer Networks

7.3.1 The OSI Reference Model

To reduce the design time of computer networks, most networks nowadays are organ-
ised as a stack of layers or levels, in which every layer is built on top of the lower
layer. The goal of every layer is to offer certain services to higher layers of itself whilst
hiding those layers from the details of how these services are actually implemented.
The OSI12 model includes a collection of protocols that try to define and standardise
the data communication process. The OSI protocols were defined by ISO13. The OSI
model does not have a single definition of how actually data communications occur
in the real world. Several protocols exist in every layer. The OSI reference model
describes how information is transferred from a software application to another
machine via a network environment. Figure 7.4 shows the OSI reference model.

Computer Networks ◾ 185

OSI splits communications into seven layers. Layers are organised into two groups.
The upper four layers are used when a message passes from/to a user. The lower three
layers are used when a message passes through the host machine. Messages intended
for another host are not passed to the upper layers and, in turn, are forwarded to
another host. The application layer of the OSI model lays closest to the end user,
which means that the application layer and the user interact directly with the soft-
ware application. This layer interacts with software programs that implement a com-
munication component. For instance, programs such as a web server, a mail server,
and a file server are implemented on this layer. The role of this layer is to identify
communication partners, determine resource availability, and synchronise communi-
cations. When identifying communication partners, the application layer determines
the identification and availability of the communication partners for an application
along with the data to be transferred. When determining the resource availability, this
layer must decide whether sufficient network resources for the requested communi-
cation exist or not. In synchronising the communication, all communications amongst
applications require cooperation that is managed by the application layer. This layer
is one of the widely used layers throughout this book. All existing protocols in this
book, in particular this chapter and Chapter 10, will be implemented on this layer.

The presentation layer takes care of the syntax and semantics of transferred data:
this layer processes the data to be accommodated between communication tasks.
This layer guarantees independence between user and data transmission. This layer
can usually convert, format, encrypt, and compress the data. For example, the secure
data transfer protocol (xSec) for the Parvicursor platform is implemented within this
layer in Chapter 10.

Figure 7.4 The OSI reference model.

Application

Presentation

Session

Transport

Network

7

Data link

Physical1

2

6

5

4

3

Host A

Application

Presentation

Session

Transport

Network

Data link

Physical

Host B

Application protocol

Presentation protocol

Session protocol

Transport protocol

Router Router

Router Router

Router Router

Communication subnet boundary

Layer

APDU

PPDU

SPDU

TPDU

Packet

Frame

Bit

Network layer host-router protocol

Dara link layer host-router protocol

Physical layer host-router protocol

Name of unit
exchanged

186 ◾ Implementing Parallel and Distributed Systems

The session layer sets up and synchronises exchanging messages amongst
remote processes. This layer binds logical addresses to physical addresses for dis-
tributed tasks. It also binds two application programs that must control their coop-
erative dialogue (of which should talk, which is currently talking, and so forth).
In the former case, the setup service is referred to as token management. The ses-
sion layer also allows inserting recovery points into the data flow to resume the
dialogue after a failure.

The transport layer is responsible for the appropriate delivery of messages to
recipients. Its main task is to get messages from the session layer, split them into
smaller units, and deliver them to the network layer whilst checking the correct
reception of segments. Therefore, this layer also reassembles the original mes-
sage when it receives segments. This layer is also responsible to optimise network
resources: normally, the transport layer should create a network connection for
each transport connection required by the session layer, but it is capable to create
several network connections by the session layer process, for example to improve
bit rate. On the contrary, this layer can use a network connection to convey plenti-
ful messages at a time with the use of multiplexing. In any case, all this must be
transparent to the session layer. This layer is also in charge of providing the type
of service to the session layer and eventually to the network users: connection-
oriented service (e.g., TCP protocol), connectionless service (e.g., UDP protocol),
broadcast service, etc. Hence, this layer is responsible to open and close network
connections. This also has the duty of flow control. This layer is one of the most
important layers because it provides fundamental services to the user and controls
the entire connection process with all corresponding constraints. The information
unit for this layer is a message. We will further discuss this layer in the rest of this
section.

The network layer is responsible for the subnet, which means the routing pack-
ets over subnets and the interconnection of various subnets. When designing this
layer, determining a routing mechanism and calculating routing tables (static or
dynamic tables) are very important. This layer controls the subnet congestion as
well. The information unit for this layer is a packet. IP protocol is one of the most
essential protocols of this layer, which will be discussed in the remainder of this
section as well.

The data link layer provides practical and procedural tools for data transmission
between network entities, and to find and probably correct the errors that may hap-
pen in the physical layer. This layer divides the sender input data into frames, sends
these frames sequentially, and manages acknowledgement frames sent by the recipi-
ent. This layer must be able to signal a transmission problem by sending a proper
frame. This layer also integrates a control flow operation to avoid blocking a receiver.
The information unit of this layer is a frame that is composed of a few hundred up
to a few thousand bytes.

The physical layer has the task to transfer raw bits over the transmission chan-
nel. This layer must ensure the complete transfer of data. In fact, this layer must
standardise electrical characteristics (e.g., a bit set to 1 is expressed with a potential
voltage of 5 volts), mechanical and functional characteristics of data circuits, estab-
lishment procedures, and maintenance and release of data circuits. The typical infor-
mation unit of this layer is a bit that is expressed by a given voltage.

Computer Networks ◾ 187

7.3.2 The TCP/IP Protocol Suite

TCP14/IP protocol suite is a layered network protocol, which includes Internet
Protocol15 and a variety of other protocols layered on top of it. The code that imple-
ments its various layers is usually known as the Protocol Stack. Encapsulation is one
of the significant principles of layered network protocols. Figure 7.5 depicts a sample
of this mechanism in the layers of TCP/IP protocol. The key idea behind encapsula-
tion is that the information (e.g., application data, a TCP segment, and an IP data-
gram) passed from an upper layer to a lower layer is dealt as opaque data by the
lower layer. In other words, the lower layer does not perform any effort to interpret
the information sent from an upper layer, but it merely puts the information into any
type of packet that is used in the lower layer and adds its own layer’s special header
before passing the packet downwards to the next lower layer. When data is passed
from a lower layer to an upper layer, a reverse-unpacking process occurs.

In the TCP/IP protocol suite, the IP protocol functions in the OSI model’s network
layer. This protocol has two versions, 4 and 6, in which addresses respectively are
32 and 128 bits in length. The IP protocol is described as a connectionless protocol
because it does not provide the image of a virtual circuit connecting two hosts. IP is
also an unreliable protocol: it performs the best effort to move datagrams from the
sender to the recipient but does not guarantee that the packets will reach their des-
tination from where they had been sent, or that they will not duplicate, or even that
they will never arrive. IP also does not provide error recovery; the packets with over-
head errors are silently discarded. Reliability must be obtained either by a reliable
transport-layer protocol (such as TCP and SCTP16) or within the application itself.

The IPv4 datagrams can be up to 65,535 bytes. By default, IPV6 datagrams allow
the maximum length of 65,575 bytes and provide an option for larger datagrams
(which are called jumbograms). An IP address consists of two parts: a network

Figure 7.5 Encapsulation within the layers of TCP/IP protocol.

IP header

TCP Header TCP data

Source + destination
port #, sequenece # ,
ackenloegment #,
flags, checksum, etc.

Source +
destination IP
address, header,
checksum, etc

Application-specific content

TCP
segment

Application
data

IP
datagram

IP data

188 ◾ Implementing Parallel and Distributed Systems

ID, which specifies the network in which a host is located, and a host ID. An IPv4
address is made up of 32 bits and displayed as a dotted decimal representation when
it comes to human readable form, for example, the address 192.168.1.2 is one
of the addressees in a LAN network’s range. IPv6 addresses are typically written as
a series of 16-bit hexadecimal numbers that are separated by colons (their general
representation is in the form of F000:0:0:0:0:0:A:1).

There are two types of transport-layer protocols in the TCP/IP protocol suite.
UDP17 protocol is used for connectionless transmission of datagrams. UDP uses a
simple model with a minimal protocol mechanism. This is not a reliable protocol and
is commonly used for multicast and VoIP18 applications. In this book, according to
this issue and that the UDP protocol is not used in this context, we will not exam-
ine it. The TCP protocol is the most widely used transport protocol on the Internet,
Cloud environments, and particularly WAN networks and distributed systems.

The task of a transport protocol is to provide end-to-end communication for
applications residing on different hosts. To perform such a function, the transport
layer requires a way to distinguish between applications on a host. In TCP and UDP,
this distinction is made by a 16-bit port number. For instance, a web server and a file
server serve their clients on ports 80 and 21, respectively.

TCP provides a reliable, connection-oriented, bidirectional, and byte-stream com-
munication channel between two endpoints (i.e., applications). Figure 7.6 illustrates
a scenario in which two applications A and B interact with each other via TCP sock-
ets. Connection-oriented TCP socket programming is comprehensively discussed in
the next sections. In this figure, the term TCP endpoint has been used to denote the
information maintained by the kernel for an end of a TCP connection. This informa-
tion includes the send() and receive() buffers for this end of the connection
along with state information which is maintained to synchronise the operation of
two connected endpoints.

Before a connection is established between two hosts, TCP establishes a com-
munication channel between two endpoints. During the connection establishment,
the sender and receiver can declare some parameters for the connection. Data is
broken into segments, and each one is included with a checksum to provide an

Figure 7.6 The transition between two applications’ sockets based on the TCP protocol.

receive
buffer

send
buffer

state info

Kernel

TCP endpoint

Application
socket A

Network medium

receive
buffer

send
buffer

state info

Kernel

TCP endpoint

Application
socket B

Computer Networks ◾ 189

end-to-end transmission error detection. Every segment is transferred within a sin-
gle datagram. When a TCP segment arrives at its destination without any error, the
receiving TCP entity sends a positive acknowledgement to the sender and informs it
of the successful delivery of the data. If a segment comes with errors, TCP ignores
it, and no acknowledgement is sent. To handle segments that will never arrive or are
ignored, the sender of every segment starts a timer when every segment is being
transferred. If an acknowledgement is not received before the timer expires, the seg-
ment is retransmitted.

A logical sequence number is assigned to each byte that is transferred over a TCP
connection. This number indicates the byte position within the data stream for the
connection. When a TCP segment is transmitted, it has a field containing the sequence
number of the first byte in the segment. Flow control in TCP protocol prevents a fast
sender from overwhelming a slow receiver. To implement the flow control, the TCP
receiver maintains a buffer for incoming data. Each TCP entity advertises the size of
this buffer upon connection establishment. Data accumulates in this buffer whilst it
is received from the sending TCP entity and is removed when the application reads
it. With every acknowledgement, the receiver notifies the sender of the amount of
space that is available in its input data buffer (i.e., how many bytes can be transferred
by the sender). TCP has also several congestion control algorithms to prevent a fast
sender from overwhelming a network. Provided that a sending TCP entity transmits
the packets faster than they can be relayed by a router, the router drops the packets.
If the sender TCP retransmitted these dropped packets, it could lead to high rates
of packet loss and finally a dramatic performance degradation. Thus, as seen, TCP
congestion control algorithms are very important. A comprehensive evaluation of
the TCP protocol suite is beyond the space of this chapter. We refer the interested
reader to reference [2] for further study. In the remainder of this chapter, we follow
the implementation of the communication subject relied on socket programming and
the Parvicursor platform.

7.4 Network Programming Based on TCP Sockets and
Thread-Level Parallesim to Develop Distributed Client-Server
Programs Atop the Parvicursor.NET Framework

7.4.1 An Introduction to the Socket Programming Model

The standard model used for the development of networked applications is socket
programming. A socket is an endpoint that can be named and addressed. Socket
programming in this chapter shows how we can use the Socket class’s methods
in the namespace System::Net::Sockets from Parvicursor platform to estab-
lish communication links between local and remote processes. Sockets are generally
used for client/server interactions and have an essential role in the construction of a
broad taxonomy of applications in distributed systems, the Internet and WANs. The
typical system configuration places the server on one machine with clients on other
machines. Clients connect to the server, exchange information, and then disconnect
the connection.

190 ◾ Implementing Parallel and Distributed Systems

A socket has a typical flow of events. In a client-server model, a socket on the
server process waits for requests of a client. To do this, the server first establishes
(binds) an address that the clients can use to locate the server. The server waits for
clients’ requests when the address is established. The client-to-server data exchange
occurs when a client connects to the server through a socket. The server performs
the client request and sends a reply to the client. Figure 7.7 illustrates a typical flow
of the events and the order of use of the socket methods for a connection-oriented
socket session. The figure’s methods are located between the application layer and
the transport layer in the communication model. On the other hand, the socket meth-
ods allow programs to interact with the network or transport layer. We explain these
methods in short as follows.

 1. The method Socket() opens a communication endpoint and returns a refer-
ence that represents the endpoint.

 2. When a program has a socket reference, it can bind a unique name to the
socket. Servers must bind an address immediately accessible from the network.

 3. The method Listen() indicates an interest to accept client connection requests.
When the Listen() method is issued on a socket, the socket cannot actively ini-
tiate the connection request. The Bind() method binds a name to the socket. The
Listen() method must be issued before the Accept() method can be called.

Figure 7.7 A typical flow of events for a connection-oriented socket.

Socket()

Connect()

Send()

Receive()

Close()

Socket()

Bind()

Receive()

Send()

Close()

Listen()

Accept()Active socket
(client)

Passive socket
(server)

Blocks until
client connects

(Possibly multiple) bidirectional
data transfers

Resumes

Computer Networks ◾ 191

 4. The client program uses the method Connect() on a connection-oriented
(stream) socket to establish a connection to the server.

 5. The server program makes use of the Accept() method to accept a client
connection request. The server must call the methods Listen() and Bind()
before invoking the method Accept().

 6. When a connection is established between the client and server stream sockets,
you can use the methods Send() and Receive() for actual data transmission.

 7. When the server or the client is going to stop the operation, it calls the Close()
method to release any resources acquired by the socket.

7.4.2 A General Description of Network Programming Classes
in the Parvicursor.NET Framework

Now that we are familiar with socket concepts, in this section, we describe classes
from the Parvicursor.NET Framework that can be used in most cases to develop com-
munication systems for distributed applications. In Sections 7.5 and 7.6, advanced
concepts to develop highly scalable, high-performance, complex programs are pre-
sented in addition to this section’s classes. This is important from two aspects: first,
a client must be able to convert a server address (e.g., which is in the form of a
domain) into a numerical IP address, and second, the server must be able to lis-
ten on a specific IP address and port to incoming network connections. The four
classes IPEndPoint, IPAddress, Dns, and IPHostEntry of the System::Net
namespace carry out these functionalities for us.

Domain Name System19 is an Internet standard protocol that locates machines on
an IP-based network. IP networks, such as the Internet, are concerned with numeri-
cal addresses for data processing. Users can usually remember name addresses easier
than numerical ones, so it is required to translate user-friendly domain names (e.g.,
www.example.com) into addresses that can be recognised by the network (such as
198.23.57.53). Table 7.1 shows the Resolve() method of the Dns class. To under-
stand how to use the classes in the System::Net namespace, follow Example 1 at
the end of this section.

The most key class for network programming in the Parvicursor.NET Framework
is the Socket class in the System::Net::Sockets namespace. Because we dis-
cussed existing methods for a connection-oriented socket at the beginning of this
section, here we just explain a number of the Socket class’s important methods just
for emphasis (see Table 7.2). Note that an exception such as SocketException,
Exception, and so on is thrown in the case of any error after using these methods.

Table 7.1 The DNS Class’s Static Method in the Parvicursor.NET Framework

Name Description

IPHostEntry
Resolve(const String
&hostName)

Queries a DNS server for IP addresses associated with a
hostname or an IP address and returns an instance of the
class IPHostEntry. If this method fails to find at least one IP
address (e.g., due to connectivity problems), an exception of
the SocketException class is thrown.

http://www.example.com

192 ◾ Implementing Parallel and Distributed Systems

Table 7.2 The Socket Class’s Constructor and Methods in the Parvicursor.NET
Framework

Name Description

Socket(Address
Family
addressFamily,
SocketType
socketType,
ProtocolType
protocolType)

Initialises a new instance of a socket class along with address
family, and socket and protocol type. The values of InterNetwork
and InterNetworkV6 can be specified as the argument
addressFamily for IPv4 and IPv6 protocols. To use connection-
oriented and connectionless sockets, you can specify the
socketType parameter to be Stream and Dgram, respectively. To
specify the type of the working protocol of TCP or UDP, you can
use tcp and udp. In this book, we always employ the following
class constructor for instantiation (i.e., for connection-oriented
sockets depending on the TCP protocol):

Socket(InterNetwork, Stream, tcp)

void
Connect(IPEndPoint
&remoteEP)

Establishes a blocking connection to a server specified by the
variable remoteEP. remoteEP can be initialised by the information
returned from the System::Net::Dns::Resolve() method and
a port number (see the Example 1 of this section).

void
Bind(IPEndPoint
&localEP)

Binds a socket instance on an IP address (or a series of IP
addresses) and a port. To use the Listen() method, this method
must be invoked in advance.

void Listen(Int32
backlog)

Makes a connection-oriented socket instance be set to a listening
state for incoming connection attempts.

Socket *Accept()
const

Dequeues simultaneously the first pending connection from
the connection request queue of the listening socket, and then
creates and returns a new socket. Since a pointer address to the
Socket class returns, it means that a memory allocation has been
made. Therefore, we must use the delete keyword to release
the memory allocated to this new instance after getting our
work completed with it (in this situation, we should first call the
Close() method of the socket instance). The Accept() method
blocks until an incoming connection attempt is queued. Once a
connection is accepted, the original socket continues to enqueue
incoming connection requests as long as the socket is closed by
the Close() method.

Int32 Send(const
char buffer[],
Int32 offset,
Int32 size,
SocketFlags
socketFlags)

Sends the specified number of bytes from an offset to a connected
socket by using the parameter SocketFlags. In this book, we
just deal with the None value of this flag. This method returns the
number of bytes sent. To use this method, you must make sure that
the send buffer size does not exceed the maximum size provided
by the underlying service provider. In connection-oriented sockets,
this method blocks until the requested bytes are sent.

Int32 Receive(char
buffer[], Int32
offset, Int32
size, SocketFlags
socketFlags)

Receives the number of bytes specified into the buffer from
the location from and fills it. If the connection is closed by the
endpoint, then this method returns a value of zero, otherwise it
returns the number of bytes received on the socket. The behaviour
of this method is akin to the Send() method.

(Continued)

Computer Networks ◾ 193

7.4.3 A Short Overview of the HTTP20 Protocol

In this section, we briefly take a look at the HTTP protocol, because we will exten-
sively take benefit of this protocol in the examples of this chapter as well as this
protocol has great importance especially on the Internet and Cloud Computing to
form distributed systems.

The HTTP/1.1 protocol in RFC 2616 is defined as an application-level standard
protocol for distributed, collaborative, and hypermedia systems. HTTP is a stateless
protocol that has been used for many tasks beyond hypertext applications. HTTP is
based on a request/response model. In simple terms, a client sends a request consist-
ing of a request method, URI21 (a page or object address) and the protocol version
to a web server followed by a MIME22-style message containing client information,
request modifiers, and possibly body contents (for POST requests). The server then
replies to the client with a status code including the protocol version, and a success
or error code followed by a MIME-like message containing server information, meta-
data, and probably entity-body contents.

In this request/response chain, there may be one or more intermediate systems
that are referred to as gateways, tunnels, or proxies. A proxy simply is a sender agent
that receives the requests for a URI, rewrites some or the entire message, and sends
the formatted request to a remote server. In the second example of Section 7.6, a
complete proxy server is designed and implemented.

HTTP is usually implemented over TCP/IP sessions and on the default port 80.
Also, always keep in mind that the connections of request/response protocols like
HTTP (unlike file transfer protocols such as xDFS and FTP; refer to Chapter 10)
rarely exist for extended periods of time. Instead, these connections tend to be short-
lived and are generated for the duration of request/response chains which are being

Name Description

void
Shutdown(Socket
Shutdown how)

Disables the send or receive operation on a socket. When using
connection-oriented sockets, call this method before closing the
socket. This ensures that all data on the connected socket are sent
and received before it is closed. The parameter how can have one
of these three values: Send, Receive, and Both. For example,
the value of Both simultaneously disables the send and receive
operations on the socket.

void Close() Closes the remote host connection and releases all system
resources consumed by the socket instance.

Int32 get_Handle()
const

Gets the operating system handle for the respective socket.
Because the current implementation of the Socket class in the
Parvicursor.NET Framework supports for what is needed in this
book, for calling the operating system APIs that provide more
operations than to this class, you can use this method and get
the desired socket handle. This handle can be passed to some
socket system routines such as sendto(), getsockopt(),
setsockopt(), select(), etc.

Table 7.2 (Continued) The Socket Class’s Constructor and Methods in the Parvicursor.NET
Framework

194 ◾ Implementing Parallel and Distributed Systems

carried. HTTP has seven request operations, including DELETE, CONNECT, POST,
GET, PUT, HEAD, and TRACE. they are sent by a client to a server, which we will
explain only the first three. The GET method retrieves any information that is in the
URI request. The POST method tells the server it must accept the message body sent;
this method is used generally to send the contents of an HTML form, upload a file,
and in web services based on SOAP23 protocol. The CONNECT method is employed for
tunnelling protocols such as SSL/TLS24 and other protocols through a proxy server.

Earlier HTTP versions established a separate TCP connection to fetch each
URL25. This meant that we were greatly increasing the load processing on HTTP
servers, and, finally, this resulted in unnecessary congestion in both the Intranet
and Internet. For instance, inline images and other data could mean that one client
made multiple requests to a web server over a short amount of time. To overcome
this issue, HTTP/1.1 introduced persistent connections. Such a concept also exists
in file transfer protocols like xDFS, of course, in terms of reusable channels. In gen-
eral, an HTTP/1.1 server assumes that all requests are persistent connections unless
the Connection header issued by the client is in the type of close. The clients
that are usually connected to a web server via a proxy use the ProxyConnection
header with the value of keepalive in their requests, indicating the client is
going to establish a persistent connection to the proxy and consequently to the
web server. The proxy should remove the Proxy part of the header when it sends
the ProxyConnection header. This makes the server not detect that a client is
connecting through a proxy server. Persistent connections have several advantages
including:

	 •	 Opening and closing fewer TCP connections mean that CPU time can be saved
in routers and hosts (clients and servers), and also less memory is needed to
store TCP control blocks on host machines.

	 •	 Requests and responses can be made pipeline, which allows multiple requests
to be embedded into a message body without waiting to be returned separately
for each response. Also, with a persistent connection, a single connection can
be used more efficiently resulting in less latency and the avoidance of re-estab-
lishing connections.

	 •	 The overall network congestion reduces because we do not need to constantly
open connections anymore, and thus the overhead of packets caused by estab-
lishing TCP connections decreases. Similarly, the latency associated with these
excessive connections reduces because the connection remains open.

Now, we examine three examples to use the methods POST, GET, and CONNECT (in
direct and indirect connection mode of a client to a web server or through a proxy)
so that you see how the HTTP messages are formatted and exchanged between cli-
ents and servers. These examples are shown in Figure 7.8 through Figure 7.10. In the
direct GET example, the client requests the page /index.html from a server with
the Host header containing the value of www.example.com. The server returns the
page contents with a 200 OK success status code which includes an HTML page
with a length of 20 bytes in line 8 of Figure 7.8(c). In all these examples, persistent
connections have been made with the header of Connection: keepalive. In
the request of a client through a proxy for GET/POST methods, the client in line 1 of
Figure 7.8(b) must send the absolute address of a page or web object to the proxy

http://www.example.com

Computer Networks ◾ 195

Figure 7.8 An example of a GET method in the request/response of a client from an HTTP web
server to retrieve a web page (c), directly (b) and through a proxy server (c).

b) HTTP/GET client request through an HTTP proxy
to the server:

1: GET http://www.example.com/index.html HTTP/1.1
2: Host: www.example.com
3: User-Agent: Firefox/14.0.1
4: Accept-Encoding: gzip, deflate
5: Proxy-Connection: keep-alive
6:

a) Direct HTTP/GET client request to the web
server:

1: GET /index.html HTTP/1.1
2: Host: www.example.com
3: User-Agent: Firefox/14.0.1
4: Accept-Encoding: gzip, deflate
5: Connection: keep-alive
6:

c) HTTP web server response:

1: HTTP/1.1 200 OK
2: Date: Mon, 23 May 2012 22:38:34 GMT
3: Server: Apache/1.3.3.7 (Linux)
4: Content-Length: 20
5: Connection: close
6: Content-Type: text/html; charset=UTF-8
7:
8: <h1>Hello World</h1>

Figure 7.10 An example of the CONNECT method in the request (a) and response (b) of a
client from an HTTP proxy server to tunnel a channel to a remote server on port 443 for secure
transmission relied upon the HTTPS/SSL protocol.

b) HTTP/CONNECT proxy response:

1: HTTP/1.1 200 Connection established
2: Proxy-Agent: Parvicursor.NET-AsynchProxy-v1
3:

a) HTTP/CONNECT client request to the proxy
server:

1: CONNECT www.example.com:443 HTTP/1.1
2: User-Agent: Firefox/14.0.1
3: Proxy-Connection: Keep-Alive
4:

Figure 7.9 An example of the POST method in the directly (a) and through (b) a proxy server of
a client from an HTTP web server to upload a login form’s filled forms, directly (a) and through
(b) a proxy server

b) HTTP/POST client request through an HTTP proxy
to the server:

1: POST http://www.example.com/login.php HTTP/1.1
2: Host: www.example.com
3: User-Agent: Firefox/14.0.1
4: Content-Length: 28
5: Content-Type: application/x-www-form-urlencoded
6:
7: username=test&password=test*

a) Direct HTTP/POST client request to the web
server:

1: POST /login.php HTTP/1.1
2: Host: www.example.com
3: User-Agent: Firefox/14.0.1
4: Content-Length: 28
5: Content-Type: application/x-www-form-urlencoded
6:
7: username=test&password=test*

c) HTTP web server response:

1: HTTP/1.1 200 OK
2: Date: Mon, 23 May 2012 22:38:34 GMT
3: Server: Apache/1.3.3.7 (Linux)
4: Content-Length: 20
5: Connection: close
6: Content-Type: text/html; charset=UTF-8
8:
9: <h1>Hello World</h1>

196 ◾ Implementing Parallel and Distributed Systems

server and the Connection header must be changed to ProxyConnection. The
proxy in this case modifies and sends the requests only in the form of Figure 7.8(a)
to the web server. The end of each line of a request must be terminated with a string
\r\n. This string is used for the string processing of requests.

As stated, an HTTP client takes advantage of the CONNECT method for requesting
a tunnel to a remote server through a proxy. This server can be implementing any
kind of protocol, such as SSL/TLS, FTP, HTTP, VPN, xDFS, and all other connection-
oriented protocols depending on the transport-layer TCP/IP protocol. Figure 7.10
depicts this mechanism for a client connection to a server that is encrypted via the
SSL protocol on port 443. Having connected the proxy to the destination server suc-
cessfully, it sends a successful connection message to the client in Figure 7.10(b).
A tunnelled channel is a full-duplex channel between a client and a server, each of
which can send and receive over this channel. The CONNECT method is usually used
to convey SSL-based protocols because all data are encrypted over an HTTPS session
and the proxy is unable to normally handle requests/responses between a client and
a web server.

7.4.4 Example 1: A Simple Client Program of the HTTP Protocol
to Retrieve a Web Page

In the first example for this section, we examine a simple code in which a client
directly (without traversing through an HTTP proxy) connects to a web server and
requests the first page of a domain name through the HTTP protocol. See Figure
7.11. In line 10, we find IP addresses associated with the domain www.example.
com using the Dns::Resolve() method. Because the number of these IP addresses
returned by the DNS server may be more than one, we carry them onto the console
inside a loop for display in lines 11 to 15. We have already found the web server’s
IP address; in line 18, we instantiate a connection-oriented TCP/IP socket. In lines
20–22, we use an IPEndPoint instance to put the IP address and port number (port
80 in this example) into it.

In line 24, the client socket is connected to the created endpoint by using the
Connect() method. We prepare the buffer for GET requests to retrieve the main
page of our domain in lines 26–30 based on the HTTP/1.1 protocol. Then, we send
the request to the web server in line 32. Note that we choose the fourth parameter
of the Send() and Receive() methods representing the SocketFlag Enum to be
the None type here and in our future examples. We have already sent the request to
the web server; thus, we read the server response into the buffer. The receive opera-
tion has been placed inside a loop because the server may send fewer bytes than the
buffer length at any receive time. In line 36, we fill the buffer from the offset to the
size of bufferSize – read.

Be aware that in this example, we have assumed that the sent response’s length
is less than or equal to our buffer’s size. Otherwise, since a web server usually sends
the response length in the ContentLength header, we can somehow handle the
read from the client socket ourselves. For example, if the returned object’s length is
not very large, we can dynamically allocate the buffer. Or if the client has requested
a large file to download, we must open a file, fill the buffer piece by piece equal to
the size of bufferSize by calling the Receive() method, and write the buffer

http://www.example.com
http://www.example.com

Computer Networks ◾ 197

Figure 7.11 A simple client-side code that connects to a web server on port 80 and requests its
first page.

1: using namespace System;
2: using namespace System::Net;
3: using namespace System::Net::Sockets;
4:
5: int main(int argc, char* argv[]) {
6: Socket *client = null;
7: IPAddress ip;
8: try {
9: // Finds the IP address associated with the domain.

10: IPHostEntry hostEntry = Dns::Resolve("www.example.com");
11: // Prints all of the found IP addresses into the console.

12: for(Int32 i = 0 ; i < hostEntry.get_AddressListLength() ; i++) {
13: ip = hostEntry.get_AddressList(i);
14: printf("IP Address %d: %s\n", i , inet_ntoa(*(struct in_addr *)ip.GetAddressBytes()));
15: }
16:
17: // Instantiates the Socket object for a TCP-based connection-oriented transport.

18: client = new Socket(System::Net::Sockets::InterNetwork, System::Net::Sockets::Stream,
System::Net::Sockets::tcp);

19:
20: // Sets up the remote endpoint to connect on port 80.

21: ip = hostEntry.get_AddressList(0);
22: IPEndPoint inp = IPEndPoint(ip, 80);
23: // Connects to the remote web server.

24: client->Connect(inp);
25:
26: const Int32 bufferSize = 256*1024;
27: char buffer[bufferSize + 1];
28:
29: String request = "GET / HTTP/1.1\r\nHost: www.example.com\r\nConnection: close\r\n\r\n";
30: printf("Client said to server:\n\n%s\n", request.get_BaseStream());
31: // Sends the request to get the HTTP page from the web server.

32: client->Send(request.get_BaseStream(), 0, request.get_Length(), System::Net::Sockets::None);
33:
34: // Read the entire response from the web server until the end of the connection is reached.

35: Int32 n, read = 0;
36: while((n = client->Receive(buffer, read, bufferSize - read, System::Net::Sockets::None)) > 0)
37: read += n;
38:
39: // Prints the buffer into console if any data was received.

40: if(read > 0) {
41: // Formats the buffer to indicate the received response as an ASCII string.

42: buffer[read] = '\0';
43: printf("Server said to client:\n\n%s\n", buffer);
44: }
45: }
46: catch(SocketException &e) {...}
47: catch(ObjectDisposedException &e) {...}
48: catch(Exception &e){...}
49:
50: // Closes and releases the Socket instance.

51: if(client != null) {
52: try {
53: client->Shutdown(Both);
54: client->Close();
55: } catch(...){}
56: delete client;
57: }
58: return 0;
59: }

198 ◾ Implementing Parallel and Distributed Systems

into our file. The second example of this section will implement such a scenario to
upload a file from a client to a server depending on a simple protocol. In lines 50
through 57, we close and release the client socket. Take notice of the invocation for
the Shutdown() method with the Both input parameter has been made prior to
calling the Close() method in line 53, which disables the send and receive opera-
tions on the client socket. Because there may be thrown an exception within the
program execution by the Parvicursor.NET Framework at runtime, we handle these
likely exceptions in lines 46 to 48, the complete codes of this section have been
omitted due to space limitation. To view the full code of this sample, refer to the
path “/Parvicursor/Parvicursor/Samples/ClientSocket” of the compan-
ion resources of the book.

7.4.5 Example 2: A Concurrent Client/Server Program Based on Threads
to Upload a File from a Client to a Server

In the previous example, no concurrency, through the computing power of multi/
many-core systems, was exploited. As discussed in the previous chapters, concur-
rency and multi-threaded programming have great importance in building the next
generation of distributed applications. Concurrency has drawn significant attention
in the design of network services and distributed systems. All the remainder of this
chapter and the next chapters take this issue seriously. As a starting point, let’s
assume a server does not use threads (i.e., there is no concurrency at all); it is evi-
dent that this server can only serve one client at each moment of time until a client
needs the service. Therefore, no other client(s) can use the service as long as the first
client has not finished its work with the server. One of the important techniques of
concurrency is to create one thread for each incoming request, and this thread takes
responsibility to handle the client connection. This model owing to its simplicity in
programming benefits from the processing power of multi/many-core processors.
However, it has an important problem with respect to scalability and high overheads,
which cannot be extended to a large number of connections. The reason for this
issue was discussed in the previous chapters. This issue will be comprehensively
discussed and analysed in the rest of this chapter and in Chapter 10. In the stated
sections and chapters, we employ hybrid techniques to integrate thread-based con-
currency with event-driven concurrency. But so far, it is enough to know that the
traditional model of one thread per connection is adequate for ordinary applications
with a few clients (e.g., a typical number of 200). Of course, the more system cores,
the lower limitation we will face with.

As the second example of socket programming, let’s suppose that we intend to
design and implement a simple protocol for uploading a file with a variable size
from a client to a file server. This very simple sample plays an essential foundation
for the architecture and implementation of the xDFS file transfer protocol in Chapter
10. At a glance, we propose and examine such a protocol. The client connects to the
file server at first and sends a filename as a string request which will be uploaded
to the server. The server upon receiving the filename opens a file and sends a byte
containing a value of zero to the client; this value notices the client that no error
has occurred when opening the file on the server side. If an error takes place at this

Computer Networks ◾ 199

stage, the server sends one byte with the value of one to the client and closes the
connection. The client, after receiving the error byte and if there is no error on the
server, sends the file contents to the server. When the client reaches the end of the
file, it closes the connection to the server. At this point, the server supposes that
the end of the file was reached; it closes the file handle and terminates the transfer
session.

At first, we consider the server-side implementation of this simple file transfer
protocol in upload mode. Figure 7.12 illustrates the main skeleton of a concurrent
file server based on threads atop the Parvicursor.NET Framework. The server socket
is created in line 49 and inside the main() function. We assume that the server
is listening to incoming connections on port 3128 and all network interfaces (the
get_Any() method satisfies this for us in line 51); see lines 50 through 56. Inside
the while loop in lines 59–72, a new connection is accepted and then we create
a thread; the state of this thread is set to detached so that the flow of the loop can
move to line 61 after initiating the thread in order to accept another client connec-
tion. As mentioned at the beginning of this section, the server object’s Accept()
method in line 64 blocks until there is at least one connection inside the incoming
connection queue. The class ClientContext stores the file transfer session’s state.
This class has members such as a buffer (for file and network I/O operations), the
object fsWrite (the file that we are going to write to), the client socket, and the file
name to be written. Notice the descriptions of the ClientContext class’s construc-
tor (line 15) and destructor (line 26). In line 68, after the Accept() method gets a
new connection, an object of the ClientContext class is instantiated and passed
as an argument into the worker thread (lines 66 to 69). The ProcessClient()
function pointer, which is run by the worker thread, implements the main part of
our simple file transfer protocol and services the clients. The implementation of the
function ProcessClient() appears in Figure 7.13.

In line 4 of the ProcessClient() function, we first cast the client state from
the pointer arg to the type of the ClientContext class. In line 8, the filename
sent by the client is read. Since file systems support filenames with a maximum
of 256 characters, we read 256 bytes from the client socket in the Receive()
method. If Receive() returns a value of zero, it means that the connection
has been suddenly closed and we must jump to the Cleanup label in line 10.
Below the Cleanup label in line 46, the cx pointer that had been allocated is
released in line 68 of Figure 7.12. In lines 12 through 14, we construct the filename
requested by the client from the buffer into the string writeFilename. In line 17,
a FileStream instance is created to write the uploading file contents to the cli-
ent socket (the fsWrite object). On line 20, by sending one byte to the client that
contains the false value (i.e., no error occurred when opening the file to write),
we notify the client to begin to send the file blocks. Now, we receive file blocks
inside a while loop in lines 26 and 27 from the client socket and write them into
fsWrite from the buffer to the size of the read. The loop execution continues
until the Receive() method returns a value of zero, which means that the client
has closed the connection and the end of the file is reached. At this stage, we are
in lines 46 and 47 and the ProcessClient() function returns. As shown in the
ClientContext class’s destructor in Figure 7.12, both fsWrite and sock objects

200 ◾ Implementing Parallel and Distributed Systems

1: // Represents a client context created by acceptor thread and passed to ProcessClient().

2: class ClientContext : public Object {
3: // The buffer to transfer data between the client connection, file system, etc.

4: public: char *buffer;
5: // Indicates the size of the buffer in bytes.

6: public: Int32 bufferSize;
7: // The client Socket instance.

8: public: Socket *sock;
9: // The local FileStream instance to write the received data from the client.

10: public: FileStream *fsWrite;
11: // The local server-side file name requested by the client.

12: public: String writeFilename;
13: private: bool disposed;
14: // The ClientContext constructor.

15: public: ClientContext(Socket *acceptedSocket) {
16: sock = acceptedSocket;
17: // Default buffer size.

18: bufferSize = 256 * 1024;
19: // We must allocate the buffer from the heap, because a concurrent server servicing a large

20: // number of clients cannot allocate the buffer from the stack due to the stack limit size.

21: buffer = (char *)::malloc(bufferSize * sizeof(char));
22: fsWrite = null;
23: disposed = false;
24: }
25: // The ClientContext destructor.

26: public: ~ClientContext(){
27: if(disposed)
28: return ;
29: // Closes and releases the FileStream instance.

30: if(fsWrite != null) {
31: try { fsWrite->Close(); } catch (...){}
32: delete fsWrite;
33: }
34: // Closes and releases client connection.

35: if(sock != null) {
36: try { sock->Shutdown(Both); sock->Close(); } catch (...){}
37: delete sock;
38: }
39: // Deallocates the buffer.

40: ::free(buffer);
41: }
42: };
43:
44: // The worker's function pointer to handle a new accepted connection.

45: void *ProcessClient(void *arg);
46:
47: int main(int argc, char* argv[]) {
48: // Creates the server socket (connection-oriented and TCP/IP-enabled).

49: Socket *server = new Socket(System::Net::Sockets::InterNetwork, System::Net::Sockets::Stream,
System::Net::Sockets::tcp);

50: // We will listen on port 3128 and all network interfaces.

51: IPEndPoint hostEndPoint = IPEndPoint(IPAddress::get_Any(), 3128);
52: // Binds the server socket to the hostEndPoint.

Figure 7.12 Concurrent implementation of our simple file server’s main body to upload a file
from the client to the server.

(Continued)

Computer Networks ◾ 201

are first closed and then released. At this point, a server-side file transfer session
has ended. To see the complete file server code, refer to the path “/Parvicursor/
Parvicursor/Samples/FileTransferServer” from the companion resources
of the book.

Finally, we in short examine the client-side implementation of our simple file
transfer protocol. Figure 7.14 shows the code program of the client. The local file
that is intended to upload is opened in line 20. The client socket is created in lines
21 through 29 and connected to the remote file server on port 3128. In line 33, we
send the remote file name, which must be created by the server in its local file sys-
tem, to the server. The function CheckServerResponseForError() in line 33
checks to see whether an error has occurred on the server side to open the remote
file or not, we jump to the Cleanup label if there is any error. In lines 36 to 45, the
file contents are read block by block and sent to the server. The first loop is used
to read the entire file contents. If we are at the end of the file, the Read() method
returns a zero or negative value and the execution of the first loop finishes, so the
second loop will never run. The second loop is used to send the whole bytes in the
buffer to the server. The rationale behind using both loops is the same descriptions
as given for the code of the file server part. All allocated system resources (file and
client socket) are released in lines 51 to 64. To have a full look at the full client code, refer
to the path “/Parvicursor/Parvicursor/Samples/FileTransferClient”
from the companion resources of the book.

53: server->Bind(hostEndPoint);
54: // Listens on the server socket with the 'backlog; set to 100 concurrent connections.

55: server->Listen(100);
56: printf("The file server is listening on port 3128.\n");
57:
58: // The main acceptor thread's loop.

59: while(true) {
60: // Blocks on the server socket until an incoming connection arrives.

61: Socket *s = server->Accept();
62: if(s == null)
63: continue;
64: printf("New client connection was accepted.\n");
65:
66: // Allocates the client context, creates a worker thread, passes the cx to that worker, and

67: // starts the worker to serve the client request. The ProcessClient() function will serve the client.

68: ClientContext *cx = new ClientContext(s);
69: Thread thread = Thread(ProcessClient, (void *)cx);
70: thread.Start();
71: thread.SetDetached();
72: }
73: return 0;
74: }

Figure 7.12 (Continued) Concurrent implementation of our simple file server’s main body to
upload a file from the client to the server.

202 ◾ Implementing Parallel and Distributed Systems

Figure 7.13 The implementation of the ProcessClient() function. This function is the
thread worker function pointer which handles every accepted connection on the server. The
implementation of our simple protocol is done in this function.

1: // The worker's function pointer to handle a newly accepted connection.

2: void *ProcessClient(void *arg) {
3: // A type-casting to caste the arg variable into a ClientContext object.

4: ClientContext *cx = (ClientContext *)arg;
5: char errorOccured = false;
6: try {
7: // Reads the writeFilename from the client.

8: Int32 read = cx->sock->Receive(cx->buffer, 0, 256, System::Net::Sockets::None);
9: if(read <= 0)

10: goto Cleanup;
11:
12: // Builds the writeFilename string from the buffer.

13: cx->buffer[read] = '\0';
14: cx->writeFilename = String((const char *)cx->buffer);
15:
16: // Instantiates a FileStream instance to which the write operation will be performed.

17: cx->fsWrite = new FileStream(cx->writeFilename, System::IO::OpenOrCreate, System::IO::Write,
8*1024);

18:
19: // Notifies the client that it can now begin the transfer flow.

20: try { cx->sock->Send(&errorOccured, 0, sizeof(char), System::Net::Sockets::None); } catch(...) {}
21:
22: // Receives the file blocks sent by the client and writes them into the fsWrite object.

23: // The while() loop executes until the end of the file represented by the client by closing the

24: // connection. In this stage, Receive() returns 0.

25: read = 0;
26: while((read = cx->sock->Receive(cx->buffer, 0, cx->bufferSize, System::Net::Sockets::None)) > 0)
27: cx->fsWrite->Write(cx->buffer, 0, read);
28: }
29: catch(SocketException &e) {
30: // This kind of exception indicates that the socket could not be used anymore, and then

31: // we must jump to the 'Cleanup' label.

32: printf("Error occurred. SocketException message: %s\n", e.get_Message().get_BaseStream());
33: goto Cleanup;
34: }
35: catch(IOException &e) {
36: printf("Error occurred. IOException message: %s\n", e.get_Message().get_BaseStream());
37: errorOccured = true;
38: }
39: catch(Exception &e) {
40: printf("Error occurred. Exception message: %s\n", e.get_Message().get_BaseStream());
41: errorOccured = true;
42: }
43:
44: Cleanup:
45: // Frees the cx instance created by acceptor thread.

46: delete cx;
47: return arg;
48: }

Computer Networks ◾ 203

Figure 7.14 The client program of our simple file transfer protocol to upload a local file to a
remote file server.

1: // Checks whether there was a server-side error during the file transfer session.

2: bool CheckServerResponseForError(Socket *client) {
3: char errorOccured = false;
4: if(client->Receive(&errorOccured, 0, sizeof(char), System::Net::Sockets::None) > 0)
5: if(errorOccured)
6: printf("There was a server-side error during the file transfer session.\n");
7: else {
8: printf("The server has been closed the connection, and thus we could not determine if there is a server-

side error during the file transfer session.\n");
9: return true;

10: }
11: return (bool)errorOccured;
12: }
13:
14: int main(int argc, char* argv[]) {
15: Socket *client = null; FileStream *fsRead = null;
16: String localFilename = "c:/test.pdf"; String remoteFilename = "c:/test1.pdf";
17: const Int32 bufferSize = 256 * 1024; char buffer[bufferSize];
18: try {
19: // Opens the local file to read.

20: fsRead = new FileStream(localFilename, System::IO::Open, System::IO::Read, 8*1024);
21: // Finds the IP address associated with the domain.

22: IPHostEntry hostEntry = Dns::Resolve("localhost");
23: // Instantiates the Socket object for a TCP-based connection-oriented transport.

24: client = new Socket(System::Net::Sockets::InterNetwork, System::Net::Sockets::Stream,
System::Net::Sockets::tcp);

25: // Sets up the remote endpoint to connect on port 3128.

26: IPAddress ip = hostEntry.get_AddressList(0);
27: IPEndPoint inp = IPEndPoint(ip, 3128);
28: // Connects to the remote file server.

29: client->Connect(inp);
30: // Sends the remote file name to be created by server.

31: client->Send(remoteFilename.get_BaseStream(), 0, remoteFilename.get_Length(),
System::Net::Sockets::None);

32: // Checks whether there was a server-side error during the file transfer initiation.

33: if(CheckServerResponseForError(client))
34: goto Cleanup;
35: printf("The file transfer session was started.\n");
36: // Reads a file block from fsRead.

37: Int32 read, sent, total;
38: while((read = fsRead->Read(buffer, 0, bufferSize)) > 0) {
39: total = 0;
40: // Tries to send all read content within the buffer until all bytes are sent.

41: while((read - total) > 0) {
42: sent = client->Send(buffer, total, read - total, System::Net::Sockets::None);
43: total += sent;
44: }
45: }
46: printf("The file transfer session was successfully completed.\n");
47: }
48: catch(Exception &e) {

(Continued)

204 ◾ Implementing Parallel and Distributed Systems

7.5 Asynchronous Methods in Parvicursor Platform: An
Optimum Computing Paradigm to Exploit the Processing
Power of Multi/Many-Core Systems for Increasing the
Performance of Distributed Systems

7.5.1 Introduction

In the entire book materials discussed so far, all the method invocations have been
routed as a stream of execution from one method to another. It is often desirable
to fork the stream of execution into two branches and allow one branch to run a
given method whilst the remaining branch continues its usual execution. Figure 7.15
depicts this concept. In a multiprocessor machine, two branches are actually executed
concurrently. The chief reason for forking the execution is to allow the processing to

49: printf("Error occurred. Exception message: %s\n", e.get_Message().get_BaseStream());
50: }
51: Cleanup:
52: // Closes and releases the Socket instance.

53: if(client != null) {
54: try {
55: client->Shutdown(Both);
56: client->Close();
57: } catch(...){}
58: delete client;
59: }
60: // Closes and releases the FileStream instance.

61: if(fsRead != null) {
62: try {fsRead->Close();} catch(...){}
63: delete fsRead;
64: }
65: return 0;
66: }

Figure 7.14 (Continued) The client program of our simple file transfer protocol to upload a
local file to a remote file server.

Figure 7.15 Synchronous execution in comparison with asynchronous execution.

a(); b(); c(); j();i();h();g();f();e();d();

b();

c(); i();

h();

g();

f();

e();

d();

a(); f
o
r
k

j
o
I
n

j();

time
Synchronous

Execution

Asynchronous

Execution

Computer Networks ◾ 205

continue whilst part of the program is blocked and waits for I/O completion or other
events. Forking the execution also can significantly increase throughput on multi/
many-core machines due to parallelism; however, as stated in the previous chapters,
this kind of design leads to a thorough attention for synchronisation amongst shared
resources. The main advantage of forking the instruction stream is to implement
asynchronous method invocations. An asynchronous method call forks the execution
into two streams. The new stream runs the source method’s body. The main stream
continues its processing.

As a practical example, suppose we want to write a web server which processes
thousands of concurrent client requests. If we were using the model of one thread
per request (as discussed in the former section), we had to consume gigabytes of the
physical memory along with severe overhead caused by frequent context switches.
Asynchronous methods directly address this problem by using a pattern in that con-
current activities are handled by thread pools. In the following, we examine a com-
plete example for the concept of asynchronous methods. Primarily, we describe how
to use the designed asynchronous interface as a sample, and then how this interface
can be designed and implemented on top of the Parvicursor platform. This example
provides an easier understanding of asynchronous methods for the reader, and the
strategy established in the next section helps us design and implement a sophisti-
cated framework library for asynchronous sockets.

7.5.2 Example: Asynchronous Translation of Domain Names to IP
Addresses Based on an Asynchronous DNS Resolver

Assume we are going to translate thousands of domains into their corresponding
IP addresses concurrently. The only tool that we have introduced to you in this
chapter is the Resolve() method of the Dns class. We first explain the extended
functionality of this class with two new asynchronous methods and then solve the
problem to find concurrent IP addresses. Table 7.3 shows the AsyncDns class’s
asynchronous methods. As seen, the Dns::Resolve() method is turned into two
equivalent asynchronous methods of BeginResolve() and EndResolve(). The
difference between the signature of a synchronous method and an asynchronous
BeginXXX() method is that BeginXXX() always returns a reference to a calling
object from the IAsyncResult class. This class has a member called AsyncState
that stores a reference to the state object passed into the BeginXXX() method. All
BeginXXX() methods take a callback function corresponding to the definition of
the AsyncCallback function pointer to execute after the completion of the asyn-
chronous operation. The execution sequence of each BeginXXX() method inside
the AsyncCallback callback function must terminate with an EndXXX() method.

Figure 7.16 shows the code example in which the AsyncDns class’s methods
are used. The class ResolveState stores the state of asynchronous calls during
the methods of BeginResolve() and EndResolve() to resolve every domain
name. In lines 38 to 55 and inside the main() function, we initialise the program
objects. In this example, ten domain names are asynchronously and concurrently
resolved. Within the for loop in line 50, the resolution operation’s state is instan-
tiated for every domain, and in line 54 we pass them to the BeginResolve()

206 ◾ Implementing Parallel and Distributed Systems

method. The OnResolve() callback function is invoked when the resolution opera-
tion completes. Because ten asynchronous resolution operations must be first com-
pleted in this example, a mutex object, a condition variable and a global variable
completedNum, which stores the number of completed asynchronous methods,
have been used for this program. Therefore, we wait in lines 57 through 61 inside
the main() thread until all asynchronous method operations complete. In lines
63–67, the whole allocated objects are released. The most important function of
this example is the OnResolve() function. First, we cast the object state (ar
>AsyncState), which was passed to the BeginResolve() static method by the
programmer, to the ResolveState type in line 12. In line 15, the EndResolve()
is called so that we can retrieve and store the resolved value of the current domain
as a hostEntry object. The description of lines 17–20 is precisely the same as the
example in Figure 7.11. At the end of this method (because the OnResolve() call-
back function is executed by a different thread other than the main program thread),
we must inform the main thread of the completion of the resolution operation in
lines 30 through 34.

7.5.3 Implementation of an Asynchronous DNS Resolver Based
on the Parvicursor.NET Framework

Now, you are familiar with the concept of asynchronous methods and have seen a
practical example about it; we examine how you can generally implement asynchro-
nous methods. In this section, we consider an implementation of the AsyncDns
class’s asynchronous static methods. One straightforward technique to implement
asynchronous methods is to make use of a work queue with a thread pool.

Table 7.3 The AsyncDns Class’s Static Methods in the Parvicursor.NET Framework

Name Description

IAsyncResult
*BeginResolve(const String
&hostName, AsyncCallback
requestCallback, Object
*stateObject)

Begins an asynchronous request to resolve a DNS
hostname or an IP address to an IPHostEntry
instance. requestCallback specifies the reference
to the function that is invoked when the resolution
operation is completed. stateObject is an object
defined by the user, which contains information
about the operation. In fact, we use this state to
store the main state object during asynchronous
calls. stateObject plays a key role throughout the
programming abstraction of asynchronous methods.
When requestCallback is called, this object is passed
into it.

IPHostEntry
EndResolve(IAsyncResult
*asyncResult)

Ends the asynchronous request for DNS information.
This method returns an IPHostEntry object that
contains DNS information about a host. This method
must be invoked inside the requestCallback callback
function passed to the BeginResolve() method.

Computer Networks ◾ 207

Figure 7.16 The example of the asynchronous resolution of domain names into their equivalent
IP addresses.

1: // State object for resolving the domain asynchronously

2: class ResolveState : public Object {
3: public: String domain;
4: };
5: // The following parameters are used to synchronise between the main thread and the execution of asynchronous

requests.

6: static Mutex mutex = Mutex();
7: static ConditionVariable cv = ConditionVariable(&mutex);
8: static Int32 completedNum = 0;
9:

10: static void OnResolve(IAsyncResult *ar) {
11: // Converts the ResolveState object to a ResolveState object.

12: ResolveState *state = (ResolveState *)ar->AsyncState;
13: try {
14: // Ends the asynchronous request.

15: IPHostEntry hostEntry = AsyncDns::EndResolve(ar);
16:
17: // Prints all of the found IP addresses into console.

18: for(Int32 i = 0 ; i < hostEntry.get_AddressListLength() ; i++) {
19: IPAddress ip = hostEntry.get_AddressList(i);
20: printf("Domain: %s IP Address %d: %s\n", state->domain.get_BaseStream(), i , inet_ntoa(*(struct

in_addr *)ip.GetAddressBytes()));
21: }
22: }
23: catch(Exception &e) {
24: printf("Error occurred in OnResolve)() for %s. Exception message: %s\n", state-

>domain.get_BaseStream(), e.get_Message().get_BaseStream());
25: }
26: catch(...) {
27: printf("Error occurred in OnResolve() for %s. Unknown exception.\n", state-

>domain.get_BaseStream());
28: }
29:
30: // Signals the main thread that the current asynchronous method was finished.

31: mutex.Lock();
32: completedNum++;
33: cv.Signal();
34: mutex.Unlock();
35: }
36:
37: int main(int argc, char *argv[]) {
38: // Allocates the domain set to be resolved.

39: const Int32 DomainNum = 10;
40: String *domains = new String[DomainNum];
41: domains[0] = "www.example.com"; domains[1] = "www.microsoft.com"; domains[2] = "www.kernel.org";
42: domains[3] = "www.yahoo.com"; domains[4] = "www.google.com"; domains[5] = "www.msn.com";
43: domains[6] = "mail.google.com"; domains[7] = "mail.yahoo.com"; domains[8] = "www.facebook.com";
44: domains[9] = "www.nytimes.com";
45:
46: // Allocates the asynchronous states and issues the BeginResolve() method for each resolve request.

47: ResolveState **states = new ResolveState*[DomainNum];
48: for(register Int32 i = 0 ; i < DomainNum ; i++) {
49: // Creates an instance of the ResolveState class.

(Continued)

208 ◾ Implementing Parallel and Distributed Systems

When a method is called asynchronously, we must encapsulate the method param-
eters along with its callback function into an instance of the IAsyncResult class.
Then, we can put this request into the work queue of our thread pool. At this stage,
the thread pool designed in Chapter 5 takes over the remaining job. Figure 7.17
depicts the objects and the necessary class prototype to implement the AsyncDns
class. In line 5, the thread pool is instantiated. The AsyncDnsInfo class, which
inherits from the base (interface or abstract) IAsyncResult class, stores the param-
eter information of every asynchronous BeginResolve() method call. Lines 10 to
13 show the variables used for storing the BeginResolve() method parameters.
The code in lines 14 through 19 indicates the internal variables that are required at
the time of asynchronous execution by the designed class.

Because of inheritance, all these fields remain hidden from the programmer who
is using the AsyncDns class and only the base IAsyncResult class’s members are
visible. hostEntry stores the return data of the synchronous Dns::Resolve()
function in the implementation of the AsyncDns class’s methods. The members
HasException and exceptionMessage store an exception that possibly has
occurred at an asynchronous execution, and if there is any exception, then we must
re-throw it into the calling thread when invoking the EndResolve() method.
Examine carefully the descriptions given within the codes. Now that we have a work-
ing knowledge of asynchronous methods, we can discuss the implementation of two
methods of BeginResolve() and EndResolve() as shown in Figure 7.18.

In the BeginResolve() method within lines 26–33, we must first encapsulate the
required parameters for asynchronous execution into an instance of the AsyncDnsInfo
class. The asynchronous request is added to the thread pool’s work queue in line
35. The thread pool will run the ResolveCallback() callback, which is consid-
ered as an internal function and is not visible to the user. The implementation of the
ResolveCallback() function, in lines 1 through 19, simply uses the synchronous
Dns::Resolve() function to resolve the domain name, and if any error occurred,

50: states[i] = new ResolveState();
51: states[i]->domain = domains[i];
52: // Begins an asynchronous request for information like host name, IP addresses, or

53: // aliases for specified the specified URI.

54: IAsyncResult *asyncResult = AsyncDns::BeginResolve(domains[i], OnResolve, states[i]);
55: }
56:
57: // Waits until all asynchronous request complete.

58: mutex.Lock();
59: while(completedNum != DomainNum)
60: cv.Wait();
61: mutex.Unlock();
62:
63: // Releases the allocated objects.

64: for(register Int32 i = 0 ; i < DomainNum ; i++)
65: delete states[i];
66: delete []states; delete []domains;
67: return 0;
68: }

Figure 7.16 (Continued) The example of the asynchronous resolution of domain names into
their equivalent IP addresses.

Computer Networks ◾ 209

then it stores its information into the info object. At the end of this function, which is
indicating the asynchronous operation execution in the thread pool, we must invoke the
requestCallback callback specified by the user within the BeginResolve() method
in line 18 and pass the info object to it. In the implementation of the EndResolve()
method, we check if there is an error registered by the ResolveCallback() method;
an exception must be thrown into the calling code, otherwise we return the result of the
resolution operation in line 54. Note that in line 53 we must release the info object that
has been already allocated inside the BeginResolve() method. To see the full client
code, refer to the path “/Parvicursor/Parvicursor/Samples/AsyncResolver”
from the companion resources of the book.

7.6 Addressing the Scalability Issue of Communication Systems
in the Parvicursor Platform

7.6.1 Introduction

In this section, we try to address this important challenge: How can we design and
implement highly scalable, standardised applications for next-generation distributed
systems such as HPC, Cloud, and the Internet? The development of complex network
applications is somewhat difficult to learn. To write applications that can service

Figure 7.17 Objects and the necessary class prototype to implement the AsyncDns class.

1: // A thread pool instance is used to simulate an asynchronous DNS resolver by calling

2: // the synchronous Dns::Resovle() method. This sample project is just a simple learning

3: // example. In general, we should consider a system-wide thread pool for all asynchronous

4: // method invocations across Parvicursor.NET framework instead of a thread pool per class.

5: static ThreadPool dnsThreadPool = ThreadPool(System::Environment::get_ProcessorCount()*2, INT_MAX);
6:
7: // An internal class that provides to encapsulate the necessary information allocated by

8: // the BeginResolve() method and used by the EndResolve() method.

9: class AsyncDnsInfo : public IAsyncResult {
10: // Stores the hostName passed to the BeginResolve() method.

11: public: String hostName;
12: // Stores the callback passed to the BeginResolve() method.

13: public: AsyncCallback requestCallback;
14: // Stores the return of the synchronous Dns::Resovle() method

15: public: IPHostEntry hostEntry;
16: // Indicates whether there is an error during the calling synchronous Dns::Resovle() method.

17: public: bool HasException;
18: // Stores the message of the thrown exception by synchronous Dns::Resovle() method.

19: public: String exceptionMessage;
20: };
21:
22: // Provides simple asynchronous domain name resolution functionality.

23: class AsyncDns : public Object {
24: // Begins an asynchronous request to resolve a DNS hostname or IP address to an IPAddress instance.

25: public: static IAsyncResult *BeginResolve(const String &hostName, AsyncCallback requestCallback,
Object *stateObject);

26: // Ends an asynchronous request for DNS information.

27: public: static IPHostEntry EndResolve(IAsyncResult *asyncResult);
28: };

210 ◾ Implementing Parallel and Distributed Systems

Figure 7.18 The implementation of the AsyncDns class's asynchronous methods.

1: // This internal callback is executed by the ThreadPool instance.

2: static void ResolveCallback(Object *asyncDnsInfo) {
3: // Casts asyncDnsInfo into the AsyncDnsInfo class.

4: AsyncDnsInfo *info = (AsyncDnsInfo *)asyncDnsInfo;
5: try{
6: // The Resolve() method is a synchronous method.

7: info->hostEntry = System::Net::Dns::Resolve(info->hostName);
8: }
9: catch(Exception &e) {

10: info->HasException = true;
11: info->exceptionMessage = e.get_Message();
12: }
13: catch(...) {
14: info->HasException = true;
15: info->exceptionMessage = "Unknown exception";
16: }
17: // Invokes the callback passed to the BeginResolve() method.

18: info->requestCallback(info);
19: }
20:
21: IAsyncResult *AsyncDns::BeginResolve(const String &hostName, AsyncCallback requestCallback, Object

*stateObject) {
22: if(hostName.get_BaseStream() == null)
23: throw ArgumentNullException("hostName");
24: if(requestCallback == null)
25: throw ArgumentNullException("requestCallback");
26: // Allocates a placeholder to keep the asynchronous request.

27: AsyncDnsInfo *info = new AsyncDnsInfo();
28: info->hostName = hostName;
29: info->requestCallback = requestCallback;
30: info->AsyncState = stateObject;
31: info->IsCompleted = false;
32: info->CompletedSynchronously = false;
33: info->HasException = false;
34: // Enqueues the request into the ThreadPool instance.

35: dnsThreadPool.QueueUserWorkItem(ResolveCallback, info);
36: return info;
37: }
38:
39: IPHostEntry AsyncDns::EndResolve(IAsyncResult *asyncResult) {
40: if(asyncResult == null)
41: throw ArgumentNullException("asyncResult");
42: // Casts asyncResult into the AsyncDnsInfo class.

43: AsyncDnsInfo *info = (AsyncDnsInfo *)asyncResult;
44: // Was there an error while the asynchronous execution?

45: if(info->HasException) {
46: String exceptionMessage = info->exceptionMessage;
47: delete info;
48: // Re-throws the caught exception within the ResolveCallback() function.

49: throw Exception(exceptionMessage);
50: }
51: IPHostEntry hostEntry = info->hostEntry;
52: // Releases the allocated memory for AsyncDnsInfo instance within the BeginResolve() method.

53: delete info;
54: return hostEntry;
55: }

Computer Networks ◾ 211

thousands of clients and implement concurrency on multi/many-core systems are
much more difficult and complicated. In this section, we try to deal with the very
important issue of scalability in client/server programs and propose the implemen-
tation of a standard-based framework in order to reduce this complexity. The main
reason for such a strategy was discussed in the previous sections: to increase per-
formance. The I/O subsystem is one of the main bottlenecks in distributed systems,
which makes the development of such applications complex. Here, we first examine
different strategies for network-based application development, and after describing
the classification of networked I/O systems, we will discuss the solution proposed
by the Parvicursor platform in detail. Numerous practical examples will be also pre-
sented. The reader will get a much deeper attitude to concurrency; because we put
your hands directly into programming and teach you how we can integrate concur-
rency with I/O (i.e., the communication issue) for constructing scalable distributed
systems. Note that, unlike any other book or web resource, we examine the scalabil-
ity issue simultaneously for both clients and servers in this section.

7.6.2 Design Strategies of Client-Server Applications

The architecture of a client or server program can be classified into two taxonomies:
high throughput and a large number of connections. However, what this book will
teach you is to combine them and introduce hybrid architectures. We consider the
hybrid architectures in the rest of this chapter and in Chapter 10. A high-throughput
architecture mainly deals with pushing as much data as on a few numbers of con-
nections. Of course, the meaning of the term a few numbers of connections relatively
refers to the number of existing resources on a machine. The architecture with a
large number of connections mostly copes with handling too many network connec-
tions whilst it does not push much data to the connections. The integration of these
two architectures is the issue that is examined particularly for the xDFS protocol to
provide a high-throughput and high-performance framework for the next generation
of distributed systems in this chapter and Chapter 10.

A traditional file server (such as NFS and FTP) is an example of a high-through-
put architecture in which we deal with the issue of bulk delivery. In this case, the
server copes with the processing of every connection to minimise the amount of
time required for data transmission. To achieve this goal, the server must limit the
number of concurrent connections because too many concurrent connections deliver
lower throughput on every individual connection. The purpose of this architecture
is I/O. The server should keep enough send/receive operations posted to maximise
throughput. The server may also accept a large number of connections continuously,
but I/O operations must be restricted to a small set of connections.

Maximising the number of concurrent connections is more difficult between these
two strategies expressed above. Handling I/O on every connection becomes difficult.
A server cannot easily post one or more send/receive operations on every connec-
tion. In this scenario, the server is interested in handling connections at the expense
of throughput. An instance of this scenario could be a DNS server that must handle
many thousands of connections to send a large number of a few bytes. Providing a
procedure in which both strategies can be supported is challenging.

212 ◾ Implementing Parallel and Distributed Systems

To address these strategies and the hybrid strategy, we can divide I/O mod-
els into four general categories. We limit our attention only to the network I/O
subsystem in this book. Figure 7.19 shows the three-dimensional models: syn-
chronous and asynchronous, and blocking and non-blocking with the hybrid and
concurrent Parvicursor Concurrent Asynchronous Sockets (PCAS) model. Every
one of these models has use patterns that make them beneficial to specific appli-
cations; however, PCAS architecture makes it a general-purpose paradigm for a
broad family of network applications (for instance, Cloud environments, HPC and
the Internet).

One of the popular models is the synchronous blocking model which was
described in the socket programming section at the beginning of this chapter. In this
model, a userland thread executes a system call that results in blocking the program
thread. This means that the thread is blocked as long as the system call completes
(completion of data transfer or any error occurred). The calling thread is in a state
that does not consume any CPU cycles and simply waits for a response, so this model
is efficient in terms of processing. Figure 7.20 illustrates this traditional blocking
model. This model is well understood, and its use for ordinary applications is opti-
mum. When the recv() system call is invoked, the thread is blocked and its state is
mode switched into the kernel. The send operation is started, and when the response
returns, the data is moved to the userspace buffer. Finally, the thread is unblocked.
From the thread’s perspective, the recv() call spends a lot of time. But, in fact, the
thread gets actually blocked whilst the receive operation is multiplexed with another
work inside the kernel.

Figure 7.19 The different possible models of socket I/O in the Parvicursor platform.

Send/receive
Send/receive
(Non-blocking

mode)

I/O multiplexing
(select/poll)Asynchronous

Synchronous

Blocking Non-blocking

x - parallelism

y

z

Parvicursor
Concurrent Async
Sockets (PCAS)

Computer Networks ◾ 213

Another variant with less performance than the former is the synchronous non-
blocking model. In this model, a socket is created as non-blocking. This means that
instead of immediately getting an I/O completion, a recv() request may return
an error code indicating that this request could not be immediately satisfied. This
model appears in Figure 7.21. The outcome of the non-blocking feature is that an
I/O request may not be immediately satisfied and requires the respective thread to
issue several calls for waiting on the operation completion. This technique can be
extremely inefficient because the thread must perform busy waiting (spinning) until
the data becomes available. As seen in Figure 7.21, this technique creates latency in
I/O because the gap between the data being available in the kernel and the user call-
ing the recv() function to return it can reduce the total data throughput.

Another model in the classification of I/Os is the non-blocking I/O pattern with
blocking notification. See Figure 7.22. In this model, first, a socket is set as non-
blocking, and then the blocking select() system call is used to determine the
status of the socket. The select() system function provides the status notification
of multiple sockets. The properties of this system function will be fully described in
Chapter 10. One chief problem with this system function is that it is not performant
for a large collection of sockets.

Finally, the latest model is the asynchronous, concurrent, and non-blocking PCAS
provided by the Parvicursor platform. Figure 7.23 shows this model. In this model, a
request like BeginReceive() immediately returns and represents that the receive
operation has got successfully begun. The desired thread can perform other process-
ing whilst the receive operation is being completed in the background on another
dedicated thread. When the response of a request like BeginReceive() arrives,
a callback function that has already been passed to the BeginXXX() method is
invoked by PCAS to complete the I/O transaction. The ability to overlap computa-
tions with I/O processing in a single thread potentially makes multiple I/O requests

Figure 7.20 A typical flow of the synchronous blocking I/O model.

214 ◾ Implementing Parallel and Distributed Systems

Figure 7.21 A typical flow of the synchronous non-blocking model.

Figure 7.22 A typical flow of the asynchronous blocking I/O model.

Computer Networks ◾ 215

exploit multi/many-core processors and the gap between processing speed and I/O
speed. Whilst one or more slow I/O requests are pending, processor can execute
other works, or generally, on previously completed I/O requests whilst other I/O
requests have begun, in parallel. In the blocking model, it is impossible to overlap
the processing and I/O at the same time. The concurrent non-blocking model allows
the processing and I/O to be overlapped but requires the desired thread to check the
status of I/O relied upon a recurring primitive. This issue indicates the high impor-
tance of the PCAS model. In the remainder of this section, we examine PCAS with
miscellaneous examples.

7.6.3 Asynchronous Sockets in Parvicursor Platform as a Proposed
Standard to Develop Highly Scalable Optimum Communication
Systems for Distributed Systems

In this section, we describe the PCAS framework’s methods to develop highly scal-
able network applications. Since the interface has been designed to comply with the
.NET ECMA standard, the PCAS framework can be widely used as a standard inter-
face for communications in distributed systems. In addition to the full PCAS compat-
ibility with .NET Framework’s asynchronous socket methods, our framework brings
extra methods and their implementation to the developer, so that they can have
direct access to the underlying concurrency of threads, which execute on processor
cores, and take control over them. It is worthwhile to note that this feature is unique
amid all existing asynchronous socket frameworks, including Java, C#, the Boost

Figure 7.23 A typical flow of I/O based on the PCAS model in the Parvicursor platform.

216 ◾ Implementing Parallel and Distributed Systems

library, and so forth. The existing platforms such as .NET hide asynchronous input/
output concurrency from the user and execute the asynchronous operations within
an internal thread pool. This feature is realised, unhidden, and directly accessible
to programmers by the powerful methods of get_CoreID(), get_CoreCount(),
TryMigrateToCore(), BeginAccept(), and BeginConnect() in the PCAS
Framework. Table 7.4 shows the asynchronous socket class’s constructor and meth-
ods in the Parvicursor.NET Framework. Carefully read the description of every of the

Table 7.4 The AsyncSocket Class’s Constructor and Methods in the Parvicursor.NET
Framework

Name Description

AsyncSocket(AddressFamily
addressFamily, SocketType
socketType, ProtocolType
protocolType)

Initialises a new instance of a socket class along
with address family, socket, and protocol type. The
values InterNetwork and InterNetworkV6 can
be specified as the argument addressFamily for
IPv4 and IPv6 protocols. To use connection-oriented
and connectionless sockets, you can specify the
socketType parameter as Stream and Dgram,
respectively. To specify the type of the working
protocol for either TCP or UDP, you can use tcp and
udp. In this book, we always employ the following
class to instantiate (i.e., for connection-oriented
sockets depending on the TCP protocol):
AsyncSocket(InterNetwork, Stream, tcp)

void Bind(IPEndPoint
&localEP)

The description of this method comes in Table 7.2,
and thus we omit it here.

void Listen(Int32 backlog) The description of this method comes in Table 7.2,
and thus we omit it here.

IAsyncResult
*BeginAccept(AsyncCallback
callback, Object *state)

Begins an asynchronous operation to accept an
incoming connection attempt. The description
of the parameters callback and state are the
same as what was discussed for the BeginXXX()
and EndXXX() methods of the AsyncDns class in
Table 7.3.

IAsyncResult
*BeginAccept(AsyncCallback
callback, Object *state, bool
GuaranteeMulticoreExecution)

This method is similar to the former method except
that the Boolean GuaranteeMulticoreExecution
parameter guarantees the execution of the accepted
connection on the next processor core. For example,
if the previous connection is running on core 0,
a new connection is executed on the next core
assigned, which is core 1 in this scenario.

AsyncSocket
*EndAccept(IAsyncResult
*asyncResult)

Asynchronously accepts an incoming connection
attempt and creates a new AsyncSocket instance to
handle the remote host communication.

(Continued)

Computer Networks ◾ 217

Name Description

IAsyncResult
*BeginConnect(IPEndPoint
&remoteEP, AsyncCallback
callback, Object *state)

Begins an asynchronous request for a remote host
connection.

IAsyncResult
*BeginConnect(IPEndPoint
&remoteEP, AsyncCallback
callback, Object *state, bool
GuaranteeMulticoreExecution)

This method is similar to the former method except
that the Boolean GuaranteeMulticoreExecution
parameter guarantees the execution of the accepted
connection on the next processor core. For example,
if the previous connection is running on core 0,
a new connection is executed on the next core
assigned, which is core 1 in this scenario.

void EndConnect(IAsyncResult
*state)

Ends a pending asynchronous remote connection
request.

IAsyncResult *BeginSend(char
buffer[], Int32 offset,
Int32 size, SocketFlags
socketFlags, AsyncCallback
callback, Object *state)

Asynchronously sends the data buffer to a
connected socket. The description of the first four
parameters of this method is exactly the same as the
Socket class’s Send() method mentioned in Table
7.2.

Int32 EndSend(IAsyncResult
*asyncResult)

Ends a pending asynchronous send request, and
if the send operation is successful, it returns the
number of sent bytes to the AsyncSocket object.

IAsyncResult *BeginReceive(char
buffer[], Int32 offset, Int32
size, SocketFlags socketFlags,
AsyncCallback callback, Object
*state)

Asynchronously begins to receive data from a
connected or accepted socket. The description
of the first four parameters of this method is
exactly like the Socket class’s Receive() method
mentioned in Table 7.2.

Int32 EndReceive(IAsyncResult
*asyncResult)

Ends a pending asynchronous receive request and
returns the number of bytes received. If the return
value is zero, it means that the remote host has
closed the connection.

Socket *get_BaseSocket()
const

Gets the base object instance of the Socket class.

void Close() The description of this method comes in Table 7.2,
and thus we omit it here.

void Shutdown(SocketShutdown
how)

The description of this method comes in Table 7.2,
and thus we omit it here.

Long get_CoreID() const Gets the logical, physical processor core ID of the
current socket instance that is running on it.

Int32 get_CoreCount() const Gets the number of logical, physical processor cores
on the current machine.

Table 7.4 (Continued) The AsyncSocket Class’s Constructor and Methods in the
Parvicursor.NET Framework

(Continued)

218 ◾ Implementing Parallel and Distributed Systems

methods within the table. The implementation of the current PCAS version is presently
only supported in the Linux operating system. The source code of the PCAS Framework
is located at the path “/Parvicursor/Parvicursor/AsyncSocketLib” from the
companion resources of the book. Due to the high complexity in the implementation

Name Description

bool TryMigrateToCore(Int32
DestCoreID)

Atomically tries to make the AsyncSocket instance
migrate from the current core to the destination
core specified by DestCoreID. If the return value is
false, this indicates that the destination core has not
enough empty slots to enqueue the AsyncSocket
instance, and therefore the migration operation fails.
Also, this method may throw an exception indicating
the error occurred during the socket migration
process, and we must catch this exception and
ensure that only the migration process has failed, and
the program can continue with its normal execution.
Of course, we can try again later. If we want to be
able for invoking this method, we must have already
called at least once one of the BeginSend() or
BeginReceive() methods (this implicitly states that
one background thread must be first assigned to the
AsyncSocket instance internally through one of
these two methods). This method can be only issued
on a socket with a connected or accepted state.

static void
InitClientModeRuntime(void)

If the BeginConnect() method is executed at
least once in a program, the developer should
invoke the static InitClientModeRuntime()
method at the beginning of the main() function. In
other words, this function initialises the client-side
runtime, which contains the internal thread pool
and dynamic object allocation for the asynchronous
operations implemented. In the PCAS Framework,
two separate thread pools are maintained for both
client and server modes. The server thread pool
is automatically initialised after the first call to the
BeginAccept() method on the server socket, and
it is destroyed after invoking the Close() method
on a listening stateful socket instance. If this method
has not already been invoked, the implementation
of the BeginConnect() method internally calls the
InitClientModeRuntime() method by default.

static void
DestroyClientModeRuntime(void)

Destroys the client-side runtime initiated by the
InitClientModeRuntime() method and releases
all the resources in this state.

Table 7.4 (Continued) The AsyncSocket Class’s Constructor and Methods in the
Parvicursor.NET Framework

Computer Networks ◾ 219

of the AsyncSocket class, we avoid describing it and refer interested readers to the
source code that was written to be easy to understand. For further study, interested
readers can consult with the reference [3] and Chapter 10 to get more familiar with
asynchronous methods and event-driven patterns.

7.6.4 Example 1: An Asynchronous Echo Client-Server

Now that you know enough about the AsyncSocket class, we describe an asyn-
chronous echo client/server as the first example. Here, a server echoes the whole
received data back to the client. Figure 7.24 shows the asynchronous echo server
program.

In the main() function, having prepared the server socket to initiate accepting
the incoming connections, we invoke the BeginAccept() method inside the while
loop. Because this method is non-blocking, we must wait in lines 41 through 44 to
synchronise between the main() thread and the thread executing the OnAccept()
callback until no new connection is accepted by the EndAccept() method. After
a new connection is accepted, the PCAS Framework invokes the OnAccept() call-
back. Within OnAccept(), we inform the main thread of getting accepted a new
connection; then after preparing the StateObject for the accepted connection in
line 70, we issue the BeginReceive() method to commence the receive operation
on the client socket. After the receive operation completes, the PCAS Framework
invokes the OnReceive() callback.

In line 80, the data receive request ends. If there is no error occurred and
the client has not yet closed its connection to the server, in line 102 we call the
BeginSend() method to start sending the data received from the client back to
the client. After the send operation completes, the OnSent() function is invoked
by the PCAS Framework. We consider two modes inside the implementation of the
OnSent() callback function. If all the data received from the client still has yet been
sent to it, again we must issue the BeginSend() method to send the remaining
number of bytes. Otherwise, we wait to receive other data from the client by calling
the BeginReceive() method. This sequence continues as long as the client closes
the connection, and we in lines 81 to 86 free the client socket and the state object
associated with it after detection of this occurrence.

In this example, note that choosing the value of true for the Guarantee
MulticoreExecution parameter when calling the BeginAccept() method ensures
the concurrent execution of all accepted connections on different cores. Here, when the
key combination CTRL+C is pressed on the console, we immediately terminate the pro-
gram execution through the caught signal inside the StopRequested_signal_han
dler() interrupt handler by calling the exit() system function. The SIGINT signal
event has been registered for this purpose in line 29 using the signal() system call.

Finally, we glimpse the implementation of an asynchronous echo client,
as shown in Figure 7.25. Since we are at client-side runtime within this code,
we invoke the InitClientModeRuntime() method in line 5. In line 81, the
DestroyClientModeRuntime() method corresponding to this method is called.
In this example, two parallel, asynchronous clients have been instantiated and con-
nected to the remote server by calling the asynchronous BeginConnect() method.
The implementation of the OnReceive() and OnSent() has been removed from

220 ◾ Implementing Parallel and Distributed Systems

Figure 7.24 The echo server program depending upon asynchronous sockets in the Parvicursor
platform.

1: // State object for reading/writing client data asynchronously

2: class StateObject : public Object {
3: // Client socket.

4: public: AsyncSocket *workSocket;
5: // Size of receive buffer.

6: public: const static Int32 BufferSize = 1024;
7: // Receive buffer.

8: public: char buffer[BufferSize];
9: // Size of received buffer.

10: public: Int32 n_read;
11: public: Int32 n_written;
12: };
13: // Asynchronous callbacks.

14: static void OnAccept(IAsyncResult *ar);
15: static void OnReceive(IAsyncResult *ar);
16: static void OnSent(IAsyncResult *ar);
17: // The following parameters are used to synchronise between the main thread and the execution of asynchronous

requests.

18: static Mutex mutex = Mutex();
19: static ConditionVariable cv = ConditionVariable(&allDone_mutex);
20: static bool conditionMet = false;
21:
22: static void StopRequested_signal_handler(int sig) {
23: printf("\nCTRL+C was pressed.\n");
24: printf("The server is terminating.\nPlease wait ...\n");
25: exit(0);
26: }
27:
28: int main(int argc, char* argv[]) {
29: my_signal(SIGINT, StopRequested_signal_handler);
30: printf("Service was started.\n");
31: AsyncSocket *listener = new AsyncSocket(InterNetwork, Stream, tcp);
32: IPEndPoint hostEndPoint = IPEndPoint(IPAddress::get_Any(), 9000);
33: listener->Bind(hostEndPoint);
34: listener->Listen(1000);
35: while(true) {
36: conditionMet = false;
37: // Start an asynchronous socket to listen for connections.

38: printf("Waiting for a connection...\n");
39: listener->BeginAccept(OnAccept, listener, true);
40: // Wait until a connection is made before continuing.

41: mutex.Lock();
42: while(!conditionMet)
43: cv.Wait();
44: mutex.Unlock();
45: }
46: printf("The server is terminating.\nPlease wait ...\n");
47: listener->Close();
48: delete listener;
49: // Here, we should also close all accepted connections. For example, you could

50: // store a reference to every client connection into an array list

51: // and close them altogether in a loop.

52: return 0;

(Continued)

Computer Networks ◾ 221

53: }
54:
55: void OnAccept(IAsyncResult *ar) {
56: // Signals the main thread to continue.

57: mutex.Lock();
58: conditionMet = true;
59: cv.Signal();
60: mutex.Unlock();
61: // Gets the socket that handles the client request.

62: AsyncSocket *listener = (AsyncSocket *)ar->AsyncState;
63: AsyncSocket *handler = listener->EndAccept(ar);
64: printf("new connection accepted.\n");
65: // Creates the state object.

66: StateObject *state = new StateObject();
67: state->workSocket = handler;
68: state->n_read = 0;
69: state->n_written = 0;
70: handler->BeginReceive(state->buffer, 0, state->BufferSize, System::Net::Sockets::None, OnReceive,

state);
71: }
72:
73: void OnReceive(IAsyncResult *ar) {
74: // Retrieves the state object and the handler socket from the asynchronous state object.

75: StateObject *state = (StateObject *) ar->AsyncState;
76: AsyncSocket *handler = state->workSocket;
77: // Reads data from the client socket.

78: Int32 bytesRead;
79: try {
80: bytesRead = handler->EndReceive(ar);
81: if(bytesRead <= 0) {
82: printf("Error occurred in OnReceive. The AsyncSocket has been closed\n");
83: handler->Close();
84: delete handler; // This has been already allocated via invoking EndAccept();

85: delete state;
86: return ;
87: }
88: }
89: catch(Exception &e) {
90: printf("Error occured in OnReceive. Exception message: %s\n", e.get_Message().get_BaseStream());
91: handler->Close();
92: delete handler; // This has been already allocated via invoking EndAccept();

93: delete state;
94: return ;
95: }
96: catch(...){ ... }
97: if(bytesRead > 0) {
98:
99: printf("CoreID: %d bytesRead: %d\n", handler->get_CoreID(), bytesRead);
100: state->n_read = bytesRead;
101: // Echoes the data back to the client.

102: handler->BeginSend(state->buffer, 0, bytesRead, System::Net::Sockets::None, OnSent, state);
103: }
104: else

Figure 7.24 (Continued) The echo server program depending upon asynchronous sockets in the
Parvicursor platform.

(Continued)

222 ◾ Implementing Parallel and Distributed Systems

Figure 7.25 due to similarity with the server code. In lines 57 to 71 upon the comple-
tion of every send/receive operation on the client sockets, we migrate them to the
opposite socket CPU core by calling the TryMigrateToCore(). One of the most
important practical applications of the TryMigrateToCore() method can be used
for uniformly load balancing amongst all the processor cores for network communi-
cations. For instance, this method allows moving a connection that requires a lot of
processing into an idle or low-load core. The codes of the client and server are located
at the path “/Parvicursor/Parvicursor/Samples/AsyncEchoClient” and “/
Parvicursor/Parvicursor/Samples/AsyncEchoServer” from the compan-
ion resources of the book.

105: handler->BeginReceive(state->buffer, 0, state->BufferSize, System::Net::Sockets::None, OnReceive,
state);
106: return;
107: }
108:
109: void OnSent(IAsyncResult *ar) {
110: // Retrieves the state object and the handler socket from the asynchronous state object.

111: StateObject *state = (StateObject *) ar->AsyncState;
112: AsyncSocket *handler = state->workSocket;
113: // Completes sending the data to the remote device.

114: Int32 bytesSent;
115: try {
116: bytesSent = handler->EndSend(ar);
117: }
118: catch(Exception &e) {
119: printf("Error occured in OnSent. Exception message: %s\n", e.get_Message().get_BaseStream());
120: handler->Close();
121: delete handler; // This has been already allocated via invoking EndAccept();

122: delete state;
123: return ;
124: }
125: catch(...) {...}
126: if(bytesSent > 0) {
127: printf("CoreID: %d bytesSent: %d\n", handler->get_CoreID(), bytesSent);
128: state->n_written += bytesSent;
129: Int32 remaining = state->n_read - state->n_written;
130: if(remaining > 0)
131: handler->BeginSend(state->buffer, state->n_written, remaining, System::Net::Sockets::None,

OnSent, state);
132: else {
133: state->n_read = 0;
134: state->n_written = 0;
135: handler->BeginReceive(state->buffer, 0, state->BufferSize, System::Net::Sockets::None,

OnReceive, state);
136: }
137: }
138: else
139: handler->BeginSend(state->buffer, 0, state->n_read, System::Net::Sockets::None, OnSent, state);
140: }

Figure 7.24 (Continued) The echo server program depending upon asynchronous sockets in the
Parvicursor platform.

Computer Networks ◾ 223

Figure 7.25 The echo client program relied upon asynchronous sockets in the Parvicursor
platform.

1: ...
2: int main(int argc, char* argv[]) {
3: printf("The client program was started.\n");
4: // Sets up the asynchronous client mode runtime.

5: AsyncSocket::InitClientModeRuntime();
6: // Establish the remote endpoint for sockets.

7: // The name of the remote device is "localhost".

8: IPHostEntry ipHostInfo = Dns::Resolve("localhost");
9: IPAddress ipAddress = ipHostInfo.get_AddressList(0);

10: IPEndPoint remoteEP = IPEndPoint(ipAddress, 9000);
11: AsyncSocket *client1 = new AsyncSocket(InterNetwork, Stream, tcp);
12: AsyncSocket *client2 = new AsyncSocket(InterNetwork, Stream, tcp);
13: // Create the state object.

14: StateObject *state1 = new StateObject();
15: state1->workSocket = client1;
16: StateObject *state2 = new StateObject();
17: state2->workSocket = client2;
18: conditionNum = 0;
19: // Connect to the remote endpoints.

20: try {
21: client1->BeginConnect(remoteEP, OnConnected, state1, true);
22: client2->BeginConnect(remoteEP, OnConnected, state2, true);
23: }
24: catch(SocketException &e) {
25: printf("Error occurred in OnConnected. Exception message: %s\n",

e.get_Message().get_BaseStream());
26: return -2;
27: }
28: catch(...){ ... }
29: // Waits until the two client connect.

30: mutex.Lock();
31: while(conditionNum != 2)
32: cv.Wait();
33: mutex.Unlock();
34: const char *str = "Alireza Poshtkohi";
35: Int32 len = strlen(str) + 1; // 1 for '\0' (the end of string)

36: memmove(state1->sendBuffer, str, len);
37: state1->len = len;
38: memmove(state2->sendBuffer, str, len);
39: state2->len = len;
40: if(state1->hasException || state2->hasException)
41: goto Cleanup;
42: for(register Int32 i = 1 ; i <= 10 ; i++) {
43: conditionNum = 0;
44: printf("I: %d\n", i);
45: client1->BeginSend(state1->sendBuffer, 0, state1->len, System::Net::Sockets::None, OnSent, state1);
46: client2->BeginSend(state2->sendBuffer, 0, state2->len, System::Net::Sockets::None, OnSent, state2);
47: // Waits until the two send operations complete.

48: mutex.Lock();
49: while(conditionNum != 2)
50: cv.Wait();
51: mutex.Unlock();
52: if(state1->hasException || state2->hasException)

(Continued)

224 ◾ Implementing Parallel and Distributed Systems

53: break;
54: printf("Client1 Cores: %d CoreID: %d sendBuffer: %s receiveBuffer: %s\n", client1->get_CoreCount(),

client1->get_CoreID(), state1->sendBuffer, state1->receiveBuffer);
55: printf("Client2 Cores: %d CoreID: %d sendBuffer: %s receiveBuffer: %s\n", client2->get_CoreCount(),

client2->get_CoreID(), state2->sendBuffer, state2->receiveBuffer);
56: // Swaps cores.

57: Int32 client1_CurrentCore = client1->get_CoreID();
58: Int32 client2_CurrentCore = client2->get_CoreID();
59: if(client1_CurrentCore != client2_CurrentCore) {
60: printf("Tries to swap client cores ...\n");
61: bool success = client1->TryMigrateToCore(client2_CurrentCore);
62: if(success)
63: printf("client1 was swapped.\n");
64: else
65: printf("client1 was not swapped.\n");
66: success = client2->TryMigrateToCore(client1_CurrentCore);
67: if(success)
68: printf("client2 was swapped.\n");
69: else
70: printf("client2 was not swapped.\n");
71: }
72: }
73: Cleanup:
74: printf("The client program is terminating.\nPlease wait ...\n");
75: // Here, we should also close all accepted connections. For example, you could

76: // store a reference to every client connection into an array list

77: // and close them altogether in a loop. The client program was started.

78: client1->Close(); delete client1; delete state1;
79: client2->Close(); delete client2; delete state2;
80: // Disposes the asynchronous client mode runtime.

81: AsyncSocket::DestroyClientModeRuntime();
82: return 0;
83: }
84:
85: void OnConnected(IAsyncResult *ar) {
86: // Retrieve the state object and the handler socket

87: // from the asynchronous state object.

88: StateObject *state = (StateObject *) ar->AsyncState;
89: AsyncSocket *handler = state->workSocket;
90: try {
91: // Completes the connection.

92: handler->EndConnect(ar);
93: printf("Socket connected.\n");
94: }
95: catch(Exception &e) {
96: state->hasException = true;
97: printf("Error occurred in OnConnected. Exception message: %s\n",

e.get_Message().get_BaseStream());
98: }
99: catch(...){ ... }

100: // Signals the main thread to continue.

101: mutex.Lock();
102: conditionNum++;
103: cv.Signal();
104: mutex.Unlock();
105: return;
106: }
107: ...

Figure 7.25 (Continued) The echo client program relied upon asynchronous sockets in the
Parvicursor platform.

Computer Networks ◾ 225

7.6.5 Example 2: The Design and Implementation of a Highly
Concurrent and Scalable HTTP Proxy Server Supporting
Tens of Thousands of Client Connections

As the last example of asynchronous sockets, we concentrate on the implementa-
tion of a highly scalable, concurrent, and complex HTTP proxy server atop the
PCAS Framework. In Section 7.4, the HTTP protocol was elaborated for both
direct and proxy (indirect) modes. Based upon the material presented therein, we
shortly report a typical implementation of an HTTP proxy server supporting the
GET/POST/CONNECT methods. Because the code of this example is very well under-
stood, the reader should follow and read the entire codes line by line; this helps
the reader get a better understanding of asynchronous sockets as well as enjoy the
power of C and C++ languages in the construction of complex software systems
(such as middleware frameworks), particularly for distributed systems on top of the
Parvicursor platform.

Figure 7.26 illustrates the finite-state machine26 of the implemented source code.
The C++ code snippets of this FSM appear in Figure 7.27. An HTTP proxy server,
first of all, must process and parse the client request inside the ProcessQuery()
function after receiving a connection. After retrieving the request method, the
proxy server connects to the remote server and relays between the client and the

Figure 7.26 The finite-state machine implementation of the HTTP proxy server.

BeginAccept OnAccept BeginReceive OnRecieveQuery ProcessQuery BeginConnect OnConneted

BeginSend

BeginSend – for
Connection Stablished

CONNECT G
ET/PO

STGET/POST ke
ep-

alive
 su

pport

BeginSendOnQuerySent

OnOkSent

StartRelay

BeginReceive

BeginReceive

OnRemoteReceive BeginSend OnClientSent

OnClientReceive BeginSend OnRemoteSent

BeginReceive

GET/POST

CONNECT

GET request is not complete.

Remote Server

Client

Proxy

226 ◾ Implementing Parallel and Distributed Systems

Figure 7.27 The C++ code snippets of the HTTP proxy server program supporting the
GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

1: // Called when there's an incoming client connection waiting to be accepted.

2: private: static void OnAccept(IAsyncResult *ar) {
3: HttpProxyServer *proxy = (HttpProxyServer *)ar->AsyncState;
4: // Signal the Start() thread to continue.

5: proxy->accepted_mutex->Lock();
6: proxy->accepted = true;
7: proxy->accepted_cv->Signal();
8: proxy->accepted_mutex->Unlock();
9: // Gets the socket that handles the client request.

10: AsyncSocket *clientSocket = proxy->listener->EndAccept(ar);
11: printf("new connection accepted.\n");
12: Session *session = new Session(__BUFFER_SIZE__);
13: session->clientSocket = clientSocket;
14: session->clientClosed = false;
15: session->serverClosed = true;
16: try {
17: session->clientSocket->BeginReceive(session->clientBuffer, 0, session->bufferSize,

System::Net::Sockets::None, OnReceiveQuery, session);
18: }
19: ...
20: }
21: // Parses a specified query and modifies to the HTTP request.

22: private: static bool ParseRequest(InOut Session *session) {
23: if(session->clientBuffer == null)
24: return false;
25: // Parses the HTTP METHOD request.

26: char *begin = session->clientBuffer;
27: char *end = null;
28: Int32 methodLen = 0;
29: if(strncmp(begin, "GET ", 4) == 0) {
30: methodLen = 4;
31: begin += 4;
32: session->methodType = __GET;
33: }
34: else if(strncmp(begin, "POST ", 5) == 0) {
35: methodLen = 5;
36: begin += 5;
37: session->methodType = __POST;
38: }
39: else if(strncmp(begin, "CONNECT ", 8) == 0) {
40: // Finds hostname, e.g., CONNECT www.example.com:443 HTTP/1.1

41: methodLen = 8;
42: begin += 8;
43: session->methodType = __CONNECT;
44: char *end;
45: if((end = strstr(begin, " HTTP/")) == null)
46: return false;
47: char *delimiter;
48: if((delimiter = strchr(begin, ':')) == null)
49: return false;
50: delimiter++; // for ':'

51: Int32 hostnameSize = (Int32)(delimiter - begin);
52: if(hostnameSize > Session::MaxHostnameLen - 1)

(Continued)

Computer Networks ◾ 227

53: return false;
54: memmove(session->hostname, begin, hostnameSize);
55: session->hostname[hostnameSize - 1] = '\0';
56: Int32 portSize = (Int32)(end - delimiter);
57: if(portSize > 5)
58: return false;
59: char port_str[6]; // maximum port number is 65536 + 1 for '\0'

60: port_str[portSize - 1] = '\0';
61: memmove(port_str, delimiter, portSize);
62: session->port = atoi(port_str);
63: return true;
64: }
65: else
66: return false;
67: if(session->methodType == __GET || session->methodType == __POST) {
68: // Finds pathname and protocol version.

69: begin += 7;
70: if((end = strchr(begin, '/')) != null) {
71: char *pathnameBegin = begin - 7;
72: char *pathnameEnd = end;
73: Int32 transferLen = end - begin + 7;
74: begin = end;
75: if((end = strstr(begin, " HTTP/")) != null) {
76: // Modifies line 1.

77: memmove(pathnameBegin, pathnameEnd, session->clientRecv - transferLen);
78: pathnameBegin -= methodLen;
79: session->clientBuffer = pathnameBegin;
80: session->clientRecv -= transferLen;
81: }
82: }
83: // Removes Proxy-xxx

84: if((begin = strstr(session->clientBuffer, "Proxy-")) != null) {
85: // Proxy-Connection: Keep-Alive

86: // Proxy-Connection: Close

87: if(strncasecmp(begin, "Proxy-Connection: keep-alive", 28) == 0)
88: session->KeepAlive = true;
89: else if(strncasecmp(begin, "Proxy-Connection: Keep-Alive", 28) == 0)
90: session->KeepAlive = true;
91: else
92: session->KeepAlive = false;
93:
94: end = begin;
95: end += 6; // strlen("Proxy-");

96: //printf("clientRecv: %d begin: %d end: %d len: %d\n", session->clientRecv , (Int32)begin, (Int32)end, len);

97: memmove(begin, end, ((Int32)session->clientBuffer + session->clientRecv) - (Int32)end);
98: session->clientRecv -= 6;
99: }

100: }
101: begin = session->clientBuffer;
102: // Finds hostname, e.g., Host: www.example.com:8000

103: if((begin = strstr(begin, "Host: ")) == null)
104: return false;
105: begin += 6;

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

228 ◾ Implementing Parallel and Distributed Systems

106: end = null;
107: if((end = strstr(begin, "\r\n")) == null) // Finds the end of the current line.

108: if((end = strstr(begin, "\n")) == null)
109: return false;
110: char *delimiter = null;
111: delimiter = strchr(begin, ':');
112: if(delimiter == null || delimiter > end) {
113: end++;
114: delimiter = end;
115: session->port = 80;
116: }
117: else {
118: delimiter++; // for ':'

119: Int32 portSize = (Int32)(end - delimiter);
120: if(portSize > 5)
121: return false;
122: char port_str[6]; // maximum port number is 65536 + 1 for '\0'

123: port_str[portSize - 1] = '\0';
124: memmove(port_str, delimiter, portSize);
125: session->port = atoi(port_str);
126: if(session->port > 65536)
127: return false;
128: }
129: Int32 hostnameSize = (Int32)(delimiter - begin);
130: if(hostnameSize > Session::MaxHostnameLen - 1)
131: return false;
132: memmove(session->hostname, begin, hostnameSize);
133: session->hostname[hostnameSize - 1] = '\0';
134: return true;
135: }
136: // Disposes of the resources (other than memory) used by the Client.

137: // Closes the connections with the local client and the remote host. Once Dispose() has been called, this object should

not be used anymore.

138: private: static void Dispose(Session *session, bool clientMode) {
139:
140: session->mutex->Lock();
141: if(clientMode) {
142: if(!session->clientClosed) {
143: session->clientSocket->Close();
144: session->clientClosed = true;
145: if(session->serverClosed || session->serverSocket == null) {
146: if(session->serverSocket != null)
147: delete session->serverSocket;
148: delete session->clientSocket;
149: session->clientSocket = null;
150: session->mutex->Unlock();
151: delete session;
152: session = null;
153: return;
154: }
155: session->mutex->Unlock();
156: return ;
157: }

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

Computer Networks ◾ 229

158: }
159: else {
160: if(!session->serverClosed) {
161: session->serverSocket->Close();
162: session->serverClosed = true;
163: if(session->clientClosed) {
164: if(session->clientSocket != null)
165: delete session->clientSocket;
166: delete session->serverSocket;
167: session->clientSocket = null;
168: session->serverSocket = null;
169: session->mutex->Unlock();
170: delete session;
171: session = null;
172: return;
173: }
174: session->mutex->Unlock();
175: return ;
176: }
177: }
178: session->mutex->Unlock();
179: }
180: // Called when we received some data from the client connection.

181: private: static void OnReceiveQuery(IAsyncResult *ar) {
182: Session *session = (Session *)ar->AsyncState;
183: try {
184: Int32 Ret = session->clientSocket->EndReceive(ar);
185: if(Ret <= 0) {
186: Dispose(session, true);
187: return;
188: }
189: if(session->methodType == __GET && !session->hasGetMethodCompleted) { // for large GET requests

190: session->clientRecv += Ret;
191: session->clientBuffer[session->clientRecv] = '\0';
192: goto UncompletedGetMethod;
193: }
194: else
195: session->clientRecv = Ret;
196: }
197: ...
198: session->clientBuffer[session->clientRecv] = '\0';
199: if(!ParseRequest(session)) {
200: SendErrorToClientAndDispose(session, &errorCodes[__BadRequest__]);
201: return;
202: }
203: session->clientBuffer[session->clientRecv] = '\0';
204: UncompletedGetMethod:
205: if(session->methodType == __GET) {
206: bool found = false;
207: if(strstr(session->clientBuffer, "\r\n\r\n") != null)
208: found = true;
209: else if(strstr(session->clientBuffer, "\n\n") != null)
210: found = true;

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

230 ◾ Implementing Parallel and Distributed Systems

211: if(found) {
212: session->hasGetMethodCompleted = true;
213: goto Continue;
214: }
215: else {
216: session->hasGetMethodCompleted = false;
217: // Here, we must read the remaining content of the GET request from client.

218: try {
219: session->clientSocket->BeginReceive(session->clientBuffer, session->clientRecv, session-

>bufferSize - session->clientRecv, System::Net::Sockets::None, OnReceiveQuery, session);
220: return;
221: }
222: ...
223: }
224: }
225: Continue:
226: if(session->methodType != __CONNECT && !session->isFirstTimeHttpRequest && session->KeepAlive)
227: {
228: if(strcmp(session->lastHostname, session->hostname) == 0) { // HTTP/1.1 Keep-Alive Support

229: try {
230: session->serverSocket->BeginSend(session->clientBuffer, 0, session->clientRecv,

System::Net::Sockets::None, OnQuerySent, session);
231: }
232: ...
233: return;
234: }
235: }
236: session->mutex->Lock();
237: if(session->serverSocket != null) {
238: session->serverSocket->Close();
239: delete session->serverSocket;
240: session->serverSocket = null;
241: session->serverClosed = true;
242: }
243: session->isFirstTimeHttpRequest = false;
244: session->mutex->Unlock();
245: // Establish the remote endpoint for sockets.

246: // The name of the remote device is "session->hostname".

247: IPHostEntry ipHostInfo;
248: try {
249: ipHostInfo = Dns::Resolve((const char*)session->hostname);
250: }
251: catch(...) {
252: SendErrorToClientAndDispose(session, &errorCodes[__GatewayTimeout__]);
253: return ;
254: }
255: IPEndPoint remoteEP;
256: try {
257: IPAddress ipAddress = ipHostInfo.get_AddressList(0);
258: remoteEP = IPEndPoint(ipAddress, session->port);
259: session->serverSocket = new AsyncSocket(InterNetwork, Stream, tcp);
260: session->serverClosed = false;
261: /* Sets the option active */

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

Computer Networks ◾ 231

262: if(session->KeepAlive) {
263: int one = 1;
264: ::setsockopt(session->serverSocket->get_BaseSocket()->get_Handle(), SOL_SOCKET,

SO_KEEPALIVE, &one, sizeof(one));
265: }
266: }
267: ...
268: try {
269: session->serverSocket->BeginConnect(remoteEP, OnConnected, session, true);
270: printf("server socket: %d\n", session->serverSocket->get_BaseSocket()->get_Handle());//

271: }
272: catch(Exception &e) {
273: printf("Error occured in OnReceiveQuery() 7. Exception message: %s\n",

e.get_Message().get_BaseStream());
274: SendErrorToClientAndDispose(session, &errorCodes[__GatewayTimeout__]);
275: return ;
276: }
277: ...
278: }
279: // Called when we're connected to the requested remote host.

280: private: static void OnConnected(IAsyncResult *ar {
281: Session *session = (Session *)ar->AsyncState;
282: try {
283: session->serverSocket->EndConnect(ar);
284: if(session->KeepAlive)
285: memmove(session->lastHostname, session->hostname, strlen(session->hostname) + 1); // Copies

hostname into lastHostname.

286: }
287: catch(Exception &e) {
288: printf("Error occured in OnConnected() 1. Exception message: %s\n",

e.get_Message().get_BaseStream());
289: SendErrorToClientAndDispose(session, &errorCodes[__GatewayTimeout__]);
290: return ;
291: }
292: ...
293:
294: if(session->methodType == __CONNECT) { //HTTPS

295: ::sprintf(session->clientBuffer, "HTTP/1.%d 200 Connection established\r\nProxy-Agent:
Parvicursor.NET-AsynchProxy-v1\r\n\r\n", 1);
296: printf("Successfully connected to %s on port %d.\n", session->hostname, session->port);
297: try {
298: session->clientSocket->BeginSend(session->clientBuffer, 0, strlen(session->clientBuffer),

System::Net::Sockets::None, OnOkSent, session);
299: }
300: ...
301: }
302: else { //Normal HTTP

303: printf("Successfully connected to %s on port %d.\n", session->hostname,session->port);
304: try {
305: session->serverSocket->BeginSend(session->clientBuffer, 0, session->clientRecv,

System::Net::Sockets::None, OnQuerySent, session);
306: }
307: ...

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

232 ◾ Implementing Parallel and Distributed Systems

308: }
309: }
310: // Called when an OK reply has been sent to the client.

311: private: static void OnOkSent(IAsyncResult *ar) {
312: Session *session = (Session *)ar->AsyncState;
313: try {
314: Int32 Ret = session->clientSocket->EndSend(ar);
315: if(Ret == -1) {
316: Dispose(session, true);
317: return;
318: }
319: }
320: ...
321: StartRelay(session);
322: }
323: // Called when the HTTP query has been sent to the remote host.

324: private: static void OnQuerySent(IAsyncResult *ar)
325: {
326: Session *session = (Session *)ar->AsyncState;
327: try {
328: if(session->serverSocket->EndSend(ar) == -1)
329: {
330: Dispose(session, false);
331: return;
332: }
333: }
334: ...
335: StartRelay(session);
336: }
337: // Starts relaying data between the remote host and the local client.

338: // This method should only be called after all protocol specific communication has been finished.

339: private: static void StartRelay(Session *session)
340: {
341: if(session->methodType == __CONNECT) {
342: try {
343: session->clientSocket->BeginReceive(session->clientBuffer, 0, session->bufferSize,

System::Net::Sockets::None, OnClientReceive, session);
344: }
345: ...
346: try {
347: session->serverSocket->BeginReceive(session->serverBuffer, 0, session->bufferSize,

System::Net::Sockets::None, OnRemoteReceive, session);
348: }
349: ...
350: }
351: else if(session->methodType == __GET || session->methodType == __POST) {
352: try {
353: session->clientSocket->BeginReceive(session->clientBuffer, 0, session->bufferSize,

System::Net::Sockets::None, OnReceiveQuery, session);
354: }
355: ...
356: try {
357: session->serverSocket->BeginReceive(session->serverBuffer, 0, session->bufferSize,

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

Computer Networks ◾ 233

System::Net::Sockets::None, OnRemoteReceive, session);
358: }
359: ...
360: }
361: }
362: // Called when we have received data from the local client. Incoming data will immediately be forwarded to the

remote host.

363: private: static void OnClientReceive(IAsyncResult *ar) {
364: Session *session = (Session *)ar->AsyncState;
365: try {
366: Int32 Ret = session->clientSocket->EndReceive(ar);
367: if(Ret <= 0) {
368: Dispose(session, true);
369: return;
370: }
371: session->clientRecv = Ret;
372: }
373: ...
374: try {
375: session->serverSocket->BeginSend(session->clientBuffer, 0, session->clientRecv,

System::Net::Sockets::None, OnRemoteSent, session);
376: }
377: ...
378: }
379: // Called when we have received data from the remote host. Incoming data will immediately be forwarded to the local

client.

380: private: static void OnRemoteReceive(IAsyncResult *ar) {
381: Session *session = (Session *)ar->AsyncState;
382: try {
383: Int32 Ret = session->serverSocket->EndReceive(ar);
384: if(Ret <= 0) {
385: Dispose(session, false);
386: return;
387: }
388: session->serverRecv = Ret;
389: }
390: ...
391: try{
392: session->clientSocket->BeginSend(session->serverBuffer, 0, session->serverRecv,

System::Net::Sockets::None, OnClientSent, session);
393: }
394: ...
395: }
396: // Called when we have sent data to the remote host. When all the data has been sent, we will start receiving again

from the local client.

397: private: static void OnRemoteSent(IAsyncResult *ar) {
398: Session *session = (Session *)ar->AsyncState;
399: try {
400: Int32 Ret = session->serverSocket->EndSend(ar);
401: if(Ret <= 0) {
402: printf("Error occurred in OnRemoteSent() 1.\n");
403: Dispose(session, false);
404: return;

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

(Continued)

234 ◾ Implementing Parallel and Distributed Systems

server to communicate and transmit the data (the StartRelay function). The
ProcessQuery() function has been implemented grounding on the ANSI C string
functions for high-performance purposes; herein, we avoided for any additional
memory allocation to manipulate strings (this makes the implementation compli-
cated in favour of a performance increase). Whereas the length of the send buffer

405: }
406: }
407: ...
408: StartRelay(session);
409: }
410: // Called when we have sent data to the local client. When all the data has been sent, we will start receiving again

from the remote host.

411: private: static void OnClientSent(IAsyncResult *ar) {
412: Session *session = (Session *)ar->AsyncState;
413: try {
414: Int32 Ret = session->clientSocket->EndSend(ar);
415: if(Ret <= 0) {
416: Dispose(session, true);
417: return;
418: }
419: }
420: ...
421: StartRelay(session);
422: }
423: // Sends an error to the client.

424: private: static void SendErrorToClientAndDispose(Session *session, ErrorStruct *error) {
425: ::sprintf(session->clientBuffer, "HTTP/1.1 %d %s\r\nConnection: close\r\nContent-Type:
text/html\r\n\r\n<html><head><title>Parvicursor.NET-AsynchProxy-v1: %d %s</title></head><body><div
align=\"centre\"><table border=\"0\" cellspacing=\"3\" cellpadding=\"3\" bgcolor=\"#C0C0C0\"><tr><td><table
border=\"0\" width=\"500\" cellspacing=\"3\" cellpadding=\"3\"><tr><td bgcolor=\"#B2B2B2\"><p
align=\"centre\">Parvicursor.NET-AsynchProxy-v1: %d
%s</p></td></tr><tr><td bgcolor=\"#D1D1D1\"><font size=\"2\"
face=\"Verdana\">%s</td></tr></table></centre></td></tr></table></div></body></html>",
426: error->number, error->message,
427: error->number, error->message,
428: error->number, error->message,
429: error->description);
430: try {
431: session->clientSocket->BeginSend(session->clientBuffer, 0, strlen(session->clientBuffer),

System::Net::Sockets::None, OnErrorSent, session);
432: }
433: ...
434: }
435: // Called when the Bad Request error has been sent to the client.

436: private: static void OnErrorSent(IAsyncResult *ar) {
437: Session *session = (Session *)ar->AsyncState;
438: try {
439: session->clientSocket->EndSend(ar);
440: }
441: ...
442: Dispose(session, true);
443: }

Figure 7.27 (Continued) The C++ code snippets of the HTTP proxy server program supporting
the GET/POST/CONNECT methods based on asynchronous sockets in the Parvicursor platform.

Computer Networks ◾ 235

may be less than the length of the proxy buffer in the GET method, at the proxy side
we must read from the server socket until the end of the request is reached as adver-
tised by the string \r\n\r\n.

This issue is also valid for POST method, especially when a client is uploading
an object or a file that has specified its length in the ContentLength header; the
current implementation does not support this feature and we leave it as an exercise
to the reader. Because connections in the HTTP protocol version 1.1 are persistent,
we must support it when the client sends frequent requests to a single proxy (line
228). Due to the lengthy code, we invite the reader to look at the entire code care-
fully with the inline comments.

In the end, we talk a little about the Dispose() method. Since the client and
remote server sockets are running on individual threads, terminating a session
between the client and server is a bit more challenging. For this reason, when a
connection is closed, we have to make use of a mutex in this function and close
the socket at the side that has been closed and also release its object; however, we
cannot release the other side socket because its thread is running. To solve this
problem, we just close the opposite side socket in this case; this makes an excep-
tion to be thrown inside the thread, and, at this moment, because the thread can
catch this exception, it itself can call the Dispose() function safely and close
its socket; finally, we also free the current session reference (i.e., the variable
session). The codes of this sample are available at the path “/Parvicursor/
Parvicursor/Samples/HttpProxyServer” from the companion resources of
the book.

We hope that the contents within this chapter could convey the author’s experience
to the respected readers in the area of parallel network programming. Furthermore,
we will be so pleased to hear that this chapter has motivated you about the very
interesting and key topic of integrating communication with concurrency for distrib-
uted systems.

Notes
 1 LANs
 2 MANs
 3 WANs
 4 Media Access Control
 5 HCA
 6 TCA
 7 QP
 8 WQE
 9 CQE
 10 Remote Direct Memory Access
 11 QoS
 12 Open Protocol Architecture
 13 International Organization for Standardization
 14 Transmission Control Protocol
 15 IP
 16 Stream Control Transmission Protocol
 17 User Datagram Protocol
 18 Voice over Internet Protocol

236 ◾ Implementing Parallel and Distributed Systems

 19 DNS
 20 Hypertext Transfer Protocol
 21 Uniform Resource Identifier
 22 Multipurpose Internet Mail Extensions
 23 Simple Object Access Protocol
 24 Secure Socket Layer/Transport Layer Security
 25 Uniform Resource Locator
 26 FSM

References
 [1] B. Forouzan, and D.A. College, TCP/IP Protocol Suite, 4th Edition, McGraw-Hill, New York, 2010,

ISBN 978-0070166783.
 [2] Asynchronous Programming Patterns, MSDN, 2022; http://msdn.microsoft.com/en-us/library/

ms228969.aspx
 [3] D. Makofske, and K. Almeroth, Multicast Sockets: Practical Guide for Programmers, Morgan

Kaufmann, London, New York, 2002, ISBN 978-1558608467.

http://msdn.microsoft.com
http://msdn.microsoft.com

237DOI: 10.1201/9781003379041-8

Chapter 8

Parvicursor.NET Framework:
A Partial, Native, and
Cross-Platform C++
Implementation of the
.NET Framework

Computer programming is an art because it applies accumulated knowledge
to the world, requires skill and ingenuity, and especially because it produces
objects of beauty.

Donald Knuth

8.1 Introduction
DotGrid project was introduced to create a Grid infrastructure atop .NET Framework
[1–5]. The current DotGrid structure does not offer a Grid middleware, but rather
it provides an infrastructure for creating and implementing middleware in distrib-
uted, Cluster, Grid, and Cloud environments. DotGrid anatomy utilises a peer-to-
peer abstraction which can form a distributed environment between network nodes.
Using and extending DotGrid APIs and developing the P2P concept, one can easily
arrive at different low-level networked topologies, including the master-slave, hier-
archical master-slave, and perfect graph. In the year 2005, DotGrid Grid Computing
Framework was implemented on top of MONO.NET and Microsoft.NET Frameworks
using the ECMA standards 334 and 335 [6, 7]. DotGrid was the first project employ-
ing.NET technologies that were implemented in a cross-platform fashion to create
heterogeneous Grid environments with the notion of a homogenised system on the
most recent operating systems like Windows, Linux, and Unix.

During the design period, whilst the DotGrid project was being developed,
we faced substantial problems in the efficiency of the .NET Framework; hence, in
the year 2006 the conception of a new project, currently referred to as the term
Parvicursor, emerged. DotGrid platform had been designed accurately by using very

http://dx.doi.org/10.1201/9781003379041-8

238 ◾ Implementing Parallel and Distributed Systems

low-level design methods of software systems. We did not make use of special fea-
tures provided by the .NET Framework, which could not be ported to other runtimes
(platforms) like Java and native code. Parvicursor project, using the open standard-
based benefits from the DotGrid platform, provides a new cross-platform framework
to easily port C#-based DotGrid source codes directly to the native code which relied
heavily on the .NET ECMA standards [6–8].

Parvicursor project is an essential effort to establish an OS-based framework to
fast develop new high-performance distributed paradigms. The basic infrastructure
is inspired by concepts mostly available in Cluster, Grid, and Cloud environments.
From the viewpoint of the developer users, the Parvicursor.NET Framework pro-
vides a set of rich, cross-platform, object-oriented, high-performance, and low-level
C++ class libraries which enable quick and solid development of the next-genera-
tion networked/distributed applications and paradigms. From the viewpoint of the
Parvicursor core, it supplies some critical services developed with parts in kernel
mode and some other parts in userspace.

In this chapter, we briefly introduce the .NET Framework and existing technolo-
gies within the platform. The presented material herein will make the understanding
of the Parvicursor.NET Framework more tangible to the reader.

The rest of the chapter is organised as follows. In Section 8.2, we present Common
Language Infrastructure (CLI). Section 8.3 describes Parvicursor.NET Framework.
Sections 8.4 and 8.5 concentrate on the compilation and loading process of .NET-
CLI and Parvicursor.NET application programs. The Parvicursor.NET Socket Interface
(PSI), Parvicursor Object Passing Interface (POPI), and Parvicursor.NET Remoting
Architecture (PR) will be discussed in Sections 8.6–8.8. Section 8.9 focuses on native
programming with the Parvicursor.NET Framework. In Section 8.10, we provide
some example programs developed atop Parvicursor.NET Framework.

8.2 Common Language Infrastructure (CLI)
CLI is an international open standard (defined in ECMA-335 and ISO/IEC 23271 stan-
dards) developed by Microsoft Corporation that provides the basics to create devel-
opment and execution environments in which languages and libraries work together
seamlessly. The most important major and integral parts of CLI fall into four cores:
Common Type System (CTS), Metadata, Common Language Specification (CLS), and
(VES) Virtual Execution System.

VES isolates CLI-compliant programs from the underlying operating system.
The VES has been implemented for a broad spectrum of operating systems (such as
Microsoft.NET in Windows and MONO.NET in Unix-style operating systems like FreeBSD,
Linux, and Solaris) so that the programs written in CLI-compliant languages (like C#, F#,
C++/CLI, and J#) can be executed on different systems without recompilation or rewrit-
ing. The programming to the CLI-compliant languages eventually offers a simple model
but is rich in where the use of this platform can cause developing programs in different
languages, taking advantage of code reuse techniques and removing the most structural
problems involved in traditional programming models. CLI provides many facilities for
modules, including to be self-registered, to be able to execute remote processes, to be
possible to deal with errors through exception handling mechanisms, and so on.

Parvicursor.NET Framework ◾ 239

The CTS builds an infrastructure of data types in the CLI. The data types are some-
thing beyond the concept of bits that data reside in them. The original idea behind
the CTS is to provide compatible types, which give interoperability to various lan-
guages. The CTS has been designed for a wide class of objected-oriented, procedural,
and functional languages.

CLS is a subset of CTS. CLS is a set of bytes that may be used in external calls
within codes for portability purposes. This entire standardised framework (includ-
ing the Base Class Library, XML Library, Network Library, Reflection Library, and
Extended Numeric Library) is expected to be used on any system that runs compliant
VES or in any CLS-compliant language.

Standard .NET Framework conforms to the CLS and mainly aims to be cross-
language. In the definition of CLI, a profile is a collection of libraries grouped into a
structure that makes up a strong general entity, and in turn this procedure provides
a functional firm level. A basic CLI profile is the kernel profile which contains C#
class libraries.

.NET Class Framework is a huge set of classes. This structure is an interface
encapsulating the operating system that is implemented above the operating system
APIs. .NET Framework only uses the basic functionalities of the operating system,
thus eventually leading to a limitation in terms of feature set.

The term Common Language Runtime (CLR) is one core component of Microsoft’s
.NET initiative which is the implementation of CLI standard. CLR allows developers
and programmers to forget the detail of dozens of processor architectures, which
execute their programs. Moreover, the CLR arranges several services, including
Memory Management, Garbage Collector, Thread Management, Exception Handling,
and Security.

Despite the strength and the emerging innovations of CLI, this abstraction signifi-
cantly degrades performance in executing programs because of its multiple layers
in the conversion of codes into native code by the CLR. Of course, this issue is not
accounted for in usual enterprise and desktop applications but rather the CLI weak-
ness is meaningful in server systems and HPC environments. In other words, one of
the main goals of the Parvicursor.NET Framework is to eliminate this performance
issue whilst preserving the unique features of the .NET Framework and C# language
in such platforms depending upon the native C/C++ runtime.

8.3 Parvicursor.NET Framework
To realise the goal to eliminate the overheads concerned with the multi-layer archi-
tecture of the .NET Framework, the perception of the Parvicursor project in follow-
ing up the DotGrid project emerged. The Parvicursor.NET Framework is a native and
cross-platform implementation of the standard CLI profiles and libraries based on the
standard ISO C++. The main aim of the Parvicursor project is actually to provide an
infrastructural software framework to easily port the source codes of the .NET-based
DotGrid Grid Computing Framework into native code with the minimum time and
cost spent and to increase the efficiency of the protocols that had been implemented
in DotGrid platform. Therefore, in addition to porting the DotGrid structure to native
code, a high-performance implementation of the CLI standard leaves to enterprise

240 ◾ Implementing Parallel and Distributed Systems

and scientific communities. Figure 8.1 shows the current layered architecture of the
Microsoft .NET Framework.

Each of the layers according to the inherent nature of CLI poses extra overheads
upon application programs developed atop Microsoft .NET Framework. The Just-In-
Time (JIT) compiler emits the CIL code into native executable code within the oper-
ating system through two methods at runtime, bytecode compilation and dynamic
compilation. One important overhead of this compilation process is that the .NET
assembly modules must be dynamically compiled and loaded into memory.

When a method is called for the first time, the CLR passes control to the JIT com-
piler, which converts the MSIL for that method into native code and modifies the
code state to point directly to the generated native code. Subsequent calls to the JIT-
compiled method, therefore, proceed directly to the native code.

Section 8.4 mentions a number of these overheads in comparing the performance
of executed codes by Microsoft .NET and MONO .NET Frameworks with Parvicursor.
NET Framework.

Figure 8.2 portrays the four-layer architecture of the Parvicursor.NET Framework.
As implicitly shown in this framework, only native C/C++ codes are compiled and
after linking with the Parvicursor.NET Framework, which implements CLI classes and

Figure 8.1 The Microsoft .NET Framework architecture.

Figure 8.2 The Parvicursor.NET Framework architecture.

Parvicursor.NET Framework ◾ 241

profiles, an executable image file is executed by the operating system. Also, there is
no additional layer and no overhead on applications that make use of the framework.

The number of layers with respect to the .NET Framework is seven and it is four
for the Parvicursor.NET Framework. Layer 1 of the Parvicursor.NET Framework has
replaced layers 1–4 of the .NET Framework. The comparison of Figures 8.1 and 8.2
together show that the native runtime within the Parvicursor.NET Framework super-
sedes the .NET Framework’s CLR.

Architecturally, the primary differences between the Parvicursor.NET Framework
layout system and the Microsoft .NET Platform are the lack of distinction between core
and framework and the execution runtime (native runtime for Parvicursor.NET versus
virtual machine nature for Microsoft .NET); the three-layer architecture including the
CLS, Managed Code, and CLR, as shown in Figure 8.1, has high-performance costs
which are deemed excessive for server-based applications and HPC environments.

Furthermore, since the application of Parvicursor.NET Framework is part of low-
level operating system services, the interoperability and product lifecycle scenarios
are generally simplified compared to those of desktop applications, so the benefits
of the layer separation are minimal.

In this section, we examine a practical example as an attempt to describe how
porting the Microsoft .NET Framework classes written in C# language into native
code through the standard C++ for Parvicursor.NET Framework is achieved. At the
end, we point out a lot of technical points for developers targeting the Parvicursor
platform in porting their applications from C# to native C++.

Figure 8.3 illustrates the Socket class prototype in System.Net.Sockets
namespace from profiles and libraries of the CLI standard written in C# language.

.NET Platform Invoke Technology [9] has been used to implement the main meth-
ods of this class in the existing implementations such as Microsoft .NET [10], Shared
Source Common Language Infrastructure (SSCLI) [11], MONO .NET [12], DotGNU
[13], and the Portable .NET [14]. As seen in this sample, the DllImport attribute has
taken benefit of the .NET P/Invoke.

.NET Platform Invoke technology is built right into the CLR runtime to enable
managed programs (i.e., the CLI runtime) to invoke ordinary dynamically linked
unmanaged code (.dll files in Windows and .so files in Unix-class style operating
systems such as Linux and Solaris). It is logically equivalent to a DLL or SO in native
C++ for routines exported and annotated by delclsspec(dllexport). The result
of linking against an ordinary DLL or SO in the Microsoft C++ compiler or GNU GCC
C++ compiler is an executable that inserts small proxy stubs which, when invoked,
redirect to the actual code at native runtime. P/Invoke is very similar, except that
the CLR is responsible for loading, binding, and making necessary transformations
between data types whilst a function is called. As is the case with pure unmanaged
code (i.e., the native runtime), the operating system will share code with multiple
processes accessing that DLL or SO simultaneously.

When working with unmanaged code, whether it is a native system function or
native libraries in C++, there is a type system gap that must be bridged. For instance,
a string to the .NET Framework is not the same as a string in C++. Marshalling per-
forms transformations to bits such that data instances can be used on both sides of
the runtimes (managed runtime against unmanaged runtime). This operation may be
a simple bit-for-bit copy from the managed to unmanaged runtime and vice versa,

242 ◾ Implementing Parallel and Distributed Systems

but just as well might involve a complete reorganisation of the contents of a data
structure as the copy occurs. This translation adds extra overheads. Hence, the mar-
shalling mechanism can be very expensive; it can add tens of native instructions per
argument for even simple native function calls.

Along with these overheads imposed by P/Invoke as mentioned at the begin-
ning of this section, the various .NET layers, especially the VES, pose another heavy
overhead on the programs developed atop CLI. As seen in Figure 8.4, the socket()
native function is called through P/Invoke from a DLL named Ws2_32.dll, which
implements the native WinSock system routines.

Figure 8.4 shows an implementation example of the CLI profiles and libraries in
native C++ for the Parvicursor.NET platform. The fundamental differences between
Microsoft .NET Framework and Parvicursor.NET Framework can be understood by
the structural comparison of Figures 8.3 and 8.4. As derived from Figure 8.4, the
architectural structure of the Parvicursor.NET Framework makes use of the standard
C++ for the sake of implementing available classes in CLI. The main idea behind
this approach is inspired by the structural similarities between two C++ and C#
languages, and this process can provide an integrated flow easily to port the .NET-
based DotGrid Platform into native code in addition to creating a new and native
object-oriented framework to develop high-performance applications relying on the
concept of .NET technologies.

Figure 8.3 .NET C# CLI class implementation sample.

using System;
using System.Collections;
using System.Net;
using System.Runtime.InteropServices;

namespace System.Net.Sockets
{
 /* .NET Platform Invoke */
 [DllImport("Ws2_32.dll", SetLastError= true)]
 static extern int socket(int af, int type, int protocol);

public class Socket : Object
 {

private int sock;
public Socket(AddressFamily addressFamily, SocketType socketType,

 ProtocolType protocolType)
 {

/* through .NET Paltform Invoke*/
this .sock = socket(addressFamily, socketType, protocolType);
//...

 }
public Socket Accept();
public void Bind(EndPoint localEP);
public void Close();
public void Connect(EndPoint remoteEP);
public void Listen(int backlog);
public int Receive(byte [] buffer, int offset, int size, SocketFlags socketFlags);
public static void Select(IList checkRead, IList checkWrite, IList checkError,

int microSeconds);
public int Send(byte [] buffer, int offset, int size, SocketFlags socketFlags);
public void Shutdown(SocketShutdown how);
public AddressFamily AddressFamily { get ; }
public bool Connected { get ; }
public IntPtr Handle { get ; }
public ProtocolType ProtocolType { get ; }
public SocketType SocketType { get ; }

 }
}

Parvicursor.NET Framework ◾ 243

As the comparison of the two figures tells us, we have tried to use the syntax simi-
larities between C# and C++ languages as much as possible so that the implemented
C++ codes become close to the C# codes and the defining features of the classes,
methods, and the functional state of the CLI libraries are preserved.

The prototypes defined in the Parvicursor.NET Framework and their implementa-
tion architecture can present a new and novel solution to standardise the CLI and
.NET Framework in the standard C++ level as a cross-platform and portable software
framework, of course with the unique feature of being native, for heterogeneous
platforms. To further clarify features in the context of Parvicursor.NET Framework,
we explore the efforts of Microsoft Corporation to standardise CLI in C++ since 2000.

On 13 February 2002, Microsoft released the first version of the .NET Framework.
In this regard, Managed Extensions for C++, or in a more accurate phrase Managed
C++, was born. Managed C++, by introducing a series of new keywords, syntaxes,
pragmas, preprocessor directives, and attributes, announced the C++ language as
an infrastructural development environment with performance somewhat more
improved than the C# language to develop .NET Framework and to achieve the exe-
cution of managed codes alongside the native machine target codes within the CLR.

Figure 8.4 Native and cross-platform CLI C++ Parvicursor.NET class implementation sample.

using namespace System;
using namespace System::Collections;
using namespace System::Net;

#if defined WIN32 || WIN64
#include <winsock2.h>
#pragma comment (lib , "ws2_32.lib")
#pragma comment (lib , "Mswsock.lib")
#else
#include <sys/socket.h>
#endif

namespace System
{
namespace Net
{
namespace Sockets
{

// native CLI C++ Socket Class Implementation
class Socket : public Object
{

private: int sock;
public : Socket(AddressFamily addressFamily, SocketType socketType,

 ProtocolType protocolType)
{

/* through native WinSock (for Windows)
or Berkeley Socket (for Linux) call */

this ->sock = socket(addressFamily, socketType, protocolType);
//...

}
public : ~Socket();
public : Socket *Accept() const ;
public : void Bind(IPEndPoint &localEP);
public : void Connect(IPEndPoint &remoteEP);
public : void Close();
public : void Listen(int backlog);
public : int Receive(char buffer[], int offset, int size, SocketFlags socketFlags);
public : static void Select(ArrayList &checkRead, ArrayList &checkWrite,

 ArrayList &checkError, int microSeconds);
public : int Send(const char buffer[], int offset, int size, SocketFlags socketFlags);
public : void Shutdown(SocketShutdown how);
public : AddressFamily get_AddressFamily() const ;
public : bool get_Connected() const ;
public : int get_Handle() const ;
public : ProtocolType get_ProtocolType() const ;
public : SocketType get_SocketType() const ;

};
}
}
}

244 ◾ Implementing Parallel and Distributed Systems

But in general, Managed C++ code (MSIL) is faster or more efficient than code
(MSIL) compiled by using the C# compiler.

Because the Managed C++ used a few keywords to preserve the simplicity and the
main syntax of standard C++, it produced problems for programmers who wanted to
develop their programs based upon C++ demanding .NET Framework. The following
major issues can be pointed out:

 1. Code development dependent on the C++ imposed more time spend than other
.NET Framework languages for developers, a problem that could have been
caused by new keywords, and syntax changes of the Managed C++ language
than the standard C++.

 2. Although one of the unique features of Managed C++ is the ability to use
unmanaged system APIs within managed codes, once again data marshalling
is performed automatically by the CLR, and the overheads originating from the
multi-layered abstraction of the .NET Framework and P/Invoke remain intact.

 3. Multiple inheritances were not supported in Managed C++. The problem was
chiefly because a class managed by Garbage Collector (GC) related to CLR could
not inherit from more than one class.

 4. One other disadvantage of using Managed C++ was that the assembly written in
Managed C++ could not utilize the verification mechanisms of .NET security, so
it was required to run in a trusted environment.

 5. Managed C++ was the first attempt by Microsoft and did not allow a standard
implementation on other platforms. So, it did not support generic programming
via templates.

To fix up some problems mentioned above, Microsoft introduced the ECMA-372 stan-
dard referred to as the term C++/CLI in the year 2005 [8]. C++/CLI can be thought of
as a language within a language.

In fact, C++/CLI is a set of extensions to the standard ISO C++ that provides a
complete “binding” of the C++ language to the CLI. Although C++/CLI demonstrates
all the CLI features in C++ and even though C++/CLI is coherent and easier to under-
stand than its predecessor Managed C++, but C++/CLI with the introduction of many
new structures (the CLI features like interfaces, properties, generics, pointers, inheri-
tance, enumeration, etc.) makes itself to become very far from the standard C++.
Table 8.1 shows the most important keywords introduced in C++/CLI (the notation ░
is equivalent to space over there). A full description of these keywords is beyond the
scope of this context (more information can be found in [8]).

Because C++/CLI akin to Managed C++ executes on the VES, it exposes the same
overheads stated in this subsection on developed applications. Standard C++ over
the past decades has been famous as a sophisticated language for learning and
using properly. Although Microsoft is attempting to register the C++/CLI as an ISO/

Table 8.1 Some New C++/CLI Keywords

abstract delegate event finally generic in initonly internal literal override property sealed where
enum░class enum░struct for░each gcnew interface░class interface░struct nullptr ref░class
ref░struct value░class value░struct #using __cplusplus_cli interior_ptr pin_ptr array …

Parvicursor.NET Framework ◾ 245

IEC standard, but it is necessary nothing that the complexity of the C++ language is
increased by more than 60% if this standardisation happens (however, the newer ver-
sions of CLI like Microsoft .NET Framework 4 could increase greatly this percentage
due to creating new structural complications).

In addition, the C++/CLI is merely supported as platform-specific presently by
Microsoft VC++ on Windows operating system and no version has been provided for
other platforms since 2005 yet. The fact absolutely fails the application of C++/CLI
as a standard platform to develop portable programs and makes most programmers
develop their applications based on native C++ language and standard cross-platform
libraries (such as C++ STL and Boost) to maintain code portability.

Figures 8.5–8.7 represent an example of evolution from managed C++ and C++/
CLI to Parvicursor.NET CLI C++. By conceptual comparison of these three figures,
the reader familiar with C++ language can deduce the essential differences between
Parvicursor.NET Framework and Managed C++ and C++/CLI. As seen in these three
figures, all of them promote a single operation unit from the operating system’s point
of view. Figure 8.5 to medium and Figure 8.7 to a large extent are closer to the exist-
ing structures in the C# language. Whilst Figure 8.6 is expressing the fact that C++/
CLI language has created a new language in the heart of standard C++. In Figures
8.5 and 8.6, the .NET CLR execution environment has been used by importing the
managed mscorlib.dll library, as in Figure 8.7 the same functionality is achieved
by importing the native ParvicursorLib.lib library within the Parvicursor.NET
Framework but the compiled and linked codes by the ParvicursorLib.lib take
advantage of pure native runtime to execute.

As Figure 8.7 recounts, we can construct a framework by employing standard
C++ language in which a simple, flexible, highly extensible, high-performance, and
cross-platform environment, in addition to preserving the features of C++ language,
is provided for CLI standard.

Figure 8.5 Managed extensions for C++ sample.

// Managed extensions for C++
#using <mscorlib.dll>
using namespace System::Collections;
__gc class referencetype
{
protected:

String* stringVar;
int intArr __gc[];
ArrayList* doubleList;

public:
referencetype(String* str, int* pointer, int number)
{

doubleList = new ArrayList();
System::Console::WriteLine(str->Trim() + number.ToString());

}
~referencetype();

};

246 ◾ Implementing Parallel and Distributed Systems

Figure 8.7 Native Parvicursor.NET CLI C++ sample.

// Native Parvicursor.NET CLI C++
#include <Parvicursor.h>
#pragma comment(lib, "ParvicursorLib.lib")
using namespace System;
using namespace System::Collections;
class referencetype : public Object
{
protected:

String* stringVar;
int intArr [];
ArrayList* doubleList;

public:
referencetype(String* str, int* pointer, Int32 number)
{

doubleList = new ArrayList();
Console::WriteLine(str->Trim() + number.ToString());
// or
cout << str->Trim() << number << endl;

}
~referencetype()
{

if(doubleList != null)
delete doubleList;

doubleList = null;
}

};

Figure 8.6 C++/CLI sample.

// C++/CLI
#using <mscorlib.dll>
using namespace System::Collections::Generic;
ref class referencetype // : IDisposable (this is added by the compiler)
{
protected:
 String^ stringVar;

array<int>^ intArr;
 List<double>^ doubleList;
public:
 referencetype(String^ str, int* pointer, int number)
 {
 doubleList = gcnew List<double>();
 System::Console::WriteLine(str->Trim() + number);
 }
 ~referencetype();

/* (deterministic) destructor
 (turned into IDisposable.Dispose() by the compiler) */

protected:
 !referencetype();

/* finalizer (non-deterministic destructor)
 (former destructor syntax => virtual void Finalize()) */

};

Parvicursor.NET Framework ◾ 247

One of our challenges in the design and implementation of the Parvicursor.NET
Framework was the adaptation between the linguistic structures of standard C++ and
the architecture of CLI standard. Thus, a standardised framework could be built from
the aspects of prototyping, declaration and how to use it, in which their users could
implement their programs with spending minimal time and cost and prevent learning
new concepts and confusion.

Furthermore, it is worth noting that, after the implementation of the Parvicursor.
NET Framework whilst porting the DotGrid Platform into native code, we found out
that the Parvicursor.NET Framework’s architecture can become a suitable infrastructure
for developers who want to create their object-oriented application programs on top
of the native framework, and even for people who have not had familiarity or worked
with .NET technologies. This is due to the unique features of CLI and this reason that
CLI is the result of extensive research by several companies including Microsoft, Intel,
Hewlett-Parked, and many groups in the industry and academia sectors.

Table 8.2 distinguishes between the C# language (versions 1 and 2), the standard
C++ and Parvicursor.NET CLI C++ Framework. The mapping forms a preliminary

Table 8.2 Mapping Between C# and Standard C++/Parvicursor.NET CLI C++ Framework

C# 1 & 2 Standard C++/Parvicursor.
NET CLI C++ Framework

No included file is needed. Reference to a class in another file of a project
requires an included file.

No .LIB file needed.Add a reference
to the DLL in the build(example: csc
/r:external.dll helloworld.cs)

Reference to a class in an external DLL requires
an include file and the DLL’s ParvicursorLib.LIB
and other .LIB file passed to the linker.

No declspec or .DEF file.Public symbols
are exported, private/protected are
not.“internal” symbols are only available
within the module.

Exported symbols must use declspec or .DEF file.

Forward declaration not needed.
Declaration order is insignificant.

Referencing a class/structure before it is declared
requires forward declaration.

Unicode is the native string format. ASCII and Unicode are the native string format
provided by Parvicursor.NET Framework.

null is a keyword. It is not equivalent to 0. null is a concept, not part of the language. It is
typically defined as 0 and thus is the equivalent of 0.

All C# types can accept null as a value

 • For type T with null support, use type T?
 • For example, int with null support is int?

Basic data types (int, float, char, etc.) cannot
accept a “null” value. Only pointers can have a
“null” value.

foreach keyword for iterating over a
collection.

No direct support for “foreach”.

try-catch-finally support.finally is always
called, regardless of exception or not.

Support for try and catch. Support fully for
“finally” is emulated with catch(…) structure
with help of Parvicursor.NET exception handling
classes.

(Continued)

248 ◾ Implementing Parallel and Distributed Systems

C# 1 & 2 Standard C++/Parvicursor.
NET CLI C++ Framework

Using checked/unchecked you can get
overflow or exception thrown behaviour.

Overflow or thrown exception behaviour
is handled by underlying Parvicursor.NET
exception class handling like Exception,
OverFlowException, etc classes.

lock keyword for critical sections Native support for critical sections provided by
mutex libraries.

a break is required (to prevent bugs from
accidentally forgetting to add a break)

For switch statements, a break is optional.

XML documentation via “///”- prefixed
comment. Used by IntelliSense in Visual
Studio

Fully documented by Parvicursor.NET Framework.

Partial classes allow breaking up a source
file (useful when multiple people are
working on a class or when part of a class
is auto-generated)

Cannot split the definition of a class across
multiple files.

Can mix library versions without breaking
existing code.

No support for mixing versions of libraries.

Garbage collection:

 • No memory leaks
 • Cannot read uninitialised variables
 • Cannot index past array boundaries

The developer must manage the deletion of
memory and potential issues from reading/
writing to invalid memory. The garbage collector
was not initially designed for Parvicursor.NET
Framework to keep optimum code execution
performance and no extra runtime overhead.
We will plan to provide a native and high-
performance GC library to future Parvicursor.NET
releases that will not be enabled by default.

All types are derived from the base “object.” All types are derived from the base “object.”

C# has a ref keyword to support
reference types.

C++ natively supports reference types by & and *
operators.

C# natively provides basic data types like
int, string, float, long, Array, etc.

Parvicursor.NET Framework in more conformance
with CLI standards in native C++ only provides
a solid basic data type system like Int32, String,
Float, Int64, ArrayList, etc.

Cross-platform and interoperability
features are supported by various C#
CLI implementations like Microsoft.NET
and MONO.NET for different operating
systems.

Cross-platform and interoperability features are
supported natively based on a unified standard
C++ library implementing the CLI standard and
compiled for most of the current operating
systems by Parvicursor.NET Framework.

Strong support for .NET Framework
Standard Class Library.

Strong support for CLI Parvicursor.NET
Framework Standard Class Library.

Table 8.2 (Continued) Mapping Between C# and Standard C++/Parvicursor.NET CLI C++
Framework

Parvicursor.NET Framework ◾ 249

attitude for C# and C++ developers on how the new Parvicursor.NET Framework,
with the enormous similarities of C# and standard C++ languages, gives them the
necessary tools to program high-performance applications in native code.

Cross-platform (multi-platform) and performance issues are the two important top-
ics to design software components and create underlying libraries and frameworks,
by which different applications are developed. This is also true and even possesses
more importance about Parvicursor.NET Framework, since this platform has primar-
ily been designed for HPC/distributed environments and server programs that have
critical requirements. Of course, these two factors can give rise to a trade-off between
choosing the proper implementation anatomy in different structures to maintain both
of them. For instance, the development of an application founded on C# language and
the CLI virtual machine may choose the portability trade-off in favour of preserving
the cross-platform property as distinct from the performance issue.

The present-day implementation of Parvicursor.NET Framework enjoys simulta-
neously balancing these two principles in context, not as a trade-off from the CLI
standard. Figure 8.8 illustrates an overall view of a small subset of the Parvicursor.
NET Base Class Library (PBCL) hierarchy.

Figure 8.8 A small subset of the Parvicursor.NET base class library hierarchy.

250 ◾ Implementing Parallel and Distributed Systems

To satisfy the feature of being a cross-platform framework, Parvicursor.NET should
have allowed the developed applications to execute on most computer architectures
and operating systems. To achieve this key goal in the design of the Parvicursor.NET
platform at the lowest level to implement the native C++ base class library hierarchy
shown in Figure 8.8, three sets of standards were used: Win32/Win64 APIs, POSIX
APIs and ANSI C Libraries (with ISO/IEC 9899 Libraries). These standards provide
necessary APIs that enable the Parvicursor.NET Framework to execute on existing
heterogeneous platforms. Because of using these three standard sets, which have
been developed for a dozen operating systems, in the Parvicursor.NET implementa-
tion, so much of the time devoted to programming the Parvicursor platform was to
build a cross-platform infrastructure incredibly in compliance with the standard CLI
profiles and libraries.

Using these three standards at the lowest-level layer of Parvicursor.NET Framework
implicitly reveals that we have not employed standard or cross-platform C++ librar-
ies to keep the execution runtime performance at the level of native code. There are
such libraries, including Boost and C++ Standard Library.

These libraries developed based on the C++ language can have negative effects on
performance from two aspects. First, they are implemented by different developers
for a wide variety of operating systems; second, they are available as template-based
libraries.

Templates introduce the concept of generic programming. Generic programming
is a data structure-independent way of developing and delivering algorithms that
need not be bound to a specific object. Templates have negative pitfalls that are not
widely researched. Following are the chief issues concerned with C++ templates:

 1. Because of their relative newness and lack of compatibility with cross-platform
environments, they should not be used in cross-platform development.

 2. Since the compiler generates additional codes for each template type, the use
of templates can lead to larger executables, exposing overheads and consum-
ing more OS resources. Furthermore, for portable devices such as smartphones,
using templates must be avoided, because of the concern for generated code
size (small amount of RAM and disc space).

 3. Complex C++ STL containers make debugging much more difficult in practice.
 4. The C++ Standard Library based on templates embodies good algorithms with

a significant number of services. However, their general applicability means
that such libraries are not optimised for any given application. Hence, one can
achieve better runtime, and often better compile-time, performance, with their
own custom library.

With these points, obviously, the chief reasons not to make use of these standards
and libraries in the Parvicursor.NET Framework are to avoid the portability problem
and to achieve the performance of native code.

In the development of the Parvicursor.NET Framework, we have tried our best to
benefit from linguistic constructs available in the standard C++ language to imple-
ment the classes and libraries of the platform; and, finally, when accessing facilities
provided by the underlying operating system is required, the three sets of standard
APIs shown in Figure 8.8 are used. This leads to more cross-platform and performance

Parvicursor.NET Framework ◾ 251

features. For example, in implementing all the methods of String class and all the
classes within the System::Collections namespace from the CLI standard, the
keywords, the concept of link lists, and structures of C++ language have been used.

From the most significant classes in Figure 8.8, which have key roles in the
Parvicursor platform and for building server and distributed programs, we can note
Socket, FileStream, and Thread. To keep the performance parameter in mind
during the implementation of the Parvicursor.NET Framework’s classes, we have
always tried to make use of low-level system functions at the time when accessing
hardware functionality through OS APIs. Let’s say that Figure 8.9 depicts the layered
model of FileStream class implementation within the Parvicursor.NET Framework.

In this figure, processes A and B can easily access low-level file I/O opera-
tions through the FileStream class from a high-level perspective. To use maxi-
mal efficiency, the Parvicursor employs three major components: C Runtime Library,
Parvicursor Disc Buffers, and Parvicursor Zero-Copy Functions. The main interface
used in the FileStream class is the C runtime unbuffered family of APIs [open(),
and so forth] that are supported on all platforms.

These functions invoke the operating system directly for lower-level operations
than those provided by ANCI C stream I/O, other native libraries, or OS-specific APIs.
Low-level input and output calls do not buffer or format data.

The buffering operation is directly handled by Parvicursor.NET Framework at a
higher level if the application requests it from the FileStream class. In the design
of this class to eliminate the two layers of C Runtime Library and OS Caches, which
diminish drastically the performance and disc I/O throughput (because of excessive
system calls and the buffering of Disc Controller Hardware Cache in OS Caches), the
Parvicursor.NET Framework transparently in a platform-specific fashion serves zero-
copy functions directly to move the content of Parvicursor Disc Buffers into Disc
Controller Hardware Cache for xDFS protocol. This technique significantly improves
the throughput and performance as a whole.

Another example of the Parvicursor classes’ low-level and cross-platform imple-
mentation is the Thread class located at the System::Threading namespace. As
shown in Figure 8.8, the POSIX Threads in Unix-like operating systems and its equiv-
alent in Windows platform through a dynamic link library called pthread.dll are
used to implement the Thread class. Open-source POSIX Threads for Windows pro-
vide a high-quality solution to currently implementing a large subset of the POSIX
standard threads-related API.

Figure 8.9 The layered model of Parvicursor.NET’s FileStream class implementation.

252 ◾ Implementing Parallel and Distributed Systems

The head advantages of the Parvicursor.NET Framework can be summarised as
follows:

 1. To create a standard, cross-platform, portable infrastructure grounded upon
the CLI standard and to develop the next-generation paradigms of distributed
systems for scientific and enterprise communities (indeed, porting the DotGrid
project into native code is the proof-of-concept of this aim as a typical prototype
through the state-of-the-art platform).

 2. To build a native, object-oriented platform in C++ and to ignore the complexi-
ties of the multi-layer abstractions in the .NET Framework for developing critical
applications in the area of high-performance computing and distributed sys-
tems on behalf of performance improvements at the native code level or even
the kernel. Moreover, to reduce the total system resource usage such as CPU
and RAM by contrast to the Microsoft .NET Framework’s virtual machine.

 3. The most superior advantage over Parvicursor.NET Framework is to supply an
integrated process to port the C# codes of the DotGrid platform into native code
that relied on C++. In this way, with the direct porting DotGrid platform to native
code, the performance of native machine code will considerably contribute to
the execution speed of algorithms that had been implemented in DotGrid. Also,
having fully ported the DotGrid platform and due to being Parvicursor as native
and cross-platform, this new platform can be executed as part of the operating
system services and provide manifold services to its upper layers.

 4. To resolve the problems in Managed C++ and C++/CLI, and to create an inte-
grated platform seamlessly close to the C# language and CLI standard for
programmers interested in .NET technology and language to develop their
applications as portable identical to conventional C++ programming. To help
those who are familiar with C# and .NET Framework, one can make use of
the Parvicursor.NET Framework and common benefits between C# and C++ to
increase their programs’ efficiency.

8.4 The Compilation and Loading Process of .NET-CLI-Based
Application Programs

In this section, we study the compilation and loading process of .NET-based applica-
tions and accurately examine overheads due to using the .NET Framework within
them. Figure 8.10 illustrates the compilation and loading process stages of a .NET-
based collection of source codes. A collection of X language source codes can be
converted into managed modules (CIL: Common Intermediate Language and meta-
data) through the X language compiler. CIL is the lowest-level programming language
that is defined by CLI. CIL is an object-oriented and stack-based assembly language.
The managed module is a standard Portable Executable (PE) file, which requires
Common Language Runtime (CLR) to execute. Having translated the source code
files and created different separate managed modules, these modules at stage 4 are
synthesised and turned into an assembly. A managed executable file consists of five
parts that are shown in stage 5. At the time when linking an assembly, specific infor-
mation is added to the PE Header file and .txt Section. When an executable file
is invoked, this information causes the CLR to load and initialise. When creating an

Parvicursor.NET Framework ◾ 253

executable assembly, the linker adds the jmp _CorExeMain routine stub imported
from MsCorEE.dll dynamic-link library.

The primary thread for the created process executes this routine stub and quickly
jumps to the _CorExeMain function. _CorExeMain initialises the CLR and searches
the CLR Header so that it determines what entry point method must be executed.
The CIL code for that method is compiled into native CPU instructions, and, finally,
the CLR jumps to the native code. This compilation process is carried out by the JIT
compiler as detailed in stage 8 of Figure 8.10. The _CorDllMain function is loaded
onto memory through the system function calls of LoadLibrary() in Windows
and dlopen() in Unix-class operating systems. As seen, several complex stages
must be passed for transforming a CLI-based set of source codes into native code.
These additional heavyweight layers can expose extra overheads upon application
programs to convert a .NET-based source code into native machine code. However,
we can divide the major overheads concerned with the use of CLR and the CLI stan-
dard into four classifications, including, Ahead Of Time (AOT) and JIT compilations,
cross-mode execution switches (C++/CLI managed/unmanaged interop transitions),
platform invocation services, and .NET memory footprint.

Figure 8.10 Compilation and loading process stages of a .NET-based collection of source codes.

254 ◾ Implementing Parallel and Distributed Systems

8.4.1 AOT and JIT Compilations

The CLR itself just executes native machine code. If a method is composed of CLI, it
must first be converted to machine code prior to invocation. There are two strategies.
First, to postpone the translation until the component is loaded into memory; this
method is called Just-In-Time (JIT) compilation. In the latter, CIL is fully compiled
into a system-independent binary file; the term Ahead-Of-Time (AOT) compilation is
referred to in this method. Although the AOT may seem very interesting, but it has
its own downsides. Because all assemblies that reference a managed executable file
must be compiled and placed into a single file as a cache image, this reason makes
the native code corresponding to CIL get very large. Spanning all methods’ imple-
mentation increases in-memory code size, which leads to some critical issues such as
memory fragmentation, CLR code pitching, and memory footprint; some of them will
be discussed in Section 8.4.

At the same time, as the JIT compiles a method, the CLR has to load any type that
the method is using as parameters or local variables. The CLR allocates an in-memory
data structure, which is a method table, for any type that is initialised by the CLR.
Figure 8.11 depicts a typical scenario of what a JIT compiler performs. This example
simply emulates the behaviour of an Arithmetic Logic Unit (ALU) hardware described
in the CIL class.

Those codes that haven’t been yet translated are forwarded to the JIT compiler
to be compiled through executing the machine call instruction. The control of the
method that has been previously compiled by the JIT is simply passed to the native
code via the jmp instruction. The frequent inevitable invocations of this instruction
can lead to critical performance degradation, particularly in server environments
where memory fragmentation occurs widely. This jump can also provoke control
hazards (branch hazards) within the instruction pipeline in CPU microarchitectures;
especially it can disorder the work of the branch predictor unit. A branch predictor
is a digital Integrated Circuit (IC) that attempts to guess which way a branch will go

Figure 8.11 A typical ×86 JIT-compilation scenario for a CIL class.

Parvicursor.NET Framework ◾ 255

before this is known for sure. The purpose of the branch predictor is to improve the
flow in the instruction pipeline. Branch predictors are crucial in today’s pipelined
microprocessor architectures for achieving high performance.

These conditions, particularly for long jumps by the jmp instruction, get more
obvious meanings through virtual memory. For example, in the implementation of
the DotDFS protocol [1] on top of the .NET Framework, the native instructions like
recv() and read() must pass periodically this extra jmp. This critical phenomenon
indicates that .NET virtual machine is not a good candidate platform for developing
server applications and distributed systems. A more comprehensive review of over-
heads posed by JIT is outside the theme of this chapter (e.g., overheads due to CLI
interfaces, delegates, and virtual methods).

8.4.2 Cross-Mode Execution Switches (C++/CLI Managed/Unmanaged
Interop Transitions)

Almost all runtimes, particularly virtual execution environments, provide interfaces
to be integrated with libraries based on system routines written/emitted in assem-
bly/machine language or C language through an additional layer such as P/Invoke
and Java Native Interface. However, these extra layers contain costs. Without excep-
tion, the transition from managed to native C runtime causes nontrivial performance
costs. Due to this classification, the CLR supports two modes of execution: managed
mode and unmanaged mode. In managed mode, the CLR can inspect the stack frame
(activation record) of every thread of control (such as parameters and local vari-
ables). In unmanaged mode, the CLR has no control over the code that is executed in
the native C runtime. The mode of execution can be changed relying on a method’s
invocation.

C++/CLI language is an enabling technology that is accounted as a connecting
interface of the standard C++ language with CLI to provide direct access to the under-
lying operating system APIs in managed code [8]. In C++/CLI, every method can be
marked as managed or unmanaged via the metadata. Because CLR controls method
prologs and epilogs for managed methods, it can easily traverse managed regions
of the call stack, which is often achieved by the CPU’s ebp (extended base pointer)
register. The ebp register is used to point to the beginning of the activation record
and sometimes is also called a stack pointer. A stack frame is a contiguous area of the
process stack that is used to store local variables, parameters, return addresses, and
temporary variables in the callee. The design of a frame layout usually requires spe-
cific features of an Instruction Set Architecture (ISA) and the high-level programming
language compiled to it. However, a standard layout is usually used to take benefit
of the maximum interoperability with cross-calls amongst different languages imple-
menting the runtime functions (e.g., see Figure 8.12(b)). Stack pointers, according
to this discussion, are employed to generate the backtrace stack in debuggers. The
use of frame pointers in natively compiled code can have crucial performance costs
at runtime, particularly for CPU-bound and server applications. That is why native
language compilers remove the debugging information and emit the code without
them in release or optimisation mode. One of the clear reasons for this optimisation
is that the ebp register as a general-purpose register remains ready to be accessed
for the rest of the code’s execution flow. Therefore, using the ebp register for tracing

256 ◾ Implementing Parallel and Distributed Systems

can lead to critical performance pressures. Figure 8.12 portrays different layouts of
x86 stack frames for CLR (managed methods) and native C runtime.

Cross-mode and heterogeneous invocations are not very simple mechanisms.
Cross-mode invocation occurs when a managed method calls an unmanaged method
(and vice versa). The emitted code for cross-mode invocations is significantly dif-
ferent in comparison with the same-mode calls. The cross-mode invocations are
important to achieve low-level operating system functionalities. The cross-mode calls
require additional work to distinguish between the changes in execution structure. In
this state, the caller has to push some information onto the stack to specify the start
of a new chain of stack frames. CLR divides the stack frame into several chains. Every
chain indicates a series of same-mode calls. When the JIT compiler translates a cross-
mode call, it emits additional code that pushes a transition frame onto the stack. After
the transition frame is pushed onto the stack, the caller subsequently constitutes a
normal stack frame that is expected by the target method. This gives rise to creating
the stack frames for a cross-mode invocation, one for each mode.

The CLR’s actual layout is the synthesis of Figures 8.12(a) and (b) for cross-mode
execution switches. After the stack is prepared for the target cross-mode method, the
execution state of the current thread is adjusted to reflect the change in the mode of
execution. Besides, a flag bit must be changed in thread-local storage that indicates
which execution mode the thread is currently executing in. After the thread state is
prepared, the jump to the target method’s body is done. When the target method
returns, it returns the main transition code that resets the thread state and pops the

Figure 8.12 Different layouts of ×86 stack frames: (a) The CLR activation record layout and (b)
the native C activation record layout.

Parvicursor.NET Framework ◾ 257

transition frame from the stack. For invocations with simple method signatures, the
overall cost of making these transitions are at least 32 processor instructions. Since
the cross-mode calls require setting up a second stack frame after the transition
frame, the cost of cross-mode calls depends on the number and types of parameters
passed to the method. The more the number of parameters makes, the more transi-
tion costs.

As a final result, we can easily conclude that the overheads due to cross-mode
execution switches in accessing to operating system’s APIs, which are inevitable, can
get server systems underutilised and overloaded in highly concurrent environments.
In the Windows family of operating systems that C++/CLI is supported, Microsoft has
implemented most of the .NET Base Class Libraries (BCL) in this way. The C++/CLI
does not exist for Linux and Unix with the MONO .NET target. Although using C++/
CLI in Windows can decrease needless context switches and memory requirements
so as to improve the performance, but this way may result in unavoidable phenom-
ena including double thunking and OS loader lock.

8.4.3 Platform Invocation Services (P/Invoke)

P/Invoke is an integral part of the CLI implementation that allows the managed
code to call unmanaged code and vice versa. The .NET Platform Invoke technology
is built right into the CLR runtime to enable managed programs to invoke ordinary
dynamically linked unmanaged code (.dll files in Windows and .so files in Unix-like
operating systems such as Linux and Solaris). It is the logical equivalent to a DLL or
SO in native C++ for routines exported annotated by delclsspec(dllexport).
The result of linking against an ordinary DLL or SO in the Microsoft C++ compiler or
GNU GCC C++ compiler is an executable that inserts small proxy stubs which, when
invoked, redirect to the actual code at native runtime. P/Invoke is very similar, except
that the CLR is responsible for loading, binding, and making necessary transforma-
tions between data types as a function is called. As is the case with pure unmanaged
code, the operating system will share code with multiple processes accessing that
DLL or so simultaneously. The indirection to the native code is performed by the CIL
calli instruction with a P/Invoke target.

P/Invoke is indeed a superset of the managed and unmanaged transitions dis-
cussed in Section 8.4.2. P/Invoke accommodates a collection of type conversion
facilities to deal with the inherent differences between the legacy C dynamic (shared)
linked libraries and CLR. In addition to implementing the change in the execution
mode explored in Section 8.4.2, P/Invoke provides transformations called marshal-
ling to match between managed and unmanaged modes. Each transition from man-
aged to unmanaged code remains overhead. The CLR interop layer enjoys the interop
invocation optimisation levels that are grounded on the type of transition and types
of parameters: JIT inlining compiled assembly stubs and interpreted marshalling
stubs. The approximate overhead for a platform invokes call begins at least from
ten machine instructions up. Figure 8.13 presents a P/Invoke scenario in which a
transition from managed code is made to the native libc runtime for native POSIX
sendto() socket function call in Unix-class operating systems. Let’s examine the
steps shown for this example in detail.

258 ◾ Implementing Parallel and Distributed Systems

 1) The CLR loads the POSIX system functions dlopen() and dlsym().
 2) The CLR constructs a DllImport method stub from the signature enfolding the

target address.
 3) Pushing the callee’s saved registers.
 4) Setting up a DllImport activation record and pushing it onto the stack frames.
 5) Should a temporary chunk of memory has already been allocated, the CLR

initialises a clean-up list for quick freeing at the time when the invocation
completes.

 6) Marshalling parameters. When working with unmanaged code, whether it is
a native system function or native libraries in C++, there is a type system gap
that must be bridged. For instance, a string to .NET Framework is not the same

Figure 8.13 A complete .NET P/Invoke sample atop Unix-style operating systems.

Parvicursor.NET Framework ◾ 259

thing as a string in C++. Marshalling performs the conversions to the bits so
that data instances can be used on both runtime sides. Interop marshalling gov-
erns how data is passed in method arguments and the return values between
managed and unmanaged memory during calls. Marshalling is a runtime activ-
ity performed by the CLR’s marshalling service. Marshalling may be a simple
bit-for-bit copy from one runtime to another, but just as well might involve a
full reorganisation of the contents of a data structure whilst the copy occurs.
For simple types, such as integers and floating-point numbers, marshalling is a
bitwise-copy (“blitting”), just as would be the case for unmanaged code. This
mechanism can add tens of machine instructions per argument even for simple
unmanaged function invocations and contributes dramatically to the exposed
overheads. Marshalling is not a panacea, as marshalling implies frequent data
copies. Marshalling may be problematic because data translation is a complex,
time-consuming process. Alternatively, it may be problematic because it is not
possible to copy the data, as the data is not known or is likely to change.

 7) Changing the .NET Garbage Collection (GC) mode from cooperative to pre-
emptive so that a GC can happen at any time. It is worth here noting some
issues concerned with the .NET GC system. When the garbage is actually col-
lected can be unpredictable, resulting in stalls scattered throughout an appli-
cation domain or the entire VES. Unpredictable CPU stalls, particularly in the
instruction pipeline, can be unacceptable in real-time environments such as
long-running servers and distributed systems. For a garbage collection to hap-
pen, it is important that the threads are in a known state and do not modify the
heap in a way that cannot be tracked by the GC. So typically, all running threads
are suspended, the collection is done, and then the threads are resumed. This
operation can cause a big performance cost (far more than the overheads of
thread-related context switches) and high-latency behaviour in server systems,
for instance the hybrid DotDFS concurrency pattern (HCP) [1]! In addition, a
thread executing unmanaged code can have a reference to a managed object.
But in that case, the object would be alive and pinned. Thus, it would not be
collected anyway. To prevent an unmanaged thread from entering into managed
code, a barrier is used. Fundamentally, the JIT detects the stack frame where the
thread went from managed code to unmanaged. The return address of this stack
frame is pirated and made to point to a stub which suspends the thread.

 8) The CLR loads the target address and invokes it via native function pointers.
 9) If any error occurs, the CLR makes use of the errno global variable, a macro

or an identifier declared with external linkage that contains the last error code
generated in any function using the errno facility, and _sys_errlist array
string to fill the information in a thread abstraction stored in thread-local stor-
age (TLS).

 10) Coming back to cooperative GC mode.
 11) If the native exported function causes any runtime error, CLR throws an appro-

priately managed exception.
 12) If there are not any thrown exceptions, CLR back-propagates out and by-ref

parameters.
 13) In the last step, CLR restores the extended stack pointer (esp) register to its

original value for caller-popped arguments.

260 ◾ Implementing Parallel and Distributed Systems

Under these elaborations, the reader can infer the overheads associated with P/
Invoke. In non-Windows environments, due to the lack of a feasible C++/CLI imple-
mentation, all CLI classes are developed depending upon the P/Invoke standard from
scratch. This fact implies that more critical overheads emerge in executing managed
CLI-based frameworks such as MONO .NET in Unix/POSIX-compliant systems in
contrast to Microsoft’s .NET Framework implementation in Windows.

8.4.4 .NET Memory Footprint

Performance optimisation in one clause can be making the computer programs run
faster. The execution of machine instructions is cheap for modern hardware, whereas
fetching the instruction operands is expensive. Therefore, memory usage can influ-
ence how a program could execute fast, and it is indeed a significant metric to be
optimised. Modern processors have a hierarchy of caches to improve the hardware
cost. The Level-1 (L1) cache is the fastest one, but it is small. The next memory hier-
archies are L2 cache, Random Access Memory (RAM), and hard disc. Managed CLI-
based applications are pretty bloated in terms of memory usage. The main reason
.NET applications have such a huge memory footprint is that the JIT compiler loads
when the application starts, and all that bootstrap code and a ton of the execution
engine and its components are loaded and compiled at start-up and get loaded into
the process. Besides the fact that this takes up processor cycles, it also consumes a
lot of memory. Also, the .NET Framework itself pulls a lot of code as well as that gets
compiled.

Ideally, caches ought to have both short access times and low miss rates to mini-
mise average memory access latency. Power optimisation is also one of the most criti-
cal problems in how designing and using caches. Lower power dissipation means a
longer battery life for mobile devices. Higher power consumption leaves evidence of
heating and reliability issues, which have evolved into a limiting factor in achieving
higher performance. Increasing faults and hot spots are other concerns in the area
of deep submicron and nanometric CMOS transistors. Because of shrinkage in fea-
ture sizes, variation in the fabrication process increases the faulty devices along with
additional latency and leakage power.

This shows how managed .NET platform can result in critical overheads for
increasing the dissipated power at the hardware level, particularly processors and
realistic systems. If hot data paths access more memory, operators need to be fetched
from slower memory. Because slower memory is slow by an order of magnitude,
even low L2 cache misses can cause huge negative performance. In addition to these
on-chip memory footprints, the items discussed in Sections 8.4.1 through 8.4.3 and
.NET code bloat are other factors to increase memory usage. These overheads can
easily disrupt the hardware units of instruction cache, data cache, and Translation
Lookaside Buffer (TLB) cache in server systems. Increasing the number of TLB entries
degrades TLB hit ratio and increases Cycles Per Instruction (CPI).

Furthermore, huge memory usage is another reason to emerge as memory frag-
mentations due to using the managed CLI. For example, because the method locations
cannot be changed in the AOT-generated image after the code is generated, each of
the methods may occupy a different virtual memory page. These memory fragmen-
tations have a substantial downside on the working set of the application program.

Parvicursor.NET Framework ◾ 261

Another critical issue in .NET-based applications is that programs that rely on
the garbage collector often exhibit poor locality (interacting badly with cache and
virtual memory systems), occupy more address space than the program uses at any
one time, and touch otherwise idle pages. These may combine in a phenomenon
referred to as thrashing, in which a program spends more time copying data between
various grades of storage than performing worthwhile work. Moreover, the garbage
collection consumes computing resources in determining which memory ought to be
freed. A memory leak may take place despite the presence of the garbage collector if
references to unused objects are not themselves manually finalised.

Also, the .NET memory footprint that results in extra page faults (hard faults)
degrades the performance of a program and in the degenerate case can cause thrash-
ing. Optimisations to programs that reduce the number of page faults that occur
enhance the performance of the application program or even the entire system. The
two primary aspects of the optimisation effort can be concentrating on reducing
overall memory usage and improving memory locality.

8.5 The Compilation and Loading Process of Native Parvicursor.
NET-Based Application Programs

In this section, we examine the compilation and loading process of Parvicursor.NET-
based application programs, so that the reader can understand more the importance
of the Parvicursor.NET Framework compared to the .NET Framework for server and
HPC environments. To realise the aim to eliminate the overheads concerned with the
multi-layer architecture of the .NET Framework, the perception of the Parvicursor
project in following up the DotGrid project emerged. In fact, the Parvicursor.NET
Framework is a native and cross-platform implementation of the standard CLI profiles
and libraries which relied upon standard ISO C++. The main goal of the Parvicursor
project actually is to provide an infrastructural software framework to easily port the
source codes of the .NET-based DotGrid Grid Computing Framework [3–5] into native
code with the minimum time and cost spent and to increase the more efficiency of
the protocols that had been implemented in DotGrid platform. Therefore, in addition
to porting the DotGrid structure to native code, a high-performance implementation
of the CLI standard leaves to enterprise and scientific communities.

Figure 8.2 portrays the four-layer architecture of the Parvicursor.NET Framework.
As implicitly shown in this framework, only native C/C++ codes are compiled, and
after linking with the Parvicursor.NET Framework, which implements CLI classes and
profiles, the executable image file is executed by the operating system. Also, there is
no additional layer and no overhead on applications that make use of the framework.

As stated earlier in this chapter, the Parvicursor.NET platform complies itself with
the CLI standard by providing a concrete native C++ wrapper library. In fact, this
wrapper that constitutes the main Parvicursor.NET core implements a hierarchy of
the .NET Base Class Library (BCL), which makes Parvicursor.NET capable of being
used in distributed systems. The BCL indeed is a standard library that is available
to all languages targeting the .NET Framework. The BCL in order to encapsulate a
large number of common functions like disc and network I/O, threading and data

262 ◾ Implementing Parallel and Distributed Systems

structures, which make the programming easier, has been created. Figure 8.8 illus-
trates an overall view of a small subset of the Parvicursor.NET Base Class Library
(PBCL) hierarchy.

Now given a brief description of PBCL, we explore the conversion process of
the C++ Parvicursor.NET source codes into native machine code. Normally, the con-
struction process of programs demanding the Parvicursor platform includes five
stages in which each stage applies specific tools: preprocessor, compiler, assembler,
linker, and loader. These stages appear in Figure 8.14. File objects are generated after
assembling source codes, and then the executable image is produced after linking
these object files. Several formats exist to store the image such as Executable and
Linking Format (ELF) and Common Object-File Format (COFF). Parvicursor platform
offers two methods to execute application programs: one being statically linked with
a static library extension and the other being dynamically linked using a dynamic
shared library. The loading process of an application executable image generated

Figure 8.14 Compilation and loading process stages of a Parvicursor.NET-based collection of
source codes.

Parvicursor.NET Framework ◾ 263

targeting the Parvicursor runtime is performed under direct intervention of the native
OS loader, and native compiled machine codes are loaded onto memory.

In the C/C++ process memory layout on the x86 architecture, the process’s load
segments are located at the base address of the process. The main stack is located at
the bottom and grows downwards. Each extra thread or routine call that is created has
its own stack, which locates at the bottom of the main stack. Each of the stack frames
is separated by a protective page to detect stack overflow amongst stack frames. Heap
memory is located above the process code and grows upwards. In the middle of a
process’s address space, there is a region that is reserved for shared objects.

Also, the slow native C++ backend compiler wins heavily over the JIT compiler
at runtime. If one wraps an int inside a class for abstraction purposes, and he/she
accesses it strictly as an int, the native C++ compiler can decrease the overhead
of the wrapper to practically nothing. We can add many levels of abstraction to the
wrapper without increasing the overhead cost. The JIT compiler is unable to take the
time needed to eliminate this cost.

The C/C++ languages have been designed to ensure space overhead and minimal
runtime. These two languages have been heavily used for decades in systems pro-
gramming including implementing operating systems and embedded systems, due
to optimum integration of features such as portability and performance, the ability
of direct access to hardware addresses, and the demand for low execution time. The
Parvicursor framework thus is lacking all of the overheads that are exposed by the
.NET Framework discussed in Section 8.4.

8.6 Parvicursor.NET Socket Interface (PSI)
PSI is an encapsulating abstraction layer for transport protocols. From the develop-
er’s standpoint, this interface is an API that unifies network protocols and relied on
the concept of well-known socket programming as a set of APIs. PSI helps reduce the
necessary development time and effort to create and prototype network protocols.
The layered model of PSI appears in Figure 8.15. This interface provides a fundamen-
tal abstraction for the entire Parvicursor infrastructure. All major services and APIs
developed in the Parvicursor platform utilise this interface or it can be extended for
new protocols. For example, an important application of PSI is to implement proto-
cols such as SSL3, xSec, and TLS1 to secure network communications. It also brings
the benefits of underlying network I/O mechanisms to the developers who want to
work with low-level transport protocols.

As shown in Figure 8.15, a layer is a set of conceptually similar functionality that
furnishes services to the layer above it and receives service from the lower below it.

The structure of Figure 8.15 is made up of five layers. From the most impor-
tant services of this interface, we can point to POPI, Direct Memory Transfer, and
Exception Handling. The Direct Memory Transfer service in conformance with tradi-
tional socket programming offers a flexible interface for transferring memory buf-
fers directly to lower layers. The POPI service establishes a mechanism to exchange
the Parvicursor.NET Framework’s objects through low-level serialisation/deserialisa-
tion approaches with high performance (for details see Section 8.7). The Exception
Handling service allows exchanging occurred exceptions between endpoints.

264 ◾ Implementing Parallel and Distributed Systems

This can make feasible the use of PSI as a remote method invocation mechanism.
Security and transport layers provide transparent transfer of data between users, and
also secure and make reliable data transfer services to upper layers.

8.7 Parvicursor Object Passing Interface (POPI) over PSI
POPI is a collection of APIs that allows processes (or threads) to exchange objects
over PSI sessions within the Parvicursor.NET Framework. In POPI architecture, seri-
alisation/deserialisation mechanisms play the main role. POPI introduces services
to applications so that they can transfer their desired objects through pointer-based
buffering methods across remote endpoints. In Parvicursor.NET Framework, seriali-
sation is the low-level process of converting the state of an object into a form that
can be persisted or transported. Serialisation is also used when an object is passed
across a remoting boundary in Parvicursor nodes.

Although serialisation libraries like .NET Remoting and Boost C++ Serialisation
take advantage of general-purpose serialisation protocols and provide equipment
to make binary a hierarchy of inherited classes, they impose critical performance
overheads upon programs. In the design of POPI bearing this issue in mind, the
direct serialisation of basic data types, such as Int32, Int64, String, Float and so on,
are supported. Application developers can implement their own favourite serialisa-
tion protocols by designing a suitable and optimal algorithm, which supports object
versioning, with minimal effort through extending POPI APIs. This flexible method
can be used to develop customised serialisers/deserialisers in achieving high per-
formance. POPI provides the ability to access low-level internal buffers through ref-
erence types so that extra copy operations are prevented to increase performance
(these mechanisms are partly similar to zero-copy concepts).

8.8 Cross-Process, Cross-Language and Cross-Platform
Parvicursor.NET Remoting Architecture (PR)

This section introduces Parvicursor.NET Remoting architecture. PR allows a vast
array of programs and processes, regardless of the programming language, runtime,

Figure 8.15 The layered model of Parvicursor.NET Socket Interface (PSI).

Parvicursor.NET Framework ◾ 265

operating system, and hardware platform used (desktop, mobile, server, and embed-
ded platforms), to perform low-level remoting operations for various purposes over
cross-process boundaries. PR actually proposes and implements a basic infrastruc-
ture to make the key concepts of cross-language, cross-process, and cross-platform
practical. Therefore, we can think of the design of the Parvicursor project and PR
based on C/C++ languages as a move towards a cross-process, cross-language, and
cross-platform framework.

Parvicursor project, by combining the features of PSI and POPI (described respec-
tively in Sections 8.6 and 8.7), proposes and implements the PR architecture shown
in Figure 8.16. There, it is assumed that process 1 intends to transmit some objects
to process 2 located at a remote boundary towards process 1 via PR. Processes 1 and
2 may be written in any programming language, and executed on heterogeneous
operating systems or hardware in terms of CPU architecture (x86 or x64). Language
Binding Interface (LBI) provides a language-natural interface to applications and
processes in cross-process boundaries.

LBI states specifications in which different programming languages can use PR.
Native C/C++, CLI-compliant languages, and Java are the major types of these lan-
guages. Because PR has been implemented in the native C/C++ stack, it is directly
accessible without any specification in any of the C and C++ languages. PR has been
implemented as native C++ classes. Therefore, in order to straightforward use PR

Figure 8.16 Cross-process, cross-language, and cross-platform Parvicursor.NET Remoting
architecture (PR).

Common Communication Interface (Network, RDMA, Pipes, Shared-Memory,...)

Buffer

Serialization
Stack

Pa
rv

ic
ur

so
rS

oc
ke

t
In

te
rf

ac
e

memmove()

Java JNI
Native Machine Code

JavaMicrosoft .NET
Native C/C++

.NET Platform Invoke

Language Binding Interface

ParvicursorSocket
Interface

Buffer

Deserialization
Stack

memmove()

Process 1 Process 2

WriteObject() ReadObject()

266 ◾ Implementing Parallel and Distributed Systems

stack in other languages, LBI must explain specifications, so that they can conve-
niently be accessed, and be bound to the PR classes. By implementing an interface
through .NET Platform Invoke and Java Native Interface (JNI), C# and Java program-
mers can access LBI through PR APIs.

As seen, therefore, LBI makes the cross-language concept for a broad family
of programming languages practical. In Figure 8.16, the requests of processes are
driven towards Serialisation/Deserialisation Stack and PSI. In the Processes 1 side,
the serialisation is performed by copying objects into a pre-allocated buffer by
calling the memmove() system function. The WriteObject() method, which is
one of the main methods of PSI APIs, puts the content of the buffer onto Common
Communication Interface (CCI) with the associated size of the dirty data buffer
(on the other hand, from the POSIX standard’s point of view, the write opera-
tion is performed at this stage). To avoid unnecessary copies of the content of the
buffer within Serialisation Stack in the input arguments of the WriteObject()
method, the buffer pointer is passed as pass-by-reference to this method, which this
approach indeed is a type of zero-copy mechanism to significantly increase the PR
performance. In the Process 2 side, the ReadObject() method, after receiving the
content of objects sent by Process 1 over CCI, passes the received buffer pointer
and data buffer size to the Deserialisation Stack. Deserialisation is done by calling
the memmove() system function. The received objects stored in the buffer as binary
can be retrieved as the main variables of rebuilt objects, and they are delivered to
Process 2 over LBI.

In this scenario, the PSI and CCI abstractions play a key role in Parvicursor.NET
Remoting architecture. In fact, CCI is an integral part of the PSI that has been sepa-
rated from PSI for easier understanding of Figure 8.16. PSI is a uniform API and
very extensible that is used to exploit the CCI services. The CCI can support a wide
array of transport mechanisms such as Pipes, RDMA, Network, and Shared Memory.
For example, PSI can be developed depending on network transport protocols.
The TCP/IP protocol can be the most basic PSI feature in this mode where we can
benefit from other protocols like HTTP to run on the TCP/IP stack by extending the
PSI model.

The use of CCI in Network mode allows the processes of programs to distribute
in a collection of remote machines over the network and to interact and exchange
data with each other. The CCI in the Pipes mode can be used for Inter-Process
Communication (IPC) between local process boundaries with high performance.
Hence, PSI presents a set of I/O mechanisms for developers in order to access the
network I/O, memory I/O, and disc I/O via an integrated API. It enables developers
to easily develop their applications based on the demands of the programs.

Figures 8.17 and 8.18 illustrate a piece of pseudocode from the scenario shown
in Figure 8.16 for native C++ language. In this abstract example, there is no con-
straint on the socket variable which relied upon the CCI model for choosing any
of its modes. The handle of the socket variable can be related to an open file (via
Parvicursor.NET FileStream class), TCP/TP socket, or any other handle of different
I/O models.

The codes of Figures 8.17 and 8.18 describe, respectively, the behaviour of
Process 1 and Process 2 in accessing PR functions shown in Figure 8.16. The
Serializer class constructor takes its primary internal buffer size for serialisation

Parvicursor.NET Framework ◾ 267

operation; of course, the length of this buffer may be automatically increased by the
class during the life cycle of processes. The get_BaseBuffer() method actually
passes the internal buffer pointer of the Serialiser class to the WriteObject()
method for zero-copy purposes.

PR is a flexible and highly extensible framework to transfer objects in a variety of
networks. One of the primary aims of PR is to provide the basic facilities for develop-
ing Remote Procedure Calls RPCs), as expected, in the Parvicursor’s xThread model.
The flexibility of PR makes it suitable to be applied to the set of the Web services’
protocols over HTTP channels in CCI so that a single framework can be developed
atop PR for a wide spread of software platforms and programming languages.

8.9 Parvicursor.NET Framework Programming Reference Guide
The Parvicursor.NET Framework provides the fundamental framework libraries and
classes to easy and quick develop and port the .NET-based DotGrid platform to
native C++ for all operating systems in Windows by Win32 and Win 64 APIs and in
Linux and Unix-style operating systems by POSIX-compliant APIs.

Figure 8.17 A client-side example of Parvicursor.NET Remoting for native C++ (local objects
serialisation and send to remote process boundary).

// All declared types here are defined by Parvicursor.NET Framework
// such as System, Parvicursor::Serialization and Parvicursor::Net
namespaces.
ParvicursorSocket *socket ... ;
Int32 a = 10;
String str = "Hello World";
Serializer se(512);
se.Write(str);
se.Write<Int32>(a);
socket->WriteObject(se.get_BaseBuffer(), se.get_BaseBufferSize());

Figure 8.18 A server-side example of Parvicursor.NET Remoting for native C++ (receive buffer
of objects from remote process boundary and local deserialisation of objects).

// All declared types here are defined by Parvicursor.NET Framework
// such as System, Parvicursor::Serialization and Parvicursor::Net
namespaces.
ParvicursorSocket *socket ... ;
Int32 objSize = 0;
Byte *buffer = socket->ReadObject(objSize);
Int32 a;
String str;
DeSerializer de(buffer, objSize);
str = de.Read();
a = de.Read<Int32>();

268 ◾ Implementing Parallel and Distributed Systems

The Parvicursor.NET Framework really implements a native and cross-platform
implementation of the ECMA-334 and ECMA-335 in C++ stack with the following
ECMA references:

 1. ECMA-334: C# Language Specification, http://www.ecma-international.
org/publications/standards/Ecma-334.htm. 2022.

 2. ECMA-335: Common Language Infrastructure (CLI), http://www.ecma-
international.org/publications/techreports/E-TR-084.htm. 2022.

The Parvicursor.NET Framework includes classes, interfaces, and value types that
expedite and optimise the development process and provide access to system
functionality.

The Parvicursor.NET Framework types are the foundation on which Parvicursor.NET
applications and components are built. The Parvicursor.NET Framework includes
types that perform the following functions:

	 •	 Represent base data types and exceptions.
	 •	 Encapsulate data structures.
	 •	 Perform I/O.
	 •	 Access information about loaded types.
	 •	 Invoke Parvicursor.NET Framework security checks.

The Parvicursor.NET Framework provides a rich set of interfaces shown in Figure
8.19, as well as abstract and concrete (non-abstract) classes. You can use the concrete
classes as is or, in many cases, derive your own classes from them. To use the func-
tionality of an interface, you can either create a class that implements the interface
or derive a class from one of the Parvicursor.NET Framework classes that implement
the interface.

For more help, you can see the Microsoft MSDN for .NET Framework Class Library.
http://msdn.microsoft.com/en-us/library/ms229335.aspx
Additionally, it is necessary to note that a comprehensive package for easing the

development of Parvicursor-based applications has been provided by the authors
that is accessible via https://github.com/poshtkohi/pads.

8.9.1 Using Namespace System
#include "System/Object/Object.h"
#include "System/BasicTypes/BasicTypes.h"
#include "System/Convert/Convert.h"
#include "System/String/String.h"
#include "System/DateTime/DateTime.h"
#include "System/Guid/Guid.h"
#include "System/Type/Type.h"
#include "System/Exception/Exception.h"
#include "System/ArgumentException/ArgumentException.h"
#include "System/ArgumentException/ArgumentNullException.h"
#include "System/ArgumentException/ArgumentOutOfRangeException.h"
#include "System/NotSupportedException/NotSupportedException.h"
#include "System/InvalidOperationException/InvalidOperationException.h"

http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://msdn.microsoft.com
https://github.com

Parvicursor.NET Framework ◾ 269

#include "System/ObjectDisposedException/ObjectDisposedException.h"
#include "System/FormatException/FormatException.h"
#include "System/OverflowException/OverflowException.h"

The System namespace is the root namespace for fundamental types in the .NET
Framework Parvicursor. This namespace includes classes that represent the base data
types used by all applications: Object (the root of the inheritance hierarchy), Byte,
Char, Array, Int32, String, and so on. Many of these types correspond to the primi-
tive data types that your programming language uses. When you write code using
Parvicursor.NET Framework types, you can use your language’s corresponding key-
word when a Parvicursor.NET Framework base data type is expected.

Currently supported BasicTypes:

#define null 0
typedef signed char Int8;
typedef unsigned char UInt8;
typedef signed short int Int16;

Figure 8.19 The native layered Parvicursor infrastructure architecture.

Remote Process
Service

xThread
Service

xDFS
Service

Permissions
Service

Native Parvicursor Middleware Abstraction

Parvicursor Runtime Services

Win32/64 APIs (.DLLs) POSIX APIs (.SOs)
Native ECMA-335 CLI Profiles and Libraries Implemented by Parvicursor

Network Layer

OS Layer Windows SolarisUnix/Linux …..

DotGrid

UNICORE

Globus Gridbus

Legion

Legacy Grid Middlwares

Grid and Cloud Applications

Grid and Cloud Application Layer

Visual Parvicursor Integrated Design Environment

Java JNI
Native Parvicursor APIs (.lib, .dll, .a, .so)

JavaMicrosoft .NET
Native C/C++

.NET Platform Invoke

Cross-Language and Cross-Domain Interface

Parvicursor Command-Line Tools Microsoft C++
Compiler & Linker

GNU GCC
Compiler & Linker

Interface Tools

270 ◾ Implementing Parallel and Distributed Systems

typedef unsigned short int UInt16;
typedef signed int Int32;
typedef unsigned int UInt32;
typedef signed long long int Int64;
typedef unsigned long long int UInt64;
typedef long double Int128;

Currently supported String class methods:
public: String(char *buffer);
public: ~String();
public: bool Equals(String &str1, String &str2);
public: char *get_BaseStream() const;
public: char get_Value(int index) const;
public: int get_Length() const;
public: String Trim();
public: String Substring(int startIndex, int count);
public: String Substring(int startIndex);
public: static String Copy(const String &str);
public: String ToUpper();
public: String ToLower();
public: int IndexOf(const String &search, int startIndex, int count);
public: int IndexOf(const String &search);
public: int IndexOf(const String &search, int startIndex);
public: int LastIndexOf(const String &search, int startIndex, int count);
public: int LastIndexOf(const String &search);
public: int LastIndexOf(const String &search, int startIndex);
public: const String &operator+=(const String &str);
public: const String &operator+=(const char *str);
public: static String Concat(const String &str0, const String &str1);
public: friend String operator+(const String &StrA, const String &StrB);
public: friend String operator+(const String &StrA, const char *StrB);
public: friend String operator+(const char *StrA, const String &StrB);
public: const String &operator =(const String & str);
public: static int Compare(const String &StrA, const String &StrB);
public: friend bool operator ==(const String &StrA, const String &StrB);
public: friend bool operator !=(const String &StrA, const String &StrB);
public: String Replace(const String &oldValue, const String &newValue);

Currently supported Convert class methods:
public: static Int16 ToInt16(const String &value);
public: static UInt16 ToUInt16(const String &value);
public: static Int32 ToInt32(const String &value);
public: static UInt32 ToUInt32(const String &value);
public: static Int64 ToInt64(const String &value);
public: static double ToDouble(const String &value);
public: static UInt64 ToUInt64(const String &value);
public: static String ToString(Int16 value);
public: static String ToString(Int32 value);
public: static String ToString(Int64 value);

Current supported Guid class methods:
public: static String NewGuid();

Currently supported DateTime class methods:
public: static DateTime get_Now();

Parvicursor.NET Framework ◾ 271

public: int get_Year();
public: int get_Month();
public: int get_DayOfWeek();
public: int get_Day();
public: int get_Hour();
public: int get_Minute();
public: int get_Second();
public: int get_Milliseconds();

8.9.2 Using Namespace System::IO
#include "System.IO/FileStream/FileStream.h"
#include "System.IO/Directory/Directory.h"
#include "System.IO/File/File.h"
#include "System.IO/IOException/IOException.h"

The System::IO namespace contains types that allow synchronous and asynchro-
nous reading and writing on data streams and files.

The following distinctions help clarify the differences between a file and a stream.
A file is an ordered and named collection of a particular sequence of bytes having
persistent storage. Therefore, with files, one thinks in terms of directory paths, disc
storage, and file and directory names. In contrast, streams provide a way to write and
read bytes to and from a backing store that can be one of several storage mediums.
Just as there are several backing stores other than discs, there are several kinds of
streams other than file streams. For example, there are network, memory, and tape
streams.

Currently supported FileStream class methods:

Use the FileStream class to read from, write to, open, and close files on a file system,
as well as to manipulate other file-related operating system handles including pipes,
standard input, and standard output. You can specify read and write operations to be
either synchronous or asynchronous. FileStream buffers input and output for better
performance.

FileStream objects support random access to files using the Seek method. Seek
allows the read/write position to be moved to any position within the file. This is
done with byte offset reference point parameters. The byte offset is relative to the
seek reference point, which can be the beginning, the current position, or the end
of the underlying file, as represented by the three properties of the SeekOrigin class.

public: FileStream();
public: ~FileStream();
public: FileStream(String path, FileMode mode, FileAccess access, int
bufferSize);
public: FileStream(String path, FileMode mode, FileAccess access);
public: int Read(char array[], int offset, int count);
public: void Write(const char array[], int offset, int count);
public: void Close();
public: void SetLength(Int64 value);
public: void Flush();
public: void Lock(Int64 position, Int64 length);
public: void UnLock(Int64 position, Int64 length);
public: void Seek(Int64 offset, SeekOrigin origin);

272 ◾ Implementing Parallel and Distributed Systems

public: long get_Position();
public: void set_Position(Int64 position);
public: String get_Name();
public: Int64 get_Length();
public: bool get_CanRead();
public: bool get_CanWrite();

Currently supported File class methods:

File class provides static methods for the creation, copying, deletion, moving, and
opening of files, and aids in the creation of FileStream objects.

public: static void Delete(const String &path);
public: static bool Exists(const String &path);
public: static void Move(const String &sourceFileName, const String
&destFileName);

Currently supported Directory class methods:

Exposes static methods for creating, moving, and enumerating through directories
and subdirectories. This class cannot be inherited.

public: static void CreateDirectory(const String &path);
public: static void Delete(const String &path);
public: static void Delete(const String &path, bool recursive);
public: static bool Exists(const String &path);
public: static ArrayList *GetDirectories(const String &path);
public: static ArrayList *GetFiles(const String &path);
public: static void Move(const String &sourceDirName, const String
&destDirName);

8.9.3 Using Namespace System::Threading
#include "System.Threading/Thread/Thread.h"
#include "System.Threading/Timer/Timer.h"

The System::Threading namespace provides classes and interfaces that enable
multi-threaded programming.

Currently supported Thread class methods:
Creates and controls a thread, sets its priority, and gets its status.

public: Thread(void *(*start)(void *), void *arg);
public: void Start();
public: bool IsAlive();
public: void Abort();
public: void SetDetached();
public: void Join();
public: static void SleepThread(int millisecondsTimeout);

Currently supported Timer class methods:
Provides a mechanism for executing a method at specified intervals.

typedef Object *(*Callback)(Object *);
class TimerCallback : public Object
{
 public: TimerCallback(Callback &callback);

Parvicursor.NET Framework ◾ 273

 public: TimerCallback();
 public: Callback &get_BaseCallback();
};
class Timeout : public Object
{
public: const static Int32 Infinite = -1;
};
class Timer : public Object
{
 public: Timer(const TimerCallback &callback, Object *state, Int32
dueTime, Int32 period);
 public: Timer();
 public: ~Timer();
 public: void Finalize();
 public: void Dispose();
 public: bool Change(int dueTime, int period);
};

8.9.4 Using Namespace System::Collections
#include "System.Collections/ArrayList/ArrayList.h"
#include "System.Collections/Hashtable/Hashtable.h"
#include "System.Collections/Queue/Queue.h"

The System::Collections namespace contains interfaces and classes that define vari-
ous collections of objects, such as lists, queues, bit arrays, and hash tables.

Currently supported ArrayList class methods:
Implements the IList interface using an array whose size is dynamically increased as
required.

public: ArrayList();
public: ~ArrayList();
public: void Clear();
public: void Add(Object *data);
public: void Insert(int index, Object *value);
public: int get_Count();
public: bool Contains(Object *item);
public: void Remove(Object *data);
public: void RemoveAt(int index);
public: Object *get_Value(int index);
public: void set_Value(int index, Object *obj);
public: Object *operator[](int index);

Currently supported Hashtable class methods:
Represents a collection of key/value pairs that are organised based on the hash code
of the key.

public: Hashtable();
public: ~Hashtable();
public: virtual int get_Count();
public: virtual Object *get_Item(const String &key);
public: virtual Object *get_Value(int index);
public: virtual void Add(const String &key, Object *value);
public: virtual void Clear();

274 ◾ Implementing Parallel and Distributed Systems

public: virtual bool Contains(const String &key);
public: virtual bool ContainsKey(const String &key);
public: virtual void Remove(const String &key);
public: virtual int GetHashKey(const String &key);

Currently supported Queue class methods:
Represents a first-in, first-out collection of objects.

public: Queue();
public: ~Queue();
public: void Enqueue(Object *obj);
public: Object *Dequeue();
public: int get_Count();
public: void Clear();
public: bool Contains(Object *obj);
public: Object *Peek();

8.9.5 Using Namespace System::Net
#include "System.Net/Dns/Dns.h"
#include "System.Net/IPHostEntry/IPHostEntry.h"
#include "System.Net/IPAddress/IPAddress.h"
#include "System.Net/IPEndPoint/IPEndPoint.h"

The System::Net namespace provides a simple programming interface for many of
the protocols used on networks today.

Currently supported Dns class methods:
Provides simple domain name resolution functionality.
public: static IPHostEntry Resolve(const String &hostName);

Current supported IPHostEntry class methods:
Provides a container class for Internet host address information.

public: IPHostEntry();
public: IPHostEntry(hostent *host);
public: ~IPHostEntry();
public: IPAddress get_AddressList(int index);
public: int get_AddressListLength();

Currently supported IPAddress class methods:
An Internet Protocol (IP) address.

public: IPAddress();
public: IPAddress(char address[], int len);
public: AddressFamily get_AddressFamily();
public: static long get_Any();
public: static long get_Broadcast();
public: static long get_Loopback();
public: static long get_None();
public: char *GetAddressBytes();
public: int GetAddressBytesLength();

Currently supported IPEndPoint class methods:
Represents a network endpoint as an IP address and a port number.

Parvicursor.NET Framework ◾ 275

public: IPEndPoint(long address, int port);
public: IPEndPoint(const IPAddress &address, int port);
public: IPEndPoint();
public: int get_Port();
public: void set_Port(int port);
public: IPAddress get_Address();
public: long get_LongAddress();
public: void set_Address(IPAddress address);
public: AddressFamily get_AddressFamily();

8.9.6 Using Namespace System::Net::Sockets
#include "System.Net.Sockets/Socket/Socket.h"
#include "System.Net.Sockets/SocketException/SocketException.h"
#include "System.Net.Sockets/AddressFamily/AddressFamily.h"
#include "System.Net.Sockets/ProtocolType/ProtocolType.h"
#include "System.Net.Sockets/SocketType/SocketType.h"
#include "System.Net.Sockets/SocketFlags/SocketFlags.h"
#include "System.Net.Sockets/SocketShutdown/SocketShutdown.h"

The System::Net::Sockets namespace provides a managed implementation of the
Windows Sockets (Winsock) and Beckley Sockets interface for developers who need
to tightly control access to the network.

Currently supported Socket class methods:
The Socket class provides a rich set of methods and properties for network communi-
cations. The Socket class allows you to perform both synchronous and asynchronous
data transfer using any of the communication protocols listed in the ProtocolType
enumeration.

public: Socket(AddressFamily addressFamily, SocketType socketType,
ProtocolType protocolType);
public: ~Socket();
public: AddressFamily get_AddressFamily() const;
public: SocketType get_SocketType() const;
public: ProtocolType get_ProtocolType() const;
public: int get_Handle() const;
public: bool get_Connected() const;
public: void Connect(IPEndPoint &remoteEP);
public: void Bind(IPEndPoint &localEP);
public: void Listen(int backlog);
public: static void Select(ArrayList &checkRead, ArrayList &checkWrite,
ArrayList &checkError, int microSeconds);
public: int Send(const char buffer[], int offset, int size, SocketFlags
socketFlags);
public: int Receive(char buffer[], int offset, int size, SocketFlags
socketFlags);
public: void Close();
public: void Shutdown(SocketShutdown how);
public: Socket *Accept() const;
public: void SetReceiveTcpWindowSize(int size);
public: void SetSendTcpWindowSize(int size);

276 ◾ Implementing Parallel and Distributed Systems

8.9.7 Using Namespace Parvicursor::Net
#include "Parvicursor/Parvicursor.Net/ParvicursorSocket/
ParvicursorSocket.h"

The Parvicursor::Net namespace provides a new high-performance object-oriented
Message Passing Interface paradigm proposed by Parvicursor.

Currently supported ParvicursorSocket class methods:

public: ~ParvicursorSocket();
public: ParvicursorSocket(Socket *socket);
public: bool get_IsSecure();
public: Socket *get_BaseSocket();
public: void WriteException(Exception &e);
public: void WriteNoException();
public: void CheckExceptionResponse();
public: void Close();
public: char *ReadObject(int &objSize);
public: String ReadString();
public: void WriteObject(const char obj[], int size);
public: void WriteString(const String &str);
public: int Read(char array[], int offset, int count);
public: char *Read(int size);
public: char ReadByte();
public: int Write(const char array[], int offset, int count);
public: int Write(const char array[], int count);
public: void WriteByte(char buffer);
public: CheckedExceptionResponseState get_IsCheckedExceptionResponse();
public: void set_IsCheckedExceptionResponse(CheckedExceptionResponseState
value);

8.9.8 Using Namespace Parvicursor::Serialisation
#include "Parvicursor/Serialisation/Serialiser.h"
#include "Parvicursor/Serialisation/DeSerialiser.h"

The Parvicursor.NET Framework features the following high-performance native seri-
alising technology:

	 •	 Binary serialisation preserves type fidelity, which is useful for preserving the
state of an object between different invocations of an application. For example,
you can share an object between different applications by serialising it to the
Clipboard. You can serialise an object to a stream, to a disc, to memory, over the
network, and so forth. ParvicursorSocket uses serialisation to pass objects “by
value” from one computer or application domain to another.

Currently supported Serialiser and DeSerialiser class methods:

class Serialiser : public Object
{
public: Serialiser(int maxBufferCapcity);
 public: ~Serialiser();
 public: void Write(const String &str);
 public: template <class Object> void Write(const Object &obj)

Parvicursor.NET Framework ◾ 277

 {
 this->Write(&obj, sizeof(obj));
 }
 public: char *get_BaseBuffer() const;
 public: int get_BaseBufferSize() const;
 public: void Reset();
};
class DeSerialiser : public Object
{
 public: DeSerialiser(char *buffer, int BufferSize);
 public: template <class _Object> const _Object Read()
 {
 _Object obj;
 this->Read(&obj, sizeof(obj));
 return obj;
 }
 public: const String Read();
 public: void Reset();
};

8.10 Presented Parvicursor.NET Sample Usages
In Windows, run all source codes by using Microsoft Visual Studio .NET 2003 or later
versions and in Linux by using g++-enabled-compiler Code::Blocks.

 1. ClientSocket sample shows a simple scenario in which a client connects to an
HTTP server and requests the first page on a typical domain.

 2. FileStream sample shows a file copy scenario from target to destination file sys-
tem via using the well-known and good-featured System.IO.FileStream class.

 3. RecursiveDirectoryTreeTraversal sample presents the full implemented features
of .NET System.IO.File and System.IO.Directory class methods. This example
traverses all directories under a specified path and lists all files on the storage
system recursively.

 4. The threading sample shows the use of a similar declaration of .NET Framework
threads by utilising the POSIX Threads on Linux and its port to Windows by
pthreads.dll dynamic link library.

 5. The timer sample shows a System.Threading.Timer class usage.
 6. The serialisation sample shows Parvicursor.NET serialisation/deserialisation

tools.

References
 [1] A. Poshtkohi and M.B. Ghaznavi-Ghoushchi, DotDFS: A Grid-based High-Throughput File Transfer

System. Parallel Comput., 37: 114–138, 2011. doi: 10.1016/j.parco.2010.12.003
 [2] A. Poshtkohi and M.B. Ghaznavi-Ghoushchi, A Concurrent Framework for High Performance File

Transfers in Grid Environments, In Proceedings of the 3th International Conference on Computer
and Electrical Engineering (ICCEE 2010), 16–18 November 2010, Chengdu, China. Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.6969, 2022.

http://dx.doi.org/10.1016/j.parco.2010.12.003
http://citeseerx.ist.psu.edu

278 ◾ Implementing Parallel and Distributed Systems

 [3] A. Poshtkohi, A.H. Abutalebi, and S. Hessabi, Parvicursor: A .NET-based Cross-Platform Software for
Desktop Grids. Int. J. Web Grid Serv., 3(3): 313–332, 2007. Available from: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.112.1042, 2022.

 [4] A. Poshtkuhi, A. Abutalebi, L. Ayough, and S. Hessabi, Parvicursor: A .NET-based Infrastructure for
Global Grid Computing, in: Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid, 16–19 May 2006, (CCGrid’2006), Singapore. Available from: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.3976, 2022

 [5] A. Poshtkuhi, A. Abutalebi, L. Ayough, and S. Hessabi, Parvicursor: A .NET-based Cross-Platform Grid
Computing Infrastructure, In Proceedings of the IEEE International Conference On Computing
and Informatics 2006 (ICOCI’06), 6–8 June 2008, Malaysia. Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.113.2481, 2022

 [6] ECMA-334: C# Language Specification, 2022; Available from: http://www.ecma-international.org/
publications/standards/Ecma-334.htm.

 [7] ECMA-335: Common Language Infrastructure (CLI), 2022; Available from: http://www.ecma-
international.org/publications/techreports/E-TR-084.htm

 [8] ECMA-372: C++/CLI Language Specification, 2022; Available from: http://www.ecma-international.
org/publications/standards/Ecma-372.htm

 [9] J. Clark, Calling Win32 DLLs in C# with P/Invoke, MSDN Magazine, The Microsoft Journal for
Developers, July 2003; Available from: http://msdn.microsoft.com/en-us/magazine/cc164123.aspx,
2022.

 [10] Microsoft Corporation, .NET Framework Home, 2022; Available from: http://msdn.microsoft.com/
netframework/

 [11] Microsoft Corporation, Shared Source Common Language Infrastructure 2.0 Release, 2022; Available
from: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=4917

 [12] MONO .NET Project Home Page, 2022; Available from: http://www.mono-project.com/
 [13] DotGNU Project Home Page, 2022; Available from: http://www.gnu.org/software/dotgnu/
 [14] DotGNU Portable.NET Home Page, 2022; Available from: http://www.gnu.org/software/dotgnu/pnet.

html

http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.microsoft.com
http://www.mono-project.com
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org

279DOI: 10.1201/9781003379041-9

Chapter 9

Parvicursor Infrastructure
to Facilitate the Design
of Grid/Cloud Computing
and HPC Systems

The future is here. It’s just not widely distributed yet.

William Gibson

9.1 Parvicursor: A Native and Cross-Platform Peer-to-Peer
Framework to Design the Next-Generation Distributed
System Paradigms

9.1.1 Introduction

In this chapter, we examine the main philosophy behind the Parvicursor platform
and will complete some parts of it that have not been discussed in the previous chap-
ters. The Parvicursor platform will be at first investigated as a fundamental infrastruc-
ture to implement the next-generation peer-to-peer (P2P) distributed middleware
systems, and then we will consider the architecture of the xThread framework, which
provides the ability to distributed execution of threads over a network of computers,
in detail. Having solved several parallel and distributed problems, we will try to per-
form the practical proof-of-concept of the Parvicursor platform in order to develop
the next-generation distributed systems. At the end of this chapter, we teach the
reader how a distributed complex P2P middleware can be designed, implemented,
and deployed.

http://dx.doi.org/10.1201/9781003379041-9

280 ◾ Implementing Parallel and Distributed Systems

9.2 Cross-Platform and High-Performance Parvicursor Platform
to Develop the Next-Generation Distributed Middleware
Systems

As seen so far, the design of distributed components of a system (or in general, the
design of a complete distributed system) somewhat comes with very high complex-
ity. In the past decades, to reduce this complexity, a software pattern has emerged
referred to as the term middleware, which makes it easier to construct distributed
applications. Middleware is a collection of technologies and software infrastructures
that are used to facilitate the management and development of application programs
in complex environments and heterogeneous distributed systems. The common defi-
nition of a middleware over the past two decades introduces the middleware as
a software layer on top of operating systems (OSs) and beneath the application
programs; with this definition, the middleware provides a common programming
abstraction in a distributed system, as shown in Figure 9.1 (to this point, we assume
that Parvicursor layer has been removed).

In practice, a middleware supplies a set of higher-level Application Programming
Interfaces (APIs) than OS APIs. Middleware frameworks are designed to hide some
kinds of heterogeneity that the programmers of distributed systems often face with
them. These middleware frameworks also often hide the heterogeneity of OSs, pro-
gramming languages, or either of them, transparently.

Figure 9.1 The middleware abstraction and the role of Parvicursor platform to construct the
next-generation distributed middleware systems.

Design of Grid/Cloud Computing and HPC Systems ◾ 281

The use of a middleware has many benefits, including, hiding the low-level details,
providing language and platform independence, exploiting code reuse, and facilitat-
ing the evolution of application programs. As it can be deduced, the use of middle-
ware systems could result in reducing the cost and time of developing applications,
portability and interoperability, and ultimately better quality. One of the potential
disadvantages of making use of middleware in the development of complex and
stand-alone systems can be attributed to the significant reduction of performance
degree because of multiple software layers used to build the middleware.

The most important requirements of a distributed system, which have been taken
into consideration in the design of the Parvicursor platform, are network communica-
tion, heterogeneity, scalability, standardisation, performance, resource sharing, sup-
port of multicore multiprocessor concurrency and distributed threading, and security.
These requirements are more important in dynamic Grid and Cloud environments.
The satisfaction of these requirements is accomplished by adding a light Parvicursor
layer in Figure 9.1, on which one can build powerful next-generation middleware
frameworks based upon it. In the following, we discuss these features.

9.2.1 Network Communication

As shown in Figure 9.1, different components of a distributed middleware may
reside on various hosts. So, they must connect. This communication is done through
network protocols and socket programming, which was discussed in Chapter 7, at
the lowest possible level. Most distributed systems have been implemented atop
transport layers such as TCP and User Datagram Protocol (UDP). These layers are
provided by the OS at the lowest level. In the Parvicursor platform, in addition to
supporting traditional sockets, which supply primitive communication, Parvicursor.
NET Socket Interface (PSI), as described in Chapter 8, allows software compo-
nents to use extra communication protocols such as Stream Control Transmission
Protocol (SCTP) and UDP-based Data Transfer (UDT) Protocol. Advances in net-
work hardware and new network protocols reveal the importance of the PSI inter-
face. Therefore, the middleware that is designed based upon Parvicursor.NET
Framework ensures the developers that if network transport protocols are evolved,
then his/her implementations stay unchanged, and their system always works. A
middleware also requires that complex data structures are converted into a format
to transmit over a network. Such a facility in the Parvicursor platform, as described
in Chapter 8, is provided through Parvicursor.NET Remoting Architecture (PR) and
Parvicursor Object Passing Interface (POPI) interfaces. POPI makes it possible to
send objects as serialised to another endpoint in native code and to reconstruct that
object into the original one.

9.2.2 Heterogeneity

Heterogeneity means that the system has to run on a wide range of software and
hardware platforms, including, networks, computer hardware, OSs, and programming
languages. As mentioned in Chapter 8, the Parvicursor.NET Framework provides
a native cross-platform implementation of the ECMA.NET standard for distributed
systems.

282 ◾ Implementing Parallel and Distributed Systems

In recent years, in addition to the heterogeneity issue of OSs and hardware,
heterogeneous computing has been proposed due to a greater efficiency of multi/
many-core processors. A heterogeneous processing unit can be composed of a
general-purpose processor, a special-purpose processor (such as a DSP1 or GPU2),
a co-processor, or a customised accelerator logic (such as an ASIC3 or FPGA4). In
general, a heterogeneous computing platform consisting of processors with different
ISAs5 is usually used to satisfy higher performance (e.g., networking applications).
The heterogeneity level in modern computing systems gradually rises whilst the chip
area is increasing, and scaling in the fabrication technologies allows the integration
of more discrete components as parts on a system-on-chip (SoC). Therefore, the next-
generation middleware systems in distributed systems must be able to interact with
heterogeneous units. Since the Parvicursor platform has been implemented and runs
in native code, so it can be easily connected with legacy libraries (such as OpenCL)
and ISAs (through the machine assembly language) of such systems.

9.2.3 Scalability

A distributed system can exist on many computers. Scalability signifies the system is
simply scalable. Scalability can be studied from different aspects. The system should
remain stable when the number of its nodes changes. The design of scalable distrib-
uted systems requires a completely different collection of principles and patterns
when compared with usually integrated systems. In the computer science literature,
scalability is divided into two general categories: vertical and horizontal. Horizontal
scalability points to adding more nodes in a system. One of the highly horizontal
scalable architectures is P2P systems, to which extensive research has been devoted
to them in the past decade. In Section 9.3, we will discuss this issue within the
Parvicursor platform in detail. Vertical scalability means adding the resources to a
single node in a system or the use of software architectures that improve the scal-
ability. In the design and implementation of the Parvicursor platform, we have widely
paid attention to vertical scalability. For instance, asynchronous sockets in Chapter 7
propose a kind of vertical scalability that can scale up to thousands of network con-
nections. The xDFS and DotDFS protocols in Chapter 10, with a hybrid architecture
(integrating the thread-based and event-driven concurrency models), realise scalabil-
ity at the protocol level. Removed overheads from frameworks like .NET and the
native execution of applications on top of the ECMA standard in the Parvicursor
platform manifest vertical scalability at the software system level.

9.2.4 Standardisation

A standardised software platform is a set of standard interfaces that are accepted by
a broad spectrum of software developers. These standards establish interoperability
between various applications created by different developers as possible. The use of
these standards has greater importance in designing distributed systems due to their
high complexity. The use of open standards can make the system more flexible and
adaptable. Taking advantage of software standards enhances the management of the
software development lifecycle. Encapsulating the best practices avoids unnecessary
repetition of past mistakes. New programmers can easier understand the structure of

Design of Grid/Cloud Computing and HPC Systems ◾ 283

project codes by the standards used. Multiple projects can also easily and quickly be
implemented by a common code base. To provide such an interface in the Parvicursor
platform, we have made use of the ECMA-334 and ECMA-335 standards to create an
open standard-based infrastructure for distributed systems as explained in Chapter 8.
When the existing interfaces are not adequate in these two standards, we attempt to
implement Parvicursor services and libraries as much as possible close to the struc-
ture of their equivalents in the .NET Framework.

9.2.5 Performance

Writing programs that have higher performance is a lot more art than science. For
this purpose, a developer must simultaneously look at different aspects during code
development, such as OS, hardware, concurrency, memory hierarchy, and network
transport protocols. This issue becomes more difficult in distributed systems where
they have relatively higher complexity. As a result, it is necessary to design an opti-
mised interface and provide high-performance standard APIs on top of the OS. We
have considered the performance metric from various aspects in the Parvicursor plat-
form and refer to a number of them as follows. As discussed in Chapter 5, to increase
the performance of multi-threaded applications, lock-free algorithms can be taken
benefit. Parvicursor platform, against .NET Framework, gives the full advantage of
native code performance to programmers. The native-execution feature allows us to
benefit from available high-performance third-party libraries for various computing
purposes in the Parvicursor platform. Asynchronous sockets (by reducing the number
of running threads equal to the number of system cores) and the use of event-driven
techniques (to overlap computation and communication) leverage the maximum effi-
ciency of multicore multiprocessor machines in a distributed environment.

9.2.6 Resource Sharing

Resource sharing refers to the ability to use hardware, software, or data anywhere
in the system. Distributed objects provide a comprehensive model of resource shar-
ing. Processor sharing between two nodes is provided by the xThread service in the
Parvicursor platform. The most basic type of resource sharing is data and file shar-
ing. xDFS protocol fulfils such a necessity between two nodes as a P2P structure. For
example, we can provide a complete distributed file system by extending the basic
services presented by the xDFS framework for file sharing.

9.2.7 Concurrency Support of Multicore Processors and Distributed
Threading

Nowadays, all computers have multiple processor cores. As was pointed out in
Chapter 4, these processors have several advantages, such as improved performance
through parallelism and reducing power consumption. Parvicursor platform supports
a wide family of low-level classes and functions to implement any complex high-level
concurrency for programmers, including thread abstraction, mutexes, condition vari-
ables, fibres, thread pools, and lock-free algorithms. Because one of the fundamen-
tal requirements of a distributed system is remote code execution in distant nodes

284 ◾ Implementing Parallel and Distributed Systems

and parallel programmers are already familiar with conventional thread program-
ming styles, a distributed threading model, called xThread with unique features, is
designed in this chapter which has close similarities to the class Thread. Therefore,
we suggest an integrated environment for parallel and distributed programming
based on distributed threads, which turns out to be very powerful.

9.3 Peer-to-Peer Paradigms and the Use of the Parvicursor
Platform to Construct Large-Scale P2P Distributed
Middleware Platforms such as Supercomputers and
Traditional Distributed Systems

As discussed in the previous section, the scalability issue is one of the main chal-
lenges in the design of next-generation distributed systems. The latest conventional
supercomputers have at least one million processor cores. The emergence of new
computing paradigms, such as Grid and Cloud Computing, has even eliminated the
restriction on the number of processors used. The increase in the number of proces-
sors and the communication issue do highlight the key importance of scalability.
In the computer science literature, one of the highly scalable architectures to build
supercomputers and large-scale grid environments is P2P systems. In this section,
we briefly survey such systems and explain the role of the Parvicursor platform to
construct distributed P2P middleware systems.

P2P computing has been noticed as a promising technology that rebuilds the
architecture of distributed computing (or even the whole Internet). This is because
it can exploit different resources (including computation, storage, and bandwidth),
of course with high scalability. P2P is a computer network in which each computer
on the network acts as either a client or a server for other computers. P2P is a dis-
tributed application architecture that segregates tasks or workloads amongst peers.
The owner of each computer on a P2P network exposes some of its resources to
be directly available to other participants without requiring central coordination by
stable servers or hosts. Within this model, peers are both providers and resource con-
sumers, in contrast to the client/server model where servers only provide resources
and clients consume them.

P2P systems are classified into centralised and decentralised (however, a com-
bination of these two models is also possible to build a hybrid P2P system). In
centralised P2P systems, like a client/server system, there are one or more central
servers, which help peers locate their desired resources or act as task schedulers to
coordinate actions amongst them. To locate resources, a peer sends messages to a
central server to determine the peers’ addresses that contain the desired resources,
or to directly fetch job units from a central server. However, like a decentralised sys-
tem, once a peer has its data or information, it can directly communicate with other
peers without the intervention of a central server. In all centralised systems, a single-
failure point exists. Furthermore, when there are a large number of peers, the central
server will become a bottleneck, and it will significantly result in performance and
scalability degradation. In a decentralised P2P system, each peer has the same rights
and responsibilities. Each peer only has a partial view of the overall P2P network

Design of Grid/Cloud Computing and HPC Systems ◾ 285

and offers the data/services that may be just related to some of the peers/queries.
Locating peers, who offer data/services, can quickly turn into a challenging and criti-
cal issue. Benefits of these systems are: immunity against single-point failures, high
efficiency, scalability, robustness, and other favourite properties.

P2P systems are divided into flat or hierarchical from a network structure’s per-
spective. In a flat structure, functions and loads are distributed uniformly amongst
the participating nodes. In a hierarchical structure, there are principally multiple
routing structures. Hierarchical structures have several advantages such as fault and
security isolation, effective caching and exploiting bandwidth, hierarchical storage,
and so forth. Following this section, we conceptually prove how we can benefit
from essential Parvicursor services to design and implement distributed P2P middle-
ware systems for next-generation distributed systems. Since the current aim of the
Parvicursor project is not to build such systems, in Section 9.6 we will examine a
limited middleware for third-party data transfers atop the xDFS framework to practi-
cally show this philosophy.

Suppose we want to consider two nodes of a distributed P2P network built upon
the Parvicursor platform. Figure 9.2 shows this notion. To build such an abstraction,

Figure 9.2 Two i and j nodes of a P2P system built upon the Parvicursor platform.

xDFS client
xDFS server

xThread client
xThread server

Pa
rv

ic
ur

so
rR

un
tim

e

X client
X server

...

xDFS server
xDFS client

xThread server
xThread client

ParvicursorR
untim

eX server
X client

...
Node i Node j

Neighbor nodes

PSI
PSI

PSI
PSI

PSI
PSI

286 ◾ Implementing Parallel and Distributed Systems

we need at least three services: xDFS service to transfer and share files between two
nodes, xThread service to execute arbitrary codes on a remote node dynamically,
and PSI service for communication between two nodes. In a node of a P2P network,
Parvicursor runtime provides a set of servers and APIs equivalent to each service. As
seen at node i, service X can act as a server for node j and vice versa. Acting as both
client and server are one of the main principles in the definition of P2P networks. In
this figure, each node can connect to neighbouring nodes by the PSI interface.

Now, we examine a real example to implement a distributed hierarchical hybrid
P2P middleware based on the Parvicursor platform. In Figure 9.3 let’s assume that
we have a hierarchical P2P network composed of ten worker nodes, one supervi-
sor node and an xDFS node. Also, suppose that 21 tasks have been submitted by
a client to the supervisor. The designed middleware has to distribute tasks evenly,
maintain the load-balancing issues amongst network nodes as P2P, and execute them
on remote nodes. The node s just knows that there are two worker nodes on its
underneath, each of which has several sub-nodes; therefore, it distributes 10 and
11 of these 21 jobs respectively between nodes n1 and n6 (to calculate how many
sub-nodes of a node there are, we might make use of queries as multicast commu-
nications). Distribution of a work unit that is declared as an xThread abstraction
is performed by the Parvicursor platform. Communication is done through the PSI
interface between two nodes.

This distribution process is repeated for the whole lower-level nodes of the hier-
archical topology. After completing the computations, results are returned to their
previous level until all the results are gathered at the supervisor node. If computa-
tions require shared memory for Inter-Process Communication (IPC) purposes, one
can put an extra node n11 to use where the xDFS service is running and provides
remote pipe-based IPC mechanisms. In this system, fulfilling the load-balancing

Figure 9.3 Implementation and deployment of a hybrid hierarchical distributed P2P middleware
constructed by the Parvicursor platform.

s

Supervisor node

n1 n6

n7 n8

n9n10

n2

n3

n4 n5

Worker nodes

10 11

2
22

6

2

22

2 2

1

1 2

2

5

2

2

2

xD
FS for IPC

n11

Design of Grid/Cloud Computing and HPC Systems ◾ 287

problem must be performed through a special middleware that is implemented atop
the Parvicursor platform. The Parvicursor platform supports fault tolerance directly
in the xThread service between two nodes. Management of this facility should be
done by designed middleware, which we will address in Section 9.4. As seen in this
middleware, nodes n11 and s together function as a central controller whilst the
worker nodes have been arranged as decentralised components, so we can conclude
that this architecture realises a hierarchical hybrid P2P network.

9.4 xThread Abstraction: The Distributed Multi-threaded
Programming Model Proposed by Parvicursor Platform
for Distributed Systems

In this section, we introduce distributed multi-threading which relies on the xThread
abstraction in the Parvicursor platform. Assume, in Figure 9.2, we are going to send
a collection of threads from node i to the remote node j to execute and to wait on
the completion of the remote code execution. xThread abstraction gives a rich set of
operations, features, and controls over the established session to the developers. The
conceptual functionality of xThread is similar to DotThreading from the DotGrid plat-
form in [1] but with major differences. Since DotThreading had been implemented
on a virtual machine platform (.NET CLR) with internal .NET Framework features
employed, we could not port this abstraction directly into native code with the help
of the Parvicursor.NET Framework. Hence, xThread abstraction emerged and devel-
oped based on native code from scratch. First, let’s review how a client-side user can
compile and run a program to harness the power of distributed multi-threading.

Figure 9.4 illustrates the client-side compilation process for distributed multi-
thread programs depending on the xThread abstraction in the Parvicursor platform.
The threads intended to be executed on remote nodes must inherit from the base class
xThreadBase (interface) and implement its methods. The class MyThreadClass’s
implementation has to be compiled into a dynamic link library (DLL) file in the
Windows OS or a shared object (SO) file in Unix-like OSs such as Linux. This gener-
ated shared file is passed to an instance of the class xThreadCollection within
the function main() in the main program, and we use the class xThreadClient,
for which Table 9.1 lists the description of the class’s methods and constructor, to
execute the threads on a remote xThread server. Finally, all compiled files converted
into object files are linked to an executable by a linker program. The OS loader
loads and executes this file, and the xThread runtime sends the thread instances for
execution to a remote node. If an error occures in the entire xThread execution or
its methods, an exception is thrown, and the program is notified of the error; upon
receiving this error, the code should decide how to deal with the situation based on
the type of the raised exception for the correct behaviour of the system.

The base class xThreadBase is a key object to work with xThread abstraction
based on polymorphism concepts in object-oriented languages like C++ and C#. The
class xThreadBase is usually referred to as an abstract class (or its equivalent in C#
language, the interface class) because all of its methods are declared as virtual mem-
ber functions. A pure virtual method is a virtual function that shall be implemented

288 ◾ Implementing Parallel and Distributed Systems

Figure 9.4 The client-side compilation process for distributed multi-threading relies on the
xThread abstraction in the Parvicursor platform.

Table 9.1 The Constructor and Methods of the xThreadClient Class in Parvicursor.
NET Framework

Name Description

xThreadClient(xThreadColl
ection *collection, const
String &xThreadServerAddress,
NetworkCredential *nc, bool
secure, ArrayList *errors)

Instantiates a new object from the xThreadClient
class. The argument collection specifies
a set of xThread-based threads that must be
run in a remote node with the associated
xThreadServerAddress address and nc
authentication information. The parameter errors
stores the exception instances that occurred in the
xThread server. After using the array list errors,
we must free the allocated memory within every
element of the list.

void Run() Asynchronously executes the xThreadClient
instance by creating a local thread as a detached
state.

void
WaitForSessionInitiation()

Waits until the remote xThread session on the
server begins.

(Continued)

Design of Grid/Cloud Computing and HPC Systems ◾ 289

Name Description

bool get_IsAlive() Gets a value indicating the execution status of the
current xThread session.

void SuspendAllThreads() Either suspends all the remote threads or has no
effect if all the remote threads have already been
suspended.

void ResumeAllThreads() Resumes all remote threads that have already been
suspended.

void SuspendOneThread(Int32
index)

Either suspends the remote thread specified by
index or has no effect if the remote thread has
already been suspended.

void ResumeOneThread(Int32
index

Resumes the remote thread specified by index that
has already been suspended.

void
SyncReceiveOneThread(Int32
index)

Executes a checkpoint operation on a remote
thread specified by index and synchronises the
data of the local class instance derived from the
xThreadBase class in the client with its remote
instance on the server.

void SyncSendOneThread(Int32
index)

Performs a restore operation on a remote thread
specified by index and synchronises the data
of the remote class instance derived from the
xThreadBase class on the server with its local
instance in the client.

void AbortOneThread(Int32
index)

Causes a remote thread specified by index to begin
the process of termination. Calling this method
usually terminates the remote thread immediately.

void TerminateSession() Terminates the current xThread session and
releases the whole consumed resources.

void
AuxiliaryMehtodOneThread(Int32
index, In const void *input,
Int32 inputLength, Out
void *output, Out Int32
*outputLength)

Invokes the AuxiliaryMehtod() method of the
interface xThreadBase class on the remote node,
specified by index, in the xThread server. The
parameter input is sent to the server based upon
its length inputLength in order to invoke the
AuxiliaryMehtod() method. The programmer
is responsible for properly adjusting the address
in that the AuxiliaryMehtod() method’s output
is stored, along with its length outputLength.
The Parvicursor platform conveys the parameter
output to the client-side xThread code and
makes it accessible to the developer through the
AuxiliaryMehtodOneThread() method. This
method realises xRMI concept, which will be
described in Section 9.6, in xThread abstraction.

Table 9.1 (Continued) The Constructor and Methods of the xThreadClient Class in
Parvicursor.NET Framework

290 ◾ Implementing Parallel and Distributed Systems

by an inherited class (i.e., the classes derived from the abstract class xThreadBase
in the Parvicursor platform), if and only if the derived class is not abstract itself.
Classes containing pure virtual methods are referred to as the term abstract, which
cannot be directly instantiated. A subclass of an abstract class can only be instanti-
ated directly if all inherited pure virtual methods have been implemented by the
class or a parent class. In fact, such a feature in the xThreadBase class makes the
programmer implement all methods of this class that will be invoked at runtime by
the xThread platform. In C++ language, pure virtual functions are declared using the
specifier =0, as shown in the prototype of the xThread class’s methods. In Section
9.5, we will explain several practical examples to work with the xThread abstraction,
and how to derive from the interface xThreadBase class and implement its pure
virtual methods.

Carefully see the descriptions of the pure virtual functions related to the abstract
xThreadBase class in Figure 9.4. The code or algorithm implementation that will be
executed as a distributed thread in a remote server must be placed into the method
Start()’s body. The remote xThread server invokes this method for the first time
to run a thread remotely. Memory allocation is done inside the DLL or SO file,
which contains the implementation of the derived class, through a library by an OS;
therefore, the server, which loads this DLL/SO file and does not know the type of
the memory allocator used, must use two methods of AllocateDllMemory() and
FreeDllMemory() necessarily implemented in the derived class from the base class
xThreadBase. Parvicursor platform takes advantage of these two methods for allocat-
ing and releasing the memory that is needed during loading the objects from DLL/
SO files at runtime to avoid OS loader-lock deadlock (LLD) concerning DLL files. To
describe the problem incurred by LLD, we shortly express the basics of DLL/SO files;
of course, since xThread loads the implementation of threads from DLL/SO files, it is
worth discussing these basics as well.

A DLL/SO file is shared codes and data that an application can load and call at
runtime. A DLL/SO file typically exports a collection of routines to be employed in
programs and contains other routines for internal use. This technique allows code
reuse (and particularly its use for distributed threads over a network of computers
based upon the Parvicursor platform) by multiple programs to share a common fea-
ture in a library and to load them on demand. Advantages of using DLLs/SOs include
reduced code footprint, using less memory due to single-copy-sharing, flexible devel-
opment and testing, modularity, and functional isolation. Creating DLL/SO files leads
to several challenges for developers. DLLs/SOs have no system-enforced versioning.
When multiple versions of a DLL/SO exist on the system, the ease of being overwrit-
ten coupled with the lack of a versioning schema creates dependency and API con-
flicts. Complexity in the development environment, the OS loader implementation,
and the DLL/SO dependencies have created fragility in load order and application
behaviour.

The loader lock is a process-wide synchronisation primitive that the loader pro-
gram depends on to guarantee the serialised loading of DLLs/SOs. Each function that
has to read or modify the loader-library data structures for each process must acquire
this lock before performing such an operation. Loader lock is recursive, which means
that it can be re-acquired by the same thread. Inconvenient synchronisation within
a DLL/SO can cause deadlocks for an application or access to data or code in an

Design of Grid/Cloud Computing and HPC Systems ◾ 291

uninitialised DLL/SO. Calling certain functions from inside or outside a DLL/SO cre-
ates such problems.

The methods Serialize() and DeSerialize() function as a bridge between
xThread runtime and the class implementation derived from the interface xThread
Base. xThread runtime to receive the serialised data of the MyThreadClass instance
first allocates a DLLBuffer by calling the AllocateDllMemory() method, and
then passes it to the Serialize() method, and this method implemented by the
programmer performs a copy operation of the serialised data into DLLBuffer. The
length of the filled buffer is stored in the pointer len’s address. Similar mecha-
nisms are performed for the DeSerialize() method. The protected members
serializer and deserializer have been considered as two internal objects
to be used inside the Serialize() and DeSerialize() methods. Programs
that have to use critical sections inside the Start() method should release them
within the method ReleaseCriticalSections(), which is called before invok-
ing the Deconstructor() method in the xThread server at runtime. The method
MethodAuxiliaryMehtod() that utilises a powerful remote procedure call(RPC)/
remote method invocation (RMI) style for xThread abstraction will be described in
Section 9.6.

Now that we have been sufficiently acquainted with the compilation process of
client-side xThread programs from a developer’s point of view, we focus on the imple-
mentation details of the xThread abstraction on both client and server sides. Figure 9.5
shows the Communicating Finite-State Machine (CFSM) of the xThreadClient class

Figure 9.5 The client-side CFSM implementation of the xThreadClient class in the
Parvicursor platform.

Connects to server

Authentication

Authorized

xThread Channel
selection

Session
Ended

Not
authorized

Not
supported

Have two channels
already been
established?

Sends xThread
request header

N
o

Sends
xThreadCollection
data over xThread

Channel

Event dispatcher over
xThread Channel

xThread Channel is not readable.

All remote threads were completed.
SuspendAllThreads();

ResumeAllThreads();

SuspendOneThread(Int32 index);

ResumeOneThread(Int32 index);

SyncReceiveOneThread(Int32 index);

SyncSendOneThread(Int32 index);

AbortOneThread(Int32 index);

TerminateSession();

xThread Control Channel

xThread Channel

main() Thread for
xThread Control Channel

1

2

3

4

5

6

7

292 ◾ Implementing Parallel and Distributed Systems

implementation in the Parvicursor platform. The red dotted rectangular boundaries
execute concurrently in two separate threads of control. In the proposed xThread
abstraction during each xThread session, in which n remote threads are running, two
channels are created between the client and server: xThread Channel and xThread
Control Channel. Events that take place in the server are reported to the client over
the xThread Channel. Clients can issue frequent event-driven commands at the server
side over the xThread Control Channel to accomplish and execute the functionalities
offered by the xThread abstraction. In the current Parvicursor version, only two
events have been defined over an xThread Channel, AllThreadsCompleted and
TerminateSession; the former indicates that the execution of the whole remote
threads has already been completed, and the latter notifies the client that the server
is interested in terminating the xThread session abnormally (and therefore the client
must inform the thread main(), which is controlling the current xThread session, of
this occurrence).

In step 2, upon establishing the connection to the server the client performs the
authentication process. If the client is allowed, it requests a new xThread session
from the server in stage 3 (as noted in [2] and Chapter 10, the client can ask for vari-
ous modes from the server such as xDFS, xThread, etc.). These stages are carried out
for both channels (steps 1–4); in state 5, threads’ data are packed into a class called
xThreadCollection (every element within this collection contains some informa-
tion such as the serialised data of the instance derived from the class xThreadBase
and the main binary DLL/SO file) and sent to the server, and an xThread session
actually begins. The full details of establishing a session between a client and a server
within the Parvicursor platform are discussed in [2] and Chapter 10, and then we omit
to debate them once more herein. In state 6, to check the events that happened over
the xThread Channel, a socket event-dispatcher is used (like the select() system
call that has been extensively used in the xDFS and DotDFS implementations), and
the CFSM flow is transferred to one of the steps 4 or 6 (the event-dispatcher itself)
based on two events, which were described in the previous paragraph, received from
the server. In the function main(), which the main flow of the program executes in
its thread, we can perform a variety of commands over the xThread Control Channel.
The descriptions of these commands, which are accessible as class member methods
in the xThreadClient class, are listed in Table 9.1. Two of the unique features that are
realised by introducing the xThread Control Channel are the capabilities of check-
point (SyncReceiveOneThread() method) and restore (SyncSendOneThread()
method) operations in the xThread abstraction.

In fact, these two methods allow the data to be synchronised within any favou-
rite time interval between two xThread instances as a client and a server. Computer
systems, particularly distributed systems, are susceptible to hardware and software
faults, and the probability that a machine in a network fails before the completion of
a running thread increases in proportion to the total thread execution time. We can
use checkpointing and restore operations to resolve this problem. This mechanism
is a very lightweight operation in the xThread abstraction. For example, when a
checkpoint command is received on the server, the server-side xThread runtime sus-
pends the thread execution, serialises the data associated with the MyThreadClass
instance by calling the Serialize() method and sends it to the client (on the
other hand, the client data is synchronised with the server at this time), and restores

Design of Grid/Cloud Computing and HPC Systems ◾ 293

the execution of the suspended thread. Since the user in the Serialize() and
DeSerialize() methods can directly serialise or deserialise what is needed (of
course, the programmer to use the checkpoint and restore functionalities must con-
sider this case for storing the context of his/her code inside the Start() method’s
body), only the required data are transferred between the client and server, and
thus the overall system performance improves dramatically due to saving the band-
width and the increase in communication throughput. By combining features of two
SyncReceiveOneThread() and SyncSendOneThread() methods, using critical
sections and condition variables available in the Parvicursor platform inside the
Start() method, and adding other events over the xThread Channel, one can build
a very complicated system with functionalities similar to an asynchronous two-way
RPC (the two-way feature means that every node during an xThread session can
functions as a client or a server at any moment in time) and a Message Passing
Interface (MPI)-like scenario with just two nodes. We don’t discuss this subject,
because it is beyond the scope of this book and the high complexity of such a sys-
tem. Instead, we will examine somewhat a simpler variant called xRMI atop xThread
in Section 9.6.

In a nutshell, we describe the xThread server, which encompasses the most com-
plex part of the xThread architecture inside itself, as shown in Figure 9.6. The hybrid
Parvicursor server upon establishing an xThread session transfers the CFSM state
from 7 to 9 (steps 1 through 8 have already been discussed in [2] and Chapter 10 com-
prehensively). In stage 9, the xThreadCollection pack sent from the client over
the xThread Channel is read through the PSI interface, we assume that the number of
members of the collection is equal to n. Stages 10–13 executes for i=1 to i=n. In step
10, the DLL/SO file that is stored within a file with a GUID specified by the client for
every element of the xThreadCollection object (these files are stored in a directory
named to the GUID of the current xThread session) is loaded by the LoadLibrary()
system call in Windows OS or the dlopen() system call in Unix-class OSs at run-
time. Inside the DLL/SO file, the programmer must implement a function with the
prototype void *xThreadBase_creator(). The return value of this function has
to be the address of an instance of the MyThreadClass class. In stage 11, the server
finds the function address within the DLL/SO file through the GetProcAddress()/
dlsym() system call. Now that we have the main MyThreadClass instance pre-
pared, in state 12 the server deserialises the serialised data received from the client
by calling the DeSerialize() method. In step 13, a thread is created and takes the
Start() method’s execution of the MyThreadClass instance. Stages 15, 17, and
18 respectively implement the xThread Channel and the xThread Control Channel.
As seen, stages 14 through 18 have been placed into an infinite loop, and also these
two channels are controlled through two separate event dispatchers associated with
timeouts. For instance, if the command TerminateSession is received from a cli-
ent over the xThread Control Channel, then the CFSM state moves to the final state
(i.e., state 20) and the xThread session terminates.

At the end of this section, we point out a few remarks about the xThread abstrac-
tion. xThread facilitates a client (e.g., running on a Windows operating system) to
be able to easily run a thread on any type of remote OS besides the target OS
(e.g., on a remote Linux OS), which this can be done by compiling the instance
MyThreadClass into two different DLL and SO files, and vice versa. Therefore, to

294
◾

Im
p

lem
en

tin
g Parallel an

d
 D

istrib
u

ted
 System

s

Figure 9.6 CFSM implementation of the xThread server in the Parvicursor platform.

Session
Ended

Accepts client
connection

Authentication

Channel
selection

Receives xThread
header

Has the session
already been

created?

Creates client session and
add client channel to session

hash table

Waits for two
parallel channels

Connected channels
are not equal to 2.

Adds New
client channel to

session hash table

No

Yes

Supported

Not
supported

Authorized

Not
authorized

derucco
rorrE

Timeout

1

2

3

4

5

6

7

8 Reads
xThreadCollection

over xThread
Channel

Loads DLL/SO file via
LoadLibaary() /dlopen()

Deserializes data for
xThreadBase instance

Creates a new local
thread to execute

xThreadBase->Start()
method

If i is not equal to n.

i=1

i++

If i is equal to n.

Checks whether all
threads has been

finished?

Event dispatcher
with timeout over
xThread Channel

Writes
AllThreadsComplet
ed event to xThread

Channel

Event dispatcher with
timeout over xThread

Control Channel

Reads a command
from xThread Control
Channel and executes

it

SuspendAllThreads();
ResumeAllThreads();
SuspendOneThread(Int32 index);
ResumeOneThread(Int32 index);
SyncSendOneThread(Int32 index);
AbortOneThread(Int32 index);
TerminateSession();

No

xThread Channel
is writable.

xThread Control Channel is not readable.

xThread Control
Channel is readable.

Yes

Gets the address of
xThreadBase instance

constructor via
GetProcAddress() /dlsym()

Con
ne

cte
d c

ha
nn

els
 ar

e e
qu

al
to

2.

9

10

11

12 13

14

15

16

17

18

19

20

Design of Grid/Cloud Computing and HPC Systems ◾ 295

perform computations, the network can be thought of by xThread heterogeneously,
but the user notices the distributed network as a homogenous entity. We can develop
distributed and parallel programs with MPMD and SPMD architectures through the
xThread interface. In xThread abstraction, the framework code is separated from the
algorithm code, but in some systems like MPI, the framework code must be embed-
ded into the algorithm source code. As a result, xThread can extremely reduce the
code complexity chiefly due to its high compatibility with the conventional, local
multi-thread programming styles.

9.5 Practical Examples Using the xThread Abstraction
9.5.1 Example 1: A Simple Sum of Two Numbers Based on a Distributed

P2P Architecture with Two Nodes

In our first example, we implement the sum of two numbers on two distributed
nodes. The first node (as the client) sends the sum code request to the second node
(as the server) as a DLL/SO file through the xThread abstraction and prints the result
back into the console after completing the remote code execution. As illustrated in
Figure 9.4, to develop a distributed program that relies on xThread, we must create
a DLL/SO file implementing the distributed algorithm code and an executable pro-
gram which controls the flow of the remote thread execution. The DLL/SO code of
this example appears in Figure 9.7. The class Sample has inherited from the class
xThreadBase, and then we must implement all of the pure virtual methods from
the abstract class xThreadBase. Carefully pay attention to the descriptions within
the codes. Whereas the Parvicursor platform, at first, has to load the sent object
from a client on the server node at runtime, each DLL/SO implementation must
contain an exported function named xThreadBase_creator(). As seen in lines
128 through 140, a reference to the object instantiated from the class Sample is
returned. This function uses the class Sample’s constructor implemented in line 37
because the Parvicursor platform has no information about the constructor in line 5
or the internal implementation of the class Sample when it is calling the function
xThreadBase_creator(). In the method Start(), in which we must place the
implementation of our code, we simply add two numbers x and y and put the result
into the variable z. The constructor in line 22 in the client is used to initialise the
class Sample by the local native-code runtime. Within the method Serialize()
in line 95, first, we compute the maximum length of bytes of the class Sample that
must be transferred between two nodes based upon POPI over PSI. The allocation
and de-allocation of two objects serializer and deserializer should always
be performed respectively inside the methods Serialize() and DeSerialize().
In lines 105–107, we serialise our needed data members; as mentioned in the pre-
vious section, we must benefit from the static method MemoryCopy() of the class
xThreadBase for mapping the C++ runtime memory with the used memory inside
the DLL/SO file. The pointer DllBuffer stores the serialised contents of our class
data members that must be transferred by the Parvicursor platform between two
nodes. The function MemoryCopy() itself allocates the DllBuffer and the pro-
grammer does not need to allocate it. To deserialise our class data members, we must

296 ◾ Implementing Parallel and Distributed Systems

Figure 9.7 The DLL/SO code for the sum of two numbers is distributed on two nodes.

1: class Sample_API Sample : public xThreadBase, public Object {
2: public:
3: Int32 x, y, z;
4: public:
5: Sample(Int32 x, Int32 y);
6: Sample();
7: ~Sample();
8: void Start();
9: void Serialize(char **DllBuffer, Int32 *len);

10: void DeSerialize(char **buffer, Int32 *len);
11: void FreeDllMemory(void *mem);
12: void *AllocateDllMemory(UInt32 size);
13: };
14:
15: // Important notice:

16: // To run your code correctly, please carefully read the template-like code comments.

17: // You MUST not use global variables in this shared library (DLL or SO),

18: // because it causes loader-lock deadlock at the OS kernel.

19: // You MUST not create threads in this class and MUST not use any

20: // synchronisation mechanism such as mutexes, semaphores and critical sections

21: // (if used, provide releasing the locks within the deconstructor).

22: Sample::Sample(Int32 _x, Int32 _y) {
23: this->x = _x;
24: this->y = _y;
25: this->z = 0;
26: // Here, you MUST set the values of serializer and deserializer pointers to null,

27: // otherwise your program will have to crash.

28: // SURE you have allocated all memories here and provided the de-allocation of them

29: // in the ~Sample() deconstructor. This means YOU must not allocate memory in Start() method

30: // with new operator or malloc() function call.

31: // For example, if you need an opened file handle in Start() method,

32: // you MUST provide closing the file handle in ~Sample() deconstructor.

33: this->serializer = null;
34: this->deserializer = null;
35: }
36:
37: Sample::Sample() {
38: this->x = 0;
39: this->y = 0;
40: this->z = 0;
41: // Here, you MUST set the values of serializer and deserializer pointers to null,

42: // otherwise your program will have to crash.

43: this->serializer = null;
44: this->deserializer = null;
45: }
46:
47: Sample::~Sample() {
48: // Here, you MUST release the allocated C++ stack memory for

49: // Serializer and DeSerializer objects to avoid memory leaks for your entire multi-threaded application.

50: if(this->serializer != null) {
51: delete this->serializer;
52: this->serializer = null;
53: }

(Continued)

Design of Grid/Cloud Computing and HPC Systems ◾ 297

54: if(this->deserializer != null) {
55: delete this->deserializer;
56: this->deserializer = null;
57: }
58: }
59:
60: void Sample::Start() {
61: // NOTE: You MUST never use the Thread::Sleep() or other thread sleep APIs in this method.

62: // Because it may cause loader-lock deadlock in the OS kernel.

63: // Don't define any variable that allocates memory from the heap in this method. Use instead

64: // the class variable members to allocate memory from the heap. Don't declare local System::String

65: // primitive data type in this method since it allocates memory from the heap.

66: // This method is very useful in a pure compute-bound loop without Sleep() for execution

67: // of scientific algorithms.

68: this->z = this->x + this->y;
69: printf("Start\n");
70: printf("x: %d, y: %d, z: %d\n", this->x, this->y, this->z);
71: }
72:
73: void Sample::FreeDllMemory(void *mem) {
74: // You MUST implement this method since Parvicursor.NET Framework uses it extensively.

75: // If the memory has been allocated by the malloc() function, you MUST call here free() function.

76: // If the memory has been allocated by C++ new operator, you MUST call here C++ delete operator.

77: if(mem != null) {
78: delete mem;
79: mem = null;
80: }
81: }
82:
83: void *Sample::AllocateDllMemory(UInt32 size){
84: // You MUST implement this method since Parvicursor.NET Framework uses it extensively.

85: // If the memory has been allocated by the malloc() function, you MUST call here the free() function.

86: // If the memory has been allocated by C++ new operator, you MUST call here C++ delete operator.

87: return (void *)new char[size];
88: }
89:
90: void Sample::Serialize(char **DllBuffer, Int32 *len) {
91: // Don't change the values of len and DllBuffer variable pointers, since your program will have to crash.

92: // These variables are to be used by Parvicursor.NET Framework for high-performance buffer transfers to

93: // remote (or local) cross-process boundaries by Parvicursor Object-Passing Interface (POPI).

94:
95: Int32 bufferSize = sizeof(this->x) + sizeof(this->y) + sizeof(this->z); // To avoid successive memory

allocation overhead, use the pre-allocated memory and

96: // increase POPI performance;

97: // you MUST consider keeping constant the bufferSize

length in mind.

98: // Also, you can select a default size that you guess is always

99: // greater than or equal to your real objects size. (e.g., a

large 1MB buffer size)

100: if(this->serializer == null)
101: this->serializer = new Serializer(bufferSize);
102: else
103: this->serializer->Reset(bufferSize);

Figure 9.7 (Continued) The DLL/SO code for the sum of two numbers is distributed on two
nodes.

(Continued)

298 ◾ Implementing Parallel and Distributed Systems

use the method DeSerialize(), which has an essential difference from the former
method, the buffer variable is allocated by the Parvicursor platform, and it is not
required to use the function MemoryCopy() (which has some overhead due to an
extra copy operation) at the end of this method.

We have already created our DLL/SO file, so we will explain how to write the
threads’ distributor node. Figure 9.8 shows the distributor program. In lines 8 and 9,
two objects of the class Sample have been instantiated; in lines 12 and 13, we add
these objects to the instance xtc, of course, by specifying the DLL/SO file that previ-
ously has been compiled and created for distributed execution on the remote node.
Now, we must connect to the remote xThread server and send the threads taken in

104:
105: this->serializer->Write<Int32>(this->x);
106: this->serializer->Write<Int32>(this->y);
107: this->serializer->Write<Int32>(this->z);
108:
109: xThreadBase::MemoryCopy(DllBuffer, len, this->serializer); // Mapping between C++ memory and DLL C

Runtime memory.

110: // If this line of code is removed at the end of this method

implementation,

111: // your program will have to crash.

112: }
113:
114: void Sample::DeSerialize(char **buffer, Int32 *len) {
115: // Don't change the values of len and buffer variable pointers, since your program will have to crash.

116: // These variables are to be used by Parvicursor.NET Framework for high-performance buffer transfers to

117: // remote (or local) cross-process boundaries by Parvicursor Object-Passing Interface (POPI).

118: if(this->deserializer == null)
119: this->deserializer = new DeSerializer(*buffer, *len);
120: else
121: this->deserializer->Reset(*buffer, *len);
122:
123: this->x = deserializer->Read<Int32>();
124: this->y = deserializer->Read<Int32>();
125: this->z = deserializer->Read<Int32>();
126: }
127:
128: #ifdef __cplusplus // If used by C++ code,

129: extern "C" { // we need to export the C interface

130: #endif
131: // You MUST not use global variables in this shared library(DLL or SO),

132: // because it causes loader-lock deadlock at the OS kernel.

133: xThreadBase_DLL_Export void *xThreadBase_creator() { // Don't change this function name and its

declaration (prototype),

134: // since Parvicursor uses from this native function

135: // to locate your exported DLL function at the runtime.

136: Sample *s = new Sample(); // Here, You MUST call a new operator and instantiate your class to be run by

Parvicursor.

137: return (void *)s;
138: }
139: #ifdef __cplusplus
140: }
141: #endif

Figure 9.7 (Continued) The DLL/SO code for the sum of two numbers is distributed on two nodes.

Design of Grid/Cloud Computing and HPC Systems ◾ 299

Figure 9.8 The distributor program for the sum of two numbers which relies on xThread
abstraction.

1: NetworkCredential nc = NetworkCredential(“user", "pass");
2: ArrayList errors = ArrayList();
3:
4: int main(int argc, char *args[]) {
5: xThreadCollection *xtc = null;
6: xThreadClient *client = null;
7: try {
8: Sample s1 = Sample(10, 20);
9: Sample s2 = Sample(30, 40);

10: xtc = new xThreadCollection();
11: #if defined WIN32 || WIN64
12: xtc->AddNewThreadInstance(&s1,

"C:/Samples/xThreadAddNumbersDispatcher/Debug/xThreadSampleDLL.dll");
13: xtc->AddNewThreadInstance(&s2,

"C:/Samples/xThreadAddNumbersDispatcher/Debug/xThreadSampleDLL.dll");
14: // From a Windows machine we might run a remote Linux xThread thread instance!!!!

15: //xtc->AddNewThreadInstance(&s,

"/root/projects/Samples/xThreadAddNumbersDispatcher/Debug/libxThreadSampleDLL.so");

16: #else
17: xtc->AddNewThreadInstance(&s1,

"/root/Samples/xThreadAddNumbersDispatcher/Debug/libxThreadSampleDLL.so");
18: xtc->AddNewThreadInstance(&s2,

"/root/Samples/xThreadAddNumbersDispatcher/Debug/libxThreadSampleDLL.so");
19: #endif
20: client = new xThreadClient(xtc, "localhost", &nc, false, &errors);
21: client->Run();
22: client->WaitForSessionInitiation();
23: while(client->get_IsAlive()) {
24: if(client->get_AreAllThreadsCompleted()) {
25: for(Int32 i = 0 ; i < xtc->get_Count() ; i++)
26: client->SyncReceiveOneThread(i);
27: client->TerminateSession();
28: cout << "s1.x: " << s1.x << " s1.y: " << s1.y << " s1.z: " << s1.z << endl;
29: cout << "s2.x: " << s2.x << " s2.y: " << s2.y << " s2.z: " << s2.z << endl;
30: }
31: Thread::Sleep(1);
32: }
33: }
34: catch(Exception &e) {
35: printf("%s\n", e.get_Message().get_BaseStream());
36: }
37: catch(...) {
38: printf("An unknown error was occurred.\n");
39: }
40: for(register Int32 i = 0 ; i < errors.get_Count() ; i++) {
41: Exception *e = (Exception *)errors.get_Value(i);
42: printf("Error%d: %s\n", i + 1, e->get_Message().get_BaseStream());
43: delete e;
44: }
45: if(client != null)
46: delete client;
47: if(xtc != null)
48: delete xtc;
49: return 0;
50: }

51: // LD_LIBRARY_PATH=/Parvicursor/Samples/xThreadAddNumbersDispatcher/Debug/:$LD_LIBRARY_PATH

300 ◾ Implementing Parallel and Distributed Systems

the xThreadCollection instance for execution; this work is done in line 20. Then,
we start the execution process in line 20, and in line 22 we wait until the xThread
session is completely established for the request of two remote threads’ execution. In
an infinite while loop, we check the completion status of all remote threads (which
here just exists two threads of control in this example) as long as the object client
is alive. Provided that there is completion of all remote threads, we carry out the
synchronisation of the local object data in a finite for loop by invoking the method
SyncReceiveOneThread() per remote thread in lines 25 through 26 (in other
words, this method lets us copy the sum result stored in the variable z of the remote
node into the corresponding local variable z). In line 27, by calling the method
TerminateSession() of the object client, we finish the xThread session involv-
ing the two remote threads. In lines 28 and 29, the calculated values of the variable
z are printed to the console. In lines 40 through 44, we print likely exceptions that
occurred during the xThread session. Note that in line 43 the ArrayList elements
must be freed since the memory of these elements has already been allocated by the
Parvicursor platform. In lines 45 through 48, we release the allocated resources, and
the program terminates.

The code of this example is located in “/Parvicursor/Parvicursor/
Samples/xThreadSampleDLL” and “/Parvicursor/Parvicursor/Samples/
xThreadAddNumbersDispatcher” from the companion materials of the book.
It is necessary to note a point about running the executable program xThread
AddNumbersDispatcher.exe in Unix-class operating systems (this must be con-
sidered for execution of all programs that make use of the xThread abstraction).
Before running the program, we need to tell the OS loader where the SO file libx
ThreadSampleDLL.so is located, because it must be loaded by the loader at first.
To declare this file to the loader is done by a shell command shown in line 51 of
Figure 9.8.

9.5.2 Example 2: Calculating the Value of the Number π to n Decimal
Places Grounded on a Distributed P2P Master/Slave Architecture
with m+1 Nodes

As the last and second example using the xThread abstraction, we will examine the
design and implementation of a P2P master/slave architecture to compute the value
of π to n decimal places. In the twentieth century, mathematicians and computer sci-
entists discovered new methods to compute the number π with many digits. Scientific
applications generally require no more than 40 digits of this number. Therefore, the
primary motivation for these calculations is the human tendency to break records,
but these vast computations have been also used to evaluate the computing power
of supercomputers and high-precision multiplication algorithms. One of these algo-
rithms to compute the nth digit of π is described in [1]. Let’s consider Figure 9.9,
which visualises the network topology used to calculate the number π based on a
distributed P2P master/slave architecture. In this topology, the master node through
the xThread abstraction distributes computational work units amongst worker nodes.
To extend the expressed algorithm, we can simply compute the values of digits ith

Design of Grid/Cloud Computing and HPC Systems ◾ 301

to jth in each worker node. The calculation results are sent back to the master node
by the Parvicursor platform.

Like Example 1, the implementation of this example also includes developing a
DLL/SO file and an executable program. Figure 9.10 shows the code for the DLL/SO
file. Those parts shown in dotted lines have been omitted to save space in the code.
The algorithm implementation of reference [1] has been illustrated with dots as
well, i.e., the method CalculatePiDigits(). The parameters startDigitNum
and numDigits of the class xThreadPiCalc indicate i and j=i+numDigits,
respectively. Since the constructor of line 10 executes in the client (the master
node), the string result, which stores the computation result in the related inter-
val, must be allocated with enough memory space equal to the desired number of
digits in line 13. This memory allocation on the server (the worker nodes) is done
inside the method DeSerialize(). The variable strLen stores the current length
of the string result. Within the implementation of the method Start() in lines
36–39 with calling the function CalculatePiDigits(), which implementation
has been removed from the figure, we calculate all of the needed digits of π in a
loop and concatenate them to the end of the string result through the ANSI C string
function strcat(). The implementation of the two methods Serialize() and
DeSerialize() are very similar to Example 1, and so we avoid describing them
again.

At this point, we discuss the implementation of the dispatcher program to cal-
culate the number π as demonstrated in Figure 9.11. In this example, it is supposed
that the number of worker nodes is equal to 2 and we want to compute the number
π from the digit from to the digit to. The code of the parallel algorithm as seen in
lines 9 through 13, first, uniformly creates the remote threads and inserts them into
the array list xthreads. A small middleware is implemented in lines 24–64 in that
the threads inside xthreads are equally segregated amongst worker nodes. In
lines 61 through 81, we start the execution of the remote threads similar to what
was presented in Example 1. Upon computation completion, the results are carried
into the output per remote thread. The codes of this example are located in the
directories “/Parvicursor/Parvicursor/Samples/xThreadPiCalcDLL” and
“/Parvicursor/Parvicursor/Samples/xThreadPiClacDispatcher” from
the companion resources of the book.

Figure 9.9 The network topology to calculate the number π based on a distributed peer-to-peer
master/slave structure using the xThread abstraction.

1

2

3
4

5

6

Master node

Worker nodes
[i, …., j]

xThread

302 ◾ Implementing Parallel and Distributed Systems

1: class xThreadPiCalc_API xThreadPiCalc : public xThreadBase, public Object {
2: public:
3: Int32 startDigitNum;
4: Int32 numDigits;
5: Int32 strLen;
6: char *result;
7: ...
8: };
9:

10: xThreadPiCalc::xThreadPiCalc(Int32 startDigitNum, Int32 numDigits) {
11: this->startDigitNum = startDigitNum;
12: this->numDigits = numDigits;
13: this->result = new char[numDigits + 1];
14: this->strLen = 0;
15: ...
16: }
17:
18: xThreadPiCalc::xThreadPiCalc() {
19: this->startDigitNum = 0;
20: this->numDigits = 0;
21: this->result = null;
22: ...
23: }
24:
25: xThreadPiCalc::~xThreadPiCalc() {
26: ...
27: if(this->result != null)
28: delete this->result;
29: }
30:
31: ...
32:
33: void xThreadPiCalc::Start() {
34: char retStr[1024];
35: this->result[0] = '\0';
36: for(register Int32 i = 0; i <= Math::Ceiling(this->numDigits / 9) ; i++) {
37: CalculatePiDigits(this->startDigitNum + (i * 9), retStr);
38: strcat(this->result, retStr);
39: }
40: result[this->numDigits] = '\0';
41: this->strLen = this->numDigits;
42: }
43:
44: void xThreadPiCalc::Serialize(char **DllBuffer, Int32 *len) {
45: Int32 bufferSize = sizeof(this->startDigitNum) + sizeof(this->numDigits) + sizeof(this->strLen) +

this->numDigits * sizeof(char);
46: if(this->serializer == null)
47: this->serializer = new Serializer(bufferSize);
48: else
49: this->serializer->Reset(bufferSize);
50: this->serializer->Write<Int32>(this->startDigitNum);
51: this->serializer->Write<Int32>(this->numDigits);
52: this->serializer->Write<Int32>(this->strLen);

Figure 9.10 The DLL/SO code to calculate the value of π on m nodes.
(Continued)

Design of Grid/Cloud Computing and HPC Systems ◾ 303

9.6 The Proof of Concept of the Philosophy behind the
Parvicursor Project as a New Standard to Build the Next-
Generation Distributed P2P Middleware Systems: The
Design and Implementation of a Middleware Supporting
Third-Party Data Transfers in xDFS Framework atop the
Parvicursor Platform

In this section, we design and implement a limited middleware that relied upon the
Parvicursor platform, which will be deployed and run on three nodes as a perfect
P2P structure. This middleware fulfils third-party data transfers for the xDFS frame-
work based on the combination of xDFS API features and xThread abstraction. Third-
party transfers allow performing remote transmissions between two servers that in
turn have been started by a local client. Such a feature does not directly exist in the
xDFS protocol specification, because the protocol solely specifies direct communica-
tion between an xDFS client and server for high-throughput file transmissions and
lacks a channel control concept contrary to the FTP and GridFTP protocols. In such
a scenario, three entities are involved: a client, who only arranges data transfers and
does not participate in it, and two servers, one of which is sending data to the other.
This scenario is very common, especially in Grid and Cloud environments where we
need to transfer huge data sources between two sites or two data centres for differ-
ent purposes.

First, we examine existing procedures in FTP protocol for third-party transfers
to better understand the strength of xThread abstraction for developing a real P2P

53: if(this->strLen > 0)
54: this->serializer->Write(this->result, this->strLen);
55: xThreadBase::MemoryCopy(DllBuffer, len, this->serializer);
56: }
57:
58: void xThreadPiCalc::DeSerialize(char **buffer, Int32 *len) {
59: if(this->deserializer == null)
60: this->deserializer = new DeSerializer(*buffer, *len);
61: else
62: this->deserializer->Reset(*buffer, *len);
63: this->startDigitNum = deserializer->Read<Int32>();
64: this->numDigits = deserializer->Read<Int32>();
65: this->strLen = deserializer->Read<Int32>();
66: if(this->result == null)
67: this->result = new char[numDigits + 1];
68: if(this->strLen > 0) {
69: deserializer->Read(this->result, this->strLen);
70: this->result[this->strLen] = '\0';
71: }
72: }

Figure 9.10 (Continued) The DLL/SO code to calculate the value of π on m nodes.

304 ◾ Implementing Parallel and Distributed Systems

1: int main(int argc, char *args[]) {
2: ArrayList *xthreads = new ArrayList();
3: const Int32 nodeNum = 2;
4: const String nodes [nodeNum] = {"localhost", "localhost"};
5: const Int32 xThreadPerNodeNum = 2;
6: const Int32 from = 1;
7: const Int32 to = 1000;
8: Int32 physicalxThreads = nodeNum * xThreadPerNodeNum;
9: //--- Parallel Algorithm -----------

10: Int32 total = to - from;
11: Int32 totalPerThread = total / physicalxThreads;
12: Int32 totalPerThread_mod = total % physicalxThreads;
13: Int32 i = 0, one = 0;
14: while(from + i * totalPerThread < total) {
15: if(i != 0)
16: one = 1;
17: xthreads->Add(new xThreadPiCalc(from + i * totalPerThread + one, totalPerThread));
18: i++;
19: }
20: for(register Int32 i = 0 ; i < xthreads->get_Count(); i++) {
21: xThreadPiCalc *temp = (xThreadPiCalc *)xthreads->get_Value(i);
22: printf("startDigitNum: %d numDigits: %d\n", temp->startDigitNum, temp->numDigits);
23: }
24: //--- A small master-slave middleware implementation ----

25: printf("xThreadNum: %d\n", xthreads->get_Count());
26: ArrayList *collections = new ArrayList();
27: register Int32 j = 0;
28: register Int32 current = 0;
29: while(j < xthreads->get_Count() - 1) {
30: xThreadCollection *xtc = new xThreadCollection();
31: for(register Int32 k = 0 ; k < xThreadPerNodeNum && current < xthreads->get_Count() ; k++) {
32: xThreadPiCalc *temp = (xThreadPiCalc *)xthreads->get_Value(j + k);
33: #if defined WIN32 || WIN64
34: xtc->AddNewThreadInstance(temp,

"C:/Samples/xThreadPiClacDispatcher/Debug/xThreadPiCalcDLL.dll");
35: #else
36: xtc->AddNewThreadInstance(temp,

"/root/Samples/xThreadPiClacDispatcher/Debug/libxThreadPiCalcDLL.so");
37: #endif
38: current++;
39: }
40: collections->Add(xtc);
41: j += xThreadPerNodeNum;
42: }
43: Int32 remainder = xthreads->get_Count() % physicalxThreads;
44: if(remainder != 0) {
45: for(register Int32 i = remainder - 1 ; i >= 0 ; i--) {
46: xThreadPiCalc *temp = (xThreadPiCalc *)xthreads->get_Value(xthreads->get_Count() - 1 - i);
47: #if defined WIN32 || WIN64
48: ((xThreadCollection *)collections->get_Value(collections->get_Count() - 1))-

>AddNewThreadInstance(temp, "C:/Samples/xThreadPiClacDispatcher/Debug/xThreadPiCalcDLL.dll");
49: #else
50: ((xThreadCollection *)collections->get_Value(collections->get_Count() - 1))-

Figure 9.11 The program for dispatching threads amongst m nodes depending on a peer-to-peer
master/slave topology.

(Continued)

Design of Grid/Cloud Computing and HPC Systems ◾ 305

system when we are describing the designed middleware. In FTP or GridFTP pro-
tocol, the client must establish two control channels for both servers. The client
chooses one of the servers for listening and then sends the PASV command. When
the server replies with the IP address and port on which is listening, the client sends
this IP address and port to the other server using the PORT command. This will cause
the second server connects to the first server. To initiate the real data transmission,
the client sends the RETR command (which is followed by the file name) to the
server that reads data from the disc and writes it to the network (the sending server),
and the STOR command (which is followed by the file name) to the other server that
reads data from the network and writes to the disc (the receiving server).

Figure 9.12 depicts the P2P middleware architecture designed to realise third-party
data transfers depending on two key services of xDFS and xThread in the Parvicursor
platform. The client code is located at node 1 which includes a DLL/SO file and a
dispatcher program. The implementation of the remote job that is executed through
the xThread abstraction in node 2 is inside the DLL/SO file. Figure 9.13 illustrates the

>AddNewThreadInstance(temp, "/root/Samples/xThreadPiClacDispatcher/Debug/libxThreadPiCalcDLL.so");
51: #endif
52: }
53: }
54: xThreadClient **clients = new xThreadClient *[collections->get_Count()];
55: ArrayList **errors = new ArrayList *[collections->get_Count()];
56: for(register Int32 i = 0 ; i < collections->get_Count() ; i++) {
57: xThreadCollection *xtc = (xThreadCollection *)collections->get_Value(i);
58: errors[i] = new ArrayList();
59: clients[i] = new xThreadClient(xtc, nodes[i], &nc, false, errors[i]);
60: }
61: //--- Execute our implemented small middleware ---

62: try {
63: for(register Int32 i = 0 ; i < collections->get_Count() ; i++)
64: clients[i]->Run();
65: for(register Int32 i = 0 ; i < collections->get_Count() ; i++)
66: clients[i]->WaitForSessionInitiation();
67: for(register Int32 i = 0 ; i < collections->get_Count() ; i++) {
68: while(clients[i]->get_IsAlive()) {
69: if(clients[i]->get_AreAllThreadsCompleted()) {
70: xThreadCollection *xtc = (xThreadCollection *)collections->get_Value(i);
71: for(Int32 j = 0 ; j < xtc->get_Count() ; j++) {
72: clients[i]->SyncReceiveOneThread(j);
73: xThreadPiCalc *calc = (xThreadPiCalc *)xtc->get_Value(j)->objInstance;
74: cout << "from: " << calc->startDigitNum << " to: " << calc->startDigitNum + calc-

>numDigits << " result: " << calc->result << endl;
75: }
76: clients[i]->TerminateSession();
77: }
78: Thread::Sleep(1);
79: }
80: }
81: }
82: ...
83: }

Figure 9.11 (Continued) The program for dispatching threads amongst m nodes depending on
a peer-to-peer master/slave topology.

306 ◾ Implementing Parallel and Distributed Systems

Start() method implementation of this DLL/SO file. As seen, one object is instantiated
from the class of the xDFS framework to transfer a remote file on node 2 to node 3. The
target file is uploaded to node 3 through n parallel channels when the remote thread
executes at node 2. As can be seen in Figure 9.12, the Parvicursor server on node 2 exe-
cutes at xThread runtime, whilst the Parvicursor server on node 3 is serviced through
UploadClient API and is executing at xDFS runtime. Figure 9.14 shows the remote
job distributor program which is run on node 1 (the client node). The xThread Channel
is used to check the completion status of the remote job, which is located inside the
method Start(). The remaining and last discussion in this chapter is devoted to
how we can convey the file transfer speed from node 2 to node 1 to be reported to
the user. This mechanism provides a powerful xThread feature referred to as xRMI,6
akin to RPC and RMI functionalities (but with many differences, and more powerful
and flexible), in the Parvicursor platform for distributed systems. The client code,
as shown in Figure 9.14 in lines 25–31, invokes the method AuxiliaryMehtod()
every 5 s (which is implemented in the DLL/SO file of Figure 9.13) and calculates
the number of bytes transferred between two nodes 2 and 3, and finally reports the
third-party file transfer’s speed in the client (node 1).

We now describe xRMI features from xThread abstraction. As stated, the xThread
abstraction over the xThread Channel allows running a remote thread based upon the
method Start(), and also this channel notifies us of the status of the desired thread.
The xThread Channel is simplex after starting the execution of the xThreadBase
instance and only the server sends commands to the client (such as terminating the cur-
rent xThread session by the server and the execution completion of remote threads).
Thus, in this channel, the client has no control over the execution of the remote

Figure 9.12 The P2P middleware architecture is designed to realise third-party data transfers in
the Parvicursor platform depending on two key services of xDFS and xThread.

Parvicursor
Server 1 -
xThread
Runtime

Parvicursor
xThread

Client

Parvicursor
Server 2 -

xDFS
Runtime

xDFS xFTSM UploadClient API via n parallel channels

Thread Channel is used
to get the completion
status of the remote job.

Thread Control Channel is
used to get the transfer speed
reported by the UploadClient
API in server 1. This feature
is implemented through
xThread xRMI.

1

2 3

Design of Grid/Cloud Computing and HPC Systems ◾ 307

thread and cannot invoke another method except for the method Start() on the
server side (xThread client is only allowed once to call this method). To eliminate this
restriction and allow the client code to invoke a variety of methods or favourite func-
tions on the server side, we added the xRMI feature to the xThread abstraction. This
extension is possible due to the existence of the xThread Control Channel concept.
Consequently, xRMI enables the developer to execute different synchronous methods
or to acquire full information about the execution of remote thread(s) on the server.
In the implemented middleware aimed at third-party file transfers, we have used
xRMI to find the number of bytes transmitted at server 2 and to calculate the transfer
rate in the client node. The xRMI functionality looks like the existing mechanisms of
remote procedure invocations such as Java RMI, CORBA, RPC, and WFC, but xRMI
is very different from these variants that will be reviewed at the end of this section.

Figure 9.15 shows the structure and flow of the RMI that relied on xRMI. To acti-
vate xRMI in the server, we must call the method AuxiliaryMehtodOneThread()

Figure 9.13 The DLL/SO code implementing the remote job that will execute on two nodes for
a third-party file transfer.

1: void xThreadThirdPartyTransfer::Start() {
2: try {
3: this->upc = new UploadClient(String((const char *)this->localFilename), String((const char *)this-

>remoteFilename), this->parallel, this->blockSize, this->tcpBufferSize, 100, 100, String((const char *)this-
>dest), *this->nc, false, false, this->remoteErrors, true, true);

4: this->upc->Run();
5: }
6: catch(Exception &e) {
7: this->remoteErrors->Add(new Exception(e.get_Message()));
8: }
9: ...

10: }
11:
12: void xThreadThirdPartyTransfer::AuxiliaryMehtod(In const void *input, Int32 inputLength, Out void

**output, Out Int32 *outputLength) {
13: if(this->out == null) {
14: this->out = new xThreadThirdPartyTransferContextOutput();
15: this->out->transferredBytes = 0;
16: }
17: xThreadThirdPartyTransferContextInput *in = (xThreadThirdPartyTransferContextInput *)input;
18: switch(in->command) {
19: case __GetTransferredBytes__:
20: if(this->upc != null)
21: this->out->transferredBytes = this->upc->get_CurrentTransferredBytes();
22: else
23: this->out->transferredBytes = 0;
24: *output = this->out;
25: *outputLength = sizeof(xThreadThirdPartyTransferContextOutput);
26: break;
27: default:
28: *output = null;
29: *outputLength = 0;
30: break;
31: }
32: }

308 ◾ Implementing Parallel and Distributed Systems

Figure 9.14 The program for distributing the remote thread on two nodes to perform third-
party transfers.

1: int main(int argc, char *args[]) {
2: const char *dest = "localhost";
3: const char *localFilename = "C:/test/test.pdf";
4: const char *remoteFilename = "C:/test/test1.pdf";
5: Int32 parallel = 10;
6: Int32 blockSize = 256*1024;
7: Int32 tcpBufferSize = 256*1024;
8: struct xThreadThirdPartyTransferContextInput input;
9: input.command = __GetTransferredBytes__;

10: struct xThreadThirdPartyTransferContextOutput output;
11: Int32 outputLength;
12: try {
13: xThreadThirdPartyTransfer s = xThreadThirdPartyTransfer(dest, localFilename, remoteFilename,

parallel, blockSize, tcpBufferSize);
14: xtc = new xThreadCollection();
15: #if defined WIN32 || WIN64
16: xtc->AddNewThreadInstance(&s,

"C:/Samples/xThreadThirdPartyTransferDispatcher/Debug/xThreadThirdPartyTransferDLL.dll");
17: #else
18: xtc->AddNewThreadInstance(&s,

"/root/Samples/xThreadThirdPartyTransferDispatcher/Debug/libxThreadThirdPartyTransferDLL.dll");
19: #endif
20: client = new xThreadClient(xtc, "localhost", &nc, false, &errors);
21: client->Run();
22: client->WaitForSessionInitiation();
23: Int64 last = 0, current = 0;
24: while(client->get_IsAlive()) {
25: client->AuxiliaryMehtodOneThread(0, &input, sizeof(struct

xThreadThirdPartyTransferContextInput), &output, &outputLength);
26: if(output.transferredBytes == (Int64)-1)
27: goto Terminate;
28: current = output.transferredBytes;
29: Thread::Sleep(5000);
30: printf("\rspeed: %.2f MB/s\r", ((Float)(current - last))/(5 * 1024.0 * 1024.0));
31: last = current;
32: }
33: Terminate:
34: client->TerminateSession();
35: for(register Int32 i = 0 ; i < s.remoteErrors->get_Count() ; i++) {
36: Exception *e = (Exception *)s.remoteErrors->get_Value(i);
37: printf("RemoteError%d: %s\n", i + 1, e->get_Message().get_BaseStream());
38: }
39: }
40: catch(Exception &ee) {
41: printf("%s\n", ee.get_Message().get_BaseStream());
42: }
43: ...
44: }

Design of Grid/Cloud Computing and HPC Systems ◾ 309

of the class xThreadClient for the ith remote thread on the client. As listed in
Table 9.1, this method takes the input argument’s address along with its length to
send to the xThread server. Having sent the complete contents of the input parameter
through the xThread Control Channel over PSI, the method AuxililaryMethod()
of the interface class xThreadBase is called on the server, and the result as an out-
put parameter with its length is returned to the client code through the same open
xThread Control Channel. The client code can frequently invoke the remote method
AuxiliaryMethod(), for instance, inside an infinite loop. During this process, it
seems only a remote method is called, but the programmer can pass an argument as
a state machine into the method AuxiliaryMethod(), and then based on its value
decides what code must be run on the server. This functionality is seen in lines 17–31
of Figure 9.13 for the third-party file transfer. According to the structure xThread
ThirdPartyTransferContextInput’s member command, we decide what code
should be run in the current call. Thus, we can multiplex the implementation of
any number of methods inside an AuxililaryMethod()’s body which depends
on calling a state machine. As it is obvious when working with xRMI, we just deal
with input/output parameters and there is no trace of the network communication.
xRMI avoids the burden on the programmers concerned with the complexities due
to network communication and instead lets them focus on their application devel-
opment. One of the powerful xRMI features is its very low-level interface with no
overhead. The method AuxiliaryMehtodOneThread() takes two input and out-
put parameters with their length from the user and transfers them between a client
and a server; therefore, xRMI exposes no overhead on a remote method call from a
low-level preservative. With this point kept in mind, input/output parameters can be
prepared in two ways by a programmer along with their lengths to be transferred
between client and server. The first technique is to pass the address or reference
of a C structure or a C++ class (the memory allocated from stack or heap) to xRMI.
In this technique, since a contiguous memory space is transmitted without addi-
tional negative performance operations such as encoding or serialisation, there is no
extra overhead when executing remote procedure calls. The second technique takes

Figure 9.15 The structure and flow to perform remote method invocations in xThread
abstraction which relied on xRMI.

Thread Channel

AuxiliaryMehtodOneThread()

AuxiliaryMehtod()

xThread Server

Thread Control Channel Flow

input param input
param

output param

xThread
Client

Runtime

310 ◾ Implementing Parallel and Distributed Systems

advantage of the classes Serializer and DeSerializer to prepare the respective
objects’ data and pass their buffers as input/output parameters which in turn gives
rise to extra overhead in RMIs. Of course, programmers may write more optimal
classes by contrast to these two default classes for the sake of the serialisation and
deserialisation of objects. As it can be inferred due to the xRMI’s low-level feature,
the developer has a great chance to achieve maximum efficiency in RMIs on top of
the Parvicursor platform.

For a better understanding of xRMI power in xThread abstraction, we briefly
examine existing methods for remote procedure calls and finally compare xRMI
with two middleware technologies of CORBA and Java RMI; at the end, the reader
will be able to easily distinguish the xRMI power from other existing methods.
Whereas there are various technologies, we only discuss RPC; other techniques
have somewhat basic concepts in common with RPC. The implementation of dis-
tributed systems can be done using a broad spectrum of technologies such as
pure sockets, RPC, DCOM, CORBA, WCF, Java RMI, and ICE.7 These methods differ
greatly in complexity, interoperability, standardisation, and ease of use aspects.
To achieve maximum performance, pure sockets or xRMI and RPC are advisable.
Overhead bottlenecks in different middleware technologies for distributed objects
are caused by various factors like extra data copies, less compact encoding, and
complex encoding rules.

RPC is a powerful technique for constructing distributed applications depending
on clients and servers. RPC relies on the notion of extending the local or traditional
procedure call so that the callee (called) procedure has not been required to be in the
same address space as the caller (calling) procedure. Like a function call, when an
RPC request is made, the caller arguments are passed into the remote procedure and
the caller waits for the response returned from the remote callee procedure. When
we write a client-server application by using sockets, we must provide a layer of code
that manages the network communication. By using RPC, programmers of distrib-
uted systems avoid the interface details with the network. This allows us to focus on
the details of our application rather than the details of network programming. In fact,
RPC falls somewhere between the transport layer and the application layer in the OSI
model. RPC includes specifications to exchange arguments and the results between
a client and a server in a standard format. In other words, this format is the serialis-
ing operation of parameters into a buffer which always causes overhead; however, it
improves portability amongst different systems and prevents applications to worry
about low-level details like byte reordering. Figure 9.16 depicts a typical RPC flow
between a client and a server.

The client calls a local stub, which initiates network communication, instead of
the actual code implementation of that stub. Stubs are compiled and linked with the
client-side application program. Rather than including the actual code that imple-
ments the remote procedure, the client stub code: retrieves necessary parameters
from the client address space, translates the parameters into an open NDR8 format
to transfer over the network, and invokes the functions in the client RPC runtime
library to send the request and its parameters to the server. The server to call the
remote procedure performs the following steps: accepts the server runtime library’s
functions and calls the server stub, the server stub retrieves the parameters from
the network buffer and converts them from NDR format to a format that the server

Design of Grid/Cloud Computing and HPC Systems ◾ 311

requires, and the server stub calls the actual procedure on the server. Finally, the
remote procedure is executed, and presumably generates output parameters and a
return value. When a procedure execution completes, returns a similar sequence of
data steps. To develop an RPC application, the first step is to specify a protocol for
client-server communication. The communication protocol is accomplished by gener-
ated stubs. A protocol compiler is usually used to define and generate this protocol.
For the protocol, we have to identify the name of service procedures, the data types
of parameters, and the return arguments. The protocol compiler reads a definition
and automatically generates client and server procedures.

As seen, we must carry out several steps in the development of an RPC pro-
gram, and also the infrastructure supporting RPC has a complex structure itself.
Furthermore, in the development cycle of programs that employ RPC, the client and
server processes need to be installed separately on two different machines. In RPC
for each developed function in the client, a counterpart server-side function must
be implemented that services the client function. Over against these complexities,
the xThread abstraction offers xRMI as a simple tool to implement such functional-
ities. xRMI does not require any protocol compiler and everything is performed at
runtime. In xThread abstraction, there is no server-side process that must service
client-side processes; the programmer writes a DLL/SO file, and its code executes
in the xThread server, and the result is returned to the client code. In xMRI, there
is no default serialisation operation; the programmer can decide dependent on his/
her need how to use input/output parameters and occasionally develop an optimum
serialisation algorithm/method. Also, concurrency and parallelism are very challeng-
ing in RPC, requests of a client are served on the server within one process, and
therefore a client calls different remote procedures from just one remote process
during the RPC session. In the xThread abstraction through the class xThreadCol
lection, we can define n number of remote threads for each instance of the class
xThreadClient, so n parallel xRMI requests can be served in one xThread session.

Figure 9.16 The flow of a remote procedure call between a client and a server.

Client

Client Stub

RPC Runtime
Library

Manager
Procedures

Server Stub

RPC Runtime
Library

call Interfacereturn callreturn

returnreturncall call

call

return

Client Process Server Process

Network
Communication

Apparent Flow

312 ◾ Implementing Parallel and Distributed Systems

At the end of this section, we summarily introduce two middleware platforms
CORBA and Java RMI and perform a comprehensive comparison between them and
xRMI in a table. It is worth noting that the comparison of RPC and xRMI is also true
precisely for CORBA and Java RMI.

CORBA is a standard distributed object architecture developed by OMG.9 CORBA
is a distributed, object-oriented client/server platform to build distributed applica-
tions depending on objects. CORBA includes an object-oriented RPC mechanism
which provides fundamental RPC services. Primary components in the CORBA archi-
tecture are ORB,10 IDL11 stubs, ORB interface, and object adaptor [3].

Java RMI is an object-oriented middleware system. It allows us to create remote
objects that can be used throughout the system boundaries. It hides the distribu-
tion process from the developer by using local stubs or proxies that act on behalf
of remote objects in the client. Parameters and return values of the RMIs are trans-
mitted by using platform-specific serialisation mechanisms. In RMI, remote objects
need to implement a so-called remote interface which contains all methods that can
be invoked remotely. The remote interface will also be implemented via the gener-
ated stub.

Given the explanation above for CORBA and Java RMI architectures, Table 9.2
describes a brief comparison between these two technologies and the xThread
xRMI.

The codes of this section are located at the folders “/Parvicursor/
Parvicursor/Samples/xThreadThirdPartyTransferDLL” and “/Parvi
cursor/Parvicursor/Samples/xThreadThirdPartyTransferDispatcher”
from the companion resources of the book.

(Continued)

Table 9.2 Comparison of Different Technologies for Performing Remote Method
Invocations

CORBA Java RMI xThread xRMI

Supports multiple
inheritances at the interface
level.

Supports multiple
inheritances at the interface
level

Supports multiple
inheritances at the C++
xThreadBase class level.

Uniquely identifies an
interface using the interface
name and uniquely identifies
a named implementation
of the server object by its
mapping to a name in the
Implementation Repository.

Uniquely identifies an
interface using the interface
name and uniquely identifies
a named implementation
of the server object by its
mapping to a URL in the
Registry.

The client is responsible for
distributing xThread instances
over the network and
managing the application.

Uses the Internet Inter-
ORB Protocol (IIOP) as
its underlying remoting
protocol.

Uses the Java Remote
Method Protocol (JRMP) as its
underlying remoting protocol.

Uses PSI and PR as its
underlying remoting protocol.
PSI can be implemented for
a vast family of transport
protocols like TCP, UDT, and
SCTP.

Design of Grid/Cloud Computing and HPC Systems ◾ 313

(Continued)

CORBA Java RMI xThread xRMI

The mapping of Object
Name to its Implementation
is handled by the
Implementation Repository.

The mapping of Object Name
to its Implementation is
handled by the RMI Registry.

The implementation of
each instance must be
embedded in Start() and
AuxiliaryMethod().

When passing parameters
between the client and the
remote server object, all
interface types are passed
by reference. All other
objects are passed by value
including highly complex
data types.

When passing parameters
between the client and
the remote server object,
all objects implementing
interfaces extending java.
rmi.Remote are passed by
remote reference. All other
objects are passed by value.

When passing parameters
between the client and the
remote server object, the
client can decide which object
to pass by reference or by
value.

Does not attempt to perform
general-purpose distributed
garbage collection.

Attempts to perform
distributed garbage collection
of remote server objects using
the mechanisms bundled in
the JVM.

Does not attempt to perform
general-purpose distributed
garbage collection. The
xThread runtime does invoke
the Deconstructor()
method at the end of each
xThread session. The client
code can perform any object
disposition within this method.

When a client object needs
to activate a server object, it
binds to naming or a trader
service.

When a client object needs
a server object reference, it
has to do a lookup() on the
remote server object’s URL
name.

There is not any server object.
A client must make use of the
xThreadClient API to begin
the execution of a remote
thread run by Start()
method.

The responsibility of locating
an object implementation
falls on the Object Adapter
(OA)—either the Basic
Object Adapter (BOA) or
the Portable Object Adapter
(POA).

The responsibility of activating
an object implementation falls
on the Java Virtual Machine
(JVM).

The responsibility of activating
an object implementation
falls on the programmer
implementing Start()
and AuxiliaryMethod()
methods.

The client-side stub is called
a proxy or stub.

The client-side stub is called a
proxy or stub

The client-side stub is
xThreadClient class.

The server-side stub is called
a Skeleton.

The server-side stub is called a
Skeleton.

There is no server-side stub.

Table 9.2 (Continued) Comparison of Different Technologies for Performing Remote
Method Invocations

314 ◾ Implementing Parallel and Distributed Systems

9.7 Our Future Works to Extend the Parvicursor Platform
Over a decade of working on two projects, DotGrid and Parvicursor, and also
during the writing of this book, many ideas and extensions have emerged for our
future research works, and their number and descriptions are so much. As a great
result, the Parvicursor project has created a good research area for upcoming years.
In the following we mention a number of them. For the next versions of the xDFS
protocol, we plan to extend and implement the protocol based on more novel
hybrid models to achieve ultimate performance. We intend to implement some
parts of the xSec protocol based on accelerators such as GPUs to increase the effi-
ciency of cryptographic operations, particularly for Cloud platforms. Another very
important part to increase the performance of the Parvicursor platform on each

CORBA Java RMI xThread xRMI

Complex types that will
cross interface boundaries
must be declared in the IDL.

Any Serializable Java object
can be passed as a parameter
across processes.

Programmer can decide
how to pass objects stored
within the input/output
parameters, for example by
using a serialisation method
or passing the address of
contiguous memory areas to
xThread runtime.

Exception handling is taken
care of by Exception Objects.
When a distributed object
throws an exception object,
the ORB transparently
serialises and marshals it
across the wire.

Allows throwing exceptions
which are then serialised and
marshalled across the wire.

Programmer must handle
exceptions that occurred
within Start() and
AuxiliaryMethod()
methods and use proper
code to serialise/deserialise
exceptions.

Since this is just a
specification, diverse
programming languages
can be used to code these
objects as long as there are
ORB libraries you can use to
code in that language

Since it relies heavily on Java
Object Serialisation, these
objects can only be coded in
the Java language

xThread abstraction and
xRMI are simple interfaces
in concept and can be easily
implemented for different
programming languages.

For CORBA implementation,
C++ is the easiest.

RMI works only with Java. Recently, xRMI works only
with C/C++.

Best suited for enterprise-
level applications.

Best suited for Internet
applications.

Best suited for a broad
spectrum of distributed
paradigms, such as P2P
systems, Cloud Computing,
the Internet, and so forth.

Table 9.2 (Continued) Comparison of Different Technologies for Performing Remote
Method Invocations

Design of Grid/Cloud Computing and HPC Systems ◾ 315

running node of a P2P topology will be to make full use of lock-free algorithms in
critical Parvicursor services. One of the most important plans is to design a sand-
boxing infrastructure to achieve the features available in the CAS model of ECMA.
NET standard [4] in the native Parvicursor platform; this will open new insights
into the design of cloud infrastructures without the need for virtualisation plat-
forms (like virtual machines) to increase the performance as closely as possible to
the efficiency of native code. We also plan to design and implement higher-level
middleware layers atop the Parvicursor APIs and services which will facilitate the
construction of distributed systems.

Notes
 1 Digital Signal Processor (DSP)
 2 Graphics Processing Unit (GPU)
 3 Application-Specific Integrated Circuit (ASIC)
 4 Field-Programmable Gate Array (FPGA)
 5 Instruction Set Architectures (ISA)
 6 MultipleXed Remote Method Invocation (xRMI)
 7 Internet Communication Engine (ICE)
 8 Network Data Representation
 9 Object Management Group
 10 Object Request Broker
 11 Interface Definition Language

References
 [1] A. Poshtkohi, A.H. Abutalebi, and S. Hessabi, DotGrid: A .NET-based Cross-Platform Software for

Desktop Grids. Int. J. Web Grid Serv., 3(3): 313–332, 2007. https://arxiv.org/abs/1703.03904, 2022.
 [2] A. Poshtkohi and M.B. Ghaznavi-Ghoushchi, DotDFS: A Grid-based High Throughput File Transfer

System. Parallel Comput., 37: 114–136, 2011. doi: 10.1016/j.parco.2010.12.003. https://arxiv.org/
abs/1703.03905, 2022.

 [3] The Common Object Request Broker: Architecture and Specification, 2022; http://www.omg.org/spec/
CORBA/

 [4] Code Access Security, 2022; http://msdn.microsoft.com/en-us/library/930b76w0%28v=vs.90%29.aspx

https://arxiv.org
http://dx.doi.org/10.1016/j.parco.2010.12.003
https://arxiv.org
https://arxiv.org
http://www.omg.org
http://www.omg.org
http://msdn.microsoft.com

https://taylorandfrancis.com

317DOI: 10.1201/9781003379041-10

Chapter 10

xDFS: A Native Cross-Platform
Framework for Efficient File
Transfers in Dynamic Cloud/
Internet Environments

In God we trust. All others must bring data.

W. Edwards Deming

10.1 Introduction
Despite our observation of many advances in increasing the speed of communication
links between networks during the recent decades, data transmission remains a key
bottleneck. Perhaps one of the major reasons is the fact that several technical and
abstract factors influence the throughput delivered to the end-user from the proposal
phase of a new file transport protocol to the implementation step of that protocol.
The feasibility of success in a broad spectrum of distributed computing paradigms
depends upon the ability to arrive at the data transmission speed as much as close
to the computing power of the new generation of multi-core processors and cut-
ting-edge system-on-chip (SoC) architectures (heterogeneous many-core CPUs will
become common soon).

As we have seen in the past years, the dramatic expansion of the Internet has
led to the information technology revolution. The Internet has made modern dis-
tributed infrastructures possible to emerge, such as Grid and Cloud computing. As
a fundamental result of this new revolution, communication mechanisms and data
transmission protocols provide an infrastructural foundation for the emergence and
evolution of enormous computing paradigms and integration of data access on a
worldwide scale. In the Internet industry, two protocols, Hypertext Transfer Protocol

http://dx.doi.org/10.1201/9781003379041-10

318 ◾ Implementing Parallel and Distributed Systems

(HTTP) and File Transfer Protocol (FTP), are de-facto, open standards that have
provided basic file transfer functionalities [1]. To overcome the problems concerned
with these two protocols that are mainly due to the overheads of the Transmission
Control Protocol (TCP) protocol in its window-based congestion control mechanisms
used, the GridFTP protocol was proposed [2–4]. In [5, 6], we introduced a hybrid con-
current FTP, called DotDFS, integrated with a set of event-driven and thread-based
models. DotDFS was the first FTP that, in addition to proposing a new computing
paradigm in the field of data transmission protocols, unveiled many architectural
problems regarding the FTP and GridFTP protocols.

These major issues in the field of data transmission encouraged us to develop this
key chapter of our book. In this chapter, we demonstrate the design and implementa-
tion of new xDFS protocol as a replacement for its predecessor DotDFS protocol for
high-end data transports over different networks.

The TCP protocol has been used as a transport-level communication protocol on
the Internet over the years. However, TCP is rather an old communication protocol
designed in the 1970s. Many problems regarding the TCP have been reported such
as its inability to support the increasing speeds of modern networks. One com-
monly used way to reduce the overheads posed by TCP is to simultaneously choose
an optimum number of TCP connections and the TCP socket buffer size, which are
discussed fully in [5]. This chapter tries to minimise the overheads concerned with
the FTP itself as much as possible and to examine optimal software design patterns
of that protocol. This goal plays a key role to reduce the problems associated with
TCP overheads which decrease the throughput of file transfer systems. It increases
dramatically the entire system efficiency and relieves exposed drawbacks. However,
it is necessary to note that the PSI structure (refer to Section 10.5) allows the xDFS
protocol to operate over more optimum transport protocols (e.g., SCTP) than TCP.
PSI and xDFS framework will bring various opportunities together for research com-
munities to implement non-TCP PSI-enabled drivers for the sake of achieving a virtu-
ally 0% overhead file transfer system currently working in userspace.

What will be presented in this chapter is not only porting an existing code base to
native code, but xDFS has been designed from scratch, and this chapter explains the
authors’ experiences to implement optimal software systems for distributed systems
in a native, cross-platform, and cross-language manner. The presented framework
herein can be used for critical applications in highly concurrent environments such
as data-intensive scientific applications and the Internet industry. Additionally, in this
chapter, we describe the problems related to the FTP and GridFTP protocols and ulti-
mately will propose the xDFS protocol as a suitable alternative replacement for these
two protocols in dynamic Grid/Internet environments. In large parts of this chapter,
we introduce different architectures of optimal server design patterns, particularly
in the orientation of file transfer systems, where due to the best of our knowledge
virtually no attention has been paid to them so far.

The key performance metric for a server running its workloads is the sustained
throughput of client requests. Furthermore, the deployment of servers commonly
happens in high compute density installations such as data centres, where supplying
power and dissipating server-generated heat are very important factors in the centre’s
operating cost. The orientation of the xDFS framework is technology-independent

xDFS ◾ 319

due to its highly cross-platform manner and its architectural standards-based pat-
terns and can be used to bridge with legacy systems as well.

We also believe that the main contribution of this chapter, in addition to present-
ing novel concepts, is to provide a complete reference and to classify all issues, in
which a developer should bear in mind when implementing critical client-server
programs for distributed systems.

Also, in this chapter, we investigate the rationale of the saturation speed phe-
nomenon discussed in our previous published paper [5] and observed that such a
negative phenomenon does not exist in the context of the xDFS framework. In all
disc-to-disc tests in download mode for transferring a 2 GB file with or without par-
allelism, the xDFS throughput at a minimum of 30% and at most 53% was superior
to the GridFTP. Memory-to-memory tests in upload mode showed that the xDFS pro-
tocol accessed 98.5% of the bottleneck bandwidth whilst the GridFTP protocol was
reaching 95%. We will also perform a comprehensive autopsy of the xDFS anatomy
that relied on communicating finite state machines.

The rest of the chapter is organised as follows. In Section 10.2, we present the
next-generation requirements of Grid-based file transport protocols. Sections 10.3
and 10.4 concentrate on designing high-performance server architectures for Grid-
based file transport protocols, particularly for data-intensive Grid applications and
Internet services. Section 10.5 describes DotDFS and xDFS FTPs and discusses new
xDFS extensions over DotDFS. Section 10.6 discusses the native and cross-platform
implementation of xDFS protocol atop Parvicursor.NET Framework; moreover, mak-
ing use of the concept of communicating finite state machines will help the reader
better understand the presented materials throughout this section. Section 10.7
focuses on the comparison of the xDFS protocol with the GridFTP protocol in depth.
The experimental studies are described in Section 10.8. Section 10.9 concludes the
chapter and sketches our future research works.

10.2 The Next-Generation Requirements of Grid-Based
File Transport Protocols

Many scientific applications need to stage large volumes of files from one collection
of machines to another collection of machines in a wide-area network (WAN) or via
the Internet. Efficient execution of such data transfers requires taking into consid-
eration the heterogeneous disposition of the environment and dynamic availability
of shared resources. This section will generally try to infer why a new file transport
protocol, called xDFS, is proposed. Sections 10.3–10.8 will discuss more reasons in
this regard. Globus in [3] explains the following phrase for adopting and extending
the FTP protocol: “We chose the FTP protocol because it is the most commonly used
protocol for bulk data transfers on the Internet and of the existing candidates from
which to start (http, DPSS, HPSS, SRB, etc.) ftp comes closest to meet the needs of
Grid applications” [3].

However, throughout this chapter, we will show that such a choice is somewhat
troublesome. Indeed, not only has the xDFS protocol been designed from a high-level

320 ◾ Implementing Parallel and Distributed Systems

protocol view but also experiences in available development tools of server systems,
advanced optimal programming techniques, and the existing hardware and software
facilities have affected the specification, design method and implementation of the
protocol. Noting this point is also required that a protocol specification highly dic-
tates how to implement it at the software level. Following this section, we mention
three major requirements for next-generation FTPs.

10.2.1 Towards a Low-Cost, Low-Power and Low-Overhead Data
Transfer Protocol for Sensor and Ad Hoc Networks

Advances in mobile, wireless, and Internet technologies along with many of the exist-
ing smart portable devices provide pervasive access to a large amount of information.
Unlimited mobility and ease in the deployment of ad hoc networks make them suitable
for a broad diversity of applications such as military communications, disaster relief,
and personal-area networking [7]. However, because sensors are tiny and low-cost
devices, a variety of these networks have important constraints such as limited power,
and limited memory and processing capacity. As implicitly expressed in these sen-
tences, a file transfer system must consider the inherent heterogeneity of these wireless
sensor networks (WSNs) [7]. The existence of an optimum, low-cost, and low-power
data transfer system (or protocol) is more remarkable in the field of WSNs. DotDFS
protocol attempts, about these points, to define a collection of sub-protocols that the
needs of WSNs are also more considered through them. But it is necessary to note that
we only remark a few insights of the xDFS protocol towards WSNs which researchers
should investigate comprehensively. xDFS protocol, against FTP and GridFTP proto-
cols, conforms itself in three aspects to the requirements of WSN networks:

 a. FTP protocol (and consequently, the GridFTP protocol) requires two separate
channels (control channel and data channel) which cause a client-side proto-
col implementation to have at least two threads of control in operating system
level. Since WSNs usually use 8-bit microcontrollers, the concept of multi-
threading has nearly no position in them. In addition, even if a WSN could
support multiple threads, then the use of them would impose large overheads,
which would lead to much power dissipation in WSNs. DotDFS with merging
these two channels and introducing the concept of X-Channels avoids these
overheads [5, 6].

 b. Fundamentally, FTP commands are sent and received as simple text strings (and
follow the Telnet protocol, RFC 854 [8]) over control channels. This factor makes
the WSNs need more memory and computational power to store and process
strings, which unnecessarily will increase the power consumption. xDFS proto-
col with a fully binary model makes the problem resolved.

 c. WSNs usually lack permanent storage systems due to power consumption issues,
and ad hoc network devices may also have a small capacity of storage systems.
For example, an ATMEL ATmega1281 8-bit microcontroller used in WSNs has 8
KB of RAM and 128 KB of ROM [9]. Therefore, the online data steaming feature
plays a crucial role for WSNs. DFSM mode in DotDFS protocol can satisfy this
requirement [5, 6].

xDFS ◾ 321

10.2.2 Universality and Interoperability Issues and Scenario-Based
Complexity Reduction

Two standards of HTTP [10] and FTP [1] on the Internet have been widely used for
data transfers over decades. However, they have shown a series of weaknesses in the
Internet industry. These issues appear as infrastructural problems in Grid environ-
ments. These shortcomings have led to suggesting several extensions in RFCs by the
IETF organisation to resolve FTP problems (in Section 10.7 this issue is investigated
in depth). Moreover, Grid applications and distributed environments require key fea-
tures that are not supported by existing protocols used on the Internet. Of course,
a few systems have been designed that provide features by special interfaces, but
either only their client APIs are available or their underlying protocols and server
source codes are not accessible.

Globus, with this assumption to introduce a protocol that can solve interoperability
problems in such systems, proposes the GridFTP protocol for existing needs, par-
ticularly in Grid applications [2–4]. Globus makes such a claim, but only implements
GridFTP protocol based on Globus Toolkit [11]. On the other hand, not only do FTP
and GridFTP protocols cause interoperability issues between different implementations
due to several extensions and lack of an integrated implementation, but rather GridFTP
protocol as fully defined in OGF drafts can be only run in Unix-like environments.
Furthermore, providing a native implementation of this protocol for other operating
systems like Windows is a challenging task. Additionally, in this chapter, we will come
up with structural issues in the design and implementation of the GridFTP protocol.

Globus explains two reasons for proposing GridFTP, including FTP as an IETF
standard, and widely implemented and well-understood FTP protocol [2]. Of course,
perhaps this Globus vision seems reasonable from this angle because Grid applica-
tions mainly assume that they have access to unlimited computing resources such as
processors, storage systems, and high-bandwidth networks.

Nevertheless, what we witness in the real world represents the fact that current
processing systems have different capabilities in terms of computing power and
power consumption issues. Therefore, it can be concluded that the existence of a
protocol that, in addition to considering a wide range of needs of various applica-
tions, requires having universality features and providing a cross-platform implemen-
tation is necessary.

Finally, it seems logically a good idea to propose a protocol that can reduce sce-
nario-based complexities for classifying applications. The current work in this chap-
ter is a great attempt to move towards constructing such a system. In other words, the
DotDFS protocol has guided us to propose and implement another protocol called
xDFS, as described in this chapter, which has been designed in native C++ with a
cross-platform framework from scratch.

Furthermore, criticism is given to Globus Toolkit [11] which makes the GridFTP
kernel development difficult for other researchers. It tends to require extensive expe-
rience with Grid technology and previous versions of the toolkit to understand the
system design hierarchy. Then, it does require significant background reading to under-
stand the range of software components available and the configuration required to
develop significant new services. They are due to the range of issues that the toolkit
addresses, and that it relies heavily upon other open-source projects and tools.

322 ◾ Implementing Parallel and Distributed Systems

One of the difficulties with file transfer mechanisms like GridFTP is that all the
unique features which they use cannot be applied outside of their architecture. This
means that those who intend to use customised architectures must develop these
features from scratch. The main goal of the xDFS protocol and its implementation in
C++ is to solve this problem (by providing a compact, universal and cross-platform
xDFS framework).

10.2.3 Towards a Service-Oriented Approach (SOA) for Secure
File Transfers

To solve security problems related to FTP protocol, different methods and multiple
RFCs have been suggested by IETF over the past five decades (see Table 10.6). GridFTP
protocol also adds new extensions to address more security problems associated with
Grid environments. These issues have led to an integration of security protocols and
data transfer protocols used in the abstraction of FTP, which has made the protocol
much more complex in terms of how to understand and efficiently implement it. We
have separated extremely these two abstractions in the xDFS protocol. The separa-
tion of these two abstractions allows researchers to work individually to study and
improve on the various parts of the xDFS protocol. In DotDFS design, we have tried to
make use of service-oriented system concepts to segregate the file security abstraction
from its transmission by using DotSec’s Grid Security Infrastructure [5, 12].

10.3 High-Performance Server Design Architectures for
Grid-Based File Transfer Protocols

High-performance server design plays a key role in satisfying the needs of differ-
ent applications in a broad taxonomy of Internet services (like web servers) and
Grid environments. Grid computing technologies have emerged from the heart of
academic research work and also Grid applications mainly assume that they have
access to unlimited computing resources (such as processors, storage systems, and
high-bandwidth networks). Therefore, in this field of information technology, there
has been paid less attention to the design principles of high-performance server
architectures for reducing the additional overheads. Two practical examples can be
pointed out to the fundamental problems discovered in the design and implementa-
tion of the GridFTP server by the Globus team [5, 6] and the Aneka Cloud Platform
[13] developed on top of Alchemi [2, 14].

In this section, concerning the term high-performance server design in mind,
a solid effort is taken to explain ways which specify a roadmap to performantly
program server applications by developers in Grid and Cloud environments. It also
makes the original idea behind the design and implementation of DotDFS and xDFS
protocols clearer to the reader.

Whereas web servers play a vital role in delivering Web content to users for the
enterprise’s business in the Internet industry, they are the most critical network serv-
ers that must deal with a large number of user requests at once (in typical cases,
10,000 simultaneous requests or even more) and process them. Over the past three

xDFS ◾ 323

decades, extensive research in the design and implementation of optimised, stable,
and reliable web servers has been made. This section also outlines the lessons taken
from this interesting research arena [15–17].

In general, four main factors affect server application performance. Furthermore,
these factors impress themselves on the classification of different server designs.
They are data copies, memory allocation, context switches, and synchronisation
issues. In the remainder of this section, we elaborate on these four factors in the
design of server programs.

10.3.1 Data Copies

Eliminating unnecessary data copies can increase considerably the performance of
most server applications. In the simplest case to prevent data copies, some primary
methods like indirection and pass buffer descriptors (or chains of buffer descriptors)
may be exploited rather than simply using buffer pointers. Avoiding data copies is
sometimes very difficult in the development cycle of a server source code base. For
instance, in some cases in which data is mapped into the user mode address space,
different socket library implementations do one or more copies before delivering
buffers to the network adaptor. Even in places where data copies are removed, addi-
tional overhead to read data and calculate a checksum still remains.

In fact, the main problem originating from the data copy is due to extra copies
from userspace to kernel space and vice versa. Traditionally, the kernel has pro-
vided a layer of abstraction between applications and hardware, and also has been
responsible to exchange data between them. This way requires two additional data
transfers from an application program to the kernel and then to the hardware, com-
pared with the scenario that an application program could have direct access to the
hardware if needed. Moreover, this relationship between hardware and software
allows using direct memory access (DMA) operations that will relieve the central
processing unit (CPU), but such a capability does not exist between two pieces of
software (i.e., between an application program and the kernel). A method called
zero-copy enables such a feature. Zero-copy techniques fall into three categories
as follows:

 1. Data transfer optimisation between kernel and application program: This
method is based on optimisation in CPU copies between kernel and userspace,
where the traditional methods in classifying communications are maintained
and a more flexible approach is achieved.

 2. Avoidance and optimisation of in-kernel data copies: This class of techniques
is going to implement new system calls or optimise traditional methods to
achieve more performance in certain cases that data can be fully processed in
the kernel.

 3. A byway on the main data processing path: Regarding method 2, the kernel
sometimes does not need to meet directly with data, and it can be avoided.
On the other hand, this class of techniques allows direct data transfer between
userspace memory and hardware, and the kernel just manages the transfer
operation.

324 ◾ Implementing Parallel and Distributed Systems

10.3.2 Memory Allocation

Memory allocation and de-allocation are two of the most important operations
amongst long-running server programs. Two types of memory allocators exist called
custom and general-purpose allocators. Many of the general-purpose memory allo-
cators have been implemented for C and C++ languages. These allocators create a
good running time and low fragmentation for a wide range of applications. However,
the use of customised memory allocators can take benefit from application-specific
behaviour. They can dramatically increase performance. Custom memory allocators
can benefit from specific allocation patterns with many operations at the lowest level
cost. For example, a programmer can make use of a region allocator to assign a num-
ber of small objects with a known lifecycle and frees all of them at a given time. This
typical custom allocator returns individual objects from a range of memory, and then
the whole region is de-allocated. To attain high performance, programmers often
develop their own ad hoc custom allocators as macros or monolithic functions (like
inline functions) to avoid function-call overhead. In fact, these methods to improve
performance have been recognised as the best habits of skilled computer program-
mers. Generally, the requirements of a dynamic memory allocator system can be
summarised as follows:

 1. Stability: It is necessary to continuously keep the memory allocator system per-
formance stable for long-running server programs. The throughput of such a
system must remain stable over time.

 2. Speed: Such a system must be as fast as possible in memory allocation and
de-allocation. A memory block should not depend only on the thread that has
allocated it. Threads must be able to operate collectively on a shared allocated
memory area. This factor makes passing object references amongst different
threads possible.

From other important points in the design of memory, allocators can be noted for
scalability, size independency, and maximum locality.

10.3.3 Context Switching

Context switching is used as the basic mechanism to share a processor amongst mul-
tiple threads of execution. Each thread is dependent on general-purpose registers,
status registers, and a processor state such as a program counter. A context switch
is an operation to save the process state of a thread and load another thread, par-
ticularly in hardware-implementation context switching at the pipeline stages of a
follow-on chip multi-threaded (CMT) processor (e.g., Fetch, Thread-Switch, Decode,
Execute, Memory, and Writeback). If threads relate to different virtual address spaces,
a context switch also contains switching the address translation maps used by the
processor. Switching the address space requires that the relevant inputs in the pro-
cess’s address translation cache (TLB) are invalidated.

If the instruction or data caches are tagged using virtual memory addresses, they
would have to be emptied as well. Context switching imposes a small performance
penalty on threads in an MT environment. In addition to direct overheads concerned

xDFS ◾ 325

with a real context switching code, numerous other factors contribute to the over-
head penalties. Another indirect overhead is due to disorder in branch-target buffers
and CPU caches like instruction set, data, and address translation. However, another
source of these indirect overheads may be attributed to the operating system memory
paging. A context switch can result in an in-use memory page being moved to the
disc if there is no free memory, thereby hurting the total performance.

Context switches can take place in the kernel. Kernel mode is a privileged mode
of CPU, in which only kernel code is executed, and provides access to all of the
memory locations and other operating system resources. Other programs, including
applications that primarily are executed in user mode, can run parts of the kernel
by system calls. The existence of such a structure is considered a mode switch (or
mode transition) instead of a context switch because it does not change the state of
the current process or running thread. So, a context switch is used as a mechanism
to switch between two threads of execution. Therefore, we infer that a system call is
not a context switch; indeed, it is akin to a simple function call that causes to change
the state of processes from an unprivileged user mode to a privileged kernel mode.
Memory mappings are not switched. Also, the return of the mode transition to user-
space from the kernel during returning from a system call is similar to the return
operation of a userspace function call.

In addition to context switches occurring between threads at the software level,
in hardware a processor interrupt causes the state of a running task to be saved,
whilst an interrupt service routine is executing. When the interrupt service routine
is completed, the saved state will be restored. Whilst memory maps are not switched
during interrupt servicing, it does hide the cache state and may also constitute some
indirect overhead. Hence, context switching shows a substantial cost to the system in
terms of CPU time for a typical operating system.

10.3.4 Synchronisation Issues

Programming complexity is an ambiguous issue in writing MT applications with
shared memory regions. Although threads simplify the design logic of programs as
possible, great skill and experience are required to ensure that the correct relationship
amongst threads has been established. Errors for selection of appropriate synchro-
nisation methods amongst a set of threads whilst accessing shared objects give rise
to incorrect execution of programs. These methods are very sensitive in most cases.

In many programming languages, locks are essential synchronisation techniques
to enforce limitations for having access to a resource in a computing environment in
which many threads of execution exist. Two key constraints must always be consid-
ered in using locks:

 1. Performance: A complex trade-off often exists between programmability and
performance because most programmers have to make their decisions on how
to share data during the code development process using static information for
dynamic runtime behaviour. Programmers usually use conservative synchroni-
sation to write correct codes and keep them simple. Whilst such use can guar-
antee correctness, create stable software, and lead to faster code development,
it prohibits parallelism. Fine-grained locks may help improve performance,

326 ◾ Implementing Parallel and Distributed Systems

but they make the code hard and error-prone to write. Coarse-grained locks
may facilitate writing suitable code and reduce errors but hurt the key factor
of efficiency. In addition to these problems, locks can impose very important
overheads, serialise the execution of programs, and reduce the overall system
performance.

 2. Stability: If a thread acquires a lock and marks it as held, other threads acquir-
ing this lock must wait until the lock is free. Such a wait can implicitly influ-
ence the system behaviour being designed. If the lock owner is de-scheduled
by the operating system, other threads waiting for this lock cannot continue
their execution since the lock is not free. If the lock owner aborts, other threads
waiting for this lock will never complete; hence, this lock is never free. As seen
in this scenario, the shared memory regions by an abnormal termination of a
thread remain in an inconsistent state. This causes critical sections to be held in
a messy granularity.

Widely-used, general-purpose locking mechanisms include mutexes, semaphores,
condition variables and multiple readers and single-writer locks. Other major prob-
lems caused by locks are lock contention (due to excessively coarse granularity
or inappropriate lock type), deadlock (each thread of control is waiting for a lock
held by another thread of execution), lost locks, race conditions, and incomplete
or buggy lock implementation. In total, the general overhead associated with locks
can be summarised in the extra resources for using locks akin to the memory space
allocated for locks, the time for acquiring or releasing locks, and the CPU time to
initialise and destroy locks. Therefore, the more locks a program uses, the more over-
head associated with the use.

10.4 Some Proposed xDFS Server Architectures in FTSM
Upload Mode

With lessons taken from the four factors explained in the design of a high-perfor-
mance and stable server, we can divide the existing, widely used server architectures
into six main kinds including multiple-process architecture, multiple-thread architec-
ture, single-process event-driven architecture, multiple-process event-driven architec-
ture, multiple-thread event-driven architecture, and staged event-driven architecture
(SEDA) [18]. Each of these architectures has advantages and disadvantages in design-
ing every given application-specific server. One of the chief novel contributions of
this chapter is to extend these architectures relying upon the inherent structures of
the DotDFS and xDFS FTPs.

In all these models, we consider a file transfer scenario as xDFS or DotDFS FTSM
Upload mode that is in progress from one client to the server using n parallel con-
nections per each transfer session. Although these models have their own novelty
suggested by the authors, it is worthwhile to note that, as stated in Section 10.6, the
core of the Parvicursor server has conceptually been constructed by using a hybrid
server architecture. Even though these models offer an abstraction for server-side
protocol implementations, it is also required to note that all implementations of
client-side APIs have benefited practically from these quasi-server-side architectures

xDFS ◾ 327

for designing a whole real-time, high-performance client-server system. Because the
number of pages of this chapter is limited, we omit to describe the details of cli-
ent-side implementations in this section. As follows, we suggest and explore three
major models more suitable to design high-performance servers in the areas of FTPs
and file servers. The first model has classically been used extensively (such as the
GridFTP server), but the second and third architectures are proposed completely by
the authors.

10.4.1 Multi-Processed xDFS Server Architecture

Let’s start with a familiar case: a client intends to upload a large file to an xDFS
server through the well-known n parallel TCP streams using FTSM mode. As shown
in Figure 10.1, in the multi-processed (MP) model, a process called the acceptor
process gets the new connections inside the body of the main() function. Each cli-
ent request gets mapped into a process which manages the TCP stream. Figure 10.1
illustrates the set of n processes to represent one xDFS FTSM session. Process 1 to n
may be retrieved from a process pool, or if there do not exist either enough or idle
processes in the process pool, then the acceptor process can call the system func-
tions, POSIX fork()/Win32 CreateProcess(), which create a new process to
manage the new connection.

Synchronisation can be challenging in this MP model because each of the pro-
cesses is executed in separate address spaces. This problem can be resolved by using
an Inter-Process Communication (IPC) technique. This IPC mechanism, for example,
may be used for passing the client socket handles to the processes, and for synchro-
nisation amongst multiple processes, the main() function and the process pool. As
it can be derived from Figure 10.1, the MP model imposes three major overheads
on the system, including large open file handles, heavyweight context switches, and
excessive off-chip/on-chip memory used.

Figure 10.1 Multi-processed xDFS server architecture.

328 ◾ Implementing Parallel and Distributed Systems

 1. Large open file handles
In the MP model, a file handle is opened per process. The set {fd1,fd2,…,fdn}
represents open file handles for n parallel connections. These n processes are
concurrently receiving file blocks from the client. A single file through n sep-
arate file handles is shared to be written by the system function write()
amongst multiple processes. From two perspectives, this model can significantly
decrease the file transfer throughput of a single xDFS FTSM session. One nega-
tive factor on performance is the non-deterministic distribution of random disc
seeks amongst n parallel processes. It is also necessary to note that each operat-
ing system according to its underlying I/O scheduling algorithms and policies
usually behaves typically differently on the disc I/O throughput. Disc schedul-
ers in current operating systems are generally work-conserving, i.e., they sched-
ule a request as soon as the previous request has finished.

The overhead of acquiring and releasing each lock in the OS kernel may
become considerable on the overall disc I/O throughput. File system perfor-
mance is often a major component of the total system performance, and, in this
case, is heavily dependent on the nature of the server application operating the
workload. Indeed, the use of the MP model with large open file handles can
cause four major performance penalties. It increases the number of I/Os to the
underlying device(s). It violates the grouping of smaller I/O requests together
into larger I/Os where possible. It cannot be used to optimise the seek pattern
to reduce the amount of time spent waiting for disc seeks; disc seeks are expen-
sive head repositioning operations. Finally, it is not possible to cache as much
data as realistic to reduce physical I/Os.

Perhaps at first glance, it seems clear that these problems can be avoided in
the following manner: An extra process called the disc I/O process has access to
a single file handle, to write file blocks individually coherently to the disc, and
all other processes have access to the disc I/O process by an IPC mechanism.
However, this technique implies that the use of an extra process, an IPC mecha-
nism and synchronisation at the process level in userspace, eventually degrades
the system performance.

 2. Heavyweight context switches and excessive use of off-chip/on-chip memory
As sketched out in Figure 10.1, two of the coarse-grained approaches to

creating new system processes are used, including, POSIX fork() and Win32
CreateProcess(). Although an infinite number of processes may be created,
it should be mentioned that operating systems only permit a limited number
of processes to be assigned within their available amount of physical memory.
However, using a process pool cannot be appropriate for an xDFS server in
crucial applications including fine-grained parallel or highly data-intensive pro-
grams in Grid environments, and high-traffic environments with too many cli-
ents’ connections like the Internet. Approaches to making a process structurally
are divided into creation and clone modes.

In the creation mode, the operating system does the following operations:
loads code and data into memory, creates an empty stack, initialises the state
to the same as after a process switch, and makes the process ready to run by
inserting it into the OS scheduler queue. In the clone mode, the operating sys-
tem performs the following operations: stops the current process and stores its
state (i.e., transiently freezing the entire application, especially in the case of

xDFS ◾ 329

a server software program), makes a copy of the current code, stack, and OS
state; and makes the new-born process run.

Forks are in the clone mode whilst processes made by calling the system function
CreateProcess() are in the creation mode. As can be seen in the MP model, pro-
cesses impose two other important overheads, including excessive use of off-chip/
on-chip memory, and heavyweight context switches due to using n processes. Also,
process context switching implies getting a new address space in place by page table
and other memory mechanisms.

10.4.2 Multi-Threaded xDFS Server Architecture

Choosing an appropriate thread model for server programs is a complex decision
influenced by many factors, including, performance constraints, software maintain-
ability, and the presence of existing code. To some extent, for reducing the process-
based overhead of the MP model, MT architecture is proposed for the xDFS server in
FTSM mode. The MT structure is shown in Figure 10.2. In this model, processes are
replaced with threads. These multiple kernel threads share a single address space
and are accessible to all threads. Each thread manages one stream from the remaining

Figure 10.2 Multi-threaded xDFS server architecture.

330 ◾ Implementing Parallel and Distributed Systems

n-1 streams. In the MT model, threads can share all public information; it makes it
possible to remove the IPC mechanism used in the MP model and allows the thread
acceptor directly to manage running threads. Threads are lightweight processes and
expose much less overhead than the MP model on server applications. This model
substantially reduces the total memory (physical and virtual or swap space memory)
used by programs. To eliminate overheads due to large open file handles, in the pro-
posed MT model, a thread named the disc thread is used to manage to write() and
seek() operations for the file blocks received from the client. In Figure 10.2, the
disc thread only opens a single file handle from the requested file.

File blocks are put into a circular buffer which contains file blocks most recently
received from the client. To avoid race conditions, a pessimistic locking mechanism
is used. The thread that intends to put a received file block into the circular buffer
first acquires the buffer lock, and then independently takes action to fill the buffer.
The disc thread attempts to arrive at a relative coherency and reduce the number of
discs seeks through a scatter/gather I/O mechanism to contiguously write the con-
tents stored in the circular buffer into the storage system as a whole. This buffering
method can significantly decrease a lot of successive calls to the function system
seek() for performance improvement. Further, the disc thread must inform the
xDFS client of correct and errorless receiving of the file block via sending an excep-
tion header defined by the xDFS protocol.

The MT model can have much less overhead in comparison to the MP model, but
this model still imposes two critical performance pitfalls. Because of the existence of
n+1 threads for each xDFS session, this model once more leads to frequent context
switches, although this overhead is much less than the MP model. The second over-
head is the use of a pessimistic locking mechanism to synchronise threads for simul-
taneous access to the circular buffer, because if n threads are concurrently ready
to write to the buffer, then one thread can only acquire the buffer in an OS time
quantum. Therewith, this procedure explicitly depicts that many context switches are
unintentionally disparately happening amongst the disc thread and the xDFS session
threads which had received file blocks but have not yet made the buffer dirty.

If an inappropriate, non-optimal pessimistic locking algorithm is used, it may fre-
quently postpone the execution of threads and, finally, reduce efficiency drastically.
For instance, during the development of primary DotDFS client-side prototypes, the
system performance decreased up to 50% with an improper locking algorithm used.
We spent a lot of time developing and optimising an alternative algorithm.

It is also important to note that all operating systems do not support kernel-level
threads. This means that cross-platform applications have to consider employing
userspace-level multi-threading libraries in their C macros or C preprocessor direc-
tives, like the GNU Portable Threads library. This technique would lead to high syn-
chronisation overheads for sharing data amongst a large number of threads.

There are multiple threading variants for different application-specific scenarios. In
the 1:1 (kernel threads) method, threads are created by a 1-1 mapping onto a single
kernel-level scheduled thread. This model is supported almost in all the operating
systems. In the N:1 (userspace threads) model, the number of N user-land threads is
mapped into a schedulable kernel thread. This method benefits from the fast and low-
cost creation of threads. But the most fundamental pitfall of this model is that if one
of the userspace threads blocks the kernel thread due to a blocking situation (such

xDFS ◾ 331

as in disc I/O-bound cases), then all other threads are ready to run will be blocked. In
the N:M (scheduler activations) [19], equal to the number of N userspace threads are
mapped to the number of M kernel threads. As a whole, the N:M model is less spread
across the family of operating systems in contrast to other models, because an N:M
library implementation requires extensive changes to both kernel and userspace codes.

10.4.3 Multi-Threaded Event-Driven Pipelined xDFS Server Architecture

In this section, we propose a multi-threaded event-driven pipelined (MTEDP) archi-
tecture for the xDFS server operating the FTSM mode in which multiple pipelined
apartments are overlapped in execution. To increasingly enhance the performance
of the xDFS server, MTEDP eliminates the synchronisation mechanisms used in the
MP and MT models and reduces the number of context switches to a large extent.
Figure 10.3 shows the MTEDP architecture. Due to the similarity of Figure 10.3 with
pipelining techniques in computer organisation, we included the term pipelined in
the phrase MTEDP.

These m pipelines, in which each pipeline contains n parallel connections, actu-
ally indicate m parallel file transfer sessions in FTSM mode. Each pipeline manages
one transfer session. In this model, each pipeline in each thread owns n socket
handles, and these handles, to asynchronously send and receive data over sockets,
are managed through event-dispatching and multiplexing techniques realised as a
collection of comprehensive communicating fine state machines. As it is obvious,
each pipeline has an open file handle and this would lead to the avoidance of using
pessimistic locking mechanisms, which reduces the performance in the MT model,
and the problem associated with large open file handles in the MP model.

Figure 10.3 Multi-threaded event-driven pipelined xDFS server architecture.

332 ◾ Implementing Parallel and Distributed Systems

Now, we can derive the relationships in Table 10.1 to represent the number of
threads created in an xDFS server for both the MT and MTEDP models, in which m
stands for the number of FTSM transfer sessions, and each of which has ni parallel
connections.

There are different event-dispatching and multiplexing network I/O mechanisms.
However, some of them are implementation-specific to some operating systems, each
of which has particular advantages and disadvantages. In general, these mechanisms
can be split into four major groups:

 1. select() and poll()
The select() and poll() system calls are stated-based event-dispatching
mechanisms. They report the current status of a set of sockets as their input
arguments. When there are a large number of sockets, select() is more suit-
able because less data is copied to or from the kernel. The select() function
is available on most platforms, but poll() is less pervasive (e.g., WSAPloll()
has been added to the Windows Vista operating system and its later versions
[20]). For this reason, the implementation of both xDFS client and server cores
relies upon the select() routine.

 2. POSIX.4 Real Time Signals (RT Signals)
RT signals are an extension of the traditional Unix signals [21]. They allow the
kernel to queue multiple instances of a signal for a process. Linux kernel 2.4
extends RT signals so that the opportunity for the delivery of socket readiness is
provided by a particular real-time signal. RT signals are not available on all plat-
forms. One of the main disadvantages of RT signals is that they make the server
code to write complex in contrast with other methods. Also, because the system
call sigwaitinfo() is employed to implement RT signals, switching between
kernel and user modes occurs frequently. The main advantage of RT signals
over against select() and poll() is that they are much more scalable.

 3. /dev/poll
/dev/poll appeared for the first time on Solaris 7 for avoiding the require-
ment to specify the desired set on every poll() [22]. This way is a state-based
event-dispatching mechanism. The key idea behind this technique is that appli-
cation programs can open device files into the kernel to make a set of favourite
descriptors. This set is gradually made after accepting a new connection from
the network adaptor. This method can reduce the amount of favourite copied
sets between userspace and kernel space. The main drawback of this method
is that it is limited to Unix-like operating systems and is not supported by the
Windows family of operating systems.

Table 10.1 The Number of Threads

T n
m m

n
i

m

i

i

m

iMT � �� � � �� �
�

� �
� �

1 1

1
1

2
.

(10.1)

T mMTEDP = (10.2)

xDFS ◾ 333

 4. NT Completion Ports and POSIX AIO
NT I/O completion ports [23] supply an efficient threading model for process-
ing multiple asynchronous I/O requests on a multiprocessor system. When a
process creates an I/O completion port, the system creates an associated queue
object for requests whose sole purpose is to service these requests. Processes
that handle many concurrent asynchronous I/O requests can do so more
quickly and efficiently by using I/O completion ports in conjunction with a pre-
allocated thread pool than by creating threads at the time they receive an I/O
request. Completion ports are only available on Windows platforms.

The POSIX AIO interface [24] allows a process or thread to start multiple
simultaneous read and/or write operations to multiple file descriptors, to wait
for or obtain completion notification of requested operations, and to retrieve
the status of completed operations. One of the current AIO’s disabling down-
sides is that they are not applicable to Linux kernel-mode AIO for network I/O
subsystems (e.g., sockets) and also are not available on Windows platforms.

10.5 DotDFS and xDFS File Transport Protocols
DotDFS and xDFS are general-purpose network protocols to fulfil the goals of high-
throughput file transfers and network file systems. DotDFS protocol was proposed
based on the demands of Grid communities. xDFS investigates new objectives
beyond its predecessor. xDFS adds so many new extensions to the DotDFS protocol
to facilitate the use of xDFS protocol in other dynamic environments such as Cloud
Computing and the Internet. xDFS protocol allows multiple clients to have simulta-
neous access to managed files and directories (for the large or small size of volumes
with a high-throughput performance) hosted on desktop, dedicated server systems,
or any other computing entity. Additionally, it makes it possible to access other ser-
vices including inter-process communication, remote file streaming, and authenti-
cated transports over all xDFS channels. Generally speaking, xDFS is a client-driven
protocol in which a client requests the server and the server replies to the client.
xDFS is both a stateless and a stateful protocol. It mandates several protocol-level
states to maintain security contexts and cryptographic mechanisms via xSec (DotSec)
protocol and file access semantics such as locking.

Furthermore, the xDFS protocol defines a set of specifications to achieve the
aggregating throughput of widely used TCP protocol in WAN and MAN networks
for file transfers. It enables multiple clients to simultaneously share files on server
systems. It ultimately leads to facilitating collaboration, and efficiently using and cen-
trally managing resources.

Also, we have seen in recent years, that data-intensive distributed file system
frameworks are emerging as a major component of large-scale Internet services and
Cloud Computing paradigms. These frameworks are designed from scratch and pro-
vide specific facilities for some applications. Three key examples of these frameworks
are Google File System [25], Hadoop distributed file system [26], and Amazon S3 [27].

xDFS framework comes up with numerous high-performance services and protocols.
Hence, different contemporary and ongoing projects can be facilitated in the aspects of

334 ◾ Implementing Parallel and Distributed Systems

design and implementation using the xDFS framework as a key low-level underlying
file transport protocol, particularly for future data Grid and data Cloud platforms.

DotDFS protocol introduced three operating modes, including FTSM, DFSM, and
PathM [5, 6, 12]. The DotDFS protocol, with three of these modes, was an attempt to
accommodate the needs expressed earlier in this chapter. xDFS protocol in a new
look to these three modes tries to highly extend DotDFS features in more compliance
with Internet services. In this chapter, the FTSM mode is fully considered. Section
10.5.1 discusses overall xDFS features, and Sections 10.5.2 and 10.6 take a compre-
hensive description of the xFTSM protocol.

10.5.1 Overall xDFS Features

10.5.1.1 Transport Independence

xDFS protocol does not necessarily require the use of any specific network transport
protocol. TCP is the default scheme of a connection-oriented transport protocol used
to carry xDFS binary headers. As a whole, this flexibility is due to the layered model
of xDFS specification. xDFS employs Parvicursor Socket Interface (PSI) architecture
for underlying transport protocol in the lowest layer. For example, the highly exten-
sible PSI architecture allows developers to implement xDFS over a variety of trans-
port stacks such as SCTP [28], UDT [29], and RDMA [30] with the minimum changes
in xDFS C++ source codes. Since the main audience of the xDFS protocol is various
purposes on the Internet, a major part of this chapter discusses the implementation
of xDFS over TCP-enabled PSI.

10.5.1.2 Flexible Connectivity

In xDFS protocol, a single client can connect to multiple servers, or it can establish
one or more connections on each server. The activity of multiple client processes can
be multiplexed over a single connection. This feature represents the support of reus-
able channel mechanisms in the xDFS protocol.

10.5.1.3 Feature Negotiation and Prerequisites

Because the collection of xDFS protocols during the coming years will always be
evolving, the feature negotiation was added to xDFS. This feature provides the nego-
tiation of dialect and the supported feature set of the protocol between two end-
points. For instance, before connection establishment between a client and a server
the protocol version is negotiated and used for more interoperability and the support
of legacy applications. As another example, the negotiation of a per-connection basis
is used to choose the type of transmission channel.

10.5.1.4 Resource Access

A client can simultaneously access multiple resources shared across remote com-
puting entities. Additionally, a client can have access to files and directories for
different purposes. As a unique feature, the support of named-pipe inter-process

xDFS ◾ 335

communication was added to the set of xDFS protocols. A client can open, read,
write, and close named pipes on a target server. Named pipes can be used as a
communication path between client and server processes. This feature enables the
possibility of using xDFS protocol in parallel computing applications based upon a
concept of distributed remote file access.

10.5.1.5 Unicode File Name Support

Since xDFS protocol extends DotDFS protocol and is implemented based on native
C++, it uses features of the Parvicursor.NET Framework classes for string manipula-
tion. The class System::String supports the default format of Unicode strings. All the
Parvicursor Framework’s methods and functions make use of this primitive data type.
They are redirected to the native Unicode strings before having access to call Win32
or POSIX APIs. This feature not only has no overhead but also leads to more xDFS
multilingual universality.

10.5.1.6 Distributed File System Mode (DFSM)

This requested mode supports access to files and data sharing mechanisms, which
have been employed in conventional distributed file systems. Additionally, this mode
can be used for stripped and third-party data transfers. One good example of this
mode is a situation with one or more transport streams between m network end-
points sending side and n network endpoints on the receiving side.

10.5.1.7 Path Mode (PathM)

The design goal of PathM mode is to support basic features like the creation/deletion
of remote files/directories and relevant features. In the PathM mode, the xDFS server
operates similar to an RPC server, but all methods requested by the client are previ-
ously defined as binary in the client-server negotiation protocol.

10.5.1.8 Authentication, Data Integrity, and Data Confidentiality

DotGrid [5, 6, 12, 14, 31] and Parvicursor projects are architectural constructs imple-
mented as layered frameworks and are executed on top of PSI. xSec (DotSec) is the
layer above PSI and provides secure communications between endpoints based on
xSec (DotSec) TSI [5]. xSec is a lightweight grid security infrastructure. It is designed
as a unified security model in the Parvicursor platform. xDFS protocol requires all
channels shall be authenticated according to services provided by the xSec secu-
rity layer. xSec, the new version of the DotSec protocol, was also implemented in
native code. After authentication/authorisation steps, all channels are encrypted if
the higher layers or application programs request it from the xSec layer.

10.5.2 xDFS xFTSM Protocol

The xDFS protocol is more sophisticated than the FTP and GridFTP protocols (and
even the DotDFS protocol) in terms of structure and extensibility. xDFS using a fully

336 ◾ Implementing Parallel and Distributed Systems

binary protocol model and requiring the use of comprehensive finite state machines
precisely defines a wide range of mechanisms and operations. This approach com-
plicates the feasible implementations of the xDFS protocol, but ultimately signifi-
cantly increases the performance and throughput of those systems that have been
developed atop the xDFS framework.

Primarily, DotDFS with the introduction of the File Transfer System Mode (FTSM)
sub-protocol tried to suggest a new file transfer paradigm to solve a set of problems.
They were to support parallel connections and negotiate TCP window size between
a client and a server [5, 12]. These two methods relieved partly the problems due
to making TCP protocol the widely used transport protocol layer in the OSI model
when transferring files with large sizes to increase the network throughput in high-
latency WAN networks. xDFS protocol extends FTSM mode and proposes xFTSM
architecture. xFTSM mode inherits all the properties of FTSM, changes the former
FTSM structure, and adds new extensions to it.

Today, the design of state-of-the-art network protocols is an art of engineering.
However, a standard protocol is assigned to allow different implementations to inter-
operate. Therefore, a standard protocol should summarise the operation of its fea-
sible implementations. The selection of multiple implementations and many other
engineering details often make the formal specification of a protocol difficult. Lack
of formal specification as seen in the process of developing the IETF standards has
two important negative results: The protocol accuracy is not easily verifiable, and the
protocol may be ambitious in some respects. First, bugs are continuously identified
and resolved in the standard protocol. Second, the protocol ambiguities can open
adequate space for bugs and even attacks. These altogether are identified in an ad
hoc way. Third, protocols may be used without the verification of accuracy.

According to these points and that xDFS has become more complex than its pre-
vious versions, there shall be made use of more powerful methods than common
methods employed for documenting the IETF standard protocols. We widely utilise
communicating finite state machines (CFSMs) to propose and design xDFS protocol.
An example of CFSMs will be mentioned in Section 10.6.

The formal model of a CFSM plays an important role in three various areas of
network protocol design: formal validation, protocol synthesis, and conformance
testing. Protocol formal validation is a powerful technique for automatically checking
that a collection of communicating processes in the CFSM is free from concurrency-
related errors. Protocol synthesis is used to derive an implementation-level protocol
specification from the service specification. Protocol conformance testing is a kind of
testing by which an implementation of a protocol entity is tested with respect to its
specification for efficiency or interoperability purposes.

To precisely understand the structure of the xDFS protocol, we present a preliminary
introduction to CFSM), because we will take advantage of CFSMs to describe xDFS.

Over the past 50 years, a variety of formal models have been proposed and stud-
ied to facilitate the specification and validation of concurrent systems. One major
example is communication protocols where protocol entities interact with each other
under a set of rigorous rules. Designing concurrent systems is known as a signifi-
cantly deep problem. One of the major sources of difficulties with concurrent sys-
tems is because the function of these systems inclines to become very complex and
too large. To describe a concurrent system is difficult to the way that it operates in

xDFS ◾ 337

an environment throughout infinite time. The functional behaviour of a system is
defined by a large number of ongoing system interactions with its environment, and
these interactions often exhibit complex interdependencies. Therefore, it is very dif-
ficult to describe, understand and predict the behaviour of these concurrent systems,
and finally to examine whether their needs are met or not.

A suitable model for describing communication protocols and concurrent systems
is CFSMs. In the CFSM model, a protocol is defined as a collection of processes (i.e.,
protocol entities) that exchange messages over error-free simplex channels. Each
process is modelled as a finite state machine (FSM) and each simplex channel is a
FIFO queue. A protocol state is composed of a state for each FSM and content for
each simplex channel. A state transition occurs only when the process is ready to
send a message to one of its output channels or receives a message from one of its
input channels. The CFSM model is an elegant and well-defined structure, and rather
easy to understand. These features have made it very attractive for industry and aca-
demia. The CFSM model virtually has become a de facto standard to specify, verify,
and test communication protocols in the telecommunication industry.

After this, we assume that a client intends to connect to an xDFS server through
n parallel channels. A channel in xDFS protocol is an abstract concept during which
the interaction of operation and data flows takes place between network endpoints.
xFTSM and xPathM modes flow through these stateful channels. Furthermore,
because the architecture of xDFSM and xPathM modes is beyond the scope of this
chapter, we no longer discuss them fully in this section (interested readers can refer
to [5] for further information).

These n parallel channels for xFTSM mode over TCP pipes are the same mecha-
nisms of parallel TCP connections used to increase the throughput in wide-area net-
works. These n parallel channels for xPathM mode can denote n routes on the side
that have been requested from it; they can improve the system efficiency for transfer-
ring directory trees especially in the case of a lot of small files. The implementation
of xPathM mode may be taken advantage of multiple threads to handle parallel chan-
nels, which can contribute dramatically to the performance in terms of optimal use
of threading concurrency. However, it is strictly recommended to limit the number of
created threads equal to the number of available processor cores in xPathM mode so
that additional overhead as much as possible can be avoided due to context switch-
ing. To achieve the maximum performance of the proposed protocol in xFTSM mode,
xDFS requires the client-server developers to use event-dispatching and multiplexing
methods for managing parallel network I/Os in which a client or a server shall create
one thread per session at most. The proposed model due to compatibility with this
requirement compulsorily relieves different xDFS implementations.

In the rest of this chapter, we assume that a client and a server are negotiating
to upload and download files with large sizes over xFTSM channels. It must also be
emphasised that whereas channels are a general concept in xDFS protocol, they can
be built over different transport protocols utilising the underlying PSI stack such as
TCP, SCTP [28], UDT [29] and RDMA [30].

Figure 10.4 shows the client-server xDFS protocol sequence diagram in xFTSM
and xPathM modes. A client chooses the xFTSM mode after connecting to the server,
selecting xDFS service and authentication in step 5. Steps 1 to 7 are repeated for all
n parallel channels involved in this process. The first client channel connected to

338 ◾ Implementing Parallel and Distributed Systems

the server is responsible to register a new xFTSM transmission session at the xDFS
server side. This channel-based session registration shall be performed at the stage
of negotiation protocol by a unique session identifier. The most important parameter
passed in this step is the number of parallel channels n. Table 10.2 illustrates some
parameters of the negotiation protocol. The data structure of the negotiation protocol
(and any xDFS structure or object that requires to be transferred between endpoints)
is transformed into a native binary format using Parvicursor Object Passing Interface
(POPI) that later can be retrieved into its initial form.

In Parvicursor.NET Framework, serialisation is the low-level process of converting
the state of an object into a form that can be persisted or transported. POPI can be
easily implemented in many languages and platforms.

Figure 10.4 Client-server xDFS protocol sequence diagram in xFTSM and xPathM modes. n is
the number of parallel channels.

Client Server
service selection

available xDFS service

xSec authentication

authorized
session mode selection

mode supported
connect channel 1 and initiate negotiation protocol

, server MUST
wait to be

established other
channels if n>1

and then steps 1
to 7 will be

repeated for each
channel.

asynch close()

as
yn

ch
 c

lo
se

()

1 2

3
4

5
6

7 8

9

10

11

Table 10.2 Parameters of the Negotiation Protocol

Local file name (to be written in download
mode or to be read in upload mode).

Remote file name (to be written in upload
mode or to be read in download mode).

The number of parallel channels for xFTSM
and xPathM modes.

Protocol version and a unique session
identifier specified by GUIDs.

TCP window size in bytes. Desired block size of the used underlying
storage system in bytes.

User credentials. Extended mode (such as the xDFS protocol’s
zero-copy parameters, etc.).

xDFS ◾ 339

After completing the session registration step by the first client channel, the server
shall wait until the remaining n-1 channel(s) are established. After getting all the
channels established, there are n duplex channels between client and server which,
on the demand of a client, could lead to parallel data transfer in either type of mode
(upload or download). One of the new and unique extensions in the xDFS proto-
col is the abstraction of channel events added to the duplex channel negotiation as
shown in Figure 10.4. This way in all channels the client or server can change the
operating mode during the xDFS session from xFTSM to xPathM or vice versa. To
further clarify this new extension, it is necessary to describe the structure of mes-
sage interchange formats exchanged in the duplex channel negotiation in the form
of headers between the client and server. DotDFS protocol refereed the term data
transfers to step 10 of Figure 10.4 [5, 6]. Nevertheless, the xDFS protocol changes
the term data transfers, refers it to as the term duplex channel negotiation, and pro-
vides the feasibility of operation flow, data flow, or a combination of both through
the duplex channel negotiation. This evolutionary extension on xDFS highly expands
the protocol in terms of functionality and extensibility for the development of future
xDFS Framework versions.

An illustration of a general xDFS protocol channel binary header encapsulated in
xSec TSI (transmission security interface) header appears in Figure 10.5 during step
10 of Figure 10.4. The description of the xSec TSI Header is beyond the scope of this
chapter, which encrypts all xDFS channels. Channel event represents the structure
of channel headers and generally describes the operation flow and data flow in step
10 of Figure 10.4. Because the channel event exhibits highly structural complexity in
the xDFS specification, the pattern of xDFS channels MUST be characterised in finite
state machines. Some types of channel events are shown in Table 10.3.

The structure of a channel header related to xFTSMD and xFTSMU types is shown
in Figure 10.5. xFTSM header stores the information of data file blocks that are being
transferred (such as the file block offset and block length). In xFTSMU and xFTSMD
types, depending on the data flow, a set of operations are executed at the client-
server sides as follows: reading from local storage and sending to the remote server
(in the upload scenario initiated by the client) and receiving from the remote server
and writing to local storage (in download scenario initiated by the client).

Implementations to satisfy the support of various types of channel events shall be
considered as a collection of FSMs at the level of protocol and source codes to reduce
complexities as broadly as possible.

Figure 10.5 A general xDFS protocol channel binary header encapsulated in xSec TSI header.

Channel Event Offset Length Data

1 byte 8 bytes8 bytes Length bytes

Channel Header

xFTSM Header

xSec TSI Header

340 ◾ Implementing Parallel and Distributed Systems

10.6 The Native, Cross-Platform, and Cross-Language
Implementation of xDFS Protocol

In this section, a concrete explanation of the new xDFS implementation in native
code is given atop Parvicursor.NET Framework. Furthermore, a novel and new xDFS
hybrid concurrency pattern (HCP) is proposed.

10.6.1 The Architecture of xDFS Implementation in Download
and Upload Modes

The main core of the xDFS implementation is inspired by C# source codes of the
DotDFS protocol. Anywhere it has been required according to the philosophy of the
Parvicursor project, the C#-based DotDFS codes have been mapped into C++ codes.
This sample mapping is important to prove the preliminary goal of the Parvicursor.
NET Framework for an application program in the real world. Figure 10.6 portrays a
simplified mapping of the C# xDfsClient class into its equivalent ISO C++ class. As
seen in this figure due to innate correspondency between the structural syntax of the
C++ and C# languages, Parvicursor.NET makes a suitable framework for program-
mers to develop software systems in native C++ environments.

As stated in Section 10.4.3, the MTEDP model suggests a general structure for
the xDFS server. In practice, there does not exist an executable process file named
the xDFS server notwithstanding. When Parvicursor services are executed on every
network node, an executable file is run, and at any time needed in demand, it instan-
tiates necessary services and executes them. Figure 10.7 shows the integrated hybrid
Parvicursor server architecture. Each instance of the Parvicursor server is comprised
of a minimum of six runtimes; e.g., in Figure 10.7, there are three runtimes, includ-
ing, xThread Runtime, Common Runtime, and xFTSM Runtime.

In this structure, the Listener Thread (LT) receives the client requests and looks
for what kind of service has been requested from the server through the transferred

Table 10.3 Some Types of Channel Events

Type Description

EOFT End of file reached and the session must be terminated by closing all channels.

EOFR End of file reached in that channel but it must change its state to reusable
channel mode.

xFTSMU Initiate or change to xFTSM upload channel mode.

xFTSMD Initiate or change to xFTSM download channel mode.

xPathM Initiate or change to xPathM channel mode.

NOOP No operation command over the channel.

CONM Continue and maintain the previous channel event state.

ZxDFS This channel is negotiating with a remote channel in the zero-copy version of
xDFS channels.

xDFS ◾ 341

header over the Parvicursor Socket Interface (PSI) channels. xThread is a new
Parvicursor service, akin to the DotThreading model from the DotGrid platform [12,
14, 31], as discussed in Chapter 9, that allows computational threads to be distributed
across Grid nodes. Common Runtime has several duties such as monitoring all run-
ning threads and the used physical memory by the clients’ requests, load-balancing
between the execution cycles of threads in the entire CPU cores, and eventually the
complete management of a full set of Parvicursor services running at server side.

Figure 10.6 Direct mapping between C#-based and native C++-based DotDFS/xDFS source
codes: (a) managed C# CLI code and (b) native Parvicursor.NET C++ CLI-based code.

// The managed CLI-based C# code
using namespace System;
using namespace System.Collections;
using namespace System.Net.Sockets;
class xDfsClient
{

protected String host;
protected ArrayList sockets;

public xDfsClient(String host, Int32 port)
{

sockets = new ArrayList();
Console.WriteLine(host.Trim() + port.ToString());

}
}

(a)

(b)

// The native Parvicursor.NET CLI-based C++ code
#include <Parvicursor.h>
#pragma comment(lib, "Parvicursor.lib")
using namespace System;
using namespace System::Collections;
using namespace System::Net::Sockets;
class xDfsClient : public Object
{
protected:

String *host;
ArrayList *sockets;

public:
xDfsClient(String *host, Int32 port)
{

sockets = new ArrayList();
Console::WriteLine(host->Trim() + port.ToString());
// or
cout << host->Trim() << port << endl;

}
~xDfsClient()
{

if(sockets != null)
delete sockets;

sockets = null;
}

};

342 ◾ Implementing Parallel and Distributed Systems

xFTSM Runtime is the same implementation of the MTEDP model for file transfers in
download and upload mode. Each pipeline in xFTSM Runtime is a container for one
xFTSM session which is processing n parallel channels. xFTSM Apartment also man-
ages n parallel channels. Waiter Thread is a thread which is run by LT to manage the
execution flow of every service on demand. Each collection of n parallel channels is
simultaneously processed by a special module called Parallel I/O Dispatcher (PIOD).
PIOD implements a C++ class interface in which one can extend its kernel relying
on an extensive set of network event-dispatching mechanisms discussed in Section
10.4.3. PIOD, according to the type of upload or download mode, transfers the
data packets between a client and a server through the asynchronous disc and net-
work I/O methods. In Figure 10.7, if we assume that Session k has Sk local threads,
then because Common Runtime and xThread Runtime, and xFTSM Runtime contain
respectively three and m threads, so the total number of threads in a Parvicursor
server’s instance can be calculated from the relation 1 of Table 10.4 at any moment
of time.

Figure 10.7 Integrated hybrid Parvicursor server architecture.

Listener
Thread

PSI Protocol Interpreter

xDFS Protocol InterpreterxFTSM Apartment

Pipeline 1

Pipeline 2

Pipeline 3

Pipeline m

Waiter
Thread m

Parallel
IO

Dispatcher
Parvicursor
Resource
Patrolman

xDFSM

xPathM

xProcess

n parallel channels

xThread Runtime
Manager Thread

xThread
Control
Channel
Helper
Thread

Session 1 Session 2 Session k
Event

Dispatcher
Event

Dispatcher
Event

Dispatcher

Event Dispatcher

xThread Hosting Container

xFTSM Runtime
Common Runtime

xThread Runtime

Table 10.4 The Number of Threads

T m S m
k k

S
i

k

i

i

k

ihybrid � � � �� � � � �
�� �

�
� �
� �3 1 3

1
2

1 1

.
(10.3)

xDFS ◾ 343

To fully understand the architectural implementation of the Parvicursor server
in xFTSM mode and more details on the way in which xDFS protocol functions in
each either mode of client-server upload or download, we use CFSMs. Four corre-
sponding CFSMs are illustrated in Figures 10.8–10.11. For two reasons, the first the
download mode is usually used on the Internet, and the other is the page limitation
of this chapter; we only describe the client-server CFSMs of the xDFS protocol in this
section.

In Figure 10.8, after authenticating the client through xSec GSI, choosing the
xFTSM mode by the client, and receiving the xFTSM parameters, the server checks
whether the session has already been created using its GUID by the client or not. If
the session already exists and the number of sockets in the hash table is not corre-
sponding (equal) to the value of n received from the client, the server adds the new
client stream to the hash table in state 8. In step 7, the server concurrently checks,
so that if the number of client streams is equal to the value of n, then it moves the
CFSM flow to state 9. If an error occurs during states 1 to 8, the next state will be 18.

Figure 10.8 xDFS server communicating finite state machine in xFTSM download mode.

12

Session
Ended

Accept Client
Connection

Authentication

Channel
Selection

Receive
Download

Request Header

Has The Session
Already Been

Created?

Create Client Session
and Add Client Stream to

Session Hash Table

Wait for All
Parallel

Connections

Connected streams
are not equal to n

Co
nn

ec
te

d
str

ea
m

s a
re

 e
qu

al
to

 n

Add New
Client Stream to
Session Hash

Table

No

Yes

Supported
Not
Supported

Authorized
Not
Authorized

deruccororrE

Timeout

1

2

3

4

5

6

7

8

18

Event Dispatcher

Readable and writable
socket list are empty

Check ACK from
Client and Set
Socket State to

Done

R
ea

da
bl

e
so

ck
et

 li
st

 is
 n

ot
 e

m
pt

y

Set Readable or Writable
Sockets from Socket List

Read File Block
from Disc

Write To Socket
and Set Socket

State to NotDone

Ne
w

file
 b

loc
k

wa
s r

ea
d

Were All of
Writable Socket

List Written?
Yes

N
o

Send End of
File Header

End of file reached

W
ritable socket list

is not em
pty

Event Dispatcher

Writable socket list are
empty

Writable socket list are

not empty

Have All End of
File Headers Been

Sent to Writable
Sockets?

No

9

17

16

10

11

15

Ye
s

13

14

344 ◾ Implementing Parallel and Distributed Systems

Figure 10.9 xDFS client communicating finite state machine in xFTSM download mode.

Connect To
Server

Authentication

Authorized

Channel
Selection

Supported

Send Download
Request Header

Have All
Connections

Been
Established?

No

Ye
s

Session
Ended

Not
Supported

Not
Authorized

deruccororrE

1

2

3

4

5

6 10

Set Readable Sockets
from Socket List

Event Dispatcher

Readable socket
list is empty

Read File Block
from Socket

Readable socket

list is not em
pty

Write to Disc
and Send ACK

Ne
w

file
 b

loc
k

re
ce

ive
d

Were All of
Readable Socket

List Read?

Yes

N
o

Remove This Stream
from Socket List

End of file reached
but there are still some
readable sockets

End of file reached and there are not any readable sockets

7

8

11

9

Figure 10.10 xDFS server communicating finite state machine in xFTSM upload mode.

9 14

Session
Ended

Accept Client
Connection

Authentication

Channel
Selection

Receive Upload
Request Header

Has The Session
Already Been

Created?

Create Client Session
and Add Client Stream to

Session Hash Table

Wait for All
Parallel

Connections

Connected streams
are not equal to n

Set Readable Sockets
from Socket List

Co
nn

ec
te

d
str

ea
m

s

ar
e

eq
ua

l to
 n

Event Dispatcher

Readable socket
list is empty

Read File Block
from Socket

Readable socket

list is not em
pty

Write to Disc
and Send ACK

Ne
w

file
 b

loc
k

re
ce

ive
d

Were All of
Readable Socket

List Read?

Yes

N
o

Remove This Stream
from Socket List

End of file reached
but there are still some
readable sockets

End of fil
e re

ached and th
ere are

not a
ny r

eadable so
cke

ts

Add New
Client Stream to
Session Hash

Table

No

Yes

Supported

Not
Supported

Authorized

Not
Authorized

deruccororrE

Timeout

1

2

3

4

5

6

7

8

10

11

13

12

15

xDFS ◾ 345

Since the system function select() has been used as the event-dispatching com-
ponent in the present xDFS design, these CFSMs were drawn depending on the prop-
erties of this system routine. xDFS protocol has considered an Exception Header
packet for the response of each request at any given side; in fact, this mechanism is
part of the concept of the duplex channel negotiation. If a client-side error takes place
during any point of the file transfer session, then this header contains some binary
details from an instance of the class System::Exception to be sent to the server
through PSI and Parvicursor Remoting Architecture (PR), and the server decides how
to deal with this error. At an erroneous point, the server either closes the current
channel or terminates the entire transfer session. To preserve the state of sockets (for
read-readiness and write-readiness modes), two individual array lists are used. Those
sockets that are involved at the read-readiness list have three states labelled as Done,
NotDone, and FirstTime. The state Done interprets that the Exception Header
value still hasn’t been received by the server, and the server in its next loop iteration,
which manages the event-dispatching part, will have to receive this value from the
client. The state FirstTime means that this socket for the first time has been used
to be checked for its Exception Header. In Figure 10.8, both socket lists are empty

Figure 10.11 xDFS client communicating finite state machine in xFTSM upload mode.

Connect To
Server

Authentication

Authorized

Channel
Selection

Supported

Send Upload
Request Header

Have All
Connections

Been
Established?

No

Event Dispatcher

Readable and writable
socket list are empty

Ye
s

Check ACK from
Server and Set
Socket State to

Done

R
ea

da
bl

e
so

ck
et

 li
st

 is
 n

ot
 e

m
pt

y

Set Readable or Writable
Sockets from Socket List

Read File Block
from Disc

Write To Socket
and Set Socket

State to NotDone

Ne
w

file
 b

loc
k

wa
s r

ea
d

Were All of
Writable Socket

List Written?
Yes

N
o

Send End of
File Header

End of file reached

W
ritable socket list

is not em
pty

Event Dispatcher

Writable socket list are
empty

Session
Ended

Writable socket list are

not empty

Have All End of
File Headers Been

Sent to Writable
Sockets?

Yes

Not
Supported

Not
Authorized

deruccororrE

No

1

2

3

4

5

6

9

15

14

13

7

11

10

8

12

346 ◾ Implementing Parallel and Distributed Systems

when the CFSM state changes from 7 to 9. In state 10, the event-dispatcher mod-
ule is made up of two sub-parts, each of which acts as non-blocking. The first and
second event-dispatcher modules belong to the read-readiness and write-readiness
lists of sockets, respectively. The second event-dispatcher after filling the write-read-
iness socket list makes PIOD send the file blocks to the client. In the current xDFS
implementation, the disc I/O management is performed in two ways synchronously
(blocking) and asynchronously (non-blocking). The traditional system procedures
read() and write() are used for the synchronous mode, and an additional thread
and one circular buffer are employed to implement the asynchronous core as well
as these two routines. Making use of a ring buffer and no use of system-level non-
blocking mechanisms, like POSIX AIO, help maintain the xDFS portability across
various platforms. The asynchronous disc I/O feature makes the xDFS framework
feasible, without manipulating the xDFS implementation architecture, to be easily
used in high throughput, low latency, quality of service, and failover communications
links, e.g. an InfiniBand interconnect, in where the disc speed bottleneck must be
detached from the actual network throughput. PIOD drives out the write-readiness
sockets from the write-readiness list after sending file blocks to them and then puts
them into the read-readiness list in state 12. The state of the read-readiness list is
changed to NotDone in state 12 so that the second event-dispatcher can check the
Exception Header from the client side. If the end of the file is reached, in step 15,
the event-dispatcher checks whether the sent packets within the socket TCP buffer of
the write-readiness list had been delivered to the client or not. If all file packets were
sent to the client side, the server sends the end of the file header to all connected cli-
ent channels. If all headers were sent, then the CFSM ends the current xFTSM session
in a transition from state 17 to 18.

Figure 10.9 portrays the client-side xDFS CFSM in xFTSM download mode. As it
can be seen, the CFSM in Figure 10.9 is much simpler, and this simplicity on the cli-
ent side is due to the order of data flow from the server side to the client in down-
load mode. States 1 through 5 is performed for all n parallel channels. Each client
authenticates itself to the server and sends its related session information to the
server through Download Request Header over PSI after channel establishment.
This header contains the information shown in Table 10.2.

The CFSM state changes from 5 to 6 after all channels were established. Since
TCP sockets are normally non-blocking at every sending operation, a write-readiness
socket list has not been used in the CFSM of Figure 10.9. In state 7, having chosen
those sockets that infold the file blocks received from the server side, the event-
dispatcher varies the CFSM state to 5. After being written the file blocks to the stor-
age system through Parvicursor.NET Framework APIs, if all read-readiness sockets
still haven’t been written to the disc, state 8 is repeated for them after state 10. In
step 8, if the server has already sent the end of the file header to the client, then the
CFSM steps into state 12. In this state, the file transfer session in download mode
terminates.

By comparing all CFSMs, it can be inferred that the right-hand side of server
CFSMs in one mode has a one-to-one correspondence with the right-hand side of
client CFSMs in another mode. The duality principle is referred to as such a case in
mathematics and graph theory. A deep review of this concept is out of the scope of
this chapter.

xDFS ◾ 347

10.6.2 A Novel Hybrid Concurrency Pattern for xDFS
POSIX-AIO-Enabled Implementation (PHCP)

The DotDFS protocol appeared for the first time in [5]. There, we argued that the
protocol was the first proposal of a hybrid FTP integrating the thread-based and
event-driven concurrency patterns in the area of data transmission protocols. In this
section, for further clarification of this proposal, a practical implementation archi-
tecture of the xDFS protocol is introduced, which relied on the POSIX AIO [21],
extending the concepts presented in Section 10.4.3. The rationale behind the theory
in the xDFS protocol allowing different event-driven methods to be used is that the
xDFS protocol requires the protocol implementation to process n parallel channels
in a single loop of the context of execution described by a collection of FSMs, for
example in the xFTSM upload mode. In this model, the implementation architecture
of the xDFS protocol in xFTSM upload mode is studied on the server side. Also, we
assume that the POSIX AIO standard applies to both file and socket descriptors (this
assumption somewhat makes POSIX AIO similar to NT Completion Ports [23]).

The name and description of the used native functions are shown in Table 10.5.
The basic idea behind the PHCP approach is that it allows the process or thread to
be capable of performing many disc-based or network I/O operations without being
blocked or waiting for being completed else. At some later time or the completion
notification of I/O, the process or thread can retrieve the results of I/O. Figure 10.12
shows the xDFS flow of two hybrid concurrency patterns, including the PHCP, and
the select-based model discussed in Section 10.6.1 (SHCP). In the SHCP model, after
the blocking function select() chooses the favourite sockets as read-readiness, the
system routines recv() and write() are used to receive the file block from the
socket and to write it into the disc, respectively. In this event-driven pattern, a thread
of execution is used for every n parallel channel functioning as an xDFS session
because of the blocking nature of the select() function.

In the PHCP model, the processing and I/O overlap in execution. The read/write
request returns immediately, indicating that the read/write operation completes suc-
cessfully. Application programs can perform other processing whilst background I/O

Table 10.5 xDFS POSIX-AIO-Based Function List

Function Name Description

POSIX aio_read() Request an asynchronous read (from disc) or receive
(from socket) operation.

POSIX aio_write() Request an asynchronous write (to disc) or send (to
socket) operation.

xDFS callback_function_I() Implement the first xDFS FSM that is used to initiate
the channel (common thread unit).

xDFS callback_function_II() Implement the second xDFS FSM that is used to
receive data from the socket (network I/O thread unit).

xDFS callback_function_III() Implement the third xDFS FSM that is used to write
data into the disc (the disc I/O thread unit).

348 ◾ Implementing Parallel and Distributed Systems

operation completes. One signal or a thread-based callback (as stated in Table 10.5,
in this chapter the callback mechanism is used) can be generated for the completion
notification of an I/O transaction. Indeed, the ability of overlapping computation and
I/O processing in a single process for huge multiple I/O requests exploits the gap
between the processing speed and the I/O speed.

Figure 10.13 shows the PHCP model’s CFSM for the xDFS server in FTSM upload
mode. There, the authentication transition has been removed for simplification. As
seen in this CFSM and described in Table 10.5, each instance of the xDFS server is
made up of at least four thread units of execution: acceptor thread, common thread
unit, network I/O thread unit, and disc I/O thread unit. (In the most optimal situa-
tion, the number of threads in all thread units should be set to the number of this
minimum value. However, also it must be noted that this value can vary depending
on the available documents of every operating system or processor architecture.)
Every thread unit may have any favourite number of pre-created threads, or dynami-
cally created and added at runtime (for purposes of the resource provisioning in the
integrated Parvicursor server). In this case, the xDFS server, per any number of clients
and/or parallel channels, has this few specified numbers of threads. This model, due
to a few worker threads used compared with the SHCP model, makes it suitable for
ultra-highly scalable and concurrent server systems like Internet services. Because in
the PHCP model the unnecessary context switches are completely removed, the use
of synchronisation primitives is extremely avoided, and memory locality and system
performance significantly improve.

One of the long-time debates over the event-driven software system development
in the research community has been devoted to the subject that in these systems the

Figure 10.12 The xDFS flow of two event-driven models: (a) asynchronous blocking I/O model
based on select (SHCP) and (b) the asynchronous non-blocking I/O model based on POSIX AIO
(PHCP).

xDFS ◾ 349

code is rarely modular or reusable. However, as can be seen in this CFSM, due to
separating the four major components of the xDFS server into four callback thread-
based functions, the code modularity extremely increases. Although the PHCP model
greatly complicates the code development and maintenance, the power of such mak-
ing code modular results in a standard implementation framework of the xDFS soft-
ware dependent on NT Completion Ports and POSIX AIO in userspace in contrast to
the complexities originating from the xDFS protocol itself.

10.6.3 Some Important Points Regarding the Implementation
of the xDFS Protocol

In this section, we focus on important changes that we faced during the implementa-
tion of the xDFS framework in native code.

10.6.3.1 The Overheads of Exception Handling

Although the current version of xDFS has been implemented based on the native
code, it suffers from an inherent overhead. Runtime error handling is essential in
objected-oriented environments, specifically for standards similar to CLI. As stated ear-
lier, Parvicursor.NET Framework tries to largely conform itself to the CLI-set standards.

Figure 10.13 xDFS server communicating finite state machine in xFTSM upload mode for
POSIX-AIO mode (PHCP), m is the number of the created server-side worker-kernel threads (m
is usually set to the total number of CPU cores).

Accept client
connection in

acceptor thread

Schedule an aio_read.
Set client context state to

callback_function_I.

Receive
channel mode

Receive upload
request header

Has the client
context already
been created?

Yes

Create new client context
and add it to the session

hash table

No

callback_function_I on thread i

Set up disc AIO

Schedule n aio_read for n
number of parallel channels.

Set the client context’s sockets
state to callback_function_II.

Have all of the n
parallel channels

been established?

Add new sockfd
to existing client

context in session
hash table

Yes

No

callback_function_II on thread j

Read file block from
socket

(aiocb.aio_buf)

Schedule an aio_write on
diskfd and copy the buffer

pointer.
Set the client context’s socket
state to callback_function_III.

callback_function_III on thread k

Close this
channel and

clean up.

End of file reached

End of file not reached

1

2

3

i, j, k [1 , m]

4

5

6

8

7

9

10

11

12

14

13

15

Write dirty buffer to
disc

Schedule an aio_read on
sockfd.

Set client context’s socket
state to callback_function_II.

350 ◾ Implementing Parallel and Distributed Systems

This logic makes the Parvicursor.NET handle all runtime errors through the base class
Exception. The overheads generated by C++ runtime and Parvicursor.NET exception
handling are distributed throughout the codes. This extra overhead may increase the
size of executable files and make the program execution time slow down at least
4–5%. Exception handling adds some footprint to the generated binary output file.
Since the objective of the xDFS project was to prove the functionality concept of the
Parvicursor platform, in future we will consider the elimination of these negative
effects on the present xDFS implementation for critical components such as xDFS,
which are simultaneously CPU and I/O bound.

10.6.3.2 Vectored I/O

As mentioned in Section 10.5.2, by introducing the channel event abstraction, the
xDFS protocol makes the length of the channel headers and their inner fragments
to be dynamically variable. So, for the implemented source codes to be understand-
able and to avoid the complexities originating from pointer-based buffers, we have
utilised those buffers as a chain of discrete chunk buffers in all the code implemen-
tations and modes. For instance, in Figure 10.5 in practice, there are four separate
buffers, but not a contiguous one. Whereas these buffers must be transmitted over
the network (through the network protocol subsystem) through frequent calling
system functions, they can impose critical overheads on the xDFS implementation.
To remove this negative impact, we have benefited from vectored I/O mechanisms,
also known as scatter/gather I/O. Vectored I/O is an input/output method by which
a single routine call sequentially writes the data from multiple buffers into a single
data stream or reads the data from a single data stream into multiple buffers. The
chief benefits of using vectored I/O mechanisms can be noted to efficiency, splitting
input, atomicity, and concatenating output.

10.6.3.3 Cross-Language, Cross-Runtime and Cross-Platform
Parvicursor.NET Wrappers

In programming software components, library wrappers are composed of a thin
layer of code, which transform a library’s existing interface into a compatible inter-
face. One of the key advantages of library wrappers is to enable cross-language and/
or cross-runtime interoperability across heterogeneous software components and/
or runtimes. Perhaps at first glance, it appears to the reader the main objective of
the Parvicursor project is to encapsulate the operating system’s APIs as a collection
of C++ classes/wrappers. However, with a little inference and a good understand-
ing of the concept of library wrappers in context, we can come to a principal point.
Parvicursor was grounded on the CLI standard [32–34]. CLI, in the simplest clause,
can function as the definition of a wrapper library which acts as a bridge between
an application program and low-level system routines. CLI-based programs not only
have cross-language benefits but also supply cross-runtime and cross-platform fea-
tures. Therefore, it can be acknowledged that the Parvicursor project is the first proj-
ect in distributed environments, which tries to propose itself in compliance with the
CLI standard so that a move towards a standardised distributed software infrastruc-
ture begins. All Parvicursor classes are fully CLI-compliant. Because Parvicursor is a

xDFS ◾ 351

cross-platform framework, it can be interfaced with other languages/runtimes. One
way is to use the system interfacing technologies such as Java Native Interface (JNI)
[35] and .NET Platform Invoke [36], and the second is to directly implement the CLI
standard for non-.NET-based languages like PHP, Python, Ruby, and so on. As can be
concluded, the Parvicursor platform executing in the native code can function as an
integrated bridge to connect distributed software components across a broad spec-
trum of network architectures for different languages and/or runtimes.

10.6.3.4 Parvicursor.NET Inline Expansion

Inlining is a way to replace a function site with the body of the callee. If the inlining
is optimally applied to prototype and implement pure C++ classes by a framework
like Parvicursor, the time and space usage improves considerably at runtime. This
feature is not usually considered in software system development. Since frequent I/O
procedure calls occur at the time when functioning at runtime, the role of inlining is
notably visible in the implementation of protocols such as xDFS. In our experiments
during the implementation of the xDFS framework, we found out that the use of
appropriate inlining methods improves overall system performance by up to 10–20%.

10.6.3.5 Parvicursor.NET Runtime Profiler

Performance engineering is a critical area in any software product line over the
software development or deployment life cycle. One common method in software
performance engineering is to use program/software profiling as witnessed over the
past decades [37]. During the development cycle of the Parvicursor.NET platform
due to the lack of an integrated profiling methodology in most operating systems, a
useful C++ profiler class was designed that extracts the most information about the
runtime dynamics of an application program provided by the standard POSIX and
Win32/64-kernel APIs. This profiler is accessible in the DotGrid platform through the
managed .NET programs provided via a class component that imports the exported
needed functions in a dynamically native shared object file by .NET Platform Invoke.
For more simplicity in native code, we have implemented and rewritten a collection
of C macro functions that eases the programmers to make use of them inside their
C/C++ source codes to profile codes with minimum time spent.

10.7 Comparison of xDFS Protocol with DotDFS, FTP, GridFTP
and HTTP Protocols

In this section, we compare xDFS protocol with DotDFS, FTP, GridFTP, and HTTP
protocols. Some GridFTP weaknesses and structural differences between xDFS/
DotDFS and GridFTP are discussed so that the reader can understand more reasons
(in addition to those considered during Sections 10.2 through 10.6) why a new con-
current FTP is proposed.

We point out some major problems associated with FTP and GridFTP protocols.
These issues were considered during the process of xDFS design. Since FTP is very
old from the structural design aspects, it has caused many different problems, and

352 ◾ Implementing Parallel and Distributed Systems

they are also continuing. These issues over the past years have led to recommend-
ing and standardising a lot of RFCs and protocol modifications for resolving these
problems. They have made FTP very complex to be developed by implementers
and caused several interoperability problems. Some of these IETF standards and
drafts are shown in Table 10.6. Equally, Table 10.6 shows a comprehensive compar-
ison of different file transfer mechanisms, including xDFS, DotDFS, FTP, GridFTP,
and HTTP.

Table 10.6 Comparison of Different Widely Used File Transfer Protocols

Feature xDFS DotDFS FTP GridFTP HTTP

Creation year 2011 2010 1971 2003 1991

Protocol standards xDFS v.2 DotDFS v.1 20 RFCs GFD-R-P.020
(2003),
GFD.47 (2005)

38 RFCs

Protocol
representation

CFSMs CFSMs State
machines

Descriptive
text

Descriptive
text

Low-level
transmission
protocol

Multi-protocol
support via
Parvicursor
Socket
Interface (PSI)

Multi-protocol
support via
DotGridSocket
Interface

TCP/IP
only

Multi-
protocol
support via
Globus XIO

TCP/IP only

Platforms Cross-platform Cross-platform Cross-
platform

Unix/Linux Cross-
platform

Execution
environment

Native/
Parvicursor

CLI/.NET Implemen-
tation-
dependent

Native/
Globus

Imple-
mentation-
dependent

POSIX-compliant
I/O standard
support

Fully Fully Not
applicable

Partially Not
applicable

Local-area file
access support
(e.g., NFS)

Fully Fully No No No

Storage system
interface

CLI File Stream
Interface
(CLIFSI)

No No Data Storage
Interface
(DSI)

No

WAN
improvements
(TCP window size/
parallelism)

Strong/very
strong

Strong/strong No/weak Strong/
moderate

No/weak

Native event-driven
protocol-level
architecture

Fully Fully Not
applicable

Not
applicable

Not
applicable

(Continued)

xDFS ◾ 353

Feature xDFS DotDFS FTP GridFTP HTTP

Stateful/stateless
architecture

Fully/fully Fully/fully Fully/no FullynNo Partially/
fully

NAT compliance Strong Strong Weak Weak Strong

Firewall
compliance

Strong Strong Weak Weak Strong

internationalisation Strong Strong Moderate No Strong

Extensibility Very strong Strong Weak Moderate Low

Protocol
modularity

Strong Moderate Weak Weak Moderate

SOA architecture Yes Yes Not
applicable

Not
applicable

Yes

Protocol message
interchange
exchange format

Binary Binary ASCII ASCII ASCII

Security extensions xSec DotSec 7 RFCs Globus GSI,
GSS-API, and
FTP RFCs

10 RFCs

Scalability/
large concurrent
requests support

Very Strong Strong Weak Weak Moderate

File/pipe-based
inter-process
communication
support

Strong Strong Not
applicable

Not
applicable

Not
applicable

Large-size file
support

Strong Strong Weak Strong Weak

Protocol-level
zero-copy
extensions

Yes No No No No

Distributed file
systems semantics

Yes Yes Not
applicable

Not
applicable

Not
applicable

Recursive directory
tree transfer
support

Very strong Strong Weak Moderate Not
applicable

(Continued)

Table 10.6 (Continued) Comparison of Different Widely Used File Transfer Protocols

354 ◾ Implementing Parallel and Distributed Systems

10.7.1 Some Major Criticisms on FTP and GridFTP Protocols and xDFS/
DotDFS Protocol Alternatives over Them

 a. Most FTP state machines are non-standard. Changes to the protocol can clearly
cause significant changes to all FTP state machines. A modular protocol core
seems that can solve these problems in future versions of the FTP. In the xDFS
protocol, we considered some alternatives based on CFSMs so that the newer
protocol versions would not disturb the logic of previous protocol versions and
the protocol reusability would be preserved.

 b. FTP is a high latency protocol due to the number of commands required for
initiating a transfer. Although GridFTP protocol with the pipelining of com-
mands and reuse of EBLOCK data channels [3, 4] tries to solve this problem
in a specific area, this issue generally remains unaffected in GridFTP because
it naturally relies on FTP. The binary and event-driven model of the xDFS
protocol as possible can solve this problem, for instance, by multiplexing the
requests.

 c. Many Grid applications (like some data-intensive physics applications) require
random access to partial parts of files, according to traditional POSIX I/O seman-
tics. GridFTP protocol, to consider this need, introduces partial transfers on
which a client can transfer a file with a desired offset and length [2–4]. However,
what is obvious is that such a method is not scalable, and not only does it not
involve all the traditional POSIX I/O semantics, but makes developers farther
from their clear understanding of well-known POSIX interfaces. xDFS proto-
col supports conventional distributed file system mechanisms and preserves
the traditional POSIX I/O semantics by xDFSM mode [5, 6]. A well-designed

Feature xDFS DotDFS FTP GridFTP HTTP

Operating
system resource
consumption

Very low Low High High Imple-
mentation-
dependent

Implementation
complexity

Very high High Medium Medium Low

Developer-
friendly service
development kit
(SDK)

High High Imple-
men tation-
dependent

Low Imple-
mentation-
dependent

Source code inline
expansion

Fully Not applicable Imple-
mentation-
dependent

No Imple-
mentation-
dependent

Built-in protocol-
level runtime
profiler support

Yes Yes No No No

Table 10.6 (Continued) Comparison of Different Widely Used File Transfer Protocols

xDFS ◾ 355

protocol that supports multiple Grid demands regarding storage transfers is a
fundamental requirement used in the Grid. A critical necessity of Grid in data
transfers is diversity issues to reign over a community as widespread and fast-
moving as the Grid. xDFS provides a comprehensive protocol-set that enables
wide-area file transfers, as well as a complete replacement of local-area file
access protocols which are still likely to be dominated by NFS [38], AFS [39], and
CIFS [40] protocols.

 d. In FTP, the representation of the Ips and ports in the PORT command and
PASV reply [1] poses another challenge for NAT devices [41]. NAT devices must
manipulate these values so that they contain the IP of the NAT-ed client and a
set of selected ports by the NAT device for data channels. Many NAT devices
perform this protocol inspection and alter the PORT command without noti-
fying the user of this modification. An important example of this scenario is
to secure FTP with TLS [42, 43]. NAT devices will be unable to modify the IP
and PORT of the client due to the cryptography used in the control channel.
However, one may think of two practical solutions for this scenario. The first
could be made use of the CCC command in RFC 2228 [44] for changing the
mode of the control channel to an unencrypted mode when needed; but this
seriously jeopardises the security of an FTP session for being attacked, such
as port stealing and bounces attacks. The second solution could be to use the
FTP active mode, but, eventually, even this method can become problematic
because the active mode creates other problems related to firewalls and FTP
proxies. The final solution for this problem, to some extent but not complete,
is the use of application-level gateways (ALGs). ALGs are application-specific
translation agents that transparently allow an application running on a host in
one address realm to connect to its counterpart running on a host in a different
realm. ALGs usually interact with NATs to establish a state use from state infor-
mation of the NATs, modify the application-specific payload, and run anything
else that enables an application program to run on distinct address realms.
As can be seen, FTP and GridFTP protocols unveil many problems and more
extensive complexities to be resolved concerned with NATs. We can take further
knowledge about these problems by studying RFC 2663 [45]. Since all client
requests in the xDFS protocol are established to the server on a default port in
the mode of either xDFS over xSec TSI or xDFS over X-Channels, no IP and port
are exchanged between endpoints; hence, a NAT device can easily, so close to
the way that it modifies the HTTP packets, modify or filter xDFS packets in the
transport layer [5].

 e. FTP and particularly the GridFTP protocols are troublesome from the firewall
viewpoint. These problems can mainly be discussed from several aspects. They
employ a large number of dynamic arbitrary ephemeral ports over data chan-
nels. In addition, a static port number is always assigned for the control chan-
nel. Using so many random ports (even those that may be limited in a certain
range) and how to configure them in client-server-side firewalls are very chal-
lenging. Only a few firewalls can handle applications that access dynamically
assigned ports. Also, GridFTP in the X mode, for dynamic network resource
allocation purposes, allows peers to dynamically add or remove data chan-
nels between the values of minimum-parallelism and maximum-parallelism

356 ◾ Implementing Parallel and Distributed Systems

(expressed in the format of RETR OPTS command over control channels) [3,
4]. This case used in third-party and stripped transfers can lead to critical prob-
lems in firewalled environments. Furthermore, FTP active and passive modes
[1] are two other issues due to considering firewalls for network administrators
and protocol developers. Finally, these two protocols require opening a large
number of ports in the dynamic range in a firewall. It causes a big security hole
that challenges network and security administrators. Another problem of them
with firewalls is the possible disconnection of idle control or data channels.
Some firewalls drop TCP connections that are idle for a long time. In the xDFS
protocol due to establishing all requests from the client to the server side, we
can avoid problems available in FTP and GridFTP protocols only by opening a
single port in the firewall. In xDFS, the problem related to the idle TCP connec-
tions naturally is extremely eliminated because of the used event-driven model
and lack of a control channel concept [5, 6].

 f. In FTP, there is no standard way for transferring file system metadata. This
makes the integration of file systems on Unix, Windows, and Solaris to be very
difficult. These points have been considered in the design of the xDFS protocol.

 g. The data structures of FTP programs are very different. An FTP kernel for the
public domain should be implemented that supports cross-platform POSIX
threads. The cross-platform implementation of the xDFS protocol in native C++
is opened source for public use on the Internet with this book.

 h. The GridFTP specification [3, 4] states that it is not required currently consid-
ering the Internationalisation of FTP in RFC 2640 [46] for Grid environments!
This fact explains that the current implementation of the GridFTP only supports
ASCII pathnames, not Unicode. The default pathname mode in the xDFS proto-
col is Unicode strings [5, 6, 12].

10.8 Experimental Studies
The current xDFS implementation only supports xFTSM mode with types of down-
load and upload transfers. The real execution environment of the xDFS framework
is native and cross-platform, and we tested and deployed the xDFS stably on a broad
spread of operating systems, including Unix, Linux, and Windows. To test and evaluate
the real performance of the xDFS implementation in native code, xDFS is compared
with the Globus GridFTP (explicitly the only available fully GridFTP implementation
in Unix-style operating systems) in a local-area network. The experimental results
presented here have the confirmation on the logic of our previous works [5, 6], but
what is more, they reveal interesting insights that are analysed in this section. The
test set is performed to characterise the xDFS throughput and efficiency in three
categories: disc-to-disc, memory-to-memory, and CPU/physical memory usage. The
tests were done in a LAN network with 0.1 milliseconds (msec) round trip time
(RTT) and a 1 Gb/s bottleneck link. The machines used as the clients and servers
had eight homogenous Intel Xeon Quad Core processors operating at 2.5 GHz with
6 MB cache, 8 GB RAM, and 320 GB RAID hard discs. Linux CentOS with the kernel
2.6.9.9-78, for x86_64 SMP processors, was installed on all machines. The TCP buffer
size and disc block size were set to 1 MB. In GridFTP tests, its implementation of

xDFS ◾ 357

the GT4.2.1 was used [11]. The GridFTP C source codes were compiled into machine
code by a makefile through the GNU GCC compiler suite.

The xDFS C++ source codes have been constructed atop the Parvicursor.NET
Framework. The Parvicursor.NET codes with an extension of one static library or
dynamic shared library were implemented as cross-platform using the C-language
preprocessors relied upon the core of Win32 and POSIX APIs. The Parvicursor project
makes extensive customised use of the comprehensive cross-platform Code::Blocks
IDE. Developers and programmers can easily and quickly implement, compile, debug,
and deploy their HPC/distributed applications based on the Parvicursor framework
in a highly cross-platform/portable integrated environment. Finally, the C/C++ codes
of the xDFS framework, through Code::Blocks and invoking the GCC compiler, are
compiled and transformed into the native machine code. On the xDFS client side,
the parvicursor-url-copy (PUC) utility is used. As a unique feature of the Parvicursor
platform, it should be noted that we manually ported the C#-based codes of the
DotDFS’s PUC, which contained approximately 1,000 lines of code, into the native
ISO C++ code in less than 15 minutes (the PUC itself instantiates and invokes the
xDFS framework’s APIs)! On the GridFTP client side, the GT4.2.1 globus-url-copy
(GUC) was used. Memory-to-memory tests are performed in 15-second intervals. All
test points are a mean of 15 runs.

10.8.1 Single Stream Performance in Download Mode

We carried out the first comparison between xDFS and GridFTP in a single stream
test for download mode. Since there are two threads of execution for xDFS and four
processes for GridFTP in the client-server sides, this experiment can give a good
benchmark to compare them just at the protocol level except for how these two
protocols have been implemented (e.g., using a thread-based or multiple-process
implementation). Because both protocols have been implemented in native code, at
first look it may hint that these protocols should have correspondent throughputs
in single-stream scenarios; however, the results, as illustrated in Figures 10.14 and
10.15, promote a quite distinct fact to the reader. Figure 10.14 depicts throughputs
for files of sizes ranging from 400 MB to 4000 MB. Furthermore, Figure 10.15 dem-
onstrates the percentage of client-server CPU usage for each protocol and the men-
tioned files. As it is obvious, the xDFS throughput is at least 150 Mb/s better than
GridFTP for files with sizes less than 1 GB. In [5], we discovered a phenomenon that
was defined as the term “saturation speed”. There, we concluded that the saturation
speed decreases the measured throughput to very low thresholds in contrast to the
actual speed of the local reads and writes in storage systems under experiment when
large files were being transferred. In Figure 10.14, the saturation speed for GridFTP
occurs whilst the file size is increased to greater than or equal to 2 GB. Here clearly
no saturation speed occurs for xDFS, as there was no observed fall or decrease in
xDFS throughput for large files. Since GridFTP forks just four processes, in this case
we cannot consider the use of multiple processes as the key factor that reduces the
throughput.

A GridFTP server consists of three components, including, the GridFTP proto-
col module, the data transform module, and the Data Storage Interface (DSI) [47].
The GridFTP protocol module is the main module that performs the network send/

358 ◾ Implementing Parallel and Distributed Systems

receive operations and implements the protocol. This module has been built using
the Globus extensible input/output (XIO) [48, 49]. The XIO is an OCRW (open/
close/read/write) abstraction layer that simplifies the development phase of trans-
port protocols. The XIO’s architecture is comprised of two abstract concepts, drivers
and stacks. The specifications of a protocol are included in a driver as an abstract.

Figure 10.14 Single stream throughput in download mode.

0

100

200

300

400

500

600

700

800

900

1000

400 500 1000 2000 4000

ba
nd

w
id

th
 (M

bi
t/s

)

file size (MB)

xDFS

GridFTP

Figure 10.15 Client-server CPU usage for different file sizes in single stream download mode.

400 500 1000 2000 4000
xDFS Client 18% 19% 20% 22% 22%
xDFS Server 12% 12% 15% 13% 10%
GridFTP Client 36% 37% 37% 40% 40%
GridFTP Server 15% 16% 20% 25% 30%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

C
PU

 U
sa

ge
 (%

)

file size (MB)

xDFS ◾ 359

Each driver must implement a set of well-defined function interfaces based upon
the C-language typedef (as the structure of a function pointer table) along with a
collection of operations to enable dynamic runtime routine invocations. Extensively
using function pointers to call functions, as XIO does, may produce a slow-down
for the code on modern processors, because branch prediction may not be able to
figure out where to branch to (it depends on the value of the function pointer at
runtime), although this effect can be overstated as it is often amply compensated for
by significantly reduced non-indexed table lookups. There are two drivers, transform
drivers and transport drivers. Transport drivers are those that actually convey data
inside or outside the space of a process. As seen, XIO adds an extra abstraction layer
between an application program and low-level system APIs (this abstraction is not
created statically at compile time; rather,it is managed and processed dynamically at
runtime). Then, these additional layers can cause overheads on architected programs
in terms of system characteristics and network throughput.

Globus states just extensibility aspects as the main reason for using XIO and
therefore GridFTP can be leveraged to be transport protocol agnostic. Hence, in
environments where they make sense, protocols much more aggressive than TCP can
be utilised. To meet more specific extensibility needs, they also provide easy-to-use
development libraries.

They, in [50], state that achieved respectively 990 Mb/s and 950 Mb/s of the
bottleneck bandwidth for Iperf and XIOPerf implemented based on XIO in a net-
work with a bottleneck link of 1 Gb/s. But Figure 10.14 and specifically Figure 10.15
show that GridFTP in contrast to xDFS exposes far more overheads due to using the
XIO. It implies that Globus should not have used the XIO in designing very sensi-
tive and important components such as GridFTP. In [50], they specify the overheads
concerned with XIO increase linearly with incrementing the number of drivers. A
GridFTP server or client is typically comprised of three TCP, GSI, and disc drivers. It
is necessary to note that the overheads of a networked software system cannot be
evaluated just depending on the network throughput, rather assessing a variety of
system characteristics have more importance, including cache misses, CPU utilisa-
tion, interrupt handling, stalls, memory fetches, data locality, cache utilisation, thread
interactions, and so on.

Moreover, GridFTP uses the DSI [47] in accessing the functionality of storage sys-
tems such as file systems accessible via standard POSIX APIs, and Storage Resource
Broker. DSI abstraction provides a modular pluggable interface to the data storage
systems. DSIs can be loaded and switched dynamically at runtime. When a GridFTP
server is in need of a storage system, it passes a request to the loaded DSI instance.
The DSI after servicing the request notifies the server of the service completion.

In contrast to the Globus XIO and Globus DSI, the xDFS framework makes use
of the Parvicursor Socket Interface (PSI) and CLI FileStream Interface (CLIFSI) for
integrated access to network I/O interfaces and heterogeneous storage systems. PSI
and CLIFSI are two pure C++ classes that inherit from the interface (abstract/base)
class System::IO::Stream and implement it. Virtual methods are not used to
implement sensitive method stubs like the Read() and Write() methods of this
base class. A virtual call requires at least an extra indexed dereference, and some-
times a fixup addition, in contrast to a non-virtual call, which is simply a jump to a
compiled-in pointer. Hence, calling virtual functions is inherently slower than calling

360 ◾ Implementing Parallel and Distributed Systems

non-virtual functions. Experiments verify that approximately 6–13% of execution
time is spent simply dispatching to the correct function where the overhead can be
as high as 50% [51].

These two classes have been carefully engineered relying on the Parvicursor.NET
inline expansion methods discussed in Section 10.6.3.4. Therefore, PSI and CLIFSI as
static bindings are distributed across codes of the xDFS framework through inlining
mechanisms by the compiler. Since these procedures are static, and we here avoid
the use of any virtual methods, PSI and CLIFSI expose no overhead on the xDFS
implementation.

The XIO internally employs several event synchronisations on the stacks to
ensure the users, using the library, that are receiving events in a reasonable state. For
example, a barrier is used between all data operation events. Hence, the rationale
of the saturation speed phenomena can be induced to the Globus DSI and XIO, and
with the mechanisms of event notifications employed in implementing both of them.
Globus has considered just overheads originating from XIO over the throughput
[48–50]; however, Figure 10.15 reveals other technical facts. In Figure 10.15 for this
test, XIO poses at least 20% of the overhead in CPU usage as compared with xDFS,
particularly, for larger files; also, this percentage linearly increases for GridFTP, as it
is invariable for xDFS and even degrades in some cases.

10.8.2 Single Stream Performance in Upload Mode

The second experiment is performed for a single stream in upload mode for two
protocols xDFS and GridFTP. Figure 10.16 shows the throughputs. The xDFS upload-
mode profile is virtually identical to its download-mode profile, but these profiles
for GridFTP differ. Because both Figures 10.14 and 10.16 relate to the single-stream

Figure 10.16 Single stream throughput in upload mode.

0

100

200

300

400

500

600

700

800

900

1000

400 500 1000 2000 4000

ba
nd

w
id

th
 (M

bi
t/s

)

file size (MB)

xDFS

GridFTP

xDFS ◾ 361

throughputs, the main factor for xDFS throughputs to be identical and for GridFTP
throughputs to be dissimilar can be attributed to the different structure and imple-
mentation of the Globus XIO and DSI for GET/PUT modes in GridFTP [3, 4].

10.8.3 Harnessing Parallelism in Download Mode

In this section, we probe the effect of multiple streams on the overall throughput in
download mode. This test is a touchstone to compare the MP model given in Section
10.4.1 for GridFTP protocol and the MTEDP model in Section 10.4.3 for xDFS pro-
tocol. Figure 10.17 depicts the obtained throughputs as a function of the number of
parallel streams in download mode. This data set was carried out for three different
experiments: Iperf, memory-to-memory tests (/dev/zero to /dev/null), and disc-
to-disc tests. A 2 GB file is transferred between client and server in disc-to-disc tests.

In memory-to-memory tests for download mode, xDFS and GridFTP reached 97%
and 95% of the bottleneck bandwidth, respectively. As it can be seen; because of
using a single thread and event-driven methods, the memory-to-memory and disc-
to-disc xDFS throughput are almost constant as GridFTP has very high fluctuations.
Clearly, all the xDFS throughputs are better than GridFTP in all cases. Section 10.3
discussed the implementation architecture of these two protocols. As stated earlier,
by increasing the number of processes in the GridFTP structure, the overhead associ-
ated with the protocol significantly increases a fact that exhibits itself in Figure 10.17.
In disc-to-disc tests here, the xDFS was throughput at least 256 Mb/s and at most 432
Mb/s superior to GridFTP. An interesting point was to observe that disc-to-disc xDFS
profiles followed the memory-to-memory xDFS profiles with very little difference in

Figure 10.17 Parallel throughput in download mode.

1 5 10 20 50 100 200
Iperf 936 936 936 936 936 942 942
xDFS memory 904 904 908 908 908 904 896
xDFS disc 832 864 864 900 900 900 840
Globus memory 888 888 890 890 890 888 840
Globus disc 400 516 544 644 424 552 570

0
100
200
300
400
500
600
700
800
900

1000

ba
nd

w
id

th
(M

bi
t/

s)

parallel streams

362 ◾ Implementing Parallel and Distributed Systems

all experiments. To reveal more overheads of the MP model upon the GridFTP imple-
mentation for a large number of parallel streams, we measured the CPU usage for a
memory-to-memory test and the physical memory usage for transferring a 4 GB file.
Figures 10.18 and 10.19 show the result of these two scenarios. Whilst the number

Figure 10.18 Client-server CPU usage for memory-to-memory tests in download mode.

0%

20%

40%

60%

80%

100%

120%

1 5 10 20 50 100 200 500 1000

C
PU

 U
sa

ge
 (%

)

number of streams

xDFS Client

xDFS Server

GridFTP Client

GridFTP Server

Figure 10.19 Client-server memory usage for disc-to-disc transfer of a 4 GB file in download
mode.

1 5 10 20 50 100 200 500 1000
xDFS Client 32 32 32 32 32 32 32 32 32
xDFS Server 5 5 5 5 5 5 5 5 5
GridFTP Client 48 48 69 80 117 189 543 700 2567
GridFTP Server 50 54 60 69 101 152 252 559 1069

0

100

200

300

400

500

600

700

800

900

1000

M
em

or
y

Us
ag

e
(M

B)

number of streams

m
em

or
y

(M
B)

xDFS ◾ 363

of parallel streams is raised, the client-server CPU usage for the xDFS is constant and
between 5 to 20%, as it is exponentially increasing for the GridFTP programs.

In this scenario, both the percentage of CPU usage and the physical memory con-
sumption for the GridFTP client are greater than the GridFTP server. The percentage
of CPU usage of both GridFTP server and client is 100% in 1,000 parallel streams over
the whole 32 CPU cores! As another conspicuous issue during our experiments in
download mode, the Linux machine that hosted the GridFTP client became critically
unresponsive, which made us manually reboot that machine for transferring large
files (greater than or equal to 4 GB) with parallel streams greater than 200. Figure
10.19 illustrates the physical memory usage in megabytes for xDFS and GridFTP
programs. The profile curve of xDFS physical memory consumption is a flat line with
very small values; by contrast, this profile for GridFTP increasingly consumes the
physical memory whilst raising the number of parallel streams.

Based on these technical points studied in this and previous sections, GridFTP
due to its intrinsic architecture and using an improper implementation (a process-
based implementation, the use of Unix-based forks, and using the Globus DSI and
XIO) suffers from critical overheads. Hence, GridFTP cannot be used efficiently in
high-traffic and vital environments like Internet services, and data-intensive Grid and
Cloud applications.

10.8.4 Harnessing Parallelism in Upload Mode

In the last experiment, we examine the effectiveness of parallel streams in upload
mode for a 2 GB file transfer based on the three tests conducted in Section 10.8.3.
Figures 10.20 and 10.21, for a large number of parallel streams, respectively show

Figure 10.20 Parallel throughput in upload mode.

1 5 10 20 50 100 200
Iperf 936 936 936 936 936 942 942
xDFS memory 920 920 920 920 920 920 916
xDFS disc 900 920 920 900 900 900 840
Globus memory 872 888 896 896 896 888 840
Globus disc 800 850 880 880 860 800 700

0

100

200

300

400
500

600

700

800

900
1000

ba
nd

w
id

th
(M

bi
t/

s)

number of streams

364 ◾ Implementing Parallel and Distributed Systems

the parallel throughput and the percentage of CPU usage for memory-to-memory
tests. xDFS and GridFTP in these experiments reached 98.5% and 95% of the bottle-
neck bandwidth, respectively. In [5], we stated that DotDFS in such an experiment
reached 94% of the bottleneck bandwidth and its implementation relied on the .NET
framework imposing at least 5% overhead on the throughput. In this experiment,
we observed that native code accomplished a peak of 98.5% of the bottleneck band-
width for the xDFS framework. Another interesting and unique highlight is that as
can be seen from Figure 10.20, the profiles of xDFS throughput in disc-to-disc and
memory-to-memory overlap in the range of 5–10 parallel streams with a peak band-
width of 920 Mb/s. This fact engages two important points regarding the used event-
driven model within the xDFS protocol. First, the use of an event-driven architecture
is crucial in xDFS and DotDFS protocols as two optimum FTPs. Second, as stated in
[5], DotDFS is the first concurrent FTP that, with the integration of thread-based and
event-driven models, proposes a new computing paradigm in the field of file trans-
mission protocols.

In upload mode with parallel streams, it seems that the overall GridFTP through-
put improves beside the download mode. The origin of this variation might be attrib-
uted to the mechanisms used in the design of Globus XIO and Globus DSI. In various
disc-to-disc tests for GridFTP in upload mode, we found a profile of parabolic curves
as a concave function of the number of parallel streams. One example of these para-
bolic curves is shown in Figure 10.20. The profile has a global maximum point at 20
parallel streams as increasing these streams leads to a dramatic decrease in through-
put. The CPU-usage profiles in Figures 10.18 and 10.21 indicate that the percentage
of CPU utilisation (consumption) in the server side of a protocol for upload mode

Figure 10.21 Client-server CPU usage for memory-to-memory tests in upload mode.

0%

20%

40%

60%

80%

100%

120%

1 5 10 20 50 100 200 500 1000

C
PU

 U
sa

ge
 (%

)

number of streams

xDFS Client

xDFS Server

GridFTP Client

GridFTP Server

xDFS ◾ 365

has a duality form in relation to its client-side for download mode and vice versa. The
percentage of CPU consumption amongst all CPU cores reaches the 100% utilisation
where the number of parallel streams is greater than (or equal to) 200.

10.8.5 Full xDFS/DotDFS Runtime Characterisation

As pointed out in Section 10.6.3.5, the Parvicursor.NET provides an elegant collection
of C macros, C++ class APIs and P/Invoke interfaces to profile cross-platform applica-
tions developed atop Parvicursor and DotGrid platforms. In this section, we explore
the results of this profiler in different case studies. Table 10.7 shows the results. The
definition of some quantities in the upper horizontal column of the table is followed.

Wall clock time or wall time is a measure of how much real-time elapses from the
current execution point of the program’s thread (involved at the DOTGRID_RESOURCE_
PROFILER_BEGIN() macro) to the end of the running thread executing the task’s
thread (involved at the DOTGRID_RESOURCE_PROFILER_END() macro), including
the time that passes due to programmed (artificial) delays or waiting for resources to
become available. User/kernel CPU time is a representation of the elapsed time spent
by the task’s thread and all its children whilst executing in the user/kernel space, with
or without nice priority, and collected during the interval of time. A voluntary context
switch occurs when a task’s thread blocks because it requires an unavailable resource.
An involuntary context switch takes place when a task’s thread executes for the dura-
tion of its time slice and then is forced to relinquish the processor.

For brevity, two xDFS and DotDFS protocols are only compared in upload mode
but the results of the profiler for xDFS in the download mode also comes in the table
without DotDFS profiles for completion purposes. The best scenario to comprehen-
sively show the architectural overheads of the .NET Framework (as analysed in [5])
upon server programs in distributed systems is to examine the memory-to-memory
transfer (MTMT) scenario in upload mode. As rows 8 and 9 of Table 10.7 promotes
in MTMT mode for the DotGrid platform if we assume that the ideal base model is
the native Parvicursor framework, the percentage of the overheads are the follow-
ing: clock wall time—25%, user CPU time—94%, kernel CPU time—66%, voluntary/
involuntary context switches—78%/99.94%, CPU utilisation/memory—84%/65%, and
speed—4%. The low and constant values related to the xDFS profiles are proof of
optimal Parvicursor efficiency and the techniques used in the design of the xDFS
protocol and the platform.

10.9 Conclusion and Future Works
In this chapter, we described the new xDFS FTP and its new extensions to the
DotDFS protocol. In part of this chapter, we explored the fundamental requirements
of next-generation data transfer protocols, which affected some parts of the chapter.
In large parts of this chapter, we examined the development methods of optimal file
transfer systems, and their advantages and disadvantages. Architectural differences
between two protocols xDFS and GridFTP were considered, by which we proposed
the xDFS protocol as a basis for high-performance and high-throughput file trans-
fers in data-intensive Grid applications and Internet environments. By introducing

366
◾

Im
p

lem
en

tin
g Parallel an

d
 D

istrib
u

ted
 System

s

Table 10.7 Different Profiles for Various Case Studies

Row Case Study Platform
Clock Ticks
(Wall Clock
Time)

User CPU
Time (Second/
Nanosecond)

Kernel CPU
Time (Second/
Nanosecond)

Soft/
Hard
Page
Faults

Voluntary/
Involuntary
Context
Switches

CPU(%)/
Memory
(MB)

Speed
(Mb/s)

1
xFTSM, Upload, –p 1,
-s 2 GB

Parvicursor 7094000 0 22396 7 393162 137 0 92365 12 33 30 768

2
FTSM, Upload, –p 1,
-s 2 GB

DotGrid 6220000 1 875019 6 96073 62 0 195794 10 25 108 437

3
xFTSM, Upload, –p 5,
-s 2 GB

Parvicursor 6944000 0 34794 7 34794 0 0 19658 13 37 40 900

5
FTSM, Upload, –p 5,
-s 2 GB

DotGrid 6970000 1 129364 7 356359 56 0 94997 87 25 113 608

6 MTMT, Upload, –p 1 Parvicursor 1726000 0 30795 1.6 443054 0 0 63233 2 11 30 886

7 MTMT, Upload, –p 1 DotGrid 17766000 15 668570 3.2 730497 0 0 141493 5169 50 111 864

8 MTMT, Upload, –p 5 Parvicursor 13420000 0 34594 1.4 492555 0 0 32504 5 11 40 904

9 MTMT, Upload, –p 5 DotGrid 17966000 17 845902 4.2 561078 0 0 150569 8619 70 115 870

10
xFTSM, Download,
–p 1, -s 2 GB

Parvicursor 4432000 0 10398 4.4 488664 37 0 3753 4.4 22 30 752

11
xFTSM, Download ,
–p 5, -s 2 GB

Parvicursor 4240000 0 29195 4.2 327815 0 0 15412 7 24 40 896

12
MTMT, Download ,
–p 1

Parvicursor 2192000 0 19197 2 174069 0 0 34103 1.6 30 14 863

13
MTMT, Download ,
–p 10

Parvicursor 2004000 0 8399 1.8 201617 0 0 6533 2.8 13 40 904

xDFS ◾ 367

the implementation of the xDFS protocol on the top of Parvicursor.NET Framework,
it was illustrated how we can make use of the CLI-set standards relied upon the
Parvicursor platform to develop a standardised distributed software infrastructure
as a general example. The presented results confirmed the accuracy of appropri-
ate methods used in the design and implementation of the xDFS protocol. The
xDFS framework is now available as a cross-platform and native-code distribution
for a wide family of operating systems like Unix, Linux, and Windows. Also, in
this chapter, we investigated the rationale of the saturation speed phenomenon
discussed in [5] and observed that such a downside does not exist in the con-
text of the xDFS framework. Memory-to-memory tests in upload mode showed
that the xDFS protocol accessed 98.5% of the bottleneck bandwidth whilst the
GridFTP protocol was reaching 95%. This outcome proves the claim that we had
stated in [5], which .NET Framework exposes at least 5% overhead on the DotDFS
implementation.

We believe that the main contribution of this chapter, in addition to an expla-
nation of novel concepts, is to classify and refer to a lot of technical metrics and
methodologies which must be kept in mind by developers to program critical cli-
ent-server applications in distributed environments. We have determined the pre-
liminary roadmap of our future research works based on what was presented in
this chapter. Currently, we are finalising the specification drafts of the xDFSM and
xPathM protocols and subsequently implementing them within the xDFS frame-
work. At the end and after completion of the xDFS framework, we intend to extend
the PIOD architecture discussed in Section 10.4.3 so that several network I/O event-
dispatching approaches can be used for the sake of more optimum data transfer
efficiency.

References
 1. J. Postel and J. Reynolds, File Trasnfer Protocol (FTP), IETF, RFC 959, 1985; Available from: http://

www.ietf.org/rfc/rfc959.txt, 2022.
 2. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster, The Globus

Striped GridFTP Framework and Server. In Proceedings of Super Computing 2005, (SC’05), 2005.
Available from: https://people.cs.uchicago.edu/~cldumitr/docs/gridftp_final.pdf, 2022.

 3. W. Allcock, GridFTP: Protocol Extensions to FTP for the Grid, 2022; Available from: https://ogf.org/
documents/GFD.20.pdf

 4. B. Allcock, I. Mandrichenko, and T. Perelmutov, GridFTP v2 Protocol Description, 2022; Available
from: https://ogf.org/documents/GFD.47.pdf

 5. A. Poshtkohi and M.B. Ghaznavi-Ghoushchi, DotDFS: A Grid-based High-Throughput File Transfer
System. Parallel Comput., 37: 114–136, 2011. doi: 10.1016/j.parco.2010.12.003.

 6. A. Poshtkohi and M.B. Ghaznavi-Ghoushchi, A Concurrent Framework for High Performance File
Transfers in Grid Environments, In Proceedings of the 3th International Conference on Computer
and Electrical Engineering (ICCEE 2010), 16–18 November 2010, Chengdu, China.

 7. J. Yick, B. Mukherjee, and D. Ghosal, Wireless Sensor Network Survey. Comput. Netw., 52: 2292–
2330, 2008. doi: 10.1016/j.comnet.2008.04.002.

 8. J. Postel and J. Reynolds, Telnet Protocol Specification, IETF, RFC 854, 1983; Available from: http://
www.ietf.org/rfc/rfc854.txt, 2022.

 9. The Datasheet of the 8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Programmable
Flash, 2022; Available from: http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf , 2022.

http://www.ietf.org
http://www.ietf.org
https://people.cs.uchicago.edu
https://ogf.org
https://ogf.org
https://ogf.org
http://dx.doi.org/10.1016/j.parco.2010.12.003
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://www.ietf.org
http://www.ietf.org
http://www.atmel.com

368 ◾ Implementing Parallel and Distributed Systems

 10. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, Hypertext Transfer Protocol
– HTTP/1.1, IETF, RFC 2616, 1999; Available from: http://www.ietf.org/rfc/rfc2616.txt, 2022.

 11. I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, In Proceedings of the IFIP
International Conference on Network and Parallel Computing, LNCS, 3779, Springer-Verlag, pp.
2–10, 2005. Available from: http://www.globus.org/alliance/publications/chapters/IFIP-2005.pdf, 2022.

 12. A. Poshtkohi, A.H. Abutalebi, and S. Hessabi, DotGrid: A .NET-based Cross-Platform Software
for Desktop Grids. Int. J. Web Grid Serv., 3(3): 313–332, 2007. Available from: https://arxiv.org/
abs/1703.03904, 2022.

 13. C. Vecchiola, X. Chu, M. Mattess, and R. Buyya, Aneka – Integration of Private and Public Clouds,
Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg, and A. Goscinski (eds), ISBN-
13: 978-0470887998, Wiley Press, NY, pp. 249–274, 2011. Available from: http://www.cloudbus.org/
chapters/Aneka-Cloud-Chapter2011.pdf, 2022.

 14. A. Poshtkuhi, A. Abutalebi, L. Ayough, and S. Hessabi, DotGrid: A .NET-based Infrastructure for Global
Grid Computing, In Proceedings of the 6th IEEE International Symposium on Cluster Computing
and the Grid, 16–19 May 2006, (CCGrid’2006), Singapore. Available from: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.116.3976, 2022.

 15. C. Lever, M.A. Eriksen, and S.P. Molloy, An Analysis of the TUX Web Server, CITI Technical Report
00-8. 16 November 16 2000. Available from: http://www.citi.umich.edu/techreports/reports/citi-tr-00-8.
pdf, 2022.

 16. V.S. Pai, P. Druschel, and W. Zwaenepoel, Flash: An Efficient and Portable Web Server, In Proceeding
of the 1999 Annual Usenix Technical Conference, June 1999, Monterey, CA, USA, 2022. Available
from: http://www.usenix.org/event/usenix99/full_chapters/pai/pai.pdf

 17. D.C. Schmidt and J.C. Hu, Developing Flexible and High-Performance Web Servers with Frameworks and
Patterns. ACM Computing Surveys, 32(1), 2000. Available from: http://www.cse.wustl.edu/~schmidt/
PDF/computing-surveys.pdf, 2022.

 18. M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well-Conditioned, Scalable Internet
Services, In Proceedings of the Eighteenth Symposium on Operating Systems Principles (SOSP-
18), October 2001, Banff, Canada. Available from: http://www.eecs.harvard.edu/~mdw/chapters/seda-
sosp01.pdf, 2022.

 19. T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy, Scheduler Activations: Effective
Kernel Support for the User-Level Management of Parallelism. ACM Transactions on Computer
Systems, 10(1): 53–79, 1992. Available from: http://www.cs.washington.edu/homes/bershad/Chapters/
p53-anderson.pdf, 2022.

 20. MSDN Library, WSAPoll Function, 2022; Available from: http://msdn.microsoft.com/en-us/library/
ms741669.aspx

 21. The Single UNIX ® Specification, Version 2, Realtime, 1997; Available from: http://pubs.opengroup.
org/onlinepubs/007908799/xsh/realtime.html, 2022.

 22. B. Chapman, Polling Made Efficient in the Solaris 7 OS, Sun Developer Network (SDN), Technical Articles,
May 2002; Available from: http://developers.sun.com/solaris/articles/polling_efficient.html, 2022.

 23. A. Jones and A. Deshpand, Windows Sockets 2.0: Write Scalable Winsock Apps Using Completion Ports,
MSDN Magazine, October 2000; Available from: http://msdn.microsoft.com/en-us/magazine/cc302334.
aspx, 2022.

 24. AIO Description from POSIX Standard, The Open Group Base Specifications Issue 6 IEEE Std 1003.1,
2004 Editio,. Available from: http://pubs.opengroup.org/onlinepubs/009695399/basedefs/aio.h.html,
2022.

 25. S. Ghemawat, H. Gobioff, and S. Leung, The Google File System, In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, October 2003, Lake George, NY, USA. Available
from: http://labs.google.com/chapters/gfs-sosp2003.pdf, 2022.

 26. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop Distributed File System, In Proceedings
of the 27th IEEE Symposium on Massive Storage Systems and Technologies, 28 June 2010, Incline
Village, NV, USA.

http://www.ietf.org
http://www.globus.org
https://arxiv.org
https://arxiv.org
http://www.cloudbus.org
http://www.cloudbus.org
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://www.citi.umich.edu
http://www.citi.umich.edu
http://www.usenix.org
http://www.cse.wustl.edu
http://www.cse.wustl.edu
http://www.eecs.harvard.edu
http://www.eecs.harvard.edu
http://www.cs.washington.edu
http://www.cs.washington.edu
http://msdn.microsoft.com
http://msdn.microsoft.com
http://pubs.opengroup.org
http://pubs.opengroup.org
http://developers.sun.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://pubs.opengroup.org
http://labs.google.com

xDFS ◾ 369

 27. M. Palankar, M. Ripeanu, and S. Garfinkel, Amazon S3 for Science Grids: A Viable Solution? In
Proceedings of the 2008 International Workshop on Data-aware Distributed Computing
(DADC 2008), June 2008, Boston, MA, USA. Available from: http://www.cse.usf.edu/~anda/chapters/
dadc108-palankar.pdf, 2022.

 28. L. Ong and J. Yoakum, An Introduction to the Stream Control Transmission Protocol (SCTP), IETF, RFC
3286, 2002. Available from: http://www.ietf.org/rfc/rfc3286.txt, 2022.

 29. Y. Gu and R.L. Grossman, UDT: UDP-based Data Transfer for High-speed Wide Area Networks.
Comput. Netw. 51(7): 1777–1799, May 2007. Available from: http://www.cs.uic.edu/~ygu/chapter/udt-
comnet-v3.pdf, 2022.

 30. L. Ong and J. Yoakum, A Remote Direct Memory Access Protocol Specification, IETF, RFC 5040,
October 2007. Available from: http://www.ietf.org/rfc/rfc5040.txt, 2022.

 31. A. Poshtkuhi, A. Abutalebi, L. Ayough, and S. Hessabi, DotGrid: A .NET-based Cross-Platform Grid
Computing Infrastructure, in: Proceedings of the IEEE International Conference On Computing
and Informatics 2006 (ICOCI’06), 6–8 June 2006, Malaysia. Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.110.2481, 2022.

 32. ECMA-334: C# Language Specification, 2022; Available from: http://www.ecma-international.org/
publications/standards/Ecma-334.htm

 33. ECMA-335: Common Language Infrastructure (CLI), 2022; Available from: http://www.ecma-
international.org/publications/techreports/E-TR-084.htm

 34. ECMA-372: C++/CLI Language Specification, 2022; Available from: http://www.ecma-international.
org/publications/standards/Ecma-372.htm

 35. S. Liang, Java(TM) Native Interface: Programmer’s Guide and Specification, First Edition, Prentice
Hall, Hoboken, NJ, p. 320, 1999. ISBN 0201325772.

 36. J. Clark, Calling Win32 DLLs in C# with P/Invoke, MSDN Magazine, The Microsoft Journal for
Developers, July 2003. Available from: http://msdn.microsoft.com/en-us/magazine/cc164123.aspx,
2022.

 37. S. Moore, Code Profiling Tools, Lecture Notes in Computer Science, University of Tennessee, 9 April
2003. Available from: http://web.eecs.utk.edu/~dongarra/WEB-PAGES/SPRING-2003/lect12a.pdf, 2022.

 38. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck, Network File
System (NFS) Version 4 Protocol, IETF, RFC 3530, April, 2003. Available from: http://www.ietf.org/rfc/
rfc3530.txt, 2022.

 39. J.H. Howard, M.L. Kazar, S.G. Nichols, D.A. Nichols, M. Satyanarayanan, R.N. Sidebotham, and M.J.
West, Scale and Performance in a Distributed File System. ACM Trans. Comput. Syst., 6(1): 51–81,
1988. doi: 10.1145/35037.35059.

 40. P.J. Leach and D.C. Naik, A Common Internet File System (CIFS/1.0) Protocol, IETF, Internet-Draft,
December 19, 1997. http://tools.ietf.org/id/draft-leach-cifs-v1-spec-01.txt, 2022.

 41. K. Egevang and P. Francis, The IP Network Address Translator (NAT), IETF, RFC 1631, May, 1994.
Available from: http://www.ietf.org/rfc/rfc1631.txt, 2022.

 42. T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, IETF, RFC 5246,
August, 2008. Available from: http://www.ietf.org/rfc/rfc5246.txt, 2022.

 43. P. Ford-Hutchinson, Securing FTP with TLS, IETF, RFC 4217, October, 2005. Available from: http://
www.ietf.org/rfc/rfc4217.txt, 2022.

 44. M. Horowitz and S. Lunt, FTP Security Extensions, IETF, RFC 2228, October, 1997. Available from:
http://www.ietf.org/rfc/rfc2228.txt, 2022.

 45. P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT) Terminology and Considerations,
IETF, RFC 2663, August, 1999. Available from: http://www.ietf.org/rfc/rfc2663.txt, 2022.

 46. B. Curtin, Internationalization of the File Transfer Protocol, IETF, RFC 2640, July, 1999. Available from:
http://www.ietf.org/rfc/rfc2640.txt, 2022.

 47. R. Kettimuthu, M. Link, J. Bresnahan, and W. Allcock, Globus Data Storage Interface (DSI) – Enabling
Easy Access to Grid Datasets, First DIALOGUE Workshop: Applications-Driven Issues in Data
Grids, August 2005. http://www.mcs.anl.gov/~kettimut/publications/DSI.pdf, 2022.

http://www.cse.usf.edu
http://www.cse.usf.edu
http://www.ietf.org
http://www.cs.uic.edu
http://www.cs.uic.edu
http://www.ietf.org
http://citeseerx.ist.psu.edu
http://citeseerx.ist.psu.edu
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://www.ecma-international.org
http://msdn.microsoft.com
http://web.eecs.utk.edu
http://www.ietf.org
http://www.ietf.org
http://dx.doi.org/10.1145/35037.35059
http://tools.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.mcs.anl.gov

370 ◾ Implementing Parallel and Distributed Systems

 48. W. Allcock, J. Bresnahan, and R. Kettimuthu, J. Link, The Globus eXtensible Input/Output System
(XIO): A Protocol Independent IO System for the Grid, In Proceedings of the Joint Workshop on
High-Performance Grid Computing and High-Level Parallel Programming Models, April 2005.
http://www.globus.org/alliance/publications/chapters/hpgc05.pdf, 2022.

 49. R. Kettimuthu, L. Wantao, J. Link, and J. Bresnahan, A GridFTP Transport Driver for Globus XIO, In
Proceedings of the 2008 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2008), July 2008. http://www.globus.org/alliance/publications/
chapters/gridftp_transport_driver_xio.pdf, 2022.

 50. J. Bresnahan, R. Kettimuthu, and I. Foster, XIOPerf: A Tool for Evaluating Network Protocols, In
Proceedings of BROADNETS’2006. http://www.globus.org/alliance/publications/chapters/xioperf.pdf,
2022.

 51. K. Driesen and U. Hölzle, The Direct Cost of Virtual Function Calls in C++, OOPSLA 1996, USA. http://
www.cs.ucsb.edu/~urs/oocsb/chapters/oopsla96.pdf, 2022.

http://www.globus.org
http://www.globus.org
http://www.globus.org
http://www.globus.org
http://www.cs.ucsb.edu
http://www.cs.ucsb.edu

371DOI: 10.1201/9781003379041-11

Chapter 11

Parallel Programming
Languages for High-
Performance Computing

Interesting - I use a Mac to help me design the next Cray. (when he was told that
Apple Inc. had recently bought a Cray supercomputer to help them design the
next Mac)

Seymour Roger Cray

11.1 Introduction
Processing data and performing complex calculations at extreme speed is called high-
performance computing (HPC). The HPC industry has always been evolving, particu-
larly since 1999 when the use of commodity hardware and open-source software
projects became widespread for scientific computing applications. The increasing
performance of commodity processors made it possible to build large HPC clusters
to aggregate performance to a more extent. That evolution today is a global standard
for scientific computing and computationally intensive applications across a broad
diversity of scientific disciplines such as drug discovery, artificial intelligence, and
the Internet of Things (IoT). One of the ubiquitous classes of HPC is a supercom-
puter. Supercomputers contain many processing/storage nodes for achieving massive
parallelism for parallel tasks. Despite this progress, hardware complexity, as stud-
ied during the preceding chapters, has dramatically grown mainly due to the trend
in multi-core and many-core architectures. Therefore, programmers are facing new
challenges for exploiting the maximum parallelism of HPC systems.

This chapter is chiefly devoted to programming HPC systems. First, a history of
supercomputing is given, which outlines a brief advancement in supercomputers.
Second, an overview of parallel programming models and languages developed and
used in HPC platforms is presented, which acquaints the reader with the necessary

http://dx.doi.org/10.1201/9781003379041-11

372 ◾ Implementing Parallel and Distributed Systems

tools to deal with such complex systems. Third, the message passing interface (MPI)
as a standard message-passing library is introduced to program supercomputers. We
only examine a specific number of MPI features employed in this book to construct
parallel programmes. It is necessary to note that a complete treatment of the MPI
standard is beyond the scope of this book. Finally, three important examples are
developed on top of MPI, which equip the reader with the necessary concepts and
techniques for developing their own HPC applications.

11.2 A Brief History of Supercomputing
The emergence of supercomputers took place in 1964 when Control Data Corporation
(CDC) 6600 was designed by Seymour Cray. This supercomputer had 400,000 transis-
tors and about 100 miles of wire. It was capable of performing three million floating
point operations per second (FLOPS), also known as 3 megaFLOPS, at a speed of
40MHz, so the fastest computing machine at that time. Afterwards, Cray established
a company called Cray Research, which built the 80 MHz Cray 1 in 1976. Thanks to
integrated circuits, the computer reached a maximum performance rate of 136 mega-
FLOPS. The main success of Cray-1 was because of using shorter circuit lengths that
resulted in a much faster machine, in which every component of the system was built
to be as fast as possible. Cray 1 architecture benefited from vector processing, so its
underlying implementation shifted to electronic chips.

The first use of transistor-based memory in supercomputers was made by Cary
1 instead of high-latency magnetic memory. The development of Cray 1 was based
on a single processor by 1982 when Cray X-MP introduced four processors to the
base architecture. It operated at 105 MHz and contributed more than a 200% boost in
memory bandwidth compared with its predecessors. This new brand could achieve
around 800 megaFLOPS in performance. The next version of Cray would arrive in
1985 as named Cray-2. This model featured eight processors, one of which managed
memory, I/O, and storage, and the rest were called background processes used by
applications to offload their computational tasks. A Unix-compliant operation sys-
tem came with Cray 2. Before this time, supercomputers were mainly employed for
nuclear explosion simulations and funded by governments. Therefore, there was no
longer funding for doing such HPC tasks sponsored by them after the Cold War.

Cray systems were too expensive because of using vector architectures. At this
time, markets were looking for alternative architectures using massively parallel pro-
cessing (MPP) through multiple processors. MPP machines were an affordable new
way of supercomputing. For example, the Connection Machine utilised a single global
memory compiled with tens of thousands of very simple processors. Cray died in a
car accident in 1996, and his quest for supercomputing ended very soon. However,
Cray’s ideas survived somewhere else in the world. In Japan, several companies
started to construct vector supercomputers (including Fujitsu, Hitachi, and NEC), and
there emerged the fastest computers with a performance speed of 600 gigaFLOPs.

After this period, Don Becker and Thomas Sterling at NASA created Beowulf
taking advantage of a 10 Mbps Ethernet cable as the bus and 16 486DX proces-
sors. Today, Beowulf clusters are made up of thousands or tens of thousands of
multi-core processors interconnected by high-speed fibre-optic cables and router

Parallel Programming Languages for High-Performance Computing ◾ 373

chipset technologies such as InfiniBand and OmniPath. A parallel software program
is dynamically dispatched to the cluster by a runtime system, where many proces-
sors work in tandem to solve computational problems powered by the Linux operat-
ing system. The basic concept of Beowulf systems made it possible for everyone to
access HPC facilitates. Many attempted to increase the speed of supercomputers for
two decades from the 1990s. A strategy to assess supercomputer performance was
established in 1992, in which a set of Linpack benchmarks has been used by super-
computer vendors and the computational community.

Whilst the incremental improvement over the HPC technology has been under-
way for decades, software architects have also dramatically shaped the current notion
of supercomputing not only to optimise the software stack of parallel programs but
also to simplify the complex abstraction of supercomputers by developing new pro-
gramming standards, one of the best-known types is the Message Passing Interface
(MPI). The agreement for such a standard was because researchers were inventing
the same wheel from scratch many times. The first version of MPI was released in
1994, whilst it took eight years until the MPI society adopted the second version of
MPI called MPI-2.

Nowadays, designers use multi-core processors coupled to GPUs and other accel-
erators to build supercomputers. For instance, the fastest supercomputers were
Tianhe-2 and MilkyWay-2 utilising Xeon Ivy Bridge and Xeon Phi (a kid of GPU)
processors in 2014. The race in the construction of faster supercomputers never ends,
and, currently, exaFLOPS supercomputers are sought by many countries, and they
want to be the first one in this breakthrough race. In June 2020, Fugaku became the
first claimed exascale computer in history. It is the first ARM-based architecture that
connects 158,976 nodes, every of which consists of 52 ARM cores sustaining 32 GB
high-bandwidth RAM per node, and 1.6 TB NVMe SSD and 16 nodes (L1) 150 PB
shared Lustre FS (L2). Exascale computers are also a target for reaching the process-
ing power of the human brain. After that, as of 2021, predictions say that zettascale
computing will be within the reach of humans by 2035. Those imaginative supercom-
puters can solve problems never reached to date, ranging from forecasting the global
weather and decreasing the 1,000 hours needed on exascale computers to calculat-
ing supernova simulations and to highly likely modelling the whole human brain
accurately. However, other directions in massively parallel fabrics are under intense
research, such as quantum and biological computers.

11.3 Parallel Programming Models and Languages for HPC
Programming parallel machines in efficient ways that can unravel the ultimate degree
of parallelism from applications have been an active area of research for at least
five decades. In an effort to reduce or hide the complexity of hardware from pro-
grammers, programming models have provided an abstraction of hardware features
to bridge the gap between actual machine architecture and software development
cycle. Therefore, parallel programming models represent a simpler abstraction of
parallel machines to the programmer. On this basis, there are different variants of
parallel programming models, for which a plethora of programming languages have
been created, emerging from two fundamentally distinctive hardware organisations,

374 ◾ Implementing Parallel and Distributed Systems

including shared memory and message passing systems. A programming model does
not depend on a specific architecture and is intended to be run by as many as pos-
sible parallel machines. In this section, we only consider those parallel program-
ming languages that support message passing systems because of their extensive
use in application development on supercomputers. Shared memory programming
languages, such as Cilk, TBB, and PLINQ, are usually implemented on top of multi-
threading facilities of the underlying operating systems discussed in the earlier chap-
ters of this book.

In the context of message passing programming models, they can be divided
into low-level programming models, and high-level programming models, which are
utilised on a trade-off between performance and ease of programming. A low-level
programming language makes most of the underlying parallel architecture details
explicit to the programmer by means of APIs and data structures. Since parallel-
ism becomes explicit, one can write efficient code for tuning the best possible per-
formance in accordance with low-level parallel metrics. For example, programmers
can take control of host parallelism, problem decomposition, communication, and
processor mapping. Entities have full access to communication details of the prob-
lem at best, and programmers can easily control the granularity of their programs.
Maximising the performance comes at a price: decrease in programmability. In con-
trast, a high-level programming language removes many burdens on programmers by
raising the level of abstraction and letting runtime systems and compilers do much
of the work needed for parallelisation.

11.3.1 MPI

MPI supposes a collection of processes that communicate with each other only by
exchanging explicit messages, so nothing is generally shared between processes. MPI
is natively implemented for C and Fortran languages, which can be integrated easily
into C++ programs. An MPI program is a single executable composed of individual
processes, each of which runs on different address spaces. It is the programmer’s
responsibility to implement a diversity of functions for each process, and partition
and distribute data. MPI supports a wide range of synchronous and asynchronous
communication operations. Newer MPI versions include several improvements, such
as one-sided communication through remote memory access, where only the sender
process is involved. A rich set of collective operations are provided by MPI that can
facilitate the development of parallel programs such as scatter, gather, broadcast, and
reduction. These operations allow the processes within the same group to commu-
nicate. On the other hand, MPI features communicators whereby a programmer can
define a group of disjoint domains of execution entities working closely together,
each of which only sees its own relative collective operations. Several MPI features
whose functions will be employed in this chapter to develop a number of case stud-
ies leveraging the massive parallelism of HPC clusters are given.

11.3.2 Charm++

Charm++ is an extension to the C++ programming language through a C++ library
to provide parallel programming by improving programmer productivity, so it

Parallel Programming Languages for High-Performance Computing ◾ 375

falls into high-level programming languages. A program developed in Charm++
is organised as several cooperating message-passing entities called chars. The
Charm++ runtime system executes a whole Charm++ program and lets the pro-
grammer send a message to a remote object, which is likely to be addressed locally
or remotely. Chars are asynchronously run by the runtime system. A collection of
chars is assigned adaptively by the runtime system that ensures transparent scal-
ability as required at runtime. Charm++ also features an MPI implementation on
top of the core chares aiming at a more traditional programming model, which is
distinguishable from an actual process-based MPI implementation in terms of per-
formance because chars are threads of control with a much faster context switching
latency between chars.

11.3.3 Partitioned Global Address Space (PGAS)

PGAS is a parallel programming model aimed to increase programmer productivity
by hiding communication details through a set of conceptual shared-memory con-
structs implemented internally by a runtime system essentially on distributed shared
memory hardware architectures. PGAS languages distinguish between access to local
and remote data by providing additional programming abstractions. It means that
at the hardware level the concept of shared memory from a programmer’s point of
view is realised such that various latencies exist for distinct memories managed by a
PGAS runtime. A process, a cluster of processes, or any other arrangement can own
these memories. There are plenty of PGAS languages, amongst which X10, Chapel,
and Fortress have drawn wide attention.

Chapel introduces task and data parallelism without discrimination between both.
Two routines cobegin and coforall are used to create and synchronise tasks in
parallel. In Chapel, the responsibility of distributing irregular data structures are with
the programmer by placing data objects in the intended locations. Distributed arrays
in Chapel can take advantage of many memories dispersed across thousands of nodes.

X10 is a subset of Java classes that allows object-oriented programming with
PGAS-based parallel constructs. All its features have been implemented by the notion
of partitioned global address space. A programmer cannot migrate the main thread
of control, called an activity, of an X10 program; instead, an activity can spawn activi-
ties in other places asynchronously (whether locally or remotely) with the async
keyword. Distributed partitions of PGAS are called places in X10; therefore, regular
data can be allocated throughout places. The programmer must move the computa-
tion to where data resides.

11.4 A Concise Introduction to the MPI Standard in C Language
MPI is a comprehensive parallel programming standard that presents the best fea-
tures of existing message-passing programming models and includes new extensions
unavailable in previous models whenever necessary. Here, we introduce four basic
classes of widely used MPI routines (with bindings to C language) to develop paral-
lel programs. Interested readers can refer to the MPI standard or other texts for a
complete description of further MPI functions.

376 ◾ Implementing Parallel and Distributed Systems

11.4.1 MPI Setup Routines

This collection of routines provides means of obtaining from or setting an MPI execu-
tion. For example, they can be used to initialise, terminate, and query the MPI execu-
tion environment operating inside an MPI program. An essential list of these widely
used routines is as follows:

int MPI_Init(int *argc, char ***argv)

Initialises an MPI execution environment. Each MPI program must invoke this routine before
issuing any parallel execution through MPI routines. The program’s environmental variables
can be passed into the MPI runtime through this function, i.e., argc and argv variables.

int MPI_Finalize(void)

Causes termination of an MPI program, and thereafter no code or other MPI routine will run
after reaching this routine.

int MPI_Comm_size(MPI_Comm comm, int *size)

Returns the total number of processes participating in a specified communicator. The default
communicator type MPI_COMM_WORLD is used throughout this chapter.

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Returns the identifier of the calling MPI process by the specified communicator. MPI
processes are ranked from zero to the total number of processes minus one within the
current communicator.

11.4.2 MPI Blocking Point-to-Point Communication Routines

In message-passing systems, such as the MPI programming model, a region of a
process’s address space is transparently copied to another process which is usually
instructed by the programmer. The sender must specify which portion of its memory
and to what size will be transferred to which destination process’s address space.
The data type and usually the number of bytes for transmission must also be speci-
fied. For the receiver, the address and length of the intended memory region for copy
operations in conjunction with the sender identity must be provided. It is a typical
scenario in which point-to-point communication happens within an MPI program.
The most basic type of this communication is to use a blocking communication, in
which the code that calls it returns its control to the MPI runtime. The MPI executable
will inform the calling process when the requested data becomes available and is
copied into an appropriate calling MPI routine. A downside of this approach occurs
when data is unavailable, and the program is blocked incapable of performing any
useful task. However, it avoids the burden on the programmer to write proper code
to handle this situation. Two commonly used routines for blocking point-to-point
communication are as given below:

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm)

Sends the contents from buffer with the number of data elements specified as count to a
destination process. Four fundamental data types specified by datatype includes MPI_INT,
MPI_FLOAT, MPI_DOUBLE, MPI_LONG_DOUBLE, and MPI_BYTE, which are equivalents to
int, float, double, long double, and char data types in C language, respectively.

Parallel Programming Languages for High-Performance Computing ◾ 377

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

Fills the buffer with the contents specified by the length of data elements and their data type
received from a source process. status is a useful variable that can be accompanied by other
MPI routines to interrogate information about the data (e.g., the actual bytes received from
the sender). Unless specified, a value of MPI_STATUS_IGNORE is used for status in this
chapter.

11.4.3 MPI Non-Blocking Point-to-Point Communication Routines

An alternative approach to point-to-point communication is non-blocking send/
receive routines that complete I/O asynchronously in the background of an MPI
program. This method is beneficial to the programmer in terms of performance in
contrast to blocking communication because every MPI process can perform use-
ful computations, as the MPI runtime system completes send/receive operations on
behalf of an executable. A call to asynchronous MPI routines returns immediately
and gives control to the application, whose responsibility is to manage the comple-
tion of I/O requests. It implies that additional programming is required to keep track
of open communication channels. Four non-blocking MPI routines to initiate and
manage requests asynchronously are as follows:

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

Immediately sends a buffer. Many of the parameters of this routine resemble MPI_Send
function except the request variable. Because a non-blocking operation may not complete
before the MPI system informs the calling process of completion, the MPI runtime issues a
unique number accessible to the process as a request context. The programmer must use
this context by calling MPI wait routines in order to determine the status of a non-blocking
send/receive operation.

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

Begins an asynchronous receive in the background. Similar to MPI_Isend, a request can be
registered by this routine to take care of non-blocking I/O progress.

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Waits on a non-blocking request to complete. This routine should be used immediately
after a non-blocking MPI operation to check the underlying transport status. Of course,
the programmer can write extra code after a call to any non-blocking routine and before
MPI_Wait, of course, to exploit more parallelism by overlapping computation with
communication.

int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status
*array_of_statuses)

This routine is an extension of MPI_Wait to monitor the status of multiple requests
represented as an array. The size of the request array must be specified by count.

378 ◾ Implementing Parallel and Distributed Systems

11.4.4 MPI Collective Operation Routines

The operations introduced in the previous two sections are known as a point-to-point
message passing system in which a sender directly addresses a destination process
by exchanging explicit messages. What happens if a task intends to send a message
to many others is to use basic point-to-point messages to imitate a one-to-many mes-
sage delivery system; however, this kind of implementation has two disadvantages.
On the one side of the coin, it becomes cumbersome for the programmer who is
forced to write extra code for issuing send calls. On the other hand, this naïve imple-
mentation suffers from critical scalability problems because it dramatically increases
communication time in an inefficient manner as discussed in Section 11.5.2. An alter-
native approach is using MPI collective operations that avail of efficient implementa-
tions internally for a wide diversity of HPC interconnect architectures.

Figure 11.1 a conceptual interpretation of four basic MPI collective communica-
tion routines. It is essential to point out that these operations are meant to establish
global synchronisation points amongst all processes of an MPI communicator. As
a result, when these routines are used within an MPI program, all processes must
reach these points before the MPI runtime environment can allow all the involved
processes to continue their execution. A broadcast operation is when a process sends
the same data to all other processes within a specified communicator. All processes
must wait until this operation completes (an internal MPI implementation may use
an MPI_Barrier to ensure this property). A reduce operation is a classic conceptual
mechanism borrowed from functional programming languages in that a collection
of data items are integrated into a single data or value. The most useful operations

Figure 11.1 Conceptual illustration of MPI collective operations: (a) MPI_Bcast routine, (b)
MPI_Reduce routine, (c) MPI_Scatter routine, and (d) MPI_Gather routine.

P0

P0 P1 P2 P3 P4

x

x x x x x

a P0

P0 P1 P2 P3 P4

wb x y zv

v
y

z

w
x

v
y

z

w
x

v
y

z

w
x

v
y

z

w
x

v
y

z

w
x

P0

P0 P1 P2 P3 P4

wc x y zv

v w x y z P0

P0 P1 P2 P3 P4

d

v w x y z

w x y zv

Parallel Programming Languages for High-Performance Computing ◾ 379

are summation and multiplication across all data items. The result of this operation
returns to a single process (usually the root MPI process). Contrary to a broadcast
operation is the transmission of different values from a root process to all processes.
A scatter operation sends chunks of data items to different processes. On the oppo-
site side, a gather operation takes many data items and delivers them as contiguous
data to a single process. These two operations are beneficial to many parallel algo-
rithms (e.g., sorting algorithms). Note that an MPI implementation may likewise pres-
ent non-blocking collective operations in a similar approach to what was discussed
for non-blocking communication routines.

An essential list of these widely used routines is as follows:

int MPI_Barrier(MPI_Comm comm)

Suspends all MPI processes specified within a communicator until all of them reach this
routine.

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Broadcasts a message specified by buffer to all processes participating in the collective
operation.

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_
Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Collects all the data specified as sendbuf defined by a mathematical operation op within a
single value and delivers it to the root process declared by recvbuf.

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count, MPI_
Datatype datatype, MPI_Op op, MPI_Comm comm)

Collects all the data specified as sendbuf defined by a mathematical operation op within a
single value and broadcasts it to all participating processes declared by recvbuf.

int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int
root, MPI_Comm comm)

Propagates chunks of data to all processes specified by sendbuf. Note that either sendbuf or
recvbuf can be null at a time; for instance, if a root process sends only data to other processes,
then its recvbuf can be set to null whilst other processes must set their sendbuf to null.

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int
root, MPI_Comm comm)

Collects chunks of data from all processes of a given communicator and delivers a single
concatenated data to the root process.

11.5 Case Studies
In this section, we consider a collection of examples to illustrate how a parallel MPI
program is developed in practice. Simplicity is an important issue when it comes to
programming highly complicated MPI applications. For this purpose, the examples
given provide sufficient basic routines needed in such situations. To make the overall
examples manageable in terms of complexity and ease of understanding, all abide
by a master/slave paradigm given in Figure 11.2(a). A controller is spawned at the
beginning of every application whose role is to create and distribute worker MPI

380 ◾ Implementing Parallel and Distributed Systems

processes across a network of HPC nodes. Every worker will then take the respon-
sibility to execute part of their workload in parallel. It is worth noting that workers
with each other or the controller begin a globally coordinated synchronisation point if
the underlying parallel computation requires it for a sound completion. This deploy-
ment eventually gathers the result of all distributed computations on the controller.
Figure 11.2(a) depicts the flow of developed routines used in all examples. First, an
MPI environment is configured and created, which is compulsory for each MPI pro-
gram. Then, the controller distributes data via calling distribute_data(). Every
example implements a customised perform_computation() function that per-
forms a fine/coarse grain computation on data per worker. When a global computa-
tion completes, the generated data is collected through different MPI communication
primitives (this is the case in which distribute_data() routine is implemented
similarly). Finally, before every example termination, the MPI execution environment
is cleaned up by invoking clean_up_mpi_environment(). Due to lack of space,
we present all the examples merely with the help of pseudocodes. Developed MPI
codes are written in a mixture of C and C++ languages and can be found in the path
“/Supercomputing/Examples” in the companion materials of the book.

11.5.1 A Warm-Up MPI Example

The first example is a perfect parallel program to compute the natural logarithm of
a decimal number. We avail of numerical integration herein as illustrated in Figure
11.3 and expressed below:

lna
x

dx

a

� �
1

1

Figure 11.2 Typical parallelisation implementation for the examples of this chapter: (a) a
controller setups and manages a number of workers, each of which performs necessary divided
computation, and (b) the implementation of every example takes five consecutive steps in terms
of C functions to complete.

b
setup_mpi_environment()

distribute_data()

perform_computation()

collect_distributed_data()

cleanup_mpi_environment()

Controller

Perform
computa�on

Perform
computa�on

Worker 1

Controller

a

Worker n

Parallel Programming Languages for High-Performance Computing ◾ 381

The entire integration interval is divided into n segments, each of which is inte-
grated locally by a worker MPI process. Because the numerical integration of each
region is independent of others, each worker can numerically integrate its assigned
subinterval, and, finally, the calculated integrals are collected by the controller. Note
that, due to this perfect parallel nature, the only synchronisation point is introduced
into the computation after all workers complete their execution to which a reduc-
tion is performed to add all partial local sums into the final integration value. The
trapezoidal rule, which is a simple technique for approximation of definite integrals
using a trapezoid as shown in Figure 11.3, is exploited in each subinterval.

Algorithm 11.1 explains an implementation of distribute_data() function.
A rank is used to distinguish between a controller and a worker. Since the informa-
tion of each subinterval is simple and its structure is similar to all workers, one can
allocate a contagious area of memory such as an array of a simple data structure and
spread it to all workers through MPI collective operations. Although it may raise code
complexity, performance is not sacrificed. In this way, a lot of processing informa-
tion or data can be shared with many processes; however, it is not a concern in this
simple example because distribute_data() function is called once before the
actual execution begins. The controller prepares the information array in lines 10
through 16 and then calls the MPI_Scatter routine to scatter the array whose every
three elements correspond to a single worker process. Carefully look at the calling
convention used in line 17. The controller is playing the role of a data distributor, so
it sends data out, and when the first argument is a buffer to be sent and the receiver
buffer is ignored (by setting it to null). On the other side, which is a worker, receiving
task data is more than simply just by calling MPI_Scatter in line 19, but this time
by nulling the sender buffer.

Figure 11.3 A parallel algorithm for calculating ln(a) based on the definite integral of
homographic function.

x0=1 x1=10

1

xi-1 xi

ln(a)

Worker 1
Worker 2

Worker n

382 ◾ Implementing Parallel and Distributed Systems

Until now, our worker processes have received their local information and can start
their actual execution. As earlier stated, this example does not require any particular
synchronisation point during parallel execution; therefore, every process will perform
a locally sequential version of the trapezoidal rule as detailed in Algorithm 11.2.

ALGORITHM 11.2: perform_computation() FUNCTION FOR
CALCULATING ln (a)

Definitions:
1 local sum_ : the area under f x

x
� � � 1 in the sub-interval of a worker

2 x: a variable used to advance the numerical integration for every iteration of the
trapezoidal rule

3 x x0 1, : initial and final points for which the local numerical integration is performed
 by every worker

The Algorithm:
4 local sum

x x
_ � �1 1

0 15 x x← 0

6 while x x< 1 do
7 x x x� � �
8 local sum local sum

x
_ _� � 2

ALGORITHM 11.1: distribute_data() FUNCTION FOR CALCULATING ln (a)

Definitions:
 1 works : a large data vector used by the controller to store integration sub-intervals
 2 my work_ : a small data vector used by the workers to receive and store their integration
 3 sub-interval
 4 step x_ : the length of integration intervals for all workers
 5 num of wokers_ _ : the number of MPI worker processes
 6 x x x0 1� �,� : integration interval and integration steps
 7 rank : rank of the current process
 8 current x_ : a temporary variable used to store points of the integration interval

The Algorithm:
 9 if rank controller= do
10 step x

x x
num of workers

_
_ _

� �1 0

11 current x x_ ← 0

12 for all element ∈ works do
13 element x current x. _0 ←
14 current x current x step x_ _ _� �
15 element x current x. _1 ←
16 element x x.� ��
17 MPI_Scatter(&works[0], 3, …)
18 else do
19 MPI_Scatter(…, &my_work[0], 3, …)
20 MPI_Barrier()

Parallel Programming Languages for High-Performance Computing ◾ 383

Ultimately, it is needed to add all local sums together to find the composite value
of our natural logarithm. It is realised by Algorithm 11.3, which has just a single line
of code by calling the MPI_Reduce procedure. All processes will receive the summa-
tion of local values inside a globally defined sum variable.

ALGORITHM 11.3: COLLECT_DISTRIBUTED_DATA() FUNCTION FOR
CALCULATING LN(A)

Definitions:
1 local sum_ : the area under f(x) in the sub-interval of a worker
2 global sum_ : a variable that is used to sum all local areas into a global one

The Algorithm:
3 MPI_Reduce(&local_sum, &global_sum, 1, MPI_LONG_DOUBLE, MPI_SUM,…)

After compiling the MPI code of this example, the user can run it via several simi-
lar syntaxes as follows:

mpirun -np 4 ParallelLn.exe

where np stands for the number of MPI processes followed by an MPI executable
file. Another way can be as given below:

mpiexec -np 4 ParallelLn.exe

11.5.2 Scalability of MPI Programs

After our simple journey to MPI programming’s world, we are going to delve into a
non-trivial MPI program but very useful to illustrate the strength of MPI primitives.
Scalability is the ability of a computer system to perform more computational work
when the capacity of a computer is raised (e.g., the number of processing elements).
Therefore, scalability importantly is indicative of how well a high-end computer (par-
ticularly, HPC clusters) can reach more processing capacity when available resources
increase. From a software’s point of view, scalability emphasises how much a parallel
application can reach an actual speed-up (which is the ratio of sequential execution
of the original program to parallelised one). The difficult task of parallel program-
ming is how to efficiently decide to break a computation in such a way that maxi-
mum scalability is accomplished through an MPI-based implementation.

A parallel application may exhibit one of the two scaling types: Strong and weak
scaling. Strong scaling happens when a computational problem size stays constant
whilst it can complete quicker by increasing the number of cores. This type usually
refers to those applications that are CPU-bound with long runs. The best case is
when all processors almost stay busy to achieve the maximum speed-up. In contrast,
an application operates under weak scaling to reach a reasonable performance when
both the problem size and the number of processes increase simultaneously. This
type usually is used for constructing memory-bound applications where a single pro-
gram with its data is not able to reside in a limited amount of physical memory. Some
several metrics and rules affect the final scaling and should be contemplated during
algorithm design and program implementation using MPI. As there is no definite

384 ◾ Implementing Parallel and Distributed Systems

best practice for writing efficient parallel MPI code because it is highly application
specific, here we lay three steps that are supposed to bear in mind.

As applications are developed mainly for sequential runs and then incrementally
are changed to adopt parallelism, programmers should write codes in such a way that
it is affordable for improvement and maintenance. If the final goal is to develop a high-
performance application, sequential and parallel code shall be implemented in tandem.

Due to the complex nature of parallel programming and unexpected outcomes
of a developed program, the developer should initially write a first version of the
program and then try to tune those parts that require more attention for optimal
execution and peak efficiency.

Code optimisation can begin basically from tuning compilation flags followed by
testing it with extensive parallel setup arrangements, for example profiling the code
on a single multi-core node and afterwards on an HPC cluster. Manual screening and
leveraging existing profiling tools help the programmer identify which parts of the
code are time-consuming and likely a source of suspicion for degrading the perfor-
mance and scalability of the software.

The first phase in parallel application development is to change the underlying
algorithms to be able to run in parallel. However, the next step shall be identifying
parallelisation opportunities for every software component implemented in favour
of ultimate performance. For example, some components can be implemented using
threads, some others using MPI routines or even GPUs. Of course, choosing an
appropriate programming library beyond MPI as a basis of the development can be
also taken into consideration. One can find these opportunities at different levels of
the code. For example, inner loops of an MPI process may be well suited to harness
vectorisation features.

After the initial implementation of a program, multiple opportunities exist to opti-
mise it. One can think of improving data locality when accessing data in memory. An
extremely powerful criterion in performance optimisation is when the programmer
pays closer attention to overlapping communication with computation. It can give
rise to much lower latencies, exploiting the hardware as fully as possible, and higher
throughputs. For example, inter-node communication using shared and conditional
variables, and in the case of MPI level using non-blocking communication primitives
(and reusing the existing collective operations or designing new ones), all can sig-
nificantly contribute to better performance.

Last but not least, an important guideline in parallel programming is to validate
the correctness of parallel programs in which the results must entirely match the
sequential version of it. The program must be free of any kind of race condition and
be deterministic (i.e., the final numerical results of each run ought to be identical).

In this section, we intend to implement different variants of MPI_Bcast that
will show efficient use of MPI primitives, or most importantly, proper dealing with
communication scalability can deliver better concurrency. Let’s suppose that in our
main framework of Figure 11.2, the controller becomes in charge of broadcasting a
time value in performing a physical phenomenon by utilising numerical simulation.
This time is broadcast in time steps (which may be dynamic) repeatedly until a final
time reaches. A typical implementation can be to use a while loop whose iterations
involve a call to the MPI_Bcast routine as given in Algorithm 11.4. Note that the
controller only updates its local simulation time where workers only receive it.

Parallel Programming Languages for High-Performance Computing ◾ 385

If we were wanted to replace MPI_Bcast with our own variant, there would be
many different alternatives. A naïve realisation (causing the worst performance) is
when the controller sends its local simulation time to all workers through a loop
in which every iteration calls the blocking MPI_Send primitive, and each worker
issues the blocking MPI_Recv routine on the opposite side. This model is explained
in Algorithm 11.5. One might think of modifying this code to be accompanied by
a non-blocking send and receive; although it can improve the performance a little,
there is not so much gain obtained because when the controller singly sends pack-
ets of data network, congestion may occur in the sending side. Network resources
are usually limited; for instance, when a network node sends more data than it can
handle, congestion may happen from the node side to the nearest router (which has
a constrained amount of processing time and throughput).

ALGORITHM 11.4: test_mpi_broadcast() FUNCTION USING NATIVE MPI
BROADCAST

Definitions:
 1 t: time
 2 time step_ : a value by which time increments
 3 simulation until_ : the execution terminated when t reaches this variable

The Algorithm:
 4 t time step simulation until� � � ��0 10 16, _ , _ Initialise variables
 5 Initialise MPI environment
 6 while t simulation until≤ _ do ⇐ Simulation loop
 7 if rank controller= do
 8 t t time step� � _
 9 MPI_Bcast(&t, 1, MPI_DOUBLE, controller,…)
10 else do
11 MPI_Bcast(&t, 1, MPI_DOUBLE, controller,…)
12 MPI_Barrier()
13 Finalise MPI environment

ALGORITHM 11.5: test_blocking_broadcast() FUNCTION TO EMULATE
MPI_Bcast

Definitions:
 1 t: time
 2 time step_ : a value by which time increments
 3 simulation until_ : the execution terminates when t reaches this variable

The Algorithm:
 4 t time step simulation until� � � ��0 10 16, _ , _ Initialise variables
 5 Initialise MPI environment
 6 while t simulation until≤ _ do ⇐ Simulation loop
 7 if rank controller= do
 8 t t time step� � _
 6 for all w ∈workers do

386 ◾ Implementing Parallel and Distributed Systems

To tackle this dilemma, a hierarchical model of communication can be developed
whereby every node shares its packet processing capability and link throughput in
a critical attempt to prevent congestion problems and any performance bottleneck
through a collective operation. Tree data structures are perfect examples for facilitat-
ing collective communications, which are scalable and highly used in supercomput-
ers. Here, we choose balanced binary trees (BBTs), also known as height-balanced
binary trees, to implement our customised MPI broadcast operation. A BBT is a type
of tree in which the height of the right and left subtrees of any node cannot differ
by more than one. Note that a node’s height in the tree terminology is defined as the
number of edges to its farthest leaf node. The C++ code of a typical BBT implementa-
tion is accessible from the book’s companion materials for this example. The execu-
tion of the code for a total of 16 MPI processes gives rise to the tree deployment in
Figure 11.4, which is also well balanced.

Let’s focus on our BBT-based broadcast operation using non-blocking MPI primi-
tives. Algorithm 11.6 shows the whole flows needed to implement our example
rather than using the MPI_Bcast routine. The first stage is to set up a distributed
BBT by which all processes are informed of their corresponding node information in
lines 10–15 by calling MPI_Send and MPI_Recv routines. Note that for a large-scale
supercomputer with millions of processor cores, such a setup procedure could be
performed by a more comprehensive mechanism, even outside the MPI environment.
Then, this information can be accessed by all nodes before executing MPI applica-
tions. In this example, we have integrated the controller code with the workers; nev-
ertheless, in lines 17–19, the simulation time is only updated on the controller. Each

 9 Send the value of t to w by calling MPI_Send
10 else do
11 MPI_Recv(&t, 1, MPI_DOUBLE, controller,…)
12 MPI_Barrier()
13 Finalise MPI environment

Figure 11.4 A typical example of a balanced binary tree structure formed to implement a
customised MPI broadcast using non-blocking communication operations comprising 16 MPI
processes.

P0

P4 P11

P2 P6

P1 P3 P5 P7

P9 P13

P8 P10 P12 P14

P15

Parallel Programming Languages for High-Performance Computing ◾ 387

node first receives a message from its parent in lines 19–21 by invoking the non-
blocking MPI_Irecv function; consequently, the controller has no parent, and these
lines do not execute for it. Since the function MPI_Irecv in line 20 asynchronously
returns immediately, we need to wait until the receive operation completes. If the
current process (either controller or worker) has a left or/and right leaf, MPI_Isend
is called with the corresponding child identifier to asynchronously send the value
of t in lines 22 through 25. By taking how many children a node has into account,
a convenient MPI wait routine is issued in lines 26–31, in which MPI_Wait and
MPI_Waitall routines stand for single and double leaf(s), respectively.

ALGORITHM 11.6: test_broadcast_balanced_binary_tree FUNCTION
USING TO EMULATE MPI_Bcast USING A HIERARCHICAL STRUCTURE

AND NON-BLOCKING MPI COMMUNICATION OPERATIONS

Definitions:
 1 t: time
 2 time step_ : a value by which time increments
 3 simulation until_ : the execution terminated when t reaches this variable
 4 request status, : Two variables are used when calling non-
 blocking MPI routines for an asynchronous receipt from a parent three node
 5 requests statuses, : Two arrays, each of which is composed of two elements representing

left/right children of a tree node, that are used when calling non-blocking MPI routines
for asynchronous dispatch to the children of a tree node

 6 workers: the list of worker MPI processes
 7 parent left right, ,� �: stores the current node information made up of parent and left/

right children

The Algorithm:
 8 t time step simulation until� � � ��0 10 16, _ , _ Initialise variables
 9 Initialise MPI environment
10 if rank controller= do ⇐ Set up a distributed binary tree
11 Create a balanced binary tree in which every node stands for a single MPI process in

the broadcast
 hierarchy
12 for all w ∈workers do
13 Send the node information corresponding to w by calling MPI_Send
14 else do
15 Receive the node information for the current worker by calling MPI_Recv
16 while t simulation until≤ _ do ⇐ Simulation loop
17 if rank controller= do ⇐ Increment on the controllert
18 t t time step� � _
19 if the current process a parent has do ⇐ Asynchronously receive from a parentt
20 MPI_Irecv(&t, 1, MPI_DOUBLE, parent,…, &request)
21 MPI_Wait(&request, &status)
22 if the current process a left child has do ⇐ Asynchronously send a left childt to
23 MPI_Isend(&t, 1, MPI_DOUBLE, left,…, &request[0])
24 if the current process aright child has do ⇐ Asynchronously send a right childt to
25 MPI_Isend(&t, 1, MPI_DOUBLE, right,…, &request[1])

388 ◾ Implementing Parallel and Distributed Systems

11.5.3 Parallel Sparse Matrix-Vector Multiplication

In this and the next example, we deal with parallel MPI algorithms on sparse matri-
ces. In a sparse matrix, the majority of entries are zero compared to dense matrices
whose entries are mainly non-zero. One can find many different ways (data struc-
tures) to store and retrieve sparse matrices. In any possible way, storing zero ele-
ments must be avoided, which will make the algorithms to work with this type of
matrices difficult.

A beneficial kind of sparse matrix representation is the compressed column stor-
age (CCS) form, which we will use in this chapter. In the CCS format, the columns
of a sparse matrix are stored instead of rows. This data structure is expressed by
three arrays p, i and x (we take advantage of array indexing in C language by
which the first entry of an array begins at position 0). If our matrix is m by n, the
size of p is n+1. The array i stores row indices of the matrix in which the row
indices of column j are stored in i[y] to i[z], where y=p[j] and z=p[j+1]-1.
Note that the first entry of p is always set to be zero, and the k’th entry p is always
the sum of all non-zero elements of all columns up to the current column. Figure
11.5 represents the sparse matrix A with three arrays (p, i, x). It is necessary
to note that the elements of each row stored in i and x can be either sorted or
unsorted. Because the results in matrix operations are unknown before actually
performing any operation, we do not want to be strict in sorting every entry of
each column stored in i and x. Every algorithm of this chapter processes each col-
umn without assuming ordered entry elements of every column. It is advantageous
in terms of efficiency because sorting a large sparse matrix in every column-wise
operation can cause critical overhead. It is worth noting that most CCS algorithms
access a sparse matrix column by column.

26 if the current process two children has do
⇐ Asynchronously wait on already set upsrequests

27 MPI_Waitall(2, requests, statuses)
28 else if the current process only a left child has do

⇐ Asynchronously wait on the left child
29 MPI_Wait(&requests[0], &statuses[0])
30 else if the current process only aright child has do

⇐ Asynchronously wait on the right child
31 MPI_Wait(&requests[1], &statuses[1])
32 MPI_Barrier()
33 Finalise MPI environment

Figure 11.5 An example sparse matrix with its compressed column storage representation.

Parallel Programming Languages for High-Performance Computing ◾ 389

The simplest form of sequential sparse matrix operation is matrix-vector multipli-
cation (even easier than matrix-matrix addition because in sparse matrices locating
the corresponding column entries in two matrices A and B is non-trivial, and in most
cases an out-of-order search to find pairs in two columns of both matrices must be
made). We first develop a simple algorithm for sequential sparse matrix-vector mul-
tiplication (SPMV) and then extend it to support parallelism. Since our sequential
algorithm requires accessing columns of a sparse matrix A, the multiplication of A by
v vector is expanded for a general 3-by-3 matrix below

A v

v

v

v

. �
�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

1

2

3

aa a a11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

v v v

a v a v a v

a v a v a v

� �
� �
� �

�

�

�
�
�

�

��

�
�
�

As seen, there is a pattern in the expansion, and it appears that the resultant vec-
tor is a sum over every column j by its corresponding entry in vj. Therefore, we can
write this interpretation as given below:

A v a

a

v a

a

v a

a

. �
�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

�
�a a a11

21

31

1

12

22

32

2

13

23

33��

�
�
�

�

�

�
�
�

� � �
�

�

�
�
�

�

�

�
�
�

� � �v

v

v

v
3 1 2 3

1

2

3

A A A

Where A*j is short for all the three row-wise entries of column j of the A matrix.
This straightforward formula can be generalised to n-by-n matrices easily. In our
sequential algorithm, the resultant vector is pre-allocated and then overwritten within
a loop whose every iteration multiplies a single column by its corresponding entry
in v.

Let’s now turn our attention to the parallelisation of the basic sparse matrix-vector
multiplication algorithm. Consider a sparse 5-by-5 matrix shown in Figure 11.6 mul-
tiplied with a vector of length 5. Given two worker processes, we intend to perform
this multiplication in parallel. Worker 1 receives two columns of A, as the rest of
the columns of A are assigned to Worker 2. Note that this task division on the A
matrix is carried out vertically, but it is rather horizontal for the v vector (mainly due

Figure 11.6 A typical parallel example of a matrix-vector multiplication over two workers.

390 ◾ Implementing Parallel and Distributed Systems

to the necessity for every worker to access its corresponding range of rows in A).
The parallelisation algorithm is a bit messy because of the sparsity nature of the A
matrix; therefore, we give only a big picture of parallel algorithms for this and the
next example due to space limitation and miss the details out. We leave them with
the reader to take a careful look at the source codes of both examples, which are
available in the companion materials of the book.

The data distribution phase of parallel matrix-vector multiplication is shown in
Algorithm 11.7. The controller needs to divide the data structure of the A matrix into
individual sparse submatrices and sends them out to workers. From a controller’s
perspective, these are submatrices, but workers must treat them as complete sparse
matrices. Hence, the main duty of the controller is to nicely break both A matrix and
v vector down to submatrices and sub-vectors, and then every worker itself builds a
new sparse matrix and a new vector.

For the time being, despite the complexity of data distribution for our recently
developed algorithm, every worker can simply perform a local sequential version
of the sparse matrix-vector multiplication presented earlier. It is mainly because
every worker only sees a smaller local matrix and vector as long as the distri-
bution structure inherits from Algorithm 11.7. The procedure is elaborated in
Algorithm 11.8. The only important point is that two for loops are used in which
the first iterates over columns and the second one over the rows of the current
column of A. Since every column of A has at most n rows, the size of the resultant
vector r is n.

ALGORITHM 11.7: distribute_data() FUNCTION FOR SPARSE MATRIX-
VECTOR MULTIPLICATION

Definitions:
 1 p i x, , : elements to store the matrix A or a sub-matrix of A
 2 v : the matrix A is multiplied by vector v or a sub-vector of v
 3 w: An MPI worker process
 4 workers: the list of worker MPI processes

The Algorithm:
 5 if rank controller= do
 6 for all w ∈ workers do
 7 Create a column-wise sparse sub-matrix from A from p, i and x
 8 Create a sub-vector from v
 9 Send the newly created sub-matrix and sub-vector to w by consecutive calling to

MPI_Send
10 else do
11 Receive the size of p, i, x and v for the current worker from the controller process by

consecutive calling to MPI_Recv and creating a sub-matrix A and sub-vector v
12 MPI_Barrier()

Parallel Programming Languages for High-Performance Computing ◾ 391

In Algorithm 11.8, every worker has computed a resultant local vector r so far;
hence, all these local vectors (that have the same length) must be added together to
produce the final result. This is depicted in Algorithm 11.9 in a single line of 3 by call-
ing MPI_Allreduce. The MPI_IN_PLACE constant is a flag to let this MPI routine
know that this call should involve both send and receive operations.

11.5.4 Parallel Sparse Matrix-Matrix Multiplication

As the last MPI example in this chapter, a parallel implementation of sparse matrix-
matrix multiplication (SPMM) is considered. SPMM has important applications in
graph algorithms and scientific computing, such as multi-grid linear solvers, graph
analysis, and shortest path finding, and is widely used in HPC. Hence, a parallel SPMM
can have potential impacts on numerous applications. First, we devise a sparse SPMM
algorithm that directly accesses the entries of multiplicand and multiplier matrices
column by column. Then, it is parallelised akin to our developed parallel SPMV
algorithm. Let’s assume that we are going to multiply two sparse 4-by-4 matrices

ALGORITHM 11.8: perform_computation() FUNCTION FOR SPARSE
MATRIX-VECTOR MULTIPLICATION

Definitions:
1 A: a sub-matrix on each worker
2 v : a sub-vector on each worker
3 r: a vector that is used to store the result of multiplication on each worker

The Algorithm:
4 columns ← the column pointers of A stored in A.p
5 for all column ∈ columns do
6 rows ← the row pointers of A stored in A.i located in the current column
7 for all row ∈ rows do
8 val ← the value of the matrix A in the current pair of (row, column) stored in A.x
9 r row r row val v column� � � � � � � �.

ALGORITHM 11.9: collect_distributed_data() FUNCTION FOR SPARSE
MATRIX-VECTOR MULTIPLICATION

Definitions:
1 r: a vector that is used to store the result of multiplication on each MPI process
2 size : denotes how many elements the vector r has, which is equal to the number of A’s

rows

The Algorithm:
3 MPI_Allreduce(MPI_IN_PLACE, &r[0], size, MPI_DOUBLE, MPI_SUM,…)

392 ◾ Implementing Parallel and Distributed Systems

A and B, and store the result in a C matrix shown in Figure 11.7. All three of the
matrices are denoted symbolically.

As far as a sparse matrix is concerned in the CCS form and must be accessed by
its columns, we can derive the symbolic expression of the first column of C matrix by
expanding C=A×B in Figure 11.7 as follows:

c

c

c

c

a b a b a b a b

a b
11

21

31

41

11 11 12 21 13 31 14 41

21 11

�

�

�
�
�
�

�

�

�
�
�
�

�

� � �
�� � �
� � �
�

a b a b a b

a b a b a b a b

a b a

22 21 23 31 24 41

31 11 32 21 33 31 34 41

41 11 422 21 43 31 44 41

11

21

31

41

1

b a b a b

a

a

a

a

b

� �

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

11

12

22

32

42

21

13

23

33

43

31�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

a

a

a

a

b

a

a

a

a

b ��

�

�

�
�
�
�

�

�

�
�
�
�

a

a

a

a

b

14

24

34

44

41

As it can be seen, the first column of C is obtained by multiplying every column
of A by individual row entries of the corresponding column in B. We can generalise
this observation to conclude that, in SPMM for the CCS representation, every column
j of the C matrix is a matrix-vector multiplication of the A matrix over B*j.

By establishing our sequential SPMM algorithm, we can now dive into its paral-
lelisation. The overall view of the parallelisation is depicted in Figure 11.7 with two
workers. To avoid excessive complexity and for educational purposes, only the B
matrix is broken into submatrices, each of which is sent to a single worker process
which resembles what was done for the parallel SPMV algorithm. Therefore, matrix
A is copied into the physical memory of all worker nodes without any division as
exactly as it is. These steps are explained by Algorithm 11.10.

ALGORITHM 11.10: distribute_data() FUNCTION FOR SPARSE MATRIX-
VECTOR MULTIPLICATION

Definitions:
 1 A B, : two sparse n-by-n matrices to get multiplied
 2 p i x, , : elements to store the sparse matrix A
 3 v : the matrix A get multiplied by vector v or a sub-vector of v
 4 w: An MPI worker process
 5 workers: the list of worker MPI processes

The Algorithm:
 6 if rank controller= do

Figure 11.7 A typical parallel example of a matrix-matrix multiplication over two workers.

Parallel Programming Languages for High-Performance Computing ◾ 393

In accordance with our parallel SPMV algorithm, a bare minimum of change to
the sequential SPMM is required for its parallelisation in the perform_computa-
tion() phase, mainly thanks to the local view of the distributed B and C submatri-
ces. Algorithm 11.11 details the computation phase of SPMM, which is too complex
with respect to its dense matrix-matrix multiplication counterpart. The operation
progresses over each column of the B matrix in line 15. We keep track of how many
non-zero entries per iteration exist that will be used to reconstruct the matrix C. In
each column of B, rows of both A and B matrices are fetched and multiplication over
them is performed in lines 17–33. Because we are dealing with sparse rows of a
column (i.e., we are not aware exactly which rows are non-zero), two helper vectors
are used, including ws and x. The workspace vector provides the ability to check if
there is a non-zero entry in the kth row of the multiplication of two corresponding
columns of the A and B matrix. In addition, the variable x stores the actual multiplica-
tion of two columns in compliance with entries in ws. If an entry exists at a location
of ws, the current value of x at that position will be incremented by the multiplica-
tion values fetched from both columns (i.e., valA and valB in lines 21 and 22) dur-
ing the iterations in lines 23 and 24; otherwise, it is just an ordinary multiplication
of valA by valB. When a new entry insertion into the C matrix is required, and the
underlying vectors of C.i and C.x have no sufficient space, they must be resized in
lines 26 to 28 to accept the new entry. Finally, for each column of the C matrix and
after performing all operations, the results of the multiplication of the A matrix by the
column of the B matrix, which have been saved in x vector, are copied into the end of
C.x. Note that the positions in x that have entries for this operation are fetched from
C.i, which beforehand had been inserted into C.i in line 30. Moreover, the column
pointer of the next column is updated in line 35 to include the recent number of
non-zero elements in the C matrix.

ALGORITHM 11.11: perform_computation() FUNCTION FOR SPARSE
MATRIX-MATRIX MULTIPLICATION

Definitions:
 1 A: the matrix A on all workers
 2 B C, : A sub-matrix from B and C on every worker
 3 columnsB: the column pointers B matrix

 7 for all w ∈ workers do
 8 Send the data structure (p, i, x) associated with A to w via MPI_Send
 9 Send the matrix B to w by performing lines 7 to 9 of Algorithm 11.7
10 else do
11 Receive (p, i, x) for the current worker from the controller process and reconstruct

the matrix A via
 MPI_Recv
12 Receive B matrix for the current worker by performing line 11 of Algorithm 11.7
13 MPI_Barrier()

394 ◾ Implementing Parallel and Distributed Systems

The function collect_distributed_data() for our parallel SPMM illustrated in
Algorithm 11.12 considerably differs from our parallel SPMV because we must trans-
fer the whole submatrices from workers, which contain triplets of (p, i, x), to the
controller process. The chief role of the controller is to integrate all the results into a
resultant matrix C in lines 4 through 6.

 4 columnB: a column pointer in the current column of the B matrix
 5 nztotal: the total number of nonzero entries in the C matrix
 6 nz: the number of nonzero entries in the current column of the C matrix
 7 rows rowsA B, : the row pointers in the current column of A and B matrix
 8 row rowA B, : a row pointer in the current column of A and B matrix
 9 value valueA B, : the value of two entries of the A and B matrix in their current row and

column
10 nzmax: the maximum nonzero entries that a sparse matrix can have
11 ws : a workspace vector used to keep track of a given row index if it is already in the set
12 x: a dense vector that is used to store the outcome of multiplication of the matrix A by
 the submatrix B on each worker represents the rows of the current column of the C

matrix

The Algorithm:
13 nztotal ← 0
14 columnsB ← the column pointers of B stored in B.p
15 for all column columnsB B∈ do
16 nz ← 0
17 rowsB ← the row pointers of B stored in B.i located in the current column
18 for all row rowsB B∈ do
19 rowsA ← the row pointers of A stored in A.i located in the current column
20 for all rowA ∈ rowsA do
21 value B row columnB B B� � �� �
22 value B row columnA A B� � �� �
23 if ws row columnA B� � �= 1 do
24 x row x row value valueA A A B�� ��� �� � .
25 else do
26 if C nzmax nztotal. � � 1 do
27 C nzmax C nzmax nztotal. .� � �� �2 1
28 Resize C.i and C.x to the size of C nzmax.
29 ws row columnA� � � � 1
30 C i nz total rowA. _� � �
31 x row value valueA A B� � � .
32 nz nz� � 1
33 nz nztotal total� � 1
34 Copy the results saved in x to appropriate entries in C.x
35 C p column nzB total. �� � �1

Parallel Programming Languages for High-Performance Computing ◾ 395

Finally, we leave it as an exercise to the reader to improve the performance of the
parallel SPMM algorithm such that the A matrix is also evenly distributed between
workers. It is expected that this improvement outperforms the current algorithm in
terms of locality of reference (spatial/data locality) and the most efficient use of pro-
cessor caches of every node on an HPC cluster.

ALGORITHM 11.12: collect_distributed_data() FUNCTION FOR SPARSE
MATRIX-MATRIX MULTIPLICATION

Definitions:
1 C : A resultant sparse n-by-n matrices after distributed multiplication
2 w: An MPI worker process
3 workers: the list of worker MPI processes

The Algorithm:
4 if rank controller= do
5 for all w ∈ workers do
6 Receive submatrix w.C and copy it to appropriate places in the allocated matrix C

on the controller (if the size of the internal data structure of C changes, resize the C
matrix) via consecutive call to MPI_Recv

7 else do
8 Send the data structure of the submatrix C on the current worker to the controller by

consecutive calling to MPI_Send

https://taylorandfrancis.com

397

Index

.NET Framework, 238

.NET Remoting, 264
6G, 19

A

ABA-Free, 136
Abstract Class, 287
Ahead-Of-Time, 254
Amazon S3, 333
Analogue Computers, 3
AOT, 254
Application-Level Gateway, 355
Arithmetic Logic Unit, 7
Artificial Intelligence, 371
Assembly Language, 134
Astronomy, 2
Asymmetric Multi-Processing, 59
Asynchronous Blocking I/O Model, 214
Asynchronous DNS Resolver, 205
Asynchronous Echo Client-Server, 219
Asynchronous Methods, 204
Asynchronous Sockets, 212
AsyncSocket Class, 216
Authentication, 335

B

Babbage, Charles, 6
Balanced Binary Tree, 386
Barrier, 102
BBT, 386
Beowulf, 372
Blocking Point-to-Point Communication, 376
Boost, 250
Bottleneck, 317
Broadcast Operation, 378
Bus Topology, 205

C

C#, 247
C++ Standard Library, 250
Calling Convention, 135

CCS, 388
CFSM, 291, 336
Channel Events, 340
Charm++, 374
Chip Multi-Processor, 62
CIFS, 355
CLI, 238
Cloud Computing, 12
CLR, 239
Cluster Computing, 10
Coarse-Grained Multi-Threading, 58
Code Motion, 49
Code Optimisation, 384
Code::Blocks, 89
COFF, 262
Collective Operations, 378
Common Language Infrastructure, 238
Common Language Runtime, 239
Common Object-File Format, 262
Communicating Finite State Machines, 291, 336
Compare-and-Swap, 74
Compilation, 252, 262
Compressed Column Storage, 388
Computer Networks, 170
Concurrency Control, 153
Concurrent Client/Server, 198
Concurrent Counter, 103
ConcurrentFileCopy, 165
Condition Variable, 100
Context Switching, 324
Control Channel, 356
Control Hazards, 47
Control Synchronisation, 100
Convoying, 89
CORBA, 312
Cray, Seymour, 372
Cross-Language, 340
CUDA, 67
Cyber-Physical Systems, 15

D

Data Confidentiality, 335
Data Copies, 323

398 ◾ Index

Data Dependence Graph, 49
Data Hazards, 47
Data Integrity, 335
Data Synchronisation, 100
Data Transmission, 317
Data-Intensive, 354
Deadlock, 75
Deadlock Avoidance, 78
Decentralised Network, 21
Definite Integral, 381
Dennard Scaling, 8
Depth-First Search Algorithm, 82
Differential Analysers, 3
Digital Computers, 6
Directed Graph, 81
Directory Class, 172
Directory-based Protocols, 61
Distributed File System, 335
Distributed Middleware System, 280
Distributed Shared-Memory Multi-Processor, 62
Distributed System, 9
Distributed Threading, 283
DLL, 287
DotGrid, 237
Download Mode, 343
DRAM, 30
Drug Discovery, 371
DVFS, 70
Dynamic Instruction Scheduling, 50
Dynamic Link Library, 287
Dynamic Memory Management, 141
Dynamic Power, 52

E

Edge Computing, 18
Efficient File Transfer, 317
ELF, 262
Eniac Computers, 6
Environment, 89
Ethernet, 205
Event Dispatcher, 331
Exascale Computers, 373
Exception Handling, 349
Executable and Linking Format, 262
Exokernel Operating System, 34–35
Experimental Studies, 356

F

Feature Negotiation, 333
File System Metadata, 356
File Transfer Protocol, 318
FileStream Class, 163
Finite State Machine, 126
Firewall, 355

Flexible Connectivity, 334
Formal Specification, 336
FTP, 318
FTP State Machines, 354
Functional Programming Languages, 378

G

Garbage Collection, 259
Global Clock, 9
Global Synchronisation, 378
Globus Toolkit, 321
Google File System, 333
GPU, 65
Graph Analysis, 391
Graphics Processing Unit, 65
Grid Computing, 11
GridFTP, 318

H

Hadoop, 333
Hardware Interrupt, 39
Heterogeneity, 281
Heterogeneous Software Component, 350
Heterogenous Computing, 64
Hierarchical Directory System, 173
Hierarchical Model of Communication, 386
Hierarchical Structure, 285
High-level Programming Language, 255
High-Performance Computing, 371
High-Performance Server Design Architecture,

322
History of Supercomputing, 372
Homographic Function, 381
HPC, 371
HTTP, 193
Human Brain, 373
Human Mind, 2
Hybrid Architecture, 211
Hybrid Concurrency Pattern, 347
Hybrid Operating System, 34

I

IETF, 322
InfiniBand, 183
Infrastructure-As-A-Service, 13
Inline Expansion, 351
Instruction Scheduling, 49
Instruction Set Architecture, 256
Instruction-Level Parallelism, 45
Integrated Development Environment, 89
Internet of Things, 15
Interop Transitions, 255
Interoperability, 9, 321

Index ◾ 399

IOzone, 160
ISO/IEC 9899, 250

J

Java RMI, 312
JIT, 254
JIT Compiler, 256
Just-In-Time, 254

L

LAN, 180
Language-Based Operating System, 36
Laplace Transform, 5
Library Wrapper, 350
Linpack Benchmark, 373
Linus Benedict Torvalds, 43
Linux Futexes, 126
Livelock, 89
Local-Area Network, 180
Locality of Reference, 395
Lock-Free Counter, 137
Lock-Free Memory Pool, 144
Lock-Free Singly Linked List, 148
Lock-Free Stack, 138
Lock-Freedom, 131
Loop Unrolling, 47

M

MAN, 180
Managed C++, 243
Many-Core Operating Systems, 71
MASM, 134
Master/Slave, 56, 300
Matrix Multiplication, 113
Memory Allocation, 324
Memory Allocator, 142
Memory Footprint, 260
Memory Hierarchy, 30
Memory Management, 28
Memory Pool, 143
Memory-to-Memory Test, 364
Metropolitan-Area Network, 180
Microkernel Operating System, 33
Microprocessors, 6
Microsoft.NET Framework, 237
Middleware, 9, 280
MIMD, 60
Monolithic Operating System, 34
Moore’s Law, 8
MPI, 375
Multi-Core Parallelism, 62
Multi-Grid Linear Solver, 391
Multiple-Process Architecture, 326

Multiple-Process Event-Driven Architecture, 326
Multiple-Thread Architecture, 326
Multiple-Thread Event-Driven Architecture, 326
Multiplexing, 337
Multi-Processor Parallelism, 59
Multi-Processor System, 7
Multi-Threaded Event-Driven Pipelined

Architecture, 331
Mutex, 100
Mutual Exclusion, 77

N

NAT Device, 355
Negotiation Protocol, 338
Network Backbone, 205
Network Communication, 281
Network Protocols, 336
Networked Software System, 359
NFS, 355
Non-blocking Point-to-Point Communication,

377
Non-Blocking Synchronisation, 129
NT Completion Ports, 333
Number π, 300
Numerical Simulation, 384

O

Object-Oriented Language, 287
Object-Oriented Operating System, 35
Obstruction-Freedom, 131
Operating Systems, 24
Optimistic Concurrency Control, 154
Oscilloscope, 6
OSI Reference Model, 188
Out-of-Order Search, 389

P

P/Invoke, 257
Page Fault, 261
Parallel Application Development, 384
Parallel Connections, 336
Parallel Programming Languages, 371
Parallel Programming Models, 373
Parallel Sparse Matrix-Matrix Multiplication, 391
Parallel Sparse Matrix-Vector Multiplication, 388
Partial Transfers, 354
Partitioned Global Address Space, 375
Parvicursor Infrastructure, 279
Parvicursor Infrastructure Architecture, 269
Parvicursor Object Passing Interface, 264
Parvicursor Server Architecture, 342
Parvicursor.NET Base Class Library, 249
Parvicursor.NET Framework, 237, 239

400 ◾ Index

Parvicursor.NET Remoting Architecture,
264

Peer-to-Peer Framework, 279
Peer-to-Peer Network, 21
Performance, 283
Performance Engineering, 351
Performance Optimisation, 384
Pessimistic Concurrency Control, 153
PGAS, 375
Pipeline, 45, 46
Platform Invocation Services, 257
Platform-As-A-Service, 13
Polymorphism, 287
POSIX AIO, 333
Power Consumption Problem, 52
Prime Numbers, 115
Priority Inversion, 87
Process Management, 27
Producer/Consumer System, 104
Profiling Tools, 384
Programming Language, 252
Programming Reference Guide, 267
Protocol Sequence Diagram, 338
Pure Virtual Function, 290
Pure Virtual Method, 287

Q

Quantum Computing, 2

R

Race Condition, 86
Random Access, 163
RDMA, 337
Real Time Signals, 332
Reduce Operation, 378
Reduced Instruction Set Computer, 46
Remote Procedure Call 310
Resource Allocation Graph, 80
Resource Sharing, 283
Ring Topology, 205
Ritchie, Dennis, 23
Rotating Hard Disc, 158
Rotational Latency, 160
Router, 182
RPC, 310
Runtime Profiler, 351

S

Scalability, 209, 282, 383
Scalable HTTP Proxy Server, 225
Scheduling, 28
Scientific Computing, 391
Security Administrators, 356

SEDA, 326
Seek Time, 159
Sensor and Ad Hoc Networks, 320
Sequential Access, 163
Serialisation, 264
Server Architecture, 326
Service-Oriented Approach, 322
Seymour Cray, 372
Shared Object, 287
Shared-Memory Multi-Processor, 61
Shortest Path Finding, 391
Sieve of Eratosthenes, 115
SIMD, 60
Single-Process Event-Driven Architecture,

326
Singularity Operating System, 36
Snooping Protocols, 61
SO, 287
SOA, 322
Socket Interface, 263
Socket Programming, 189
Software Development Life Cycle, 351
Software Interrupt, 39
Software-As-A-Service, 13
Solid State Drive, 159
Sparse Matrix, 388
Sparse Matrix-Matrix Multiplication, 391
Sparse Matrix-Vector Multiplication, 389
SPMM, 391
SPMV, 389
SRAM, 30
SSD, 159
Staged Event-Driven Architecture, 326
Standardisation, 283
Star Topology, 205
Starvation, 88
Static Power, 52
Storage Management, 29
Storage Systems, 157
Structural Hazards, 47
Supercomputer, 372
Supernova Simulations, 373
Superscalar Processors, 50
Symbolic Expression, 392
Symmetric Multi-Processing, 59
Synchronisation, 8
Synchronisation Instructions, 73
Synchronous Blocking I/O, 213
Synchronous Non-Blocking Model, 214
System Call, 37
System On Chip, 70

T

Tagged Pointers, 145
TCP Window Size, 336

Index ◾ 401

TCP/IP, 187
Third-Party Data Transfer, 303
Thread Class, 94
Thread Leakage, 108
Thread Management, 56
Thread Pools, 107
Thread-Level Parallelism, 53
Thread-Local Storage, 259
Thompson, Ken, 43
Timer Class, 97
Torvalds, Linus Benedict, 43
Transactional Memory, 153
Transmission Control Protocol, 182
Transmission Security Interface, 339
Transport Independence, 334
Trapezoidal Rule, 382
TSI, 339

U

Upcall Model, 58
Upload Mode, 344
Userspace Fibres, 121

V

Vectored I/O, 350
Virtual Function, 290
Virtual Method, 287

W

WAN, 180
Wait-Freedom, 131
Wide-Area Network, 180
Widely Used File Transfer Protocols, 352

Zettascale Computing, 373

X

xDFS, 317, 333
xFTSM Protocol, 335
xRMI, 309
xSec, 339
xThread Abstraction, 287
xThread Channel, 292
xThread Control Channel, 292
xThreadClient Class, 288

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Acknowledgement
	Authors
	Chapter 1: Introduction
	1.1 Introduction
	1.2 History of Computing
	1.2.1 Analogue Computers
	1.2.2 Digital Computers: Modern Hardware Advances in Computer Architectures

	1.3 A Brief Introduction to Parallel and Distributed Systems
	1.4 Conclusion
	Notes
	Reference

	Chapter 2: IoT and Distributed Systems
	2.1 Introduction
	2.2 CPS and IoT
	2.3 Internet of Things (IoT)
	2.4 Distributed Systems and Distributed Computing via IoT
	Reference

	Chapter 3: Advanced Operating System Concepts in Distributed Systems Design
	3.1 Introduction
	3.2 An Introduction to Modern Operating Systems
	3.2.1 Process Management
	3.2.2 Memory Management
	3.2.3 Storage Management (SM)
	3.2.4 Userspace and Kernel Space

	3.3 Memory Hierarchy Models
	3.3.1 Main Memory

	3.4 A Brief Review on Modern OS Kernels
	3.4.1 Microkernel Operating System
	3.4.2 Monolithic Operating System
	3.4.3 Hybrid Operating System
	3.4.4 Exokernel Operating System
	3.4.5 Object-Oriented Operating System (O3S)
	3.4.6 Language-Based Operating System (LOS)
	3.4.7 System Calls to Request Linux and Windows OS Services
	3.4.8 System Calls in the Linux Operating System
	3.4.9 Costs Due to the Mode Switch of System Calls
	3.4.10 Costs Due to the Footprints of System Calls
	3.4.11 Effect of System Calls on the Userspace IPC
	3.4.12 Critical Overheads due to Frequent Copies
	3.4.13 System Calls in the Windows Operating System
	3.4.14 Timeline of Operating System Evolution

	Chapter 4: Parallelism for the Many-Core Era: Hardware and Software Perspectives
	4.1 Introduction
	4.2 Exploiting Instruction-Level Parallelism (ILP) by Hardware and Software Approaches
	4.2.1 Superscalar Processors
	4.2.2 The Downside of Instruction-Level Parallelism and Power Consumption Problem

	4.3 Thread-Level Parallelism (TLP) and Multi-Processor and Multi-Core Parallelism
	4.3.1 Introduction
	4.3.2 Thread-Level Parallelism
	4.3.3 Multi-Processor Parallelism
	4.3.4 Multi-Core Parallelism

	4.4 Heterogenous Computing on Many Cores
	4.5 Latest Optimal Approaches in Synchronisation
	4.5.1 Deadlock
	4.5.2 Race Condition
	4.5.3 Priority Inversion
	4.5.4 Starvation
	4.5.5 Livelock
	4.5.6 Convoying

	4.6 Installation Steps of the Integrated Development Environment (IDE) Code::Blocks on Unix-Like Operating Systems Such as Linux
	References

	Chapter 5: Parallelisation for the Many- Core Era: A Programming Perspective
	5.1 Introduction
	5.2 Building Cross-Platform Concurrent Systems Utilising Multi-Threaded Programming on Top of the Parvicursor.NET Framework for Distributed Systems
	5.2.1 Introduction
	5.2.2 Thread Creation and Management in the Parvicursor.NET Framework
	5.2.3 Implementing the System::Threading::Timer Class of the ECMA Standard Based on the Thread Class in the Parvicursor.NET Framework
	5.2.4 Synchronisation in the Parvicursor.NET Framework
	5.2.5 Two Concurrency Examples Relied on Synchronisation Classes in the Parvicursor.NET Framework
	5.2.6 Thread Pools: Design and Implementation of the System::Threading::ThreadPool Class of the ECMA .NET Standard Based on the Parvicursor.NET Framework
	5.2.7 Four Examples of Concurrency and Parallel Processing Based on the ThreadPool Class
	5.2.8 Low-Level Implementation of Threads in the Linux Operating System: Userspace Fibres
	5.2.9 A Practical Implementation of Synchronisation: Linux Futexes

	5.3 Non-Blocking Synchronisation and Transactional Memory
	5.3.1 Introduction
	5.3.2 Non-Blocking Synchronisation Algorithms
	5.3.3 Transactional Memory

	References

	Chapter 6: Storage Systems: A Parallel Programming Perspective
	6.1 Introduction
	6.2 Storage Systems and Disc Input/Output Mechanisms for Use in Distributed Systems
	6.2.1 Introduction
	6.2.2 Disc Drives from a Hardware Perspective
	6.2.3 Disc Input/Output Scheduler in Operating Systems
	6.2.4 Benchmarking the Performance and Throughput of Disc I/O Based on the IOzone Tool

	6.3 Cross-Platform Disc I/O Programming and Manipulation of Folders Based on the Parvicursor.NET Framework for Distributed Systems
	6.3.1 Storage and Retrieval of Data Files Based on the FileStream Class
	6.3.2 Two Non-Concurrent and Concurrent Examples for Using the FileStream Class
	6.3.3 Management of Files and Folders Based on the Two Classes Directory and File
	6.3.4 Two Examples of Non-Concurrent and Concurrent Use of the Directory Class

	Reference

	Chapter 7: Computer Networks: A Parallel Programming Approach
	7.1 Substantial Concepts of Computer Networks for Distributed Systems Design
	7.1.1 Introduction

	7.2 An Introduction to Modern Computer Networks
	7.3 OSI Model and TCP/IP and UDP Protocol Suite to Structure Communications in Computer Networks
	7.3.1 The OSI Reference Model
	7.3.2 The TCP/IP Protocol Suite

	7.4 Network Programming Based on TCP Sockets and Thread-Level Parallesim to Develop Distributed Client-Server Programs Atop the Parvicursor.NET Framework
	7.4.1 An Introduction to the Socket Programming Model
	7.4.2 A General Description of Network Programming Classes in the Parvicursor.NET Framework
	7.4.3 A Short Overview of the HTTP 20 Protocol
	7.4.4 Example 1: A Simple Client Program of the HTTP Protocol to Retrieve a Web Page
	7.4.5 Example 2: A Concurrent Client/Server Program Based on Threads to Upload a File from a Client to a Server

	7.5 Asynchronous Methods in Parvicursor Platform: An Optimum Computing Paradigm to Exploit the Processing Power of Multi/Many-Core Systems for Increasing the Performance of Distributed Systems
	7.5.1 Introduction
	7.5.2 Example: Asynchronous Translation of Domain Names to IP Addresses Based on an Asynchronous DNS Resolver
	7.5.3 Implementation of an Asynchronous DNS Resolver Based on the Parvicursor.NET Framework

	7.6 Addressing the Scalability Issue of Communication Systems in the Parvicursor Platform
	7.6.1 Introduction
	7.6.2 Design Strategies of Client-Server Applications
	7.6.3 Asynchronous Sockets in Parvicursor Platform as a Proposed Standard to Develop Highly Scalable Optimum Communication Systems for Distributed Systems
	7.6.4 Example 1: An Asynchronous Echo Client-Server
	7.6.5 Example 2: The Design and Implementation of a Highly Concurrent and Scalable HTTP Proxy Server Supporting Tens of Thousands of Client Connections

	Notes
	References

	Chapter 8: Parvicursor.NET Framework: A Partial, Native, and Cross-Platform C++ Implementation of the .NET Framework
	8.1 Introduction
	8.2 Common Language Infrastructure (CLI)
	8.3 Parvicursor.NET Framework
	8.4 The Compilation and Loading Process of .NET-CLI-Based Application Programs
	8.4.1 AOT and JIT Compilations
	8.4.2 Cross-Mode Execution Switches (C++/CLI Managed/Unmanaged Interop Transitions)
	8.4.3 Platform Invocation Services (P/Invoke)
	8.4.4 .NET Memory Footprint

	8.5 The Compilation and Loading Process of Native Parvicursor.NET-Based Application Programs
	8.6 Parvicursor.NET Socket Interface (PSI)
	8.7 Parvicursor Object Passing Interface (POPI) over PSI
	8.8 Cross-Process, Cross-Language and Cross-Platform Parvicursor.NET Remoting Architecture (PR)
	8.9 Parvicursor.NET Framework Programming Reference Guide
	8.9.1 Using Namespace System
	8.9.2 Using Namespace System::IO
	8.9.3 Using Namespace System::Threading
	8.9.4 Using Namespace System::Collections
	8.9.5 Using Namespace System::Net
	8.9.6 Using Namespace System::Net::Sockets
	8.9.7 Using Namespace Parvicursor::Net
	8.9.8 Using Namespace Parvicursor::Serialisation

	8.10 Presented Parvicursor.NET Sample Usages
	References

	Chapter 9: Parvicursor Infrastructure to Facilitate the Design of Grid/Cloud Computing and HPC Systems
	9.1 Parvicursor: A Native and Cross-Platform Peer-to-Peer Framework to Design the Next-Generation Distributed System Paradigms
	9.1.1 Introduction

	9.2 Cross-Platform and High-Performance Parvicursor Platform to Develop the Next-Generation Distributed Middleware Systems
	9.2.1 Network Communication
	9.2.2 Heterogeneity
	9.2.3 Scalability
	9.2.4 Standardisation
	9.2.5 Performance
	9.2.6 Resource Sharing
	9.2.7 Concurrency Support of Multicore Processors and Distributed Threading

	9.3 Peer-to-Peer Paradigms and the Use of the Parvicursor Platform to Construct Large-Scale P2P Distributed Middleware Platforms such as Supercomputers and Traditional Distributed Systems
	9.4 xThread Abstraction: The Distributed Multi-threaded Programming Model Proposed by Parvicursor Platform for Distributed Systems
	9.5 Practical Examples Using the xThread Abstraction
	9.5.1 Example 1: A Simple Sum of Two Numbers Based on a Distributed P2P Architecture with Two Nodes
	9.5.2 Example 2: Calculating the Value of the Number π to n Decimal Places Grounded on a Distributed P2P Master/Slave Architecture with m+1 Nodes

	9.6 The Proof of Concept of the Philosophy behind the Parvicursor Project as a New Standard to Build the Next-Generation Distributed P2P Middleware Systems: The Design and Implementation of a Middleware Supporting Third-Party Data Transfers in xDFS Framew
	9.7 Our Future Works to Extend the Parvicursor Platform
	Notes
	References

	Chapter 10: xDFS: A Native Cross-Platform Framework for Efficient File Transfers in Dynamic Cloud/Internet Environments
	10.1 Introduction
	10.2 The Next-Generation Requirements of Grid-Based File Transport Protocols
	10.2.1 Towards a Low-Cost, Low-Power and Low-Overhead Data Transfer Protocol for Sensor and Ad Hoc Networks
	10.2.2 Universality and Interoperability Issues and Scenario-Based Complexity Reduction
	10.2.3 Towards a Service-Oriented Approach (SOA) for Secure File Transfers

	10.3 High-Performance Server Design Architectures for Grid-Based File Transfer Protocols
	10.3.1 Data Copies
	10.3.2 Memory Allocation
	10.3.3 Context Switching
	10.3.4 Synchronisation Issues

	10.4 Some Proposed xDFS Server Architectures in FTSM Upload Mode
	10.4.1 Multi-Processed xDFS Server Architecture
	10.4.2 Multi-Threaded xDFS Server Architecture
	10.4.3 Multi-Threaded Event-Driven Pipelined xDFS Server Architecture

	10.5 DotDFS and xDFS File Transport Protocols
	10.5.1 Overall xDFS Features
	10.5.1.1 Transport Independence
	10.5.1.2 Flexible Connectivity
	10.5.1.3 Feature Negotiation and Prerequisites
	10.5.1.4 Resource Access
	10.5.1.5 Unicode File Name Support
	10.5.1.6 Distributed File System Mode (DFSM)
	10.5.1.7 Path Mode (PathM)
	10.5.1.8 Authentication, Data Integrity, and Data Confidentiality

	10.5.2 xDFS xFTSM Protocol

	10.6 The Native, Cross-Platform, and Cross-Language Implementation of xDFS Protocol
	10.6.1 The Architecture of xDFS Implementation in Download and Upload Modes
	10.6.2 A Novel Hybrid Concurrency Pattern for xDFS POSIX-AIO-Enabled Implementation (PHCP)
	10.6.3 Some Important Points Regarding the Implementation of the xDFS Protocol
	10.6.3.1 The Overheads of Exception Handling
	10.6.3.2 Vectored I/O
	10.6.3.3 Cross-Language, Cross-Runtime and Cross-Platform Parvicursor.NET Wrappers
	10.6.3.4 Parvicursor.NET Inline Expansion
	10.6.3.5 Parvicursor.NET Runtime Profiler

	10.7 Comparison of xDFS Protocol with DotDFS, FTP, GridFTP and HTTP Protocols
	10.7.1 Some Major Criticisms on FTP and GridFTP Protocols and xDFS/DotDFS Protocol Alternatives over Them

	10.8 Experimental Studies
	10.8.1 Single Stream Performance in Download Mode
	10.8.2 Single Stream Performance in Upload Mode
	10.8.3 Harnessing Parallelism in Download Mode
	10.8.4 Harnessing Parallelism in Upload Mode
	10.8.5 Full xDFS/DotDFS Runtime Characterisation

	10.9 Conclusion and Future Works
	References

	Chapter 11: Parallel Programming Languages for High-Performance Computing
	11.1 Introduction
	11.2 A Brief History of Supercomputing
	11.3 Parallel Programming Models and Languages for HPC
	11.3.1 MPI
	11.3.2 Charm++
	11.3.3 Partitioned Global Address Space (PGAS)

	11.4 A Concise Introduction to the MPI Standard in C Language
	11.4.1 MPI Setup Routines
	11.4.2 MPI Blocking Point-to-Point Communication Routines
	11.4.3 MPI Non-Blocking Point-to-Point Communication Routines
	11.4.4 MPI Collective Operation Routines

	11.5 Case Studies
	11.5.1 A Warm-Up MPI Example
	11.5.2 Scalability of MPI Programs
	11.5.3 Parallel Sparse Matrix-Vector Multiplication
	11.5.4 Parallel Sparse Matrix-Matrix Multiplication

	Index

