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PREFACE

The classic edition of Algebra and Trigonometry with Analytic Geometry is a
special version of the twelfth edition of the same title. It has been written for
professors seeking to teach a traditional course which requires only a scientific
calculator. Both editions improve upon the eleventh edition in several ways.

This edition includes over 120 new or revised examples and exercises,
many of these resulting from suggestions of users and reviewers of the
eleventh edition. All have been incorporated without sacrificing the mathe-
matical soundness that has been paramount to the success of this text.

Below is a brief overview of the chapters, followed by a short description
of the College Algebra course that I teach at Anoka Ramsey Community Col-
lege, and then a list of the general features of the text.

Overview

This chapter contains a summary of some basic algebra topics. Students
should be familiar with much of this material, but also challenged by some of
the exercises that prepare them for calculus.

Equations and inequalities are solved algebraically in this chapter. Students
will extend their knowledge of these topics; for example, they have worked
with the quadratic formula, but will be asked to relate it to factoring and work
with coefficients that are not real numbers (see Examples 10 and 11 in Sec-
tion 2.3).

Two-dimensional graphs and functions are introduced in this chapter. See the
updated Example 10 in Section 3.5 for a topical application (taxes) that relates
tables, formulas, and graphs.

This chapter begins with a discussion of polynomial functions and some poly-
nomial theory. A thorough treatment of rational functions is given in Section
4.5. This is followed by a section on variation, which includes graphs of sim-
ple polynomial and rational functions.
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Chapter 6

Chapter 7

Chapter 8
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Chapter 11
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Inverse functions are the first topic of discussion (see new Example 4 in Sec-
tion 5.1 for a relationship to rational functions), followed by several sections
that deal with exponential and logarithmic functions. Modeling an exponential
function is given additional attention in this chapter (see Example 8 in Section
5.2) as well as in Chapter 9.

Angles are the first topic in this chapter. Next, the trigonometric functions are
introduced using a right triangle approach and then defined in terms of a unit
circle. Basic trigonometric identities appear throughout the chapter. The chap-
ter concludes with sections on trigonometric graphs and applied problems.

This chapter consists mostly of trigonometric identities, formulas, and equa-
tions. The last section contains definitions, properties, and applications of the
inverse trigonometric functions.

The law of sines and the law of cosines are used to solve oblique triangles.
Vectors are then introduced and used in applications. The last two sections re-
late the trigonometric functions and complex numbers.

Systems of inequalities and linear programming immediately follow solving
systems by substitution and elimination. Next, matrices are introduced and
used to solve systems. This chapter concludes with a discussion of determi-
nants and partial fractions.

This chapter begins with a discussion of sequences. Mathematical induction
and the binomial theorem are next, followed by counting topics (see Example
3 in Section 10.7 for an example involving both combinations and permuta-
tions). The last section is about probability and includes topics such as odds
and expected value.

Sections on the parabola, ellipse, and hyperbola begin this chapter. Two dif-
ferent ways of representing functions are given in the next sections on para-
metric equations and polar coordinates.

My Course

At Anoka Ramsey Community College in Coon Rapids, Minnesota, College
Algebra I is a one-semester 3-credit course. For students intending to take Cal-
culus, this course is followed by a one-semester 4-credit course, College Al-
gebra II and Trigonometry. This course also serves as a terminal math course
for many students.

The sections covered in College Algebra I are

3.1-3.7, 4.1, 4.5 (part), 4.6, 5.1-5.6, 9.1-9.4, 10.1-10.3, and 10.5-10.8.
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Chapters 1 and 2 are used as review material in some classes, and the remain-
ing sections are taught in the following course. A graphing calculator is re-
quired in some sections and optional in others.

Features

Illustrations Brief demonstrations of the use of definitions, laws, and theo-
rems are provided in the form of illustrations.

Charts Charts give students easy access to summaries of properties, laws,
graphs, relationships, and definitions. These charts often contain simple illus-
trations of the concepts that are being introduced.

Examples Titled for easy reference, all examples provide detailed solutions of
problems similar to those that appear in exercise sets. Many examples include
graphs, charts, or tables to help the student understand procedures and solutions.

Step-by-Step Explanations In order to help students follow them more easily,
many of the solutions in examples contain step-by-step explanations.

Discussion Exercises Each chapter ends with several exercises that are suit-
able for small-group discussions. These exercises range from easy to difficult
and from theoretical to application-oriented.

Checks The solutions to some examples are explicitly checked, to remind
students to verify that their solutions satisfy the conditions of the problems.

Applications To arouse student interest and to help students relate the exer-
cises to current real-life situations, applied exercises have been titled. One
look at the Index of Applications in the back of the book reveals the wide array
of topics. Many professors have indicated that the applications constitute one
of the strongest features of the text.

Exercises [Exercise sets begin with routine drill problems and gradually
progress to more difficult problems. An ample number of exercises contain
graphs and tabular data; others require the student to find a mathematical
model for the given data. Many of the new exercises require the student to un-
derstand the conceptual relationship of an equation and its graph.

Applied problems generally appear near the end of an exercise set, to
allow students to gain confidence in working with the new ideas that have been
presented before they attempt problems that require greater analysis and syn-
thesis of these ideas. Review exercises at the end of each chapter may be used
to prepare for examinations.
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Guidelines Boxed guidelines enumerate the steps in a procedure or technique
to help students solve problems in a systematic fashion.

Warnings Interspersed throughout the text are warnings to alert students to
common mistakes.

Text Art Forming a total art package that is second to none, figures and graphs
have been computer-generated for accuracy, using the latest technology. Colors
are employed to distinguish between different parts of figures. For example, the
graph of one function may be shown in blue and that of a second function in
red. Labels are the same color as the parts of the figure they identify.

Text Design The text has been designed to ensure that discussions are easy to
follow and important concepts are highlighted. Color is used pedagogically to
clarify complex graphs and to help students visualize applied problems. Pre-
vious adopters of the text have confirmed that the text strikes a very appealing
balance in terms of color use.

Endpapers The endpapers in the front and back of the text provide useful
summaries from algebra, geometry, and trigonometry.

Appendixes Appendix I, “Common Graphs and Their Equations,” is a picto-
rial summary of graphs and equations that students commonly encounter in
precalculus mathematics. Appendix II, “A Summary of Graph Transforma-
tions,” is an illustrative synopsis of the basic graph transformations discussed
in the text: shifting, stretching, compressing, and reflecting. Appendix III,
“Graphs of Trigonometric Functions and Their Inverses,” contains graphs,
domains, and ranges of the six trigonometric functions and their inverses.
Appendix IV, “Values of the Trigonometric Functions of Special Angles on a
Unit Circle,” is a full-page reference for the most common angles on a unit
circle—valuable for students who are trying to learn the basic trigonometric
functions values.

Answer Section The answer section at the end of the text provides answers for
most of the odd-numbered exercises, as well as answers for all chapter review
exercises. Considerable thought and effort were devoted to making this section
a learning device for the student instead of merely a place to check answers.
For instance, proofs are given for mathematical induction problems. Numeri-
cal answers for many exercises are stated in both an exact and an approximate
form. Graphs, proofs, and hints are included whenever appropriate. Author-
prepared solutions and answers ensure a high degree of consistency among the
text, the solutions manuals, and the answers.
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Teaching Tools for the Instructor

Instructor’s Solutions Manual by Jeff Cole (ISBN 0-495-56071-5) This author-prepared man-
ual includes answers to all exercises and detailed solutions to most exercises. The manual has
been thoroughly reviewed for accuracy.

Test Bank (ISBN 0-495-38233-7) The Test Bank includes multiple tests per chapter as well as
final exams. The tests are made up of a combination of multiple-choice, true/false, and fill-in-
the-blank questions.

ExamView (ISBN 0-495-38234-5) Create, deliver, and customize tests and study guides (both
in print and online) in minutes with this easy-to-use assessment and tutorial system, which con-
tains all questions for the Test Bank in electronic format.

Enhanced WebAssign Developed by teachers for teachers, WebAssign® allows instructors to
focus on what really matters—teaching rather than grading. Instructors can create assignments
from a ready-to-use database of algorithmic questions based on end-of-section exercises, or
write and customize their own exercises. With WebAssign®, instructors can create, post, and re-
view assignments; deliver, collect, grade, and record assignments instantly; offer more practice
exercises, quizzes, and homework; assess student performance to keep abreast of individual
progress; and capture the attention of online or distance learning students.

Learning Tools for the Student

Student Solutions Manual by Jeff Cole (ISBN 0-495-56072-3) This author-prepared manual
provides solutions for all of the odd-numbered exercises, as well as strategies for solving addi-
tional exercises. Many helpful hints and warnings are also included.

Website The Book Companion Website contains study hints, review material, instructions for
using various graphing calculators, a tutorial quiz for each chapter of the text, and other materi-
als for students and instructors.
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1.2 Exponznes

Fundamental
Concepts of Algebra

The word algebra comes from ilm al-jabr w’al muqabala, the title of a book
written in the ninth century by the Arabian mathematician al-Khworizimi.
The title has been translated as the science of restoration and reduction,
which means transposing and combining similar terms (of an equation).
The Latin transliteration of al-jabr led to the name of the branch of mathe-
matics we now call algebra.

In algebra we use symbols or letters—such as a, b, c, d, x, y—to de-
note arbitrary numbers. This general nature of algebra is illustrated by the
many formulas used in science and industry. As you proceed through this
text and go on either to more advanced courses in mathematics or to fields
that employ mathematics, you will become more and more aware of the im-

portance and the power of algebraic techniques.
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CHAPTER 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

11

Real Numbers

Real numbers are used throughout mathematics, and you should be acquainted
with symbols that represent them, such as

1, 73, =5, 2, V2, 0, V-85 033333..., 59.25,

and so on. The positive integers, or natural numbers, are

The whole numbers (or nonnegative integers) are the natural numbers com-
bined with the number 0. The integers are often listed as follows:

Throughout this text lowercase letters a, b, c, x, y, ... represent arbitrary
real numbers (also called variables). If a and b denote the same real number,
we write @ = b, which is read “a is equal to »” and is called an equality. The
notation a # b is read “a is not equal to b.”

If a, b, and ¢ are integers and ¢ = ab, then a and b are factors, or divi-
sors, of c¢. For example, since

6=2-3=(-2)(-3)=1-6=(—1)(-0),

we know that 1, —1,2, —2,3, —3, 6, and —6 are factors of 6.

A positive integer p different from 1 is prime if its only positive factors
are 1 and p. The first few primes are 2, 3, 5, 7, 11, 13, 17, and 19. The Fun-
damental Theorem of Arithmetic states that every positive integer different
from 1 can be expressed as a product of primes in one and only one way (ex-
cept for order of factors). Some examples are

12=2-2-3, 126=2-3-3-7, 540=2-2-3-3-3-5.

A rational number is a real number that can be expressed in the form
a/b, where a and b are integers and b # 0. Note that every integer a is a ra-
tional number, since it can be expressed in the form a/1. Every real number
can be expressed as a decimal, and the decimal representations for rational
numbers are either terminating or nonterminating and repeating. For example,
we can show by using the arithmetic process of division that

2=125 and % =32181818...,

where the digits 1 and 8 in the representation of % repeat indefinitely (some-
times written 3.218).



In technical writing, the use of the
symbol = for is approximately
equal to is convenient.

1.1 Real Numbers 3

Real numbers that are not rational are irrational numbers. Decimal rep-
resentations for irrational numbers are always nonterminating and nonrepeat-
ing. One common irrational number, denoted by 7, is the ratio of the
circumference of a circle to its diameter. We sometimes use the notation
7r = 3.1416 to indicate that 7 is approximately equal to 3.1416.

There is no rational number b such that b> = 2, where b* denotes b - b.
However, there is an irrational number, denoted by \/2 (the square root of 2),
such that (\/2)2 =2.

The system of real numbers consists of all rational and irrational num-
bers. Relationships among the types of numbers used in algebra are illustrated
in the diagram in Figure 1, where a line connecting two rectangles means that
the numbers named in the higher rectangle include those in the lower rectan-
gle. The complex numbers, discussed in Section 2.4, contain all real numbers.

Figure 1 Types of numbers used in algebra

Complex numbers

Real numbers

=

Rational numbers Irrational numbers

Integers

T TT

Negative integers 0 Positive integers

The real numbers are closed relative to the operation of addition (de-
noted by +); that is, to every pair a, b of real numbers there corresponds ex-
actly one real number a + b called the sum of a and b. The real numbers are
also closed relative to multiplication (denoted by -); that is, to every pair a,
b of real numbers there corresponds exactly one real number a - b (also de-
noted by ab) called the product of a and b.

Important properties of addition and multiplication of real numbers are
listed in the following chart.
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Properties of Real Numbers

Terminology

General case Meaning

(1) Addition is commutative.
(2) Addition is associative.
(3) 0 is the additive identity.
(4) —a is the additive inverse,
or negative, of a.
(5) Multiplication is commutative.
(6) Multiplication is associative.
(7) 1 is the multiplicative identity.

1
8) If a # 0, —is the
a

multiplicative inverse, or
reciprocal, of a.

(9) Multiplication is distributive
over addition.

a+b=>b+a Order is immaterial when adding two

numbers.

a+ (b+c¢)=1(a+ b)+ ¢ | Grouping is immaterial when adding three
numbers.

at0=a Adding 0 to any number yields the same
number.

a+ (—a)=0 Adding a number and its negative yields 0.

ab = ba Order is immaterial when multiplying two

numbers.
a(be) = (ab)c Grouping is immaterial when multiplying
three numbers.

Multiplying any number by 1 yields the same

number.

Multiplying a nonzero number by its
reciprocal yields 1.

alb + ¢) = ab + ac and
(a + b)c = ac + bc

Multiplying a number and a sum of two
numbers is equivalent to multiplying each of
the two numbers by the number and then
adding the products.

Since a + (b + ¢) and (a + b) + ¢ are always equal, we may use
a + b + c to denote this real number. We use abc for either a(bc) or (ab)c.
Similarly, if four or more real numbers a, b, c, d are added or multiplied, we
may write a + b + ¢ + d for their sum and abcd for their product, regardless
of how the numbers are grouped or interchanged.

The distributive properties are useful for finding products of many types
of expressions involving sums. The next example provides one illustration.

EXAMPLE 1 Using distributive properties

If p, g, r, and s denote real numbers, show that
(p+ q)(r +5s) =pr+ps+ qgr+ gs.
SOLUTION  We use both of the distributive properties listed in (9) of the
preceding chart:
(p+qr+s)
=pr+s) +qr+5)
= (pr+ ps) + (gr + gs)
=pr+ ps+ qgr+gs

second distributive property, withc = r + s
first distributive property

remove parentheses 7/
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The following are basic properties of equality.

Properties of Equality If @ = b and c is any real number, then
M a+c=b+c
2) ac = be

Properties 1 and 2 state that the same number may be added to both sides
of an equality, and both sides of an equality may be multiplied by the same
number. We will use these properties extensively throughout the text to help
find solutions of equations.

The next result can be proved.

Products Involving Zero (1) a - 0 = 0 for every real number a.
(2) If ab = 0, then eithera = 0 or b = 0.

When we use the word or as we do in (2), we mean that at least one of the fac-
tors a and b is 0. We will refer to (2) as the zero factor theorem in future work.
Some properties of negatives are listed in the following chart.

Properties of Negatives

Property Ilustration
1 —(-a)=a —(=3)=3
2) (ma)b = —(ab) = a(=b) | (=2)3 = —(2-3) =2(=3)
Q) (—a)(=b) = ab (=2)(=3)=12-3
@ (—Da= —a (=13 = -3

. 1 .
The reciprocal — of a nonzero real number a is often denoted by a™', as
a

in the next chart.
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Notation for Reciprocals

Definition Illustrations

1
Ifa #0,thena ' = —. | 27'=—
a

Note that if a # 0, then

The operations of subtraction (—) and division (=) are defined as follows.

Subtraction and Division

Definition Meaning Illustration

a—b=a+ (—b) To subtract one 3—-7=3+ (-7
number from
another, add the
negative.

1
a+b=a-<—> To divide one 3:7=3-<L>
b 7
1

number by a
nonzero number, =3-7
multiply by the
reciprocal.

I
S
N
S
T
=

We use either a/b or % for a =+ b and refer to a/b as the quotient of a

and b or the fraction a over b. The numbers a and b are the numerator and
denominator, respectively, of a/b. Since 0 has no multiplicative inverse, a/b
is not defined if b = 0; that is, division by zero is not defined. It is for this rea-
son that the real numbers are not closed relative to division. Note that

1
1+b=;=b’1 it b#0.

The following properties of quotients are true, provided all denominators
are nonzero real numbers.
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Property Illustration
c . 2 6
1) — = —ifad = bc — = —because2 - 15=5-6
b d 5 15
ad a 2-3 2
7) — = = Z 2=
()bd b 5-3 5
a a a 2 -2 2
DT T S5 s
+ 2 2 + 11
@ Lyt C 2,20 o_ 1
b b b 5 5 5 5
a c ad + bc 2 4 2-3+5-4 26
G) —+— S ===
b d bd 5 3 5-3 15
a c ac 2 7 2.7 14
b d bd 5 3 5-3 15
L _e d a2 7 _ 2 3_56
b d b ¢ bc| 5 3 5 7 35

Real numbers may be represented by points on a line / such that to each
real number a there corresponds exactly one point on / and to each point P on
[ there corresponds one real number. This is called a one-to-one correspon-
dence. We first choose an arbitrary point O, called the origin, and associate
with it the real number 0. Points associated with the integers are then deter-
mined by laying off successive line segments of equal length on either side of
O, as illustrated in Figure 2. The point corresponding to a rational number,
such as %, is obtained by subdividing these line segments. Points associated
with certain irrational numbers, such as \/2, can be found by construction (see

Exercise 45).
Figure 2
o B A
-3 2 11 | o 1] 2 3‘ 4 | 5 b oa I
|
| 2
-15 -5 V2 233 o A
Negative real ! Positive real
_
numbers ! numbers

The number a that is associated with a point A on [ is the coordinate of
A. We refer to these coordinates as a coordinate system and call / a coordi-
nate line or a real line. A direction can be assigned to / by taking the positive
direction to the right and the negative direction to the left. The positive di-
rection is noted by placing an arrowhead on /, as shown in Figure 2.
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The numbers that correspond to points to the right of O in Figure 2 are
positive real numbers. Numbers that correspond to points to the left of O are
negative real numbers. The real number 0 is neither positive nor negative.

Note the difference between a negative real number and the negative of a
real number. In particular, the negative of a real number a can be positive. For
example, if a is negative, say a = —3, then the negative of a is —a =
—(—3) = 3, which is positive. In general, we have the following relationships.

Relationships Between a
and —a

(1) If a is positive, then —a is negative.

(2) If a is negative, then —a is positive.

ILLUSTRATION

In the following chart we define the notions of greater than and less than
for real numbers a and b. The symbols > and < are inequality signs, and the
expressions @ > b and a < b are called (strict) inequalities.

Greater Than or Less Than

Notation Definition Terminology

a>b a — b is positive a is greater than b

a<b a — b is negative a is less than b

If points A and B on a coordinate line have coordinates a and b, respec-
tively, then a > b is equivalent to the statement “A is to the right of B,”
whereas a < b is equivalent to “A is to the left of B.”

Greater Than (>) and Less Than (<)

B 5> 3,since 5 — 3 = 2 is positive.

B —6< —2,since —6 — (—2) = —6 + 2 = —4 is negative.
[ | % > 0.33, since% —0.33 = % - % = ﬁ is positive.

B 7 >0,since 7 — 0 = 7 is positive.

B —4 <0,since —4 — 0 = —4 is negative.

The next law enables us to compare, or order, any two real numbers.

Trichotomy Law

If a and b are real numbers, then exactly one of the following is true:

a = b, a > b, or a<b
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We refer to the sign of a real number as positive if the number is positive,
or negative if the number is negative. Two real numbers have the same sign if
both are positive or both are negative. The numbers have opposite signs if one
is positive and the other is negative. The following results about the signs of
products and quotients of two real numbers a and b can be proved using prop-
erties of negatives and quotients.

Laws of Signs

(1) If a and b have the same sign, then ab and % are positive.

(2) If a and b have opposite signs, then ab and % are negative.

ILLUSTRATION

The converses* of the laws of signs are also true. For example, if a quo-
tient is negative, then the numerator and denominator have opposite signs.

The notation a = b, read “a is greater than or equal to »,” means that ei-
ther a > b or a = b (but not both). For example, a* = 0 for every real num-
ber a. The symbol a = b, which is read “a is less than or equal to b,” means
that either a < b or a = b. Expressions of the form a = b and a = b are
called nonstrict inequalities, since ¢ may be equal to b. As with the equality
symbol, we may negate any inequality symbol by putting a slash through it—
that is, > means not greater than.

An expression of the form a < b < ¢ is called a continued inequality
and means that both a < b and b < c; we say “b is between a and ¢.” Simi-
larly, the expression ¢ > b > a means that both ¢ > b and b > a.

Ordering Three Real Numbers

B I<5<d m —4<i<V2 m 3>-6>-10

There are other types of inequalities. For example, a < b = ¢ means both
a < band b = c. Similarly, a = b < ¢ means both a = b and b < c. Finally,
a=>b=cmeans botha =band b = c.

EXAMPLE 2 Determining the sign of a real number

X
If x > 0 and y < 0, determine the sign of — + l.

y x
SOLUTION  Since x is a positive number and y is a negative number, x and
y have opposite signs. Thus, both x/y and y/x are negative. The sum of two
negative numbers is a negative number, so

the sign of i is negative.

y X V4
*If a theorem is written in the form “if P, then Q,” where P and Q are mathematical statements
called the hypothesis and conclusion, respectively, then the converse of the theorem has the form
“if Q, then P.” If both the theorem and its converse are true, we often write “P if and only if Q”
(denoted P iff Q).
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If a is an integer, then it is the coordinate of some point A on a coordinate

line, and the symbol |a| denotes the number of units between A and the ori-

|-4]=4 |4]|=4 gin, without regard to direction. The nonnegative number | a | is called the ab-

solute value of a. Referring to Figure 3, we see that for the point with

—+—+—+—+—+—+—+—+—+—+—+>  coordinate —4 we have | —4| = 4. Similarly, |4 | = 4. In general, if a is nega-

- 0 4 tive, we change its sign to find | a|; if a is nonnegative, then |a| = a. The next
definition extends this concept to every real number.

Figure 3

Definition of Absolute Value The absolute value of a real number a, denoted by |a/, is defined as
follows.
(1) Ifa = 0, then |a| = a.
(2) Ifa <0, then |a| = —a.

Since a is negative in part (2) of the definition, —a represents a positive
real number. Some special cases of this definition are given in the following
illustration.

ILLUSTRATION The Absolute Value Notation ||
B |3] =3, since 3 > 0.
B |-3| = —(-3), since =3 < 0. Thus, | —3| = 3.
B O2-V2|=2-V2since2 — V2>0.
B |V2-2|=—(V2-2)since V2 —2<0.
V2 -2|=2-V2

Thus,

3| =|-3land|2 — V2| =|V2 - 2|.In

In the preceding illustration,
general, we have the following:

|a| = | —al, for every real number a

EXAMPLE 3 Removing an absolute value symbol
If x < 1, rewrite | x — 1| without using the absolute value symbol.

SOLUTION Ifx < 1,thenx — I < O0;thatis, x — I is negative. Hence, by
part (2) of the definition of absolute value,

x—1]==-@x—-1)=—x+1=1-x /

Figure 4 We shall use the concept of absolute value to define the distance between

any two points on a coordinate line. First note that the distance between the

points with coordinates 2 and 7, shown in Figure 4, equals 5 units. This dis-

tance is the difference obtained by subtracting the smaller (leftmost) coordi-

—-2-10123 456 78 nate from the larger (rightmost) coordinate (7 — 2 = 5). If we use absolute
values, then, since | 7 — 2| = |2 — 7/, it is unnecessary to be concerned about
the order of subtraction. This fact motivates the next definition.

5=17-2[=12-7|
/—/%
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Definition of the Distance
Between Points on a
Coordinate Line

Let a and b be the coordinates of two points A and B, respectively, on a co-
ordinate line. The distance between A and B, denoted by d(A, B), is de-
fined by

dA,B) = |b — al.

Figure 5
A B oC D
-5 =3 01 6

The number d(A, B) is the length of the line segment AB.
Since d(B, A) = |a — b| and |b — a| = |a — b|, we see that

d(A, B) = d(B, A).

Note that the distance between the origin O and the point A is
d0,A) =|a—0|=|a

b}

which agrees with the geometric interpretation of absolute value illustrated in
Figure 4. The formula d(A, B) = |b — a] is true regardless of the signs of a
and b, as illustrated in the next example.

EXAMPLE 4 Finding distances between points

Let A, B, C, and D have coordinates —5, —3, 1, and 6, respectively, on a co-
ordinate line, as shown in Figure 5. Find d(A, B), d(C, B), d(O, A), and
d(C, D).

SOLUTION  Using the definition of the distance between points on a coor-
dinate line, we obtain the distances:

dA,B) = |3 — (=5)| =|-3+5|=1]2]=2
d(C,B)=|—3—1|=|—4|=4

d0,A) =|-5-0|=|-5|=5
dC,D)=16—-1|=1|5=5 7

The concept of absolute value has uses other than finding distances be-
tween points; it is employed whenever we are interested in the magnitude or
numerical value of a real number without regard to its sign.

In the next section we shall discuss the exponential notation a", where a
is a real number (called the base) and n is an integer (called an exponent). In
particular, for base 10 we have

10°=1, 10'=10, 10*=10-10 =100, 10°=10-10- 10 = 1000,
and so on. For negative exponents we use the reciprocal of the corresponding

positive exponent, as follows:

10*1:L:i 10*2:L:L 10*3:L:_
100 10 10> 100° 10> 1000



12 CHAPTER 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

We can use this notation to write any finite decimal representation of a
real number as a sum of the following type:

437.56 = 4(100) + 3(10) + 7(1) + 5(+) + 6(555)
= 4(10% + 3(10") + 7(10% + 5(107") + 6(107?)
In the sciences it is often necessary to work with very large or very small
numbers and to compare the relative magnitudes of very large or very small

quantities. We usually represent a large or small positive number a in scientific
form, using the symbol X to denote multiplication.

Scientific Form

a=c X 10", where | = ¢ < 10 and #n is an integer

Figure 6

ILLUSTRATION

m
Dnfa
(N
LM
':13

or

o
C
M
LM
™
(N

or

m
o
]
(W]

&

The distance a ray of light travels in one year is approximately
5,900,000,000,000 miles. This number may be written in scientific form as
5.9 X 10", The positive exponent 12 indicates that the decimal point should
be moved 12 places to the right. The notation works equally well for small
numbers. The weight of an oxygen molecule is estimated to be

0.000 000 000 000 000 000 000 053 gram,
or, in scientific form, 5.3 X 10~* gram. The negative exponent indicates that
the decimal point should be moved 23 places to the left.
Scientific Form

B 513=5.13 %10’
B 93,000,000 = 9.3 X 10’
®  0.000 000 00043 = 4.3 X 107"

B 73=73X10°
B 20,700 = 2.07 X 10*
B 0.000648 = 6.48 X 107*

Many calculators use scientific form in their display panels. For the num-
ber ¢ X 107, the 10 is suppressed and the exponent is often shown preceded by
the letter E. For example, to find (4,500,000)* on a scientific calculator, we
could enter the integer 4,500,000 and press the (or squaring) key, obtain-
ing a display similar to one of those in Figure 6. We would translate this as
2.025 X 10". Thus,

(4,500,000)* = 20,250,000,000,000.

Calculators may also use scientific form in the entry of numbers. The user’s
manual for your calculator should give specific details.

Before we conclude this section, we should briefly consider the issue of
rounding off results. Applied problems often include numbers that are ob-
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tained by various types of measurements and, hence, are approximations to
exact values. Such answers should be rounded off, since the final result of a
calculation cannot be more accurate than the data that have been used. For ex-
ample, if the length and width of a rectangle are measured to two-decimal-
place accuracy, we cannot expect more than two-decimal-place accuracy in the
calculated value of the area of the rectangle. For purely mathematical work, if
values of the length and width of a rectangle are given, we assume that the di-
mensions are exact, and no rounding off is required.

If a number a is written in scientific formasa = ¢ X 10"for 1 = ¢ < 10
and if ¢ is rounded off to k decimal places, then we say that a is accurate (or
has been rounded off) to k + 1 significant figures, or digits. For example,
37.2638 rounded to 5 significant figures is 3.7264 X 10', or 37.264; to 3
significant figures, 3.73 X 10', or 37.3; and to 1 significant figure, 4 X 10',
or 40.

Exer. 1-2: If x < 0 and y > 0, determine the sign of the real

number.
1@ »  (b) xY
2 (a) ; ) x* () —

€ = +x
y

f) The negative of z is not greater than 3.
g) The quotient of p and ¢ is at most 7.
(d) y—x h) The reciprocal of w is at least 9.

i) The absolute value of x is greater than 7.
(d) y(y = S
a) b is positive.

b) s is nonpositive.

Exer. 3—-6: Replace the symbol [] with either <, >, or = to
make the resulting statement true.

3@ —70-4  (b) g 0157 (o) V225015
4 () -30-5  (b) % 008 (c) V289017
5 (a) 7 00.09 (b) 2006666 () 207

6 () 100143 (b)) 200833 () V2O14

Exer. 7-8: Express the statement as an inequality.
7 (a) x is negative.
(b) y is nonnegative.
(c) g is less than or equal to .
(d) dis between 4 and 2.

(e) tis not less than 5.

(c) wis greater than or equal to —4.

(d) cis betweené and %

(e) p is not greater than —2.

(f) The negative of m is not less than —2.
. . 1

(9) The quotient of  and s is at least =.

(h) The reciprocal of fis at most 14.

(i) The absolute value of x is less than 4.

Exer. 9-14: Rewrite the number without using the absolute
value symbol, and simplify the result.

9 () |=3-2] (b) |=5]—12] (o) |7]+]|-4]|
10 (@) [=1t+1] () [6] =[=3] (o) [8[+ ][9]
11 (a) (=53 -6] (b) [=6/(=2) (o) [=7]+[4]
(b) 5/]-2]

12 (a) 46 —7] (€ [=1[+-9]



14 CHAPTER 1 FUNDAMENTAL CONCEPTS OF ALGEBRA

(b) | — 4] () |[V2 - 15]
() [17=V3] (o B-1

Exer. 15-18: The given numbers are coordinates of
points A, B, and C, respectively, on a coordinate line. Find
the distance.

13 (a) |4 — 7|
14 (a) | V3 - 17|

(a) d(A, B) (b) d(B, C)
(c) d(C, B) (@) d@, €)
15 3,7, =5 16 —6, —2,4
17 -9,1, 10 18 8, —4, —1

Exer. 19-24: The two given numbers are coordinates of
points A and B, respectively, on a coordinate line. Express
the indicated statement as an inequality involving the ab-
solute value symbol.

19 x, 7, d(A, B) is less than 5

20 x, —\/2; d(A, B) is greater than 1

21 x, —3; d(A, B) is at least 8

22 x, 4; d(A, B) is at most 2

23 4, X; d(A, B) is not greater than 3
24 =2, x; d(A, B) is not less than 2

Exer. 25-32: Rewrite the expression without using the ab-
solute value symbol, and simplify the result.

25 |3 + x|ifx < -3 26 |5 — x|ifx>5

27 12 —x|ifx <2 28 |7 + x|ifx = -7

29 |a — b|ifa<b 30 |a — b|ifa>b

31 [x* + 4| 32 [—x2— 1]

Exer. 33-40: Replace the symbol [ with either = or # to
make the resulting statement true for all real numbers a, b,
¢, and d, whenever the expressions are defined.

3LECn g PRy, P
b+ c b c a+c a c

e Put e vad"r T a

37 (a+b)~cOa~+ (b +c)

38 (@—b)—cOa—(b—-2c)

30900, 40 —@a+b)O—a+b

b—a

Exer. 41-42: Approximate the real-number expression to
four decimal places.

41 (a) 3.2 = V3.15]

(b) V(15.6 — 1.5 + (43 — 5.4)°

342 — 1.29
42 ) ———————
5.83 + 2.64

(b) m*

Exer. 43—44: Approximate the real-number expression. Ex-
press the answer in scientific notation accurate to four sig-
nificant figures.

1.2 X 10°
3.1 X 107 + 1.52 X 10°

(b) (1.23 X 107 + V4.5 X 10°
44 (a) V[3.45 — 1.2 X 10*] + 10°

43 (a)

(b) (1.791 X 10% X (9.84 X 10%)

45 The point on a coordinate line corresponding to /2 may be
determined by constructing a right triangle with sides of
length 1, as shown in the figure. Determine the points that
correspond to V3 and \/3, respectively. (Hint: Use the
Pythagorean theorem.)

Exercise 45 >

Y

0 1V2 2 3

46 A circle of radius 1 rolls along a coordinate line in the posi-
tive direction, as shown in the figure. If point P is initially
at the origin, find the coordinate of P after one, two, and ten
complete revolutions.

Exercise 46 P

o 1 2 3 4 5 6 7 8

Y

47 Geometric proofs of properties of real numbers were first
given by the ancient Greeks. In order to establish the dis-
tributive property a(b + ¢) = ab + ac for positive real
numbers a, b, and c, find the area of the rectangle shown in
the figure on the next page in two ways.



Exercise 47 ¢“

<—Q

I I I
I b I ¢ I

48 Rational approximations to square roots can be found using
a formula discovered by the ancient Babylonians. Let x; be
the first rational approximation for Va. If we let

1 +n
X, =—|x — 1,
: 2 ! Xy

then x, will be a better approximation for Vi, and we can
repeat the computation with x, replacing x;. Starting with
X; = % find the next two rational approximations for V2.

Exer. 49-50: Express the number in scientific form.
49 (a) 427,000 (b) 0.000 000 098 (c) 810,000,000

50 (a) 85,200 (b) 0.000 005 5 (c) 24,900,000

Exer. 51-52: Express the number in decimal form.
51 (a) 83 X 10° (b) 2.9 x 107" (c) 5.63 x 10®

52 (a) 2.3 X 107 (b) 7.01 X 10°° (c) 1.23 X 10"

53 Mass of a hydrogen atom The mass of a hydrogen atom is
approximately

0.000 000 000 000 000 000 000 001 7 gram.

Express this number in scientific form.

54 Mass of an electron The mass of an electron is approxi-
mately 9.1 X 10~ kilogram. Express this number in deci-
mal form.

55 Lightyear In astronomy, distances to stars are measured in
light years. One light year is the distance a ray of light trav-
els in one year. If the speed of light is approximately
186,000 miles per second, estimate the number of miles in
one light year.

56 Milky Way galaxy

(a) Astronomers have estimated that the Milky Way galaxy
contains 100 billion stars. Express this number in sci-
entific form.

(b) The diameter d of the Milky Way galaxy is estimated as
100,000 light years. Express d in miles. (Refer to Exer-
cise 55.)
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57 Avogadro’s number The number of hydrogen atoms in a
mole is Avogadro’s number, 6.02 X 10%. If one mole of the
gas has a mass of 1.01 grams, estimate the mass of a hy-
drogen atom.

58 Fish population The population dynamics of many fish are
characterized by extremely high fertility rates among adults
and very low survival rates among the young. A mature
halibut may lay as many as 2.5 million eggs, but only
0.00035% of the offspring survive to the age of 3 years. Use
scientific form to approximate the number of offspring that
live to age 3.

59 Frames in a movie film One of the longest movies ever
made is a 1970 British film that runs for 48 hours. Assum-
ing that the film speed is 24 frames per second, approximate
the total number of frames in this film. Express your answer
in scientific form.

60 Large prime numbers The number 2**7 — 1 is prime. At
the time that this number was determined to be prime, it
took one of the world’s fastest computers about
60 days to verify that it was prime. This computer was
capable of performing 2 X 10" calculations per second.
Use scientific form to estimate the number of calculations
needed to perform this computation. (More recently, in
2005, 2304247 — 1, a number containing 9,152,052 digits,
was shown to be prime.)

61 Tornado pressure When a tornado passes near a building,
there is a rapid drop in the outdoor pressure and the indoor
pressure does not have time to change. The resulting differ-
ence is capable of causing an outward pressure of 1.4 1b/in?
on the walls and ceiling of the building.

(a) Calculate the force in pounds exerted on 1 square foot
of a wall.

(b) Estimate the tons of force exerted on a wall that is
8 feet high and 40 feet wide.

62 Cattle population A rancher has 750 head of cattle consist-
ing of 400 adults (aged 2 or more years), 150 yearlings, and
200 calves. The following information is known about this
particular species. Each spring an adult female gives birth to
a single calf, and 75% of these calves will survive the first
year. The yearly survival percentages for yearlings and
adults are 80% and 90%, respectively. The male-female
ratio is one in all age classes. Estimate the population of
each age class

(a) next spring (b) last spring
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1.2

Exponents and Radicals

ILLUSTRATION

ILLUSTRATION

If n is a positive integer, the exponential notation a”, defined in the following
chart, represents the product of the real number a with itself n times. We refer
to a" as a to the nth power or, simply, a fo the n. The positive integer n is
called the exponent, and the real number a is called the base.

Exponential Notation

General case

(n is any positive integer) Special cases

a'=a-a-a---a a=a
n factors of a a=a-a
aAd=a-a-a
ad=a-a-a-a-a-a

The next illustration contains several numerical examples of exponential
notation.

The Exponential Notation a”

B 5%=5-5-5-5=625
1

N NERENE
B (-3 = (=3)(=3)(=3) = =27
B (3)' = (3)5)5)0) = 6)6) =

It is important to note that if n is a positive integer, then an expression
such as 3a" means 3(a"), not (3a)". The real number 3 is the coefficient of "
in the expression 3a". Similarly, —3a" means (—3)a”, not (—3a)".

The Notation ca”

B 5:-2°=5-8=40

B —5-22=-5-8=—-40

B 2'=-(2=-16

B 3(—2) =3(—2)(—2)(—2) = 3(—8) = —24

We next extend the definition of ¢”" to nonpositive exponents.

Zero and Negative (Nonpositive) Exponents

Definition (@ # 0) Illustrations
a =1 30 =1, (—Vv2) =
1 1 1
-n — 573__’ _3 -5 —
a a" 53 ( ) (_3)5
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If m and n are positive integers, then

atd"=a-a-a - ca-a-a-a- - -d.

m factors of a n factors of a

Since the total number of factors of a on the right is m + n, this expression is
equal to ™" that is,

m.n — _m+n
=da .

aa

We can extend this formulatom = Oorn = 0by using the definitions of the zero
exponent and negative exponents. This gives us law 1, stated in the next chart.
To prove law 2, we may write, for m and n positive,

m

@y =a"-da-a- - -a

n factors of a”
and count the number of times a appears as a factor on the right-hand side.
Since " =a-a-a- --- -a, with a occurring as a factor m times, and
since the number of such groups of m factors is n, the total number of factors
of a is m - n. Thus,

(am)n = g"".

The cases m = 0 and n = 0 can be proved using the definition of nonpositive
exponents. The remaining three laws can be established in similar fashion by
counting factors. In laws 4 and 5 we assume that denominators are not 0.

Laws of Exponents for Real Numbers a and » and Integers m and n

Law Ilustration
(1) aman — am+n 23 . 24 — 23+4 — 27 — 128
(2) (am)n = g™ (23)4 — 23<4 — 212 — 4096
3) (ab)" = a"b" (20)* = (2 - 10)> = 2° - 10* = 8 - 1000 = 8000

a\ a 2V 23 8
H (L) =L I
()<b> b" <5> 5 125

m 25

a
5 - ,m—n _:2573:22:4
(5) (@) prink >
a” 1 2} 1 1 1
b) — = e
( ) an an—m 25 25—3 22 4

We usually use 5(a) if m > n and 5(b) if m < n.

We can extend laws of exponents to obtain rules such as (abc)" = a"b"c"
and a"a"a” = a"™"*?. Some other examples of the laws of exponents are given
in the next illustration.
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Laws of Exponents

B 02 = 0r6t2 = 413

B (3s)* = 3%** = 81st*

8
¢ .
B ==
C

To simplify an expression involving powers of real numbers means to
change it to an expression in which each real number appears only once and
all exponents are positive. We shall assume that denominators always repre-

sent nonzero real numbers.

EXAMPLE 1 Simplifying expressions containing exponents

Use laws of exponents to simplify each expression:

SOLUTION

(@) Bx*yH(dxy)) = 3)(@xxyy®

(b) (2a2b3c)4 — 24(a2)4(b3)4c4

o (7)) -

(d) (u*2v3)*3 —

12x%°
16a°b"*c*
(2r3)2 s3
s W
22(,,.3)2 S3
T ’ (r3)3

()

)70~

uby™?

I/t6

V9

N

rearrange factors
law 1
law 3

law 2

law 4

law 3

law 2

rearrange factors
laws 5(b) and 5(a)

rearrange factors

law 3

law 2

n

definition of a~

(@) Gry)@dnY) (b)) QaB'  (c) <2>( ) (d) ()™
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The following theorem is useful for problems that involve negative

exponents.
Theorem on a™" " a \}” b\
j 1 =— 2) (—| =|—
Negative Exponents @ por g 2 b p
PROOFS  Using properties of negative exponents and quotients, we obtain
a”™ 1/a* 1 b b
1 — = - == ==
b /6" ad" 1 a
a\" a" b b\
) (=] = =—=|=
@) < b ) b a < a ) /
EXAMPLE 2 Simplifying expressions containing negative exponents
Simplify:
8x3y75 u2 —3
@, -= b
4x7ly 2v
SOLUTION  We apply the theorem on negative exponents and the laws of
exponents.
8y 8 y® rearrange quotients so that negative
(a) 4y - 4_)12 "1 exponents are in one fraction
8 ! )
= ‘W s theorem on negative exponents (1)
2x*
=— law 1 of exponents
y
M2 —3 2v 3
)l =(= theorem on negative exponents (2)
2v u?
23v3
= @)y laws 4 and 3 of exponents
8" law 2 of t
- — aw 2 Or exponents
u* ? /

We next define the principal nth root \/a of a real number a.
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Definition of \/a Let n be a positive integer greater than 1, and let a be a real number.
(1) Ifa = 0, thenVa = 0.
(2) If @ > 0, then Va is the positive real number b such that " = a.
(3) (a) If a < 0 and n is odd, then Va is the negative real number b such
that " = a.
(b) If @ < 0 and n is even, then Va is not a real number.
Complex numbers, discussed in Section 2.4, are needed to define Va if
a < 0 and n is an even positive integer, because for all real numbers b, b" = 0
whenever n is even.
If n = 2, we write Va instead of Va and call \/a the principal square
root of a or, simply, the square root of a. The number Va is the (principal)
cube root of a.
ILLUSTRATION The Principal nth Root Va

B V16 = 4, since 4*> = 16.
i 1. s 1
B /5 = 5 since (5) =5
B V8= -2 since (—2) = 8.
B V/—16is not a real number.

Note that V16 # =4, since, by definition, roots of positive real numbers
are positive. The symbol = is read “plus or minus.”

To complete our terminology, the expression W« is a radical, the number
a is the radicand, and n is the index of the radical. The symbol \/ is called
a radical sign.

If \Va = b, then b> = a; that is, (Va) = a. It Va = b, then b* = a, or
(\3/5)3 = a. Generalizing this pattern gives us property 1 in the next chart.

Properties of \%; (n is a positive integer)

Property Illustrations
(1) (Va)' = aif \ais a real number (\6)2 =5, (\3/—78)% = -8
) Va'=aifa=0 V5% =5, V23 =2
(3) Va' = aifa < 0andnis odd V(-2 = -2, V(=2 = -2
@) Va'=l|a|lifa<Oandniseven | V(=32 =|-3|=3, V(=2 =|-2|=2

If a = 0, then property 4 reduces to property 2. We also see from prop-
erty 4 that

Va2 = |x|

for every real number x. In particular, if x = 0, then \V/x% = x; however, if
x < 0, then Va2 = —x , which is positive.
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The three laws listed in the next chart are true for positive integers m
and n, provided the indicated roots exist—that is, provided the roots are
real numbers.

Laws of Radicals

Law Illustrations

(1) Vab=a /b | V50=V25-2=\V25V2=5V2
V=108 = V/(-27)4) = V=27 V4 = -3V/4

@ Ja _ Va 5 V5 V5
b b 8 g 2

3 VVa=%a VV6d = Ved = V2 =2

The radicands in laws 1 and 2 involve products and quotients. Care must
be taken if sums or differences occur in the radicand. The following chart con-
tains two particular warnings concerning commonly made mistakes.

Ifa #0and b # 0 Illustration
) V@ +P#a+b V3 + 4 =\V25=5#3+4=17

@ Va+b#Va+ Vb | VA+9=VI3#V4+\V9=5

If ¢ is a real number and ¢” occurs as a factor in a radical of index n, then
we can remove ¢ from the radicand if the sign of ¢ is taken into account. For
example, if ¢ > 0 or if ¢ < 0 and n is odd, then

N/ed =N/ Vd = eV,
provided Vd exists. If ¢ < 0 and n is even, then

/el =/ /i = | e[V
provided V/d exists.

Removing nth Powers from v

B Vi = Va2 = ViVl = xVa?

Va7 = Va® x = V) = V) Vi = 2V
Vi = VeV = [x|Vy

Vi = VT = 19|

Yty = V/at iy = VN = [Vl

Note: To avoid considering absolute values, in examples and exercises involv-
ing radicals in this chapter, we shall assume that all letters—a, b, ¢, d, x, y,
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and so on—that appear in radicands represent positive real numbers, unless
otherwise specified.

As shown in the preceding illustration and in the following examples, if
the index of a radical is n, then we rearrange the radicand, isolating a factor of
the form p", where p may consist of several letters. We then remove \/p" = p
from the radical, as previously indicated. Thus, in Example 3(b) the index of
the radical is 3 and we rearrange the radicand into cubes, obtaining a factor
p’, with p = 2xy’z. In part (c) the index of the radical is 2 and we rearrange
the radicand into squares, obtaining a factor p* with p = 3a’b.

To simplify a radical means to remove factors from the radical until no
factor in the radicand has an exponent greater than or equal to the index of the
radical and the index is as low as possible.

EXAMPLE 3 Removing factors from radicals

Simplify each radical (all letters denote positive real numbers):
(@) V320 (b) V16xY%'  (c) V3dD V6a'h
SOLUTION

(@) V320 = V64 -5  factor out the largest cube in 320
= V&5 law 1 of radicals
= 4V/5 property 2 of V'
(b) V16x%y%2* = V(2°x%y%2%)(2y%2)  rearrange radicand into cubes
= W laws 2 and 3 of exponents
= W m law 1 of radicals
= 2xy%2V/2y%z property 2 of V"
(c) V3a’h* \V6a’h = \/3a’b* -2 - 3a’h law 1 of radicals
= \/W rearrange radicand into squares
= \/W laws 2 and 3 of exponents
= \/W \V2a law 1 of radicals
= 33>\ 2a property 2 of V" 7/

If the denominator of a quotient contains a factor of the form \/a, with
k < nand a > 0, then multiplying the numerator and denominator by \/a"*
will eliminate the radical from the denominator, since

Vat V/a = N/ = e = a.

This process is called rationalizing a denominator. Some special cases are
listed in the following chart.



Rationalizing Denominators of Quotients (a > 0)

1.2 Exponents and Radicals

Factor in Multiply numerator
denominator and denominator by Resulting factor
Va Va VaVva=\Vd=a
Va J a? VavVa=Va=a
Vd V' VNG =Vd =a

The next example illustrates this technique.

EXAMPLE 4 Rationalizing denominators

Rationalize each denominator:
S x

1 1 2
@z B © \E @ /5

SOLUTION

23

7/

If we use a calculator to find decimal approximations of radicals, there is
no advantage in rationalizing denominators, such as 1/V5 = \/5/5 or
\V2/3 = \f6/ 3, as we did in Example 4(a) and (c). However, for algebraic
simplifications, changing expressions to such forms is sometimes desirable.
Similarly, in advanced mathematics courses such as calculus, changing 1/ x
to Vx?/x, as in Example 4(b), could make a problem more complicated. In
such courses it is simpler to work with the expression 1/\/x than with its ra-

tionalized form.

We next use radicals to define rational exponents.

Definition of
Rational Exponents

Let m/n be a rational number, where 7 is a positive integer greater than 1.

If @ is a real number such that \a exists, then
1) a"=a
2) a"" = (%)m = Va"
(3) am/n = (alln)m = (am)lln
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ILLUSTRATION

When evaluating a™" in (2), we usually use (\'75)'"; that is, we take the nth root
of a first and then raise that result to the mth power, as shown in the following
illustration.

The Exponential Notation a™"

B %= Vi 5= (\5/; _
m125° = (V 125) (V5) =52 =25
8

G =R =) =6 =2

The laws of exponents are true for rational exponents and also for irra-
tional exponents, such as 3¥2 or 57, considered in Chapter 5.

To simplify an expression involving rational powers of letters that repre-
sent real numbers, we change it to an expression in which each letter appears
only once and all exponents are positive. As we did with radicals, we shall as-
sume that all letters represent positive real numbers unless otherwise specified.

EXAMPLE 5 Simplifying rational powers

Simplify:
@ (“2)%@™  (b) (9 (o) <2x”2;>2(3;m )
SOLUTION

(@  (—27@) o = (V=27R(VA)”

definition of rational exponents

= (=3)%2)" take roots
(=37 - :
= > definition of negative exponents
— K
=% take powers
(b) (r2s%)'3 = (r3)'B(s%)"? law 3 of exponents
= r?hs? law 2 of exponents

223\ 2 (35506 B Ax¥3\ [ 356 ‘
() e N = T e laws of exponents
(4 - 3)x 43500

law 1 of exponents

y1+(1/3)
12x8/6*5/6
=—0n common denominator
y
12x1/2
= simplif
y4/3 piLy /

Rational exponents are useful for problems involving radicals that do not
have the same index, as illustrated in the next example.
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EXAMPLE 6 Combining radicals

Change to an expression containing one radical of the form Va™:

@ Vava o -
vV a

SOLUTION  Introducing rational exponents, we obtain
(a) \3/5 \/a — al/3a1/2 — a(1/3)+(l/2) — a5/6 — 9 a5

Va a™ 1 1

_ = JU-eB) = 42 — _

Va  a” a" e /
In Exercises 1.2, whenever an index of a radical is even (or a rational ex-
ponent m/n with n even is employed), assume that the letters that appear in the
radicand denote positive real numbers unless otherwise specified.

(b)

1.2 Exercises

Exer. 1-10: Express the number in the form a/b, where 25 By)HHH? 26 (—3a*h7%)°
a and b are integers.

28 (2x2y’5)(6x’3y)(%x’1y3)

1 (=3 2 (-3 7

; 273 2"+ 0 29 (5x%y ) (%) 30 (=2r%)°(3r7's%)?
372 24+0 s a\o N\o

5 243 6 (-3) -~ 2 (357) 2 wenr( 55 )

7167 8 9%

9 (—0.008)*
Exer. 11-46: Simplify.
1 (%x4)(16x5)

(2x*)(3x?)
13 7()62)3
15 (+d°)(—3a)(4d))

(6x7)?

(2x%)?
19 BuV)(4u*v™)

- (3x7)°

21 (8x4y’3)(%x’5y2)

23 (%x“yﬁ)f2

10 (0.008)%?

12 (—3x7%)(4x%)

(2x%)°

14
4x*

16 (—4b")(5h?)(—9b%)

18 w ()
)

20 (x> (—2xzH)(x*y?)

) 4a*b \ [ 5a*b
a’b? 2b*

¥
24 (—2xy?)°| —
(—2xy%) <8y3>

33 (4a”)(2a™)
35 (3x%9)(8x2?)
37 (27473

39 (8x*2/3)x1/6
_8x3 2/3
41 o
y
6 —1/2
43 (==
9y~*

3)—1/3

(x%
( x4y2) —12

34 (—6x79)(2)
36 (8r)'"P(2r'?)
38 (25747

40 (3x1?)(—2x?)

—32\3
e (25)
e M

44
(16d8>

46 a4/3a73/2a1/6

Exer. 47-52: Rewrite the expression using rational exponents.

47 /X
49 V(a + by
51 Vx2 + y?

48 /x°
50 Va + Vb

52 Vi —
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Exer. 53-56: Rewrite the expression using a radical.

53 (a) 4x? (b) (4x)"
54 (a) 4 + x¥? (b) (4 + %)™
55 (a) 8 =y (b) 8 =y
56 (a) 8y (b) (8"

Exer. 57-80: Simplify the expression, and rationalize the
denominator when appropriate.

57 V81 58 WV —125
59 V—64 60 /256
61 —— 62 1|~
V2 7
63 Ox~4y° 64 \V16a’h?
65 /8ah3 66 V/81rs®
3x 1
67 — 68
2y? 3x%y
2x4y4 3x2y5
69 1 70 43
9x 4x
5x8y3 x7y12
71 4° 72 4°
27x? 125x
5x7y2 3x11y3
73 4] 74 o)
8x3 Ox?

75 V(3x%y%)*

8x3 4x4
ARV Ry s
y y

79 V3th?: N —9r y?

76 V/(Qu Ve
78 V5xy" V10x%3
80 V(2r — s

Exer. 81-84: Simplify the expression, assuming x and y may

be negative.

81 Vxby*
83 Vai(y — D2

82 /iyl
84 V(x + 2)1y*

Exer. 85-90: Replace the symbol [ with either = or # to
make the resulting statement true, whenever the expression
has meaning. Give a reason for your answer.

85 (¢)> 0 a 86 @+ D" 0a+1

87 @b’ O (ab)® 88 Va O (Va)

[
89 \/ED —
c \/C

1
90 a”" O =
a

Exer. 91-92: In evaluating negative numbers raised to frac-
tional powers, it may be necessary to evaluate the root and
integer power separately. For example, (—3)** can be evalu-
ated successfully as [(—3)'*]? or [(—3)*]'”, whereas an error
message might otherwise appear. Approximate the real-
number expression to four decimal places.

91 (a) (_3)2/5 (b) (_5)4/3
92 (a) (~1.2)" (b) (—5.08)

Exer. 93-94: Approximate the real-number expression to
four decimal places.

93 (a) Vmr+1 (b) V15.1 + 5"
94 (a) (2.6 — 1.9)2 (b) 5V7

95 Savings account One of the oldest banks in the United
States is the Bank of America, founded in 1812. If $200
had been deposited at that time into an account that paid
4% annual interest, then 180 years later the amount would
have grown to 200(1.04)'® dollars. Approximate this
amount to the nearest cent.

96 Viewing distance On a clear day, the distance d (in miles)
that can be seen from the top of a tall building of height &
(in feet) can be approximated by d = 1.2\/h. Approxi-
mate the distance that can be seen from the top of the
Chicago Sears Tower, which is 1454 feet tall.

97 Length of a halibut The length-weight relationship for
Pacific halibut can be approximated by the formula
L = 0.46\/W, where W is in kilograms and L is in meters.
The largest documented halibut weighed 230 kilograms.
Estimate its length.

98 Weight of a whale The length-weight relationship for the
sei whale can be approximated by W = 0.0016L**, where
Wis in tons and L is in feet. Estimate the weight of a whale
that is 25 feet long.

99 Weight lifters” handicaps O’Carroll’s formula is used to
handicap weight lifters. If a lifter who weighs b kilograms
lifts w kilograms of weight, then the handicapped weight
W is given by

_ w
Suppose two lifters weighing 75 kilograms and 120 kilo-
grams lift weights of 180 kilograms and 250 kilograms,
respectively. Use O’Carroll’s formula to determine the su-
perior weight lifter.

100 Body surface area A person’s body surface area S (in
square feet) can be approximated by

S = (0.1091)w4h0725,

where height £ is in inches and weight w is in pounds.
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(a) Estimate S for a person 6 feet tall weighing 175 pounds. 102 Women'’s weight The average weight W (in pounds) for

(b) If a person is 5 feet 6 inches tall, what effect does
a 10% increase in weight have on S?

women with height /2 between 60 and 75 inches can be
approximated using the formula W = 0.1049A"7. Con-
struct a table for W by letting & = 60, 61, ..., 75. Round

101 Men’s weight The average weight W (in pounds) for men all weights to the nearest pound.
with height / between 64 and 79 inches can be approxi-
mated using the formula W = 0.1166A"". Construct a table Height | Weight | Height | Weight
for Wby letting h = 64, 65, ..., 79. Round all weights to
the nearest pound. 60 68
Height Weight Height Weight ol 0
ei ei ei ei
8 8 8 8 0 70
64 72
63 71
65 73
64 72
66 74
65 73
67 75
66 74
68 76
67 75
69 77
70 78
71 79

1.3

Algebraic Expressions

We sometimes use the notation and terminology of sets to describe mathemati-
cal relationships. A set is a collection of objects of some type, and the objects
are called elements of the set. Capital letters R, S, 7, . . . are often used to de-
note sets, and lowercase letters a, b, x, y, . . . usually represent elements of sets.
Throughout this book, R denotes the set of real numbers and Z denotes the set
of integers.

Two sets S and T are equal, denoted by S = T, if S and T contain exactly
the same elements. We write S # T if S and T are not equal. Additional nota-
tion and terminology are listed in the following chart.

Notation or

terminology Meaning Ilustrations
a€S a is an element of S 3e’
a&s$ a is not an element of S % &7
S is a subset of T Every element of S is Z is a subset of R
an element of T
Constant A letter or symbol that 5, —\2,

represents a specific
element of a set

Variable A letter or symbol that Let x denote any
represents any element real number
of a set
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{x|x > 3} is an equivalent notation.

We usually use letters near the end of the alphabet, such as x, y, and z, for
variables and letters near the beginning of the alphabet, such as a, b, and c, for
constants. Throughout this text, unless otherwise specified, variables represent
real numbers.

If the elements of a set S have a certain property, we sometimes write
S = {x: } and state the property describing the variable x in the space after the
colon. The expression involving the braces and colon is read “the set of all x
such that . . . ,” where we complete the phrase by stating the desired property.
For example, {x: x > 3} is read “the set of all x such that x is greater than 3.”

For finite sets, we sometimes list all the elements of the set within braces.
Thus, if the set T consists of the first five positive integers, we may write
T =1, 2, 3, 4, 5}. When we describe sets in this way, the order used in listing
the elements is irrelevant, so we could also write T = {1,3,2,4,5}, T =
{4,3,2,5, 1}, and so on.

If we begin with any collection of variables and real numbers, then an al-
gebraic expression is the result obtained by applying additions, subtractions,
multiplications, divisions, powers, or the taking of roots to this collection. If
specific numbers are substituted for the variables in an algebraic expression,
the resulting number is called the value of the expression for these numbers.
The domain of an algebraic expression consists of all real numbers that may
represent the variables. Thus, unless otherwise specified, we assume that the
domain consists of the real numbers that, when substituted for the variables,
do not make the expression meaningless, in the sense that denominators can-
not equal zero and roots always exist. Two illustrations are given in the fol-
lowing chart.

Algebraic Expressions

Illustration Domain Typical value

x3—5)c-i-i all x >0 Atx = 4:

Vi '

6
4 —54) + —==64—20+3 =47
@ Va4

2xy + (3/x?
20 G/ <0and | Atx=landy =9

v
y-1 all y # 1

2(1)(9) + (3/1?) _18+3 21
Vo1 Vs 2

If x is a variable, then a monomial in x is an expression of the form ax”,
where « is a real number and 7 is a nonnegative integer. A binomial is a sum
of two monomials, and a trinomial is a sum of three monomials. A polyno-
mial in x is a sum of any number of monomials in x. Another way of stating
this is as follows.
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Definition of Polynomial

A polynomial in x is a sum of the form
apx" + a,ox" '+ e+ ax + ag,

where 7 is a nonnegative integer and each coefficient g, is a real number. If
a, 7 0, then the polynomial is said to have degree n.

Each expression a;x* in the sum is a term of the polynomial. If a coeffi-
cient q, is zero, we usually delete the term a,x*. The coefficient g, of the high-
est power of x is called the leading coefficient of the polynomial.

The following chart contains specific illustrations of polynomials.

Polynomials
Example Leading coefficient Degree
3Ax*+ 5+ (—T)x + 4 3 4
x84+ 9x2 4+ (—2)x 1 8
—-5x* + 1 =5 2
Tx + 2 7 1
8 8 0

By definition, two polynomials are equal if and only if they have the same
degree and the coefficients of like powers of x are equal. If all the coefficients
of a polynomial are zero, it is called the zero polynomial and is denoted by 0.
However, by convention, the degree of the zero polynomial is not zero but, in-
stead, is undefined. If ¢ is a nonzero real number, then c is a polynomial of de-
gree 0. Such polynomials (together with the zero polynomial) are constant
polynomials.

If a coefficient of a polynomial is negative, we usually use a minus sign
between appropriate terms. To illustrate,

3x2+ (=5)x + (=7) =3x* — 5x — 7.

We may also consider polynomials in variables other than x. For example,
%zz — 377 + 8 — \V/5z* is a polynomial in z of degree 7. We often arrange
the terms of a polynomial in order of decreasing powers of the variable; thus,
we write

%zz—3z7+8 — V574 = —317—\514-1-%12-%-8.

We may regard a polynomial in x as an algebraic expression obtained by
employing a finite number of additions, subtractions, and multiplications in-
volving x. If an algebraic expression contains divisions or roots involving a
variable x, then it is not a polynomial in x.
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ILLUSTRATION

Calculator check for Example 2: Store
17 in a memory location and show
that the original expression and the
final expression both equal 3577.

Nonpolynomials

x—35
x> +2

1
B — +3x ] B 3+ Vx-—2
X

Since polynomials represent real numbers, we may use the properties de-
scribed in Section 1.1. In particular, if additions, subtractions, and multiplica-
tions are carried out with polynomials, we may simplify the results by using
properties of real numbers, as demonstrated in the following examples.

EXAMPLE 1 Adding and subtracting polynomials

(a) Find the sum: (x* + 2x? — 5x + 7) + (4x* — 5x* + 3)

(b) Find the difference: (x* + 2x* — 5x + 7) — (4x* — 5x* + 3)
SOLUTION

(a) To obtain the sum of any two polynomials in x, we may add coefficients
of like powers of x.

3+ 2x2—5x+7) + (4x3 — 5x* + 3)

=x*+2x>2=5x+ 7+ 4x* - 5>+ 3 remove parentheses

=1 +4x>+Q2-5x*—=5x+ (7 +3) add coefficients of like
powers of x

=5x = 3x2 = 5x + 10 simplify

The grouping in the first step was shown for completeness. You may omit this
step after you become proficient with such manipulations.

(b) When subtracting polynomials, we first remove parentheses, noting that
the minus sign preceding the second pair of parentheses changes the sign of
each term of that polynomial.

(x* +2x* = 5x +7) — (4x° — 5x* + 3)

=x*+2x?—5x+7—4x* +5x2 -3 remove parentheses

=1 -4+ Q2+ 5x*=5x+ (7 —3) add coefficients of like
powers of x

= -3x3+7x* - 5x+ 4 simplify /

EXAMPLE 2 Multiplying binomials
Find the product: (4x + 5)(3x — 2)

SOLUTION  Since 3x — 2 = 3x + (—2), we may proceed as in Example 1
of Section 1.1:
(4x + 5)(3x — 2)
= (4x)(3x) + (4x)(=2) + (5)(3x) + (5)(—2) distributive properties
= 12x* = 8x + 15x — 10 multiply
= 12x2+ 7x — 10 simplify 7/



1.3 Algebraic Expressions 31

After becoming proficient working problems of the type in Example 2,
you may wish to perform the first two steps mentally and proceed directly to
the final form.

In the next example we illustrate different methods for finding the prod-
uct of two polynomials.

EXAMPLE 3 Multiplying polynomials
Find the product: (x> + 5x — 4)(2x* + 3x — 1)

SOLUTION

Method 1 We begin by using a distributive property, treating the polynomial
2x* + 3x — 1 as a single real number:

2+ 5x—4)2x° +3x— 1)
= x22x° +3x— 1) +5x(2x° + 3x — 1) —4(2x> + 3x — 1)

We next use another distributive property three times and simplify the result,
obtaining
+5x—4)2x°+3x—1)
= 2x° +3x3 — x>+ 10x* + 15x2 — 5x — 8x* — 12x + 4
= 2x3 4+ 10x* — 5x3 4+ 14x> — 17x + 4.
Note that the three monomials in the first polynomial were multiplied by

each of the three monomials in the second polynomial, giving us a total of
nine terms.

Method 2 'We list the polynomials vertically and multiply, leaving spaces for
powers of x that have zero coefficients, as follows:

2x3 + 3x —1
X + 5x —4

2x° + 33 — X = XX +3x—-1)
10x* + 15x* — 5x = 5x2x*+3x—1)
— 8x3 —12x +4= —42x°+3x—1)

2x% 4+ 10x* —5x + 14x* — 17x + 4 = sum of the above

In practice, we would omit the reasons (equalities) listed on the right in the last
four lines. /

We may consider polynomials in more than one variable. For example, a
polynomial in fwo variables, x and y, is a finite sum of terms, each of the form
ax™y* for some real number a and nonnegative integers m and k. An example is

3xty 4+ 2x%y° + 7x* — 4xy + 8y — 5.
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Product Formulas

Other polynomials may involve three variables—such as x, y, z—or, for that
matter, any number of variables. Addition, subtraction, and multiplication
are performed using properties of real numbers, just as for polynomials in
one variable.

The next example illustrates division of a polynomial by a monomial.

EXAMPLE 4 Dividing a polynomial by a monomial
Express as a polynomial in x and y:

6x%y* + 4x3y? — 10xy

2xy
SOLUTION
6x%y3 + 4x%y? — 10 6x%y3  4xy? 10x
Y Y *y = Y + Yo Y divide each term by 2xy
2xy 2xy 2xy 2xy
=3xy2 +2x%y — 5 simplify /

The products listed in the next chart occur so frequently that they deserve
special attention. You can check the validity of each formula by multiplication.
In (2) and (3), we use either the top sign on both sides or the bottom sign on
both sides. Thus, (2) is actually two formulas:

(x + v = x* + 2xy + y? and (x — y)? = x* = 2xy + y?

Similarly, (3) represents two formulas.

Formula Illustration
@D x+yx—y =x>—y 2a +3)2a —3) = (2a)*—3*=4a> -9
2) (x £y)> = x>+ 2xy + y? (2a — 3)*> = (2a)* — 2(2a)(3) + (3)?
=4a*> — 12a + 9

B xxyP=x>%3%+ 3=y} (2a + 3)* = (2a)* + 3(2a)*(3) + 3(2a)(3)* + (3)°

= 8a® + 36a*> + 54a + 27

Several other illustrations of the product formulas are given in the next
example.
EXAMPLE 5 Using product formulas

Find the product:

@) (2r2 = V5)(2r2+ Vs)  (b) <\/E + é)z (c) (2a — 5b)°
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SOLUTION
a) We use product formula 1, with x = 2r2and y = Vs:
(a) p y

(2r2 — \/E)(2r2 + \/E) = (2r?)? — (\/E)z

=4r* — 5
1
(b) We use product formula 2, with x = \Vcand y = —:
Ve
<\/c+i>2=(\/5)2+2-\/5-i+ (L)
Ve Ve \Ve

1
=c+2+—
c

Note that the last expression is not a polynomial.

(c) We use product formula 3, with x = 2a and y = 5b:

(2a — 5b)* = (2a)* — 3(2a)*(5b) + 3(2a)(5b)* — (5b)°
= 8a® — 60a*h + 150ab* — 125b° V4

If a polynomial is a product of other polynomials, then each polynomial
in the product is a factor of the original polynomial. Factoring is the process
of expressing a sum of terms as a product. For example, since x> — 9 =
(x + 3)(x — 3), the polynomials x + 3 and x — 3 are factors of x> — 9.

Factoring is an important process in mathematics, since it may be used to
reduce the study of a complicated expression to the study of several simpler
expressions. For example, properties of the polynomial x> — 9 can be deter-
mined by examining the factors x + 3 and x — 3. As we shall see in Chapter 2,
another important use for factoring is in finding solutions of equations.

We shall be interested primarily in nontrivial factors of polynomials—
that is, factors that contain polynomials of positive degree. However, if the co-
efficients are restricted to integers, then we usually remove a common integral
factor from each term of the polynomial. For example,

4x?y + 87° = 4(x%y + 275

A polynomial with coefficients in some set S of numbers is prime, or ir-
reducible over S, if it cannot be written as a product of two polynomials of
positive degree with coefficients in S. A polynomial may be irreducible over
one set S but not over another. For example, x> — 2 is irreducible over the ra-
tional numbers, since it cannot be expressed as a product of two polynomials
of positive degree that have rational coefficients. However, x> — 2 is not irre-
ducible over the real numbers, since we can write

x2—2=(x+\ﬁ)(x—\ﬁ).
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ILLUSTRATION

Similarly, x> + 1 is irreducible over the real numbers, but, as we shall see in
Section 2.4, not over the complex numbers.

Every polynomial ax + b of degree 1 is irreducible.

Before we factor a polynomial, we must specify the number system (or
set) from which the coefficients of the factors are to be chosen. In this chapter
we shall use the rule that if a polynomial has integral coefficients, then the fac-
tors should be polynomials with integral coefficients. To factor a polynomial
means to express it as a product of irreducible polynomials.

The greatest common factor (gef) of an expression is the product of the
factors that appear in each term, with each of these factors raised to the small-
est nonzero exponent appearing in any term. In factoring polynomials, it is ad-
visable to first factor out the gcf, as shown in the following illustration.

Factored Polynomials

B 8x?+ dxy = 4x(2x + y)
B 25x*+ 25x — 150 = 25(x*> + x — 6) = 25(x + 3)(x — 2)
B 4%y — 9%y = x3y(dx? — 9y?) = x3y(2x + 3y)(2x — 3y)

It is usually difficult to factor polynomials of degree greater than 2. In
simple cases, the following factoring formulas may be useful. Each formula
can be verified by multiplying the factors on the right-hand side of the equals
sign. It can be shown that the factors x> + xy + y* and x> — xy + y? in the
difference and sum of two cubes, respectively, are irreducible over the real
numbers.

Factoring Formulas

Formula Illustration

(1) Difference of two squares:
2=y =+ yx -y 9a*> — 16 = (3a)*> — (4)* = 3a + 4)(Ba — 4)

(2) Difference of two cubes:
=y =(x =y + xy +y?) 8a® — 27

(3) Sum of two cubes:
X EY =0+ e —xy+y) | 1254+ 1 = (5a) + (1)}

(2a)’ = (3)°
(2a = 3)[(2a)* + (2a)(3) + (3)°]
= (2a — 3)(4a* + 6a + 9)

= (5a + D[(5a)* = (5a)(1) + (1)]
= (5a + 1)(25a*> = Sa + 1)

Several other illustrations of the use of factoring formulas are given in the
next two examples.
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EXAMPLE 6 Difference of two squares
Factor each polynomial:

(a) 25r% — 4952 (b) 81x* — y* (c) 16x* — (y — 22)?

SOLUTION
(a) We apply the difference of two squares formula, with x = 5r and y = 7s:

25r% — 4952 = (5r)* — (7s)> = (5r + 1s)(5r — Ts)

(b) We write 81x* = (9x?)* and y* = (y?)* and apply the difference of two
squares formula twice:

S1x' =y = O — (7
= (Ox* +y)(9* — »?)
= Ox + Y ~ OF]
= (9x* + y?)(GBx + y)Bx — y)
(c) We write 16x* = (4x%)? and apply the difference of two squares formula:
165 = (y = 20 = @4e) — (y — 220
= [(@x) + (y = 229][(4x?) — (y — 22)]
=@x*+y—27@x* -y + 22 7/

EXAMPLE 7 Sum and difference of two cubes
Factor each polynomial:

@) @ + 64b°  (b) 8¢° — 27d°

SOLUTION
(a) We apply the sum of two cubes formula, with x = a and y = 4b:
@ + 64 = @ + (4b)°
= (a + 4b)[a* — a(4b) + (4D)*]
= (a + 4b)(a*> — 4ab + 16b?)

(b) We apply the difference of two cubes formula, with x = 2¢* and y = 3d*:
8¢t — 27d° = (22 — (3d°%)’

= (2 = 3d3)[(2Y)* + 2ABY) + (3d*)]
= (2¢2 = 3d%)(4c* + 6¢2d° + 9d°) /
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A factorization of a trinomial px* + gx + r, where p, g, and r are inte-
gers, must be of the form

px* + gx + r = (ax + b)(cx + d),
where a, b, ¢, and d are integers. It follows that
ac = p, bd = r, and ad + bc = q.

Only a limited number of choices for a, b, c, and d satisfy these conditions.
If none of the choices work, then px* + gx + ris irreducible. Trying the var-
ious possibilities, as depicted in the next example, is called the method
of trial and error. This method is also applicable to trinomials of the form
px? 4+ gxy + ry? in which case the factorization must be of the form
(ax + by)(cx + dy).

EXAMPLE 8 Factoring a trinomial by trial and error
Factor 6x2 — 7x — 3.
SOLUTION If we write
6x2 — 7x — 3 = (ax + b)(cx + d),
then the following relationships must be true:
ac = 6, bd = —3, and ad + bc = =7

If we assume that a and c¢ are both positive, then all possible values are given
in the following table:

a |1 6 2 3

c | 6 1 3 2

Thus, if 6x> — 7x — 3 is factorable, then one of the following is true:
6x> —7x — 3 = (x + b)(6x + d)
6x2 —Tx — 3 = (6x + b)(x + d)
6x> —Tx —3=2x + b)Bx + d)
6x>—T7x —3=0Bx+b)2x + d)

We next consider all possible values for b and d. Since bd = —3, these are as
follows:

1 -1 3 -3
d -3 3 -1 1
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Trying various (possibly all) values, we arrive at b = —3 and d = 1; that is,
6x2—7x —3=2x—3)3x + 1).

As a check, you should multiply the final factorization to see whether the
original polynomial is obtained. /

The method of trial and error illustrated in Example 8 can be long and te-
dious if the coefficients of the polynomial are large and have many prime fac-
tors. We will show a factoring method in Section 2.3 that can be used to factor
any trinomial of the form of the one in Example 8—regardless of the size of
the coefficients. For simple cases, it is often possible to arrive at the correct
choice rapidly.

EXAMPLE 9 Factoring polynomials

Factor:

(a) 12x> — 36xy + 27y? (b) 4x*y — 11x%* + 6x2%y°
SOLUTION

(a) Since each term has 3 as a factor, we begin by writing

12x% — 36xy + 27y = 3(4x? — 12xy + 9y?).

A factorization of 4x> — 12xy + 9y? as a product of two first-degree polyno-
mials must be of the form

4x> — 12xy + 9y? = (ax + by)(cx + dy),
with ac = 4, bd =9, and ad + bc = —12.
Using the method of trial and error, as in Example 8, we obtain
4x? — 12xy + 9y* = (2x — 3y) 2x — 3y) = (2x — 3y)~

Thus, 12x* — 36xy + 27y = 3(4x? — 12xy + 9y?) = 3(2x — 3y)>.
(b) Since each term has x?y as a factor, we begin by writing

dxty — 11x%? + 6x%° = x3y(dx? — 1lxy + 6y?).
By trial and error, we obtain the factorization

dxty — 11x3y? + 6x%y® = x%y(dx — 3y)(x — 2y). 7/

If a sum contains four or more terms, it may be possible to group the terms
in a suitable manner and then find a factorization by using distributive proper-
ties. This technique, called factoring by grouping, is illustrated in the next
example.
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EXAMPLE 10 Factoring by grouping

Factor:

(a) 4ac + 2bc — 2ad — bd (b) 3x* + 2x* — 12x — 8
(c) x*—16y* + 10x + 25

SOLUTION

(a) We group the first two terms and the last two terms and then proceed as
follows:

4ac + 2bc — 2ad — bd = (4ac + 2bc) — (2ad + bd)
= 2¢(2a + b) — d(2a + b)

At this stage we have not factored the given expression because the right-hand
side has the form

2ck — dk  withk = 2a + b.
However, if we factor out k, then
2ck — dk = 2¢ — d)k = 2c — d)(2a + b).
Hence,
4ac + 2bc — 2ad — bd = 2¢(2a + b) — d(2a + b)
= (2c —d)(2a + b).

Note that if we factor 2ck — dk as k(2c — d), then the last expression is
(2a + b)(2c — d).
(b) We group the first two terms and the last two terms and then proceed as
follows:
303+ 2x2 — 12x — 8 = (3x3 + 2x?) — (12x + 8)
=x’Bx +2) — 4(3x + 2)
=« -40Bx+2)

Finally, using the difference of two squares formula for x> — 4, we obtain the
factorization:

3x3 4+ 2x2 = 12x — 8 = (x + 2)(x — 2)(Bx + 2)

(c) First we rearrange and group terms, and then we apply the difference of
two squares formula, as follows:
x> — 16y* + 10x + 25 = (x* + 10x + 25) — 16y
= (x + 57 = @y
=[x +5) + 4yll(x +5) — 4y]
= (x+4y +5)x -4y +5) /
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Exer. 1-44: Express as a polynomial.
1 B+ 4x2—Tx + 1) + (9% — 4x? — 6x)

2 (7x* + 2x® — 11x) + (—3x* — 2x2 + 5x — 3)

3@ +5x—-3)—-0B*+2x2+5x—17)

463 — 2P +x—2)— (82 —x—2)

52x +50@3x—17)

7 (5x + Ty)(3x + 2y)

6 B3x —4)(2x +9)
8 (4x — 3y)(x — 5y)

9 Qu +3)u—4) + 4u(u — 2)

10 Bu — 1)(u +2) + Tu(u + 1)

11 Bx + 5)(2x> + 9x — 5)
13 (12 +2t—350@>—1t+2)

12 (Tx — 4)(x* — x>+ 6)

1% (r2—8r—2)(—=r*+3r—1)

15 (x + D2x* — 2)(x* + 5)

8x%y? — 10x%y

17
2x%y

3udvt — 2wV + (uP?)?

19

u?

21 (2x + 3y)(2x — 3y)

23 (2 + 2y)(x? — 2y)
25 (2 +9)(x* — 4)
27 (Bx + 2y)?

29 (x> — 3y?)?

31 (x + 2)%(x — 2)

3 (Ve + Vi) (Va = V)
346 (Va+ VyP(Va = VP

16 2x— D> =35 - 1)

6a’b® — 9a°b* + 3ab*

18
3ab?

0 6x*y7} — xy*z
xyz

22 (5x + 4y)(5x — 4y)

2

24 (3x + y)(Bx — y?)
26 (x* + (x> — 16)
28 (5x — 4y)?

30 (2x* + 5y%)?

32 (x + y)*x — y)p

35 (xl/3 — y1/3)(x2/3 + x1/3y1/3 + y2/3)

36 (xl/3 + y1/3)(x2/3 — x1/3y1/3 + y2/3)

37 (x — 2y)}
39 (2x + 3y)}
41 (a+ b — )

38 (x + 3y)}
40 (Bx — 4y)*

42 (x4 x + 1)?

43

(2x +y — 32

44

(x — 2y + 32)?

Exer. 45-102: Factor the polynomial.

45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97

rs + 4dst
3a’h* — 6a’b
3x%y? — 9xdy?

15233 — 25x*y? + 10x%y*

8x? — 53x — 21
x>+ 3x+4
6x* + 7x — 20

12x* — 29x + 15
4x* — 20x + 25
2572+ 30z + 9
45x2 + 38xy + 8y?
36r* — 25¢*

7t — 64w?

xt = 4x?

x2+ 25

75x% — 48y
64x3 + 27

64x3 — y°

34300 + y°

125 — 27x3

2ax — 6bx + ay — 3by

3x3 4+ 3x* = 27x — 27

X+ 2w —x -2

a — a’b + ab® — b?
a()_bé

X2+ 4x + 4 — 9y

y2—x*+ 8y + 16

46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

4> — 2uv
10xy + 15xy?

16x°y% + 8x3y3

12173s* + 77r%s* — 55143

Tx* + 10x — 8
3x* —4x + 2
12x* —x—6
21x2 + 41x + 10
Ox? + 24x + 16
1622 — 56z + 49
50x% + 45xy — 18y?
81r* — 16¢>

9y — 12122

x* = 25x

42+ 9

64x* — 36y?
125x* — 8

216x° + 125y°
x6 =27y}

X+ 64

2ay* — axy + 6xy — 3x2

5x% + 10x2 — 20x — 40

xt—=3x3 4+ 8 — 24
6wt + 17wt + 12

x¥ =16

X2 —4y?—6x+9

yE+9 — 6y — 4x?
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99 yo 4+ 7y3 — 8 100 8c® + 1963 — 27

101 x'* — 1 102 4x° + 4x* + x

Exer. 103—104: The ancient Greeks gave geometric proofs of
the factoring formulas for the difference of two squares and
the difference of two cubes. Establish the formula for the
special case described.

103 Find the areas of regions I and II in the figure to establish
the difference of two squares formula for the special case
x> y.

Exercise 104

Exercise 103 105 Calorie requirements The basal energy requirement for an

1I

104 Find the volumes of boxes I, II, and III in the figure to es-
tablish the difference of two cubes formula for the special
case x > y.

individual indicates the minimum number of calories nec-
essary to maintain essential life-sustaining processes such
as circulation, regulation of body temperature, and respi-
ration. Given a person’s sex, weight w (in kilograms),
height 4 (in centimeters), and age y (in years), we can es-
timate the basal energy requirement in calories using the
following formulas, where C; and C,, are the calories nec-
essary for females and males, respectively:

C; =665 + 13.8w + 5h — 6.8y
C, = 655 + 9.6w + 1.9h — 4.7y

(a) Determine the basal energy requirements first for
a 25-year-old female weighing 59 kilograms who is
163 centimeters tall and then for a 55-year-old male
weighing 75 kilograms who is 178 centimeters tall.

(b) Discuss why, in both formulas, the coefficient for y is
negative but the other coefficients are positive.

1 4 A fractional expression is a quotient of two algebraic expressions. As a spe-
— cial case, a rational expression is a quotient p/q of two polynomials p and q.

Fractional Expressions

given in the chart.

Rational Expressions

Since division by zero is not allowed, the domain of p/q consists of all real
numbers except those that make the denominator zero. Two illustrations are

Denominator is
Quotient zero if Domain
6x> — 5x + 4
2 9 x =23 All x # £3
X2 —
3 _ 3 2 + 4 2
x X%y : Y y =3 All x and y such that y # x*
y - X
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In most of our work we will be concerned with rational expressions in
which both numerator and denominator are polynomials in only one variable.

Since the variables in a rational expression represent real numbers, we
may use the properties of quotients in Section 1.1, replacing the letters a, b, c,
and d with polynomials. The following property is of particular importance,
where bd # 0:

a d _ | =

bd b d

We sometimes describe this simplification process by saying that a common
nonzero factor in the numerator and denominator of a quotient may be can-
celed. In practice, we usually show this cancellation by means of a slash
through the common factor, as in the following illustration, where all denom-
inators are assumed to be nonzero.

Canceled Common Factors

g M_a oo omi_m o PT_ 4
bd b }'ipq_pq f[fV %

A rational expression is simplified, or reduced to lowest terms, if the nu-
merator and denominator have no common polynomial factors of positive de-
gree and no common integral factors greater than 1. To simplify a rational
expression, we factor both the numerator and the denominator into prime fac-
tors and then, assuming the factors in the denominator are not zero, cancel
common factors, as in the following illustration.

Simplified Rational Expressions

if x # 2
x?—5x—2 GBx+1D)E—2) | 3x+1
-4  (G+296—2 x+2 i x # 2/3
2—-x—-3% —-(Bx*+x-2 BGe—2x+1) | x+1
6 —x—2 62—x—2 :_M(2x+l):_2x+l

ifx#5,x# —4
1
(@ + 8 + 16)(x — 5) (x + 42 —9) I x+4

2 — 5002 — 16) xe—35) A+ (x —4)  x(x — 4)

As shown in the next example, when simplifying a product or quotient of
rational expressions, we often use properties of quotients to obtain one rational
expression. Then we factor the numerator and denominator and cancel com-
mon factors, as we did in the preceding illustration.
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EXAMPLE 1 Products and quotients of rational expressions

Perform the indicated operation and simplify:

xXX—6x+9 2x—2 x+2 x> —4
(a) : (b) :

-1 x-3 2x -3 2% —3x
SOLUTION
2 _ _ 2 _ _
(a) X —6x+9 2x—2 (2 —6x +9)(2x —2) property of quotients
x2—1 x—3 (x> = D —3)
1
_ (x =3 - 2(x—1) factor all
a (x + )(x—"1)(x—73)  polynomials
ifx#3,x# 1
1 2(x — 3) cancel common
T ox+1 factors

(b) x+2  xX*—4  x+2 2x7—3x
2x—=3 2x>=3x 2x—-3 x>—-4
A 2x(2x—3) property of quotients;
- Q2x—3)(x+2)(x — 2) factor all polynomials

ifx# —2,x# 3/2

property of quotients

J X cancel common
x—2 factors /

To add or subtract two rational expressions, we usually find a common de-
nominator and use the following properties of quotients:

c a+c a a—c
_ = and - —
d d d

a ¢
J— + _—=
d d d
If the denominators of the expressions are not the same, we may obtain a com-
mon denominator by multiplying the numerator and denominator of each frac-
tion by a suitable expression. We usually use the least common denominator
(Icd) of the two quotients. To find the lcd, we factor each denominator into
primes and then form the product of the different prime factors, using the
largest exponent that appears with each prime factor. Let us begin with a nu-

merical example of this technique.

EXAMPLE 2 Adding fractions using the lcd

Express as a simplified rational number:
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SOLUTION  The prime factorizations of the denominators 24 and 18 are
24 =23-3 and 18 = 2 - 32. To find the lcd, we form the product of the dif-
ferent prime factors, using the largest exponent associated with each factor.
This gives us 2° - 32, We now change each fraction to an equivalent fraction
with denominator 2* - 32 and add:

7 5 7 5

— 4+ = = 4+ —
24 18 23-3 2.3

73,5 2
23 3 2.3 2

21 20

AR EE:

41
2. 3

_4
72 /

The method for finding the lcd for rational expressions is analogous to the
process illustrated in Example 2. The only difference is that we use factoriza-
tions of polynomials instead of integers.

EXAMPLE 3 Sums and differences of rational expressions
Perform the operations and simplify:

6 5 2

+ —_—
xBx—2) 3x—2 x?
SOLUTION  The denominators are already in factored form. The lcd is
x*(3x — 2). To obtain three quotients having the denominator x*(3x — 2), we
multiply the numerator and denominator of the first quotient by x, those of the
second by x?% and those of the third by 3x — 2, which gives us

6 N 5 _2_ 6 .£+ 5 ')6_2_2.3)6—2
xB3x—2) 3x—2 x* xBx—2) x 3x—2 x*} x* 3x—2
6x 5x2 2(3x — 2)

N x*(3x — 2) * x*(3x — 2) a x*(3x — 2)
_ 6x + 5x* —2(3x — 2)
x*(3x — 2)
5kt +4
x*Bx—2)° /7
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EXAMPLE 4 Simplifying sums of rational expressions
Perform the operations and simplify:

2x + 5 X 1
+ +
xX2+6x+9 x*—9 x-—3

SOLUTION  We begin by factoring denominators:

2x +5 n X n 1 _2x+5+ X n 1
xXX+6x+9 -9 x—-3 (x+3)? x+3)x—-3) x—3

Since the led is (x + 3)*(x — 3), we multiply the numerator and denominator
of the first quotient by x — 3, those of the second by x + 3, and those of the
third by (x + 3)? and then add:

2x + 5)(x — 3) x(x +3) (x +3)

(x+32(x—-3) @E+32x—-3 (+3)x—23)
@2 =x— 15+ (x*+3x) + (x*+6x +9)
B (x + 3)(x — 3)
AP+ 8 —6  202x*+4x —3)
S (r+ 32k —3)  (x+3)%x—3) 7/

A complex fraction is a quotient in which the numerator and/or the de-
nominator is a fractional expression. Certain problems in calculus require sim-
plifying complex fractions of the type given in the next example.

EXAMPLE 5 Simplifying a complex fraction

Simplify the complex fraction:

2 2

x+3 a+3

X —a

SOLUTION  We change the numerator of the given expression into a single
quotient and then use a property for simplifying quotients:

2 2 2a+3)-2kx+3)
r*3 et = (r + 3)a +3) combine fractions in the numerator
x—a xX—a

o Za— simplify; property of quotients
(x+3)a+3) x—a

= 2(a — x) factor 2a — 2x; property of
(x +3)a + 3)(x —a) quotients

ifx # a
—\L 2 replace a-x with —1
xX—a

T x+3)(a+3)
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An alternative method is to multiply the numerator and denominator of
the given expression by (x + 3)(a + 3), the lcd of the numerator and denomi-
nator, and then simplify the result. /

Some quotients that are not rational expressions contain denominators of
the form a + Vb or Va + Vb; as in the next example, these quotients can
be simplified by multiplying the numerator and denominator by the conjugate
a — Vb or Va — \/b, respectively. Of course, if @ — \/b appears, multiply
by a + Vb instead.

EXAMPLE 6 Rationalizing a denominator

Rationalize the denominator:

1
Vx+ Vy
SOLUTION
1 _ 1 Vx — Vy multiply numerator and denominator by
\/;+\fy_\/;+\/y \/;C—\/y the conjugate of Vx + Yy
_ Vi - \[y property of quotients and difference of
(\/})2 — (\fy)Z squares
_YxXT VY law of radicals
xX—y /

In calculus it is sometimes necessary to rationalize the numerator of a
quotient, as shown in the following example.

EXAMPLE 7 Rationalizing a numerator

If & # 0, rationalize the numerator of

Vx+h—Vx
I .
SOLUTION
Vx+h—Vax _Vx+th-— Vi Vx+h+ Vx multiply numerator and
h h \Vx + h + Vx  denominator by the conjugate
of Vx +h— Vx
B ( Vx + h)z - (\/;c)z property of quotients and
- h(\/m + \/;e) difference of squares
+ —
= (+h)—x law of radicals
h(Vx + h + Vi)
i implif?
= simplify
HVx+h+ V)
1
= cancel 1 # 0
Vx+h+ Vx

(continued)
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It may seem as though we have accomplished very little, since radicals
occur in the denominator. In calculus, however, it is of interest to determine
what is true if 4 is very close to zero. Note that if we use the given expression
we obtain the following:

Vi+h—Vx Vx+0—-Vx 0

If h=0, then -,
h 0 0

a meaningless expression. If we use the rationalized form, however, we obtain
the following information:

Vx + h— Vx 1
If h=0, then =
h Vx+h+ Vi
1 1

Vit Ve oA/

Certain problems in calculus require simplifying expressions of the type
given in the next example.

EXAMPLE 8 Simplifying a fractional expression
Simplify, if & # 0:

1 1
(x + h)?> x?
h
SOLUTION
1 1 x>*—(x+h)?
2 2 22
(+h) *r (x + h)Px combine quotients in numerator
h h
_x*—=(*+2xh+h?) 1  squarex + h; property of
- (x + h)x? " Quotients
x> —x*—2xh — I? "
= remove parentheses
(x + h)*x*h
—H(Q2x + h) it i
=——— = ~ ; factor out —
(c + Wl simplify; factor ou
- _—2x +h cancel h # 0
(x + h)xx? 7/

Problems of the type given in the next example also occur in calculus.

EXAMPLE 9 Simplifying a fractional expression
Simplify:
3%(2x + 5)"2 — x(3)2x + 5) ()
[(2x + 5)V2]?
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SOLUTION  One way to simplify the expression is as follows:
32(2x + 5)"2 — 2(3)@x + 5)(2)

[(zx + 5)1/2]2

3

X
3x*(2x + 5)? — ————
( ) (2x + 5)12 » _
= 13 definition of negative exponents
X
3x2(2x + 5) — x3
(2x + 5)12 . .
= xS combine terms in numerator
X

67+ 15x* — x? 1
(2x + 5)? 2x + 5

property of quotients

_ 5x 4+ 15x? L
= m simplify
S5xHx + 3) .
= m factor numerator
X 3

An alternative simplification is to eliminate the negative power, —51, in the
given expression, as follows:

3x%(2x + 5)? — x3(%)(2x + 5)712(2) ) (2x + 5)2  multiply numerator and

[(2x + 5)"] (2x + 5)” denominator by (2x + 5)"2
O 3x(2x+5) —x° property of quotients and
B (2x + 5)(2x + 5)2 law of exponents

The remainder of the simplification is similar.

A third method of simplification is to first factor out the gcf. In this case,
the common factors are x and (2x + 5), and the smallest exponents are 2 and
—51, respectively. Thus, the gef is x2(2x + 5)72, and we factor the numerator
and simplify as follows:

X2(2x +5)B2x +5) —x] _ x%5x + 15)  5x3(x + 3)
Q2x + 5)! Qx + 5% (2x + 5"

One of the problems in calculus is determining the values of x that make
the numerator equal to zero. The simplified form helps us answer this question

with relative ease—the values are 0 and —3. V4

1.4 Exercises
Exer. 1-4: Write the expression as a simplified rational Exer. 5-48: Simplify the expression.
number.

3 . A s 5 2x2+ 7x + 3 6 2x2+9x — 5
11—+ — 2 —+ — 2x2—Tx — 4 3x2+ 17x + 10

50 30 63 42

S 3 7 y-2 g X =9

24 20 54 72 ¥ — 125 Vi + 27
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124+r—1r? 10 + 3r — 12 y i+ x! y2i—x?
= 10 ———— - 37 2% 38 Z—
r? + 3r? rt + 253 (xy) ! y 24 x?
1 ox> — 4 .9x4—6x3—|-4x2 5 N 2x 3 6
3x2—5x + 2 27x* + 8x 39x+1 x+3 4 wo 2w+ 1
e B i1+ 13 i+28+1
22+ Tx+ 6 8x — 27x* . . e
L 5@+ 12044 250 +20a + 4 31_ 31 x+2 a+2
@ —16 = & -2a ni—— 4= =2
xX—a xX—a
we-8, _a +RY =3+ h) — (2 = 3
a2 -4 : a3 + 8 43 (x ) (X p ) (x )C)
15 6 B 3x 16 15 B S5x e 5 R
X2_4 x2_4 X2_9 x2_9 44(X+)+5(X‘I: )_(X+5X)
72 2 18—+ 4
3s+1 (s+ 17 (5s— 27  5s—2 1 1
(x+hn3} X x+h x
2 3x+1 x-2 5 2x—1 x+5 4T 46 —— —
19 =+ >—— 1= 20 > - F—— +
X x X X x X
4 4 5 5
3t 5t 40 t 4¢ 18 1 3 — -
21 + _ 22 T _ 473x~¥-3h 1 3x-—-1 482)c~¥-2h-|—3 2x + 3
r+2 -2 -4 tr+3 =3 -9 h h
4x 8 2 12x 3
23 3x — 4 + 3x? — 4 + X 24 2% + 1 - 2% + x + X Exer. 49-54: Rationalize the denominator.
Vi+s Vi—4
X8 3 o S 6 2 49— 50 27—,
x+2 x2+2x x 2x+3  2x*+3x  «x ! !
81x2 — 16y° 16x* — y?
pt+3pP—8p—24 2ac + bc — 6ad — 3bd 5] ——— 52 —————
27 28 — _
P — 20— 9p + 18 6ac + 2ad + 3bc + bd 3Vx = 2Vy 2V = Vy
- 5 . 2u 204+ 2 3u 53 — 1 . (Hint: Mult}iply nur?erator a?d denominator
P " u+s Va— Vb by Va2 + Vab + Vb2)
31 2x + 1 6x n 3 54 ;
- 3 3,
X4+ 4 2—4 x—2 Vx+ Vy
32 2x+6 + S5x + 7 Exer. 55-60: Rationalize the numerator.
2 2 __ —
x*+6x+9 x»*—-9 x-—3 55\[_\/1; 56\/1—)+%
2_1 1 _ 3 az_bz bz_cz
a b x+ 2
33 34 V2x+h) +1—V2x + 1
T o 57 -
a b X x
Vx— Vx+h Vi-x—h—-VI1—x
X oy r K 58 ———F—— 59
N —+- hVx Vx + h h
3 X 36 —
1 1 2 2 x+ h— Vx
S5 % - iz 60 ~rTaT v (Hint: Compare with Exercise 53.)
y X s r h



Exer. 61-64: Express as a sum of terms of the form ax’,
where r is a rational number.

614x2*x+5 62x2+4x*6
x2/3 \/;
(o + 20 (Va —3)
X X

Exer. 65-68: Express as a quotient.

65 x 3 + x? 66 x4 —x

67 x71/2 — X3/2 68 x72/3 + X7/3

Exer. 69—-82: Simplify the expression.
69 (2x2 — 3x + 1)(4)(3x + 2)3(3) + (Bx + 2)*(4x — 3)

70 (6x — 5(2)(x* + 4)(2x) + (x2 + 4)(3)(6x — 5)%6)
71 (2 = 4PGE)2x + 172) + 2x + 1(3)(2 — 4722w
72 (3x + 2)"(2)(4x — 5)(@) + (4x — 5)2(2)3x + 2)%(3)

73 (Gx + 1)(3)2x — 5)72(2) + (2x — 5)"(6)(3x + 1)°(3)
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74 (2 + 9= + 6 + (x + 6) AR + 9)(2x)
(6x + 1)°(272% + 2) = (9x* + 20(3)(6x + 1)(6)

7 (6x + 1)°

(= D*2x) — @ — 1)*(2x)
76

w1y

(2 + 2)3(2x) — x2(3) (x> + 2)*(2x)

77
[+ 2)F

o (2 968) — P — 57y

[ = 5)F

Lo @A) — B(E)E + 92
[(xz + 4)]/3]2

20 (1 — x?)"(2x) — xz(%)(l — x)12(=2x)
[(1 — )P
gy (427 +9)2(2) — (2x +3)(3)(4 + 9) (8
[(4x2 + 9)12]

82
Gx + 2"(3)@x + 3)7222) — (2x + 3)"3(3)3x + 2)77(3)
[(3x + 2)1/2]2

1 Express as a simplified rational number:

@ G)(-3) ©3-5 (3=

2 Replace the symbol [] with either <, >, or = to make the
resulting statement true.

(a) —0.10—0.001
(c) +010.166

(b) 3+%

(b) VOO -3

3 Express the statement as an inequality.
(a) xis negative.
(b) ais between% and %
(c) The absolute value of x is not greater than 4.

4 Rewrite without using the absolute value symbol, and
simplify:

| 5]

(@ |-7] (b) 5

5 If points A, B, and C on a coordinate line have coordi-
nates —8, 4, and —3, respectively, find the distance:

(b) d(C.A)

(9 37 =27

(a) dA,C) (c) d(B, C)

6 Express the indicated statement as an inequality involving
the absolute value symbol.

(a) d(x, —2)is at least 7.
(b) d(4, x) is less than 4.

Exer. 7-8: Rewrite the expression without using the ab-
solute value symbol, and simplify the result.

7 |x+3]ifx= -3

8 |(x —2)(x —3)|if2<x<3

9 Determine whether the expression is true for all values of
the variables, whenever the expression is defined.

Y22 1 _ 1t 1

(a) x+yr=x*+y (b)\/XTy \/;th\/;
© 1 _Ve+ Vd
Ve — Vd c—d

10 Express the number in scientific form.

(a) 93.700,000,000 (b) 0.000004 02
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11 Express the number in decimal form.

(a) 6.8 X 107 (b) 7.3 X 107

12 (a) Approximate |\/5 — 17% to four decimal places.

(b) Express the answer in part (a) in scientific notation ac-
curate to four significant figures.

Exer. 13—14: Express the number in the form a/b, where a
and b are integers.
-

13 =32 4204 27723 16734
Exer. 15-40: Simplify the expression, and rationalize the

Exer. 45-62: Express as a polynomial.

45 Bx* — 4>+ x—7) + (x* — 2x* + 3x2 + 5)
46 (47 — 322+ 1) — 22 + 42— 4)

2x — Dx = 5)

48 (4x — 5)(2x* +3x —7)

49 3y =292+ y + 4)(y* = 3)

50 3x + 2)(x — 5)(5x + 4)

51 (a — b)(a® + a’b + ab®> + b®)

47 (x + 4)(x + 3) —

9p4q3 — 6p2q4 + 5p3q2

denominator when appropriate.

6 35,2
15 (3a2b)X(2ab?) 16 =2
2rdy
(3x2y73)72 a2/3b3/2 6
17 —2—— 18
a’b
19 (- 2p q)3<4p) 20 ¢ ¥B3p32p16
ll3 2\3 _ 4 3\2/3
w () ()
z z 2%y
(3u2v5W’4)3
23 2/3b—2 371 24
[(ﬂ ) ] (2uv’3w2)4
—1 + -1
25 # 26 (u+v)(u+v)?
27 55/2s74/3s71/6 28 x72 _ yfl
29 V(x%yN)e 30 V8x%yZt
1 2p3
n o 32 |22
C
33 V4xZy V2x%y? 4 N/(—=4d’bc)
1 /1
35 \/<\/ - 1) 36 V V(%)
1 1t
V12x%y 2
37 Vi 8 V(a + 2b)°
1 x?
39 =— 40 43—
272 9y

Exer. 41-44: Rationalize the denominator.

411—W ) 1
1+ Vax Va+ Va-2
8lx? — y? 3+ Va
43— —F 44 o
3Vx + Vy 3— Vx

52

g
53 (3a — 5b)(2a + 7b)

55 (13a> + 4b)(13a*> — 4b)
57 3y + x)?

59 (2a + b)®

61 (3x + 2y)’(3x — 2y)?

54 (4r* — 3s)?

56 (a* — a?)?

58 (¢ — d*)?

60 (x* — 2x + 3)?
62 (a+ b+ c+d?

Exer. 63-78: Factor the polynomial.

63 60xw + 70w

65 28x2 + 4x — 9

67 2wy + 3yx — 8wz — 12zx
69 8x* + 64y°

1 pt-q

73wt + 1

75 x* + 36

77 x° — 4x* + 8x? — 32

64 2ris* — 8rs’

66 16a* + 24a’h* + 9b*
68 2¢* — 12¢* + 3¢ — 18
70 wvt — uby

72 x* — 8x* + 16x?

74 3x + 6

76 x> — 49y — 14x + 49
78 4x* + 12x% + 20x?

Exer. 79-90: Simplify the expression.

796x2—7x—5 80r3—t3
4x? + 4x + 1 r2—1r
816x2—5x—6;2x2—3x 2 5
-4  x+2 4x—5 10x+ 1
7 3x 5 x+ x7?
83 . VA,
x+2 x+2? «x 1+ x7?
1 2 3
85 — — ——— — 86 (a' + b))
x x*+x x+3 (a )
PP 3 x 4
x+ 4 x+2 x+2
87 88
X 1 3 6
x+4 x+4 * xt2



89

90

91

92
93

(2 + D@ (x + 57 + (x + 5)E)2 + 1)"2(2x)

(4 — x)(3)6x + 1)2(6) — (6x + 1)"(—2x)
4 — x?)?

Express as a sum of terms of the form ax’, where r

+
Vx
is a rational number.

Express x* + x~ ' as a quotient.

Red blood cells in a body The body of an average person
contains 5.5 liters of blood and about 5 million red blood
cells per cubic millimeter of blood. Given that
1 L = 10° mm?, estimate the number of red blood cells in
an average person’s body.

94

95

96
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Heartbeats in a lifetime A healthy heart beats 70 to 90
times per minute. Estimate the number of heartbeats in the
lifetime of an individual who lives to age 80.

Body surface area At age 2 years, a typical boy is 91.2 cen-
timeters tall and weighs 13.7 kilograms. Use the DuBois
and DuBois formula, S = (0.007184)w%*>h%"% where w is
weight and /£ is height, to find the body surface area S (in
square meters).

Adiabatic expansion A gas is said to expand adiabatically
if there is no loss or gain of heat. The formula for the adia-
batic expansion of air is pv™'* = ¢, where p is the pressure,
v is the volume, and c is a constant. If, at a certain instant,
the pressure is 40 dyne/cm? and the volume is 60 cm?, find
the value of ¢ (a dyne is the unit of force in the cgs system).

CHAPTER 1 DISCUSSION EXERCISES

1

Credit card cash back For every $10 charged to a particular

credit card, 1 point is awarded. At the end of the year, 100
points can be exchanged for $1 in cash back. What percent
discount does this cash back represent in terms of the
amount of money charged to the credit card?

Determine the conditions under which Va> + b> = a + b.

Show that the sum of squares x> + 25 can be factored by
adding and subtracting a particular term and following the
method demonstrated in Example 10(c) of Section 1.3.

What is the difference between the expressions 1
X
-1
and - ?
x2 =1
Write the quotient of two arbitrary second-degree polyno-

mials in x, and evaluate the quotient with several large val-
ues of x. What general conclusion can you reach about such
quotients?

3x2—5x — 2
x2—4
expressions with a value of x (x # =2). Discuss what this

evaluation proves (or doesn’t) and what your simplification
proves (or doesn’t).

Simplify the expression . Now evaluate both

Party trick To guess your partner’s age and height, have
him/her do the following:

1 Write down his/her age.

2 Multiply it by 2.

3 AddSs.

4 Multiply this sum by 50.

5 Subtract 365.

6 Add his/her height (in inches).
7 Add 115.

The first two digits of the result equal his/her age, and the
last two digits equal his/her height. Explain why this is true.

Circuits problem In a particular circuits problem, the output
voltage is defined by

RXi
Vou = lin| — b
R —Xi

V., R — X — 3RXi
where I;, = —and Z, = ———————
Zin R — Xi
for V,, in terms of Vi, when R is equal to X.

. Find a formula

Relating baseball records Based on the number of runs
scored (S) and runs allowed (A), the Pythagorean winning
percentage estimates what a baseball team’s winning per-
centage should be. This formula, developed by baseball
statistician Bill James, has the form

SX
§+ AY

James determined that x = 1.83 yields the most accurate
results.

The 1927 New York Yankees are generally regarded as
one of the best teams in baseball history. Their record was
110 wins and 44 losses. They scored 975 runs while allow-
ing only 599.

(a) Find their Pythagorean win—loss record.

(b) Estimate the value of x (to the nearest 0.01) that best
predicts the 1927 Yankees’ actual win—loss record.
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Equations and
Inequalities

Methods for solving equations date back to the Babylonians (2000 B.C.),
who described equations in words instead of the variables—ux, y, and so
on—that we use today. Major advances in finding solutions of equations
then took place in Italy in the sixteenth century and continued throughout
the world well into the nineteenth century. In modern times, computers are
used to approximate solutions of very complicated equations.

Inequalities that involve variables have now attained the same level of
importance as equations, and they are used extensively in applications of
mathematics. In this chapter we shall discuss several methods for solving

basic equations and inequalities.
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CHAPTER 2 EQUATIONS AND INEQUALITIES

2.1

Equations

An equation (or equality) is a statement that two quantities or expressions are
equal. Equations are employed in every field that uses real numbers. As an il-
lustration, the equation

d=rt, or distance = (rate)(time),

is used in solving problems involving an object moving at a constant rate of
speed. If the rate r is 45 mi/hr (miles per hour), then the distance d (in miles)
traveled after time ¢ (in hours) is given by

d = 45t.

For example, if + = 2 hr, then d = 45 - 2 = 90 mi. If we wish to find how
long it takes the object to travel 75 miles, we let d = 75 and solve the
equation

75 = 45¢ or, equivalently, 45t = 75.

Dividing both sides of the last equation by 45, we obtain

Thus, if » = 45 mi/hr, then the time required to travel 75 miles is 1;2 hours, or
1 hour and 40 minutes.

Note that the equation d = rf contains three variables: d, r, and ¢. In much
of our work in this chapter we shall consider equations that contain only one
variable. The following chart applies to a variable x, but any other variable
may be considered. The abbreviations LS and RS in the second illustration
stand for the equation’s left side and right side, respectively.

Terminology

Definition Illustration

Equation in x

A statement of equality x? =5 =4x

involving one variable, x

Solution, or root, of
an equation in x

5 is a solution of x> — 5 = 4x,
since substitution gives us

LS: 52—-5=25—-5=20and
RS: 4 -5 =20,

and 20 = 20 is a true statement.

A number b that yields
a true statement when
substituted for x

A number b satisfies
an equation in x

b is a solution of the
equation

5 satisfies x> — 5 = 4x.

Equivalent equations

Equations that have
exactly the same
solutions

2x+1=7
2x=17—-1
2x =6
x=3

Solve an equation in x

Find all solutions of the
equation

To solve (x + 3)(x — 5) = 0,
set each factor equal to O:
x+3=0,x—5=0,
obtaining the solutions —3 and 5.
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An algebraic equation in x contains only algebraic expressions such as
polynomials, rational expressions, radicals, and so on. An equation of this type
is called a conditional equation if there are numbers in the domains of the ex-
pressions that are not solutions. For example, the equation x> = 9 is condi-
tional, since the number x = 4 (and others) is not a solution. If every number
in the domains of the expressions in an algebraic equation is a solution, the
equation is called an identity.

Sometimes it is difficult to determine whether an equation is conditional
or an identity. An identity will often be indicated when, after properties of real
numbers are applied, an equation of the form p = p is obtained, where p is
some expression. To illustrate, if we multiply both sides of the equation

x X
x2—=4 (x+2)(x—-2)

by x* — 4, we obtain x = x. This alerts us to the fact that we may have an
identity on our hands; it does not, however, prove anything. A standard method
for verifying that an equation is an identity is to show, using properties of real
numbers, that the expression which appears on one side of the given equation
can be transformed into the expression which appears on the other side of the
given equation. That is easy to do in the preceding illustration, since we know
that x> — 4 = (x + 2)(x — 2). Of course, to show that an equation is not an
identity, we need only find one real number in the domain of the variable that
fails to satisfy the original equation.

The most basic equation in algebra is the linear equation, defined in the
next chart, where a and b denote real numbers.

Terminology Definition Ilustration
Linear equation in x An equation that can be 4x+5=0

written in the form 4x = =5

ax + b =0, wherea # 0 x=—§

The illustration in the preceding chart indicates a typical method of solv-
ing a linear equation. Following the same procedure, we see that

if ax +b =0, then X = 0
provided a # 0. Thus, a linear equation has exactly one solution.

We sometimes solve an equation by making a list of equivalent equations,
each in some sense simpler than the preceding one, ending the list with an
equation from which the solutions can be easily obtained. We often simplify
an equation by adding the same expression to both sides or subtracting the
same expression from both sides. We can also multiply or divide both sides of
an equation by an expression that represents a nonzero real number. In the fol-
lowing examples, the phrases in color indicate how an equivalent equation was
obtained from the preceding equation. To shorten these phrases we have, as in
Example 1, used “add 7” instead of the more accurate but lengthy add 7 to
both sides. Similarly, “subtract 2x” is used for subtract 2x from both sides, and
“divide by 4” means divide both sides by 4.
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EXAMPLE 1 Solving a linear equation
Solve the equation 6x — 7 = 2x + 5.

SOLUTION  The equations in the following list are equivalent:

6x —7=2x+5 given
6x—7)+7=02x+5 +7 add 7
6x = 2x + 12 simplify
6x — 2x = (2x + 12) — 2x  subtract 2x
4x = 12 simplify
e _12 divide by 4
4 4
x =73 simplify

Check x=3 LS: 63)—-7=18-7=11
RS: 23) +5=6+5=11

Since 11 = 11 is a true statement, x = 3 checks as a solution. V4

As indicated in the preceding example, we often check a solution by sub-
stituting it into the given equation. Such checks may detect errors introduced
through incorrect manipulations or mistakes in arithmetic.

We say that the equation given in Example 1 has the solution x = 3. Simi-
larly, we would say that the equation x> = 4 has solutions x = 2 and x = —2.

The next example illustrates that a seemingly complicated equation may
simplify to a linear equation.

EXAMPLE 2 Solving an equation
Solve the equation (8x — 2)(3x + 4) = (4x + 3)(6x — 1).
SOLUTION  The equations in the following list are equivalent:

(8x —2)(Bx +4) = (4x + 3)(6x — 1) given
24x* + 26x — 8 = 24x2 + 14x — 3 multiply factors

26x — 8 = 14x — 3 subtract 24x?
12x — 8 = -3 subtract 14x
12x =5 add 8
x=3 divide by 12
Hence, the solution of the given equation is % 7/

We did not check the preceding solution because each step yields an
equivalent equation; however, when you are working exercises or taking a test,
it is always a good idea to check answers to guard against errors.

If an equation contains rational expressions, we often eliminate denomi-
nators by multiplying both sides by the lcd of these expressions. If we multi-
ply both sides by an expression that equals zero for some value of x, then the
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resulting equation may not be equivalent to the original equation, as illustrated
in the following example.

EXAMPLE 3 Anequation with no solutions

3
Solve the equation = 1+

x—2 x—2
SOLUTION
3x 6 )
=1+ given
x—2 X —
3 6
o x—2)=1)x—=2)+——= ) —2) multiply by x — 2
x—2 x—2
Ix=x—-2)+6 simplify
3x=x+4 simplify
2x =4 subtract x
x =2 divide by 2
312 6
v Check x=2 LS: L=—
2—-2 o0
Since division by 0 is not permissible, x = 2 is not a solution. Hence, the given
equation has no solutions. 7/

In the process of solving an equation, we may obtain, as a possible solu-
tion, a number that is not a solution of the given equation. Such a number is
called an extraneous solution or extraneous root of the given equation. In
Example 3, x = 2 is an extraneous solution (root) of the given equation.

The following guidelines may also be used to solve the equation in Ex-
ample 3. In this case, observing guideline 2 would make it unnecessary to
check the extraneous solution x = 2.

Guidelines for Solving 1 Determine the lcd of the rational expressions.
an Ec!uation Conta.ining 2 Find the values of the variable that make the lcd zero. These are not
Rational Expressions solutions, because they yield at least one zero denominator when sub-

stituted into the given equation.

3 Multiply each term of the equation by the lcd and simplify, thereby elim-
inating all of the denominators.

4 Solve the equation obtained in guideline 3.

5 The solutions of the given equation are the solutions found in guide-
line 4, with the exclusion of the values found in guideline 2.

We shall follow these guidelines in the next example.



58 CHAPTER 2 EQUATIONS AND INEQUALITIES

Figure 1

Celsius
scale

100

—100

_3
2(x — 2)

Fahrenheit
scale

212

—148

EXAMPLE 4 Anequation containing rational expressions

3 - 5 2
2x—4 x+3 x-—-2

Solve the equation

SOLUTION

Guideline 1  Rewriting the denominator 2x — 4 as 2(x — 2), we see that the
Icd of the three rational expressions is 2(x — 2)(x + 3).

Guideline 2 The values of x that make the lcd 2(x — 2)(x + 3) zero are 2 and
—3, so these numbers cannot be solutions of the equation.

Guideline 3 Multiplying each term of the equation by the lcd and simplifying
gives us the following:

2(x — 2)(x + 3) — )%32(,&’ - 2)(x + 3)= %2()6 - 2)(x +3)

X —
3x +3) — 10(x — 2) = 4(x + 3) cancel like factors
3x +9 — 10x + 20 = 4x + 12 multiply factors

Guideline 4 We solve the last equation obtained in guideline 3.

3x — 10x — 4x =12 — 9 — 20 subtract 4x, 9, and 20

—1lx = —17 combine like terms
17

X =1 divide by —11
Guideline 5 Since % is not included among the values (2 and —3) that make
the lcd zero (guideline 2), we see that x = % is a solution of the given
equation.
We shall not check the solution x = % by substitution, because the arith-
metic involved is complicated. It is simpler to carefully check the algebraic
manipulations used in each step. However, a calculator check is recommended.

/

Formulas involving several variables occur in many applications of math-
ematics. Sometimes it is necessary to solve for a specific variable in terms of
the remaining variables that appear in the formula, as the next two examples
illustrate.

EXAMPLE 5 Relationship between temperature scales

The Celsius and Fahrenheit temperature scales are shown on the thermometer
in Figure 1. The relationship between the temperature readings C and F' is
given by C = g(F — 32). Solve for F.

SOLUTION  To solve for F we must obtain a formula that has F by itself on
one side of the equals sign and does not have F on the other side. We may do
this as follows:



Figure 2

2.1 Equations 59

C= g(F — 32) given
gC =F—-32 multiply byg
IC+32=F add 32

F= %C + 32 equivalent equation /

We can make a simple check of our result in Example 5 as follows. Start
with C = g(F — 32) and substitute 212 (an arbitrary choice) for F to obtain
100 for C. Now let C = 100 in F = 2C + 32 to get F = 212. Again, this
check does not prove we are correct, but certainly lends credibility to our result.

EXAMPLE 6 Resistors connected in parallel
In electrical theory, the formula

1 1 1

e — + —
R R R,

is used to find the total resistance R when two resistors R, and R, are connected
in parallel, as illustrated in Figure 2. Solve for R;.

SOLUTION  We first multiply both sides of the given equation by the lcd of
the three fractions and then solve for R, as follows:

1 1 1

=— 4+ —
R R R,

given

1 1 1
— - RR\R, = — - RRR, + — - RR|R, multiply by the lcd, RR\R,
R R, R,

R,R, = RR, + RR, cancel common factors
R,R, — RR, = RR, collect terms with R, on one side
R/(R, — R) = RR, factor out R,
RR, .
R =——— divide by R, — R
R2 - R

. L. 1
An alternative method of solution is to first solve for —:
1

1 1 1 )

— = —+ — given

R R R
1 1 1 . .
—_ 4 — = — equivalent equation
R, R, R

1 1 1 1

— = — — —  gsubtract —

Rl R R2 Rz

— = combine fractions

R, RR,

If two nonzero numbers are equal, then so are their reciprocals. Hence,
RR,

R = ———.
"R, —R 7/
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2.1 Exercises

Exer. 1-44: Solve the equation. 33 x+3PF—-0Bx—1)P=x+4
1 =3x+4=-1 22x—=2=-9 34 (x — 1) = (x + 1)° — 6x2
34y —-3=-5x+6 4 5x —4=2(x—2) Ox 3 2x 6
T B 3 T are
5 42y + 5) = 3(5y — 2) * * o x
660y +3) —3(y—5 =0 gL, 3 _3x+8
Y Y h x+4 x—4 x*>-16
7%x+2:3—%x 8§x—1:4+%x ) 4 50+ 6
38 =
9 033 + 2x) + 1.2vx = 32 2x+3 -3 4&*-9
10 1.5x — 0.7 = 0.4(3 — 5x) j9 4 1 _5x-6
x+2 x—2 x*—4
113+5x_4—x 122x—9_2+i
5 5 1 D o2 3 _10x+s
2x+5 2x—5 4x>—-25
1323 w3
A+l 4 Tx—2 3x+1 a2 3 _Tz+7
2x+1 2x—1 4x>—1
5 3 3 6 1
58——=2+— 16 —+———=11 3 4 14x + 3
X X y y y 42 =

+ =
2x+5 2x—5 4x*-25
17 Bx— 22 =(x—5Ox + 4)

P B S U s
1B @+5P+3=0c-2 %+3 23 4x?-9
19 Gx—=7)2x+ 1) —10x(x —4) =0 " -3 . 7 —5x+4
20 2x +9)(dx —3) =8> — 12 x+4 x—4 x*-16
3x + 1 2x + 5 Sx +2 x— 8
A2 a3 w3 23
* * * . Exer. 45-50: Show that the equation is an identity.
— _ 2 2 — —
n2, 4 _ 7 TS5 4 5 45 (4x — 3)? — 16x? = 9 — 24x
5 10x+5 2x+1 3x—9 x-—3 6
46 Bx —4H2x+ 1)+ 5x=6x>— 4
3 5 3 9 7 2
25 — =— 26 — =— 2 — 3+
-4 3x-6 5 2+6 Sx+15 3 g "2 3 pra il S S S
x+3 x+2
27 2 — > =2 28 6 5=5 3x2+ 8 8 49x% — 25
-7 2+ 11 40 T2 % gy 50 — =7x+5
X X Tx — 5
29 1 . 4 30 4 B 12 —0
2x—1 8x—4 5x+2 15x+6
7 4 5 Exer. 51-52: For what value of ¢ is the number a a solution
31 y2_4_ y+2: y—2 of the equation?
+1+42=5c—3x+6; = -
. 4 10 1 51 4x + 1 + 2¢ =5¢c — 3x + 6; a 2

=+ =
2u—3 4u*—9 2u+3 52 3x =2+ 6¢c=2c —5x + 1; a=4



Exer. 53-54: Determine whether the two equations are
equivalent.

Tx 42

53 = =6

(a)x—S x—5 *
7 35

(b) —— = . x=5
x—5 x-—5

54 (a) S _ 72 9
x—7 x-T o
8 56

(b) —— = . x=7
x—=7 x-—=1

Exer. 55—-56: Determine values for a and b such that % is a
solution of the equation.

55 ax+b=0 56 ax>*+ bx =0

Exer. 57-58: Determine which equation is not equivalent to
the equation preceding it.
57 xX2—x—-2=x*—-4
+Dx—2)=x+2)x—-2)
x+1l=x+2
1=2
58 S5x+ 6=4x+3
¥+5x+6=x+4x+3
x+2)x+3) =+ x+3)
x+2=x+1
2=1

Exer. 59-62: Solve the formula for the specified variable.
59 EK + L =D — TK for K

60 CD + C = PC + N for C

o =210 623=1f‘afora
2.2
Applied Problems
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Exer. 63—76: The formula occurs in the indicated applica-
tion. Solve for the specified variable.

63 I = Prt for P

64 C = 2gqr for r

65 A = 3bh for h

66 V = 1mr’hforh
. mM
67 F = gﬁform

Vv
68 R=7f0r1

69 P =2l + 2w for w

70 A =P + Prtforr

71 A =(b, + byhfor b,

72 s = %gt2 + vt for v,

73 S—#forq

Cg+p-gq)

74 S = 2(lw + hw + hli) for h

75 ! 1+lf
—=—+ —forg
foor g
1 1 1 1
76 — = —+ + — for R,

R R R, R,

(simple interest)

(circumference of a circle)

(area of a triangle)

(volume of a cone)

(Newton’s law of
gravitation)

(Ohm’s law in electrical
theory)

(perimeter of a rectangle)

(principal plus interest)

(area of a trapezoid)

(distance an object falls)

(Amdahl’s law for
supercomputers)

(surface area of a
rectangular box)

(lens equation)

(three resistors connected
in parallel)

Equations are often used to solve applied problems—that is, problems that in-
volve applications of mathematics to other fields. Because of the unlimited va-
riety of applied problems, it is difficult to state specific rules for finding
solutions. The following guidelines may be helpful, provided the problem can

be formulated in terms of an equation in one variable.
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Guidelines for Solving
Applied Problems

1 If the problem is stated in writing, read it carefully several times and
think about the given facts, together with the unknown quantity that is
to be found.

2 Introduce a letter to denote the unknown quantity. This is one of the most
crucial steps in the solution. Phrases containing words such as what, find,
how much, how far, or when should alert you to the unknown quantity.

3 If appropriate, draw a picture and label it.

4 List the known facts, together with any relationships that involve the un-
known quantity. A relationship may be described by an equation in
which written statements, instead of letters or numbers, appear on one or
both sides of the equals sign.

5 After analyzing the list in guideline 4, formulate an equation that de-
scribes precisely what is stated in words.

6 Solve the equation formulated in guideline 5.

7 Check the solutions obtained in guideline 6 by referring to the original
statement of the problem. Verify that the solution agrees with the stated
conditions.

The use of these guidelines is illustrated in the next example.

EXAMPLE 1 Testaverage

A student in an algebra course has test scores of 64 and 78. What score on a
third test will give the student an average of 807

SOLUTION

Guideline 1 Read the problem at least one more time.

Guideline 2 The unknown quantity is the score on the third test, so we let
x = score on the third test.

Guideline 3 A picture or diagram is unnecessary for this problem.

Guideline 4 Known facts are scores of 64 and 78 on the first two tests. A re-
lationship that involves x is the average score of 64, 78, and x. Thus,

64 + 78 + x

average score = 3

Guideline 5  Since the average score in guideline 4 is to be 80, we consider the
equation
64 +78 +x
3

80.
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Guideline 6 We solve the equation formulated in guideline 5:

64 + 78 +x =803 multiply by 3
142 + x = 240 simplify
x = 98 subtract 142

Guideline 7 Check If the three test scores are 64, 78, and 98, then the
average is

64 + 78 + 98 240
— ===
3 3

as desired. V4

In the remaining examples, try to identify the explicit guidelines that are
used in the solutions.

EXAMPLE 2 (Calculating a presale price

A clothing store holding a clearance sale advertises that all prices have been
discounted 20%. If a shirt is on sale for $28, what was its presale price?

SOLUTION  Since the unknown quantity is the presale price, we let
x = presale price.
We next note the following facts:

0.20x

28 = sale price

discount of 20% on presale price

The sale price is determined as follows:
(presale price) — (discount) = sale price

Translating the last equation into symbols and then solving gives us

x — 0.20x = 28 formulate an equation
0.80x = 28 subtract 0.20x from 1x
28 .
X 35.  divide by 0.80

T 080
The presale price was $35.

Check If a $35 shirt is discounted 20%, then the discount (in dollars) is
(0.20)(35) = 7 and the sale price is 35 — 7, or $28.

Banks and other financial institutions pay interest on investments. Usually
this interest is compounded (as described in Section 5.2); however, if money is
invested or loaned for a short period of time, simple interest may be paid, using
the following formula.
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Simple Interest Formula If a sum of money P (the principal) is invested at a simple interest rate r
(expressed as a decimal), then the simple interest / at the end of ¢ years is

I = Prt.

The following table illustrates simple interest for three cases.

Principal P Interest rate r Number of years ¢ Interest I = Prt
$1000 8% = 0.08 1 $1000(0.08)(1) = $80
$2000 6% = 0.06 151 $2000(0.06)(1.5) = $180
$3200 5%% = 0.055 2 $3200(0.055)(2) = $352

EXAMPLE 3 Investing moneyin two stocks

An investment firm has $100,000 to invest for a client and decides to invest it
in two stocks, A and B. The expected annual rate of return, or simple interest,
for stock A is 15%, but there is some risk involved, and the client does not wish
to invest more than $50,000 in this stock. The annual rate of return on the more
stable stock B is anticipated to be 10%. Determine whether there is a way of
investing the money so that the annual interest is

(a) $12,000  (b) $13,000

SOLUTION  The annual interest is given by / = Pr, which comes from the
simple interest formula / = Prt with t+ = 1. If we let x denote the amount in-
vested in stock A, then 100,000 — x will be invested in stock B. This leads to
the following equalities:

x = amount invested in stock A at 15%

100,000 — x = amount invested in stock B at 10%
0.15x = annual interest from stock A
0.10(100,000 — x) = annual interest from stock B

Adding the interest from both stocks, we obtain
total annual interest = 0.15x + 0.10(100,000 — x).
Simplifying the right-hand side gives us

total annual interest = 10,000 + 0.05x. ()
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(3) The total annual interest is $12,000 if

10,000 + 0.05x = 12,000 from (*)
0.05x = 2000 subtract 10,000
2000

X = 40,000. divide by 0.05

©0.05

Thus, $40,000 should be invested in stock A, and the remaining $60,000
should be invested in stock B. Since the amount invested in stock A is not more
than $50,000, this manner of investing the money meets the requirement of
the client.

Check If $40,000 is invested in stock A and $60,000 in stock B, then the
total annual interest is

40,000(0.15) + 60,000(0.10) = 6000 + 6000 = 12,000.

(b) The total annual interest is $13,000 if

10,000 + 0.05x = 13,000 from ()
0.05x = 3000 subtract 10,000
3000
x = 0.05 = 60,000. divide by 0.05

Thus, $60,000 should be invested in stock A and the remaining $40,000 in
stock B. This plan does not meet the client’s requirement that no more than
$50,000 be invested in stock A. Hence, the firm cannot invest the client’s
money in stocks A and B such that the total annual interest is $13,000. V4

In certain applications, it is necessary to combine two substances to ob-
tain a prescribed mixture, as illustrated in the next two examples.

EXAMPLE 4 Mixing chemicals

A chemist has 10 milliliters of a solution that contains a 30% concentration of
acid. How many milliliters of pure acid must be added in order to increase the
concentration to 50%?

SOLUTION  Since the unknown quantity is the amount of pure acid to add,
we let

x = number of mL of pure acid to be added.

To help visualize the problem, let us draw a picture, as in Figure 1, and attach
appropriate labels.

(continued)
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Figure 1 Original 30% mixture Pure acid New 50% mixture
Total amount of solution: 10 mL 10 + x mL
Amount of pure acid: 0.30(10) = 3 mL 1.00(x) = x mL 0.50(10 + x) mL

Since we can express the amount of pure acid in the final solution as either
3 + x (from the first two beakers) or 0.50(10 + x), we obtain the equation

3+ x = 0.50(10 + x).

‘We now solve for x:

3+ x=5+05x multiply factors

05x =2 subtract 0.5x and 3
2 4 divide by 0.5
x=—= ivide .
05 veeny

Hence, 4 milliliters of pure acid should be added to the original solution.

Check If 4 milliliters of acid is added to the original solution, then the new
solution contains 14 milliliters, 7 milliliters of which is pure acid. This is the
desired 50% concentration. V4

EXAMPLE 5 Replacing antifreeze

A radiator contains 8 quarts of a mixture of water and antifreeze. If 40% of the
mixture is antifreeze, how much of the mixture should be drained and replaced
by pure antifreeze so that the resultant mixture will contain 60% antifreeze?

SOLUTION Let

x = number of qt of mixture to be drained.

Since there were 8 quarts in the original 40% mixture, we may depict the prob-
lem as in Figure 2.



Figure 2
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Original 40% mixture,
less amount drained Pure antifreeze New 60% mixture

&

@ —x)qt xqt 8 qt

Amount of pure antifreeze: 0.40(8 — x) qt 1.00(x) = x qt 0.60(8) = 4.8 qt

Since the number of quarts of pure antifreeze in the final mixture can be
expressed as either 0.40(8 — x) + x or 4.8, we obtain the equation

0.40(8 — x) + x = 4.8.

‘We now solve for x:

32 —04x + x =438 multiply factors
0.6x=1.6 combine x terms and subtract 3.2

L6 _16_38  iidebyos
0.6 6 ivide by 0.

Thus, % quarts should be drained from the original mixture.

Check Let us first note that the amount of antifreeze in the original 8-quart
mixture was 0.4(8), or 3.2 quarts. In draining _% quarts of the original 40% mix-

ture, we lose 0.4(%) quarts of antifreeze, and so 3.2 — 0.4@) quarts of an-
tifreeze remain after draining. If we then add § quarts of pure antifreeze, the

amount of antifreeze in the final mixture is
32-04(8) +E=48qt
This number, 4.8, is 60% of 8. V4

EXAMPLE 6 Comparing times traveled by cars

Two cities are connected by means of a highway. A car leaves city B at
1:00 P.M. and travels at a constant rate of 40 mi/hr toward city C. Thirty min-
utes later, another car leaves B and travels toward C at a constant rate of
55 mi/hr. If the lengths of the cars are disregarded, at what time will the sec-
ond car reach the first car?

SOLUTION  Letzdenote the number of hours after 1:00 p.M. traveled by the
first car. Since the second car leaves B at 1:30 P.M., it has traveled% hour less
than the first. This leads to the following table.

(continued)
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Figure 4

Car Rate (mi/hr) Hours traveled Miles traveled
First car 40 t 40t
Second car 55 r— % 55(t - %)

The schematic drawing in Figure 3 illustrates possible positions of the cars
¢ hours after 1:00 PM. The second car reaches the first car when the number of
miles traveled by the two cars is equal—that is, when

55(t — 1) = 40z,

Figure 3

40¢ |

® -———T - ———1
W
[,

We now solve for ¢:

55t — % = 40¢ multiply factors
15t = % subtract 40t and add %
r=2="4"divideby 15

Thus, ¢ is lg hours or, equivalently, 1 hour 50 minutes after 1:00 p.M. Conse-
quently, the second car reaches the first at 2:50 P.M.

Check At 2:50 P.M. the first car has traveled for lg hours, and its distance

from B is 40(%) = 23& mi. At 2:50 P.M. the second car has traveled for 151 hours

and is 55(%) = % mi from B. Hence, they are together at 2:50 P.M. V4

EXAMPLE 7 Constructing a grain-elevator hopper

A grain-elevator hopper is to be constructed as shown in Figure 4, with a right
circular cylinder of radius 2 feet and altitude & feet on top of a right circular
cone whose altitude is one-half that of the cylinder. What value of /4 will make
the total volume V of the hopper 500 ft*?
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SOLUTION  If Veyinger and Vo denote the volumes (in ft*) and Aeyjinger and
heon. denote the heights (in feet) of the cylinder and cone, respectively, then,
using the formulas for volume stated on the endpapers at the front of the text,
we obtain the following:

chlinder = Wrzhcylinder = 7T(2)2h = 47Th

Vcone = %Wrzhcone = %7(2)2(%11) = %Wh

Since the total volume V of the hopper is to be 500 ft}, we must have

477h + %Wh = 500 chlindcr + Vconc = Vioul
127h + 27h = 1500 multiply by 3
147h = 1500 combine terms
1500
h = Tam =~ 34.1ft. divide by 147 v

EXAMPLE 8 Time required to do a job

Two pumps are available for filling a gasoline storage tank. Pump A, used
alone, can fill the tank in 3 hours, and pump B, used alone, can fill it in 4 hours.
If both pumps are used simultaneously, how long will it take to fill the tank?

SOLUTION Let # denote the number of hours needed for A and B to fill the
tank if used simultaneously. It is convenient to introduce the part of the tank
filled in 1 hour as follows:

= part of the tank filled by A in 1 hr

Bl= Q=

= part of the tank filled by B in 1 hr

1
P part of the tank filled by A and B in 1 hr

Using the fact that

<part filled by) N <part filled by) . ( part filled by )

Ain 1 hr Bin1 hr AandBin 1 hr
we obtain
1 1 1 7 1
-t —=—, or =
3 4 t 12 t

Taking the reciprocal of each side of the last equation gives us t = 17—2 Thus, if

pumps A and B are used simultaneously, the tank will be filled in 1% hours, or
approximately 1 hour 43 minutes. V4
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Exercises

Test scores A student in an algebra course has test scores of
75, 82,71, and 84. What score on the next test will raise the
student’s average to 80?

Finalclass average Before the final exam, a student has test
scores of 72, 80, 65, 78, and 60. If the final exam counts as
one-third of the final grade, what score must the student re-
ceive in order to have a final average of 76?

Gross pay A worker’s take-home pay is $492, after deduc-
tions totaling 40% of the gross pay have been subtracted.
What is the gross pay?

Cost of dining out A couple does not wish to spend more
than $70 for dinner at a restaurant. If a sales tax of 6% is
added to the bill and they plan to tip 15% after the tax has
been added, what is the most they can spend for
the meal?

Intelligence quotient A person’s intelligence quotient (IQ)
is determined by multiplying the quotient of his or her men-
tal age and chronological age by 100.

(a) Find the IQ of a 12-year-old child whose mental age is
15.

(b) Find the mental age of a person 15 years old whose 1Q
is 140.

Earth’s surface area Water covers 70.8%, or about
361 X 10° km?, of Earth’s surface. Approximate the total
surface area of Earth.

Cost of insulation The cost of installing insulation in a par-
ticular two-bedroom home is $2400. Present monthly heat-
ing costs average $200, but the insulation is expected to
reduce heating costs by 10%. How many months will it take
to recover the cost of the insulation?

Overtime pay A workman’s basic hourly wage is $10, but
he receives one and a half times his hourly rate for
any hours worked in excess of 40 per week. If his paycheck
for the week is $595, how many hours of overtime did
he work?

Savings accounts An algebra student has won $100,000 in
a lottery and wishes to deposit it in savings accounts in two
financial institutions. One account pays 8% simple interest,
but deposits are insured only to $50,000. The second

10

n

12

13

14

15

account pays 6.4% simple interest, and deposits are insured
up to $100,000. Determine whether the money can be
deposited so that it is fully insured and earns annual interest
of $7500.

Municipal funding A city government has approved the
construction of an $800 million sports arena. Up to
$480 million will be raised by selling bonds that pay simple
interest at a rate of 6% annually. The remaining amount (up
to $640 million) will be obtained by borrowing money from
an insurance company at a simple interest rate of 5%. De-
termine whether the arena can be financed so that the annual
interest is $42 million.

Movie attendance Six hundred people attended the pre-
miere of a motion picture. Adult tickets cost $9, and child-
ren were admitted for $6. If box office receipts totaled
$4800, how many children attended the premiere?

Hourly pay A consulting engineer’s time is billed at $60 per
hour, and her assistant’s is billed at $20 per hour. A cus-
tomer received a bill for $580 for a certain job. If the assis-
tant worked 5 hours less than the engineer, how much time
did each bill on the job?

Preparing a glucose solution In a certain medical test
designed to measure carbohydrate tolerance, an adult drinks
7 ounces of a 30% glucose solution. When the test is
administered to a child, the glucose concentration must be
decreased to 20%. How much 30% glucose solution and
how much water should be used to prepare 7 ounces of 20%
glucose solution?

Preparing eye drops A pharmacist is to prepare
15 milliliters of special eye drops for a glaucoma patient.
The eye-drop solution must have a 2% active ingredient, but
the pharmacist only has 10% solution and 1% solution in
stock. How much of each type of solution should be used to
fill the prescription?

Preparing an alloy British sterling silver is a copper-silver
alloy that is 7.5% copper by weight. How many grams of
pure copper and how many grams of British sterling silver
should be used to prepare 200 grams of a copper-silver alloy
that is 10% copper by weight?



16 Drug concentration Theophylline, an asthma medicine, is
to be prepared from an elixir with a drug concentration of
5 mg/mL and a cherry-flavored syrup that is to be added to
hide the taste of the drug. How much of each must be used
to prepare 100 milliliters of solution with a drug concentra-
tion of 2 mg/mL?

17 Walking rates Two children, who are 224 meters apart, start
walking toward each other at the same instant at rates of
1.5 m/sec and 2 m/sec, respectively (see the figure).

(a) When will they meet?

(b) How far will each have walked?

Exercise 17

1.5 m/s 2 m/s
— e

224 m

18 Running rates A runner starts at the beginning of
a runners’ path and runs at a constant rate of 6 mi/hr.
Five minutes later a second runner begins at the same point,
running at a rate of 8 mi/hr and following the same course.
How long will it take the second runner to reach the first?

19 Snowplow speed At 6 A.M. a snowplow, traveling at a con-
stant speed, begins to clear a highway leading out of town.
At 8 A.M. an automobile begins traveling the highway at a
speed of 30 mi/hr and reaches the plow 30 minutes later.
Find the speed of the snowplow.

20 Two-way radio range Two children own two-way radios
that have a maximum range of 2 miles. One leaves a certain
point at 1:00 P.M., walking due north at a rate of 4 mi/hr.
The other leaves the same point at 1:15 P.M., traveling due
south at 6 mi/hr. When will they be unable to communicate
with one another?

21 Rowing rate A boy can row a boat at a constant rate of
5 mi/hr in still water, as indicated in the figure. He rows up-
stream for 15 minutes and then rows downstream, returning
to his starting point in another 12 minutes.
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Exercise 21

Upstream net speed = 5 — x mi/hr

x mi/hr
\w

(a) Find the rate of the current.

(b) Find the total distance traveled.

22 Gas mileage A salesperson purchased an automobile that
was advertised as averaging 25 mi/gal in the city and
40 mi/gal on the highway. A recent sales trip that covered
1800 miles required 51 gallons of gasoline. Assuming that
the advertised mileage estimates were correct, how many
miles were driven in the city?

23 Distance to a target A bullet is fired horizontally at a
target, and the sound of its impact is heard 1.5 seconds later.
If the speed of the bullet is 3300 ft/sec and the speed of
sound is 1100 ft/sec, how far away is the target?

24 Jogging rates A woman begins jogging at 3:00 P.M., run-
ning due north at a 6-minute-mile pace. Later, she reverses
direction and runs due south at a 7-minute-mile pace. If she
returns to her starting point at 3:45 P.M., find the total num-
ber of miles run.

25 Fencing a region A farmer plans to use 180 feet of fencing
to enclose a rectangular region, using part of a straight river
bank instead of fencing as one side of the rectangle, as
shown in the figure on the next page. Find the area of the
region if the length of the side parallel to the river bank is

(a) twice the length of an adjacent side.
(b) one-half the length of an adjacent side.

(c) the same as the length of an adjacent side.
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Exercise 25

House dimensions Shown in the figure is a cross section of
a design for a two-story home. The center height / of the
second story has not yet been determined. Find % such that
the second story will have the same cross-sectional area as
the first story.

Exercise 26

CROSS SECTION — AA

Window dimensions A stained-glass window is being de-
signed in the shape of a rectangle surmounted by a semicir-
cle, as shown in the figure. The width of the window is to
be 3 feet, but the height /4 is yet to be determined. If 24 ft>
of glass is to be used, find the height &.

Exercise 27

28

Drainage ditch dimensions Every cross section of a
drainage ditch is an isosceles trapezoid with a small base of
3 feet and a height of 1 foot, as shown in the figure. Deter-
mine the width of the larger base that would give the ditch
a cross-sectional area of 5 ft*.

Exercise 28
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Constructing a silo A large grain silo is to be constructed
in the shape of a circular cylinder with a hemisphere
attached to the top (see the figure). The diameter of the silo
is to be 30 feet, but the height is yet to be determined. Find
the height & of the silo that will result in a capacity of
11,2507 ft.

Exercise 29

| |
30—

Dimensions of a cone The wafer cone shown in the figure
is to hold 8 in® of ice cream when filled to the bottom. The
diameter of the cone is 2 inches, and the top of the ice cream
has the shape of a hemisphere. Find the height / of the cone.

| 2’ |
| |
I |

Exercise 30

Lawn mowing rates It takes a boy 90 minutes to mow the
lawn, but his sister can mow it in 60 minutes. How long
would it take them to mow the lawn if they worked together,
using two lawn mowers?
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Filling a swimming pool With water from one hose, a swim-
ming pool can be filled in 8 hours. A second, larger hose used
alone can fill the pool in 5 hours. How long would it take to
fill the pool if both hoses were used simultaneously?

Delivering newspapers It takes a girl 45 minutes to deliver
the newspapers on her route; however, if her brother helps,
it takes them only 20 minutes. How long would it take her
brother to deliver the newspapers by himself?

Emptying a tank A water tank can be emptied by using one
pump for 5 hours. A second, smaller pump can empty the
tank in 8 hours. If the larger pump is started at 1:00 P.M., at
what time should the smaller pump be started so that the
tank will be emptied at 5:00 P.M.?

Grade point average (GPA) A college student has finished
48 credit hours with a GPA of 2.75. To get into the program
she wishes to enter, she must have a GPA of 3.2. How
many additional credit hours of 4.0 work will raise her
GPA to 3.27

Ohm’s law In electrical theory, Ohm’s law states that
I = V/R, where I is the current in amperes, V is the elec-
tromotive force in volts, and R is the resistance in ohms. In
a certain circuit V = 110 and R = 50. If V and R are to be
changed by the same numerical amount, what change in
them will cause / to double?

Air temperature Below the cloud base, the air temperature
T (in °F) at height A (in feet) can be approximated by the
equation 7 = T, — (%)h, where T is the temperature at
ground level.

(a) Determine the air temperature at a height of 1 mile if
the ground temperature is 70°F.

(b) At what altitude is the temperature freezing?
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Height of a cloud The height % (in feet) of the cloud base
can be estimated using h = 227(T — D), where T is the
ground temperature and D is the dew point.

(a) If the temperature is 70°F and the dew point is 55°F,
find the height of the cloud base.

(b) If the dew point is 65°F and the cloud base is 3500 feet,
estimate the ground temperature.

A cloud’s temperature The temperature 7 within a cloud at
height & (in feet) above the cloud base can be
approximated using the equation 7 = B — (T%oo)hv where B
is the temperature of the cloud at its base. Determine the
temperature at 10,000 feet in a cloud with a base tempera-
ture of 55°F and a base height of 4000 feet. Note: For an
interesting application involving the three preceding exer-
cises, see Exercise 6 in the Discussion Exercises at the end
of the chapter.

Bone-height relationship Archeologists can determine the
height of a human without having a complete skeleton. If an
archeologist finds only a humerus, then the height of the
individual can be determined by using a simple linear re-
lationship. (The humerus is the bone between the shoulder
and the elbow.) For a female, if x is the length of the
humerus (in centimeters), then her height /4 (in centimeters)
can be determined using the formula 4 = 65 + 3.14x. For a
male, 4 = 73.6 + 3.0x should be used.

(a) A female skeleton having a 30-centimeter humerus is
found. Find the woman’s height at death.

(b) A person’s height will typically decrease by 0.06 cen-
timeter each year after age 30. A complete male skele-
ton is found. The humerus is 34 centimeters, and the
man’s height was 174 centimeters. Determine his ap-
proximate age at death.

A toy rocket is launched vertically upward from level ground, as illustrated
in Figure 1. If its initial speed is 120 ft/sec and the only force acting on it is
gravity, then the rocket’s height £ (in feet) above the ground after ¢ seconds

h = —161* + 120t

Some values of & for the first 7 seconds of flight are listed in the following

table.

t (sec)

0 1 2 3 4 5 6 7

h (ft)

0 104 176 216 224 200 144 56
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Figure 1

|
|
-

We see from the table that, as it ascended, the rocket was 180 feet above
the ground at some time between t = 2 and r = 3. As it descended, the rocket
was 180 feet above the ground at some time between t = 5 and r = 6. To find
the exact values of 7 for which 2 = 180 ft, we must solve the equation

180 = —16¢% + 120¢,
or 1612 — 120r + 180 = 0.

As indicated in the next chart, an equation of this type is called a quadratic
equation in t. After developing a formula for solving such equations, we will
return to this problem in Example 13 and find the exact times at which the
rocket was 180 feet above the ground.

Terminology Definition Illustrations
Quadratic equation in x An equation that can 4x> =8 — 1lx
be written in the form x3+x)=5
ax’> + bx + ¢ =0, 4x = x?
where a # 0

To enable us to solve many types of equations, we will make use of the
next theorem.

Zero Factor Theorem

If p and g are algebraic expressions, then

pg =0 ifandonlyif p=0 or ¢qg=0.

The zero factor theorem can be extended to any number of algebraic ex-
pressions—that is,

pgr =0 ifandonlyif p=0 or ¢g=0 or r=0,

and so on. It follows that if ax? + bx + ¢ can be written as a product of two
first-degree polynomials, then solutions can be found by setting each factor
equal to 0, as illustrated in the next two examples. This technique is called the
method of factoring.

EXAMPLE 1 Solving an equation by factoring

Solve the equation 3x? = 10 — x.
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SOLUTION  To use the method of factoring, it is essential that only the num-
ber O appear on one side of the equation. Thus, we proceed as follows:

3x2 =10 — x given

3x2+x—-10=0 add x — 10
Bx—5x+2)=0 factor
3x—=5=0, x+2=0 zero factor theorem
X = %, x= -2 solve for x
Hence, the solutions of the given equation are g and —2. /

EXAMPLE 2 Solving an equation by factoring
Solve the equation x* + 16 = 8x.
SOLUTION  We proceed as in Example 1:
x*+ 16 = 8x  given
x* =8 + 16 =0  subtract 8x
(x—4)(x—4) =0 factor
x—4=0, x—4=0  zero factor theorem

x =4, x=4 solve for x

Thus, the given quadratic equation has one solution, 4. /

Since x — 4 appears as a factor twice in the previous solution, we call 4 a
double root or root of multiplicity 2 of the equation x> + 16 = 8x.

If a quadratic equation has the form x? = d for some number d > 0, then
x* — d = 0 or, equivalently,

(x + Va)(x — V) =o.

Setting each factor equal to zero gives us the solutions —\/d and \V/d. We fre-
quently use the symbol +\/d (plus or minus \/d) to represent both \/d and
—Vd. Thus, for d > 0, we have proved the following result. (The case d < 0
requires the system of complex numbers discussed in Section 2.4.)

A Special Quadratic Equation

If x2 = d, then x = =\/d.

Note on Notation: It is common practice to allow one variable to represent
more than one value, as in x = *£3. A more descriptive notation is x;, = =3,
implying that x;, = 3 and x, = —3.

The process of solving x> = d as indicated in the preceding box is re-
ferred to as taking the square root of both sides of the equation. Note that if
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d > 0 we obtain both a positive square root and a negative square root, not just
the principal square root defined in Section 1.2.

EXAMPLE 3 Solving equations of the form x2 = d
Solve the equations:
@ x*=5 (b) x+3)2=5
SOLUTION
@) x*=5 given
x=*V5 take the square root

Thus, the solutions are \/5 and —\/3.

(b) x+32=5 given
x+3=*+V5 take the square root
x=-3*V5 subtract3
Thus, the solutions are —3 + V5 and —3 — /5. P4

In the work that follows we will replace an expression of the form x? + kx
by (x + d)? where k and d are real numbers. This procedure, called complet-
ing the square for x> + kx, calls for adding (k/2)?, as described in the next
box. (The same procedure is used for x> — kx.)

Completing the Square

0|

2
To complete the square for x> + kx or x> — kx, add ( > : that is, add the

square of half the coefficient of x.

(1)x2+kx+<

(2)x2—kx+<

EXAMPLE 4 Completing the square

Determine the value or values of d that complete the square for each expression.
Write the trinomial and the square of the binomial it represents.

(@ x*—3x+d (b) x* + dx + 64

SOLUTION

(a) The square of half the coefficient of x is ( 3)2 i

—3) = 7. Thus,d = %and

x2—3x+%=(x—%)2.
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(b) If (x + ¢)* = x* + dx + 64, then x* + 2¢cx + ¢ = x> + dx + 64, so
¢? must equal 64 and 2¢ must equal d. Hence, ¢ must equal 8 or —8, and since
d = 2c¢, d could equal 16 or —16. So we could have

X2+ 16x+ 64 = (x +8)? or x*— 16x+ 64 = (x — 8)~ V4

In the next example we solve a quadratic equation by completing a square.

EXAMPLE 5 Solving a quadratic equation by completing the square
Solve the equation x> — 5x + 3 = 0.

SOLUTION It is convenient to first rewrite the equation so that only terms
involving x are on the left-hand side, as follows:

x2=5x+3=0 given
x*—5x=-3 subtract 3
x? —5x + (%)2 = -3+ (%)2 complete the square,
adding (%)“ to both sides
S n s
x—=3) =3 equivalent equation
X — % == 14—3 take the square root
5+\/13 5+ VI3 L
X =—=x = =
27 2 2 M
Thus, the solutions of the equation are (5 + V 13)/2 ~ 4.3 and
(5 -V13)/2=07. /

In Example 5, we solved a quadratic equation of the form
ax* + bx + ¢ = 0 witha = 1. If a # 1, we can solve the quadratic equation
by adding a step to the procedure used in the preceding example. After rewrit-
ing the equation so that only terms involving x are on the left-hand side,

ax®> + bx = —c,
we divide both sides by a, obtaining
c
X+ —x=—-——.
a a

b 2
We then complete the square by adding <2—> to both sides. This technique is
a

used in the proof of the following important formula.

Quadratic Formula

If a # 0, the roots of ax* + bx + ¢ = 0 are given by

_ —b £ Vb — dac

T 2a
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The quadratic formula gives us two
solutions of the equation

ax>+ bx +c=0.

They are x = x,, x,, where
) 1 2

_ —b+ Vb — dac

X1

2a
and
—b — Vb* — 4ac
Xy — .
B 2a

INEQUALITIES

PROOF  We shall assume that 5> — 4ac = 0 so that \Vb* — 4ac is a real
number. (The case in which b* — 4ac < 0 will be discussed in the next sec-
tion.) Let us proceed as follows:

ax*+bx+c=0 given
ax®> + bx = —c subtract ¢
, . b c .
Xt —x=—-—— divide by a
a a
) b b\ b\ c
xt+—x+|=—)=\—] —— complete the square
a 2a 2a a
b\ b —dac ) )
Xt~ =—5 equivalent equation
2a 4a
b b* — 4ac
Xt ==\ —FF take the square root
2a 4a
b b* — 4ac b
xX=—-——= ————  subtract —
2a 4a® 2a

We may write the radical in the last equation as

bz—4ac_+ \/b2—4ac_+ \V'b*> — dac

N 4@ T N T |2
Since |2a| = 2aif a > 0 or |2a| = —2aif a < 0, we see that in all cases
__£+\/b2—4ac_—bi\/b2—4ac
o 2a 2a 2a ' V4

Note that if the quadratic formula is executed properly, it is unnecessary
to check the solutions.

The number b* — 4ac under the radical sign in the quadratic formula
is called the discriminant of the quadratic equation. The discriminant can
be used to determine the nature of the roots of the equation, as in the follow-
ing chart.

Value of the discriminant Nature of the roots of
b* — dac ax*+bx+c=0
Positive value Two real and unequal roots
0 One root of multiplicity 2
Negative value No real root

The discriminant in the next two examples is positive. In Example 8 the
discriminant is 0.



Note that

3+V3

3
# — + /3,
2 2

The 2 in the denominator must be
divided into both terms of the numera-
tor, so

3xV3 3
2 2
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EXAMPLE 6 Using the quadratic formula
Solve the equation 4x? + x — 3 = 0.
SOLUTION Leta =4,b = 1,and ¢ = —3 in the quadratic formula:

L TLEVIP A e VE e
2(4) T 2a
-1+ V49 o o
= T simplify the discriminant
-1=x=7
= V49 =17
8
Hence, the solutions are
-1 +7 3 q -1-7 |
x = =— and x= = -1
8 4 8 7/

Example 6 can also be solved by factoring. Writing (4x — 3)(x + 1) = 0
and setting each factor equal to zero gives us x = % and x = —1.

EXAMPLE 7 Using the quadratic formula
Solve the equation 2x(3 — x) = 3.

SOLUTION  To use the quadratic formula, we must write the equation in the
form ax> + bx + ¢ = 0. The following equations are equivalent:
2x(3 —x) =3 given
6x — 2x?> =3  multiply factors
—2x2 4+ 6x —3 =0 subtract3
2x> = 6x +3 =0 multiply by —1

We now leta = 2, b = —6, and ¢ = 3 in the quadratic formula, obtaining
(=6 = V(-6 —402)3) 6=xVI2 6x2V3
* 202) 4 4

Since 2 is a factor of the numerator and denominator, we can simplify the last
fraction as follows:

23+V3) 3+V3
2.2 2

Hence, the solutions are

+ —
ﬂ ~ 237 and ﬂ =~ 0.63.
2 2 7/



80 CHAPTER 2 EQUATIONS AND INEQUALITIES
The following example illustrates the case of a double root.

EXAMPLE 8 Using the quadratic formula

Solve the equation 9x> — 30x + 25 = 0.

SOLUTION Leta =9,b = —30, and ¢ = 25 in the quadratic formula:

. —(—=30) = V(—=30)*> — 4(9)(25) b= VB = dac
2(9) o 2a
30 = V900 — 900 -
= 13 simplify
_30x0_ 5
18
. 5
Consequently, the equation has one (double) root, 3. /

EXAMPLE 9 C(learing an equation of fractions

2x 5 36
+ = :
x—3 x+3 x¥*-9

Solve the equation

SOLUTION  Using the guidelines stated in Section 2.1 for solving an equa-
tion containing rational expressions, we multiply by the led, (x + 3)(x — 3),
remembering that, by guideline 2, the numbers (—3 and 3) that make the lcd
zero cannot be solutions. Thus, we proceed as follows:

2 + > = 36 given
x—3 x+3 x¥*-9
2x(x + 3) + 5(x — 3) = 36 multiply by the led, (x + 3)(x — 3)
22+ 6x+5x—15-36=0 multiply factors and subtract 36
2x2 4+ 11x =51 =0 simplify
2x+17)x—-3)=0 factor
2x+17=0, x—3=0 zero factor theorem
X = —%, x=3 solve for x
Since x = 3 cannot be a solution, we see that x = —% is the only solution of
the given equation. /

The next example shows how the quadratic formula can be used to help
factor trinomials.
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EXAMPLE 10 Factoring with the quadratic formula
Factor the polynomial 21x% — 13x — 20.

SOLUTION  We solve the associated quadratic equation,
21x* — 13x — 20 = 0,

by using the quadratic formula:

1) =V(—13)? — 4(21)(—20)

2021)
13 = V169 + 1680 13 * \/1849
4 42

1343 56 30 4 5

42 42 4 3 7

We now write the equation as a product of linear factors, both of the form
(x — solution):

BGx—4(Tx+5 =0

The left side is the desired factoring—that is,
21x? — 13x — 20 = (3x — 4)(7x + 5). /

In the next example, we use the quadratic formula to solve an equation
that contains more than one variable.

EXAMPLE 11 Using the quadratic formula

Solve y = x? — 6x + 5 for x, where x < 3.

SOLUTION  The equation can be written in the form
x2—6x+5—y=0,

so it is a quadratic equation in x with coefficients a = 1, b = —6, and
(continued)
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Figure 2

¢ =5 — y. Notice that y is considered to be a constant since we are solving
for the variable x. Now we use the quadratic formula:

O = VP 4G ) b Vi dac
2(1) 2a
6 £ V16 + 4y o
= f simplify b* — 4ac
6+ V4AV4 +
= fy factor out \V/4
6 £2V4 +
=== Vi=2
2
=3+ V4d+y divide 2 into both terms

Since V4 + yis nonnegative, 3 + V4 + y is greater than or equal to 3 and
3 — V4 + yis less than or equal to 3. Because the given restriction is x = 3,
we have

x=3—-V4+y. /

Many applied problems lead to quadratic equations. One is illustrated in
the following example.

EXAMPLE 12 Constructing a rectangular box

A box with a square base and no top is to be made from a square piece of tin
by cutting out a 3-inch square from each corner and folding up the sides. If the
box is to hold 48 in’, what size piece of tin should be used?

SOLUTION  We begin by drawing the picture in Figure 2, letting x denote
the unknown length of the side of the piece of tin. Subsequently, each side of
the base of the box will have lengthx —3 — 3 =x — 6.

Since the area of the base of the box is (x — 6)* and the height is 3, we
obtain

volume of box = 3(x — 6)%

Since the box is to hold 48 in?,

3(x — 6)* = 48.
We now solve for x:
(x—6)2 =16 divide by 3
x—6==*4 take the square root
x=6x4 add6



Note that the equation is quadratic in
t, so the quadratic formula is solved
for t.
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Consequently,
x =10 or x=2.

Check Referring to Figure 2, we see that x = 2 is unacceptable, since
no box is possible in this case. However, if we begin with a 10-inch square of
tin, cut out 3-inch corners, and fold, we obtain a box having dimensions
4 inches, 4 inches, and 3 inches. The box has the desired volume of 48 in>.
Thus, a 10-inch square is the answer to the problem. /

As illustrated in Example 12, even though an equation is formulated cor-
rectly, it is possible to arrive at meaningless solutions because of the physical
nature of a given problem. Such solutions should be discarded. For example,
we would not accept the answer —7 years for the age of an individual or \/50
for the number of automobiles in a parking lot.

In the next example we solve the applied problem discussed at the begin-
ning of this section.

EXAMPLE 13 Finding the height of a toy rocket

The height above ground /4 (in feet) of a toy rocket, ¢ seconds after it is
launched, is given by A = —16¢> + 120r. When will the rocket be 180 feet
above the ground?

SOLUTION Using h = —16¢> + 120z, we obtain the following:

180 = —16¢2 + 120t leth = 180
16t — 120t + 180 = 0 add 167> — 120¢
47 — 30t +45=0 divide by 4

Applying the quadratic formula with a = 4, b = —30, and ¢ = 45 gives us

L —(=30) = V(=30)> — 4(4)(45)
- 2(4)
:30¢\/180:30¢6\G: 15 + 3V5
8 8 4 '

Hence, the rocket is 180 feet above the ground at the following times:

15 - 3V5
t=—\[%2.07sec

15 + 3V5
I=T\[z5.4356c P
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2.3

Exercises

Exer. 1-14: Solve the equation by factoring.

16x*?+x—12=0
3 15x2 — 12 = —8x
5 2x(4x + 15) = 27
7 75x*+35x — 10 =0
9 12x* + 60x + 75 = 0

2x 5 18
1 + 24—

x+3 x x2+ 3x
PRI AP S

x—2 x x2 = 2x

S5x 4 90
13 + =

x—3 x+3 x>-9
14 3x N 1 -4

x—2 x+2 x>-4

24x*+x—-14=0
4 15x% — 14 = 29x
6 x(3x + 10) = 77
8 48x>+ 12x — 90 =0

10 4x? —72x + 324 =0

Exer. 15-16: Determine whether the two equations are

equivalent.
15 (a) x*=16,x=4
16 (a) x2=25,x=5

(b) x=V9,x=3
(b) x=V64 x=38

Exer. 17-24: Solve the equation by using the special quad-

ratic equation on page 75.
17 x* =169

19 25x2 =9
21 (x — 3 =17
23 4(x + 2 =11

18 x? = 361

20 16x* = 49

22 (x + 4)2 = 31
24 9(x — 12 =7

Exer. 25-26: Determine the value or values of d that com-
plete the square for the expression.

25 (a) x>+ 9x+d
(c) x*+dx + 36
26 (a) x>+ 13x+d

(c) x> +dx +25

(b) x> = 8x+d

49
(d) x> +dx + 7
(b) x> —6x+d

81
(d) x* +dx +5

Exer. 27-30: Solve by completing the square. (Nofe: See the
discussion after Example 5 for help in solving Exercises 29

and 30.)
27 x>+ 6x+7=0 28 x2 =8+ 11 =0

29 4x* = 12x— 11 =0 30 4x? +20x + 13 =0

Exer. 31-44: Solve by using the quadratic formula.

31 6x2—x =2 32 5x2+ 13x =6
33 x24+4+2=0 34 x2—6x—3=0
3522 —3x—4=0 36 3x2+5x+1=0
3732 -47-1=0 383 +35+1=0
+ —

302105 jort 1 _x-2
w2 w 3x+2 2x—3
41 4x* + 81 = 36x 42 24x + 9 = —16x?

5x 1 4
43x2+9:—1 447x2+1=7x

Exer. 45-48: Use the quadratic formula to factor the ex-
pressions.

45 x4+ x — 30 46 x>+ Tx

47 12x* — 16x — 3 48 15x* + 34x — 16

Exer. 49-50: Use the quadratic formula to solve the equa-
tion for (a) x in terms of y and (b) y in terms of x.

49 4x2 —4xy + 1 —y>*=0 50 2x2 —xy = 3y* + 1

Exer. 51-54: Solve for the specified variable.
51 K = %mv2 for v (kinetic energy)

mM
52 F = g? ford (Newton’s law of gravitation)

53 A = 2@r(r + h) forr  (surface area of a closed cylinder)

54 s = %gt2 + vyt for t (distance an object falls)
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56

57

58

59

Velocity of a gas When a hot gas exits a cylindrical smoke-
stack, its velocity varies throughout a circular cross section
of the smokestack, with the gas near the center of the cross
section having a greater velocity than the gas near the perime-
ter. This phenomenon can be described by the formula

(2]

where V,,,, is the maximum velocity of the gas, r, is the
radius of the smokestack, and V is the velocity of the gas at
a distance r from the center of the circular cross section.
Solve this formula for r.

Density of the atmosphere For altitudes % up to 10,000 me-
ters, the density D of Earth’s atmosphere (in kg/m?) can be
approximated by the formula

D = 1225 — (1.12 X 107%h + (3.24 X 10™)A?.

Approximate the altitude if the density of the atmosphere
is 0.74 kg/m?.

Dimensions of a tin can A manufacturer of tin cans wishes
to construct a right circular cylindrical can of height 20 cen-
timeters and capacity 3000 cm?® (see the figure). Find the
inner radius r of the can.

Exercise 57

20

Constructing a rectangular box Refer to Example 12. A
box with an open top is to be constructed by cutting 3-inch
squares from the corners of a rectangular sheet of tin whose
length is twice its width. What size sheet will produce a box
having a volume of 60 in*?

Baseball toss A baseball is thrown straight upward with
an initial speed of 64 ft/sec. The number of feet s above
the ground after r seconds is given by the equation
s = —161> + 64z,

(a) When will the baseball be 48 feet above the ground?

(b) When will it hit the ground?
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60 Braking distance The distance that a car travels between

61

62

the time the driver makes the decision to hit the brakes and
the time the car actually stops is called the braking distance.
For a certain car traveling v mi/hr, the braking distance d
(in feet) is given by d = v + (v*/20).

(a) Find the braking distance when v is 55 mi/hr.

(b) If a driver decides to brake 120 feet from a stop sign,
how fast can the car be going and still stop by the time
it reaches the sign?

Temperature of boiling water The temperature T (in °C) at
which water boils is related to the elevation 4 (in meters
above sea level) by the formula

h = 1000(100 — T) + 580(100 — T)?
for 95 = T = 100.

(a) At what elevation does water boil at a temperature
of 98°C?

(b) The elevation of Mt. Everest is approximately
8840 meters. Estimate the temperature at which water
boils at the top of this mountain. (Hint: Use the quad-
ratic formula with x = 100 — T.)

Coulomb’s law A particle of charge —1 is located on a
coordinate line at x = —2, and a particle of charge —2 is
located at x = 2, as shown in the figure. If a particle of
charge +1 is located at a position x between —2 and 2,
Coulomb’s law in electrical theory asserts that the net force
F acting on this particle is given by

ok %
x+27 (2-x?

for some constant k > (. Determine the position at which
the net force is zero.

Exercise 62

63

-2 X

Dimensions of a sidewalk A rectangular plot of ground
having dimensions 26 feet by 30 feet is surrounded by a
walk of uniform width. If the area of the walk is 240 ft?,
what is its width?
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Designing a poster A 24-by-36-inch sheet of paper is to be
used for a poster, with the shorter side at the bottom. The
margins at the sides and top are to have the same width, and
the bottom margin is to be twice as wide as the other mar-
gins. Find the width of the margins if the printed area is to
be 661.5 in>.

Fencing a garden A square vegetable garden is to be tilled
and then enclosed with a fence. If the fence costs $1 per foot
and the cost of preparing the soil is $0.50 per ft>, determine
the size of the garden that can be enclosed for $120.

Fencing aregion A farmer plans to enclose a rectangular re-
gion, using part of his barn for one side and fencing for the
other three sides. If the side parallel to the barn is to be twice
the length of an adjacent side, and the area of the region is to
be 128 ft?, how many feet of fencing should be purchased?

Planning a freeway The boundary of a city is a circle of
diameter 5 miles. As shown in the figure, a straight highway
runs through the center of the city from A to B. The high-
way department is planning to build a 6-mile-long freeway
from A to a point P on the outskirts and then to B. Find the
distance from A to P. (Hint: APB is a right triangle.)

Exercise 67

City expansion The boundary of a city is a circle of diameter
10 miles. Within the last decade, the city has grown in area by
approximately 1677 mi* (about 50 mi?). Assuming the city
was always circular in shape, find the corresponding change
in distance from the center of the city to the boundary.

Distance between airplanes An airplane flying north at
200 mi/hr passed over a point on the ground at 2:00 P.M.
Another airplane at the same altitude passed over the point
at 2:30 P.M., flying east at 400 mi/hr (see the figure).

(a) If ¢ denotes the time in hours after 2:30 P.M., express the
distance d between the airplanes in terms of 7.

(b) At what time after 2:30 P.M. were the airplanes
500 miles apart?

Exercise 69

70 Two-way radio range Two surveyors with two-way radios

71

72

73

leave the same point at 9:00 A.M., one walking due south at
4 mi/hr and the other due west at 3 mi/hr. How long can
they communicate with one another if each radio has a max-
imum range of 2 miles?

Constructing a pizza box A pizza box with a square base is to
be made from a rectangular sheet of cardboard by cutting six
1-inch squares from the corners and the middle sections and
folding up the sides (see the figure). If the area of the base is
to be 144 in?, what size piece of cardboard should be used?

Exercise 71

17 1"
1 n 1 ”

Constructing wire frames Two square wire frames are to be
constructed from a piece of wire 100 inches long. If the area
enclosed by one frame is to be one-half the area enclosed by
the other, find the dimensions of each frame. (Disregard the
thickness of the wire.)

Canoeing rate The speed of the current in a stream is
5 mi/hr. It takes a canoeist 30 minutes longer to paddle
1.2 miles upstream than to paddle the same distance down-
stream. What is the canoeist’s rate in still water?
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75

76

77

78

Height of a cliff When a rock is dropped from a cliff into an
ocean, it travels approximately 167> feet in ¢ seconds. If the
splash is heard 4 seconds later and the speed of sound is
1100 ft/sec, approximate the height of the cliff.

Quantity discount A company sells running shoes to deal-
ers for $40 per pair if less than 50 pairs are ordered. If 50 or
more pairs are ordered (up to 600), the price per pair is re-
duced at a rate of $0.04 times the number ordered. How
many pairs can a dealer purchase for $8400?

Price of a CD player When a popular brand of CD player
is priced at $300 per unit, a store sells 15 units per week.
Each time the price is reduced by $10, however, the sales in-
crease by 2 per week. What selling price will result in
weekly revenues of $7000?

Dimensions of an oil drum A closed right circular cylin-
drical oil drum of height 4 feet is to be constructed so that
the total surface area is 107 ft*. Find the diameter of the
drum.

Dimensions of a vitamin tablet The rate at which a tablet of
vitamin C begins to dissolve depends on the surface area
of the tablet. One brand of tablet is 2 centimeters long and
is in the shape of a cylinder with hemispheres of diameter
0.5 centimeter attached to both ends, as shown in the figure.
A second brand of tablet is to be manufactured in the shape
of a right circular cylinder of altitude 0.5 centimeter.

(a) Find the diameter of the second tablet so that its surface
area is equal to that of the first tablet.

(b) Find the volume of each tablet.

2.4
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Exercise 78
: 2cm |
— 4 —

|
" N/N= G >'

T

Exer. 79-80: During a nuclear explosion, a fireball will be
produced having a maximum volume V. For temperatures
below 2000 K and a given explosive force, the volume V of
the fireball ¢ seconds after the explosion can be estimated
using the given formula. (Note that the kelvin is abbreviated
as K, not °K.) Approximate # when V is 95% of V,.

79 V/V, = 0.8197 + 0.007752¢ + 0.0000281¢>
(20-kiloton explosion)

80 V/V, = 0.831 + 0.00598¢ + 0.0000919¢*
(10-megaton explosion)

Exer. 81-82: When computations are carried out on a cal-
culator, the quadratic formula will not always give accurate
results if b% is large in comparison to ac, because one of the
roots will be close to zero and difficult to approximate.

(a) Use the quadratic formula to approximate the roots of
the given equation.

(b) To obtain a better approximation for the root near zero,
rationalize the numerator to change

—-b = \Vb* — 4ac
2a

2c
—-b ¥ Vb* — dac’

x = to x =

and use the second formula.
81 x? + 4,500,000x — 0.96 = 0

82 x? — 73,000,000x + 2.01 =0

Complex numbers are needed to find solutions of equations that cannot be
solved using only the set R of real numbers. The following chart illustrates sev-

Com p lex Numbers eral simple quadratic equations and the types of numbers required for solutions.
Equation Solutions Type of numbers required
x2=9 3, -3 Integers
x2 = % % —% Rational numbers
x2=15 \fS, -5 Irrational numbers
x2= -9 ? Complex numbers
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The solutions of the first three equations in the chart are in R; however,
since squares of real numbers are never negative, R does not contain the solu-
tions of x> = —9. To solve this equation, we need the complex number sys-
tem C, which contains both R and numbers whose squares are negative.

We begin by introducing the imaginary unit, denoted by i, which has the
following properties.

Properties of 7

Because its square is negative, the letter i does not represent a real number. It
is a new mathematical entity that will enable us to obtain C. Since i, together
with R, is to be contained in C, we must consider products of the form bi for
areal number b and also expressions of the form a + bi for real numbers a and
b. The next chart provides definitions we shall use.

Terminology Definition Examples
Complex number a + bi, where a and b are real numbers and i> = —1 3,2+ 4,2
Imaginary number a + biwithb # 0 3+ 2i, —4i
Pure imaginary number bi with b # 0 —4i,\/3i,i
Equality a+ bi=c+diifandonlyifa =candb = d x + yi =3+ 4iiff

x=3andy =4
Sum (a4 bi)+ (c+di)=(a+c)+ (b+di see Example 1(a)
Product (a + bi)(c + di) = (ac — bd) + (ad + bc)i see Example 1(b)

Note that the pure imaginary numbers are a subset of the imaginary num-
bers and the imaginary numbers are a subset of the complex numbers. We use
the phrase nonreal complex number interchangeably with imaginary number.

It is not necessary to memorize the definitions of addition and multiplica-
tion of complex numbers given in the preceding chart. Instead, we may treat
all symbols as having properties of real numbers, with exactly one exception:
We replace i* by —1. Thus, for the product (a + bi)(c + di) we simply use the
distributive laws and the fact that

(bi)(di) = bdi* = bd(—1) = —bd.

EXAMPLE 1 Addition and multiplication of complex numbers

Express in the form a + bi, where a and b are real numbers:
(@) B+ 4)+ (2+5i0) (b) (3 + 4)(2 + 5i)
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SOLUTION
@ B+4)+Q2+5)=0B+2)+@+5i=5+9i
(b) B+ 4i)2 + 5i) = 3 + 4)(2) + (3 + 4i)(5i)
=6+ 8 + 15i + 202
6 + 23i + 20(—1)
—14 + 23; 7/

The set R of real numbers may be identified with the set of complex num-
bers of the form a + 0i. It is also convenient to denote the complex number
0 + bi by bi. Thus,

(@+0)+ O+ bi)=(a+0) + 0+ b)i=a-+bi.
Hence, we may regard a + bi as the sum of two complex numbers a and bi

(thatis,a + 0i and O + bi). For the complex number a + bi, we call a the real
part and b the imaginary part.

EXAMPLE 2 Equality of complex numbers
Find the values of x and y, where x and y are real numbers:
2x —4) +9i = 8 + 3yi
SOLUTION  We begin by equating the real parts and the imaginary parts of
each side of the equation:
2x —4=8 and 9 =3y
Since 2x — 4 = 8, 2x = 12 and x = 6. Since 9 = 3y, y = 3. The values of x
and y that make the complex numbers equal are
x=6 and y=3. /
With complex numbers, we are now able to solve an equation such as
x%? = —9. Specifically, since
(30)(3i) = 3%*=9(—1) = -9,
we see that one solution is 37 and another is —3i.

In the next chart we define the difference of complex numbers and multi-
plication of a complex number by a real number.

Terminology Definition

Difference (a+bi)—(c+di)y=(a—c)+ (b—4d)i
Multiplication by a real number k k(a + bi) = ka + (kb)i

If we are asked to write an expression in the form a + bi, the form a — di
is acceptable, since a — di = a + (—d)i.
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EXAMPLE 3 Operations with complex numbers

Express in the form a + bi, where a and b are real numbers:

(@) 42+ 35) — (3 - 4) (b) (4 =302 + i) (c) i3 — 2i)*
(d) l'Sl (e) l'—l3

SOLUTION

(@) 42+5)—B3—4)=8+20i —3+4i=5+24i

(b) 4 —-3)2+i)=8—6i+4i—3*=11—2i

(c) i3 =20 =i(9 — 12i + 4% =i(5 — 12i)) = 5i — 12i* = 12 + 5i
(d) Taking successive powers of i, we obtain

i1

i 73—

=i i’=-1, *=—i, i*=1,
and then the cycle starts over:
P =i i®=i=—1, andsoon.
In particular,
S = %3 = (74123 = (1)%3 = (1)(=i) = —i.
(e) In general, multiply i “ by i, where a = b =< a + 3 and b is a multiple of
4 (so that i = 1). For i3, choose b = 16.

l'713 . l'16 — l'3 — _i ,

The following concept has important uses in working with complex
numbers.

Definition of the Conjugate
of a Complex Number

If z = a + bi is a complex number, then its conjugate, denoted by z, is
a — bi.

ILLUSTRATION

Since a — bi = a + (—bi), it follows that the conjugate of a — bi is
a — (—=bi) = a + bi.

Therefore, a + bi and a — bi are conjugates of each other. Some properties
of conjugates are given in Exercises 57-62.

Conjugates
Complex number Conjugate
m 5+7i 5—7i
m 57 5+ 7i
m 4 —4i
m 3 3
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The following two properties are consequences of the definitions of the
sum and the product of complex numbers.

Properties of conjugates

Illustration

(a + bi) + (a — bi) = 2a
(a + bi)(a — bi) = a®> + b?

G+3)+@-3)=4+4=2-4
4+3)(4—3)=4— (i) =4—34=4+3

Note that the sum and the product of a complex number and its conjugate are
real numbers. Conjugates are useful for finding the multiplicative inverse of
a + bi, 1/(a + bi), or for simplifying the quotient of two complex numbers.
As illustrated in the next example, we may think of these types of simplifica-
tions as merely rationalizing the denominator, since we are multiplying the
quotient by the conjugate of the denominator divided by itself.

EXAMPLE 4 Quotients of complex numbers

Express in the form a + bi, where a and b are real numbers:

1 7
@552 O35
SOLUTION
1 I 9-2 9-2 9 2
(@ e

9+2 9+2 9-2 81 +4 8 85
7—i _ 7—i 3+5i_ 21+35i—3i—5°

b = =
()3—51' 3—5 3+5i 9+ 25
26 +32i 13 16,
==+ i
34 17 17 7/
If p is a positive real number, then the equation x> = —p has solutions in

C. One solution is \/p i, since
(Vpi) = (Vp)it = p(=1) = —p.

Similarly, — \/151’ is also a solution.

The definition of /=7 in the next chart is motivated by (\/;71')2 = —rfor
r > 0. When using this definition, take care not to write \ri when V7ri is
intended.

Terminology Definition Illustrations
Principal square root \V—r=\ri V-9 =\V9i = 3i
V =rforr>0 V=5 =V5i

V-1=Vli=i
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The radical sign must be used with caution when the radicand is negative.
For example, the formula Va /b = \Vab, which holds for positive real num-
bers, is not true when a and b are both negative, as shown below:

V=3V = (VE(VE) = (VA = 31 = =3

But V(=3)(—3) = V9 = 3.
Hence, V=3 V=3 # V(-3)(-3).

If only one of a or b is negative, then \Va Vb = \Vab. In general, we shall
not apply laws of radicals if radicands are negative. Instead, we shall change
the form of radicals before performing any operations, as illustrated in the next
example.

EXAMPLE 5 Working with square roots of negative numbers

Express in the form a + bi, where a and b are real numbers:
(s~ Vo) ~1 + v3)
SOLUTION  First we use the definition \/—r = \/ri, and then we simplify:
(5= V=9)(—1 + V=4) = (5 = VOIi)(—1 + V4i)

=5 -3)(—1+20)

= =5+ 10i + 3i — 6i*

= -5+ 13i+6=1+13i 7/

In Section 2.3 we stated that if the discriminant b* — 4ac of the quadratic

equation ax® + bx + ¢ = 0 is negative, then there are no real roots of the equa-
tion. In fact, the solutions of the equation are two imaginary numbers. More-
over, the solutions are conjugates of each other, as shown in the next example.
EXAMPLE 6 A quadratic equation with complex solutions
Solve the equation 5x2 + 2x + 1 = 0.

SOLUTION  Applying the quadratic formula with a = 5,0 = 2, and ¢ = 1,
we see that

—2 =27 —4065)(1)

X =

2(5)
_T2xVv-ole 2*4 —1*2 1 2.
10 10 5 5 5°
Thus, the solutions of the equation are —gl + %i and —gl - %i. /

EXAMPLE 7 Anequation with complex solutions

Solve the equation x* — 1 = 0.
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Difference of two cubes: SOLUTION  Using the difference of two cubes factoring formula witha = x
& — b =(a— b+ ab+ b andb =1, we write x> — 1 = 0 as

x—D&2+x+1)=0.

Setting each factor equal to zero and solving the resulting equations, we ob-
tain the solutions

| -1=VI—-4 —1%\3

or, equivalently,

Since the number 1 is called the unit real number and the given equation may
be written as x> = 1, we call these three solutions the cube roots of unity.

/

In Section 1.3 we mentioned that x> + 1 is irreducible over the real num-
bers. However, if we factor over the complex numbers, then x> + 1 may be
factored as follows:

2+ 1=+ i)x—1i

2.4 Exercises

Exer. 1-34: Write the expression in the form a + bi, where 2 1 -7 22 2+ 9i
a and b are real numbers. 6 — 2i -3 -
1(5—=20)+ (=3 + 6i) 2 (=5+7)+ (4 +9) e o
3 (7 —6i) — (=11 — 3i) 4 (=3 + 8i) — (2 + 3i) 2+ 7i 5+ 2i
53 +5)02—7i 6 (—2+ 6i)(8 —i 4 —2i -2+ 6
( i)( i) ( DB — i) - S.l 26 2 6i
7 (1 =32 + 5i) 8 (8 + 20)(7 — 3i) Y !
9 (5 — 2i)p 10 (6 + 7i)? 27 (2 + 5i)° 28 (3 — 2i)°
113 + 40P 12 i2 — 7P 29 (2= V=4)(3 - V=16)
13 (3 + 4i)(3 — 4i) 14 (4 + 9i)(4 — 9i) 30 (-3 + V/=25)(8 — V/—36)
15 (a) i* (b) 7% 16 (a) i” (b) i gy 4 VB L 5= V12
17 (a) i® (b) i% 18 (a) i* (b) i% 7 V64 1+ V=25
3 5 53 V736 V49 2y V25

1 2 T
92+4i O2—7i V—16 vV—16 V—81
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real numbers.

35 4+ (x+2y)i=x+2i 36 (x—y) +3i=7+yi

Exer. 35-38: Find the values of x and y, where x and y are 49 27x* = (x + 5)° 50 16x* = (x — 4)*
51 x* =256 52 x* =81
53 4x* + 25x2+ 36 =0 54 27x* + 21x2+ 4 =0

37 (2x —y) — 16i = 10 + 4yi

388+ (Bx+y)i=2x—4i

55 x3+3x2+4x =0

56 8x3 — 12x2+2x —3 =0

Exer. 39-56: Find the solutions of the equation.

39 x* —6x +13=0 40 x* = 2x +26 =0 Exer. 57-62: Verify the property.

4 x> +4x+13=0 42 x>+ 8 +17=0 57 z+w=z+w 58z—w=z—-w
43 x2 = 5x+20=10 4 X+ 3x+6=0 59z w=z-w 60 z/w =2z/w
45 4x2 +x+3=0 46 =3x>+x—5=0 61 z = zif and only if z is real.

47 X+ 125=0 48 x*—27=0 62 72 = (z)?

2.5
Other Types of Equations

The equations considered in previous sections are inadequate for many prob-
lems. For example, in applications it is often necessary to consider powers x*
with £ > 2. Some equations involve absolute values or radicals. In this section
we give examples of equations of these types that can be solved using ele-
mentary methods.

EXAMPLE 1 Solving an equation containing an absolute value

Solve the equation |x — 5| = 3.

SOLUTION If @ and b are real numbers with b > 0, then |a| = b if and
only if @ = b or a = —b. Hence, if |x — 5| = 3, then either

x—5=3 or x—5=-3.
Solving for x gives us
x=5+3=8 or x=5-3=2.

Thus, the given equation has two solutions, 8 and 2. /

For an equation such as
2x = 5| +3 =11,
we first isolate the absolute value expression by subtracting 3 and dividing by
2 to obtain
11-3
2

x— 5| = — 4,

and then we proceed as in Example 1.



Raising both sides of an equation to
an odd power can introduce imagi-
nary solutions. For example, cubing
both sides of x = 1 gives us x> = 1,
which is equivalent to x> — 1 = 0.
This equation has three solutions, of
which two are imaginary (see Exam-
ple 7 in Section 2.4).
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If an equation is in factored form with zero on one side, then we may ob-
tain solutions by setting each factor equal to zero. For example, if p, ¢, and r
are expressions in x and if pgr = 0, then either p = 0, ¢ = 0, or r = 0. In the
next example we factor by grouping terms.

EXAMPLE 2 Solving an equation using grouping
Solve the equation x* + 2x> — x — 2 = 0.

SOLUTION X*+2P=x—-2=0 given
xX2(x+2)—=1x+2)=0 group terms
x-1Dx+2)=0 factor out x + 2
x+Dx—-—1DHx+2)=0 factor x> — 1
x+1=0, x—1=0, x+2

x= -1, x=1, X

0 zero factor theorem
—2  solve for x V4

EXAMPLE 3 Solving an equation containing rational exponents

Solve the equation x*? = x'2,

SOLUTION X3 12

=X given
x¥ —x"2=0 subtract x'?
xPx—-1)=0 factor out x'2
x?=0, x—1=0 zero factor theorem
x =0, x=1 solve for x /7

In Example 3 it would have been incorrect to divide both sides of the
equation x¥? = x'2 by x'2, obtaining x = 1, since the solution x = 0 would be
lost. In general, avoid dividing both sides of an equation by an expression that
contains variables—always factor instead.

If an equation involves radicals or fractional exponents, we often raise
both sides to a positive power. The solutions of the new equation always con-
tain the solutions of the given equation. For example, the solutions of

2x—3=Vx+6

are also solutions of
(2x — 32 = (Vx + 6).

In some cases the new equation has more solutions than the given equation. To
illustrate, if we are given the equation x = 3 and we square both sides, we ob-
tain x> = 9. Note that the given equation x = 3 has only one solution, 3, but
the new equation x* = 9 has two solutions, 3 and —3. Any solution of the new
equation that is not a solution of the given equation is an extraneous solution.
Since extraneous solutions may occur, it is absolutely essential to check all so-
lutions obtained after raising both sides of an equation to an even power. Such
checks are unnecessary if both sides are raised to an odd power, because in this
case extraneous (real number) solutions are not introduced.
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ILLUSTRATION

ILLUSTRATION

EXAMPLE 4 Solving an equation containing a radical
Solve the equation Vx> — 1 = 2.

SOLUTION Vxi—-1=2 given
(\%ﬁ)? =23 cube both sides
x’—-1=38 property of /"
x2=9 add 1
x = =3 take the square root
Thus, the given equation has two solutions, 3 and —3. Except to detect alge-

braic errors, a check is unnecessary, since we raised both sides to an odd
power. /

In the last solution we used the phrase cube both sides of \/x* — 1 = 2.
In general, for the equation x™" = a, where x is a real number, we raise both
sides to the power n/m (the reciprocal of m/n) to solve for x. If m is odd, we
obtain x = ", but if m is even, we have x = *a"™. If n is even, extraneous
solutions may occur—for example, if x¥> = —8, then x = (—8)** =
(\/3 —8)2 = (—2)*> = 4. However, 4 is not a solution of x**> = —8 since
432 = 8 not —8.
Solving x™ = a, m odd, x real

Equation Solution
m =64 x=64"=Ve64=4
B =64 x=64"=(V64) =4 =16
Solving x™" = a, m even, x real

Equation Solution
B =16 x==*16" = V16 = £2
B P =16  x=*16" = *(V16) = =4 = =64

In the next two examples, before we raise both sides of the equation to a

power, we isolate a radical—that is, we consider an equivalent equation in
which only the radical appears on one side.

EXAMPLE 5 Solving an equation containing a radical

Solve the equation 3 + V3x + 1 = x.

SOLUTION 3+ V3x+1=x given
V3ax+1=x—-3 isolate the radical

( V3x + 1)2 = (x — 3)? square both sides

3x+1=x2—6x+9 simplify

xX2—9%+8=0 subtract 3x + 1
x—Dx—-8 =0 factor
x—1=0, x—8=0 zero factor theorem

x =1, x=28 solve for x
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We raised both sides to an even power, so checks are required.

Checkx=1 LS:3+\V3(1)+1=3+V4a=3+2=5
RS: 1

Since 5 # 1, x = 1 is not a solution.

Check x=8 LS:3+V3Q8) +1=3+V25=3+5=38
RS: 8

Since 8 = 8 is a true statement, x = 8 is a solution.
Hence, the given equation has one solution, x = 8. /

In order to solve an equation involving several radicals, it may be neces-
sary to raise both sides to powers two or more times, as in the next example.

EXAMPLE 6 Solving an equation containing radicals

Solve the equation V2x — 3 — Vx + 7 + 2 = 0.

SOLUTION
V2x—3-Vx+7+2=0 given
V2x—-3=Vx+7-2 isolate V2x — 3
2x—3=x+7) —4Vx+ 7T+ 4 square both sides
x— l4=—4Vx+7 isolate the radical
term
x2 — 28x + 196 = 16(x + 7) square both sides
x2—28x + 196 = 16x + 112 multiply factors
x?—44x + 84 =0 subtract 16x + 112
x—42)x—2)=0 factor
x—42=0, x—2=0 zero factor theorem
x =42, x=2 solve for x

A check is required, since both sides were raised to an even power.

Check x=42 LS: V84 —3—-\V42+7+2=9—-7+2=4
RS: 0

Since 4 # 0, x = 42 is not a solution.

Check x=2 LS: V4—-3-\V2+7+2=1-3+2=0
RS: 0

Since 0 = 0 is a true statement, x = 2 is a solution.
Hence, the given equation has one solution, x = 2. /

An equation is of quadratic type if it can be written in the form

auw* + bu +c =0,
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where a # 0 and u is an expression in some variable. If we find the solutions
in terms of u, then the solutions of the given equation can be obtained by re-
ferring to the specific form of u.

EXAMPLE 7 Solving an equation of quadratic type
Solve the equation x** + x'® — 6 = 0.

SOLUTION  Since x** = (x'*)% the form of the equation suggests that we
let u = x'3, as in the second line below:

x¥# +xB—-6=0 given
wW+u—6=0 letu=x"
(u+ 3)(u—2)=0 factor
u+3=0, u—2=0 zero factor theorem
u= —3, u =2 solve foru
x1/3 — _3 xl/} — 2 u= x1/3

x = —27, x = 8 cube both sides
A check is unnecessary, since we did not raise both sides to an even power.
Hence, the given equation has two solutions, —27 and 8.

An alternative method is to factor the left side of the given equation as
follows:

X2/3 + )C”3 — 6 = (x1/3 + 3)(x1/3 — 2)
By setting each factor equal to 0, we obtain the solutions. /
EXAMPLE 8 Solving an equation of quadratic type
Solve the equation x* — 3x> + 1 = 0.

SOLUTION  Since x* = (x?)? the form of the equation suggests that we let
u = x?, as in the second line below:

xt=3x2+1=0 given
w?—=3u+1=0 letu = x?
3+V9—4 3+\/5 .
u = = quadratic formula
2 2
, 3*x\5 .
Xt = u = x?
2
315
x==x T take the square root

Thus, there are four solutions:

3+V5 3+ A5 3-V5  3-1\5
2 2 2 2

Using a calculator, we obtain the approximations =1.62 and =0.62. A check
is unnecessary because we did not raise both sides of an equation to an
even power.
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EXAMPLE 9 Determining the route of a ferry

A passenger ferry makes trips from a town to an island community that is
7 miles downshore from the town and 3 miles off a straight shoreline. As
shown in Figure 1, the ferry travels along the shoreline to some point and then
proceeds directly to the island. If the ferry travels 12 mi/hr along the shoreline
and 10 mi/hr as it moves out to sea, determine the routes that have a travel
time of 45 minutes.

SOLUTION  Let x denote the distance traveled along the shoreline. This
leads to the sketch in Figure 2, where d is the distance from a point on the
shoreline to the island. Refer to the indicated right triangle:

d>= (7 —x)?+ 3 Pythagorean theorem
=49 — 14x + x2+ 9  square terms
=x?— 14x + 58 simplify
Figure 2 Taking the square root of both sides and noting that d > 0, we obtain
1" d= Vx*— 14x + 58.
d -7
/// 3 Using distance = (rate)(time) or, equivalently, time = (distance)/(rate) gives
-7 \L us the following table.
I I I
x> 7—x !
; 7 : Along the shoreline Away from shore
Distance (mi) X Vx2 — 14x + 58
Rate (mi/hr) 12 10
Time (hr) X Vx? — 14x + 58
ime (hr — _—
12 10

The time for the complete trip is the sum of the two expressions in the last row
of the table. Since the rate is in mi/hr, we must, for consistency, express this
time (45 minutes) as % hour. Thus, we have the following:

x  VxP—14x+58 3 o
E + 10 = Z total time for trip
x*— 14x+58 3 x x
10 = Z - E subtract I
6\Vx2 — 14x + 58 = 45 — 5x multiply by the lcd, 60
6Vx? — 14x + 58 = 509 — x) factor
36(x2 — 14x + 58) = 25(9 — x)? square both sides
36x2 — 504x + 2088 = 2025 — 450x + 25x* multiply terms
11x2 — 54x + 63 =0 simplify

(continued)
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x—=3)(1Ix—=21)=0 factor
x—3=0, 1lx—21=0 zero factor theorem
21
x =3, X =— solve for x
11

A check verifies that these numbers are also solutions of the original equa-
tion. Hence, there are two possible routes with a travel time of 45 minutes: the
ferry may travel along the shoreline either 3 miles or % ~ 1.9 miles before

proceeding to the island. 7/
2.5 Exercises
Exer. 1-50: Solve the equation. 31VVE+F1l=V3r—5 32 V5Vx=V2r—3
1|x+4|=11 2 |x—5]=2
[x+ 4] ¥ = 5] BVI+4Ve=Va+1l 3% Vetl=Vi-1
_ +3 = + — 1=
33 -2[+3=7 dose+2f—1=5 35 x* = 25x2+ 144 =0 36 2x* — 102 +8 =0
53x+1]—2=—11 6 —-2|+5=5
1] [x =2 37 Sy — T2+ 1=0 38 3yt — 52+ 1 =0
79— 18x*—4x+8=0
39 367t = 13x2+1=0 40 x2—=2x'—=35=0
3 _ 2 + —
g A 23620 M 3P+ A -4 =0 4228 =341 =0
4xt + 10x° = 6x% + 1
9 0= 6 s 43 6w + Tw'> — 20 = 0 44 81— 2207 — 21 =0
10 15x° — 20x* = 6x° — 8x?
45 2x73 —IxB — 15 =0
1 32 — 12 413 —
Y=y Y 3 46 6u™ = 13" 4+ 6 =0
13 V7 —5x=8 % Ve —9=1 47< t )2 2% oy
t+1) t+1 7
152+ V1-5=0 16 V6—s>+5=0
2
2
17V +1-2=0 18 V2" — 1 =x 48< x2>— x2—15:0
X — X —
19 V7i—x=x-15 20V3—x—x=3
e s 49 V/x = 2\/x (Hint: Raise both sides to the least
21 3V2x =3+ 2V7 —x =11 common multiple of 3 and 4.)
22 V2x +15 -2 =Vex + 1 50 Vx+3=V2x+6
23 x=4+ Vix — 19 24 x =3+ \V5x—9 Exer. 51-52: Find the real solutions of the equation.
25 x+\Vax+19= -1  26x—\—Tx—24= -2 51 (a) x*° =32 (b) x** =16
27 V1 —2x—V5+x=V4+3x (c) x*=-36 (d) x* =125
28 4T +3x + Véx + 3=V —6x — | (e) x¥* = =27
20 VIl + 8x + 1 = VO  4x 52 (a) x¥ = =27 (b) x*3 =25
30 2V — Vi 3=\5+x (c) x¥*=—49 (d) x7% =27

(e) x™ = -8



Exer. 53-56: Solve for the specified variable.

l
53 T= 277'\/» for [ (period of a pendulum)
8

54 d = % VA4R? — C?*for C  (segments of circles)

55 S = mr\Vr>+ h*forh  (surface area of a cone)

1
56 w = ——=for C alternating-current circuits
VIC ( e )
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60 Withdrawal resistance of nails The withdrawal resistance

of a nail indicates its holding strength in wood. A formula
that is used for bright common nails is P = 15,700S¥RD,
where P is the maximum withdrawal resistance (in pounds),
S is the specific gravity of the wood at 12% moisture con-
tent, R is the radius of the nail (in inches), and D is the depth
(in inches) that the nail has penetrated the wood. A 6d (six-
penny) bright, common nail of length 2 inches and diame-
ter 0.113 inch is driven completely into a piece of Douglas
fir. If it requires a maximum force of 380 pounds to remove

the nail, approximate the specific gravity of Douglas fir.
57 Ladder height The recommended distance d that a ladder

should be placed away from a vertical wall is 25% of its 61 The effect of price on demand The demand for a commod-
length L. Approximate the height / that can be reached by ity usually depends on its price. If other factors do not affect
relating & as a percentage of L. the demand, then the quantity Q purchased at price P (in

cents) is given by O = kP~¢, where k and ¢ are positive con-
stants. If k = 10° and ¢ = %, find the price that will result in
the purchase of 5000 items.

Exercise 57

62 The urban heat island Urban areas have higher average air
temperatures than rural areas, as a result of the presence of
buildings, asphalt, and concrete. This phenomenon has be-
come known as the urban heat island. The temperature dif-
ference T (in °C) between urban and rural areas near
Montreal, with a population P between 1000 and 1,000,000,
can be described by the formula T = 0.25P"/\/v, where v
is the average wind speed (in mi/hr) and v= 1. If T = 3
and v = 5, find P.

63 Dimensions of a sand pile As sand leaks out of a certain
container, it forms a pile that has the shape of a right circu-
lar cone whose altitude is always one-half the diameter d
of the base. What is d at the instant at which 144 ¢cm?® of
sand has leaked out?

Exercise 63
~

58 Nuclear experiments Nuclear experiments performed in (

the ocean vaporize large quantities of salt water. Salt boils

and turns into vapor at 1738 K. After being vaporized by a

10-megaton force, the salt takes at least 8—10 seconds to

cool enough to crystallize. The amount of salt A that has

crystallized 7 seconds after an experiment is sometimes cal- /

culated using A = km, where k and T are constants.

Solve this equation for 7. N

59 Windmill power The power P (in watts) generated by S
a windmill that has efficiency E is given by the formula -7
P = 0.31ED?V?, where D is the diameter (in feet) of the -7
windmill blades and V is the wind velocity (in ft/sec). \
Approximate the wind velocity necessary to generate \ 7
10,000 watts if E = 42% and D = 10. -

(SIE
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64

65

66

67

Inflating a weather balloon The volume of a spherical
weather balloon is 10§2 ft3. In order to lift a transmitter and
meteorological equipment, the balloon is inflated with an
additional 2531 ft> of helium. How much does its diameter
increase?

The cube rule in political science The cube rule in political
science is an empirical formula that is said to predict the
percentage y of seats in the U.S. House of Representatives
that will be won by a political party from the popular vote
for the party’s presidential candidate. If x denotes the per-
centage of the popular vote for a party’s presidential candi-
date, then the cube rule states that

xS

X3+ (01— x*
What percentage of the popular vote will the presidential

candidate need in order for the candidate’s party to win 60%
of the House seats?

y =

Dimensions of a conical cup A conical paper cup is to have
a height of 3 inches. Find the radius of the cone that will re-
sult in a surface area of 67 in’.

Installing a power line A power line is to be installed
across a river that is 1 mile wide to a town that is 5 miles
downstream (see the figure). It costs $7500 per mile to lay
the cable underwater and $6000 per mile to lay it overland.
Determine how the cable should be installed if $35,000 has
been allocated for this project.

2.6

Inequalities

Exercise 67

68 Calculating human growth Adolphe Quetelet (1796—1874),

the director of the Brussels Observatory from 1832 to 1874,
was the first person to attempt to fit a mathematical expres-
sion to human growth data. If 4 denotes height in meters
and  denotes age in years, Quetelet’s formula for males in
Brussels can be expressed as

h ho +t
h + =at + ol

with hy = 0.5, the height at birth; 4, = 1.684, the final
adult male height; and a = 0.545.

(a) Find the expected height of a 12-year-old male.

(b) At what age should 50% of the adult height be
reached?

An inequality is a statement that two quantities or expressions are not equal.
It may be the case that one quantity is less than (<), less than or equal to
(=), greater than (>), or greater than or equal to (=) another quantity. Con-
sider the inequality

2x +3>11,

where x is a variable. As illustrated in the following table, certain numbers
yield true statements when substituted for x, and others yield false statements.

X 2x +3>11 Conclusion

3 9>11 False statement
4 11> 11 False statement
5 13 >11 True statement
6 15> 11 True statement

If a true statement is obtained when a number b is substituted for x, then
b is a solution of the inequality. Thus, x = 5 is a solution of 2x + 3 > 11
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since 13 > 11 is true, but x = 3 is not a solution since 9 > 11 is false. To
solve an inequality means to find all solutions. Two inequalities are equiva-
lent if they have exactly the same solutions.

Most inequalities have an infinite number of solutions. To illustrate, the
solutions of the inequality

2<x<S5

consist of every real number x between 2 and 5. We call this set of numbers an
open interval and denote it by (2, 5). The graph of the open interval (2, 5) is
the set of all points on a coordinate line that lie between—but do not in-
clude—the points corresponding to x = 2 and x = 5. The graph is repre-
sented by shading an appropriate part of the axis, as shown in Figure 1. We
refer to this process as sketching the graph of the interval. The numbers 2 and
5 are called the endpoints of the interval (2, 5). The parentheses in the nota-
tion (2, 5) and in Figure 1 are used to indicate that the endpoints of the inter-
val are not included.

If we wish to include an endpoint, we use a bracket instead of a paren-
thesis. For example, the solutions of the inequality 2 = x = 5 are denoted by
[2, 5] and are referred to as a closed interval. The graph of [2, 5] is sketched
in Figure 2, where brackets indicate that endpoints are included. We shall also
consider half-open intervals [a, b) and (a, b] and infinite intervals, as de-
scribed in the following chart. The symbol o (read “infinity”’) used for infinite
intervals is merely a notational device and does not represent a real number.

Intervals
Notation Inequality Graph
1) (a, b) a<x<b ¢ ) -~
a b
) [a, b] a=x=b I 1 -~
a b
3) [a, b) a=x<b I ) -~
a b
@ (a, b] a<x=<b ¢ 1 -
a b
(5) (a,») x>a ¢ >
a
© [a,%) | x=a : =
a
(7) (—c0, b) x<b ) -~
b
®) (==, b] | x=b .
b
(9) (—oo, ®) —o0 < x < o0 >
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Reverse the inequality when
multiplying or dividing by a
negative number.

Methods for solving inequalities in x are similar to those used for solving
equations. In particular, we often use properties of inequalities to replace a
given inequality with a list of equivalent inequalities, ending with an inequal-
ity from which solutions are easily obtained. The properties in the following
chart can be proved for real numbers a, b, ¢, and d.

Properties of Inequalities

Property Ilustration
1) Ifa<bandb < c,thena < c. 2<5and5<9,s02 <09.
(2) If a < b, then 2<17,s0
at+tc<b+canda—c<b — c. 2+3<7+3and2—-3<7—3.
(3) Ifa < band c > 0, then 2<5and3 > 0, so
a b 2 5
ac < bcand — < —. 2:-3<5-3and— < —.
c c 3 3
4) Ifa < band c < 0, then 2<5and —3 <0, so
b 2 5
ac'> beand < 5 2. 2(=3) > 5(=3)and — > —.
c c -3 -3

It is important to remember that multiplying or dividing both sides of an
inequality by a negative real number reverses the inequality sign (see prop-
erty 4). Properties similar to those above are true for other inequalities and for
=< and = . Thus, if a > b, thena +c¢c > b + ¢; if a= b and ¢ < 0, then
ac = bc; and so on.

If x represents a real number, then, by property 2, adding or subtracting
the same expression containing x on both sides of an inequality yields an
equivalent inequality. By property 3, we may multiply or divide both sides of
an inequality by an expression containing x if we are certain that the expres-
sion is positive for all values of x under consideration. To illustrate, multipli-
cation or division by x* + 3x?> + 5 would be permissible, since this
expression is always positive. If we multiply or divide both sides of an in-
equality by an expression that is always negative, such as —7 — x?, then, by
property 4, the inequality is reversed.

In examples we shall describe solutions of inequalities by means of inter-
vals and also represent them graphically.

EXAMPLE 1 Solving aninequality

Solve the inequality —3x + 4 < 11.

SOLUTION —3x+4<1l1 given
(=3x+4) —4<11—4 subtract4
—3x <7 simplify
—_3x . l divide by —3;
-3 -3 reverse the inequality sign

x > —37 simplify
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Thus, the solutions of —3x + 4 < 11 consist of all real numbers x such that
x> —%. This is the interval (—57, 00) sketched in Figure 3. V4

EXAMPLE 2 Solving an inequality

Solve the inequality 4x — 3 < 2x + 5.

SOLUTION
4y —3<2x+5 given
4x—3)+3<2x+5 +3 add3
4x < 2x + 8 simplify
4x — 2x < (2x + 8) — 2x  subtract 2x
2x < 8 simplify
2x 8 o
— <= divide by 2
2 2
x <4 simplify

Hence, the solutions of the given inequality consist of all real numbers x such
that x < 4. This is the interval (—oo, 4) sketched in Figure 4. 7/

EXAMPLE 3 Solving an inequality
Solve the inequality —6 < 2x — 4 < 2.

SOLUTION  Areal number x is a solution of the given inequality if and only
if it is a solution of both of the inequalities

—-6<2x— 4 and 2x — 4 < 2.

This first inequality is solved as follows:

—-6<2x—4 given
—6+4<(2x—4)+4 add4
-2 < 2x simplify
-2  2x o
—_— <= divide by 2
2 2
-1 <x simplify
x> —1 equivalent inequality

The second inequality is then solved:
2x — 4 <2 given
2x <6 add4
x <3 divide by 2
Thus, x is a solution of the given inequality if and only if both
x> —1 and x <3

that is,
-1 <x<3.

(continued)
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Figure 5
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Figure 6
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Figure 7

Hence, the solutions are all numbers in the open interval (—1, 3) sketched in
Figure 5.

An alternative (and shorter) method is to solve both inequalities simulta-
neously —that is, solve the continued inequality:

—6<2x —4<2 given
—6+4<2x <2+4 addd
-2 < 2x <6 simplify
-1< x <3 divide by 2 7/

EXAMPLE 4 Solving a continued inequality

4 — 3x

Solve the continued inequality —5 =

SOLUTION A number x is a solution of the given inequality if and only if

4 — 4 —
—-5= 3 and 3

<1.
2 2

We can either work with each inequality separately or solve both inequalities
simultaneously, as follows (keep in mind that our goal is to isolate x):

4 — 3x )
-5= <1 given
2
—10=4-3x<2 multiply by 2
—-10 -4 = —3x <2 —4 subtract4
—d4=  -3x<-=-2 simplify
—14 - —3x > __2 divide by —3; reverse
-3 -3 -3 the inequality signs
% = x > % simplify
% X = 1—34 equivalent inequality

Thus, the solutions of the inequality are all numbers in the half-open interval
(%, %] sketched in Figure 6. /

EXAMPLE 5 Solving a rational inequality

! >0
x—2 ’

Solve the inequality

SOLUTION  Since the numerator is positive, the fraction is positive if and
only if the denominator, x — 2, is also positive. Thus, x — 2 > 0 or, equiva-
lently, x > 2, and the solutions are all numbers in the infinite interval (2, )
sketched in Figure 7.
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EXAMPLE 6 Usinga lens formula

As illustrated in Figure 8, if a convex lens has focal length f centimeters and if
an object is placed a distance p centimeters from the lens with p > f, then the
distance ¢ from the lens to the image is related to p and f by the formula

1

—+—=—=

p a f
If f = 5 cm, how close must the object be to the lens for the image to be more
than 12 centimeters from the lens?

SOLUTION  Since f = 5, the given formula may be written as

p q 5

We wish to determine the values of g such that g > 12. Let us first solve the
equation for g:

5q + 5p = pq multiply by the led, 5pg
qg5—p)=-5p collect g terms on one side and factor
5 5
q:__P:_P divide by 5 — p
5-p p-—5

To solve the inequality ¢ > 12, we proceed as follows:

Py _ S
p—35 a p—35
5p > 12(p — 5) allowable, since p > f implies p — 5 > 0
—7p > —60 multiply factors and collect p terms on one side
p < 670 divide by —7; reverse the inequality

Combining the last inequality with the fact that p is greater than 5, we obtain
the solution

60
5<p<7. /

If a point X on a coordinate line has coordinate x, as shown in Figure 9,
then X is to the right of the origin O if x > 0 and to the left of O if x < 0. From
Section 1.1, the distance d(O, X) between O and X is the nonnegative real
number given by

d0,X) = |x — 0] = |x|.

It follows that the solutions of an inequality such as | x| < 3 consist of the co-
ordinates of all points whose distance from O is less than 3. This is the open
interval (—3, 3) sketched in Figure 10. Thus,

|x| <3 isequivalentto —3 <x<3.
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Figure 11

Similarly, for | x| > 3, the distance between O and a point with coordinate
X is greater than 3; that is,

|x| >3 isequivalentto x < —3orx>3.

The graph of the solutions to |x| > 3 is sketched in Figure 11. We often use
the union symbol U and write

(=0, =3) U (3, %)

to denote all real numbers that are in either (—ce, —3) or (3, «).
The notation

(=2,2) U (2, %)

represents the set of all real numbers except 2.
The intersection symbol N is used to denote the elements that are com-
mon to two sets. For example,

(=2,3) N (=3,%) = (=3,3),

since the intersection of (—oc, 3) and (—3, ©) consists of all real numbers x
such that both x < 3 and x > —3.

The preceding discussion may be generalized to obtain the following
properties of absolute values.

Properties of Absolute

Values (b > 0)

(1) |a| < b isequivalentto —b <a <b.
(2) |a| > b isequivalentto a < —bora > b.

Figure 12

Y

In the next example we use property 1 witha = x — 3 and b = 0.5.

EXAMPLE 7 Solving aninequality containing an absolute value
Solve the inequality |x — 3| < 0.5.
SOLUTION
|x — 3] <05 given
—05<x—-3<05 property 1

—05+3<(x—3)+3<0.,5+3 isolate x by adding 3
25 <x<35 simplify

Thus, the solutions are the real numbers in the open interval (2.5, 3.5). The
graph is sketched in Figure 12. 7/

In the next example we use property 2 witha = 2x + 3 and b = 9.
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EXAMPLE 8 Solving an inequality containing an absolute value

Solve the inequality |2x + 3| > 9.

SOLUTION [2x + 3| >9 given
2x +3< -9 or 2x+3>9 property2
2x < —12 or 2x > 6  subtract 3
x<—6 or x >3 divide by 2

Consequently, the solutions of the inequality | 2x + 3| > 9 consist of the num-
bers in (—o, —6) U (3, »). The graph is sketched in Figure 13. 7/

The trichotomy law in Section 1.1 states that for any real numbers a and
b exactly one of the following is true:

a>b, a<hb, or a=>b

Thus, after solving |2x + 3| > 9 in Example 8, we readily obtain the solu-
tions for [2x + 3| < 9 and |2x + 3| = 9—namely, (—6, 3) and {—6, 3}, re-
spectively. Note that the union of these three sets of solutions is necessarily the
set R of real numbers.

When using the notation a < x < b, we must have a < b. Thus, it is in-
correct to write the solution x < —6 or x > 3 (in Example 8) as 3 < x < —6.
Another misuse of inequality notation is to write a < x > b, since when sev-
eral inequality symbols are used in one expression, they must point in the same
direction.

1 Given —7 < —3, determine the inequality obtained if (c) both sides are divided by 6

(a) 5 is added to both sides
(b) 4 is subtracted from both sides

(c) both sides are multiplied by %

(d) both sides are divided by —6

Exer. 3—12: Express the inequality as an interval, and
sketch its graph.

3x< -2 4x=35
(d) both sides are multiplied by _51 5 y=4 6 x> —3
2 Given 4 > —35, determine the inequality obtained if 7 —2<x=4 8 3=x<5
(a) 7 is added to both sides 93=x=7 10 -3<x<-—1
(b) —5 is subtracted from both sides 1n5>x=-2 12 -3=x> -5
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Exer. 13-20: Express the interval as an inequality in the
variable x.

13 (-5, 8] 14 [0,4)
15 [—4, —1] 16 (3,7)
17 [4, %) 18 (=3, )
19 (=%, =5) 20 (=, 2]

Exer. 21-70: Solve the inequality, and express the solutions

53 |x + 2|+ 0.1=02

55 |2x + 5] < 4

57 —16 — 5x| +2=1

58 2| —11 — 7x| — 2> 10

59 |7x + 2| > —2
61 [3x — 9] >0

54 |x — 3] —03>0.1

56 |3x — 7| =5

60 |6x — 5| = —2
62 |5x+2|=0

in terms of intervals whenever possible. 63 ’2 ;3x ) 64 2 + 5‘ <1
21 3x—2>14 22 2x+5=71
3 2
23 —2—3x=2 24 3 — 5x <11 65 —m <2 66 ——=5
o * |5 — 2x| [2x + 3|
25 2x +5<3x—17 26 x —8>5x+3
* o * * 67 —2 < |x| <4 68 1< |x|<5
27 9+1x=4—ix 283x+7=ix-2 69 1<|x—2|<4 702<|2x—1|<3
29 —3<2x—5<17 304=3x+5> -1
Exer. 71-72: Solve part (a) and use that answer to deter-
31 3 S=x-3 7 32 —2 cIAL_ 0 mine the answers to parts (b) and (c).
5
71 (a) |[x+5]=3 (b) |x+5]<3
2_ —
33 4> 3x272 3452¥>2 (c) [x+5]>3
72 (a) |x— 3] <2 (b) |x—=3]=2

350=4—-3x<2 36 2<3+3x=5

(c) |x—=3]>2
37 2x—3)dx+35)=B8x+Dx—7

Exer. 73-76: Express the statement in terms of an inequal-
ity involving an absolute value.

38 (x —3)(x+3)=(x+5)?

—4)7 > +
39 (x = 4P >l + 12) 73 The weight w of a wrestler must be within 2 pounds of

40 2x(6x +5) < (3x — 2)dx + 1) 148 pounds.
4 . . e .

M =0 42 3 =0 74 The radius r of a ball bearing must be within 0.01 centime
3x + 2 2x + 5 ter of 1 centimeter.

43 -0 4l <0 75 The Ehffereflce of two temperatures 7 and 7, within a
4 — 3x 2 —x chemical mixture must be between 5°C and 10°C.

45 2 >0 46 4 <0 76 The arrival time ¢ of train B .must. be at least 5 minutes dif-
(1 —x)? x>+ 4 ferent from the 4:00 P.M. arrival time of train A.

47 |x[ <3 48 x| =7 77 Temperature scales Temperature readings on the Fahr-

49 x| =5 50 | —x| > 2 enheit and Celsius scales are related by the formula

C= g(F — 32). What values of F correspond to the values

51 |x + 3] < 0.01 52 |x — 4] =0.03 of C such that 30 = C = 40?
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Hooke’s law According to Hooke’s law, the force F (in
pounds) required to stretch a certain spring x inches beyond

its natural length is given by F = (4.5)x (see the figure). If

10 = F = 18, what are the corresponding values for x?

Exercise 78

a Natural length

Stretched
x inches

|
|
| |
| |
=< X 1

Ohm's law Ohm’s law in electrical theory states that if R de-
notes the resistance of an object (in ohms), V the potential
difference across the object (in volts), and / the current that
flows through it (in amperes), then R = V/I. If the voltage
is 110, what values of the resistance will result in a current
that does not exceed 10 amperes?

Electrical resistance If two resistors R, and R, are con-
nected in parallel in an electrical circuit, the net resistance
R is given by

1 1 1
—=—+—.
R R, R,

If R, = 10 ohms, what values of R, will result in a net re-
sistance of less than 5 ohms?

Linear magnification Shown in the figure is a simple mag-
nifier consisting of a convex lens. The object to be magni-
fied is positioned so that the distance p from the lens is less
than the focal length f. The linear magnification M is the
ratio of the image size to the object size. It is shown in
physics that M = f/(f — p). If f= 6 cm, how far should
the object be placed from the lens so that its image appears
at least three times as large? (Compare with Example 6.)

2.7
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Exercise 81

82

83

84

85

Drug concentration To treat arrhythmia (irregular heart-
beat), a drug is fed intravenously into the bloodstream. Sup-
pose that the concentration ¢ of the drug after ¢ hours is
given by ¢ = 3.5¢/(¢t + 1) mg/L. If the minimum therapeu-
tic level is 1.5 mg/L, determine when this level is exceeded.

Business expenditure A construction firm is trying to de-
cide which of two models of a crane to purchase. Model A
costs $100,000 and requires $8000 per year to maintain.
Model B has an initial cost of $80,000 and a maintenance
cost of $11,000 per year. For how many years must model
A be used before it becomes more economical than B?

Buying a car A consumer is trying to decide whether to
purchase car A or car B. Car A costs $20,000 and has an
mpg rating of 30, and insurance is $1000 per year. Car B
costs $24,000 and has an mpg rating of 50, and insurance
is $1200 per year. Assume that the consumer drives
15,000 miles per year and that the price of gas remains con-
stant at $3 per gallon. Based only on these facts, determine
how long it will take for the total cost of car B to become
less than that of car A.

Decreasing height A person’s height will typically de-
crease by 0.024 inch each year after age 30.

(a) If a woman was 5 feet 9 inches tall at age 30, predict
her height at age 70.

(b) A 50-year-old man is 5 feet 6 inches tall. Determine an
inequality for the range of heights (in inches) that this
man will experience between the ages of 30 and 70.

To solve an inequality involving polynomials of degree greater than 1, we shall
express each polynomial as a product of linear factors ax + b and/or irre-
ducible quadratic factors ax®> + bx + c. If any such factor is not zero in an in-
terval, then it is either positive throughout the interval or negative throughout the

interval. Hence, if we choose any k in the interval and if the factor is positive
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Figure 1

I[N 3

(or negative) for x = k, then it is positive (or negative) throughout the interval.
The value of the factor at x = k is called a test value of the factor at the test
number k. This concept is exhibited in the following example.

EXAMPLE 1 Solving a quadratic inequality
Solve the inequality 2x% — x < 3.

SOLUTION  To use test values, it is essential to have 0 on one side of the in-
equality sign. Thus, we proceed as follows:

2x? — x <3 given
2x2 —x — 3 <0 make one side 0
(x+ 1)2x —3) <0 factor

The factors x + 1 and 2x — 3 are zero at —1 and %, respectively. The corre-
sponding points on a coordinate line (see Figure 1) determine the noninter-
secting intervals

(== =1, (=13), and (5, ).

We may find the signs of x + 1 and 2x — 3 in each interval by using a test
value taken from each interval. To illustrate, if we choose £k = —10 in
(—o0, —1), the values of both x + 1 and 2x — 3 are negative, and hence they
are negative throughout (—0, —1). A similar procedure for the remaining two
intervals gives us the following sign chart, where the term resulting sign in the
last row refers to the sign obtained by applying laws of signs to the product of
the factors. Note that the resulting sign is positive or negative according to
whether the number of negative signs of factors is even or odd, respectively.

Interval (—»,-1) | (-1,2) | 3, )
Sign of x + 1 - + +
Signof 2x — 3 — - +
Resulting sign + - +

Sometimes it is convenient to represent the signs of x + 1 and 2x — 3 by
using a coordinate line and a sign diagram, of the type illustrated in Figure 2.
The vertical lines indicate where the factors are zero, and signs of factors are
shown above the coordinate line. The resulting signs are shown in red.

Figure 2

Resulting sign ~ + - +
Signof2x —3 — — +
Signof x+1 — + +

| | ry | >
T T T T T T T T =




Figure 3

W Warning! \N
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The solutions of (x + 1)(2x — 3) < 0 are the values of x for which the
product of the factors is negative—that is, where the resulting sign is negative.
This corresponds to the open interval (— 1, %)

Back on page 74, we discussed the zero factor theorem, which dealt with
equalities. It is a common mistake to extend this theorem to inequalities. The
following warning shows this incorrect extension applied to the inequality in
Example 1.

’(x+1)(2x—3)<0 is not equivalentto x+1<0 or 2x—3<0

In future examples we will use either a sign chart or a sign diagram, but
not both. When working exercises, you should choose the method of solution
with which you feel most comfortable.

EXAMPLE 2 Solving a quadratic inequality
Solve the inequality —3x? < —21x + 30.

SOLUTION —3x2 < —21x + 30 given
—3x2+2lx—30<0 make one side 0
x2—="7Tx+10>0 divide by the common factor
—3; reverse the inequality
x=2)x—=5 >0 factor

The factors are zero at 2 and 5. The corresponding points on a coordinate line
(see Figure 3) determine the nonintersecting intervals

(=20,2), (2,5), and (5, ).

As in Example 1, we may use test values from each interval to obtain the fol-
lowing sign chart.

Interval (—,2) 2,5 | 5,)
Signof x — 2 - + +
Signof x — 5 - - +
Resulting sign + - +

The solutions of (x — 2)(x — 5) > 0 are the values of x for which the re-

sulting sign is positive. Thus, the solution of the given inequality is the union
(=92,2) U (5, »).

EXAMPLE 3 Using a sign diagram to solve an inequality

x+2@3B—x _

Solve the inequality CrDE L)
X X
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SOLUTION  Since 0 is already on the right side of the inequality and the left
side is factored, we may proceed directly to the sign diagram in Figure 4,
where the vertical lines indicate the zeros (—2, —1, and 3) of the factors.

Figure 4

Resulting sign  + - + —
Signof 3 —x + + + —
Signof x + 1 - — + +
Signofx+2 — + + +

2|Z|(=)

00 ==

The frame around the —1 indicates that —1 makes a factor in the denominator
of the original inequality equal to 0. Since the quadratic factor x? + 1 is
always positive, it has no effect on the sign of the quotient and hence may
be omitted from the diagram.

The various signs of the factors can be found using test values. Alterna-
tively, we need only remember that as x increases, the sign of a linear factor
ax + b changes from negative to positive if the coefficient a of x is positive,
and the sign changes from positive to negative if a is negative.

To determine where the quotient is less than or equal to 0, we first note
from the sign diagram that it is negative for numbers in (=2, —1) U (3, ).
Since the quotient is 0 at x = —2 and x = 3, the numbers —2 and 3 are also
solutions and must be included in our solution. Lastly, the quotient is unde-
fined at x = —1, so —1 must be excluded from our solution. Thus, the solu-
tions of the given inequality are given by

[-2, =) U [3,). /
EXAMPLE 4 Using a sign diagram to solve an inequality

2x + 1)*(x — 1) _

Solve the inequality =D = 0.
x(x* —

SOLUTION  Rewriting the inequality as
2 —
2x + 1)*(x— 1) _
x(x+ Dx—1)
we see that x — 1 is a factor of both the numerator and the denominator. Thus,

assuming that x — 1 # 0 (that is, x # 1), we may cancel this factor and re-
duce our search for solutions to the case

07

(2x + 1)?
—_— = and x # 1.
x(x + 1)
We next observe that this quotient is 0 if 2x + 1 =0 (that is, if x = —51)

1. . . . . .
Hence, —7 is a solution. To find the remaining solutions, we construct the sign



Figure 5

Sign of x - | =
Sign of x + 1 — | +

++ +

Resulting sign~ + | — ‘
|

Y
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diagram in Figure 5. We do not include (2x + 1)? in the sign diagram, since
this expression is always positive if x # —51 and so has no effect on the sign
of the quotient. Referring to the resulting sign and remembering that —51 isa
solution but 1 is not a solution, we see that the solutions of the given inequal-
ity are given by

(=0, =) U {=5} U O, DU, /7
EXAMPLE 5 Using a sign diagram to solve an inequality
. ox+ 1
Solve the inequality =2.
x+3

SOLUTION A common mistake in solving such an inequality is to first
multiply both sides by x + 3. If we did so, we would have to consider two
cases, since x + 3 may be positive or negative (assuming x + 3 7 0), and we
might have to reverse the inequality. A simpler method is to first obtain an
equivalent inequality that has O on the right side and proceed from there:

x+ 1 )
= iven
x+3 &
x+ 1 )
— 2 =0 make one side 0
x+3
x+1—2x+3) o ,
= 0 combine into one fraction
x+3
X520 simplif
- . = simpli
x+3 Py
x+5>0 Itiply b 1
= multi —
x+3 Py by

Note that the direction of the inequality is changed in the last step, since we
multiplied by a negative number. This multiplication was performed for con-
venience, so that all factors would have positive coefficients of x.

The factors x + 5 and x + 3 are 0 at x = —5 and x = —3, respectively.
This leads to the sign diagram in Figure 6, where the signs are determined as
in previous examples. We see from the diagram that the resulting sign, and
hence the sign of the quotient, is positive in (—o, —5) U (=3, %). The quo-
tient is 0 at x = —5 (include —5) and undefined at x = —3 (exclude —3).
Hence, the solution of (x + 5)/(x + 3) = 0is (=, =5] U (=3, ).

Figure 6

Resulting sign~ + — +
Signofx +3  — — +
Signofx+5 — + +

(continued)
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An alternative method of solution is to begin by multiplying both sides of
the given inequality by (x + 3)?, assuming that x # —3. In this case,
(x + 3)*> > 0 and the multiplication is permissible; however, after the result-
ing inequality is solved, the value x = —3 must be excluded. /

EXAMPLE 6 Determining minimum therapeutic levels

For a drug to have a beneficial effect, its concentration in the bloodstream must
exceed a certain value, which is called the minimum therapeutic level. Suppose
that the concentration ¢ (in mg/L) of a particular drug ¢ hours after it is taken
orally is given by

20t
1+ 4

c =

If the minimum therapeutic level is 4 mg/L, determine when this level is
exceeded.

SOLUTION  The minimum therapeutic level, 4 mg/L, is exceeded if
¢ > 4. Thus, we must solve the inequality

20t

— > 4,
>+ 4

Since 1> + 4 > 0 for every , we may multiply both sides by > + 4 and pro-
ceed as follows:

20t > 4¢> + 16 allowable, since 1> + 4 > 0

—42 + 20t — 16 >0 make one side 0
?=5+4<0 divide by the common factor —4
t—-—1Dr—-4<o0 factor

The factors in the last inequality are O when t = 1 and ¢ = 4. These are the
times at which c is equal to 4. As in previous examples, we may use a sign
chart or sign diagram (with 7 = 0) to show that (r — 1)(r — 4) < O for every ¢
in the interval (1,4). Hence, the minimum therapeutic level is exceeded if
1<r<4 /

Some basic properties of inequalities were stated at the beginning of the
last section. The following additional properties are helpful for solving certain
inequalities. Proofs of the properties are given after the chart.
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Additional Properties of Inequalities

Property Illustration
1) If0<a<b,thenL>i. If0<l<4,thenL>L,orx>L.
a b X 1/x 4 4
(2 If0 < a < b, then 0 < a® < b IfO < Vx <4, then0 < (Vx)> <42 0r0<x<16.
B)If0<a<bh,then0<Va< Vb | If0<x><4,then0 < Vxl< V4 or0 < |x|<2.

PROOFS
(1) If 0 < a < b, then multiplying by 1/(ab) yields

1 . 1 1
< — thatis, — > —.
a a b

1
.—< o — P—
A

(2) If 0 < a < b, then multiplying by a yields a - a < a * b and multiplying
by byields b - a < b - b, s0 a*> < ab < b* and hence a* < b*

3) If0 < a < b, thenb — a > 0 or, equivalently,

(Vb + Va)(Vb — Va) > 0.

Dividing both sides of the last inequality by Vb + \a, we obtain

Vb — Va > 0; thatis, Vb > Va. /
2.7 Exercises
Exer. 1-40: Solve the inequality, and express the solutions 15 25x2 -9 <0 16 25x% — 9x <0
in terms of intervals whenever possible.
17 16x* = 9x 18 16x2>9
1 Bx+ DB —10x) >0 2 2=-30)@x -7 =0
19 x* + 5x? =36 20 x* 4+ 15x2 < 16

3(x+2)x—1D@d—-—x=0
21 X+ 2x*—4x—8=0

4(r—S5)x+3)(=2—-x<0
(= 5)lx +3) ») 22 2 — 32— 2 +3=0

2 2
5x*—x—6<0 6x*+4x+3=0 X0+ 2) & + ) — 3)

23 ——=0 2b ————=0
7x2—2x—5>3 8x2—4x—17=4 (xr+2)x+ 1) x* =9
9x(2x+3)25 10x(3x—1)S4 25 xz_xso 26(x+3)2(2_x)30

x2 + 2x x+Hx>—-9
11 6x — 8> 7 12 x+12=x

7 X722 .y g XTS5 _,
13 x2< 16 14 x2>9 x2—3x—10 xP=Tx+ 12
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29

31

33

35

37

39

3 ) 30 -2 <
x2—=9 16 — x?
x+1 x—2
>2 32 =
2x — 3 3x+ 5
1 3 2 2
= 34 =
x—2 x+1 2x+3 x—5
4 2 3 1
= 36 =
3x—2 x+1 Sx+1 x—3
X 2 X 3
= 38 =
3x—5 x—1 2x—1 x+2
x3>x 40 x* = x?

Exer. 41-42: As a particle moves along a straight path, its
speed v (in cm/sec) at time ¢ (in seconds) is given by the
equation. For what subintervals of the given time interval
[a, b] will its speed be at least k cm/sec?

41

42

43

44

45

46

v=1"— 32— 4 +20; [0,5]; k=8

v =1t*— 4> + 10; [1,6]; k=10

Vertical leap record Guinness Book of World Records
reports that German shepherds can make vertical leaps of
over 10 feet when scaling walls. If the distance s (in feet)
off the ground after ¢ seconds is given by the equation
s = —161> + 24t + 1, for how many seconds is the dog

more than 9 feet off the ground?

Height of a projected object If an object is projected verti-
cally upward from ground level with an initial velocity of
320 ft/sec, then its distance s above the ground after 7 sec-
onds is given by s = —16¢> + 320¢. For what values of ¢
will the object be more than 1536 feet above the ground?

Braking distance The braking distance d (in feet) of a cer-
tain car traveling v mi/hr is given by the equation
d = v + (v¥/20). Determine the velocities that result in
braking distances of less than 75 feet.

Gas mileage The number of miles M that a certain com-
pact car can travel on 1 gallon of gasoline is related to its
speed v (in mi/hr) by

M= —3v>+3v for 0<v<T70.

For what speeds will M be at least 45?

47

48

49

50

51

Salmon propagation For a particular salmon population,
the relationship between the number S of spawners and the
number R of offspring that survive to maturity is given by
the formula R = 4500S/(S + 500). Under what conditions
isR>S?

Population density The population density D (in
people/mi?) in a large city is related to the distance x from
the center of the city by D = 5000x/(x> + 36). In what
areas of the city does the population density exceed
400 people/mi*?

Weight in space After an astronaut is launched into space,
the astronaut’s weight decreases until a state of weightless-
ness is achieved. The weight of a 125-pound astronaut at an
altitude of x kilometers above sea level is given by

6400 Y
W=125(——|.
6400 + x
At what altitudes is the astronaut’s weight less than
5 pounds?

Lorentz contraction formula The Lorentz contraction for-
mula in relativity theory relates the length L of an object
moving at a velocity of v mi/sec with respect to an ob-
server to its length L, at rest. If ¢ is the speed of light, then

2
= L%(l - V2>
c

For what velocities will L be less than %Lo? State the answer
in terms of c.

Aircraft’s landing speed In the design of certain small
turbo-prop aircraft, the landing speed V (in ft/sec) is deter-
mined by the formula W = 0.00334V2S, where W is the
gross weight (in pounds) of the aircraft and S is the surface
area (in ft?) of the wings. If the gross weight of the aircraft
is between 7500 pounds and 10,000 pounds and S = 210 ft,
determine the range of the landing speeds in miles per
hour.
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Exer. 1-24: Solve the equation.
3x+1  6x+ 11

= 22——=1+—
Sx+7 10x — 3 X X
2 3 5
x+5 2x+1 61+3
7 6 3
4 —
x—2 x2—4 2x+4
1 1 -2V
5——-2= 6 2x>+5x—12=0
Vx Vx
7 xGx+4) =5 g~ —x—1
x 3x+1 2x+3
9 (x—2)x+1)=3 10 4x* = 33x2+50=0

11 X% = 2x% = 15 =0

12 20x° + 8x? — 35x — 14 =0

13 5x?=2x—3 U +3x+2=0

15 6x* 4+ 29x2 4+ 28 =0 16 x* —3x2+1=0

17 |4x— 1| =17 18 2[2x+ 1]+ 1=19
1 5 ,

19 —+6=— 20 Vdx—5-2=0
x Vix

21 Vix+2+x=6 22 Vx+4=e6x+ 19

23 V3x+1—-—Vx+4=1 24 x*=16

Exer. 25-26: Solve the equation by completing the square.
25 3x* = 12x+3=0 26 x>+ 10x + 38 =0

Exer. 27-44: Solve the inequality, and express the solutions
in terms of intervals whenever possible.

27 x—3)P%=0 28 10 — 7Tx < 4 + 2x
1 2x + 3 3

29 —< < —
2 5 2

30 Bx — D(10x + 4) = (6x — 5)(5x — 7)

6
10x + 3

31

<0

33213 —x|+1>5
35 [16 — 3x| =5
37 108 + 11x > 6

x2(3 — x) _

39 =0
x+2
3 1
41 <
2x+3 x—2
43 x3 > x?

44 (x* —x)(x>—=5x+6) <0

32 [4x + 7] <21

34 —2lx—3|+1=-5
36 2<|x—6|<4
38 x(x —3) =10

x2—x—=2

40 —— =0
x2 4+ 4x + 3

x+ 1
=0

42 =
x2 =25

Exer. 45-50: Solve for the specified variable.

2
for C

46A=B\3/>C—EforD
D

47 V= %’rrﬁforr

C+
45 P+ N =

4

PR
48 F = for R
8VL

49 ¢ = V4h(2R — h) for h

50 V= %Wh(r2 + R?> + rR) for r

(volume of a sphere)

(Poiseuille’s law
for fluids)

(base of a circular
segment)

(volume of a frustum
of a cone)

Exer. 51-56: Express in the form a + bi, where a and b are

real numbers.
51 (7 + 5i) — (=8 + 3i)

53 (3 + 8i)*

6 — 3i

55
2+ 7

52 (4 + 2i)(—=5 + 4i)
1
SV
20 — 8i
4i

54

56
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57 Bowling scores To get into the 250 Club, a bowler must score
an average of 250 for a three-game series. If a bowler has scores
of 267 and 225 in her first two games, what is the minimum
score in her third game that will get her into the 250 Club?

58 Calculating a presale price A sporting goods store is cele-
brating its 37th year in business by having a 37% off every-
thing sale and also covering any sales tax. A boy has $50 to
spend. What is the maximum presale price he can afford?

59 Rule of 90 In a particular teachers’ union, a teacher may re-
tire when the teacher’s age plus the teacher’s years of serv-
ice is at least 90. If a 37-year-old teacher has 15 years of
service, at what age will this teacher be eligible to retire?
Make reasonable assumptions.

60 Electrical resistance When two resistors R, and R, are
connected in parallel, the net resistance R is given by
1/R = (1/R,) + (1/R,). If R, = 5 ohms, what value of R,
will make the net resistance 2 ohms?

61 Investmentincome An investor has a choice of two invest-
ments: a bond fund and a stock fund. The bond fund yields
7.186% interest annually, which is nontaxable at both the
federal and state levels. Suppose the investor pays federal
income tax at a rate of 28% and state income tax at a rate of
7%. Determine what the annual yield must be on the taxable
stock fund so that the two funds pay the same amount of net
interest income to the investor.

62 Investment income A woman has $216,000 to invest and
wants to generate $12,000 per year in interest income. She can
invest in two tax-free funds. The first is stable, but pays only
4.5%. The second pays 9.25%, but has a greater risk. If she
wants to minimize the amount of money invested in the second
fund, how much should she invest in the first fund?

63 Snow removal rates A man can clear his driveway using a
snowblower in 45 minutes. It takes his son 2 hours to clear
the driveway using a shovel. How long would it take them
to clear the driveway if they worked together?

64 Gold and silver mixture A ring that weighs 80 grams is
made of gold and silver. By measuring the displacement of
the ring in water, it has been determined that the ring has
a volume of 5 cm®. Gold weighs 19.3 g/cm? and silver weighs
10.5 g/cm?. How many grams of gold does the ring contain?

65 Preparing hospital food A hospital dietitian wishes to
prepare a 10-ounce meat-vegetable dish that will provide
7 grams of protein. If an ounce of the vegetable portion
supplies % gram of protein and an ounce of meat supplies
1 gram of protein, how much of each should be used?

66

67

68

69

70

It

72

Preparing a bactericide A solution of ethyl alcohol that is
75% alcohol by weight is to be used as a bactericide. The
solution is to be made by adding water to a 95% ethyl alco-
hol solution. How many grams of each should be used to
prepare 400 grams of the bactericide?

Solar heating A large solar heating panel requires 120 gal-
lons of a fluid that is 30% antifreeze. The fluid comes in ei-
ther a 50% solution or a 20% solution. How many gallons
of each should be used to prepare the 120-gallon solution?

Making brass A company wishes to make the alloy brass,
which is composed of 65% copper and 35% zinc. How much
copper do they have to mix with 140 kg of zinc to make brass?

Fuel consumption A boat has a 10-gallon gasoline tank and
travels at 20 mi/hr with a fuel consumption of 16 mi/gal
when operated at full throttle in still water. The boat is mov-
ing upstream into a 5-mi/hr current. How far upstream can
the boat travel and return on 10 gallons of gasoline if it is
operated at full throttle during the entire trip?

Train travel A high-speed train makes a 400-mile nonstop
run between two major cities in 551 hours. The train travels
100 mi/hr in the country, but safety regulations require that
it travel only 25 mi/hr when passing through smaller, inter-
mediate cities. How many hours are spent traveling through
the smaller cities?

Windspeed An airplane flew with the wind for 30 minutes
and returned the same distance in 45 minutes. If the cruis-
ing speed of the airplane was 320 mi/hr, what was the
speed of the wind?

Passing speed An automobile 20 feet long overtakes a
truck 40 feet long that is traveling at 50 mi/hr (see the fig-
ure). At what constant speed must the automobile travel in
order to pass the truck in 5 seconds?

Exercise 72
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74

75

76

77

78

79

80

Speedboat rates A speedboat leaves a dock traveling east at
30 mi/hr. Another speedboat leaves from the same dock 20
minutes later, traveling west at 24 mi/hr. How long after the
first speedboat departs will the speedboats be 37 miles apart?

Jogging rates A girl jogs 5 miles in 24 minutes less than
she can jog 7 miles. Assuming she jogs at a constant rate,
find her jogging rate in miles per hour.

Filling a bin An extruder can fill an empty bin in 2 hours,
and a packaging crew can empty a full bin in 5 hours. If a
bin is half full when an extruder begins to fill it and a crew
begins to empty it, how long will it take to fill the bin?

Gasoline mileage A sales representative for a company
estimates that her automobile gasoline consumption aver-
ages 28 mpg on the highway and 22 mpg in the city.
A recent trip covered 627 miles, and 24 gallons of gaso-
line was used. How much of the trip was spent driving in
the city?

City expansion The longest drive to the center of a square
city from the outskirts is 10 miles. Within the last decade
the city has expanded in area by 50 mi’. Assuming the city
has always been square in shape, find the corresponding
change in the longest drive to the center of the city.

Dimensions of a cell membrane The membrane of a cell is
a sphere of radius 6 microns. What change in the radius will
increase the surface area of the membrane by 25%?

Highway travel A north-south highway intersects an east-
west highway at a point P. An automobile crosses P at 10
A.M., traveling east at a constant rate of 20 mi/hr. At the
same instant another automobile is 2 miles north of P, trav-
eling south at 50 mi/hr.

(a) Find a formula for the distance d between the automo-
biles ¢ hours after 10:00 A.M.

(b) At approximately what time will the automobiles be
104 miles apart?

Fencing a kennel A kennel owner has 270 feet of fencing
material to be used to divide a rectangular area into 10 equal
pens, as shown in the figure. Find dimensions that would
allow 100 ft* for each pen.

Exercise 80

81

82

83

84

85

86

87
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Chapter 2 Review Exercises

Dimensions of an aquarium An open-topped aquarium is to
be constructed with 6-foot-long sides and square ends, as
shown in the figure.

(a) Find the height of the aquarium if the volume is to
be 48 ft*.

(b) Find the height if 44 ft* of glass is to be used.

Exercise 81

Dimensions of a pool The length of a rectangular pool is to
be four times its width, and a sidewalk of width 6 feet will
surround the pool. If a total area of 1440 ft> has been set
aside for construction, what are the dimensions of the pool?

Dimensions of a bath A contractor wishes to design a rec-
tangular sunken bath with 40 ft* of bathing area. A 1-foot-
wide tile strip is to surround the bathing area. The total
length of the tiled area is to be twice the width. Find the di-
mensions of the bathing area.

Population growth The population P (in thousands) of a
small town is expected to increase according to the
formula

P=15+ V3 + 2,

where ¢ is time in years. When will the population be
20,000?

Boyle’s law Boyle’s law for a certain gas states that if the
temperature is constant, then pv = 200, where p is the pres-
sure (in 1b/in?) and v is the volume (in in®). If 25 < v = 50,
what is the corresponding range for p?

Sales commission A recent college graduate has job offers
for a sales position in two computer firms. Job A pays
$50,000 per year plus 10% commission. Job B pays only
$40,000 per year, but the commission rate is 20%. How
much yearly business must the salesman do for the second
job to be more lucrative?

Speed of sound The speed of sound in air at 0°C (or 273 K)
is 1087 ft/sec, but this speed increases as the temperature
rises. The speed v of sound at temperature 7 in K is given
by v = 1087\/T/273. At what temperatures does the speed
of sound exceed 1100 ft/sec?
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88

89

90

Period of a pendulum If the length of the pendulum in
a grandfather clock is / centimeters, then its period T (in
seconds) is given by T = 27\/1/g, where g is a gravita-
tional constant. If, under certain conditions, g = 980 and
98 = [ = 100, what is the corresponding range for 77

Orbit of a satellite For a satellite to maintain an orbit of al-
titude & kilometers, its velocity (in km/sec) must equal
626.4/Nh + R, where R = 6372 km is the radius of the
earth. What velocities will result in orbits with an altitude of
more than 100 kilometers from Earth’s surface?

Fencing a region There is 100 feet of fencing available to
enclose a rectangular region. For what widths will the
fenced region contain at least 600 ft>?

91 Planting an apple orchard The owner of an apple orchard

estimates that if 24 trees are planted per acre, then each ma-
ture tree will yield 600 apples per year. For each additional
tree planted per acre, the number of apples produced by
each tree decreases by 12 per year. How many trees should
be planted per acre to obtain at least 16,416 apples per year?

92 Apartment rentals A real estate company owns 218 effi-

ciency apartments, which are fully occupied when the rent
is $940 per month. The company estimates that for each $25
increase in rent, 5 apartments will become unoccupied.
What rent should be charged in order to pay the monthly
bills, which total $205,920?

CHAPTER 2 DISCUSSION EXERCISES

When we factor the sum or difference of cubes, x* = y3,
is the factor (x> ¥ xy + y?) ever factorable over the real
numbers?

What is the average of the two solutions of the arbitrary
quadratic equation ax?> + bx + ¢ = 0? Discuss how this
knowledge can help you easily check the solutions to a quad-
ratic equation.

(a) Find an expression of the form p + gi for the multi-
T a + bi
plicative inverse of ——, where a, b, ¢, and d are
c+ di
real numbers.

(b) Does the expression you found apply to real numbers
of the form a/c?

(c) Are there any restrictions on your answer for part (a)?

-1
In solving the inequality al > = 3, what is wrong with em-
-
ploying x — 1 = 3(x — 2) as a first step?

Consider the inequality ax®> + bx + ¢ = 0, where a, b, and ¢
are real numbers with @ # 0. Suppose the associated equal-
ity ax®> + bx + ¢ = 0 has discriminant D. Categorize the so-
lutions of the inequality according to the signs of a and D.

6 Freezing level in a cloud Refer to Exercises 37-39 in Sec-

tion 2.2.

(a) Approximate the height of the freezing level in a cloud
if the ground temperature is 80°F and the dew point
is 68°F.

(b) Find a formula for the height & of the freezing level in
a cloud for ground temperature G and dew point D.

7 Explain why you should not try to solve one of these equa-

tions.
V2x =3+ Vx+5=0
V2 -3+Vx+5=0

8 Solve the equation

Vax = cx — 2lc

for x, where ¢ = 2 X 10°%. Discuss why one of your positive
solutions is extraneous.

9 Surface area of a tank You know that a spherical tank holds

10,000 gallons of water. What do you need to know to de-
termine the surface area of the tank? Estimate the surface
area of the tank.



Functions
and Graphs

3.1 Rectangular The mathematical term function (or its Latin equivalent) dates back to the
Coyordipars SYYELENIE late seventeenth century, when calculus was in the early stages of develop-
b ;lphs o Equations ment. This important concept is now the backbone of advanced courses in
mathematics and is indispensable in every field of science.

In this chapter we study properties of functions using algebraic and
graphical methods that include plotting points, determining symmetries,
and making horizontal and vertical shifts. These techniques are adequate for
obtaining rough sketches of graphs that help us understand properties of
3.5 Grap'ns 0 ; functions; modern-day methods, however, employ sophisticated computer

software and advanced mathematics to generate extremely accurate graph-

3.9 Quadrati

ical representations of functions.
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3.1

Rectangular Coordinate

Systems

In Section 1.1 we discussed how to assign a real number (coordinate) to each
point on a line. We shall now show how to assign an ordered pair (a, b) of real
numbers to each point in a plane. Although we have also used the notation (a, b)
to denote an open interval, there is little chance for confusion, since it should al-
ways be clear from our discussion whether (a, b) represents a point or an interval.

We introduce a rectangular, or Cartesian,* coordinate system in a plane
by means of two perpendicular coordinate lines, called coordinate axes, that
intersect at the origin O, as shown in Figure 1. We often refer to the horizon-
tal line as the x-axis and the vertical line as the y-axis and label them x and y,
respectively. The plane is then a coordinate plane, or an xy-plane. The coor-
dinate axes divide the plane into four parts called the first, second, third, and
fourth quadrants, labeled I, II, III, and IV, respectively (see Figure 1). Points
on the axes do not belong to any quadrant.

Each point P in an xy-plane may be assigned an ordered pair (a, b), as
shown in Figure 1. We call a the x-coordinate (or abscissa) of P, and b the
y-coordinate (or ordinate). We say that P has coordinates (a, b) and refer to
the point (a, b) or the point P(a, b). Conversely, every ordered pair (a, b) de-
termines a point P with coordinates a and b. We plot a point by using a dot,
as illustrated in Figure 2.

Figure 1 Figure 2
AY y
T ,5)
1 Pab
A ) (—4,3)
[ ]
‘ (5,2)
4+ | A
|
T R T |1 1 [ i L L Il (()I ())I L
T T T T T 0_- 1| ICI T T T '-x kii’ ())' T T 0 i T T T T '.x
T ° °
-+ (—5,-3) 0, =3) 5, —3)

We may use the following formula to find the distance between two points
in a coordinate plane.

Distance Formula

The distance d(P,, P,) between any two points P,(x;, y;) and P(x,, y,) in a
coordinate plane is

d(Py, P,) = \/(xz —x) + ()’2 - yl)2~

*The term Cartesian is used in honor of the French mathematician and philosopher René
Descartes (1596—1650), who was one of the first to employ such coordinate systems.
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PROOF If x; # x, and y, # y,, then, as illustrated in Figure 3, the points
P\, P,, and Ps(x,, y,) are vertices of a right triangle. By the Pythagorean
theorem,

[d(Pl’ Pz)]z = [d(Ph P3)]2 + [d(Ps, Pz)]z-
From the figure we see that
d(Pl’P3):|-x2_xl| and d(P3,P2):|y2—y1|.
Since |a|* = @ for every real number a, we may write

[d(Py, P)J = (xo — x))* + (y2 — y1)2~

Taking the square root of each side of the last equation and using the fact that
d(Py, P,) = 0 gives us the distance formula.
If y, = y,, the points P, and P, lie on the same horizontal line, and

d(Pl,P2)=|x2—x1|= Vi, = xp)%
Similarly, if x; = x,, the points are on the same vertical line, and
dPy, P)) = |y, — yi| = V(y, — y)*

These are special cases of the distance formula.
Although we referred to the points shown in Figure 3, our proof is inde-
pendent of the positions of P, and P,.

When applying the distance formula, note that d(P,, P,) = d(P,, P,) and,
hence, the order in which we subtract the x-coordinates and the y-coordinates
of the points is immaterial. We may think of the distance between two points
as the length of the hypotenuse of a right triangle.

EXAMPLE 1 Finding the distance between points
Plot the points A(—3, 6) and B(5, 1), and find the distance d(A, B).
SOLUTION  The points are plotted in Figure 4. By the distance formula,

dA,B) = V[5 — (=3)P + (1 — 6)?

= V& + (-5
= V64 + 25 = V89 ~ 9.43. /

EXAMPLE 2 Showing that a triangle is a right triangle

(a) Plot A(—1, =3), B(6, 1), and C(2, —5), and show that triangle ABC is a
right triangle.

(b) Find the area of triangle ABC.
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Figure 5

Area of a triangle:

Figure 6

A=

1bh

SOLUTION
(a) The points are plotted in Figure 5. From geometry, triangle ABC is a right
triangle if the sum of the squares of two of its sides is equal to the square of
the remaining side. By the distance formula,
dA,B) = V(6 + 1)+ (1 +3)2=V49 + 16 = V65
dB,C)=VQ2 -6+ (—5—-172= V16 + 36 = V52
dA,C) = V2 + 1)+ (=5 +3)=V9 +4=V13.

Since d(A, B) = V65 is the largest of the three values, the condition to be sat-
isfied is

[dA, B)F = [d(B, O)F + [d(A, OF.
Substituting the values found using the distance formula, we obtain
[dA, B} = (V65) = 65
and [d(B, O)F + [d(A, C)P = (V32) + (V13)* = 52 + 13 = 65.

Thus, the triangle is a right triangle with hypotenuse AB.

(b) The area of a triangle with base b and altitude % is %bh. Referring to
Figure 5, we let

b=dB,C)=\V52 and h=dA,C) =\VI13.
Hence, the area of triangle ABC is

Ibh=31V352 V13 =1 2VI3 VI3 = 13. /

EXAMPLE 3 Applying the distance formula

Given A(1,7), B(—3,2), and C(4, %), prove that C is on the perpendicular bi-
sector of segment AB.

SOLUTION The points A, B, C and the perpendicular bisector | are illus-
trated in Figure 6. From plane geometry, / can be characterized by either of the
following conditions:

(1) !is the line perpendicular to segment AB at its midpoint.
(2) Iis the set of all points equidistant from the endpoints of segment AB.
We shall use condition 2 to show that C is on [/ by verifying that

d(A, C) = d(B, O).
We apply the distance formula:
dA, C) = \/(4 -1+ (-7 \/32 _ \/9 T /_
dB,C) = \l4 — (-3 + (£ - 2) =V72+ e 49+Z:1@

Thus, C is equidistant from A and B, and the verification is complete. P4
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EXAMPLE 4 Finding a formula that describes
a perpendicular bisector

Given A(1, 7) and B(—3, 2), find a formula that expresses the fact that an ar-
bitrary point P(x, y) is on the perpendicular bisector / of segment AB.

SOLUTION By condition 2 of Example 3, P(x, y) is on [ if and only if
d(A, P) = d(B, P); that is,
Va—12+ (-7 =VIx—(3)F + (v - 27
To obtain a simpler formula, let us square both sides and simplify terms of
the resulting equation, as follows:
1P+ -7=k- )P+ (-2
xX2=2x+1+y =14y +49=x>+6x+9+y*?—4y +4
—2x+1—-14y+49=6x+9 —4y + 4
—8x — 10y = =37
8x + 10y = 37

Note that, in particular, the last formula is true for the coordinates of the point
C(4, %) in Example 3, sinceif x = 4andy = %, substitution in 8x + 10y gives us

8-4+10-1=737

In Example 9 of Section 3.3, we will find a formula for the perpendicular
bisector of a segment using condition 1 of Example 3.

We can find the midpoint of a line segment by using the following
formula.

Midpoint Formula

The midpoint M of the line segment from P;(x;, y;) to Py(x,, y,) is

X +Xx yi+w»
2 2 '

PROOF  The lines through P, and P, parallel to the y-axis intersect the x-axis
at A,(x;, 0) and A,(x,, 0). From plane geometry, the line through the midpoint
M parallel to the y-axis bisects the segment A;A, at point M, (see Figure 7). If
x; < x,, then x, — x; > 0, and hence d(A,, A,) = x, — x,. Since M, is halfway
from A; to A,, the x-coordinate of M, is equal to the x-coordinate of A; plus
one-half the distance from A, to A,; that is,

x-coordinate of M, = x; + %(xz — X1).
(continued)
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Figure 7
AY

Py(x3, ¥7)
/]'W/'/

|
|
|
| |
| |
| |
| |
| |
Py é

Ay(x;, 0) M, Ay (x,, 0)

=Y

Figure 8

3.1 Exercises

The expression on the right side of the last equation simplifies to

X+ x

2

This quotient is the average of the numbers x; and x,. It follows that the
x-coordinate of M is also (x, + x,)/2. Similarly, the y-coordinate of M is
(y, + y2)/2. These formulas hold for all positions of P, and P,. /s

To apply the midpoint formula, it may suffice to remember that
the x-coordinate of the midpoint = the average of the x-coordinates,
and that

the y-coordinate of the midpoint = the average of the y-coordinates.

EXAMPLE 5 Finding a midpoint

Find the midpoint M of the line segment from P,(—2, 3) to P,(4, —2), and
verify that d(P,, M) = d(P,, M).

SOLUTION By the midpoint formula, the coordinates of M are

—2+4 3+ (-2 1i
> o 2 ) b))

The three points P,, P,, and M are plotted in Figure 8. By the distance formula,

AP M) =\ + 22+ (T -3 =10 +%

AP ) =\ —ap + G 2P =\p+ 2

Hence, d(P,, M) = d(P,, M). 7/

1 Plot the points A(5, —2), B(—5, —2), C(5, 2), D(-5, 2), 3 Plot the points A(0, 0), B(1, 1), C(3, 3), D(—1, —1), and

E(3, 0), and F(0, 3) on a coordinate plane.

E(—2, —2). Describe the set of all points of the form
(a, a), where a is a real number.

2 Plot the points A(—3, 1), B(3, 1), C(=2, —3), D(0, 3), and 4 Plot the points A(0, 0), B(1, —1), C(3, —3), D(—1, 1),
E(2, —3) on a coordinate plane. Draw the line segments AB, and E(—3, 3). Describe the set of all points of the form

BC, CD, DE, and EA.

(a, —a), where a is a real number.



Exer. 5-6: Find the coordinates of the points A-F.

5 y

Exer. 7-8: Describe the set of all points P(x, y) in a coordi-
nate plane that satisfy the given condition.

7 (@) x= -2 (b) y=3 (© x=0
(d) xy>0 (e) y<0 (f) x=0
8 (a) y= -2 (b) x = —4 (©) x/y <0
(d) xy=0 (&) y>1 (f) y=0

Exer. 9-14: (a) Find the distance d(A, B) between A and B.
(b) Find the midpoint of the segment AB.

9 A(4, =3), B(6,2) 10 A(=2, =5), B(4,6)

11 A(=5,0), B(-2, —2) 12 A6, 2), B(6, —2)

13 A(7, =3), B(3, —3) 14 A(—4,7), B(0, —8)
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Exer. 15-16: Show that the triangle with vertices A, B,
and C is a right triangle, and find its area.

15 y

17 Show that A(—4, 2), B(1, 4), C(3, —1), and D(—2, —3) are
vertices of a square.

18 Show that A(—4, —1), B(0, —2), C(6, 1), and D(2, 2) are
vertices of a parallelogram.

19 Given A(—3, 8), find the coordinates of the point B such
that C(5, —10) is the midpoint of segment AB.

20 Given A(5, —8) and B(—6, 2), find the point on seg-
ment AB that is three-fourths of the way from A to B.

Exer. 21-22: Prove that C is on the perpendicular bisector

of segment AB.
21 A(—4, —3), B(6, 1), c(5, —11)

22 A(=3,2), B, —4), C(7,7)



130 CHAPTER 3 FUNCTIONS AND GRAPHS

Exer. 23-24: Find a formula that expresses the fact that an
arbitrary point P(x, y) is on the perpendicular bisector / of
segment AB.

23

25

26

27

28

29

A(—4, =3), B(6, 1) 24 A(-3,2),B(5, —4)

Find a formula that expresses the fact that P(x, y) is a dis-
tance 5 from the origin. Describe the set of all such points.

Find a formula that states that P(x, y) is a distance r > 0
from a fixed point C(h, k). Describe the set of all such

points.

Find all points on the y-axis that are a distance 6 from
P(5, 3).

Find all points on the x-axis that are a distance 5 from
P(=2, 4).

Find the point with coordinates of the form (2a, @) that is in
the third quadrant and is a distance 5 from P(1, 3).

3.2
Graphs of Equations

30

31

32

33

34

Find all points with coordinates of the form (a, a) that are a
distance 3 from P(—2, 1).

For what values of a is the distance between P(a, 3) and
Q(5, 2a) greater than V26?

Given A(—2, 0) and B(2, 0), find a formula not containing
radicals that expresses the fact that the sum of the distances
from P(x, y) to A and to B, respectively, is 5.

Prove that the midpoint of the hypotenuse of any right
triangle is equidistant from the vertices. (Hint: Label the
vertices of the triangle O(0, 0), A(a, 0), and B(0, b).)

Prove that the diagonals of any parallelogram bisect each
other. (Hint: Label three of the vertices of the parallelogram
0(0, 0), A(a, b), and C(0, ¢).)

Graphs are often used to illustrate changes in quantities. A graph in the busi-
ness section of a newspaper may show the fluctuation of the Dow-Jones aver-
age during a given month; a meteorologist might use a graph to indicate how
the air temperature varied throughout a day; a cardiologist employs graphs

(electrocardiograms) to analyze heart irregularities; an engineer or physicist
may turn to a graph to illustrate the manner in which the pressure of a confined
gas increases as the gas is heated. Such visual aids usually reveal the behavior
of quantities more readily than a long table of numerical values.

Two quantities are sometimes related by means of an equation or formula
that involves two variables. In this section we discuss how to represent such an
equation geometrically, by a graph in a coordinate plane. The graph may then
be used to discover properties of the quantities that are not evident from the
equation alone. The following chart introduces the basic concept of the graph
of an equation in two variables x and y. Of course, other letters can also be
used for the variables.

Terminology

Definition

Illustration

Solution of an
equation in x and y

An ordered pair (a, b)
that yields a true

statement if
x=aandy = b

(2, 3) is a solution of y> = 5x — 1, since
substituting x = 2 and y = 3 gives us
LS:32=9
RS:52)—1=10—-1=09.




Figure 1
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For each solution (a, b) of an equation in x and y there is a point P(a, b)
in a coordinate plane. The set of all such points is called the graph of the
equation. To sketch the graph of an equation, we illustrate the significant fea-
tures of the graph in a coordinate plane. In simple cases, a graph can be
sketched by plotting few, if any, points. For a complicated equation, plotting
points may give very little information about the graph. In such cases, meth-
ods of calculus or computer graphics are often employed. Let us begin with a
simple example.

EXAMPLE 1 Sketching a simple graph by plotting points
Sketch the graph of the equation y = 2x — 1.

SOLUTION  We wish to find the points (x, y) in a coordinate plane that cor-
respond to the solutions of the equation. It is convenient to list coordinates of
several such points in a table, where for each x we obtain the value for y from
y=2x—1:

x| -3 -2 -1 01 23

y | -7 -5 -3 -1 1 3 5

The points with these coordinates appear to lie on a line, and we can sketch
the graph in Figure 1. Ordinarily, the few points we have plotted would not be
enough to illustrate the graph of an equation; however, in this elementary case
we can be reasonably sure that the graph is a line. In the next section we will
establish this fact. /

It is impossible to sketch the entire graph in Example 1, because we can as-
sign values to x that are numerically as large as desired. Nevertheless, we call the
drawing in Figure 1 the graph of the equation or a sketch of the graph. In gen-
eral, the sketch of a graph should illustrate its essential features so that the re-
maining (unsketched) parts are self-evident. For instance, in Figure 1, the end
behavior —the pattern of the graph as x assumes large positive and negative val-
ues (that is, the shape of the right and left ends)—is apparent to the reader.

If a graph terminates at some point (as would be the case for a half-line or
line segment), we place a dot at the appropriate endpoint of the graph. As a
final general remark, if ticks on the coordinate axes are not labeled (as in Fig-
ure 1), then each tick represents one unit. We shall label ticks only when dif-
ferent units are used on the axes. For arbitrary graphs, where units of
measurement are irrelevant, we omit ticks completely (see, for example, Fig-
ures 5 and 6).

EXAMPLE 2 Sketching the graph of an equation

Sketch the graph of the equation y = x> — 3.
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Figure 2 SOLUTION  Substituting values for x and finding the corresponding values
of y using y = x> — 3, we obtain a table of coordinates for several points on
the graph:

x| -3 -2 -1 0 1 23

y 6 1 -2 -3 -2 1 6

Larger values of | x| produce larger values of y. For example, the points
(4, 13), (5,22), and (6, 33) are on the graph, as are (—4, 13), (-5, 22), and
(—6, 33). Plotting the points given by the table and drawing a smooth curve
through these points (in the order of increasing values of x) gives us the sketch
in Figure 2. /

The graph in Figure 2 is a parabola, and the y-axis is the axis of the
parabola. The lowest point (0, —3) is the vertex of the parabola, and we say
that the parabola opens upward. If we invert the graph, then the parabola opens
downward and the vertex is the highest point on the graph. In general, the
graph of any equation of the form y = ax® + ¢ with a # 0 is a parabola with
vertex (0, ¢), opening upward if ¢ > 0 or downward if a < 0. If ¢ = 0, the
equation reduces to y = ax* and the vertex is at the origin (0, 0). Parabolas
may also open to the right or to the left (see Example 4) or in other directions.

We shall use the following terminology to describe where the graph of an
equation in x and y intersects the x-axis or the y-axis.

Intercepts of the Graph of an Equation in x and y

Terminology Definition Graphical interpretation How to find

x-intercepts The x-coordinates
of points where the
graph intersects

LY Lety = 0 and
solve for x.
Here, a and ¢ are

A
the x-axis / x-intercepts.
/a
A

y-intercepts The y-coordinates LY Let x = 0 and
of points where the solve for y.
graph intersects Here, b is the

the y-axis /b y-intercept.
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An x-intercept is sometimes referred to as a zero of the graph of an equa-
tion or as a root of an equation.

EXAMPLE 3 Finding x-intercepts and y-intercepts

Find the x- and y-intercepts of the graph of y = x> — 3.

SOLUTION  The graph is sketched in Figure 2 (Example 2). We find the in-
tercepts as stated in the preceding chart.

(1) x-intercepts:

y=x2-3 given
0=x*-3 lety =0
x2=3 equivalent equation

x = *V3 = *1.73 take the square root

Thus, the x-intercepts are —\/3 and \/3. The points at which the graph crosses
the x-axis are (—\/§, 0) and (\@, O).

(2) y-intercepts:
y=x*-3 given
y=0-3=-3 letx=0

Thus, the y-intercept is —3, and the point at which the graph crosses the y-axis

is (0, —3). /

If the coordinate plane in Figure 2 is folded along the y-axis, the graph
that lies in the left half of the plane coincides with that in the right half, and
we say that the graph is symmetric with respect to the y-axis. A graph is
symmetric with respect to the y-axis provided that the point (—x, y) is on
the graph whenever (x, y) is on the graph. The graph of y = x> — 3 in Ex-
ample 2 has this property, since substitution of —x for x yields the same
equation:

y=(—x?—-3=x*-3

This substitution is an application of symmetry test 1 in the following chart.
Two other types of symmetry and the appropriate tests are also listed. The
graphs of x = y? and 4y = x? in the illustration column are discussed in Ex-
amples 4 and 5, respectively.
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Symmetries of Graphs of Equations in x and y

Terminology

Graphical interpretation

Test for symmetry Illustration

The graph is
symmetric with
respect to the
y-axis.

A

(—x,y) X~

LY (1) Substitution of y
—x for x

leads to the same
equation.

(x, y)

S

]
S

The graph is
symmetric with
respect to the

/ .
\ i

(2) Substitution of
—y fory

leads to the same

X-axis.
equation.
T (x, ) d
I -
; >
v X
The graph is LY (3) Simultaneous
symmetric with substitution of
respect to the —xforx
origin.
\%.\') and
" - —yfory
-~ - x

('&/;K,\

leads to the same
equation.

If a graph is symmetric with respect to an axis, it is sufficient to determine
the graph in half of the coordinate plane, since we can sketch the remainder of
the graph by taking a mirror image, or reflection, through the appropriate axis.

EXAMPLE 4 A graph thatis symmetric with respect to the x-axis

Sketch the graph of the equation y? = x.

SOLUTION  Since substitution of —y for y does not change the equation, the
graph is symmetric with respect to the x-axis (see symmetry test 2). Hence, if
the point (x, y) is on the graph, then the point (x, —y) is on the graph. Thus, it



Figure 3

Figure 4

Figure 5

AY

x—h?2+ G —k>=r?

=Y
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is sufficient to find points with nonnegative y-coordinates and then reflect
through the x-axis. The equation y?> = x is equivalent to y = =\/x. The
y-coordinates of points above the x-axis (y is positive) are given by y = Vx,
whereas the y-coordinates of points below the x-axis (y is negative) are given
by y = — V. Coordinates of some points on the graph are listed below. The
graph is sketched in Figure 3.

x | 01 2 3 4 9
y | 01 V2=14 V3=17 2 3

The graph is a parabola that opens to the right, with its vertex at the origin. In
this case, the x-axis is the axis of the parabola. /7

EXAMPLE 5 A graph thatis symmetric with respect to the origin

Sketch the graph of the equation 4y = x>.

SOLUTION  If we simultaneously substitute —x for x and —y for y, then
4(—y) = (—x)* or, equivalently, —4y = —x3.

Multiplying both sides by —1, we see that the last equation has the same so-
lutions as the equation 4y = x*. Hence, from symmetry test 3, the graph is
symmetric with respect to the origin—and if the point (x, y) is on the graph,
then the point (—x, —y) is on the graph. The following table lists coordinates
of some points on the graph.

<

(e}

[9%3

Nl'_‘ D=
|-

W
SRS
[\e] (3]
=

Because of the symmetry, we can see that the points (— 1, —Zl), (=2, —2), and
so on, are also on the graph. The graph is sketched in Figure 4. V4

If C(h, k) is a point in a coordinate plane, then a circle with center C and
radius r > O consists of all points in the plane that are r units from C. As
shown in Figure 5, a point P(x, y) is on the circle provided d(C, P) = r or, by
the distance formula,

Vix—hr+(y—k?=r.

The above equation is equivalent to the following equation, which we will
refer to as the standard equation of a circle.
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Standard Equation of a Circle
with Center (%, k) and Radius r

(= hP + (= b7 =2

Figure 6

O, r)

(-, 0)/< .\(r, 0
x
,’CZ + .\2 — ’,.2

0, =)

Figure 7

If » = 0 and k = 0, this equation reduces to x> + y*> = r?, which is an equa-
tion of a circle of radius r with center at the origin (see Figure 6). If » = 1, we
call the graph a unit circle.

EXAMPLE 6 Finding an equation of a circle

Find an equation of the circle that has center C(—2,3) and contains the
point D(4, 5).

SOLUTION  The circle is shown in Figure 7. Since D is on the circle, the ra-
dius r is d(C, D). By the distance formula,

r=\V@+27+ (5 -3P%=V36 +4 =40

Using the standard equation of a circle with 7 = —2,k = 3, and r = V40,
we obtain

(x + 22+ (y — 3)? = 40.

By squaring terms and simplifying the last equation, we may write it as

x2+ y*+4x — 6y — 27 = 0. 7/

As in the solution to Example 6, squaring terms of an equation of the form
(x = h)*> + (y — k)* = r* and simplifying leads to an equation of the form

x>+ y +ax+by+c=0,

where a, b, and ¢ are real numbers. Conversely, if we begin with this equa-
tion, it is always possible, by completing squares, to obtain an equation of the
form

(x—h?+ (y —k?=d.

This method will be illustrated in Example 7. If d > 0, the graph is a circle
with center (h, k) and radius r = \/d. If d = 0, the graph consists of only the
point (&, k). Finally, if d < 0, the equation has no real solutions, and hence
there is no graph.



Figure 8

T -3+49H=02,1

42, -3-49H=2,. -7

Recall that a tangent line to a circle
is a line that contains exactly one
point of the circle. Every circle has
four points of tangency associated
with horizontal and vertical lines. It is
helpful to plot these points when
sketching the graph of a circle.

Figure 9

(0,9)

(—=9,0) 9,0)

Sy

2+ 2 =81 [0, -9
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EXAMPLE 7 Finding the center and radius of a circle
Find the center and radius of the circle with equation

3x2 4+ 3y? — 12x + 18y = 9.
SOLUTION  Since it is easier to complete the square if the coefficients of x>
and y? are 1, we begin by dividing the given equation by 3, obtaining

x*+y?—4x + 6y = 3.
Next, we rewrite the equation as follows, where the underscored spaces repre-
sent numbers to be determined:
=4+ )+ OP+t6y+ )=3+_ +

We then complete the squares for the expressions within parentheses, taking
care to add the appropriate numbers to both sides of the equation. To complete
the square for an expression of the form x? + ax, we add the square of half the
coefficient of x (that is, (a/2)%) to both sides of the equation. Similarly, for
y? + by, we add (b/2)* to both sides. In this example, a = —4, b = 6,
(a/2)* = (—2)* = 4, and (b/2)* = 3> = 9. These additions lead to

(x?=4dx+ 4)+ (y*+6y+ 9)=3+ 4 + 9  completing the squares
(x =2+ (y + 32 = 16. equivalent equation
Comparing the last equation with the standard equation of a circle, we see that

h = 2 and k = —3 and conclude that the circle has center (2, —3) and radius
V16 = 4. A sketch of this circle is shown in Figure 8.

In some applications it is necessary to work with only one-half of a
circle—that is, a semicircle. The next example indicates how to find equations
of semicircles for circles with centers at the origin.

EXAMPLE 8 Finding equations of semicircles

Find equations for the upper half, lower half, right half, and left half of the
circle x> + y? = 81.

SOLUTION  The graph of x? + y* = 81 is a circle of radius 9 with center at
the origin (see Figure 9). To find equations for the upper and lower halves, we
solve for y in terms of x:

x?+y?2 =28l given
y? =81 —x? subtract x?
y = *V81 — x? take the square root
Since V81 — x* = 0, it follows that the upper half of the circle has the equa-
tion y = V81 — x* (y is positive) and the lower half is given by
y = — V81 — x*(yis negative), as illustrated in Figure 10(a) and (b).

(continued)
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Figure 10
(@) y= V8l —x* (b) y = —V81 — x2

Similarly, to find equations for the right and left halves, we solve
x* + y*> = 81 for x in terms of y, obtaining

x= VBT 32

Since V81 — y* = 0, it follows that the right half of the circle has the equa-
tion x = V81 — y? (x is positive) and the left half is given by the equation
x = —V/81 — y? (xis negative), as illustrated in Figure 10(c) and (d). /'

3.2 Exercises

Exer. 1-20: Sketch the graph of the equation, and label the 5y = —4x? =152
x- and y-intercepts.

7y=2x>—-1 8y=—x2+2
1ly=2x—-3 2y=3x+2

1
3y=-—x+1 4Ly=—-2x—13 9 x =73y’ 10 x = —2y?



11 x=—y*+3 12 x=29"—4
13 y:—%)ﬁ 14)1:%)63

15 y=x>-38 16 y=—x*+1
17 y=Vax 18 y=V—x
19 y=Vx—4 20y=Vx—4

Exer. 21-22: Use tests for symmetry to determine which
graphs in the indicated exercises are symmetric with respect
to (a) the y-axis, (b) the x-axis, and (c) the origin.

21 The odd-numbered exercises in 1-20

22 The even-numbered exercises in 1-20

Exer. 23-34: Sketch the graph of the circle or semicircle.
23 x*+y*=11 24 x2+y2 =17

25 (x+3)P+(y—22=9 26 x—4>+(y+2°=4
27 x+3)P+y*=16 28 X2+ (y—2)P=25

29 4x% + 4y2 =25 30 9x2 + 92 =1

31 y=—-VI16 — x* 32 y= V4 —x?
33 x = V9 —y? 34 x=—-V25—y*

Exer. 35-46: Find an equation of the circle that satisfies the
stated conditions.

35 Center C(2, —3), radius 5

36 Center C(—4, 1), radius 3

37 Center C (i, O), radius V3

38 Center C(%, —gz), radius 32

39 Center C(—4, 6), passing through P(1, 2)

40 Center at the origin, passing through P(4, —7)
41 Center C(—3, 6), tangent to the y-axis

42 Center C(4, —1), tangent to the x-axis

43 Tangent to both axes, center in the second quadrant,
radius 4

44 Tangent to both axes, center in the fourth quadrant, radius 3
45 Endpoints of a diameter A(4, —3) and B(—2, 7)

46 Endpoints of a diameter A(—5, 2) and B(3, 6)
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Exer. 47-56: Find the center and radius of the circle with
the given equation.

47 x>+ y?—4dx+ 6y —36=0
48 x>+ y2+ 8x — 10y + 37 =0
49 x>+ y2+ 4y —117=0

50 x2+y?—10x + 18 =0

51 2x* + 2y — 12x + 4y —15=0
52 9x2 + 9y* + 12x — 6y +4 =0
53 2+ y2+4x—2y+5=0

54 x2+y?—6x+4y+13=0
55 x2+y?—=2x—8y +19=0
56 x2+y*+4x+ 6y +16=0

Exer. 57-60: Find equations for the upper half, lower half,
right half, and left half of the circle.

57 x2 + y* =36 58 (x + 3)* + > = 64
50 x =2+ (y+1)2=49 60 (x—32+(y—5?*=4

Exer. 61-64: Find an equation for the circle or semicircle.

61 y 62 y
X
X
63 y 64 ] y
X X

Exer. 65-66: Determine whether the point P is inside, out-
side, or on the circle with center C and radius r.

65 (a) P(2,3), C(4,6), r=4
(b) P(4,2), C(1,-2, r=5
() P(—3,5), C@2,1), r==6
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66 (a) P(3,8), C(-2,—4), r
(b) P(=2,5), C@3,7), r=6
(¢) P(1,-2), C6,-7), r=17

13 Exer. 73-76: Express, in interval form, the x-values such
that y, < y,. Assume all points of intersection are shown on
the interval (— o, «).

Exer. 67-68: For the given circle, find (a) the x-intercepts
and (b) the y-intercepts.

67 x>+ y>?—4x—6y+4=0

68 x>+ y2—10x + 4y + 13 =0

69 Find an equation of the circle that is concentric (has the
same center) with x> + y> + 4x — 6y + 4 = 0 and passes
through P(2, 6).

70 Radio broadcasting ranges The signal from a radio station
has a circular range of 50 miles. A second radio station,
located 100 miles east and 80 miles north of the first station,
has a range of 80 miles. Are there locations where signals can
be received from both radio stations? Explain your answer.

71 Acircle C, of radius 5 has its center at the origin. Inside this
circle there is a first-quadrant circle C, of radius 2 that is
tangent to C. The y-coordinate of the center of C, is 2. Find
the x-coordinate of the center of C,.

72 A circle C, of radius 5 has its center at the origin. Outside
this circle is a first-quadrant circle C, of radius 2 that is tan-
gent to C,. The y-coordinate of the center of C, is 3. Find
the x-coordinate of the center of C,.

3 .3 One of the basic concepts in geometry is that of a line. In this section we will
_ restrict our discussion to lines that lie in a coordinate plane. This will allow us
Lines to use algebraic methods to study their properties. Two of our principal objec-

tives may be stated as follows:

(1) Given a line / in a coordinate plane, find an equation whose graph corre-
sponds to .

(2) Given an equation of a line / in a coordinate plane, sketch the graph of the
equation.

The following concept is fundamental to the study of lines.

Definition of Slope of a Line Let [ be a line that is not parallel to the y-axis, and let P,(x,, y;) and
P,(x,, y,) be distinct points on . The slope m of [ is

R )|

X2 — X1

If [ is parallel to the y-axis, then the slope of [ is not defined.




The Greek letter A (delta) is used in
mathematics to denote “change in.”
Thus, we can think of the slope m as

change in y
Ax changeinx’

Figure 1
(a) Positive slope (line rises)

A

2
—~——"P3(x,, y))

Xy 7 X

x
(b) Negative slope (line falls)
AY
N(«\’zv ¥2)
x
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Typical points P, and P, on a line / are shown in Figure 1. The numerator
vy, — y; in the formula for m is the vertical change in direction from P, to P,
and may be positive, negative, or zero. The denominator x, — x; is the hori-
zontal change from P, to P,, and it may be positive or negative, but never zero,
because / is not parallel to the y-axis if a slope exists. In Figure 1(a) the slope
is positive, and we say that the line rises. In Figure 1(b) the slope is negative,
and the line falls.

In finding the slope of a line it is immaterial which point we label as P,
and which as P,, since

yZ_yl_yZ_yl‘(_l)_yl_yz

n=x xn-x (1) x-x

If the points are labeled so that x; < x,, as in Figure 1, then x, — x; > 0, and
hence the slope is positive, negative, or zero, depending on whether y, > y,,
vy, <y, Or y, =y, respectively.

The definition of slope is independent of the two points that are chosen on
1. If other points P{(x}, y1) and Pj(x5, y3) are used, then, as in Figure 2, the tri-
angle with vertices P{, P, and P5(x3, y}) is similar to the triangle with vertices
Py, P,, and Ps(x,, y,). Since the ratios of corresponding sides of similar trian-
gles are equal,

Y2 T Vi _ Y2
X, —x;  xb— x|’
Figure 2
AY
P(xp, y5)
Py(x5, y2)
Pi(xi, y1)
(]
P3(x3, ¥
P](V
L ]
P3(x5, 1)
x
EXAMPLE 1 Finding slopes

Sketch the line through each pair of points, and find its slope m:

(@) A(—1,4) and B(3, 2) (b) A(2,5)and B(=2, —1)

(c) A(4,3) and B(—2,3) (d) A4, —1) and B(4, 4)

SOLUTION  The lines are sketched in Figure 3. We use the definition of

slope to find the slope of each line.
(continued)
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Figure 3

(@) m=—3 (b) m =3

y

() m=0 (d) m undefined
LY y
B(-2,3) 1 A@.3) ¢ B4, 4)
SN S R
T x TAM4, —1) *
2-4 =2 1
@m=3—CH~% "2
5—(-1) 6 3
O m= =172
3-3 0
@m=—"3"4="6-0

(d) The slope is undefined because the line is parallel to the y-axis. Note that
if the formula for m is used, the denominator is zero. V4

EXAMPLE 2 Sketching a line with a given slope
Sketch a line through P(2, 1) that has
€)) slope% (b) slope —;

SOLUTION If the slope of a line is a/b and b is positive, then for every
change of b units in the horizontal direction, the line rises or falls | a| units, de-
pending on whether a is positive or negative, respectively.

(a) If P(2, 1) is on the line and m = %, we can obtain another point on the line
by starting at P and moving 3 units to the right and 5 units upward. This gives
us the point Q(5, 6), and the line is determined as in Figure 4(a).
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(b) If P(2,1) is on the line and m = —%, we move 3 units to the right and
5 units downward, obtaining the line through Q(5, —4), as in Figure 4(b).

/
Figure 4
(@) m=3 (b) m=—3

The diagram in Figure 5 indicates the slopes of several lines through the
origin. The line that lies on the x-axis has slope m = 0. If this line is rotated
about O in the counterclockwise direction (as indicated by the blue arrow),
the slope is positive and increases, reaching the value 1 when the line bisects
the first quadrant and continuing to increase as the line gets closer to the
y-axis. If we rotate the line of slope m = 0 in the clockwise direction (as in-
dicated by the red arrow), the slope is negative, reaching the value —1 when
the line bisects the second quadrant and becoming large and negative as the
line gets closer to the y-axis.

Figure 5
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Figure 6

A(—3,4)

AY

Lines that are horizontal or vertical have simple equations, as indicated in
the following chart.

Terminology Definition Graph Equation Slope
Horizontal line | A line parallel AY y=2> Slope is 0
to the x-axis | y-interceptis b
©, b)
e
x
Vertical line A line parallel AY x=a Slope is
to the y-axis x-intercept is a undefined
(a,0)
x

Figure 7
AY

=Y

A common error is to regard the graph of y = b as consisting of only the
one point (0, b). If we express the equation in the form 0 - x + y = b, we see
that the value of x is immaterial; thus, the graph of y = b consists of the points
(xx, b) for every x and hence is a horizontal line. Similarly, the graph of x = a
is the vertical line consisting of all points (a, y), where y is a real number.

EXAMPLE 3 Finding equations of horizontal and vertical lines

Find an equation of the line through A(—3, 4) that is parallel to

(a) the x-axis (b) the y-axis

SOLUTION  The two lines are sketched in Figure 6. As indicated in the pre-
ceding chart, the equations are y = 4 for part (a) and x = —3 for part (b).

Let us next find an equation of a line [ through a point P;(x;, y;) with
slope m. If P(x, y) is any point with x # x, (see Figure 7), then P is on [ if and
only if the slope of the line through P, and P is m—that is, if

Y= _

X — X
This equation may be written in the form

y =y =mlx = x).
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Note that (x;, y;) is a solution of the last equation, and hence the points on [ are
precisely the points that correspond to the solutions. This equation for / is re-
ferred to as the point-slope form.

Po

int-Slope Form for

the Equation of a Line

An equation for the line through the point (x;, y;) with slope m is

y =y = mx — xy).

Figure 8

Figure 9

0, b)

/‘

4

=Y

The point-slope form is only one possibility for an equation of a line.
There are many equivalent equations. We sometimes simplify the equation
obtained using the point-slope form to either

ax + by =c¢ or ax + by +d =0,

where a, b, and c are integers with no common factor, a > 0, and d = —c.

EXAMPLE 4 Finding an equation of a line through two points
Find an equation of the line through A(1, 7) and B(—3, 2).

SOLUTION  The line is sketched in Figure 8. The formula for the slope m
gives us

7-2 5
m = 1_—(_3) = Z
We may use the coordinates of either A or B for (x;, y;) in the point-slope form.
Using A(1, 7) gives us the following:
y—17= %(x — 1)  point-slope form
4(y —7) = 5(x — 1)  multiply by 4
4y — 28 =5x—5 multiply factors
—5x +4y =23 subtract 5x and add 28
S5x — 4y = =23 multiply by —1
The last equation is one of the desired forms for an equation of a line. Another
isSx — 4y + 23 = 0. 7/

The point-slope form for the equation of a line may be rewritten as
y = mx — mx; + y;, which is of the form

y=mx+b

with b = —mx; + y,. The real number b is the y-intercept of the graph, as in-
dicated in Figure 9. Since the equation y = mx + b displays the slope m and
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y-intercept b of [, it is called the slope-intercept form for the equation of a
line. Conversely, if we start with y = mx + b, we may write

y—b=mx—0).

Comparing this equation with the point-slope form, we see that the graph is a
line with slope m and passing through the point (0, ). We have proved the fol-
lowing result.

Slope-Intercept Form
for the Equation of a Line

The graph of y = mx + b is a line having slope m and y-intercept b.

EXAMPLE 5 Expressing an equation in slope-intercept form

Express the equation 2x — Sy = 8 in slope-intercept form.

SOLUTION  Our goal is to solve the given equation for y to obtain the form
y = mx + b. We may proceed as follows:

2x — 5y =28 given
—S5y=-2x+38 subtract 2x
-2 8 .
y = (_—5>x + (_—5> divide by —5
y = %x + (—g) equivalent equation

The last equation is the slope-intercept form y = mx + b with slope m = %
and y-intercept b = —gg.

AN

It follows from the point-slope form that every line is a graph of an
equation

ax + by = ¢,

where a, b, and c¢ are real numbers and a and b are not both zero. We call such
an equation a linear equation in x and y. Let us show, conversely, that the
graph of ax + by = ¢, with a and b not both zero, is always a line. If b # 0,
we may solve for y, obtaining

_(a), ., <
Y AR

which, by the slope-intercept form, is an equation of a line with slope —a/b
and y-intercept ¢/b. If b = 0 but a # 0, we may solve for x, obtaining x = ¢/a,
which is the equation of a vertical line with x-intercept ¢/a. This discussion es-
tablishes the following result.



3.3 Lines 147

General Form for
the Equation of a Line

The graph of a linear equation ax + by = c is a line, and conversely, every
line is the graph of a linear equation.

Figure 10

For simplicity, we use the terminology the line ax + by = c rather than
the line with equation ax + by = c.

EXAMPLE 6 Sketching the graph of a linear equation
Sketch the graph of 2x — 5y = 8.

SOLUTION  We know from the preceding discussion that the graph is a
line, so it is sufficient to find two points on the graph. Let us find the x- and
y-intercepts by substituting y = 0 and x = 0, respectively, in the given equa-
tion, 2x — Sy = 8.

x-intercept: If y = 0, then 2x = §, or x = 4.

y-intercept: If x = 0, then —5y = 8, ory = —gg.
Plotting the points (4, 0) and (O, —58) and drawing a line through them gives
us the graph in Figure 10. V4

The following theorem specifies the relationship between parallel lines
(lines in a plane that do not intersect) and slope.

Theorem on Slopes
of Parallel Lines

Two nonvertical lines are parallel if and only if they have the same slope.

Figure 11

()
y=mx+b,

=Y

PROOF Let/ and /, be distinct lines of slopes m, and m,, respectively. If the
y-intercepts are b, and b, (see Figure 11), then, by the slope-intercept form, the
lines have equations

y=mx + b and y = mx + b,.

The lines intersect at some point (x, y) if and only if the values of y are equal
for some x—that is, if

mx + b] = myXx + bZa
or (m1 - mz)x = b2 - bl'

The last equation can be solved for x if and only if m; — m, # 0. We have
shown that the lines /; and I, intersect if and only if m, # m,. Hence, they do
not intersect (are parallel) if and only if m;, = m,. V4
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Figure 12

EXAMPLE 7 Finding an equation of a line parallel to a given line

Find an equation of the line through P(5, —7) that is parallel to the line
6x + 3y = 4.

SOLUTION  We first express the given equation in slope-intercept form:
6x +3y =4 given
3y = —6x + 4  subtract 6x
y=-2x+3 divideby3
The last equation is in slope-intercept form, y = mx + b, with slope m = —2

and y-intercept ;—‘. Since parallel lines have the same slope, the required line
also has slope —2. Using the point P(5, —7) gives us the following:

y —(=7) = =2(x — 5) point-slope form
y+7=-=2x+ 10 simplify
y=-—2x+3 subtract 7

The last equation is in slope-intercept form and shows that the parallel line
we have found has y-intercept 3. This line and the given line are sketched in
Figure 12.

As an alternative solution, we might use the fact that lines of the form
6x + 3y = k have the same slope as the given line and hence are parallel to it.
Substituting x =5 and y = —7 into the equation 6x + 3y = k gives us
6(5) + 3(=7) = k or, equivalently, k = 9. The equation 6x + 3y =9 is
equivalent to y = —2x + 3. 7/

If the slopes of two nonvertical lines are not the same, then the lines are
not parallel and intersect at exactly one point.

The next theorem gives us information about perpendicular lines (lines
that intersect at a right angle).

Theorem on Slopes
of Perpendicular Lines

Two lines with slope m, and m, are perpendicular if and only if

mm, = —1.

Figure 13

Y = myx

B(x;, myx,)

y=mx

A(xy, myx,)

" |

PROOF  For simplicity, let us consider the special case of two lines that in-
tersect at the origin O, as illustrated in Figure 13. Equations of these lines are
y = mx and y = myx. If, as in the figure, we choose points A(x;, m,x;) and
B(x,, myx,) different from O on the lines, then the lines are perpendicular if and
only if angle AOB is a right angle. Applying the Pythagorean theorem, we
know that angle AOB is a right angle if and only if

[d(A, B)}? = [d(O, B)}* + [d(0,A)]
or, by the distance formula,

(Xz - 351)2 + (mzxz - ml?ﬁ)2 = X% + (m2x2)2 + x% + (mlxl)z-
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6x +3y=4
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Squaring terms, simplifying, and factoring gives us

_zmlmle)C2 - le.xZ =0

—2x1x,(mm, + 1) = 0.

Since both x; and x, are not zero, we may divide both sides by —2x;x,,
obtaining m;m, + 1 = 0. Thus, the lines are perpendicular if and only if
mm, = —1.

The same type of proof may be given if the lines intersect at any point
(a, b).

A convenient way to remember the conditions on slopes of perpendicular
lines is to note that m, and m, must be negative reciprocals of each other—
thatis, m; = —1/m, and m, = —1/m,.

We can visualize the result of the last theorem as follows. Draw a triangle
as in Figure 14; the line containing its hypotenuse has slope m, = b/a. Now
rotate the triangle 90° as in Figure 15. The line now has slope m, = a/(—b),
the negative reciprocal of m;.

EXAMPLE 8 Finding an equation of a line perpendicular to a given line

Find the slope-intercept form for the line through P(5, —7) that is perpendicu-
lar to the line 6x + 3y = 4.

SOLUTION  We considered the line 6x + 3y = 4 in Example 7 and found
that its slope is —2. Hence, the slope of the required line is the negative recip-
rocal —[1/(—=2)], or % Using P(5, —7) gives us the following:

v (7 =4-9)

point-slope form

y+7=1x—32  simplify

_1 1
Yy=32Xx 773

put in slope-intercept form
The last equation is in slope-intercept form and shows that the perpendic-

ular line has y-intercept —179. This line and the given line are sketched in
Figure 16. /

EXAMPLE 9 Finding an equation of a perpendicular bisector

Given A(—3, 1) and B(5, 4), find the general form of the perpendicular bisec-
tor [ of the line segment AB.
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Figure 17

SOLUTION  The line segment AB and its perpendicular bisector / are shown
in Figure 17. We calculate the following, where M is the midpoint of AB:

. -3+51+4 5 o
Coordinates of M: R T =1, 3 midpoint formula

3
Slope of AB: — = ry slope formula

1
Slope of I: - = - negative reciprocal of %
8

Using the point M( 1, %) and slope —% gives us the following equivalent equa-
tions for [:
5

y—3= —_;8 x — 1)  point-slope form
6y — 15 = —16(x — 1) multiply by the lcd, 6
6y — 15 = —16x + 16  multiply

16x + 6y = 31 put in general form /

Two variables x and y are linearly related if y = ax + b, where a and b
are real numbers and a # 0. Linear relationships between variables occur fre-
quently in applied problems. The following example gives one illustration.

EXAMPLE 10 Relating air temperature to altitude

The relationship between the air temperature 7 (in °F) and the altitude /4 (in
feet above sea level) is approximately linear for 0 = i = 20,000. If the tem-
perature at sea level is 60°, an increase of 5000 feet in altitude lowers the air
temperature about 18°.

(a) Express T in terms of A, and sketch the graph on an AT-coordinate system.
(b) Approximate the air temperature at an altitude of 15,000 feet.
(c) Approximate the altitude at which the temperature is 0°.

SOLUTION
(a) If T is linearly related to h, then
T=ah+ Db

for some constants a and b (a represents the slope and b the T-intercept). Since
T = 60° when i = 0 ft (sea level), the T-intercept is 60, and the temperature
T for 0 = h = 20,000 is given by

T = ah + 60.

From the given data, we note that when the altitude 2 = 5000 ft, the tempera-
ture 7 = 60° — 18° = 42°. Hence, we may find a as follows:

42 = a(5000) + 60 let T = 42 and h = 5000
_42-60
“T 75000 2500

solve for a



Figure 18

A T (temperature in °F)
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Substituting for a in T = ah + 60 gives us the following formula for 7

9
T=—mh+60

The graph is sketched in Figure 18, with different scales on the axes.

60 - . . .
(b) Using the last formula for T obtained in part (a), we find that the tempera-
T ture (in °F) when & = 15,000 is
1 — 5555(15,000) + 60 = —54 + 60 = 6.
T (c) To find the altitude 4 that corresponds to T = 0°, we proceed as follows:
10 T
o T = _Fgooh + 60 from part (a)
1000 5000 h —5e5h + 60 let T = 0
(altitude in ft) g
25k = 60 add 525k
h=60-232 multiply by 2%
50,000
h = ———= 16,667 ft simplify and approximate V4

A mathematical model is a mathematical description of a problem. For
our purposes, these descriptions will be graphs and equations. In the last ex-
ample, the equation T = _zs%h + 60 models the relationship between air
temperature and altitude.

3.3 Exercises

Exer. 1-6: Sketch the line through A and B, and find its
slope m.

1 A(=3,2), B, —4) 2 A(4, —1), B(—6, —=3)

3 A2, 5), B(—-17,5) 4 A(5, —1), B(5,06)

5 A(—3,2), B(-3,5) 6 A4, —=2), B(—3, —2)

Exer. 7-10: Use slopes to show that the points are vertices
of the specified polygon.

7 A(=3, 1), B(5, 3), C(3, 0), D(—5, —2); parallelogram

8 A(2, 3), B(5, —1), C(0, —6), D(—6, 2); trapezoid
9 A(6, 15), B(11, 12), C(—1, —8), D(—6, —5); rectangle

10 A(1, 4), B(6, —4), C(—15, —6); right triangle

11 If three consecutive vertices of a parallelogram are
A(—1, —=3), B(4, 2), and C(—7, 5), find the fourth vertex.

12 Let A(xy, y1), B(xz, y2), Clxs, y3), and D(x4, y4) denote
the vertices of an arbitrary quadrilateral. Show that the line
segments joining midpoints of adjacent sides form a
parallelogram.

Exer. 13-14: Sketch the graph of y = mx for the given

values of m.

Bm=3-23% —1 1% m=5 -3 12 -3

Exer. 15-16: Sketch the graph of the line through P for

each value of m.

15 PG, 1); m=3,-1,—1

16 P(-2,4); m=1,-2,—3
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Exer. 17-18: Write equations of the lines.
17

18

Exer. 19-20: Sketch the graphs of the lines on the same
coordinate plane.

19 y=x+3, y=x+1, y=—x+1

20y=—-2x—-1, y=—2x+3, y=%x+3

Exer. 21-32: Find a general form of an equation of the line
through the point A that satisfies the given condition.

21 AG5, —2)

(a) parallel to the y-axis

(b) perpendicular to the y-axis
22 A(—4,2)

(a) parallel to the x-axis

(b) perpendicular to the x-axis

23 A(5, —3); slope —4 24 A(—1, 4); slope%

25 A4, 0); slope —3 26 A0, —2); slope 5
27 A(4, —5); through B(—3, 6)

28 A(—1, 6); x-intercept 5

29 A(2, —4); parallel to the line 5x — 2y = 4

30 A(—3, 5); parallel to the line x + 3y = 1

31 A(7, —3); perpendicular to the line 2x — 5y = 8

32 A(4,5);  perpendicular to the line 3x + 2y = 7

Exer. 33-36: Find the slope-intercept form of the line that
satisfies the given conditions.

33 x-intercept 4, y-intercept —3
34 x-intercept —5, y-intercept —1
35 Through A(5, 2) and B(—1, 4)

36 Through A(—2, 1) and B(3, 7)

Exer. 37-38: Find a general form of an equation for the per-
pendicular bisector of the segment AB.

37 AB, —1), B(=2, 6) 38 A(4, 2), B(=2, 10)

Exer. 39-40: Find an equation for the line that bisects the
given quadrants.

39 IT'and IV 40 T'and IIT

Exer. 41-44: Use the slope-intercept form to find the slope
and y-intercept of the given line, and sketch its graph.

41 2x =15 — 3y 42 Tx = —4y — 8

43 4x =3y =9 44 x — 5y =—15

Exer. 45-46: Find an equation of the line shown in the
figure.

45 (a) (b)

L
LI N I
<




51
52
46 (a) (b)
Yy 53
B o e
X
(d) 54
Exer. 47-48: If a line / has nonzero x- and y-intercepts a and
b, respectively, then its intercept form is
x Y
—+--=1
a b
Find the intercept form for the given line. 35
47 4x — 2y =6 48 x —3y=-2

49 Find an equation of the circle that has center C(3, —2) and
is tangent to the line y = 5.

50 Find an equation of the line that is tangent to the circle
x? 4+ y? = 25 at the point P(3, 4).
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Fetal growth The growth of a fetus more than 12 weeks old
can be approximated by the formula L = 1.53¢ — 6.7, where
L is the length (in centimeters) and 7 is the age (in weeks).
Prenatal length can be determined by ultrasound. Approxi-
mate the age of a fetus whose length is 28 centimeters.

Estimating salinity Salinity of the ocean refers to the
amount of dissolved material found in a sample of seawater.
Salinity S can be estimated from the amount C of chlorine
in seawater using S = 0.03 + 1.805C, where S and C are
measured by weight in parts per thousand. Approximate C
if Sis 0.35.

Weight of a humpback whale The expected weight W
(in tons) of a humpback whale can be approximated
from its length L (in feet) by using W = 1.70L — 42.8 for
30 =L =50.

(a) Estimate the weight of a 40-foot humpback whale.

(b) If the error in estimating the length could be as large as
2 feet, what is the corresponding error for the weight
estimate?

Growth of a blue whale Newborn blue whales are approxi-
mately 24 feet long and weigh 3 tons. Young whales are
nursed for 7 months, and by the time of weaning they often
are 53 feet long and weigh 23 tons. Let L and W denote the
length (in feet) and the weight (in tons), respectively, of a
whale that is # months of age.

(a) If L and  are linearly related, express L in terms of 7.

(b) What is the daily increase in the length of a young
whale? (Use 1 month = 30 days.)

(c) If Wand ¢ are linearly related, express W in terms of 7.

(d) What is the daily increase in the weight of a young
whale?

Baseball stats Suppose a major league baseball player has
hit 5 home runs in the first 14 games, and he keeps up this

pace throughout the 162-game season.

(a) Express the number y of home runs in terms of the
number x of games played.

(b) How many home runs will the player hit for the season?
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56

57

58

59

60

Cheese production A cheese manufacturer produces
18,000 pounds of cheese from January 1 through March 24.
Suppose that this rate of production continues for the re-
mainder of the year.

(a) Express the number y of pounds of cheese produced in
terms of the number x of the day in a 365-day year.

(b) Predict, to the nearest pound, the number of pounds
produced for the year.

Childhood weight A baby weighs 10 pounds at birth, and
three years later the child’s weight is 30 pounds. Assume
that childhood weight W (in pounds) is linearly related to
age ? (in years).

(a) Express W in terms of 7.
(b) What is W on the child’s sixth birthday?
(c) At what age will the child weigh 70 pounds?

(d) Sketch, on a tW-plane, a graph that shows the relation-
ship between Wand ¢ for 0 = r = 12.

Loan repayment A college student receives an interest-
free loan of $8250 from a relative. The student will repay
$125 per month until the loan is paid off.

(a) Express the amount P (in dollars) remaining to be paid
in terms of time ¢ (in months).

(b) After how many months will the student owe $5000?

(c) Sketch, on a 7P-plane, a graph that shows the relation-
ship between P and ¢ for the duration of the loan.

Vaporizing water The amount of heat H (in joules) required
to convert one gram of water into vapor is linearly related to
the temperature 7 (in °C) of the atmosphere. At 10°C this
conversion requires 2480 joules, and each increase in temp-
erature of 15°C lowers the amount of heat needed by
40 joules. Express H in terms of T.

Aerobic power In exercise physiology, aerobic power P is
defined in terms of maximum oxygen intake. For altitudes
up to 1800 meters, aerobic power is optimal—that is,
100%. Beyond 1800 meters, P decreases linearly from the
maximum of 100% to a value near 40% at 5000 meters.

(a) Express aerobic power P in terms of altitude / (in met-
ers) for 1800 = h = 5000.

(b) Estimate aerobic power in Mexico City (altitude: 2400
meters), the site of the 1968 Summer Olympic Games.

61

62

63

64

65

Urban heat island The urban heat island phenomenon has
been observed in Tokyo. The average temperature was
13.5°C in 1915, and since then has risen 0.032°C per year.

(a) Assuming that temperature 7 (in °C) is linearly related
to time ¢ (in years) and that = 0 corresponds to 1915,
express T in terms of 7.

(b) Predict the average temperature in the year 2010.

Rising ground temperature In 1870 the average ground
temperature in Paris was 11.8°C. Since then it has risen at a
nearly constant rate, reaching 13.5°C in 1969.

(a) Express the temperature 7 (in °C) in terms of time ¢ (in
years), where t = O corresponds to the year 1870 and
0=r=099.

(b) During what year was the average ground temperature
12.5°C?

Business expenses The owner of an ice cream franchise
must pay the parent company $1000 per month plus 5% of
the monthly revenue R. Operating cost of the franchise in-
cludes a fixed cost of $2600 per month for items such as
utilities and labor. The cost of ice cream and supplies is
50% of the revenue.

(a) Express the owner’s monthly expense E in terms of R.
(b) Express the monthly profit P in terms of R.
(c) Determine the monthly revenue needed to break even.

Drug dosage Pharmacological products must specify recom-
mended dosages for adults and children. Two formulas for
modification of adult dosage levels for young children are

Cowling’s rule: y = 2*14(1 + 1)a

and Friend’s rule: y = Zzgta,
where a denotes adult dose (in milligrams) and 7 denotes the

age of the child (in years).

(a) Ifa = 100, graph the two linear equations on the same
coordinate plane for 0 = r = 12.

(b) For what age do the two formulas specify the same
dosage?

Video game In the video game shown in the figure, an
airplane flies from left to right along the path given by
y = 1 + (1/x) and shoots bullets in the tangent direction at
creatures placed along the x-axis at x = 1, 2, 3, 4.
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67

Exercise 65

From calculus, the slope of the tangent line to the path at
P(1,2)is m = —1 and at Q(%, %) ism= —g. Determine
whether a creature will be hit if bullets are shot when the
airplane is at

(@ P (b)

Temperature scales The relationship between the tempera-
ture reading F on the Fahrenheit scale and the temperature
reading C on the Celsius scale is given by C = %(F - 32).

(a) Find the temperature at which the reading is the same
on both scales.

(b) When is the Fahrenheit reading twice the Celsius
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shear is of great importance to pilots during takeoffs and land-
ings. If the wind speed is v, at height %, and v, at height A,,
then the average wind shear s is given by the slope formula

Vo — Vy

hth]'

s =

If the wind speed at ground level is 22 mi/hr and s has been
determined to be 0.07, find the wind speed 185 feet above
the ground.

68 Vertical wind shear In the study of vertical wind shear, the

formula

Vi _ hy\°

Vo hy
is sometimes used, where P is a variable that depends on
the terrain and structures near ground level. In Montreal,
the average daytime value for P with north winds over
29 mi/hr was determined to be 0.13. If a 32 mi/hr north
wind is measured 20 feet above the ground, approximate
the average wind shear (see Exercise 67) between 20 feet
and 200 feet.

Exer. 69-70: The given points were found using empirical
methods. Determine whether they lie on the same line
y = ax + b, and if so, find the values of ¢ and b.

69 A(—1.3, —1.3598), B(—0.55, —1.11905),
C(1.2, —0.5573), D(3.25, 0.10075)
70 A(—0.22, 1.6968), B(—0.12, 1.6528),

reading?
C(1.3, 1.028) D(1.45, 0.862)
Vertical wind shear Vertical wind shear occurs when wind
speed varies at different heights above the ground. Wind
3.4
Definition Of Function The notion of correspondence occurs frequently in everyday life. Some ex-

amples are given in the following illustration.

ILLUSTRATION Correspondence

B To each book in a library there corresponds the number of pages in the

book.

To each human being there corresponds a birth date.

If the temperature of the air is recorded throughout the day, then to each
instant of time there corresponds a temperature.
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Figure 1

X

Each correspondence in the previous illustration involves two sets, D and
E. In the first illustration, D denotes the set of books in a library and E the set
of positive integers. To each book x in D there corresponds a positive integer
y in E—namely, the number of pages in the book.

We sometimes depict correspondences by diagrams of the type shown in
Figure 1, where the sets D and E are represented by points within regions in a
plane. The curved arrow indicates that the element y of E corresponds to the
element x of D. The two sets may have elements in common. As a matter of
fact, we often have D = E. It is important to note that to each x in D there cor-
responds exactly one y in E. However, the same element of £ may correspond
to different elements of D. For example, two books may have the same num-
ber of pages, two people may have the same birthday, and the temperature may
be the same at different times.

In most of our work, D and E will be sets of numbers. To illustrate, let
both D and E denote the set R of real numbers, and to each real number x let
us assign its square x2. This gives us a correspondence from R to R.

Each of our illustrations of a correspondence is a function, which we de-
fine as follows.

Definition of Function

A function f from a set D to a set E is a correspondence that assigns to
each element x of D exactly one element y of E.

For many cases, we can simp/.\,' re-

member that the domain is the set of

x-values and the range is the set of
y-values.

Figure 2

w
N /)
% X "\i(z)
a 0’\
of(x)
b «f(a)

E

The element x of D is the argument of . The set D is the domain of the func-
tion. The element y of E is the value of fat x (or the image of x under f) and
is denoted by f(x), read “f of x.” The range of fis the subset R of E consisting
of all possible values f(x) for x in D. Note that there may be elements in the
set E that are not in the range R of f.

Consider the diagram in Figure 2. The curved arrows indicate that the el-
ements f(w), f(z), f(x), and f(a) of E correspond to the elements w, z, x, and
a of D. To each element in D there is assigned exactly one function value in E;
however, different elements of D, such as w and z in Figure 2, may have the
same value in E.

The symbols

f
D-LE, f:D—E, and /\
D E

signify that fis a function from D to E, and we say that f maps D into E. Ini-
tially, the notations f and f(x) may be confusing. Remember that f is used to
represent the function. It is neither in D nor in E. However, f(x) is an element



Note that, in general,

fla +b) # fla) + f(b).
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of the range R—the element that the function f assigns to the element x, which
is in the domain D.
Two functions f and g from D to E are equal, and we write

f=g provided f(x) = g(x) foreveryxinD.

For example, if g(x) = %(2)62 — 6) + 3 and f(x) = x* for every x in R, then
g§=1r.

EXAMPLE 1 Finding function values

Let f be the function with domain R such that f(x) = x2 for every x in R.

(a) Find f(—6), f(\@), fla + b), and f(a) + f(b), where a and b are real
numbers.

(b) What is the range of f?

SOLUTION
(a) We find values of f'by substituting for x in the equation f(x) = x*:

f(=6) = (=6)* = 36
FV3) = (V3] =3
fla+ b) = (a+ b)?*=a*+ 2ab + b?
fla) + f(b) = & + b*

(b) By definition, the range of f consists of all numbers of the form f(x) = x>
for x in R. Since the square of every real number is nonnegative, the range is
contained in the set of all nonnegative real numbers. Moreover, every non-
negative real number c is a value of f, since f(\/E) = (\/5)2 = c¢. Hence,
the range of fis the set of all nonnegative real numbers. /

If a function is defined as in Example 1, the symbols used for the function
and variable are immaterial; that is, expressions such as f(x) = x2, f(s) = 5%,
g(t) = *, and k(r) = r?* all define the same function. This is true because if a
is any number in the domain, then the same value a? is obtained regardless of
which expression is employed.

In the remainder of our work, the phrase fis a function will mean that the
domain and range are sets of real numbers. If a function is defined by means
of an expression, as in Example 1, and the domain D is not stated, then we will
consider D to be the totality of real numbers x such that f(x) is real. This is
sometimes called the implied domain of f. To illustrate, if f(x) = Vx — 2,
then the implied domain is the set of real numbers x such that Vx — 2 is
real—that is, x — 2 = 0, or x = 2. Thus, the domain is the infinite interval
[2, ). If x is in the domain, we say that f is defined at x or that f(x) exists. If



158 CHAPTER 3 FUNCTIONS AND GRAPHS

Figure 3

MENU

Soda

Hamburger $1.69

French fries $0.99

$0.79 |

a set S is contained in the domain, f is defined on S. The terminology f is un-
defined at x means that x is not in the domain of f.

EXAMPLE 2 Finding function values

VAT x
Let g(x) = —

(a) Find the domain of g.
(b) Find g(5), 8(—2), g(~a), and —g(a).

SOLUTION

(a) The expression V4 + x/(1 — x) is a real number if and only if the radi-
cand 4 + x is nonnegative and the denominator 1 — x is not equal to 0. Thus,
g(x) exists if and only if

4+x=0 and 1 —x#0

or, equivalently,
x=—4 and x # 1.

We may express the domain in terms of intervals as [—4, 1) U (1, «).

(b) To find values of g, we substitute for x:

Va+s5 V9 3

]
V4 + (=2) 2
8(=2) "I 3
Vi+(—a) V4-—a
g(-a) = 1—(—a) T l+a
V4d+a Vid+a
—gla) = — =

1 —a a—1 V4

Functions are commonplace in everyday life and show up in a variety of
forms. For instance, the menu in a restaurant (Figure 3) can be considered to
be a function f from a set of items to a set of prices. Note that fis given in a
table format. Here f(Hamburger) = 1.69, f(French fries) = 0.99, and
f(Soda) = 0.79.

An example of a function given by a rule can be found in the federal tax
tables (Figure 4). Specifically, in 2006, for a single person with a taxable in-
come of $120,000, the tax due was given by the rule

$15,107.50 plus 28% of the amount over $74,200.



Figure 4

2006 Federal Tax Rate Schedules

Schedule X —Use if your Filing status is single

If taxable of the
income is But not The tax amount

over— over— 1s: over—
$0 7Y essesses 10% $0
7,550 30,650 $755.00 + 15% 7,550
30,650 74,200 $4,220.00 + 25% 30,650
74,200 154,800 15,107.50 + 28% 74,200
154,800 336,550 37,675.50 + 33% 154,800
336,550 @ ------- 97,653.00 + 35% 336,550
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Figure 5

.

A

T (temperature)

In this case, the tax would be

$15,107.50 + 0.28($120,000 — $74,200) = $27,931.50.

Graphs are often used to describe the variation of physical quantities. For
example, a scientist may use the graph in Figure 5 to indicate the temperature
T of a certain solution at various times ¢ during an experiment. The sketch
shows that the temperature increased gradually for time #+ = 0 to time t = 5,
did not change between r = 5 and t = 8, and then decreased rapidly from
t=8tor=0.

Similarly, if fis a function, we may use a graph to indicate the change in
f(x) as x varies through the domain of f. Specifically, we have the following
definition.

Definition of
Graph of a Function

The graph of a function f is the graph of the equation y = f(x) for x in the
domain of f.

We often attach the label y = f(x) to a sketch of the graph. If P(a, b) is a
point on the graph, then the y-coordinate b is the function value f(a), as illus-
trated in Figure 6 on the next page. The figure displays the domain of f (the set
of possible values of x) and the range of f (the corresponding values of y). Al-
though we have pictured the domain and range as closed intervals, they may
be infinite intervals or other sets of real numbers.

Since there is exactly one value f(a) for each a in the domain of f, only
one point on the graph of f has x-coordinate a. In general, we may use the fol-
lowing graphical test to determine whether a graph is the graph of a function.

Vertical Line Test

The graph of a set of points in a coordinate plane is the graph of a function
if every vertical line intersects the graph in at most one point.
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Figure 6

|
Range P(a, b) |
of f l |
o | pfl@
| l |
| | | >
N a Y X
W
Domain of f
Figure 7
T ‘y
Range: ]
[0,9) 4 JE—
i y=Vx—1

S I N R B N R R
|
|

l~<——Domain: [1, %) —>

Thus, every vertical line intersects the graph of a function in at most
one point. Consequently, the graph of a function cannot be a figure such as
a circle, in which a vertical line may intersect the graph in more than one
point.

The x-intercepts of the graph of a function f are the solutions of the equa-
tion f(x) = 0. These numbers are called the zeros of the function. The
y-intercept of the graph is f(0), if it exists.

EXAMPLE 3 Sketching the graph of a function
Let f(x) = Vx — 1.

(a) Sketch the graph of f.

(b) Find the domain and range of f.

SOLUTION

(a) By definition, the graph of fis the graph of the equation y = Vx — 1.
The following table lists coordinates of several points on the graph.

x 1 2 3 4 5 6
y=f@x) | 01 V2=14 V3=17 2 V5=22

Plotting points, we obtain the sketch shown in Figure 7. Note that the
x-intercept is 1 and there is no y-intercept.

(b) Referring to Figure 7, note that the domain of f consists of all real num-
bers x such that x = 1 or, equivalently, the interval [1, «). The range of fis the
set of all real numbers y such that y = 0 or, equivalently, [0, «). /7

The square root function, defined by f(x) = \V/x, has a graph similar to
the one in Figure 7, but the endpoint is at (0, 0). The y-value of a point on this
graph is the number displayed on a calculator when a square root is requested.
This graphical relationship may help you remember that \/9 is 3 and that \/9
is not +3. Similarly, f(x) = x2, f(x) = x?, and f(x) = Vx are often referred
to as the squaring function, the cubing function, and the cube root function,
respectively.

In Example 3, as x increases, the function value f(x) also increases, and
we say that the graph of f rises (see Figure 7). A function of this type is said
to be increasing. For certain functions, f(x) decreases as x increases. In this
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case the graph falls, and f is a decreasing function. In general, we shall con-
sider functions that increase or decrease on an interval /, as described in the
following chart, where x; and x, denote numbers in /.

Increasing, Decreasing, and Constant Functions

Terminology Definition Graphical interpretation
fis increasing f) < flxy) AY
on an interval / whenever x; < x,
l
I ~
| f(x2)
|
e
X Xy X
fis decreasing fx) > flxy) oY
on an interval / whenever x; < x,
l
. |
Sfxp) :
I . -
)] _
X X X
fis constant flx) = flx) LY
on an interval / for every x; and x,
| |
l l
fant fO)g]
| |
1 1 >
X X5 X

An example of an increasing function is the identity function, whose
equation is f(x) = x and whose graph is the line through the origin with
slope 1. An example of a decreasing function is f(x) = —x, an equation of the
line through the origin with slope —1. If f(x) = ¢ for every real number x, then
fis called a constant function.
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Figure 8

We shall use the phrases f is increasing and f(x) is increasing inter-
changeably. We shall do the same with the terms decreasing and constant.

EXAMPLE 4 Using a graph to find domain, range,
and where a function increases or decreases

Let f(x) = V9 — X2

(a) Sketch the graph of f.

(b) Find the domain and range of f.

(c) Find the intervals on which fis increasing or is decreasing.

SOLUTION
(a) By definition, the graph of fis the graph of the equation y = V9 — x* We
know from our work with circles in Section 3.2 that the graph of x> + y?> =9
is a circle of radius 3 with center at the origin. Solving the equation
x>+ y*=9forygivesus y = =V9 — x2 It follows that the graph of fis the
upper half of the circle, as illustrated in Figure 8.
(b) Referring to Figure 8, we see that the domain of f is the closed interval
[—3, 3], and the range of fis the interval [0, 3].
(c) The graph rises as x increases from —3 to 0, so fis increasing on the closed
interval [—3, 0]. Thus, as shown in the preceding chart, if x; < x, in [—3, 0],
then f(x;) < f(x,) (note that possibly x, = =3 or x, = 0).

The graph falls as x increases from 0 to 3, so fis decreasing on the closed
interval [0, 3]. In this case, the chart indicates that if x; < x, in [0, 3], then
f(x)) > f(x,) (note that possibly x;, = 0 or x, = 3).

Of special interest in calculus is a problem of the following type.

Problem: Find the slope of the secant line through the points P and Q shown
in Figure 9.

Figure 9

AY

secant line

O(a+h, fla+h) _—y = f(x
} Ay = fla + h) — f(a)

Y

a a+h X
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The slope mp, is given by

" _ Ay flath) — fla)
e Ax h ’

The last expression (with i # 0) is commonly called a difference quotient.
Let’s take a look at the algebra involved in simplifying a difference quotient.
(See Discussion Exercise 5 at the end of the chapter for a related problem.)

EXAMPLE 5 Simplifying a difference quotient

Simplify the difference quotient

S+ h) — flx)
h

using the function f(x) = x> + 6x — 4.
SOLUTION

Sa+h) —f&) [+ h)®+ 60+ h) —4] - [x*+ 6x — 4]
h h

definition of f
(& +2xh+ B+ 6x+ 6h —4) — (x* + 6x — 4)
h

expand numerator

_ (P A+ 2xh + 1P+ 65 + 6h — 4) — (¥ + 65 — 4)

h
subtract terms
2xh + h* + 6h o
= simplify
h
h(2x + h + 6)
= factor out &
h
=2x+h+6 cancel h # 0

7/

The following type of function is one of the most basic in algebra.

Definition of Linear Function

A function f'is a linear function if
f(x) = ax + b,

where x is any real number and a and b are constants.

The graph of f in the preceding definition is the graph of y = ax + b,
which, by the slope-intercept form, is a line with slope a and y-intercept b.
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Figure 10

Figure 11

y=ax+b

Thus, the graph of a linear function is a line. Since f(x) exists for every x, the
domain of fis R. As illustrated in the next example, if a # 0, then the range
of fis also R.

EXAMPLE 6 Sketching the graph of a linear function

Let f(x) = 2x + 3.
(a) Sketch the graph of f.
(b) Find the domain and range of f.

(c) Determine where fis increasing or is decreasing.

SOLUTION

(a) Since f(x) has the form ax + b, with a = 2 and b = 3, fis a linear func-
tion. The graph of y = 2x + 3 is the line with slope 2 and y-intercept 3, illus-
trated in Figure 10.

(b) We see from the graph that x and y may be any real numbers, so both the
domain and the range of fare R.

(c) Since the slope a is positive, the graph of frises as x increases; that is,
f(x1) < f(x,) whenever x; < x,. Thus, fis increasing throughout its domain.

7/

In applications it is sometimes necessary to determine a specific linear
function from given data, as in the next example.

EXAMPLE 7 Finding a linear function

If f is a linear function such that f(—2) = 5 and f(6) = 3, find f(x), where x
is any real number.

SOLUTION By the definition of linear function, f(x) = ax + b, where a
and b are constants. Moreover, the given function values tell us that the points
(=2, 5) and (6, 3) are on the graph of f—that is, on the line y = ax + b illus-
trated in Figure 11. The slope a of this line is

5-3 2 1
-2-6 -8 4’

a =

and hence f(x) has the form
fx) = —3x + b.
To find the value of b, we may use the fact that f(6) = 3, as follows:
f(6) =—106) + b letx=06inf(x) = —fx+b
3=—-3+b  fl6)=3

b=3+%=% solve for b
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Thus, the linear function satisfying f(—2) = 5 and f(6) = 3 is
f) = —1x+3. /

Many formulas that occur in mathematics and the sciences determine
functions. For instance, the formula A = 7r? for the area A of a circle of ra-
dius r assigns to each positive real number r exactly one value of A. This de-
termines a function f such that f(r) = 7rr?, and we may write A = f(r). The
letter r which represents an arbitrary number from the domain of f, is called
an independent variable. The letter A, which represents a number from the
range of f, is a dependent variable, since its value depends on the number as-
signed to r. If two variables r and A are related in this manner, we say that A
is a function of r. In applications, the independent variable and dependent vari-
able are sometimes referred to as the input variable and output variable, re-
spectively. As another example, if an automobile travels at a uniform rate of
50 mi/hr, then the distance d (miles) traveled in time ¢ (hours) is given by
d = 50t, and hence the distance d is a function of time t.

EXAMPLE 8 Expressing the volume of a tank as a function of its radius

A steel storage tank for propane gas is to be constructed in the shape of a right
circular cylinder of altitude 10 feet with a hemisphere attached to each end.
The radius r is yet to be determined. Express the volume V (in ft*) of the tank
as a function of r (in feet).

SOLUTION  The tank is illustrated in Figure 12. We may find the volume of
the cylindrical part of the tank by multiplying the altitude 10 by the area 7r>
of the base of the cylinder. This gives us

volume of cylinder = 10(7r?) = 107

The two hemispherical ends, taken together, form a sphere of radius » Using
the formula for the volume of a sphere, we obtain

volume of the two ends = 377,
Thus, the volume V of the tank is
V="2%m + 10w,

This formula expresses V as a function of . In factored form,

V(r) = %Wr2(4r + 30) = %’77}’2(27' + 15). /

EXAMPLE 9 Expressing a distance as a function of time

Two ships leave port at the same time, one sailing west at a rate of 17 mi/hr
and the other sailing south at 12 mi/hr. If  is the time (in hours) after their de-
parture, express the distance d between the ships as a function of ¢
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Figure 13

SOLUTION  To help visualize the problem, we begin by drawing a picture
and labeling it, as in Figure 13. By the Pythagorean theorem,

d>=a* + b, or d=\Va + b
Since distance = (rate)(time) and the rates are 17 and 12, respectively,
a= 17t and b =121
Substitution in d = \Va® + b? gives us
d= VAT + (121 = V289> + 144> = /4331 = (20.8)t. #

Ordered pairs can be used to obtain an alternative approach to functions.
We first observe that a function f from D to E determines the following set W
of ordered pairs:

W = {(x, f(x)): xis in D}

Thus, W consists of all ordered pairs such that the first number x is in D and
the second number is the function value f(x). In Example 1, where f(x) = x?,
W is the set of all ordered pairs of the form (x, x?). It is important to note that,
for each x, there is exactly one ordered pair (x,y) in W having x in the first
position.

Conversely, if we begin with a set W of ordered pairs such that each x in
D appears exactly once in the first position of an ordered pair, then W deter-
mines a function. Specifically, for each x in D there is exactly one pair (x, y)
in W, and by letting y correspond to x, we obtain a function with domain D.
The range consists of all real numbers y that appear in the second position of
the ordered pairs.

It follows from the preceding discussion that the next statement could also
be used as a definition of function.

Alternative
Definition of Function

A function with domain D is a set W of ordered pairs such that, for each x
in D, there is exactly one ordered pair (x, y) in W having x in the first
position.

In terms of the preceding definition, the ordered pairs (x, Vx—1 ) deter-
mine the function of Example 3 given by f(x) = Vx — 1. Note, however,
that if

W= {(x, y): x* = y},

then W is not a function, since for a given x there may be more than one pair
in W with x in the first position. For example, if x = 2, then both (2, 2) and
(2, —2) are in W.

As a reference aid, some common graphs and their equations are listed in
Appendix I. Many of these graphs are graphs of functions.
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1If f(x) = —x? — x — 4, find f(—2), £(0), and f(4).
2 If f(x) = —x> — x2 + 3, find f(—3), £(0), and f(2).
3 If f(x) = Vx — 4 — 3x, find f(4), f(8), and f(13).

X

G f0) =

find f(—2), f(0), and f(3).

Exer. 5-10: If @ and & are real numbers, find

@ f@ O fco  © —f@ @ fa+h
© f@ -+ 0 LOEDZLD ey
5 f(x) = 5x — 2 6 f(x) =3 — 4x
7 ) = —x2 + 4 8 f(x) =3 — x2

9 flx) =x*—x+3 10 f(x) = 2x2 +3x — 7

Exer. 11-14: If a is a positive real number, find

1 1

(a) g<> (b) — © g(Va) @ Vz@
a g(a)

11 g(x) = 4x2 12 gx) =2x — 5

2x 2

x2+1

13 glx) = 14 g(x) =

X
x+ 1

Exer. 15-16: Explain why the graph is or is not the graph of
a function.

15 16 y

T R R .

hil
N

Exer. 17-18: Determine the domain D and range R of the
function shown in the figure.

y 18

[any
~

£

(1,2

(—4,3
/ p4,3) )

I T T O T I

(=2, 1)

2,-1) (—2,—-1)

4, -3)

Exer. 19-20: For the graph of the function f sketched in the
figure, determine
(a) the domain (b) the range

(d) all x such that f(x) =1
(e) all x such that f(x) > 1

(0 f()

19

I, =D

7, -1

Exer. 21-32: Find the domain of f.
21 fx) = V2x + 7 22 f(x) = V8 — 3x
23 fx) = V9 — x? 24 f(x) = Vx? =25

x+1 4x
26 =
&) 6x>+ 13x — 5

25 fx) =

x3 — 4x
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27 flx) = x? —2);x_+34 28 flx) = ):Zbc—_43
x—4 1
B I Ve

31 fx) = Vx+2+ V2 —x
32 f(x) = Vx — 2)(x — 6)

Exer. 33-34: (a) Find the domain D and range R of f.
(b) Find the intervals on which f'is increasing, is decreasing,
or is constant.

33 y
(—5,3) T @9
+(2,2)
(=3, Dt
AN T 3.0 x
( 4’ I)O——.
(=1, =3)11,-3)
y

©,3 @D

(2, -3)

35 Sketch the graph of a function that is increasing on
(—o0, —3] and [2, ) and is decreasing on [—3, 2].

36 Sketch the graph of a function that is decreasing on
(—o, —2] and [1, 4] and is increasing on [—2, 1] and
[4, ).

Exer. 37-46: (a) Sketch the graph of f. (b) Find the do-
main D and range R of f. (c) Find the intervals on which fis
increasing, is decreasing, or is constant.

37 f(x) =3x—2 38 f(x) = —2x+ 3
39 f(x) =4 —x*
41 flx) = Vx+4

40 flx) =x2—1
42 f(x) = V4 —x

43 fx) = —2
45 f(x) = —V36 — x?

44 fx) =3
46 f(x) = V16 — x?

Exer. 47-48: Simplify the difference quotient
2+ h)—fQ2
fe+h =/ )if h # 0.

h
47 f(x) = x* — 3x 48 f(x) = —2x>+3

Exer. 49-50: Simplify the difference quotient
+ h) —
Jeth - jx) ’: IO i # o,

49 f(x) =x*+5 50 f(x) = 1/x2

fx) — fl@)

X —a

Exer. 51-52: Simplify the difference quotient
if x # a.

51 f(x) = Vx — 3 (Hint: Rationalize the numerator.)

52 flx) =x*—2

Exer. 53-54: If a linear function f satisfies the given condi-
tions, find f(x).

53 f(~3) = land f(3) = 2

54 f(—2) = 7and f(4) = —2

Exer. 55-64: Determine whether the set W of ordered pairs
is a function in the sense of the alternative definition of func-
tion on page 166.

55 W ={(x, y): 2y = x? + 5}
56 W ={(x,y): x = 3y + 2}
57 W= {(x, y): x> + y> = 4}
58 W= {(x, y):y* — x> = 1}
59 W= {(x, y): y = 3} 60 W ={(x, y): x = 3}
61 W ={(x, y): xy = 0}

63 W={(cy: |yl =|xl}

62 W={x,y:x+y=0}
64 W={(x,y):y<x}

65 Constructing a box From a rectangular piece of cardboard
having dimensions 20 inches X 30 inches, an open box is to
be made by cutting out an identical square of area x* from
each corner and turning up the sides (see the figure). Express
the volume V of the box as a function of x.
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66

67

68

Constructing a storage tank Refer to Example 8. A steel
storage tank for propane gas is to be constructed in the
shape of a right circular cylinder of altitude 10 feet with
a hemisphere attached to each end. The radius r is yet to
be determined. Express the surface area S of the tank as a
function of r.

Dimensions of a building A small office unit is to contain
500 ft* of floor space. A simplified model is shown in
the figure.

(a) Express the length y of the building as a function of the
width x.

(b) If the walls cost $100 per running foot, express the cost
C of the walls as a function of the width x. (Disregard
the wall space above the doors and the thickness of the
walls.)

Exercise 67

Y

y 1

Dimensions of an aquarium An aquarium of height 1.5 feet
is to have a volume of 6 ft*. Let x denote the length of the
base and y the width (see the figure).

(a) Express y as a function of x.

(b) Express the total number S of square feet of glass
needed as a function of x.
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Exercise 68

69 Skyline ordinance A city council is proposing a new

skyline ordinance. It would require the setback S for any
building from a residence to be a minimum of 100 feet,
plus an additional 6 feet for each foot of height above
25 feet. Find a linear function for S in terms of /.

Exercise 69

EEEE RREREE EREE
HEEE EEEEEE EEER
EREE REEREE REEE
EEEE EREREE EEEE
EREE EEREEE RREE
EEEE EEEEER EERR|
EREE EERREE REEE
EREE EEEREE REEE
HEEE EEEEEE EEER

Setback

B

70 Energy tax A proposed energy tax 7 on gasoline, which

7

would affect the cost of driving a vehicle, is to be computed
by multiplying the number x of gallons of gasoline that you
buy by 125,000 (the number of BTUs per gallon of gasoline)
and then multiplying the total BTUs by the tax—34.2 cents
per million BTUs. Find a linear function for 7 in terms of x.

Childhood growth For children between ages 6 and 10,
height y (in inches) is frequently a linear function of age ¢
(in years). The height of a certain child is 48 inches at age
6 and 50.5 inches at age 7.

(a) Express y as a function of 7.
(b) Sketch the line in part (a), and interpret the slope.

(c) Predict the height of the child at age 10.
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72

73

Radioactive contamination It has been estimated that 1000
curies of a radioactive substance introduced at a point on the
surface of the open sea would spread over an area of 40,000
km? in 40 days. Assuming that the area covered by the
radioactive substance is a linear function of time ¢ and is
always circular in shape, express the radius r of the con-
tamination as a function of r.

Distance to a hot-air balloon A hot-air balloon is released
at 1:00 P.M. and rises vertically at a rate of 2 m/sec. An ob-
servation point is situated 100 meters from a point on the
ground directly below the balloon (see the figure). If 7 de-
notes the time (in seconds) after 1:00 P.M., express the dis-
tance d between the balloon and the observation point as a
function of 7.

Exercise 73

Obse:

74 Triangle ABC is inscribed in a semicircle of diameter 15

(see the figure).

(a) If x denotes the length of side AC, express the length y
of side BC as a function of x. (Hint: Angle ACB is a
right angle.)

(b) Express the area o of triangle ABC as a function of x,
and state the domain of this function.

Exercise 74

75

76

Distance to Earth From an exterior point P that is
h units from a circle of radius r, a tangent line is drawn to
the circle (see the figure). Let y denote the distance from the
point P to the point of tangency 7.

(a) Express y as a function of h. (Hint: If C is the center of
the circle, then PT is perpendicular to CT.)

(b) If r is the radius of Earth and % is the altitude of
a space shuttle, then y is the maximum distance to
Earth that an astronaut can see from the shuttle. In par-
ticular, if # = 200 mi and r = 4000 mi, approximate y.

Exercise 75

Length of a tightrope The figure illustrates the apparatus
for a tightrope walker. Two poles are set 50 feet apart,
but the point of attachment P for the rope is yet to be
determined.

(a) Express the length L of the rope as a function of the dis-
tance x from P to the ground.

(b) If the total walk is to be 75 feet, determine the distance
from P to the ground.

Exercise 76
——_nP




77 Airport runway The relative positions of an aircraft run-
way and a 20-foot-tall control tower are shown in the figure.
The beginning of the runway is at a perpendicular distance
of 300 feet from the base of the tower. If x denotes the dis-
tance an airplane has moved down the runway, express the
distance d between the airplane and the top of the control
tower as a function of x.

Exercise 77

78 Destination time A man in a rowboat that is 2 miles from

the nearest point A on a straight shoreline wishes to reach a
house located at a point B that is 6 miles farther down the
shoreline (see the figure). He plans to row to a point P that

3.5
Graphs of Functions
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is between A and B and is x miles from the house, and then
he will walk the remainder of the distance. Suppose he can
row at a rate of 3 mi/hr and can walk at a rate of 5 mi/hr.
If T is the total time required to reach the house, express T
as a function of x.

Exercise 78

In this section we discuss aids for sketching graphs of certain types of func-
tions. In particular, a function fis called even if f(—x) = f(x) for every x in its
domain. In this case, the equation y = f(x) is not changed if —x is substituted
for x, and hence, from symmetry test 1 of Section 3.2, the graph of an even

function is symmetric with respect to the y-axis.

A function f'is called odd if f(—x) = —f(x) for every x in its domain. If
we apply symmetry test 3 of Section 3.2 to the equation y = f(x), we see that
the graph of an odd function is symmetric with respect to the origin.

These facts are summarized in the first two columns of the next chart.

Even and 0dd Functions

Type of
Terminology Definition Illustration symmetry of graph
fis an f(=x) = f(x) y = flx) = x* with respect to the y-axis
even function. for every x in the domain.
fis an f(=x) = —f(x) y = flx) = x* with respect to the origin
odd function. for every x in the domain.
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Figure 1

EXAMPLE 1 Determining whether a function is even or odd
Determine whether fis even, odd, or neither even nor odd.
@) f)=3x*—2x*+5 (b) fx) = 2x° — 7x* + 4x
(c) flx) =x*+x

SOLUTION In each case the domain of fis R. To determine whether f is
even or odd, we begin by examining f(—x), where x is any real number.

@) f(=x) =3(=x)* = 2(—x)* + 5 substitute —x for x in f(x)
=3x*—2%*+5 simplify
= flx) definition of f

Since f(—x) = f(x), fis an even function.

(b) f(=x) = 2(=x)° — 7(=x)* + 4(—x) substitute —x for x in f(x)
= —2x° 4+ Txd — 4x simplify
= —(2x° — Tx3 + 4x) factor out —1
= —fx) definition of f

Since f(—x) = —f(x), fis an odd function.

(€) f(=x) = (=x) + (—x) substitute —x for x in f(x)

= —x*+x? simplify
Since f(—x) # f(x), and f(—x) # —f(x) (note that —f(x) = —x* — x?), the
function f'is neither even nor odd. /

In the next example we consider the absolute value function f, defined
by f(x) = [x|.

EXAMPLE 2 Sketching the graph of the absolute value function
Let f(x) = |x]|.

(a) Determine whether fis even or odd.

(b) Sketch the graph of f.

(c) Find the intervals on which fis increasing or is decreasing.
SOLUTION

(a) The domain of fis R, because the absolute value of x exists for every real
number x. If x is in R, then

(=) = |=x| = |x] = fx).
Thus, fis an even function, since f(—x) = f(x).

(b) Since f is even, its graph is symmetric with respect to the y-axis. If
x = 0, then | x| = x, and therefore the first quadrant part of the graph coincides with
the line y = x. Sketching this half-line and using symmetry gives us Figure 1.
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(c) Referring to the graph, we see that f is decreasing on (—, 0] and is in-
creasing on [0, ). 7/

If we know the graph of y = f(x), it is easy to sketch the graphs of
y=f)+c and y=f)—c

for any positive real number c. As in the next chart, for y = f(x) + ¢, we add
¢ to the y-coordinate of each point on the graph of y = f(x). This shifts the
graph of f upward a distance c¢. For y = f(x) — ¢ with ¢ > 0, we subtract ¢
from each y-coordinate, thereby shifting the graph of f'a distance ¢ downward.
These are called vertical shifts of graphs.

Vertically Shifting the Graph of y = f(x)

Equation y = f(x) + cwithc >0 y = f(x) — ¢ withe >0

Effect The graph of fis shifted The graph of fis shifted

on graph vertically upward a vertically downward a
distance c. distance c.

Graphical

. . AY
interpretation

.

Figure 2

EXAMPLE 3 \Vertically shifting a graph

Sketch the graph of f:
@) f=x> (b)) f=x>+4 (o) fl)=x—4
SOLUTION  We shall sketch all graphs on the same coordinate plane.
(a) Since
f(=x) = (=2 = x* = fx),
the function f is even, and hence its graph is symmetric with respect to the
y-axis. Several points on the graph of y = x* are (0,0), (1, 1), (2,4), and
(3,9). Drawing a smooth curve through these points and reflecting through the

y-axis gives us the sketch in Figure 2. The graph is a parabola with vertex at
the origin and opening upward.

(continued)
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Figure 2 (repeated) (b) To sketch the graph of y = x* + 4, we add 4 to the y-coordinate of each
point on the graph of y = x?; that is, we shift the graph in part (a) upward
4 units, as shown in the figure.

(c) To sketch the graph of y = x> — 4, we decrease the y-coordinates of
y = x> by 4; that is, we shift the graph in part (a) downward 4 units. 7/

We can also consider horizontal shifts of graphs. Specifically, if ¢ > 0,
consider the graphs of y = f(x) and y = g(x) = f(x — ¢) sketched on the same
coordinate plane, as illustrated in the next chart. Since

gla+c) = fla + c] = o) = fla),
we see that the point with x-coordinate a on the graph of y = f(x) has the
same y-coordinate as the point with x-coordinate a + ¢ on the graph of
y = g(x) = f(x — c¢). This implies that the graph of y = g(x) = f(x — ¢) can be
obtained by shifting the graph of y = f(x) to the right a distance c. Similarly,
the graph of y = h(x) = f(x + ¢) can be obtained by shifting the graph of f to
the left a distance ¢, as shown in the chart.

Horizontally Shifting the Graph of y = f(x)

Equation Effect on graph Graphical interpretation
y = gx) The graph of fis LY

=flx —¢) shifted horizontally to
with ¢ > 0 the right a distance c.

y=Jf y=gx) =fx—o0

=

y = h(x) The graph of fis LY
=flx + ¢) shifted horizontally to
withc > 0 the /left a distance c. ) )
y=hx) =f(x+c¢) vy =flx)

(a—c,b)

=
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Horizontal and vertical shifts are also referred to as translations.

EXAMPLE 4
Sketch the graph of f:

@) ) =(x—4) (b) fx) = (x+2)

Figure 3 Horizontally shifting a graph

y=(x+2)?

SOLUTION

(a) Shifting the graph of y = x* to the right 4 units gives us the graph of
y = (x — 4) shown in the figure.

The graph of y = x?is sketched in Figure 3.

(b) Shifting the graph of y = x* to the left 2 units leads to the graph of
y = (x + 2)?, shown in the figure. V4

To obtain the graph of y = ¢f(x) for some real number ¢, we may multiply
the y-coordinates of points on the graph of y = f(x) by c¢. For example, if
y = 2f(x), we double the y-coordinates; or if y = % f(x), we multiply each
y-coordinate by % This procedure is referred to as vertically stretching the
graph of f (if ¢ > 1) or vertically compressing the graph (if 0 < ¢ < 1) and
is summarized in the following chart.

Vertically Stretching or Compressing the Graph of y = f(x)

Equation y = ¢f(x) with ¢ > 1 y = ¢f(x) with0 < ¢ < 1
Effect The graph of fis The graph of fis
on graph stretched vertically compressed vertically
by a factor c. by a factor 1/c.
Graphical Ly
interpretation (a, cb)+ 1
- y = cf)
i with ¢ > 1 y = cf(x)
ith)<c¢<1
(a, b)+ (a,b) 1+ . i
T T T T T I T T P il x
T (a,cb)y |
y =fx) y = f(x)
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Figure 4

Replacing y with —y reflects the graph
of y = f(x) through the x-axis.

Figure 5

EXAMPLE 5 Vertically stretching or compressing a graph

Sketch the graph of the equation:
(@ y=4*  (b) y=1x’

SOLUTION

(a) To sketch the graph of y = 4x% we may refer to the graph of y = x* in
Figure 4 and multiply the y-coordinate of each point by 4. This stretches the
graph of y = x? vertically by a factor 4 and gives us a narrower parabola that
is sharper at the vertex, as illustrated in the figure.

(b) The graph of y = %xz may be sketched by multiplying the y-coordinates
of points on the graph of y = x2 by ‘l‘ . This compresses the graph of y = x? ver-
tically by a factor 1 /i = 4 and gives us a wider parabola that is flatter at the
vertex, as shown in Figure 4. V4

We may obtain the graph of y = —f(x) by multiplying the y-coordinate of
each point on the graph of y = f(x) by —1. Thus, every point (a, ) on the
graph of y = f(x) that lies above the x-axis determines a point (a, —b) on the
graph of y = —f(x) that lies below the x-axis. Similarly, if (c, d) lies below
the x-axis (that is, d < 0), then (c, —d) lies above the x-axis. The graph of
y = —f(x) is a reflection of the graph of y = f(x) through the x-axis.

EXAMPLE 6 Reflecting a graph through the x-axis

Sketch the graph of y = —x2

SOLUTION  The graph may be found by plotting points; however, since the
graph of y = x?is familiar to us, we sketch it as in Figure 5 and then multiply
the y-coordinates of points by —1. This procedure gives us the reflection
through the x-axis indicated in the figure. 7/

Sometimes it is useful to compare the graphs of y = f(x) and y = f(cx) if
¢ # 0. In this case the function values f(x) for

a=x=b
are the same as the function values f(cx) for
a

b
=Xx=—

a=cx=b or, equivalently, .
c c

This implies that the graph of fis horizontally compressed (if ¢ > 1) or hori-
zontally stretched (if 0 < ¢ < 1), as summarized in the following chart.



3.5 Graphs of Functions 177

Horizontally Compressing or Stretching the Graph of y = f(x)

Equation Effect on graph Graphical interpretation
y = f(cx) The graph of f y
with ¢ > 1 is compressed
horizontally by
a factor c.
y = f(cx) The graph of f
with0 <c¢ <1 is stretched
horizontally by

y = flex)

a factor 1/c. with0 <c¢ <1

Replacing x with —x reflects the graph If ¢ < 0, then the graph of y = f(cx) may be obtained by reflecting the
of y = f(x) through the y-axis. graph of y = £(| c|x) through the y-axis. For example, to sketch the graph of
y = f(—2x), we reflect the graph of y = f(2x) through the y-axis. As a special
case, the graph of y = f(—x) is a reflection of the graph of y = f(x) through
the y-axis.
Functions are sometimes described by more than one expression, as in the
next examples. We call such functions piecewise-defined functions.

Figure 6
y EXAMPLE 7 Sketching the graph of a piecewise-defined function
Sketch the graph of the function fif
2x + 5 ifx=—1
- fx) = {2 if x| <1

2 ifx=1

SOLUTION If x = —1, then f(x) = 2x + 5 and the graph of f coincides
with the line y = 2x + 5 and is represented by the portion of the graph to the
left of the line x = —1 in Figure 6. The small dot indicates that the point
(—1, 3) is on the graph.

(continued)
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Figure 6 (repeated)

If |x| <1 (or, equivalently, —1 < x < 1), we use x? to find values of f, and
therefore this part of the graph of f coincides with the parabola y = x2, as in-
dicated in the figure. Note that the points (—1, 1) and (1, 1) are not on the
graph.

Finally, if x = 1, the values of fare always 2. Thus, the graph of ffor x = 1
is the horizontal half-line in Figure 6.

Note: When you finish sketching the graph of a piecewise-defined func-
tion, check that it passes the vertical line test. /

It is a common misconception to think that if you move up to a higher tax
bracket, all your income is taxed at the higher rate. The following example of
a graph of a piecewise-defined function helps dispell that notion.

EXAMPLE 8 Application using a piecewise-defined function

Sketch a graph of the 2006 Tax Rate Schedule X, shown in Figure 7. Let x rep-
resent the taxable income and T represent the amount of tax. (Assume the do-
main is the set of nonnegative real numbers.)

Figure 7
2006 Federal Tax Rate Schedules

Schedule X —Use if your Filing status is single

If taxable of the
income is But not The tax amount

over— over— Is: over—
$0 7Y sssesses 10% $0
7,550 30,650 $755.00 + 15% 7,550
30,650 74,200 $4,220.00 + 25% 30,650
74,200 154,800 15,107.50 + 28% 74,200
154,800 336,550 37,675.50 + 33% 154,800
336,550  ------- 97,653.00 + 35% 336,550

SOLUTION  The tax table can be represented by a piecewise-defined func-
tion as follows:

(

0 if x=0
0.10x if 0 <x=7550
755.00 + 0.15(x — 7550) if 7550 < x = 30,650

T(x) = { 4220.00 + 0.25(x — 30,650) if 30,650 < x = 74,200

15,107.50 + 0.28(x — 74,200) if 74,200 < x = 154,800
37,675.50 + 0.33(x — 154,800) if 154,800 < x = 336,550
97,653.00 + 0.35(x — 336,550) if x > 336,550

\

Note that the assignment for the 15% tax bracket is not 0.15x, but 10% of the
first $7550 in taxable income plus 15% of the amount over $7550; that is,

0.10(7550) + 0.15(x — 7550) = 755.00 + 0.15(x — 7550).
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The other pieces can be established in a similar fashion. The graph of T is
shown in Figure 8; note that the slope of each piece represents the tax rate.

Figure 8
A T(x)

97,653.00 T

10%

25% 28% 33% 35%

37,675.50

15,107.50 +

4220.00

X

[
755.00 74,200 154,800 336,550

If x is a real number, we define the symbol [x] as follows:

[x] = n, where n is the greatest integer such that n < x

If we identify R with points on a coordinate line, then n is the first integer to
the left of (or equal to) x.

ILLUSTRATION The Symbol [x]

B [05]=0 m [18]=1 m [V3]=2
m [3]=3 m [-3]=-3 m [-27]=-3
B [-V3]=—2 m [-05]=-1

The greatest integer function f is defined by f(x) = [x].

EXAMPLE 9 Sketching the graph of the greatest integer function

Sketch the graph of the greatest integer function.
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Figure 9

Figure 10
(a) y

Graphing y = f(“|)

SOLUTION  The x- and y-coordinates of some points on the graph may be
listed as follows:

Values of x fx) = [x]

—2=x<-1 -2
-1=x<0 -1
0=x<1 0
l=x<2 1

2=x<3 2

Whenever x is between successive integers, the corresponding part of the
graph is a segment of a horizontal line. Part of the graph is sketched in Fig-
ure 9. The graph continues indefinitely to the right and to the left. /

The next example involves absolute values.

EXAMPLE 10 Sketching the graph of an equation
containing an absolute value

Sketch the graph of y = |x? — 4.

SOLUTION  The graph of y = x> — 4 was sketched in Figure 2 and is re-
sketched in Figure 10(a). We note the following facts:

(1) If x = —2 orx = 2, then x> — 4 = 0, and hence |x*> — 4| = x> — 4.

(2) If —2 < x < 2, then x> — 4 < 0, and hence |x*> — 4| = —(x*> — 4).

It follows from (1) that the graphs of y = |x> — 4| and y = x*> — 4 coincide
for | x| = 2. We see from (2) that if | x| < 2, then the graph of y = |x?> — 4] is
the reflection of the graph of y = x* — 4 through the x-axis. This gives us the
sketch in Figure 10(b). V4

In general, if the graph of y = f(x) contains a point P(c, —d) with d posi-
tive, then the graph of y = | f(x)| contains the point Q(c, d)—that is, Q is the
reflection of P through the x-axis. Points with nonnegative y-values are the
same for the graphs of y = f(x) and y = | f(x)]|.

Later in this text and in calculus, you will encounter functions such as

gx) =In|x| and  h(x) = sin|x|.

Both functions are of the form y = f(|x|). The effect of substituting |x| for x
can be described as follows: If the graph of y = f(x) contains a point P(c, d)
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with ¢ positive, then the graph of y = f (|x|) contains the point Q(—c, d)—that
is, Q is the reflection of P through the y-axis. Points on the y-axis (x = 0) are
the same for the graphs of y = f(x) and y = f (|x|) Points with negative x-values

on the graph of y = f(x) are not on the graph of y = f(|x

, since the result of

the absolute value is always nonnegative.

The processes of shifting, stretching, compressing, and reflecting a graph
may be collectively termed fransforming a graph, and the resulting graph is
called a transformation of the original graph. A graphical summary of the
types of transformations encountered in this section appears in Appendix II.

3.5 Exercises

Exer. 1-2: Suppose f is an even function and g is an odd
function. Complete the table, if possible.

1 e 2 2] ?[ « 3 3
S(x) 7 fx) =5
g(x) ) gx) 15

Exer. 3-12: Determine whether f is even, odd, or neither
even nor odd.

3 f(x) = 5x° + 2x 4 f(x) =|x| =3

5 f(x) =3x*+2x* =5 6 f(x) = 7x° — 4x°
7 f(x) = 8x* — 3x?
9 flx) = Vx> + 4

1 flx) = Va? —x

8 flx) =12
10 f(x) =3x*> —5x + 1
12 f(x) = x* — L
X
Exer. 13-26: Sketch, on the same coordinate plane, the

graphs of f for the given values of c. (Make use of symmetry,
shifting, stretching, compressing, or reflecting.)

13 fx) = |x| + ¢ c=-31,3
1% f(x) = |x —cl; c=-31,3
15 flx) = —x*+ ¢ c=—4,2,4
16 f(x) = 2x* — ¢; c=—4,2,4
17 fx) = 2Vx + ¢ c=-3,0,2

18 flx) = V9 — x? + ¢

o
Il
I
»
L
&}

19 fl0) =3Vx — ¢ c=-2,03
20 flx) = —%(x — o) c=-2,0,3
21 f(x) = ¢ V4 — X% c=-2,1,3
22 f(x) = (x + )% c=-2,1,2
23 f(x) = ex3; c= *gl, 1,2
24 f(x) = (cx)* + 1 c=-1,1,4
25 f(x) = Vex — 1; c=—1,%,4

26 f(x) = =V16 — (cx)* c=1, %,4

Exer. 27-32: If the point P is on the graph of a function f,
find the corresponding point on the graph of the given
function.

27 P(0,5); y=flx+2) —1
28 P(3, —1); y=2f(x) +4

29 P(3, —2); y=2f(x—4) +1
30 P(=2,4); y=3f(x—3)+3
31 P3,9); y=1f(3x) -1

32 P(—2,1); y=—-3f(2x) -5
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Exer. 33—-40: Explain how the graph of the function com-
pares to the graph of y = f(x). For example, for the equa-
tion y = 2f(x + 3), the graph of f is shifted 3 units to the
left and stretched vertically by a factor of 2.

33 y=flx—2)+3
34 y=3f(x— 1)
35 y=f(—x) — 2
36 y=—f(x +4)
37 y= =5 fx)

38 y = f(3x) = 3
39 y = —2f(4x)

40 y = 3| fw)|

Exer. 41-42: The graph of a function f with domain [0, 4] is
shown in the figure. Sketch the graph of the given equation.

41
AY

' X
(@) y=fx+3) (b) y = flx — 3)
(c) y=fx) +3 (d) y=/flx) —3
(e) y= —3f(x) (f) y = =5 /)
(9) y=r(-3x) (h) y = f(2x)

(i) y=—-fx+2) =3

(k) y=|f]

() y=fx—=2)+3

V) y=s(x])

42 LY
: =
(a) y=fx—2) (b) y=flx+2)
() y=f(x) -2 (d) y=flx) +2
(e) y = —2f(x) (f) vy = =5 /)
(@) vy =f(—2) (h) y = f(3x)

(i) y=—-fx+4) -2 () y=fx—=4+2

(k) y=1]r0)] W) v =r(x])

Exer. 43-46: The graph of a function f is shown, together
with graphs of three other functions (a), (b), and (c). Use
properties of symmetry, shifts, and reflecting to find equa-
tions for graphs (a), (b), and (c) in terms of f.

43 y




44 LAY

46

(©

(a)

y =

Exer. 47-52: Sketch the graph of f.

3 ifx=-—1
4 f(x):{—z if x> —1

—1 if x is an integer

48 flx) = {

—2 if x is not an integer

=
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3 if x < =2
49 fx) ={—-x+1 if|x|=2
-3 if x>2
—2x ifx<—1
50 f(x) = { x? if—l=x<1
-2 ifx=1
x+2 ifx=—1
51 f(x) = 4x° if x| <1
—x+3 ifx=1

x—3 ifx=-2
52 f(x) = { —x? if 2<x<1
—x+4 ifx=1

Exer. 53—-54: The symbol [x] denotes values of the greatest
integer function. Sketch the graph of f.

53 (a) f&x) =[x —3] (b) f(&) =[x -3

(€) f00) =2[x] (d) f(0) = [24]
(e) f00) =[-+]

54 (a) fO) =[x +2]  (b) f0) =[] +2
(©) f() =3[ (d) £ = [3«]

(e) f(x) = ~[—A]
Exer. 55-56: Explain why the graph of the equation is not
the graph of a function.
55 x = y? 56 x = —| y|
Exer. 57-58: For the graph of y = f(x) shown in the figure,
sketch the graph of y = | f(x)|.
57 y
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58

Exer. 59-62: Sketch the graph of the equation.

59

61

63

64

65

66

y=19 - 60 y =[x’ — 1]

y=IVx—1 62 y = [[x] — 1|

Let y = f(x) be a function with domain D = [—2, 6] and
range R = [—4, 8]. Find the domain D and range R for each
function. Assume f(2) = 8 and f(6) = —4.

(@) y=—2f() (b) y = f(5%)
() y=fx=3)+1
(e) y=f(—x) (f) y=—f)
(9) y=r(x]) (h) ¥ =1f@]
Let y = f(x) be a function with domain D = [—6, —2] and

range R = [—10, —4]. Find the domain D and range R for
each function.

(d) y=fx+2) -3

(@) y =5/ (b) y = £(2x)
© y=fe—2+5  (d) y=fx+4 -1
(e) y=f(—x) (f) y=—fx)
(9) y = f(x]) (h) y = |fG)]

Income tax rates A certain country taxes the first $20,000
of an individual’s income at a rate of 15%, and all income
over $20,000 is taxed at 20%. Find a piecewise-defined
function T that specifies the total tax on an income of
x dollars.

Property tax rates A certain state taxes the first $500,000
in property value at a rate of 1%; all value over $500,000 is

67

68

69

70

taxed at 1.25%. Find a piecewise-defined function 7 that
specifies the total tax on a property valued at x dollars.

Royalty rates A certain paperback sells for $12. The author
is paid royalties of 10% on the first 10,000 copies sold,
12.5% on the next 5000 copies, and 15% on any additional
copies. Find a piecewise-defined function R that specifies
the total royalties if x copies are sold.

Electricity rates An electric company charges its customers
$0.0577 per kilowatt-hour (kWh) for the first 1000 kWh
used, $0.0532 for the next 4000 kWh, and $0.0511 for any
kWh over 5000. Find a piecewise-defined function C for a
customer’s bill of x kWh.

Carrentalcharges There are two car rental options available
for a four-day trip. Option I is $45 per day, with 200 free
miles and $0.40 per mile for each additional mile. Option II
is $58.75 per day, with a charge of $0.25 per mile.

(a) Determine the cost of a 500-mile trip for both options.

(b) Model the data with a cost function for each four-
day option.

(c) Determine the mileages at which each option is prefer-
able.

Traffic flow Cars are crossing a bridge that is 1 mile long.
Each car is 12 feet long and is required to stay a distance of
at least d feet from the car in front of it (see figure).

(a) Show that the largest number of cars that can be on the
bridge at one time is [5280/(12 + d)], where [ ] de-
notes the greatest integer function.

(b) If the velocity of each car is v mi/hr, show that the
maximum traffic flow rate F (in cars/hr) is given by
F = [5280v/(12 + d)].

Exercise 70

|
i — d =—
|
|
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3.6 If a # 0, then the graph of y = ax? is a parabola with vertex at the origin (0, 0),
_— a vertical axis, opening upward if a > 0 or downward if a < 0 (see, for ex-
Quadratic Functions ample, Figures 4 and 5 in Section 3.5). In this section we show that the graph

of an equation of the form

Figure 1

y=ax>+bx+c

can be obtained by vertical and/or horizontal shifts of the graph of y = ax* and
hence is also a parabola. An important application of such equations is to de-
scribe the trajectory, or path, of an object near the surface of the earth when
the only force acting on the object is gravitational attraction. To illustrate, if an
outfielder on a baseball team throws a ball into the infield, as illustrated in
Figure 1, and if air resistance and other outside forces are negligible, then the
path of the ball is a parabola. If suitable coordinate axes are introduced, then
the path coincides with the graph of the equation y = ax* + bx + ¢ for some
a, b, and c. We call the function determined by this equation a quadratic

function.
Definition of A function f'is a quadratic function if
Quadratic Function FO) = ax® + bx + ¢,
where a, b, and ¢ are real numbers with a # 0.
Figure 2 If b = ¢ = 0 in the preceding definition, then f(x) = ax?, and the graph

is a parabola with vertex at the origin. If » = 0 and ¢ # 0, then
fx) = ax* + ¢,

and, from our discussion of vertical shifts in Section 3.5, the graph is a
parabola with vertex at the point (0, ¢) on the y-axis. The following example
contains specific illustrations.

EXAMPLE 1 Sketching the graph of a quadratic function

Sketch the graph of fif
(@) () = —3¢*  (b) fl) = —3x* + 4

SOLUTION

(a) Since fis even, the graph of f (that is, of y = —%xz) is symmetric with re-
spect to the y-axis. It is similar in shape to but wider than the parabola
y = —x?, sketched in Figure 5 of Section 3.5. Several points on the graph are
(0, 0), (1, —51), (2, —2), and (3, —g) Plotting and using symmetry, we obtain
the sketch in Figure 2.

(b) To find the graph of y = —%xz + 4, we shift the graph of y = —%xz up-
ward a distance 4, obtaining the sketch in Figure 3. V4
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=16—

If f(x) = ax* + bx + ¢ and b # 0, then, by completing the square, we
can change the form to

fx) =alx — h)?* + k

for some real numbers i and k. This technique is illustrated in the next
example.

EXAMPLE 2 Expressing a quadratic functionas f(x) = a(x — h)> + k
If f(x) = 3x + 24x + 50, express f(x) in the form a(x — h)* + k.

SOLUTION 1 Before completing the square, it is essential that we factor
out the coefficient of x? from the first two terms of f(x), as follows:

fx) = 3x% + 24x + 50 given
=32+ 8+ )+ 50 factor out 3 from 3x? + 24x

We now complete the square for the expression x? + 8x within the parenthe-
ses by adding the square of half the coefficient of x—that is, (g)z or 16. How-
ever, if we add 16 to the expression within parentheses, then, because of the
factor 3, we are actually adding 48 to f(x). Hence, we must compensate by
subtracting 48:

f) =3x>+8+ )+50 given
= 3(x* + 8x + 16) + (50 — 48) complete the square for x> + 8x
=3x+4)92+2 equivalent equation

The last expression has the form a(x — h)* + k with a = 3, h = —4, and
k= 2.

SOLUTION 2  We begin by dividing both sides by the coefficient of x2.

fx) = 3x% + 24x + 50 given
X 50
M:x2+ 8x + — divide by 3
3 3
50 add and subtract 16, the number that
= yx2 - _ 5 >
Xk Bt 16 + 3 —16 completes the square for x> + 8x
=@x+42+ ? equivalent equation
fx) =3(x + 42 +2 multiply by 3 7/

If f(x) = ax?® + bx + ¢, then, by completing the square as in Example 2,
we see that the graph of fis the same as the graph of an equation of the form

y =alx — h)? + k.

The graph of this equation can be obtained from the graph of y = ax? shown
in Figure 4(a) by means of a horizontal and a vertical shift, as follows. First,



Figure 4

(@)

y = ax?

Sy
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as in Figure 4(b), we obtain the graph of y = a(x — h)? by shifting the graph
of y = ax? either to the left or to the right, depending on the sign of & (the fig-
ure illustrates the case with & > 0). Next, as in Figure 4(c), we shift the graph
in (b) vertically a distance | k| (the figure illustrates the case with k > 0). It fol-
lows that the graph of a quadratic function is a parabola with a vertical axis.

(b) AY (©) AY

y =a(x — h)? +k

y = ax? y = a(x — h)?

y = a(x — h)?
(h, k)

“ Y

=Y

(h, 0) (1, 0)

The sketch in Figure 4(c) illustrates one possible graph of the equation
y =ax* + bx + c. If a >0, the point (h, k) is the lowest point on the
parabola, and the function f has a minimum value f(h) = k. If a < 0, the
parabola opens downward, and the point (h, k) is the highest point on
the parabola. In this case, the function f has a maximum value f(h) = k.

We have obtained the following result.

Standard Equation of a
Parabola with Vertical Axis

The graph of the equation
y=alx—h?*+k

for a # 0 is a parabola that has vertex V(h, k) and a vertical axis. The
parabola opens upward if a > 0 or downward if a < 0.

For convenience, we often refer to the parabola y = ax?> + bx + ¢ when
considering the graph of this equation.

EXAMPLE 3 Finding a standard equation of a parabola

Express y = 2x? — 6x + 4 as a standard equation of a parabola with a verti-
cal axis. Find the vertex and sketch the graph.
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Figure 5

y

y=2x>—6x+4

Figure 6

Figure 7

y=ax*+ bx+c

SOLUTION
y=2x>—6x+4 given
=2(x>—3x+ )+ 4 factor out 2 from 2x* — 6x
= 2(x2 — 3x + %) + (4 — %) complete the square for x> — 3x
= 2(x — %)2 - % equivalent equation

The last equation has the form of the standard equation of a parabola with
a=2, h= %, and k = —%. Hence, the vertex V(h, k) of the parabola is
V(%, —%) Since a = 2 > 0, the parabola opens upward.

To find the y-intercept of the graph of y = 2x*> — 6x + 4, we let x = 0,
obtaining y = 4. To find the x-intercepts, we let y = 0 and solve the equation
2x? — 6x + 4 = 0 or the equivalent equation 2(x — 1)(x — 2) = 0, obtaining
x = 1 and x = 2. Plotting the vertex and using the x- and y-intercepts provides
enough points for a reasonably accurate sketch (see Figure 5). 7/

EXAMPLE 4 Finding a standard equation of a parabola

Express y = —x? — 2x + 8 as a standard equation of a parabola with a verti-
cal axis. Find the vertex and sketch the graph.

SOLUTION
y=—x*—2x+38 given
=—-(x>+2x+ )+38 factor out —1 from —x? — 2x
= —(2+2x+ 1)+ (8 + 1) complete the square for x> + 2x
=—(x+1?2+9 equivalent equation
This is the standard equation of a parabola with 7 = —1, k = 9, and hence the
vertex is (—1,9). Since a = —1 < 0, the parabola opens downward.

The y-intercept of the graph of y = —x> — 2x + 8 is the constant term, 8.
To find the x-intercepts, we solve —x?> — 2x + 8 = 0 or, equivalently,
x* + 2x — 8 = 0. Factoring gives us (x + 4)(x — 2) = 0, and hence the in-
tercepts are x = —4 and x = 2. Using this information gives us the sketch in
Figure 6. 7/

If a parabola y = ax®> + bx + ¢ has x-intercepts x; and x,, as illustrated in
Figure 7 for the case a < 0, then the axis of the parabola is the vertical line
x = (x; + x,)/2 through the midpoint of (x;,0) and (x,, 0). Therefore, the
x-coordinate & of the vertex (h, k) is h = (x; + x,)/2. Some special cases are
illustrated in Figures 5 and 6.

In the following example we find an equation of a parabola from
given data.

EXAMPLE 5 Finding an equation of a parabola with a given vertex

Find an equation of a parabola that has vertex V(2, 3) and a vertical axis and
passes through the point (5, 1).



Figure 8
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SOLUTION  Figure 8 shows the vertex V, the point (5, 1), and a possible po-
sition of the parabola. Using the standard equation

y=alx —h?+k
with 7 = 2 and k = 3 gives us
y =alx — 2)* + 3.

To find a, we use the fact that (5, 1) is on the parabola and so is a solution of
the last equation. Thus,

l=a5-27+3, o a=—3.
Hence, an equation for the parabola is

= —2(x—272+3. /

The next theorem gives us a simple formula for locating the vertex of a
parabola.

Theorem for Locating
the Vertex of a Parabola

The vertex of the parabola y = ax> + bx + c has x-coordinate

b

2a°

PROOF  Let us begin by writing y = ax® + bx + ¢ as
, . b
y=alx*+—x+ + c.
a

1 by
Next we complete the square by adding <3 —) to the expression within
a

parentheses:
, . b b* b?
y=alx*+—x+ — |+ |lc——
a 4a” 4a

Note that if b2/(4a?) is added inside the parentheses, then, because of the fac-
tor a on the outside, we have actually added b*/(4a) to y. Therefore, we must
compensate by subtracting b?/(4a). The last equation may be written

b Y b?
y=alx+ — | + -—.
2a 4a

This is the equation of a parabola that has vertex (4, k) with h = —b/(2a) and
k= c — b*/(4a). /
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It is unnecessary to remember the formula for the y-coordinate of the ver-
tex of the parabola in the preceding result. Once the x-coordinate has been
found, we can calculate the y-coordinate by substituting —5/(2a) for x in the
equation of the parabola.

EXAMPLE 6 Finding the vertex of a parabola
Find the vertex of the parabola y = 2x* — 6x + 4.

SOLUTION  We considered this parabola in Example 3 and found the ver-

tex by completing the square. We shall use the vertex formula with @ = 2 and

b = —6, obtaining the x-coordinate
—b_ (=6 _
2a 2(2)

6_3
4

5

We next find the y-coordinate by substituting % for x in the given equation:

y=26F - oy + 4 = 3

Thus, the vertex is (%, —%) (see Figure 5). V4

Since the graph of f(x) = ax* + bx + ¢ for a # 0 is a parabola, we can
use the vertex formula to help find the maximum or minimum value of a quad-
ratic function. Specifically, since the x-coordinate of the vertex Vis —b/(2a),
the y-coordinate of V is the function value f(—b/(2a)). Moreover, since the
parabola opens downward if @ < 0 and upward if a > 0, this function value is
the maximum or minimum value, respectively, of /. We may summarize these
facts as follows.

Theorem on the Maximum
or Minimum Value
of a Quadratic Function

b
If f(x) = ax?® + bx + ¢, where a # 0, then f(— 2—> is
a

(1) the maximum value of fif a < 0

(2) the minimum value of fif a > 0

We shall use this theorem in the next example.

EXAMPLE 7 Finding the maximum value of a quadratic function

A long rectangular sheet of metal, 12 inches wide, is to be made into a rain
gutter by turning up two sides so that they are perpendicular to the sheet. How
many inches should be turned up to give the gutter its greatest capacity?



Figure 9
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SOLUTION  The gutter is illustrated in Figure 9. If x denotes the number of
inches turned up on each side, the width of the base of the gutter is 12 — 2x
inches. The capacity will be greatest when the cross-sectional area of the rec-
tangle with sides of lengths x and 12 — 2x has its greatest value. Letting f(x)
denote this area, we have

fx) = x(12 — 2x)
= 12x — 2x?
= —2x% + 12x,

which has the form f(x) = ax? + bx + ¢ witha = —2, b = 12, and ¢ = 0.
Since fis a quadratic function and a = —2 < 0, it follows from the preceding
theorem that the maximum value of f occurs at

b 12

L= =3

20 2(-2)

Thus, 3 inches should be turned up on each side to achieve maximum capacity.

As an alternative solution, we may note that the graph of the function
f(x) = x(12 — 2x) has x-intercepts at x = 0 and x = 6. Hence, the average of
the intercepts,

is the x-coordinate of the vertex of the parabola and the value that yields the
maximum capacity. 7/

When working with quadratic functions, we are often most interested in
finding the vertex and the x-intercepts. Typically, a given quadratic function
closely resembles one of the three forms listed in the following chart.

Relationship Between Quadratic Function Forms and Their Vertex and x-intercepts

Form

Vertex (h, k) x-intercepts (if there are any)

@D y=f&x) =alx — h)?+k

2) y=f)=alx —x)x—x) | h

@) y=fx)=ax’ + bx + ¢

x=h=*V—k/a (seebelow)

h and k as in the form

X+ x
===, k=f(h) | x=x.x
2
b b b* — 4dac
h=——, k= f(h) x = ——*x ———  (see below)
2a 2a 2a

If the radicands in (1) or (3) are negative, then there are no x-intercepts.
To find the x-intercepts with form (1), use the special quadratic equation on



192 CHAPTER 3 FUNCTIONS AND GRAPHS

page 75. If you have a quadratic function in form (3) and want to find the
vertex and the x-intercepts, it may be best to first find the x-intercepts by
using the quadratic formula. Then you can easily obtain the x-coordinate of
the vertex, A, since

h *

7£+\/b2—4ac_ \Vb* — 4ac
2a 2a - 2a '

Of course, if the function in form (3) is easily factorable, it is not necessary to

use the quadratic formula.
We will discuss parabolas further in a later chapter.

3.6 Exercises

Exer. 1-4: Find the standard equation of any parabola that

has vertex V.
1 V(=3,1) 2 V{4, -2)

3 V0, —3) 4 V(=2,0)

Exer. 5-12: Express f(x) in the form a(x — h)* + k.

5 f(x) = —x?—4x — 8 6 f(x) =x>—6x + 11
7 f(x) = 2x? — 12x + 22 8 f(x) = 5x% + 20x + 17
9 f(x) = —3x2—6x—5

10 f(x) = —4x* + 16x — 13

11 flx) = —%xQ + 9x — 34 12 f(x) = _%xz — L2438

5 5

Exer. 13-22: (a) Use the quadratic formula to find the zeros
of f. (b) Find the maximum or minimum value of f(x).
(c) Sketch the graph of f.

13 f(x) = x* — 4x 14 f(x) = —x? — 6x
15 f(x) = —12x2 + 11x + 15
16 f(x) = 6x2 + 7x — 24

17 f) =9x2+ 24x + 16 18 f(x) = —4x> + 4x — 1|
19 f(x) =x*+4x+9 20 f(x) = =3x*—6x— 6
21 f(x) = —2x2 + 20x — 43

22 f(x) = 2x*> — 4x — 11

Exer. 23-26: Find the standard equation of the parabola
shown in the figure.

23

y

24



Exer. 27-28: Find an equation of the form
y=alx —x)x — x,)

of the parabola shown in the figure. See the chart on page
191.

27 y

(2,4)
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Exer. 29-34: Find the standard equation of a parabola that
has a vertical axis and satisfies the given conditions.

29 Vertex (0, —2), passing through (3, 25)

30 Vertex (0, 5), passing through (2, —3)

31 Vertex (3, 5), x-intercept 0

32 Vertex (4, —7), x-intercept —4

33 x-intercepts —3 and 5, highest point has y-coordinate 4

34 x-intercepts 8 and 0, lowest point has y-coordinate —48

Exer. 35-36: Find the maximum vertical distance d between
the parabola and the line for the green region.

35 L f(x)

fx) = =232+ dx + 3
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36

S

fx)=2x*+ 8 + 4

f)=—x+3

Exer. 37-38: Ozone occurs at all levels of Earth’s
atmosphere. The density of ozone varies both seasonally
and latitudinally. At Edmonton, Canada, the density D(h)
of ozone (in 1073 ecm/km) for altitudes & between 20 kilo-
meters and 35 Kkilometers was determined experimentally.
For each D(h) and season, approximate the altitude at
which the density of ozone is greatest.

37
38

39

40

41

D(h) = —0.058h* + 2.867h — 24.239 (autumn)
D(h) = —0.078h* + 3.811h — 32.433 (spring)

Infantgrowth rate The growth rate y (in pounds per month)
of an infant is related to present weight x (in pounds) by
the formula y = ¢x(21 — x), where c is a positive constant
and 0 < x < 21. At what weight does the maximum growth
rate occur?

Gasoline mileage The number of miles M that a certain
automobile can travel on one gallon of gasoline at a speed
of v mi/hr is given by

M=—$v for 0 <v < 70.
(a) Find the most economical speed for a trip.

(b) Find the largest value of M.

2+%v

Height of a projectile An object is projected vertically up-
ward from the top of a building with an initial velocity of
144 ft/sec. Its distance s(7) in feet above the ground after
t seconds is given by the equation

s(r) = —161> + 144t + 100.

42

46

47

(a) Find its maximum distance above the ground.
(b) Find the height of the building.

Flight of a projectile An object is projected vertically up-
ward with an initial velocity of v, ft/sec, and its distance
s(z) in feet above the ground after ¢ seconds is given by the
formula s(f) = —16¢% + vot.

(a) If the object hits the ground after 12 seconds, find its
initial velocity v,,.

(b) Find its maximum distance above the ground.

Find two positive real numbers whose sum is 40 and whose
product is a maximum.

Find two real numbers whose difference is 40 and whose
product is a minimum.

Constructing cages One thousand feet of chain-link fence
is to be used to construct six animal cages, as shown in
the figure.

(a) Express the width y as a function of the length x.

(b) Express the total enclosed area A of the cages as a func-
tion of x.

(c) Find the dimensions that maximize the enclosed area.

Exercise 45

A

Fencingafield A farmer wishes to put a fence around a rec-
tangular field and then divide the field into three rectangu-
lar plots by placing two fences parallel to one of the sides.
If the farmer can afford only 1000 yards of fencing, what di-
mensions will give the maximum rectangular area?

Leaping animals Flights of leaping animals typically have
parabolic paths. The figure on the next page illustrates a
frog jump superimposed on a coordinate plane. The length
of the leap is 9 feet, and the maximum height off the ground
is 3 feet. Find a standard equation for the path of the frog.



Exercise 47
AY

Frog's path

48 The human cannonball In the 1940s, the human cannonball

49

stunt was performed regularly by Emmanuel Zacchini for
The Ringling Brothers and Barnum & Bailey Circus. The
tip of the cannon rose 15 feet off the ground, and the total
horizontal distance traveled was 175 feet. When the cannon
is aimed at an angle of 45°, an equation of the parabolic
flight (see the figure) has the form y = ax? + x + c.

(a) Use the given information to find an equation of the
flight.

(b) Find the maximum height attained by the human
cannonball.

Exercise 48
AY

Shape of a suspension bridge One section of a suspension
bridge has its weight uniformly distributed between twin
towers that are 400 feet apart and rise 90 feet above the hor-
izontal roadway (see the figure). A cable strung between the
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tops of the towers has the shape of a parabola, and its cen-
ter point is 10 feet above the roadway. Suppose coordinate
axes are introduced, as shown in the figure.

Exercise 49
400’

|
| y
I
I
I

(a) Find an equation for the parabola.

(b) Nine equally spaced vertical cables are used to support
the bridge (see the figure). Find the total length of these
supports.

50 Designing a highway Traffic engineers are designing a

stretch of highway that will connect a horizontal highway
with one having a 20% grade (that is, slope é), as illustrated
in the figure. The smooth transition is to take place over a
horizontal distance of 800 feet, with a parabolic piece of
highway used to connect points A and B. If the equation of
the parabolic segment is of the form y = ax* + bx + ¢, it
can be shown that the slope of the tangent line at the point
P(x, y) on the parabola is given by m = 2ax + b.

(a) Find an equation of the parabola that has a tangent line
of slope 0 at A and % at B.

(b) Find the coordinates of B.

Exercise 50

| 800’ !
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51

52

53

54

55

56

Parabolic doorway A doorway has the shape of a parabolic
arch and is 9 feet high at the center and 6 feet wide at the
base. If a rectangular box 8 feet high must fit through the
doorway, what is the maximum width the box can have?

Path of a baseball Assume a baseball hit at home plate follows
3

bolic path havi i = - 2+ —x+3

a parabolic path having equation y 200"t 0% ,

where x and y are both measured in feet.
(a) Find the maximum height of the baseball.

(b) Does the baseball clear an 8-foot fence that is 385 feet
from home plate?

Quantity discount A company sells running shoes to deal-
ers at a rate of $40 per pair if fewer than 50 pairs are ordered.
If a dealer orders 50 or more pairs (up to 600), the price per
pair is reduced at a rate of 4 cents times the number ordered.
What size order will produce the maximum amount of
money for the company?

Group discount A travel agency offers group tours at a rate
of $60 per person for the first 30 participants. For larger
groups—up to 90—each person receives a $0.50 discount
for every participant in excess of 30. For example, if 31 peo-
ple participate, then the cost per person is $59.50. Deter-
mine the size of the group that will produce the maximum
amount of money for the agency.

Cable TV fee A cable television firm presently serves
8000 households and charges $50 per month. A marketing
survey indicates that each decrease of $5 in the monthly
charge will result in 1000 new customers. Let R(x) denote the
total monthly revenue when the monthly charge is x dollars.

(a) Determine the revenue function R.

(b) Sketch the graph of R and find the value of x that results
in maximum monthly revenue.

Apartment rentals A real estate company owns 218 effi-
ciency apartments, which are fully occupied when the rent
is $940 per month. The company estimates that for each
$25 increase in rent, 5 apartments will become unoccupied.
What rent should be charged so that the company will
receive the maximum monthly income?

57

58

Crest vertical curves When engineers plan highways, they
must design hills so as to ensure proper vision for drivers.
Hills are referred to as crest vertical curves. Crest vertical
curves change the slope of a highway. Engineers use a para-
bolic shape for a highway hill, with the vertex located at the
top of the crest. Two roadways with different slopes are to be
connected with a parabolic crest curve. The highway passes
through the points A(—800, —48), B(—500, 0), C(0, 40),
D(500, 0), and E(800, —48), as shown in the figure. The
roadway is linear between A and B, parabolic between B and
D, and then linear between D and E. Find a piecewise-
defined function f that models the roadway between the
points A and E.

Exercise 57

[P

A E

Sag vertical curves Refer to Exercise 57. Valleys or dips
in highways are referred to as sag vertical curves. Sag ver-
tical curves are also modeled using parabolas. Two road-
ways with different grades meeting at a sag curve need
to be connected. The highway passes through the points
A(—500, 243%), B(0, 110), C(750, 10), D(1500, 110), and
E(2000, 243%), as shown in the figure. The roadway is lin-
ear between A and B, parabolic between B and D, and lin-
ear between D and E. Find a piecewise-defined function f
that models the roadway between the points A and E.

Exercise 58
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While it is true that

3.7

(f + 8 = flx) + g,

remember that, in general,

fla + b)

£

fla) + f(b).
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Functions are often defined using sums, differences, products, and quotients of
various expressions. For example, if

h(x) = x>+ V5x + 1,
we may regard h(x) as a sum of values of the functions f'and g given by
flx) = x? and gx) = V5x + 1.
We call h the sum of fand g and denote it by f + g. Thus,
h(x) = (f+ g)(x) = x> + V5x + L.

In general, if f and g are any functions, we use the terminology and notation
given in the following chart.

Sum, Difference, Product, and Quotient of Functions

Terminology Function value
sum f + g (f + &) = flx) + glx)
difference f — ¢ | (f— @) = f(x) — g(x)
product fg (f8)x) = f(x)g(x)
quotient L <i> (x) = S g(x) #0

g g gx)

The domains of f + g, f — g, and fg are the intersection / of the domains
of fand g—that is, the numbers that are common to both domains. The domain
of f/g is the subset of I consisting of all x in I such that g(x) # 0.

EXAMPLE 1 Finding functionvaluesof f + g, f — g, fg,and f/g

If f(x) =3x =2 and g(x) = x°, find (f+ g)(2), (f —~ )(2), (f2)(2), and
(f/8)(2).

SOLUTION  Since f(2) = 3(2) — 2 = 4 and g(2) = 2° = 8, we have
(f+8)@2) =f2) +g2)=4+8=12
(f—82) =f2) —g2)=4-8=—4
(/8)(2) = f(2)g(2) = (4(®B) = 32

[y /@ _4_1
(E)(z)_ g2 8 2 /

EXAMPLE 2 Finding (f + g)(x), (f — 2)), (f2)(x), and (f/g)(x)

If f(x) = V4 — x* and g(x) = 3x + 1, find (f + @)X, (f — 2K, (f2)X),
and (f/g)(x), and state the domains of the respective functions.
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ILLUSTRATION

SOLUTION  The domain of fis the closed interval [—2, 2], and the domain
of g is R. The intersection of these domains is [ —2, 2], which is the domain of
f+ g,f— g, and fg. For the domain of f/g, we exclude each number x in
[—2,2] such that g(x) =3x+ 1 =10 (namely, X = —%) Thus, we have the
following:

(f+ o) =V4—x2+Bx+ 1), —2=x=2
(f— o)) =V4—x>2—0Bx+ 1), —2=x=2

(fo)x) = V4 — x2(Bx + 1), 2=x=2
f V4 -3 e 1
<E>(x)_—3x+l , 2=x=2andx # 3 7

A function fis a polynomial function if f(x) is a polynomial —that is, if
fx) = ax" + a, x4+ s+ ax + ay,

where the coefficients ay, i, . . . , a, are real numbers and the exponents are
nonnegative integers. A polynomial function may be regarded as a sum of
functions whose values are of the form cx*, where ¢ is a real number and k is
a nonnegative integer. Note that the quadratic functions considered in the pre-
vious section are polynomial functions.

An algebraic function is a function that can be expressed in terms of fi-
nite sums, differences, products, quotients, or roots of polynomial functions.

Algebraic Function
x(x? 4+ 5)

Functions that are not algebraic are transcendental. The exponential and
logarithmic functions considered in Chapter 5 are examples of transcendental
functions.

In the remainder of this section we shall discuss how two functions f and
g may be used to obtain the composite functions fo g and g ° f (read “’f circle
g” and “g circle f,” respectively). Functions of this type are very important in
calculus. The function fo g is defined as follows.

B f(x) =5 —2Vx +

Definition of
Composite Function

The composite function f° g of two functions f and g is defined by

(fo o)) = f(gx).

The domain of fo g is the set of all x in the domain of g such that g(x) is in
the domain of f.




A number x is in the domain of
(fo g)(x) if and only if both g(x) and
f(g(x)) are defined.

Figure 1

\

o 8) f \
Domain of g \
(]

f(g)

Domain of f
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Figure 1 is a schematic diagram that illustrates relationships among f, g,
and f o g. Note that for x in the domain of g, first we find g(x) (which must be
in the domain of f) and then, second, we find f(g(x)).

For the composite function g © f, we reverse this order, first finding f(x)
and second finding g(f(x)). The domain of g © f is the set of all x in the do-
main of fsuch that f(x) is in the domain of g.

Since the notation g(x) is read “g of x,” we sometimes say that g is a func-
tion of x. For the composite function f e g, the notation f(g(x)) is read “f of g
of x,” and we could regard f as a function of g(x). In this sense, a composite
function is a function of a function or, more precisely, a function of another
function’s values.

EXAMPLE 3
Let f(x) = x> — 1 and g(x) = 3x + 5.

(a) Find (f° g)(x) and the domain of fo g.
(b) Find (g ° f)(x) and the domain of g © f.

(c) Find f(g(2)) in two different ways: first using the functions f and g sepa-
rately and second using the composite function fo g.

Finding composite functions

SOLUTION

(@) (feog)x) = flglx) definition of fo g
=f(Bx +5) definition of g
=0CBx+52-1 definition of f

= Ox? + 30x + 24  simplify
The domain of both f and g is R. Since for each x in R (the domain of g), the
function value g(x) is in R (the domain of f), the domain of fo g is also R.

Note that both g(x) and f(g(x)) are defined for all real numbers.
(b) (g°f)x) = g(fx))

definition of g © f

=gx*—1) definition of f
=3(x2—1) + 5 definition of g
=3x2+2 simplify

Since for each x in R (the domain of f), the function value f(x) is in R (the do-
main of g), the domain of g o f is R. Note that both f(x) and g(f(x)) are de-
fined for all real numbers.

(c) To find f(g(2)) using f(x) = x> — 1 and g(x) = 3x + 5 separately, we
may proceed as follows:
¢2)=32) +5=11
f(g(2) = f(11) = 11> = 1 = 120
To find f(g(2)) using f° g, we refer to part (a), where we found
(fog)x) = flg(x)) = 9x* + 30x + 24.

(continued)
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Hence,

f(g(2) = 9(2)* + 30(2) + 24
=36 + 60 + 24 = 120. /

Note that in Example 3, f(g(x)) and g(f(x)) are not always the same; that
is, fog # gef.

If two functions f and g both have domain R, then the domain of f° g and
g ° fis also R. This was illustrated in Example 3. The next example shows that
the domain of a composite function may differ from those of the two given
functions.

EXAMPLE 4 Finding composite functions

Let f(x) = x> — 16 and g(x) = V.

(a) Find (f° g)(x) and the domain of fo g.

(b) Find (g ° f)(x) and the domain of g ° f.

SOLUTION  We first note that the domain of fis R and the domain of g is

the set of all nonnegative real numbers—that is, the interval [0, «). We may
proceed as follows.

(a) (f* 00 = f(gx) definition of £ g
= f(\/;c) definition of g
= (\/);)2 — 16 definition of f
=x—16 simplify

If we consider only the final expression, x — 16, we might be led to believe
that the domain of fo g is R, since x — 16 is defined for every real number x.
However, this is not the case. By definition, the domain of f o g is the set of all
x in [0, ) (the domain of g) such that g(x) is in R (the domain of f). Since
g(x) = Vxis in R for every x in [0, %), it follows that the domain of fo g is
[0, ). Note that both g(x) and f(g(x)) are defined for x in [0, ).

(b) (g°f)x) = g(fx)) definition of g © f

= g(x* — 16)  definition of f

= Vx? — 16  definition of g
By definition, the domain of g ° f is the set of all x in R (the domain of f) such
that f(x) = x> — 16 is in [0, «) (the domain of g). The statement “x> — 16 is
in [0, 0)” is equivalent to each of the inequalities

x—16=0, x2 =16, |x| = 4.

Thus, the domain of g © f is the union (—o0, —4] U [4, ). Note that both f(x)
and g(f(x)) are defined for x in (—o, —4] U [4, ). Also note that this domain
is different from the domains of both f and g. /

The next example illustrates how special values of composite functions
may sometimes be obtained from tables.
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EXAMPLE 5 Finding composite function values from tables

Several values of two functions f and g are listed in the following tables.

x 1 23 4 x 1 23 4
f@) | 3 4 2 1 gr) | 4 1 3 2

Find (f° ¢)(2), (g © f)(2), (f° f)(2), and (g ° g)(2).

SOLUTION  Using the definition of composite function and referring to the
tables above, we obtain

(fo2)(2) = f(g(2) = f(1) =3

(g°/)2) = g(f(2)) = g(4) =2

(fo N2 =f(f2) =f4) =1
(g°8)(2) = g(g(2) = g(1) = 4. /
In some applied problems it is necessary to express a quantity y as a func-
tion of time ¢. The following example illustrates that it is often easier to intro-

duce a third variable x, express x as a function of 7 (that is, x = g(r)), express
y as a function of x (that is, y = f(x)), and finally form the composite function

given by y = f(x) = f(g(1)).

EXAMPLE 6 Usinga composite function
to find the volume of a balloon

A meteorologist is inflating a spherical balloon with helium gas. If the radius
of the balloon is changing at a rate of 1.5 cm/sec, express the volume V of the
balloon as a function of time 7 (in seconds).

SOLUTION  Let x denote the radius of the balloon. If we assume that the ra-
dius is O initially, then after # seconds

x = 1.5¢. radius of balloon after ¢ seconds

To illustrate, after 1 second, the radius is 1.5 centimeters; after 2 seconds, it is
3.0 centimeters; after 3 seconds, it is 4.5 centimeters; and so on.
Next we write

4 .
V= §7Tx3. volume of a sphere of radius x

This gives us a composite function relationship in which V is a function of x,
and x is a function of 7. By substitution, we obtain

V= %77)63 = %’F(l.Sl 3= %W(%ly = %77(%13).
Simplifying, we obtain the following formula for V as a function of #:

V(t) = St /
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ILLUSTRATION

If fand g are functions such that

y=fw and  u=g),
then substituting for u in y = f(u) yields

y = f(gk)).

For certain problems in calculus we reverse this procedure; that is, given
y = h(x) for some function &, we find a composite function form y = f(u) and
u = g(x) such that a(x) = f(g(x)).

EXAMPLE 7 Finding a composite function form
Express y = (2x + 5)% as a composite function form.

SOLUTION  Suppose, for a real number x, we wanted to evaluate the ex-
pression (2x + 5)8 by using a calculator. We would first calculate the value of
2x + 5 and then raise the result to the eighth power. This suggests that we let

u=2x+5 and y = ub,

which is a composite function form for y = (2x + 5)%. 7/

The method used in the preceding example can be extended to other func-
tions. In general, suppose we are given y = h(x). To choose the inside expres-
sion u = g(x) in a composite function form, ask the following question: If a
calculator were being used, which part of the expression /(x) would be evalu-
ated first? This often leads to a suitable choice for u = g(x). After choosing u,
refer to h(x) to determine y = f(u). The following illustration contains typical
problems.

Composite Function Forms

Function value Choice foru = g(x) Choice for y = f(u)
B oy=(x*—5x+ 1) u=x'—5x+1 y=u
B oy=Va—4 u=x>—4 y=\Vu
2
n = =3x+7 = —
Y 3x +7 . * Y u

The composite function form is never unique. For example, consider the
first expression in the preceding illustration:

y=x*=5x+ 1)
If n is any nonzero integer, we could choose
u= =5+ 1) and y = u*"

Thus, there are an unlimited number of composite function forms. Generally,
our goal is to choose a form such that the expression for y is simple, as we did
in the illustration.
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Exer. 1-2: Find
(@ (f+203)

© (23
1 f(x) =x + 3,

2 flx) = =x%,

Exer. 3—-8: Find

@ (f + @), (f — g, (f2)x), and (f/g)(x)

) (f =23
@ (f/2)3)

glx) = x?

gx)=2x -1

(b) the domain of f + g, f — g, and fg
(c) the domain of f/g

3 fl) =x*+2,

4 f(x) = x> + x,

5 flx) = Vx + 5,
6 flx) = V3 —2x,
70 =2

8 fW)=—",

Exer. 9-10: Find
@ (fo8)

(© (fef)x)

9 flx) =2x — 1,

10 f(x) = 3x%,

Exer. 11-20: Find
@ (feog)x)
(©) f(g(=2)
11 f(x) =2x — 5,

12 f(x) = 5x + 2,
13 f(x) = 3x> + 4,
14 fx) = 3x — 1,
15 f(x) = 2x> + 3x
16 f(x) = 5x — 7,

glx) =2x* -1
gx)=x*-3
gy =Vx+5
gy =Vx+4
X
gl = x+5
3x
8l = x+ 4

(b) (g°f)x)
d) (g°ox)
glx) = —

gx)=x—1

(b) (g °f)x)
(@ g(f(3)

g) =3x+7
gr) = 6x — 1
g(x) = 5x
glx) = 4x?

-4, gkx)=2x—1

gx) =3x>—x+2

17 f(x) = 4x, g(x) = 2x° — 5x
18 f(x) = x* + 222, g(x) = 3x
19 flx) = x|, g) = —
20 f(x) =5, glx) = x?

Exer. 21-34: Find (a) (f ° g)(x) and the domain of f° g and

(b) (g °f)(x) and the domain of g ° f.
21 f(x) =x>—=3x, gk)=Vx+2

22 fx) = Vx — 15, g(x) = x2 + 2x
23 f(x) = x2 — 4, glx) = V3x

24 fx) = —x2+ 1, gkx)=Vax

25 f) = Vx—2, gl)=Vx+5
26 f)=V3—x, glx)=Vx+2
27 f) =V3—1x glx) =V —16
28 f(x) = x* + 5, gx) = Vx—35

29 f(X)=3x;5’ g(x)=2X3—5
30 f0)=——7. gW=x—1
31 () = 22, 86 =3
32 f(x) :rxz’ 8w ==
R T
34f(x)=xtf’ g(x):i;i

Exer. 35-36: Solve the equation (f° g)(x) = 0.

35 f(x) = x* — 2, gx)=x+3
36 fr) =x>—x—2, glx)=2x—1
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37

38

39
40
41

42

43

44

Several values of two functions f and g are listed in the
following tables:

x 56 789
f@) | 8 7 6 5 4

x 56 7 8 9
gx) | 7 8 6 5 4

If possible, find
(a) (feg)6) (b) (g=1)(6)
(d) (g°2)6) (e) (Fo2)9)

Several values of two functions 7 and S are listed in the
following tables:

(c) (fof)6)

e | 2 3 1 0 5

Sx) | 1 0 3 2 5

If possible, find

(a) (T=8)(1) (b) (SeT)(1)
(d) (S°8)(1) (e) (T>S)4)
If D(1) = V400 + 2 and R(x) = 20x, find (D ° R)(x).

(c) (ToT)(1)

If S(r) = 477% and D(¢) = 2t + 5, find (S ° D)(¢).

If fis an odd function and g is an even function, is fg even,
odd, or neither even nor odd?

There is one function with domain R that is both even and
odd. Find that function.

Payroll functions Let the social security tax function
SSTAX be defined as SSTAX(x) = 0.0765x, where x = 0
is the weekly income. Let ROUND2 be the function that
rounds a number to two decimal places. Find the value of
(ROUND2 o SSTAX)(525).

Computer science functions Let the function CHR
be defined by CHR(65) = “A”, CHR(66) = “B”, ...,
CHR(90) = “Z”. Then let the function ORD be
defined by ORD(“A”) = 65, ORD(“B”) = 66, ...,
ORD(*Z”) = 90. Find

(a) (CHR°ORD)(“C”)  (b) CHR(ORD(“A”) + 3)

45

46

47

48

49

50

Spreading fire A fire has started in a dry open field and is
spreading in the form of a circle. If the radius of this circle
increases at the rate of 6 ft/min, express the total fire area A
as a function of time ¢ (in minutes).

Dimensions of a balloon A spherical balloon is being in-
flated at a rate of g 7 ft’/min. Express its radius r as a func-
tion of time 7 (in minutes), assuming that » = 0 when ¢ = 0.

Dimensions of a sand pile The volume of a conical pile of
sand is increasing at a rate of 243 ft*/min, and the height
of the pile always equals the radius r of the base. Express r
as a function of time 7 (in minutes), assuming that r = 0
when 1 = 0.

Diagonal of a cube The diagonal d of a cube is the distance
between two opposite vertices. Express d as a function of
the edge x of the cube. (Hint: First express the diagonal y of
a face as a function of x.)

Altitude of a balloon A hot-air balloon rises vertically from
ground level as a rope attached to the base of the balloon is
released at the rate of 5 ft/sec (see the figure). The pulley
that releases the rope is 20 feet from a platform where pas-
sengers board the balloon. Express the altitude % of the bal-
loon as a function of time ¢.

Exercise 49

Tightrope walker Refer to Exercise 76 of Section 3.4. Start-
ing at the lowest point, the tightrope walker moves up the
rope at a steady rate of 2 ft/sec. If the rope is attached
30 feet up the pole, express the height & of the walker above
the ground as a function of time t. (Hint: Let d denote the
total distance traveled along the wire. First express d as a
function of ¢, and then / as a function of d.)
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51 Airplane take-off Refer to Exercise 77 of Section 3.4. . s B B 1
When the airplane is 500 feet down the runway, it has 57 y= ' =2 +5) 58 y = (x? + 3x — 5)}
reached a speed of 150 ft/sec (or about 102 mi/hr), which B
it will maintain until take-off. Express the distance d of the 59 y = Vax +4 -2 0y= Vx _
plane from the control tower as a function of time ¢ (in sec- Vx+4+2 1+ Vx
onds). (Hint: In the figure, first write x as a function of z.)
61 If f(x) = Vx—1 and g(x) =x*+ 1, approximate
52 Cable corrosion A 100-foot-long cable of diameter 4 inches (f° £)(0.0001). In order to avoid calculating a zero value
is submerged in seawater. Because of corrosion, the surface for (f° £)(0.0001), rewrite the formula for fo g as
area of the cable decreases at the rate of 750 in’ per year. 3
Express the diameter d of the cable as a function of time ¢ xi,
(in years). (Disregard corrosion at the ends of the cable.) Ve + 1+ 1
Exer. 53-60: Find a composite function form for y. 62 If f(x) = 2+x73+2 and g(x) = (\/ﬂ — x3)3/2, approximate
53 y = (x? + 3x)12 54 y = A =16 X X
(f + 9(1.12) — (f/g)(1.12)
PY= _1 3)t 56 y =4+ Val+ 1 [(fof)52F
CHAPTER 3 REVIEW EXERCISES
1 Describe the set of all points (x, y) in a coordinate plane 10 Show that A(—3, 1), B(1, —1), C(4, 1), and D(3, 5) are
such that y/x < 0. vertices of a trapezoid.
2 Show that the triangle with vertices A(3, 1), B(—5, —3), 11 Find an equation of the line through A(% —%) that is
and C(4, —1) is a right triangle, and find its area. .
(a) parallel to the line 6x + 2y + 5 =0
3 Given P(—5, 9) and O(—8, —7), find . i
(b) perpendicular to the line 6x + 2y + 5 =0
(a) the distance d(P, Q) . )
12 Express 8x + 3y — 24 = 0 in slope-intercept form.
(b) the midpoint of the segment PQ ) ) .
13 Find an equation of the circle that has center C(—5, —1)
(c) a point R such that Q is the midpoint of PR and is tangent to the line x = 4.
4 Find all points on the y-axis that are a distance 13 from 14 Find an equation of the line that has x-intercept —3 and
P(12, 6). passes through the center of the circle that has equation
) ) x>+ y? —4x + 10y + 26 = 0.
5 For what values of a is the distance between P(a, 1) and
Q(—2, a) less than 3? 15 Find a general form of an equation of the line through
) ) ) P(4, —3) with slope 5.
6 Find an equation of the circle that has center C(7, —4) and
passes through P(—3, 3). 16 Given A(—1, 2) and B(3, —4), find a general form of an

Find an equation of the circle that has endpoints of a diam-
eter A(8, 10) and B(—2, —14).

Find an equation for the left half of the circle given by
(x+22+y2=09.

Find the slope of the line through C(11, —5) and D(—38, 6).

equation for the perpendicular bisector of segment AB.

Exer. 17-18: Find the center and radius of the circle with
the given equation.

17

18

X+y? =12y +31 =0

4x? + 4y> 4+ 24x — 16y + 39 =0
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19 If f(x) = ————, find
Vx+3
(a) f(1) (b) f(=1) (c) £0) (d) f(=x
(e) —fl» () f&x?) (9) [fF

Exer. 20-21: Find the sign of f(4) without actually find-
ing f(4).

_ —32(x2 — 4)
20 f(x) - 9 — x?)¥°
2 f) = —2(x* — 20)(5 — x)

(6 — x2)4/3
22 Find the domain and range of f if

(a) fx) = V3x—4 (b) fx) =

L
(x + 3)2
fla+h - fl@

Exer. 23-24: Find h

ifh # 0.

23 fx) = —x*+x+5

24 f(x):x+2

25 Find a linear function f such that (1) = 2 and f(3) = 7.

26 Determine whether f'is even, odd, or neither even nor odd.
(a) f() = Vo' T 4x (b) f() = V3 — °
(© f0) =V T3 +5

Exer. 27-40: Sketch the graph of the equation, and label the
x- and y-intercepts.

27 x+5=0 282y —7=0

20 2y + 55— 8 =0 30 x =3y + 4
31 9y + 2x* =0 323x —7y*=0
33 y=VI—x 34y=(x—-1)7°
35 y? =16 — x?

36 x>+ y2 4+ 4x — 16y + 64 =0

37 X2+ =8 =0 38x=—-V9 —y?

39 y=x—372-2 40 y=—x*—2x+3

41 Find the center of the small circle.

Exercise 41

42 Explain how the graph of y = —f(x — 2) compares to the
graph of y = f(x).

Exer. 43-52: (a) Sketch the graph of f. (b) Find the do-
main D and range R of f. (c) Find the intervals on which fis
increasing, is decreasing, or is constant.

1 — 3x
2

43 f(x) = 44 f(x) = 1000

45 f(x) = |x + 3| 46 f(x) = — V10 — x?

47 fx)=1—-Vx+1 48 f(x) = V2 —x

49 f(x) =9 — x? 50 f(x) =x*+ 6x + 16
x? ifx<0

51 f(x) = {3x if0=x<2
6 ifx=2

52 f(x) =1 + 2[x]

53 Sketch the graphs of the following equations, making use of
shifting, stretching, or reflecting:

(a) y= Vi (b) y=Vx+4
() y=Vx+4 (d) y =4Vax
() y=3Va (f) y=—Vax
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54 The graph of a function f with domain [—3, 3] is shown in 56
the figure. Sketch the graph of the given equation.

@ y=rx-2) (b) y =/ =2

() y=/f(—x (d) y=r2x
(e) v =r(3x) () vy =1 (|
(@) vy =r(lx|)

Exercise 54

Exer. 55-58: Find an equation for the graph shown in
the figure.

55

58
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Exer. 59-62: Find the maximum or minimum value of f(x).
59 f(x) = 5x> + 30x + 49

60 f(x) = —3x*+ 30x — 82

61 f(x) = —12(x + 1)*> — 37

62 f(x) = 3(x + 2)(x — 10)

63 Express the function f(x) = —2x> + 12x — 14 in the form
alx — h)> + k.

64 Find the standard equation of a parabola with a vertical axis
that has vertex V(3, —2) and passes through (5, 4).

65 If f(x) = V4 — xZand g(x) = Vx, find the domain of
(a) fg (b) f/g
66 If f(x) = 8x — 1 and g(x) = Vx — 2, find

@) (f°9Q) (b) (g°/)(2)

Exer. 67-68: Find (a) (f° g)(x) and (b) (g ° f)(x).

67 f(x) =2x*—5x+ 1, gx)=3x+2
68 f(x) = V3x + 2, glx) = 1/x*

Exer. 69-70: Find (a) (f ° g)(x) and the domain of f - g and
(b) (g °f)(x) and the domain of g ° f.

69 f(x) = V25 —x% glx) = Vx—3

X
3x+ 2

70 f) = s ==

71 Find a composite function form for y = Vx? — 5x.

72 Wheelchair ramp The Americans with Disabilities Act of
1990 guarantees all persons the right of accessibility of
public accommodations. Providing access to a building often
involves building a wheelchair ramp. Ramps should have
approximately 1 inch of vertical rise for every 12—20 inches
of horizontal run. If the base of an exterior door is located 3
feet above a sidewalk, determine the range of appropriate
lengths for a wheelchair ramp.

73 Discus throw Based on Olympic records, the winning dis-
tance for the discus throw can be approximated by the equa-
tion d = 181 + 1.065¢, where d is in feet and r =0
corresponds to the year 1948.

74

75

76

77

(a) Predict the winning distance for the Summer Olympics
in the year 2016.

(b) Estimate the Olympic year in which the winning dis-
tance will be 265 feet.

House appreciation Six years ago a house was purchased
for $179,000. This year it was appraised at $215,000. As-
sume that the value V of the house after its purchase is a lin-
ear function of time 7 (in years).

(a) Express Vin terms of 7.

(b) How many years after the purchase date was the house
worth $193,000?

Temperature scales The freezing point of water is 0°C, or
32°F, and the boiling point is 100°C, or 212°F.

(a) Express the Fahrenheit temperature F as a linear func-
tion of the Celsius temperature C.

(b) What temperature increase in °F corresponds to an in-
crease in temperature of 1°C?

Gasoline mileage Suppose the cost of driving an automo-
bile is a linear function of the number x of miles driven and
that gasoline costs $3 per gallon. A certain automobile
presently gets 20 mi/gal, and a tune-up that will improve
gasoline mileage by 10% costs $120.

(a) Express the cost C; of driving without a tune-up in
terms of x.

(b) Express the cost C, of driving with a tune-up in
terms of x.

(c) How many miles must the automobile be driven after a
tune-up to make the cost of the tune-up worthwhile?

Dimensions of a pen A pen consists of five congruent rec-
tangles, as shown in the figure.

(a) Express the length y as a function of the length x.

(b) If the sides cost $10 per running foot, express the cost
C of the pen as a function of the length x.

Exercise 77




78

79

80

Distance between cars At noon, car A is 10 feet to the right
and 20 feet ahead of car B, as shown in the figure. If car A
continues at 88 ft/sec (or 60 mi/hr) while car B continues at
66 ft/sec (or 45 mi/hr), express the distance d between the
cars as a function of 7, where ¢ denotes the number of sec-
onds after noon.

Exercise 78

Constructing a storage shelter An open rectangular storage
shelter, consisting of two 4-foot-wide vertical sides and a
flat roof, is to be attached to an existing structure, as illus-
trated in the figure. The flat roof is made of tin and costs
$5 per square foot, and the two sides are made of plywood
costing $2 per square foot.

(a) If $400 is available for construction, express the length
y as a function of the height x.

(b) Express the volume V inside the shelter as a func-
tion of x.

Exercise 79

4’

Constructing a cylindrical container A company plans to
manufacture a container having the shape of a right circular
cylinder, open at the top, and having a capacity of 24 in’.
If the cost of the material for the bottom is $0.30/in? and
that for the curved sides is $0.10/in? express the total cost
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C of the material as a function of the radius r of the base of
the container.

81 Filling a pool A cross section of a rectangular pool of di-

mensions 80 feet by 40 feet is shown in the figure. The pool
is being filled with water at a rate of 10 ft*/min.

Exercise 81

(a) Express the volume V of the water in the pool as a func-
tion of time ¢.

(b) Express V as a function of the depth £ at the deep end
for 0 = h = 6 and then for 6 < h = 9.

(c) Express h as a function of 7 for 0 = 4 =< 6 and then for
6<h=09.

Filtering water Suppose 5 in® of water is poured into a con-
ical filter and subsequently drips into a cup, as shown in the
figure. Let x denote the height of the water in the filter, and
let y denote the height of the water in the cup.

(a) Express the radius r shown in the figure as a function
of x. (Hint: Use similar triangles.)

(b) Express the height y of the water in the cup as a func-
tion of x. (Hint: What is the sum of the two volumes

shown in the figure?)

Exercise 82 2"
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83 Frustum of a cone The shape of the first spacecraft in the
Apollo program was a frustum of a right circular cone—a
solid formed by truncating a cone by a plane parallel to its
base. For the frustum shown in the figure, the radii a and b
have already been determined.

Exercise 83

|
| |
<—a—

(a) Use similar triangles to express y as a function of A.

(b) Derive a formula for the volume of the frustum as a
function of A.

(c) Ifa = 6ftand b = 3 ft, for what value of  is the vol-
ume of the frustum 600 ft*?

84 Water usage rates A certain city charges $3.61 per 1000
gallons of water used up to 5000 gallons and $4.17 per 1000
gallons of water used for more than 5000 gallons. Find a
piecewise-defined function B that specifies the total bill for
water usage of x gallons.

85 Longjump record In 1991, Mike Powell of the United States
set the world long jump record of 8.95 meters. Assume that
the path of his flight was parabolic and that the highest point
cleared was 1 meter. Find an equation for his path.

86 Wire rectangle A piece of wire 24 inches long is bent into
the shape of a rectangle having width x and length y.

(a) Express y as a function of x.
(b) Express the area A of the rectangle as a function of x.

(c) Show that the area A is greatest if the rectangle is a
square.

87 Distance between ships At 1:00 P.M. ship A is 30 miles due
south of ship B and is sailing north at a rate of 15 mi/hr.
If ship B is sailing west at a rate of 10 mi/hr, find the time
at which the distance d between the ships is minimal (see
the figure).

Exercise 87

88 Dimensions of a race track The interior of a half-mile race
track consists of a rectangle with semicircles at two oppo-
site ends. Find the dimensions that will maximize the area
of the rectangle.

89 Vertical leaps When a particular basketball player leaps
straight up for a dunk, the player’s distance f(z) (in feet) off
the floor after ¢ seconds is given by the formula f(¢) =
f% gt> + 16t, where g is a gravitational constant.

(a) If g = 32, find the player’s hang time—that is, the
total number of seconds that the player is in the air.

(b) Find the player’s vertical leap—that is, the maximum
distance of the player’s feet from the floor.

(c) On the moon, g = %. Rework parts (a) and (b) for the
player on the moon.

90 Trajectory of a rocket A rocket is fired up a hillside, fol-
lowing a path given by y = —0.016x> + 1.6x. The hillside
has slope %, as illustrated in the figure.

(a) Where does the rocket land?

(b) Find the maximum height of the rocket above the
ground.

Exercise 90

AY
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Compare the graphs of y = Vx, y = Vx, y = x, y = x%
and y = x* on the interval 0 = x =< 2. Write a generaliza-
tion based on what you find out about graphs of equations
of the form y = x”7, where x = 0 and p and g are positive
integers.

Write an expression for g(x) if the graph of g is obtained
from the graph of f(x) = %x — 3 by reflecting f about the

(a) x-axis (b) y-axis

(c) liney =2 (d) linex =3

Consider the graph of g(x) = V/f(x), where f is given by
f(x) = ax?® + bx + c. Discuss the general shape of g, in-
cluding its domain and range. Discuss the advantages and
disadvantages of graphing g as a composition of the func-
tions 2(x) = \Vx and f(x). (Hint: You may want to use the
following expressions for f: x* — 2x — 8, —x? + 2x + 8,
x2—=2x+ 2, —x>+2x —2)

Simplify the difference quotient in Exercises 49 and 50 of
Section 3.4 for an arbitrary quadratic function of the form
fx) = ax* + bx + c.

Refer to Example 5 in Section 3.4. Geometrically, what
does the expression 2x + h + 6 represent on the graph
of f? What do you think it represents if 2 = 0?

The midpoint formula could be considered to be the
“halfway” formula since it gives us the point that is % of the
distance from the point P(x,, y;) to the point Q(x,, y,). De-
velop an “m-nth way” formula that gives the point R(x3, ys)
that is m/n of the distance from P to Q (assume m and n are
positive integers with m < n).

Consider the graphs of equations of the quadratic form
y = ax’ + bx + c that have two x-intercepts. Let d denote
the distance from the axis of the parabola to either of the
x-intercepts, and let & denote the value of the y-coordinate
of the vertex. Explore the relationship between d and h for
several specific equations, and then develop a formula for
this relationship.

8 Billing for service A common method of billing for service

10

calls is to charge a flat fee plus an additional fee for each
quarter-hour spent on the call. Create a function for a washer
repair company that charges $40 plus $20 for each quarter-
hour or portion thereof—for example, a 30-minute repair
call would cost $80, while a 31-minute repair call would
cost $100. The input to your function is any positive integer.
(Hint: See Exercise 54(e) of Section 3.5.)

Density of the ozone layer The density D (in 1073 cm/km)
of the ozone layer at altitudes x between 3 and 15 kilome-
ters during winter at Edmonton, Canada, was determined
experimentally to be

D = 0.0833x% — 0.4996x + 3.5491.
Express x as a function of D.

Precipitationin Minneapolis The average monthly precipita-
tion in inches in Minneapolis is listed in the table. Model
these data with a piecewise function f that is first quadratic
and then linear.

Month Precipitation
Jan. 0.7
Feb. 0.8
Mar. 1.5
Apr. 1.9
May 32
June 4.0
July 33
Aug. 3.2
Sept. 24
Oct. 1.6
Now. 14
Dec. 0.9
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Polynomial functions are the most basic functions in mathematics, because
they are defined only in terms of addition, subtraction, and multiplication.
In applications it is often necessary to sketch their graphs and to find (or ap-
proximate) their zeros. In the first part of this chapter we discuss results that
are useful in obtaining this information. We then turn our attention to quo-

tients of polynomial functions—that is, rational functions.
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4.1

Polynomial Functions of
Degree Greater Than 2

If fis a polynomial function with real coefficients of degree n, then

f&) = ax" + a,x"" + -0+ ax + a,

with a, # 0. The special cases listed in the following chart were previously
discussed.

Degree of f Form of f(x) Graph of f (with y-intercept a,)
0 fx) = ag A horizontal line
1 f(x) = ax + ay A line with slope a,
2 fx) = ax* + a\x + ay A parabola with a vertical axis

Figure 1

Figure 2

In this section we shall discuss graphs of polynomial functions of degree
greater than 2. All polynomial functions are continuous functions—that is,
their graphs can be drawn without any breaks.

If f has degree n and all the coefficients except a, are zero, then

f(x) = ax" forsome a = a,# 0.

In this case, if n = 1, the graph of fis a line through the origin. If n = 2, the
graph is a parabola with vertex at the origin. Two illustrations with n = 3
(cubic polynomials) are given in the next example.

EXAMPLE 1 Sketching graphs of y = ax?
Sketch the graph of fif
(@) f0) =3¢ (b) fx) = —3x°

SOLUTION
(a) The following table lists several points on the graph of y = %x3.

x |0 : 1 2 2 2

T~17|4|2=78

N
=N

y 0| L£=006

Since f is an odd function, the graph of f is symmetric with respect to the
.. . 1 1 1

origin, and hence points such as (—5, —1¢) and (—1, —5) are also on the

graph. The graph is sketched in Figure 1.

(b) Ify = —%x3, the graph can be obtained from that in part (a) by multiply-

ing all y-coordinates by —1 (that is, by reflecting the graph in part (a) through

the x-axis). This gives us the sketch in Figure 2.

If f(x) = ax" and n is an odd positive integer, then f'is an odd function and
the graph of f is symmetric with respect to the origin, as illustrated in Figures 1



Figure 3
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and 2. For a > 0, the graph is similar in shape to that in Figure 1; however, as
either n or a increases, the graph rises more rapidly for x > 1. If a < 0, we re-
flect the graph through the x-axis, as in Figure 2.

If f(x) = ax" and n is an even positive integer, then fis an even function
and the graph of fis symmetric with respect to the y-axis, as illustrated in Fig-
ure 3 for the case ¢ = 1 and n = 4. Note that as the exponent increases, the
graph becomes flatter at the origin. It also rises more rapidly for x > 1. If
a < 0, we reflect the graph through the x-axis. Also note that the graph inter-
sects the x-axis at the origin, but it does not cross the x-axis (change sign).

Figure 4

AY

| 5
T > T T T T
X

A complete analysis of graphs of polynomial functions of degree greater
than 2 requires methods that are used in calculus. As the degree increases, the
graphs usually become more complicated. They always have a smooth ap-
pearance, however, with a number of high points and low points, such as P, Q,
R, and S in Figure 4. Such points are sometimes called turning points for the
graph. It should be noted that an n-degree polynomial has at most n — 1 turn-
ing points. Each function value (y-coordinate) corresponding to a high or low
point is called an extremum of the function f. At an extremum, fchanges from
an increasing function to a decreasing function, or vice versa.

The intermediate value theorem specifies another important property of
polynomial functions.

Intermediate Value Theorem
for Polynomial Functions

If fis a polynomial function and f(a) # f(b) for a < b, then f takes on
every value between f(a) and f(b) in the interval [a, b].

The intermediate value theorem for polynomial functions states that if w is
any number between f(a) and f(b), there is at least one number ¢ between a
and b such that f(c) = w. If we regard the graph of f as extending continuously
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Figure 5

f(b)

w

fla)

A

from the point (a, f(a)) to the point (b, f(b)), as illustrated in Figure 5, then
for any number w between f(a) and f(b), the horizontal line y = w intersects
the graph in at least one point P. The x-coordinate ¢ of P is a number such
that f(c) = w.

A consequence of the intermediate value theorem is that if f(a) and f(b)
have opposite signs (one positive and one negative), there is at least one num-
ber ¢ between a and b such that f(c) = 0; that is, f has a zero at c. Thus, if the
point (a, f(a)) lies below the x-axis and the point (b, f(b)) lies above the x-axis,
or vice versa, the graph crosses the x-axis at least once between x = a and
x = b, as illustrated in Figure 6.

Figure 6
A y A y

(b, f()) (a, f(a))

y=fE v =f)
a Jo b x a A b x
(a f(@) (b, f(b))

EXAMPLE 2 Using the intermediate value theorem
Show that f(x) = x> + 2x* — 6x* + 2x — 3 has a zero between 1 and 2.
SOLUTION Substituting 1 and 2 for x gives us the following function values:

f)=142-6+2-3=—4
f2)=32+32-48+4—-3=17

Since f(1) and f(2) have opposite signs (f(1) = —4 < 0 and f(2) = 17 > 0),
we see that f(c) = 0 for at least one real number ¢ between 1 and 2. V4

Example 2 illustrates a method for locating real zeros of polynomials. By
using successive approximations, we can approximate each zero at any degree
of accuracy by locating it in smaller and smaller intervals.

If ¢ and d are successive at real zeros of f(x)—that is, there are no other
zeros between ¢ and d—then f(x) does not change sign on the interval (c, d).
Thus, if we choose any number k such that ¢ < k < d and if f(k) is positive,
then f(x) is positive throughout (c, d). Similarly, if f(k) is negative, then f(x)
is negative throughout (c, d). We shall call f(k) a test value for f(x) on the in-
terval (c, d). Test values may also be used on infinite intervals of the form
(=0, a) or (a, =), provided that f(x) has no zeros on these intervals. The use
of test values in graphing is similar to the technique used for inequalities in
Section 2.7.
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f

y=x3+x>—4x — 4
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EXAMPLE 3 Sketching the graph of a polynomial function of degree 3

Let f(x) = x* + x* — 4x — 4. Find all values of x such that f(x) > 0 and all
x such that f(x) < 0, and then sketch the graph of f.

SOLUTION  We may factor f(x) as follows:
fx)=x>*+x>—4x—4 given
= (x4 x?) + (—4x — 4) group terms
=xX(x+1) —4x+1) factor out x* and —4
=x2—=4x+1) factor out (x + 1)
=x+2)x—2)x+1) difference of squares
We see from the last equation that the zeros of f(x) (the x-intercepts of the

graph) are —2, —1, and 2. The corresponding points on the graph (see Fig-
ure 7) divide the x-axis into four parts, and we consider the open intervals

(=2, =2), (=2,-1), (=1.2), (2,»).

As in our work with inequalities in Section 2.7, the sign of f(x) in each of these
intervals can be determined by using a sign chart. The graph of flies above the
x-axis for values of x such that f(x) > 0, and it lies below the x-axis for all x
such that f(x) < 0.

Interval (=, =2) (=2,-1) (-1,2) (2, =)
Signof x + 2 - + + +
Signof x + 1 - - + +
Signof x — 2 - - - +
Sign of f(x) - + - +
Position of Below Above Below Above
graph X-axis Xx-axis X-axis x-axis

Referring to the sign of f(x) in the chart, we conclude that
fx) >0 ifxisin(=2,—1) U (2, )
and flx) <0 ifxisin(—o0, =2) U (—1,2).

Using this information leads to the sketch in Figure 8. To find the turning
points on the graph, it would be necessary to use a computational device or
methods developed in calculus. /

The graph of every polynomial function of degree 3 has an appearance
similar to that of Figure 8, or it has an inverted version of that graph if the co-
efficient of x? is negative. Sometimes, however, the graph may have only one
x-intercept or the shape may be elongated, as in Figures 1 and 2.
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Figure 10

y=x*—4x* + 3x2

EXAMPLE 4 Sketching the graph of a polynomial function of degree 4

Let f(x) = x* — 4x® + 3x2 Find all values of x such that f(x) > 0 and all x
such that f(x) < 0, and then sketch the graph of f.

SOLUTION  We begin by factoring f(x):
flx) = x* — 4x® + 3x>  given
= x?(x> — 4x + 3)  factor out x?
=x*(x — 1)(x — 3) factorx® —4x + 3
Next, we construct the sign diagram in Figure 9, where the vertical lines indi-
cate the zeros 0, 1, and 3 of the factors. Since the factor x? is always positive

if x # 0, it has no effect on the sign of the product and hence may be omitted
from the diagram.

Figure 9
Sign of f(x) + | + — +
Sign of x — 3 - | = - +
Signof x — 1 + +
f f f f f >
0 1 3

Referring to the sign of f(x) in the diagram, we see that
fx) >0 ifxisin(—o0,0) U (0, 1) U (3, )
and flx) <0 ifxisin(1,3).

Note that the sign of f(x) does not change at x = 0. Making use of these facts
leads to the sketch in Figure 10. 7/

In the next example we construct a graph of a polynomial knowing only
its sign.

EXAMPLE 5 Sketch the graph of a polynomial knowing its sign

Given the sign diagram in Figure 11, sketch a possible graph of the polyno-
mial f.

Figure 11

Sign of f(x) —

Y

o
[C N EpE—
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Figure 12 SOLUTION  Since the sign of f(x) is negative in the interval (—oo, —3), the
y graph of f must be below the x-axis, as shown in Figure 12. In the interval
1 (=3, —1), the sign of f(x) is positive, so the graph of fis above the x-axis.
The sign of f(x) is also positive in the next interval, (—1, 0). Thus, the
graph of f must touch the x-axis at the x-intercept —1 and then remain above
the x-axis. (The graph of f'is fangent to the x-axis at x = —1.)
In the interval (0, 2), the sign of f(x) is negative, so the graph of f is below
) L\ ) L the x-axis. Lastly, the sign of f(x) is posifive in the interval (2, ), and the
-1 1 x graph of fis above the x-axis. 7/
In the last example we used the function
f) = (x + 3)(x + D*(0)(x = 2).
Note how the graph of frelates to the solutions of the following inequalities.
Position of graph
Inequality Solution in relation to the x-axis
@ fx)>0 (=3, -1) U (=1,0) U (2, ) Above
2) fx)=0 [—3,0] U[2,x) Above or on
3) fx) <0 (=, =3) U (0,2) Below
4 fx)=0 (=00, =31 U {—=1} U0, 2] Below or on
Notice that every real number must be in the solution to either inequality (1)
or inequality (4)—the same can be said for inequalities (2) and (3).
4.1 Exercises
Exer. 1-4: Sketch the graph of f for the indicated value of ¢ Exer. 5-10: Use the intermediate value theorem to show
or a. that f has a zero between a and b.
1 fix) =2x* + ¢ 5 f(x) = x> — 4x2 + 3x — 2; a=3, b=4
(a) ¢c=3 (b) ¢ = -3
6 f(x) = 2x* + 5x2 — 3; a=-3, b=-2
2 fx) = —2x3+ ¢
(a) ¢ = —2 (b) ¢ =2 7 fx)=—x*+3>—-—2x+1, a=2 b=3
3 () =ax®+2 8 f(x) = 20 + 3x — 2 a=3 b=}

(@ a=2 (b) a=—= !
9 f)=x"+x*+x*+x+1; a=—-3 b=-1

4 flx) =ax’—3
| 10 f(x) = x> — 3x* — 2x% + 3x* — 9x — 6;
(a) a= -2 (b) a=73 a=3, b=4
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Exer. 11-12: Match each graph with an equation. (A) f(x) = x*(x — 1)
11 _
(B) f() = —x(x + 2
(a) (b) J
i ] (€) fo) = (x + 2(x + D(x — 3)
] . (D) f() = (& + 2% + Dx = 1)

Exer. 13-28: Find all values of x such that f(x) > 0 and all

C X x such that f(x) < 0, and sketch the graph of f.

E I 13 f(x) = ix3 -2 14 fx) = —$x3 -3

C T 15 f(x) = —qex* + 1 16 f(x) =x5+ 1
(d) 17 f(x) = x* — 4x? 18 f(x) = 9x — x*

19 f(x) = —x* + 3x? + 10x

[ .
<

20 f(x) = x* 4+ 3x3 — 4x°

21 f(x) = é(x +2)(x —3)(x —4)
22 f(x) = —%(x +4)(x — 2)(x — 6)

23 f(x) =x*+ 2x* —4x — 8

(A) fx) = x(x — 2)? 24 f(x) = x> — 3x2 — 9x + 27

(B) f(x) = —x*(x — 2)

(€ f =G+ DHix— DHx—2)
(D) f(x) = (x + D(x — D(x — 2) 27 f(x) = *(x + 2)(x — 1)*(x — 2)
28 f(x) = x*(x + 1)*(x — 2)(x — 4)

25 f(x) = x* — 6x> + 8

26 f(x) = —x*+ 12x2 — 27

() 4 Exer. 29-30: Sketch the graph of a polynomial given the

i sign diagram.
] 29
- Sign of f(x) + ‘ — ‘ — ‘ + ‘ —
r X
- —4 0 1 3

T " 30

(© A (d) LY Sign of £(x) + ‘ + ‘ - ‘ + ‘ -
] - 3 =2 0 2

31 (a) Sketch a graph of
@) = (x = a)(x = b)(x — o),

where a <0< b <c.

(b) What is the y-intercept? (continued)



32

33

34

35

36

37

38

39

40
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(c) What is the solution to f(x) < 0?
(d) What is the solution to f(x) = 0?

(a) Sketch a graph of
f) = (x = a)’'lx = b)(x — o),

wherea < b <0 <ec.
(b) What is the y-intercept?
(c) What is the solution to f(x) > 0?
(d) What is the solution to f(x) = 0?

Let f(x) be a polynomial such that the coefficient of every
odd power of x is 0. Show that fis an even function.

Let f(x) be a polynomial such that the coefficient of every
even power of x is 0. Show that f is an odd function.

If f(x) = 3x> — kx*> + x — 5k, find a number k such that
the graph of f contains the point (—1, 4).

If f(x) = kx® + x> — kx + 2, find a number & such that the
graph of f contains the point (2, 12).

If one zero of f(x) = x> — 2x> — 16x + 16k is 2, find two
other zeros.

If one zero of f(x) = x> — 3x> — kx + 12 is —2, find two
other zeros.

A Legendre polynomial The third-degree Legendre poly-
nomial P(x) = %(Sx3 — 3x) occurs in the solution of heat
transfer problems in physics and engineering. Find all val-
ues of x such that P(x) > 0 and all x such that P(x) < 0, and
sketch the graph of P.

A Chebyshev polynomial The fourth-degree Chebyshev
polynomial f(x) = 8x* — 8x> + 1 occurs in statistical
studies. Find all values of x such that f(x) > 0. (Hint: Let
z = x?, and use the quadratic formula.)

Constructing a box From a rectangular piece of cardboard
having dimensions 20 inches X 30 inches, an open box is
to be made by cutting out identical squares of area x*> from
each corner and turning up the sides (see Exercise 65 of
Section 3.4).

(a) Show that the volume of the box is given by the func-
tion V(x) = x(20 — 2x)(30 — 2x).

(b) Find all positive values of x such that V(x) > 0, and
sketch the graph of V for x > 0.

42
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Constructing a crate The frame for a shipping crate is to be
constructed from 24 feet of 2 X 2 lumber (see the figure).

(a) If the crate is to have square ends of side x feet, express
the outer volume V of the crate as a function of x (dis-
regard the thickness of the lumber).

(b) Sketch the graph of V for x > 0.

Exercise 42

Determining temperatures A meteorologist determines
that the temperature 7 (in °F) for a certain 24-hour period in
winter was given by the formula 7' = %z(z — 12)(r — 24)
for 0 = t = 24, where ¢ is time in hours and ¢ = O corre-
sponds to 6 A.M.

(a) When was T > 0, and when was T < 0?
(b) Sketch the graph of 7.

(c) Show that the temperature was 32°F sometime between
12 noon and 1 PM. (Hint: Use the intermediate value
theorem.)

Deflections of diving boards A diver stands at the very end
of a diving board before beginning a dive (see the figure).

Exercise 44
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The deflection d of the board at a position s feet from the
stationary end is given by d = ¢s*(3L — s) for0 = s < L,
where L is the length of the board and ¢ is a positive
constant that depends on the weight of the diver and on
the physical properties of the board. Suppose the board is
10 feet long.

46 Deer population Refer to Exercise 45. It can be shown

by means of calculus that the rate R (in deer per year) at
which the deer population changes at time ¢ is given
by R = —413 + 421,

(a) When does the population cease to grow?

(b) Determine the positive values of ¢ for which R > 0.
(a) If the deflection at the end of the board is 1 foot, find c.
47 (a) Construct a table containing the values of the fourth-

degree polynomials
) = 2x*,
glx) = 2x* = 5x* + 1,
h(x) = 2x* + 5x* — 1,

(b) Show that the deflection is % foot somewhere between
s =65ands = 6.6.

45 Deer population A herd of 100 deer is introduced onto a
small island. At first the herd increases rapidly, but eventu- and
ally food resources dwindle and the population declines. k(x)
Suppose that the number N(z) of deer after 7 years is given
by N(r) = —¢* + 21#* + 100, where t > 0.

=2x* — x3 + 2x,
when x = +20, =40, and =60.

(b) As|x|becomes large, how do the values for each func-

(a) Determine the values of ¢ for which N(#) > 0, and i 9
ion compare?

sketch the graph of N.
(c) Which term has the greatest influence on each func-

(b) Does the population become extinct? If so, when? tion’s value when | x| is large?

In this section we use f(x), g(x), and so on, to denote polynomials in x. If g(x)
is a factor of f(x), then f(x) is divisible by g(x). For example, x* — 16 is di-
visible by x> — 4, by x> + 4, by x + 2, and by x — 2.

The polynomial x* — 16 is not divisible by x> + 3x + 1; however, we
can use the process called long division to find a quotient and a remainder, as
in the following illustration, where we have inserted terms with zero coefficients.

4.2

Properties of Division

ILLUSTRATION Long Division of Polynomials

quotient

f—_/%

x?— 3x+ 8

m 23+ 1x*+ 0+ 0x2+ 0x— 16
x*F3 X

X2+ 3x+ 1)
2

—3x3— x subtract
—3x3 — 9x?2 — 3x —3x(x* + 3x + 1)
8x? 4+ 3x — 16 subtract
8x2+24x + 8 8(x2+3x+1)
—21x — 24 subtract
N

remainder
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The long division process ends when we arrive at a polynomial (the re-
mainder) that either is O or has smaller degree than the divisor. The result of
the long division in the preceding illustration can be written

Xt — 16 —21x — 24)

2—=(x2—3x+8)+ 5
x*+3x+1 x*+3x+1

Multiplying both sides of this equation by x> + 3x + 1, we obtain
xt—16 = (x> + 3x + 1)(x2 — 3x + 8) + (—21x — 24).

This example illustrates the following theorem.

Division Algorithm
for Polynomials

If f(x) and p(x) are polynomials and if p(x) # 0, then there exist unique
polynomials g(x) and r(x) such that

f&) = p) - glx) + rx),

where either r(x) = 0 or the degree of r(x) is less than the degree of p(x).
The polynomial g(x) is the quotient, and r(x) is the remainder in the divi-
sion of f(x) by p(x).

A useful special case of the division algorithm for polynomials occurs if
f(x) is divided by x — ¢, where c is a real number. If x — ¢ is a factor of f(x),
then

J) = (x = c)q(x)

for some quotient g(x), and the remainder r(x) is 0. If x — ¢ is not a factor of
f(x), then the degree of the remainder r(x) is less than the degree of x — ¢, and
hence r(x) must have degree 0. This means that the remainder is a nonzero
number. Consequently, for every x — ¢ we have

J&) = (x = c)glx) + d,

where the remainder d is a real number (possibly d = 0). If we substitute ¢ for
X, we obtain

flc) = (c — c)qlc) +d
=0-qg()+d
=0+d=d.

This proves the following theorem.

Remainder Theorem

If a polynomial f(x) is divided by x — ¢, then the remainder is f(c).
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EXAMPLE 1 Using the remainder theorem
If f(x) = x> — 3x> + x + 5, use the remainder theorem to find f(2).

SOLUTION  According to the remainder theorem, f(2) is the remainder
when f(x) is divided by x — 2. By long division,

x>— x—1
x—=2Ix*=3x*+ x+5
x3 — 2x? xX(x —2)
x4+ x subtract
—x2 + 2x —x(x — 2)

—x + 5 subtract
—x+2 (—DHx—2)
3 subtract
Hence, f(2) = 3. We may check this fact by direct substitution:
f@Q=2-322+2+5=3 /

We shall use the remainder theorem to prove the following important
result.

Factor Theorem

A polynomial f(x) has a factor x — c if and only if f(c) = 0.

PROOF By the remainder theorem,
fx) = (x = c)gx) + flc)
for some quotient g(x).
If f(c) =0, then f(x) = (x — ¢)g(x); that is, x — c is a factor of f(x).
Conversely, if x — ¢ is a factor of f(x), then the remainder upon division of
f(x) by x — ¢ must be 0, and hence, by the remainder theorem, f(c) = 0.

/7

The factor theorem is useful for finding factors of polynomials, as illus-
trated in the next example.

EXAMPLE 2 Using the factor theorem

Show that x — 2 is a factor of f(x) = x> — 4x* + 3x + 2.

SOLUTION  Since f(2) =8 — 16 + 6 + 2 = 0, we see from the factor
theorem that x — 2 is a factor of f(x). Another method of solution would be to
divide f(x) by x — 2 and show that the remainder is 0. The quotient in the di-
vision would be another factor of f(x). 7/



4.2 Properties of Division 225

EXAMPLE 3 Finding a polynomial with prescribed zeros
Find a polynomial f(x) of degree 3 that has zeros 2, —1, and 3.

SOLUTION By the factor theorem, f(x) has factors x — 2, x + 1, and
x — 3. Thus,

f(x) = alx = 2)(x + D(x = 3),
where any nonzero value may be assigned to a. If we let @ = 1 and multiply,

we obtain

f) =x*—4x*+x + 6. /

To apply the remainder theorem it is necessary to divide a polynomial f(x)
by x — c¢. The method of synthetic division may be used to simplify this
work. The following guidelines state how to proceed. The method can be jus-
tified by a careful (and lengthy) comparison with the method of long division.

Guidelines for
Synthetic Division of
a,x"+ a,..x" '+ .- +ax +a,
byx — ¢

1 Begin with the following display, supplying zeros for any missing coeffi-
cients in the given polynomial.

ca, a a,n ... a a

a,

2 Multiply a, by c, and place the product ca, underneath a,_,, as indicated
by the arrow in the following display. (This arrow, and others, is used
only to clarify these guidelines and will not appear in specific synthetic
divisions.) Next find the sum b, = a,_; + ca,, and place it below the
line as shown.

cla, a1 A ... a a
_ca, cb, cb, .. ¢b, > cb,
a, bl b2 000 bnfz b,,fl r

3 Multiply b, by ¢, and place the product cb, underneath a,_,, as indicated
by the second arrow. Proceeding, we next find the sum b, = a,_, + cb,
and place it below the line as shown.

4 Continue this process, as indicated by the arrows, until the final sum
r = ay + cb,_, is obtained. The numbers

am bb bZ’ Y bn—2s bn—l
are the coefficients of the quotient g(x); that is,
qg(x) = ax" '+ bx" 2+ - - -+ byox + by,

and r is the remainder.
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Synthetic division does not replace
long division; it is merely a faster
method and is applicable only when
the divisor is of the form x — c.

The following examples illustrate synthetic division for some special
cases.

EXAMPLE 4 Using synthetic division to find a quotient and remainder

Use synthetic division to find the quotient g(x) and remainder r if the polyno-
mial 2x* + 5x* — 2x — 8 is divided by x + 3.

SOLUTION  Since the divisoris x + 3 = x — (—3), the value of c in the ex-
pression x — ¢ is —3. Hence, the synthetic division takes this form:
3|2 50 -2 -8
-6 3 -9 33
2 -1 3 —11 25
S L7,

coefficients

remainder
of quotient

As we have indicated, the first four numbers in the third row are the coeffi-
cients of the quotient g(x), and the last number is the remainder 7. Thus,

glx) =2x* — x>+ 3x — 11 and r=25. 7/

Synthetic division can be used to find values of polynomial functions, as
illustrated in the next example.

EXAMPLE 5 Using synthetic division to find values of a polynomial
If f(x) = 3x> — 38x3 + 5x — 1, use synthetic division to find f(4).

SOLUTION By the remainder theorem, f(4) is the remainder when f(x) is
divided by x — 4. Dividing synthetically, we obtain

43 0 -38 5 0 -1

12 48 40 180 720
3 12 10 45 180 719
“ ~ J e
coefficients remainder
of quotient
Consequently, f(4) = 719. 7/

Synthetic division may be used to help find zeros of polynomials. By the
method illustrated in the preceding example, f(c) = O if and only if the re-
mainder in the synthetic division by x — ¢ is 0.

EXAMPLE 6 Using synthetic division to find zeros of a polynomial
Show that —11 is a zero of the polynomial

fx) = x* + 8x? — 29x + 44.
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SOLUTION  Dividing synthetically by x — (—11) = x + 11 gives us

The quotient gives us the depressed —11 1 8 —29 44
equati(m, —-11 33 _44
X2 =3x+4=0,— I -3 4 0
—_—
which can be used to find the remain- coefficients ~ remainder
ing zeros of f. of quotient
Thus, f(—11) = 0, and —11 is a zero of f. /7

Example 6 shows that the number —11 is a solution of the equation
x* + 8x? — 29x + 44 = 0. In Section 4.4 we shall use synthetic division to
find rational solutions of equations.
At this stage you should recognize that the following three statements are
equivalent for a polynomial function f whose graph is the graph of the equa-
tion y = f(x).
equivalent (1) The point (a, b) is on the graph of f.
statements < (2) The value of fat x = a equals b; that is, f(a) = b.
for f(a) = b | (3) If f(x) is divided by x — a, then the remainder is b.

Furthermore, if b is equal to O, then the next four statements are also

equivalent.
(1) The number « is a zero of the function f.
additional . . . . .
equivalent (2) The point (a, 0) is on the graph of f; that is, a is an x-intercept.
statements | (3) The number a is a solution of the equation f(x) = 0.
for f(a) =0

(4) The binomial x — a is a factor of the polynomial f(x).

You should become familiar with these statements—so familiar that if
you know one of them is true, you can easily recall and apply any appropriate
equivalent statement.

4.2 Exercises

Exer. 1-8: Find the quotient and remainder if f(x) is di- 7 f(x) = 9x + 4, plx) =2x—5
vided by p(x).
8 f(x) = 7x* + 3x — 10; px) =x>—x+ 10
1 fx)=2x" = x> =3x2+Tx — 12; px) =x2—-3
2 fx) =3x"+ 2 —x* —x = 6 pl) =x*+1 Exer. 9-12: Use the remainder theorem to find f(c).
3 flx) =3x> + 2x — 4 px) = 2x> + 1 9 fx) =3 —x>+5x—4;, c=2
4 f(x) = 3x> — 5x* — 4x — 8; px) = 2x> + x 10 fx) =2 +4x>—=3x—1;, ¢c=3
5 flx) = Tx + 2, plx) =2x> —x— 4 1N f)=x*—6x>+4x—8, c¢=-3

6 flx) = —5x* + 3; px) =x3—3x+9 12 f(x) = x* + 3x> — 12; c= -2
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Exer. 13-16: Use the factor theorem to show that x — cis a
factor of f(x).

13 flx) = x* + 22 — 2x + 12; c= -3
14 flx) = x>+ x2 = 11x + 10; c=2

15 f(x) = x'2 — 4096;
16 fx) =x*—3x*=—2x*+5x +6; ¢

c= -2

Il
)

Exer. 17-20: Find a polynomial f(x) with leading coeffi-
cient 1 and having the given degree and zeros.

17 degree 3; zeros —2,0,5
18 degree 3; zeros *2,3

19 degree 4; zeros —2, *1,4
20 degree 4; zeros —3,0,1,5

Exer. 21-28: Use synthetic division to find the quotient and
remainder if the first polynomial is divided by the second.

21 2% —3x24+4x—5;, x—2
223 —4x>—x+8;, x+4

23 x3—8x —5; x+3
24 5x% — 6x2 + 15; x—4
25 3x° + 6x2 + 7; x+2

26 —2x* + 10x — 3; x—3
27 4x* — 5x2 + 1; X =3
28 9x* —6x2 +3x — 4 x—1

Exer. 29-34: Use synthetic division to find f(c).
29 fx) =23 +3x>—4x+4;, =3

30 f(x) = —x3 + 4x% + x; c= -2

31 f(x) = 0.3x* + 0.04x — 0.034; ¢ = —0.2

32 flx) = 8x° — 3x2 + 7, c=%
33 f(x) = x>+ 3x — 5; c=2+\V3
34 flx) = x> — 3x* = 8§; c=1+\V2

Exer. 35-38: Use synthetic division to show that c is a zero
of f(x).
35 fo) =3x* +8x* =2 = 10x +4; ¢c= -2

36 f(x) = 4x* — 9x* — 8x — 3; c=3

1
37 f(x) = 4x* — 6x* + 8x — 3; c=3

38 fo) =27x* = 9x* +3x> +6x+ 1; c= *%

Exer. 39-40: Find all values of k such that f(x) is divisible
by the given linear polynomial.

39 flo) = k® + X2+ kx + 32+ 11, x+2

40 f(x) = k%3 — 4kx + 3 x—1

Exer. 41-42: Show that x — c is not a factor of f(x) for any
real number c.
41 flx) =3x*+x2+5 42 flx) = —x* —3x> =2
43 Find the remainder if the polynomial

3x100 + 5x85 — 4x3 + 2x17 — 6

is divided by x + 1.

Exer. 44-46: Use the factor theorem to verify the statement.

44 x — yis a factor of x” — y” for every positive integer n.
45 x + yis afactor of x” — y” for every positive even integer 7.
46 x + yisafactor of x" + y” for every positive odd integer n.

47 Let P(x, y) be a first-quadrant point on y = 6 — x, and con-
sider the vertical line segment PQ shown in the figure.

(a) If PQ is rotated about the y-axis, determine the vol-
ume V of the resulting cylinder.

(b) For what point P(x, y) with x # 1 is the volume V in
part (a) the same as the volume of the cylinder of ra-
dius 1 and altitude 5 shown in the figure?

Exercise 47
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48 Strength of a beam The strength of a rectangular beam is di- (a) Express the area A of the rectangle in terms of x.
rectly proportional to the product of its width and the square
of the depth of a cross section (see the figure). A beam of (b) If x = 1, the rectangle has base 2 and height 3. Find the

width 1.5 feet has been cut from a cylindrical log of radius
1 foot. Find the width of a second rectangular beam of equal
strength that could have been cut from the log.

base of a second rectangle that has the same area.

50 Dimensions of a capsule An aspirin tablet in the shape of
Exercise 48 a right circular cylinder has height % centimeter and radius
% centimeter. The manufacturer also wishes to market the
aspirin in capsule form. The capsule is to be % centimeters
long, in the shape of a right circular cylinder with hemi-
spheres attached at both ends (see the figure).

(a) If r denotes the radius of a hemisphere, find a formula
for the volume of the capsule.

(b) Find the radius of the capsule so that its volume is
equal to that of the tablet.

Exercise 50

49 Parabolic arch An arch has the shape of the parabola
y = 4 — x% A rectangle is fit under the arch by selecting a
point (x, y) on the parabola (see the figure).

Exercise 49
AY

T
4 3 The zeros of a polynomial f(x) are the solutions of the equation f(x) = 0.
= Each real zero is an x-intercept of the graph of f. In applied fields, calculators
Zeros Of Po lyn omials and computers are usually used to find or approximate zeros. Before using a

calculator, however, it is worth knowing what type of zeros to expect. Some
questions we could ask are

(1) How many zeros of f(x) are real? imaginary?
(2) How many real zeros of f(x) are positive? negative?
(3) How many real zeros of f(x) are rational? irrational?

(4) Are the real zeros of f(x) large or small in value?
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In this and the following section we shall discuss results that help answer some
of these questions. These results form the basis of the theory of equations.

The factor and remainder theorems can be extended to the system of com-
plex numbers. Thus, a complex number ¢ = a + bi is a zero of a polynomial
f(x) if and only if x — ¢ is a factor of f(x). Except in special cases, zeros of
polynomials are very difficult to find. For example, there are no obvious zeros
of f(x) = x° — 3x* + 4x* — 4x — 10. Although we have no formula that can
be used to find the zeros, the next theorem states that there is at least one zero
¢, and hence, by the factor theorem, f(x) has a factor of the form x — c.

Fundamental
Theorem of Algebra

If a polynomial f(x) has positive degree and complex coefficients, then f(x)
has at least one complex zero.

The standard proof of this theorem requires results from an advanced field
of mathematics called functions of a complex variable. A prerequisite for
studying this field is a strong background in calculus. The first proof of the
fundamental theorem of algebra was given by the German mathematician Carl
Friedrich Gauss (1777-1855), who is considered by many to be the greatest
mathematician of all time.

As a special case of the fundamental theorem of algebra, if all the coeffi-
cients of f(x) are real, then f(x) has at least one complex zero. If @ + bi is a com-
plex zero, it may happen that b = 0, in which case the number « is a real zero.

The fundamental theorem of algebra enables us, at least in theory, to ex-
press every polynomial f(x) of positive degree as a product of polynomials of
degree 1, as in the next theorem.

Complete Factorization
Theorem for Polynomials

If f(x) is a polynomial of degree n > 0, then there exist n complex num-
bers ¢y, ¢, . . ., ¢, such that

f&) =alx —c)lx — ) - (x — ¢,

where a is the leading coefficient of f(x). Each number ¢, is a zero of f(x).

PROOF If f(x) has degree n > 0, then, by the fundamental theorem of
algebra, f(x) has a complex zero c,. Hence, by the factor theorem, f(x) has a
factor x — c;; that is,

f&) = (x = ) fil),

where fi(x) is a polynomial of degree n — 1. If n — 1 > 0, then, by the same
argument, f(x) has a complex zero ¢, and therefore a factor x — c¢,. Thus,

fil) = (x = ) fol),
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where f(x) is a polynomial of degree n — 2. Hence,

f&) = (x = c)lx — ) folx).

Continuing this process, after n steps we arrive at a polynomial f,(x) of de-
gree 0. Thus, f,(x) = a for some nonzero number a, and we may write

f&) =alx —c)lx —c) - (x — ¢,

where each complex number ¢, is a zero of f(x). The leading coefficient of the
polynomial on the right-hand side in the last equation is a, and therefore a is
the leading coefficient of f(x) . /

ILLUSTRATION Complete Factorization Theorem for Polynomials
A Polynomial f(x) A Factored Form of f(x) Zeros of f(x)
B 32— (12 + 6i)x +24i 3(x — 4)(x — 2i) 4,2i
B 6 —2x*—6x—2 —6(x + %)(x + ) — i) —51, +i
B 5% — 30x% + 65x S —0)x— B +2)][x—B—-2)] 0,3=*2i
m 8 —3x—-8  x+12)x+ Dx—1) —12, *1

We may now prove the following.

Theorem on the
Maximum Number of
Zeros of a Polynomial

A polynomial of degree n > 0 has at most n different complex zeros.

PROOF We will give an indirect proof; that is, we will suppose f(x) has
more than n different complex zeros and show that this supposition leads to a
contradiction. Let us choose n + 1 of the zeros and label them ¢y, ¢, . . ., ¢,
and c. We may use the ¢, to obtain the factorization indicated in the statement
of the complete factorization theorem for polynomials. Substituting ¢ for x
and using the fact that f(c) = 0, we obtain

0 =alc—c)lc—c)(c—c)

However, each factor on the right-hand side is different from zero because
¢ # ¢ for every k. Since the product of nonzero numbers cannot equal zero,
we have a contradiction. g
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EXAMPLE 1 Finding a polynomial with prescribed zeros

Find a polynomial f(x) in factored form that has degree 3; has zeros 2, —1, and
3; and satisfies f(1) = 5.

SOLUTION By the factor theorem, f(x) has factors x — 2, x + I, and
x — 3. No other factors of degree 1 exist, since, by the factor theorem, another
linear factor x — ¢ would produce a fourth zero of f(x), contrary to the pre-
ceding theorem. Hence, f(x) has the form

J&) = alx = 2)(x + Dx = 3)

for some number a. Since f(1) = 5, we can find a as follows:

5=a(l —2)1 + 1A —3) letx = 1lin f(x)
5=a(—1)2)(—2) simplify

5 .
a=j solve for a

Consequently,
f@) =3 = 2)(x + Dx — 3).

If we multiply the factors, we obtain the polynomial

flx) = %x3 — 5x2 + %x + % /
The numbers cy, ¢, ..., ¢, in the complete factorization theorem are
not necessarily all different. To illustrate, f(x) = x> + x?> — 5x + 3 has the

factorization
f&) =+ 3)x — Dx — 1).

If a factor x — ¢ occurs m times in the factorization, then c is a zero of multi-
plicity m of the polynomial f(x), or a root of multiplicity m of the equation
f(x) = 0. In the preceding display, 1 is a zero of multiplicity 2, and —3 is a
zero of multiplicity 1.

If ¢ is a real zero of f(x) of multiplicity m, then f(x) has the factor
(x — ¢)™and the graph of f has an x-intercept c. The general shape of the graph
at (¢, 0) depends on whether m is an odd integer or an even integer. If m is odd,
then (x — ¢)™ changes sign as x increases through c¢, and hence the graph of f
crosses the x-axis at (¢, 0), as indicated in the first row of the following chart.
The figures in the chart do not show the complete graph of f, but only its gen-
eral shape near (c, 0). If m is even, then (x — ¢)" does not change sign at ¢ and
the graph of f near (c, 0) has the appearance of one of the two figures in the
second row.



Figure 1

4.3 Zeros of Polynomials 233

Factor of f(x) General shape of the graph of f near (c, 0)

(x — ¢)", with

y y
modd and m # 1 A A

N
=Y
I
=Y

(x = o), with LY LY
m even

EXAMPLE 2 Finding multiplicities of zeros

Find the zeros of the polynomial f(x) = 1]—6 x — 2)(x — 4)*(x + 1)?, state the
multiplicity of each, and then sketch the graph of f.

SOLUTION  We see from the factored form that f(x) has three distinct zeros,
2,4, and —1. The zero 2 has multiplicity 1, the zero 4 has multiplicity 3, and
the zero — 1 has multiplicity 2. Note that f(x) has degree 6.

The x-intercepts of the graph of fare the real zeros —1, 2, and 4. Since the
multiplicity of —1 is an even integer, the graph intersects, but does not cross,
the x-axis at (—1, 0). Since the multiplicities of 2 and 4 are odd, the graph
crosses the x-axis at (2, 0) and (4, 0). (Note that the graph is “flatter” at 4 than
at 2.) The y-intercept is f(0) = 11—6(—2)(—4)3(1)2 = 8. The graph is shown in
Figure 1. V4

If f(x) = alx — ¢))(x — ¢) - - (x — ¢,) is a polynomial of degree n, then
the n complex numbers ¢y, ¢, . . ., ¢, are zeros of f(x). Counting a zero of mul-
tiplicity m as m zeros tells us that f(x) has at least n zeros (not necessarily all
different). Combining this fact with the fact that f(x) has at most n zeros gives
us the next result.
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Theorem on the
Exact Number of
Zeros of a Polynomial

If f(x) is a polynomial of degree n > 0 and if a zero of multiplicity m is
counted m times, then f(x) has precisely n zeros.

ILLUSTRATION

Notice how the polynomial of degree 6 in Example 2 relates to the last
theorem. The multiplicities are 1, 3, and 2, so f has precisely 1 + 3 + 2 =
6 zeros.

EXAMPLE 3 Finding the zeros of a polynomial

Express f(x) = x> — 4x* + 13x? as a product of linear factors, and find the
five zeros of f(x).

SOLUTION  We begin by factoring out x*:
fx) = x*(x® — 4x + 13)

By the quadratic formula, the zeros of the polynomial x> — 4x + 13 are

—(—4) = V(=47 —4D)(13) 4 +V-36 4*6i
2(1) B 2 2

2 *3i.

Hence, by the factor theorem, x> — 4x + 13 has factors x — (2 + 3i) and
x — (2 — 3i), and we obtain the factorization

f)=x-x-x-(x—2—=3)x—2+ 3.

Since x — 0 occurs as a factor three times, the number O is a zero of multi-
plicity 3, and the five zeros of f(x) are 0, 0, 0, 2 + 3i, and 2 — 3i. V4

We next show how to use Descartes’ rule of signs to obtain information
about the zeros of a polynomial f(x) with real coefficients. In the statement of
the rule we assume that the terms of f(x) are arranged in order of decreasing
powers of x and that terms with zero coefficients are deleted. We also assume
that the constant term—that is, the term that does not contain x—1is different
from 0. We say there is a variation of sign in f(x) if two consecutive coeffi-
cients have opposite signs. To illustrate, the polynomial f(x) in the following
illustration has three variations of sign, as indicated by the braces—one varia-
tion from 2x° to —7x*, a second from —7x* to 3x2, and a third from 6x to —5.

Variations of Signin f(x) = 2x5 — 7x* + 3x> + 6x — 5

+to— —to+ no variation + to —
— — — —
B f(x) =2x> = Tx* + 3x? + 6x -5
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Descartes’ rule also refers to the variations of sign in f(—x). Using the
previous illustration, note that

f(=x) = 2(=x)® = 7(—x)* + 3(=x)* + 6(—x) — 5
= —2x5 — 7x* + 3x2 — 6x — 5.

Hence, as indicated in the next illustration, there are two variations of sign in
f(—x)—one from —7x* to 3x? and a second from 3x? to —6x.

Variations of Sign in f(—x) if f(x) = 2x5 — 7x* + 3x> + 6x — 5

no variation —to+ +to— no variation
B f(—x) = —-2x° — Ix* 4+ 3x* - 6x -5

We may state Descartes’ rule as follows.

Descartes’ Rule of Signs

Let f(x) be a polynomial with real coefficients and a nonzero con-
stant term.

(1) The number of positive real zeros of f(x) either is equal to the number
of variations of sign in f(x) or is less than that number by an even
integer.

(2) The number of negative real zeros of f(x) either is equal to the number
of variations of sign in f(—x) or is less than that number by an even
integer.

A proof of Descartes’ rule will not be given.

EXAMPLE 4 Using Descartes’ rule of signs

Discuss the number of possible positive and negative real solutions and imagi-
nary solutions of the equation f(x) = 0, where

fx) = 2x> — 7x* + 3x* + 6x — 5.

SOLUTION  The polynomial f(x) is the one given in the two previous illus-
trations. Since there are three variations of sign in f(x), the equation has either
three positive real solutions or one positive real solution.

Since f(—x) has two variations of sign, the equation has either two nega-
tive solutions or no negative solution. Because f(x) has degree 5, there are a
total of 5 solutions. The solutions that are not positive or negative real num-
bers are imaginary numbers. The following table summarizes the various pos-
sibilities that can occur for solutions of the equation.

(continued)
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Number of positive real solutions 3 3 1 1
Number of negative real solutions 2 0 2 0
Number of imaginary solutions 0 2 2 4
Total number of solutions 5 5 5 5 /7

Descartes’ rule stipulates that the constant term of the polynomial f(x) is
different from 0. If the constant term is 0, as in the equation

xt=3x3+2x2—5x =0,
we factor out the lowest power of x, obtaining
x(x3—=3x2+2x—5)=0.

Thus, one solution is x = 0, and we apply Descartes’ rule to the polynomial
x* — 3x* + 2x — 5 to determine the nature of the remaining three solutions.

When applying Descartes’ rule, we count roots of multiplicity & as k roots.
For example, given x> — 2x + 1 = 0, the polynomial x> — 2x + 1 has two
variations of sign, and hence the equation has either two positive real roots or
none. The factored form of the equation is (x — 1)> = 0, and hence 1 is a root
of multiplicity 2.

We next discuss the bounds for the real zeros of a polynomial f(x) that has
real coefficients. By definition, a real number b is an upper bound for the
zeros if no zero is greater than b. A real number « is a lower bound for the
zeros if no zero is less than a. Thus, if  is any real zero of f(x), thena =< r =< b;
that is, r is in the closed interval [a, b], as illustrated in Figure 2. Note that
upper and lower bounds are not unique, since any number greater than b is also
an upper bound and any number less than a is also a lower bound.

Figure 2
Any real
Zero
} } } >
a r b
Lower bound Upper bound
for real zeros for real zeros

We may use synthetic division to find upper and lower bounds for the
zeros of f(x). Recall that if we divide f(x) synthetically by x — ¢, the third row
in the division process contains the coefficients of the quotient g(x) together
with the remainder f(c). The following theorem indicates how this third row
may be used to find upper and lower bounds for the real solutions.
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Theorem on Bounds
for Real Zeros of Polynomials

Suppose that f(x) is a polynomial with real coefficients and a positive lead-
ing coefficient and that f(x) is divided synthetically by x — c.

(1) If ¢ > 0 and if all numbers in the third row of the division process are
either positive or zero, then c is an upper bound for the real zeros
of f(x).

(2) If ¢ < 0 and if the numbers in the third row of the division process are
alternately positive and negative (and a 0 in the third row is considered
to be either positive or negative), then c is a lower bound for the real
zeros of f(x).

EXAMPLE 5 Finding bounds for the solutions of an equation

Find upper and lower bounds for the real solutions of the equation f(x) = 0,
where f(x) = 2x3 + 5x2 — 8x — 7.

SOLUTION  We divide f(x) synthetically by x — 1 and x — 2.
12 5 -8 -7  2J2 5 -8 —7
2 7 -1 4 18 20
27 -1 -8 29 10 13

The third row of the synthetic division by x — 1 contains negative numbers,
and hence part (1) of the theorem on bounds for real zeros of polynomials does
not apply. However, since all numbers in the third row of the synthetic division
by x — 2 are positive, it follows from part (1) that 2 is an upper bound for the
real solutions of the equation. This fact is also evident if we express the divi-
sion by x — 2 in the division algorithm form

2x3 4+ 5x2 — 8x — 7 = (x — 2)(2x> + 9x + 10) + 13,

for if x > 2, then the right-hand side of the equation is positive (why?), and
hence f(x) is not zero.

We now find a lower bound. After some trial-and-error attempts using
x — (=1), x = (=2), and x — (—3), we see that synthetic division of f by
x — (—4) gives us

—4]2 5 -8 -7
-8 12 —16
2 -3 4 -23

Since the numbers in the third row are alternately positive and negative, it fol-
lows from part (2) of the preceding theorem that —4 is a lower bound for the
(continued)
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Figure 3 real solutions. This can also be proved by expressing the division by x + 4 in
&) the form

2x3+5x2 —8x — 7= (x+ 4)(2x> — 3x + 4) — 23,

for if x < —4, then the right-hand side of this equation is negative (why?), and
hence f(x) is not zero.
Since lower and upper bounds for the real solutions are —4 and 2, respec-

tively, it follows that all real solutions are in the closed interval [ —4, 2].
The graph of fin Figure 3 shows that the three zeros of f are in the inter-
e vals [—4, —3],[—1, 0], and [1, 2], respectively. /
X
EXAMPLE 6 Finding a polynomial from a graph
Shown in Figure 4 are all the zeros of a polynomial function f.
(a) Find a factored form for f that has minimal degree.
F(x) = 200 + 5x2 — 8x — 7 (b) Assuming the leading coefficient of fis 1, find the y-intercept.
SOLUTION
Figure 4 (a) The zero at x = —2 must have a multiplicity that is an even number, since
fdoes not change sign at x = —2. The zero at x = 1 must have an odd multi-
F@) plicity of 3 or greater, since f changes sign at x = 1 and levels off. The zero at

x = 3 is of multiplicity 1, since f changes sign and does not level off. Thus, a
factored form of fis

fx) = alx + 2)"(x — 1)"(x — 3)~

et

\ Because we desire the function having minimal degree, we let m = 2 and
n = 3, obtaining

J) = alx + 2)(x = 1)’(x = 3),
which is a sixth-degree polynomial.

(b) If the leading coefficient of fis to be 1, then, from the complete factori-
zation theorem for polynomials, we know that the value of a is 1. To find the
y-intercept, we let x = 0 and compute f(0):

f(0) = 1(0 + 20 = 1)°(0 = 3) = 1) (=1)(=3) = 12

Hence, the y-intercept is 12. 7/
4.3 Exercises
Exer. 1-6: Find a polynomial f(x) of degree 3 that has the 3 -4,3,0;, f(2 = -36
indicated zeros and satisfies the given condition.
11,23 f(=2) =80 43,720 f(=4) =16

2 =5,2,4;  f(3) = —24 5 —2i,2i,3;  f(1) =20
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6 —3i,3i,4; f(—1) =50 Exer. 13-14: Find the polynomial function of degree 3
whose graph is shown in the figure.
7 Find a polynomial f(x) of degree 4 with leading coeffi- 13 y
cient 1 such that both —4 and 3 are zeros of multiplicity 2, A
and sketch the graph of f.
8 Find a polynomial f(x) of degree 4 with leading coeffi-
cient 1 such that both —5 and 2 are zeros of multiplicity 2, r
and sketch the graph of f.
9 Find a polynomial f(x) of degree 6 such that O and 3 are
both zeros of multiplicity 3 and f(2) = —24. Sketch the 1
graph of f.
10 Find a polynomial f(x) of degree 7 such that —2 and 2 are
both zeros of multiplicity 2, 0 is a zero of multiplicity 3, . . ) . . _
and f(—1) = 27. Sketch the graph of f. ' ' ' ' ' X
11 Find the third-degree polynomial function whose graph is T
shown in the figure.
14
AY
T T T \/ T T ')C
T (1,-3)
12 Find the fourth-degree polynomial function whose graph is
shown in the figure. T

Exer. 15-22: Find the zeros of f(x), and state the multi-
plicity of each zero.

15 f(x) = x*(Bx + 2)(2x — 5)}

=L4

16 f(x) = x(x + 1)*Bx — 7)*
17 f(x) = 4x° + 12x* + 9x°

18 f(x) = (4x* — 5)*



240 CHAPTER 4 POLYNOMIAL AND RATIONAL FUNCTIONS

19 flx) = (x* + x — 12)3(x*> — 9)?

20 f(x) = (6x* + Tx — 5)*(dx? — 1)?

21 f(x) = x* + 7x* — 144

22 f(x) = x* + 21x* — 100

Exer. 23—-26: Show that the number is a zero of f(x) of the

given multiplicity, and express f(x) as a product of linear
factors.

23 f(x) = x* 4+ 7x3 + 13x* — 3x — 18; —3 (multiplicity 2)
24 f(x) = x* — 9x® + 22x2 — 32; 4 (multiplicity 2)

25 f(x) = x® — 4x° + 5x* — 5x2 + 4x — 1;
1 (multiplicity 5)

26 f(x) = x>+ x* —6x° — 14x* — 1lx — 3;
—1 (multiplicity 4)

Exer. 27-34: Use Descartes’ rule of signs to determine the
number of possible positive, negative, and nonreal complex
solutions of the equation.

27 4 —6x* +x—3=0

285x* —6x—4=0

29 4+ 2x*+1=0

30303 —4x>+3x+7=0

31 3x*+ 2 —4x+2=0

2 =+ xrP=3x+4=0
3B+t +3 -4 +2=0

346 2x0 +5x° + 2x2 = 3x +4 =0

Exer. 35-40: Applying the theorem on bounds for real zeros
of polynomials, determine the smallest and largest integers

that are upper and lower bounds, respectively, for the real
solutions of the equation.

35 X —4x?=5x+7=0

36 233 —5x>+4x —8=0

37 =X =2 +3x+6=0
38 2x* =9 —8x—10=0
39 2x° = 13x3+2x—5=0

403x° +2x* —xP—8%*—-7=0

Exer. 41-42: Find a factored form for a polynomial func-
tion f that has a minimal degree. Assume that the intercept
values are integers.

4l A f(x)

42 A f(x)

Exer. 43-44: (a) Find a factored form for a polynomial
function f that has minimal degree. Assume that the inter-
cept values are integers. (b) If the leading coefficient of f is
a, find the y-intercept.

43 a=1

A fx)
150+




4ha=—1

Exer. 45-48: Is there a polynomial of the
whose graph contains the indicated points?

45 n =4

(=2,0), (0, —24),(1,0),(3,0), (2,0), (-1, =52)

46 n=5;
(0,0), (—3,0), (—1,0),(2,0), (3,0), (-2,

4.4
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47 n =3,
(1.1, —49.815), (2, 0), (3.5, 25.245), (5.2, 0),
(6.4, —29.304), (10.1, 0)

48 n =4,
(1.25,0), (2, 0), (2.5, 56.25), (3, 128.625), (6.5, 0),
(9, —307.75), (10, 0)

49 Using limited data A scientist has limited data on the temp-
erature 7 (in °C) during a 24-hour period. If 7 denotes time
in hours and # = 0 corresponds to midnight, find the fourth-
degree polynomial that fits the information in the follow-
ing table.

t (hours) 0 5 12 19 24
T (°C) 00 10 0 O

given degree n

50 Lagrange interpolation polynomial A polynomial f(x) of
degree 3 with zeros at ¢, ¢,, and ¢; and with f(c) = 1 for
¢, < ¢ < ¢ is a third-degree Lagrange interpolation poly-
nomial. Find an explicit formula for f(x) in terms of ¢, ¢,

5), (1,2) c;, and c.

Example 3 of the preceding section illustrates an important fact about polyno-
mials with real coefficients: The two complex zeros 2 + 3i and 2 — 3i of
x° — 4x* 4+ 13x3 are conjugates of each other. The relationship is not acci-
dental, since the following general result is true.

Theorem on Conjugate
Pair Zeros of a Polynomial

If a polynomial f(x) of degree n > 1 has real coefficients and if z = a + bi
with b # 0 is a complex zero of f(x), then the conjugate z = a — bi is also
a zero of f(x).

A proof is left as a discussion exercise at the end of the chapter.

EXAMPLE 1 Finding a polynomial with prescribed zeros

Find a polynomial f(x) of degree 4 that has real coefficients and zeros 2 + i
and —3i.

SOLUTION By the theorem on conjugate pair zeros of a polynomial, f(x)
must also have zeros 2 — i and 3i. Applying the factor theorem, we find that
f(x) has the following factors:

x—Q24+0), x—Q2—10), x— (=30, x—(3i)

(continued)
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Multiplying these four factors gives us
J&) =[x = 2+ Dlx = (2 = D]lx + 3i)(x — 3i)
=2 —=4x+5x>+9) ()
= x* — 4x* + 14x* — 36x + 45. 7/

Note that in (*) the symbol i does not appear. This is not a coincidence,
since if @ + bi is a zero of a polynomial with real coefficients, then a — bi is
also a zero and we can multiply the associated factors as follows:

[x — (@ + b)]lx — (@ — bi)] = x> — 2ax + @ + b’

In Example 1 we havea = 2 and b = 1,50 —2a = —4 and ¢®> + b* = 5 and
the associated quadratic factor is x> — 4x + 5. This resulting quadratic factor
will always have real coefficients, as stated in the next theorem.

Theorem on Expressing a
Polynomial as a Product of
Linear and Quadratic Factors

Every polynomial with real coefficients and positive degree n can be ex-
pressed as a product of linear and quadratic polynomials with real coeffi-
cients such that the quadratic factors are irreducible over R.

PROOF  Since f(x) has precisely n complex zeros ci, ¢,, ..., ¢,, We may write

&) =alx = c)x =) -+ (x = ¢,

where a is the leading coefficient of f(x). Of course, some of the zeros may be
real. In such cases we obtain the linear factors referred to in the statement of
the theorem.

If a zero ¢, is not real, then, by the theorem on conjugate pair zeros of a
polynomial, the conjugate ¢; is also a zero of f(x) and hence must be one of
the numbers ¢y, ¢,, ..., ¢,. This implies that both x — ¢, and x — ¢ appear in
the factorization of f(x). If those factors are multiplied, we obtain

(x —c)x — ) = x* — (c + c)x + ey,

which has real coefficients, since ¢, + ¢, and c,c; are real numbers. Thus, if ¢,
is a complex zero, then the product (x — ¢)(x — ¢) is a quadratic polynomial
that is irreducible over R. This completes the proof.

EXAMPLE 2 Expressinga polynomial as a product
of linear and quadratic factors
Express x° — 4x® + x? — 4 as a product of

a) linear and quadratic polynomials with real coefficients that are irreducible
over R

(b) linear polynomials
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SOLUTION

(@ x*—4x*+x>—4
= (x5 — 4x3) + (x2 — 4) group terms
= (2 —4) + 1(x2 — 4) factor out x*
=+ )2 — 4) factor out (x> — 4)

=(x+ 1> —x+ D + 2)(x — 2) factor as the sum of cubes
and the difference of squares

Using the quadratic formula, we see that the polynomial x> — x + 1 has the
complex zeros

—EDEVED—ADD 1= V3T ﬁi
2(1) 2 2 2
and hence is irreducible over R. Thus, the desired factorization is
x+ DE>—x+ Dx+ 2)x — 2).
(b) Since the polynomial x> — x + 1 in part (a) has zeros % * (\/§/2)l it
follows from the factor theorem that the polynomial has factors

X = i+£i and x — i—igi
2 2 )

Substituting in the factorization found in part (a), we obtain the following
complete factorization into linear polynomials:

(x + 1)<x—%—?i><x—%+?i>(x+2)(x—2) 7

We previously pointed out that it is generally very difficult to find the
zeros of a polynomial of high degree. If all the coefficients are integers, how-
ever, there is a method for finding the rational zeros, if they exist. The method
is a consequence of the following result.

Theorem on Rational
Zeros of a Polynomial

If the polynomial
) = ax" + a-x™ '+ -+ ax + ag
has integer coefficients and if ¢/d is a rational zero of f(x) such that ¢ and
d have no common prime factor, then
(1) the numerator ¢ of the zero is a factor of the constant term a,

(2) the denominator d of the zero is a factor of the leading coefficient a,

PROOF Assume that ¢ > 0. (The proof for ¢ < 0 is similar.) Let us show
that ¢ is a factor of a,. The case ¢ = 1 is trivial, since 1 is a factor of any
(continued)
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number. Thus, suppose ¢ # 1. In this case ¢/d # 1, for if ¢/d = 1, we ob-
tain ¢ = d, and since ¢ and d have no prime factor in common, this implies
that ¢ = d = 1, a contradiction. Hence, in the following discussion we have
c7# 1land c # d.
Since f(c/d) = 0,
n n—1

anﬁ + anfldn—l

c
T ars +a =0,

We multiply by d”" and then add —ayd" to both sides:

a,c" + a,_ ¢ ld A+ -+ aied ! = —apd”

cla,c" "+ apcd A+ -+ adY) = —ayd”

The last equation shows that c is a factor of the integer ayd”. Since ¢ and d have
no common factor, c is a factor of ay. A similar argument may be used to prove
that d is a factor of a,,. V4

As an aid in listing the possible rational zeros, remember the following
quotient:

factors of the constant term a,

Possible rational zeros = — - - —

factors of the leading coefficient a,
The theorem on rational zeros of a polynomial may be applied to equations
with rational coefficients by merely multiplying both sides of the equation by
the lcd of all the coefficients to obtain an equation with integral coefficients.

EXAMPLE 3 Showing a polynomial has no rational zeros

Show that f(x) = x* — 4x — 2 has no rational zeros.

SOLUTION  If f(x) has a rational zero ¢/d such that ¢ and d have no com-
mon prime factor, then, by the theorem on rational zeros of a polynomial, ¢ is
a factor of the constant term —2 and hence is either 2 or —2 (which we write
as =2) or *1. The denominator d is a factor of the leading coefficient 1 and
hence is *1. Thus, the only possibilities for ¢/d are

*1 +2

i_landi_l

or, equivalently, *+1 and 2.

Substituting each of these numbers for x, we obtain

f)y=-=5 f=H=1 f2)=-2 and f(-2)=-2.

Since f(=1) # 0 and f(*2) # 0, it follows that f(x) has no rational zeros.
7/
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EXAMPLE 4 Finding the rational solutions of an equation

Find all rational solutions of the equation
3x* + 14x* + 14x* — 8x — 8 = 0.

SOLUTION  The problem is equivalent to finding the rational zeros of the
polynomial on the left-hand side of the equation. If ¢/d is a rational zero and
¢ and d have no common factor, then c is a factor of the constant term —8 and
d is a factor of the leading coefficient 3. All possible choices are listed in the
following table.

Choices for the numerator ¢ *1, £2, +4, =8
Choices for the denominator d *1, 3
Choices for c/d *1, 2, =4, *8, t%, i%, i%, i§

We can reduce the number of choices by finding upper and lower bounds for
the real solutions; however, we shall not do so here. It is necessary to deter-
mine which of the choices for ¢/d, if any, are zeros. We see by substitution that
neither 1 nor —1 is a solution. If we divide synthetically by x + 2, we obtain

ﬂ 3 14 14 -8 -8

-6 —16 4 8

3 8§ -2 —4 0

This result shows that —2 is a zero. Moreover, the synthetic division provides
the coefficients of the quotient in the division of the polynomial by x + 2.
Hence, we have the following factorization of the given polynomial:

(x +2)(3x3 + 82— 2x — 4)

The remaining solutions of the equation must be zeros of the second factor, so
we use that polynomial to check for solutions. Do not use the polynomial in
the original equation. (Note that igs are no longer candidates, since the nu-
merator must be a factor of 4.) Again proceeding by trial and error, we ulti-
mately find that synthetic division by x + % gives us the following result:

-33 8 -2 —4
—2 -4 4
36 —6 0

Therefore, —% is also a zero.
Using the coefficients of the quotient, we know that the remaining zeros
are solutions of the equation 3x? + 6x — 6 = 0. Dividing both sides by 3
(continued)
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Figure 1

gives us the equivalent equation x*> + 2x — 2 = 0. By the quadratic formula,
this equation has solutions

2 V2 - 4D(=2) _ 2= V12 _-2%2V3

2(1) 2 2

=—1+V3.

Hence, the given polynomial has two rational roots, —2 and —32, and two irra-
tional roots, —1 + V3 = 0.732 and —1 — V3 = —2.732. V4

EXAMPLE 5 Finding the radius of a grain silo

A grain silo has the shape of a right circular cylinder with a hemisphere at-
tached to the top. If the total height of the structure is 30 feet, find the radius
of the cylinder that results in a total volume of 10087 ft’.

SOLUTION  Let x denote the radius of the cylinder as shown in Figure 1.
The volume of the cylinder is 7r*h = mx*(30 — x), and the volume of the
hemisphere is %77}’3 = %wxﬂ so we solve for x as follows:

mx2(30 — x) + %Wx3 = 10087 total volume is 10087
3x%(30 — x) + 2x* = 3024 multiply by £l
T

90x? — x3 = 3024 simplify
x3—=90x2 + 3024 = 0 equivalent equation
Since the leading coefficient of the polynomial on the left-hand side of the last
equation is 1, any rational root has the form ¢/1 = ¢, where c¢ is a factor of

3024. If we factor 3024 into primes, we find that 3024 = 2* - 3* - 7. It follows
that some of the positive factors of 3024 are

I, 2, 3, 4 6, 7, 8 9, 12,

To help us decide which of these numbers to test first, let us make a rough es-
timate of the radius by assuming that the silo has the shape of a right circular
cylinder of height 30 feet. In that case, the volume would be 7r*h = 30772
Since this volume should be close to 10087, we see that

30r% = 1008, or r? = 1008/30 = 33.6.
This suggests that we use 6 in our first synthetic division, as follows:
6/1 —90 0 3024

6 —504 —3024
1 —84 —504 0

Thus, 6 is a solution of the equation x* — 90x* + 3024 = 0.

The remaining two solutions of the equation can be found by solving the
depressed equation x> — 84x — 504 = 0. These zeros are approximately —5.62
and 89.62—neither of which satisfies the conditions of the problem. Hence,
the desired radius is 6 feet. /
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4.4 FExercises

Exer. 1-10: A polynomial f(x) with real coefficients and Exer. 25-26: Find a factored form with integer coeffi-
leading coefficient 1 has the given zero(s) and degree. Ex- cients of the polynomial f shown in the figure.
press f(x) as a product of linear and quadratic polynomials 25 f(x) = 65 — 23x% + 24x® + 22 — 120 + 4
with real coefficients that are irreducible over R. ®
X

13+ 2 degree 2 4

2 —4 + 3i; degree 2 4

32, -2 -5 degree 3

4 =3,1—=17i degree 3 1 *

5-1,0,3 + i degree 4
60,2 —2—1 degree 4
74430, =2+ degree4 26 f(x) = —6x° + 5x* + 14x — 8x? — 8x + 3
8 3+ 5i,—1 —i; degree4 S
90,—-2i,1—1i degree 5
10 0,3i,4 + i degree 5

Exer. 11-14: Show that the equation has no rational root. 1
11 3+3x>—4x+6=0

=

123 —4x2+7x+5=0

13 x° =33 +4x>+x—-2=0

YU 25 +33+7=0 27 Does there exist a polynomial of' degref: 3 with real coeffi-
cients that has zeros 1, —1, and i ? Justify your answer.

Exer. 15-24: Find all soluti f th tion.
Xer. HIEC a5 SCULORS OF 1ae cuation 28 The polynomial f(x) = x* — ix? + 2ix + 2 has the com-
150 —x>=10x—8=0 plex number i as a zero; however, the conjugate —i of i is
16 2 4 2% — ldx — 24 = 0 notfizero.Why doesn’t this result gontradict the theorem on
conjugate pair zeros of a polynomial?

3 _ 2 =
17 2x 3x 17x+30=0 29 If nis an odd positive integer, prove that a polynomial of de-

18 123 + 82 —=3x—2=0 gree n with real coefficients has at least one real zero.
19 ¥ 4+353—-30x2—6x + 56 =0 30 If a polynomial of the form

n n—1 e
20 3x% — 10x* — 6x° + 24x2 + 1lx — 6 = 0 XE X ax o,

21 645 + 195 + 1% — 6x2 = 0 w.here elzach ay is ag integer, has a rational root r, show that
ris an integer and is a factor of aj.
4 3 _ 2 _ —
22 6x7 4 Sx 1765 = 6x =0 31 Constructing a box From a rectangular piece of cardboard
+18x2 +45x+27 =0 having dimensions 20 inches X 30 inches, an open box is to
be made by removing squares of area x> from each corner

24 35 = x>+ 1lx =20 =0 and turning up the sides. (See Exercise 41 of Section 4.1.)

W

23 8x
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(a) Show that there are two boxes that have a volume of Exercise 35
1000 in®.

(b) Which box has the smaller surface area?
32 Constructing a crate The frame for a shipping crate is to be 6'
constructed from 24 feet of 2 X 2 lumber. Assuming the
crate is to have square ends of length x feet, determine the
value(s) of x that result(s) in a volume of 4 ft>. (See Exercise
42 of Section 4.1.)

33 A right triangle has area 30 ft> and a hypotenuse that is
1 foot longer than one of its sides.

(a) If x denotes the length of this side, then show that
2x% + x* — 3600 = 0.

36 Designing atent A canvas camping tent is to be constructed
in the shape of a pyramid with a square base. An 8-foot pole
will form the center support, as illustrated in the figure. Find
the length x of a side of the base so that the total amount of
canvas needed for the sides and bottom is 384 ft.

(b) Show that there is a positive root of the equation in
part (a) and that this root is less than 13.

(c) Find the lengths of the sides of the triangle.

34 Constructing a storage tank A storage tank for propane gas Exercise 36
is to be constructed in the shape of a right circular cylinder of
altitude 10 feet with a hemisphere attached to each end. De-
termine the radius x so that the resulting volume is 27 ft>.
(See Example 8 of Section 3.4.)

35 Constructing a storage shelter A storage shelter is to be
constructed in the shape of a cube with a triangular prism
forming the roof (see the figure). The length x of a side of
the cube is yet to be determined.

(a) If the total height of the structure is 6 feet, show that its
volume V is given by V = x* + %x2(6 - X).

(b) Determine x so that the volume is 80 ft’.

4. 5 A function f'is a rational function if

W
h(x)’

Rational Functions )

where g(x) and h(x) are polynomials. The domain of f consists of all real num-
bers except the zeros of the denominator A(x).
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Rational Functions and Their Domains

1
B f(x) = 5 domain: all x except x = 2
Y —
S5x .
B fx) = 5 domain: all x except x = *= 3
¥ —
x> —8 .
B fx) = . domain: all real numbers x
x>+ 4

Previously we simplified rational expressions as follows:

if x # 2
P4 +De—2 xt2 oy
x—2 x—2 1 *
x> —4 ) )
If we let f(x) = 5 and g(x) = x + 2, then the domain of fis all x except
¥ —

x = 2 and the domain of g is all real numbers. These domains and the above
simplification suggest that the graphs of fand g are the same except for x = 2.

What happens to the graph of fat x = 2? There is a hole in the graph—that is,
— x4 a single point is missing. To find the y-value of the hole, we can substitute 2
forx % 2 for x in the reduced function, which is simply g(2) = 4. A graph of fis shown
in Figure 1.

We now turn our attention to rational functions that do not have a com-
mon factor in the numerator and the denominator.

When sketching the graph of a rational function f, it is important to an-
swer the following two questions.

Question 1 What can be said of the function values f(x) when x is close

to (but not equal to) a zero of the denominator?

Question 2 What can be said of the function values f(x) when x is large

positive or when x is large negative?

As we shall see, if a is a zero of the denominator, one of several situations
often occurs. These are shown in Figure 2, where we have used notations from
the following chart.

Notation Terminology
xX—a" x approaches a from the left (through values less than a).
x—a" x approaches a from the right (through values greater than a).
flx) > f(x) increases without bound (can be made as large positive as desired).
flx)— —c0 f(x) decreases without bound (can be made as large negative as desired).
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Figure 2
flx)>was x—a” flx) > casx—a* fx) > —wasx—a” flx) > —wasx—a*
AY AY AY AY
lx=a x=a|
I

| | | |

I I | I

| v =r | |

y=f(x

a a N IV
= f(x I X I X
y=fx ! ! V=) | |

> ; > ! Ly =10

a X a, x | |

| | 'x=a x=a)

The symbols o (read “infinity”’) and —o (read “minus infinity”’) do not
represent real numbers; they simply specify certain types of behavior of func-
tions and variables.

The dashed line x = a in Figure 2 is called a vertical asymptote, as in the
following definition.

Definition of
Vertical Asymptote

The line x = a is a vertical asymptote for the graph of a function f'if
f@) =  or  flx) > -

as x approaches a from either the left or the right.

Thus, the answer to Question 1 is that if @ is a zero of the denominator of
a rational function f, then the graph of f may have a vertical asymptote x = a.
There are rational functions where this is not the case (as in Figure 1 of this
section). If the numerator and denominator have no common factor, then f
must have a vertical asymptote x = a.

Let us next consider Question 2. For x large positive or large negative, the
graph of a rational function may look like one of those in Figure 3, where the
notation

fx) >c as x— o

is read “f(x) approaches ¢ as x increases without bound” or “f(x) approaches
¢ as x approaches infinity,” and the notation

fx) >c as x— —

is read “f(x) approaches c as x decreases without bound.”
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Figure 3 flx) >casx— flx) > casx— —x
AY AY AY AY
y=f( -
_/ y==«¢
y=cCcr-———--—===== y=c =L T =====—-—--—--1f-
T 7= =70
4 x x x x
— —

We call the dashed line in Figure 3 a horizontal asymptote, as in the next
definition.

Definition of
Horizontal Asymptote

The line y = c is a horizontal asymptote for the graph of a function fif

fx) >c as x—o© oras x— —oo,

Thus, the answer to Question 2 is that f(x) may be very close to some
number ¢ when x is large positive or large negative; that is, the graph of f may
have a horizontal asymptote y = c. There are rational functions where this is
not the case (as in Examples 2(c) and 9).

Note that, as in the second and fourth sketches in Figure 3, the graph of f
may cross a horizontal asymptote.

In the next example we find the asymptotes for the graph of a simple ra-
tional function.

EXAMPLE 1 Sketching the graph of a rational function

Sketch the graph of fif
1
fw=——.
SOLUTION  Letus begin by considering Question 1, stated at the beginning

of this section. The denominator x — 2 is zero at x = 2. If x is close to 2 and
x > 2, then f(x) is large positive, as indicated in the following table.

x 2.1 2.01 2.001 2.0001 2.00001

10 100 1000 10,000 100,000

(continued)
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Figure 4

Since we can make 1/(x — 2) as large as desired by taking x close to 2
(and x > 2), we see that

flx) >~ as x—2%.
If f(x) is close to 2 and x < 2, then f(x) is large negative; for example,
f(1.9999) = —10,000 and f(1.99999) = —100,000. Thus,
flx) > —o as x—27.

The line x = 2 is a vertical asymptote for the graph of f, as illustrated in
Figure 4.

We next consider Question 2. The following table lists some approximate
values for f(x) when x is large and positive.

x 100 1000 10,000 100,000 1,000,000

x_z(approx.) 0.01 0.001 0.0001 0.00001 0.000001

We may describe this behavior of f(x) by writing
fx) >0 as x—co.

Similarly, f(x) is close to 0 when x is large negative; for example,
f(=100,000) = —0.000 01. Thus,

fx) >0 as x— —oo

The line y = 0 (the x-axis) is a horizontal asymptote, as shown in Figure 4.
Plotting the points (1, —1) and (3, 1) helps give us a rough sketch of the
graph. /

The function considered in Example 1, f(x) = 1/(x — 2), closely re-
sembles one of the simplest rational functions, the reciprocal function. The
reciprocal function has equation f(x) = 1/x, vertical asymptote x = 0 (the
y-axis), and horizontal asymptote y = 0 (the x-axis). The graph of the recip-
rocal function (shown in Appendix I) is the graph of a hyperbola (discussed
later in the text). Note that we can obtain the graph of y = 1/(x — 2) by shift-
ing the graph of y = 1/x to the right 2 units.

The following theorem is useful for finding the horizontal asymptote for
the graph of a rational function.
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Theorem on
Horizontal Asymptotes

ax" + a,_x" '+ -+ ax + a
Let f(x) = — p .
bkx aF bk_lx G oo p b].x aF b()

where a, # 0 and b, # 0.

(1) If n < k, then the x-axis (the line y = 0) is the horizontal asymptote
for the graph of f.

(2) If n = k, then the line y = a,/b; (the ratio of leading coefficients) is
the horizontal asymptote for the graph of f.

(3) If n > k, the graph of f has no horizontal asymptote. Instead, either
fx) = or f(x) —> —o% as x —> % or as x — — %,

Proofs for each part of this theorem may be patterned after the solutions
in the next example. Concerning part (3), if ¢(x) is the quotient obtained by di-
viding the numerator by the denominator, then f(x)— o if g(x) —  or
fx) = —eif glx) — —ce.

EXAMPLE 2 Finding horizontal asymptotes

Find the horizontal asymptote for the graph of f, if it exists.

3x — 1 5x2 4+ 1
(@) f&x) = Ep— (b) flx) = 2
2x* —3x*+ 5
x2+1

(0 fx) =

SOLUTION

(a) The degree of the numerator, 1, is less than the degree of the denomina-
tor, 2, so, by part (1) of the theorem on horizontal asymptotes, the x-axis is a
horizontal asymptote. To verify this directly, we divide the numerator and de-
nominator of the quotient by x? (since 2 is the highest power on x in the de-
nominator), obtaining

3x —1 i_l
x? x  x?
= = fi # 0.
fx) Ja— l_i_g or x
x? x  x?

If x is large positive or large negative, then 3/x, 1/x2, 1/x, and 6/x? are close
to 0, and hence
0—-0 0
~— ——=—=0.
=== 0"1
Thus,
flx) >0 as x—>o oras x— —®,

Since f(x) is the y-coordinate of a point on the graph, the last statement means
that the line y = 0O (that is, the x-axis) is a horizontal asymptote.
(continued)
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(b) If f(x) = (5x> + 1)/(3x* — 4), then the numerator and denominator have
the same degree, 2, and the leading coefficients are 5 and 3, respectively.
Hence, by part (2) of the theorem on horizontal asymptotes, the line y = % is
the horizontal asymptote. We could also show that y = % is the horizontal
asymptote by dividing the numerator and denominator of f(x) by x?% as in
part (a).

(c) The degree of the numerator, 4, is greater than the degree of the denomi-
nator, 2, so, by part (3) of the theorem on horizontal asymptotes, the graph has
no horizontal asymptote. If we use long division, we obtain

10
x2+ 1

flx) =2x> =5+

As either x — © or x — —oo, the quotient 2x> — 5 increases without bound
and 10/(x> + 1) — 0. Hence, f(x) — % as x — % or as x —> —, V4

We next list some guidelines for sketching the graph of a rational func-
tion. Their use will be illustrated in Examples 3, 6, and 7.

Guidelines for Sketching the
Graph of a Rational Function

Assume that f(x) = %, where g(x) and A(x) are polynomials that have no
X

common factor.

1 Find the x-intercepts—that is, the real zeros of the numerator g(x)—and
plot the corresponding points on the x-axis.

2 Find the real zeros of the denominator /(x). For each real zero a, sketch
the vertical asymptote x = a with dashes.

3 Find the y-intercept f(0), if it exists, and plot the point (0, f(0)) on the
y-axis.

4 Apply the theorem on horizontal asymptotes. If there is a horizontal
asymptote y = ¢, sketch it with dashes.

5 If there is a horizontal asymptote y = ¢, determine whether it intersects
the graph. The x-coordinates of the points of intersection are the solu-
tions of the equation f(x) = c. Plot these points, if they exist.

6 Sketch the graph of fin each of the regions in the xy-plane determined
by the vertical asymptotes in guideline 2. If necessary, use the sign of
specific function values to tell whether the graph is above or below the
x-axis or the horizontal asymptote. Use guideline 5 to decide whether the
graph approaches the horizontal asymptote from above or below.

In the following examples our main objective is to determine the general
shape of the graph, paying particular attention to how the graph approaches the
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asymptotes. We will plot only a few points, such as those corresponding to the
x-intercepts and y-intercept or the intersection of the graph with a horizontal
asymptote.

EXAMPLE 3 Sketching the graph of a rational function
Sketch the graph of fif

o) = 3x + 4
X

2x —5°

SOLUTION  We follow the guidelines.

Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
. . 4 . 4 .
ing 3x + 4 = 0 gives us x = —3, and we plot the point (—g, O) on the x-axis,
as shown in Figure 5.

Guideline 2 The denominator has zero %, so the line x = % is a vertical as-
ymptote. We sketch this line with dashes, as in Figure 5.

Guideline 3 The y-intercept is f(0) = —%‘, and we plot the point (O, —g) in
Figure 5.

Guideline 4 The numerator and denominator of f(x) have the same degree, 1.
The leading coefficients are 3 and 2, so by part (2) of the theorem on horizon-
tal asymptotes, the line y = % is a horizontal asymptote. We sketch the line
with dashes in Figure 5.

Guideline 5 The x-coordinates of the points where the graph intersects the
horizontal asymptote y = % are solutions of the equation f(x) = % We solve
this equation as follows:

x+4_3 ot f(x)=£

2x =5 2 ' 2

2(3x + 4) = 3(2x — 5) multiply by 2(2x — 5)
6x + 8 =6x — 15 multiply

8§ =—-15 subtract 6x

Since 8 # —15 for any value of x, this result indicates that the graph of f does
not intersect the horizontal asymptote. As an aid in sketching, we can now
think of the horizontal asymptote as a boundary that cannot be crossed.

Guideline 6 The vertical asymptote in Figure 5 divides the xy-plane into two
regions:

R,: the region to the left of x = %

R,: the region to the right of x = %

For R,, we have the two points (—%, 0) and (O, —g) that the graph of f must
pass through, as well as the two asymptotes that the graph must approach. This
portion of fis shown in Figure 6.

(continued)
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Figure 7
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For R,, the graph must again approach the two asymptotes. Since the graph
cannot cross the x-axis (there is no x-intercept in R,), it must be above the hori-
zontal asymptote, as shown in Figure 6. /

EXAMPLE 4 Sketching a graph that has a hole
Sketch the graph of g if

CGxt+Hx— 1)
C2x =S5k -1)

SOLUTION  The domain of g is all real numbers except% and 1. If g is re-
duced, we obtain the function f in the previous example. The only difference
between the graphs of fand g is that g has a hole at x = 1. Since f(1) = —37,
we need only make a hole on the graph in Figure 6 to obtain the graph of g in
Figure 7.

g(x)

EXAMPLE 5 Finding an equation of a rational function
satisfying prescribed conditions

Find an equation of a rational function f that satisfies the following conditions:
x-intercept: 4, vertical asymptote: x = —2,
horizontal asymptote: y = —53, and a hole at x = 1

SOLUTION  An x-intercept of 4 implies that x — 4 must be a factor in the
numerator, and a vertical asymptote of x = —2 implies that x + 2 is a factor
in the denominator. So we can start with the form

x—4
x+2

The horizontal asymptote is y = —g3. We can multiply the numerator by —3
and the denominator by 5 to get the form

—3(x — 4)
S5x+2)

(Do nor write (—3x — 4)/(5x + 2), since that would change the x-intercept
and the vertical asymptote.) Lastly, since there is a hole at x = 1, we must
have a factor of x — 1 in both the numerator and the denominator. Thus, an
equation for fis

B D) ey, = 158 12
, equiv , flx) =
S+ 2)x— 1) q ¥ 5¢2 + 5x — 10

f&) =

/



Figure 8

4.5 Rational Functions 257

EXAMPLE 6 Sketching the graph of a rational function
Sketch the graph of fif

O

2—-x—6

SOLUTION It is useful to express both numerator and denominator in fac-
tored form. Thus, we begin by writing

x—1 x—1
P—x—6 (x+2)x—-23)

fw) = -

Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
ing x — 1 = 0 gives us x = 1, and we plot the point (1, 0) on the x-axis, as
shown in Figure 8.

Guideline 2 The denominator has zeros —2 and 3. Hence, the lines x = —2
and x = 3 are vertical asymptotes; we sketch them with dashes, as in Figure 8.
Guideline 3  The y-intercept is f(0) = é, and we plot the point (O, %), shown
in Figure 8.

Guideline 4 The degree of the numerator of f(x) is less than the degree of the
denominator, so, by part (1) of the theorem on horizontal asymptotes, the
x-axis is the horizontal asymptote.

Guideline 5 The points where the graph intersects the horizontal asymptote
(the x-axis) found in guideline 4 correspond to the x-intercepts. We already
plotted the point (1, 0) in guideline 1.

Guideline 6  The vertical asymptotes in Figure 8 divide the xy-plane into three
regions:

R,: the region to the left of x = —2
R,: the region between x = —2and x = 3

R;:  the region to the right of x = 3

For R, we have x < —2. There are only two choices for the shape of the
graph of f in R;: as x — —o, the graph approaches the x-axis either from
above or from below. To determine which choice is correct, we will examine
the sign of a typical function value in R;. Choosing —10 for x, we use the fac-
tored form of f(x) to find the sign of f(—10) (this process is similar to the one
used in Section 2.7):

O _
(=)(=)
The negative value of f(—10) indicates that the graph approaches the hori-

zontal asymptote from below as x — —o. Moreover, as x — —27, the graph
(continued)

f(=10) =
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extends downward; that is, f(x)— —. A sketch of f on R, is shown in
Figure 9(a).

Figure 9
(a) (b) (c)

In R,, we have —2 < x < 3, and the graph crosses the x-axis at x = 1.
Since, for example, f(0) is positive, it follows that the graph lies above the
x-axis if —2 < x < 1. Thus, as x — —2%, the graph extends upward; that is,
f(x) — 0. Since f(2) can be shown to be negative, the graph lies below the
x-axis if 1 < x < 3. Hence, as x — 37, the graph extends downward; that is,
f(x) — —oo. A sketch of fon R, is shown in Figure 9(b).

Finally, in R;, x > 3, and the graph does not cross the x-axis. Since, for ex-
ample, f(10) can be shown to be positive, the graph lies above the x-axis. It
follows that f(x) — o as x — 3* and that the graph approaches the horizontal
asymptote from above as x — . The graph of fis sketched in Figure 9(c).

7/

EXAMPLE 7 Sketching the graph of a rational function
Sketch the graph of fif

X2
A

SOLUTION  Factoring the denominator gives us

2 2

X _ x
—x—2 (x+Dx-2)

0 = 5

We again follow the guidelines.
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Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
ing x> = 0 gives us x = 0, and we plot the point (0, 0) on the x-axis, as shown
in Figure 10.

Guideline 2 The denominator has zeros —1 and 2. Hence, the lines x = —1
and x = 2 are vertical asymptotes, and we sketch them with dashes, as in
Figure 10.

Guideline 3  The y-intercept is f(0) = 0. This gives us the same point (0, 0)
found in guideline 1.

Guideline 4 The numerator and denominator of f(x) have the same degree,
and the leading coefficients are both 1. Hence, by part (2) of the theorem on
horizontal asymptotes, the line y = % = 1 is a horizontal asymptote. We sketch
the line with dashes, as in Figure 10.

Guideline 5 The x-coordinates of the points where the graph intersects the
horizontal asymptote y = 1 are solutions of the equation f(x) = 1. We solve
this equation as follows:

xZ

— =1 let f(x) =1
2 x> S
x?=x>—x—2 multiplybyx*—x—2

x= -2 subtract x? and add x

This result indicates that the graph intersects the horizontal asymptote y = 1
only at x = —2; hence, we plot the point (=2, 1) shown in Figure 10.

Guideline 6 The vertical asymptotes in Figure 10 divide the xy-plane into
three regions:

R,: the region to the left of x = —1
R,:  the region between x = —1 and x = 2

R;:  the region to the right of x = 2

For R,, let us first consider the portion of the graph that corresponds to
—2 < x < —1. From the point (=2, 1) on the horizontal asymptote, the graph
must extend upward as x — — 1~ (it cannot extend downward, since there is
no x-intercept between x = —2 and x = —1). As x — —o, there will be a low
point on the graph between y = 0 and y = 1, and then the graph will approach
the horizontal asymptote y = 1 from below. It is difficult to see where the low
point occurs in Figure 10 because the function values are very close to one
another. Using calculus, it can be shown that the low point is (—4, %)

In R,, we have —1 < x < 2, and the graph intersects the x-axis at x = 0.
Since the function does not cross the horizontal asymptote in this region, we
know that the graph extends downward as x — —1* and as x — 27, as shown
in Figure 11(a).

(continued)
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Figure 11
(a) (b)

In R;, the graph approaches the horizontal asymptote y = 1 (from either
above or below) as x — . Furthermore, the graph must extend upward as
x — 2% because there are no x-intercepts in R;. This implies that as x — o, the
graph approaches the horizontal asymptote from above, as in Figure 11(b).

The graph of fis sketched in Figure 11(c).

In the remaining solutions we will not formally write down each
guideline.

EXAMPLE 8 Sketching the graph of a rational function
Sketch the graph of fif

2x*

X+ 1

&) =

SOLUTION  Note that since f(—x) = f(x), the function is even, and hence
the graph is symmetric with respect to the y-axis.
1Y The graph intersects the x-axis at (0, 0). Since the denominator of f(x) has
no real zero, the graph has no vertical asymptote.

The numerator and denominator of f(x) have the same degree. Since the
leading coefficients are 2 and 1, respectively, the line y = % = 2 is the hori-
zontal asymptote. The graph does not cross the horizontal asymptote y = 2,
since the equation f(x) = 2 has no real solution.

Plotting the points (1, 1) and (2, %) and making use of symmetry leads to
the sketch in Figure 12.

Figure 12

An oblique asymptote for a graph is a line y = ax + b, with a # 0, such
that the graph approaches this line as x — o or as x — —oo. (If the graph is
a line, we consider it to be its own asymptote.) If the rational function



Figure 13

Figure 14
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f(x) = g(x)/h(x) for polynomials g(x) and h(x) and if the degree of g(x) is one
greater than the degree of h(x), then the graph of f has an oblique asymptote.
To find this oblique asymptote we may use long division to express f(x) in
the form
g) r(x)
=22 = (ax + b) + —,

) ) (ax +b) + - @
where either r(x) = 0 or the degree of r(x) is less than the degree of h(x). From
part (1) of the theorem on horizontal asymptotes,

r(x)

———>(0 as x—© oras x— —®,

h(x)
Consequently, f(x) approaches the line y = ax + b as x increases or decreases
without bound; that is, y = ax + b is an oblique asymptote.
EXAMPLE 9 Finding an oblique asymptote
Find all the asymptotes and sketch the graph of fif

x2—-9

2x — 4°

flx) =

SOLUTION A vertical asymptote occurs if 2x — 4 = 0 (that is, if x = 2).

The degree of the numerator of f(x) is greater than the degree of the de-
nominator. Hence, by part (3) of the theorem on horizontal asymptotes, there
is no horizontal asymptote; but since the degree of the numerator, 2, is one
greater than the degree of the denominator, 1, the graph has an oblique
asymptote. By long division we obtain

%x + 1
2x — 4|x? -9
x2 — 2x (%x)(Zx - 4)
2x — 9  subtract
2e-4 (Hox—4)
— 5  subtract
x*=9

1
Theref =|—x+1] -
erefore, Y < > X )

2x — 4°

As we indicated in the discussion preceding this example, the line
y = %x + 1 is an oblique asymptote. This line and the vertical asymptote
x = 2 are sketched with dashes in Figure 13.

The x-intercepts of the graph are the solutions of x> — 9 = 0 and hence
are 3 and —3. The y-intercept is f(0) = %. The corresponding points are plot-
ted in Figure 13. We may now show that the graph has the shape indicated in
Figure 14. /
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In Example 9, the graph of f approaches the line y = %x + 1 asymptoti-
cally as x — o or as x — —o. Graphs of rational functions may approach dif-
ferent types of curves asymptotically. For example, if

4

Xt —x 1

flx) =

X X

then for large values of | x|, 1/x = 0 and hence f(x) = x2. Thus, the graph of
f approaches the parabola y = x? asymptotically as x — % or as x — —o°, In
general, if f(x) = g(x)/h(x) and if g(x) is the quotient obtained by dividing
g(x) by h(x), then the graph of f approaches the graph of y = g(x) asymptoti-
cally as x — o or as x — —o=,

Graphs of rational functions may become increasingly complicated as the
degrees of the polynomials in the numerator and denominator increase. Tech-
niques developed in calculus are very helpful in achieving a more thorough
treatment of such graphs.

Formulas that represent physical quantities may determine rational func-
tions. For example, consider Ohm’s law in electrical theory, which states that
I = V/R, where R is the resistance (in ohms) of a conductor, V is the potential
difference (in volts) across the conductor, and 7 is the current (in amperes) that
flows through the conductor. The resistance of certain alloys approaches zero
as the temperature approaches absolute zero (approximately —273°C), and the
alloy becomes a superconductor of electricity. If the voltage V is fixed, then,
for such a superconductor,

[=——x as R—0%
R

that is, as R approaches 0, the current increases without bound. Superconduc-
tors allow very large currents to be used in generating plants and motors. They
also have applications in experimental high-speed ground transportation,
where the strong magnetic fields produced by superconducting magnets en-
able trains to levitate so that there is essentially no friction between the wheels
and the track. Perhaps the most important use for superconductors is in circuits
for computers, because such circuits produce very little heat.

4.5 Exercises

Exer. 1-2: (a) Sketch the graph of f. (b) Find the domain D Exer. 3-4: Identify any vertical asymptotes, horizontal
and range R of f. (¢c) Find the intervals on which f is in- asymptotes, and holes.
creasing or is decreasing.

—2(x + 5)(x — 6) 2x + H(x + 2)

4 1 P A S =
1) = 2 f) == S vy S L T v



Exer. 5-6: All asymptotes, intercepts, and holes of a rational
function f are labeled in the figure. Sketch a graph of f and
find a formula for f.

Exer. 7-32: Sketch the graph of f.

3 -3
7f(x)=m Sf(x)Zm
—3x 4x
90 = 00 =5"3
4x — 1 5x+3
11f(x)22i+3 12f(’“):3iJ—r7
(4 — Dx—2) _Bx+3)x+ 1)
BIO=iaye-2 “Y et
-2 1
e SR N R
—4 2
17 f(x) :m 18 f(x) :m
-3 4
19 1) = 5 20 ) = S
2x*—2x — 4 —3x2—3x+6
SR A A
—x*—x+6 x2—3x—4
Bt *W o
3x2 —3x — 36 2x* + 4x — 48
B0 ="5r 26 /0 =55 10
2% + 10x — 12 27+ 8x + 6
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x—1 x2—=2x+1
29 f(x) = 3 Ax 30 f(x) :ﬁ

—3x? x> —4
IO =57 210 =57

Exer. 33-36: Find the oblique asymptote, and sketch the
graph of f.

x2—x—6 2x2—x—3

3B f) =" 3% fl) = "=
o = jo =25
8 — x? ¥ +1
B ) =~ 3 0 = 5

Exer. 37-44: Simplify f(x), and sketch the graph of f.

2x*+x—6 x2—x—6
37 = — 38 - = -
&) x2+3x+2 &) x2—=2x—3
x—1 x+2
39 /() =T 40 f0) = 5
41f()_x2+x—2
* x+ 2
Do 2x? —4x + 8
42f(x)=x X X
x—2
x2+4x + 4
43 flo) =
f&x) x24+3x+2
2+ x)(2x — 1
wh = DD

x2=3x+2)2x— 1)

Exer. 45-48: Find an equation of a rational function f that
satisfies the given conditions.

45 vertical asymptote: x = 4
horizontal asymptote: y = —1
x-intercept: 3

46 vertical asymptotes: x = —2,x = 0
horizontal asymptote: y = 0
x-intercept: 2; f(3) = 1

47 vertical asymptotes: x = —3,x = 1
horizontal asymptote: y = 0
x-intercept: —1; f(0) = —2
hole at x = 2
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48 vertical asymptotes: x = —1,x = 3

horizontal asymptote: y = 2
x-intercepts: —2, 1; hole at x = 0

49 A container for radioactive waste A cylindrical container

for storing radioactive waste is to be constructed from lead.
This container must be 6 inches thick. The volume of the
outside cylinder shown in the figure is to be 167 ft*.

(a) Express the height & of the inside cylinder as a function
of the inside radius r.

(b) Show that the inside volume V(r) is given by

o P
V(r) = ar |:(r+0.5)2 1].

(c) What values of  must be excluded in part (b)?

Exercise 49 6"
—_— <
[
roo
< |
|
I —_——
- I,, | 6"
[ |
| e Y

50 Drug dosage Young’s rule is a formula that is used to mod-

51

ify adult drug dosage levels for young children. If @ denotes
the adult dosage (in milligrams) and if 7 is the age of the
child (in years), then the child’s dose y is given by the
equation y = fa/(¢t + 12). Sketch the graph of this equa-
tion for > 0 and a = 100.

Salt concentration Salt water of concentration 0.1 pound
of salt per gallon flows into a large tank that initially con-
tains 50 gallons of pure water.

(a) If the flow rate of salt water into the tank is 5 gal/min,
find the volume V() of water and the amount A(f) of
salt in the tank after # minutes.

52

53

54

(b) Find a formula for the salt concentration ¢(¢) (in 1b/gal)
after r minutes.

(c) Discuss the variation of ¢(r) as t — .

Amount of rainfall The total number of inches R(z) of rain
during a storm of length 7 hours can be approximated by

at

R(t) =
(@) t+b’

where a and b are positive constants that depend on the geo-
graphical locale.

(a) Discuss the variation of R(z) as t — .

(b) The intensity / of the rainfall (in in./hr) is defined by
I =R(@)/t.If a = 2 and b = 8, sketch the graph of R
and / on the same coordinate plane for # > 0.

Salmon propagation For a particular salmon population,
the relationship between the number S of spawners and the
number R of offspring that survive to maturity is given by
the formula

45008

R=—"""—.
S + 500

(a) Under what conditions is R > S?

(b) Find the number of spawners that would yield 90% of
the greatest possible number of offspring that survive
to maturity.

(c) Work part (b) with 80% replacing 90%.

(d) Compare the results for S and R (in terms of percentage
increases) from parts (b) and (c).

Population density The population density D (in
people/mi?) in a large city is related to the distance x
(in miles) from the center of the city by

~5000x
x>+ 36"

(a) What happens to the density as the distance from the
center of the city changes from 20 miles to 25 miles?

(b) What eventually happens to the density?

(c) In what areas of the city does the population density ex-
ceed 400 people/mi>?



55 Let f(x) be the polynomial
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57 Grade point average (GPA)

G+ 3)(x + 2)(x + DE&E — D — 2)(x — 3). (a) A student has finished 48 credit hours with a GPA of

2.75. How many additional credit hours y at 4.0 will

(a) Describe the graph of g(x) = f(x)/f(x). raise the student’s GPA to some desired value x? (De-

termine y as a function of x.)

(b) Describe the graph of h(x) = g(x)p(x), where p(x) is a

polynomial function.

56 Refer to Exercise 55.

(a) Describe the graph of y = f(x).

(b) Describe the graph of k(x) = 1/f(x).

4.6

Variation

(b) Create a table of values for x and y, starting with
x = 2.8 and using increments of 0.2.

(c) Graph the function in part (a).
(d) What is the vertical asymptote of the graph in part (c)?

(e) Explain the practical significance of the value x = 4.

In some scientific investigations, the terminology of variation or proportion is
used to describe relationships between variable quantities. In the following
chart, k is a nonzero real number called a constant of variation or a constant
of proportionality.

Terminology General formula Illustration
y varies directly as x, or y = kx C = 27, where C is the
y is directly proportional to x circumference of a circle,

ris the radius, and k = 27

y varies inversely as x, or y =
y is inversely proportional to x

10
I = T where [ is the

= |

current in an electrical
circuit, R is the resistance,
and k = 110 is the voltage

The variable x in the chart can also represent a power. For example, the
formula A = 7rr? states that the area A of a circle varies directly as the square
of the radius 5 where 7r is the constant of variation. Similarly, the formula
V= %77r3 states that the volume V of a sphere is directly proportional to the
cube of the radius. In this case the constant of proportionality is 3.

In general, graphs of variables related by direct variation resemble graphs
of power functions of the form y = x" with n > 0 (suchasy = Vxory = x2
for nonnegative x-values, as shown in Figure 1). With direct variation, as one
variable increases, so does the other variable. An example of two quantities
that are directly related is the number of miles run and the number of calories
burned.
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Figure 1

As x increases, y increases,
or as x decreases, y decreases
AY

2

y=x5,x=0

Figure 2
As x increases, y decreases,
or as x decreases, y increases

AY

Graphs of variables related by inverse variation resemble graphs of power
functions of the form y = x" with n < 0 (suchas y = 1/Vx or y = 1/x2 for
positive x-values, as shown in Figure 2). In this case, as one variable increases,
the other variable decreases. An example of two quantities that are inversely
related is the number of inches of rainfall and the number of grass fires.

EXAMPLE 1 Directly proportional variables

Suppose a variable ¢ is directly proportional to a variable z.

(a) If ¢ = 12 when z = 5, determine the constant of proportionality.

(b) Find the value of ¢ when z = 7 and sketch a graph of this relationship.

SOLUTION  Since ¢ is directly proportional to z,
q = kz,
where k is a constant of proportionality.
(a) Substituting ¢ = 12 and z = 5 gives us
12=k-5 or k=2

(b) Since k = 15—2, the formula ¢ = kz has the specific form

qg=735¢<
Thus, when z = 7,
g=2-7=%=168.

Figure 3 illustrates the relationship of the variables g and z—a simple lin-
ear relationship.

Figure 3
A4
16.8 +
12+
12
9=73¢2

N Y
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The following guidelines may be used to solve applied problems that in-
volve variation or proportion.

Guidelines for Solving
Variation Problems

1 Write a general formula that involves the variables and a constant of
variation (or proportion) k.

2 Find the value of k in guideline 1 by using the initial data given in the
statement of the problem.

3 Substitute the value of k found in guideline 2 into the formula of guide-
line 1, obtaining a specific formula that involves the variables.

4 Use the new data to solve the problem.

We shall follow these guidelines in the solution of the next example.

EXAMPLE 2 Pressure and volume as inversely proportional quantities

If the temperature remains constant, the pressure of an enclosed gas is in-
versely proportional to the volume. The pressure of a certain gas within a
spherical balloon of radius 9 inches is 20 1b/in? If the radius of the balloon in-
creases to 12 inches, approximate the new pressure of the gas. Sketch a graph
of the relationship between the pressure and the volume.

SOLUTION
Guideline 1  If we denote the pressure by P (in 1b/in?) and the volume by V
(in in®), then since P is inversely proportional to V,

k

P=—
v

for some constant of proportionality k.

Guideline 2 We find the constant of proportionality k in guideline 1. Since the
volume V of a sphere of radius r is V =3 mr, the initial volume of
the balloon is V = %77(9)3 = 9724 in®. This leads to the following:

k
20 = —— P =20whenV = 9727
9727

k = 20(9727) = 19,4407 solve for k

Guideline 3 Substituting k = 19,4407 into P = k/V, we find that the pres-
sure corresponding to any volume V is given by

19,4407
—

(continued)
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Guideline 4 If the new radius of the balloon is 12 inches, then
V =37(12)} = 23047 in’.

Substituting this number for V in the formula obtained in guideline 3 gives us
_19,440m 135

P=——" =" =284375.
2047 16 PP

Thus, the pressure decreases to approximately 8.4 1b/in> when the radius in-
creases to 12 inches.

Figure 4 illustrates the relationship of the variables P and V for
V>0. Since P =194407w/V and V = %wrﬂ we can show that
(P o V)(r) = 14,580/r% so we could also say that P is inversely proportional
to 3. Note that this is a graph of a simple rational function.

Figure 4
A P (Ib/in?)

20 + 19,4407

v

P =

8.4375

9727 23047 V(ind)

9 12 r(in)

/

There are other types of variation. If x, y, and z are variables and y = kxz
for some real number k, we say that y varies directly as the product of x and z
ory varies jointly as x and z. If y = k(x/z), then y varies directly as x and in-
versely as z. As a final illustration, if a variable w varies directly as the prod-
uct of x and the cube of y and inversely as the square of z, then

where k is a constant of proportionality. Graphs of equations for these types of
variation will not be considered in this text.

EXAMPLE 3 Combining several types of variation

A variable w varies directly as the product of u# and v and inversely as the
square of s.

(@) If w = 20 when u = 3, v = 5, and s = 2, find the constant of variation.
(b) Find the value of w whenu = 7,v = 4, and s = 3.
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SOLUTION A general formula for w is

uv

w=k—
§2’

where k is a constant of variation.

(a) Substituting w = 20, u = 3,v = 5, and s = 2 gives us

3-5 80 16
20 =k , or =—=—.
22 15 3
b) Since k = 1—6, the specific formula for w is
3
16 uv
w=——.
3 2

Thus, whenu = 7, v =4, and s = 3,
167 -4 448

== 166.
303 7 /

w =

In the next example we again follow the guidelines stated in this section.

EXAMPLE 4 Finding the support load of a rectangular beam

The weight that can be safely supported by a beam with a rectangular cross
section varies directly as the product of the width and square of the depth of
the cross section and inversely as the length of the beam. If a 2-inch by 4-inch
beam that is 8 feet long safely supports a load of 500 pounds, what weight can
be safely supported by a 2-inch by 8-inch beam that is 10 feet long? (Assume
that the width is the shorter dimension of the cross section.)

SOLUTION
Guideline 1 1f the width, depth, length, and weight are denoted by w, d, [, and
W, respectively, then a general formula for W is

dZ

W=k

l
where k is a constant of variation.
Guideline 2 To find the value of k in guideline 1, we see from the given data
that

2(4%)
8 9

Guideline 3 Substituting k = 125 into the formula of guideline 1 gives us the
specific formula

500 =k

or k = 125.

d2
W= 125WT.

Guideline 4 To answer the question, we substitute w = 2, d = 8, and [ = 10

into the formula found in guideline 3, obtaining
2

2
W= 125" = 1600 Ib.

7/
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4.6

Exercises

Exer. 1-12: Express the statement as a formula that in-
volves the given variables and a constant of proportion-
ality k, and then determine the value of k from the given

conditions.
1 u is directly proportional to v. If v = 30, then u = 12.
2 s varies directly as ¢. If + = 10, then s = 18.
3 rvaries directly as s and inversely as t. If s = —2 and r = 4,
thenr = 7.
4 w varies directly as z and inversely as the square root of u.

10

1

12

13

Ifz=2andu = 9, then w = 6.

y is directly proportional to the square of x and inversely pro-
portional to the cube of z. If x = 5 and z = 3, then y = 25.

q is inversely proportional to the sum of x and y. If x = 0.5
andy = 0.7, then g = 1.4.

z is directly proportional to the product of the square of x
and the cube of y. If x = 7and y = —2, then z = 16.

r is directly proportional to the product of s and v and in-
versely proportional to the cube of p. If s = 2, v = 3, and
p = 5, then r = 40.

y is directly proportional to x and inversely proportional to
the square of z. If x = 4 and z = 3, then y = 16.

y is directly proportional to x and inversely proportional to
the sum of rand s. If x = 3, r = 5,and s = 7, then y = 2.

y is directly proportional to the square root of x and in-
versely proportional to the cube of z. If x = 9 and z = 2,
theny = 5.

y is directly proportional to the square of x and inversely
proportional to the square root of z. If x = 5 and z = 16,
then y = 10.

Liquid pressure The pressure P acting at a point in a liquid
is directly proportional to the distance d from the surface of
the liquid to the point.

(a) Express P as a function of d by means of a formula that
involves a constant of proportionality .

(b) In a certain oil tank, the pressure at a depth of 2 feet is
118 Ib/ft>. Find the value of k in part (a).

(continued)

14

15

16

(c) Find the pressure at a depth of 5 feet for the oil tank
in part (b).

(d) Sketch a graph of the relationship between P and d for
d=0.

Hooke’s law Hooke’s law states that the force F required to
stretch a spring x units beyond its natural length is directly
proportional to x.

(a) Express F as a function of x by means of a formula that
involves a constant of proportionality k.

(b) A weight of 4 pounds stretches a certain spring from its
natural length of 10 inches to a length of 10.3 inches.
Find the value of & in part (a).

(c) What weight will stretch the spring in part (b) to a
length of 11.5 inches?

(d) Sketch a graph of the relationship between F and x for
x=0.

Electrical resistance The electrical resistance R of a wire
varies directly as its length / and inversely as the square of
its diameter d.

(a) Express R in terms of /, d, and a constant of variation k.

(b) A wire 100 feet long of diameter 0.01 inch has a resist-
ance of 25 ohms. Find the value of & in part (a).

(c) Sketch a graph of the relationship between R and d for
[ =100and d > 0.

(d) Find the resistance of a wire made of the same material
that has a diameter of 0.015 inch and is 50 feet long.

Intensity of illumination The intensity of illumination 1
from a source of light varies inversely as the square of the
distance d from the source.

(a) Express / in terms of d and a constant of variation k.

(b) A searchlight has an intensity of 1,000,000 candle-
power at a distance of 50 feet. Find the value of & in
part (a).

(c) Sketch a graph of the relationship between / and d for
d>0.

(d) Approximate the intensity of the searchlight in part (b)
at a distance of 1 mile.
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18

19

20

Period of a pendulum The period P of a simple pendulum—
that is, the time required for one complete oscillation—is
directly proportional to the square root of its length /.

(a) Express P in terms of / and a constant of propor-
tionality k.

(b) If a pendulum 2 feet long has a period of 1.5 seconds,
find the value of k in part (a).

(c) Find the period of a pendulum 6 feet long.

Dimensions of a human limb A circular cylinder is some-
times used in physiology as a simple representation of a
human limb.

(a) Express the volume V of a cylinder in terms of its
length L and the square of its circumference C.

(b) The formula obtained in part (a) can be used to ap-
proximate the volume of a limb from length and cir-
cumference measurements. Suppose the (average)
circumference of a human forearm is 22 centimeters
and the average length is 27 centimeters. Approximate
the volume of the forearm to the nearest cm?.

Period of a planet Kepler’s third law states that the period
T of a planet (the time needed to make one complete revo-
lution about the sun) is directly proportional to the % power
of its average distance d from the sun.

(a) Express T as a function of d by means of a formula that
involves a constant of proportionality k.

(b) For the planet Earth, T = 365 days and d = 93 million
miles. Find the value of k in part (a).

(c) Estimate the period of Venus if its average distance
from the sun is 67 million miles.

Range of a projectile It is known from physics that the
range R of a projectile is directly proportional to the square
of its velocity v.

(a) Express R as a function of v by means of a formula that
involves a constant of proportionality .

(b) A motorcycle daredevil has made a jump of 150 feet. If
the speed coming off the ramp was 70 mi/hr, find the
value of k in part (a).

(c) If the daredevil can reach a speed of 80 mi/hr coming
off the ramp and maintain proper balance, estimate the
possible length of the jump.

21

22

23

24
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Automobile skid marks The speed V at which an automobile
was traveling before the brakes were applied can sometimes
be estimated from the length L of the skid marks. Assume
that V is directly proportional to the square root of L.

(a) Express V as a function of L by means of a formula that
involves a constant of proportionality k.

(b) For a certain automobile on a dry surface, L = 50 ft
when V = 35 mi/hr. Find the value of k in part (a).

(c) Estimate the initial speed of the automobile in part (b)
if the skid marks are 150 feet long.

Coulomb’s law Coulomb’s law in electrical theory states
that the force F of attraction between two oppositely
charged particles varies directly as the product of the mag-
nitudes Q; and Q, of the charges and inversely as the square
of the distance d between the particles.

(a) Find a formula for F in terms of Q,, Q,, d, and a
constant of variation k.

(b) What is the effect of reducing the distance between the
particles by a factor of one-fourth?

Threshold weight Threshold weight W is defined to be that
weight beyond which risk of death increases significantly.
For middle-aged males, W is directly proportional to the
third power of the height A.

(a) Express W as a function of & by means of a formula that
involves a constant of proportionality k.

(b) For a 6-foot male, W is about 200 pounds. Find the
value of k in part (a).

(c) Estimate, to the nearest pound, the threshold weight for
an individual who is 5 feet 6 inches tall.

Theidealgas law The ideal gas law states that the volume V
that a gas occupies is directly proportional to the product
of the number n of moles of gas and the temperature 7'
(in K) and is inversely proportional to the pressure P (in
atmospheres).

(a) Express V in terms of n, T, P, and a constant of pro-
portionality k.

(b) What is the effect on the volume if the number of moles
is doubled and both the temperature and the pressure
are reduced by a factor of one-half?
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25 Poiseuille’s law Poiseuille’s law states that the blood flow
rate F (in L/min) through a major artery is directly propor-
tional to the product of the fourth power of the radius r of
the artery and the blood pressure P.

(a) Express F in terms of P, r, and a constant of propor-
tionality k.

(b) During heavy exercise, normal blood flow rates some-
times triple. If the radius of a major artery increases
by 10%, approximately how much harder must the
heart pump?

26 Trout population Suppose 200 trout are caught, tagged, and
released in a lake’s general population. Let 7 denote the
number of tagged fish that are recaptured when a sample of
n trout are caught at a later date. The validity of the mark-
recapture method for estimating the lake’s total trout popula-
tion is based on the assumption that 7"is directly proportional
to n. If 10 tagged trout are recovered from a sample of 300,
estimate the total trout population of the lake.

27 Radioactive decay of radon gas When uranium disinte-
grates into lead, one step in the process is the radioactive
decay of radium into radon gas. Radon enters through the
soil into home basements, where it presents a health hazard
if inhaled. In the simplest case of radon detection, a sample
of air with volume V is taken. After equilibrium has been
established, the radioactive decay D of the radon gas is
counted with efficiency E over time ¢. The radon concen-
tration C present in the sample of air varies directly as the
product of D and E and inversely as the product of V and .
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For a fixed radon concentration C and time ¢, find the
change in the radioactive decay count D if V is doubled and
E is reduced by 20%.

28 Radon concentration Refer to Exercise 27. Find the change
in the radon concentration C if D increases by 30%, t in-
creases by 60%, V decreases by 10%, and E remains constant.

29 Density ata point A thin flat plate is situated in an xy-plane
such that the density d (in 1b/ft?) at the point P(x, y) is in-
versely proportional to the square of the distance from the
origin. What is the effect on the density at P if the x- and
y-coordinates are each multiplied by %?

30 Temperatureatapoint A flat metal plate is positioned in an
xy-plane such that the temperature T (in °C) at the point
(x, y) is inversely proportional to the distance from the ori-
gin. If the temperature at the point P(3, 4) is 20°C, find the
temperature at the point Q(24, 7).

Exer. 31-34: Examine the expression for the given set of
data points of the form (x, y). Find the constant of variation
and a formula that describes how y varies with respect to x.

31 y/x; {(0.6, 0.72), (1.2, 1.44), (4.2, 5.04), (7.1, 8.52),
(9.3, 11.16)}

32 xy; {(0.2, —26.5), (0.4, —13.25), (0.8, —6.625),
(1.6, —3.3125), (3.2, —1.65625)}

33 x%; {(0.16, —394.53125), (0.8, —15.78125),
(1.6, —3.9453125), (3.2, —0.986328125)}

34 y/x% {(0.11, 0.00355377), (0.56, 0.46889472),
(1.2, 4.61376), (2.4, 36.91008)}

Exer. 1-6: Find all values of x such that f(x) > 0 and all x
such that f(x) < 0, and sketch the graph of f.

1 f(x) = (x +2)°
2 flx) = x¢ — 32

3 () = —3(x+2)(x — 12(x — 3)
4 flx) = 26 + x5 — x*

5 f(x) = x* + 2x* — 8x

6 f(x) = 15 (x° — 20x° + 64x)

7 If f(x) = x> — 5x% + 7x — 9, use the intermediate value
theorem for polynomial functions to prove that there is a
real number « such that f(a) = 100.

8 Prove that the equation x> — 3x* — 2x* —x + 1 = Ohasa
solution between 0 and 1.

Exer. 9-10: Find the quotient and remainder if f(x) is di-
vided by p(x).

9 fx) =3 —4x*+x+5 px)y=x—-—2x+7
10 f(x) = 4x* = x>+ 2x — 1; p(x) = x?

11 If f(x) = —4x* + 3x* — 5x* + 7x — 10, use the remain-
der theorem to find f(—2).



12 Use the factor theorem to show that x — 3 is a factor of
flx) = 2x* — 523 — 4x? + 9.

Exer. 13—-14: Use synthetic division to find the quotient and
remainder if f(x) is divided by p(x).

13 flx) = 6x° — 4x? + 8; pl) =x+2

1% fx) =22 +5x2—2x+ 1; plx) =x— V2

Exer. 15-16: A polynomial f(x) with real coefficients has
the indicated zero(s) and degree and satisfies the given
condition. Express f(x) as a product of linear and quad-
ratic polynomials with real coefficients that are irreducible
over R.

15 =3 + 5i, —1; degree3; f(1) =4

16 1 —14,3,0; degree 4; f(2) = —1

17 Find a polynomial f(x) of degree 7 with leading coeffi-
cient 1 such that —3 is a zero of multiplicity 2 and 0 is a
zero of multiplicity 5, and sketch the graph of f.

18 Show that 2 is a zero of multiplicity 3 of the polynomial
f(x) = x> — 4x* — 3x3 + 34x% — 52x + 24, and express
f(x) as a product of linear factors.

Exer. 19-20: Find the zeros of f(x), and state the multiplic-
ity of each zero.

19 f(x) = (x> — 2x + 1)(x? + 2x — 3)

20 f(x) = x® + 2x* + x?

Exer. 21-22: (a) Use Descartes’ rule of signs to determine
the number of possible positive, negative, and nonreal com-
plex solutions of the equation. (b) Find the smallest and
largest integers that are upper and lower bounds, respec-
tively, for the real solutions of the equation.

21 2x* =43+ 22 = 5x—7=0
2 X -4+ 6x?+x+4=0

23 Show that 7x® + 2x* + 3x? + 10 has no real zero.

Exer. 24-26: Find all solutions of the equation.
24 x* 4+ 9x3 + 31x* + 49x + 30 =0

25 16x3 —20x2—8x +3 =0

26 x*=Tx*+6=0
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Exer. 27-28: Find an equation for the sixth-degree polyno-
mial f shown in the figure.

27 y 28 y

29 Identify any vertical asymptotes, horizontal asymptotes,
4x + 2)(x — 1)

intercepts, and holes for f(x) = 3 == 5y
X X =

Exer. 30-39: Sketch the graph of f.

-2
30f(x)=m
31 f) = — 32 fl) = =%
T ==y A T
X
33 =
= e =5t 9
x3 —2x2 — 8« x2—=2x+1
34 1) = —x? + 2x » f(x)_x3—x2+x—l
3x2+x— 10 —2x2—8x— 6
36 f) = x2 + 2x 37 f) = x2—6x+8
x2+2x — 8 xt—16
BW="m BT

40 Find an equation of a rational function f that satisfies the
given conditions.

vertical asymptote: x = —3
horizontal asymptote: y = %
x-intercept: 5
hole at x = 2

41 Suppose y is directly proportional to the cube root of x and
inversely proportional to the square of z. Find the constant
of proportionality if y = 6 when x = 8 and z = 3.

42 Suppose y is inversely proportional to the square of x.
Sketch a graph of this relationship for x > 0, given that
y = 18 when x = 4. Include a point for x = 12.
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43 Deflection of a beam A horizontal beam [ feet long is sup-
ported at one end and unsupported at the other end (see the
figure). If the beam is subjected to a uniform load and
if y denotes the deflection of the beam at a position x feet
from the supported end, then it can be shown that

y = cx?(x? — 4lx + 61?),
where c¢ is a positive constant that depends on the weight of
the load and the physical properties of the beam.

(a) If the beam is 10 feet long and the deflection at the un-
supported end of the beam is 2 feet, find c.

(b) Show that the deflection is 1 foot somewhere between
x=06.1and x = 6.2.

Exercise 43

44 Elastic cylinder A rectangle made of elastic material is to
be made into a cylinder by joining edge AD to edge BC, as
shown in the figure. A wire of fixed length / is placed along
the diagonal of the rectangle to support the structure. Let x
denote the height of the cylinder.

(a) Express the volume V of the cylinder in terms of x.

(b) For what positive values of x is V > 0?

Exercise 44
D C
1
A B

45 Determining temperatures A meteorologist determines
that the temperature 7 (in °F) for a certain 24-hour period in
winter was given by the formula 7' = zflot(t — 12)(t — 24)
for 0 =t = 24, where ¢ is time in hours and r = 0 corre-
sponds to 6 A.M. At what time(s) was the temperature 32°F?

46 Deer propagation A herd of 100 deer is introduced onto a
small island. Assuming the number N(r) of deer after ¢ years
is given by N(t) = —r* + 2172 + 100 (for ¢ > 0), deter-
mine when the herd size exceeds 180.

47 Threshold response curve In biochemistry, the general
threshold response curve is the graph of an equation

kS”

R = s
S" + a"

where R is the chemical response when the level of the sub-
stance being acted on is S and a, k, and n are positive con-
stants. An example is the removal rate R of alcohol from
the bloodstream by the liver when the blood alcohol con-
centration is S.

(a) Find an equation of the horizontal asymptote for the
graph.

(b) In the case of alcohol removal, n = 1 and a typical
value of k is 0.22 gram per liter per minute. What is the
interpretation of & in this setting?

48 0il spill clean-up The cost C(x) of cleaning up x percent
of an oil spill that has washed ashore increases greatly as x
approaches 100. Suppose that

0.3x
101 — x
(a) Compare C(100) to C(90).

Clx) =

(million dollars).

(b) Sketch the graph of C for 0 < x < 100.

49 Telephone calls In a certain county, the average number
of telephone calls per day between any two cities is directly
proportional to the product of their populations and in-
versely proportional to the square of the distance between
them. Cities A and B are 25 miles apart and have popu-
lations of 10,000 and 5000, respectively. Telephone rec-
ords indicate an average of 2000 calls per day between the
two cities. Estimate the average number of calls per day
between city A and another city of 15,000 people that is
100 miles from A.

50 Power of a wind rotor The power P generated by a wind
rotor is directly proportional to the product of the square of
the area A swept out by the blades and the third power of the
wind velocity v. Suppose the diameter of the circular area
swept out by the blades is 10 feet, and P = 3000 watts
when v = 20 mi/hr. Find the power generated when the
wind velocity is 30 mi/hr.
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Compare the domain, range, number of x-intercepts, and
general shape of even-degreed polynomials and odd-
degreed polynomials.

When using synthetic division, could you use a complex
number c¢ rather than a real number in x — ¢?

Discuss how synthetic division can be used to help find the
quotient and remainder when 4x3 — 8x% — 11x + 9 is di-
vided by 2x + 3. Discuss how synthetic division can be
used with any linear factor of the form ax + b.

Draw (by hand) a graph of a polynomial function of degree
3 that has x-intercepts 1, 2, and 3, has a y-intercept of 6, and
passes through the point (—1, 25). Can you actually have
the graph you just drew?

How many different points do you need to specify a poly-
nomial of degree n?

Prove the theorem on conjugate pair zeros of a polynomial.
(Hint: For an arbitrary polynomial f, examine the conju-
gates of both sides of the equation f(z) = 0.)

Give an example of a rational function that has a common
factor in the numerator and denominator, but does not have
a hole in its graph. Discuss, in general, how this can happen.

+b
(a) Can the graph of f(x) = & (where ax + b #
c

+d
cx + d) cross its horizontal asymptote? If yes, then
where?

ax®> + bx + ¢
dx®> + ex + f
are no like factors) cross its horizontal asymptote? If
yes, then where?

(b) Can the graph of f(x) = (assume there

Gambling survival formula An empirical formula for the
bankroll B (in dollars) that is needed to survive a gambling
session with confidence C (a percent expressed as a deci-
mal) is given by the formula

5 GW
293 + 53.1E — 22.7C°

where G is the number of games played in the session, W is
the wager per game, and E is the player’s edge on the game
(expressed as a decimal).

(a) Approximate the bankroll needed for a player who
plays 500 games per hour for 3 hours at $5 per game
with a —5% edge, provided the player wants a 95%
chance of surviving the 3-hour session.

(b) Discuss the validity of the formula; a table and graph
may help.

10 Multiply three consecutive integers together and then add

1n

12

the second integer to that product. Use synthetic division to
help prove that the sum is the cube of an integer, and deter-
mine which integer.

Personal tax rate Assume the total amount of state tax paid
consists of an amount P for personal property and S percent
of income 1.

(a) Find a function that calculates an individual’s state tax
rate R—that is, the percentage of the individual’s in-
come that is paid in taxes. (It is helpful to consider spe-
cific values to create the function.)

(b) What happens to R as I gets very large?

(c) Discuss the statement “Rich people pay a lower per-
centage of their income in state taxes than any other
group.”

NFL passer rating The National Football League ranks its
passers by assigning a passer rating R based on the numbers
of completions C, attempts A, yards Y, touchdowns 7, and
interceptions /. In a normal situation, it can be shown that
the passer rating can be calculated using the formula

R= 25(A + 40C + 2Y + 160T — 2001)
124 '
(a) In 1994, Steve Young completed 324 of 461 passes for

3969 yards and had 35 touchdown passes as well as
10 interceptions. Calculate his record-setting rating.

(b) How many more yards would he have needed to obtain
a passer rating of at least 113?

(c) If he could make one more touchdown pass, how long
would it have to be for him to obtain a passer rating of
at least 1147
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Logaritnmic Functions

Properties of
Logaritnmms

Exponen’._’g{al .
Logarit’r"j‘ SEGUBLONE

Inverse, Exponential,
and Logarithmic
Functions

Exponential and logarithmic functions are transcendental functions, since
they cannot be defined in terms of only addition, subtraction, multiplica-
tion, division, and rational powers of a variable x, as is the case for the al-
gebraic functions considered in previous chapters. Such functions are of
major importance in mathematics and have applications in almost every
field of human endeavor. They are especially useful in the fields of chem-
istry, biology, physics, and engineering, where they help describe the man-
ner in which quantities in nature grow or decay. As we shall see in this
chapter, there is a close relationship between specific exponential and loga-

rithmic functions—they are inverse functions of each other.
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5.1

Inverse Functions

A function f may have the same value for different numbers in its domain. For
example, if f(x) = x2, then f(2) = 4 and f(—2) = 4, but 2 % —2. For the in-
verse of a function to be defined, it is essential that different numbers in the
domain always give different values of f. Such functions are called one-to-one
functions.

Definition of
One-to-One Function

A function f with domain D and range R is a one-to-one function if either
of the following equivalent conditions is satisfied:

(1) Whenever a # b in D, then f(a) # f(b) in R.
(2) Whenever f(a) = f(b) in R, then a = b in D.

Figure 1

a '/\‘
¢ ”‘Nm)
X
SO Xerp)
\ "\‘f(x)

R

Figure 2
AY
y=f

/\ y = fla)
| |
! \/
| |
if(a) if(b)

/ | |
| |
I I ;
a b X

The arrow diagram in Figure 1 illustrates a one-to-one function. Note that
each function value in the range R corresponds to exactly one element in the
domain D. The function illustrated in Figure 2 of Section 3.4 is not one-to-one,
since f(w) = f(z), but w # z.

EXAMPLE 1 Determining whether a function is one-to-one

(a) If f(x) = 3x + 2, prove that f is one-to-one.
(b) If g(x) = x> — 3, prove that g is not one-to-one.

SOLUTION

(a) We shall use condition 2 of the preceding definition. Thus, suppose that
f(a) = f(b) for some numbers a and b in the domain of f. This gives us the
following:

3a+2=3b+2
3a = 3b
a=>b

definition of f(x)
subtract 2

divide by 3

Since we have concluded that @ must equal b, f'is one-to-one.

(b) Showing that a function is one-to-one requires a general proof, as in
part (a). To show that g is not one-to-one we need only find two distinct real
numbers in the domain that produce the same function value. For example,
—1 # 1, but g(—1) = g(1). In fact, since g is an even function, g(—a) = g(a)
for every real number a. /

If we know the graph of a function f; it is easy to determine whether fis
one-to-one. For example, the function whose graph is sketched in Figure 2 is
not one-to-one, since a # b, but f(a) = f(b). Note that the horizontal line
y = f(a) (or y = f(b)) intersects the graph in more than one point. In general,
we may use the following graphical test to determine whether a function is
one-to-one.
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Horizontal Line Test

A function f'is one-to-one if and only if every horizontal line intersects the
graph of fin at most one point.

Let’s apply the horizontal line test to the functions in Example 1.

EXAMPLE 2 Using the horizontal line test

Use the horizontal line test to determine if the function is one-to-one.
@) fx) =3x+2
(b) gx) =x*—3

SOLUTION

(a) The graph of f(x) = 3x + 2 is a line with y-intercept 2 and slope 3, as
shown in Figure 3. We see that any horizontal line intersects the graph of fin
at most one point. Thus, fis one-to-one.

Figure 3 Figure 4

fey=3+2/ 1 T
X X T \% )

/1 I

(b) The graph of g(x) = x> — 3 is a parabola opening upward with vertex
(0, —3), as shown in Figure 4. In this case, any horizontal line with equation
y = k, where k > —3, will intersect the graph of g in two points. Thus, g is
not one-to-one.

We may surmise from Example 2 that every increasing function or de-
creasing function passes the horizontal line test. Hence, we obtain the follow-
ing result.

Theorem: Increasing or
Decreasing Functions
Are One-to-One

(1) A function that is increasing throughout its domain is one-to-one.

(2) A function that is decreasing throughout its domain is one-to-one.

Let f be a one-to-one function with domain D and range R. Thus, for each
number y in R, there is exactly one number x in D such that y = f(x), as
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illustrated by the arrow in Figure 5(a). We may, therefore, define a function g
from R to D by means of the following rule:

x=g(y)
As in Figure 5(b), g reverses the correspondence given by f. We call g the in-
verse function of f, as in the next definition.

Figure 5
(@) y=fk) (b) x = g(y)
f 8
;/\. o gy/)\
D y = fx) D Y
R R

Definition of Inverse Function

Let f be a one-to-one function with domain D and range R. A function g
with domain R and range D is the inverse function of f, provided the fol-
lowing condition is true for every x in D and every y in R:

y =f(x) if and only if x=g(y)

Theorem on Inverse Functions

Remember that for the inverse of a function f to be defined, ir is ab-
solutely essential that f be one-to-one. The following theorem, stated without
proof, is useful to verify that a function g is the inverse of f.

Let f be a one-to-one function with domain D and range R. If g is a func-
tion with domain R and range D, then g is the inverse function of fif and
only if both of the following conditions are true:

1) g(f(x)) = x for every x in D
(2) f(g(y)) = yforeveryyinR

Conditions 1 and 2 of the preceding theorem are illustrated in Figure 6(a)
and (b), respectively, where the blue arrow indicates that f'is a function from
D to R and the red arrow indicates that g is a function from R to D.

Figure 6
(a) First f, then g (b) First g, then f
f f

x /—\ f@) g(y)O y
8(f() 3 JiC{8)))

8
D R D R

Note that in Figure 6(a) we first apply f to the number x in D, obtaining
the function value f(x) in R, and then apply g to f(x), obtaining the number
g(f(x)) in D. Condition 1 of the theorem states that g(f(x)) = x for every x;
that is, g reverses the correspondence given by f.

In Figure 6(b) we use the opposite order for the functions. We first apply
g to the number y in R, obtaining the function value g(y) in D, and then apply
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f to g(y), obtaining the number f(g(y)) in R. Condition 2 of the theorem states
that f(g(y)) = y for every y; that is, f reverses the correspondence given by g.

If a function fhas an inverse function g, we often denote g by f~1. The —1
used in this notation should not be mistaken for an exponent; that is,

fUy) does not mean 1/[ f(y)].
The reciprocal 1/[ f(y)] may be denoted by [ f(y)]™". It is important to re-

member the following facts about the domain and range of fand f~".

Domain and Range of f and /!

domain of f~! = range of f

range of f~! = domain of f

When we discuss functions, we often let x denote an arbitrary number in
the domain. Thus, for the inverse function f~!, we may wish to consider f~!(x),
where x is in the domain R of f~'. In this event, the two conditions in the theo-
rem on inverse functions are written as follows:

1) f~Y(f(x)) = x for every x in the domain of f
(2) f(f'(x)) = xfor every x in the domain of /!

Figure 6 contains a hint for finding the inverse of a one-to-one function in
certain cases: If possible, we solve the equation y = f(x) for x in terms of y,
obtaining an equation of the form x = g(y). If the two conditions g(f(x)) = x
and f(g(x)) = x are true for every x in the domains of f and g, respectively,
then g is the required inverse function f~'. The following guidelines summa-
rize this procedure; in guideline 2, in anticipation of finding f~!, we write
x = f~!(y) instead of x = g(y).

Guidelines for Finding
f~lin Simple Cases

1 Verify that fis a one-to-one function throughout its domain.

2 Solve the equation y = f(x) for x in terms of y, obtaining an equation of
the form x = f!(y).

3 Verify the following two conditions:
(@ f'(f(x)) = x for every x in the domain of f
() f(f'(x)) = x for every x in the domain of f~'

The success of this method depends on the nature of the equation y = f(x),
since we must be able to solve for x in terms of y. For this reason, we include
the phrase in simple cases in the title of the guidelines. We shall follow these
guidelines in the next four examples.

EXAMPLE 3 Finding the inverse of a function
Let f(x) = 3x — 5. Find the inverse function of f.
SOLUTION

Guideline 1 The graph of the linear function fis a line of slope 3, and hence
fis increasing throughout R. Thus, f is one-to-one and the inverse function
/7! exists. Moreover, since the domain and range of f are R, the same is true
for f1.
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Figure 7

Guideline 2 Solve the equation y = f(x) for x:

y=3x—35 lety=f(x
y+5

X = solve for x in terms of y

We now formally let x = f~!(y); that is,

3 y+5
iy = 3
Since the symbol used for the variable is immaterial, we may also write
x+5
Fi =

where x is in the domain of £~

Guideline 3 Since the domain and range of both fand f~' are R, we must ver-
ify conditions (a) and (b) for every real number x. We proceed as follows:

(@) f'(fx) =f"'Gx — 5) definition of f

Bx—5)+5 o
= 3 definition of f~!
=X simplify
+5
(b) f(f7'(x)) =f<x 3 > definition of f!
+5
= 3<x 3 ) — 5 definition of f
=X simplify
These verifications prove that the inverse function of fis given by
F10) = x+5
3 /

EXAMPLE 4 Finding the inverse of a function

3x +
Let f(x) = oy

4
5 Find the inverse function of f.

SOLUTION

Guideline 1 A graph of the rational function f is shown in Figure 7 (refer to
Example 3 of Section 4.5). It is decreasing throughout its domain,

(—00, %) U (%, oc). Thus, f is one-to-one and the inverse function f ' exists.
We also know that the aforementioned domain is the range of ' and that the

range of f, (—00, %) U (%, OO), is the domain of f .
Guideline 2 Solve the equation y = f(x) for x.
3x +4
2x — 5
y(2x — 5) = 3x + 4 multiply by 2x — 5
2xy — 5y = 3x + 4 multiply

y= lety = f(x)

2xy — 3x = 5y + 4 put all x-terms on one side
x(2y —3) =5y +4 factor out x
Sy + 4
B 2y =3

divide by 2y — 3



For a specific example of
guideline 3, if x = 3, then
fB) =2 =13 and
£7'(13) = & = 3. Thus,

FfB) =f£7'13) = 3

and f(f7'(13)) = f(3) = 13.

Suggestion: After finding an
inverse function ', pick an
arbitrary number in the do-
main of f (such as 3 above),
and verify conditions (a)
and (b) in guideline 3. It is
highly likely that if these
conditions “check,” then the
correct inverse has been
found.

Figure 8
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Thus,
S5y +4 5x +4
Wy = Zi —5 oF equivalently, f '(x) = 2i —
Guideline 3 'We verify conditions (a) and (b) for x in the domains of fand f !,
respectively.
<3x + 4> Ly SBx+d)+4@2c-5)
3x + 4 2x — 5 2x — 5
-1 = -1 = =
(@ fF) =1 <2x—5> (A, 2G4 33
2x — 5 2x — 5

_ 15x 420 4 8x — 20  23x
6x +8 —6x+ 15 23
+ + 4) + -
<5x 4)+ , Gxt )+ -3

x4\ \2x -3 B 2x—3
(b) 1(f (x))—f(2x_3>‘ 5x+4\  _ 2(5x+4) —52x - 3)
2% — 3 2x— 3

ISy 4+ 12+ 8x— 12 23x

T 10x+8—10x+15 23
Thus, the inverse function is given by
5x + 4
—1 _ ,
ffW=5—

EXAMPLE 5 Finding the inverse of a function

Let f(x) = x? — 3 for x = 0. Find the inverse function of f.
SOLUTION

Guideline 1 The graph of fis sketched in Figure 8. The domain of f'is [0, %),
and the range is [ —3, ). Since f is increasing, it is one-to-one and hence has
an inverse function f~! with domain [—3, ©) and range [0, ©).

Guideline 2 'We consider the equation
y=x>—-3
and solve for x, obtaining
X = i\/m .
Since x is nonnegative, we reject x = —\/y + 3 and let
i yy=Vy+3 or, equivalently,  f7'(x) = Vx + 3.

(Note that if the function f had domain x = 0, we would choose the function

i) = —Vax +3)
Guideline 3 We verify conditions (a) and (b) for x in the domains of fand f~1,
respectively.

@) f'(fx) =f'(x* = 3)
=VHx2-3)+3=Vxl=xforx=0

(b) F(f') = f(Va+3)
=(Vx+3)-3=(x+3)—3=xforx= -3
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Figure 9

Note that the graphs of f and
f~Vintersect on the line y = x.

Figure 10

Figure 11

Thus, the inverse function is given by

)= Vx+3 forx=-3. V4

There is an interesting relationship between the graph of a function f and
the graph of its inverse function f~'. We first note that b = f(a) is equivalent
to a = f~'(b). These equations imply that the point (a, b) is on the graph of f
if and only if the point (b, a) is on the graph of f".

As an illustration, in Example 5 we found that the functions f and ™'
given by

flx) =x*—3 and i) = Vx+3

are inverse functions of each other, provided that x is suitably restricted. Some
points on the graph of fare (0, —3), (1, —2), (2, 1), and (3, 6). Corresponding
points on the graph of f~! are (—3,0), (=2, 1), (1, 2), and (6, 3). The graphs
of f and f~! are sketched on the same coordinate plane in Figure 9. If the page
is folded along the line y = x that bisects quadrants I and III (as indicated by
the dashes in the figure), then the graphs of f and f ! coincide. The two graphs
are reflections of each other through the line y = x, or are symmetric with re-
spect to this line. This is typical of the graph of every function f that has an
inverse function f~! (see Exercise 50).

EXAMPLE 6 The relationship between the graphs of f and f~!

Let f(x) = x*. Find the inverse function f~' of f, and sketch the graphs of f
and f~! on the same coordinate plane.

SOLUTION  The graph of fis sketched in Figure 10. Note that f'is an odd
function, and hence the graph is symmetric with respect to the origin.

Guideline 1 Since f is increasing throughout its domain R, it is one-to-one
and hence has an inverse function f~!.

Guideline 2 'We consider the equation
y=x
and solve for x by taking the cube root of each side, obtaining
x=y" = Vy.
We now let
f'(y) =y  orequivalently,  f'(x) = Vx.
Guideline 3 'We verify conditions (a) and (b):
(@) f'(fx) =f'(x%) = V¥V’ =x forevery xin R
(b) f(f7'x)) =f(\3/}) = (\3/})2 =x foreveryxinR

The graph of f! (that is, the graph of the equation y = \3/}) may be ob-
tained by reflecting the graph in Figure 10 through the line y = x, as shown in
Figure 11. Three points on the graph of f~!are (0,0), (1, 1), and (8,2). /
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Exer. 1-2: If possible, find (a) f~'(5) and (b) g7'(6).

1 2
x 2 | 4| 6 t 0 | 3 5
fx® | 3|5 9 §i0) 2 |5 6
x 1 5 t 1 4
gx) | 6 2 6 g 3 6

Exer. 3—4: Determine if the graph is a graph of a one-to-one
function.

3 (a) (b) (0)

AY AY AY

A N
/ |/
4 (a) (b) ()

. |

=
\
—

=Y

\
. |
—_—
.
Y

Exer. 5-16: Determine whether the function f is one-to-one.

Exer. 17-20: Use the theorem on inverse functions to prove
that f and g are inverse functions of each other, and sketch
the graphs of f and g on the same coordinate plane.

x+2
3

17 f(x) =3x — 2; gy =

18 fx) =x*+5x=0, gx)=-Vx—5x=5

19 fx) = —x2+3,x=0; gk)=V3—-—x,x=3

20 f(x) = x* — 4, gl) = Vx+4

Exer. 21-24: Determine the domain and range of f~! for the
given function without actually finding f~'. Hint: First find
the domain and range of f.

2

5
2 f&) = -7 22 fo) = ——>

4x + 5 2x — 7
23 f(x) = o

-X
2% fx) =
3x — 8 &) 1

Exer. 25-42: Find the inverse function of f.

25 fx) =3x+5

2 f(x):3x—2
3x + 2
2 f(x)zziirs

31 f(x) =2 —-3x%Lx=0

33 flx) =2x =5

26 f(x) =7 — 2x

28f(x):x+3

4x
x—2

30 flv) =

32 f(x) =5x*+2,x=0

34 flx) = —x*+2

5 f(x) =3x—7 esf(x)=xfl2
7 fx) =x2—9 8 flx) =x*+4
9 flx) = Vx 10 f(x) = Vx
1 f(x) = |x] 12 fx) =3

13 flx) = V4 — »*

15 ) =

14 flx) =2x> — 4

16 ) =

35 f(x) = V3 —x

36 f) =V4A—xL,0=x=2
37 flx) = Vx+1 38 flx) = (2 + 1)
39 fx) = x 40 f(x) = —x
4 f(x) = x> — 6x,x =3

42 fx) = x> —4dx+3,x=2
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Exer. 43-44: Let h(x) = 4 — x. Use h, the table, and the 46
graph to evaluate the expression.

x | 2 |3 4|56
f@® | -1 0 1| 2|3

43 (a) (g7'of N2 (b) (7" >m(3)
(c) (h'efeogH3)

44 (a) (gof N(=1) (b) (f71og™H3)
(c) (h'ogtof)6)

Exer. 45-48: The graph of a one-to-one function f is
shown. (a) Use the reflection property to sketch the graph
of f~!. (b) Find the domain D and range R of the function
f. (c) Find the domain D, and range R, of the inverse func-
tion 1.

49 (a) Prove that the function defined by f(x) = ax + b (a
linear function) for a # 0 has an inverse function, and
find f~'(x).

(b) Does a constant function have an inverse? Explain.
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50 Show that the graph of f~' is the reflection of the graph 53 Ventilation requirements Ventilation is an effective way to
of f through the line y = x by verifying the following improve indoor air quality. In nonsmoking restaurants, air
conditions: circulation requirements (in ft*/min) are given by the func-

tion V(x) = 35x, where x is the number of people in the

(1) If P(a, b) is on the graph of f, then Q(b, a) is on the dining area.

graph of 1.

(2) The midpoint of line segment PO is on the line y — x (a) Determine the ventilation requirements for 23 people.

(3) The line PQ is perpendicular to the line y = x (b) Find V"'(x). Explain the significance of V.

(c) Use V7! to determine the maximum number of people

51 Verify that f(x) = f~'(x) if that should be in a restaurant having a ventilation capa-

o L
(a) fx) =—x+0b (b) fx) = ax +b for ¢ % 0 ‘blllty (.)f 2350 ft*/min. | |
o a 54 Radio stations The table lists the total numbers of radio
(c) f(x) has the following graph: stations in the United States for certain years.
4 Year Number
1950 2773
1960 4133
1970 6760
1980 8566
1990 10,770
2000 12,717

oY

(a) Determine a linear function f(x) = ax + b that mod-
els these data, where x is the year.

(b) Find f~'(x). Explain the significance of f~'.

52 Let n be any positive integer. Find the inverse function of f if (c) Use f' to predict the year in which there were

(a) f(x) =x"forx =0 11,987 radio stations. Compare it with the true value,
’ - which is 1995.
(b) f(x) = x™" for x = 0 and m any positive integer

5 2 Previously, we considered functions having terms of the form
o

3 it
Varlable baseCOHS ant pOWCI’

Exponential Function
Xpone tial Functions such as x2, 0.2x'3, and 8x*°. We now turn our attention to functions having

terms of the form
iabl
constant base'nable power,

such as 2%, (1.04)*, and 37*. Let us begin by considering the function f de-
fined by
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Figure 1
AY .
T *(3,8)
T 2.4
A ()
71’7 N
( 2 T0, 1)
———t—>
X
Figure 2
AY

where x is restricted to rational numbers. (Recall that if x = m/n for integers

m and n with n > 0, then 2* = 2" = (%)m) Coordinates of several points
on the graph of y = 2* are listed in the following table.

X -10 -3 -2 -1 01 2 3 10

y=2 | o 0+ & 312 4 8 1024

Other values of y for x rational, such as 2'3,27%7 and 25!, can be approxi-
mated with a calculator. We can show algebraically that if x; and x, are rational
numbers such that x; < x,, then 2 < 2*2. Thus, f is an increasing function,
and its graph rises. Plotting points leads to the sketch in Figure 1, where the
small dots indicate that only the points with rational x-coordinates are on
the graph. There is a hole in the graph whenever the x-coordinate of a point
is irrational.

To extend the domain of fto all real numbers, it is necessary to define 2*
for every irrational exponent x. To illustrate, if we wish to define 27, we could
use the nonterminating decimal representing 3.1415926 . . . for 7 and consider
the following rational powers of 2:

23’ 23.1’ 23.14, 23.141’ 23.1415’ 23.]4]59,

It can be shown, using calculus, that each successive power gets closer to a
unique real number, denoted by 27. Thus,

2*—27™ as x— g, with xrational.

The same technique can be used for any other irrational power of 2. To sketch
the graph of y = 2* with x real, we replace the holes in the graph in Figure 1
with points, and we obtain the graph in Figure 2. The function f defined by
f(x) = 2% for every real number x is called the exponential function with
base 2.

Let us next consider any base a, where a is a positive real number differ-
ent from 1. As in the preceding discussion, to each real number x there corre-

' =x sponds exactly one positive number a* such that the laws of exponents are true.
T Thus, as in the following chart, we may define a function f whose domain is R
and range is the set of positive real numbers.
Graph of f Graph of f
Terminology Definition fora>1 for0<a<1
Exponential function | f(x) = &' y y

f with base a

for every x in R,
where a > 0 and a # 1

=Y

oY




Note that ifa > 1, thena =1 + d
(d > 0) and the base a in y = a* can
be thought of as representing multipli-
cation by more than 100% as x in-
creases by 1, so the function is
increasing. For example, if a = 1.15,
then y = (1.15)* can be considered to
be a 15% per year growth function.
More details on this concept appear
later.
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The graphs in the chart show that if @ > 1, then f'is increasing on R, and
if 0 < a < 1, then fis decreasing on R. (These facts can be proved using cal-
culus.) The graphs merely indicate the general appearance—the exact shape
depends on the value of a. Note, however, that since a° = 1, the y-intercept is
1 for every a.

If @ > 1, then as x decreases through negative values, the graph of f ap-
proaches the x-axis (see the third column in the chart). Thus, the x-axis is a
horizontal asymptote. As x increases through positive values, the graph rises
rapidly. This type of variation is characteristic of the exponential law of
growth, and fis sometimes called a growth function.

If 0 < a < 1, then as x increases, the graph of f approaches the x-axis as-
ymptotically (see the last column in the chart). This type of variation is known
as exponential decay.

When considering a* we exclude the cases a = 0 and a = 1. Note that if
a < 0, then a* is not a real number for many values of x such as %, %, and %.
If a = 0, then a® = 0° is undefined. Finally, if ¢ = 1, then a* = 1 for every x,
and the graph of y = a* is a horizontal line.

The graph of an exponential function f'is either increasing throughout its
domain or decreasing throughout its domain. Thus, f is one-to-one by the
theorem on page 279. Combining this result with the definition of a one-to-one
function (see page 278) gives us parts (1) and (2) of the following theorem.

Theorem: Exponential
Functions Are One-to-One

The exponential function f given by
fx)=a" for 0<a<1l or a>1

is one-to-one. Thus, the following equivalent conditions are satisfied for
real numbers x; and x,.
1) If x; # x,, then a™ # a™.

2) If a® = a™, then x; = x,.

ILLUSTRATION

When using this theorem as a reason for a step in the solution to an ex-
ample, we will state that exponential functions are one-to-one.

Exponential Functions Are One-to-One

B If7% =7 then3x = 2x + 5,0orx = 5.

In the following example we solve a simple exponential equation—that
is, an equation in which the variable appears in an exponent.
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Figure 3

EXAMPLE 1 Solving an exponential equation

Solve the equation 3378 = 9v+2,

SOLUTION
3568 — Qu+2 given
3%78 = (32)**2  express both sides with the same base
3378 — 3244 law of exponents
5x — 8 = 2x + 4 exponential functions are one-to-one
3x =12 subtract 2x and add 8
x=4 divide by 3 7/

Note that the solution in Example 1 depended on the fact that the base 9
could be written as 3 to some power. We will consider only exponential equa-
tions of this type for now, but we will solve more general exponential equa-
tions later in the chapter.

In the next two examples we sketch the graphs of several different expo-
nential functions.

EXAMPLE 2 Sketching graphs of exponential functions

If f(x) = (%)X and g(x) = 3%, sketch the graphs of f and g on the same coordi-
nate plane.

SOLUTION Since% > 1 and 3 > 1, each graph rises as x increases. The fol-
lowing table displays coordinates for several points on the graphs.

* —2 -1 0|1 2 3 4
y =3 éz().l %z()_?, 113 9 27 81

Plotting points and being familiar with the general graph of y = a* leads to the
graphs in Figure 3. 7/

Example 2 illustrates the fact that if 1 < a < b, then a* < b* for positive
values of x and b* < a* for negative values of x. In particular, since% <2<3,
the graph of y = 2*in Figure 2 lies between the graphs of fand g in Figure 3.



Figure 4

Figure 5

Figure 6
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EXAMPLE 3 Sketching the graph of an exponential function
Sketch the graph of the equation y = (%)X

SOLUTION  Since 0 < % < 1, the graph falls as x increases. Coordinates of
some points on the graph are listed in the following table.

X -3 -2 -1 0 1 2 3

y=F | s o4 2o

=
=l
0| —

The graph is sketched in Figure 4. Since (%y = (271)* = 27, the graph is the
same as the graph of the equation y = 27*. Note that the graph is a reflection
through the y-axis of the graph of y = 2* in Figure 2. /

Equations of the form y = a“, where u is some expression in x, occur in
applications. The next two examples illustrate equations of this form.

EXAMPLE 4 Shifting graphs of exponential functions
Sketch the graph of the equation:

(@ y=3" () y=3-2

SOLUTION

(a) The graph of y = 3%, sketched in Figure 3, is resketched in Figure 5. From
the discussion of horizontal shifts in Section 3.5, we can obtain the graph of
y = 3*7% by shifting the graph of y = 3* two units to the right, as shown in
Figure 5.

The graph of y = 372 can also be obtained by plotting several points and
using them as a guide to sketch an exponential-type curve.

(b) From the discussion of vertical shifts in Section 3.5, we can obtain the
graph of y = 3* — 2 by shifting the graph of y = 3* two units downward, as
shown in Figure 6. Note that the y-intercept is —1 and the line y = —2 is a
horizontal asymptote for the graph. 7/

Finding an equation of an exponential
function satisfying prescribed conditions

EXAMPLE 5

Find an exponential function of the form f(x) = ba™ + c¢ that has horizontal
asymptote y = —2, y-intercept 16, and x-intercept 2.

SOLUTION  The horizontal asymptote of the graph of an exponential func-
tion of the form f(x) = ba " is the x-axis—that is, y = 0. Since the desired
horizontal asymptote is y = —2, we must have ¢ = —2, so f(x) = ba™ — 2.
Because the y-intercept is 16, f(0) must equal 16. But f(0) = ba™® — 2 =
b—2,s0b—2=16and b = 18. Thus, f(x) = 18a* — 2.

(continued)
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Figure 7

201

(0, 16)

154

Figure 8

EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Lastly, we find the value of a:
fx) = 18a™ — 2 given form of f
0 =18(a)™> =2 f(2) = 0 since 2 is the x-intercept
1

2=18-— add 2; definition of negative exponent
a

at=9 multiply by a?/2

a==*3 take square root

Since a must be positive, we have
flx) = 18(3)™ — 2.

Figure 7 shows a graph of f that satisfies all of the conditions in the problem
statement. Note that f(x) could be written in the equivalent form

flx) = 18(3) — 2. /

The bell-shaped graph of the function in the next example is similar to a
normal probability curve used in statistical studies.

EXAMPLE 6 Sketching a bell-shaped graph
If f(x) = 27, sketch the graph of f.
SOLUTION  If we rewrite f(x) as

) = s,

2(x
we see that as x increases through positive values, f(x) decreases rapidly;
hence the graph approaches the x-axis asymptotically. Since x? is smallest
when x = 0, the maximum value of fis f(0) = 1. Since fis an even function,
the graph is symmetric with respect to the y-axis. Some points on the graph are
(0, 1), (1, %), and (2, %) Plotting and using symmetry gives us the sketch in
Figure 8. 7/

APPLICATION Bacterial Growth

Exponential functions may be used to describe the growth of certain popula-
tions. As an illustration, suppose it is observed experimentally that the number
of bacteria in a culture doubles every day. If 1000 bacteria are present at the
start, then we obtain the following table, where 7 is the time in days and f(z) is
the bacteria count at time 7.

t (time in days) 0 1 2 3 4

f(® (bacteria count) 1000 2000 4000 8000 16,000




4 t(days)

Figure 9
A f(?) (bacteria count)
15,000 [
10,000
5,000 |
1 1 1
1 2 3
Figure 10

20

10 -

A f(¢) (mg remaining)

100 200 300

400 500
t (days)
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It appears that f(z) = (1000)2'. With this formula we can predict the number
. . _ _3
of bacteria present at any time ¢. For example, atz = 1.5 = 3,

f(0) = (1000)2% ~ 2828.
The graph of fis sketched in Figure 9.
APPLICATION Radioactive Decay

Certain physical quantities decrease exponentially. In such cases, if a is the
base of the exponential function, then 0 < @ < 1. One of the most common
examples of exponential decrease is the decay of a radioactive substance, or
isotope. The half-life of an isotope is the time it takes for one-half the original
amount in a given sample to decay. The half-life is the principal characteristic
used to distinguish one radioactive substance from another. The polonium iso-
tope 2'°Po has a half-life of approximately 140 days; that is, given any amount,
one-half of it will disintegrate in 140 days. If 20 milligrams of *'°Po is present
initially, then the following table indicates the amount remaining after various
intervals of time.

t (time in days) 0 140 280 420 560

f(®) (mg remaining) 20 10 5 25 125

The sketch in Figure 10 illustrates the exponential nature of the disintegration.

Other radioactive substances have much longer half-lives. In particular, a
by-product of nuclear reactors is the radioactive plutonium isotope *°Pu,
which has a half-life of approximately 24,000 years. It is for this reason that
the disposal of radioactive waste is a major problem in modern society.

APPLICATION Compound Interest

Compound interest provides a good illustration of exponential growth. If a
sum of money P, the principal, is invested at a simple interest rate r, then the
interest at the end of one interest period is the product Pr when r is expressed
as a decimal. For example, if P = $1000 and the interest rate is 9% per year,
then r = 0.09, and the interest at the end of one year is $1000(0.09), or $90.

If the interest is reinvested with the principal at the end of the interest pe-
riod, then the new principal is

P + Pr or, equivalently, P(1 + r).

Note that to find the new principal we may multiply the original principal by
(1 + r). In the preceding example, the new principal is $1000(1.09), or $1090.

After another interest period has elapsed, the new principal may be found
by multiplying P(1 + r) by (1 + r). Thus, the principal after two interest pe-
riods is P(1 + r). If we continue to reinvest, the principal after three periods
is P(1 + r)% after four it is P(1 + r)*; and, in general, the amount A accumu-
lated after k interest periods is

A =P + rk
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Interest accumulated by means of this formula is compound interest. Note
that A is expressed in terms of an exponential function with base 1 + r. The
interest period may be measured in years, months, weeks, days, or any other
suitable unit of time. When applying the formula for A, remember that r is the
interest rate per interest period expressed as a decimal. For example, if the
rate is stated as 6% per year compounded monthly, then the rate per month is
%% or, equivalently, 0.5%. Thus, » = 0.005 and £ is the number of months. If
$100 is invested at this rate, then the formula for A is

A = 100(1 + 0.005)F = 100(1.005)%.

In general, we have the following formula.

Compound Interest Formula

r nt
A=Pl1+—],
n
where P = principal

r = annual interest rate expressed as a decimal
n = number of interest periods per year

t = number of years P is invested
A = amount after ¢ years.

Note that when working with
monetary values, we use = instead
of = and round to two decimal
places.

The next example illustrates a special case of the compound interest
formula.

EXAMPLE 7 Using the compound interest formula

Suppose that $1000 is invested at an interest rate of 9% compounded monthly.
Find the new amount of principal after 5 years, after 10 years, and after
15 years. Illustrate graphically the growth of the investment.

SOLUTION  Applying the compound interest formula with r = 9% = 0.09,
n = 12, and P = $1000, we find that the amount after 7 years is

0.09')
A= 1000(1 + F) = 1000(1.0075)".

Substituting + = 5, 10, and 15 and using a calculator, we obtain the following
table.

Number of
years Amount
5 A = $1000(1.0075)% = $1565.68
10 A = $1000(1.0075)"*° = $2451.36
15 A = $1000(1.0075)"% = $3838.04




Figure 11

Compound interest: A = 1000(1.0075)'*

A A (dollars)
4000 -
3000
2000
1000
! ! ! >
5 10 15 1 (years)
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The exponential nature of the increase is indicated by the fact that during
the first five years, the growth in the investment is $565.68; during the second
five-year period, the growth is $885.68; and during the last five-year period, it
is $1386.68.

The sketch in Figure 11 illustrates the growth of $1000 invested over a pe-
riod of 15 years. /

EXAMPLE 8 Finding an exponential model

In 1938, a federal law establishing a minimum wage was enacted, and the
wage was set at $0.25 per hour; the wage had risen to $5.15 per hour by 1997.
Find a simple exponential function of the form y = ab' that models the federal

minimum wage for 1938-1997.
SOLUTION y = ab' given
0.25 = ab’ let t+ = 0 for 1938
025 =a =1
y = 0.250' replace a with 0.25
5.15 = 0.25b% t= 1997 — 1938 = 59
5.15
b’ = E = 20.6 divide by 0.25
b = 5\/9 20.6 take 59th root
b = 1.0526 approximate

We obtain the model y = 0.25(1.0526)", which indicates that the federal min-
imum wage rose about 5.26% per year from 1938 to 1997. A graph of the
model is shown in Figure 12. Do you think this model will hold true through
the year 20167

Figure 12
Y ($/hr)
13.64+ ?
/
/
l
/
/
/
/
/
/
5154
0.25 , , .
0 59 78 t
1938 1997 2016  (years) P4
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5.2 Exercises

Exer. 1-10: Solve the equation.

1 7x+6 — 73x—4

3 3203 =30

5 2710 = (0.5)

7 473 =g

94 () =80

10 9> (§) =27 (397

11 Sketch the graph of fif a = 2.

(@) flx) =a*
(c) flx) =3a*
(e) f) =a*+3

(9) f&x) =a* =3

() S = (1)

12 Work Exercise 11 if a = %

2 67—x — 62x+1
4 9(,\‘2) — 33x+2
6 (3 =2

8 27)(*1 — 92)(*3
(b) fx) = —a*

(d) f(x) = a™

(f) f&) =a?
(h) f&) =a™
() f&) =a"

Exer. 13-24: Sketch the graph of f.

13 f() = (3)

15 f) =5(3) +3
17 flx) = —(3) + 4
19 f(x) = 2

21 f(x) = 3'°

23 flx) =3+ 37~

1 f0) = (3

16 flx) = 8(4)™—2
18 f(x) = =3*+9
20 fx) = 271

22 f(x) = 2700

24 flx) =3 =3

Exer. 25-28: Find an exponential function of the form
fx) = ba* or f(x)=ba*+ c thathas the given graph.

25 y

Exer. 29-30: Find an exponential function of the form
f(x) = ba* that has the given y-intercept and passes through
the point P.

29 y-intercept 8; P(3, 1)

30 y-intercept 6; P(Z, %)

Exer. 31-32: Find an exponential function of the form
f(x) = ba=* + ¢ that has the given horizontal asymptote and
y-intercept and passes through point P.

31 y = 32; y-intercept 212; P(2,112)
32 y =72; y-intercept 425; P(1,248.5)

33 Elk population One hundred elk, each 1 year old, are intro-
duced into a game preserve. The number N(7) alive after
t years is predicted to be N(7) = 100(0.9)". Estimate the
number alive after

(a) Iyear (b) 5 years (c) 10 years



34 Drug dosage A drug is eliminated from the body through
urine. Suppose that for an initial dose of 10 milligrams, the
amount A(7) in the body 7 hours later is given by
A(7) = 10(0.8)".

(a) Estimate the amount of the drug in the body 8 hours
after the initial dose.

(b) What percentage of the drug still in the body is elimi-
nated each hour?

35 Bacterial growth The number of bacteria in a certain
culture increased from 600 to 1800 between 7:00 A.M. and
9:00 A.M. Assuming growth is exponential, the num-
ber f(¢) of bacteria ¢ hours after 7:00 AM. is given by
f(@) = 600(3)".

(a) Estimate the number of bacteria in the culture at
8:00 A.M., 10:00 A.M., and 11:00 A.M.

(b) Sketch the graph of ffor 0 =t = 4.

36 Newton’s law of cooling According to Newton’s law of
cooling, the rate at which an object cools is directly propor-
tional to the difference in temperature between the object
and the surrounding medium. The face of a household iron
cools from 125° to 100° in 30 minutes in a room that re-
mains at a constant temperature of 75°. From calculus, the
temperature f(¢) of the face after 7 hours of cooling is given
by f(r) = 50(2)"* + 75.

(a) Assuming r = 0 corresponds to 1:00 P.M., approximate
to the nearest tenth of a degree the temperature of the
face at 2:00 P.M., 3:30 P.M., and 4:00 P.M.

(b) Sketch the graph of ffor 0 =< r < 4.

37 Radioactive decay The radioactive bismuth isotope ?'°Bi
has a half-life of 5 days. If there is 100 milligrams of *'°Bi
present at # = 0, then the amount f(#) remaining after ¢ days
is given by f(r) = 100(2) .

(a) How much *°Bi remains after 5 days? 10 days?
12.5 days?

(b) Sketch the graph of f for 0 = ¢ = 30.

38 Light penetration in an ocean An important problem in
oceanography is to determine the amount of light that can
penetrate to various ocean depths. The Beer-Lambert law
asserts that the exponential function given by I(x) = I,c*
is a model for this phenomenon (see the figure). For a cer-
tain location, I(x) = 10(0.4)* is the amount of light (in
calories/cm?/sec) reaching a depth of x meters.
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(a) Find the amount of light at a depth of 2 meters.

(b) Sketch the graph of I for 0 < x < 5.

Exercise 38

"%

X meters

39 Decay of radium The half-life of radium is 1600 years.
If the initial amount is g, milligrams, then the quantity ()
remaining after 7 years is given by ¢(f) = ¢,2". Find k.

40 Dissolving salt in water If 10 grams of salt is added to a
quantity of water, then the amount ¢(¢) that is undissolved
after r minutes is given by ¢(1) = 10(%)'. Sketch a graph that
shows the value ¢(7) at any time from ¢ = 0 to r = 10.

41 Compound interest If $1000 is invested at a rate of 7% per
year compounded monthly, find the principal after

(b) 6 months
(d) 20 years

(a) 1 month

(c) 1 year

42 Compound interest If a savings fund pays interest at a rate
of 6% per year compounded semiannually, how much
money invested now will amount to $5000 after 1 year?

43 Automobile trade-in value If a certain make of automobile
is purchased for C dollars, its trade-in value V(z) at the
end of ¢ years is given by V(1) = 0.78C(0.85)""!. If the original
cost is $25,000, calculate, to the nearest dollar, the value after

(a) 1 year (b) 4 years (c) 7 years
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44 Real estate appreciation If the value of real estate in- Exercise 47
creases at a rate of 5% per year, after ¢ years the value V of
a house purchased for P dollars is V = P(1.05)". A graph for
the value of a house purchased for $80,000 in 1986 is shown
in the figure. Approximate the value of the house, to the

nearest $1000, in the year 2010.

A y (value in dollars)

Exercise 44

A V (dollars)
300,000 T
250,000 T
200,000
150,000 + n (years)
100,000 + . ) )
48 Language dating Glottochronology is a method of dating
50,000 + 1987 201 a language at a particular stage, based on the theory that
’ over a long period of time linguistic changes take place
A S R S R A R Y R B B R A I B at a fairly constant rate. Suppose that a language origi-
5 10 15 20 nally had N, basic words and that at time 7, measured in
t (years) millennia (I millennium = 1000 years), the number N(7)

of basic words that remain in common use is given by
N() = Ny(0.805)".

45 Manhattan Island The Island of Manhattan was sold for
$24 in 1626. How much would this amount have grown to
by 2006 if it had been invested at 6% per year compounded
quarterly?

(a) Approximate the percentage of basic words lost every
100 years.

(b) If Ny = 200, sketch the graph of N for 0 = = 5.
46 Credit-card interest A certain department store requires its

credit-card customers to pay interest on unpaid bills at the

rate of 18% per year compounded monthly. If a customer
buys a television set for $500 on credit and makes no pay-
ments for one year, how much is owed at the end of the
year?

47 Depreciation The declining balance method is an account-
ing method in which the amount of depreciation taken each
year is a fixed percentage of the present value of the item. If
y is the value of the item in a given year, the depreciation
taken is ay for some depreciation rate a with 0 < a <1,
and the new value is (1 — a)y.

(a) If the initial value of the item is y,, show that the value
after n years of depreciation is (1 — a)"y,.

(b) At the end of T years, the item has a salvage value of s
dollars. The taxpayer wishes to choose a depreciation
rate such that the value of the item after T years will
equal the salvage value (see the figure). Show that

a=1—Vs/y,

Exer. 49-52: Some lending institutions calculate the
monthly payment M on a loan of L dollars at an interest
rate r (expressed as a decimal) by using the formula

Lrk

M=—""—
12(k — 1)

where k = [1 + (r/12)]'" and ¢ is the number of years that
the loan is in effect.

49 Home mortgage

(a) Find the monthly payment on a 30-year $250,000
home mortgage if the interest rate is 8%.

(b) Find the total interest paid on the loan in part (a).

50 Home mortgage Find the largest 25-year home mortgage
that can be obtained at an interest rate of 7% if the monthly
payment is to be $1500.
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52

Car loan An automobile dealer offers customers no-down-
payment 3-year loans at an interest rate of 10%. If a cus-
tomer can afford to pay $500 per month, find the price of
the most expensive car that can be purchased.

Business loan The owner of a small business decides to fi-
nance a new computer by borrowing $3000 for 2 years at an
interest rate of 7.5%.

(a) Find the monthly payment.

(b) Find the total interest paid on the loan.

Exer. 53-54: Approximate the function at the value of x to
four decimal places.

53 (a) flx) = 13V, x=3
(b) gx) = ()7, x =143
(c) h(x) = (2*+ 2% x =106

54 (a) flx) =297, x=25
(b) gx) = (& + %) x=21
© =72 -2

55

Cost of a stamp The price of a first-class stamp was 3¢ in
1958 and 39¢ in 2006 (it was 2¢ in 1885). Find a simple ex-

5.3
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56

57
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ponential function of the form y = ab’ that models the cost
of a first-class stamp for 1958-2006, and predict its value
for 2010.

Consumer Price Index The CPI is the most widely used
measure of inflation. In 1970, the CPI was 37.8, and in
2000, the CPI was 168.8. This means that an urban con-
sumer who paid $37.80 for a market basket of consumer
goods and services in 1970 would have needed $168.80 for
similar goods and services in 2000. Find a simple exponen-
tial function of the form y = ab' that models the CPI for
1970-2000, and predict its value for 2010.

Inflation comparisons In 1974, Johnny Miller won 8 tour-
naments on the PGA tour and accumulated $353,022 in of-
ficial season earnings. In 1999, Tiger Woods accumulated
$6,616,585 with a similar record.

(a) Suppose the monthly inflation rate from 1974 to 1999
was 0.0025 (3%/yr). Use the compound interest for-
mula to estimate the equivalent value of Miller’s
winnings in the year 1999. Compare your answer with
that from an inflation calculation on the web (e.g.,
bls.gov/cpi/home.htm).

(b) Find the annual interest rate needed for Miller’s win-
nings to be equivalent in value to Woods’s winnings.

c at type of function did you use in part (a)? part (b)?
Wh f function did i (a)? (b)?

The compound interest formula discussed in the preceding section is

rﬂt
A=P<l+—>,
n

where P is the principal invested, r is the annual interest rate (expressed as a

decimal), n is the number of interest periods per year, and ¢ is the number of
years that the principal is invested. The next example illustrates what happens
if the rate and total time invested are fixed, but the interest period is varied.

EXAMPLE 1

Using the compound interest formula

Suppose $1000 is invested at a compound interest rate of 9%. Find the new
amount of principal after one year if the interest is compounded quarterly,
monthly, weekly, daily, hourly, and each minute.

SOLUTION

If we let P = $1000, ¢t = 1, and r = 0.09 in the compound in-
terest formula, then

A= $1000<1 + w)
n

(continued)
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for n interest periods per year. The values of n we wish to consider are listed
in the following table, where we have assumed that there are 365 days in a year
and hence (365)(24) = 8760 hours and (8760)(60) = 525,600 minutes. (In
many business transactions an investment year is considered to be only

360 days.)
Interest
period Quarter Month Week Day Hour Minute
n 4 12 52 365 8760 525,600

Using the compound interest formula (and a calculator), we obtain the
amounts given in the following table.

Interest period Amount after one year

0.09 Y}

Quarter $1000<1 + T) = $1093.08
0.09 \?

Month $1000<1 + 7) = $1093.81
0.09 \*

Week $1000<1 + ?> = $1094.09
0.09 %

Day $1000<1 + %> = $1094.16
009 8760

Hour $1000<1 + %> = $1094.17
0.09 525,600

Minute $1000<1 + 535 600) = $1094.17

7/

Note that, in the preceding example, after we reach an interest period of
one hour, the number of interest periods per year has no effect on the final
amount. If interest had been compounded each second, the result would still
be $1094.17. (Some decimal places beyond the first two do change.) Thus, the
amount approaches a fixed value as n increases. Interest is said to be com-
pounded continuously if the number n of time periods per year increases
without bound.

Ifwelet P=1,r =1, and r = 1 in the compound interest formula, we

obtain
1 n
A- <1 . _> |
n

The expression on the right-hand side of the equation is important in calculus.
In Example 1 we considered a similar situation: as n increased, A approached
a limiting value. The same phenomenon occurs for this formula, as illustrated
by the following table.
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Approximation to

n <1 aF l>n
n

1 2.00000000
10 2.59374246
100 2.70481383
1000 2.71692393
10,000 271814593
100,000 2.71826824
1,000,000 2.71828047
10,000,000 2.71828169
100,000,000 2.71828181
1,000,000,000 2.71828183

In calculus it is shown that as n increases without bound, the value of the ex-
pression [1 + (1/n)]" approaches a certain irrational number, denoted by e.
The number e arises in the investigation of many physical phenomena. An ap-
proximation is e = 2.71828. Using the notation we developed for rational
functions in Section 4.5, we denote this fact as follows.

The Number e

If n is a positive integer, then

1 n
<1 F —) —e =~ 271828 as n— oo,
n

In the following definition we use e as a base for an important exponen-
tial function.

Definition of the Natural
Exponential Function

The natural exponential function fis defined by
f) = e

for every real number x.

The natural exponential function is one of the most useful functions in
advanced mathematics and applications. Since 2 < e < 3, the graph of y = ¢*
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The | ex | key can be accessed by

pressing .

Figure 1 Ly

lies between the graphs of y = 2*and y = 3%, as shown in Figure 1. Scientific
calculators have an key for approximating values of the natural exponen-
tial function.

APPLICATION Continuously Compounded Interest
The compound interest formula is

rn/
A=Pl1+—].
n

If we let 1/k = r/n, then k = n/r, n = kr, and nt = krt, and we may rewrite

the formula as
1 krt 1 k |rt
A=Pl1l+—| =P||]l +— .
k k

For continuously compounded interest we let n (the number of interest periods
per year) increase without bound, denoted by n— % or, equivalently, by
k — o, Using the fact that [1 + (1/k)]JF — e as k — o, we see that

1 k |rt
P[(l + ;) ] — Ple]" = Pe" as k— o,

This result gives us the following formula.

Continuously Compounded
Interest Formula

A = Pe',

where P = principal
r = annual interest rate expressed as a decimal
t = number of years P is invested
A = amount after 7 years.
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The next example illustrates the use of this formula.

EXAMPLE 2 Using the continuously compounded interest formula

Suppose $20,000 is deposited in a money market account that pays inter-
est at a rate of 6% per year compounded continuously. Determine the bal-
ance in the account after 5 years.

SOLUTION  Applying the formula for continuously compounded interest
with P = 20,000, » = 0.06, and r = 5, we have

A = Pe'" = 20,0000 = 20,000¢°°.
Using a calculator, we find that A = $26,997.18. V4

The continuously compounded interest formula is just one specific case of
the following law.

Law of Growth
(or Decay) Formula

Let g, be the value of a quantity ¢ at time ¢t = 0 (that is, g, is the initial
amount of ¢). If ¢ changes instantaneously at a rate proportional to its cur-
rent value, then

q = q(t) = qoe",
where r > 0 is the rate of growth (or » < 0 is the rate of decay) of g.

EXAMPLE 3 Predicting the population of a city

The population of a city in 1970 was 153,800. Assuming that the population
increases continuously at a rate of 5% per year, predict the population of the
city in the year 2010.

SOLUTION  We apply the growth formula g = gee” with initial population
qo = 153,800, rate of growth r = 0.05, and time 7 = 2010 — 1970 = 40
years. Thus, a prediction for the population of the city in the year 2010 is

153,800¢%940 = 153 800> =~ 1,136,437. /

The function f in the next example is important in advanced applications
of mathematics.



304 CHAPTER 5 INVERSE, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Figure 2

Figure 3

EXAMPLE 4 Sketching a graph involving two exponential functions
Sketch the graph of fif

SOLUTION  Note that fis an even function, because

e+ e Y e+ et
f(=x) = 2 = /W
Thus, the graph is symmetric with respect to the y-axis. Using a calculator, we
obtain the following approximations of f(x).

x 0 05 10 15 20

Sf@&)
(approx.) 1 1.13 1.54 235 3.76

Plotting points and using symmetry with respect to the y-axis gives us the
sketch in Figure 2. The graph appears to be a parabola; however, this is not ac-
tually the case. /

APPLICATION Flexible Cables

The function f of Example 4 occurs in applied mathematics and engineering,
where it is called the hyperbolic cosine function. This function can be used
to describe the shape of a uniform flexible cable or chain whose ends are sup-
ported from the same height, such as a telephone or power line cable (see Fig-
ure 3). If we introduce a coordinate system, as indicated in the figure, then it
can be shown that an equation that corresponds to the shape of the cable is

a
y = ?(ex/a + e*x/a)’

where a is a real number. The graph is called a catenary, after the Latin word
for chain. The function in Example 4 is the special case in which a = 1.

APPLICATION Radiotherapy

Exponential functions play an important role in the field of radiotherapy, the
treatment of tumors by radiation. The fraction of cells in a tumor that survive
a treatment, called the surviving fraction, depends not only on the energy and
nature of the radiation, but also on the depth, size, and characteristics of the
tumor itself. The exposure to radiation may be thought of as a number of



Figure 4
Surviving fraction of tumor cells after a
radiation treatment

A ¥ (surviving fraction)

1 2 3 x (dose)
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potentially damaging events, where at least one hit is required to kill a tumor
cell. For instance, suppose that each cell has exactly one target that must be
hit. If k£ denotes the average target size of a tumor cell and if x is the number
of damaging events (the dose), then the surviving fraction f(x) is given by

flx) = ek

This is called the one target—one hit surviving fraction.

Suppose next that each cell has n targets and that each target must be hit
once for the cell to die. In this case, the n target—one hit surviving fraction is
given by

fx)=1—(1 — e

The graph of f may be analyzed to determine what effect increasing the dosage
x will have on decreasing the surviving fraction of tumor cells. Note that
f(0) = 1; that is, if there is no dose, then all cells survive. As an example, if
k= 1and n = 2, then

f)=1—-(1—e
1= (1 =2+ e

=2e* — e %

A complete analysis of the graph of f requires calculus. The graph is sketched
in Figure 4. The shoulder on the curve near the point (0, 1) represents the
threshold nature of the treatment—that is, a small dose results in very little
tumor cell elimination. Note that for a large x, an increase in dosage has little
effect on the surviving fraction. To determine the ideal dose to administer to a
patient, specialists in radiation therapy must also take into account the number
of healthy cells that are killed during a treatment.

Problems of the type illustrated in the next example occur in the study
of calculus.

EXAMPLE 5 Finding zeros of a function involving exponentials

If f(x) = x*(—2e™>*) + 2xe™ ™, find the zeros of f.
SOLUTION  We may factor f(x) as follows:
fx) = 2xe™® — 2x%7**  given
= 2xe (1 — x) factor out 2xe %"
To find the zeros of f, we solve the equation f(x) = 0. Since e~>* > 0 for every

x, we see that f(x) = 0 if and only if x = 0 or 1 — x = 0. Thus, the zeros of
fare 0 and 1. 7/
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5.3

Exercises

Exer. 1-4: Use the graph of y = e* to help sketch the graph
of f.
1(a) f)=e™

2 (a) flx) = e
3 (a) fly) = e
4 (a) flx) =e™

(b) flx) = —e
(b) flx) = 2¢*
(b) flx) =e +4
(b) flx) = —2¢

Exer. 5-6: If P dollars is deposited in a savings account that
pays interest at a rate of r% per year compounded continu-
ously, find the balance after ¢ years.

5P=1000, r=8 (=5

6 P=100, r=6y, 1=10

Exer. 7-8: How much money, invested at an interest rate
of r% per year compounded continuously, will amount to
A dollars after ¢ years?

7 A = 100,000, r =64,

8 A = 15,000,

Exer. 9-10: An investment of P dollars increased to A dol-
lars in ¢ years. If interest was compounded continuously,
find the interest rate. (Hint: Use trial and error.)

9 A =13464, P =1000, =20

10 A =890.20, P =400, =16

Exer. 11-12: Solve the equation.

12 e3x — le*l

x—12

11 e = ¢

Exer. 13-16: Find the zeros of f.
13 f(x) = xe* + e*

14 f(x) = —x% " + 2xe™*
15 f(x) = x*(4e®) + 3x%e®

16 f(x) = x*(2e?) + 2xe*™ + ¥ + 2xe™

Exer. 17-18: Simplify the expression.

17

18

19

20

21

22

23

24

(e"+ e M)(e*+e ™) — (e — e e —e™)
(e* + e7)?

(ex — efx)Z — (e.x + e*.x)Z
(e + e™)?

Crop growth An exponential function W such that
W(t) = Wye" for k > 0 describes the first month of growth
for crops such as maize, cotton, and soybeans. The function
value W(r) is the total weight in milligrams, W, is the weight
on the day of emergence, and ¢ is the time in days. If, for a
species of soybean, k = 0.2 and W, = 68 mg, predict the
weight at the end of 30 days.

Crop growth Refer to Exercise 19. It is often difficult to
measure the weight W, of a plant from when it first emerges
from the soil. If, for a species of cotton, K = 0.21 and the
weight after 10 days is 575 milligrams, estimate W,

U.S. population growth The 1980 population of the United
States was approximately 231 million, and the population
has been growing continuously at a rate of 1.03% per year.
Predict the population N(#) in the year 2020 if this growth
trend continues.

Population growth in India The 1985 population estimate
for India was 766 million, and the population has been
growing continuously at a rate of about 1.82% per year. As-
suming that this rapid growth rate continues, estimate the
population N(7) of India in the year 2015.

Longevity of halibut In fishery science, a cohort is the col-
lection of fish that results from one annual reproduction. It
is usually assumed that the number of fish N(z) still alive
after ¢ years is given by an exponential function. For Pacific
halibut, N(t) = Nye *¥, where N, is the initial size of the
cohort. Approximate the percentage of the original number
still alive after 10 years.

Radioactive tracer The radioactive tracer >'Cr can be used
to locate the position of the placenta in a pregnant woman.
Often the tracer must be ordered from a medical laboratory.
If Ao units (microcuries) are shipped, then because of the ra-
dioactive decay, the number of units A(z) present after ¢ days
is given by A(f) = Age 0%,



25

26

27

28

29

(a) If 35 units are shipped and it takes 2 days for the tracer
to arrive, approximately how many units will be avail-
able for the test?

(b) If 35 units are needed for the test, approximately how
many units should be shipped?

Blue whale population growth In 1980, the population of
blue whales in the southern hemisphere was thought to
number 4500. The population N(z) has been decreasing ac-
cording to the formula N(f) = 4500e *"**', where ¢ is in
years and ¢ = 0 corresponds to 1980. If this trend continues,
predict the population in the year 2015.

Halibut growth The length (in centimeters) of many com-
mon commercial fish 7 years old can be approximated by a
von Bertalanffy growth function having an equation of the
form f(1) = a(1 — be "), where a, b, and k are constants.

(a) For Pacific halibut, a = 200, b = 0.956, and k = 0.18.
Estimate the length of a 10-year-old halibut.

(b) Use the graph of fto estimate the maximum attainable
length of the Pacific halibut.

Atmospheric pressure Under certain conditions the atmos-
pheric pressure p (in inches) at altitude & feet is given by
p = 29¢ 000003 What is the pressure at an altitude of
40,000 feet?

Polonium isotope decay If we start with ¢ milligrams of the
polonium isotope *'°Po, the amount remaining after ¢ days
may be approximated by A = ce %% If the initial
amount is 50 milligrams, approximate, to the nearest hun-
dredth, the amount remaining after

(a) 30 days (b) 180 days (c) 365 days
Growth of children The Jenss model is generally regarded
as the most accurate formula for predicting the height of
preschool children. If y is height (in centimeters) and x is
age (in years), then

y = 79.041 + 6.39x — 26170993«

for % = x = 6. From calculus, the rate of growth R (in
cm/year) is given by R = 6.39 + 0.993¢31709% Find the
height and rate of growth of a typical 1-year-old child.

30

31

32
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Particle velocity A very small spherical particle (on the
order of 5 microns in diameter) is projected into still air
with an initial velocity of v, m/sec, but its velocity de-
creases because of drag forces. Its velocity ¢ seconds later is
given by v(t) = voe™* for some a > 0, and the distance s(7)
the particle travels is given by

s(f) = %(1

— efat)'

The stopping distance is the total distance traveled by the
particle.

(a) Find a formula that approximates the stopping distance
in terms of v, and a.

(b) Use the formula in part (a) to estimate the stopping dis-
tance if vy = 10 m/sec and a = 8 X 10°.

Minimum wage In 1971 the minimum wage in the United
States was $1.60 per hour. Assuming that the rate of infla-
tion is 5% per year, find the equivalent minimum wage in
the year 2010.

Land value In 1867 the United States purchased Alaska
from Russia for $7,200,000. There is 586,400 square miles
of land in Alaska. Assuming that the value of the land in-
creases continuously at 3% per year and that land can be
purchased at an equivalent price, determine the price of
1 acre in the year 2010. (One square mile is equivalent to
640 acres.)

Exer. 33-34: The effective yield (or effective annual interest
rate) for an investment is the simple interest rate that would
yield at the end of one year the same amount as is yielded by
the compounded rate that is actually applied. Approximate,
to the nearest 0.01 %, the effective yield corresponding to an
interest rate of r% per year compounded (a) quarterly and
(b) continuously.

33
35

r=717 34 r=12

Probability density function In statistics, the probability
density function for the normal distribution is defined by

1 ) . X —
e ¥ with z = M,

oV2m o

fx) =

where w and o are real numbers (u is the mean and o is the
variance of the distribution). Sketch the graph of f for the
case 0 = land pu = 0.
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5.4

Logarithmic Functions

In Section 5.2 we observed that the exponential function given by f(x) = a*
for 0 < a < 1 or a > 1 is one-to-one. Hence, f has an inverse function f~!
(see Section 5.1). This inverse of the exponential function with base a is called
the logarithmic function with base a and is denoted by log,. Its values are
written log, (x) or log, x, read “the logarithm of x with base a.” Since, by the
definition of an inverse function f~!,

y=f"x) if and only if x = f(y),

the definition of log, may be expressed as follows.

Definition of log,

Let a be a positive real number different from 1. The logarithm of x with
base a is defined by

y = log, x if and only if x=a

for every x > 0 and every real number y.

ILLUSTRATION

Note that the two equations in the definition are equivalent. We call the
first equation the logarithmic form and the second the exponential form. You
should strive to become an expert in changing each form into the other. The
following diagram may help you achieve this goal.

Logarithmic form Exponential form

exponent
log, x =y @ =x
1 )
base

Observe that when forms are changed, the bases of the logarithmic and
exponential forms are the same. The number y (that is, log, x) corresponds to
the exponent in the exponential form. In words, log, x is the exponent to which
the base a must be raised to obtain x. This is what people are referring to when
they say “Logarithms are exponents.”

The following illustration contains examples of equivalent forms.

Equivalent Forms

Logarithmic form Exponential form

B logsu=2 5’=u

B log,8=3 b =38

B r=loggq P=q

B w=log, (2t + 3) 4v =2t + 3
B logzx=5+2z 3PE =y

The next example contains an application that involves changing from an
exponential form to a logarithmic form.
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EXAMPLE 1 Changing exponential form to logarithmic form

The number N of bacteria in a certain culture after ¢ hours is given by
N = (1000)2'. Express t as a logarithmic function of N with base 2.

SOLUTION N = (1000)2! given
N 2! isolate th tial i
— = isolate the exponential expression
1000 P .
N o
t = log, ——  change to logarithmic form /7

1000

Some special cases of logarithms are given in the next example.

EXAMPLE 2 Finding logarithms

Find the number, if possible.

(a) log, 100 (b) log,35  (c) logg3  (d) log; 1 (e) logs (—2)
SOLUTION  In each case we are given log, x and must find the exponent y
such that @ = x. We obtain the following.

(a) log, 100 = 2 because 10*> = 100.

(b) 10g231—2 = —5 because 27’ = 3—12

(c) logy 3 = % because 9" = 3.

(d) log; 1 =0 because 7° = 1.

(e) log; (—2) is not possible because 3* # —2 for any real number y. /

The following general properties follow from the interpretation of log, x
as an exponent.

Property of log, x Reason Iustration

1) log,1 =0 a’ =1 log; 1 =0

2) log,a =1 a'=a log,, 10 = 1

3) log,a* = x at = a* log, 8 = log, 23 = 3
4) a°= = x as follows Slogs7 =7

The reason for property 4 follows directly from the definition of log,,
since

if y = log, x, then X =a, or x = q'°8*,

The logarithmic function with base a is the inverse of the exponential
function with base a, so the graph of y = log, x can be obtained by reflecting
the graph of y = a* through the line y = x (see Section 5.1). This procedure is
illustrated in Figure 1 for the case a > 1. Note that the x-intercept of the graph
is 1, the domain is the set of positive real numbers, the range is R, and the
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y-axis is a vertical asymptote. Logarithms with base 0 < a < | are seldom
used, so we will not emphasize their graphs.

We see from Figure 1 that if @ > 1, then log, x is increasing on (0, ) and
hence is one-to-one by the theorem on page 279. Combining this result with
parts (1) and (2) of the definition of one-to-one function on page 278 gives us
the following theorem, which can also be proved if 0 < a < 1.

Theorem: Logarithmic
Functions Are One-to-One

The logarithmic function with base a is one-to-one. Thus, the following
equivalent conditions are satisfied for positive real numbers x; and x,.

(1) If x; # x,, then log, x; # log, x,.
(2) If log, x; = log, x,, then x; = x,.

When using this theorem as a reason for a step in the solution to an ex-
ample, we will state that logarithmic functions are one-to-one.

In the following example we solve a simple logarithmic equation—that is,
an equation involving a logarithm of an expression that contains a variable.
Extraneous solutions may be introduced when logarithmic equations are
solved. Hence, we must check solutions of logarithmic equations to make sure
that we are taking logarithms of only positive real numbers, otherwise, a loga-
rithmic function is not defined.

EXAMPLE 3 Solving a logarithmic equation
Solve the equation logg (4x — 5) = logs (2x + 1).
SOLUTION

logs (4x — 5) = logg 2x + 1)  given

4x —5=2x+ 1 logarithmic functions are one-to-one
2x =6 subtract 2x; add 5
x=3 divide by 2

Check x =3 LS: logs (4 -3 — 5) = logs 7
RS: logs (2 -3 + 1) = logg 7

Since loge 7 = logs 7 is a true statement, x = 3 is a solution. /

When we check the solution x = 3 in Example 3, it is not required that
the solution be positive. But it is required that the two expressions, 4x — 5 and
2x + 1, be positive after we substitute 3 for x. If we extend our idea of argu-
ment from variables to expressions, then when checking solutions, we can sim-
ply remember that arguments must be positive.

In the next example we use the definition of logarithm to solve a loga-
rithmic equation.
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EXAMPLE 4 Solving a logarithmic equation
Solve the equation log, (5 + x) = 3.

SOLUTION
log, (5 +x) =3 given
5+ x =4 change to exponential form

x =159 solve for x
Check x =59 LS: log, (5 + 59) = log, 64 = log, 4* =3
RS: 3

Since 3 = 3 is a true statement, x = 59 is a solution. V4
We next sketch the graph of a specific logarithmic function.

EXAMPLE 5 Sketching the graph of a logarithmic function

Sketch the graph of fif f(x) = log; x.

SOLUTION  We will describe three methods for sketching the graph.
Method 1 Since the functions given by log; x and 3* are inverses of each
other, we proceed as we did for y = log, x in Figure 1; that is, we first sketch
the graph of y = 3* and then reflect it through the line y = x. This gives us the
sketch in Figure 2. Note that the points (—1, 371), (0, 1), (1, 3), and (2, 9) on
the graph of y = 3* reflect into the points (371, —1), (1, 0), (3, 1), and (9, 2)
on the graph of y = log; x.

Figure 2

Method 2 We can find points on the graph of y = log; x by letting x = 3,
where k is a real number, and then applying property 3 of logarithms on
page 309, as follows:

y = logzx = log; 3" = k

(continued)
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Figure 3

Figure 4

Figure 5

y = logs;(—x)

Using this formula, we obtain the points on the graph listed in the following
table.

x=3 373 372 37t 30 30 32 33
y=log,;x =k -3 -2 -1 0 1 2 3

This gives us the same points obtained using the first method.

Method 3 We can sketch the graph of y = log; x by sketching the graph of
the equivalent exponential form x = 3. V4

Before proceeding, let’s plot one more point on y = log; x in Figure 2. If
we let x = 5, then y = log; 5 (see Figure 3). (We see that log; 5 is a number
between 1 and 2; we’ll be able to better approximate log; 5 in Section 5.6.)
Now on the graph of y = 3* we have the point (x, y) = (log; 5, 5), so 5 = 3'&3,
which illustrates property 4 of logarithms on page 309 and reinforces the claim
that logarithms are exponents.

As in the following examples, we often wish to sketch the graph of
Sf(x) = log, u, where u is some expression involving x.

EXAMPLE 6 Sketching the graph of a logarithmic function
Sketch the graph of f if f(x) = logs | x| for x # 0.
SOLUTION  The graph is symmetric with respect to the y-axis, since

f(=x) = log; | —x| = logs | x| = f(x).

If x > 0, then |x| = x and the graph coincides with the graph of y = log; x
sketched in Figure 2. Using symmetry, we reflect that part of the graph through
the y-axis, obtaining the sketch in Figure 4.

Alternatively, we may think of this function as g(x) = logs x with | x| sub-
stituted for x (refer to the discussion on page 180). Since all points on the
graph of g have positive x-coordinates, we can obtain the graph of f by com-
bining g with the reflection of g through the y-axis.

EXAMPLE 7 Reflecting the graph of a logarithmic function
Sketch the graph of fif f(x) = log; (—x).

SOLUTION The domain of f is the set of negative real numbers, since
logs (—x) exists only if —x > 0 or, equivalently, x < 0. We can obtain the
graph of f from the graph of y = log; x by replacing each point (x, y) in Fig-
ure 2 by (—x,y). This is equivalent to reflecting the graph of y = log; x
through the y-axis. The graph is sketched in Figure 5.

Another method is to change y = log; (—x) to the exponential form
3” = —x and then sketch the graph of x = —3". V4
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Figure 7

y =logsx — 2

Figure 8

y=logs2 =0T 1y=logk—2)
|
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EXAMPLE 8 Shifting graphs of logarithmic equations

Sketch the graph of the equation:
(@) y=log; (x —2) (b) y =logsx — 2
SOLUTION

(a) The graph of y = log; x was sketched in Figure 2 and is resketched in Fig-
ure 6. From the discussion of horizontal shifts in Section 3.5, we can obtain
the graph of y = log; (x — 2) by shifting the graph of y = log; x two units to
the right, as shown in Figure 6.

(b) From the discussion of vertical shifts in Section 3.5, the graph of the equa-
tion y = log; x — 2 can be obtained by shifting the graph of y = log; x two
units downward, as shown in Figure 7. Note that the x-intercept is given by
logsx = 2,0orx = 3> =0,

EXAMPLE 9 Reflecting the graph of a logarithmic function
Sketch the graph of fif f(x) = log; (2 — x).
SOLUTION  If we write

flx) =logs 2 — x) = logs [~(x — 2)],

then, by applying the same technique used to obtain the graph of the equation
vy = logs (—x) in Example 7 (with x replaced by x — 2), we see that the graph
of f is the reflection of the graph of y = logs (x — 2) through the vertical line
x = 2. This gives us the sketch in Figure 8.

Another method is to change y = log; (2 — x) to the exponential form
3" = 2 — x and then sketch the graph of x = 2 — 3. 7/

Before electronic calculators were invented, logarithms with base 10 were
used for complicated numerical computations involving products, quotients,
and powers of real numbers. Base 10 was used because it is well suited for
numbers that are expressed in scientific form. Logarithms with base 10 are
called common logarithms. The symbol log x is used as an abbreviation for
logo x, just as \/  is used as an abbreviation for V.

Definition of
Common Logarithm

log x = log;o x for every x>0

Since inexpensive calculators are now available, there is no need for com-
mon logarithms as a tool for computational work. Base 10 does occur in ap-
plications, however, and hence many calculators have a key, which can be
used to approximate common logarithms.
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The natural exponential function is given by f(x) = e*. The logarithmic
function with base e is called the natural logarithmic function. The symbol
In x (read “ell-en of x”) is an abbreviation for log, x, and we refer to it as the
natural logarithm of x. Thus, the natural logarithmic function and the natu-
ral exponential function are inverse functions of each other.

Definition of
Natural Logarithm

Inx = log, x for every x>0

ILLUSTRATION

Most calculators have a key labeled , which can be used to approxi-
mate natural logarithms. The next illustration gives several examples of
equivalent forms involving common and natural logarithms.

Equivalent Forms

Logarithmic form Exponential form
B logx=2 10> = x
B logz=y+3 1007 = ¢
B Inx=2 e =x
B Inz=y+3 et =z

To find x when given log x or In x, we may use the key or the
key, respectively, on a calculator, as in the next example. If your calculator has

an key (for inverse), you may enter x and successively press or
()

EXAMPLE 10 Solving a simple logarithmic equation

Find x if

(a) logx = 1.7959 (b) Inx = 4.7

SOLUTION

(a) Changing log x = 1.7959 to its equivalent exponential form gives us
x = 101.7959_

Evaluating the last expression to three-decimal-place accuracy yields
x = 62.503.

(b) Changing In x = 4.7 to its equivalent exponential form gives us

x = e*7 = 109.95. V4
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The following chart lists common and natural logarithmic forms for the
properties on page 309.

Logarithms with base a Common logarithms Natural logarithms
1) log, 1 =0 logl =0 Inl1=0
(2) log,a =1 log10 =1 Ine =1
3) log,a* = x log 10* = x Ine* = x
(4) alognx = x 1010gx = x elnx = x

The last property for natural logarithms allows us to write the number a
as e so the exponential function f(x) = a* can be written as f(x) = (e“)*
oras f(x) = e*"?, Many calculators compute an exponential regression model
of the form y = ab". If an exponential model with base e is desired, we can
write the model

y =ab* as y = ae*™’.

ILLUSTRATION Converting to Base e Expressions
m 3 is equivalent to e*™"?
Figure 9

31nx

[ I is equivalent to e

B 4-2° isequivalentto 4 - e*M?

y = log, x

y=Inx
3 Figure 9 shows four logarithm graphs with base a > 1. Note that for

y =logzx . . .
—loey ¥ 1, as the base of the logarithm increases, the graphs increase more slowly
: e R R R ? >~ £ (they are more horizontal). This makes sense when we consider the graphs of
X the inverses of these functions: y = 2*, y = ¢*, y = 3%, and y = 10*. Here, for

x > 0, as the base of the exponential expression increases, the graphs increase
faster (they are more vertical).

The next four examples illustrate applications of common and natural
logarithms.

EXAMPLE 11 The Richterscale
On the Richter scale, the magnitude R of an earthquake of intensity / is
given by
1
R = log —,
I

where 1, is a certain minimum intensity.
(a) If the intensity of an earthquake is 10001, find R.
(b) Express [ in terms of R and .
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SOLUTION
1
(@) R=log— given
Iy
10001,
= log let = 10001,
Iy
= log 1000 cancel I,
=log 10° 1000 = 10°
=3 log 10* = x for every x

From this result we see that a tenfold increase in intensity results in an increase
of 1 in magnitude (if 1000 were changed to 10,000, then 3 would change to 4).

1
(b) R = logl— given
0
r
Iy
I=1,- 108 multiply by I, 7/

= 107 change to exponential form

EXAMPLE 12 Newton's law of cooling

Newton’s law of cooling states that the rate at which an object cools is directly
proportional to the difference in temperature between the object and its sur-
rounding medium. Newton’s law can be used to show that under certain con-
ditions the temperature 7 (in °C) of an object at time ¢ (in hours) is given by
T = 75¢ . Express ¢ as a function of T.

SOLUTION T="75"* given
T
e M= % isolate the exponential expression
=2t =1In 75 change to logarithmic form
t ! 1 T divide by —2
= ——In— ivide by —
275 Y /

EXAMPLE 13 Approximating a doubling time

Assume that a population is growing continuously at a rate of 4% per year. Ap-
proximate the amount of time it takes for the population to double its size—
that is, its doubling time.

SOLUTION  Note that an initial population size is not given. Not knowing
the initial size does not present a problem, however, since we wish only to de-
termine the time needed to obtain a population size relative to the initial popu-
lation size. Using the growth formula g = ge’” with r = 0.04 gives us

2qy = qoe®™ let g = 24,

D = N0 divide by qo (g0 # 0)
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0.04r =1n2 change to logarithmic form

. |
t=25In2 = 173 yr. multiply by Y 25
The fact that g, did not have any effect on the answer indicates that the
doubling time for a population of 1000 is the same as the doubling time for a
population of 1,000,000 or any other reasonable initial population.

From the last example we may obtain a general formula for the doubling

time of a population—namely,
. In 2
rt =1n2 or, equivalently, t= T

Since In 2 = 0.69, we see that the doubling time ¢ for a growth of this type is
approximately 0.69/r. Because the numbers 70 and 72 are close to 69 but have
more divisors, some resources refer to this doubling relationship as the rule of
70 or the rule of 72. As an illustration of the rule of 72, if the growth rate of a
population is 8%, then it takes about 72/8 = 9 years for the population to
double. More precisely, this value is

In2
? - 100 = 8.7 yr.

EXAMPLE 14 Determining the half-life of a radioactive substance

A physicist finds that an unknown radioactive substance registers 2000 counts
per minute on a Geiger counter. Ten days later the substance registers 1500
counts per minute. Using calculus, it can be shown that after ¢ days the amount
of radioactive material, and hence the number of counts per minute N(t), is di-
rectly proportional to e” for some constant ¢. Determine the half-life of the
substance.

SOLUTION  Since N(z) is directly proportional to e,
N(t) = ke,
where k is a constant. Letting r = 0 and using N(0) = 2000, we obtain
2000 = ke®®* =k -1 = k.
Hence, the formula for N(t) may be written
N(&) = 2000¢".
Since N(10) = 1500, we may determine ¢ as follows:

1500 = 2000¢1  let r = 10 in N(z)

% = ¢! isolate the exponential expression
10c = In % change to logarithmic form
= 11,3 Vi
c=1lnz divide by 10 (continued)



318 CHAPTER 5 INVERSE,

EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Finally, since the half-life corresponds to the time 7 at which N(¢) is equal

to 1000, we have the following:

1000 = 2000e“
1

z:ect
ct=ln%

1 1
t=—In—
c 2
L1
=TI~
oy 2
~ 24 days

let N(r) = 1000
isolate the exponential expression

change to logarithmic form

divide by ¢

‘_.
B L)

c=1n

S

approximate 7/

5.4

Exercises

Exer. 1-2: Change to logarithmic form.

1(a) 4 =64 (b) 4% =L
(d) 33=4—1 e) 57,:a+b
a
2 (a) 3° =243 (b) 374 =&
(d) 7* = 100p (e) 372 = %

Exer. 3—4: Change to exponential form.
3 (a) log,32 =5
(c) log,r=p (d) logs (x

(e) logym =3x + 4
4 (a) log; 81 = 4 (b) logs 35

(c) log,w =gq

(e) logap=5—x

(b) logs 555 =

(c) t'=s
(f) (0.7 =53
(c) er=4d

() 09y =1

-5

+2)=5

(f) log,512 =3

= —4

(d) logg(2x —1) =3

3
(f) log,343 =73

Exer. 5-10: Solve for ¢ using logarithms with base a.

52a" =15 6 3a* =10
7 K=H—- Ca 8 F=D+ Ba
9 A=Ba"+D 10 L = Ma™ — P

Exer. 11-12: Change to logarithmic form.
11 (a) 10° = 100,000 (b) 107* = 0.001

(c) 1=y +1 (d)y & =p
(e) e#=3—x

12 (a) 10* = 10,000 (b) 107 = 0.01
(c) 107 =38z (d) e*=D

(e) M =x+2

Exer. 13-14: Change to exponential form.
13 (a) logx = 50 (b) logx = 20¢

(c) nx=0.1 (d) Inw =4 + 3x

(e) In(z—2) =1
14 (a) logx = -8 (b) logx=y—2
(c) nx=1 (d) Inz=7+x

(e) In(t—5) =12



Exer. 15-16: Find the number, if possible.

15 (a) logs1 (b) logs3 (c)
(d) log; 72 (e) 3be® ()
(9) 10g4%

16 (a) logg 1 (b) loge 9 (c)
(d) logs 6’ (e) 5tes ()

(g9) log, 128

Exer. 17-18: Find the number.
17 (a) 103 (b) log10°

(d) log 0.0001

(g) 62+1n 3

18 (a) 10%¢7

(e) eln 2

(b) log107®
(d) log 0.001

(g) el+]n 5

(e) eln 8

Exer. 19-34: Solve the equation.
19 logs x = log, (8 — x)

20 logs (x + 4) = logs (1 — x)
21 logs (x — 2) = logs (3x + 7)
22 log; (x — 5) = log; (6x)

23 log x* = log (—3x — 2)

24 Inx>=1n (12 — x)

25 logs(x —4) =2

26 log, (x —5) =4

()

()
(f)

27

29

31

33

3

logyx = % 28 logsx = —3

Inx?= -2 30 logx? = —4
32 e =02

eZlnx — 9

etnd =27 34 ¢t"? = 0.25

log, (—2)
logs 125

logs 0
log; 243

log 100

Ine

log 100,000

Ine

2/3
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35 Sketch the graph of fif a = 4:

(a) f(x) = log,x

() f(x) = 2log, x

(e) f(x) = (log,x) +2
(9) f&) = (log,x) — 2
(i) f(x) = log, (—=x)
(k) f(x) = [log, x|

(b) f(&) = —log, x
(d) f(x) = log, (x +2)
(f) f(x) = log, (x = 2)
(h) f() = log, | x|
(i) f(x) = log, (3 = x)
(1) fG&x) = logy, x

36 Work Exercise 35 ifa = 5.

Exer. 37-42: Sketch the graph of f.

37 f(x) = log (x + 10) 38 f(x) = log (x + 100)
39 f(x) = In|x] 40 f(x) =1In|x — 1]

41 f(x) =lne + x 42 f(x) =In(e + x)

Exer. 43-44: Find a logarithmic function of the form
fx) = log, x for the given graph.

43 y

©,2)
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Exer. 45-50: Shown in the figure is the graph of a function f.

Express f(x) in terms of F.

y

F(x) = log, x

48

x=—3:

Exer. 51-52: Approximate x to three significant figures.

51 (a) logx = 3.6274
(c) logx = —1.6253
(e) Inx = 0.05

52 (a) logx = 1.8965
(c) logx = —2.2118

(e) Inx =095

(b) log x = 0.9469
(d) Inx =23

(f) mnx=—1.6
(b) log x = 4.9680
(d) Inx =37

(f) nx= -5



53

54

55

56

57

58

59

60

Finding a growth rate Change f(x) = 1000(1.05)* to an ex-
ponential function with base e and approximate the growth
rate of f.

Finding a decay rate Change f(x) = 100(%)*' to an expo-
nential function with base e and approximate the decay rate

of f.

Radium decay If we start with g, milligrams of radium,
the amount g remaining after ¢ years is given by the formula
q = qo(2)"%°_ Express ¢ in terms of ¢ and .

Bismuth isotope decay The radioactive bismuth isotope
219Bi disintegrates according to Q = k(2)"", where k is a
constant and ¢ is the time in days. Express ¢ in terms of Q
and k.

Electrical circuit A schematic of a simple electrical circuit
consisting of a resistor and an inductor is shown in the fig-
ure. The current / at time ¢ is given by the formula
1 = 20e ®" where R is the resistance and L is the induc-
tance. Solve this equation for 7.

Exercise 57

Y Y Y\
L

Electrical condenser An electrical condenser with initial
charge Q, is allowed to discharge. After # seconds the charge
Qis Q = Qye", where k is a constant. Solve this equation
for 1.

Richter scale Use the Richter scale formula R = log (I/1,)
to find the magnitude of an earthquake that has an intensity

(a) 100 times that of I,
(b) 10,000 times that of I,
(c) 100,000 times that of 1,

Richter scale Refer to Exercise 59. The largest recorded
magnitudes of earthquakes have been between 8 and 9 on
the Richter scale. Find the corresponding intensities in
terms of /.

61

62

63

64

65

66

67
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Soundintensity The loudness of a sound, as experienced by
the human ear, is based on its intensity level. A formula used
for finding the intensity level « (in decibels) that corre-
sponds to a sound intensity I is a = 10 log (I/1,), where I,
is a special value of I agreed to be the weakest sound that can
be detected by the ear under certain conditions. Find « if

(a) Iis 10 times as great as I,
(b) Iis 1000 times as great as I,

(c) Iis 10,000 times as great as I, (This is the intensity
level of the average voice.)

Sound intensity Refer to Exercise 61. A sound intensity
level of 140 decibels produces pain in the average human
ear. Approximately how many times greater than /, must /
be in order for « to reach this level?

U.S. population growth The population N(f) (in millions)
of the United States ¢ years after 1980 may be approximated
by the formula N(f) = 231e"*'®. When will the population
be twice what it was in 1980?

Population growth in India The population N(f) (in mil-
lions) of India 7 years after 1985 may be approximated by
the formula N(r) = 766¢°°"*¥, When will the population
reach 1.5 billion?

Children’s weight The Ehrenberg relation
InW=1n24 + (1.84)h

is an empirically based formula relating the height / (in me-
ters) to the average weight W (in kilograms) for children 5
through 13 years old.

(a) Express W as a function of & that does not contain In.

(b) Estimate the average weight of an 8-year-old child who
is 1.5 meters tall.

Continuously compounded interest If interest is com-
pounded continuously at the rate of 6% per year, approxi-
mate the number of years it will take an initial deposit of
$6000 to grow to $25,000.

Air pressure The air pressure p(h) (in 1b/in?) at an altitude
of h feet above sea level may be approximated by the for-
mula p(h) = 14.7¢700000385k = At approximately what alti-
tude £ is the air pressure

(a) 101b/in*?

(b) one-half its value at sea level?
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68 Vapor pressure A liquid’s vapor pressure P (in Ib/in?), a
measure of its volatility, is related to its temperature 7
(in °F) by the Antoine equation

b
logP=a+——/,
c+T

where a, b, and ¢ are constants. Vapor pressure increases
rapidly with an increase in temperature. Express P as a
function of 7.

69 Elephant growth The weight W (in kilograms) of a female
African elephant at age 7 (in years) may be approximated by

W = 2600(1 — 0.51e~07%)3,
(a) Approximate the weight at birth.

(b) Estimate the age of a female African elephant weighing
1800 kilograms by using (1) the accompanying graph
and (2) the formula for W.

Exercise 69

A W (kg)

3000 T

2000

1000

| | | | | | | | >
T T T T T T T T »

10 20 30 40 50 60 70 8 t (years)

70 Coal consumption A country presently has coal reserves of
50 million tons. Last year 6.5 million tons of coal was con-
sumed. Past years’ data and population projections suggest
that the rate of consumption R (in million tons/year) will
increase according to the formula R = 6.5¢%%%, and the total
amount 7 (in million tons) of coal that will be used in 7 years
is given by the formula 7 = 325(¢*% — 1). If the country
uses only its own resources, when will the coal reserves be
depleted?

It

72

73

74

75

Urban population density An urban density model is a for-
mula that relates the population density D (in thousands/
mi?) to the distance x (in miles) from the center of the city.
The formula D = ae™" for the central density a and coeffi-
cient of decay b has been found to be appropriate for many
large U.S. cities. For the city of Atlanta in 1970, a = 5.5
and b = 0.10. At approximately what distance was the
population density 2000 per square mile?

Brightness of stars Stars are classified into categories of
brightness called magnitudes. The faintest stars, with light
flux L,, are assigned a magnitude of 6. Brighter stars of light
flux L are assigned a magnitude m by means of the
formula

L
m=6—25log —.
Lo
(a) Find mif L = 10°L,,
(b) Solve the formula for L in terms of m and L.

Radioactive iodine decay Radioactive iodine "' is fre-
quently used in tracer studies involving the thyroid gland.
The substance decays according to the formula
A(r) = Aya™!, where A, is the initial dose and ¢ is the time in
days. Find a, assuming the half-life of '3'I is 8 days.

Radioactive contamination Radioactive strontium **Sr has
been deposited in a large field by acid rain. If sufficient
amounts make their way through the food chain to humans,
bone cancer can result. It has been determined that the ra-
dioactivity level in the field is 2.5 times the safe level S. *°Sr
decays according to the formula

A(t) = A0670.0239t’

where A, is the amount currently in the field and ¢ is
the time in years. For how many years will the field be
contaminated?

Walking speed In a survey of 15 cities ranging in popula-
tion P from 300 to 3,000,000, it was found that the average
walking speed S (in ft/sec) of a pedestrian could be ap-
proximated by S = 0.05 + 0.86 log P.

(a) How does the population affect the average walking
speed?

(b) For what population is the average walking speed
5 ft/sec?



5.5 Properties of Logarithms 323

76 Computer chips For manufacturers of computer chips, it is 79 Cholesterol level in women Studies relating serum choles-
important to consider the fraction F of chips that will fail terol level to coronary heart disease suggest that a risk fac-
after ¢ years of service. This fraction can sometimes be ap- tor is the ratio x of the total amount C of cholesterol in the
proximated by the formula F' = 1 — e™“, where c is a posi- blood to the amount H of high-density lipoprotein choles-
tive constant. terol in the blood. For a female, the lifetime risk R of hav-

ing a heart attack can be approximated by the formula
(a) How does the value of ¢ affect the reliability of a chip?
R=207Inx— 2.04 ided =R=1.
(b) If ¢ = 0.125, after how many years will 35% of the 071Inx 04 provided 0
chips have failed?
For example, if R = 0.65, then there is a 65% chance that a
woman will have a heart attack over an average lifetime.

Exer. 77-78: Approximate the function at the value of x to Calculate R for a female with C = 242 and H = 78.

four decimal places.

77 (@) f&)=Inx+ 1) +e, x=2 80 Cholesterol level in men Refer to Exercise 79. For a

male, the risk can be approximated by the formula
(log x)* — log x R = 1.361Inx — 1.19. Calculate R for a male with C = 287
(b) g(x) = 74 , X = 3.97 and H = 65.
78 (a) f(x) =log x>+ 1) — 107, x=1.95
x—34
b = , =0.55
() 80 =174 *
5 5 In the preceding section we observed that log, x can be interpreted as an
[ ]

exponent. Thus, it seems reasonable to expect that the laws of exponents can
Properties of Loaarithms be used to obtain corresponding laws of logarithms. This is demonstrated in
P f 9 the proofs of the following laws, which are fundamental for all work with

logarithms.

Laws of Logarithms If u and w denote positive real numbers, then
(1) log, (uw) = log, u + log, w

(2) log, <i> = log, u — log, w
w

3) log, (u°) = clog, u for every real number ¢
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W Warning! \N

PROOFS For all three proofs, let
r = log, u and s = log, w.
The equivalent exponential forms are
u=d and w = a'.

We now proceed as follows:

(1) uw = a'a’ definition of u and w
uw = a™* law 1 of exponents
log, (uw) = r + s change to logarithmic form
log, (uw) = log, u + log, w  definition of r and s
u a . .
2) — = definition of u and w
w  a
u ~
—=a* law 5(a) of exponents
w

change to logarithmic form

log, <

s =
N————
I
~
[

[}

u
log, <— = log, u — log, w  definition of r and s
w
3) u = (a"° definition of u
u’ = a” law 2 of exponents
log, (u) = cr change to logarithmic form
log, (u€) = clog, u definition of r V4

The laws of logarithms for the special cases a = 10 (common logs) and
a = e (natural logs) are written as shown in the following chart.

Common logarithms Natural logarithms

1) log (uw) = log u + logw 1) In(uw) =lnu + Inw

@) log <i> =logu — logw | (2) In <i> =lnu—Inw
w w

3) log (u°) = clog u B)Inw)=clnu

As indicated by the following warning, there are no laws for expressing
log, (u + w) or log, (u — w) in terms of simpler logarithms.

log, (u + w) # log,u + log, w

log, (u — w) # log,u — log, w

The following examples illustrate uses of the laws of logarithms.
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EXAMPLE 1 Using laws of logarithms

3
Express loga—zy in terms of logarithms of x, y, and z.
Z

SOLUTION  We write \Vy as y"? and use laws of logarithms:

3

Vy
ZZ

X

log, = log, (x*y"?) — log, 2 law 2

= log, X + log, y"* — log, 2>  law |

= 310gax+%10gay —2log,z law3

Note that if a term with a positive exponent (such as x?) is in the numerator of
the original expression, it will have a positive coefficient in the expanded form,
and if it is in the denominator (such as z?), it will have a negative coefficient
in the expanded form. /

EXAMPLE 2 Using laws of logarithms

Express as one logarithm:

%loga (x2—=1) — log,y — 4log, z

SOLUTION  We apply the laws of logarithms as follows:
§loga (x2—=1) — log,y — 4log, z
= log, (x> — 1)'® — log,y — log, z* law3
=log, Vx* — 1 — (log, y + log, z*) algebra

= log, Vx> — 1 — log, (yz*) law 1
- Va1
= logaT law 2 /

EXAMPLE 3 Solving a logarithmic equation
Solve the equation logs (2x + 3) = logs 11 + logs 3.
SOLUTION

logs (2x + 3) = logs 11 + logs 3 given

logs 2x + 3) = logs (11 - 3) law 1 of logarithms
2x +3 =33 logarithmic functions are one-to-one
x =15 solve for x

Check x = 15 LS: logs (2 - 15 + 3) = logs 33
RS: logs 11 + logs 3 = logs (11 - 3) = logs 33

Since logs 33 = logs 33 is a true statement, x = 15 is a solution. V4
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’/

1/

The laws of logarithms were proved for logarithms of positive real num-
bers u and w. If we apply these laws to equations in which u# and w are ex-
pressions involving a variable, then extraneous solutions may occur. Answers
should therefore be substituted for the variable in # and w to determine
whether these expressions are defined.

EXAMPLE 4 Solving a logarithmic equation
Solve the equation log, x + log, (x + 2) = 3.
SOLUTION
log, x + log, (x +2) =3 given
log, [x(x +2)] =3 law 1 of logarithms
x(x +2) = 2%  change to exponential form
x2+2x—8=0 multiply and set equal to 0
x=—2)x+4) =0 factor
x—2=0, x+4=0 zero factor theorem

x =2, x = —4 solve for x

Check x =2 1LS: log,2 + log, 2 +2) =1 + log, 4
=1+log2*=1+2=3
RS: 3

Since 3 = 3 is a true statement, x = 2 is a solution.
Check x = —4 LS: log, (—4) + log, (=4 + 2)

Since logarithms of negative numbers are undefined, x = —4 is not a solution.

7/

EXAMPLE 5 Solving a logarithmic equation
Solve the equation In (x + 6) —In 10 = In (x — 1) — In 2.

SOLUTION
In(x+6) —In(x—1) =In10 — In2 rearrange terms
x+6 10 )
In =In— law 2 of logarithms
x—1 2
x+ 6 )
=5 In is one-to-one
x—1
x+6=5%—15 multiply by x — 1
_ 1
X =7 solve for x

Check Since both In (x + 6) and In (x — 1) are defined at x = % (they are
logarithms of positive real numbers) and since our algebraic steps are correct,
it follows that % is a solution of the given equation. /



Figure 1

v = log;(81)
=4 + log;x
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EXAMPLE 6 Shifting the graph of a logarithmic equation
Sketch the graph of y = log; (81x).
SOLUTION  We may rewrite the equation as follows:
vy = logs (81x) given
= log; 81 + logz x law 1 of logarithms
= log; 3* + logs x 81 = 3¢
=4 + logs x log, a* = x

Thus, we can obtain the graph of y = logs; (81x) by vertically shifting the
graph of y = log; x in Figure 2 in Section 5.4 upward four units. This gives us
the sketch in Figure 1. /

EXAMPLE 7 Sketching graphs of logarithmic equations
Sketch the graph of the equation:

(@) y =logs(x*)  (b) y=2log;x

SOLUTION

(a) Since x* = |x

2, we may rewrite the given equation as
y = logs | x|~

Using law 3 of logarithms, we have

y = 2log; |x|.

We can obtain the graph of y = 2 logs | x| by multiplying the y-coordinates of
points on the graph of y = log; | x| in Figure 4 of Section 5.4 by 2. This gives
us the graph in Figure 2(a).

Figure 2
(@ (b)

y = log(x?)

(b) If y = 2log; x, then x must be positive. Hence, the graph is identical to
that part of the graph of y = 2 log; | x| in Figure 2(a) that lies to the right of
the y-axis. This gives us Figure 2(b). /
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EXAMPLE 8 Arelationship between selling price and demand

In the study of economics, the demand D for a product is often related to its
selling price p by an equation of the form
log, D = log, ¢ — klog, p,

where a, ¢, and k are positive constants.
(a) Solve the equation for D.
(b) How does increasing or decreasing the selling price affect the demand?
SOLUTION
(a) log, D =log,c — klog,p given

log, D = log, ¢ — log, p*  law 3 of logarithms

c
log, D = log, — law 2 of logarithms
4
C .
D = E log, is one-to-one

(b) If the price p is increased, the denominator p* in D = ¢/p* will also in-
crease and hence the demand D for the product will decrease. If the price is

decreased, then p* will decrease and the demand D will increase. /7
5.5 Exercises
Exer. 1-8: Express in terms of logarithms of x, y, z, or w. 11 2log, x + iloga (x —2) — 5log, (2x + 3)
1 (a) logs (x2) (b) loga (/%) (c) logsVz
12 51log, x — %logu Bx —4) — 3log, (5x + 1)
2 (a) logs (xyz) (b) logs (xz/y) (c) logs Vy
w yiw? 13 log (x%y?) — 2log xVy — 3 log <x>
3 loga > 4 loga i3 y
vz x4z’ \ 1
Yz Vy 14 210gL7310gy+f10gx“y2
5 log 6 log— X 2
xVy ¥V
15 Iny3 + %ln (x%°) —51Iny
X y4
L e 8 Inxy/7s 16 2Inx — 41n (1/y) — 3 In (xy)

Exer. 9-16: Write the expression as one logarithm.

9 (a) logsx + log; (5y) (b) logs (2z) — logs x

(c) 5logszy

10 (a) log, (3z) + logy x (b) logy x — log, (7y)

(c) % log, w

Exer. 17-34: Solve the equation.
17 logs (2x — 3) = loge 12 — logs 3

18 log, (3x + 2) = log, 5 + log, 3
19 2log;x = 3logs 5
20 3log,x =2log, 3
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21 logx —log(x + 1) =3log4 48 y
22 log (x +2) — logx = 21log4

23 In(—4—x)+In3=In(2 —x)

24 lnx+ln(x+6):%ln9 X
25 log, (x + 7) + log,x =3
26 logg (x + 5) + loggx = 2
27 logs (x + 3) + logs (x +5) =1
28 log; (x — 2) + logz (x — 4) =2 49 v
29 log(x +3)=1—log(x —2)
30 log (57x) = 2 + log (x — 2)
31 Inx=1—-—In(kx+2)
2mmnx=1+Inkx+1)
33 logs (x — 2) = log; 27 — logs (x — 4) — 5les! X
34 log, (x + 3) = log, (x — 3) + logz 9 + 4lo3
Exer. 35-46: Sketch the graph of f. 50 y
35 f(x) = logs; (3x) 36 f(x) = log, (16x)
37 f(x) = 3logs x 38 f(x) = 1logsx
39 f(x) = log; (x*) 40 f(x) = log, (x?)
41 f(x) = log, (x*) 42 f(x) = logs (x*) -
43 f(x) = log, Vx 44 f(x) = log, Vx

1 1
45 f(x) = logs | — 46 f(x) = log, | —

* * 51 Volume and decibels When the volume control on a stereo

system 1is increased, the voltage across a loudspeaker
Exer. 47-50: Shown in the figure is the graph of a func- changes from V, to V,, and the decibel increase in gain is
tion f. Express f(x) as one logarithm with base 2. given by
47 y
V.
db = 20log —.
Vi
Find the decibel increase if the voltage changes from 2 volts
- to 4.5 volts.

52 Volume and decibels Refer to Exercise 51. What voltage
ratio k is needed for a +20 decibel gain? for a +40 decibel
gain?
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53

54

55

56

57

Pareto’s law Pareto’s law for capitalist countries states that
the relationship between annual income x and the number y
of individuals whose income exceeds x is

logy = log b — klogx,

where b and k are positive constants. Solve this equation
for y.

Price and demand If p denotes the selling price (in dollars)
of a commodity and x is the corresponding demand (in
number sold per day), then the relationship between p and x
is sometimes given by p = pye”*, where p, and a are pos-
itive constants. Express x as a function of p.

Wind velocity If v denotes the wind velocity (in m/sec) at a
height of z meters above the ground, then under certain con-
ditions v = ¢ In (z/z,), where c is a positive constant and z,
is the height at which the velocity is zero. Sketch the graph
of this equation on a zv-plane for ¢ = 0.5 and z, = 0.1 m.

Eliminating pollution If the pollution of Lake Erie were
stopped suddenly, it has been estimated that the level y of
pollutants would decrease according to the formula
y = yoe ¥ where ¢ is the time in years and y, is the pol-
lutant level at which further pollution ceased. How many
years would it take to clear 50% of the pollutants?

Reaction to a stimulus Let R denote the reaction of a sub-
ject to a stimulus of strength x. There are many possibilities
for R and x. If the stimulus x is saltiness (in grams of salt per
liter), R may be the subject’s estimate of how salty the so-
lution tasted, based on a scale from 0 to 10. One relation-
ship between R and x is given by the Weber-Fechner
formula, R(x) = a log (x/x,), where a is a positive constant
and x, is called the threshold stimulus.

5.6

Exponential and
Logarithmic Equations

58

59

60

(a) Find R(xo).
(b) Find a relationship between R(x) and R(2x).

Electron energy The energy E(x) of an electron after pass-
ing through material of thickness x is given by the equation
E(x) = Eye 0, where E, is the initial energy and x, is the
radiation length.

(a) Express, in terms of E;, the energy of an electron after
it passes through material of thickness x;.

(b) Express, in terms of x,, the thickness at which the elec-
tron loses 99% of its initial energy.

0zone layer One method of estimating the thickness of the
ozone layer is to use the formula

Inly — In1 = kx,

where [ is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, / is the in-
tensity of the same wavelength after passing through a layer
of ozone x centimeters thick, and k is the absorption con-
stant of ozone for that wavelength. Suppose for a wave-
length of 3176 X 107% cm with k = 0.39, I,/ is measured
as 1.12. Approximate the thickness of the ozone layer to the
nearest 0.01 centimeter.

Ozone layer Refer to Exercise 59. Approximate the per-
centage decrease in the intensity of light with a wavelength
of 3176 X 107* centimeter if the ozone layer is 0.24 cen-
timeter thick.

In this section we shall consider various types of exponential and logarithmic
equations and their applications. When solving an equation involving expo-
nential expressions with constant bases and variables appearing in the expo-
nent(s), we often equate the logarithms of both sides of the equation. When we
do so, the variables in the exponent become multipliers, and the resulting

equation is usually easier to solve. We will refer to this step as simply “take

log of both sides.”

EXAMPLE 1

Solving an exponential equation

Solve the equation 3* = 21.
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SOLUTION 3 =21 given
log (3*) = log 21 take log of both sides
xlog3 =log21 law 3 of logarithms

log 21 o
x = —— divide by log 3
log 3
We could also have used natural logarithms to obtain
In 21
X = .
In3

Using a calculator gives us the approximate solution x =~ 2.77. A partial
check is to note that since 3> = 9 and 3* = 27, the number x such that 3* = 21
must be between 2 and 3, somewhat closer to 3 than to 2. 7/

We could also have solved the equation in Example 1 by changing the
exponential form 3* = 21 to logarithmic form, as we did in Section 5.4,
obtaining

x = log; 21.

This is, in fact, the solution of the equation; however, since calculators typi-
cally have keys only for log and In, we cannot approximate log; 21 directly.
The next theorem gives us a simple change of base formula for finding log, u
if u > 0 and b is any logarithmic base.

Theorem: Change
of Base Formula

If u > 0 and if a and b are positive real numbers different from 1, then

PROOF We begin with the equivalent equations
w = log, u and b =u
and proceed as follows:
b =u given
log, b” = log, u take log, of both sides

wlog, b = log, u law 3 of logarithms
_log,u

w = divide by log, b
log, b

Since w = log, u, we obtain the formula. V4
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The following special case of the change of base formula is obtained by
letting u = a and using the fact that log,a = 1:

1
log, b

log,a =

The change of base formula is sometimes confused with law 2 of loga-
rithms. The first of the following warnings could be remembered with the
phrase “a quotient of logs is not the log of the quotient.”

log, u s | u log, u
08, 73
log, b 8% log, b

W Warning! \N

# log, (u — b)

The most frequently used special cases of the change of base formula are
those for ¢ = 10 (common logarithms) and a = e (natural logarithms), as
stated in the next box.

Special Change _logiou logu

. log.u Inu
of Base Formulas (@) logyu = logob logh

2) 1 = =—
@) log,u log.b Inb

Next, we will rework Example 1 using a change of base formula.

EXAMPLE 2 Using a change of base formula
Solve the equation 3* = 21.
SOLUTION  We proceed as follows:

3 =121 given
x =log;21 change to logarithmic form
log 21 .
= special change of base formula 1
log 3
Another method is to use special change of base formula 2, obtaining
In 21
x = .
In3 7/

Logarithms with base 2 are used in computer science. The next example
indicates how to approximate logarithms with base 2 using change of base
formulas.

EXAMPLE 3 Approximating a logarithm with base 2

Approximate log, 5 using

(a) common logarithms (b) natural logarithms
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SOLUTION Using special change of base formulas 1 and 2, we obtain the
following:

log 5
log 2

@a) log,5 = ~ 2322

In5
1 = —= 27322
(b) log, 5 ) 3

EXAMPLE 4 Solving an exponential equation

Solve the equation 5***! = 672,

SOLUTION We can use either common or natural logarithms. Using com-
mon logarithms gives us the following:

52l = g2 given
log (5**!) = log (67?) take log of both sides
(2x + 1)1log5 = (x — 2)log 6 law 3 of logarithms

2xlog5 + log5 = xlog6 — 2log6  multiply
2xlog5 — xlog6 = —log5 — 2log 6  get all terms with x on one side
x(log 5* — log 6) = —(log 5 + log 6%) factor, and use law 3 of logarithms
_ _log(5-36) solve for x, and use laws of

log % logarithms

Substituting —log 180/log % =~ —3.64 for x in both 5*"! and 6"~ gives us
the approximate value 0.00004. We deduce from this that the graphs of
y = 5%"1and y = 6° % intersect at approximately (—3.64, 0.00004). V4

EXAMPLE 5 Solving an exponential equation

Solve the equation _T = 3.
5x — 5*){ )
SOLUTION T=3 given
55=57"=6 multiply by 2
1
5 — ; = definition of negative exponent

1
5%(5%) — ;(5*) = 6(5*) multiply by the lcd, 5%

5?—-6(59—-1=0 simplify and subtract 6(5%)
(continued)
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Note that (5°)* can be written as 5**.

We recognize this form of the equation as a quadratic in 5° and proceed as

follows:

(592 = 6(5) — 1 =0

5 0T V36+4
2

5=3+ V10

=3+ V10

log 5* = log (3 + \/E)
xlog5 = 10g(3 + \/E)

x=10g(3+\/m)

law of exponents
quadratic formula

simplify
5>0,but3 — VIO <0
take log of both sides

law 3 of logarithms

divide by log 5

log 5
An approximation is x =~ 1.13 . /
EXAMPLE 6 Solving an equation involving logarithms
Solve the equation log Vx = Vog x for x.
SOLUTION logx'® = Viogx Vx = '
%10gx=\/@ log x” = rlogx
é(log x)? = log x square both sides
(logx)> = 91logx  multiply by 9
(logx)*> = 9logx =0 make one side 0
(logx)logx —9) =0 factor out log x
logx =0, logx —9=0 set each factor equal to O
logx =9 add 9
x=10=1 or x=10 logjgx = a < x = 10°
Check x=1 LS: log V1=1logl=0
RS: Viog T = V0 = 0
Check x =10 LS: log V10° = log 10° = 3
RS: Viog 10° = V9 =3
The equation has two solutions, 1 and 1 billion. V4

The function y = 2/(e* + e7¥) is called the hyperbolic secant function.
In the next example we solve this equation for x in terms of y. Under suitable

restrictions, this gives us the inverse function.



Figure 1
o _ 2
y = g(x) - e+ e
0<y<l1
x<0

/\ y
1= VI —y?
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EXAMPLE 7 Finding an inverse hyperbolic function

Solve y = 2/(e* + ¢ for x in terms of y.

2

g given
e e

SOLUTION y =

yet + ye ™ =12 multiply by e* + ¢~

ye* + lx =2 definition of negative exponent
e

y — 1 X

ye'(e¥) + ;(e") = 2(e%) multiply by the lcd, e

y(e)? —2e*+y=0 simplify and subtract 2¢*

We recognize this form of the equation as a quadratic in e* with coefficients

a=1y,b = —2,and ¢ = y. Note that we are solving for e*, not x.
. —(=2) = V(=27 = 4)() .
et = quadratic formula
2(y)
2 = V4 — 4y? o
= simplify
2y
AY 0 2+ VAVT —y?
Y= = a5 x = 5 u factor out V4
0<y=1 Y
x=0 1+ -y

cancel a factor of 2

In take In of both sides

X y

For the blue curve y = f(x) in Figure 1, the inverse function is

Figure 2
1+ V1—x*
— =W =
42
y :f*l(x) =1In %-- X
0<x=1 shown in blue in Figure 2. Notice the domain and range rela-
y=0 —+ tionships. For the red curve y = g(x) in Figure 1, the inverse
function is
1 | 1 L.
T T T e
x 1—V1—x2
_ ) =g¢g'x)=ln——,
y=g’1(x)=ln %“ Y g X
0<x<l1 . . . . . .
* shown in red in Figure 2. Since the hyperbolic secant is not
y<0 T one-to-one, it cannot have one simple equation for its inverse.
/
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The inverse hyperbolic secant is part of the equation of the curve called a
tractrix. The curve is associated with Gottfried Wilhelm von Leibniz’s
(1646-1716) solution to the question “What is the path of an object dragged
along a horizontal plane by a string of constant length when the end of the
string not joined to the object moves along a straight line in the plane?”

EXAMPLE 8 Approximating light penetration in an ocean

The Beer-Lambert law states that the amount of light / that penetrates to a
depth of x meters in an ocean is given by I = Iyc*, where 0 < ¢ < 1 and I, is
the amount of light at the surface.

(a) Solve for x in terms of common logarithms.

(b) Ifc = %, approximate the depth at which I = 0.01/. (This determines the
photic zone where photosynthesis can take place.)

SOLUTION
@) I=Iyc* given
! : : :
I_ =c" isolate the exponential expression
0
I o
x = log, I change to logarithmic form
0
log (/1
= L/O) special change of base formula 1
log ¢

(b) Letting 7 = 0.01/; and ¢ = i in the formula for x obtained in part (a),
we have

x=——"""-

substitute for / and ¢

log i
log (0.01) _
= ———— cancel /;; law 2 of logarithms
log 1 — log 4
log 1072 .
= m property of logarithms
= 2 log 10" = x
—log 4
2 -
= log r simplify

An approximation is x = 3.32 m. 7/
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EXAMPLE 9 Comparing light intensities

If a beam of light that has intensity /, is projected vertically downward into
water, then its intensity I(x) at a depth of x meters is I(x) = I,e™'* (see
Figure 3). At what depth is the intensity one-half its value at the surface?

SOLUTION At the surface, x = 0, and the intensity is

I(O) = I()eo
= I().

Figure 3

T

X meters

A

We wish to find the value of x such that I(x) = %IO. This leads to the following:

I(x) = %IO desired intensity
Joe ¥ = %IO formula for 7(x)
et =1 divide by I, (I, # 0)

—1.4x =1In % change to logarithmic form

X = divide by —1.4

An approximation is x = 0.495 m. /
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EXAMPLE 10 A logistic curve

A logistic curve is the graph of an equation of the form
_ k

1 + be™’
where k, b, and ¢ are positive constants. Such curves are useful for describing
a population y that grows rapidly initially, but whose growth rate decreases
after x reaches a certain value. In a famous study of the growth of protozoa by
Gause, a population of Paramecium caudata was found to be described by a
logistic equation with ¢ = 1.1244, k = 105, and x the time in days.

y

(a) Find b if the initial population was 3 protozoa.

(b) In the study, the maximum growth rate took place at y = 52. At what time
x did this occur?

(c) Show that after a long period of time, the population described by any lo-
gistic curve approaches the constant k.

SOLUTION
(a) Letting ¢ = 1.1244 and k = 105 in the logistic equation, we obtain
B 105
Y T e
We now proceed as follows:
105 105
= = y =3 whenx =0
1+be® 1+0b
+
1+b=235 multiply by 1Tb
b =34 solve for b

(b) Using the fact that b = 34 leads to the following:

_ 105 o
52 = m let y = 52 in part (a)
i 105 l + 34 —1.1244x
Figure 4 1 + 34e M2 = — multiply by —————
LY 52 52
105+ o l1244r — (15L25 _ 1) . 3L4 — % isolate e—1-1244x
—1.1244x = In % change to logarithmic form
53
y= T _ 55 days divide by —1.1244
50+ —1.1244
() Asx — o, e~ — 0. Hence,
B k - k _ i
; YT l4bes 1+b-0
5 10 X

A sketch of the logistic curve that has equation y = 105/(1 + 34e~"12#) is
shown in Figure 4. V4
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Exer. 1-4: Find the exact solution and a two-decimal-place
approximation for it by using (a) the method of Example 1
and (b) the method of Example 2.

15 = 2 4 =

33 =5 4 (3 =100

Exer. 5-8: Estimate using the change of base formula.
5 logs 6 6 log, 20

7 logy 0.2 8 log(,%
Exer. 9-10: Evaluate using the change of base formula
(without a calculator).
logs 16 log, 243
9 8522 10 &=

logs 4 log; 3
Exer. 11-24: Find the exact solution, using common loga-

rithms, and a two-decimal-place approximation of each so-
lution, when appropriate.

11 3x+4 — 2173)( 12 42x+3 — 5)(72
13 223 = 32 14 3273 = 42x+1
15 27* =8 16 27 =5

17 logx =1 — log (x — 3)

18 log (5x + 1) = 2 + log (2x — 3)

19 log (x> +4) —log (x +2) =2 + log (x — 2)
20 log (x — 4) — log (3x — 10) = log (1/x)

21 55+ 125(57) = 30 22 3(3%) +9(3™) =28

23 4 =34 =8 24 2 — 6027 = 6

Exer. 25-32: Solve the equation without using a calculator.
25 log (x?) = (log x)* 26 log Vx = Vlog x
28 log VX’ —9=2

30 log (x%) = (log x)*

27 log (logx) = 2
29 xVieer = 108

31 e+ 25— 15=0 32 e+ 4e =5

Exer. 33-34: Solve the equation.
33 logzx — logy (x +42) =0

34 logyx + loggx = 1

Exer. 35-38: Use common logarithms to solve for x in terms
of y.

S (L (' SR (L ('
Y 2 Y 2

10 — 10~ 10° + 10~

37 y=—— 38y=—"7—

10° + 10~ 10— 10~

Exer. 39—-42: Use natural logarithms to solve for x in terms
of y.

39 y=" 4o y=52"
YT YT

et +e " et — e

4 y= - 42y= -

et —e" et + e

Exer. 43-44: Sketch the graph of f, and use the change of
base formula to approximate the y-intercept.

43 f(x) = log, (x + 3) 44 f(x) = logs (x + 5)

Exer. 45-46: Sketch the graph of f, and use the change of
base formula to approximate the x-intercept.

45 f(x) =4 —3 46 flx) =3 —6

Exer. 47-50: Chemists use a number denoted by pH to de-
scribe quantitatively the acidity or basicity of solutions. By
definition, pH = —log [H*], where [H*] is the hydrogen ion
concentration in moles per liter.

47 Approximate the pH of each substance.
(a) vinegar: [H'] = 6.3 X 107?
(b) carrots: [H"] = 1.0 X 1073
(c) sea water: [H*] = 5.0 X 107°

48 Approximate the hydrogen ion concentration [H*] of each
substance.

(a) apples: pH = 3.0
(b) beer: pH =~ 4.2
(c) milk: pH = 6.6

49 A solution is considered basic if [H"] < 1077 or acidic
if [H*] > 1077, Find the corresponding inequalities involv-
ing pH.

50 Many solutions have a pH between 1 and 14. Find the cor-
responding range of [H*].
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51

52

53

54

55

56

57

Compound interest Use the compound interest formula to
determine how long it will take for a sum of money to
double if it is invested at a rate of 6% per year compounded
monthly.

Compound interest Solve the compound interest formula

r nt
A=P<1 +>
n

for ¢ by using natural logarithms.

Photic zone Refer to Example 8. The most important zone
in the sea from the viewpoint of marine biology is the photic
zone, in which photosynthesis takes place. The photic zone
ends at the depth where about 1% of the surface light pene-
trates. In very clear waters in the Caribbean, 50% of the
light at the surface reaches a depth of about 13 meters. Es-
timate the depth of the photic zone.

Photiczone In contrast to the situation described in the pre-
vious exercise, in parts of New York harbor, 50% of the sur-
face light does not reach a depth of 10 centimeters. Estimate
the depth of the photic zone.

Drug absorption If a 100-milligram tablet of an asthma
drug is taken orally and if none of the drug is present in the
body when the tablet is first taken, the total amount A in the
bloodstream after  minutes is predicted to be

0=tr=10.

A =100[1 — (0.9Y] for

(a) Sketch the graph of the equation.

(b) Determine the number of minutes needed for 50 mil-
ligrams of the drug to have entered the bloodstream.

Drug dosage A drug is eliminated from the body through
urine. Suppose that for a dose of 10 milligrams, the amount
A(f) remaining in the body ¢ hours later is given by
A(7) = 10(0.8)" and that in order for the drug to be effective,
at least 2 milligrams must be in the body.

(a) Determine when 2 milligrams is left in the body.
(b) What is the half-life of the drug?

Genetic mutation The basic source of genetic diversity is
mutation, or changes in the chemical structure of genes. If a
gene mutates at a constant rate m and if other evolutionary
forces are negligible, then the frequency F of the original
gene after 7 generations is given by F = Fy(1 — m)’, where
F, is the frequency at # = 0.

58

59

(a) Solve the equation for 7 using common logarithms.

(b) If m =5 X 107, after how many generations does
F=1F?
240

Employee productivity Certain learning processes may
be illustrated by the graph of an equation of the form
fx) = a + b(1 — e %), where a, b, and ¢ are positive con-
stants. Suppose a manufacturer estimates that a new em-
ployee can produce five items the first day on the job. As the
employee becomes more proficient, the daily production in-
creases until a certain maximum production is reached.
Suppose that on the nth day on the job, the number f(n) of
items produced is approximated by

f(n) =3 + 201 — e O,

(a) Estimate the number of items produced on the fifth
day, the ninth day, the twenty-fourth day, and the
thirtieth day.

(b) Sketch the graph of f from n = 0 to n = 30. (Graphs
of this type are called learning curves and are used
frequently in education and psychology.)

(c) What happens as n increases without bound?

Height of trees The growth in height of trees is frequently
described by a logistic equation. Suppose the height / (in
feet) of a tree at age ¢ (in years) is

Lo 120
1 + 20002

as illustrated by the graph in the figure.
(a) What is the height of the tree at age 10?
(b) At what age is the height 50 feet?

Exercise 59

A h (feet)

100 -

50

t (years)



60 Employee productivity Manufacturers sometimes use em-
pirically based formulas to predict the time required to pro-
duce the nth item on an assembly line for an integer n. If
T(n) denotes the time required to assemble the nth item and
T denotes the time required for the first, or prototype, item,
then typically T(n) = T,n * for some positive constant k.

(a) For many airplanes, the time required to assemble the
second airplane, 7(2), is equal to (0.80)7,. Find the
value of k.

(b) Express, in terms of T, the time required to assemble
the fourth airplane.

(c) Express, in terms of 7(n), the time 7(2n) required to as-
semble the (2n)th airplane.

61 Vertical wind shear Refer to Exercises 67-68 in Sec-
tion 3.3. If v, is the wind speed at height Ay and if v, is the
wind speed at height £, then the vertical wind shear can be
described by the equation

Vo _ (ho)”

Vi h] ’
where P is a constant. During a one-year period in Mon-
treal, the maximum vertical wind shear occurred when
the winds at the 200-foot level were 25 mi/hr while the

winds at the 35-foot level were 6 mi/hr. Find P for these
conditions.

62 Vertical wind shear Refer to Exercise 61. The average ver-
tical wind shear is given by the equation

Vi = Vo

h] - h().

s =

Suppose that the velocity of the wind increases with in-
creasing altitude and that all values for wind speeds taken at
the 35-foot and 200-foot altitudes are greater than 1 mi/hr.
Does increasing the value of P produce larger or smaller
values of s?

Exer. 63-64: An economist suspects that the following data
points lie on the graph of y = ¢2*, where ¢ and k are con-
stants. If the data points have three-decimal-place accuracy,
is this suspicion correct?

63 (0,4), (1, 3.249), (2, 2.639), (3, 2.144)

64 (0, —0.3), (0.5, —0.345), (1, —0.397), (1.5, —0.551),
(2, —0.727)
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Exer. 65-66: It is suspected that the following data points lie
on the graph of y = ¢ log (kx + 10), where ¢ and k are con-
stants. If the data points have three-decimal-place accuracy,
is this suspicion correct?

65 (0, 1.5), (1, 1.619), (2, 1.720), (3, 1.997)
66 (0,0.7), (1, 0.782), (2, 0.847), (3, 0.900), (4, 0.945)

Exer. 67-68: Approximate the function at the value of x to
four decimal places.

67 h(x) = logsx — 2 logg 1.2x; x=53
68 h(x) = 3log; 2x — 1) + 7log, (x + 0.2); x =526

69 Human memory A group of elementary students were taught
long division over a one-week period. Afterward, they were
given a test. The average score was 85. Each week there-
after, they were given an equivalent test, without any review.
Let n(r) represent the average score after 1 = 0 weeks. De-
termine which function best models the situation.

(1) n() = 85¢”

(2) () =70 + 10In(r + 1)
(3) n(t) = 86 — ¢

(4) n(r) =85 —=15In(r + 1)

70 Cooling A jar of boiling water at 212°F is set on a table in a
room with a temperature of 72°F. If 7(¢) represents the tem-
perature of the water after ¢ hours, determine which function
best models the situation.

(1) T(r) = 212 — 50¢
(2) T(t) = 140e™" + 72
(3) T(t) = 212¢"

(

4) T(r) = 72 + 10 In (1407 + 1)
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CHAPTER 5 REVIEW EXERCISES

1 Is f(x) = 2x* — 5 a one-to-one function?

2 The graph of a function f with domain [—3, 3] is shown in
the figure. Sketch the graph of y = f~1(x).

Exercise 2

Exer. 3—-4: (a) Find f~!(x). (b) Sketch the graphs of f and
/7! on the same coordinate plane.

3 f(x) =10 — 15x 4 fx) =9 — 2L, x=0

5 Refer to the figure to determine each of the following:

Exercise 5

(a) s(1)

(b) (fof)(D)

(9 '@
(d) all x such that f(x) = 4

(e) all x such that f(x) > 4

6 Suppose f and g are one-to-one functions such that f(2) = 7,
f(4) = 2, and g(2) = 5. Find the value, if possible.

(@) (gof ) (b) (fog ()
(€ (f7"eg ™) (d) (g7 =f N2
Exer. 7-22: Sketch the graph of f.

7 fl) =32 8 flv = (3)
9 fl)=(5)" 10 f(x) =37
11 f(x) =37 12 fx)=1-3~
13 f(x) = e 1 f(x) = ie
15 f(x) = e*2 16 f(x) = &

17 f(x) = loge x 18 f(x) = logs (36x)
19 f(x) = log, (x?)

21 f(x) = log, (x + 4)

20 f(x) = log, Vx
22 f(x) = log, 4 — x)

Exer. 23-24: Evaluate without using a calculator.

23 (a) logzﬁ (b) log, 1 (c) Ine
(d) 6'ozet (e) log 1,000,000 (f) 1031e2
(9) logs2

24 (a) logs V5 (b) logs 1 (c) log 10
(d) en? (e) loglog 10" (f) e
(9) logy3

Exer. 25-44: Solve the equation without using a calculator.
25 2% =1 26 8- (5) P =4 (30
27 log Vx = log (x — 6) 28 logg(x—5)=%
29 logy (x + 1) = 2 + logs (3x — 2)
302In(x+3) —In(x+1)=3In2

31 In(x+2) =Inée">—Inx 32 logVx+ 1 =%
3327 =6 34 3%9 =7
35 3H3 = g+l

36 log; (3x) = logz x + log; (4 — x)

37 log, x = Vlog, x

39 102ler =5

38 ex+1n4 = 3¢*

40 e (x+1) — 3



41 XA(—2xe™) + 2xe =0 42 e+ 2 =8¢
43 (a) logx*> =log (6 —x) (b) 2logx = log (6 — x)
44 (a) In(e’)* =16 (b) Ine") =16

45 Express log x* Vy?/z in terms of logarithms of x, y, and z.

46 Express log (x?/y’) + 4logy — 6log Vxy as one

logarithm.

47 Find an exponential function that has y-intercept 6 and
passes through the point (1, 8).

48 Sketch the graph of f(x) = log;(x + 2).

Exer. 49-50: Use common logarithms to solve the equation
for x in terms of y.

1 1

49 y=—-— Oy=—""--—
YT 10T 10 R TIOT
Exer. 51-52: Approximate x to three significant figures.

51 (a) x =1In6.6 (b) logx = 1.8938
() Inx = —0.75

52 (a) x =log 8.4 (b) logx = —2.4260

(c) Inx =1.8

Exer. 53—-54: (a) Find the domain and range of the function.
(b) Find the inverse of the function and its domain
and range.

53 y =log, (x + 1) 54 y=2%*—2

55 Bacteria growth The number of bacteria in a certain cul-
ture at time 7 (in hours) is given by Q(1) = 2(3'), where
Q(r) is measured in thousands.

(a) What is the number of bacteria at r = 0?

(b) Find the number of bacteria after 10 minutes, 30 min-
utes, and 1 hour.

56 Compound interest If $1000 is invested at a rate of 8% per
year compounded quarterly, what is the principal after one
year?

57 Radioactive iodine decay Radioactive iodine "*'I, which is
frequently used in tracer studies involving the thyroid gland,
decays according to N = N,(0.5)", where N, is the initial
dose and ¢ is the time in days.

(a) Sketch the graph of the equation if N, = 64.
(b) Find the half-life of 'I.
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58 Trout population A pond is stocked with 1000 trout. Three
months later, it is estimated that 600 remain. Find a formula
of the form N = Nya“ that can be used to estimate the num-
ber of trout remaining after + months.

59 Continuously compounded interest Ten thousand dollars is
invested in a savings fund in which interest is compounded
continuously at the rate of 7% per year.

(a) When will the account contain $35,000?

b) How long does it take for money to double in the
g Yy
account?

60 Ben Franklin’s will In 1790, Ben Franklin left $4000 with
instructions that it go to the city of Philadelphia in 200
years. It was worth about $2 million at that time. Approxi-
mate the annual interest rate for the growth.

61 Electrical current The current I(7) in a certain electrical cir-
cuit at time 7 is given by I(t) = I,e ®", where R is the re-
sistance, L is the inductance, and I, is the initial current at
t = 0. Find the value of 7, in terms of L and R, for which I(z)
is 1% of I,.

62 Sound intensity The sound intensity level formula is
a = 101log (I/1,).

(a) Solve for I in terms of « and /.

(b) Show that a one-decibel rise in the intensity level « cor-
responds to a 26% increase in the intensity /.

63 Fish growth The length L of a fish is related to its age by
means of the von Bertalanfty growth formula

L=a(l — be™),
where a, b, and k are positive constants that depend on the
type of fish. Solve this equation for 7 to obtain a formula

that can be used to estimate the age of a fish from a length
measurement.

64 Earthquake area in the West In the western United States,
the area A (in mi?) affected by an earthquake is related to the
magnitude R of the quake by the formula

R = 231log (A + 3000) — 5.1.

Solve for A in terms of R.

65 Earthquake area in the East Refer to Exercise 64. For the
eastern United States, the area-magnitude formula has the
form

R =23 log (A + 34,000) — 7.5.
If A, is the area affected by an earthquake of magnitude R

in the West and A, is the area affected by a similar quake in
the East, find a formula for A, /A, in terms of R.
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66

67

68

69

70

It

Earthquake area in the Central states Refer to Exercise 64.
For the Rocky Mountain and Central states, the area-
magnitude formula has the form

R =23 log (A + 14,000) — 6.6.

If an earthquake has magnitude 4 on the Richter scale, esti-
mate the area A of the region that will feel the quake.

Atmospheric pressure Under certain conditions, the atmo-
spheric pressure p at altitude & is given by the formula
p = 29¢ 000003 Express h as a function of p.

Rocket velocity A rocket of mass m, is filled with fuel of
initial mass m,. If frictional forces are disregarded, the total
mass m of the rocket at time ¢ after ignition is related to its
upward velocity v by v = —alnm + b, where a and b are
constants. At ignition time t = 0, v = 0 and m = m; + m,.
At burnout, m = m,. Use this information to find a formula,
in terms of one logarithm, for the velocity of the rocket at
burnout.

Earthquake frequency Let n be the average number of
earthquakes per year that have magnitudes between R and
R + 1 on the Richter scale. A formula that approximates the
relationship between n and R is

logn = 7.7 — (0.9)R.
(a) Solve the equation for n in terms of R.
(b) Findnif R = 4,5, and 6.

Earthquake energy The energy E (in ergs) released during
an earthquake of magnitude R may be approximated by
using the formula

logE = 11.4 + (1.5)R.
(a) Solve for E in terms of R.

(b) Find the energy released during the earthquake off the
coast of Sumatra in 2004, which measured 9.0 on the
Richter scale.

Radioactive decay A certain radioactive substance decays
according to the formula g(r) = goe *¥  where g is the
initial amount of the substance and 7 is the time in days. Ap-
proximate the half-life of the substance.

72

73

74

75

76

Children’s growth The Count Model is a formula that can
be used to predict the height of preschool children. If /4 is
height (in centimeters) and ¢ is age (in years), then

h =70.228 + 5.104¢t + 9222 In ¢

for 415 t = 6. From calculus, the rate of growth R (in

cm/year) is given by R = 5.104 + (9.222/1). Predict the
height and rate of growth of a typical 2-year-old.

Electrical circuit The current 7 in a certain electrical circuit
at time 7 is given by

\%
I=—(1 — e Ry,
—( )
where V is the electromotive force, R is the resistance, and
L is the inductance. Solve the equation for ¢.

Carbon 14 dating The technique of carbon 14 (*C) dating
is used to determine the age of archaeological and geologi-
cal specimens. The formula 7 = —8310 In x is sometimes
used to predict the age 7 (in years) of a bone fossil, where x
is the percentage (expressed as a decimal) of C still pres-
ent in the fossil.

(a) Estimate the age of a bone fossil that contains 4% of
the C found in an equal amount of carbon in present-
day bone.

b) Approximate the percentage of '“C present in a fossil
(b) App p g p
that is 10,000 years old.

Population of Kenya Based on present birth and death rates,
the population of Kenya is expected to increase according to
the formula N = 30.7¢*%*, with N in millions and ¢ = 0
corresponding to 2000. How many years will it take for the
population to double?

Language history Refer to Exercise 48 of Section 5.2. If a
language originally had N, basic words of which N(z) are
still in use, then N(f) = N,(0.805)", where time ¢ is meas-
ured in millennia. After how many years are one-half the
basic words still in use?
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CHAPTER 5 DISCUSSION EXERCISES

1 (a) Sketch the graph of f(x) = —(x — 1)* + 1 along with
the graph of y = f71(x).

(b) Discuss what happens to the graph of y = f~'(x)
(in general) as the graph of y = f(x) is increasing or
is decreasing.

(c) What can you conclude about the intersection points of
the graphs of a function and its inverse?

2 Find the inverse function of f(x) = and identify

9x
Va1
any asymptotes of the graph of f~!'. How do they relate to
the asymptotes of the graph of f?

3 Shown in the figure is a graph of f(x) = (In x)/x for x > 0.
The maximum value of f(x) occurs at x = e.

(a) The integers 2 and 4 have the unusual property that
24 = 42, Show that if x* = y* for positive real num-

bers x and y, then (In x)/x = (Iny)/y.

(b) Use the graph of f to explain why many pairs of real
numbers satisfy the equation x* = y*.

Exercise 3

4 Refer to Exercise 70 of Section 5.4. Discuss how to solve
this exercise without the use of the formula for the total
amount 7. Proceed with your solution, and compare your
answer to the answer arrived at using the formula for 7.

5 Since y = log; (x?) is equivalent to y = 2 log; x by law 3 of
logarithms, why aren’t the graphs in Figure 2(a) and (b) of
Section 5.5 the same?

6 (a) Compare the growth of the functions f(x) = (1.085)*
and g(x) = €%, discuss what they could represent,
and explain the difference between the two functions.

(b) Now suppose you are investing money at 8.5% per year
compounded monthly. How would a graph of this
growth compare with the two graphs in part (a)?

7 Salaryincreases Suppose you started a job at $40,000 per
year. In 5 years, you are scheduled to be making $60,000
per year. Determine the annual exponential rate of increase
that describes this situation. Assume that the same ex-
ponential rate of increase will continue for 40 years. Using
the rule of 70 (page 317), mentally estimate your annual
salary in 40 years, and compare the estimate to an actual
computation.

8 Energy release Consider these three events:

(1) On May 18, 1980, the volcanic eruption of Mount
St. Helens in Washington released approximately
1.7 X 10" joules of energy.

(2) When a 1-megaton nuclear bomb detonates, it releases
about 4 X 10" joules of energy.

(3) The 1989 San Francisco earthquake registered 7.1 on
the Richter scale.

(a) Make some comparisons (i.e., how many of one event
is equivalent to another) in terms of energy released.
(Hint: Refer to Exercise 70 in Chapter 5 Review Ex-
ercises.) Note: The atomic bombs dropped in World
War II were I-kiloton bombs (1000 1-kiloton
bombs = 1 1-megaton bomb).

(b) What reading on the Richter scale would be equivalent
to the Mount St. Helens eruption? Has there ever been
a reading that high?

9 Discuss how many solutions the equation
logs x + log; x = 11

has. Solve the equation using the change of base formula.
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The Trigonometric
Functions

Trigonometry was invented over 2000 years ago by the Greeks, who needed
precise methods for measuring angles and sides of triangles. In fact, the
word trigonometry was derived from the two Greek words frigonon (trian-
gle) and metria (measurement). This chapter begins with a discussion of an-
gles and how they are measured. We next introduce the trigonometric
functions by using ratios of sides of a right triangle. After extending the do-
mains of the trigonometric functions to arbitrary angles and real numbers,
we consider their graphs and graphing techniques that make use of ampli-
tudes, periods, and phase shifts. The chapter concludes with a section on ap-

plied problems.
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6.1

Angles
Figure 1
I
B
(]
A
Figure 2

Coterminal angles

[7

Terminal side

Initial side

Terminal side

Initial side

In geometry an angle is defined as the set of points determined by two rays,
or half-lines, /; and /,, having the same endpoint O. If A and B are points on /,
and 1,, as in Figure 1, we refer to angle AOB (denoted ZAOB). An angle may
also be considered as two finite line segments with a common endpoint.

In trigonometry we often interpret angles as rotations of rays. Start with a
fixed ray /;, having endpoint O, and rotate it about O, in a plane, to a position
specified by ray l,. We call /; the initial side, /, the terminal side, and O the
vertex of ZAOB. The amount or direction of rotation is not restricted in any
way. We might let /; make several revolutions in either direction about O be-
fore coming to position /,, as illustrated by the curved arrows in Figure 2.
Thus, many different angles have the same initial and terminal sides. Any two
such angles are called coterminal angles. A straight angle is an angle whose
sides lie on the same straight line but extend in opposite directions from its
vertex.

If we introduce a rectangular coordinate system, then the standard posi-
tion of an angle is obtained by taking the vertex at the origin and letting the
initial side /; coincide with the positive x-axis. If /; is rotated in a counter-
clockwise direction to the terminal position /,, then the angle is considered
positive. If /; is rotated in a clockwise direction, the angle is negative. We
often denote angles by lowercase Greek letters such as « (alpha), B (beta), y
(gammay), 0 (theta), ¢ (phi), and so on. Figure 3 contains sketches of two posi-
tive angles, « and 3, and a negative angle, vy. If the terminal side of an angle
in standard position is in a certain quadrant, we say that the angle is in that
quadrant. In Figure 3, « is in quadrant III, B is in quadrant I, and vy is in quad-
rant II. An angle is called a quadrantal angle if its terminal side lies on a co-
ordinate axis.

Figure 3 Standard position of an angle

Positive angle

A

| Y

Positive angle

A

| Y

Negative angle

A

| Y

[

X

—
I, B '}’:

One unit of measurement for angles is the degree. The angle in standard po-
sition obtained by one complete revolution in the counterclockwise direction has
measure 360 degrees, written 360°. Thus, an angle of measure 1 degree (1°)
is obtained by % of one complete counterclockwise revolution. In Figure 4,
several angles measured in degrees are shown in standard position on rectan-
gular coordinate systems. Note that the first three are quadrantal angles.
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Throughout our work, a notation such as 8 = 60° specifies an angle 0
whose measure is 60°. We also refer to an angle of 60° or a 60° angle, in-
stead of using the more precise (but cumbersome) phrase an angle having
measure 60°.

EXAMPLE 1 Finding coterminal angles

If 6 = 60° is in standard position, find two positive angles and two negative
angles that are coterminal with 6.

SOLUTION  The angle 6 is shown in standard position in the first sketch in
Figure 5. To find positive coterminal angles, we may add 360° or 720° (or any
other positive integer multiple of 360°) to 6, obtaining

60° + 360° = 420° and 60° + 720° = 780°.

These coterminal angles are also shown in Figure 5.
To find negative coterminal angles, we may add —360° or —720° (or any
other negative integer multiple of 360°), obtaining
60° + (—360°) = —300° and 60° + (=720°) = —660°,

as shown in the last two sketches in Figure 5.

Figure 5
Y AY AY AY AY
N0 =60 AR RN e R f 660"
- O @O U @ =
~300°
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Figure 6
Central angle 6

9

A right angle is half of a straight angle and has measure 90°. The fol-
lowing chart contains definitions of other special types of angles.

Terminology Definition Illustrations
acute angle 6 0° < 6 <90° 12°; 37°
obtuse angle 6 90° < 6 < 180° 95°; 157°
complementary angles «, 3 a+ B=90° 20°, 70°; 7°, 83°
supplementary angles «, 3 a+ B =180° 115°, 65°; 18°, 162°

If smaller measurements than the degree are required, we can use tenths,
hundredths, or thousandths of degrees. Alternatively, we can divide the degree
into 60 equal parts, called minutes (denoted by '), and each minute into 60
equal parts, called seconds (denoted by "). Thus, 1° = 60’, and 1’ = 60". The
notation 6 = 73°56'18" refers to an angle 6 that has measure 73 degrees,
56 minutes, 18 seconds.

EXAMPLE 2 Finding complementary angles

Find the angle that is complementary to 6:
(a) 0 =125°43'37" (b) 6= 73.26°

SOLUTION We wish to find 90° — 6. It is convenient to write 90° as an
equivalent measure, 89°59'60".

(@) 90° = 89°59'60" (b) 90° = 90.00°
0 = 25°43'37" 0 73.26°
90° — 6 = 64°16'23" 90° — 6 = 16.74° /

Degree measure for angles is used in applied areas such as surveying, navi-
gation, and the design of mechanical equipment. In scientific applications that
require calculus, it is customary to employ radian measure. To define an angle
of radian measure 1, we consider a circle of any radius . A central angle of a
circle is an angle whose vertex is at the center of the circle. If 6 is the central
angle shown in Figure 6, we say that the arc AP (denoted AP) of the circle
subtends 6 or that 6 is subtended by AP. If the length of AP is equal to the
radius r of the circle, then 6 has a measure of one radian, as in the next definition.

Definition of Radian Measure

One radian is the measure of the central angle of a circle subtended by an
arc equal in length to the radius of the circle.




Figure 7
(a) a = 1radian

6.1 Angles 351

If we consider a circle of radius 7 then an angle o whose measure is 1 ra-
dian intercepts an arc AP of length 7 as illustrated in Figure 7(a). The angle 8
in Figure 7(b) has radian measure 2, since it is subtended by an arc of length
2r. Similarly, vy in (c) of the figure has radian measure 3, since it is subtended
by an arc of length 3r.

(b) B = 2 radians (c) y = 3 radians (d) 360° = 27 =~ 6.28 radians

14

P,

To find the radian measure corresponding to 360°, we must find the num-
ber of times that a circular arc of length r can be laid off along the circumfer-
ence (see Figure 7(d)). This number is not an integer or even a rational number.
Since the circumference of the circle is 2777, the number of times r units can be
laid off is 2. Thus, an angle of measure 27 radians corresponds to the de-
gree measure 360°, and we write 360° = 247 radians. This result gives us the
following relationships.

Relationships Between
Degrees and Radians

(€)) 180° = 7rradians

@) 1o = 1:;0 radian =~ 0.0175 radian

1 o
(—80 > ~ 57.2958°
™

(3) 1 radian

When radian measure of an angle is used, no units will be indicated. Thus,
if an angle has radian measure 5, we write # = 5 instead of 6 = 5 radians.
There should be no confusion as to whether radian or degree measure is being
used, since if 6 has degree measure 5°, we write § = 5°, and not 6 = 5.
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The next chart illustrates how to change from one angular measure to

another.

Changing Angular Measures

To change Multiply by Illustrations
T T S
d to radi 150° = 150° = —
egrees to radians 130° (180") 5
5
205° = 225°( —— | = 2%
180° 4
180° 7 7 [ 180°
radians to degrees LU —7T< ) = 315°
T 4 4 T
T a ( 180°
_ = = 60°
3 3 < T )

We may use the techniques illustrated in the preceding chart to obtain the
following table, which displays the corresponding radian and degree measures

of special angles.

If 6 = 3, approximate 6 in terms of degrees, minutes, and seconds.

Radians 0 ™ o w w 2w 3w Sw Tm 5w 4w 3w Sw Tw 1w )
~s o 7 o2 2 07 a2 Twmoo 2w Jn w1 W .
6 4 3 2 3 4 6 6 4 3 2 3 4 6
Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Several of these special angles, in radian measure, are shown in standard
position in Figure 8.
Figure 8
Ay AY + y AY
a o a
4 > N3 > >\ 2 > [\ 7 —
X X X X
EXAMPLE 3 Changing radians to degrees, minutes, and seconds
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SOLUTION
3 radians = 3<1800> multiply by 180°
T m
~ 171.8873° approximate
= 171° + (0.8873)(60") 1° =60’
= 171° + 53.238’ multiply

171° + 53’ + (0.238)(60") 1’ = 60"

171°53" + 14.28" multiply

U

171°53'14" approximate 7/

EXAMPLE 4 Expressing minutes and seconds as decimal degrees

Express 19°47'23" as a decimal, to the nearest ten-thousandth of a degree.

soLuTIon Sice = ()" and 1" = () = <)

19°47'23" = 19° + (2)° + (&5)°

~ 19° + 0.7833° + 0.0064°
19.7897°. /

The next result specifies the relationship between the length of a circular
arc and the central angle that it subtends.

Formula for the
Length of a Circular Arc

If an arc of length s on a circle of radius r subtends a central angle of ra-
dian measure 6, then

s = r0.

A mnemonic device for remembering
s = r6@is SRO (Standing Room Only).

Figure 9
(a) (b)

PROOF A typical arc of length s and the corresponding central angle 6 are
shown in Figure 9(a). Figure 9(b) shows an arc of length s, and central angle
6,. If radian measure is used, then, from plane geometry, the ratio of the
lengths of the arcs is the same as the ratio of the angular measures; that is,

K 0
—_—=— or s =—s.
$1 0,

(continued)
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If we consider the special case in which 6, has radian measure 1, then, from
the definition of radian, s; = r and the last equation becomes

I
S lr ro. /

Notice that if 8 = 27, then the formula for the length of a circular arc
becomes s = r(27), which is simply the formula for the circumference of a
circle, C = 2.

The next formula is proved in a similar manner.

Formula for the

If 0 is the radian measure of a central angle of a circle of radius r and if A

Area of a Circular Sector is the area of the circular sector determined by 6, then
A = 3r°0.
Figure 10 PROOF If A and A, are the areas of the sectors in Figures 10(a) and 10(b),
(a) (b) respectively, then, from plane geometry,

%)

Figure 11

y
s =10cm

ac
B

6 = 2.5 radians
=~ 143.24°

r=4cm

A (7] 0
—_=— or A=—A,.
Al 01 01

If we consider the special case 0, = 2, then A, = 7% and

When using the preceding formulas, it is important to remember to use the
radian measure of 6 rather than the degree measure, as illustrated in the next
example.

EXAMPLE 5 Using the circular arc and sector formulas

In Figure 11, a central angle 6 is subtended by an arc 10 centimeters long on
a circle of radius 4 centimeters.
(a) Approximate the measure of 6 in degrees.

(b) Find the area of the circular sector determined by 6.

SOLUTION  We proceed as follows:

@) s=r0 length of a circular arc formula
s
0=— solve for 6
r

=2=25 lets=10,r=4



Figure 12

24 inches
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This is the radian measure of 6. Changing to degrees, we have

180° 450°
0=25\—1]= ~ 143.24°.

T T
(b) A= %rzﬁ area of a circular sector formula
= 14)22.5) letr =4, 6 = 2.5 radians
= 20 cm’ multiply /

The angular speed of a wheel that is rotating at a constant rate is the
angle generated in one unit of time by a line segment from the center of the
wheel to a point P on the circumference (see Figure 12). The linear speed of
a point P on the circumference is the distance that P travels per unit of time.
By dividing both sides of the formula for a circular arc by time ¢, we obtain a
relationship for linear speed and angular speed; that is,

linear speed angular speed
1 l
s 10 valent] s 0
-=— or, equivalently, -=r-—
t t 9 Y t t

EXAMPLE 6 Finding angular and linear speeds

Suppose that the wheel in Figure 12 is rotating at a rate of 800 rpm (revolu-
tions per minute).

(a) Find the angular speed of the wheel.

(b) Find the linear speed (in in./min and mi/hr) of a point P on the circum-
ference of the wheel.

SOLUTION

(a) Let O denote the center of the wheel, and let P be a point on the circum-
ference. Because the number of revolutions per minute is 800 and because
each revolution generates an angle of 27 radians, the angle generated by the
line segment OP in one minute has radian measure (800)(27); that is,

800 revolutions 27 radians

angular speed = = 16007 radians per minute.

1 minute 1 revolution

Note that the diameter of the wheel is irrelevant in finding the angular speed.
(b) linear speed = radius - angular speed

(12 in.)(16007r rad/min)

19,2007 in./min

Converting in./min to mi/hr, we get

19,2007rin. 60 min 1 ft 1 mi
1 min 1 hr 12in. 5280 ft

~ 57.1 mi/hr.

Unlike the angular speed, the linear speed is dependent on the diameter of the
wheel.
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6.1 Exercises

Exer. 1-4:If the given angle is in standard position,
find two positive coterminal angles and two negative co-
terminal angles.

1(a) 120°  (b) 135°  (c) —30°
2 (a) 240°  (b) 315°  (c) —150°
3 (a) 620° (b) %” (©) —7”
4 (a) 570°  (b) 2?” (©) —%7’

Exer. 5-6: Find the angle that is complementary to 6.
5 (a) 6=5°17"34" (b) 6=325°

6 (a) 0=63°4'15" (b) 6= 82.73°

Exer. 7-8: Find the angle that is supplementary to 6.
7 (a) 6=48°51'37" (b) 6 =136.42°

8 (a) 6= 152°12'4" (b) 6=159°

Exer. 9-12: Find the exact radian measure of the angle.

9 (a) 150° (b) —60° () 225°
10 (a) 120° (b) —135° () 210°
11 (a) 450° (b) 72° (¢) 100°
12 (a) 630° (b) 54° (c) 95°

Exer. 13-16: Find the exact degree measure of the angle.

B@T B O
@2 wT (9T
5@ - )T (O
16 @) -2 )or ()=

Exer. 17-20: Express 6 in terms of degrees, minutes, and
seconds, to the nearest second.

17 6=2 18 =15

19 6=5 200=4

Exer. 21-24: Express the angle as a decimal, to the nearest
ten-thousandth of a degree.

21 37°41" 22 83°17'

23 115°26'27" 24 258°39'52"

Exer. 25-28: Express the angle in terms of degrees, min-
utes, and seconds, to the nearest second.

25 63.169° 26 12.864°

27 310.6215° 28 81.7238°

Exer. 29-30: If a circular arc of the given length s subtends
the central angle 6 on a circle, find the radius of the circle.

29 s=10cm, 6=4 30 s =3km, 6=20°

Exer. 31-32: (a) Find the length of the arc of the colored
sector in the figure. (b) Find the area of the sector.

31 32

AA N

Exer. 33-34: (a) Find the radian and degree measures of
the central angle 0 subtended by the given arc of length s
on a circle of radius r. (b) Find the area of the sector de-

termined by 6.
33 s=7cm, r=4cm 34 s =3f1t, r=20in.

Exer. 35-36: (a) Find the length of the arc that subtends the
given central angle 0 on a circle of diameter d. (b) Find the
area of the sector determined by 6.

35 6=50° d=16m 36 0 =22, d=120cm



37 Measuring distances on Earth The distance between two
points A and B on Earth is measured along a circle having
center C at the center of Earth and radius equal to the distance
from C to the surface (see the figure). If the diameter of Earth
is approximately 8000 miles, approximate the distance be-
tween A and B if angle ACB has the indicated measure:

(a) 60°

(b) 45°

(€) 30° () 10°  (e) 1°

Exercise 37

— B4

38 Nautical miles Refer to Exercise 37. If angle ACB has
measure 1', then the distance between A and B is a nautical
mile. Approximate the number of land (statute) miles in a
nautical mile.

39 Measuring angles using distance Refer to Exercise 37. If
two points A and B are 500 miles apart, express angle ACB
in radians and in degrees.

40 A hexagon is inscribed in a circle. If the difference between
the area of the circle and the area of the hexagon is 24 m?,
use the formula for the area of a sector to approximate the
radius r of the circle.

41 Window area A rectangular window measures 54 inches by
24 inches. There is a 17-inch wiper blade attached by a
5-inch arm at the center of the base of the window, as
shown in the figure. If the arm rotates 120°, approximate
the percentage of the window’s area that is wiped by the
blade.
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Exercise 41

5in.

42 A tornado’s core A simple model of the core of a tornado
is a right circular cylinder that rotates about its axis. If a
tornado has a core diameter of 200 feet and maximum wind
speed of 180 mi/hr (or 264 ft/sec) at the perimeter of the
core, approximate the number of revolutions the core makes
each minute.

43 Earth’s rotation Earth rotates about its axis once every
23 hours, 56 minutes, and 4 seconds. Approximate the num-
ber of radians Earth rotates in one second.

44 Earth’s rotation Refer to Exercise 43. The equatorial radius
of Earth is approximately 3963.3 miles. Find the linear speed
of a point on the equator as a result of Earth’s rotation.

Exer. 45-46: A wheel of the given radius is rotating at the

indicated rate.

(a) Find the angular speed (in radians per minute).

(b) Find the linear speed of a point on the circumference
(in ft/min).

45 radius 5 in., 40 rpm 46 radius 9 in., 2400 rpm

47 Rotation of compact discs (CDs) The drive motor of a par-
ticular CD player is controlled to rotate at a speed of 200 rpm
when reading a track 5.7 centimeters from the center of the
CD. The speed of the drive motor must vary so that the read-
ing of the data occurs at a constant rate.

(a) Find the angular speed (in radians per minute) of the
drive motor when it is reading a track 5.7 centimeters
from the center of the CD.



358 CHAPTER 6 THE TRIGONOMETRIC FUNCTIONS

(b) Find the linear speed (in cm/sec) of a point on the CD
that is 5.7 centimeters from the center of the CD.

(c) Find the angular speed (in rpm) of the drive motor
when it is reading a track 3 centimeters from the center
of the CD.

(d) Find a function S that gives the drive motor speed in rpm
for any radius r in centimeters, where 2.3 = r = 5.9.
What type of variation exists between the drive motor
speed and the radius of the track being read? Check
your answer by graphing S and finding the speeds for
r=3andr =157

48 Tirerevolutions A typical tire for a compact car is 22 inches

in diameter. If the car is traveling at a speed of 60 mi/hr, find
the number of revolutions the tire makes per minute.

49 Cargo winch A large winch of diameter 3 feet is used to

hoist cargo, as shown in the figure.

(a) Find the distance the cargo is lifted if the winch rotates
through an angle of radian measure 77/4.

(b) Find the angle (in radians) through which the winch
must rotate in order to lift the cargo d feet.

D

Exercise 49

7T

6.2

Trigonometric Functions
of Angles

50

51

52

53

54

Pendulum’s swing A pendulum in a grandfather clock is
4 feet long and swings back and forth along a 6-inch arc. Ap-
proximate the angle (in degrees) through which the pendulum
passes during one swing.

Pizza values A vender sells two sizes of pizza by the slice.
The small slice is é of a circular 18-inch-diameter pizza, and
it sells for $2.00. The large slice is é of a circular 26-inch-
diameter pizza, and it sells for $3.00. Which slice provides
more pizza per dollar?

Bicycle mechanics The sprocket assembly for a bicycle is
shown in the figure. If the sprocket of radius r, rotates through
an angle of 6, radians, find the corresponding angle of rotation
for the sprocket of radius r,.

Exercise 52

Bicycle mechanics Refer to Exercise 52. An expert cyclist
can attain a speed of 40 mi/hr. If the sprocket assembly has
r, = 5in., r, = 2 in., and the wheel has a diameter of
28 inches, approximately how many revolutions per minute
of the front sprocket wheel will produce a speed of
40 mi/hr? (Hint: First change 40 mi/hr to in./sec.)

Magnetic pole drift The geographic and magnetic north
poles have different locations. Currently, the magnetic north
pole is drifting westward through 0.0017 radian per year,
where the angle of drift has its vertex at the center of Earth.
If this movement continues, approximately how many years
will it take for the magnetic north pole to drift a total of 5°?

We shall introduce the trigonometric functions in the manner in which they
originated historically—as ratios of sides of a right triangle. A triangle is a
right triangle if one of its angles is a right angle. If 0 is any acute angle, we
may consider a right triangle having 6 as one of its angles, as in Figure 1,



Figure 1

br

*We will refer to these six trigonomet-
ric functions as the trigonometric
functions. Here are some other, less
common trigonometric functions that
we will not use in this text:
vers § = 1 — cos 6
covers 6 = 1 — sin 6
exsec § = sec 6 — 1

hav 6 = %vers 0

Figure 3
hyp opp

adj
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where the symbol [ specifies the 90° angle. Six ratios can be obtained using
the lengths a, b, and ¢ of the sides of the triangle:

We can show that these ratios depend only on 6, and not on the size of the trian-

gle, as indicated in Figure 2. Since the two triangles have equal angles, they are

similar, and therefore ratios of corresponding sides are proportional. For example,
b b a d b b

- B} ) .
c ¢’ ¢ ¢’ a a

Thus, for each 6, the six ratios are uniquely determined and hence are func-
tions of 6. They are called the trigonometric functions* and are designated
as the sine, cosine, tangent, cotangent, secant, and cosecant functions, ab-
breviated sin, cos, tan, cot, sec, and csc, respectively. The symbol sin (6), or
sin 0, is used for the ratio b/c, which the sine function associates with 0. Val-
ues of the other five functions are denoted in similar fashion. To summarize, if
0 is the acute angle of the right triangle in Figure 1, then, by definition,

) b a
sin @ = — cos = — tan 0 = —
c c a
0= g == (o=
csc = — sec = — cot = —.
b a b

The domain of each of the six trigonometric functions is the set of all
acute angles. Later in this section we will extend the domains to larger sets of
angles, and in the next section, to real numbers.

If 6 is the angle in Figure 1, we refer to the sides of the triangle of lengths
a, b, and ¢ as the adjacent side, opposite side, and hypotenuse, respectively.
We shall use adj, opp, and hyp to denote the lengths of the sides. We may then
represent the triangle as in Figure 3. With this notation, the trigonometric func-
tions may be expressed as follows.

Definition of the Trigonometric
Functions of an Acute Angle
of a Right Triangle

&
sin0=@ c:osO=ﬂ tan0=ﬂ
hyp hyp adj
h h dj
csct9=ﬂ secH=Ll.) cot(9=ﬂ
opp adj opp

A mnemonic device for remembering
the top row in the definition is
SOH CAH TOA,

where SOH is an abbreviation for
Sin 6 = Opp/Hyp, and so forth.

The formulas in the preceding definition can be applied to any right triangle
without attaching the labels a, b, c to the sides. Since the lengths of the sides
of a triangle are positive real numbers, the values of the six trigonometric func-
tions are positive for every acute angle 6. Moreover, the hypotenuse is always
greater than the adjacent or opposite side, and hence sin § < 1, cos 6 < 1,
csc 6 > 1, and sec 0 > 1 for every acute angle 6.



360 CHAPTER 6 THE TRIGONOMETRIC FUNCTIONS

Note that since

h

— and csc 6= Lp,

hyp opp

sin 6 and csc 6 are reciprocals of each other, giving us the two identities in the
left-hand column of the next box. Similarly, cos 6 and sec 6 are reciprocals of

each other, as are tan 6 and cot 6.

sin 0 =

Reciprocal Identities ) 1 1
sin 0 = cos 6 = tan 6 = ——
csc 0 sec 6 cot O
1 1
csc ) =—— sec 6 = cotd = ——
sin 0 CcoS tan 0

Several other important identities involving the trigonometric functions
will be discussed at the end of this section.

EXAMPLE 1 Finding trigonometric function values

If 6 is an acute angle and cos 6 = %, find the values of the trigonometric func-

tions of 6.
Figure 4 SOLUTION  We begin by sketching a right triangle having an acute angle 6
with adj = 3 and hyp = 4, as shown in Figure 4, and proceed as follows:
4 3% + (opp)? = 4* Pythagorean theorem
opp

(opp)> = 16 — 9 = 7 isolate (opp)’
opp = V7 take the square root

Applying the definition of the trigonometric functions of an acute angle of a
right triangle, we obtain the following:

opp V7 adj 3 opp V7
sinf=——=—— cos ) =——=— no= =—

hyp 4 hyp 4 d 3
csc¢9—lﬂ—i 6:019—Iﬂ i coto9—a—dj—i

opp V7 adj 3 opp V7 /£

In Example 1 we could have rationalized the denominators for csc 6 and
cot 0, writing
W7 3V7
csc = —— and cot = ——.
7 7
However, in most examples and exercises we will leave expressions in unra-
tionalized form. An exception to this practice is the special trigonometric func-
tion values corresponding to 60°, 30°, and 45°, which are obtained in the
following example.



Figure 5

Figure 6
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EXAMPLE 2 Finding trigonometric function values of 60°, 30°, and 45°

Find the values of the trigonometric functions that correspond to 6:
(a) 6= 060° (b) 6 =30° (c) 6=45°

SOLUTION  Consider an equilateral triangle with sides of length 2. The me-
dian from one vertex to the opposite side bisects the angle at that vertex, as
illustrated by the dashes in Figure 5. By the Pythagorean theorem, the side op-
posite 60° in the shaded right triangle has length /3. Using the formulas for
the trigonometric functions of an acute angle of a right triangle, we obtain the
values corresponding to 60° and 30° as follows:

V3 1 V3
(a) sin 60° = — cos 60° = — tan 60° = — = \/3
2 2 1
2 2\/§ 1 \/g
60° = —=—— o= = (60° = — = =
csc 73 3 sec 60 N 2 co 3 3
1 V3 1 V3
(b) sin 30° = E cos 30° = T tan 30° = 75 = T
2 2 23 V3
30°=— =2 30°= — ="~ o — Y- _
csc 1 sec 3 3 cot 30 1 V3

(c) To find the values for 6 = 45°, we may consider an isosceles right triangle
whose two equal sides have length 1, as illustrated in Figure 6. By the
Pythagorean theorem, the length of the hypotenuse is \/2. Hence, the values
corresponding to 45° are as follows:

1 V2 1
sin45°=\—[2=7=cos45° tan45°=T=l
V2 1
csc45° = =R 2 = sec 45° cot 45° = T 1 V.

For reference, we list the values found in Example 2, together with the ra-
dian measures of the angles, in the following table. Two reasons for stressing
these values are that they are exact and that they occur frequently in work in-
volving trigonometry. Because of the importance of these special values, it is
a good idea either to memorize the table or to learn to find the values quickly
by using triangles, as in Example 2.
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Figure 7

Special Values of the Trigonometric Functions

0 (radians) 0 (degrees) sin® [cos @ | tan @ | cot @ | sec O | csc O
T 1 V3| V3 2V3
_ o J— _ _ _ 2
6 30 2 2 3 V3 3
T V2 V2 —~ —~
— © —_— —_— 1 1 2 2
; 45 5 5 V2 |V

3 1 3 2V3

3 2 2 3 3

The next example illustrates a practical use for trigonometric functions of
acute angles. Additional applications involving right triangles will be consid-
ered in Section 6.7.

EXAMPLE 3 Finding the height of a flagpole

A surveyor observes that at a point A, located on level ground a distance 25.0 feet
from the base B of a flagpole, the angle between the ground and the top of the
pole is 30°. Approximate the height / of the pole to the nearest tenth of a foot.

SOLUTION  Referring to Figure 7, we see that we want to relate the oppo-
site side and the adjacent side, 4 and 25, respectively, to the 30° angle. This
suggests that we use a trigonometric function involving those two sides—
namely, tan or cot. It is usually easier to solve the problem if we select the
function for which the variable is in the numerator. Hence, we have

h
tan 30° = %5 or, equivalently, & = 25 tan 30°.

We use the value of tan 30° from Example 2 to find &:

V3
h = 25(7) ~ 14.4 ft 7

It is possible to approximate, to any degree of accuracy, the values of the
trigonometric functions for any acute angle. Calculators have keys labeled
, , and that can be used to approximate values of these functions.
The values of csc, sec, and cot may then be found by means of the reciprocal
key. Before using a calculator to find function values that correspond to the
radian measure of an acute angle, be sure that the calculator is in radian
mode. For values corresponding to degree measure, select degree mode.
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As an illustration (see Figure 8), to find sin 30° on a typical calculator, we
place the calculator in degree mode and use the key to obtain
sin 30° = 0.5, which is the exact value. Using the same procedure for 60°, we
obtain a decimal approximation to \/3/2, such as

sin 60° = 0.8660.

Most calculators give eight- to ten-decimal-place accuracy for such func-
tion values; throughout the text, however, we will usually round off values to
four decimal places.

To find a value such as cos 1.3 (see Figure 9), where 1.3 is the radian
measure of an acute angle, we place the calculator in radian mode and use the

key, obtaining
cos 1.3 = 0.2675.

For sec 1.3, we could find cos 1.3 and then use the reciprocal key, usually la-

beled or (as shown in Figure 9), to obtain

sec 1.3 = =~ 3.7383.

os 1.3

The formulas listed in the box on the next page are, without doubt, the most
important identities in trigonometry, because they can be used to simplify and
unify many different aspects of the subject. Since the formulas are part of the
foundation for work in trigonometry, they are called the fundamental identities.

Three of the fundamental identities involve squares, such as (sin 6)* and
(cos 6)*. In general, if n is an integer different from —1, then a power such as
(cos 6)" is written cos” 6. The symbols sin~! 6 and cos™! 6 are reserved for in-
verse trigonometric functions, which we will discuss in Section 6.4 and treat
thoroughly in the next chapter. With this agreement on notation, we have, for
example,

cos? 6 = (cos 6)*> = (cos 6)(cos 0)
tan® 0 = (tan 6)° = (tan 0)(tan 6)(tan 0)
sect 0 = (sec 0)* = (sec 0)(sec O)(sec H)(sec 0).
Let us next list all the fundamental identities and then discuss the proofs.
These identities are true for every acute angle 6, and 6 may take on various

forms. For example, using the first Pythagorean identity with 6 = 4a, we
know that

sin4a + cos’4a = 1.

We shall see later that these identities are also true for other angles and for real
numbers.
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The Fundamental Identities (1) The reciprocal identities:

1
(=
sin 6 5e¢ cos 6 tan 6

csc O =

(2) The tangent and cotangent identities:

(3) The Pythagorean identities:

sin@+cos’0=1 1+ tan>? 0 =sec’d 1 + cot’> O = csc? 0

PROOFS

(1) The reciprocal identities were established earlier in this section.

Figure 10 (2) To prove the tangent identity, we refer to the right triangle in Figure 10
and use definitions of trigonometric functions as follows:
¢ b
b b/c sind
A ] tan 6 = — = L =
a a afc cos0

To verify the cotangent identity, we use a reciprocal identity and the tan-
gent identity:

B 1 __cos 6
tan & sin 0/cos &  sin 6

cot O =

(3) The Pythagorean identities are so named because of the first step in the
following proof. Referring to Figure 10, we obtain

b+ a? = ¢? Pythagorean theorem

(2« ()

(sin 0)> + (cos )> = 1 definitions of sin 6 and cos 0

[
VRS
o

o\
divide by ¢?

sin? 0 + cos®> 6 = 1. equivalent notation
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We may use this identity to verify the second Pythagorean identity as

follows:
sin? @ + cos? 6 1 o
3 =— divide by cos® 6
cos” 6 cos” 6
sin @ cos*’6 1

= equivalent equation
cos’ 0  cos’O  cos® 6

sin 6 cos 0\ 1Y
+ = law of exponents
cos 0 cos 0 cos 6

tan’ 0 + 1 = sec® 0 tangent and reciprocal identities

To prove the third Pythagorean identity, 1 + cot® 6 = csc? 6, we could di-
vide both sides of the identity sin> § + cos> § = 1 by sin? 6. 7/

We can use the fundamental identities to express each trigonometric func-
tion in terms of any other trigonometric function. Two illustrations are given
in the next example.

EXAMPLE 4 Using fundamental identities

Let 0 be an acute angle.

(a) Express sin 6 in terms of cos 6.
(b) Express tan 6 in terms of sin 6.
SOLUTION
(a) We may proceed as follows:
sin? @ + cos> 0 = 1 Pythagorean identity
sin? @ = 1 — cos® 0 isolate sin? 6
sin @ = *\V/1 — cos® 6 take the square root
sin @ = V1 — cos? 0 sin > 0 for acute angles

Later in this section (Example 12) we will consider a simplification involving
a non-acute angle 6.

(b) If we begin with the fundamental identity

sin 6
s6

tan 6 =

then all that remains is to express cos 6 in terms of sin 6. We can do this by
solving sin? 6 + cos? § = 1 for cos 6, obtaining

cos 0 = \V1 —sin>0 for 0<6)<%.

(continued)
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Hence,
sin 6 sin 6 T
tan 6 = = for 0<O<—.
cosf V1 —sin? 0 2 /7

Fundamental identities are often used to simplify expressions involving
trigonometric functions, as illustrated in the next example.

EXAMPLE 5 Showing that an equation is an identity

Show that the following equation is an identity by transforming the left-hand
side into the right-hand side:

(sec 6 + tan 0)(1 — sin 6) = cos 6

SOLUTION  We begin with the left-hand side and proceed as follows:

. B 1 sin 6 . reciprocal and
(sec 6 + tan 0)(1 — sin 0) = p— + p— (1 — sin 6) tangent identities
— 1+sin6 (1 — sin 6) add fractions
cos 0
— Qin2
= ﬂ multiply
cos 6
2
_ cos 4 sin? @ + cos* 9 =1
cos 6
= cos 60 cancel cos 6 V4

There are other ways to simplify the expression on the left-hand side in
Example 5. We could first multiply the two factors and then simplify and com-
bine terms. The method we employed—changing all expressions to expres-
sions that involve only sines and cosines—is often useful. However, that
technique does not always lead to the shortest possible simplification.

Hereafter, we shall use the phrase verify an identity instead of show that
an equation is an identity. When verifying an identity, we often use funda-
mental identities and algebraic manipulations to simplify expressions, as we
did in the preceding example. As with the fundamental identities, we under-
stand that an identity that contains fractions is valid for all values of the vari-
ables such that no denominator is zero.
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EXAMPLE 6 Verifying anidentity

Verify the following identity by transforming the left-hand side into the right-
hand side:

tan 6 + cos 6

- = sec 0 + cot 0
sin 6

SOLUTION  We may transform the left-hand side into the right-hand side as
follows:

tan9+cose_tan6+cose

divide numerator by sin 6

sin  sinf sin @
sin 6
cos 6
=——+ cotf tangent and cotangent identities
sin 6
sin 6 1 ‘ )
= © + cot @ rule for quotients
cos 6 sin 6
1
= + cot 6 cancel sin 6
cos 6
= sec § + cot 6 reciprocal identity /
Figure 11 In Section 7.1 we will verify many other identities using methods similar
to those used in Examples 5 and 6.
LY Since many applied problems involve angles that are not acute, it is nec-
N essary to extend the definition of the trigonometric functions. We make this
N e y) extension by using the standard position of an angle 6 on a rectangular
| ) coordinate system. If 6 is acute, we have the situation illustrated in Figure 11,
r | where we have chosen a point P(x, y) on the terminal side of 6 and where
Ly d(O, P) = r = Vx?* + y°. Referring to triangle OQP, we have
A 1
A0 | : opp ¥ adj  x opp _ y
* > sinf=——=-—, cosf=—=—, and tanf=—="—.
o 10(x,0) x hyp r hyp r adj «x
X {

We now wish to consider angles of the types illustrated in Figure 12 on
the next page (or any other angle, either positive, negative, or zero). Note that
in Figure 12 the value of x or y may be negative. In each case, side QP (opp in
Figure 12) has length |y/|, side OQ (adj in Figure 12) has length | x|, and the
hypotenuse OP has length r. We shall define the six trigonometric functions so
that their values agree with those given previously whenever the angle is acute.
It is understood that if a zero denominator occurs, then the corresponding
function value is undefined.
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Figure 12
AY AY AY
P(x,y)
,,,,,,, y
‘ ’,.
|
[ 2] 6
| N _ o0 /N - QO(x, 0)
0(x, 0) 0 X -, Vo x o™y Lx
| |
| N
,,,,,,,, ) Ve [J(,\’,\)
P(x,y)

Definition of the Trigonometric
Functions of Any Angle

Let 6 be an angle in standard position on a rectangular coordinate system,
and let P(x, y) be any point other than the origin O on the terminal side of 6.

Ifd(O, P) = r = Vx> + %, then

. y .
sin § = — o () = tan 6 = = (if x # 0)
r r X

r .
csc = (fy#0) sech=— (fx#0) cotf=-= (ify s 0).
x y

We can show, using similar triangles, that the formulas in this definition
do not depend on the point P(x, y) that is chosen on the terminal side of 6. The
fundamental identities, which were established for acute angles, are also true
for trigonometric functions of any angle.

The domains of the sine and cosine functions consist of all angles 6. How-
ever, tan 6 and sec 6 are undefined if x = O (that is, if the terminal side of 6 is
on the y-axis). Thus, the domains of the tangent and the secant functions con-
sist of all angles except those of radian measure (7/2) + 7 for any integer n.
Some special cases are /2, *37/2, and =57/2. The corresponding degree
measures are +90°, =270°, and +450°.

The domains of the cotangent and cosecant functions consist of all angles
except those that have y = 0 (that is, all angles except those having terminal
sides on the x-axis). These are the angles of radian measure 7n (or degree
measure 180° - n) for any integer n.
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Our discussion of domains is summarized in the following table, where n
denotes any integer.

Function Domain
sine, cosine every angle 6
tangent, secant every angle 6 except 6 = % + 7n = 90° + 180° - n
cotangent, cosecant every angle 0 except 6 = wmn = 180° - n

For any point P(x, y) in the preceding definition, |x| < r and |y| = r or,

equivalently, |x/r| = 1 and | y/r| = 1. Thus,

|sin @] =1, |cosO| =1, |csch| =1, and |sec | =1

for every 6 in the domains of these functions.

EXAMPLE 7 Finding trigonometric function values
of an angle in standard position

If 6 is an angle in standard position on a rectangular coordinate system and if
P(—15, 8) is on the terminal side of 6, find the values of the six trigonometric
functions of 6.

Figure 13
SOLUTION  The point P(—15, 8) is shown in Figure 13. Applying the def-
AY .. . . . .
inition of the trigonometric functions of any angle with x = —15,y = 8, and
r=Vxl+y?= V(=157 + & = V289 = 17,
P(—15,8)
Y we obtain the following:
A
\ 8 x 15 y 8
. 0 ’ezl:— 0=—= —— t 0=+ = ——
! ™ - T A 17 T YT s
5 >
\ ! yo T 1T g _ 1 x_ 15
csch=—=— sech=—=—— cot=—=——
y 8 by 15 y 8 /

EXAMPLE 8 Finding trigonometric function values
of an angle in standard position

An angle 6 is in standard position, and its terminal side lies in quadrant III on
the line y = 3x. Find the values of the trigonometric functions of 6.
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Figure 14

Figure 15

37
/]

\

PO, —1)

=Y

SOLUTION  The graph of y = 3xis sketched in Figure 14, together with the
initial and terminal sides of 6. Since the terminal side of 6 is in quadrant III,
we begin by choosing a convenient negative value of x, say x = —1. Substi-
tuting in y = 3x gives us y = 3(—1) = —3, and hence P(—1, —3) is on the
terminal side. Applying the definition of the trigonometric functions of any
angle with

x=-1, y=-3, and r= Va2 +y =V(-1?2+ (-3?2= V10

gives us
in 6= ——— b= ———  ang=_—>=3
sin V1o cos 1o an =
1 1 -1 1
csc )= — sec ) = —— cot=—=—.
3 1 =3 3 /7

The definition of the trigonometric functions of any angle may be applied
if 6 is a quadrantal angle. The procedure is illustrated by the next example.

EXAMPLE 9 Finding trigonometric function values of a quadrantal angle
If 6 = 37/2, find the values of the trigonometric functions of 6.

SOLUTION  Note that 377/2 = 270° If 6 is placed in standard position, the
terminal side of 6 coincides with the negative y-axis, as shown in Figure 15.
To apply the definition of the trigonometric functions of any angle, we may
choose any point P on the terminal side of 6. For simplicity, we use P(0, —1).

In this case, x = 0,y = —1,r = 1, and hence
C 37 —1 RE /)
sin— = —= —1 cos— =—=20
2 1 2 1
3 1 3 0
csc—ﬂ-:—:—l cot—7T=—=0.
2 -1 2 -1

The tangent and secant functions are undefined, since the meaningless expres-
sions tan §# = (—1)/0 and sec 6 = 1/0 occur when we substitute in the ap-
propriate formulas. 4

Let us determine the signs associated with values of the trigonometric
functions. If 6 is in quadrant IT and P(x, y) is a point on the terminal side, then
x is negative and y is positive. Hence, sin § = y/r and csc 6 = r/y are posi-
tive, and the other four trigonometric functions, which all involve x, are nega-
tive. Checking the remaining quadrants in a similar fashion, we obtain the
following table.
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Signs of the Trigonometric Functions

Quadrant Positive Negative
containing 6 functions functions
1 all none
11 sin, csc cos, sec, tan, cot
11 tan, cot sin, csc, cos, sec
v Cos, sec sin, csc, tan, cot
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Figure 16
Positive trigonometric functions
AY
Sin
Csc All
x
Tan Cos
Cot Sec

A mnemonic device for remembering

the quadrants in which the trigono-

metric functions are positive is “A

Smart Trig Class,” which corresponds

to All Sin Tan Cos.

The diagram in Figure 16 may be useful for remembering quadrants in
which trigonometric functions are positive. If a function is not listed (such as
cos in quadrant II), then that function is negative. We finish this section with
three examples that require using the information in the preceding table.

EXAMPLE 10 Finding the quadrant containing an angle

Find the quadrant containing 6 if both cos § > 0 and sin 6 < 0.

SOLUTION  Referring to the table of signs or Figure 16, we see that
cos 6 > 0 (cosine is positive) if 6 is in quadrant I or IV and that sin 6 < 0
(sine is negative) if 0 is in quadrant III or I'V. Hence, for both conditions to be
satisfied, 6 must be in quadrant I'V. P4

EXAMPLE 11 Finding values of trigonometric

functions from prescribed conditions

If sin 0 = % and tan 0 < 0, use fundamental identities to find the values of the
other five trigonometric functions.
SOLUTION  Sincesin 6 = % > 0 (positive) and tan 6 < 0 (negative), 6 is in

quadrant II. Using the relationship sin” # + cos* 6 = 1 and the fact that cos 6
is negative in quadrant II, we have

cos 0= ~VT=siw 0 = 1= (F = <\ -

Next we use the tangent identity to obtain
sinf _ 3/5 3

cos@ —4/5 4~

Finally, using the reciprocal identities gives us

tan 6 =

0 1 1 5
csc O = =— ==
sinf 3/5 3
1 1 5
= — = — = >~
see cos —4/5 4
‘o 1 1 4
cot § = =—=——,
tan® —3/4 3 7
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EXAMPLE 12

Using fundamental identities

Rewrite V/cos? 6 + sin? § + cot® 6 in nonradical form without using absolute
values for 7w < 6 < 277

SOLUTION

Vecos? 0+ sin2 6+ co2 = V1 + cot? 0 cos? 0 + sin? 0 = 1

= Vesc? 0 1 + cot? 6 = csc2 6
= |csc 6| Va? = |x|

Since 7 < 0 < 27, we know that 0 is in quadrant III or IV. Thus, csc 6 is
negative, and by the definition of absolute value, we have

6.2 Exercises

|csc 6] = —csc 6. /

Exer. 1-2: Use common sense to match the variables and
the values. (The triangles are drawn to scale, and the angles
are measured in radians.)

1

< B lx

y
(a) «a (A) 7 (a) «a (A) 23.35
(b) B (B) 0.28 (b) B (B) 16
(c) x (C) 24 (c) x (c) 17
(d) y (D) 1.29 (d) y (D) 0.82
(e) z (E) 25 (e) z (E) 0.76

Exer. 3-10: Find the values of the six trigonometric func-

tions for the angle 6.
3 4

6
3 HJI

7A2 g
1/
/

10
Aa
a

Exer. 11-16: Find the exact values of x and y.
11 12

60°



13

15

14
Y 7
10 .
a O
y 30°
y
16
4
x
8
x pa O
y
60°
Yy

Exer. 17-22: Find the exact values of the trigonometric
functions for the acute angle 6.

17

19

21

23

24

25

26

27

sin9=% 1800892%
tan9=% 2000t9=%
sec(9=§ 22 csc 6 =4
Height of a tree A forester, 200 feet from the base of a red-

wood tree, observes that the angle between the ground and
the top of the tree is 60°. Estimate the height of the tree.

Distance to Mt. Fuji The peak of Mt. Fuji in Japan is ap-
proximately 12,400 feet high. A trigonometry student, sev-
eral miles away, notes that the angle between level ground
and the peak is 30°. Estimate the distance from the student
to the point on level ground directly beneath the peak.

Stonehenge blocks Stonehenge in Salisbury Plains,
England, was constructed using solid stone blocks weighing
over 99,000 pounds each. Lifting a single stone required
550 people, who pulled the stone up a ramp inclined at an
angle of 9°. Approximate the distance that a stone was
moved in order to raise it to a height of 30 feet.

Advertising sign height Added in 1990 and removed in
1997, the highest advertising sign in the world was a large
letter I situated at the top of the 73-story First Interstate
World Center building in Los Angeles. At a distance of 200
feet from a point directly below the sign, the angle between
the ground and the top of the sign was 78.87°. Approximate
the height of the top of the sign.

Telescope resolution Two stars that are very close may ap-
pear to be one. The ability of a telescope to separate their

28
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images is called its resolution. The smaller the resolution,
the better a telescope’s ability to separate images in the sky.
In a refracting telescope, resolution 6 (see the figure) can be
improved by using a lens with a larger diameter D. The
relationship between 6 in degrees and D in meters is given
by sin = 1.220/D, where A is the wavelength of light
in meters. The largest refracting telescope in the world
is at the University of Chicago. At a wavelength of
A = 550 X 107 meter, its resolution is 0.000 037 69°. Ap-
proximate the diameter of the lens.

Exercise 27

Moon phases The phases of the moon can be described
using the phase angle 6, determined by the sun, the moon,
and Earth, as shown in the figure. Because the moon orbits
Earth, 6 changes during the course of a month. The area of
the region A of the moon, which appears illuminated to
an observer on Earth, is given by A = %sz(l + cos 0),
where R = 1080 mi is the radius of the moon. Approxi-

mate A for the following positions of the moon:
(a) 6 = 0° (full moon) (b) 6 = 180° (new moon)

(c) 6 = 90° (first quarter) (d) 6=103°

Exercise 28
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Exer. 29-34: Approximate to four decimal places, when
appropriate.

29 (a) sin42° (b) cos 77°

(c) esc 123° (d) sec (—190°)
30 (a) tan 282° (b) cot (—81°)
(c) sec202° (d) sin 97°
31 (a) cot (m/13) (b) csc 1.32

(c) cos (—8.54) (d) tan (37/7)

32 (a) sin (—0.11) (b) sec 2
(c) tan (—%) (d) cos 2.4

33 (a) sin 30° (b) sin 30
(c) cos m° (d) cos

34 (a) sin45° (b) sin 45

(c) cos (3m/2)° (d) cos (37/2)

Exer. 35-38: Use the Pythagorean identities to write the
expression as an integer.

35 (a) tan® 4B — sec’ 48 (b) 4 tan* B — 4 sec’ B
36 (a) csc? 3a — cot? 3 (b) 3 csc? a — 3 cot? a
37 (a) 5sin® 6 + 5 cos® 0

(b) 5 sin’® (6/4) + 5 cos® (6/4)
38 (a) 7sec* y— 7 tan* y

(b) 7 sec? (y/3) — 7 tan? (y/3)
Exer. 39-42: Simplify the expression.

sin 6 + cos 6

cot> a — 4

40 —
cot> @« —cotw — 6

2 —tan 6
2 csc 6 — sec 6

2 csc 6+ 1
(1/sin> 6) + csc 6

Exer. 43—48: Use fundamental identities to write the first
expression in terms of the second, for any acute angle 6.

43 cot O, sin 0 44 tan 6, cos 6
45 sec 6, sin 6 46 csc 6, cos 0

47 sin 0, sec 6 48 cos 6, cot 6

Exer. 49—-70: Verify the identity by transforming the left-
hand side into the right-hand side.

49 cos Osec 6 =1 50 tan A cot 6 = 1
51 sin 6 sec 6 = tan 0 52 sin 6 cot 6 = cos 0

csc 0
53

= cot 0 54 cot O sec 6 = csc O

sec 0
55 (1 + cos 20)(1 — cos 26) = sin® 260
56 cos? 26 — sin? 26 = 2 cos® 26 — 1
57 cos?@(sec* 0 — 1) = sin® 0
58 (tan 6 + cot ) tan 6 = sec’ 0

sin (6/2)
csc (6/2)

cos (6/2)
sec (6/2)

59
60 1 — 2 sin® (0/2) = 2 cos® (6/2) — 1

1
61 (1 + sin 6)(1 — sin 0) = ——
sec” 6

62 (1 — sin®> )(1 + tan® ) = 1
63 sec # — cos 6 = tan 6 sin 0

sin 6 + cos 6
64 ———— =1+ tan 0
cos 6

65 (cot @ + csc O)(tan O — sin ) = sec O — cos 6
66 cot 6§ + tan 6 = csc 6 sec 6
67 sec® 30 csc? 30 = sec® 30 + csc? 360

1+ 230
68 ——— cos =2csc?360 — 1
sin® 36

69 log csc # = —log sin 6

70 log tan 6 = log sin 6 — log cos 6

Exer. 71-74: Find the exact values of the six trigonometric
functions of @ if 0 is in standard position and P is on the
terminal side.

71 P4, —3) 72 P(—8, —15)

73 P(=2, —5) 74 P(—1,2)
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Exer. 75-80: Find the exact values of the six trigonometric 84 (a) tan < 0 and cos 6> 0
functions of @ if 0 is in standard position and the terminal

side of @ is in the specified quadrant and satisfies the given (b) sec > 0andtan 6 <0
condition.

(c) csc > 0andcot 6 <0
75 1I; onthe line y = —4x

(d) cos #<0Oandcsc <0
76 1V; on the line 3y + 5x = 0

Exer. 85-92: Use fundamental identities to find the values of
the trigonometric functions for the given conditions.

78 1II; bisects the quadrant 85 tan 0 = —% and sin 6 >0 86 cot § = %and cos <0

. . 4
77 1;  on aline having slope 3

79 III; parallel to the line 2y — 7x + 2 =0 s |

87 sin § = —j3andsec 0 >0 88 cos = ;and sin 6 <0
80 II; parallel to the line through A(1, 4) and B(3, —2)

89 cos = —3andsin <0 90 csc = 5and cot § <0

Exer. 81-82: Find the exact values of the six trigonometric
functions of each angle, whenever possible. 91 sec # = —4andcsc 6 >0 92 sin O = %and cos <0

81 (a) 90° (b) 0° (c) 7m/2 (d) 37
Exer. 93-98: Rewrite the expression in nonradical form

82 (a) 180° (b) —90° (c) 27 (d) 5m/2 without using absolute values for the indicated values of 6.

93 Vsec’0—1;, w/2<60<m
Exer. 83-84: Find the quadrant containing 6 if the given

conditions are true. 9% V1tco 6y 0<O<m
83 (a) cos > 0andsin <0 95 V1 +tan’ 6; 37/2 < <27
(b) sin # < 0andcot >0 96 Vesc? 6 — 1; 3w/2< <27
(c) csc > 0andsec 6 <0 97 Vsin? (6/2); 27w <6< 4w
(d) sec 6 <Oandtan 6 >0 98 Veos’ (0/2); 0<6<m
6.3 The domain of each trigonometric function we have discussed is a set of

angles. In calculus and in many applications, domains of functions consist of
Trigo nometric Functions real numbers. To regard the domain of a trigonometric function as a subset

of R, we may use the following definition.
of Real Numbers g £

Definition of the Trigonometric The value of a trigonometric function at a real number ¢ is its value at
Functions of Real Numbers an angle of 7 radians, provided that value exists.

Using this definition, we may interpret a notation such as sin 2 as either the
sine of the real number 2 or the sine of an angle of 2 radians. As in Section 6.2,
if degree measure is used, we shall write sin 2°. With this understanding,

sin 2 # sin 2°.
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Figure 1
P(x,y)
0 A(L,0) x
U
Figure 2
0=1t1t>0
AY
t
0=t
4 A(1,0)
\9| x
U P(x, y)

To find the values of trigonometric functions of real numbers with a calcula-
tor, we use the radian mode.

We may interpret trigonometric functions of real numbers geometrically
by using a unit circle U—that is, a circle of radius 1, with center at the origin
O of a rectangular coordinate plane. The circle U is the graph of the equation
x% + y? = 1. Let t be a real number such that 0 < r < 277, and let 6 denote the
angle (in standard position) of radian measure ¢. One possibility is illustrated
in Figure 1, where P(x, y) is the point of intersection of the terminal side of 0
and the unit circle U and where s is the length of the circular arc from A(1, 0)
to P(x, y). Using the formula s = r@ for the length of a circular arc, with r = 1
and 0 = t, we see that

s=r0=10) = 1.

Thus, t may be regarded either as the radian measure of the angle 0 or as the
length of the circular arc AP on U.

Next consider any nonnegative real number ¢ If we regard the angle 6 of
radian measure ¢ as having been generated by rotating the line segment OA
about O in the counterclockwise direction, then 7 is the distance along U that
A travels before reaching its final position P(x, y). In Figure 2 we have illus-
trated a case for t < 27r; however, if t > 277, then A may travel around U sev-
eral times in a counterclockwise direction before reaching P(x, y).

If + < 0, then the rotation of OA is in the clockwise direction, and the dis-
tance A travels before reaching P(x, y) is |¢|, as illustrated in Figure 3.

Figure 3
0=51t<0
AY
P(x,y)
A(1,0)
x
U

The preceding discussion indicates how we may associate with each real
number t a unique point P(x,y) on U. We shall call P(x, y) the point on the
unit circle U that corresponds to ¢. The coordinates (x, y) of P may be used
to find the six trigonometric functions of 7. Thus, by the definition of the
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trigonometric functions of real numbers together with the definition of the
trigonometric functions of any angle (given in Section 6.2), we see that
sint=sin0=l=l=y
r 1
Using the same procedure for the remaining five trigonometric functions gives
us the following formulas.

Definition of the
Trigonometric Functions
in Terms of a Unit Circle

If 7 is a real number and P(x, y) is the point on the unit circle U that corre-
sponds to #, then

sinf =y cost =x tant = (if x # 0)

e i = (if y # 0).

<= o e

1 1
— (fy#0) sect=— (ifx#0) cott=
y X

Figure 4
AY
4
o=1
/4 A(1,0)
x
3 4 v
P(=5.-3)

The formulas in this definition express function values in terms of coor-
dinates of a point P on a unit circle. For this reason, the trigonometric func-
tions are sometimes referred to as the circular functions.

EXAMPLE 1 Finding values of the trigonometric functions

A point P(x, y) on the unit circle U corresponding to a real number 7 is shown in
Figure 4, for 7 < t < 37r/2. Find the values of the trigonometric functions at z.

SOLUTION  Referring to Figure 4, we see that the coordinates of the point
P(x, y) are
— _3 — _4
x= -3, = —s.
Using the definition of the trigonometric functions in terms of a unit circle
gives us

sint=y=—i cosz‘zxz—i tantzlz_—gzi
5 5 x -3 3
csct=l=%=—isectILZ%z—icott=£= _f%:i.
y -3 4 X 3 3 y 3 4

/

EXAMPLE 2 Finding a point on U relative to a given point

Let P(r) denote the point on the unit circle U that corresponds to ¢ for
0=r<2mIfPt) = (%2), find

@ Pt+m  (b) Pt—m () P(-1)
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Figure 5
(@)

SOLUTION

(a) The point P(¢) on U is plotted in Figure 5(a), where we have also shown
the arc AP of length z. To find P(¢t + ), we travel a distance 7 in the coun-
terclockwise direction along U from P(r), as indicated by the blue arc in the
figure. Since 7 is one-half the circumference of U, this gives us the point
Pit+ m = (—%‘, —g) diametrically opposite P(r).

(b) ()

Figure 6
() LY

P(1,0)

X

2 PO = (3:3)
t
A(1,0) =x
[—1¢l /
P = (5 -3)

P = ()

(b) To find P(r — ), we travel a distance 7 in the clockwise direction along
U from P(t), as indicated in Figure 5(b). This gives us P(t — m) = (—g, —%)
Note that P(t + m) = P(t — ).

(c) To find P(—1), we travel along U a distance | —¢| in the clockwise direc-
tion from A(1, 0), as indicated in Figure 5(c). This is equivalent to reflecting
P(t) through the x-axis. Thus, we merely change the sign of the y-coordinate
of P(t) = (%, %) to obtain P(—1) = (%, —53) 7/

EXAMPLE 3 Finding special values of the trigonometric functions

Find the values of the trigonometric functions at #:

@ =0 (b t=% (c)z=§

SOLUTION

(a) The point P on the unit circle U that corresponds to # = 0 has coordinates
(1, 0), as shown in Figure 6(a). Thus, we let x = 1 and y = 0 in the definition

of the trigonometric functions in terms of a unit circle, obtaining
sin0=y=20 cosO0=x=1

0
tan0=l=—=0 sec)=—=—=1.
X 1 X

Note that csc 0 and cot 0 are undefined, since y = 0 is a denominator.
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P(x,y)
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Figure 7

>

©, D

(—1,0)

P(cos t, sin t)

!
0=t

>
X

A(1, 0)

0, -1
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(b) Ift = 77/4, then the angle of radian measure /4 shown in Figure 6(b) bi-
sects the first quadrant and the point P(x, y) lies on the line y = x. Since
P(x, y) is on the unit circle x> + y? = 1 and since y = x, we obtain

x2+x2=1, or 2x2 = 1.
Solving for x and noting that x > 0 gives us
1 V2
xX=—=—.
V2 o2

Thus, P is the point (\f2/2, \f2/2) Letting x = V2/2and y = V2/2 in the
definition of the trigonometric functions in terms of a unit circle gives us

a2 T V2 T \V2/2
sin— = —(— Cos — = —/— tan— = ——— =
4 2 4 2 4 22
T 2 T 2 T \V2/2
csc—=—==1V2 sec—=—== V2 cot— = ——— =1
4 V2 4 V2 4 V22

(c) The point P on U that corresponds to ¢ = 77/2 has coordinates (0, 1), as
shown in Figure 6(c). Thus, we let x = 0 and y = 1 in the definition of the
trigonometric functions in terms of a unit circle, obtaining

T T T 1 T 0
sin— =1 cos— =20 csc—=—=1 cot— =—=0.
2 2 2 1 2 1
The tangent and secant functions are undefined, since x = 0 is a denominator
in each case. /7

A summary of the trigonometric functions of special angles appears in
Appendix I'V.

We shall use the unit circle formulation of the trigonometric functions to
help obtain their graphs. If ¢ is a real number and P(x, y) is the point on the unit
circle U that corresponds to ¢, then by the definition of the trigonometric func-
tions in terms of a unit circle,

X =cost and y =sint.

Thus, as shown in Figure 7, we may denote P(x, y) by
P(cos t, sin 1).

If r > 0, the real number 7 may be interpreted either as the radian measure of
the angle 6 or as the length of arc AP.

If we let t increase from O to 27 radians, the point P(cos t, sin 1) travels
around the unit circle U one time in the counterclockwise direction. By ob-
serving the variation of the x- and y-coordinates of P, we obtain the next table.
The notation 0 — 77/2 in the first row of the table means that 7 increases from
0 to /2, and the notation (1, 0) — (0, 1) denotes the corresponding variation
of P(cos t, sin 1) as it travels along U from (1, 0) to (0, 1). If # increases from
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0 to 7r/2, then sin ¢ increases from 0 to 1, which we denote by 0 — 1. More-
over, sin t takes on every value between 0 and 1. If ¢ increases from /2 to r,
then sin ¢ decreases from 1 to 0, which is denoted by 1 — 0. Other entries in
the table may be interpreted in similar fashion.

t P(cos ¢, sin ) cos t sin ¢

T
0%7 (1,0)— (0, 1) 1—0 0—1
T
5T 0,1)=(=1,0) 0—-1 1—0

3w
= (=1,0)— (0, —1) -1 -0 0—-1
3
7%2# 0, =1)— (1, 0) 0—1 -1 —0

If  increases from 247 to 47, the point P(cos t, sin ¢) in Figure 7 traces the
unit circle U again and the patterns for sin ¢ and cos ¢ are repeated—that is,

sin (t + 2) = sin ¢t and cos (t + 27) = cos t

for every ¢ in the interval [0, 277]. The same is true if ¢ increases from 44 to 677,
from 677 to 877, and so on. In general, we have the following theorem.

Theorem on Repeated ‘
Function Values for sin and cos

If n is any integer, then

sin (t + 27rn) = sin ¢ and cos (t + 27rn) = cos t.

The repetitive variation of the sine and cosine functions is periodic in the sense
of the following definition.

Definition of Periodic Function ‘

A function fis periodic if there exists a positive real number k such that

fle + k) = f(2)

for every ¢ in the domain of f. The least such positive real number £, if it
exists, is the period of f.

You already have a common-sense grasp of the concept of the period of a
function. For example, if you were asked on a Monday “What day of the week
will it be in 15 days?” your response would be “Tuesday” due to your under-
standing that the days of the week repeat every 7 days and 15 is one day more
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than two complete periods of 7 days. From the discussion preceding the pre-
vious theorem, we see that the period of the sine and cosine functions is 277

We may now readily obtain the graphs of the sine and cosine functions.
Since we wish to sketch these graphs on an xy-plane, let us replace the vari-
able 7 by x and consider the equations

y = sinx and y = CoS Xx.

We may think of x as the radian measure of any angle; however, in calculus, x
is usually regarded as a real number. These are equivalent points of view, since
the sine (or cosine) of an angle of x radians is the same as the sine (or cosine)
of the real number x. The variable y denotes the function value that corre-
sponds to x.

The table in the margin lists coordinates of several points on the graph of
y = sinx for 0 = x = 2. Additional points can be determined using results
on special angles, such as

sin (7/6) = 1/2  and  sin (7/3) = V/3/2 = 0.8660.

To sketch the graph for 0 = x = 2, we plot the points given by the table
and remember that sin x increases on [0, /2], decreases on [7/2, 7] and
[, 37/2], and increases on [37/2, 277]. This gives us the sketch in Figure 8.
Since the sine function is periodic, the pattern shown in Figure 8 is repeated to
the right and to the left, in intervals of length 27r. This gives us the sketch in
Figure 9.

Figure 8

AY

y=sinx, 0=sx<27w

N A
-1t 2

Figure 9

AY
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x y = cos x
0 1
2
i Lz0'7
4 2
T
— 0
2
3 2
4 2
T -1
5 2
4 2
3
=7 0
2
7 2
4 2
2ar 1

We can use the same procedure to sketch the graph of y = cos x. The table
in the margin lists coordinates of several points on the graph for 0 = x = 277,
Plotting these points leads to the part of the graph shown in Figure 10. Re-
peating this pattern to the right and to the left, in intervals of length 27, we ob-
tain the sketch in Figure 11.

Figure 10

AY

1 <>\“\‘

Figure 11

=Y

The part of the graph of the sine or cosine function corresponding to
0 = x = 27 is one cycle. We sometimes refer to a cycle as a sine wave or a
cosine wave.

The range of the sine and cosine functions consists of all real numbers
in the closed interval [—1, 1]. Since csc x = 1/sin x and sec x = 1/cos x, it
follows that the range of the cosecant and secant functions consists of all real
numbers having absolute value greater than or equal to 1.

As we shall see, the range of the tangent and cotangent functions consists
of all real numbers.

Before discussing graphs of the other trigonometric functions, let us es-
tablish formulas that involve functions of —¢ for any . Since a minus sign is
involved, we call them formulas for negatives.

Formulas for Negatives

sin(—¢) = —sint cos(—t) =cost tan(—f) = —tant

csc (—t) = —csct  sec(—t) =sect cot(—t) = —cott
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PROOFS  Consider the unit circle U in Figure 12. As ¢ increases from 0 to 277,
the point P(x, y) traces the unit circle U once in the counterclockwise direction
and the point Q(x, —y), corresponding to —1, traces U once in the clockwise
direction. Applying the definition of the trigonometric functions of any angle
(with » = 1), we have

sin(—7) = —y = —sin¢
cos (—1) = x = cost

tan (—7) = 2o Yo s
X x

The proofs of the remaining three formulas are similar. /

In the following illustration, formulas for negatives are used to find an
exact value for each trigonometric function.

Use of Formulas for Negatives

B sin (—45°) = —sin45° = —

~[S

B cos (—30°) = cos 30° =

B tan (—%) = —tan (%) =—\V3

B csc(—30°) = —csc30° = —2

V3
2

B sec (—60°) = sec 60° = 2

" oo (_g) — (g) -

We shall next use formulas for negatives to verify a trigonometric identity.

EXAMPLE 4 Using formulas for negatives to verify an identity

Verify the following identity by transforming the left-hand side into the right-
hand side:

sin (—x) tan (—x) + cos (—x) = sec x
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sin (—

SOLUTION  We may proceed as follows:
x) tan (—x) + cos (—x) = (—sinx)(—tan x) + cosx formulas for negatives
. sinx o
=sinx + cosx tangent identity
cos
02
sin” x )
= + cosx multiply
COS X
sin®x + cos® x
= add terms
COS X
1 o
= Pythagorean identity
COS X
= secx reciprocal identity

/7

We may use the formulas for negatives to prove the following theorem.

Theorem on Even and
0dd Trigonometric Functions

(1) The cosine and secant functions are even.
(2) The sine, tangent, cotangent, and cosecant functions are odd.

PROOFS  We shall prove the theorem for the cosine and sine functions. If
f(x) = cos x, then

f(=x) = cos (—x) = cos x = f(x),

which means that the cosine function is even.
If f(x) = sin x, then

f(=x) = sin (—x) = —sinx = —f(x).
V4

Thus, the sine function is odd.

Since the sine function is odd, its graph is symmetric with respect to the
origin (see Figure 13). Since the cosine function is even, its graph is symmet-
ric with respect to the y-axis (see Figure 14).

Figure 13 sine is odd Figure 14 cosine is even
AY AY
S e NS N
: =" > ot ——A—>
— e 1 7\ X W | W X
(,a’ */)) y =COoSx




X y =tanx
7T —
-— | —V3=-17
3
T
- -1
4
6 3
0 0
3
1 L%O.6
6 3
T
— 1
4
= V3=~ 17
3
Figure 15
AY
T °
+ e
°
. o] = x
2 + 2
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By the preceding theorem, the tangent function is odd, and hence the
graph of y = tan x is symmetric with respect to the origin. The table in the
margin lists some points on the graph if —7/2 < x < 7/2. The corresponding
points are plotted in Figure 15. The values of tan x near x = /2 require
special attention. If we consider tan x = sin x/cos x, then as x increases to-
ward 77/2, the numerator sin x approaches 1 and the denominator cos x ap-
proaches 0. Consequently, tan x takes on large positive values. Following are some
approximations of tan x for x close to 7/2 = 1.5708:

tan 1.57000 =  1,255.8
tan 1.57030 = 2,014.8
tan 1.57060 =  5,093.5
tan 1.57070 = 10,381.3
tan 1.57079 = 158,057.9

Notice how rapidly tan x increases as x approaches /2. We say that tan x in-
creases without bound as x approaches /2 through values less than /2.
Similarly, if x approaches — 7/2 through values greater than — /2, then tan x
decreases without bound. We may denote this variation using the notation in-
troduced for rational functions in Section 4.5:

T
as x—>7 , tanx—>x

7T+
as x%—T , tanx —> —x

This variation of tan x in the open interval (—/2, 7/2) is illustrated in Fig-
ure 16. This portion of the graph is called one branch of the tangent. The lines
x = —a/2 and x = 7/2 are vertical asymptotes for the graph. The same pat-
tern is repeated in the open intervals (—3/2, —7/2), (7/2,37/2), and
(37/2, 57/2) and in similar intervals of length 77, as shown in the figure. Thus,
the tangent function is periodic with period 1.

Figure16 y = tanx

Y

=2 37
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We may use the graphs of y = sinx, y = cos x, and y = tan x to help
sketch the graphs of the remaining three trigonometric functions. For exam-
ple, since csc x = 1/sinx, we may find the y-coordinate of a point on the
graph of the cosecant function by taking the reciprocal of the corresponding
y-coordinate on the sine graph for every value of x except x = 7rn for any in-
teger n. (If x = 7rn, sinx = 0, and hence 1/sin x is undefined.) As an aid to
sketching the graph of the cosecant function, it is convenient to sketch the
graph of the sine function (shown in red in Figure 17) and then take recipro-
cals to obtain points on the cosecant graph.

Figure17 y = cscx,y = sinx

AY

T
| +—1
|
I
I
I
I
I

Notice the manner in which the cosecant function increases or decreases
without bound as x approaches mn for any integer n. The graph has vertical
asymptotes x = 7rn, as indicated in the figure. There is one upper branch of
the cosecant on the interval (0, 77) and one lower branch on the interval
(7, 27r)—together they compose one cycle of the cosecant.

Since sec x = 1/cos x and cot x = 1/tan x, we may obtain the graphs of
the secant and cotangent functions by taking reciprocals of y-coordinates of
points on the graphs of the cosine and tangent functions, as illustrated in Fig-
ures 18 and 19.

Figure18 y = secx, y = cosx




Figure 19
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y = cotx,y = tanx

AY

387

Sy

A graphical summary of the six trigonometric functions and their inverses
(discussed in Section 7.6) appears in Appendix III.
We have considered many properties of the six trigonometric functions of
x, where x is a real number or the radian measure of an angle. The following
chart contains a summary of important features of these functions (n denotes

an arbitrary integer).

Summary of Features of the Trigonometric Functions and Their Graphs

Feature y = sinx y = cos x y = tanx y = cotx y = secx y = csex
y y y y y y
1 | | | T | I I
1 | | : | N+ | I 1 I
1 1 | | i | A | I Ul
Graph : T 1/ \ | \J L N et
(one - 1 T [ N | | e o e I L ¥
. i 2 | | | [ | I L I
period) | | | | | ﬂl | ﬂ |
| | | T | ! |
1 1 1 1 | 1 1 T ] 1 u 1
m m = = xX=7 = -7 x=1
x=-3 x=73 x=0 x=m xlz—% 2x:I3T7T x=0
Domain R R x#3+mn X # mn x#35 +an X # mn
Vertical - o _
asymptotes none none x=5tmn X = Tn x=5tmn X = Tn
Range [—1,1] [—1,1] R R (=0, =1] U [1, )| (=, =1] U [1, )
. aw o
x-intercepts mhn 5t mn mn 5 tan none none
y-intercept 0 1 0 none 1 none
Period 2 2 T T 2 2
Even or odd odd even odd odd even odd
Symmetry origin y-axis origin origin y-axis origin
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EXAMPLE 5 Investigating the variation of csc x
Investigate the variation of csc x as

B T mt
X—>mT, X—>TT, x%?, and x—>?.

SOLUTION  Referring to the graph of y = csc x in Figure 20 and using our
knowledge of the special values of the sine and cosecant functions, we obtain
the following:

as x—a, sinx— 0 (through positive values) and cscx— ©

as x— m', sinx— 0 (through negative values) and cscx— —o

o .
as x—>7, sinx— 1 and cscx—1
a* .
as x——, sinx—— and cscx—2
6 2
Figure 20

y =cscx,y = sinx

AY

EXAMPLE 6 Solving equations and inequalities
that involve a trigonometric function
Find all values of x in the interval [ =277, 277] such that
(@) coox=43  (b) cosx>1  (c) cosx <3
SOLUTION  This problem can be easily solved by referring to the graphs of

y=cosx and y = %, sketched on the same xy-plane in Figure 21 for
2T =x=2m
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Figure 21

(a) The values of x such that cos x = % are the x-coordinates of the points at
which the graphs intersect. Recall that x = 7r/3 satisfies the equation. By
symmetry, x = —7/3 is another solution of cos x = % Since the cosine func-

tion has period 277, the other values of x in [ =2, 27| such that cos x = % are

T S T S5
—— + 27 == — —27r=—-.
3 T 3 and 3 T 3

(b) The values of x such that cos x > 5 5 can be found by determmlng where
the graph of y = cos x in Figure 21 lies above the line y = 5 Th1s gives us the

x-intervals
S T T S
|:—27T, —T>, <—?, ?>, and (;, 27T:|.

(c) To solve cos x < 5 2, we again refer to Figure 21 and note where the graph
of y = cos x lies below the line y = ThlS gives us the x-intervals

S T T Sm
- and |(—,— .
( 3 3 ) (3 3 )

Another method of solving cos x < % is to note that the solutions are the
open subintervals of [ —2r, 277] that are not included in the intervals obtained
in part (b). V4

We have now discussed two different approaches to the trigonometric
functions. The development in terms of angles and ratios, introduced in Sec-
tion 6.2, has many applications in the sciences and engineering. The definition
in terms of a unit circle, considered in this section, emphasizes the fact that the
trigonometric functions have domains consisting of real numbers. Such func-
tions are the building blocks for calculus. In addition, the unit circle approach
is useful for discussing graphs and deriving trigonometric identities. You
should work to become proficient in the use of both formulations of the
trigonometric functions, since each will reinforce the other and thus facilitate
your mastery of more advanced aspects of trigonometry.
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6.3 Exercises

Exer. 1-4: A point P(x, y) is shown on the unit circle U
corresponding to a real number ¢. Find the values of the
trigonometric functions at ¢.

)
=Y

Exer. 5-8: Let P(¢) be the point on the unit circle U that
corresponds to z. If P(t) has the given rectangular coor-
dinates, find

@ Pt+m (b) Pt—m (c) P(-t) (d) P(—t— m)
53 3) 6 (=1 1)
7 (=%, %) 8 (% —%)

Exer. 9-16: Let P be the point on the unit circle U that
corresponds to ¢. Find the coordinates of P and the exact
values of the trigonometric functions of ¢, whenever possible.

9 (a) 27 (b) =37

10 (a) —7 (b) 6m

11 (a) 3a/2 (b) —7m/2
12 (a) 5a/2 (b) —m/2
13 (a) 9m/4 (b) —5m/4
14 (a) 3m/4 (b) —7m/4
15 (a) Sm/4 (b) —m/4
16 (a) 7m/4 (b) —3m/4

! AY
P(iiig' %) t
N .
o X
U
2 AY
paY
N o
0 x
U
3 AY
0 7 =
) 3

Exer. 17-20: Use a formula for negatives to find the ex-
act value.

17 (a) sin (—90°) (b) cos(?) (c) tan (—45°)

18 (a) sin <—327T> (b) cos (—225°)  (c) tan (—m)



20 (a) cot (—225°)  (b) sec <:> (c) csc (—45°)

Exer. 21-26: Verify the identity by transforming the left-
hand side into the right-hand side.

21 sin (—x) sec (—x) = —tan x

22 c¢csc (—x) cos (—x) = —cot x
cot (—x) sec (—x)

23 ———=cosx —— = —CSC X
csc (—x) tan (—x)

25 ———— — tan (—x) sin (—x) = cos x
cos (—x)

26 cot (—x) cos (—x) + sin (—x) = —csc x

Exer. 27-38: Complete the statement by referring to a
graph of a trigonometric function.

27 (a) Asx—0",sinx— ___
(b) Asx—(—m/2),sinx— ___
28 (a) Asx— 7', sinx— ___
(b) Asx—(7/6) ", sinx— ___
29 (a) Asx— (w/4)*,cos x —> ___
(b) Asx— 7 ,cosx — ___
30 (a) Asx—0",cosx —
(b) Asx— (—m/3)",cos x —> ___
31 (a) Asx— (m/4)", tanx — ___
(b) Asx— (w/2)", tan x —> ___
32 (a) Asx— 0", tanx — ___
(b) Asx — (—m/2) ,tanx > ___
33 (a) Asx— (—7/4) ,cotx — ___
(b) Asx— 0", cotx— ___
34 (a) Asx— (m/6)", cotx — ___
(b) Asx =7 ,cotx— ___
35 (a) Asx— (m/2) ,secx —
(b) Asx— (w/4)",secx —
36 (a) Asx— (m/2)",secx —

(b) Asx—07,secx—
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37 (a) Asx—07,cscx—
(b) Asx— (7/2)",cscx—
38 (a) Asx—> 7w, cscx—

(b) Asx— (w/4) ", cscx—

Exer. 39-46: Refer to the graph of y = sin x or y = cos x to
find the exact values of x in the interval [0, 477] that satisfy
the equation.

39 sinx = —1 40 sinx = 1

41 sin x :% 42 sinx = —\V2/2

43 cosx =1 44 cos x = —1

45 cos x = \V/2/2 46 cos x = —51

Exer. 47-50: Refer to the graph of y = tan x to find the
exact values of x in the interval (—/2, 377/2) that satisfy
the equation.

47 tanx = 1 48 tanx = V3

49 tanx = 0 50 tan x = —1/V3

Exer. 51-54: Refer to the graph of the equation on the
specified interval. Find all values of x such that for the real
number a, (a)y = a, (b) y >a, and (¢) y <a.

51 y =sinx; [—2m 27, a= %
52 y =cosx; [0, 4] a=\3/2

53 y =cosx; [—2m 27, a= —5'

-\V2/2

54 y =sinx; [0, 4m7]; a
Exer. 55-62: Use the graph of a trigonometric function to
sketch the graph of the equation without plotting points.
55 y =2+ sinx 56 y =3 + cos x

57 y=cosx — 2 58 y =sinx — 1
50 y=1+tan x 60 y=cotx — 1

61 y=secx — 2 62 y=1+cscx

Exer. 63—-66: Find the intervals between —27 and 27 on
which the given function is (a) increasing or (b) decreasing.

63 secant 64 cosecant

65 tangent 66 cotangent
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67 Practice sketching the graph of the sine function, taking dif-
ferent units of length on the horizontal and vertical axes.
Practice sketching graphs of the cosine and tangent functions
in the same manner. Continue this practice until you reach
the stage at which, if you were awakened from a sound sleep
in the middle of the night and asked to sketch one of these graphs,
you could do so in less than thirty seconds.

68 Work Exercise 67 for the cosecant, secant, and cotan-
gent functions.

Exer. 69-72: Use the figure to approximate the following to
one decimal place.

=Y

69 (a) sin 4 (b) sin (—1.2)
(c) All numbers ¢ between 0 and 27 such that sin = 0.5
70 (a) sin 2 (b) sin (—2.3)

(c) All numbers ¢ between 0 and 277 such that sin r = —0.2

71 (a) cos 4 (b) cos (—1.2)
(c) All numbers ¢ between 0 and 27 such that cos 1 = —0.6
72 (a) cos 2 (b) cos (—2.3)

(c) All numbers ¢ between 0 and 27 such that cos 1 = 0.2

73

74

Temperature-humidity relationship On March 17, 1981, in
Tucson, Arizona, the temperature in degrees Fahrenheit
could be described by the equation

T
T@®) = —12 —1t ] + 60,
(1) cos (12>

while the relative humidity in percent could be expressed by

H(t) = 20 cos (=1 ) + 60,
12
where 7 is in hours and ¢ = 0 corresponds to 6 A.M.

(a) Construct a table that lists the temperature and relative
humidity every three hours, beginning at midnight.

(b) Determine the times when the maximums and mini-
mums occurred for 7 and H.

(c) Discuss the relationship between the temperature and
relative humidity on this day.

Robotic arm movement Trigonometric functions are used
extensively in the design of industrial robots. Suppose that
a robot’s shoulder joint is motorized so that the angle 6
increases at a constant rate of 77/12 radian per second from
an initial angle of 6 = 0. Assume that the elbow joint is
always kept straight and that the arm has a constant length
of 153 centimeters, as shown in the figure.

(a) Assume that 7 = 50 cm when 6 = 0. Construct a table
that lists the angle 0 and the height & of the robotic
hand every second while 0 = 6 = 7/2.

(b) Determine whether or not a constant increase in the
angle 6 produces a constant increase in the height of
the hand.

(c) Find the total distance that the hand moves.

Exercise 74

50 cm
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In previous sections we calculated special values of the trigonometric func-
tions by using the definition of the trigonometric functions in terms of either
an angle or a unit circle. In practice we most often use a calculator to approxi-
mate function values.

We will next show how the value of any trigonometric function at an angle
of 0 degrees or at a real number ¢ can be found from its value in the
f-interval (0°, 90°) or the t-interval (0, 7/2), respectively. This technique is
sometimes necessary when a calculator is used to find all angles or real num-
bers that correspond to a given function value.

We shall make use of the following concept.

Definition of Reference Angle

Let 6 be a nonquadrantal angle in standard position. The reference angle
for 6 is the acute angle 6 that the terminal side of § makes with the x-axis.

Figure 1 Reference angles
(a) Quadrant I

AY

Figure 1 illustrates the reference angle 6 for a nonquadrantal angle 6,
with 0° < 6 < 360° or 0 < 6 < 277, in each of the four quadrants.

(b) Quadrant IT (c) Quadrant III (d) Quadrant IV
AY AY AY
DAY Y fany
x AR x N
Or = 180° — 0 Or = 6 — 180° Og = 360° — 6

=7—0 =0—7 =27— 0

The formulas below the axes in Figure 1 may be used to find the degree
or radian measure of 6z when 6 is in degrees or radians, respectively. For a
nonquadrantal angle greater than 360° or less than 0°, first find the cotermi-
nal angle O with 0° < 6 < 360° or 0 < 6 < 27, and then use the formulas in
Figure 1.

EXAMPLE 1 Finding reference angles

Find the reference angle 6 for 6, and sketch 6 and 6 in standard position on
the same coordinate plane.

@@ 6=315° (b) 6=-240° (c) 9=5£ (d) 6=4
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Figure 2

@

0=315°

—_—

e
N

(b)

0y = 6()°/4

120°

0= —240°

()

SOLUTION

(a) The angle 6 = 315° is in quadrant I'V, and hence, as in Figure 1(d),
O = 360° — 315° = 45°.

The angles 6 and 6 are sketched in Figure 2(a).

(b) The angle between 0° and 360° that is coterminal with § = —240° is

—240° + 360° = 120°,

which is in quadrant II. Using the formula in Figure 1(b) gives
O = 180° — 120° = 60°.

The angles 6 and 6 are sketched in Figure 2(b).

(c) Since the angle 6 = 57/6 is in quadrant II, we have

as shown in Figure 2(c).

(d) Since m < 4 < 37/2, the angle 6 = 4 is in quadrant III. Using the for-

mula in Figure 1(c), we obtain
0R =4 — .

The angles are sketched in Figure 2(d).

/

We shall next show how reference angles can be used to find values of the

trigonometric functions.

If 6 is a nonquadrantal angle with reference angle 6, then we have

0° < 6 < 90° or 0 < 6y < /2. Let P(x, y) be a point on the terminal side

of 6, and consider the point Q(x, 0) on the x-axis. Figure 3 illustrates a

Figure 3
AY AY y y
P(x,y) P(x,y) 0 A
7y TN 0, 0)
b L . L6 -t _
of /% T e R Tae h
O(x, 0) 0(x. 0) vl A4




6.4 Values of the Trigonometric Functions 395

typical situation for 6 in each quadrant. In each case, the lengths of the sides
of triangle OQP are

d(0,Q) = |x|, d(Q,P)=y|, and d(O,P)= Vx> + y*=r.

We may apply the definition of the trigonometric functions of any angle
and also use triangle OQP to obtain the following formulas:

|sin 0] = A Zmzuzsinek
rlo
NS i i
|cos 6] = == ="—=cos 6
rl el
tan | = |-——| = — = tan 6
ltan 6] = |2 |y] 0
x| x|

These formulas lead to the next theorem. If 6 is a quadrantal angle, the defini-
tion of the trigonometric functions of any angle should be used to find values.

Theorem on Reference Angles

If 0 is a nonquadrantal angle in standard position, then to find the value of
a trigonometric function at 6, find its value for the reference angle 6 and
prefix the appropriate sign.

Figure 4

The “appropriate sign” referred to in the theorem can be determined from the
table of signs of the trigonometric functions given on page 371.

EXAMPLE 2 Using reference angles

Use reference angles to find the exact values of sin 6, cos 6, and tan 6 if

5
(a)9=—67Z (b) 6= 315°
SOLUTION

(3) The angle 6 = 57/6 and its reference angle 6z = /6 are sketched in
Figure 4. Since 6 is in quadrant II, sin 6 is positive and both cos 6 and tan 6
are negative. Hence, by the theorem on reference angles and known results
about special angles, we obtain the following values:

. 5w .o 1
sin— = +sin— = —

6 2
S T V3
COS— = — COS— = ————
6 6 2
5 T \V3
tan— = —tan— = ———
6 6 3

(continued)
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(b) The angle 6 = 315° and its reference angle 6; = 45° are sketched in Fig-
Figure 5 ure 5. Since 6 is in quadrant IV, sin 6 < 0, cos # > 0, and tan § < 0. Hence,
by the theorem on reference angles, we obtain

4 V2
sin 315° = — sin45° = ———
an v
2
o o = O — —
\ 0 = 45° x cos 315 + cos 45 5
tan 315° = — tan45° = —1. 7/

If we use a calculator to approximate function values, reference angles are
usually unnecessary. As an illustration, to find sin 210°, we place the calcula-
tor in degree mode and obtain sin 210° = —0.5, which is the exact value.
Using the same procedure for 240°, we obtain a decimal representation:

sin 240° = —0.8660

A calculator should not be used to find the exact value of sin 240°. In this case,
we find the reference angle 60° of 240° and use the theorem on reference an-
gles, together with known results about special angles, to obtain

sin 240° = —sin 60° = _\/T?

Let us next consider the problem of solving an equation of the follow-
ing type:

Problem: If 6 is an acute angle and sin 8 = 0.6635, approximate 6.

Most calculators have a key labeled that can be used to help solve the
equation. With some calculators, it may be necessary to use another key or a
keystroke sequence such as (refer to the user manual for your cal-
culator). We shall use the following notation when finding 6, where 0 = k = I:

if sin@=k then 60=sin'k

This notation is similar to that used for the inverse function f~' of a function
fin Section 5.1, where we saw that under certain conditions,

if f(x) =y, then x=j7"Y(y).

For the problem sin 6 = 0.6635, fis the sine function, x = 6, and y = 0.6635.
The notation sin~! is based on the inverse trigonometric functions discussed
in Section 7.6. At this stage of our work, we shall regard sin~" simply as an
entry made on a calculator using a key. Thus, for the stated problem,
we obtain

6 = sin~! (0.6635) = 41.57° = 0.7255.

As indicated, when finding an angle, we will usually round off degree measure
to the nearest 0.01° and radian measure to four decimal places.
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Similarly, given cos 6 = k or tan 6 = k, where 6 is acute, we write
0 =tan"'k

to indicate the use of a or key on a calculator.

Given csc 0, sec 6, or cot 6, we use a reciprocal relationship to find 6, as
indicated in the following illustration.

0 =cos 'k or

Finding Acute Angle Solutions of Equations with a Calculator

Equation Calculator solution (degree and radian)
B sinf =05 0 =sin"!(0.5) =30° = 0.5236
B cosf=05 0 = cos™'(0.5) = 60° = 1.0472
B tan 6= 0.5 0 = tan"! (0.5) = 26.57° = 0.4636
B ocsch=2 0=sin"' () =30° =05236
B sec =2 0=cos'(3) =60° = 10472
B cotf=2 0=tan'(}) =26.57° = 0.4636

The same technique may be employed if 0 is any angle or real number.
Thus, using the key, we obtain, in degree or radian mode,

0 = sin~! (0.6635) = 41.57° = 0.7255,

which is the reference angle for 6. If sin 6 is negative, then a calculator gives
us the negative of the reference angle. For example,

sin™! (—0.6635) = —41.57° = —0.7255.

Similarly, given cos 6 or tan 6, we find 6 with a calculator by using
or , respectively. The interval containing 6 is listed in the next
chart. It is important to note that if cos 6 is negative, then 6 is not the negative
of the reference angle, but instead is in the interval 7/2 < 6 < &, or
90° < 0 = 180°. The reasons for using these intervals are explained in Sec-
tion 7.6. We may use reciprocal relationships to solve similar equations in-
volving csc 6, sec 6, and cot 6.

Equation Values of k Calculator solution Interval containing 0 if a calculator is used

. . T T

sin 6 = k -1l=k=1 0=sin"'k _TSGST’ or —90° = 6=90°

cos 0=k —-1l=k=1 0= cos 'k 0=60=m or 0° = 6= 180°
T T

tan 0 = k any k 0=tan 'k —7<0<7, or —90° < 6 < 90°

The following illustration contains some specific examples for both de-
gree and radian modes.
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ILLUSTRATION

Figure 6
AY
0 = 180° — 6y
O /\x 1553‘;
x
Figure 7
AY
0 =360° — Oy
~ 335.2°
\\ Or x
Figure 8
AY
GR =7—0
= 1.1765/\=_0 = 1.9651
I
X
Figure 9
AY

0=m+ Oy

Or

/\% 4.3180
\ -

X

Finding Angles with a Calculator

Equation Calculator solution (degree and radian)
B sinfd=-05 0 =sin"!'(—0.5) = —30° = —0.5236
m cosf=—-05 0 = cos ' (—0.5) = 120° = 2.0944

B tanf=—-05 6 = tan"' (=0.5) = —26.57° = —0.4636

When using a calculator to find 6, be sure to keep the restrictions on 6 in
mind. If other values are desired, then reference angles or other methods may
be employed, as illustrated in the next examples.

EXAMPLE 3 Approximating an angle with a calculator
If tan 6 = —0.4623 and 0° = 6 < 360°, find 6 to the nearest 0.1°.

SOLUTION  As pointed out in the preceding discussion, if we use a calcu-
lator (in degree mode) to find 6 when tan 6 is negative, then the degree mea-
sure will be in the interval (—90°, 0°). In particular, we obtain the following:

0 = tan~' (—0.4623) ~ —24.8°

Since we wish to find values of 6 between 0° and 360°, we use the (ap-
proximate) reference angle 6z = 24.8°. There are two possible values of 6 such
that tan 6 is negative—one in quadrant II, the other in quadrant IV. If 6 is in
quadrant IT and 0° = 6 < 360°, we have the situation shown in Figure 6, and

6 = 180° — 6y = 180° — 24.8° = 155.2°.
If 6 is in quadrant IV and 0° = 6 < 360°, then, as in Figure 7,
0 = 360° — 6z = 360° — 24.8° = 335.2°. P4

EXAMPLE 4 Approximating an angle with a calculator
If cos 8 = —0.3842 and 0 = 0 < 27, find 6 to the nearest 0.0001 radian.

SOLUTION  If we use a calculator (in radian mode) to find § when cos 6 is
negative, then the radian measure will be in the interval [0, 7]. In particular,
we obtain the following (shown in Figure 8):

0 = cos ' (—0.3842) = 1.965 137489

Since we wish to find values of 6 between 0 and 27, we use the (approxi-
mate) reference angle

g = m— 0= 1.176455165.

There are two possible values of 6 such that cos 6 is negative—the one we
found in quadrant IT and the other in quadrant III. If 6 is in quadrant III, then

0=m+ O = 4318047819,

as shown in Figure 9. V4
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Exer. 1-6: Find the reference angle 6 if 0 has the given

measure.
1 (a) 240°  (b) 340°  (c) —202°  (d) —660°
2 (a) 165°  (b) 275°  (c) —110°  (d) 400°

3 (a) 3mw/4  (b) 4m/3  (c) —7/6 (d) 9m/4

4 (a) Tm/4  (b) 2@/3  (c) —3m/4  (d) —23m/6
5 (a) 3 (b) —2 (c) 5.5 (d) 100

6 (a) 6 (b) —4 (c) 4.5 (d) 80

Exer. 7-18: Find the exact value.

7 (a) sin (2m/3)
8 (a) sin 210°
9 (a) cos 150°
10 (a) cos (57/4)
11 (a) tan (57/6)
12 (a) tan 330°
13 (a) cot 120°
14 (a) cot (37/4)
15 (a) sec (2m/3)
16 (a) sec 135°
17 (a) csc 240°

18 (a) csc (37/4)

(b) sin (—=5m/4)
(b) sin (—315°)
(b) cos (—60°)
(b) cos (—117/6)
(b) tan (—m/3)
(b) tan (—225°)
(b) cot (—150°)
(b) cot (—27/3)
(b) sec (—m/6)
(b) sec (—210°)
(b) esc (—330%)
(b) esc (=27/3)

Exer. 19-24: Approximate to three decimal places.

19 (a) sin 73°20’
20 (a) cos 38°30’
21 (a) tan 21°10’
22 (a) cot 9°10’
23 (a) sec 67°50’

24 (a) csc 43°40’

(b) cos 0.68
(b) sin 1.48
(b) cot 1.13
(b) tan 0.75
(b) csc 0.32

(b) sec 0.26

Exer. 25-32: Approximate the acute angle 0 to the near-

est (a) 0.01° and (b) 1.
25 cos 0 = 0.8620

27 tan 0 = 3.7
29 sin 6 = 0.4217

31 sec 0 = 4.246

26 sin 6 = 0.6612

28 cos 6 = 0.8
30 tan 6 = 491
32 csc =11

Exer. 33—-34: Approximate to four decimal places.

33 (a) sin 98°10’
(d) cot 231°40’
34 (a) sin 496.4°

(d) cot 1030.2°

(b) cos 623.7°
(e) sec 1175.1°
(b) cos 0.65

(e) sec 1.46

(c) tan 3
(f) csc 0.82
(c) tan 105°40’

(f) csc 320°50°

Exer. 35-36: Approximate, to the nearest 0.1°, all angles 0
in the interval [0°, 360°) that satisfy the equation.

35 (a) sin 6 = —0.5640
(c) tan 6 = 2.798
(e) sec = —1.116

36 (a) sin 6 = 0.8225
(c) tan 0 = —1.5214

(e) sec 6 = 1.4291

(b) cos 6 = 0.7490
(d) cot 6 = —0.9601
(f) csc 6 = 1.485
(b) cos 6 = —0.6604
(d) cot 6 = 13752

(f) csc 6 = —2.3179

Exer. 37-38: Approximate, to the nearest (.01 radian, all
angles 0 in the interval [0, 277) that satisfy the equation.

37 (a) sin 6 = 0.4195
(c) tan 0 = —3.2504
(e) sec 6 = 1.7452

38 (a) sin 6 = —0.0135
(c) tan 6 = 0.42

(e) sec 8 = —3.51

(b) cos 6 = —0.1207
(d) cot 6 = 2.6815
(f) csc 6 = —4.8521
(b) cos 6 = 0.9235
(d) cot = —2.731

(f) csc 6 =1.258
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39 Thickness of the ozone layer The thickness of the ozone

layer can be estimated using the formula
Inly, — In I = kx sec 6,

where 1, is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, / is the in-
tensity of the same wavelength after passing through a layer
of ozone x centimeters thick, k is the absorption constant of
ozone for that wavelength, and 6 is the acute angle that the
sunlight makes with the vertical. Suppose that for a wave-
length of 3055 X 1078 centimeter with k = 1.88, I,/ is
measured as 1.72 and 6 = 12°. Approximate the thickness
of the ozone layer to the nearest 0.01 centimeter.

40 Ozone calculations Refer to Exercise 39. If the ozone layer

4

is estimated to be 0.31 centimeter thick and, for a wave-
length of 3055 X 107% centimeter, I,/ is measured as 2.05,
approximate the angle the sun made with the vertical at the
time of the measurement.

Solar radiation The amount of sunshine illuminating a wall
of a building can greatly affect the energy efficiency of the
building. The solar radiation striking a vertical wall that
faces east is given by the formula

R = Ry cos 0 sin ¢,
where R, is the maximum solar radiation possible, 6 is the
angle that the sun makes with the horizontal, and ¢ is the

direction of the sun in the sky, with ¢ = 90° when the sun
is in the east and ¢ = 0° when the sun is in the south.

(a) When does the maximum solar radiation R, strike
the wall?

(b) What percentage of R, is striking the wall when 0 is
equal to 60° and the sun is in the southeast?

6.5

42

43

b4

Meteorological calculations In the mid-latitudes it is some-
times possible to estimate the distance between consecutive
regions of low pressure. If ¢ is the latitude (in degrees),
R is Earth’s radius (in kilometers), and v is the horizontal
wind velocity (in km/hr), then the distance d (in kilometers)
from one low pressure area to the next can be estimated
using the formula

VR 173
d=2ml—2"—1 .
™ 0.52 cos ¢

(a) At a latitude of 48°, Earth’s radius is approximately
6369 kilometers. Approximate d if the wind speed is
45 km/hr.

(b) If v and R are constant, how does d vary as the lati-
tude increases?

Robot’s arm Points on the terminal sides of angles play an
important part in the design of arms for robots. Suppose a
robot has a straight arm 18 inches long that can rotate about
the origin in a coordinate plane. If the robot’s hand is lo-
cated at (18, 0) and then rotates through an angle of 60°,
what is the new location of the hand?

Robot’s arm Suppose the robot’s arm in Exercise 43 can
change its length in addition to rotating about the origin. If
the hand is initially at (12, 12), approximately how many
degrees should the arm be rotated and how much should its
length be changed to move the hand to (—16, 10)?

In this section we consider graphs of the equations

Trigonometric Graphs

y = asin (bx + ¢) and y = acos (bx + ¢)

for real numbers a, b, and ¢. Our goal is to sketch such graphs without plotting
many points. To do so we shall use facts about the graphs of the sine and co-
sine functions discussed in Section 6.3.

Let us begin by considering the special case ¢ = 0 and b = 1—that is,

y = asinx and Yy = @ cos X.

We can find y-coordinates of points on the graphs by multiplying y-coordinates
of points on the graphs of y = sin x and y = cos x by a. To illustrate, if
y = 2sinx, we multiply the y-coordinate of each point on the graph of



Figure 1
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y = sin x by 2. This gives us Figure 1, where for comparison we also show the
graph of y = sin x. The procedure is the same as that for vertically stretching
the graph of a function, discussed in Section 3.5.

As another illustration, if y = % sin x, we multiply y-coordinates of points
on the graph of y = sin x by % This multiplication vertically compresses the
graph of y = sin x by a factor of 2, as illustrated in Figure 2.

Figure 2

2T . 1 .
y = sinx y = 5sinx
11 2
1 1 -

The following example illustrates a graph of y = a sin x with a negative.

EXAMPLE 1 Sketching the graph of an equation involving sin x

Sketch the graph of the equation y = —2 sin x.
SOLUTION  The graph of y = —2sin x sketched in Figure 3 can be ob-
tained by first sketching the graph of y = sin x (shown in the figure) and then

multiplying y-coordinates by —2. An alternative method is to reflect the graph
of y = 2 sin x (see Figure 1) through the x-axis.

Figure 3

<Y
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For any a # 0, the graph of y = a sin x has the general appearance of one
of the graphs illustrated in Figures 1, 2, and 3. The amount of stretching of the
graph of y = sin x and whether the graph is reflected are determined by the ab-
solute value of a and the sign of a, respectively. The largest y-coordinate |a |
is the amplitude of the graph or, equivalently, the amplitude of the function
fgiven by f(x) = a sin x. In Figures 1 and 3 the amplitude is 2. In Figure 2 the
amplitude is % Similar remarks and techniques apply if y = a cos x.

EXAMPLE 2 Sketching the graph of an equation involving cos x
Find the amplitude and sketch the graph of y = 3 cos x.

SOLUTION By the preceding discussion, the amplitude is 3. As indicated in
Figure 4, we first sketch the graph of y = cos x and then multiply y-coordinates
by 3.

Figure 4

y =3 cosx

|
3
q_—
[N}
3
W
3
" |

7/

Let us next consider y = a sin bx and y = a cos bx for nonzero real num-
bers a and b. As before, the amplitude is |a|. If b > 0, then exactly one cycle
occurs as bx increases from 0 to 27r or, equivalently, as x increases from 0 to
27r/b. If b < 0, then —b > 0 and one cycle occurs as x increases from 0
to 27r/(—b). Thus, the period of the function f given by f(x) = a sin bx or
f(x) = acos bx is 27r/| b|. For convenience, we shall also refer to 27/|b| as
the period of the graph of f. The next theorem summarizes our discussion.

Theorem on
Amplitudes and Periods

If y = asin bx or y = a cos bx for nonzero real numbers a and b, then the
21

graph has amplitude |a| and period ]




Figure 5

Figure 6
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We can also relate the role of b to the discussion of horizontally com-
pressing and stretching a graph in Section 3.5. If |h| > 1, the graph of
y = sin bx or y = cos bx can be considered to be compressed horizontally by
a factor b. If 0 < | b| < 1, the graphs are stretched horizontally by a factor 1/b.
This concept is illustrated in the next two examples.

EXAMPLE 3 Finding an amplitude and a period
Find the amplitude and the period and sketch the graph of y = 3 sin 2x.

SOLUTION  Using the theorem on amplitudes and periods with a = 3 and
b = 2, we obtain the following:

amplitude: |a| = |3| =3

2@ 2w 27

period: = =
6] 2] 2

= T

Thus, there is exactly one sine wave of amplitude 3 on the x-interval [0, 7].
Sketching this wave and then extending the graph to the right and left gives us
Figure 5. /

EXAMPLE 4 Finding an amplitude and a period
Find the amplitude and the period and sketch the graph of y = 2 sin %x.

SOLUTION  Using the theorem on amplitudes and periods with @ = 2 and
b= %, we obtain the following:

amplitude: |a| = [2| =2
2

. 2w T
period: T 4ar
ol 131 3
Thus, there is one sine wave of amplitude 2 on the interval [0, 477]. Sketching
this wave and extending it left and right gives us the graph in Figure 6.

If y = a sin bx and if b is a large positive number, then the period 27/b
is small and the sine waves are close together, with b sine waves on the inter-
val [0, 277]. For example, in Figure 5, b = 2 and we have two sine waves on
[0, 277]. If b is a small positive number, then the period 277/b is large and the
waves are far apart. To illustrate, if y = sin ll—ox, then one-tenth of a sine wave
occurs on [0, 277] and an interval 207 units long is required for one complete
cycle. (See also Figure 6—for y = 2 sin %x, one-half of a sine wave occurs on
[0, 27].)

If b < 0, we can use the fact that sin (—x) = —sin x to obtain the graph
of y = a sin bx. To illustrate, the graph of y = sin (—2x) is the same as the
graph of y = —sin 2x.
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Figure 7

EXAMPLE 5 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of the equation
y = 2 sin (—3x).

SOLUTION  Since the sine function is odd, sin (—3x) = —sin 3x, and we
may write the equation as y = —2 sin 3x. The amplitude is | =2 | = 2, and the
period is 277/3. Thus, there is one cycle on an interval of length 277/3. The
negative sign indicates a reflection through the x-axis. If we consider the inter-
val [0, 277/3] and sketch a sine wave of amplitude 2 (reflected through the
x-axis), the shape of the graph is apparent. The part of the graph in the inter-
val [0, 277/3] is repeated periodically, as illustrated in Figure 7. /

EXAMPLE 6 Finding an amplitude and a period
Find the amplitude and the period and sketch the graph of y = 4 cos mx.

SOLUTION  The amplitude is |4| = 4, and the period is 277/ = 2. Thus,
there is exactly one cosine wave of amplitude 4 on the interval [0, 2]. Since the
period does not contain the number 7, it makes sense to use integer ticks on
the x-axis. Sketching this wave and extending it left and right gives us the
graph in Figure 8.

Figure 8

AY

y =4 cos mx

7/

As discussed in Section 3.5, if fis a function and c is a positive real number,
then the graph of y = f(x) + ¢ can be obtained by shifting the graph of
y = f(x) vertically upward a distance c. For the graph of y = f(x) — ¢, we
shift the graph of y = f(x) vertically downward a distance of c. In the next ex-
ample we use this technique for a trigonometric graph.



Figure 9
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EXAMPLE 7 \Vertically shifting a trigonometric graph
Sketch the graph of y = 2 sinx + 3.

SOLUTION It is important to note that y # 2 sin (x + 3). The graph of
y = 2 sin x is sketched in red in Figure 9. If we shift this graph vertically up-
ward a distance 3, we obtain the graph of y = 2 sinx + 3. /

Let us next consider the graph of

y = asin (bx + ¢).

As before, the amplitude is |a|, and the period is 27/| b|. One cycle occurs if
bx + c increases from 0 to 27r. Hence, we can find an interval containing ex-
actly one sine wave by solving the following inequality for x:

0bx+c=2m

—c = bx =2m—c subtract ¢
c_ <27T c divide by b
—_— = X = — — 1vide
b b b Y

The number —c¢/b is the phase shift associated with the graph. The graph of
y = asin (bx + ¢) may be obtained by shifting the graph of y = a sin bx to
the left if the phase shift is negative or to the right if the phase shift is positive.

Analogous results are true for y = a cos (bx + ¢). The next theorem sum-
marizes our discussion.

Theorem on Amplitudes,
Periods, and Phase Shifts

If y = asin (bx + ¢) or y = a cos (bx + c) for nonzero real numbers a and
b, then

2
(1) the amplitude is |a , the period is |7ﬂ|-, and the phase shift is — %;
(2) an interval containing exactly one cycle can be found by solving the

inequality

0=bx+c=2m

We will sometimes write
y = asin (bx + c¢) in the equivalent

form y = a sin [b(x + Z>:|

EXAMPLE 8 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of

T
= 3sin |2x + — ).
y s1n<x 2)
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Figure 10

Figure 11

A

y = 3sin (2)( + g)

L Y

y=2cos (3x — m)

SOLUTION  The equation is of the form y = asin (bx + ¢) with a = 3,
b =2, and ¢ = m/2. Thus, the amplitude is |a| = 3, and the period is
27/|b| = 2m/2 = m.

By part (2) of the theorem on amplitudes, periods, and phase shifts, the
phase shift and an interval containing one sine wave can be found by solving
the following inequality:

0=2x+ L <or

2
T 37 T
—— =2x = — subtract —
2 2 2
T = = 3 divide by 2
- = X = — divide
4 4 Y

Thus, the phase shift is —77/4, and one sine wave of amplitude 3 occurs on the
interval [ — /4, 37/4]. Sketching that wave and then repeating it to the right
and left gives us the graph in Figure 10.

EXAMPLE 9 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of
y = 2cos 3x — m).

SOLUTION  The equation has the form y = acos (bx + ¢) with a = 2,
b =3, and ¢ = —m. Thus, the amplitude is |a| = 2, and the period is
27/|b| = 2m/3.

By part (2) of the theorem on amplitudes, periods, and phase shifts, the
phase shift and an interval containing one cycle can be found by solving the
following inequality:

0=3x—7=27

T = 3x =37 addmw

T
3= x =7 divideby 3
Hence, the phase shift is 7/3, and one cosine-type cycle (from maximum to
maximum) of amplitude 2 occurs on the interval [ 7/3, 77]. Sketching that part
of the graph and then repeating it to the right and left gives us the sketch in
Figure 11.

If we solve the inequality

T T
——=3x-—Tm=—
2

2 0=3x—m7=2m,

instead of

we obtain the interval 7/6 = x = 57/6, which gives us a cycle between
x-intercepts rather than a cycle between maximums. /
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EXAMPLE 10 Finding an equation for a sine wave

Express the equation for the sine wave shown in Figure 12 in the form
y = asin (bx + ¢)

fora > 0, b > 0, and the least positive real number c.

Figure 12

SOLUTION  The largest and smallest y-coordinates of points on the graph
are 5 and —5, respectively. Hence, the amplitude is a = 5.

Since one sine wave occurs on the interval [—1, 3], the period has value
3 — (—1) = 4. Hence, by the theorem on amplitudes, periods, and phase
shifts (with b > 0),

2m _

b 4 or, equivalently, b=

?.
The phase shift is —c¢/b = —c/(ar/2). Since c is to be positive, the phase
shift must be negative; that is, the graph in Figure 12 must be obtained by

shifting the graph of y = 5 sin [(7/2)x] to the left. Since we want c¢ to be as
small as possible, we choose the phase shift —1. Hence,

__c _
/2

Thus, the desired equation is

y = 5sin zx + = .
2 2 (continued)

-1 or, equivalently, c= %
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There are many other equations for the graph. For example, we could use
the phase shifts —5, —9, —13, and so on, but these would not give us the least
positive value for c¢. Two other equations for the graph are

3 3
y = 5sin <1x - —77> and y = —5sin <%x + ?W)

However, neither of these equations satisfies the given criteria for a, b, and c,
since in the first, ¢ < 0, and in the second, a < 0 and ¢ does not have its least
positive value.

As an alternative solution, we could write

y = asin (bx + ¢) as y = asin [b(x + %)]

As before, we find @ = 5 and b = 7/2. Now since the graph has an x-intercept
at x = —1, we can consider this graph to be a horizontal shift of the graph of
y = 5sin [(7/2)x] to the left by 1 unit—that is, replace x with x + 1. Thus,
an equation is

T T T
= in | —(x + =5sin|—x+—|.
y 551n[2(x 1)], or y 5s1n<2x 2) 7

Many phenomena that occur in nature vary in a cyclic or rhythmic man-
ner. It is sometimes possible to represent such behavior by means of trigono-
metric functions, as illustrated in the next two examples.

EXAMPLE 11 Analyzing the process of breathing

The rhythmic process of breathing consists of alternating periods of inhaling
and exhaling. One complete cycle normally takes place every 5 seconds. If F(r)
denotes the air flow rate at time ¢ (in liters per second) and if the maximum
flow rate is 0.6 liter per second, find a formula of the form F(r) = a sin bt that
fits this information.

SOLUTION If F(r) = asin bt for some b > 0, then the period of F is 27/b.
In this application the period is 5 seconds, and hence

— =15, or b=—.

Since the maximum flow rate corresponds to the amplitude a of F, we let
a = 0.6. This gives us the formula

F(r) = 0.6 sin (?t) 7
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EXAMPLE 12 Approximating the number of hours of daylight in a day

The number of hours of daylight D(¢) at a particular time of the year can be
approximated by

po = Esn |27 = 79)| + 12
=—sin | —( —
2 365

for 7 in days and ¢ = 0 corresponding to January 1. The constant K determines
the total variation in day length and depends on the latitude of the locale.
(a) For Boston, K = 6. Sketch the graph of D for 0 < 7 =< 365.

(b) When is the day length the longest? the shortest?

SOLUTION

(a) If K = 6, then K/2 = 3, and we may write D(7) in the form
D(r) = f(r) + 12,

.| 27
where f(t) = 3 sin [365 (t 79)].
We shall sketch the graph of f and then apply a vertical shift through a dis-
tance 12.
As in part (2) of the theorem on amplitudes, periods, and phase shifts, we
can obtain a f-interval containing exactly one cycle by solving the following
inequality:

21
=—(t— =2
0 365(2‘ 79) T

0= 179 =365 multiply by 2>
27
9= i =444 add 79

Hence, one sine wave occurs on the interval [79, 444]. Dividing this interval
into four equal parts, we obtain the following table of values, which indicates
the familiar sine wave pattern of amplitude 3.

t 79 17025 2615 35275 444
f® | 0 3 0 -3 0

Ift =0,

.| 27 :
f(0) = 3sin [365( 79)] ~ 3sin (—1.36) = —2.9.
Since the period of f is 365, this implies that f(365) = —2.9.
The graph of f for the interval [0, 444] is sketched in Figure 13, with dif-
ferent scales on the axes and ¢ rounded off to the nearest day.
(continued)
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Applying a vertical shift of 12 units gives us the graph of D for
0 = t = 365 shown in Figure 13.

(b) The longest day—that is, the largest value of D(f)—occurs 170 days after
January 1. Except for leap year, this corresponds to June 20. The shortest day
occurs 353 days after January 1, or December 20. /

6.5 Exercises

1 Find the amplitude and the period and sketch the graph of - -
the equation: 11 y =4 cos <x — 4> 12 y = 3 cos <x + 6>
() y = 4 sin x (b) y = sin 4x 13 y=sin2x — m + 1 14 y=—sin(3x +m) — 1
(c)y:isinx (d)y:sin%x 15 y=—cosBx+m) —2 16 y=cos 2x — m) + 2
(e)y=Zsin%x (f)y=%sin4x 17 y = —2sin (3x — m) 18 y = 3 cos (3x — m)
(9) y= —4sinx (h) y = sin (—4x) 19 y = sin (;x - Z) 20 y = sin (;x + Z)

2 For equations analogous to those in (a)—(h) of Exercise 1

but involving the cosine, find the amplitude and the period 21 y = 6 sin mx 22 y=3cos m X
and sketch the graph. 2
3 Find the amplitude and the period and sketch the graph of T .
. 23 y=2cos—x 24y = 4 sin 3mx
the equation: 2
(a) y=3cosx (b) y = cos 3x 1 1 T
25 y=zsin 2mx 26 y=?cos?x
(c) y =%cosx (d) y=cos%x
T T
27 y=15sin (3x — — 28y=—4c0s<2x+>
(e) yZZCos%x (f) y:%cos 3x ( 2) 3
(g) y=—3cosx (h) y = cos (=3x) 29 y =3 cos <;x - Z) 30 y = —2sin <;x + ;)
4 For equations analogous to those in (a)—(h) of Exercise 3
but involving the sine, find the amplitude and the period and _ 1 K R O
sketch the graph. 31 y = —5cos 3 x + 6 32 y =4 sin 3 X 3
Exer. 5-40: Find the amplitude, the period, and the phase 33 y = 3 cos (mx + 4m) 34 y = —2sin 2mx + m)
shift and sketch the graph of the equation.
T T
) T ) T 35 y=—\f2$in<2x—4>
5y=sin|x—— 6 y=sin|x+—
2 4
T T
36 y=V3cos |[—x——
7y=3sin(x+g> 8y=23in(x§> Y (4 2)

37 y=—-2sin 2x— @) +3 38 y=3cos (x + 37 — 2

ar ar
9y‘°°S(x+2> 1°y‘cos(x3> 39 y=5cos (2x +2m) +2 40 y=—4sin(3x — ) — 3



Exer. 41-44: The graph of an equation is shown in the
figure. (a) Find the amplitude, period, and phase shift.
(b) Write the equation in the form y = a sin (bx + ¢) for
a > 0,b > 0, and the least positive real number c.

41

y

42 LY
3
7\ [L\z] = x
2
_3“
43 LY
AN
[\ 2\
-2
44 LY

45

46

47

48
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Electroencephalography Shown in the figure is an electro-
encephalogram of human brain waves during deep sleep. If
we use W = a sin (bt + ¢) to represent these waves, what
is the value of b?

Exercise 45

1|
||
\

=

==

===
—
=,
Ll
Eh&.

[l

K=
=

L

2 (sec)

Intensity of daylight On a certain spring day with 12 hours
of daylight, the light intensity / takes on its largest value of
510 calories/cm? at midday. If = 0 corresponds to sunrise,
find a formula / = a sin bt that fits this information.

Heart action The pumping action of the heart consists of
the systolic phase, in which blood rushes from the left ven-
tricle into the aorta, and the diastolic phase, during which
the heart muscle relaxes. The function whose graph is shown
in the figure is sometimes used to model one complete cycle
of this process. For a particular individual, the systolic phase
lasts i second and has a maximum flow rate of 8 liters per
minute. Find a and b.

Exercise 47

AY (liters/min)

y = asin bt N

Diastolic

Systolic I
I
phase \
1 1

phase

0.25

>
'

t (seconds)

Biorhythms The popular biorhythm theory uses the graphs
of three simple sine functions to make predictions about an
individual’s physical, emotional, and intellectual potential
for a particular day. The graphs are given by y = a sin bt

(continued)
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for ¢ in days, with + = 0 corresponding to birth and a = 1
denoting 100% potential.

(a) Find the value of b for the physical cycle, which has
a period of 23 days; for the emotional cycle (period
28 days); and for the intellectual cycle (period 33 days).

(b) Evaluate the biorhythm cycles for a person who has just
become 21 years of age and is exactly 7670 days old.

49 Tidal components The height of the tide at a particular point
on shore can be predicted by using seven trigonometric
functions (called tidal components) of the form

f(t) = a cos (bt + ¢).
The principal lunar component may be approximated by
T 117
1) = —t——,
f(t) = a cos ( ‘ o >

where 7 is in hours and # = O corresponds to midnight.
Sketch the graph of fif a = 0.5 m.

50 Tidal components Refer to Exercise 49. The principal solar
diurnal component may be approximated by

7
f(t) = a cos <17;t - 1;)

Sketch the graph of fif a = 0.2 m.

51 Hours of daylight in Fairbanks If the formula for D(7) in
Example 12 is used for Fairbanks, Alaska, then K = 12.
Sketch the graph of D in this case for 0 = ¢t = 365.

6.6

Additional Trigonometric
Graphs

52 Low temperature in Fairbanks Based on years of weather
data, the expected low temperature T (in °F) in Fairbanks,
Alaska, can be approximated by

2
T=36sin|—(@—101)| + 14,
sin [365 ( )]
where 7 is in days and r = 0 corresponds to January 1.

(a) Sketch the graph of 7 for 0 < ¢ =< 365.

(b) Predict when the coldest day of the year will occur.

Exer. 53-56: Scientists sometimes use the formula

f@® =asin (bt +c)+d
to simulate temperature variations during the day, with
time ¢ in hours, temperature f(f) in °C, and ¢t = 0 corre-
sponding to midnight. Assume that f(¢) is decreasing at
midnight.
(a) Determine values of a, b, ¢, and d that fit the information.
(b) Sketch the graph of f for 0 = ¢ = 24.

53 The high temperature is 10°C, and the low temperature of
—10°C occurs at 4 A.M.

54 The temperature at midnight is 15°C, and the high and low
temperatures are 20°C and 10°C.

55 The temperature varies between 10°C and 30°C, and the
average temperature of 20°C first occurs at 9 A.M.

56 The high temperature of 28°C occurs at 2 P.M., and the
average temperature of 20°C occurs 6 hours later.

Methods we developed in Section 6.5 for the sine and cosine can be applied to
the other four trigonometric functions; however, there are several differences.
Since the tangent, cotangent, secant, and cosecant functions have no largest
values, the notion of amplitude has no meaning. Moreover, we do not refer to
cycles. For some tangent and cotangent graphs, we begin by sketching the por-

tion between successive vertical asymptotes and then repeat that pattern to the

right and to the left.

The graph of y = a tan x for a > 0 can be obtained by stretching or com-
pressing the graph of y = tan x. If a < 0, then we also use a reflection about
the x-axis. Since the tangent function has period , it is sufficient to sketch the
branch between the two successive vertical asymptotes x = —/2 and
x = /2. The same pattern occurs to the right and to the left, as in the next

example.



6.6 Additional Trigonometric Graphs 413

EXAMPLE 1 Sketching the graph of an equation involving tan x

Sketch the graph of the equation:
(@) y=2tanx (b) y:%tanx

SOLUTION  We begin by sketching the graph of one branch of y = tan x, as
shown in red in Figures 1 and 2, between the vertical asymptotes x = — /2
and x = /2.

(a) Fory = 2 tan x, we multiply the y-coordinate of each point by 2 and then
extend the resulting branch to the right and left, as shown in Figure 1.

Figurel y = 2tanx
AY

oY

=2

(b) Fory = % tan x, we multiply the y-coordinates by %, obtaining the sketch
in Figure 2.

Figure2 y = %tan X
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The method used in Example 1 can be applied to other functions. Thus, to
sketch the graph of y = 3 sec x, we could first sketch the graph of one branch
of y = sec x and then multiply the y-coordinate of each point by 3.

The next theorem is an analogue of the theorem on amplitudes, periods,
and phase shifts stated in Section 6.5 for the sine and cosine functions.

Theorem on the Graph
of y = atan (bx + ¢)

If y = atan (bx + ¢) for nonzero real numbers a and b, then

(1) the period is T and the phase shift is —%;

|b]

(2) successive vertical asymptotes for the graph of one branch may be
found by solving the inequality

T ™
—— <bx+c<—.
2 2

Figure 3

1tan +7T
= tanlx+Z
Y75 4

EXAMPLE 2 Sketching the graph of an equation
of the form y = a tan (bx + ¢)

1
Find the period and sketch the graph of y = Etan <x + %)

SOLUTION  The equation has the form given in the preceding theorem with
= %,b =1, and ¢ = w/4. Hence, by part (1), the period is given by

As in part (2), to find successive vertical asymptotes we solve the follow-
ing inequality:

T T T
——=x+-—=—

2 4 2

37 T T
—— =X = — subtract —

4 4 4

Because a = %, the graph of the equation on the interval [ —3 /4, 7/4] has the
shape of the graph of y = % tan x (see Figure 2). Sketching that branch and ex-
tending it to the right and left gives us Figure 3.

Note that since ¢ = 7/4 and b = 1, the phase shift is —c/b = —7/4.
Hence, the graph can also be obtained by shifting the graph of y = % tan x in
Figure 2 to the left a distance /4.

If y = a cot (bx + ¢), we have a situation similar to that stated in the pre-
vious theorem. The only difference is part (2). Since successive vertical
asymptotes for the graph of y = cotx are x = 0 and x = 7 (see Figure 19 in
Section 6.3), we obtain successive vertical asymptotes for the graph of one
branch of y = a cot (bx + ¢) by solving the inequality

0<bx+c<m.



Figure 4
o
=cot|2x — —
y c0<x 2)
AY
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EXAMPLE 3 Sketching the graph of an equation
of the form y = a cot (bx + ¢)

Find the period and sketch the graph of y = cot <2x - %)

SOLUTION  Using the usual notation, we see that a = 1, b = 2, and
¢ = —/2. The period is 7/|b| = /2. Hence, the graph repeats itself in in-
tervals of length 77/2.

As in the discussion preceding this example, to find two successive verti-
cal asymptotes for the graph of one branch we solve the inequality:

0=2x— 2 <
= 4LX — — =

2 a

3

T =2 <27 4T

2 2 2

T < <37 divide by 2
— = X = — 1Vl

4 7 vide by

Since a is positive, we sketch a cotangent-shaped branch on the interval
[7/4, 37r/4] and then repeat it to the right and left in intervals of length /2,
as shown in Figure 4. 7/

Graphs involving the secant and cosecant functions can be obtained by
using methods similar to those for the tangent and cotangent or by taking re-
ciprocals of corresponding graphs of the cosine and sine functions.

EXAMPLE 4 Sketching the graph of an equation
of the form y = a sec (bx + ¢)

Sketch the graph of the equation:

(a)y=sec<x—%> (b)y=2560<x—%>

SOLUTION

(a) The graph of y = secx is sketched (without asymptotes) in red in
Figure 5 on the next page. The graph of y = cos x is sketched in black; notice
that the asymptotes of y = sec x correspond to the zeros of y = cos x. We can

obtain the graph of y = sec <x - %) by shifting the graph of y = sec x to

the right a distance 7/4, as shown in blue in Figure 5.

(b) We can sketch this graph by multiplying the y-coordinates of the graph in

part (a) by 2. This gives us Figure 6 on the next page.
(continued)
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=Ssec|\x — —
4

. T
Figure6 y = 2 sec (x - >

Figure5 2
A y A y
Pox=—-211] |
| 4 4 |
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| | |
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| | |
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| | |
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| | |
I [ I
| | |
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| | |
I I I
V4
EXAMPLE 5 Sketching the graph of an equation
of the form y = a csc (bx + ¢)
Sketch the graph of y = csc 2x + ).
SOLUTION  Since csc § = 1/sin 6, we may write the given equation as
_ 1
Figure 7 Y~ sin Q2x + m)°

y = csc (2x + m)

LY

=Y

Thus, we may obtain the graph of y = csc (2x + ) by finding the graph
of y = sin (2x + ) and then taking the reciprocal of the y-coordinate of
each point. Using a = 1,b = 2, and ¢ = 7, we see that the amplitude of
y = sin (2x + ) is 1 and the period is 27/|b| = 2m/2 = & To find an in-
terval containing one cycle, we solve the inequality

0=2x+ 7= 27

-7 =2x =7
T _ _7
- = X =—.
2 2

This leads to the graph in red in Figure 7. Taking reciprocals gives us the graph
of y = csc (2x + 1) shown in blue in the figure. Note that the zeros of the sine
curve correspond to the asymptotes of the cosecant graph. /



Figure 8
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The next example involves the absolute value of a trigonometric function.

EXAMPLE 6 Sketching the graph of an equation involving an absolute value
Sketch the graph of y = |cos x| + 1.

SOLUTION  We shall sketch the graph in three stages. First, we sketch the
graph of y = cos x, as in Figure 8(a).
Next, we obtain the graph of y = |cos x| by reflecting the negative
y-coordinates in Figure 8(a) through the x-axis. This gives us Figure 8(b).
Finally, we vertically shift the graph in (b) upward 1 unit to obtain
Figure 8(c).

(b) ()

y =|cosx| + 1
y = |cos x|

Figure 9

A

y
(xp, g(x)) + h(x))

We have used three separate graphs for clarity. In practice, we could sketch
the graphs successively on one coordinate plane. /

Mathematical applications often involve a function f that is a sum of two
or more other functions. To illustrate, suppose

J&) = glx) + h(x),

where f, g, and /1 have the same domain D. A technique known as addition of
y-coordinates is sometimes used to sketch the graph of f. The method is illus-
trated in Figure 9, where for each x;, the y-coordinate f(x,) of a point on the
graph of fis the sum g(x,) + h(x,) of the y-coordinates of points on the graphs
of g and h. The graph of fis obtained by graphically adding a sufficient num-
ber of such y-coordinates.

It is sometimes useful to compare the graph of a sum of functions with the
individual functions, as illustrated in the next example.

EXAMPLE 7 Sketching the graph of a sum of two trigonometric functions

Sketch the graph of y; = cosx, y, = sinx, and y; = cosx + sinx on the
same coordinate plane for 0 = x = 3.

SOLUTION  Note that the graph of y; in Figure 10 intersects the graph of y,
when y, = 0, and the graph of y, when y, = 0. The x-intercepts for y; corre-
spond to the solutions of y, = —y,. Finally, we see that the maximum and
minimum values of y; occur when y; = y, (that is, when x = /4, 57/4, and
91r/4). These y-values are

V2/2+V2/2=V2 and  —V2/2+(-V2/2)=-V2. /
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Figure 11

6.6 FExercises

The graph of an equation of the form
y = f(x) sin (ax + b) or y = f(x) cos (ax + b),

where fis a function and a and b are real numbers, is called a damped sine
wave or damped cosine wave, respectively, and f(x) is called the damping
factor. The next example illustrates a method for graphing such equations.
EXAMPLE 8 Sketching the graph of a damped sine wave
Sketch the graph of fif f(x) = 27 sin x.
SOLUTION  We first examine the absolute value of f:

| f(x)| = |2 *sinx|  absolute value of both sides

= |2||sinx| |ab| = |a]6]

=27 -1 [sinx| =1
| f)] =27 [27*| = 27*since 27 > 0
27 =flx) =27 x| =a<c=>-a=x=ua

The last inequality implies that the graph of f lies between the graphs of
the equations y = —27* and y = 27*. The graph of f will coincide with
one of these graphs if |sin x| = 1—that is, if x = (7/2) + 7n for some inte-
ger n.

Since 27 > 0, the x-intercepts on the graph of f occur at sin x = 0—that
is, at x = mn. Because there are an infinite number of x-intercepts, this is
an example of a function that intersects its horizontal asymptote an infinite
number of times. With this information, we obtain the sketch shown in
Figure 11. 7/

The damping factor in Example 8 is 27*. By using different damping fac-
tors, we can obtain other compressed or expanded variations of sine waves.
The analysis of such graphs is important in physics and engineering.

Exer. 1-52: Find the period and sketch the graph of the - -
equation. Show the asymptotes. 9y=tan|x — vy 10 y=tan (x + <
1 y=4tanx 2y=%tanx
11 y = tan 2x 12 y:tan%x
3 y=3cotx 4y:%cotx
. 13 y = tan %x 14 y = tan 4x
5y=2cscx 6 y=5cscx
T 1 T
7y =3secx 8y=%secx 15y—2tan<2x+2> 16y—3tan<2x—4>
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1 1 T 43 y=csc%x 44y = csc 3x
——tan | —x + — ;
4 M\
™ 1
45y—2050<2x+2> 46 y = —5csc (2x — m)
1 T
—3tan | —x — —
47 ! Lev ™) s y=4 .
=——csc|—x+— =4dcsc|—x——
- - YTy 2" Y 2
cot - 20 y = cot + —
x=> y X+
T
49y=tan5x 50 y = cot mx
= cot 2x 22 y = cot %x
T
' 51 y = csc 2mx 52 y =sec —x
cot 3x 24 y = cot 3x 8
53 Find an equation using the cotangent function that has the
same graph as y = tan x.
2 cot <2x+727> 26y=—§1c0t(3x—77) grap y
54 Find an equation using the cosecant function that has the
same graph as y = sec x.
ot (A ™Y sy ot (L ™
S eot|\Sx+ y cot { Zx — ¢

Exer. 55-60: Use the graph of a trigonometric function
T 37 to aid in sketching the graph of the equation without plot-
sec | x — — 30 y = sec

4 ting points.
55 y = |sin x| 56 y = |cos x|
1
sec 2x 32 y =sec yx 57 y = |sin x| + 2 58 y = |cos x| — 3
59 y = —|cos x| + 1 60 y = —|sinx|—2
1 —
sec 3x 34 y = sec 3x
. 1 - Exer. 61-66: Sketch the graph of the equation.
2SCC<ZX_> 36y=sec<2x—> 61 y =x + cos x 62 y =x — sinx
63 y=2""cos x 64 y = e*sinx
——sec|—x+—
3 2 4 65 y = |x]| sin x 66 y = |x]| cos x

67 Radio signalintensity Radio stations often have more than

—3 sec <3x + 3> one broadcasting tower because federal guidelines do not
usually permit a radio station to broadcast its signal in all di-

rections with equal power. Since radio waves can travel over

= csc <x _ 7T> 40 y = csc < Y+ 377) long distances, iF is important to C(?ntrol their‘directional pat-
2 terns so that radio stations do not interfere with one another.

Suppose that a radio station has two broadcasting towers
located along a north-south line, as shown in the figure. If

- = ¢sc & . L .
cse 2x 42y =cscax the radio station is broadcasting at a wavelength A and the
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distance between the two radio towers is equal to %/\, then 68 Radio signalintensity Refer to Exercise 67. Determine the
the intensity / of the signal in the direction 6 is given by directions in which / has maximum or minimum values.

I= %10[1 + cos (7 sin )],

69 Earth’s magnetic field The strength of Earth’s magnetic
field varies with the depth below the surface. The strength

where I, is the maximum intensity. Approximate / in terms at depth z and time 7 can sometimes be approximated using

of I, for each 6.

() 6=0 (b) 6= /3

Exercise 67

6.7
Applied Problems

the damped sine wave

(c) 6=m/7

S = Ape “ sin (kt — az),
where Ay, «, and k are constants.
(a) What is the damping factor?
(b) Find the phase shift at depth z,.

(c) At what depth is the amplitude of the wave one-half the
amplitude of the surface strength?

Trigonometry was developed to help solve problems involving angles and
lengths of sides of triangles. Problems of that type are no longer the most im-
portant applications; however, questions about triangles still arise in physical
situations. When considering such questions in this section, we shall restrict
our discussion to right triangles. Triangles that do not contain a right angle will
be considered in Chapter 8.

We shall often use the following notation. The vertices of a triangle will
be denoted by A, B, and C; the angles at A, B, and C will be denoted by «, 3,
and 1, respectively; and the lengths of the sides opposite these angles by a, b,
and ¢, respectively. The triangle itself will be referred to as triangle ABC (or
denoted AABC). If a triangle is a right triangle and if one of the acute
angles and a side are known or if two sides are given, then we may find the
remaining parts by using the formulas in Section 6.2 that express the trigono-
metric functions as ratios of sides of a triangle. We can refer to the process of
finding the remaining parts as solving the triangle.



Figure 1

a

Homework Helper

Organizing your work in a table

makes it easy to see what parts remain
to be found. Here are some snapshots
of what a typical table might look like

for Example 1.
After finding S:

Angles Opposite sides
a = 34° a

B = 56° b =10.5

v = 90° c

After finding a:

Angles Opposite sides
a = 34° a= 1.1

B = 56° b =105

v = 90° c

After finding c:

Angles Opposite sides
a = 34° a= 1.1
B = 56° b =105
v = 90° c=12.7
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In all examples it is assumed that you know how to find trigonometric
function values and angles by using either a calculator or results about spe-
cial angles.

EXAMPLE 1 Solving a right triangle

Solve AABC, given y = 90°, « = 34°, and b = 10.5.

SOLUTION  Since the sum of the three interior angles in a triangle is 180°,
we have o + B + y = 180°. Solving for the unknown angle 3 gives us

B =180° — a — y = 180° — 34° — 90° = 56°.
Referring to Figure 1, we obtain
a
tan 34° = —— an o = PP
an 105 tan adj
a = (10.5) tan 34° = 7.1.

solve for a; approximate

To find side ¢, we can use either the cosine or the secant function, as fol-
lows in (1) or (2), respectively:

10.5 :
(1) cos34° = — cos o = adj
¢ hyp
10.5 .
c= 340 =~ 12.7 solve for ¢; approximate
cos
(2) sec34° = —— sec o = 0P
10.5 : adj

¢ = (10.5) sec 34° = 12.7  solve for ¢; approximate 7/

As illustrated in Example 1, when working with triangles, we usually
round off answers. One reason for doing so is that in most applications the
lengths of sides of triangles and measures of angles are found by mechanical
devices and hence are only approximations to the exact values. Consequently,
a number such as 10.5 in Example 1 is assumed to have been rounded off to
the nearest tenth. We cannot expect more accuracy in the calculated values for
the remaining sides, and therefore they should also be rounded off to the near-
est tenth.

In finding angles, answers should be rounded off as indicated in the fol-
lowing table.

Number of significant
figures for sides
2 1°
3 0.1°, or 10’
4 0.01°, or 1’

Round off degree measure
of angles to the nearest
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Figure 2
B
< Bl123
Ae—C c
31.6
Figure 3

Angle of
depression

Observer

Justification of this table requires a careful analysis of problems that involve
approximate data.

EXAMPLE 2 Solving a right triangle
Solve AABC, given y = 90°, a = 12.3, and b = 31.6.
SOLUTION  Referring to the triangle illustrated in Figure 2 gives us

12.3

tana = ——.
M= 306

Since the sides are given with three significant figures, the rule stated in the
preceding table tells us that « should be rounded off to the nearest 0.1°, or the
nearest multiple of 10’. Using the degree mode on a calculator, we have

12.3
a = tan”! 36 21.3° or, equivalently, a = 21°20'.

Since a and (8 are complementary angles,
B =90° — a=90° — 21.3° = 68.7°.

The only remaining part to find is c. We could use several relationships in-
volving ¢ to determine its value. Among these are

cosa = —, sec B = and @+ b= A
¢

_c
12.3°
Whenever possible, it is best to use a relationship that involves only given in-
formation, since it doesn’t depend on any previously calculated value. Hence,
witha = 12.3 and b = 31.6, we have

c=Va + b= V(123 + (31.6)* = V1149.85 =~ 33.9. /

As illustrated in Figure 3, if an observer at point X sights an object, then
the angle that the line of sight makes with the horizontal line / is the angle of
elevation of the object, if the object is above the horizontal line, or the angle
of depression of the object, if the object is below the horizontal line. We use
this terminology in the next two examples.

EXAMPLE 3 Using an angle of elevation

From a point on level ground 135 feet from the base of a tower, the angle of
elevation of the top of the tower is 57°20'. Approximate the height of
the tower.
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SOLUTION  If we let d denote the height of the tower, then the given facts
are represented by the triangle in Figure 4. Referring to the figure, we obtain

d
tan 57°20' = — tan 57°20" = PP
135 adj

d = 135tan 57°20" = 211.  solve for d; approximate

The tower is approximately 211 feet high.

Figure 4

EXAMPLE 4 Using angles of depression

From the top of a building that overlooks an ocean, an observer watches a boat
sailing directly toward the building. If the observer is 100 feet above sea level
and if the angle of depression of the boat changes from 25° to 40° during the
period of observation, approximate the distance that the boat travels.

SOLUTION  Asin Figure 5, let A and B be the positions of the boat that cor-
respond to the 25° and 40° angles, respectively. Suppose that the observer is at
point D and that C is the point 100 feet directly below. Let d denote the dis-
tance the boat travels, and let k denote the distance from B to C. If « and 8

Figure 5
______ D
T_ C oo EI\\\:\ Zzso
c oo n \\\
, [Fose SN T~ /40°
100" 2 ooy NN
i cooa B e

(continued)
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Note that d = AC — BC, and if we
use tan instead of cot, we get the

equivalent equation

~ 100
‘ tan 25°

100
tan 40°

denote angles DAC and DBC, respectively, then it follows from geometry (al-
ternate interior angles) that « = 25° and B = 40°.

From triangle BCD:
t B = cot40° = —
cot B = co 100
k = 100 cot 40°
From triangle DAC:

d+k

ta = cot25° = ——

cot @ = co 100

d + k = 100 cot 25°
d =100 cot 25° — k
= 100 cot 25° — 100 cot 40°
= 100(cot 25° — cot 40°)
~ 100(2.145 — 1.192) = 95

Hence, the boat travels approximately 95 feet.

adj
opp
solve for k

cot B =

adj
cota = —
opp

multiply by lcd
solve for d

k = 100 cot 40°
factor out 100

approximate

/7

In certain navigation or surveying problems, the direction, or bearing,
from a point P to a point Q is specified by stating the acute angle that segment
PQ makes with the north-south line through P. We also state whether Q is
north or south and east or west of P. Figure 6 illustrates four possibilities. The
bearing from P to Q, is 25° east of north and is denoted by N25°E. We also
refer to the direction N25°E, meaning the direction from P to Q,. The bear-
ings from P to Q,, to Qs, and to Q, are represented in a similar manner in the
figure. Note that when this notation is used for bearings or directions, N or S
always appears to the left of the angle and W or E to the right.

Figure 6
N
N25°E
0,
25°
N70°W
70°
0; A
W E
55°
40° Q4
0; S55°E
S40°W
S




Figure 7 N
0
R
40°
P ) 300°
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In air navigation, directions and bearings are specified by measuring from
the north in a clockwise direction. In this case, a positive measure is assigned
to the angle instead of the negative measure to which we are accustomed for
clockwise rotations. Referring to Figure 7, we see that the direction of PQ is
40° and the direction of PR is 300°.

EXAMPLE 5 Using bearings

Two ships leave port at the same time, one ship sailing in the direction N23°E at
a speed of 11 mi/hr and the second ship sailing in the direction S67°E at
15 mi/hr. Approximate the bearing from the second ship to the first, one hour
later.

SOLUTION  The sketch in Figure 8 indicates the positions of the first and
second ships at points A and B, respectively, after one hour. Point C represents
the port. We wish to find the bearing from B to A. Note that

LACB = 180° — 23° — 67° = 90°,

and hence triangle ACB is a right triangle. Thus,
11 _opp
tanB—15 tdnB—adj

B = tan™! % =~ 36°. solve for B; approximate

We have rounded S to the nearest degree because the sides of the triangles are
given with two significant figures.
Referring to Figure 9, we obtain the following:

/CBD =90° — £BCD = 90° — 67° = 23°
/ABD = /ABC + £CBD = 36° + 23° = 59°
0 =90° — LABD = 90° — 59° = 31°
Thus, the bearing from B to A is approximately N31°W. /

Trigonometric functions are useful in the investigation of vibratory or os-
cillatory motion, such as the motion of a particle in a vibrating guitar string or
a spring that has been compressed or elongated and then released to oscillate
back and forth. The fundamental type of particle displacement in these illus-
trations is harmonic motion.

Definition of
Simple Harmonic Motion

A point moving on a coordinate line is in simple harmonic motion if its
distance d from the origin at time 7 is given by either

d = a cos wt or d = a sin wt,

where a and w are constants, with w > 0.
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Figure 10

In the preceding definition, the amplitude of the motion is the maximum
displacement | a| of the point from the origin. The period is the time 277/ w
required for one complete oscillation. The reciprocal of the period, w/(2m), is
the number of oscillations per unit of time and is called the frequency.

A physical interpretation of simple harmonic motion can be obtained by
considering a spring with an attached weight that is oscillating vertically rela-
tive to a coordinate line, as illustrated in Figure 10. The number d represents
the coordinate of a fixed point Q in the weight, and we assume that the ampli-
tude a of the motion is constant. In this case no frictional force is retarding the
motion. If friction is present, then the amplitude decreases with time, and the
motion is said to be damped.

EXAMPLE 6 Describing harmonic motion

Suppose that the oscillation of the weight shown in Figure 10 is given by

T
d=10 —t],
COS<6 >

with ¢ measured in seconds and d in centimeters. Discuss the motion of
the weight.

SOLUTION By definition, the motion is simple harmonic with amplitude
a = 10 cm. Since w = /6, we obtain the following:

2 2

period = =L 12

w /6
Thus, in 12 seconds the weight makes one complete oscillation. The frequency
is %, which means that one-twelfth of an oscillation takes place each second.
The following table indicates the position of Q at various times.

t 0 1 2 13| 4 5 6
al 0 T |m|m |2 S
6 6 3023 6 m
1 1 3
cos | —t¢ 1 ﬂ — |0 |- —ﬁ -1
2 2 2 2
d 10/5vV3=87|5|0 | =5 | -5V3~=-87|-10

The initial position of Q is 10 centimeters above the origin O. It moves
downward, gaining speed until it reaches O. Note that Q travels approximately
10 — 8.7 = 1.3 cm during the first second, 8.7 — 5 = 3.7 cm during the next
second, and 5 — 0 = 5 cm during the third second. It then slows down until it
reaches a point 10 centimeters below O at the end of 6 seconds. The direction
of motion is then reversed, and the weight moves upward, gaining speed until
it reaches O. Once it reaches O, it slows down until it returns to its original po-
sition at the end of 12 seconds. The direction of motion is then reversed again,
and the same pattern is repeated indefinitely. /



6.7 Exercises

6.7 Applied Problems 427

Exer. 1-8: Given the indicated parts of triangle ABC with
v = 90°, find the exact values of the remaining parts.

1 a=30° b=20 2 B=45°, b=235
3 B=45, ¢=30 La=60°, c=6
5a=35, b=5 6a=4V3, c=38

7b=5V3 c¢=10V3 8b=7V2, c=14

Exer. 9-16: Given the indicated parts of triangle ABC with
y = 90°, approximate the remaining parts.

9 a= 37" b=24 10 B = 64°20', a = 20.1
11 B=71°51", b =240.0 12 a=31°10", a =510
13 a =25, b =45 14 a =31, b =90
15 ¢ =58, b=121 16 a = 0.42, c=0.68

Exer. 17-24: Given the indicated parts of triangle ABC with
v = 90°, express the third part in terms of the first two.

17 a,c; b 18 B,c; b
19 B.b; a 20 a, b; a
21 a,a; c 22 B,a; c
23 a,c; b 24 a, b, c

25 Height of a kite A person flying a kite holds the string
4 feet above ground level. The string of the kite is taut and
makes an angle of 60° with the horizontal (see the figure).
Approximate the height of the kite above level ground if
500 feet of string is payed out.

Exercise 25

26 Surveying From a point 15 meters above level ground, a
surveyor measures the angle of depression of an object on
the ground at 68°. Approximate the distance from the object
to the point on the ground directly beneath the surveyor.

27 Airplane landing A pilot, flying at an altitude of 5000 feet,
wishes to approach the numbers on a runway at an angle
of 10°. Approximate, to the nearest 100 feet, the distance
from the airplane to the numbers at the beginning of the
descent.

28 Radio antenna A guy wire is attached to the top of a
radio antenna and to a point on horizontal ground that is
40.0 meters from the base of the antenna. If the wire makes
an angle of 58°20" with the ground, approximate the length
of the wire.

29 Surveying To find the distance d between two points P and
Q on opposite shores of a lake, a surveyor locates a point R
that is 50.0 meters from P such that RP is perpendicular to
PQ, as shown in the figure. Next, using a transit, the sur-
veyor measures angle PRQ as 72°40’. Find d.

Exercise 29

30 Meteorological calculations To measure the height 4 of a
cloud cover, a meteorology student directs a spotlight verti-
cally upward from the ground. From a point P on level
ground that is d meters from the spotlight, the angle of ele-
vation 6 of the light image on the clouds is then measured
(see the figure on the next page).

(a) Express h in terms of d and .

(b) Approximate & if d = 1000 m and 6 = 59°.
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Exercise 30

31 Altitude of a rocket A rocket is fired at sea level and climbs
at a constant angle of 75° through a distance of 10,000 feet.
Approximate its altitude to the nearest foot.

32 Airplane takeoff An airplane takes off at a 10° angle and
travels at the rate of 250 ft/sec. Approximately how long
does it take the airplane to reach an altitude of 15,000 feet?

33 Designing a drawbridge A drawbridge is 150 feet long
when stretched across a river. As shown in the figure, the
two sections of the bridge can be rotated upward through an
angle of 35°.

(a) If the water level is 15 feet below the closed bridge,
find the distance d between the end of a section and the
water level when the bridge is fully open.

(b) Approximately how far apart are the ends of the two
sections when the bridge is fully opened, as shown in
the figure?

Exercise 33

34 Designing a water slide Shown in the figure is part of a de-
sign for a water slide. Find the total length of the slide to the
nearest foot.

Exercise 34

35 Sun’s elevation Approximate the angle of elevation a of
the sun if a person 5.0 feet tall casts a shadow 4.0 feet long
on level ground (see the figure).

Exercise 35

36 Constructing a ramp A builder wishes to construct a ramp
24 feet long that rises to a height of 5.0 feet above level
ground. Approximate the angle that the ramp should make
with the horizontal.

37 Video game Shown in the figure is the screen for a simple
video arcade game in which ducks move from A to B at
the rate of 7 cm/sec. Bullets fired from point O travel
25 cm/sec. If a player shoots as soon as a duck appears at
A, at which angle ¢ should the gun be aimed in order to
score a direct hit?



Exercise 37

38 Conveyor belt A conveyor belt 9 meters long can be hy-
draulically rotated up to an angle of 40° to unload cargo
from airplanes (see the figure).

(a) Find, to the nearest degree, the angle through which the
conveyor belt should be rotated up to reach a door that
is 4 meters above the platform supporting the belt.

(b) Approximate the maximum height above the platform
that the belt can reach.

Exercise 38

39 Tallest structure The tallest man-made structure in the
world is a television transmitting tower located near
Mayville, North Dakota. From a distance of 1 mile on level
ground, its angle of elevation is 21°20'24". Determine its
height to the nearest foot.

40 Elongation of Venus The elongation of the planet Venus is
defined to be the angle 6 determined by the sun, Earth, and
Venus, as shown in the figure. Maximum elongation of
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Venus occurs when Earth is at its minimum distance D,
from the sun and Venus is at its maximum distance D, from
the sun. If D, = 91,500,000 mi and D, = 68,000,000 mi,
approximate the maximum elongation 6, of Venus. As-
sume that the orbit of Venus is circular.

Exercise 40

41 The Pentagon’s ground area The Pentagon is the largest
office building in the world in terms of ground area. The
perimeter of the building has the shape of a regular penta-
gon with each side of length 921 feet. Find the area en-
closed by the perimeter of the building.

42 A regular octagon is inscribed in a circle of radius 12.0 cen-
timeters. Approximate the perimeter of the octagon.

43 A rectangular box has dimensions 8” X 6" X 4". Approxi-
mate, to the nearest tenth of a degree, the angle 6 formed by
a diagonal of the base and the diagonal of the box, as shown
in the figure.

Exercise 43

\ 6 >
ST

44 Vlolume of a conical cup A conical paper cup has a radius of
2 inches. Approximate, to the nearest degree, the angle 3 (see
the figure) so that the cone will have a volume of 20 in.
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Exercise 44

;]

45 Height of a tower From a point P on level ground, the angle

46

47

of elevation of the top of a tower is 26°50’. From a point
25.0 meters closer to the tower and on the same line with P
and the base of the tower, the angle of elevation of the top
is 53°30". Approximate the height of the tower.

Ladder calculations A ladder 20 feet long leans against the
side of a building, and the angle between the ladder and the
building is 22°.

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is increased by 3.0 feet, approximately how
far does the top of the ladder move down the building?

Ascent of a hot-air balloon As a hot-air balloon rises verti-
cally, its angle of elevation from a point P on level ground
110 kilometers from the point Q directly underneath the bal-
loon changes from 19°20" to 31°50’ (see the figure). Ap-
proximately how far does the balloon rise during this period?

Exercise 47

48

49

Height ofa building From a point A that is 8.20 meters above
level ground, the angle of elevation of the top of a build-
ing is 31°20" and the angle of depression of the base of the
building is 12°50". Approximate the height of the building.

Radius of Earth A spacelab circles Earth at an altitude of
380 miles. When an astronaut views the horizon of Earth,
the angle 6 shown in the figure is 65.8°. Use this informa-
tion to estimate the radius of Earth.

Exercise 49

/N

S

50

380 mi |

Length ofanantenna A CB antenna is located on the top of
a garage that is 16 feet tall. From a point on level ground
that is 100 feet from a point directly below the antenna, the
antenna subtends an angle of 12°, as shown in the figure.
Approximate the length of the antenna.

Exercise 50

51

100’

Speed of an airplane An airplane flying at an altitude of
10,000 feet passes directly over a fixed object on the
ground. One minute later, the angle of depression of the ob-
ject is 42°. Approximate the speed of the airplane to the
nearest mile per hour.



52 Height of a mountain A motorist, traveling along a level
highway at a speed of 60 km/hr directly toward a mountain,
observes that between 1:00 P.M. and 1:10 P.M. the angle of
elevation of the top of the mountain changes from 10° to 70°.
Approximate the height of the mountain.

53 Communications satellite Shown in the left part of the fig-
ure is a communications satellite with an equatorial orbit—
that is, a nearly circular orbit in the plane determined by
Earth’s equator. If the satellite circles Earth at an altitude of
a = 22,300 mi, its speed is the same as the rotational speed
of Earth; to an observer on the equator, the satellite appears
to be stationary—that is, its orbit is synchronous.

(a) Using R = 4000 mi for the radius of Earth, determine
the percentage of the equator that is within signal range
of such a satellite.

(b) As shown in the right part of the figure, three satellites
are equally spaced in equatorial synchronous orbits.
Use the value of 6 obtained in part (a) to explain why
all points on the equator are within signal range of at
least one of the three satellites.

Exercise 53

- | ~ - ~

|
|

/ la \ ’ \
/ |
|

0 \
Vo
Vo
1 I
I
I 1
\

@

54 Communications satellite Refer to Exercise 53. Shown in
the figure is the area served by a communications satellite
circling a planet of radius R at an altitude a. The portion of
the planet’s surface within range of the satellite is a spheri-
cal cap of depth d and surface area A = 27Rd.

(a) Express d in terms of R and 6.

(b) Estimate the percentage of the planet’s surface that is
within signal range of a single satellite in equatorial
synchronous orbit.

55

56

57

58

59

60
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Exercise 54

L
7 a
Height of a kite Generalize Exercise 25 to the case where

the angle is «, the number of feet of string payed out is d,
and the end of the string is held c feet above the ground. Ex-
press the height £ of the kite in terms of «, d, and c.

Surveying Generalize Exercise 26 to the case where the
point is d meters above level ground and the angle of de-
pression is a. Express the distance x in terms of d and «.

Height of a tower Generalize Exercise 45 to the case where
the first angle is «, the second angle is 3, and the distance
between the two points is d. Express the height / of the
tower in terms of d, «, and B.

Generalize Exercise 42 to the case of an n-sided polygon
inscribed in a circle of radius r. Express the perimeter P in
terms of n and r.

Ascent of a hot-air balloon Generalize Exercise 47 to the
case where the distance from P to Q is d kilometers and the
angle of elevation changes from « to .

Height of a building Generalize Exercise 48 to the case
where point A is d meters above ground and the angles of
elevation and depression are « and f3, respectively. Express
the height & of the building in terms of d, @, and S.
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Exer. 61-62: Find the bearing from P to each of the
points A, B, C, and D.

61 N

40°

20°

25°

62 N

15°

60°/\|/p

W 35° E
80° /

63 Ship’s bearings A ship leaves port at 1:00 P.M. and sails in
the direction N34°W at a rate of 24 mi/hr. Another ship
leaves port at 1:30 P.M. and sails in the direction N56°E at a
rate of 18 mi/hr.

(a) Approximately how far apart are the ships at 3:00 P.M.?

(b) What is the bearing, to the nearest degree, from the first
ship to the second?

64 Pinpointing a forest fire From an observation point A, a
forest ranger sights a fire in the direction S35°50'W (see the
figure). From a point B, 5 miles due west of A, another
ranger sights the same fire in the direction S54°10'E. Ap-

proximate, to the nearest tenth of a mile, the distance of the
fire from A.

Exercise 64

65 Airplane flight An airplane flying at a speed of 360 mi/hr
flies from a point A in the direction 137° for 30 minutes and
then flies in the direction 227° for 45 minutes. Approximate,
to the nearest mile, the distance from the airplane to A.

66 Airplane flight plan An airplane flying at a speed of
400 mi/hr flies from a point A in the direction 153° for
1 hour and then flies in the direction 63° for 1 hour.

(a) In what direction does the plane need to fly in order to
get back to point A?

(b) How long will it take to get back to point A?

Exer. 67-70: The formula specifies the position of a point P
that is moving harmonically on a vertical axis, where ¢ is in
seconds and d is in centimeters. Determine the amplitude,
period, and frequency, and describe the motion of the point
during one complete oscillation (starting at ¢ = 0).

1
68 d=fcos£t

67 d = 10 sin 67t
sin 677 3 1

3 2
69 d:40057ﬂ-t 70 d:6sin?ﬂ-t

71 A point P in simple harmonic motion has a period of 3 sec-
onds and an amplitude of 5 centimeters. Express the motion
of P by means of an equation of the form d = a cos wt.



72

73

A point P in simple harmonic motion has a frequency of
% oscillation per minute and an amplitude of 4 feet. Express
the motion of P by means of an equation of the form
d = a sin wt.

Tsunamis A tsunami is a tidal wave caused by an earthquake
beneath the sea. These waves can be more than 100 feet in
height and can travel at great speeds. Engineers sometimes
represent such waves by trigonometric expressions of the
form y = a cos bt and use these representations to estimate
the effectiveness of sea walls. Suppose that a wave has
height 4 = 50 ft and period 30 minutes and is traveling at
the rate of 180 ft/sec.

Exercise 73

(I

Sea
wall
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(a) Let (x, y) be a point on the wave represented in the
figure. Express y as a function of ¢ if y = 25 ft when
t=0.

(b) The wave length L is the distance between two succes-
sive crests of the wave. Approximate L in feet.

Some Hawaiian tsunamis For an interval of 45 minutes, the
tsunamis near Hawaii caused by the Chilean earthquake of

1960 could be modeled by the equation y = 8 sin %t,
where y is in feet and ¢ is in minutes.
(a) Find the amplitude and period of the waves.

(b) If the distance from one crest of the wave to the next was
21 kilometers, what was the velocity of the wave? (Tidal
waves can have velocities of more than 700 km/hr in
deep sea water.)

Find the radian measure that corresponds to each degree
measure: 330°, 405°, —150°, 240°, 36°.

Find the degree measure that corresponds to each radian
Or 2w Iw s T

measure: ———, ———, ——, 37, .
2 374 5

A central angle 6 is subtended by an arc 20 centimeters long
on a circle of radius 2 meters.

(a) Find the radian measure of 6.
(b) Find the area of the sector determined by 6.

(a) Find the length of the arc that subtends an angle of
measure 70° on a circle of diameter 15 centimeters.

(b) Find the area of the sector in part (a).

Angular speed of phonograph records Two types of phono-
graph records, LP albums and singles, have diameters of
12 inches and 7 inches, respectively. The album rotates at a

6

rate of 333l rpm, and the single rotates at 45 rpm. Find the an-
gular speed (in radians per minute) of the album and of the
single.

Linear speed on phonograph records Using the information
in Exercise 5, find the linear speed (in ft/min) of a point on
the circumference of the album and of the single.

Exer. 7-8: Find the exact values of x and y.

7

8

60°
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Exer. 9-10: Use fundamental identities to write the first
expression in terms of the second, for any acute angle 6.

9 tan 6, sec 0 10 cot 6, csc 0

Exer. 11-20: Verify the identity by transforming the left-
hand side into the right-hand side.

11 sin O (csc @ — sin 6) = cos® 6
12 cos 6 (tan 6 + cot 6) = csc 0

13 (cos? @ — 1)(tan’> 0 + 1) = 1 — sec? 6

sec @ —cos 6 tan 0
14 =

tan 6 " sec 0
1 + tan® 6
15 ————= csc? 6
tan® 0

sec  + csc 0 sin 6 + cos 0

16 = —
sec § —csc O sin 0 — cos O
cot f— 1 1 + sec 6
17 ———=cot 0 —— X =c¢csc 0
1 —tan 6 tan 6 + sin 6
t —0) + cot (—0
19 an (76) + cot ( )=—csc20
tan 6
1 t (—6
20 cot ( )—csct‘)

csc (—0)  sec (-0

21 If 0 is an acute angle of a right triangle and if the adjacent
side and hypotenuse have lengths 4 and 7, respectively, find
the values of the trigonometric functions of 6.

22 Whenever possible, find the exact values of the trigonomet-
ric functions of € if #is in standard position and satisfies the
stated condition.

(a) The point (30, —40) is on the terminal side of 6.

(b) The terminal side of 6 is in quadrant II and is parallel
to the line 2x + 3y + 6 = 0.

(c) The terminal side of 6 is on the negative y-axis.
23 Find the quadrant containing 6 if 6 is in standard position.
(a) sec 6 < 0Oandsin >0
(b) cot > 0andcsc 6 <0
(c) cos #>0andtan # <0

24 Find the exact values of the remaining trigonometric
functions if

(a) sin 0 = —gandcos 0 =%

3 3
deot = ——
and co B

Exer. 25-26: P(t) denotes the point on the unit circle U that
corresponds to the real number ¢.

25 Find the rectangular coordinates of P(7), P(—5/2),
PO9/2), P(—37/4), P(181r), and P(7/6).

(b) csc 0 =

26 If P(¢) has coordinates (—%, —g), find the coordinates of
P(t + 37), P(t — @), P(—1), and PQ2m — 1).

27 (a) Find the reference angle for each radian measure:
Sm 5w 9w

4> 67 8

(b) Find the reference angle for each degree measure:
245°, 137°, 892°.

28 Without the use of a calculator, find the exact values of the
trigonometric functions corresponding to each real number,
whenever possible.

a7 I

@0 @ ¢

(c) sin <—;T>

(f) csc 300°

97
— b
@5
29 Find the exact value.

(a) cos 225° (b) tan 150°

(d) sec dm

7
3 (e) cot %

30 If sin # = —0.7604 and sec 0 is positive, approximate 6 to
the nearest 0.1° for 0° = 6 < 360°.

31 If tan 6 = 2.7381, approximate 6 to the nearest 0.0001 ra-
dian for 0 = 0 < 2.

32 If sec 0 = 1.6403, approximate 6 to the nearest 0.01° for
0° = 6 < 360°.

Exer. 33-40: Find the amplitude and period and sketch the
graph of the equation.

33 y=5cos x 34 y=12sinx
35y:%sin3x 36y=—%cos%x
37y=—3cos%x 38 y = 4 sin 2x

39 y = 2 sin mx 40y:4cos%x—2



Exer. 41-44: The graph of an equation is shown in the
figure. (a) Find the amplitude and period. (b) Express
the equation in the form y = a sin bx or in the form
y = a cos bx.

41 y

—24 (1.5, —-143)

42 y

Exer. 45-56: Sketch the graph of the equation.

2
45y=251n<x—;>

T
47 y=4cos(x+6>

. 1 T
46y——3s1n<2x 4)

48y=5cos<2x+727>
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1
49 y =2 tan (x—w)
2
51 y = —4 cot <2x—77>
2
1 T
53 y = sec <2x+77'> 54 y = sec <2x—2>

55 y = 2% — = 56 y = 1.7
y=ose|2x—— y=ese|ox+

Exer. 57-60: Given the indicated parts of triangle ABC with
y = 90°, approximate the remaining parts.

57 B=160° b =40 58 a = 54°40', b =220

50 y = —3 tan <2x+ Z)

1 T
52 y=2cot | —x + —
y co <2x 4>

59 a=62, b=25 60 a = 9.0, c =41

61 Airplane propeller The length of the largest airplane propeller
ever used was 22 feet 7.5 inches. The plane was powered
by four engines that turned the propeller at 545 revolutions
per minute.

(a) What was the angular speed of the propeller in radians
per second?

(b) Approximately how fast (in mi/hr) did the tip of the
propeller travel along the circle it generated?

62 The Eiffel Tower When the top of the Eiffel Tower is viewed
at a distance of 200 feet from the base, the angle of eleva-
tion is 79.2°. Estimate the height of the tower.

63 Lasers and velocities Lasers are used to accurately measure
velocities of objects. Laser light produces an oscillating
electromagnetic field £ with a constant frequency f that can
be described by

E = E, cos 2mit).

If a laser beam is pointed at an object moving toward the laser,
light will be reflected toward the laser at a slightly higher
frequency, in much the same way as a train whistle sounds
higher when it is moving toward you. If Af is this change
in frequency and v is the object’s velocity, then the equation

2fv
c

Af=

can be used to determine v, where ¢ = 186,000 mi/sec is
the velocity of the light. Approximate the velocity v of an
object if Af = 10% and f = 10™.
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64 The Great Pyramid The Great Pyramid of Egypt is 147 meters
high, with a square base of side 230 meters (see the figure).
Approximate, to the nearest degree, the angle ¢ formed when
an observer stands at the midpoint of one of the sides and
views the apex of the pyramid.

Exercise 64

A
|
|
/|
I
|
|
|

65 Venus When viewed from Earth over a period of time, the
planet Venus appears to move back and forth along a line
segment with the sun at its midpoint (see the figure). If ES
is approximately 92,900,000 miles, then the maximum ap-
parent distance of Venus from the sun occurs when angle
SEV is approximately 47°. Assume that the orbit of Venus is
circular and estimate the distance of Venus from the sun.

Exercise 65

Maximum
apparent
distance

Apparent
movement
of Venus

Orbit of
Venus

66 Surveying From a point 233 feet above level ground, a
surveyor measures the angle of depression of an object
on the ground as 17°. Approximate the distance from the
object to the point on the ground directly beneath the
surveyor.

67 Ladder calculations A ladder 16 feet long leans against the
side of a building, and the angle between the ladder and the
building is 25°.

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is decreased by 1.5 feet, approximately how
far does the top of the ladder move up the building?

68 Constructing a conical cup A conical paper cup is con-
structed by removing a sector from a circle of radius
5 inches and attaching edge OA to OB (see the figure). Find
angle AOB so that the cup has a depth of 4 inches.

Exercise 68

69 Length of a tunnel A tunnel for a new highway is to be cut
through a mountain that is 260 feet high. At a distance of
200 feet from the base of the mountain, the angle of eleva-
tion is 36° (see the figure). From a distance of 150 feet on
the other side, the angle of elevation is 47°. Approximate the
length of the tunnel to the nearest foot.

Exercise 69

70 Height of a skyscraper When a certain skyscraper is viewed
from the top of a building 50 feet tall, the angle of elevation
is 59° (see the figure). When viewed from the street next to
the shorter building, the angle of elevation is 62°.

(a) Approximately how far apart are the two structures?

(b) Approximate the height of the skyscraper to the nearest
tenth of a foot.
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72

Exercise 70

Height of a mountain When a mountaintop is viewed from
the point P shown in the figure, the angle of elevation is a.
From a point Q, which is d miles closer to the mountain, the
angle of elevation increases to (3.

(a) Show that the height 4 of the mountain is given by

d
cot @ — cot B

(b) If d = 2 mi, @ = 15°, and B = 20°, approximate the
height of the mountain.

Exercise 71

Nl

$
Y

Height of a building An observer of height /& stands on an
incline at a distance d from the base of a building of height
T, as shown in the figure. The angle of elevation from the
observer to the top of the building is 6, and the incline
makes an angle of a with the horizontal.

(a) Express T in terms of &, d, a, and 6.

(b) If h =6 ft, d = 50 ft, « = 15°, and 6 = 31.4°, esti-
mate the height of the building.

73

74
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Exercise 72

Illuminance A spotlight with intensity 5000 candles is lo-
cated 15 feet above a stage. If the spotlight is rotated through
an angle 0 as shown in the figure, the illuminance E (in foot-
candles) in the lighted area of the stage is given by
5000 cos 6
E=—7—,
s

where s is the distance (in feet) that the light must travel.

(a) Find the illuminance if the spotlight is rotated through
an angle of 30°.

(b) The maximum illuminance occurs when 6 = 0°.
For what value of 6 is the illuminance one-half the

maximum value?

Exercise 73

Height of a mountain If a mountaintop is viewed from a
point P due south of the mountain, the angle of elevation is
« (see the figure). If viewed from a point Q that is d miles
east of P, the angle of elevation is (3.

(a) Show that the height & of the mountain is given by

b= d sin « sin

Vsin? a — sin? B

(b) If a = 30° B = 20° and d = 10 mi, approximate / to
the nearest hundredth of a mile.
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Exercise 74

75 Mounting a projection unit The manufacturer of a comput-

76

erized projection system recommends that a projection unit
be mounted on the ceiling as shown in the figure. The dis-
tance from the end of the mounting bracket to the center of
the screen is 85.5 inches, and the angle of depression is 30°.

(a) If the thickness of the screen is disregarded, how far
from the wall should the bracket be mounted?

(b) If the bracket is 18 inches long and the screen is 6 feet
high, determine the distance from the ceiling to the top
edge of the screen.

Exercise 75

Pyramid relationships A pyramid has a square base and
congruent triangular faces. Let 6 be the angle that the alti-
tude a of a triangular face makes with the altitude y of the
pyramid, and let x be the length of a side (see the figure).

(a) Express the total surface area S of the four faces in
terms of a and 6.

77

78

(b) The volume V of the pyramid equals one-third the area
of the base times the altitude. Express V in terms of
a and 0.

Exercise 76

Surveying a bluff A surveyor, using a transit, sights the
edge B of a bluff, as shown in the left part of the figure (not
drawn to scale). Because of the curvature of Earth, the true
elevation /4 of the bluff is larger than that measured by the
surveyor. A cross-sectional schematic view of Earth is
shown in the right part of the figure.

(a) If s is the length of arc PQ and R is the distance from P
to the center C of Earth, express £ in terms of R and s.

(b) If R = 4000 mi and s = 50 mi, estimate the elevation
of the bluff in feet.

Exercise 77

Earthquake response To simulate the response of a struc-
ture to an earthquake, an engineer must choose a shape for
the initial displacement of the beams in the building. When
the beam has length L feet and the maximum displacement
is a feet, the equation

CcoS 77
=da—da - X
Y 2L

has been used by engineers to estimate the displacement y
(see the figure). If a = 1 and L = 10, sketch the graph of
the equation for 0 = x = 10.



Exercise 78

79 Circadian rhythms The variation in body temperature is an

example of a circadian rhythm, a cycle of a biological process
that repeats itself approximately every 24 hours. Body tem-
perature is highest about 5 P.M. and lowest at 5 A.M. Let y
denote the body temperature (in °F), and let 7 = 0 correspond
to midnight. If the low and high body temperatures are
98.3° and 98.9°, respectively, find an equation having the
formy = 98.6 + a sin (br + c) that fits this information.

81

82
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(a) Sketch the graph of 7 for 0 < ¢ < 12.

(b) Find the highest temperature of the year and the date on
which it occurs.

Water demand A reservoir supplies water to a community.
During the summer months, the demand D(z) for water (in
ft}/day) is given by

D(#) = 2000 sin 9%1‘ + 4000,

where ¢ is time in days and r = 0 corresponds to the begin-
ning of summer.

(a) Sketch the graph of D for 0 = ¢ =< 90.
(b) When is the demand for water the greatest?

Bobbing cork A cork bobs up and down in a lake. The dis-
tance from the bottom of the lake to the center of the cork
at time 7 = 0 is given by s(tf) = 12 + cos 7z, where s(7) is
in feet and 7 is in seconds.

(a) Describe the motion of the cork for 0 =< ¢ = 2.

80 Temperature variation in Ottawa The annual variation
in temperature 7 (in °C) in Ottawa, Canada, may be ap-
proximated by

(1) = 15.8 sin [g(t - 3)] + 5,

(b) During what time intervals is the cork rising?

where ¢ is the time in months and # = 0 corresponds to
January 1.

CHAPTER 6 DISCUSSION EXERCISES

1 Determine the number of solutions of the equation Exercise 2

cos x + cos 2x + cos 3x = .

2 Racetrack coordinates Shown in the figure is a circular
racetrack of diameter 2 kilometers. All races begin at S and
proceed in a counterclockwise direction. Approximate, to
four decimal places, the coordinates of the point at which
the following races end relative to a rectangular coordinate
system with origin at the center of the track and S on the
positive x-axis.

(a) A drag race of length 2 kilometers

(b) An endurance race of length 500 kilometers
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3 Racetrack coordinates Work Exercise 2 for the track shown (a) Find the angular speed w of the propeller in radians
in the figure, if the origin of the rectangular coordinate sys- per second.

tem is at the center of the track and S is on the negative y-axis. . . .
(b) The center of a 10-inch-diameter propeller is located

Exercise 3 18 inches below the surface of the water. Express the

<—2 km ——> depth D(t) = a cos (wr + ¢) + d of a point on the
edge of a propeller blade as a function of time ¢, where
t is in seconds. Assume that the point is initially at a

| |

| |

| |

} / depth of 23 inches.
| |

| |

} w Lkm 5 Discuss the relationships among periodic functions, one-to-
|

|

|

|

|

|
} one functions, and inverse functions. With these relationships
\ in mind, discuss what must happen for the trigonometric
} functions to have inverses.

4 Outboard motor propeller A 90-horsepower outboard motor
at full throttle will rotate its propeller at 5000 revolutions
per minute.
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Analytic Trigonometry

In advanced mathematics, the natural sciences, and engineering, it is some-
times necessary to simplify complicated trigonometric expressions and to
solve equations that involve trigonometric functions. These topics are dis-
cussed in the first two sections of this chapter. We then derive many useful
formulas with respect to sums, differences, and multiples; for reference they
are listed on the inside back cover of the text. In addition to formal manip-
ulations, we also consider numerous applications of these formulas. The last
section contains the definitions and properties of the inverse trigonometric

functions.
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7.1

Verifying Trigonometric
Identities

ILLUSTRATION

A trigonometric expression contains symbols involving trigonometric
functions.

Trigonometric Expressions

\ @ + 2sin® cos 3t + 1)
_ [ ]

B x +sinx | — = 7
cot 0 >+ tan* (2 — %)

We assume that the domain of each variable in a trigonometric expression
is the set of real numbers or angles for which the expression is meaningful. To
provide manipulative practice in simplifying complicated trigonometric ex-
pressions, we shall use the fundamental identities (see page 364) and algebraic
manipulations, as we did in Examples 5 and 6 of Section 6.2. In the first three
examples our method consists of transforming the left-hand side of a given
identity into the right-hand side, or vice versa.

EXAMPLE 1 Verifying anidentity

Verify the identity sec &« — cos a = sin « tan a.

SOLUTION  We transform the left-hand side into the right-hand side:

Sec o — COoS « — cos a reciprocal identity

COS «
1 — cos’« _
= add expressions
COS o
sin® « )
= sin? @ + cos’a = 1
COS «o

. sin « . .
= sin « equivalent expression
cos «

= sin atan « tangent identity 7/

EXAMPLE 2 Verifying an identity

Verify the identity sec 6 = sin 6 (tan 6 + cot 6).

SOLUTION  Since the expression on the right-hand side is more compli-
cated than that on the left-hand side, we transform the right-hand side into the
left-hand side:
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sin 6 4 cos 6 tangent and cotangent
cos 6 sin 6 identities

. sin? @ + cos? 6 )
=smf|————— add fractions

sin 0 (tan 0 + cot 6) = sin 0 (

cos Osin 6
. 1 .
=sinf|—— Pythagorean identity
cos 6 sin 6
1 .
= cancel sin 6
cos 6
= sec 6 reciprocal identity &

EXAMPLE 3 Verifying an identity

cosx 1 +sinx

Verify the identity — =
1 —sinx cos X

SOLUTION  Since the denominator of the left-hand side is a binomial and the
denominator of the right-hand side is a monomial, we change the form of the
fraction on the left-hand side by multiplying the numerator and denominator by
the conjugate of the denominator and then use one of the Pythagorean identities:

cos x COS X 1 + sinx multiply numerator and
denominator by 1 + sin x

Il —sinx 1 —sinx 1+ sinx
cos x (1 + sinx) .
= 5. property of quotients
1 — sin*x
cos x (1 + sin x) - .
=5 sin”x + cos”x = 1
Ccos” x

1+ sinx |
= — cancel cos x
cos x /7

Another technique for showing that an equation p = ¢ is an identity is to
begin by transforming the left-hand side p into another expression s, making
sure that each step is reversible—that is, making sure it is possible to trans-
form s back into p by reversing the procedure used in each step. In this case,
the equation p = s is an identity. Next, as a separate exercise, we show that
the right-hand side ¢ can also be transformed into the expression s by means
of reversible steps and, therefore, that ¢ = s is an identity. It then follows that
p = q is an identity. This method is illustrated in the next example.

EXAMPLE 4 Verifying anidentity

1 —sin @

Verify the identity (tan 6 — sec 6)* = .
erify the identity (tan sec [+ sin 8
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Work with the left-hand side.

equivalent
expressions

Work with the right-hand side.

SOLUTION  We shall verify the identity by showing that each side of the
equation can be transformed into the same expression. First we work only with
the left-hand side:

(tan 6 — sec 6)> = tan®> @ — 2 tan O sec O + sec’ §  square expression

sin 0 \? sin 6 1 1 \?
-2 +
cos 60 cos 6/ \cos 6 cos 6

tangent and reciprocal identities

sin® 2sin 6 1 . .
= — - — + > equivalent expression
cos’f cos*O  cos* O

sin @ —2sinH + 1

= 5 add fractions
cos” 6
At this point it may not be obvious how we can obtain the right-hand side
of the given equation from the last expression. Thus, we next work with only
the right-hand side and try to obtain the last expression. Multiplying numerator
and denominator by the conjugate of the denominator gives us the following:
l —sinf 1 —sinf 1—sin6f multiply numerator and
1+sinf 1+sin@ 1 —sing denominatorby I =sin 6
1 — 2sin 0 + sin? 6 .
= — property of quotients
1 — sin” 6

1 —2sin 6 + sin? 0

= > sin? @ + cos? 6 = 1

cos” 0
The last expression is the same as that obtained from (tan 6 — sec 6)> Since
all steps are reversible, the given equation is an identity. /

EXAMPLE 5 Showing that an equation is not an identity
Show that cot x = Vcsc? x — 1 is not an identity.

SOLUTION  We only need to find one value of x that makes each side of the
equation have a different value. We could try random values of x, but investi-
gating a known identity may help us with our choice of a value for x.

A Pythagorean identity, 1 + cot? x = csc’ x, relates the cot and csc func-
tions. Solving the identity for cot x, we get cot’x = csc*x — 1 and then
cotx = = Vesc?x — 1. The + symbol is the key—any value of x that
makes cot x negative will show that the given equation is not an identity.
Specifically, since cot is negative in quadrants IT and IV, we’ll pick 37/4 for

our value of x. The left-hand side is then cot (377/4) = —1 and the right-hand
side is

VeseBm/4) —1=V(=V2p-1=v2-1=1
The sides are not equal, so the given equation is not an identity. /

In calculus it is sometimes convenient to change the form of certain alge-
braic expressions by making a trigonometric substitution, as illustrated in
the following example.
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EXAMPLE 6 Making a trigonometric substitution

Express Va®> — x? in terms of a trigonometric function of 6, without radicals,
by making the substitution x = a sin  for —7/2 = 0§ < 7/2 and a > 0.

SOLUTION  We proceed as follows:
Va> — x> =\Va> — (asin 6> letx = asin 6
= Va — &sin” 0 law of exponents
= \/cm factor out a?
= Va® cos® 0 sin® 6 + cos® 6 = 1
= Vacos 6)? cd? = (cd)?

= |a cos 6| Ve =|c]
= |a|cos o] jed| = [¢ld]
=acos 6 see below

The last equality is true because (1) if a > 0, then |a| = a, and (2) if
—m/2 = 6 < /2, then cos @ = 0 and hence |cos 6] = cos 6.

Figure 1 We may also use a geometric solution. If x = a sin 6, then sin 6 = x/a,
and the triangle in Figure 1 illustrates the problem for 0 < 6 < 7r/2. The third
a side of the triangle, \Va® — x%, can be found by using the Pythagorean theo-
* rem. From the figure we can see that
0 \/ﬁ
a —x
N cos 0 = — or, equivalently, Va> — x* = acos 6. 7
71 Exercises
Exer. 1-50: Verify the identity. cot 6 — tan 6
1 csc 6 — sin 6 = cot 6 cos 6 lzsin0+c050:cscaisece

2 sin x + CcoOs x cot x = csC x

13 csc*t — cot* t = csc? t + cot’ t

sec? 2u — 1 14 cos* 20 + sin® 20 = cos? 20 + sin* 20
Teo 2m = sin® 2u B
sec” 2u cos
15 ————=sec B+ tan B
4 tant + 2 costcesct=sectcesct+ cott 1 —sin B
1
csc? 16 —————— =cscy +coty
——— =cot’ 6 cscy — coty
1 + tan® 6 2
) 17 tan’x 1 —cosx 1 cotx  cscx — 1
6 (tan u + cot u)(cos u + sin u) = csc u + sec u soc x + 1 cos x csex + 1 cot x
+ cos i
1 + cos 3t sin 3¢ =2 csc 3t 19 cotdu —1 1 — tan 4u 1 + sec 4x 4
i = - = csc 4x
sin 3¢ 1 + cos 3t cotdu +1 1 + tan 4u sin 4x + tan 4x

8 tan’ @ — sin®> @ = tan® « sin® «
1 1
+
l1—cosy 1+cosvy
1 + csc 38
sec 38
(sec u — tan u)(csc u + 1) = cot u

=2csc?y

10 — cot 33 = cos 383

1

ry

21 sin* r — cos* r = sin®> r — cos’ r

22 sin* 0 + 2 sin® 6 cos? 6 + cos* 0 = 1
23 tan* k —sec* k=1 — 2 sec’ k

24 sec* u — sec’ u = tan® u + tan* u
1+ sint

25 (sec t + tan 1)* = -
1 —sin ¢
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26

27

28

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

47

49

sec’ y + tan* y = (1 — sin* y) sec* y
(sin®> 6 + cos? ) =1

sin ¢ 1+ cscpB
—=csct+tcott 29 — =sec B
1 —cost cot B+ cos B

cos® x — sin® x .
— =1 +sinxcosx
cos x — sin x

(csc t — cot t)*(csc t + cot t)* =1

(@acost—bsint)* + (asint+ bcost)] =a*+ b

sin @ cos B+ cos asin B tan a + tan B

cos acos B—sinasin B 1 — tan « tan B

tan u — tan v cotv — cotu

l+tanutanv cotucotv+ 1
tan « 1 + sec «
=2csca
1 + sec « tan «
csc X csc X
— =2 sec’ x
1 +cscx 1 —cscx
1 in B cos B
——— = sin B cos
tan B + cot 3
coty — tany ) )
————— =c¢sc’y — sec’y
sin y cos y

sec O + csc @ — cos 6 — sin § = sin 6 tan 6 + cos 0 cot 0
sin® t + cos® t = (1 — sin 7 cos #)(sin ¢ + cos 1)

(1 — tan? ¢)* = sec* ¢ — 4 tan’ ¢

cos*w+ 1 — sin* w = 2 cos? w
cot (—¢) + tan (—1) 5
= —sec’ t
cot t

csc (—1) — sin (—¢

( .) (=0 _ cof’ 1

sin (—1)

log 104" = tan ¢ 46 10l = |sin ¢]
In cot x = —In tan x 48 In sec & = —In cos 60
In|sec § + tan 8] = —In |sec 6 — tan 6]
In|csc x — cot x| = —In|csc x + cot x|

Exer. 51-60: Show that the equation is nof an identity.
(Hint: Find one number for which the equation is false.)

51 cost= V1 —sin’t
52 Vsin’t + cos’t =sint + cos t
53 Vsin’t =sint 54 sect = Vtan’t + 1

55 (sin  + cos 0)* = sin®* 6 + cos® 6
56 1 ! !
og|—)=—F
& sin ¢ log sin ¢

57 cos (—t) = —cos t 58 sin (t + ) = sin ¢t

59 cos (sec 1) = 1 60 cot (tan 0) = 1

Exer. 61-64: Either show that the equation is an identity or
show that the equation is not an identity.

61 (secx + tanx)? = 2 tan x (tan x + sec x)

tan® x
2 ——— =secx
secx — 1

63 cos x (tanx + cotx) = cscx
64 csc? x + sec’x = csc? x sec’ x

Exer. 65-68: Refer to Example 5. Make the trigonometric
substitution x = a sin @ for —77/2 < 0 < /2 and a > 0. Use
fundamental identities to simplify the resulting expression.

2 _ 2
65 (@ — x?)? 66 ———
X
x? 1
67 ——— 68 ——
Va* — x? xVa* — x?

Exer. 69-72: Make the trigonometric substitution
x=atan @ for —mw/2<O0<w/2 and a>0.

Simplify the resulting expression.

1
69 a’ + x? 70 ——
Va +x?
71 1 72 (x2 + a2)3/2
x2+ a* X

Exer. 73-76: Make the trigonometric substitution
x=asecB for 0<O<mw/2 and a>0.
Simplify the resulting expression.

1

X2 x2 — aZ

73 Vx*—a* 74

2 2

X° —a
)C2

75 x¥*Vx* — d? 76
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7.2 Trigonometric Equations

A trigonometric equation is an equation that contains trigonometric expres-
sions. Each identity considered in the preceding section is an example of a
trigonometric equation with every number (or angle) in the domain of the vari-
able a solution of the equation. If a trigonometric equation is not an identity,
we often find solutions by using techniques similar to those used for algebraic
equations. The main difference is that we first solve the trigonometric equation
for sin x, cos 6, and so on, and then find values of x or 6 that satisfy the equa-
tion. Solutions may be expressed either as real numbers or as angles. Through-
out our work we shall use the following rule: If degree measure is not
specified, then solutions of a trigonometric equation should be expressed in
radian measure (or as real numbers). If solutions in degree measure are de-
sired, an appropriate statement will be included in the example or exercise.

EXAMPLE 1 Solving a trigonometric equation involving the sine function

Find the solutions of the equation sin 6 = % if
(a) 6is in the interval [0, 277)

(b) 6is any real number

SOLUTION

(a) Ifsin 0 = %, then the reference angle for 0 is 6y = /6. If we regard 0 as
an angle in standard position, then, since sin # > 0, the terminal side is in ei-
ther quadrant I or quadrant II, as illustrated in Figure 1. Thus, there are two so-
lutions for 0 = 6 < 27r:

s

and 0=

(b) Since the sine function has period 277, we may obtain all solutions by
adding multiples of 277 to /6 and 57/6. This gives us

5
0= % +27n and 6= ?77 + 27n for every i