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PREFACE

The classic edition of Algebra and Trigonometry with Analytic Geometry is a
special version of the twelfth edition of the same title.  It has been written for
professors seeking to teach a traditional course which requires only a scientific
calculator.  Both editions improve upon the eleventh edition in several ways.

This edition includes over 120 new or revised examples and exercises,
many of these resulting from suggestions of users and reviewers of the
eleventh edition. All have been incorporated without sacrificing the mathe-
matical soundness that has been paramount to the success of this text.    

Below is a brief overview of the chapters, followed by a short description
of the College Algebra course that I teach at Anoka Ramsey Community Col-
lege, and then a list of the general features of the text.

Overview

This chapter contains a summary of some basic algebra topics. Students
should be familiar with much of this material, but also challenged by some of
the exercises that prepare them for calculus.  

Equations and inequalities are solved algebraically in this chapter. Students
will extend their knowledge of these topics; for example, they have worked
with the quadratic formula, but will be asked to relate it to factoring and work
with coefficients that are not real numbers (see Examples 10 and 11 in Sec-
tion 2.3). 

Two-dimensional graphs and functions are introduced in this chapter. See the
updated Example 10 in Section 3.5 for a topical application (taxes) that relates
tables, formulas, and graphs.

This chapter begins with a discussion of polynomial functions and some poly-
nomial theory. A thorough treatment of rational functions is given in Section
4.5. This is followed by a section on variation, which includes graphs of sim-
ple polynomial and rational functions.

viii
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Inverse functions are the first topic of discussion (see new Example 4 in Sec-
tion 5.1 for a relationship to rational functions), followed by several sections
that deal with exponential and logarithmic functions. Modeling an exponential
function is given additional attention in this chapter (see Example 8 in Section
5.2) as well as in Chapter 9.

Angles are the first topic in this chapter. Next, the trigonometric functions are
introduced using a right triangle approach and then defined in terms of a unit
circle. Basic trigonometric identities appear throughout the chapter. The chap-
ter concludes with sections on trigonometric graphs and applied problems.

This chapter consists mostly of trigonometric identities, formulas, and equa-
tions. The last section contains definitions, properties, and applications of the
inverse trigonometric functions.

The law of sines and the law of cosines are used to solve oblique triangles.
Vectors are then introduced and used in applications. The last two sections re-
late the trigonometric functions and complex numbers.

Systems of inequalities and linear programming immediately follow solving
systems by substitution and elimination. Next, matrices are introduced and
used to solve systems. This chapter concludes with a discussion of determi-
nants and partial fractions.

This chapter begins with a discussion of sequences. Mathematical induction
and the binomial theorem are next, followed by counting topics (see Example
3 in Section 10.7 for an example involving both combinations and permuta-
tions). The last section is about probability and includes topics such as odds
and expected value.

Sections on the parabola, ellipse, and hyperbola begin this chapter. Two dif-
ferent ways of representing functions are given in the next sections on para-
metric equations and polar coordinates.

My Course

At Anoka Ramsey Community College in Coon Rapids, Minnesota, College
Algebra I is a one-semester 3-credit course. For students intending to take Cal-
culus, this course is followed by a one-semester 4-credit course, College Al-
gebra II and Trigonometry. This course also serves as a terminal math course
for many students.  

The sections covered in College Algebra I are

3.1–3.7, 4.1, 4.5 (part), 4.6, 5.1–5.6, 9.1–9.4, 10.1–10.3, and 10.5–10.8.

P r e f a c e ix
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Chapters 1 and 2 are used as review material in some classes, and the remain-
ing sections are taught in the following course. A graphing calculator is re-
quired in some sections and optional in others.

Features

Illustrations Brief demonstrations of the use of definitions, laws, and theo-
rems are provided in the form of illustrations.  

Charts Charts give students easy access to summaries of properties, laws,
graphs, relationships, and definitions. These charts often contain simple illus-
trations of the concepts that are being introduced.

Examples Titled for easy reference, all examples provide detailed solutions of
problems similar to those that appear in exercise sets. Many examples include
graphs, charts, or tables to help the student understand procedures and solutions. 

Step-by-Step Explanations In order to help students follow them more easily,
many of the solutions in examples contain step-by-step explanations.  

Discussion Exercises Each chapter ends with several exercises that are suit-
able for small-group discussions. These exercises range from easy to difficult
and from theoretical to application-oriented.

Checks The solutions to some examples are explicitly checked, to remind
students to verify that their solutions satisfy the conditions of the problems.

Applications To arouse student interest and to help students relate the exer-
cises to current real-life situations, applied exercises have been titled. One
look at the Index of Applications in the back of the book reveals the wide array
of topics. Many professors have indicated that the applications constitute one
of the strongest features of the text.  

Exercises Exercise sets begin with routine drill problems and gradually
progress to more difficult problems. An ample number of exercises contain
graphs and tabular data; others require the student to find a mathematical
model for the given data. Many of the new exercises require the student to un-
derstand the conceptual relationship of an equation and its graph.

Applied problems generally appear near the end of an exercise set, to
allow students to gain confidence in working with the new ideas that have been
presented before they attempt problems that require greater analysis and syn-
thesis of these ideas.  Review exercises at the end of each chapter may be used
to prepare for examinations.
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Guidelines Boxed guidelines enumerate the steps in a procedure or technique
to help students solve problems in a systematic fashion.

Warnings Interspersed throughout the text are warnings to alert students to
common mistakes.  

Text Art Forming a total art package that is second to none, figures and graphs
have been computer-generated for accuracy, using the latest technology. Colors
are employed to distinguish between different parts of figures. For example, the
graph of one function may be shown in blue and that of a second function in
red. Labels are the same color as the parts of the figure they identify.

Text Design The text has been designed to ensure that discussions are easy to
follow and important concepts are highlighted. Color is used pedagogically to
clarify complex graphs and to help students visualize applied problems. Pre-
vious adopters of the text have confirmed that the text strikes a very appealing
balance in terms of color use.

Endpapers The endpapers in the front and back of the text provide useful
summaries from algebra, geometry, and trigonometry.

Appendixes Appendix I, “Common Graphs and Their Equations,” is a picto-
rial summary of graphs and equations that students commonly encounter in
precalculus mathematics. Appendix II, “A Summary of Graph Transforma-
tions,” is an illustrative synopsis of the basic graph transformations discussed
in the text: shifting, stretching, compressing, and reflecting. Appendix III,
“Graphs of Trigonometric Functions and Their Inverses,” contains graphs,
domains, and ranges of the six trigonometric functions and their inverses. 
Appendix IV, “Values of the Trigonometric Functions of Special Angles on a
Unit Circle,” is a full-page reference for the most common angles on a unit 
circle—valuable for students who are trying to learn the basic trigonometric
functions values.

Answer Section The answer section at the end of the text provides answers for
most of the odd-numbered exercises, as well as answers for all chapter review
exercises. Considerable thought and effort were devoted to making this section
a learning device for the student instead of merely a place to check answers.
For instance, proofs are given for mathematical induction problems. Numeri-
cal answers for many exercises are stated in both an exact and an approximate
form. Graphs, proofs, and hints are included whenever appropriate. Author-
prepared solutions and answers ensure a high degree of consistency among the
text, the solutions manuals, and the answers.  

P r e f a c e xi



Teaching Tools for the Instructor

Instructor’s Solutions Manual by Jeff Cole (ISBN 0-495-56071-5) This author-prepared man-
ual includes answers to all exercises and detailed solutions to most exercises. The manual has
been thoroughly reviewed for accuracy.

Test Bank (ISBN 0-495-38233-7) The Test Bank includes multiple tests per chapter as well as
final exams. The tests are made up of a combination of multiple-choice, true/false, and fill-in-
the-blank questions.

ExamView (ISBN 0-495-38234-5) Create, deliver, and customize tests and study guides (both
in print and online) in minutes with this easy-to-use assessment and tutorial system, which con-
tains all questions for the Test Bank in electronic format.

Enhanced WebAssign Developed by teachers for teachers, WebAssign® allows instructors to
focus on what really matters—teaching rather than grading. Instructors can create assignments
from a ready-to-use database of algorithmic questions based on end-of-section exercises, or
write and customize their own exercises. With WebAssign®, instructors can create, post, and re-
view assignments; deliver, collect, grade, and record assignments instantly; offer more practice
exercises, quizzes, and homework; assess student performance to keep abreast of individual
progress; and capture the attention of online or distance learning students.

Learning Tools for the Student

Student Solutions Manual by Jeff Cole (ISBN 0-495-56072-3) This author-prepared manual
provides solutions for all of the odd-numbered exercises, as well as strategies for solving addi-
tional exercises. Many helpful hints and warnings are also included.

Website The Book Companion Website contains study hints, review material, instructions for
using various graphing calculators, a tutorial quiz for each chapter of the text, and other materi-
als for students and instructors.
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The word algebra comes from ilm al-jabr w’al muqabala, the title of a book

written in the ninth century by the Arabian mathematician al-Khworizimi.

The title has been translated as the science of restoration and reduction,

which means transposing and combining similar terms (of an equation).

The Latin transliteration of al-jabr led to the name of the branch of mathe-

matics we now call algebra.

In algebra we use symbols or letters—such as a, b, c, d, x, y—to de-

note arbitrary numbers. This general nature of algebra is illustrated by the

many formulas used in science and industry. As you proceed through this

text and go on either to more advanced courses in mathematics or to fields

that employ mathematics, you will become more and more aware of the im-

portance and the power of algebraic techniques.

1.1 Real Numbers

1.2 Exponents and

Radicals

1.3 Algebraic

Expressions

1.4 Fractional

Expressions

1.1 Real Numbers

1.2 Exponents and

Radicals

1.3 Algebraic

Expressions

1.4 Fractional

Expressions
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Fundamental 

Concepts of Algebra



Real numbers are used throughout mathematics, and you should be acquainted
with symbols that represent them, such as

1, 73, �5, , 0, ,

and so on. The positive integers, or natural numbers, are

The whole numbers (or nonnegative integers) are the natural numbers com-
bined with the number 0. The integers are often listed as follows:

Throughout this text lowercase letters a, b, c, x, y, … represent arbitrary
real numbers (also called variables). If a and b denote the same real number,
we write , which is read “a is equal to b” and is called an equality. The
notation is read “a is not equal to b.”

If a, b, and c are integers and , then a and b are factors, or divi-
sors, of c. For example, since

we know that 1, , 2, , 3, , 6, and  are factors of 6.
A positive integer p different from 1 is prime if its only positive factors

are 1 and p. The first few primes are 2, 3, 5, 7, 11, 13, 17, and 19. The Fun-
damental Theorem of Arithmetic states that every positive integer different
from 1 can be expressed as a product of primes in one and only one way (ex-
cept for order of factors). Some examples are

A rational number is a real number that can be expressed in the form 
, where a and b are integers and . Note that every integer a is a ra-

tional number, since it can be expressed in the form . Every real number
can be expressed as a decimal, and the decimal representations for rational
numbers are either terminating or nonterminating and repeating. For example,
we can show by using the arithmetic process of division that

where the digits 1 and 8 in the representation of repeat indefinitely (some-
times written ).3.218

177
55

5
4 � 1.25 and  177

55 � 3.2181818 . . . ,

a�1
b � 0a�b

12 � 2 � 2 � 3, 126 � 2 � 3 � 3 � 7, 540 � 2 � 2 � 3 � 3 � 3 � 5.

�6�3�2�1

6 � 2 � 3 � ��2���3� � 1 � 6 � ��1���6�,

c � ab
a � b
a � b

. . . , �4, �3, �2, �1, 0, 1, 2, 3, 4, . . .

1, 2, 3, 4, . . . .

596.25,0.33333 . . . ,23
�852249

12 ,
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1.1
Real Numbers



Real numbers that are not rational are irrational numbers. Decimal rep-
resentations for irrational numbers are always nonterminating and nonrepeat-
ing. One common irrational number, denoted by , is the ratio of the
circumference of a circle to its diameter. We sometimes use the notation

to indicate that is approximately equal to 3.1416.
There is no rational number b such that , where denotes .

However, there is an irrational number, denoted by (the square root of 2),
such that  .

The system of real numbers consists of all rational and irrational num-
bers. Relationships among the types of numbers used in algebra are illustrated
in the diagram in Figure 1, where a line connecting two rectangles means that
the numbers named in the higher rectangle include those in the lower rectan-
gle. The complex numbers, discussed in Section 2.4, contain all real numbers.

Figure 1 Types of numbers used in algebra

The real numbers are closed relative to the operation of addition (de-
noted by ); that is, to every pair a, b of real numbers there corresponds ex-
actly one real number called the sum of a and b. The real numbers are
also closed relative to multiplication (denoted by ); that is, to every pair a,
b of real numbers there corresponds exactly one real number (also de-
noted by ab) called the product of a and b.

Important properties of addition and multiplication of real numbers are
listed in the following chart.

a � b
�

a � b
�

Complex numbers

Real numbers

Rational numbers Irrational numbers

Integers

Positive integersNegative integers 0

�22 �2
� 2

22
b � bb2b2 � 2

�� 
 3.1416

�
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In technical writing, the use of the
symbol � for is approximately 
equal to is convenient.



Since and are always equal, we may use
to denote this real number. We use abc for either or .

Similarly, if four or more real numbers a, b, c, d are added or multiplied, we
may write for their sum and abcd for their product, regardless
of how the numbers are grouped or interchanged.

The distributive properties are useful for finding products of many types
of expressions involving sums. The next example provides one illustration.

E X A M P L E  1 Using distributive properties

If p, q, r, and s denote real numbers, show that

S O L U T I O N We use both of the distributive properties listed in (9) of the
preceding chart:

second distributive property, with 

first distributive property

remove parentheses L� pr � ps � qr � qs

� � pr � ps� � �qr � qs�
c � r � s� p�r � s� � q�r � s�

� p � q��r � s�

� p � q��r � s� � pr � ps � qr � qs.

a � b � c � d

�ab�ca�bc�a � b � c
�a � b� � ca � �b � c�
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Terminology General case Meaning

(1) Addition is commutative. Order is immaterial when adding two 
numbers.

(2) Addition is associative. Grouping is immaterial when adding three
numbers.

(3) 0 is the additive identity. Adding 0 to any number yields the same
number.

(4) is the additive inverse, Adding a number and its negative yields 0.
or negative, of a.

(5) Multiplication is commutative. Order is immaterial when multiplying two
numbers.

(6) Multiplication is associative. Grouping is immaterial when multiplying 
three numbers.

(7) 1 is the multiplicative identity. Multiplying any number by 1 yields the same
number.

(8) If is the Multiplying a nonzero number by its 

multiplicative inverse, or
reciprocal yields 1.

reciprocal, of a.
(9) Multiplication is distributive and Multiplying a number and a sum of two 

over addition. numbers is equivalent to multiplying each of
the two numbers by the number and then
adding the products.

�a � b�c � ac � bc
a�b � c� � ab � ac

a� 1

a � � 1a � 0, 
1

a

a � 1 � a

a�bc� � �ab�c

ab � ba

a � ��a� � 0�a

a � 0 � a

a � �b � c� � �a � b� � c

a � b � b � a

Properties of Real Numbers



The following are basic properties of equality.

Properties 1 and 2 state that the same number may be added to both sides
of an equality, and both sides of an equality may be multiplied by the same
number. We will use these properties extensively throughout the text to help
find solutions of equations.

The next result can be proved.

When we use the word or as we do in (2), we mean that at least one of the fac-
tors a and b is 0. We will refer to (2) as the zero factor theorem in future work.

Some properties of negatives are listed in the following chart.

The reciprocal of a nonzero real number a is often denoted by , as

in the next chart.

a�11

a
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Properties of Equality If and c is any real number, then

(1)

(2) ac � bc

a � c � b � c

a � b

Products Involving Zero (1) for every real number a.

(2) If , then either or .b � 0a � 0ab � 0

a � 0 � 0

Property Illustration

(1)

(2)

(3)

(4) ��1�3 � �3��1�a � �a

��2���3� � 2 � 3��a���b� � ab

��2�3 � ��2 � 3� � 2��3���a�b � ��ab� � a��b�
���3� � 3���a� � a

Properties of Negatives



Note that if , then

The operations of subtraction and division are defined as follows.

We use either or for and refer to as the quotient of a

and b or the fraction a over b. The numbers a and b are the numerator and
denominator, respectively, of . Since 0 has no multiplicative inverse,
is not defined if ; that is, division by zero is not defined. It is for this rea-
son that the real numbers are not closed relative to division. Note that

The following properties of quotients are true, provided all denominators
are nonzero real numbers.

1 
 b �
1

b
� b�1 if b � 0.

b � 0
a�ba�b

a�ba 
 b
a

b
a�b

�
����

a � a�1 � a� 1

a� � 1.

a � 0
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Definition Illustrations

If , then 

� 3

4 ��1

�
1

3�4
�

4

3

2�1 �
1

2
a�1 �

1

a
.a � 0

Notation for Reciprocals

Definition Meaning Illustration

To subtract one
number from
another, add the
negative.

� 3 � 7�1� a � b�1; b � 0

3 
 7 � 3 � � 1

7�a 
 b � a � � 1

b�

3 � 7 � 3 � ��7�a � b � a � ��b�

Subtraction and Division

To divide one
number by a
nonzero number,
multiply by the
reciprocal.



Real numbers may be represented by points on a line l such that to each
real number a there corresponds exactly one point on l and to each point P on
l there corresponds one real number. This is called a one-to-one correspon-
dence. We first choose an arbitrary point O, called the origin, and associate
with it the real number 0. Points associated with the integers are then deter-
mined by laying off successive line segments of equal length on either side of
O, as illustrated in Figure 2. The point corresponding to a rational number,
such as , is obtained by subdividing these line segments. Points associated
with certain irrational numbers, such as , can be found by construction (see
Exercise 45).

Figure 2

The number a that is associated with a point A on l is the coordinate of
A. We refer to these coordinates as a coordinate system and call l a coordi-
nate line or a real line. A direction can be assigned to l by taking the positive
direction to the right and the negative direction to the left. The positive di-
rection is noted by placing an arrowhead on l, as shown in Figure 2.

0 1 2 3 4 5�3 �2 �1

�1.5

O

�2 2.33 p

b a

B A

l

Negative real
numbers

Positive real
numbers

H�q

22

23
5
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Property Illustration

(1) if because 

(2)

(3)

(4)

(5)

(6)

(7)
2

5



7

3
�

2

5
�

3

7
�

6

35
a

b



c

d
�

a

b
�

d

c
�

ad

bc

2

5
�

7

3
�

2 � 7

5 � 3
�

14

15

a

b
�

c

d
�

ac

bd

2

5
�

4

3
�

2 � 3 � 5 � 4

5 � 3
�

26

15

a

b
�

c

d
�

ad � bc

bd

2

5
�

9

5
�

2 � 9

5
�

11

5

a

b
�

c

b
�

a � c

b

2

�5
�

�2

5
� �

2

5

a

�b
�

�a

b
� �

a

b

2 � 3

5 � 3
�

2

5

ad

bd
�

a

b

2 � 15 � 5 � 6
2

5
�

6

15
ad � bc

a

b
�

c

d

Properties of Quotients



The numbers that correspond to points to the right of O in Figure 2 are
positive real numbers. Numbers that correspond to points to the left of O are
negative real numbers. The real number 0 is neither positive nor negative.

Note the difference between a negative real number and the negative of a
real number. In particular, the negative of a real number a can be positive. For
example, if a is negative, say , then the negative of a is

, which is positive. In general, we have the following relationships.

In the following chart we define the notions of greater than and less than
for real numbers a and b. The symbols and are inequality signs, and the
expressions and are called (strict) inequalities.

If points A and B on a coordinate line have coordinates a and b, respec-
tively, then is equivalent to the statement “A is to the right of B,”
whereas is equivalent to “A is to the left of B.”

Greater Than (>) and Less Than (<)

, since is positive.

, since is negative.

, since is positive.

, since  is positive.

, since is negative.

The next law enables us to compare, or order, any two real numbers.

�4 � 0 � �4�4 � 0

7 � 0 � 77 � 0

1
3 � 0.33 �

1
3 �

33
100 �

1
300

1
3 � 0.33

�6 � ��2� � �6 � 2 � �4�6 � �2

5 � 3 � 25 � 3

a � b
a � b

a � ba � b
��

���3� � 3
�a �a � �3
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Relationships Between a
and �a

(1) If a is positive, then is negative.

(2) If a is negative, then is positive.�a

�a

Notation Definition Terminology

is positive a is greater than b

is negative a is less than ba � ba � b

a � ba � b

Greater Than or Less Than

I L L U S T R A T I O N

Trichotomy Law If a and b are real numbers, then exactly one of the following is true:

a � b, a � b, or a � b



We refer to the sign of a real number as positive if the number is positive,
or negative if the number is negative. Two real numbers have the same sign if
both are positive or both are negative. The numbers have opposite signs if one
is positive and the other is negative. The following results about the signs of
products and quotients of two real numbers a and b can be proved using prop-
erties of negatives and quotients.

The converses* of the laws of signs are also true. For example, if a quo-
tient is negative, then the numerator and denominator have opposite signs.

The notation , read “a is greater than or equal to b,” means that ei-
ther or (but not both). For example, for every real num-
ber a. The symbol , which is read “a is less than or equal to b,” means
that either or . Expressions of the form and are
called nonstrict inequalities, since a may be equal to b. As with the equality
symbol, we may negate any inequality symbol by putting a slash through it—
that is, means not greater than.

An expression of the form is called a continued inequality
and means that both and ; we say “b is between a and c.” Simi-
larly, the expression means that both and .

Ordering Three Real Numbers

There are other types of inequalities. For example, means both
and . Similarly, means both and . Finally,

means both and .

E X A M P L E  2 Determining the sign of a real number

If and , determine the sign of .

S O L U T I O N Since x is a positive number and y is a negative number, x and
y have opposite signs. Thus, both and are negative. The sum of two
negative numbers is a negative number, so

the sign of is negative.
L

x

y
�

y

x

y�xx�y

x

y
�

y

x
y � 0x � 0

b � ca � ba � b � c
b � ca � ba � b � cb � ca � b

a � b � c

3 � �6 � �10�4 �
2
3 � 221 � 5 �

11
2

b � ac � bc � b � a
b � ca � b
a � b � c

�

a � ba 
 ba � ba � b
a � b

a2 
 0a � ba � b
a 
 b
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Laws of Signs (1) If a and b have the same sign, then ab and are positive.

(2) If a and b have opposite signs, then ab and are negative.
a

b

a

b

I L L U S T R A T I O N

*If a theorem is written in the form “if P, then Q,” where P and Q are mathematical statements
called the hypothesis and conclusion, respectively, then the converse of the theorem has the form
“if Q, then P.” If both the theorem and its converse are true, we often write “P if and only if Q”
(denoted P iff Q).



If a is an integer, then it is the coordinate of some point A on a coordinate
line, and the symbol denotes the number of units between A and the ori-
gin, without regard to direction. The nonnegative number is called the ab-
solute value of a. Referring to Figure 3, we see that for the point with
coordinate we have . Similarly, . In general, if a is nega-
tive, we change its sign to find ; if a is nonnegative, then . The next
definition extends this concept to every real number.

Since a is negative in part (2) of the definition, represents a positive
real number. Some special cases of this definition are given in the following 
illustration.

The Absolute Value Notation 

, since .

, since . Thus, .

, since .

, since .
Thus, .

In the preceding illustration, and . In
general, we have the following:

, for every real number a

E X A M P L E  3 Removing an absolute value symbol

If , rewrite without using the absolute value symbol.

S O L U T I O N If , then ; that is, is negative. Hence, by
part (2) of the definition of absolute value,

L

We shall use the concept of absolute value to define the distance between
any two points on a coordinate line. First note that the distance between the
points with coordinates 2 and 7, shown in Figure 4, equals 5 units. This dis-
tance is the difference obtained by subtracting the smaller (leftmost) coordi-
nate from the larger (rightmost) coordinate . If we use absolute
values, then, since , it is unnecessary to be concerned about
the order of subtraction. This fact motivates the next definition.

� 7 � 2 � � � 2 � 7 �
�7 � 2 � 5�

� x � 1 � � ��x � 1� � �x � 1 � 1 � x.

x � 1x � 1 � 0x � 1

� x � 1 �x � 1

� a � � � �a �

� 2 � �2 � � � �2 � 2 �� 3 � � � �3 �

2 � �2� �2 � 2 � �
�2 � 2 � 0� �2 � 2 � � ���2 � 2�

2 � �2 � 0� 2 � �2 � � 2 � �2

� �3 � � 3�3 � 0��3� � ���3�
3 � 0� 3 � � 3

� a �

�a

� a � � a� a �
� 4 � � 4� �4 � � 4�4

� a �
� a �
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Figure 3

0 4�4

��4 � � 4 �4 � � 4

Definition of Absolute Value The absolute value of a real number a, denoted by , is defined as 
follows.

(1) If , then .

(2) If , then .� a � � �aa � 0

� a � � aa 
 0

� a �

I L L U S T R A T I O N

Figure 4

�2 �1 0

5 � �7  � 2 � � �2 � 7 �

1 2 3 4 5 6 7 8



The number is the length of the line segment AB.
Since and , we see that

Note that the distance between the origin O and the point A is

which agrees with the geometric interpretation of absolute value illustrated in
Figure 4. The formula is true regardless of the signs of a
and b, as illustrated in the next example.

E X A M P L E  4 Finding distances between points

Let A, B, C, and D have coordinates , , 1, and 6, respectively, on a co-
ordinate line, as shown in Figure 5. Find , , , and

.

S O L U T I O N Using the definition of the distance between points on a coor-
dinate line, we obtain the distances:

L

The concept of absolute value has uses other than finding distances be-
tween points; it is employed whenever we are interested in the magnitude or
numerical value of a real number without regard to its sign.

In the next section we shall discuss the exponential notation , where a
is a real number (called the base) and n is an integer (called an exponent). In
particular, for base 10 we have

and so on. For negative exponents we use the reciprocal of the corresponding
positive exponent, as follows:

10�3 �
1

103 �
1

1000
10�2 �

1

102 �
1

100
,10�1 �

1

101 �
1

10
,

103 � 10 � 10 � 10 � 1000,102 � 10 � 10 � 100,101 � 10,100 � 1,

an

d�C, D� � � 6 � 1 � � � 5 � � 5

d�O, A� � � �5 � 0 � � � �5 � � 5

d�C, B� � � �3 � 1 � � � �4 � � 4

d�A, B� � � �3 � ��5� � � � �3 � 5 � � � 2 � � 2

d�C, D�
d�O, A�d�C, B�d�A, B�

�3�5

d�A, B� � � b � a �

d�O, A� � � a � 0 � � � a �,

d�A, B� � d�B, A�.

� b � a � � � a � b �d�B, A� � � a � b �
d�A, B�
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Definition of the Distance
Between Points on a 

Coordinate Line

Let a and b be the coordinates of two points A and B, respectively, on a co-
ordinate line. The distance between A and B, denoted by , is de-
fined by

d�A, B� � � b � a �.

d�A, B�

Figure 5

6

DCOBA

10�3�5



We can use this notation to write any finite decimal representation of a
real number as a sum of the following type:

In the sciences it is often necessary to work with very large or very small
numbers and to compare the relative magnitudes of very large or very small
quantities. We usually represent a large or small positive number a in scientific
form, using the symbol to denote multiplication.

The distance a ray of light travels in one year is approximately
5,900,000,000,000 miles. This number may be written in scientific form as

. The positive exponent 12 indicates that the decimal point should
be moved 12 places to the right. The notation works equally well for small
numbers. The weight of an oxygen molecule is estimated to be

gram,

or, in scientific form, gram. The negative exponent indicates that
the decimal point should be moved 23 places to the left.

Scientific Form

Many calculators use scientific form in their display panels. For the num-
ber , the 10 is suppressed and the exponent is often shown preceded by
the letter E. For example, to find on a scientific calculator, we
could enter the integer 4,500,000 and press the (or squaring) key, obtain-
ing a display similar to one of those in Figure 6. We would translate this as

. Thus,

Calculators may also use scientific form in the entry of numbers. The user’s
manual for your calculator should give specific details.

Before we conclude this section, we should briefly consider the issue of
rounding off results. Applied problems often include numbers that are ob-

�4,500,000�2 � 20,250,000,000,000.

2.025 � 1013

x 2

�4,500,000�2
c � 10n

0.000 648 � 6.48 � 10�40.000 000 000 43 � 4.3 � 10�10

20,700 � 2.07 � 10493,000,000 � 9.3 � 107

7.3 � 7.3 � 100513 � 5.13 � 102

5.3 � 10�23

0.000 000 000 000 000 000 000 053

5.9 � 1012

�

� 4�102� � 3�101� � 7�100� � 5�10�1� � 6�10�2�
 437.56 � 4�100� � 3�10� � 7�1� � 5� 1

10� � 6� 1
100�
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Scientific Form , where and n is an integer1 � c � 10a � c � 10n

I L L U S T R A T I O N

Figure 6

or

or

2 .025  I3

2 .025EI3

2 .025 I3



tained by various types of measurements and, hence, are approximations to
exact values. Such answers should be rounded off, since the final result of a
calculation cannot be more accurate than the data that have been used. For ex-
ample, if the length and width of a rectangle are measured to two-decimal-
place accuracy, we cannot expect more than two-decimal-place accuracy in the
calculated value of the area of the rectangle. For purely mathematical work, if
values of the length and width of a rectangle are given, we assume that the di-
mensions are exact, and no rounding off is required.

If a number a is written in scientific form as for 
and if c is rounded off to k decimal places, then we say that a is accurate (or
has been rounded off) to significant figures, or digits. For example,
37.2638 rounded to 5 significant figures is , or 37.264; to 3
significant figures, , or 37.3; and to 1 significant figure, ,
or 40.

4 � 1013.73 � 101
3.7264 � 101

k � 1

1 � c � 10a � c � 10n
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1.1 E x e r c i s e s

Exer. 1–2: If x < 0 and y > 0, determine the sign of the real
number.

1 (a) (b) (c) (d)

2 (a) (b) (c) (d)

Exer. 3–6: Replace the symbol � with either <, >, or to
make the resulting statement true.

3 (a) (b) (c)

4 (a) (b) (c)

5 (a) (b) (c)

6 (a) (b) (c)

Exer. 7–8: Express the statement as an inequality.

7 (a) x is negative.

(b) y is nonnegative.

(c) q is less than or equal to .

(d) d is between 4 and 2.

(e) t is not less than 5.

�

22 � 1.45
6 � 0.8331

7 � 0.143

22
7 � �2

3 � 0.66661
11 � 0.09

2289 � 17
�

4
� 0.8�3 � �5

2225 � 15
�

2
� 1.57�7 � �4

�

y� y � x�
x � y

xy
xy2x

y

y � x
x

y
� xx 2yxy

(f) The negative of z is not greater than 3.

(g) The quotient of p and q is at most 7.

(h) The reciprocal of w is at least 9.

(i) The absolute value of x is greater than 7.

8 (a) b is positive.

(b) s is nonpositive.

(c) w is greater than or equal to .

(d) c is between and .

(e) p is not greater than .

(f) The negative of m is not less than .

(g) The quotient of r and s is at least .

(h) The reciprocal of f is at most 14.

(i) The absolute value of x is less than 4.

Exer. 9–14: Rewrite the number without using the absolute
value symbol, and simplify the result.

9 (a) (b) (c)

10 (a) (b) (c)

11 (a) (b) (c)

12 (a) (b) (c) � �1 � � � �9 �5�� �2 ��4�� 6 � 7 �

� �7 � � � 4 �� �6 ����2���5�� 3 � 6 �

� 8 � � � �9 �� 6 � � � �3 �� �11 � 1 �

� 7 � � � �4 �� �5 � � � 2 �� �3 � 2 �

1
5

�2

�2

1
3

1
5

�4



13 (a) (b) (c)

14 (a) (b) (c)

Exer. 15–18: The given numbers are coordinates of 
points A, B, and C, respectively, on a coordinate line. Find
the distance.

(a) (b)

(c) (d)

15 3, 7, 16 , , 4

17 , 1, 10 18 8, ,

Exer. 19–24: The two given numbers are coordinates of
points A and B, respectively, on a coordinate line. Express
the indicated statement as an inequality involving the ab-
solute value symbol.

19 x, 7; is less than 5

20 x, ; is greater than 1

21 x, ; is at least 8

22 x, 4; is at most 2

23 4, x; is not greater than 3

24 , x; is not less than 2

Exer. 25–32: Rewrite the expression without using the ab-
solute value symbol, and simplify the result.

25 if 26 if

27 if 28 if

29 if 30 if

31 32

Exer. 33–40: Replace the symbol � with either or � to
make the resulting statement true for all real numbers a, b,
c, and d, whenever the expressions are defined.

33 34

35 36

37

38

39 40 ��a � b� � �a � b
a � b

b � a
� �1

�a � b� � c � a � �b � c�

�a 
 b� 
 c � a 
 �b 
 c�

a � c

b � d
�

a

b
�

c

d

b � c

a
�

b

a
�

c

a

ab � ac

a
� b � c

ab � ac

a
� b � ac

�

� �x2 � 1 �� x 2 � 4 �

a � b� a � b �a � b� a � b �

x 
 �7� 7 � x �x � 2� 2 � x �

x � 5� 5 � x �x � �3� 3 � x �

d�A, B��2

d�A, B�

d�A, B�

d�A, B��3

d�A, B��22

d�A, B�

�1�4�9

�2�6�5

d(A, C )d(C, B)

d(B, C )d(A, B)

� 1
5 �

1
3 �� 1.7 � 23 ��23 � 1.7 �

�22 � 1.5 �� � � 4 �� 4 � � � Exer. 41–42: Approximate the real-number expression to
four decimal places.

41 (a)

(b)

42 (a)

(b)

Exer. 43–44: Approximate the real-number expression. Ex-
press the answer in scientific notation accurate to four sig-
nificant figures.

43 (a)

(b)

44 (a)

(b)

45 The point on a coordinate line corresponding to may be
determined by constructing a right triangle with sides of
length 1, as shown in the figure. Determine the points that
correspond to and , respectively. (Hint: Use the
Pythagorean theorem.)

Exercise 45

46 A circle of radius 1 rolls along a coordinate line in the posi-
tive direction, as shown in the figure. If point P is initially
at the origin, find the coordinate of P after one, two, and ten
complete revolutions.

Exercise 46

47 Geometric proofs of properties of real numbers were first
given by the ancient Greeks. In order to establish the dis-
tributive property for positive real
numbers a, b, and c, find the area of the rectangle shown in
the figure on the next page in two ways.

a�b � c� � ab � ac

0 1 2 3 4 5 6 7 8

1

P

P

0 1 2 3

�2
1

�2

2523

22

�1.791 � 102� � �9.84 � 103�

2� 3.45 � 1.2 � 104 � � 105

�1.23 � 10�4� � 24.5 � 103

1.2 � 103

3.1 � 102 � 1.52 � 103

� 3

3.42 � 1.29

5.83 � 2.64

2�15.6 � 1.5�2 � �4.3 � 5.4�2

� 3.22 � 23.15 �
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Exercise 47

48 Rational approximations to square roots can be found using
a formula discovered by the ancient Babylonians. Let be
the first rational approximation for . If we let

then will be a better approximation for , and we can
repeat the computation with replacing . Starting with

, find the next two rational approximations for .

Exer. 49–50: Express the number in scientific form.

49 (a) 427,000 (b) 0.000 000 098 (c) 810,000,000

50 (a) 85,200 (b) 0.000 005 5 (c) 24,900,000

Exer. 51–52: Express the number in decimal form.

51 (a) (b) (c)

52 (a) (b) (c)

53 Mass of a hydrogen atom The mass of a hydrogen atom is
approximately

0.000 000 000 000 000 000 000 001 7 gram.

Express this number in scientific form.

54 Mass of an electron The mass of an electron is approxi-
mately kilogram. Express this number in deci-
mal form.

55 Light year In astronomy, distances to stars are measured in
light years. One light year is the distance a ray of light trav-
els in one year. If the speed of light is approximately
186,000 miles per second, estimate the number of miles in
one light year.

56 Milky Way galaxy

(a) Astronomers have estimated that the Milky Way galaxy
contains 100 billion stars. Express this number in sci-
entific form.

(b) The diameter d of the Milky Way galaxy is estimated as
100,000 light years. Express d in miles. (Refer to Exer-
cise 55.)

9.1 � 10�31

1.23 � 10107.01 � 10�92.3 � 107

5.63 � 1082.9 � 10�128.3 � 105

22x1 �
3
2

x1x2

2nx2

x2 �
1

2 �x1 �
n

x1
�,

2n
x1

a

cb

57 Avogadro’s number The number of hydrogen atoms in a
mole is Avogadro’s number, . If one mole of the
gas has a mass of 1.01 grams, estimate the mass of a hy-
drogen atom.

58 Fish population The population dynamics of many fish are
characterized by extremely high fertility rates among adults
and very low survival rates among the young. A mature 
halibut may lay as many as 2.5 million eggs, but only
0.00035% of the offspring survive to the age of 3 years. Use
scientific form to approximate the number of offspring that
live to age 3.

59 Frames in a movie film One of the longest movies ever
made is a 1970 British film that runs for 48 hours. Assum-
ing that the film speed is 24 frames per second, approximate
the total number of frames in this film. Express your answer
in scientific form.

60 Large prime numbers The number is prime. At
the time that this number was determined to be prime, it
took one of the world’s fastest computers about 
60 days to verify that it was prime. This computer was 
capable of performing calculations per second.
Use scientific form to estimate the number of calculations
needed to perform this computation. (More recently, in
2005, , a number containing 9,152,052 digits,
was shown to be prime.)

61 Tornado pressure When a tornado passes near a building,
there is a rapid drop in the outdoor pressure and the indoor
pressure does not have time to change. The resulting differ-
ence is capable of causing an outward pressure of 1.4 
on the walls and ceiling of the building.

(a) Calculate the force in pounds exerted on 1 square foot
of a wall.

(b) Estimate the tons of force exerted on a wall that is 
8 feet high and 40 feet wide.

62 Cattle population A rancher has 750 head of cattle consist-
ing of 400 adults (aged 2 or more years), 150 yearlings, and
200 calves. The following information is known about this
particular species. Each spring an adult female gives birth to
a single calf, and 75% of these calves will survive the first
year. The yearly survival percentages for yearlings and
adults are 80% and 90%, respectively. The male-female
ratio is one in all age classes. Estimate the population of
each age class

(a) next spring (b) last spring

lb�in2

230,402,457 � 1

2 � 1011

244,497 � 1

6.02 � 1023



If n is a positive integer, the exponential notation , defined in the following
chart, represents the product of the real number a with itself n times. We refer
to as a to the nth power or, simply, a to the n. The positive integer n is
called the exponent, and the real number a is called the base.

The next illustration contains several numerical examples of exponential
notation.

The Exponential Notation 

It is important to note that if n is a positive integer, then an expression
such as means , not . The real number 3 is the coefficient of
in the expression . Similarly, means , not .

The Notation 

We next extend the definition of to nonpositive exponents.an

3��2�3 � 3��2���2���2� � 3��8� � �24

�24 � ��24� � �16

�5 � 23 � �5 � 8 � �40

5 � 23 � 5 � 8 � 40

can

��3a�n��3�an�3an3an
an�3a�n3�an�3an

��1
3 �4

� ��1
3 ���1

3 ���1
3 ���1

3 � � �1
9��1

9� �
1

81

��3�3 � ��3���3���3� � �27

�1
2�5

�
1
2 �

1
2 �

1
2 �

1
2 �

1
2 �

1
32

54 � 5 � 5 � 5 � 5 � 625

an

an

an
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1.2
Exponents and Radicals

Exponential Notation

General case
(n is any positive integer) Special cases

n factors of a

a6 � a � a � a � a � a � a

a3 � a � a � a

a2 � a � a

a1 � aan � a � a � a � ��� � a

I L L U S T R A T I O N

I L L U S T R A T I O N

u

Zero and Negative (Nonpositive) Exponents

Definition (a � 0) Illustrations

��3��5 �
1

��3�55�3 �
1

53 ,a�n �
1

an

��22�0
� 130 � 1,a0 � 1
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If m and n are positive integers, then

m factors of a n factors of a

Since the total number of factors of a on the right is , this expression is
equal to ; that is,

We can extend this formula to or by using the definitions of the zero
exponent and negative exponents. This gives us law 1, stated in the next chart.

To prove law 2, we may write, for m and n positive,

n factors of 

and count the number of times a appears as a factor on the right-hand side.
Since , with a occurring as a factor m times, and
since the number of such groups of m factors is n, the total number of factors
of a is . Thus,

The cases and can be proved using the definition of nonpositive
exponents. The remaining three laws can be established in similar fashion by
counting factors. In laws 4 and 5 we assume that denominators are not 0.

We usually use 5(a) if and 5(b) if .
We can extend laws of exponents to obtain rules such as 

and . Some other examples of the laws of exponents are given
in the next illustration.

amanap � am�n�p
�abc�n � anbncn

m � nm � n

n � 0m � 0

�am�n � amn.
m � n

am � a � a � a � � � � � a

am

�am�n � am � am � am � � � � � am

n � 0m � 0

aman � am�n.
am�n

m � n

aman � a � a � a � � � � � a � a � a � a � � � � � a.

Law Illustration

(1)

(2)

(3)

(4)

(5) (a)

(b)
23

25 �
1

25�3 �
1

22 �
1

4

am

an �
1

an�m

25

23 � 25�3 � 22 � 4
am

an � am�n

� 2

5�3

�
23

53
�

8

125� a

b�n

�
an

bn

�20�3 � �2 � 10�3 � 23 � 103 � 8 � 1000 � 8000�ab�n � anbn

�23�4 � 23�4 � 212 � 4096�am�n � amn

23 � 24 � 23�4 � 27 � 128aman � am�n

Laws of Exponents for Real Numbers a and b and Integers m and n

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩



Laws of Exponents

To simplify an expression involving powers of real numbers means to
change it to an expression in which each real number appears only once and
all exponents are positive. We shall assume that denominators always repre-
sent nonzero real numbers.

E X A M P L E  1 Simplifying expressions containing exponents

Use laws of exponents to simplify each expression:

(a) (b) (c) (d)

S O L U T I O N

(a) rearrange factors

law 1

(b) law 3

law 2

(c) law 4

law 3

law 2

rearrange factors

laws 5(b) and 5(a)

rearrange factors

(d) law 3

law 2

definition of  
L

a�n�
u6

v9

� u6v�9

�u�2v3��3 � �u�2��3�v3��3

�
4s

r3

� 4�1

r3��s�

� 4�r6

r9��s3

s2�
� �4r6

s2 ��s3

r9�
�

22�r3�2

s2
�

s3

�r3�3

�2r3

s �2� s

r3�3

�
�2r3�2

s2
�

s3

�r3�3

� 16a8b12c4

�2a2b3c�4 � 24�a2�4�b3�4c4

� 12x4y9

�3x3y4��4xy5� � �3��4�x3xy4y5

�u�2v3��3�2r3

s �2� s

r3�3

�2a2b3c�4�3x3y4��4xy5�

u3

u8
�

1

u8�3
�

1

u5

c8

c3 � c8�3 � c5

� p

2 �5

�
p5

25
�

p5

32
�3st�4 � 34s4t 4 � 81s4t 4

�y5�7 � y5�7 � y35x5x6x2 � x5�6�2 � x13
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The following theorem is useful for problems that involve negative
exponents.

P R O O F S Using properties of negative exponents and quotients, we obtain

(1)

(2)
L

E X A M P L E  2 Simplifying expressions containing negative exponents

Simplify:

(a) (b)

S O L U T I O N We apply the theorem on negative exponents and the laws of
exponents.

(a)

theorem on negative exponents (1)

law 1 of exponents

(b) theorem on negative exponents (2)

laws 4 and 3 of exponents

law 2 of exponents
L

We next define the principal nth root of a real number a.
n
2a

�
8v3

u6

�
23v3

�u2�3

�u2

2v��3

� �2v

u2�3

�
2x4

y7

�
8x3

4y2 �
x1

y5

rearrange quotients so that negative
exponents are in one fraction

8x3y�5

4x�1y2
�

8x3

4y2
�

y�5

x�1

�u2

2v��38x3y�5

4x�1y2

� a

b��n

�
a�n

b�n
�

bn

an
� � b

a�n

a�m

b�n �
1�am

1�bn �
1

am �
bn

1
�

bn

am

Theorem on 
Negative Exponents (1) (2) � a

b��n

� � b

a�na�m

b�n �
bn

am



Complex numbers, discussed in Section 2.4, are needed to define if
and n is an even positive integer, because for all real numbers b,

whenever n is even.
If , we write instead of and call the principal square

root of a or, simply, the square root of a. The number is the (principal)
cube root of a.

The Principal nth Root 

, since .

, since .

, since .

is not a real number.

Note that , since, by definition, roots of positive real numbers
are positive. The symbol is read “plus or minus.”

To complete our terminology, the expression is a radical, the number
a is the radicand, and n is the index of the radical. The symbol is called
a radical sign.

If , then ; that is, . If , then , or
. Generalizing this pattern gives us property 1 in the next chart.

If , then property 4 reduces to property 2. We also see from prop-
erty 4 that

for every real number x. In particular, if , then ; however, if
, then , which is positive.2x2 � �xx � 0

2x2 � xx 
 0

2x2 � � x �

a 
 0

�23 a�3
� a

b3 � a23 a � b�2a�2 � ab2 � a2a � b

2

2
n a

�
216 � �4

4
2�16

��2�3 � �82
3

�8 � �2

�1
2�5

�
1
32

5� 1
32 �

1
2

42 � 16216 � 4

n
2a

32a
2a2

2a2an � 2

bn 
 0a � 0

n
2a
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Property Illustrations

(1) if is a real number ,

(2) if

(3) if and n is odd

(4) if and n is even 2
4 ��2�4 � � �2 � � 22��3�2 � � �3 � � 3,a � 02

n
an � � a �

25 ��2�5 � �223 ��2�3 � �2,a � 02
n

an � a

23 23 � 2252 � 5,a 
 02
n

an � a

�23 �8�3
� �8�25�2

� 52
n a�2n a�n

� a

Properties of (n is a positive integer)
n2a

Definition of n2a Let n be a positive integer greater than 1, and let a be a real number.

(1) If , then .

(2) If , then is the positive real number b such that .

(3) (a) If and n is odd, then is the negative real number b such
that .

(b) If and n is even, then is not a real number.n
2aa � 0

bn � a

n
2aa � 0

bn � an
2aa � 0

n
2a � 0a � 0
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The three laws listed in the next chart are true for positive integers m
and n, provided the indicated roots exist—that is, provided the roots are
real numbers.

The radicands in laws 1 and 2 involve products and quotients. Care must
be taken if sums or differences occur in the radicand. The following chart con-
tains two particular warnings concerning commonly made mistakes.

If c is a real number and occurs as a factor in a radical of index n, then
we can remove c from the radicand if the sign of c is taken into account. For
example, if or if and n is odd, then

provided exists. If and n is even, then

provided exists.

Removing nth Powers from 

Note: To avoid considering absolute values, in examples and exercises involv-
ing radicals in this chapter, we shall assume that all letters—a, b, c, d, x, y,

24 x6y3 � 24 x 4 � x2y3 � 24 x 424 x2y3 � � x �24 x2y3

2x6 � 2�x3�2 � � x3 �

2x2y � 2x22y � � x �2y

23 x7 � 23 x6 � x � 23 �x2�3x � 23 �x2�323 x � x223 x

25 x7 � 25 x5 � x2 � 25 x525 x2 � x25 x2

n
2 

n
2d

n
2cnd �

n
2cn n

2d � � c � n
2d,

c � 0n
2d

n
2cnd �

n
2cn n

2d � c n
2d,

c � 0c � 0

cn

Law Illustrations

(1)

(2)

(3) �23 64 �
2�3�
264 � 26 26 � 2�m �n a �

mn
�a

�3 5

8
�
23 5

23 8
�
23 5

2�n a

b
�
2

n a

2
n b

23 �108 � 23 ��27��4� � 23 �27 23 4 � �323 4

250 � 225 � 2 � 225 22 � 5222
n ab � 2

n a 2n b

Laws of Radicals

If a � 0 and b � 0 Illustration

(1)

(2) 24 � 9 � 213 � 24 � 29 � 52a � b � 2a � 2b

232 � 42 � 225 � 5 � 3 � 4 � 72a2 � b2 � a � b

Y Warning! Y

I L L U S T R A T I O N



and so on— that appear in radicands represent positive real numbers, unless
otherwise specified.

As shown in the preceding illustration and in the following examples, if
the index of a radical is n, then we rearrange the radicand, isolating a factor of
the form , where p may consist of several letters. We then remove 
from the radical, as previously indicated. Thus, in Example 3(b) the index of
the radical is 3 and we rearrange the radicand into cubes, obtaining a factor 

, with . In part (c) the index of the radical is 2 and we rearrange
the radicand into squares, obtaining a factor , with .

To simplify a radical means to remove factors from the radical until no
factor in the radicand has an exponent greater than or equal to the index of the
radical and the index is as low as possible.

E X A M P L E  3 Removing factors from radicals

Simplify each radical (all letters denote positive real numbers):

(a) (b) (c)

S O L U T I O N

(a) factor out the largest cube in 320

law 1 of radicals

property 2 of 

(b) rearrange radicand into cubes

laws 2 and 3 of exponents

law 1 of radicals

property 2 of 

(c) law 1 of radicals

rearrange radicand into squares

laws 2 and 3 of exponents

law 1 of radicals

property 2 of L

If the denominator of a quotient contains a factor of the form , with
and , then multiplying the numerator and denominator by 

will eliminate the radical from the denominator, since

This process is called rationalizing a denominator. Some special cases are
listed in the following chart.

2
n ak2

n an�k � 2
n ak�n�k � 2

n an � a.

2
n an�ka � 0k � n

2
n ak

n
2� 3a3b222a

� 2�3a3b2�222a

� 2�3a3b2�2�2a�

� 2�32a6b4��2a�

23a2b326a5b � 23a2b3 � 2 � 3a5b

n
2� 2xy2z23 2y2z

� 23 �2xy2z�323 2y2z

� 23 �2xy2z�3�2y2z�

23 16x3y8z4 � 23 �23x3y6z3��2y2z�

n
2� 423 5

� 2
3 43 3
25

2
3 320 � 2

3 64 � 5

23a2b326a5b3216x3y8z42
3 320

p � 3a3b2p2
p � 2xy2zp3

2
n pn � ppn
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The next example illustrates this technique.

E X A M P L E  4 Rationalizing denominators

Rationalize each denominator:

(a) (b) (c) (d)

S O L U T I O N

(a)

(b)

(c)

(d)
L

If we use a calculator to find decimal approximations of radicals, there is
no advantage in rationalizing denominators, such as or

, as we did in Example 4(a) and (c). However, for algebraic
simplifications, changing expressions to such forms is sometimes desirable.
Similarly, in advanced mathematics courses such as calculus, changing 
to , as in Example 4(b), could make a problem more complicated. In
such courses it is simpler to work with the expression than with its ra-
tionalized form.

We next use radicals to define rational exponents.

1�23 x
23 x2�x

1�23 x

22�3 � 26�3
1�25 � 25�5

�5 x

y2 �
�5 x

�5 y2
�

�5 x

�5 y2

�5 y3

�5 y3
�

�5 xy3

�5 y5
�

�5 xy3

y

� 2

3
�

�2

�3
�

�2

�3

�3

�3
�

�2 � 3

�32
�

�6

3

1

�3 x
�

1

�3 x

�3 x2

�3 x2
�

�3 x2

�3 x3
�

�3 x2

x

1

�5
�

1

�5

�5

�5
�

�5

�52
�

�5

5

�5 x

y2� 2

3

1

23 x

1

25

Rationalizing Denominators of Quotients (a > 0)

Factor in Multiply numerator
denominator and denominator by Resulting factor

27 a3 27 a4 � 27 a7 � a27 a427 a3

23 a 23 a2 � 23 a3 � a23 a223 a

2a 2a � 2a2 � a2a2a

Definition of 
Rational Exponents

Let be a rational number, where n is a positive integer greater than 1.
If a is a real number such that exists, then

(1)

(2)

(3) am/n � �a1/n�m � �am�1/n

am/n � �2n a�m
� 2

n am

a1/n � 2
n a

2
n a

m�n



When evaluating in (2), we usually use ; that is, we take the nth root
of a first and then raise that result to the mth power, as shown in the following
illustration.

The Exponential Notation 

The laws of exponents are true for rational exponents and also for irra-
tional exponents, such as or , considered in Chapter 5.

To simplify an expression involving rational powers of letters that repre-
sent real numbers, we change it to an expression in which each letter appears
only once and all exponents are positive. As we did with radicals, we shall as-
sume that all letters represent positive real numbers unless otherwise specified.

E X A M P L E  5 Simplifying rational powers

Simplify:

(a) (b) (c)

S O L U T I O N

(a) definition of rational exponents

take roots

definition of negative exponents

take powers

(b) law 3 of exponents

law 2 of exponents

(c) laws of exponents

law 1 of exponents

common denominator

simplify
L

Rational exponents are useful for problems involving radicals that do not
have the same index, as illustrated in the next example.

�
12x1/2

y4/3

�
12x 8/6�5/6

y 4/3

�
�4 � 3�x 4/3�5/6

y1��1/3�

�2x 2/3

y1/2 �2�3x�5/6

y1/3 � � �4x 4/3

y ��3x�5/6

y1/3 �
� r 2/3s2

�r 2s6�1/3 � �r 2�1/3�s6�1/3

�
9
32

�
��3�2

25

� ��3�2�2��5

��27�2/3�4��5/2 � �23 �27�2�24��5

�2x 2/3

y1/2 �2�3x�5/6

y1/3 ��r 2s6�1/3��27�2/3�4��5/2

5�322

� 32
243�3/5

� ��5 32
243�3

� ��5 �2
3�5�3

� �2
3�3

�
8
27

1252/3 � �23 125�2
� �23 53�2

� 52 � 25

x3/5 � �25 x�3
� 25 x3x1/3 � 23 x

am/n

�2n a�m
am/n
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E X A M P L E  6 Combining radicals

Change to an expression containing one radical of the form :

(a) (b)

S O L U T I O N Introducing rational exponents, we obtain

(a)

(b)
L

In Exercises 1.2, whenever an index of a radical is even (or a rational ex-
ponent with n even is employed), assume that the letters that appear in the
radicand denote positive real numbers unless otherwise specified.

m�n

24 a

23 a2
�

a1/4

a2/3 � a�1/4���2/3� � a�5/12 �
1

a5/12 �
1

2
12

a5

23 a2a � a1/3a1/2 � a�1/3���1/2� � a5/6 � 26 a5

24 a

23 a2
23 a2a

2
n am

1.2 E x e r c i s e s

Exer. 1–10: Express the number in the form , where 
a and b are integers.

1 2

3 4

5 6

7 8

9 10

Exer. 11–46: Simplify.

11 12

13 14

15 16

17 18

19 20

21 22

23 24 ��2xy2�5� x7

8y3��1
3 x4y�3��2

�4a2b

a3b2��5a2b

2b4 ��8x4y�3��1
2 x�5y2�

�x2yz3���2xz2��x3y�2��3u7v3��4u4v�5�

�3y3��2y2�2

� y4�3 � � y3�0�6x 3�2

�2x 2�3 � �3x 2�0

��4b3��1
6 b2���9b4��1

6 a5���3a2��4a7�

�2x 2�3

4x 4

�2x3��3x2�
�x2�3

��3x�2��4x 4��1
2 x4��16x5�

�0.008��2/3��0.008�2/3

95/216�3/4

��
3
2 �4 � 2�4�24 � 3�1

20 � 02

2 � 0

2�3

3�2

��3�3��
2
3 �4

a�b 25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

Exer. 47–52: Rewrite the expression using rational exponents.

47 48

49 50

51 52 23 r3 � s32x2 � y2

�a � 2b23 �a � b�2

23 x 524 x3

a4/3a�3/2a1/6�x6y3��1/3

�x4y2��1/2

� c�4

16d8�3/4� x6

9y�4��1/2

��y3/2

y�1/3�3��8x3

y�6 �2/3

�3x1/2���2x 5/2��8x�2/3�x1/6

�25z4��3/2�27a6��2/3

�8r�1/3�2r1/2��3x 5/6��8x 2/3�

��6x7/5��2x8/5��4a3/2��2a1/2�

�4a2b�4��a3

2b �2�3x5y4

x0y�3�2

��2r 2s�5�3r�1s3�2�5x2y�3��4x�5y4�

�2x2y�5��6x�3y��1
3 x�1y3���2r 4s�3��2

��3a2b�5�3�3y3�4�4y2��3



Exer. 53–56: Rewrite the expression using a radical.

53 (a) (b)

54 (a) (b)

55 (a) (b)

56 (a) (b)

Exer. 57–80: Simplify the expression, and rationalize the
denominator when appropriate.

57 58

59 60

61 62

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

79 80

Exer. 81–84: Simplify the expression, assuming x and y may
be negative.

81 82

83 84

Exer. 85–90: Replace the symbol � with either or � to
make the resulting statement true, whenever the expression
has meaning. Give a reason for your answer.

85 86

87 88

89 90 a1/k �
1

ak�n 1

c
�

1

2
n c

2ar � �2a�raxby � �ab�xy

�a2 � 1�1/2 � a � 1�ar�2 � a(r 2)

�

24 �x � 2�12y424 x8� y � 1�12

2x4y102x6y4

23 �2r � s�323 3t 4v2 23 �9t�1v4

25xy7 210x3y3�5 8x3

y4 �5 4x4

y2

26 �2u�3v4�624 �3x5y�2�4

�5 3x11y3

9x2�5 5x7y2

8x3

�4 x7y12

125x�4 5x8y3

27x2

�3 3x2y5

4x�3 2x4y4

9x

� 1

3x3y�3x

2y3

24 81r 5s823 8a6b�3

216a8b�229x�4y6

� 1

7

1

23 2

24 25625 �64

23 �125281

�8y�1/38y1/3

�8 � y�1/38 � y1/3

�4 � x�3/24 � x3/2

�4x�3/24x3/2

Exer. 91–92: In evaluating negative numbers raised to frac-
tional powers, it may be necessary to evaluate the root and
integer power separately. For example, can be evalu-
ated successfully as or , whereas an error
message might otherwise appear. Approximate the real-
number expression to four decimal places.

91 (a) (b)

92 (a) (b)

Exer. 93–94: Approximate the real-number expression to
four decimal places.

93 (a) (b)

94 (a) (b)

95 Savings account One of the oldest banks in the United
States is the Bank of America, founded in 1812. If $200
had been deposited at that time into an account that paid
4% annual interest, then 180 years later the amount would
have grown to dollars. Approximate this
amount to the nearest cent.

96 Viewing distance On a clear day, the distance d (in miles)
that can be seen from the top of a tall building of height h
(in feet) can be approximated by . Approxi-
mate the distance that can be seen from the top of the
Chicago Sears Tower, which is 1454 feet tall.

97 Length of a halibut The length-weight relationship for 
Pacific halibut can be approximated by the formula

, where W is in kilograms and L is in meters.
The largest documented halibut weighed 230 kilograms.
Estimate its length.

98 Weight of a whale The length-weight relationship for the
sei whale can be approximated by , where
W is in tons and L is in feet. Estimate the weight of a whale
that is 25 feet long.

99 Weight lifters’ handicaps O’Carroll’s formula is used to
handicap weight lifters. If a lifter who weighs b kilograms
lifts w kilograms of weight, then the handicapped weight
W is given by

Suppose two lifters weighing 75 kilograms and 120 kilo-
grams lift weights of 180 kilograms and 250 kilograms,
respectively. Use O’Carroll’s formula to determine the su-
perior weight lifter.

100 Body surface area A person’s body surface area S (in
square feet) can be approximated by

where height h is in inches and weight w is in pounds.

S � �0.1091�w0.425h0.725,

W �
w

23 b � 35
.

W � 0.0016L2.43

L � 0.4623 W

d � 1.22h

200�1.04�180

527�2.6 � 1.9��2

23 15.1 � 51/42� � 1

��5.08�7/3��1.2�3/7

��5�4/3��3�2/5

[(�3)2]1/5[(�3)1/5]2

(�3)2/5
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(a) Estimate S for a person 6 feet tall weighing 175 pounds.

(b) If a person is 5 feet 6 inches tall, what effect does 
a 10% increase in weight have on S?

101 Men’s weight The average weight W (in pounds) for men
with height h between 64 and 79 inches can be approxi-
mated using the formula . Construct a table
for W by letting , 65, 79. Round all weights to
the nearest pound.

. . . ,h � 64
W � 0.1166h1.7

102 Women’s weight The average weight W (in pounds) for
women with height h between 60 and 75 inches can be 
approximated using the formula . Con-
struct a table for W by letting , 61, 75. Round
all weights to the nearest pound.

. . . ,h � 60
W � 0.1049h1.7
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We sometimes use the notation and terminology of sets to describe mathemati-
cal relationships. A set is a collection of objects of some type, and the objects
are called elements of the set. Capital letters R, S, T, . . . are often used to de-
note sets, and lowercase letters a, b, x, y, . . . usually represent elements of sets.
Throughout this book, denotes the set of real numbers and denotes the set
of integers.

Two sets S and T are equal, denoted by , if S and T contain exactly
the same elements. We write if S and T are not equal. Additional nota-
tion and terminology are listed in the following chart.

S � T
S � T

��

Height Weight Height Weight

64 72

65 73

66 74

67 75

68 76

69 77

70 78

71 79

Height Weight Height Weight

60 68

61 69

62 70

63 71

64 72

65 73

66 74

67 75

Notation or
terminology Meaning Illustrations

a is an element of S

a is not an element of S

S is a subset of T Every element of S is is a subset of 
an element of T

Constant A letter or symbol that 5,
represents a specific
element of a set

Variable A letter or symbol that Let x denote any
represents any element real number
of a set

�22, �

��

3
5 � �a � S

3 � �a � S

1.3
Algebraic Expressions



We usually use letters near the end of the alphabet, such as x, y, and z, for
variables and letters near the beginning of the alphabet, such as a, b, and c, for
constants. Throughout this text, unless otherwise specified, variables represent
real numbers.

If the elements of a set S have a certain property, we sometimes write
and state the property describing the variable x in the space after the

colon. The expression involving the braces and colon is read “the set of all x
such that . . . ,” where we complete the phrase by stating the desired property.
For example, is read “the set of all x such that x is greater than 3.”

For finite sets, we sometimes list all the elements of the set within braces.
Thus, if the set T consists of the first five positive integers, we may write

. When we describe sets in this way, the order used in listing
the elements is irrelevant, so we could also write ,

, and so on.
If we begin with any collection of variables and real numbers, then an al-

gebraic expression is the result obtained by applying additions, subtractions,
multiplications, divisions, powers, or the taking of roots to this collection. If
specific numbers are substituted for the variables in an algebraic expression,
the resulting number is called the value of the expression for these numbers.
The domain of an algebraic expression consists of all real numbers that may
represent the variables. Thus, unless otherwise specified, we assume that the
domain consists of the real numbers that, when substituted for the variables,
do not make the expression meaningless, in the sense that denominators can-
not equal zero and roots always exist. Two illustrations are given in the fol-
lowing chart.

If x is a variable, then a monomial in x is an expression of the form ,
where a is a real number and n is a nonnegative integer. A binomial is a sum
of two monomials, and a trinomial is a sum of three monomials. A polyno-
mial in x is a sum of any number of monomials in x. Another way of stating
this is as follows.

ax n

�4, 3, 2, 5, 1

T �T � �1, 3, 2, 4, 5


T � �1, 2, 3, 4, 5


�x: x � 3


S � �x: 
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is an equivalent notation.�x � x � 3


Algebraic Expressions

Illustration Domain Typical value

all At 

all At and :

all
2�1��9� � �3�12�

23 9 � 1
�

18 � 3

23 8
�

21

2

y � 1

y � 9x � 1x � 0 and
2xy � �3�x2�
23 y � 1

43 � 5�4� �
6

24
� 64 � 20 � 3 � 47

x � 4:x � 0x3 � 5x �
6

2x



Each expression in the sum is a term of the polynomial. If a coeffi-
cient is zero, we usually delete the term . The coefficient of the high-
est power of x is called the leading coefficient of the polynomial.

The following chart contains specific illustrations of polynomials.

By definition, two polynomials are equal if and only if they have the same
degree and the coefficients of like powers of x are equal. If all the coefficients
of a polynomial are zero, it is called the zero polynomial and is denoted by 0.
However, by convention, the degree of the zero polynomial is not zero but, in-
stead, is undefined. If c is a nonzero real number, then c is a polynomial of de-
gree 0. Such polynomials (together with the zero polynomial) are constant
polynomials.

If a coefficient of a polynomial is negative, we usually use a minus sign
between appropriate terms. To illustrate,

We may also consider polynomials in variables other than x. For example,
is a polynomial in z of degree 7. We often arrange

the terms of a polynomial in order of decreasing powers of the variable; thus,
we write

We may regard a polynomial in x as an algebraic expression obtained by
employing a finite number of additions, subtractions, and multiplications in-
volving x. If an algebraic expression contains divisions or roots involving a
variable x, then it is not a polynomial in x.

2
5 z2 � 3z7 � 8 � 25 z4 � �3z7 � 25 z4 �

2
5 z2 � 8.

2
5 z2 � 3z7 � 8 � 25 z4

3x2 � ��5�x � ��7� � 3x2 � 5x � 7.

akakxkak

akx k

1 . 3  A l g e b r a i c  E x p r e s s i o n s 29

Definition of Polynomial A polynomial in x is a sum of the form

where n is a nonnegative integer and each coefficient is a real number. If
, then the polynomial is said to have degree n.an � 0

ak

anxn � an�1xn�1 � � � � � a1x � a0,

Polynomials

Example Leading coefficient Degree

3 4

1 8

2

7 1

8 8 0

7x � 2

�5�5x2 � 1

x8 � 9x2 � ��2�x
3x4 � 5x3 � ��7�x � 4



Nonpolynomials

Since polynomials represent real numbers, we may use the properties de-
scribed in Section 1.1. In particular, if additions, subtractions, and multiplica-
tions are carried out with polynomials, we may simplify the results by using
properties of real numbers, as demonstrated in the following examples.

E X A M P L E  1 Adding and subtracting polynomials

(a) Find the sum:

(b) Find the difference:

S O L U T I O N

(a) To obtain the sum of any two polynomials in x, we may add coefficients
of like powers of x.

remove parentheses

add coefficients of like 
powers of x

simplify

The grouping in the first step was shown for completeness. You may omit this
step after you become proficient with such manipulations.

(b) When subtracting polynomials, we first remove parentheses, noting that
the minus sign preceding the second pair of parentheses changes the sign of
each term of that polynomial.

remove parentheses

add coefficients of like 
powers of x

simplify L

E X A M P L E  2 Multiplying binomials

Find the product:

S O L U T I O N Since , we may proceed as in Example 1
of Section 1.1:

distributive properties

multiply

simplify L� 12x2 � 7x � 10

� 12x2 � 8x � 15x � 10

� �4x��3x� � �4x���2� � �5��3x� � �5���2�
�4x � 5��3x � 2�

3x � 2 � 3x � ��2�

�4x � 5��3x � 2�

� �3x 3 � 7x2 � 5x � 4

� �1 � 4�x3 � �2 � 5�x2 � 5x � �7 � 3�
� x3 � 2x2 � 5x � 7 � 4x3 � 5x2 � 3

�x3 � 2x2 � 5x � 7� � �4x3 � 5x2 � 3�

� 5x3 � 3x2 � 5x � 10

� �1 � 4�x3 � �2 � 5�x2 � 5x � �7 � 3�
� x3 � 2x2 � 5x � 7 � 4x3 � 5x2 � 3

�x3 � 2x2 � 5x � 7� � �4x3 � 5x2 � 3�

�x3 � 2x2 � 5x � 7� � �4x3 � 5x2 � 3�
�x 3 � 2x2 � 5x � 7� � �4x3 � 5x2 � 3�

3x2 � 2x � 2x � 5

x2 � 2

1

x
� 3x
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I L L U S T R A T I O N

Calculator check for Example 2: Store
17 in a memory location and show
that the original expression and the
final expression both equal 3577.



After becoming proficient working problems of the type in Example 2,
you may wish to perform the first two steps mentally and proceed directly to
the final form.

In the next example we illustrate different methods for finding the prod-
uct of two polynomials.

E X A M P L E  3 Multiplying polynomials

Find the product:

S O L U T I O N

Method 1 We begin by using a distributive property, treating the polynomial
as a single real number:

We next use another distributive property three times and simplify the result,
obtaining

Note that the three monomials in the first polynomial were multiplied by
each of the three monomials in the second polynomial, giving us a total of
nine terms.

Method 2 We list the polynomials vertically and multiply, leaving spaces for
powers of x that have zero coefficients, as follows:

In practice, we would omit the reasons (equalities) listed on the right in the last
four lines. L

We may consider polynomials in more than one variable. For example, a
polynomial in two variables, x and y, is a finite sum of terms, each of the form

for some real number a and nonnegative integers m and k. An example is

3x 4y � 2x3y 5 � 7x 2 � 4xy � 8y � 5.

axmyk

2x5 � 10x4 � 5x3 � 14x2 � 17x � 4 � sum of the above

� 8x3 � 12x � 4 � �4�2x3 � 3x � 1�
10x 4 � 15x2 � 5x � 5x�2x3 � 3x � 1�

2x5 � 3x3 � x2 � x2�2x3 � 3x � 1�
x2 � 5x � 4

2x 3 � 3x � 1

� 2x 5 � 10x 4 � 5x 3 � 14x 2 � 17x � 4.

� 2x 5 � 3x 3 � x 2 � 10x 4 � 15x 2 � 5x � 8x3 � 12x � 4

�x2 � 5x � 4��2x3 � 3x � 1�

� x 2�2x 3 � 3x � 1� � 5x�2x 3 � 3x � 1� � 4�2x 3 � 3x � 1�
�x2 � 5x � 4��2x3 � 3x � 1�

2x 3 � 3x � 1

�x2 � 5x � 4��2x3 � 3x � 1�
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Other polynomials may involve three variables—such as x, y, z—or, for that
matter, any number of variables. Addition, subtraction, and multiplication
are performed using properties of real numbers, just as for polynomials in
one variable.

The next example illustrates division of a polynomial by a monomial.

E X A M P L E  4 Dividing a polynomial by a monomial

Express as a polynomial in x and y:

S O L U T I O N

divide each term by 2xy

simplify L

The products listed in the next chart occur so frequently that they deserve
special attention. You can check the validity of each formula by multiplication.
In (2) and (3), we use either the top sign on both sides or the bottom sign on
both sides. Thus, (2) is actually two formulas:

Similarly, (3) represents two formulas.

Several other illustrations of the product formulas are given in the next
example.

E X A M P L E  5 Using product formulas

Find the product:

(a) (b) (c) �2a � 5b�3�2c �
1

2c
�2

�2r 2 � 2s��2r 2 � 2s�

�x � y�2 � x2 � 2xy � y2 and �x � y�2 � x2 � 2xy � y2

� 3xy2 � 2x2y � 5

6x2y3 � 4x3y2 � 10xy

2xy
�

6x2y3

2xy
�

4x3y2

2xy
�

10xy

2xy

6x2y3 � 4x3y2 � 10xy

2xy
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Product Formulas

Formula Illustration

(1)

(2)

(3)
� 8a3 � 36a2 � 54a � 27

�2a � 3�3 � �2a�3 � 3�2a�2�3� � 3�2a��3�2 � �3�3�x � y�3 � x3 � 3x2y � 3xy2 � y3

� 4a2 � 12a � 9
�2a � 3�2 � �2a�2 � 2�2a��3� � �3�2�x � y�2 � x2 � 2xy � y2

�2a � 3��2a � 3� � �2a�2 � 32 � 4a2 � 9�x � y��x � y� � x2 � y2



S O L U T I O N

(a) We use product formula 1, with and 

(b) We use product formula 2, with and 

Note that the last expression is not a polynomial.

(c) We use product formula 3, with and :

L

If a polynomial is a product of other polynomials, then each polynomial
in the product is a factor of the original polynomial. Factoring is the process
of expressing a sum of terms as a product. For example, since 

, the polynomials and are factors of .
Factoring is an important process in mathematics, since it may be used to

reduce the study of a complicated expression to the study of several simpler
expressions. For example, properties of the polynomial can be deter-
mined by examining the factors and . As we shall see in Chapter 2,
another important use for factoring is in finding solutions of equations.

We shall be interested primarily in nontrivial factors of polynomials—
that is, factors that contain polynomials of positive degree. However, if the co-
efficients are restricted to integers, then we usually remove a common integral
factor from each term of the polynomial. For example,

A polynomial with coefficients in some set S of numbers is prime, or ir-
reducible over S, if it cannot be written as a product of two polynomials of
positive degree with coefficients in S. A polynomial may be irreducible over
one set S but not over another. For example, is irreducible over the ra-
tional numbers, since it cannot be expressed as a product of two polynomials
of positive degree that have rational coefficients. However, is not irre-
ducible over the real numbers, since we can write

x2 � 2 � �x � 22��x � 22�.

x2 � 2

x2 � 2

4x2y � 8z3 � 4�x2y � 2z3�.

x � 3x � 3
x2 � 9

x2 � 9x � 3x � 3�x � 3��x � 3�
x2 � 9 �

� 8a3 � 60a2b � 150ab2 � 125b3

�2a � 5b�3 � �2a�3 � 3�2a�2�5b� � 3�2a��5b�2 � �5b�3

y � 5bx � 2a

� c � 2 �
1

c

�2c �
1

2c
�2

� �2c�2
� 2 � 2c �

1

2c
� � 1

2c
�2

y �
1

2c
:x � 2c

� 4r4 � s

�2r2 � 2s��2r2 � 2s� � �2r2�2 � �2s�2

y � 2s:x � 2r2
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Similarly, is irreducible over the real numbers, but, as we shall see in
Section 2.4, not over the complex numbers.

Every polynomial of degree 1 is irreducible.
Before we factor a polynomial, we must specify the number system (or

set) from which the coefficients of the factors are to be chosen. In this chapter
we shall use the rule that if a polynomial has integral coefficients, then the fac-
tors should be polynomials with integral coefficients. To factor a polynomial
means to express it as a product of irreducible polynomials.

The greatest common factor (gcf ) of an expression is the product of the
factors that appear in each term, with each of these factors raised to the small-
est nonzero exponent appearing in any term. In factoring polynomials, it is ad-
visable to first factor out the gcf, as shown in the following illustration.

Factored Polynomials

It is usually difficult to factor polynomials of degree greater than 2. In
simple cases, the following factoring formulas may be useful. Each formula
can be verified by multiplying the factors on the right-hand side of the equals
sign. It can be shown that the factors and in the
difference and sum of two cubes, respectively, are irreducible over the real
numbers.

Several other illustrations of the use of factoring formulas are given in the
next two examples.

x 2 � xy � y2x2 � xy � y2

4x5y � 9x3y3 � x 3y�4x2 � 9y2� � x 3y�2x � 3y��2x � 3y�
25x2 � 25x � 150 � 25�x2 � x � 6� � 25�x � 3��x � 2�
8x 2 � 4xy � 4x�2x � y�

ax � b

x 2 � 1
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Factoring Formulas

Formula Illustration

(1) Difference of two squares:

(2) Difference of two cubes:

(3) Sum of two cubes:

� �5a � 1��25a2 � 5a � 1�
� �5a � 1���5a�2 � �5a��1� � �1�2	

 125a3 � 1 � �5a�3 � �1�3x3 � y3 � �x � y��x2 � xy � y2�

� �2a � 3��4a2 � 6a � 9�
� �2a � 3���2a�2 � �2a��3� � �3�2	

 8a3 � 27 � �2a�3 � �3�3x3 � y3 � �x � y��x2 � xy � y2�

9a2 � 16 � �3a�2 � �4�2 � �3a � 4��3a � 4�x2 � y2 � �x � y��x � y�

I L L U S T R A T I O N



E X A M P L E  6 Difference of two squares

Factor each polynomial:

(a) (b) (c)

S O L U T I O N

(a) We apply the difference of two squares formula, with and :

(b) We write and and apply the difference of two
squares formula twice:

(c) We write and apply the difference of two squares formula:

L

E X A M P L E  7 Sum and difference of two cubes

Factor each polynomial:

(a) (b)

S O L U T I O N

(a) We apply the sum of two cubes formula, with and :

(b) We apply the difference of two cubes formula, with and :

L� �2c2 � 3d 3��4c4 � 6c2d 3 � 9d 6�

� �2c2 � 3d 3���2c2�2 � �2c2��3d 3� � �3d 3�2	

 8c6 � 27d 9 � �2c2�3 � �3d 3�3

y � 3d 3x � 2c2

� �a � 4b��a2 � 4ab � 16b2�

� �a � 4b��a2 � a�4b� � �4b�2	

a3 � 64b3 � a3 � �4b�3

y � 4bx � a

8c6 � 27d 9a3 � 64b3

� �4x2 � y � 2z��4x2 � y � 2z�

� ��4x2� � � y � 2z�	��4x2� � � y � 2z�	

 16x 4 � � y � 2z�2 � �4x2�2 � � y � 2z�2

16x 4 � �4x 2�2

� �9x 2 � y 2��3x � y��3x � y�

� �9x 2 � y2���3x�2 � � y�2	

� �9x 2 � y2��9x2 � y2�

 81x4 � y4 � �9x2�2 � � y2�2

y4 � � y2�281x 4 � �9x 2�2

25r 2 � 49s2 � �5r�2 � �7s�2 � �5r � 7s��5r � 7s�

y � 7sx � 5r

16x 4 � � y � 2z�281x 4 � y425r 2 � 49s2
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A factorization of a trinomial , where p, q, and r are inte-
gers, must be of the form

where a, b, c, and d are integers. It follows that

Only a limited number of choices for a, b, c, and d satisfy these conditions.
If none of the choices work, then is irreducible. Trying the var-
ious possibilities, as depicted in the next example, is called the method
of trial and error. This method is also applicable to trinomials of the form

, in which case the factorization must be of the form
.

E X A M P L E  8 Factoring a trinomial by trial and error

Factor .

S O L U T I O N If we write

then the following relationships must be true:

If we assume that a and c are both positive, then all possible values are given
in the following table:

Thus, if is factorable, then one of the following is true:

We next consider all possible values for b and d. Since , these are as
follows:

bd � �3

 6x2 � 7x � 3 � �3x � b��2x � d�
 6x2 � 7x � 3 � �2x � b��3x � d�
 6x2 � 7x � 3 � �6x � b��x � d�
 6x2 � 7x � 3 � �x � b��6x � d�

6x2 � 7x � 3

ac � 6, bd � �3, and ad � bc � �7

6x 2 � 7x � 3 � �ax � b��cx � d�,

6x 2 � 7x � 3

�ax � by��cx � dy�
px2 � qxy � ry2

px2 � qx � r

ac � p, bd � r, and ad � bc � q.

px2 � qx � r � �ax � b��cx � d�,

px2 � qx � r
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a 1 6 2 3

c 6 1 3 2

b 1 3

d 3 1�1�3

�3�1



Trying various (possibly all) values, we arrive at and ; that is,

As a check, you should multiply the final factorization to see whether the
original polynomial is obtained. L

The method of trial and error illustrated in Example 8 can be long and te-
dious if the coefficients of the polynomial are large and have many prime fac-
tors. We will show a factoring method in Section 2.3 that can be used to factor
any trinomial of the form of the one in Example 8—regardless of the size of
the coefficients. For simple cases, it is often possible to arrive at the correct
choice rapidly.

E X A M P L E  9 Factoring polynomials

Factor:

(a) (b)

S O L U T I O N

(a) Since each term has 3 as a factor, we begin by writing

A factorization of as a product of two first-degree polyno-
mials must be of the form

,

with

Using the method of trial and error, as in Example 8, we obtain

Thus,

(b) Since each term has as a factor, we begin by writing

By trial and error, we obtain the factorization

L

If a sum contains four or more terms, it may be possible to group the terms
in a suitable manner and then find a factorization by using distributive proper-
ties. This technique, called factoring by grouping, is illustrated in the next
example.

4x 4y � 11x 3y2 � 6x 2y3 � x 2y�4x � 3y��x � 2y�.

4x 4y � 11x 3y2 � 6x 2y3 � x 2y�4x 2 � 11xy � 6y2�.

x2y

12x2 � 36xy � 27y2 � 3�4x2 � 12xy � 9y2� � 3�2x � 3y�2.

4x2 � 12xy � 9y2 � �2x � 3y� �2x � 3y� � �2x � 3y�2.

ac � 4, bd � 9, and ad � bc � �12.

4x2 � 12xy � 9y2 � �ax � by��cx � dy�

4x2 � 12xy � 9y2

12x2 � 36xy � 27y2 � 3�4x2 � 12xy � 9y2�.

4x 4y � 11x 3y2 � 6x 2y312x2 � 36xy � 27y2

6x 2 � 7x � 3 � �2x � 3��3x � 1�.

d � 1b � �3
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E X A M P L E  1 0 Factoring by grouping

Factor:

(a) (b)

(c)

S O L U T I O N

(a) We group the first two terms and the last two terms and then proceed as
follows:

At this stage we have not factored the given expression because the right-hand
side has the form

However, if we factor out k, then

Hence,

Note that if we factor as , then the last expression is
.

(b) We group the first two terms and the last two terms and then proceed as
follows:

Finally, using the difference of two squares formula for , we obtain the
factorization:

(c) First we rearrange and group terms, and then we apply the difference of
two squares formula, as follows:

L� �x � 4y � 5��x � 4y � 5�
� ��x � 5� � 4y	��x � 5� � 4y	
� �x � 5�2 � �4y�2

x2 � 16y2 � 10x � 25 � �x2 � 10x � 25� � 16y2

3x 3 � 2x 2 � 12x � 8 � �x � 2��x � 2��3x � 2�

x 2 � 4

� �x 2 � 4��3x � 2�
� x2�3x � 2� � 4�3x � 2�

 3x3 � 2x2 � 12x � 8 � �3x3 � 2x2� � �12x � 8�

�2a � b��2c � d�
k�2c � d�2ck � dk

� �2c � d��2a � b�.
 4ac � 2bc � 2ad � bd � 2c�2a � b� � d�2a � b�

2ck � dk � �2c � d�k � �2c � d��2a � b�.

2ck � dk with k � 2a � b.

� 2c�2a � b� � d�2a � b�
 4ac � 2bc � 2ad � bd � �4ac � 2bc� � �2ad � bd�

x 2 � 16y2 � 10x � 25

3x 3 � 2x 2 � 12x � 84ac � 2bc � 2ad � bd
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Exer. 1–44: Express as a polynomial.

1

2

3

4

5 6

7 8

9

10

11 12

13

14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

34

35

36

37 38

39 40

41 42 �x2 � x � 1�2�a � b � c�2

�3x � 4y�3�2x � 3y�3

�x � 3y�3�x � 2y�3

�x1/3 � y1/3��x2/3 � x1/3y1/3 � y2/3�

�x1/3 � y1/3��x2/3 � x1/3y1/3 � y2/3�

�2x � 2y�2�2x � 2y�2

�2x � 2y��2x � 2y�
�x � y�2�x � y�2�x � 2�2�x � 2�2

�2x2 � 5y2�2�x2 � 3y2�2

�5x � 4y�2�3x � 2y�2

�x2 � 1��x2 � 16��x2 � 9��x2 � 4�

�3x � y3��3x � y3��x2 � 2y��x2 � 2y�

�5x � 4y��5x � 4y��2x � 3y��2x � 3y�

6x2yz3 � xy2z

xyz

3u3v4 � 2u5v2 � �u2v2�2

u3v2

6a3b3 � 9a2b2 � 3ab4

3ab2

8x2y3 � 10x3y

2x2y

�2x � 1��x2 � 5��x3 � 1��x � 1��2x2 � 2��x3 � 5�

�r 2 � 8r � 2���r 2 � 3r � 1�

�t 2 � 2t � 5��3t 2 � t � 2�

�7x � 4��x3 � x2 � 6��3x � 5��2x2 � 9x � 5�

�3u � 1��u � 2� � 7u�u � 1�

�2u � 3��u � 4� � 4u�u � 2�

�4x � 3y��x � 5y��5x � 7y��3x � 2y�

�3x � 4��2x � 9��2x � 5��3x � 7�

�6x3 � 2x2 � x � 2� � �8x2 � x � 2�

�4x3 � 5x � 3� � �3x3 � 2x2 � 5x � 7�

�7x3 � 2x2 � 11x� � ��3x3 � 2x2 � 5x � 3�

�3x3 � 4x2 � 7x � 1� � �9x3 � 4x2 � 6x�

43 44

Exer. 45–102: Factor the polynomial.

45 46

47 48

49 50

51 52

53 54

55 56

57 58

59 60

61 62

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

79 80

81 82

83 84

85 86

87 88

89 90

91 92

93 94

95 96

97 98 y2 � 9 � 6y � 4x2y2 � x 2 � 8y � 16

x2 � 4y2 � 6x � 9x2 � 4x � 4 � 9y2

x 8 � 16a6 � b6

6w8 � 17w4 � 12a3 � a2b � ab2 � b3

x4 � 3x3 � 8x � 24x4 � 2x3 � x � 2

5x3 � 10x2 � 20x � 403x3 � 3x2 � 27x � 27

2ay2 � axy � 6xy � 3x22ax � 6bx � ay � 3by

x3 � 64125 � 27x3

x6 � 27y3343x3 � y9

216x9 � 125y364x3 � y6

125x3 � 864x3 � 27

64x2 � 36y275x2 � 48y2

4x2 � 9x2 � 25

x3 � 25xx4 � 4x2

9y4 � 121x2z4 � 64w2

81r 2 � 16t 236r 2 � 25t 2

50x2 � 45xy � 18y245x2 � 38xy � 8y2

16z2 � 56z � 4925z2 � 30z � 9

9x2 � 24x � 164x2 � 20x � 25

21x2 � 41x � 1012x2 � 29x � 15

12x2 � x � 66x2 � 7x � 20

3x2 � 4x � 2x2 � 3x � 4

7x2 � 10x � 88x2 � 53x � 21

121r3s4 � 77r2s4 � 55r4s315x3y5 � 25x4y2 � 10x6y4

16x5y2 � 8x3y33x2y3 � 9x3y2

10xy � 15xy23a2b2 � 6a2b

4u2 � 2uvrs � 4st

�x � 2y � 3z�2�2x � y � 3z�2
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99 100

101 102

Exer. 103–104: The ancient Greeks gave geometric proofs of
the factoring formulas for the difference of two squares and
the difference of two cubes. Establish the formula for the
special case described.

103 Find the areas of regions I and II in the figure to establish
the difference of two squares formula for the special case

.

Exercise 103

104 Find the volumes of boxes I, II, and III in the figure to es-
tablish the difference of two cubes formula for the special
case .x � y

x � y

4x3 � 4x2 � xx16 � 1

8c6 � 19c3 � 27y6 � 7y3 � 8 Exercise 104

105 Calorie requirements The basal energy requirement for an
individual indicates the minimum number of calories nec-
essary to maintain essential life-sustaining processes such
as circulation, regulation of body temperature, and respi-
ration. Given a person’s sex, weight w (in kilograms),
height h (in centimeters), and age y (in years), we can es-
timate the basal energy requirement in calories using the
following formulas, where and are the calories nec-
essary for females and males, respectively:

(a) Determine the basal energy requirements first for 
a 25-year-old female weighing 59 kilograms who is
163 centimeters tall and then for a 55-year-old male
weighing 75 kilograms who is 178 centimeters tall.

(b) Discuss why, in both formulas, the coefficient for y is
negative but the other coefficients are positive.

Cm � 655 � 9.6w � 1.9h � 4.7y

Cf � 66.5 � 13.8w � 5h � 6.8y

CmCf

x

y

V � x3 � y3

?

I

II

III

?

?
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A fractional expression is a quotient of two algebraic expressions. As a spe-
cial case, a rational expression is a quotient of two polynomials p and q.
Since division by zero is not allowed, the domain of consists of all real
numbers except those that make the denominator zero. Two illustrations are
given in the chart.

p�q
p�q

1.4
Fractional Expressions

I

II

II IA � x2 � y2

y

x

Denominator is
Quotient zero if Domain

All

All x and y such that y � x3y � x3x3 � 3x2y � 4y2

y � x3

x � �3x � �3
6x2 � 5x � 4

x2 � 9

Rational Expressions
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In most of our work we will be concerned with rational expressions in
which both numerator and denominator are polynomials in only one variable.

Since the variables in a rational expression represent real numbers, we
may use the properties of quotients in Section 1.1, replacing the letters a, b, c,
and d with polynomials. The following property is of particular importance,
where :

We sometimes describe this simplification process by saying that a common
nonzero factor in the numerator and denominator of a quotient may be can-
celed. In practice, we usually show this cancellation by means of a slash
through the common factor, as in the following illustration, where all denom-
inators are assumed to be nonzero.

Canceled Common Factors

A rational expression is simplified, or reduced to lowest terms, if the nu-
merator and denominator have no common polynomial factors of positive de-
gree and no common integral factors greater than 1. To simplify a rational
expression, we factor both the numerator and the denominator into prime fac-
tors and then, assuming the factors in the denominator are not zero, cancel
common factors, as in the following illustration.

Simplified Rational Expressions

As shown in the next example, when simplifying a product or quotient of
rational expressions, we often use properties of quotients to obtain one rational
expression. Then we factor the numerator and denominator and cancel com-
mon factors, as we did in the preceding illustration.

�x2 � 8x � 16��x � 5�
�x2 � 5x��x2 � 16�

�
�x � 4�2

1

�x � 5�
x�x � 5��x � 4��x � 4�

�
x � 4

x�x � 4�

2 � x � 3x2

6x2 � x � 2
�

��3x2 � x � 2�
6x2 � x � 2

� �
�3x � 2��x � 1�

�3x � 2��2x � 1�
� �

x � 1

2x � 1

3x2 � 5x � 2

x2 � 4
�

�3x � 1��x � 2�
�x � 2��x � 2�

�
3x � 1

x � 2

pqr

rpv
�

q

v
mn

npq
�

m

pq

ad

bd
�

a

b

ad

bd
�

a

b
�

d

d
�

a

b
� 1 �

a

b

bd � 0

if

b

x � 2

if

b

x � 2�3

if

b

x � 5, x � �4
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E X A M P L E  1 Products and quotients of rational expressions

Perform the indicated operation and simplify:

(a) (b)

S O L U T I O N

(a)

(b)

L

To add or subtract two rational expressions, we usually find a common de-
nominator and use the following properties of quotients:

If the denominators of the expressions are not the same, we may obtain a com-
mon denominator by multiplying the numerator and denominator of each frac-
tion by a suitable expression. We usually use the least common denominator
(lcd) of the two quotients. To find the lcd, we factor each denominator into
primes and then form the product of the different prime factors, using the
largest exponent that appears with each prime factor. Let us begin with a nu-
merical example of this technique.

E X A M P L E  2 Adding fractions using the lcd

Express as a simplified rational number:

7

24
�

5

18

a

d
�

c

d
�

a � c

d
and    

a

d
�

c

d
�

a � c

d

�
x

x � 2

�
�x � 2�x�2x � 3�

�2x � 3��x � 2��x � 2�

x � 2

2x � 3



x2 � 4

2x2 � 3x
�

x � 2

2x � 3
�

2x2 � 3x

x2 � 4

�
2�x � 3�

x � 1

�
�x � 3�2

1

� 2�x � 1�
�x � 1��x � 1��x � 3�

x2 � 6x � 9

x2 � 1
�

2x � 2

x � 3
�

�x2 � 6x � 9��2x � 2�
�x2 � 1��x � 3�

x � 2

2x � 3



x2 � 4

2x2 � 3x

x2 � 6x � 9

x2 � 1
�

2x � 2

x � 3
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property of quotients

factor all 
polynomials

cancel common 
factors

if

b

x � 3, x � 1

if

b

x � �2, x � 3�2

property of quotients

property of quotients;
factor all polynomials

cancel common 
factors
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S O L U T I O N The prime factorizations of the denominators 24 and 18 are
and . To find the lcd, we form the product of the dif-

ferent prime factors, using the largest exponent associated with each factor.
This gives us . We now change each fraction to an equivalent fraction
with denominator and add:

L

The method for finding the lcd for rational expressions is analogous to the
process illustrated in Example 2. The only difference is that we use factoriza-
tions of polynomials instead of integers.

E X A M P L E  3 Sums and differences of rational expressions

Perform the operations and simplify:

S O L U T I O N The denominators are already in factored form. The lcd is
. To obtain three quotients having the denominator , we

multiply the numerator and denominator of the first quotient by x, those of the
second by , and those of the third by , which gives us

L
�

5x2 � 4

x2�3x � 2�
.

�
6x � 5x2 � 2�3x � 2�

x2�3x � 2�

�
6x

x2�3x � 2�
�

5x2

x2�3x � 2�
�

2�3x � 2�
x2�3x � 2�

6

x�3x � 2�
�

5

3x � 2
�

2

x2
�

6

x�3x � 2�
�

x

x
�

5

3x � 2
�

x2

x2
�

2

x2
�

3x � 2

3x � 2

3x � 2x2

x2�3x � 2�x2�3x � 2�

6

x�3x � 2�
�

5

3x � 2
�

2

x2

�
41

72

�
41

23 � 32

�
21

23 � 32
�

20

23 � 32

�
7

23 � 3
�

3

3
�

5

2 � 32
�

22

22

7

24
�

5

18
�

7

23 � 3
�

5

2 � 32

23 � 32

23 � 32

18 � 2 � 3224 � 23 � 3
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E X A M P L E  4 Simplifying sums of rational expressions

Perform the operations and simplify:

S O L U T I O N We begin by factoring denominators:

Since the lcd is , we multiply the numerator and denominator
of the first quotient by , those of the second by , and those of the
third by and then add:

L

A complex fraction is a quotient in which the numerator and/or the de-
nominator is a fractional expression. Certain problems in calculus require sim-
plifying complex fractions of the type given in the next example.

E X A M P L E  5 Simplifying a complex fraction

Simplify the complex fraction:

S O L U T I O N We change the numerator of the given expression into a single
quotient and then use a property for simplifying quotients:

� �
2

�x � 3��a � 3�

�
2�a � x�

�x � 3��a � 3��x � a�

�
2a � 2x

�x � 3��a � 3�
�

1

x � a

2

x � 3
�

2

a � 3

x � a
�

2�a � 3� � 2�x � 3�
�x � 3��a � 3�

x � a

2

x � 3
�

2

a � 3

x � a

�
4x2 � 8x � 6

�x � 3�2�x � 3�
�

2�2x2 � 4x � 3�
�x � 3�2�x � 3�

�
�2x2 � x � 15� � �x2 � 3x� � �x 2 � 6x � 9�

�x � 3�2�x � 3�

�2x � 5��x � 3�
�x � 3�2�x � 3�

�
x�x � 3�

�x � 3�2�x � 3�
�

�x � 3�2

�x � 3�2�x � 3�

�x � 3�2

x � 3x � 3
�x � 3�2�x � 3�

2x � 5

x2 � 6x � 9
�

x

x2 � 9
�

1

x � 3
�

2x � 5

�x � 3�2
�

x

�x � 3��x � 3�
�

1

x � 3

2x � 5

x2 � 6x � 9
�

x

x2 � 9
�

1

x � 3

combine fractions in the numerator

simplify; property of quotients

factor ; property of 
quotients

replace with �1
a � x

x � a

2a � 2x

if

b

x � a
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An alternative method is to multiply the numerator and denominator of
the given expression by , the lcd of the numerator and denomi-
nator, and then simplify the result. L

Some quotients that are not rational expressions contain denominators of
the form or ; as in the next example, these quotients can
be simplified by multiplying the numerator and denominator by the conjugate

or , respectively. Of course, if appears, multiply
by instead.

E X A M P L E  6 Rationalizing a denominator

Rationalize the denominator:

S O L U T I O N

L

In calculus it is sometimes necessary to rationalize the numerator of a
quotient, as shown in the following example.

E X A M P L E  7 Rationalizing a numerator

If , rationalize the numerator of

S O L U T I O N

2x � h � 2x

h
.

h � 0

�
2x � 2y

x � y

�
2x � 2y

�2x�2 � �2y�2

1

2x � 2y
�

1

2x � 2y
�
2x � 2y

2x � 2y

1

2x � 2y

a � 2b
a � 2b2a � 2ba � 2b

2a � 2ba � 2b

�x � 3��a � 3�

multiply numerator and denominator by
the conjugate of 

property of quotients and difference of
squares

law of radicals

2x � 2y

multiply numerator and 
denominator by the conjugate
of

property of quotients and 
difference of squares

law of radicals

simplify

cancel h � 0

2x � h � 2x

�
1

2x � h � 2x

�
h

h�2x � h � 2x�

�
�x � h� � x

h�2x � h � 2x�

�
�2x � h�2 � �2x�2

h�2x � h � 2x�

2x � h � 2x

h
�
2x � h � 2x

h
�
2x � h � 2x

2x � h � 2x

(continued)



It may seem as though we have accomplished very little, since radicals
occur in the denominator. In calculus, however, it is of interest to determine
what is true if h is very close to zero. Note that if we use the given expression
we obtain the following:

a meaningless expression. If we use the rationalized form, however, we obtain
the following information:

L

Certain problems in calculus require simplifying expressions of the type
given in the next example.

E X A M P L E  8 Simplifying a fractional expression

Simplify, if :

S O L U T I O N

L

Problems of the type given in the next example also occur in calculus.

E X A M P L E  9 Simplifying a fractional expression

Simplify:
3x 2�2x � 5�1/2 � x3�1

2��2x � 5��1/2�2�
��2x � 5�1/2	2

� �
2x � h

�x � h�2x 2

�
�h�2x � h�
�x � h�2x 2h

�
x2 � x2 � 2xh � h2

�x � h�2x2h

�
x2 � �x2 � 2xh � h2�

�x � h�2x2
�

1

h

1

�x � h�2
�

1

x2

h
�

x2 � �x � h�2

�x � h�2x2

h

1

�x � h�2
�

1

x 2

h

h � 0



1

2x � 2x
�

1

22x
.

 If h 
 0, then  
2x � h � 2x

h
�

1

2x � h � 2x

If h 
 0, then  
2x � h � 2x

h


2x � 0 � 2x

0
�

0

0
,
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combine quotients in numerator

square ; property of 
quotients

remove parentheses

simplify; factor out 

cancel h � 0

�h

x � h



S O L U T I O N One way to simplify the expression is as follows:

definition of negative exponents

combine terms in numerator

property of quotients

simplify

factor numerator

An alternative simplification is to eliminate the negative power, , in the
given expression, as follows:

The remainder of the simplification is similar.
A third method of simplification is to first factor out the gcf. In this case,

the common factors are x and , and the smallest exponents are 2 and
, respectively. Thus, the gcf is , and we factor the numerator

and simplify as follows:

One of the problems in calculus is determining the values of x that make
the numerator equal to zero. The simplified form helps us answer this question
with relative ease—the values are 0 and . L�3

x2�2x � 5��1/2�3�2x � 5�1 � x	
�2x � 5�1

�
x2�5x � 15�
�2x � 5�3/2

�
5x2�x � 3�
�2x � 5�3/2

x2�2x � 5��1/2�
1
2

�2x � 5�

�
3x2�2x � 5� � x 3

�2x � 5��2x � 5�1/2

3x2�2x � 5�1/2 � x 3�1
2��2x � 5��1/2�2�

��2x � 5�1/2	2
�

�2x � 5�1/2

�2x � 5�1/2

�
1
2

�
5x 2�x � 3�
�2x � 5�3/2

�
5x 3 � 15x 2

�2x � 5�3/2

�
6x 3 � 15x2 � x3

�2x � 5�1/2
�

1

2x � 5

�

3x 2�2x � 5� � x 3

�2x � 5�1/2

2x � 5

�

3x2�2x � 5�1/2 �
x 3

�2x � 5�1/2

2x � 5

3x2�2x � 5�1/2 � x3�1
2��2x � 5��1/2�2�

��2x � 5�1/2	2
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multiply numerator and 
denominator by 

property of quotients and
law of exponents

�2x � 5�1/2

Exer. 1–4: Write the expression as a simplified rational
number.

1 2

3 4
11

54
�

7

72

5

24
�

3

20

4

63
�

5

42

3

50
�

7

30

Exer. 5–48: Simplify the expression.

5 6

7 8
y2 � 9

y3 � 27

y2 � 25

y3 � 125

2x 2 � 9x � 5

3x 2 � 17x � 10

2x 2 � 7x � 3

2x 2 � 7x � 4

1.4 E x e r c i s e s



9 10

11

12

13

14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31

32

33 34

35 36

r

s
�

s

r

r 2

s2
�

s2

r 2

x

y2
�

y

x2

1

y2
�

1

x2

1

x � 2
� 3

4

x
� x

b

a
�

a

b

1

a
�

1

b

2x � 6

x2 � 6x � 9
�

5x

x2 � 9
�

7

x � 3

2x � 1

x2 � 4x � 4
�

6x

x2 � 4
�

3

x � 2

4 �
2

u
�

3u

u � 5
3 �

5

u
�

2u

3u � 1

2ac � bc � 6ad � 3bd

6ac � 2ad � 3bc � bd

p4 � 3p3 � 8p � 24

p3 � 2p2 � 9p � 18

5x

2x � 3
�

6

2x 2 � 3x
�

2

x

2x

x � 2
�

8

x 2 � 2x
�

3

x

12x

2x � 1
�

3

2x 2 � x
�

5

x

4x

3x � 4
�

8

3x 2 � 4x
�

2

x

t

t � 3
�

4t

t � 3
�

18

t 2 � 9

3t

t � 2
�

5t

t � 2
�

40

t 2 � 4

5

x
�

2x � 1

x 2
�

x � 5

x 3

2

x
�

3x � 1

x 2
�

x � 2

x 3

4

�5s � 2�2
�

s

5s � 2

2

3s � 1
�

9

�3s � 1�2

15

x2 � 9
�

5x

x2 � 9

6

x2 � 4
�

3x

x2 � 4

a3 � 8

a2 � 4



a

a3 � 8

5a2 � 12a � 4

a4 � 16



25a2 � 20a � 4

a2 � 2a

4x2 � 9

2x2 � 7x � 6
�

4x4 � 6x3 � 9x2

8x7 � 27x4

9x2 � 4

3x2 � 5x � 2
�

9x4 � 6x3 � 4x2

27x 4 � 8x

10 � 3r � r 2

r 4 � 2r 3

12 � r � r 2

r 3 � 3r 2
37 38

39 40

41 42

43

44

45 46

47 48

Exer. 49–54: Rationalize the denominator.

49 50

51 52

53

54

Exer. 55–60: Rationalize the numerator.

55 56

57

58 59

60 (Hint: Compare with Exercise 53.)
23 x � h � 23 x

h

21 � x � h � 21 � x

h

2x � 2x � h

h2x 2x � h

22�x � h� � 1 � 22x � 1

h

2b � 2c

b2 � c2

2a � 2b

a2 � b2

1

23 x � 23 y

1

23 a � 23 b

16x 2 � y2

22x � 2y

81x 2 � 16y2

32x � 22y

2t � 4

2t � 4

2t � 5

2t � 5

5

2x � 2h � 3
�

5

2x � 3

h

4

3x � 3h � 1
�

4

3x � 1

h

1

x � h
�

1

x

h

1

�x � h�3
�

1

x3

h

�x � h�3 � 5�x � h� � �x 3 � 5x�
h

�x � h�2 � 3�x � h� � �x 2 � 3x�
h

x � 2

x
�

a � 2

a

x � a

3

x � 1
�

3

a � 1

x � a

3

w
�

6

2w � 1

5

w
�

8

2w � 1

5

x � 1
�

2x

x � 3

x

x � 1
�

7

x � 3

y�2 � x�2

y�2 � x�2

y�1 � x�1

�xy��1
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(Hint: Multiply numerator and denominator
by .)23 a2 � 23 ab � 23 b2
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Exer. 61–64: Express as a sum of terms of the form ,
where r is a rational number.

61 62

63 64

Exer. 65–68: Express as a quotient.

65 66

67 68

Exer. 69–82: Simplify the expression.

69

70

71

72

73 �3x � 1�6�1
2��2x � 5��1/2�2� � �2x � 5�1/2�6��3x � 1�5�3�

�3x � 2�1/3�2��4x � 5��4� � �4x � 5�2�1
3��3x � 2��2/3�3�

�x2 � 4�1/2�3��2x � 1�2�2� � �2x � 1�3�1
2��x2 � 4��1/2�2x�

�6x � 5�3�2��x2 � 4��2x� � �x2 � 4�2�3��6x � 5�2�6�

�2x2 � 3x � 1��4��3x � 2�3�3� � �3x � 2�4�4x � 3�

x�2/3 � x7/3x�1/2 � x3/2

x�4 � xx�3 � x 2

�2x � 3�2

x3

�x2 � 2�2

x 5

x2 � 4x � 6

2x

4x2 � x � 5

x2/3

axr
74

75

76

77

78

79

80

81

82

�3x � 2�1/2�1
3��2x � 3��2/3�2� � �2x � 3�1/3�1

2��3x � 2��1/2�3�
��3x � 2�1/2	2

�4x2 � 9�1/2�2� � �2x � 3��1
2��4x2 � 9��1/2�8x�

��4x2 � 9�1/2	2

�1 � x2�1/2�2x� � x2�1
2��1 � x2��1/2��2x�

��1 � x2�1/2	2

�x2 � 4�1/3�3� � �3x��1
3��x2 � 4��2/3�2x�

��x2 � 4�1/3	2

�x2 � 5�4�3x2� � x3�4��x2 � 5�3�2x�
��x2 � 5�4	2

�x2 � 2�3�2x� � x2�3��x2 � 2�2�2x�
��x2 � 2�3	2

�x2 � 1�4�2x� � x2�4��x2 � 1�3�2x�
�x2 � 1�8

�6x � 1�3�27x2 � 2� � �9x3 � 2x��3��6x � 1�2�6�
�6x � 1�6

�x2 � 9�4��
1
3��x � 6��4/3 � �x � 6��1/3�4��x2 � 9�3�2x�

1 Express as a simplified rational number:

(a) (b) (c) (d)

2 Replace the symbol with either , , or to make the
resulting statement true.

(a) (b)

(c)

3 Express the statement as an inequality.

(a) x is negative.

(b) a is between and .

(c) The absolute value of x is not greater than 4.

4 Rewrite without using the absolute value symbol, and 
simplify:

(a) (b) (c)

5 If points A, B, and C on a coordinate line have coordi-
nates , 4, and , respectively, find the distance:

(a) (b) (c) d�B, C�d�C, A�d�A, C�

�3�8

� 3�1 � 2�1 �
� �5 �
�5

� �7 �

1
3

1
2

1
6 � 0.166

29 � �3�0.1 � �0.001

����

3
4 


6
5

5
8 �

6
7

3
4 �

6
5�2

3���
5
8�

6 Express the indicated statement as an inequality involving
the absolute value symbol.

(a) is at least 7.

(b) is less than 4.

Exer. 7–8: Rewrite the expression without using the ab-
solute value symbol, and simplify the result.

7

8

9 Determine whether the expression is true for all values of
the variables, whenever the expression is defined.

(a) (b)

(c)

10 Express the number in scientific form.

(a) 93,700,000,000 (b) 0.000 004 02

1

2c � 2d
�
2c � 2d

c � d

1

2x � y
�

1

2x
�

1

2y
�x � y�2 � x2 � y2

� �x � 2��x � 3� � if 2 � x � 3

� x � 3 � if x � �3

d(4, x)

d(x, �2)
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11 Express the number in decimal form.

(a) (b)

12 (a) Approximate to four decimal places.

(b) Express the answer in part (a) in scientific notation ac-
curate to four significant figures.

Exer. 13–14: Express the number in the form , where a
and b are integers.

13 14

Exer. 15–40: Simplify the expression, and rationalize the
denominator when appropriate.

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

Exer. 41–44: Rationalize the denominator.

41 42

43 44
3 � 2x

3 � 2x

81x 2 � y2

32x � 2y

1

2a � 2a � 2

1 � 2x

1 � 2x

�3
x2

9y�3
1

2� 2

23 �a � 2b�3
212x4y

23x2y5

�23 �c3d 6�4
1

2t
� 1

2t
� 1�

24 ��4a3b2c�223 4x2y 23 2x5y2

�a2b3

c

1

23 4

23 8x 5y3z423 �x 4y�1�6

x�2 � y�1s 5/2s�4/3s�1/6

�u � v�3�u � v��2
r�1 � s�1

�rs��1

�3u2v5w�4�3

�2uv�3w2�4
��a2/3b�2�3	�1

��64x3

z6y9 �2/3�xy�1

2z
�4


 �x1/3y2

z �3

c�4/3c3/2c1/6��2p2q�3� p

4q2�2

�a2/3b3/2

a2b �6�3x2y�3��2

x�5y

6r 3y2

2r 5y
�3a2b�2�2ab3�

�1
2�0

� 12 � 16�3/4�32 � 20 � 27�2/3

a�b

�25 � 172�

7.3 � 10�46.8 � 107

Exer. 45–62: Express as a polynomial.

45

46

47

48

49

50

51

52

53 54

55 56

57 58

59 60

61 62

Exer. 63–78: Factor the polynomial. 

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

Exer. 79–90: Simplify the expression.

79 80

81 82

83 84

85 86

87 88

x

x � 2
�

4

x � 2

x � 3 �
6

x � 2

x � 2 �
3

x � 4

x

x � 4
�

1

x � 4

�a�1 � b�1��1
1

x
�

2

x 2 � x
�

3

x � 3

x � x�2

 1 � x�2

7

x � 2
�

3x

�x � 2�2
�

5

x

2

4x � 5
�

5

10x � 1

6x2 � 5x � 6

x2 � 4



2x2 � 3x

x � 2

r 3 � t3

r 2 � t2

6x2 � 7x � 5

4x2 � 4x � 1

4x4 � 12x3 � 20x2x5 � 4x3 � 8x2 � 32

x2 � 49y2 � 14x � 49x2 � 36

3x � 6w6 � 1

x4 � 8x3 � 16x2p8 � q8

u3v4 � u6v8x3 � 64y3

2c3 � 12c2 � 3c � 182wy � 3yx � 8wz � 12zx

16a4 � 24a2b2 � 9b428x2 � 4x � 9

2r 4s3 � 8r 2s560xw � 70w

�a � b � c � d�2�3x � 2y�2�3x � 2y�2

(x2 � 2x � 3)2�2a � b�3

�c2 � d 2�3�3y � x�2

�a3 � a2�2�13a2 � 4b��13a2 � 4b�

�4r 2 � 3s�2�3a � 5b��2a � 7b�

9p4q3 � 6p2q4 � 5p3q2

3p2q2

�a � b��a3 � a2b � ab2 � b3�

�3x � 2��x � 5��5x � 4�

�3y3 � 2y2 � y � 4�� y2 � 3�

�4x � 5��2x2 � 3x � 7�

�x � 4��x � 3� � �2x � 1��x � 5�

�4z4 � 3z2 � 1� � z�z3 � 4z2 � 4�

�3x3 � 4x2 � x � 7� � �x4 � 2x3 � 3x2 � 5�
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89

90

91 Express as a sum of terms of the form , where r

is a rational number.

92 Express as a quotient.

93 Red blood cells in a body The body of an average person
contains 5.5 liters of blood and about 5 million red blood
cells per cubic millimeter of blood. Given that

, estimate the number of red blood cells in
an average person’s body.
1 L � 106 mm3

x3 � x�1

axr
(x � 5)2

2x

�4 � x 2��1
3��6x � 1��2/3�6� � �6x � 1�1/3��2x�

�4 � x 2�2

�x2 � 1�3/2�4��x � 5�3 � �x � 5�4�3
2��x 2 � 1�1/2�2x� 94 Heartbeats in a lifetime A healthy heart beats 70 to 90

times per minute. Estimate the number of heartbeats in the
lifetime of an individual who lives to age 80.

95 Body surface area At age 2 years, a typical boy is 91.2 cen-
timeters tall and weighs 13.7 kilograms. Use the DuBois
and DuBois formula, , where w is
weight and h is height, to find the body surface area S (in
square meters).

96 Adiabatic expansion A gas is said to expand adiabatically
if there is no loss or gain of heat. The formula for the adia-
batic expansion of air is , where p is the pressure,
v is the volume, and c is a constant. If, at a certain instant,
the pressure is and the volume is , find
the value of c (a dyne is the unit of force in the cgs system).

60 cm340 dyne�cm2

pv�1.4 � c

S � �0.007184�w0.425h0.725

C H A P T E R  1  D I S C U S S I O N  E X E R C I S E S

1 Credit card cash back For every $10 charged to a particular
credit card, 1 point is awarded. At the end of the year, 100
points can be exchanged for $1 in cash back. What percent
discount does this cash back represent in terms of the
amount of money charged to the credit card?

2 Determine the conditions under which .

3 Show that the sum of squares can be factored by
adding and subtracting a particular term and following the
method demonstrated in Example 10(c) of Section 1.3.

4 What is the difference between the expressions 

and ?

5 Write the quotient of two arbitrary second-degree polyno-
mials in x, and evaluate the quotient with several large val-
ues of x. What general conclusion can you reach about such
quotients?

6 Simplify the expression . Now evaluate both

expressions with a value of x . Discuss what this
evaluation proves (or doesn’t) and what your simplification
proves (or doesn’t).

7 Party trick To guess your partner’s age and height, have
him/her do the following:

1 Write down his/her age.

2 Multiply it by 2.

3 Add 5.

4 Multiply this sum by 50.

5 Subtract 365.

�x � �2�

3x 2 � 5x � 2

x 2 � 4

x � 1

x 2 � 1

1

x � 1

x 2 � 25

2a2 � b2 � a � b

6 Add his/her height (in inches).

7 Add 115.

The first two digits of the result equal his/her age, and the
last two digits equal his/her height. Explain why this is true.

8 Circuits problem In a particular circuits problem, the output
voltage is defined by

where and . Find a formula

for in terms of when R is equal to X.

9 Relating baseball records Based on the number of runs
scored (S) and runs allowed (A), the Pythagorean winning
percentage estimates what a baseball team’s winning per-
centage should be. This formula, developed by baseball
statistician Bill James, has the form

James determined that yields the most accurate 
results.

The 1927 New York Yankees are generally regarded as
one of the best teams in baseball history. Their record was
110 wins and 44 losses. They scored 975 runs while allow-
ing only 599.

(a) Find their Pythagorean win–loss record.

(b) Estimate the value of x (to the nearest 0.01) that best
predicts the 1927 Yankees’ actual win–loss record.

x � 1.83

Sx

Sx � Ax
.

VinVout

Zin �
R2 � X 2 � 3RXi

R � Xi
Iin �

Vin

Zin

Vout � Iin��
RXi

R � Xi�,
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Methods for solving equations date back to the Babylonians (2000 B.C.),

who described equations in words instead of the variables—x, y, and so

on—that we use today. Major advances in finding solutions of equations

then took place in Italy in the sixteenth century and continued throughout

the world well into the nineteenth century. In modern times, computers are

used to approximate solutions of very complicated equations.

Inequalities that involve variables have now attained the same level of

importance as equations, and they are used extensively in applications of

mathematics. In this chapter we shall discuss several methods for solving

basic equations and inequalities.

2.1 Equations

2.2 Applied Problems

2.3 Quadratic Equations

2.4 Complex Numbers

2.5 Other Types of

Equations

2.6 Inequalities

2.7 More on Inequalities

2.1 Equations

2.2 Applied Problems

2.3 Quadratic Equations

2.4 Complex Numbers

2.5 Other Types of

Equations

2.6 Inequalities

2.7 More on Inequalities

2
Equations and

Inequalities



An equation (or equality) is a statement that two quantities or expressions are
equal. Equations are employed in every field that uses real numbers. As an il-
lustration, the equation

or

is used in solving problems involving an object moving at a constant rate of
speed. If the rate r is (miles per hour), then the distance d (in miles)
traveled after time t (in hours) is given by

For example, if , then . If we wish to find how
long it takes the object to travel 75 miles, we let and solve the
equation

or, equivalently,

Dividing both sides of the last equation by 45, we obtain

Thus, if , then the time required to travel 75 miles is hours, or
1 hour and 40 minutes.

Note that the equation contains three variables: d, r, and t. In much
of our work in this chapter we shall consider equations that contain only one
variable. The following chart applies to a variable x, but any other variable
may be considered. The abbreviations LS and RS in the second illustration
stand for the equation’s left side and right side, respectively.

d � rt

12
3r � 45 mi�hr

t �
75
45 �

5
3 .

45t � 75.75 � 45t

d � 75
d � 45 � 2 � 90 mit � 2 hr

d � 45t.

45 mi�hr

distance � �rate��time�,d � rt,
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2.1
Equations

Terminology Definition Illustration

Equation in x A statement of equality
involving one variable, x

Solution, or root, of A number b that yields 5 is a solution of ,
an equation in x a true statement when since substitution gives us

substituted for x LS: and
RS: ,
and is a true statement.

A number b satisfies b is a solution of the 5 satisfies .
an equation in x equation

Equivalent equations Equations that have
exactly the same
solutions

Solve an equation in x Find all solutions of the To solve ,
equation set each factor equal to 0:

, ,
obtaining the solutions �3 and 5.

x � 5 � 0x � 3 � 0

�x � 3��x � 5� � 0

x � 3
 2x � 6
 2x � 7 � 1

 2x � 1 � 7

x2 � 5 � 4x

20 � 20
4 � 5 � 20
52 � 5 � 25 � 5 � 20

x2 � 5 � 4x

x2 � 5 � 4x



An algebraic equation in x contains only algebraic expressions such as
polynomials, rational expressions, radicals, and so on. An equation of this type
is called a conditional equation if there are numbers in the domains of the ex-
pressions that are not solutions. For example, the equation is condi-
tional, since the number (and others) is not a solution. If every number
in the domains of the expressions in an algebraic equation is a solution, the
equation is called an identity.

Sometimes it is difficult to determine whether an equation is conditional
or an identity. An identity will often be indicated when, after properties of real
numbers are applied, an equation of the form is obtained, where p is
some expression. To illustrate, if we multiply both sides of the equation

by , we obtain . This alerts us to the fact that we may have an
identity on our hands; it does not, however, prove anything. A standard method
for verifying that an equation is an identity is to show, using properties of real
numbers, that the expression which appears on one side of the given equation
can be transformed into the expression which appears on the other side of the
given equation. That is easy to do in the preceding illustration, since we know
that . Of course, to show that an equation is not an
identity, we need only find one real number in the domain of the variable that
fails to satisfy the original equation.

The most basic equation in algebra is the linear equation, defined in the
next chart, where a and b denote real numbers.

The illustration in the preceding chart indicates a typical method of solv-
ing a linear equation. Following the same procedure, we see that

if , then

provided . Thus, a linear equation has exactly one solution.
We sometimes solve an equation by making a list of equivalent equations,

each in some sense simpler than the preceding one, ending the list with an
equation from which the solutions can be easily obtained. We often simplify
an equation by adding the same expression to both sides or subtracting the
same expression from both sides. We can also multiply or divide both sides of
an equation by an expression that represents a nonzero real number. In the fol-
lowing examples, the phrases in color indicate how an equivalent equation was
obtained from the preceding equation. To shorten these phrases we have, as in
Example 1, used “add 7” instead of the more accurate but lengthy add 7 to
both sides. Similarly, “subtract ” is used for subtract from both sides, and
“divide by 4” means divide both sides by 4.

2x2x

a � 0

x � �
b

a
,ax � b � 0

x2 � 4 � �x � 2��x � 2�

x � xx2 � 4

x

x 2 � 4
�

x

�x � 2��x � 2�

p � p

x � 4
x 2 � 9
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Terminology Definition Illustration

Linear equation in x An equation that can be
written in the form

, where  x � �
5
4a � 0ax � b � 0

 4x � �5
 4x � 5 � 0



E X A M P L E  1 Solving a linear equation

Solve the equation .

S O L U T I O N The equations in the following list are equivalent:

given

add 7

simplify

subtract

simplify

divide by 4

simplify

C h e c k LS:
RS:

Since is a true statement, checks as a solution. L

As indicated in the preceding example, we often check a solution by sub-
stituting it into the given equation. Such checks may detect errors introduced
through incorrect manipulations or mistakes in arithmetic.

We say that the equation given in Example 1 has the solution . Simi-
larly, we would say that the equation has solutions and .

The next example illustrates that a seemingly complicated equation may
simplify to a linear equation.

E X A M P L E  2 Solving an equation

Solve the equation .

S O L U T I O N The equations in the following list are equivalent:

given

multiply factors

subtract

subtract

add 8

divide by 12

Hence, the solution of the given equation is . L

We did not check the preceding solution because each step yields an
equivalent equation; however, when you are working exercises or taking a test,
it is always a good idea to check answers to guard against errors.

If an equation contains rational expressions, we often eliminate denomi-
nators by multiplying both sides by the lcd of these expressions. If we multi-
ply both sides by an expression that equals zero for some value of x, then the

5
12

x �
5

12

 12x � 5

14x 12x � 8 � �3

24x 2 26x � 8 � 14x � 3

 24x2 � 26x � 8 � 24x2 � 14x � 3

�8x � 2��3x � 4� � �4x � 3��6x � 1�

�8x � 2��3x � 4� � �4x � 3��6x � 1�

x � �2x � 2x 2 � 4
x � 3

x � 311 � 11

2�3� � 5 � 6 � 5 � 11
6�3� � 7 � 18 � 7 � 11x � 3

x � 3

4x

4
�

12

4

 4x � 12

2x 6x � 2x � �2x � 12� � 2x

 6x � 2x � 12

�6x � 7� � 7 � �2x � 5� � 7

 6x � 7 � 2x � 5

6x � 7 � 2x � 5
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resulting equation may not be equivalent to the original equation, as illustrated
in the following example.

E X A M P L E  3 An equation with no solutions

Solve the equation .

S O L U T I O N

given

multiply by 

simplify

simplify

subtract x

divide by 2

C h e c k LS:

Since division by 0 is not permissible, x � 2 is not a solution. Hence, the given
equation has no solutions. L

In the process of solving an equation, we may obtain, as a possible solu-
tion, a number that is not a solution of the given equation. Such a number is
called an extraneous solution or extraneous root of the given equation. In
Example 3, is an extraneous solution (root) of the given equation.

The following guidelines may also be used to solve the equation in Ex-
ample 3. In this case, observing guideline 2 would make it unnecessary to
check the extraneous solution .

We shall follow these guidelines in the next example.

x � 2

x � 2

3�2�
�2� � 2

�
6

0
x � 2

x � 2

 2x � 4

 3x � x � 4

 3x � �x � 2� � 6

x � 2� 3x

x � 2��x � 2� � �1��x � 2� � � 6

x � 2��x � 2�

3x

x � 2
� 1 �

6

x � 2

3x

x � 2
� 1 �

6

x � 2
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�

Guidelines for Solving 
an Equation Containing 

Rational Expressions

1 Determine the lcd of the rational expressions.

2 Find the values of the variable that make the lcd zero. These are not
solutions, because they yield at least one zero denominator when sub-
stituted into the given equation.

3 Multiply each term of the equation by the lcd and simplify, thereby elim-
inating all of the denominators.

4 Solve the equation obtained in guideline 3.

5 The solutions of the given equation are the solutions found in guide-
line 4, with the exclusion of the values found in guideline 2.



E X A M P L E  4 An equation containing rational expressions

Solve the equation .

S O L U T I O N

Guideline 1 Rewriting the denominator as , we see that the
lcd of the three rational expressions is .

Guideline 2 The values of x that make the lcd zero are 2 and
�3, so these numbers cannot be solutions of the equation.

Guideline 3 Multiplying each term of the equation by the lcd and simplifying
gives us the following:

cancel like factors

multiply factors

Guideline 4 We solve the last equation obtained in guideline 3.

subtract , 9, and 20

combine like terms

divide by �11

Guideline 5 Since is not included among the values (2 and �3) that make 
the lcd zero (guideline 2), we see that is a solution of the given
equation.

We shall not check the solution by substitution, because the arith-
metic involved is complicated. It is simpler to carefully check the algebraic
manipulations used in each step. However, a calculator check is recommended.

L

Formulas involving several variables occur in many applications of math-
ematics. Sometimes it is necessary to solve for a specific variable in terms of
the remaining variables that appear in the formula, as the next two examples
illustrate.

E X A M P L E  5 Relationship between temperature scales

The Celsius and Fahrenheit temperature scales are shown on the thermometer
in Figure 1. The relationship between the temperature readings C and F is
given by . Solve for F.

S O L U T I O N To solve for F we must obtain a formula that has F by itself on
one side of the equals sign and does not have F on the other side. We may do
this as follows:

C �
5
9 �F � 32�

x �
17
11

x �
17
11

17
11

x �
17
11

�11x � �17

4x 3x � 10x � 4x � 12 � 9 � 20

 3x � 9 � 10x � 20 � 4x � 12

 3�x � 3� � 10�x � 2� � 4�x � 3�

2�x � 2��x � 3�
2�x � 2��x � 3�

2�x � 2�2x � 4

3

2x � 4
�

5

x � 3
�

2

x � 2
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Figure 1

�100

0

100

�148

32

212

Celsius
scale

Fahrenheit
scale

C F

�
2

x � 2
2�x � 2��x � 3�

3

2�x � 2�
2�x � 2��x � 3� �

5

x � 3
2�x � 2��x � 3�



given

multiply by 

add 32

equivalent equation
L

We can make a simple check of our result in Example 5 as follows. Start
with and substitute 212 (an arbitrary choice) for F to obtain
100 for C. Now let C � 100 in to get . Again, this
check does not prove we are correct, but certainly lends credibility to our result.

E X A M P L E  6 Resistors connected in parallel

In electrical theory, the formula

is used to find the total resistance R when two resistors and are connected
in parallel, as illustrated in Figure 2. Solve for .

S O L U T I O N We first multiply both sides of the given equation by the lcd of
the three fractions and then solve for , as follows:

given

multiply by the lcd,

cancel common factors

collect terms with on one side

factor out 

divide by 

An alternative method of solution is to first solve for :

given

equivalent equation

subtract

combine fractions

If two nonzero numbers are equal, then so are their reciprocals. Hence,

L
R1 �

RR2

R2 � R
.

1

R1

�
R2 � R

RR2

1

R2

1

R1

�
1

R
�

1

R2

1

R1

�
1

R2

�
1

R

1

R
�

1

R1

�
1

R2

1

R1

R2 � RR1 �
RR2

R2 � R

R1R1�R2 � R� � RR2

R1R1R2 � RR1 � RR2

R1R2 � RR2 � RR1

RR1R2

1

R
� RR1R2 �

1

R1

� RR1R2 �
1

R2

� RR1R2

1

R
�

1

R1

�
1

R2

R1

R1

R2R1

1

R
�

1

R1

�
1

R2

F � 212F �
9
5 C � 32

C �
5
9 (F � 32)

F �
9
5 C � 32

9
5 C � 32 � F

9
5

9
5 C � F � 32

C �
5
9 �F � 32�
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Figure 2

R2R1
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2.1 E x e r c i s e s

Exer. 1–44: Solve the equation.

1 2

3 4

5

6

7 8

9

10

11 12

13 14

15 16

17

18

19

20

21 22

23 24

25 26

27 28

29 30

31

32
4

2u � 3
�

10

4u2 � 9
�

1

2u � 3

7

y2 � 4
�

4

y � 2
�

5

y � 2

4

5x � 2
�

12

15x � 6
� 0

1

2x � 1
�

4

8x � 4

6

2x � 11
� 5 � 52 �

5

3x � 7
� 2

9

2x � 6
�

7

5x � 15
�

2

3

3

2x � 4
�

5

3x � 6
�

3

5

�5

3x � 9
�

4

x � 3
�

5

6

2

5
�

4

10x � 5
�

7

2x � 1

5x � 2

10x � 3
�

x � 8

2x � 3

3x � 1

6x � 2
�

2x � 5

4x � 13

�2x � 9��4x � 3� � 8x2 � 12

�5x � 7��2x � 1� � 10x�x � 4� � 0

�x � 5�2 � 3 � �x � 2�2

�3x � 2�2 � �x � 5��9x � 4�

3

y
�

6

y
�

1

y
� 118 �

5

x
� 2 �

3

x

3

7x � 2
�

9

3x � 1

13 � 2x

4x � 1
�

3

4

2x � 9

4
� 2 �

x

12

3 � 5x

5
�

4 � x

7

1.5x � 0.7 � 0.4�3 � 5x�

0.3�3 � 2x� � 1.2x � 3.2

5
3 x � 1 � 4 �

2
3 x1

5 x � 2 � 3 �
2
7 x

6�2y � 3� � 3� y � 5� � 0

4�2y � 5� � 3�5y � 2�

5x � 4 � 2�x � 2�4x � 3 � �5x � 6

2x � 2 � �9�3x � 4 � �1

33

34

35 36

37

38

39

40

41

42

43

44

Exer. 45–50: Show that the equation is an identity.

45

46

47 48

49 50

Exer. 51–52: For what value of c is the number a a solution
of the equation?

51

52 3x � 2 � 6c � 2c � 5x � 1; a � 4

4x � 1 � 2c � 5c � 3x � 6; a � �2

49x 2 � 25

7x � 5
� 7x � 5

3x 2 � 8

x
�

8

x
� 3x

x 3 � 8

x � 2
� x 2 � 2x � 4

x 2 � 9

x � 3
� x � 3

�3x � 4��2x � 1� � 5x � 6x 2 � 4

�4x � 3�2 � 16x 2 � 9 � 24x

�3

x � 4
�

7

x � 4
�

�5x � 4

x 2 � 16

5

2x � 3
�

4

2x � 3
�

14x � 3

4x 2 � 9

3

2x � 5
�

4

2x � 5
�

14x � 3

4x 2 � 25

2

2x � 1
�

3

2x � 1
�

�2x � 7

4x 2 � 1

2

2x � 5
�

3

2x � 5
�

10x � 5

4x 2 � 25

4

x � 2
�

1

x � 2
�

5x � 6

x 2 � 4

2

2x � 3
�

4

2x � 3
�

5x � 6

4x 2 � 9

1

x � 4
�

3

x � 4
�

3x � 8

x 2 � 16

2x

2x � 3
�

6

4x � 6
� 5

9x

3x � 1
� 2 �

3

3x � 1

�x � 1�3 � �x � 1�3 � 6x 2

�x � 3�3 � �3x � 1�2 � x 3 � 4



Exer. 53–54: Determine whether the two equations are
equivalent.

53 (a)

(b)

54 (a)

(b)

Exer. 55–56: Determine values for a and b such that is a
solution of the equation.

55 56

Exer. 57–58: Determine which equation is not equivalent to
the equation preceding it.

57

58

Exer. 59–62: Solve the formula for the specified variable.

59 for K

60 for C

61 for Q 62 for a� �
�

1 � �
M �

Q � 1

Q

CD � C � PC � N

EK � L � D � TK

 2 � 1
x � 2 � x � 1

�x � 2��x � 3� � �x � 1��x � 3�
x 2 � 5x � 6 � x 2 � 4x � 3

 5x � 6 � 4x � 3

 1 � 2
x � 1 � x � 2

�x � 1��x � 2� � �x � 2��x � 2�
x 2 � x � 2 � x 2 � 4

ax 2 � bx � 0ax � b � 0

5
3

8x

x � 7
�

56

x � 7
, x � 7

8x

x � 7
�

72

x � 7
, x � 9

7x

x � 5
�

35

x � 5
, x � 5

7x

x � 5
�

42

x � 5
, x � 6

Exer. 63–76: The formula occurs in the indicated applica-
tion. Solve for the specified variable.

63 for P (simple interest)

64 for r (circumference of a circle)

65 for h (area of a triangle)

66 for h (volume of a cone)

67 for m

68 for I

69 for w (perimeter of a rectangle)

70 for r (principal plus interest)

71 for (area of a trapezoid)

72 for (distance an object falls)

73 for q

74 for h

75 for q (lens equation)

76 for R2

1

R
�

1

R1

�
1

R2

�
1

R3

1

f
�

1

p
�

1

q

S � 2�lw � hw � hl�

S �
p

q � p�1 � q�

v0s �
1
2 gt 2 � v0t

b1A �
1
2 �b1 � b2�h

A � P � Prt

P � 2l � 2w

R �
V

I

F � g
mM

d 2

V �
1
3 �r 2h

A �
1
2 bh

C � 2�r

I � Prt
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(Amdahl’s law for 
supercomputers)

(surface area of a 
rectangular box)

(three resistors connected
in parallel)

(Ohm’s law in electrical
theory)

(Newton’s law of 
gravitation)

Equations are often used to solve applied problems—that is, problems that in-
volve applications of mathematics to other fields. Because of the unlimited va-
riety of applied problems, it is difficult to state specific rules for finding
solutions. The following guidelines may be helpful, provided the problem can
be formulated in terms of an equation in one variable.

2.2
Applied Problems
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The use of these guidelines is illustrated in the next example.

E X A M P L E  1 Test average

A student in an algebra course has test scores of 64 and 78. What score on a
third test will give the student an average of 80?

S O L U T I O N

Guideline 1 Read the problem at least one more time.

Guideline 2 The unknown quantity is the score on the third test, so we let

Guideline 3 A picture or diagram is unnecessary for this problem.

Guideline 4 Known facts are scores of 64 and 78 on the first two tests. A re-
lationship that involves x is the average score of 64, 78, and x. Thus,

Guideline 5 Since the average score in guideline 4 is to be 80, we consider the
equation

64 � 78 � x

3
� 80.

average score �
64 � 78 � x

3
.

x � score on the third test.

Guidelines for Solving 
Applied Problems

1 If the problem is stated in writing, read it carefully several times and
think about the given facts, together with the unknown quantity that is 
to be found.

2 Introduce a letter to denote the unknown quantity. This is one of the most
crucial steps in the solution. Phrases containing words such as what, find,
how much, how far, or when should alert you to the unknown quantity.

3 If appropriate, draw a picture and label it.

4 List the known facts, together with any relationships that involve the un-
known quantity. A relationship may be described by an equation in
which written statements, instead of letters or numbers, appear on one or
both sides of the equals sign.

5 After analyzing the list in guideline 4, formulate an equation that de-
scribes precisely what is stated in words.

6 Solve the equation formulated in guideline 5.

7 Check the solutions obtained in guideline 6 by referring to the original
statement of the problem. Verify that the solution agrees with the stated
conditions.
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Guideline 6 We solve the equation formulated in guideline 5:

multiply by 3

simplify

subtract 142

Guideline 7 C h e c k If the three test scores are 64, 78, and 98, then the
average is

as desired. L

In the remaining examples, try to identify the explicit guidelines that are
used in the solutions.

E X A M P L E  2 Calculating a presale price

A clothing store holding a clearance sale advertises that all prices have been
discounted 20%. If a shirt is on sale for $28, what was its presale price?

S O L U T I O N Since the unknown quantity is the presale price, we let

We next note the following facts:

The sale price is determined as follows:

Translating the last equation into symbols and then solving gives us

formulate an equation

subtract from 

divide by 0.80

The presale price was $35.

C h e c k If a $35 shirt is discounted 20%, then the discount (in dollars) is
and the sale price is , or $28. L

Banks and other financial institutions pay interest on investments. Usually
this interest is compounded (as described in Section 5.2); however, if money is
invested or loaned for a short period of time, simple interest may be paid, using
the following formula.

35 � 7�0.20��35� � 7

x �
28

0.80
� 35.

1x0.20x 0.80x � 28

x � 0.20x � 28

�presale price� � �discount� � sale price

 28 � sale price

 0.20x � discount of 20% on presale price

x � presale price.

64 � 78 � 98

3
�

240

3
� 80,

x � 98

 142 � x � 240

 64 � 78 � x � 80 � 3

�



The following table illustrates simple interest for three cases.

E X A M P L E  3 Investing money in two stocks

An investment firm has $100,000 to invest for a client and decides to invest it
in two stocks, A and B. The expected annual rate of return, or simple interest,
for stock A is 15%, but there is some risk involved, and the client does not wish
to invest more than $50,000 in this stock. The annual rate of return on the more
stable stock B is anticipated to be 10%. Determine whether there is a way of
investing the money so that the annual interest is

(a) $12,000 (b) $13,000

S O L U T I O N The annual interest is given by , which comes from the
simple interest formula with . If we let x denote the amount in-
vested in stock A, then will be invested in stock B. This leads to
the following equalities:

Adding the interest from both stocks, we obtain

Simplifying the right-hand side gives us

(∗)total annual interest � 10,000 � 0.05x.

total annual interest � 0.15x � 0.10�100,000 � x�.

 0.10�100,000 � x� � annual interest from stock B

 0.15x � annual interest from stock A

 100,000 � x � amount invested in stock B at 10%

x � amount invested in stock A at 15%

100,000 � x
t � 1I � Prt

I � Pr
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Simple Interest Formula If a sum of money P (the principal) is invested at a simple interest rate r
(expressed as a decimal), then the simple interest I at the end of t years is

I � Prt.

Principal P Interest rate r Number of years t Interest I � Prt

$1000 1

$2000

$3200 2 $3200�0.055��2� � $352 5 1
2 % � 0.055

 $2000�0.06��1.5� � $1801 1
2 6% � 0.06

$1000�0.08��1� � $80 8% � 0.08



(a) The total annual interest is $12,000 if

from (∗)

subtract 10,000

divide by 0.05

Thus, $40,000 should be invested in stock A, and the remaining $60,000
should be invested in stock B. Since the amount invested in stock A is not more
than $50,000, this manner of investing the money meets the requirement of 
the client.

C h e c k If $40,000 is invested in stock A and $60,000 in stock B, then the
total annual interest is

(b) The total annual interest is $13,000 if

from (∗)

subtract 10,000

divide by 0.05

Thus, $60,000 should be invested in stock A and the remaining $40,000 in
stock B. This plan does not meet the client’s requirement that no more than
$50,000 be invested in stock A. Hence, the firm cannot invest the client’s
money in stocks A and B such that the total annual interest is $13,000. L

In certain applications, it is necessary to combine two substances to ob-
tain a prescribed mixture, as illustrated in the next two examples.

E X A M P L E  4 Mixing chemicals

A chemist has 10 milliliters of a solution that contains a 30% concentration of
acid. How many milliliters of pure acid must be added in order to increase the
concentration to 50%?

S O L U T I O N Since the unknown quantity is the amount of pure acid to add,
we let

To help visualize the problem, let us draw a picture, as in Figure 1, and attach
appropriate labels.

x � number of mL of pure acid to be added.

x �
3000

0.05
� 60,000.

 0.05x � 3000

 10,000 � 0.05x � 13,000

40,000�0.15� � 60,000�0.10� � 6000 � 6000 � 12,000.

x �
2000

0.05
� 40,000.

 0.05x � 2000

 10,000 � 0.05x � 12,000
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�

(continued)



Since we can express the amount of pure acid in the final solution as either
(from the first two beakers) or , we obtain the equation

We now solve for x :

multiply factors

subtract and 3

divide by 0.5

Hence, 4 milliliters of pure acid should be added to the original solution.

C h e c k If 4 milliliters of acid is added to the original solution, then the new
solution contains 14 milliliters, 7 milliliters of which is pure acid. This is the
desired 50% concentration. L

E X A M P L E  5 Replacing antifreeze

A radiator contains 8 quarts of a mixture of water and antifreeze. If 40% of the
mixture is antifreeze, how much of the mixture should be drained and replaced
by pure antifreeze so that the resultant mixture will contain 60% antifreeze?

S O L U T I O N Let

Since there were 8 quarts in the original 40% mixture, we may depict the prob-
lem as in Figure 2.

x � number of qt of mixture to be drained.

x �
2

0.5
� 4

0.5x 0.5x � 2

 3 � x � 5 � 0.5x

3 � x � 0.50�10 � x�.

0.50�10 � x�3 � x
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�

Figure 1

� �

Original 30% mixture Pure acid New 50% mixture

Total amount of solution:
Amount of pure acid:

10 mL
0.30(10) � 3 mL

x mL
1.00(x) � x mL

10 � x mL
0.50(10 � x) mL



Since the number of quarts of pure antifreeze in the final mixture can be
expressed as either or 4.8, we obtain the equation

We now solve for x :

multiply factors

combine x terms and subtract 3.2

divide by 0.6

Thus, quarts should be drained from the original mixture.

C h e c k Let us first note that the amount of antifreeze in the original 8-quart
mixture was , or 3.2 quarts. In draining quarts of the original 40% mix-

ture, we lose quarts of antifreeze, and so quarts of an-
tifreeze remain after draining. If we then add quarts of pure antifreeze, the
amount of antifreeze in the final mixture is

This number, 4.8, is 60% of 8. L

E X A M P L E  6 Comparing times traveled by cars

Two cities are connected by means of a highway. A car leaves city B at
1:00 P.M. and travels at a constant rate of 40 toward city C. Thirty min-
utes later, another car leaves B and travels toward C at a constant rate of

. If the lengths of the cars are disregarded, at what time will the sec-
ond car reach the first car?

S O L U T I O N Let t denote the number of hours after 1:00 P.M. traveled by the
first car. Since the second car leaves B at 1:30 P.M., it has traveled hour less
than the first. This leads to the following table.

1
2

55 mi�hr

mi�hr

3.2 � 0.4�8
3� �

8
3 � 4.8 qt.

8
3

3.2 � 0.4�8
3�0.4�8

3�
8
30.4�8�

8
3

x �
1.6

0.6
�

16

6
�

8

3

 0.6x � 1.6

 3.2 � 0.4x � x � 4.8

0.40�8 � x� � x � 4.8.

0.40�8 � x� � x
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Figure 2

� �

Original 40% mixture,
less amount drained Pure antifreeze New 60% mixture

Total amount:
Amount of pure antifreeze:

(8 � x) qt
0.40(8 � x) qt

x qt
1.00(x) � x qt

8 qt
0.60(8) � 4.8 qt

�

(continued)



�

The schematic drawing in Figure 3 illustrates possible positions of the cars
t hours after 1:00 P.M. The second car reaches the first car when the number of
miles traveled by the two cars is equal—that is, when

Figure 3

We now solve for t :

multiply factors

subtract and add 

divide by 15

Thus, t is hours or, equivalently, 1 hour 50 minutes after 1:00 P.M. Conse-
quently, the second car reaches the first at 2:50 P.M.

C h e c k At 2:50 P.M. the first car has traveled for hours, and its distance

from B is mi. At 2:50 P.M. the second car has traveled for hours

and is mi from B. Hence, they are together at 2:50 P.M. L

E X A M P L E  7 Constructing a grain-elevator hopper

A grain-elevator hopper is to be constructed as shown in Figure 4, with a right
circular cylinder of radius 2 feet and altitude h feet on top of a right circular
cone whose altitude is one-half that of the cylinder. What value of h will make
the total volume V of the hopper ?500 ft3

55�4
3� �

220
3

11
340�11

6 � �
220
3

15
6

15
6

t �
55
30 �

11
6

55
240t 15t �

55
2

 55t �
55
2 � 40t

B C

B C

55(t � q)

40 t

55�t �
1
2� � 40t.
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Figure 4

h

qh

2�

Car Rate (mi�hr) Hours traveled Miles traveled

First car 40 t

Second car 55 55�t �
1
2�t �

1
2

40t
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S O L U T I O N If and denote the volumes (in ) and and
denote the heights (in feet) of the cylinder and cone, respectively, then,

using the formulas for volume stated on the endpapers at the front of the text,
we obtain the following:

Since the total volume V of the hopper is to be , we must have

multiply by 3

combine terms

divide by 
L

E X A M P L E  8 Time required to do a job

Two pumps are available for filling a gasoline storage tank. Pump A, used
alone, can fill the tank in 3 hours, and pump B, used alone, can fill it in 4 hours.
If both pumps are used simultaneously, how long will it take to fill the tank?

S O L U T I O N Let t denote the number of hours needed for A and B to fill the
tank if used simultaneously. It is convenient to introduce the part of the tank
filled in 1 hour as follows:

Using the fact that

we obtain

or

Taking the reciprocal of each side of the last equation gives us . Thus, if

pumps A and B are used simultaneously, the tank will be filled in hours, or
approximately 1 hour 43 minutes. L

15
7

t �
12
7

7

12
�

1

t
.

1

3
�

1

4
�

1

t
,

�part filled by

A in 1 hr � � �part filled by

B in 1 hr � � � part filled by

A and B in 1 hr�,

1

t
� part of the tank filled by A and B in 1 hr

1
4 � part of the tank filled by B in 1 hr

1
3 � part of the tank filled by A in 1 hr

14�h �
1500

14�

 34.1 ft.

 14�h � 1500

 12�h � 2�h � 1500

Vcylinder � Vcone � Vtotal 4�h �
2
3 �h � 500

500 ft3

Vcone �
1
3 �r 2hcone �

1
3 ��2�2�1

2 h� �
2
3 �h

Vcylinder � �r 2hcylinder � ��2�2h � 4�h

hcone

hcylinderft3VconeVcylinder
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1 Test scores A student in an algebra course has test scores of
75, 82, 71, and 84. What score on the next test will raise the
student’s average to 80?

2 Final class average Before the final exam, a student has test
scores of 72, 80, 65, 78, and 60. If the final exam counts as
one-third of the final grade, what score must the student re-
ceive in order to have a final average of 76?

3 Gross pay A worker’s take-home pay is $492, after deduc-
tions totaling 40% of the gross pay have been subtracted.
What is the gross pay?

4 Cost of dining out A couple does not wish to spend more
than $70 for dinner at a restaurant. If a sales tax of 6% is
added to the bill and they plan to tip 15% after the tax has
been added, what is the most they can spend for 
the meal?

5 Intelligence quotient A person’s intelligence quotient (IQ)
is determined by multiplying the quotient of his or her men-
tal age and chronological age by 100.

(a) Find the IQ of a 12-year-old child whose mental age is
15.

(b) Find the mental age of a person 15 years old whose IQ
is 140.

6 Earth’s surface area Water covers 70.8%, or about
, of Earth’s surface. Approximate the total

surface area of Earth.

7 Cost of insulation The cost of installing insulation in a par-
ticular two-bedroom home is $2400. Present monthly heat-
ing costs average $200, but the insulation is expected to
reduce heating costs by 10%. How many months will it take
to recover the cost of the insulation?

8 Overtime pay A workman’s basic hourly wage is $10, but
he receives one and a half times his hourly rate for 
any hours worked in excess of 40 per week. If his paycheck
for the week is $595, how many hours of overtime did 
he work?

9 Savings accounts An algebra student has won $100,000 in
a lottery and wishes to deposit it in savings accounts in two
financial institutions. One account pays 8% simple interest,
but deposits are insured only to $50,000. The second 

361 � 106 km2

account pays 6.4% simple interest, and deposits are insured
up to $100,000. Determine whether the money can be 
deposited so that it is fully insured and earns annual interest
of $7500.

10 Municipal funding A city government has approved the
construction of an $800 million sports arena. Up to 
$480 million will be raised by selling bonds that pay simple
interest at a rate of 6% annually. The remaining amount (up
to $640 million) will be obtained by borrowing money from
an insurance company at a simple interest rate of 5%. De-
termine whether the arena can be financed so that the annual
interest is $42 million.

11 Movie attendance Six hundred people attended the pre-
miere of a motion picture. Adult tickets cost $9, and child-
ren were admitted for $6. If box office receipts totaled
$4800, how many children attended the premiere?

12 Hourly pay A consulting engineer’s time is billed at $60 per
hour, and her assistant’s is billed at $20 per hour. A cus-
tomer received a bill for $580 for a certain job. If the assis-
tant worked 5 hours less than the engineer, how much time
did each bill on the job?

13 Preparing a glucose solution In a certain medical test 
designed to measure carbohydrate tolerance, an adult drinks
7 ounces of a 30% glucose solution. When the test is 
administered to a child, the glucose concentration must be
decreased to 20%. How much 30% glucose solution and
how much water should be used to prepare 7 ounces of 20%
glucose solution?

14 Preparing eye drops A pharmacist is to prepare 
15 milliliters of special eye drops for a glaucoma patient.
The eye-drop solution must have a 2% active ingredient, but
the pharmacist only has 10% solution and 1% solution in
stock. How much of each type of solution should be used to
fill the prescription?

15 Preparing an alloy British sterling silver is a copper-silver
alloy that is 7.5% copper by weight. How many grams of
pure copper and how many grams of British sterling silver
should be used to prepare 200 grams of a copper-silver alloy
that is 10% copper by weight?

2.2 E x e r c i s e s
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16 Drug concentration Theophylline, an asthma medicine, is
to be prepared from an elixir with a drug concentration of 
5 and a cherry-flavored syrup that is to be added to
hide the taste of the drug. How much of each must be used
to prepare 100 milliliters of solution with a drug concentra-
tion of 2 ?

17 Walking rates Two children, who are 224 meters apart, start
walking toward each other at the same instant at rates of 
1.5 and 2 , respectively (see the figure).

(a) When will they meet?

(b) How far will each have walked?

Exercise 17

18 Running rates A runner starts at the beginning of 
a runners’ path and runs at a constant rate of 6 . 
Five minutes later a second runner begins at the same point,
running at a rate of 8 and following the same course.
How long will it take the second runner to reach the first?

19 Snowplow speed At 6 A.M. a snowplow, traveling at a con-
stant speed, begins to clear a highway leading out of town.
At 8 A.M. an automobile begins traveling the highway at a
speed of 30 and reaches the plow 30 minutes later.
Find the speed of the snowplow.

20 Two-way radio range Two children own two-way radios
that have a maximum range of 2 miles. One leaves a certain
point at 1:00 P.M., walking due north at a rate of 4 .
The other leaves the same point at 1:15 P.M., traveling due
south at 6 . When will they be unable to communicate
with one another?

21 Rowing rate A boy can row a boat at a constant rate of 
5 in still water, as indicated in the figure. He rows up-
stream for 15 minutes and then rows downstream, returning
to his starting point in another 12 minutes.

mi�hr

mi�hr

mi�hr

mi�hr

mi�hr

mi�hr

224 m

1.5 m/s 2 m/s

m�secm�sec

mg�mL

mg�mL

Exercise 21

(a) Find the rate of the current.

(b) Find the total distance traveled.

22 Gas mileage A salesperson purchased an automobile that
was advertised as averaging 25 in the city and 
40 on the highway. A recent sales trip that covered
1800 miles required 51 gallons of gasoline. Assuming that
the advertised mileage estimates were correct, how many
miles were driven in the city?

23 Distance to a target A bullet is fired horizontally at a 
target, and the sound of its impact is heard 1.5 seconds later.
If the speed of the bullet is 3300 and the speed of
sound is 1100 , how far away is the target?

24 Jogging rates A woman begins jogging at 3:00 P.M., run-
ning due north at a 6-minute-mile pace. Later, she reverses
direction and runs due south at a 7-minute-mile pace. If she
returns to her starting point at 3:45 P.M., find the total num-
ber of miles run.

25 Fencing a region A farmer plans to use 180 feet of fencing
to enclose a rectangular region, using part of a straight river
bank instead of fencing as one side of the rectangle, as
shown in the figure on the next page. Find the area of the
region if the length of the side parallel to the river bank is

(a) twice the length of an adjacent side.

(b) one-half the length of an adjacent side.

(c) the same as the length of an adjacent side.

ft�sec
ft�sec

mi�gal
mi�gal

5 mi/hr

x mi/hr

Upstream net speed � 5 � x mi/hr

Downstream net speed � 5 � x mi/hr

x mi/hr

5 mi/hr



Exercise 25

26 House dimensions Shown in the figure is a cross section of
a design for a two-story home. The center height h of the
second story has not yet been determined. Find h such that
the second story will have the same cross-sectional area as
the first story.

Exercise 26

27 Window dimensions A stained-glass window is being de-
signed in the shape of a rectangle surmounted by a semicir-
cle, as shown in the figure. The width of the window is to
be 3 feet, but the height h is yet to be determined. If 24 
of glass is to be used, find the height h.

Exercise 27

3�

h

ft2

30� 8�

3�

h

28 Drainage ditch dimensions Every cross section of a
drainage ditch is an isosceles trapezoid with a small base of
3 feet and a height of 1 foot, as shown in the figure. Deter-
mine the width of the larger base that would give the ditch
a cross-sectional area of 5 .

Exercise 28

29 Constructing a silo A large grain silo is to be constructed 
in the shape of a circular cylinder with a hemisphere 
attached to the top (see the figure). The diameter of the silo
is to be 30 feet, but the height is yet to be determined. Find
the height h of the silo that will result in a capacity of

.

Exercise 29

30 Dimensions of a cone The wafer cone shown in the figure 
is to hold 8 of ice cream when filled to the bottom. The
diameter of the cone is 2 inches, and the top of the ice cream
has the shape of a hemisphere. Find the height h of the cone.

Exercise 30

31 Lawn mowing rates It takes a boy 90 minutes to mow the
lawn, but his sister can mow it in 60 minutes. How long
would it take them to mow the lawn if they worked together,
using two lawn mowers?

2�

h

in3

30�

h

11,250� ft3

1�

3�

ft2
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32 Filling a swimming pool With water from one hose, a swim-
ming pool can be filled in 8 hours. A second, larger hose used
alone can fill the pool in 5 hours. How long would it take to
fill the pool if both hoses were used simultaneously?

33 Delivering newspapers It takes a girl 45 minutes to deliver
the newspapers on her route; however, if her brother helps,
it takes them only 20 minutes. How long would it take her
brother to deliver the newspapers by himself?

34 Emptying a tank A water tank can be emptied by using one
pump for 5 hours. A second, smaller pump can empty the
tank in 8 hours. If the larger pump is started at 1:00 P.M., at
what time should the smaller pump be started so that the
tank will be emptied at 5:00 P.M.?

35 Grade point average (GPA) A college student has finished
48 credit hours with a GPA of 2.75. To get into the program
she wishes to enter, she must have a GPA of 3.2. How
many additional credit hours of 4.0 work will raise her
GPA to 3.2?

36 Ohm’s law In electrical theory, Ohm’s law states that
, where I is the current in amperes, V is the elec-

tromotive force in volts, and R is the resistance in ohms. In
a certain circuit and . If V and R are to be
changed by the same numerical amount, what change in
them will cause I to double?

37 Air temperature Below the cloud base, the air temperature
T (in �F) at height h (in feet) can be approximated by the
equation , where is the temperature at
ground level.

(a) Determine the air temperature at a height of 1 mile if
the ground temperature is 70�F.

(b) At what altitude is the temperature freezing?

T0T � T0 � � 5.5
1000�h

R � 50V � 110

I � V�R

38 Height of a cloud The height h (in feet) of the cloud base
can be estimated using , where T is the
ground temperature and D is the dew point.

(a) If the temperature is 70�F and the dew point is 55�F,
find the height of the cloud base.

(b) If the dew point is 65�F and the cloud base is 3500 feet,
estimate the ground temperature.

39 A cloud’s temperature The temperature T within a cloud at
height h (in feet) above the cloud base can be 
approximated using the equation , where B
is the temperature of the cloud at its base. Determine the
temperature at 10,000 feet in a cloud with a base tempera-
ture of 55�F and a base height of 4000 feet. Note: For an 
interesting application involving the three preceding exer-
cises, see Exercise 6 in the Discussion Exercises at the end
of the chapter.

40 Bone-height relationship Archeologists can determine the
height of a human without having a complete skeleton. If an
archeologist finds only a humerus, then the height of the 
individual can be determined by using a simple linear re-
lationship. (The humerus is the bone between the shoulder
and the elbow.) For a female, if x is the length of the
humerus (in centimeters), then her height h (in centimeters)
can be determined using the formula . For a
male, should be used.

(a) A female skeleton having a 30-centimeter humerus is
found. Find the woman’s height at death.

(b) A person’s height will typically decrease by 0.06 cen-
timeter each year after age 30. A complete male skele-
ton is found. The humerus is 34 centimeters, and the
man’s height was 174 centimeters. Determine his ap-
proximate age at death.

h � 73.6 � 3.0x
h � 65 � 3.14x

T � B � � 3
1000�h

h � 227�T � D�

2.3
Quadratic Equations

A toy rocket is launched vertically upward from level ground, as illustrated
in Figure 1. If its initial speed is and the only force acting on it is
gravity, then the rocket’s height h (in feet) above the ground after t seconds
is given by

Some values of h for the first 7 seconds of flight are listed in the following
table.

h � �16t 2 � 120t.

120 ft�sec

t (sec) 0 1 2 3 4 5 6 7

h (ft) 0 104 176 216 224 200 144 56



We see from the table that, as it ascended, the rocket was 180 feet above
the ground at some time between and . As it descended, the rocket
was 180 feet above the ground at some time between and . To find
the exact values of t for which , we must solve the equation

or

As indicated in the next chart, an equation of this type is called a quadratic
equation in t. After developing a formula for solving such equations, we will
return to this problem in Example 13 and find the exact times at which the
rocket was 180 feet above the ground.

To enable us to solve many types of equations, we will make use of the
next theorem.

The zero factor theorem can be extended to any number of algebraic ex-
pressions—that is,

if and only if or or

and so on. It follows that if  can be written as a product of two
first-degree polynomials, then solutions can be found by setting each factor
equal to 0, as illustrated in the next two examples. This technique is called the
method of factoring.

E X A M P L E  1 Solving an equation by factoring

Solve the equation .3x 2 � 10 � x

ax 2 � bx � c

r � 0,q � 0p � 0pqr � 0

16t 2 � 120t � 180 � 0.

180 � �16t 2 � 120t,

h � 180 ft
t � 6t � 5

t � 3t � 2
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Figure 1

h

Terminology Definition Illustrations

Quadratic equation in x An equation that can
be written in the form

where a � 0
4x � x2ax2 � bx � c � 0,
x�3 � x� � 5
4x 2 � 8 � 11x

Zero Factor Theorem If p and q are algebraic expressions, then

if and only if or q � 0.p � 0pq � 0
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S O L U T I O N To use the method of factoring, it is essential that only the num-
ber 0 appear on one side of the equation. Thus, we proceed as follows:

given

add

factor

zero factor theorem

solve for x

Hence, the solutions of the given equation are and �2. L

E X A M P L E  2 Solving an equation by factoring

Solve the equation .

S O L U T I O N We proceed as in Example 1:

given

subtract

factor

zero factor theorem

solve for x

Thus, the given quadratic equation has one solution, 4. L

Since appears as a factor twice in the previous solution, we call 4 a
double root or root of multiplicity 2 of the equation .

If a quadratic equation has the form for some number , then
or, equivalently,

Setting each factor equal to zero gives us the solutions and . We fre-
quently use the symbol ( plus or minus ) to represent both and

. Thus, for , we have proved the following result. (The case 
requires the system of complex numbers discussed in Section 2.4.)

Note on Notation: It is common practice to allow one variable to represent
more than one value, as in . A more descriptive notation is ,
implying that and .

The process of solving as indicated in the preceding box is re-
ferred to as taking the square root of both sides of the equation. Note that if

x 2 � d
x2 � �3x1 � 3

x1,2 � �3x � �3

d � 0d � 0�2d
2d2d�2d

2d�2d

�x � 2d��x � 2d� � 0.

x 2 � d � 0
d � 0x 2 � d

x 2 � 16 � 8x
x � 4

x � 4,  x � 4

x � 4 � 0, x � 4 � 0

�x � 4��x � 4� � 0

8xx 2 � 8x � 16 � 0

x 2 � 16 � 8x

x 2 � 16 � 8x

5
3

x �
5
3 , x � �2

3x � 5 � 0, x � 2 � 0

�3x � 5��x � 2� � 0

x � 10 3x 2 � x � 10 � 0

 3x 2 � 10 � x

A Special Quadratic Equation If then x � �2d.x 2 � d,



we obtain both a positive square root and a negative square root, not just
the principal square root defined in Section 1.2.

E X A M P L E  3 Solving equations of the form 

Solve the equations:

(a) (b)

S O L U T I O N

(a) given

take the square root

Thus, the solutions are and .

(b) given

take the square root

subtract 3

Thus, the solutions are and . L

In the work that follows we will replace an expression of the form 
by , where k and d are real numbers. This procedure, called complet-
ing the square for , calls for adding , as described in the next
box. (The same procedure is used for .)

E X A M P L E  4 Completing the square

Determine the value or values of d that complete the square for each expression.
Write the trinomial and the square of the binomial it represents.

(a) (b)

S O L U T I O N

(a) The square of half the coefficient of x is . Thus, and

x 2 � 3x �
9
4 � �x �

3
2�2.

d �
9
4��

3
2 �2

�
9
4

x 2 � dx � 64x 2 � 3x � d

x 2 � kx
�k�2�2x 2 � kx

�x � d �2

x 2 � kx

�3 � 25�3 � 25

x � �3 � 25

x � 3 � �25

�x � 3�2 � 5

�2525

x � �25

x 2 � 5

�x � 3�2 � 5x 2 � 5

x2 � d

d � 0
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Completing the Square
To complete the square for or , add ; that is, add the

square of half the coefficient of x.

(1)

(2) x 2 � kx � � k

2�2

� �x �
k

2�2

x 2 � kx � � k

2�2

� �x �
k

2�2

� k

2�2

x 2 � kxx 2 � kx
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(b) If , then , so
must equal 64 and must equal d. Hence, c must equal 8 or �8, and since

, d could equal 16 or �16. So we could have

or L

In the next example we solve a quadratic equation by completing a square.

E X A M P L E  5 Solving a quadratic equation by completing the square

Solve the equation .

S O L U T I O N It is convenient to first rewrite the equation so that only terms
involving x are on the left-hand side, as follows:

given

subtract 3

complete the square,

adding to both sides

equivalent equation

take the square root

add

Thus, the solutions of the equation are and
. L

In Example 5, we solved a quadratic equation of the form
with . If , we can solve the quadratic equation

by adding a step to the procedure used in the preceding example. After rewrit-
ing the equation so that only terms involving x are on the left-hand side,

we divide both sides by a, obtaining

We then complete the square by adding to both sides. This technique is

used in the proof of the following important formula.

� b

2a�2

x2 �
b

a
x � �

c

a
.

ax 2 � bx � �c,

a � 1a � 1ax2 � bx � c � 0

�5 � 213��2 
 0.7
�5 � 213��2 
 4.3

5
2x �

5

2
�
213

2
�

5 � 213

2

x �
5
2 � ��13

4

�x �
5
2�2

�
13
4

�5
2�2

x 2 � 5x � �5
2�2

� �3 � �5
2�2

x 2 � 5x � �3

x 2 � 5x � 3 � 0

x 2 � 5x � 3 � 0

x 2 � 16x � 64 � �x � 8�2.x 2 � 16x � 64 � �x � 8�2

d � 2c
2cc2

x 2 � 2cx � c2 � x 2 � dx � 64�x � c�2 � x 2 � dx � 64

Quadratic Formula If , the roots of are given by

x �
�b � 2b2 � 4ac

2a
.

ax 2 � bx � c � 0a � 0



P R O O F We shall assume that so that is a real
number. (The case in which will be discussed in the next sec-
tion.) Let us proceed as follows:

given

subtract c

divide by a

complete the square

equivalent equation

take the square root

subtract

We may write the radical in the last equation as

Since if or if , we see that in all cases

L

Note that if the quadratic formula is executed properly, it is unnecessary
to check the solutions.

The number under the radical sign in the quadratic formula 
is called the discriminant of the quadratic equation. The discriminant can 
be used to determine the nature of the roots of the equation, as in the follow-
ing chart.

The discriminant in the next two examples is positive. In Example 8 the
discriminant is 0.

b2 � 4ac

x � �
b

2a
�
2b2 � 4ac

2a
�

�b � 2b2 � 4ac

2a
.

a � 0� 2a � � �2aa � 0� 2a � � 2a

��b2 � 4ac

4a2
� �

2b2 � 4ac

2�2a�2
� �

2b2 � 4ac

� 2a �
.

b

2a
x � �

b

2a
� �b2 � 4ac

4a2

x �
b

2a
� ��b2 � 4ac

4a2

�x �
b

2a�2

�
b2 � 4ac

4a2

x 2 �
b

a
x � � b

2a�2

� � b

2a�2

�
c

a

x 2 �
b

a
x � �

c

a

ax 2 � bx � �c

ax 2 � bx � c � 0

b2 � 4ac � 0
2b2 � 4acb2 � 4ac 
 0
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The quadratic formula gives us two
solutions of the equation

They are where

and

x2 �
�b � 2b2 � 4ac

2a
.

x1 �
�b � 2b2 � 4ac

2a

x � x1, x2,

ax 2 � bx � c � 0.

Value of the discriminant Nature of the roots of
b2 � 4ac ax2 � bx � c � 0

Positive value Two real and unequal roots

0 One root of multiplicity 2

Negative value No real root
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E X A M P L E  6 Using the quadratic formula

Solve the equation .

S O L U T I O N Let , , and in the quadratic formula:

simplify the discriminant

Hence, the solutions are

and
L

Example 6 can also be solved by factoring. Writing 
and setting each factor equal to zero gives us and .

E X A M P L E  7 Using the quadratic formula

Solve the equation .

S O L U T I O N To use the quadratic formula, we must write the equation in the
form . The following equations are equivalent:

given

multiply factors

subtract 3

multiply by �1

We now let , , and in the quadratic formula, obtaining

Since 2 is a factor of the numerator and denominator, we can simplify the last
fraction as follows:

Hence, the solutions are 

and .
L

3 � 23

2

 0.63

3 � 23

2

 2.37

2�3 � 23�
2 � 2

�
3 � 23

2

x �
���6� � 2��6�2 � 4�2��3�

2�2�
�

6 � 212

4
�

6 � 223

4
.

c � 3b � �6a � 2

 2x 2 � 6x � 3 � 0

�2x 2 � 6x � 3 � 0

 6x � 2x 2 � 3

 2x�3 � x� � 3

ax2 � bx � c � 0

2x�3 � x� � 3

x � �1x �
3
4

�4x � 3��x � 1� � 0

x �
�1 � 7

8
� �1.x �

�1 � 7

8
�

3

4

249 � 7�
�1 � 7

8

�
�1 � 249

8

x �
�b � 2b2 � 4ac

2a
x �

�1 � 2�1�2 � 4�4���3�
2�4�

c � �3b � 1a � 4

4x 2 � x � 3 � 0

Note that

The 2 in the denominator must be 
divided into both terms of the numera-
tor, so

3 � 23

2
�

3

2
�

1

2
23.

3 � 23

2
�

3

2
� 23.



The following example illustrates the case of a double root.

E X A M P L E  8 Using the quadratic formula

Solve the equation .

S O L U T I O N Let , , and in the quadratic formula:

simplify

Consequently, the equation has one (double) root, . L

E X A M P L E  9 Clearing an equation of fractions

Solve the equation .

S O L U T I O N Using the guidelines stated in Section 2.1 for solving an equa-
tion containing rational expressions, we multiply by the lcd, ,
remembering that, by guideline 2, the numbers (�3 and 3) that make the lcd
zero cannot be solutions. Thus, we proceed as follows:

given

multiply by the lcd,

multiply factors and subtract 36

simplify

factor

zero factor theorem

solve for x

Since cannot be a solution, we see that is the only solution of
the given equation. L

The next example shows how the quadratic formula can be used to help
factor trinomials.

x � �
17
2x � 3

x � �
17
2 , x � 3

 2x � 17 � 0, x � 3 � 0

�2x � 17��x � 3� � 0

 2x 2 � 11x � 51 � 0

 2x 2 � 6x � 5x � 15 � 36 � 0

�x � 3��x � 3� 2x�x � 3� � 5�x � 3� � 36

2x

x � 3
�

5

x � 3
�

36

x2 � 9

�x � 3��x � 3�

2x

x � 3
�

5

x � 3
�

36

x2 � 9

5
3

�
30 � 0

18
�

5

3

�
30 � 2900 � 900

18

x �
�b � 2b2 � 4ac

2a
x �

���30� � 2��30�2 � 4�9��25�
2�9�

c � 25b � �30a � 9

9x 2 � 30x � 25 � 0
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E X A M P L E  1 0 Factoring with the quadratic formula

Factor the polynomial 

S O L U T I O N We solve the associated quadratic equation,

by using the quadratic formula:

We now write the equation as a product of linear factors, both of the form
(x � solution):

Eliminate the denominators by multiplying both sides by 

The left side is the desired factoring—that is,

L

In the next example, we use the quadratic formula to solve an equation
that contains more than one variable.

E X A M P L E  1 1 Using the quadratic formula

Solve for x, where .

S O L U T I O N The equation can be written in the form

so it is a quadratic equation in x with coefficients , , andb � �6a � 1

x 2 � 6x � 5 � y � 0,

x � 3y � x 2 � 6x � 5

21x 2 � 13x � 20 � (3x � 4)(7x � 5).

(3x � 4)(7x � 5) � 0

3�x �
4
3� � 7�x �

5
7� � 0

3 � 7�x �
4
3��x �

5
7� � 0 � 3 � 7

3 � 7:

� 0���5
7�x ���x �

4
3�

�
13 � 43

42
�

56

42
, �

30

42
�

4

3
, �

5

7

�
13 � 21849

42
�

13 � 2169 � 1680

42

x �
�(�13) �2(�13)2 � 4(21)(�20)

2(21)

21x 2 � 13x � 20 � 0,

21x 2 � 13x � 20.

(continued)



. Notice that y is considered to be a constant since we are solving
for the variable x. Now we use the quadratic formula:

simplify

factor out 

divide 2 into both terms

Since is nonnegative, is greater than or equal to 3 and
is less than or equal to 3. Because the given restriction is ,

we have

L

Many applied problems lead to quadratic equations. One is illustrated in
the following example.

E X A M P L E  1 2 Constructing a rectangular box

A box with a square base and no top is to be made from a square piece of tin
by cutting out a 3-inch square from each corner and folding up the sides. If the
box is to hold 48 , what size piece of tin should be used?

S O L U T I O N We begin by drawing the picture in Figure 2, letting x denote
the unknown length of the side of the piece of tin. Subsequently, each side of
the base of the box will have length .

Since the area of the base of the box is and the height is 3, we 
obtain

Since the box is to hold 48 ,

We now solve for x :

divide by 3

take the square root

add 6x � 6 � 4

x � 6 � �4

�x � 6�2 � 16

3�x � 6�2 � 48.

in3

volume of box � 3�x � 6�2.

�x � 6�2

x � 3 � 3 � x � 6

in3

x � 3 � 24 � y.

x � 33 � 24 � y
3 � 24 � y24 � y

� 3 � 24 � y

24 � 2�
6 � 224 � y

2

24�
6 � 2424 � y

2

b2 � 4ac�
6 � 216 � 4y

2

x �
�b � 2b2 � 4ac

2a
x �

���6� � 2��6�2 � 4�1��5 � y�
2�1�

c � 5 � y
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Figure 2

3

x

x � 6

3

x

3

x � 6 3

x � 6

3

x � 6
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Consequently,

or

C h e c k Referring to Figure 2, we see that is unacceptable, since
no box is possible in this case. However, if we begin with a 10-inch square of
tin, cut out 3-inch corners, and fold, we obtain a box having dimensions
4 inches, 4 inches, and 3 inches. The box has the desired volume of 48 .
Thus, a 10-inch square is the answer to the problem. L

As illustrated in Example 12, even though an equation is formulated cor-
rectly, it is possible to arrive at meaningless solutions because of the physical
nature of a given problem. Such solutions should be discarded. For example,
we would not accept the answer �7 years for the age of an individual or 
for the number of automobiles in a parking lot.

In the next example we solve the applied problem discussed at the begin-
ning of this section.

E X A M P L E  1 3 Finding the height of a toy rocket

The height above ground h (in feet) of a toy rocket, t seconds after it is
launched, is given by . When will the rocket be 180 feet
above the ground?

S O L U T I O N Using , we obtain the following:

let

add

divide by 4

Applying the quadratic formula with , , and gives us

Hence, the rocket is 180 feet above the ground at the following times:

L
t �

15 � 325

4

 5.43 sec

t �
15 � 325

4

 2.07 sec

�
30 � 2180

8
�

30 � 625

8
�

15 � 325

4
.

t �
���30� � 2��30�2 � 4�4��45�

2�4�

c � 45b � �30a � 4

 4t2 � 30t � 45 � 0

16t 2 � 120t 16t 2 � 120t � 180 � 0

h � 180 180 � �16t 2 � 120t

h � �16t 2 � 120t

h � �16t 2 � 120t

250

in3

x � 2

x � 2.x � 10

�

Note that the equation is quadratic in
t, so the quadratic formula is solved
for t.



Exer. 1–14: Solve the equation by factoring.

1 2

3 4

5 6

7 8

9 10

11

12

13

14

Exer. 15–16: Determine whether the two equations are
equivalent.

15 (a) (b)

16 (a) (b)

Exer. 17–24: Solve the equation by using the special quad-
ratic equation on page 75.

17 18

19 20

21 22

23 24

Exer. 25–26: Determine the value or values of d that com-
plete the square for the expression.

25 (a) (b)

(c) (d)

26 (a) (b)

(c) (d) x 2 � dx �
81
4x 2 � dx � 25

x 2 � 6x � dx 2 � 13x � d

x 2 � dx �
49
4x 2 � dx � 36

x 2 � 8x � dx 2 � 9x � d

9�x � 1�2 � 74�x � 2�2 � 11

�x � 4�2 � 31�x � 3�2 � 17

16x 2 � 4925x 2 � 9

x 2 � 361x 2 � 169

x � 264, x � 8x 2 � 25, x � 5

x � 29, x � 3x 2 � 16, x � 4

3x

x � 2
�

1

x � 2
�

�4

x 2 � 4

5x

x � 3
�

4

x � 3
�

90

x 2 � 9

5x

x � 2
�

3

x
� 2 �

�6

x 2 � 2x

2x

x � 3
�

5

x
� 4 �

18

x 2 � 3x

4x 2 � 72x � 324 � 012x 2 � 60x � 75 � 0

48x 2 � 12x � 90 � 075x 2 � 35x � 10 � 0

x�3x � 10� � 772x�4x � 15� � 27

15x 2 � 14 � 29x15x 2 � 12 � �8x

4x 2 � x � 14 � 06x 2 � x � 12 � 0

Exer. 27–30: Solve by completing the square. (Note: See the
discussion after Example 5 for help in solving Exercises 29
and 30.)

27 28

29 30

Exer. 31–44: Solve by using the quadratic formula.

31 32

33 34

35 36

37 38

39 40

41 42

43 44

Exer. 45–48: Use the quadratic formula to factor the ex-
pressions.

45 46

47 48

Exer. 49–50: Use the quadratic formula to solve the equa-
tion for (a) x in terms of y and (b) y in terms of x.

49 50

Exer. 51–54: Solve for the specified variable.

51 for v (kinetic energy)

52 for d (Newton’s law of gravitation)

53 for r (surface area of a closed cylinder)

54 for t (distance an object falls)s �
1
2 gt 2 � v0t

A � 2�r�r � h�

F � g
mM

d 2

K �
1
2 mv2

2x 2 � xy � 3y2 � 14x2 � 4xy � 1 � y2 � 0

15x 2 � 34x � 1612x2 � 16x � 3

x 2 � 7xx 2 � x � 30

1
7 x 2 � 1 �

4
7 x

5x

x 2 � 9
� �1

24x � 9 � �16x 24x 2 � 81 � 36x

x � 1

3x � 2
�

x � 2

2x � 3

5

w 2
�

10

w
� 2 � 0

5
3 s2 � 3s � 1 � 03

2 z2 � 4z � 1 � 0

3x 2 � 5x � 1 � 02x2 � 3x � 4 � 0

x 2 � 6x � 3 � 0x 2 � 4x � 2 � 0

5x 2 � 13x � 66x 2 � x � 2

4x 2 � 20x � 13 � 04x 2 � 12x � 11 � 0

x 2 � 8x � 11 � 0x 2 � 6x � 7 � 0
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55 Velocity of a gas When a hot gas exits a cylindrical smoke-
stack, its velocity varies throughout a circular cross section 
of the smokestack, with the gas near the center of the cross
section having a greater velocity than the gas near the perime-
ter. This phenomenon can be described by the formula

where is the maximum velocity of the gas, is the 
radius of the smokestack, and V is the velocity of the gas at
a distance r from the center of the circular cross section.
Solve this formula for r.

56 Density of the atmosphere For altitudes h up to 10,000 me-
ters, the density D of Earth’s atmosphere (in ) can be
approximated by the formula

Approximate the altitude if the density of the atmosphere 
is 0.74 .

57 Dimensions of a tin can A manufacturer of tin cans wishes
to construct a right circular cylindrical can of height 20 cen-
timeters and capacity 3000 (see the figure). Find the
inner radius r of the can.

Exercise 57

58 Constructing a rectangular box Refer to Example 12. A
box with an open top is to be constructed by cutting 3-inch
squares from the corners of a rectangular sheet of tin whose
length is twice its width. What size sheet will produce a box
having a volume of 60 ?

59 Baseball toss A baseball is thrown straight upward with 
an initial speed of 64 . The number of feet s above 
the ground after t seconds is given by the equation

.

(a) When will the baseball be 48 feet above the ground?

(b) When will it hit the ground?

s � �16t 2 � 64t

ft�sec

in3

r

20 cm

cm3

kg�m3

D � 1.225 � �1.12 � 10�4�h � �3.24 � 10�9�h2.

kg�m3

r0Vmax

V � Vmax�1 � � r

r0
�2�,

60 Braking distance The distance that a car travels between
the time the driver makes the decision to hit the brakes and
the time the car actually stops is called the braking distance.
For a certain car traveling v , the braking distance d
(in feet) is given by .

(a) Find the braking distance when v is 55 .

(b) If a driver decides to brake 120 feet from a stop sign,
how fast can the car be going and still stop by the time
it reaches the sign?

61 Temperature of boiling water The temperature T (in �C) at
which water boils is related to the elevation h (in meters
above sea level) by the formula

for .

(a) At what elevation does water boil at a temperature 
of 98�C?

(b) The elevation of Mt. Everest is approximately 
8840 meters. Estimate the temperature at which water
boils at the top of this mountain. (Hint: Use the quad-
ratic formula with .)

62 Coulomb’s law A particle of charge is located on a 
coordinate line at , and a particle of charge is 
located at , as shown in the figure. If a particle of
charge is located at a position x between and 2,
Coulomb’s law in electrical theory asserts that the net force
F acting on this particle is given by

for some constant . Determine the position at which
the net force is zero.

Exercise 62

63 Dimensions of a sidewalk A rectangular plot of ground 
having dimensions 26 feet by 30 feet is surrounded by a
walk of uniform width. If the area of the walk is 240 ,
what is its width?

ft2

�2 x 2

�1 �2�1

k � 0

F �
�k

�x � 2�2
�

2k

�2 � x�2

�2�1
x � 2

�2x � �2
�1

x � 100 � T

95 � T � 100

h � 1000�100 � T� � 580�100 � T�2

mi�hr

d � v � �v2�20�
mi�hr



64 Designing a poster A 24-by-36-inch sheet of paper is to be
used for a poster, with the shorter side at the bottom. The
margins at the sides and top are to have the same width, and
the bottom margin is to be twice as wide as the other mar-
gins. Find the width of the margins if the printed area is to
be 661.5 .

65 Fencing a garden A square vegetable garden is to be tilled
and then enclosed with a fence. If the fence costs $1 per foot
and the cost of preparing the soil is $0.50 per , determine
the size of the garden that can be enclosed for $120.

66 Fencing a region A farmer plans to enclose a rectangular re-
gion, using part of his barn for one side and fencing for the
other three sides. If the side parallel to the barn is to be twice
the length of an adjacent side, and the area of the region is to
be 128 , how many feet of fencing should be purchased?

67 Planning a freeway The boundary of a city is a circle of 
diameter 5 miles. As shown in the figure, a straight highway
runs through the center of the city from A to B. The high-
way department is planning to build a 6-mile-long freeway
from A to a point P on the outskirts and then to B. Find the
distance from A to P. (Hint: APB is a right triangle.)

Exercise 67

68 City expansion The boundary of a city is a circle of diameter
10 miles. Within the last decade, the city has grown in area by
approximately (about 50 ). Assuming the city
was always circular in shape, find the corresponding change
in distance from the center of the city to the boundary.

69 Distance between airplanes An airplane flying north at 
200 passed over a point on the ground at 2:00 P.M.
Another airplane at the same altitude passed over the point
at 2:30 P.M., flying east at 400 (see the figure).

(a) If t denotes the time in hours after 2:30 P.M., express the
distance d between the airplanes in terms of t.

(b) At what time after 2:30 P.M. were the airplanes 
500 miles apart?

mi�hr

mi�hr

mi216� mi2

5 mi

A

B

P

ft2

ft2

in2

Exercise 69

70 Two-way radio range Two surveyors with two-way radios
leave the same point at 9:00 A.M., one walking due south at
4 and the other due west at 3 . How long can
they communicate with one another if each radio has a max-
imum range of 2 miles?

71 Constructing a pizza box A pizza box with a square base is to
be made from a rectangular sheet of cardboard by cutting six
1-inch squares from the corners and the middle sections and
folding up the sides (see the figure). If the area of the base is
to be 144 , what size piece of cardboard should be used?

Exercise 71

72 Constructing wire frames Two square wire frames are to be
constructed from a piece of wire 100 inches long. If the area
enclosed by one frame is to be one-half the area enclosed by
the other, find the dimensions of each frame. (Disregard the
thickness of the wire.)

73 Canoeing rate The speed of the current in a stream is
5 . It takes a canoeist 30 minutes longer to paddle 
1.2 miles upstream than to paddle the same distance down-
stream. What is the canoeist’s rate in still water?

mi�hr

1�
1�

1�
1�

1� 1�

1�
1�

1�
1�

in2

mi�hrmi�hr
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74 Height of a cliff When a rock is dropped from a cliff into an
ocean, it travels approximately feet in t seconds. If the
splash is heard 4 seconds later and the speed of sound is
1100 , approximate the height of the cliff.

75 Quantity discount A company sells running shoes to deal-
ers for $40 per pair if less than 50 pairs are ordered. If 50 or
more pairs are ordered (up to 600), the price per pair is re-
duced at a rate of $0.04 times the number ordered. How
many pairs can a dealer purchase for $8400?

76 Price of a CD player When a popular brand of CD player 
is priced at $300 per unit, a store sells 15 units per week.
Each time the price is reduced by $10, however, the sales in-
crease by 2 per week. What selling price will result in
weekly revenues of $7000?

77 Dimensions of an oil drum A closed right circular cylin-
drical oil drum of height 4 feet is to be constructed so that
the total surface area is . Find the diameter of the
drum.

78 Dimensions of a vitamin tablet The rate at which a tablet of
vitamin C begins to dissolve depends on the surface area 
of the tablet. One brand of tablet is 2 centimeters long and
is in the shape of a cylinder with hemispheres of diameter
0.5 centimeter attached to both ends, as shown in the figure.
A second brand of tablet is to be manufactured in the shape
of a right circular cylinder of altitude 0.5 centimeter.

(a) Find the diameter of the second tablet so that its surface
area is equal to that of the first tablet.

(b) Find the volume of each tablet.

10� ft2

ft�sec

16t 2

Exercise 78

Exer. 79–80: During a nuclear explosion, a fireball will be
produced having a maximum volume . For temperatures
below 2000 K and a given explosive force, the volume V of
the fireball t seconds after the explosion can be estimated
using the given formula. (Note that the kelvin is abbreviated
as K, not .) Approximate t when V is 95% of .

79

(20-kiloton explosion)

80

(10-megaton explosion)

Exer. 81–82: When computations are carried out on a cal-
culator, the quadratic formula will not always give accurate
results if is large in comparison to ac, because one of the
roots will be close to zero and difficult to approximate.

(a) Use the quadratic formula to approximate the roots of
the given equation.

(b) To obtain a better approximation for the root near zero,
rationalize the numerator to change

to

and use the second formula.

81

82 x 2 � 73,000,000x � 2.01 � 0

x 2 � 4,500,000x � 0.96 � 0

x �
2c

�b � 2b2 � 4ac
,x �

�b � 2b2 � 4ac

2a

b2

V�V0 � 0.831 � 0.00598t � 0.0000919t 2

V�V0 � 0.8197 � 0.007752t � 0.0000281t 2

V0�K

V0

2 cm

0.5 cm

Complex numbers are needed to find solutions of equations that cannot be
solved using only the set of real numbers. The following chart illustrates sev-
eral simple quadratic equations and the types of numbers required for solutions.

�
2.4

Complex Numbers

Equation Solutions Type of numbers required

3, Integers

Rational numbers

Irrational numbers

? Complex numbersx2 � �9

25, �25x2 � 5

3
2 , �

3
2x2 �

9
4

�3x2 � 9
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The solutions of the first three equations in the chart are in ; however,
since squares of real numbers are never negative, does not contain the solu-
tions of . To solve this equation, we need the complex number sys-
tem , which contains both and numbers whose squares are negative.

We begin by introducing the imaginary unit, denoted by i, which has the
following properties.

Because its square is negative, the letter i does not represent a real number. It
is a new mathematical entity that will enable us to obtain . Since i, together
with , is to be contained in , we must consider products of the form bi for
a real number b and also expressions of the form for real numbers a and
b. The next chart provides definitions we shall use.

Note that the pure imaginary numbers are a subset of the imaginary num-
bers and the imaginary numbers are a subset of the complex numbers. We use
the phrase nonreal complex number interchangeably with imaginary number.

It is not necessary to memorize the definitions of addition and multiplica-
tion of complex numbers given in the preceding chart. Instead, we may treat
all symbols as having properties of real numbers, with exactly one exception:
We replace by . Thus, for the product we simply use the
distributive laws and the fact that

E X A M P L E  1 Addition and multiplication of complex numbers

Express in the form , where a and b are real numbers:

(a) (b) �3 � 4i��2 � 5i��3 � 4i� � �2 � 5i�
a � bi

�bi��di� � bdi 2 � bd��1� � �bd.

�a � bi��c � di��1i 2

a � bi
��

�

��

x 2 � �9
�

�

Terminology Definition Examples

Complex number where a and b are real numbers and 3, 2i

Imaginary number with

Pure imaginary number bi with

Equality if and only if and 
and

Sum see Example 1(a)

Product see Example 1(b)�a � bi� �c � di� � �ac � bd � � �ad � bc�i
�a � bi� � �c � di� � �a � c� � �b � d�i

y � 4x � 3
x � yi � 3 � 4i iffb � da � ca � bi � c � di

�4i, 23 i, ib � 0

3 � 2i, �4ib � 0a � bi

2 � i,i2 � �1a � bi,

Properties of i i � 2�1, i 2 � �1



S O L U T I O N

(a)

(b)

L

The set of real numbers may be identified with the set of complex num-
bers of the form . It is also convenient to denote the complex number

by bi. Thus,

Hence, we may regard as the sum of two complex numbers a and bi
(that is, and ). For the complex number , we call a the real
part and b the imaginary part.

E X A M P L E  2 Equality of complex numbers

Find the values of x and y, where x and y are real numbers:

S O L U T I O N We begin by equating the real parts and the imaginary parts of
each side of the equation:

Since , and . Since , . The values of x
and y that make the complex numbers equal are

L

With complex numbers, we are now able to solve an equation such as
. Specifically, since

we see that one solution is 3i and another is .
In the next chart we define the difference of complex numbers and multi-

plication of a complex number by a real number.

If we are asked to write an expression in the form , the form 
is acceptable, since .a � di � a � ��d�i

a � dia � bi

�3i

�3i��3i� � 32i 2 � 9��1� � �9,

x 2 � �9

x � 6 and y � 3.

y � 39 � 3yx � 62x � 122x � 4 � 8

2x � 4 � 8 and 9 � 3y

�2x � 4� � 9i � 8 � 3yi

a � bi0 � bia � 0i
a � bi

�a � 0i� � �0 � bi� � �a � 0� � �0 � b�i � a � bi.

0 � bi
a � 0i

�

� �14 � 23i

� 6 � 23i � 20��1�
� 6 � 8i � 15i � 20i2

�3 � 4i��2 � 5i� � �3 � 4i��2� � �3 � 4i��5i�
�3 � 4i� � �2 � 5i� � �3 � 2� � �4 � 5�i � 5 � 9i
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Terminology Definition

Difference

Multiplication by a real number k k�a � bi� � ka � �kb�i
�a � bi� � �c � di� � �a � c� � �b � d �i



E X A M P L E  3 Operations with complex numbers

Express in the form , where a and b are real numbers:

(a) (b) (c)

(d) (e)

S O L U T I O N

(a)

(b)

(c)

(d) Taking successive powers of i, we obtain

and then the cycle starts over:

In particular,

(e) In general, multiply by , where and b is a multiple of
4 (so that ). For , choose .

L

The following concept has important uses in working with complex
numbers.

Since , it follows that the conjugate of is

Therefore, and are conjugates of each other. Some properties
of conjugates are given in Exercises 57–62.

Conjugates

Complex number Conjugate

3 3

�4i4i

5 � 7i5 � 7i

5 � 7i5 � 7i

a � bia � bi

a � ��bi� � a � bi.

a � bia � bi � a � ��bi�

i�13 � i16 � i 3 � �i

b � 16i�13i b � 1
a � b � a � 3i bi�a

i 51 � i 48i 3 � �i 4�12i 3 � �1�12i 3 � �1���i� � �i.

i5 � i, i6 � i2 � �1, and so on.

i 1 � i, i 2 � �1, i 3 � �i, i 4 � 1,

i�3 � 2i�2 � i�9 � 12i � 4i 2� � i�5 � 12i� � 5i � 12i 2 � 12 � 5i

�4 � 3i��2 � i� � 8 � 6i � 4i � 3i 2 � 11 � 2i

4�2 � 5i� � �3 � 4i� � 8 � 20i � 3 � 4i � 5 � 24i

i�13i 51

i�3 � 2i�2�4 � 3i��2 � i�4�2 � 5i� � �3 � 4i�
a � bi
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I L L U S T R A T I O N

Definition of the Conjugate 
of a Complex Number

If is a complex number, then its conjugate, denoted by , is
.a � bi

zz � a � bi



The following two properties are consequences of the definitions of the
sum and the product of complex numbers.

Note that the sum and the product of a complex number and its conjugate are
real numbers. Conjugates are useful for finding the multiplicative inverse of

, , or for simplifying the quotient of two complex numbers.
As illustrated in the next example, we may think of these types of simplifica-
tions as merely rationalizing the denominator, since we are multiplying the
quotient by the conjugate of the denominator divided by itself.

E X A M P L E  4 Quotients of complex numbers

Express in the form , where a and b are real numbers:

(a) (b)

S O L U T I O N

(a)

(b)

L

If p is a positive real number, then the equation has solutions in
. One solution is , since

Similarly, is also a solution.
The definition of in the next chart is motivated by for
. When using this definition, take care not to write when is

intended.
2r i2rir � 0

�2r i�2
� �r2�r

�2p i

�2p i�2
� �2p�2i2 � p��1� � �p.

2p i�

x2 � �p

�
26 � 32i

34
�

13

17
�

16

17
i

7 � i

3 � 5i
�

7 � i

3 � 5i
�

3 � 5i

3 � 5i
�

21 � 35i � 3i � 5i2

9 � 25

1

9 � 2i
�

1

9 � 2i
�

9 � 2i

9 � 2i
�

9 � 2i

81 � 4
�

9

85
�

2

85
i

7 � i

3 � 5i

1

9 � 2i

a � bi

1��a � bi�a � bi
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Properties of conjugates Illustration

�4 � 3i� �4 � 3i� � 42 � �3i�2 � 42 � 32i2 � 42 � 32�a � bi� �a � bi� � a2 � b2

�4 � 3i� � �4 � 3i� � 4 � 4 � 2 � 4�a � bi� � �a � bi� � 2a

Terminology Definition Illustrations

Principal square root

for

2�1 � 21 i � i

2�5 � 25 ir � 02�r

2�9 � 29 i � 3i2�r � 2r i



The radical sign must be used with caution when the radicand is negative.
For example, the formula , which holds for positive real num-
bers, is not true when a and b are both negative, as shown below:

But

Hence,

If only one of a or b is negative, then . In general, we shall
not apply laws of radicals if radicands are negative. Instead, we shall change
the form of radicals before performing any operations, as illustrated in the next
example.

E X A M P L E  5 Working with square roots of negative numbers

Express in the form , where a and b are real numbers:

S O L U T I O N First we use the definition , and then we simplify:

L

In Section 2.3 we stated that if the discriminant of the quadratic
equation is negative, then there are no real roots of the equa-
tion. In fact, the solutions of the equation are two imaginary numbers. More-
over, the solutions are conjugates of each other, as shown in the next example.

E X A M P L E  6 A quadratic equation with complex solutions

Solve the equation .

S O L U T I O N Applying the quadratic formula with , and ,
we see that

Thus, the solutions of the equation are and . L

E X A M P L E  7 An equation with complex solutions

Solve the equation .x 3 � 1 � 0

�
1
5 �

2
5 i�

1
5 �

2
5 i

�
�2 � 2�16

10
�

�2 � 4i

10
�

�1 � 2i

5
� �

1

5
�

2

5
i.

x �
�2 � 222 � 4�5��1�

2�5�

c � 1a � 5, b � 2

5x 2 � 2x � 1 � 0

ax2 � bx � c � 0
b2 � 4ac

� �5 � 13i � 6 � 1 � 13i

� �5 � 10i � 3i � 6i 2

� �5 � 3i���1 � 2i�

�5 � 2�9���1 � 2�4� � �5 � 29 i���1 � 24 i�
2�r � 2r i

�5 � 2�9���1 � 2�4�
a � bi

2a 2b � 2ab

2�3 2�3 � 2��3���3�.

2��3���3� � 29 � 3.

2�3 2�3 � �23 i��23 i� � �23�2i 2 � 3��1� � �3

2a 2b � 2ab
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S O L U T I O N Using the difference of two cubes factoring formula with 
and , we write as

Setting each factor equal to zero and solving the resulting equations, we ob-
tain the solutions

or, equivalently,

Since the number 1 is called the unit real number and the given equation may
be written as , we call these three solutions the cube roots of unity.

L

In Section 1.3 we mentioned that is irreducible over the real num-
bers. However, if we factor over the complex numbers, then may be
factored as follows:

x 2 � 1 � �x � i��x � i�

x 2 � 1
x 2 � 1

x 3 � 1

1, �
1

2
�
23

2
i, �

1

2
�
23

2
i.

1,  
�1 � 21 � 4

2
�

�1 � 23 i

2

�x � 1��x 2 � x � 1� � 0.

x 3 � 1 � 0b � 1
a � x
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Difference of two cubes:

a3 � b3 � �a � b��a2 � ab � b2�

Exer. 1–34: Write the expression in the form , where
a and b are real numbers.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 (a) (b) 16 (a) (b)

17 (a) (b) 18 (a) (b)

19 20
5

2 � 7i

3

2 � 4i

i�55i66i�46i73

i�33i 92i�20i43

�4 � 9i��4 � 9i��3 � 4i��3 � 4i�

i�2 � 7i�2i�3 � 4i�2

�6 � 7i�2�5 � 2i�2

�8 � 2i��7 � 3i��1 � 3i��2 � 5i�

��2 � 6i��8 � i��3 � 5i��2 � 7i�

��3 � 8i� � �2 � 3i��7 � 6i� � ��11 � 3i�

��5 � 7i� � �4 � 9i��5 � 2i� � ��3 � 6i�

a � bi
21 22

23 24

25 26

27 28

29

30

31 32

33 34
2�25

2�16 2�81

2�36 2�49

2�16

5 � 2�121

1 � 2�25

4 � 2�81

7 � 2�64

��3 � 2�25��8 � 2�36�
�2 � 2�4��3 � 2�16�

�3 � 2i�3�2 � 5i�3

�2 � 6i

3i

4 � 2i

�5i

�3 � 2i

5 � 2i

�4 � 6i

2 � 7i

2 � 9i

�3 � i

1 � 7i

6 � 2i
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Exer. 35–38: Find the values of x and y, where x and y are
real numbers.

35 36

37

38

Exer. 39–56: Find the solutions of the equation.

39 40

41 42

43 44

45 46

47 48 x 3 � 27 � 0x 3 � 125 � 0

�3x 2 � x � 5 � 04x 2 � x � 3 � 0

x 2 � 3x � 6 � 0x 2 � 5x � 20 � 0

x 2 � 8x � 17 � 0x 2 � 4x � 13 � 0

x 2 � 2x � 26 � 0x 2 � 6x � 13 � 0

8 � �3x � y�i � 2x � 4i

�2x � y� � 16i � 10 � 4yi

�x � y� � 3i � 7 � yi4 � �x � 2y�i � x � 2i

49 50

51 52

53 54

55

56

Exer. 57–62: Verify the property.

57 58

59 60

61 if and only if z is real.

62 z2 � �z �2

z � z

z�w � z�wz � w � z � w

z � w � z � wz � w � z � w

8x 3 � 12x 2 � 2x � 3 � 0

x 3 � 3x 2 � 4x � 0

27x 4 � 21x 2 � 4 � 04x4 � 25x 2 � 36 � 0

x 4 � 81x 4 � 256

16x4 � (x � 4)427x3 � (x � 5)3
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2.5
Other Types of Equations

The equations considered in previous sections are inadequate for many prob-
lems. For example, in applications it is often necessary to consider powers 
with . Some equations involve absolute values or radicals. In this section
we give examples of equations of these types that can be solved using ele-
mentary methods.

E X A M P L E  1 Solving an equation containing an absolute value

Solve the equation .

S O L U T I O N If a and b are real numbers with , then if and
only if or . Hence, if , then either

Solving for x gives us

Thus, the given equation has two solutions, 8 and 2. L

For an equation such as

we first isolate the absolute value expression by subtracting 3 and dividing by
2 to obtain

and then we proceed as in Example 1.

� x � 5 � �
11 � 3

2
� 4,

2� x � 5 � � 3 � 11,

x � 5 � 3 � 8 or x � 5 � 3 � 2.

x � 5 � 3 or x � 5 � �3.

� x � 5 � � 3a � �ba � b
� a � � bb � 0

� x � 5 � � 3

k � 2
xk
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If an equation is in factored form with zero on one side, then we may ob-
tain solutions by setting each factor equal to zero. For example, if p, q, and r
are expressions in x and if , then either , , or . In the
next example we factor by grouping terms.

E X A M P L E  2 Solving an equation using grouping

Solve the equation .

S O L U T I O N given

group terms

factor out 

factor 

zero factor theorem

solve for x L

E X A M P L E  3 Solving an equation containing rational exponents

Solve the equation .

S O L U T I O N given

subtract

factor out 

zero factor theorem

solve for x L

In Example 3 it would have been incorrect to divide both sides of the
equation by , obtaining , since the solution would be
lost. In general, avoid dividing both sides of an equation by an expression that
contains variables—always factor instead.

If an equation involves radicals or fractional exponents, we often raise
both sides to a positive power. The solutions of the new equation always con-
tain the solutions of the given equation. For example, the solutions of

are also solutions of

In some cases the new equation has more solutions than the given equation. To
illustrate, if we are given the equation and we square both sides, we ob-
tain . Note that the given equation has only one solution, 3, but
the new equation has two solutions, 3 and . Any solution of the new
equation that is not a solution of the given equation is an extraneous solution.
Since extraneous solutions may occur, it is absolutely essential to check all so-
lutions obtained after raising both sides of an equation to an even power. Such
checks are unnecessary if both sides are raised to an odd power, because in this
case extraneous (real number) solutions are not introduced.

�3x2 � 9
x � 3x 2 � 9

x � 3

�2x � 3�2 � �2x � 6�2.

2x � 3 � 2x � 6

x � 0x � 1x1/2x 3/2 � x1/2

x � 0,  x � 1

x1/2 � 0, x � 1 � 0

x1/2x 1/2�x � 1� � 0

x1/2x 3/2 � x 1/2 � 0

x 3/2 � x 1/2

x 3/2 � x1/2

x � �1,  x � 1,  x � �2

x � 1 � 0, x � 1 � 0, x � 2 � 0

x 2 � 1�x � 1��x � 1��x � 2� � 0

x � 2�x 2 � 1��x � 2� � 0

x 2�x � 2� � 1�x � 2� � 0

x 3 � 2x 2 � x � 2 � 0

x 3 � 2x 2 � x � 2 � 0

r � 0q � 0p � 0pqr � 0

Raising both sides of an equation to
an odd power can introduce imagi-
nary solutions. For example, cubing
both sides of gives us ,
which is equivalent to .
This equation has three solutions, of
which two are imaginary (see Exam-
ple 7 in Section 2.4).

x 3 � 1 � 0
x 3 � 1x � 1



E X A M P L E  4 Solving an equation containing a radical

Solve the equation .

S O L U T I O N given

cube both sides

property of 

add 1

take the square root

Thus, the given equation has two solutions, 3 and . Except to detect alge-
braic errors, a check is unnecessary, since we raised both sides to an odd
power. L

In the last solution we used the phrase cube both sides of .
In general, for the equation , where x is a real number, we raise both
sides to the power (the reciprocal of ) to solve for x. If m is odd, we
obtain , but if m is even, we have . If n is even, extraneous
solutions may occur—for example, if , then 

. However, 4 is not a solution of since
, not .

Solving , m odd, x real

Equation Solution

Solving , m even, x real

Equation Solution

In the next two examples, before we raise both sides of the equation to a
power, we isolate a radical—that is, we consider an equivalent equation in
which only the radical appears on one side.

E X A M P L E  5 Solving an equation containing a radical

Solve the equation .

S O L U T I O N given

isolate the radical

square both sides

simplify

subtract

factor

zero factor theorem

solve for xx � 1,  x � 8

x � 1 � 0,  x � 8 � 0

�x � 1��x � 8� � 0

3x � 1x2 � 9x � 8 � 0

 3x � 1 � x 2 � 6x � 9
�23x � 1�2

� �x � 3�2

23x � 1 � x � 3

 3 � 23x � 1 � x

3 � 23x � 1 � x

x � �163/2 � ��216�3 � �43 � �64x 2/3 � 16

x � �161/4 � �24 16 � �2x 4/1 � 16

xm/n � a

x � 642/3 � �23 64�2 � 42 � 16x 3/2 � 64

x � 641/3 � 23 64 � 4x 3/1 � 64

x m/n � a

�843/2 � 8
x3/2 � �8�23 �8�2

� ��2�2 � 4
x � ��8�2/3 �x 3/2 � �8

x � �a n/mx � an/m

m�nn�m
xm/n � a

23 x 2 � 1 � 2

�3

x � �3

x 2 � 9

2
nx 2 � 1 � 8

�23 x 2 � 1�3
� 23

23 x 2 � 1 � 2

23 x 2 � 1 � 2
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We raised both sides to an even power, so checks are required.

C h e c k LS:
RS: 1

Since , is not a solution.

C h e c k  LS:
RS: 8

Since is a true statement, is a solution.
Hence, the given equation has one solution, . L

In order to solve an equation involving several radicals, it may be neces-
sary to raise both sides to powers two or more times, as in the next example.

E X A M P L E  6 Solving an equation containing radicals

Solve the equation .

S O L U T I O N

given

isolate

square both sides

isolate the radical
term

square both sides

multiply factors

subtract

factor

zero factor theorem

solve for x

A check is required, since both sides were raised to an even power.

C h e c k LS:
RS: 0

Since , is not a solution.

C h e c k  LS:
RS: 0

Since is a true statement, is a solution.
Hence, the given equation has one solution, . L

An equation is of quadratic type if it can be written in the form

au2 � bu � c � 0,

x � 2
x � 20 � 0

24 � 3 � 22 � 7 � 2 � 1 � 3 � 2 � 0x � 2

x � 424 � 0

284 � 3 � 242 � 7 � 2 � 9 � 7 � 2 � 4x � 42

x � 42, x � 2

x � 42 � 0, x � 2 � 0

�x � 42��x � 2� � 0

16x � 112x 2 � 44x � 84 � 0

x 2 � 28x � 196 � 16x � 112

x 2 � 28x � 196 � 16�x � 7�

x � 14 � �42x � 7

 2x � 3 � �x � 7� � 42x � 7 � 4

22x � 322x � 3 � 2x � 7 � 2

22x � 3 � 2x � 7 � 2 � 0

22x � 3 � 2x � 7 � 2 � 0

x � 8
x � 88 � 8

3 � 23�8� � 1 � 3 � 225 � 3 � 5 � 8x � 8

x � 15 � 1

3 � 23�1� � 1 � 3 � 24 � 3 � 2 � 5x � 1�

�

�

�



where and u is an expression in some variable. If we find the solutions
in terms of u, then the solutions of the given equation can be obtained by re-
ferring to the specific form of u.

E X A M P L E  7 Solving an equation of quadratic type

Solve the equation .

S O L U T I O N Since , the form of the equation suggests that we
let , as in the second line below:

given

let

factor

zero factor theorem

solve for u

cube both sides

A check is unnecessary, since we did not raise both sides to an even power.
Hence, the given equation has two solutions, and 8.

An alternative method is to factor the left side of the given equation as
follows:

By setting each factor equal to 0, we obtain the solutions. L

E X A M P L E  8 Solving an equation of quadratic type

Solve the equation .

S O L U T I O N Since , the form of the equation suggests that we let
, as in the second line below:

given

let

quadratic formula

take the square root

Thus, there are four solutions:

Using a calculator, we obtain the approximations and . A check
is unnecessary because we did not raise both sides of an equation to an 
even power. L

�0.62�1.62

�3 � 25

2
, ��3 � 25

2
, �3 � 25

2
, ��3 � 25

2

x � ��3 � 25

2

u � x2x2 �
3 � 25

2

u �
3 � 29 � 4

2
�

3 � 25

2

u � x 2u2 � 3u � 1 � 0

x 4 � 3x 2 � 1 � 0

u � x 2

x 4 � �x 2�2

x 4 � 3x 2 � 1 � 0

x2/3 � x1/3 � 6 � �x1/3 � 3��x1/3 � 2�

�27

x � �27,   x � 8

u � x1/3x1/3 � �3, x1/3 � 2

u � �3,  u � 2

u � 3 � 0, u � 2 � 0

�u � 3��u � 2� � 0

u � x1/3u2 � u � 6 � 0

x 2/3 � x 1/3 � 6 � 0

u � x1/3

x2/3 � �x1/3�2

x 2/3 � x 1/3 � 6 � 0

a � 0
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E X A M P L E  9 Determining the route of a ferry

A passenger ferry makes trips from a town to an island community that is
7 miles downshore from the town and 3 miles off a straight shoreline. As
shown in Figure 1, the ferry travels along the shoreline to some point and then
proceeds directly to the island. If the ferry travels 12 mi hr along the shoreline
and 10 mi hr as it moves out to sea, determine the routes that have a travel
time of 45 minutes.

S O L U T I O N Let x denote the distance traveled along the shoreline. This
leads to the sketch in Figure 2, where d is the distance from a point on the
shoreline to the island. Refer to the indicated right triangle:

Pythagorean theorem

square terms

simplify

Taking the square root of both sides and noting that , we obtain

Using distance (rate)(time) or, equivalently, time (distance) (rate) gives
us the following table.

The time for the complete trip is the sum of the two expressions in the last row
of the table. Since the rate is in mi hr, we must, for consistency, express this
time (45 minutes) as hour. Thus, we have the following:

total time for trip

subtract

multiply by the lcd, 60

factor

square both sides

multiply terms

simplify 11x 2 � 54x � 63 � 0

 36x 2 � 504x � 2088 � 2025 � 450x � 25x 2

 36�x 2 � 14x � 58� � 25�9 � x�2

 62x 2 � 14x � 58 � 5�9 � x�

 62x 2 � 14x � 58 � 45 � 5x

x

12

2x 2 � 14x � 58

10
�

3

4
�

x

12

x

12
�
2x 2 � 14x � 58

10
�

3

4

3
4

�

���

d � 2x 2 � 14x � 58.

d � 0

� x 2 � 14x � 58

� 49 � 14x � x 2 � 9

d 2 � �7 � x�2 � 32

�
�

Figure 1

3 mi

7 mi

Along the shoreline Away from shore

Distance (mi) x

Rate 12 10

Time (hr)
2x 2 � 14x � 58

10

x

12

�mi�hr�
2x 2 � 14x � 58

Figure 2

7

7 � xx

3d

(continued)



factor

zero factor theorem

solve for x

A check verifies that these numbers are also solutions of the original equa-
tion. Hence, there are two possible routes with a travel time of 45 minutes: the
ferry may travel along the shoreline either 3 miles or miles before
proceeding to the island. L

21
11 
 1.9

x � 3,       x �
21

11

x � 3 � 0, 11x � 21 � 0

�x � 3��11x � 21� � 0

100 C H A P T E R  2  E Q U A T I O N S  A N D  I N E Q U A L I T I E S

Exer. 1–50: Solve the equation.

1 2

3 4

5 6

7

8

9

10

11 12

13 14

15 16

17 18

19 20

21

22

23 24

25 26

27

28

29

30 22x � 2x � 3 � 25 � x

211 � 8x � 1 � 29 � 4x

421 � 3x � 26x � 3 � 2�6x � 1

27 � 2x � 25 � x � 24 � 3x

x � 2�7x � 24 � �2x � 25x � 19 � �1

x � 3 � 25x � 9x � 4 � 24x � 19

22x � 15 � 2 � 26x � 1

322x � 3 � 227 � x � 11

23 � x � x � 327 � x � x � 5

24 2x 2 � 1 � x25 2x 2 � 1 � 2 � 0

23 6 � s2 � 5 � 02 � 23 1 � 5t � 0

22x � 9 �
1
327 � 5x � 8

y4/3 � �3yy3/2 � 5y

15x 5 � 20x 4 � 6x 3 � 8x 2

4x 4 � 10x 3 � 6x 2 � 15x

3x 3 � 4x 2 � 27x � 36 � 0

9x 3 � 18x 2 � 4x � 8 � 0

� x � 2 � � 5 � 53� x � 1 � � 2 � �11

2� 5x � 2 � � 1 � 5� 3x � 2 � � 3 � 7

� x � 5 � � 2� x � 4 � � 11
31 32

33 34

35 36

37 38

39 40

41 42

43 44

45

46

47

48

49 (Hint: Raise both sides to the least 
common multiple of 3 and 4.)

50

Exer. 51–52: Find the real solutions of the equation.

51 (a) (b)

(c) (d)

(e)

52 (a) (b)

(c) (d)

(e) x 3/4 � �8

x 3/2 � 27x 4/3 � �49

x 2/3 � 25x3/5 � �27

x 3/2 � �27

x 3/4 � 125x 2/3 � �36

x 4/3 � 16x 5/3 � 32

2x � 3 � 24 2x � 6

23 x � 224 x

� x

x � 2�2

�
2x

x � 2
� 15 � 0

� t

t � 1�2

�
2t

t � 1
� 8 � 0

6u�1/2 � 13u�1/4 � 6 � 0

2x�2/3 � 7x�1/3 � 15 � 0

8t � 22t1/2 � 21 � 06w � 7w1/2 � 20 � 0

2y1/3 � 3y1/6 � 1 � 03x 2/3 � 4x 1/3 � 4 � 0

x�2 � 2x�1 � 35 � 036x�4 � 13x�2 � 1 � 0

3y4 � 5y2 � 1 � 05y4 � 7y2 � 1 � 0

2x4 � 10x2 � 8 � 0x 4 � 25x 2 � 144 � 0

2x � 1 � 2x � 1�1 � 42x � 2x � 1

�52x � 22x � 3�22x � 1 � 23x � 5
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Exer. 53–56: Solve for the specified variable.

53 for l (period of a pendulum)

54 for C (segments of circles)

55 for h (surface area of a cone)

56 for C (alternating-current circuits)

57 Ladder height The recommended distance d that a ladder
should be placed away from a vertical wall is 25% of its
length L. Approximate the height h that can be reached by
relating h as a percentage of L.

Exercise 57

58 Nuclear experiments Nuclear experiments performed in
the ocean vaporize large quantities of salt water. Salt boils
and turns into vapor at 1738 K. After being vaporized by a
10-megaton force, the salt takes at least 8–10 seconds to
cool enough to crystallize. The amount of salt A that has
crystallized t seconds after an experiment is sometimes cal-
culated using , where k and T are constants.
Solve this equation for t.

59 Windmill power The power P (in watts) generated by 
a windmill that has efficiency E is given by the formula

, where D is the diameter (in feet) of the
windmill blades and V is the wind velocity (in ). 
Approximate the wind velocity necessary to generate
10,000 watts if and .D � 10E � 42%

ft�sec
P � 0.31ED2V 3

A � k2t�T

hL

d

� �
1

2LC

S � �r2r 2 � h2

d �
1
224R2 � C 2

T � 2�� l

g

60 Withdrawal resistance of nails The withdrawal resistance
of a nail indicates its holding strength in wood. A formula
that is used for bright common nails is ,
where P is the maximum withdrawal resistance (in pounds),
S is the specific gravity of the wood at 12% moisture con-
tent, R is the radius of the nail (in inches), and D is the depth
(in inches) that the nail has penetrated the wood. A 6d (six-
penny) bright, common nail of length 2 inches and diame-
ter 0.113 inch is driven completely into a piece of Douglas
fir. If it requires a maximum force of 380 pounds to remove
the nail, approximate the specific gravity of Douglas fir.

61 The effect of price on demand The demand for a commod-
ity usually depends on its price. If other factors do not affect
the demand, then the quantity Q purchased at price P (in
cents) is given by , where k and c are positive con-
stants. If and , find the price that will result in
the purchase of 5000 items.

62 The urban heat island Urban areas have higher average air
temperatures than rural areas, as a result of the presence of
buildings, asphalt, and concrete. This phenomenon has be-
come known as the urban heat island. The temperature dif-
ference T (in �C) between urban and rural areas near
Montreal, with a population P between 1000 and 1,000,000,
can be described by the formula , where v
is the average wind speed (in ) and . If 
and , find P.

63 Dimensions of a sand pile As sand leaks out of a certain
container, it forms a pile that has the shape of a right circu-
lar cone whose altitude is always one-half the diameter d
of the base. What is d at the instant at which of
sand has leaked out?

Exercise 63

qd

d

144 cm3

v � 5
T � 3v 
 1mi�hr

T � 0.25P1/4�2v

c �
1
2k � 105

Q � kP�c

P � 15,700S 5/2RD



64 Inflating a weather balloon The volume of a spherical
weather balloon is . In order to lift a transmitter and
meteorological equipment, the balloon is inflated with an
additional of helium. How much does its diameter
increase?

65 The cube rule in political science The cube rule in political
science is an empirical formula that is said to predict the
percentage y of seats in the U.S. House of Representatives
that will be won by a political party from the popular vote
for the party’s presidential candidate. If x denotes the per-
centage of the popular vote for a party’s presidential candi-
date, then the cube rule states that

What percentage of the popular vote will the presidential
candidate need in order for the candidate’s party to win 60%
of the House seats?

66 Dimensions of a conical cup A conical paper cup is to have
a height of 3 inches. Find the radius of the cone that will re-
sult in a surface area of .

67 Installing a power line A power line is to be installed
across a river that is 1 mile wide to a town that is 5 miles
downstream (see the figure). It costs $7500 per mile to lay
the cable underwater and $6000 per mile to lay it overland.
Determine how the cable should be installed if $35,000 has
been allocated for this project.

6� in2

y �
x 3

x 3 � �1 � x�3
.

25 1
3 ft3

10 2
3 ft3

Exercise 67

68 Calculating human growth Adolphe Quetelet (1796–1874),
the director of the Brussels Observatory from 1832 to 1874,
was the first person to attempt to fit a mathematical expres-
sion to human growth data. If h denotes height in meters 
and t denotes age in years, Quetelet’s formula for males in
Brussels can be expressed as

with , the height at birth; , the final
adult male height; and .

(a) Find the expected height of a 12-year-old male.

(b) At what age should 50% of the adult height be
reached?

a � 0.545
hM � 1.684h0 � 0.5

h �
h

hM � h
� at �

h0 � t

1 �
4
3 t

,

x

1

5
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An inequality is a statement that two quantities or expressions are not equal.
It may be the case that one quantity is less than , less than or equal to 

, greater than , or greater than or equal to another quantity. Con-
sider the inequality

where x is a variable. As illustrated in the following table, certain numbers
yield true statements when substituted for x, and others yield false statements.

If a true statement is obtained when a number b is substituted for x, then
b is a solution of the inequality. Thus, is a solution of 2x � 3 � 11x � 5

2x � 3 � 11,

�
�������
���

2.6
Inequalities

x 2x � 3 > 11 Conclusion

3 False statement

4 False statement

5 True statement

6 True statement15 � 11

13 � 11

11 � 11

9 � 11
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since is true, but is not a solution since is false. To
solve an inequality means to find all solutions. Two inequalities are equiva-
lent if they have exactly the same solutions.

Most inequalities have an infinite number of solutions. To illustrate, the
solutions of the inequality

consist of every real number x between 2 and 5. We call this set of numbers an
open interval and denote it by (2, 5). The graph of the open interval (2, 5) is
the set of all points on a coordinate line that lie between—but do not in-
clude—the points corresponding to and . The graph is repre-
sented by shading an appropriate part of the axis, as shown in Figure 1. We
refer to this process as sketching the graph of the interval. The numbers 2 and
5 are called the endpoints of the interval (2, 5). The parentheses in the nota-
tion (2, 5) and in Figure 1 are used to indicate that the endpoints of the inter-
val are not included.

If we wish to include an endpoint, we use a bracket instead of a paren-
thesis. For example, the solutions of the inequality are denoted by
[2, 5] and are referred to as a closed interval. The graph of [2, 5] is sketched
in Figure 2, where brackets indicate that endpoints are included. We shall also
consider half-open intervals and and infinite intervals, as de-
scribed in the following chart. The symbol (read “infinity”) used for infinite
intervals is merely a notational device and does not represent a real number.

�
�a, b	�a, b�

2 � x � 5

x � 5x � 2

2 � x � 5

9 � 11x � 313 � 11

Intervals

Notation Inequality Graph

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) �� � x � ����, ��
b
]x � b���, b	

)
b

x � b���, b�

[
a

x 
 a�a, ��

(
a

x � a�a, ��

( ]
a b

a � x � b�a, b	

[ )
a b

a � x � b�a, b�

[ ]
a b

a � x � b�a, b	

( )
a b

a � x � b�a, b�

Figure 2

[ ]
0 2 5

Figure 1

)(
0 2 5



Methods for solving inequalities in x are similar to those used for solving
equations. In particular, we often use properties of inequalities to replace a
given inequality with a list of equivalent inequalities, ending with an inequal-
ity from which solutions are easily obtained. The properties in the following
chart can be proved for real numbers a, b, c, and d.

It is important to remember that multiplying or dividing both sides of an
inequality by a negative real number reverses the inequality sign (see prop-
erty 4). Properties similar to those above are true for other inequalities and for

and . Thus, if , then ; if and , then
; and so on.

If x represents a real number, then, by property 2, adding or subtracting
the same expression containing x on both sides of an inequality yields an
equivalent inequality. By property 3, we may multiply or divide both sides of
an inequality by an expression containing x if we are certain that the expres-
sion is positive for all values of x under consideration. To illustrate, multipli-
cation or division by would be permissible, since this
expression is always positive. If we multiply or divide both sides of an in-
equality by an expression that is always negative, such as , then, by
property 4, the inequality is reversed.

In examples we shall describe solutions of inequalities by means of inter-
vals and also represent them graphically.

E X A M P L E  1 Solving an inequality

Solve the inequality .

S O L U T I O N given

subtract 4

simplify

simplifyx � �
7
3

�3x

�3
�

7

�3

�3x � 7

��3x � 4� � 4 � 11 � 4

�3x � 4 � 11

�3x � 4 � 11

�7 � x 2

x 4 � 3x 2 � 5

ac � bc
c � 0a 
 ba � c � b � ca � b
�
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Property Illustration

(1) If and , then . and , so .

(2) If , then , so
and and .

(3) If and , then and , so

and and 

(4) If and , then and so

ac bc and and 
5

�3
.�

2

�3
5��3��2��3�

b

c
.�

a

c
�

�3 � 0,2 � 5c � 0a � b

2

3
�

5

3
.2 � 3 � 5 � 3

a

c
�

b

c
.ac � bc

3 � 02 � 5c � 0a � b

2 � 3 � 7 � 32 � 3 � 7 � 3a � c � b � c.a � c � b � c
2 � 7a � b

2 � 95 � 92 � 5a � cb � ca � b

Properties of Inequalities

Reverse the inequality when
multiplying or dividing by a
negative number.

divide by ;
reverse the inequality sign

�3



Thus, the solutions of consist of all real numbers x such that
. This is the interval sketched in Figure 3. L

E X A M P L E  2 Solving an inequality

Solve the inequality .

S O L U T I O N

given

add 3

simplify

subtract 2x

simplify

divide by 2

simplify

Hence, the solutions of the given inequality consist of all real numbers x such
that . This is the interval sketched in Figure 4. L

E X A M P L E  3 Solving an inequality

Solve the inequality .

S O L U T I O N A real number x is a solution of the given inequality if and only
if it is a solution of both of the inequalities

This first inequality is solved as follows:

given

add 4

simplify

divide by 2

simplify

equivalent inequality

The second inequality is then solved:

given

add 4

divide by 2

Thus, x is a solution of the given inequality if and only if both

that is,
�1 � x � 3.

x � �1 and x � 3;

x � 3

 2x � 6

 2x � 4 � 2

x � �1

�1 � x

�2

2
�

2x

2

�2 � 2x

�6 � 4 � �2x � 4� � 4

�6 � 2x � 4

�6 � 2x � 4 and 2x � 4 � 2.

�6 � 2x � 4 � 2

���, 4�x � 4

x � 4

2x

2
�

8

2

 2x � 8

 4x � 2x � �2x � 8� � 2x

 4x � 2x � 8

�4x � 3� � 3 � �2x � 5� � 3

 4x � 3 � 2x � 5

4x � 3 � 2x � 5

��7
3 , ��x � �

7
3

�3x � 4 � 11
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Figure 3

(

0�g

Figure 4

)
0 4

(continued)



Hence, the solutions are all numbers in the open interval sketched in
Figure 5.

An alternative (and shorter) method is to solve both inequalities simulta-
neously—that is, solve the continued inequality:

given

add 4

simplify

divide by 2 L

E X A M P L E  4 Solving a continued inequality

Solve the continued inequality .

S O L U T I O N A number x is a solution of the given inequality if and only if

We can either work with each inequality separately or solve both inequalities
simultaneously, as follows (keep in mind that our goal is to isolate x):

given

multiply by 2

subtract 4

simplify

simplify

equivalent inequality

Thus, the solutions of the inequality are all numbers in the half-open interval
sketched in Figure 6. L

E X A M P L E  5 Solving a rational inequality

Solve the inequality .

S O L U T I O N Since the numerator is positive, the fraction is positive if and
only if the denominator, , is also positive. Thus, or, equiva-
lently, , and the solutions are all numbers in the infinite interval 
sketched in Figure 7. L

�2, ��x � 2
x � 2 � 0x � 2

1

x � 2
� 0

�2
3 , 14

3 	

2
3 � x �

14
3

14
3 
 x �

2
3

�14

�3

     

�3x

�3
�

�2

�3

�14 � �3x � �2

�10 � 4 � �3x � 2 � 4

�10 �  4 � 3x � 2

�5 �
4 � 3x

2
� 1

�5 �
4 � 3x

2
and    

4 � 3x

2
� 1.

�5 �
4 � 3x

2
� 1

�1 � x � 3

�2 �  2x � 6

�6 � 4 �  2x � 2 � 4

�6 �  2x � 4 � 2

��1, 3�
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Figure 5

)(
0 3�1

Figure 6

0

(

;s
]

Figure 7

(
0 2

divide by ; reverse
the inequality signs

�3



E X A M P L E  6 Using a lens formula

As illustrated in Figure 8, if a convex lens has focal length f centimeters and if
an object is placed a distance p centimeters from the lens with , then the
distance q from the lens to the image is related to p and f by the formula

If cm, how close must the object be to the lens for the image to be more
than 12 centimeters from the lens?

S O L U T I O N Since , the given formula may be written as

We wish to determine the values of q such that . Let us first solve the
equation for q:

multiply by the lcd, 5pq

collect q terms on one side and factor

divide by 

To solve the inequality , we proceed as follows:

allowable, since implies 

multiply factors and collect p terms on one side

divide by ; reverse the inequality

Combining the last inequality with the fact that p is greater than 5, we obtain
the solution

L

If a point X on a coordinate line has coordinate x, as shown in Figure 9,
then X is to the right of the origin O if and to the left of O if . From
Section 1.1, the distance between O and X is the nonnegative real
number given by

It follows that the solutions of an inequality such as consist of the co-
ordinates of all points whose distance from O is less than 3. This is the open
interval sketched in Figure 10. Thus,

� x � � 3 is equivalent to �3 � x � 3.

��3, 3�

� x � � 3

d�O, X� � � x � 0 � � � x �.

d�O, X�
x � 0x � 0

5 � p �
60
7 .

�7p �
60
7

�7p � �60

p � 5 � 0p � f 5p � 12� p � 5�

q �
5p

p � 5

5p

p � 5
� 12

q � 12

5 � pq � �
5p

5 � p
�

5p

p � 5

q�5 � p� � �5p

 5q � 5p � pq

q � 12

1

p
�

1

q
�

1

5
.

f � 5

f � 5

1

p
�

1

q
�

1

f
.

p � f
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Figure 8

f f

p q

ImageObject

Figure 9

�2 0 1

O X

2 3

�x �

�1

�2 0 1

OX

2 3

�x �

�1�3

�3 4

4
x

x

Figure 10

( )
�3 0 3



Similarly, for , the distance between O and a point with coordinate
x is greater than 3; that is,

The graph of the solutions to is sketched in Figure 11. We often use
the union symbol and write

to denote all real numbers that are in either or .
The notation

represents the set of all real numbers except 2.
The intersection symbol is used to denote the elements that are com-

mon to two sets. For example,

since the intersection of and consists of all real numbers x
such that both and .

The preceding discussion may be generalized to obtain the following
properties of absolute values.

In the next example we use property 1 with and .

E X A M P L E  7 Solving an inequality containing an absolute value

Solve the inequality .

S O L U T I O N

given

property 1

isolate x by adding 3

simplify

Thus, the solutions are the real numbers in the open interval . The
graph is sketched in Figure 12. L

In the next example we use property 2 with and .b � 9a � 2x � 3

�2.5, 3.5�

 2.5 � x � 3.5

�0.5 � 3 � �x � 3� � 3 � 0.5 � 3

�0.5 � x � 3 � 0.5

� x � 3 � � 0.5

� x � 3 � � 0.5

b � 0.5a � x � 3

x � �3x � 3
��3, �����, 3�

���, 3� 	 ��3, �� � ��3, 3�,

	

���, 2� 
 �2, ��

�3, �����, �3�

���, �3� 
 �3, ��



� x � � 3

� x � � 3 is equivalent to x � �3 or x � 3.

� x � � 3
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Figure 11

)(
0 3�3

Properties of Absolute 
Values (b > 0)

(1) is equivalent to .

(2) is equivalent to or .a � ba � �b� a � � b

�b � a � b� a � � b

Figure 12

( )
0 2 31 2.5 3.5



E X A M P L E  8 Solving an inequality containing an absolute value

Solve the inequality .

S O L U T I O N given

property 2

subtract 3

divide by 2

Consequently, the solutions of the inequality consist of the num-
bers in . The graph is sketched in Figure 13. L

The trichotomy law in Section 1.1 states that for any real numbers a and
b exactly one of the following is true:

Thus, after solving in Example 8, we readily obtain the solu-
tions for and —namely, and , re-
spectively. Note that the union of these three sets of solutions is necessarily the
set of real numbers.

When using the notation , we must have . Thus, it is in-
correct to write the solution or (in Example 8) as .
Another misuse of inequality notation is to write , since when sev-
eral inequality symbols are used in one expression, they must point in the same
direction.

a � x � b
3 � x � �6x � 3x � �6

a � ba � x � b
�

��6, 3
��6, 3�� 2x � 3 � � 9� 2x � 3 � � 9
� 2x � 3 � � 9

a � b, a � b, or a � b

���, �6� 
 �3, ��
� 2x � 3 � � 9

x � �6  or  x � 3

 2x � �12 or  2x � 6

 2x � 3 � �9  or 2x � 3 � 9

� 2x � 3 � � 9

� 2x � 3 � � 9
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Figure 13

) (
0�6 3

2.6 E x e r c i s e s

1 Given , determine the inequality obtained if

(a) 5 is added to both sides

(b) 4 is subtracted from both sides

(c) both sides are multiplied by 

(d) both sides are multiplied by 

2 Given , determine the inequality obtained if

(a) 7 is added to both sides

(b) is subtracted from both sides�5

4 � �5

�
1
3

1
3

�7 � �3 (c) both sides are divided by 6

(d) both sides are divided by 

Exer. 3–12: Express the inequality as an interval, and
sketch its graph.

3 4

5 6

7 8

9 10

11 12 �3 
 x � �55 � x 
 �2

�3 � x � �13 � x � 7

�3 � x � 5�2 � x � 4

x � �3x 
 4

x � 5x � �2

�6



Exer. 13–20: Express the interval as an inequality in the
variable x.

13 14

15 16

17 18

19 20

Exer. 21–70: Solve the inequality, and express the solutions
in terms of intervals whenever possible.

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37

38

39

40

41 42

43 44

45 46

47 48

49 50

51 52 � x � 4 � � 0.03� x � 3 � � 0.01

� �x � � 2� x � 
 5

� x � � 7� x � � 3

4

x2 � 4
� 0

2

�1 � x�2
� 0

�3

2 � x
� 0

�2

4 � 3x
� 0

3

2x � 5
� 0

4

3x � 2

 0

2x�6x � 5� � �3x � 2��4x � 1�

�x � 4�2 � x�x � 12�

�x � 3��x � 3� 
 �x � 5�2

�2x � 3��4x � 5� � �8x � 1��x � 7�

�2 � 3 �
1
4 x � 50 � 4 �

1
3 x � 2

5 

6 � 5x

3
� 24 �

2 � 3x

7

 �2

�2 �
4x � 1

3
� 03 �

2x � 3

5
� 7

4 
 3x � 5 � �1�3 � 2x � 5 � 7

1
4 x � 7 �

1
3 x � 29 �

1
3 x 
 4 �

1
2 x

x � 8 � 5x � 32x � 5 � 3x � 7

3 � 5x � 11�2 � 3x 
 2

2x � 5 � 73x � 2 � 14

���, 2	���, �5�

��3, ���4, ��

�3, 7���4, �1	

�0, 4���5, 8	

53 54

55 56

57

58

59 60

61 62

63 64

65 66

67 68

69 70

Exer. 71–72: Solve part (a) and use that answer to deter-
mine the answers to parts (b) and (c).

71 (a) (b)

(c)

72 (a) (b)

(c)

Exer. 73–76: Express the statement in terms of an inequal-
ity involving an absolute value.

73 The weight w of a wrestler must be within 2 pounds of
148 pounds.

74 The radius r of a ball bearing must be within 0.01 centime-
ter of 1 centimeter.

75 The difference of two temperatures and within a
chemical mixture must be between 5°C and 10°C.

76 The arrival time t of train B must be at least 5 minutes dif-
ferent from the 4:00 P.M. arrival time of train A.

77 Temperature scales Temperature readings on the Fahr-
enheit and Celsius scales are related by the formula

. What values of F correspond to the values
of C such that ?30 � C � 40
C �

5
9 �F � 32�

T2T1

� x � 3 � � 2

� x � 3 � � 2� x � 3 � � 2

� x � 5 � � 3

� x � 5 � � 3� x � 5 � � 3

2 � � 2x � 1 � � 31 � � x � 2 � � 4

1 � � x � � 5�2 � � x � � 4

2

� 2x � 3 �

 5

3

� 5 � 2x �
� 2

�2x � 5

3 � � 1�2 � 3x

5 � 
 2

� 5x � 2 � � 0� 3x � 9 � � 0

� 6x � 5 � � �2� 7x � 2 � � �2

2� �11 � 7x � � 2 � 10

�
1
3 � 6 � 5x � � 2 
 1

� 3x � 7 � 
 5� 2x � 5 � � 4

� x � 3 � � 0.3 � 0.1� x � 2 � � 0.1 
 0.2
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78 Hooke’s law According to Hooke’s law, the force F (in
pounds) required to stretch a certain spring x inches beyond
its natural length is given by (see the figure). If

, what are the corresponding values for x?

Exercise 78

79 Ohm’s law Ohm’s law in electrical theory states that if R de-
notes the resistance of an object (in ohms), V the potential
difference across the object (in volts), and I the current that
flows through it (in amperes), then . If the voltage
is 110, what values of the resistance will result in a current
that does not exceed 10 amperes?

80 Electrical resistance If two resistors and are con-
nected in parallel in an electrical circuit, the net resistance
R is given by

If , what values of will result in a net re-
sistance of less than 5 ohms?

81 Linear magnification Shown in the figure is a simple mag-
nifier consisting of a convex lens. The object to be magni-
fied is positioned so that the distance p from the lens is less
than the focal length f. The linear magnification M is the
ratio of the image size to the object size. It is shown in
physics that . If , how far should
the object be placed from the lens so that its image appears
at least three times as large? (Compare with Example 6.)

f � 6 cmM � f�� f � p�

R2R1 � 10 ohms

1

R
�

1

R1

�
1

R2

.

R2R1

R � V�I

Natural length

Stretched
x inches

x

10 � F � 18
F � �4.5�x

Exercise 81

82 Drug concentration To treat arrhythmia (irregular heart-
beat), a drug is fed intravenously into the bloodstream. Sup-
pose that the concentration c of the drug after t hours is
given by . If the minimum therapeu-
tic level is , determine when this level is exceeded.

83 Business expenditure A construction firm is trying to de-
cide which of two models of a crane to purchase. Model A
costs $100,000 and requires $8000 per year to maintain.
Model B has an initial cost of $80,000 and a maintenance
cost of $11,000 per year. For how many years must model
A be used before it becomes more economical than B?

84 Buying a car A consumer is trying to decide whether to 
purchase car A or car B. Car A costs $20,000 and has an
mpg rating of 30, and insurance is $1000 per year. Car B
costs $24,000 and has an mpg rating of 50, and insurance 
is $1200 per year. Assume that the consumer drives
15,000 miles per year and that the price of gas remains con-
stant at $3 per gallon. Based only on these facts, determine
how long it will take for the total cost of car B to become
less than that of car A.

85 Decreasing height A person’s height will typically de-
crease by 0.024 inch each year after age 30.

(a) If a woman was 5 feet 9 inches tall at age 30, predict
her height at age 70.

(b) A 50-year-old man is 5 feet 6 inches tall. Determine an
inequality for the range of heights (in inches) that this
man will experience between the ages of 30 and 70.

1.5 mg�L
c � 3.5t��t � 1� mg�L

Object
Image

p
f
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To solve an inequality involving polynomials of degree greater than 1, we shall
express each polynomial as a product of linear factors and/or irre-
ducible quadratic factors . If any such factor is not zero in an in-
terval, then it is either positive throughout the interval or negative throughout the
interval. Hence, if we choose any k in the interval and if the factor is positive

ax 2 � bx � c
ax � b

2.7
More on Inequalities



(or negative) for , then it is positive (or negative) throughout the interval.
The value of the factor at is called a test value of the factor at the test
number k. This concept is exhibited in the following example.

E X A M P L E  1 Solving a quadratic inequality

Solve the inequality .

S O L U T I O N To use test values, it is essential to have 0 on one side of the in-
equality sign. Thus, we proceed as follows:

given

make one side 0

factor

The factors and are zero at and , respectively. The corre-
sponding points on a coordinate line (see Figure 1) determine the noninter-
secting intervals

We may find the signs of and in each interval by using a test
value taken from each interval. To illustrate, if we choose in

, the values of both and are negative, and hence they
are negative throughout . A similar procedure for the remaining two
intervals gives us the following sign chart, where the term resulting sign in the
last row refers to the sign obtained by applying laws of signs to the product of
the factors. Note that the resulting sign is positive or negative according to
whether the number of negative signs of factors is even or odd, respectively.

Sometimes it is convenient to represent the signs of and by
using a coordinate line and a sign diagram, of the type illustrated in Figure 2.
The vertical lines indicate where the factors are zero, and signs of factors are
shown above the coordinate line. The resulting signs are shown in red.

Figure 2

�1 0 w

Resulting sign � � �
�
�

�
�

�
�

Sign of 2x � 3
Sign of x � 1

2x � 3x � 1

���, �1�
2x � 3x � 1���, �1�

k � �10
2x � 3x � 1

���, �1�, ��1, 3
2�, and  �3

2 , ��.

3
2�12x � 3x � 1

�x � 1��2x � 3� � 0

 2x 2 � x � 3 � 0

 2x 2 � x � 3

2x 2 � x � 3

x � k
x � k
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Figure 1

�1 0 w

Interval (��, �1)

Sign of 

Sign of 

Resulting sign ���

���2x � 3

���x � 1

�3
2 , � ���1, 3

2�



The solutions of are the values of x for which the
product of the factors is negative—that is, where the resulting sign is negative. 
This corresponds to the open interval . L

Back on page 74, we discussed the zero factor theorem, which dealt with
equalities. It is a common mistake to extend this theorem to inequalities. The
following warning shows this incorrect extension applied to the inequality in
Example 1.

is not equivalent to or

In future examples we will use either a sign chart or a sign diagram, but
not both. When working exercises, you should choose the method of solution
with which you feel most comfortable.

E X A M P L E  2 Solving a quadratic inequality

Solve the inequality .

S O L U T I O N given

make one side 0

divide by the common factor
; reverse the inequality

factor

The factors are zero at 2 and 5. The corresponding points on a coordinate line
(see Figure 3) determine the nonintersecting intervals

As in Example 1, we may use test values from each interval to obtain the fol-
lowing sign chart.

The solutions of are the values of x for which the re-
sulting sign is positive. Thus, the solution of the given inequality is the union

. L

E X A M P L E  3 Using a sign diagram to solve an inequality

Solve the inequality .
�x � 2��3 � x�
�x � 1��x 2 � 1�

� 0

���, 2� 
 �5, ��

�x � 2��x � 5� � 0

���, 2�, �2, 5�, and �5, ��.

�x � 2��x � 5� � 0

�3
x 2 � 7x � 10 � 0

�3x 2 � 21x � 30 � 0

�3x 2 � �21x � 30

�3x 2 � �21x � 30

2x � 3 � 0x � 1 � 0�x � 1��2x � 3� � 0

��1, 3
2�

�x � 1��2x � 3� � 0
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Y Warning! Y

Figure 3

0 52

Interval (��, 2) (2, 5) (5, �)

Sign of 

Sign of 

Resulting sign ���

���x � 5

���x � 2



S O L U T I O N Since 0 is already on the right side of the inequality and the left
side is factored, we may proceed directly to the sign diagram in Figure 4,
where the vertical lines indicate the zeros , , and 3 of the factors.

Figure 4

The frame around the indicates that makes a factor in the denominator
of the original inequality equal to 0. Since the quadratic factor is 
always positive, it has no effect on the sign of the quotient and hence may 
be omitted from the diagram.

The various signs of the factors can be found using test values. Alterna-
tively, we need only remember that as x increases, the sign of a linear factor

changes from negative to positive if the coefficient a of x is positive,
and the sign changes from positive to negative if a is negative.

To determine where the quotient is less than or equal to 0, we first note
from the sign diagram that it is negative for numbers in .
Since the quotient is 0 at and , the numbers and 3 are also
solutions and must be included in our solution. Lastly, the quotient is unde-
fined at , so must be excluded from our solution. Thus, the solu-
tions of the given inequality are given by

L

E X A M P L E  4 Using a sign diagram to solve an inequality

Solve the inequality .

S O L U T I O N Rewriting the inequality as

we see that is a factor of both the numerator and the denominator. Thus,
assuming that (that is, ), we may cancel this factor and re-
duce our search for solutions to the case

We next observe that this quotient is 0 if that is, if .
Hence, is a solution. To find the remaining solutions, we construct the sign�

1
2

x � �
1
2 ��2x � 1 � 0

�2x � 1�2

x�x � 1�

 0 and x � 1.

x � 1x � 1 � 0
x � 1

�2x � 1�2�x � 1�
x�x � 1��x � 1�


 0,

�2x � 1�2�x � 1�
x�x2 � 1�


 0

��2, �1� 
 �3, ��.

�1x � �1

�2x � 3x � �2
��2, �1� 
 �3, ��

ax � b

x 2 � 1
�1�1

�1 0

Resulting sign
� �
�
�

�
�

Sign of x � 1
Sign of x � 2

�2

�
�
�

���

Sign of 3 � x

3

�
�
�

�

��1��2
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diagram in Figure 5. We do not include in the sign diagram, since
this expression is always positive if and so has no effect on the sign
of the quotient. Referring to the resulting sign and remembering that is a
solution but 1 is not a solution, we see that the solutions of the given inequal-
ity are given by

L

E X A M P L E  5 Using a sign diagram to solve an inequality

Solve the inequality .

S O L U T I O N A common mistake in solving such an inequality is to first
multiply both sides by . If we did so, we would have to consider two
cases, since may be positive or negative (assuming ), and we
might have to reverse the inequality. A simpler method is to first obtain an
equivalent inequality that has 0 on the right side and proceed from there:

given

make one side 0

combine into one fraction

simplify

multiply by 

Note that the direction of the inequality is changed in the last step, since we
multiplied by a negative number. This multiplication was performed for con-
venience, so that all factors would have positive coefficients of x.

The factors and are 0 at and , respectively.
This leads to the sign diagram in Figure 6, where the signs are determined as
in previous examples. We see from the diagram that the resulting sign, and
hence the sign of the quotient, is positive in . The quo-
tient is 0 at (include ) and undefined at (exclude ).
Hence, the solution of is .

Figure 6

�3 0

Resulting sign � � �
�
�

�
�

�
�

Sign of x � 3
Sign of x � 5

�5

���, �5	 
 ��3, ���x � 5���x � 3� 
 0
�3x � �3�5x � �5

���, �5� 
 ��3, ��

x � �3x � �5x � 3x � 5

�1
x � 5

x � 3

 0

�x � 5

x � 3
� 0

x � 1 � 2�x � 3�
x � 3

� 0

x � 1

x � 3
� 2 � 0

x � 1

x � 3
� 2

x � 3 � 0x � 3
x � 3

x � 1

x � 3
� 2

���, �1� 
 ��
1
2 
 
 �0, 1� 
 �1, ��.

�
1
2

x � �
1
2

�2x � 1�2
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Figure 5

�1 0

Resulting sign � � �
�
�

�
�

�
�

Sign of x
Sign of x � 1

(continued)



An alternative method of solution is to begin by multiplying both sides of
the given inequality by , assuming that . In this case,

and the multiplication is permissible; however, after the result-
ing inequality is solved, the value must be excluded. L

E X A M P L E  6 Determining minimum therapeutic levels

For a drug to have a beneficial effect, its concentration in the bloodstream must
exceed a certain value, which is called the minimum therapeutic level. Suppose
that the concentration c (in mg L) of a particular drug t hours after it is taken
orally is given by

If the minimum therapeutic level is 4 mg L, determine when this level is
exceeded.

S O L U T I O N The minimum therapeutic level, 4 mg L, is exceeded if 
. Thus, we must solve the inequality

Since for every t, we may multiply both sides by and pro-
ceed as follows:

allowable, since 

make one side 0

divide by the common factor 

factor

The factors in the last inequality are 0 when and . These are the
times at which c is equal to 4. As in previous examples, we may use a sign
chart or sign diagram (with ) to show that for every t
in the interval . Hence, the minimum therapeutic level is exceeded if

. L

Some basic properties of inequalities were stated at the beginning of the
last section. The following additional properties are helpful for solving certain
inequalities. Proofs of the properties are given after the chart.

1 � t � 4
�1, 4�

�t � 1��t � 4� � 0t 
 0

t � 4t � 1

�t � 1��t � 4� � 0

�4t 2 � 5t � 4 � 0

�4t 2 � 20t � 16 � 0

t 2 � 4 � 0 20t � 4t 2 � 16

t 2 � 4t 2 � 4 � 0

20t

t 2 � 4
� 4.

c � 4
�

�

c �
20t

t 2 � 4
.

�

x � �3
�x � 3�2 � 0

x � �3�x � 3�2
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P R O O F S

(1) If , then multiplying by yields

(2) If , then multiplying by a yields and multiplying
by b yields , so and hence .

(3) If , then or, equivalently,

Dividing both sides of the last inequality by , we obtain
; that is, . L2b � 2a2b � 2a � 0

2b � 2a

�2b � 2a��2b � 2a� � 0.

b � a � 00 � a � b

a2 � b2a2 � ab � b2b � a � b � b
a � a � a � b0 � a � b

a �
1

ab
� b �

1

ab
, or  

1

b
�

1

a
; that is,  

1

a
�

1

b
.

1��ab�0 � a � b
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2.7 E x e r c i s e s

Exer. 1–40: Solve the inequality, and express the solutions
in terms of intervals whenever possible.

1 2

3

4

5 6

7 8

9 10

11 12

13 14 x 2 � 9x 2 � 16

x � 12 � x26x � 8 � x2

x�3x � 1� � 4x�2x � 3� 
 5

x 2 � 4x � 17 � 4x 2 � 2x � 5 � 3

x 2 � 4x � 3 
 0x 2 � x � 6 � 0

�x � 5��x � 3���2 � x� � 0

�x � 2��x � 1��4 � x� � 0

�2 � 3x��4x � 7� 
 0�3x � 1��5 � 10x� � 0

15 16

17 18

19 20

21

22

23 24

25 26

27 28
x � 5

x 2 � 7x � 12
� 0

x � 2

x 2 � 3x � 10

 0

�x � 3�2�2 � x�
�x � 4��x 2 � 4�

� 0
x 2 � x

x 2 � 2x
� 0

�x 2 � 1��x � 3�
x 2 � 9


 0
x 2�x � 2�

�x � 2��x � 1�
� 0

2x 3 � 3x 2 � 2x � 3 � 0

x 3 � 2x 2 � 4x � 8 
 0

x 4 � 15x 2 � 16x4 � 5x 2 
 36

16x 2 � 916x2 
 9x

25x 2 � 9x � 025x 2 � 9 � 0

Property Illustration

(1) If , then If , then or 

(2) If , then If , then , or 

(3) If , then If , then or 0 � � x � � 2.0 � 2x2 � 24,0 � x2 � 40 � 2a � 2b.0 � a � b

0 � x � 16.0 � �2x �2 � 420 � 2x � 40 � a2 � b2.0 � a � b

x �
1

4
.

1

1�x
�

1

4
,0 �

1

x
� 4

1

a
�

1

b
.0 � a � b

Additional Properties of Inequalities



29 30

31 32

33 34

35 36

37 38

39 40

Exer. 41–42: As a particle moves along a straight path, its
speed v (in ) at time t (in seconds) is given by the
equation. For what subintervals of the given time interval
[a, b] will its speed be at least ?

41 ; [0, 5];

42 ; [1, 6];

43 Vertical leap record Guinness Book of World Records
reports that German shepherds can make vertical leaps of
over 10 feet when scaling walls. If the distance s (in feet) 
off the ground after t seconds is given by the equation

, for how many seconds is the dog
more than 9 feet off the ground?

44 Height of a projected object If an object is projected verti-
cally upward from ground level with an initial velocity of

, then its distance s above the ground after t sec-
onds is given by . For what values of t
will the object be more than 1536 feet above the ground?

45 Braking distance The braking distance d (in feet) of a cer-
tain car traveling is given by the equation

. Determine the velocities that result in
braking distances of less than 75 feet.

46 Gas mileage The number of miles M that a certain com-
pact car can travel on 1 gallon of gasoline is related to its
speed v (in ) by

For what speeds will M be at least 45?

M � �
1

30 v 2 �
5
2 v for   0 � v � 70.

mi�hr

d � v � �v2�20�
v mi�hr

s � �16t 2 � 320t
320 ft�sec

s � �16t 2 � 24t � 1

k � 10v � t 4 � 4t 2 � 10

k � 8v � t 3 � 3t 2 � 4t � 20

k cm�sec

cm�sec

x 4 
 x 2x 3 � x

x

2x � 1



3

x � 2

x

3x � 5
�

2

x � 1

3

5x � 1



1

x � 3

4

3x � 2
�

2

x � 1

2

2x � 3
�

2

x � 5

1

x � 2



3

x � 1

x � 2

3x � 5
� 4

x � 1

2x � 3
� 2

2x

16 � x 2
� 0

�3x

x 2 � 9
� 0

47 Salmon propagation For a particular salmon population,
the relationship between the number S of spawners and the
number R of offspring that survive to maturity is given by
the formula . Under what conditions
is ?

48 Population density The population density D (in
) in a large city is related to the distance x from

the center of the city by . In what
areas of the city does the population density exceed

?

49 Weight in space After an astronaut is launched into space,
the astronaut’s weight decreases until a state of weightless-
ness is achieved. The weight of a 125-pound astronaut at an
altitude of x kilometers above sea level is given by

At what altitudes is the astronaut’s weight less than
5 pounds?

50 Lorentz contraction formula The Lorentz contraction for-
mula in relativity theory relates the length L of an object
moving at a velocity of with respect to an ob-
server to its length at rest. If c is the speed of light, then

For what velocities will L be less than ? State the answer
in terms of c.

51 Aircraft’s landing speed In the design of certain small
turbo-prop aircraft, the landing speed V (in ) is deter-
mined by the formula , where W is the
gross weight (in pounds) of the aircraft and S is the surface
area (in ) of the wings. If the gross weight of the aircraft
is between 7500 pounds and 10,000 pounds and ,
determine the range of the landing speeds in miles per
hour.

S � 210 ft2

ft2

W � 0.00334V 2S
ft�sec

1
2 L 0

L2 � L0
2�1 �

v2

c2�.

L0

v mi�sec

W � 125� 6400

6400 � x�2

.

400 people�mi2

D � 5000x��x 2 � 36�
people�mi2

R � S
R � 4500S��S � 500�
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Exer. 1–24: Solve the equation.

1 2

3

4

5 6

7 8

9 10

11

12

13 14

15 16

17 18

19 20

21 22

23 24

Exer. 25–26: Solve the equation by completing the square.

25 26

Exer. 27–44: Solve the inequality, and express the solutions
in terms of intervals whenever possible.

27 28

29

30 �3x � 1��10x � 4� 
 �6x � 5��5x � 7�

�
1

2
�

2x � 3

5
�

3

2

10 � 7x � 4 � 2x�x � 3�2 � 0

x 2 � 10x � 38 � 03x 2 � 12x � 3 � 0

x 4/3 � 1623x � 1 � 2x � 4 � 1

2x � 4 � 24 6x � 1927x � 2 � x � 6

23 4x � 5 � 2 � 0
1

x
� 6 �

5

2x

2� 2x � 1 � � 1 � 19� 4x � 1 � � 7

x 4 � 3x 2 � 1 � 06x 4 � 29x 2 � 28 � 0

x2 �
1
3 x � 2 � 05x 2 � 2x � 3

20x 3 � 8x 2 � 35x � 14 � 0

x 2/3 � 2x 1/3 � 15 � 0

4x 4 � 33x 2 � 50 � 0�x � 2��x � 1� � 3

x

3x � 1
�

x � 1

2x � 3
x�3x � 4� � 5

2x 2 � 5x � 12 � 0
1

2x
� 2 �

1 � 22x

2x

7

x � 2
�

6

x 2 � 4
�

3

2x � 4

2

x � 5
�

3

2x � 1
�

5

6x � 3

2 �
1

x
� 1 �

4

x

3x � 1

5x � 7
�

6x � 11

10x � 3

31 32

33 34

35 36

37 38

39 40

41 42

43

44

Exer. 45–50: Solve for the specified variable.

45

46

47 (volume of a sphere)

48

49
(base of a circular
segment)

50
(volume of a frustum
of a cone)

Exer. 51–56: Express in the form , where a and b are
real numbers.

51 52

53 54

55 56
20 � 8i

4i

6 � 3i

2 � 7i

1

9 � 2�4
�3 � 8i�2

�4 � 2i���5 � 4i��7 � 5i� � ��8 � 3i�

a � bi

V �
1
3 �h�r 2 � R2 � rR� for r

c � 24h�2R � h� for h

F �
�PR 4

8VL
 for R

V �
4
3 �r 3 for r

A � B�3 C

D
� E for D

P � N �
C � 2

C
 for C

�x 2 � x��x 2 � 5x � 6� � 0

x 3 � x 2

x � 1

x 2 � 25
� 0

3

2x � 3
�

1

x � 2

x 2 � x � 2

x 2 � 4x � 3
� 0

x 2�3 � x�
x � 2

� 0

x�x � 3� � 1010x2 � 11x � 6

2 � � x � 6 � � 4� 16 � 3x � 
 5

�2� x � 3 � � 1 
 �52� 3 � x � � 1 � 5

� 4x � 7 � � 21
6

10x � 3
� 0
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(Poiseuille’s law
for fluids)



57 Bowling scores To get into the 250 Club, a bowler must score
an average of 250 for a three-game series. If a bowler has scores
of 267 and 225 in her first two games, what is the minimum
score in her third game that will get her into the 250 Club?

58 Calculating a presale price A sporting goods store is cele-
brating its 37th year in business by having a 37% off every-
thing sale and also covering any sales tax. A boy has $50 to
spend. What is the maximum presale price he can afford?

59 Rule of 90 In a particular teachers’ union, a teacher may re-
tire when the teacher’s age plus the teacher’s years of serv-
ice is at least 90. If a 37-year-old teacher has 15 years of
service, at what age will this teacher be eligible to retire?
Make reasonable assumptions.

60 Electrical resistance When two resistors and are 
connected in parallel, the net resistance R is given by

. If , what value of 
will make the net resistance 2 ohms?

61 Investment income An investor has a choice of two invest-
ments: a bond fund and a stock fund. The bond fund yields
7.186% interest annually, which is nontaxable at both the
federal and state levels. Suppose the investor pays federal
income tax at a rate of 28% and state income tax at a rate of
7%. Determine what the annual yield must be on the taxable
stock fund so that the two funds pay the same amount of net
interest income to the investor.

62 Investment income A woman has $216,000 to invest and
wants to generate $12,000 per year in interest income. She can
invest in two tax-free funds. The first is stable, but pays only
4.5%. The second pays 9.25%, but has a greater risk. If she
wants to minimize the amount of money invested in the second
fund, how much should she invest in the first fund?

63 Snow removal rates A man can clear his driveway using a
snowblower in 45 minutes. It takes his son 2 hours to clear
the driveway using a shovel. How long would it take them
to clear the driveway if they worked together?

64 Gold and silver mixture A ring that weighs 80 grams is
made of gold and silver. By measuring the displacement of
the ring in water, it has been determined that the ring has 
a volume of . Gold weighs , and silver weighs

. How many grams of gold does the ring contain?

65 Preparing hospital food A hospital dietitian wishes to 
prepare a 10-ounce meat-vegetable dish that will provide 
7 grams of protein. If an ounce of the vegetable portion
supplies gram of protein and an ounce of meat supplies 
1 gram of protein, how much of each should be used?

1
2

10.5 g�cm3

19.3 g�cm35 cm3

R2R1 � 5 ohms1�R � �1�R1� � �1�R2�

R2R1

66 Preparing a bactericide A solution of ethyl alcohol that is
75% alcohol by weight is to be used as a bactericide. The
solution is to be made by adding water to a 95% ethyl alco-
hol solution. How many grams of each should be used to
prepare 400 grams of the bactericide?

67 Solar heating A large solar heating panel requires 120 gal-
lons of a fluid that is 30% antifreeze. The fluid comes in ei-
ther a 50% solution or a 20% solution. How many gallons
of each should be used to prepare the 120-gallon solution?

68 Making brass A company wishes to make the alloy brass,
which is composed of 65% copper and 35% zinc. How much
copper do they have to mix with 140 kg of zinc to make brass?

69 Fuel consumption A boat has a 10-gallon gasoline tank and
travels at with a fuel consumption of 
when operated at full throttle in still water. The boat is mov-
ing upstream into a 5- current. How far upstream can
the boat travel and return on 10 gallons of gasoline if it is
operated at full throttle during the entire trip?

70 Train travel A high-speed train makes a 400-mile nonstop
run between two major cities in . The train travels

in the country, but safety regulations require that
it travel only when passing through smaller, inter-
mediate cities. How many hours are spent traveling through
the smaller cities?

71 Windspeed An airplane flew with the wind for 30 minutes
and returned the same distance in 45 minutes. If the cruis-
ing speed of the airplane was , what was the
speed of the wind?

72 Passing speed An automobile 20 feet long overtakes a
truck 40 feet long that is traveling at (see the fig-
ure). At what constant speed must the automobile travel in
order to pass the truck in 5 seconds?

Exercise 72

50 mi/hr

r mi/hr

50 mi�hr

320 mi�hr

25 mi�hr
100 mi�hr

5 1
2 hours

mi�hr

16 mi�gal20 mi�hr
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73 Speedboat rates A speedboat leaves a dock traveling east at
30 mi/hr. Another speedboat leaves from the same dock 20
minutes later, traveling west at 24 mi/hr. How long after the
first speedboat departs will the speedboats be 37 miles apart?

74 Jogging rates A girl jogs 5 miles in 24 minutes less than
she can jog 7 miles. Assuming she jogs at a constant rate,
find her jogging rate in miles per hour.

75 Filling a bin An extruder can fill an empty bin in 2 hours,
and a packaging crew can empty a full bin in 5 hours. If a
bin is half full when an extruder begins to fill it and a crew
begins to empty it, how long will it take to fill the bin?

76 Gasoline mileage A sales representative for a company 
estimates that her automobile gasoline consumption aver-
ages 28 mpg on the highway and 22 mpg in the city. 
A recent trip covered 627 miles, and 24 gallons of gaso-
line was used. How much of the trip was spent driving in 
the city?

77 City expansion The longest drive to the center of a square
city from the outskirts is 10 miles. Within the last decade
the city has expanded in area by . Assuming the city
has always been square in shape, find the corresponding
change in the longest drive to the center of the city.

78 Dimensions of a cell membrane The membrane of a cell is
a sphere of radius 6 microns. What change in the radius will
increase the surface area of the membrane by 25%?

79 Highway travel A north-south highway intersects an east-
west highway at a point P. An automobile crosses P at 10
A.M., traveling east at a constant rate of . At the
same instant another automobile is 2 miles north of P, trav-
eling south at .

(a) Find a formula for the distance d between the automo-
biles t hours after 10:00 A.M.

(b) At approximately what time will the automobiles be
104 miles apart?

80 Fencing a kennel A kennel owner has 270 feet of fencing
material to be used to divide a rectangular area into 10 equal
pens, as shown in the figure. Find dimensions that would
allow for each pen.

Exercise 80

100 ft2

50 mi�hr

20 mi�hr

50 mi2

81 Dimensions of an aquarium An open-topped aquarium is to
be constructed with 6-foot-long sides and square ends, as
shown in the figure.

(a) Find the height of the aquarium if the volume is to 
be .

(b) Find the height if of glass is to be used.

Exercise 81

82 Dimensions of a pool The length of a rectangular pool is to
be four times its width, and a sidewalk of width 6 feet will
surround the pool. If a total area of has been set
aside for construction, what are the dimensions of the pool?

83 Dimensions of a bath A contractor wishes to design a rec-
tangular sunken bath with of bathing area. A 1-foot-
wide tile strip is to surround the bathing area. The total
length of the tiled area is to be twice the width. Find the di-
mensions of the bathing area.

84 Population growth The population P (in thousands) of a
small town is expected to increase according to the 
formula

where t is time in years. When will the population be
20,000?

85 Boyle’s law Boyle’s law for a certain gas states that if the
temperature is constant, then , where p is the pres-
sure (in ) and v is the volume (in ). If ,
what is the corresponding range for p?

86 Sales commission A recent college graduate has job offers
for a sales position in two computer firms. Job A pays
$50,000 per year plus 10% commission. Job B pays only
$40,000 per year, but the commission rate is 20%. How
much yearly business must the salesman do for the second
job to be more lucrative?

87 Speed of sound The speed of sound in air at 0°C (or 273 K)
is , but this speed increases as the temperature
rises. The speed v of sound at temperature T in K is given
by . At what temperatures does the speed
of sound exceed ?1100 ft�sec

v � 10872T�273

1087 ft�sec

25 � v � 50in3lb�in2

pv � 200

P � 15 � 23t � 2,

40 ft2

1440 ft2

6�

44 ft2

48 ft3
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88 Period of a pendulum If the length of the pendulum in 
a grandfather clock is l centimeters, then its period T (in
seconds) is given by , where g is a gravita-
tional constant. If, under certain conditions, and

, what is the corresponding range for T?

89 Orbit of a satellite For a satellite to maintain an orbit of al-
titude h kilometers, its velocity (in ) must equal

, where is the radius of the
earth. What velocities will result in orbits with an altitude of
more than 100 kilometers from Earth’s surface?

90 Fencing a region There is 100 feet of fencing available to
enclose a rectangular region. For what widths will the
fenced region contain at least ?600 ft2

R � 6372 km626.4�2h � R
km�sec

98 � l � 100
g � 980

T � 2�2l�g

91 Planting an apple orchard The owner of an apple orchard
estimates that if 24 trees are planted per acre, then each ma-
ture tree will yield 600 apples per year. For each additional
tree planted per acre, the number of apples produced by
each tree decreases by 12 per year. How many trees should
be planted per acre to obtain at least 16,416 apples per year?

92 Apartment rentals A real estate company owns 218 effi-
ciency apartments, which are fully occupied when the rent
is $940 per month. The company estimates that for each $25
increase in rent, 5 apartments will become unoccupied.
What rent should be charged in order to pay the monthly
bills, which total $205,920?
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1 When we factor the sum or difference of cubes, ,
is the factor ever factorable over the real
numbers?

2 What is the average of the two solutions of the arbitrary
quadratic equation ? Discuss how this
knowledge can help you easily check the solutions to a quad-
ratic equation.

3 (a) Find an expression of the form for the multi-

plicative inverse of , where a, b, c, and d are

real numbers.

(b) Does the expression you found apply to real numbers
of the form ?

(c) Are there any restrictions on your answer for part (a)?

4 In solving the inequality , what is wrong with em-

ploying as a first step?

5 Consider the inequality , where a, b, and c
are real numbers with . Suppose the associated equal-
ity has discriminant D. Categorize the so-
lutions of the inequality according to the signs of a and D.

ax2 � bx � c � 0
a � 0
ax2 � bx � c 
 0

x � 1 
 3�x � 2�

x � 1

x � 2

 3

a�c

a � bi

c � di

p � qi

ax2 � bx � c � 0

�x 2 � xy � y2�
x 3 � y3 6 Freezing level in a cloud Refer to Exercises 37–39 in Sec-

tion 2.2.

(a) Approximate the height of the freezing level in a cloud
if the ground temperature is 80°F and the dew point 
is 68°F.

(b) Find a formula for the height h of the freezing level in
a cloud for ground temperature G and dew point D.

7 Explain why you should not try to solve one of these equa-
tions.

8 Solve the equation

for x, where c � 2 � 10500. Discuss why one of your positive
solutions is extraneous.

9 Surface area of a tank You know that a spherical tank holds
10,000 gallons of water. What do you need to know to de-
termine the surface area of the tank? Estimate the surface
area of the tank.

2x � cx � 2/c

2
3 2x � 3 � 2

3 x � 5 � 0

22x � 3 � 2x � 5 � 0
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3.5 Graphs of Functions

3.6 Quadratic Functions
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Functions

The mathematical term function (or its Latin equivalent) dates back to the

late seventeenth century, when calculus was in the early stages of develop-

ment. This important concept is now the backbone of advanced courses in

mathematics and is indispensable in every field of science.

In this chapter we study properties of functions using algebraic and

graphical methods that include plotting points, determining symmetries,

and making horizontal and vertical shifts. These techniques are adequate for

obtaining rough sketches of graphs that help us understand properties of

functions; modern-day methods, however, employ sophisticated computer

software and advanced mathematics to generate extremely accurate graph-

ical representations of functions.
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In Section 1.1 we discussed how to assign a real number (coordinate) to each
point on a line. We shall now show how to assign an ordered pair of real
numbers to each point in a plane. Although we have also used the notation 
to denote an open interval, there is little chance for confusion, since it should al-
ways be clear from our discussion whether represents a point or an interval.

We introduce a rectangular, or Cartesian,* coordinate system in a plane
by means of two perpendicular coordinate lines, called coordinate axes, that
intersect at the origin O, as shown in Figure 1. We often refer to the horizon-
tal line as the x-axis and the vertical line as the y-axis and label them x and y,
respectively. The plane is then a coordinate plane, or an xy-plane. The coor-
dinate axes divide the plane into four parts called the first, second, third, and
fourth quadrants, labeled I, II, III, and IV, respectively (see Figure 1). Points
on the axes do not belong to any quadrant. 

Each point P in an xy-plane may be assigned an ordered pair , as
shown in Figure 1. We call a the x-coordinate (or abscissa) of P, and b the
y-coordinate (or ordinate). We say that P has coordinates and refer to
the point or the point . Conversely, every ordered pair de-
termines a point P with coordinates a and b. We plot a point by using a dot,
as illustrated in Figure 2.

We may use the following formula to find the distance between two points
in a coordinate plane.

�a, b�P�a, b��a, b�
�a, b�

�a, b�

�a, b�

�a, b�
�a, b�
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3.1
Rectangular Coordinate

Systems

Figure 1 Figure 2

y

x1

1

a

b

II I

IVIII

P (a, b)

O

y

x1

1

(�5, �3)

(�4, 0)

(�4, 3)

(0, 5)

(0, �3) (5, �3)

(5, 2)

(0, 0)

O

Distance Formula The distance between any two points and in a
coordinate plane is

d�P1, P2� � 2�x2 � x1�2 � � y2 � y1�2.

P2�x2, y2�P1�x1, y1�d�P1, P2�

*The term Cartesian is used in honor of the French mathematician and philosopher René
Descartes (1596–1650), who was one of the first to employ such coordinate systems.



P R O O F If and , then, as illustrated in Figure 3, the points
, and are vertices of a right triangle. By the Pythagorean

theorem,

From the figure we see that

Since for every real number a, we may write

Taking the square root of each side of the last equation and using the fact that
gives us the distance formula.

If , the points and lie on the same horizontal line, and 

Similarly, if , the points are on the same vertical line, and

These are special cases of the distance formula.
Although we referred to the points shown in Figure 3, our proof is inde-

pendent of the positions of and . L

When applying the distance formula, note that and,
hence, the order in which we subtract the x-coordinates and the y-coordinates
of the points is immaterial. We may think of the distance between two points
as the length of the hypotenuse of a right triangle.

E X A M P L E  1 Finding the distance between points

Plot the points and , and find the distance .

S O L U T I O N The points are plotted in Figure 4. By the distance formula,

L

E X A M P L E  2 Showing that a triangle is a right triangle

(a) Plot , and , and show that triangle ABC is a
right triangle.

(b) Find the area of triangle ABC.

C�2, �5�A��1, �3�, B�6, 1�

� 264 � 25 � 289 
 9.43.

� 282 � ��5�2

d�A, B� � 2�5 � ��3�	2 � �1 � 6�2

d�A, B�B�5, 1�A��3, 6�

d�P1, P2� � d�P2, P1�

P2P1

d�P1, P2� � � y2 � y1 � � 2� y2 � y1�2.

x1 � x2

d�P1, P2� � � x2 � x1 � � 2�x2 � x1�2.

P2P1y1 � y2

d�P1, P2� 
 0

�d�P1, P2�	2 � �x2 � x1�2 � � y2 � y1�2.

� a �2 � a2

d�P1, P3� � � x2 � x1 � and d�P3, P2� � � y2 � y1 �.

�d�P1, P2�	2 � �d�P1, P3�	2 � �d�P3, P2�	2.

P3�x2, y1�P1, P2

y1 � y2x1 � x2
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Figure 3

y

x

P2(x2, y2)

P3(x2, y1)
P1(x1, y1)

�y2 � y1 �

�x2 � x1 �

Figure 4

y

x

d (A, B )

B (5, 1)

A(�3, 6)



S O L U T I O N

(a) The points are plotted in Figure 5. From geometry, triangle ABC is a right
triangle if the sum of the squares of two of its sides is equal to the square of
the remaining side. By the distance formula,

Since is the largest of the three values, the condition to be sat-
isfied is

Substituting the values found using the distance formula, we obtain

and .
Thus, the triangle is a right triangle with hypotenuse AB.

(b) The area of a triangle with base b and altitude h is . Referring to
Figure 5, we let

Hence, the area of triangle ABC is

L

E X A M P L E  3 Applying the distance formula

Given , and , prove that C is on the perpendicular bi-
sector of segment AB.

S O L U T I O N The points A, B, C and the perpendicular bisector l are illus-
trated in Figure 6. From plane geometry, l can be characterized by either of the
following conditions:

(1) l is the line perpendicular to segment AB at its midpoint.

(2) l is the set of all points equidistant from the endpoints of segment AB.

We shall use condition 2 to show that C is on l by verifying that

We apply the distance formula:

Thus, C is equidistant from A and B, and the verification is complete. L

d�B, C� � ��4 � ��3�	2 � �1
2 � 2�2

� �72 � �� 3
2 �2

� �49 �
9
4 � �205

4

d�A, C� � ��4 � 1�2 � �1
2 � 7�2

� �32 � ��
13
2 �2

� �9 �
169
4 � �205

4

d�A, C� � d�B, C�.

C�4, 1
2�A�1, 7�, B��3, 2�

1
2 bh �

1
2 252 213 �

1
2 � 2213 213 � 13.

b � d�B, C� � 252 and h � d�A, C� � 213.

1
2 bh

�d�B, C�	2 � �d�A, C�	2 � �252 �2
� �213 �2

� 52 � 13 � 65

�d�A, B�	2 � �265 �2
� 65

�d�A, B�	2 � �d�B, C�	2 � �d�A, C�	2.

d�A, B� � 265

d�A, C� � 2�2 � 1�2 � ��5 � 3�2 � 29 � 4 � 213.

d�B, C� � 2�2 � 6�2 � ��5 � 1�2 � 216 � 36 � 252

d�A, B� � 2�6 � 1�2 � �1 � 3�2 � 249 � 16 � 265

126 C H A P T E R  3  F U N C T I O N S  A N D  G R A P H S

Figure 5

y

x

A(�1, �3)

C(2, �5)

B(6, 1)

Figure 6

y

x

A(1, 7)

B(�3, 2)
C(4, q)

l

Area of a triangle:

A �
1
2 bh



E X A M P L E  4 Finding a formula that describes 
a perpendicular bisector

Given and , find a formula that expresses the fact that an ar-
bitrary point is on the perpendicular bisector l of segment AB.

S O L U T I O N By condition 2 of Example 3, is on l if and only if
; that is,

To obtain a simpler formula, let us square both sides and simplify terms of
the resulting equation, as follows:

Note that, in particular, the last formula is true for the coordinates of the point
in Example 3, since if and , substitution in gives us

In Example 9 of Section 3.3, we will find a formula for the perpendicular
bisector of a segment using condition 1 of Example 3. L

We can find the midpoint of a line segment by using the following
formula.

P R O O F The lines through and parallel to the y-axis intersect the x-axis
at and . From plane geometry, the line through the midpoint
M parallel to the y-axis bisects the segment at point (see Figure 7). If

, then , and hence . Since is halfway
from to , the x-coordinate of is equal to the x-coordinate of plus
one-half the distance from to ; that is,

x-coordinate of M1 � x1 �
1
2 �x2 � x1�.

A2A1

A1M1A2A1

M1d�A1, A2� � x2 � x1x2 � x1 � 0x1 � x2

M1A1A2

A2�x2, 0�A1�x1, 0�
P2P1

8 � 4 � 10 �
1
2 � 37.

8x � 10yy �
1
2x � 4C�4, 1

2�

 8x � 10y � 37

�8x � 10y � �37

�2x � 1 � 14y � 49 � 6x � 9 � 4y � 4

x 2 � 2x � 1 � y2 � 14y � 49 � x 2 � 6x � 9 � y2 � 4y � 4

�x � 1�2 � � y � 7�2 � �x � ��3�	2 � � y � 2�2

2�x � 1�2 � � y � 7�2 � 2�x � ��3�	2 � � y � 2�2.

d�A, P� � d�B, P�
P�x, y�

P�x, y�
B��3, 2�A�1, 7�
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(continued)

Midpoint Formula The midpoint M of the line segment from to is

�x1 � x2

2
,

y1 � y2

2 �.

P2�x2, y2�P1�x1, y1�



The expression on the right side of the last equation simplifies to

This quotient is the average of the numbers and . It follows that the
x-coordinate of M is also . Similarly, the y-coordinate of M is

. These formulas hold for all positions of and .

To apply the midpoint formula, it may suffice to remember that

the x-coordinate of the midpoint � the average of the x-coordinates,

and that

the y-coordinate of the midpoint � the average of the y-coordinates.

E X A M P L E  5 Finding a midpoint

Find the midpoint M of the line segment from to , and 
verify that .

S O L U T I O N By the midpoint formula, the coordinates of M are

The three points , and M are plotted in Figure 8. By the distance formula,

Hence, . Ld�P1, M� � d�P2, M�

d�P2, M� � ��1 � 4�2 � �1
2 � 2�2

� �9 �
25
4 .

d�P1, M� � ��1 � 2�2 � �1
2 � 3�2

� �9 �
25
4

P1, P2

��2 � 4

2
,
3 � ��2�

2 �, or �1,
1

2�.

d�P1, M� � d�P2, M�
P2�4, �2�P1��2, 3�

P2P1� y1 � y2��2
�x1 � x2��2

x2x1

x1 � x2

2
.
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Figure 7

y

x

P1(x1, y1)

P2(x2, y2)

M1 A2(x2, 0)A1(x1, 0)

M

Figure 8

y

x

P1(�2, 3)

P2(4, �2)

M(1, q)

1 Plot the points , , , ,
, and on a coordinate plane.

2 Plot the points , , , , and
on a coordinate plane. Draw the line segments AB,

BC, CD, DE, and EA.
E�2, �3�

D�0, 3�C��2, �3�B�3, 1�A��3, 1�

F�0, 3�E�3, 0�
D��5, 2�C�5, 2�B��5, �2�A�5, �2� 3 Plot the points , , , , and

. Describe the set of all points of the form
, where a is a real number.

4 Plot the points , , , ,
and . Describe the set of all points of the form

, where a is a real number.�a, �a�
E��3, 3�

D��1, 1�C�3, �3�B�1, �1�A�0, 0�

�a, a�
E��2, �2�

D��1, �1�C�3, 3�B�1, 1�A�0, 0�

3.1 E x e r c i s e s

L
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Exer. 5–6: Find the coordinates of the points A–F.

5

6

Exer. 7–8: Describe the set of all points in a coordi-
nate plane that satisfy the given condition.

7 (a) (b) (c)

(d) (e) (f )

8 (a) (b) (c)

(d) (e) (f )

Exer. 9–14: (a) Find the distance between A and B.
(b) Find the midpoint of the segment AB.

9 , 10 ,

11 , 12 ,

13 , 14 , B�0, �8�A��4, 7�B�3, �3�A�7, �3�

B�6, �2�A�6, 2�B��2, �2�A��5, 0�

B�4, 6�A��2, �5�B�6, 2�A�4, �3�

d(A, B)

y � 0y � 1xy � 0

x�y � 0x � �4y � �2

x � 0y � 0xy � 0

x 
 0y � 3x � �2

P(x, y)

y

x

A

E

D

C

F

B

AFB

C D

E

y

x

Exer. 15–16: Show that the triangle with vertices A, B,
and C is a right triangle, and find its area.

15

16

17 Show that , , , and are
vertices of a square.

18 Show that , , , and are
vertices of a parallelogram.

19 Given , find the coordinates of the point B such
that is the midpoint of segment AB.

20 Given and , find the point on seg-
ment AB that is three-fourths of the way from A to B.

Exer. 21–22: Prove that C is on the perpendicular bisector
of segment AB.

21 , ,

22 , , C�7, 7�B�5, �4�A��3, 2�

C�5, �11�B�6, 1�A��4, �3�

B��6, 2�A�5, �8�

C�5, �10�
A��3, 8�

D�2, 2�C�6, 1�B�0, �2�A��4, �1�

D��2, �3�C�3, �1�B�1, 4�A��4, 2�

y

x

A

C

B

y

x

A

B

C



Exer. 23–24: Find a formula that expresses the fact that an
arbitrary point is on the perpendicular bisector l of
segment AB.

23 , 24 ,

25 Find a formula that expresses the fact that is a dis-
tance 5 from the origin. Describe the set of all such points.

26 Find a formula that states that is a distance 
from a fixed point . Describe the set of all such
points.

27 Find all points on the y-axis that are a distance 6 from
.

28 Find all points on the x-axis that are a distance 5 from
.

29 Find the point with coordinates of the form that is in
the third quadrant and is a distance 5 from .P�1, 3�

�2a, a�

P��2, 4�

P�5, 3�

C�h, k�
r � 0P�x, y�

P�x, y�

B�5, �4�A��3, 2�B�6, 1�A��4, �3�

P(x, y)
30 Find all points with coordinates of the form that are a

distance 3 from .

31 For what values of a is the distance between and
greater than ?

32 Given and , find a formula not containing
radicals that expresses the fact that the sum of the distances
from to A and to B, respectively, is 5.

33 Prove that the midpoint of the hypotenuse of any right 
triangle is equidistant from the vertices. (Hint: Label the
vertices of the triangle , , and .)

34 Prove that the diagonals of any parallelogram bisect each
other. (Hint: Label three of the vertices of the parallelogram

, , and .)C�0, c�A�a, b�O�0, 0�

B�0, b�A�a, 0�O�0, 0�

P�x, y�

B�2, 0�A��2, 0�

226Q�5, 2a�
P�a, 3�

P��2, 1�
�a, a�
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Graphs are often used to illustrate changes in quantities. A graph in the busi-
ness section of a newspaper may show the fluctuation of the Dow-Jones aver-
age during a given month; a meteorologist might use a graph to indicate how
the air temperature varied throughout a day; a cardiologist employs graphs
(electrocardiograms) to analyze heart irregularities; an engineer or physicist
may turn to a graph to illustrate the manner in which the pressure of a confined
gas increases as the gas is heated. Such visual aids usually reveal the behavior
of quantities more readily than a long table of numerical values.

Two quantities are sometimes related by means of an equation or formula
that involves two variables. In this section we discuss how to represent such an
equation geometrically, by a graph in a coordinate plane. The graph may then
be used to discover properties of the quantities that are not evident from the
equation alone. The following chart introduces the basic concept of the graph
of an equation in two variables x and y. Of course, other letters can also be
used for the variables.

3.2
Graphs of Equations

Terminology Definition Illustration

Solution of an An ordered pair (a, b) (2, 3) is a solution of since
equation in x and y that yields a true substituting and gives us

statement if LS:
and RS: .5�2� � 1 � 10 � 1 � 9y � bx � a

32 � 9
y � 3x � 2

y2 � 5x � 1,
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For each solution of an equation in x and y there is a point 
in a coordinate plane. The set of all such points is called the graph of the
equation. To sketch the graph of an equation, we illustrate the significant fea-
tures of the graph in a coordinate plane. In simple cases, a graph can be
sketched by plotting few, if any, points. For a complicated equation, plotting
points may give very little information about the graph. In such cases, meth-
ods of calculus or computer graphics are often employed. Let us begin with a
simple example.

E X A M P L E  1 Sketching a simple graph by plotting points

Sketch the graph of the equation .

S O L U T I O N We wish to find the points in a coordinate plane that cor-
respond to the solutions of the equation. It is convenient to list coordinates of
several such points in a table, where for each x we obtain the value for y from

:

The points with these coordinates appear to lie on a line, and we can sketch
the graph in Figure 1. Ordinarily, the few points we have plotted would not be
enough to illustrate the graph of an equation; however, in this elementary case
we can be reasonably sure that the graph is a line. In the next section we will
establish this fact. L

It is impossible to sketch the entire graph in Example 1, because we can as-
sign values to x that are numerically as large as desired. Nevertheless, we call the
drawing in Figure 1 the graph of the equation or a sketch of the graph. In gen-
eral, the sketch of a graph should illustrate its essential features so that the re-
maining (unsketched) parts are self-evident. For instance, in Figure 1, the end
behavior—the pattern of the graph as x assumes large positive and negative val-
ues (that is, the shape of the right and left ends)—is apparent to the reader.

If a graph terminates at some point (as would be the case for a half-line or
line segment), we place a dot at the appropriate endpoint of the graph. As a
final general remark, if ticks on the coordinate axes are not labeled (as in Fig-
ure 1), then each tick represents one unit. We shall label ticks only when dif-
ferent units are used on the axes. For arbitrary graphs, where units of
measurement are irrelevant, we omit ticks completely (see, for example, Fig-
ures 5 and 6).

E X A M P L E  2 Sketching the graph of an equation

Sketch the graph of the equation .y � x 2 � 3

y � 2x � 1

�x, y�

y � 2x � 1

P�a, b��a, b�

x 1 2 3

y 1 3 5�1�3�5�7

0�1�2�3

Figure 1

y

x

(�3, �7)

(�2, �5)

(�1, �3)

(1, 1)

(2, 3)

(3, 5)

(0, �1)



S O L U T I O N Substituting values for x and finding the corresponding values
of y using , we obtain a table of coordinates for several points on
the graph:

Larger values of produce larger values of y. For example, the points
, , and are on the graph, as are , , and

. Plotting the points given by the table and drawing a smooth curve
through these points (in the order of increasing values of x) gives us the sketch
in Figure 2. L

The graph in Figure 2 is a parabola, and the y-axis is the axis of the
parabola. The lowest point is the vertex of the parabola, and we say
that the parabola opens upward. If we invert the graph, then the parabola opens
downward and the vertex is the highest point on the graph. In general, the
graph of any equation of the form with is a parabola with
vertex , opening upward if or downward if . If , the
equation reduces to and the vertex is at the origin . Parabolas
may also open to the right or to the left (see Example 4) or in other directions.

We shall use the following terminology to describe where the graph of an
equation in x and y intersects the x-axis or the y-axis.

�0, 0�y � ax2

c � 0a � 0a � 0�0, c�
a � 0y � ax2 � c

�0, �3�

��6, 33�
��5, 22���4, 13��6, 33��5, 22��4, 13�

� x �

y � x 2 � 3
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Intercepts of the Graph of an Equation in x and y

Terminology Definition Graphical interpretation How to find

x-intercepts The x-coordinates Let and
of points where the solve for x.
graph intersects Here, a and c are
the x-axis x-intercepts.

y-intercepts The y-coordinates Let and
of points where the solve for y.
graph intersects Here, b is the
the y-axis y-intercept.

x � 0

y � 0

y

x

b

y

xa c

Figure 2

y

x

(3, 6)(�3, 6)

(2, 1)(�2, 1)

(�1, �2) (1, �2)

(0, �3)

x 2 3

y 1 6�2�3�216

10�1�2�3
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An x-intercept is sometimes referred to as a zero of the graph of an equa-
tion or as a root of an equation.

E X A M P L E  3 Finding x-intercepts and y-intercepts

Find the x- and y-intercepts of the graph of .

S O L U T I O N The graph is sketched in Figure 2 (Example 2). We find the in-
tercepts as stated in the preceding chart.

(1) x-intercepts:

given

let

equivalent equation

take the square root

Thus, the x-intercepts are and . The points at which the graph crosses
the x-axis are and .

(2) y-intercepts:

given

let

Thus, the y-intercept is �3, and the point at which the graph crosses the y-axis
is . L

If the coordinate plane in Figure 2 is folded along the y-axis, the graph
that lies in the left half of the plane coincides with that in the right half, and
we say that the graph is symmetric with respect to the y-axis. A graph is
symmetric with respect to the y-axis provided that the point is on
the graph whenever is on the graph. The graph of in Ex-
ample 2 has this property, since substitution of for x yields the same
equation:

This substitution is an application of symmetry test 1 in the following chart.
Two other types of symmetry and the appropriate tests are also listed. The
graphs of and in the illustration column are discussed in Ex-
amples 4 and 5, respectively.

4y � x 3x � y2

y � ��x�2 � 3 � x 2 � 3

�x
y � x 2 � 3�x, y�

��x, y�

�0, �3�

x � 0y � 0 � 3 � �3

y � x 2 � 3

�23, 0���23, 0�
23�23

x � �23 
 �1.73

x 2 � 3

y � 0 0 � x 2 � 3

y � x 2 � 3

y � x 2 � 3



If a graph is symmetric with respect to an axis, it is sufficient to determine
the graph in half of the coordinate plane, since we can sketch the remainder of
the graph by taking a mirror image, or reflection, through the appropriate axis.

E X A M P L E  4 A graph that is symmetric with respect to the x-axis

Sketch the graph of the equation .

S O L U T I O N Since substitution of for y does not change the equation, the
graph is symmetric with respect to the x-axis (see symmetry test 2). Hence, if
the point is on the graph, then the point is on the graph. Thus, it�x, �y��x, y�

�y

y 2 � x
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Symmetries of Graphs of Equations in x and y

Terminology Graphical interpretation Test for symmetry Illustration

The graph is (1)
symmetric with
respect to the
y-axis.

The graph is (2)
symmetric with
respect to the
x-axis.

The graph is (3)
symmetric with
respect to the
origin.

y

x

(�x, y) (x, y)

x

y

(x, y)

(x, �y)

y

x

y � x2 � 3

x

y

(�x, �y)

(x, y)

x

x � y2

y

x

y

4y � x3

Substitution of

for x

leads to the same
equation.

�x

Substitution of

for y

leads to the same
equation.

�y

Simultaneous
substitution of

for x

and

for y

leads to the same
equation.

�y

�x
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is sufficient to find points with nonnegative y-coordinates and then reflect
through the x-axis. The equation is equivalent to . The
y-coordinates of points above the x-axis (y is positive) are given by ,
whereas the y-coordinates of points below the x-axis (y is negative) are given
by . Coordinates of some points on the graph are listed below. The
graph is sketched in Figure 3.

The graph is a parabola that opens to the right, with its vertex at the origin. In
this case, the x-axis is the axis of the parabola. L

E X A M P L E  5 A graph that is symmetric with respect to the origin

Sketch the graph of the equation .

S O L U T I O N If we simultaneously substitute for x and for y, then

Multiplying both sides by , we see that the last equation has the same so-
lutions as the equation . Hence, from symmetry test 3, the graph is
symmetric with respect to the origin—and if the point is on the graph,
then the point is on the graph. The following table lists coordinates
of some points on the graph.

Because of the symmetry, we can see that the points , , and 
so on, are also on the graph. The graph is sketched in Figure 4. L

If is a point in a coordinate plane, then a circle with center C and
radius consists of all points in the plane that are r units from C. As
shown in Figure 5, a point is on the circle provided or, by
the distance formula,

The above equation is equivalent to the following equation, which we will
refer to as the standard equation of a circle.

2�x � h�2 � � y � k�2 � r.

d�C, P� � rP�x, y�
r � 0
C�h, k�

��2, �2���1, �
1
4 �

��x, �y�
�x, y�

4y � x 3

�1

4��y� � ��x�3 or, equivalently, �4y � �x 3.

�y�x

4y � x 3

y � �2x

y � 2x
y � �2xy 2 � x

x 0 1 2 3 4 9

y 0 1 2 323 
 1.722 
 1.4

x 0 1 2

y 0 2 125
32

27
32

1
4

1
32

5
2

3
2

1
2

Figure 3

y

x

(9, 3)

(4, 2)

(3, �3)�

(2, �2)�

(1, 1)

(0, 0)

y2 � x

Figure 4

y

x

(2, 2)
(1, ~)

(0, 0)

4y � x3
(q, 1

32 )

(w, 27
32 )

Figure 5

C(h, k)

y

x

r

P(x, y)

(x � h)2 � (y � k)2 � r2



If and , this equation reduces to , which is an equa-
tion of a circle of radius r with center at the origin (see Figure 6). If , we
call the graph a unit circle.

E X A M P L E  6 Finding an equation of a circle

Find an equation of the circle that has center and contains the
point .

S O L U T I O N The circle is shown in Figure 7. Since D is on the circle, the ra-
dius r is . By the distance formula,

Using the standard equation of a circle with , and ,
we obtain

By squaring terms and simplifying the last equation, we may write it as

L

As in the solution to Example 6, squaring terms of an equation of the form
and simplifying leads to an equation of the form

where a, b, and c are real numbers. Conversely, if we begin with this equa-
tion, it is always possible, by completing squares, to obtain an equation of the
form

This method will be illustrated in Example 7. If , the graph is a circle
with center and radius . If , the graph consists of only the
point . Finally, if , the equation has no real solutions, and hence
there is no graph.

d � 0�h, k�
d � 0r � 2d�h, k�

d � 0

�x � h�2 � � y � k�2 � d.

x 2 � y2 � ax � by � c � 0,

�x � h�2 � � y � k�2 � r2

x 2 � y2 � 4x � 6y � 27 � 0.

�x � 2�2 � � y � 3�2 � 40.

r � 240h � �2, k � 3

r � 2�4 � 2�2 � �5 � 3�2 � 236 � 4 � 240.

d�C, D�

D�4, 5�
C��2, 3�

r � 1
x 2 � y2 � r 2k � 0h � 0
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Standard Equation of a Circle
with Center (h, k) and Radius r

�x � h�2 � � y � k�2 � r 2

Figure 6
y

x

x2 � y2 � r2

(0, �r)

(�r, 0) (r, 0)

(0, r)

Figure 7
y

x

C(�2, 3)

D(4, 5)
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E X A M P L E  7 Finding the center and radius of a circle

Find the center and radius of the circle with equation

S O L U T I O N Since it is easier to complete the square if the coefficients of 
and are 1, we begin by dividing the given equation by 3, obtaining

Next, we rewrite the equation as follows, where the underscored spaces repre-
sent numbers to be determined:

We then complete the squares for the expressions within parentheses, taking
care to add the appropriate numbers to both sides of the equation. To complete
the square for an expression of the form , we add the square of half the
coefficient of x (that is, ) to both sides of the equation. Similarly, for

, we add to both sides. In this example, , ,
, and . These additions lead to

completing the squares

equivalent equation

Comparing the last equation with the standard equation of a circle, we see that
and and conclude that the circle has center and radius

. A sketch of this circle is shown in Figure 8. L

In some applications it is necessary to work with only one-half of a
circle—that is, a semicircle. The next example indicates how to find equations
of semicircles for circles with centers at the origin.

E X A M P L E  8 Finding equations of semicircles

Find equations for the upper half, lower half, right half, and left half of the
circle .

S O L U T I O N The graph of is a circle of radius 9 with center at
the origin (see Figure 9). To find equations for the upper and lower halves, we
solve for y in terms of x:

given

subtract

take the square root

Since , it follows that the upper half of the circle has the equa-
tion (y is positive) and the lower half is given by

(y is negative), as illustrated in Figure 10(a) and (b).y � �281 � x 2

y � 281 � x 2

281 � x 2 
 0

y � �281 � x 2

x 2y2 � 81 � x 2

x 2 � y2 � 81

x 2 � y2 � 81

x 2 � y2 � 81

216 � 4
�2, �3�k � �3h � 2

�x � 2�2 � � y � 3�2 � 16.

�x 2 � 4x � 4 � � � y 2 � 6y � 9 � � 3 � 4 � 9

�b�2�2 � 32 � 9�a�2�2 � ��2�2 � 4
b � 6a � �4�b�2�2y2 � by

�a�2�2

x 2 � ax

�x 2 � 4x � � � � y 2 � 6y � � � 3 � �

x 2 � y2 � 4x � 6y � 3.

y2

x 2

3x 2 � 3y2 � 12x � 18y � 9.

(continued)

Figure 8
y

x

C(2, �3)

(2, �3 � 4) � (2, 1)

(2, �3 � 4) � (2, �7)

(2 � 4, �3) (2 � 4, �3)
� (�2, �3) � (6, �3)

44

4

4

Figure 9
y

x

(0, �9)

(�9, 0) (9, 0)

(0, 9)

x2 � y2 � 81

Recall that a tangent line to a circle
is a line that contains exactly one
point of the circle. Every circle has
four points of tangency associated
with horizontal and vertical lines. It is
helpful to plot these points when
sketching the graph of a circle.



Figure 10
(a) (b)

(c) (d)

Similarly, to find equations for the right and left halves, we solve
for x in terms of y, obtaining

Since , it follows that the right half of the circle has the equa-
tion (x is positive) and the left half is given by the equation

(x is negative), as illustrated in Figure 10(c) and (d). L�281 � y 2x �
x � 281 � y2

281 � y2 
 0

x � �281 � y 2.

x 2 � y2 � 81

y

x2

2

y

x

2

2

x � �281 � y2x � 281 � y2

y

x

2

2

y

x2

2

y � �281 � x 2y � 281 � x 2
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Exer. 1–20: Sketch the graph of the equation, and label the
x- and y-intercepts.

1 2

3 4 y � �2x � 3y � �x � 1

y � 3x � 2y � 2x � 3

5 6

7 8

9 10 x � �2y2x �
1
4 y2

y � �x2 � 2y � 2x2 � 1

y �
1
3 x 2y � �4x2

3.2 E x e r c i s e s
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11 12

13 14

15 16

17 18

19 20

Exer. 21–22: Use tests for symmetry to determine which
graphs in the indicated exercises are symmetric with respect
to (a) the y-axis, (b) the x-axis, and (c) the origin.

21 The odd-numbered exercises in 1–20

22 The even-numbered exercises in 1–20

Exer. 23–34: Sketch the graph of the circle or semicircle.

23 24

25 26

27 28

29 30

31 32

33 34

Exer. 35–46: Find an equation of the circle that satisfies the
stated conditions.

35 Center , radius 5

36 Center , radius 3

37 Center , radius 

38 Center , radius 

39 Center , passing through 

40 Center at the origin, passing through 

41 Center , tangent to the y-axis

42 Center , tangent to the x-axis

43 Tangent to both axes, center in the second quadrant,
radius 4

44 Tangent to both axes, center in the fourth quadrant, radius 3

45 Endpoints of a diameter and 

46 Endpoints of a diameter and B�3, 6�A��5, 2�

B��2, 7�A�4, �3�

C�4, �1�

C��3, 6�

P�4, �7�

P�1, 2�C��4, 6�

322C�3
4 , �

2
3 �

25C�1
4 , 0�

C��4, 1�

C�2, �3�

x � �225 � y2x � 29 � y2

y � 24 � x2y � �216 � x2

9x2 � 9y2 � 14x2 � 4y2 � 25

x2 � � y � 2�2 � 25�x � 3�2 � y2 � 16

�x � 4�2 � � y � 2�2 � 4�x � 3�2 � � y � 2�2 � 9

x2 � y2 � 7x2 � y2 � 11

y � 2x � 4y � 2x � 4

y � 2�xy � 2x

y � �x3 � 1y � x3 � 8

y �
1
2 x3y � �

1
2 x3

x � 2y2 � 4x � �y2 � 3 Exer. 47–56: Find the center and radius of the circle with
the given equation.

47

48

49

50

51

52

53

54

55

56

Exer. 57–60: Find equations for the upper half, lower half,
right half, and left half of the circle.

57 58

59 60

Exer. 61–64: Find an equation for the circle or semicircle.

61 62

63 64

Exer. 65–66: Determine whether the point P is inside, out-
side, or on the circle with center C and radius r.

65 (a) , ,

(b) , ,

(c) , , r � 6C�2, 1�P��3, 5�

r � 5C�1, �2�P�4, 2�

r � 4C�4, 6�P�2, 3�

y

x

y

x

y

x

y

x

�x � 3�2 � � y � 5�2 � 4�x � 2�2 � � y � 1�2 � 49

�x � 3�2 � y2 � 64x2 � y2 � 36

x2 � y2 � 4x � 6y � 16 � 0

x2 � y2 � 2x � 8y � 19 � 0

x2 � y2 � 6x � 4y � 13 � 0

x2 � y2 � 4x � 2y � 5 � 0

9x2 � 9y2 � 12x � 6y � 4 � 0

2x2 � 2y2 � 12x � 4y � 15 � 0

x2 � y2 � 10x � 18 � 0

x2 � y2 � 4y � 117 � 0

x2 � y2 � 8x � 10y � 37 � 0

x2 � y 2 � 4x � 6y � 36 � 0



66 (a) , ,

(b) , ,

(c) , ,

Exer. 67–68: For the given circle, find (a) the x-intercepts
and (b) the y-intercepts.

67

68

69 Find an equation of the circle that is concentric (has the
same center) with and passes
through .

70 Radio broadcasting ranges The signal from a radio station
has a circular range of 50 miles. A second radio station,
located 100 miles east and 80 miles north of the first station,
has a range of 80 miles. Are there locations where signals can
be received from both radio stations? Explain your answer.

71 A circle of radius 5 has its center at the origin. Inside this
circle there is a first-quadrant circle of radius 2 that is
tangent to . The y-coordinate of the center of is 2. Find
the x-coordinate of the center of .

72 A circle of radius 5 has its center at the origin. Outside
this circle is a first-quadrant circle of radius 2 that is tan-
gent to . The y-coordinate of the center of is 3. Find
the x-coordinate of the center of .C2

C2C1

C2

C1

C2

C2C1

C2

C1

P�2, 6�
x2 � y2 � 4x � 6y � 4 � 0

x2 � y2 � 10x � 4y � 13 � 0

x2 � y2 � 4x � 6y � 4 � 0

r � 7C�6, �7�P�1, �2�

r � 6C�3, 7�P��2, 5�

r � 13C��2, �4�P�3, 8� Exer. 73–76: Express, in interval form, the x-values such
that . Assume all points of intersection are shown on
the interval .

73 74

75 76 y

x

10

10
(8, �2)

(�1, 1) (1, 1)

(�8, �2)
y1

y2

y

x

(1, 1)(�1, 1)

y1
y2

y

x

(8, 6)(�8, 6)
y1

y2

2

2

(�3, �5)

(2, 0)

y

x

y1 y2

(��, �)
y1 < y2
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One of the basic concepts in geometry is that of a line. In this section we will
restrict our discussion to lines that lie in a coordinate plane. This will allow us
to use algebraic methods to study their properties. Two of our principal objec-
tives may be stated as follows:

(1) Given a line l in a coordinate plane, find an equation whose graph corre-
sponds to l.

(2) Given an equation of a line l in a coordinate plane, sketch the graph of the
equation.

The following concept is fundamental to the study of lines.

3.3
Lines

Definition of Slope of a Line Let l be a line that is not parallel to the y-axis, and let and
be distinct points on l. The slope m of l is

If l is parallel to the y-axis, then the slope of l is not defined.

m �
y2 � y1

x2 � x1

.

P2�x2, y2�
P1�x1, y1�
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Typical points and on a line l are shown in Figure 1. The numerator
in the formula for m is the vertical change in direction from to 

and may be positive, negative, or zero. The denominator is the hori-
zontal change from to , and it may be positive or negative, but never zero,
because l is not parallel to the y-axis if a slope exists. In Figure 1(a) the slope
is positive, and we say that the line rises. In Figure 1(b) the slope is negative,
and the line falls.

In finding the slope of a line it is immaterial which point we label as 
and which as , since

If the points are labeled so that , as in Figure 1, then , and
hence the slope is positive, negative, or zero, depending on whether ,

, or , respectively.
The definition of slope is independent of the two points that are chosen on

l. If other points and are used, then, as in Figure 2, the tri-
angle with vertices , , and is similar to the triangle with vertices

, , and . Since the ratios of corresponding sides of similar trian-
gles are equal,

Figure 2

E X A M P L E  1 Finding slopes

Sketch the line through each pair of points, and find its slope m:

(a) and (b) and

(c) and (d) and

S O L U T I O N The lines are sketched in Figure 3. We use the definition of
slope to find the slope of each line.

B�4, 4�A�4, �1�B��2, 3�A�4, 3�
B��2, �1�A�2, 5�B�3, 2�A��1, 4�

y

x

P1(x1, y1)

P�(x�, y�)1 1 1

P2(x2, y2)

P�(x�, y�)2 2 2

P�(x�, y�)3 2 1

P3(x2, y1)

y2 � y1

x2 � x1

�
y�2 � y�1

x�2 � x�1
.

P3�x2, y1�P2P1

P�3�x�2, y�1�P�2P�1

P�2�x�2, y�2�P�1�x�1, y�1�

y2 � y1y2 � y1

y2 � y1

x2 � x1 � 0x1 � x2

y2 � y1

x2 � x1

�
y2 � y1

x2 � x1

�
��1�
��1�

�
y1 � y2

x1 � x2

.

P2

P1

P2P1

x2 � x1

P2P1y2 � y1

P2P1

Figure 1
(a) Positive slope (line rises)

y

x

P2(x2, y2)

x2 � x1
P3(x2, y1)

P1(x1, y1)

y2 � y1

l

(b) Negative slope (line falls)

y

x

P2(x2, y2)

P1(x1, y1)

l

The Greek letter � (delta) is used in
mathematics to denote “change in.”
Thus, we can think of the slope m as

m �
�y

�x
�

change in y

change in x
.

(continued)



Figure 3

(a) (b)

(c) (d) m undefined

(a)

(b)

(c)

(d) The slope is undefined because the line is parallel to the y-axis. Note that
if the formula for m is used, the denominator is zero. L

E X A M P L E  2 Sketching a line with a given slope

Sketch a line through that has

(a) slope (b) slope

S O L U T I O N If the slope of a line is and b is positive, then for every
change of b units in the horizontal direction, the line rises or falls units, de-
pending on whether a is positive or negative, respectively.

(a) If is on the line and we can obtain another point on the line
by starting at P and moving 3 units to the right and 5 units upward. This gives
us the point , and the line is determined as in Figure 4(a).Q�5, 6�

m �
5
3 ,P�2, 1�

� a �
a�b

�
5
3

5
3

P�2, 1�

m �
3 � 3

�2 � 4
�

0

�6
� 0

m �
5 � ��1�
2 � ��2�

�
6

4
�

3

2

m �
2 � 4

3 � ��1�
�

�2

4
� �

1

2

y

x

B(4, 4)

A(4, �1)

y

x

A(4, 3)B(�2, 3)

m � 0

A(2, 5)

B(�2, �1)

y

x

y

x

A(�1, 4) B(3, 2)

m �
3
2m � �

1
2
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(b) If  is on the line and we move 3 units to the right and 
5 units downward, obtaining the line through , as in Figure 4(b).

L

Figure 4
(a) (b)

The diagram in Figure 5 indicates the slopes of several lines through the
origin. The line that lies on the x-axis has slope . If this line is rotated
about O in the counterclockwise direction (as indicated by the blue arrow),
the slope is positive and increases, reaching the value 1 when the line bisects
the first quadrant and continuing to increase as the line gets closer to the
y-axis. If we rotate the line of slope in the clockwise direction (as in-
dicated by the red arrow), the slope is negative, reaching the value when
the line bisects the second quadrant and becoming large and negative as the
line gets closer to the y-axis.

Figure 5
y

x

m � �5

m � �q
m � �Q

m � �2

m � �1

m � 2

m � 1

m � 5

m � q
m � Q

m � 0

�1
m � 0

m � 0

y

x

P (2, 1)

Q (5, �4)

y

x

Q (5, 6)

P (2, 1)

m � �
5
3m �

5
3

Q�5, �4�
m � �

5
3 ,P�2, 1�



Lines that are horizontal or vertical have simple equations, as indicated in
the following chart.

A common error is to regard the graph of as consisting of only the
one point . If we express the equation in the form , we see
that the value of x is immaterial; thus, the graph of consists of the points

for every x and hence is a horizontal line. Similarly, the graph of 
is the vertical line consisting of all points , where y is a real number.

E X A M P L E  3 Finding equations of horizontal and vertical lines

Find an equation of the line through that is parallel to

(a) the x-axis (b) the y-axis

S O L U T I O N The two lines are sketched in Figure 6. As indicated in the pre-
ceding chart, the equations are for part (a) and for part (b).

L

Let us next find an equation of a line l through a point with 
slope m. If is any point with (see Figure 7), then P is on l if and
only if the slope of the line through and P is m—that is, if

This equation may be written in the form

y � y1 � m�x � x1�.

y � y1

x � x1

� m.

P1

x � x1P�x, y�
P1�x1, y1�

x � �3y � 4

A��3, 4�

�a, y�
x � a�x, b�

y � b
0 � x � y � b�0, b�

y � b
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Figure 6 y

x

x � �3

y � 4A(�3, 4)

Figure 7
y

x

P1(x1, y1)

P(x, y)

l

Terminology Definition Graph Equation Slope

Horizontal line A line parallel Slope is 0

y-intercept is b

Vertical line A line parallel Slope is
undefined

x � a

(a, 0)

y

x

y � b

(0, b)

y

x

to the x-axis

to the y-axis x-intercept is a
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Note that is a solution of the last equation, and hence the points on l are
precisely the points that correspond to the solutions. This equation for l is re-
ferred to as the point-slope form.

The point-slope form is only one possibility for an equation of a line.
There are many equivalent equations. We sometimes simplify the equation
obtained using the point-slope form to either

where a, b, and c are integers with no common factor, , and .

E X A M P L E  4 Finding an equation of a line through two points

Find an equation of the line through and .

S O L U T I O N The line is sketched in Figure 8. The formula for the slope m
gives us

We may use the coordinates of either A or B for in the point-slope form.
Using gives us the following:

point-slope form

multiply by 4

multiply factors

subtract 5x and add 28

multiply by 

The last equation is one of the desired forms for an equation of a line. Another
is . L

The point-slope form for the equation of a line may be rewritten as
, which is of the form

with . The real number b is the y-intercept of the graph, as in-
dicated in Figure 9. Since the equation displays the slope m andy � mx � b

b � �mx1 � y1

y � mx � b

y � mx � mx1 � y1

5x � 4y � 23 � 0

�1 5x � 4y � �23

�5x � 4y � 23

 4y � 28 � 5x � 5

 4�y � 7� � 5�x � 1�
y � 7 �

5
4 �x � 1�

A�1, 7�
�x1, y1�

m �
7 � 2

1 � ��3�
�

5

4
.

B��3, 2�A�1, 7�

d � �ca � 0

ax � by � c or ax � by � d � 0,

�x1, y1�

Figure 9

y

x

(0, b)

y � mx � b

Point-Slope Form for 
the Equation of a Line

An equation for the line through the point with slope m is

y � y1 � m�x � x1�.

�x1, y1�

Figure 8

y

x

B(�3, 2)

A(1, 7)



y-intercept b of l, it is called the slope-intercept form for the equation of a
line. Conversely, if we start with , we may write

Comparing this equation with the point-slope form, we see that the graph is a
line with slope m and passing through the point . We have proved the fol-
lowing result.

E X A M P L E  5 Expressing an equation in slope-intercept form

Express the equation in slope-intercept form.

S O L U T I O N Our goal is to solve the given equation for y to obtain the form
. We may proceed as follows:

given

subtract 2x

divide by 

equivalent equation

The last equation is the slope-intercept form with slope 
and y-intercept L

It follows from the point-slope form that every line is a graph of an
equation

where a, b, and c are real numbers and a and b are not both zero. We call such
an equation a linear equation in x and y. Let us show, conversely, that the
graph of , with a and b not both zero, is always a line. If ,
we may solve for y, obtaining

which, by the slope-intercept form, is an equation of a line with slope 
and y-intercept . If but , we may solve for x, obtaining ,
which is the equation of a vertical line with x-intercept . This discussion es-
tablishes the following result.

c�a
x � c�aa � 0b � 0c�b

�a�b

y � �� a

b �x �
c

b
,

b � 0ax � by � c

ax � by � c,

b � �
8
5 .

m �
2
5y � mx � b

y �
2
5 x � �� 8

5 �

�5y � ��2

�5�x � � 8

�5�
�5y � �2x � 8

 2x � 5y � 8

y � mx � b

2x � 5y � 8

�0, b�

y � b � m�x � 0�.

y � mx � b
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Slope-Intercept Form 
for the Equation of a Line

The graph of is a line having slope m and y-intercept b.y � mx � b
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For simplicity, we use the terminology the line rather than
the line with equation .

E X A M P L E  6 Sketching the graph of a linear equation

Sketch the graph of .

S O L U T I O N We know from the preceding discussion that the graph is a
line, so it is sufficient to find two points on the graph. Let us find the x- and
y-intercepts by substituting and , respectively, in the given equa-
tion, .

x-intercept: If , then , or .

y-intercept: If , then , or 

Plotting the points and and drawing a line through them gives
us the graph in Figure 10. L

The following theorem specifies the relationship between parallel lines
(lines in a plane that do not intersect) and slope.

P R O O F Let and be distinct lines of slopes and , respectively. If the
y-intercepts are and (see Figure 11), then, by the slope-intercept form, the
lines have equations

The lines intersect at some point if and only if the values of y are equal
for some x—that is, if

or

The last equation can be solved for x if and only if . We have
shown that the lines and intersect if and only if . Hence, they do 
not intersect (are parallel) if and only if .m1 � m2

m1 � m2l2l1

m1 � m2 � 0

�m1 � m2�x � b2 � b1.

m1x � b1 � m2x � b2,

�x, y�

y � m1x � b1 and y � m2x � b2.

b2b1

m2m1l2l1

�0, �
8
5 ��4, 0�

y � �
8
5 .�5y � 8x � 0

x � 42x � 8y � 0

2x � 5y � 8
x � 0y � 0

2x � 5y � 8

ax � by � c
ax � by � c

General Form for 
the Equation of a Line

The graph of a linear equation is a line, and conversely, every
line is the graph of a linear equation.

ax � by � c

Theorem on Slopes 
of Parallel Lines

Two nonvertical lines are parallel if and only if they have the same slope.

Figure 10

y

x

(0, �U)

(4, 0)

2x � 5y � 8

Figure 11

y

x

(0, b1)

(0, b2)

y � m2x � b2

y � m1x � b1
l1

l2

L



E X A M P L E  7 Finding an equation of a line parallel to a given line

Find an equation of the line through that is parallel to the line
.

S O L U T I O N We first express the given equation in slope-intercept form:

given

subtract 6x

divide by 3

The last equation is in slope-intercept form, , with slope 
and y-intercept Since parallel lines have the same slope, the required line
also has slope . Using the point gives us the following:

point-slope form

simplify

subtract 7

The last equation is in slope-intercept form and shows that the parallel line
we have found has y-intercept 3. This line and the given line are sketched in
Figure 12.

As an alternative solution, we might use the fact that lines of the form
have the same slope as the given line and hence are parallel to it.

Substituting and into the equation gives us
or, equivalently, . The equation is

equivalent to . L

If the slopes of two nonvertical lines are not the same, then the lines are
not parallel and intersect at exactly one point.

The next theorem gives us information about perpendicular lines (lines
that intersect at a right angle).

P R O O F For simplicity, let us consider the special case of two lines that in-
tersect at the origin O, as illustrated in Figure 13. Equations of these lines are

and . If, as in the figure, we choose points and
different from O on the lines, then the lines are perpendicular if and

only if angle AOB is a right angle. Applying the Pythagorean theorem, we
know that angle AOB is a right angle if and only if

or, by the distance formula,

�x2 � x1�2 � �m2x2 � m1x1�2 � x2
2 � �m2x2�2 � x2

1 � �m1x1�2.

�d�A, B�	2 � �d�O, B�	2 � �d�O, A�	2

B�x2, m2x2�
A�x1, m1x1�y � m2xy � m1x

y � �2x � 3
6x � 3y � 9k � 96�5� � 3��7� � k

6x � 3y � ky � �7x � 5
6x � 3y � k

y � �2x � 3

y � 7 � �2x � 10

y � ��7� � �2�x � 5�

P�5, �7��2

4
3 .

m � �2y � mx � b

y � �2x �
4
3

 3y � �6x � 4

 6x � 3y � 4

6x � 3y � 4
P�5, �7�
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Theorem on Slopes 
of Perpendicular Lines

Two lines with slope and are perpendicular if and only if

m1m2 � �1.

m2m1

Figure 12

y

x

y � �2x � 3

6x � 3y � 4

P

Figure 13

y

x

y � m2x

B(x2, m2x2)
A(x1, m1x1)

y � m1x

O
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Squaring terms, simplifying, and factoring gives us

Since both and are not zero, we may divide both sides by ,
obtaining . Thus, the lines are perpendicular if and only if

.
The same type of proof may be given if the lines intersect at any point

. L

A convenient way to remember the conditions on slopes of perpendicular
lines is to note that and must be negative reciprocals of each other—
that is, and .

We can visualize the result of the last theorem as follows. Draw a triangle
as in Figure 14; the line containing its hypotenuse has slope Now
rotate the triangle 90° as in Figure 15. The line now has slope
the negative reciprocal of 

E X A M P L E  8 Finding an equation of a line perpendicular to a given line

Find the slope-intercept form for the line through that is perpendicu-
lar to the line .

S O L U T I O N We considered the line in Example 7 and found
that its slope is . Hence, the slope of the required line is the negative recip-
rocal , or Using gives us the following:

point-slope form

simplify

put in slope-intercept form

The last equation is in slope-intercept form and shows that the perpendic-
ular line has y-intercept This line and the given line are sketched in
Figure 16. L

E X A M P L E  9 Finding an equation of a perpendicular bisector

Given and , find the general form of the perpendicular bisec-
tor l of the line segment AB.

B�5, 4�A��3, 1�

�
19
2 .

y �
1
2 x �

19
2

y � 7 �
1
2 x �

5
2

y � ��7� �
1
2 �x � 5�

P�5, �7�1
2 .��1���2�	

�2
6x � 3y � 4

6x � 3y � 4
P�5, �7�

m1.
m2 � a�(�b),

m1 � b�a.

m2 � �1�m1m1 � �1�m2

m2m1

�a, b�

m1m2 � �1
m1m2 � 1 � 0

�2x1x2x2x1

�2x1x2�m1m2 � 1� � 0.

�2m1m2x1x2 � 2x1x2 � 0

Figure 16

y

x
6x � 3y � 4

P(5, �7)

y � qx � p

Figure 14

y

x

(a, b)

m1 � �
y
x

b
a

Figure 15

y

(�b, a)

m2 � � � �
y
x

a
�b

a
b

x



S O L U T I O N The line segment AB and its perpendicular bisector l are shown
in Figure 17. We calculate the following, where M is the midpoint of AB:

Coordinates of M: midpoint formula

Slope of AB: slope formula

Slope of l: negative reciprocal of 

Using the point and slope gives us the following equivalent equa-
tions for l:

point-slope form

multiply by the lcd, 6

multiply

put in general form L

Two variables x and y are linearly related if , where a and b
are real numbers and . Linear relationships between variables occur fre-
quently in applied problems. The following example gives one illustration.

E X A M P L E  1 0 Relating air temperature to altitude

The relationship between the air temperature T (in °F) and the altitude h (in
feet above sea level) is approximately linear for . If the tem-
perature at sea level is 60°, an increase of 5000 feet in altitude lowers the air
temperature about 18°.

(a) Express T in terms of h, and sketch the graph on an hT-coordinate system.

(b) Approximate the air temperature at an altitude of 15,000 feet.

(c) Approximate the altitude at which the temperature is 0°.

S O L U T I O N

(a) If T is linearly related to h, then

for some constants a and b (a represents the slope and b the T-intercept). Since
when ft (sea level), the T-intercept is 60, and the temperature

T for is given by

From the given data, we note that when the altitude ft, the tempera-
ture . Hence, we may find a as follows:

let and 

solve for aa �
42 � 60

5000
� �

9

2500

h � 5000T � 42 42 � a�5000� � 60

T � 60° � 18° � 42°
h � 5000

T � ah � 60.

0 � h � 20,000
h � 0T � 60°

T � ah � b

0 � h � 20,000

a � 0
y � ax � b

 16x � 6y � 31

 6y � 15 � �16x � 16

 6y � 15 � �16�x � 1�
y �

5
2 � �

8
3 �x � 1�

�
8
3M�1, 5

2�

3
8�

1
3
8

� �
8

3

4 � 1

5 � ��3�
�

3

8

��3 � 5

2
,
1 � 4

2 � � �1,
5

2�
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Figure 17

y

x

A(�3, 1)

B(5, 4)

l
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Substituting for a in gives us the following formula for T:

The graph is sketched in Figure 18, with different scales on the axes.

(b) Using the last formula for T obtained in part (a), we find that the tempera-
ture (in °F) when is

(c) To find the altitude h that corresponds to , we proceed as follows:

from part (a)

let

add

multiply by 

simplify and approximate L

A mathematical model is a mathematical description of a problem. For
our purposes, these descriptions will be graphs and equations. In the last ex-
ample, the equation models the relationship between air
temperature and altitude.

T � �
9

2500 h � 60

h �
50,000

3

 16,667 ft

2500
9h � 60 �

2500
9

9
2500 h

9
2500 h � 60

T � 0 0 � �
9

2500 h � 60

T � �
9

2500 h � 60

T � 0°

T � �
9

2500 �15,000� � 60 � �54 � 60 � 6.

h � 15,000

T � �
9

2500 h � 60

T � ah � 60Figure 18

T (temperature in �F)

h
(altitude in ft)

10

60

1000 5000

Exer. 1–6: Sketch the line through A and B, and find its
slope m.

1 , 2 ,

3 , 4 ,

5 , 6 ,

Exer. 7–10: Use slopes to show that the points are vertices
of the specified polygon.

7 ; parallelogram

8 ; trapezoid

9 ; rectangle

10 ; right triangleA�1, 4�, B�6, �4�, C��15, �6�

A�6, 15�, B�11, 12�, C��1, �8�, D��6, �5�

A�2, 3�, B�5, �1�, C�0, �6�, D��6, 2�

A��3, 1�, B�5, 3�, C�3, 0�, D��5, �2�

B��3, �2�A�4, �2�B��3, 5�A��3, 2�

B�5, 6�A�5, �1�B��7, 5�A�2, 5�

B��6, �3�A�4, �1�B�5, �4�A��3, 2�

11 If three consecutive vertices of a parallelogram are
, , and , find the fourth vertex.

12 Let , , , and denote 
the vertices of an arbitrary quadrilateral. Show that the line
segments joining midpoints of adjacent sides form a
parallelogram.

Exer. 13–14: Sketch the graph of for the given 
values of m.

13 14

Exer. 15–16: Sketch the graph of the line through P for 
each value of m.

15 ;

16 ; m � 1, �2, �
1
2P��2, 4�

m �
1
2 , �1, �

1
5P�3, 1�

m � 5, �3, 1
2 , �

1
3m � 3, �2, 2

3 , �
1
4

y � mx

D�x4, y4�C�x3, y3�B�x2, y2�A�x1, y1�

C��7, 5�B�4, 2�A��1, �3�

3.3 E x e r c i s e s



Exer. 17–18: Write equations of the lines.

17

18

Exer. 19–20: Sketch the graphs of the lines on the same 
coordinate plane.

19 , ,

20 , ,

Exer. 21–32: Find a general form of an equation of the line
through the point A that satisfies the given condition.

21

(a) parallel to the y-axis

(b) perpendicular to the y-axis

22

(a) parallel to the x-axis

(b) perpendicular to the x-axis

23 ; slope 24 ; slope 2
3A��1, 4��4A�5, �3�

A��4, 2�

A�5, �2�

y �
1
2 x � 3y � �2x � 3y � �2x � 1

y � �x � 1y � x � 1y � x � 3

(�1, 2)

4

3

y

x

y

x

(2, �3)

4

5

25 ; slope 26 ; slope 5

27 ; through 

28 ; x-intercept 5

29 ; parallel to the line 

30 ; parallel to the line 

31 ; perpendicular to the line 

32 ; perpendicular to the line 

Exer. 33–36: Find the slope-intercept form of the line that
satisfies the given conditions.

33 x-intercept 4, y-intercept

34 x-intercept , y-intercept

35 Through and 

36 Through and 

Exer. 37–38: Find a general form of an equation for the per-
pendicular bisector of the segment AB.

37 , 38 ,

Exer. 39–40: Find an equation for the line that bisects the
given quadrants.

39 II and IV 40 I and III

Exer. 41–44: Use the slope-intercept form to find the slope
and y-intercept of the given line, and sketch its graph.

41 42

43 44

Exer. 45–46: Find an equation of the line shown in the 
figure.

45 (a) (b)

y

x

m � �q

y

x

x � 5y � �154x � 3y � 9

7x � �4y � 82x � 15 � 3y

B��2, 10�A�4, 2�B��2, 6�A�3, �1�

B�3, 7�A��2, 1�

B��1, 4�A�5, 2�

�1�5

�3

3x � 2y � 7A�4, 5�

2x � 5y � 8A�7, �3�

x � 3y � 1A��3, 5�

5x � 2y � 4A�2, �4�

A��1, 6�

B��3, 6�A�4, �5�

A�0, �2��3A�4, 0�
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(c) (d)

46 (a) (b)

(c) (d)

Exer. 47–48: If a line l has nonzero x- and y-intercepts a and
b, respectively, then its intercept form is

Find the intercept form for the given line.

47 48

49 Find an equation of the circle that has center and
is tangent to the line .

50 Find an equation of the line that is tangent to the circle
at the point .P�3, 4�x2 � y2 � 25

y � 5
C�3, �2�

x � 3y � �24x � 2y � 6

x
a

�
y
b

� 1.

y

x

m � 3

(�2, �5)

y

x
m � a

y

x

m � d

y

x

y

x

m � �1

(3, �2)

y

x

m � �w

51 Fetal growth The growth of a fetus more than 12 weeks old
can be approximated by the formula , where
L is the length (in centimeters) and t is the age (in weeks).
Prenatal length can be determined by ultrasound. Approxi-
mate the age of a fetus whose length is 28 centimeters.

52 Estimating salinity Salinity of the ocean refers to the
amount of dissolved material found in a sample of seawater.
Salinity S can be estimated from the amount C of chlorine
in seawater using , where S and C are
measured by weight in parts per thousand. Approximate C
if S is 0.35.

53 Weight of a humpback whale The expected weight W
(in tons) of a humpback whale can be approximated
from its length L (in feet) by using 42.8 for

.

(a) Estimate the weight of a 40-foot humpback whale.

(b) If the error in estimating the length could be as large as
2 feet, what is the corresponding error for the weight
estimate?

54 Growth of a blue whale Newborn blue whales are approxi-
mately 24 feet long and weigh 3 tons. Young whales are
nursed for 7 months, and by the time of weaning they often
are 53 feet long and weigh 23 tons. Let L and W denote the
length (in feet) and the weight (in tons), respectively, of a
whale that is t months of age.

(a) If L and t are linearly related, express L in terms of t.

(b) What is the daily increase in the length of a young
whale? (Use 1 days.)

(c) If W and t are linearly related, express W in terms of t.

(d) What is the daily increase in the weight of a young
whale?

55 Baseball stats Suppose a major league baseball player has
hit 5 home runs in the first 14 games, and he keeps up this
pace throughout the 162-game season.

(a) Express the number y of home runs in terms of the
number x of games played.

(b) How many home runs will the player hit for the season?

month � 30

30 � L � 50
W � 1.70L �

S � 0.03 � 1.805C

L � 1.53t � 6.7



56 Cheese production A cheese manufacturer produces
18,000 pounds of cheese from January 1 through March 24.
Suppose that this rate of production continues for the re-
mainder of the year.

(a) Express the number y of pounds of cheese produced in
terms of the number x of the day in a 365-day year.

(b) Predict, to the nearest pound, the number of pounds
produced for the year.

57 Childhood weight A baby weighs 10 pounds at birth, and
three years later the child’s weight is 30 pounds. Assume
that childhood weight W (in pounds) is linearly related to
age t (in years).

(a) Express W in terms of t.

(b) What is W on the child’s sixth birthday?

(c) At what age will the child weigh 70 pounds?

(d) Sketch, on a tW-plane, a graph that shows the relation-
ship between W and t for .

58 Loan repayment A college student receives an interest-
free loan of $8250 from a relative. The student will repay
$125 per month until the loan is paid off.

(a) Express the amount P (in dollars) remaining to be paid
in terms of time t (in months).

(b) After how many months will the student owe $5000?

(c) Sketch, on a tP-plane, a graph that shows the relation-
ship between P and t for the duration of the loan.

59 Vaporizing water The amount of heat H (in joules) required
to convert one gram of water into vapor is linearly related to
the temperature T (in �C) of the atmosphere. At 10�C this
conversion requires 2480 joules, and each increase in temp-
erature of 15�C lowers the amount of heat needed by
40 joules. Express H in terms of T.

60 Aerobic power In exercise physiology, aerobic power P is
defined in terms of maximum oxygen intake. For altitudes
up to 1800 meters, aerobic power is optimal—that is,
100%. Beyond 1800 meters, P decreases linearly from the
maximum of 100% to a value near 40% at 5000 meters.

(a) Express aerobic power P in terms of altitude h (in met-
ers) for .

(b) Estimate aerobic power in Mexico City (altitude: 2400
meters), the site of the 1968 Summer Olympic Games.

1800 � h � 5000

0 � t � 12

61 Urban heat island The urban heat island phenomenon has
been observed in Tokyo. The average temperature was
13.5�C in 1915, and since then has risen 0.032�C per year.

(a) Assuming that temperature T (in �C) is linearly related
to time t (in years) and that corresponds to 1915,
express T in terms of t.

(b) Predict the average temperature in the year 2010.

62 Rising ground temperature In 1870 the average ground
temperature in Paris was 11.8�C. Since then it has risen at a
nearly constant rate, reaching 13.5�C in 1969.

(a) Express the temperature T (in �C) in terms of time t (in
years), where corresponds to the year 1870 and

.

(b) During what year was the average ground temperature
12.5�C?

63 Business expenses The owner of an ice cream franchise
must pay the parent company $1000 per month plus 5% of
the monthly revenue R. Operating cost of the franchise in-
cludes a fixed cost of $2600 per month for items such as
utilities and labor. The cost of ice cream and supplies is
50% of the revenue.

(a) Express the owner’s monthly expense E in terms of R.

(b) Express the monthly profit P in terms of R.

(c) Determine the monthly revenue needed to break even.

64 Drug dosage Pharmacological products must specify recom-
mended dosages for adults and children. Two formulas for
modification of adult dosage levels for young children are

Cowling’s rule:

and Friend’s rule:

where a denotes adult dose (in milligrams) and t denotes the
age of the child (in years).

(a) If , graph the two linear equations on the same
coordinate plane for .

(b) For what age do the two formulas specify the same
dosage?

65 Video game In the video game shown in the figure, an
airplane flies from left to right along the path given by

and shoots bullets in the tangent direction at
creatures placed along the x-axis at , 2, 3, 4.x � 1
y � 1 � �1�x�

0 � t � 12
a � 100

y �
2

25 ta,

y �
1
24 �t � 1�a

0 � t � 99
t � 0

t � 0
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Exercise 65

From calculus, the slope of the tangent line to the path at
is and at is Determine

whether a creature will be hit if bullets are shot when the
airplane is at

(a) P (b) Q

66 Temperature scales The relationship between the tempera-
ture reading F on the Fahrenheit scale and the temperature
reading C on the Celsius scale is given by .

(a) Find the temperature at which the reading is the same
on both scales.

(b) When is the Fahrenheit reading twice the Celsius 
reading?

67 Vertical wind shear Vertical wind shear occurs when wind
speed varies at different heights above the ground. Wind

C �
5
9 �F � 32�

m � �
4
9 .Q�3

2 , 5
3�m � �1P�1, 2�

y

1

2

3

1 2 3 4
x

P

Q

shear is of great importance to pilots during takeoffs and land-
ings. If the wind speed is at height and at height ,
then the average wind shear s is given by the slope formula

If the wind speed at ground level is 22 and s has been
determined to be 0.07, find the wind speed 185 feet above
the ground.

68 Vertical wind shear In the study of vertical wind shear, the
formula

is sometimes used, where P is a variable that depends on 
the terrain and structures near ground level. In Montreal,
the average daytime value for P with north winds over
29 was determined to be 0.13. If a 32 north
wind is measured 20 feet above the ground, approximate 
the average wind shear (see Exercise 67) between 20 feet
and 200 feet.

Exer. 69–70: The given points were found using empirical
methods. Determine whether they lie on the same line

, and if so, find the values of a and b.

69 , ,

,

70 , ,

D�1.45, 0.862�C�1.3, 1.028�

B��0.12, 1.6528�A��0.22, 1.6968�

D�3.25, 0.10075�C�1.2, �0.5573�

B��0.55, �1.11905�A��1.3, �1.3598�

y � ax � b

mi�hrmi�hr

v1

v2

� �h1

h2
�P

mi�hr

s �
v2 � v1

h2 � h1

.

h2v2h1v1

The notion of correspondence occurs frequently in everyday life. Some ex-
amples are given in the following illustration.

Correspondence

To each book in a library there corresponds the number of pages in the
book.

To each human being there corresponds a birth date.

If the temperature of the air is recorded throughout the day, then to each
instant of time there corresponds a temperature.

3.4
Definition of Function

I L L U S T R A T I O N



Each correspondence in the previous illustration involves two sets, D and
E. In the first illustration, D denotes the set of books in a library and E the set
of positive integers. To each book x in D there corresponds a positive integer
y in E—namely, the number of pages in the book.

We sometimes depict correspondences by diagrams of the type shown in
Figure 1, where the sets D and E are represented by points within regions in a
plane. The curved arrow indicates that the element y of E corresponds to the
element x of D. The two sets may have elements in common. As a matter of
fact, we often have . It is important to note that to each x in D there cor-
responds exactly one y in E. However, the same element of E may correspond
to different elements of D. For example, two books may have the same num-
ber of pages, two people may have the same birthday, and the temperature may
be the same at different times.

In most of our work, D and E will be sets of numbers. To illustrate, let
both D and E denote the set � of real numbers, and to each real number x let
us assign its square . This gives us a correspondence from � to �.

Each of our illustrations of a correspondence is a function, which we de-
fine as follows.

The element x of D is the argument of f. The set D is the domain of the func-
tion. The element y of E is the value of f at x (or the image of x under f ) and
is denoted by , read “f of x.” The range of f is the subset R of E consisting
of all possible values for x in D. Note that there may be elements in the
set E that are not in the range R of f.

Consider the diagram in Figure 2. The curved arrows indicate that the el-
ements , , , and of E correspond to the elements w, z, x, and
a of D. To each element in D there is assigned exactly one function value in E;
however, different elements of D, such as w and z in Figure 2, may have the
same value in E.

The symbols

and

signify that f is a function from D to E, and we say that f maps D into E. Ini-
tially, the notations f and may be confusing. Remember that f is used to
represent the function. It is neither in D nor in E. However, is an elementf �x�

f �x�

D E

f

f : D l E,D lf E,

f �a�f �x�f �z�f �w�

f �x�
f �x�

x2

D � E
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Figure 2

D

E

w

z
a

x
f (w)

f (x)

f (z)

f (a)

Figure 1

x

y

E

D

Definition of Function A function f from a set D to a set E is a correspondence that assigns to
each element x of D exactly one element y of E.

For many cases, we can simply re-
member that the domain is the set of
x-values and the range is the set of 
y-values.
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Note that, in general,

f �a � b� � f �a� � f �b�.

of the range R—the element that the function f assigns to the element x, which
is in the domain D.

Two functions f and g from D to E are equal, and we write

provided for every x in D.

For example, if and for every x in �, then
.

E X A M P L E  1 Finding function values

Let f be the function with domain � such that for every x in �.

(a) Find , , , and , where a and b are real
numbers.

(b) What is the range of f ?

S O L U T I O N

(a) We find values of f by substituting for x in the equation :

(b) By definition, the range of f consists of all numbers of the form 
for x in �. Since the square of every real number is nonnegative, the range is
contained in the set of all nonnegative real numbers. Moreover, every non-
negative real number c is a value of f, since . Hence,
the range of f is the set of all nonnegative real numbers. L

If a function is defined as in Example 1, the symbols used for the function
and variable are immaterial; that is, expressions such as , ,

, and all define the same function. This is true because if a
is any number in the domain, then the same value is obtained regardless of
which expression is employed.

In the remainder of our work, the phrase f is a function will mean that the
domain and range are sets of real numbers. If a function is defined by means
of an expression, as in Example 1, and the domain D is not stated, then we will
consider D to be the totality of real numbers x such that is real. This is
sometimes called the implied domain of f. To illustrate, if ,
then the implied domain is the set of real numbers x such that is
real—that is, , or . Thus, the domain is the infinite interval

. If x is in the domain, we say that f is defined at x or that exists. Iff �x��2, ��
x 
 2x � 2 
 0

2x � 2
f �x� � 2x � 2

f �x�

a2

k�r� � r2g�t� � t2

f �s� � s2f �x� � x2

f �2c � � �2c �2
� c

x2f �x� �

f �a� � f �b� � a2 � b2

f �a � b� � �a � b�2 � a2 � 2ab � b2

f �23 � � �23 �2
� 3

f ��6� � ��6�2 � 36

f �x� � x2

f �a� � f �b�f �a � b�f �23�f ��6�
f �x� � x2

g � f
f �x� � x2g�x� �

1
2 �2x2 � 6� � 3

f �x� � g�x�f � g



a set S is contained in the domain, f is defined on S. The terminology f is un-
defined at x means that x is not in the domain of f.

E X A M P L E  2 Finding function values

Let

(a) Find the domain of g.

(b) Find , , , and .

S O L U T I O N

(a) The expression is a real number if and only if the radi-
cand is nonnegative and the denominator is not equal to 0. Thus,

exists if and only if

and

or, equivalently,

and

We may express the domain in terms of intervals as .

(b) To find values of g, we substitute for x:

L

Functions are commonplace in everyday life and show up in a variety of
forms. For instance, the menu in a restaurant (Figure 3) can be considered to
be a function f from a set of items to a set of prices. Note that f is given in a
table format. Here , , and

.
An example of a function given by a rule can be found in the federal tax

tables (Figure 4). Specifically, in 2006, for a single person with a taxable in-
come of $120,000, the tax due was given by the rule

$15,107.50 plus 28% of the amount over $74,200.

f �Soda� � 0.79
f �French fries� � 0.99f �Hamburger� � 1.69

�g�a� � �
24 � a

1 � a
�
24 � a

a � 1

g��a� �
24 � ��a�
1 � ��a�

�
24 � a

1 � a

g��2� �
24 � ��2�
1 � ��2�

�
22

3

g�5� �
24 � 5

1 � 5
�
29

�4
� �

3

4

��4, 1� 
 �1, ��

x � 1.x 
 �4

 1 � x � 0 4 � x 
 0

g�x�
1 � x4 � x

24 � x��1 � x�

�g�a�g��a�g��2�g�5�

g�x� �
24 � x

1 � x
.
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Figure 3

MENU

Hamburger

French fries

Soda

$1.69

$0.99

$0.79
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Figure 5

T (temperature)

t
(time)

105

Figure 4

In this case, the tax would be

Graphs are often used to describe the variation of physical quantities. For
example, a scientist may use the graph in Figure 5 to indicate the temperature
T of a certain solution at various times t during an experiment. The sketch
shows that the temperature increased gradually for time to time ,
did not change between and , and then decreased rapidly from

to .
Similarly, if f is a function, we may use a graph to indicate the change in
as x varies through the domain of f. Specifically, we have the following

definition.

We often attach the label to a sketch of the graph. If is a
point on the graph, then the y-coordinate b is the function value , as illus-
trated in Figure 6 on the next page. The figure displays the domain of f (the set
of possible values of x) and the range of f (the corresponding values of y). Al-
though we have pictured the domain and range as closed intervals, they may
be infinite intervals or other sets of real numbers.

Since there is exactly one value for each a in the domain of f , only
one point on the graph of f has x-coordinate a. In general, we may use the fol-
lowing graphical test to determine whether a graph is the graph of a function.

f�a�

f�a�
P�a, b�y � f�x�

f�x�

t � 9t � 8
t � 8t � 5

t � 5t � 0

$15,107.50 � 0.28�$120,000 � $74,200� � $27,931.50.

2006 Federal Tax Rate Schedules
Schedule X –Use if your Filing status is single

If taxable
income is
over–

But not
over–

The tax
is:

of the
amount
over–

$0

7,550

30,650

74,200

154,800

336,550

$7,550

30,650

74,200

154,800

336,550

- - - - - - -

- - - - - - - - 10%

$755.00 + 15%

$4,220.00 + 25%

15,107.50 + 28%

37,675.50 + 33%

97,653.00 + 35%

$0

7,550

30,650

74,200

154,800

336,550

Definition of 
Graph of a Function

The graph of a function f is the graph of the equation for x in the
domain of f.

y � f�x�

Vertical Line Test The graph of a set of points in a coordinate plane is the graph of a function
if every vertical line intersects the graph in at most one point.



Thus, every vertical line intersects the graph of a function in at most
one point. Consequently, the graph of a function cannot be a figure such as
a circle, in which a vertical line may intersect the graph in more than one
point.

The x-intercepts of the graph of a function f are the solutions of the equa-
tion . These numbers are called the zeros of the function. The 
y-intercept of the graph is , if it exists.

E X A M P L E  3 Sketching the graph of a function

Let .

(a) Sketch the graph of f.

(b) Find the domain and range of f.

S O L U T I O N

(a) By definition, the graph of f is the graph of the equation .
The following table lists coordinates of several points on the graph.

Plotting points, we obtain the sketch shown in Figure 7. Note that the 
x-intercept is 1 and there is no y-intercept.

(b) Referring to Figure 7, note that the domain of f consists of all real num-
bers x such that or, equivalently, the interval [1, �). The range of f is the
set of all real numbers y such that or, equivalently, [0, �). L

The square root function, defined by , has a graph similar to
the one in Figure 7, but the endpoint is at (0, 0). The y-value of a point on this
graph is the number displayed on a calculator when a square root is requested.
This graphical relationship may help you remember that is 3 and that 
is not . Similarly, , , and are often referred
to as the squaring function, the cubing function, and the cube root function,
respectively.

In Example 3, as x increases, the function value also increases, and
we say that the graph of f rises (see Figure 7). A function of this type is said
to be increasing. For certain functions, decreases as x increases. In thisf �x�

f �x�

f �x� � 23 xf �x� � x 3f �x� � x2�3
2929

f �x� � 2x

y 
 0
x 
 1

y � 2x � 1

f �x� � 2x � 1

f �0�
f �x� � 0
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Figure 6

y

x

Range
of  f

Domain of  f

y � f (x)

P(a, b)

f (a)

a

Figure 7

y

x

y � �x � 1

Domain: [1, �)

Range:
[0, �)

x 1 2 3 4 5 6

y � f(x) 0 1 2 25 
 2.223 
 1.722 
 1.4
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Increasing, Decreasing, and Constant Functions

Terminology Definition Graphical interpretation

f is increasing
on an interval I whenever 

f is decreasing
on an interval I whenever 

f is constant
on an interval I for every and x2x1

f �x1� � f �x2�

x1 � x2

f �x1� � f �x2�

x1 � x2

f �x1� � f �x2�

f (x2)

y

xx2x1

f (x1)

f (x1)

f (x2)

y

xx2x1

xx2x1

f (x1) f (x2)

y

case the graph falls, and f is a decreasing function. In general, we shall con-
sider functions that increase or decrease on an interval I, as described in the
following chart, where and denote numbers in I.x2x1

An example of an increasing function is the identity function, whose
equation is and whose graph is the line through the origin with
slope 1. An example of a decreasing function is , an equation of the
line through the origin with slope . If for every real number x, then
f is called a constant function.

f�x� � c�1
f�x� � �x

f�x� � x



We shall use the phrases f is increasing and is increasing inter-
changeably. We shall do the same with the terms decreasing and constant.

E X A M P L E  4 Using a graph to find domain, range, 
and where a function increases or decreases

Let .

(a) Sketch the graph of f.

(b) Find the domain and range of f.

(c) Find the intervals on which f is increasing or is decreasing.

S O L U T I O N

(a) By definition, the graph of f is the graph of the equation . We
know from our work with circles in Section 3.2 that the graph of 
is a circle of radius 3 with center at the origin. Solving the equation

for y gives us . It follows that the graph of f is the
upper half of the circle, as illustrated in Figure 8.

(b) Referring to Figure 8, we see that the domain of f is the closed interval
, and the range of f is the interval .

(c) The graph rises as x increases from to 0, so f is increasing on the closed
interval . Thus, as shown in the preceding chart, if in ,
then (note that possibly or ).

The graph falls as x increases from 0 to 3, so f is decreasing on the closed
interval . In this case, the chart indicates that if in , then

(note that possibly or ). L

Of special interest in calculus is a problem of the following type.

Problem: Find the slope of the secant line through the points P and Q shown
in Figure 9.

Figure 9

xa � ha

y � f (x)

y

�x � h

�y � f (a � h) � f (a)
P(a, f (a))

Q(a � h, f (a � h))
secant line

x2 � 3x1 � 0f�x1� � f�x2�
�0, 3	x1 � x2�0, 3	

x2 � 0x1 � �3f�x1� � f�x2�
��3, 0	x1 � x2��3, 0	

�3

�0, 3	��3, 3	

y � �29 � x2x2 � y2 � 9

x2 � y2 � 9
y � 29 � x2

f�x� � 29 � x2

f�x�
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Figure 8

y

x

Range:
[0, 3]

Domain:
[�3, 3]

y � �9 � x2
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The slope is given by

The last expression (with ) is commonly called a difference quotient.
Let’s take a look at the algebra involved in simplifying a difference quotient.
(See Discussion Exercise 5 at the end of the chapter for a related problem.)

E X A M P L E  5 Simplifying a difference quotient

Simplify the difference quotient

using the function .

S O L U T I O N

definition of f

expand numerator

subtract terms

simplify

factor out h

cancel

L

The following type of function is one of the most basic in algebra.

The graph of f in the preceding definition is the graph of ,
which, by the slope-intercept form, is a line with slope a and y-intercept b.

y � ax � b

h � 0� 2x � h � 6

�
h�2x � h � 6�

h

�
2xh � h2 � 6h

h

�
�x2 � 2xh � h2 � 6x � 6h � 4� � �x2 � 6x � 4�

h

�
�x2 � 2xh � h2 � 6x � 6h � 4� � �x2 � 6x � 4�

h

f�x � h� � f�x�
h

�
��x � h�2 � 6�x � h� � 4	 � �x2 � 6x � 4	

h

f�x� � x2 � 6x � 4

f�x � h� � f�x�
h

h � 0

mPQ �
�y

�x
�

f�a � h� � f�a�
h

.

mPQ

Definition of Linear Function A function f is a linear function if

where x is any real number and a and b are constants.

f�x� � ax � b,



Thus, the graph of a linear function is a line. Since exists for every x, the
domain of f is �. As illustrated in the next example, if , then the range
of f is also �.

E X A M P L E  6 Sketching the graph of a linear function

Let .

(a) Sketch the graph of f.

(b) Find the domain and range of f.

(c) Determine where f is increasing or is decreasing.

S O L U T I O N

(a) Since has the form , with and , f is a linear func-
tion. The graph of is the line with slope 2 and y-intercept 3, illus-
trated in Figure 10.

(b) We see from the graph that x and y may be any real numbers, so both the
domain and the range of f are �.

(c) Since the slope a is positive, the graph of f rises as x increases; that is,
whenever . Thus, f is increasing throughout its domain.

L

In applications it is sometimes necessary to determine a specific linear
function from given data, as in the next example.

E X A M P L E  7 Finding a linear function

If f is a linear function such that and , find , where x
is any real number.

S O L U T I O N By the definition of linear function, , where a
and b are constants. Moreover, the given function values tell us that the points

and are on the graph of f—that is, on the line illus-
trated in Figure 11. The slope a of this line is

and hence has the form

To find the value of b, we may use the fact that , as follows:

let in 

solve for bb � 3 �
3
2 �

9
2

f�6� � 3 3 � �
3
2 � b

f �x� � �
1
4 x � bx � 6f �6� � �

1
4 �6� � b

f �6� � 3

f �x� � �
1
4 x � b.

f �x�

a �
5 � 3

�2 � 6
�

2

�8
� �

1

4
,

y � ax � b�6, 3���2, 5�

f �x� � ax � b

f �x�f �6� � 3f ��2� � 5

x1 � x2f �x1� � f �x2�

y � 2x � 3
b � 3a � 2ax � bf �x�

f �x� � 2x � 3

a � 0
f �x�
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Figure 10

y

x

y � 2x � 3

Figure 11

y

x

(�2, 5)

(6, 3)

y � ax � b
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Figure 12

r

10�

Thus, the linear function satisfying and is

L

Many formulas that occur in mathematics and the sciences determine
functions. For instance, the formula for the area A of a circle of ra-
dius r assigns to each positive real number r exactly one value of A. This de-
termines a function f such that , and we may write . The
letter r, which represents an arbitrary number from the domain of f, is called
an independent variable. The letter A, which represents a number from the
range of f, is a dependent variable, since its value depends on the number as-
signed to r. If two variables r and A are related in this manner, we say that A
is a function of r. In applications, the independent variable and dependent vari-
able are sometimes referred to as the input variable and output variable, re-
spectively. As another example, if an automobile travels at a uniform rate of
50 mi hr, then the distance d (miles) traveled in time t (hours) is given by

, and hence the distance d is a function of time t.

E X A M P L E  8 Expressing the volume of a tank as a function of its radius

A steel storage tank for propane gas is to be constructed in the shape of a right
circular cylinder of altitude 10 feet with a hemisphere attached to each end.
The radius r is yet to be determined. Express the volume V (in ) of the tank
as a function of r (in feet).

S O L U T I O N The tank is illustrated in Figure 12. We may find the volume of
the cylindrical part of the tank by multiplying the altitude 10 by the area 
of the base of the cylinder. This gives us

The two hemispherical ends, taken together, form a sphere of radius r. Using
the formula for the volume of a sphere, we obtain

Thus, the volume V of the tank is

This formula expresses V as a function of r. In factored form,

L

E X A M P L E  9 Expressing a distance as a function of time

Two ships leave port at the same time, one sailing west at a rate of 17 mi hr
and the other sailing south at 12 mi hr. If t is the time (in hours) after their de-
parture, express the distance d between the ships as a function of t.

�
�

V�r� �
1
3 �r 2�4r � 30� �

2
3 �r 2�2r � 15�.

V �
4
3 �r 3 � 10�r2.

volume of the two ends �
4
3 �r3.

volume of cylinder � 10��r2� � 10�r2.

�r2

ft3

d � 50t
�

A � f �r�f �r� � �r2

A � �r2

f �x� � �
1
4 x �

9
2 .

f �6� � 3f ��2� � 5



S O L U T I O N To help visualize the problem, we begin by drawing a picture
and labeling it, as in Figure 13. By the Pythagorean theorem,

or

Since distance (rate)(time) and the rates are 17 and 12, respectively,

and

Substitution in gives us

L

Ordered pairs can be used to obtain an alternative approach to functions.
We first observe that a function f from D to E determines the following set W
of ordered pairs:

Thus, W consists of all ordered pairs such that the first number x is in D and
the second number is the function value . In Example 1, where ,
W is the set of all ordered pairs of the form . It is important to note that,
for each x, there is exactly one ordered pair in W having x in the first
position.

Conversely, if we begin with a set W of ordered pairs such that each x in
D appears exactly once in the first position of an ordered pair, then W deter-
mines a function. Specifically, for each x in D there is exactly one pair 
in W, and by letting y correspond to x, we obtain a function with domain D.
The range consists of all real numbers y that appear in the second position of
the ordered pairs.

It follows from the preceding discussion that the next statement could also
be used as a definition of function.

In terms of the preceding definition, the ordered pairs deter-
mine the function of Example 3 given by . Note, however,
that if

then W is not a function, since for a given x there may be more than one pair
in W with x in the first position. For example, if , then both and

are in W.
As a reference aid, some common graphs and their equations are listed in

Appendix I. Many of these graphs are graphs of functions.

�2, �2�
�2, 2�x � 2

W � ��x, y�: x2 � y2
,

f�x� � 2x � 1
�x, 2x � 1 �

�x, y�

�x, y�
�x, x2�

f�x� � x2f�x�

W � ��x, f�x��: x is in D


2433t2 
 (20.8)t.2289t2 � 144t2 �d � 2(17t)2 � (12t)2 �

d � 2a2 � b2

b � 12t.a � 17t

�

d � 2a2 � b2.d2 � a2 � b2,
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Figure 13

Port
a

d

b

N

Alternative 
Definition of Function

A function with domain D is a set W of ordered pairs such that, for each x
in D, there is exactly one ordered pair in W having x in the first
position.

�x, y�
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1 If , find , , and .

2 If , find , , and .

3 If , find , , and .

4 If , find , , and .

Exer. 5–10: If a and h are real numbers, find
(a) (b) (c) (d)

(e) (f) if 

5 6

7 8

9 10

Exer. 11–14: If a is a positive real number, find

(a) (b) (c) (d)

11 12

13 14

Exer. 15–16: Explain why the graph is or is not the graph of
a function.

15 16 y

x

y

x

g�x� �
x 2

x � 1
g�x� �

2x

x 2 � 1

g�x� � 2x � 5g�x� � 4x2

2g(a)g�2a �1
g(a)

g� 1
a�

f �x� � 2x 2 � 3x � 7f �x� � x 2 � x � 3

f �x� � 3 � x 2f �x� � �x 2 � 4

f �x� � 3 � 4xf �x� � 5x � 2

h � 0
f (a � h) � f (a)

h
,f (a) � f (h)

f (a � h)�f (a)f (�a)f (a)

f �3�f �0�f ��2�f �x� �
x

x � 3

f �13�f �8�f �4�f �x� � 2x � 4 � 3x

f �2�f �0�f ��3�f �x� � �x 3 � x 2 � 3

f �4�f �0�f ��2�f �x� � �x 2 � x � 4 Exer. 17–18: Determine the domain D and range R of the
function shown in the figure.

17 18

Exer. 19–20: For the graph of the function f sketched in the
figure, determine
(a) the domain (b) the range (c)

(d) all x such that 

(e) all x such that 

19

20

Exer. 21–32: Find the domain of f.

21 22

23 24

25 26 f �x� �
4x

6x2 � 13x � 5
f �x� �

x � 1

x3 � 4x

f �x� � 2x 2 � 25f �x� � 29 � x2

f �x� � 28 � 3xf �x� � 22x � 7

y

x
(�5, �1)

(�3, 1)

(�2, 2)
(�1, 1)

(1, �1) (7, �1)

(4, 2)
(3, 1) (5, 1)

y

x

(�3, �2)

(�1, 1)

(q, 1)

(1, 0)

(2, 1)

(4, 2)

f (x) > 1

f (x) � 1

f (1)

y

x

(4, �3)

(�2, �1)

(�4, 3)

(�2, 1)

y

x
(�4, �3)

(4, 3)
(1, 2)

(2, �1)

3.4 E x e r c i s e s



27 28

29 30

31

32

Exer. 33–34: (a) Find the domain D and range R of f.
(b) Find the intervals on which f is increasing, is decreasing,
or is constant.

33

34

35 Sketch the graph of a function that is increasing on
and and is decreasing on .

36 Sketch the graph of a function that is decreasing on
and and is increasing on and

.

Exer. 37–46: (a) Sketch the graph of f. (b) Find the do-
main D and range R of f. (c) Find the intervals on which f is
increasing, is decreasing, or is constant.

37 38

39 40

41 42 f �x� � 24 � xf �x� � 2x � 4

f �x� � x 2 � 1f �x� � 4 � x 2

f �x� � �2x � 3f �x� � 3x � 2

�4, ��
��2, 1	�1, 4	���, �2	

��3, 2	�2, �����, �3	

y

x

(2, �3)(�5, �3)

(�3, 3)

(3, �2)

(0, 3) (4, 1)
(5, 1)

(�2, 4)
(�1, 4)

y

x

(4, 4)

(2, 2)

(3, 0)

(1, �3)(�1, �3)

(�4, �1)

(�3, 1)

(�5, 3)

f �x� � 2�x � 2��x � 6�

f �x� � 2x � 2 � 22 � x

f �x� �
1

�x � 3�2x � 3
f �x� �

x � 4

2x � 2

f �x� �
24x � 3

x 2 � 4
f �x� �

22x � 3

x 2 � 5x � 4

43 44

45 46

Exer. 47–48: Simplify the difference quotient

if .

47 48

Exer. 49–50: Simplify the difference quotient

if .

49 50

Exer. 51–52: Simplify the difference quotient 
if .

51 (Hint: Rationalize the numerator.)

52

Exer. 53–54: If a linear function f satisfies the given condi-
tions, find .

53 and

54 and

Exer. 55–64: Determine whether the set W of ordered pairs
is a function in the sense of the alternative definition of func-
tion on page 166.

55

56

57

58

59 60

61 62

63 64

65 Constructing a box From a rectangular piece of cardboard
having dimensions 20 inches � 30 inches, an open box is to
be made by cutting out an identical square of area from
each corner and turning up the sides (see the figure). Express
the volume V of the box as a function of x.

x2

W � ��x, y�: y � x
W � ��x, y�: � y � � � x �

W � ��x, y�: x � y � 0
W � ��x, y�: xy � 0


W � ��x, y�: x � 3
W � ��x, y�: y � 3


W � ��x, y�: y2 � x2 � 1


W � ��x, y�: x2 � y2 � 4


W � ��x, y�: x � 3y � 2


W � ��x, y�: 2y � x 2 � 5


f �4� � �2f ��2� � 7

f �3� � 2f ��3� � 1

f (x)

f �x� � x 3 � 2

f �x� � 2x � 3

x � a

f (x) � f (a)
x � a

f �x� � 1�x2f �x� � x 2 � 5

h � 0
f (x � h) � f (x)

h

f �x� � �2x 2 � 3f �x� � x2 � 3x

h � 0
f (2 � h) � f (2)

h

f �x� � 216 � x 2f �x� � �236 � x 2

f �x� � 3f �x� � �2
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Exercise 65

66 Constructing a storage tank Refer to Example 8. A steel
storage tank for propane gas is to be constructed in the
shape of a right circular cylinder of altitude 10 feet with 
a hemisphere attached to each end. The radius r is yet to 
be determined. Express the surface area S of the tank as a
function of r.

67 Dimensions of a building A small office unit is to contain
500 of floor space. A simplified model is shown in
the figure.

(a) Express the length y of the building as a function of the
width x.

(b) If the walls cost $100 per running foot, express the cost
C of the walls as a function of the width x. (Disregard
the wall space above the doors and the thickness of the
walls.)

Exercise 67

68 Dimensions of an aquarium An aquarium of height 1.5 feet
is to have a volume of 6 . Let x denote the length of the
base and y the width (see the figure).

(a) Express y as a function of x.

(b) Express the total number S of square feet of glass
needed as a function of x.

ft3

3�

3�

y

x

ft2

20

?x x

? 30

x

x

?

x

?

Exercise 68

69 Skyline ordinance A city council is proposing a new 
skyline ordinance. It would require the setback S for any
building from a residence to be a minimum of 100 feet,
plus an additional 6 feet for each foot of height above
25 feet. Find a linear function for S in terms of h.

Exercise 69

70 Energy tax A proposed energy tax T on gasoline, which
would affect the cost of driving a vehicle, is to be computed
by multiplying the number x of gallons of gasoline that you
buy by 125,000 (the number of BTUs per gallon of gasoline)
and then multiplying the total BTUs by the tax—34.2 cents
per million BTUs. Find a linear function for T in terms of x.

71 Childhood growth For children between ages 6 and 10,
height y (in inches) is frequently a linear function of age t
(in years). The height of a certain child is 48 inches at age
6 and 50.5 inches at age 7.

(a) Express y as a function of t.

(b) Sketch the line in part (a), and interpret the slope.

(c) Predict the height of the child at age 10.

Setback

h

x

1.5�

y



72 Radioactive contamination It has been estimated that 1000
curies of a radioactive substance introduced at a point on the
surface of the open sea would spread over an area of 40,000

in 40 days. Assuming that the area covered by the 
radioactive substance is a linear function of time t and is 
always circular in shape, express the radius r of the con-
tamination as a function of t.

73 Distance to a hot-air balloon A hot-air balloon is released
at 1:00 P.M. and rises vertically at a rate of 2 . An ob-
servation point is situated 100 meters from a point on the
ground directly below the balloon (see the figure). If t de-
notes the time (in seconds) after 1:00 P.M., express the dis-
tance d between the balloon and the observation point as a
function of t.

Exercise 73

74 Triangle ABC is inscribed in a semicircle of diameter 15
(see the figure).

(a) If x denotes the length of side AC, express the length y
of side BC as a function of x. (Hint: Angle ACB is a
right angle.)

(b) Express the area of triangle ABC as a function of x,
and state the domain of this function.

Exercise 74

A B

C

x y

15

�

100 m

d

Observation
point

m�sec

km2

75 Distance to Earth From an exterior point P that is
h units from a circle of radius r, a tangent line is drawn to
the circle (see the figure). Let y denote the distance from the
point P to the point of tangency T.

(a) Express y as a function of h. (Hint: If C is the center of
the circle, then PT is perpendicular to CT.)

(b) If r is the radius of Earth and h is the altitude of 
a space shuttle, then y is the maximum distance to
Earth that an astronaut can see from the shuttle. In par-
ticular, if mi and mi, approximate y.

Exercise 75

76 Length of a tightrope The figure illustrates the apparatus
for a tightrope walker. Two poles are set 50 feet apart,
but the point of attachment P for the rope is yet to be
determined.

(a) Express the length L of the rope as a function of the dis-
tance x from P to the ground.

(b) If the total walk is to be 75 feet, determine the distance
from P to the ground.

Exercise 76

50�

x

2�

Rope

P

L

T

P

r

y

h

C

r 
 4000h � 200
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is between A and B and is x miles from the house, and then
he will walk the remainder of the distance. Suppose he can
row at a rate of 3 and can walk at a rate of 5 .
If T is the total time required to reach the house, express T
as a function of x.

Exercise 78

6 mi

x
2 mi

A
P

B

mi�hrmi�hr

77 Airport runway The relative positions of an aircraft run-
way and a 20-foot-tall control tower are shown in the figure.
The beginning of the runway is at a perpendicular distance
of 300 feet from the base of the tower. If x denotes the dis-
tance an airplane has moved down the runway, express the
distance d between the airplane and the top of the control
tower as a function of x.

Exercise 77

78 Destination time A man in a rowboat that is 2 miles from
the nearest point A on a straight shoreline wishes to reach a
house located at a point B that is 6 miles farther down the
shoreline (see the figure). He plans to row to a point P that

300�

20�

d

x

In this section we discuss aids for sketching graphs of certain types of func-
tions. In particular, a function f is called even if for every x in its
domain. In this case, the equation is not changed if is substituted
for x, and hence, from symmetry test 1 of Section 3.2, the graph of an even
function is symmetric with respect to the y-axis.

A function f is called odd if for every x in its domain. If
we apply symmetry test 3 of Section 3.2 to the equation , we see that
the graph of an odd function is symmetric with respect to the origin.

These facts are summarized in the first two columns of the next chart.

y � f �x�
f ��x� � �f �x�

�xy � f �x�
f ��x� � f �x�

3.5
Graphs of Functions

Even and Odd Functions

Type of
Terminology Definition Illustration symmetry of graph

f is an with respect to the y-axis
even function. for every x in the domain.

f is an with respect to the origin
odd function. for every x in the domain.

y � f �x� � x3f ��x� � �f �x�

y � f �x� � x2f ��x� � f �x�



E X A M P L E  1 Determining whether a function is even or odd

Determine whether f is even, odd, or neither even nor odd.

(a) (b)

(c)

S O L U T I O N In each case the domain of f is �. To determine whether f is
even or odd, we begin by examining , where x is any real number.

(a) substitute for x in

simplify

definition of f

Since , f is an even function.

(b) substitute for x in

simplify

factor out 

definition of f

Since , f is an odd function.

(c) substitute for x in

simplify

Since , and (note that ), the
function f is neither even nor odd. L

In the next example we consider the absolute value function f, defined
by .

E X A M P L E  2 Sketching the graph of the absolute value function

Let .

(a) Determine whether f is even or odd.

(b) Sketch the graph of f.

(c) Find the intervals on which f is increasing or is decreasing.

S O L U T I O N

(a) The domain of f is �, because the absolute value of x exists for every real
number x. If x is in �, then

Thus, f is an even function, since .

(b) Since f is even, its graph is symmetric with respect to the y-axis. If 
, then , and therefore the first quadrant part of the graph coincides with

the line . Sketching this half-line and using symmetry gives us Figure 1.y � x
� x � � xx 
 0

f��x� � f�x�

f��x� � ��x � � � x � � f�x�.

f�x� � � x �

f�x� � � x �

�f�x� � �x3 � x2f��x� � �f�x�f��x� � f�x�

� �x3 � x2

f �x��xf��x� � ��x�3 � ��x�2

f��x� � �f�x�

� �f�x�

�1� ��2x5 � 7x3 � 4x�

� �2x5 � 7x3 � 4x

f �x��xf��x� � 2��x�5 � 7��x�3 � 4��x�

f��x� � f�x�

� f�x�

� 3x 4 � 2x 2 � 5

f �x��xf��x� � 3��x�4 � 2��x�2 � 5

f��x�

f�x� � x3 � x2

f�x� � 2x5 � 7x3 � 4xf�x� � 3x4 � 2x2 � 5
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Figure 1

y

x

y � �x �



(c) Referring to the graph, we see that f is decreasing on and is in-
creasing on . L

If we know the graph of , it is easy to sketch the graphs of

for any positive real number c. As in the next chart, for , we add
c to the y-coordinate of each point on the graph of . This shifts the
graph of f upward a distance c. For with , we subtract c
from each y-coordinate, thereby shifting the graph of f a distance c downward.
These are called vertical shifts of graphs.

E X A M P L E  3 Vertically shifting a graph

Sketch the graph of f :

(a) (b) (c)

S O L U T I O N We shall sketch all graphs on the same coordinate plane.

(a) Since

the function f is even, and hence its graph is symmetric with respect to the 
y-axis. Several points on the graph of are , , , and 

. Drawing a smooth curve through these points and reflecting through the 
y-axis gives us the sketch in Figure 2. The graph is a parabola with vertex at
the origin and opening upward.

�3, 9�
�2, 4��1, 1��0, 0�y � x2

f��x� � ��x�2 � x2 � f�x�,

f�x� � x2 � 4f�x� � x2 � 4f�x� � x2

c � 0y � f�x� � c
y � f�x�

y � f�x� � c

y � f�x� � c and y � f�x� � c

y � f�x�

�0, ��
���, 0	
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Vertically Shifting the Graph of y � f(x)

Equation with with 

Effect The graph of f is shifted The graph of f is shifted
on graph vertically upward a vertically downward a

distance c. distance c.

Graphical
interpretation

c � 0y � f �x� � cc � 0y � f �x� � c

y

x

y � f (x) � c

c � 0

y � f (x)

(a, b � c)

(a, b)

y

x

y � f (x)

y � f (x) � c

c � 0

(a, b � c)

(a, b)

(continued)

Figure 2

y

x

y � x2 � 4

y � x2

y � x2 � 4



(b) To sketch the graph of , we add 4 to the y-coordinate of each
point on the graph of ; that is, we shift the graph in part (a) upward 
4 units, as shown in the figure.

(c) To sketch the graph of , we decrease the y-coordinates of
by 4; that is, we shift the graph in part (a) downward 4 units. L

We can also consider horizontal shifts of graphs. Specifically, if ,
consider the graphs of and sketched on the same
coordinate plane, as illustrated in the next chart. Since

we see that the point with x-coordinate a on the graph of has the
same y-coordinate as the point with x-coordinate on the graph of

. This implies that the graph of can be
obtained by shifting the graph of to the right a distance c. Similarly,
the graph of can be obtained by shifting the graph of f to
the left a distance c, as shown in the chart.

y � h�x� � f�x � c�
y � f�x�

y � g�x� � f�x � c�y � g�x� � f�x � c�
a � c

y � f�x�

g�a � c� � f��a � c	 � c� � f�a�,

y � g�x� � f�x � c�y � f�x�
c � 0

y � x2

y � x2 � 4

y � x2

y � x2 � 4
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Horizontally Shifting the Graph of y � f(x)

Equation Effect on graph Graphical interpretation

The graph of f is
shifted horizontally to

with the right a distance c.

The graph of f is
shifted horizontally to

with the left a distance c.c � 0
� f �x � c�

y � h�x�

c � 0
� f �x � c�

y � g�x�

x

y � h (x) � f (x � c)

c � 0

y � f (x)

f (a)h (a � c)

a � c a

y

(a � c, b) (a, b)

x

y � g(x) � f (x � c)

c � 0

y � f (x)

f (a) g(a � c)

a � ca

y

(a � c, b)(a, b)

Figure 2 (repeated)

y

x

y � x2 � 4

y � x2

y � x2 � 4



Horizontal and vertical shifts are also referred to as translations.

E X A M P L E  4 Horizontally shifting a graph

Sketch the graph of f :

(a) (b)

S O L U T I O N The graph of is sketched in Figure 3.

(a) Shifting the graph of to the right 4 units gives us the graph of
, shown in the figure.

(b) Shifting the graph of to the left 2 units leads to the graph of
, shown in the figure. L

To obtain the graph of for some real number c, we may multiply
the y-coordinates of points on the graph of by c. For example, if

, we double the y-coordinates; or if , we multiply each 
y-coordinate by This procedure is referred to as vertically stretching the
graph of f (if ) or vertically compressing the graph (if ) and
is summarized in the following chart.

0 � c � 1c � 1

1
2 .

y �
1
2 f �x�y � 2 f�x�

y � f�x�
y � cf�x�

y � �x � 2�2

y � x2

y � �x � 4�2

y � x2

y � x2

f�x� � �x � 2�2f�x� � �x � 4�2
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Figure 3

y � (x � 2)2 y � (x � 4)2y � x2

y

x

Vertically Stretching or Compressing the Graph of y � f (x)

Equation with with 

Effect The graph of f is The graph of f is
on graph stretched vertically compressed vertically

by a factor c. by a factor .

Graphical
interpretation

1�c

0 � c � 1y � cf �x�c � 1y � cf �x�

y � f (x)

y � cf (x)
with c � 1

y � f (x)

y � cf (x)
with c � 1

x

(a, cb)

(a, b)

y � f (x)

y � cf (x)
with 0 � c � 1

x

y

(a, cb)

(a, b)



E X A M P L E  5 Vertically stretching or compressing a graph

Sketch the graph of the equation:

(a) (b)

S O L U T I O N

(a) To sketch the graph of , we may refer to the graph of in
Figure 4 and multiply the y-coordinate of each point by 4. This stretches the
graph of vertically by a factor 4 and gives us a narrower parabola that
is sharper at the vertex, as illustrated in the figure.

(b) The graph of may be sketched by multiplying the y-coordinates
of points on the graph of by This compresses the graph of ver-
tically by a factor and gives us a wider parabola that is flatter at the
vertex, as shown in Figure 4. L

We may obtain the graph of by multiplying the y-coordinate of
each point on the graph of by . Thus, every point on the 
graph of that lies above the x-axis determines a point on the
graph of that lies below the x-axis. Similarly, if lies below 
the x-axis (that is, ), then lies above the x-axis. The graph of

is a reflection of the graph of through the x-axis.

E X A M P L E  6 Reflecting a graph through the x-axis

Sketch the graph of .

S O L U T I O N The graph may be found by plotting points; however, since the
graph of is familiar to us, we sketch it as in Figure 5 and then multiply
the y-coordinates of points by . This procedure gives us the reflection
through the x-axis indicated in the figure. L

Sometimes it is useful to compare the graphs of and if
. In this case the function values for

are the same as the function values for

or, equivalently,

This implies that the graph of f is horizontally compressed (if ) or hori-
zontally stretched (if ), as summarized in the following chart.0 � c � 1

c � 1

a

c
� x �

b

c
.a � cx � b

f�cx�

a � x � b

f�x�c � 0
y � f�cx�y � f�x�

�1
y � x2

y � �x2

y � f�x�y � �f�x�
�c, �d�d � 0

�c, d�y � �f�x�
�a, �b�y � f�x�

�a, b��1y � f�x�
y � �f�x�

1�1
4 � 4

y � x21
4 .y � x2

y �
1
4 x2

y � x2

y � x2y � 4x2

y �
1
4 x2y � 4x2
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Figure 4

y

x

y � x2

y � ~x2

y � 4x2

Replacing y with reflects the graph
of through the x-axis.y � f�x�

�y

Figure 5

y

x

y � �x2

y � x2



If , then the graph of may be obtained by reflecting the
graph of through the y-axis. For example, to sketch the graph of

, we reflect the graph of through the y-axis. As a special
case, the graph of is a reflection of the graph of through
the y-axis.

Functions are sometimes described by more than one expression, as in the
next examples. We call such functions piecewise-defined functions.

E X A M P L E  7 Sketching the graph of a piecewise-defined function

Sketch the graph of the function f if

S O L U T I O N If , then and the graph of f coincides
with the line and is represented by the portion of the graph to the
left of the line in Figure 6. The small dot indicates that the point

is on the graph.��1, 3�
x � �1

y � 2x � 5
f�x� � 2x � 5x � �1

f �x� � �2x � 5

x2

2

if x � �1

if � x � � 1

if x 
 1

y � f�x�y � f��x�
y � f�2x�y � f��2x�

y � f �� c �x�
y � f�cx�c � 0
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Horizontally Compressing or Stretching the Graph of y � f(x)

Equation Effect on graph Graphical interpretation

The graph of f
with is compressed

horizontally by
a factor c.

The graph of f
with is stretched

horizontally by
a factor 1�c.

0 � c � 1
y � f �cx�

c � 1
y � f �cx�

y � f (x)
y � f (cx)
with 0 � c � 1

y

x

(a, b) , b�a
c�

y � f (cx)
with  c � 1y � f (x)

x

y

(a, b), b�a
c�

Replacing x with reflects the graph
of through the y-axis.y � f�x�

�x

(continued)

Figure 6

y

x



If (or, equivalently, ), we use to find values of f, and
therefore this part of the graph of f coincides with the parabola , as in-
dicated in the figure. Note that the points and are not on the
graph.

Finally, if , the values of f are always 2. Thus, the graph of f for
is the horizontal half-line in Figure 6.

Note: When you finish sketching the graph of a piecewise-defined func-
tion, check that it passes the vertical line test. L

It is a common misconception to think that if you move up to a higher tax
bracket, all your income is taxed at the higher rate. The following example of
a graph of a piecewise-defined function helps dispell that notion.

E X A M P L E  8 Application using a piecewise-defined function

Sketch a graph of the 2006 Tax Rate Schedule X, shown in Figure 7. Let x rep-
resent the taxable income and T represent the amount of tax. (Assume the do-
main is the set of nonnegative real numbers.)

Figure 7

S O L U T I O N The tax table can be represented by a piecewise-defined func-
tion as follows:

0 if

if

if

if

if

if

if

Note that the assignment for the 15% tax bracket is not 0.15x, but 10% of the
first $7550 in taxable income plus 15% of the amount over $7550; that is,

0.10(7550) � 0.15(x � 7550) � 755.00 � 0.15(x � 7550).

x � 336,55097,653.00 � 0.35(x � 336,550)

154,800 � x � 336,55037,675.50 � 0.33(x � 154,800)

74,200 � x � 154,80015,107.50 � 0.28(x � 74,200)

30,650 � x � 74,2004220.00 � 0.25(x � 30,650)

7550 � x � 30,650755.00 � 0.15(x � 7550)

0 � x � 75500.10x

x � 0

2006 Federal Tax Rate Schedules
Schedule X –Use if your Filing status is single

If taxable
income is
over–

But not
over–

The tax
is:

of the
amount
over–

$0

7,550

30,650

74,200

154,800

336,550

$7,550

30,650

74,200

154,800

336,550

- - - - - - -

- - - - - - - - 10%

$755.00 + 15%

$4,220.00 + 25%

15,107.50 + 28%

37,675.50 + 33%

97,653.00 + 35%

$0

7,550

30,650

74,200

154,800

336,550

x 
 1x 
 1

�1, 1���1, 1�
y � x2

x2�1 � x � 1� x � � 1
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T(x) � �

Figure 6 (repeated)

y

x



The other pieces can be established in a similar fashion. The graph of T is
shown in Figure 8; note that the slope of each piece represents the tax rate.

Figure 8

If x is a real number, we define the symbol as follows:

where n is the greatest integer such that 

If we identify � with points on a coordinate line, then n is the first integer to
the left of (or equal to) x.

The Symbol 

The greatest integer function f is defined by .

E X A M P L E  9 Sketching the graph of the greatest integer function

Sketch the graph of the greatest integer function.

f �x� � �x�

��0.5� � �1���3 � � �2

��2.7� � �3��3� � �3�3� � 3

��5 � � 2�1.8� � 1�0.5� � 0

�x�

n � x�x� � n,

�x�
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I L L U S T R A T I O N

74,200 154,800 336,550

30,650

4220.00

15,107.50

37,675.50

97,653.00

755.00

T (x)

x

33% 35%28%25%

15%10%

7550

L



S O L U T I O N The x- and y-coordinates of some points on the graph may be
listed as follows:

Whenever x is between successive integers, the corresponding part of the
graph is a segment of a horizontal line. Part of the graph is sketched in Fig-
ure 9. The graph continues indefinitely to the right and to the left. L

The next example involves absolute values.

E X A M P L E  1 0 Sketching the graph of an equation 
containing an absolute value

Sketch the graph of .

S O L U T I O N The graph of was sketched in Figure 2 and is re-
sketched in Figure 10(a). We note the following facts:

(1) If or , then , and hence .

(2) If , then , and hence .

It follows from (1) that the graphs of and coincide
for . We see from (2) that if , then the graph of is
the reflection of the graph of through the x-axis. This gives us the
sketch in Figure 10(b). L

In general, if the graph of contains a point with d posi-
tive, then the graph of contains the point —that is, Q is the
reflection of P through the x-axis. Points with nonnegative y-values are the
same for the graphs of and .

Later in this text and in calculus, you will encounter functions such as

Both functions are of the form . The effect of substituting for x
can be described as follows: If the graph of contains a point P�c, d�y � f �x�

�x �y � f ��x ��
g�x� � ln �x � and h�x� � sin �x �.

y � � f �x� �y � f �x�

Q�c, d�y � � f �x� �
P�c, �d�y � f �x�

y � x2 � 4
y � � x2 � 4 �� x � � 2� x � 
 2

y � x2 � 4y � � x2 � 4 �

� x 2 � 4 � � ��x2 � 4�x2 � 4 � 0�2 � x � 2

� x2 � 4 � � x2 � 4x 2 � 4 
 0x 
 2x � �2

y � x2 � 4

y � � x2 � 4 �
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Figure 9

y

x

Values of x f(x) � �x�

��
��
��
22 � x � 3
11 � x � 2
00 � x � 1

�1�1 � x � 0
�2�2 � x � �1

��
��
��

Figure 10
(a) y

x

y � x2 � 4

y

x

y � �x2 � 4 �

(b)

Graphing y � f �� x ��



with c positive, then the graph of contains the point —that
is, Q is the reflection of P through the y-axis. Points on the y-axis are
the same for the graphs of and . Points with negative x-values
on the graph of are not on the graph of , since the result of
the absolute value is always nonnegative.

The processes of shifting, stretching, compressing, and reflecting a graph
may be collectively termed transforming a graph, and the resulting graph is
called a transformation of the original graph. A graphical summary of the
types of transformations encountered in this section appears in Appendix II.

y � f ��x ��y � f �x�
y � f ��x ��y � f �x�

�x � 0�
Q��c, d�y � f ��x ��
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3.5 E x e r c i s e s

Exer. 1–2: Suppose f is an even function and g is an odd
function. Complete the table, if possible.

1 2

Exer. 3–12: Determine whether f is even, odd, or neither
even nor odd.

3 4

5 6

7 8

9 10

11 12

Exer. 13–26: Sketch, on the same coordinate plane, the
graphs of f for the given values of c. (Make use of symmetry,
shifting, stretching, compressing, or reflecting.)

13 ;

14 ;

15 ;

16 ;

17 ; c � �3, 0, 2f �x� � 22x � c

c � �4, 2, 4f �x� � 2x 2 � c

c � �4, 2, 4f �x� � �x 2 � c

c � �3, 1, 3f �x� � � x � c �

c � �3, 1, 3f �x� � � x � � c

f �x� � x 3 �
1

x
f �x� � 23 x 3 � x

f �x� � 3x 2 � 5x � 1f �x� � 2x 2 � 4

f �x� � 12f �x� � 8x 3 � 3x 2

f �x� � 7x 5 � 4x 3f �x� � 3x 4 � 2x 2 � 5

f �x� � � x � � 3f �x� � 5x3 � 2x

18 ;

19 ;

20 ;

21 ;

22 ;

23 ;

24 ;

25 ;

26 ;

Exer. 27–32: If the point P is on the graph of a function f,
find the corresponding point on the graph of the given
function.

27 ;

28 ;

29 ;

30 ;

31 ;

32 ; y � �3 f �2x� � 5P��2, 1�

y �
1
3 f �1

2 x� � 1P�3, 9�

y �
1
2 f �x � 3� � 3P��2, 4�

y � 2 f �x � 4� � 1P�3, �2�

y � 2 f �x� � 4P�3, �1�

y � f �x � 2� � 1P�0, 5�

c � 1, 1
2 , 4f �x� � �216 � �cx�2

c � �1, 1
9 , 4f �x� � 2cx � 1

c � �1, 1, 4f �x� � �cx�3 � 1

c � �
1
3 , 1, 2f �x� � cx 3

c � �2, 1, 2f �x� � �x � c�3

c � �2, 1, 3f �x� � c24 � x2

c � �2, 0, 3f �x� � �
1
2 �x � c�2

c � �2, 0, 3f �x� �
1
22x � c

c � �3, 0, 2f �x� � 29 � x 2 � c

x 2

f(x) 7

g(x) �6

�2 x 3

f(x)

g(x) 15

�5

�3



Exer. 33–40: Explain how the graph of the function com-
pares to the graph of . For example, for the equa-
tion , the graph of f is shifted 3 units to the
left and stretched vertically by a factor of 2.

33

34

35

36

37

38

39

40

Exer. 41–42: The graph of a function f with domain is
shown in the figure. Sketch the graph of the given equation.

41

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) ( j)

(k) (l) y � f �� x ��y � � f �x� �

y � f �x � 2� � 3y � �f �x � 2� � 3

y � f �2x�y � f ��
1
2 x�

y � �
1
3 f �x�y � �3 f �x�

y � f �x� � 3y � f �x� � 3

y � f �x � 3�y � f �x � 3�

y

x

[0, 4]

y �
1
3 � f �x� �

y � �2 f �1
3 x�

y � f �1
2 x� � 3

y � �
1
2 f �x�

y � �f �x � 4�

y � f ��x� � 2

y � 3 f �x � 1�

y � f �x � 2� � 3

2 f (x � 3)y �
y � f (x)

42

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

(k) (l)

Exer. 43–46: The graph of a function f is shown, together
with graphs of three other functions (a), (b), and (c). Use
properties of symmetry, shifts, and reflecting to find equa-
tions for graphs (a), (b), and (c) in terms of f.

43 y

x

(a)

(c)
(b)

y � f (x)

y � f �� x ��y � � f �x� �

y � f �x � 4� � 2y � �f �x � 4� � 2

y � f �1
2 x�y � f ��2x�

y � �
1
2 f �x�y � �2f �x�

y � f �x� � 2y � f �x� � 2

y � f �x � 2�y � f �x � 2�

y

x
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44

45

46

Exer. 47–52: Sketch the graph of f.

47

48 f �x� � ��1

�2

if x is an integer

if x is not an integer

f �x� � �3

�2

if x � �1

if x � �1

y

x

(a)(c)

(b) y � f (x)

y

x

y � f (x)

(a)

(b)

(c)

y

x

(a)

(b)

(c)

y � f (x)

49

50

51

52

Exer. 53–54: The symbol denotes values of the greatest
integer function. Sketch the graph of f.

53 (a) (b)

(c) (d)

(e)

54 (a) (b)

(c) (d)

(e)

Exer. 55–56: Explain why the graph of the equation is not
the graph of a function.

55 56

Exer. 57–58: For the graph of shown in the figure,
sketch the graph of .

57 y

x

y � � f (x) �
y � f (x)

x � �� y �x � y2

f �x� � ���x�

f �x� � �1
2 x�f �x� �

1
2 �x�

f �x� � �x� � 2f �x� � �x � 2�

f �x� � ��x�

f �x� � �2x�f �x� � 2�x�

f �x� � �x� � 3f �x� � �x � 3�

�x�

f �x� � �x � 3

�x2

�x � 4

if x � �2

if �2 � x � 1

if x 
 1

f �x� � �x � 2

x 3

�x � 3

if x � �1

if � x � � 1

if x 
 1

f �x� � ��2x

x 2

�2

if x � �1

if �1 � x � 1

if x 
 1

f �x� � �3

�x � 1

�3

if x � �2

if � x � � 2

if x � 2
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58

Exer. 59–62: Sketch the graph of the equation.

59 60

61 62

63 Let be a function with domain and
range . Find the domain D and range R for each
function. Assume and .

(a) (b)

(c) (d)

(e) (f )

(g) (h)

64 Let be a function with domain and
range . Find the domain D and range R for
each function.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

65 Income tax rates A certain country taxes the first $20,000
of an individual’s income at a rate of 15%, and all income
over $20,000 is taxed at 20%. Find a piecewise-defined
function T that specifies the total tax on an income of
x dollars.

66 Property tax rates A certain state taxes the first $500,000
in property value at a rate of 1%; all value over $500,000 is

y � � f �x� �y � f �� x ��
y � �f �x�y � f ��x�

y � f �x � 4� � 1y � f �x � 2� � 5

y � f �2x�y �
1
2 f �x�

R � ��10, �4	
D � ��6, �2	y � f �x�

y � � f �x� �y � f �� x ��

y � �f �x�y � f ��x�

y � f �x � 2� � 3y � f �x � 3� � 1

y � f �1
2 x�y � �2f �x�

f �6� � �4f �2� � 8
R � ��4, 8	

D � ��2, 6	y � f �x�

y � � � x � � 1 �y � �2x � 1�

y � � x3 � 1 �y � � 9 � x2 �

y

x

taxed at 1.25%. Find a piecewise-defined function T that
specifies the total tax on a property valued at x dollars.

67 Royalty rates A certain paperback sells for $12. The author
is paid royalties of 10% on the first 10,000 copies sold,
12.5% on the next 5000 copies, and 15% on any additional
copies. Find a piecewise-defined function R that specifies
the total royalties if x copies are sold.

68 Electricity rates An electric company charges its customers
$0.0577 per kilowatt-hour (kWh) for the first 1000 kWh
used, $0.0532 for the next 4000 kWh, and $0.0511 for any
kWh over 5000. Find a piecewise-defined function C for a
customer’s bill of x kWh.

69 Car rental charges There are two car rental options available
for a four-day trip. Option I is $45 per day, with 200 free
miles and $0.40 per mile for each additional mile. Option II
is $58.75 per day, with a charge of $0.25 per mile.

(a) Determine the cost of a 500-mile trip for both options.

(b) Model the data with a cost function for each four-
day option.

(c) Determine the mileages at which each option is prefer-
able.

70 Traffic flow Cars are crossing a bridge that is 1 mile long.
Each car is 12 feet long and is required to stay a distance of
at least d feet from the car in front of it (see figure).

(a) Show that the largest number of cars that can be on the
bridge at one time is , where de-
notes the greatest integer function.

(b) If the velocity of each car is v , show that the
maximum traffic flow rate F (in ) is given by

.

Exercise 70

12 ft

d

F � �5280v��12 � d��
cars�hr

mi�hr

���5280��12 � d��
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If , then the graph of is a parabola with vertex at the origin ,
a vertical axis, opening upward if or downward if (see, for ex-
ample, Figures 4 and 5 in Section 3.5). In this section we show that the graph
of an equation of the form

can be obtained by vertical and/or horizontal shifts of the graph of and
hence is also a parabola. An important application of such equations is to de-
scribe the trajectory, or path, of an object near the surface of the earth when
the only force acting on the object is gravitational attraction. To illustrate, if an
outfielder on a baseball team throws a ball into the infield, as illustrated in
Figure 1, and if air resistance and other outside forces are negligible, then the
path of the ball is a parabola. If suitable coordinate axes are introduced, then
the path coincides with the graph of the equation for some
a, b, and c. We call the function determined by this equation a quadratic
function.

If in the preceding definition, then , and the graph
is a parabola with vertex at the origin. If and , then

and, from our discussion of vertical shifts in Section 3.5, the graph is a
parabola with vertex at the point on the y-axis. The following example
contains specific illustrations.

E X A M P L E  1 Sketching the graph of a quadratic function

Sketch the graph of f if

(a) (b)

S O L U T I O N

(a) Since f is even, the graph of f that is, of is symmetric with re-
spect to the y-axis. It is similar in shape to but wider than the parabola

, sketched in Figure 5 of Section 3.5. Several points on the graph are
, , , and . Plotting and using symmetry, we obtain

the sketch in Figure 2.

(b) To find the graph of , we shift the graph of up-
ward a distance 4, obtaining the sketch in Figure 3. L

y � �
1
2 x2y � �

1
2 x2 � 4

�3, �
9
2 ��2, �2��1, �

1
2 ��0, 0�

y � �x2

y � �
1
2 x2��

f�x� � �
1
2 x2 � 4f�x� � �

1
2 x2

�0, c�

f�x� � ax2 � c,

c � 0b � 0
f�x� � ax2b � c � 0

y � ax2 � bx � c

y � ax2

y � ax2 � bx � c

a � 0a � 0
�0, 0�y � ax2a � 0
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3.6
Quadratic Functions

Figure 1

Definition of 
Quadratic Function

A function f is a quadratic function if

where a, b, and c are real numbers with .a � 0

f�x� � ax2 � bx � c,

Figure 2

y

x

�3, �t�
(2, �2)

�1, �q�(0, 0)

y � �q x2

Figure 3

y

x

y � �q x2 � 4



If and , then, by completing the square, we
can change the form to

for some real numbers h and k. This technique is illustrated in the next
example.

E X A M P L E  2 Expressing a quadratic function as 

If , express in the form .

S O L U T I O N  1 Before completing the square, it is essential that we factor
out the coefficient of from the first two terms of , as follows:

given

factor out 3 from 

We now complete the square for the expression within the parenthe-
ses by adding the square of half the coefficient of x—that is, , or 16. How-
ever, if we add 16 to the expression within parentheses, then, because of the
factor 3, we are actually adding 48 to . Hence, we must compensate by
subtracting 48:

given

complete the square for 

equivalent equation

The last expression has the form with , , and
.

S O L U T I O N  2 We begin by dividing both sides by the coefficient of .

given

divide by 3

equivalent equation

multiply by 3 L

If , then, by completing the square as in Example 2,
we see that the graph of f is the same as the graph of an equation of the form

The graph of this equation can be obtained from the graph of shown
in Figure 4(a) by means of a horizontal and a vertical shift, as follows. First,

y � ax 2

y � a�x � h�2 � k.

f �x� � ax2 � bx � c

f �x� � 3�x � 4�2 � 2

� �x � 4�2 �
2

3

� x2 � 8x � 16 �
50

3
�16

f �x�
3

� x2 � 8x �
50

3

f �x� � 3x2 � 24x � 50

x2

k � 2
h � �4a � 3a�x � h�2 � k

� 3�x � 4�2 � 2

x2 � 8x� 3�x2 � 8x � 16� � �50 � 48�
f �x� � 3�x2 � 8x � � � 50

f �x�

�8
2�2

x2 � 8x

3x2 � 24x� 3�x2 � 8x � � � 50

f �x� � 3x2 � 24x � 50

f �x�x2

a�x � h�2 � kf �x�f �x� � 3x2 � 24x � 50

f �x� � a�x � h�2 � k

f �x� � a�x � h�2 � k

b � 0f �x� � ax2 � bx � c
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�1

2
�8��2

� 16 l add and subtract 16, the number that
completes the square for x2 � 8x



as in Figure 4(b), we obtain the graph of by shifting the graph
of either to the left or to the right, depending on the sign of h (the fig-
ure illustrates the case with ). Next, as in Figure 4(c), we shift the graph
in (b) vertically a distance (the figure illustrates the case with ). It fol-
lows that the graph of a quadratic function is a parabola with a vertical axis.

The sketch in Figure 4(c) illustrates one possible graph of the equation
. If , the point is the lowest point on the

parabola, and the function f has a minimum value . If , the
parabola opens downward, and the point is the highest point on 
the parabola. In this case, the function f has a maximum value .

We have obtained the following result.

For convenience, we often refer to the parabola when
considering the graph of this equation.

E X A M P L E  3 Finding a standard equation of a parabola

Express as a standard equation of a parabola with a verti-
cal axis. Find the vertex and sketch the graph.

y � 2x2 � 6x � 4

y � ax2 � bx � c

f�h� � k
�h, k�

a � 0f�h� � k
�h, k�a � 0y � ax2 � bx � c

k � 0� k �
h � 0

y � ax2

y � a�x � h�2
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Standard Equation of a 
Parabola with Vertical Axis

The graph of the equation

for is a parabola that has vertex and a vertical axis. The
parabola opens upward if or downward if .a � 0a � 0

V�h, k�a � 0

y � a�x � h�2 � k

Figure 4
(a) (b) (c)y

x

y � ax2

y

x

y � ax2 y � a(x � h)2

(h, 0)

y

x

(h, k)

(h, 0)

y � a(x � h)2

y � a(x � h)2 �k



S O L U T I O N

given

factor out 2 from 

complete the square for 

equivalent equation

The last equation has the form of the standard equation of a parabola with
, , and Hence, the vertex of the parabola is 

. Since , the parabola opens upward.
To find the y-intercept of the graph of , we let ,

obtaining . To find the x-intercepts, we let and solve the equation
or the equivalent equation , obtaining

and . Plotting the vertex and using the x- and y-intercepts provides
enough points for a reasonably accurate sketch (see Figure 5). L

E X A M P L E  4 Finding a standard equation of a parabola

Express as a standard equation of a parabola with a verti-
cal axis. Find the vertex and sketch the graph.

S O L U T I O N

given

factor out from 

complete the square for 

equivalent equation

This is the standard equation of a parabola with , , and hence the
vertex is . Since , the parabola opens downward.

The y-intercept of the graph of is the constant term, 8.
To find the x-intercepts, we solve or, equivalently,

. Factoring gives us , and hence the in-
tercepts are and . Using this information gives us the sketch in
Figure 6. L

If a parabola has x-intercepts and , as illustrated in
Figure 7 for the case , then the axis of the parabola is the vertical line

through the midpoint of and . Therefore, the 
x-coordinate h of the vertex is . Some special cases are
illustrated in Figures 5 and 6.

In the following example we find an equation of a parabola from 
given data.

E X A M P L E  5 Finding an equation of a parabola with a given vertex

Find an equation of a parabola that has vertex and a vertical axis and
passes through the point .�5, 1�

V�2, 3�

h � �x1 � x2��2�h, k�
�x2, 0��x1, 0�x � �x1 � x2��2

a � 0
x2x1y � ax2 � bx � c

x � 2x � �4
�x � 4��x � 2� � 0x2 � 2x � 8 � 0
�x2 � 2x � 8 � 0

y � �x2 � 2x � 8
a � �1 � 0��1, 9�

k � 9h � �1

� ��x � 1�2 � 9

x2 � 2x� ��x2 � 2x � 1� � �8 � 1�
�x2 � 2x�1� ��x 2 � 2x � � � 8

y � �x2 � 2x � 8

y � �x2 � 2x � 8

x � 2x � 1
2�x � 1��x � 2� � 02x2 � 6x � 4 � 0

y � 0y � 4
x � 0y � 2x2 � 6x � 4

a � 2 � 0V�3
2 , �

1
2�

V�h, k�k � �
1
2 .h �

3
2a � 2

� 2�x �
3
2�2

�
1
2

x2 � 3x� 2�x2 � 3x �
9
4� � �4 �

9
2�

2x 2 � 6x� 2�x2 � 3x � � � 4

y � 2x2 � 6x � 4
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Figure 5

y

x

y � 2x2 � 6x � 4

(0, 4)

�w, �q�

(2, 0)

(1, 0)

Figure 6

y

x

y � �x2 � 2x � 8

(0, 8)

(�1, 9)

(2, 0)(�4, 0)

Figure 7

y

x

(x1, 0) (x2, 0)

V (h, k)

y � ax2 � bx � c

h � 
x1 � x2

2



S O L U T I O N Figure 8 shows the vertex V, the point , and a possible po-
sition of the parabola. Using the standard equation

with and gives us

To find a, we use the fact that is on the parabola and so is a solution of
the last equation. Thus,

Hence, an equation for the parabola is

L

The next theorem gives us a simple formula for locating the vertex of a
parabola.

P R O O F Let us begin by writing as

Next we complete the square by adding to the expression within
parentheses:

Note that if is added inside the parentheses, then, because of the fac-
tor a on the outside, we have actually added to y. Therefore, we must
compensate by subtracting . The last equation may be written

This is the equation of a parabola that has vertex with and
. Lk � c � b2��4a�

h � �b��2a��h, k�

y � a�x �
b

2a�2

� �c �
b2

4a�.

b2��4a�
b2��4a�

b2��4a2�

y � a�x2 �
b

a
x �

b2

4a2� � �c �
b2

4a�
�1

2

b

a�2

y � a�x2 �
b

a
x � � � c.

y � ax2 � bx � c

y � �
2
9 �x � 2�2 � 3.

1 � a�5 � 2�2 � 3, or a � �
2
9 .

�5, 1�

y � a�x � 2�2 � 3.

k � 3h � 2

y � a�x � h�2 � k

�5, 1�
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Figure 8
y

x

(5, 1)

V(2, 3)

Theorem for Locating 
the Vertex of a Parabola

The vertex of the parabola has x-coordinate

�
b

2a
.

y � ax2 � bx � c



It is unnecessary to remember the formula for the y-coordinate of the ver-
tex of the parabola in the preceding result. Once the x-coordinate has been
found, we can calculate the y-coordinate by substituting for x in the
equation of the parabola.

E X A M P L E  6 Finding the vertex of a parabola

Find the vertex of the parabola .

S O L U T I O N We considered this parabola in Example 3 and found the ver-
tex by completing the square. We shall use the vertex formula with and

, obtaining the x-coordinate

We next find the y-coordinate by substituting for x in the given equation:

Thus, the vertex is (see Figure 5). L

Since the graph of for is a parabola, we can
use the vertex formula to help find the maximum or minimum value of a quad-
ratic function. Specifically, since the x-coordinate of the vertex V is ,
the y-coordinate of V is the function value . Moreover, since the
parabola opens downward if and upward if , this function value is
the maximum or minimum value, respectively, of f. We may summarize these
facts as follows.

We shall use this theorem in the next example.

E X A M P L E  7 Finding the maximum value of a quadratic function

A long rectangular sheet of metal, 12 inches wide, is to be made into a rain
gutter by turning up two sides so that they are perpendicular to the sheet. How
many inches should be turned up to give the gutter its greatest capacity?

a � 0a � 0
f��b��2a��

�b��2a�

a � 0f�x� � ax2 � bx � c

�3
2 , �

1
2�

y � 2�3
2�2

� 6�3
2� � 4 � �

1
2

3
2

�b

2a
�

���6�
2�2�

�
6

4
�

3

2
.

b � �6
a � 2

y � 2x2 � 6x � 4

�b��2a�
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Theorem on the Maximum 
or Minimum Value 

of a Quadratic Function
If , where , then is

(1) the maximum value of f if

(2) the minimum value of f if a � 0

a � 0

f�� b

2a�a � 0f�x� � ax2 � bx � c



S O L U T I O N The gutter is illustrated in Figure 9. If x denotes the number of
inches turned up on each side, the width of the base of the gutter is 
inches. The capacity will be greatest when the cross-sectional area of the rec-
tangle with sides of lengths x and has its greatest value. Letting 
denote this area, we have

which has the form with , , and .
Since f is a quadratic function and , it follows from the preceding
theorem that the maximum value of f occurs at

Thus, 3 inches should be turned up on each side to achieve maximum capacity.
As an alternative solution, we may note that the graph of the function

has x-intercepts at and . Hence, the average of
the intercepts,

is the x-coordinate of the vertex of the parabola and the value that yields the
maximum capacity. L

When working with quadratic functions, we are often most interested in
finding the vertex and the x-intercepts. Typically, a given quadratic function
closely resembles one of the three forms listed in the following chart.

x �
0 � 6

2
� 3,

x � 6x � 0f �x� � x�12 � 2x�

x � �
b

2a
� �

12

2��2�
� 3.

a � �2 � 0
c � 0b � 12a � �2f �x� � ax2 � bx � c

� �2x2 � 12x,

� 12x � 2x2

f �x� � x�12 � 2x�

f �x�12 � 2x

12 � 2x
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If the radicands in (1) or (3) are negative, then there are no x-intercepts.
To find the x-intercepts with form (1), use the special quadratic equation on

Figure 9

12 � 2x
x

x

Relationship Between Quadratic Function Forms and Their Vertex and x-intercepts

Form Vertex (h, k) x-intercepts (if there are any)

(1) h and k as in the form (see below)

(2)

(3) (see below)x � �
b

2a
�
2b2 � 4ac

2a
k � f �h�h � �

b

2a
,y � f �x� � ax2 � bx � c

x � x1, x2k � f �h�h �
x1 � x2

2
,y � f �x� � a�x � x1��x � x2�

x � h � 2�k�ay � f �x� � a�x � h�2 � k



Exer. 1–4: Find the standard equation of any parabola that
has vertex V.

1 2

3 4

Exer. 5–12: Express in the form .

5 6

7 8

9

10

11 12

Exer. 13–22: (a) Use the quadratic formula to find the zeros
of f. (b) Find the maximum or minimum value of . 
(c) Sketch the graph of f.

13 14

15

16

17 18

19 20

21

22 f �x� � 2x2 � 4x � 11

f �x� � �2x 2 � 20x � 43

f �x� � �3x2 � 6x � 6f �x� � x 2 � 4x � 9

f �x� � �4x 2 � 4x � 1f �x� � 9x 2 � 24x � 16

f �x� � 6x 2 � 7x � 24

f �x� � �12x 2 � 11x � 15

f �x� � �x2 � 6xf �x� � x 2 � 4x

f (x)

f �x� �
2
5 x 2 �

12
5 x �

23
5f �x� � �

3
4 x2 � 9x � 34

f �x� � �4x 2 � 16x � 13

f �x� � �3x2 � 6x � 5

f �x� � 5x 2 � 20x � 17f �x� � 2x 2 � 12x � 22

f �x� � x 2 � 6x � 11f �x� � �x 2 � 4x � 8

a(x � h)2 � kf (x)

V��2, 0�V�0, �3�

V�4, �2�V��3, 1�

Exer. 23–26: Find the standard equation of the parabola
shown in the figure.

23

24 y

x

V (2, 4)

y

x

(0, 1)

V (4, �1)
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page 75. If you have a quadratic function in form (3) and want to find the
vertex and the x-intercepts, it may be best to first find the x-intercepts by
using the quadratic formula. Then you can easily obtain the x-coordinate of
the vertex, h, since

Of course, if the function in form (3) is easily factorable, it is not necessary to
use the quadratic formula.

We will discuss parabolas further in a later chapter.

�
b

2a
�
2b2 � 4ac

2a
� h �

2b2 � 4ac

2a
.

3.6 E x e r c i s e s



25

26

Exer. 27–28: Find an equation of the form 

of the parabola shown in the figure. See the chart on page
191.

27 y

x

(2, 4)

(x � x2)y � a(x � x1)

y

x

(2, 3)

V (�1, �2)

y

x

V (�2, 4)

28

Exer. 29–34: Find the standard equation of a parabola that
has a vertical axis and satisfies the given conditions.

29 Vertex , passing through 

30 Vertex , passing through 

31 Vertex , x-intercept 0

32 Vertex , x-intercept

33 x-intercepts and 5, highest point has y-coordinate 4

34 x-intercepts 8 and 0, lowest point has y-coordinate

Exer. 35–36: Find the maximum vertical distance d between
the parabola and the line for the green region.

35

x

f (x) � �2x2 � 4x � 3

f (x) � x � 2
d

f (x)

�48

�3

�4�4, �7�

�3, 5�

�2, �3��0, 5�

�3, 25��0, �2�

y

x

(4, �4)
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36

Exer. 37–38: Ozone occurs at all levels of Earth’s
atmosphere. The density of ozone varies both seasonally 
and latitudinally. At Edmonton, Canada, the density 
of ozone (in ) for altitudes h between 20 kilo-
meters and 35 kilometers was determined experimentally.
For each and season, approximate the altitude at
which the density of ozone is greatest.

37 (autumn)

38 (spring)

39 Infant growth rate The growth rate y (in pounds per month)
of an infant is related to present weight x (in pounds) by
the formula , where c is a positive constant
and . At what weight does the maximum growth
rate occur?

40 Gasoline mileage The number of miles M that a certain 
automobile can travel on one gallon of gasoline at a speed
of v is given by

for

(a) Find the most economical speed for a trip.

(b) Find the largest value of M.

41 Height of a projectile An object is projected vertically up-
ward from the top of a building with an initial velocity of
144 . Its distance in feet above the ground after 
t seconds is given by the equation

s�t� � �16t 2 � 144t � 100.

s�t�ft�sec

0 � v � 70.M � �
1

30 v2 �
5
2 v

mi�hr

0 � x � 21
y � cx�21 � x�

D�h� � �0.078h2 � 3.811h � 32.433

D�h� � �0.058h2 � 2.867h � 24.239

D(h)

10�3 cm�km
D(h)

x

f (x) � 2x2 � 8x � 4

f (x) � �x � 3d

f (x) (a) Find its maximum distance above the ground.

(b) Find the height of the building.

42 Flight of a projectile An object is projected vertically up-
ward with an initial velocity of , and its distance

in feet above the ground after t seconds is given by the
formula .

(a) If the object hits the ground after 12 seconds, find its
initial velocity .

(b) Find its maximum distance above the ground.

43 Find two positive real numbers whose sum is 40 and whose
product is a maximum.

44 Find two real numbers whose difference is 40 and whose
product is a minimum.

45 Constructing cages One thousand feet of chain-link fence
is to be used to construct six animal cages, as shown in
the figure.

(a) Express the width y as a function of the length x.

(b) Express the total enclosed area A of the cages as a func-
tion of x.

(c) Find the dimensions that maximize the enclosed area.

Exercise 45

46 Fencing a field A farmer wishes to put a fence around a rec-
tangular field and then divide the field into three rectangu-
lar plots by placing two fences parallel to one of the sides.
If the farmer can afford only 1000 yards of fencing, what di-
mensions will give the maximum rectangular area?

47 Leaping animals Flights of leaping animals typically have
parabolic paths. The figure on the next page illustrates a
frog jump superimposed on a coordinate plane. The length
of the leap is 9 feet, and the maximum height off the ground
is 3 feet. Find a standard equation for the path of the frog.

x

y

v0

�16t 2 � v0ts�t� �
s�t�

ft�secv0
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Exercise 47

48 The human cannonball In the 1940s, the human cannonball
stunt was performed regularly by Emmanuel Zacchini for
The Ringling Brothers and Barnum & Bailey Circus. The
tip of the cannon rose 15 feet off the ground, and the total
horizontal distance traveled was 175 feet. When the cannon
is aimed at an angle of 45�, an equation of the parabolic
flight (see the figure) has the form 

(a) Use the given information to find an equation of the
flight.

(b) Find the maximum height attained by the human
cannonball.

Exercise 48

49 Shape of a suspension bridge One section of a suspension
bridge has its weight uniformly distributed between twin
towers that are 400 feet apart and rise 90 feet above the hor-
izontal roadway (see the figure). A cable strung between the

y

175�

y � ax2 � x � c.

y

x9

3

Frog's path

tops of the towers has the shape of a parabola, and its cen-
ter point is 10 feet above the roadway. Suppose coordinate
axes are introduced, as shown in the figure.

Exercise 49

(a) Find an equation for the parabola.

(b) Nine equally spaced vertical cables are used to support
the bridge (see the figure). Find the total length of these
supports.

50 Designing a highway Traffic engineers are designing a
stretch of highway that will connect a horizontal highway
with one having a 20% grade that is, slope , as illustrated
in the figure. The smooth transition is to take place over a
horizontal distance of 800 feet, with a parabolic piece of
highway used to connect points A and B. If the equation of
the parabolic segment is of the form  , it
can be shown that the slope of the tangent line at the point

on the parabola is given by .

(a) Find an equation of the parabola that has a tangent line
of slope 0 at A and at B.

(b) Find the coordinates of B.

Exercise 50

m � 0 A
B

800�

m � Q

y

x

1
5

m � 2ax � bP�x, y�

y � ax 2 � bx � c

1
5��

y

x

90�

400�
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51 Parabolic doorway A doorway has the shape of a parabolic
arch and is 9 feet high at the center and 6 feet wide at the
base. If a rectangular box 8 feet high must fit through the
doorway, what is the maximum width the box can have?

52 Path of a baseball Assume a baseball hit at home plate follows 

a parabolic path having equation ,

where and are both measured in feet.

(a) Find the maximum height of the baseball.

(b) Does the baseball clear an 8-foot fence that is 385 feet
from home plate?

53 Quantity discount A company sells running shoes to deal-
ers at a rate of $40 per pair if fewer than 50 pairs are ordered.
If a dealer orders 50 or more pairs (up to 600), the price per
pair is reduced at a rate of 4 cents times the number ordered.
What size order will produce the maximum amount of
money for the company?

54 Group discount A travel agency offers group tours at a rate
of $60 per person for the first 30 participants. For larger
groups—up to 90—each person receives a $0.50 discount
for every participant in excess of 30. For example, if 31 peo-
ple participate, then the cost per person is $59.50. Deter-
mine the size of the group that will produce the maximum
amount of money for the agency.

55 Cable TV fee A cable television firm presently serves 
8000 households and charges $50 per month. A marketing
survey indicates that each decrease of $5 in the monthly
charge will result in 1000 new customers. Let denote the
total monthly revenue when the monthly charge is x dollars.

(a) Determine the revenue function R.

(b) Sketch the graph of R and find the value of x that results
in maximum monthly revenue.

56 Apartment rentals A real estate company owns 218 effi-
ciency apartments, which are fully occupied when the rent
is $940 per month. The company estimates that for each 
$25 increase in rent, 5 apartments will become unoccupied.
What rent should be charged so that the company will 
receive the maximum monthly income?

R�x�

yx

y � �
3

4000
x2 �

3

10
x � 3

57 Crest vertical curves When engineers plan highways, they
must design hills so as to ensure proper vision for drivers.
Hills are referred to as crest vertical curves. Crest vertical
curves change the slope of a highway. Engineers use a para-
bolic shape for a highway hill, with the vertex located at the
top of the crest. Two roadways with different slopes are to be
connected with a parabolic crest curve. The highway passes
through the points , , ,

, and , as shown in the figure. The
roadway is linear between A and B, parabolic between B and
D, and then linear between D and E. Find a piecewise-
defined function f that models the roadway between the
points A and E.

Exercise 57

58 Sag vertical curves Refer to Exercise 57. Valleys or dips 
in highways are referred to as sag vertical curves. Sag ver-
tical curves are also modeled using parabolas. Two road-
ways with different grades meeting at a sag curve need 
to be connected. The highway passes through the points

, , , , and

, as shown in the figure. The roadway is lin-
ear between A and B, parabolic between B and D, and lin-
ear between D and E. Find a piecewise-defined function f
that models the roadway between the points A and E.

Exercise 58

A
B

C
D

E

E�2000, 2431
3�

D�1500, 110�C�750, 10�B�0, 110�A��500, 2431
3�

A B C D
E

E�800, �48�D�500, 0�
C�0, 40�B��500, 0�A��800, �48�
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Functions are often defined using sums, differences, products, and quotients of
various expressions. For example, if

we may regard as a sum of values of the functions f and g given by

We call h the sum of f and g and denote it by . Thus,

In general, if f and g are any functions, we use the terminology and notation
given in the following chart.

The domains of , , and fg are the intersection I of the domains
of f and g—that is, the numbers that are common to both domains. The domain
of is the subset of I consisting of all x in I such that .

E X A M P L E  1 Finding function values of , , , and 

If and , find , , , and
.

S O L U T I O N Since and , we have

L

E X A M P L E  2 Finding , , , and 

If and , find , , ,
and , and state the domains of the respective functions.� f�g��x�

� fg��x�� f � g��x�� f � g��x�g�x� � 3x � 1f �x� � 24 � x2

( f�g)(x)( fg)(x)( f � g)(x)( f � g)(x)

� f

g��2� �
f �2�
g�2�

�
4

8
�

1

2
.

� fg��2� � f �2�g�2� � �4��8� � 32

� f � g��2� � f �2� � g�2� � 4 � 8 � �4

� f � g��2� � f �2� � g�2� � 4 � 8 � 12

g�2� � 23 � 8f �2� � 3�2� � 2 � 4

� f�g��2�
� fg��2�� f � g��2�� f � g��2�g�x� � x3f �x� � 3x � 2

f�gfgf � gf � g

g�x� � 0f�g

f � gf � g

h�x� � � f � g��x� � x2 � 25x � 1.

f � g

f �x� � x2 and g�x� � 25x � 1.

h�x�

h�x� � x2 � 25x � 1,

3 . 7  O p e r a t i o n s  o n  F u n c t i o n s 197

3.7
Operations on Functions

Sum, Difference, Product, and Quotient of Functions

Terminology Function value

sum

difference

product fg

quotient � f

g ��x� �
f �x�
g�x�

, g�x� � 0
f

g

� fg��x� � f �x�g�x�
� f � g��x� � f �x� � g�x�f � g

� f � g��x� � f �x� � g�x�f � g

While it is true that

remember that, in general,

f �a� � f �b�.�f �a � b�

� f � g��x� � f �x� � g�x�,



S O L U T I O N The domain of f is the closed interval , and the domain
of g is . The intersection of these domains is , which is the domain of

, and fg. For the domain of , we exclude each number x in
such that namely, . Thus, we have the

following:

L

A function f is a polynomial function if is a polynomial—that is, if

where the coefficients , , . . . , are real numbers and the exponents are
nonnegative integers. A polynomial function may be regarded as a sum of
functions whose values are of the form , where c is a real number and k is
a nonnegative integer. Note that the quadratic functions considered in the pre-
vious section are polynomial functions.

An algebraic function is a function that can be expressed in terms of fi-
nite sums, differences, products, quotients, or roots of polynomial functions.

Algebraic Function

Functions that are not algebraic are transcendental. The exponential and
logarithmic functions considered in Chapter 5 are examples of transcendental
functions.

In the remainder of this section we shall discuss how two functions f and
g may be used to obtain the composite functions and (read “f circle
g” and “g circle f,” respectively). Functions of this type are very important in
calculus. The function is defined as follows.f � g

g � ff � g

f �x� � 5x4 � 223 x �
x�x2 � 5�

�x3 � 2x

cxk

ana1a0

f�x� � anxn � an�1xn�1 � � � � � a1x � a0,

f�x�

�2 � x � 2 and x � �
1

3� f

g��x� �
24 � x2

3x � 1
,

�2 � x � 2� fg��x� � 24 � x2 �3x � 1�,

�2 � x � 2� f � g��x� � 24 � x2 � �3x � 1�,

�2 � x � 2� f � g��x� � 24 � x2 � �3x � 1�,

x � �
1
3��g�x� � 3x � 1 � 0��2, 2	

f�gf � g, f � g
��2, 2	�

��2, 2	
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Definition of 
Composite Function

The composite function of two functions f and g is defined by

The domain of is the set of all x in the domain of g such that is in
the domain of f.

g�x�f � g

� f � g��x� � f �g�x��.

f � g



Figure 1 is a schematic diagram that illustrates relationships among f, g,
and . Note that for x in the domain of g, first we find (which must be
in the domain of f ) and then, second, we find .

For the composite function , we reverse this order, first finding 
and second finding . The domain of is the set of all x in the do-
main of f such that is in the domain of g.

Since the notation is read “g of x,” we sometimes say that g is a func-
tion of x. For the composite function , the notation is read “f of g
of x,” and we could regard f as a function of . In this sense, a composite
function is a function of a function or, more precisely, a function of another
function’s values.

E X A M P L E  3 Finding composite functions

Let and .

(a) Find and the domain of .

(b) Find and the domain of .

(c) Find in two different ways: first using the functions f and g sepa-
rately and second using the composite function .

S O L U T I O N

(a) definition of 

definition of g

definition of f

simplify

The domain of both f and g is . Since for each x in (the domain of g), the
function value is in (the domain of f ), the domain of is also .
Note that both and are defined for all real numbers.

(b) definition of 

definition of f

definition of g

simplify

Since for each x in (the domain of f ), the function value is in (the do-
main of g), the domain of is . Note that both and are de-
fined for all real numbers.

(c) To find using and separately, we
may proceed as follows:

To find using , we refer to part (a), where we found

� f � g��x� � f �g�x�� � 9x2 � 30x � 24.

f � gf �g�2��

f �g�2�� � f �11� � 112 � 1 � 120

g�2� � 3�2� � 5 � 11

g�x� � 3x � 5f �x� � x2 � 1f �g�2��

g� f �x��f �x��g � f
�f �x��

� 3x2 � 2

� 3�x2 � 1� � 5

� g�x2 � 1�
g � f�g � f ��x� � g� f �x��

f �g�x��g�x�
�f � g�g�x�

��

� 9x2 � 30x � 24

� �3x � 5�2 � 1

� f �3x � 5�
f � g� f � g��x� � f �g�x��

f � g
f �g�2��

g � f�g � f ��x�
f � g� f � g��x�

g�x� � 3x � 5f �x� � x2 � 1

g�x�
f �g�x��f � g

g�x�
f �x�

g � fg� f �x��
f �x�g � f

f �g�x��
g�x�f � g
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A number x is in the domain of
if and only if both and

are defined.f �g�x��
g�x�� f � g��x�

Figure 1

x

Domain of g

Domain of f

g

f

f � g

g(x)

f (g(x))

(continued)



Hence,

L

Note that in Example 3, and are not always the same; that
is,

If two functions f and g both have domain , then the domain of and
is also This was illustrated in Example 3. The next example shows that

the domain of a composite function may differ from those of the two given
functions.

E X A M P L E  4 Finding composite functions

Let and .

(a) Find and the domain of .

(b) Find and the domain of .

S O L U T I O N We first note that the domain of f is and the domain of g is
the set of all nonnegative real numbers—that is, the interval . We may
proceed as follows.

(a) definition of 

definition of g

definition of f

simplify

If we consider only the final expression, , we might be led to believe
that the domain of is , since is defined for every real number x.
However, this is not the case. By definition, the domain of is the set of all
x in (the domain of g) such that is in (the domain of f ). Since

is in for every x in , it follows that the domain of is
. Note that both and are defined for x in .

(b) definition of 

definition of f

definition of g

By definition, the domain of is the set of all x in (the domain of f ) such
that is in (the domain of g). The statement “ is
in ” is equivalent to each of the inequalities

Thus, the domain of is the union . Note that both
and are defined for x in . Also note that this domain
is different from the domains of both f and g. L

The next example illustrates how special values of composite functions
may sometimes be obtained from tables.

���, �4	 
 �4, ��g� f �x��
f �x����, �4	 
 �4, ��g � f

x2 � 16 
 0, x2 
 16, � x � 
 4.

�0, ��
x2 � 16�0, ��f �x� � x2 � 16

�g � f

� 2x2 � 16

� g�x2 � 16�
g � f�g � f ��x� � g� f �x��

�0, ��f �g�x��g�x��0, ��
f � g�0, ���g�x� � 2x

�g�x��0, ��
f � g

x � 16�f � g
x � 16

� x � 16

� �2x �2
� 16

� f �2x �
f � g� f � g��x� � f �g�x��

�0, ��
�

g � f�g � f ��x�
f � g� f � g��x�

g�x� � 2xf �x� � x2 � 16

�.g � f
f � g�

f � g � g � f.
g� f �x��f �g�x��

� 36 � 60 � 24 � 120.

f �g�2�� � 9�2�2 � 30�2� � 24
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E X A M P L E  5 Finding composite function values from tables

Several values of two functions f and g are listed in the following tables.

Find , , , and .

S O L U T I O N Using the definition of composite function and referring to the
tables above, we obtain

L

In some applied problems it is necessary to express a quantity y as a func-
tion of time t. The following example illustrates that it is often easier to intro-
duce a third variable x, express x as a function of t (that is, , express
y as a function of x (that is, ), and finally form the composite function
given by .

E X A M P L E  6 Using a composite function 
to find the volume of a balloon

A meteorologist is inflating a spherical balloon with helium gas. If the radius
of the balloon is changing at a rate of , express the volume V of the
balloon as a function of time t (in seconds).

S O L U T I O N Let x denote the radius of the balloon. If we assume that the ra-
dius is 0 initially, then after t seconds

radius of balloon after t seconds

To illustrate, after 1 second, the radius is 1.5 centimeters; after 2 seconds, it is
3.0 centimeters; after 3 seconds, it is 4.5 centimeters; and so on.

Next we write

volume of a sphere of radius x

This gives us a composite function relationship in which V is a function of x,
and x is a function of t. By substitution, we obtain

Simplifying, we obtain the following formula for V as a function of t:

LV�t� �
9
2 �t3

V �
4
3 �x3 �

4
3 ��1.5t�3 �

4
3 ��3

2 t�3
�

4
3 ��27

8 t3�.

V �
4
3 �x3.

x � 1.5t.

1.5 cm�sec

y � f �x� � f �g�t��
y � f �x�

x � g�t��

�g � g��2� � g�g�2�� � g�1� � 4.

� f � f ��2� � f � f �2�� � f �4� � 1

�g � f ��2� � g� f �2�� � g�4� � 2

� f � g��2� � f �g�2�� � f �1� � 3

�g � g��2�� f � f ��2��g � f ��2�� f � g��2�
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x 1 2 3 4

f (x) 3 4 2 1

x 1 2 3 4

g(x) 4 1 3 2



If f and g are functions such that

then substituting for u in yields

For certain problems in calculus we reverse this procedure; that is, given
for some function h, we find a composite function form and
such that .

E X A M P L E  7 Finding a composite function form

Express as a composite function form.

S O L U T I O N Suppose, for a real number x, we wanted to evaluate the ex-
pression by using a calculator. We would first calculate the value of

and then raise the result to the eighth power. This suggests that we let

which is a composite function form for . L

The method used in the preceding example can be extended to other func-
tions. In general, suppose we are given . To choose the inside expres-
sion in a composite function form, ask the following question: If a
calculator were being used, which part of the expression would be evalu-
ated first? This often leads to a suitable choice for . After choosing u,
refer to to determine . The following illustration contains typical
problems.

Composite Function Forms

Function value Choice for Choice for 

The composite function form is never unique. For example, consider the
first expression in the preceding illustration:

If n is any nonzero integer, we could choose

Thus, there are an unlimited number of composite function forms. Generally,
our goal is to choose a form such that the expression for y is simple, as we did
in the illustration.

u � �x3 � 5x � 1�n and y � u4/n.

y � �x3 � 5x � 1�4

y �
2

u
u � 3x � 7y �

2

3x � 7

y � 2uu � x2 � 4y � 2x2 � 4

y � u4u � x3 � 5x � 1y � �x3 � 5x � 1�4

y � f (u)u � g(x)

y � f �u�h�x�
u � g�x�

h�x�
u � g�x�

y � h�x�

y � �2x � 5�8

u � 2x � 5 and y � u8,

2x � 5
�2x � 5�8

y � �2x � 5�8

h�x� � f �g�x��u � g�x�
y � f �u�y � h�x�

y � f �g�x��.

y � f �u�

y � f �u� and u � g�x�,
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Exer. 1–2: Find
(a) (b)

(c) (d)

1 ,

2 ,

Exer. 3–8: Find
(a) , , , and 

(b) the domain of , , and fg

(c) the domain of 

3 ,

4 ,

5 ,

6 ,

7 ,

8 ,

Exer. 9–10: Find
(a) (b)

(c) (d)

9 ,

10 ,

Exer. 11–20: Find
(a) (b)

(c) (d)

11 ,

12 ,

13 ,

14 ,

15 ,

16 , g�x� � 3x2 � x � 2f �x� � 5x � 7

g�x� � 2x � 1f �x� � 2x 2 � 3x � 4

g�x� � 4x 2f �x� � 3x � 1

g�x� � 5xf �x� � 3x 2 � 4

g�x� � 6x � 1f �x� � 5x � 2

g�x� � 3x � 7f �x� � 2x � 5

g( f (3))f (g(�2))

(g � f )(x)( f � g)(x)

g�x� � x � 1f �x� � 3x2

g�x� � �x 2f �x� � 2x � 1

(g � g)(x)( f � f )(x)

(g � f )(x)( f � g)(x)

g�x� �
3x

x � 4
f �x� �

x

x � 2

g�x� �
x

x � 5
f �x� �

2x

x � 4

g�x� � 2x � 4f �x� � 23 � 2x

g�x� � 2x � 5f �x� � 2x � 5

g�x� � x 2 � 3f �x� � x 2 � x

g�x� � 2x 2 � 1f �x� � x 2 � 2

f�g

f � gf � g

( f�g)(x)( fg)(x)( f � g)(x)( f � g)(x)

g�x� � 2x � 1f �x� � �x 2

g�x� � x 2f �x� � x � 3

( f�g)(3)( fg)(3)

( f � g)(3)( f � g)(3)
17 ,

18 ,

19 ,

20 ,

Exer. 21–34: Find (a) and the domain of and 
(b) and the domain of .

21 ,

22 ,

23 ,

24 ,

25 ,

26 ,

27 ,

28 ,

29

30

31 ,

32

33

34

Exer. 35–36: Solve the equation .

35 ,

36 , g�x� � 2x � 1f �x� � x2 � x � 2

g�x� � x � 3f �x� � x2 � 2

( f � g)(x) � 0

g�x� �
x � 5

x � 4
f �x� �

x � 2

x � 1
,

g�x� �
x � 3

x � 4
f �x� �

x � 1

x � 2
,

g�x� �
3

x
f �x� �

x

x � 2
,

g�x� �
1

x3
f �x� � x2

g�x� � x � 1f �x� �
1

x � 1
,

g�x� �
2x � 5

3
f �x� �

3x � 5

2
,

g�x� � 23 x � 5f �x� � x3 � 5

g�x� � 2x2 � 16f �x� � 23 � x

g�x� � 2x � 2f �x� � 23 � x

g�x� � 2x � 5f �x� � 2x � 2

g�x� � 2xf �x� � �x2 � 1

g�x� � 23xf �x� � x 2 � 4

g�x� � x 2 � 2xf �x� � 2x � 15

g�x� � 2x � 2f �x� � x2 � 3x

g � f(g � f )(x)
f � g( f � g)(x)

g�x� � x 2f �x� � 5

g�x� � �7f �x� � � x �

g�x� � 3xf �x� � x 3 � 2x 2

g�x� � 2x 3 � 5xf �x� � 4x
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37 Several values of two functions f and g are listed in the 
following tables:

If possible, find

(a) (b) (c)

(d) (e)

38 Several values of two functions T and S are listed in the 
following tables:

If possible, find

(a) (b) (c)

(d) (e)

39 If and , find .

40 If and , find .

41 If f is an odd function and g is an even function, is fg even,
odd, or neither even nor odd?

42 There is one function with domain that is both even and
odd. Find that function.

43 Payroll functions Let the social security tax function
SSTAX be defined as , where 
is the weekly income. Let ROUND2 be the function that
rounds a number to two decimal places. Find the value of

.

44 Computer science functions Let the function CHR 
be defined by ,

. Then let the function ORD be 
defined by 

. Find

(a) (b) CHR�ORD�“A”� � 3��CHR � ORD��“C”�

ORD�“Z”� � 90
ORD�“B”� � 66, . . . ,ORD(“A”) � 65,

CHR�90� � “Z”
CHR�66� � “B”, . . . ,CHR�65� � “A”

SSTAX��525��ROUND2 �

x 
 0SSTAX�x� � 0.0765x

�

�S � D��t�D�t� � 2t � 5S�r� � 4�r2

�D � R��x�R�x� � 20xD�t� � 2400 � t2

�T � S��4��S � S��1�

�T � T ��1��S � T ��1��T � S��1�

�f � g��9��g � g��6�

� f � f ��6��g � f ��6�� f � g��6�

45 Spreading fire A fire has started in a dry open field and is
spreading in the form of a circle. If the radius of this circle
increases at the rate of 6 , express the total fire area A
as a function of time t (in minutes).

46 Dimensions of a balloon A spherical balloon is being in-
flated at a rate of . Express its radius r as a func-
tion of time t (in minutes), assuming that when .

47 Dimensions of a sand pile The volume of a conical pile of
sand is increasing at a rate of , and the height 
of the pile always equals the radius r of the base. Express r
as a function of time t (in minutes), assuming that 
when .

48 Diagonal of a cube The diagonal d of a cube is the distance
between two opposite vertices. Express d as a function of
the edge x of the cube. (Hint: First express the diagonal y of
a face as a function of x.)

49 Altitude of a balloon A hot-air balloon rises vertically from
ground level as a rope attached to the base of the balloon is
released at the rate of 5 (see the figure). The pulley
that releases the rope is 20 feet from a platform where pas-
sengers board the balloon. Express the altitude h of the bal-
loon as a function of time t.

Exercise 49

50 Tightrope walker Refer to Exercise 76 of Section 3.4. Start-
ing at the lowest point, the tightrope walker moves up the
rope at a steady rate of 2 . If the rope is attached 
30 feet up the pole, express the height h of the walker above
the ground as a function of time t. (Hint: Let d denote the
total distance traveled along the wire. First express d as a
function of t, and then h as a function of d.)

ft�sec

20�

ft�sec

t � 0
r � 0

243� ft3�min

t � 0r � 0

9
2 � ft3�min

ft�min
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x 5 6 7 8 9

f (x) 8 7 6 5 4

x 5 6 7 8 9

g(x) 7 8 6 5 4

t 0 1 2 3 4

T(t) 2 3 1 0 5

x 0 1 2 3 4

S(x) 1 0 3 2 5



51 Airplane take-off Refer to Exercise 77 of Section 3.4.
When the airplane is 500 feet down the runway, it has
reached a speed of 150 (or about 102 ), which
it will maintain until take-off. Express the distance d of the
plane from the control tower as a function of time t (in sec-
onds). (Hint: In the figure, first write x as a function of t.)

52 Cable corrosion A 100-foot-long cable of diameter 4 inches
is submerged in seawater. Because of corrosion, the surface
area of the cable decreases at the rate of 750 per year.
Express the diameter d of the cable as a function of time t
(in years). (Disregard corrosion at the ends of the cable.)

Exer. 53–60: Find a composite function form for y.

53 54

55 56 y � 4 � 2x2 � 1y �
1

�x � 3�4

y � 2
4 x4 � 16y � �x2 � 3x�1/3

in2

mi�hrft�sec

57 58

59 60

61 If and , approximate
. In order to avoid calculating a zero value

for , rewrite the formula for as

62 If and , approximate

� f � g��1.12� � � f�g��1.12�
�� f � f ��5.2�	2

.

g�x� � �23x � x3�3/2f �x� �
x3

x2 � x � 2

x3

2x3 � 1 � 1
.

f � g� f � g��0.0001�
� f � g��0.0001�

g�x� � x3 � 1f �x� � 2x � 1

y �
2

3 x

1 � 2
3 x

y �
2x � 4 � 2

2x � 4 � 2

y �
1

�x2 � 3x � 5�3
y � �x4 � 2x2 � 5�5
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1 Describe the set of all points in a coordinate plane
such that .

2 Show that the triangle with vertices , ,
and is a right triangle, and find its area.

3 Given and , find

(a) the distance 

(b) the midpoint of the segment PQ

(c) a point R such that Q is the midpoint of PR

4 Find all points on the y-axis that are a distance 13 from
.

5 For what values of a is the distance between and
less than 3?

6 Find an equation of the circle that has center and
passes through .

7 Find an equation of the circle that has endpoints of a diam-
eter and .

8 Find an equation for the left half of the circle given by
.

9 Find the slope of the line through and .D��8, 6�C�11, �5�

�x � 2�2 � y2 � 9

B��2, �14�A�8, 10�

P��3, 3�
C�7, �4�

Q��2, a�
P�a, 1�

P�12, 6�

d�P, Q�

Q��8, �7�P��5, 9�

C�4, �1�
B��5, �3�A�3, 1�

y�x � 0
�x, y� 10 Show that , , , and are 

vertices of a trapezoid.

11 Find an equation of the line through that is

(a) parallel to the line 

(b) perpendicular to the line 

12 Express in slope-intercept form.

13 Find an equation of the circle that has center 
and is tangent to the line .

14 Find an equation of the line that has x-intercept and
passes through the center of the circle that has equation

.

15 Find a general form of an equation of the line through
with slope 5.

16 Given and , find a general form of an
equation for the perpendicular bisector of segment AB.

Exer. 17–18: Find the center and radius of the circle with
the given equation.

17

18 4x2 � 4y2 � 24x � 16y � 39 � 0

x2 � y2 � 12y � 31 � 0

B�3, �4�A��1, 2�

P�4, �3�

x2 � y2 � 4x � 10y � 26 � 0

�3

x � 4
C��5, �1�

8x � 3y � 24 � 0

6x � 2y � 5 � 0

6x � 2y � 5 � 0

A�1
2 , �

1
3�

D�3, 5�C�4, 1�B�1, �1�A��3, 1�



19 If , find

(a) (b) (c) (d)

(e) (f) (g)

Exer. 20–21: Find the sign of without actually find-
ing .

20

21

22 Find the domain and range of f if

(a) (b)

Exer. 23–24: Find if h � 0.

23

24

25 Find a linear function f such that and .

26 Determine whether f is even, odd, or neither even nor odd.

(a) (b)

(c)

Exer. 27–40: Sketch the graph of the equation, and label the
x- and y-intercepts.

27 28

29 30

31 32

33 34

35

36

37 38 x � �29 � y2x2 � y2 � 8x � 0

x2 � y2 � 4x � 16y � 64 � 0

y2 � 16 � x2

y � �x � 1�3y � 21 � x

3x � 7y2 � 09y � 2x2 � 0

x � 3y � 42y � 5x � 8 � 0

2y � 7 � 0x � 5 � 0

f �x� � 23 x4 � 3x2 � 5

f �x� � 23 3x2 � x3f �x� � 23 x3 � 4x

f �3� � 7f �1� � 2

f �x� �
1

x � 2

f �x� � �x2 � x � 5

f (a � h) � f (a)
h

f �x� �
1

�x � 3�2
f �x� � 23x � 4

f �x� �
�2�x2 � 20��5 � x�

�6 � x2�4/3

f �x� �
�32�x2 � 4�
�9 � x 2�5/3

f (4)
f (4)

� f �x�	2f �x 2��f �x�

f ��x�f �0�f ��1�f �1�

f �x� �
x

2x � 3
39 40

41 Find the center of the small circle.

Exercise 41

42 Explain how the graph of compares to the
graph of .

Exer. 43–52: (a) Sketch the graph of f. (b) Find the do-
main D and range R of f. (c) Find the intervals on which f is
increasing, is decreasing, or is constant.

43 44

45 46

47 48

49 50

51 52

53 Sketch the graphs of the following equations, making use of
shifting, stretching, or reflecting:

(a) (b)

(c) (d)

(e) (f ) y � �2xy �
1
42x

y � 42xy � 2x � 4

y � 2x � 4y � 2x

f �x� � 1 � 2�x�f �x� � �x 2

3x

6

if x � 0

if 0 � x � 2

if x 
 2

f �x� � x2 � 6x � 16f �x� � 9 � x 2

f �x� � 22 � xf �x� � 1 � 2x � 1

f �x� � �210 � x 2f �x� � � x � 3 �

f �x� � 1000f �x� �
1 � 3x

2

y � f �x�
y � �f �x � 2�

y

x

y � x

r � 1

r � 3

y � �x2 � 2x � 3y � �x � 3�2 � 2
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54 The graph of a function f with domain is shown in
the figure. Sketch the graph of the given equation.

(a) (b)

(c) (d)

(e) (f )

(g)

Exercise 54

Exer. 55–58: Find an equation for the graph shown in 
the figure.

55 y

x

y

x

y � f �� x ��

y � � f �x� �y � f �1
2 x�

y � f �2x�y � f ��x�

y � f �x� � 2y � f �x � 2�

��3, 3	 56

57

58 y

x

y

x

P(�2, 4)

V(2, �4)

y

x

(�7, 1)
(3, 1)
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Exer. 59–62: Find the maximum or minimum value of .

59

60

61

62

63 Express the function in the form
.

64 Find the standard equation of a parabola with a vertical axis
that has vertex and passes through .

65 If and , find the domain of

(a) fg (b)

66 If and , find

(a) (b)

Exer. 67–68: Find (a) and (b) .

67 ,

68 ,

Exer. 69–70: Find (a) and the domain of and
(b) and the domain of .

69 ,

70 ,

71 Find a composite function form for .

72 Wheelchair ramp The Americans with Disabilities Act of
1990 guarantees all persons the right of accessibility of 
public accommodations. Providing access to a building often
involves building a wheelchair ramp. Ramps should have
approximately 1 inch of vertical rise for every 12–20 inches
of horizontal run. If the base of an exterior door is located 3
feet above a sidewalk, determine the range of appropriate
lengths for a wheelchair ramp.

73 Discus throw Based on Olympic records, the winning dis-
tance for the discus throw can be approximated by the equa-
tion , where d is in feet and 
corresponds to the year 1948.

t � 0d � 181 � 1.065t

y � 23 x2 � 5x

g�x� �
2

x
f �x� �

x

3x � 2

g�x� � 2x � 3f �x� � 225 � x2

g � f(g � f )(x)
f � g( f � g)(x)

g�x� � 1�x2f �x� � 23x � 2

g�x� � 3x � 2f �x� � 2x2 � 5x � 1

(g � f )(x)( f � g)(x)

�g � f ��2�� f � g��2�

g�x� � 2x � 2f �x� � 8x � 1

f�g

g�x� � 2xf �x� � 24 � x 2

�5, 4�V�3, �2�

a�x � h�2 � k
f �x� � �2x2 � 12x � 14

f �x� � 3�x � 2��x � 10�

f �x� � �12�x � 1�2 � 37

f �x� � �3x2 � 30x � 82

f �x� � 5x2 � 30x � 49

f (x) (a) Predict the winning distance for the Summer Olympics
in the year 2016.

(b) Estimate the Olympic year in which the winning dis-
tance will be 265 feet.

74 House appreciation Six years ago a house was purchased
for $179,000. This year it was appraised at $215,000. As-
sume that the value V of the house after its purchase is a lin-
ear function of time t (in years).

(a) Express V in terms of t.

(b) How many years after the purchase date was the house
worth $193,000?

75 Temperature scales The freezing point of water is 0�C, or
32�F, and the boiling point is 100�C, or 212�F. 

(a) Express the Fahrenheit temperature F as a linear func-
tion of the Celsius temperature C.

(b) What temperature increase in �F corresponds to an in-
crease in temperature of 1�C?

76 Gasoline mileage Suppose the cost of driving an automo-
bile is a linear function of the number x of miles driven and
that gasoline costs $3 per gallon. A certain automobile
presently gets 20 , and a tune-up that will improve
gasoline mileage by 10% costs $120.

(a) Express the cost of driving without a tune-up in
terms of x.

(b) Express the cost of driving with a tune-up in 
terms of x.

(c) How many miles must the automobile be driven after a
tune-up to make the cost of the tune-up worthwhile?

77 Dimensions of a pen A pen consists of five congruent rec-
tangles, as shown in the figure.

(a) Express the length as a function of the length .

(b) If the sides cost $10 per running foot, express the cost
of the pen as a function of the length .

Exercise 77

x

y

xC

xy

C2

C1

mi�gal
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78 Distance between cars At noon, car A is 10 feet to the right
and 20 feet ahead of car B, as shown in the figure. If car A
continues at 88 ft/sec (or 60 mi/hr) while car B continues at
66 ft/sec (or 45 mi/hr), express the distance d between the
cars as a function of t, where t denotes the number of sec-
onds after noon.

Exercise 78

79 Constructing a storage shelter An open rectangular storage
shelter, consisting of two 4-foot-wide vertical sides and a
flat roof, is to be attached to an existing structure, as illus-
trated in the figure. The flat roof is made of tin and costs 
$5 per square foot, and the two sides are made of plywood
costing $2 per square foot.

(a) If $400 is available for construction, express the length
y as a function of the height x.

(b) Express the volume V inside the shelter as a func-
tion of x.

Exercise 79

80 Constructing a cylindrical container A company plans to
manufacture a container having the shape of a right circular
cylinder, open at the top, and having a capacity of .
If the cost of the material for the bottom is and
that for the curved sides is , express the total cost$0.10�in2

$0.30�in2

in324�

x

y
4�

AB

C of the material as a function of the radius r of the base of
the container.

81 Filling a pool A cross section of a rectangular pool of di-
mensions 80 feet by 40 feet is shown in the figure. The pool
is being filled with water at a rate of 10 .

Exercise 81

(a) Express the volume V of the water in the pool as a func-
tion of time t.

(b) Express V as a function of the depth h at the deep end
for and then for .

(c) Express h as a function of t for and then for
.

82 Filtering water Suppose 5 of water is poured into a con-
ical filter and subsequently drips into a cup, as shown in the
figure. Let x denote the height of the water in the filter, and
let y denote the height of the water in the cup.

(a) Express the radius r shown in the figure as a function
of x. (Hint: Use similar triangles.)

(b) Express the height y of the water in the cup as a func-
tion of x. (Hint: What is the sum of the two volumes
shown in the figure?)

Exercise 82

4�
x

r

2�

4�

y

in3

6 � h � 9
0 � h � 6

6 � h � 90 � h � 6

80�

3�
9�

20�

h

ft3�min
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83 Frustum of a cone The shape of the first spacecraft in the
Apollo program was a frustum of a right circular cone—a
solid formed by truncating a cone by a plane parallel to its
base. For the frustum shown in the figure, the radii a and b
have already been determined.

Exercise 83

(a) Use similar triangles to express y as a function of h.

(b) Derive a formula for the volume of the frustum as a
function of h.

(c) If ft and ft, for what value of h is the vol-
ume of the frustum 600 ?

84 Water usage rates A certain city charges $3.61 per 1000
gallons of water used up to 5000 gallons and $4.17 per 1000
gallons of water used for more than 5000 gallons. Find a
piecewise-defined function B that specifies the total bill for
water usage of x gallons.

85 Long jump record In 1991, Mike Powell of the United States
set the world long jump record of 8.95 meters. Assume that
the path of his flight was parabolic and that the highest point
cleared was 1 meter. Find an equation for his path.

86 Wire rectangle A piece of wire 24 inches long is bent into
the shape of a rectangle having width x and length y.

(a) Express y as a function of x.

(b) Express the area A of the rectangle as a function of x.

(c) Show that the area A is greatest if the rectangle is a
square.

87 Distance between ships At 1:00 P.M. ship A is 30 miles due
south of ship B and is sailing north at a rate of 15 . 
If ship B is sailing west at a rate of 10 , find the time
at which the distance d between the ships is minimal (see
the figure).

mi�hr
mi�hr

ft3

b � 3a � 6

h

y

b

a

Exercise 87

88 Dimensions of a race track The interior of a half-mile race
track consists of a rectangle with semicircles at two oppo-
site ends. Find the dimensions that will maximize the area
of the rectangle.

89 Vertical leaps When a particular basketball player leaps
straight up for a dunk, the player’s distance (in feet) off
the floor after t seconds is given by the formula 

, where g is a gravitational constant.

(a) If , find the player’s hang time—that is, the
total number of seconds that the player is in the air.

(b) Find the player’s vertical leap—that is, the maximum
distance of the player’s feet from the floor.

(c) On the moon, . Rework parts (a) and (b) for the
player on the moon.

90 Trajectory of a rocket A rocket is fired up a hillside, fol-
lowing a path given by . The hillside
has slope , as illustrated in the figure.

(a) Where does the rocket land?

(b) Find the maximum height of the rocket above the
ground.

Exercise 90

y

x

y � Qx

1
5

y � �0.016x2 � 1.6x

g �
32
6

g � 32

�
1
2 gt2 � 16t

f �t� �
f �t�

Ship A

Ship B

d

N
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1 Compare the graphs of , , , ,
and on the interval . Write a generaliza-
tion based on what you find out about graphs of equations
of the form , where and p and q are positive
integers.

2 Write an expression for if the graph of g is obtained
from the graph of by reflecting f about the

(a) x-axis (b) y-axis

(c) line (d) line

3 Consider the graph of , where f is given by
. Discuss the general shape of g, in-

cluding its domain and range. Discuss the advantages and
disadvantages of graphing g as a composition of the func-
tions and . (Hint: You may want to use the
following expressions for f : , ,

, .)

4 Simplify the difference quotient in Exercises 49 and 50 of
Section 3.4 for an arbitrary quadratic function of the form

.

5 Refer to Example 5 in Section 3.4. Geometrically, what
does the expression represent on the graph
of f ? What do you think it represents if ?

6 The midpoint formula could be considered to be the
“halfway” formula since it gives us the point that is of the
distance from the point to the point . De-
velop an “m-nth way” formula that gives the point 
that is of the distance from P to Q (assume m and n are
positive integers with ).

7 Consider the graphs of equations of the quadratic form
that have two x-intercepts. Let d denote

the distance from the axis of the parabola to either of the 
x-intercepts, and let h denote the value of the y-coordinate
of the vertex. Explore the relationship between d and h for
several specific equations, and then develop a formula for
this relationship.

y � ax 2 � bx � c

m � n
m�n

R�x3, y3�
Q�x2, y2�P�x1, y1�

1
2

h � 0
2x � h � 6

f �x� � ax2 � bx � c

�x 2 � 2x � 2x 2 � 2x � 2
�x 2 � 2x � 8x 2 � 2x � 8

f �x�h�x� � 2x

bx � cf �x� � ax 2 �
g�x� � 2f �x�

x � 3y � 2

f �x� �
1
2 x � 3

g�x�

x 
 0y � xp/q

0 � x � 2y � x 3

y � x 2y � xy � 2xy � 23 x 8 Billing for service A common method of billing for service
calls is to charge a flat fee plus an additional fee for each
quarter-hour spent on the call. Create a function for a washer
repair company that charges $40 plus $20 for each quarter-
hour or portion thereof—for example, a 30-minute repair
call would cost $80, while a 31-minute repair call would
cost $100. The input to your function is any positive integer.
(Hint: See Exercise 54(e) of Section 3.5.)

9 Density of the ozone layer The density D (in )
of the ozone layer at altitudes x between 3 and 15 kilome-
ters during winter at Edmonton, Canada, was determined
experimentally to be

Express x as a function of D.

10 Precipitation in Minneapolis The average monthly precipita-
tion in inches in Minneapolis is listed in the table. Model
these data with a piecewise function f that is first quadratic
and then linear.

D � 0.0833x2 � 0.4996x � 3.5491.

cm�km10�3

Month Precipitation

Jan. 0.7

Feb. 0.8

Mar. 1.5

Apr. 1.9

May 3.2

June 4.0

July 3.3

Aug. 3.2

Sept. 2.4

Oct. 1.6

Nov. 1.4

Dec. 0.9
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Polynomial functions are the most basic functions in mathematics, because

they are defined only in terms of addition, subtraction, and multiplication.

In applications it is often necessary to sketch their graphs and to find (or ap-

proximate) their zeros. In the first part of this chapter we discuss results that

are useful in obtaining this information. We then turn our attention to quo-

tients of polynomial functions—that is, rational functions.

4.1 Polynomial

Functions of

Degree Greater

Than 2

4.2 Properties of

Division

4.3 Zeros of

Polynomials

4.4 Complex and

Rational Zeros of

Polynomials

4.5 Rational Functions

4.6 Variation

4.1 Polynomial

Functions of

Degree Greater

Than 2

4.2 Properties of

Division

4.3 Zeros of

Polynomials

4.4 Complex and

Rational Zeros of

Polynomials

4.5 Rational Functions

4.6 Variation

4
Polynomial and 

Rational Functions



If f is a polynomial function with real coefficients of degree n, then

with . The special cases listed in the following chart were previously
discussed.

In this section we shall discuss graphs of polynomial functions of degree
greater than 2. All polynomial functions are continuous functions—that is,
their graphs can be drawn without any breaks.

If f has degree n and all the coefficients except are zero, then

In this case, if , the graph of f is a line through the origin. If , the
graph is a parabola with vertex at the origin. Two illustrations with 
(cubic polynomials) are given in the next example.

E X A M P L E  1 Sketching graphs of 

Sketch the graph of f if

(a) (b)

S O L U T I O N

(a) The following table lists several points on the graph of .

Since f is an odd function, the graph of f is symmetric with respect to the 
origin, and hence points such as and are also on the
graph. The graph is sketched in Figure 1.

(b) If , the graph can be obtained from that in part (a) by multiply-
ing all y-coordinates by (that is, by reflecting the graph in part (a) through
the x-axis). This gives us the sketch in Figure 2. L

If and n is an odd positive integer, then f is an odd function and
the graph of f is symmetric with respect to the origin, as illustrated in Figures 1

f �x� � axn

�1
y � �

1
2 x3

��1, �
1
2���

1
2 , �

1
16�

y �
1
2 x3

f �x� � �
1
2 x3f �x� �

1
2 x3

y � ax3

n � 3
n � 2n � 1

f �x� � axn for some a � an � 0.

an

an � 0

f �x� � anxn � an�1xn�1 � � � � � a1x � a0,
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4.1
Polynomial Functions of
Degree Greater Than 2

Degree of f Form of f(x) Graph of f (with y-intercept a0)

0 A horizontal line

1 A line with slope 

2 A parabola with a vertical axisf �x� � a2x2 � a1x � a0

a1f �x� � a1x � a0

f �x� � a0

x 0 1 2

y 0 4 125
16 
 7.827

16 
 1.71
2

1
16 
 0.06

5
2

3
2

1
2

Figure 1

y

x

y � qx 3

Figure 2

y

x

y � �q x 3



and 2. For , the graph is similar in shape to that in Figure 1; however, as
either n or a increases, the graph rises more rapidly for . If , we re-
flect the graph through the x-axis, as in Figure 2.

If and n is an even positive integer, then f is an even function
and the graph of f is symmetric with respect to the y-axis, as illustrated in Fig-
ure 3 for the case and . Note that as the exponent increases, the
graph becomes flatter at the origin. It also rises more rapidly for . If

, we reflect the graph through the x-axis. Also note that the graph inter-
sects the x-axis at the origin, but it does not cross the x-axis (change sign).

A complete analysis of graphs of polynomial functions of degree greater
than 2 requires methods that are used in calculus. As the degree increases, the
graphs usually become more complicated. They always have a smooth ap-
pearance, however, with a number of high points and low points, such as P, Q,
R, and S in Figure 4. Such points are sometimes called turning points for the
graph. It should be noted that an n-degree polynomial has at most turn-
ing points. Each function value (y-coordinate) corresponding to a high or low
point is called an extremum of the function f. At an extremum, f changes from
an increasing function to a decreasing function, or vice versa.

The intermediate value theorem specifies another important property of
polynomial functions.

The intermediate value theorem for polynomial functions states that if w is
any number between and , there is at least one number c between a
and b such that . If we regard the graph of f as extending continuouslyf�c� � w

f�b�f�a�

n � 1

a � 0
x � 1

n � 4a � 1

f�x� � axn

a � 0x � 1
a � 0
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Figure 4

y

x

P
R

Q

S

Figure 3

y

x

y � x4

y

x

y � x6

y

x

y � x8

Intermediate Value Theorem 
for Polynomial Functions

If f is a polynomial function and for , then f takes on
every value between and in the interval .�a, b	f�b�f�a�

a � bf�a� � f�b�



from the point to the point , as illustrated in Figure 5, then
for any number w between and , the horizontal line intersects
the graph in at least one point P. The x-coordinate c of P is a number such
that .

A consequence of the intermediate value theorem is that if and 
have opposite signs (one positive and one negative), there is at least one num-
ber c between a and b such that ; that is, f has a zero at c. Thus, if the
point lies below the x-axis and the point lies above the x-axis,
or vice versa, the graph crosses the x-axis at least once between and

, as illustrated in Figure 6.

Figure 6

E X A M P L E  2 Using the intermediate value theorem

Show that has a zero between 1 and 2.

S O L U T I O N Substituting 1 and 2 for x gives us the following function values:

Since and have opposite signs ( and ),
we see that for at least one real number c between 1 and 2. L

Example 2 illustrates a method for locating real zeros of polynomials. By
using successive approximations, we can approximate each zero at any degree
of accuracy by locating it in smaller and smaller intervals.

If c and d are successive at real zeros of —that is, there are no other
zeros between c and d—then does not change sign on the interval .
Thus, if we choose any number k such that and if is positive,
then is positive throughout . Similarly, if is negative, then 
is negative throughout . We shall call a test value for on the in-
terval . Test values may also be used on infinite intervals of the form

or , provided that has no zeros on these intervals. The use
of test values in graphing is similar to the technique used for inequalities in
Section 2.7.

f �x��a, �����, a�
�c, d�

f �x�f �k��c, d�
f �x�f �k��c, d�f �x�

f �k�c � k � d
�c, d�f �x�

f �x�

f �c� � 0
f �2� � 17 � 0f �1� � �4 � 0f �2�f �1�

f �2� � 32 � 32 � 48 � 4 � 3 � 17

f �1� � 1 � 2 � 6 � 2 � 3 � �4

f �x� � x5 � 2x4 � 6x3 � 2x � 3

y

x

y � f (x)

a c b

(b, f (b))

(a, f (a))

y

xa c b

y � f (x)

(a, f (a))

(b, f (b))

x � b
x � a

�b, f �b���a, f �a��
f �c� � 0

f �b�f �a�
f �c� � w

y � wf �b�f �a�
�b, f �b���a, f �a��
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Figure 5

y

x

f (b)

y � w
w

f (a)

y � f (x)

f (c)

P

a c b



E X A M P L E  3 Sketching the graph of a polynomial function of degree 3

Let . Find all values of x such that and all
x such that , and then sketch the graph of f.

S O L U T I O N We may factor as follows:

given

group terms

factor out and 

factor out 

difference of squares

We see from the last equation that the zeros of (the x-intercepts of the
graph) are , , and 2. The corresponding points on the graph (see Fig-
ure 7) divide the x-axis into four parts, and we consider the open intervals

As in our work with inequalities in Section 2.7, the sign of in each of these
intervals can be determined by using a sign chart. The graph of f lies above the
x-axis for values of x such that , and it lies below the x-axis for all x
such that .

Referring to the sign of in the chart, we conclude that

and

Using this information leads to the sketch in Figure 8. To find the turning
points on the graph, it would be necessary to use a computational device or
methods developed in calculus. L

The graph of every polynomial function of degree 3 has an appearance
similar to that of Figure 8, or it has an inverted version of that graph if the co-
efficient of is negative. Sometimes, however, the graph may have only one
x-intercept or the shape may be elongated, as in Figures 1 and 2.

x 3

f �x� � 0 if x is in ���, �2� 
 ��1, 2�.

f �x� � 0 if x is in ��2, �1� 
 �2, ��

f �x�

f �x� � 0
f �x� � 0

f �x�

���, �2�, ��2, �1�, ��1, 2�, �2, ��.

�1�2
f �x�

� �x � 2��x � 2��x � 1�
�x � 1�� �x2 � 4��x � 1�

�4x2� x2�x � 1� � 4�x � 1�
� �x3 � x2� � ��4x � 4�

f �x� � x3 � x2 � 4x � 4

f �x�

f �x� � 0
f �x� � 0f �x� � x3 � x2 � 4x � 4
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Figure 7

y

x

Figure 8

y

x

y � x 3 � x2 � 4x � 4

Interval (��, �2) (�2, �1) (�1, 2) (2, �)

Sign of 

Sign of 

Sign of 

Sign of 

Position of Below Above Below Above
graph x-axis x-axis x-axis x-axis

����f �x�

����x � 2

����x � 1

����x � 2



E X A M P L E  4 Sketching the graph of a polynomial function of degree 4

Let . Find all values of x such that and all x
such that , and then sketch the graph of f.

S O L U T I O N We begin by factoring :

given

factor out 

factor 

Next, we construct the sign diagram in Figure 9, where the vertical lines indi-
cate the zeros 0, 1, and 3 of the factors. Since the factor is always positive
if , it has no effect on the sign of the product and hence may be omitted
from the diagram.

Figure 9

Referring to the sign of in the diagram, we see that

and

Note that the sign of does not change at . Making use of these facts
leads to the sketch in Figure 10. L

In the next example we construct a graph of a polynomial knowing only
its sign.

E X A M P L E  5 Sketch the graph of a polynomial knowing its sign

Given the sign diagram in Figure 11, sketch a possible graph of the polyno-
mial f.

Figure 11

�� �Sign of f (x)

0 2

� � �

�3 �1

x � 0f �x�

f �x� � 0 if x is in �1, 3�.

f �x� � 0 if x is in ���, 0� 
 �0, 1� 
 �3, ��

f �x�

0

� �
�
�

�
�

Sign of x � 3
Sign of x � 1

�
�
�

Sign of f (x)

3

�
�
�

1

x � 0
x2

x2 � 4x � 3� x2�x � 1��x � 3�
x2� x2�x2 � 4x � 3�

f �x� � x4 � 4x3 � 3x2

f �x�

f �x� � 0
f �x� � 0f �x� � x4 � 4x3 � 3x2
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Figure 10

y

x

y � x4 � 4x3 � 3x2



S O L U T I O N Since the sign of is negative in the interval , the
graph of f must be below the x-axis, as shown in Figure 12. In the interval

, the sign of is positive, so the graph of f is above the x-axis.
The sign of is also positive in the next interval, . Thus, the

graph of f must touch the x-axis at the x-intercept and then remain above
the x-axis. (The graph of f is tangent to the x-axis at .)

In the interval , the sign of is negative, so the graph of f is below
the x-axis. Lastly, the sign of is positive in the interval , and the
graph of f is above the x-axis. L

In the last example we used the function

Note how the graph of f relates to the solutions of the following inequalities.

Notice that every real number must be in the solution to either inequality (1)
or inequality (4)—the same can be said for inequalities (2) and (3).

f �x� � �x � 3��x � 1�2�x��x � 2�.

�2, ��f �x�
f �x��0, 2�

x � �1
�1

��1, 0�f �x�
f �x���3, �1�

���, �3�f �x�
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Position of graph
Inequality Solution in relation to the x-axis

(1) Above

(2) Above or on

(3) Below

(4) Below or on���, �3	 
 ��1
 
 �0, 2	f �x� � 0

���, �3� 
 �0, 2�f �x� � 0

��3, 0	 
 �2, ��f �x� 
 0

��3, �1� 
 ��1, 0� 
 �2, ��f �x� � 0

Figure 12

�1

y

x1

Exer. 1–4: Sketch the graph of f for the indicated value of c
or a.

1

(a) (b)

2

(a) (b)

3

(a) (b)

4

(a) (b) a �
1
4a � �2

f �x� � ax 3 � 3

a � �
1
3a � 2

f �x� � ax 3 � 2

c � 2c � �2

f �x� � �2x 3 � c

c � �3c � 3

f �x� � 2x 3 � c

Exer. 5–10: Use the intermediate value theorem to show
that f has a zero between a and b.

5 ; ,

6 ; ,

7 ; ,

8 ; ,

9 ; ,

10 ;
, b � 4a � 3

f �x� � x 5 � 3x 4 � 2x 3 � 3x 2 � 9x � 6

b � �1a � �
1
2f �x� � x5 � x3 � x 2 � x � 1

b �
3
4a �

1
2f �x� � 2x4 � 3x � 2

b � 3a � 2f �x� � �x4 � 3x 3 � 2x � 1

b � �2a � �3f �x� � 2x 3 � 5x 2 � 3

b � 4a � 3f �x� � x 3 � 4x 2 � 3x � 2

4.1 E x e r c i s e s



Exer. 11–12: Match each graph with an equation.

11

(a) (b)

(c) (d)

(A)

(B)

(C)

(D)

12

(a) (b)

(c) (d) y

x

14

�14

�7 7

y

x

y

x

y

x

f(x) � (x � 1)(x � 1)2(x � 2)

f(x) � (x � 1)(x � 1)(x � 2)

f (x) � �x2(x � 2)

f (x) � x(x � 2)2

y

x

y

x

y

x

y

x

(A)

(B)

(C)

(D)

Exer. 13–28: Find all values of x such that and all
x such that , and sketch the graph of f.

13 14

15 16

17 18

19

20

21

22

23

24

25

26

27

28

Exer. 29–30: Sketch the graph of a polynomial given the
sign diagram.

29

30

31 (a) Sketch a graph of

where .

(b) What is the y-intercept?

a � 0 � b � c

f �x� � �x � a��x � b��x � c�,

� � �Sign of f (x)

0�3 �2

�

2

�

�Sign of f (x)

0 1 3

�

�4

� � � �

f �x� � x 3�x � 1�2�x � 2��x � 4�

f �x� � x2�x � 2��x � 1�2�x � 2�

f �x� � �x4 � 12x 2 � 27

f �x� � x4 � 6x2 � 8

f �x� � x3 � 3x 2 � 9x � 27

f �x� � x 3 � 2x 2 � 4x � 8

f �x� � �
1
8 �x � 4��x � 2��x � 6�

f �x� �
1
6 �x � 2��x � 3��x � 4�

f �x� � x4 � 3x3 � 4x2

f �x� � �x3 � 3x 2 � 10x

f �x� � 9x � x 3f �x� � x 4 � 4x 2

f �x� � x 5 � 1f �x� � �
1

16 x4 � 1

f �x� � �
1
9 x 3 � 3f �x� �

1
4 x 3 � 2

f (x) < 0
f (x) > 0

f(x) � (x � 2)2(x � 1)(x � 1)

f(x) � (x � 2)(x � 1)(x � 3)

f (x) � �x(x � 2)2

f (x) � x 2(x � 1)
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(continued)



(c) What is the solution to ?

(d) What is the solution to ?

32 (a) Sketch a graph of

where .

(b) What is the y-intercept?

(c) What is the solution to ?

(d) What is the solution to ?

33 Let be a polynomial such that the coefficient of every
odd power of x is 0. Show that f is an even function.

34 Let be a polynomial such that the coefficient of every
even power of x is 0. Show that f is an odd function.

35 If , find a number k such that
the graph of f contains the point .

36 If , find a number k such that the
graph of f contains the point .

37 If one zero of is 2, find two
other zeros.

38 If one zero of is , find two
other zeros.

39 A Legendre polynomial The third-degree Legendre poly-
nomial occurs in the solution of heat
transfer problems in physics and engineering. Find all val-
ues of x such that and all x such that , and
sketch the graph of P.

40 A Chebyshev polynomial The fourth-degree Chebyshev
polynomial occurs in statistical
studies. Find all values of x such that . (Hint: Let

, and use the quadratic formula.)

41 Constructing a box From a rectangular piece of cardboard
having dimensions , an open box is
to be made by cutting out identical squares of area from
each corner and turning up the sides (see Exercise 65 of
Section 3.4).

(a) Show that the volume of the box is given by the func-
tion

(b) Find all positive values of x such that and
sketch the graph of V for x � 0.

V�x� � 0,

V�x� � x�20 � 2x��30 � 2x�.

x2

20 inches � 30 inches

z � x 2

f �x� � 0
f �x� � 8x4 � 8x 2 � 1

P�x� � 0P�x� � 0

P�x� �
1
2 �5x 3 � 3x�

�2f �x� � x 3 � 3x 2 � kx � 12

f �x� � x 3 � 2x 2 � 16x � 16k

�2, 12�
f �x� � kx3 � x2 � kx � 2

��1, 4�
f �x� � 3x 3 � kx 2 � x � 5k

f �x�

f �x�

f �x� � 0

f �x� � 0

a � b � 0 � c

f �x� � �x � a�2�x � b��x � c�,

f �x� 
 0

f �x� � 0 42 Constructing a crate The frame for a shipping crate is to be
constructed from 24 feet of lumber (see the figure).

(a) If the crate is to have square ends of side x feet, express
the outer volume V of the crate as a function of x (dis-
regard the thickness of the lumber).

(b) Sketch the graph of V for .

Exercise 42

43 Determining temperatures A meteorologist determines
that the temperature T (in °F) for a certain 24-hour period in
winter was given by the formula 
for , where t is time in hours and corre-
sponds to 6 A.M.

(a) When was , and when was ?

(b) Sketch the graph of T.

(c) Show that the temperature was 32°F sometime between
12 noon and 1 P.M. (Hint: Use the intermediate value
theorem.)

44 Deflections of diving boards A diver stands at the very end
of a diving board before beginning a dive (see the figure).

Exercise 44

s

L

d

T � 0T � 0

t � 00 � t � 24
T �

1
20 t�t � 12��t � 24�

x

x

y

x � 0

2 � 2
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The deflection d of the board at a position s feet from the
stationary end is given by for ,
where L is the length of the board and c is a positive
constant that depends on the weight of the diver and on
the physical properties of the board. Suppose the board is
10 feet long.

(a) If the deflection at the end of the board is 1 foot, find c.

(b) Show that the deflection is somewhere between
and .

45 Deer population A herd of 100 deer is introduced onto a
small island. At first the herd increases rapidly, but eventu-
ally food resources dwindle and the population declines.
Suppose that the number of deer after t years is given
by , where .

(a) Determine the values of t for which , and
sketch the graph of N.

(b) Does the population become extinct? If so, when?

N�t� � 0

t � 0N�t� � �t 4 � 21t 2 � 100
N�t�

s � 6.6s � 6.5

1
2 foot

0 � s � Ld � cs2�3L � s�
46 Deer population Refer to Exercise 45. It can be shown 

by means of calculus that the rate R (in deer per year) at
which the deer population changes at time t is given
by .

(a) When does the population cease to grow?

(b) Determine the positive values of t for which .

47 (a) Construct a table containing the values of the fourth-
degree polynomials

and

when , , and .

(b) As becomes large, how do the values for each func-
tion compare?

(c) Which term has the greatest influence on each func-
tion’s value when is large?� x �

� x �

�60�40x � �20

k�x� � 2x4 � x 3 � 2x,

h�x� � 2x 4 � 5x 2 � 1,
g�x� � 2x 4 � 5x 2 � 1,
f �x� � 2x 4,

R � 0

R � �4t3 � 42t
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4.2
Properties of Division

In this section we use , , and so on, to denote polynomials in x. If 
is a factor of , then is divisible by . For example, is di-
visible by , by , by , and by .

The polynomial is not divisible by ; however, we
can use the process called long division to find a quotient and a remainder, as
in the following illustration, where we have inserted terms with zero coefficients.

Long Division of Polynomials

quotient

subtract

subtract

subtract

remainder

�21x � 24

8�x2 � 3x � 1�8x2 � 24x � 8

8x2 � 3x � 16

�3x�x2 � 3x � 1��3x3 � 9x2 � 3x

�3x3 � x2

x2�x2 � 3x � 1�x4 � 3x3 � x2

x2 � 3x � 1�x4 � 0x3 � 0x2 � 0x � 16

x2 � 3x � 8

x2 � 3x � 1x4 � 16
x � 2x � 2x2 � 4x2 � 4

x4 � 16g�x�f �x�f �x�
g�x�g�x�f �x�

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎨ ⎪ ⎩

I L L U S T R A T I O N



4 . 2  P r o p e r t i e s  o f  D i v i s i o n 223

The long division process ends when we arrive at a polynomial (the re-
mainder) that either is 0 or has smaller degree than the divisor. The result of
the long division in the preceding illustration can be written

Multiplying both sides of this equation by , we obtain

This example illustrates the following theorem.

A useful special case of the division algorithm for polynomials occurs if
is divided by , where c is a real number. If is a factor of ,

then

for some quotient , and the remainder is 0. If is not a factor of
, then the degree of the remainder is less than the degree of , and

hence must have degree 0. This means that the remainder is a nonzero
number. Consequently, for every we have

where the remainder d is a real number (possibly ). If we substitute c for
x, we obtain

This proves the following theorem.

� 0 � d � d.

� 0 � q�c� � d

f�c� � �c � c�q�c� � d

d � 0

f�x� � �x � c�q�x� � d,

x � c
r�x�

x � cr�x�f�x�
x � cr�x�q�x�

f�x� � �x � c�q�x�

f�x�x � cx � cf�x�

x4 � 16 � �x2 � 3x � 1��x2 � 3x � 8� � ��21x � 24�.

x2 � 3x � 1

x4 � 16

x2 � 3x � 1
� �x2 � 3x � 8� � � �21x � 24

x2 � 3x � 1� .

Division Algorithm 
for Polynomials

If and are polynomials and if , then there exist unique
polynomials and such that

where either or the degree of is less than the degree of .
The polynomial is the quotient, and is the remainder in the divi-
sion of by .p�x�f�x�

r�x�q�x�
p�x�r�x�r�x� � 0

f�x� � p�x� � q�x� � r�x�,

r�x�q�x�
p�x� � 0p�x�f�x�

Remainder Theorem If a polynomial is divided by , then the remainder is .f�c�x � cf�x�



E X A M P L E  1 Using the remainder theorem

If , use the remainder theorem to find .

S O L U T I O N According to the remainder theorem, is the remainder
when is divided by . By long division,

subtract

subtract

3 subtract

Hence, . We may check this fact by direct substitution:

L

We shall use the remainder theorem to prove the following important
result.

P R O O F By the remainder theorem,

for some quotient .
If , then ; that is, is a factor of . 

Conversely, if is a factor of , then the remainder upon division of
by must be 0, and hence, by the remainder theorem, .

L

The factor theorem is useful for finding factors of polynomials, as illus-
trated in the next example.

E X A M P L E  2 Using the factor theorem

Show that is a factor of .

S O L U T I O N Since , we see from the factor
theorem that is a factor of . Another method of solution would be to
divide by and show that the remainder is 0. The quotient in the di-
vision would be another factor of . Lf�x�

x � 2f�x�
f�x�x � 2

f�2� � 8 � 16 � 6 � 2 � 0

f�x� � x3 � 4x2 � 3x � 2x � 2

f�c� � 0x � cf�x�
f�x�x � c

f�x�x � cf�x� � �x � c�q�x�f�c� � 0
q�x�

f�x� � �x � c�q�x� � f�c�

f�2� � 23 � 3�2�2 � 2 � 5 � 3

f�2� � 3

��1��x � 2��x � 2

�x � 5

�x�x � 2��x2 � 2x

�x2 � x

x2�x � 2�x3 � 2x2

x � 2�x3 � 3x2 � x � 5

x2 � x � 1

x � 2f�x�
f�2�

f�2�f�x� � x3 � 3x2 � x � 5
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Factor Theorem A polynomial has a factor if and only if .f�c� � 0x � cf�x�
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E X A M P L E  3 Finding a polynomial with prescribed zeros

Find a polynomial of degree 3 that has zeros 2, , and 3.

S O L U T I O N By the factor theorem, has factors , , and
. Thus,

where any nonzero value may be assigned to a. If we let and multiply,
we obtain

L

To apply the remainder theorem it is necessary to divide a polynomial 
by . The method of synthetic division may be used to simplify this
work. The following guidelines state how to proceed. The method can be jus-
tified by a careful (and lengthy) comparison with the method of long division.

x � c
f�x�

f�x� � x3 � 4x2 � x � 6.

a � 1

f�x� � a�x � 2��x � 1��x � 3�,

x � 3
x � 1x � 2f�x�

�1f�x�

Guidelines for 
Synthetic Division of 

by x � c
� � � �a1x�a0an�1xn�1 �anxn �

1 Begin with the following display, supplying zeros for any missing coeffi-
cients in the given polynomial.

2 Multiply by c, and place the product underneath , as indicated
by the arrow in the following display. (This arrow, and others, is used
only to clarify these guidelines and will not appear in specific synthetic
divisions.) Next find the sum , and place it below the
line as shown.

. . .

. . .

. . .

3 Multiply by c, and place the product underneath , as indicated
by the second arrow. Proceeding, we next find the sum 
and place it below the line as shown.

4 Continue this process, as indicated by the arrows, until the final sum
is obtained. The numbers

are the coefficients of the quotient ; that is,

and r is the remainder.

q�x� � anxn�1 � b1xn�2 � � � � � bn�2x � bn�1,

q�x�

an, b1, b2, . . ., bn�2, bn�1

r � a0 � cbn�1

b2 � an�2 � cb1

an�2cb1b1

rbn�1bn�2b2b1an

cbn�1cbn�2cb2cb1can

a0a1an�2an�1c� an

b1 � an�1 � can

an�1canan

an

c� an an�1 an�2 . . . a1 a0



The following examples illustrate synthetic division for some special
cases.

E X A M P L E  4 Using synthetic division to find a quotient and remainder

Use synthetic division to find the quotient and remainder r if the polyno-
mial is divided by .

S O L U T I O N Since the divisor is , the value of c in the ex-
pression is . Hence, the synthetic division takes this form:

coefficients remainder
of quotient

As we have indicated, the first four numbers in the third row are the coeffi-
cients of the quotient , and the last number is the remainder r. Thus,

L

Synthetic division can be used to find values of polynomial functions, as
illustrated in the next example.

E X A M P L E  5 Using synthetic division to find values of a polynomial

If , use synthetic division to find .

S O L U T I O N By the remainder theorem, is the remainder when is
divided by . Dividing synthetically, we obtain

coefficients remainder
of quotient

Consequently, . L

Synthetic division may be used to help find zeros of polynomials. By the
method illustrated in the preceding example, if and only if the re-
mainder in the synthetic division by is 0.

E X A M P L E  6 Using synthetic division to find zeros of a polynomial

Show that is a zero of the polynomial

f �x� � x3 � 8x2 � 29x � 44.

�11

x � c
f �c� � 0

f �4� � 719

3 12 10 45 180 719

12 48 40 180 720

 4 � 3 0 �38 5 0 �1

x � 4
f �x�f �4�

f �4�f �x� � 3x5 � 38x3 � 5x2 � 1

q�x� � 2x3 � x2 � 3x � 11 and r � 25.

q�x�

2 �1 3 �11 25

�6 3 �9 33

�3 � 2 5 0 �2 �8

�3x � c
x � 3 � x � ��3�

x � 32x4 � 5x3 � 2x � 8
q�x�

226 C H A P T E R  4  P O L Y N O M I A L  A N D  R A T I O N A L  F U N C T I O N S

Synthetic division does not replace
long division; it is merely a faster
method and is applicable only when
the divisor is of the form .x � c

⎧ ⎪ ⎨ ⎪ ⎩ �

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ �
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S O L U T I O N Dividing synthetically by gives us

coefficients remainder
of quotient

Thus, , and is a zero of f. L

Example 6 shows that the number is a solution of the equation
. In Section 4.4 we shall use synthetic division to

find rational solutions of equations.
At this stage you should recognize that the following three statements are

equivalent for a polynomial function f whose graph is the graph of the equa-
tion .

(1) The point is on the graph of f.

(2) The value of f at equals b; that is, .

(3) If is divided by , then the remainder is b.

Furthermore, if b is equal to 0, then the next four statements are also
equivalent.

(1) The number a is a zero of the function f.

(2) The point is on the graph of f ; that is, a is an x-intercept.

(3) The number a is a solution of the equation .

(4) The binomial is a factor of the polynomial .

You should become familiar with these statements—so familiar that if
you know one of them is true, you can easily recall and apply any appropriate
equivalent statement.

f �x�x � a

f �x� � 0

�a, 0�

x � af �x�
f �a� � bx � a

�a, b�

y � f �x�

x3 � 8x2 � 29x � 44 � 0
�11

�11f ��11� � 0

1 �3 4 0

�11 33 �44

�11� 1 8 �29 44

x � ��11� � x � 11

⎧ ⎪ ⎨ ⎪ ⎩ �

equivalent
statements

for f �a� � b

⎧
⎪
⎨
⎪
⎩

additional
equivalent
statements

for f �a� � 0

⎧
⎪
⎨
⎪
⎩

The quotient gives us the depressed
equation,

which can be used to find the remain-
ing zeros of f.

x2 � 3x � 4 � 0, l

Exer. 1–8: Find the quotient and remainder if is di-
vided by .

1

2

3

4

5

6 f �x� � �5x2 � 3;  p�x� � x3 � 3x � 9

f �x� � 7x � 2;  p�x� � 2x2 � x � 4

f �x� � 3x3 � 5x2 � 4x � 8;  p�x� � 2x2 � x

f �x� � 3x 3 � 2x � 4;  p�x� � 2x2 � 1

f �x� � 3x4 � 2x 3 � x 2 � x � 6;  p�x� � x 2 � 1

f �x� � 2x4 � x 3 � 3x 2 � 7x � 12;  p�x� � x 2 � 3

p(x)
f (x) 7

8

Exer. 9–12: Use the remainder theorem to find .

9

10

11

12 f �x� � x4 � 3x2 � 12;  c � �2

f �x� � x4 � 6x2 � 4x � 8;  c � �3

f �x� � 2x3 � 4x2 � 3x � 1;  c � 3

f �x� � 3x3 � x2 � 5x � 4;  c � 2

f (c)

f �x� � 7x2 � 3x � 10;  p�x� � x2 � x � 10

f �x� � 9x � 4;  p�x� � 2x � 5

4.2 E x e r c i s e s



Exer. 13–16: Use the factor theorem to show that is a
factor of .

13

14

15

16

Exer. 17–20: Find a polynomial with leading coeffi-
cient 1 and having the given degree and zeros.

17 degree 3; zeros , 0, 5

18 degree 3; zeros , 3

19 degree 4; zeros , , 4

20 degree 4; zeros , 0, 1, 5

Exer. 21–28: Use synthetic division to find the quotient and
remainder if the first polynomial is divided by the second.

21

22

23

24

25

26

27

28

Exer. 29–34: Use synthetic division to find .

29

30

31

32

33

34

Exer. 35–38: Use synthetic division to show that c is a zero
of .

35

36 f �x� � 4x3 � 9x2 � 8x � 3;  c � 3

f �x� � 3x4 � 8x3 � 2x2 � 10x � 4;  c � �2

f (x)

f �x� � x3 � 3x2 � 8;  c � 1 � 22

f �x� � x2 � 3x � 5;  c � 2 � 23

f �x� � 8x5 � 3x2 � 7;  c �
1
2

f �x� � 0.3x3 � 0.04x � 0.034;  c � �0.2

f �x� � �x3 � 4x2 � x; c � �2

f �x� � 2x3 � 3x2 � 4x � 4;  c � 3

f (c)

9x3 � 6x2 � 3x � 4;  x �
1
3

4x4 � 5x2 � 1;      x �
1
2

�2x4 � 10x � 3;    x � 3

3x5 � 6x2 � 7;       x � 2

5x3 � 6x2 � 15;     x � 4

x3 � 8x � 5;  x � 3

3x3 � 4x2 � x � 8;   x � 4

2x3 � 3x 2 � 4x � 5;  x � 2

�3

�1�2

�2

�2

f (x)

f �x� � x4 � 3x3 � 2x2 � 5x � 6;  c � 2

f �x� � x12 � 4096;  c � �2

f �x� � x3 � x 2 � 11x � 10;  c � 2

f �x� � x3 � x 2 � 2x � 12;   c � �3

f (x)
x � c 37

38

Exer. 39–40: Find all values of k such that is divisible
by the given linear polynomial.

39

40

Exer. 41–42: Show that x � c is not a factor of for any
real number c.

41 42

43 Find the remainder if the polynomial

is divided by .

Exer. 44–46: Use the factor theorem to verify the statement.

44 is a factor of for every positive integer n.

45 is a factor of for every positive even integer n.

46 is a factor of for every positive odd integer n.

47 Let be a first-quadrant point on , and con-
sider the vertical line segment PQ shown in the figure.

(a) If PQ is rotated about the y-axis, determine the vol-
ume V of the resulting cylinder.

(b) For what point with is the volume V in
part (a) the same as the volume of the cylinder of ra-
dius 1 and altitude 5 shown in the figure?

Exercise 47 y

x

(1, 5)

P(x, y)

y � 6 � x

Q

x � 1P�x, y�

y � 6 � xP�x, y�

xn � ynx � y

xn � ynx � y

xn � ynx � y

x � 1

3x100 � 5x85 � 4x 38 � 2x17 � 6

f �x� � �x4 � 3x2 � 2f �x� � 3x4 � x2 � 5

f (x)

f �x� � k2x3 � 4kx � 3;  x � 1

f �x� � kx3 � x2 � k2x � 3k2 � 11;  x � 2

f (x)

f �x� � 27x4 � 9x3 � 3x2 � 6x � 1;  c � �
1
3

f �x� � 4x3 � 6x2 � 8x � 3;    c �
1
2
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48 Strength of a beam The strength of a rectangular beam is di-
rectly proportional to the product of its width and the square
of the depth of a cross section (see the figure). A beam of
width 1.5 feet has been cut from a cylindrical log of radius 
1 foot. Find the width of a second rectangular beam of equal
strength that could have been cut from the log.

Exercise 48

49 Parabolic arch An arch has the shape of the parabola
. A rectangle is fit under the arch by selecting a

point (x, y) on the parabola (see the figure).

Exercise 49

x

y

(x, y)

y � 4 � x2

y � 4 � x2

Depth

Width

Rectangular
beam
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4.3
Zeros of Polynomials

The zeros of a polynomial are the solutions of the equation .
Each real zero is an x-intercept of the graph of f. In applied fields, calculators
and computers are usually used to find or approximate zeros. Before using a
calculator, however, it is worth knowing what type of zeros to expect. Some
questions we could ask are

(1) How many zeros of are real? imaginary?

(2) How many real zeros of are positive? negative?

(3) How many real zeros of are rational? irrational?

(4) Are the real zeros of large or small in value?f �x�
f �x�
f �x�

f �x�

f �x� � 0f �x�

(a) Express the area A of the rectangle in terms of x.

(b) If , the rectangle has base 2 and height 3. Find the
base of a second rectangle that has the same area.

50 Dimensions of a capsule An aspirin tablet in the shape of 
a right circular cylinder has height centimeter and radius 

centimeter. The manufacturer also wishes to market the 
aspirin in capsule form. The capsule is to be centimeters
long, in the shape of a right circular cylinder with hemi-
spheres attached at both ends (see the figure).

(a) If r denotes the radius of a hemisphere, find a formula
for the volume of the capsule.

(b) Find the radius of the capsule so that its volume is
equal to that of the tablet.

Exercise 50

1 cm w cm

a cm

3
2

1
2

1
3

x � 1



In this and the following section we shall discuss results that help answer some
of these questions. These results form the basis of the theory of equations.

The factor and remainder theorems can be extended to the system of com-
plex numbers. Thus, a complex number is a zero of a polynomial

if and only if is a factor of . Except in special cases, zeros of
polynomials are very difficult to find. For example, there are no obvious zeros
of . Although we have no formula that can
be used to find the zeros, the next theorem states that there is at least one zero
c, and hence, by the factor theorem, has a factor of the form .

The standard proof of this theorem requires results from an advanced field
of mathematics called functions of a complex variable. A prerequisite for
studying this field is a strong background in calculus. The first proof of the
fundamental theorem of algebra was given by the German mathematician Carl
Friedrich Gauss (1777–1855), who is considered by many to be the greatest
mathematician of all time.

As a special case of the fundamental theorem of algebra, if all the coeffi-
cients of are real, then has at least one complex zero. If is a com-
plex zero, it may happen that , in which case the number a is a real zero.

The fundamental theorem of algebra enables us, at least in theory, to ex-
press every polynomial of positive degree as a product of polynomials of
degree 1, as in the next theorem.

P R O O F If has degree , then, by the fundamental theorem of 
algebra, has a complex zero . Hence, by the factor theorem, has a
factor ; that is,

where is a polynomial of degree . If , then, by the same
argument, has a complex zero and therefore a factor . Thus,

f1�x� � �x � c2� f2�x�,

x � c2c2f1�x�
n � 1 � 0n � 1f1�x�

f�x� � �x � c1� f1�x�,

x � c1

f�x�c1f�x�
n � 0f�x�

f�x�

b � 0
a � bif�x�f�x�

x � cf�x�

f�x� � x5 � 3x4 � 4x3 � 4x � 10

f�x�x � cf�x�
c � a � bi
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Complete Factorization
Theorem for Polynomials

If is a polynomial of degree , then there exist n complex num-
bers such that

where a is the leading coefficient of . Each number is a zero of .f�x�ckf�x�

f�x� � a�x � c1��x � c2� � � � �x � cn�,

c1, c2, . . . , cn

n � 0f�x�

Fundamental 
Theorem of Algebra

If a polynomial has positive degree and complex coefficients, then 
has at least one complex zero.

f�x�f�x�



where is a polynomial of degree . Hence,

Continuing this process, after n steps we arrive at a polynomial of de-
gree 0. Thus, for some nonzero number a, and we may write

where each complex number is a zero of . The leading coefficient of the
polynomial on the right-hand side in the last equation is a, and therefore a is
the leading coefficient of . L

Complete Factorization Theorem for Polynomials

We may now prove the following.

P R O O F We will give an indirect proof; that is, we will suppose has
more than n different complex zeros and show that this supposition leads to a
contradiction. Let us choose of the zeros and label them , ,
and c. We may use the to obtain the factorization indicated in the statement
of the complete factorization theorem for polynomials. Substituting c for x
and using the fact that , we obtain

However, each factor on the right-hand side is different from zero because
for every k. Since the product of nonzero numbers cannot equal zero,

we have a contradiction. L

c � ck

0 � a�c � c1��c � c2� � � � �c � cn�.

f�c� � 0

ck

c2, . . . , cnc1n � 1

f�x�

f�x�

f�x�ck

f�x� � a�x � c1��x � c2� � � � �x � cn�,

fn�x� � a
fn�x�

f�x� � �x � c1��x � c2� f2�x�.

n � 2f2�x�
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A Polynomial A Factored Form of Zeros of 

�12, �12
3 �x � 12��x � 1��x � 1�2

3 x3 � 8x2 �
2
3 x � 8

0, 3 � 2i5�x � 0��x � �3 � 2i�	�x � �3 � 2i�	5x3 � 30x2 � 65x

�
1
3, �i�6�x �

1
3��x � i��x � i��6x3 � 2x2 � 6x � 2

4, 2i3�x � 4��x � 2i�3x2 � �12 � 6i�x � 24i

f (x)f (x)f (x)

Theorem on the 
Maximum Number of 
Zeros of a Polynomial

A polynomial of degree has at most n different complex zeros.n � 0

I L L U S T R A T I O N



E X A M P L E  1 Finding a polynomial with prescribed zeros

Find a polynomial in factored form that has degree 3; has zeros , and
3; and satisfies .

S O L U T I O N By the factor theorem, has factors , , and
. No other factors of degree 1 exist, since, by the factor theorem, another

linear factor would produce a fourth zero of , contrary to the pre-
ceding theorem. Hence, has the form

for some number a. Since , we can find a as follows:

let in 

simplify

solve for a

Consequently,

If we multiply the factors, we obtain the polynomial

L

The numbers in the complete factorization theorem are
not necessarily all different. To illustrate, has the
factorization

If a factor occurs m times in the factorization, then c is a zero of multi-
plicity m of the polynomial , or a root of multiplicity m of the equation

. In the preceding display, 1 is a zero of multiplicity 2, and is a
zero of multiplicity 1.

If c is a real zero of of multiplicity m, then has the factor
and the graph of f has an x-intercept c. The general shape of the graph

at depends on whether m is an odd integer or an even integer. If m is odd,
then changes sign as x increases through c, and hence the graph of f
crosses the x-axis at , as indicated in the first row of the following chart.
The figures in the chart do not show the complete graph of f, but only its gen-
eral shape near . If m is even, then does not change sign at c and
the graph of f near has the appearance of one of the two figures in the
second row.

�c, 0�
�x � c�m�c, 0�

�c, 0�
�x � c�m

�c, 0�
�x � c�m

f �x�f �x�

�3f �x� � 0
f �x�

x � c

f �x� � �x � 3��x � 1��x � 1�.

f �x� � x3 � x2 � 5x � 3
c1, c2, . . . , cn

f �x� �
5
4 x3 � 5x2 �

5
4 x �

15
2 .

f �x� �
5
4 �x � 2��x � 1��x � 3�.

a �
5
4

 5 � a��1��2���2�

f �x�x � 1 5 � a�1 � 2��1 � 1��1 � 3�

f �1� � 5

f �x� � a�x � 2��x � 1��x � 3�

f �x�
f �x�x � c

x � 3
x � 1x � 2f �x�

f �1� � 5
2, �1f �x�
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E X A M P L E  2 Finding multiplicities of zeros

Find the zeros of the polynomial , state the
multiplicity of each, and then sketch the graph of f.

S O L U T I O N We see from the factored form that has three distinct zeros,
2, 4, and . The zero 2 has multiplicity 1, the zero 4 has multiplicity 3, and
the zero has multiplicity 2. Note that has degree 6.

The x-intercepts of the graph of f are the real zeros , and 4. Since the
multiplicity of is an even integer, the graph intersects, but does not cross,
the x-axis at . Since the multiplicities of 2 and 4 are odd, the graph
crosses the x-axis at and . (Note that the graph is “flatter” at 4 than
at 2.) The y-intercept is . The graph is shown in
Figure 1. L

If is a polynomial of degree n, then
the n complex numbers are zeros of . Counting a zero of mul-
tiplicity m as m zeros tells us that has at least n zeros (not necessarily all
different). Combining this fact with the fact that has at most n zeros gives
us the next result.

f �x�
f �x�

f �x�c1, c2, . . . , cn

f �x� � a�x � c1��x � c2� � � � �x � cn�

f �0� �
1

16 ��2���4�3�1�2 � 8
�4, 0��2, 0�

��1, 0�
�1

�1, 2
f �x��1

�1
f �x�

f �x� �
1

16 �x � 2��x � 4�3�x � 1�2
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Factor of f (x) General shape of the graph of f near (c, 0)

with
m odd and 

with
m even
�x � c�m,

m � 1
�x � c�m,

y

xc

y

xc

y

xc

y

xc

Figure 1

y

x



Notice how the polynomial of degree 6 in Example 2 relates to the last
theorem. The multiplicities are 1, 3, and 2, so f has precisely 
6 zeros.

E X A M P L E  3 Finding the zeros of a polynomial

Express as a product of linear factors, and find the
five zeros of .

S O L U T I O N We begin by factoring out :

By the quadratic formula, the zeros of the polynomial are

Hence, by the factor theorem, has factors and
, and we obtain the factorization

Since occurs as a factor three times, the number 0 is a zero of multi-
plicity 3, and the five zeros of are 0, 0, 0, , and .

We next show how to use Descartes’ rule of signs to obtain information
about the zeros of a polynomial with real coefficients. In the statement of
the rule we assume that the terms of are arranged in order of decreasing
powers of x and that terms with zero coefficients are deleted. We also assume
that the constant term—that is, the term that does not contain x—is different
from 0. We say there is a variation of sign in if two consecutive coeffi-
cients have opposite signs. To illustrate, the polynomial in the following
illustration has three variations of sign, as indicated by the braces—one varia-
tion from to , a second from to , and a third from 6x to .

Variations of Sign in 

no variation

� 5� 6x� 3x2� 7x4f�x� � 2x5

⎫ ⎬ ⎭⎫ ⎪ ⎬ ⎪ ⎭⎫ ⎬ ⎭⎫ ⎬ ⎭

� to �� to �� to �

f �x� � 2x5 � 7x4 � 3x2 � 6x � 5

�53x2�7x4�7x42x5

f�x�
f�x�

f�x�
f�x�

2 � 3i2 � 3if�x�
x � 0

f�x� � x � x � x � �x � 2 � 3i��x � 2 � 3i�.

x � �2 � 3i�
x � �2 � 3i�x2 � 4x � 13

���4� � 2��4�2 � 4�1��13�
2�1�

�
4 � 2�36

2
�

4 � 6i

2
� 2 � 3i.

x2 � 4x � 13

f�x� � x3�x2 � 4x � 13�

x3

f�x�
f�x� � x5 � 4x4 � 13x3

1 � 3 � 2 �

234 C H A P T E R  4  P O L Y N O M I A L  A N D  R A T I O N A L  F U N C T I O N S

I L L U S T R A T I O N

L

Theorem on the 
Exact Number of 

Zeros of a Polynomial

If is a polynomial of degree and if a zero of multiplicity m is
counted m times, then has precisely n zeros.f�x�

n � 0f�x�



Descartes’ rule also refers to the variations of sign in . Using the
previous illustration, note that

Hence, as indicated in the next illustration, there are two variations of sign in
—one from to and a second from to .

Variations of Sign in if 

no variation no variation

We may state Descartes’ rule as follows.

A proof of Descartes’ rule will not be given.

E X A M P L E  4 Using Descartes’ rule of signs

Discuss the number of possible positive and negative real solutions and imagi-
nary solutions of the equation , where

S O L U T I O N The polynomial is the one given in the two previous illus-
trations. Since there are three variations of sign in , the equation has either
three positive real solutions or one positive real solution.

Since has two variations of sign, the equation has either two nega-
tive solutions or no negative solution. Because has degree 5, there are a
total of 5 solutions. The solutions that are not positive or negative real num-
bers are imaginary numbers. The following table summarizes the various pos-
sibilities that can occur for solutions of the equation.

f�x�
f��x�

f�x�
f�x�

f�x� � 2x5 � 7x4 � 3x2 � 6x � 5.

f�x� � 0

� 5� 6x� 3x2� 7x4f��x� � �2x5

⎫ ⎪ ⎬ ⎪ ⎭⎫ ⎬ ⎭⎫ ⎬ ⎭⎫ ⎪ ⎬ ⎪ ⎭

� to �� to �

f �x� � 2x5 � 7x4 � 3x2 � 6x � 5f ��x�

�6x3x23x2�7x4f��x�

� �2x5 � 7x4 � 3x2 � 6x � 5.

f��x� � 2��x�5 � 7��x�4 � 3��x�2 � 6��x� � 5

f��x�
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Descartes’ Rule of Signs Let be a polynomial with real coefficients and a nonzero con-
stant term.

(1) The number of positive real zeros of either is equal to the number
of variations of sign in or is less than that number by an even
integer.

(2) The number of negative real zeros of either is equal to the number
of variations of sign in or is less than that number by an even
integer.

f��x�
f�x�

f�x�
f�x�

f�x�

(continued)



L

Descartes’ rule stipulates that the constant term of the polynomial is
different from 0. If the constant term is 0, as in the equation

we factor out the lowest power of x, obtaining

Thus, one solution is , and we apply Descartes’ rule to the polynomial
to determine the nature of the remaining three solutions.

When applying Descartes’ rule, we count roots of multiplicity k as k roots.
For example, given , the polynomial has two
variations of sign, and hence the equation has either two positive real roots or
none. The factored form of the equation is , and hence 1 is a root
of multiplicity 2.

We next discuss the bounds for the real zeros of a polynomial that has
real coefficients. By definition, a real number b is an upper bound for the
zeros if no zero is greater than b. A real number a is a lower bound for the
zeros if no zero is less than a. Thus, if r is any real zero of , then ;
that is, r is in the closed interval , as illustrated in Figure 2. Note that
upper and lower bounds are not unique, since any number greater than b is also
an upper bound and any number less than a is also a lower bound.

Figure 2

We may use synthetic division to find upper and lower bounds for the
zeros of . Recall that if we divide synthetically by , the third row
in the division process contains the coefficients of the quotient together
with the remainder . The following theorem indicates how this third row
may be used to find upper and lower bounds for the real solutions.

f �c�
q�x�

x � cf �x�f �x�

a
Lower bound
for real zeros

r b
Upper bound
for real zeros

Any real
zero

�a, b	
a � r � bf �x�

f �x�

�x � 1�2 � 0

x 2 � 2x � 1x2 � 2x � 1 � 0

x3 � 3x2 � 2x � 5
x � 0

x�x3 � 3x2 � 2x � 5� � 0.

x4 � 3x3 � 2x2 � 5x � 0,

f �x�
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Number of positive real solutions 3 3 1 1

Number of negative real solutions 2 0 2 0

Number of imaginary solutions 0 2 2 4

Total number of solutions 5 5 5 5



E X A M P L E  5 Finding bounds for the solutions of an equation

Find upper and lower bounds for the real solutions of the equation ,
where .

S O L U T I O N We divide synthetically by and .

The third row of the synthetic division by contains negative numbers,
and hence part (1) of the theorem on bounds for real zeros of polynomials does
not apply. However, since all numbers in the third row of the synthetic division
by are positive, it follows from part (1) that 2 is an upper bound for the
real solutions of the equation. This fact is also evident if we express the divi-
sion by in the division algorithm form

for if , then the right-hand side of the equation is positive (why?), and
hence is not zero.

We now find a lower bound. After some trial-and-error attempts using
, , and , we see that synthetic division of f by
gives us

Since the numbers in the third row are alternately positive and negative, it fol-
lows from part (2) of the preceding theorem that is a lower bound for the�4

 2 �3  4 �23

�8 12 �16

�4 � 2 5 �8 �7

x � ��4�
x � ��3�x � ��2�x � ��1�

f�x�
x � 2

2x3 � 5x2 � 8x � 7 � �x � 2��2x2 � 9x � 10� � 13,

x � 2

x � 2

x � 1

 2 9 10 13 2 7 �1 �8

 4 18 20 2 7 �1

 2 �2 5 �8 �7 1 � 2 5 �8 �7

x � 2x � 1f�x�

f�x� � 2x3 � 5x2 � 8x � 7
f�x� � 0
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Theorem on Bounds 
for Real Zeros of Polynomials

Suppose that is a polynomial with real coefficients and a positive lead-
ing coefficient and that is divided synthetically by .

(1) If and if all numbers in the third row of the division process are
either positive or zero, then c is an upper bound for the real zeros 
of .

(2) If and if the numbers in the third row of the division process are
alternately positive and negative (and a 0 in the third row is considered
to be either positive or negative), then c is a lower bound for the real
zeros of .f�x�

c � 0

f�x�

c � 0

x � cf�x�
f�x�

(continued)



real solutions. This can also be proved by expressing the division by in
the form

for if , then the right-hand side of this equation is negative (why?), and
hence is not zero.

Since lower and upper bounds for the real solutions are and 2, respec-
tively, it follows that all real solutions are in the closed interval .

The graph of f in Figure 3 shows that the three zeros of f are in the inter-
vals , , and , respectively. L

E X A M P L E  6 Finding a polynomial from a graph

Shown in Figure 4 are all the zeros of a polynomial function f.

(a) Find a factored form for f that has minimal degree.

(b) Assuming the leading coefficient of f is 1, find the y-intercept.

S O L U T I O N

(a) The zero at must have a multiplicity that is an even number, since
f does not change sign at . The zero at must have an odd multi-
plicity of 3 or greater, since f changes sign at and levels off. The zero at

is of multiplicity 1, since f changes sign and does not level off. Thus, a
factored form of f is

Because we desire the function having minimal degree, we let and
, obtaining

which is a sixth-degree polynomial.

(b) If the leading coefficient of f is to be 1, then, from the complete factori-
zation theorem for polynomials, we know that the value of a is 1. To find the
y-intercept, we let and compute :

Hence, the y-intercept is 12. L

f �0) � 1�0 � 2�2�0 � 1�3�0 � 3� � 1�4���1���3� � 12

f �0�x � 0

f �x� � a�x � 2�2�x � 1�3�x � 3�,

n � 3
m � 2

f �x� � a�x � 2�m�x � 1�n�x � 3�1.

x � 3
x � 1

x � 1x � �2
x � �2

�1, 2	��1, 0	��4, �3	

��4, 2	
�4

f �x�
x � �4

2x3 � 5x2 � 8x � 7 � �x � 4��2x2 � 3x � 4� � 23,

x � 4
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Exer. 1–6: Find a polynomial f (x) of degree 3 that has the
indicated zeros and satisfies the given condition.

1

2 �5, 2, 4;    f �3� � �24

�1, 2, 3;    f ��2� � 80

3

4

5 �2i, 2i, 3;   f �1� � 20

�3, �2, 0;  f ��4� � 16

�4, 3, 0;     f �2� � �36

4.3 E x e r c i s e s

Figure 3

f (x) � 2x3 � 5x2 � 8x � 7

f (x)

x

Figure 4

f (x)

1

10

x
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6

7 Find a polynomial of degree 4 with leading coeffi-
cient 1 such that both and 3 are zeros of multiplicity 2,
and sketch the graph of f.

8 Find a polynomial of degree 4 with leading coeffi-
cient 1 such that both and 2 are zeros of multiplicity 2,
and sketch the graph of f.

9 Find a polynomial of degree 6 such that 0 and 3 are
both zeros of multiplicity 3 and . Sketch the
graph of f.

10 Find a polynomial of degree 7 such that and 2 are
both zeros of multiplicity 2, 0 is a zero of multiplicity 3,
and . Sketch the graph of f.

11 Find the third-degree polynomial function whose graph is
shown in the figure.

12 Find the fourth-degree polynomial function whose graph is
shown in the figure.

y

x

(�1, 4)

y

x

(1.5, 0)

(0, 3.5)

f ��1� � 27

�2f �x�

f �2� � �24
f �x�

�5
f �x�

�4
f �x�

�3i, 3i, 4;  f ��1� � 50 Exer. 13–14: Find the polynomial function of degree 3
whose graph is shown in the figure.

13

14

Exer. 15–22: Find the zeros of f (x), and state the multi-
plicity of each zero.

15

16

17

18 f �x� � �4x2 � 5�2

f �x� � 4x 5 � 12x 4 � 9x 3

f �x� � x�x � 1�4�3x � 7�2

f �x� � x 2�3x � 2��2x � 5�3

y

x

(1,�3)

x

y



19

20

21

22

Exer. 23–26: Show that the number is a zero of f (x) of the
given multiplicity, and express f (x) as a product of linear
factors.

23 (multiplicity 2)

24 4 (multiplicity 2)

25

1 (multiplicity 5)

26

(multiplicity 4)

Exer. 27–34: Use Descartes’ rule of signs to determine the
number of possible positive, negative, and nonreal complex
solutions of the equation.

27

28

29

30

31

32

33

34

Exer. 35–40: Applying the theorem on bounds for real zeros
of polynomials, determine the smallest and largest integers
that are upper and lower bounds, respectively, for the real
solutions of the equation.

35

36

37

38

39

40 3x 5 � 2x4 � x 3 � 8x 2 � 7 � 0

2x 5 � 13x 3 � 2x � 5 � 0

2x4 � 9x 3 � 8x � 10 � 0

x4 � x3 � 2x 2 � 3x � 6 � 0

2x3 � 5x 2 � 4x � 8 � 0

x3 � 4x 2 � 5x � 7 � 0

2x6 � 5x 5 � 2x 2 � 3x � 4 � 0

x 5 � 4x4 � 3x3 � 4x � 2 � 0

2x4 � x3 � x 2 � 3x � 4 � 0

3x4 � 2x3 � 4x � 2 � 0

3x3 � 4x 2 � 3x � 7 � 0

4x3 � 2x 2 � 1 � 0

5x 3 � 6x � 4 � 0

4x3 � 6x 2 � x � 3 � 0

�1
f �x� � x5 � x4 � 6x3 � 14x 2 � 11x � 3;

f �x� � x6 � 4x 5 � 5x4 � 5x 2 � 4x � 1;

f �x� � x4 � 9x 3 � 22x 2 � 32;

�3f �x� � x4 � 7x3 � 13x 2 � 3x � 18;

f �x� � x 4 � 21x 2 � 100

f �x� � x4 � 7x 2 � 144

f �x� � �6x2 � 7x � 5�4�4x2 � 1�2

f �x� � �x2 � x � 12�3�x2 � 9�2 Exer. 41–42: Find a factored form for a polynomial func-
tion f that has a minimal degree. Assume that the intercept
values are integers.

41

42

Exer. 43–44: (a) Find a factored form for a polynomial
function f that has minimal degree. Assume that the inter-
cept values are integers. (b) If the leading coefficient of f is
a, find the y-intercept.

43

x

f (x)

1

150

a � 1

x

f (x)

1

1

x

f (x)

1

1
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44

Exer. 45–48: Is there a polynomial of the given degree n
whose graph contains the indicated points?

45

46

�0, 0�, ��3, 0�, ��1, 0�, �2, 0�, �3, 0�, ��2, 5�, �1, 2�
n � 5;

��2, 0�, �0, �24�, �1, 0�, �3, 0�, �2, 0�, ��1, �52�
n � 4;

x

f (x)

1

150

a � �1 47

48

49 Using limited data A scientist has limited data on the temp-
erature T (in °C) during a 24-hour period. If t denotes time
in hours and corresponds to midnight, find the fourth-
degree polynomial that fits the information in the follow-
ing table.

50 Lagrange interpolation polynomial A polynomial of
degree 3 with zeros at , , and and with for

is a third-degree Lagrange interpolation poly-
nomial. Find an explicit formula for in terms of , ,

, and c.c3

c2c1f �x�
c2 � c � c3

f �c� � 1c3c2c1

f �x�

t � 0

�9, �307.75�, �10, 0�
�1.25, 0�, �2, 0�, �2.5, 56.25�, �3, 128.625�, �6.5, 0�,
n � 4;

�6.4, �29.304�, �10.1, 0�
�1.1, �49.815�, �2, 0�, �3.5, 25.245�, �5.2, 0�,
n � 3;

4.4
Complex and Rational
Zeros of Polynomials

Example 3 of the preceding section illustrates an important fact about polyno-
mials with real coefficients: The two complex zeros and of

are conjugates of each other. The relationship is not acci-
dental, since the following general result is true.

A proof is left as a discussion exercise at the end of the chapter.

E X A M P L E  1 Finding a polynomial with prescribed zeros

Find a polynomial of degree 4 that has real coefficients and zeros 
and .

S O L U T I O N By the theorem on conjugate pair zeros of a polynomial,
must also have zeros and . Applying the factor theorem, we find that

has the following factors:

x � �2 � i�, x � �2 � i�, x � ��3i�, x � �3i�

f�x�
3i2 � i

f�x�

�3i
2 � if�x�

x5 � 4x4 � 13x3

2 � 3i2 � 3i

Theorem on Conjugate 
Pair Zeros of a Polynomial

If a polynomial of degree has real coefficients and if 
with is a complex zero of , then the conjugate is also
a zero of .f�x�

z � a � bif�x�b � 0
z � a � bin � 1f�x�

(continued)

t (hours) 0 5 12 19 24

T (°C) 0 0 10 0 0



Multiplying these four factors gives us

(*)

L

Note that in (*) the symbol i does not appear. This is not a coincidence,
since if is a zero of a polynomial with real coefficients, then is
also a zero and we can multiply the associated factors as follows:

In Example 1 we have and , so and and
the associated quadratic factor is . This resulting quadratic factor
will always have real coefficients, as stated in the next theorem.

P R O O F Since has precisely n complex zeros we may write

where a is the leading coefficient of . Of course, some of the zeros may be
real. In such cases we obtain the linear factors referred to in the statement of
the theorem.

If a zero is not real, then, by the theorem on conjugate pair zeros of a
polynomial, the conjugate is also a zero of and hence must be one of
the numbers . This implies that both and appear in
the factorization of . If those factors are multiplied, we obtain

which has real coefficients, since and are real numbers. Thus, if 
is a complex zero, then the product is a quadratic polynomial
that is irreducible over �. This completes the proof. L

E X A M P L E  2 Expressing a polynomial as a product 
of linear and quadratic factors

Express as a product of

(a) linear and quadratic polynomials with real coefficients that are irreducible
over �

(b) linear polynomials

x 5 � 4x3 � x2 � 4

�x � ck��x � ck�
ckckckck � ck

�x � ck��x � ck� � x2 � �ck � ck �x � ckck ,

f �x�
x � ckx � ckc1, c2, . . . , cn

f �x�ck

ck

f �x�

f �x� � a�x � c1��x � c2� � � � �x � cn�,

c1, c2, . . . , cn,f �x�

x2 � 4x � 5
a2 � b2 � 5�2a � �4b � 1a � 2

�x � �a � bi�	�x � �a � bi�	 � x2 � 2ax � a2 � b2

a � bia � bi

� x4 � 4x3 � 14x2 � 36x � 45.

� �x2 � 4x � 5��x2 � 9�
f �x� � �x � �2 � i�	�x � �2 � i�	�x � 3i��x � 3i�
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Theorem on Expressing a
Polynomial as a Product of

Linear and Quadratic Factors

Every polynomial with real coefficients and positive degree n can be ex-
pressed as a product of linear and quadratic polynomials with real coeffi-
cients such that the quadratic factors are irreducible over �.



S O L U T I O N

(a)

group terms

factor out 

factor out 

factor as the sum of cubes
and the difference of squares

Using the quadratic formula, we see that the polynomial has the
complex zeros

and hence is irreducible over �. Thus, the desired factorization is

(b) Since the polynomial in part (a) has zeros , it
follows from the factor theorem that the polynomial has factors

Substituting in the factorization found in part (a), we obtain the following
complete factorization into linear polynomials:

L

We previously pointed out that it is generally very difficult to find the
zeros of a polynomial of high degree. If all the coefficients are integers, how-
ever, there is a method for finding the rational zeros, if they exist. The method
is a consequence of the following result.

P R O O F Assume that . (The proof for is similar.) Let us show
that c is a factor of . The case is trivial, since 1 is a factor of anyc � 1a0

c � 0c � 0

�x � 1��x �
1

2
�
23

2
i��x �

1

2
�
23

2
i��x � 2��x � 2�

x � � 1

2
�
23

2
i� and x � � 1

2
�
23

2
i�.

1
2 � �23�2�ix2 � x � 1

�x � 1��x2 � x � 1��x � 2��x � 2�.

���1� � 2��1�2 � 4�1��1�
2�1�

�
1 � 23 i

2
�

1

2
�
23

2
i

x2 � x � 1

� �x � 1��x2 � x � 1��x � 2��x � 2�
�x2 � 4�� �x3 � 1��x2 � 4�
x3� x3�x2 � 4� � 1�x2 � 4�

� �x5 � 4x3� � �x2 � 4�
x5 � 4x3 � x2 � 4
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Theorem on Rational 
Zeros of a Polynomial

If the polynomial

has integer coefficients and if is a rational zero of such that c and
d have no common prime factor, then

(1) the numerator c of the zero is a factor of the constant term 

(2) the denominator d of the zero is a factor of the leading coefficient an

a0

f�x�c�d

f�x� � anxn � an�1xn�1 � � � � � a1x � a0

(continued)



number. Thus, suppose . In this case , for if , we ob-
tain , and since c and d have no prime factor in common, this implies
that , a contradiction. Hence, in the following discussion we have

and .
Since ,

We multiply by and then add to both sides:

The last equation shows that c is a factor of the integer . Since c and d have
no common factor, c is a factor of . A similar argument may be used to prove
that d is a factor of . L

As an aid in listing the possible rational zeros, remember the following
quotient:

The theorem on rational zeros of a polynomial may be applied to equations
with rational coefficients by merely multiplying both sides of the equation by
the lcd of all the coefficients to obtain an equation with integral coefficients.

E X A M P L E  3 Showing a polynomial has no rational zeros

Show that has no rational zeros.

S O L U T I O N If has a rational zero such that c and d have no com-
mon prime factor, then, by the theorem on rational zeros of a polynomial, c is
a factor of the constant term and hence is either 2 or (which we write
as ) or . The denominator d is a factor of the leading coefficient 1 and
hence is . Thus, the only possibilities for are

Substituting each of these numbers for x, we obtain

Since and , it follows that has no rational zeros.
L

f �x�f ��2� � 0f ��1� � 0

f �1� � �5, f ��1� � 1, f �2� � �2, and f ��2� � �2.

�1

�1
and  

�2

�1
or, equivalently, �1 and �2.

c�d�1
�1�2

�2�2

c�df �x�

f �x� � x3 � 4x � 2

Possible rational zeros �
factors of the constant term a0

factors of the leading coefficient an

an

a0

a0dn

c�ancn�1 � an�1cn�2d � � � � � a1dn�1� � �a0dn

ancn � an�1cn�1d � � � � � a1cdn�1 � �a0dn

�a0dndn

an

cn

dn
� an�1

cn�1

dn�1
� � � � � a1

c

d
� a0 � 0.

f �c�d� � 0
c � dc � 1

c � d � 1
c � d

c�d � 1c�d � 1c � 1
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E X A M P L E  4 Finding the rational solutions of an equation

Find all rational solutions of the equation

S O L U T I O N The problem is equivalent to finding the rational zeros of the
polynomial on the left-hand side of the equation. If is a rational zero and
c and d have no common factor, then c is a factor of the constant term and
d is a factor of the leading coefficient 3. All possible choices are listed in the
following table.

We can reduce the number of choices by finding upper and lower bounds for
the real solutions; however, we shall not do so here. It is necessary to deter-
mine which of the choices for , if any, are zeros. We see by substitution that
neither 1 nor is a solution. If we divide synthetically by , we obtain

This result shows that is a zero. Moreover, the synthetic division provides
the coefficients of the quotient in the division of the polynomial by .
Hence, we have the following factorization of the given polynomial:

The remaining solutions of the equation must be zeros of the second factor, so
we use that polynomial to check for solutions. Do not use the polynomial in
the original equation. (Note that are no longer candidates, since the nu-
merator must be a factor of 4.) Again proceeding by trial and error, we ulti-
mately find that synthetic division by gives us the following result:

Therefore, is also a zero.
Using the coefficients of the quotient, we know that the remaining zeros

are solutions of the equation . Dividing both sides by 33x2 � 6x � 6 � 0

�
2
3

3 6 �6 0

�2 �4 4

�
2
3 � 3 8 �2 �4

x �
2
3

�
8
3

�x � 2��3x3 � 8x2 � 2x � 4�

x � 2
�2

3 8 �2 �4 0

�6 �16 4 8

�2 � 3 14 14 �8 �8

x � 2�1
c�d

�8
c�d

3x4 � 14x3 � 14x2 � 8x � 8 � 0.
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Choices for the numerator c

Choices for the denominator d

Choices for c�d �1, �2, �4, �8, �1
3 , �

2
3 , �

4
3 , �

8
3

�1, �3

�1, �2, �4, �8

(continued)



gives us the equivalent equation . By the quadratic formula,
this equation has solutions

Hence, the given polynomial has two rational roots, and , and two irra-
tional roots, and . L

E X A M P L E  5 Finding the radius of a grain silo

A grain silo has the shape of a right circular cylinder with a hemisphere at-
tached to the top. If the total height of the structure is 30 feet, find the radius
of the cylinder that results in a total volume of .

S O L U T I O N Let x denote the radius of the cylinder as shown in Figure 1.
The volume of the cylinder is , and the volume of the
hemisphere is , so we solve for x as follows:

total volume is 

multiply by 

simplify

equivalent equation

Since the leading coefficient of the polynomial on the left-hand side of the last
equation is 1, any rational root has the form , where c is a factor of
3024. If we factor 3024 into primes, we find that . It follows
that some of the positive factors of 3024 are

To help us decide which of these numbers to test first, let us make a rough es-
timate of the radius by assuming that the silo has the shape of a right circular
cylinder of height 30 feet. In that case, the volume would be .
Since this volume should be close to , we see that

This suggests that we use 6 in our first synthetic division, as follows:

Thus, 6 is a solution of the equation .
The remaining two solutions of the equation can be found by solving the

depressed equation . These zeros are approximately 
and —neither of which satisfies the conditions of the problem. Hence,
the desired radius is 6 feet. L

89.62
�5.62x2 � 84x � 504 � 0

x3 � 90x2 � 3024 � 0

1 �84 �504 0

6 �504 �3024

6 � 1 �90 0 3024

30r2 � 1008, or r2 � 1008�30 � 33.6.

1008�
�r2h � 30�r2

1, 2, 3, 4, 6, 7, 8, 9, 12, . . . .

3024 � 24 � 33 � 7
c�1 � c

x3 � 90x2 � 3024 � 0

 90x2 � x3 � 3024

3

�
 3x2�30 � x� � 2x3 � 3024

1008��x2�30 � x� �
2
3 �x3 � 1008�

2
3 �r3 �

2
3 �x3

�r2h � �x2�30 � x�

1008� ft3

�1 � 23 
 �2.732�1 � 23 
 0.732
�

2
3�2

�2 � 222 � 4�1���2�
2�1�

�
�2 � 212

2
�

�2 � 223

2
� �1 � 23.

x2 � 2x � 2 � 0

246 C H A P T E R  4  P O L Y N O M I A L  A N D  R A T I O N A L  F U N C T I O N S

Figure 1

30 � x

30

x

x
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Exer. 1–10: A polynomial f (x) with real coefficients and
leading coefficient 1 has the given zero(s) and degree. Ex-
press f (x) as a product of linear and quadratic polynomials
with real coefficients that are irreducible over �.

1 ; degree 2

2 ; degree 2

3 ; degree 3

4 ; degree 3

5 ; degree 4

6 ; degree 4

7 ; degree 4

8 ; degree 4

9 ; degree 5

10 ; degree 5

Exer. 11–14: Show that the equation has no rational root.

11

12

13

14

Exer. 15–24: Find all solutions of the equation.

15

16

17

18

19

20

21

22

23

24 3x3 � x 2 � 11x � 20 � 0

8x3 � 18x 2 � 45x � 27 � 0

6x4 � 5x3 � 17x 2 � 6x � 0

6x5 � 19x4 � x3 � 6x 2 � 0

3x5 � 10x4 � 6x3 � 24x 2 � 11x � 6 � 0

x4 � 3x3 � 30x 2 � 6x � 56 � 0

12x3 � 8x 2 � 3x � 2 � 0

2x3 � 3x 2 � 17x � 30 � 0

x3 � x 2 � 14x � 24 � 0

x3 � x 2 � 10x � 8 � 0

2x 5 � 3x 3 � 7 � 0

x 5 � 3x 3 � 4x 2 � x � 2 � 0

3x3 � 4x 2 � 7x � 5 � 0

x3 � 3x2 � 4x � 6 � 0

0, 3i, 4 � i

0, �2i, 1 � i

3 � 5i, �1 � i

4 � 3i, �2 � i

0, 2, �2 � i

�1, 0, 3 � i

�3, 1 � 7i

2, �2 � 5i

�4 � 3i

3 � 2i

Exer. 25–26: Find a factored form with integer coeffi-
cients of the polynomial f shown in the figure.

25

26

27 Does there exist a polynomial of degree 3 with real coeffi-
cients that has zeros 1, , and i? Justify your answer.

28 The polynomial has the com-
plex number i as a zero; however, the conjugate of i is
not a zero. Why doesn’t this result contradict the theorem on
conjugate pair zeros of a polynomial?

29 If n is an odd positive integer, prove that a polynomial of de-
gree n with real coefficients has at least one real zero.

30 If a polynomial of the form

where each is an integer, has a rational root r, show that
r is an integer and is a factor of .

31 Constructing a box From a rectangular piece of cardboard
having dimensions , an open box is to
be made by removing squares of area from each corner
and turning up the sides. (See Exercise 41 of Section 4.1.)

x2

20 inches � 30 inches

a0

ak

xn � an�1xn�1 � ��� � a1x � a0,

�i
f �x� � x3 � ix 2 � 2ix � 2

�1

x

f (x)

1

3

f �x� � �6x5 � 5x4 � 14x3 � 8x 2 � 8x � 3

x

f (x)

1

4

f �x� � 6x5 � 23x4 � 24x3 � x 2 � 12x � 4

4.4 E x e r c i s e s



(a) Show that there are two boxes that have a volume of
.

(b) Which box has the smaller surface area?

32 Constructing a crate The frame for a shipping crate is to be
constructed from 24 feet of lumber. Assuming the
crate is to have square ends of length x feet, determine the
value(s) of x that result(s) in a volume of . (See Exercise
42 of Section 4.1.)

33 A right triangle has area and a hypotenuse that is
1 foot longer than one of its sides.

(a) If x denotes the length of this side, then show that
.

(b) Show that there is a positive root of the equation in
part (a) and that this root is less than 13.

(c) Find the lengths of the sides of the triangle.

34 Constructing a storage tank A storage tank for propane gas
is to be constructed in the shape of a right circular cylinder of
altitude 10 feet with a hemisphere attached to each end. De-
termine the radius x so that the resulting volume is .
(See Example 8 of Section 3.4.)

35 Constructing a storage shelter A storage shelter is to be
constructed in the shape of a cube with a triangular prism
forming the roof (see the figure). The length x of a side of
the cube is yet to be determined.

(a) If the total height of the structure is 6 feet, show that its
volume V is given by .

(b) Determine x so that the volume is .80 ft3

V � x3 �
1
2 x 2�6 � x�

27� ft3

2x3 � x 2 � 3600 � 0

30 ft2

4 ft3

2 � 2

1000 in3

Exercise 35

36 Designing a tent A canvas camping tent is to be constructed
in the shape of a pyramid with a square base. An 8-foot pole
will form the center support, as illustrated in the figure. Find
the length x of a side of the base so that the total amount of
canvas needed for the sides and bottom is .

Exercise 36

8�

x

384 ft2

6�

x
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4.5
Rational Functions

A function f is a rational function if

where and are polynomials. The domain of f consists of all real num-
bers except the zeros of the denominator .h�x�

h�x�g�x�

f �x� �
g�x�
h�x�

,
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I L L U S T R A T I O N Rational Functions and Their Domains

domain: all x except

domain: all x except 

domain: all real numbers x

Previously we simplified rational expressions as follows:

if

If we let and , then the domain of f is all x except

and the domain of g is all real numbers. These domains and the above
simplification suggest that the graphs of f and g are the same except for .
What happens to the graph of f at ? There is a hole in the graph—that is,
a single point is missing. To find the y-value of the hole, we can substitute 2
for x in the reduced function, which is simply . A graph of f is shown
in Figure 1.

We now turn our attention to rational functions that do not have a com-
mon factor in the numerator and the denominator.

When sketching the graph of a rational function f, it is important to an-
swer the following two questions.

Question 1 What can be said of the function values when x is close
to (but not equal to) a zero of the denominator?

Question 2 What can be said of the function values when x is large
positive or when x is large negative?

As we shall see, if a is a zero of the denominator, one of several situations
often occurs. These are shown in Figure 2, where we have used notations from
the following chart.

f �x�

f �x�

g�2� � 4

x � 2
x � 2

x � 2

g�x� � x � 2f �x� �
x2 � 4

x � 2

x2 � 4

x � 2
�

�x � 2��x � 2�
x � 2

�
x � 2

1
� x � 2

x � 2

f �x� �
x3 � 8

x2 � 4
;

x � � 3f �x� �
5x

x2 � 9
;

x � 2f �x� �
1

x � 2
;

b

Figure 1

y

x

� x � 2
for x � 2

f (x) �
x2 � 4

x � 2

(2, 4)

Notation Terminology

x approaches a from the left (through values less than a).

x approaches a from the right (through values greater than a).

increases without bound (can be made as large positive as desired).

decreases without bound (can be made as large negative as desired).f �x�f �x� l ��

f �x�f �x� l �

x l a�

x l a�



The symbols (read “infinity”) and (read “minus infinity”) do not
represent real numbers; they simply specify certain types of behavior of func-
tions and variables.

The dashed line in Figure 2 is called a vertical asymptote, as in the
following definition.

Thus, the answer to Question 1 is that if a is a zero of the denominator of
a rational function f, then the graph of f may have a vertical asymptote .
There are rational functions where this is not the case (as in Figure 1 of this
section). If the numerator and denominator have no common factor, then f
must have a vertical asymptote .

Let us next consider Question 2. For x large positive or large negative, the
graph of a rational function may look like one of those in Figure 3, where the
notation

is read “ approaches c as x increases without bound” or “ approaches
c as x approaches infinity,” and the notation

is read “ approaches c as x decreases without bound.”f�x�

f�x� l c as x l ��

f�x�f�x�

f�x� l c as x l �

x � a

x � a

x � a

���
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Figure 2

as as as as x l a�f �x� l ��x l a�f �x� l ��x l a�f �x� l �x l a�f �x� l �

Definition of 
Vertical Asymptote

The line is a vertical asymptote for the graph of a function f if

as x approaches a from either the left or the right.

f�x� l � or f�x� l ��

x � a

y

xa

y � f (x)

x � a

x � a x � a

x � a

x

y

a

y � f (x)

x

y

a
y � f (x)

x

y

a

y � f (x)
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We call the dashed line in Figure 3 a horizontal asymptote, as in the next
definition.

Thus, the answer to Question 2 is that may be very close to some
number c when x is large positive or large negative; that is, the graph of f may
have a horizontal asymptote . There are rational functions where this is
not the case (as in Examples 2(c) and 9).

Note that, as in the second and fourth sketches in Figure 3, the graph of f
may cross a horizontal asymptote.

In the next example we find the asymptotes for the graph of a simple ra-
tional function.

E X A M P L E  1 Sketching the graph of a rational function

Sketch the graph of f if

S O L U T I O N Let us begin by considering Question 1, stated at the beginning
of this section. The denominator is zero at . If x is close to 2 and

, then is large positive, as indicated in the following table.f�x�x � 2
x � 2x � 2

f�x� �
1

x � 2
.

y � c

f�x�

Figure 3 as as x l ��f �x� l cx l �f �x� l c

Definition of 
Horizontal Asymptote

The line is a horizontal asymptote for the graph of a function f if

f�x� l c as x l � or as x l ��.

y � c

y

x

 y � c
y � f (x)

x

y

y � f (x)
 y � c

x

y

y � f (x)

 y � c

x

y

y � f (x)

 y � c

x 2.1 2.01 2.001 2.0001 2.00001

10 100 1000 10,000 100,000
1

x � 2

(continued)



Since we can make as large as desired by taking x close to 2
(and ), we see that

If is close to 2 and , then is large negative; for example,
and . Thus,

The line is a vertical asymptote for the graph of f, as illustrated in
Figure 4.

We next consider Question 2. The following table lists some approximate
values for when x is large and positive.

We may describe this behavior of by writing

Similarly, is close to 0 when x is large negative; for example,
. Thus,

The line (the x-axis) is a horizontal asymptote, as shown in Figure 4.
Plotting the points and helps give us a rough sketch of the

graph. L

The function considered in Example 1, , closely re-
sembles one of the simplest rational functions, the reciprocal function. The
reciprocal function has equation , vertical asymptote (the 
y-axis), and horizontal asymptote (the x-axis). The graph of the recip-
rocal function (shown in Appendix I) is the graph of a hyperbola (discussed
later in the text). Note that we can obtain the graph of by shift-
ing the graph of to the right 2 units.

The following theorem is useful for finding the horizontal asymptote for
the graph of a rational function.

y � 1�x
y � 1��x � 2�

y � 0
x � 0f�x� � 1�x

f�x� � 1��x � 2�

�3, 1��1, �1�
y � 0

f�x� l 0 as x l ��.

f��100,000� 
 �0.000 01
f�x�

f�x� l 0 as x l �.

f�x�

f�x�

x � 2

f�x� l �� as x l 2�.

f�1.99999� � �100,000f�1.9999� � �10,000
f�x�x � 2f�x�

f�x� l � as x l 2�.

x � 2
1��x � 2�
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x 100 1000 10,000 100,000 1,000,000

0.01 0.001 0.0001 0.000 01 0.000 001
1

x � 2
 (approx.)

Figure 4

y

x

x � 2
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Proofs for each part of this theorem may be patterned after the solutions
in the next example. Concerning part (3), if is the quotient obtained by di-
viding the numerator by the denominator, then if or

if .

E X A M P L E  2 Finding horizontal asymptotes

Find the horizontal asymptote for the graph of f, if it exists.

(a) (b)

(c)

S O L U T I O N

(a) The degree of the numerator, 1, is less than the degree of the denomina-
tor, 2, so, by part (1) of the theorem on horizontal asymptotes, the x-axis is a
horizontal asymptote. To verify this directly, we divide the numerator and de-
nominator of the quotient by (since 2 is the highest power on x in the de-
nominator), obtaining

If x is large positive or large negative, then , , , and are close
to 0, and hence

Thus,

Since is the y-coordinate of a point on the graph, the last statement means
that the line (that is, the x-axis) is a horizontal asymptote.y � 0

f�x�

f�x� l 0 as x l � or as x l ��.

f�x� 

0 � 0

1 � 0 � 0
�

0

1
� 0.

6�x21�x1�x23�x

f�x� �

3x � 1

x2

x2 � x � 6

x2

�

3

x
�

1

x2

1 �
1

x
�

6

x2

for x � 0.

x2

f�x� �
2x4 � 3x2 � 5

x2 � 1

f�x� �
5x2 � 1

3x2 � 4
f�x� �

3x � 1

x2 � x � 6

q�x� l ��f�x� l ��
q�x� l �f�x� l �

q�x�

Theorem on 
Horizontal Asymptotes Let , where and .

(1) If , then the x-axis (the line ) is the horizontal asymptote
for the graph of f.

(2) If , then the line (the ratio of leading coefficients) is
the horizontal asymptote for the graph of f.

(3) If , the graph of f has no horizontal asymptote. Instead, either
or as or as .x l ��x l �f�x� l ��f�x� l �

n � k

y � an�bkn � k

y � 0n � k

bk � 0an � 0f�x� �
anxn � an�1xn�1 � � � � � a1x � a0

bkxk � bk�1xk�1 � � � � � b1x � b0

(continued)



(b) If , then the numerator and denominator have
the same degree, 2, and the leading coefficients are 5 and 3, respectively.
Hence, by part (2) of the theorem on horizontal asymptotes, the line is
the horizontal asymptote. We could also show that is the horizontal 
asymptote by dividing the numerator and denominator of by , as in
part (a).

(c) The degree of the numerator, 4, is greater than the degree of the denomi-
nator, 2, so, by part (3) of the theorem on horizontal asymptotes, the graph has
no horizontal asymptote. If we use long division, we obtain

As either or , the quotient increases without bound
and . Hence, as or as . L

We next list some guidelines for sketching the graph of a rational func-
tion. Their use will be illustrated in Examples 3, 6, and 7.

In the following examples our main objective is to determine the general
shape of the graph, paying particular attention to how the graph approaches the

x l ��x l �f�x� l �10��x2 � 1� l 0
2x2 � 5x l ��x l �

f�x� � 2x2 � 5 �
10

x2 � 1
.

x2f�x�
y �

5
3

y �
5
3

f�x� � �5x2 � 1���3x2 � 4�
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Guidelines for Sketching the
Graph of a Rational Function Assume that , where and are polynomials that have no

common factor.

1 Find the x-intercepts—that is, the real zeros of the numerator —and
plot the corresponding points on the x-axis.

2 Find the real zeros of the denominator . For each real zero a, sketch
the vertical asymptote with dashes.

3 Find the y-intercept , if it exists, and plot the point on the 
y-axis.

4 Apply the theorem on horizontal asymptotes. If there is a horizontal 
asymptote , sketch it with dashes.

5 If there is a horizontal asymptote , determine whether it intersects
the graph. The x-coordinates of the points of intersection are the solu-
tions of the equation . Plot these points, if they exist.

6 Sketch the graph of f in each of the regions in the xy-plane determined
by the vertical asymptotes in guideline 2. If necessary, use the sign of
specific function values to tell whether the graph is above or below the 
x-axis or the horizontal asymptote. Use guideline 5 to decide whether the
graph approaches the horizontal asymptote from above or below.

f�x� � c

y � c

y � c

�0, f�0��f�0�
x � a

h�x�

g�x�

h�x�g�x�f�x� �
g�x�
h�x�
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asymptotes. We will plot only a few points, such as those corresponding to the
x-intercepts and y-intercept or the intersection of the graph with a horizontal
asymptote.

E X A M P L E  3 Sketching the graph of a rational function

Sketch the graph of f if

S O L U T I O N We follow the guidelines.

Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
ing gives us and we plot the point on the x-axis,
as shown in Figure 5.

Guideline 2 The denominator has zero , so the line is a vertical as-
ymptote. We sketch this line with dashes, as in Figure 5.

Guideline 3 The y-intercept is and we plot the point in
Figure 5.

Guideline 4 The numerator and denominator of have the same degree, 1.
The leading coefficients are 3 and 2, so by part (2) of the theorem on horizon-
tal asymptotes, the line is a horizontal asymptote. We sketch the line
with dashes in Figure 5.

Guideline 5 The x-coordinates of the points where the graph intersects the
horizontal asymptote are solutions of the equation . We solve
this equation as follows:

let

multiply by 

multiply

subtract 6x

Since for any value of x, this result indicates that the graph of f does
not intersect the horizontal asymptote. As an aid in sketching, we can now
think of the horizontal asymptote as a boundary that cannot be crossed.

Guideline 6 The vertical asymptote in Figure 5 divides the xy-plane into two
regions:

the region to the left of 

the region to the right of 

For , we have the two points and that the graph of f must
pass through, as well as the two asymptotes that the graph must approach. This
portion of f is shown in Figure 6.

�0, �
4
5 ���

4
3 , 0�R1

x �
5
2R2:

x �
5
2R1:

8 � �15

 8 � �15

 6x � 8 � 6x � 15

2�2x � 5� 2�3x � 4� � 3�2x � 5�

f �x� �
3

2

3x � 4

2x � 5
�

3

2

f�x� �
3
2y �

3
2

y �
3
2

f�x�

�0, �
4
5 �f�0� � �

4
5 ,

x �
5
2

5
2

��
4
3 , 0�x � �

4
3 ,3x � 4 � 0

f�x� �
3x � 4

2x � 5
.

Figure 5

y

y � w

x
�d

�R

x � e

Figure 6

y

y � w

x

x � e

R1 R2

(continued)



For the graph must again approach the two asymptotes. Since the graph
cannot cross the x-axis (there is no x-intercept in ), it must be above the hori-
zontal asymptote, as shown in Figure 6. L

E X A M P L E  4 Sketching a graph that has a hole

Sketch the graph of g if

S O L U T I O N The domain of g is all real numbers except and 1. If g is re-
duced, we obtain the function f in the previous example. The only difference
between the graphs of f and g is that g has a hole at . Since 
we need only make a hole on the graph in Figure 6 to obtain the graph of g in
Figure 7. L

E X A M P L E  5 Finding an equation of a rational function 
satisfying prescribed conditions

Find an equation of a rational function f that satisfies the following conditions:

x-intercept: 4, vertical asymptote: ,

horizontal asymptote: and a hole at 

S O L U T I O N An x-intercept of 4 implies that must be a factor in the
numerator, and a vertical asymptote of implies that is a factor
in the denominator. So we can start with the form

The horizontal asymptote is We can multiply the numerator by 
and the denominator by 5 to get the form

(Do not write , since that would change the x-intercept
and the vertical asymptote.) Lastly, since there is a hole at , we must
have a factor of in both the numerator and the denominator. Thus, an
equation for f is

L

f�x� �
�3�x � 4��x � 1�
5�x � 2��x � 1�

or, equivalently, f�x� �
�3x2 � 15x � 12

5x2 � 5x � 10
.

x � 1
x � 1

��3x � 4���5x � 2�

�3�x � 4�
5�x � 2�

.

�3y � �
3
5 .

x � 4

x � 2
.

x � 2x � �2
x � 4

x � 1y � �
3
5 ,

x � �2

f�1� � �
7
3 ,x � 1

5
2

g�x� �
�3x � 4��x � 1�
�2x � 5��x � 1�

.

R2

R2,
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Figure 7
y

y � w

x

x � e

(1, �g)



4 . 5  R a t i o n a l F u n c t i o n s 257

E X A M P L E  6 Sketching the graph of a rational function

Sketch the graph of f if

S O L U T I O N It is useful to express both numerator and denominator in fac-
tored form. Thus, we begin by writing

Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
ing gives us , and we plot the point on the x-axis, as
shown in Figure 8.

Guideline 2 The denominator has zeros and 3. Hence, the lines 
and are vertical asymptotes; we sketch them with dashes, as in Figure 8.

Guideline 3 The y-intercept is and we plot the point , shown
in Figure 8.

Guideline 4 The degree of the numerator of is less than the degree of the
denominator, so, by part (1) of the theorem on horizontal asymptotes, the 
x-axis is the horizontal asymptote.

Guideline 5 The points where the graph intersects the horizontal asymptote
(the x-axis) found in guideline 4 correspond to the x-intercepts. We already
plotted the point in guideline 1.

Guideline 6 The vertical asymptotes in Figure 8 divide the xy-plane into three
regions:

the region to the left of 

the region between and 

the region to the right of 

For , we have . There are only two choices for the shape of the
graph of f in : as , the graph approaches the x-axis either from
above or from below. To determine which choice is correct, we will examine
the sign of a typical function value in . Choosing for x, we use the fac-
tored form of to find the sign of (this process is similar to the one
used in Section 2.7):

The negative value of indicates that the graph approaches the hori-
zontal asymptote from below as . Moreover, as , the graphx l �2�x l ��

f ��10�

f ��10� �
���

������
� �

f ��10�f �x�
�10R1

x l ��R1

x � �2R1

x � 3R3:

x � 3x � �2R2:

x � �2R1:

�1, 0�

f �x�

�0, 1
6 �f �0� �

1
6 ,

x � 3
x � �2�2

�1, 0�x � 1x � 1 � 0

f �x� �
x � 1

x2 � x � 6
�

x � 1

�x � 2��x � 3�
.

f �x� �
x � 1

x2 � x � 6
.

Figure 8

y

x
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extends downward; that is, . A sketch of f on is shown in 
Figure 9(a).

In , we have , and the graph crosses the x-axis at .
Since, for example, is positive, it follows that the graph lies above the
x-axis if . Thus, as , the graph extends upward; that is,

. Since can be shown to be negative, the graph lies below the
x-axis if . Hence, as , the graph extends downward; that is,

. A sketch of f on is shown in Figure 9(b).
Finally, in , , and the graph does not cross the x-axis. Since, for ex-

ample, can be shown to be positive, the graph lies above the x-axis. It
follows that as and that the graph approaches the horizontal
asymptote from above as . The graph of f is sketched in Figure 9(c).

L

E X A M P L E  7 Sketching the graph of a rational function

Sketch the graph of f if

S O L U T I O N Factoring the denominator gives us

We again follow the guidelines.

f �x� �
x2

x2 � x � 2
�

x2

�x � 1��x � 2�
.

f �x� �
x2

x2 � x � 2
.

x l �
x l 3�f �x� l �

f �10�
x � 3R3

R2f �x� l ��
x l 3�1 � x � 3

f �2�f �x� l �
x l �2��2 � x � 1

f �0�
x � 1�2 � x � 3R2

R1f �x� l ��
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Figure 9
(a) (b) (c)
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Guideline 1 To find the x-intercepts we find the zeros of the numerator. Solv-
ing gives us , and we plot the point on the x-axis, as shown
in Figure 10.

Guideline 2 The denominator has zeros and 2. Hence, the lines 
and are vertical asymptotes, and we sketch them with dashes, as in 
Figure 10.

Guideline 3 The y-intercept is . This gives us the same point 
found in guideline 1.

Guideline 4 The numerator and denominator of have the same degree,
and the leading coefficients are both 1. Hence, by part (2) of the theorem on
horizontal asymptotes, the line is a horizontal asymptote. We sketch
the line with dashes, as in Figure 10.

Guideline 5 The x-coordinates of the points where the graph intersects the
horizontal asymptote are solutions of the equation . We solve
this equation as follows:

let

multiply by 

subtract and add x

This result indicates that the graph intersects the horizontal asymptote 
only at ; hence, we plot the point shown in Figure 10.

Guideline 6 The vertical asymptotes in Figure 10 divide the xy-plane into
three regions:

the region to the left of 

the region between and 

the region to the right of 

For , let us first consider the portion of the graph that corresponds to
. From the point on the horizontal asymptote, the graph

must extend upward as (it cannot extend downward, since there is
no x-intercept between and ). As , there will be a low
point on the graph between and , and then the graph will approach
the horizontal asymptote from below. It is difficult to see where the low
point occurs in Figure 10 because the function values are very close to one 
another. Using calculus, it can be shown that the low point is .

In , we have , and the graph intersects the x-axis at .
Since the function does not cross the horizontal asymptote in this region, we
know that the graph extends downward as and as , as shown
in Figure 11(a).

x l 2�x l �1�

x � 0�1 � x � 2R2

��4, 8
9�

y � 1
y � 1y � 0

x l ��x � �1x � �2
x l �1�

��2, 1��2 � x � �1
R1

x � 2R3:

x � 2x � �1R2:

x � �1R1:

��2, 1�x � �2
y � 1

x 2x � �2

x2 � x � 2x2 � x2 � x � 2

f �x� � 1
x2

x2 � x � 2
� 1

f �x� � 1y � 1

y �
1
1 � 1

f �x�

�0, 0�f �0� � 0

x � 2
x � �1�1

�0, 0�x � 0x2 � 0
Figure 10

y
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In , the graph approaches the horizontal asymptote (from either
above or below) as . Furthermore, the graph must extend upward as

because there are no x-intercepts in . This implies that as , the
graph approaches the horizontal asymptote from above, as in Figure 11(b).

The graph of f is sketched in Figure 11(c). L

In the remaining solutions we will not formally write down each
guideline.

E X A M P L E  8 Sketching the graph of a rational function

Sketch the graph of f if

S O L U T I O N Note that since , the function is even, and hence
the graph is symmetric with respect to the y-axis.

The graph intersects the x-axis at . Since the denominator of has
no real zero, the graph has no vertical asymptote.

The numerator and denominator of have the same degree. Since the
leading coefficients are 2 and 1, respectively, the line is the hori-
zontal asymptote. The graph does not cross the horizontal asymptote ,
since the equation has no real solution.

Plotting the points and and making use of symmetry leads to
the sketch in Figure 12. L

An oblique asymptote for a graph is a line , with , such
that the graph approaches this line as or as . (If the graph is 
a line, we consider it to be its own asymptote.) If the rational function

x l ��x l �
a � 0y � ax � b

�2, 32
17��1, 1�

f �x� � 2
y � 2

y �
2
1 � 2

f �x�

f �x��0, 0�

f ��x� � f �x�

f �x� �
2x4

x4 � 1
.

x l �R3x l 2�

x l �
y � 1R3
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Figure 11
(a) (b) (c)
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for polynomials and and if the degree of is one
greater than the degree of , then the graph of f has an oblique asymptote.
To find this oblique asymptote we may use long division to express in 
the form

where either or the degree of is less than the degree of . From
part (1) of the theorem on horizontal asymptotes,

Consequently, approaches the line as x increases or decreases
without bound; that is, is an oblique asymptote.

E X A M P L E  9 Finding an oblique asymptote

Find all the asymptotes and sketch the graph of f if

S O L U T I O N A vertical asymptote occurs if (that is, if ).
The degree of the numerator of is greater than the degree of the de-

nominator. Hence, by part (3) of the theorem on horizontal asymptotes, there
is no horizontal asymptote; but since the degree of the numerator, 2, is one
greater than the degree of the denominator, 1, the graph has an oblique
asymptote. By long division we obtain

subtract

subtract

Therefore,

As we indicated in the discussion preceding this example, the line
is an oblique asymptote. This line and the vertical asymptote

are sketched with dashes in Figure 13.
The x-intercepts of the graph are the solutions of and hence

are 3 and . The y-intercept is . The corresponding points are plot-
ted in Figure 13. We may now show that the graph has the shape indicated in 
Figure 14. L

f �0� �
9
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In Example 9, the graph of f approaches the line asymptoti-
cally as or as . Graphs of rational functions may approach dif-
ferent types of curves asymptotically. For example, if

then for large values of , and hence . Thus, the graph of
f approaches the parabola asymptotically as or as . In
general, if and if is the quotient obtained by dividing

by , then the graph of f approaches the graph of asymptoti-
cally as or as .

Graphs of rational functions may become increasingly complicated as the
degrees of the polynomials in the numerator and denominator increase. Tech-
niques developed in calculus are very helpful in achieving a more thorough
treatment of such graphs.

Formulas that represent physical quantities may determine rational func-
tions. For example, consider Ohm’s law in electrical theory, which states that

, where R is the resistance (in ohms) of a conductor, V is the potential
difference (in volts) across the conductor, and I is the current (in amperes) that
flows through the conductor. The resistance of certain alloys approaches zero
as the temperature approaches absolute zero (approximately ), and the
alloy becomes a superconductor of electricity. If the voltage V is fixed, then,
for such a superconductor,

that is, as R approaches 0, the current increases without bound. Superconduc-
tors allow very large currents to be used in generating plants and motors. They
also have applications in experimental high-speed ground transportation,
where the strong magnetic fields produced by superconducting magnets en-
able trains to levitate so that there is essentially no friction between the wheels
and the track. Perhaps the most important use for superconductors is in circuits
for computers, because such circuits produce very little heat.

I �
V

R
l � as R l 0�;

�273°C

I � V�R

x l ��x l �
y � q�x�h�x�g�x�

q�x�f �x� � g�x��h�x�
x l ��x l �y � x2

f �x� 
 x21�x 
 0� x �

f �x� �
x4 � x

x2
� x2 �

1

x
,

x l ��x l �
y �

1
2 x � 1
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Exer. 1–2: (a) Sketch the graph of f. (b) Find the domain D
and range R of f. (c) Find the intervals on which f is in-
creasing or is decreasing.

1 2 f �x� �
1

x 2
f �x� �

4

x

Exer. 3–4: Identify any vertical asymptotes, horizontal
asymptotes, and holes.

3 4 f (x) �
2(x � 4)(x � 2)

5(x � 2)(x � 1)
f (x) �

�2(x � 5)(x � 6)

(x � 3)(x � 6)

4.5 E x e r c i s e s
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Exer. 5–6: All asymptotes, intercepts, and holes of a rational
function f are labeled in the figure. Sketch a graph of f and
find a formula for f.

5 6

Exer. 7–32: Sketch the graph of f.

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28 f �x� �
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29 30

31 32

Exer. 33–36: Find the oblique asymptote, and sketch the
graph of f.

33 34

35 36

Exer. 37–44: Simplify f (x), and sketch the graph of f.

37 38

39 40

41

42

43

44

Exer. 45–48: Find an equation of a rational function f that
satisfies the given conditions.

45 vertical asymptote:
horizontal asymptote:
x-intercept: 3

46 vertical asymptotes:
horizontal asymptote:
x-intercept: 2; 

47 vertical asymptotes:
horizontal asymptote:
x-intercept: ; 
hole at x � 2
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x � 2

f �x� �
x 2 � x � 2

x � 2

f �x� �
x � 2

x 2 � 4
f �x� �

x � 1

1 � x 2

f �x� �
x 2 � x � 6

x 2 � 2x � 3
f �x� �

2x 2 � x � 6

x 2 � 3x � 2

f �x� �
x3 � 1

x 2 � 9
f �x� �

8 � x3

2x 2

f �x� �
2x 2 � x � 3

x � 2
f �x� �

x 2 � x � 6

x � 1

f �x� �
x 2 � 4

x 2 � 1
f �x� �

�3x 2

x 2 � 1

f �x� �
x 2 � 2x � 1

x 3 � 9x
f �x� �

x � 1

x 3 � 4x



48 vertical asymptotes:
horizontal asymptote:
x-intercepts: ; hole at 

49 A container for radioactive waste A cylindrical container
for storing radioactive waste is to be constructed from lead.
This container must be 6 inches thick. The volume of the
outside cylinder shown in the figure is to be .

(a) Express the height h of the inside cylinder as a function
of the inside radius r.

(b) Show that the inside volume is given by

(c) What values of r must be excluded in part (b)?

Exercise 49

50 Drug dosage Young’s rule is a formula that is used to mod-
ify adult drug dosage levels for young children. If a denotes
the adult dosage (in milligrams) and if t is the age of the
child (in years), then the child’s dose y is given by the
equation . Sketch the graph of this equa-
tion for and .

51 Salt concentration Salt water of concentration 0.1 pound
of salt per gallon flows into a large tank that initially con-
tains 50 gallons of pure water.

(a) If the flow rate of salt water into the tank is min,
find the volume of water and the amount of
salt in the tank after t minutes.

A�t�V�t�
5 gal�

a � 100t � 0
y � ta��t � 12�

r

h

6 �

6 �

6 �

V�r� � �r 2� 16

�r � 0.5�2
� 1�.

V�r�

16� ft3

x � 0�2, 1
y � 2

x � �1, x � 3 (b) Find a formula for the salt concentration (in )
after t minutes.

(c) Discuss the variation of as .

52 Amount of rainfall The total number of inches of rain
during a storm of length t hours can be approximated by

where a and b are positive constants that depend on the geo-
graphical locale.

(a) Discuss the variation of as .

(b) The intensity I of the rainfall (in ) is defined by
. If and , sketch the graph of R

and I on the same coordinate plane for .

53 Salmon propagation For a particular salmon population,
the relationship between the number S of spawners and the
number R of offspring that survive to maturity is given by
the formula

(a) Under what conditions is ?

(b) Find the number of spawners that would yield 90% of
the greatest possible number of offspring that survive
to maturity.

(c) Work part (b) with 80% replacing 90%.

(d) Compare the results for S and R (in terms of percentage
increases) from parts (b) and (c).

54 Population density The population density D (in
) in a large city is related to the distance x

(in miles) from the center of the city by

(a) What happens to the density as the distance from the
center of the city changes from 20 miles to 25 miles?

(b) What eventually happens to the density?

(c) In what areas of the city does the population density ex-
ceed ?400 people�mi2

D �
5000x

x2 � 36
.

people�mi2

R � S

R �
4500S

S � 500
.

t � 0
b � 8a � 2I � R�t��t

in.�hr

t l �R�t�

R�t� �
at

t � b
,

R�t�

t l �c�t�

lb�galc�t�
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55 Let be the polynomial

.

(a) Describe the graph of .

(b) Describe the graph of , where is a
polynomial function.

56 Refer to Exercise 55.

(a) Describe the graph of .

(b) Describe the graph of .k�x� � 1�f �x�

y � f �x�

p�x�h�x� � g�x�p�x�

g�x� � f �x��f �x�

�x � 3��x � 2��x � 1��x��x � 1��x � 2��x � 3�

f �x�
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4.6
Variation

In some scientific investigations, the terminology of variation or proportion is
used to describe relationships between variable quantities. In the following
chart, k is a nonzero real number called a constant of variation or a constant
of proportionality.

The variable x in the chart can also represent a power. For example, the
formula states that the area A of a circle varies directly as the square
of the radius r, where is the constant of variation. Similarly, the formula

states that the volume V of a sphere is directly proportional to the
cube of the radius. In this case the constant of proportionality is .

In general, graphs of variables related by direct variation resemble graphs
of power functions of the form (such as or 
for nonnegative x-values, as shown in Figure 1). With direct variation, as one
variable increases, so does the other variable. An example of two quantities
that are directly related is the number of miles run and the number of calories
burned.

y � x2y � 2xy � xn with n � 0

4
3 �

V �
4
3 �r3

�
A � �r2

Terminology General formula Illustration

y varies directly as x, or where C is the
y is directly proportional to x circumference of a circle,

r is the radius, and 

y varies inversely as x, or where I is the
y is inversely proportional to x

current in an electrical
circuit, R is the resistance,
and is the voltagek � 110

I �
110

R
,y �

k

x

k � 2�

C � 2�r,y � kx

57 Grade point average (GPA)

(a) A student has finished 48 credit hours with a GPA of
2.75. How many additional credit hours y at 4.0 will
raise the student’s GPA to some desired value x? (De-
termine y as a function of x.)

(b) Create a table of values for x and y, starting with
and using increments of 0.2.

(c) Graph the function in part (a).

(d) What is the vertical asymptote of the graph in part (c)?

(e) Explain the practical significance of the value .x � 4

x � 2.8



Graphs of variables related by inverse variation resemble graphs of power
functions of the form with (such as or for
positive x-values, as shown in Figure 2). In this case, as one variable increases,
the other variable decreases. An example of two quantities that are inversely
related is the number of inches of rainfall and the number of grass fires.

E X A M P L E  1 Directly proportional variables

Suppose a variable q is directly proportional to a variable z.

(a) If when , determine the constant of proportionality.

(b) Find the value of q when and sketch a graph of this relationship.

S O L U T I O N Since q is directly proportional to z,

where k is a constant of proportionality.

(a) Substituting and gives us

(b) Since , the formula has the specific form

Thus, when ,

Figure 3 illustrates the relationship of the variables q and z—a simple lin-
ear relationship.

L

q �
12
5 � 7 �

84
5 � 16.8.

z � 7

q �
12
5 z.

q � kzk �
12
5

12 � k � 5, or k �
12
5 .

z � 5q � 12

q � kz,

z � 7

z � 5q � 12

y � 1�x2y � 1�2xn � 0y � xn
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Figure 1
As x increases, y increases,
or as x decreases, y decreases

y

x

y � �x

y � x2, x 
 0

1

1

Figure 2
As x increases, y decreases,
or as x decreases, y increases

y

x

y � 
1
x2 , x � 0

y �
�x

1
1

1

Figure 3

q

z

q � Pz

5

12

16.8

7



The following guidelines may be used to solve applied problems that in-
volve variation or proportion.

We shall follow these guidelines in the solution of the next example.

E X A M P L E  2 Pressure and volume as inversely proportional quantities

If the temperature remains constant, the pressure of an enclosed gas is in-
versely proportional to the volume. The pressure of a certain gas within a
spherical balloon of radius 9 inches is . If the radius of the balloon in-
creases to 12 inches, approximate the new pressure of the gas. Sketch a graph
of the relationship between the pressure and the volume.

S O L U T I O N

Guideline 1 If we denote the pressure by P (in ) and the volume by V
(in ), then since P is inversely proportional to V,

for some constant of proportionality k.

Guideline 2 We find the constant of proportionality k in guideline 1. Since the
volume V of a sphere of radius r is , the initial volume of
the balloon is . This leads to the following:

when

solve for k

Guideline 3 Substituting into , we find that the pres-
sure corresponding to any volume V is given by

P �
19,440�

V
.

P � k�Vk � 19,440�

k � 20�972�� � 19,440�

V � 972�P � 20 20 �
k

972�

V �
4
3 � �9�3 � 972� in3

V �
4
3 �r3

P �
k

V

in3

lb�in2

20 lb�in2
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Guidelines for Solving 
Variation Problems

1 Write a general formula that involves the variables and a constant of
variation (or proportion) k.

2 Find the value of k in guideline 1 by using the initial data given in the
statement of the problem.

3 Substitute the value of k found in guideline 2 into the formula of guide-
line 1, obtaining a specific formula that involves the variables.

4 Use the new data to solve the problem.

(continued)



Guideline 4 If the new radius of the balloon is 12 inches, then

Substituting this number for V in the formula obtained in guideline 3 gives us

Thus, the pressure decreases to approximately when the radius in-
creases to 12 inches.

Figure 4 illustrates the relationship of the variables P and V for
Since and we can show that

we could also say that P is inversely proportional
to . Note that this is a graph of a simple rational function.

Figure 4

L

There are other types of variation. If x, y, and z are variables and 
for some real number k, we say that y varies directly as the product of x and z
or y varies jointly as x and z. If , then y varies directly as x and in-
versely as z. As a final illustration, if a variable w varies directly as the prod-
uct of x and the cube of y and inversely as the square of z, then

where k is a constant of proportionality. Graphs of equations for these types of
variation will not be considered in this text.

E X A M P L E  3 Combining several types of variation

A variable w varies directly as the product of u and v and inversely as the
square of s.

(a) If when , , and , find the constant of variation.

(b) Find the value of w when , , and .s � 3v � 4u � 7

s � 2v � 5u � 3w � 20

w � k
xy3

z2
,

y � k�x�z�

y � kxz

V (in3)

8.4375

20

972p 2304p

r (in.)9 12

P �
19,440p

V

P (lb/in2)

r3

(P � V)(r) � 14,580�r3, so
V �

4
3 �r 3,P � 19,440��VV � 0.

8.4 lb�in2

P �
19,440�

2304�
�

135

16
� 8.4375.

V �
4
3 � �12�3 � 2304� in3.
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S O L U T I O N A general formula for w is

where k is a constant of variation.

(a) Substituting , , , and gives us

(b) Since , the specific formula for w is

Thus, when , , and ,

L

In the next example we again follow the guidelines stated in this section.

E X A M P L E  4 Finding the support load of a rectangular beam

The weight that can be safely supported by a beam with a rectangular cross
section varies directly as the product of the width and square of the depth of
the cross section and inversely as the length of the beam. If a 2-inch by 4-inch
beam that is 8 feet long safely supports a load of 500 pounds, what weight can
be safely supported by a 2-inch by 8-inch beam that is 10 feet long? (Assume
that the width is the shorter dimension of the cross section.)

S O L U T I O N

Guideline 1 If the width, depth, length, and weight are denoted by w, d, l, and
W, respectively, then a general formula for W is

where k is a constant of variation.

Guideline 2 To find the value of k in guideline 1, we see from the given data
that

Guideline 3 Substituting into the formula of guideline 1 gives us the
specific formula

Guideline 4 To answer the question, we substitute , , and 
into the formula found in guideline 3, obtaining

L
W � 125 �

2 � 82

10
� 1600 lb.

l � 10d � 8w � 2

W � 125
wd2

l
.

k � 125

500 � k
2�42�

8
, or k � 125.

W � k
wd2

l
,

w �
16

3

7 � 4

32
�

448

27

 16.6.

s � 3v � 4u � 7

w �
16

3

uv

s2
.

k �
16
3

20 � k
3 � 5

22
, or k �

80

15
�

16

3
.

s � 2v � 5u � 3w � 20

w � k
uv

s2
,
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Exer. 1–12: Express the statement as a formula that in-
volves the given variables and a constant of proportion-
ality k, and then determine the value of k from the given
conditions.

1 u is directly proportional to v. If , then .

2 s varies directly as t. If , then .

3 r varies directly as s and inversely as t. If and ,
then .

4 w varies directly as z and inversely as the square root of u.
If and , then .

5 y is directly proportional to the square of x and inversely pro-
portional to the cube of z. If and , then .

6 q is inversely proportional to the sum of x and y. If 
and , then .

7 z is directly proportional to the product of the square of x
and the cube of y. If and , then .

8 r is directly proportional to the product of s and v and in-
versely proportional to the cube of p. If , , and

, then .

9 y is directly proportional to x and inversely proportional to
the square of z. If and , then .

10 y is directly proportional to x and inversely proportional to
the sum of r and s. If , , and , then .

11 y is directly proportional to the square root of x and in-
versely proportional to the cube of z. If and ,
then .

12 y is directly proportional to the square of x and inversely
proportional to the square root of z. If and ,
then .

13 Liquid pressure The pressure P acting at a point in a liquid
is directly proportional to the distance d from the surface of
the liquid to the point.

(a) Express P as a function of d by means of a formula that
involves a constant of proportionality k.

(b) In a certain oil tank, the pressure at a depth of 2 feet is
118 . Find the value of k in part (a).lb�ft2

y � 10
z � 16x � 5

y � 5
z � 2x � 9

y � 2s � 7r � 5x � 3

y � 16z � 3x � 4

r � 40p � 5
v � 3s � 2

z � 16y � �2x � 7

q � 1.4y � 0.7
x � 0.5

y � 25z � 3x � 5

w � 6u � 9z � 2

r � 7
t � 4s � �2

s � 18t � 10

u � 12v � 30

(c) Find the pressure at a depth of 5 feet for the oil tank
in part (b).

(d) Sketch a graph of the relationship between P and d for

14 Hooke’s law Hooke’s law states that the force F required to
stretch a spring x units beyond its natural length is directly
proportional to x.

(a) Express F as a function of x by means of a formula that
involves a constant of proportionality k.

(b) A weight of 4 pounds stretches a certain spring from its
natural length of 10 inches to a length of 10.3 inches.
Find the value of k in part (a).

(c) What weight will stretch the spring in part (b) to a
length of 11.5 inches?

(d) Sketch a graph of the relationship between F and x for

15 Electrical resistance The electrical resistance R of a wire
varies directly as its length l and inversely as the square of
its diameter d.

(a) Express R in terms of l, d, and a constant of variation k.

(b) A wire 100 feet long of diameter 0.01 inch has a resist-
ance of 25 ohms. Find the value of k in part (a).

(c) Sketch a graph of the relationship between R and d for

(d) Find the resistance of a wire made of the same material
that has a diameter of 0.015 inch and is 50 feet long.

16 Intensity of illumination The intensity of illumination I
from a source of light varies inversely as the square of the
distance d from the source.

(a) Express I in terms of d and a constant of variation k.

(b) A searchlight has an intensity of 1,000,000 candle-
power at a distance of 50 feet. Find the value of k in
part (a).

(c) Sketch a graph of the relationship between I and d for

(d) Approximate the intensity of the searchlight in part (b)
at a distance of 1 mile.

d � 0.

l � 100 and d � 0.

x 
 0.

d 
 0.
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17 Period of a pendulum The period P of a simple pendulum—
that is, the time required for one complete oscillation—is 
directly proportional to the square root of its length l.

(a) Express P in terms of l and a constant of propor-
tionality k.

(b) If a pendulum 2 feet long has a period of 1.5 seconds,
find the value of k in part (a).

(c) Find the period of a pendulum 6 feet long.

18 Dimensions of a human limb A circular cylinder is some-
times used in physiology as a simple representation of a
human limb.

(a) Express the volume V of a cylinder in terms of its
length L and the square of its circumference C.

(b) The formula obtained in part (a) can be used to ap-
proximate the volume of a limb from length and cir-
cumference measurements. Suppose the (average)
circumference of a human forearm is 22 centimeters
and the average length is 27 centimeters. Approximate
the volume of the forearm to the nearest .

19 Period of a planet Kepler’s third law states that the period
T of a planet (the time needed to make one complete revo-
lution about the sun) is directly proportional to the power
of its average distance d from the sun.

(a) Express T as a function of d by means of a formula that
involves a constant of proportionality k.

(b) For the planet Earth, days and million
miles. Find the value of k in part (a).

(c) Estimate the period of Venus if its average distance
from the sun is 67 million miles.

20 Range of a projectile It is known from physics that the
range R of a projectile is directly proportional to the square
of its velocity v.

(a) Express R as a function of v by means of a formula that
involves a constant of proportionality k.

(b) A motorcycle daredevil has made a jump of 150 feet. If
the speed coming off the ramp was 70 , find the
value of k in part (a).

(c) If the daredevil can reach a speed of 80 coming
off the ramp and maintain proper balance, estimate the
possible length of the jump.

mi�hr

mi�hr

d � 93T � 365

3
2

cm3

21 Automobile skid marks The speed V at which an automobile
was traveling before the brakes were applied can sometimes
be estimated from the length L of the skid marks. Assume
that V is directly proportional to the square root of L.

(a) Express V as a function of L by means of a formula that
involves a constant of proportionality k.

(b) For a certain automobile on a dry surface, ft
when . Find the value of k in part (a).

(c) Estimate the initial speed of the automobile in part (b)
if the skid marks are 150 feet long.

22 Coulomb’s law Coulomb’s law in electrical theory states
that the force F of attraction between two oppositely
charged particles varies directly as the product of the mag-
nitudes and of the charges and inversely as the square
of the distance d between the particles.

(a) Find a formula for F in terms of , , d, and a
constant of variation k.

(b) What is the effect of reducing the distance between the
particles by a factor of one-fourth?

23 Threshold weight Threshold weight W is defined to be that
weight beyond which risk of death increases significantly.
For middle-aged males, W is directly proportional to the
third power of the height h.

(a) Express W as a function of h by means of a formula that
involves a constant of proportionality k.

(b) For a 6-foot male, W is about 200 pounds. Find the
value of k in part (a).

(c) Estimate, to the nearest pound, the threshold weight for
an individual who is 5 feet 6 inches tall.

24 The ideal gas law The ideal gas law states that the volume V
that a gas occupies is directly proportional to the product 
of the number n of moles of gas and the temperature T
(in K) and is inversely proportional to the pressure P (in
atmospheres).

(a) Express V in terms of n, T, P, and a constant of pro-
portionality k.

(b) What is the effect on the volume if the number of moles
is doubled and both the temperature and the pressure
are reduced by a factor of one-half?

Q2Q1

Q2Q1

mi�hrV � 35
L � 50
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Exer. 1–6: Find all values of x such that and all x
such that , and sketch the graph of f.

1

2

3

4

5

6 f �x� �
1
15 �x 5 � 20x 3 � 64x�

f �x� � x3 � 2x2 � 8x

f �x� � 2x 2 � x3 � x4

f �x� � �
1
4 �x � 2��x � 1�2�x � 3�

f �x� � x6 � 32

f �x� � �x � 2�3

f (x) < 0
f (x) > 0 7 If , use the intermediate value

theorem for polynomial functions to prove that there is a
real number a such that .

8 Prove that the equation has a
solution between 0 and 1.

Exer. 9–10: Find the quotient and remainder if f (x) is di-
vided by p(x).

9

10

11 If , use the remain-
der theorem to find .f ��2�

f �x� � �4x4 � 3x3 � 5x2 � 7x � 10

f �x� � 4x3 � x 2 � 2x � 1; p�x� � x 2

f �x� � 3x5 � 4x3 � x � 5; p�x� � x3 � 2x � 7

x5 � 3x4 � 2x3 � x � 1 � 0

f �a� � 100

f �x� � x 3 � 5x 2 � 7x � 9

25 Poiseuille’s law Poiseuille’s law states that the blood flow
rate F (in ) through a major artery is directly propor-
tional to the product of the fourth power of the radius r of
the artery and the blood pressure P.

(a) Express F in terms of P, r, and a constant of propor-
tionality k.

(b) During heavy exercise, normal blood flow rates some-
times triple. If the radius of a major artery increases 
by 10%, approximately how much harder must the
heart pump?

26 Trout population Suppose 200 trout are caught, tagged, and
released in a lake’s general population. Let T denote the
number of tagged fish that are recaptured when a sample of
n trout are caught at a later date. The validity of the mark-
recapture method for estimating the lake’s total trout popula-
tion is based on the assumption that T is directly proportional
to n. If 10 tagged trout are recovered from a sample of 300,
estimate the total trout population of the lake.

27 Radioactive decay of radon gas When uranium disinte-
grates into lead, one step in the process is the radioactive
decay of radium into radon gas. Radon enters through the
soil into home basements, where it presents a health hazard
if inhaled. In the simplest case of radon detection, a sample
of air with volume V is taken. After equilibrium has been 
established, the radioactive decay D of the radon gas is
counted with efficiency E over time t. The radon concen-
tration C present in the sample of air varies directly as the
product of D and E and inversely as the product of V and t.

L�min
For a fixed radon concentration C and time t, find the
change in the radioactive decay count D if V is doubled and
E is reduced by 20%.

28 Radon concentration Refer to Exercise 27. Find the change
in the radon concentration C if D increases by 30%, t in-
creases by 60%, V decreases by 10%, and E remains constant.

29 Density at a point A thin flat plate is situated in an xy-plane
such that the density d (in ) at the point is in-
versely proportional to the square of the distance from the
origin. What is the effect on the density at P if the x- and 
y-coordinates are each multiplied by ?

30 Temperature at a point A flat metal plate is positioned in an
xy-plane such that the temperature T (in �C) at the point

is inversely proportional to the distance from the ori-
gin. If the temperature at the point is 20�C, find the
temperature at the point .

Exer. 31–34: Examine the expression for the given set of
data points of the form . Find the constant of variation
and a formula that describes how y varies with respect to x.

31 ; , , , ,

32 xy; , , ,
,

33 ; , ,
,

34 ; , ,
, �2.4, 36.91008�
�1.2, 4.61376�

�0.56, 0.46889472���0.11, 0.00355377�y�x3

�3.2, �0.986328125�
�1.6, �3.9453125�
�0.8, �15.78125���0.16, �394.53125�x 2y

�3.2, �1.65625�
�1.6, �3.3125�
�0.8, �6.625��0.4, �13.25���0.2, �26.5�

�9.3, 11.16�

�7.1, 8.52��4.2, 5.04��1.2, 1.44���0.6, 0.72�y�x

(x, y)

Q�24, 7�
P�3, 4�

�x, y�

1
3

P�x, y�lb�ft2
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12 Use the factor theorem to show that is a factor of
.

Exer. 13–14: Use synthetic division to find the quotient and
remainder if f (x) is divided by p(x).

13

14

Exer. 15–16: A polynomial with real coefficients has
the indicated zero(s) and degree and satisfies the given 
condition. Express f (x) as a product of linear and quad-
ratic polynomials with real coefficients that are irreducible
over �.

15

16

17 Find a polynomial of degree 7 with leading coeffi-
cient 1 such that is a zero of multiplicity 2 and 0 is a
zero of multiplicity 5, and sketch the graph of f.

18 Show that 2 is a zero of multiplicity 3 of the polynomial
, and express

as a product of linear factors.

Exer. 19–20: Find the zeros of f (x), and state the multiplic-
ity of each zero.

19

20

Exer. 21–22: (a) Use Descartes’ rule of signs to determine
the number of possible positive, negative, and nonreal com-
plex solutions of the equation. (b) Find the smallest and
largest integers that are upper and lower bounds, respec-
tively, for the real solutions of the equation.

21

22

23 Show that has no real zero.

Exer. 24–26: Find all solutions of the equation.

24

25

26 x4 � 7x 2 � 6 � 0

16x3 � 20x 2 � 8x � 3 � 0

x4 � 9x3 � 31x 2 � 49x � 30 � 0

7x6 � 2x4 � 3x 2 � 10

x5 � 4x3 � 6x 2 � x � 4 � 0

2x4 � 4x3 � 2x 2 � 5x � 7 � 0

f �x� � x6 � 2x4 � x 2

f �x� � �x 2 � 2x � 1�2�x 2 � 2x � 3�

f �x�
f �x� � x5 � 4x4 � 3x3 � 34x 2 � 52x � 24

�3
f �x�

1 � i, 3, 0;    degree 4; f �2� � �1

�3 � 5i, �1;  degree 3; f �1� � 4

f (x)

f �x� � 2x3 � 5x 2 � 2x � 1;  p�x� � x � 22

f �x� � 6x5 � 4x 2 � 8;       p�x� � x � 2

f �x� � 2x4 � 5x3 � 4x 2 � 9
x � 3 Exer. 27–28: Find an equation for the sixth-degree polyno-

mial f shown in the figure.

27 28

29 Identify any vertical asymptotes, horizontal asymptotes,

intercepts, and holes for 

Exer. 30–39: Sketch the graph of f.

30

31 32

33

34 35

36 37

38 39

40 Find an equation of a rational function f that satisfies the
given conditions.

vertical asymptote:

horizontal asymptote:

x-intercept: 5

hole at 

41 Suppose y is directly proportional to the cube root of x and
inversely proportional to the square of z. Find the constant
of proportionality if when and .

42 Suppose y is inversely proportional to the square of x.
Sketch a graph of this relationship for , given that

when . Include a point for .x � 12x � 4y � 18
x � 0

z � 3x � 8y � 6

x � 2

y �
3
2

x � �3

f �x� �
x 4 � 16

x3
f �x� �

x 2 � 2x � 8

x � 3

f �x� �
�2x2 � 8x � 6

x 2 � 6x � 8
f �x� �

3x 2 � x � 10

x 2 � 2x

f �x� �
x 2 � 2x � 1

x 3 � x 2 � x � 1
f �x� �

x 3 � 2x 2 � 8x

�x 2 � 2x

f �x� �
x

�x � 5��x2 � 5x � 4�

f �x� �
3x2

16 � x 2
f �x� �

1

�x � 1�3

f �x� �
�2

�x � 1�2

f (x) �
4(x � 2)(x � 1)

3(x � 2)(x � 5)
.

(1, 4)

y

x

y

x

20

10

�8

7�7



43 Deflection of a beam A horizontal beam l feet long is sup-
ported at one end and unsupported at the other end (see the
figure). If the beam is subjected to a uniform load and 
if y denotes the deflection of the beam at a position x feet
from the supported end, then it can be shown that

,

where c is a positive constant that depends on the weight of
the load and the physical properties of the beam.

(a) If the beam is 10 feet long and the deflection at the un-
supported end of the beam is 2 feet, find c.

(b) Show that the deflection is 1 foot somewhere between
and .

Exercise 43

44 Elastic cylinder A rectangle made of elastic material is to
be made into a cylinder by joining edge AD to edge BC, as
shown in the figure. A wire of fixed length l is placed along
the diagonal of the rectangle to support the structure. Let x
denote the height of the cylinder.

(a) Express the volume V of the cylinder in terms of x.

(b) For what positive values of x is ?

Exercise 44

45 Determining temperatures A meteorologist determines
that the temperature T (in °F) for a certain 24-hour period in
winter was given by the formula 
for , where t is time in hours and corre-
sponds to 6 A.M. At what time(s) was the temperature 32°F?

t � 00 � t � 24
T �

1
20 t�t � 12��t � 24�

A

D

B

C

A

D

l

V � 0

l
x

y

x � 6.2x � 6.1

cx 2�x 2 � 4lx � 6l 2�y �

46 Deer propagation A herd of 100 deer is introduced onto a
small island. Assuming the number of deer after t years
is given by (for ), deter-
mine when the herd size exceeds 180.

47 Threshold response curve In biochemistry, the general
threshold response curve is the graph of an equation

where R is the chemical response when the level of the sub-
stance being acted on is S and a, k, and n are positive con-
stants. An example is the removal rate R of alcohol from 
the bloodstream by the liver when the blood alcohol con-
centration is S.

(a) Find an equation of the horizontal asymptote for the
graph.

(b) In the case of alcohol removal, and a typical
value of k is 0.22 gram per liter per minute. What is the
interpretation of k in this setting?

48 Oil spill clean-up The cost of cleaning up x percent
of an oil spill that has washed ashore increases greatly as x
approaches 100. Suppose that

(a) Compare to .

(b) Sketch the graph of C for .

49 Telephone calls In a certain county, the average number 
of telephone calls per day between any two cities is directly
proportional to the product of their populations and in-
versely proportional to the square of the distance between
them. Cities A and B are 25 miles apart and have popu-
lations of 10,000 and 5000, respectively. Telephone rec-
ords indicate an average of 2000 calls per day between the
two cities. Estimate the average number of calls per day 
between city A and another city of 15,000 people that is 
100 miles from A.

50 Power of a wind rotor The power P generated by a wind
rotor is directly proportional to the product of the square of
the area A swept out by the blades and the third power of the
wind velocity v. Suppose the diameter of the circular area
swept out by the blades is 10 feet, and watts
when . Find the power generated when the
wind velocity is 30 .mi�hr

mi�hrv � 20
P � 3000

0 � x � 100

C�90�C�100�

C�x� �
0.3x

101 � x
�million dollars�.

C�x�

n � 1

R �
kSn

Sn � an
,

t � 0N�t� � �t 4 � 21t 2 � 100
N�t�
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1 Compare the domain, range, number of x-intercepts, and
general shape of even-degreed polynomials and odd-
degreed polynomials.

2 When using synthetic division, could you use a complex
number c rather than a real number in ?

3 Discuss how synthetic division can be used to help find the
quotient and remainder when is di-
vided by . Discuss how synthetic division can be
used with any linear factor of the form .

4 Draw (by hand) a graph of a polynomial function of degree
3 that has x-intercepts 1, 2, and 3, has a y-intercept of 6, and
passes through the point . Can you actually have
the graph you just drew?

5 How many different points do you need to specify a poly-
nomial of degree n?

6 Prove the theorem on conjugate pair zeros of a polynomial.
(Hint: For an arbitrary polynomial f, examine the conju-
gates of both sides of the equation .)

7 Give an example of a rational function that has a common
factor in the numerator and denominator, but does not have
a hole in its graph. Discuss, in general, how this can happen.

8 (a) Can the graph of (where 

) cross its horizontal asymptote? If yes, then
where?

(b) Can the graph of (assume there

are no like factors) cross its horizontal asymptote? If
yes, then where?

9 Gambling survival formula An empirical formula for the
bankroll B (in dollars) that is needed to survive a gambling
session with confidence C (a percent expressed as a deci-
mal) is given by the formula

where G is the number of games played in the session, W is
the wager per game, and E is the player’s edge on the game
(expressed as a decimal).

B �
GW

29.3 � 53.1E � 22.7C
,

f �x� �
ax 2 � bx � c

dx 2 � ex � f

cx � d

ax � b �f �x� �
ax � b

cx � d

f �z� � 0

��1, 25�

ax � b
2x � 3

4x 3 � 8x 2 � 11x � 9

x � c

(a) Approximate the bankroll needed for a player who
plays 500 games per hour for 3 hours at $5 per game
with a edge, provided the player wants a 95%
chance of surviving the 3-hour session.

(b) Discuss the validity of the formula; a table and graph
may help.

10 Multiply three consecutive integers together and then add
the second integer to that product. Use synthetic division to
help prove that the sum is the cube of an integer, and deter-
mine which integer.

11 Personal tax rate Assume the total amount of state tax paid
consists of an amount P for personal property and S percent
of income I.

(a) Find a function that calculates an individual’s state tax
rate R—that is, the percentage of the individual’s in-
come that is paid in taxes. (It is helpful to consider spe-
cific values to create the function.)

(b) What happens to R as I gets very large?

(c) Discuss the statement “Rich people pay a lower per-
centage of their income in state taxes than any other
group.”

12 NFL passer rating The National Football League ranks its
passers by assigning a passer rating R based on the numbers
of completions C, attempts A, yards Y, touchdowns T, and
interceptions I. In a normal situation, it can be shown that
the passer rating can be calculated using the formula

(a) In 1994, Steve Young completed 324 of 461 passes for
3969 yards and had 35 touchdown passes as well as 
10 interceptions. Calculate his record-setting rating.

(b) How many more yards would he have needed to obtain
a passer rating of at least 113?

(c) If he could make one more touchdown pass, how long
would it have to be for him to obtain a passer rating of
at least 114?

R �
25(A � 40C � 2Y � 160T � 200I)

12A
.

�5%
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Exponential and logarithmic functions are transcendental functions, since

they cannot be defined in terms of only addition, subtraction, multiplica-

tion, division, and rational powers of a variable x, as is the case for the al-

gebraic functions considered in previous chapters. Such functions are of

major importance in mathematics and have applications in almost every

field of human endeavor. They are especially useful in the fields of chem-

istry, biology, physics, and engineering, where they help describe the man-

ner in which quantities in nature grow or decay. As we shall see in this

chapter, there is a close relationship between specific exponential and loga-

rithmic functions—they are inverse functions of each other.

5.1 Inverse Functions

5.2 Exponential Functions

5.3 The Natural

Exponential Function

5.4 Logarithmic Functions

5.5 Properties of

Logarithms

5.6 Exponential and

Logarithmic Equations

5.1 Inverse Functions

5.2 Exponential Functions

5.3 The Natural

Exponential Function

5.4 Logarithmic Functions

5.5 Properties of

Logarithms

5.6 Exponential and

Logarithmic Equations

5
Inverse, Exponential,

and Logarithmic

Functions



A function f may have the same value for different numbers in its domain. For
example, if , then and , but . For the in-
verse of a function to be defined, it is essential that different numbers in the
domain always give different values of f. Such functions are called one-to-one
functions.

The arrow diagram in Figure 1 illustrates a one-to-one function. Note that
each function value in the range R corresponds to exactly one element in the
domain D. The function illustrated in Figure 2 of Section 3.4 is not one-to-one,
since , but .

E X A M P L E  1 Determining whether a function is one-to-one

(a) If , prove that f is one-to-one.

(b) If , prove that g is not one-to-one.

S O L U T I O N

(a) We shall use condition 2 of the preceding definition. Thus, suppose that
for some numbers a and b in the domain of f. This gives us the 

following:

definition of 

subtract 2

divide by 3

Since we have concluded that a must equal b, f is one-to-one.

(b) Showing that a function is one-to-one requires a general proof, as in 
part (a). To show that g is not one-to-one we need only find two distinct real
numbers in the domain that produce the same function value. For example,

, but . In fact, since g is an even function,
for every real number a. L

If we know the graph of a function f, it is easy to determine whether f is
one-to-one. For example, the function whose graph is sketched in Figure 2 is
not one-to-one, since , but . Note that the horizontal line

intersects the graph in more than one point. In general,
we may use the following graphical test to determine whether a function is
one-to-one.

�or y � f�b��y � f�a�
f�a� � f�b�a � b

g��a� � g�a�g��1� � g�1��1 � 1

a � b

 3a � 3b

f�x� 3a � 2 � 3b � 2

f�a� � f�b�

g�x� � x2 � 3

f�x� � 3x � 2

w � zf�w� � f�z�

2 � �2f��2� � 4f�2� � 4f�x� � x2

278 C H A P T E R  5  I N V E R S E ,  E X P O N E N T I A L ,  A N D  L O G A R I T H M I C  F U N C T I O N S

5.1
Inverse Functions

Definition of 
One-to-One Function

A function f with domain D and range R is a one-to-one function if either
of the following equivalent conditions is satisfied:

(1) Whenever in D, then in R.

(2) Whenever in R, then in D.a � bf�a� � f�b�
f�a� � f�b�a � b

Figure 1

D

R

a

c

x

b
f (a)

f (b)f (c)

f (x)

Figure 2

y � f (a)

y � f (x)

f (a) f (b)

a b

y

x



Let’s apply the horizontal line test to the functions in Example 1.

E X A M P L E  2 Using the horizontal line test

Use the horizontal line test to determine if the function is one-to-one.

(a)

(b)

S O L U T I O N

(a) The graph of is a line with y-intercept 2 and slope 3, as
shown in Figure 3. We see that any horizontal line intersects the graph of f in
at most one point. Thus, f is one-to-one.

Figure 3 Figure 4

(b) The graph of is a parabola opening upward with vertex
, as shown in Figure 4. In this case, any horizontal line with equation

, where , will intersect the graph of g in two points. Thus, g is
not one-to-one. L

We may surmise from Example 2 that every increasing function or de-
creasing function passes the horizontal line test. Hence, we obtain the follow-
ing result.

Let f be a one-to-one function with domain D and range R. Thus, for each
number y in R, there is exactly one number x in D such that , as y � f �x�

k � �3y � k
�0, �3�

g�x� � x2 � 3

y

x

g(x) � x2 � 3

(0, �3)

y

x
f (x) � 3x � 2

f �x� � 3x � 2

g�x� � x2 � 3

f �x� � 3x � 2
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Horizontal Line Test A function f is one-to-one if and only if every horizontal line intersects the
graph of f in at most one point.

Theorem: Increasing or
Decreasing Functions 

Are One-to-One

(1) A function that is increasing throughout its domain is one-to-one.

(2) A function that is decreasing throughout its domain is one-to-one.



illustrated by the arrow in Figure 5(a). We may, therefore, define a function g
from R to D by means of the following rule:

As in Figure 5(b), g reverses the correspondence given by f. We call g the in-
verse function of f, as in the next definition.

Figure 5
(a) (b)

Remember that for the inverse of a function f to be defined, it is ab-
solutely essential that f be one-to-one. The following theorem, stated without
proof, is useful to verify that a function g is the inverse of f.

Conditions 1 and 2 of the preceding theorem are illustrated in Figure 6(a)
and (b), respectively, where the blue arrow indicates that f is a function from
D to R and the red arrow indicates that g is a function from R to D.

Figure 6
(a) First f, then g (b) First g, then f

Note that in Figure 6(a) we first apply f to the number x in D, obtaining
the function value in R, and then apply g to , obtaining the number

in D. Condition 1 of the theorem states that for every x;
that is, g reverses the correspondence given by f.

In Figure 6(b) we use the opposite order for the functions. We first apply
g to the number y in R, obtaining the function value in D, and then applyg� y�

g� f�x�� � xg� f�x��
f�x�f�x�

y

f (g(y))

f

g

g(y)

RD

x

g( f (x)) g

f

f (x)

RD

D
R

y

g

x � g(y)

D
R

x

f

y � f (x)

x � g� y�y � f �x�

x � g� y�
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Definition of Inverse Function Let f be a one-to-one function with domain D and range R. A function g
with domain R and range D is the inverse function of f, provided the fol-
lowing condition is true for every x in D and every y in R:

y � f�x� if and only if x � g� y�

Theorem on Inverse Functions Let f be a one-to-one function with domain D and range R. If g is a func-
tion with domain R and range D, then g is the inverse function of f if and
only if both of the following conditions are true:

(1)

(2) f�g� y�� � y for every y in R

g� f�x�� � x for every x in D



f to , obtaining the number in R. Condition 2 of the theorem states
that for every y; that is, f reverses the correspondence given by g.

If a function f has an inverse function g, we often denote g by . The 
used in this notation should not be mistaken for an exponent; that is,

The reciprocal may be denoted by . It is important to re-
member the following facts about the domain and range of f and .

When we discuss functions, we often let x denote an arbitrary number in
the domain. Thus, for the inverse function , we may wish to consider ,
where x is in the domain R of . In this event, the two conditions in the theo-
rem on inverse functions are written as follows:

(1)
(2)

Figure 6 contains a hint for finding the inverse of a one-to-one function in
certain cases: If possible, we solve the equation for x in terms of y,
obtaining an equation of the form . If the two conditions 
and are true for every x in the domains of f and g, respectively,
then g is the required inverse function . The following guidelines summa-
rize this procedure; in guideline 2, in anticipation of finding , we write

instead of .

The success of this method depends on the nature of the equation ,
since we must be able to solve for x in terms of y. For this reason, we include
the phrase in simple cases in the title of the guidelines. We shall follow these
guidelines in the next four examples.

E X A M P L E  3 Finding the inverse of a function

Let . Find the inverse function of f.

S O L U T I O N

Guideline 1 The graph of the linear function f is a line of slope 3, and hence
f is increasing throughout . Thus, f is one-to-one and the inverse function 

exists. Moreover, since the domain and range of f are , the same is true 
for .f �1

�f �1

�

f�x� � 3x � 5

y � f�x�

x � g� y�x � f �1� y�
f �1

f �1

f�g�x�� � x
g� f�x�� � xx � g� y�

y � f�x�

f� f �1�x�� � x for every x in the domain of f �1

f �1� f�x�� � x for every x in the domain of f

f �1

f �1�x�f �1

f �1

� f� y�	�11�� f � y�	
f �1� y� does not mean 1�� f � y�	.

�1f �1

f�g� y�� � y
f�g� y��g� y�
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Domain and Range of and f�1f

 range of f �1 � domain of f

 domain of f �1 � range of f

Guidelines for Finding 
in Simple Casesf�1

1 Verify that f is a one-to-one function throughout its domain.

2 Solve the equation for x in terms of y, obtaining an equation of
the form .

3 Verify the following two conditions:

(a) for every x in the domain of f

(b) for every x in the domain of f �1f� f �1�x�� � x

f �1� f�x�� � x

x � f �1� y�
y � f�x�



Guideline 2 Solve the equation for x:

let

solve for x in terms of y

We now formally let ; that is,

Since the symbol used for the variable is immaterial, we may also write

where x is in the domain of .

Guideline 3 Since the domain and range of both f and are , we must ver-
ify conditions (a) and (b) for every real number x. We proceed as follows:

(a) definition of f

definition of 

simplify

(b) definition of 

definition of f

simplify

These verifications prove that the inverse function of f is given by

L

E X A M P L E  4 Finding the inverse of a function

Let . Find the inverse function of f.

S O L U T I O N

Guideline 1 A graph of the rational function f is shown in Figure 7 (refer to
Example 3 of Section 4.5). It is decreasing throughout its domain,

. Thus, f is one-to-one and the inverse function exists.
We also know that the aforementioned domain is the range of and that the 

range of f, , is the domain of .

Guideline 2 Solve the equation for x.

let

multiply by 

multiply

put all x-terms on one side

factor out x

divide by 2y � 3x �
5y � 4

2y � 3

x �2y � 3� � 5y � 4

2xy � 3x � 5y � 4

2xy � 5y � 3x � 4

2x � 5y�2x � 5� � 3x � 4

y � f �x�y �
3x � 4

2x � 5

y � f �x�

f �1���, 3
2� 
 �3

2, ��
f �1

f �1���, 5
2� 
 �5

2, ��

f (x) �
3x � 4

2x � 5

f �1�x� �
x � 5

3
.

� x

� 3�x � 5

3 � � 5

f �1f � f �1�x�� � f�x � 5

3 �
� x

f �1�
�3x � 5� � 5

3

f �1� f �x�� � f �1�3x � 5�

�f �1

f �1

f �1�x� �
x � 5

3
,

f �1� y� �
y � 5

3
.

x � f �1� y�

x �
y � 5

3

y � f �x�y � 3x � 5

y � f �x�
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Figure 7

y

y � w

x

x � e



Thus,

, or, equivalently, .

Guideline 3 We verify conditions (a) and (b) for x in the domains of f and ,
respectively.

Thus, the inverse function is given by

L

E X A M P L E  5 Finding the inverse of a function

Let for . Find the inverse function of f.

S O L U T I O N

Guideline 1 The graph of f is sketched in Figure 8. The domain of f is ,
and the range is . Since f is increasing, it is one-to-one and hence has
an inverse function with domain and range .

Guideline 2 We consider the equation

and solve for x, obtaining

Since x is nonnegative, we reject and let

(Note that if the function f had domain , we would choose the function
.)

Guideline 3 We verify conditions (a) and (b) for x in the domains of f and ,
respectively.

(a)

(b)

� �2x � 3 �2
� 3 � �x � 3� � 3 � x for x 
 �3

f � f �1�x�� � f �2x � 3 �
� 2�x2 � 3� � 3 � 2x2 � x for x 
 0

f �1� f �x�� � f �1�x2 � 3�

f �1

f �1�x� � �2x � 3
x � 0

f �1� y� � 2y � 3 or, equivalently, f �1�x� � 2x � 3 .

x � �2y � 3

x � �2y � 3 .

y � x2 � 3

�0, ����3, ��f �1

��3, ��
�0, ��

x 
 0f �x� � x2 � 3

f �1�x� �
5x � 4

2x � 3
.

f �1

f �1�x� �
5x � 4

2x � 3
f �1�y� �

5y � 4

2y � 3
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(a)

(b)

�
15x � 12 � 8x � 12

10x � 8 � 10x � 15
�

23x

23
� x

f � f �1�x�� � f �5x � 4

2x � 3� �

3�5x � 4

2x � 3� � 4

2�5x � 4

2x � 3� � 5

�

3�5x � 4� � 4�2x � 3�
2x � 3

2�5x � 4� � 5�2x � 3�
2x � 3

�
15x � 20 � 8x � 20

6x � 8 � 6x � 15
�

23x

23
� x

f �1� f �x�� � f �1�3x � 4

2x � 5� �

5�3x � 4

2x � 5� � 4

2�3x � 4

2x � 5� � 3

�

5�3x � 4� � 4�2x � 5�
2x � 5

2�3x � 4� � 3�2x � 5�
2x � 5

Figure 8

y

x

y � x2 � 3, x � 0

For a specific example of
guideline 3, if , then x � 3

andf �3� �
13
1 � 13

. Thus,

and .
Suggestion: After finding an
inverse function , pick an
arbitrary number in the do-
main of f (such as 3 above),
and verify conditions (a) 
and (b) in guideline 3. It is
highly likely that if these
conditions “check,” then the
correct inverse has been
found.

f �1

f � f �1�13�� � f �3� � 13
f �1� f �3�� � f �1�13� � 3
f �1�13� �

69
23 � 3



Thus, the inverse function is given by

L

There is an interesting relationship between the graph of a function f and
the graph of its inverse function . We first note that is equivalent
to . These equations imply that the point is on the graph of f
if and only if the point is on the graph of .

As an illustration, in Example 5 we found that the functions f and
given by

are inverse functions of each other, provided that x is suitably restricted. Some
points on the graph of f are , , , and . Corresponding
points on the graph of are , , , and . The graphs
of f and are sketched on the same coordinate plane in Figure 9. If the page
is folded along the line that bisects quadrants I and III (as indicated by
the dashes in the figure), then the graphs of f and coincide. The two graphs
are reflections of each other through the line , or are symmetric with re-
spect to this line. This is typical of the graph of every function f that has an
inverse function (see Exercise 50).

E X A M P L E  6 The relationship between the graphs of and 

Let . Find the inverse function of f, and sketch the graphs of f
and on the same coordinate plane.

S O L U T I O N The graph of f is sketched in Figure 10. Note that f is an odd
function, and hence the graph is symmetric with respect to the origin.

Guideline 1 Since f is increasing throughout its domain , it is one-to-one
and hence has an inverse function .

Guideline 2 We consider the equation

and solve for x by taking the cube root of each side, obtaining

We now let

Guideline 3 We verify conditions (a) and (b):

(a)

(b)

The graph of that is, the graph of the equation may be ob-
tained by reflecting the graph in Figure 10 through the line , as shown in 
Figure 11. Three points on the graph of are , , and .�8, 2��1, 1��0, 0�f �1

y � x
y � 23 x ��f �1

f � f �1�x�� � f �23 x � � �23 x �3
� x for every x in �

f �1� f �x�� � f �1�x3� � 23 x3 � x for every x in �

f �1� y� � 23 y or, equivalently, f �1�x� � 23 x .

x � y1/3 � 23 y .

y � x3

f �1

�

f �1

f �1f �x� � x3

f �1f

f �1

y � x
f �1

y � x
f �1

�6, 3��1, 2���2, 1���3, 0�f �1

�3, 6��2, 1��1, �2��0, �3�

f �x� � x2 � 3 and f �1�x� � 2x � 3

f �1

f �1�b, a�
�a, b�a � f �1�b�

b � f �a�f �1

f �1�x� � 2x � 3 for x 
 �3.
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Figure 9
y

x

l

y � f (x)

y � f �1(x)

Figure 10
y

x

(2, 8)

(1, 1)

y � x3

Figure 11
y

x

(2, 8)

y � x3

y � �x�3

(8, 2)

y � x

Note that the graphs of f and
intersect on the line y � x.f �1

L
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Exer. 1–2: If possible, find (a) and (b) .

1 2

Exer. 3–4: Determine if the graph is a graph of a one-to-one
function.

3 (a) (b) (c)

4 (a) (b) (c)

Exer. 5–16: Determine whether the function f is one-to-one.

5 6

7 8

9 10

11 12

13 14

15 16 f �x� �
1

x2
f �x� �

1

x

f �x� � 2x 3 � 4f �x� � 24 � x2

f �x� � 3f �x� � � x �

f �x� � 23 xf �x� � 2x

f �x� � x 2 � 4f �x� � x 2 � 9

f �x� �
1

x � 2
f �x� � 3x � 7

y

x

y

x

y

x

y

x

y

x

y

x

g�1(6)f �1(5) Exer. 17–20: Use the theorem on inverse functions to prove
that f and g are inverse functions of each other, and sketch
the graphs of f and g on the same coordinate plane.

17 ;

18 , ; ,

19 , ; ,

20 ;

Exer. 21–24: Determine the domain and range of for the
given function without actually finding . Hint: First find
the domain and range of f.

21 22

23 24

Exer. 25–42: Find the inverse function of f.

25 26

27 28

29 30

31 , 32 ,

33 34

35

36 ,

37 38

39 40

41

42 f �x� � x 2 � 4x � 3, x � 2

f �x� � x 2 � 6x, x 
 3

f �x� � �xf �x� � x

f �x� � �x3 � 1�5f �x� � 23 x � 1

0 � x � 2f �x� � 24 � x2

f �x� � 23 � x

f �x� � �x3 � 2f �x� � 2x3 � 5

x 
 0f �x� � 5x 2 � 2x � 0f �x� � 2 � 3x 2

f �x� �
4x

x � 2
f �x� �

3x � 2

2x � 5

f �x� �
1

x � 3
f �x� �

1

3x � 2

f �x� � 7 � 2xf �x� � 3x � 5

f �x� �
2x � 7

9x � 1
f �x� �

4x � 5

3x � 8

f �x� �
5

x � 3
f �x� � �

2

x � 1

f �1

f �1

g�x� � 23 x � 4f �x� � x 3 � 4

x � 3g�x� � 23 � xx 
 0f �x� � �x 2 � 3

x 
 5g�x� � �2x � 5x � 0f �x� � x 2 � 5

g�x� �
x � 2

3
f �x� � 3x � 2

5.1 E x e r c i s e s

x 2 4 6

f (x) 3 5 9

x 1 3 5

g(x) 6 2 6

t 0 3 5

f (t) 2 5 6

t 1 2 4

g(t) 3 6 6



Exer. 43–44: Let . Use h, the table, and the
graph to evaluate the expression.

43 (a) (b)

(c)

44 (a) (b)

(c)

Exer. 45–48: The graph of a one-to-one function f is
shown. (a) Use the reflection property to sketch the graph
of . (b) Find the domain D and range R of the function
f. (c) Find the domain and range of the inverse func-
tion .

45 y

x

��1, q�

(2, 4)

y � x

f �1

R1D1

f �1

�h�1 � g�1 � f ��6�

� f �1 � g�1��3��g � f �1���1�

�h�1 � f � g�1��3�

�g�1 � h��3��g�1 � f �1��2�

(�1, 1)
(2, 3)

(3, 5)

g(x)

x

h(x) � 4 � x 46

47

48

49 (a) Prove that the function defined by (a
linear function) for has an inverse function, and
find .

(b) Does a constant function have an inverse? Explain.

f �1�x�
a � 0

f �x� � ax � b

y

x

y � x

(0, 1)

(3, �1)

y

x

y � x

(3, 2)

(�3, �2)

y

x

(10, 9)

y � x

(1, 0)
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x 2 3 4 5 6

f (x) 0 1 2 3�1
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50 Show that the graph of is the reflection of the graph 
of f through the line by verifying the following
conditions:

(1) If is on the graph of f, then is on the
graph of .

(2) The midpoint of line segment PQ is on the line .

(3) The line PQ is perpendicular to the line .

51 Verify that if

(a) (b) for

(c) has the following graph:

52 Let n be any positive integer. Find the inverse function of f if

(a) for

(b) for and m any positive integerx 
 0f �x� � xm/n

x 
 0f �x� � xn

y

x

y � f (x)

f �x�

c � 0f �x� �
ax � b

cx � a
f �x� � �x � b

f �x� � f �1�x�

y � x

y � x

f �1

Q�b, a�P�a, b�

y � x
f �1 53 Ventilation requirements Ventilation is an effective way to

improve indoor air quality. In nonsmoking restaurants, air
circulation requirements (in ) are given by the func-
tion , where x is the number of people in the
dining area.

(a) Determine the ventilation requirements for 23 people.

(b) Find . Explain the significance of .

(c) Use to determine the maximum number of people
that should be in a restaurant having a ventilation capa-
bility of 2350 .

54 Radio stations The table lists the total numbers of radio
stations in the United States for certain years.

(a) Determine a linear function that mod-
els these data, where x is the year. 

(b) Find . Explain the significance of .

(c) Use to predict the year in which there were 
11,987 radio stations. Compare it with the true value,
which is 1995.

f �1

f �1f �1�x�

f �x� � ax � b

ft3�min

V�1

V�1V�1�x�

V�x� � 35x
ft3�min

Previously, we considered functions having terms of the form

such as , and . We now turn our attention to functions having
terms of the form

such as , and . Let us begin by considering the function f de-
fined by

f �x� � 2x,

3�x2x, �1.04�4x

constant basevariable power,

8x2/3x2, 0.2x1.3

variable baseconstant power,
5.2

Exponential Functions

Year Number

1950 2773

1960 4133

1970 6760

1980 8566

1990 10,770

2000 12,717



where x is restricted to rational numbers. Recall that if for integers 
m and n with , then . Coordinates of several points 
on the graph of are listed in the following table.

Other values of y for x rational, such as , and , can be approxi-
mated with a calculator. We can show algebraically that if and are rational
numbers such that , then . Thus, f is an increasing function,
and its graph rises. Plotting points leads to the sketch in Figure 1, where the
small dots indicate that only the points with rational x-coordinates are on 
the graph. There is a hole in the graph whenever the x-coordinate of a point 
is irrational.

To extend the domain of f to all real numbers, it is necessary to define 
for every irrational exponent x. To illustrate, if we wish to define , we could
use the nonterminating decimal representing 3.1415926 . . . for and consider
the following rational powers of 2:

It can be shown, using calculus, that each successive power gets closer to a
unique real number, denoted by . Thus,

The same technique can be used for any other irrational power of 2. To sketch
the graph of with x real, we replace the holes in the graph in Figure 1
with points, and we obtain the graph in Figure 2. The function f defined by

for every real number x is called the exponential function with
base 2.

Let us next consider any base a, where a is a positive real number differ-
ent from 1. As in the preceding discussion, to each real number x there corre-
sponds exactly one positive number such that the laws of exponents are true.
Thus, as in the following chart, we may define a function f whose domain is 
and range is the set of positive real numbers.

�

ax

f �x� � 2x

y � 2x

2x l 2� as x l �, with x rational.

2�

23, 23.1, 23.14, 23.141, 23.1415, 23.14159, . . .

�
2�

2x

2x1 � 2x2x1 � x2

x2x1

25.14321/3, 2�9/7

y � 2x
�2x � 2m/n � �2n 2 �mn � 0

x � m�n�
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x 0 1 2 3 10

y � 2x 1 2 4 8 10241
2

1
4

1
8

1
1024

�1�2�3�10

Figure 1

y

x

(3, 8)

(2, 4)

(1, 2)

(0, 1)��1, q�

Figure 2

x

y

Graph of f Graph of f
Terminology Definition for a > 1 for 0 < a < 1

Exponential function
f with base a for every x in ,

where and a � 1a � 0
�

f �x� � ax

x

y

x

y



The graphs in the chart show that if , then f is increasing on , and
if , then f is decreasing on . (These facts can be proved using cal-
culus.) The graphs merely indicate the general appearance—the exact shape
depends on the value of a. Note, however, that since , the y-intercept is
1 for every a.

If , then as x decreases through negative values, the graph of f ap-
proaches the x-axis (see the third column in the chart). Thus, the x-axis is a
horizontal asymptote. As x increases through positive values, the graph rises
rapidly. This type of variation is characteristic of the exponential law of
growth, and f is sometimes called a growth function.

If , then as x increases, the graph of f approaches the x-axis as-
ymptotically (see the last column in the chart). This type of variation is known
as exponential decay.

When considering we exclude the cases and . Note that if
, then is not a real number for many values of x such as and 

If , then is undefined. Finally, if , then for every x,
and the graph of is a horizontal line.

The graph of an exponential function f is either increasing throughout its
domain or decreasing throughout its domain. Thus, f is one-to-one by the
theorem on page 279. Combining this result with the definition of a one-to-one
function (see page 278) gives us parts (1) and (2) of the following theorem.

When using this theorem as a reason for a step in the solution to an ex-
ample, we will state that exponential functions are one-to-one.

Exponential Functions Are One-to-One

If , then , or .

In the following example we solve a simple exponential equation—that
is, an equation in which the variable appears in an exponent.

x � 53x � 2x � 573x � 72x�5

y � ax

ax � 1a � 1a0 � 00a � 0

11
6 .3

4 ,1
2 ,axa � 0

a � 1a � 0ax

0 � a � 1

a � 1

a0 � 1

�0 � a � 1
�a � 1
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Theorem: Exponential
Functions Are One-to-One

The exponential function f given by

is one-to-one. Thus, the following equivalent conditions are satisfied for
real numbers and .

(1) If , then .

(2) If , then .x1 � x2ax1 � ax2

ax1 � ax2x1 � x2

x2x1

f�x� � ax for 0 � a � 1 or a � 1

Note that if , then 
and the base a in can

be thought of as representing multipli-
cation by more than 100% as x in-
creases by 1, so the function is
increasing. For example, if 
then can be considered to
be a 15% per year growth function.
More details on this concept appear
later.

y � (1.15)x

a � 1.15,

y � ax(d � 0)
a � 1 � da � 1

I L L U S T R A T I O N



E X A M P L E 1 Solving an exponential equation

Solve the equation .

S O L U T I O N

given

express both sides with the same base

law of exponents

exponential functions are one-to-one

subtract 2x and add 8

divide by 3 L

Note that the solution in Example 1 depended on the fact that the base 9
could be written as 3 to some power. We will consider only exponential equa-
tions of this type for now, but we will solve more general exponential equa-
tions later in the chapter.

In the next two examples we sketch the graphs of several different expo-
nential functions.

E X A M P L E 2 Sketching graphs of exponential functions

If and , sketch the graphs of f and g on the same coordi-
nate plane.

S O L U T I O N Since and , each graph rises as x increases. The fol-
lowing table displays coordinates for several points on the graphs.

Plotting points and being familiar with the general graph of leads to the
graphs in Figure 3. L

Example 2 illustrates the fact that if , then for positive
values of x and for negative values of x. In particular, since ,
the graph of in Figure 2 lies between the graphs of f and g in Figure 3.y � 2x

3
2 � 2 � 3bx � ax

ax � bx1 � a � b

y � ax

3 � 13
2 � 1

g�x� � 3xf�x� � �3
2�x

x � 4

 3x � 12

 5x � 8 � 2x � 4

 35x�8 � 32x�4

 35x�8 � �32�x�2

 35x�8 � 9x�2

35x�8 � 9x�2

290 C H A P T E R  5  I N V E R S E ,  E X P O N E N T I A L ,  A N D  L O G A R I T H M I C  F U N C T I O N S

Figure 3

y

x

y � 3x

y � �w�x

x 0 1 2 3 4

y � 1

y � 3x 1 3 9 27 811
3 
 0.31

9 
 0.1

81
16 
 5.127

8 
 3.49
4 
 2.33

2
2
3 
 0.74

9 
 0.4�3
2�x

�1�2



E X A M P L E 3 Sketching the graph of an exponential function

Sketch the graph of the equation .

S O L U T I O N Since , the graph falls as x increases. Coordinates of
some points on the graph are listed in the following table.

The graph is sketched in Figure 4. Since , the graph is the
same as the graph of the equation . Note that the graph is a reflection
through the y-axis of the graph of in Figure 2. L

Equations of the form , where u is some expression in x, occur in
applications. The next two examples illustrate equations of this form.

E X A M P L E 4 Shifting graphs of exponential functions

Sketch the graph of the equation:

(a) (b)

S O L U T I O N

(a) The graph of , sketched in Figure 3, is resketched in Figure 5. From
the discussion of horizontal shifts in Section 3.5, we can obtain the graph of

by shifting the graph of two units to the right, as shown in
Figure 5.

The graph of can also be obtained by plotting several points and
using them as a guide to sketch an exponential-type curve.

(b) From the discussion of vertical shifts in Section 3.5, we can obtain the
graph of by shifting the graph of two units downward, as
shown in Figure 6. Note that the y-intercept is and the line is a
horizontal asymptote for the graph. L

E X A M P L E 5 Finding an equation of an exponential 
function satisfying prescribed conditions

Find an exponential function of the form that has horizontal
asymptote , y-intercept 16, and x-intercept 2.

S O L U T I O N The horizontal asymptote of the graph of an exponential func-
tion of the form is the x-axis—that is, . Since the desired
horizontal asymptote is , we must have , so .

Because the y-intercept is 16, must equal 16. But 
, so and . Thus, .f�x� � 18a�x � 2b � 18b � 2 � 16b � 2

f�0� � ba�0 � 2 �f�0�
f�x� � ba�x � 2c � �2y � �2

y � 0f�x� � ba�x

y � �2
f�x� � ba�x � c

y � �2�1
y � 3xy � 3x � 2

y � 3x�2

y � 3xy � 3x�2

y � 3x

y � 3x � 2y � 3x�2

y � au

y � 2x

y � 2�x
�1

2�x
� �2�1�x � 2�x

0 �
1
2 � 1

y � �1
2�x
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x 0 1 2 3

y � 8 4 2 1 1
8

1
4

1
2�1

2�x

�1�2�3

Figure 4

y

x

y � �q�x
 � 2�x

Figure 5

y

x

y � 3x�2

y � 3x

(continued)

Figure 6

y

x

y � 3x � 2

y � �2

y � 3x



Lastly, we find the value of a:

given form of f

since 2 is the x-intercept

add 2; definition of negative exponent

multiply by 

take square root

Since a must be positive, we have

Figure 7 shows a graph of f that satisfies all of the conditions in the problem
statement. Note that could be written in the equivalent form

L

The bell-shaped graph of the function in the next example is similar to a
normal probability curve used in statistical studies.

E X A M P L E 6 Sketching a bell-shaped graph

If , sketch the graph of f.

S O L U T I O N If we rewrite as

we see that as x increases through positive values, decreases rapidly;
hence the graph approaches the x-axis asymptotically. Since is smallest
when the maximum value of  f is . Since f is an even function,
the graph is symmetric with respect to the y-axis. Some points on the graph are

, , and . Plotting and using symmetry gives us the sketch in
Figure 8. L

A P P L I C A T I O N Bacterial Growth

Exponential functions may be used to describe the growth of certain popula-
tions. As an illustration, suppose it is observed experimentally that the number
of bacteria in a culture doubles every day. If 1000 bacteria are present at the
start, then we obtain the following table, where t is the time in days and is
the bacteria count at time t.

f �t�

�2, 1
16��1, 1

2��0, 1�

f �0� � 1x � 0,
x2

f �x�

f �x� �
1

2�x2� ,

f �x�

f �x� � 2�x2

f �x� � 18�1
3�x

� 2.

f �x�

f �x� � 18�3��x � 2.

a � �3

a2�2a2 � 9

 2 � 18 �
1

a2

f�2� � 0 0 � 18�a��2 � 2

f �x� � 18a�x � 2
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Figure 8

y

x

��1, q� �1, q�(0, 1)

y � 2�x2

��2, 1
16� �2, 1

16 �

Figure 7

y

x

y � 18(3)�x � 2

y � �2

5

�5

10

15
(0, 16)

20

(2, 0)

t (time in days) 0 1 2 3 4

f(t) (bacteria count) 1000 2000 4000 8000 16,000



It appears that . With this formula we can predict the number
of bacteria present at any time t. For example, at 

The graph of f is sketched in Figure 9.

A P P L I C A T I O N Radioactive Decay

Certain physical quantities decrease exponentially. In such cases, if a is the
base of the exponential function, then . One of the most common
examples of exponential decrease is the decay of a radioactive substance, or
isotope. The half-life of an isotope is the time it takes for one-half the original
amount in a given sample to decay. The half-life is the principal characteristic
used to distinguish one radioactive substance from another. The polonium iso-
tope has a half-life of approximately 140 days; that is, given any amount,
one-half of it will disintegrate in 140 days. If 20 milligrams of is present
initially, then the following table indicates the amount remaining after various
intervals of time.

The sketch in Figure 10 illustrates the exponential nature of the disintegration.
Other radioactive substances have much longer half-lives. In particular, a

by-product of nuclear reactors is the radioactive plutonium isotope ,
which has a half-life of approximately 24,000 years. It is for this reason that
the disposal of radioactive waste is a major problem in modern society.

A P P L I C A T I O N Compound Interest

Compound interest provides a good illustration of exponential growth. If a
sum of money P, the principal, is invested at a simple interest rate r, then the
interest at the end of one interest period is the product Pr when r is expressed
as a decimal. For example, if and the interest rate is 9% per year,
then , and the interest at the end of one year is , or $90.

If the interest is reinvested with the principal at the end of the interest pe-
riod, then the new principal is

Note that to find the new principal we may multiply the original principal by
. In the preceding example, the new principal is , or $1090.

After another interest period has elapsed, the new principal may be found
by multiplying by . Thus, the principal after two interest pe-
riods is . If we continue to reinvest, the principal after three periods
is ; after four it is ; and, in general, the amount A accumu-
lated after k interest periods is

A � P�1 � r�k.

P�1 � r�4P�1 � r�3

P�1 � r�2

�1 � r�P�1 � r�

$1000�1.09��1 � r�

P � Pr or, equivalently, P�1 � r�.

$1000�0.09�r � 0.09
P � $1000

239Pu

210Po

210Po

0 � a � 1

f �t� � �1000�23/2 
 2828.

t � 1.5 �
3
2 ,

f �t� � �1000�2t
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Figure 9

15,000

10,000

5,000

f (t) (bacteria count)

1 2 3 4 t (days)

t (time in days) 0 140 280 420 560

f(t) (mg remaining) 20 10 5 2.5 1.25

Figure 10

100 200 300 400 500

t (days)

20

10

f (t) (mg remaining)



Interest accumulated by means of this formula is compound interest. Note
that A is expressed in terms of an exponential function with base . The
interest period may be measured in years, months, weeks, days, or any other
suitable unit of time. When applying the formula for A, remember that r is the
interest rate per interest period expressed as a decimal. For example, if the
rate is stated as 6% per year compounded monthly, then the rate per month is

or, equivalently, 0.5%. Thus, and k is the number of months. If
$100 is invested at this rate, then the formula for A is

In general, we have the following formula.

The next example illustrates a special case of the compound interest
formula.

E X A M P L E 7 Using the compound interest formula

Suppose that $1000 is invested at an interest rate of 9% compounded monthly.
Find the new amount of principal after 5 years, after 10 years, and after
15 years. Illustrate graphically the growth of the investment.

S O L U T I O N Applying the compound interest formula with 
, and , we find that the amount after t years is

Substituting , 10, and 15 and using a calculator, we obtain the following
table.

t � 5

A � 1000�1 �
0.09

12 �12t

� 1000�1.0075�12t.

P � $1000n � 12
r � 9% � 0.09,

A � 100�1 � 0.005�k � 100�1.005�k.

r � 0.0056
12 %

1 � r
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Compound Interest Formula

where P � principal
r � annual interest rate expressed as a decimal
n � number of interest periods per year
t � number of years P is invested

A � amount after t years.

A � P�1 �
r

n�nt

,

Note that when working with
monetary values, we use instead
of and round to two decimal
places.



�

Number of
years Amount

5

10

15 A � $1000�1.0075�180 � $3838.04

A � $1000�1.0075�120 � $2451.36

A � $1000�1.0075�60 � $1565.68



The exponential nature of the increase is indicated by the fact that during
the first five years, the growth in the investment is $565.68; during the second
five-year period, the growth is $885.68; and during the last five-year period, it
is $1386.68.

The sketch in Figure 11 illustrates the growth of $1000 invested over a pe-
riod of 15 years. L

E X A M P L E 8 Finding an exponential model

In 1938, a federal law establishing a minimum wage was enacted, and the
wage was set at $0.25 per hour; the wage had risen to $5.15 per hour by 1997.
Find a simple exponential function of the form that models the federal
minimum wage for 1938–1997.

S O L U T I O N given

let  for 1938

replace a with 0.25

1997 � 1938

divide by 0.25

take 59th root

approximate

We obtain the model which indicates that the federal min-
imum wage rose about 5.26% per year from 1938 to 1997. A graph of the
model is shown in Figure 12. Do you think this model will hold true through
the year 2016?

y � 0.25(1.0526)t,

b 
 1.0526

b �
59
220.6

b59 �
5.15

0.25
� 20.6

� 59t �5.15 � 0.25b59

y � 0.25bt

b0 � 10.25 � a

t � 00.25 � ab0

y � abt

y � abt
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Figure 11
Compound interest: A � 1000�1.0075�12t

t (years)5 10 15

4000

3000

2000

1000

A (dollars)

Figure 12

t
(years)

78
2016

?

59
1997

0
1938

5.15

0.25

13.64

y ($/hr)

L
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Exer. 1–10: Solve the equation.

1 2

3 4

5 6

7 8

9

10

11 Sketch the graph of f if .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

12 Work Exercise 11 if .

Exer. 13–24: Sketch the graph of f.

13 14

15 16

17 18

19 20

21 22

23 24 f �x� � 3x � 3�xf �x� � 3x � 3�x

f �x� � 2��x�1�2

f �x� � 31�x2

f �x� � 2��x �f �x� � 2�x �

f �x� � �3x � 9f �x� � ��1
2�x

� 4

f �x� � 8�4��x � 2f �x� � 5�1
2�x

� 3

f �x� � �2
5�xf �x� � �2

5��x

a �
1
2

f �x� � a3�xf �x� � � 1

a�x

f �x� � a�xf �x� � ax � 3

f �x� � ax�3f �x� � ax � 3

f �x� � ax�3f �x� � 3ax

f �x� � �axf �x� � ax

a � 2

92x � �1
3�x�2

� 27 � �3x��2

4x � �1
2�3�2x

� 8 � �2x�2

27x�1 � 92x�34x�3 � 84�x

�1
2�6�x

� 22�100x � �0.5�x�4

9�x2� � 33x�232x�3 � 3�x2�

67�x � 62x�17x�6 � 73x�4

Exer. 25–28: Find an exponential function of the form
or that has the given graph.

25 26

27 28

Exer. 29–30: Find an exponential function of the form 
that has the given y-intercept and passes through

the point P.

29 y-intercept 8;

30 y-intercept 6;

Exer. 31–32: Find an exponential function of the form 
f (x) � ba�x � c that has the given horizontal asymptote and
y-intercept and passes through point P.

31 y-intercept 212;

32 y-intercept 425;

33 Elk population One hundred elk, each 1 year old, are intro-
duced into a game preserve. The number alive after 
t years is predicted to be . Estimate the
number alive after

(a) 1 year (b) 5 years (c) 10 years

N�t� � 100�0.9�t

N�t�

P�1, 248.5�y � 72;

P�2, 112�y � 32;

P�2, 3
32�

P�3, 1�

f (x) � bax

(0, 5)
(1, 7)

y � 1

y

x(�1, 0)

(0, �1)

y � �3

y

x

(0, q)

(�2, 8)

y

x

y

x

(0, 2)

(1, 5)

f (x) � bax � cf (x) � bax

5.2 E x e r c i s e s
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34 Drug dosage A drug is eliminated from the body through
urine. Suppose that for an initial dose of 10 milligrams, the
amount in the body t hours later is given by

.

(a) Estimate the amount of the drug in the body 8 hours
after the initial dose.

(b) What percentage of the drug still in the body is elimi-
nated each hour?

35 Bacterial growth The number of bacteria in a certain
culture increased from 600 to 1800 between 7:00 A.M. and
9:00 A.M. Assuming growth is exponential, the num-
ber of bacteria t hours after 7:00 A.M. is given by

.

(a) Estimate the number of bacteria in the culture at
8:00 A.M., 10:00 A.M., and 11:00 A.M.

(b) Sketch the graph of f for .

36 Newton’s law of cooling According to Newton’s law of
cooling, the rate at which an object cools is directly propor-
tional to the difference in temperature between the object
and the surrounding medium. The face of a household iron
cools from 125° to 100° in 30 minutes in a room that re-
mains at a constant temperature of 75°. From calculus, the
temperature of the face after t hours of cooling is given
by .

(a) Assuming corresponds to 1:00 P.M., approximate
to the nearest tenth of a degree the temperature of the
face at 2:00 P.M., 3:30 P.M., and 4:00 P.M.

(b) Sketch the graph of f for .

37 Radioactive decay The radioactive bismuth isotope 
has a half-life of 5 days. If there is 100 milligrams of 
present at , then the amount remaining after t days
is given by .

(a) How much remains after 5 days? 10 days?
12.5 days?

(b) Sketch the graph of f for .

38 Light penetration in an ocean An important problem in
oceanography is to determine the amount of light that can
penetrate to various ocean depths. The Beer-Lambert law
asserts that the exponential function given by 
is a model for this phenomenon (see the figure). For a cer-
tain location, is the amount of light (in

) reaching a depth of x meters.calories�cm2�sec
I�x� � 10�0.4�x

I�x� � I0cx

0 � t � 30

210Bi

f �t� � 100�2��t/5

f �t�t � 0

210Bi

210Bi

0 � t � 4

t � 0

f �t� � 50�2��2t � 75
f �t�

0 � t � 4

f �t� � 600�3�t/2

f �t�

A�t� � 10�0.8�t

A�t�

(a) Find the amount of light at a depth of 2 meters.

(b) Sketch the graph of I for .

Exercise 38

39 Decay of radium The half-life of radium is 1600 years.
If the initial amount is milligrams, then the quantity 
remaining after t years is given by . Find k.

40 Dissolving salt in water If 10 grams of salt is added to a
quantity of water, then the amount that is undissolved
after t minutes is given by . Sketch a graph that
shows the value at any time from to .

41 Compound interest If $1000 is invested at a rate of 7% per
year compounded monthly, find the principal after

(a) 1 month (b) 6 months

(c) 1 year (d) 20 years

42 Compound interest If a savings fund pays interest at a rate
of 6% per year compounded semiannually, how much
money invested now will amount to $5000 after 1 year?

43 Automobile trade-in value If a certain make of automobile
is purchased for C dollars, its trade-in value at the 
end of t years is given by . If the original
cost is $25,000, calculate, to the nearest dollar, the value after

(a) 1 year (b) 4 years (c) 7 years

V�t� � 0.78C�0.85�t�1

V�t�

t � 10t � 0q�t�
q�t� � 10�4

5�t
q�t�

q�t� � q02kt

q�t�q0

x meters

I0

I0cx

0 � x � 5



44 Real estate appreciation If the value of real estate in-
creases at a rate of 5% per year, after t years the value V of
a house purchased for P dollars is . A graph for
the value of a house purchased for $80,000 in 1986 is shown
in the figure. Approximate the value of the house, to the
nearest $1000, in the year 2010.

Exercise 44

45 Manhattan Island The Island of Manhattan was sold for
$24 in 1626. How much would this amount have grown to
by 2006 if it had been invested at 6% per year compounded
quarterly?

46 Credit-card interest A certain department store requires its
credit-card customers to pay interest on unpaid bills at the
rate of 18% per year compounded monthly. If a customer
buys a television set for $500 on credit and makes no pay-
ments for one year, how much is owed at the end of the
year?

47 Depreciation The declining balance method is an account-
ing method in which the amount of depreciation taken each
year is a fixed percentage of the present value of the item. If
y is the value of the item in a given year, the depreciation
taken is ay for some depreciation rate a with ,
and the new value is .

(a) If the initial value of the item is show that the value
after n years of depreciation is .

(b) At the end of T years, the item has a salvage value of s
dollars. The taxpayer wishes to choose a depreciation
rate such that the value of the item after T years will
equal the salvage value (see the figure). Show that
a � 1 � T2s�y0.

�1 � a�ny0

y0,

�1 � a�y
0 � a � 1

V � P�1.05�t

Exercise 47

48 Language dating Glottochronology is a method of dating
a language at a particular stage, based on the theory that
over a long period of time linguistic changes take place 
at a fairly constant rate. Suppose that a language origi-
nally had basic words and that at time t, measured in
millennia ( ), the number 
of basic words that remain in common use is given by

.

(a) Approximate the percentage of basic words lost every
100 years.

(b) If , sketch the graph of N for .

Exer. 49–52: Some lending institutions calculate the
monthly payment M on a loan of L dollars at an interest 
rate r (expressed as a decimal) by using the formula

where and t is the number of years that
the loan is in effect.

49 Home mortgage

(a) Find the monthly payment on a 30-year $250,000
home mortgage if the interest rate is 8%.

(b) Find the total interest paid on the loan in part (a).

50 Home mortgage Find the largest 25-year home mortgage
that can be obtained at an interest rate of 7% if the monthly
payment is to be $1500.

k � [1 � (r�12)]12 t

M �
Lrk

12(k � 1)
,

0 � t � 5N0 � 200

N�t� � N0�0.805�t

N�t�1 millennium � 1000 years
N0

s

y0

y (value in dollars)

T n (years)
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50,000

100,000

150,000

200,000

250,000

300,000

V (dollars)

5 10 15 20

1987 2010

t  (years)
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51 Car loan An automobile dealer offers customers no-down-
payment 3-year loans at an interest rate of 10%. If a cus-
tomer can afford to pay $500 per month, find the price of
the most expensive car that can be purchased.

52 Business loan The owner of a small business decides to fi-
nance a new computer by borrowing $3000 for 2 years at an
interest rate of 7.5%.

(a) Find the monthly payment.

(b) Find the total interest paid on the loan.

Exer. 53–54: Approximate the function at the value of x to
four decimal places.

53 (a)

(b)

(c)

54 (a)

(b)

(c)

55 Cost of a stamp The price of a first-class stamp was 3¢ in
1958 and 39¢ in 2006 (it was 2¢ in 1885). Find a simple ex-

h�x� �
3�x � 5

3x � 16
, x � 22

g�x� � � 2
25 � x��3x, x � 2.1

f �x� � 2
3
21�x, x � 2.5

h�x� � �2x � 2�x�2x,  x � 1.06

g�x� � � 5
42��x, x � 1.43

f �x� � 132x�1.1, x � 3

ponential function of the form that models the cost
of a first-class stamp for 1958–2006, and predict its value
for 2010.

56 Consumer Price Index The CPI is the most widely used
measure of inflation. In 1970, the CPI was 37.8, and in
2000, the CPI was 168.8. This means that an urban con-
sumer who paid $37.80 for a market basket of consumer
goods and services in 1970 would have needed $168.80 for
similar goods and services in 2000. Find a simple exponen-
tial function of the form that models the CPI for
1970–2000, and predict its value for 2010.

57 Inflation comparisons In 1974, Johnny Miller won 8 tour-
naments on the PGA tour and accumulated $353,022 in of-
ficial season earnings. In 1999, Tiger Woods accumulated
$6,616,585 with a similar record.

(a) Suppose the monthly inflation rate from 1974 to 1999
was 0.0025 ( ). Use the compound interest for-
mula to estimate the equivalent value of Miller’s 
winnings in the year 1999. Compare your answer with
that from an inflation calculation on the web (e.g.,
bls.gov/cpi/home.htm).

(b) Find the annual interest rate needed for Miller’s win-
nings to be equivalent in value to Woods’s winnings.

(c) What type of function did you use in part (a)? part (b)?

3%�yr

y � abt

y � abt

The compound interest formula discussed in the preceding section is

where P is the principal invested, r is the annual interest rate (expressed as a
decimal), n is the number of interest periods per year, and t is the number of
years that the principal is invested. The next example illustrates what happens
if the rate and total time invested are fixed, but the interest period is varied.

E X A M P L E  1 Using the compound interest formula

Suppose $1000 is invested at a compound interest rate of 9%. Find the new
amount of principal after one year if the interest is compounded quarterly,
monthly, weekly, daily, hourly, and each minute.

S O L U T I O N If we let , , and in the compound in-
terest formula, then

A � $1000�1 �
0.09

n �n

r � 0.09t � 1P � $1000

A � P�1 �
r

n�nt

,

5.3
The Natural

Exponential Function

(continued)



for n interest periods per year. The values of n we wish to consider are listed
in the following table, where we have assumed that there are 365 days in a year
and hence hours and minutes. (In
many business transactions an investment year is considered to be only
360 days.)

Using the compound interest formula (and a calculator), we obtain the
amounts given in the following table.

Note that, in the preceding example, after we reach an interest period of
one hour, the number of interest periods per year has no effect on the final
amount. If interest had been compounded each second, the result would still
be $1094.17. (Some decimal places beyond the first two do change.) Thus, the
amount approaches a fixed value as n increases. Interest is said to be com-
pounded continuously if the number n of time periods per year increases
without bound.

If we let , , and in the compound interest formula, we
obtain

The expression on the right-hand side of the equation is important in calculus.
In Example 1 we considered a similar situation: as n increased, A approached
a limiting value. The same phenomenon occurs for this formula, as illustrated
by the following table.

A � �1 �
1

n�n

.

t � 1r � 1P � 1

�8760��60� � 525,600�365��24� � 8760
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Interest
period Quarter Month Week Day Hour Minute

n 4 12 52 365 8760 525,600

Interest period Amount after one year

Quarter

Month

Week

Day

Hour

Minute  $1000�1 �
0.09

525,600�525,600

� $1094.17

 $1000�1 �
0.09

8760�8760

� $1094.17

 $1000�1 �
0.09

365�365

� $1094.16

 $1000�1 �
0.09

52 �52

� $1094.09

 $1000�1 �
0.09

12 �12

� $1093.81

 $1000�1 �
0.09

4 �4

� $1093.08

L
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In calculus it is shown that as n increases without bound, the value of the ex-
pression approaches a certain irrational number, denoted by e.
The number e arises in the investigation of many physical phenomena. An ap-
proximation is . Using the notation we developed for rational
functions in Section 4.5, we denote this fact as follows.

In the following definition we use e as a base for an important exponen-
tial function.

The natural exponential function is one of the most useful functions in 
advanced mathematics and applications. Since , the graph of y � ex2 � e � 3

e 
 2.71828

�1 � �1�n�	n

The Number e If n is a positive integer, then

as .n l ��1 �
1

n�n

l e 
 2.71828

Definition of the Natural
Exponential Function

The natural exponential function f is defined by

for every real number x.

f�x� � ex

Approximation to

n

1 2.00000000

10 2.59374246

100 2.70481383

1000 2.71692393

10,000 2.71814593

100,000 2.71826824

1,000,000 2.71828047

10,000,000 2.71828169

100,000,000 2.71828181

1,000,000,000 2.71828183

�1 �
1
n�n



Figure 1

lies between the graphs of and , as shown in Figure 1. Scientific
calculators have an key for approximating values of the natural exponen-
tial function.

A P P L I C A T I O N Continuously Compounded Interest

The compound interest formula is

If we let , then , , and , and we may rewrite
the formula as

For continuously compounded interest we let n (the number of interest periods
per year) increase without bound, denoted by or, equivalently, by

. Using the fact that as , we see that

This result gives us the following formula.

P��1 �
1

k�k�rt

l P�e	rt � Pert as k l �.

k l ��1 � �1�k�	k l ek l �
n l �

A � P�1 �
1

k�krt

� P��1 �
1

k�k�rt

.

nt � krtn � krk � n�r1�k � r�n

A � P�1 �
r

n�nt

.

ex

y � 3xy � 2x

y

x

y � 2x

y � 3x

y � ex
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Continuously Compounded
Interest Formula

where principal
annual interest rate expressed as a decimal
number of years P is invested
amount after t years.A �

t �
r �
P �

A � Pert,

The key can be accessed by
pressing .LN2nd

ex
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The next example illustrates the use of this formula.

E X A M P L E  2 Using the continuously compounded interest formula

Suppose $20,000 is deposited in a money market account that pays inter-
est at a rate of 6% per year compounded continuously. Determine the bal-
ance in the account after 5 years.

S O L U T I O N Applying the formula for continuously compounded interest
with , , and , we have

Using a calculator, we find that . L

The continuously compounded interest formula is just one specific case of
the following law.

E X A M P L E  3 Predicting the population of a city

The population of a city in 1970 was 153,800. Assuming that the population
increases continuously at a rate of 5% per year, predict the population of the
city in the year 2010.

S O L U T I O N We apply the growth formula with initial population
, rate of growth , and time 

years. Thus, a prediction for the population of the city in the year 2010 is

L

The function f in the next example is important in advanced applications
of mathematics.

153,800e�0.05��40� � 153,800e2 
 1,136,437.

t � 2010 � 1970 � 40r � 0.05q0 � 153,800
q � q0ert

A � $26,997.18

A � Pert � 20,000e0.06�5� � 20,000e0.3.

t � 5r � 0.06P � 20,000

Law of Growth 
(or Decay) Formula

Let be the value of a quantity q at time (that is, is the initial
amount of q). If q changes instantaneously at a rate proportional to its cur-
rent value, then

where is the rate of growth (or is the rate of decay) of q.r � 0r � 0

q � q�t� � q0ert,

q0t � 0q0



E X A M P L E  4 Sketching a graph involving two exponential functions

Sketch the graph of f if

S O L U T I O N Note that f is an even function, because

Thus, the graph is symmetric with respect to the y-axis. Using a calculator, we
obtain the following approximations of .

Plotting points and using symmetry with respect to the y-axis gives us the
sketch in Figure 2. The graph appears to be a parabola; however, this is not ac-
tually the case. L

A P P L I C A T I O N Flexible Cables

The function f of Example 4 occurs in applied mathematics and engineering,
where it is called the hyperbolic cosine function. This function can be used
to describe the shape of a uniform flexible cable or chain whose ends are sup-
ported from the same height, such as a telephone or power line cable (see Fig-
ure 3). If we introduce a coordinate system, as indicated in the figure, then it
can be shown that an equation that corresponds to the shape of the cable is

where a is a real number. The graph is called a catenary, after the Latin word
for chain. The function in Example 4 is the special case in which .

A P P L I C A T I O N Radiotherapy

Exponential functions play an important role in the field of radiotherapy, the
treatment of tumors by radiation. The fraction of cells in a tumor that survive
a treatment, called the surviving fraction, depends not only on the energy and
nature of the radiation, but also on the depth, size, and characteristics of the
tumor itself. The exposure to radiation may be thought of as a number of

a � 1

y �
a

2
�ex�a � e�x�a�,

f �x�

f ��x� �
e�x � e���x�

2
�

e�x � ex

2
� f �x�.

f �x� �
ex � e�x

2
.
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Figure 2

y

x

ex � e�x

2
y �

x 0 0.5 1.0 1.5 2.0

f (x)
(approx.) 1 1.13 1.54 2.35 3.76

Figure 3

y

x
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potentially damaging events, where at least one hit is required to kill a tumor
cell. For instance, suppose that each cell has exactly one target that must be
hit. If k denotes the average target size of a tumor cell and if x is the number
of damaging events (the dose), then the surviving fraction is given by

This is called the one target–one hit surviving fraction.
Suppose next that each cell has n targets and that each target must be hit

once for the cell to die. In this case, the n target–one hit surviving fraction is
given by

The graph of f may be analyzed to determine what effect increasing the dosage
x will have on decreasing the surviving fraction of tumor cells. Note that

; that is, if there is no dose, then all cells survive. As an example, if
and , then

A complete analysis of the graph of f requires calculus. The graph is sketched
in Figure 4. The shoulder on the curve near the point represents the
threshold nature of the treatment—that is, a small dose results in very little
tumor cell elimination. Note that for a large x, an increase in dosage has little
effect on the surviving fraction. To determine the ideal dose to administer to a
patient, specialists in radiation therapy must also take into account the number
of healthy cells that are killed during a treatment.

Problems of the type illustrated in the next example occur in the study 
of calculus.

E X A M P L E  5 Finding zeros of a function involving exponentials

If , find the zeros of f.

S O L U T I O N We may factor as follows:

given

factor out 

To find the zeros of f, we solve the equation . Since for every
x, we see that if and only if or . Thus, the zeros of
f are 0 and 1. L

1 � x � 0x � 0f �x� � 0
e�2x � 0f �x� � 0

2xe�2x� 2xe�2x�1 � x�

f �x� � 2xe�2x � 2x2e�2x

f �x�

f �x� � x2��2e�2x� � 2xe�2x

�0, 1�

� 2e�x � e�2x.

� 1 � �1 � 2e�x � e�2x�

f �x� � 1 � �1 � e�x�2

n � 2k � 1
f �0� � 1

f �x� � 1 � �1 � e�kx�n.

f �x� � e�kx.

f �x�

Figure 4
Surviving fraction of tumor cells after a
radiation treatment

1

1 2 3 x (dose)

y (surviving fraction)



Exer. 1–4: Use the graph of y � ex to help sketch the graph
of f.

1 (a) (b)

2 (a) (b)

3 (a) (b)

4 (a) (b)

Exer. 5–6: If P dollars is deposited in a savings account that
pays interest at a rate of r% per year compounded continu-
ously, find the balance after t years.

5

6

Exer. 7–8: How much money, invested at an interest rate 
of r% per year compounded continuously, will amount to 
A dollars after t years?

7

8

Exer. 9–10: An investment of P dollars increased to A dol-
lars in t years. If interest was compounded continuously,
find the interest rate. (Hint: Use trial and error.)

9

10

Exer. 11–12: Solve the equation.

11 12

Exer. 13–16: Find the zeros of f.

13

14

15

16 f �x� � x 2�2e2x� � 2xe2x � e2x � 2xe2x

f �x� � x3�4e4x� � 3x 2e4x

f �x� � �x 2e�x � 2xe�x

f �x� � xex � ex

e3x � e2x�1e�x2) � e7x�12

A � 890.20,  P � 400,  t � 16

A � 13,464,  P � 1000,  t � 20

A � 15,000,  r � 5.5,  t � 4

A � 100,000,  r � 6.4,  t � 18

P � 100,  r � 6 1
2 ,    t � 10

P � 1000,  r � 8 1
4 t � 5

f �x� � �2exf �x� � e�2x

f �x� � ex � 4f �x� � ex�4

f �x� � 2exf �x� � e2x

f �x� � �exf �x� � e�x

Exer. 17–18: Simplify the expression.

17

18

19 Crop growth An exponential function W such that
for describes the first month of growth

for crops such as maize, cotton, and soybeans. The function
value is the total weight in milligrams, is the weight
on the day of emergence, and t is the time in days. If, for a
species of soybean, and , predict the
weight at the end of 30 days.

20 Crop growth Refer to Exercise 19. It is often difficult to
measure the weight of a plant from when it first emerges
from the soil. If, for a species of cotton, and the
weight after 10 days is 575 milligrams, estimate .

21 U.S. population growth The 1980 population of the United
States was approximately 231 million, and the population
has been growing continuously at a rate of 1.03% per year.
Predict the population in the year 2020 if this growth
trend continues.

22 Population growth in India The 1985 population estimate
for India was 766 million, and the population has been
growing continuously at a rate of about 1.82% per year. As-
suming that this rapid growth rate continues, estimate the
population of India in the year 2015.

23 Longevity of halibut In fishery science, a cohort is the col-
lection of fish that results from one annual reproduction. It
is usually assumed that the number of fish still alive
after t years is given by an exponential function. For Pacific
halibut, , where is the initial size of the
cohort. Approximate the percentage of the original number
still alive after 10 years.

24 Radioactive tracer The radioactive tracer can be used
to locate the position of the placenta in a pregnant woman.
Often the tracer must be ordered from a medical laboratory.
If units (microcuries) are shipped, then because of the ra-
dioactive decay, the number of units present after t days
is given by .A�t� � A0e�0.0249t

A�t�
A0

51Cr

N0N�t� � N0e�0.2t

N�t�

N�t�

N�t�

W0

k � 0.21
W0

W0 � 68 mgk � 0.2

W0W�t�

k � 0W�t� � W0ekt

�ex � e�x�2 � �ex � e�x�2

�ex � e�x�2

�ex � e�x��ex � e�x� � �ex � e�x��ex � e�x�
�ex � e�x�2
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5.3 E x e r c i s e s



(a) If 35 units are shipped and it takes 2 days for the tracer
to arrive, approximately how many units will be avail-
able for the test?

(b) If 35 units are needed for the test, approximately how
many units should be shipped?

25 Blue whale population growth In 1980, the population of
blue whales in the southern hemisphere was thought to
number 4500. The population has been decreasing ac-
cording to the formula , where t is in
years and corresponds to 1980. If this trend continues,
predict the population in the year 2015.

26 Halibut growth The length (in centimeters) of many com-
mon commercial fish t years old can be approximated by a
von Bertalanffy growth function having an equation of the
form , where a, b, and k are constants.

(a) For Pacific halibut, , , and .
Estimate the length of a 10-year-old halibut.

(b) Use the graph of f to estimate the maximum attainable
length of the Pacific halibut.

27 Atmospheric pressure Under certain conditions the atmos-
pheric pressure p (in inches) at altitude h feet is given by

. What is the pressure at an altitude of
40,000 feet?

28 Polonium isotope decay If we start with c milligrams of the
polonium isotope , the amount remaining after t days
may be approximated by . If the initial
amount is 50 milligrams, approximate, to the nearest hun-
dredth, the amount remaining after

(a) 30 days (b) 180 days (c) 365 days

29 Growth of children The Jenss model is generally regarded
as the most accurate formula for predicting the height of
preschool children. If y is height (in centimeters) and x is
age (in years), then

for . From calculus, the rate of growth R (in
) is given by . Find the

height and rate of growth of a typical 1-year-old child.
R � 6.39 � 0.993e3.261�0.993xcm�year

1
4 � x � 6

y � 79.041 � 6.39x � e3.261�0.993x

A � ce�0.00495t

210Po

p � 29e�0.000034h

k � 0.18b � 0.956a � 200

f �t� � a�1 � be�kt�

t � 0
N�t� � 4500e�0.1345t

N�t�

30 Particle velocity A very small spherical particle (on the
order of 5 microns in diameter) is projected into still air
with an initial velocity of , but its velocity de-
creases because of drag forces. Its velocity t seconds later is
given by for some , and the distance 
the particle travels is given by

The stopping distance is the total distance traveled by the
particle.

(a) Find a formula that approximates the stopping distance
in terms of and a.

(b) Use the formula in part (a) to estimate the stopping dis-
tance if and .

31 Minimum wage In 1971 the minimum wage in the United
States was $1.60 per hour. Assuming that the rate of infla-
tion is 5% per year, find the equivalent minimum wage in
the year 2010.

32 Land value In 1867 the United States purchased Alaska
from Russia for $7,200,000. There is 586,400 square miles
of land in Alaska. Assuming that the value of the land in-
creases continuously at 3% per year and that land can be
purchased at an equivalent price, determine the price of 
1 acre in the year 2010. (One square mile is equivalent to
640 acres.)

Exer. 33–34: The effective yield (or effective annual interest
rate) for an investment is the simple interest rate that would
yield at the end of one year the same amount as is yielded by
the compounded rate that is actually applied. Approximate,
to the nearest 0.01%, the effective yield corresponding to an
interest rate of r% per year compounded (a) quarterly and
(b) continuously.

33 34

35 Probability density function In statistics, the probability
density function for the normal distribution is defined by

where and are real numbers ( is the mean and is the
variance of the distribution). Sketch the graph of f for the
case and .� � 0� � 1

� 2���

f �x� �
1

�22�
e�z2/2 with z �

x � �

�
,

r � 12r � 7

a � 8 � 105v0 � 10 m�sec

v0

s�t� �
v0

a
�1 � e�at�.

s�t�a � 0v�t� � v0e�at

v0 m�sec
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In Section 5.2 we observed that the exponential function given by 
for or is one-to-one. Hence, f has an inverse function 
(see Section 5.1). This inverse of the exponential function with base a is called
the logarithmic function with base a and is denoted by . Its values are
written or , read “the logarithm of x with base a.” Since, by the
definition of an inverse function ,

the definition of may be expressed as follows.

Note that the two equations in the definition are equivalent. We call the
first equation the logarithmic form and the second the exponential form. You
should strive to become an expert in changing each form into the other. The
following diagram may help you achieve this goal.

Logarithmic form Exponential form
exponent

base

Observe that when forms are changed, the bases of the logarithmic and
exponential forms are the same. The number y (that is, ) corresponds to
the exponent in the exponential form. In words, is the exponent to which
the base a must be raised to obtain x. This is what people are referring to when
they say “Logarithms are exponents.”

The following illustration contains examples of equivalent forms.

Equivalent Forms

Logarithmic form Exponential form

The next example contains an application that involves changing from an
exponential form to a logarithmic form.

35�2z � xlog3 x � 5 � 2z

4w � 2t � 3w � log4 �2t � 3�
pr � qr � logp q

b3 � 8logb 8 � 3

52 � ulog5 u � 2

loga x
loga x

ay � xloga x � y

loga

y � f �1�x� if and only if x � f� y�,

f �1

loga xloga �x�
log a

f �1a � 10 � a � 1
f�x� � ax
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5.4
Logarithmic Functions

b b

a a

Definition of log a Let a be a positive real number different from 1. The logarithm of x with
base a is defined by

for every and every real number y.x � 0

y � loga x if and only if x � ay

I L L U S T R A T I O N
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E X A M P L E  1 Changing exponential form to logarithmic form

The number N of bacteria in a certain culture after t hours is given by
. Express t as a logarithmic function of N with base 2.

S O L U T I O N given

isolate the exponential expression

change to logarithmic form L

Some special cases of logarithms are given in the next example.

E X A M P L E  2 Finding logarithms

Find the number, if possible.

(a) (b) (c) (d) (e)

S O L U T I O N In each case we are given and must find the exponent y
such that . We obtain the following.

(a) because .

(b) because

(c) because .

(d) because .

(e) is not possible because for any real number y. L

The following general properties follow from the interpretation of 
as an exponent.

The reason for property 4 follows directly from the definition of ,
since

if then or

The logarithmic function with base a is the inverse of the exponential
function with base a, so the graph of can be obtained by reflecting
the graph of through the line (see Section 5.1). This procedure is
illustrated in Figure 1 for the case . Note that the x-intercept of the graph
is 1, the domain is the set of positive real numbers, the range is �, and the 

a � 1
y � xy � ax

y � loga x

x � aloga x.x � ay,y � loga x,

loga

loga x

3y � �2log3 ��2�
70 � 1log7 1 � 0

91/2 � 3log9 3 �
1
2

2�5 �
1
32 .log2

1
32 � �5

102 � 100log10 100 � 2

ay � x
loga x

log3 ��2�log7 1log9 3log2
1
32log10 100

t � log2

N

1000

N

1000
� 2t

N � �1000�2t

N � �1000�2t

Property of loga x Reason Illustration

(1)

(2)

(3)

(4) as follows 5log5 7 � 7aloga x � x

log2 8 � log2 23 � 3ax � axloga ax � x

log10 10 � 1a1 � aloga a � 1

log3 1 � 0a0 � 1loga 1 � 0Figure 1

y

x

y � x

y � logax

y � ax



y-axis is a vertical asymptote. Logarithms with base are seldom
used, so we will not emphasize their graphs.

We see from Figure 1 that if , then is increasing on and
hence is one-to-one by the theorem on page 279. Combining this result with
parts (1) and (2) of the definition of one-to-one function on page 278 gives us
the following theorem, which can also be proved if .

When using this theorem as a reason for a step in the solution to an ex-
ample, we will state that logarithmic functions are one-to-one.

In the following example we solve a simple logarithmic equation—that is,
an equation involving a logarithm of an expression that contains a variable.
Extraneous solutions may be introduced when logarithmic equations are
solved. Hence, we must check solutions of logarithmic equations to make sure
that we are taking logarithms of only positive real numbers; otherwise, a loga-
rithmic function is not defined.

E X A M P L E  3 Solving a logarithmic equation

Solve the equation .

S O L U T I O N

given

logarithmic functions are one-to-one

subtract 2x; add 5

divide by 2

C h e c k LS:
RS:

Since is a true statement, is a solution. L

When we check the solution in Example 3, it is not required that
the solution be positive. But it is required that the two expressions, and

, be positive after we substitute 3 for x. If we extend our idea of argu-
ment from variables to expressions, then when checking solutions, we can sim-
ply remember that arguments must be positive.

In the next example we use the definition of logarithm to solve a loga-
rithmic equation.

2x � 1
4x � 5

x � 3

x � 3log6 7 � log6 7

log6 �2 � 3 � 1� � log6 7
log6 �4 � 3 � 5� � log6 7x � 3

x � 3

 2x � 6

 4x � 5 � 2x � 1

 log6 �4x � 5� � log6 �2x � 1�

log6 �4x � 5� � log6 �2x � 1�

0 � a � 1

�0, ��loga xa � 1

0 � a � 1
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Theorem: Logarithmic
Functions Are One-to-One

The logarithmic function with base a is one-to-one. Thus, the following
equivalent conditions are satisfied for positive real numbers and .

(1) If , then .

(2) If , then .x1 � x2loga x1 � loga x2

loga x1 � loga x2x1 � x2

x2x1

�
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E X A M P L E  4 Solving a logarithmic equation

Solve the equation .

S O L U T I O N

given

change to exponential form

solve for x

C h e c k LS:

RS: 3

Since is a true statement, is a solution. L

We next sketch the graph of a specific logarithmic function.

E X A M P L E  5 Sketching the graph of a logarithmic function

Sketch the graph of f if .

S O L U T I O N We will describe three methods for sketching the graph.

Method 1 Since the functions given by and are inverses of each
other, we proceed as we did for in Figure 1; that is, we first sketch
the graph of and then reflect it through the line . This gives us the
sketch in Figure 2. Note that the points , , , and (2, 9) on
the graph of reflect into the points , , , and (9, 2)
on the graph of .

Figure 2

Method 2 We can find points on the graph of by letting ,
where k is a real number, and then applying property 3 of logarithms on 
page 309, as follows:

y � log3 x � log3 3k � k

x � 3ky � log3 x

y � log3x

y � 3x

y

x

y � x

y � log3 x
�3, 1��1, 0��3�1, �1�y � 3x

�1, 3��0, 1���1, 3�1�
y � xy � 3x

y � loga x
3xlog3 x

f �x� � log3 x

x � 593 � 3

log4 �5 � 59� � log4 64 � log4 43 � 3x � 59

x � 59

 5 � x � 43

 log4 �5 � x� � 3

log4 (5 � x) � 3

�

(continued)



Using this formula, we obtain the points on the graph listed in the following
table.

This gives us the same points obtained using the first method.

Method 3 We can sketch the graph of by sketching the graph of
the equivalent exponential form . L

Before proceeding, let’s plot one more point on in Figure 2. If
we let , then (see Figure 3). (We see that is a number
between 1 and 2; we’ll be able to better approximate in Section 5.6.)
Now on the graph of we have the point so ,
which illustrates property 4 of logarithms on page 309 and reinforces the claim
that logarithms are exponents.

As in the following examples, we often wish to sketch the graph of
, where u is some expression involving x.

E X A M P L E  6 Sketching the graph of a logarithmic function

Sketch the graph of f if for .

S O L U T I O N The graph is symmetric with respect to the y-axis, since

If , then and the graph coincides with the graph of 
sketched in Figure 2. Using symmetry, we reflect that part of the graph through
the y-axis, obtaining the sketch in Figure 4.

Alternatively, we may think of this function as with sub-
stituted for x (refer to the discussion on page 180). Since all points on the
graph of g have positive x-coordinates, we can obtain the graph of f by com-
bining g with the reflection of g through the y-axis. L

E X A M P L E  7 Reflecting the graph of a logarithmic function

Sketch the graph of f if .

S O L U T I O N The domain of f is the set of negative real numbers, since
exists only if or, equivalently, . We can obtain the

graph of f from the graph of by replacing each point in Fig-
ure 2 by . This is equivalent to reflecting the graph of 
through the y-axis. The graph is sketched in Figure 5.

Another method is to change to the exponential form
and then sketch the graph of . Lx � �3y3y � �x

y � log3 ��x�

y � log3 x��x, y�
�x, y�y � log3 x

x � 0�x � 0log3 ��x�

f �x� � log3 ��x�

� x �g�x� � log3 x

y � log3 x� x � � xx � 0

f ��x� � log3 � �x � � log3 � x � � f �x�.

x � 0f �x� � log3 � x �

f �x� � loga u

5 � 3log35(x, y) � (log3 5, 5),y � 3x

log3 5
log3 5y � log3 5x � 5

y � log3 x

x � 3y

y � log3 x
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x � 3k

y � log3 x � k 0 1 2 3�1�2�3

333231303�13�23�3

Figure 4

y

x

y � log3 �x�

Figure 3

y � log3x

y � 3x

y

x

y � x

(3, 1)

(1, 3)

(2, 9)

(9, 2)

(5, log35)

(log35, 5)

Figure 5

y

x

y � log3(�x)



5 . 4  L o g a r i t h m i c  F u n c t i o n s 313

E X A M P L E  8 Shifting graphs of logarithmic equations

Sketch the graph of the equation:

(a) (b)

S O L U T I O N

(a) The graph of was sketched in Figure 2 and is resketched in Fig-
ure 6. From the discussion of horizontal shifts in Section 3.5, we can obtain
the graph of by shifting the graph of two units to
the right, as shown in Figure 6.

(b) From the discussion of vertical shifts in Section 3.5, the graph of the equa-
tion can be obtained by shifting the graph of two
units downward, as shown in Figure 7. Note that the x-intercept is given by

, or . L

E X A M P L E  9 Reflecting the graph of a logarithmic function

Sketch the graph of f if .

S O L U T I O N If we write

then, by applying the same technique used to obtain the graph of the equation
in Example 7 (with x replaced by ), we see that the graph

of f is the reflection of the graph of through the vertical line
. This gives us the sketch in Figure 8.

Another method is to change to the exponential form
and then sketch the graph of . L

Before electronic calculators were invented, logarithms with base 10 were
used for complicated numerical computations involving products, quotients,
and powers of real numbers. Base 10 was used because it is well suited for
numbers that are expressed in scientific form. Logarithms with base 10 are
called common logarithms. The symbol is used as an abbreviation for

, just as is used as an abbreviation for .

Since inexpensive calculators are now available, there is no need for com-
mon logarithms as a tool for computational work. Base 10 does occur in ap-
plications, however, and hence many calculators have a key, which can be
used to approximate common logarithms.

LOG

222log10 x
log x

x � 2 � 3y3y � 2 � x
y � log3 �2 � x�

x � 2
y � log3 �x � 2�

x � 2y � log3 ��x�

f�x� � log3 �2 � x� � log3 ���x � 2�	,

f�x� � log3 �2 � x�

x � 32 � 9log3 x � 2

y � log3 xy � log3 x � 2

y � log3 xy � log3 �x � 2�

y � log3 x

y � log3 x � 2y � log3 �x � 2�

Figure 6

y

x
y � log3(x � 2)

y � log3x

Figure 7

y

x
y � log3x � 2

y � log3x

Figure 8

y

x

y � log3(x � 2)y � log3(2 � x)

Definition of 
Common Logarithm

for every x � 0log x � log10 x



The natural exponential function is given by . The logarithmic
function with base e is called the natural logarithmic function. The symbol
ln x (read “ell-en of x”) is an abbreviation for , and we refer to it as the
natural logarithm of x. Thus, the natural logarithmic function and the natu-
ral exponential function are inverse functions of each other.

Most calculators have a key labeled , which can be used to approxi-
mate natural logarithms. The next illustration gives several examples of
equivalent forms involving common and natural logarithms.

Equivalent Forms

Logarithmic form Exponential form

To find x when given or , we may use the key or the 
key, respectively, on a calculator, as in the next example. If your calculator has
an key (for inverse), you may enter x and successively press or

.

E X A M P L E  1 0 Solving a simple logarithmic equation

Find x if

(a) (b)

S O L U T I O N

(a) Changing to its equivalent exponential form gives us

Evaluating the last expression to three-decimal-place accuracy yields

(b) Changing to its equivalent exponential form gives us

Lx � e4.7 
 109.95.

ln x � 4.7

x 
 62.503.

x � 101.7959.

log x � 1.7959

ln x � 4.7log x � 1.7959

LNINV

LOGINVINV

ex10xln xlog x

ey�3 � zln z � y � 3

e2 � xln x � 2

10 y�3 � zlog z � y � 3

102 � xlog x � 2

LN

loge x

f�x� � ex
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Definition of 
Natural Logarithm

x for every x � 0ln x � loge
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The following chart lists common and natural logarithmic forms for the
properties on page 309.

The last property for natural logarithms allows us to write the number a
as , so the exponential function can be written as 
or as . Many calculators compute an exponential regression model
of the form . If an exponential model with base e is desired, we can
write the model

Converting to Base e Expressions

is equivalent to

is equivalent to

is equivalent to

Figure 9 shows four logarithm graphs with base . Note that for
, as the base of the logarithm increases, the graphs increase more slowly

(they are more horizontal). This makes sense when we consider the graphs of
the inverses of these functions: , , , and . Here, for

, as the base of the exponential expression increases, the graphs increase
faster (they are more vertical).

The next four examples illustrate applications of common and natural
logarithms.

E X A M P L E  1 1 The Richter scale

On the Richter scale, the magnitude R of an earthquake of intensity I is
given by

where is a certain minimum intensity.

(a) If the intensity of an earthquake is , find R.

(b) Express I in terms of R and .I0

1000I0

I0

R � log
I

I0

,

x � 0
y � 10xy � 3xy � exy � 2x

x � 1
a � 1

4 � ex ln 24 � 2x

e3 ln xx3

ex ln 33x

y � abx as y � aex ln b.

y � abx

f �x� � ex ln a

f �x� � �eln a�xf �x� � axeln a

Logarithms with base a Common logarithms Natural logarithms

(1)

(2)

(3)

(4) eln x � x10log x � xaloga x � x

ln ex � xlog 10x � xloga ax � x

ln e � 1log 10 � 1loga a � 1

ln 1 � 0log 1 � 0loga 1 � 0

Figure 9

y

x

I L L U S T R A T I O N



S O L U T I O N

(a) given

let

cancel

for every x

From this result we see that a tenfold increase in intensity results in an increase
of 1 in magnitude (if 1000 were changed to 10,000, then 3 would change to 4).

(b) given

change to exponential form

multiply by L

E X A M P L E  1 2 Newton’s law of cooling

Newton’s law of cooling states that the rate at which an object cools is directly
proportional to the difference in temperature between the object and its sur-
rounding medium. Newton’s law can be used to show that under certain con-
ditions the temperature T (in °C) of an object at time t (in hours) is given by

. Express t as a function of T.

S O L U T I O N given

isolate the exponential expression

change to logarithmic form

divide by 
L

E X A M P L E  1 3 Approximating a doubling time

Assume that a population is growing continuously at a rate of 4% per year. Ap-
proximate the amount of time it takes for the population to double its size—
that is, its doubling time.

S O L U T I O N Note that an initial population size is not given. Not knowing
the initial size does not present a problem, however, since we wish only to de-
termine the time needed to obtain a population size relative to the initial popu-
lation size. Using the growth formula with gives us

let

divide by q0 �q0 � 0� 2 � e0.04t

q � 2q0 2q0 � q0e0.04t

r � 0.04q � q0ert

�2t � �
1

2
 ln 

T

75

�2t � ln
T

75

e�2t �
T

75

T � 75e�2t

T � 75e�2t

I0I � I0 � 10R

I

I0

� 10R

R � log
I

I0

log 10x � x� 3

1000 � 103� log 103

I0� log 1000

I � 1000I0� log
1000I0

I0

R � log
I

I0
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change to logarithmic form

multiply by 

The fact that did not have any effect on the answer indicates that the
doubling time for a population of 1000 is the same as the doubling time for a
population of 1,000,000 or any other reasonable initial population. L

From the last example we may obtain a general formula for the doubling
time of a population—namely,

or, equivalently,

Since , we see that the doubling time t for a growth of this type is
approximately . Because the numbers 70 and 72 are close to 69 but have
more divisors, some resources refer to this doubling relationship as the rule of
70 or the rule of 72. As an illustration of the rule of 72, if the growth rate of a
population is 8%, then it takes about years for the population to 
double. More precisely, this value is

E X A M P L E  1 4 Determining the half-life of a radioactive substance

A physicist finds that an unknown radioactive substance registers 2000 counts
per minute on a Geiger counter. Ten days later the substance registers 1500
counts per minute. Using calculus, it can be shown that after t days the amount
of radioactive material, and hence the number of counts per minute , is di-
rectly proportional to for some constant c. Determine the half-life of the
substance.

S O L U T I O N Since is directly proportional to ,

where k is a constant. Letting and using , we obtain

Hence, the formula for may be written

Since , we may determine c as follows:

let in 

isolate the exponential expression

change to logarithmic form

divide by 10c �
1
10 ln 34

 10c � ln 3
4

3
4 � e10c

N�t�t � 10 1500 � 2000ec�10

N�10� � 1500

N�t� � 2000ect.

N�t�
2000 � kec0 � k � 1 � k.

N�0� � 2000t � 0

N�t� � kect,

ectN�t�

ect

N�t�

ln 2

8
� 100 
 8.7 yr.

72�8 � 9

0.69�r
ln 2 
 0.69

t �
ln 2

r
.rt � ln 2

q0

1

0.04
� 25t � 25 ln 2 
 17.3 yr.

 0.04t � ln 2

(continued)



Finally, since the half-life corresponds to the time t at which is equal
to 1000, we have the following:

let

isolate the exponential expression

change to logarithmic form

divide by c

approximate L
 24 days

c �
1
10 ln 34�

1
1

10 ln 3
4

ln
1

2

t �
1

c
 ln 

1

2

ct � ln 1
2

1
2 � ect

N�t� � 1000 1000 � 2000ect

N�t�
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Exer. 1–2: Change to logarithmic form.

1 (a) (b) (c)

(d) (e) (f)

2 (a) (b) (c)

(d) (e) (f)

Exer. 3–4: Change to exponential form.

3 (a) (b)

(c) (d)

(e) (f)

4 (a) (b)

(c) (d)

(e) (f) loga 343 �
3
4log4 p � 5 � x

log6 �2x � 1� � 3logv w � q

log4
1

256 � �4log3 81 � 4

logb 512 �
3
2log2 m � 3x � 4

log3 �x � 2� � 5log t r � p

log3
1

243 � �5log2 32 � 5

�0.9�t �
1
23�2x �

P

F
7x � 100p

cp � d3�4 �
1
8135 � 243

�0.7�t � 5.357t �
a � b

a
3x � 4 � t

t r � s4�3 �
1
6443 � 64

Exer. 5–10: Solve for t using logarithms with base a.

5 6

7 8

9 10

Exer. 11–12: Change to logarithmic form.

11 (a) (b)

(c) (d)

(e)

12 (a) (b)

(c) (d)

(e)

Exer. 13–14: Change to exponential form.

13 (a) (b)

(c) (d)

(e)

14 (a) (b)

(c) (d)

(e) ln �t � 5� � 1.2

ln z � 7 � xln x �
1
2

log x � y � 2log x � �8

ln �z � 2� �
1
6

ln w � 4 � 3xln x � 0.1

log x � 20tlog x � 50

e0.1t � x � 2

e4 � D10x � 38z

10�2 � 0.01104 � 10,000

e2t � 3 � x

e7 � p10x � y � 1

10�3 � 0.001105 � 100,000

L � Mat/N � PA � BaCt � D

F � D � BatK � H � Cat

3a4t � 102at/3 � 5

5.4 E x e r c i s e s
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Exer. 15–16: Find the number, if possible.

15 (a) (b) (c)

(d) (e) (f)

(g)

16 (a) (b) (c)

(d) (e) (f)

(g)

Exer. 17–18: Find the number.

17 (a) (b) (c)

(d) (e) (f)

(g)

18 (a) (b) (c)

(d) (e) (f)

(g)

Exer. 19–34: Solve the equation.

19

20

21

22

23

24

25

26

27 28

29 30

31 32

33 34 ex ln 2 � 0.25ex ln 3 � 27

e�ln x � 0.2e2 ln x � 9

log x 2 � �4ln x 2 � �2

log4 x � �
3
2log9 x �

3
2

log2 �x � 5� � 4

log3 �x � 4� � 2

ln x 2 � ln �12 � x�

log x 2 � log ��3x � 2�

log7 �x � 5� � log7 �6x�

log5 �x � 2� � log5 �3x � 7�

log3 �x � 4� � log3 �1 � x�

log4 x � log4 �8 � x�

e1�ln 5

ln e2/3eln 8log 0.001

log 100,000log 10�610log 7

e2�ln 3

ln e�3eln 2log 0.0001

log 100log 10510log 3

log2 128

log3 2435log5 4log6 67

log5 0log9 9log8 1

log4
1

16

log5 1253log3 8log7 72

log4 ��2�log3 3log5 1

35 Sketch the graph of f if :

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) ( j)

(k) (l)

36 Work Exercise 35 if .

Exer. 37–42: Sketch the graph of f.

37 38

39 40

41 42

Exer. 43–44: Find a logarithmic function of the form 
for the given graph.

43

44 y

x

(8, 3) 

y

x

(9, 2) 

loga xf (x) �

f �x� � ln �e � x�f �x� � ln e � x

f �x� � ln � x � 1 �f �x� � ln � x �

f �x� � log �x � 100�f �x� � log �x � 10�

a � 5

f (x) � log1/a xf �x� � � loga x �

f �x� � loga �3 � x�f �x� � loga ��x�

f �x� � loga � x �f �x� � �loga x� � 2

f �x� � loga �x � 2�f �x� � �loga x� � 2

f �x� � loga �x � 2�f �x� � 2 loga x

f �x� � �loga xf �x� � loga x

a � 4



Exer. 45–50: Shown in the figure is the graph of a function f.
Express f (x) in terms of F.

45

46

47

(3, 0) 
(a � 2, 1) 

(a2 � 2, 2) 

1
a � 2, �1��

y

x

x � 2

y

x

(�1, 0) 
(�a, 1) 

(�a2, 2) 

1
a , �1���

y

x

(1, 0) 

(a, �1)

(a2, �2)

1
a , 1��

y

x

(1, 0) (a, 1) 
(a2, 2) 

1
a , �1��

F(x) � loga x

48

49

50

Exer. 51–52: Approximate x to three significant figures.

51 (a) (b)

(c) (d)

(e) (f )

52 (a) (b)

(c) (d)

(e) (f) ln x � �5ln x � 0.95

ln x � 3.7log x � �2.2118

log x � 4.9680log x � 1.8965

ln x � �1.6ln x � 0.05

ln x � 2.3log x � �1.6253

log x � 0.9469log x � 3.6274

(1, 0) 

(a2, 4) 

(a, 2) 

1
a , �2��

y

x

(1, 1) (a2, 3) 

(a, 2) 

1
a , 0��

y

x

y

x

(�2, 0) 

(a � 3, 1) 

(a2 � 3, 2) 

1
a � 3, �1��

x � �3
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53 Finding a growth rate Change to an ex-
ponential function with base e and approximate the growth
rate of f.

54 Finding a decay rate Change to an expo-
nential function with base e and approximate the decay rate 
of f.

55 Radium decay If we start with milligrams of radium,
the amount q remaining after t years is given by the formula

. Express t in terms of q and .

56 Bismuth isotope decay The radioactive bismuth isotope
disintegrates according to , where k is a

constant and t is the time in days. Express t in terms of Q
and k.

57 Electrical circuit A schematic of a simple electrical circuit
consisting of a resistor and an inductor is shown in the fig-
ure. The current I at time t is given by the formula

, where R is the resistance and L is the induc-
tance. Solve this equation for t.

Exercise 57

58 Electrical condenser An electrical condenser with initial
charge is allowed to discharge. After t seconds the charge
Q is , where k is a constant. Solve this equation
for t.

59 Richter scale Use the Richter scale formula 
to find the magnitude of an earthquake that has an intensity

(a) 100 times that of 

(b) 10,000 times that of 

(c) 100,000 times that of 

60 Richter scale Refer to Exercise 59. The largest recorded
magnitudes of earthquakes have been between 8 and 9 on
the Richter scale. Find the corresponding intensities in
terms of .I0

I0

I0

I0

R � log �I�I0�

Q � Q0ekt

Q0

V

R

L

I

I � 20e�Rt/L

Q � k�2��t/5210Bi

q0q � q0�2��t/1600

q0

f �x� � 100�1
2�x

f �x� � 1000�1.05�x 61 Sound intensity The loudness of a sound, as experienced by
the human ear, is based on its intensity level. A formula used
for finding the intensity level (in decibels) that corre-
sponds to a sound intensity I is , where 
is a special value of I agreed to be the weakest sound that can
be detected by the ear under certain conditions. Find if

(a) I is 10 times as great as 

(b) I is 1000 times as great as 

(c) I is 10,000 times as great as (This is the intensity
level of the average voice.)

62 Sound intensity Refer to Exercise 61. A sound intensity
level of 140 decibels produces pain in the average human
ear. Approximately how many times greater than must I
be in order for to reach this level?

63 U.S. population growth The population (in millions)
of the United States t years after 1980 may be approximated
by the formula . When will the population
be twice what it was in 1980?

64 Population growth in India The population (in mil-
lions) of India t years after 1985 may be approximated by
the formula . When will the population
reach 1.5 billion?

65 Children’s weight The Ehrenberg relation

is an empirically based formula relating the height h (in me-
ters) to the average weight W (in kilograms) for children 5
through 13 years old.

(a) Express W as a function of h that does not contain ln.

(b) Estimate the average weight of an 8-year-old child who
is 1.5 meters tall.

66 Continuously compounded interest If interest is com-
pounded continuously at the rate of 6% per year, approxi-
mate the number of years it will take an initial deposit of
$6000 to grow to $25,000.

67 Air pressure The air pressure (in ) at an altitude
of h feet above sea level may be approximated by the for-
mula . At approximately what alti-
tude h is the air pressure

(a) ?

(b) one-half its value at sea level?

10 lb�in2

p�h� � 14.7e�0.0000385h

lb�in2p�h�

ln W � ln 2.4 � �1.84�h

N(t) � 766e0.0182t

N(t)

N(t) � 231e0.0103t

N(t)

�
I0

I0

I0

I0

�

I0� � 10 log �I�I0�
�



68 Vapor pressure A liquid’s vapor pressure P (in ), a
measure of its volatility, is related to its temperature T
(in °F) by the Antoine equation

where a, b, and c are constants. Vapor pressure increases
rapidly with an increase in temperature. Express P as a
function of T.

69 Elephant growth The weight W (in kilograms) of a female
African elephant at age t (in years) may be approximated by

(a) Approximate the weight at birth.

(b) Estimate the age of a female African elephant weighing
1800 kilograms by using (1) the accompanying graph
and (2) the formula for W.

Exercise 69

70 Coal consumption A country presently has coal reserves of
50 million tons. Last year 6.5 million tons of coal was con-
sumed. Past years’ data and population projections suggest
that the rate of consumption R (in million ) will
increase according to the formula , and the total
amount T (in million tons) of coal that will be used in t years
is given by the formula . If the country
uses only its own resources, when will the coal reserves be
depleted?

T � 325�e0.02t � 1�

R � 6.5e0.02t

tons�year

1000

2000

3000

10 20 30 40 50 60 70 80 t (years)

W (kg)

W � 2600�1 � 0.51e�0.075t�3.

log P � a �
b

c � T
,

lb�in2 71 Urban population density An urban density model is a for-
mula that relates the population density D (in

) to the distance x (in miles) from the center of the city.
The formula for the central density a and coeffi-
cient of decay b has been found to be appropriate for many
large U.S. cities. For the city of Atlanta in 1970,
and . At approximately what distance was the
population density 2000 per square mile?

72 Brightness of stars Stars are classified into categories of
brightness called magnitudes. The faintest stars, with light
flux , are assigned a magnitude of 6. Brighter stars of light
flux L are assigned a magnitude m by means of the 
formula

(a) Find m if .

(b) Solve the formula for L in terms of m and .

73 Radioactive iodine decay Radioactive iodine is fre-
quently used in tracer studies involving the thyroid gland.
The substance decays according to the formula

, where is the initial dose and t is the time in
days. Find a, assuming the half-life of is 8 days.

74 Radioactive contamination Radioactive strontium has
been deposited in a large field by acid rain. If sufficient
amounts make their way through the food chain to humans,
bone cancer can result. It has been determined that the ra-
dioactivity level in the field is 2.5 times the safe level S.
decays according to the formula

where is the amount currently in the field and t is
the time in years. For how many years will the field be 
contaminated?

75 Walking speed In a survey of 15 cities ranging in popula-
tion P from 300 to 3,000,000, it was found that the average
walking speed S (in ) of a pedestrian could be ap-
proximated by .

(a) How does the population affect the average walking
speed?

(b) For what population is the average walking speed
?5 ft�sec

S � 0.05 � 0.86 log P
ft�sec

A0

A�t� � A0e�0.0239t,

90Sr

90Sr

131I
A0A�t� � A0a�t

131I

L0

L � 100.4L0

m � 6 � 2.5 log 
L

L0

.

L0

b � 0.10
a � 5.5

D � ae�bx

mi2

thousands�
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76 Computer chips For manufacturers of computer chips, it is
important to consider the fraction F of chips that will fail
after t years of service. This fraction can sometimes be ap-
proximated by the formula , where c is a posi-
tive constant.

(a) How does the value of c affect the reliability of a chip?

(b) If , after how many years will 35% of the
chips have failed?

Exer. 77–78: Approximate the function at the value of x to
four decimal places.

77 (a)

(b)

78 (a)

(b) g�x� �
x � 3.4

ln x � 4
, x � 0.55

f �x� � log �2x 2 � 1� � 10�x,  x � 1.95

g�x� �
�log x�2 � log x

4
,  x � 3.97

f �x� � ln �x � 1� � ex, x � 2

c � 0.125

F � 1 � e�ct

79 Cholesterol level in women Studies relating serum choles-
terol level to coronary heart disease suggest that a risk fac-
tor is the ratio x of the total amount C of cholesterol in the
blood to the amount H of high-density lipoprotein choles-
terol in the blood. For a female, the lifetime risk R of hav-
ing a heart attack can be approximated by the formula

For example, if , then there is a 65% chance that a
woman will have a heart attack over an average lifetime.
Calculate R for a female with and .

80 Cholesterol level in men Refer to Exercise 79. For a 
male, the risk can be approximated by the formula

. Calculate R for a male with 
and .H � 65

C � 287R � 1.36 ln x � 1.19

H � 78C � 242

R � 0.65

R � 2.07 ln x � 2.04 provided 0 � R � 1.

In the preceding section we observed that can be interpreted as an
exponent. Thus, it seems reasonable to expect that the laws of exponents can
be used to obtain corresponding laws of logarithms. This is demonstrated in
the proofs of the following laws, which are fundamental for all work with
logarithms.

loga x5.5
Properties of Logarithms

Laws of Logarithms If u and w denote positive real numbers, then

(1)

(2)

(3) loga �uc� � c loga u for every real number c

loga � u

w� � loga u � loga w

loga �uw� � loga u � loga w



Y Warning! Y

P R O O F S For all three proofs, let

The equivalent exponential forms are

We now proceed as follows:

(1) definition of u and w

law 1 of exponents

change to logarithmic form

definition of r and s

(2) definition of u and w

law 5(a) of exponents

change to logarithmic form

definition of r and s

(3) definition of u

law 2 of exponents

change to logarithmic form

definition of r L

The laws of logarithms for the special cases (common logs) and
(natural logs) are written as shown in the following chart.

As indicated by the following warning, there are no laws for expressing
or in terms of simpler logarithms.

The following examples illustrate uses of the laws of logarithms.

loga u � loga w�loga �u � w�
loga u � loga w�loga �u � w�

loga �u � w�loga �u � w�

a � e
a � 10

 loga �uc� � c loga u

 loga �uc� � cr

uc � acr

uc � �ar�c

 loga � u

w� � loga u � loga w

 loga � u

w� � r � s

u

w
� ar�s

u

w
�

ar

as

 loga �uw� � loga u � loga w

 loga �uw� � r � s

uw � ar�s

uw � aras

u � ar and w � as.

r � loga u and s � loga w.
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Common logarithms Natural logarithms

(1) (1)

(2) (2)

(3) (3) ln �uc� � c ln ulog �uc� � c log u

ln � u

w � � ln u � ln wlog � u

w � � log u � log w

ln �uw� � ln u � ln wlog �uw� � log u � log w
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E X A M P L E  1 Using laws of logarithms

Express in terms of logarithms of x, y, and z.

S O L U T I O N We write as and use laws of logarithms:

law 2

law 1

law 3

Note that if a term with a positive exponent (such as ) is in the numerator of
the original expression, it will have a positive coefficient in the expanded form,
and if it is in the denominator (such as ), it will have a negative coefficient
in the expanded form. L

E X A M P L E  2 Using laws of logarithms

Express as one logarithm:

S O L U T I O N We apply the laws of logarithms as follows:

law 3

algebra

law 1

law 2
L

E X A M P L E  3 Solving a logarithmic equation

Solve the equation .

S O L U T I O N

given

law 1 of logarithms

logarithmic functions are one-to-one

solve for x

C h e c k

Since is a true statement, is a solution. Lx � 15log5 33 � log5 33

RS: log5 11 � log5 3 � log5 �11 � 3� � log5 33
LS: log5 �2 � 15 � 3� � log5 33x � 15

x � 15

 2x � 3 � 33

 log5 �2x � 3� � log5 �11 � 3�
 log5 �2x � 3� � log5 11 � log5 3

log5 �2x � 3� � log5 11 � log5 3

� loga

23 x2 � 1

yz4

� loga 2
3 x2 � 1 � loga � yz4�

� loga 2
3 x2 � 1 � �loga y � loga z4�

� loga �x2 � 1�1/3 � loga y � loga z4

1
3 loga �x2 � 1� � loga y � 4 loga z

1
3 loga �x2 � 1� � loga y � 4 loga z

z2

x3

� 3 loga x �
1
2 loga y � 2 loga z

� loga x3 � loga y1/2 � loga z2

 loga

x32y

z2
� loga �x3y1/2� � loga z2

y1/22y

loga

x32y

z2

�



The laws of logarithms were proved for logarithms of positive real num-
bers u and w. If we apply these laws to equations in which u and w are ex-
pressions involving a variable, then extraneous solutions may occur. Answers
should therefore be substituted for the variable in u and w to determine
whether these expressions are defined.

E X A M P L E  4 Solving a logarithmic equation

Solve the equation .

S O L U T I O N

given

law 1 of logarithms

change to exponential form

multiply and set equal to 0

factor

zero factor theorem

solve for x

C h e c k  LS:

RS: 3

Since is a true statement, is a solution.

C h e c k  LS:

Since logarithms of negative numbers are undefined, is not a solution.

L

E X A M P L E  5 Solving a logarithmic equation

Solve the equation .

S O L U T I O N

rearrange terms

law 2 of logarithms

ln is one-to-one

multiply by 

solve for x

C h e c k Since both and are defined at (they are
logarithms of positive real numbers) and since our algebraic steps are correct,
it follows that is a solution of the given equation. L

11
4

x �
11
4ln �x � 1�ln �x � 6�

x �
11
4

x � 1x � 6 � 5x � 5

x � 6

x � 1
� 5

 ln �x � 6

x � 1� � ln
10

2

 ln �x � 6� � ln �x � 1� � ln 10 � ln 2

ln �x � 6� � ln 10 � ln �x � 1� � ln 2

x � �4

log2 ��4� � log2 ��4 � 2�x � �4

x � 23 � 3

� 1 � log2 22 � 1 � 2 � 3
log2 2 � log2 �2 � 2� � 1 � log2 4x � 2

x � 2,  x � �4

x � 2 � 0, x � 4 � 0

�x � 2��x � 4� � 0

x2 � 2x � 8 � 0

x�x � 2� � 23

log2 �x�x � 2�	 � 3

 log2 x � log2 �x � 2� � 3

log2 x � log2 �x � 2� � 3
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�
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E X A M P L E  6 Shifting the graph of a logarithmic equation

Sketch the graph of .

S O L U T I O N We may rewrite the equation as follows:

given

law 1 of logarithms

Thus, we can obtain the graph of by vertically shifting the
graph of in Figure 2 in Section 5.4 upward four units. This gives us
the sketch in Figure 1. L

E X A M P L E  7 Sketching graphs of logarithmic equations

Sketch the graph of the equation:

(a) (b)

S O L U T I O N

(a) Since , we may rewrite the given equation as

Using law 3 of logarithms, we have

We can obtain the graph of by multiplying the y-coordinates of
points on the graph of in Figure 4 of Section 5.4 by 2. This gives
us the graph in Figure 2(a).

(b) If , then x must be positive. Hence, the graph is identical to
that part of the graph of in Figure 2(a) that lies to the right of
the y-axis. This gives us Figure 2(b). L

y � 2 log3 �x �
y � 2 log3 x

y � log3 � x �
y � 2 log3 � x �

y � 2 log3 � x �.

y � log3 � x �2.

x 2 � � x �2

y � 2 log3 xy � log3 �x2�

y � log3 x
y � log3 �81x�

loga ax � x� 4 � log3 x

81 � 34� log3 34 � log3 x

� log3 81 � log3 x

y � log3 �81x�

y � log3 �81x�
Figure 1

y

x

y � log3x

y � log3(81x)
   � 4 � log3x

Figure 2
(a) (b)

y

x

y � log3(x2)

y

x

y � 2 log3x



E X A M P L E  8 A relationship between selling price and demand

In the study of economics, the demand D for a product is often related to its
selling price p by an equation of the form

where a, c, and k are positive constants.

(a) Solve the equation for D.

(b) How does increasing or decreasing the selling price affect the demand?

S O L U T I O N

(a) given

law 3 of logarithms

law 2 of logarithms

is one-to-one

(b) If the price p is increased, the denominator in will also in-
crease and hence the demand D for the product will decrease. If the price is
decreased, then will decrease and the demand D will increase. Lpk

D � c�pkpk

logaD �
c

pk

 loga D � loga

c

pk

 loga D � loga c � loga pk

 loga D � loga c � k loga p

loga D � loga c � k loga p,
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Exer. 1–8: Express in terms of logarithms of x, y, z, or w.

1 (a) (b) (c)

2 (a) (b) (c)

3 4

5 6

7 8

Exer. 9–16: Write the expression as one logarithm.

9 (a) (b)

(c)

10 (a) (b)

(c)
1
3 log4 w

log4 x � log4 �7y�log4 �3z� � log4 x

5 log3 y

log3 �2z� � log3 xlog3 x � log3 �5y�

ln x�3
y4

z5
ln�4

x7

y5z

log
2y

x423 z
log

23 z

x2y

loga

y 5w2

x 4z3
loga

x3w

y2z4

log3 2
5 ylog3 �xz�y�log3 �xyz�

log42
3 zlog4 � y�x�log4 �xz�

11

12

13

14

15

16

Exer. 17–34: Solve the equation.

17

18

19

20 3 log2 x � 2 log2 3

2 log3 x � 3 log3 5

log4 �3x � 2� � log4 5 � log4 3

log6 �2x � 3� � log6 12 � log6 3

2 ln x � 4 ln �1�y� � 3 ln �xy�

ln y3 �
1
3 ln �x3y6� � 5 ln y

2 log 
y3

x
� 3 log y �

1

2
 log x4y2

log �x3y2� � 2 log x23 y � 3 log � x

y�
5 loga x �

1
2 loga �3x � 4� � 3 loga �5x � 1�

2 loga x �
1
3 loga �x � 2� � 5 loga �2x � 3�

5.5 E x e r c i s e s
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21

22

23

24

25

26

27

28

29

30

31

32

33

34

Exer. 35–46: Sketch the graph of f.

35 36

37 38

39 40

41 42

43 44

45 46

Exer. 47–50: Shown in the figure is the graph of a func-
tion f. Express f (x) as one logarithm with base 2.

47 y

x

f �x� � log2 � 1

x �f �x� � log3 � 1

x �
f �x� � log2 2

3 xf �x� � log2 2x

f �x� � log3 �x 3�f �x� � log2 �x 3�

f �x� � log2 �x 2�f �x� � log3 �x 2�

f �x� �
1
3 log3 xf �x� � 3 log3 x

f �x� � log4 �16x�f �x� � log3 �3x�

log2 �x � 3� � log2 �x � 3� � log3 9 � 4log4 3

log3 �x � 2� � log3 27 � log3 �x � 4� � 5log5 1

ln x � 1 � ln �x � 1�

ln x � 1 � ln �x � 2�

log �57x� � 2 � log �x � 2�

log �x � 3� � 1 � log �x � 2�

log3 �x � 2� � log3 �x � 4� � 2

log3 �x � 3� � log3 �x � 5� � 1

log6 �x � 5� � log6 x � 2

log2 �x � 7� � log2 x � 3

ln x � ln �x � 6� �
1
2 ln 9

ln ��4 � x� � ln 3 � ln �2 � x�

log �x � 2� � log x � 2 log 4

log x � log �x � 1� � 3 log 4 48

49

50

51 Volume and decibels When the volume control on a stereo
system is increased, the voltage across a loudspeaker
changes from to , and the decibel increase in gain is
given by

Find the decibel increase if the voltage changes from 2 volts
to 4.5 volts.

52 Volume and decibels Refer to Exercise 51. What voltage
ratio k is needed for a decibel gain? for a decibel
gain?

�40�20

db � 20 log 
V2

V1

.

V2V1

y

x

y

x

y

x
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53 Pareto’s law Pareto’s law for capitalist countries states that
the relationship between annual income x and the number y
of individuals whose income exceeds x is

where b and k are positive constants. Solve this equation 
for y.

54 Price and demand If p denotes the selling price (in dollars)
of a commodity and x is the corresponding demand (in
number sold per day), then the relationship between p and x
is sometimes given by , where and a are pos-
itive constants. Express x as a function of p.

55 Wind velocity If v denotes the wind velocity (in ) at a
height of z meters above the ground, then under certain con-
ditions , where c is a positive constant and 
is the height at which the velocity is zero. Sketch the graph
of this equation on a zv-plane for and .

56 Eliminating pollution If the pollution of Lake Erie were
stopped suddenly, it has been estimated that the level y of
pollutants would decrease according to the formula

, where t is the time in years and is the pol-
lutant level at which further pollution ceased. How many
years would it take to clear 50% of the pollutants?

57 Reaction to a stimulus Let R denote the reaction of a sub-
ject to a stimulus of strength x. There are many possibilities
for R and x. If the stimulus x is saltiness (in grams of salt per
liter), R may be the subject’s estimate of how salty the so-
lution tasted, based on a scale from 0 to 10. One relation-
ship between R and x is given by the Weber-Fechner
formula, , where a is a positive constant
and is called the threshold stimulus.x0

R�x� � a log �x�x0�

y0y � y0e�0.3821t

z0 � 0.1 mc � 0.5

z0v � c ln �z�z0�

m�sec

p0p � p0e�ax

log y � log b � k log x,

(a) Find .

(b) Find a relationship between and .

58 Electron energy The energy of an electron after pass-
ing through material of thickness x is given by the equation

, where is the initial energy and is the
radiation length.

(a) Express, in terms of , the energy of an electron after
it passes through material of thickness .

(b) Express, in terms of , the thickness at which the elec-
tron loses 99% of its initial energy.

59 Ozone layer One method of estimating the thickness of the
ozone layer is to use the formula

where is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, I is the in-
tensity of the same wavelength after passing through a layer
of ozone x centimeters thick, and k is the absorption con-
stant of ozone for that wavelength. Suppose for a wave-
length of with , is measured
as 1.12. Approximate the thickness of the ozone layer to the
nearest 0.01 centimeter.

60 Ozone layer Refer to Exercise 59. Approximate the per-
centage decrease in the intensity of light with a wavelength
of centimeter if the ozone layer is 0.24 cen-
timeter thick.

3176 � 10�8

I0�Ik 
 0.393176 � 10�8 cm

I0

ln I0 � ln I � kx,

x0

x0

E0

x0E0E�x� � E0e�x/x0

E�x�

R�2x�R�x�

R�x0�

In this section we shall consider various types of exponential and logarithmic
equations and their applications. When solving an equation involving expo-
nential expressions with constant bases and variables appearing in the expo-
nent(s), we often equate the logarithms of both sides of the equation. When we
do so, the variables in the exponent become multipliers, and the resulting
equation is usually easier to solve. We will refer to this step as simply “take
log of both sides.”

E X A M P L E  1 Solving an exponential equation

Solve the equation .3x � 21

5.6
Exponential and

Logarithmic Equations
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S O L U T I O N given

take log of both sides

law 3 of logarithms

divide by log 3

We could also have used natural logarithms to obtain

Using a calculator gives us the approximate solution . A partial
check is to note that since and , the number x such that 
must be between 2 and 3, somewhat closer to 3 than to 2. L

We could also have solved the equation in Example 1 by changing the
exponential form to logarithmic form, as we did in Section 5.4,
obtaining

This is, in fact, the solution of the equation; however, since calculators typi-
cally have keys only for log and ln, we cannot approximate directly.
The next theorem gives us a simple change of base formula for finding 
if and b is any logarithmic base.

P R O O F We begin with the equivalent equations

and proceed as follows:

given

take of both sides

law 3 of logarithms

divide by 

Since , we obtain the formula. Lw � logb u

loga bw �
loga u

loga b

w loga b � loga u

loga loga bw � loga u

bw � u

w � logb u and bw � u

u � 0
logb u

log3 21

x � log3 21.

3x � 21

3x � 2133 � 2732 � 9
x 
 2.77

x �
ln 21

ln 3
.

x �
log 21

log 3

x log 3 � log 21

 log �3x� � log 21

 3x � 21

Theorem: Change 
of Base Formula

If and if a and b are positive real numbers different from 1, then

logb u �
loga u

loga b
.

u � 0



The following special case of the change of base formula is obtained by
letting and using the fact that :

The change of base formula is sometimes confused with law 2 of loga-
rithms. The first of the following warnings could be remembered with the
phrase “a quotient of logs is not the log of the quotient.”

The most frequently used special cases of the change of base formula are
those for (common logarithms) and (natural logarithms), as
stated in the next box.

Next, we will rework Example 1 using a change of base formula.

E X A M P L E  2 Using a change of base formula

Solve the equation .

S O L U T I O N We proceed as follows:

given

change to logarithmic form

special change of base formula 1

Another method is to use special change of base formula 2, obtaining

L

Logarithms with base 2 are used in computer science. The next example
indicates how to approximate logarithms with base 2 using change of base
formulas.

E X A M P L E 3 Approximating a logarithm with base 2

Approximate using

(a) common logarithms (b) natural logarithms

log2 5

x �
ln 21

ln 3
.

�
log 21

log 3

x � log3 21

 3x � 21

3x � 21

a � ea � 10

loga �u � b��
loga u

loga b
loga

u

b
;�

loga u

loga b

logb a �
1

loga b

loga a � 1u � a
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Y Warning! Y

Special Change 
of Base Formulas (1) (2) logb u �

loge u

loge b
�

ln u

ln b
logb u �

log10 u

log10 b
�

log u

log b



S O L U T I O N Using special change of base formulas 1 and 2, we obtain the
following:

(a)

(b)
L

E X A M P L E  4 Solving an exponential equation

Solve the equation .

S O L U T I O N We can use either common or natural logarithms. Using com-
mon logarithms gives us the following:

given

take log of both sides

law 3 of logarithms

multiply

get all terms with x on one side

factor, and use law 3 of logarithms

Substituting for x in both and gives us
the approximate value 0.00004. We deduce from this that the graphs of

and intersect at approximately 

E X A M P L E  5 Solving an exponential equation

Solve the equation .

S O L U T I O N given

multiply by 2

definition of negative exponent

multiply by the lcd,

simplify and subtract 6�5x��5x�2 � 6�5x� � 1 � 0

5x 5x�5x� �
1

5x
�5x� � 6�5x�

 5x �
1

5x
� 6

 5x � 5�x � 6

5x � 5�x

2
� 3

5x � 5�x

2
� 3

(�3.64, 0.00004).y � 6x�2y � 52x�1

6x�252x�1�log 180�log 25
6 
 �3.64

x � �
log �5 � 36�

log 25
6

x�log 52 � log 6� � ��log 5 � log 62�

 2x log 5 � x log 6 � �log 5 � 2 log 6

 2x log 5 � log 5 � x log 6 � 2 log 6

�2x � 1� log 5 � �x � 2� log 6

 log �52x�1� � log �6x�2�

 52x�1 � 6x�2

52x�1 � 6x�2

log2 5 �
ln 5

ln 2

 2.322

log2 5 �
log 5

log 2

 2.322
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solve for x, and use laws of 
logarithms

(continued)

L



We recognize this form of the equation as a quadratic in and proceed as
follows:

law of exponents

quadratic formula

simplify

, but 

take log of both sides

law 3 of logarithms

divide by log 5

An approximation is  . L

E X A M P L E  6 Solving an equation involving logarithms

Solve the equation for x.

S O L U T I O N

square both sides

multiply by 9

make one side 0

factor out log x

set each factor equal to 0

add 9

C h e c k  LS:
RS:

C h e c k  LS:
RS:

The equation has two solutions, 1 and 1 billion. L

The function is called the hyperbolic secant function.
In the next example we solve this equation for x in terms of y. Under suitable
restrictions, this gives us the inverse function.

y � 2��ex � e�x�

2log 109 � 29 � 3
log 23 109 � log 103 � 3x � 109

2log 1 � 20 � 0
log 23 1 � log 1 � 0x � 1

log10 x � a &fi x � 10ax � 100 � 1 or x � 109

 log x � 9

 log x � 0, log x � 9 � 0

�log x��log x � 9� � 0

�log x�2 � 9 log x � 0

�log x�2 � 9 log x

1
9 �log x�2 � log x

log xr � r log x1
3 log x � 2log x

2
n x � x1/nlog x1/3 � 2log x

log 23 x � 2log x

x 
 1.13

x �
log �3 � 210 �

log 5

x log 5 � log �3 � 210 �
 log 5x � log �3 � 210 �

3 � 210 � 05x � 0 5x � 3 � 210

 5x � 3 � 210

 5x �
6 � 236 � 4

2

�5x�2 � 6�5x� � 1 � 0

5x
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Note that can be written as .52x�5x�2

�

�



E X A M P L E  7 Finding an inverse hyperbolic function

Solve for x in terms of y.

S O L U T I O N given

multiply by 

definition of negative exponent

multiply by the lcd,

simplify and subtract 

We recognize this form of the equation as a quadratic in with coefficients
, , and . Note that we are solving for , not x.

quadratic formula

simplify

factor out 

cancel a factor of 2

take ln of both sides

For the blue curve in Figure 1, the inverse function is

shown in blue in Figure 2. Notice the domain and range rela-
tionships. For the red curve in Figure 1, the inverse
function is

shown in red in Figure 2. Since the hyperbolic secant is not
one-to-one, it cannot have one simple equation for its inverse.

L

y � g�1�x� � ln
1 � 21 � x2

x
,

y � g�x�

y � f �1�x� � ln
1 � 21 � x2

x
,

y � f �x�

x � ln
1 � 21 � y2

y

ex �
1 � 21 � y2

y

24�
2 � 24 21 � y2

2y

�
2 � 24 � 4y2

2y

ex �
���2� � 2��2�2 � 4� y�� y�

2� y�

exc � yb � �2a � y
ex

2exy�ex�2 � 2ex � y � 0

exyex�ex� �
y

ex
�ex� � 2�ex�

yex �
y

ex
� 2

ex � e�xyex � ye�x � 2

y �
2

ex � e�x

y � 2��ex � e�x�
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Figure 2

1 � �1 � x 2

xy � f �1(x) � ln

0 � x � 1

y 
 0

y

x
1 � �1 � x 2

xy � g�1(x) � ln

0 � x � 1

y � 0

Figure 1

y

x

2
ex � e�xy � f (x) �

2
ex � e�xy � g(x) �

0 � y � 1 0 � y � 1

x � 0 x 
 0



The inverse hyperbolic secant is part of the equation of the curve called a
tractrix. The curve is associated with Gottfried Wilhelm von Leibniz’s
(1646–1716) solution to the question “What is the path of an object dragged
along a horizontal plane by a string of constant length when the end of the
string not joined to the object moves along a straight line in the plane?”

E X A M P L E  8 Approximating light penetration in an ocean

The Beer-Lambert law states that the amount of light I that penetrates to a
depth of x meters in an ocean is given by , where and is
the amount of light at the surface.

(a) Solve for x in terms of common logarithms.

(b) If approximate the depth at which . (This determines the
photic zone where photosynthesis can take place.)

S O L U T I O N

(a) given

isolate the exponential expression

change to logarithmic form

special change of base formula 1

(b) Letting and in the formula for x obtained in part (a),
we have

substitute for I and c

cancel ; law 2 of logarithms

property of logarithms

simplify

An approximation is . Lx 
 3.32 m

�
2

log 4
.

log 10x � x�
�2

�log 4

�
log 10�2

0 � log 4

I0�
log �0.01�

log 1 � log 4

x �
log �0.01I0�I0�

log 1
4

c �
1
4I � 0.01I0

�
log �I�I0�

log c

x � logc

I

I0

I

I0

� cx

I � I0cx

I � 0.01I0c �
1
4 ,

I00 � c � 1I � I0cx
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E X A M P L E  9 Comparing light intensities

If a beam of light that has intensity is projected vertically downward into
water, then its intensity at a depth of x meters is (see
Figure 3). At what depth is the intensity one-half its value at the surface?

S O L U T I O N At the surface, , and the intensity is

Figure 3

We wish to find the value of x such that . This leads to the following:

desired intensity

formula for 

divide by 

change to logarithmic form

divide by 

An approximation is . Lx 
 0.495 m

�1.4x �
ln 1

2

�1.4

�1.4x � ln 1
2

I0 �I0 � 0�e�1.4x �
1
2

I�x�I0e�1.4x �
1
2 I0

I�x� �
1
2 I0

I�x� �
1
2 I0

I (x)

x meters

I0

� I0.

I�0� � I0e0

x � 0

I�x� � I0e�1.4xI�x�
I0
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E X A M P L E  1 0 A logistic curve

A logistic curve is the graph of an equation of the form

where k, b, and c are positive constants. Such curves are useful for describing
a population y that grows rapidly initially, but whose growth rate decreases
after x reaches a certain value. In a famous study of the growth of protozoa by
Gause, a population of Paramecium caudata was found to be described by a
logistic equation with , , and x the time in days.

(a) Find b if the initial population was 3 protozoa.

(b) In the study, the maximum growth rate took place at . At what time
x did this occur?

(c) Show that after a long period of time, the population described by any lo-
gistic curve approaches the constant k.

S O L U T I O N

(a) Letting and in the logistic equation, we obtain

We now proceed as follows:

when

multiply by 

solve for b

(b) Using the fact that leads to the following:

let in part (a)

multiply by 

isolate

change to logarithmic form

divide by 

(c) As , . Hence,

A sketch of the logistic curve that has equation is
shown in Figure 4. L

y � 105�(1 � 34e�1.1244x)

y �
k

1 � be�cx
l

k

1 � b � 0
� k.

e�cx l 0x l �

�1.1244x �
ln 53

1768

�1.1244

 3.12 days

�1.1244x � ln 53
1768

e�1.1244xe�1.1244x � �105
52 � 1� �

1
34 �

53
1768

1 � 34e�1.1244x

52
 1 � 34e�1.1244x �

105

52

y � 52 52 �
105

1 � 34e�1.1244x

b � 34

b � 34

1 � b

3
 1 � b � 35

x � 0y � 3 3 �
105

1 � be0
�

105

1 � b

y �
105

1 � be�1.1244x
.

k � 105c � 1.1244

y � 52

k � 105c � 1.1244

y �
k

1 � be�cx
,
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Figure 4

105

3

52

105

x

y
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Exer. 1–4: Find the exact solution and a two-decimal-place
approximation for it by using (a) the method of Example 1
and (b) the method of Example 2.

1 2

3 4

Exer. 5–8: Estimate using the change of base formula.

5 6

7 8

Exer. 9–10: Evaluate using the change of base formula
(without a calculator).

9 10

Exer. 11–24: Find the exact solution, using common loga-
rithms, and a two-decimal-place approximation of each so-
lution, when appropriate.

11 12

13 14

15 16

17

18

19

20

21 22

23 24

Exer. 25–32: Solve the equation without using a calculator.

25 26

27 28

29 30

31 32

Exer. 33–34: Solve the equation.

33

34 log4 x � log8 x � 1

log3 x � log9 (x � 42) � 0

ex � 4e�x � 5e2x � 2ex � 15 � 0

log �x3� � �log x�3x2log x � 108

log 2x3 � 9 � 2log �log x� � 2

log 2x � 2log xlog �x2� � �log x�2

2x � 6�2�x� � 64x � 3�4�x� � 8

3�3x� � 9�3�x� � 285x � 125�5�x� � 30

log �x � 4� � log �3x � 10� � log �1�x�

log �x2 � 4� � log �x � 2� � 2 � log �x � 2�

log �5x � 1� � 2 � log �2x � 3�

log x � 1 � log �x � 3�

2�x2
� 52�x � 8

32�3x � 42x�122x�3 � 5x�2

42x�3 � 5x�23x�4 � 21�3x

log7 243

log7 3

log5 16

log5 4

log6
1
2log9 0.2

log2 20log5 6

�1
3�x

� 10034�x � 5

4x � 35x � 8

Exer. 35–38: Use common logarithms to solve for x in terms
of y.

35 36

37 38

Exer. 39–42: Use natural logarithms to solve for x in terms
of y.

39 40

41 42

Exer. 43–44: Sketch the graph of f, and use the change of
base formula to approximate the y-intercept.

43 44

Exer. 45–46: Sketch the graph of f, and use the change of
base formula to approximate the x-intercept.

45 46

Exer. 47–50: Chemists use a number denoted by pH to de-
scribe quantitatively the acidity or basicity of solutions. By
definition, pH � �log [H�], where [H�] is the hydrogen ion
concentration in moles per liter.

47 Approximate the pH of each substance.

(a) vinegar:

(b) carrots:

(c) sea water:

48 Approximate the hydrogen ion concentration of each
substance.

(a) apples:

(b) beer:

(c) milk:

49 A solution is considered basic if or acidic 
if . Find the corresponding inequalities involv-
ing pH.

50 Many solutions have a pH between 1 and 14. Find the cor-
responding range of .�H�	

�H�	 � 10�7

�H�	 � 10�7

pH 
 6.6

pH 
 4.2

pH 
 3.0

�H�	

�H�	 
 5.0 � 10�9

�H�	 
 1.0 � 10�5

�H�	 
 6.3 � 10�3

f �x� � 3x � 6f �x� � 4x � 3

f �x� � log3 �x � 5�f �x� � log2 �x � 3�

y �
ex � e�x

ex � e�x
y �

ex � e�x

ex � e�x

y �
ex � e�x

2
y �

ex � e�x

2

y �
10x � 10�x

10x � 10�x
y �

10x � 10�x

10x � 10�x

y �
10x � 10�x

2
y �

10x � 10�x

2
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51 Compound interest Use the compound interest formula to
determine how long it will take for a sum of money to 
double if it is invested at a rate of 6% per year compounded
monthly.

52 Compound interest Solve the compound interest formula

for t by using natural logarithms.

53 Photic zone Refer to Example 8. The most important zone
in the sea from the viewpoint of marine biology is the photic
zone, in which photosynthesis takes place. The photic zone
ends at the depth where about 1% of the surface light pene-
trates. In very clear waters in the Caribbean, 50% of the
light at the surface reaches a depth of about 13 meters. Es-
timate the depth of the photic zone.

54 Photic zone In contrast to the situation described in the pre-
vious exercise, in parts of New York harbor, 50% of the sur-
face light does not reach a depth of 10 centimeters. Estimate
the depth of the photic zone.

55 Drug absorption If a 100-milligram tablet of an asthma
drug is taken orally and if none of the drug is present in the
body when the tablet is first taken, the total amount A in the
bloodstream after t minutes is predicted to be

(a) Sketch the graph of the equation.

(b) Determine the number of minutes needed for 50 mil-
ligrams of the drug to have entered the bloodstream.

56 Drug dosage A drug is eliminated from the body through
urine. Suppose that for a dose of 10 milligrams, the amount

remaining in the body t hours later is given by
and that in order for the drug to be effective,

at least 2 milligrams must be in the body.

(a) Determine when 2 milligrams is left in the body.

(b) What is the half-life of the drug?

57 Genetic mutation The basic source of genetic diversity is
mutation, or changes in the chemical structure of genes. If a
gene mutates at a constant rate m and if other evolutionary
forces are negligible, then the frequency F of the original
gene after t generations is given by , where

is the frequency at .t � 0F0

F � F0�1 � m�t

A�t� � 10�0.8�t

A�t�

A � 100�1 � �0.9�t	 for 0 � t � 10.

A � P�1 �
r

n�nt

(a) Solve the equation for t using common logarithms.

(b) If , after how many generations does
?

58 Employee productivity Certain learning processes may 
be illustrated by the graph of an equation of the form

, where a, b, and c are positive con-
stants. Suppose a manufacturer estimates that a new em-
ployee can produce five items the first day on the job. As the
employee becomes more proficient, the daily production in-
creases until a certain maximum production is reached.
Suppose that on the nth day on the job, the number of
items produced is approximated by

(a) Estimate the number of items produced on the fifth
day, the ninth day, the twenty-fourth day, and the
thirtieth day.

(b) Sketch the graph of f from to . (Graphs
of this type are called learning curves and are used
frequently in education and psychology.)

(c) What happens as n increases without bound?

59 Height of trees The growth in height of trees is frequently
described by a logistic equation. Suppose the height h (in
feet) of a tree at age t (in years) is

as illustrated by the graph in the figure.

(a) What is the height of the tree at age 10?

(b) At what age is the height 50 feet?

Exercise 59

h (feet)

t (years)
10 20 30 40 50 60

50

100

h �
120

1 � 200e�0.2t
,

n � 30n � 0

f �n� � 3 � 20�1 � e�0.1n�.

f �n�

f �x� � a � b�1 � e�cx�

F �
1
2 F0

m � 5 � 10�5
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60 Employee productivity Manufacturers sometimes use em-
pirically based formulas to predict the time required to pro-
duce the nth item on an assembly line for an integer n. If

denotes the time required to assemble the nth item and
denotes the time required for the first, or prototype, item,

then typically for some positive constant k.

(a) For many airplanes, the time required to assemble the
second airplane, , is equal to . Find the
value of k.

(b) Express, in terms of , the time required to assemble
the fourth airplane.

(c) Express, in terms of , the time required to as-
semble the (2n)th airplane.

61 Vertical wind shear Refer to Exercises 67–68 in Sec-
tion 3.3. If is the wind speed at height and if is the
wind speed at height , then the vertical wind shear can be
described by the equation

where P is a constant. During a one-year period in Mon-
treal, the maximum vertical wind shear occurred when 
the winds at the 200-foot level were while the
winds at the 35-foot level were . Find P for these
conditions.

62 Vertical wind shear Refer to Exercise 61. The average ver-
tical wind shear is given by the equation

Suppose that the velocity of the wind increases with in-
creasing altitude and that all values for wind speeds taken at
the 35-foot and 200-foot altitudes are greater than .
Does increasing the value of P produce larger or smaller
values of s?

Exer. 63–64: An economist suspects that the following data
points lie on the graph of , where c and k are con-
stants. If the data points have three-decimal-place accuracy,
is this suspicion correct?

63 , , ,

64 , , , ,
�2, �0.727�

�1.5, �0.551��1, �0.397��0.5, �0.345��0, �0.3�

�3, 2.144��2, 2.639��1, 3.249��0, 4�

y � c2kx

1 mi�hr

s �
v1 � v0

h1 � h0

.

6 mi�hr
25 mi�hr

v0

v1

� �h0

h1
�P

,

h1

v1h0v0

T�2n�T�n�

T1

�0.80�T1T�2�

T�n� � T1n�k

T1

T�n�

Exer. 65–66: It is suspected that the following data points lie
on the graph of y � c log (kx � 10), where c and k are con-
stants. If the data points have three-decimal-place accuracy,
is this suspicion correct?

65 (0, 1.5), (1, 1.619), (2, 1.720), (3, 1.997)

66 (0, 0.7), (1, 0.782), (2, 0.847), (3, 0.900), (4, 0.945)

Exer. 67–68: Approximate the function at the value of x to
four decimal places.

67

68

69 Human memory A group of elementary students were taught
long division over a one-week period. Afterward, they were
given a test. The average score was 85. Each week there-
after, they were given an equivalent test, without any review.
Let represent the average score after weeks. De-
termine which function best models the situation.

(1)

(2)

(3)

(4)

70 Cooling A jar of boiling water at 212°F is set on a table in a
room with a temperature of 72°F. If represents the tem-
perature of the water after t hours, determine which function
best models the situation.

(1)

(2)

(3)

(4) T�t� � 72 � 10 ln �140t � 1�

T�t� � 212e�t

T�t� � 140e�t � 72

T�t� � 212 � 50t

T�t�

n�t� � 85 � 15 ln �t � 1�

n�t� � 86 � et

n�t� � 70 � 10 ln �t � 1�

n�t� � 85et/3

t 
 0n�t�

h�x� � 3 log3 �2x � 1� � 7 log2 �x � 0.2�;  x � 52.6

h�x� � log4 x � 2 log8 1.2x; x � 5.3
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1 Is a one-to-one function?

2 The graph of a function f with domain is shown in
the figure. Sketch the graph of .

Exercise 2

Exer. 3–4: (a) Find . (b) Sketch the graphs of f and
on the same coordinate plane.

3 4 ,

5 Refer to the figure to determine each of the following:

Exercise 5

(a) (b) (c)

(d) all x such that 

(e) all x such that f �x� � 4

f �x� � 4

f �1�4�� f � f ��1�f �1�

y

x

y � f (x)

(2, 4)

(1, 2)

x � 0f �x� � 9 � 2x2f �x� � 10 � 15x

f �1

f �1(x)

y

x

y � f �1(x)
[�3, 3]

f �x� � 2x3 � 5 6 Suppose f and g are one-to-one functions such that ,
, and . Find the value, if possible.

(a) (b)

(c) (d)

Exer. 7–22: Sketch the graph of f.

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

Exer. 23–24: Evaluate without using a calculator.

23 (a) (b) (c)

(d) (e) (f )

(g)

24 (a) (b) (c)

(d) (e) (f )

(g)

Exer. 25–44: Solve the equation without using a calculator.

25 26

27 28

29

30

31 32

33 34

35

36

37 38

39 40 eln �x�1� � 3102 log x � 5

ex�ln 4 � 3exlog4 x � 23 log4 x

log3 �3x� � log3 x � log3 �4 � x�

25x�3 � 32x�1

3(x 2) � 725�x � 6

log 24 x � 1 �
1
2ln �x � 2� � ln eln 2 � ln x

2 ln �x � 3� � ln �x � 1� � 3 ln 2

log4 �x � 1� � 2 � log4 �3x � 2�

log8 �x � 5� �
2
3log 2x � log �x � 6�

82x � �1
4�x�2

� 4�x � �1
2�2�x23x�1 �

1
2

log27 3

e2 ln 5log log 1010eln 5

log 10log5 1log5 2
3 5

log4 2

103 log 2log 1,000,0006log6 4

ln elog� 1log2
1
16

f �x� � log2 �4 � x�f �x� � log2 �x � 4�

f �x� � log4 2
3 xf �x� � log4 �x 2�

f �x� � log6 �36x�f �x� � log6 x

f �x� � e2�xf �x� � ex�2

f �x� �
1
2 exf �x� � ex/2

f �x� � 1 � 3�xf �x� � 3�x2

f �x� � 3�2xf �x� � �3
2��x

f �x� � �3
5�xf �x� � 3x�2

�g�1 � f �1��2�� f �1 � g�1��5�

� f � g�1��5��g � f �1��7�

g�2� � 5f �4� � 2
f �2� � 7
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41 42

43 (a) (b)

44 (a) (b)

45 Express in terms of logarithms of x, y, and z.

46 Express as one
logarithm.

47 Find an exponential function that has y-intercept 6 and
passes through the point (1, 8).

48 Sketch the graph of 

Exer. 49–50: Use common logarithms to solve the equation
for x in terms of y.

49 50

Exer. 51–52: Approximate x to three significant figures.

51 (a) (b)

(c)

52 (a) (b)

(c)

Exer. 53–54: (a) Find the domain and range of the function.
(b) Find the inverse of the function and its domain
and range.

53 54

55 Bacteria growth The number of bacteria in a certain cul-
ture at time t (in hours) is given by , where

is measured in thousands.

(a) What is the number of bacteria at ?

(b) Find the number of bacteria after 10 minutes, 30 min-
utes, and 1 hour.

56 Compound interest If $1000 is invested at a rate of 8% per
year compounded quarterly, what is the principal after one
year?

57 Radioactive iodine decay Radioactive iodine , which is
frequently used in tracer studies involving the thyroid gland,
decays according to , where is the initial
dose and t is the time in days.

(a) Sketch the graph of the equation if .

(b) Find the half-life of .131I

N0 � 64

N0N � N0�0.5�t/8

131I

t � 0

Q�t�
Q�t� � 2�3t�

y � 23�x � 2y � log2 �x � 1�

ln x � 1.8

log x � �2.4260x � log 8.4

ln x � �0.75

log x � 1.8938x � ln 6.6

y �
1

10x � 10�x
y �

1

10x � 10�x

f (x) � log3(x � 2).

log �x 2�y3� � 4 log y � 6 log 2xy

log x4 23 y2�z

ln e(x 2) � 16ln �ex�2 � 16

2 log x � log �6 � x�log x2 � log �6 � x�

ex � 2 � 8e�xx2��2xe�x2� � 2xe�x2 � 0 58 Trout population A pond is stocked with 1000 trout. Three
months later, it is estimated that 600 remain. Find a formula
of the form that can be used to estimate the num-
ber of trout remaining after t months.

59 Continuously compounded interest Ten thousand dollars is
invested in a savings fund in which interest is compounded
continuously at the rate of 7% per year.

(a) When will the account contain $35,000?

(b) How long does it take for money to double in the 
account?

60 Ben Franklin’s will In 1790, Ben Franklin left $4000 with
instructions that it go to the city of Philadelphia in 200
years. It was worth about $2 million at that time. Approxi-
mate the annual interest rate for the growth.

61 Electrical current The current in a certain electrical cir-
cuit at time t is given by , where R is the re-
sistance, L is the inductance, and is the initial current at

. Find the value of t, in terms of L and R, for which 
is 1% of .

62 Sound intensity The sound intensity level formula is
.

(a) Solve for I in terms of and .

(b) Show that a one-decibel rise in the intensity level cor-
responds to a 26% increase in the intensity I.

63 Fish growth The length L of a fish is related to its age by
means of the von Bertalanffy growth formula

where a, b, and k are positive constants that depend on the
type of fish. Solve this equation for t to obtain a formula 
that can be used to estimate the age of a fish from a length
measurement.

64 Earthquake area in the West In the western United States,
the area A (in ) affected by an earthquake is related to the
magnitude R of the quake by the formula

Solve for A in terms of R.

65 Earthquake area in the East Refer to Exercise 64. For the
eastern United States, the area-magnitude formula has the
form

If is the area affected by an earthquake of magnitude R
in the West and is the area affected by a similar quake in
the East, find a formula for in terms of R.A1�A2

A2

A1

R � 2.3 log �A � 34,000� � 7.5.

R � 2.3 log �A � 3000� � 5.1.

mi2

L � a�1 � be�kt�,

�

I0�

� � 10 log �I�I0�

I0

I�t�t � 0
I0

I�t� � I0e�Rt/L

I�t�

N � N0act



66 Earthquake area in the Central states Refer to Exercise 64.
For the Rocky Mountain and Central states, the area-
magnitude formula has the form

If an earthquake has magnitude 4 on the Richter scale, esti-
mate the area A of the region that will feel the quake.

67 Atmospheric pressure Under certain conditions, the atmo-
spheric pressure p at altitude h is given by the formula

. Express h as a function of p.

68 Rocket velocity A rocket of mass is filled with fuel of
initial mass . If frictional forces are disregarded, the total
mass m of the rocket at time t after ignition is related to its
upward velocity v by , where a and b are
constants. At ignition time , and .
At burnout, . Use this information to find a formula,
in terms of one logarithm, for the velocity of the rocket at
burnout.

69 Earthquake frequency Let n be the average number of
earthquakes per year that have magnitudes between R and

on the Richter scale. A formula that approximates the
relationship between n and R is

(a) Solve the equation for n in terms of R.

(b) Find n if , 5, and 6.

70 Earthquake energy The energy E (in ergs) released during
an earthquake of magnitude R may be approximated by
using the formula

(a) Solve for E in terms of R.

(b) Find the energy released during the earthquake off the
coast of Sumatra in 2004, which measured 9.0 on the
Richter scale.

71 Radioactive decay A certain radioactive substance decays
according to the formula , where is the
initial amount of the substance and t is the time in days. Ap-
proximate the half-life of the substance.

q0q�t� � q0e�0.0063t

log E � 11.4 � �1.5�R.

R � 4

log n � 7.7 � �0.9�R.

R � 1

m � m1

m � m1 � m2v � 0t � 0
v � �a ln m � b

m2

m1

p � 29e�0.000034h

R � 2.3 log �A � 14,000� � 6.6.

72 Children’s growth The Count Model is a formula that can
be used to predict the height of preschool children. If h is
height (in centimeters) and t is age (in years), then

for . From calculus, the rate of growth R (in
) is given by . Predict the

height and rate of growth of a typical 2-year-old.

73 Electrical circuit The current I in a certain electrical circuit
at time t is given by

where V is the electromotive force, R is the resistance, and
L is the inductance. Solve the equation for t.

74 Carbon 14 dating The technique of carbon 14 dating
is used to determine the age of archaeological and geologi-
cal specimens. The formula is sometimes
used to predict the age T (in years) of a bone fossil, where x
is the percentage (expressed as a decimal) of still pres-
ent in the fossil.

(a) Estimate the age of a bone fossil that contains 4% of
the found in an equal amount of carbon in present-
day bone.

(b) Approximate the percentage of present in a fossil
that is 10,000 years old.

75 Population of Kenya Based on present birth and death rates,
the population of Kenya is expected to increase according to
the formula , with N in millions and 
corresponding to 2000. How many years will it take for the
population to double?

76 Language history Refer to Exercise 48 of Section 5.2. If a
language originally had basic words of which are
still in use, then , where time t is meas-
ured in millennia. After how many years are one-half the
basic words still in use?

N�t� � N0�0.805�t

N�t�N0

t � 0N � 30.7e0.022t

14C

14C

14C

T � �8310 ln x

�14C�

I �
V

R
�1 � e�Rt/L�,

R � 5.104 � �9.222�t�cm�year

1
4 � t � 6

h � 70.228 � 5.104t � 9.222 ln t
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1 (a) Sketch the graph of along with
the graph of 

(b) Discuss what happens to the graph of 
(in general) as the graph of is increasing or
is decreasing.

(c) What can you conclude about the intersection points of
the graphs of a function and its inverse?

2 Find the inverse function of and identify

any asymptotes of the graph of . How do they relate to
the asymptotes of the graph of f ?

3 Shown in the figure is a graph of for .
The maximum value of occurs at .

(a) The integers 2 and 4 have the unusual property that
. Show that if for positive real num-

bers x and y, then .

(b) Use the graph of f to explain why many pairs of real
numbers satisfy the equation .

Exercise 3

0.1

5

y

x

y � 
ln x

x

xy � yx

�ln x��x � �ln y��y
xy � yx24 � 42

x � ef �x�
x � 0f �x� � �ln x��x

f �1

f �x� �
9x

2x2 � 1

y � f �x�
y � f �1�x�

y � f �1(x).
f (x) � �(x � 1)3 � 1 4 Refer to Exercise 70 of Section 5.4. Discuss how to solve

this exercise without the use of the formula for the total
amount T. Proceed with your solution, and compare your
answer to the answer arrived at using the formula for T.

5 Since is equivalent to by law 3 of
logarithms, why aren’t the graphs in Figure 2(a) and (b) of
Section 5.5 the same?

6 (a) Compare the growth of the functions 
and , discuss what they could represent,
and explain the difference between the two functions.

(b) Now suppose you are investing money at 8.5% per year
compounded monthly. How would a graph of this
growth compare with the two graphs in part (a)?

7 Salary increases Suppose you started a job at $40,000 per
year. In 5 years, you are scheduled to be making $60,000
per year. Determine the annual exponential rate of increase
that describes this situation. Assume that the same ex-
ponential rate of increase will continue for 40 years. Using
the rule of 70 (page 317), mentally estimate your annual
salary in 40 years, and compare the estimate to an actual
computation.

8 Energy release Consider these three events:

(1) On May 18, 1980, the volcanic eruption of Mount
St. Helens in Washington released approximately

of energy.

(2) When a 1-megaton nuclear bomb detonates, it releases
about of energy.

(3) The 1989 San Francisco earthquake registered 7.1 on
the Richter scale.

(a) Make some comparisons (i.e., how many of one event
is equivalent to another) in terms of energy released.
(Hint: Refer to Exercise 70 in Chapter 5 Review Ex-
ercises.) Note: The atomic bombs dropped in World
War II were 1-kiloton bombs (1000 1-kiloton
bombs 1 1-megaton bomb).

(b) What reading on the Richter scale would be equivalent
to the Mount St. Helens eruption? Has there ever been
a reading that high?

9 Discuss how many solutions the equation 

has. Solve the equation using the change of base formula.

log5 x � log7 x � 11

�

4 � 1015 joules

1.7 � 1018 joules

g(x) � e0.085x

f(x) � (1.085)x

y � 2 log3 xy � log3 �x2�
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Trigonometry was invented over 2000 years ago by the Greeks, who needed

precise methods for measuring angles and sides of triangles. In fact, the

word trigonometry was derived from the two Greek words trigonon (trian-

gle) and metria (measurement). This chapter begins with a discussion of an-

gles and how they are measured. We next introduce the trigonometric

functions by using ratios of sides of a right triangle. After extending the do-

mains of the trigonometric functions to arbitrary angles and real numbers,

we consider their graphs and graphing techniques that make use of ampli-

tudes, periods, and phase shifts. The chapter concludes with a section on ap-

plied problems.

6
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In geometry an angle is defined as the set of points determined by two rays,
or half-lines, and , having the same endpoint O. If A and B are points on 
and , as in Figure 1, we refer to angle AOB (denoted ). An angle may
also be considered as two finite line segments with a common endpoint.

In trigonometry we often interpret angles as rotations of rays. Start with a
fixed ray , having endpoint O, and rotate it about O, in a plane, to a position
specified by ray . We call the initial side, the terminal side, and O the
vertex of . The amount or direction of rotation is not restricted in any
way. We might let make several revolutions in either direction about O be-
fore coming to position , as illustrated by the curved arrows in Figure 2.
Thus, many different angles have the same initial and terminal sides. Any two
such angles are called coterminal angles. A straight angle is an angle whose
sides lie on the same straight line but extend in opposite directions from its
vertex.

If we introduce a rectangular coordinate system, then the standard posi-
tion of an angle is obtained by taking the vertex at the origin and letting the
initial side coincide with the positive x-axis. If is rotated in a counter-
clockwise direction to the terminal position , then the angle is considered
positive. If is rotated in a clockwise direction, the angle is negative. We
often denote angles by lowercase Greek letters such as (alpha), (beta),
(gamma), (theta), ( phi), and so on. Figure 3 contains sketches of two posi-
tive angles, and , and a negative angle, . If the terminal side of an angle
in standard position is in a certain quadrant, we say that the angle is in that
quadrant. In Figure 3, is in quadrant III, is in quadrant I, and is in quad-
rant II. An angle is called a quadrantal angle if its terminal side lies on a co-
ordinate axis.

Figure 3 Standard position of an angle

One unit of measurement for angles is the degree. The angle in standard po-
sition obtained by one complete revolution in the counterclockwise direction has
measure 360 degrees, written 360°. Thus, an angle of measure 1 degree (1°) 

is obtained by of one complete counterclockwise revolution. In Figure 4,
several angles measured in degrees are shown in standard position on rectan-
gular coordinate systems. Note that the first three are quadrantal angles.

1
360

y

x

y

x

y

x

l1

l2

a

b g

Positive angle Positive angle Negative angle

l1 l1

l2 l2

���

���
�	

���
l1

l2

l1l1

l2

l1

�AOB
l2l1l2

l1

�AOBl2

l1l2l1
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6.1
Angles

Figure 2
Coterminal angles

Terminal side

Initial side
l1

l2

l1

l2

Initial side

Terminal side

Figure 1

O

B

l1

l2

A



Throughout our work, a notation such as specifies an angle u
whose measure is 60°. We also refer to an angle of 60° or a 60° angle, in-
stead of using the more precise (but cumbersome) phrase an angle having
measure 60°.

E X A M P L E  1 Finding coterminal angles

If is in standard position, find two positive angles and two negative
angles that are coterminal with .

S O L U T I O N The angle is shown in standard position in the first sketch in
Figure 5. To find positive coterminal angles, we may add 360° or 720° (or any
other positive integer multiple of 360°) to , obtaining

These coterminal angles are also shown in Figure 5.
To find negative coterminal angles, we may add or (or any

other negative integer multiple of 360°), obtaining

as shown in the last two sketches in Figure 5.

L

60° � ��360°� � �300° and 60° � ��720°� � �660°,

�720°�360°

60° � 360° � 420° and 60° � 720° � 780°.

	

	

	
	 � 60°

	 � 60°
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Figure 4

y

x

y

x

y

x

y

x

y

x

360� 90� 540� 150�

�135�

Figure 5

y

x

y

x

y

x

y

x

y

x

u � 60� 420� 780�

�300�

�660�



A right angle is half of a straight angle and has measure 90°. The fol-
lowing chart contains definitions of other special types of angles.

If smaller measurements than the degree are required, we can use tenths,
hundredths, or thousandths of degrees. Alternatively, we can divide the degree
into 60 equal parts, called minutes (denoted by ), and each minute into 60
equal parts, called seconds (denoted by ). Thus, , and . The
notation refers to an angle that has measure 73 degrees,
56 minutes, 18 seconds.

E X A M P L E  2 Finding complementary angles

Find the angle that is complementary to :

(a) (b)

S O L U T I O N We wish to find . It is convenient to write 90° as an
equivalent measure, .

(a) (b)

L

Degree measure for angles is used in applied areas such as surveying, navi-
gation, and the design of mechanical equipment. In scientific applications that
require calculus, it is customary to employ radian measure. To define an angle
of radian measure 1, we consider a circle of any radius r. A central angle of a
circle is an angle whose vertex is at the center of the circle. If is the central
angle shown in Figure 6, we say that the arc AP (denoted ) of the circle
subtends or that is subtended by . If the length of is equal to the
radius r of the circle, then has a measure of one radian, as in the next definition.	

AP�AP�
		

AP�
	

90� � 	 � 16.74°90° � 	 � 64°16�23�

� 73.26°	   � 25°43�37�	   
� 90.00°90°� 89°59�60�90°

89°59�60�
90° � 	

	 � 73.26°	 � 25°43�37�

	

		 � 73°56�18�
1� � 60�1° � 60��

�
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Terminology Definition Illustrations

acute angle u

obtuse angle u

complementary angles a, b

supplementary angles a, b 115°, 65°; 18°, 162°� � � � 180°

20°, 70°; 7°, 83°� � � � 90°

95°; 157°90° � 	 � 180°

12°; 37°0° � 	 � 90°

Definition of Radian Measure One radian is the measure of the central angle of a circle subtended by an
arc equal in length to the radius of the circle.

Figure 6
Central angle u

u

r

P

A



If we consider a circle of radius r, then an angle whose measure is 1 ra-
dian intercepts an arc AP of length r, as illustrated in Figure 7(a). The angle 
in Figure 7(b) has radian measure 2, since it is subtended by an arc of length

. Similarly, in (c) of the figure has radian measure 3, since it is subtended
by an arc of length .

To find the radian measure corresponding to 360°, we must find the num-
ber of times that a circular arc of length r can be laid off along the circumfer-
ence (see Figure 7(d)). This number is not an integer or even a rational number.
Since the circumference of the circle is , the number of times r units can be
laid off is . Thus, an angle of measure radians corresponds to the de-
gree measure 360°, and we write radians. This result gives us the
following relationships.

When radian measure of an angle is used, no units will be indicated. Thus,
if an angle has radian measure 5, we write instead of radians.
There should be no confusion as to whether radian or degree measure is being
used, since if has degree measure 5°, we write , and not .	 � 5	 � 5°	

	 � 5	 � 5

360° � 2�
2�2�

2�r

3r
�2r

�
�
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Figure 7
(a) radian (b) radians (c) radians (d) radians

r

A � P

r

r

r

r

r

r

360�

g

r

r

A
P

r

r
b

A

P

r

r

r

r

P

A
a

r

360° � 2� 
 6.28� � 3� � 2� � 1

Relationships Between 
Degrees and Radians

(1)

(2)

(3)  1 radian � �180°

� � 
 57.2958°

 1° �
�

180
 radian 
 0.0175 radian

 180° � � radians



The next chart illustrates how to change from one angular measure to 
another.

We may use the techniques illustrated in the preceding chart to obtain the
following table, which displays the corresponding radian and degree measures
of special angles.

Several of these special angles, in radian measure, are shown in standard
position in Figure 8.

E X A M P L E  3 Changing radians to degrees, minutes, and seconds

If , approximate in terms of degrees, minutes, and seconds.		 � 3
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To change Multiply by Illustrations

degrees to radians

radians to degrees

�

3
�

�

3 �180°

� � � 60°

7�

4
�

7�

4 �180°

� � � 315°
180°

�

225° � 225°� �

180°� �
5�

4

150° � 150°� �

180°� �
5�

6

�

180°

Changing Angular Measures

Radians 0

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°

2�
11�

6

7�

4

5�

3

3�

2

4�

3

5�

4

7�

6
�

5�

6

3�

4

2�

3

�

2

�

3

�

4

�

6

Figure 8

y

x

y

x

y

x

y

x

qud p



S O L U T I O N

multiply by 

approximate

multiply

multiply

approximate L

E X A M P L E  4 Expressing minutes and seconds as decimal degrees

Express as a decimal, to the nearest ten-thousandth of a degree.

S O L U T I O N Since and ,

L

The next result specifies the relationship between the length of a circular
arc and the central angle that it subtends.

P R O O F A typical arc of length s and the corresponding central angle are
shown in Figure 9(a). Figure 9(b) shows an arc of length and central angle

. If radian measure is used, then, from plane geometry, the ratio of the
lengths of the arcs is the same as the ratio of the angular measures; that is,

s

s1

�
	

	1

, or s �
	

	1

s1.

	1

s1

	

� 19.7897°.


 19° � 0.7833° � 0.0064°

 19°47�23� � 19° � �47
60�° � � 23

3600�°
1� � � 1

60�� � � 1
3600�°1� � � 1

60�°

19°47�23�


 171°53�14�

� 171°53� � 14.28�

1� � 60�� 171° � 53� � �0.238��60��

� 171° � 53.238�

1° � 60�� 171° � �0.8873��60��


 171.8873°

180°

�
 3 radians � 3�180°

� �
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Formula for the 
Length of a Circular Arc

If an arc of length s on a circle of radius r subtends a central angle of ra-
dian measure , then

s � r	.

	

A mnemonic device for remembering
is SRO (Standing Room Only).s � r	

Figure 9
(a)

r
u s

(b)

r

u1 s1

(continued)



If we consider the special case in which has radian measure 1, then, from
the definition of radian, and the last equation becomes

L

Notice that if , then the formula for the length of a circular arc
becomes , which is simply the formula for the circumference of a
circle, .

The next formula is proved in a similar manner.

P R O O F If A and are the areas of the sectors in Figures 10(a) and 10(b),
respectively, then, from plane geometry,

If we consider the special case , then and

L

When using the preceding formulas, it is important to remember to use the
radian measure of rather than the degree measure, as illustrated in the next
example.

E X A M P L E  5 Using the circular arc and sector formulas

In Figure 11, a central angle is subtended by an arc 10 centimeters long on
a circle of radius 4 centimeters.

(a) Approximate the measure of in degrees.

(b) Find the area of the circular sector determined by .

S O L U T I O N We proceed as follows:

(a) length of a circular arc formula

solve for 

let , r � 4s � 10�
10
4 � 2.5

		 �
s

r

s � r	

	

	

	

	

A �
	

2�
� �r2 �

1

2
r2	.

A1 � �r2	1 � 2�

A

A1

�
	

	1

, or A �
	

	1

A1.

A1

C � 2�r
s � r�2��

	 � 2�

s �
	

1
� r � r	.

s1 � r
	1
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Formula for the 
Area of a Circular Sector

If is the radian measure of a central angle of a circle of radius r and if A
is the area of the circular sector determined by , then

A �
1
2 r2	.

	
	

Figure 10
(a)

r

A

u

(b)

r

u1

A1

Figure 11

y

x

s � 10 cm

r � 4 cm

u � 2.5 radians

 143.24�A � 20 cm2



This is the radian measure of . Changing to degrees, we have

(b) area of a circular sector formula

let , radians

multiply L

The angular speed of a wheel that is rotating at a constant rate is the
angle generated in one unit of time by a line segment from the center of the
wheel to a point P on the circumference (see Figure 12). The linear speed of
a point P on the circumference is the distance that P travels per unit of time.
By dividing both sides of the formula for a circular arc by time t, we obtain a
relationship for linear speed and angular speed; that is,

linear speed angular speed
� �

E X A M P L E  6 Finding angular and linear speeds

Suppose that the wheel in Figure 12 is rotating at a rate of 800 rpm (revolu-
tions per minute).

(a) Find the angular speed of the wheel.

(b) Find the linear speed (in in./min and mi/hr) of a point P on the circum-
ference of the wheel.

S O L U T I O N

(a) Let O denote the center of the wheel, and let P be a point on the circum-
ference. Because the number of revolutions per minute is 800 and because
each revolution generates an angle of radians, the angle generated by the
line segment OP in one minute has radian measure ; that is,

Note that the diameter of the wheel is irrelevant in finding the angular speed.

(b)

Converting in./min to mi/hr, we get

Unlike the angular speed, the linear speed is dependent on the diameter of the
wheel. L

19,200� in.

1 min
�

60 min

1 hr
�

1 ft

12 in.
�

1 mi

5280 ft

 57.1 mi/hr.

� 19,200� in./min

� �12 in.��1600� rad/min�
linear speed � radius � angular speed

angular speed �
800 revolutions

1 minute
�

2� radians

1 revolution
� 1600� radians per minute.

�800��2��
2�

s

t
�

r	

t
, or, equivalently,

s

t
� r �

	

t
.

� 20 cm2

	 � 2.5r � 4�
1
2�4�2�2.5�

A �
1
2 r2	

	 � 2.5�180°

� � �
450°

�

 143.24°.
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Figure 12

P

O

24 inches



Exer. 1–4: If the given angle is in standard position,
find two positive coterminal angles and two negative co-
terminal angles.

1 (a) 120� (b) 135� (c)

2 (a) 240� (b) 315� (c)

3 (a) 620� (b) (c)

4 (a) 570� (b) (c)

Exer. 5–6: Find the angle that is complementary to u.

5 (a) (b)

6 (a) (b)

Exer. 7–8: Find the angle that is supplementary to u.

7 (a) (b)

8 (a) (b)

Exer. 9–12: Find the exact radian measure of the angle.

9 (a) 150� (b) (c) 225�

10 (a) 120� (b) (c) 210�

11 (a) 450� (b) 72� (c) 100�

12 (a) 630� (b) 54� (c) 95�

Exer. 13–16: Find the exact degree measure of the angle.

13 (a) (b) (c)

14 (a) (b) (c)

15 (a) (b) (c)

16 (a) (b) (c)
�

16
9��

5�

2

�

9
7��

7�

2

11�

4

4�

3

5�

6

3�

4

11�

6

2�

3

�135�

�60�

	 � 15.9�	 � 152�12�4�

	 � 136.42�	 � 48�51�37�

	 � 82.73�	 � 63�4�15�

	 � 32.5�	 � 5�17�34�

�
5�

4

2�

3

�
�

4

5�

6

�150�

�30�

Exer. 17–20: Express u in terms of degrees, minutes, and
seconds, to the nearest second.

17 18

19 20

Exer. 21–24: Express the angle as a decimal, to the nearest
ten-thousandth of a degree.

21 22

23 24

Exer. 25–28: Express the angle in terms of degrees, min-
utes, and seconds, to the nearest second.

25 63.169� 26 12.864�

27 310.6215� 28 81.7238�

Exer. 29–30: If a circular arc of the given length s subtends
the central angle u on a circle, find the radius of the circle.

29 cm, 30 km,

Exer. 31–32: (a) Find the length of the arc of the colored
sector in the figure. (b) Find the area of the sector.

31 32

Exer. 33–34: (a) Find the radian and degree measures of 
the central angle u subtended by the given arc of length s
on a circle of radius r. (b) Find the area of the sector de-
termined by u.

33 cm, cm 34 ft, in.

Exer. 35–36: (a) Find the length of the arc that subtends the
given central angle u on a circle of diameter d. (b) Find the
area of the sector determined by u.

35 , m 36 , cmd � 120	 � 2.2d � 16	 � 50�

r � 20s � 3r � 4s � 7

120�

9 cm

45�

8 cm

	 � 20�s � 3	 � 4s � 10

258�39�52�115�26�27�

83�17�37�41�

	 � 4	 � 5

	 � 1.5	 � 2
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6 . 1  A n g l e s 357

37 Measuring distances on Earth The distance between two
points A and B on Earth is measured along a circle having
center C at the center of Earth and radius equal to the distance
from C to the surface (see the figure). If the diameter of Earth
is approximately 8000 miles, approximate the distance be-
tween A and B if angle ACB has the indicated measure:

(a) 60� (b) 45� (c) 30� (d) 10� (e) 1�

Exercise 37

38 Nautical miles Refer to Exercise 37. If angle ACB has
measure , then the distance between A and B is a nautical
mile. Approximate the number of land (statute) miles in a
nautical mile.

39 Measuring angles using distance Refer to Exercise 37. If
two points A and B are 500 miles apart, express angle ACB
in radians and in degrees.

40 A hexagon is inscribed in a circle. If the difference between
the area of the circle and the area of the hexagon is 24 ,
use the formula for the area of a sector to approximate the
radius r of the circle.

41 Window area A rectangular window measures 54 inches by
24 inches. There is a 17-inch wiper blade attached by a 
5-inch arm at the center of the base of the window, as
shown in the figure. If the arm rotates , approximate
the percentage of the window’s area that is wiped by the
blade.

120°

m2

1�

A

B

C

Exercise 41

42 A tornado’s core A simple model of the core of a tornado 
is a right circular cylinder that rotates about its axis. If a
tornado has a core diameter of 200 feet and maximum wind
speed of 180 (or 264 ) at the perimeter of the
core, approximate the number of revolutions the core makes
each minute.

43 Earth’s rotation Earth rotates about its axis once every 
23 hours, 56 minutes, and 4 seconds. Approximate the num-
ber of radians Earth rotates in one second.

44 Earth’s rotation Refer to Exercise 43. The equatorial radius
of Earth is approximately 3963.3 miles. Find the linear speed
of a point on the equator as a result of Earth’s rotation.

Exer. 45–46: A wheel of the given radius is rotating at the
indicated rate.
(a) Find the angular speed (in radians per minute).
(b) Find the linear speed of a point on the circumference 

(in ).

45 radius 5 in., 40 rpm 46 radius 9 in., 2400 rpm

47 Rotation of compact discs (CDs) The drive motor of a par-
ticular CD player is controlled to rotate at a speed of 200 rpm
when reading a track 5.7 centimeters from the center of the
CD. The speed of the drive motor must vary so that the read-
ing of the data occurs at a constant rate.

(a) Find the angular speed (in radians per minute) of the
drive motor when it is reading a track 5.7 centimeters
from the center of the CD.

ft�min

ft�secmi�hr

5 in.

17 in. 24 in.

54 in.



(b) Find the linear speed (in ) of a point on the CD
that is 5.7 centimeters from the center of the CD.

(c) Find the angular speed (in rpm) of the drive motor
when it is reading a track 3 centimeters from the center
of the CD.

(d) Find a function that gives the drive motor speed in rpm
for any radius r in centimeters, where 5.9.
What type of variation exists between the drive motor
speed and the radius of the track being read? Check
your answer by graphing S and finding the speeds for

and .

48 Tire revolutions A typical tire for a compact car is 22 inches
in diameter. If the car is traveling at a speed of 60 , find
the number of revolutions the tire makes per minute.

49 Cargo winch A large winch of diameter 3 feet is used to
hoist cargo, as shown in the figure.

(a) Find the distance the cargo is lifted if the winch rotates
through an angle of radian measure .

(b) Find the angle (in radians) through which the winch
must rotate in order to lift the cargo d feet.

Exercise 49

3�

7��4

mi�hr

r � 5.7r � 3

2.3 � r �
S

cm�sec 50 Pendulum’s swing A pendulum in a grandfather clock is
4 feet long and swings back and forth along a 6-inch arc. Ap-
proximate the angle (in degrees) through which the pendulum
passes during one swing.

51 Pizza values A vender sells two sizes of pizza by the slice.
The small slice is of a circular 18-inch-diameter pizza, and 
it sells for $2.00. The large slice is of a circular 26-inch-
diameter pizza, and it sells for $3.00. Which slice provides
more pizza per dollar?

52 Bicycle mechanics The sprocket assembly for a bicycle is
shown in the figure. If the sprocket of radius rotates through
an angle of radians, find the corresponding angle of rotation
for the sprocket of radius .

Exercise 52

53 Bicycle mechanics Refer to Exercise 52. An expert cyclist
can attain a speed of 40 . If the sprocket assembly has

5 in., in., and the wheel has a diameter of
28 inches, approximately how many revolutions per minute
of the front sprocket wheel will produce a speed of 
40 ? (Hint: First change 40 to .)

54 Magnetic pole drift The geographic and magnetic north
poles have different locations. Currently, the magnetic north
pole is drifting westward through 0.0017 radian per year,
where the angle of drift has its vertex at the center of Earth.
If this movement continues, approximately how many years
will it take for the magnetic north pole to drift a total of 5�?

in.�secmi�hrmi�hr

r2 � 2r1 �
mi�hr

r2 r1

r2

	1

r1

1
8

1
6
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We shall introduce the trigonometric functions in the manner in which they
originated historically—as ratios of sides of a right triangle. A triangle is a
right triangle if one of its angles is a right angle. If is any acute angle, we
may consider a right triangle having as one of its angles, as in Figure 1,	

	

6.2
Trigonometric Functions

of Angles
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where the symbol specifies the 90° angle. Six ratios can be obtained using
the lengths a, b, and c of the sides of the triangle:

We can show that these ratios depend only on , and not on the size of the trian-
gle, as indicated in Figure 2. Since the two triangles have equal angles, they are
similar, and therefore ratios of corresponding sides are proportional. For example,

Thus, for each , the six ratios are uniquely determined and hence are func-
tions of . They are called the trigonometric functions* and are designated
as the sine, cosine, tangent, cotangent, secant, and cosecant functions, ab-
breviated sin, cos, tan, cot, sec, and csc, respectively. The symbol sin , or
sin , is used for the ratio , which the sine function associates with . Val-
ues of the other five functions are denoted in similar fashion. To summarize, if

is the acute angle of the right triangle in Figure 1, then, by definition,

The domain of each of the six trigonometric functions is the set of all
acute angles. Later in this section we will extend the domains to larger sets of
angles, and in the next section, to real numbers.

If is the angle in Figure 1, we refer to the sides of the triangle of lengths
a, b, and c as the adjacent side, opposite side, and hypotenuse, respectively.
We shall use adj, opp, and hyp to denote the lengths of the sides. We may then
represent the triangle as in Figure 3. With this notation, the trigonometric func-
tions may be expressed as follows.

The formulas in the preceding definition can be applied to any right triangle
without attaching the labels a, b, c to the sides. Since the lengths of the sides
of a triangle are positive real numbers, the values of the six trigonometric func-
tions are positive for every acute angle . Moreover, the hypotenuse is always
greater than the adjacent or opposite side, and hence , ,

, and for every acute angle .	sec 	 � 1csc 	 � 1
cos 	 � 1sin 	 � 1

	

	

 csc 	 �
c

b
 sec 	 �

c

a
 cot 	 �

a

b
.

 sin 	 �
b

c
 cos 	 �

a

c
 tan 	 �

b

a

	

	b�c	
�	�

	
	

b

c
�

b�

c�
,  

a

c
�

a�

c�
,  

b

a
�

b�

a�
.

	

b

c
,  

a

c
,  

b

a
,  

a

b
,  

c

a
,  

c

b

�Figure 1

a

bc

u

Figure 2

a�

b�
c�

u

*We will refer to these six trigonomet-
ric functions as the trigonometric
functions. Here are some other, less
common trigonometric functions that
we will not use in this text:

 hav 	 �
1
2 vers 	

 exsec 	 � sec 	 � 1

 covers 	 � 1 � sin 	

 vers 	 � 1 � cos 	

Definition of the Trigonometric
Functions of an Acute Angle 

of a Right Triangle
 csc 	 �

hyp

opp
 sec 	 �

hyp

adj
 cot 	 �

adj

opp

 sin 	 �
opp

hyp
 cos 	 �

adj

hyp
 tan 	 �

opp

adj

A mnemonic device for remembering
the top row in the definition is

SOH CAH TOA,

where SOH is an abbreviation for
, and so forth.Sin 	 � Opp�Hyp

Figure 3

adj

opphyp

u



Note that since

and are reciprocals of each other, giving us the two identities in the
left-hand column of the next box. Similarly, and are reciprocals of
each other, as are and .

Several other important identities involving the trigonometric functions
will be discussed at the end of this section.

E X A M P L E  1 Finding trigonometric function values

If is an acute angle and , find the values of the trigonometric func-
tions of .

S O L U T I O N We begin by sketching a right triangle having an acute angle 
with and , as shown in Figure 4, and proceed as follows:

Pythagorean theorem

isolate

take the square root

Applying the definition of the trigonometric functions of an acute angle of a
right triangle, we obtain the following:

L

In Example 1 we could have rationalized the denominators for and
, writing

However, in most examples and exercises we will leave expressions in unra-
tionalized form. An exception to this practice is the special trigonometric func-
tion values corresponding to 60°, 30°, and 45°, which are obtained in the
following example.

csc 	 �
427

7
and cot 	 �

327

7
.

cot 	
csc 	

 csc 	 �
hyp

opp
�

4

27
 sec 	 �

hyp

adj
�

4

3
 cot 	 �

adj

opp
�

3

27

 sin 	 �
opp

hyp
�
27

4
 cos 	 �

adj

hyp
�

3

4
 tan 	 �

opp

adj
�
27

3

 opp � 27

�opp�2�opp�2 � 16 � 9 � 7

 32 � �opp�2 � 42

hyp � 4adj � 3
	

	
cos 	 �

3
4	

cot 	tan 	
sec 	cos 	

csc 	sin 	

sin 	 �
opp

hyp
and csc 	 �

hyp

opp
,
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Figure 4

4

3

opp

u

Reciprocal Identities

 csc 	 �
1

sin 	
 sec 	 �

1

cos 	
 cot 	 �

1

tan 	

 sin 	 �
1

csc 	
 cos 	 �

1

sec 	
 tan 	 �

1

cot 	
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E X A M P L E  2 Finding trigonometric function values of 60°, 30°, and 45°

Find the values of the trigonometric functions that correspond to :

(a) (b) (c)

S O L U T I O N Consider an equilateral triangle with sides of length 2. The me-
dian from one vertex to the opposite side bisects the angle at that vertex, as 
illustrated by the dashes in Figure 5. By the Pythagorean theorem, the side op-
posite 60° in the shaded right triangle has length . Using the formulas for
the trigonometric functions of an acute angle of a right triangle, we obtain the
values corresponding to 60° and 30° as follows:

(a)

(b)

(c) To find the values for , we may consider an isosceles right triangle
whose two equal sides have length 1, as illustrated in Figure 6. By the
Pythagorean theorem, the length of the hypotenuse is . Hence, the values
corresponding to 45° are as follows:

L

For reference, we list the values found in Example 2, together with the ra-
dian measures of the angles, in the following table. Two reasons for stressing
these values are that they are exact and that they occur frequently in work in-
volving trigonometry. Because of the importance of these special values, it is
a good idea either to memorize the table or to learn to find the values quickly
by using triangles, as in Example 2.

 csc 45� �
22

1
� 22 � sec 45� cot 45� �

1

1
� 1

 sin 45� �
1

22
�
22

2
� cos 45� tan 45� �

1

1
� 1

22

	 � 45�

cot 30� �
23

1
� 23sec 30� �

2

23
�

223

3
csc 30� �

2

1
� 2

tan 30� �
1

23
�
23

3
cos 30� �

23

2
sin 30� �

1

2

cot 60� �
1

23
�
23

3
sec 60� �

2

1
� 2csc 60� �

2

23
�

223

3

tan 60� �
23

1
� 23cos 60� �

1

2
sin 60� �

23

2

23

	 � 45�	 � 30�	 � 60�

	

Figure 5

22

11

60�

30�

�3�

Figure 6

1

45�

45�

�2�

1



The next example illustrates a practical use for trigonometric functions of
acute angles. Additional applications involving right triangles will be consid-
ered in Section 6.7.

E X A M P L E  3 Finding the height of a flagpole

A surveyor observes that at a point A, located on level ground a distance 25.0 feet
from the base B of a flagpole, the angle between the ground and the top of the
pole is 30°. Approximate the height h of the pole to the nearest tenth of a foot.

S O L U T I O N Referring to Figure 7, we see that we want to relate the oppo-
site side and the adjacent side, h and 25, respectively, to the 30° angle. This
suggests that we use a trigonometric function involving those two sides—
namely, tan or cot. It is usually easier to solve the problem if we select the
function for which the variable is in the numerator. Hence, we have

We use the value of tan 30° from Example 2 to find h:

L

It is possible to approximate, to any degree of accuracy, the values of the
trigonometric functions for any acute angle. Calculators have keys labeled

, , and that can be used to approximate values of these functions.
The values of csc, sec, and cot may then be found by means of the reciprocal
key. Before using a calculator to find function values that correspond to the
radian measure of an acute angle, be sure that the calculator is in radian
mode. For values corresponding to degree measure, select degree mode.

TANCOSSIN

h � 25�23

3
� 
 14.4 ft

tan 30� �
h

25
or, equivalently, h � 25 tan 30�.
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u (radians) u (degrees) sin u cos u tan u cot u sec u csc u

30° 2

45° 1 1

60° 2
223

3

23

3
23

1

2

23

2

�

3

2222
22

2

22

2

�

4

223

3
23

23

3

23

2

1

2

�

6

Special Values of the Trigonometric Functions

Figure 7

B30 �

h

25�

A
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Figure 8
In degree mode

As an illustration (see Figure 8), to find sin 30° on a typical calculator, we
place the calculator in degree mode and use the key to obtain

, which is the exact value. Using the same procedure for 60°, we
obtain a decimal approximation to , such as

Most calculators give eight- to ten-decimal-place accuracy for such func-
tion values; throughout the text, however, we will usually round off values to
four decimal places.

To find a value such as cos 1.3 (see Figure 9), where 1.3 is the radian
measure of an acute angle, we place the calculator in radian mode and use the

key, obtaining

For sec 1.3, we could find cos 1.3 and then use the reciprocal key, usually la-
beled or (as shown in Figure 9), to obtain

The formulas listed in the box on the next page are, without doubt, the most
important identities in trigonometry, because they can be used to simplify and
unify many different aspects of the subject. Since the formulas are part of the
foundation for work in trigonometry, they are called the fundamental identities.

Three of the fundamental identities involve squares, such as and
. In general, if n is an integer different from , then a power such as
is written . The symbols and are reserved for in-

verse trigonometric functions, which we will discuss in Section 6.4 and treat
thoroughly in the next chapter. With this agreement on notation, we have, for
example,

Let us next list all the fundamental identities and then discuss the proofs.
These identities are true for every acute angle , and may take on various
forms. For example, using the first Pythagorean identity with , we
know that

We shall see later that these identities are also true for other angles and for real
numbers.

sin2 4� � cos2 4� � 1.

	 � 4�
		

sec4 	 � �sec 	�4 � �sec 	��sec 	��sec 	��sec 	�.

tan3 	 � �tan 	�3 � �tan 	��tan 	��tan 	�

cos2 	 � �cos 	�2 � �cos 	��cos 	�

cos�1 	sin�1 	cosn 	�cos 	�n

�1�cos 	�2

�sin 	�2

sec 1.3 �
1

cos 1.3

 3.7383.

x�11�x

cos 1.3 
 0.2675.

COS

sin 60� 
 0.8660.

23�2
sin 30� � 0.5

SIN

Figure 9
In radian mode

press x�1



P R O O F S

(1) The reciprocal identities were established earlier in this section.

(2) To prove the tangent identity, we refer to the right triangle in Figure 10
and use definitions of trigonometric functions as follows:

To verify the cotangent identity, we use a reciprocal identity and the tan-
gent identity:

(3) The Pythagorean identities are so named because of the first step in the
following proof. Referring to Figure 10, we obtain

Pythagorean theorem

divide by 

definitions of and 

equivalent notation sin2 	 � cos2 	 � 1.

cos 	sin 	�sin 	�2 � �cos 	�2 � 1

c2� b

c
�2

� � a

c
�2

� � c

c
�2

b2 � a2 � c2

cot 	 �
1

tan 	
�

1

sin 	�cos 	
�

cos 	

sin 	

tan 	 �
b

a
�

b�c

a�c
�

sin 	

cos 	
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Figure 10

a

bc

u

The Fundamental Identities (1) The reciprocal identities:

(2) The tangent and cotangent identities:

(3) The Pythagorean identities:

sin2 	 � cos2 	 � 1 1 � tan2 	 � sec2 	 1 � cot2 	 � csc2 	

tan 	 �
sin 	

cos 	
cot 	 �

cos 	

sin 	

csc 	 �
1

sin 	
sec 	 �

1

cos 	
cot 	 �

1

tan 	
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We may use this identity to verify the second Pythagorean identity as 
follows:

divide by 

equivalent equation

law of exponents

tangent and reciprocal identities

To prove the third Pythagorean identity, , we could di-
vide both sides of the identity by .

We can use the fundamental identities to express each trigonometric func-
tion in terms of any other trigonometric function. Two illustrations are given
in the next example.

E X A M P L E  4 Using fundamental identities

Let be an acute angle.

(a) Express in terms of .

(b) Express in terms of .

S O L U T I O N

(a) We may proceed as follows:

Pythagorean identity

isolate

take the square root

for acute angles

Later in this section (Example 12) we will consider a simplification involving
a non-acute angle .

(b) If we begin with the fundamental identity

then all that remains is to express in terms of . We can do this by
solving for , obtaining

cos 	 � 21 � sin2 	 for 0 � 	 �
�

2
.

cos 	sin2 	 � cos2 	 � 1
sin 	cos 	

tan 	 �
sin 	

cos 	
,

	

sin 	 � 0 sin 	 � 21 � cos2 	

 sin 	 � �21 � cos2 	

sin2 	 sin2 	 � 1 � cos2 	

 sin2 	 � cos2 	 � 1

sin 	tan 	

cos 	sin 	

	

sin2 	cos2 	 � 1sin2 	 �
1 � cot2 	 � csc2 	

 tan2 	 � 1 � sec2 	

�sin 	

cos 	
�2

� �cos 	

cos 	
�2

� � 1

cos 	
�2

sin2 	

cos2 	
�

cos2 	

cos2 	
�

1

cos2 	

cos2 	
sin2 	 � cos2 	

cos2 	
�

1

cos2 	

L

(continued)



Hence,

L

Fundamental identities are often used to simplify expressions involving
trigonometric functions, as illustrated in the next example.

E X A M P L E  5 Showing that an equation is an identity

Show that the following equation is an identity by transforming the left-hand
side into the right-hand side:

S O L U T I O N We begin with the left-hand side and proceed as follows:

There are other ways to simplify the expression on the left-hand side in
Example 5. We could first multiply the two factors and then simplify and com-
bine terms. The method we employed—changing all expressions to expres-
sions that involve only sines and cosines—is often useful. However, that
technique does not always lead to the shortest possible simplification.

Hereafter, we shall use the phrase verify an identity instead of show that
an equation is an identity. When verifying an identity, we often use funda-
mental identities and algebraic manipulations to simplify expressions, as we
did in the preceding example. As with the fundamental identities, we under-
stand that an identity that contains fractions is valid for all values of the vari-
ables such that no denominator is zero.

�sec 	 � tan 	��1 � sin 	� � cos 	

tan 	 �
sin 	

cos 	
�

sin 	

21 � sin2 	
for 0 � 	 �

�

2
.
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reciprocal and
tangent identities

add fractions

multiply

cancel cos L	

sin2 	 � cos2 	 � 1

� cos 	

�
cos2 	

cos 	

�
1 � sin2 	

cos 	

� �1 � sin 	

cos 	
��1 � sin 	�

�sec 	 � tan 	��1 � sin 	� � � 1

cos 	
�

sin 	

cos 	
��1 � sin 	�
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E X A M P L E  6 Verifying an identity

Verify the following identity by transforming the left-hand side into the right-
hand side:

S O L U T I O N We may transform the left-hand side into the right-hand side as
follows:

divide numerator by 

tangent and cotangent identities

rule for quotients

cancel

reciprocal identity L

In Section 7.1 we will verify many other identities using methods similar
to those used in Examples 5 and 6.

Since many applied problems involve angles that are not acute, it is nec-
essary to extend the definition of the trigonometric functions. We make this
extension by using the standard position of an angle on a rectangular
coordinate system. If is acute, we have the situation illustrated in Figure 11,
where we have chosen a point on the terminal side of and where

. Referring to triangle OQP, we have

We now wish to consider angles of the types illustrated in Figure 12 on
the next page (or any other angle, either positive, negative, or zero). Note that
in Figure 12 the value of x or y may be negative. In each case, side QP (opp in
Figure 12) has length , side OQ (adj in Figure 12) has length , and the
hypotenuse OP has length r. We shall define the six trigonometric functions so
that their values agree with those given previously whenever the angle is acute.
It is understood that if a zero denominator occurs, then the corresponding
function value is undefined.

� x �� y �

sin 	 �
opp

hyp
�

y

r
, cos 	 �

adj

hyp
�

x

r
, and tan 	 �

opp

adj
�

y

x
.

d�O, P� � r � 2x2 � y2

	P�x, y�
	

	

� sec 	 � cot 	

sin 	�
1

cos 	
� cot 	

�
sin 	

cos 	
�

1

sin 	
� cot 	

�

�sin 	

cos 	�
sin 	

� cot 	

sin 	
tan 	 � cos 	

sin 	
�

tan 	

sin 	
�

cos 	

sin 	

tan 	 � cos 	

sin 	
� sec 	 � cot 	

Figure 11

y

xO
u

x

r

P(x, y)

Q(x, 0)

y



We can show, using similar triangles, that the formulas in this definition
do not depend on the point that is chosen on the terminal side of . The
fundamental identities, which were established for acute angles, are also true
for trigonometric functions of any angle.

The domains of the sine and cosine functions consist of all angles . How-
ever, and are undefined if (that is, if the terminal side of is
on the y-axis). Thus, the domains of the tangent and the secant functions con-
sist of all angles except those of radian measure for any integer n.
Some special cases are , , and . The corresponding degree
measures are , and .

The domains of the cotangent and cosecant functions consist of all angles
except those that have (that is, all angles except those having terminal
sides on the x-axis). These are the angles of radian measure (or degree
measure ) for any integer n.180� � n

�n
y � 0

�450��90�, �270�
�5��2�3��2���2

���2� � �n

	x � 0sec 	tan 	
	

	P�x, y�
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Definition of the Trigonometric
Functions of Any Angle

Let be an angle in standard position on a rectangular coordinate system,
and let be any point other than the origin O on the terminal side of .

If , then

. cot 	 �
x

y
�if y � 0� sec 	 �

r

x
�if x � 0� csc 	 �

r

y
�if y � 0�

 tan 	 �
y

x
�if x � 0� cos 	 �

x

r
 sin 	 �

y

r

d�O, P� � r � 2x2 � y2

	P�x, y�
	

Figure 12

y

xO

u

r

P(x, y)

Q(x, 0)

y

y

x

y

r O

u

P(x, y)

Q(x, 0)

y

xO u

r
y P(x, y)

Q(x, 0)
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Our discussion of domains is summarized in the following table, where n
denotes any integer.

For any point in the preceding definition, and or,
equivalently, and . Thus,

for every in the domains of these functions.

E X A M P L E  7 Finding trigonometric function values 
of an angle in standard position

If is an angle in standard position on a rectangular coordinate system and if
is on the terminal side of , find the values of the six trigonometric

functions of .

S O L U T I O N The point is shown in Figure 13. Applying the def-
inition of the trigonometric functions of any angle with , and

we obtain the following:

L

E X A M P L E  8 Finding trigonometric function values 
of an angle in standard position

An angle is in standard position, and its terminal side lies in quadrant III on
the line . Find the values of the trigonometric functions of .	y � 3x

	

 csc 	 �
r

y
�

17

8
 sec 	 �

r

x
� �

17

15
 cot 	 �

x

y
� �

15

8

 sin 	 �
y

r
�

8

17
 cos 	 �

x

r
� �

15

17
 tan 	 �

y

x
� �

8

15

r � 2x2 � y2 � 2��15�2 � 82 � 2289 � 17,

x � �15, y � 8
P��15, 8�

	
	P��15, 8�

	

	

� sin 	 � � 1, � cos 	 � � 1, � csc 	 � 
 1, and � sec 	 � 
 1

� y�r � � 1� x�r � � 1
� y � � r� x � � rP�x, y�

Function Domain

sine, cosine every angle 

tangent, secant every angle except 

cotangent, cosecant every angle except 	 � � n � 180° � n	

	 �
�

2
� �n � 90° � 180° � n	

	

Figure 13

y

xO

P(�15, 8)

r u



S O L U T I O N The graph of is sketched in Figure 14, together with the
initial and terminal sides of . Since the terminal side of is in quadrant III,
we begin by choosing a convenient negative value of x, say . Substi-
tuting in gives us , and hence is on the
terminal side. Applying the definition of the trigonometric functions of any
angle with

gives us

L

The definition of the trigonometric functions of any angle may be applied
if is a quadrantal angle. The procedure is illustrated by the next example.

E X A M P L E  9 Finding trigonometric function values of a quadrantal angle

If , find the values of the trigonometric functions of .

S O L U T I O N Note that . If is placed in standard position, the
terminal side of coincides with the negative y-axis, as shown in Figure 15.
To apply the definition of the trigonometric functions of any angle, we may
choose any point P on the terminal side of . For simplicity, we use .
In this case, , and hence

The tangent and secant functions are undefined, since the meaningless expres-
sions and occur when we substitute in the ap-
propriate formulas. L

Let us determine the signs associated with values of the trigonometric
functions. If is in quadrant II and is a point on the terminal side, then
x is negative and y is positive. Hence, and are posi-
tive, and the other four trigonometric functions, which all involve x, are nega-
tive. Checking the remaining quadrants in a similar fashion, we obtain the
following table.

csc 	 � r�ysin 	 � y�r
P�x, y�	

sec 	 � 1�0tan 	 � ��1��0

 csc 
3�

2
�

1

�1
� �1 cot 

3�

2
�

0

�1
� 0.

 sin 
3�

2
�

�1

1
� �1 cos 

3�

2
�

0

1
� 0

x � 0, y � �1, r � 1
P�0, �1�	

	
	3��2 � 270�

		 � 3��2

	

 csc 	 � �
210

3
 sec 	 � �

210

1
 cot 	 �

�1

�3
�

1

3
.

 sin 	 � �
3

210
 cos 	 � �

1

210
 tan 	 �

�3

�1
� 3

x � �1, y � �3, and r � 2x2 � y2 � 2��1�2 � ��3�2 � 210

P��1, �3�y � 3��1� � �3y � 3x
x � �1

		
y � 3x
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Figure 14

x

y

r
P(�1, �3)

O

y � 3x

u

Figure 15

x

y

O

w

P(0, �1)

r � 1
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The diagram in Figure 16 may be useful for remembering quadrants in
which trigonometric functions are positive. If a function is not listed (such as
cos in quadrant II), then that function is negative. We finish this section with
three examples that require using the information in the preceding table.

E X A M P L E  1 0 Finding the quadrant containing an angle

Find the quadrant containing if both and .

S O L U T I O N Referring to the table of signs or Figure 16, we see that
(cosine is positive) if is in quadrant I or IV and that 

(sine is negative) if is in quadrant III or IV. Hence, for both conditions to be
satisfied, must be in quadrant IV. L

E X A M P L E  1 1 Finding values of trigonometric 
functions from prescribed conditions

If and , use fundamental identities to find the values of the
other five trigonometric functions.

S O L U T I O N Since (positive) and (negative), is in 

quadrant II. Using the relationship and the fact that 
is negative in quadrant II, we have

Next we use the tangent identity to obtain

Finally, using the reciprocal identities gives us

L
 cot 	 �

1

tan 	
�

1

�3�4
� �

4

3
.

 sec 	 �
1

cos 	
�

1

�4�5
� �

5

4

 csc 	 �
1

sin 	
�

1

3�5
�

5

3

tan 	 �
sin 	

cos 	
�

3�5

�4�5
� �

3

4
.

cos 	 � �21 � sin2 	 � ��1 � �3
5�2

� ��16
25 � �

4
5 .

cos 	sin2 	 � cos2 	 � 1

	tan 	 � 0sin 	 �
3
5 � 0

tan 	 � 0sin 	 �
3
5

	
	

sin 	 � 0	cos 	 � 0

sin 	 � 0cos 	 � 0	

Quadrant Positive Negative
containing u functions functions

I all none

II sin, csc cos, sec, tan, cot

III tan, cot sin, csc, cos, sec

IV cos, sec sin, csc, tan, cot

Signs of the Trigonometric Functions

Figure 16
Positive trigonometric functions

II I

IVIII
x

y

Sin
Csc

Tan
Cot

Cos
Sec

All

A mnemonic device for remembering
the quadrants in which the trigono-
metric functions are positive is “A
Smart Trig Class,” which corresponds
to All Sin Tan Cos.



E X A M P L E  1 2 Using fundamental identities

Rewrite in nonradical form without using absolute
values for .

S O L U T I O N

Since , we know that is in quadrant III or IV. Thus, is
negative, and by the definition of absolute value, we have

L� csc 	 � � �csc 	.

csc 		� � 	 � 2�

2x2 � � x �� � csc 	 �

1 � cot2 	 � csc2 	� 2csc2 	

cos2 	 � sin2 	 � 12cos2 	 � sin2 	 � cot2 	 � 21 � cot2 	

� � 	 � 2�
2cos2 	 � sin2 	 � cot2 	
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Exer. 1–2: Use common sense to match the variables and
the values. (The triangles are drawn to scale, and the angles
are measured in radians.)

1 2

(a) (A) 7 (a) (A) 23.35

(b) (B) 0.28 (b) (B) 16

(c) x (C) 24 (c) x (C) 17

(d) y (D) 1.29 (d) y (D) 0.82

(e) z (E) 25 (e) z (E) 0.76

Exer. 3–10: Find the values of the six trigonometric func-
tions for the angle u.

3 4

15
u

8
17

3

u

45

bb

aa

a

b

x

y

za
b x

y

z

5 6

7 8

9 10

Exer. 11–16: Find the exact values of x and y.

11 12

y

x

60�

3
y

x

30�

4

u

a

a

u

b

c

u

a
c

u

b

a

u 1
3

u
2

5

6.2 E x e r c i s e s
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13 14

15 16

Exer. 17–22: Find the exact values of the trigonometric
functions for the acute angle u.

17 18

19 20

21 22

23 Height of a tree A forester, 200 feet from the base of a red-
wood tree, observes that the angle between the ground and
the top of the tree is 60�. Estimate the height of the tree.

24 Distance to Mt. Fuji The peak of Mt. Fuji in Japan is ap-
proximately 12,400 feet high. A trigonometry student, sev-
eral miles away, notes that the angle between level ground
and the peak is 30�. Estimate the distance from the student
to the point on level ground directly beneath the peak.

25 Stonehenge blocks Stonehenge in Salisbury Plains,
England, was constructed using solid stone blocks weighing
over 99,000 pounds each. Lifting a single stone required
550 people, who pulled the stone up a ramp inclined at an
angle of 9�. Approximate the distance that a stone was
moved in order to raise it to a height of 30 feet.

26 Advertising sign height Added in 1990 and removed in
1997, the highest advertising sign in the world was a large
letter I situated at the top of the 73-story First Interstate
World Center building in Los Angeles. At a distance of 200
feet from a point directly below the sign, the angle between
the ground and the top of the sign was 78.87�. Approximate
the height of the top of the sign.

27 Telescope resolution Two stars that are very close may ap-
pear to be one. The ability of a telescope to separate their

csc 	 � 4sec 	 �
6
5

cot 	 �
7
24tan 	 �

5
12

cos 	 �
8
17sin 	 �

3
5

y

4

45�

x

y

8

60�

x

y

x

30�

10

y

x

45�

7

images is called its resolution. The smaller the resolution,
the better a telescope’s ability to separate images in the sky.
In a refracting telescope, resolution (see the figure) can be
improved by using a lens with a larger diameter D. The
relationship between in degrees and D in meters is given
by , where is the wavelength of light 
in meters. The largest refracting telescope in the world 
is at the University of Chicago. At a wavelength of

meter, its resolution is 0.000 037 69�. Ap-
proximate the diameter of the lens.

Exercise 27

28 Moon phases The phases of the moon can be described
using the phase angle , determined by the sun, the moon,
and Earth, as shown in the figure. Because the moon orbits
Earth, changes during the course of a month. The area of
the region A of the moon, which appears illuminated to 
an observer on Earth, is given by ,
where mi is the radius of the moon. Approxi-
mate A for the following positions of the moon:

(a) (full moon) (b) (new moon)

(c) (first quarter) (d)

Exercise 28

u

	 � 103�	 � 90�

	 � 180�	 � 0�

R � 1080
A �

1
2 �R2�1 � cos 	�

	

	

u

� � 550 � 10�9

�1.22��Dsin 	 �
	

	



Exer. 29–34: Approximate to four decimal places, when
appropriate.

29 (a) sin 42� (b) cos 77�

(c) csc 123� (d)

30 (a) tan 282� (b)

(c) sec 202� (d) sin 97�

31 (a) (b) csc 1.32

(c) (d)

32 (a) (b)

(c) (d)

33 (a) (b) sin 30

(c) (d)

34 (a) (b) sin 45

(c) (d)

Exer. 35–38: Use the Pythagorean identities to write the 
expression as an integer.

35 (a) (b)

36 (a) (b)

37 (a)

(b)

38 (a)

(b)

Exer. 39–42: Simplify the expression.

39 40

41 42

Exer. 43–48: Use fundamental identities to write the first
expression in terms of the second, for any acute angle u.

43 , 44 ,

45 , 46 ,

47 , 48 , cot 	cos 	sec 	sin 	

cos 	csc 	sin 	sec 	

cos 	tan 	sin 	cot 	

csc 	 � 1

�1�sin2 	� � csc 	

2 � tan 	

2 csc 	 � sec 	

cot2 � � 4

cot2 � � cot � � 6

sin3 	 � cos3 	

sin 	 � cos 	

7 sec2 ���3� � 7 tan2 ���3�

7 sec2 � � 7 tan2 �

5 sin2 �	�4� � 5 cos2 �	�4�

5 sin2 	 � 5 cos2 	

3 csc2 � � 3 cot2 �csc2 3� � cot2 3�

4 tan2 � � 4 sec2 �tan2 4� � sec2 4�

cos �3��2�cos �3��2�°

sin 45°

cos �cos �°

sin 30°

cos 2.4�tan ��
3

13�

sec 31
27sin ��0.11�

tan �3��7�cos ��8.54�

cot ���13�

cot ��81��

sec ��190��
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Exer. 49–70: Verify the identity by transforming the left-
hand side into the right-hand side.

49 50

51 52

53 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Exer. 71–74: Find the exact values of the six trigonometric
functions of u if u is in standard position and P is on the 
terminal side.

71 72

73 74 P��1, 2�P��2, �5�

P��8, �15�P�4, �3�

log tan 	 � log sin 	 � log cos 	

log csc 	 � �log sin 	

1 � cos2 3	

sin2 3	
� 2 csc2 3	 � 1

sec2 3	 csc2 3	 � sec2 3	 � csc2 3	

cot 	 � tan 	 � csc 	 sec 	

�cot 	 � csc 	��tan 	 � sin 	� � sec 	 � cos 	

sin 	 � cos 	

cos 	
� 1 � tan 	

sec 	 � cos 	 � tan 	 sin 	

�1 � sin2 	��1 � tan2 	� � 1

�1 � sin 	��1 � sin 	� �
1

sec2 	

1 � 2 sin2 �	�2� � 2 cos2 �	�2� � 1

sin �	�2�
csc �	�2�

�
cos �	�2�
sec �	�2�

� 1

�tan 	 � cot 	� tan 	 � sec2 	

cos2 	 �sec2 	 � 1� � sin2 	

cos2 2	 � sin2 2	 � 2 cos2 2	 � 1

�1 � cos 2	��1 � cos 2	� � sin2 2	

cot 	 sec 	 � csc 	
csc 	

sec 	
� cot 	

sin 	 cot 	 � cos 	sin 	 sec 	 � tan 	

tan 	 cot 	 � 1cos 	 sec 	 � 1
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Exer. 75–80: Find the exact values of the six trigonometric
functions of u if u is in standard position and the terminal
side of u is in the specified quadrant and satisfies the given
condition.

75 II; on the line 

76 IV; on the line 

77 I; on a line having slope 

78 III; bisects the quadrant

79 III; parallel to the line 

80 II; parallel to the line through and 

Exer. 81–82: Find the exact values of the six trigonometric
functions of each angle, whenever possible.

81 (a) 90� (b) 0� (c) (d)

82 (a) 180� (b) (c) (d)

Exer. 83–84: Find the quadrant containing u if the given
conditions are true.

83 (a) and

(b) and

(c) and

(d) and tan 	 � 0sec 	 � 0

sec 	 � 0csc 	 � 0

cot 	 � 0sin 	 � 0

sin 	 � 0cos 	 � 0

5��22��90�

3�7��2

B�3, �2�A�1, 4�

2y � 7x � 2 � 0

4
3

3y � 5x � 0

y � �4x

84 (a) and

(b) and

(c) and

(d) and

Exer. 85–92: Use fundamental identities to find the values of
the trigonometric functions for the given conditions.

85 and 86 and

87 and 88 and

89 and 90 and

91 and 92 and

Exer. 93–98: Rewrite the expression in nonradical form
without using absolute values for the indicated values of u.

93 ;

94 ;

95 ;

96 ;

97 ;

98 ; 0 � 	 � �2cos2 �	�2�

2� � 	 � 4�2sin2 �	�2�

3��2 � 	 � 2�2csc2 	 � 1

3��2 � 	 � 2�21 � tan2 	

0 � 	 � �21 � cot2 	

��2 � 	 � �2sec2 	 � 1

cos 	 � 0sin 	 �
2
5csc 	 � 0sec 	 � �4

cot 	 � 0csc 	 � 5sin 	 � 0cos 	 � �
1
3

sin 	 � 0cos 	 �
1
2sec 	 � 0sin 	 � �

5
13

cos 	 � 0cot 	 �
3
4sin 	 � 0tan 	 � �

3
4

csc 	 � 0cos 	 � 0

cot 	 � 0csc 	 � 0

tan 	 � 0sec 	 � 0

cos 	 � 0tan 	 � 0

The domain of each trigonometric function we have discussed is a set of 
angles. In calculus and in many applications, domains of functions consist of
real numbers. To regard the domain of a trigonometric function as a subset
of �, we may use the following definition.

Using this definition, we may interpret a notation such as sin 2 as either the
sine of the real number 2 or the sine of an angle of 2 radians. As in Section 6.2,
if degree measure is used, we shall write sin 2°. With this understanding,

sin 2 � sin 2°.

6.3
Trigonometric Functions

of Real Numbers

Definition of the Trigonometric
Functions of Real Numbers

The value of a trigonometric function at a real number t is its value at
an angle of t radians, provided that value exists.



376 C H A P T E R  6  T H E  T R I G O N O M E T R I C  F U N C T I O N S

To find the values of trigonometric functions of real numbers with a calcula-
tor, we use the radian mode.

We may interpret trigonometric functions of real numbers geometrically
by using a unit circle U—that is, a circle of radius 1, with center at the origin
O of a rectangular coordinate plane. The circle U is the graph of the equation

. Let t be a real number such that , and let denote the
angle (in standard position) of radian measure t. One possibility is illustrated
in Figure 1, where is the point of intersection of the terminal side of 
and the unit circle U and where s is the length of the circular arc from 
to . Using the formula for the length of a circular arc, with 
and , we see that

Thus, t may be regarded either as the radian measure of the angle or as the
length of the circular arc AP on U.

Next consider any nonnegative real number t. If we regard the angle of
radian measure t as having been generated by rotating the line segment OA
about O in the counterclockwise direction, then t is the distance along U that
A travels before reaching its final position . In Figure 2 we have illus-
trated a case for ; however, if , then A may travel around U sev-
eral times in a counterclockwise direction before reaching .

If , then the rotation of OA is in the clockwise direction, and the dis-
tance A travels before reaching is , as illustrated in Figure 3.

The preceding discussion indicates how we may associate with each real
number t a unique point on U. We shall call the point on the
unit circle U that corresponds to t. The coordinates of P may be used
to find the six trigonometric functions of t. Thus, by the definition of the

�x, y�
P�x, y�P�x, y�

� t �P�x, y�
t � 0

P�x, y�
t � 2�t � 2�

P�x, y�

	

	

s � r	 � 1�t� � t.

	 � t
r � 1s � r	P�x, y�

A�1, 0�
	P�x, y�

	0 � t � 2�x2 � y2 � 1

Figure 1

y

x

U

P(x, y)
s � t

u � t

A(1, 0)O

Figure 2
, t � 0	 � t

y

x

t

u � t
A(1, 0)

P(x, y)

O

U
Figure 3

, t � 0	 � t

y

x

A(1, 0)
O

P(x, y)

�t�

u � t

U
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Definition of the 
Trigonometric Functions 
in Terms of a Unit Circle

If t is a real number and is the point on the unit circle U that corre-
sponds to t, then

 cot t �
x

y
�if y � 0�. sec t �

1

x
�if x � 0� csc t �

1

y
�if y � 0�

 tan t �
y

x
�if x � 0� cos t � x sin t � y

P�x, y�

trigonometric functions of real numbers together with the definition of the
trigonometric functions of any angle (given in Section 6.2), we see that

Using the same procedure for the remaining five trigonometric functions gives
us the following formulas.

sin t � sin 	 �
y

r
�

y

1
� y.

The formulas in this definition express function values in terms of coor-
dinates of a point P on a unit circle. For this reason, the trigonometric func-
tions are sometimes referred to as the circular functions.

E X A M P L E  1 Finding values of the trigonometric functions

A point on the unit circle U corresponding to a real number t is shown in
Figure 4, for . Find the values of the trigonometric functions at t.

S O L U T I O N Referring to Figure 4, we see that the coordinates of the point
are

Using the definition of the trigonometric functions in terms of a unit circle
gives us

L

E X A M P L E  2 Finding a point on U relative to a given point

Let denote the point on the unit circle U that corresponds to t for
. If , find

(a) (b) (c) P��t�P�t � ��P�t � ��
P�t� � �4

5 , 3
5�0 � t � 2�

P�t�

 cot t �
x

y
�

�
3
5

�4
5

�
3

4
. sec t �

1

x
�

1

�3
5

� �
5

3
 csc t �

1

y
�

1

� 4
5

� �
5

4

 tan t �
y

x
�

�
4
5

�3
5

�
4

3
 cos t � x � �

3

5
 sin t � y � �

4

5

x � �
3
5 , y � �

4
5 .

P�x, y�

� � t � 3��2
P�x, y�

Figure 4

y

x

A(1, 0)

P(�E, �R)

u � t

t

U
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S O L U T I O N

(a) The point on U is plotted in Figure 5(a), where we have also shown
the arc AP of length t. To find , we travel a distance in the coun-
terclockwise direction along U from , as indicated by the blue arc in the
figure. Since is one-half the circumference of U, this gives us the point

diametrically opposite .

(b) To find , we travel a distance in the clockwise direction along

U from , as indicated in Figure 5(b). This gives us .
Note that .

(c) To find , we travel along U a distance in the clockwise direc-
tion from , as indicated in Figure 5(c). This is equivalent to reflecting

through the x-axis. Thus, we merely change the sign of the y-coordinate

of to obtain . L

E X A M P L E  3 Finding special values of the trigonometric functions

Find the values of the trigonometric functions at t:

(a) (b) (c)

S O L U T I O N

(a) The point P on the unit circle U that corresponds to has coordinates
, as shown in Figure 6(a). Thus, we let and in the definition

of the trigonometric functions in terms of a unit circle, obtaining

Note that csc 0 and cot 0 are undefined, since is a denominator.y � 0

 sec 0 �
1

x
�

1

1
� 1. tan 0 �

y

x
�

0

1
� 0

 cos 0 � x � 1 sin 0 � y � 0

y � 0x � 1�1, 0�
t � 0

t �
�

2
t �

�

4
t � 0

P��t� � �4
5 , �

3
5 �P�t� � �4

5 , 3
5�

P�t�
A�1, 0�

� �t �P��t�
P�t � �� � P�t � ��

P�t � �� � ��
4
5 , �

3
5 �P�t�

�P�t � ��

P�t�P�t � �� � ��
4
5 , �

3
5 �

�
P�t�

�P�t � ��
P�t�

Figure 5
(a)

y

xA(1, 0)

P(t � p) � (�R, �E)

t

U P(t) � (R, E)

y

xA(1, 0)

P(t � p) � (�R, �E)

p

t

U P(t) � (R, E)

y

xA(1, 0)

t

P(t) � (R, E)

��t�
P(�t) � (R, �E)

U

(b) (c)

Figure 6
(a) y

x

P(1, 0)

U
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(b) If , then the angle of radian measure shown in Figure 6(b) bi-
sects the first quadrant and the point lies on the line . Since

is on the unit circle and since , we obtain

Solving for x and noting that gives us

Thus, P is the point . Letting and in the
definition of the trigonometric functions in terms of a unit circle gives us

(c) The point P on U that corresponds to has coordinates , as
shown in Figure 6(c). Thus, we let and in the definition of the
trigonometric functions in terms of a unit circle, obtaining

The tangent and secant functions are undefined, since is a denominator
in each case. L

A summary of the trigonometric functions of special angles appears in
Appendix IV.

We shall use the unit circle formulation of the trigonometric functions to
help obtain their graphs. If t is a real number and is the point on the unit
circle U that corresponds to t, then by the definition of the trigonometric func-
tions in terms of a unit circle,

and

Thus, as shown in Figure 7, we may denote by

If , the real number t may be interpreted either as the radian measure of
the angle or as the length of arc AP.

If we let t increase from 0 to radians, the point travels
around the unit circle U one time in the counterclockwise direction. By ob-
serving the variation of the x- and y-coordinates of P, we obtain the next table.
The notation in the first row of the table means that t increases from
0 to , and the notation denotes the corresponding variation
of as it travels along U from to . If t increases from�0, 1��1, 0�P�cos t, sin t�

�1, 0� l �0, 1���2
0 l ��2

P�cos t, sin t�2�
	

t � 0

P�cos t, sin t�.
P�x, y�
y � sin t.x � cos t

P�x, y�

x � 0

cot
�

2
�

0

1
� 0.csc

�

2
�

1

1
� 1cos

�

2
� 0sin

�

2
� 1

y � 1x � 0
�0, 1�t � ��2

cot
�

4
�
22�2

22�2
� 1.sec

�

4
�

2

22
� 22csc

�

4
�

2

22
� 22

tan
�

4
�
22�2

22�2
� 1cos

�

4
�
22

2
sin

�

4
�
22

2

y � 22�2x � 22�2�22�2, 22�2�

x �
1

22
�
22

2
.

x � 0

x2 � x2 � 1, or 2x2 � 1.

y � xx2 � y2 � 1P�x, y�
y � xP�x, y�

��4t � ��4

(c) y

x

P(0, 1)

q

U

q

Figure 7

y

x

P(cos t, sin t)

U

u � t

A(1, 0)

(0, �1)

(�1, 0)

(0, 1)

t

Figure 6
(b) y

x

P(x, y)

d

U

d
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0 to , then sin t increases from 0 to 1, which we denote by . More-
over, sin t takes on every value between 0 and 1. If t increases from to ,
then sin t decreases from 1 to 0, which is denoted by . Other entries in
the table may be interpreted in similar fashion.

If t increases from to , the point in Figure 7 traces the
unit circle U again and the patterns for sin t and cos t are repeated—that is,

and

for every t in the interval . The same is true if t increases from to ,
from to , and so on. In general, we have the following theorem.

The repetitive variation of the sine and cosine functions is periodic in the sense
of the following definition.

You already have a common-sense grasp of the concept of the period of a
function. For example, if you were asked on a Monday “What day of the week
will it be in 15 days?” your response would be “Tuesday” due to your under-
standing that the days of the week repeat every 7 days and 15 is one day more

8�6�
6�4��0, 2�	

cos �t � 2�� � cos tsin �t � 2�� � sin t

P�cos t, sin t�4�2�

1 l 0
���2

0 l 1��2

t P(cos t, sin t) cos t sin t

�1 l  00 l  1�0, �1� l �1, 0�
3�

2
l 2�

0 l �1�1 l  0��1, 0� l �0, �1�� l
3�

2

1 l  00 l �1�0, 1� l ��1, 0�
�

2
l �

0 l  11 l   0�1, 0� l �0, 1�0 l
�

2

Theorem on Repeated 
Function Values for sin and cos

If n is any integer, then

sin �t � 2�n� � sin t and cos �t � 2�n� � cos t.

Definition of Periodic Function A function f is periodic if there exists a positive real number k such that

for every t in the domain of f. The least such positive real number k, if it
exists, is the period of f.

f�t � k� � f�t�



6 . 3  T r i g o n o m e t r i c  F u n c t i o n s  o f  R e a l  N u m b e r s 381

than two complete periods of 7 days. From the discussion preceding the pre-
vious theorem, we see that the period of the sine and cosine functions is .

We may now readily obtain the graphs of the sine and cosine functions.
Since we wish to sketch these graphs on an xy-plane, let us replace the vari-
able t by x and consider the equations

We may think of x as the radian measure of any angle; however, in calculus, x
is usually regarded as a real number. These are equivalent points of view, since
the sine (or cosine) of an angle of x radians is the same as the sine (or cosine)
of the real number x. The variable y denotes the function value that corre-
sponds to x.

The table in the margin lists coordinates of several points on the graph of
for . Additional points can be determined using results

on special angles, such as

To sketch the graph for , we plot the points given by the table
and remember that sin x increases on , decreases on and

, and increases on . This gives us the sketch in Figure 8.
Since the sine function is periodic, the pattern shown in Figure 8 is repeated to
the right and to the left, in intervals of length . This gives us the sketch in
Figure 9.

Figure 8

Figure 9

y

y � sin x1

�1
2p 3p 4pp x�p�2p

y

x

1

�1 q p 2p

y � sin x, 0 ! x ! 2p

2�

�3��2, 2�	��, 3��2	
���2, �	�0, ��2	

0 � x � 2�

sin ���6� � 1�2 and sin ���3� � 23�2 
 0.8660.

0 � x � 2�y � sin x

y � sin x and  y � cos x.

2�
x y � sin x

0 0

1

0

02�

�
22

2

 �0.7

7�

4

�1
3�

2

�
22

2

 �0.7

5�

4

�

22

2

 0.7

3�

4

�

2

22

2

 0.7

�

4
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x y � cos x

0 1

0

0

12�

22

2

 0.7

7�

4

3�

2

�
22

2

 �0.7

5�

4

�1�

�
22

2

 �0.7

3�

4

�

2

22

2

 0.7

�

4

We can use the same procedure to sketch the graph of . The table
in the margin lists coordinates of several points on the graph for .
Plotting these points leads to the part of the graph shown in Figure 10. Re-
peating this pattern to the right and to the left, in intervals of length , we ob-
tain the sketch in Figure 11.

Figure 10

Figure 11

The part of the graph of the sine or cosine function corresponding to
is one cycle. We sometimes refer to a cycle as a sine wave or a

cosine wave.
The range of the sine and cosine functions consists of all real numbers

in the closed interval . Since and , it
follows that the range of the cosecant and secant functions consists of all real
numbers having absolute value greater than or equal to 1.

As we shall see, the range of the tangent and cotangent functions consists
of all real numbers.

Before discussing graphs of the other trigonometric functions, let us es-
tablish formulas that involve functions of for any t. Since a minus sign is
involved, we call them formulas for negatives.

�t

sec x � 1�cos xcsc x � 1�sin x��1, 1	

0 � x � 2�

y

y � cos x

p 2p 3p�p�2p 4p

1

�1
x

y

y � cos x,  0 ! x ! 2p

x

1

�1 q p 2p

2�

0 � x � 2�
y � cos x

Formulas for Negatives

csc ��t� � �csc t sec ��t� � sec t cot ��t� � �cot t

sin ��t� � �sin t cos ��t� � cos t tan ��t� � �tan t
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P R O O F S Consider the unit circle U in Figure 12. As t increases from 0 to ,
the point traces the unit circle U once in the counterclockwise direction
and the point , corresponding to , traces U once in the clockwise
direction. Applying the definition of the trigonometric functions of any angle
(with ), we have

The proofs of the remaining three formulas are similar. L

In the following illustration, formulas for negatives are used to find an
exact value for each trigonometric function.

Use of Formulas for Negatives

We shall next use formulas for negatives to verify a trigonometric identity.

E X A M P L E  4 Using formulas for negatives to verify an identity

Verify the following identity by transforming the left-hand side into the right-
hand side:

sin ��x� tan ��x� � cos ��x� � sec x

cot �� �

4 � � �cot ��

4� � �1

sec ��60°� � sec 60° � 2

csc ��30°� � �csc 30° � �2

tan �� �

3 � � �tan ��

3� � �23

cos ��30°� � cos 30° �
23

2

sin ��45°� � �sin 45° � �
22

2

tan ��t� �
�y

x
� �

y

x
� �tan t.

cos ��t� � x � cos t

sin ��t� � �y � �sin t

r � 1

�tQ�x, �y�
P�x, y�

2�Figure 12

y

x

P(x, y)

t

U Q(x, �y)

�t

A(1, 0)

I L L U S T R A T I O N
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S O L U T I O N We may proceed as follows:

L

We may use the formulas for negatives to prove the following theorem.

P R O O F S We shall prove the theorem for the cosine and sine functions. If
, then

which means that the cosine function is even.
If , then

Thus, the sine function is odd. L

Since the sine function is odd, its graph is symmetric with respect to the
origin (see Figure 13). Since the cosine function is even, its graph is symmet-
ric with respect to the y-axis (see Figure 14).

f ��x� � sin ��x� � �sin x � �f �x�.

f �x� � sin x

f ��x� � cos ��x� � cos x � f �x�,

f �x� � cos x

formulas for negatives

tangent identity

multiply

add terms

Pythagorean identity

reciprocal identity� sec x

�
1

cos x

�
sin2 x � cos2 x

cos x

�
sin2 x

cos x
� cos x

� sin x
sin x

cos x
� cos x

 sin ��x� tan ��x� � cos ��x� � ��sin x���tan x� � cos x

Theorem on Even and 
Odd Trigonometric Functions

(1) The cosine and secant functions are even.

(2) The sine, tangent, cotangent, and cosecant functions are odd.

Figure 13 sine is odd

y

y � sin x

p�p
�1

1

x

(�a, �b)

(a, b)

Figure 14 cosine is even

y

y � cos x
p�p

1

�1
x

(a, b)(�a, b)
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x y � tan x

0 0

1

23 
 1.7
�

3

�

4

23

3

 0.6

�

6

�
23

3

 �0.6�

�

6

�1�
�

4

�23 
 �1.7�
�

3

By the preceding theorem, the tangent function is odd, and hence the
graph of is symmetric with respect to the origin. The table in the
margin lists some points on the graph if . The corresponding
points are plotted in Figure 15. The values of tan x near require
special attention. If we consider , then as x increases to-
ward , the numerator sin x approaches 1 and the denominator cos x ap-
proaches 0. Consequently, tan x takes on large positive values. Following are some
approximations of tan x for x close to :

Notice how rapidly tan x increases as x approaches . We say that tan x in-
creases without bound as x approaches through values less than .
Similarly, if x approaches through values greater than , then tan x
decreases without bound. We may denote this variation using the notation in-
troduced for rational functions in Section 4.5:

This variation of tan x in the open interval is illustrated in Fig-
ure 16. This portion of the graph is called one branch of the tangent. The lines

and are vertical asymptotes for the graph. The same pat-
tern is repeated in the open intervals , , and

and in similar intervals of length , as shown in the figure. Thus,
the tangent function is periodic with period .

Figure 16

y

xp 2p 3p 4p�p�2p

1

�1

y � tan x

�
��3��2, 5��2�

���2, 3��2���3��2, ���2�
x � ��2x � ���2

����2, ��2�

as x l �
�

2

�

, tan x l ��

as x l
�

2

�

, tan x l �

���2���2
��2��2

��2

tan 1.57079 
 158,057.9

tan 1.57070 
 10,381.3

tan 1.57060 
 5,093.5

tan 1.57030 
 2,014.8

tan 1.57000 
 1,255.8

��2 
 1.5708

��2
tan x � sin x�cos x

x � ��2
���2 � x � ��2

y � tan x

Figure 15

y

xq�q
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We may use the graphs of , , and to help
sketch the graphs of the remaining three trigonometric functions. For exam-
ple, since , we may find the y-coordinate of a point on the
graph of the cosecant function by taking the reciprocal of the corresponding 
y-coordinate on the sine graph for every value of x except for any in-
teger n. (If , , and hence is undefined.) As an aid to
sketching the graph of the cosecant function, it is convenient to sketch the
graph of the sine function (shown in red in Figure 17) and then take recipro-
cals to obtain points on the cosecant graph.

Figure 17 ,

Notice the manner in which the cosecant function increases or decreases
without bound as x approaches for any integer n. The graph has vertical
asymptotes , as indicated in the figure. There is one upper branch of
the cosecant on the interval and one lower branch on the interval

—together they compose one cycle of the cosecant.
Since and , we may obtain the graphs of

the secant and cotangent functions by taking reciprocals of y-coordinates of
points on the graphs of the cosine and tangent functions, as illustrated in Fig-
ures 18 and 19.

Figure 18 , y � cos xy � sec x

cot x � 1�tan xsec x � 1�cos x
��, 2��

�0, ��
x � �n

�n

y

xp 2p 3p 4p

1

�1
�p�2p

y � sin xy � csc x

1�sin xsin x � 0x � �n
x � �n

csc x � 1�sin x

y � tan xy � cos xy � sin x

yy

xp 2p 3p

1

�1
�p�2p 4p
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Figure 19 ,

A graphical summary of the six trigonometric functions and their inverses
(discussed in Section 7.6) appears in Appendix III.

We have considered many properties of the six trigonometric functions of
x, where x is a real number or the radian measure of an angle. The following
chart contains a summary of important features of these functions (n denotes
an arbitrary integer).

y

p 2p 3p�p 4p�2p x

1

�1

y � tan xy � cot x

Summary of Features of the Trigonometric Functions and Their Graphs

Feature sin x cos x tan x cot x sec x csc x

Domain

none none

Range

x-intercepts none none

y-intercept 0 1 0 none 1 none

Period

Even or odd odd even odd odd even odd

Symmetry origin y-axis origin origin y-axis origin

2�2���2�2�

p
2 � �n� n

p
2 � �n� n


 �1, �����, �1	
 �1, �����, �1	����1, 1	��1, 1	

x � � nx �
p
2 ��nx � � nx �

p
2 ��n

x � � nx � p
2 ��nx � � nx � p

2 ��n��

y �y �y �y �y �y �

Vertical
asymptotes

Graph
(one
period)

y

xp�p

1

�1

y

x

1

�1p
2 �

3p
2

y

x

p
2x � �

p
2x �

y

x

x � px � 0

y

x

p
2x � 3p

2
p
2x � � x � 

1

�1
x

y

1

�1

x � �p x � p
x � 0
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E X A M P L E  5 Investigating the variation of csc x

Investigate the variation of csc x as

S O L U T I O N Referring to the graph of in Figure 20 and using our
knowledge of the special values of the sine and cosecant functions, we obtain
the following:

Figure 20

L

E X A M P L E  6 Solving equations and inequalities 
that involve a trigonometric function

Find all values of x in the interval such that

(a) (b) (c)

S O L U T I O N This problem can be easily solved by referring to the graphs of
and , sketched on the same xy-plane in Figure 21 for

.�2� � x � 2�
y �

1
2y � cos x

cos x �
1
2cos x �

1
2cos x �

1
2

��2�, 2�	

y

xp 2p

1

�1

y � csc x, y � sin x

as x l 
�

6

�

, sin x l
1

2
  and csc x l 2

as x l
�

2

�

, sin x l 1  and csc x l 1

as x l ��,  sin x l 0 �through negative values� and csc x l ��

as x l ��,  sin x l 0 �through positive values�  and csc x l �

y � csc x

x l ��, x l ��, x l
�

2

�

, and x l
�

6

�

.
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Figure 21

(a) The values of x such that are the x-coordinates of the points at
which the graphs intersect. Recall that satisfies the equation. By
symmetry, is another solution of . Since the cosine func-

tion has period , the other values of x in such that are

(b) The values of x such that can be found by determining where
the graph of in Figure 21 lies above the line . This gives us the
x-intervals

(c) To solve , we again refer to Figure 21 and note where the graph
of lies below the line . This gives us the x-intervals

Another method of solving is to note that the solutions are the
open subintervals of that are not included in the intervals obtained
in part (b). L

We have now discussed two different approaches to the trigonometric
functions. The development in terms of angles and ratios, introduced in Sec-
tion 6.2, has many applications in the sciences and engineering. The definition
in terms of a unit circle, considered in this section, emphasizes the fact that the
trigonometric functions have domains consisting of real numbers. Such func-
tions are the building blocks for calculus. In addition, the unit circle approach
is useful for discussing graphs and deriving trigonometric identities. You
should work to become proficient in the use of both formulations of the
trigonometric functions, since each will reinforce the other and thus facilitate
your mastery of more advanced aspects of trigonometry.

��2�, 2�	
cos x �

1
2

��
5�

3
, �

�

3 � and  ��

3
,
5�

3 �.

y �
1
2y � cos x

cos x �
1
2

��2�, �
5�

3 �, �� �

3
,

�

3�, and �5�

3
, 2��.

y �
1
2y � cos x

cos x �
1
2

�
�

3
� 2� �

5�

3
and    

�

3
� 2� � �

5�

3
.

cos x �
1
2��2�, 2�	2�

cos x �
1
2x � ���3

x � ��3
cos x �

1
2

y

y � cos x
2p�p�2p

1

�1 xp

y � q
(�p, q)

(u, q)(�u, q)
(p, q)



Exer. 1–4: A point P(x, y) is shown on the unit circle U
corresponding to a real number t. Find the values of the
trigonometric functions at t.

1

2

3 y

xt

U

O

P( 24
25

7
25), �

y

x

P(R, E)
t

U

O

y

x

t

O

U

P(�    ,     )15
17

8
17

4

Exer. 5–8: Let P(t) be the point on the unit circle U that
corresponds to t. If P(t) has the given rectangular coor-
dinates, find
(a) P(t � p) (b) P(t � p) (c) P(�t ) (d) P(�t � p)

5 6

7 8

Exer. 9–16: Let P be the point on the unit circle U that
corresponds to t. Find the coordinates of P and the exact
values of the trigonometric functions of t, whenever possible.

9 (a) (b)

10 (a) (b)

11 (a) (b)

12 (a) (b)

13 (a) (b)

14 (a) (b)

15 (a) (b)

16 (a) (b)

Exer. 17–20: Use a formula for negatives to find the ex-
act value.

17 (a) (b) (c)

18 (a) (b) (c)

19 (a) (b) (c) csc ��
3�

2
�sec ��180��cot ��

3�

4
�

tan ����cos ��225��sin ��
3�

2
�

tan ��45��cos��
3�

4
�sin ��90��

�3��47��4

���45��4

�7��43��4

�5��49��4

���25��2

�7��23��2

6���

�3�2�

� 7
25 , �

24
25 ���

12
13 , �

5
13�

��
8

17 , 15
17��3

5 , 4
5�

y

x

t

U

O

P( ), �
5
13�

12
13
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20 (a) (b) (c)

Exer. 21–26: Verify the identity by transforming the left-
hand side into the right-hand side.

21

22

23 24

25

26

Exer. 27–38: Complete the statement by referring to a
graph of a trigonometric function.

27 (a) As ,

(b) As ,

28 (a) As ,

(b) As ,

29 (a) As ,

(b) As ,

30 (a) As ,

(b) As ,

31 (a) As ,

(b) As ,

32 (a) As ,

(b) As ,

33 (a) As ,

(b) As ,

34 (a) As ,

(b) As ,

35 (a) As ,

(b) As ,

36 (a) As ,

(b) As , sec x lx l 0�

sec x lx l ���2��

sec x lx l ���4��

sec x lx l ���2��

cot x lx l ��

cot x lx l ���6��

cot x lx l 0�

cot x lx l ����4��

tan x lx l ����2��

tan x lx l 0�

tan x lx l ���2��

tan x lx l ���4��

cos x lx l ����3��

cos x lx l 0�

cos x lx l ��

cos x lx l ���4��

sin x lx l ���6��

sin x lx l ��

sin x lx l ����2��

sin x lx l 0�

cot ��x� cos ��x� � sin ��x� � �csc x

1

cos ��x�
� tan ��x� sin ��x� � cos x

sec ��x�
tan ��x�

� �csc x
cot ��x�
csc ��x�

� cos x

csc ��x� cos ��x� � �cot x

sin ��x� sec ��x� � �tan x

csc ��45��sec ��
�

4
�cot ��225�� 37 (a) As ,

(b) As ,

38 (a) As ,

(b) As ,

Exer. 39–46: Refer to the graph of y � sin x or y � cos x to
find the exact values of x in the interval [0, 4p] that satisfy
the equation.

39 40

41 42

43 44

45 46

Exer. 47–50: Refer to the graph of y � tan x to find the
exact values of x in the interval (�p 2, 3p 2) that satisfy
the equation.

47 48

49 50

Exer. 51–54: Refer to the graph of the equation on the 
specified interval. Find all values of x such that for the real
number a, (a) y � a, (b) y > a, and (c) y < a.

51 ; ;

52 ; ;

53 ; ;

54 ; ;

Exer. 55–62: Use the graph of a trigonometric function to
sketch the graph of the equation without plotting points.

55 56

57 58

59 60

61 62

Exer. 63–66: Find the intervals between �2p and 2p on
which the given function is (a) increasing or (b) decreasing.

63 secant 64 cosecant

65 tangent 66 cotangent

y � 1 � csc xy � sec x � 2

y � cot x � 1y � 1 � tan x

y � sin x � 1y � cos x � 2

y � 3 � cos xy � 2 � sin x

a � �22�2�0, 4�	y � sin x

a � �
1
2��2�, 2�	y � cos x

a � 23�2�0, 4�	y � cos x

a �
1
2��2�, 2�	y � sin x

tan x � �1�23tan x � 0

tan x � 23tan x � 1

��

cos x � �
1
2cos x � 22�2

cos x � �1cos x � 1

sin x � �22�2sin x �
1
2

sin x � 1sin x � �1

csc x lx l ���4��

csc x lx l ��

csc x lx l ���2��

csc x lx l 0�
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67 Practice sketching the graph of the sine function, taking dif-
ferent units of length on the horizontal and vertical axes.
Practice sketching graphs of the cosine and tangent functions
in the same manner. Continue this practice until you reach 
the stage at which, if you were awakened from a sound sleep
in the middle of the night and asked to sketch one of these graphs,
you could do so in less than thirty seconds.

68 Work Exercise 67 for the cosecant, secant, and cotan-
gent functions.

Exer. 69–72: Use the figure to approximate the following to
one decimal place.

69 (a) (b)

(c) All numbers t between 0 and such that 

70 (a) (b)

(c) All numbers t between 0 and such that 

71 (a) (b)

(c) All numbers t between 0 and such that 

72 (a) (b)

(c) All numbers t between 0 and such that cos t � 0.22�

cos ��2.3�cos 2

cos t � �0.62�

cos ��1.2�cos 4

sin t � �0.22�

sin ��2.3�sin 2

sin t � 0.52�

sin ��1.2�sin 4

3

y

x

1

0.4

2

4

5

6

0.8�0.4�0.8

�0.4

�0.8

0.4

0.8

73 Temperature-humidity relationship On March 17, 1981, in
Tucson, Arizona, the temperature in degrees Fahrenheit
could be described by the equation

while the relative humidity in percent could be expressed by

where t is in hours and corresponds to 6 A.M.

(a) Construct a table that lists the temperature and relative
humidity every three hours, beginning at midnight.

(b) Determine the times when the maximums and mini-
mums occurred for T and H.

(c) Discuss the relationship between the temperature and
relative humidity on this day.

74 Robotic arm movement Trigonometric functions are used
extensively in the design of industrial robots. Suppose that
a robot’s shoulder joint is motorized so that the angle 
increases at a constant rate of radian per second from
an initial angle of . Assume that the elbow joint is
always kept straight and that the arm has a constant length
of 153 centimeters, as shown in the figure.

(a) Assume that cm when . Construct a table
that lists the angle and the height h of the robotic
hand every second while .

(b) Determine whether or not a constant increase in the
angle produces a constant increase in the height of
the hand.

(c) Find the total distance that the hand moves.

Exercise 74

153 cm
u

50 cm

	

0 � 	 � ��2
	

	 � 0h � 50

	 � 0
��12

	

t � 0

H�t� � 20 cos ��

12
t� � 60,

T�t� � �12 cos ��

12
t� � 60,
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In previous sections we calculated special values of the trigonometric func-
tions by using the definition of the trigonometric functions in terms of either
an angle or a unit circle. In practice we most often use a calculator to approxi-
mate function values.

We will next show how the value of any trigonometric function at an angle
of degrees or at a real number t can be found from its value in the
-interval or the t-interval , respectively. This technique is

sometimes necessary when a calculator is used to find all angles or real num-
bers that correspond to a given function value.

We shall make use of the following concept.

Figure 1 illustrates the reference angle for a nonquadrantal angle ,
with or , in each of the four quadrants.

The formulas below the axes in Figure 1 may be used to find the degree
or radian measure of when is in degrees or radians, respectively. For a
nonquadrantal angle greater than 360° or less than 0°, first find the cotermi-
nal angle with or , and then use the formulas in
Figure 1.

E X A M P L E  1 Finding reference angles

Find the reference angle for , and sketch and in standard position on
the same coordinate plane.

(a) (b) (c) (d) 	 � 4	 �
5�

6
	 � �240°	 � 315°

	R			R

0 � 	 � 2�0° � 	 � 360°	

		R

0 � 	 � 2�0° � 	 � 360°
		R

�0, ��2��0°, 90°�	
	

6.4
Values of the

Trigonometric Functions

Definition of Reference Angle Let be a nonquadrantal angle in standard position. The reference angle
for is the acute angle that the terminal side of makes with the x-axis.		R	

	

Figure 1 Reference angles
(a) Quadrant I

y

x
u

uR

uR � u

(b) Quadrant II

y

x

uuR

uR � 180� � u
� p � u

(c) Quadrant III

y

x

u

uR

uR � u � 180�
� u � p

(d) Quadrant IV

y

x

u

uR

uR � 360� � u
� 2p � u



S O L U T I O N

(a) The angle is in quadrant IV, and hence, as in Figure 1(d),

The angles and are sketched in Figure 2(a).

(b) The angle between 0° and 360° that is coterminal with is

which is in quadrant II. Using the formula in Figure 1(b) gives

The angles and are sketched in Figure 2(b).

(c) Since the angle is in quadrant II, we have

as shown in Figure 2(c).

(d) Since , the angle is in quadrant III. Using the for-
mula in Figure 1(c), we obtain

The angles are sketched in Figure 2(d). L

We shall next show how reference angles can be used to find values of the
trigonometric functions.

If is a nonquadrantal angle with reference angle , then we have
or . Let be a point on the terminal side

of , and consider the point on the x-axis. Figure 3 illustrates aQ�x, 0�	
P�x, y�0 � 	R � ��20° � 	R � 90°

	R	

	R � 4 � �.

	 � 4� � 4 � 3��2

	R � � �
5�

6
�

�

6
,

	 � 5��6

	R	

	R � 180° � 120° � 60°.

�240° � 360° � 120°,

	 � �240°

	R	

	R � 360° � 315° � 45°.

	 � 315°
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Figure 2
(a) y

xuR � 45�

u � 315�

(b) y

x

u � �240�

120�uR � 60�

(c) y

x

u � l

uR � k

(d) y

x

uR � 4 � p
u � 4

Figure 3

y

x

y

x

y

x

y

x

uR

y

�x�
Q(x, 0)

P(x, y)

O x

r
P(x, y)

Q(x, 0)

O
uR

y
r

�x�
uR

Q(x, 0)

P(x, y) P(x, y)

uR

Q(x, 0)

O
x

r
O

r �y��y�
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typical situation for in each quadrant. In each case, the lengths of the sides
of triangle OQP are

and

We may apply the definition of the trigonometric functions of any angle
and also use triangle OQP to obtain the following formulas:

These formulas lead to the next theorem. If is a quadrantal angle, the defini-
tion of the trigonometric functions of any angle should be used to find values.

The “appropriate sign” referred to in the theorem can be determined from the
table of signs of the trigonometric functions given on page 371.

E X A M P L E  2 Using reference angles

Use reference angles to find the exact values of , , and if

(a) (b)

S O L U T I O N

(a) The angle and its reference angle are sketched in
Figure 4. Since is in quadrant II, is positive and both and 
are negative. Hence, by the theorem on reference angles and known results
about special angles, we obtain the following values:

 tan 
5�

6
� � tan

�

6
� �

23

3

 cos 
5�

6
� � cos

�

6
� �

23

2

 sin 
5�

6
� � sin

�

6
�

1

2

tan 	cos 	sin 		
	R � ��6	 � 5��6

	 � 315°	 �
5�

6

tan 	cos 	sin 	

	

� tan 	 � � � y

x � �
� y �
� x �

� tan 	R

� cos 	 � � � x

r � �
� x �
� r �

�
� x �
r

� cos 	R

� sin 	 � � � y

r � �
� y �
� r �

�
� y �
r

� sin 	R

d�O, P� � 2x2 � y2 � r.d�Q, P� � � y �,d�O, Q� � � x �,

	

Theorem on Reference Angles If is a nonquadrantal angle in standard position, then to find the value of
a trigonometric function at , find its value for the reference angle and
prefix the appropriate sign.

	R	
	

Figure 4

y

x

u � l

uR � k

(continued)



Figure 5

y

xuR � 45�

u � 315�

(b) The angle and its reference angle are sketched in Fig-
ure 5. Since is in quadrant IV, , , and . Hence,
by the theorem on reference angles, we obtain

L

If we use a calculator to approximate function values, reference angles are
usually unnecessary. As an illustration, to find sin 210°, we place the calcula-
tor in degree mode and obtain , which is the exact value.
Using the same procedure for 240°, we obtain a decimal representation:

A calculator should not be used to find the exact value of sin 240°. In this case,
we find the reference angle 60° of 240° and use the theorem on reference an-
gles, together with known results about special angles, to obtain

Let us next consider the problem of solving an equation of the follow-
ing type:

Problem: If is an acute angle and , approximate .

Most calculators have a key labeled that can be used to help solve the
equation. With some calculators, it may be necessary to use another key or a
keystroke sequence such as (refer to the user manual for your cal-
culator). We shall use the following notation when finding , where :

This notation is similar to that used for the inverse function of a function
f in Section 5.1, where we saw that under certain conditions,

For the problem , f is the sine function, , and .
The notation is based on the inverse trigonometric functions discussed
in Section 7.6. At this stage of our work, we shall regard simply as an
entry made on a calculator using a key. Thus, for the stated problem,
we obtain

As indicated, when finding an angle, we will usually round off degree measure
to the nearest 0.01° and radian measure to four decimal places.

	 � sin�1 �0.6635� 
 41.57° 
 0.7255.

SIN�1

sin�1

sin�1

y � 0.6635x � 	sin 	 � 0.6635

if f�x� � y, then x � f �1�y�.

f �1

if sin 	 � k, then 	 � sin�1 k

0 � k � 1	
SININV

SIN�1

	sin 	 � 0.6635	

sin 240° � �sin 60° � �
23

2
.

sin 240° 
 �0.8660

sin 210° � �0.5

 tan 315° � � tan 45° � �1.

 cos 315° � � cos 45° �
22

2

 sin 315° � � sin 45° � �
22

2

tan 	 � 0cos 	 � 0sin 	 � 0	
	R � 45°	 � 315°
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Similarly, given or , where is acute, we write

to indicate the use of a or key on a calculator.
Given , , or , we use a reciprocal relationship to find , as

indicated in the following illustration.

Finding Acute Angle Solutions of Equations with a Calculator

Equation Calculator solution (degree and radian)

The same technique may be employed if is any angle or real number.
Thus, using the key, we obtain, in degree or radian mode,

which is the reference angle for . If is negative, then a calculator gives
us the negative of the reference angle. For example,

Similarly, given or , we find with a calculator by using
or , respectively. The interval containing is listed in the next

chart. It is important to note that if is negative, then is not the negative
of the reference angle, but instead is in the interval , or

. The reasons for using these intervals are explained in Sec-
tion 7.6. We may use reciprocal relationships to solve similar equations in-
volving , , and .

The following illustration contains some specific examples for both de-
gree and radian modes.

cot 	sec 	csc 	

90° � 	 � 180°
��2 � 	 � �

	cos 	
	TAN�1COS�1

	tan 	cos 	

sin�1 ��0.6635� 
 �41.57° 
 �0.7255.

sin 		

	 � sin�1 �0.6635� 
 41.57° 
 0.7255,

SIN�1

	


 0.4636
 26.57°	 � tan�1 �1
2�cot 	 � 2


 1.0472� 60°	 � cos�1 �1
2�sec 	 � 2


 0.5236� 30°	 � sin�1 �1
2�csc 	 � 2


 0.4636
 26.57°	 � tan�1 �0.5�tan 	 � 0.5


 1.0472� 60°	 � cos�1 �0.5�cos 	 � 0.5


 0.5236� 30°	 � sin�1 �0.5�sin 	 � 0.5

	cot 	sec 	csc 	
TAN�1COS�1

	 � cos�1 k or 	 � tan�1 k

	tan 	 � kcos 	 � k

I L L U S T R A T I O N

Equation Values of k Calculator solution Interval containing u if a calculator is used

or

or

any k or �90° � 	 � 90°�
�

2
� 	 �

�

2
,	 � tan�1 k tan 	 � k

0° � 	 � 180°0 � 	 � �,	 � cos�1 k�1 � k � 1 cos 	 � k

�90° � 	 � 90°�
�

2
� 	 �

�

2
,	 � sin�1 k�1 � k � 1 sin 	 � k



Finding Angles with a Calculator

Equation Calculator solution (degree and radian)

When using a calculator to find , be sure to keep the restrictions on in
mind. If other values are desired, then reference angles or other methods may
be employed, as illustrated in the next examples.

E X A M P L E  3 Approximating an angle with a calculator

If and , find to the nearest 0.1°.

S O L U T I O N As pointed out in the preceding discussion, if we use a calcu-
lator (in degree mode) to find when is negative, then the degree mea-
sure will be in the interval . In particular, we obtain the following:

Since we wish to find values of between 0° and 360°, we use the (ap-
proximate) reference angle . There are two possible values of such
that is negative—one in quadrant II, the other in quadrant IV. If is in
quadrant II and , we have the situation shown in Figure 6, and

If is in quadrant IV and , then, as in Figure 7,

L

E X A M P L E  4 Approximating an angle with a calculator

If and , find to the nearest 0.0001 radian.

S O L U T I O N If we use a calculator (in radian mode) to find when is
negative, then the radian measure will be in the interval . In particular,
we obtain the following (shown in Figure 8):

Since we wish to find values of between 0 and , we use the (approxi-
mate) reference angle

There are two possible values of such that is negative—the one we
found in quadrant II and the other in quadrant III. If is in quadrant III, then

as shown in Figure 9. L

	 � � � 	R 
 4.318 047 819,

	
cos 		

	R � � � 	 
 1.176 455 165.

2�	

	 � cos�1 ��0.3842� 
 1.965 137 489

�0, �	
cos 		

	0 � 	 � 2�cos 	 � �0.3842

	 � 360° � 	R 
 360° � 24.8� � 335.2°.

0° � 	 � 360°	

	 � 180° � 	R 
 180° � 24.8° � 155.2°.

0° � 	 � 360°
	tan 	
		R 
 24.8°

	

	 � tan�1 ��0.4623� 
 �24.8°

��90°, 0°�
tan 		

	0° � 	 � 360°tan 	 � �0.4623

		


 �0.4636
 �26.57°	 � tan�1 ��0.5�tan 	 � �0.5


 2.0944� 120°	 � cos�1 ��0.5�cos 	 � �0.5


 �0.5236� �30°	 � sin�1 ��0.5�sin 	 � �0.5
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Figure 6

y

x

uR

u � 180� � uR

 
 155.2�

Figure 7

y

xuR

u � 360� � uR

 
 335.2�

Figure 8

y

x

uR � p � u
 
 1.1765 u 
 1.9651

Figure 9

y

x

u � p � uR

 
 4.3180

uR
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Exer. 1–6: Find the reference angle uR if u has the given
measure.

1 (a) 240� (b) 340� (c) (d)

2 (a) 165� (b) 275� (c) (d) 400�

3 (a) (b) (c) (d)

4 (a) (b) (c) (d)

5 (a) 3 (b) (c) 5.5 (d) 100

6 (a) 6 (b) (c) 4.5 (d) 80

Exer. 7–18: Find the exact value.

7 (a) (b)

8 (a) (b)

9 (a) (b)

10 (a) (b)

11 (a) (b)

12 (a) (b)

13 (a) (b)

14 (a) (b)

15 (a) (b)

16 (a) (b)

17 (a) (b)

18 (a) (b)

Exer. 19–24: Approximate to three decimal places.

19 (a) (b)

20 (a) (b)

21 (a) (b)

22 (a) (b)

23 (a) (b)

24 (a) (b) sec 0.26csc 43�40�

csc 0.32sec 67�50�

tan 0.75cot 9�10�

cot 1.13tan 21�10�

sin 1.48cos 38�30�

cos 0.68sin 73�20�

csc ��2��3�csc �3��4�

csc ��330��csc 240�

sec ��210��sec 135�

sec ����6�sec �2��3�

cot ��2��3�cot �3��4�

cot ��150��cot 120�

tan ��225��tan 330�

tan ����3�tan �5��6�

cos ��11��6�cos �5��4�

cos ��60��cos 150�

sin ��315��sin 210�

sin ��5��4�sin �2��3�

�4

�2

�23��6�3��42��37��4

9��4���64��33��4

�110�

�660��202�

Exer. 25–32: Approximate the acute angle u to the near-
est (a) 0.01
 and (b) 1�.

25 26

27 28

29 30

31 32

Exer. 33–34: Approximate to four decimal places.

33 (a) (b) (c)

(d) (e) (f)

34 (a) (b) (c)

(d) (e) (f)

Exer. 35–36: Approximate, to the nearest 0.1
, all angles u
in the interval [0
, 360
) that satisfy the equation.

35 (a) (b)

(c) (d)

(e) (f)

36 (a) (b)

(c) (d)

(e) (f)

Exer. 37–38: Approximate, to the nearest 0.01 radian, all
angles u in the interval [0, 2p) that satisfy the equation.

37 (a) (b)

(c) (d)

(e) (f)

38 (a) (b)

(c) (d)

(e) (f) csc 	 � 1.258sec 	 � �3.51

cot 	 � �2.731tan 	 � 0.42

cos 	 � 0.9235sin 	 � �0.0135

csc 	 � �4.8521sec 	 � 1.7452

cot 	 � 2.6815tan 	 � �3.2504

cos 	 � �0.1207sin 	 � 0.4195

csc 	 � �2.3179sec 	 � 1.4291

cot 	 � 1.3752tan 	 � �1.5214

cos 	 � �0.6604sin 	 � 0.8225

csc 	 � 1.485sec 	 � �1.116

cot 	 � �0.9601tan 	 � 2.798

cos 	 � 0.7490sin 	 � �0.5640

csc 320�50�sec 1.46cot 1030.2�

tan 105�40�cos 0.65sin 496.4�

csc 0.82sec 1175.1�cot 231�40�

tan 3cos 623.7�sin 98�10�

csc 	 � 11sec 	 � 4.246

tan 	 � 4.91sin 	 � 0.4217

cos 	 � 0.8tan 	 � 3.7

sin 	 � 0.6612cos 	 � 0.8620

6.4 E x e r c i s e s



39 Thickness of the ozone layer The thickness of the ozone
layer can be estimated using the formula

where is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, I is the in-
tensity of the same wavelength after passing through a layer
of ozone x centimeters thick, k is the absorption constant of
ozone for that wavelength, and is the acute angle that the
sunlight makes with the vertical. Suppose that for a wave-
length of centimeter with , is
measured as 1.72 and . Approximate the thickness
of the ozone layer to the nearest 0.01 centimeter.

40 Ozone calculations Refer to Exercise 39. If the ozone layer
is estimated to be 0.31 centimeter thick and, for a wave-
length of centimeter, is measured as 2.05,
approximate the angle the sun made with the vertical at the
time of the measurement.

41 Solar radiation The amount of sunshine illuminating a wall
of a building can greatly affect the energy efficiency of the
building. The solar radiation striking a vertical wall that
faces east is given by the formula

where is the maximum solar radiation possible, is the
angle that the sun makes with the horizontal, and is the 
direction of the sun in the sky, with when the sun
is in the east and when the sun is in the south.

(a) When does the maximum solar radiation strike
the wall?

(b) What percentage of is striking the wall when is
equal to 60� and the sun is in the southeast?

	R0

R0

� � 0�
� � 90�

�
	R0

R � R0 cos 	 sin �,

I0�I3055 � 10�8

	 � 12�
I0�Ik 
 1.883055 � 10�8

	

I0

ln I0 � ln I � kx sec 	,

42 Meteorological calculations In the mid-latitudes it is some-
times possible to estimate the distance between consecutive
regions of low pressure. If is the latitude (in degrees),
R is Earth’s radius (in kilometers), and v is the horizontal
wind velocity (in ), then the distance d (in kilometers)
from one low pressure area to the next can be estimated
using the formula

(a) At a latitude of 48�, Earth’s radius is approximately
6369 kilometers. Approximate d if the wind speed is
45 .

(b) If v and R are constant, how does d vary as the lati-
tude increases?

43 Robot’s arm Points on the terminal sides of angles play an
important part in the design of arms for robots. Suppose a
robot has a straight arm 18 inches long that can rotate about
the origin in a coordinate plane. If the robot’s hand is lo-
cated at and then rotates through an angle of 60�,
what is the new location of the hand?

44 Robot’s arm Suppose the robot’s arm in Exercise 43 can
change its length in addition to rotating about the origin. If
the hand is initially at , approximately how many
degrees should the arm be rotated and how much should its
length be changed to move the hand to ?��16, 10�

�12, 12�

�18, 0�

km�hr

d � 2�� vR

0.52 cos ��1/3

.

km�hr

�
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In this section we consider graphs of the equations

for real numbers a, b, and c. Our goal is to sketch such graphs without plotting
many points. To do so we shall use facts about the graphs of the sine and co-
sine functions discussed in Section 6.3.

Let us begin by considering the special case and —that is,

We can find y-coordinates of points on the graphs by multiplying y-coordinates
of points on the graphs of and by a. To illustrate, if

, we multiply the y-coordinate of each point on the graph ofy � 2 sin x
y � cos xy � sin x

y � a sin x and y � a cos x.

b � 1c � 0

y � a sin �bx � c� and y � a cos �bx � c�
6.5

Trigonometric Graphs
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by 2. This gives us Figure 1, where for comparison we also show the
graph of . The procedure is the same as that for vertically stretching
the graph of a function, discussed in Section 3.5.

As another illustration, if , we multiply y-coordinates of points 

on the graph of by . This multiplication vertically compresses the
graph of by a factor of 2, as illustrated in Figure 2.

The following example illustrates a graph of with a negative.

E X A M P L E  1 Sketching the graph of an equation involving sin x

Sketch the graph of the equation .

S O L U T I O N The graph of sketched in Figure 3 can be ob-
tained by first sketching the graph of (shown in the figure) and then
multiplying y-coordinates by . An alternative method is to reflect the graph
of (see Figure 1) through the x-axis.

Figure 3

L

y

x

y � sin x

p 3p�p

y � �2 sin x
2

�2

�1

y � 2 sin x
�2

y � sin x
y � �2 sin x

y � �2 sin x

y � a sin x

y � sin x

1
2y � sin x

y �
1
2 sin x

y � sin x
y � sin x

Figure 1

y

x

y � sin x

p 2p 3p

1

�p

y � 2 sin x
2

�2

�1

Figure 2

y

x

y � sin x

p 2p 3p

1

�1
�p

y � q sin x
2
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For any , the graph of has the general appearance of one
of the graphs illustrated in Figures 1, 2, and 3. The amount of stretching of the
graph of and whether the graph is reflected are determined by the ab-
solute value of a and the sign of a, respectively. The largest y-coordinate
is the amplitude of the graph or, equivalently, the amplitude of the function
f given by . In Figures 1 and 3 the amplitude is 2. In Figure 2 the
amplitude is . Similar remarks and techniques apply if .

E X A M P L E  2 Sketching the graph of an equation involving cos x

Find the amplitude and sketch the graph of .

S O L U T I O N By the preceding discussion, the amplitude is 3. As indicated in
Figure 4, we first sketch the graph of and then multiply y-coordinates
by 3.

Figure 4

L

Let us next consider and for nonzero real num-
bers a and b. As before, the amplitude is . If , then exactly one cycle
occurs as bx increases from 0 to or, equivalently, as x increases from 0 to

. If , then and one cycle occurs as x increases from 0 
to . Thus, the period of the function f given by or

is . For convenience, we shall also refer to as
the period of the graph of f. The next theorem summarizes our discussion.

2��� b �2��� b �f�x� � a cos bx
f�x� � a sin bx2����b�

�b � 0b � 02��b
2�

b � 0� a �
y � a cos bxy � a sin bx

y

x

y � 3 cos x

p 2p 3p�p

y � cos x

3

�3

y � cos x

y � 3 cos x

y � a cos x1
2

f�x� � a sin x

� a �
y � sin x

y � a sin xa � 0

Theorem on 
Amplitudes and Periods

If or for nonzero real numbers a and b, then the

graph has amplitude and period .
2�

� b �
� a �

y � a cos bxy � a sin bx
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We can also relate the role of b to the discussion of horizontally com-
pressing and stretching a graph in Section 3.5. If , the graph of

or can be considered to be compressed horizontally by
a factor b. If , the graphs are stretched horizontally by a factor .
This concept is illustrated in the next two examples.

E X A M P L E  3 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of .

S O L U T I O N Using the theorem on amplitudes and periods with and
, we obtain the following:

amplitude:

period:

Thus, there is exactly one sine wave of amplitude 3 on the x-interval .
Sketching this wave and then extending the graph to the right and left gives us
Figure 5. L

E X A M P L E  4 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of .

S O L U T I O N Using the theorem on amplitudes and periods with and
we obtain the following:

amplitude:

period:

Thus, there is one sine wave of amplitude 2 on the interval . Sketching
this wave and extending it left and right gives us the graph in Figure 6. L

If and if b is a large positive number, then the period 
is small and the sine waves are close together, with b sine waves on the inter-
val . For example, in Figure 5, and we have two sine waves on

. If b is a small positive number, then the period is large and the
waves are far apart. To illustrate, if , then one-tenth of a sine wave
occurs on and an interval units long is required for one complete
cycle. (See also Figure 6—for , one-half of a sine wave occurs on

.)
If , we can use the fact that to obtain the graph

of . To illustrate, the graph of is the same as the
graph of .y � �sin 2x

y � sin ��2x�y � a sin bx
sin ��x� � �sin xb � 0

�0, 2�	
y � 2 sin 12 x

20��0, 2�	
y � sin 1

10 x
2��b�0, 2�	

b � 2�0, 2�	

2��by � a sin bx

�0, 4�	

2�

� b �
�

2�

� 1
2 �

�
2�

1
2

� 4�

� a � � � 2 � � 2

b �
1
2 ,

a � 2

y � 2 sin 12 x

�0, �	

2�

� b �
�

2�

� 2 �
�

2�

2
� �

� a � � � 3 � � 3

b � 2
a � 3

y � 3 sin 2x

1�b0 � � b � � 1
y � cos bxy � sin bx

� b � � 1

Figure 5

x

y

y � 3 sin 2x

p 2p

3

�p

Figure 6

x

y � 2 sin qx

4p2p

2

�2

y
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Figure 7

y

x

y � �2 sin 3x

p 3p�p

2

i

Figure 8

y

x

y � 4 cos px
4

1 2 3 4 5

�4

�1�2�3

E X A M P L E  5 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of the equation
.

S O L U T I O N Since the sine function is odd, , and we
may write the equation as . The amplitude is , and the
period is . Thus, there is one cycle on an interval of length . The
negative sign indicates a reflection through the x-axis. If we consider the inter-
val and sketch a sine wave of amplitude 2 (reflected through the 
x-axis), the shape of the graph is apparent. The part of the graph in the inter-
val is repeated periodically, as illustrated in Figure 7. L

E X A M P L E  6 Finding an amplitude and a period

Find the amplitude and the period and sketch the graph of .

S O L U T I O N The amplitude is , and the period is . Thus,
there is exactly one cosine wave of amplitude 4 on the interval . Since the
period does not contain the number , it makes sense to use integer ticks on
the x-axis. Sketching this wave and extending it left and right gives us the
graph in Figure 8.

�
�0, 2	

2��� � 2� 4 � � 4

y � 4 cos �x

�0, 2��3	

�0, 2��3	

2��32��3
� �2 � � 2y � �2 sin 3x

sin ��3x� � �sin 3x

y � 2 sin ��3x�

As discussed in Section 3.5, if f is a function and c is a positive real number,
then the graph of can be obtained by shifting the graph of

vertically upward a distance c. For the graph of , we
shift the graph of vertically downward a distance of c. In the next ex-
ample we use this technique for a trigonometric graph.

y � f �x�
y � f �x� � cy � f �x�

y � f �x� � c

L
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Figure 9

y

x

y � 2 sin x

2p�p

y � 2 sin x � 3
5

3p

p

E X A M P L E  7 Vertically shifting a trigonometric graph

Sketch the graph of .

S O L U T I O N It is important to note that . The graph of
is sketched in red in Figure 9. If we shift this graph vertically up-

ward a distance 3, we obtain the graph of .

Let us next consider the graph of

As before, the amplitude is , and the period is . One cycle occurs if
increases from 0 to . Hence, we can find an interval containing ex-

actly one sine wave by solving the following inequality for x:

subtract c

divide by b

The number is the phase shift associated with the graph. The graph of
may be obtained by shifting the graph of to

the left if the phase shift is negative or to the right if the phase shift is positive.
Analogous results are true for . The next theorem sum-

marizes our discussion.

E X A M P L E  8 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of

y � 3 sin �2x �
�

2�.

y � a cos �bx � c�

y � a sin bxy � a sin �bx � c�
�c�b

�
c

b
� x �

2�

b
�

c

b

�c � bx � 2� � c

 0 � bx � c � 2�

2�bx � c
2��� b �� a �

y � a sin �bx � c�.

y � 2 sin x � 3
y � 2 sin x

y � 2 sin �x � 3�

y � 2 sin x � 3

Theorem on Amplitudes,
Periods, and Phase Shifts

If or for nonzero real numbers a and
b, then

(1) the amplitude is , the period is , and the phase shift is ;

(2) an interval containing exactly one cycle can be found by solving the
inequality

0 � bx � c � 2�.

�
c

b

2�

� b �
� a �

y � a cos �bx � c�y � a sin �bx � c�

We will sometimes write
in the equivalent 

form .y � a sin �b�x �
c

b��
y � a sin �bx � c�

L
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Figure 11

y

x

y � 2 cos (3x � p)
2

�2

pu

S O L U T I O N The equation is of the form with ,
, and . Thus, the amplitude is , and the period is

.
By part (2) of the theorem on amplitudes, periods, and phase shifts, the

phase shift and an interval containing one sine wave can be found by solving
the following inequality:

subtract

divide by 2

Thus, the phase shift is , and one sine wave of amplitude 3 occurs on the
interval . Sketching that wave and then repeating it to the right
and left gives us the graph in Figure 10. L

E X A M P L E  9 Finding an amplitude, a period, and a phase shift

Find the amplitude, the period, and the phase shift and sketch the graph of
.

S O L U T I O N The equation has the form with ,
, and . Thus, the amplitude is , and the period is

.
By part (2) of the theorem on amplitudes, periods, and phase shifts, the

phase shift and an interval containing one cycle can be found by solving the
following inequality:

add

divide by 3

Hence, the phase shift is , and one cosine-type cycle (from maximum to
maximum) of amplitude 2 occurs on the interval . Sketching that part
of the graph and then repeating it to the right and left gives us the sketch in
Figure 11.

If we solve the inequality

we obtain the interval , which gives us a cycle between
x-intercepts rather than a cycle between maximums. L

��6 � x � 5��6

�
�

2
� 3x � � �

3�

2
instead of 0 � 3x � � � 2�,

���3, �	
��3

�

3
� x � �

�� � 3x � 3�

 0 � 3x � � � 2�

2��� b � � 2��3
� a � � 2c � ��b � 3

a � 2y � a cos �bx � c�

y � 2 cos �3x � ��

����4, 3��4	
���4

�
�

4
� x �

3�

4

�

2
�

�

2
� 2x �

3�

2

 0 � 2x �
�

2
� 2�

2��� b � � 2��2 � �
� a � � 3c � ��2b � 2

a � 3y � a sin �bx � c�

Figure 10

y

x

y � 3 sin �2x � q�

�p p 2p

�d f
3

�3
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E X A M P L E  1 0 Finding an equation for a sine wave

Express the equation for the sine wave shown in Figure 12 in the form

for , , and the least positive real number c.

Figure 12

S O L U T I O N The largest and smallest y-coordinates of points on the graph
are 5 and , respectively. Hence, the amplitude is .

Since one sine wave occurs on the interval , the period has value
. Hence, by the theorem on amplitudes, periods, and phase

shifts (with ),

The phase shift is . Since c is to be positive, the phase
shift must be negative; that is, the graph in Figure 12 must be obtained by
shifting the graph of to the left. Since we want c to be as
small as possible, we choose the phase shift . Hence,

Thus, the desired equation is

y � 5 sin ��

2
x �

�

2�.

�
c

��2
� �1 or, equivalently, c �

�

2
.

�1
y � 5 sin ����2�x	

�c�b � �c����2�

2�

b
� 4 or, equivalently, b �

�

2
.

b � 0
3 � ��1� � 4

��1, 3	
a � 5�5

y

x

1

1

b � 0a � 0

y � a sin �bx � c�

(continued)



There are many other equations for the graph. For example, we could use
the phase shifts , , , and so on, but these would not give us the least
positive value for c. Two other equations for the graph are

However, neither of these equations satisfies the given criteria for a, b, and c,
since in the first, , and in the second, and c does not have its least
positive value.

As an alternative solution, we could write

As before, we find and . Now since the graph has an x-intercept
at , we can consider this graph to be a horizontal shift of the graph of

to the left by 1 unit—that is, replace x with . Thus,
an equation is

L

Many phenomena that occur in nature vary in a cyclic or rhythmic man-
ner. It is sometimes possible to represent such behavior by means of trigono-
metric functions, as illustrated in the next two examples.

E X A M P L E  1 1 Analyzing the process of breathing

The rhythmic process of breathing consists of alternating periods of inhaling
and exhaling. One complete cycle normally takes place every 5 seconds. If 
denotes the air flow rate at time t (in liters per second) and if the maximum
flow rate is 0.6 liter per second, find a formula of the form that
fits this information.

S O L U T I O N If for some , then the period of F is .
In this application the period is 5 seconds, and hence

Since the maximum flow rate corresponds to the amplitude a of F, we let
. This gives us the formula

L
F�t� � 0.6 sin �2�

5
t�.

a � 0.6

2�

b
� 5, or b �

2�

5
.

2��bb � 0F�t� � a sin bt

F�t� � a sin bt

F�t�

y � 5 sin ��

2
�x � 1��, or y � 5 sin ��

2
x �

�

2 �.

x � 1y � 5 sin ����2�x	
x � �1

b � ��2a � 5

y � a sin �bx � c� as y � a sin �b�x �
c

b��.

a � 0c � 0

y � 5 sin � �

2
x �

3�

2 � and y � �5 sin � �

2
x �

3�

2 �.

�13�9�5
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E X A M P L E  1 2 Approximating the number of hours of daylight in a day

The number of hours of daylight at a particular time of the year can be
approximated by

for t in days and corresponding to January 1. The constant K determines
the total variation in day length and depends on the latitude of the locale.

(a) For Boston, . Sketch the graph of D for .

(b) When is the day length the longest? the shortest?

S O L U T I O N

(a) If , then , and we may write in the form

where

We shall sketch the graph of f and then apply a vertical shift through a dis-
tance 12.

As in part (2) of the theorem on amplitudes, periods, and phase shifts, we
can obtain a t-interval containing exactly one cycle by solving the following
inequality:

multiply by 

add 79

Hence, one sine wave occurs on the interval . Dividing this interval
into four equal parts, we obtain the following table of values, which indicates
the familiar sine wave pattern of amplitude 3.

If ,

Since the period of f is 365, this implies that .
The graph of f for the interval is sketched in Figure 13, with dif-

ferent scales on the axes and t rounded off to the nearest day.
�0, 444	

f �365� 
 �2.9

f �0� � 3 sin �2�

365
��79�� 
 3 sin ��1.36� 
 �2.9.

t � 0

�79, 444	

 79 � t � 444

365

2�
 0 � t � 79  � 365

 0 �
2�

365
�t � 79� � 2�

f �t� � 3 sin �2�

365
�t � 79��.

D�t� � f �t� � 12,

D�t�K�2 � 3K � 6

0 � t � 365K 
 6

t � 0

D�t� �
K

2
 sin �2�

365
�t � 79�� � 12

D�t�
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t 79 170.25 261.5 352.75 444

f (t) 0 3 0 0�3

Figure 13

y (number of hours)

t (days)

y � D(t )

y � f (t )

15

12

9

6

�3

3

79 170 262 353 444

365

(continued)



Applying a vertical shift of 12 units gives us the graph of D for
shown in Figure 13.

(b) The longest day—that is, the largest value of —occurs 170 days after
January 1. Except for leap year, this corresponds to June 20. The shortest day
occurs 353 days after January 1, or December 20. L

D�t�
0 � t � 365
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1 Find the amplitude and the period and sketch the graph of
the equation:

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2 For equations analogous to those in (a)–(h) of Exercise 1
but involving the cosine, find the amplitude and the period
and sketch the graph.

3 Find the amplitude and the period and sketch the graph of
the equation:

(a) (b)

(c) (d)

(e) (f)

(g) (h)

4 For equations analogous to those in (a)–(h) of Exercise 3
but involving the sine, find the amplitude and the period and
sketch the graph.

Exer. 5–40: Find the amplitude, the period, and the phase
shift and sketch the graph of the equation.

5 6

7 8

9 10 y � cos �x �
�

3 �y � cos �x �
�

2 �
y � 2 sin �x �

�

3 �y � 3 sin �x �
�

6 �
y � sin �x �

�

4 �y � sin �x �
�

2 �

y � cos ��3x�y � �3 cos x

y �
1
2 cos 3xy � 2 cos 1

3 x

y � cos 1
3 xy �

1
3 cos x

y � cos 3xy � 3 cos x

y � sin ��4x�y � �4 sin x

y �
1
2 sin 4xy � 2 sin 1

4 x

y � sin 1
4 xy �

1
4 sin x

y � sin 4xy � 4 sin x

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35

36

37 38

39 40 y � �4 sin �3x � �� � 3y � 5 cos �2x � 2�� � 2

y � 3 cos �x � 3�� � 2y � �2 sin �2x � �� � 3

y � 23 cos � �

4
x �

�

2 �
y � �22 sin � �

2
x �

�

4 �
y � �2 sin �2�x � ��y � 3 cos ��x � 4��

y � 4 sin � 1

3
x �

�

3 �y � �5 cos � 1

3
x �

�

6 �
y � �2 sin � 1

2
x �

�

2 �y � 3 cos � 1

2
x �

�

4 �
y � �4 cos �2x �

�

3 �y � 5 sin �3x �
�

2 �
y �

1

2
cos

�

2
xy �

1

2
sin 2�x

y � 4 sin 3�xy � 2 cos
�

2
x

y � 3 cos 
�

2
xy � 6 sin �x

y � sin � 1

2
x �

�

4 �y � sin � 1

2
x �

�

3 �
y � 3 cos �3x � ��y � �2 sin �3x � ��

y � cos �2x � �� � 2y � �cos �3x � �� � 2

y � �sin �3x � �� � 1y � sin �2x � �� � 1

y � 3 cos �x �
�

6 �y � 4 cos �x �
�

4 �
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Exer. 41–44: The graph of an equation is shown in the 
figure. (a) Find the amplitude, period, and phase shift. 
(b) Write the equation in the form y � a sin (bx � c) for 
a > 0, b > 0, and the least positive real number c.

41

42

43

44 y

x�2 �1 1

�3

3

2

y

x

�2

2

4�2 2

y

x�p p

�3

3

q

y

x�p p 2p

�4

4

45 Electroencephalography Shown in the figure is an electro-
encephalogram of human brain waves during deep sleep. If
we use to represent these waves, what
is the value of b?

Exercise 45

46 Intensity of daylight On a certain spring day with 12 hours
of daylight, the light intensity I takes on its largest value of
510 at midday. If corresponds to sunrise,
find a formula that fits this information.

47 Heart action The pumping action of the heart consists of
the systolic phase, in which blood rushes from the left ven-
tricle into the aorta, and the diastolic phase, during which
the heart muscle relaxes. The function whose graph is shown
in the figure is sometimes used to model one complete cycle
of this process. For a particular individual, the systolic phase
lasts second and has a maximum flow rate of 8 liters per
minute. Find a and b.

Exercise 47

48 Biorhythms The popular biorhythm theory uses the graphs
of three simple sine functions to make predictions about an
individual’s physical, emotional, and intellectual potential
for a particular day. The graphs are given by y � a sin bt

t (seconds)

y (liters/min)

y � a sin bt

Systolic
phase

Diastolic
phase

0.25

1
4

I � a sin bt
t � 0calories�cm2

0 2 (sec)1

W � a sin �bt � c�
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for t in days, with corresponding to birth and 
denoting 100% potential.

(a) Find the value of b for the physical cycle, which has 
a period of 23 days; for the emotional cycle (period
28 days); and for the intellectual cycle (period 33 days).

(b) Evaluate the biorhythm cycles for a person who has just
become 21 years of age and is exactly 7670 days old.

49 Tidal components The height of the tide at a particular point
on shore can be predicted by using seven trigonometric
functions (called tidal components) of the form

.

The principal lunar component may be approximated by

where t is in hours and corresponds to midnight.
Sketch the graph of f if m.

50 Tidal components Refer to Exercise 49. The principal solar
diurnal component may be approximated by

Sketch the graph of f if m.

51 Hours of daylight in Fairbanks If the formula for in
Example 12 is used for Fairbanks, Alaska, then .
Sketch the graph of D in this case for .0 � t � 365

K 
 12
D�t�

a � 0.2

f �t� � a cos ��

12
t �

7�

12�.

a � 0.5
t � 0

f �t� � a cos � �

6
t �

11�

12 �,

a cos �bt � c�f �t� �

a � 1t � 0 52 Low temperature in Fairbanks Based on years of weather
data, the expected low temperature T (in �F) in Fairbanks,
Alaska, can be approximated by

where t is in days and corresponds to January 1.

(a) Sketch the graph of T for .

(b) Predict when the coldest day of the year will occur.

Exer. 53–56: Scientists sometimes use the formula

f (t) � a sin (bt � c) � d

to simulate temperature variations during the day, with
time t in hours, temperature f (t) in 
C, and t � 0 corre-
sponding to midnight. Assume that f (t) is decreasing at
midnight.
(a) Determine values of a, b, c, and d that fit the information.
(b) Sketch the graph of f for 0 � t � 24.

53 The high temperature is 10�C, and the low temperature of
C occurs at 4 A.M.

54 The temperature at midnight is 15�C, and the high and low
temperatures are 20�C and 10�C.

55 The temperature varies between 10�C and 30�C, and the
average temperature of 20�C first occurs at 9 A.M.

56 The high temperature of 28�C occurs at 2 P.M., and the
average temperature of 20�C occurs 6 hours later.

�10�

0 � t � 365

t � 0

T � 36 sin �2�

365
�t � 101�� � 14,
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Methods we developed in Section 6.5 for the sine and cosine can be applied to
the other four trigonometric functions; however, there are several differences.
Since the tangent, cotangent, secant, and cosecant functions have no largest
values, the notion of amplitude has no meaning. Moreover, we do not refer to
cycles. For some tangent and cotangent graphs, we begin by sketching the por-
tion between successive vertical asymptotes and then repeat that pattern to the
right and to the left.

The graph of for can be obtained by stretching or com-
pressing the graph of . If , then we also use a reflection about
the x-axis. Since the tangent function has period , it is sufficient to sketch the
branch between the two successive vertical asymptotes and

. The same pattern occurs to the right and to the left, as in the next
example.
x � ��2

x � ���2
�

a � 0y � tan x
a � 0y � a tan x

6.6
Additional Trigonometric

Graphs
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E X A M P L E  1 Sketching the graph of an equation involving 

Sketch the graph of the equation:

(a) (b)

S O L U T I O N We begin by sketching the graph of one branch of , as
shown in red in Figures 1 and 2, between the vertical asymptotes 
and .

(a) For , we multiply the y-coordinate of each point by 2 and then
extend the resulting branch to the right and left, as shown in Figure 1.

Figure 1

(b) For , we multiply the y-coordinates by , obtaining the sketch
in Figure 2.

Figure 2

L

y

xp 2p 3p 4p�p�2p

1

y �
1
2 tan x

1
2y �

1
2 tan x

y

xp 2p 3p 4p�p�2p

1

y � 2 tan x

y � 2 tan x

x � ��2
x � ���2

y � tan x

y �
1
2 tan xy � 2 tan x

tan x



The method used in Example 1 can be applied to other functions. Thus, to
sketch the graph of , we could first sketch the graph of one branch
of and then multiply the y-coordinate of each point by 3.

The next theorem is an analogue of the theorem on amplitudes, periods,
and phase shifts stated in Section 6.5 for the sine and cosine functions.

E X A M P L E  2 Sketching the graph of an equation 
of the form 

Find the period and sketch the graph of .

S O L U T I O N The equation has the form given in the preceding theorem with
, and . Hence, by part (1), the period is given by

.
As in part (2), to find successive vertical asymptotes we solve the follow-

ing inequality:

subtract

Because , the graph of the equation on the interval has the 
shape of the graph of (see Figure 2). Sketching that branch and ex-
tending it to the right and left gives us Figure 3.

Note that since and , the phase shift is .
Hence, the graph can also be obtained by shifting the graph of in
Figure 2 to the left a distance . L

If , we have a situation similar to that stated in the pre-
vious theorem. The only difference is part (2). Since successive vertical 
asymptotes for the graph of are and (see Figure 19 in
Section 6.3), we obtain successive vertical asymptotes for the graph of one
branch of by solving the inequality

0 � bx � c � �.

y � a cot �bx � c�

x � �x � 0y � cot x

y � a cot �bx � c�

��4
y �

1
2 tan x

�c�b � ���4b � 1c � ��4

y �
1
2 tan x

��3��4, ��4	a �
1
2

�

4
�

3�

4
� x �

�

4

�
�

2
� x �

�

4
�

�

2

��� b � � ��1 � �
c � ��4a �

1
2 , b � 1

y �
1

2
tan �x �

�

4 �
y � a tan (bx � c)

y � sec x
y � 3 sec x
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Theorem on the Graph 
of y � a tan (bx � c)

If for nonzero real numbers a and b, then

(1) the period is and the phase shift is 

(2) successive vertical asymptotes for the graph of one branch may be
found by solving the inequality

�
�

2
� bx � c �

�

2
.

�
c

b
;

�

� b �

y � a tan �bx � c�

Figure 3

y �
1

2
tan�x �

�

4 �
y

xp�p

1

x � �f
x � d
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E X A M P L E  3 Sketching the graph of an equation 
of the form 

Find the period and sketch the graph of .

S O L U T I O N Using the usual notation, we see that , and
. The period is . Hence, the graph repeats itself in in-

tervals of length .
As in the discussion preceding this example, to find two successive verti-

cal asymptotes for the graph of one branch we solve the inequality:

add

divide by 2

Since a is positive, we sketch a cotangent-shaped branch on the interval
and then repeat it to the right and left in intervals of length ,

as shown in Figure 4. L

Graphs involving the secant and cosecant functions can be obtained by
using methods similar to those for the tangent and cotangent or by taking re-
ciprocals of corresponding graphs of the cosine and sine functions.

E X A M P L E  4 Sketching the graph of an equation 
of the form 

Sketch the graph of the equation:

(a) (b)

S O L U T I O N

(a) The graph of is sketched (without asymptotes) in red in
Figure 5 on the next page. The graph of is sketched in black; notice
that the asymptotes of correspond to the zeros of . We can

obtain the graph of by shifting the graph of to

the right a distance , as shown in blue in Figure 5.

(b) We can sketch this graph by multiplying the y-coordinates of the graph in
part (a) by 2. This gives us Figure 6 on the next page.

��4

y � sec xy � sec �x �
�

4 �
y � cos xy � sec x

y � cos x
y � sec x

y � 2 sec �x �
�

4 �y � sec �x �
�

4 �
y � a sec (bx � c)

��2���4, 3��4	

�

4
� x �

3�

4

�

2

�

2
�  2x �

3�

2

 0 �  2x �
�

2
� �

��2
��� b � � ��2c � ���2

b � 2a � 1,

y � cot �2x �
�

2 �
y � a cot (bx � c)

Figure 4

y � cot �2x �
�

2 �
y

x

f d

1

(continued)



L

E X A M P L E  5 Sketching the graph of an equation 
of the form 

Sketch the graph of .

S O L U T I O N Since , we may write the given equation as

Thus, we may obtain the graph of by finding the graph 
of and then taking the reciprocal of the y-coordinate of 
each point. Using , and , we see that the amplitude of 

is 1 and the period is . To find an in-
terval containing one cycle, we solve the inequality

This leads to the graph in red in Figure 7. Taking reciprocals gives us the graph
of shown in blue in the figure. Note that the zeros of the sine
curve correspond to the asymptotes of the cosecant graph. L

y � csc �2x � ��

�
�

2
� x �

�

2
.

�� � 2x � �

 0 � 2x � � � 2�

2��� b � � 2��2 � �sin �2x � ��y �
c � �a � 1, b � 2

y � sin �2x � ��
y � csc �2x � ��

y �
1

sin �2x � ��
.

csc 	 � 1�sin 	

y � csc �2x � ��

y � a csc (bx � c)
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Figure 5 y � sec �x �
�

4 �

�p p 2p

1

�2p q

y

x

x � fx � �d

y � sec x

y � cos x

Figure 6 y � 2 sec �x �
�

4 �
y

x�p p 2p
�1

1

�2p

x � fx � �d

Figure 7
y � csc �2x � ��

y

x

1

q�q

�1
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The next example involves the absolute value of a trigonometric function.

E X A M P L E  6 Sketching the graph of an equation involving an absolute value

Sketch the graph of .

S O L U T I O N We shall sketch the graph in three stages. First, we sketch the
graph of , as in Figure 8(a).

Next, we obtain the graph of by reflecting the negative
y-coordinates in Figure 8(a) through the x-axis. This gives us Figure 8(b).

Finally, we vertically shift the graph in (b) upward 1 unit to obtain
Figure 8(c).

y � � cos x �
y � cos x

y � � cos x � � 1

Figure 10

y3
y2

y1

y

x

1

�1

p

2p

3p

Figure 9

y

x
y � g(x)

g(x1)

h(x1)

x1

(x1, g (x1) � h(x1))

y � h(x)

y � g(x) � h(x)

Figure 8
(a)

y

x

y � cos x
p

�1

(b)

y

x

y � �cos x�

p�1

(c)

y � �cos x� � 1
y

xp�1

We have used three separate graphs for clarity. In practice, we could sketch
the graphs successively on one coordinate plane. L

Mathematical applications often involve a function f that is a sum of two
or more other functions. To illustrate, suppose

where f, g, and h have the same domain D. A technique known as addition of
y-coordinates is sometimes used to sketch the graph of f. The method is illus-
trated in Figure 9, where for each , the y-coordinate of a point on the
graph of f is the sum of the y-coordinates of points on the graphs
of g and h. The graph of f is obtained by graphically adding a sufficient num-
ber of such y-coordinates.

It is sometimes useful to compare the graph of a sum of functions with the
individual functions, as illustrated in the next example.

E X A M P L E  7 Sketching the graph of a sum of two trigonometric functions

Sketch the graph of , and on the
same coordinate plane for .

S O L U T I O N Note that the graph of in Figure 10 intersects the graph of 
when , and the graph of when . The x-intercepts for corre-
spond to the solutions of . Finally, we see that the maximum and
minimum values of occur when (that is, when , and

). These y-values are

L22�2 � 22�2 � 22 and �22�2 � ��22�2� � �22.

9��4
x � ��4, 5��4y1 � y2y3

y2 � �y1

y3y1 � 0y2y2 � 0
y1y3

0 � x � 3�
y3 � cos x � sin xy1 � cos x, y2 � sin x

g�x1� � h�x1�
f �x1�x1

f �x� � g�x� � h�x�,



The graph of an equation of the form

where f is a function and a and b are real numbers, is called a damped sine
wave or damped cosine wave, respectively, and is called the damping
factor. The next example illustrates a method for graphing such equations.

E X A M P L E  8 Sketching the graph of a damped sine wave

Sketch the graph of f if .

S O L U T I O N We first examine the absolute value of f :

absolute value of both sides

The last inequality implies that the graph of f lies between the graphs of 
the equations and . The graph of f will coincide with 
one of these graphs if —that is, if for some inte-
ger n.

Since , the x-intercepts on the graph of f occur at —that
is, at . Because there are an infinite number of x-intercepts, this is 
an example of a function that intersects its horizontal asymptote an infinite
number of times. With this information, we obtain the sketch shown in 
Figure 11. L

The damping factor in Example 8 is . By using different damping fac-
tors, we can obtain other compressed or expanded variations of sine waves.
The analysis of such graphs is important in physics and engineering.

2�x

x � �n
sin x � 02�x � 0

x � ���2� � �n� sin x � � 1
y � 2�xy � �2�x

�x � � a &fi �a � x � a�2�x � f �x� � 2�x

�2�x � � 2�x since 2�x � 0� f �x� � � 2�x

�sin x � � 1� � 2�x � � 1

�ab � � �a ��b �� � 2�x �� sin x �

� f �x� � � � 2�x sin x �

f �x� � 2�x sin x

f �x�

y � f �x� sin �ax � b� or y � f �x� cos �ax � b�,
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Exer. 1–52: Find the period and sketch the graph of the
equation. Show the asymptotes.

1 2

3 4

5 6

7 8 y �
1
4 sec xy � 3 sec x

y �
1
2 csc xy � 2 csc x

y �
1
3 cot xy � 3 cot x

y �
1
4 tan xy � 4 tan x

9 10

11 12

13 14

15 16 y �
1

3
tan �2x �

�

4 �y � 2 tan �2x �
�

2 �
y � tan 4xy � tan 1

4 x

y � tan 12 xy � tan 2x

y � tan �x �
�

2�y � tan �x �
�

4 �

Figure 11

x

y � �2�x

y � 2�x

y � 2�x sin x

y

�p p
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17

18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37

38

39 40

41 42 y � csc 1
2 xy � csc 2x

y � csc �x �
3�

4 �y � csc �x �
�

2 �
y � �3 sec � 1

3
x �

�

3 �
y � �

1

3
sec � 1

2
x �

�

4 �
y �

1

2
sec �2x �

�

2 �y � 2 sec �2x �
�

2 �
y � sec 3xy � sec 1

3 x

y � sec 1
2 xy � sec 2x

y � sec �x �
3�

4 �y � sec �x �
�

2 �
y � 4 cot � 1

3
x �

�

6 �y � �
1

2
cot � 1

2
x �

�

4 �
y � �

1
3 cot �3x � ��y � 2 cot �2x �

�

2 �
y � cot 3xy � cot 1

3 x

y � cot 1
2 xy � cot 2x

y � cot �x �
�

4 �y � cot �x �
�

2 �
y � �3 tan � 1

3
x �

�

3 �
y � �

1

4
tan � 1

2
x �

�

3 � 43 44

45 46

47 48

49 50

51 52

53 Find an equation using the cotangent function that has the
same graph as .

54 Find an equation using the cosecant function that has the
same graph as .

Exer. 55–60: Use the graph of a trigonometric function
to aid in sketching the graph of the equation without plot-
ting points.

55 56

57 58

59 60

Exer. 61–66: Sketch the graph of the equation.

61 62

63 64

65 66

67 Radio signal intensity Radio stations often have more than
one broadcasting tower because federal guidelines do not
usually permit a radio station to broadcast its signal in all di-
rections with equal power. Since radio waves can travel over
long distances, it is important to control their directional pat-
terns so that radio stations do not interfere with one another.
Suppose that a radio station has two broadcasting towers
located along a north-south line, as shown in the figure. If
the radio station is broadcasting at a wavelength and the�

y � � x � cos xy � � x � sin x

y � ex sin xy � 2�x cos x

y � x � sin xy � x � cos x

y � �� sin x � � 2y � �� cos x � � 1

y � � cos x � � 3y � � sin x � � 2

y � � cos x �y � � sin x �

y � sec x

y � tan x

y � sec
�

8
xy � csc 2�x

y � cot �xy � tan
�

2
x

y � 4 csc � 1

2
x �

�

4 �y � �
1

4
csc � 1

2
x �

�

2 �
y � �

1
2 csc �2x � ��y � 2 csc �2x �

�

2 �
y � csc 3xy � csc 1

3 x



distance between the two radio towers is equal to , then
the intensity I of the signal in the direction is given by

where is the maximum intensity. Approximate I in terms
of for each .

(a) (b) (c)

Exercise 67

u

	 � ��7	 � ��3	 � 0

	I0

I0

I �
1
2 I0�1 � cos �� sin 	�	,

	

1
2 � 68 Radio signal intensity Refer to Exercise 67. Determine the

directions in which I has maximum or minimum values.

69 Earth’s magnetic field The strength of Earth’s magnetic
field varies with the depth below the surface. The strength
at depth z and time t can sometimes be approximated using
the damped sine wave

where , , and k are constants.

(a) What is the damping factor?

(b) Find the phase shift at depth .

(c) At what depth is the amplitude of the wave one-half the
amplitude of the surface strength?

z0

�A0

S � A0e��z sin �kt � �z�,
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Trigonometry was developed to help solve problems involving angles and
lengths of sides of triangles. Problems of that type are no longer the most im-
portant applications; however, questions about triangles still arise in physical
situations. When considering such questions in this section, we shall restrict
our discussion to right triangles. Triangles that do not contain a right angle will
be considered in Chapter 8.

We shall often use the following notation. The vertices of a triangle will
be denoted by A, B, and C; the angles at A, B, and C will be denoted by , ,
and , respectively; and the lengths of the sides opposite these angles by a, b,
and c, respectively. The triangle itself will be referred to as triangle ABC (or
denoted ). If a triangle is a right triangle and if one of the acute 
angles and a side are known or if two sides are given, then we may find the 
remaining parts by using the formulas in Section 6.2 that express the trigono-
metric functions as ratios of sides of a triangle. We can refer to the process of
finding the remaining parts as solving the triangle.

�ABC

�
��

6.7
Applied Problems
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In all examples it is assumed that you know how to find trigonometric
function values and angles by using either a calculator or results about spe-
cial angles.

E X A M P L E  1 Solving a right triangle

Solve , given , , and .

S O L U T I O N Since the sum of the three interior angles in a triangle is 180°,
we have . Solving for the unknown angle gives us

Referring to Figure 1, we obtain

solve for a; approximate

To find side c, we can use either the cosine or the secant function, as fol-
lows in (1) or (2), respectively:

(1)

solve for c; approximate

(2)

solve for c; approximate L

As illustrated in Example 1, when working with triangles, we usually
round off answers. One reason for doing so is that in most applications the
lengths of sides of triangles and measures of angles are found by mechanical
devices and hence are only approximations to the exact values. Consequently,
a number such as 10.5 in Example 1 is assumed to have been rounded off to
the nearest tenth. We cannot expect more accuracy in the calculated values for
the remaining sides, and therefore they should also be rounded off to the near-
est tenth.

In finding angles, answers should be rounded off as indicated in the fol-
lowing table.

c � �10.5� sec 34° 
 12.7

sec � �
hyp

adj
 sec 34° �

c

10.5

c �
10.5

cos 34°

 12.7

cos � �
adj

hyp
cos 34° �

10.5

c

a � �10.5� tan 34° 
 7.1.

tan � �
opp

adj
 tan 34° �

a

10.5

� � 180° � � � � � 180° � 34° � 90° � 56°.

�� � � � � � 180°

b � 10.5� � 34°� � 90°�ABC

Number of significant Round off degree measure
figures for sides of angles to the nearest

2 1°

3 0.1°, or 

4 0.01°, or 1�

10�

Figure 1

ac

10.5
34�

b

A

B

C

Homework Helper
Organizing your work in a table
makes it easy to see what parts remain
to be found. Here are some snapshots
of what a typical table might look like
for Example 1.

After finding :

Angles Opposite sides

a

c

After finding a:

Angles Opposite sides

c

After finding c:

Angles Opposite sides

c 
 12.7� � 90°

b � 10.5� � 56°

a 
  7.1� � 34°

� � 90°

b � 10.5� � 56°

a 
  7.1� � 34°

� � 90°

b � 10.5� � 56°

� � 34°

�



Justification of this table requires a careful analysis of problems that involve
approximate data.

E X A M P L E  2 Solving a right triangle

Solve , given , , and .

S O L U T I O N Referring to the triangle illustrated in Figure 2 gives us

Since the sides are given with three significant figures, the rule stated in the
preceding table tells us that should be rounded off to the nearest 0.1°, or the
nearest multiple of . Using the degree mode on a calculator, we have

Since and are complementary angles,

The only remaining part to find is c. We could use several relationships in-
volving c to determine its value. Among these are

Whenever possible, it is best to use a relationship that involves only given in-
formation, since it doesn’t depend on any previously calculated value. Hence,
with and , we have

L

As illustrated in Figure 3, if an observer at point X sights an object, then
the angle that the line of sight makes with the horizontal line l is the angle of
elevation of the object, if the object is above the horizontal line, or the angle
of depression of the object, if the object is below the horizontal line. We use
this terminology in the next two examples.

E X A M P L E  3 Using an angle of elevation

From a point on level ground 135 feet from the base of a tower, the angle of
elevation of the top of the tower is . Approximate the height of 
the tower.

57°20�

c � 2a2 � b2 � 2�12.3�2 � �31.6�2 � 21149.85 
 33.9.

b � 31.6a � 12.3

cos � �
31.6

c
, sec � �

c

12.3
, and a2 � b2 � c2.

� � 90° � � 
 90° � 21.3° � 68.7°.

��

� � tan�1
12.3

31.6

 21.3° or, equivalently, � 
 21°20�.

10�
�

tan � �
12.3

31.6
.

b � 31.6a � 12.3� � 90°�ABC
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Figure 2

A

B

C

c

31.6

12.3b

a

Figure 3

Line of sight

Angle of elevation

Observer

Object

X
l

Line of
sight

Angle of
depression

Observer

Object

X
l
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S O L U T I O N If we let d denote the height of the tower, then the given facts
are represented by the triangle in Figure 4. Referring to the figure, we obtain

solve for d; approximate

The tower is approximately 211 feet high.

Figure 4

L

E X A M P L E  4 Using angles of depression

From the top of a building that overlooks an ocean, an observer watches a boat
sailing directly toward the building. If the observer is 100 feet above sea level
and if the angle of depression of the boat changes from 25° to 40° during the
period of observation, approximate the distance that the boat travels.

S O L U T I O N As in Figure 5, let A and B be the positions of the boat that cor-
respond to the 25° and 40° angles, respectively. Suppose that the observer is at
point D and that C is the point 100 feet directly below. Let d denote the dis-
tance the boat travels, and let k denote the distance from B to C. If and 

Figure 5

B AC

25 �

40 �
100 �

d

ab

k

D

��

Li
ne

 o
f s

ig
ht

d

57 � 20�

135�

d � 135 tan 57°20� 
 211.

tan 57°20� �
opp

adj
 tan 57°20� �

d

135

(continued)



denote angles DAC and DBC, respectively, then it follows from geometry (al-
ternate interior angles) that and .

From triangle BCD:

solve for k

From triangle DAC:

multiply by lcd

solve for d

factor out 100

approximate

Hence, the boat travels approximately 95 feet. L

In certain navigation or surveying problems, the direction, or bearing,
from a point P to a point Q is specified by stating the acute angle that segment
PQ makes with the north-south line through P. We also state whether Q is
north or south and east or west of P. Figure 6 illustrates four possibilities. The
bearing from P to is 25° east of north and is denoted by N25°E. We also
refer to the direction N25°E, meaning the direction from P to . The bear-
ings from P to , to , and to are represented in a similar manner in the
figure. Note that when this notation is used for bearings or directions, N or S
always appears to the left of the angle and W or E to the right.

Figure 6

70�

40�
55�

25�

N25�E

S55�E

S40�W

N70�W

N

S

EW

Q1

Q2

Q3

Q4

P

Q4Q3Q2

Q1

Q1


 100�2.145 � 1.192� 
 95

� 100�cot 25° � cot 40°�

k � 100 cot 40°� 100 cot 25° � 100 cot 40°

d � 100 cot 25° � k

d � k � 100 cot 25°

cot � �
adj

opp
 cot � � cot 25° �

d � k

100

k � 100 cot 40°

cot � �
adj

opp
 cot � � cot 40° �

k

100

� � 40°� � 25°
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Note that and if we
use tan instead of cot, we get the
equivalent equation

d �
100

tan 25°
�

100

tan 40°
.

d � AC � BC,
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In air navigation, directions and bearings are specified by measuring from
the north in a clockwise direction. In this case, a positive measure is assigned
to the angle instead of the negative measure to which we are accustomed for
clockwise rotations. Referring to Figure 7, we see that the direction of PQ is
40° and the direction of PR is 300°.

E X A M P L E  5 Using bearings

Two ships leave port at the same time, one ship sailing in the direction N23°E at
a speed of 11 mi hr and the second ship sailing in the direction S67°E at
15 mi hr. Approximate the bearing from the second ship to the first, one hour
later.

S O L U T I O N The sketch in Figure 8 indicates the positions of the first and
second ships at points A and B, respectively, after one hour. Point C represents
the port. We wish to find the bearing from B to A. Note that

and hence triangle ACB is a right triangle. Thus,

solve for ; approximate

We have rounded to the nearest degree because the sides of the triangles are
given with two significant figures.

Referring to Figure 9, we obtain the following:

Thus, the bearing from B to A is approximately N31°W. L

Trigonometric functions are useful in the investigation of vibratory or os-
cillatory motion, such as the motion of a particle in a vibrating guitar string or
a spring that has been compressed or elongated and then released to oscillate
back and forth. The fundamental type of particle displacement in these illus-
trations is harmonic motion.

	 � 90° � �ABD 
 90° � 59° � 31°

�ABD � �ABC � �CBD 
 36° � 23° � 59°

�CBD � 90° � �BCD � 90° � 67° � 23°

�

�� � tan�1 11
15 
 36°.

tan � �
opp

adj
 tan � �

11

15

�ACB � 180° � 23° � 67° � 90°,

�
�

Figure 7 N

P

Q

R
40�

300�

Figure 8

15

11

67�

23�

b

A

B

C

Definition of 
Simple Harmonic Motion

A point moving on a coordinate line is in simple harmonic motion if its
distance d from the origin at time t is given by either

where a and are constants, with .� � 0�

d � a cos �t or d � a sin �t,

Figure 9

15

11

67�
23�

A

B

C

36�

u

D



In the preceding definition, the amplitude of the motion is the maximum
displacement of the point from the origin. The period is the time 
required for one complete oscillation. The reciprocal of the period, , is
the number of oscillations per unit of time and is called the frequency.

A physical interpretation of simple harmonic motion can be obtained by
considering a spring with an attached weight that is oscillating vertically rela-
tive to a coordinate line, as illustrated in Figure 10. The number d represents
the coordinate of a fixed point Q in the weight, and we assume that the ampli-
tude a of the motion is constant. In this case no frictional force is retarding the
motion. If friction is present, then the amplitude decreases with time, and the
motion is said to be damped.

E X A M P L E  6 Describing harmonic motion

Suppose that the oscillation of the weight shown in Figure 10 is given by

with t measured in seconds and d in centimeters. Discuss the motion of 
the weight.

S O L U T I O N By definition, the motion is simple harmonic with amplitude
. Since , we obtain the following:

Thus, in 12 seconds the weight makes one complete oscillation. The frequency
is , which means that one-twelfth of an oscillation takes place each second.
The following table indicates the position of Q at various times.

The initial position of Q is 10 centimeters above the origin O. It moves
downward, gaining speed until it reaches O. Note that Q travels approximately

cm during the first second, cm during the next
second, and cm during the third second. It then slows down until it
reaches a point 10 centimeters below O at the end of 6 seconds. The direction
of motion is then reversed, and the weight moves upward, gaining speed until
it reaches O. Once it reaches O, it slows down until it returns to its original po-
sition at the end of 12 seconds. The direction of motion is then reversed again,
and the same pattern is repeated indefinitely. L

5 � 0 � 5
8.7 � 5 � 3.710 � 8.7 � 1.3

1
12

period �
2�

�
�

2�

��6
� 12

� � ��6a � 10 cm

d � 10 cos ��

6
t�,

���2��
2���� a �
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Figure 10

a

Q

O

�a

d

0

t 0 1 2 3 4 5 6

0

cos 1 0

d 10 5 0 �10�523 
 �8.7�5523 
 8.7

�1�
23

2
�

1

2

1

2

23

2� �

6
t�

�
5�

6

2�

3

�

2

�

3

�

6

�

6
t
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Exer. 1–8: Given the indicated parts of triangle ABC with
g � 90
, find the exact values of the remaining parts.

1 , 2 ,

3 , 4 ,

5 , 6 ,

7 , 8 ,

Exer. 9–16: Given the indicated parts of triangle ABC with
g � 90
, approximate the remaining parts.

9 , 10 ,

11 , 12 ,

13 , 14 ,

15 , 16 ,

Exer. 17–24: Given the indicated parts of triangle ABC with
g � 90
, express the third part in terms of the first two.

17 , c; b 18 , c; b

19 , b; a 20 , b; a

21 , a; c 22 , a; c

23 a, c; b 24 a, b; c

25 Height of a kite A person flying a kite holds the string 
4 feet above ground level. The string of the kite is taut and
makes an angle of 60� with the horizontal (see the figure).
Approximate the height of the kite above level ground if
500 feet of string is payed out.

Exercise 25

4�

60�

��

��

��

c � 0.68a � 0.42b � 2.1c � 5.8

b � 9.0a � 31b � 45a � 25

a � 510� � 31�10�b � 240.0� � 71�51�

a � 20.1� � 64�20�b � 24� � 37�

c � 14b � 722c � 1023b � 523

c � 8a � 423b � 5a � 5

c � 6� � 60�c � 30� � 45�

b � 35� � 45�b � 20� � 30�

26 Surveying From a point 15 meters above level ground, a
surveyor measures the angle of depression of an object on
the ground at 68�. Approximate the distance from the object
to the point on the ground directly beneath the surveyor.

27 Airplane landing A pilot, flying at an altitude of 5000 feet,
wishes to approach the numbers on a runway at an angle
of 10�. Approximate, to the nearest 100 feet, the distance
from the airplane to the numbers at the beginning of the
descent.

28 Radio antenna A guy wire is attached to the top of a
radio antenna and to a point on horizontal ground that is
40.0 meters from the base of the antenna. If the wire makes
an angle of with the ground, approximate the length
of the wire.

29 Surveying To find the distance d between two points P and
Q on opposite shores of a lake, a surveyor locates a point R
that is 50.0 meters from P such that RP is perpendicular to
PQ, as shown in the figure. Next, using a transit, the sur-
veyor measures angle PRQ as . Find d.

Exercise 29

30 Meteorological calculations To measure the height h of a
cloud cover, a meteorology student directs a spotlight verti-
cally upward from the ground. From a point P on level
ground that is d meters from the spotlight, the angle of ele-
vation of the light image on the clouds is then measured
(see the figure on the next page).

(a) Express h in terms of d and .

(b) Approximate h if m and .	 � 59�d � 1000

	

	

R P

Q

d50.0 m

72�40�

58�20�
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Exercise 30

31 Altitude of a rocket A rocket is fired at sea level and climbs
at a constant angle of 75� through a distance of 10,000 feet.
Approximate its altitude to the nearest foot.

32 Airplane takeoff An airplane takes off at a 10� angle and
travels at the rate of 250 . Approximately how long
does it take the airplane to reach an altitude of 15,000 feet?

33 Designing a drawbridge A drawbridge is 150 feet long
when stretched across a river. As shown in the figure, the
two sections of the bridge can be rotated upward through an
angle of 35�.

(a) If the water level is 15 feet below the closed bridge,
find the distance d between the end of a section and the
water level when the bridge is fully open.

(b) Approximately how far apart are the ends of the two
sections when the bridge is fully opened, as shown in
the figure?

Exercise 33

35� 35�
d

150 �

ft�sec

d

P

h

u

34 Designing a water slide Shown in the figure is part of a de-
sign for a water slide. Find the total length of the slide to the
nearest foot.

Exercise 34

35 Sun’s elevation Approximate the angle of elevation of
the sun if a person 5.0 feet tall casts a shadow 4.0 feet long
on level ground (see the figure).

Exercise 35

36 Constructing a ramp A builder wishes to construct a ramp
24 feet long that rises to a height of 5.0 feet above level
ground. Approximate the angle that the ramp should make
with the horizontal.

37 Video game Shown in the figure is the screen for a simple
video arcade game in which ducks move from A to B at
the rate of 7 . Bullets fired from point O travel
25 . If a player shoots as soon as a duck appears at
A, at which angle should the gun be aimed in order to
score a direct hit?

"
cm�sec

cm�sec

4�

5�

a

�

15�
35�

25�
15�

100�

428 C H A P T E R  6  T H E  T R I G O N O M E T R I C  F U N C T I O N S



6 . 7  A p p l i e d  P r o b l e m s 429

Exercise 37

38 Conveyor belt A conveyor belt 9 meters long can be hy-
draulically rotated up to an angle of 40� to unload cargo
from airplanes (see the figure).

(a) Find, to the nearest degree, the angle through which the
conveyor belt should be rotated up to reach a door that
is 4 meters above the platform supporting the belt.

(b) Approximate the maximum height above the platform
that the belt can reach.

Exercise 38

39 Tallest structure The tallest man-made structure in the
world is a television transmitting tower located near
Mayville, North Dakota. From a distance of 1 mile on level
ground, its angle of elevation is . Determine its
height to the nearest foot.

40 Elongation of Venus The elongation of the planet Venus is
defined to be the angle determined by the sun, Earth, and
Venus, as shown in the figure. Maximum elongation of

	

21�20�24�

9 m

A B

O

w

Venus occurs when Earth is at its minimum distance 
from the sun and Venus is at its maximum distance from
the sun. If mi and mi,
approximate the maximum elongation of Venus. As-
sume that the orbit of Venus is circular.

Exercise 40

41 The Pentagon’s ground area The Pentagon is the largest 
office building in the world in terms of ground area. The
perimeter of the building has the shape of a regular penta-
gon with each side of length 921 feet. Find the area en-
closed by the perimeter of the building.

42 A regular octagon is inscribed in a circle of radius 12.0 cen-
timeters. Approximate the perimeter of the octagon.

43 A rectangular box has dimensions . Approxi-
mate, to the nearest tenth of a degree, the angle formed by
a diagonal of the base and the diagonal of the box, as shown
in the figure.

Exercise 43

44 Volume of a conical cup A conical paper cup has a radius of
2 inches. Approximate, to the nearest degree, the angle (see
the figure) so that the cone will have a volume of 20 .in3

�

u

4�

6�8�

	
8� � 6� � 4�

Sun

Venus

Earth

u

	max

Dv � 68,000,000De � 91,500,000
Dv

De



Exercise 44

45 Height of a tower From a point P on level ground, the angle
of elevation of the top of a tower is . From a point
25.0 meters closer to the tower and on the same line with P
and the base of the tower, the angle of elevation of the top
is . Approximate the height of the tower.

46 Ladder calculations A ladder 20 feet long leans against the
side of a building, and the angle between the ladder and the
building is 22�.

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is increased by 3.0 feet, approximately how
far does the top of the ladder move down the building?

47 Ascent of a hot-air balloon As a hot-air balloon rises verti-
cally, its angle of elevation from a point P on level ground
110 kilometers from the point Q directly underneath the bal-
loon changes from to (see the figure). Ap-
proximately how far does the balloon rise during this period?

Exercise 47

110 km
P

Q

31�50�19�20�

53�30�

26�50�

2�

b

48 Height of a building From a point A that is 8.20 meters above
level ground, the angle of elevation of the top of a build-
ing is and the angle of depression of the base of the
building is . Approximate the height of the building.

49 Radius of Earth A spacelab circles Earth at an altitude of
380 miles. When an astronaut views the horizon of Earth,
the angle shown in the figure is 65.8�. Use this informa-
tion to estimate the radius of Earth.

Exercise 49

50 Length of an antenna A CB antenna is located on the top of
a garage that is 16 feet tall. From a point on level ground
that is 100 feet from a point directly below the antenna, the
antenna subtends an angle of 12�, as shown in the figure.
Approximate the length of the antenna.

Exercise 50

51 Speed of an airplane An airplane flying at an altitude of
10,000 feet passes directly over a fixed object on the
ground. One minute later, the angle of depression of the ob-
ject is 42�. Approximate the speed of the airplane to the
nearest mile per hour.

100 �

12�

16�

to Earth's center
380 mi

u

r

	

12�50�
31�20�
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52 Height of a mountain A motorist, traveling along a level
highway at a speed of 60 directly toward a mountain,
observes that between 1:00 P.M. and 1:10 P.M. the angle of
elevation of the top of the mountain changes from 10� to 70�.
Approximate the height of the mountain.

53 Communications satellite Shown in the left part of the fig-
ure is a communications satellite with an equatorial orbit—
that is, a nearly circular orbit in the plane determined by 
Earth’s equator. If the satellite circles Earth at an altitude of

22,300 mi, its speed is the same as the rotational speed
of Earth; to an observer on the equator, the satellite appears
to be stationary—that is, its orbit is synchronous.

(a) Using mi for the radius of Earth, determine
the percentage of the equator that is within signal range
of such a satellite.

(b) As shown in the right part of the figure, three satellites
are equally spaced in equatorial synchronous orbits.
Use the value of obtained in part (a) to explain why
all points on the equator are within signal range of at
least one of the three satellites.

Exercise 53

54 Communications satellite Refer to Exercise 53. Shown in
the figure is the area served by a communications satellite
circling a planet of radius R at an altitude a. The portion of
the planet’s surface within range of the satellite is a spheri-
cal cap of depth d and surface area .

(a) Express d in terms of R and .

(b) Estimate the percentage of the planet’s surface that is
within signal range of a single satellite in equatorial
synchronous orbit.

	

A � 2�Rd

a

R

u

	

R � 4000

a �

km�hr
Exercise 54

55 Height of a kite Generalize Exercise 25 to the case where
the angle is , the number of feet of string payed out is d,
and the end of the string is held c feet above the ground. Ex-
press the height h of the kite in terms of , d, and c.

56 Surveying Generalize Exercise 26 to the case where the
point is d meters above level ground and the angle of de-
pression is . Express the distance x in terms of d and .

57 Height of a tower Generalize Exercise 45 to the case where
the first angle is , the second angle is , and the distance
between the two points is d. Express the height h of the
tower in terms of d, , and .

58 Generalize Exercise 42 to the case of an n-sided polygon 
inscribed in a circle of radius r. Express the perimeter P in
terms of n and r.

59 Ascent of a hot-air balloon Generalize Exercise 47 to the
case where the distance from P to Q is d kilometers and the
angle of elevation changes from to .

60 Height of a building Generalize Exercise 48 to the case
where point A is d meters above ground and the angles of
elevation and depression are and , respectively. Express
the height h of the building in terms of d, , and .��

��

��

��

��

��

�

�

a d R

u



Exer. 61–62: Find the bearing from P to each of the
points A, B, C, and D.

61

62

63 Ship’s bearings A ship leaves port at 1:00 P.M. and sails in
the direction N34�W at a rate of 24 . Another ship
leaves port at 1:30 P.M. and sails in the direction N56�E at a
rate of 18 .

(a) Approximately how far apart are the ships at 3:00 P.M.?

(b) What is the bearing, to the nearest degree, from the first
ship to the second?

64 Pinpointing a forest fire From an observation point A, a
forest ranger sights a fire in the direction (see the
figure). From a point B, 5 miles due west of A, another
ranger sights the same fire in the direction . Ap-S54�10�E

S35�50�W

mi�hr

mi�hr

N

S

EW

A
B

C

D

15�

35�

60�

80�

P

N

EW

A

B

C D

75�

25�

40�

20�

P

S

proximate, to the nearest tenth of a mile, the distance of the
fire from A.

Exercise 64

65 Airplane flight An airplane flying at a speed of 360 
flies from a point A in the direction 137� for 30 minutes and
then flies in the direction 227� for 45 minutes. Approximate,
to the nearest mile, the distance from the airplane to A.

66 Airplane flight plan An airplane flying at a speed of
400 flies from a point A in the direction 153� for
1 hour and then flies in the direction 63� for 1 hour.

(a) In what direction does the plane need to fly in order to
get back to point A?

(b) How long will it take to get back to point A?

Exer. 67–70: The formula specifies the position of a point P
that is moving harmonically on a vertical axis, where t is in
seconds and d is in centimeters. Determine the amplitude,
period, and frequency, and describe the motion of the point
during one complete oscillation (starting at t � 0).

67 68

69 70

71 A point P in simple harmonic motion has a period of 3 sec-
onds and an amplitude of 5 centimeters. Express the motion
of P by means of an equation of the form .d � a cos �t

d � 6 sin
2�

3
td � 4 cos

3�

2
t

d �
1

3
cos

�

4
td � 10 sin 6�t

mi�hr

mi�hr

N

S

W E

N

S

W E

5 mi

AB
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72 A point P in simple harmonic motion has a frequency of 
oscillation per minute and an amplitude of 4 feet. Express

the motion of P by means of an equation of the form
.

73 Tsunamis A tsunami is a tidal wave caused by an earthquake
beneath the sea. These waves can be more than 100 feet in
height and can travel at great speeds. Engineers sometimes
represent such waves by trigonometric expressions of the
form and use these representations to estimate
the effectiveness of sea walls. Suppose that a wave has
height ft and period 30 minutes and is traveling at
the rate of 180 .

Exercise 73

y

x

L

h

Sea level

Sea
wall

ft�sec
h � 50

y � a cos bt

d � a sin �t

1
2

(a) Let be a point on the wave represented in the 
figure. Express y as a function of t if ft when

.

(b) The wave length L is the distance between two succes-
sive crests of the wave. Approximate L in feet.

74 Some Hawaiian tsunamis For an interval of 45 minutes, the
tsunamis near Hawaii caused by the Chilean earthquake of

1960 could be modeled by the equation ,

where y is in feet and t is in minutes.

(a) Find the amplitude and period of the waves.

(b) If the distance from one crest of the wave to the next was
21 kilometers, what was the velocity of the wave? (Tidal
waves can have velocities of more than 700 in
deep sea water.)

km�hr

y � 8 sin
�

6
t

t � 0
y � 25

�x, y�

1 Find the radian measure that corresponds to each degree
measure: 330°, 405°, , 240°, 36°.

2 Find the degree measure that corresponds to each radian

measure: , , , , .

3 A central angle is subtended by an arc 20 centimeters long
on a circle of radius 2 meters.

(a) Find the radian measure of .

(b) Find the area of the sector determined by .

4 (a) Find the length of the arc that subtends an angle of
measure 70� on a circle of diameter 15 centimeters.

(b) Find the area of the sector in part (a).

5 Angular speed of phonograph records Two types of phono-
graph records, LP albums and singles, have diameters of
12 inches and 7 inches, respectively. The album rotates at a

	

	

	

�

5
5�

7�

4
�

2�

3

9�

2

�150�

rate of rpm, and the single rotates at 45 rpm. Find the an-
gular speed (in radians per minute) of the album and of the
single.

6 Linear speed on phonograph records Using the information
in Exercise 5, find the linear speed (in ) of a point on
the circumference of the album and of the single.

Exer. 7–8: Find the exact values of x and y.

7 8

y

7

45�

x

y

x

60�

9

ft�min

33 1
3
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Exer. 9–10: Use fundamental identities to write the first 
expression in terms of the second, for any acute angle u.

9 , 10 ,

Exer. 11–20: Verify the identity by transforming the left-
hand side into the right-hand side.

11

12

13

14

15

16

17 18

19

20

21 If is an acute angle of a right triangle and if the adjacent
side and hypotenuse have lengths 4 and 7, respectively, find
the values of the trigonometric functions of .

22 Whenever possible, find the exact values of the trigonomet-
ric functions of if is in standard position and satisfies the
stated condition.

(a) The point is on the terminal side of .

(b) The terminal side of is in quadrant II and is parallel
to the line .

(c) The terminal side of is on the negative y-axis.

23 Find the quadrant containing if is in standard position.

(a) and

(b) and

(c) and

24 Find the exact values of the remaining trigonometric
functions if

tan 	 � 0cos 	 � 0

csc 	 � 0cot 	 � 0

sin 	 � 0sec 	 � 0

		

	

2x � 3y � 6 � 0
	

	�30, �40�

		

	

	

�
1

csc ��	�
�

cot ��	�
sec ��	�

� csc 	

tan ��	� � cot ��	�
tan 	

� �csc2 	

1 � sec 	

tan 	 � sin 	
� csc 	

cot 	 � 1

1 � tan 	
� cot 	

sec 	 � csc 	

sec 	 � csc 	
�

sin 	 � cos 	

sin 	 � cos 	

1 � tan2 	

tan2 	
� csc2 	

sec 	 � cos 	

tan 	
�

tan 	

sec 	

�cos2 	 � 1��tan2 	 � 1� � 1 � sec2 	

cos 	 �tan 	 � cot 	� � csc 	

sin 	 �csc 	 � sin 	� � cos2 	

csc 	cot 	sec 	tan 	

(a) and

(b) and

Exer. 25–26: P(t) denotes the point on the unit circle U that
corresponds to the real number t.

25 Find the rectangular coordinates of , ,
, , , and .

26 If has coordinates , find the coordinates of
, , , and .

27 (a) Find the reference angle for each radian measure:

, , .

(b) Find the reference angle for each degree measure:
245�, 137�, 892�.

28 Without the use of a calculator, find the exact values of the
trigonometric functions corresponding to each real number,
whenever possible.

(a) (b) (c) 0 (d)

29 Find the exact value.

(a) (b) (c)

(d) (e) (f)

30 If and is positive, approximate to
the nearest 0.1� for .

31 If , approximate to the nearest 0.0001 ra-
dian for .

32 If , approximate to the nearest 0.01� for
.

Exer. 33–40: Find the amplitude and period and sketch the
graph of the equation.

33 34

35 36

37 38

39 40 y � 4 cos
�

2
x � 2y � 2 sin �x

y � 4 sin 2xy � �3 cos 1
2 x

y � �
1
2 cos 1

3 xy �
1
3 sin 3x

y �
2
3 sin xy � 5 cos x

0� � 	 � 360�
	sec 	 � 1.6403

0 � 	 � 2�
	tan 	 � 2.7381

0� � 	 � 360�
	sec 	sin 	 � �0.7604

csc 300�cot
7�

4
sec

4�

3

sin ��
�

6 �tan 150�cos 225�

11�

6
�

5�

4

9�

2

�
9�

8
�

5�

6

5�

4

P�2� � t�P��t�P�t � ��P�t � 3��
��

3
5 , �

4
5 �P�t�

P���6�P�18��P��3��4�P�9��2�
P��5��2�P�7��

cot 	 � �
3

2
csc 	 �

213

2

cos 	 �
3
5sin 	 � �

4
5
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Exer. 41–44: The graph of an equation is shown in the 
figure. (a) Find the amplitude and period. (b) Express
the equation in the form y � a sin bx or in the form
y � a cos bx.

41

42

43

44

Exer. 45–56: Sketch the graph of the equation.

45 46

47 48 y � 5 cos �2x �
�

2 �y � �4 cos �x �
�

6 �
y � �3 sin � 1

2
x �

�

4 �y � 2 sin �x �
2�

3 �

y

xp

2

�2

1

y

xp

3

�3

y

x

1

p

�f, �3.27�

2p�2p �p

y

x

2

(1.5, �1.43)�2

2p

49 50

51 52

53 54

55 56

Exer. 57–60: Given the indicated parts of triangle ABC with
g � 90
, approximate the remaining parts.

57 , 58 ,

59 , 60 ,

61 Airplane propeller The length of the largest airplane propeller
ever used was 22 feet 7.5 inches. The plane was powered
by four engines that turned the propeller at 545 revolutions 
per minute.

(a) What was the angular speed of the propeller in radians
per second?

(b) Approximately how fast (in ) did the tip of the
propeller travel along the circle it generated?

62 The Eiffel Tower When the top of the Eiffel Tower is viewed
at a distance of 200 feet from the base, the angle of eleva-
tion is 79.2�. Estimate the height of the tower.

63 Lasers and velocities Lasers are used to accurately measure
velocities of objects. Laser light produces an oscillating
electromagnetic field E with a constant frequency f that can
be described by

If a laser beam is pointed at an object moving toward the laser,
light will be reflected toward the laser at a slightly higher
frequency, in much the same way as a train whistle sounds
higher when it is moving toward you. If is this change
in frequency and v is the object’s velocity, then the equation

can be used to determine v, where is
the velocity of the light. Approximate the velocity v of an
object if and .f � 1014�f � 108

c � 186,000 mi�sec

� f �
2 fv

c

�f

E � E0 cos �2� ft�.

mi�hr

c � 41a � 9.0b � 25a � 62

b � 220� � 54�40�b � 40� � 60�

y � csc � 1

2
x �

�

4 �y � csc �2x �
�

4 �
y � sec �2x �

�

2 �y � sec � 1

2
x � ��

y � 2 cot � 1

2
x �

�

4 �y � �4 cot �2x �
�

2 �
y � �3 tan �2x �

�

3 �y � 2 tan � 1

2
x � ��



64 The Great Pyramid The Great Pyramid of Egypt is 147 meters
high, with a square base of side 230 meters (see the figure).
Approximate, to the nearest degree, the angle formed when
an observer stands at the midpoint of one of the sides and
views the apex of the pyramid.

Exercise 64

65 Venus When viewed from Earth over a period of time, the
planet Venus appears to move back and forth along a line
segment with the sun at its midpoint (see the figure). If ES
is approximately 92,900,000 miles, then the maximum ap-
parent distance of Venus from the sun occurs when angle
SEV is approximately 47�. Assume that the orbit of Venus is
circular and estimate the distance of Venus from the sun.

Exercise 65

66 Surveying From a point 233 feet above level ground, a
surveyor measures the angle of depression of an object 
on the ground as 17�. Approximate the distance from the
object to the point on the ground directly beneath the 
surveyor.

67 Ladder calculations A ladder 16 feet long leans against the
side of a building, and the angle between the ladder and the
building is 25�.

Orbit of
Venus

Apparent
movement
of Venus

Maximum
apparent
distance

E

V S

E E

S S

V V

V

V V

V

47�

230 m230 m

w

"

(a) Approximate the distance from the bottom of the lad-
der to the building.

(b) If the distance from the bottom of the ladder to the
building is decreased by 1.5 feet, approximately how
far does the top of the ladder move up the building?

68 Constructing a conical cup A conical paper cup is con-
structed by removing a sector from a circle of radius 
5 inches and attaching edge OA to OB (see the figure). Find
angle AOB so that the cup has a depth of 4 inches.

Exercise 68

69 Length of a tunnel A tunnel for a new highway is to be cut
through a mountain that is 260 feet high. At a distance of
200 feet from the base of the mountain, the angle of eleva-
tion is 36� (see the figure). From a distance of 150 feet on
the other side, the angle of elevation is 47�. Approximate the
length of the tunnel to the nearest foot.

Exercise 69

70 Height of a skyscraper When a certain skyscraper is viewed
from the top of a building 50 feet tall, the angle of elevation
is 59� (see the figure). When viewed from the street next to
the shorter building, the angle of elevation is 62�.

(a) Approximately how far apart are the two structures?

(b) Approximate the height of the skyscraper to the nearest
tenth of a foot.

36� 47�

200� 150�

B

O A
B

O

A
4�
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Exercise 70

71 Height of a mountain When a mountaintop is viewed from
the point P shown in the figure, the angle of elevation is .
From a point Q, which is d miles closer to the mountain, the
angle of elevation increases to .

(a) Show that the height h of the mountain is given by

(b) If mi, , and , approximate the
height of the mountain.

Exercise 71

72 Height of a building An observer of height h stands on an
incline at a distance d from the base of a building of height
T, as shown in the figure. The angle of elevation from the
observer to the top of the building is , and the incline
makes an angle of with the horizontal.

(a) Express T in terms of h, d, , and .

(b) If ft, ft, , and , esti-
mate the height of the building.

	 � 31.4�� � 15�d � 50h � 6

	�

�
	

P Q R

T

a b

d

h

� � 20�� � 15�d � 2

h �
d

cot � � cot �
.

�

�

50� 62�

59�

Exercise 72

73 Illuminance A spotlight with intensity 5000 candles is lo-
cated 15 feet above a stage. If the spotlight is rotated through
an angle as shown in the figure, the illuminance E (in foot-
candles) in the lighted area of the stage is given by

where s is the distance (in feet) that the light must travel.

(a) Find the illuminance if the spotlight is rotated through
an angle of 30�.

(b) The maximum illuminance occurs when . 
For what value of is the illuminance one-half the
maximum value?

Exercise 73

74 Height of a mountain If a mountaintop is viewed from a
point P due south of the mountain, the angle of elevation is

(see the figure). If viewed from a point Q that is d miles
east of P, the angle of elevation is .

(a) Show that the height h of the mountain is given by

(b) If , , and mi, approximate h to
the nearest hundredth of a mile.

d � 10� � 20�� � 30�

h �
d sin � sin �

2sin2 � � sin2 �
.

�
�

15� s

u

	
	 � 0�

E �
5000 cos 	

s2
,

	

T

d

u

h
a



Exercise 74

75 Mounting a projection unit The manufacturer of a comput-
erized projection system recommends that a projection unit
be mounted on the ceiling as shown in the figure. The dis-
tance from the end of the mounting bracket to the center of
the screen is 85.5 inches, and the angle of depression is 30�.

(a) If the thickness of the screen is disregarded, how far
from the wall should the bracket be mounted?

(b) If the bracket is 18 inches long and the screen is 6 feet
high, determine the distance from the ceiling to the top
edge of the screen.

Exercise 75

76 Pyramid relationships A pyramid has a square base and
congruent triangular faces. Let be the angle that the alti-
tude a of a triangular face makes with the altitude y of the
pyramid, and let x be the length of a side (see the figure).

(a) Express the total surface area S of the four faces in
terms of a and .	

	

18�

30 �

85.5�

6�

P

Q

T

d

h

a
b

(b) The volume V of the pyramid equals one-third the area
of the base times the altitude. Express V in terms of
a and .

Exercise 76

77 Surveying a bluff A surveyor, using a transit, sights the
edge B of a bluff, as shown in the left part of the figure (not
drawn to scale). Because of the curvature of Earth, the true
elevation h of the bluff is larger than that measured by the
surveyor. A cross-sectional schematic view of Earth is
shown in the right part of the figure.

(a) If s is the length of arc PQ and R is the distance from P
to the center C of Earth, express h in terms of R and s.

(b) If mi and mi, estimate the elevation
of the bluff in feet.

Exercise 77

78 Earthquake response To simulate the response of a struc-
ture to an earthquake, an engineer must choose a shape for
the initial displacement of the beams in the building. When
the beam has length L feet and the maximum displacement
is a feet, the equation

has been used by engineers to estimate the displacement y
(see the figure). If and , sketch the graph of
the equation for .0 � x � 10

L � 10a � 1

y � a � a cos
�

2L
x

P Q

B

Line of sig
ht h

B

P
Q

C
R

s
Rh

s � 50R � 4000

a
y

x

u
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Exercise 78

79 Circadian rhythms The variation in body temperature is an
example of a circadian rhythm, a cycle of a biological process
that repeats itself approximately every 24 hours. Body tem-
perature is highest about 5 P.M. and lowest at 5 A.M. Let y
denote the body temperature (in �F), and let correspond
to midnight. If the low and high body temperatures are 
98.3� and 98.9�, respectively, find an equation having the
form that fits this information.

80 Temperature variation in Ottawa The annual variation 
in temperature T (in �C) in Ottawa, Canada, may be ap-
proximated by

where t is the time in months and corresponds to
January 1.

t � 0

T�t� � 15.8 sin � �

6
�t � 3�� � 5,

98.6 � a sin �bt � c�y �

t � 0

y

x

(a) Sketch the graph of T for .

(b) Find the highest temperature of the year and the date on
which it occurs.

81 Water demand A reservoir supplies water to a community.
During the summer months, the demand for water (in

) is given by

where t is time in days and corresponds to the begin-
ning of summer.

(a) Sketch the graph of D for .

(b) When is the demand for water the greatest?

82 Bobbing cork A cork bobs up and down in a lake. The dis-
tance from the bottom of the lake to the center of the cork
at time is given by , where is
in feet and t is in seconds.

(a) Describe the motion of the cork for .

(b) During what time intervals is the cork rising?

0 � t � 2

s�t�s�t� � 12 � cos �tt 
 0

0 � t � 90

t � 0

D�t� � 2000 sin 
�

90
t � 4000,

ft3�day
D�t�

0 � t � 12

1 Determine the number of solutions of the equation

2 Racetrack coordinates Shown in the figure is a circular
racetrack of diameter 2 kilometers. All races begin at S and
proceed in a counterclockwise direction. Approximate, to
four decimal places, the coordinates of the point at which 
the following races end relative to a rectangular coordinate
system with origin at the center of the track and S on the
positive x-axis.

cos x � cos 2x � cos 3x � �.

Exercise 2

(a) A drag race of length 2 kilometers

(b) An endurance race of length 500 kilometers

S

1 km
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3 Racetrack coordinates Work Exercise 2 for the track shown
in the figure, if the origin of the rectangular coordinate sys-
tem is at the center of the track and S is on the negative y-axis.

Exercise 3

4 Outboard motor propeller A 90-horsepower outboard motor
at full throttle will rotate its propeller at 5000 revolutions
per minute.

S

1 km

2 km

(a) Find the angular speed of the propeller in radians
per second.

(b) The center of a 10-inch-diameter propeller is located
18 inches below the surface of the water. Express the
depth of a point on the
edge of a propeller blade as a function of time t, where
t is in seconds. Assume that the point is initially at a
depth of 23 inches.

5 Discuss the relationships among periodic functions, one-to-
one functions, and inverse functions. With these relationships
in mind, discuss what must happen for the trigonometric
functions to have inverses.

D�t� � a cos ��t � c� � d

�



In advanced mathematics, the natural sciences, and engineering, it is some-

times necessary to simplify complicated trigonometric expressions and to

solve equations that involve trigonometric functions. These topics are dis-

cussed in the first two sections of this chapter. We then derive many useful

formulas with respect to sums, differences, and multiples; for reference they

are listed on the inside back cover of the text. In addition to formal manip-

ulations, we also consider numerous applications of these formulas. The last

section contains the definitions and properties of the inverse trigonometric

functions.
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A trigonometric expression contains symbols involving trigonometric
functions.

Trigonometric Expressions

We assume that the domain of each variable in a trigonometric expression
is the set of real numbers or angles for which the expression is meaningful. To
provide manipulative practice in simplifying complicated trigonometric ex-
pressions, we shall use the fundamental identities (see page 364) and algebraic
manipulations, as we did in Examples 5 and 6 of Section 6.2. In the first three
examples our method consists of transforming the left-hand side of a given
identity into the right-hand side, or vice versa.

E X A M P L E  1 Verifying an identity

Verify the identity 

S O L U T I O N We transform the left-hand side into the right-hand side:

reciprocal identity

add expressions

equivalent expression

tangent identity L

E X A M P L E  2 Verifying an identity

Verify the identity 

S O L U T I O N Since the expression on the right-hand side is more compli-
cated than that on the left-hand side, we transform the right-hand side into the
left-hand side:

sec 	 � sin 	 �tan 	 � cot 	�.

� sin � tan �

� sin � �sin �

cos ��
sin2 � � cos2 � � 1�

sin2 �

cos �

�
1 � cos2 �

cos �

 sec � � cos � �
1

cos �
� cos �

sec � � cos � � sin � tan �.

cos �3t � 1�
t2 � tan2 �2 � t2�

2	 � 2sin 	

cot 	
x � sin x
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add fractions

Pythagorean identity

cancel sin 	

reciprocal identity L

E X A M P L E  3 Verifying an identity

Verify the identity 

S O L U T I O N Since the denominator of the left-hand side is a binomial and the
denominator of the right-hand side is a monomial, we change the form of the
fraction on the left-hand side by multiplying the numerator and denominator by
the conjugate of the denominator and then use one of the Pythagorean identities:

property of quotients

cancel
L

Another technique for showing that an equation is an identity is to
begin by transforming the left-hand side p into another expression s, making
sure that each step is reversible—that is, making sure it is possible to trans-
form s back into p by reversing the procedure used in each step. In this case,
the equation is an identity. Next, as a separate exercise, we show that
the right-hand side q can also be transformed into the expression s by means
of reversible steps and, therefore, that is an identity. It then follows that

is an identity. This method is illustrated in the next example.

E X A M P L E  4 Verifying an identity

Verify the identity �tan 	 � sec 	�2 �
1 � sin 	

1 � sin 	
.

p � q
q � s

p � s

p � q

cos x�
1 � sin x

cos x

sin2 x � cos2 x � 1�
cos x �1 � sin x�

cos2 x

�
cos x �1 � sin x�

1 � sin2 x

cos x

1 � sin x
�

cos x

1 � sin x
�

1 � sin x

1 � sin x

cos x

1 � sin x
�

1 � sin x

cos x
.

� sec 	

�
1

cos 	

� sin 	 � 1

cos 	 sin 	�
� sin 	 �sin2 	 � cos2 	

cos 	 sin 	 �
 sin 	 �tan 	 � cot 	� � sin 	 �sin 	

cos 	
�

cos 	

sin 	� tangent and cotangent 
identities

multiply numerator and
denominator by 1 � sin x



S O L U T I O N We shall verify the identity by showing that each side of the
equation can be transformed into the same expression. First we work only with
the left-hand side:

square expression

tangent and reciprocal identities

equivalent expression

add fractions

At this point it may not be obvious how we can obtain the right-hand side
of the given equation from the last expression. Thus, we next work with only
the right-hand side and try to obtain the last expression. Multiplying numerator
and denominator by the conjugate of the denominator gives us the following:

property of quotients

The last expression is the same as that obtained from Since
all steps are reversible, the given equation is an identity. L

E X A M P L E  5 Showing that an equation is not an identity

Show that cot is not an identity.

S O L U T I O N We only need to find one value of x that makes each side of the
equation have a different value. We could try random values of x, but investi-
gating a known identity may help us with our choice of a value for x.

A Pythagorean identity, , relates the cot and csc func-
tions. Solving the identity for cot x, we get and then

. The symbol is the key—any value of x that
makes cot x negative will show that the given equation is not an identity.
Specifically, since cot is negative in quadrants II and IV, we’ll pick for
our value of x. The left-hand side is then and the right-hand
side is

.

The sides are not equal, so the given equation is not an identity. L

In calculus it is sometimes convenient to change the form of certain alge-
braic expressions by making a trigonometric substitution, as illustrated in
the following example.

�csc2 �3��4� � 1 � ����2�2 � 1 � 22 � 1 � 1

cot �3��4� � �1
3��4

�cot x � � �csc2 x � 1
cot2 x � csc2 x � 1

1 � cot2 x � csc2 x

x � 2csc2 x � 1

�tan 	 � sec 	�2.

sin2 	 � cos2 	 � 1�
1 � 2 sin 	 � sin2 	

cos2 	

�
1 � 2 sin 	 � sin2 	

1 � sin2 	

1 � sin 	

1 � sin 	
�

1 � sin 	

1 � sin 	
�

1 � sin 	

1 � sin 	

�
sin2 	 � 2 sin 	 � 1

cos2 	

�
sin2 	

cos2 	
�

2 sin 	

cos2 	
�

1

cos2 	

� �sin 	

cos 	�2

� 2�sin 	

cos 	�� 1

cos 	� � � 1

cos 	�2

�tan 	 � sec 	�2 � tan2 	 � 2 tan 	 sec 	 � sec2 	
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multiply numerator and
denominator by 1 � sin 	

Work with the left-hand side.

Work with the right-hand side.

equivalent
expressions
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E X A M P L E  6 Making a trigonometric substitution

Express in terms of a trigonometric function of 	, without radicals,
by making the substitution for and 

S O L U T I O N We proceed as follows:

let

law of exponents

factor out 

see below

The last equality is true because (1) if then and (2) if
then and hence 

We may also use a geometric solution. If then 
and the triangle in Figure 1 illustrates the problem for The third
side of the triangle, can be found by using the Pythagorean theo-
rem. From the figure we can see that

or, equivalently,
L

2a2 � x2 � a cos 	.cos 	 �
2a2 � x2

a

2a2 � x2,
0 � 	 � ��2.

sin 	 � x�a,x � a sin 	,
�cos 	� � cos 	.cos 	 
 0���2 � 	 � ��2,

�a� � a,a � 0,

� a cos 	

�cd � � �c ��d �� �a ��cos 	 �
2c2 � �c�� �a cos 	 �
c2d 2 � (cd )2� 2(a cos 	)2

sin2 	 � cos2 	 � 1� 2a2 cos2 	

a2� 2a2�1 � sin2 	�

� 2a2 � a2 sin2 	

x � a sin 	2a2 � x2 � 2a2 � �a sin 	�2

a � 0.���2 � 	 � ��2x � a sin 	
2a2 � x2

Figure 1

�a2 � x2

u

a
x

Exer. 1–50: Verify the identity.

1

2

3

4

5

6

7

8

9

10

11 �sec u � tan u��csc u � 1� � cot u

1 � csc 3�

sec 3�
� cot 3� � cos 3�

1

1 � cos �
�

1

1 � cos �
� 2 csc2 �

tan2 � � sin2 � � tan2 � sin2 �

1 � cos 3t

sin 3t
�

sin 3t

1 � cos 3t
� 2 csc 3t

�tan u � cot u��cos u � sin u� � csc u � sec u

csc2 	

1 � tan2 	
� cot2 	

tan t � 2 cos t csc t � sec t csc t � cot t

sec2 2u � 1

sec2 2u
� sin2 2u

sin x � cos x cot x � csc x

csc 	 � sin 	 � cot 	 cos 	
12

13

14

15

16

17 18

19 20

21

22

23

24

25 �sec t � tan t�2 �
1 � sin t

1 � sin t

sec4 u � sec2 u � tan2 u � tan4 u

tan4 k � sec4 k � 1 � 2 sec2 k

sin4 	 � 2 sin2 	 cos2 	 � cos4 	 � 1

sin4 r � cos4 r � sin2 r � cos2 r

1 � sec 4x

sin 4x � tan 4x
� csc 4x

cot 4u � 1

cot 4u � 1
�

1 � tan 4u

1 � tan 4u

cot x

csc x � 1
�

csc x � 1

cot x

tan2 x

sec x � 1
�

1 � cos x

cos x

1

csc y � cot y
� csc y � cot y

cos �

1 � sin �
� sec � � tan �

cos4 2	 � sin2 2	 � cos2 2	 � sin4 2	

csc4 t � cot4 t � csc2 t � cot2 t

cot 	 � tan 	

sin 	 � cos 	
� csc 	 � sec 	

7.1 E x e r c i s e s



26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47 48

49

50 ln � csc x � cot x � � �ln � csc x � cot x �

ln � sec 	 � tan 	 � � �ln � sec 	 � tan 	 �

ln sec 	 � �ln cos 	ln cot x � �ln tan x

10log� sin t � � � sin t �log 10tan t � tan t

csc ��t� � sin ��t�
sin ��t�

� cot2 t

cot ��t� � tan ��t�
cot t

� �sec2 t

cos4 w � 1 � sin4 w � 2 cos2 w

�1 � tan2 ��2 � sec4 � � 4 tan2 �

sin3 t � cos3 t � �1 � sin t cos t��sin t � cos t�

cot y � tan y

sin y cos y
� csc2 y � sec2 y

1

tan � � cot �
� sin � cos �

csc x

1 � csc x
�

csc x

1 � csc x
� 2 sec2 x

tan �

1 � sec �
�

1 � sec �

tan �
� 2 csc �

tan u � tan v

1 � tan u tan v
�

cot v � cot u

cot u cot v � 1

sin � cos � � cos � sin �

cos � cos � � sin � sin �
�

tan � � tan �

1 � tan � tan �

�a cos t � b sin t�2 � �a sin t � b cos t�2 � a2 � b2

�csc t � cot t�4�csc t � cot t�4 � 1

cos3 x � sin3 x

cos x � sin x
� 1 � sin x cos x

1 � csc �

cot � � cos �
� sec �

sin t

1 � cos t
� csc t � cot t

�sin2 	 � cos2 	�3 � 1

sec2 � � tan2 � � �1 � sin4 �� sec4 � Exer. 51–60: Show that the equation is not an identity.
(Hint: Find one number for which the equation is false.)

51

52

53 54

55

56

57 58

59 60

Exer. 61–64: Either show that the equation is an identity or
show that the equation is not an identity.

61

62

63

64

Exer. 65–68: Refer to Example 5. Make the trigonometric
substitution x � a sin � for �� /2 < � < � /2 and a > 0. Use
fundamental identities to simplify the resulting expression.

65 66

67 68

Exer. 69–72: Make the trigonometric substitution 

x � a tan � for �� /2 < � < � /2 and a > 0. 

Simplify the resulting expression.

69 70

71 72

Exer. 73–76: Make the trigonometric substitution 

x � a sec � for 0 < � < � /2 and a > 0. 

Simplify the resulting expression.

73 74

75 76
2x2 � a2

x2
x32x2 � a2

1

x22x2 � a2
2x2 � a2

�x2 � a2�3/2

x

1

x2 � a2

1

2a2 � x2
2a2 � x2

1

x2a2 � x2

x2

2a2 � x2

2a2 � x2

x
�a2 � x2�3/2

csc2 x � sec2 x � csc2 x sec2 x

cos x (tan x � cot x) � csc x

tan2 x

sec x � 1
� sec x

(sec x � tan x)2 � 2 tan x (tan x � sec x)

cot �tan 	� � 1cos �sec t� � 1

sin �t � �� � sin tcos ��t� � �cos t

log � 1

sin t� �
1

log sin t

�sin 	 � cos 	�2 � sin2 	 � cos2 	

sec t � 2tan2 t � 12sin2 t � sin t

2sin2 t � cos2 t � sin t � cos t

cos t � 21 � sin2 t
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sec 	 � csc 	 � cos 	 � sin 	 � sin 	 tan 	 � cos 	 cot 	
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A trigonometric equation is an equation that contains trigonometric expres-
sions. Each identity considered in the preceding section is an example of a
trigonometric equation with every number (or angle) in the domain of the vari-
able a solution of the equation. If a trigonometric equation is not an identity,
we often find solutions by using techniques similar to those used for algebraic
equations. The main difference is that we first solve the trigonometric equation
for and so on, and then find values of x or 	 that satisfy the equa-
tion. Solutions may be expressed either as real numbers or as angles. Through-
out our work we shall use the following rule: If degree measure is not 
specified, then solutions of a trigonometric equation should be expressed in
radian measure (or as real numbers). If solutions in degree measure are de-
sired, an appropriate statement will be included in the example or exercise.

E X A M P L E  1 Solving a trigonometric equation involving the sine function

Find the solutions of the equation if

(a) 	 is in the interval 

(b) 	 is any real number

S O L U T I O N

(a) If then the reference angle for 	 is If we regard 	 as
an angle in standard position, then, since the terminal side is in ei-
ther quadrant I or quadrant II, as illustrated in Figure 1. Thus, there are two so-
lutions for 

(b) Since the sine function has period we may obtain all solutions by
adding multiples of to and This gives us

Figure 2

An alternative (graphical) solution involves determining where the graph
of intersects the horizontal line as illustrated in Figure 2.y �

1
2 ,y � sin 	

�1

y

uk l m x

1 y � qy � sin u

�'�z

	 �
�

6
� 2�n and 	 �

5�

6
� 2�n for every integer n.

5��6.��62�
2�,

	 �
�

6
and 	 � � �

�

6
�

5�

6

0 � 	 � 2� :

sin 	 � 0,
	R � ��6.sin 	 �

1
2 ,

�0, 2��
sin 	 �

1
2

cos 	,sin x,

7.2
Trigonometric Equations

Figure 1

y

x

uR � kuR � k

L



E X A M P L E  2 Solving a trigonometric equation 
involving the tangent function

Find the solutions of the equation 

S O L U T I O N Since the tangent function has period �, it is sufficient to find
one real number u such that and then add multiples of �.

A portion of the graph of is sketched in Figure 3. Since
one solution is hence,

if then for every integer n.

Figure 3

We could also have chosen (or some other number u such that
) for the initial solution and written

for every integer n.

An alternative solution involves a unit circle. Using and
the fact that the period of the tangent is �, we can see from Figure 4 that the
desired solutions are

for every integer n.
L

E X A M P L E  3 Solving a trigonometric equation involving multiple angles

(a) Solve the equation and express the solutions both in radians
and in degrees.

(b) Find the solutions that are in the interval and, equivalently,
�0�, 360��.

�0, 2��

cos 2x � 0,

u �
3�

4
� �n

tan 3��4 � �1

u � �
�

4
� �n

tan u � �1
���4

y

u

1

p�p

y � �1

y � tan u

u �
3�

4
� �ntan u � �1,

3��4;tan �3��4� � �1,
y � tan u

tan u � �1

tan u � �1.
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Figure 4

y

x

tan f � �1

tan j � �1tan h � 1

tan d � 1

f
�

� d

U
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S O L U T I O N

(a) We proceed as follows, where n denotes any integer:

given

let

refer to Figure 5

divide by 2

In degrees, we have 

(b) We may find particular solutions of the equation by substituting integers
for n in either of the formulas for x obtained in part (a). Several such solutions
are listed in the following table.

Note that the solutions in the interval or, equivalently, are
given by and These solutions are

L

E X A M P L E  4 Solving a trigonometric equation by factoring

Solve the equation sin 	 tan 	 � sin 	.

�

4
,
3�

4
,
5�

4
,
7�

4
or, equivalently, 45�, 135�, 225�, 315�.

n � 3.n � 2,n � 1,n � 0,
�0�, 360���0, 2��

x � 45� � 90�n.

x �
�

4
�

�

2
n

	 � 2x 2x �
�

2
� �n

	 �
�

2
� �n

	 � 2x cos 	 � 0

 cos 2x � 0

n � 45° � 90°n

0

1

2

3

4 45° � 90°�4� � 405°
�

4
�

�

2
�4� �

9�

4

45° � 90°�3� � 315°
�

4
�

�

2
�3� �

7�

4

45° � 90°�2� � 225°
�

4
�

�

2
�2� �

5�

4

45° � 90°�1� � 135°
�

4
�

�

2
�1� �

3�

4

45° � 90°�0� � 45°
�

4
�

�

2
�0� �

�

4

45° � 90°��1� � �45°
�

4
�

�

2
��1� � �

�

4
�1

�

2
n

�

4

Figure 5

 cos w � 0

 cos q � 0

q

U

y

x

p

p



S O L U T I O N

given

make one side 0

factor out sin 	

zero factor theorem

solve for sin 	 and tan 	

The solutions of the equation are Thus,

if then for every integer n.

The tangent function has period �, and hence we find the solutions of the
equation that are in the interval and then add multiples
of �. Since the only solution of in is we see that

if then for every integer n.

Thus, the solutions of the given equation are

and for every integer n.

Some particular solutions, obtained by letting and
are

L

In Example 4 it would have been incorrect to begin by dividing both sides
by since we would have lost the solutions of 

E X A M P L E  5 Solving a trigonometric equation by factoring

Solve the equation and express the solutions both in
radians and in degrees.

S O L U T I O N It appears that we have a quadratic equation in either or
We do not have a simple substitution for in terms of but we

do have one for in terms of ( ), so we shall first
express the equation in terms of alone and then solve by factoring.

given

simplify

multiply by �1

factor

zero factor theorem

solve for cos t cos t �
1
2 ,     cos t � �1

 2 cos t � 1 � 0, cos t � 1 � 0

�2 cos t � 1��cos t � 1� � 0

 2 cos2 t � cos t � 1 � 0

�2 cos2 t � cos t � 1 � 0

sin2 t � cos2 t � 1 2�1 � cos2 t� � cos t � 1 � 0

 2 sin2 t � cos t � 1 � 0

cos t
sin2 t � 1 � cos2 tcos2 tsin2 t

sin t,cos tcos t.
sin t

2 sin2 t � cos t � 1 � 0,

sin 	 � 0.sin 	,

0,  
�

4
, �,  

5�

4
, 2�,  

9�

4
, ��, and �

3�

4
.

n � �1,
n � 2,n � 1,n � 0,

�

4
� �n�n

	 �
�

4
� �ntan 	 � 1,

��4,����2, ��2�tan 	 � 1
����2, ��2�tan 	 � 1

	 � �nsin 	 � 0,

0, ��, �2�, . . . .sin 	 � 0

 sin 	 � 0,     tan 	 � 1

 sin 	 � 0, tan 	 � 1 � 0

 sin 	 �tan 	 � 1� � 0

 sin 	 tan 	 � sin 	 � 0

 sin 	 tan 	 � sin 	
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This is a quadratic equation in 
so you could use the quadratic for-
mula at this point. If you do so, re-
member to solve for cos t, not t.

cos t,
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Since the cosine function has period we may find all solutions of these
equations by adding multiples of to the solutions that are in the interval

If the reference angle is (or 60°). Since is positive, the
angle of radian measure t is in either quadrant I or quadrant IV. Hence, in the
interval we see that

if then or

Referring to the graph of the cosine function, we see that

if then

Thus, the solutions of the given equation are the following, where n is any
integer:

In degree measure, we have

L

E X A M P L E  6 Solving a trigonometric equation by factoring

Find the solutions of that are in the interval 

S O L U T I O N given

factor out tan x

zero factor theorem

solve for tan x,

solve for sin x

The reference angle for the third and fourth quadrants is shown in Fig-
ure 6. These angles, and are the solutions of the equation

for The solutions of all three equations are listed in
the following table.

Thus, the given equation has the six solutions listed in the second column
of the table. L

0 � x � 2�.sin x � �
1
2

11��6,7��6
��6

 tan x � 0,       sin x � �
1
2

sin2 x tan x � 0,      sin2 x �
1
4

 tan x � 0, 4 sin2 x � 1 � 0

 tan x �4 sin2 x � 1� � 0

 4 sin2 x tan x � tan x � 0

�0, 2��.4 sin2 x tan x � tan x � 0

60� � 360�n, 300� � 360�n, and 180� � 360�n.

�

3
� 2�n,  

5�

3
� 2�n, and � � 2�n

t � �.cos t � �1,

t � 2� �
�

3
�

5�

3
.t �

�

3
cos t �

1

2
,

�0, 2��,

cos t��3cos t �
1
2 ,

�0, 2��.
2�

2�,

Equation Solutions in [0, 2�) Refer to

0, � Figure 3

Example 1

Figure 6 (use reference angle)
7�

6
,

11�

6
sin x � �

1

2

�

6
,

5�

6
sin x �

1

2

tan x � 0

Figure 6

y

xkk



E X A M P L E  7 Solving a trigonometric equation involving multiple angles

Find the solutions of 

S O L U T I O N

given

difference of two squares

zero factor theorem

solve for 

take square roots

The second equation has no solution because is not a real number. The
first equation is equivalent to

Since the reference angle for 2u is we obtain the following table, in
which n denotes any integer.

The solutions of the given equation are listed in the last column. Note that
all of these solutions can be written in the one form

L

The next example illustrates the use of a calculator in solving a trigono-
metric equation.

E X A M P L E  8 Approximating the solutions of a trigonometric equation

Approximate, to the nearest degree, the solutions of the following equation in
the interval 

5 sin 	 tan 	 � 10 tan 	 � 3 sin 	 � 6 � 0

�0°, 360��:

u �
�

8
�

�

4
n.

��4,

sin 2u � �
1

22
� �

22

2
.

2�2

 csc 2u � �2�2 csc 2u � �22,

csc2 2ucsc2 2u � �2 csc2 2u � 2,

 csc2 2u � 2 � 0 csc2 2u � 2 � 0,

�csc2 2u � 2��csc2 2u � 2� � 0

 csc4 2u � 4 � 0

csc4 2u � 4 � 0.
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Equation Solution for 2u Solution for u

u �
7�

8
� � n2u �

7�

4
� 2� n

u �
5�

8
� � n2u �

5�

4
� 2� nsin 2u � �

22

2

u �
3�

8
� � n2u �

3�

4
� 2� n

u �
�

8
� �n2u �

�

4
� 2�nsin 2u �

22

2
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S O L U T I O N

given

group terms

factor each group

factor out ( )

zero factor theorem

solve for tan 	 and sin 	

The equation has no solution, since for every 	. For
we use a calculator in degree mode, obtaining

Hence, the reference angle is Since 	 is in either quadrant II or quad-
rant IV, we obtain the following solutions:

L

E X A M P L E  9 Investigating the number of hours of daylight

In Boston, the number of hours of daylight at a particular time of the year
may be approximated by

with t in days and corresponding to January 1. How many days of the
year have more than 10.5 hours of daylight?

S O L U T I O N The graph of D was discussed in Example 12 of Section 6.5
and is resketched in Figure 7. As illustrated in the figure, if we can find two
numbers a and b with and then
there will be more than 10.5 hours of daylight in the t th day of the year if

Let us solve the equation as follows:

let

subtract 12

divide by 3 sin � 2�

365
�t � 79�� � �0.5 � �

1

2

 3 sin � 2�

365
�t � 79�� � �1.5

D�t� � 10.53 sin � 2�

365
�t � 79�� � 12 � 10.5

D�t� � 10.5
a � t � b.

0 � a � b � 365,D�b� � 10.5,D�a� � 10.5,

t � 0

D�t� � 3 sin � 2�

365
�t � 79�� � 12,

D�t�

	 � 360� � 	R 
 360� � 31� � 329�

	 � 180� � 	R 
 180� � 31� � 149�

	R 
 31�.

	 � tan�1 ��
3
5� 
 �31�.

tan 	 � �
3
5 ,

�1 � sin 	 � 1sin 	 � 2

 sin 	 � 2 tan 	 � �
3
5 ,

 sin 	 � 2 � 0 5 tan 	 � 3 � 0,

sin 	 � 2�5 tan 	 � 3��sin 	 � 2� � 0

 5 tan 	 �sin 	 � 2� � 3�sin 	 � 2� � 0

�5 sin 	 tan 	 � 10 tan 	� � �3 sin 	 � 6� � 0

 5 sin 	 tan 	 � 10 tan 	 � 3 sin 	 � 6 � 0

(continued)

Figure 7

79 170 262 353

365
3

6

9

12

15

y (number of hours)

t (days)a b

10.5

y � D(t )



If then the reference angle is and the angle 	 is in either
quadrant III or quadrant IV. Thus, we can find the numbers a and b by solving
the equations

From the first of these equations we obtain

and hence

Similarly, the second equation gives us Since the period of the func-
tion D is 365 days (see Figure 7), we obtain

Thus, there will be at least 10.5 hours of daylight from to —
that is, for 243 days of the year. L

E X A M P L E  1 0 Finding the minimum current in an electrical circuit

The current I (in amperes) in an alternating current circuit at time t (in sec-
onds) is given by

Find the smallest exact value of t for which 

S O L U T I O N Letting in the given formula, we obtain

or, equivalently,

Thus, the reference angle is and consequently

or

where n is any integer. Solving for t gives us

or

The smallest positive value of t will occur when one of the numerators of these
two fractions has its least positive value. Since and

we see that the smallest positive value of t occurs when 
in the first fraction—that is, when

L
t �

15
6 � 2��1�

50
�

1

100
.

n � �12��1� � �2,

19
6 
 3.17,15

6 � 2.5,

t �

19
6 � 2n

50
.t �

15
6 � 2n

50

50�t �
7�

3
�

5�

6
� 2�n,50�t �

7�

3
�

�

6
� 2�n

��6,

sin �50�t �
7�

3 � �
1

2
.15 � 30 sin �50�t �

7�

3 �
I � 15

I � 15.

I � 30 sin �50�t �
7�

3 �.

t � 292t � 49

t 
 414 � 365, or t 
 49.

t 
 414.

t 
 213 � 79, or t 
 292.

t � 79 �
7�

6
�

365

2�
�

2555

12

 213,

2�

365
�t � 79� �

7�

6
and    

2�

365
�t � 79� �

11�

6
.

��6sin 	 � �
1
2 ,
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Exer. 1–38: Find all solutions of the equation.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23

24

25 26

27 28

29 30

31

32

33 34

35 36

37 38

Exer. 39–62: Find the solutions of the equation that are in
the interval [0, 2�).

39 40 sin �3x �
�

4 � � 1cos �2x �
�

4 � � 0

ln �sin x� � 0cos �ln x� � 0

tan � � tan2 � � 0sin 2x �csc 2x � 2� � 0

2 cos2 x � sin x � 1cos x � 1 � 2 sin2 x

�2 sin u � 1��cos u � 22 � � 0

�2 sin 	 � 1��2 cos 	 � 3� � 0

�sin t � 1� cos t � 0cot2 x � 3 � 0

4 sin2 x � 3 � 023 � 2 sin � � 0

3 � tan2 � � 0sec2 � � 4 � 0

2 cos x � 23

�cos 	 � 1��sin 	 � 1� � 0

4 cos 	 � 2 � 0tan2 x � 1

cot 	 � 1 � 02 cos t � 1 � 0

cos �4x �
�

4 � �
22

2
sin �2x �

�

3 � �
1

2

cos �x �
�

3 � � �1sin �	 �
�

4 � �
1

2

cos
1

4
x � �

22

2
23 tan

1

3
t � 1

2 sin 3	 � 22 � 02 cos 2	 � 23 � 0

csc 	 sin 	 � 1cos 	 �
1

sec 	

cos x � �
�

3
sin x �

�

2

csc � � 22sec � � 2

cot � � �
1

23
tan 	 � 23

cos t � �1sin x � �
22

2

41 42

43

44

45 46

47 48

49 50

51 52

53 54

55 56

57

58

59

60

61

62

Exer. 63–68: Approximate, to the nearest 10�, the solutions
of the equation in the interval [0
, 360
 ).

63

64

65

66

67

68

69 Tidal waves A tidal wave of height 50 feet and period 
30 minutes is approaching a sea wall that is 12.5 feet above
sea level (see the figure). From a particular point on shore, the
distance y from sea level to the top of the wave is given by

with t in minutes. For approximately how many minutes of
each 30-minute period is the top of the wave above the level
of the top of the sea wall?

y � 25 cos 
�

15
t,

5 cos2 � � 3 cos � � 2 � 0

12 sin2 u � 5 sin u � 2 � 0

2 tan2 x � 3 tan x � 1 � 0

tan2 	 � 3 tan 	 � 2 � 0

cos2 t � 4 cos t � 2 � 0

sin2 t � 4 sin t � 1 � 0

2 sin v csc v � csc v � 4 sin v � 2

2 tan t csc t � 2 csc t � tan t � 1 � 0

sec5 	 � 4 sec 	

2 sin3 x � sin2 x � 2 sin x � 1 � 0

sin x � cos x cot x � csc x

cot � � tan � � csc � sec �

tan 	 � sec 	 � 12 tan t � sec2 t � 0

23 sin t � cos t � 1cos � � sin � � 1

cos 	 � sin 	 � 11 � sin t � 23 cos t

2 sin2 u � sin u � 6 � 0sin2 	 � sin 	 � 6 � 0

sin x � cos x � 02 cos2 � � cos � � 0

sec � csc � � 2 csc �tan2 x sin x � sin x

2 cos2 t � 3 cos t � 1 � 0

2 sin2 u � 1 � sin u

cot2 	 � cot 	 � 02 � 8 cos2 t � 0

7.2 E x e r c i s e s



Exercise 69

70 Temperature in Fairbanks The expected low temperature T
(in �F) in Fairbanks, Alaska, may be approximated by

where t is in days, with corresponding to January 1.
For how many days during the year is the low temperature
expected to be below F?

71 Intensity of sunlight On a clear day with D hours of day-
light, the intensity of sunlight I (in ) may be
approximated by

where corresponds to sunrise and is the maximum
intensity. If , approximately how many hours after
sunrise is ?

72 Intensity of sunlight Refer to Exercise 71. On cloudy days,
a better approximation of the sun intensity I is given by

If , how many hours after sunrise is ?

73 Protection from sunlight Refer to Exercises 71 and 72.
A dermatologist recommends protection from the sun when
the intensity I exceeds 75% of the maximum intensity. If

hours, approximate the number of hours for which
protection is required on

(a) a clear day (b) a cloudy day

74 Highway engineering In the study of frost penetration
problems in highway engineering, the temperature T at
time t hours and depth x feet is given by

where , , and are constants and the period of T is
24 hours.

��T0

T � T0e��x sin ��t � �x�,

D � 12

I �
1
2 IMD � 12

I � IM sin2
�t

D
.

I �
1
2 IM

D � 12
IMt � 0

I � IM sin3
�t

D
for 0 � t � D,

calories�cm2

�4�

t � 0

T � 36 sin � 2�

365
�t � 101�� � 14,

y

t

50 �

Sea level

Sea
wall

12.5�

(a) Find a formula for the temperature at the surface.

(b) At what times is the surface temperature a minimum?

(c) If , find the times when the temperature is a
minimum at a depth of 1 foot.

75 Rabbit population Many animal populations, such as that
of rabbits, fluctuate over ten-year cycles. Suppose that the
number of rabbits at time t (in years) is given by

(a) Sketch the graph of N for .

(b) For what values of t in part (a) does the rabbit popula-
tion exceed 4500?

76 River flow rate The flow rate (or water discharge rate) at the
mouth of the Orinoco River in South America may be ap-
proximated by

where t is the time in months and is the flow rate in
. For approximately how many months each year

does the flow rate exceed 55,000 ?

77 Shown in the figure is a graph of for
. Using calculus, it can be shown that the 

x-coordinates of the turning points A, B, C, and D on the
graph are solutions of the equation . Deter-
mine the coordinates of these points.

Exercise 77

y

x

A
B

C
D

p 2p�2p �p

3

�3

1
2 � cos x � 0

�2� � x � 2�
y �

1
2 x � sin x

m3�sec
m3�sec

F�t�

F�t� � 26,000 sin � �

6
�t � 5.5�� � 34,000,

0 � t � 10

N�t� � 1000 cos 
�

5
t � 4000.

� � 2.5
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78 Shown in the figure is the graph of the equation

The x-coordinates of the turning points on the graph are 
solutions of . Approximate the
x-coordinates of these points for .

Exercise 78

y

x

1

1

x � 0
4 cos 2x � sin 2x � 0

y � e�x/2 sin 2x.

Exer. 79–80: If I(t) is the current (in amperes) in an alter-
nating current circuit at time t (in seconds), find the small-
est exact value of t for which I(t) � k.

79 ;

80 ;

81 Weight at various latitudes The weight W of a person on
the surface of Earth is directly proportional to the force of
gravity g (in ). Because of rotation, Earth is flattened
at the poles, and as a result weight will vary at different 
latitudes. If is the latitude, then g can be approximated by

.

(a) At what latitude is ?

(b) If a person weighs 150 pounds at the equator ,
at what latitude will the person weigh 150.5 pounds?

�	 � 0��

g � 9.8

g � 9.8066�1 � 0.00264 cos 2	�
	

m�sec2

k � 20I�t� � 40 sin �100�t � 4��

k � �10I�t� � 20 sin �60�t � 6��
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In this section we derive formulas that involve trigonometric functions of 
or for any real numbers or angles u and v. These formulas are known as
addition and subtraction formulas, respectively, or as sum and difference iden-
tities. The first formula that we will consider may be stated as follows.

P R O O F Let u and v be any real numbers, and consider angles of radian
measure u and v. Let Figure 1 illustrates one possibility with the
angles in standard position. For convenience we have assumed that both u and
v are positive and that 

As in Figure 2, let and be the points on the
terminal sides of the indicated angles that are each a distance 1 from the ori-
gin. In this case P, Q, and R are on the unit circle U with center at the origin.
From the definition of trigonometric functions in terms of a unit circle,

(∗)
 sin u � u2 sin v � v2 sin �u � v� � w2.

 cos u � u1 cos v � v1 cos �u � v� � w1

R�w1, w2�Q�v1, v2�,P�u1, u2�,
0 � u � v � v.

w � u � v.

u � v
u � v7.3

The Addition and
Subtraction Formulas

Subtraction Formula 
for Cosine

cos �u � v� � cos u cos v � sin u sin v

Figure 1

y

x

v
w � u � v

Ouu � v

(continued)



We next observe that the distance between and R must equal the
distance between Q and P, because angles AOR and QOP have the same mea-
sure, Using the distance formula yields

Squaring both sides and simplifying the expressions under the radicals gives us

Since the points and are on the unit circle U and since
an equation for U is we may substitute 1 for each of 

and Doing this and simplifying, we obtain

which reduces to

Substituting from the formulas stated in (∗) gives us

which is what we wished to prove. It is possible to extend our discussion to all
values of u and v. L

The next example demonstrates the use of the subtraction formula in find-
ing the exact value of Of course, if only an approximation were de-
sired, we could use a calculator.

E X A M P L E  1 Using a subtraction formula

Find the exact value of cos 15° by using the fact that 

S O L U T I O N We use the subtraction formula for cosine with and

L

It is relatively easy to obtain a formula for We begin by writ-
ing as and then use the subtraction formula for cosine:

� cos u cos ��v� � sin u sin ��v�
 cos �u � v� � cos �u � ��v�	

u � ��v�u � v
cos �u � v�.

�
22 � 26

4

�
1

2

22

2
�
23

2

22

2

� cos 60� cos 45� � sin 60� sin 45�

 cos 15� � cos �60� � 45��

v � 45�:
u � 60�

15� � 60� � 45�.

cos 15�.

cos �u � v� � cos u cos v � sin u sin v,

w1 � u1v1 � u2v2.

2 � 2w1 � 2 � 2u1v1 � 2u2v2,

w1
2 � w2

2.v1
2 � v2

2,
u1

2 � u2
2,x2 � y2 � 1,

�w1, w2��v1, v2�,�u1, u2�,

w1
2 � 2w1 � 1 � w2

2 � u1
2 � 2u1v1 � v1

2 � u2
2 � 2u2v2 � v2

2.

2�w1 � 1�2 � �w2 � 0�2 � 2�u1 � v1�2 � �u2 � v2�2.

d�A, R� � d�Q, P�

u � v.

A�1, 0�
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Figure 2

y

xOu � v
u � v

U

R(w1, w2)

A(1, 0)
Q(v1, v2)

P(u1, u2)



Using the formulas for negatives, and 
gives us the following addition formula for cosine.

E X A M P L E  2 Using an addition formula

Find the exact value of by using the fact that 

S O L U T I O N We apply the addition formula for cosine:

L

We refer to the sine and cosine functions as cofunctions of each other.
Similarly, the tangent and cotangent functions are cofunctions, as are the se-
cant and cosecant. If u is the radian measure of an acute angle, then the angle
with radian measure is complementary to u, and we may consider the
right triangle shown in Figure 3. Using ratios, we see that

These three formulas and their analogues for sec u, csc u, and cot u state that
the function value of u equals the cofunction of the complementary angle

In the following formulas we use subtraction formulas to extend these 
relationships to any real number u, provided the function values are defined.

��2 � u.

 tan u �
a

b
� cot � �

2
� u�.

 cos u �
b

c
� sin � �

2
� u�

 sin u �
a

c
� cos � �

2
� u�

��2 � u

�
22 � 26

4

�
1

2

22

2
�
23

2

22

2

� cos
�

3
 cos 

�

4
� sin

�

3
 sin 

�

4

 cos 
7�

12
� cos � �

3
�

�

4 �

7�

12
�

�

3
�

�

4
.cos

7�

12

sin ��v� � �sin v,cos ��v� � cos v
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Figure 3

c

b

a
q � u

u

Addition Formula 
for Cosine

cos �u � v� � cos u cos v � sin u sin v



P R O O F S Using the subtraction formula for cosine, we have

This gives us formula 1.
If we substitute for u in the first formula, we obtain

or

Since the symbol v is arbitrary, this equation is equivalent to the second co-
function formula:

Using the tangent identity, cofunction formulas 1 and 2, and the cotangent
identity, we obtain a proof for the third formula:

The proofs of the remaining three formulas are similar. L

An easy way to remember the cofunction formulas is to refer to the tri-
angle in Figure 3.

tan � �

2
� u� �

sin � �

2
� u�

cos � �

2
� u� �

cos u

sin u
� cot u

sin � �

2
� u� � cos u

 cos v � sin � �

2
� v�.

 cos � �

2
� � �

2
� v�� � sin � �

2
� v�,

��2 � v

� �0� cos u � �1� sin u � sin u.

 cos � �

2
� u� � cos

�

2
 cos u � sin

�

2
 sin u
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Cofunction Formulas If u is a real number or the radian measure of an angle, then

(1) (2)

(3) (4)

(5) (6) csc � �

2
� u� � sec usec � �

2
� u� � csc u

cot � �

2
� u� � tan utan � �

2
� u� � cot u

sin � �

2
� u� � cos ucos � �

2
� u� � sin u



We may now prove the following identities.

P R O O F S We shall prove formulas 1 and 3. Using the cofunction formulas
and the subtraction formula for cosine, we can verify formula 1:

To verify formula 3, we begin as follows:

If then we may divide the numerator and the denominator by
obtaining

If then either or In this case, either 
or is undefined and the formula is invalid. Proofs of formulas 2 and 4 are
left as exercises. L

tan v
tan ucos v � 0.cos u � 0cos u cos v � 0,

�
tan u � tan v

1 � tan u tan v
.

 tan �u � v� �

�sin u

cos u��cos v

cos v� � �cos u

cos u��sin v

cos v�
�cos u

cos u��cos v

cos v� � �sin u

cos u��sin v

cos v�

cos u cos v,
cos u cos v � 0,

�
sin u cos v � cos u sin v

cos u cos v � sin u sin v

 tan �u � v� �
sin �u � v�
cos �u � v�

� sin u cos v � cos u sin v

� cos � �

2
� u� cos v � sin � �

2
� u� sin v

� cos �� �

2
� u� � v�

 sin �u � v� � cos � �

2
� �u � v��
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Dividing by will give us 
an expression involving tangents; 
dividing by would give us
an expression involving cotangents.

sin u sin v

cos u cos v

Addition and Subtraction
Formulas for Sine and Tangent

(1)

(2)

(3)

(4) tan �u � v� �
tan u � tan v

1 � tan u tan v

tan �u � v� �
tan u � tan v

1 � tan u tan v

sin �u � v� � sin u cos v � cos u sin v

sin �u � v� � sin u cos v � cos u sin v



E X A M P L E  3 Using addition formulas to find 
the quadrant containing an angle

Suppose and where � is in quadrant I and � is in
quadrant II.

(a) Find the exact values of and 

(b) Find the quadrant containing 

S O L U T I O N Angles � and � are illustrated in Figure 4. There is no loss of
generality in regarding � and � as positive angles between 0 and as we
have done in the figure. Since we may choose the point 
on the terminal side of �. Similarly, since the point 
is on the terminal side of �. Referring to Figure 4 and using the definition of
the trigonometric functions of any angle, we have

(a) Addition formulas give us

(b) Since is negative and is positive, the angle 
must be in quadrant III. L

The next example illustrates a type of simplification of the difference quo-
tient (introduced in Section 3.4) with the sine function. The resulting form is
useful in calculus.

E X A M P L E  4 A formula used in calculus

If and show that

S O L U T I O N We use the definition of f and the addition formula for sine:

L
� sin x �cos h � 1

h � � cos x �sin h

h �
�

sin x �cos h � 1� � cos x sin h

h

�
sin x cos h � cos x sin h � sin x

h

f �x � h� � f �x�
h

�
sin �x � h� � sin x

h

f �x � h� � f �x�
h

� sin x �cos h � 1

h � � cos x �sin h

h �.

h � 0,f �x� � sin x

� � �tan �� � ��sin �� � ��

tan �� � �� �
tan � � tan �

1 � tan � tan �
�

4
3 � ��

5
12�

1 � �4
3���

5
12� �

36

36
�

33

56
.

sin �� � �� � sin � cos � � cos � sin � � �4
5���

12
13� � �3

5�� 5
13� � �

33
65

cos � �
3
5 , tan � �

4
3 , sin � �

5
13 , tan � � �

5
12 .

��12, 5�cos � � �
12
13 ,

�3, 4�sin � �
4
5 ,

2�,

� � �.

tan �� � ��.sin �� � ��

cos � � �
12
13 ,sin � �

4
5
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Figure 4

y

x

(�12, 5)

(3, 4)

13

b
a

5



Addition formulas may also be used to derive reduction formulas. Re-
duction formulas may be used to change expressions such as

to expressions involving only or Similar formulas are true for the
other trigonometric functions. Instead of deriving general reduction formulas,
we shall illustrate two special cases in the next example.

E X A M P L E  5 Obtaining reduction formulas

Express in terms of a trigonometric function of 	 alone:

(a) (b)

S O L U T I O N Using subtraction and addition formulas, we obtain the follow-
ing:

(a)

(b)

L

E X A M P L E  6 Combining a sum involving the sine and cosine functions

Let a and b be real numbers with Show that for every x,

where and with 

S O L U T I O N Given let us consider with
Thus, and we may write

We shall complete the proof by showing that Since
it follows that sec C is positive, and hence

a sec C � a21 � tan2 C.

���2 � C � ��2,
a sec C � 2a2 � b2.

� �a sec C� cos �Bx � C�.

�
a

cos C
�cos C cos Bx � sin C sin Bx�

� a cos Bx � a
sin C

cos C
 sin Bx

a cos Bx � b sin Bx � a cos Bx � �a tan C� sin Bx

b � a tan C,���2 � C � ��2.
tan C � b�aa cos Bx � b sin Bx,

�
�

2
� C �

�

2
.tan C �

b

a
A � 2a2 � b2

a cos Bx � b sin Bx � A cos �Bx � C�,

a � 0.

� cos 	 � ��1� � sin 	 � �0� � �cos 	

 cos �	 � �� � cos 	 cos � � sin 	 sin �

� sin 	 � �0� � cos 	 � ��1� � cos 	

 sin �	 �
3�

2 � � sin 	 cos 
3�

2
� cos 	 sin

3�

2

cos �	 � ��sin �	 �
3�

2 �

cos 	.sin 	

sin �	 �
�

2
n� and cos �	 �

�

2
n� for any integer n
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Since we

could also write the sum in terms of a
sine function.

cos u � sin � �

2
� u�,

(continued)



Using and we obtain

L

E X A M P L E  7 An application of Example 6

If use the formulas given in Example 6 to express 
in the form and then sketch the graph of f.

S O L U T I O N Letting and in the formulas from Exam-
ple 6, we have

and

Since and we have Substituting for
a, b, A, B, and C in the formula

gives us

Comparing the last formula with the equation which we
discussed in Section 6.5, we see that the amplitude of the graph is the pe-
riod is and the phase shift is The graph of f is sketched in Figure 5,
where we have also shown the graphs of and Our sketch
agrees with that obtained in Chapter 6. (See Figure 10 in Section 6.6.) L

y � cos x.y � sin x
��4.2�,

22,
y � a cos �bx � c�,

f �x� � cos x � sin x � 22 cos �x �
�

4 �.

a cos Bx � b sin Bx � A cos �Bx � C�

C � ��4.���2 � C � ��2,tan C � 1

tan C �
b

a
�

1

1
� 1.A � 2a2 � b2 � 21 � 1 � 22

B � 1b � 1,a � 1,

A cos �Bx � C�,
f �x�f �x� � cos x � sin x,

a sec C � a�1 �
b2

a2
� �a2�1 �

b2

a2� � 2a2 � b2.

a � 0,tan C � b�a
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Figure 5

y

x

y � cos x � sin x

y � sin xy � cos x
p 2p

Exer. 1–4: Express as a cofunction of a complementary
angle.

1 (a) (b)

(c) (d)

2 (a) (b)

(c) (d)

3 (a) (b)

(c) (d) csc 0.53tan 1

sin
1

4
cos

7�

20

cot 61.87�cos
�

3

sin 89�41�tan 24�12�

sec 17.28�tan
�

6

cos 73�12�sin 46�37�

4 (a) (b)

(c) (d)

Exer. 5–10: Find the exact values.

5 (a)

(b)

6 (a)

(b) sin
11�

12 �use
11�

12
�

2�

3
�

�

4 �
sin

2�

3
� sin

�

4

cos
5�

12 �use
5�

12
�

�

4
�

�

6 �
cos

�

4
� cos

�

6

sec 1.2tan 22

cos 0.64sin
�

12

7.3 E x e r c i s e s



7 (a)

(b)

8 (a)

(b)

9 (a)

(b)

10 (a)

(b)

Exer. 11–16: Express as a trigonometric function of one
angle.

11

12

13

14

15

16

17 If and , find the exact value of

.

18 If and , find the exact value of

.

19 If and are acute angles such that and
, find

(a) (b)

(c) the quadrant containing 

20 If and are acute angles such that and
, find

(a) (b)

(c) the quadrant containing 

21 If and for a third-quadrant angle 
and a first-quadrant angle , find

(a) (b)

(c) the quadrant containing � � �

tan �� � ��sin �� � ��

�
�sec � �

5
3sin � � �

4
5

� � �

tan �� � ��sin �� � ��

cot � �
4
3

csc � �
13
12��

� � �

cos �� � ��sin �� � ��

tan � �
8
15

cos � �
4
5��

cos �� �
�
6 �

sin � � 0cos � �
24
25

sin �� �
�
3 �

tan � � 0sin � � �
5
13

sin ��5� cos 2 � cos 5 sin ��2�

cos 3 sin ��2� � cos 2 sin 3

sin 57� cos 4� � cos 57� sin 4�

cos 10� sin 5� � sin 10� cos 5�

cos 13� cos 50� � sin 13� sin 50�

cos 48� cos 23� � sin 48� sin 23�

tan
7�

12 �use
7�

12
�

3�

4
�

�

6 �
tan

3�

4
� tan

�

6

sin
7�

12 �use
7�

12
�

3�

4
�

�

6 �
sin

3�

4
� sin

�

6

cos 75� �use 75� � 135� � 60��

cos 135� � cos 60�

tan 285� �use 285� � 60� � 225��

tan 60� � tan 225� 22 If and for a second-quadrant angle 
and a third-quadrant angle , find

(a) (b) (c)

(d) (e) (f )

23 If and are third-quadrant angles such that 
and , find

(a) (b)

(c) the quadrant containing 

24 If and are second-quadrant angles such that 
and , find

(a) (b)

(c) the quadrant containing 

Exer. 25–36: Verify the reduction formula.

25 26

27 28

29 30

31 32

33 34

35 36

Exer. 37–46: Verify the identity.

37

38

39

40

41 cos �u � v� � cos �u � v� � 2 cos u cos v

tan �x �
�

4 � �
tan x � 1

tan x � 1

tan �u �
�

4 � �
1 � tan u

1 � tan u

cos �	 �
�

4 � �
22

2
�cos 	 � sin 	�

sin �	 �
�

4 � �
22

2
�sin 	 � cos 	�

tan �x � �� � tan xtan �	 �
�

2 � � �cot 	

tan �� � 	� � �tan 	tan �x �
�

2 � � �cot x

cos �	 �
5�

2 � � sin 	cos �x �
3�

2 � � sin x

cos �x �
�

2 � � �sin xcos �	 � �� � �cos 	

sin �	 �
3�

2 � � cos 	sin �x �
5�

2 � � �cos x

sin �x �
�

2 � � cos xsin �	 � �� � �sin 	

� � �

tan �� � ��sin �� � ��

cos � � �
1
3

sin � �
2
3��

� � �

cos �� � ��sin �� � ��

cos � � �
3
5

cos � � �
2
5��

tan �� � ��cos �� � ��sin �� � ��

tan �� � ��cos �� � ��sin �� � ��

�
�cot � �

3
4tan � � �

7
24
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42

43

44

45

46

47 Express in terms of trigonometric func-
tions of u, v, and w. (Hint: Write

as

and use addition formulas.)

48 Express in terms of trigonometric functions
of u, v, and w.

49 Derive the formula .

50 If and are complementary angles, show that

51 Derive the subtraction formula for the sine function.

52 Derive the subtraction formula for the tangent function.

53 If , show that

54 If , show that

Exer. 55–56: (a) Compare the decimal approximations of
both sides of equation (1). (b) Find the acute angle such
that equation (2) is an identity. (c) How does equation (1) re-
late to equation (2)?

55 (1)

(2)

56 (1)

(2)

Exer. 57–62: Use an addition or subtraction formula to find
the solutions of the equation that are in the interval [0, ).

57 sin 4t cos t � sin t cos 4t

p

sin (a � b) � sin (a � b) � cos b

sin 35° � sin 25° � cos 5°

sin (a � b) � sin (a � b) � sin b

sin 63° � sin 57° � sin 3°

a

f �x � h� � f �x�
h

� sec2 x �sin h

h � 1

cos h � sin h tan x
.

f �x� � tan x

f �x � h� � f �x�
h

� cos x �cos h � 1

h � � sin x �sin h

h �.

f �x� � cos x

sin2 � � sin2 � � 1.

��

cot �u � v� �
cot u cot v � 1

cot u � cot v

tan �u � v � w�

sin ��u � v� � w	sin �u � v � w�

sin �u � v � w�

1

tan � � tan �
�

cos � cos �

sin �� � ��

1

cot � � cot �
�

sin � sin �

sin �� � ��

cos �u � v� � cos �u � v� � cos2 u � sin2 v

sin �u � v� � sin �u � v� � sin2 u � sin2 v

sin �u � v� � sin �u � v� � 2 sin u cos v 58

59

60

61

62

Exer. 63–66: (a) Use the formula from Example 6 to express
f in terms of the cosine function. (b) Determine the ampli-
tude, period, and phase shift of f. (c) Sketch the graph of f.

63

64

65

66

Exer. 67–68: For certain applications in electrical engi-
neering, the sum of several voltage signals or radio waves 
of the same frequency is expressed in the compact form 
y � A cos (Bt � C). Express the given signal in this form.

67

68

69 Motion of a mass If a mass that is attached to a spring 
is raised feet and released with an initial vertical velocity
of , then the subsequent position y of the mass is
given by

where t is time in seconds and is a positive constant.

(a) If , ft, and , express y in the
form , and find the amplitude and 
period of the resulting motion.

(b) Determine the times when —that is, the times
when the mass passes through the equilibrium position.

70 Motion of a mass Refer to Exercise 69. If and ,
find the initial velocities that result in an amplitude of 4 feet.

71 Pressure on the eardrum If a tuning fork is struck and then
held a certain distance from the eardrum, the pressure 
on the outside of the eardrum at time t may be represented
by , where A and are positive constants.
If a second identical tuning fork is struck with a possibly

�p1�t� � A sin �t

p1�t�

� � 2y0 � 1

y � 0

A cos �Bt � C�
v0 � 3 ft�secy0 � 2� � 1

�

y � y0 cos �t �
v0

�
sin �t,

v0 ft�sec
y0

y � 10 sin �120�t �
�

2 � � 5 sin 120�t

y � 50 sin 60�t � 40 cos 60�t

f �x� � 5 cos 10x � 5 sin 10x

f �x� � 2 cos 3x � 2 sin 3x

f �x� � cos 4x � 23 sin 4x

f �x� � 23 cos 2x � sin 2x

tan t � tan 4t � 1 � tan 4t tan t

tan 2t � tan t � 1 � tan 2t tan t

sin 3t cos t � cos 3t sin t � �
1
2

cos 5t cos 2t � �sin 5t sin 2t

cos 5t cos 3t �
1
2 � sin ��5t� sin 3t
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different force and held a different distance from the eardrum
(see the figure), its effect may be represented by the equa-
tion , where B is a positive constant
and . The total pressure on the eardrum is
given by

.

(a) Show that , where

and

(b) Show that the amplitude C of p is given by

Exercise 71

72 Destructive interference Refer to Exercise 71. Destructive
interference occurs if the amplitude of the resulting sound
wave is less than A. Suppose that the two tuning forks are
struck with the same force—that is, .A � B

C 2 � A2 � B2 � 2AB cos #.

b � A � B cos #.a � B sin #

p�t� � a cos �t � b sin �t

p�t� � A sin �t � B sin ��t � #�

p�t�# � 2�0 �
B sin ��t � #�p2�t� �

(a) When total destructive interference occurs, the ampli-
tude of p is zero and no sound is heard. Find the least
positive value of for which this occurs.

(b) Determine the -interval for which destructive
interference occurs and a has its least positive value.

73 Constructive interference Refer to Exercise 71. When two
tuning forks are struck, constructive interference occurs if
the amplitude C of the resulting sound wave is larger than
either A or B (see the figure).

(a) Show that .

(b) Find the values of such that .

(c) If , determine a condition under which construc-
tive interference will occur.

Exercise 73

y

t

p(t)

p2(t)

p1(t)

2p�2p

A 
 B

C � A � B#

C � A � B

�a, b�#

#
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We refer to the formulas considered in this section as multiple-angle formu-
las. In particular, the following identities are double-angle formulas, because
they contain the expression .2u

7.4
Multiple-Angle Formulas

Double-Angle Formulas (1)

(2) (a)

(b)

(c)

(3) tan 2u �
2 tan u

1 � tan2 u

 cos 2u � 2 cos2 u � 1

 cos 2u � 1 � 2 sin2 u

 cos 2u � cos2 u � sin2 u

sin 2u � 2 sin u cos u



P R O O F S Each of these formulas may be proved by letting in the ap-
propriate addition formulas. If we use the formula for , then

Using the formula for , we have

To obtain the other two forms for in 2(b) and 2(c), we use the funda-
mental identity . Thus,

Similarly, if we substitute for instead of , we obtain

Formula 3 for may be obtained by letting in the formula for
. L

E X A M P L E  1 Using double-angle formulas

If and � is an acute angle, find the exact values of and .

S O L U T I O N If we regard � as an acute angle of a right triangle, as shown in
Figure 1, we obtain We next substitute in double-angle formulas:

The next example demonstrates how to change a multiple-angle expres-
sion to a single-angle expression.

E X A M P L E  2 Changing the form of cos 3�

Express cos 3	 in terms of cos 	.

cos 2� � cos2 � � sin2 � � �3
5�2

� �4
5�2

�
9
25 �

16
25 � �

7
25

sin 2� � 2 sin � cos � � 2�4
5��3

5� �
24
25

cos � �
3
5 .

cos 2�sin 2�sin � �
4
5

tan �u � v�
v � utan 2u

� 2 cos2 u � 1.

 cos 2u � cos2 u � �1 � cos2 u�

cos2 usin2 u

� 1 � 2 sin2 u.

� �1 � sin2 u� � sin2 u

 cos 2u � cos2 u � sin2 u

sin2 u � cos2 u � 1
cos 2u

� cos2 u � sin2 u.

� cos u cos u � sin u sin u

 cos 2u � cos �u � u�

cos �u � v�

� 2 sin u cos u.

� sin u cos u � cos u sin u

 sin 2u � sin �u � u�

sin �u � v�
v � u
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Figure 1

3

4
5

a

L
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S O L U T I O N

addition formula

double-angle
formulas

multiply

simplify L

We call each of the next three formulas a half-angle identity, because the
number u is one-half the number 2u.

P R O O F S The first identity may be verified as follows:

double-angle formula 2(b)

isolate

divide by 2

The second identity can be derived in similar fashion by starting with

The third identity can be obtained from identities 1 and 2 by noting that

L

Half-angle identities may be used to express even powers of trigonomet-
ric functions in terms of functions with exponent 1, as illustrated in the next
two examples.

E X A M P L E  3 Using half-angle identities to verify an identity

Verify the identity .sin2 x cos2 x �
1
8 �1 � cos 4x�

tan2 u � �tan u�2 � �sin u

cos u�2

�
sin2 u

cos2 u
.

cos 2u � 2 cos2 u � 1.

 sin2 u �
1 � cos 2u

2

2 sin2 u 2 sin2 u � 1 � cos 2u

 cos 2u � 1 � 2 sin2 u

� 4 cos3 	 � 3 cos 	

sin2 	 � cos2 	 � 1� 2 cos3 	 � cos 	 � 2 cos 	 �1 � cos2 	�
� 2 cos3 	 � cos 	 � 2 cos 	 sin2 	

� �2 cos2 	 � 1� cos 	 � �2 sin 	 cos 	� sin 	

� cos 2	 cos 	 � sin 2	 sin 	

3	 � 2	 � 	 cos 3	 � cos �2	 � 	�

Half-Angle Identities
(1) (2)

(3) tan2 u �
1 � cos 2u

1 � cos 2u

cos2 u �
1 � cos 2u

2
sin2 u �

1 � cos 2u

2



S O L U T I O N

half-angle identities

multiply

multiply L

E X A M P L E  4 Using half-angle identities to reduce a power of cos t

Express in terms of values of the cosine function with exponent 1.

S O L U T I O N

law of exponents

half-angle identity

square

half-angle identity with 

simplify L

Substituting for u in the three half-angle identities gives us

Taking the square roots of both sides of each of these equations, we obtain the
following, which we call the half-angle formulas in order to distinguish them
from the half-angle identities.

When using a half-angle formula, we choose either the � or the �, de-
pending on the quadrant containing the angle of radian measure . Thus, for

we use � if is an angle in quadrant I or II or � if is in quad-
rant III or IV. For we use � if is in quadrant I or IV, and so on.v�2cos �v�2�

v�2v�2sin �v�2�
v�2

tan2
v

2
�

1 � cos v

1 � cos v
.cos2

v

2
�

1 � cos v

2
sin2

v

2
�

1 � cos v

2

v�2

�
3
8 �

1
2 cos 2t �

1
8 cos 4t

u � 2t�
1

4 �1 � 2 cos 2t �
1 � cos 4t

2 �
�

1
4 �1 � 2 cos 2t � cos2 2t�

� �1 � cos 2t

2 �2

 cos4 t � �cos2 t�2

cos4 t

�
1
8 �1 � cos 4x�

�
1

4 �1 � cos 4x

2 �
sin2 2x � cos2 2x � 1�

1
4 �sin2 2x�

�
1
4 �1 � cos2 2x�

 sin2 x cos2 x � �1 � cos 2x

2 ��1 � cos 2x

2 �
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half-angle identity with
u � 2x

Half-Angle Formulas
(1) (2)

(3) tan
v

2
� ��1 � cos v

1 � cos v

cos
v

2
� ��1 � cos v

2
sin

v

2
� ��1 � cos v

2
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E X A M P L E  5 Using half-angle formulas for the sine and cosine

Find exact values for

(a) (b)

S O L U T I O N

(a) We choose the positive sign because 22.5º is in quadrant I, and hence
.

half-angle formula for sine with 

multiply radicand by and simplify

(b) Similarly, we choose the negative sign because 112.5° is in quadrant II,
and so .

multiply radicand by and simplify
L

We can obtain an alternative form for the half-angle formula for 
Multiplying the numerator and denominator of the radicand in the third half-
angle formula by gives us

We can eliminate the sign in the preceding formula. First note that the
numerator is never negative. We can show that and 
always have the same sign. For example, if , then 
and consequently both and are positive. If , then

, and hence both and are negative, which givestan �v�2�sin v��2 � v�2 � �
� � v � 2�tan �v�2�sin v

0 � v�2 � ��2,0 � v � �
sin vtan �v�2�1 � cos v

�

� ���1 � cos v�2

sin2 v
� �

1 � cos v

sin v
.

� ���1 � cos v�2

1 � cos2 v

 tan 
v

2
� ��1 � cos v

1 � cos v
�

1 � cos v

1 � cos v

1 � cos v

tan �v�2�.

2

2
� �

�2 � 22

2

cos 225� � �
22

2
� ��1 � 22�2

2

 cos 112.5� � ��1 � cos 225�

2

cos 112.5� � 0

2

2
�

�2 � 22

2

cos 45� �
22

2
� �1 � 22�2

2

v � 45� sin 22.5� � ��1 � cos 45�

2

sin 22.5� � 0

cos 112.5�sin 22.5�

half-angle formula for 
cosine with v � 225�



us the first of the next two identities. The second identity for may be
obtained by multiplying the numerator and denominator of the radicand in the
third half-angle formula by .

E X A M P L E  6 Using a half-angle formula for the tangent

If and � is in quadrant IV, find 

S O L U T I O N If we choose the point on the terminal side of �, as 
illustrated in Figure 2, then and Applying the first half-
angle formula for the tangent, we obtain

L

E X A M P L E  7 Finding the x-intercepts of a graph

A graph of the equation for is sketched in
Figure 3. The x-intercepts appear to be approximately 1.1, 3.1, and 5.2. Find
their exact values and three-decimal-place approximations.

S O L U T I O N To find the x-intercepts, we proceed as follows:

let

double-angle formula 2(c)

equivalent equation

factor

zero factor theorem

solve for cos x

The solutions of the last two equations in the interval give us the fol-
lowing exact and approximate x-intercepts:

L

E X A M P L E  8 Deriving a formula for the area of an isosceles triangle

An isosceles triangle has two equal sides of length a, and the angle between
them is 	 (see Figure 4). Express the area A of the triangle in terms of a and 	.

�

3

 1.047,  

5�

3

 5.236, � 
 3.142

�0, 2�	

 cos x �
1
2 , cos x � �1

 2 cos x � 1 � 0, cos x � 1 � 0

�2 cos x � 1��cos x � 1� � 0

 2 cos2 x � cos x � 1 � 0

�2 cos2 x � 1� � cos x � 0

y � 0 cos 2x � cos x � 0

0 � x � 2�y � cos 2x � cos x

tan
�

2
�

1 � cos �

sin �
�

1 �
3
5

�
4
5

� �
1

2
.

cos � �
3
5 .sin � � �

4
5

�3, �4�

tan
�

2
.tan � � �

4

3

1 � cos v

tan �v�2�
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Figure 2

y

x

5

a

P(3, �4)

Figure 3

1

y � cos 2x � cos x

y

x1

Figure 4

a a
u

Half-Angle Formulas 
for the Tangent (1) (2) tan

v

2
�

sin v

1 � cos v
tan

v

2
�

1 � cos v

sin v
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Figure 5

a a
h

c

P

k

S O L U T I O N From Figure 5 we see that the altitude from point P bisects 	
and that . Thus, we have the following, where is an
acute angle:

see Figure 5

solve for k and h

We next find the area:

substitute in (∗)

law of radicals

take the square root

Another method for simplifying (∗) is to write the double-angle formula
for the sine, , as

(∗∗)

and proceed as follows:

substitute in 

let in (∗∗)

simplify L�
1
2 a2 sin 	

u �
	

2
� a2 �

1

2
 sin �2 �

	

2�
A � khA � a2 sin 

	

2
 cos 

	

2

sin u cos u �
1
2 sin 2u

sin 2u � 2 sin u cos u

sin 	 � 0 for 0� � 	 � 180��
1
2 a2 sin 	

�
1
2 a2 � sin 	 �

sin2 	 � cos2 	 � 1� a2�sin2 	

4

� a2�1 � cos2 	

4

� a2�1 � cos 	

2 �1 � cos 	

2

A � khA � a2 sin 
	

2
 cos 

	

2

h � a cos 
	

2
k � a sin 

	

2

 cos 
	

2
�

h

a
 sin 

	

2
�

k

a

	�2A �
1
2 �2k�h � kh

half-angle formulas with
in quadrant I	�2

Exer. 1–4: Find the exact values of sin 2�, cos 2�, and
tan 2� for the given values of �.

1 ;

2 ;

3 ;

4 ; 270� � 	 � 360�sin 	 � �
4
5

90� � 	 � 180�sec 	 � �3

180� � 	 � 270�cot 	 �
4
3

0� � 	 � 90�cos 	 �
3
5

Exer. 5–8: Find the exact values of sin (� 2), cos (� 2), and
tan (� 2) for the given conditions.

5 ;

6 ;

7 ;

8 ; 180� � 	 � 270�sec 	 � �4

�180� � 	 � �90�tan 	 � 1

�90� � 	 � 0�csc 	 � �
5
3

0� � 	 � 90�sec 	 �
5
4

�
��
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Exer. 9–10: Use half-angle formulas to find the exact values.

9 (a) (b) (c)

10 (a) (b) (c)

Exer. 11–30: Verify the identity.

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25 26

27

28

29

30 tan2
u
2

� 1 � 2 cot u csc u � 2 cot2 u

tan
u
2

� csc u � cot u

1 � sin 2v � cos 2v

1 � sin 2v � cos 2v
� cot v

tan 3u �
tan u �3 � tan2 u�

1 � 3 tan2 u

tan 	 � cot 	 � 2 csc 2	2 sin2 2t � cos 4t � 1

cot 2u �
cot2 u � 1

2 cot u
sec 2	 �

sec2 	

2 � sec2 	

cos4 x � sin4 x � cos 2x

sin4 t �
3
8 �

1
2 cos 2t �

1
8 cos 4t

cos 6t � 32 cos6 t � 48 cos4 t � 18 cos2 t � 1

cos 4	 � 8 cos4 	 � 8 cos2 	 � 1

sin 4t � 4 sin t cos t �1 � 2 sin2 t�

sin 3u � sin u �3 � 4 sin2 u�

csc 2u �
1
2 csc u sec u

�sin t � cos t�2 � 1 � sin 2t

sin2 2�

sin2 �
� 4 � 4 sin2 �

4 sin 
x

2
cos

x

2
� 2 sin x

cos2 3x � sin2 3x � cos 6x

sin 10	 � 2 sin 5	 cos 5	

tan
�

8
sin 157�30�cos 165�

tan
3�

8
sin 15�cos 67�30�

Exer. 31–34: Express in terms of the cosine function with
exponent 1.

31 32

33 34

Exer. 35–42: Find the solutions of the equation that are in
the interval [0, 2�).

35 36

37 38

39 40

41 42

43 If , , and , show that

for , with

and

44 Use Exercise 43 to express in the form
.

45 A graph of for is shown
in the figure.

(a) Approximate the x-intercepts to two decimal places.

(b) The x-coordinates of the turning points P, Q, and R on
the graph are solutions of . Find the
coordinates of these points.

Exercise 45 y

x

P R
Q

1

p 2p

sin 2x � sin x � 0

0 � x � 2�y � cos 2x � 2 cos x

c sin �u � v�
8 sin u � 15 cos u

cos v �
a

2a2 � b2
.sin v �

b

2a2 � b2

0 � v � ��2

a sin u � b cos u � 2a2 � b2 sin �u � v�

0 � u � ��2b � 0a � 0

2 � cos2 x � 4 sin2 1
2 xsin 1

2 u � cos u � 1

tan 2t � 2 cos t � 0tan 2x � tan x

cos 2	 � tan 	 � 1cos u � cos 2u � 0

cos t � sin 2t � 0sin 2t � sin t � 0

sin4
	

2
sin4 2x

cos4 2xcos4
	

2
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46 A graph of for is
shown in the figure.

(a) Find the x-intercepts.

(b) The x-coordinates of the eight turning points on the
graph are solutions of . Approxi-
mate these x-coordinates to two decimal places.

Exercise 46

47 A graph of for is
shown in the figure.

(a) Find the x-intercepts. (Hint: Use the formula for 
given in Example 2.)

(b) The x-coordinates of the 13 turning points on the 
graph are solutions of . Find these
x-coordinates. (Hint: Use the formula for in 
Exercise 17.)

Exercise 47

48 A graph of for is
shown in the figure. Find the x-intercepts. (Hint: Use the
formula for in Exercise 18.)sin 4t

�2� � x � 2�y � sin 4x � 4 sin x

y

x2p�2p

1

sin 3u
sin 3x � sin x � 0

cos 3	

�2� � x � 2�y � cos 3x � 3 cos x

y

x2p�2p

1

sin x � 2 cos 2x � 0

�2� � x � 2�y � cos x � sin 2x Exercise 48

49 Planning a railroad route Shown in the figure is a proposed
railroad route through three towns located at points A, B,
and C. At B, the track will turn toward C at an 
angle .

(a) Show that the total distance d from A to C is given by
.

(b) Because of mountains between A and C, the turning point
B must be at least 20 miles from A. Is there a route that
avoids the mountains and measures exactly 50 miles?

Exercise 49

50 Projectile’s range If a projectile is fired from ground level
with an initial velocity of and at an angle of de-
grees with the horizontal, the range R of the projectile is
given by

If , approximate the angles that result in a
range of 150 feet.

v � 80 ft�sec

R �
v2

16
sin 	 cos 	.

	v ft�sec

A

B
C

u
40 mi

20 mi

d � 20 tan 12 	 � 40

	

y

x2p�2p

1



51 Constructing a rain gutter Shown in the figure is a design
for a rain gutter.

(a) Express the volume V as a function of . (Hint: See
Example 8.)

(b) Approximate the acute angle that results in a vol-
ume of 2 .

Exercise 51

52 Designing curbing A highway engineer is designing curb-
ing for a street at an intersection where two highways meet
at an angle , as shown in the figure. The curbing between
points A and B is to be constructed using a circle that is tan-
gent to the highway at these two points.

(a) Show that the relationship between the radius R of the
circle and the distance d in the figure is given by the
equation .

(b) If and ft, approximate R and the
length of the curbing.

Exercise 52

R

A

B

C d

d

f

d � 20� � 45�

R tan ���2�d �

�

0.5�

20 � u

ft3

	

	

53 Arterial bifurcation A common form of cardiovascular
branching is bifurcation, in which an artery splits into two
smaller blood vessels. The bifurcation angle is the angle
formed by the two smaller arteries. In the figure, the line
through A and D bisects and is perpendicular to the line
through B and C.

(a) Show that the length l of the artery from A to B is given

by .

(b) Estimate the length l from the three measurements
mm, 6 mm, and .

Exercise 53

54 Heat production in an AC circuit By definition, the average
value of for one or more complete
cycles is c (see the figure).

(a) Use a double-angle formula to find the average value of
for , with t in seconds.

(b) In an electrical circuit with an alternating current
, the rate r (in ) at which heat

is produced in an R-ohm resistor is given by .
Find the average rate at which heat is produced for one
complete cycle.

Exercise 54

f (t)

t

period

f (t) � c

r � RI 2

calories�secI � I0 sin �t

0 � t � 2���f �t� � sin2 �t

f �t� � c � a cos bt

A

B

C

D

a

bu

	 � 156�b �a � 10

l � a �
b

2
tan

	

4
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The following formulas may be used to change the form of certain trigono-
metric expressions from products to sums. We refer to these as product-
to-sum formulas even though two of the formulas express a product as a 
difference, because any difference of two real numbers is also a sum

. These formulas are frequently used in calculus as an aid in a
process called integration.

P R O O F S Let us add the left-hand and right-hand sides of the addition and
subtraction formulas for the sine function, as follows:

Dividing both sides of the last equation by 2 gives us formula 1.
Formula 2 is obtained by subtracting the left- and right-hand sides of the

addition and subtraction formulas for the sine function. Formulas 3 and 4 are
developed in a similar fashion, using the addition and subtraction formulas for
the cosine function. L

E X A M P L E  1 Using product-to-sum formulas

Express as a sum:

(a) (b)

S O L U T I O N

(a) We use product-to-sum formula 1 with and :

We can also obtain this relationship by using product-to-sum formula 2.

(b) We use product-to-sum formula 4 with and :

L�
1
2 �cos 2x � cos 4x�

 sin 3x sin x �
1
2 �cos �3x � x� � cos �3x � x�	

v � xu � 3x

�
1
2 �sin 7	 � sin 	�

 sin 4	 cos 3	 �
1
2 �sin �4	 � 3	� � sin �4	 � 3	�	

v � 3	u � 4	

sin 3x sin xsin 4	 cos 3	

 sin �u � v� � sin �u � v� � 2 sin u cos v

 sin �u � v� � sin u cos v � cos u sin v

 sin �u � v� � sin u cos v � cos u sin v

x � ��y�
x � y

7.5
Product-to-Sum and

Sum-to-Product Formulas

Product-to-Sum Formulas (1)

(2)

(3)

(4) sin u sin v �
1
2 �cos �u � v� � cos �u � v�	

cos u cos v �
1
2 �cos �u � v� � cos �u � v�	

cos u sin v �
1
2 �sin �u � v� � sin �u � v�	

sin u cos v �
1
2 �sin �u � v� � sin �u � v�	



We may use the product-to-sum formulas to express a sum or difference
as a product. To obtain forms that can be applied more easily, we shall change
the notation as follows. If we let

then , which simplifies to

Similarly, since , we obtain

We now substitute for and on the right-hand sides of the product-
to-sum formulas and for u and v on the left-hand sides. If we then multiply by
2, we obtain the following sum-to-product formulas.

E X A M P L E  2 Using a sum-to-product formula

Express as a product.

S O L U T I O N We use sum-to-product formula 2 with and :

L

E X A M P L E  3 Using sum-to-product formulas to verify an identity

Verify the identity .
sin 3t � sin 5t

cos 3t � cos 5t
� cot t

� 2 cos 4x sin x

 sin 5x � sin 3x � 2 cos 
5x � 3x

2
 sin 

5x � 3x

2

b � 3xa � 5x

sin 5x � sin 3x

u � vu � v

v �
a � b

2
.

�u � v� � �u � v� � a � b

u �
a � b

2
.

�u � v� � �u � v� � a � b

u � v � a and u � v � b,
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Sum-to-Product Formulas
(1)

(2)

(3)

(4) cos a � cos b � �2 sin 
a � b

2
 sin 

a � b

2

cos a � cos b � 2 cos 
a � b

2
 cos 

a � b

2

sin a � sin b � 2 cos 
a � b

2
 sin 

a � b

2

sin a � sin b � 2 sin 
a � b

2
 cos 

a � b

2
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S O L U T I O N We first use a sum-to-product formula for the numerator and
one for the denominator:

simplify

cancel 2 sin 4t

formulas for negatives

cotangent identity L

E X A M P L E  4 Using a sum-to-product formula to solve an equation

Find the solutions of 

S O L U T I O N Changing a sum to a product allows us to use the zero factor
theorem to solve the equation:

given

sum-to-product formula 1

simplify and divide by 2

zero factor theorem

The solutions of the last two equations are

Dividing by 3 and 2, respectively, we obtain

L

E X A M P L E  5 Finding the x-intercepts of a graph

A graph of the equation is shown in Figure 1.
Find the 13 x-intercepts that are in the interval .��2�, 2�	

y � cos x � cos 3x � sin 2x

�

3
n and  

�

4
�

�

2
n for every integer n.

3x � �n and 2x �
�

2
� �n for every integer n.

 sin 3x � 0, cos 2x � 0

 sin 3x cos 2x � 0

 2 sin 
5x � x

2
 cos 

5x � x

2
� 0

 sin 5x � sin x � 0

sin 5x � sin x � 0.

� cot t

�
cos t

sin t

�
cos ��t�

�sin ��t�

�
2 sin 4t cos ��t�

�2 sin 4t sin ��t�

sum-to-product
formulas 1 and 4

sin 3t � sin 5t

cos 3t � cos 5t
�

2 sin 
3t � 5t

2
 cos 

3t � 5t

2

�2 sin 
3t � 5t

2
 sin 

3t � 5t

2



Figure 1

S O L U T I O N To find the x-intercepts, we proceed as follows:

let

group the first two terms

sum-to-product formula 4

simplify

formula for negatives

factor out sin 2x

zero factor theorem

solve for sin x

The equation has solutions , or, dividing by 2,

If we let and we obtain nine x-intercepts in
:

The solutions of the equation are

The four solutions in are obtained by letting and :

L

�

6
,  

5�

6
, �

11�

6
, �

7�

6

n � �1n � 0��2�, 2�	

�

6
� 2�n and  

5�

6
� 2�n for every integer n.

sin x �
1
2

0, �
�

2
, ��, �

3�

2
, �2�

��2�, 2�	
�4,�3,�2,�1,n � 0,

x �
�

2
n for every integer n.

2x � �nsin 2x � 0

 sin 2x � 0,      sin x �
1
2

 sin 2x � 0, 2 sin x � 1 � 0

 sin 2x �2 sin x � 1� � 0

2 sin 2x sin x � sin 2x � 0

�2 sin 2x sin ��x� � sin 2x � 0

�2 sin 
x � 3x

2
 sin 

x � 3x

2
� sin 2x � 0

�cos x � cos 3x� � sin 2x � 0

y � 0 cos x � cos 3x � sin 2x � 0

y

x2pp�2p �p

�3

3 y � cos x � cos 3x � sin 2x
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Exer. 1–8: Express as a sum or difference.

1 2

3 4

5 6

7 8

Exer. 9–16: Express as a product.

9 10

11 12

13 14

15 16

Exer. 17–24: Verify the identity.

17 18

19

20

21

22

23

24

Exer. 25–26: Express as a sum.

25 26

Exer. 27–34: Use sum-to-product formulas to find the solu-
tions of the equation.

27 28

29 30

31 32 cos 3x � �cos 6xcos 3x � cos 5x � cos x

cos 4x � cos 3x � 0cos x � cos 3x

sin t � sin 3t � sin 2tsin 5t � sin 3t � 0

�cos au��cos bu��sin ax��cos bx�

cos t � cos 4t � cos 7t

sin t � sin 4t � sin 7t
� cot 4t

4 cos x cos 2x sin 3x � sin 2x � sin 4x � sin 6x

cos u � cos v

cos u � cos v
� �tan

1

2
�u � v� tan

1

2
�u � v�

sin u � sin v

sin u � sin v
�

tan
1
2 �u � v�

tan 1
2 �u � v�

sin u � sin v

cos u � cos v
� �cot

1

2
�u � v�

sin u � sin v

cos u � cos v
� tan

1

2
�u � v�

sin 	 � sin 3	

cos 	 � cos 3	
� tan 2	

sin 4t � sin 6t

cos 4t � cos 6t
� cot t

sin 8t � sin 2tcos x � cos 2x

cos 	 � cos 5	sin 3t � sin 7t

cos 5t � cos 6tcos 5x � cos 3x

sin 4	 � sin 8	sin 6	 � sin 2	

5 cos u cos 5u3 cos x sin 2x

2 sin 7	 sin 5	2 sin 9	 cos 3	

cos 4t sin 6tcos 6u cos ��4u�

sin ��4x� cos 8xsin 7t sin 3t

33

34

Exer. 35–36: Shown in the figure is a graph of the func-
tion f for 0 � x � 2�. Use a sum-to-product formula to help
find the x-intercepts.

35

36

37 Refer to Exercise 47 of Section 7.4. The graph of the
equation has 13 turning points for

. The x-coordinates of these points are solu-
tions of the equation . Use a sum-to-
product formula to find these x-coordinates.

38 Refer to Exercise 48 of Section 7.4. The x-coordinates
of the turning points on the graph of 
are solutions of . Use a sum-to-product
formula to find these x-coordinates for .

39 Vibration of a violin string Mathematical analysis of a vi-
brating violin string of length l involves functions such that

where n is an integer, k is a constant, and t is time. Express
f as a sum of two sine functions.

f �x� � sin ��n

l
x� cos �k�n

l
t�,

�2� � x � 2�
cos 4x � cos x � 0

sin 4x � 4 sin xy �

sin 3x � sin x � 0
�2� � x � 2�

y � cos 3x � 3 cos x

y

x2p

1

f �x� � sin 4x � sin x

y

x2p

1

f �x� � cos x � cos 3x

sin 5x � sin x � 2 cos 3x

sin 2x � sin 5x � 0
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40 Pressure on the eardrum If two tuning forks are struck
simultaneously with the same force and are then held at the
same distance from the eardrum, the pressure on the outside
of the eardrum at time t is given by

where a, , and are constants. If and are almost
equal, a tone is produced that alternates between loudness
and virtual silence. This phenomenon is known as beats.

(a) Use a sum-to-product formula to express as a
product.

(b) Show that may be considered as a cosine wave
with approximate period and variable ampli-
tude Find the maximum
amplitude.

(c) Shown in the figure is a graph of the equation

p�t� � cos 4.5t � cos 3.5t.

f �t� � 2a cos 1
2 ��1 � �2�t.

2���1

p�t�

p�t�

�2�1�2�1

p�t� � a cos �1t � a cos �2t,

Near-silence occurs at points A and B, where the vari-
able amplitude in part (b) is zero. Find the coordi-
nates of these points, and determine how frequently
near-silence occurs.

(d) Use the graph to show that the function p in part (c) has
period . Conclude that the maximum amplitude of 2
occurs every units of time.

Exercise 40

A B

2

p(t)

t

4�
4�

f �t�
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Recall from Section 5.1 that to define the inverse function of a function f,
it is essential that f be one-to-one; that is, if in the domain of f, then

. The inverse function reverses the correspondence given by f;
that is,

if and only if .

The following general relationships involving f and were discussed in 
Section 5.1.

f �1

v � f �1�u�u � f�v�

f �1f�a� � f�b�
a � b

f �17.6
The Inverse

Trigonometric Functions

Relationships 
Between and ff �1

(1) if and only if , where x is in the domain of and
y is in the domain of f

(2) domain of 

(3) range of 

(4) for every x in the domain of 

(5) for every y in the domain of f

(6) The point is on the graph of f if and only if the point is on
the graph of .

(7) The graphs of and f are reflections of each other through the line
.y � x

f �1

f �1

�b, a��a, b�
f �1� f�y�� � y

f �1f� f �1�x�� � x

f �1 � domain of f

f �1 � range of f

f �1x � f�y�y � f �1�x�
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We shall use relationship 1 to define each of the inverse trigonometric
functions.

The sine function is not one-to-one, since different numbers, such as 
, and , yield the same function value If we restrict the domain

to , then, as illustrated by the blue portion of the graph of 
in Figure 1, we obtain a one-to-one (increasing) function that takes on every
value of the sine function once and only once. We use this new function with
domain and range to define the inverse sine function.

Figure 1

The domain of the inverse sine function is , and the range is
.

The notation is sometimes read “y is the inverse sine of x.”
The equation in the definition allows us to regard y as an angle,
so may also be read “y is the angle whose sine is x” (with

).
The inverse sine function is also called the arcsine function, and arcsin x

may be used in place of . If , then , and t may be
interpreted as an arc length on the unit circle U with center at the origin. We
will use both notations— and arcsin—throughout our work.

Several values of the inverse sine function are listed in the next chart.
sin�1

sin t � xt � arcsin xsin�1 x

���2 � y � ��2
y � sin�1 x

x � sin y
y � sin�1 x

����2, ��2	
��1, 1	

�1

y

x

1
y � sin x

q p 2p 3p 4p�p�2p

�q

��1, 1	����2, ��2	

y � sin x����2, ��2	
�1

2�.�7��65��6
��6,

Y Warning! Y It is essential to choose the value y in the range of .
Thus, even though the number is not the in-
verse function value sin�1 1

2 .
y � 5��6sin �5��6� �

1
2 ,

sin�1����2, ��2	

Definition of the 
Inverse Sine Function

The inverse sine function, denoted by , is defined by

for and �
�

2
� y �

�

2
.�1 � x � 1

y � sin�1 x if and only if x � sin y

sin�1

Note on notation:

While ,

none of these equal .sin�1 x

(sin x)�1 �
1

sin x
� csc x



We have now justified the method of solving an equation of the form
as discussed in Chapter 6. We see that the calculator key 

used to obtain gives us the value of the inverse sine function.
Relationship 7 for the graphs of f and tells us that we can sketch the

graph of by reflecting the blue portion of Figure 1 through 
the line . We can also use the equation with the restriction

to find points on the graph. This gives us Figure 2.
Relationship 4, , and relationship 5, , which

hold for any inverse function , give us the following properties.

E X A M P L E  1 Using properties of 

Find the exact value:

(a) (b) (c)

S O L U T I O N

(a) The difficult way to find the value of this expression is to first find the 

angle namely , and then evaluate , obtaining The easy
way is to use property 1 of 

since sin �sin�1 1
2� �

1
2�1 �

1
2 � 1,

sin�1:

1
2 .sin ���6���6sin�1 1

2 ,

sin�1 �sin
2�

3 �sin�1 �sin
�

4 �sin �sin�1
1

2�
sin�1

f �1

f �1� f�y�� � yf� f �1�x�� � x
���2 � y � ��2

x � sin yy � x
y � sin�1 x

f �1

	 � sin�1 k
SIN�1sin 	 � k
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Equation Equivalent statement Solution

and

and

and

and

and y � �
�

3
�

�

2
� y �

�

2
sin y � �

23

2
y � arcsin ��

23

2 �
y � 0�

�

2
� y �

�

2
sin y � 0y � arcsin (0)

y �
�

2
�

�

2
� y �

�

2
sin y � 1y � sin�1 �1�

y � �
�

6
�

�

2
� y �

�

2
sin y � �

1

2
y � sin�1��

1

2 �
y �

�

6
�

�

2
� y �

�

2
sin y �

1

2
y � sin�1� 1

2 �

Figure 2

y

x�1 1

q

�q

y � arcsin x
y � sin�1 x

Properties of sin�1 (1)

(2) sin�1 �sin y� � arcsin �sin y� � y if �
�

2
� y �

�

2

sin �sin�1 x� � sin �arcsin x� � x if �1 � x � 1



7. 6  T h e  I n v e r s e  T r i g o n o m e t r i c  F u n c t i o n s 485

(b) Since we can use property 2 of to obtain

(c) Be careful! Since is not between and , we cannot use
property 2 of Instead, we first evaluate the inner expression,
and then use the definition of as follows:

L

E X A M P L E  2 Finding a value of 

Find the exact value of y if

S O L U T I O N We first evaluate the inner expression— —and then
find the inverse sine of that number:

In words, we have “y is the angle whose sine is �1.” It may be helpful to
recall the arcsine values by associating them with the angles corresponding to
the blue portion of the unit circle shown in Figure 3. From the figure we see
that is the angle whose sine is �1. It follows that , and hence

L

The other trigonometric functions may also be used to introduce inverse
trigonometric functions. The procedure is first to determine a convenient sub-
set of the domain in order to obtain a one-to-one function. If the domain of the
cosine function is restricted to the interval , as illustrated by the blue por-
tion of the graph of in Figure 4, we obtain a one-to-one (decreasing)
function that takes on every value of the cosine function once and only once.
Then, we use this new function with domain and range to define
the inverse cosine function.

Figure 4
y

x

y � cos x

�2p �p p 2p 3p 4p

1

�1

��1, 1	�0, �	

y � cos x
�0, �	

y � sin�1 �tan
3�

4 � � �
�

2
.

y � ���2���2

y � sin�1 �tan
3�

4 � � sin�1 ��1�

tan �3��4�

y � sin�1 �tan
3�

4 �.

sin�1

sin�1 �sin
2�

3 � � sin�1 �23

2 � �
�

3

sin�1,
sin �2��3�,sin�1.

��2���22��3

sin�1 �sin
�

4 � �
�

4
.

sin�1���2 � ��4 � ��2,

Figure 3

0 to �q

�q to q

0 to q

(0, �1)

y

x



The domain of the inverse cosine function is and the range is
Note that the range of is not the same as the range of but

their domains are equal.
The notation may be read “y is the inverse cosine of x” or “y

is the angle whose cosine is x” (with ).
The inverse cosine function is also called the arccosine function, and the

notation arccos x is used interchangeably with 
Several values of the inverse cosine function are listed in the next chart.

We can sketch the graph of by reflecting the blue portion of
Figure 4 through the line This gives us the sketch in Figure 5. We could
also use the equation with to find points on the graph.
As indicated by the graph, the values of the inverse cosine function are never
negative.

As in Example 2 and Figure 3 for the arcsine, it may be helpful to asso-
ciate the arccosine values with the angles corresponding to the blue arc in
Figure 6.

Using relationships 4 and 5 for general inverse functions f and we ob-
tain the following properties.

f �1,

0 � y � �,x � cos y,
y � x.

y � cos�1 x

cos�1 x.

0 � y � �
y � cos�1 x

sin�1cos�1�0, �	.
��1, 1	,
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Y Warning! Y It is essential to choose the value y in the range of cos�1.�0, �	

Equation Equivalent statement Solution

and

and

and

and

and y �
5�

6
0 � y � �cos y � �

23

2
y � arccos ��

23

2 �
y �

�

2
0 � y � �cos y � 0y � arccos (0)

y � 00 � y � �cos y � 1y � cos�1 �1�

y �
2�

3
0 � y � �cos y � �

1

2
y � cos�1��

1

2 �
y �

�

3
0 � y � �cos y �

1

2
y � cos�1� 1

2 �

Definition of the 
Inverse Cosine Function

The inverse cosine function, denoted by is defined by

if and only if

for and 0 � y � �.�1 � x � 1

x � cos yy � cos�1 x

cos�1,

Figure 5 y

x�1 1

y � arccos x
y � cos�1 x

p

Figure 6

0 to p

x

y
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E X A M P L E  3 Using properties of 

Find the exact value:

(a) (b) (c)

S O L U T I O N For parts (a) and (b), we may use properties 1 and 2 of 
respectively.

(a) Since

(b) Since

(c) We first find and then use the definition of as follows:

L

E X A M P L E  4 Finding a trigonometric function value

Find the exact value of 

S O L U T I O N If we let then, using the definition of the in-
verse cosine function, we have

Hence, 	 is in quadrant II, as illustrated in Figure 7. If we choose the point P
on the terminal side with x-coordinate �2, the hypotenuse of the triangle in the
figure must have length 3, since Thus, by the Pythagorean theo-
rem, the y-coordinate of P is

and therefore

L

If we restrict the domain of the tangent function of the branch defined on
the open interval , we obtain a one-to-one (increasing) function
(see Figure 3 in Section 7.2). We use this new function to define the inverse
tangent function.

����2, ��2�

sin �arccos ��
2

3 �� � sin 	 �
25

3
.

232 � 22 � 29 � 4 � 25,

cos 	 � �
2
3 .

cos 	 � �
2
3 and 0 � 	 � �.

	 � arccos ��
2
3�,

sin �arccos ��
2
3�	.

cos�1 �sin ��
�

6 �� � cos�1 ��
1

2 � �
2�

3

cos�1,sin ����6�
0 � 3.14 � �, cos�1 �cos 3.14� � 3.14.

�1 � �0.5 � 1, cos �cos�1 ��0.5�	 � �0.5.

cos�1,

cos�1 �sin ��
�

6 ��cos�1 �cos 3.14�cos �cos�1 ��0.5�	

cos�1

Properties of cos�1 (1) if

(2) if 0 � y � �cos�1 �cos y� � arccos �cos y� � y

�1 � x � 1cos �cos�1 x� � cos �arccos x� � x

Figure 7

y

x

3
�5�

2

u

O

P



The domain of the arctangent function is , and the range is the open in-
terval 

We can obtain the graph of in Figure 8 by sketching the graph
of for Note that the two vertical asymptotes,

of the tangent function correspond to the two horizontal asymp-
totes, of the arctangent function.

As with and we have the following properties for 

E X A M P L E  5 Using properties of 

Find the exact value:

(a) (b) (c)

S O L U T I O N

(a) By property 1 of 

(b) Since we have, by property 2 of 

(c) Since we cannot use the second property of Thus, we
first find and then evaluate, as follows:

Larctan �tan �� � arctan 0 � 0

tan �
tan�1.� � ��2,

tan�1 �tan
�

4 � �
�

4
.

tan�1,���2 � ��4 � ��2,

tan �tan�1 1000� � 1000.

tan�1,

arctan �tan ��tan�1 �tan
�

4 �tan �tan�1 1000�

tan�1

tan�1.cos�1,sin�1

y � ���2,
x � ���2,

���2 � y � ��2.x � tan y
y � tan�1 x

����2, ��2�.
�
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Figure 8 y

x

y � arctan x
� tan�1 x

q

�q
1�1

Definition of the Inverse
Tangent Function

The inverse tangent function, or arctangent function, denoted by or
arctan, is defined by

if and only if

for any real number x and for �
�

2
� y �

�

2
.

x � tan yy � tan�1 x � arctan x

tan�1

Properties of tan�1 (1) for every x

(2) if �
�

2
� y �

�

2
tan�1 �tan y� � arctan �tan y� � y

tan �tan�1 x� � tan �arctan x� � x
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E X A M P L E  6 Finding a trigonometric function value

Find the exact value of 

S O L U T I O N If we let then We wish to find 
Since for every x and it follows that

Thus, we may regard y as the radian measure of an angle of a
right triangle such that as illustrated in Figure 9. By the
Pythagorean theorem, the hypotenuse is Referring to the
triangle, we obtain

L

E X A M P L E  7 Finding a trigonometric function value

Find the exact value of 

S O L U T I O N If we let

then

We wish to find . Since u and v are in the interval they can
be considered as the radian measures of positive acute angles, and we may
refer to the right triangles in Figure 10. This gives us

and

By the subtraction formula for sine,

L

E X A M P L E  8 Changing an expression involving 
to an algebraic expression

If rewrite as an algebraic expression in x.

S O L U T I O N Let

or, equivalently, sin y � x.y � sin�1 x

cos �sin�1 x��1 � x � 1,

sin�1 x

�
�2

525
, or  

�225

25
.

�
1

25

4

5
�

2

25

3

5

 sin �u � v� � sin u cos v � cos u sin v

cos v �
4

5
.sin v �

3

5
,cos u �

2

25
,sin u �

1

25
,

�0, ��2�,sin �u � v�

 tan u �
1
2  and cos v �

4
5 .

u � arctan 1
2 and  v � arccos 4

5 ,

sin �arctan 1
2 � arccos 4

5�.

sec �arctan
2

3� � sec y �
213

3
.

232 � 22 � 213.
tan y �

2
3 ,

0 � y � ��2.
tan y � 0,���2 � arctan x � ��2

sec y.tan y �
2
3 .y � arctan 2

3 ,

sec �arctan 2
3�.

Figure 9

3

2�13��

y

(continued)

Figure 10

4

3
5

v

2

1�5�
u



We wish to express in terms of x. Since it follows
that and hence (from )

Consequently,

The last identity is also evident geometrically if In this case
and we may regard y as the radian measure of an angle of a

right triangle such that as illustrated in Figure 11. (The side of
length is found by the Pythagorean theorem.) Referring to the tri-
angle, we have

L

Most of the trigonometric equations we considered in Section 7.2 had
solutions that were rational multiples of �, such as �, and so on.
If solutions of trigonometric equations are not of that type, we can some-
times use inverse functions to express them in exact form, as illustrated in
the next example.

E X A M P L E  9 Using inverse trigonometric functions to solve an equation

Find the solutions of in 

S O L U T I O N The equation may be regarded as a quadratic equation in 
Applying the quadratic formula gives us

Using the definition of the inverse sine function, we obtain the following 
solutions:

Since the range of arcsin is we know that is in 
and is in . Using as a reference angle, we also have as a
solution in quadrant II, as shown in Figure 12(a). We can add to to ob-
tain a solution in quadrant IV, as shown in Figure 12(b). The solution in quad-
rant III is not , because is negative.

Hence, with and as previously defined, the four exact solutions are

and the four approximate solutions are

0.2408, 2.9008, 4.1361, and 5.2886. L

t1, � � t1, � � t2, and 2� � t2,

t2t1

t2� � t2� � t2,

t22�
� � t1t1����2, 0	t2

�0, ��2	t1����2, ��2	,

t2 � sin�1 1
10 ��3 � 229 � 
 �0.9946

t1 � sin�1 1
10 ��3 � 229 � 
 0.2408

sin t �
�3 � 232 � 4�5���1�

2�5�
�

�3 � 229

10
.

sin t.

�0, 2��.5 sin2 t � 3 sin t � 1 � 0

3��4,��3,

cos �sin�1 x� � cos y �
21 � x2

1
� 21 � x2.

21 � x2

sin y � x,
0 � y � ��2,

0 � x � 1.

cos �sin�1 x� � 21 � x2.

cos y � 21 � sin2 y � 21 � x2.

sin2 y � cos2 y � 1cos y 
 0,
���2 � y � ��2,cos y
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Figure 11

x

�1 � x2

y

1

Note that .sin y �
x

1
� x

Figure 12
(a)

y

x

p � t1

t1

(b)

y

x

p � t2

2p � t2

t2
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The next example illustrates one of many identities that are true for in-
verse trigonometric functions.

E X A M P L E  1 0 Verifying an identity involving 
inverse trigonometric functions

Verify the identity for 

S O L U T I O N Let

and

We wish to show that From the definitions of and 

and

Adding the two inequalities on the right, we see that

Note also that

and

Using the addition formula for sine, we obtain

Since is in the interval the equation 
has only one solution, which is what we wished to show.

We may interpret the identity geometrically if If we construct
a right triangle with one side of length x and hypotenuse of length 1, as illus-
trated in Figure 13, then angle � at B is an angle whose cosine is x; that is,

Similarly, angle � at A is an angle whose sine is x; that is,
Since the acute angles of a right triangle are complementary,

or, equivalently,

L
sin�1 x � cos�1 x �

�

2
.

� � � � ��2
� � sin�1 x.
� � cos�1 x.

0 � x � 1.
� � � � ��2,

sin �� � �� � 1����2, 3��2	,� � �

� x2 � �1 � x2� � 1.

� x � x � 21 � x2 21 � x2

 sin �� � �� � sin � cos � � cos � sin �

sin � � 21 � cos2 � � 21 � x2.

cos � � 21 � sin2 � � 21 � x2

�
�

2
� � � � �

3�

2
.

cos � � x for 0 � � � �.

sin � � x for �
�

2
� � �

�

2

cos�1,sin�1� � � � ��2.

� � cos�1 x.� � sin�1 x

�1 � x � 1.sin�1 x � cos�1 x �
�

2

Figure 13

A

B C

1

x

cos�1 x

sin�1 x



Each of the remaining inverse trigonometric functions is defined in the
same manner as the first three—by choosing a domain D in which the corre-
sponding trigonometric function is one-to-one and then using the usual tech-
nique (where y is in D):

The function is used in calculus; however, and are seldom
used. Because of their limited use in applications, we will not consider exam-
ples or exercises pertaining to these functions. We will merely summarize typi-
cal domains, ranges, and graphs in the following chart. A similar summary for
the six trigonometric functions and their inverses appears in Appendix III.

csc�1cot�1sec�1

y � csc�1 x if and only if x � csc y

y � sec�1 x if and only if x � sec y

y � cot�1 x if and only if x � cot y
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Summary of Features of cot�1, sec�1, and csc�1

Feature y � cot�1 x y � sec�1 x y � csc�1 x

Domain

Range

Graph

1�1

y

x

d

�p

w

p

q

1�1

y

x

y

x

p

1

���, �
�

2 � 
 �0, 
�

2 ��0, 
�

2 � 
 ��,
3�

2 ��0, ��

� x � 
 1� x � 
 1�

Exer. 1–22: Find the exact value of the expression whenever
it is defined.

1 (a) (b)

(c) tan�1 ��23 �

cos�1 ��
1
2�sin�1 ��

22

2 � 2 (a) (b)

(c) tan�1 ��1�

cos�1 ��
22

2 �sin�1 ��
1
2�

7.6 E x e r c i s e s
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3 (a) (b) (c)

4 (a) (b) (c)

5 (a) (b) (c)

6 (a) (b) (c)

7 (a) (b)

(c)

8 (a) (b)

(c)

9 (a) (b)

(c)

10 (a) (b)

(c)

11 (a) (b)

(c)

12 (a) (b)

(c)

13 (a) (b)

(c)

14 (a) (b)

(c)

15 (a) (b)

(c) csc �cos�1 ��
1
4�	

sec �tan�1 ��
3
5�	cot �sin�1 2

3�

tan �cos�1 0�

cos �sin�1 1�sin �tan�1 23 �
tan �sin�1 ��1�	

cos �tan�1 1�sin �cos�1 ��
1
2�	

tan�1 �tan
7�

6 �
cos�1 �cos

4�

3 �sin�1 �sin
2�

3 �
arctan �tan

7�

4 �
arccos �cos

5�

4 �arcsin �sin
5�

4 �
arctan �tan

�

4 �
arccos �cos 0�arcsin �sin ��

�

2 ��
tan�1 �tan ��

�

6��
cos�1 �cos �5�

6 ��sin�1 �sin
�

3�
tan �tan�1 ��9�	

cos �cos�1 ��
1
5 �	sin �sin�1 2

3�

tan �arctan 14�

cos �arccos 1
2�sin �arcsin ��

3
10�	

arctan ��
23

3 �arccos
�

3
arcsin

�

2

tan�1 1cos�1
�

2
sin�1

�

3

arctan 0arccos ��1�arcsin 0

arctan
1

23
arccos

22

2
arcsin

23

2
16 (a) (b)

(c)

17 (a)

(b)

(c)

18 (a)

(b)

(c)

19 (a) (b)

(c)

20 (a) (b)

(c)

21 (a) (b)

(c)

22 (a) (b)

(c)

Exer. 23–30: Write the expression as an algebraic expres-
sion in x for x > 0.

23 24

25 26

27 28

29 30 tan � 1

2
cos�1

1

x�cos �1
2 arccos x�

cos �2 tan�1 x�sin �2 sin�1 x�

cot �sin�1
2x2 � 9

x �sec �sin�1
x

2x2 � 4
�

tan �arccos x�sin �tan�1 x�

tan �1
2 tan�1 40

9 �

cos �1
2 sin�1 12

13�sin �1
2 cos�1 ��

3
5 �	

tan �1
2 cos�1 3

5 �

cos �1
2 tan�1 8

15�sin �1
2 sin�1 ��

7
25�	

tan �2 arcsin ��
8

17�	

cos �2 arccos 9
41�sin �2 tan�1 5

12�

tan �2 tan�1 3
4�

cos �2 sin�1 15
17�sin �2 arccos ��

3
5�	

tan �cos�1 1
2 � sin�1 ��

1
2�	

cos �sin�1 4
5 � tan�1 3

4�

sin �sin�1 5
13 � cos�1 ��

3
5 �	

tan �arctan 4
3 � arccos 8

17�

cos �arctan ��
3
4 � � arcsin 4

5	

sin �arcsin 1
2 � arccos 0�

csc �cos�1 1
5�

sec �tan�1 7
4�cot �sin�1 ��

2
5�	



Exer. 31–32: Complete the statements.

31 (a) As ,

(b) As ,

(c) As ,

32 (a) As ,

(b) As ,

(c) As ,

Exer. 33–42: Sketch the graph of the equation.

33 34

35 36

37 38

39 40

41 42

Exer. 43–46: The given equation has the form y � f (x).
(a) Find the domain of f. (b) Find the range of f. (c) Solve 
for x in terms of y.

43 44

45 46

Exer. 47–50: Solve the equation for x in terms of y if x is
restricted to the given interval.

47 ;

48 ;

49 ;

50 ;

Exer. 51–52: Solve the equation for x in terms of y if
0 < x < � and 0 < y < �.

51 52
4

sin x
�

7

sin y

sin x

3
�

sin y

4

�0, �	y � 6 � 3 cos x

�0, �	y � 15 � 2 cos x

��
�

2
, 

�

2 �y � 2 � 3 sin x

��
�

2
, 

�

2�y � �3 � sin x

y � 2 sin�1 �3x � 4�y � 4 cos�1 2
3 x

y � 3 tan�1 �2x � 1�y �
1
2 sin�1 �x � 3�

y � sin �sin�1 x�y � sin �arccos x�

y � tan�1 2xy � 2 � tan�1 x

y � 2 cos�1 xy � cos�1 1
2 x

y � sin�1 �x � 2� �
�

2
y � sin�1 �x � 1�

y �
1
2 sin�1 xy � sin�1 2x

tan�1 x lx l ��

cos�1 x lx l �1�

sin�1 x lx l 1�

tan�1 x lx l �

cos�1 x lx l 1�

sin�1 x lx l �1�

Exer. 53–64: Use inverse trigonometric functions to find the
solutions of the equation that are in the given interval, and
approximate the solutions to four decimal places.

53 ;

54 ;

55 ;

56 ;

57 ;

58 ;

59 ;

60 ;

61 ;

62 ;

63 ;

64 ;

Exer. 65–66: If an earthquake has a total horizontal 
displacement of S meters along its fault line, then the hori-
zontal movement M of a point on the surface of Earth 
d kilometers from the fault line can be estimated using 
the formula

where D is the depth (in kilometers) below the surface of the
focal point of the earthquake.

65 Earthquake movement For the San Francisco earthquake
of 1906, S was 4 meters and D was 3.5 kilometers. Approxi-
mate M for the stated values of d.

(a) 1 kilometer (b) 4 kilometers

(c) 10 kilometers

66 Earthquake movement Approximate the depth D of the
focal point of an earthquake with m if a point on the
surface of Earth 5 kilometers from the fault line moved
0.6 meter horizontally.

S � 3

M �
S
2 �1 �

2
�

tan�1
d
D�,

�0, 2��sin 2x � �1.5 cos x

�0, 2��3 cos 2x � 7 cos x � 5 � 0

�0, 2��6 sin2 x � sin x � 2

�0, 2���cos x��15 cos x � 4� � 3

��
�

2
,

�

2�6 sin 2x � 8 cos x � 9 sin x � 6 � 0

��
�

2
,

�

2�6 sin3 	 � 18 sin2 	 � 5 sin 	 � 15 � 0

��
�

2
,

�

2�3 tan4 	 � 19 tan2 	 � 2 � 0

�0, �	15 cos4 x � 14 cos2 x � 3 � 0

��
�

2
,

�

2�3 sin2 t � 7 sin t � 3 � 0

��
�

2
,

�

2�2 tan2 t � 9 tan t � 3 � 0

�0, 2��sin2 x � sin x � 1 � 0

�0, 2��cos2 x � 2 cos x � 1 � 0
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67 A golfer’s drive A golfer, centered in a 30-yard-wide
straight fairway, hits a ball 280 yards. Approximate the
largest angle the drive can have from the center of the fair-
way if the ball is to stay in the fairway (see the figure).

Exercise 67

68 Placing a wooden brace A 14-foot piece of lumber is to be
placed as a brace, as shown in the figure. Assuming all the
lumber is 2 inches by 4 inches, find and .

Exercise 68

69 Tracking a sailboat As shown in the figure, a sailboat is fol-
lowing a straight-line course l. (Assume that the shoreline is
parallel to the north-south line.) The shortest distance from
a tracking station T to the course is d miles. As the boat
sails, the tracking station records its distance k from T and
its direction with respect to T. Angle specifies the di-
rection of the sailboat.

(a) Express in terms of d, k, and .

(b) Estimate to the nearest degree if mi,
mi, and .	 � 53.4�k � 210

d � 50�

	�

�	

4 ft

4 in.

b

a

12 ft

��

30 yards

Exercise 69

70 Calculating viewing angles An art critic whose eye level is 
6 feet above the floor views a painting that is 10 feet in height
and is mounted 4 feet above the floor, as shown in the figure.

(a) If the critic is standing x feet from the wall, express the
viewing angle in terms of x.

(b) Use the addition formula for tangent to show that

(c) For what value of x is ?

Exercise 70

Exer. 71–76: Verify the identity.

71

72 ,

73

74

75 ,

76 , 0 � x � 12 cos�1 x � cos�1 �2x2 � 1�

x � 0arctan x � arctan
1

x
�

�

2

arccos ��x� � � � arccos x

arcsin ��x� � �arcsin x

0 � x � 1arccos x � arccos 21 � x2 �
�

2

sin�1 x � tan�1
x

21 � x2

u
10 �

4�

x

	 � 45�

	 � tan�1 � 10x

x 2 � 16�.

	

T

d
k

l

u
a
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Exer. 1–22: Verify the identity.

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16 17

18

19

20 tan 1
2 	 � csc 	 � cot 	

1
4 sin 4� � sin � cos3 � � cos � sin3 �

tan �x �
3�

4 � �
tan x � 1

1 � tan x

cos �x �
5�

2 � � sin x�1 � sin 	

1 � sin 	
�

� cos 	 �
1 � sin 	

�1 � cos t

1 � cos t
�

1 � cos t

� sin t �

cot ��t� � csc ��t�
sin ��t�

�
1

1 � cos t

cos ��t�
sec ��t� � tan ��t�

� 1 � sin t

cos �

1 � tan �
�

sin �

1 � cot �
� cos � � sin �

�sin2 x

tan4 x�3�csc3 x

cot6 x�2

� 1

sin u � sin v

csc u � csc v
�

1 � sin u sin v

�1 � csc u csc v

tan3 � � cot3 �

tan2 � � csc2 �
� tan � � cot �

cos2
v

2
�

1 � sec v

2 sec v
tan 2u �

2 cot u

csc2 u � 2

sin �� � ��
cos �� � ��

�
tan � � tan �

1 � tan � tan �

1

1 � sin t
� �sec t � tan t� sec t

�tan x � cot x�2 � sec2 x csc2 x

�sec2 	 � 1� cot 	

tan 	 sin 	 � cos 	
� sin 	

cos 	 � sin 	 tan 	 � sec 	

�cot2 x � 1��1 � cos2 x� � 1

21

22

Exer. 23–40: Find the solutions of the equation that are in
the interval [0, 2�).

23 24

25 26

27

28 29

30

31

32

33

34

35 36

37 38

39 40

Exer. 41–44: Find the exact value.

41 42

43 44

Exer. 45–56: If � and � are acute angles such that 
and , find the exact value.

45 46

47 48

49 50

51 52

53 54

55 56 cos 1
2 �tan 1

2 	

sin 1
2 	tan 2	

cos 2�sin 2�

sin �	 � ��sin �� � 	�

tan �	 � ��tan �� � 	�

cos �	 � ��sin �	 � ��

cos � � 8
17

csc � � 5
3

csc
�

8
sin 195�

tan 285�cos 75�

cos 3x � �cos 2xsin 5x � sin 3x

sec 2x csc 2x � 2 csc 2x2 cos2 1
2 	 � 3 cos 	 � 0

sin 2u � sin ucos �x � sin �x � 0

sin x cos 2x � cos x sin 2x � 0

2 cos 3x cos 2x � 1 � 2 sin 3x sin 2x

tan 2x cos 2x � sin 2x

2 sec u sin u � 2 � 4 sin u � sec u

cos 2x � 3 cos x � 2 � 0

sin � � 2 cos2 � � 1cos x cot2 x � cos x

2 cos3 t � cos2 t � 2 cos t � 1 � 0

csc5 	 � 4 csc 	 � 0sin 	 � tan 	

2 cos � � tan � � sec �2 cos3 	 � cos 	 � 0

arctan x �
1

2
arctan

2x

1 � x2
, �1 � x � 1

sin 8	 � 8 sin 	 cos 	 �1 � 2 sin2 	��1 � 8 sin2 	 cos2 	�
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57 Express as a sum or difference:

(a) (b)

(c) (d)

58 Express as a product:

(a) (b)

(c) (d)

Exer. 59–70: Find the exact value of the expression when-
ever it is defined.

59 60

61 62

63 64

65 66

67 68

69 70

Exer. 71–74: Sketch the graph of the equation.

71 72

73 74

75 Express in terms of trigonometric func-
tions of , , and .

76 Force of a foot When an individual is walking, the magni-
tude F of the vertical force of one foot on the ground (see
the figure) can be described by

where t is time in seconds, , , and .0 � a � 1b � 0A � 0

F � A�cos bt � a cos 3bt�,

���
cos �� � � � ��

y � sin �1
2 cos�1 x�y � 1 � sin�1 x

y � 4 sin�1 xy � cos�1 3x

cos �2 sin�1 4
5�cos �sin�1 15

17 � sin�1 8
17�

cos�1 �sin 0�sec �sin�1 3
2�

tan �tan�1 2�sin �arccos ��
23

2 ��
cos�1 �cos

5�

4 �arcsin �sin
5�

4 �
arccos �tan

3�

4 �arctan 23

arcsin �22

2 �cos�1 �23

2 �

3 cos 2x � 3 cos 6xsin 1
4 t � sin 1

5 t

cos 3	 � cos 8	sin 8u � sin 2u

4 sin 3	 cos 7	6 cos 5x sin 3x

cos 1
4 u cos ��

1
6 u�sin 7t sin 4t

Exercise 76

(a) Show that when and .
(The time corresponds to the moment
when the foot first touches the ground and the weight
of the body is being supported by the other foot.)

(b) The maximum force occurs when

If , find the solutions of this equation for the
interval .

(c) If , express the maximum force in terms of A.

77 Shown in the figure is a graph of the equation

The x-coordinates of the turning points are solutions of the
equation . Use a sum-to-
product formula to find these x-coordinates.

Exercise 77 y

x2p�2p

1

cos x � cos 2x � cos 3x � 0

y � sin x �
1
2 sin 2x �

1
3 sin 3x.

a �
1
3

����2b� � t � ���2b�
a �

1
3

3a sin 3bt � sin bt.

t � ����2b�
t � ���2b�t � ����2b�F � 0

F



78 Visual distinction The human eye can distinguish between
two distant points P and Q provided the angle of resolution 
is not too small. Suppose P and Q are x units apart and are
d units from the eye, as illustrated in the figure.

(a) Express x in terms of d and .

(b) For a person with normal vision, the smallest distin-
guishable angle of resolution is about 0.0005 radian. If
a pen 6 inches long is viewed by such an individual at
a distance of d feet, for what values of d will the end
points of the pen be distinguishable?

Exercise 78

79 Satellites A satellite S circles a planet at a distance d miles
from the planet’s surface. The portion of the planet’s surface
that is visible from the satellite is determined by the angle 
indicated in the figure.

	

Q

P
d

u x

	

	

Exercise 79

(a) Assuming that the planet is spherical in shape, express
d in terms of and the radius r of the planet.

(b) Approximate for a satellite 300 miles from the sur-
face of Earth, using mi.

80 Urban canyons Because of the tall buildings and relatively
narrow streets in some inner cities, the amount of sunlight
illuminating these “canyons” is greatly reduced. If h is the
average height of the buildings and w is the width of the
street, the narrowness N of the street is defined by .
The angle of the horizon is defined by . (The
value may result in an 85% loss of illumination.)
Approximate the angle of the horizon for the following val-
ues of h and w.

(a) ft, ft

(b) m, mw � 30h � 55

w � 80h � 400

	 � 63�
tan 	 � N	

N � h�w

r � 4000
	

	

S
d

r

u
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1 Verify the following identity:

(Hint: At some point, consider a special factoring.)

2 Refer to Example 6 of Section 7.1. Suppose ,
and rewrite the conclusion using a piecewise-defined function.

3 How many solutions does the following equation have on
? Find the largest one.

4 Shown in the figure is a function called a sawtooth function.

Exercise 4
y

x

y � sawtooth (x)

(�1, �2)

(1, 2)

3 cos 45x � 4 sin 45x � 5

�0, 2��

0 � 	 � 2�

tan x

1 � cot x
�

cot x

1 � tan x
� 1 � sec x csc x

(a) Define an inverse sawtooth function (arcsaw), includ-
ing its domain and range.

(b) Find and .

(c) Formulate two properties of arcsaw (similar to the
property).

(d) Graph the arcsaw function.

5 There are several interesting exact relationships between 
and inverse trigonometric functions such as

Use trigonometric identities to prove that this relationship is
true. Two other relationships are

and

6 Verify the following identity:

sin4�x�2� � cos4�x�2�
sin4�x�2� cos4�x�2�

�
�16 cos x

sin4 x

p � tan�1 1 � tan�1 2 � tan�1 3.

�

4
� tan�1 �1

2� � tan�1 �1

5� � tan�1 �1

8�

p
4

� 4 tan�1 �1

5� � tan�1 � 1

239�.

�

sin �sin�1�

arcsaw ��0.8�arcsaw �1.7�
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In the first two sections of this chapter we consider methods of solving

oblique triangles using the law of sines and the law of cosines. The next two

sections contain an introduction to vectors—a topic that has many applica-

tions in engineering, the natural sciences, and advanced mathematics. We

then introduce the trigonometric form for complex numbers and use it to

find all n solutions of equations of the form , where is any positive

integer and and are complex numbers.zw

nwn � z

8.1 The Law of Sines

8.2 The Law of Cosines

8.3 Vectors

8.4 The Dot Product

8.5 Trigonometric Form

for Complex Numbers

8.6 De Moivre’s Theorem

and nth Roots of

Complex Numbers

8
Applications of

Trigonometry

8.1 The Law of Sines

8.2 The Law of Cosines

8.3 Vectors

8.4 The Dot Product

8.5 Trigonometric Form

for Complex Numbers

8.6 De Moivre’s Theorem

and nth Roots of

Complex Numbers



An oblique triangle is a triangle that does not contain a right angle. We shall
use the letters A, B, C, a, b, c, , , and for parts of triangles, as we did in
Chapter 6. Given triangle ABC, let us place angle in standard position so that
B is on the positive x-axis. The case for obtuse is illustrated in Figure 1;
however, the following discussion is also valid if is acute.

Consider the line through C parallel to the y-axis and intersecting the
x-axis at point D. If we let , then the y-coordinate of C is h. From
the definition of the trigonometric functions of any angle,

Referring to right triangle BDC, we see that

Equating the two expressions for h gives us

which we may write as

If we place in standard position with C on the positive x-axis, then by
the same reasoning,

The last two equalities give us the following result.

Note that the law of sines consists of the following three formulas:

(1) (2) (3)

To apply any one of these formulas to a specific triangle, we must know
the values of three of the four variables. If we substitute these three values into
the appropriate formula, we can then solve for the value of the fourth variable.
It follows that the law of sines can be used to find the remaining parts of an
oblique triangle whenever we know either of the following (the three letters in
parentheses are used to denote the known parts, with S representing a side and
A an angle):

sin �

b
�

sin �

c

sin �

a
�

sin �

c

sin �

a
�

sin �

b

sin �

a
�

sin �

c
.

�

sin �

a
�

sin �

b
.

b sin � � a sin �,

sin � �
h

a
, so h � a sin �.

sin � �
h

b
, so h � b sin �.

d�C, D� � h

�
�

�
���
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8.1
The Law of Sines

The Law of Sines If ABC is an oblique triangle labeled in the usual manner (as in Figure 1),
then

sin �

a
�

sin �

b
�

sin �

c
.

Figure 1

y

x

g

a
b

h

C

D A Bc

a

b



(1) two sides and an angle opposite one of them (SSA)

(2) two angles and any side (AAS or ASA)

In the next section we will discuss the law of cosines and show how it can
be used to find the remaining parts of an oblique triangle when given the
following:

(1) two sides and the angle between them (SAS)

(2) three sides (SSS)

The law of sines cannot be applied directly to the last two cases.
The law of sines can also be written in the form

Instead of memorizing the three formulas associated with the law of sines,
it may be more convenient to remember the following statement, which takes
all of them into account.

In examples and exercises involving triangles, we shall assume that
known lengths of sides and angles have been obtained by measurement and
hence are approximations to exact values. Unless directed otherwise, when
finding parts of triangles we will round off answers according to the following
rule: If known sides or angles are stated to a certain accuracy, then unknown
sides or angles should be calculated to the same accuracy. To illustrate, if
known sides are stated to the nearest 0.1, then unknown sides should be cal-
culated to the nearest 0.1. If known angles are stated to the nearest , then
unknown angles should be calculated to the nearest . Similar remarks hold
for accuracy to the nearest 0.01, 0.1°, and so on.

E X A M P L E  1 Using the law of sines (ASA)

Solve , given , and .

S O L U T I O N The triangle is sketched in Figure 2. Since the sum of the an-
gles of a triangle is 180°,

� � 180� � 57� � 48� � 75�.

b � 47� � 48�, � � 57��ABC

10�
10�

a

sin �
�

b

sin �
�

c

sin �
.
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(continued)

The Law of Sines 
(General Form)

In any triangle, the ratio of the sine of an angle to the side opposite that
angle is equal to the ratio of the sine of another angle to the side opposite
that angle.

Figure 2

b

48� 57�

47
A C

B

c a



Since side b and all three angles are known, we can find a by using a form
of the law of sines that involves a, , b, and :

law of sines

solve for a

substitute for b, , and 

approximate to the nearest integer

To find c, we merely replace with in the preceding solution for a,
obtaining

L

Data such as those in Example 1 lead to exactly one triangle ABC. How-
ever, if two sides and an angle opposite one of them are given, a unique tri-
angle is not always determined. To illustrate, suppose that a and b are to be
lengths of sides of triangle ABC and that a given angle is to be opposite the
side of length a. Let us examine the case for acute. Place in standard po-
sition and consider the line segment AC of length b on the terminal side of ,
as shown in Figure 3. The third vertex, B, should be somewhere on the x-axis.
Since the length a of the side opposite is given, we may find B by striking
off a circular arc of length a with center at C. The four possible outcomes are
illustrated in Figure 4 (without the coordinate axes).

The four possibilities in the figure may be described as follows:

(a) The arc does not intersect the x-axis, and no triangle is formed.

(b) The arc is tangent to the x-axis, and a right triangle is formed.

(c) The arc intersects the positive x-axis in two distinct points, and two tri-
angles are formed.

(d) The arc intersects both the positive and the nonpositive parts of the x-axis,
and one triangle is formed.

�

�
��

�

c �
b sin �

sin �
�

47 sin 57�

sin 75�

 41.

c

sin �

a

sin �


 36

���
47 sin 48�

sin 75�

a �
b sin �

sin �

a

sin �
�

b

sin �

��

504 C H A P T E R  8  A P P L I C A T I O N S  O F  T R I G O N O M E T R Y

Figure 3

A

b

C

a

y

x

Figure 4
(a)

A

b

C

a

a

(b)

A

b

a

B

a

C

(c)

A
B

b

a

B

a a

C

(d)

A
B

C

ab

a



The particular case that occurs in a given problem will become evident
when the solution is attempted. For example, if we solve the equation

and obtain , then no triangle exists and we have case (a). If we ob-
tain , then and hence (b) occurs. If , then there are
two possible choices for the angle . By checking both possibilities, we may
determine whether (c) or (d) occurs.

If the measure of is greater than 90°, then a triangle exists if and only if
(see Figure 5). Since we may have more than one possibility when two

sides and an angle opposite one of them are given, this situation is sometimes
called the ambiguous case.

E X A M P L E  2 Using the law of sines (SSA)

Solve , given , and .

S O L U T I O N Since we know , a, and c, we can find by using a form of
the law of sines that involves a, , c, and :

law of sines

solve for sin 

substitute for c, , and a

approximate

Since cannot be greater than 1, no triangle can be constructed with the
given parts. L

E X A M P L E  3 Using the law of sines (SSA)

Solve , given , and .

S O L U T I O N To find , we proceed as follows:

law of sines

solve for sin 

substitute for a, , and b

approximate
 0.8518

��
12.4 sin 36.7�

8.7

� sin � �
a sin �

b

sin �

a
�

sin �

b

�

� � 36.7�a � 12.4, b � 8.7�ABC

sin �


 1.1506

��
125 sin 67�

100

� sin � �
c sin �

a

sin �

c
�

sin �

a

��
��

c � 125� � 67�, a � 100�ABC

a � b
�

�
sin � � 1� � 90�sin � � 1

sin � � 1

sin �

a
�

sin �

b
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(continued)

Figure 5
(a) a � b

A

b

C

a

a

(b) a � b

a

A

b

C

a

B



There are two possible angles between 0° and 180° such that is ap-
proximately 0.8518. The reference angle is

Consequently, the two possibilities for are

The angle gives us triangle in Figure 6, and 
gives us triangle .

If we let and denote the third angles of the triangles and 
corresponding to the angles and , respectively, then

If is the side opposite in triangle , then

law of sines

solve for 

substitute and approximate

Thus, the remaining parts of triangle are

Similarly, if is the side opposite in , then

and the remaining parts of triangle are

L

E X A M P L E  4 Using an angle of elevation

When the angle of elevation of the sun is 64°, a telephone pole that is tilted at
an angle of 9° directly away from the sun casts a shadow 21 feet long on level
ground. Approximate the length of the pole.

�2 
 121.6�, �2 
 21.7�, and c2 
 5.4.

A2BC

c2 �
a sin �2

sin �2



12.4 sin 21.7�

sin 121.6�

 5.4,

�A2BC�2c2 � BA2

�1 
 58.4�, �1 
 84.9�, and c1 
 14.5.

A1BC



12.4 sin 84.9�

sin 58.4�

 14.5.

c1c1 �
a sin �1

sin �1

c1

sin �1

�
a

sin �1

A1BC�1c1 � BA1

�2 � 180� � �2 � � 
 180� � 121.6� � 36.7� 
 21.7�.

�1 � 180� � �1 � � 
 180� � 58.4� � 36.7� 
 84.9�

�2�1

A2BCA1BC�2�1

A2BC
121.6��2 
A1BC�1 
 58.4�

�1 
 58.4� and �2 � 180� � �1 
 121.6�.

�

�R 
 sin�1 �0.8518� 
 58.4�.

�R

sin ��
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Figure 6

36.7�

121.6�

12.4 8.7

58.4�

A1A2

g1g2

B

C

Figure 7

21�

64 �

9 �



S O L U T I O N The problem is illustrated in Figure 7. Triangle ABC in Figure 8
also displays the given facts. Note that in Figure 8 we have calculated the fol-
lowing angles:

To find the length of the pole—that is, side a of triangle ABC—we proceed
as follows:

law of sines

solve for a and approximate

Thus, the telephone pole is approximately 33 feet in length. L

E X A M P L E  5 Using bearings

A point P on level ground is 3.0 kilometers due north of a point Q. A runner
proceeds in the direction N25°E from Q to a point R, and then from R to P in
the direction S70°W. Approximate the distance run.

S O L U T I O N The notation used to specify directions was introduced in
Section 6.7. The arrows in Figure 9 show the path of the runner, together with
a north-south (dashed) line from R to another point S.

Since the lines through PQ and RS are parallel, it follows from geometry
that the alternate interior angles PQR and QRS both have measure 25°. Hence,

These observations give us triangle PQR in Figure 10 with

We apply the law of sines to find both q and p:

The distance run, , is approximately . L

E X A M P L E  6 Locating a school of fish

A commercial fishing boat uses sonar equipment to detect a school of fish
2 miles east of the boat and traveling in the direction of N51°W at a rate of

(see Figure 11 on the next page).8 mi�hr

4.0 � 1.8 � 5.8 kmp � q

q �
3.0 sin 25�

sin 45�

 1.8 and  p �

3.0 sin 110�

sin 45�

 4.0

q

sin 25�
�

3.0

sin 45�
 and  

p

sin 110�
�

3.0

sin 45�

�QPR � 180� � 25� � 45� � 110�.

�PRQ � �PRS � �QRS � 70� � 25� � 45�.

a �
21 sin 64�

sin 35�

 33

a

sin 64�
�

21

sin 35�

� � 180� � 64� � 81� � 35�

� � 90� � 9� � 81�
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Figure 8

35�

81�64�

A B

C

21

a

Figure 9

S

R

P

Q

25�

3.0 km

70�

Figure 10

R

P

Q

25�

3.0

45�

p

q

110�



Figure 11

(a) If the boat travels at , approximate, to the nearest 0.1°, the direc-
tion it should head to intercept the school of fish.

(b) Find, to the nearest minute, the time it will take the boat to reach the fish.

S O L U T I O N

(a) The problem is illustrated by the triangle in Figure 12, with the school of
fish at A, the boat at B, and the point of interception at C. Note that angle 

. To obtain , we begin as follows:

law of sines

solve for (*)

We next find , letting t denote the amount of time required for the boat and
fish to meet at C:

(distance) � (rate)(time)

divide b by a

substitute for in (*)

approximate

Since , the boat should travel in the (approximate) direc-
tion N75.4°E.

(b) We can find t using the relationship . Let us first find the distance
a from B to C. Since the only known side is 2, we need to find the angle op-
posite the side of length 2 in order to use the law of sines. We begin by noting
that

� 
 180� � 39� � 14.6� � 126.4�.

�
a � 20t

90� � 14.6� � 75.4�

� � sin�1 �2
5 sin 39�� 
 14.6�

b�a sin � �
2
5 sin 39�

b

a
�

8t

20t
�

2

5

a � 20t, b � 8t

b�a

sin � sin � �
b

a
 sin 39�

sin �

b
�

sin 39�

a

�90� � 51� � 39�� �

20 mi�hr

2 mi

51�
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Figure 12

2
AB

C
a b

b
g

39�



To find side a, we have

law of sines

solve for a

substitute and approximate

Using , we find the time t for the boat to reach C:

L
t �

a

20



1.56

20

 0.08 hr 
 5 min

a � 20t



2 sin 39�

sin 126.4�

 1.56 mi.

a �
c sin �

sin �

a

sin �
�

c

sin �
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Exer. 1–16: Solve .

1 , ,

2 , ,

3 , ,

4 , ,

5 , ,

6 , ,

7 , ,

8 , ,

9 , ,

10 , ,

11 , ,

12 , ,

13 , ,

14 , ,

15 , ,

16 , ,

17 Surveying To find the distance between two points A and B
that lie on opposite banks of a river, a surveyor lays off a
line segment AC of length 240 yards along one bank and de-

c � 20.24a � 17.31� � 73.01�

c � 0.178b � 0.283� � 121.624�

c � 195b � 248� � 113�10�

b � 18.9a � 21.3� � 65�10�

b � 6.12a � 5.01� � 42.17�

c � 97.84a � 131.08� � 47.74�

a � 28.1c � 52.8� � 27�30�

c � 115a � 140� � 53�20�

a � 263.6c � 574.3� � 32.32�

b � 12c � 11� � 81�

b � 38.84� � 27.19�� � 103.45�

b � 19.7� � 61�20�� � 42�10�

c � 537� � 70�30�� � 50�50�

a � 32.4� � 52�10�� � 27�40�

b � 210� � 31�� � 20�

a � 10.5� � 77�� � 41�

�ABC termines that the measures of and are 
and , respectively (see the figure). Approximate the
distance between A and B.

Exercise 17

18 Surveying To determine the distance between two points A
and B, a surveyor chooses a point C that is 375 yards from
A and 530 yards from B. If has measure , ap-
proximate the distance between A and B.

19 Cable car route As shown in the figure on the next page, a
cable car carries passengers from a point A, which is
1.2 miles from a point B at the base of a mountain, to a point
P at the top of the mountain. The angles of elevation of P
from A and B are 21� and 65�, respectively.

(a) Approximate the distance between A and P.

(b) Approximate the height of the mountain.

49�30��BAC

A

B

C
240

63� 20� 54� 10�

54�10�
63�20��ACB�BAC
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Exercise 19

20 Length of a shadow A straight road makes an angle of 15�
with the horizontal. When the angle of elevation of the sun
is 57�, a vertical pole at the side of the road casts a shadow
75 feet long directly down the road, as shown in the figure.
Approximate the length of the pole.

Exercise 20

21 Height of a hot-air balloon The angles of elevation of a bal-
loon from two points A and B on level ground are 
and , respectively. As shown in the figure, points A
and B are 8.4 miles apart, and the balloon is between the
points, in the same vertical plane. Approximate the height
of the balloon above the ground.

Exercise 21

22 Installing a solar panel Shown in the figure is a solar panel
10 feet in width, which is to be attached to a roof that makes
an angle of 25� with the horizontal. Approximate the length d

A B

8.4 mi

24� 10 � 47 � 40�

47�40�
24�10�

Pole

Road

57 �
15 �

75�

A B

P

1.2 mi

65�21�

of the brace that is needed for the panel to make an angle 
of 45� with the horizontal.

Exercise 22

23 Distance to an airplane A straight road makes an angle of
22� with the horizontal. From a certain point P on the road,
the angle of elevation of an airplane at point A is 57�. At the
same instant, from another point Q, 100 meters farther up
the road, the angle of elevation is 63�. As indicated in the
figure, the points P, Q, and A lie in the same vertical plane.
Approximate the distance from P to the airplane.

Exercise 23

24 Surveying A surveyor notes that the direction from point A
to point B is S63�W and the direction from A to point C is
S38�W. The distance from A to B is 239 yards, and the dis-
tance from B to C is 374 yards. Approximate the distance
from A to C.

25 Sighting a forest fire A forest ranger at an observation
point A sights a fire in the direction . Another
ranger at an observation point B, 6.0 miles due east of A,
sights the same fire at . Approximate the distance
from each of the observation points to the fire.

26 Leaning tower of Pisa The leaning tower of Pisa was origi-
nally perpendicular to the ground and 179 feet tall. Because
of sinking into the earth, it now leans at a certain angle 
from the perpendicular, as shown in the figure. When the
top of the tower is viewed from a point 150 feet from the
center of its base, the angle of elevation is 53�.

	

N52�40�W

N27�10�E

Road

P
Q 22�

A

10�

25�

d
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(a) Approximate the angle .

(b) Approximate the distance d that the center of the top of
the tower has moved from the perpendicular.

Exercise 26

27 Height of a cathedral A cathedral is located on a hill, as
shown in the figure. When the top of the spire is viewed
from the base of the hill, the angle of elevation is 48�. When
it is viewed at a distance of 200 feet from the base of the
hill, the angle of elevation is 41�. The hill rises at an angle
of 32�. Approximate the height of the cathedral.

Exercise 27

28 Sighting from a helicopter A helicopter hovers at an alti-
tude that is 1000 feet above a mountain peak of altitude
5210 feet, as shown in the figure. A second, taller peak is
viewed from both the mountaintop and the helicopter. From
the helicopter, the angle of depression is 43�, and from the
mountaintop, the angle of elevation is 18�.

41�
48 �

200�

u

d

53�

150 �

	 (a) Approximate the distance from peak to peak.

(b) Approximate the altitude of the taller peak.

Exercise 28

29 The volume V of the right triangular prism shown in the fig-
ure is where B is the area of the base and h is the height
of the prism.

(a) Approximate h. (b) Approximate V.

Exercise 29

30 Design for a jet fighter Shown in the figure on the next
page is a plan for the top of a wing of a jet fighter.

(a) Approximate angle .

(b) If the fuselage is 4.80 feet wide, approximate the wing
span

(c) Approximate the area of triangle ABC.

CC�.

�

h

34�

52� 103�

12.0

1
3 Bh,

1000�

43�

18�
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Exercise 30

31 Software for surveyors Computer software for surveyors
makes use of coordinate systems to locate geographic posi-

16.7�

C

C�

f

35.9�

153�

4.80�
B A

tions. An offshore oil well at point R in the figure is viewed
from points P and Q, and and are found to be

and respectively. If points P and Q have co-
ordinates and respec-
tively, approximate the coordinates of R.

Exercise 31

y

x

P

Q

R

�3145.8, 5127.5�,�1487.7, 3452.8�
65�22�,55�50�

�RQP�QPR
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In the preceding section we stated that the law of sines cannot be applied di-
rectly to find the remaining parts of an oblique triangle given either of the 
following:

(1) two sides and the angle between them (SAS)

(2) three sides (SSS)

For these cases we may apply the law of cosines, which follows.

P R O O F Let us prove the first formula. Given triangle ABC, place in stan-
dard position, as illustrated in Figure 1. We have pictured as obtuse; how-
ever, our discussion is also valid if is acute. Consider the dashed line through
C, parallel to the y-axis and intersecting the x-axis at the point . If we
let , then C has coordinates . By the definition of the trigono-
metric functions of any angle,

Solving for k and h gives us

k � b cos � and h � b sin �.

cos � �
k

b
and sin � �

h

b
.

�k, h�d�C, K� � h
K�k, 0�

�
�

�

8.2
The Law of Cosines

The Law of Cosines If ABC is a triangle labeled in the usual manner (as in Figure 1), then

(1)

(2)

(3) c2 � a2 � b2 � 2ab cos �

b2 � a2 � c2 � 2ac cos �

a2 � b2 � c2 � 2bc cos �

Figure 1

y

x

g

a
b

h

C(k, h)

K (k, 0) A B (c, 0)c

a

b



Since the segment AB has length c, the coordinates of B are , and we ob-
tain the following:

distance formula

substitute for k and h

square

factor the first and last terms

Pythagorean identity

Our result is the first formula stated in the law of cosines. The second and third
formulas may be obtained by placing and , respectively, in standard posi-
tion on a coordinate system. L

Note that if in Figure 1, then and the law of cosines
reduces to . This shows that the Pythagorean theorem is a special
case of the law of cosines.

Instead of memorizing each of the three formulas of the law of cosines, it
is more convenient to remember the following statement, which takes all of
them into account.

Given two sides and the included angle of a triangle, we can use the law
of cosines to find the third side. We may then use the law of sines to find an-
other angle of the triangle. Whenever this procedure is followed, it is best to
find the angle opposite the shortest side, since that angle is always acute. In
this way, we avoid the possibility of obtaining two solutions when solving a
trigonometric equation involving that angle, as illustrated in the following
example.

E X A M P L E  1 Using the law of cosines (SAS)

Solve , given , and .

S O L U T I O N The triangle is sketched in Figure 2. Since is the angle be-
tween sides a and c, we begin by approximating b (the side opposite ) as
follows:

law of cosines

substitute for a, c, and

simplify and approximate

take the square rootb 
 271.0 
 8.4

� 89 � 80 cos 77� 
 71.0

�� �5.0�2 � �8.0�2 � 2�5.0��8.0� cos 77�

b2 � a2 � c2 � 2ac cos �

�
�

� � 77�a � 5.0, c � 8.0�ABC

a2 � b2 � c2

cos � � 0� � 90�

��

� b2 � c2 � 2bc cos �

� b2�cos2 � � sin2 �� � c2 � 2bc cos �

� b2 cos2 � � 2bc cos � � c2 � b2 sin2 �

� �b cos � � c�2 � �b sin ��2

a2 � �d�B, C�	2 � �k � c�2 � �h � 0�2

�c, 0�
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(continued)

The Law of Cosines 
(General Form)

The square of the length of any side of a triangle equals the sum of the
squares of the lengths of the other two sides minus twice the product of the
lengths of the other two sides and the cosine of the angle between them.

Figure 2

B

A

5.0

8.0

b
a

77�
g C



Let us find another angle of the triangle using the law of sines. In accor-
dance with the remarks preceding this example, we will apply the law of sines
and find , since it is the angle opposite the shortest side a:

law of sines

solve for sin 

substitute and approximate

Since is acute,

Finally, since , we have

L

Given the three sides of a triangle, we can use the law of cosines to find
any of the three angles. We shall always find the largest angle first—that is,
the angle opposite the longest side—since this practice will guarantee that the
remaining angles are acute. We may then find another angle of the triangle by
using either the law of sines or the law of cosines. Note that when an angle is
found by means of the law of cosines, there is no ambiguous case, since we al-
ways obtain a unique angle between 0° and 180°.

E X A M P L E  2 Using the law of cosines (SSS)

If triangle ABC has sides , and , approximate angles
, and to the nearest degree.

S O L U T I O N In accordance with the remarks preceding this example, we
first find the angle opposite the longest side a. Thus, we choose the form of the
law of cosines that involves and proceed as follows:

law of cosines

solve for cos 

substitute and simplify

approximate

We may now use either the law of sines or the law of cosines to find .
Let’s use the law of cosines in this case:

law of cosines

solve for cos � cos � �
a2 � c2 � b2

2ac

b2 � a2 � c2 � 2ac cos �

�

�� � cos�1 ��
2
7 � 
 106.6� 
 107�

�
702 � 402 � 902

2�70��40�
� �

2

7

� cos � �
b2 � c2 � a2

2bc

a2 � b2 � c2 � 2bc cos �

�

��, �
c � 40a � 90, b � 70

� � 180� � � � � 
 180� � 35� � 77� � 68�.

� � � � � � 180�

� � sin�1 �0.5782� 
 35.3� 
 35�.

�



5.0 sin 77�

271.0

 0.5782

� sin � �
a sin �

b

sin �

a
�

sin �

b

�
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substitute and simplify

approximate

At this point in the solution, we could find by using the relationship
. But if either or was incorrectly calculated, then 

would be incorrect. Alternatively, we can approximate and then check that
the sum of the three angles is 180°. Thus,

Note that . L

E X A M P L E  3 Approximating the diagonals of a parallelogram

A parallelogram has sides of lengths 30 centimeters and 70 centimeters and
one angle of measure 65°. Approximate the length of each diagonal to the
nearest centimeter.

S O L U T I O N The parallelogram ABCD and its diagonals AC and BD are
shown in Figure 3. Using triangle ABC with , we may approxi-
mate AC as follows:

law of cosines

approximate

take the square root

Similarly, using triangle BAD and , we may ap-
proximate BD as follows:

law of cosines

take the square root L

E X A M P L E  4 Finding the length of a cable

A vertical pole 40 feet tall stands on a hillside that makes an angle of 17° with
the horizontal. Approximate the minimal length of cable that will reach from
the top of the pole to a point 72 feet downhill from the base of the pole.

S O L U T I O N The sketch in Figure 4 depicts the given data. We wish to find
AC. Referring to the figure, we see that

Using triangle ABC, we may approximate AC as follows:

law of cosines

take the square root L

The law of cosines can be used to derive a formula for the area of a tri-
angle. Let us first prove a preliminary result.

AC 
 28468 
 92 ft

�AC�2 � 722 � 402 � 2�72��40� cos 107� 
 8468

�ABD � 90� � 17� � 73� and �ABC � 180� � 73� � 107�.

BD 
 27575 
 87 cm

�BD�2 � 302 � 702 � 2�30��70� cos 115� 
 7575

�BAD � 180� � 65� � 115�

AC 
 24025 
 63 cm


 900 � 4900 � 1775 � 4025

�AC�2 � 302 � 702 � 2�30��70� cos 65�

�ABC � 65�

� � � � � � 107� � 48� � 25� � 180�

cos � �
a2 � b2 � c2

2ab
, so � � cos�1

902 � 702 � 402

2�90��70�

 25�.

�
���� � � � � � 180�

�

�� � cos�1 �2
3� 
 48.2� 
 48�

�
902 � 402 � 702

2�90��40�
�

2

3
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Figure 3

65�
B C

DA

70

30

30

70

Figure 4

A

C

40 �

72�

17 �
D

B



Given triangle ABC, place angle in standard position (see Figure 5). As
shown in the proof of the law of cosines, the altitude h from vertex C is

. Since the area of the triangle is given by , we see that

Our argument is independent of the specific angle that is placed in standard
position. By taking and in standard position, we obtain the formulas

All three formulas are covered in the following statement.

The next two examples illustrate uses of this result.

E X A M P L E  5 Approximating the area of a triangle

Approximate the area of triangle ABC if and
.

S O L U T I O N Since is the angle between sides a and b as shown in Figure 6,
we may use the preceding result directly, as follows:

area of a triangle formula

substitute and approximate L

E X A M P L E  6 Approximating the area of a triangle

Approximate the area of triangle ABC if , and
.

S O L U T I O N To apply the formula for the area of a triangle, we must find the
angle between known sides a and b. Since we are given a, b, and , let us
first find as follows:

law of sines

solve for 

substitute for b, , and a

reference angle for 

�R or 180� � �R� 
 21� or � 
 159�

��R � sin�1 �3.0 sin 37�

5.0 � 
 21�

��
3.0 sin 37�

5.0

sin � sin � �
b sin �

a

sin �

b
�

sin �

a

�
��

� � 37�
a � 5.0 cm, b � 3.0 cm

�
1
2 �2.20��1.30� sin 43.2� 
 0.98 cm2

� �
1
2 ab sin �

�

� � 43.2�
b � 1.30 cm,a � 2.20 cm,

� �
1
2 ac sin � and � �

1
2 ab sin �.

��

� �
1
2 bc sin �.

� �
1
2 ch�h � b sin �

�
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Area of a Triangle The area of a triangle equals one-half the product of the lengths of any two
sides and the sine of the angle between them.

Figure 6

b � 1.3 cm

a � 2.2 cm

g � 43.2�

Area 
 0.98 cm2

Figure 5

y

x

g

a
b

h

C (k, h)

K (k, 0) A B (c, 0)c

a

b



We reject , because then . Hence,
and

Finally, we approximate the area of the triangle as follows:

area of a triangle formula

substitute and approximate L

We will use the preceding result for the area of a triangle to derive
Heron’s formula, which expresses the area of a triangle in terms of the lengths
of its sides.

P R O O F The following equations are equivalent:

We shall obtain Heron’s formula by replacing the expressions under the final
radical sign by expressions involving only a, b, and c. We solve formula 1 of
the law of cosines for and then substitute, as follows:

�
�b � c� � a

2
�

�b � c� � a

2

�
�b � c�2 � a2

4

�
2bc � b2 � c2 � a2

4

�
1

2
bc�2bc � b2 � c2 � a2

2bc �
1

2
bc�1 � cos �� �

1

2
bc�1 �

b2 � c2 � a2

2bc �
cos �

� �1
2 bc�1 � cos �� �

1
2 bc�1 � cos ��

� �1
4 b2c2�1 � cos2 ��

� �1
4 b2c2 sin2 �

� �
1
2 bc sin �


 1
2 �5.0��3.0� sin 122� 
 6.4 cm2

� �
1
2 ab sin �

� � 180� � � � � 
 180� � 37� � 21� � 122�.

� 
 21�� � � � 196� 
 180�� 
 159�
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(continued)

Heron’s Formula The area of a triangle with sides a, b, and c is given by

where s is one-half the perimeter; that is, .s �
1
2 �a � b � c�

� � 2s�s � a��s � b��s � c�,

�



We use the same type of manipulations on the second expression under the
radical sign:

If we now substitute for the expressions under the radical sign, we obtain

Letting , we see that

Substitution in the above formula for gives us Heron’s formula. L

E X A M P L E  7 Using Heron’s formula

A triangular field has sides of lengths 125 yards, 160 yards, and 225 yards. Ap-
proximate the number of acres in the field. (One acre is equivalent to
4840 square yards.)

S O L U T I O N We first find one-half the perimeter of the field with ,
, and , as well as the values of , and :

Substituting in Heron’s formula gives us

Since there are 4840 square yards in one acre, the number of acres is or
approximately 2. L

9720
4840 ,

� � 2�255��130��95��30� 
 9720 yd2.

s � c � 255 � 225 � 30

s � b � 255 � 160 � 95

s � a � 255 � 125 � 130

s �
1
2 �125 � 160 � 225� �

1
2 �510� � 255

s � cs � a, s � bc � 225b � 160
a � 125

�

s � a �
b � c � a

2
, s � b �

a � b � c

2
, s � c �

a � b � c

2
.

s �
1
2 �a � b � c�

� � �b � c � a

2
�

b � c � a

2
�

a � b � c

2
�

a � b � c

2
.

1

2
bc�1 � cos �� �

a � b � c

2
�

a � b � c

2
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Exer. 1–2: Use common sense to match the variables and
the values. (The triangles are drawn to scale, and the angles
are measured in radians.)

1

a b

g

x

z

y

(a) (A) 3

(b) (B) 0.87

(c) (C) 8.24

(d) x (D) 1.92

(e) y (E) 6.72

(f) z (F) 0.35

g

b

a(a) (A) 12.60

(b) (B) 1.10

(c) (C) 10

(d) x (D) 0.79

(e) y (E) 13.45

(f) z (F) 1.26

g

b

a

8.2 E x e r c i s e s

2

a b

g

x

z

y



Exer. 3–4: Given the indicated parts of , what angle
or side (a, b, or c) would you find next, and what

would you use to find it?

3 (a)

(b)

(c)

(d)

(e)

(f)

4 (a)

(b)

b

CA b

c

B

g
CA

a

b

B

b

g
CA b

B

a

b

CA

c

B

a

b

g
CA

B

CA

a

b

c

B

a
CA b

c

B

g
CA

ac

B

(a, b, or g)
�ABC (c)

(d)

(e)

(f)

Exer. 5–14: Solve .

5 ,

6

7

8

9

10

11

12

13

14

15 Dimensions of a triangular plot The angle at one corner of
a triangular plot of ground is and the sides that meet
at this corner are 175 feet and 150 feet long. Approximate
the length of the third side.

73�40�,

c � 10.0b � 20.0,a � 20.0,

c � 60.0b � 80.0,a � 25.0,

c � 12b � 15,a � 10,

c � 4.0b � 3.0,a � 2.0,

b � 70.0c � 4.30,� � 23�40�,

b � 2.10a � 1.10,� � 115�10�,

a � 87.0c � 14.0,� � 73�50�,

c � 30a � 150,� � 150�,

a � 15.0b � 10.0,� � 45�,

c � 30b � 20,� � 60�

�ABC

CA

a

b

c

B

a

b

g
CA

B

a g
CA

c

B

a g
CA b

B
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16 Surveying To find the distance between two points A and
B, a surveyor chooses a point C that is 420 yards from A
and 540 yards from B. If angle ACB has measure 
approximate the distance between A and B.

17 Distance between automobiles Two automobiles leave a
city at the same time and travel along straight highways that
differ in direction by 84�. If their speeds are 60 and
45 respectively, approximately how far apart are the
cars at the end of 20 minutes?

18 Angles of a triangular plot A triangular plot of land has
sides of lengths 420 feet, 350 feet, and 180 feet. Approxi-
mate the smallest angle between the sides.

19 Distance between ships A ship leaves port at 1:00 P.M. and
travels S35�E at the rate of 24 Another ship leaves
the same port at 1:30 P.M. and travels S20�W at 18 
Approximately how far apart are the ships at 3:00 P.M.?

20 Flight distance An airplane flies 165 miles from point A in
the direction 130� and then travels in the direction 245� for
80 miles. Approximately how far is the airplane from A?

21 Jogger’s course A jogger runs at a constant speed of one
mile every 8 minutes in the direction S40�E for 20 minutes
and then in the direction N20�E for the next 16 minutes. 
Approximate, to the nearest tenth of a mile, the straight-
line distance from the endpoint to the starting point of the
jogger’s course.

22 Surveying Two points P and Q on level ground are on op-
posite sides of a building. To find the distance between the
points, a surveyor chooses a point R that is 300 feet from P
and 438 feet from Q and then determines that angle PRQ
has measure (see the figure). Approximate the dis-
tance between P and Q.

Exercise 22

Q

R

P

300�
37� 40� 438�

37�40�

mi�hr.
mi�hr.

mi�hr,
mi�hr

63�10�,

23 Motorboat’s course A motorboat traveled along a triangular
course having sides of lengths 2 kilometers, 4 kilometers,
and 3 kilometers, respectively. The first side was traversed
in the direction N20�W and the second in a direction 
where is the degree measure of an acute angle. Approxi-
mate, to the nearest minute, the direction in which the third
side was traversed.

24 Angle of a box The rectangular box shown in the figure has
dimensions Approximate the angle formed
by a diagonal of the base and a diagonal of the side.

Exercise 24

25 Distances in a baseball diamond A baseball diamond has
four bases (forming a square) that are 90 feet apart; the
pitcher’s mound is 60.5 feet from home plate. Approximate
the distance from the pitcher’s mound to each of the other
three bases.

26 A rhombus has sides of length 100 centimeters, and the
angle at one of the vertices is 70�. Approximate the lengths
of the diagonals to the nearest tenth of a centimeter.

27 Reconnaissance A reconnaissance airplane P, flying at
10,000 feet above a point R on the surface of the water,
spots a submarine S at an angle of depression of 37� and a
tanker T at an angle of depression of 21�, as shown in the
figure. In addition, is found to be 110�. Approximate
the distance between the submarine and the tanker.

Exercise 27

P

T

S

R

37 � 21�110 �

�SPT

u
4�

6�8�

6� � 4�
	8� � 6� � 4�.

	�
S	�W,
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28 Correcting a ship’s course A cruise ship sets a course
N47�E from an island to a port on the mainland, which is
150 miles away. After moving through strong currents, the
ship is off course at a position P that is N33�E and 80 miles
from the island, as illustrated in the figure.

(a) Approximately how far is the ship from the port?

(b) In what direction should the ship head to correct its
course?

Exercise 28

29 Seismology Seismologists investigate the structure of
Earth’s interior by analyzing seismic waves caused by earth-
quakes. If the interior of Earth is assumed to be homo-
geneous, then these waves will travel in straight lines at a
constant velocity v. The figure shows a cross-sectional view
of Earth, with the epicenter at E and an observation station
at S. Use the law of cosines to show that the time t for a wave
to travel through Earth’s interior from E to S is given by

where R is the radius of Earth and is the indicated angle
with vertex at the center of Earth.

Exercise 29

30 Calculating distances The distance across the river shown
in the figure can be found without measuring angles. Two
points B and C on the opposite shore are selected, and line
segments AB and AC are extended as shown. Points D and
E are chosen as indicated, and distances BC, BD, BE, CD,

Earthquake
epicenter Observation

station

R
R

E

S

u

	

t �
2R

v
sin

	

2
,

80 mi

P

150 mi

and CE are then measured. Suppose that 
and

(a) Approximate the distances AB and AC.

(b) Approximate the shortest distance across the river from
point A.

Exercise 30

31 Penrose tiles Penrose tiles are formed from a rhombus
ABCD having sides of length 1 and an interior angle of 72�.
First a point P is located that lies on the diagonal AC and is
a distance 1 from vertex C, and then segments PB and PD
are drawn to the other vertices of the diagonal, as shown in
the figure. The two tiles formed are called a dart and a kite.
Three-dimensional counterparts of these tiles have been 
applied in molecular chemistry.

(a) Find the degree measures of and

(b) Approximate, to the nearest 0.01, the length of seg-
ment BP.

(c) Approximate, to the nearest 0.01, the area of a kite and
the area of a dart.

Exercise 31

32 Automotive design The rear hatchback door of an automo-
bile is 42 inches long. A strut with a fully extended length

B

A

C

D

1

1

1

11
P

Kite

Dart72�

�ABP.
�APB,�BPC,

A

B

C

D

E

CE � 80 ft.CD � 236 ft,BE � 218 ft,BD � 102 ft,
BC � 184 ft,
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of 24 inches is to be attached to the door and the body of the
car so that when the door is opened completely, the strut is
vertical and the rear clearance is 32 inches, as shown in the
figure. Approximate the lengths of segments TQ and TP.

Exercise 32

Exer. 33–40: Approximate the area of triangle ABC.

33

34

35 b � 5.63� � 62.9�,� � 40.3�,

a � 15.0b � 10.0,� � 45�,

c � 30b � 20,� � 60�,

T

P
H

Q

B

24� 32�

42�

26�

36

37

38

39

40

Exer. 41–42: A triangular field has sides of lengths a, b, and
c (in yards). Approximate the number of acres in the field 
(1 acre � 4840 ).

41

42

Exer. 43–44: Approximate the area of a parallelogram that
has sides of lengths a and b (in feet) if one angle at a vertex
has measure u.

43

44 	 � 100�b � 52.6,a � 40.3,

	 � 40�b � 16.0,a � 12.0,

c � 500b � 350,a � 320,

c � 200b � 140,a � 115,

yd2

c � 10.0b � 20.0,a � 20.0,

c � 60.0b � 80.0,a � 25.0,

c � 15.8a � 14.6,� � 32.1�,

b � 3.4a � 8.0,� � 80.1�,

b � 17.2� � 105.2�,� � 35.7�,
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Quantities such as area, volume, length, temperature, and time have magnitude
only and can be completely characterized by a single real number (with an ap-
propriate unit of measurement such as in2, ft3, cm, deg, or sec). A quantity of
this type is a scalar quantity, and the corresponding real number is a scalar.
A concept such as velocity or force has both magnitude and direction and is
often represented by a directed line segment—that is, a line segment to
which a direction has been assigned. Another name for a directed line segment
is a vector.

As shown in Figure 1, we use to denote the vector with initial
point P and terminal point Q, and we indicate the direction of the vector by
placing the arrowhead at Q. The magnitude of is the length of the segment 

PQ and is denoted by . As in the figure, we use boldface letters such as
u and v to denote vectors whose endpoints are not specified. In handwritten
work, a notation such as or is often used.

Vectors that have the same magnitude and direction are said to be equiva-
lent. In mathematics, a vector is determined only by its magnitude and direc-

v0ul

��PQ
l

��
PQ
l

PQ
l

8.3
Vectors



tion, not by its location. Thus, we regard equivalent vectors, such as those in
Figure 1, as equal and write

Thus, a vector may be translated from one location to another, provided nei-
ther the magnitude nor the direction is changed.

We can represent many physical concepts by vectors. To illustrate, sup-
pose an airplane is descending at a constant speed of and the line of
flight makes an angle of 20° with the horizontal. Both of these facts are repre-
sented by the vector v of magnitude 100 in Figure 2. The vector v is a veloc-
ity vector.

Figure 2 Velocity vector

A vector that represents a pull or push of some type is a force vector. The
force exerted when a person holds a 5-pound weight is illustrated by the vec-
tor F of magnitude 5 in Figure 3. This force has the same magnitude as the
force exerted on the weight by gravity, but it acts in the opposite direction. As
a result, there is no movement upward or downward.

We sometimes use to represent the path of a point (or particle) as it
moves along the line segment from A to B. We then refer to as a displace-
ment of the point (or particle). As in Figure 4, a displacement followed by
a displacement leads to the same point as the single displacement . By
definition, the vector AC is the sum of and , and we write

Since vectors may be translated from one location to another, any two vectors
may be added by placing the initial point of the second vector on the terminal
point of the first and then drawing the line segment from the initial point of the
first to the terminal point of the second, as in Figure 4. We refer to this method
of vector addition as using the triangle law.

Another way to find the sum is to choose vector PQ and vector PR that

are equal to and , respectively, and have the same initial point P, as

shown in Figure 5. If we construct parallelogram RPQS, then, since ,PR
l

� QS
l

BC
l

AB
l

AC
l

� AB
l

� BC
l

.

BC
l

AB
l

AC
l

BC
l

AB
l

AB
l

AB
l

20 �

v
100

100 mi�hr

u � PQ
l

, v � PQ
l

, and u � v.
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Figure 1
Equal vectors

Q

P

PQ
u

v

Figure 3
Force vector

5

F

Figure 4
Sum of vectors

C

A

B



it follows that . If and are two forces acting at P, then 

is the resultant force—that is, the single force that produces the same ef-
fect as the two combined forces. We refer to this method of vector addition as
using the parallelogram law.

If m is a scalar and v is a vector, then mv is defined as a vector whose
magnitude is times (the magnitude of v) and whose direction is either
the same as that of v (if ) or opposite that of v (if ). Illustrations
are given in Figure 6. We refer to mv as a scalar multiple of v.

Figure 6 Scalar multiples

Throughout the remainder of this section we shall restrict our discussion
to vectors that lie in an xy-plane. If is such a vector, then, as indicated in
Figure 7, there are many vectors that are equivalent to ; however, there is
exactly one equivalent vector with initial point at the origin. In this
sense, each vector determines a unique ordered pair of real numbers, the co-
ordinates of the terminal point A. Conversely, every ordered pair

determines the vector OA, where A has coordinates . Thus, there
is a one-to-one correspondence between vectors in an xy-plane and ordered
pairs of real numbers. This correspondence allows us to interpret a vector as
both a directed line segment and an ordered pair of real numbers. To avoid
confusion with the notation for open intervals or points, we use the symbol

(referred to as wedge notation) for an ordered pair that represents a
vector, and we denote it by a boldface letter—for example, . The
numbers and are the components of the vector . If A is the point 

, as in Figure 7, we call the position vector for or for the
point A.

The preceding discussion shows that vectors have two different natures,
one geometric and the other algebraic. Often we do not distinguish between
the two. It should always be clear from our discussion whether we are refer-
ring to ordered pairs or directed line segments.

The magnitude of the vector is, by definition, the length of its
position vector OA, as illustrated in Figure 8.

a � �a1, a2�

�a1, a2�OA
l

�a1, a2�
�a1, a2�a2a1

a � �a1, a2�
�a1, a2�

�a1, a2��a1, a2�
�a1, a2�

a � OA
l

PQ
l

PQ
l

v 2v qv
�wv

m � 0m � 0
�� v ��� m �

PS
l

PR
l

PQ
l

PS
l

� PQ
l

� PR
l
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Figure 7

y

xO

A(a1, a2)

a

Q

P

Figure 8
Magnitude �� a ��

y

x

A(a1, a2)

a

�a �

O

Figure 5
Resultant force

S

P

Q

R



E X A M P L E  1 Finding the magnitude of a vector

Sketch the vectors

on a coordinate plane, and find the magnitude of each vector.

S O L U T I O N The vectors are sketched in Figure 9. By the definition of the
magnitude of a vector,

L

Consider the vector OA and the vector OB corresponding to 

and , respectively, as illustrated in Figure 10. If corresponds to
, we can show, using slopes, that the points O, A, C, and

B are vertices of a parallelogram; that is,

Figure 10

Expressing this equation in terms of ordered pairs leads to the following.

y

xO

B (b1, b2)

A(a1, a2)

C (a1 � b1, a2 � b2)

OA
l

� OB
l

� OC
l

.

c � �a1 � b1, a2 � b2�
OC
l

b � �b1, b2�
a � �a1, a2�

�� c �� � ���4
5 , 3

5��� � ��4
5�2

� �3
5�2

� �16
25 �

9
25 � �25

25 � 1.

�� b �� � �� �0, �2� �� � 202 � ��2�2 � 24 � 2

�� a �� � �� ��3, 2� �� � 2��3�2 � 22 � 213

a � ��3, 2�, b � �0, �2�, c � �4
5 , 3

5�
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Figure 9

y

x

(0, �2)

�R, E�

(�3, 2)

a

b

c

Definition of 
Addition of Vectors �a1, a2� � �b1, b2� � �a1 � b1, a2 � b2�

Definition of the 
Magnitude of a Vector

The magnitude of the vector , denoted by , is given by

�� a �� � �� �a1, a2� �� � 2a2
1 � a2

2.

�� a ��a � �a1, a2�



Note that to add two vectors, we add corresponding components.

Addition of Vectors

It can also be shown that if m is a scalar and corresponds to
, then the ordered pair determined by is , as illus-

trated in Figure 11 for . This leads to the next definition.

Figure 11

Thus, to find a scalar multiple of a vector, we multiply each component
by the scalar.

Scalar Multiple of a Vector

E X A M P L E  2 Finding a scalar multiple of a vector

If , find 3a and , and sketch each vector in a coordinate plane.

S O L U T I O N Using the definition of scalar multiples of vectors, we find

The vectors are sketched in Figure 12 on the next page.

�2a � �2�2, 1� � ���2� � 2, ��2� � 1� � ��4, �2�.
3a � 3�2, 1� � �3 � 2, 3 � 1� � �6, 3�

�2aa � �2, 1�

1�5, 2� � �1 � 5, 1 � 2� � �5, 2�
�2��3, 4� � ���2���3�, ��2��4�� � �6, �8�
2��3, 4� � �2��3�, 2�4�� � ��6, 8�

y

x

(ma1, ma2)

(a1, a2)

O

m � 1
�ma1, ma2�mOA

l
a � �a1, a2�

OA
l

�5, 1� � ��5, 1� � �5 � ��5�, 1 � 1� � �0, 2�
�3, �4� � �2, 7� � �3 � 2, �4 � 7� � �5, 3�
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Definition of a 
Scalar Multiple of a Vector

m�a1, a2� � �ma1, ma2�

I L L U S T R A T I O N

I L L U S T R A T I O N



Figure 12

L

The zero vector 0 and the negative of a vector are de-
fined as follows.

The Zero Vector and the Negative of a Vector

We next state properties of addition and scalar multiples of vectors for any
vectors a, b, c and scalars m, n. You should have little difficulty in remember-
ing these properties, since they resemble familiar properties of real numbers.

P R O O F S Let and . To prove property 1, we note that

a � b � �a1 � b1, a2 � b2� � �b1 � a1, b2 � a2� � b � a.

b � �b1, b2�a � �a1, a2�

5 � 0 � 5�0, 0� � �5 � 0, 5 � 0� � �0, 0� � 0

0�2, 3� � �0 � 2, 0 � 3� � �0, 0� � 0

�3, �5� � ��3, 5� � �3 � ��3�, �5 � 5� � �0, 0� � 0

��3, �5� � ��3, ���5�� � ��3, 5�
�3, 5� � 0 � �3, 5� � �0, 0� � �3 � 0, 5 � 0� � �3, 5�

a � �a1, a2��a

y

x

y

x

y

x

a
3a

�2a

(6, 3)

(2, 1)

(�4, �2)
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(continued)

Definition of and �a0 0 � �0, 0� and �a � ��a1, a2� � ��a1, �a2�

Properties of Addition and
Scalar Multiples of Vectors

(1) (5)

(2) (6)

(3) (7)

(4) (8)

(9) 0a � 0 � m0

1a � aa � ��a� � 0

�mn�a � m�na� � n�ma�a � 0 � a

�m � n�a � ma � naa � �b � c� � �a � b� � c

m�a � b� � ma � mba � b � b � a

I L L U S T R A T I O N



The proof of property 5 is as follows:

definition of addition

definition of scalar multiple

distributive property

definition of addition

definition of scalar multiple

Proofs of the remaining properties are similar and are left as exercises. L

Vector subtraction (denoted by ) is defined by . If
we use the ordered pair notation for a and b, then , and we
obtain the following.

Thus, to find , we merely subtract the components of b from the
corresponding components of a.

Subtraction of Vectors If and 

If a and b are arbitrary vectors, then

that is, is the vector that, when added to b, gives us a. If we represent a
and b by vector PQ and vector PR with the same initial point, as in Figure 13,

then represents .
The special vectors i and j are defined as follows.

A unit vector is a vector of magnitude 1. The vectors i and j are unit vec-
tors, as is the vector in Example 1.c � �4

5 , 3
5�

a � bRQ
l

a � b

b � �a � b� � a;

� �10, �8� � ��9, 6� � �10 � ��9�, �8 � 6� � �19, �14�
2a � 3b � 2�5, �4� � 3��3, 2�

� �5 � ��3�, �4 � 2� � �8, �6�
a � b � �5, �4� � ��3, 2�

b � ��3, 2�a � �5, �4�

a � b

�b � ��b1, �b2�
a � b � a � ��b��

� ma � mb

� �ma1, ma2� � �mb1, mb2�
� �ma1 � mb1, ma2 � mb2�
� �m�a1 � b1�, m�a2 � b2��

m�a � b� � m�a1 � b1, a2 � b2�
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Definition of 
Subtraction of Vectors

a � b � �a1, a2� � �b1, b2� � �a1 � b1, a2 � b2�

Figure 13

y

x

b

a

a � b

P

Q

R

O

I L L U S T R A T I O N

Definition of and ji i � �1, 0�, j � �0, 1�



The vectors i and j can be used to obtain an alternative way of denoting
vectors. Specifically, if , then

This result gives us the following.

Form

Vectors corresponding to i, j, and an arbitrary vector a are illustrated in
Figure 14. Since i and j are unit vectors, and may be represented by hori-

zontal and vertical vectors of magnitudes and , respectively, as illus-
trated in Figure 15. For this reason we call the horizontal component and

the vertical component of the vector a.

Figure 14 Figure 15

The vector sum is a linear combination of i and j. Rules for ad-
dition, subtraction, and multiplication by a scalar m may be written as follows,
with :

These formulas show that we may regard linear combinations of i and j as al-
gebraic sums.

m�a1i � a2 j� � �ma1�i � �ma2�j
�a1i � a2 j� � �b1i � b2 j� � �a1 � b1�i � �a2 � b2�j
�a1i � a2 j� � �b1i � b2 j� � �a1 � b1�i � �a2 � b2�j

b � �b1, b2� � b1i � b2 j

a1i � a2 j

y

x

a

(a1, a2)

O a1i

a2 j

y

x

a

i

j

(a1, a2)

O

a � a1i � a2 ja � �a1, a2�

a2

a1

� a2 �� a1 �
a2 ja1i

�0, �6� � 0i � ��6�j � �6j

��3, 4� � �3i � 4j

�5, 2� � 5i � 2j

i, j

a � �a1, 0� � �0, a2� � a1�1, 0� � a2�0, 1�.

a � �a1, a2�
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Form for Vectorsi, j a � �a1, a2� � a1i � a2 j

I L L U S T R A T I O N



E X A M P L E  3 Expressing a vector as a linear combination of and 

If and , express as a linear combination of i
and j.

S O L U T I O N

L

Let be an angle in standard position, measured from the positive x-axis
to the vector , as illustrated in Figure 16. Since

we obtain the following formulas.

Using these formulas, we have

E X A M P L E  4 Expressing wind velocity as a vector

If the wind is blowing at in the direction N40°W, express its veloc-
ity as a vector v.

S O L U T I O N The vector v and the angle are illus-
trated in Figure 17. Using the formulas for horizontal and vertical components
with gives us

Hence,

L

E X A M P L E  5 Finding a vector of specified direction and magnitude

Find a vector b in the opposite direction of that has magnitude 6.a � �5, �12�


 ��7.7�i � �9.2�j.
� �12 cos 130��i � �12 sin 130��j

v � v1i � v2 j

v1 � �� v �� cos 	 � 12 cos 130�, v2 � �� v �� sin 	 � 12 sin 130�.

v � �v1, v2�

90� � 40� � 130�	 �

12 mi�hr

� �� a ���cos 	 i � sin 	 j�.
� �� a �� cos 	 i � �� a �� sin 	 j

a � �a1, a2� � ��� a �� cos 	, �� a �� sin 	�

cos 	 �
a1

�� a ��
and sin 	 �

a2

�� a ��
,

a � �a1, a2� � a1i � a2 j
	

� 7i � 17j

� �15i � 3j� � �8i � 14j�
 3a � 2b � 3�5i � j� � 2�4i � 7j�

3a � 2bb � 4i � 7ja � 5i � j

ji
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Formulas for 
Horizontal and Vertical

Components of a � �a1, a2�

If the vector a and the angle are defined as above, then

a1 � �� a �� cos 	 and a2 � �� a �� sin 	.

	

Figure 16

y

x

(a1, a2)

a
u

Figure 17

y

x

u

40�12

v



S O L U T I O N The magnitude of a is given by

A unit vector u in the direction of a can be found by multiplying a by .
Thus,

Multiplying u by 6 gives us a vector of magnitude 6 in the direction of a, so
we’ll multiply u by to obtain the desired vector b, as shown in Figure 18:

L

E X A M P L E  6 Finding a resultant vector

Two forces and of magnitudes 5.0 kilograms and 8.0 kilograms, re-

spectively, act at a point P. The direction of is N20°E, and the direction of  

is N65°E. Approximate the magnitude and direction of the resultant .

S O L U T I O N The forces are represented geometrically in Figure 19. Note 

that the angles from the positive x-axis to and have measures 70° and
25°, respectively. Using the formulas for horizontal and vertical components,
we obtain the following:

Since ,

Consequently,

We can also find by using the law of cosines (see Example 3 of Sec-
tion 8.2). Since , it follows that , and hence

and

If is the angle from the positive x-axis to the resultant PS, then using the
(approximate) coordinates of S, we obtain the following:

Hence, the direction of is approximately N48°E. LN�90° � 42°�E �PS
l

	 
 tan�1 �0.9017� 
 42�

 tan 	 

8.0794

8.9606

 0.9017

�8.9606, 8.0794�
	

�� PS
l

�� 
 2145.6 
 12.1.

�� PS
l

��2 � �8.0�2 � �5.0�2 � 2�8.0��5.0� cos 135� 
 145.6

�PRS � 135��QPR � 45�
�� PS
l

��

�� PS
l

�� 
 2�9.0�2 � �8.1�2 
 12.1.


 8.9606i � 8.0794j 
 �9.0�i � �8.1�j.
PS
l

� �5 cos 70� � 8 cos 25��i � �5 sin 70� � 8 sin 25��j

PS
l

� PQ
l

� PR
l

PR
l

� �8 cos 25��i � �8 sin 25��j
PQ
l

� �5 cos 70��i � �5 sin 70��j

PR
l

PQ
l

PS
l

PR
l

PQ
l

PR
l

PQ
l

b � �6u � �6� 5

13
, �

12

13� � ��
30

13
,
72

13�
�6

u �
1

�� a ��
a �

1

13
�5, �12� � � 5

13
, �

12

13�.

1��� a ��

�� a �� � 252 � ��12�2 � 225 � 144 � 2169 � 13.
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Figure 18

y

x5

�12

13

6 1
b � ��30

13
72
13, �

a � �5, �12�

5
13

12
13u � � , ��

Figure 19

y

x

20�
65�

8.0

5.0

S

P

R

Q



Exer. 1–6: Find a � b, a � b, 4a � 5b, 4a � 5b, and a .

1

2

3

4

5

6

Exer. 7–10: Sketch vectors corresponding to a, b, a � b,
2a, and �3b.

7

8

9

10

Exer. 11–16: Use components to express the sum or differ-
ence as a scalar multiple of one of the vectors a, b, c, d, e,
or f shown in the figure.

11 12

13 14

15 16 e � cb � d

f � bb � e

c � da � b

y

x

2

1 2

1

�1

�1

ab

c

d

ef

b � ��2, 0�a � �2, 0�,

b � ��2, 3�a � ��4, 6�,

b � i � 3ja � �5i � 2j,

b � �i � 5ja � 3i � 2j,

b � �3i � ja � �3i � j,

b � 3i � 5ja � i � 2j,

b � ��6, 0�a � 2�5, �4�,

b � 4��2, 1�a � ��7, �2�,

b � �2, 3�a � ��2, 6�,

b � �1, 4�a � �2, �3�,

���� Exer. 17–26: If and m
and n are real numbers, prove the stated property.

17

18

19 20

21 22

23 24

25 26

27 If prove that the magnitude of 2v is twice the
magnitude of v.

28 If and k is any real number, prove that the mag-
nitude of kv is times the magnitude of v.

Exer. 29–36: Find the magnitude of the vector a and the
smallest positive angle u from the positive x-axis to the vec-
tor OP that corresponds to a.

29 30

31 32

33 34

35 36

Exer. 37–40: The vectors a and b represent two forces 
acting at the same point, and u is the smallest positive 
angle between a and b. Approximate the magnitude of the
resultant force.

37

38

39

40 	 � 150�� b � � 50 lb,� a � � 30 lb,

	 � 120�� b � � 8.0 lb,� a � � 2.0 lb,

	 � 60�� b � � 6.2 lb,� a � � 5.5 lb,

	 � 45�� b � � 70 lb,� a � � 40 lb,

a � 2i � 3ja � �18j

a � 10i � 10ja � �4i � 5j

a � �0, 10�a � ��5, 0�

a � ��2, �223 �a � �3, �3�

� k �
v � �a, b�

v � �a, b�,

m�a � b� � ma � mb��a � b� � �a � b

��m�a � �ma0a � 0 � m0

1a � a�mn�a � m�na� � n�ma�

�m � n�a � ma � naa � ��a� � 0

a � 0 � a

a � �b � c� � �a � b� � c

c � �c1, c2�,b � �b1, b2�,a � �a1, a2�,

532 C H A P T E R  8  A P P L I C A T I O N S  O F  T R I G O N O M E T R Y

8.3 E x e r c i s e s



8 . 3  V e c t o r s 533

Exer. 41–44: The magnitudes and directions of two forces
acting at a point P are given in (a) and (b). Approximate the
magnitude and direction of the resultant vector.

41 (a) 90 lb, N75�W (b) 60 lb, S5�E

42 (a) 20 lb, S17�W (b) 50 lb, N82�W

43 (a) 6.0 lb, 110� (b) 2.0 lb, 215�

44 (a) 70 lb, 320� (b) 40 lb, 30�

Exer. 45–48: Approximate the horizontal and vertical com-
ponents of the vector that is described.

45 Releasing a football A quarterback releases a football with
a speed of 50 at an angle of 35� with the horizontal.

46 Pulling a sled A child pulls a sled through the snow by 
exerting a force of 20 pounds at an angle of 40� with the
horizontal.

47 Biceps muscle The biceps muscle, in supporting the forearm
and a weight held in the hand, exerts a force of 20 pounds.
As shown in the figure, the muscle makes an angle of 108�
with the forearm.

Exercise 47

48 Jet’s approach A jet airplane approaches a runway at an
angle of 7.5� with the horizontal, traveling at a speed of 
160

Exer. 49–52: Find a unit vector that has (a) the same direc-
tion as the vector a and (b) the opposite direction of the vec-
tor a.

49 50

51 52 a � �0, 6�a � �2, �5�

a � 5i � 3ja � �8i � 15j

mi�hr.

108�

ft�sec

53 Find a vector that has the same direction as and

(a) twice the magnitude

(b) one-half the magnitude

54 Find a vector that has the opposite direction of and

(a) three times the magnitude

(b) one-third the magnitude

55 Find a vector of magnitude 6 that has the opposite direction
of

56 Find a vector of magnitude 4 that has the opposite direction
of

Exer. 57–60: If forces act at a point P, the net
(or resultant) force F is the sum If

the forces are said to be in equilibrium. The given
forces act at the origin O of an xy-plane.

(a) Find the net force F.
(b) Find an additional force G such that equilibrium 

occurs.

57

58

59
y

x

6

4

F1

F2

130�

120�

F3 � �3, 4�F2 � �0, �3�,F1 � ��3, �1�,

F3 � �5, 2�F2 � ��2, �3�,F1 � �4, 3�,

F � 0,
F1 � F2 � � � � � Fn.

F1, F2, . . . , Fn

a � �2, �5�.

a � 4i � 7j.

8i � 5j

��6, 3�



60

61 Tugboat force Two tugboats are towing a large ship into
port, as shown in the figure. The larger tug exerts a force of
4000 pounds on its cable, and the smaller tug exerts a force
of 3200 pounds on its cable. If the ship is to travel on a
straight line l, approximate the angle that the larger tug
must make with l.

Exercise 61

62 Gravity simulation Shown in the figure is a simple appara-
tus that may be used to simulate gravity conditions on other
planets. A rope is attached to an astronaut who maneuvers
on an inclined plane that makes an angle of degrees with
the horizontal.

(a) If the astronaut weighs 160 pounds, find the x- and 
y-components of the downward force (see the figure 
for axes).

(b) The y-component in part (a) is the weight of the astro-
naut relative to the inclined plane. The astronaut would
weigh 27 pounds on the moon and 60 pounds on Mars.
Approximate the angles (to the nearest 0.01�) so that
the inclined-plane apparatus will simulate walking on
these surfaces.

	

	

30�

u
l

	

y

x

7 8

F1
F2

F3

70� 50�

80�

5

Exercise 62

63 Airplane course and ground speed An airplane with an 
airspeed of 200 is flying in the direction 50�, and a 
40 wind is blowing directly from the west. As shown
in the figure, these facts may be represented by vectors p
and w of magnitudes 200 and 40, respectively. The direction
of the resultant gives the true course of the airplane
relative to the ground, and the magnitude is the
ground speed of the airplane. Approximate the true course
and ground speed.

Exercise 63

64 Airplane course and ground speed Refer to Exercise 63. An
airplane is flying in the direction 140� with an airspeed 
of 500 and a 30 wind is blowing in the direc-
tion 65�. Approximate the true course and ground speed of
the airplane.

mi�hrmi�hr,

50�

w

p

p � w

� p � w �
p � w

mi�hr
mi�hr

160

u

y

x
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65 Airplane course and ground speed An airplane pilot wishes
to maintain a true course in the direction 250� with a ground
speed of 400 when the wind is blowing directly north
at 50 Approximate the required airspeed and com-
pass heading.

66 Wind direction and speed An airplane is flying in the di-
rection 20� with an airspeed of 300 Its ground speed
and true course are 350 and 30�, respectively. Ap-
proximate the direction and speed of the wind.

67 Rowboat navigation The current in a river flows directly
from the west at a rate of 1.5 A person who rows a
boat at a rate of 4 in still water wishes to row directly
north across the river. Approximate, to the nearest degree,
the direction in which the person should row.

68 Motorboat navigation For a motorboat moving at a speed 
of 30 to travel directly north across a river, it must aim
at a point that has the bearing N15�E. If the current is flow-
ing directly west, approximate the rate at which it flows.

69 Flow of ground water Ground-water contaminants can enter
a community’s drinking water by migrating through porous
rock into the aquifer. If underground water flows with a ve-
locity through an interface between one type of rock and
a second type of rock, its velocity changes to and both
the direction and the speed of the flow can be obtained
using the formula

where the angles and are as shown in the figure. 
For sandstone, for limestone,

If approximate the vectors and 
in i, j form.

Exercise 69

Sandstone

v1

u1

u2

v2

Limestone

v2v1	1 � 30�,3.8 cm�day.
� v2 � �� v1 � � 8.2 cm�day;

	2	1

� v1 �
� v2 �

�
tan 	1

tan 	2

,

v2,
v1

mi�hr

ft�sec
ft�sec.

mi�hr
mi�hr.

mi�hr.
mi�hr

70 Flow of ground water Refer to Exercise 69. Contaminated
ground water is flowing through silty sand with the direc-
tion of flow and speed (in ) given by the vector

When the flow enters a region of clean
sand, its rate increases to 725 Find the new direc-
tion of flow by approximating 

71 Robotic movement Vectors are useful for describing move-
ment of robots.

(a) The robot’s arm illustrated in the first figure can rotate
at the joint connections P and Q. The upper arm, rep-
resented by a, is 15 inches long, and the forearm (in-
cluding the hand), represented by b, is 17 inches long.
Approximate the coordinates of the point R in the hand
by using 

Exercise 71(a)

(b) If the upper arm is rotated 85� and the forearm is rotated
an additional 35�, as illustrated in the second figure,
approximate the new coordinates of R by using 

Exercise 71(b)

P

c

d

40 �

Q

R 35 �

85 �

c � d.

P

a

b

40 �

Q

R

a � b.

	2.
cm�day.

v1 � 20i � 82j.
cm�day	1



72 Robotic movement Refer to Exercise 71.

(a) Suppose the wrist joint of the robot’s arm is allowed to
rotate at the joint connection S and the arm is located as
shown in the first figure. The upper arm has a length of
15 inches; the forearm, without the hand, has a length
of 10 inches; and the hand has a length of 7 inches. Ap-
proximate the coordinates of R by using 

Exercise 72(a)

(b) Suppose the robot’s upper arm is rotated 75�, and then
the forearm is rotated �80�, and finally the hand is ro-
tated an additional 40�, as shown in the second figure.
Approximate the new coordinates of R by using
d � e � f.

P a

b

50 �

Q

R

S c

a � b � c.

Exercise 72(b)

73 Stonehenge forces Refer to Exercise 25 in Section 6.2. In
the construction of Stonehenge, groups of 550 people were
used to pull 99,000-pound blocks of stone up ramps inclined
at 9�. Ignoring friction, determine the force that each person
had to contribute in order to move the stone up the ramp.

Exercise 73

9�

550 people

75 �

d
e

f

80 �

40 �

P

Q

S
R
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The dot product of two vectors has many applications. We begin with an 
algebraic definition.

The symbol is read “a dot b.” We also refer to the dot product as the
scalar product or the inner product. Note that is a real number and not
a vector, as illustrated in the following example.

a � b
a � b

8.4
The Dot Product

Definition of the Dot Product Let and . The dot prod-
uct of a and b, denoted , is

a � b � �a1, a2� � �b1, b2� � a1b1 � a2b2.

a � b
b � �b1, b2� � b1i � b2 ja � �a1, a2� � aii � a2 j
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E X A M P L E  1 Finding the dot product of two vectors

Find .

(a) , (b) ,

S O L U T I O N

(a)

(b) L�4i � 6j� � �3i � 7j� � �4��3� � �6���7� � 12 � 42 � �30

��5, 3� � �2, 6� � ��5��2� � �3��6� � �10 � 18 � 8

b � 3i � 7ja � 4i � 6jb � �2, 6�a � ��5, 3�
a � b

Properties of the Dot Product If a, b, and c are vectors and m is a real number, then

(1)

(2)

(3)

(4)

(5) 0 � a � 0

�ma� � b � m�a � b� � a � �mb�
a � �b � c� � a � b � a � c

a � b � b � a

a � a � � a �2

P R O O F The proof of each property follows from the definition of the dot
product and the properties of real numbers. Thus, if , ,
and , then

definition of addition

definition of dot product

real number properties

definition of dot product

which proves property 3. The proofs of the remaining properties are left as 
exercises. L

Any two nonzero vectors and may be represented
in a coordinate plane by directed line segments from the origin O to the points

and , respectively. The angle u between a and b is, by defi-
nition, (see Figure 1). Note that and that if a and b
have the same direction or if a and b have opposite directions.	 � �

	 � 00 � 	 � ��AOB
B�b1, b2�A�a1, a2�

b � �b1, b2�a � �a1, a2�

� a � b � a � c,

� �a1b1 � a2b2� � �a1c1 � a2c2�
� a1�b1 � c1� � a2�b2 � c2�

a � �b � c� � �a1, a2� � �b1 � c1, b2 � c2�

c � �c1, c2�
b � �b1, b2�a � �a1, a2�

Figure 1

y

x

A(a1, a2)

B (b1, b2)a

b

O

u

Definition of Parallel 
and Orthogonal Vectors

Let be the angle between two nonzero vectors a and b.

(1) a and b are parallel if or .

(2) a and b are orthogonal if .	 �
�

2

	 � �	 � 0

	



The vectors a and b in Figure 1 are parallel if and only if they lie on the
same line that passes through the origin. In this case, for some real
number m. The vectors are orthogonal if and only if they lie on mutually per-
pendicular lines that pass through the origin. We assume that the zero vector 0
is parallel and orthogonal to every vector a.

The next theorem shows the close relationship between the angle between
two vectors and their dot product.

P R O O F If a and b are not parallel, we have a situation similar to that illus-
trated in Figure 1. We may then apply the law of cosines to triangle AOB. Since
the lengths of the three sides of the triangle are , , and ,

Using the distance formula and the definition of the magnitude of a vector, we
obtain

which reduces to

Dividing both sides of the last equation by gives us

which is equivalent to what we wished to prove, since the left-hand side is
.

If a and b are parallel, then either or , and therefore 
for some real number m with if and if . We can
show, using properties of the dot product, that ,
and hence the theorem is true for all nonzero vectors a and b. L

E X A M P L E  2 Finding the angle between two vectors

Find the angle between and .b � �1, 2�a � �4, �3�

a � �ma� � � a � � ma �  cos 	
	 � �m � 0	 � 0m � 0

b � ma	 � �	 � 0
a � b

a1b1 � a2b2 � � a � � b �  cos 	,

�2

�2a1b1 � 2a2b2 � �2 � a � � b � cos 	.

�b1 � a1�2 � �b2 � a2�2 � �a2
1 � a2

2� � �b2
1 � b2

2� � 2 � a � � b �  cos 	,

�d�A, B�	2 � � a � 2 � � b � 2 � 2 � a � � b � cos 	.

d�A, B�� b �� a �

b � ma
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Theorem on the Dot Product If is the angle between two nonzero vectors a and b, then

a � b � � a � � b � cos 	.

	

Theorem on the Cosine 
of the Angle Between Vectors

If is the angle between two nonzero vectors a and b, then

cos 	 �
a � b

� a � � b �
.
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S O L U T I O N The vectors are sketched in Figure 2. We apply the preceding 
theorem:

Hence,

L

E X A M P L E  3 Showing that two vectors are parallel

Let and .

(a) Show that a and b are parallel.

(b) Find the scalar m such that .

S O L U T I O N

(a) By definition, the vectors a and b are parallel if and only if the angle be-
tween them is either 0 or . Since

we conclude that

(b) Since a and b are parallel, there is a scalar m such that ; that is,

Equating the coefficients of i and j gives us

Thus, ; that is, . Note that a and b have opposite directions,
since . L

Using the formula , together with the fact that two
vectors are orthogonal if and only if the angle between them is (or one of
the vectors is 0), gives us the following result.

E X A M P L E  4 Showing that two vectors are orthogonal

Show that the pair of vectors is orthogonal:

(a) i, j (b) , 6i � 4j2i � 3j

��2
a � b � � a � � b �  cos 	

m � 0
b � �4am � �4

�2 �
1
2 m and 12 � �3m.

�2i � 12j � m�1
2 i � 3j� �

1
2 mi � 3mj.

b � ma

	 � arccos ��1� � �.

cos 	 �
a � b

� a � � b �
�

�1
2���2� � ��3��12�

�1
4 � 9 �4 � 144

�
�37

37
� �1,

�
	

b � ma

b � �2i � 12ja �
1
2 i � 3j

	 � arccos ��225

25 � 
 100.3°.

cos 	 �
a � b

� a � � b �
�

�4��1� � ��3��2�
216 � 921 � 4

�
�2

525
, or  

�225

25

Figure 2 y

x
a

b
u

Theorem on 
Orthogonal Vectors

Two vectors a and b are orthogonal if and only if .a � b � 0



S O L U T I O N We may use the theorem on orthogonal vectors to prove
orthogonality by showing that the dot product of each pair is zero:

(a)

(b) L

The geometric significance of the preceding definition with acute or ob-
tuse is illustrated in Figure 3, where the x- and y-axes are not shown.

If angle is acute, then, as in Figure 3(a), we can form a right triangle by
constructing a line segment AQ perpendicular to the line l through O and B.

Note that has the same direction as . Referring to part (a) of the figure,
we see that

If is obtuse, then, as in Figure 3(b), we again construct AQ perpendicu-

lar to l. In this case, the direction of is opposite that of , and since 
is negative,

(1) If , then a is orthogonal to b and .

(2) If , then a has the same direction as b and .

(3) If , then a and b have opposite directions and .compb a � �� a �	 � �

compb a � � a �	 � 0

compb a � 0	 � ��2

cos 	 �
�d�O, Q�

� a �
or, equivalently,    � a �  cos 	 � �d�O, Q�.

cos 	OB
l

OQ
l

	

cos 	 �
d�O, Q�

� a �
or, equivalently,    � a �  cos 	 � d�O, Q�.

OB
l

OQ
l

	

	

�2i � 3j� � �6i � 4j� � �2��6� � �3���4� � 12 � 12 � 0

i � j � �1, 0� � �0, 1� � �1��0� � �0��1� � 0 � 0 � 0
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Definition of compb a Let be the angle between two nonzero vectors a and b. The component
of a along b, denoted by , is given by

compb a � � a �  cos 	.

compb a
	

Figure 3
(a)

compb a � � a �  cos 	

a b

A

B

O

Q

l

u

�a � cos u � 0

u
b

B

O

Q

l

a

A

�a � cos u � 0

(b)

special cases for
the component

of a along b �
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The preceding discussion shows that the component of a along b may be
found by projecting the endpoint of a onto the line l containing b. For this rea-
son, is sometimes called the projection of a on b and is denoted by

. The following formula shows how to compute this projection without
knowing the angle .

P R O O F If is the angle between a and b, then, from the theorem on the dot
product,

Dividing both sides of this equation by gives us

L

E X A M P L E  5 Finding the components of one vector along another

If and , find and , and illustrate
these numbers graphically.

S O L U T I O N The vectors c and d and the desired components are illustrated
in Figure 4. We use the formula for , as follows:

L

We shall conclude this section with a physical application of the dot prod-
uct. First let us briefly discuss the scientific concept of work.

A force may be thought of as the physical entity that is used to describe a
push or pull on an object. For example, a force is needed to push or pull an ob-
ject along a horizontal plane, to lift an object off the ground, or to move a
charged particle through an electromagnetic field. Forces are often measured
in pounds. If an object weighs 10 pounds, then, by definition, the force re-
quired to lift it (or hold it off the ground) is 10 pounds. A force of this type is
a constant force, since its magnitude does not change while it is applied to the
given object.

If a constant force F is applied to an object, moving it a distance d in the
direction of the force, then, by definition, the work W done is

W � Fd.

 compc d �
d � c
� c �

�
�3��10� � ��2��4�
2102 � 42

�
22

2116

 2.04

 compd c �
c � d
� d �

�
�10��3� � �4���2�
232 � ��2�2

�
22

213

 6.10

compb a

compc dcompd cd � 3i � 2jc � 10i � 4j

a � b
� b �

� � a �  cos 	 � compb a.

� b �

a � b � � a � � b �  cos 	.

	

	
projb a

� a �  cos 	

Formula for compb a If a and b are nonzero vectors, then

compb a �
a � b
� b �

.

Figure 4

y

x

c

d

compd c

compc d



If F is measured in pounds and d in feet, then the units for W are foot-pounds
(ft-lb). In the cgs (centimeter-gram-second) system a dyne is used as the unit
of force. If F is expressed in dynes and d in centimeters, then the unit for W is
the dyne-centimeter, or erg. In the mks (meter-kilogram-second) system the
newton is used as the unit of force. If F is in newtons and d is in meters, then
the unit for W is the newton-meter, or joule.

E X A M P L E  6 Finding the work done by a constant force

Find the work done in pushing an automobile along a level road from a point A
to another point B, 40 feet from A, while exerting a constant force of
90 pounds.

S O L U T I O N The problem is illustrated in Figure 5, where we have pictured
the road as part of a line l. Since the constant force is lb and the dis-
tance the automobile moves is feet, the work done is

Figure 5

L

The formula is very restrictive, since it can be used only if the
force is applied along the line of motion. More generally, suppose that a vec-
tor a represents a force and that its point of application moves along a vector b.
This is illustrated in Figure 6, where the force a is used to pull an object along
a level path from O to B, and .

Figure 6

Force, a

O

Q B

A

b � OB�

b � OB
l

W � Fd

40�

Force � 90 lb

A B

l

W � �90��40� � 3600 ft-lb.

d � 40
F � 90
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The vector a is the sum of the vectors OQ and QA, where is orthogo-
nal to b. Since does not contribute to the horizontal movement, we may as-
sume that the motion from O to B is caused by alone. Applying ,
we know that the work is the product of and . Since the magnitude

, we obtain

where represents . This leads to the following definition.

E X A M P L E  7 Finding the work done by a constant force

The magnitude and direction of a constant force are given by .
Find the work done if the point of application of the force moves from the ori-
gin to the point .

S O L U T I O N The force a and the vector are sketched in Figure 7.
Since , we have, from the preceding definition,

If, for example, the unit of length is feet and the magnitude of the force is
measured in pounds, then the work done is 13 ft-lb. L

E X A M P L E  8 Finding the work done against gravity

A small cart weighing 100 pounds is pushed up an incline that makes an angle
of 30° with the horizontal, as shown in Figure 8. Find the work done against
gravity in pushing the cart a distance of 80 feet.

Figure 8

30 �

� �2��4� � �5��1� � 13.

W � a � b � �2i � 5j� � �4i � j�

b � �4, 1� � 4i � j
b � OP

l

P�4, 1�

a � 2i � 5j

�AOQ	

W � �compb a� � b � � � � a �  cos 	� � b � � a � b,

compb a� OQ
l

� �
� b �� OQ

l
�

W � FdOQ
l

QA
l

QA
l

Definition of Work The work W done by a constant force a as its point of application moves
along a vector b is .W � a � b

Figure 7

y

x

a

b

O

P (4, 1)
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Exer. 1–8: Find (a) the dot product of the two vectors and
(b) the angle between the two vectors.

1 2

3 4

5 9i, 6 6j, �4i

7 8

Exer. 9–12: Show that the vectors are orthogonal.

9 10

11 �4j, �7i 12

Exer. 13–16: Show that the vectors are parallel, and de-
termine whether they have the same direction or oppo-
site directions.

13

14

15

16 b � ��4, �12�a � �6, 18�,

b � �8, 6�a � �2
3 , 1

2�,

b � �10i � 24ja � �
5
2 i � 6j,

b � �
12
7 i �

20
7 ja � 3i � 5j,

�6i � 12j8i � 4j,

�4, �2��3, 6�,�2, 8��4, �1�,

��1, 2���3, 6�,��2, �
7
5��10, 7�,

5i � 4j

2i � 7j8i � 3j,�3i � 2j4i � j,

��2, 3��4, �7�,�3, 6���2, 5�,

Exer. 17–20: Determine m such that the two vectors are 
orthogonal.

17 18

19 20

Exer. 21–28: Given that and
find the number.

21 (a) (b)

22 (a) (b)

23 24

25 26

27 28

Exer. 29–32: If c represents a constant force, find the work
done if the point of application of c moves along the line seg-
ment from P to Q.

29

30

31

Hint: Find a vector such that b � PQ
l

.�b � �b1, b2��
Q�4, 3�P�2, �1�,c � 6i � 4j;

Q�4, 7�P�0, 0�,c � �10i � 12j;

Q�5, �2�P�0, 0�,c � 3i � 4j;

compc ccompb �a � c�

compb ccompc b

�a � b� � �b � c��2a � b� � �3c�

b � a � b � cb � �a � c�

a � b � a � ca � �b � c�

c � ��1, 5�,
b � �3, 4�,a � �2, �3�,

2i � 7j5mi � 3j,i � 4mj9i � 16mj,

9mi � 25j4mi � j,4i � 5mj3i � 2j,

8.4 E x e r c i s e s

S O L U T I O N Let us introduce an xy-coordinate system, as shown in Figure 9.
The vector PQ represents the force of gravity acting vertically downward with
a magnitude of 100 pounds. The corresponding vector F is . The
point of application of this force moves along the vector PR of magnitude 80.
If corresponds to , then, referring to triangle PTR, we see that

and hence

Applying the definition, we find that the work done by gravity is

ft-lb.

The work done against gravity is

ft-lb. L�F � a � 4000

F � a � �0i � 100j� � �4023 i � 40j� � 0 � 4000 � �4000

a � 4023 i � 40j.

a2 � 80 sin 30° � 40,

a1 � 80 cos 30° � 4023

a � a1i � a2 jPR
l

0i � 100j

Figure 9

y

xP T

R(a1, a2)

30�

80

Q(0, �100)



32

33 A constant force of magnitude 4 has the same direction as j.
Find the work done if its point of application moves from

to

34 A constant force of magnitude 10 has the same direction 
as �i. Find the work done if its point of application moves
from to 

Exer. 35–40: Prove the property if a and b are vectors and
m is a real number.

35 36

37 38

39

40

41 Pulling a wagon A child pulls a wagon along level ground
by exerting a force of 20 pounds on a handle that makes an
angle of 30� with the horizontal, as shown in the figure.
Find the work done in pulling the wagon 100 feet.

Exercise 41

42 Pulling a wagon Refer to Exercise 41. Find the work done
if the wagon is pulled, with the same force, 100 feet up an
incline that makes an angle of 30� with the horizontal, as
shown in the figure.

Exercise 42

�a � b� � �a � b� � a � a � b � b

0 � a � 0

m�a � b� � a � �mb��ma� � b � m�a � b�

a � b � b � aa � a � � a � 2

Q�1, 0�.P�0, 1�

Q�8, 3�.P�0, 0�

Q�6, 1�P��2, 5�,c � �i � 7j; 43 The sun’s rays The sun has a radius of 432,000 miles, and
its center is 93,000,000 miles from the center of Earth. Let
v and w be the vectors illustrated in the figure.

(a) Express v and w in i, j form.

(b) Approximate the angle between v and w.

Exercise 43

44 July sunlight The intensity I of sunlight (in ) can
be calculated using the formula where k and c
are positive constants and is the angle between the sun’s
rays and the horizon. The amount of sunlight striking a ver-
tical wall facing the sun is equal to the component of the
sun’s rays along the horizontal. If, during July,

and approximate the total amount of
sunlight striking a vertical wall that has an area of 160 

Exer. 45–46: Vectors are used extensively in computer
graphics to perform shading. When light strikes a flat sur-
face, it is reflected, and that area should not be shaded. Sup-
pose that an incoming ray of light is represented by a vector
L and that N is a vector orthogonal to the flat surface, as
shown in the figure. The ray of reflected light can be repre-
sented by the vector R and is calculated using the formula

Compute R for the vectors L and N.

45 Reflected light

46 Reflected light

Exercises 45–46 L N

R

N � �1
222, 1

222 �L � �12
13 , �

5
13�,

N � �0, 1�L � ��4
5 , 3

5 �,
R � 2(N � L)N � L.

m2.
c � 0.136,k � 978,

� � 30�,

�
I � ke�c/sin �,

watts�m2

Earth
Sun

v

w
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Exer. 47–48: Vectors are used in computer graphics to calcu-
late the lengths of shadows over flat surfaces. The length of
an object can sometimes be represented by a vector a. If a sin-
gle light source is shining down on the object, then the length
of its shadow on the ground will be equal to the absolute
value of the component of the vector a along the direction of
the ground, as shown in the figure. Compute the length of
the shadow for the specified vector a if the ground is level.

47 Shadow on level ground

48 Shadow on level ground

Exercises 47–48

Exer. 49–50: Refer to Exercises 47 and 48. An object repre-
sented by a vector a is held over a flat surface inclined at an
angle u, as shown in the figure. If a light is shining directly
downward, approximate the length of the shadow to two
decimal places for the specified values of the vector a and u.

49 Shadow on inclined plane

50 Shadow on inclined plane 	 � �17�a � ��13.8, 19.4�,

	 � 12�a � �25.7, �3.9�,

a

a � ��3.1, 7.9�

a � �2.6, 4.5�

Exercises 49–50

51 Determining horsepower The amount of horsepower P
produced by an engine can be determined by using the for-
mula where F is the force (in pounds) ex-
erted by the engine and v is the velocity (in ) of an
object moved by the engine. An engine pulls with a force of
2200 pounds on a cable that makes an angle with the hori-
zontal, moving a cart horizontally, as shown in the figure.
Find the horsepower of the engine if the speed of the cart is
8 when 

Exercise 51

F

v
u

Engine

Cart

	 � 30�.ft�sec

	

ft�sec
P �

1
550 �F � v�,

u

a
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In Section 1.1 we represented real numbers geometrically by using points on
a coordinate line. We can obtain geometric representations for complex num-
bers by using points in a coordinate plane. Specifically, each complex number

determines a unique ordered pair . The corresponding point
in a coordinate plane is the geometric representation of . To

emphasize that we are assigning complex numbers to points in a plane, we may
label the point as . A coordinate plane with a complex number
assigned to each point is referred to as a complex (or Argand) plane instead
of an xy-plane. The x-axis is the real axis and the y-axis is the imaginary axis.
In Figure 1 (on the next page) we have represented several complex numbers
geometrically. Note that to obtain the point corresponding to the conjugate

of any complex number , we simply reflect through the real axis.a � bia � bi

a � biP�a, b�

a � biP�a, b�
�a, b�a � bi

8.5
Trigonometric Form

for Complex Numbers



The absolute value of a real number a (denoted ) is the distance be-
tween the origin and the point on the x-axis that corresponds to a. Thus, it is
natural to interpret the absolute value of a complex number as the distance be-
tween the origin of a complex plane and the point that corresponds to

.

E X A M P L E  1 Finding the absolute value of a complex number

Find

(a) (b)

S O L U T I O N We use the previous definition:

(a)

(b) L

The points corresponding to all complex numbers that have a fixed ab-
solute value k are on a circle of radius k with center at the origin in the com-
plex plane. For example, the points corresponding to the complex numbers z
with are on a unit circle.

Let us consider a nonzero complex number and its geo-
metric representation , as illustrated in Figure 2. Let be any angle 
in standard position whose terminal side lies on the segment OP, and let

. Since and , we see that
and . Substituting for a and b in , we obtain

z � a � bi � �r cos 	� � �r sin 	�i � r�cos 	 � i sin 	�.

z � a � bib � r sin 	a � r cos 	
sin 	 � b�rcos 	 � a�rr � � z � � 2a2 � b2

	P�a, b�
z � a � bi

� z � � 1

� 3i � � � 0 � 3i � � 202 � 32 � 29 � 3

� 2 � 6i � � 222 � ��6�2 � 240 � 2210 
 6.3

� 3i �� 2 � 6i �

a � bi
�a, b�

� a �

Imaginary
axis

Real
axis

2 � 3i

2 � 3i�2 � 3i

� 5i

5 � i
�3

5 � i

�i

i

�e � �2 i
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Figure 1

Definition of the Absolute
Value of a Complex Number

If is a complex number, then its absolute value, denoted by
, is

2a2 � b2.

� a � bi �
z � a � bi

Figure 2
z � a � bi � r�cos 	 � i sin 	�

y

x

P (a, b)

z � a � bi

r � �z �

u

O



This expression is called the trigonometric (or polar) form for the complex
number . A common abbreviation is

The trigonometric form for is not unique, since there are an
unlimited number of different choices for the angle . When the trigonometric
form is used, the absolute value r of z is sometimes referred to as the modu-
lus of z and an angle associated with z as an argument (or amplitude) of z.

We may summarize our discussion as follows.

Euler’s formula,

gives us yet another form for the complex number , commonly
called the exponential form; that is,

See Exercise 6 of the Discussion Exercises at the end of the chapter for some
related problems.

E X A M P L E  2 Expressing a complex number in trigonometric form

Express the complex number in trigonometric form with :

(a) (b) (c) (d)

S O L U T I O N We begin by representing each complex number geometrically
and labeling its modulus r and argument , as in Figure 3.	

�2 � 7i2 � 7i223 � 2i�4 � 4i

0 � 	 � 2�

z � r�cos 	 � i sin 	� � rei	.

z � a � bi

cos 	 � i sin 	 � ei	,

	

	
z � a � bi

r�cos 	 � i sin 	� � r cis 	.

a � bi

548 C H A P T E R  8  A P P L I C A T I O N S  O F  T R I G O N O M E T R Y

Figure 3
(a)

(�4, 4)

4�2�

y

x

f

z

y

x

(2�3, �2)�

4

y

x

(2, 7)

�53��

arctan r arctan r

y

x

�53��

(�2, 7)

p � arctan r 

(b) (c) (d)

Trigonometric (or Polar) 
Form for a Complex Number

Let . If and if is an argument of z, then

z � r�cos 	 � i sin 	� � r cis 	.

	r � � z � � 2a2 � b2z � a � bi



We next substitute for r and in the trigonometric form:

(a)

(b)

(c)

(d)

L

If we allow arbitrary values for , there are many other trigonometric
forms for the complex numbers in Example 2. Thus, for in part (a)
we could use

If, for example, we let and , we obtain

respectively. In general, arguments for the same complex number always dif-
fer by a multiple of .

If complex numbers are expressed in trigonometric form, then multiplica-
tion and division may be performed as indicated in the next theorem.

P R O O F We may prove (1) as follows:

Applying the addition formulas for and gives us
(1). We leave the proof of (2) as an exercise. L

sin �	1 � 	2�cos �	1 � 	2�

� i�sin 	1 cos 	2 � cos 	1 sin 	2�	

� r1r2��cos 	1 cos 	2 � sin 	1 sin 	2�

z1z2 � r1�cos 	1 � i sin 	1� � r2�cos 	2 � i sin 	2�

2�

422 cis 
11�

4
and 422 cis ��5�

4 �,

n � �1n � 1

	 �
3�

4
� 2�n for any integer n.

�4 � 4i
	

� 253 cis �� � arctan 7
2�

�2 � 7i � 253�cos �� � arctan 7
2� � i sin �� � arctan 7

2�	
2 � 7i � 253 �cos �arctan 7

2� � i sin �arctan 7
2�	 � 253 cis �arctan 7

2�

223 � 2i � 4�cos
11�

6
� i sin 

11�

6 � � 4 cis 
11�

6

�4 � 4i � 422�cos
3�

4
� i sin 

3�

4 � � 422 cis 
3�

4
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Theorem on Products and
Quotients of Complex Numbers

If trigonometric forms for two complex numbers and are

then

(1)

(2)
z1

z2

�
r1

r2

�cos �	1 � 	2� � i sin �	1 � 	2�	, z2 � 0

z1z2 � r1r2�cos �	1 � 	2� � i sin �	1 � 	2�	

z1 � r1�cos 	1 � i sin 	1� and z2 � r2�cos 	2 � i sin 	2�,

z2z1



Part (1) of the preceding theorem states that the modulus of a product of
two complex numbers is the product of their moduli, and an argument is the
sum of their arguments. An analogous statement can be made for (2).

E X A M P L E  3 Using trigonometric forms to find products and quotients

If and , use trigonometric forms to find
(a) and (b) . Check by using algebraic methods.

S O L U T I O N The complex number is represented geometrically
in Figure 3(b). If we use in the trigonometric form, then

The complex number is represented geometrically in Fig-
ure 4. A trigonometric form is

(a) We apply part (1) of the theorem on products and quotients of complex
numbers:

Figure 5 gives a geometric interpretation of the product .
Using algebraic methods to check our result, we have

(b) We apply part (2) of the theorem:

Figure 6 gives a geometric interpretation of the quotient .z1�z2

� 2��23

2
� i�� 1

2 �� � �23 � i

� 2�cos �� 5�

6 � � i sin �� 5�

6 ��
z1

z2

�
4

2 �cos ��
�

6
�

2�

3 � � i sin ��
�

6
�

2�

3 ��

� ��223 � 223 � � �2 � 6�i � 0 � 8i � 8i.

z1z2 � �223 � 2i���1 � 23 i�

z1z2

� 8�cos
�

2
� i sin 

�

2 � � 8�0 � i� � 8i

z1z2 � 4 � 2�cos ��
�

6
�

2�

3 � � i sin ��
�

6
�

2�

3 ��

z2 � �1 � 23 i � 2�cos
2�

3
� i sin 

2�

3 �.

z2 � �1 � 23 i

z1 � 223 � 2i � 4�cos ��
�

6 � � i sin ��
�

6 ��.

	 � ���6
223 � 2i

z1�z2z1z2

z2 � �1 � 23 iz1 � 223 � 2i
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Figure 4

y

x

(�1, �3)�

2
i

Figure 5

y

x

r1r2 � 4�2 � 8

r1 � 4

r2 � 2

u1 � u2 � �k � i
� q

u1 � �k

u 2 � i

Figure 6

y

x

r1 � 4

r2 � 2

u1 � �k

u 2 � i

r1

r2

4
2� � 2

u1 � u2 � �k � i � �l



Using algebraic methods to check our result, we multiply the numerator
and denominator by the conjugate of the denominator to obtain

�
�423 � 4i

4
� �23 � i.

�
��223 � 223 � � �2 � 6�i

��1�2 � �23 �2

z1

z2

�
223 � 2i

�1 � 23 i
�

�1 � 23 i

�1 � 23 i
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Exer. 1–10: Find the absolute value.

1 2

3 4

5 6

7 8

9 10

Exer. 11–20: Represent the complex number geometrically.

11 12

13 14

15 16

17 18

19 20

Exer. 21–46: Express the complex number in trigonometric
form with 0 � u � 2p.

21 22

23 24

25 26

27 28

29 30

31 12 32 15

33 �7 34 �5

35 6i 36 4i

37 38

39 40

41 42 �4 � 2i�3 � i

3 � 2i2 � i

23 � i�5 � 523 i

�6i�20i

�10 � 10i�4 � 4i

3 � 323 i223 � 2i

�2 � 2i�423 � 4i

23 � i1 � i

4��1 � 2i��1 � i�2

��3i��2 � i�2i�2 � 3i�

�1 � 2i�2��3 � 6i�

�2 � 6i3 � 5i

�5 � 3i4 � 2i

� �15 �� 0 �

� �15i �� i500 �

� i7 �� 8i �

� 1 � i �� �6 � 7i �

� 5 � 8i �� 3 � 4i �

43 44

45 46

Exer. 47–56: Express in the form where a and b are
real numbers.

47 48

49 50

51 52

53 54

55 56

Exer. 57–66: Use trigonometric forms to find and 

57

58

59

60

61

62

63

64

65

66

67 Prove (2) of the theorem on products and quotients of com-
plex numbers.

z2 � 5 � 2iz1 � �3,

z2 � 3 � 2iz1 � �5,

z2 � 3 � 5iz1 � 7,

z2 � 2 � iz1 � 4,

z2 � �3iz1 � 2i,

z2 � �4z1 � �10,

z2 � �3iz1 � �5 � 5i,

z2 � 5iz1 � �2 � 223 i,

z2 � �23 � iz1 � 23 � i,

z2 � 1 � iz1 � �1 � i,

z1�z2.z1z2

210 cis �tan�1 3�25 cis �tan�1 ��
1
2�	

253 cis �tan�1 ��
2
7 �	234 cis �tan�1 3

5�

3�cos
3�

2
� i sin

3�

2 �5�cos � � i sin ��

12�cos
4�

3
� i sin

4�

3 �6�cos
2�

3
� i sin

2�

3 �
8�cos

7�

4
� i sin

7�

4 �4�cos
�

4
� i sin

�

4�
a � bi,

1 � 3i4 � 3i

�2 � 7i�5 � 3i

8.5 E x e r c i s e s
L



68 (a) Extend (1) of the theorem on products and quotients of
complex numbers to three complex numbers.

(b) Generalize (1) of the theorem to n complex numbers.

Exer. 69–72: The trigonometric form of complex num-
bers is often used by electrical engineers to describe the cur-
rent I, voltage V, and impedance Z in electrical circuits with
alternating current. Impedance is the opposition to the flow
of current in a circuit. Most common electrical devices 
operate on 115-volt, alternating current. The relationship
among these three quantities is Approximate the
unknown quantity, and express the answer in rectangular
form to two decimal places.

69 Finding voltage

70 Finding voltage

71 Finding impedance V � 115 cis 45�I � 8 cis 5�,

Z � 100 cis 90�I � 12 cis 5�,

Z � 3 cis 20�I � 10 cis 35�,

I � V�Z.

72 Finding current

73 Modulus of impedance The modulus of the impedance Z
represents the total opposition to the flow of electricity in 
a circuit and is measured in ohms. If com-
pute

74 Resistance and reactance The absolute value of the real part
of Z represents the resistance in an electrical circuit; the ab-
solute value of the complex part represents the reactance. Both
quantities are measured in ohms. If and

approximate the resistance and the reactance.

75 Actual voltage The real part of V represents the actual volt-
age delivered to an electrical appliance in volts. Approximate
this voltage when and 

76 Actual current The real part of I represents the actual current
delivered to an electrical appliance in amps. Approximate this
current when and Z � 100 cis 17�.V � 163 cis 43�

Z � 18 cis ��78��.I � 4 cis 90�

I � 5 cis 90�,
V � 220 cis 34�

� Z �.
Z � 14 � 13i,

V � 163 cis 17�Z � 78 cis 61�,
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If z is a complex number and n is a positive integer, then a complex number w
is an nth root of z if . We will show that every nonzero complex num-
ber has n different nth roots. Since � is contained in �, it will also follow that
every nonzero real number has n different nth (complex) roots. If a is a posi-
tive real number and , then we already know that the roots are and

.
If, in the theorem on products and quotients of complex numbers, we let

both and equal the complex number , we obtain

Applying the same theorem to and z gives us

or

Applying the theorem to and z, we obtain

In general, we have the following result, named after the French mathemati-
cian Abraham De Moivre (1667–1754).

z4 � r4�cos 4	 � i sin 4	�.

z3

z3 � r3�cos 3	 � i sin 3	�.

z2 � z � �r2 � r��cos �2	 � 	� � i sin �2	 � 	�	,

z2

� r 2�cos 2	 � i sin 2	�.
z2 � r � r �cos �	 � 	� � i sin �	 � 	�	

z � r�cos 	 � i sin 	�z2z1

�2a
2an � 2

wn � z
8.6

De Moivre’s Theorem
and nth Roots

of Complex Numbers

De Moivre’s Theorem For every integer n,

�r�cos 	 � i sin 	�	n � r n�cos n	 � i sin n	�.
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We will use only positive integers for n in examples and exercises involv-
ing De Moivre’s theorem. However, for completeness, the theorem holds for

and n negative if we use the respective real number exponent defini-
tions—that is, and , where z is a nonzero complex number
and n is a positive integer.

E X A M P L E  1 Using De Moivre’s theorem

Use De Moivre’s theorem to change to the form , where a and
b are real numbers.

S O L U T I O N It would be tedious to change using algebraic meth-
ods. Let us therefore introduce a trigonometric form for . Referring to
Figure 1, we see that

We now apply De Moivre’s theorem:

The number is of the form with and . L

If a nonzero complex number z has an nth root w, then . If trigono-
metric forms for w and z are

(*)

then applying De Moivre’s theorem to yields

If two complex numbers are equal, then so are their absolute values. Conse-
quently, , and since s and r are nonnegative, . Substituting for
r in the last displayed equation and dividing both sides by , we obtain

Since the arguments of equal complex numbers differ by a multiple of ,
there is an integer k such that . Dividing both sides of the last
equation by n, we see that

Substituting in the trigonometric form for w (see (*)) gives us the formula

If we substitute successively, we obtain n different nth
roots of z. No other value of k will produce a new nth root. For example, if

k � 0, 1, . . . , n � 1

w � 2
n r�cos �	 � 2�k

n � � i sin �	 � 2�k

n ��.

� �
	 � 2�k

n
for some integer k.

n� � 	 � 2�k
2�

cos n� � i sin n� � cos 	 � i sin 	.

sn

sns � 2
n rsn � r

sn�cos n� � i sin n�� � r �cos 	 � i sin 	�.
wn � z

w � s�cos � � i sin �� and z � r�cos 	 � i sin 	�,

wn � z

b � 0a � �1024a � bi�1024

� 210�cos 5� � i sin 5�� � 210��1 � 0i� � �1024

�1 � i�20 � �21/2�20�cos �20 �
�

4 � � i sin �20 �
�

4 ��

1 � i � 22�cos
�

4
� i sin 

�

4�.

1 � i
�1 � i�20

a � bi�1 � i�20

z�n � 1�z nz0 � 1
n � 0

Figure 1

y

x

�2�

d

(1, 1)



, we obtain the angle , or , which gives us the
same nth root as . Similarly, yields the same nth root as ,
and so on. The same is true for negative values of k. We have proved the fol-
lowing theorem.

The nth roots of z in this theorem all have absolute value , and hence
their geometric representations lie on a circle of radius with center at O.
Moreover, they are equispaced on this circle, since the difference in the argu-
ments of successive nth roots is (or ).

E X A M P L E  2 Finding the fourth roots of a complex number

(a) Find the four fourth roots of .

(b) Represent the roots geometrically.

S O L U T I O N

(a) The geometric representation of is shown in Figure 2. Intro-
ducing trigonometric form, we have

Using the theorem on nth roots with and noting that , we find
that the fourth roots are

for . This formula may be written

wk � 2�cos �60° � 90°k� � i sin �60° � 90°k�	.

k � 0, 1, 2, 3

wk � 2�cos �240° � 360°k

4 � � i sin �240° � 360°k

4 ��
24 16 � 2n � 4

�8 � 823 i � 16�cos 240° � i sin 240°�.

�8 � 823 i

�8 � 823 i

360°�n2��n

2
n r

2
n r

k � 1k � n � 1k � 0
�	�n� � 2��	 � 2�n��nk � n
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Theorem on nth Roots If is any nonzero complex number and if n is any
positive integer, then z has exactly n different nth roots , , .
These roots, for in radians, are

or, equivalently, for in degrees,

where .k � 0, 1, . . . , n � 1

wk � 2
n r�cos �	 � 360°k

n � � i sin �	 � 360°k

n ��,

	

wk � 2
n r�cos �	 � 2�k

n � � i sin �	 � 2�k

n ��
	

w2, . . . , wn�1w1w0

z � r�cos 	 � i sin 	�

Figure 2
y

x

16

240�

(�8, �8�3)�
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Substituting 0, 1, 2, and 3 for k in gives us the four fourth roots:

(b) By the comments preceding this example, all roots lie on a circle of radius
with center at O. The first root, , has an argument of 60°, and suc-

cessive roots are spaced apart , as shown in Figure 3. L

E X A M P L E  3 Finding the cube roots of unity

Find the three cube roots of unity.

S O L U T I O N Writing and using the theorem on nth
roots with , we obtain

for . Substituting for k gives us the three roots:

L

E X A M P L E  4 Finding the sixth roots of a real number

(a) Find the six sixth roots of .

(b) Represent the roots geometrically.

S O L U T I O N

(a) Writing and using the theorem on nth roots 
with , we find that the sixth roots of are given by

for . Substituting 0, 1, 2, 3, 4, 5 for k, we obtain the six sixth
roots of :

w1 � cos
�

2
� i sin 

�

2
� i

w0 � cos
�

6
� i sin 

�

6
�
23

2
�

1

2
i

�1
k � 0, 1, 2, 3, 4, 5

wk � 1�cos �� � 2�k

6 � � i sin �� � 2�k

6 ��
�1n � 6

�1 � 1�cos � � i sin ��

�1

w2 � cos
4�

3
� i sin 

4�

3
� �

1

2
�
23

2
i

w1 � cos
2�

3
� i sin 

2�

3
� �

1

2
�
23

2
i

w0 � cos 0 � i sin 0 � 1

k � 0, 1, 2

wk � 1�cos
2�k

3
� i sin 

2�k

3 �
n � 3

1 � 1�cos 0 � i sin 0�

360°�4 � 90°
w024 16 � 2

w3 � 2�cos 330° � i sin 330°� � 23 � i

w2 � 2�cos 240° � i sin 240°� � �1 � 23 i

w1 � 2�cos 150° � i sin 150°� � �23 � i

w0 � 2�cos 60° � i sin 60°� � 1 � 23 i

�60° � 90°k�Figure 3

x

y

60�

90�

90�

90�

90�

w1

w0

w2

w3

2



Exer. 1–12: Use De Moivre’s theorem to change the given
complex number to the form where a and b are 
real numbers.

1 2

3 4

5 6

7 8

9 10

11 12

13 Find the two square roots of 

14 Find the two square roots of �9i.

15 Find the four fourth roots of 

16 Find the four fourth roots of �8 � 823 i.

�1 � 23 i.

1 � 23 i.

��2 � 2i�10�23 � i�7

��
23

2
�

1

2
i�50��

23

2
�

1

2
i�20

�22

2
�
22

2
i�25��

22

2
�
22

2
i�15

�1 � 23 i�5�1 � 23 i�3

��1 � i�8�1 � i�10

�1 � i�12�3 � 3i�5

a � bi,
17 Find the three cube roots of �27i.

18 Find the three cube roots of 64i.

Exer. 19–22: Find the indicated roots, and represent them
geometrically.

19 The six sixth roots of unity

20 The eight eighth roots of unity

21 The five fifth roots of 

22 The five fifth roots of 

Exer. 23–30: Find the solutions of the equation.

23 24

25 26

27 28

29 30

31 Use Euler’s formula to prove De Moivre’s theorem.

x4 � 81 � 0x 5 � 243 � 0

x 3 � 64i � 0x3 � 8i � 0

x 5 � 1 � 0x6 � 64 � 0

x6 � 64 � 0x4 � 16 � 0

�23 � i

1 � i
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8.6 E x e r c i s e s

(b) Since , the points that represent the roots of all lie on the unit
circle shown in Figure 4. Moreover, they are equispaced on this circle by 
radians, or 60°. L

The special case in which is of particular interest. The n distinct nth
roots of 1 are called the nth roots of unity. In particular, if , we call
these roots the cube roots of unity.

Note that finding the nth roots of a complex number c, as we did in Ex-
amples 2–4, is equivalent to finding all the solutions of the equation

We will use this concept in Exercises 23–30.

xn � c, or xn � c � 0.

n � 3
z � 1

��3
�126 1 � 1

w5 � cos
11�

6
� i sin 

11�

6
�
23

2
�

1

2
i

w4 � cos
3�

2
� i sin 

3�

2
� �i

w3 � cos
7�

6
� i sin 

7�

6
� �

23

2
�

1

2
i

w2 � cos
5�

6
� i sin 

5�

6
� �

23

2
�

1

2
i

Figure 4

w1

y

x

k

w0

w5

w4

w3

w2

1
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Exer. 1–4: Find the exact values of the remaining parts of
triangle ABC.

1

2

3

4

Exer. 5–8: Approximate the remaining parts of triangle
ABC.

5

6

7

8

Exer. 9–10: Approximate the area of triangle ABC to the
nearest 0.1 square unit.

9

10

11 If and sketch vectors corre-
sponding to

(a) (b) (c) 2a (d)

12 If and find the vector or number
corresponding to

(a) (b)

(c) (d)

13 A ship’s course A ship is sailing at a speed of 14 in
the direction S50�E. Express its velocity v as a vector.

14 The magnitudes and directions of two forces are 72 lb,
S60�E and 46 lb, N74�E, respectively. Approximate the
magnitude and direction of the resultant force.

mi�hr

� a � � � b �� a � b �

2a � 3b4a � b

b � 4i � j,a � 2i � 5j

�
1
2 ba � ba � b

b � �2, �8�,a � ��4, 5�

c � 10b � 7,a � 4,

c � 30b � 20,� � 75�,

c � 43b � 55,a � 37,

c � 7.3a � 4.6,� � 115�,

a � 152c � 125,� � 23�30�,

b � 12� � 75�,� � 67�,

c � 4b � 3,a � 2,

b � 100� � 45�,� � 60�,

c � 2a � 223,� � 30�,

c � 7b � 6,� � 60�,

15 Find a vector that has the opposite direction of 
and twice the magnitude.

16 Find a vector of magnitude 4 that has the same direction as

17 If and describe the set of all
points such that 

18 If a and b are vectors with the same initial point and
angle between them, prove that

19 Wind speed and direction An airplane is flying in the
direction 80� with an airspeed of 400 Its ground
speed and true course are 390 and 90�, respectively.
Approximate the direction and speed of the wind.

20 If and find each of the following:

(a) (b) the angle between a and b

(c)

21 If and find each of the following:

(a)

(b) the angle between a and

(c)

22 A constant force has the magnitude and direction of the
vector Find the work done when the point of
application of a moves along the x-axis from to

Exer. 23–28: Express the complex number in trigonometric
form with 0 � � � 2�.

23 24

25 �17 26 �12i

27 28 4 � 5i�523 � 5i

2 � 223 i�10 � 10i

Q�3, 0�.
P��5, 0�

7i � 4j.a �

compa �a � b�

a � b

�2a � 3b� � a

b � i � 3j,a � 6i � 2j

compa b

a � b

b � ��1, �4�,a � �2, �3�

mi�hr
mi�hr.

� a � b �2 � � a �2 � � b �2 � 2� a � � b � cos 	.

	

� r � a � � c.P�x, y�
c � 0,a � �a1, a2�, r � �x, y�,

a � ��3, 7�.

a � 8i � 6j
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Exer. 29–30: Express in the form where a and b are
real numbers.

29 30

Exer. 31–32: Use trigonometric forms to find and 

31

32

Exer. 33–36: Use De Moivre’s theorem to change the 
given complex number to the form where a and b
are real numbers.

33 34

35 36

37 Find the three cube roots of �27.

38 Let

(a) Find (b) Find the three cube roots of z.

39 Find the solutions of the equation 

40 Skateboard racecourse A course for a skateboard race con-
sists of a 200-meter downhill run and a 150-meter level 
portion. The angle of elevation of the starting point of the
race from the finish line is 27.4�. What angle does the hill
make with the horizontal?

41 Surveying A surveyor sights a tower in the direction
N40�E, walks north 100 yards, and sights the same tower at
N59�E. Approximate the distance from the second sighting
to the tower.

42 Flight distance An airplane flies 120 miles from point A in
the direction 330� and then travels for 140 miles in the di-
rection 280�. Approximately how far is the airplane from A?

43 Distances to planets The distances between Earth and
nearby planets can be approximated using the phase angle

as shown in the figure. Suppose that the distance between
Earth and the sun is 93,000,000 miles and the distance be-
tween Venus and the sun is 67,000,000 miles. Approximate
the distance between Earth and Venus to the nearest million
miles when � � 34�.

�,

x 5 � 32 � 0.

z24.

z � 1 � 23 i.

�2 � 223 i�10�3 � 3i�5

�22

2
�
22

2
i�30

��23 � i�9

a � bi,

z2 � �1 � iz1 � 222 � 222 i,

z2 � 223 � 2iz1 � �323 � 3i,

z1�z2.z1z2

13 cis �tan�1 5
12�20�cos

11�

6
� i sin

11�

6 �
a � bi, Exercise 43

44 Height of a skyscraper If a skyscraper is viewed from the
top of a 50-foot building, the angle of elevation is 59�. If it
is viewed from street level, the angle of elevation is 62� (see
the figure).

(a) Use the law of sines to approximate the shortest dis-
tance between the tops of the two buildings.

(b) Approximate the height of the skyscraper.

Exercise 44

45 Distances between cities The beach communities of 
San Clemente and Long Beach are 41 miles apart, along a
fairly straight stretch of coastline. Shown in the figure is the
triangle formed by the two cities and the town of Avalon at
the southeast corner of Santa Catalina Island. Angles ALS
and ASL are found to be 66.4� and 47.2�, respectively.

(a) Approximate the distance from Avalon to each of the
two cities.

(b) Approximate the shortest distance from Avalon to 
the coast.

50� 62�

59�

Sun

Venus

Earth

a
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Exercise 45

46 Surveying A surveyor wishes to find the distance between
two inaccessible points A and B. As shown in the figure, two
points C and D are selected from which it is possible to view
both A and B. The distance CD and the angles ACD, ACB,
BDC, and BDA are then measured. If ft,

and
approximate the distance AB.

Exercise 46

47 Radio contact Two girls with two-way radios are at the
intersection of two country roads that meet at a 105� angle
(see the figure). One begins walking in a northerly direction
along one road at a rate of 5 at the same time the
other walks east along the other road at the same rate. If
each radio has a range of 10 miles, how long will the girls
maintain contact?

Exercise 47

105 �

10 mi

mi�hr;

A B

DC

�BDA � 100�,�BDC � 125�,�ACB � 92�,115�,
�ACD �CD � 120

A

L

S

66.4�

47.2�

48 Robotic design Shown in the figure is a design for a robotic
arm with two moving parts. The dimensions are chosen to
emulate a human arm. The upper arm AC and lower arm CP
rotate through angles and respectively, to hold an ob-
ject at point 

(a) Show that 

(b) Find and then use part (a) and the law of
cosines to show that

(c) If and approximate 

Exercise 48

49 Rescue efforts A child is trapped 45 feet down an aban-
doned mine shaft that slants at an angle of 78� from the hori-
zontal. A rescue tunnel is to be dug 50 feet from the shaft
opening (see the figure).

(a) At what angle should the tunnel be dug?

(b) If the tunnel can be dug at a rate of 3 how many
hours will it take to reach the child?

Exercise 49

50�

45�

78� u

ft�hr,

	

y

x

17�

u2

u1

26�

A

C

P(x, y)

17�

	2.	1 � 135�,y � 4,x � 25,

1 � cos �	2 � 	1� �
x2 � � y � 26�2

578
.

d�A, P�,

�ACP � 180� � �	2 � 	1�.

P�x, y�.
	2,	1
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1 Mollweide’s formula The following equation, called
Mollweide’s formula, is sometimes used to check solu-
tions to triangles because it involves all the angles 
and sides:

(a) Use the law of sines to show that

(b) Use a sum-to-product formula and a double-angle for-
mula to verify Mollweide’s formula.

2 Use the trigonometric form of a complex number to show
that where n is a positive integer.

3 Discuss the algebraic and geometric similarities of the cube
roots of any positive real number a.

4 Suppose that two vectors v and w have the same initial
point, that the angle between them is and that 
(m is a real number).

(a) What is the geometric interpretation of 

(b) How could you find 

5 A vector approach to the laws of sines and cosines

(a) From the figure we see that Use horizontal
and vertical components to write c in terms of i and j.

c � b � a.

� v � w �?

v � w?

v � mw	,

z�n � 1�zn,

a � b

c
�

sin � � sin �

sin �
.

a � b

c
�

cos 1
2 �� � ��

sin 1
2 �

Exercise 5

(b) Now find the magnitude of c, using the answer to
part (a), and simplify to the point where you have
proved the law of cosines.

(c) If c lies on the x-axis, then its j-component is zero.
Use this fact to prove the law of sines.

6 Euler’s formula and other results The following are some
interesting and unexpected results involving complex num-
bers and topics that have been previously discussed.

(a) Leonhard Euler (1707–1783) gave us the following
formula:

If we let we obtain or, equivalently,

an equation relating five of the most important numbers
in mathematics. Find e2� i.

ei� � 1 � 0,

ei� � �1	 � �,

ei	 � cos 	 � i sin 	

y

x

g
?

a
b

a
b

cA B

C

50 Design for a jet fighter Shown in the figure is a plan for the
top of a wing of a jet fighter.

(a) Approximate angle 

(b) Approximate the area of quadrilateral ABCD.

(c) If the fuselage is 5.8 feet wide, approximate the wing
span CC�.

�.

Exercise 50

AB

C

C�

D

136�

5.8�
17.2�

22.9�

5.7�

16�f
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(b) We define the logarithm of a complex number 
as follows:

where ln is the natural logarithm function, is an argu-
ment of z, and n is an integer. The principal value 
of LN z is the value that corresponds to and

Find the principal values of 
and LN i.

(c) We define the complex power w of a complex number
as follows:

We use principal values of LN z to find principal values
of Find principal values of and 

7 An interesting identity? Suppose are angles in
an oblique triangle. Prove or disprove the following state-
ment: The sum of the tangents of is equal to the
product of the tangents of .a, b, and g

a, b, and g

a, b, and g

i i.2izw.

zw � ew LN z

z � 0

LN ��1��� � 	 � �.
n � 0

	

LN z � ln � z � � i�	 � 2�n�,

z � 0 8 Forces of hanging wires A 5-pound ornament hangs from
two wires as shown in the figure. Show that the magnitudes
of the tensions (forces) in the wires are given by

Exercise 8

a b

T1 T2

� T1 � �
5 cos b

sin (a � b)
    and   � T2 � �

5 cos a
sin (a � b)

.
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Applications of mathematics sometimes require working simultaneously

with more than one equation in several variables—that is, with a system of

equations. In this chapter we develop methods for finding solutions that are

common to all the equations in a system. Of particular importance are the

techniques involving matrices, because they are well suited for computer

programs and can be readily applied to systems containing any number of

linear equations in any number of variables. We shall also consider systems

of inequalities and linear programming—topics that are of major importance

in business applications and statistics. The last part of the chapter provides

an introduction to the algebra of matrices and determinants.

9

Systems of Equations

and Inequalities

9.1 Systems of Equations

9.2 Systems of Linear

Equations in Two

Variables

9.3 Systems of

Inequalities

9.4 Linear Programming

9.5 Systems of Linear

Equations in More
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9.6 The Algebra of

Matrices

9.7 The Inverse of a

Matrix

9.8 Determinants

9.9 Properties of

Determinants

9.10 Partial Fractions
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Equations in Two
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Inequalities

9.4 Linear Programming

9.5 Systems of Linear

Equations in More

Than Two Variables

9.6 The Algebra of

Matrices

9.7 The Inverse of a

Matrix

9.8 Determinants

9.9 Properties of

Determinants

9.10 Partial Fractions



Consider the graphs of the two functions f and g, illustrated in Figure 1. In ap-
plications it is often necessary to find points such as and at
which the graphs intersect. Since is on each graph, the pair is a
solution of both of the equations and ; that is,

and

We say that is a solution of the system of equations (or simply system)

where the brace is used to indicate that the equations are to be treated simul-
taneously. Similarly, the pair is a solution of the system. To solve a sys-
tem of equations means to find all the solutions.

As a special case, consider the system

The graphs of the equations are the parabola and line sketched in Figure 2. The
following table shows that the points and are on both graphs.

Hence, and are solutions of the system.
The preceding discussion does not give us a strategy for actually finding

the solutions. The next two examples illustrate how to find the solutions of the
system using only algebraic methods.

E X A M P L E  1 Solving a system of two equations

Solve the system

S O L U T I O N If is a solution of the system, then the variable y in the
equation must satisfy the condition . Hence, we substitute

for y in :

substitute in 

subtract

factor

zero factor theorem

solve for xx � �1,     x � 3

x � 1 � 0, x � 3 � 0

�x � 1��x � 3� � 0

2x � 3x2 � 2x � 3 � 0

y � 2x � 3y � x2x2 � 2x � 3

y � 2x � 3x2

y � x2y � 2x � 3
�x, y�

�y � x2

y � 2x � 3

�3, 9���1, 1�

�3, 9���1, 1�

�y � x2

y � 2x � 3

�c, d�

�y � f �x�
y � g�x�

(a, b)

b � g�a�.b � f (a)

y � g�x�y � f �x�
�a, b�P�a, b�
Q�c, d�P�a, b�
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9.1
Systems of Equations

Figure 1
y

x

y � f (x)

y � g(x)

a c

b d

P(a, b)

Q(c, d)

(x, y) y � 2x � 3

9 � 2�3� � 3, or 9 � 99 � 32, or 9 � 9�3, 9�
1 � 2��1� � 3, or 1 � 11 � ��1�2, or 1 � 1��1, 1�

y � x2

Figure 2

y

x

(�1, 1)

(3, 9)

y � 2x � 3

y � x2



This gives us the x-values for the solutions of the system. To find the cor-
responding y-values, we may use either or . Using ,
we find that

and

Hence, the solutions of the system are and .
We could also have found the solutions by substituting in the

first equation, , obtaining

The remainder of the solution is the same. L

Given the system in Example 1, we could have solved one of the equa-
tions for x in terms of y and then substituted in the other equation, obtaining
an equation in y alone. Solving the latter equation would give us the y-values
for the solutions of the system. The x-values could then be found using one of
the given equations. In general, we may use the following guidelines, where u
and v denote any two variables (possibly x and y). This technique is called the
method of substitution.

E X A M P L E  2 Using the method of substitution

Solve the following system and then sketch the graph of each equation, show-
ing the points of intersection:

S O L U T I O N We must first decide which equation to solve and which vari-
able to solve for. Let’s examine the possibilities.

Solve the first equation for y:

Solve the first equation for x:

Solve the second equation for y:

Solve the second equation for x: x � 3 � 2y

y � �3 � x��2

x � 6 � y2

y � �26 � x

�x � y2 � 6

x � 2y � 3

2x � 3 � x2.

y � x2

y � 2x � 3
�3, 9���1, 1�

 if x � 3,  then y � 32 � 9.

 if x � �1, then y � ��1�2 � 1

y � x2y � 2x � 3y � x2

�x, y�
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Guidelines for the Method 
of Substitution for Two

Equations in Two Variables

1 Solve one of the equations for one variable u in terms of the other 
variable v.

2 Substitute the expression for u found in guideline 1 in the other equation,
obtaining an equation in v alone.

3 Find the solutions of the equation in v obtained in guideline 2.

4 Substitute the v-values found in guideline 3 in the equation of guideline 1
to find the corresponding u-values.

5 Check each pair found in guideline 4 in the given system.�u, v�

(continued)



Guideline 1 Looking ahead to guideline 2, we note that solving either equa-
tion for x will result in a simple substitution. Thus, we will use 
and follow the guidelines with and .

Guideline 2 Substitute the expression for x found in guideline 1 in the first
equation of the system:

substitute in 

simplify

Guideline 3 Solve the equation in guideline 2 for y:

factor 

zero factor theorem

solve for y

These are the only possible y-values for the solutions of the system.

Guideline 4 Use the equation from guideline 1 to find the corre-
sponding x-values:

Thus, possible solutions are and .

Guideline 5 Substituting and in , the first equation
of the system, yields , a true statement. Substituting and

in , the second equation of the system, yields ,
also a true statement. Hence, is a solution of the system. In a similar
manner, we may check that is also a solution.

The graphs of the two equations (a parabola and a line, respectively) are
sketched in Figure 3, showing the two points of intersection. L

In future examples we will not list the specific guidelines that are used in
finding solutions of systems.

In solving certain systems using the method of substitution, it is conve-
nient to let u or v in the guidelines denote an expression involving another vari-
able. This technique is illustrated in the next example with .

E X A M P L E  3 Using the method of substitution

Solve the following system and then sketch the graph of each equation, show-
ing the points of intersection:

�x2 � y2 � 25

x2 � y � 19

u � x2

�5, �1�
��3, 3�

�3 � 6 � 3x � 2y � 3y � 3
x � �3�3 � 9 � 6

x � y2 � 6y � 3x � �3

�5, �1���3, 3�

 if y � �1, then x � 3 � 2��1� � 3 � 2 � 5

 if y � 3,  then x � 3 � 2�3� � 3 � 6 � �3

x � 3 � 2y

y � 3,    y � �1

y � 3 � 0, y � 1 � 0

y2 � 2y � 3� y � 3�� y � 1� � 0

y2 � 2y � 3 � 0

x � y2 � 6x � 3 � 2y�3 � 2y� � y2 � 6

v � yu � x
x � 3 � 2y
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Figure 3

y

x

(�3, 3)

x � 2y � 3

x � y2 � 6

(5, �1)



S O L U T I O N We proceed as follows:

solve for 

substitute in 

simplify

factor

zero factor theorem

solve for y

These are the only possible y-values for the solutions of the system. To find the
corresponding x-values, we use :

Thus, the only possible solutions of the system are

We can check by substitution in the given equations that all four pairs are 
solutions.

The graph of is a circle of radius 5 with center at the origin,
and the graph of is a parabola with a vertical axis. The graphs are
sketched in Figure 4. The points of intersection correspond to the solutions of
the system.

There are, of course, other ways to find the solutions. We could solve the
first equation for , , and then substitute in the second, obtain-
ing . Another method is to solve the second equation for y,

, and substitute in the first. L

We can also consider equations in three variables x, y, and z, such as

Such an equation has a solution if substitution of a, b, and c, for x, y,
and z, respectively, yields a true statement. We refer to as an ordered
triple of real numbers. Systems of equations are equivalent systems provided
they have the same solutions. A system of equations in three variables and the
solutions of the system are defined as in the two-variable case. Similarly, we
can consider systems of any number of equations in any number of variables.

The method of substitution can be extended to these more complicated
systems. For example, given three equations in three variables, suppose that it
is possible to solve one of the equations for one variable in terms of the re-
maining two variables. By substituting that expression in each of the other
equations, we obtain a system of two equations in two variables. The solutions
of the two-variable system can then be used to find the solutions of the origi-
nal system.

�a, b, c�
�a, b, c�

x2y � xz � 3y � 4z3.

y � 19 � x2

25 � y2 � y � 19
x2 � 25 � y2x2

y � 19 � x2

x2 � y2 � 25

�4, 3�, ��4, 3�, �221, �2�, and ��221, �2�.

 If y � �2, then x2 � 19 � ��2� � 21 and x � �221

 If y � 3,  then x 2 � 19 � 3 � 16  and x � �4

x2 � 19 � y

y � 3,    y � �2

y � 3 � 0, y � 2 � 0

� y � 3�� y � 2� � 0

y2 � y � 6 � 0

x2 � y2 � 25x2 � 19 � y�19 � y� � y2 � 25

x 2x 2 � y � 19x2 � 19 � y
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Figure 4

y

x

x2 � y � 19

2

2 ��21, �2����21, �2�

(�4, 3) (4, 3)

x2 � y2 � 25



E X A M P L E  4 Solving a system of three equations

Solve the system

S O L U T I O N We proceed as follows:

solve for z

equivalent system

We now find the solutions of the last system:

solve for x

zero factor theorem

solve for y

These are the only possible y-values for the solutions of the system.
To obtain the corresponding x-values, we substitute for y in the equation

, obtaining

Using gives us the corresponding z-values

Thus, the solutions of the original system must be among the or-
dered triples

Checking each shows that the three ordered triples are solutions of the system.
L

E X A M P L E  5 An application of a system of equations

Is it possible to construct an aquarium with a glass top and two square ends
that holds of water and requires of glass? (Disregard the thickness
of the glass.)

40 ft216 ft3

�0, �
1
3 , 5

3�, �1, 0, 1�, and �5
2 , 1

2 , 0�.

�x, y, z�

z �
5
3,    z � 1, and z � 0.

z � 1 � 2y

x � 0, x � 1, and x �
5
2 .

x � 3y � 1

y � �
1
3 , y � 0,  y �

1
2

 3y � 1 � 0,   y � 0, 1 � 2y � 0

�3y � 1�y�1 � 2y� � 0

x � 3y � 1 � 0x � 3y � 1

�x � 3y � 1 � 0

xy�1 � 2y� � 0

�x � y � �1 � 2y� � 2

xy�1 � 2y� � 0

2y � z � 1z � 1 � 2y

�x � y � z � 2

xyz � 0

2y � z � 1
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substitute z � 1 � 2y in the 
first two equations

substitute in 
xy�1 � 2y� � 0

x � 3y � 1



S O L U T I O N We begin by sketching a typical aquarium and labeling it as in
Figure 5, with x and y in feet. Referring to the figure and using formulas for
volume and area, we see that

2 ends, 2 sides, top, and bottom

Figure 5

Since the volume is to be and the area of the glass required is ,
we obtain the following system of equations:

We find the solutions as follows:

solve for y

substitute in 

cancel x, and divide by 2

multiply by x

subtract

We next look for rational solutions of the last equation. Dividing the polyno-
mial synthetically by gives us

Thus, one solution of is 2, and the remaining two solu-
tions are zeros of the quotient —that is, roots of the depressed
equation

x2 � 2x � 16 � 0.

x2 � 2x � 16
x3 � 20x � 32 � 0

 1 2 �16 0

 2 4 �32
 2 � 1 0 �20 32

x � 2x 3 � 20x � 32

20xx3 � 20x � 32 � 0

�x � 0�x3 � 32 � 20x

x2 �
32

x
� 20

2x2 � 4xy � 40y �
16

x2
 2x2 � 4x�16

x2� � 40

x 2y � 16y �
16

x2

� x2y � 16

2x2 � 4xy � 40

40 ft216 ft3

y x

x

 square feet of glass required � 2x2 � 4xy.

length � width � height volume of the aquarium � x2y
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(continued)



By the quadratic formula,

Since x is positive, we may discard . Hence, the only possible
values of x are

The corresponding y-values can be found by substituting for x in the equa-
tion . Letting gives us . Using these values, we ob-
tain the dimensions 2 feet by 2 feet by 4 feet for the aquarium.

Letting , we obtain , which simpli-
fies to . Thus, approximate dimensions for another
aquarium are 3.12 feet by 3.12 feet by 1.64 feet. L

y �
1
8 �9 � 217 � 
 1.64

y � 16���1 � 217 �2x � �1 � 217

y �
16
4 � 4x � 2y � 16�x2

x � 2 and x � �1 � 217 
 3.12.

x � �1 � 217

x �
�2 � 222 � 4�1���16�

2�1�
�

�2 � 2217

2
� �1 � 217.
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Exer.1–30: Use the method of substitution to solve the system.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18 � x 2 � y2 � 1

y � 2x � �3�x 2 � y2 � 16

2y � x � 4

� x 2 � y2 � 16

y � 2x � �1� x 2 � y2 � 9

y � 3x � 2

�x 2 � y2 � 25

3x � 4y � �25� x 2 � y2 � 8

y � x � 4

�3x � 4y � 25

x 2 � y2 � 25� x � 3y � 5

x 2 � y2 � 25

�4x � 5y � 2

8x � 10y � �5� 2x � 3y � 1

�6x � 9y � 4

�3x � 4y � 20 � 0

3x � 2y � 8 � 0� x � 2y � �1

2x � 3y � 12

�x � y3 � 1

2x � 9y2 � 2�2y � x 2

y � 4x 3

� y2 � x

x � 2y � 3 � 0� y2 � 1 � x

x � 2y � 1

� y � x2 � 1

x � y � 3� y � x2 � 4

y � 2x � 1

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 Find the values of b such that the system represented in the
graph on the next page has
(a) one solution (b) two solutions (c) no solution

�x � 2z � 1

2y � z � 4

xyz � 0
�x 2 � z2 � 5

2x � y � 1

y � z � 1

�2x � 3y � z2 � 0

x � y � z2 � �1

x 2 � xy � 0
� x � 2y � z � �1

2x � y � z � 9

x � 3y � 3z � 6

�6x 3 � y3 � 1

3x 3 � 4y3 � 5�x 2 � y2 � 4

x 2 � y2 � 12

�25y2 � 16x 2 � 400

9y 2 � 4x 2 � 36� y 2 � 4x2 � 4

9y2 � 16x 2 � 140

� x � y2 � 4y � 5

x � y � 1� y � 20�x 2

y � 9 � x 2

�y �
10

x � 3

y � �x � 8
�y �

4

x � 2

y � x � 5

� xy � 2

3x � y � 5 � 0��x � 1�2 � � y � 2�2 � 10

x � y � 1

9.1 E x e r c i s e s



Exercise 33

Interpret (a)–(c) graphically.

34 Find the values of b such that the system

has

(a) one solution (b) two solutions

(c) no solution

Interpret (a)–(c) graphically.

35 Is there a real number x such that ? Decide by dis-
playing graphically the system

36 Is there a real number x such that ? Decide by dis-
playing graphically the system

37 Shown in the figure is the graph of and a line of
slope m that passes through the point (4, 2). Find the value
of m such that the line intersects the graph only at (4, 2) and
interpret graphically.

Exercise 37 y

x

(4, 2)

x � y2

x � y2

� y � x

y � log x

x � log x

� y � x

y � 2�x

x � 2�x

�x2 � y2 � 4

y � x � b

y

x

y � x2

y � 4x � b

38 Shown in the figure is the graph of and a line of
slope m that passes through the point . Find the value
of m such that the line intersects the graph only at ,
and interpret graphically.

Exercise 38

Exer. 39–40: Find an exponential function of the form
for the graph.

39 40

41 The perimeter of a rectangle is 40 inches, and its area is 
96 . Find its length and width.

42 Constructing tubing Sections of cylindrical tubing are to 
be made from thin rectangular sheets that have an area of
200 (see the figure). Is it possible to construct a tube that
has a volume of 200 ? If so, find r and h.

Exercise 42

h h

r

200 in2

in3

in2

in2

(�1, 9)

(0, 3) (1, w)

y

x

(1, 7)

(0, 3)(�1, f)

y

x

f(x) � bax � c

y

x

(1, 1)

y � x2

�1, 1�
�1, 1�
y � x2
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43 Fish population In fishery science, spawner-recruit func-
tions are used to predict the number of adult fish R in next
year’s breeding population from an estimate S of the num-
ber of fish presently spawning.

(a) For a certain species of fish, . Esti-
mate a and b from the data in the following table.

(b) Predict the breeding population for the year 2010.

44 Fish population Refer to Exercise 43. Ricker’s spawner-
recruit function is given by

for positive constants a and b. This relationship predicts low
recruitment from very high stocks and has been found to be
appropriate for many species, such as arctic cod. Rework
Exercise 43 using Ricker’s spawner-recruit function.

45 Competition for food A competition model is a collection 
of equations that specifies how two or more species interact
in competition for the food resources of an ecosystem. Let
x and y denote the numbers (in hundreds) of two competing
species, and suppose that the respective rates of growth 
and are given by

Determine the population levels at which both rates 
of growth are zero. (Such population levels are called
stationary points.)

46 Fencing a region A rancher has 2420 feet of fence to 
enclose a rectangular region that lies along a straight river.
If no fence is used along the river (see the figure),
is it possible to enclose 10 acres of land? Recall that

.
Exercise 46
1 acre � 43,560 ft2

�x, y�

R2 � 0.02y�100 � y � 0.5x�.
R1 � 0.01x�50 � x � y�,

R2

R1

R � aSe�bS

R � aS��S � b�

47 Constructing an aquarium Refer to Example 5. Is it pos-
sible to construct a small aquarium with an open top and
two square ends that holds 2 of water and requires 8 
of glass? If so, approximate the dimensions. (Disregard the
thickness of the glass.)

48 Isoperimetric problem The isoperimetric problem is to
prove that of all plane geometric figures with the same
perimeter (isoperimetric figures), the circle has the greatest
area. Show that no rectangle has both the same area and the
same perimeter as any circle.

49 Moiré pattern A moiré pattern is formed when two geo-
metrically regular patterns are superimposed. Shown in the
figure is a pattern obtained from the family of circles

and the family of horizontal lines for
integers m and n.

(a) Show that the points of intersection of the circle
and the line lie on a parabola.

(b) Work part (a) using the line .

Exercise 49

50 Dimensions of a pill A spherical pill has diameter 1 centi-
meter. A second pill in the shape of a right circular cylinder
is to be manufactured with the same volume and twice the
surface area of the spherical pill.

(a) If r is the radius and h is the height of the cylindrical
pill, show that and . Conclude
that .

(b) The positive solutions of are ap-
proximately 0.172 and 0.903. Find the corresponding
heights, and interpret these results.

6r 3 � 6r � 1 � 0

6r 3 � 6r � 1 � 0
r 2 � rh � 16r 2h � 1

y

x

y � m

x2 � y2 � n2

y � n � 2

y � n � 1x2 � y2 � n2

y � mx2 � y2 � n2

ft2ft3
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Year 2007 2008 2009

Number spawning 40,000 60,000 72,000



51 Hammer throw A hammer thrower is working on his form
in a small practice area. The hammer spins, generating a 
circle with a radius of 5 feet, and when released, it hits a tall
screen that is 50 feet from the center of the throwing area.
Let coordinate axes be introduced as shown in the figure
(not to scale).

(a) If the hammer is released at and travels in the
tangent direction, where will it hit the screen?

(b) If the hammer is to hit at , where on the circle
should it be released?

Exercise 51

y

x

x

y

Path of thrown
hammer

Path of spinning
hammer

Point of
release

(0, �50)5

�0, �50�

��4, �3�

52 Path of a tossed ball A person throws a ball from the edge
of a hill, at an angle of 45� with the horizontal, as illus-
trated in the figure. The ball lands 50 feet down the hill,
which has slope . Using calculus, it can be shown that the
path of the ball is given by for some con-
stants a and c.

(a) Disregarding the height of the person, find an equation
for the path.

(b) What is the maximum height of the ball off the ground?

Exercise 52

y

x

50�

45�

y � ax 2 � x � c
�

3
4
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An equation (or, equivalently, ), with a and b
not both zero, is a linear equation in two variables x and y. Similarly, the equa-
tion is a linear equation in three variables x, y, and z. We
may also consider linear equations in four, five, or any number of variables.
The most common systems of equations are those in which every equation is
linear. In this section we shall consider only systems of two linear equations
in two variables. Systems involving more than two variables are discussed in
a later section.

ax � by � cz � d

ax � by � c � 0ax � by � c9.2
Systems of Linear

Equations in
Two Variables
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Theorem on Equivalent Systems Given a system of equations, an equivalent system results if

(1) two equations are interchanged.

(2) an equation is multiplied or divided by a nonzero constant.

(3) a constant multiple of one equation is added to another equation.

Two systems of equations are equivalent if they have the same solutions.
To find the solutions of a system, we may manipulate the equations until we
obtain an equivalent system of simple equations for which the solutions can be
found readily. Some manipulations (or transformations) that lead to equivalent
systems are stated in the next theorem.

A constant multiple of an equation is obtained by multiplying each term
of the equation by the same nonzero constant k. When applying part (3) of the
theorem, we often use the phrase add to one equation k times any other equa-
tion. To add two equations means to add corresponding sides of the equations.

The next example illustrates how the theorem on equivalent systems may
be used to solve a system of linear equations.

E X A M P L E  1 Using the theorem on equivalent systems

Solve the system

S O L U T I O N We often multiply one of the equations by a constant that will
give us the additive inverse of the coefficient of one of the variables in the
other equation. Doing so enables us to add the two equations and obtain an
equation in only one variable, as follows:

multiply the second equation by 3

add the first equation to the second

We see from the last system that , and hence . To find the
corresponding y-value, we substitute 2 for x in , obtaining

. Thus, is the only solution of the system.�2, �1�y � �1
x � 3y � �1

x �
14
7 � 27x � 14

� x � 3y � �1

7x � 14

� x � 3y � �1

6x � 3y � 15

� x � 3y � �1

2x � y � 5



There are many other ways to use the theorem on equivalent systems to
find the solution. Another approach is to proceed as follows:

given

multiply the first equation by 

add the first equation to the second

We see from the last system that , or . To find the correspon-
ding x-value, we could substitute for y in , obtaining .
Hence, is the solution.

The graphs of the two equations are lines that intersect at the point ,
as shown in Figure 1. L

The technique used in Example 1 is called the method of elimination,
since it involves the elimination of a variable from one of the equations. The
method of elimination usually leads to solutions in fewer steps than does the
method of substitution discussed in the preceding section.

E X A M P L E  2 A system of linear equations with 
an infinite number of solutions

Solve the system

S O L U T I O N Multiplying the second equation by gives us

Thus, is a solution if and only if —that is, . It
follows that the solutions consist of ordered pairs of the form ,
where a is any real number. If we wish to find particular solutions, we may
substitute various values for a. A few solutions are ,

, and .
It is incorrect to say that the solution is “all reals.” It is correct to say

that the solution is the set of all ordered pairs such that , which
can be written

The graph of each equation is the same line, as shown in Figure 2. L

��x, y� � 3x � y � 6
.

3x � y � 6

�22, 6 � 322 ���2, 12�
�0, 6�, �1, 3�, �3, �3�

�a, 6 � 3a�
b � 6 � 3a3a � b � 6�a, b�

�3x � y � 6

3x � y � 6

1
2

�3x � y � 6

6x � 2y � 12

�2, �1�
�2, �1�

x � 2x � 3y � �1�1
y � �1�7y � 7

��2x � 6y � 2

� 7y � 7

�2��2x � 6y � 2

2x � y � 5

� x � 3y � �1

2x � y � 5
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Figure 1

y

x

x � 3y � �1

2x � y � 5

(2, �1)

Figure 2

y

x

3x � y � 6
6x � 2y � 12



E X A M P L E 3 A system of linear equations with no solutions

Solve the system

S O L U T I O N If we add to the second equation times the first equation,
, we obtain the equivalent system

The last equation can be written , which is false for every ordered
pair . Thus, the system has no solution.

The graphs of the two equations in the given system are lines that have the
same slope and hence are parallel (see Figure 3). The conclusion that the sys-
tem has no solution corresponds to the fact that these lines do not intersect.

L

The preceding three examples illustrate typical outcomes of solving a sys-
tem of two linear equations in two variables: there is either exactly one solu-
tion, an infinite number of solutions, or no solution. A system is consistent if
it has at least one solution. A system with an infinite number of solutions is de-
pendent and consistent. A system is inconsistent if it has no solution.

Since the graph of any linear equation is a line, exactly one
of the three cases listed in the following table holds for any system of two such
equations.

In practice, there should be little difficulty determining which of the three
cases occurs. The case of the unique solution will become apparent when suit-
able transformations are applied to the system, as illustrated in Example 1. The
case of an infinite number of solutions is similar to that of Example 2, where
one of the equations can be transformed into the other. The case of no solution
is indicated by a contradiction, such as the statement , which appeared
in Example 3.

In the process of solving a system, suppose we obtain for x a rational num-
ber such as . Substituting for x to find the value of y is cumbersome.
It is easier to select a different multiplier for each of the original equations that
will enable us to eliminate x and solve for y. This technique is illustrated in the
next example.

�
41
29�

41
29

0 � 8

ax � by � c

�x, y�
0x � 0y � 8

�3x � y � 6

0 � 8

�6x � 2y � �12
�2

�3x � y � 6

6x � 2y � 20
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Figure 3

y

x

3x � y � 6 6x � 2y � 20

Characteristics of a System of Two Linear Equations in Two Variables

Graphs Number of solutions Classification

Nonparallel lines One solution Consistent system

Identical lines Infinite number of solutions Dependent and consistent system

Parallel lines No solution Inconsistent system



E X A M P L E 4 Solving a system

Solve the system

S O L U T I O N We select multipliers to eliminate y. (The least common mul-
tiple of 7 and 2 is 14.)

Adding the first equation to the second gives us

Next, we return to the original system and select multipliers to eliminate x.
(The least common multiple of 4 and 3 is 12.)

Adding the equations gives us

Hence, the solution is .

C h e c k  

We substitute the values of x and y into the original equations.

so does the second

L

Certain applied problems can be solved by introducing systems of two lin-
ear equations, as illustrated in the next two examples.

E X A M P L E  5 An application of a system of linear equations

A produce company has a 100-acre farm on which it grows lettuce and cab-
bage. Each acre of cabbage requires 600 hours of labor, and each acre of let-
tuce needs 400 hours of labor. If 45,000 hours are available and if all land and
labor resources are to be used, find the number of acres of each crop that
should be planted.

 3x � 2y � 3��
41
29 � � 2�69

29� � �
123
29 �

138
29 � �

261
29 � �9

 4x � 7y � 4��
41
29 � � 7�69

29� � �
164
29 �

483
29 �

319
29 � 11

�x, y� � ��
41
29 , 69

29�
��41

29, 69
29�

29y � 69, so y �
69
29 .

� 12x � 21y � 33

�12x � 8y � 36

� 4x � 7y � 11

3x � 2y � �9

29x � �41, so x � �
41
29 .

� 8x � 14y � 22

21x � 14y � �63

�4x � 7y � 11

3x � 2y � �9
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multiply the first equation by 2

multiply the second equation by 7

original system

multiply the first equation by 3

multiply the second equation by �4

�

first equation 
checks



S O L U T I O N Let us introduce variables to denote the unknown quantities as
follows:

Thus, the number of hours of labor required for each crop can be expressed
as follows:

Using the facts that the total number of acres is 100 and the total number of
hours available is 45,000 leads to the following system:

We next use the method of elimination:

divide the second equation by 100

multiply the first equation by 

add the first equation to the second

We see from the last equation that , or . Substituting 75
for y in gives us . Hence, the company should plant
25 acres of cabbage and 75 acres of lettuce.

C h e c k Planting 25 acres of cabbage and 75 acres of lettuce requires
of labor. Thus, all 100 acres of land

and 45,000 hours of labor are used. L

E X A M P L E  6 Finding the speed of the current in a river

A motorboat, operating at full throttle, made a trip 4 miles upstream (against
a constant current) in 15 minutes. The return trip (with the same current and at
full throttle) took 12 minutes. Find the speed of the current and the equivalent
speed of the boat in still water.

S O L U T I O N We begin by introducing variables to denote the unknown
quantities. Thus, let

y � speed of current �in mi�hr�.
x � speed of boat �in mi�hr�

�25��600� � �75��400� � 45,000 hours

x � 25x � y � 100
y � 75�2y � �150

��6x � 6y � �600

�2y � �150

�6��6x � 6y � �600

6x � 4y � 450

� x � y � 100

6x � 4y � 450

� x � y � 100

600x � 400y � 45,000

 400y � number of hours required for lettuce

 600x � number of hours required for cabbage

y � number of acres of lettuce

x � number of acres of cabbage
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We plan to use the formula , where d denotes the distance traveled, r the
rate, and t the time. Since the current slows the boat as it travels upstream but
adds to its speed as it travels downstream, we obtain

The time (in hours) traveled in each direction is

The distance is 4 miles for each trip. Substituting in gives us the system

Applying the theorem on equivalent systems, we obtain

multiply the first equation by 4 and the second by 5

add the first equation to the second

We see from the last equation that , or . Substituting 18 for x
in gives us . Hence, the speed of the boat in still water is

, and the speed of the current is .

C h e c k The upstream rate is , and the downstream rate is
. An upstream 4-mile trip would take ,

and a downstream 4-mile trip would take .4
20 �

1
5 hr � 12 min

4
16 �

1
4 hr � 15 min18 � 2 � 20 mi�hr

18 � 2 � 16 mi�hr

2 mi�hr18 mi�hr
y � 2x � y � 20

x � 182x � 36

� x � y � 16

2x � 36

� x � y � 16

x � y � 20

�4 � �x � y��1
4�

4 � �x � y��1
5�

d � rt

 downstream time �
12
60 �

1
5 hr.

 upstream time �
15
60 �

1
4 hr

 downstream rate � x � y �in mi�hr�.
 upstream rate � x � y �in mi�hr�

d � rt
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L

�

Exer. 1–22: Solve the system.

1 2

3 4

5 6

7 8 �2x � 8y � 7

3x � 5y � 4�5x � 6y � 4

3x � 7y � 8

�9u � 2v � 0

3u � 5v � 17�3r � 4s � 3

r � 2s � �4

�7x � 8y � 9

4x � 3y � �10�2x � 5y � 16

3x � 7y � 24

�4x � 5y � 13

3x � y � �4�2x � 3y � 2

x � 2y � 8

9 10

11 12

13 14

15 16 � 3p � q � 7

�12p � 4q � 3� 2x � 3y � 5

�6x � 9y � 12

�0.11x � 0.03y � 0.25

0.12x � 0.05y � 0.70��0.03x � 0.07y � 0.23

0.04x � 0.05y � 0.15

�25 x � 23 y � 1423

23 x � 225 y � �225� 23x � 22y � 223

222x � 23y � 22

�1
2 t �

1
5 v �

3
2

2
3 t �

1
4 v �

5
12

�1
3 c �

1
2 d � 5

c �
2
3 d � �1
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17 18

19 20

21

22

23 Ticket sales The price of admission to a high school play
was $3.00 for students and $4.50 for nonstudents. If 450 tick-
ets were sold for a total of $1555.50, how many of each kind
were purchased?

24 Air travel An airline that flies from Los Angeles to 
Albuquerque with a stopover in Phoenix charges a fare 
of $90 to Phoenix and a fare of $120 from Los Angeles to 
Albuquerque. A total of 185 passengers boarded the plane 
in Los Angeles, and fares totaled $21,000. How many pas-
sengers got off the plane in Phoenix?

25 Crayon dimensions A crayon 8 centimeters in length and 
1 centimeter in diameter will be made from 5 of colored
wax. The crayon is to have the shape of a cylinder sur-
mounted by a small conical tip (see the figure). Find the
length x of the cylinder and the height y of the cone.

Exercise 25

26 Rowing a boat A man rows a boat 500 feet upstream against
a constant current in 10 minutes. He then rows 300 feet
downstream (with the same current) in 5 minutes. Find the
speed of the current and the equivalent rate at which he can
row in still water.

27 Table top dimensions A large table for a conference room 
is to be constructed in the shape of a rectangle with two

8 cm

x
y

cm3

�
3

x � 1
�

4

y � 2
� 2

6

x � 1
�

7

y � 2
� �3

�Hint: Let u �
1

x
and v �

1

y
.��

2

x
�

3

y
� �2

4

x
�

5

y
� 1

�3x � 7y � 9

y � 5�2y � 5x � 0

3y � 4x � 0

� x � 5y � 2

3x � 15y � 6� 3m � 4n � 2

�6m � 8n � �4

semicircles at the ends (see the figure). The table is to have
a perimeter of 40 feet, and the area of the rectangular por-
tion is to be twice the sum of the areas of the two ends. Find
the length l and the width w of the rectangular portion.

Exercise 27

28 Investment income A woman has $19,000 to invest in two
funds that pay simple interest at the rates of 4% and 6% per
year. Interest on the 4% fund is tax-exempt; however, in-
come tax must be paid on interest on the 6% fund. Being in
a high tax bracket, the woman does not wish to invest the
entire sum in the 6% account. Is there a way of investing the
money so that she will receive $1000 in interest at the end
of one year?

29 Bobcat population A bobcat population is classified by age
into kittens (less than 1 year old) and adults (at least 1 year
old). All adult females, including those born the prior year,
have a litter each June, with an average litter size of 3 kit-
tens. The springtime population of bobcats in a certain area
is estimated to be 6000, and the male-female ratio is one.
Estimate the number of adults and kittens in the population.

30 Flow rates A 300-gallon water storage tank is filled by a
single inlet pipe, and two identical outlet pipes can be used
to supply water to the surrounding fields (see the figure). It
takes 5 hours to fill an empty tank when both outlet pipes
are open. When one outlet pipe is closed, it takes 3 hours to
fill the tank. Find the flow rates (in gallons per hour) in and
out of the pipes.

Exercise 30

l

w
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31 Mixing a silver alloy A silversmith has two alloys, one con-
taining 35% silver and the other 60% silver. How much of
each should be melted and combined to obtain 100 grams of
an alloy containing 50% silver?

32 Mixing nuts A merchant wishes to mix peanuts costing 
$3 per pound with cashews costing $8 per pound to obtain
60 pounds of a mixture costing $5 per pound. How many
pounds of each variety should be mixed?

33 Air travel An airplane, flying with a tail wind, travels
1200 miles in 2 hours. The return trip, against the wind,
takes hours. Find the cruising speed of the plane and the
speed of the wind (assume that both rates are constant).

34 Filling orders A stationery company sells two types of
notepads to college bookstores, the first wholesaling for 50¢
and the second for 70¢. The company receives an order for
500 notepads, together with a check for $286. If the order
fails to specify the number of each type, how should the
company fill the order?

35 Acceleration As a ball rolls down an inclined plane, its 
velocity (in ) at time t (in seconds) is given by

for initial velocity and acceleration a (in
). If and , find and a.

36 Vertical projection If an object is projected vertically
upward from an altitude of feet with an initial velocity 
of , then its distance above the ground after 
t seconds is

If and , what are and ?

37 Planning production A small furniture company manufac-
tures sofas and recliners. Each sofa requires 8 hours of labor
and $180 in materials, while a recliner can be built for $105
in 6 hours. The company has 340 hours of labor available
each week and can afford to buy $6750 worth of materials.
How many recliners and sofas can be produced if all labor
hours and all materials must be used?

38 Livestock diet A rancher is preparing an oat-cornmeal 
mixture for livestock. Each ounce of oats provides 4 grams
of protein and 18 grams of carbohydrates, and an ounce of
cornmeal provides 3 grams of protein and 24 grams of 
carbohydrates. How many ounces of each can be used
to meet the nutritional goals of 200 grams of protein and
1320 grams of carbohydrates per feeding?

39 Services swap A plumber and an electrician are each doing
repairs on their offices and agree to swap services. The

s0v0s�2� � 116s�1� � 84

s�t� � �16t 2 � v0t � s0.

s�t�ft�secv0

s0

v0v�5� � 25v�2� � 16cm�sec2

v0v�t� � v0 � at
cm�secv�t�

2 1
2

number of hours spent on each of the projects is shown in
the following table.

They would prefer to call the matter even, but because of tax
laws, they must charge for all work performed. They agree
to select hourly wage rates so that the bill on each project
will match the income that each person would ordinarily re-
ceive for a comparable job.

(a) If x and y denote the hourly wages of the plumber and
electrician, respectively, show that

and

Describe the solutions to this system.

(b) If the plumber ordinarily makes $35 per hour, what
should the electrician charge?

40 Find equations for the altitudes of the triangle with vertices
, , and , and find the point at

which the altitudes intersect.

41 Warming trend in Paris As a result of urbanization, the
temperatures in Paris have increased. In 1891 the average
daily minimum and maximum temperatures were 5.8�C and
15.1�C, respectively. Between 1891 and 1968, these average
temperatures rose and , respectively.
Assuming the increases were linear, find the year when the
difference between the minimum and maximum tempera-
tures was 9�C, and determine the corresponding average
maximum temperature.

42 Long distance telephone rates A telephone company
charges customers a certain amount for the first minute of 
a long distance call and another amount for each additional
minute. A customer makes two calls to the same city—
a 36-minute call for $2.93 and a 13-minute call for $1.09.

(a) Determine the cost for the first minute and the cost for
each additional minute.

(b) If there is a federal tax rate of 3.2% and a state tax rate
of 7.2% on all long distance calls, find, to the nearest
minute, the longest call to the same city whose cost will
not exceed $5.00.

0.011�C�yr0.019�C�yr

C�3, �8�B�5, 4�A��3, 2�

4x � 6y � 11y.6x � 5y � 10x

Plumber’s Electrician’s
office office

Plumber’s hours 6 4

Electrician’s hours 5 6
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In Chapter 2 we restricted our discussion of inequalities to inequalities in one
variable. We shall now consider inequalities in two variables x and y, such as
those shown in the following illustration.

Inequalities in x and y

A solution of an inequality in x and y is an ordered pair that yields
a true statement if a and b are substituted for x and y, respectively. To solve an
inequality in x and y means to find all the solutions. The graph of such an 
inequality is the set of all points in an xy-plane that correspond to the 
solutions. Two inequalities are equivalent if they have the same solutions.

Given an inequality in x and y, if we replace the inequality symbol with
an equal sign, we obtain an equation whose graph usually separates the
xy-plane into two regions. We shall consider only equations having the 
property that if R is one such region and if a test point in R yields a
solution of the inequality, then every point in R yields a solution. The follow-
ing guidelines may then be used to sketch the graph of the inequality.

� p, q�

�a, b�

�a, b�

x2 � y2 � 163x � 4y � 12y2 � x � 4

9.3
Systems of Inequalities

I L L U S T R A T I O N

43 VCR taping An avid tennis watcher wants to record 6 hours
of a major tournament on a single tape. Her tape can hold 
5 hours and 20 minutes at the LP speed and 8 hours at the
slower SLP speed. The LP speed produces a better quality
picture, so she wishes to maximize the time recorded at 
the LP speed. Find the amount of time to be recorded at
each speed.

44 Price and demand Suppose consumers will buy 1,000,000
T-shirts if the selling price is $15, but for each $1 increase
in price, they will buy 100,000 fewer T-shirts. Moreover,
suppose vendors will order 2,000,000 T-shirts if the selling
price is $20, and for every $1 increase in price, they will
order an additional 150,000.

(a) Express the number Q of T-shirts consumers will buy if
the selling price is p dollars.

(b) Express the number K of T-shirts vendors will order if
the selling price is p dollars.

(c) Determine the market price—that is, the price when
.Q � K

Exer. 45–48: Solve the system for a and b. (Hint: Treat
terms such as , cos x, and sin x as “constant coefficients.”)

45

46

47

48 � a cos x � b sin x � 0

�a sin x � b cos x � sin x

� a cos x � b sin x � 0

�a sin x � b cos x � tan x

� ae�x � be4x � 0

�ae�x � b�4e4x� � 2

� ae3x � be�3x � 0

a�3e3x� � b��3e�3x� � e3x

e3x



The use of these guidelines is demonstrated in the next example.

E X A M P L E  1 Sketching the graph of an inequality

Find the solutions and sketch the graph of the inequality .

S O L U T I O N

Guideline 1 We replace with , obtaining . The graph of this
equation is a parabola, symmetric with respect to the x-axis and having 
x-intercept �4 and y-intercepts . Since the inequality symbol is , we
sketch the parabola using dashes, as in Figure 1.

Guideline 2 The graph in guideline 1 separates the xy-plane into two regions,
one to the left of the parabola and the other to the right. Let us choose test
points and in the regions (see Figure 1) and substitute for x and
y in as follows:

T e s t  p o i n t  LS:
RS:

Since is a false statement, is not a solution of the inequality.
Hence, no point to the left of the parabola is a solution, and we leave that re-
gion unshaded.

T e s t  p o i n t  LS:
RS:

Since is a true statement, is a solution of the inequality. Hence,
all points to the right of the parabola are solutions, so we shade this region, as
in Figure 2. L

A linear inequality is an inequality that can be written in one of the fol-
lowing forms, where a, b, and c are real numbers:

ax � by � c, ax � by � c, ax � by � c, ax � by 
 c

�0, 0�0 � 4

0 � 4 � 4
02 � 0�0, 0�

��5, 0�0 � �1

�5 � 4 � �1
02 � 0��5, 0�

y2 � x � 4
�0, 0���5, 0�

��2

y2 � x � 4��

y2 � x � 4
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Guidelines for 
Sketching the Graph of 
an Inequality in x and y

1 Replace the inequality symbol with an equal sign, and graph the result-
ing equation. Use dashes if the inequality symbol is or to indicate
that no point on the graph yields a solution. Use a solid line or curve for

or to indicate that solutions of the equation are also solutions of the
inequality.

2 If R is a region of the xy-plane determined by the graph in guideline 1 
and if a test point in R yields a solution of the inequality, then every
point in R yields a solution. Shade R to indicate this fact. If is not a
solution, then no point in R yields a solution and R is left unshaded.

� p, q�
� p, q�


�

��

Figure 1

y

x

(�5, 0)

(0, 0)

y2 � x � 4

Figure 2

y

x

y2 � x � 4



The line separates the xy-plane into two half-planes, as illus-
trated in Figure 3. The solutions of the inequality consist of all points in one
of these half-planes, where the line is included for or and is not included
for or . For a linear inequality, only one test point is required, be-
cause if is a solution, then the half-plane with in it contains all the
solutions, whereas if is not a solution, then the other half-plane contains
the solutions.

E X A M P L E  2 Sketching the graph of a linear inequality

Sketch the graph of the inequality .

S O L U T I O N Replacing with gives us the line , sketched
with dashes in Figure 4. This line separates the xy-plane into two half-planes,
one above the line and the other below the line. It is convenient to choose the
test point above the line and substitute in , as follows:

T e s t  p o i n t  LS:
RS: 12

Since is a false statement, is not a solution. Thus, no point above
the line is a solution, and the solutions of are given by the
points in the half-plane below the line. The graph is sketched in Figure 5.

Figure 5

L

As we did with equations, we sometimes work simultaneously with sev-
eral inequalities in two variables—that is, with a system of inequalities. The
solutions of a system of inequalities are the solutions common to all inequal-
ities in the system. The graph of a system of inequalities consists of the points
corresponding to the solutions. The following examples illustrate a method for
solving systems of inequalities.

y

x

3x � 4y � 12
�0, 0�0 � 12

3 � 0 � 4 � 0 � 0 � 0 � 0�0, 0�

3x � 4y � 12�0, 0�

3x � 4y � 12��

3x � 4y � 12

� p, q�
� p, q�� p, q�

� p, q���

�

ax � by � c
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Figure 4

y

x

(0, 0)

3x � 4y � 12

Figure 3

y

x

Half-plane

Half-plane

ax � by � c



E X A M P L E  3 Solving a system of linear inequalities

Sketch the graph of the system

S O L U T I O N We replace each with and then sketch the resulting lines, as
shown in Figure 6. Using the test point , we see that the solutions of the
system correspond to the points below (and on) the line and above
(and on) the line . Shading these half-planes with different colors, as
in Figure 6, we have as the graph of the system the points that are in both re-
gions, indicated by the purple portion of the figure. L

E X A M P L E  4 Solving a system of linear inequalities

Sketch the graph of the system

S O L U T I O N The first two inequalities are the same as those considered in
Example 3, and hence the points on the graph of the system must lie within the
purple region shown in Figure 6. In addition, the third and fourth inequalities
in the system tell us that the points must lie in the first quadrant or on its
boundaries. This gives us the region shown in Figure 7. L

E X A M P L E  5 Solving a system of inequalities containing absolute values

Sketch the graph of the system

S O L U T I O N Using properties of absolute values (listed on page 108), we see
that is a solution of the system if and only if both of the following con-
ditions are true:

Thus, a point on the graph of the system must lie between (or on) the ver-
tical lines and also either below the horizontal line or above
the line . The graph is sketched in Figure 8. L

E X A M P L E  6 Solving a system of inequalities

Sketch the graph of the system

�x2 � y2 � 16

x � y 
 2

y � 1
y � �1x � �2

�x, y�

(2) y � �1 or y � 1

(1) �2 � x � 2

�x, y�

�� x � � 2

� y � � 1

�
x � y � 4

2x � y � 4

x 
 0

y 
 0

2x � y � 4
x � y � 4

�0, 0�
��

� x � y � 4

2x � y � 4
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Figure 6
y

x

x � y � 4

2x � y � 4

Figure 7
y

x

x � y � 4

2x � y � 4

Figure 8

y

x



S O L U T I O N The graphs of and are the circle and
line, respectively, shown in Figure 9. Using the test point , we see that the
points that yield solutions of the system must lie inside (or on) the circle and
also above (or on) the line. This gives us the region sketched in Figure 9. L

E X A M P L E  7 Finding a system of inequalities from a graph

Find a system of inequalities for the shaded region shown in Figure 10.

S O L U T I O N An equation of the circle is . Since the interior of
the solid circle is shaded, the shaded region (including the circle) can be de-
scribed by . The exterior of the circle could be described by

.
Because the shaded region is below the dashed line with equation ,

it is described by the inequality . Lastly, since the shaded region is
above the solid horizontal line , we use . Thus, a system is

L

E X A M P L E  8 An application of a system of inequalities

The manager of a baseball team wishes to buy bats and balls costing $20 and
$5 each, respectively. At least five bats and ten balls are required, and the total
cost is not to exceed $300. Find a system of inequalities that describes all pos-
sibilities, and sketch the graph.

S O L U T I O N We begin by letting x denote the number of bats and y the num-
ber of balls. Since the cost of a bat is $20 and the cost of a ball is $5, we see that

Since the total cost is not to exceed $300, we must have

or, equivalently,

Since at least five bats and ten balls are required, we also have

The graph of is the half-plane that lies below (or on) the
line shown in Figure 11.y � �4x � 60

y � �4x � 60

x 
 5 and y 
 10.

y � �4x � 60.

20x � 5y � 300

 5y � cost of y balls.

 20x � cost of x bats

�x2 � y2 � 25

y �
3
4 x

y 
 �3

y 
 �3y � �3
y �

3
4 x

y �
3
4 x

x2 � y2 � 25
x2 � y2 � 25

x2 � y2 � 52

�0, 0�
x � y � 2x2 � y2 � 16
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Figure 9

y

x

x � y � 2

x2 � y2 � 16

Figure 10

y

x

y � !x

Figure 11

y

x

y � �4x � 60
60

10

5 15

(5, 40)

(5, 10)
, 10�25

2�



The graph of is the region to the right of (or on) the vertical line
, and the graph of is the region above (or on) the horizontal line
.

The graph of the system—that is, the points common to the three half-
planes—is the triangular region sketched in Figure 11. L

y � 10
y 
 10x � 5

x 
 5
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Exer. 1–10: Sketch the graph of the inequality.

1 2

3 4

5 6

7 8

9 10

Exer. 11–26: Sketch the graph of the system of inequal-
ities.

11 12

13 14

15 16

17 18

19 20

21 22

23 24 �x2 � y2 � 1

x2 � y2 � 4�x2 � y2 � 4

x � y 
 1

� � x � 2 � � 5

� y � 4 � � 2� � x � 2 � � 1

� y � 3 � � 5

� � x � 
 4

� y � 
 3� � x � 
 2

� y � � 3

�2x � 3y 
 6

0 � x � 5

0 � y � 4
�x � 2y � 8

0 � x � 4

0 � y � 3

�
3x � 4y 
 12

x � 2y � 2

x 
 9

y � 5
�

3x � y � 6

y � 2x 
 1

x 
 �2

y � 4

� 2y � x � 4

3y � 2x � 6� y � x � 0

2x � 5y � 10

� y � 2 � 2x

y � x � 4�3x � y � 3

4 � y � 2x

x 2 � 4 
 yyx 2 
 1

y � x3 � 1x 2 � 1 � y

y2 � x � 0y � 2 � x 2

2x � y � 32x � 3y 
 2y � 1

4x � 3y � 123x � 2y � 6
25 26

Exer. 27–34: Find a system of inequalities whose graph 
is shown.

27

28 y

x

y

x

�x � y2 � 0

x � y2 � 0�x2 � 1 � y

x 
 1 � y

9.3 E x e r c i s e s



29

30

31 y

x

y � x

y

x

y

x

32

33

34 y

x

y

x

(4, 1)

x

y

y � x2
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35 Inventory levels A store sells two brands of television sets.
Customer demand indicates that it is necessary to stock at
least twice as many sets of brand A as of brand B. It is also
necessary to have on hand at least 10 sets of brand B. There
is room for not more than 100 sets in the store. Find and
graph a system of inequalities that describes all possibilities
for stocking the two brands.

36 Ticket prices An auditorium contains 600 seats. For an up-
coming event, tickets will be priced at $8 for some seats and
$5 for others. At least 225 tickets are to be priced at $5, and
total sales of at least $3000 are desired. Find and graph a
system of inequalities that describes all possibilities for
pricing the two types of tickets.

37 Investment strategy A woman with $15,000 to invest de-
cides to place at least $2000 in a high-risk, high-yield in-
vestment and at least three times that amount in a low-risk,
low-yield investment. Find and graph a system of inequali-
ties that describes all possibilities for placing the money in
the two investments.

38 Inventory levels The manager of a college bookstore stocks
two types of notebooks, the first wholesaling for 55¢ and
the second for 85¢. The maximum amount to be spent is
$600, and an inventory of at least 300 of the 85¢ variety and
400 of the 55¢ variety is desired. Find and graph a system
of inequalities that describes all possibilities for stocking
the two types of notebooks.

39 Dimensions of a can An aerosol can is to be constructed 
in the shape of a circular cylinder with a small cone on the
top. The total height of the can including the conical top is
to be no more than 9 inches, and the cylinder must contain
at least 75% of the total volume. In addition, the height of
the conical top must be at least 1 inch. Find and graph a sys-
tem of inequalities that describes all possibilities for the re-
lationship between the height y of the cylinder and the
height x of the cone.

40 Dimensions of a window A stained-glass window is to be
constructed in the form of a rectangle surmounted by a semi-
circle (see the figure). The total height h of the window can
be no more than 6 feet, and the area of the rectangular part
must be at least twice the area of the semicircle. In addition,
the diameter d of the semicircle must be at least 2 feet. Find
and graph a system of inequalities that describes all possi-
bilities for the base and height of the rectangular part.

Exercise 40

41 Locating a power plant A nuclear power plant will be con-
structed to serve the power needs of cities A and B. City B 
is 100 miles due east of A. The state has promised that the
plant will be at least 60 miles from each city. It is not 
possible, however, to locate the plant south of either city 
because of rough terrain, and the plant must be within
100 miles of both A and B. Assuming A is at the origin, find
and graph a system of inequalities that describes all possible
locations for the plant.

42 Allocating space A man has a rectangular back yard that is
50 feet wide and 60 feet deep. He plans to construct a pool
area and a patio area, as shown in the figure, where .
He can spend at most $67,500 on the project. The patio area
must be at least as large as the pool area. The pool area will
cost $50 per square foot, and the patio will cost $4 per square
foot. Find and graph a system of inequalities that describes
all possibilities for the width of the patio and pool areas.

Exercise 42

60�

50�

x y

y 
 10

h

d



43 Forest growth Temperature and precipitation have a sig-
nificant effect on plant life. If either the average annual
temperature or the amount of precipitation is too low, trees
and forests cannot grow. Instead, only grasslands and deserts 
will exist. The relationship between average annual tempera-
ture T (in �F) and average annual precipitation P (in inches)
is a linear inequality. In order for forests to grow in a region,
T and P must satisfy the inequality ,
where and .

(a) Determine whether forests can grow in Winnipeg,
where and in.

(b) Graph the inequality, with T on the horizontal axis
and P on the vertical axis. 

(c) Identify the region on the graph that represents where
forests can grow.

P � 21.2T � 37�F

13 � P � 4533 � T � 80
29T � 39P � 450

44 Grassland growth Refer to Exercise 43. If the average an-
nual precipitation P (in inches) is too low or the average an-
nual temperature T (in �F) is too high, forests and grasslands
become deserts. The conditions necessary for grasslands to
grow are given by a linear inequality. T and P must satisfy

, where and .

(a) Determine whether grasslands can grow in Phoenix,
where and in.

(b) Graph the inequality for forests and the inequality for
grasslands on the same coordinate axes.

(c) Determine the region on the graph that represents
where grasslands can exist but forests cannot.

P � 7.8T � 70�F

13 � P � 4533 � T � 8022P � 3T � 33
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If a system of inequalities contains only linear inequalities of the form

where a, b, and c are real numbers, then the graph of the system may be a re-
gion R in the xy-plane bounded by a polygon—possibly of the type illustrated
in Figure 1 (for a specific illustration, see Example 4 and Figure 7 of Sec-
tion 9.3). For problems in linear programming, we consider such systems to-
gether with an expression of the form

where A, B, and K are real numbers and is a point in R (that is, a solu-
tion of the system). Since for each we obtain a specific value for C, we
call C a function of two variables x and y. In linear programming, C is called
an objective function, and the inequalities in the system are referred to as the
constraints on C. The solutions of the system—that is, the pairs corre-
sponding to the points in R—are called the feasible solutions for the problem.

In typical business applications, the value of C may represent cost, profit,
loss, or a physical resource, and the goal is to find a specific point in R
at which C takes on its maximum or minimum value. The methods of linear
programming greatly simplify the task of finding this point. Specifically, it can
be shown that the maximum and minimum values of C occur at a vertex of R.
This fact is used in the next example.

�x, y�

�x, y�

�x, y�
�x, y�

C � Ax � By � K,

ax � by � c or ax � by 
 c,
9.4

Linear Programming

Figure 1

y

x

R
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E X A M P L E  1 Finding the maximum and minimum 
values of an objective function

Find the maximum and minimum values of the objective function given by
subject to the following constraints:

S O L U T I O N The graph of the system of inequalities determined by the con-
straints is the region R bounded by the quadrilateral sketched in Figure 2.
From the preceding discussion, the maximum and minimum values  of C must
occur at a vertex of R. The values at the vertices are given in the follow-
ing table.

Hence, the minimum value occurs if and . The maximum
value occurs if and . L

In the preceding example, we say that the maximum value of C on R oc-
curs at the vertex . To verify this fact, let us solve for y,
obtaining

For each C, the graph of this equation is a line of slope and y-intercept ,
as illustrated in Figure 3. To find the maximum value of C, we simply deter-
mine which of these lines that intersect the region has the largest y-intercept

. Referring to Figure 3, we see that the required line passes through .
Similarly, for the minimum value of C, we determine the line having equa-
tion that intersects the region and has the smallest
y-intercept. This is the line through .

We shall call a problem that can be expressed in the form of Example 1 a
linear programming problem. To solve such problems, we may use the fol-
lowing guidelines.

�0, 0�
y � ��7�3�x � �C�3�

�5, 0�C�3

C�3�
7
3

y � �
7

3
x �

C

3
.

C � 7x � 3y�5, 0�

y � 0x � 5C � 35
y � 0x � 0C � 0

�
x � 2y 
 �10

2x � y � 10

x 
 0

y 
 0

C � 7x � 3y

Vertex Value of C � 7x � 3y

(0, 0)

(0, 5)

(5, 0)

(2, 6) 7�2� � 3�6� � 32

7�5� � 3�0� � 35

7�0� � 3�5� � 15

7�0� � 3�0� � 0

Figure 2
y

x

x � 2y � �10

2x � y � 10

(0, 5)

(0, 0) (5, 0)

R

(2, 6)

Figure 3

y

x



In the next example we encounter a linear programming problem in which
the minimum value of the objective function occurs at more than one point.

E X A M P L E  2 Solving a linear programming problem

Find the minimum value of the objective function subject to the
following constraints:

S O L U T I O N We shall follow the guidelines.

Guideline 1 The graph of the system of inequalities determined by the con-
straints is the unbounded region R sketched in Figure 4.

Guideline 2 The vertices of R are , and , as shown in the
figure.

Guideline 3 The value of C at each vertex of R is given in the following table.

�9, 0��0, 4�, �3, 2�

�
2x � 3y 
 12

x � 3y 
 9

x 
 0

y 
 0

C � 2x � 6y
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Guidelines for Solving a 
Linear Programming Problem

1 Sketch the region R determined by the system of constraints.

2 Find the vertices of R.

3 Calculate the value of the objective function C at each vertex of R.

4 Select the maximum or minimum value(s) of C in guideline 3.

Vertex Value of C � 2x � 6y

(0, 4)

(3, 2)

(9, 0) 2�9� � 6�0� � 18

2�3� � 6�2� � 18

2�0� � 6�4� � 24

Figure 4

y

x

(0, 4)

(3, 2)

(9, 0)2

2
2x � 3y � 12

x � 3y � 9

R

Guideline 4 The table in guideline 3 shows that the minimum value of C, 18,
occurs at two vertices, and . Moreover, if is any point on the
line segment joining these points, then is a solution of the equation

, and hence

Thus, the minimum value occurs at every point on this line segment.
L

In the next two examples we consider applications of linear programming.
For such problems it is necessary to use given information and data to formu-
late the system of constraints and the objective function. Once this has been
accomplished, we may apply the guidelines as we did in the solution to
Example 2.

C � 18

C � 2x � 6y � 2�x � 3y� � 2�9� � 18.

x � 3y � 9
�x, y�

�x, y��9, 0��3, 2�
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(continued)

E X A M P L E  3 Maximizing profit

A firm manufactures two products, X and Y. For each product, it is necessary
to use three different machines, A, B, and C. To manufacture one unit of prod-
uct X, machine A must be used for 3 hours, machine B for 1 hour, and ma-
chine C for 1 hour. To manufacture one unit of product Y requires 2 hours on
A, 2 hours on B, and 1 hour on C. The profit on product X is $500 per unit,
and the profit on product Y is $350 per unit. Machine A is available for a total
of 24 hours per day; however, B can be used for only 16 hours and C for
9 hours. Assuming the machines are available when needed (subject to the
noted total hour restrictions), determine the number of units of each product
that should be manufactured each day in order to maximize the profit.

S O L U T I O N The following table summarizes the data given in the statement
of the problem.

Let us introduce the following variables:

Using the first row of the table, we note that each unit of X requires 3 hours
on machine A, and hence x units require 3x hours. Similarly, since each unit of
Y requires 2 hours on A, y units require 2y hours. Hence, the total number of
hours per day that machine A must be used is . This, together with the
fact that A can be used for at most 24 hours per day, gives us the first constraint
in the following system of inequalities—that is, . The second
and third constraints are obtained by using the same type of reasoning for
rows 2 and 3 of the table. The last two constraints, and , are true
because x and y cannot be negative.

The graph of this system is the region R in Figure 5.

3x � 2y � 24

x � 2y � 16

x � y � 9

x 
 0

y 
 0

y 
 0x 
 0

3x � 2y � 24

3x � 2y

y � number of units of Y manufactured each day

x � number of units of X manufactured each day

Hours required Hours required Hours
Machine for one unit of X for one unit of Y available

A 3 2 24

B 1 2 16

C 1 1 9

Figure 5

y

x(0, 0) (8, 0)

(6, 3)

(2, 7)
(0, 8)

x � y � 9

3x � 2y � 24

x � 2y � 16

R ⎧
⎪
⎪
⎨
⎪
⎪
⎩



Since the production of each unit of product X yields a profit of $500 and
each unit of product Y yields a profit of $350, the profit P obtained by pro-
ducing x units of X together with y units of Y is

This is the objective function for the problem. The maximum value of P must
occur at one of the vertices of R in Figure 5. The values of P at these vertices
are given in the following table.

We see from the table that a maximum profit of $4050 occurs for a daily pro-
duction of 6 units of product X and 3 units of product Y. L

Example 3 illustrates maximization of profit. The next example demon-
strates how linear programming can be used to minimize the cost in a certain
situation.

E X A M P L E  4 Minimizing cost

A distributor of compact disk players has two warehouses, and . There
are 80 units stored at and 70 units at . Two customers, A and B, order
35 units and 60 units, respectively. The shipping cost from each warehouse to
A and B is determined according to the following table. How should the order
be filled to minimize the total shipping cost?

S O L U T I O N Let us begin by introducing the following variables:

y � number of units sent to B from W1

x � number of units sent to A from W1

W2W1

W2W1

P � 500x � 350y.
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Vertex Value of P � 500x � 350y

(0, 0)

(0, 8)

(8, 0)

(2, 7)

(6, 3) 500�6� � 350�3� � 4050

500�2� � 350�7� � 3450

500�8� � 350�0� � 4000

500�0� � 350�8� � 2800

500�0� � 350�0� � 0

Warehouse Customer Shipping cost per unit

A $ 8

B 12

A 10

B 13W2

W2

W1

W1
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(continued)

Since A ordered 35 units and B ordered 60 units, we must have

Our goal is to determine values for x and y that make the total shipping cost
minimal.

The number of units shipped from cannot exceed 80, and the number
shipped from cannot exceed 70. Expressing these facts in terms of in-
equalities gives us

Simplifying, we obtain the first two constraints in the following system. The
last two constraints are true because the largest values of x and y are 35 and
60, respectively.

The graph of this system is the region R shown in Figure 6.
Let C denote the total cost (in dollars) of shipping the disk players to

customers A and B. We see from the table of shipping costs that the following
are true:

Hence, the total cost is

Simplifying gives us the following objective function:

To determine the minimum value of C on R, we need check only the vertices
shown in Figure 6, as in the following table.

C � 1130 � 2x � y

C � 8x � 10�35 � x� � 12y � 13�60 � y�.

 cost of shipping 60 units to B � 12y � 13�60 � y�
 cost of shipping 35 units to A � 8x � 10�35 � x�

�
x � y � 80

x � y 
 25

0 � x � 35

0 � y � 60

� x � y � 80

�35 � x� � �60 � y� � 70

W2

W1

 60 � y � number of units sent to B from W2.

 35 � x � number of units sent to A from W2

Figure 6

y

x(25, 0)10

10
(35, 0)

(35, 45)

(20, 60)
(0, 60)

y � 0

x � y � 25

x � 35

x � y � 80

x � 0

y � 60

(0, 25)
R

Vertex Value of C � 1130 � 2x � y

(0, 25)

(0, 60)

(20, 60)

(35, 45)

(35, 0)

(25, 0) 1130 � 2�25� � 0 � 1080

1130 � 2�35� � 0 � 1060

1130 � 2�35� � 45 � 1015

1130 � 2�20� � 60 � 1030

1130 � 2�0� � 60 � 1070

1130 � 2�0� � 25 � 1105



We see from the table that the minimal shipping cost, $1015, occurs if 
and . This means that the distributor should ship all of the disk players
to A from and none from . In addition, the distributor should ship
45 units to B from and 15 units to B from . (Note that the maximum ship-
ping cost will occur if and —that is, if all 35 units are shipped
to A from and if B receives 25 units from and 35 units from .)

The examples in this section are elementary linear programming prob-
lems in two variables that can be solved by basic methods. The much more
complicated problems in many variables that occur in practice may be solved
by employing matrix techniques (discussed later) that are adapted for solu-
tion by computers.

W2W1W2

y � 25x � 0
W2W1

W2W1

y � 45
x � 35
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L

Exer. 1–2: Find the maximum and minimum values of the
objective function C on the region in the figure.

1

2

y

x(6, 0)(3, 1)

(1, 3)

(0, 5) (2, 5)

(6, 2)

C � 2x � 7y � 3

(0, 4)

(3, 5)

(6, 2)

(5, 0)(2, 0)

(0, 2)

y

x

C � 3x � 2y � 5

Exer. 3–4: Sketch the region R determined by the given
constraints, and label its vertices. Find the maximum value
of C on R.

3 ; , ,
, ,

4 ;
, ,

Exer. 5–6: Sketch the region R determined by the given
constraints, and label its vertices. Find the minimum value
of C on R.

5 ; , ,
,

6 ; ,
, ,

Exer. 7–8: Sketch the region R determined by the given
constraints, and label its vertices. Describe the set of points
for which C is a maximum on R.

7 ; , ,
, ,

8 ; , ,
,

9 Production scheduling A manufacturer of tennis rackets
makes a profit of $15 on each oversized racket and $8 on
each standard racket. To meet dealer demand, daily produc-

x � 0.5y � 6.52x � 3y � 19
y 
 1x 
 2C � 6x � 3y

3x � 2y � 241
2 x � y � 6x � 2y 
 �8

y 
 0x 
 0C � 2x � 4y

2x � y � 12x � 5y � 153x � y 
 3
y 
 0C � 6x � y

2x � 5y 
 162x � 3y 
 12
y 
 0x 
 0C � 3x � 6y

x � y 
 47x � 2y � 28x � 2y 
 �8
C � 4x � 2y

3x � y � 153x � 2y � 243x � 4y 
 �12
y 
 0x 
 0C � 3x � y

9.4 E x e r c i s e s
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tion of standard rackets should be between 30 and 80, and
production of oversized rackets should be between 10 and
30. To maintain high quality, the total number of rackets
produced should not exceed 80 per day. How many of each
type should be manufactured daily to maximize the profit?

10 Production scheduling A manufacturer of cell phones
makes a profit of $25 on a deluxe model and $30 on a stan-
dard model. The company wishes to produce at least 80
deluxe models and at least 100 standard models per day. To
maintain high quality, the daily production should not ex-
ceed 200 cell phones. How many of each type should be
produced daily in order to maximize the profit?

11 Minimizing cost Two substances, S and T, each contain two
types of ingredients, I and G. One pound of S contains 
2 ounces of I and 4 ounces of G. One pound of T contains 
2 ounces of I and 6 ounces of G. A manufacturer plans to
combine quantities of the two substances to obtain a mix-
ture that contains at least 9 ounces of I and 20 ounces of G.
If the cost of S is $3 per pound and the cost of T is $4 per
pound, how much of each substance should be used to keep
the cost to a minimum?

12 Maximizing gross profit A stationery company makes two
types of notebooks: a deluxe notebook with subject di-
viders, which sells for $4.00, and a regular notebook, which
sells for $3.00. The production cost is $3.20 for each deluxe
notebook and $2.60 for each regular notebook. The com-
pany has the facilities to manufacture between 2000 and
3000 deluxe and between 3000 and 6000 regular notebooks,
but not more than 7000 altogether. How many notebooks of
each type should be manufactured to maximize the differ-
ence between the selling prices and the production costs?

13 Minimizing shipping costs Refer to Example 4 of this 
section. If the shipping costs are $12 per unit from to A,
$10 per unit from to A, $16 per unit from to B, and
$12 per unit from to B, determine how the order should
be filled to minimize shipping cost.

14 Minimizing cost A coffee company purchases mixed lots of
coffee beans and then grades them into premium, regular,
and unusable beans. The company needs at least 280 tons of
premium-grade and 200 tons of regular-grade coffee beans.
The company can purchase ungraded coffee from two sup-
pliers in any amount desired. Samples from the two suppli-
ers contain the following percentages of premium, regular,
and unusable beans:

W2

W1W2

W1

If supplier A charges $900 per ton and B charges $1200 per
ton, how much should the company purchase from each
supplier to fulfill its needs at minimum cost?

15 Planning crop acreage A farmer, in the business of growing
fodder for livestock, has 90 acres available for planting alfalfa
and corn. The cost of seed per acre is $32 for alfalfa and $48 
for corn. The total cost of labor will amount to $60 per acre
for alfalfa and $30 per acre for corn. The expected revenue
(before costs are subtracted) is $500 per acre from alfalfa and
$700 per acre from corn. If the farmer does not wish to spend
more than $3840 for seed and $4200 for labor, how many
acres of each crop should be planted to obtain the maximum
profit?

16 Machinery scheduling A small firm manufactures book-
shelves and desks for microcomputers. For each product it 
is necessary to use a table saw and a power router. To manu-
facture each bookshelf, the saw must be used for hour and
the router for 1 hour. A desk requires the use of each machine
for 2 hours. The profits are $20 per bookshelf and $50 per
desk. If the saw can be used for 8 hours per day and the router
for 12 hours per day, how many bookshelves and desks
should be manufactured each day to maximize the profit?

17 Minimizing a mixture’s cost Three substances, X, Y, and Z,
each contain four ingredients, A, B, C, and D. The percentage
of each ingredient and the cost in cents per ounce of each sub-
stance are given in the following table.

If the cost is to be minimal, how many ounces of each sub-
stance should be combined to obtain a mixture of 20 ounces
containing at least 14% A, 16% B, and 20% C? What com-
bination would make the cost greatest?

18 Maximizing profit A man plans to operate a stand at a 
one-day fair at which he will sell bags of peanuts and bags 
of candy. He has $2000 available to purchase his stock,
which will cost $2.00 per bag of peanuts and $4.00 per bag
of candy. He intends to sell the peanuts at $3.00 and the

1
2

Supplier Premium Regular Unusable

A 20% 50% 30%

B 40% 20% 40%

Ingredients

Substance A B C D ounce

X 20% 10% 25% 45% 25¢

Y 20% 40% 15% 25% 35¢

Z 10% 20% 25% 45% 50¢

Cost per
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candy at $5.50 per bag. His stand can accommodate up to
500 bags of peanuts and 400 bags of candy. From past ex-
perience he knows that he will sell no more than a total of
700 bags. Find the number of bags of each that he should
have available in order to maximize his profit. What is the 
maximum profit?

19 Maximizing passenger capacity A small community wishes
to purchase used vans and small buses for its public trans-
portation system. The community can spend no more than
$100,000 for the vehicles and no more than $500 per month
for maintenance. The vans sell for $10,000 each and aver-
age $100 per month in maintenance costs. The correspon-
ding cost estimates for each bus are $20,000 and $75 per
month. If each van can carry 15 passengers and each bus
can accommodate 25 riders, determine the number of vans
and buses that should be purchased to maximize the pas-
senger capacity of the system.

20 Minimizing fuel cost Refer to Exercise 19. The monthly
fuel cost (based on 5000 miles of service) is $550 for each
van and $850 for each bus. Find the number of vans and
buses that should be purchased to minimize the monthly
fuel costs if the passenger capacity of the system must be 
at least 75.

21 Stocking a fish farm A fish farmer will purchase no more
than 5000 young trout and bass from the hatchery and will
feed them a special diet for the next year. The cost of food
per fish will be $0.50 for trout and $0.75 for bass, and the
total cost is not to exceed $3000. At the end of the year, a
typical trout will weigh 3 pounds, and a bass will weigh 
4 pounds. How many fish of each type should be stocked in
the pond in order to maximize the total number of pounds
of fish at the end of the year?

22 Dietary planning A hospital dietician wishes to prepare a
corn-squash vegetable dish that will provide at least 3 grams
of protein and cost no more than 36¢ per serving. An ounce
of creamed corn provides gram of protein and costs 4¢. An 
ounce of squash supplies gram of protein and costs 3¢. For
taste, there must be at least 2 ounces of corn and at least as
much squash as corn. It is important to keep the total num-
ber of ounces in a serving as small as possible. Find the
combination of corn and squash that will minimize the
amount of ingredients used per serving.

23 Planning storage units A contractor has a large building
that she wishes to convert into a series of rental storage
spaces. She will construct basic 8 ft � 10 ft units and deluxe
12 ft � 10 ft units that contain extra shelves and a clothes
closet. Market considerations dictate that there be at least
twice as many basic units as deluxe units and that the basic
units rent for $75 per month and the deluxe units for $120
per month. At most 7200 is available for the storage
spaces, and no more than $80,000 can be spent on con-
struction. If each basic unit will cost $800 to make and each
deluxe unit will cost $1600, how many units of each type
should be constructed to maximize monthly revenue?

24 A moose’s diet A moose feeding primarily on tree leaves
and aquatic plants is capable of digesting no more than 
33 kilograms of these foods daily. Although the aquatic
plants are lower in energy content, the animal must eat at
least 17 kilograms to satisfy its sodium requirement. A kilo-
gram of leaves provides four times as much energy as a
kilogram of aquatic plants. Find the combination of foods
that maximizes the daily energy intake.

ft2

1
4

1
2

For systems of linear equations containing more than two variables, we can
use either the method of substitution explained in Section 9.1 or the method of
elimination developed in Section 9.2. The method of elimination is the shorter
and more straightforward technique for finding solutions. In addition, it leads
to the matrix technique, discussed in this section.

E X A M P L E  1 Using the method of elimination 
to solve a system of linear equations

Solve the system

� x � 2y � 3z � 4

2x � y � 4z � 3

�3x � 4y � z � �2

9.5
Systems of Linear

Equations in More Than
Two Variables
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S O L U T I O N

multiply the third equation by 

The solutions of the last system are easy to find by back substitution. From
the third equation, we see that . Substituting 2 for z in the second equa-
tion, , we get . Finally, we find the x-value by substituting

and in the first equation, , obtaining .
Thus, there is one solution, . L

Any system of three linear equations in three variables has either a unique
solution, an infinite number of solutions, or no solution. As for two equations
in two variables, the terminology used to describe these systems is consistent,
dependent and consistent, or inconsistent, respectively.

If we analyze the method of solution in Example 1, we see that the sym-
bols used for the variables are immaterial. The coefficients of the variables are
what we must consider. Thus, if different symbols such as r, s, and t are used
for the variables, we obtain the system

The method of elimination can then proceed exactly as in the example. Since
this is true, it is possible to simplify the process. Specifically, we introduce a
scheme for keeping track of the coefficients in such a way that we do not have
to write down the variables. Referring to the preceding system, we first check

� r � 2s � 3t � 4

2r � s � 4t � 3

�3r � 4s � t � �2

�4, 3, 2�
x � 4x � 2y � 3z � 4z � 2y � 3

y � 3y � 2z � �1
z � 2

�
1
2� x � 2y � 3z � 4

y � 2z � �1

z � 2

add �1 times the second equation
to the third equation� x � 2y � 3z � 4

y � 2z � �1

�2z � �4

� x � 2y � 3z � 4

y � 2z � �1

y � 4z � �5

add 3 times the first equation
to the third equation� x � 2y � 3z � 4

5y � 10z � �5

�2y � 8z � 10

add �2 times the first equation
to the second equation� x � 2y � 3z � 4

5y � 10z � �5

�3x � 4y � z � �2

multiply the second equation by 
and the third equation by � 1

2

1
5



that variables appear in the same order in each equation and that terms not in-
volving variables are to the right of the equal signs. We then list the numbers
that are involved in the equations as follows:

An array of numbers of this type is called a matrix. The rows of the matrix
are the numbers that appear next to each other horizontally:

The columns of the matrix are the numbers that appear next to each other 
vertically:

first column, second column, third column, fourth column,

1 �2 3 4

2 1 �4 3

�3 4 �1 �2

The matrix obtained from a system of linear equations in the preceding
manner is the matrix of the system. If we delete the last column of this ma-
trix, the remaining array of numbers is the coefficient matrix. Since the ma-
trix of the system can be obtained from the coefficient matrix by adjoining one
column, we call it the augmented coefficient matrix or simply the aug-
mented matrix. Later, when we use matrices to find the solutions of a system
of linear equations, we shall introduce a vertical line segment in the aug-
mented matrix to indicate where the equal signs would appear in the corre-
sponding system of equations, as in the next illustration.

Coefficient Matrix and Augmented Matrix

Before discussing a matrix method of solving a system of linear equa-
tions, let us state a general definition of a matrix. We shall use a double sub-
script notation, denoting the number that appears in row i and column j by .
The row subscript of is i, and the column subscript is j.aij

aij

C4C3C2C1

first row, R1

second row, R2

third row, R3

1

2

�3

�2

1

4

3

�4

�1

4

3

�2

� 1

2

�3

�2

1

4

3

�4

�1

4

3

�2
�
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coefficient augmented
system matrix matrix

� 1

2

�3

�2

1

4

3

�4

�1
� 4

3

�2
�� 1

2

�3

�2

1

4

3

�4

�1
�� x � 2y � 3z � 4

2x � y � 4z � 3

�3x � 4y � z � �2

I L L U S T R A T I O N



The notation in the definition is read “m by n.” We often say that
the matrix is and call the size of the matrix. It is possible to con-
sider matrices in which the symbols represent complex numbers, polyno-
mials, or other mathematical objects. The rows and columns of a matrix are
defined as before. Thus, the matrix in the definition has m rows and n columns.
Note that is in row 2 and column 3 and is in row 3 and column 2. Each

is an element of the matrix. If , the matrix is a square matrix of
order n and the elements are the main diagonal elements.

Matrices

To find the solutions of a system of linear equations, we begin with the
augmented matrix. If a variable does not appear in an equation, we assume that
the coefficient is zero. We then work with the rows of the matrix just as though
they were equations. The only items missing are the symbols for the vari-
ables, the addition or subtraction signs used between terms, and the equal
signs. We simply keep in mind that the numbers in the first column are the co-
efficients of the first variable, the numbers in the second column are the coef-
ficients of the second variable, and so on. The rules for transforming a matrix
are formulated so that they always produce a matrix of an equivalent system of
equations.

The next theorem is a restatement, in terms of matrices, of the theorem on
equivalent systems in Section 9.2. In part (2) of the theorem, the terminology
a row is multiplied by a nonzero constant means that each element in the row
is multiplied by the constant. To add two rows of a matrix, as in part (3), we
add corresponding elements in each row.

m � n

a11, a22, a33, . . . , ann

m � naij

a32a23

aij

m � nm � n
m � n
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Definition of a Matrix Let m and n be positive integers. An matrix is an array of the fol-
lowing form, where each is a real number:

. . . .

. . . .

. . . .
am1 am2 am3

. . . amn

a11

a21

a31

a12

a22

a32

a13

a23

a33

. . .

. . .

. . .

a1n

a2n

a3n

aij

m � n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

��4

0

5
��2

0

8

�1

1

3
��3 1 �2	�5

2

�1

3���5

7

3

0

1

�2�
3 � 13 � 21 � 32 � 22 � 3

I L L U S T R A T I O N



We refer to 1–3 as the elementary row transformations of a matrix. If
a matrix is obtained from another matrix by one or more elementary row trans-
formations, the two matrices are said to be equivalent or, more precisely, row
equivalent. We shall use the symbols in the following chart to denote ele-
mentary row transformations of a matrix, where the arrow may be read 
“replaces.” Thus, for the transformation , the constant multiple 
replaces . Similarly, for , the sum replaces . For
convenience, we shall write as .

We shall next rework Example 1 using matrices. You should compare the
two solutions, since analogous steps are used in each case.

E X A M P L E  2 Using matrices to solve a system of linear equations

Solve the system

S O L U T I O N We begin with the matrix of the system—that is, with the aug-
mented matrix:

We next apply elementary row transformations to obtain another (simpler) ma-
trix of an equivalent system of equations. These transformations correspond to
the manipulations used for equations in Example 1. We will place appropriate
symbols between equivalent matrices.

� 1

2

�3

�2

1

4

3

�4

�1
� 4

3

�2
�

� x � 2y � 3z � 4

2x � y � 4z � 3

�3x � 4y � z � �2

�Ri��1�Ri

RjkRi � RjkRi � Rj l RjRi

kRikRi l Ri

l
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Theorem on Matrix 
Row Transformations

Given a matrix of a system of linear equations, a matrix of an equivalent
system results if

(1) two rows are interchanged.

(2) a row is multiplied or divided by a nonzero constant.

(3) a constant multiple of one row is added to another row.

Symbol Meaning

Interchange rows i and j

Multiply row i by k

Add k times row i to row jkRi � Rj l Rj

kRi l Ri

Ri i Rj

Elementary Row Transformations of a Matrix



We use the last matrix to return to the system of equations

which is equivalent to the original system. The solution , ,
may now be found by back substitution, as in Example 1. L

The final matrix in the solution of Example 2 is in echelon form. In gen-
eral, a matrix is in echelon form if it satisfies the following conditions.

The following is an illustration of matrices in echelon form. The symbols
represent real numbers.

Echelon Form
1

0

0

0

0

0

a12

1

0

0

0

0

a13

a23

0

0

0

0

a14

a24

1

0

0

0

a15

a25

a35

0

0

0

a16

a26

a36

1

0

0

a17

a27

a37

a47

0

0

�1

0

0

a12

1

0

a13

a23

1

a14

a24

a34

�
aij

z � 2y � 3x � 4

�1

0

0

�2

1

0

3

�2

1
� 4

�1

2
� &fi �x � 2y � 3z � 4

y � 2z � �1

z � 2
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multiply R3 by �1
2

�1

0

0

�2

1

0

3

�2

1
� 4

�1

2
�

�
1
2 R3 l R3

add �R2 to R3

�1

0

0

�2

1

0

3

�2

�2
� 4

�1

�4
�

�R2 � R3 l R3

multiply R2 by 15
multiply R3 by �1

2

�1

0

0

�2

1

1

3

�2

�4
� 4

�1

�5
�1

5 R2 lR2

�
1
2 R3 lR3

add �2R1 to R2

add 3R1 to R3

�1

0

0

�2

5

�2

3

�10

8
� 4

�5

10
��2R1 � R2 lR2

3R1 � R3 lR3

� 1

2

�3

�2

1

4

3

�4

�1
� 4

3

�2
�

Echelon Form of a Matrix (1) The first nonzero number in each row, reading from left to right, is 1.

(2) The column containing the first nonzero number in any row is to 
the left of the column containing the first nonzero number in the row
below.

(3) Rows consisting entirely of zeros may appear at the bottom of the 
matrix.

I L L U S T R A T I O N
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣



The following guidelines may be used to find echelon forms.

Not all echelon forms contain rows consisting of only zeros (see 
Example 2).

We can use elementary row operations to transform the matrix of any sys-
tem of linear equations to echelon form. The echelon form can then be used to
produce a system of equations that is equivalent to the original system. The 
solutions of the given system may be found by back substitution. The next 
example illustrates this technique for a system of four linear equations.

E X A M P L E  3 Using an echelon form to solve a system of linear equations

Solve the system

S O L U T I O N We have arranged the equations so that the same variables ap-
pear in vertical columns. We begin with the augmented matrix and then obtain
an echelon form as described in the guidelines.

�
�2x � 3y � 4z � �1

x � 2z � 2w � 1

y � z � w � 0

3x � y � 2z � w � 3

604 C H A P T E R  9  S Y S T E M S  O F  E Q U A T I O N S  A N D  I N E Q U A L I T I E S

Guidelines for Finding 
the Echelon Form of a Matrix

1 Locate the first column that contains nonzero elements, and apply ele-
mentary row transformations to get the number 1 into the first row of
that column.

2 Apply elementary row transformations of the type for
to get 0 underneath the number 1 obtained in guideline 1 in each

of the remaining rows.

3 Disregard the first row. Locate the next column that contains nonzero 
elements, and apply elementary row transformations to get the number 1
into the second row of that column.

4 Apply elementary row transformations of the type for
to get 0 underneath the number 1 obtained in guideline 3 in each

of the remaining rows.

5 Disregard the first and second rows. Locate the next column that con-
tains nonzero elements, and repeat the procedure.

6 Continue the process until the echelon form is reached.

j � 2
kR2 � Rj lRj

j � 1
kR1 � Rj lRj



The final matrix is in echelon form and corresponds to the following system
of equations:

We now use back substitution to find the solution. From the last equation we
see that . Substituting in the third equation, , we get

z �
7
3 �1� � �

1
3 , or z �

6
3 � 2.

z �
7
3 w � �

1
3w � 1

�
x � 2z � 2w � 1

y � z � w � 0

z �
7
3 w � �

1
3

w � 1

� 1

0

0

0

0

1

0

0

�2

1

1

0

2

�1

�
7
3

1
� 1

0

�
1
3

1
�� 1

3 R3 l R3

� 1

0

0

0

0

1

0

0

�2

1

�3

0

2

�1

7

1
� 1

0

1

1
�

R3 � R4 lR4

� 1

0

0

0

0

1

0

0

�2

1

�3

3

2

�1

7

�6
� 1

0

1

0
��3R2 � R3 lR3

�R2 � R4 lR4

� 1

0

0

0

0

1

3

1

�2

1

0

4

2

�1

4

�7
� 1

0

1

0
�R2 i R3

� 1

0

0

0

0

3

1

1

�2

0

1

4

2

4

�1

�7
� 1

1

0

0
�2R1 � R2 lR2

� 1

�2

0

3

0

3

1

1

�2

4

1

�2

2

0

�1

�1
� 1

�1

0

3
�R1 i R2��2

1

0

3

3

0

1

1

4

�2

1

�2

0

2

�1

�1
� �1

1

0

3
�
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�3R1 � R4 lR4

(continued)



Substituting and in the second equation, , we 
obtain

Finally, from the first equation, , we have

Hence, the system has one solution, , , , and . L

After obtaining an echelon form, it is often convenient to apply additional
elementary row operations of the type so that 0 also appears
above the first 1 in each row. We refer to the resulting matrix as being in re-
duced echelon form. The following is an illustration of matrices in reduced
echelon form. (Compare them with the echelon forms on page 603.)

Reduced Echelon Form

E X A M P L E  4 Using a reduced echelon form to 
solve a system of linear equations

Solve the system in Example 3 using reduced echelon form.

S O L U T I O N We begin with the echelon form obtained in Example 3 and
apply additional row operations as follows:

The system of equations corresponding to the reduced echelon form gives us
the solution without using back substitution:

Lx � 3, y � �1, z � 2, w � 1

�1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1
� 3

�1

2

1
�2R3 � R1 l R1

�R3 � R2 l R2

�1

0

0

0

0

1

0

0

�2

1

1

0

0

0

0

1
� �1

1

2

1
��2R4 � R1 l R1

R4 � R2 l R2
7
3 R4 � R3 l R3�1

0

0

0

0

1

0

0

�2

1

1

0

2

�1

�
7
3

1
� 1

0

�
1
3

1
�

1

0

0

0

0

0

0

1

0

0

0

0

a13

a23

0

0

0

0

0

0

1

0

0

0

a15

a25

a35

0

0

0

0

0

0

1

0

0

a17

a27

a37

a47

0

0

�1

0

0

0

1

0

0

0

1

a14

a24

a34

�

kRi � Rj l Rj

w � 1z � 2y � �1x � 3

x � 2�2� � 2�1� � 1, or x � 3.

x � 2z � 2w � 1

y � 2 � 1 � 0, or y � �1.

y � z � w � 0z � 2w � 1
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I L L U S T R A T I O N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣



Sometimes it is necessary to consider systems in which the number of
equations is not the same as the number of variables. The same matrix tech-
niques are applicable, as illustrated in the next example.

E X A M P L E  5 Solving a system of two linear equations in three variables

Solve the system

S O L U T I O N We shall begin with the augmented matrix and then find a re-
duced echelon form. There are many different ways of getting the number 1
into the first position of the first row. For example, the elementary row trans-
formation or would accomplish this in one step.
Another way, which does not involve fractions, is demonstrated in the follow-
ing steps:

The reduced echelon form is the matrix of the system

or, equivalently,

There are an infinite number of solutions to this system; they can be found by
assigning z any value c and then using the last two equations to express x and
y in terms of c. This gives us

Thus, the solutions of the system consist of all ordered triples of the form

for any real number c. The solutions may be checked by substituting for
x, for y, and c for z in the two original equations.

We can obtain any number of solutions for the system by substituting spe-
cific real numbers for c. For example, if , we obtain ; if ,
we have ; and so on.�7, �7, 2�

c � 2�5, �3, 0�c � 0

�2c � 3
c � 5

�c � 5, �2c � 3, c�

x � c � 5, y � �2c � 3, z � c.

�x � z � 5

y � �2z � 3

�x � z � 5

y � 2z � �3

�1

0

0

1

�1

2
  � 5

�3��R2 � R1 l R1

�1

0

1

1

1

2
  � 2

�3��2R1 � R2 l R2

�1

2

1

3

1

4
  � 2

1��R2 � R1 l R1

�3

2

4

3

5

4 � 3

1�R1 i R2�2

3

3

4

4

5 � 1

3�

�
1
3 R2 � R1 l R1

1
2 R1 l R1

�2x � 3y � 4z � 1

3x � 4y � 5z � 3
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(continued)



There are other ways to specify the general solution. For example, starting
with and , we could let for any real num-
ber d. In this case,

and the solutions of the system have the form

These triples produce the same solutions as . For example,
if , we get ; if , we obtain ; and so on. L

A system of linear equations is homogeneous if all the terms that do not
contain variables—that is, the constant terms—are zero. A system of homo-
geneous equations always has the trivial solution obtained by substituting
zero for each variable. Nontrivial solutions sometimes exist. The procedure for
finding solutions is the same as that used for nonhomogeneous systems.

E X A M P L E  6 Solving a homogeneous system of linear equations

Solve the homogeneous system

S O L U T I O N We begin with the augmented matrix and find a reduced eche-
lon form:

The reduced echelon form corresponds to the system

�x � z � 0

y � 3z � 0

�1

0

0

0

1

0

1

�3

0
� 0

0

0
�R2 � R1 l R1

�R2 � R3 l R3

�1

0

0

�1

1

1

4

�3

�3
� 0

0

0
�1

3 R2 l R2

�1
2 R3 l R3

�1

0

0

�1

3

�2

4

�9

6
� 0

0

0
��2R1 � R2 l R2

R1 � R3 l R3

� 1

2

�1

�1

1

�1

4

�1

2
� 0

0

0
�

� x � y � 4z � 0

2x � y � z � 0

�x � y � 2z � 0

�7, �7, 2�d � 7�5, �3, 0�d � 5
�c � 5, �2c � 3, c�

�d, �2d � 7, d � 5�.

y � �2z � 3 � �2�d � 5� � 3 � �2d � 7,

x � z � 5 � �d � 5� � 5 � d

z � d � 5y � �2z � 3x � z � 5
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or, equivalently,

Assigning any value c to z, we obtain and . The solutions con-
sist of all ordered triples of the form for any real number c. L

E X A M P L E  7 A homogeneous system with only the trivial solution

Solve the system

S O L U T I O N We begin with the augmented matrix and find a reduced eche-
lon form:

The reduced echelon form is the matrix of the system

Thus, the only solution for the given system is the trivial one, . L

The next two examples illustrate applied problems.

E X A M P L E  8 Using a system of equations to determine maximum profit

A manufacturer of electrical equipment has the following information about
the weekly profit from the production and sale of an electric motor.

�0, 0, 0�

x � 0, y � 0, z � 0.

�1

0

0

0

1

0

0

0

1
� 0

0

0
��R3 � R1 l R1

�1

0

0

0

1

0

1

0

1
� 0

0

0
��R2 � R1 l R1

�R2 � R3 l R3

�1

0

0

1

1

1

1

0

1
� 0

0

0
��1

2 R2 l R2

�1
2 R3 l R3

�1

0

0

1

�2

�2

1

0

�2
� 0

0

0
��R1 � R2 l R2

�R1 � R3 l R3

�1

1

1

1

�1

�1

1

1

�1
� 0

0

0
�

�x � y � z � 0

x � y � z � 0

x � y � z � 0

��c, 3c, c�
y � 3cx � �c

�x � �z

y � 3z
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Production level x 25 50 100

Profit P(x) (dollars) 5250 7500 4500



(a) Determine a, b, and c so that the graph of fits this
information.

(b) According to the quadratic function P in part (a), how many motors
should be produced each week for maximum profit? What is the maximum
weekly profit?

S O L U T I O N

(a) We see from the table that the graph of contains 
the points , , and . This gives us the system
of equations

It is easy to solve any of the equations for c, so we’ll start solving the system
by solving the first equation for c,

and then substituting that expression for c in the other two equations:

Note that we have reduced the system of three equations and three variables to
two equations and two variables. Simplifying the system gives us

At this point we could divide the equations by 25, but we see that 75 is just 3
times 25, so we’ll use the method of elimination to eliminate b:

Adding the equations gives us so We can verify that
the solution is , , . 

(b) From part (a),

Since , the graph of the quadratic function P is a parabola that
opens downward. By the formula on page 189, the x-coordinate of the vertex
(the highest point on the parabola) is

x �
�b

2a
�

�240

2��2�
�

�240

�4
� 60.

a � �2 � 0

P�x� � �2x2 � 240x � 500.

c � 500b � 240a � �2
a � �2.3750a � �7500,

��5625a � 75b � �6750

9375a � 75b � �750

�1875a � 25b � 2250

9375a � 75b � �750

�7500 � 2500a � 50b � (5250 � 625a � 25b)

4500 � 10,000a � 100b � (5250 � 625a � 25b)

c � 5250 � 625a � 25b,

�5250 � 625a � 25b � c

7500 � 2500a � 50b � c

4500 � 10,000a � 100b � c

�100, 4500��50, 7500��25, 5250�
P�x� � ax2 � bx � c

P�x� � ax2 � bx � c
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Note that we have used both the
method of substitution and the method
of elimination in solving this system of
equations.

multiply the first
equation by �3



Hence, for the maximum profit, the manufacturer should produce and sell
60 motors per week. The maximum weekly profit is

L

E X A M P L E  9 Solving a mixture problem

A merchant wishes to mix two grades of peanuts costing $3 and $4 per pound,
respectively, with cashews costing $8 per pound, to obtain 140 pounds of a
mixture costing $6 per pound. If the merchant also wants the amount of
lower-grade peanuts to be twice that of the higher-grade peanuts, how many
pounds of each variety should be mixed?

S O L U T I O N Let us introduce three variables, as follows:

We refer to the statement of the problem and obtain the following system:

You may verify that the solution of this system is , , .
Thus, the merchant should use 40 pounds of the $3�lb peanuts, 20 pounds of
the $4�lb peanuts, and 80 pounds of cashews. L

Sometimes we can combine row transformations to simplify our work.
For example, consider the augmented matrix

.

To obtain a 1 in the first column, it appears we have to multiply row 1 by
or row 2 by . However, we can multiply row 1 by 2 and row 2 by �3 and

then add those two rows to obtain

in column one, as shown in the next matrix:

We can then proceed to find the reduced echelon form without the cum-
bersome use of fractions. This process is called using a linear combination 
of rows.

�1

7

0

12

�2

87

10

2

80

15

1

94
�2R1 � 3R2 l R1

2�11� � ��3��7� � 22 � ��21� � 1

1
7

1
11

�11

7

0

3

�2

87

8

2

80

9

1

94
�

z � 80y � 20x � 40

� x � y � z � 140

3x � 4y � 8z � 6�140�
x � 2y

z � number of pounds of cashews at $8 per pound

y � number of pounds of peanuts at $4 per pound

x � number of pounds of peanuts at $3 per pound

P�60� � �2�60�2 � 240�60� � 500 � $7700.
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weight equation

value equation

constraint
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Exer. 1–22: Use matrices to solve the system.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20 �2x � 3y � �2

x � y � 1

x � 2y � 13
� 4x � 3y � 1

2x � y � �7

�x � y � �1

�2x � 3y � 12

3y � z � �2

5x � 3z � 3
�5x � 2z � 1

y � 3z � 2

2x � y � 3

�5x � 2y � z � 10

y � z � �3�4x � 2y � z � 5

3x � y � 4z � 0

� 2x � y � 4z � 8

�3x � y � 2z � 5�3x � 2y � 5z � 7

x � 4y � z � �2

�x � y � 2z � 0

x � y � 4z � 0

y � z � 0
�2x � y � z � 0

x � 2y � 2z � 0

x � y � z � 0

�2x � y � z � 0

x � y � 2z � 0

2x � 3y � z � 0
�x � 3y � z � 0

x � y � z � 0

x � 2y � 4z � 0

�2x � 3y � z � 2

3x � 2y � z � �5

5x � 2y � z � 0
� 2x � 3y � 2z � �3

�3x � 2y � z � 1

4x � y � 3z � 4

� x � 3y � 3z � �5

2x � y � z � �3

�6x � 3y � 3z � 4
�2x � 6y � 4z � 1

x � 3y � 2z � 4

2x � y � 3z � �7

� 4x � y � 3z � 6

�8x � 3y � 5z � �6

5x � 4y � �9
�5x � 2y � z � �7

x � 2y � 2z � 0

3y � z � 17

� x � 3y � z � �3

3x � y � 2z � 1

2x � y � z � �1
� x � 2y � 3z � �1

2x � y � z � 6

x � 3y � 2z � 13
21 22

23 Mixing acid solutions Three solutions contain a certain
acid. The first contains 10% acid, the second 30%, and the
third 50%. A chemist wishes to use all three solutions to 
obtain a 50-liter mixture containing 32% acid. If the
chemist wants to use twice as much of the 50% solution as
of the 30% solution, how many liters of each solution
should be used?

24 Filling a pool A swimming pool can be filled by three 
pipes, A, B, and C. Pipe A alone can fill the pool in 8 hours.
If pipes A and C are used together, the pool can be filled in
6 hours; if B and C are used together, it takes 10 hours. How
long does it take to fill the pool if all three pipes are used?

25 Production capability A company has three machines, A,
B, and C, that are each capable of producing a certain item.
However, because of a lack of skilled operators, only two of
the machines can be used simultaneously. The following
table indicates production over a three-day period, using
various combinations of the machines. How long would it
take each machine, if used alone, to produce 1000 items?

26 Electrical resistance In electrical circuits, the formula
is used to find the total resistance

R if two resistors and are connected in parallel. Given
three resistors, A, B, and C, suppose that the total resistance
is 48 ohms if A and B are connected in parallel, 80 ohms if
B and C are connected in parallel, and 60 ohms if A and C
are connected in parallel. Find the resistances of A, B, and C.

27 Mixing fertilizers A supplier of lawn products has three
types of grass fertilizer, , , and , having nitrogen
contents of 30%, 20%, and 15%, respectively. The supplier
plans to mix them, obtaining 600 pounds of fertilizer with a

G3G2G1

R2R1

1�R � �1�R1� � �1�R2�

�4x � y � 2

2x � 2y � 1

4x � 5y � 3
�2x � 3y � 5

x � 3y � 4

x � y � �2

9.5 E x e r c i s e s

Machines Hours Items
used used produced

A and B 6 4500

A and C 8 3600

B and C 7 4900



25% nitrogen content. The mixture is to contain 100 pounds
more of type than of type . How much of each type
should be used?

28 Particle acceleration If a particle moves along a coordi-
nate line with a constant acceleration a (in ), then at
time t (in seconds) its distance (in centimeters) from the
origin is

for velocity and distance from the origin at . If the
distances of the particle from the origin at , , and

are 7, 11, and 17, respectively, find a, , and .

29 Electrical currents Shown in the figure is a schematic of an
electrical circuit containing three resistors, a 6-volt battery,
and a 12-volt battery. It can be shown, using Kirchhoff’s
laws, that the three currents , , and are solutions of the
following system of equations:

Find the three currents if

(a) ohms

(b) ohms, ohm, and ohms

Exercise 29

30 Bird population A stable population of 35,000 birds lives on 
three islands. Each year 10% of the population on island A
migrates to island B, 20% of the population on island B
migrates to island C, and 5% of the population on island C
migrates to island A. Find the number of birds on each 
island if the population count on each island does not vary
from year to year.

R1I1 R2 R3I2 I3

6 V 12 V

R3 � 4R2 � 1R1 � 4

R1 � R2 � R3 � 3

� I1 � I2 � I3 � 0

R1I1 � R2I2 � 6

R2I2 � R3I3 � 12

I3I2I1

s0v0t �
3
2

t � 1t �
1
2

t � 0s0v0

s�t� �
1
2 at2 � v0t � s0

s�t�
cm�sec2

G2G3

31 Blending coffees A shop specializes in preparing blends of
gourmet coffees. From Colombian, Costa Rican, and
Kenyan coffees, the owner wishes to prepare 1-pound bags
that will sell for $12.50. The cost per pound of these coffees
is $14, $10, and $12, respectively. The amount of Colom-
bian is to be three times the amount of Costa Rican. Find the
amount of each type of coffee in the blend.

32 Weights of chains There are three chains, weighing 450,
610, and 950 ounces, each consisting of links of three dif-
ferent sizes. Each chain has 10 small links. The chains also
have 20, 30, and 40 medium links and 30, 40, and 70 large
links, respectively. Find the weights of the small, medium,
and large links.

33 Traffic flow Shown in the figure is a system of four one-way
streets leading into the center of a city. The numbers in the
figure denote the average number of vehicles per hour that
travel in the directions shown. A total of 300 vehicles enter
the area and 300 vehicles leave the area every hour. Signals
at intersections A, B, C, and D are to be timed in order to
avoid congestion, and this timing will determine traffic flow
rates , , , and .

Exercise 33

(a) If the number of vehicles entering an intersection per
hour must equal the number leaving the intersection
per hour, describe the traffic flow rates at each inter-
section with a system of equations.

(b) If the signal at intersection C is timed so that is equal
to 100, find , , and .

(c) Make use of the system in part (a) to explain why
.

34 If , determine a, b, and c such that 
the graph of f passes through the points ,

, and .R�2, 13�Q��1, 22�
P��3, �12�

f �x� � ax 3 � bx � c

75 � x3 � 150

x4x2x1

x3

100
50

25 150

50

75

50
100

x1

x2

x3x4A

B
C

D

x4x3x2x1
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Exer. 35–36: Find an equation of the circle of the form
that passes through the given

points.

35 , ,

36 , , R�2, 4�Q��2, �4�P��5, 5�

R�3, 0�Q��1, �4�P�2, 1�

x2 � y2 � ax � by � c � 0
Exer. 37–38: Find an equation of the cubic polynomial

that passes through the given
points.

37 , , ,

38 , , , S(2, �2)R��1, 10�Q�1, 2�P�0, 4�

S(2, �14)R��1, �5�Q�1, �11�P�0, �6�

f(x) � ax3 � bx2 � cx � d
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Matrices were introduced in Section 9.5 as an aid to finding solutions of sys-
tems of equations. In this section we discuss some of the properties of matri-
ces. These properties are important in advanced fields of mathematics and in
applications.

In the following definition, the symbol denotes an matrix A of
the type displayed in the definition on page 601. We use similar notations for
the matrices B and C.

Note that two matrices are equal if and only if they have the same size and
corresponding elements are equal.

Equality of Matrices

Using the parentheses notation for matrices, we may write the definition
of addition of two matrices as

Thus, to add two matrices, we add the elements in corresponding positions in
each matrix. Two matrices can be added only if they have the same size.

�aij� � �bij� � �aij � bij�.

m � n

� 1

23 8

0

32

5

�2� � ���1�2

2

0

9

225

�2�

m � n�aij�

9.6
The Algebra of Matrices

Definition of Equality 
and Addition of Matrices

Let , , and be matrices.

(1) if and only if for every i and j.

(2) if and only if for every i and j.cij � aij � bijC � A � B

aij � bijA � B

m � nC � �cij�B � �bij�A � �aij�

I L L U S T R A T I O N



Addition of Matrices

The zero matrix, denoted by O, is the matrix with m rows and n
columns in which every element is 0.

Zero Matrices

The additive inverse of the matrix is the matrix ob-
tained by changing the sign of each nonzero element of A.

Additive Inverse

The proof of the next theorem follows from the definition of addition of
matrices.

Subtraction of two matrices is defined by

A � B � A � ��B�.

m � n

�� 2

�1

�3

0

4

5� � ��2

1

3

0

�4

�5�

��aij�A � �aij��A

�0

0

0

0

0

0

0

0��0

0

0

0

0

0
��0

0

0

0�

m � n
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�1

0

3

�5

�2

4� � �0

0

0

0

0

0� � �1

0

3

�5

�2

4�
� 2

�4

3

1� � ��2

4

�3

�1� � �0

0

0

0�
� 4

0

�6

�5

4

1
� � � 3

7

�2

2

�4

1
� � � 4 � 3

0 � 7

�6 � ��2�

�5 � 2

4 � ��4�
1 � 1

� � � 7

7

�8

�3

0

2
�

Theorem on Matrix Properties If A, B, and C are matrices and if O is the zero matrix, then

(1)

(2)

(3)

(4) A � ��A� � O

A � O � A

A � �B � C� � �A � B� � C

A � B � B � A

m � nm � n

I L L U S T R A T I O N

I L L U S T R A T I O N

I L L U S T R A T I O N



Using the parentheses notation, we have

Thus, to subtract two matrices, we subtract the elements in corresponding
positions.

Subtraction of Matrices

Note that to find cA, we multiply each element of A by c.

Product of a Real Number and a Matrix

We can prove the following.

The next definition, of the product AB of two matrices, may seem unusual,
but it has many uses in mathematics and applications. For multiplication, un-
like addition, A and B may have different sizes; however, the number of columns
of A must be the same as the number of rows of B. Thus, if A is , then B must
be for some p. As we shall see, the size of AB is then . 
If , then a method for finding the element in row i and column j of
C is given in the following guidelines.

cijC � AB
m � pn � p

m � n

3�4

2

�1

3� � �3 � 4

3 � 2

3 � ��1�
3 � 3 � � �12

6

�3

9�

� �aij � bij�.
�aij� � �bij� � �aij� � ��bij�
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� 4

0

�6

�5

4

1
� � � 3

7

�2

2

�4

1
� � � 4 � 3

0 � 7

�6 � ��2�

�5 � 2

4 � ��4�
1 � 1

� � � 1

�7

�4

�7

8

0
�

Definition of the Product of 
a Real Number and a Matrix

The product of a real number c and an matrix is

cA � �caij�.

A � �aij�m � n

Theorem on Matrix Properties If A and B are matrices and if c and d are real numbers, then

(1)

(2)

(3) �cd�A � c�dA�
�c � d�A � cA � dA

c�A � B� � cA � cB

m � n

I L L U S T R A T I O N

I L L U S T R A T I O N



Using the guidelines, we see that the element in the first row and the
first column of is

The element in the last row and the last column of is

The preceding discussion is summarized in the next definition.

The following diagram may help you remember the relationship between
sizes of matrices when working with a product AB.

size of A size of B

equal

size of AB is m � p

n � pm � n

cmp � am1b1p � am2b2p � am3b3p � � � � � amnbnp.

C � ABcmp

c11 � a11b11 � a12b21 � a13b31 � � � � � a1nbn1.

C � AB
c11

9 . 6  T h e  A l g e b r a  o f  M a t r i c e s 617

Guidelines for Finding 
in the Product if 

is and is n � pBm � n
AC � AB

cij 1 Single out the ith row, , of A and the jth column, , of B:

2 Simultaneously move to the right along and down , multiplying
pairs of elements, to obtain

3 Add the products of the pairs in guideline 2 to obtain :

cij � ai1b1j � ai2b2j � ai3b3j � � � � � ainbnj

cij

ai1b1j, ai2b2j, ai3b3j, . . . , ainbnj.

CjRi

CjRi

. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

. . . amnam2am1

ainai2ai1

a1na12a11
. . . . . .
. . . . . .

. . .

. . .

. . .
. . . . . . bnpbnjbn1

b2pb2jb21

b1pb1jb11

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

Definition of the 
Product of Two Matrices

Let be an matrix and let be an matrix. The
product AB is the matrix such that

for and .j � 1, 2, 3, . . . , pi � 1, 2, 3, . . . , m

cij � ai1b1j � ai2b2j � ai3b3j � � � � � ainbnj

C � �cij�m � p
n � pB � �bij�m � nA � �aij�
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I L L U S T R A T I O N

The next illustration contains some special cases.

Sizes of Matrices in Products

Size of A Size of B Size of AB

AB is not defined

In the following example we find the product of two specific matrices.

E X A M P L E  1 Finding the product of two matrices

Find the product AB if

S O L U T I O N The matrix A is , and the matrix B is . Hence, the
product is defined and is . We next use the guidelines to find the
elements of the product. For instance, to find the element 
we single out the second row, , of A and the third column, , of B, as illus-
trated below, and then use guidelines 2 and 3 to obtain

Similarly, to find the element in row 1 and column 2 of the product, we
proceed as follows:

� 1

4

2

0

�3

�2 �� 5

�1

7

�4

6

0

2

3

5

0

1

8
� � � 8

�2 �
c12 � 1 � ��4� � 2 � 6 � ��3� � 0 � 8

c12

� 1

4

2

0

�3

�2 �� 5

�1

7

�4

6

0

2

3

5

0

1

8
� � � �2 �

c23 � 4 � 2 � 0 � 3 � ��2� � 5 � �2.

C3R2

c23c11, c12, . . ., c24

2 � 4C � AB
3 � 42 � 3

A � �1

4

2

0

�3

�2� and B � � 5

�1

7

�4

6

0

2

3

5

0

1

8
�.

5 � 35 � 3

5 � 53 � 55 � 3

1 � 13 � 11 � 3

3 � 31 � 33 � 1

4 � 32 � 34 � 2

2 � 53 � 52 � 3



The remaining elements of the product are calculated as follows, where we
have indicated the row of A and the column of B that are used when guideline 1
is applied.

Hence,

L

A matrix is a row matrix if it has only one row. A column matrix has
only one column. The following illustration contains some products involving
row and column matrices. You should check each entry in the products.

Products Involving Row and Column Matrices

The product operation for matrices is not commutative. For example, if A
is and B is , then AB may be found, since the number of columns
of A is the same as the number of rows of B. However, BA is undefined, since
the number of columns of B is different from the number of rows of A. Even
if AB and BA are both defined, it is often true that these products are different.
This is illustrated in the next example, along with the fact that the product of
two nonzero matrices may equal a zero matrix.

E X A M P L E  2 Matrix multiplication is not commutative

If and , show that .AB � BAB � �1

1

2

2�A � � 2

�1

2

�1�

3 � 42 � 3

� ��18

6

8

�16

�7

�2

�22

�16�.

AB � �1

4

2

0

�3

�2�� 5

�1

7

�4

6

0

2

3

5

0

1

8
�
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Row of A Column of B Element of C

c24 � 4 � 0   � 0 � 1   � ��2� � 8 � �16C4R2

c22 � 4 � ��4� � 0 � 6   � ��2� � 0 � �16C2R2

c21 � 4 � 5   � 0 � ��1� � ��2� � 7 � 6C1R2

c14 � 1 � 0   � 2 � 1   � ��3� � 8 � �22C4R1

c13 � 1 � 2   � 2 � 3   � ��3� � 5 � �7C3R1

c11 � 1 � 5   � 2 � ��1� � ��3� � 7 � �18C1R1

�1 5	��2

3� � �13	��2

3��1 5	 � ��2

3

�10

15�
�3 �1 2	��2

0

5

4

�1

3
� � �4 19	��2

0

5

4

�1

3
���2

1� � � 8

�1

�7
�

I L L U S T R A T I O N



S O L U T I O N Using the definition of the product of two matrices, we obtain
the following:

Hence, . Note that the last equality shows that the product of two
nonzero matrices can equal a zero matrix. L

Although matrix multiplication is not commutative, it is associative. Thus,
if A is , B is , and C is , then

The distributive properties also hold if the matrices involved have the
proper number of rows and columns. If and are matrices and if

and are matrices, then

As a special case, if all matrices are square, of order n, then both the associa-
tive and the distributive property are true.

We conclude this section with an application of the product of two
matrices.

E X A M P L E  3 An application of a matrix product

(a) Three investors, , , and , each own a certain number of shares of four
stocks, , , , and , according to matrix A. Matrix B contains the present
value V of each share of each stock. Find AB, and interpret the meaning of its
elements.

(b) Matrix C contains the change in the value of each stock for the last week.
Find AC, and interpret the meaning of its elements.

��1.03

�0.22

�1.35

�0.15
� � Cstocks �

S1

S2

S3

S4

�20.37

16.21

90.80

42.75
� � Bstocks �

S1

S2

S3

S4

� 50

100

100

100

150

50

30

10

40

25

30

100
� � A,investors �I1

I2

I3

S4S3S2S1

I3I2I1

�A1 � A2�B1 � A1B1 � A2B1.

A1�B1 � B2� � A1B1 � A1B2

n � pB2B1

m � nA2A1

A�BC� � �AB�C.

p � qn � pm � n

AB � BA

BA � �1

1

2

2�� 2

�1

2

�1� � �0

0

0

0�
AB � � 2

�1

2

�1��1

1

2

2� � � 4

�2

8

�4�
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⎧⎪⎪⎪⎨⎪⎪⎪⎪⎩ ⎧⎨⎩number of shares of stock

S4S3S2S1

share value

V



S O L U T I O N

(a) Since A is a matrix and B is a matrix, the product AB is a
matrix:

The first element in the product AB, 6432.25, was obtained from the
computation

and represents the total value that investor has in all four stocks. Similarly,
the second and third elements represent the total value for investors and ,
respectively.

(b)

The first element in the product , , indicates that the total value that
investor has in all four stocks went down $7.25 in the last week. The second
and third elements indicate that the total value that investors and have in
all four stocks went up $61.00 and $53.00, respectively. L

I3I2

I1

�7.25AC

AC � � 50

100

100

100

150

50

30

10

40

25

30

100
���1.03

�0.22

�1.35

�0.15
� � ��7.25

61.00

53.00
�

I3I2

I1

50�20.37� � 100�16.21� � 30�90.80� � 25�42.75�

AB � � 50

100

100

100

150

50

30

10

40

25

30

100
��20.37

16.21

90.80

42.75
� � � 6432.25

6659.00

10,754.50
�

3 � 1
4 � 13 � 4
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Exer. 1–8: Find, if possible, , , 2A, and .

1 ,

2 ,

3 ,

4 , B � �8

0

4

1

0

4�A � �0

5

�2

4

7

�3�
B � � 3

�1

6

1

5

0
�A � � 6

2

�3

�1

0

4
�

B � �3

1

�4

1�A � � 3

�1

0

2�
B � � 4

�3

1

2�A � �5

1

�2

3�
�3BA � BA � B 5 ,

6 ,

7 ,

8 ,

Exer. 9–10: Find the given element of the matrix product
in the listed exercise.

9 ; Exercise 15 10 ; Exercise 16c23c21

C � AB

B � �3 �1 5	A � �2 1	

B � � 4

2

�1

0

�1

3
�A � � 3

0

�3

�2

1

2

2

�4

�1
�

B � ��11

9�A � � 7

�16�
B � �7 0 �5	A � �4 �3 2	

9.6 E x e r c i s e s



Exer. 11–22: Find, if possible, AB and BA.

11 ,

12 ,

13 ,

14 ,

15 ,

16 ,

17 ,

18 ,

19 ,

20 ,

21 ,

22 ,

Exer. 23–26: Find AB.

23 , B � �3

4�A � � 4

0

�7

�2

3

5
�

B � ��2

5�A � �3 �1 4	

B � �1

3

0

�1

1

2

2

0

1
�A � � 2

�1

0

2

1

0�
B � ��3

2�A � �4 8	

B � � 1

4

�5
�A � ��3 7 2	

B � �2

0

0

0

2

0

0

0

2
�A � �1

2

3

2

3

1

3

1

2
�

B � �1

0

0

0

1

0

0

0

1
�A � �1

4

7

2

5

8

3

6

9
�

B � � 5

1

�1

0

�3

2

0

�2

1

0

4

3
�A � � 2

3

�2

1

�2

1

�1

0

4

0

5

2
�

B � � 2

0

�4

1

1

7
�A � � 4

�5

�3

2

1

2�

B � �3

0

0

0

4

0

0

0

�2
�A � �5

0

0

0

�3

0

0

0

2
�

B � �1

4

0

�5

1

�1

0

�2

3
�A � �3

0

5

0

4

�3

�1

2

1
�

B � �2

4

1

2�A � � 4

�2

�2

1�
B � �5

1

�2

7�A � �2

3

6

�4� 24 ,

25 ,

26 ,

Exer. 27–30: Let

, , .

Verify the statement.

27 , where and .

28

29

30

Exer 31–34: Verify the identity for

, , ,

and real numbers m and n.

31 32

33 34

35 Value of inventory A store stocks these sizes of towels,
each available in five colors: small, priced at $8.99 each;
medium, priced at $10.99 each; and large, priced at $12.99
each. The store’s current inventory is as follows:

A�BC� � �AB�CA�B � C� � AB � AC

�m � n�A � mA � nAm�A � B� � mA � mB

C � �w
y

x
z�B � �p

r
q
s�A � �a

c
b
d�

A�BC� � �AB�C

A�B � C� � AB � AC

�A � B��A � B� � A2 � 2AB � B2

B2 � BBA2 � AA�A � B��A � B� � A2 � B2

C � � 3
�2

1
0�B � �2

3
�1

1�A � �1
0

2
�3�

B � � 1

�2

0

�1

3

4

0

1

0

2

0

�3
�A � �1

4

2

�5

�3

6�

B � � 4

1

0

�3

�2

1

0

�1

0

�2

5

0
�A � � 2

�7

1

0

0

�2

�3

4�

B � �5 1	A � � 4

�3

2
�
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Colors

Towel size White Tan Beige Pink Yellow

Small 400 400 300 250 100

Medium 550 450 500 200 100

Large 500 500 600 300 200
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(a) Organize these data into an inventory matrix A and a
price matrix B so that the product is defined.

(b) Find C.

(c) Interpret the meaning of element in C.

36 Building costs A housing contractor has orders for 4 one-
bedroom units, 10 two-bedroom units, and 6 three-bedroom
units. The labor and material costs (in thousands of dollars)
are given in the following table.

c51

C � AB

(a) Organize these data into an order matrix A and a cost
matrix B so that the product is defined.

(b) Find C.

(c) Interpret the meaning of each element in C.

C � AB

1-Bedroom 2-Bedroom 3-Bedroom

Labor 70 95 117

Materials 90 105 223

Throughout this section and the next two sections we shall restrict our discus-
sion to square matrices. The symbol will denote the square matrix of order
n that has 1 in each position on the main diagonal and 0 elsewhere. We call 
the identity matrix of order n.

Identity Matrices

We can show that if A is any square matrix of order n, then

Recall that when we are working with a nonzero real number b, the unique
number (the multiplicative inverse of b) may be multiplied times b to ob-
tain the multiplicative identity (the number 1)—that is,

We have a similar situation with matrices.

b � b�1 � 1.

b�1

�a11

a21

a12

a22
��1

0

0

1� � �a11

a21

a12

a22
� � �1

0

0

1��a11

a21

a12

a22
�

AI2 � A � I2 A

AIn � A � InA.

I3 � �1

0

0

0

1

0

0

0

1
�I2 � �1

0

0

1�

In

In

9.7
The Inverse of a Matrix

Definition of the 
Inverse of a Matrix

Let A be a square matrix of order n. If there exists a matrix B such that

then B is called the inverse of A and is denoted (read “A inverse”).A�1

AB � In � BA,

I L L U S T R A T I O N

I L L U S T R A T I O N



If a square matrix A has an inverse, then we say that A is invertible. If a
matrix is not square, then it cannot have an inverse. For matrices (unlike real
numbers), the symbol does not represent the inverse .

If A is invertible, we can calculate using elementary row operations.
If is , we begin with the matrix formed by adjoining
to A:

We next apply a succession of elementary row transformations, as we did in
Section 9.5 to find reduced echelon forms, until we arrive at a matrix of 
the form

in which the identity matrix appears to the left of the vertical rule. It can be
shown that the matrix is the inverse of A—that is, .

E X A M P L E  1 Finding the inverse of a matrix

Find if .

S O L U T I O N We begin with the matrix

.

Next we perform elementary row transformations until the identity matrix 
appears on the left of the vertical rule, as follows:

�4R2 � R1 l R1�1

0

0

1 �  
4
7

�
1
7

�
5
7
3
7
�

� 1
7R2 l R2

�1

0

4

1
  � 0

�
1
7

1
3
7
�

  
�3R1 � R2 l R2

�1

0

4

�7
  � 0

1

1

�3�
�3

1

5

4 � 1

0

0

1�R1 i R2�1

3

4

5 �  0

1

1

0�
I2

�3

1

5

4

1

0� 0

1�.

A � �3

1

5

4�A�1

2 � 2

B � A�1�bij�n � n
In

Inn � 2nn � nA � �aij�
A�1

A�11�A
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� � � � � �
� � � � � �
� � � � � �

0 0 � � � 1an1 an2 � � � ann

a11

a21

a12

a22

� � �

� � �

a1n

a2n

1

0

0

1

� � �

� � �

0

0
⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

� � � � � �
� � � � � �
� � � � � �

bn1 bn2 � � � bnn0 0 � � � 1

1

0

0

1

� � �

� � �

0

0
   

b11

b21

b12

b22

� � �

� � �

b1n

b2n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣
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By the previous discussion,

Let us verify that :

L

E X A M P L E  2 Finding the inverse of a matrix

Find if .

S O L U T I O N

Consequently,

You may verify that . LAA�1 � I3 � A�1A

A�1 � ��
10
9
4
9

�
13
9

7
9

�
1
9

10
9

�
5
9
2
9

�
11
9

� �
1
9��10

4

�13

7

�1

10

�5

2

�11
�.

�1

0

0

0

1

0

0

0

1
� �

10
9
4
9

�
13
9

7
9

�
1
9

10
9

�
5
9
2
9

�
11
9

��2R3 � R1 l R1

�R3 � R2 l R2

�1

0

0

0

1

0

2

1

1
� �4

�1

�
13
9

3

1
10
9

�3

�1

�
11
9

�
�1

9 R3 l R3

�1

0

0

0

1

0

2

1

�9
� �4

�1

13

3

1

�10

�3

�1

11
�3R2 � R1 l R1

�10R2 � R3 l R3

�1

0

0

�3

1

10

�1

1

1
� �1

�1

3

0

1

0

0

�1

1
��R3 � R2 l R2

�1

0

0

�3

11

10

�1

2

1
� �1

2

3

0

1

0

0

0

1
��2R1 � R2 l R2

�3R1 � R3 l R3

A � ��1

2

3

3

5

1

1

0

�2
�A�1

3 � 3

�3

1

5

4�� 4
7

�
1
7

�
5
7
3
7
� � �1

0

0

1� � � 4
7

�
1
7

�
5
7
3
7
��3

1

5

4�
AA�1 � I2 � A�1A

A�1 � � 4
7

�
1
7

�
5
7
3
7
� �

1
7� 4

�1

�5

3�.

�1

2

3

�3

5

1

�1

0

�2
� �1

0

0

0

1

0

0

0

1
��R1 l R1��1

2

3

3

5

1

1

0

�2
� 1

0

0

0

1

0

0

0

1
�



Not all square matrices are invertible. In fact, if the procedure used in Ex-
amples 1 and 2 does not lead to an identity matrix to the left of the vertical
rule, then the matrix A has no inverse—that is, A is not invertible.

We may apply inverses of matrices to solutions of systems of linear equa-
tions. Consider the case of two linear equations in two unknowns:

This system can be expressed in terms of matrices as

If we let

then a matrix form for the system is

If exists, then multiplying both sides of the last equation by gives us
. Since and , this leads to

from which the solution may be found. This technique (which we refer
to as the inverse method) may be extended to systems of n linear equations in
n unknowns.

E X A M P L E  3 Solving a system of linear equations using the inverse method

Solve the system of equations:

S O L U T I O N If we let

then . This implies that . The matrix was found in 
Example 2. Hence,

Thus, , , , and the ordered triple is the solution
of the given system. L

�7
3 , �

1
3 , 13

3 �z �
13
3y � �

1
3x �

7
3

�x

y

z
� �

1
9��10

4

�13

7

�1

10

�5

2

�11
�� 1

3

�2
� �

1
9� 21

�3

39
� � � 7

3

�
1
3

13
3

�.

A�1X � A�1BAX � B

A � ��1

2

3

3

5

1

1

0

�2
�, X � �x

y

z
�, and B � � 1

3

�2
�,

��x � 3y � z � 1

2x � 5y � 3

3x � y � 2z � �2

�x, y�

X � A�1B,

I2X � XA�1A � I2A�1AX � A�1B
A�1A�1

AX � B.

A � �a11

a21

a12

a22
�, X � �x

y�, and B � �k1

k2
�,

�a11x � a12y

a21x � a22y� � �k1

k2
�.

�a11x � a12y � k1

a21x � a22y � k2
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If we are solving a system of linear equations without the aid of any com-
putational device, then the inverse method of solution in Example 3 is benefi-
cial only if is known (or can be easily computed) or if many systems with
the same coefficient matrix are to be considered.

If we are using a computational device and if the coefficient matrix is not
invertible, then the inverse method cannot be used, and the preferred method
of solution is the matrix method discussed in Section 9.5. There are other im-
portant uses for the inverse of a matrix that arise in more advanced fields of
mathematics and in applications of such fields.

A�1

Exer. 1–2: Show that B is the inverse of A.

1 ,

2 ,

Exer. 3–12: Find the inverse of the matrix if it exists.

3 4

5 6

7 8

9 10

11 12

13 State conditions on a and b that guarantee that the ma-

trix has an inverse, and find a formula for the

inverse if it exists.

14 If , find the inverse of .�a

0

0

0

b

0

0

0

c
�abc � 0

�a

0

0

b�

�1

2

3

1

2

3

1

2

3
��2

0

0

0

4

0

0

0

6
�

� 1

�2

3

2

1

�1

3

0

1
���2

1

0

2

�1

1

3

0

4
�

� 3

0

�4

0

1

0

2

0

2
��3

2

0

�1

2

0

0

0

4
�

�3

6

�1

�2��2

4

4

8�
�3

4

2

5��2

1

�4

3�

B � �2

3

5

8�A � � 8

�3

�5

2�
B � � 3

�2

�7

5�A � �5

2

7

3� 15 If , show that .

16 Show that for every square matrix A of
order 4.

Exer. 17–20: Solve the system using the inverse method.
Refer to Exercises 3–4 and 9–10.

17

(a) (b)

18

(a) (b)

19

(a) (b)

20

(a) (b) �c

d

e
� � ��3

�2

1
��c

d

e
� � ��1

4

2
�

� x � 2y � 3z � c

�2x � y � d

3x � y � z � e

�c

d

e
� � ��1

0

4
��c

d

e
� � � 1

3

�2
�

��2x � 2y � 3z � c

x � y � d

y � 4z � e

�c

d� � �4

3��c

d� � ��1

1�
�3x � 2y � c

4x � 5y � d

�c

d� � ��2

5��c

d� � �3

1�
�2x � 4y � c

x � 3y � d

AI4 � A � I4A

AI3 � A � I3AA � �a11

a21

a31

a12

a22

a32

a13

a23

a33

�
9.7 E x e r c i s e s
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Associated with each square matrix A is a number called the determinant of
A, denoted by . This notation should not be confused with the symbol for
the absolute value of a real number. To avoid any misunderstanding, the ex-
pression “det A” is sometimes used in place of . We shall define by be-
ginning with the case in which A has order 1 and then increasing the order one
at a time. As we shall see in Section 9.9, these definitions arise in a natural way
when systems of linear equations are solved.

If A is a square matrix of order 1, then A has only one element. Thus,
and we define . If A is a square matrix of order 2, then

and the determinant of A is defined by

Another notation for is obtained by replacing the brackets used for A with
vertical bars, as follows.

E X A M P L E  1 Finding the determinant of a matrix

Find if .

S O L U T I O N By definition,

L

To assist in finding determinants for square matrices of order , we
introduce the following terminology.

n � 1

� A � � �2

4

�1

�3 � � �2���3� � �4���1� � �6 � 4 � �2.

A � �2

4

�1

�3�� A �

2 � 2

� A �

� A � � a11a22 � a21a12.

A � �a11

a21

a12

a22
�,

� A � � a11A � �a11	

� A �� A �

� A �
9.8

Determinants

Definition of the Determinant
of a Matrix A2 � 2 � A � � �a11

a21

a12

a22 � � a11a22 � a21a12

Definition of 
Minors and Cofactors

Let be a square matrix of order .

(1) The minor of the element is the determinant of the matrix of
order obtained by deleting row i and column j.

(2) The cofactor of the element is .Aij � ��1�i�jMijaijAij

n � 1
aijMij

n � 1A � �aij�
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To determine the minor of an element, we delete the row and column in
which the element appears and then find the determinant of the resulting
square matrix. This process is demonstrated in the following illustration,
where deletions of rows and columns in a matrix are indicated with
horizontal and vertical line segments, respectively.

To obtain the cofactor of of a square matrix , we find the minor
and multiply it by 1 or , depending on whether the sum of i and j is even or
odd, respectively, as demonstrated in the illustration.

Minors and Cofactors

Matrix Minor Cofactor

For the matrix in the preceding illustration, there are six other minors—
, and —that can be obtained in similar fashion.

Another way to remember the sign associated with the cofactor 
is to consider the following checkerboard style of plus and minus signs:

. . . .

. . . .

. . . .

E X A M P L E  2 Finding minors and cofactors

If , find and .A22M11, M21, M22, A11, A21,A � � 1

4

�2

�3

2

�7

3

0

5
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

� � �

� � �

� � �

Aij��1�i�j

M33M13, M21, M22, M31, M32

� a11a32 � a31a12

A23 � ��1�2�3M23 � �M23M23 � �a11

a31

a12

a32 ��a11

a21

a31

a12

a22

a32

a13

a23

a33

�
� a21a33 � a31a23

A12 � ��1�1�2M12 � �M12M12 � �a21

a31

a23

a33 ��a11

a21

a31

a12

a22

a32

a13

a23

a33

�
� a22a33 � a32a23

A11 � ��1�1�1M11 � M11M11 � �a22

a32

a23

a33 ��a11

a21

a31

a12

a22

a32

a13

a23

a33

�

�1
A � �aij�aij

3 � 3

I L L U S T R A T I O N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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S O L U T I O N Deleting appropriate rows and columns of A, we obtain

To obtain the cofactors, we prefix the corresponding minors with the proper
signs. Thus, using the definition of cofactor, we have

We can also use the checkerboard style of plus and minus signs to determine
the proper signs. L

The determinant of a square matrix of order 3 is defined as follows.

Since cofactors , ,
and , the preceding definition may also be written

If we express , , and using elements of A and rearrange terms, we
obtain the following formula for :

The definition of for a square matrix A of order 3 displays a pattern of
multiplying each element in row 1 by its cofactor and then adding to find .
This process is referred to as expanding by the first row. By actually car-
rying out the computations, we can show that can be expanded in similar
fashion by using any row or column. As an illustration, the expansion by the
second column is

� a12���a21

a31

a23

a33 �� � a22���a11

a31

a13

a33 �� � a32���a11

a21

a13

a23 ��.

� A � � a12A12 � a22A22 � a32A32

� A �
� A �

� A �
� A �

� A � � a11a22a33 � a11a23a32 � a12a21a33 � a12a23a31 � a13a21a32 � a13a22a31

� A �
M13M12M11

� A � � a11M11 � a12M12 � a13M13.

A13 � ��1�1�3M13 � M13

A12 � ��1�1�2M12 � �M12A11 � ��1�1�1M11 � M11

� A �

A22 � ��1�2�2M22 � �1��11� � 11.

A21 � ��1�2�1M21 � ��1��6� � �6

A11 � ��1�1�1M11 � �1��10� � 10

M22 � � 1

�2

3

5 � � �1��5� � ��2��3� � 11.

M21 � ��3

�7

3

5 � � ��3��5� � ��7��3� � 6

M11 � � 2

�7

0

5 � � �2��5� � ��7��0� � 10

Definition of the Determinant
of a Matrix A3 � 3 � A � � �a11

a21

a31

a12

a22

a32

a13

a23

a33
� � a11A11 � a12A12 � a13A13
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Applying the definition to the determinants in parentheses, multiplying as indi-
cated, and rearranging the terms in the sum, we could arrive at the formula for

in terms of the elements of A. Similarly, the expansion by the third row is

Once again we can show that this result agrees with previous expansions.

E X A M P L E  3 Finding the determinant of a matrix

Find if .

S O L U T I O N Since the second row contains a zero, we shall expand by
that row, because then we need to evaluate only two cofactors. Thus,

Using the definition of cofactors, we have

Consequently,

L

The following definition of the determinant of a matrix of arbitrary
order n is patterned after that used for the determinant of a matrix of order 3.

The number may be found by using any row or column, as stated in
the following theorem.

� A �

� A � � �2��7� � �5���1� � �0�A23 � 14 � 5 � 0 � 9.

A22 � ��1�2�2M22 � ��1

3

1

�2 � � ���1���2� � �3��1�	 � �1.

A21 � ��1�2�1M21 � ��3

1

1

�2 � � ���3���2� � �1��1�	 � 7

� A � � �2�A21 � �5�A22 � �0�A23.

� A �

A � ��1

2

3

3

5

1

1

0

�2
�� A �

3 � 3

� A � � a31A31 � a32A32 � a33A33.

� A �

Definition of the Determinant
of an Matrix An � n

The determinant of a matrix A of order n is the cofactor expansion
by the first row:

In terms of minors,

� A � � a11M11 � a12M12 � � � � � a1n��1�1�nM1n.

� A � � a11A11 � a12A12 � � � � � a1nA1n

� A �

Theorem on Expansion 
of Determinants

If A is a square matrix of order , then the determinant may be
found by multiplying the elements of any row (or column) by their respec-
tive cofactors and adding the resulting products.

� A �n � 1



This theorem is useful if many zeros appear in a row or column, as illustrated
in the following example.

E X A M P L E  4 Finding the determinant of a matrix

Find if .

S O L U T I O N Note that all but one of the elements in the third row are zero.
Hence, if we expand by the third row, there will be at most one nonzero
term. Specifically,

with

We expand by column 1:

Thus, L

In general, if all but one element in some row (or column) of A are zero
and if the determinant is expanded by that row (or column), then all terms
drop out except the product of that element with its cofactor. If all elements in
a row (or column) are zero, we have the following.

P R O O F If every element in a row (or column) of a square matrix A is zero,
then the expansion by that row (or column) is a sum of terms that are zero
(since each term is zero times its respective cofactor). Hence, this sum is equal
to zero, and we conclude that . L

In the previous section we found that if we could not obtain the identity
matrix on the left side of the adjoined matrix, then the original matrix was not
invertible. If we obtain a row of zeros in this process, we certainly cannot ob-
tain the identity matrix. Combining this fact with the previous theorem leads
to the following theorem.

� A � � 0

� A �

� A � � �3A33 � ��3��13� � �39.

� �1��3� � ��2��5� � �0���5� � 3 � 10 � 0 � 13

M33 � �1�� 1

�1

0

3 � � ��2�� 0

�1

5

3 � � �0��0

1

5

0 �
M33

A33 � ��1�3�3M33 � M33 � � 1

�2

0

0

1

�1

5

0

3
�.

� A � � �0�A31 � �0�A32 � ��3�A33 � �0�A34 � �3A33

� A �

A � � 1

�2

0

0

0

1

0

�1

2

5

�3

0

5

0

0

3
�� A �

4 � 4
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Theorem on a Row of Zeros If every element in a row (or column) of a square matrix A is zero, then
.� A � � 0

Theorem on 
Matrix Invertibility

If A is a square matrix, then A is invertible if and only if .� A � � 0
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Exer. 1–4: Find all the minors and cofactors of the ele-
ments in the matrix.

1 2

3 4

Exer. 5–8: Find the determinant of the matrix in the 
given exercise.

5 Exercise 1 6 Exercise 2

7 Exercise 3 8 Exercise 4

Exer. 9–20: Find the determinant of the matrix.

9 10

11 12

13 14

15 16

17 18

19 20

Exer. 21 – 28: Verify the identity by expanding each
determinant.

21 22 � a

c

b

d� � �� b

d

a

c�� a

c

b

d� � �� c

a

d

b�

�a

0

0

0

u

b

0

0

v

x

c

0

w

y

z

d
��0

0

a

0

b

0

0

0

0

c

0

0

0

0

0

d
�

� 2

�4

3

�1

5

0

�2

4

1

�3

1

2

0

0

6

0
��3

4

0

1

�1

0

6

3

2

�3

0

�4

0

5

0

2
�

�2

1

4

7

0

�1

�3

4

�2
���5

3

2

4

�2

0

1

7

6
�

� 2

�3

4

�5

1

�2

1

6

3
�� 3

4

�6

1

2

3

�2

5

�1
�

� c

�d

d

c��a

b

�a

�b�
� 6

�3

4

2���5

�3

4

2�

� 5

4

�3

�2

7

4

1

0

�1
�� 2

0

�5

4

3

7

�1

2

0
�

��6

3

4

2��7

5

�1

0�
23 24

25

26

27

28

29 Let be a square matrix of order n such that 
if . Show that .

30 If is any matrix such that , show
that A has an inverse, and find a general formula for .

Exer. 31–34: Let be the identity matrix of order 2,
and let . Find (a) the polynomial and
(b) the zeros of . (In the study of matrices, is the
characteristic polynomial of A, and the zeros of are the
characteristic values (eigenvalues) of A.)

31 32

33 34

Exer. 35–38: Let and let . Find 
(a) the polynomial and (b) the zeros of .

35 36

37 38 A � � 3

1

�1

2

0

�1

2

2

0
�A � � 0

�1

�3

2

3

3

�2

1

1
�

A � � 2

�1

1

1

0

3

0

0

2
�A � � 1

1

�1

0

0

1

0

�2

�3
�

f (x)f (x)
f (x) � � A � xI �I � I3

A � � 2

�3

�4

5�A � ��3

2

�2

2�
A � �3

2

1

2�A � �1

3

2

2�
f (x)

f (x)f (x)
f (x)f (x) � � A � xI �

I � I2

A�1

� A � � 02 � 2A � �aij�

� A � � a11a22 � � � anni � j
aij � 0A � �aij�

� a

c

b

d � � � a

e

b

f � � � a

c � e

b

d � f �
� a

c

b

d � � � a

c

e

f � � � a

c

b � e

d � f �
� a

c

b

d � � � a

c

ka � b

kc � d �
� a

c

b

d� � � a

ka � c

b

kb � d �
� a

kc

b

kd� � k� a

c

b

d�� a

c

kb

kd� � k� a

c

b

d�
9.8 E x e r c i s e s



Exer. 39–42: Express the determinant in the form
for real numbers a, b, and c.

39 40 � i

1

2

j

�2

1

k

3

�4
�� i

2

�3

j

�1

5

k

6

1
�

ai � bj � ck

41 42 � i

4

�2

j

�6

3

k

2

�1
�� i

5

3

j

�6

0

k

�1

1
�
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Evaluating a determinant by using the expansion theorem stated in Section 9.8
is inefficient for matrices of high order. For example, if a determinant of a ma-
trix of order 10 is expanded by any row, a sum of 10 terms is obtained, and
each term contains the determinant of a matrix of order 9, which is a cofactor
of the original matrix. If any of the latter determinants is expanded by a row
(or column), a sum of 9 terms is obtained, each containing the determinant of
a matrix of order 8. Hence, at this stage there are 90 determinants of matrices
of order 8 to evaluate. The process could be continued until only determinants
of matrices of order 2 remain. You may verify that there are 1,814,400 such
matrices of order 2! Unless many elements of the original matrix are zero, it is
an enormous task to carry out all of the computations.

In this section we discuss rules that simplify the process of evaluating
determinants. The main use for these rules is to introduce zeros into the 
determinant. They may also be used to change the determinant to echelon
form—that is, to a form in which the elements below the main diagonal ele-
ments are all zero (see Section 9.5). The transformations on rows stated in the
next theorem are the same as the elementary row transformations of a matrix
introduced in Section 9.5. However, for determinants we may also use similar
transformations on columns.

When using the theorem, we refer to the rows (or columns) of the deter-
minant in the obvious way. For example, property 3 may be phrased as fol-
lows: Adding k times any row (or column) to another row (or column) of a
determinant does not affect the value of the determinant.

9.9
Properties of Determinants

Theorem on Row and 
Column Transformations 

of a Determinant

Let A be a square matrix of order n.

(1) If a matrix B is obtained from A by interchanging two rows (or
columns), then .

(2) If B is obtained from A by multiplying every element of one row (or
column) of A by a real number k, then .

(3) If B is obtained from A by adding k times any row (or column) of A to
another row (or column) for a real number k, then —that is,
the determinants of B and A are equal.

� B � � � A �

� B � � k� A �

� B � � �� A �
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Row transformations of determinants will be specified by means of the
symbols , , and , which were introduced in Sec-
tion 9.5. Analogous symbols are used for column transformations. For exam-
ple, means “add k times the ith column to the j th column.”

Property 2 of the theorem on row and column transformations is useful for
finding factors of determinants. To illustrate, for a determinant of a matrix of
order 3, we have the following:

Similar formulas hold if k is a common factor of the elements of any other row
or column. When referring to this manipulation, we often use the phrase k is a
common factor of the row (or column).

The following are illustrations of the preceding theorem, with the reason
for each equality stated at the right.

Transformation of Determinants

(property 1)

(property 3)

P R O O F If B is the matrix obtained from A by interchanging the two identi-
cal rows (or columns), then B and A are the same and, consequently, .
However, by property 1 of the theorem on row and column transformations of
a determinant, , and hence . Thus, , and
therefore . L� A � � 0

2� A � � 0�� A � � � A �� B � � �� A �

� B � � � A �

�1

2

3

�3

�1

1

4

0

6
� � �1

0

0

�3

5

10

4

�8

�6
�

2C2 � C1 l C1�1

2

3

�3

�1

1

4

0

6
� � ��5

0

5

�3

�1

1

4

0

6
�

�2

6

0

0

4

3

1

3

5
� � 2�1

3

0

0

4

3

1

3

5
�

R1 i R2�2

6

0

0

4

3

1

3

5
� � ��6

2

0

4

0

3

3

1

5
�

� a11

ka21

a31

a12

ka22

a32

a13

ka23

a33
� � k�a11

a21

a31

a12

a22

a32

a13

a23

a33
�

kCi � Cj l Cj

kRi � Rj l RjkRi l RiRi i Rj

Theorem on Identical Rows If two rows (or columns) of a square matrix A are identical, then .� A � � 0

2 is a common factor of 
column 1 (property 2)

I L L U S T R A T I O N

(property 3 applied twice)
�3R1 � R3 l R3

�2R1 � R2 l R2



E X A M P L E  1 Using row and column transformations

Find if .

S O L U T I O N We plan to use property 3 of the theorem on row and column
transformations of a determinant to introduce three zeros in some row or 
column. It is convenient to work with an element of the matrix that equals 1,
since this enables us to avoid the use of fractions. If 1 is not an element of
the original matrix, it is always possible to introduce the number 1 by using
property 2 or 3 of the theorem. In this example, 1 appears in row 3, and we
proceed as follows, with the reason for each equality stated at the right.

L

The next two examples illustrate the use of property 2 of the theorem on
row and column transformations of a determinant.

E X A M P L E  2 Removing common factors from rows

Find if .A � � 14

4

�21

�6

�5

9

4

12

�6
�� A �

� 120

� ��1���23���32� � ��28��22�	

� ��1� � ��1�2�2� 23

�28

22

�32 �
� � 23

0

�28

4

�1

�6

22

0

�32
�

� �1� � ��1�3�1�3

5

2

4

�1

�6

�2

6

4
�

� 2

0

1

�3

3

5

0

2

0

�1

�2

0

4

6

3

�5
� � �0

0

1

0

3

5

0

2

4

�1

�2

�6

�2

6

3

4
�

A � � 2

0

1

�3

3

5

0

2

0

�1

�2

0

4

6

3

�5
�� A �
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3R3 � R4 l R4

�2R3 � R1 l R1

expand by the
first column

6C2 � C3 l C3

5C2 � C1 l C1

expand by the
second row

definition of 
determinant
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S O L U T I O N

2 is a common factor of row 1

�3 is a common factor of row 3

two rows are identical L

E X A M P L E  3 Removing a common factor from a column

Without expanding, show that is a factor of if

S O L U T I O N

Hence, is equal to times the last determinant, and so is a fac-
tor of . L

Determinants arise in the study of solutions of systems of linear equations.
To illustrate, let us consider two linear equations in two variables x and y:

where at least one nonzero coefficient appears in each equation. We may as-
sume that , for otherwise and we could then regard y as the first
variable instead of x. We shall use elementary row transformations to obtain
the matrix of an equivalent system with , as follows:a21 � 0

a12 � 0a11 � 0

�a11x � a12y � k1

a21x � a22y � k2

� A �
a � ba � b� A �

a � b is a common factor
of column 1

� �a � b�� 0

1

a � b

1

b

b2

1

c

c2 �
�C2 � C1 l C1� 1

a

a2

1

b

b2

1

c

c2 � � � 0

a � b

a2 � b2

1

b

b2

1

c

c2 �

A � �1

a

a2

1

b

b2

1

c

c2
�.

� A �a � b

� 0

� �2���3��7

4

7

�3

�5

�3

2

12

2
�

� A � � 2� 7

4

�21

�3

�5

9

2

12

�6
�



Thus, the given system is equivalent to

which may also be written

If , we can solve the second equation for y, obtaining

The corresponding value for x may be found by substituting for y in the
first equation, which leads to

This proves that if the determinant of the coefficient matrix of a system of two
linear equations in two variables is not zero, then the system has a unique so-
lution. The last two formulas for x and y as quotients of determinants consti-
tute Cramer’s rule for two variables.

There is an easy way to remember Cramer’s rule. Let

be the coefficient matrix of the system, and let denote the matrix obtained
from D by replacing the coefficients , of x by the numbers , ,
respectively. Similarly, let denote the matrix obtained from D by replac-
ing the coefficients , of y by the numbers , , respectively. Thus,

Dx � �k1

k2

a12

a22
�, Dy � �a11

a21

k1

k2
�.

k2k1a22a12

Dy

k2k1a21a11

Dx

D � �a11

a21

a12

a22
�

x �
� k1

k2

a12

a22 �
�a11

a21

a12

a22 � .

y �
�a11

a21

k1

k2 �
�a11

a21

a12

a22 � .

�a11

a21

a12

a22 � � 0

�a11

a21

a12

a22 �y � �a11

a21

k1

k2 �
a11x � a12y � k1

� a11x � a12y � k1

�a11a22 � a21a12�y � a11k2 � a21k1

a11R2 l R2�a11

0

a12

�a11a22 � a21a12� � k1

�a11k2 � a21k1��
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⎧
⎪
⎨
⎪
⎩

(*)
The proof of this statement is left as
Discussion Exercise 7 at the end of
the chapter.

�a11

a21

a12

a22 � k1

k2
� �

a21

a11
R1 � R2 l R2�a11

0

a12

a22 � �a21a12

a11
� � k1

k2 � �a21k1

a11
��
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If , the solution is given by the following formulas.

E X A M P L E  4 Using Cramer’s rule to solve a system of two linear equations

Use Cramer’s rule to solve the system

S O L U T I O N The determinant of the coefficient matrix is

Using the notation introduced previously, we have

Hence,

Thus, the system has the unique solution . L

Cramer’s rule can be extended to systems of n linear equations in n vari-
ables , where the i th equation has the form

To solve such a system, let D denote the coefficient matrix and let denote
the matrix obtained by replacing the coefficients of in D by the numbers

that appear in the column to the right of the equal signs in the sys-
tem. If , then the system has the following unique solution.

E X A M P L E  5 Using Cramer’s rule to solve a system of three linear equations

Use Cramer’s rule to solve the system

� x � 2z � 3

� y � 3z � 1

2x � 5z � 0

� D � � 0
k1, . . . , kn

xj

Dxj

ai1x1 � ai2x2 � � � � � ainxn � ki.

x1, x2, . . . , xn

��
25
29 , 22

29�

x �
� Dx �
� D �

�
�25

29
, y �

� Dy �
� D �

�
22

29
.

� Dx � � ��4

1

�3

7 � � �25, � Dy � � �2

5

�4

1 � � 22.

� D � � �2

5

�3

7 � � 29.

�2x � 3y � �4

5x � 7y � 1

�x, y�� D � � 0

Cramer’s Rule for Two Variables
x �

� Dx �
� D �

, y �
� Dy �
� D �

Cramer’s Rule (General Form)
x1 �

�Dx1
�

� D �
,  x2 �

�Dx2
�

� D �
, . . . ,  xn �

�Dxn
�

� D �



S O L U T I O N We shall merely list the various determinants. You should
check the results.

By Cramer’s rule, the solution is

L

Cramer’s rule is an inefficient method to apply if the system has a large
number of equations, since many determinants of matrices of high order must
be evaluated. Note also that Cramer’s rule cannot be used directly if 
or if the number of equations is not the same as the number of variables. 
For numerical calculations, the inverse method and the matrix method are su-
perior to Cramer’s rule; however, the Cramer’s rule formulation is theoretically
useful.

� D � � 0

x �
� Dx �
� D �

�
�15

�9
�

5

3
, y �

� Dy �
� D �

�
27

�9
� �3, z �

� Dz �
� D �

�
6

�9
� �

2

3
.

� Dy � � �1

0

2

3

1

0

�2

3

5
� � 27,  � Dz � � �1

0

2

0

�1

0

3

1

0
� � 6

� D � � �1

0

2

0

�1

0

�2

3

5
� � �9, � Dx � � �3

1

0

0

�1

0

�2

3

5
� � �15
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Exer. 1–14: Without expanding, explain why the state-
ment is true.

1

2

3 � 1

2

1

0

1

1

1

0

2
� � � 1

2

0

0

1

1

1

0

1
�

� 1

0

1

0

1

1

1

1

0
� � �� 1

0

1

1

1

0

0

1

1
�

� 1

0

1

0

1

1

1

1

0
� � �� 1

1

0

0

1

1

1

0

1
�

4

5

6 � 2

4

2

1

3

1

6

3

3
� � 6� 1

2

1

1

3

1

2

1

1
�

� 2

1

2

4

2

6

2

4

4
� � 4� 1

1

1

2

2

3

1

4

2
�

� 1

1

2

1

0

1

2

1

1
� � � 0

1

2

1

0

1

1

1

1
�
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7

8

9

10

11 12

13

14

Exer. 15–24: Find the determinant of the matrix after
introducing zeros, as in Example 1.

15 16

17 18

19 20

21 22 � 3

�2

4

2

2

0

�3

�1

0

5

1

2

4

0

6

0
�� 3

2

0

�1

1

0

1

2

�2

1

3

0

2

4

5

�3
�

�3

5

2

8

3

4

5

�6

�2
�� 2

3

�2

2

6

5

�3

9

4
�

�0

5

6

2

1

�2

�6

�3

5
�� 5

�3

0

4

2

7

3

1

�2
�

��3

1

4

0

2

1

4

0

�1
�� 3

�2

1

1

0

3

0

1

�1
�

� a

0

0

0

b

0

0

0

c
� � �� 0

0

c

0

b

0

a

0

0
�

� 1

�1

0

�1

2

1

�2

1

1
� � � 1

�1

0

�1

2

1

0

�1

1
�

� 1

0

1

0

0

1

1

0

0
� � 0� 0

1

0

0

0

0

1

0

2
� � 0

� 2

1

�2

1 � � �� �2

1

2

1 �
� 1

�3

5

2 � � �� 1

3

5

�2 �
� 1

0

�1

�1

1

1

1

0

�1
� � 0

� 1

1

1

�1

2

�1

2

�1

2
� � 0

23

24

25 Show that

(Hint: See Example 3.)

26 Show that

27 If

show that .

28 If

,

show that

29 If and are arbitrary square matrices of
order 2, show that .

30 If is a square matrix of order n and k is any real
number, show that . (Hint: Use property 2 
of the theorem on row and column transformations of a 
determinant.)

� kA � � kn� A �
A � �aij�

� AB � � � A �� B �
B � �bij�A � �aij�

� A � � � a

c

b

d �� e

g

f

h �.
A � �a

c

0

0

b

d

0

0

0

0

e

g

0

0

f

h
�

� A � � a11a22a33a44

A � �a11

0

0

0

a12

a22

0

0

a13

a23

a33

0

a14

a24

a34

a44

�,

� 1

a

a3

1

b

b3

1

c

c3 � � �a � b��b � c��c � a��a � b � c�.

� 1

a

a2

1

b

b2

1

c

c2 � � �a � b��b � c��c � a�.

2

1

0

�1

0

0

3

4

2

1

�1

0

3

0

5

0

0

0

�2

0

2

1

�1

0

�4

2

3

0

�1

0

�2

0

1

2

4

0

3

�2

0

1

0

2

0

3

0

�3

�1

2

0

0



31 Use properties of determinants to show that the following is
an equation of a line through the points and :

32 Use properties of determinants to show that the following is
an equation of a circle through three noncollinear points

, , and :

Exer. 33–42: Use Cramer’s rule, whenever applicable, to
solve the system.

33 34 �4x � 5y � 13

3x � y � �4�2x � 3y � 2

x � 2y � 8

� x2 � y2

x 2
1 � y2

1

x 2
2 � y2

2

x2
3 � y2

3

x

x1

x2

x3

y

y1

y2

y3

1

1

1

1
� � 0

�x3, y3��x2, y2��x1, y1�

� x

x1

x2

y

y1

y2

1

1

1
� � 0

�x2, y2��x1, y1� 35 36

37 38

39 40

41 42

43 Use Cramer’s rule to solve the system for x.

�ax � by � cz � d

ex � f z � g

hx � iy � j

� 4x � y � 3z � 6

�8x � 3y � 5z � �6

5x � 4y � �9
�5x � 2y � z � �7

x � 2y � 2z � 0

3y � z � 17

� x � 3y � z � �3

3x � y � 2z � 1

2x � y � z � �1
� x � 2y � 3z � �1

2x � y � z � 6

x � 3y � 2z � 13

� 3p � q � 7

�12p � 4q � 3� 2x � 3y � 5

�6x � 9y � 12

�7x � 8y � 9

4x � 3y � �10�2x � 5y � 16

3x � 7y � 24
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In this section we show how systems of equations can be used to help decom-
pose rational expressions into sums of simpler expressions. This technique is
useful in advanced mathematics courses.

We may verify that

by adding the fractions and to obtain . The
expression on the right-hand side of this equation is called the partial fraction
decomposition of .

It is theoretically possible to write any rational expression as a sum of ra-
tional expressions whose denominators involve powers of polynomials of de-
gree not greater than two. Specifically, if and are polynomials and the
degree of is less than the degree of , it can be proved that

such that each has one of the forms

where A and B are real numbers, m and n are nonnegative integers, and the
quadratic polynomial is irreducible over � (that is, has no real
zero). The sum is the partial fraction decomposition of

, and each is a partial fraction.Fkf �x��g�x�
F1 � F2 � � � � � Fr

ax2 � bx � c

A

� px � q�m
or    

Ax � B

�ax2 � bx � c�n
,

Fk

f �x�
g�x�

� F1 � F2 � � � � � Fr

g�x�f �x�
g�x�f �x�

2��x2 � 1�

2��x2 � 1��1��x � 1�1��x � 1�

2

x2 � 1
�

1

x � 1
�

�1

x � 1

9.10
Partial Fractions
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For the partial fraction decomposition of to be found, it is es-
sential that have lower degree than . If this is not the case, we can use
long division to obtain such an expression. For example, given

we obtain

We then find the partial fraction decomposition of .
The following guidelines can be used to obtain decompositions.

We shall apply the preceding guidelines in the following examples. For
the sake of convenience, we will use the variables A, B, C, and so on, rather
than the subscripted variables and given in the guidelines.BkAk

�6x � 9���x2 � 1�

x3 � 6x2 � 5x � 3

x2 � 1
� x � 6 �

6x � 9

x2 � 1
.

x3 � 6x2 � 5x � 3

x2 � 1
,

g�x�f�x�
f�x��g�x�

Guidelines for 
Finding Partial Fraction 

Decompositions of f�x��g�x�

1 If the degree of the numerator is not lower than the degree of the
denominator , use long division to obtain the proper form.

2 Factor the denominator into a product of linear factors or
irreducible quadratic factors , and collect repeated fac-
tors so that is a product of different factors of the form 
or for a nonnegative integer m or n.

3 Apply the following rules to the factors found in guideline 2.
Rule A: For each factor of the form with , the partial
fraction decomposition contains a sum of m partial fractions of the
form

where each numerator is a real number.
Rule B: For each factor of the form with and

irreducible, the partial fraction decomposition contains a
sum of n partial fractions of the form

where each and each is a real number.

4 Find the numbers and in guideline 3.BkAk

BkAk

A1x � B1

ax2 � bx � c
�

A2x � B2

�ax2 � bx � c�2
� � � � �

Anx � Bn

�ax2 � bx � c�n
,

ax2 � bx � c
n 
 1�ax2 � bx � c�n

Ak

A1

px � q
�

A2

�px � q�2
� � � � �

Am

�px � q�m
,

m 
 1�px � q�m

�ax2 � bx � c�n

�px � q�mg�x�
ax2 � bx � c

px � qg�x�
g�x�

f�x�



E X A M P L E  1 A partial fraction decomposition 
in which each denominator is linear

Find the partial fraction decomposition of

S O L U T I O N

Guideline 1 The degree of the numerator, 2, is less than the degree of the de-
nominator, 3, so long division is not required.

Guideline 2 We factor the denominator:

Guideline 3 Each factor of the denominator has the form stated in Rule A 
with . Thus, to the factor x there corresponds a partial fraction of the
form . Similarly, to the factors and there correspond partial
fractions of the form and , respectively. The partial frac-
tion decomposition has the form

Guideline 4 We find the values of A, B, and C in guideline 3. Multiplying both
sides of the partial fraction decomposition by the least common denominator,

, gives us

Equating the coefficients of like powers of x on each side of the last equation,
we obtain the system of equations

Using the methods of Section 9.5 yields the solution , , and
. Hence, the partial fraction decomposition is

There is an alternative way to find A, B, and C if all factors of the denomi-
nator are linear and nonrepeated, as in this example. Instead of equating coef-
ficients and using a system of equations, we begin with the equation

4x2 � 13x � 9 � A�x � 3��x � 1� � Bx�x � 1� � Cx�x � 3�.

4x2 � 13x � 9

x�x � 3��x � 1�
�

3

x
�

�1

x � 3
�

2

x � 1
.

C � 2
B � �1A � 3

� A � B � C � 4

2A � B � 3C � 13

�3A � �9

� �A � B � C�x2 � �2A � B � 3C�x � 3A.

� A�x2 � 2x � 3� � B�x2 � x� � C�x2 � 3x�
 4x2 � 13x � 9 � A�x � 3��x � 1� � Bx�x � 1� � Cx�x � 3�

x�x � 3��x � 1�

4x2 � 13x � 9

x3 � 2x2 � 3x
�

A

x
�

B

x � 3
�

C

x � 1
.

C��x � 1�B��x � 3�
x � 1x � 3A�x

m � 1

x3 � 2x2 � 3x � x�x2 � 2x � 3� � x�x � 3��x � 1�

4x2 � 13x � 9

x3 � 2x2 � 3x
.
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(continued)

We next substitute values for x that make the factors, x, , and ,
equal to zero. If we let and simplify, we obtain

Letting in the equation leads to , or . Finally, if ,
then we have , or . L

E X A M P L E  2 A partial fraction decomposition 
containing a repeated linear factor

Find the partial fraction decomposition of

S O L U T I O N

Guideline 1 The degree of the numerator, 2, is less than the degree of the de-
nominator, 3, so long division is not required.

Guideline 2 The denominator, , is already in factored form.

Guideline 3 By Rule A with , there is a partial fraction of the form 
corresponding to the factor x. Next, applying Rule A with , we find that
the factor determines a sum of two partial fractions of the form

and . Thus, the partial fraction decomposition has
the form

Guideline 4 To find A, B, and C, we begin by multiplying both sides of the
partial fraction decomposition in guideline 3 by the lcd, :

We next equate the coefficients of like powers of x, obtaining the system

This system of equations has the solution , , and . The
partial fraction decomposition is therefore

As in Example 1, we could also obtain A and C by beginning with the
equation

x2 � 10x � 36 � A�x � 3�2 � Bx�x � 3� � Cx

x2 � 10x � 36

x�x � 3�2
�

�4

x
�

5

x � 3
�

1

�x � 3�2
.

C � 1B � 5A � �4

� A � B � 1

�6A � 3B � C � 10

9A � �36

� �A � B�x2 � ��6A � 3B � C�x � 9A

� A�x2 � 6x � 9� � B�x2 � 3x� � Cx

x2 � 10x � 36 � A�x � 3�2 � Bx�x � 3� � Cx

x�x � 3�2

x2 � 10x � 36

x�x � 3�2
�

A

x
�

B

x � 3
�

C

�x � 3�2
.

C��x � 3�2B��x � 3�
�x � 3�2

m � 2
A�xm � 1

x�x � 3�2

x2 � 10x � 36

x�x � 3�2
.

B � �1�12 � 12B
x � �3C � 28 � 4Cx � 1

�9 � �3A, or A � 3.

x � 0
x � 3x � 1



and then substituting values for x that make the factors, and x, equal to
zero. Thus, letting , we obtain , or . Letting gives us

, or . The value of B may then be found by using one of the
equations in the system. L

E X A M P L E  3 A partial fraction decomposition 
containing an irreducible quadratic factor

Find the partial fraction decomposition of

S O L U T I O N

Guideline 1 The degree of the numerator, 3, is equal to the degree of the de-
nominator. Thus, long division is required, and we obtain

Guideline 2 The denominator may be factored by grouping, as follows:

Guideline 3 Applying Rule B to the irreducible quadratic factor in
guideline 2, we see that one partial fraction has the form .
By Rule A, there is also a partial fraction corresponding to .
Consequently,

Guideline 4 Multiplying both sides of the partial fraction decomposition in
guideline 3 by the lcd, , we obtain

This leads to the system

This system has the solution , , and . Thus, the partial
fraction decomposition in guideline 3 is

x2 � x � 21

2x3 � x2 � 8x � 4
�

3x � 1

x2 � 4
�

�5

2x � 1
,

C � �5B � 1A � 3

� 2A � C � 1

�A � 2B � �1

� B � 4C � �21

� �2A � C�x2 � ��A � 2B�x � B � 4C.

� 2Ax2 � Ax � 2Bx � B � Cx2 � 4C

x2 � x � 21 � �Ax � B��2x � 1� � C�x2 � 4�

�x2 � 4��2x � 1�

x2 � x � 21

2x3 � x2 � 8x � 4
�

Ax � B

x2 � 4
�

C

2x � 1
.

2x � 1C��2x � 1�
�x2 � 4��Ax � B��
x2 � 4

2x3 � x2 � 8x � 4 � x2�2x � 1� � 4�2x � 1� � �x2 � 4��2x � 1�

4x3 � x2 � 15x � 29

2x3 � x2 � 8x � 4
� 2 �

x2 � x � 21

2x3 � x2 � 8x � 4
.

4x3 � x2 � 15x � 29

2x3 � x2 � 8x � 4
.

A � �4�36 � 9A
x � 0C � 13 � 3Cx � 3

x � 3
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and therefore the decomposition of the given expression (see guideline 1) is

L

E X A M P L E  4 A partial fraction decomposition 
containing a repeated quadratic factor

Find the partial fraction decomposition of

S O L U T I O N

Guideline 1 The degree of the numerator, 3, is less than the degree of the de-
nominator, 4, so long division is not required.

Guideline 2 The denominator, , is already in factored form.

Guideline 3 We apply Rule B with to , to obtain the partial
fraction decomposition

Guideline 4 Multiplying both sides of the decomposition in guideline 3 by
gives us

Comparing the coefficients of and , we obtain and . From
the coefficients of x, we see that . Thus, .
Finally, comparing the constant terms gives us the equation , and
so . Therefore, the partial fraction decompo-
sition is

L

5x3 � 3x2 � 7x � 3

�x2 � 1�2
�

5x � 3

x2 � 1
�

2x

�x2 � 1�2
.

B � �3 � ��3� � 0D � �3 �
B � D � �3

C � 7 � A � 7 � 5 � 2A � C � 7
B � �3A � 5x2x3

� Ax3 � Bx2 � �A � C�x � �B � D�.
 5x3 � 3x2 � 7x � 3 � �Ax � B��x2 � 1� � Cx � D

�x2 � 1�2

5x3 � 3x2 � 7x � 3

�x2 � 1�2
�

Ax � B

x2 � 1
�

Cx � D

�x2 � 1�2
.

�x2 � 1�2n � 2

�x2 � 1�2

5x3 � 3x2 � 7x � 3

�x2 � 1�2
.

4x 3 � x2 � 15x � 29

2x3 � x2 � 8x � 4
� 2 �

3x � 1

x2 � 4
�

�5

2x � 1
.

Exer. 1–28: Find the partial fraction decomposition.

1 2

3 4
5x � 12

x 2 � 4x

x � 34

x 2 � 4x � 12

x � 29

�x � 4��x � 1�
8x � 1

�x � 2��x � 3�

5 6

7 8
37 � 11x

�x � 1��x 2 � 5x � 6�
4x 2 � 5x � 15

x 3 � 4x 2 � 5x

x 2 � 19x � 20

x�x � 2��x � 5�
4x 2 � 15x � 1

�x � 1��x � 2��x � 3�

9.10 E x e r c i s e s



9 10

11 12

13 14

15 16

17 18

19 20
2x 3 � 2x 2 � 4x � 3

x 4 � x 2

9x 2 � 3x � 8

x 3 � 2x

x 2 � x � 21

�x 2 � 4��2x � 1�
x 2 � x � 6

�x 2 � 1��x � 1�

4x 3 � 3x 2 � 5x � 2

x 3�x � 2�
3x 3 � 11x 2 � 16x � 5

x�x � 1�3

2x 2 � x

�x � 1�2�x � 1�2

x 2 � 6

�x � 2�2�2x � 1�

10 � x

x 2 � 10x � 25

19x 2 � 50x � 25

3x 3 � 5x 2

5x2 � 4

x 2�x � 2�
2x � 3

�x � 1�2
21 22

23

24

25 26

27

28
x 5 � 5x 4 � 7x 3 � x 2 � 4x � 12

x 3 � 3x 2

4x 3 � 4x 2 � 4x � 2

2x 2 � x � 1

2x 2 � 7x

x 2 � 6x � 9

3x 2 � 16

x 2 � 4x

x 3

x 3 � 3x 2 � 9x � 27

2x 4 � 2x 3 � 6x 2 � 5x � 1

x 3 � x 2 � x � 1

3x 3 � 13x � 1

�x 2 � 4�2

4x3 � x 2 � 4x � 2

�x 2 � 1�2
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Exer. 1–16: Solve the system.

1 2

3 4

5 6

7 8

9 10 � x � 3y � 0

y � 5z � 3

2x � z � �1
�3x � y � 2z � �1

2x � 3y � z � 4

4x � 5y � z � �2

�2x � 3y�1 � 10

2x�1 � 3y � 5�
1

x
�

3

y
� 7

4

x
�

2

y
� 1

�2x � y2 � 3z

x � y2 � z � 1

x2 � xz
�9x 2 � 16y2 � 140

x 2 � 4y2 � 4

�x 2 � y2 � 25

x � y � 7� y � 4 � x2

2x � y � �1

� x � 3y � 4

�2x � 6y � 2�2x � 3y � 4

5x � 4y � 1
11 12

13 14

15

16 �
2x � y � 3z � w � �3

3x � 2y � z � w � 13

x � 3y � z � 2w � �4

�x � y � 4z � 3w � 0

4

x
�

1

y
�

2

z
� 4

2

x
�

3

y
�

1

z
� 1

1

x
�

1

y
�

1

z
� 4

�2x � y � 6

x � 3y � 17

3x � 2y � 7
�4x � 2y � z � 1

3x � 2y � 4z � 2

�2x � y � z � 0

x � 2y � z � 0

3x � 3y � 2z � 0
�4x � 3y � z � 0

x � y � z � 0

3x � y � 3z � 0
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Exer. 17–20: Sketch the graph of the system.

17 18

19 20

Exer. 21–30: Express as a single matrix.

21

22

23

24

25

26

27

28

29

30 � 3

�3

6

2

4

5

5

7

1
�� 3

�3

6

2

4

5

5

7

1
��1

�1

3

2

4���2

3

�4

7� � � 1

�2

5

�3��
�3

0

2

0���2

3

0

0�
�a

0

0

b��1

2

3

4�
�1

2

3

4��a

0

0

a�
2�0

3

�1

2

�4

1� � 3�4

0

�2

5

1

�1�

�0

4

�2

1

3

2��2

3

2

0

8

�7
�

� 2

1

�2

0

4

3
��0

4

2

5

�3

1�

�4

5

2

�3��3

7�

�2

3

�1

0

0

�2��2

0

1

�1

3

4

3

0

2
�

� x2 � y � 0

y � 2x � 5

xy � 0
�x � 2y � 2

y � 3x � 4

2x � y � 4

�y � x � 0

y � x 
 2

x � 5
�x2 � y2 � 16

y � x2 � 0

Exer. 31–34: Find the inverse of the matrix.

31 32

33 34

35 Use the result of Exercise 31 to solve the system

36 Use the result of Exercise 32 to solve the system

Exer. 37–46: Find the determinant of the matrix.

37 38

39 40

41 42

43

44

45

2

0

2

0

1

0

1

�2

0

�1

1

0

1

�2

0

0

1

�2

0

�1

�1

2

0

1

0

1

�2

3

2

�1

2

�1

0

�3

1

0

4

�1

2

0

3

1

0

�4

1

1

2

�1

2

3

�5

6

1

7

0

�3

4

2

0

0

�4

3

0

0

0

2
�

� 3

�5

7

1

2

3

�2

�4

�6
�� 2

�4

3

�3

1

2

5

3

�1
�

� 0

2

�5

4

0

1

�3

4

0
��3

6

�4

8�
� 3

�6

4

�5���6	

�2x � y � �5

x � 4y � 2z � 15

3x � 2y � z � �7

� 5x � 4y � 30

�3x � 2y � �16

�2

0

3

0

3

4

5

�1

0
��1

0

0

0

4

1

0

7

2
�

�2

1

3

�1

4

�2

0

2

1
�� 5

�3

�4

2�



46

Exer. 47–48: Solve the equation .

47 ,

48 ,

Exer. 49–50: Without expanding, explain why the state-
ment is true.

49

50

51 Find the determinant of the matrix in which
for .

52 Without expanding, show that

Exer. 53–54: Use Cramer’s rule to solve the system.

53 54

Exer. 55–58: Find the partial fraction decomposition.

55 56

57 58
x 3 � 2x 2 � 2x � 16

x 4 � 7x 2 � 10

x 2 � 14x � 13

x 3 � 5x 2 � 4x � 20

2x 2 � 7x � 9

x 2 � 2x � 1

4x 2 � 54x � 134

�x � 3��x 2 � 4x � 5�

� 2x � 3y � 2z � �3

�3x � 2y � z � 1

4x � y � 3z � 4
�5x � 6y � 4

3x � 7y � 8

� 1

1

1

a

b

c

b � c

a � c

a � b
� � 0.

i � jaij � 0
�aij�n � n

� a

d

g

b

e

h

c

f

k
� � � d

g

a

e

h

b

f

k

c
�

� 2

1

2

4

4

2

�6

3

0
� � 12� 1

1

2

1

2

1

�1

1

0
�

I � I3A � �2

0

1

�1

4

0

3

0

�2
�

I � I2A � �2

1

3

�4�
� A � xI � � 0

1

3

0

0

0

2

4

0

0

0

0

0

1

2

1

0

0

2

�1

3

0

0

3

1

�1

59 Watering a field A rotating sprinkler head with a range of
50 feet is to be placed in the center of a rectangular field
(see the figure). If the area of the field is 4000 and the
water is to just reach the corners, find the dimensions of 
the field.

Exercise 59

60 Find equations of the two lines that are tangent to the
circle and pass through the point . (Hint:
Let , and determine conditions on m that will
ensure that the system has only one solution.)

61 Track dimensions A circular track is to have a 10-foot-wide
running lane around the outside (see the figure). The inside
distance around the track is to be 90% of the outside dis-
tance. Find the dimensions of the track.

Exercise 61

62 Payroll accounting An accountant must pay taxes and pay-
roll bonuses to employees from the company’s profits 
of $2,000,000. The total tax is 40% of the amount left after
bonuses are paid, and the total paid in bonuses is 10% of
the amount left after taxes. Find the total tax and the total
bonus amount.

10�

y � mx � 3
�0, 3�x 2 � y2 � 1

50�

Sprinkler

ft2
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63 Rowing a boat A woman rows a boat 1.75 miles upstream
against a constant current in 35 minutes. She then rows the
same distance downstream (with the same current) in 15
minutes. Find the speed of the current and the equivalent
rate at which she can row in still water.

64 Making a trail mix A merchant wishes to mix peanuts cost-
ing $1.85 per pound with raisins costing $1.30 per pound
to obtain 55 pounds of a mixture costing $1.55 per pound.
How many pounds of each ingredient should be mixed?

65 Concorde travel Suppose a Concorde, flying with a tail
wind, could make the 3470-mile-trip from New York to
London in 2.5 hours. The return trip, against the wind, took
2.75 hours. Approximate, to the nearest mile per hour, the
cruising speed of the plane and the speed of the wind (as-
sume that both rates are constant).

66 Flow rates Three inlet pipes, A, B, and C, can be used to 
fill a 1000- water storage tank. When all three pipes are
in operation, the tank can be filled in 10 hours. When only
pipes A and B are used, the time increases to 20 hours. With
pipes A and C, the tank can be filled in 12.5 hours. Find the
individual flow rates (in ) for each of the three pipes.

67 Warehouse shipping charges To fill an order for 150 office
desks, a furniture distributor must ship the desks from two
warehouses. The shipping cost per desk is $48 from the
western warehouse and $70 from the eastern warehouse. If
the total shipping charge is $8410, how many desks are
shipped from each location?

68 Express-mail rates An express-mail company charges
$25 for overnight delivery of a letter, provided the dimen-
sions of the standard envelope satisfy the following three
conditions: (a) the length, the larger of the two dimensions,
must be at most 12 inches; (b) the width must be at most 
8 inches; (c) the width must be at least one-half the length.
Find and graph a system of inequalities that describes all the
possibilities for dimensions of a standard envelope.

ft3�hr

ft3

69 Activities of a deer A deer spends the day in three basic 
activities: resting, searching for food, and grazing. At least 
6 hours each day must be spent resting, and the number of
hours spent searching for food will be at least two times the
number of hours spent grazing. Using x as the number of
hours spent searching for food and y as the number of hours
spent grazing, find and graph the system of inequalities that
describes the possible divisions of the day.

70 Production scheduling A company manufactures a power
lawn mower and a power edger. These two products are of
such high quality that the company can sell all the products 
it makes, but production capability is limited in the areas of
machining, welding, and assembly. Each week the company
has 600 hours available for machining, 300 hours for weld-
ing, and 550 hours for assembly. The number of hours re-
quired for the production of a single item is shown in the
following table. The profits from the sale of a mower and an
edger are $100 and $80, respectively. How many mowers and
edgers should be made each week to maximize the profit?

71 Maximizing investment income A retired couple wishes to
invest $750,000, diversifying the investment in three areas:
a high-risk stock that has an expected annual rate of return
(or interest) of 12%, a low-risk stock that has an expected
annual return of 8%, and government-issued bonds that pay
annual interest of 4% and involve no risk. To protect the
value of the investment, the couple wishes to place at least
twice as much in the low-risk stock as in the high-risk stock
and use the remainder to buy bonds. How should the money
be invested to maximize the expected annual return?

Product Machining Welding Assembly

Mower 6 2 5

Edger 4 3 5

1 (a) It is easy to see that the system

has no solution. Let be the second equa-
tion, and solve the system for and .
Note that a small change in b produces a large change
in x and y. Such a system is known as an ill-conditioned

b � 1.999b � 1.99
x � by � 5

�x � 2y � 4

x � 2y � 5

system (a precise definition is given in most numerical
analysis texts).

(b) Solve this system for x and y in terms of b, and explain
why a small change in b (for b near 2) produces a large
change in x and y.

(c) If b gets very large, what happens to the solution of
the system?
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2 Bird migration trends Refer to Exercise 30 of Section 9.5.
Suppose the initial bird populations on islands A, B, and C
are 12,000, 9000, and 14,000, respectively.

(a) Represent the initial populations with a matrix D.
Represent the proportions of the populations that mi-
grate to each island with a matrix E. (Hint: The
first row of E is 0.90, 0.10, and 0.00—indicating that
90% of the birds on A stay on A, 10% of the birds on A
migrate to B, and no birds on A migrate to C.)

(b) Find the product , and interpret the meaning of
the elements of F.

(c) Multiply F times E, and continue to multiply the result
by E until a pattern becomes apparent. What is your
conclusion?

3 Explain why a nonsquare matrix A cannot have an inverse.

4 Distributing money A college president has received bud-
gets from the athletic director (AD), dean of students (DS),
and student senate president (SP), in which they propose to
allocate department funds to the three basic areas of student
scholarships, activities, and services, as shown in the table.

The Board of Regents has requested that the overall distri-
bution of funding to these three areas be in the following
proportions: scholarships, 34%; activities, 33%; and serv-
ices, 33%. Determine what percentage of the total funds the
president should allocate to each department so that the per-
centages spent in these three areas conform to the Board of
Regents’ requirements.

F � DE

3 � 3

1 � 3

5 If has roots , 2, and 3, find
a, b, c, and the fourth root of the equation.

6 Find, if possible, an equation of

(a) a line

(b) a circle

(c) a parabola with vertical axis

(d) a cubic

(e) an exponential

that passes through the points 

7 Prove (*) on page 638.

P(�1, 3), Q(0, 4), and R(3, 2).

x � �1x4 � ax 2 � bx � c � 0
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Scholarships Activities Services

AD 50% 40% 10%

DS 30% 20% 50%

SP 20% 40% 40%



Sequences and summation notation, discussed in the first section, are very

important in advanced mathematics and applications. Of special interest are

arithmetic and geometric sequences, considered in Sections 10.2 and 10.3.

We then discuss the method of mathematical induction, a process that is

often used to prove that each statement in an infinite sequence of statements

is true. As an application, we use it to prove the binomial theorem in Sec-

tion 10.5. The last part of the chapter deals with counting processes that

occur frequently in mathematics and everyday life. These include the con-

cepts of permutations, combinations, and probability.

10.1 Infinite Sequences

and Summation

Notation

10.2 Arithmetic Sequences

10.3 Geometric Sequences

10.4 Mathematical

Induction

10.5 The Binomial

Theorem

10.6 Permutations

10.7 Distinguishable

Permutations and

Combinations

10.8 Probability

10.1 Infinite Sequences

and Summation

Notation

10.2 Arithmetic Sequences

10.3 Geometric Sequences

10.4 Mathematical

Induction

10.5 The Binomial

Theorem

10.6 Permutations

10.7 Distinguishable

Permutations and

Combinations

10.8 Probability

10

Sequences, Series, 

and Probability



An arbitrary infinite sequence may be denoted as follows:

For convenience, we often refer to infinite sequences as sequences. We may re-
gard an infinite sequence as a collection of real numbers that is in one-to-one
correspondence with the positive integers. Each number is a term of the se-
quence. The sequence is ordered in the sense that there is a first term , a sec-
ond term , a forty-fifth term , and, if n denotes an arbitrary positive integer,
an nth term . Infinite sequences are often defined by stating a formula for 
the nth term.

Infinite sequences occur frequently in mathematics. For example, the 
sequence

may be used to represent the rational number . In this case the nth term gets
closer and closer to as n increases.

We may regard an infinite sequence as a function. Recall from Section 3.4
that a function f is a correspondence that assigns to each number x in the do-
main D exactly one number in the range R. If we restrict the domain to
the positive integers , we obtain an infinite sequence, as in the fol-
lowing definition.

In our work, the range of an infinite sequence will be a set of real 
numbers.

If a function f is an infinite sequence, then to each positive integer n there
corresponds a real number . These numbers in the range of f may be rep-
resented by writing

To obtain the subscript form of a sequence, as shown at the beginning of this
section, we let for every positive integer n.an � f�n�

f�1�, f�2�, f�3�, . . . , f�n�, . . . .

f�n�

1, 2, 3, . . .
f�x�

2
3

2
3

0.6,   0.66,  0.666,  0.6666,  0.66666,  . . .

an

a45a2

a1

ak
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10.1
Infinite Sequences and
Summation Notation

Infinite Sequence 
Notation

a1, a2, a3, . . . , an, . . .

Definition of Infinite Sequence An infinite sequence is a function whose domain is the set of positive 
integers.



If we regard a sequence as a function f, then we may consider its graph in
an xy-plane. Since the domain of f is the set of positive integers, the only
points on the graph are

where is the nth term of the sequence as shown in Figure 1. We sometimes
use the graph of a sequence to illustrate the behavior of the nth term as n in-
creases without bound.

Figure 1 Graph of a sequence

From the definition of equality of functions we see that a sequence

is equal to a sequence

if and only if for every positive integer k.
Another notation for a sequence with nth term is . For example, the

sequence has nth term . Using sequence notation, we write this se-
quence as follows:

By definition, the sequence is the function f with for every posi-
tive integer n.

E X A M P L E  1 Finding terms of a sequence

List the first four terms and the tenth term of each sequence:

(a) (b) (c) (d)

S O L U T I O N To find the first four terms, we substitute, successively, ,
2, 3, and 4 in the formula for . The tenth term is found by substituting 10 for
n. Doing this and simplifying gives us the following:

an

n � 1

�4
���1�n�1
n2

3n � 1��2 � �0.1�n
� n

n � 1�

f �n� � 2n�2n


21, 22, 23, . . . , 2n, . . .

an � 2n�2n

�an
an

ak � bk

b1, b2, b3, . . . , bn, . . .

a1, a2, a3, . . . , an, . . .

y

1 2 3 4 5 n

(1, a1)
(3, a3)

(4, a4)

(n, an)

(2, a2)

x

an

an

�1, a1�, �2, a2�, �3, a3�, . . . , �n, an�, . . . ,
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(continued)



E X A M P L E  2 Graphing a sequence

Graph the sequence in Example 1(a)—that is,

S O L U T I O N The domain values are

The range values are

or, equivalently,

A plot of the ordered pairs is shown in Figure 2.

Figure 2

L

y

1 2 3 4 5 6 7 8 9 10 11 12 13

�1, q�
�2, s�

�3, !�
�4, R�

x

1

�10, 10
11�

�n, n��n � 1��

1

2
,  

2

3
,  

3

4
,  . . . ,  

n

n � 1
,  . . . .

1

1 � 1
,  

2

2 � 1
,  

3

3 � 1
,  . . . ,  

n

n � 1
,  . . .

1, 2, 3, . . . , n, . . . .

� n

n � 1� .
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Sequence nth term First four terms Tenth term

(a)

(b) 2.1, 2.01, 2.001, 2.0001 2.000 000 000 1

(c)

(d) 4 4, 4, 4, 4 4�4


�
100

29

1

2
, �

4

5
,

9

8
, �

16

11
��1�n�1

n2

3n � 1���1�n�1
n2

3n � 1�
2 � �0.1�n�2 � �0.1�n


10

11

1

2
,

2

3
,

3

4
,

4

5

n

n � 1� n

n � 1�
an

L



For some sequences we state the first term , together with a rule for 
obtaining any term from the preceding term whenever . We call
such a statement a recursive definition, and the sequence is said to be defined
recursively.

E X A M P L E  3 Finding terms of a recursively defined sequence

Find the first four terms and the nth term of the infinite sequence defined re-
cursively as follows:

S O L U T I O N The first four terms are

given

We have written the terms as products to gain some insight into the nature of
the nth term. Continuing, we obtain , , and, in general,

for every positive integer n. L

If only the first few terms of an infinite sequence are known, then it is im-
possible to predict additional terms. For example, if we were given 3, 6, 9, . . .
and asked to find the fourth term, we could not proceed without further infor-
mation. The infinite sequence with nth term

has for its first four terms 3, 6, 9, and 120. It is possible to describe sequences
in which the first three terms are 3, 6, and 9 and the fourth term is any given
number. This shows that when we work with an infinite sequence it is essential
to have either specific information about the nth term or a general scheme for
obtaining each term from the preceding one. (See Exercise 1 of the Chapter 10
Discussion Exercises for a related problem.)

We sometimes need to find the sum of many terms of an infinite sequence.
To express such sums easily, we use summation notation. Given an infinite
sequence

the symbol represents the sum of the first m terms, as follows.!m
k�1 ak

a1, a2, a3, . . . , an, . . . ,

an � 3n � �1 � n�3�2 � n�2�3 � n�

an � 2n�1 � 3

a6 � 25 � 3a5 � 24 � 3

k � 3a4 � 2a3 � 2 � 2 � 2 � 3 � 23 � 3 � 24.

k � 2a3 � 2a2 � 2 � 2 � 3 � 22 � 3 � 12

k � 1a2 � 2a1 � 2 � 3 � 6

a1 � 3

a1 � 3, ak�1 � 2ak for k 
 1

k 
 1akak�1

a1

1 0 . 1  I n f i n i t e  S e q u e n c e s  a n d  S u m m a t i o n  N o t a t i o n 657

Summation Notation "m
k�1

ak � a1 � a2 � a3 � � � � � am



The Greek capital letter sigma, , indicates a sum, and the symbol repre-
sents the kth term. The letter k is the index of summation, or the summation
variable, and the numbers 1 and m indicate the smallest and largest values of
the summation variable, respectively.

E X A M P L E  4 Evaluating a sum

Find the sum .

S O L U T I O N In this case, . To find the sum, we merely sub-
stitute, in succession, the integers 1, 2, 3, and 4 for k and add the resulting
terms:

L

The letter we use for the summation variable is immaterial. To illustrate,
if j is the summation variable, then

which is the same sum as . As a specific example, the sum in Example 4
can be written

If n is a positive integer, then the sum of the first n terms of an infinite se-
quence will be denoted by . For example, given the infinite sequence

and, in general,

Note that we can also write

S4 � S3 � a4

S3 � S2 � a3

S2 � S1 � a2

S1 � a1

Sn � "n
k�1

ak � a1 � a2 � � � � � an.

S4 � a1 � a2 � a3 � a4

S3 � a1 � a2 � a3

S2 � a1 � a2

S1 � a1

a1, a2, a3, . . . , an, . . . ,
Sn

"4
j�1

j2� j � 3�.

!m
k�1 ak

"m
j�1

aj � a1 � a2 � a3 � � � � � am,

� ��2� � ��4� � 0 � 16 � 10

"4
k�1

k2�k � 3� � 12�1 � 3� � 22�2 � 3� � 32�3 � 3� � 42�4 � 3�

ak � k2�k � 3�

"4
k�1

k2�k � 3�

ak!
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and, for every ,

The real number is called the nth partial sum of the infinite sequence
and the sequence

is called a sequence of partial sums. Sequences of partial sums are important
in the study of infinite series, a topic in calculus. We shall discuss some spe-
cial types of infinite series in Section 10.3.

E X A M P L E  5 Finding the terms of a sequence of partial sums

Find the first four terms and the nth term of the sequence of partial sums as-
sociated with the sequence of positive integers.

S O L U T I O N If we let , then the first four terms of the sequence of par-
tial sums are

The nth partial sum (that is, the sum of ) can be written in ei-
ther of the following forms:

Adding corresponding terms on each side of these equations gives us

Since the expression appears n times on the right-hand side of the last
equation, we see that

L

If is the same for every positive integer k—say for a real num-
ber c—then

We have proved property 1 of the following theorem.

� c � c � c � � � � � c � nc.

"n
k�1

ak � a1 � a2 � a3 � � � � � an

ak � cak

2Sn � n�n � 1� or, equivalently, Sn �
n�n � 1�

2
.

�n � 1�

� 1� 2Sn � n � �n � 1� � �n � 2� � � � � � 3

� � � � � �n � 2� � �n � 1� � n� 3Sn � 1 � 2

1, 2, 3, . . . , nSn

S4 � S3 � a4 � 6 � 4 � 10.

S3 � S2 � a3 � 3 � 3 � 6

S2 � S1 � a2 � 1 � 2 � 3

S1 � a1 � 1

an � n

1, 2, 3, . . . , n, . . .

S1, S2, S3, . . . , Sn, . . .

a1, a2, a3, . . . , an, . . . ,
Sn

Sn � Sn�1 � an.

n � 1
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n times

2Sn � �n � 1� � �n � 1� � �n � 1� � � � � � �n � 1� � �n � 1� � �n � 1�.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩



To prove property 2, we may write

use property 1 for each sum

factor out c

simplify

Sum of a Constant

As shown in property 2 of the preceding theorem, the domain of the sum-
mation variable does not have to begin at 1. For example,

As another variation, if the first term of an infinite sequence is , as in

then we may consider sums of the form

which is the sum of the first terms of the sequence.
If the summation variable does not appear in the term , then the entire

term may be considered a constant. For example,

since j does not appear in the term .ak

"n
j�1

ak � n � ak,

ak

n � 1

"n
k�0

ak � a0 � a1 � a2 � � � � � an,

a0, a1, a2, . . . , an, . . . ,

a0

"8
k�4

ak � a4 � a5 � a6 � a7 � a8.

"20

k�10

5 � �20 � 10 � 1��5� � 11�5� � 55

"8
k�3

9 � �8 � 3 � 1��9� � 6�9� � 54

"10

k�1

� � 10 � � � 10�

"4
k�1

7 � 4 � 7 � 28

� �n � m � 1�c.

� �n � �m � 1�	c
� nc � �m � 1�c

"n
k�m

c � "n
k�1

c � "m�1

k�1

c
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Theorem on the 
Sum of a Constant (1) (2) "n

k�m

c � �n � m � 1�c"n
k�1

c � nc

subtract the first terms from the
sum of n terms

�m � 1�



Summation notation can be used to denote polynomials. Thus, if

then

The following theorem concerning sums has many uses.

f�x� � "n
k�0

akxk.

f�x� � a0 � a1x � a2x2 � � � � � anxn,
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Theorem on Sums If and are infinite sequences, then for
every positive integer n,

(1)

(2)

(3) for every real number c"n
k�1

cak � c�"n
k�1

ak�
"n
k�1

�ak � bk� � "n
k�1

ak � "n
k�1

bk

"n
k�1

�ak � bk� � "n
k�1

ak � "n
k�1

bk

b1, b2, . . . , bn, . . .a1, a2, . . . , an, . . .

P R O O F S To prove formula 1, we first write

Using commutative and associative properties of real numbers many times, we
may rearrange the terms on the right-hand side to produce

For a proof of formula 3, we have

The proof of formula 2 is left as an exercise. L

� c�"n
k�1

ak�.

� c�a1 � a2 � a3 � � � � � an�

"n
k�1

�cak� � ca1 � ca2 � ca3 � � � � � can

� "n
k�1

ak � "n
k�1

bk.

"n
k�1

�ak � bk� � �a1 � a2 � a3 � � � � � an� � �b1 � b2 � b3 � � � � � bn�

"n
k�1

�ak � bk� � �a1 � b1� � �a2 � b2� � �a3 � b3� � � � � � �an � bn�.
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Exer. 1–16: Find the first four terms and the eighth term of
the sequence.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 is the number of decimal places in .

16 is the number of positive integers less than .

Exer. 17–20: Graph the sequence.

17 18

19 20

Exer. 21–28: Find the first five terms of the recursively de-
fined infinite sequence.

21

22

23

24

25

26 a1 � 3,    ak�1 � 1�ak

a1 � 5,    ak�1 � kak

a1 � 128,  ak�1 �
1
4 ak

a1 � �3,  ak�1 � a2
k

a1 � 5,    ak�1 � 7 � 2ak

a1 � 2,    ak�1 � 3ak � 5

���1�n�2n � 1�
���1�n�1n2


� 1

n�� 1

2n
�

n3an

�0.1�nan

��n � 1��n � 2��n � 3�
� 2n

n2 � 2�
���1�n�1 � �0.1�n�1
�1 � ��1�n�1


���1�n
6 � 2n

2n � 1
����1�n�1

n � 7

2n �
�4 � �0.1�n
�2 � ��0.1�n


�22
�9


�10 �
1

n��3n � 2

n2 � 1�
� 3

5n � 2��12 � 3n


27

28

Exer. 29–32: Find the first four terms of the sequence of
partial sums for the given sequence.

29 30

31 32

Exer. 33–48: Find the sum.

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 Prove formula 2 of the theorem on sums.

50 Extend formula 1 of the theorem on sums to

51 Consider the sequence defined recursively by ,
for Describe what happens to the terms

of the sequence as k increases.
k 
 1.ak�1 � 2ak

a1 � 5

"n
k�1

�ak � bk � ck�.

"5
k�0

�3j � 2�"7
j�1

1
2 k2

"428

k�137

2.1"571

k�253

 1
3

"1000

k�1

5"100

k�1

100

"4
k�0

3�2k�"5
k�1

��3�k�1

"6
k�1

3

k � 1
"6
k�3

k � 5

k � 1

"4
k�0

�k � 1��k � 3�"5
k�0

k�k � 2�

"10

k�1

�1 � ��1�k	"4
k�1

�k2 � 5�

"6
k�1

�10 � 3k�"5
k�1

�2k � 7�

���1�n�1�2�n
���1�nn�1/2


�1�n2
�3 �
1
2 n


a1 � 2,    ak�1 � �ak�1/k

a1 � 2,    ak�1 � �ak�k

10.1 E x e r c i s e s
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52 Approximations to may be obtained from the sequence

Use the key for tan.

(a) Find the first five terms of this sequence.

(b) What happens to the terms of the sequence when
?

53 Bode’s sequence Bode’s sequence, defined by

can be used to approximate distances of planets from the
sun. These distances are measured in astronomical units,
with . For example, the third term
corresponds to Earth and the fifth term to the minor planet
Ceres. Approximate the first five terms of the sequence.

54 Growth of bacteria The number of bacteria in a certain 
culture is initially 500, and the culture doubles in size 
every day.

(a) Find the number of bacteria present after one day, two
days, and three days.

(b) Find a formula for the number of bacteria present after
n days.

55 The Fibonacci sequence The Fibonacci sequence is defined
recursively by

(a) Find the first ten terms of the sequence.

(b) The terms of the sequence give progres-
sively better approximations to , the golden ratio. Ap-
proximate the first ten terms of this sequence.

56 The Fibonacci sequence The Fibonacci sequence can be de-
fined by the formula

Find the first eight terms, and show that they agree with
those found using the definition in Exercise 55.

57 Chlorine levels Chlorine is often added to swimming pools
to control microorganisms. If the level of chlorine rises
above 3 ppm (parts per million), swimmers will experience
burning eyes and skin discomfort. If the level drops below
1 ppm, there is a possibility that the water will turn green
because of a large algae count. Chlorine must be added to
pool water at regular intervals. If no chlorine is added to a

an �
1

25
�1 � 25

2 �n

�
1

25
�1 � 25

2 �n

.

#
rk � ak�1�ak

a1 � 1, a2 � 1, ak�1 � ak � ak�1 for k 
 2.

1 AU � 93,000,000 mi

a1 � 0.4, ak � 0.1�3 � 2k�2 � 4� for k 
 2,

x1 � 6

TAN

x1 � 3, xk�1 � xk � tan xk.

� pool during a 24-hour period, approximately 20% of the
chlorine will dissipate into the atmosphere and 80% will re-
main in the water.

(a) Determine a recursive sequence that expresses the
amount of chlorine present after n days if the pool has

ppm of chlorine initially and no chlorine is added.

(b) If a pool has 7 ppm of chlorine initially, construct a
table to determine the first day on which the chlorine
level will drop below 3 ppm.

58 Chlorine levels Refer to Exercise 57. Suppose a pool has
2 ppm of chlorine initially, and 0.5 ppm of chlorine is added
to the pool at the end of each day.

(a) Find a recursive sequence that expresses the amount
of chlorine present after n days.

(b) Determine the amount of chlorine in the pool after
15 days and after a long period of time.

(c) Estimate the amount of chlorine that needs to be added
daily in order to stabilize the pool’s chlorine level at
1.5 ppm.

59 Golf club costs A golf club company sells driver heads as
follows:

Find a piecewise-defined function C that specifies the total
cost for n heads. Sketch a graph of C.

60 DVD player costs An electronics wholesaler sells DVD
players at $20 each for the first 4 units. All units after the
first 4 sell for $17 each. Find a piecewise-defined function
C that specifies the total cost for n players. Sketch a graph
of C.

Exer. 61–62: Some calculators use an algorithm similar 
to the following to approximate for a positive real 
number N: Let and find successive approxima-
tions , , . . . by using

until the desired accuracy is obtained. Use this method to
approximate the radical to six-decimal-place accuracy.

61 62 21825

x2 �
1
2 �x1 �

N
x1
�, x3 �

1
2 �x2 �

N
x2
�, . . .

x3x2

x1 � N�2
2N

an

a0

an

Number of heads 1–4 5–9 10

Cost per head $89.95 $87.95 $85.95

�



63 The equation has a root near 2. To ap-
proximate this root, rewrite the equation as .
Let and find successive approximations by
using the formulas

until four-decimal-place accuracy is obtained.

64 The equation has a root near 0. Use2x �
1

x4 � x � 2
� 0

x2 �
1
32

3 x1 � 2, x3 �
1
32

3 x2 � 2, . . .

x2, x3, . . .x1 � 2
x �

1
32

3 x � 2

1
32

3 x � x � 2 � 0 a procedure similar to that in Exercise 63 to approximate
this root to four-decimal-place accuracy.

Exer. 65–66: (a) Show that f takes on both positive and 
negative values on the interval [1, 2]. (b) Use the method of
Exercise 63, with , to approximate a zero of f to
two-decimal-place accuracy.

65

66 (Hint: Solve for x in log x.)f �x� � log x � 10�x

f �x� � x � 2 � log x

x1 � 1.5
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In this section and the next we consider two special types of sequences: arith-
metic and geometric. The first type may be defined as follows.

Note that the common difference d is the difference of any two successive
terms of an arithmetic sequence.

Arithmetic Sequence and Common Difference

common difference

common difference

E X A M P L E  1 Showing that a sequence is arithmetic

Show that the sequence

is arithmetic, and find the common difference.

S O L U T I O N If , then for every positive integer k,

Hence, the given sequence is arithmetic with common difference 3. L

� 3k � 3 � 2 � 3k � 2 � 3.

ak�1 � ak � �3�k � 1� � 2	 � �3k � 2�

an � 3n � 2

1, 4, 7, 10, . . . , 3n � 2, . . .

� �7
� 10 � 1717, 10, 3, �4, . . . , 24 � 7n, . . .

� 5
� 2 � ��3��3, 2, 7, 12, . . . , 5n � 8, . . .

10.2
Arithmetic Sequences

Definition of 
Arithmetic Sequence

A sequence is an arithmetic sequence if there is a real
number d such that for every positive integer k,

The number is called the common difference of the 
sequence.

d � ak�1 � ak

ak�1 � ak � d.

a1, a2, . . . , an, . . .

I L L U S T R A T I O N



Given an arithmetic sequence, we know that

for every positive integer k. This gives us a recursive formula for obtaining
successive terms. Beginning with any real number , we can obtain an arith-
metic sequence with common difference d simply by adding d to , then to

, and so on, obtaining

The nth term of this sequence is given by the next formula.

E X A M P L E  2 Finding a specific term of an arithmetic sequence

The first three terms of an arithmetic sequence are 20, 16.5, and 13. Find the
fifteenth term.

S O L U T I O N The common difference is

Substituting , , and in the formula for the nth term of
an arithmetic sequence, , gives us

L

E X A M P L E  3 Finding a specific term of an arithmetic sequence

If the fourth term of an arithmetic sequence is 5 and the ninth term is 20, find
the sixth term.

S O L U T I O N We are given and and wish to find . The fol-
lowing are equivalent systems of equations in the variables and d:

Subtracting the first equation of the system from the second equation gives us
, or . Substituting 3 for d in the first equation, ,

yields . Hence, to find the sixth term we have

let in 

and L

The next theorem contains a formula for the nth partial sum of an arith-
metic sequence.

Sn

d � 3a1 � �4� ��4� � �5��3� � 11.

an � a1 � �n � 1�dn � 6a6 � a1 � �6 � 1�d

a1 � 5 � 3d � 5 � 3�3� � �4
5 � a1 � 3dd � 315 � 5d

a4 � 5

a9 � 20
� 5 � a1 � 3d

20 � a1 � 8d

let n � 4 in an � a1 � �n � 1�d
let n � 9 in an � a1 � �n � 1�d�a4 � a1 � �4 � 1�d

a9 � a1 � �9 � 1�d

a1

a6a9 � 20a4 � 5

a15 � 20 � �15 � 1���3.5� � 20 � 49 � �29.

an � a1 � �n � 1�d
d � �3.5a1 � 20n � 15

a2 � a1 � 16.5 � 20 � �3.5.

an

a1,  a1 � d,  a1 � 2d,  a1 � 3d,  a1 � 4d,  . . . .

a1 � d
a1

a1

ak�1 � ak � d
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The nth Term of an 
Arithmetic Sequence an � a1 � �n � 1�d

Alternatively, if we use the relation-
ship

we can obtain . Then using

we get without ever finding 
.a1

a6 � 11

a6 � a4 � 2d,

d � 3

a9 � a4 � 5d,



P R O O F We may write

Employing the commutative and associative properties of real numbers many
times, we obtain

with appearing n times within the first pair of parentheses. Thus,

The expression within brackets is the sum of the first positive integers.
Using the formula for the sum of the first n positive integers, ,
from Example 5 of Section 10.1, but with in place of n and n in place
of , we have

Substituting in the last equation for and factoring out gives us

Since , the last equation is equivalent to

L

E X A M P L E  4 Finding a sum of even integers

Find the sum of all the even integers from 2 through 100.

S O L U T I O N This problem is equivalent to finding the sum of the first 50
terms of the arithmetic sequence

Substituting , , and in produces

S50 �
50
2 �2 � 100� � 2550.

Sn � �n�2��a1 � an�a50 � 100a1 � 2n � 50

2, 4, 6, . . . , 2n, . . . .

Sn �
n

2
�a1 � an�.

an � a1 � �n � 1�d

Sn � na1 � d
�n � 1�n

2
�

n

2
�2a1 � �n � 1�d	.

n�2Sn

1 � 2 � � � � � �n � 1� �
�n � 1�n

2
.

n � 1
n � 1

Sn � n�n � 1��2
n � 1

Sn � na1 � d �1 � 2 � � � � � �n � 1�	.

a1

Sn � �a1 � a1 � a1 � � � � � a1� � �d � 2d � � � � � �n � 1�d	,

� a1 � �a1 � d� � �a1 � 2d� � � � � � �a1 � �n � 1�d	.
� � � � � an� a3Sn � a1 � a2
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Theorem: Formulas for Sn If is an arithmetic sequence with common difference d,
then the nth partial sum (that is, the sum of the first n terms) is given by
either

or Sn �
n

2
�a1 � an�.Sn �

n

2
�2a1 � �n � 1�d	

Sn

a1, a2, a3, . . . , an, . . .



Alternatively, we may use with :

L

The arithmetic mean of two numbers a and b is defined as .
This is the average of a and b. Note that the three numbers

constitute a (finite) arithmetic sequence with a common difference of
. This concept may be generalized as follows: If are

real numbers such that

is a (finite) arithmetic sequence, then are k arithmetic means be-
tween the numbers a and b. The process of determining these numbers is re-
ferred to as inserting k arithmetic means between a and b.

E X A M P L E  5 Inserting arithmetic means

Insert three arithmetic means between 2 and 9.

S O L U T I O N We wish to find three real numbers , and such that the
following is a (finite) arithmetic sequence:

We may regard this sequence as an arithmetic sequence with first term 
and fifth term . To find the common difference d, we may proceed as
follows:

let in 

and

solve for d

Thus, the arithmetic means are

L

E X A M P L E  6 An application of an arithmetic sequence

A carpenter wishes to construct a ladder with nine rungs whose lengths de-
crease uniformly from 24 inches at the base to 18 inches at the top. Determine
the lengths of the seven intermediate rungs.

c3 � c2 � d �
22
4 �

7
4 �

29
4 .

c2 � c1 � d �
15
4 �

7
4 �

22
4 �

11
2

c1 � a1 � d � 2 �
7
4 �

15
4

d �
7
4

a1 � 2a5 � 99 � 2 � 4d

an � a1 � �n � 1�dn � 5a5 � a1 � �5 � 1�d

a5 � 9
a1 � 2

2, c1, c2, c3, 9

c3c1, c2

c1, c2, . . . , ck

a, c1, c2, . . . , ck, b

c1, c2, . . . , ckd �
1
2 �b � a�

a,  
a � b

2
,  and  b

�a � b��2

S50 �
50
2 �2�2� � �50 � 1�2	 � 25�4 � 98	 � 2550

d � 2Sn �
n

2
�2a1 � �n � 1�d	
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S O L U T I O N The ladder is sketched in Figure 1. The lengths of the rungs are
to form an arithmetic sequence with and .
Hence, we need to insert seven arithmetic means between 18 and 24. Using

with , , and gives us

or, equivalently,

Hence, , and the intermediate rungs have lengths (in inches)

L

It is sometimes desirable to express a sum in terms of summation nota-
tion, as illustrated in the next example.

E X A M P L E  7 Expressing a sum in summation notation

Express in terms of summation notation:

S O L U T I O N The six terms of the sum do not form an arithmetic sequence;
however, the numerators and denominators of the fractions, considered sepa-
rately, are each an arithmetic sequence. Specifically, we have the following:

Numerators: common difference 1

Denominators: common difference 5

Using the formula for the nth term of an arithmetic sequence twice, we obtain
the following nth term for each sequence:

Hence, the nth term of the given sum is , and we may write

L

1

4
�

2

9
�

3

14
�

4

19
�

5

24
�

6

29
� "6

n�1

n

5n � 1
.

n��5n � 1�

an � a1 � �n � 1�d � 4 � �n � 1�5 � 5n � 1

an � a1 � �n � 1�d � 1 � �n � 1�1 � n

4, 9, 14, 19, 24, 29

1, 2, 3, 4, 5, 6

1
4 �

2
9 �

3
14 �

4
19 �

5
24 �

6
29

18.75,  19.5,  20.25,  21,  21.75,  22.5,  and  23.25.

d �
6
8 � 0.75

8d � 6.24 � 18 � 8d

a9 � 24a1 � 18n � 9an � a1 � �n � 1�d

a9 � 24a1 � 18a1, a2, . . . , a9

668 C H A P T E R  1 0  S E Q U E N C E S ,  S E R I E S ,  A N D  P R O B A B I L I T Y

Figure 1

a1 � 18

a9 � 24

a2

a3

a4

a5

a6

a7

a8

Exer. 1–2: Show that the given sequence is arithmetic, and
find the common difference.

1

2

Exer. 3–10: Find the nth term, the fifth term, and the tenth
term of the arithmetic sequence.

3 2, 6, 10,

4 16, 13, 10, 7, . . .

14, . . .

53, 48, 43, . . . , 58 � 5n, . . .

�6, �2, 2, . . . , 4n � 10, . . .

5 3, 2.7, 2.4,

6

7

8

9 ln 3, ln 9, ln 27,

10 log 1000, log 100, log 10, log 1, . . .

ln 81, . . .

x � 8, x � 3, x � 2, x � 7, . . .

�7, �3.9, �0.8, 2.3, . . .

�6, �4.5, �3, �1.5, . . .

2.1, . . .

10.2 E x e r c i s e s



Exer. 11–12: Find the common difference for the arithmetic
sequence with the specified terms.

11

12

Exer. 13–18: Find the specified term of the arithmetic se-
quence that has the two given terms.

13

14

15

16

17

18

Exer. 19–22: Find the sum of the arithmetic sequence
that satisfies the stated conditions.

19

20

21

22

Exer. 23–28: Find the sum.

23 24

25 26

27 28

Exer. 29–34: Express the sum in terms of summation nota-
tion. (Answers are not unique.)

29

30

31

32 3 � 8 � 13 � ��� � 463

4 � 11 � 18 � ��� � 466

3 � 8 � 13 � 18 � 23

4 � 11 � 18 � 25 � 32

"371

k�88

�3j � 2k�"592

k�126

�5k � 2j �

"10

k�1
�1

4 k � 3�"18

k�1
�1

2 k � 7�

"12

k�1

�7 � 4k�"20

k�1

�3k � 5�

a7 �
7
3 ,    d � �

2
3 ,   n � 15

a1 � �9,  a10 � 15,  n � 10

a1 � 5,    d � 0.1,  n � 40

a1 � 40,   d � �3,   n � 30

Sn

a10;  a2 � 1,        a18 � 49

a15;  a3 � 7,        a20 � 43

a1;  a8 � 47,      a9 � 53

a1;  a6 � 2.7,      a7 � 5.2

a11;  a1 � 2 � 22,  a2 � 3

a12;  a1 � 9.1,      a2 � 7.5

a4 � 14, a11 � 35

a2 � 21, a6 � �11

33

34

Exer. 35–36: Express the sum in terms of summation nota-
tion and find the sum.

35

36

Exer. 37–40: Find the number of terms in the arithmetic 
sequence with the given conditions.

37

38

39

40

41 Insert five arithmetic means between 2 and 10.

42 Insert three arithmetic means between 3 and .

43 (a) Find the number of integers between 32 and 395 that
are divisible by 6.

(b) Find their sum.

44 (a) Find the number of negative integers greater than 
that are divisible by 33.

(b) Find their sum.

45 Log pile A pile of logs has 24 logs in the bottom layer, 23
in the second layer, 22 in the third, and so on. The top layer
contains 10 logs. Find the total number of logs in the pile.

46 Stadium seating The first ten rows of seating in a certain
section of a stadium have 30 seats, 32 seats, 34 seats, and so
on. The eleventh through the twentieth rows each contain
50 seats. Find the total number of seats in the section.

47 Constructing a grain bin A grain bin is to be constructed in
the shape of a frustum of a cone (see the figure). The bin is
to be 10 feet tall with 11 metal rings positioned uniformly
around it, from the 4-foot opening at the bottom to the 

�500

�5

a6 � �3,  d � 0.2,  S � �33

a1 � �
29
6 ,  d �

1
3 ,  S � �36

a1 � �1,  d �
1
5 ,  S � 21

a1 � �2,  d �
1
4 ,  S � 21

2 � 11 � 20 � ��� � 16,058

8 � 19 � 30 � ��� � 16,805

5
13 �

10
11 �

15
9 �

20
7

3
7 �

6
11 �

9
15 �

12
19 �

15
23 �

18
27
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24-foot opening at the top. Find the total length of metal
needed to make the rings.

Exercise 47

48 Coasting downhill A bicycle rider coasts downhill, travel-
ing 4 feet the first second. In each succeeding second, the
rider travels 5 feet farther than in the preceding second. If
the rider reaches the bottom of the hill in 11 seconds, find
the total distance traveled.

49 Prize money A contest will have five cash prizes totaling
$5000, and there will be a $100 difference between succes-
sive prizes. Find the first prize.

50 Sales bonuses A company is to distribute $46,000 in
bonuses to its top ten salespeople. The tenth salesperson on
the list will receive $1000, and the difference in bonus
money between successively ranked salespeople is to be
constant. Find the bonus for each salesperson.

51 Distance an object falls Assuming air resistance is negli-
gible, a small object that is dropped from a hot air balloon
falls 16 feet during the first second, 48 feet during the sec-
ond second, 80 feet during the third second, 112 feet during
the fourth second, and so on. Find an expression for the dis-
tance the object falls in n seconds.

52 If f is a linear function, show that the sequence with nth
term is an arithmetic sequence.

53 Genetic sequence The sequence defined recursively by
occurs in genetics in the study of the

elimination of a deficient gene from a population. Show that
the sequence whose nth term is is arithmetic.1�xn

xk�1 � xk��1 � xk�

an � f �n�

24�

10�

4�

54 Dimensions of a maze Find the total length of the red-line
curve in the figure if the width of the maze formed by 
the curve is 16 inches and all halls in the maze have width
1 inch. What is the length if the width of the maze is
32 inches?

Exercise 54

Exer. 55–56: Depreciation methods are sometimes used by
businesses and individuals to estimate the value of an asset
over a life span of n years. In the sum-of-year’s-digits
method, for each year , the value of an

asset is decreased by the fraction of its ini-

tial cost, where .

55 (a) If , find .

(b) Show that the sequence in (a) is arithmetic, and find .

(c) If the initial value of an asset is $1000, how much has
been depreciated after 4 years?

56 (a) If n is any positive integer, find .

(b) Show that the sequence in (a) is arithmetic, and find .Sn

A1, A2, A3, . . . , An

S8

A1, A2, A3, . . . , A8n � 8

Tn � 1 � 2 � 3 � ��� � n

Ak �
n � k � 1

Tn

k � 1, 2, 3, . . . , n

16��
1��
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The second special type of sequence that we will discuss—the geometric 
sequence—occurs frequently in applications.

Note that the common ratio is the ratio of any two successive
terms of a geometric sequence.

Geometric Sequence and Common Ratio

common ratio

common ratio

The formula provides a recursive method for obtaining terms
of a geometric sequence. Beginning with any nonzero real number , we mul-
tiply by the number r successively, obtaining

The nth term of this sequence is given by the following formula.

E X A M P L E  1 Finding terms of a geometric sequence

A geometric sequence has first term 3 and common ratio . Find the first five
terms and the tenth term.

S O L U T I O N If we multiply successively by , then the first
five terms are

Using the formula with , we find that the tenth term is

La10 � a1r9 � 3��1
2 �9

� �
3

512 .

n � 10an � a1rn�1

3,  �3
2,  3

4,  �
3
8,  3

16 .

r � �
1
2a1 � 3

�
1
2

an

a1,  a1r,  a1r2,  a1r3,  . . . .

a1

ak�1 � akr

�
3
9 �

1
39, 3, 1, 13 , . . . , �3�3�n, . . .

�
�12

6 � �26, �12, 24, �48, . . . , ��2�n�1�6�, . . .

r � ak�1�ak
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10.3
Geometric Sequences

Definition of 
Geometric Sequence

A sequence is a geometric sequence if and if there
is a real number such that for every positive integer k,

The number is called the common ratio of the sequence.r �
ak�1

ak

ak�1 � akr.

r � 0
a1 � 0a1, a2, . . . , an, . . .

Formula for the nth Term 
of a Geometric Sequence an � a1r n�1

I L L U S T R A T I O N



E X A M P L E  2 Finding a specific term of a geometric sequence

The third term of a geometric sequence is 5, and the sixth term is . Find
the eighth term.

S O L U T I O N We are given and and wish to find . The
following are equivalent systems of equations in the variables and r :

Solving the first equation of the system for gives us . Substituting
this expression in the second equation yields

Simplifying, we get , and hence . We next use to
obtain

Finally, using with gives us

L

The next theorem contains a formula for the nth partial sum of a geo-
metric sequence.

P R O O F By definition, the nth partial sum of a geometric sequence is

(1)

Multiplying both sides of (1) by r, we obtain

(2)rSn � a1r � a1r2 � a1r3 � � � � � a1r n�1 � a1r n.

Sn � a1 � a1r � a1r2 � � � � � a1rn�2 � a1rn�1.

Sn

Sn

a8 � a1r7 � �5
4���2�7 � �160.

n � 8an � a1rn�1

a1 �
5

��2�2
�

5

4
.

a1 � 5�r2r � �2r3 � �8

�40 �
5

r2
� r5.

a1 � 5�r2a1

a3 � 5

a6 � �40
� 5 � a1r2

�40 � a1r5

let n � 3 in an � a1rn�1

let n � 6 in an � a1rn�1�a3 � a1r3�1

a6 � a1r6�1

a1

a8a6 � �40a3 � 5

�40
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Theorem: Formula for Sn The nth partial sum of a geometric sequence with first term and com-
mon ratio is

Sn � a1

1 � r n

1 � r
.

r � 1
a1Sn

Alternatively, if we use the relation-
ship

we can obtain . Then using

we get without ever finding 
.a1

a8 � �160

a8 � a6r2,

r � �2

a6 � a3r3,



If we subtract equation (2) from equation (1), all but two terms on the right-
hand side cancel and we obtain the following:

subtract (2) from (1)

factor both sides

divide by 
L

E X A M P L E  3 Finding a sum of terms of a geometric sequence

If the sequence 1, 0.3, 0.09, 0.027 is a geometric sequence, find the sum of
the first five terms.

S O L U T I O N If we let , , and in the formula for stated
in the preceding theorem, we obtain

L

E X A M P L E  4 The rapid growth of terms of a geometric sequence

A man wishes to save money by setting aside 1 cent the first day, 2 cents the
second day, 4 cents the third day, and so on.

(a) If he continues to double the amount set aside each day, how much must
he set aside on the fifteenth day?

(b) Assuming he does not run out of money, what is the total amount saved at
the end of the 30 days?

S O L U T I O N

(a) The amount (in cents) set aside on successive days forms a geometric 
sequence

with first term 1 and common ratio 2. We find the amount to be set aside on
the fifteenth day by using with and :

Thus, $163.84 should be set aside on the fifteenth day.

(b) To find the total amount saved after 30 days, we use the formula for 
with , obtaining (in cents)

Thus, the total amount saved is $10,737,418.23. L

S30 � �1�
1 � 230

1 � 2
� 1,073,741,823.

n � 30
Sn

a15 � a1r14 � 1 � 214 � 16,384

n � 15a1 � 1an � a1r n�1

1, 2, 4, 8, . . . ,

S5 � a1

1 � r5

1 � r
� �1�

1 � �0.3�5

1 � 0.3
� 1.4251.

Snn � 5r � 0.3a1 � 1

, . . .

�1 � r�Sn � a1

1 � r n

1 � r

Sn�1 � r� � a1�1 � r n�
Sn � rSn � a1 � a1r n
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The terminology used with geometric sequences is analogous to that used
with arithmetic sequences. If a and b are positive real numbers, then a positive
number c is called the geometric mean of a and b if a, c, b is a geometric se-
quence. If the common ratio is r, then

Taking the square root of both sides of the last equation, we see that the geo-
metric mean of the positive numbers a and b is . As a generalization, k
positive real numbers are k geometric means between a and b if

is a geometric sequence. The process of determining these
numbers is referred to as inserting k geometric means between a and b.

Geometric Means

Numbers Geometric mean

20, 45

3, 4

Given the geometric series with first term and common ratio , we
may write the formula for of the preceding theorem in the form

If , then approaches 0 as n increases without bound. Thus, ap-
proaches as n increases without bound. Using the notation we de-
veloped for rational functions in Section 4.5, we have

The number is called the sum S of the infinite geometric series

This gives us the following result.

a1 � a1r � a1r2 � � � � � a1r n�1 � � � �.

a1��1 � r�

Sn l
a1

1 � r
as n l �.

a1��1 � r�
Snr n� r � � 1

Sn �
a1

1 � r
�

a1

1 � r
rn.

Sn

r � 1a1

23 � 4 � 212 
 3.46

220 � 45 � 2900 � 30

a, c1, c2, . . . , ck, b
c1, c2, . . . , ck

2ab

r �
c

a
�

b

c
, or c2 � ab.
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Theorem on the Sum of an
Infinite Geometric Series

If , then the infinite geometric series

has the sum

S �
a1

1 � r
.

a1 � a1r � a1r2 � � � � � a1r n�1 � � � �

� r � � 1
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The preceding theorem implies that as we add more terms of the indicated
infinite geometric series, the sum gets closer to . The next example
illustrates how the theorem can be used to show that every real number repre-
sented by a repeating decimal is rational.

E X A M P L E  5 Expressing an infinite repeating decimal as a rational number

Find a rational number that corresponds to .

S O L U T I O N We can write the decimal expression 5.4272727 . . . as

Beginning with the second term, 0.027, the above sum has the form given in
the theorem on the sum of an infinite geometric series, with and

. Hence, the sum S of this infinite geometric series is

Thus, the desired number is

A check by division shows that corresponds to . L

In general, given any infinite sequence, the expression

is called an infinite series or simply a series. We denote this series by

Each number is a term of the series, and is the nth term. Since only fi-
nite sums may be added algebraically, it is necessary to define what is meant
by an infinite sum. Consider the sequence of partial sums

If there is a number S such that as , then, as in our discussion of
infinite geometric series, S is the sum of the infinite series and we write

In the previous example we found that the infinite repeating decimal
corresponds to the rational number . Since is the sum of an

infinite series determined by the decimal, we may write

597
110 � 5.4 � 0.027 � 0.00027 � 0.0000027 � � � �.

597
110

597
1105.4272727. . .

S � a1 � a2 � � � � � an � � � �.

n l �Sn l S

S1, S2, . . . , Sn, . . . .

anak

"�
n�1

an.

a1 � a2 � � � � � an � � � �

a1, a2, . . . , an, . . . ,

5.427597
110

5.4 �
3

110 �
594
110 �

3
110 �

597
110 .

S �
a1

1 � r
�

0.027

1 � 0.01
�

0.027

0.990
�

27

990
�

3

110
.

r � 0.01
a1 � 0.027

5.4 � 0.027 � 0.00027 � 0.0000027 � � � �.

5.427

a1��1 � r�
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If the terms of an infinite sequence are alternately positive and negative, as in
the expression

for positive real numbers , then the expression is an alternating infinite se-
ries and we write it in the form

The most common types of alternating infinite series are infinite geometric se-
ries in which the common ratio r is negative.

E X A M P L E  6 Finding the sum of an infinite geometric series

Find the sum S of the alternating infinite geometric series

S O L U T I O N Using the formula for S in the theorem on the sum of an infi-
nite geometric series, with and , we obtain

L

E X A M P L E  7 An application of an infinite geometric series

A rubber ball is dropped from a height of 10 meters. Suppose it rebounds one-
half the distance after each fall, as illustrated by the arrows in Figure 1. Find
the total distance the ball travels.

S O L U T I O N The sum of the distances the ball travels downward and the sum
of the distances it travels on the rebounds form two infinite geometric series:

Downward series:

Upward series:

We assume that the total distance S the ball travels can be found by adding the
sums of these infinite series. This gives us

Using the formula with and , we obtain

A related problem: Does this ball ever come to rest? See Discussion Exer-
cise 5 at the end of this chapter. L

S � 10 � 2� 5

1 �
1
2
� � 10 � 2�10� � 30 m.

r �
1
2a1 � 5S � a1��1 � r�

� 10 � 2�5 � 5�1
2� � 5�1

2�2
� 5�1

2�3
� � � � 	.

S � 10 � 2�5 � 2.5 � 1.25 � 0.625 � � � �	

5 � 2.5 � 1.25 � 0.625 � � � �

10 � 5 � 2.5 � 1.25 � 0.625 � � � �

S �
a1

1 � r
�

3

1 � ��2
3 � �

3
5
3

�
9

5
.

r � �
2
3a1 � 3

"�
n�1

3��2
3 �n�1

� 3 � 2 �
4
3 �

8
9 � � � � � 3��2

3 �n�1
� � � �.

a1 � a2 � a3 � a4 � � � � � ��1�n�1an � � � �.

ak

a1 � ��a2� � a3 � ��a4� � � � � � ���1�n�1an	 � � � �
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Figure 1

10

5

2.5
1.25

5

2.5
1.25
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Exer. 1–2: Show that the given sequence is geometric, and
find the common ratio.

1

2

Exer. 3–14: Find the nth term, the fifth term, and the eighth
term of the geometric sequence.

3 4

5 6

7 8

9 10

11 12

13

14

Exer. 15–16: Find all possible values of r for a geometric se-
quence with the two given terms.

15 16

17 Find the sixth term of the geometric sequence whose first
two terms are 4 and 6.

18 Find the seventh term of the geometric sequence whose
second and third terms are 2 and .

19 Given a geometric sequence with and , find
r and .

20 Given a geometric sequence with and ,
find r and .

Exer. 21–26: Find the sum.

21 22

23 24

25 26 "14

k�8

�3k�7 � 2j 2�"26

k�16

�2k�14 � 5j�

"7
k�1

�3�k�"9
k�0

��
1
2�k�1

"9
k�1

��25 �k"10

k�1

3k

a9

a5 � �81a2 � 3

a10

a7 � 12a4 � 4

�22

a3 � 4, a7 �
1
4a4 � 3, a6 � 9

10, 102x�1, 104x�3, 106x�5, . . .

2, 2x�1, 22x�1, 23x�1, . . .

1, �
x

3
,

x2

9
, �

x3

27
, . . .1, �x 2, x 4, �x 6, . . .

162, �54, 18, �6, . . .4, �6, 9, �13.5, . . .

2, 6, 18, 54, . . .5, 25, 125, 625, . . .

1, �23, 3, �323, . . .300, �30, 3, �0.3, . . .

4, 1.2, 0.36, 0.108, . . .8, 4, 2, 1, . . .

1
7 , 3

7 , 9
7 , . . . , 17 �3�n�1, . . .

5, �
5
4 , 5

16 , . . . , 5��
1
4 �n�1, . . .

Exer. 27–30: Express the sum in terms of summation nota-
tion. (Answers are not unique.)

27

28

29 30

Exer. 31–38: Find the sum of the infinite geometric series if
it exists.

31 32

33

34

35

36

37

38

Exer. 39–46: Find the rational number represented by the
repeating decimal.

39 40

41 42

43 44

45 46

47 Find the geometric mean of 12 and 48.

48 Find the geometric mean of 20 and 25.

49 Insert two geometric means between 4 and 500.

50 Insert three geometric means between 2 and 512.

51 Using a vacuum pump A vacuum pump removes one-half
of the air in a container with each stroke. After 10 strokes,
what percentage of the original amount of air remains in the
container?

52 Calculating depreciation The yearly depreciation of a cer-
tain machine is 25% of its value at the beginning of the year.
If the original cost of the machine is $20,000, what is its
value after 6 years?

123.61831.6124

3.23945.146

10.52.417

0.0710.23

250 � 100 � 40 � 16 � ���

256 � 192 � 144 � 108 � ���

1 �
3
2 �

9
4 �

27
8 � ���

22 � 2 � 28 � 4 � ���

1 � 0.1 � 0.01 � 0.001 � ���

1.5 � 0.015 � 0.00015 � ���

2 �
2
3 �

2
9 �

2
27 � ���1 �

1
2 �

1
4 �

1
8 � ���

3 �
3
5 �

3
25 �

3
125 �

3
625

1
4 �

1
12 �

1
36 �

1
108

2 � 4 � 8 � 16 � 32 � 64

2 � 4 � 8 � 16 � 32 � 64 � 128
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53 Growth of bacteria A certain culture initially contains
10,000 bacteria and increases by 20% every hour.

(a) Find a formula for the number of bacteria present
after t hours.

(b) How many bacteria are in the culture at the end of
10 hours?

54 Interest on savings An amount of money P is deposited in
a savings account that pays interest at a rate of r percent per
year compounded quarterly; the principal and accumulated
interest are left in the account. Find a formula for the total
amount in the account after n years.

55 Rebounding ball A rubber ball is dropped from a height of
60 feet. If it rebounds approximately two-thirds the distance
after each fall, use an infinite geometric series to approxi-
mate the total distance the ball travels.

56 Motion of a pendulum The bob of a pendulum swings
through an arc 24 centimeters long on its first swing. If each
successive swing is approximately five-sixths the length of
the preceding swing, use an infinite geometric series to ap-
proximate the total distance the bob travels.

57 Multiplier effect A manufacturing company that has just
located in a small community will pay two million dollars
per year in salaries. It has been estimated that 60% of these
salaries will be spent in the local area, and 60% of the
money spent will again change hands within the commu-
nity. This process, called the multiplier effect, will be re-
peated ad infinitum. Find the total amount of local spending
that will be generated by company salaries.

58 Pest eradication In a pest eradication program, N sterilized
male flies are released into the general population each 
day. It is estimated that 90% of these flies will survive a
given day.

(a) Show that the number of sterilized flies in the popula-
tion n days after the program has begun is

(b) If the long-range goal of the program is to keep 
20,000 sterilized males in the population, how many
flies should be released each day?

59 Drug dosage A certain drug has a half-life of about 2 hours
in the bloodstream. The drug is formulated to be adminis-
tered in doses of D milligrams every 4 hours, but D is yet to
be determined.

N � �0.9�N � �0.9�2N � ��� � �0.9�n�1N.

N�t�

(a) Show that the number of milligrams of drug in the
bloodstream after the nth dose has been administered is

and that this sum is approximately for large values
of n.

(b) A level of more than 500 milligrams of the drug in the
bloodstream is considered to be dangerous. Find the
largest possible dose that can be given repeatedly over
a long period of time.

60 Genealogy Shown in the figure is a family tree displaying
the current generation (you) and 3 prior generations, with a
total of 12 grandparents. If you were to trace your family
history back 10 generations, how many grandparents would
you find?

Exercise 60

61 The first figure shows some terms of a sequence of squares
Let , , and denote the side, area,

and perimeter, respectively, of the square . The square 
is constructed from by connecting four points on , with
each point a distance of from a vertex, as shown in the
second figure.

(a) Find the relationship between and .

(b) Find , , and .

(c) Calculate ."�
n�1

Pn

PnAnan

akak�1

1
4 ak

SkSk

Sk�1Sk

PkAkakS1, S2, . . . , Sk, . . . .

You

Mother

Father

4
3 D

D �
1
4 D � ��� � �1

4�n�1D
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Exercise 61

62 The figure shows several terms of a sequence consisting of
alternating circles and squares. Each circle is inscribed in a
square, and each square (excluding the largest) is inscribed
in a circle. Let denote the area of the nth square and 
the area of the nth circle.

(a) Find the relationships between and and between
and .

(b) What portion of the largest square is shaded in the 
figure?

Exercise 62

63 Sierpinski sieve The Sierpinski sieve, designed in 1915, is
an example of a fractal. It can be constructed by starting
with a solid black equilateral triangle. This triangle is di-
vided into four congruent equilateral triangles, and the 
middle triangle is removed. On the next step, each of the
three remaining equilateral triangles is divided into four
congruent equilateral triangles, and the middle triangle in
each of these triangles is removed, as shown in the first fig-
ure. On the third step, nine triangles are removed. If the
process is continued indefinitely, the Sierpinski sieve results
(see the second figure).

Sn�1Cn

CnSn

CnSn

ak

~ak

ak�1

Exercise 63

(a) Find a geometric sequence that gives the number of
triangles removed on the kth step.

(b) Calculate the number of triangles removed on the fif-
teenth step.

(c) Suppose the initial triangle has an area of 1 unit. Find
a geometric sequence that gives the area removed on
the kth step.

(d) Determine the area removed on the seventh step.

64 Sierpinski sieve Refer to Exercise 63.

(a) Write a geometric series that calculates the total num-
ber of triangles removed after n steps.

(b) Determine the total number of triangles removed after
12 steps.

(c) Write a geometric series that calculates the total area
removed after n steps.

(d) Determine the total area removed after 12 steps.

65 Annuity If a deposit of $100 is made on the first day of each
month into an account that pays 6% interest per year com-
pounded monthly, determine the amount in the account after
18 years.

66 Annuity Refer to Exercise 65. Show that if the monthly de-
posit is P dollars and the rate is r% per year compounded
monthly, then the amount A in the account after n months is
given by

67 Annuity Use Exercise 66 to find A when ,
, and .

68 Annuity Refer to Exercise 66. If , approximately
how many years are required to accumulate $100,000 if the
monthly deposit P is

(a) $100 (b) $200

r � 10%

n � 60r � 8%
P � $100

A � P�12

r
� 1���1 �

r

12�n

� 1�.

bk

ak
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Exer. 69–70: The double-declining balance method is a
method of depreciation in which, for each year 

, the value of an asset is decreased by the fraction

of its initial cost.

69 (a) If , find .A1, A2, . . . , A5n � 5

Ak �
2
n �1 �

2
n�k�1

3, . . . , n
k � 1, 2,

(b) Show that the sequence in (a) is geometric, and find .

(c) If the initial value of an asset is $25,000, how much of
its value has been depreciated after 2 years?

70 (a) If n is any positive integer, find .

(b) Show that the sequence in (a) is geometric, and find .Sn

A1, A2, . . . , An

S5
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If n is a positive integer and we let denote the mathematical statement
, we obtain the following infinite sequence of statements:

Statement :

Statement :

Statement :
. .
. .
. .

Statement :
. .
. .
. .

It is easy to show that , , and are true statements. However, it is impos-
sible to check the validity of for every positive integer n. Showing that is
true for every n requires the following principle.

To help us understand this principle, we consider an infinite sequence of
statements labeled

that satisfy conditions (1) and (2). By (1), statement is true. Since condi-
tion (2) holds, whenever a statement is true the next statement is also
true. Hence, since is true, is also true, by (2). However, if is true, then,
by (2), we see that the next statement is true. Once again, if is true, then,
by (2), is also true. If we continue in this manner, we can argue that if n is
any particular integer, then is true, since we can use condition (2) one step
at a time, eventually reaching . Although this type of reasoning does not ac-
tually prove the principle of mathematical induction, it certainly makes it plau-
sible. The principle is proved in advanced algebra using postulates for the
positive integers.

Pn

Pn

P4

P3P3

P2P2P1

Pk�1Pk

P1

P1, P2, P3, . . . , Pn, . . .

PnPn

P3P2P1

�xy�n � xnynPn

�xy�3 � x3y3P3

�xy�2 � x2y2P2

�xy�1 � x1y1P1

�xy�n � xnyn

Pn10.4
Mathematical Induction

Principle of 
Mathematical Induction

If with each positive integer n there is associated a statement , then all the
statements are true, provided the following two conditions are satisfied.

(1) is true.

(2) Whenever k is a positive integer such that is true, then is also true.Pk�1Pk

P1

Pn

Pn



When applying the principle of mathematical induction, we always follow
two steps.

Step 2 often causes confusion. Note that we do not prove that is true
(except for ). Instead, we show that if happens to be true, then the
statement is also true. We refer to the assumption that is true as the 
induction hypothesis.

E X A M P L E  1 Using the principle of mathematical induction

Use mathematical induction to prove that for every positive integer n, the sum
of the first n positive integers is

S O L U T I O N If n is any positive integer, let denote the statement

The following are some special cases of .
If , then is

If , then is

If , then is

Although it is instructive to check the validity of for several values of n as
we have done, it is unnecessary to do so. We need only apply the two-step
process outlined prior to this example. Thus, we proceed as follows:

Step 1 If we substitute in , then the left-hand side contains only the

number 1 and the right-hand side is , which also equals 1. Hence,

is true.

P1

1�1 � 1�
2

Pnn � 1

Pn

1 � 2 � 3 �
3�3 � 1�

2
; that is, 6 � 6.

P3n � 3

1 � 2 �
2�2 � 1�

2
; that is, 3 � 3.

P2n � 2

1 �
1�1 � 1�

2
; that is, 1 � 1.

P1n � 1
Pn

1 � 2 � 3 � � � � � n �
n�n � 1�

2
.

Pn

n�n � 1�
2

.

PkPk�1

Pkk � 1
Pk
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Steps in Applying the Principle
of Mathematical Induction

1 Show that is true.

2 Assume that is true, and then prove that is true.Pk�1Pk

P1

(continued)



Step 2 Assume that is true. Thus, the induction hypotheses is

Our goal is to show that is true—that is, that

We may prove that the last formula is true by rewriting the left-hand side
and using the induction hypothesis as follows:

This shows that is true, and therefore the proof by mathematical induction
is complete. L

E X A M P L E  2 Using the principle of mathematical induction

Prove that for each positive integer n,

S O L U T I O N For each positive integer n, let denote the given statement.
Note that this is a formula for the sum of the squares of the first n odd positive
integers. We again follow the two-step procedure.

Step 1 Substituting 1 for n in , we obtain

This shows that is true.

Step 2 Assume that is true. Thus, the induction hypothesis is

12 � 32 � � � � � �2k � 1�2 �
k�2k � 1��2k � 1�

3
.

Pk

P1

12 �
�1��2 � 1��2 � 1�

3
�

3

3
� 1.

Pn

Pn

12 � 32 � � � � � �2n � 1�2 �
n�2n � 1��2n � 1�

3
.

Pk�1

1 � 2 � 3 � � � � � k � �k � 1� �
�k � 1���k � 1� � 1	

2
.

Pk�1

1 � 2 � 3 � � � � � k �
k�k � 1�

2
.

Pk
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group the first k terms

induction hypothesis

add terms

factor out 

change form of k � 2�
�k � 1���k � 1� � 1	

2

k � 1�
�k � 1��k � 2�

2

�
k�k � 1� � 2�k � 1�

2

�
k�k � 1�

2
� �k � 1�

 1 � 2 � 3 � � � � � k � �k � 1� � �1 � 2 � 3 � � � � � k� � �k � 1�



We wish to show that is true—that is, that

This equation simplifies to

Remember that the next to last term on the left-hand side of the equation (the
k th term) is . In a manner similar to that used in the solution of 
Example 1, we may prove the formula for by rewriting the left-hand side
and using the induction hypothesis as follows:

This shows that is true, and hence is true for every n. L

E X A M P L E  3 Using the principle of mathematical induction

Prove that 2 is a factor of for every positive integer n.

S O L U T I O N For each positive integer n, let denote the following 
statement:

We shall follow the two-step procedure.

Step 1 If , then

Thus, 2 is a factor of for ; that is, is true.

Step 2 Assume that is true. Thus, the induction hypothesis is

or, equivalently,

for some integer p.

k2 � 5k � 2p

2 is a factor of k2 � 5k

Pk

P1n � 1n2 � 5n

n2 � 5n � 12 � 5 � 1 � 6 � 2 � 3.

n � 1

2 is a factor of n2 � 5n

Pn

n2 � 5n

PnPk�1

Pk�1

�2k � 1�2

12 � 32 � � � � � �2k � 1�2 �
�k � 1��2k � 1��2k � 3�

3
.

12 � 32 � � � � � �2�k � 1� � 1	2 �
�k � 1��2�k � 1� � 1	�2�k � 1� � 1	

3
.

Pk�1
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group the first k terms

induction hypothesis

add terms

factor out 

simplify

factor and change order�
�k � 1��2k � 1��2k � 3�

3

�
�2k � 1��2k2 � 5k � 3�

3

2k � 1�
�2k � 1��k�2k � 1� � 3�2k � 1�	

3

�
k�2k � 1��2k � 1� � 3�2k � 1�2

3

�
k�2k � 1��2k � 1�

3
� �2k � 1�2

 12 � 32 � � � � � �2k � 1�2 � �12 � 32 � � � � � �2k � 1�2	 � �2k � 1�2

(continued)



We wish to show that is true—that is, that

We may do this as follows:

multiply

rearrange terms

induction hypothesis,
factor 

factor out 2

Since 2 is a factor of the last expression, is true, and hence is true for
every n. L

Let j be a positive integer, and suppose that with each integer there
is associated a statement . For example, if , then the statements are
numbered The principle of mathematical induction may be ex-
tended to cover this situation. To prove that the statements are true for ,
we use the following two steps, in the same manner as we did for .

E X A M P L E  4 Using the extended principle of mathematical induction

Let a be a nonzero real number such that . Prove that

for every integer .

S O L U T I O N For each positive integer n, let denote the inequality
. Note that is false, since . How-

ever, we can show that is true for by using the extended principle with
.

Step 1 We first note that . Since , we have
, and so or, equivalently,

Hence, is true.

Step 2 Assume that is true. Thus, the induction hypothesis is

We wish to show that is true—that is, that

�1 � a�k�1 � 1 � �k � 1�a.

Pk�1

�1 � a�k � 1 � ka.

Pk

P2

�1 � a�2 � 1 � 2a.1 � 2a � a2 � 1 � 2aa2 � 0
a � 0�1 � a�2 � 1 � 2a � a2

j � 2
n 
 2Pn

�1 � a�1 � 1 � �1��a�P1�1 � a�n � 1 � na
Pn

n 
 2

�1 � a�n � 1 � na

a � �1

n 
 1
n 
 jPn

P6, P7, P8, . . . .
j � 6Pn

n 
 j

PnPk�1

� 2� p � k � 3�
2k � 6

� 2p � 2�k � 3�
� �k2 � 5k� � �2k � 6�

�k � 1�2 � 5�k � 1� � k2 � 2k � 1 � 5k � 5

2 is a factor of �k � 1�2 � 5�k � 1�.

Pk�1
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Steps in Applying the Extended
Principle of Mathematical

Induction for , k 
 jPk

1 Show that is true.

2 Assume that is true with , and then prove that is true.Pk�1k 
 jPk

Pj



To prove the last inequality, we first observe the following:

law of exponents

induction hypothesis and 

We next note that

multiply

group terms

factor out a

since

The last two inequalities give us

Thus, is true, and the proof by mathematical induction is complete. L

We have looked at several examples of proving statements by using the
principle of mathematical induction. You may be wondering “Where do these
statements come from?” These statements can often be “discovered” by ob-
serving patterns, combining results from several areas of mathematics, or rec-
ognizing certain types or categories of relationships. Two such statements are
given in Exercises 37 and 38 in this section.

Pk�1

�1 � a�k�1 � 1 � �k � 1�a.

ka2 � 0� 1 � �k � 1�a.

� 1 � �k � 1�a � ka2

� 1 � �ka � a� � ka2

�1 � ka��1 � a� � 1 � ka � a � ka2

1 � a � 0� �1 � ka��1 � a�
�1 � a�k�1 � �1 � a�k�1 � a�1
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Exer. 1–26: Prove that the statement is true for every posi-
tive integer n.

1

2

3

4

5

6

7

8

9

10 13 � 23 � 33 � ��� � n3 � �n�n � 1�
2 �2

12 � 22 � 32 � ��� � n2 �
n�n � 1��2n � 1�

6

��1�1 � ��1�2 � ��1�3 � ��� � ��1�n �
��1�n � 1

2

1 � 2 � 2 � 3 � 22 � ��� � n � 2n�1 � 1 � �n � 1� � 2n

2 � 6 � 18 � ��� � 2 � 3n�1 � 3n � 1

2 � 7 � 12 � ��� � �5n � 3� �
1
2 n�5n � 1�

3 � 9 � 15 � ��� � �6n � 3� � 3n2

1 � 3 � 5 � ��� � �2n � 1� � n2

1 � 4 � 7 � ��� � �3n � 2� �
n�3n � 1�

2

2 � 4 � 6 � ��� � 2n � n�n � 1�

11

12

13

14

15 16

17

18 If , then .

19 3 is a factor of .

20 2 is a factor of . 21 4 is a factor of .

22 9 is a factor of .

23 If a is greater than 1, then .an � 1

10n�1 � 3 � 10n � 5

5n � 1n2 � n

n3 � n � 3

� a

b�n�1

� � a

b�n

0 � a � b

1 � 2 � 3 � ��� � n �
1
8 �2n � 1�2

1 � 2n � 3nn � 2n

13 � 33 � 53 � ��� � �2n � 1�3 � n2�2n2 � 1�

3 � 32 � 33 � ��� � 3n �
3
2 �3n � 1�

1

n�n � 1��n � 2�
�

n�n � 3�
4�n � 1��n � 2�

1

1 � 2 � 3
�

1

2 � 3 � 4
�

1

3 � 4 � 5
� ��� �

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� ��� �

1

n�n � 1�
�

n

n � 1

10.4 E x e r c i s e s



A binomial is a sum , where a and b represent numbers. If n is a posi-
tive integer, then a general formula for expanding (that is, for ex-
pressing it as a sum) is given by the binomial theorem. In this section we shall
use mathematical induction to establish this general formula. The following
special cases can be obtained by multiplication:

These expansions of for , 3, 4, and 5 have the following 
properties.

(1) There are terms, the first being and the last .

(2) As we proceed from any term to the next, the power of a decreases by 1
and the power of b increases by 1. For each term, the sum of the exponents
of a and b is n.

bnann � 1

n � 2�a � b�n

�a � b�5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

�a � b�4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4

�a � b�3 � a3 � 3a2b � 3ab2 � b3

�a � b�2 � a2 � 2ab � b2

�a � b�n

a � b
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10.5
The Binomial Theorem

24 If , then

25 is a factor of .
(Hint: .)

26 is a factor of .

Exer. 27–32: Find the smallest positive integer j for which
the statement is true. Use the extended principle of mathe-
matical induction to prove that the formula is true for every
integer greater than j.

27 28

29 30

31 32

Exer. 33–36: Express the sum in terms of n.

33

(Hint: Use the theorem on sums to write the sum as

Next use Exercise 9 above, Example 5 of Section 10.1, and
the theorem on the sum of a constant.)

34 35 "n
k�1

�2k � 3�2"n
k�1

�3k2 � 2k � 1�

"n
k�1

k2 � 3"n
k�1

k � "n
k�1

5.

"n
k�1

�k2 � 3k � 5�

n log2 n � 20 � n22n � 2 � 2n

n2 � 2n5 � log2 n � n

n2 � 18 � n3n � 12 � n2

a2n�1 � b2n�1a � b

ak�1 � bk�1 � ak�a � b� � �ak � bk�b
an � bna � b

a � ar � ar2 � ��� � arn�1 �
a�1 � rn�

1 � r
.

r � 1
36 (Hint: Use Exercise 10.)

Exer. 37–38: (a) Evaluate the given formula for the stated
values of n, and solve the resulting system of equations for
a, b, c, and d. (This method can sometimes be used to obtain
formulas for sums.) (b) Compare the result in part (a) with
the indicated exercise, and explain why this method does
not prove that the formula is true for every n.

37 ;
(Exercise 9)

38 ;
(Exercise 10)

Exer. 39–42: Prove that the statement is true for every posi-
tive integer n.

39

40

41 Prove De Moivre’s theorem:

for every positive integer n.

42 Prove that for every positive integer , the sum of the
interior angles of an n-sided polygon is given by the ex-
pression .�n � 2� � 180°

n 
 3

�r�cos 	 � i sin 	�	n � rn�cos n	 � i sin n	�

cos �	 � n�� � ��1�n cos 	

sin �	 � n�� � ��1�n sin 	

n � 1, 2, 3, 4
13 � 23 � 33 � ��� � n3 � an4 � bn3 � cn2 � dn

n � 1, 2, 3
12 � 22 � 32 � ��� � n2 � an3 � bn2 � cn

"n
k�1

�k3 � 2k2 � k � 4�
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(3) Each term has the form , where the coefficient c is an integer and

(4) The following formula is true for each of the first n terms of the expansion:

The following table illustrates property 4 for the expansion of .

Let us next consider for an arbitrary positive integer n. The first
term is , which has coefficient 1. If we assume that property 4 is true, we ob-
tain the successive coefficients listed in the next table.

The pattern that appears in the fifth column leads to the following formula
for the coefficient of the general term.

an

�a � b�n

�a � b�5

�coefficient of term� � �exponent of a�
number of term

� coefficient of next term

k � 0, 1, 2, . . . , n.
�c�an�kbk

Number Coefficient Exponent Coefficient of
Term of term of term of a next term

1 1 5

2 5 4

3 10 3

4 10 2

5 5 1  
5 � 1

5
� 15ab4

10 � 2

4
� 510a2b3

10 � 3

3
� 1010a3b2

5 � 4

2
� 105a4b

1 � 5

1
� 5a5

Number Coefficient Exponent Coefficient of
Term of term of term of a next term

1 1 n

2

3

4
n�n � 1��n � 2��n � 3�

4 � 3 � 2 � 1
n � 3

n�n � 1��n � 2�
3 � 2 � 1

n�n � 1��n � 2�
3 � 2 � 1

an�3b3

n�n � 1��n � 2�
3 � 2 � 1

n � 2
n�n � 1�

2 � 1

n�n � 1�
2 � 1

an�2b2

n�n � 1�
2 � 1

n � 1
n

1

n

1
an�1b

1 � n

1
� nan

Coefficient of the 
st Term in the

Expansion of (a � b)n
(k � 1) k � 1, 2, . . . , n

n � �n � 1� � �n � 2� � �n � 3� � � � � � �n � k � 1�
k � �k � 1� � � � � � 3 � 2 � 1

,



The st coefficient can be written in a compact form by using fac-
torial notation. If n is any nonnegative integer, then the symbol (n facto-
rial) is defined as follows.

Thus, if , then n! is the product of the first n positive integers. The
definition is used so that certain formulas involving factorials are true
for all nonnegative integers.

n Factorial

Notice the rapid growth of n! as n increases.

We sometimes wish to simplify quotients where both the numerator and
the denominator contain factorials, as shown in the next illustration.

Simplifying Quotients of Factorials

As in the preceding illustration, if n and k are positive integers and
, then

which is the numerator of the coefficient of the term of . Di-
viding by the denominator k! gives us the following alternative form for the

coefficient:

These numbers are called binomial coefficients and are often denoted by

either the symbol or the symbol . Thus, we have the following.C�n, k��n

k�

n � �n � 1� � �n � 2� � � � � � �n � k � 1�
k!

�
n!

k! �n � k�!

�k � 1�st

�a � b�n�k � 1�st

� n � �n � 1� � �n � 2� � � � � � �n � k � 1�,

n!

�n � k�!
�

n � �n � 1� � �n � 2� � � � � � �n � k � 1� � ��n � k�!	
�n � k�!

k � n

10!

6!
�

10 � 9 � 8 � 7 � 6!

6!
� 10 � 9 � 8 � 7 � 5040

7!

5!
�

7 � 6 � 5!

5!
� 7 � 6 � 42

8! � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 � 40,3204! � 4 � 3 � 2 � 1 � 24

7! � 7 � 6 � 5 � 4 � 3 � 2 � 1 � 50403! � 3 � 2 � 1 � 6

6! � 6 � 5 � 4 � 3 � 2 � 1 � 7202! � 2 � 1 � 2

5! � 5 � 4 � 3 � 2 � 1 � 1201! � 1

0! � 1
n � 0

n!
�k � 1�

688 C H A P T E R  1 0  S E Q U E N C E S ,  S E R I E S ,  A N D  P R O B A B I L I T Y

I L L U S T R A T I O N

I L L U S T R A T I O N

Definition of n! (1) if

(2) 0! � 1

n � 0n! � n�n � 1��n � 2� � � � � � 1
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The symbols and are sometimes read “n choose k.”

E X A M P L E  1 Evaluating 

Find and .

S O L U T I O N These six numbers are the coefficients in the expansion of
, which we tabulated earlier in this section. By definition,

L

E X A M P L E  2 Simplifying a quotient of factorials

Rewrite as an expression that does not contain factorials.

S O L U T I O N By the definition of n!, we can write as

Thus,

definition of n!

cancel L�3n�! � 0� �3n � 3��3n � 2��3n � 1�.

�3n � 3�!
�3n�!

�
�3n � 3��3n � 2��3n � 1��3n�!

�3n�!

�3n�!

�3n � 3��3n � 2��3n � 1��3n��3n � 1��3n � 2� � � � �3��2��1�.

�3n � 3�!

�3n � 3�!��3n�!

�5

5� �
5!

5! �5 � 5�!
�

5!

5! 0!
�

5!

5! � 1
� 1.

�5

4� �
5!

4! �5 � 4�!
�

5!

4! 1!
�

5!

4! � 1
�

5 � 4!

4!
� 5

�5

3� �
5!

3! �5 � 3�!
�

5!

3! 2!
�

5 � 4 � 3!

3! � 2
�

20

2
� 10

�5

2� �
5!

2! �5 � 2�!
�

5!

2! 3!
�

5 � 4 � 3!

2 � 3!
�

20

2
� 10

�5

1� �
5!

1! �5 � 1�!
�

5!

1! 4!
�

5!

1 � 4!
�

5 � 4!

4!
� 5

�5

0� �
5!

0! �5 � 0�!
�

5!

0! 5!
�

5!

1 � 5!
� 1

�a � b�5

�5

5��5

0�, �5

1�, �5

2�, �5

3�, �5

4�,

�n
k�

C�n, k��n

k�

Coefficient of the st
Term in the Expansion of

(Alternative Form)(a � b)n

(k � 1) �n

k� � C�n, k� �
n!

k! �n � k�!
, k � 0, 1, 2, . . . , n

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩



The binomial theorem may be stated as follows.

Using summation notation, we may write the binomial theorem

Note that there are terms (not n terms) in the expansion of ,
and so

is a formula for the term of the expansion.

An alternative statement of the binomial theorem is as follows. (A proof
is given at the end of this section.)

The following examples may be solved either by using the general for-
mulas for the binomial theorem or by repeated use of property 4, stated at the
beginning of this section.

E X A M P L E  3 Finding a binomial expansion

Find the binomial expansion of .

S O L U T I O N We use the binomial theorem with , , and :

Examining the terms of the expansion from left to right, we see that the 
exponents on x decrease by 1 and that the exponents on y increase by 2. It 
is a good idea to check for exponent patterns after simplifying a binomial 
expansion. L

n � 4b � 3y2a � 2x

�2x � 3y2�4

�k � 1�st�n

k�an�kbk

�a � b�nn � 1

�a � b�n � "n
k�0
�n

k�an�kbk.
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The Binomial Theorem
(Alternative Form)

n�n � 1��n � 2� � � � �n � k � 1�
k!

an�kbk � � � � � nabn�1 � bn�a � b�n � an � nan�1b �
n�n � 1�

2!
an�2b2 � � � � �

The Binomial Theorem

�n

k�an�kbk � � � � � � n

n � 1�abn�1 � bn�a � b�n � an � �n

1�an�1b � �n

2�an�2b2 � � � � �

� 16x4 � 96x3y2 � 216x2y4 � 216xy6 � 81y8

� 16x4 � 4�8x3��3y2� � 6�4x2��9y4� � 4�2x��27y6� � 81y8

�2x � 3y2�4 � �2x�4 � �4

1��2x�3�3y2�1 � �4

2��2x�2�3y2�2 � �4

3��2x�1�3y2�3 � �3y2�4
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The next example illustrates that if either a or b is negative, then the terms
of the expansion are alternately positive and negative.

E X A M P L E  4 Finding a binomial expansion

Expand

S O L U T I O N The binomial coefficients for were calculated in 
Example 1. Thus, if we let , , and in the binomial
theorem, we obtain

which can be written as

L

To find a specific term in the expansion of , it is convenient to
first find the exponent k that is to be assigned to b. Notice that, by the bino-
mial theorem, the exponent of b is always one less than the number of the term.
Once k is found, we know that the exponent of a is and the coefficient

is .

E X A M P L E  5 Finding a specific term of a binomial expansion

Find the fifth term in the expansion of .

S O L U T I O N Let and . The exponent of b in the fifth term is
, and hence the exponent of a is . From

the discussion of the preceding paragraph we obtain

L

E X A M P L E  6 Finding a specific term of a binomial expansion

Find the term involving in the binomial expansion of .

S O L U T I O N From the statement of the binomial theorem with ,
, and , each term in the expansion has the form

�n

k�an�kbk � �12

k �� 1

3
p�12�k

�q2�k.

n � 12b � q2

a �
1
3 p

�1
3 p � q2�12q10

�13

4 ��x3�9�2y �4
�

13!

4! �13 � 4�!
x27y2 �

13 � 12 � 11 � 10

4!
x27y2 � 715x27y2.

n � k � 13 � 4 � 9k � 5 � 1 � 4
b � 2ya � x3

�x3 � 2y �13

�n

k�
n � k

�a � b�n

� 1

x
� 22x�5

�
1

x5
�

10

x7/2
�

40

x2
�

80

x1/2
� 80x � 32x5/2.

� 10� 1

x �2

��22x �3 � 5� 1

x �1

��22x �4 � ��22x �5,

� 1

x
� 22x�5

� � 1

x �5

� 5� 1

x �4

��22x �1
� 10� 1

x �3

��22x �2

n � 5b � �22xa � 1�x
�a � b�5

� 1

x
� 22x�5

.

�k � 1�st term � �n

k�an�kbk

(continued)



Since , we must let to obtain the term involving . Doing so
gives us

L

There is an interesting triangular array of numbers, called Pascal’s tri-
angle, that can be used to obtain binomial coefficients. The numbers are
arranged as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
. . . . . . . .

. . . . . . . . .

The numbers in the second row are the coefficients in the expansion of
; those in the third row are the coefficients determined by ;

those in the fourth row are obtained from ; and so on. Each number in
the array that is different from 1 can be found by adding the two numbers in
the previous row that appear above and immediately to the left and right of the
number, as illustrated in the solution of the next example.

E X A M P L E  7 Using Pascal’s triangle

Find the eighth row of Pascal’s triangle, and use it to expand .

S O L U T I O N Let us rewrite the seventh row and then use the process de-
scribed above. In the following display the arrows indicate which two numbers
in row seven are added to obtain the numbers in row eight.

1

1

7

6

21

15

35

20

35

15

21

6

7

1

1

The eighth row gives us the coefficients in the expansion of :

L

Pascal’s triangle is useful for expanding small powers of ; however,
for expanding large powers or finding a specific term, as in Examples 5 and 6,
the general formula given by the binomial theorem is more useful.

We shall conclude this section by giving a proof of the binomial theorem
using mathematical induction.

a � b

�a � b�7 � a7 � 7a6b � 21a5b2 � 35a4b3 � 35a3b4 � 21a2b5 � 7ab6 � b7

�a � b�7

�a � b�7

�a � b�3

�a � b�2�a � b�1

�12

5 �� 1

3
p�12�5

�q2�5 �
12!

5! �12 � 5�!� 1

3�7

p7q10 �
88

243
p7q10.

q10k � 5�q2�k � q2k
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P R O O F  O F  T H E  B I N O M I A L  T H E O R E M For each positive integer n, let 
denote the statement given in the alternative form of the binomial theorem.

Step 1 If , the statement reduces to . Consequently,
is true.

Step 2 Assume that is true. Thus, the induction hypothesis is

We have shown both the r th term and the term in the above 
expansion.

To prove that is true, we first write

Using the induction hypothesis to substitute for and then multiplying
that expression by , we obtain

where the terms in the first pair of brackets result from multiplying the right-
hand side of the induction hypothesis by a and the terms in the second pair of
brackets result from multiplying by b. We next rearrange and combine terms:

If the coefficients are simplified, we obtain statement with substituted
for n. Thus, is true, and therefore holds for every positive integer n,
which completes the proof. L

PnPk�1

k � 1Pn

a � b
�a � b�k

�a � b�k�1 � �a � b�k�a � b�.

Pk�1

�r � 1�st

Pk

P1

�a � b�1 � a1 � b1n � 1

Pn

�
k�k � 1��k � 2� � � � �k � r � 1�

r!
ak�rbr � � � � � kabk�1 � bk.

�a � b�k � ak � kak�1b �
k�k � 1�

2!
ak�2b2 � � � � �

k�k � 1��k � 2� � � � �k � r � 2�
�r � 1�!

ak�r�1br�1

� �akb � kak�1b2 � � � � �
k�k � 1� � � � �k � r � 2�

�r � 1�!
ak�r�1br � � � � � kabk � bk�1�,

�a � b�k�1 � �ak�1 � kakb �
k�k � 1�

2!
ak�1b2 � � � � �

k�k � 1� � � � �k � r � 1�
r!

ak�r�1br � � � � � abk�

� � � � � �1 � k�abk � bk�1

� �k�k � 1� � � � �k � r � 1�
r!

�
k�k � 1� � � � �k � r � 2�

�r � 1�! �ak�r�1br

�a � b�k�1 � ak�1 � �k � 1�akb � �k�k � 1�
2!

� k�ak�1b2 � � � �



Exer. 1–12: Evaluate the expression.

1 2

3 4

5 6

7 8

9 10

11 12

Exer. 13–16: Rewrite as an expression that does not contain
factorials.

13 14

15 16

Exer. 17–30: Use the binomial theorem to expand and 
simplify.

17 18

19 20

21 22

23 24

25 26

27 28

29 30 �2x �
1

2x
�5�2x �

1

2x
�5

� 1

x3
� 2x�5� 1

x2
� 3x�6

�1
2x � y3�4�1

3 x � y2�5

�2t � s�5�3t � 5s�4

�x � y�5�x � y�7

�x � y�4�x � y�6

�x 2 � 2y�3�4x � y�3

�3n � 1�!
�3n � 1�!

�2n � 2�!
�2n�!

�n � 1�!
�n � 1�!

n!

�n � 2�!

�52

2 ��13

4 �
�8

4��7

5�
�7

0��5

5�
6!

3!

8!

5!

5! 0!7! 0!

3! 4!2! 6!

Exer. 31–46: Without expanding completely, find the indi-
cated term(s) in the expansion of the expression.

31 ; first three terms

32 ; first three terms

33 ; last three terms

34 ; last three terms

35 ; sixth term

36 ; fifth term

37 ; seventh term

38 ; fourth term

39 ; middle term

40 ; two middle terms

41 ; term that contains 

42 ; term that contains 

43 ; term that contains 

44 ; term that contains 

45 ; term that does not contain x

46 ; term that does not contain y

47 Approximate by using the first three terms in the ex-
pansion of , and compare your answer with that
obtained using a calculator.

48 Approximate by using the first three terms in the ex-
pansion of , and compare your answer with that
obtained using a calculator.

�1 � 0.1�4

�0.9�4

�1 � 0.2�10

�1.2�10

�xy � 3y�3�8

�3x �
1

4x�6

c2�2c � 2d �8

y9�3y3 � 2x2�4

y6�x2 � 2y3�5

x10�2y � x2�8

�rs2 � t�7

�x1/2 � y1/2�8

�3x2 � y3�10

�1
3 u � 4v�8

�3x2 � 2y �9

� 3

c
�

c2

4�7

�s � 2t3�12

�4z�1 � 3z�15

�x3 � 5x�2�20

�3c2/5 � c4/5�25
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Exer. 49–50: Simplify the expression using the binomial
theorem.

49

50
�x � h�5 � x5

h

�x � h�4 � x4

h

51 Show that for .

52 Show that for .n 
 0�n

0� � �n

n�
n 
 1�n

1� � � n

n � 1�

Suppose that four teams are involved in a tournament in which first, second,
third, and fourth places will be determined. For identification purposes, we
label the teams A, B, C, and D. Let us find the number of different ways that
first and second place can be decided. It is convenient to use a tree diagram,
as in Figure 1. After the word START, the four possibilities for first place are
listed. From each of these an arrow points to a possible second-place finisher.
The final standings list the possible outcomes, from left to right. They are
found by following the different paths (branches of the tree) that lead from the
word START to the second-place team. The total number of outcomes is 12,
which is the product of the number of choices (4) for first place and the num-
ber of choices (3) for second place (after first has been determined).

Let us now find the total number of ways that first, second, third, and
fourth positions can be filled. To sketch a tree diagram, we may begin by draw-
ing arrows from the word START to each possible first-place finisher A, B, C,
or D. Next we draw arrows from those to possible second-place finishers, as
was done in Figure 1. From each second-place position we then draw arrows
indicating the possible third-place positions. Finally, we draw arrows to the
fourth-place team. If we consider only the case in which team A finishes in 
first place, we have the diagram shown in Figure 2.

Figure 2

A

A

A

A

A

A

B

B

C

C

D

D

C

D

B

D

B

C

D

C

D

B

C

B

D

C

D

B

C

B

C

D

B

D

B

C

B

C

D

ASTART

First
place

Second
place

Third
place

Fourth
place

Final
standings

10.6
Permutations

Figure 1

B

C

D

A

C

D

A

B

D

A

B

C

A

B

C

D

First
place

Second
place

A

A

A

B

B

B

C

C

C

D

D

D

Final
standings

B

C

D

A

C

D

A

B

D

A

B

C

START



Note that there are six possible final standings in which team A occupies
first place. In a complete tree diagram there would also be three other branches
of this type corresponding to first-place finishes for B, C, and D. A complete
diagram would display the following 24 possibilities for the final standings:

A first ABCD, ABDC, ACBD, ACDB, ADBC, ADCB,

B first BACD, BADC, BCAD, BCDA, BDAC, BDCA,

C first CABD, CADB, CBAD, CBDA, CDAB, CDBA,

D first DABC, DACB, DBAC, DBCA, DCAB, DCBA.

Note that the number of possibilities (24) is the product of the number of ways
(4) that first place may occur, the number of ways (3) that second place may
occur (after first place has been determined), the number of possible outcomes
(2) for third place (after the first two places have been decided), and the num-
ber of ways (1) that fourth place can occur (after the first three places have
been taken).

The preceding discussion illustrates the following general rule, which we
accept as a basic axiom of counting.

Returning to our first illustration, we let represent the determination of
the first-place team, so that . If denotes the determination of the 
second-place team, then . Hence, the number of outcomes for the se-
quence is , which is the same as that found by means of the
tree diagram. If we proceed to , the determination of the third-place team,
then , and hence . Finally, if , and have occurred,
there is only one possible outcome for . Thus, , and .

Instead of teams, let us now regard a, b, c, and d merely as symbols and
consider the various orderings, or arrangements, that may be assigned to these
symbols, taking them either two at a time, three at a time, or four at a time. By
abstracting in this way we may apply our methods to other similar situations.
The arrangements we have discussed are arrangements without repetitions,
since a symbol may not be used more than once in an arrangement. In Ex-
ample 1 we shall consider arrangements in which repetitions are allowed.

Previously we defined ordered pairs and ordered triples. Similarly, an or-
dered 4-tuple is a set containing four elements in which an order-
ing has been specified, so that one of the elements may be referred to as the
first element, another as the second element, and so on. The symbol

is used for the ordered 4-tuple having first element , second x1�x1, x2, x3, x4�

x1, x2, x3, x4

m1m2m3m4 � 24m4 � 1E4

E3E1, E2m1m2m3 � 24m3 � 2
E3

4 � 3 � 12E1, E2

m2 � 3
E2m1 � 4

E1
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Fundamental 
Counting Principle

Let be a sequence of k events. If, for each i, the event can
occur in ways, then the total number of ways all the events may take
place is the product .m1m2 � � � mk

mi

EiE1, E2, . . . , Ek
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element , third element , and fourth element . In general, for any positive
integer r, we speak of the ordered r-tuple

as a set of r elements in which is designated as the first element, as the
second element, and so on.

E X A M P L E  1 Determining the number of r-tuples

Using only the letters a, b, c, and d, determine how many of the following can
be obtained:

(a) ordered triples (b) ordered 4-tuples (c) ordered r-tuples

S O L U T I O N

(a) We must determine the number of symbols of the form that can
be obtained using only the letters a, b, c, and d. This is not the same as listing
first, second, and third place as in our previous illustration, since we have not
ruled out the possibility of repetitions. For example, , , and

are different ordered triples. If, for , we let represent the
determination of in the ordered triple , then, since repetitions are
allowed, there are four possibilities—a, b, c, and d—for each of and

. Hence, by the fundamental counting principle, the total number of ordered
triples is , or 64.

(b) The number of possible ordered 4-tuples of the form is
, or 256.

(c) The number of ordered r-tuples is the product , with 4
appearing as a factor r times. That product equals .

E X A M P L E  2 Choosing class officers

A class consists of 60 girls and 40 boys. In how many ways can a president,
vice-president, treasurer, and secretary be chosen if the treasurer must be a girl,
the secretary must be a boy, and a student may not hold more than one office?

S O L U T I O N If an event is specialized in some way (for example, the treas-
urer must be a girl), then that event should be considered before any nonspe-
cialized events. Thus, we let represent the choice of treasurer and the
choice of secretary. Next we let and denote the choices for president and
vice-president, respectively. As in the fundamental counting principle, we let

denote the number of different ways can occur for , 2, 3, and 4. It
follows that , , , and . By
the fundamental counting principle, the total number of possibilities is

L

When working with sets, we are usually not concerned about the order or
arrangement of the elements. In the remainder of this section, however, the
arrangement of the elements will be our main concern.

m1 m2 m3 m4 � 60 � 40 � 98 � 97 � 22,814,400.

m4 � 97m3 � 60 � 40 � 2 � 98m2 � 40m1 � 60
i � 1Eimi

E4E3

E2E1

4r

4 � 4 � 4 � � � � � 4

4 � 4 � 4 � 4
�x1, x2, x3, x4�

4 � 4 � 4
E3

E1, E2,
�x1, x2, x3�xi

Eii � 1, 2, 3�a, a, a�
�a, a, b��a, b, a�

�x1, x2, x3�

x2x1

�x1, x2, . . . , xr�

x4x3x2

L



We also use the phrase permutation of n elements taken r at a time. The
symbol will denote the number of different permutations of r elements
that can be obtained from a set of n elements. As a special case, de-
notes the number of arrangements of n elements of S—that is, the number of
ways of arranging all the elements of S.

In our first discussion involving the four teams A, B, C, and D, we had
, since there are 12 different ways of arranging the four teams in

groups of two. We also showed that the number of ways to arrange all the
elements A, B, C, and D is 24. In permutation notation we would write this
result as .

The next theorem gives us a general formula for .

P R O O F The problem of determining is equivalent to determining the
number of different r-tuples such that each is an element of S
and no element of S appears twice in the same r-tuple. We may find this num-
ber by means of the fundamental counting principle. For each ,
let represent the determination of the element and let be the number of
different ways of choosing . We wish to apply the sequence .
We have n possible choices for , and consequently . Since repetitions
are not allowed, we have choices for , so . Continuing in
this manner, we successively obtain , , and ultimately

or, equivalently, . Hence, using the funda-
mental counting principle, we obtain the formula for .

Note that the formula for in the previous theorem contains exactly
r factors on the right-hand side, as shown in the following illustration.

Number of Different Permutations

E X A M P L E  3 Evaluating 

Find , , and .P�5, 5�P�6, 4�P�5, 2�

P�n, r�

P�n, 4� � n�n � 1��n � 2��n � 3�P�n, 2� � n�n � 1�

P�n, 3� � n�n � 1��n � 2�P�n, 1� � n

P�n, r�

P�n, r�
mr � n � r � 1mr � n � �r � 1�

m4 � n � 3m3 � n � 2
m2 � n � 1x2n � 1

m1 � nx1

E1, E2, . . . , Erxi

mixiEi

i � 1, 2, . . . , r

xi�x1, x2, . . . , xr�
P�n, r�

P�n, r�
P�4, 4� � 24

P�4, 2� � 12

P�n, n�
P�n, r�
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Definition of Permutation Let S be a set of n elements and let . A permutation of r ele-
ments of S is an arrangement, without repetitions, of r elements.

1 � r � n

Theorem on the Number 
of Different Permutations

Let S be a set of n elements and let . The number of different
permutations of r elements of S is

P�n, r� � n�n � 1��n � 2� � � � �n � r � 1�.

1 � r � n

I L L U S T R A T I O N

L
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S O L U T I O N We will use the formula for in the preceding theorem. In
each case, we first calculate the value of .

L

E X A M P L E  4 Arranging the batting order for a baseball team

A baseball team consists of nine players. Find the number of ways of arrang-
ing the first four positions in the batting order if the pitcher is excluded.

S O L U T I O N We wish to find the number of permutations of 8 objects taken
4 at a time. Using the formula for with and , we have

, and it follows that

L

The next result gives us a form for that involves the factorial 
symbol.

P R O O F If we let in the formula for in the theorem on permu-
tations, we obtain the number of different arrangements of all the elements of
a set consisting of n elements. In this case,

and

Consequently, is the product of the first n positive integers. This result
is also given by the factorial form, for if , then

If , then

This agrees with the formula for in the theorem on permutations. LP�n, r�

� n�n � 1��n � 2� � � � �n � r � 1�.

n!

�n � r�!
�

n�n � 1��n � 2� � � � �n � r � 1� � ��n � r�!	
�n � r�!

1 � r � n

P�n, n� �
n!

�n � n�!
�

n!

0!
�

n!

1
� n!.

r � n
P�n, n�

P�n, n� � n�n � 1��n � 2� � � � 3 � 2 � 1 � n!.

n � r � 1 � n � n � 1 � 1

P�n, r�r � n

P�n, r�

P�8, 4� � 8 � 7 � 6 � 5 � 1680.

n � r � 1 � 5
r � 4n � 8P�n, r�

5 � 5 � 1 �  1 , so P�5, 5� � 5 � 4 � 3 � 2 �  1 � 120

6 � 4 � 1 �  3 , so P�6, 4� � 6 � 5 � 4 �  3 � 360

5 � 2 � 1 �  4 , so P�5, 2� � 5 �  4 � 20

�n � r � 1�
P�n, r�

Factorial Form for P�n, r� If n is a positive integer and , then

P�n, r� �
n!

�n � r�!
.

1 � r � n



E X A M P L E  5 Evaluating using factorials

Use the factorial form for to find , , and .

S O L U T I O N

L
P�5, 5� �

5!

�5 � 5�!
�

5!

0!
�

5!

1
� 5 � 4 � 3 � 2 � 1 � 120

P�6, 4� �
6!

�6 � 4�!
�

6!

2!
�

6 � 5 � 4 � 3 � 2!

2!
� 6 � 5 � 4 � 3 � 360

P�5, 2� �
5!

�5 � 2�!
�

5!

3!
�

5 � 4 � 3!

3!
� 5 � 4 � 20

P�5, 5�P�6, 4�P�5, 2�P�n, r�

P�n, r�
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Exer. 1–8: Find the number.

1 2

3 4

5 6

7 8

Exer. 9–12: Simplify the permutation.

9 10

11 12

13 How many three-digit numbers can be formed from the dig-
its 1, 2, 3, 4, and 5 if repetitions

(a) are not allowed? (b) are allowed?

14 Work Exercise 13 for four-digit numbers.

15 How many numbers can be formed from the digits 1, 2, 3,
and 4 if repetitions are not allowed? (Note: 42 and 231 are
examples of such numbers.)

16 Determine the number of positive integers less than 10,000
that can be formed from the digits 1, 2, 3, and 4 if repeti-
tions are allowed.

17 Basketball standings If eight basketball teams are in a tour-
nament, find the number of different ways that first, second,
and third place can be decided, assuming ties are not 
allowed.

P�n, 2�P�n, n � 1�

P�n, 1�P�n, 0�

P�5, 1�P�6, 1�

P�4, 4�P�5, 5�

P�5, 3�P�9, 6�

P�8, 5�P�7, 3�

18 Basketball standings Work Exercise 17 for 12 teams.

19 Wardrobe mix ’n’ match A girl has four skirts and six
blouses. How many different skirt-blouse combinations can
she wear?

20 Wardrobe mix ’n’ match Refer to Exercise 19. If the girl
also has three sweaters, how many different skirt-blouse-
sweater combinations can she wear?

21 License plate numbers In a certain state, automobile li-
cense plates start with one letter of the alphabet, followed
by five digits . Find how many different li-
cense plates are possible if

(a) the first digit following the letter cannot be 0

(b) the first letter cannot be O or I and the first digit cannot
be 0

22 Tossing dice Two dice are tossed, one after the other. In
how many different ways can they fall? List the number of
different ways the sum of the dots can equal

(a) 3 (b) 5 (c) 7 (d) 9 (e) 11

23 Seating arrangement A row of six seats in a classroom 
is to be filled by selecting individuals from a group of ten
students.

(a) In how many different ways can the seats be occupied?

(b) If there are six boys and four girls in the group and if
boys and girls are to be alternated, find the number of
different seating arrangements.

�0, 1, 2, . . . , 9�

10.6 E x e r c i s e s
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24 Scheduling courses A student in a certain college may take
mathematics at 8, 10, 11, or 2 o’clock; English at 9, 10, 1,
or 2; and history at 8, 11, 2, or 3. Find the number of dif-
ferent ways in which the student can schedule the three
courses.

25 True-or-false test In how many different ways can a test
consisting of ten true-or-false questions be completed?

26 Multiple-choice test A test consists of six multiple-choice
questions, and there are five choices for each question. In
how many different ways can the test be completed?

27 Seating arrangement In how many different ways can
eight people be seated in a row?

28 Book arrangement In how many different ways can ten
books be arranged on a shelf?

29 Semaphore With six different flags, how many different
signals can be sent by placing three flags, one above the
other, on a flag pole?

30 Selecting books In how many different ways can five books
be selected from a twelve-volume set of books?

31 Radio call letters How many four-letter radio station call
letters can be formed if the first letter must be K or W and
repetitions

(a) are not allowed? (b) are allowed?

32 Fraternity designations There are 24 letters in the Greek
alphabet. How many fraternities may be specified by choos-
ing three Greek letters if repetitions

(a) are not allowed? (b) are allowed?

33 Phone numbers How many ten-digit phone numbers can be
formed from the digits if the first digit may
not be 0?

34 Baseball batting order After selecting nine players for a
baseball game, the manager of the team arranges the batting
order so that the pitcher bats last and the best hitter bats
third. In how many different ways can the remainder of the
batting order be arranged?

35 ATM access code A customer remembers that 2, 4, 7, and 9
are the digits of a four-digit access code for an automatic
bank-teller machine. Unfortunately, the customer has for-
gotten the order of the digits. Find the largest possible num-
ber of trials necessary to obtain the correct code.

36 ATM access code Work Exercise 35 if the digits are 2, 4, and
7 and one of these digits is repeated in the four-digit code.

0, 1, 2, 3, . . . , 9

37 Selecting theater seats Three married couples have pur-
chased tickets for a play. Spouses are to be seated next to
each other, and the six seats are in a row. In how many ways
can the six people be seated?

38 Horserace results Ten horses are entered in a race. If the
possibility of a tie for any place is ignored, in how many
ways can the first-, second-, and third-place winners be 
determined?

39 Lunch possibilities Owners of a restaurant advertise that
they offer 1,114,095 different lunches based on the fact that
they have 16 “free fixins” to go along with any of their 17
menu items (sandwiches, hot dogs, and salads). How did
they arrive at that number?

40 Shuffling cards

(a) In how many ways can a standard deck of 52 cards be
shuffled?

(b) In how many ways can the cards be shuffled so that the
four aces appear on the top of the deck?

41 Numerical palindromes A palindrome is an integer, such as
45654, that reads the same backward and forward.

(a) How many five-digit palindromes are there?

(b) How many n-digit palindromes are there?

42 Color arrangements Each of the six squares shown in the
figure is to be filled with any one of ten possible colors.
How many ways are there of coloring the strip shown in the
figure so that no two adjacent squares have the same color?

Exercise 42

43 The graph of

has a horizontal asymptote of . Use this fact to find
an approximation for if n is a large positive integer.

44 (a) What happens if a calculator is used to find ?
Explain.

(b) Approximate r if by using the fol-
lowing formula from advanced mathematics:

log n! 

n ln n � n

ln 10

P�150, 50� � 10r

P�150, 50�

n!
y � 1

y �
x! ex

xx22�x
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Certain problems involve finding different arrangements of objects, some of
which are indistinguishable. For example, suppose we are given five disks of
the same size, of which three are black, one is white, and one is red. Let us find
the number of ways they can be arranged in a row so that different color
arrangements are obtained. If the disks were all different colors, then the num-
ber of arrangements would be 5!, or 120. However, since some of the disks
have the same appearance, we cannot obtain 120 different arrangements. To
clarify this point, let us write

B B B W R

for the arrangement having black disks in the first three positions in the row,
the white disk in the fourth position, and the red disk in the fifth position. The
first three disks can be arranged in 3!, or 6, different ways, but these arrange-
ments cannot be distinguished from one another because the first three disks
look alike. We say that those 3! permutations are nondistinguishable. Simi-
larly, given any other arrangement, say

B R B W B,

there are 3! different ways of arranging the three black disks, but again each
such arrangement is nondistinguishable from the others. Let us call two
arrangements of objects distinguishable permutations if one arrangement
cannot be obtained from the other by rearranging like objects. Thus,
B B B W R and B R B W B are distinguishable permutations of the five disks.
Let k denote the number of distinguishable permutations. Since to each such
arrangement there correspond 3! nondistinguishable permutations, we must
have , the number of permutations of five different objects. Hence,

. By the same type of reasoning we can obtain the fol-
lowing extension of this discussion.

We can generalize this theorem to the case in which there are several sub-
collections of nondistinguishable objects. For example, consider eight disks,
of which four are black, three are white, and one is red. In this case, with each
arrangement, such as

B W B W B W B R,

there are 4! arrangements of the black disks and 3! arrangements of the white
disks that have no effect on the color arrangement. Hence, 4! 3! possible
arrangements of the disks will not produce distinguishable permutations. If we
let k denote the number of distinguishable permutations, then ,4! 3!k � 8!

k � 5!�3! � 5 � 4 � 20
3! k � 5!

10.7
Distinguishable

Permutations and
Combinations

First Theorem on
Distinguishable Permutations

If r objects in a collection of n objects are alike and if the remaining ob-
jects are different from each other and from the r objects, then the number
of distinguishable permutations of the n objects is

n!

r!
.
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since 8! is the number of permutations we would obtain if the disks were all
different. Thus, the number of distinguishable permutations is

The following general result can be proved.

E X A M P L E  1 Finding a number of distinguishable permutations

Find the number of distinguishable permutations of the letters in the word 
Mississippi.

S O L U T I O N In this example we are given a collection of eleven objects in
which four are of one kind (the letter s), four are of another kind , two are
of a third kind , and one is of a fourth kind . Hence, by the preceding
theorem, we have and the number of distinguishable
permutations is

L

When we work with permutations, our concern is with the orderings or
arrangements of elements. Let us now ignore the order or arrangement of ele-
ments and consider the following question: Given a set containing n distinct
elements, in how many ways can a subset of r elements be chosen with ?
Before answering, let us state a definition.

If S contains n elements, we also use the phrase combination of n ele-
ments taken r at a time. The symbol will denote the number of com-
binations of r elements that can be obtained from a set of n elements.

C�n, r�

r � n

11!

4! 4! 2! 1!
� 34,650.

11 � 4 � 4 � 2 � 1
�M�� p�

�i�

k �
8!

4! 3!
�

8 � 7 � 6 � 5

3!
�

4!

4!
� 280.

Second Theorem on
Distinguishable Permutations

If, in a collection of n objects, are alike of one kind, are alike of an-
other kind, . . . , are alike of a further kind, and

then the number of distinguishable permutations of the n objects is

n!

n1!n2! � � � nk!
.

n � n1 � n2 � � � � � nk,

nk

n2n1

Definition of Combination Let S be a set of n elements and let . A combination of r ele-
ments of S is a subset of S that contains r distinct elements.

1 � r � n



P R O O F If S contains n elements, then, to find , we must find the total
number of subsets of the form

such that the are different elements of S. Since the r elements
can be arranged in different ways, each such subset produces different 
r-tuples. Thus, the total number of different r-tuples is . However, in
the previous section we found that the total number of r-tuples is

Hence,

Dividing both sides of the last equation by gives us the formula for .
L

From the proof, note that

which means that there are more permutations than combinations when we
choose a subset of r elements from a set of n elements. To remember this re-
lationship, consider a presidency, say Bush-Quayle. There is only one group or
combination of these two people, but when a president–vice-president order-
ing is associated with these two people, there are two permutations, and Bush-
Quayle is clearly different from Quayle-Bush.

As you read the examples and work the exercises, keep the following in
mind.

If the order of selection is important, use a permutation.

If the order of selection is not important, use a combination.

E X A M P L E  2 Choosing a baseball squad

A little league baseball squad has six outfielders, seven infielders, five pitchers,
and two catchers. Each outfielder can play any of the three outfield positions,
and each infielder can play any of the four infield positions. In how many ways
can a team of nine players be chosen?

P�n, r� � r! C�n, r�,

C�n, r�r!

r! C�n, r� �
n!

�n � r�!
.

P�n, r� �
n!

�n � r�!
.

r! C�n, r�
r!r!

x1, x2, . . . , xrxi

�x1, x2, . . . , xr


C�n, r�
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Theorem on the 
Number of Combinations

The number of combinations of r elements that can be obtained from a set
of n elements is

C�n, r� �
n!

�n � r�! r!
, 1 � r � n.

The formula for is identical to
the formula for the binomial coeffi-

cient in Section 10.5.�n

r�
C�n, r�
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S O L U T I O N The number of ways of choosing three outfielders from the six
candidates is

The number of ways of choosing the four infielders is

There are five ways of choosing a pitcher and two choices for the catcher. It
follows from the fundamental counting principle that the total number of ways
to choose a team is

L

E X A M P L E  3 Being dealt a full house

In one type of poker, a five-card hand is dealt from a standard 52-card deck.

(a) How many hands are possible?

(b) A full house is a hand that consists of three cards of one denomination and
two cards of another denomination. (The 13 denominations are 2’s, 3’s, 4’s,
5’s, 6’s, 7’s, 8’s, 9’s, 10’s, J’s, Q’s, K’s, and A’s.) How many hands are full
houses?

S O L U T I O N

(a) The order in which the five cards are dealt is not important, so we use a
combination:

(b) We first determine how many ways we can be dealt a specific full
house—say 3 aces and 2 kings (see Figure 1). There are four cards of each de-
nomination and the order of selection can be ignored, so we use combinations:

number of ways to get 3 A’s

number of ways to get 2 K’s

Now we must pick the two denominations. Since 3 A’s and 2 K’s is a different
full house than 3 K’s and 2 A’s, the order of selecting the denominations is im-
portant, and so we use a permutation:

number of ways to select two denominations

By the fundamental counting principle, the number of full houses is

L

Note that if , the formula for becomes

C�n, n� �
n!

�n � n�! n!
�

n!

0! n!
�

n!

1 � n!
� 1.

C�n, r�r � n

C�4, 3� � C�4, 2� � P�13, 2� � 4 � 6 � 156 � 3744.

� P�13, 2�

� C�4, 2�
� C�4, 3�

C�52, 5� �
52!

�52 � 5�! 5!
�

52 � 51 � 50 � 49 � 48 � 47!

47! � 5 � 4 � 3 � 2 � 1
� 2,598,960

20 � 35 � 5 � 2 � 7000.

C�7, 4� �
7!

�7 � 4�! 4!
�

7!

3! 4!
�

7 � 6 � 5 � 4!

3 � 2 � 1 � 4!
�

7 � 6 � 5

3 � 2 � 1
� 35.

C�6, 3� �
6!

�6 � 3�! 3!
�

6!

3! 3!
�

6 � 5 � 4 � 3!

3 � 2 � 1 � 3!
�

6 � 5 � 4

3 � 2 � 1
� 20.

Remember—if the order of selection
can be ignored, use a combination.

Figure 1

The order of selection is not
important, so use combinations.

l

The order of selection is important, so
use a permutation.

l



It is convenient to assign a meaning to if . If the formula is
to be true in this case, then we must have

Hence, we define , which is the same as . Finally, for con-
sistency, we also define . Thus, has meaning for all non-
negative integers n and r with .

E X A M P L E  4 Finding the number of subsets of a set

Let S be a set of n elements. Find the number of distinct subsets of S.

S O L U T I O N Let r be any nonnegative integer such that . From our pre-
vious work, the number of subsets of S that consist of r elements is , or

. Hence, to find the total number of subsets, it suffices to find the sum

(*)

Recalling the formula for the binomial theorem,

we can see that the indicated sum (*) is precisely the binomial expansion of
. Thus, there are subsets of a set of n elements. In particular, a set

of 3 elements has , or 8, different subsets. A set of 4 elements has , or 16,
subsets. A set of 10 elements has , or 1024, subsets. L

Pascal’s triangle, introduced in Section 10.5, can easily be remembered by
the following combination form:

�������

������

�4

4��4

3��4

2��4

1��4

0�
�3

3��3

2��3

1��3

0�
�2

2��2

1��2

0�
�1

1��1

0�
�0

0�

210

2423

2n�1 � 1�n

�a � b�n � "n
k�0
�n

k�an�kbk,

�n

0� � �n

1� � �n

2� � �n

3� � � � � � �n

n�.

�n

r�
C�n, r�

r � n

r � n
C�n, r�C�0, 0� � 1

C�n, n�C�n, 0� � 1

C�n, 0� �
n!

�n � 0�! 0!
�

n!

n! 0!
�

n!

n! � 1
� 1.

r � 0C�n, r�
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Combining this information with that in Example 4, we conclude that the third 

coefficient in the expansion of , , is exactly the same as the num-

ber of two-element subsets of a set that contains four elements. We leave it as
an exercise to find a generalization of the last statement (see Discussion Exer-
cise 4 at the end of the chapter).

�4

2��a � b�4

Exer. 1–8: Find the number.

1 2

3 4

5 6

7 8

Exer. 9–10: Find the number of possible color arrangements
for the 12 given disks, arranged in a row.

9 5 black, 3 red, 2 white, 2 green

10 3 black, 3 red, 3 white, 3 green

11 Find the number of distinguishable permutations of the let-
ters in the word bookkeeper.

12 Find the number of distinguishable permutations of the let-
ters in the word moon. List all the permutations.

13 Choosing basketball teams Ten people wish to play in a
basketball game. In how many different ways can two teams
of five players each be formed?

14 Selecting test questions A student may answer any six of
ten questions on an examination.

(a) In how many ways can six questions be selected?

(b) How many selections are possible if the first two ques-
tions must be answered?

Exer. 15–16: Consider any eight points such that no three
are collinear.

15 How many lines are determined?

16 How many triangles are determined?

C�5, 5�C�7, 0�

C�n, 1�C�n, n � 1�

C�6, 2�C�9, 8�

C�8, 4�C�7, 3�

17 Book arrangement A student has five mathematics books,
four history books, and eight fiction books. In how many 
different ways can they be arranged on a shelf if books in 
the same category are kept next to one another?

18 Selecting a basketball team A basketball squad consists of
twelve players.

(a) Disregarding positions, in how many ways can a team
of five be selected?

(b) If the center of a team must be selected from two spe-
cific individuals on the squad and the other four mem-
bers of the team from the remaining ten players, find
the number of different teams possible.

19 Selecting a football team A football squad consists of three
centers, ten linemen who can play either guard or tackle,
three quarterbacks, six halfbacks, four ends, and four 
fullbacks. A team must have one center, two guards, two
tackles, two ends, two halfbacks, a quarterback, and a full-
back. In how many different ways can a team be selected
from the squad?

20 Arranging keys on a ring In how many different ways can
seven keys be arranged on a key ring if the keys can slide
completely around the ring?

21 Committee selection A committee of 3 men and 2 women
is to be chosen from a group of 12 men and 8 women. 
Determine the number of different ways of selecting the
committee.

22 Birth order Let the letters G and B denote a girl birth and a
boy birth, respectively. For a family of three boys and three
girls, one possible birth order is G G G B B B. How many
birth orders are possible for these six children?

10.7 E x e r c i s e s



Exer. 23–24: Shown in each figure is a street map and a pos-
sible path from point A to point B. How many possible paths
are there from A to B if moves are restricted to the right or
up? (Hint: If R denotes a move one unit right and U denotes
a move one unit up, then the path in Exercise 23 can be
specified by R U U R R R U R.)

23

24

25 Lotto selections To win a state lottery game, a player must
correctly select six numbers from the numbers 1 through 49.

(a) Find the total number of selections possible.

(b) Work part (a) if a player selects only even numbers.

26 Office assignments A mathematics department has ten fac-
ulty members but only nine offices, so one office must be
shared by two individuals. In how many different ways can
the offices be assigned?

27 Tennis tournament In a round-robin tennis tournament,
every player meets every other player exactly once. How
many players can participate in a tournament of 45 matches?

28 True-or-false test A true-or-false test has 20 questions.

(a) In how many different ways can the test be completed?

(b) In how many different ways can a student answer
10 questions correctly?

A

B
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29 Basketball championship series The winner of the seven-
game NBA championship series is the team that wins four
games. In how many different ways can the series be ex-
tended to seven games?

30 A geometric design is determined by joining every pair of
vertices of an octagon (see the figure).

(a) How many triangles in the design have their three ver-
tices on the octagon?

(b) How many quadrilaterals in the design have their four
vertices on the octagon?

Exercise 30

31 Ice cream selections An ice cream parlor stocks 31 differ-
ent flavors and advertises that it serves almost 4500 differ-
ent triple scoop cones, with each scoop being a different
flavor. How was this number obtained?

32 Choices of hamburger condiments A fast food restaurant
advertises that it offers any combination of 8 condiments on
a hamburger, thus giving a customer 256 choices. How was
this number obtained?

33 Scholarship selection A committee is going to select
30 students from a pool of 1000 to receive scholarships.
How may ways could the students be selected if each schol-
arship is worth

(a) the same amount?

(b) a different amount?
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34 Track rankings Twelve sprinters are running a heat; those
with the best four times will advance to the finals.

(a) In how many ways can this group of four be selected?

(b) If the four best times will be seeded (ranked) in the fi-
nals, in how many ways can this group of four be se-
lected and seeded?

35 Poker hands Refer to Example 3. How many hands will
have exactly three kings?

36 Bridge hands How many 13-card hands dealt from a stan-
dard deck will have exactly seven spades?

Exer. 37–38: (a) Calculate the sum for ,

where if , then . (b) Predict a general formula 

for .

37

38

39 Show that . Interpret
this formula in terms of Pascal’s triangle.

C �n, r � 1� � C �n, r� � C �n � 1, r�

�1��n

1�� �2��n

2�� �3��n

3�� �4��n

4�� �5��n

5�� ���

�n

1� � �n

3� � �n

5� � �n

7� � ���

Sn

�n
r� � 0n < r

n � 1, 2, 3, . . . , 10Sn
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If two dice are tossed, what are the chances of rolling a 7? If a person is dealt
five cards from a standard deck of 52 playing cards, what is the likelihood of
obtaining three aces? In the seventeenth century, similar questions about
games of chance led to the study of probability. Since that time, the theory of
probability has grown extensively. It is now used to predict outcomes of a large
variety of situations that arise in the natural and social sciences.

Any chance process, such as flipping a coin, rolling a die, being dealt a
card from a deck, determining if a manufactured item is defective, or finding
the blood pressure of an individual, is an experiment. A result of an experi-
ment is an outcome. We will restrict our discussion to experiments for which
outcomes are equally likely unless stated otherwise. This means, for example,
that if a coin is flipped, we assume that the possibility of obtaining a head is
the same as that of obtaining a tail. Similarly, if a die is tossed, we assume that
the die is fair—that is, there is an equal chance of obtaining either a 1, 2, 3, 4,
5, or 6. The set S of all possible outcomes of an experiment is the sample
space of the experiment. Thus, if the experiment consists of flipping a coin
and we let H or T denote the outcome of obtaining a head or tail, respectively,
then the sample space S may be denoted by

If a fair die is tossed as an experiment, then the set S of all possible outcomes
(the sample space) is

The following definition expresses, in mathematical terms, the notion of
obtaining particular outcomes of an experiment.

Let us consider the experiment of tossing a single die, so that the sample
space is . If , then the event E associated with the ex-
periment consists of the outcome of obtaining a 4 on the toss. Different events

E � �4
S � �1, 2, 3, 4, 5, 6


S � �1, 2, 3, 4, 5, 6
.

S � �H, T 
.

10.8
Probability

Definition of Event Let S be the sample space of an experiment. An event associated with the
experiment is any subset E of S.



may be associated with the same experiment. For example, if we let 
then this event consists of obtaining an odd number on a toss of the die.

As another illustration, suppose the experiment consists of flipping two
coins, one after the other. If we let HH denote the outcome in which two heads
appear, HT that of a head on the first coin and a tail on the second, and so on,
then the sample space S of the experiment may be denoted by

If we let

then the event E consists of the appearance of a head on one of the coins and
a tail on the other.

Next we shall define what is meant by the probability of an event.
Throughout our discussion we will assume that the sample space S of an ex-
periment contains only a finite number of elements. If E is an event, the sym-
bols and will denote the number of elements in E and S, respectively.
Keep in mind that E and S consist of outcomes that are equally likely.

Since E is a subset of S, we see that

Dividing by , we obtain

Note that if E contains no elements, and if .
The next example provides three illustrations of the preceding definition

if E contains exactly one element.

E X A M P L E  1 Finding the probability of an event

(a) If a coin is flipped, find the probability that a head will turn up.

(b) If a fair die is tossed, find the probability of obtaining a 4.

(c) If two coins are flipped, find the probability that both coins turn up heads.

S O L U T I O N For each experiment we shall list sets S and E and then use the
definition of probability of an event to find .

(a) P�E� �
n�E�
n�S�

�
1

2
E � �H
,S � �H, T
,

P�E�

E � SP�E� � 1P�E� � 0

0

n�S�
�

n�E�
n�S�

�
n�S�
n�S�

or, equivalently, 0 � P�E� � 1.

n�S�

0 � n�E� � n�S�.

n�S�n�E�

E � �HT, TH
,
S � �HH, HT, TH, TT
.

E � �1, 3, 5
,
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Definition of the 
Probability of an Event

Let S be the sample space of an experiment and E an event. The probabil-
ity of E is given by

P�E� �
n�E�
n�S�

.

P�E�
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(b)

(c)
L

In part (a) of Example 1 we found that the probability of obtaining a head
on a flip of a coin is . We take this to mean that if a coin is flipped many times,
the number of times that a head turns up should be approximately one-half the
total number of flips. Thus, for 100 flips, a head should turn up approximately
50 times. It is unlikely that this number will be exactly 50. A probability of 
implies that if we let the number of flips increase, then the number of times a
head turns up approaches one-half the total number of flips. Similar remarks
can be made for parts (b) and (c) of Example 1.

In the next two examples we consider experiments in which an event con-
tains more than one element.

E X A M P L E  2 Finding probabilities when two dice are tossed

If two dice are tossed, what is the probability of rolling a sum of

(a) 7? (b) 9?

S O L U T I O N Let us refer to one die as the first die and the other as the sec-
ond die. We shall use ordered pairs to represent outcomes as follows: de-
notes the outcome of obtaining a 2 on the first die and a 4 on the second; 
represents a 5 on the first die and a 3 on the second; and so on. Since there are
six different possibilities for the first number of the ordered pair and, with each
of these, six possibilities for the second number, the total number of ordered
pairs is . Hence, if S is the sample space, then .

(a) The event E corresponding to rolling a sum of 7 is given by

and consequently

(b) If E is the event corresponding to rolling a sum of 9, then

and
L

In the next example (and in the exercises), when it is stated that one or
more cards are drawn from a deck, we mean that each card is removed from a
standard 52-card deck and is not replaced before the next card is drawn.

E X A M P L E  3 Finding the probability of drawing a certain hand of cards

Suppose five cards are drawn from a deck of cards. Find the probability that
all five cards are hearts.

P�E� �
n�E�
n�S�

�
4

36
�

1

9
.

E � ��3, 6�, �4, 5�, �5, 4�, �6, 3�


P�E� �
n�E�
n�S�

�
6

36
�

1

6
.

E � ��1, 6�, �2, 5�, �3, 4�, �4, 3�, �5, 2�, �6, 1�
,

n�S� � 366 � 6 � 36

�5, 3�
�2, 4�

1
2

1
2

P�E� �
n�E�
n�S�

�
1

4
E � �HH
,S � �HH, HT, TH, TT
,

P�E� �
n�E�
n�S�

�
1

6
E � �4
,S � �1, 2, 3, 4, 5, 6
,



S O L U T I O N The sample space S of the experiment is the set of all possible
five-card hands that can be formed from the 52 cards in the deck. It follows
from our work in the preceding section that .

Since there are 13 cards in the heart suit, the number of different ways of
obtaining a hand that contains five hearts is . Hence, if E represents
this event, then

This result implies that if the experiment is performed many times, a five-card
heart hand should be drawn approximately once every 2000 times. L

Suppose S is the sample space of an experiment and and are two
events associated with the experiment. If and have no elements in com-
mon, they are called disjoint sets and we write (the empty set).
In this case, if one event occurs, the other cannot occur; they are mutually ex-
clusive events. Thus, if , then

Hence,

or

The probability of E is therefore the sum of the probabilities of and . We
have proved the following.

The preceding theorem can be extended to any number of events ,
that are mutually exclusive in the sense that if , then

. The conclusion of the theorem is then

E X A M P L E  4 Finding probabilities when two dice are tossed

If two dice are tossed, find the probability of rolling a sum of either 7 or 9.

S O L U T I O N Let denote the event of rolling 7 and that of rolling 9.
Since and cannot occur simultaneously, they are mutually exclusiveE2E1

E2E1

P�E� � P�E1 
 E2 
 � � � 
 Ek� � P�E1� � P�E2� � � � � � P�Ek�.

Ei 	 Ej � �
i � jE2, . . . , Ek

E1

E2E1

P�E� � P�E1� � P�E2�.

P�E� �
n�E1� � n�E2�

n�S�
�

n�E1�
n�S�

�
n�E2�
n�S�

,

n�E� � n�E1 
 E2� � n�E1� � n�E2�.

E � E1 
 E2

E1 	 E2 � �
E2E1

E2E1

P�E� �
n�E�
n�S�

�
C�13, 5�
C�52, 5�

�

13!

5!8!

52!

5!47!

�
1287

2,598,960

 0.0005 �

5

10,000
�

1

2000
.

C�13, 5�

n�S� � C�52, 5�
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Theorem on Mutually 
Exclusive Events

If and are mutually exclusive events and , then

P�E� � P�E1 
 E2� � P�E1� � P�E2�.

E � E1 
 E2E2E1
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events. We wish to find the probability of the event . From
Example 2 we know that and . Hence, by the last theo-
rem,

L

If and are events that possibly have elements in common, then the
following can be proved.

Note that if and are mutually exclusive, then and
. Hence, the last theorem includes, as a special case, the theo-

rem on mutually exclusive events.

E X A M P L E  5 Finding the probability of selecting a certain card from a deck

If a single card is selected from a deck, find the probability that the card is ei-
ther a jack or a spade.

S O L U T I O N Let denote the event that the card is a jack and the event
that it is a spade. The events and are not mutually exclusive, since there
is one card—the jack of spades—in both events, and hence .
By the preceding theorem, the probability that the card is either a jack or a
spade is

In solving probability problems, it is often helpful to categorize the out-
comes of a sample space S into an event E and the set of elements of S that
are not in E. We call the complement of E. Note that

Dividing both sides of the last equation by gives us

Hence,

We shall use the last formula in the next example.

P�E� � P�E�� � 1, or P�E� � 1 � P�E��.

n�E�
n�S�

�
n�E��
n�S�

� 1.

n�S�

E 
 E� � S and n�E� � n�E�� � n�S�.

E�
E�

�
4

52 �
13
52 �

1
52 �

16
52 
 0.31.

P�E1 
 E2� � P�E1� � P�E2� � P�E1 	 E2�

P�E1 	 E2� �
1
52

E2E1

E2E1

P�E1 	 E2� � 0
E1 	 E2 � �E2E1

E2E1

�
6
36 �

4
36 �

10
36 � 0.27.

P�E� � P�E1� � P�E2�

P�E2� �
4

36P�E1� �
6

36

E � E1 
 E2

Theorem on the 
Probability of the 

Occurrence of Either 
of Two Events

If and are any two events, then

P�E1 
 E2� � P�E1� � P�E2� � P�E1 	 E2�.

E2E1

L



E X A M P L E  6 Finding the probability of drawing a certain hand of cards

If 13 cards are drawn from a deck, what is the probability that at least 2 of the
cards are hearts?

S O L U T I O N If denotes the probability of getting k hearts, then the
probability of getting at least two hearts is

Since the only remaining probabilities are and , the desired proba-
bility is equal to

To calculate for any k, we may regard the deck as being split into two
groups: hearts and non-hearts. For we note that of the 13 hearts in the
deck, we get none; and of the 39 non-hearts, we get 13. Since the number of
ways to choose 13 cards from a 52-card deck is , we see that

The probability corresponds to getting 1 of the hearts and 12 of the
39 non-hearts. Thus,

Hence, the desired probability is

L

The words probability and odds are often used interchangeably. While
knowing one allows us to calculate the other, they are quite different.

We can think of the odds in favor of an event E as the number of ways E
occurs compared to the number of ways E doesn’t occur. Similarly, the odds
against E occurring are given by to .

E X A M P L E  7 Finding odds when two dice are tossed

If two dice are tossed and E is the event of rolling a sum of 7, what are the odds

(a) in favor of E? (b) against E?

n�E�n�E��

1 � �P�0� � P�1�	 
 1 � �0.0128 � 0.0801	 � 0.9071.

P�1� �
n�1�
n�S�

�
C�13, 1� � C�39, 12�

C�52, 13�

 0.0801.

P�1�

P�0� �
n�0�
n�S�

�
C�13, 0� � C�39, 13�

C�52, 13�

 0.0128.

C�52, 13�

P�0�
P�k�

1 � �P�0� � P�1�	.

P�1�P�0�

P�2� � P�3� � P�4� � � � � � P�13�.

P�k�
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Definition of the Odds 
of an Event

Let S be the sample space of an experiment, E an event, and its comple-
ment. The odds in favor of the event E occurring are given by

n�E� to n�E��.

O�E�
E�

The odds to are sometimes
denoted by n�E��n�E��.

n�E��n�E�
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S O L U T I O N From Example 2, we have and , so

(a) The odds in favor of rolling a sum of 7 are to or

6 to 30 or, equivalently, 1 to 5.

(b) The odds against rolling a sum of 7 are to or

30 to 6 or, equivalently, 5 to 1. L

E X A M P L E  8 Finding probabilities and odds

(a) If , find .

(b) If are 6 to 5, find .

S O L U T I O N

(a) Since and , we can let

Thus, , and are given by

(b) Since are 6 to 5 and are to , we can let

Thus, , and

L

Two events and are said to be independent events if the occurrence
of one does not influence the occurrence of the other.

In words, the theorem states that if and are independent events, the
probability that both and occur simultaneously is the product of their
probabilities. Note that if two events and are mutually exclusive, then

and they cannot be independent. (We assume that both and
are not empty.)E2

E1P�E1 	 E2� � 0
E2E1

E2E1

E2E1

E2E1

P�E� �
n�E�
n�S�

�
6

11
.

n�S� � n�E� � n�E�� � 6 � 5 � 11

n�E� � 6 and n�E�� � 5.

n�E��n�E�O�E�O�E�

n�E� to n�E��, or 3 to 1.

O�E�n�E�� � n�S� � n�E� � 4 � 3 � 1

n�E� � 3 and n�S� � 4.

P�E� � n�E��n�S�P�E� � 0.75 �
3
4

P�E�O�E�
O�E�P�E� � 0.75

n�E�n�E��

n�E��n�E�

n�E�� � n�S� � n�E� � 36 � 6 � 30.

n�S� � 36n�E� � 6

Theorem on 
Independent Events

If and are independent events, then

P�E1 	 E2� � P�E1� � P�E2�.

E2E1



E X A M P L E  9 An application of probability to an electrical system

An electrical system has open-close switches , and , as shown in
Figure 1. The switches operate independently of one another, and current will
flow from A to B either if is closed or if both and are closed.

(a) If denotes the event that is closed, where , express, in
terms of , , and , the probability p that current will flow from
A to B.

(b) Find p if for each k.

S O L U T I O N

(a) The probability p that either or both and occur is

Using the theorem on the probability of the occurrence of either of two events
or , we obtain

Applying the theorem on independent events twice gives us

Finally, using the theorem on independent events one more time, we see that

(b) If for each k, then from part (a) the probability that current will
flow from A to B is

L

E X A M P L E  1 0 Using a tree diagram to find a probability

If two cards are drawn from a deck, what is the probability that at least one of
the cards will be a face card?

S O L U T I O N Let F denote the event of drawing a face card. There are 12 face
cards in a 52-card deck, so We can depict this probability, as well
as the probability of its complement, with the tree diagram shown in Figure 2.

The probabilities for the second card depend on what the first card was. To
cover all possibilities for the second card, we attach branches with similar
probabilities to the end of each branch of the first tree diagram, as shown in
Figure 3.

P(F ) �
12
52.

p �
1
2 �

1
2 �

1
2 �

1
2 �

1
2 �

1
2 �

5
8 � 0.625.

P�Sk� �
1
2

p � P�S1� � P�S2� � P�S3� � P�S1� � P�S2� � P�S3�.

p � P�S1� � P�S2� � P�S3� � P�S1� � P�S2 	 S3�.

p � P�S1� � P�S2 	 S3� � P�S1 	 �S2 	 S3��.

S2 	 S3S1

p � P�S1 
 �S2 	 S3��.

S3S2S1

P�Sk� �
1
2

P�S3�P�S2�P�S1�
k � 1, 2, 3skSk

s3s2s1

s3s1, s2

716 C H A P T E R  1 0  S E Q U E N C E S ,  S E R I E S ,  A N D  P R O B A B I L I T Y

Figure 1

A B
s1

s2 s3

Figure 2

52
12

P(F) �

52
40

P(F �) �

First card



1 0 . 8  P r o b a b i l i t y 717

Figure 3

51
12

P(F) �

51
39

P(F �) �

51
11

2652
132

52
12

� �

51
40

2652
480

52
12

� �

51
12

2652
480

52
40

� �

51
39

2652
1560

52
40

� �

2652
2652

� 1
52
52

� 1
51

(each branch)

51
� 1

51
11

P(F) �

52
12

P(F) �

51
40

P(F �) �

52
40

P(F �) �

First card

Vertical
sum

Second card Products

The Products column lists the probabilities for all two-card possibilities; 

for example, the probability that both cards will be face cards is The ver-
tical sums must equal 1—calculating these is a good way to check your com-
putations. To answer the question, we can add the first three probabilities in 
the Products column or subtract the fourth probability from 1. Using the latter
approach, we have

It is often of interest to know what amount of return we can expect on an
investment in a game of chance. The following definition will help us answer
questions that fall in this category.

1 �
1560

2652
�

1092

2652
�

7

17

 41%.

132
2652.

2 face
cards

1 face
card

1 face
card

0 face
cards

Definition of Expected Value Suppose a variable can have payoff amounts with correspon-
ding probabilities . The expected value EV of the variable is
given by

EV � a1p1 � a2p2 � � � � � anpn � "n
k�1

akpk.

p1, p2, . . . , pn

a1, a2, . . . , an

L



E X A M P L E  1 1 Expected value of a single pull-tab

States that run lotteries often offer games in which a certain number of pull-
tabs are printed, some being redeemable for money and the rest worthless.
Suppose that in a particular game there are 4000 pull-tabs, 432 of which are
redeemable according to the following table.

Find the expected value of a pull-tab that sells for $1.

S O L U T I O N The payoff amounts $100, $50, $20, and $2 have probabilities 
and respectively. The remaining 3568 pull-tabs have a pay-

off amount of $0. By the preceding definition, the expected value of a single
pull-tab is

Thus, after subtracting the $1 cost of the pull-tab, we can expect to lose $0.50
on each pull-tab we buy. Note that we cannot lose $0.50 on any individual
pull-tab, but we can expect to lose this amount on each pull-tab in the long run.
This game yields a terribly poor return for the buyer and a healthy profit for
the seller. L

The expected value of $0.50 obtained in Example 11 may be considered
to be the amount we would expect to pay to play the game if the game were
fair—that is, if we would not expect to win or lose any money after playing
the game many times.

In this section we have merely introduced several basic concepts about
probability. The interested person is referred to entire books and courses de-
voted to this branch of mathematics.

�
2000
4000 � $0.50.

 EV � 100 �
4

4000 � 50 �
8

4000 � 20 �
20

4000 � 2 �
400
4000 � 0 �

3568
4000

400
4000 ,4

4000 , 8
4000 , 20

4000 ,
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Number of pull-tabs Value

4 $100

8 50

20 20

400 2

Exer. 1–2: A single card is drawn from a deck. Find the
probability and the odds that the card is as specified.

1 (a) greater than 9 (b) a king or a queen

(c) a king, a queen, or a jack

2 (a) a heart

(b) a heart or a diamond

(c) a heart, a diamond, or a club

10.8 E x e r c i s e s
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Exer. 3–4: A single die is tossed. Find the probability and
the odds that the die is as specified.

3 (a) a 4 (b) a 6 (c) a 4 or a 6

4 (a) an even number (b) a number divisible by 5

(c) an even number or a number divisible by 5

Exer. 5–6: An urn contains five red balls, six green balls,
and four white balls. If a single ball is drawn, find the proba-
bility and the odds that the ball is as specified.

5 (a) red (b) green (c) red or white

6 (a) white (b) green or white (c) not green

Exer. 7–8: Two dice are tossed. Find the probability and the
odds that the sum is as specified.

7 (a) 11 (b) 8 (c) 11 or 8

8 (a) greater than 9 (b) an odd number

Exer. 9–10: Three dice are tossed. Find the probability of
the specified event.

9 A sum of 5

10 A 6 turns up on exactly one die

11 If three coins are flipped, find the probability that exactly
two heads turn up.

12 If four coins are flipped, find the probability of obtaining
two heads and two tails.

13 If , find and .

14 If , find and .

15 If are 9 to 5, find and .

16 If are 7 to 3, find and .

Exer. 17–18: For the given value of , approximate 
in terms of “X to 1.”

17 18

Exer. 19–24: Suppose five cards are drawn from a deck.
Find the probability of obtaining the indicated cards.

19 Four of a kind (such as four aces or four kings)

20 Three aces and two kings

21 Four diamonds and one spade

22 Five face cards

P�E� 
 0.822P�E� 
 0.659

O(E)P(E)

P�E�O�E�O�E��

P�E�O�E��O�E�

O�E��O�E�P�E� � 0.4

O�E��O�E�P�E� �
5
7

23 A flush (five cards of the same suit)

24 A royal flush (an ace, king, queen, jack, and 10 of the 
same suit)

25 If a single die is tossed, find the probability of obtaining an
odd number or a prime number.

26 A single card is drawn from a deck. Find the probability that
the card is either red or a face card.

27 If the probability of a baseball player’s getting a hit in one
time at bat is 0.326, find the probability that the player gets
no hits in 4 times at bat.

28 If the probability of a basketball player’s making a free
throw is 0.9, find the probability that the player makes at
least 1 of 2 free throws.

Exer. 29–30: The outcomes of an experiment and
their probabilities are listed in the table.

For the indicated events, find (a) , (b) ,
(c) , and (d) .

29

30

Exer. 31–32: A box contains 10 red chips, 20 blue chips, and
30 green chips. If 5 chips are drawn from the box, find the
probability of drawing the indicated chips.

31 (a) all blue (b) at least 1 green

(c) at most 1 red

32 (a) exactly 4 green (b) at least 2 red

(c) at most 2 blue

33 True-or-false test A true-or-false test consists of eight
questions. If a student guesses the answer for each question,
find the probability that

(a) eight answers are correct

(b) seven answers are correct and one is incorrect

(c) six answers are correct and two are incorrect

(d) at least six answers are correct

E1 � �1, 2, 3, 6
;  E2 � �3, 4
; E3 � �4, 5, 6


E1 � �1, 2
; E2 � �2, 3, 4
;  E3 � �4, 6


P(E2 � E�3)P(E1 � E2)
P(E1 � E2)P(E2)

1, 2, . . . , 6

Outcome 1 2 3 4 5 6

Probability 0.25 0.10 0.15 0.20 0.25 0.05



34 Committee selection A 6-member committee is to be 
chosen by drawing names of individuals from a hat. If the
hat contains the names of 8 men and 14 women, find the
probability that the committee will consist of 3 men and 
3 women.

Exer. 35–36: Five cards are drawn from a deck. Find the
probability of the specified event.

35 Obtaining at least one ace

36 Obtaining at least one heart

37 Card and die experiment Each suit in a deck is made up of
an ace (A), nine numbered cards ( ), and three
face cards (J, Q, K). An experiment consists of drawing a
single card from a deck followed by rolling a single die.

(a) Describe the sample space S of the experiment, and
find .

(b) Let be the event consisting of the outcomes in which
a numbered card is drawn and the number of dots on
the die is the same as the number on the card. Find

, , and .

(c) Let be the event in which the card drawn is a face
card, and let be the event in which the number of
dots on the die is even. Are and mutually exclu-
sive? Are they independent? Find , ,

, and .

(d) Are and mutually exclusive? Are they independ-
ent? Find and .

38 Letter and number experiment An experiment consists of
selecting a letter from the alphabet and one of the digits 0,

.

(a) Describe the sample space S of the experiment, and
find .

(b) Suppose the letters of the alphabet are assigned num-
bers as follows: , . Let be
the event in which the units digit of the number as-
signed to the letter of the alphabet is the same as the
digit selected. Find , , and .

(c) Let be the event that the letter is one of the five 
vowels and the event that the digit is a prime number.
Are and mutually exclusive? Are they independ-
ent? Find , , , and .

(d) Let be the event that the numerical value of the let-
ter is even. Are and mutually exclusive? Are they
independent? Find and .P�E2 
 E4�P�E2 	 E4�

E4E2

E4

P�E2 
 E3�P�E2 	 E3�P�E3�P�E2�
E3E2

E3

E2

P�E1�n�E�1�n�E1�

E1Z � 26B � 2, . . . ,A � 1

n�S�

1, . . . , 9

P�E1 
 E2�P�E1 	 E2�
E2E1

P�E2 
 E3�P�E2 	 E3�
P�E3�P�E2�

E3E2

E3

E2

P�E1�n�E�1�n�E1�

E1

n�S�

2, 3, . . . , 10

39 Tossing dice If two dice are tossed, find the probability that
the sum is greater than 5.

40 Tossing dice If three dice are tossed, find the probability
that the sum is less than 16.

41 Family makeup Assuming that girl-boy births are equally
probable, find the probability that a family with five chil-
dren has

(a) all boys (b) at least one girl

42 Slot machine A standard slot machine contains three reels,
and each reel contains 20 symbols. If the first reel has five
bells, the middle reel four bells, and the last reel two bells,
find the probability of obtaining three bells in a row.

43 ESP experiment In a simple experiment designed to test
ESP, four cards ( jack, queen, king, and ace) are shuffled and
then placed face down on a table. The subject then attempts
to identify each of the four cards, giving a different name to
each of the cards. If the individual is guessing, find the
probability of correctly identifying

(a) all four cards (b) exactly two of the four cards

44 Tossing dice Three dice are tossed.

(a) Find the probability that all dice show the same num-
ber of dots.

(b) Find the probability that the numbers of dots on the
dice are all different.

(c) Work parts (a) and (b) for n dice.

45 Trick dice For a normal die, the sum of the dots on opposite
faces is 7. Shown in the figure is a pair of trick dice in which
the same number of dots appears on opposite faces. Find the
probability of rolling a sum of

(a) 7 (b) 8

Exercise 45

46 Carnival game In a common carnival game, three balls are
rolled down an incline into slots numbered 1 through 9, as
shown in the figure. Because the slots are so narrow, play-
ers have no control over where the balls collect. A prize is
given if the sum of the three numbers is less than 7. Find the
probability of winning a prize.
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Exercise 46

47 Smoking deaths In an average year during 1995–1999,
smoking caused 442,398 deaths in the United States. Of
these deaths, cardiovascular disease accounted for 148,605,
cancer for 155,761, and respiratory diseases such as em-
physema for 98,007.

(a) Find the probability that a smoking-related death was
the result of either cardiovascular disease or cancer.

(b) Determine the probability that a smoking-related death
was not the result of respiratory diseases.

48 Starting work times In a survey about what time people go
to work, it was found that 8.2 million people go to work be-
tween midnight and 6 A.M., 60.4 million between 6 A.M. and
9 A.M., and 18.3 million between 9 A.M. and midnight.

(a) Find the probability that a person goes to work between
6 A.M. and midnight.

(b) Determine the probability that a person goes to work
between midnight and 6 A.M.

49 Arsenic exposure and cancer In a certain county, 2% of the
people have cancer. Of those with cancer, 70% have been
exposed to high levels of arsenic. Of those without cancer,
10% have been exposed. What percentage of the people
who have been exposed to high levels of arsenic have can-
cer? (Hint: Use a tree diagram.)

50 Computers and defective chips A computer manufacturer
buys 30% of its chips from supplier A and the rest from sup-
plier B. Two percent of the chips from supplier A are defec-
tive, as are 4% of the chips from supplier B. Approximately
what percentage of the defective chips are from supplier B?

51 Probability demonstration Shown in the figure is a small
version of a probability demonstration device. A small ball
is dropped into the top of the maze and tumbles to the

bottom. Each time the ball strikes an obstacle, there is a
50% chance that the ball will move to the left. Find the
probability that the ball ends up in the slot

(a) on the far left (b) in the middle

Exercise 51

52 Roulette In the American version of roulette, a ball is spun
around a wheel and has an equal chance of landing in any
one of 38 slots numbered 0, 00, 1, 36. Shown in the
figure is a standard betting layout for roulette, where the
color of the oval corresponds to the color of the slot on 
the wheel. Find the probability that the ball lands

(a) in a black slot

(b) in a black slot twice in succession

Exercise 52

53 Selecting lottery numbers In one version of a popular lot-
tery game, a player selects six of the numbers from 1 to 54.
The agency in charge of the lottery also selects six numbers.
What is the probability that the player will match the six
numbers if two tickets are purchased? (This jackpot is
worth at least $2 million in prize money and grows accord-
ing to the number of tickets sold.)

50¢

2, . . . ,
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54 Lottery Refer to Exercise 53. The player can win about
$1000 for matching five of the six numbers and about $40
for matching four of the six numbers. Find the probability
that the player will win some amount of prize money on the
purchase of one ticket.

55 Quality control In a quality control procedure to test for de-
fective light bulbs, two light bulbs are randomly selected
from a large sample without replacement. If either light bulb
is defective, the entire lot is rejected. Suppose a sample of
200 light bulbs contains 5 defective light bulbs. Find the
probability that the sample will be rejected. (Hint: First cal-
culate the probability that neither bulb is defective.)

56 Life expectancy A man is 54 years old and a woman is
34 years old. The probability that the man will be alive in 10
years is 0.74, whereas the probability that the woman will
be alive 10 years from now is 0.94. Assume that their life
expectancies are unrelated.

(a) Find the probability that they will both be alive
10 years from now.

(b) Determine the probability that neither one will be alive
10 years from now.

(c) Determine the probability that at least one of the two
will be alive 10 years from now.

57 Shooting craps In the game of craps, there are two ways a
player can win a pass line bet. The player wins immediately
if two dice are rolled and their sum is 7 or 11. If their sum
is 4, 5, 6, 8, 9, or 10, the player can still win a pass line bet
if this same number (called the point) is rolled again before
a 7 is rolled. Find the probability that the player wins

(a) a pass line bet on the first roll

(b) a pass line bet with a 4 on the first roll

(c) on any pass line bet

58 Crapless craps Refer to Exercise 57. In the game of craps, a
player loses a pass line bet if a sum of 2, 3, or 12 is obtained
on the first roll (referred to as “craps”). In another version 
of the game, called crapless craps, the player does not lose
by rolling craps and does not win by rolling an 11 on the 
first roll. Instead, the player wins if the first roll is a 7 or if
the point (2–12, excluding 7) is repeated before a 7 is 
rolled. Find the probability that the player wins on a pass 
line bet in crapless craps.

59 Birthday probability

(a) Show that the probability p that n people all have dif-
ferent birthdays is given by

(b) If a room contains 32 people, approximate the proba-
bility that two or more people have the same birthday.
(First approximate by using the following formula
from advanced mathematics:

)

60 Birthday probability Refer to Exercise 59. Find the small-
est number of people in a room such that the probability that
everyone has a different birthday is less than . Hint:
Rewrite the formula for p in part (a) of the previous exercise
as

61 A bet in craps Refer to Exercise 57. A player receives $2 for
winning a $1 pass line bet. Approximate the expected value
of a $1 bet.

62 A bet in roulette Refer to Exercise 52. If a player bets $1
that the ball will land in a black slot, he or she will receive
$2 if it does. Approximate the expected value of a $1 bet.

63 Contest prize winning A contest offers the following cash
prizes:

If the sponsor expects 20 million contestants, find the ex-
pected value for a single contestant.

64 Tournament prize winnings A bowling tournament is handi-
capped so that all 80 bowlers are equally matched. The tour-
nament prizes are listed in the table.

Find the expected winnings for one contestant.

365

365
�

364

365
�

363

365
� . . . �

365 � n � 1

365
.

1
2

ln n! 
 n ln n � n.

ln p

p �
365!

365n�365 � n�!
.

722 C H A P T E R  1 0  S E Q U E N C E S ,  S E R I E S ,  A N D  P R O B A B I L I T Y

Number
of prizes 1 10 100 1000

Prize
values $1,000,000 $100,000 $10,000 $1000

Place 1st 2nd 3rd 4th 5th–10th

Prize $1000 $500 $300 $200 $100
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Exer. 1–4: Find the first four terms and the seventh term of
the sequence that has the given nth term.

1 2

3

4

Exer. 5–8: Find the first five terms of the recursively de-
fined infinite sequence.

5

6

7

8

Exer. 9–12: Evaluate.

9 10

11 12

Exer. 13–24: Express the sum in terms of summation nota-
tion. (Answers are not unique.)

13 14

15

16

17 18

19

20

21

22 a0 � a1x 3 � a2x 6 � ��� � a20x 60

a0 � a1x4 � a2x8 � ��� � a25x100

1 �
1
2 �

1
3 �

1
4 �

1
5 �

1
6 �

1
7

100 � 95 � 90 � 85 � 80

1
4 �

2
9 �

3
14 �

4
19

1
2 �

2
5 �

3
8 �

4
11

1

1 � 2 � 3
�

1

2 � 3 � 4
�

1

3 � 4 � 5
� ��� �

1

98 � 99 � 100

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� ��� �

1

99 � 100

4 � 2 � 1 �
1
2 �

1
4 �

1
83 � 6 � 9 � 12 � 15

"4
k�1

�2k � 10�"100

k�7

10

"6
k�2

2k � 8

k � 1
"5
k�1

�k2 � 4�

a1 � 1,  ak�1 � �1 � ak��1

a1 � 9,   ak�1 � 2ak

a1 � 2,  ak�1 � ak!

a1 � 10,  ak�1 � 1 � �1�ak�

� 2n

�n � 1��n � 2��n � 3��
�1 � ��

1
2 �n�1


���1�n�1 � �0.1�n
� 5n

3 � 2n2�
23

24

25 Find the tenth term and the sum of the first ten terms of 
the arithmetic sequence whose first two terms are 
and 3.

26 Find the sum of the first eight terms of the arithmetic se-
quence in which the fourth term is 9 and the common dif-
ference is .

27 The fifth and thirteenth terms of an arithmetic sequence are
5 and 77, respectively. Find the first term and the tenth term.

28 Find the number of terms in the arithmetic sequence with

29 Insert four arithmetic means between 20 and .

30 Find the tenth term of the geometric sequence whose first
two terms are and .

31 If a geometric sequence has 3 and as its third and
fourth terms, respectively, find the eighth term.

32 Given a geometric sequence with 
find 

33 Find the geometric mean of 4 and 8.

34 In a certain geometric sequence, the eighth term is 100 and
the common ratio is . Find the first term.

35 Given an arithmetic sequence such that and
, find and d.

36 Given a geometric sequence such that and ,
find and .

Exer. 37–40: Evaluate.

37 38

39 40 "8
k�1

�1
2 � 2k�"10

k�1
�2k �

1
2�

"10

k�1
�6 �

1
2 k�"15

k�1

�5k � 2�

S5a1

r �
3
2a5 �

1
16

a1a12 � 50
S12 � 402

�
3
2

a8.
a3 � 16 and a7 � 625,

�0.3

1
4

1
8

�10

a1 � 1, d � 5, and S � 342.

�5

4 � 23

1 � x �
x2

2
�

x3

3
� ��� �

x n

n

1 �
x2

2
�

x4

4
�

x6

6
� ��� � ��1�n

x2n

2n
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41 Find the sum of the infinite geometric series

42 Find the rational number whose decimal representation is
.

Exer. 43–47: Prove that the statement is true for every posi-
tive integer n.

43

44

45

46

47 3 is a factor of .

48 Prove that for every positive integer .

Exer. 49–50: Find the smallest positive integer j for which
the statement is true. Use the extended principle of mathe-
matical induction to prove that the formula is true for every
integer greater than j.

49 50

Exer. 51–52: Use the binomial theorem to expand and sim-
plify the expression.

51 52

Exer. 53–56: Without expanding completely, find the indi-
cated term(s) in the expansion of the expression.

53

54

55

56

57 Building blocks Ten-foot lengths of lumber are to be
cut into five pieces to form children’s building blocks; the
lengths of the five blocks are to form an arithmetic sequence.

(a) Show that the difference d in lengths must be less than
1 foot.

2 � 2

�2c3 � 5c�2�10;   term that does not contain c

�4x2 � y�7;  term that contains x10

�y3 �
1
2c2�9;  sixth term

�x 2/5 � 2x�3/5�20;   first three terms

�2x � y3�4�x 2 � 3y�6

10n � nn2n � n!

n 
 5n2 � 3 � 2n

n3 � 2n

n�n � 1��n � 2�
3

1 � 2 � 2 � 3 � 3 � 4 � ��� � n�n � 1� �

n

2n � 1

1

1 � 3
�

1

3 � 5
�

1

5 � 7
� ��� �

1

�2n � 1��2n � 1�
�

22 � 42 � 62 � ��� � �2n�2 �
2n�2n � 1��n � 1�

3

2 � 5 � 8 � ��� � �3n � 1� �
n�3n � 1�

2

6.274

1 �
2
5 �

4
25 �

8
125 � ��� .

(b) If the smallest block is to have a length of 6 inches, find
the lengths of the other four pieces.

58 Constructing a ladder A ladder is to be constructed with
16 rungs whose lengths decrease uniformly from 20 inches
at the base to 16 inches at the top. Find the total length of
material needed for the rungs.

59 Shown in the first figure is a broken-line curve obtained by
taking two adjacent sides of a square, each of length , de-
creasing the length of the side by a factor f with ,
and forming two sides of a smaller square, each of length

. The process is then repeated ad infinitum. If
in the second figure, express the length of the result-

ing (infinite) broken-line curve in terms of f.

Exercise 59

60 The commutative and associative laws of addition guaran-
tee that the sum of integers 1 through 10 is independent of
the order in which the numbers are added. In how many dif-
ferent ways can these integers be summed?

61 Selecting cards

(a) In how many ways can 13 cards be selected from 
a deck?

(b) In how many ways can 13 cards be selected to obtain
five spades, three hearts, three clubs, and two diamonds?

62 How many four-digit numbers can be formed from the dig-
its 1, 2, 3, 4, 5, and 6 if repetitions

(a) are not allowed? (b) are allowed?

63 Selecting test questions

(a) If a student must answer 8 of 12 questions on an ex-
amination, how many different selections of questions
are possible?

(b) How many selections are possible if the first three
questions must be answered?

sn

sn�1

sn sn�1

s1

s3

s2

s1 s3 s2

s1 � 1
sn�1 � f � sn

0 � f � 1
sn
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64 Color arrangements If six black, five red, four white, and
two green disks are to be arranged in a row, what is the
number of possible color arrangements?

65 If are 8 to 5, find and .

66 Coin toss Find the probability that the coins will match if

(a) two boys each toss a coin

(b) three boys each toss a coin

67 Dealing cards If four cards are dealt from a deck, find the
probability that

(a) all four cards will be the same color

(b) the cards dealt will alternate red-black-red-black

68 Raffle probabilities If 1000 tickets are sold for a raffle, find
the probability of winning if an individual purchases

(a) 1 ticket (b) 10 tickets (c) 50 tickets

69 Coin toss If four coins are flipped, find the probability and
the odds of obtaining one head and three tails.

70 True-or-false quiz A quiz consists of six true-or-false ques-
tions; at least four correct answers are required for a pass-
ing grade. If a student guesses at each answer, what is the
probability of

(a) passing? (b) failing?

P�E�O�E��O�E�

71 Die and card probabilities If a single die is tossed and 
then a card is drawn from a deck, what is the probability of
obtaining

(a) a 6 on the die and the king of hearts?

(b) a 6 on the die or the king of hearts?

72 Population demographics In a town of 5000 people, 1000
are over 60 years old and 2000 are female. It is known that
40% of the females are over 60. What is the probability that
a randomly chosen individual from the town is either female
or over 60?

73 Backgammon moves In the game of backgammon, players
are allowed to move their counters the same number of
spaces as the sum of the dots on two dice. However, if 
a double is rolled (that is, both dice show the same number
of dots), then players may move their counters twice the sum
of the dots. What is the probability that a player will be able
to move his or her counters at least 10 spaces on a given roll?

74 Games in a series Two equally matched baseball teams are
playing a series of games. The first team to win four games
wins the series. Find the expected number of games in the
series.

C H A P T E R  1 0  D I S C U S S I O N  E X E R C I S E S

1 A test question lists the first four terms of a sequence as 2,
4, 6, and 8 and asks for the fifth term. Show that the fifth
term can be any real number a by finding the nth term of a
sequence that has for its first five terms 2, 4, 6, 8, and a.

2 Decide whether should be replaced by or in

n

for the statement to be true when , where j is the small-
est positive integer for which the statement is true. Find j.

3 Determine the largest factorial that your calculator can com-
pute. Some typical values are 69! and 449!. Speculate as to
why these numbers are the maximum values that your cal-
culator can compute.

n 
 j

�ln n�3


�

4 Find a relationship between the coefficients in the expan-
sion of and the number of distinct subsets of an 
n-element set.

5 Rebounding ball When a ball is dropped from a height of
h feet, it reaches the ground in seconds. The ball re-
bounds to a height of d feet in seconds. If a rubber
ball is dropped from a height of 10 feet and rebounds to
one-half of its height after each fall, for approximately how
many seconds does the ball travel?

6 Slot tournament A slot tournament will be held over a 
30-day month, eight hours each day, with 36 contestants
each hour. The prize structure is as follows:

2d�4
2h�4

�a � b�n

(continued)
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There is also a daily prize awarded as follows: $250 for
first, $100 for second, and $50 for third. How much would
you expect to pay for an entry fee if the tournament is to 
be fair?

7 Prize money Suppose that the tenth prize of a $1600 tour-
nament will be $100 and each place should be worth ap-
proximately 10% more than the next place. Discuss the
realistic distribution of prize values if they are rounded to
the nearest penny, dollar, five dollars, and ten dollars.

8 Pizza toppings A pizza parlor sponsored an advertisement
claiming that it gave you a total of 1,048,576 possible ways
to order 2 pizzas, with up to 5 toppings on each. Discuss
how the company computed the number of possible ways to
order, and determine how many toppings are available.

9 Powerball Powerball is a popular lottery game played in
many states. The player selects five integers from 1 to 55 and
one integer from 1 to 42. These numbers correspond to five
white balls and one red Powerball drawn by the Multi-State
Lottery Association. To win the jackpot, the player must
match all six numbers. The prizes for all paying matches are
listed in the table.

(a) What is the probability of winning the jackpot?

(b) What is the probability of winning any prize?

(c) What is the expected value of the game without the
jackpot?

(d) How much does the jackpot need to be worth for this
lottery to be considered a fair game?

10 Probability and odds confusion Analyze the following
statement: “There is a 20% chance that a male applicant
will be admitted, but the odds are three times more favor-
able for a female applicant.” What is the probability that a
female applicant will be admitted?

11 Let in

and discuss the result.

12 Investigate the partial sums of

and discuss them.

13 (a) Examine the following identities for tan nx in terms of
tan x:

By using a pattern formed by the three identities, pre-
dict an identity for tan 5x in terms of tan x.

(b) Listed below are identities for cos 2x and sin 2x:

Write similar identities for cos 3x and sin 3x and then
cos 4x and sin 4x. Use a pattern to predict identities for
cos 5x and sin 5x.

sin 2x � 2 cos x sin x
cos 2x � 1 cos2 x �1 sin2 x

 tan 4x �
4 tan x � 4 tan3 x

1 � 6 tan2 x � tan4 x

 tan 3x �
3 tan x � tan3 x

1 � 3 tan2 x

 tan 2x �
2 tan x

1 � tan2 x

"�
n�0

(�1)n
33/2

23n�2 � 2

3n � 1
�

1

3n � 2�

(a � b)n � "n
k�0
�n

k�an�kbk

a � 0 and b � 1

Match Prize

5 white and red jackpot

5 white $200,000

4 white and red $10,000

4 white $100

3 white and red $100

3 white $7

2 white and red $7

1 white and red $4

red only $3

Place 1st 2nd 3rd 4th 5th

Prize $ 4000 2000 1500 1000 800

Place 6th 7th 8th 9th 10th

Prize $ 600 500 400 300 200

Place 11th– 51st– 101st– 301st–
50th 100th 300th 500th

Prize $ 100 75 50 25



Plane geometry includes the study of figures—such as lines, circles, and tri-

angles—that lie in a plane. Theorems are proved by reasoning deductively

from certain postulates. In analytic geometry, plane geometric figures are

investigated by introducing coordinate systems and then using equations

and formulas. If the study of analytic geometry were to be summarized by

means of one statement, perhaps the following would be appropriate: Given

an equation, find its graph, and conversely, given a graph, find its equation.

In this chapter we shall apply coordinate methods to several basic plane

figures.

11.1 Parabolas

11.2 Ellipses

11.3 Hyperbolas

11.4 Plane Curves and

Parametric Equations

11.5 Polar Coordinates

11.6 Polar Equations of

Conics

11.1 Parabolas

11.2 Ellipses

11.3 Hyperbolas

11.4 Plane Curves and

Parametric Equations

11.5 Polar Coordinates

11.6 Polar Equations of

Conics

11
Topics from 

Analytic Geometry



The conic sections, also called conics, can be obtained by intersecting a 
double-napped right circular cone with a plane. By varying the position of the
plane, we obtain a circle, an ellipse, a parabola, or a hyperbola, as illustrated
in Figure 1.

Figure 1
(a) Circle (b) Ellipse (c) Parabola (d) Hyperbola

Degenerate conics are obtained if the plane intersects the cone in only one
point or along either one or two lines that lie on the cone. Conic sections were
studied extensively by the ancient Greeks, who discovered properties that en-
able us to state their definitions in terms of points and lines, as we do in our
discussion.

From our work in Section 3.6, if , the graph of 
is a parabola with a vertical axis. We shall next state a general definition of a
parabola and derive equations for parabolas that have either a vertical axis or
a horizontal axis.

We shall assume that F is not on l, for this would result in a line. If P is a
point in the plane and is the point on l determined by a line through P thatP�

y � ax2 � bx � ca � 0

l
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11.1
Parabolas

Definition of a Parabola A parabola is the set of all points in a plane equidistant from a fixed
point F (the focus) and a fixed line l (the directrix) that lie in the plane.



is perpendicular to l (see Figure 2), then, by the preceding definition, P is on
the parabola if and only if the distances and are equal. The
axis of the parabola is the line through F that is perpendicular to the directrix.
The vertex of the parabola is the point V on the axis halfway from F to l. The
vertex is the point on the parabola that is closest to the directrix.

To obtain a simple equation for a parabola, place the y-axis along the axis
of the parabola, with the origin at the vertex V, as shown in Figure 3. In this
case, the focus F has coordinates for some real number , and the
equation of the directrix is . (The figure shows the case .) By the
distance formula, a point is on the graph of the parabola if and only if

—that is, if

We square both sides and simplify:

An equivalent equation for the parabola is

We have shown that the coordinates of every point on the parabola
satisfy . Conversely, if is a solution of , then by re-
versing the previous steps we see that the point is on the parabola.

If , the parabola opens upward, as in Figure 3. If , the
parabola opens downward. The graph is symmetric with respect to the y-axis,
since substitution of for x does not change the equation .

If we interchange the roles of x and y, we obtain

or, equivalently,

This is an equation of a parabola with vertex at the origin, focus ,
and opening right if or left if . The equation of the directrix is

.
For convenience we often refer to “the parabola ” (or )

instead of “the parabola with equation ” (or ).
The next chart summarizes our discussion.

y2 � 4pxx 2 � 4py
y2 � 4pxx2 � 4py

x � �p
p � 0p � 0

F� p, 0�

x �
1

4p
y2.y2 � 4px

x2 � 4py�x

p � 0p � 0
�x, y�

x2 � 4py�x, y�x2 � 4py
�x, y�

y �
1

4p
x2.

x2 � 4py

x2 � y2 � 2py � p2 � y2 � 2py � p2

x2 � � y � p�2 � � y � p�2

2�x � 0�2 � � y � p�2 � 2�x � x�2 � � y � p�2.

d�P, P��d�P, F� �
P�x, y�

p � 0y � �p
p � 0�0, p�

d�P, P��d�P, F�
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Figure 2

P

V

Axis

Directrix

F

P�

l

Figure 3

P(x, y)

V
P�(x, �p)y � �p

F (0, p)

x2 � 4py

y

x



We see from the chart that for any nonzero real number a, the graph of the
standard equation or is a parabola with vertex .
Moreover, or, equivalently, , where is the distance
between the focus F and vertex V. To find the directrix l, recall that l is also a
distance from V.

E X A M P L E  1 Finding the focus and directrix of a parabola

Find the focus and directrix of the parabola , and sketch its graph.

S O L U T I O N The equation has the form , with . As in the
preceding chart, , and hence

p �
1

4a
�

1

4��
1
6 � �

1

�
4
6

� �
3

2
.

a � 1��4p�
a � �

1
6y � ax2

y � �
1
6 x2

� p �

� p �p � 1��4a�a � 1��4p�
V�0, 0�x � ay2y � ax2

730 C H A P T E R  1 1  T O P I C S  F R O M  A N A L Y T I C  G E O M E T R Y

Parabolas with Vertex V(0, 0)

Equation, focus, directrix Graph for p > 0 Graph for p < 0

or

Focus:
Directrix:

or

Focus:
Directrix: x � �p

F� p, 0�

x �
1

4p
y2y2 � 4px

y � �p
F�0, p�

y �
1

4p
x2x2 � 4py

y

x

F

V

p

� p �

y

xF

V

y

xFV

p � p �

y

xF V



Thus, the parabola opens downward and has focus , as illustrated in
Figure 4. The directrix is the horizontal line , which is a distance above
V, as shown in the figure.

E X A M P L E  2 Finding an equation of a parabola 
satisfying prescribed conditions

(a) Find an equation of a parabola that has vertex at the origin, opens right,
and passes through the point .

(b) Find the focus of the parabola.

S O L U T I O N

(a) The parabola is sketched in Figure 5. An equation of a parabola with ver-
tex at the origin that opens right has the form for some number a. If

is on the graph, then we can substitute 7 for x and for y to find a:

or

Hence, an equation for the parabola is .

(b) The focus is a distance p to the right of the vertex. Since , we have

Thus, the focus has coordinates . L

If we take a standard equation of a parabola (of the form ) and
replace x with and y with , then

(∗)

From our discussion of translations in Section 3.5, we recognize that the graph
of the second equation can be obtained from the graph of the first equation by
shifting it h units to the right and k units up—thereby moving the vertex from

to . Squaring the left-hand side of (∗) and simplifying leads to an
equation of the form , where a, b, and c are real numbers.

Similarly, if we begin with , it may be written in the
form . In the following chart has been placed in the
first quadrant, but the information given in the leftmost column holds true re-
gardless of the position of V.

V�h, k�x � ay2 � by � c
� y � k�2 � 4p�x � h�

y � ax2 � bx � c
�h, k��0, 0�

x2 � 4py becomes �x � h�2 � 4p� y � k�.

y � kx � h
x2 � 4py

� 9
28 , 0�

p �
1

4a
�

1

4�7
9� �

9

28
.

a �
7
9

x �
7
9 y2

a �
7
97 � a��3�2,

�3P�7, �3�
x � ay2

P�7, �3�

3
2y �

3
2

F�0, �
3
2 �
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Figure 4

y

x

y � w

F�0, �w�

y � �Zx2

Figure 5

y

x

P(7, �3)

L



E X A M P L E  3 Sketching a parabola with a horizontal axis

Discuss and sketch the graph of .

S O L U T I O N The equation can be written in the form shown in the second
row of the preceding chart, , so we see from the chart 
that the graph is a parabola with a horizontal axis. We first write the given
equation as

and then complete the square by adding to both sides:

� y � 4�2 � 2�x � 3�

y2 � 8y � 16 � 2x � 6

�1
2 �8�	2

� 16

y2 � 8y �   � 2x � 22 �   

x � ay2 � by � c

2x � y2 � 8y � 22
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Parabolas with Vertex V(h, k)

Equation, focus, directrix Graph for p > 0 Graph for p < 0

or

where

Focus:

Directrix:

or

where

Focus:

Directrix: x � h � p

F�h � p, k�

p �
1

4a

x � ay2 � by � c,
� y � k�2 � 4p�x � h�

y � k � p

F�h, k � p�

p �
1

4a

y � ax 2 � bx � c,
�x � h�2 � 4p� y � k� y

x

F p
V(h, k)

� p �

y

x

F

V(h, k)

y

x

F

p

V(h, k)

� p �

y

x

F

V(h, k)



Referring to the last chart, we see that , , and or, equiva-
lently, . This gives us the following.

The parabola is sketched in Figure 6. L

E X A M P L E  4 Finding an equation of a parabola given its vertex and directrix

A parabola has vertex and directrix . Express the equation of
the parabola in the form .

S O L U T I O N The vertex and directrix are shown in Figure 7. The dashes in-
dicate a possible position for the parabola. The last chart shows that an equa-
tion of the parabola is

with and and with p equal to negative 3, since V is 3 units below
the directrix. This gives us

The last equation can be expressed in the form , as follows:

L

An important property is associated with a tangent line to a parabola. (A
tangent line to a parabola is a line that has exactly one point in common with
the parabola but does not cut through the parabola.) Suppose l is the tangent
line at a point on the graph of , and let F be the focus. As in
Figure 8, let denote the angle between l and the line segment FP, and let 
denote the angle between l and the indicated horizontal half-line with end-
point P. It can be shown that . This reflective property has many appli-
cations. For example, the shape of the mirror in a searchlight is obtained by 
revolving a parabola about its axis. The resulting three-dimensional surface is
said to be generated by the parabola and is called a paraboloid. The focus of
the paraboloid is the same as the focus of the generating parabola. If a light
source is placed at F, then, by a law of physics (the angle of reflection equals
the angle of incidence), a beam of light will be reflected along a line parallel
to the axis (see Figure 9(a)). The same principle is used in the construction of
mirrors for telescopes or solar ovens—a beam of light coming toward the para-
bolic mirror and parallel to the axis will be reflected into the focus (see 

� � �

��
y2 � 4pxP�x1, y1�

y � �
1

12 x2 �
2
3 x �

2
3

 12y � �x2 � 8x � 8

x2 � 8x � 16 � �12y � 24

y � ax2 � bx � c

�x � 4�2 � �12� y � 2�.

k � 2h � �4

�x � h�2 � 4p� y � k�,

y � ax2 � bx � c
y � 5V��4, 2�

 The directrix is x � h � p � 3 �
1
2 , or x �

5
2 .

 The focus is F �h � p, k� � F�3 �
1
2 , �4�, or F�7

2 , �4�.
 The vertex V�h, k� is V�3, �4�.

p �
1
2

4p � 2k � �4h � 3
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Figure 6
y

x

2x � y2 � 8y � 22

V(3, �4) F�r, �4�

Figure 7
y

x

y � 5

V (�4, 2)

Figure 8

F ( p, 0)

y2 � 4px

y

x

b

a

P(x1, y1)

l

Q



Figure 9(b)). Antennas for radar systems, radio telescopes, and field micro-
phones used at football games also make use of this property.

E X A M P L E  5 Locating the focus of a satellite TV antenna

The interior of a satellite TV antenna is a dish having the shape of a (finite) pa-
raboloid that has diameter 12 feet and is 2 feet deep, as shown in Figure 10.
Find the distance from the center of the dish to the focus.

Figure 10 Figure 11

S O L U T I O N The generating parabola is sketched on an xy-plane in Fig-
ure 11, where we have taken the vertex of the parabola at the origin and its axis
along the x-axis. An equation of the parabola is , where p is the re-
quired distance from the center of the dish to the focus. Since the point 
is on the parabola, we obtain

L62 � 4p � 2, or p �
36
8 � 4.5 ft.

�2, 6�
y2 � 4px

y

x

(2, 6)
12�2�
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Figure 9
(a) Searchlight mirror

Light source

Light rays

(b) Telescope mirror

Eye piece

Light rays

Exer. 1–12: Find the vertex, focus, and directrix of the
parabola. Sketch its graph, showing the focus and the 
directrix.

1

2

3 2y2 � �3x

20x � y2

8y � x2

4

5

6

7 � y � 2�2 �
1
4 �x � 3�

�x � 3�2 �
1
2 � y � 1�

�x � 2�2 � �8� y � 1�

x 2 � �3y

11.1 E x e r c i s e s
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8

9

10

11

12

Exer. 13–18: Find an equation for the parabola shown in
the figure.

13 14

15 16

17 18
y

x

F (�2, 1)

x � 3

y

x

F (3, 2)

y � �1

P

V
(3, �2)

y

x

V(�2, 3)
P(2, 2)

y

x

y

x

F

V

y

x

V F

y2 � 4y � 2x � 4 � 0

x 2 � 20y � 10

y2 � 14y � 4x � 45 � 0

y � x2 � 4x � 2

� y � 1�2 � �12�x � 2� Exer. 19–30: Find an equation of the parabola that satisfies
the given conditions.

19 Focus , directrix 

20 Focus , directrix 

21 Focus , directrix 

22 Focus , directrix 

23 Vertex , directrix 

24 Vertex , directrix 

25 Vertex focus 

26 Vertex , focus 

27 Vertex at the origin, symmetric to the y-axis, and passing
through the point 

28 Vertex at the origin, symmetric to the y-axis, and passing
through the point 

29 Vertex , axis parallel to the x-axis, and passing
through the point 

30 Vertex , axis parallel to the x-axis, and y-intercept 1

Exer. 31–34: Find an equation for the set of points in an
xy-plane that are equidistant from the point P and the line l.

31 ; l: 32 ; l:

33 ; l: 34 ; l:

Exer. 35–38: Find an equation for the indicated half of
the parabola.

35 Lower half of 

36 Upper half of 

37 Right half of 

38 Left half of 

Exer. 39–40: Find an equation for the parabola that has a
vertical axis and passes through the given points.

39 , ,

40 , , R��2, 14�Q�1, �7�P�3, �1�

R�1, 6�Q��2, �3�P�2, 5�

�x � 3�2 � y � 2

�x � 1�2 � y � 4

� y � 2�2 � x � 4

� y � 1�2 � x � 3

y � 4P�5, �2�x � �2P��6, 3�

x � 1P�7, 0�y � �3P�0, 5�

V�3, �2�

�5, 9�
V��3, 5�

�6, 3�

�2, �3�

F�1, 0�V�1, �2�

F��4, 0�V��1, 0�

y � 5V��2, 3�

x � 2V�3, �5�

y � 1F��3, �2�

y � �2F�6, 4�

y � 4F�0, �4�

x � �2F�2, 0�



Exer. 41–42: Find an equation for the parabola that has a
horizontal axis and passes through the given points.

41 , ,

42 , ,

43 Telescope mirror A mirror for a reflecting telescope has
the shape of a (finite) paraboloid of diameter 8 inches and
depth 1 inch. How far from the center of the mirror will the
incoming light collect?

Exercise 43

44 Antenna dish A satellite antenna dish has the shape of a 
paraboloid that is 10 feet across at the open end and is 3 feet
deep. At what distance from the center of the dish should
the receiver be placed to receive the greatest intensity of
sound waves?

45 Searchlight reflector A searchlight reflector has the shape
of a paraboloid, with the light source at the focus. If the 
reflector is 3 feet across at the opening and 1 foot deep,
where is the focus?

46 Flashlight mirror A flashlight mirror has the shape of a
paraboloid of diameter 4 inches and depth inch, as shown
in the figure. Where should the bulb be placed so that the
emitted light rays are parallel to the axis of the paraboloid?

Exercise 46

47 Receiving dish A sound receiving dish used at outdoor
sporting events is constructed in the shape of a paraboloid,
with its focus 5 inches from the vertex. Determine the width
of the dish if the depth is to be 2 feet.

3
4

R�12, �1�Q�6, 2�P�2, 1�

R�5, �1�Q�11, �2�P��1, 1�

48 Receiving dish Work Exercise 47 if the receiver is 9 inches
from the vertex.

49 Parabolic reflector

(a) The focal length of the (finite) paraboloid in the figure
is the distance p between its vertex and focus. Express
p in terms of r and h.

(b) A reflector is to be constructed with a focal length 
of 10 feet and a depth of 5 feet. Find the radius of the
reflector.

Exercise 49

50 Confocal parabolas The parabola has its
focus at the origin and axis along the x-axis. By assign-
ing different values to p, we obtain a family of confocal
parabolas, as shown in the figure. Such families occur in the
study of electricity and magnetism. Show that there are ex-
actly two parabolas in the family that pass through a given
point if .

Exercise 50

y

x

y1 � 0P�x1, y1�

y2 � 4p�x � p�

h

r
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51 Jodrell Bank radio telescope A radio telescope has the
shape of a paraboloid of revolution, with focal length p
and diameter of base 2a. From calculus, the surface area 
S available for collecting radio waves is

One of the largest radio telescopes, located in Jodrell
Bank, Cheshire, England, has diameter 250 feet and focal
length 75 feet. Approximate S to the nearest thousand
square feet.

52 Satellite path A satellite will travel in a parabolic path near
a planet if its velocity v in meters per second satisfies the
equation , where r is the distance in meters 
between the satellite and the center of the planet and k is a 
positive constant. The planet will be located at the focus of
the parabola, and the satellite will pass by the planet once.
Suppose a satellite is designed to follow a parabolic path and
travel within 58,000 miles of Mars, as shown in the figure.

(a) Determine an equation of the form that de-
scribes its flight path.

x � ay2

v � 22k�r

S �
8�p2

3 ��1 �
a2

4p2�3/2

� 1�.

Exercise 52

(b) For Mars, . Approximate the maxi-
mum velocity of the satellite.

(c) Find the velocity of the satellite when its y-coordinate
is 100,000 miles.

k � 4.28 � 1013

y

x

Mars

58,000 miles

An ellipse may be defined as follows. (Foci is the plural of focus.)

We can construct an ellipse on paper as follows: Insert two pushpins in the
paper at any points F and , and fasten the ends of a piece of string to the pins.
After looping the string around a pencil and drawing it tight, as at point P in
Figure 1, move the pencil, keeping the string tight. The sum of the distances

and is the length of the string and hence is constant; thus, the
pencil will trace out an ellipse with foci at F and . The midpoint of the seg-
ment is called the center of the ellipse. By changing the positions of F
and while keeping the length of the string fixed, we can vary the shape of the
ellipse considerably. If F and are far apart so that is almost the same
as the length of the string, the ellipse is flat. If is close to zero, the el-
lipse is almost circular. If , we obtain a circle with center F.F � F�

d�F, F��
d�F, F��F�

F�
F�F

F�
d�P, F��d�P, F�

F�

11.2
Ellipses

Definition of an Ellipse An ellipse is the set of all points in a plane, the sum of whose distances
from two fixed points (the foci) in the plane is a positive constant.



To obtain a simple equation for an ellipse, choose the x-axis as the line
through the two foci F and , with the center of the ellipse at the origin. If 
F has coordinates with , then, as in Figure 2, has coordi-
nates . Hence, the distance between F and is 2c. The constant sum
of the distances of P from F and will be denoted by 2a. To obtain points
that are not on the x-axis, we must have —that is, . By defini-
tion, is on the ellipse if and only if the following equivalent equations
are true:

Squaring both sides of the last equation gives us

or

Squaring both sides again yields

or

Dividing both sides by , we obtain

Recalling that and therefore , we let

This substitution gives us the equation

Since and , it follows that and hence .
We have shown that the coordinates of every point on the ellipse in

Figure 3 satisfy the equation . Conversely, if is a
solution of this equation, then by reversing the preceding steps we see that the
point is on the ellipse.�x, y�

�x, y��x2�a2� � � y2�b2� � 1
�x, y�

a � ba2 � b2b2 � a2 � c2c � 0

x2

a2
�

y2

b2
� 1.

b � 2a2 � c2, or b2 � a2 � c2.

a2 � c2 � 0a � c

x2

a2
�

y2

a2 � c2
� 1.

a2�a2 � c2�

x2�a2 � c2� � a2y2 � a2�a2 � c2�.

a2�x2 � 2cx � c2 � y2� � a4 � 2a2cx � c2x2,

a2�x � c�2 � y2 � a2 � cx.

x2 � 2cx � c2 � y2 � 4a2 � 4a2�x � c�2 � y2 � x2 � 2cx � c2 � y2,

2�x � c�2 � y2 � 2a � 2�x � c�2 � y2

2�x � c�2 � � y � 0�2 � 2�x � c�2 � � y � 0�2 � 2a

d�P, F� � d�P, F�� � 2a

P�x, y�
a � c2a � 2c

F�
F���c, 0�

F�c � 0�c, 0�
F�
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Figure 2

P(x, y)

F�(�c, 0) F(c, 0)

y

x

Figure 1

P

FF�

Note that if , then , and
we have a circle. Also note that if

, then , and we have a 
degenerate conic—that is, a point.

b � 0c � a

b2 � a2c � 0
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Figure 3

We may find the x-intercepts of the ellipse by letting in the equa-
tion. Doing so gives us , or . Consequently, the x-intercepts
are a and . The corresponding points and on the graph are
called the vertices of the ellipse (see Figure 3). The line segment is called
the major axis. Similarly, letting in the equation, we obtain ,
or . Hence, the y-intercepts are b and . The segment between

and is called the minor axis of the ellipse. The major axis
is always longer than the minor axis, since .

Applying tests for symmetry, we see that the ellipse is symmetric with re-
spect to the x-axis, the y-axis, and the origin.

Similarly, if we take the foci on the y-axis, we obtain the equation

In this case, the vertices of the ellipse are and the endpoints of the
minor axis are , as shown in Figure 4.

The preceding discussion may be summarized as follows.
��b, 0�

�0, �a�

x2

b2
�

y2

a2
� 1.

a � b
M�0, b�M��0, �b�

�by2 � b2

y2�b2 � 1x � 0
V�V

V���a, 0�V�a, 0��a
x2 � a2x2�a2 � 1

y � 0

F�(�c, 0) F(c, 0)

y

x

M(0, b)

M�(0, �b)

V (a, 0)V �(�a, 0)

x2 y2

b2a2 � � 1

Figure 4

y

x
M(b, 0)M�(�b, 0)

V (0, a)

V �(0, �a)

x2 y2

a2b2 � � 1

F(0, c)

F�(0, �c)

Standard Equations 
of an Ellipse with 

Center at the Origin

The graph of

where , is an ellipse with center at the origin. The length of the
major axis is 2a, and the length of the minor axis is 2b. The foci are a dis-
tance c from the origin, where .c2 � a2 � b2

a � b � 0

x2

a2
�

y2

b2
� 1 or    

x2

b2
�

y2

a2
� 1,



E X A M P L E  1 Sketching an ellipse with center at the origin

Sketch the graph of , and find the foci.

S O L U T I O N To write this equation in standard form, divide each term by 18
to obtain a constant of 1:

or

The graph is an ellipse with center at the origin and foci on a coordinate axis.
From the last equation, since , the major axis and the foci are on the 
x-axis. With , we have , and the vertices are and .
Since , and endpoints of the minor axis are and 

. Note that in this case, V and are also the x-intercepts, and M
and are also the y-intercepts.

We now sketch the graph with major axis of length (shown
in red in Figure 6) and minor axis of length (shown in
green).

To find the foci, we let and and calculate

Thus, , and the foci are and L

E X A M P L E  2 Sketching an ellipse with center at the origin

Sketch the graph of , and find the foci.9x2 � 4y2 � 25

F���27, 0�.F�27, 0�c � 27

c2 � a2 � b2 � 32 � �22�2
� 7.

b � 22a � 3

2b � 222 
 2.8
2a � 2(3) � 6

M�
V�M��0, �22�

M�0, 22�b2 � 2, b � 22
V�(�3, 0)V(3, 0)a � 3a2 � 9

9 � 2

x2

9
�

y2

2
� 1

2x2

18
�

9y2

18
�

18

18
,

2x2 � 9y2 � 18
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Figure 5

a

c

b

a

y

x

To help you remember the relationship
for the foci, think of the right triangle
formed by a ladder of length a leaning
against a building, as shown in Fig-
ure 5. By the Pythagorean Theorem,

. In this position, the
ends of the ladder are at a focus and
an endpoint of the minor axis. If the
ladder falls, the ends of the ladder
will be at the center of the ellipse and
an endpoint of the major axis.

b2 � c2 � a2.

Figure 6

y

xF�

major
(0, �2)

(0, ��2)

(3, 0)(�3, 0)

2x2 � 9y2 � 18

minor

F
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Figure 7

F�

major

minor

F

y

x

9x2 � 4y2 � 25

��f, 0�

�0, e�

�f, 0�

�0, �e�

S O L U T I O N Divide each term by 25 to get the standard form:

or

The graph is an ellipse with center at the origin. Since , the major axis

and the foci are on the y-axis. With and hence the vertices are

and (also the y-intercepts). Since , and end-

points of the minor axis are and (also the x-intercepts).

Sketch the graph with major axis of length (shown in red

in Figure 7) and minor axis of length (shown in green).

To find the foci, we let and and calculate

Thus, , and the foci are approximately 
and .

E X A M P L E  3 Finding an equation of an ellipse
given its vertices and foci

Find an equation of the ellipse with vertices and foci .

S O L U T I O N Since the foci are on the x-axis and are equidistant from the ori-
gin, the major axis is on the x-axis and the ellipse has center . Thus, a
general equation of an ellipse is

Since the vertices are , we conclude that . Since the foci are
, we have . Hence,

and an equation of the ellipse is

L

In certain applications it is necessary to work with only one-half of an el-
lipse. The next example indicates how to find equations in such cases.

E X A M P L E  4 Finding equations for half-ellipses

Find equations for the upper half, lower half, left half, and right half of the
ellipse .9x2 � 4y2 � 25

x 2

16
�

y2

12
� 1.

b2 � a2 � c2 � 42 � 22 � 12,

c � 2��2, 0�
a � 4��4, 0�

x2

a2
�

y2

b2
� 1.

�0, 0�

��2, 0���4, 0�

F�(0, �1.86)F(0, 1.86)
c � 2125�36 � 525�6 
 1.86

c2 � a2 � b2 � �5
2�2

� �5
3�2

�
125
36 .

b �
5
3a �

5
2

2b � 2�5
3� � 31

3

2a � 2�5
2� � 5

M���5
3, 0�M�5

3, 0�
b2 �

25
9 , b �

5
3V��0, �

5
2�V�0, 5

2�
a2 �

25
4 , a �

5
2,

25
4 �

25
9

x2

25
9

�
y2

25
4

� 1
9x2

25
�

4y2

25
�

25

25
,

L



S O L U T I O N The graph of the entire ellipse was sketched in Figure 7. To find
equations for the upper and lower halves, we solve for y in terms of x, as 
follows:

given

solve for 

take the square root

Since , it follows that equations for the upper and lower
halves are and , respectively, as shown
in Figure 8.

To find equations for the left and right halves, we use a procedure similar
to that above and solve for x in terms of y, obtaining

The left half of the ellipse has the equation , and the right
half is given by , as shown in Figure 9.

Figure 9

L

If we take a standard equation of an ellipse and re-
place x with and y with , then

(∗)

The graph of (∗) is an ellipse with center . Squaring terms in (∗) and sim-
plifying gives us an equation of the form

where the coefficients are real numbers and both A and C are positive. Con-
versely, if we start with such an equation, then by completing squares we can

Ax 2 � Cy2 � Dx � Ey � F � 0,

�h, k�

x2

a2
�

y2

b2
� 1 becomes  

�x � h�2

a2
�

� y � k�2

b2
� 1.

y � kx � h
�x2�a2 � y2�b2 � 1�

y

x

x � �a� 25 � 4y2x � �a� 25 � 4y2

x �
1
3225 � 4y2

x � �
1
3 225 � 4y2

x � ��25 � 4y2

9
� �

1

3
225 � 4y2.

y � �
1
2 225 � 9x2y �

1
2225 � 9x2

225 � 9x 2 
 0

y � ��25 � 9x2

4
� �

1

2
225 � 9x2

y2y2 �
25 � 9x2

4

 9x2 � 4y2 � 25
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Figure 8

y

x

y � �q� 25 � 9x2

y � �q� 25 � 9x2
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(continued)

obtain a form that helps give us the center of the ellipse and the lengths of the
major and minor axes. This technique is illustrated in the next example.

E X A M P L E  5 Sketching an ellipse with center 

Discuss and sketch the graph of the equation

S O L U T I O N We begin by grouping the terms containing x and those con-
taining y:

Next, we factor out the coefficients of and as follows:

We now complete the squares for the expressions within parentheses:

By adding 4 to the expression within the first parentheses we have added 64 to
the left-hand side of the equation, and hence we must compensate by adding
64 to the right-hand side. Similarly, by adding 1 to the expression within the
second parentheses we have added 9 to the left-hand side, and consequently
we must also add 9 to the right-hand side. The last equation may be written

Dividing by 144 to obtain 1 on the right-hand side gives us

The graph of the last equation is an ellipse with center and major
axis on the vertical line (since ). Using and gives
us the ellipse in Figure 10.

Figure 10

y

x

(1, 1)

(�2, �3)

(�5, 1)

(�2, 5)

(�2, 1)

4

3

(x � 2)2

9
� � 1

(y � 1)2

16

b � 3a � 49 � 16x � �2
C��2, 1�

�x � 2�2

9
�

� y � 1�2

16
� 1.

16�x � 2�2 � 9� y � 1�2 � 144.

16�x2 � 4x � 4� � 9�y2 � 2y � 1� � 71 � 16 � 4 � 9 � 1

16�x2 � 4x �   � � 9� y2 � 2y �   � � 71

y2x2

�16x2 � 64x� � �9y2 � 18y� � 71

16x2 � 9y2 � 64x � 18y � 71 � 0.

(h, k)



To find the foci, we first calculate

The distance from the center of the ellipse to the foci is . Since the
center is , the foci are . L

Ellipses can be very flat or almost circular. To obtain information about
the roundness of an ellipse, we sometimes use the term eccentricity, which is
defined as follows, with a, b, and c having the same meanings as before.

Consider the ellipse , and suppose that the length
2a of the major axis is fixed and the length 2b of the minor axis is variable
(note that ). Since is positive, and hence

. Dividing both sides of the last inequality by a gives us
, or . If b is close to 0 (c is close to a), then

, , and the ellipse is very flat. This case is illustrated in
Figure 11(a), with , , and . If b is close to a (c is close
to 0), then , , and the ellipse is almost circular. This case
is illustrated in Figure 11(b), with , , and .

Figure 11
(a) Eccentricity almost 1 (b) Eccentricity almost 0

After many years of analyzing an enormous amount of empirical data, the
German astronomer Johannes Kepler (1571–1630) formulated three laws that
describe the motion of planets about the sun. Kepler’s first law states that the

y

x

y

x

e 
 0.01b � 1.9999a � 2
e 
 02a2 � b2 
 0

e 
 0.99b � 0.3a � 2
e 
 12a2 � b2 
 a

0 � e � 12a2 � b2�a � 1
2a2 � b2 � a

a2 � b2 � a2b20 � b � a

�x2�a2� � � y2�b2� � 1

��2, 1 � 27���2, 1�
c � 27

c2 � a2 � b2 � 42 � 32 � 7.
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Definition of Eccentricity The eccentricity e of an ellipse is

e �
distance from center to focus

distance from center to vertex
�

c

a
�
2a2 � b2

a
.

In Figure 11(a), the foci are close to
the vertices.

In Figure 11(b), the foci are close to
the origin.

Note that the ellipse in Figure 5 has
eccentricity and appears to
be nearly circular.

5
13 
 0.38



orbit of each planet in the solar system is an ellipse with the sun at one focus.
Most of these orbits are almost circular, so their corresponding eccentricities
are close to 0. To illustrate, for Earth, ; for Mars, ; and for
Uranus, . The orbits of Mercury and Pluto are less circular, with ec-
centricities of 0.206 and 0.249, respectively.

Many comets have elliptical orbits with the sun at a focus. In this case the
eccentricity e is close to 1, and the ellipse is very flat. In the next example we
use the astronomical unit (AU)—that is, the average distance from Earth to the
sun—to specify large distances .

E X A M P L E  6 Approximating a distance in an elliptical path

Halley’s comet has an elliptical orbit with eccentricity . The closest
that Halley’s comet comes to the sun is 0.587 AU. Approximate the maximum
distance of the comet from the sun, to the nearest 0.1 AU.

S O L U T I O N Figure 12 illustrates the orbit of the comet, where c is the
distance from the center of the ellipse to a focus (the sun) and 2a is the length
of the major axis.

Figure 12

Since is the minimum distance between the sun and the comet, we
have (in AU)

Since , we obtain the following:

multiply by a

substitute for a

multiply

subtract 0.967c

factor out c

solve for c

Since , we obtain

and the maximum distance between the sun and the comet is

La � c 
 17.8 � 17.2 � 35.0 AU.

a 
 17.2 � 0.587 
 17.8,

a � c � 0.587

c 

0.568

0.033

 17.2

c�1 � 0.967� 
 0.568

c � 0.967c 
 0.568


 0.967c � 0.568

� 0.967�c � 0.587�
c � 0.967a

e � c�a � 0.967

a � c � 0.587, or a � c � 0.587.

a � c

a
c

a

Halley’s comet

Sun

e � 0.967

�1 AU 
 93,000,000 mi�

e 
 0.046
e 
 0.093e 
 0.017
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An ellipse has a reflective property analogous to that of the parabola dis-
cussed at the end of the previous section. To illustrate, let l denote the tangent
line at a point P on an ellipse with foci F and , as shown in Figure 13. If 
is the acute angle between and l and if is the acute angle between FP
and l, it can be shown that . Thus, if a ray of light or sound emanates
from one focus, it is reflected to the other focus. This property is used in the
design of certain types of optical equipment.

If the ellipse with center O and foci and F on the x-axis is revolved
about the x-axis, as illustrated in Figure 14, we obtain a three-dimensional sur-
face called an ellipsoid. The upper half or lower half is a hemi-ellipsoid, as 
is the right half or left half. Sound waves or other impulses that are emitted
from the focus will be reflected off the ellipsoid into the focus F. This prop-
erty is used in the design of whispering galleries—structures with ellipsoidal
ceilings, in which a person who whispers at one focus can be heard at the other
focus. Examples of whispering galleries may be found in the Rotunda of the
Capitol Building in Washington, D.C., and in the Mormon Tabernacle in Salt
Lake City.

The reflective property of ellipsoids (and hemi-ellipsoids) is used in mod-
ern medicine in a device called a lithotripter, which disintegrates kidney stones
by means of high-energy underwater shock waves. After taking extremely ac-
curate measurements, the operator positions the patient so that the stone is at
a focus. Ultra–high frequency shock waves are then produced at the other
focus, and reflected waves break up the kidney stone. Recovery time with this
technique is usually 3–4 days, instead of the 2–3 weeks with conventional
surgery. Moreover, the mortality rate is less than 0.01%, as compared to 2–3%
for traditional surgery (see Exercises 51–52).

F�

F�

� � �
�F�P

�F�
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Figure 14

z

y

x

F � FO

Figure 13

l

b

a

F �

F

P

Exer. 1–14: Find the vertices and foci of the ellipse. Sketch
its graph, showing the foci.

1 2

3 4

5 6

7 8 10y2 � x 2 � 54x 2 � 25y2 � 1

y2 � 9x 2 � 94x 2 � y2 � 16

x 2

45
�

y2

49
� 1

x 2

15
�

y2

16
� 1

x 2

25
�

y2

16
� 1

x 2

9
�

y2

4
� 1

9 10

11

12

13

14 4x 2 � y2 � 2y

25x2 � 4y2 � 250x � 16y � 541 � 0

x 2 � 2y2 � 2x � 20y � 43 � 0

4x 2 � 9y2 � 32x � 36y � 64 � 0

�x � 2�2

25
�

� y � 3�2

4
� 1

�x � 3�2

16
�

� y � 4�2

9
� 1
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Exer. 15–18: Find an equation for the ellipse shown in
the figure.

15

16

17 y

x

V(3, 1)V�(�7, 1)

M�(�2, �1)

M(�2, 3)

y

xVV�

M�

M

y

x

V

V�

M� M

18

Exer. 19–30: Find an equation for the ellipse that has its
center at the origin and satisfies the given conditions.

19 Vertices , foci 

20 Vertices , foci 

21 Vertices , minor axis of length 3

22 Foci , minor axis of length 2

23 Vertices , passing through 

24 Passing through and 

25 Eccentricity , vertices 

26 Eccentricity , vertices on the x-axis,
passing through 

27 x-intercepts , y-intercepts

28 x-intercepts , y-intercepts

29 Horizontal major axis of length 8, minor axis of length 5

30 Vertical major axis of length 7, minor axis of length 6

�4�
1
2

�
1
3�2

�1, 3�

1
2

V�0, �4�3
4

�6, 1��2, 3�

�3, 2�V�0, �6�

F��3, 0�

V�0, �5�

F�0, �2�V�0, �7�

F��5, 0�V��8, 0�

y

x

V(1, 2)

V�(1, �6)

M�(�1, �2) M (3, �2)
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Exer. 31–32: Find the points of intersection of the graphs of
the equations. Sketch both graphs on the same coordinate
plane, and show the points of intersection.

31 32

Exer. 33–36: Find an equation for the set of points in
an xy-plane such that the sum of the distances from F and

is k.

33 , ;

34 , ;

35 , ;

36 , ;

Exer. 37–38: Find an equation for the ellipse with foci F and
that passes through P. Sketch the ellipse.

37 38

Exer. 39–46: Determine whether the graph of the equation
is the upper, lower, left, or right half of an ellipse, and find
an equation for the ellipse.

39 40

41 42

43 x � 1 � 2�1 �
� y � 2�2

9

x �
4
5225 � y2x � �

1
329 � y2

y � �6�1 �
x2

25
y � 11�1 �

x2

49

F �(0, �6)

F(0, 6)

15

5

Py

x

y

xF �(�4, 0) F(4, 0)

P
7 3

F�

k � 20F��0, �8�F�0, 8�

k � 34F��0, �15�F�0, 15�

k � 26F���12, 0�F�12, 0�

k � 10F���3, 0�F�3, 0�

F�

�x2 � 4y2 � 36

x2 � y2 � 12�x2 � 4y2 � 20

x � 2y � 6

44

45

46

47 Dimensions of an arch An arch of a bridge is semi-
elliptical, with major axis horizontal. The base of the arch is
30 feet across, and the highest part of the arch is 10 feet
above the horizontal roadway, as shown in the figure. Find
the height of the arch 6 feet from the center of the base.

Exercise 47

48 Designing a bridge A bridge is to be constructed across a
river that is 200 feet wide. The arch of the bridge is to be
semielliptical and must be constructed so that a ship less
than 50 feet wide and 30 feet high can pass safely through
the arch, as shown in the figure.

(a) Find an equation for the arch.

(b) Approximate the height of the arch in the middle of 
the bridge.

Exercise 48

10 �

30 �

y � �1 � �1 �
�x � 3�2

16

y � 2 � 7�1 �
�x � 1�2

9

x � �2 � 5�1 �
� y � 1�2

16
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49 Earth’s orbit Assume that the length of the major axis of
Earth’s orbit is 186,000,000 miles and that the eccentricity
is 0.017. Approximate, to the nearest 1000 miles, the maxi-
mum and minimum distances between Earth and the sun.

50 Mercury’s orbit The planet Mercury travels in an ellipti-
cal orbit that has eccentricity 0.206 and major axis of
length 0.774 AU. Find the maximum and minimum dis-
tances between Mercury and the sun.

51 Elliptical reflector The basic shape of an elliptical reflector
is a hemi-ellipsoid of height h and diameter k, as shown in
the figure. Waves emitted from focus F will reflect off the
surface into focus .

(a) Express the distances and in terms 
of h and k.

(b) An elliptical reflector of height 17 centimeters is to be
constructed so that waves emitted from F are reflected
to a point that is 32 centimeters from V. Find the
diameter of the reflector and the location of F.

Exercise 51

52 Lithotripter operation A lithotripter of height 15 centi-
meters and diameter 18 centimeters is to be constructed (see
the figure). High-energy underwater shock waves will be
emitted from the focus F that is closest to the vertex V.

(a) Find the distance from V to F.

(b) How far from V (in the vertical direction) should a kid-
ney stone be located?

k

h

F

F�

F�

d�V, F��d�V, F�

F�

Exercise 52

53 Whispering gallery The ceiling of a whispering gallery has
the shape of the hemi-ellipsoid shown in Figure 14, with the
highest point of the ceiling 15 feet above the elliptical floor
and the vertices of the floor 50 feet apart. If two people are
standing at the foci and F, how far from the vertices are
their feet?

54 Oval design An artist plans to create an elliptical design
with major axis and minor axis , centered on a door
that measures , using the method described by
Figure 1. On a vertical line that bisects the door, approxi-
mately how far from each end of the door should the push-
pins be inserted? How long should the string be?

Exercise 54

?

?

80� by 36�
24�60�

F�

F

V

Spinal cord
(cross section)

Kidney

Water

Stone
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The definition of a hyperbola is similar to that of an ellipse. The only change
is that instead of using the sum of distances from two fixed points, we use the
difference.

To find a simple equation for a hyperbola, we choose a coordinate system
with foci at and and denote the (constant) distance by 2a.
The midpoint of the segment (the origin) is called the center of the hy-
perbola. Referring to Figure 1, we see that a point is on the hyperbola
if and only if either of the following is true:

If P is not on the x-axis, then from Figure 1 we see that

because the length of one side of a triangle is always less than the sum of the
lengths of the other two sides. Similarly,

Equivalent forms for the previous two inequalities are

Since the differences on the left-hand sides of these inequalities both equal 
2a and since , the last two inequalities imply that , or

. (Recall that for ellipses we had .)
Next, equations (1) and (2) may be replaced by the single equation

Using the distance formula to find and , we obtain an equation
of the hyperbola:

Employing the type of simplification procedure that we used to derive an equa-
tion for an ellipse, we can rewrite the preceding equation as

Finally, if we let

in the preceding equation, we obtain

x2

a2
�

y2

b2
� 1.

b2 � c2 � a2 with b � 0

x2

a2
�

y2

c2 � a2
� 1.

�2�x � c�2 � � y � 0�2 � 2�x � c�2 � � y � 0�2 � � 2a

d�P, F��d�P, F�
� d�P, F� � d�P, F�) � � 2a.

a � ca � c
2a � 2cd�F�, F� � 2c

d�P, F� � d�P, F�� � d�F�, F� and d�P, F�� � d�P, F� � d�F�, F�.

d�P, F�� � d�F�, F� � d�P, F�.

d�P, F� � d�F�, F� � d�P, F��,

(1) d�P, F�� � d�P, F� � 2a or (2) d�P, F� � d�P, F�� � 2a

P�x, y�
F�F

F���c, 0�F�c, 0�

11.3
Hyperbolas

Definition of a Hyperbola A hyperbola is the set of all points in a plane, the difference of whose dis-
tances from two fixed points (the foci) in the plane is a positive constant.

Figure 1

y

x

P(x, y)

F�(�c, 0) F (c, 0)



We have shown that the coordinates of every point on the hyperbola
in Figure 1 satisfy the equation . Conversely, if is
a solution of this equation, then by reversing steps we see that the point 
is on the hyperbola.

Applying tests for symmetry, we see that the hyperbola is symmetric with
respect to both axes and the origin. We may find the x-intercepts of the hyper-
bola by letting in the equation. Doing so gives us , or ,
and consequently the x-intercepts are a and . The corresponding points

and on the graph are called the vertices of the hyperbola (see
Figure 2). The line segment is called the transverse axis. The graph has
no y-intercept, since the equation has the complex solutions

. The points and are endpoints of the conjugate
axis . The points W and are not on the hyperbola; however, as we shall
see, they are useful for describing the graph.

Figure 2

Solving the equation for y gives us

If or, equivalently, , then there are no points on
the graph. There are points on the graph if or .

It can be shown that the lines are asymptotes for the hyper-
bola. These asymptotes serve as excellent guides for sketching the graph. A
convenient way to sketch the asymptotes is to first plot the vertices ,

and the points , (see Figure 2). If vertical and hori-
zontal lines are drawn through these endpoints of the transverse and conjugate
axes, respectively, then the diagonals of the resulting auxiliary rectangle have

W��0, �b�W�0, b�V���a, 0�
V�a, 0�

y � ��b�a�x
x � �ax 
 aP�x, y�

�x, y��a � x � ax2 � a2 � 0

y � �
b

a
2x2 � a2.

�x2�a2� � � y2�b2� � 1

y

xa

b

y � 
b
a

x
b
a

y �� x

W (0, b)

W �(0, �b)

V (a, 0)V �(�a, 0)

F(c, 0)F �(�c, 0)

W�W�W
W��0, �b�W�0, b�y � �bi

�y2�b2 � 1
V�V

V���a, 0�V�a, 0�
�a

x2 � a2x2�a2 � 1y � 0

�x, y�
�x, y��x2�a2� � � y2�b2� � 1

�x, y�
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slopes and . Hence, by extending these diagonals we obtain the
asymptotes . The hyperbola is then sketched as in Figure 2, using
the asymptotes as guides. The two parts that make up the hyperbola are called
the right branch and the left branch of the hyperbola.

Similarly, if we take the foci on the y-axis, we obtain the equation

In this case, the vertices of the hyperbola are and the endpoints of the
conjugate axis are , as shown in Figure 3. The asymptotes are

(not , as in the previous case), and we now refer to
the two parts that make up the hyperbola as the upper branch and the lower
branch of the hyperbola.

Figure 3

The preceding discussion may be summarized as follows.

y

x

F (0, c)

V (0, a)

V �(0, �a)

F �(0, �c)

W (b, 0)W �(�b, 0)

y � 
a
b

x
a
b

y �� x

y � ��b�a�xy � ��a�b�x
��b, 0�

�0, �a�

y2

a2
�

x2

b2
� 1.

y � ��b�a�x
�b�ab�a
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Standard Equations 
of a Hyperbola with 
Center at the Origin

The graph of

is a hyperbola with center at the origin. The length of the transverse axis is
2a, and the length of the conjugate axis is 2b. The foci are a distance c
from the origin, where .c2 � a2 � b2

x2

a2
�

y2

b2
� 1 or    

y2

a2
�

x2

b2
� 1



Note that the vertices are on the x-axis if the -term has a positive coef-
ficient (the first equation in the above box) or on the y-axis if the -term has
a positive coefficient (the second equation).

E X A M P L E  1 Sketching a hyperbola with center at the origin

Sketch the graph of . Find the foci and equations of the 
asymptotes.

S O L U T I O N From the remarks preceding this example, the graph is a hy-
perbola with center at the origin. To express the given equation in a standard
form, we divide both sides by 36 and simplify, obtaining

Comparing to , we see that 
and ; that is, and . The hyperbola has its vertices on the x-
axis, since there are x-intercepts and no y-intercepts. The vertices and
the endpoints of the conjugate axis determine the auxiliary rectangle
whose diagonals (extended) give us the asymptotes. The graph of the equation
is sketched in Figure 4.

To find the foci, we calculate

Thus, , and the foci are .
The equations of the asymptotes, , can be found by referring to

the graph or to the equations . L

The preceding example indicates that for hyperbolas it is not always true
that , as is the case for ellipses. In fact, we may have , , or

.

E X A M P L E  2 Sketching a hyperbola with center at the origin

Sketch the graph of . Find the foci and equations of the 
asymptotes.

S O L U T I O N To express the given equation in a standard form, we write

Thus,

a2 �
1
4 , b2 �

1
2 , and c2 � a2 � b2 �

3
4 ,

y2

1
4

�
x2

1
2

� 1.

4y2 � 2x2 � 1

a � b
a � ba � ba � b

y � ��b�a�x
y � �

3
2 x

F�213, 0� and F���213, 0�c � 213

c2 � a2 � b2 � 4 � 9 � 13.

�0, �3�
��2, 0�

b � 3a � 2b2 � 9
a2 � 4�x2�a2� � � y2�b2� � 1�x2�4� � � y2�9� � 1

x2

4
�

y2

9
� 1.

9x2 � 4y2 � 36

y2

x2
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Figure 4

y

x

(0, 3)

(�2, 0) (2, 0)

(0, �3)

F� F



and consequently

The hyperbola has its vertices on the y-axis, since there are y-intercepts and no

x-intercepts. The vertices are , the endpoints of the conjugate axes are

, and the foci are . The graph is sketched in Figure 5.
To find the equations of the asymptotes, we refer to the figure or use

, obtaining . L

E X A M P L E  3 Finding an equation of a hyperbola 
satisfying prescribed conditions

A hyperbola has vertices and passes through the point . Find its
equation, foci, and asymptotes.

S O L U T I O N We begin by sketching a hyperbola with vertices that
passes through the point , as in Figure 6.

An equation of the hyperbola has the form

Since is on the hyperbola, the x- and y-coordinates satisfy this equa-
tion; that is,

Solving for gives us , and hence an equation for the hyperbola is

or, equivalently,

To find the foci, we first calculate

Hence, , and the foci are .
The general equations of the asymptotes are . Substituting

and gives us , as shown in Figure 7. L

The next example indicates how to find equations for certain parts of a 
hyperbola.

y � �
1
2 xb �

3
2a � 3

y � ��b�a�x
��

3
2 25, 0�c � �45

4 �
3
225 
 3.35

c2 � a2 � b2 � 9 �
9
4 �

45
4 .

x2 � 4y2 � 9.

x2

9
�

y2

9
4

� 1

b2 �
9
4b2

52

32
�

22

b2
� 1.

P�5, 2�

x2

32
�

y2

b2
� 1.

P�5, 2�
��3, 0�

P�5, 2���3, 0�

y � ��22�2�xy � ��a�b�x

�0, �23�2���22�2, 0�
�0, �

1
2 �

a �
1

2
, b �

1

22
�
22

2
, and c �

23

2
.
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Figure 5

y

x

�0, q�

�0, �q�

�2
2 , 0��� �2

2 , 0��

Figure 6

y

x(3, 0)(�3, 0)

P (5, 2)

Figure 7

y

x

(3, 0)(�3, 0)

P (5, 2)

y � qxy � �qx



E X A M P L E  4 Finding equations of portions of a hyperbola

The hyperbola was discussed in Example 1. Solve the equa-
tion as indicated, and describe the resulting graph.

(a) For x in terms of y (b) For y in terms of x

S O L U T I O N

(a) We solve for x in terms of y as follows:

given

solve for 

factor out 4, and take the square root

The graph of the equation is the right branch of the hyper-
bola sketched in Figure 4 (and repeated in Figure 8), and the graph of

is the left branch.

(b) We solve for y in terms of x as follows:

given

solve for 

factor out 9, and take the square root

The graph of is the upper half of the right and left branches,
and the graph of is the lower half of these branches. L

As was the case for ellipses, we may use translations to help sketch hy-
perbolas that have centers at some point . The following ex-
ample illustrates this technique.

E X A M P L E  5 Sketching a hyperbola with center 

Sketch the graph of the equation

S O L U T I O N We arrange our work using a procedure similar to that used for
ellipses in Example 5 of the previous section:

group terms

factor out 9 and 

complete the squares

factor, and simplify

divide by 36
�x � 3�2

4
�

� y � 2�2

9
� 1

 9�x � 3�2 � 4� y � 2�2 � 36

 9�x2 � 6x � 9� � 4� y2 � 4y � 4� � �29 � 9 � 9 � 4 � 4

�4 9�x2 � 6x �   � � 4� y2 � 4y �   � � �29

�9x2 � 54x� � ��4y2 � 16y� � �29

9x2 � 4y2 � 54x � 16y � 29 � 0.

(h, k)

�h, k� � �0, 0�

y � �
3
2 2x2 � 4

y �
3
22x2 � 4

y � �
3
2 2x2 � 4

y2y2 �
9x2 � 36

4

 9x2 � 4y2 � 36

x � �
2
3 29 � y2

x �
2
329 � y2

x � �
2
3 29 � y2

x2x2 �
36 � 4y2

9

 9x2 � 4y2 � 36

9x2 � 4y2 � 36
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Figure 8

y

x

(0, 3)

(�2, 0) (2, 0)

(0, �3)

(continued)



The last equation indicates that the hyperbola has center with ver-
tices and foci on the horizontal line , because the term containing x is
positive. We also know that

Hence,

As illustrated in Figure 9, the vertices are —that is, and
. The endpoints of the conjugate axis are —that is,

and . The foci are , and equations of the asymptotes are

L

The results of Sections 11.1 through 11.3 indicate that the graph of every
equation of the form

is a conic, except for certain degenerate cases in which a point, one or two
lines, or no graph is obtained. Although we have considered only special ex-
amples, our methods can be applied to any such equation. If A and C are equal
and not 0, then the graph, when it exists, is a circle or, in exceptional cases, a
point. If A and C are unequal but have the same sign, an equation is obtained
whose graph, when it exists, is an ellipse (or a point). If A and C have oppo-
site signs, an equation of a hyperbola is obtained or possibly, in the degener-
ate case, two intersecting straight lines. If either A or C (but not both) is 0, the
graph is a parabola or, in certain cases, a pair of parallel lines.

We shall conclude this section with an application involving hyperbolas.

E X A M P L E  6 Locating a ship

Coast Guard station A is 200 miles directly east of another station B. A ship is
sailing on a line parallel to and 50 miles north of the line through A and B.
Radio signals are sent out from A and B at the rate of (microsec-
ond). If, at 1:00 P.M., the signal from B reaches the ship 400 microseconds
after the signal from A, locate the position of the ship at that time.

980 ft��sec

Ax2 � Cy2 � Dx � Ey � F � 0

y � 2 � �
3
2 �x � 3�.

�3 � 213, �2��3, �5�
�3, 1��3, �2 � 3��1, �2�

�5, �2��3 � 2, �2�

a � 2, b � 3, and c � 213.

a2 � 4, b2 � 9, and c2 � a2 � b2 � 13.

y � �2
C�3, �2�
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Figure 9

y

x

(3, 1)

(3, �5)

(5, �2)(1, �2)
(3, �2)

Figure 10
(a)

y

x

(0, 50)

B(�100, 0)

P

A(100, 0)

d2
d1

(b)

y

xB(�100, 0)

P

A(100, 0)

d2
d1



S O L U T I O N Let us introduce a coordinate system, as shown in Figure 10(a),
with the stations at points A and B on the x-axis and the ship at P on the line

. Since at 1:00 P.M. it takes 400 microseconds longer for the signal to
arrive from B than from A, the difference in the indicated distances at
that time is

Dividing by 5280 gives us

At 1:00 P.M., point P is on the right branch of a hyperbola whose equation is
(see Figure 10(b)), consisting of all points whose dif-

ference in distances from the foci B and A is . In our derivation of the
equation , we let ; it follows that in the
present situation

Since the distance c from the origin to either focus is 100,

Hence, an (approximate) equation for the hyperbola that has foci A and B and
passes through P is

If we let (the y-coordinate of P), we obtain

Solving for x gives us . Rounding off to the nearest mile, we find
that the coordinates of P are approximately (42, 50). L

An extension of the method used in Example 6 is the basis for the navi-
gational system LORAN (for Long Range Navigation). This system involves
two pairs of radio transmitters, such as those located at T, and S, in Fig-
ure 11. Suppose that signals sent out by the transmitters at T and reach a
radio receiver in a ship located at some point P. The difference in the times of
arrival of the signals can be used to determine the difference in the distances
of P from T and . Thus, P lies on one branch of a hyperbola with foci at T
and . Repeating this process for the other pair of transmitters, we see that P
also lies on one branch of a hyperbola with foci at S and . The intersection
of these two branches determines the position of P.

A hyperbola has a reflective property analogous to that of the ellipse dis-
cussed in the previous section. To illustrate, let l denote the tangent line at a

S�
T�

T�

T�
S�T�

x 
 42.16

x2

1378
�

2500

8622
� 1.

y � 50

x2

1378
�

y2

8622
� 1.

b2 � c2 � a2 
 10,000 � 1378, or b2 
 8622.

a �
74.24

2
� 37.12 and a2 
 1378.

d1 � d2 � 2a�x2�a2� � � y2�b2� � 1
d1 � d2

�x2�a2� � � y2�b2� � 1

d1 � d2 �
392,000

5280
� 74.24 mi.

�ft�mi�

d1 � d2 � �980��400� � 392,000 ft.

d1 � d2

y � 50
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Figure 11

T �

PS

S�

T



point P on a hyperbola with foci F and , as shown in Figure 12. If is the
acute angle between and l and if is the acute angle between FP and l, it
can be shown that . If a ray of light is directed along the line toward
F, it will be reflected back at P along the line toward . This property is
used in the design of telescopes of the Cassegrain type (see Exercise 64).

Figure 12

b a

P

FF �
b

a

l

l2

l1

F�l2

l1� � �
�F�P

�F�
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Exer. 1–16: Find the vertices, the foci, and the equations of
the asymptotes of the hyperbola. Sketch its graph, showing
the asymptotes and the foci.

1 2

3 4

5 6

7 8

9 10

11 12

13

14 y2 � 4x2 � 12y � 16x � 16 � 0

144x2 � 25y2 � 864x � 100y � 2404 � 0

�x � 3�2

25
�

� y � 1�2

4
� 1

� y � 2�2

9
�

�x � 2�2

4
� 1

y2 � 16x2 � 116x2 � 36y2 � 1

x2 � 2y2 � 8y2 � 4x2 � 16

y2 �
x2

15
� 1x2 �

y2

24
� 1

x2

49
�

y2

16
� 1

y2

9
�

x2

4
� 1

y2

49
�

x2

16
� 1

x2

9
�

y2

4
� 1

15

16

Exer. 17–20: Find an equation for the hyperbola shown 
in the figure.

17 y

x

F� V� V F

25x2 � 9y2 � 100x � 54y � 10 � 0

4y2 � x2 � 40y � 4x � 60 � 0

11.3 E x e r c i s e s



18

19

20

Exer. 21–32: Find an equation for the hyperbola that has its
center at the origin and satisfies the given conditions.

21 Foci , vertices V�0, �1�F�0, �4�

y

x

V(2, 2)V�(0, 2)

F�(�2, 2) F(4, 2)

y

x

V(�2, �2)
V�(�2, �4)

F(�2, �1)

F�(�2, �5)

y

x

F�

V�

V

F

22 Foci , vertices 

23 Foci , vertices 

24 Foci , vertices 

25 Foci , conjugate axis of length 4

26 Vertices , passing through 

27 Vertices , asymptotes 

28 Foci , asymptotes 

29 x-intercepts , asymptotes 

30 y-intercepts , asymptotes 

31 Vertical transverse axis of length 10, conjugate axis of
length 14

32 Horizontal transverse axis of length 6, conjugate axis of
length 2

Exer. 33–42: Identify the graph of the equation as a
parabola (with vertical or horizontal axis), circle, ellipse,
or hyperbola.

33

34

35

36

37

38

39

40

41

42 9x2 � y2 � 10 � 2y

x2 � 3x � 3y � 6

x � 4 � y2 � y

4x2 � 16x � 9y2 � 36y � �16

x � 2x2 � y � 4

�x2 � y2 � 25

x2 � 4x � 4y2 � 24y � �36

x2 � 6x � y2 � 7

y2 �
14
3 � x2

1
3 �x � 2� � y2

y � �
1
4 x�2

y � �2x�5

y � �
1
3 xF�0, �10�

y � �2xV��3, 0�

�8, 2�V��4, 0�

F�0, �5�

V�0, �2�F�0, �3�

V��3, 0�F��5, 0�

V��5, 0�F��8, 0�
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Exer. 43–44: Find the points of intersection of the graphs of
the equations. Sketch both graphs on the same coordinate
plane, and show the points of intersection.

43 44

Exer. 45–48: Find an equation for the set of points in an 
xy-plane such that the difference of the distances from F
and is k.

45 , ;

46 , ;

47 , ;

48 , ;

Exer. 49–50: Find an equation for the hyperbola with foci
F and that passes through P. Sketch the hyperbola.

49 50

Exer. 51–58: Describe the part of a hyperbola given by
the equation.

51 52

53 54

55 56

57 58

59 The graphs of the equations

and
x2

a2
�

y2

b2
� �1

x2

a2
�

y2

b2
� 1

x �
2
32y2 � 36x � �

2
3 2y2 � 36

y �
9
42x2 � 16y � �

9
4 2x2 � 16

y � �
3
7 2x2 � 49y �

3
72x2 � 49

x � �
5
4 2y2 � 16x �

5
42y2 � 16

y

xF �(�13, 0) F(13, 0)

P
29

5

y

x

F �(0, �5)

F(0, 5)

3

11

P

F�

k � 30F��0, �17�F�0, 17�

k � 16F��0, �10�F�0, 10�

k � 8F���5, 0�F�5, 0�

k � 24F���13, 0�F�13, 0�

F�

� x2 � y2 � 4

y2 � 3x � 0� y2 � 4x2 � 16

y � x � 4

are called conjugate hyperbolas. Sketch the graphs of both
equations on the same coordinate plane, with and

, and describe the relationship between the two graphs.

60 Find an equation of the hyperbola with foci and
vertices , where

and

61 Cooling tower A cooling tower, such as the one shown in
the figure, is a hyperbolic structure. Suppose its base diam-
eter is 100 meters and its smallest diameter of 48 meters oc-
curs 84 meters from the base. If the tower is 120 meters
high, approximate its diameter at the top.

Exercise 61

62 Airplane maneuver An airplane is flying along the hyper-
bolic path illustrated in the figure. If an equation of the path
is , determine how close the airplane comes to
a town located at . (Hint: Let S denote the square of
the distance from a point on the path to , and
find the minimum value of S.)

Exercise 62

y
Miles

x
3 mi

(x, y)

�3, 0��x, y�
�3, 0�

2y2 � x2 � 8

c2 � a2 � b2.0 � a � c
�h � a, k�

�h � c, k�

b � 3
a � 5
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63 Locating a ship A ship is traveling a course that is 100 miles
from, and parallel to, a straight shoreline. The ship sends out
a distress signal that is received by two Coast Guard stations
A and B, located 200 miles apart, as shown in the figure. By
measuring the difference in signal reception times, it is de-
termined that the ship is 160 miles closer to B than to A.
Where is the ship?

Exercise 63

64 Design of a telescope The Cassegrain telescope design
(dating back to 1672) makes use of the reflective properties
of both the parabola and the hyperbola. Shown in the figure
is a (split) parabolic mirror, with focus at and axis along
the line l, and a hyperbolic mirror, with one focus also at 
and transverse axis along l. Where do incoming light waves
parallel to the common axis finally collect?

Exercise 64

Hyperbolic
mirror

F 1

Parabolic mirror

l

F1

F1

100 mi

200 mi
A B

65 Comet’s path Comets can travel in elliptical, parabolic, or
hyperbolic paths around the sun. If a comet travels in a par-
abolic or hyperbolic path, it will pass by the sun once and
never return. Suppose that a comet’s coordinates in miles
can be described by the equation

for

where the sun is located at a focus, as shown in the figure.

(a) Approximate the coordinates of the sun.

(b) For the comet to maintain a hyperbolic trajectory, the
minimum velocity v of the comet, in meters per sec-
ond, must satisfy , where r is the distance
between the comet and the center of the sun in meters
and is a constant. Determine v when
r is minimum.

Exercise 65

y

x

Sun

k � 1.325 � 1020

v � 22k�r

x � 0,
x2

26 � 1014
�

y2

18 � 1014
� 1
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If f is a function, the graph of the equation is often called a plane
curve. However, this definition is restrictive, because it excludes many useful
graphs. The following definition is more general.

For simplicity, we often refer to a plane curve as a curve. The graph of
C in the preceding definition consists of all points in an
xy-plane, for t in I. We shall use the term curve interchangeably with graph of
a curve. We sometimes regard the point as tracing the curve C as t varies
through the interval I.

The graphs of several curves are sketched in Figure 1, where I is a closed
interval —that is, In part (a) of the figure, and

and are called the endpoints of C. The curve in (a) intersects itself;
that is, two different values of t produce the same point. If as in
Figure 1(b), then C is a closed curve. If and C does not intersect
itself at any other point, as in Figure 1(c), then C is a simple closed curve.

A convenient way to represent curves is given in the next definition.

P�a� � P�b�
P�a� � P�b�,

P�b�P�a�
P�a� � P�b�,a � t � b.�a, b	

P�t�

P�t� � � f�t�, g�t��

y � f�x�11.4
Plane Curves and

Parametric Equations

Definition of Plane Curve A plane curve is a set C of ordered pairs where f and g are
functions defined on an interval I.

� f�t�, g�t��,

Figure 1
(a) Curve

y

x

P(a)

P(t )

P(b)

x

y

P(t )

P(a) � P(b)

x

y

P(t )

P(a) � P(b)

(b) Closed curve (c) Simple closed curve

Definition of 
Parametric Equations

Let C be the curve consisting of all ordered pairs , where f and g
are defined on an interval I. The equations

for t in I, are parametric equations for C with parameter t.

x � f�t�, y � g�t�,

� f�t�, g�t��
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The curve C in this definition is referred to as a parametrized curve, and
the parametric equations are a parametrization for C. We often use the
notation

to indicate the domain I of f and g. We can refer to these equations as the
x-equation and the y-equation.

Sometimes it may be possible to eliminate the parameter and obtain a fa-
miliar equation in x and y for C. In simple cases we can sketch a graph of a pa-
rametrized curve by plotting points and connecting them in order of increasing
t, as illustrated in the next example.

E X A M P L E  1 Sketching the graph of a parametrized curve

Sketch the graph of the curve C that has the parametrization

S O L U T I O N We use the parametric equations to tabulate coordinates of
points on C, as follows.

Plotting points leads to the sketch in Figure 2. The arrowheads on the
graph indicate the direction in which traces the curve as t increases
from �1 to 2.

We may obtain a more familiar description of the graph by eliminating the 
parameter. Solving the x-equation for t, we obtain Substituting this ex-
pression for t in the y-equation gives us

The graph of this equation in x and y is a parabola symmetric with respect to
the y-axis with vertex However, since and we see
that for points on C, and hence C is that part of the parabola
between the points and shown in Figure 2. L

As indicated by the arrowheads in Figure 2, the point traces the
curve C from left to right as t increases. The parametric equations

give us the same graph; however, as t increases, traces the curve from
right to left. For other parametrizations, the point may oscillate back
and forth as t increases.

P�x, y�
P�x, y�

x � �2t, y � t2 � 1; �2 � t � 1

P�x, y�

�4, 3���2, 0�
�x, y��2 � x � 4

�1 � t � 2,x � 2t�0, �1�.

y � �1
2 x�2

� 1.

t �
1
2 x.

P�x, y�

P�x, y�

x � 2t, y � t2 � 1; �1 � t � 2.

x � f �t�, y � g�t�; t in I

t 0 1 2

x 0 1 2 3 4

y 0 0 35
4�

3
4�1�

3
4

�1�2

3
2

1
2�

1
2�1

Figure 2
x � 2t, y � t 2 � 1; �1 � t � 2

y

x

t � �1 t � 1

t � 2

t � 0t � �q
t � q

C

t � w
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The orientation of a parametrized curve C is the direction determined by
increasing values of the parameter. We often indicate an orientation by plac-
ing arrowheads on C, as in Figure 2. If moves back and forth as t in-
creases, we may place arrows alongside of C.

As we have observed, a curve may have different orientations, depending
on the parametrization. To illustrate, the curve C in Example 1 is given para-
metrically by any of the following:

The next example demonstrates that it is sometimes useful to eliminate
the parameter before plotting points.

E X A M P L E  2 Describing the motion of a point

A point moves in a plane such that its position at time t is given by

where Describe the motion of the point.

S O L U T I O N When x and y contain trigonometric functions of t, we can
often eliminate the parameter t by isolating the trigonometric functions, squar-
ing both sides of the equations, and then using one of the Pythagorean identi-
ties, as follows:

given

isolate cos t and sin t

square both sides

multiply by 

This shows that the point moves on the circle C of radius a with center
at the origin (see Figure 3). The point is at when at when

at when at when and back at
when Thus, P moves around C in a counterclockwise direc-

tion, making one revolution every units of time. The orientation of C is in-
dicated by the arrowheads in Figure 3.

Note that in this example we may interpret t geometrically as the radian
measure of the angle generated by the line segment OP. L

2�
t � 2�.A�a, 0�

t � 3��2,�0, �a�t � �,��a, 0�t � ��2,
�0, a�t � 0,A�a, 0�

P�x, y�

a2x2 � y2 � a2

cos2 t � sin2 t � 1
x2

a2
�

y2

a2
� 1

x2

a2
� cos2 t,

y2

a2
� sin2 t

x

a
� cos t,

y

a
� sin t

x � a cos t, y � a sin t

a � 0.

x � a cos t, y � a sin t; t in �,

P�x, y�

�4 � t � 2y �
1
4 t 2 � 1;x � �t,

x � t, y �
1
4 t2 � 1; �2 � t � 4

x � 2t, y � t2 � 1; �1 � t � 2

P�x, y�

Figure 3
x � a cos t, y � a sin t; t in �

y

x

P(x, y)

A(a, 0)

C

O

a

t



E X A M P L E  3 Sketching the graph of a parametrized curve

Sketch the graph of the curve C that has the parametrization

and indicate the orientation.

S O L U T I O N To eliminate the parameter, we use the x-equation to obtain
and then substitute for in the y-equation. Thus,

The graph of the last equation is the line of slope 2 through the point 
as indicated by the dashes in Figure 4(a). However, since we see from
the parametric equations for C that

Thus, the graph of C is that part of the line to the right of (the point
corresponding to ), as shown in Figure 4(b). The orientation is indicated
by the arrows alongside of C. As t increases in the interval 
moves down the curve toward the point As t increases in 

moves up the curve away from 

L

If a curve C is described by an equation for some function f, then
an easy way to obtain parametric equations for C is to let

where t is in the domain of f. For example, if then parametric equa-
tions are

x � t, y � t3; t in �.

y � x3,

x � t, y � f �t�,

y � f �x�

��2, 1�.P�x, y�
�0, ��,��2, 1�.
P�x, y����, 0	,

t � 0
��2, 1�

x � �2 � t2 
 �2 and y � 1 � 2t2 
 1.

t2 
 0,
��2, 1�,

y � 1 � 2�x � 2�.

t2t2 � x � 2

x � �2 � t2, y � 1 � 2t2; t in �,
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Figure 4
(a) (b)

y

x

(�2, 1)

y � 1 � 2(x � 2)

y

x

(�2, 1)

t � 0 t � 0

x � �2 � t2

y � 1 � 2t2



We can use many different substitutions for x, provided that as t varies
through some interval, x takes on every value in the domain of f. Thus, the
graph of is also given by

Note, however, that the parametric equations

give only that part of the graph of between the points and

E X A M P L E  4 Finding parametric equations for a line

Find three parametrizations for the line of slope m through the point 

S O L U T I O N By the point-slope form, an equation for the line is

(∗)

If we let then and we obtain the parametrization

We obtain another parametrization for the line if we let in (∗).
In this case and we have

As a third illustration, if we let in (∗), then

There are many other parametrizations for the line. L

In the next example, we use parametric equations to model the path of a
projectile (object). These equations are developed by means of methods in
physics and calculus. We assume that the object is moving near the surface of
Earth under the influence of gravity alone; that is, air resistance and other
forces that could affect acceleration are negligible. We also assume that the
ground is level and the curvature of Earth is not a factor in determining the
path of the object.

E X A M P L E  5 The path of a projectile

The path of a projectile at time t can be modeled using the parametric 
equations

(1)x�t� � �s cos ��t, y�t� � �
1
2 gt2 � �s sin ��t � h; t 
 0,

x � x1 � tan t, y � y1 � m tan t; �
�

2
� t �

�

2
.

x � x1 � tan t

x � x1 � t, y � y1 � mt; t in �.

y � y1 � mt,
x � x1 � t

x � t, y � y1 � m�t � x1�; t in �.

y � y1 � m�t � x1�x � t,

y � y1 � m�x � x1�.

�x1, y1�.

�1, 1�.
��1, �1�y � x3

x � sin t, y � sin3 t; t in �

x � t1/3, y � t; t in �.

y � x3
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where, at s is the speed of the projectile in a is the angle the path
makes with the horizontal, and h is the height in feet. The acceleration due to
gravity is Suppose that the projectile is fired at a speed of

at an angle of 30° from the horizontal from a height of 2304 feet
(see Figure 5).

(a) Find parametric equations for the projectile.

(b) Find the range r of the projectile—that is, the horizontal distance it trav-
els before hitting the ground.

(c) Find an equation in x and y for the projectile.

(d) Find the point and time at which the projectile reaches its maximum 
altitude.

Figure 5

S O L U T I O N

(a) Substituting 1024 for s, 30° for a, 32 for g, and 2304 for h in the para-
metric equations in (1) gives

Simplifying yields

(2)

(b) To find the range r of the projectile, we must find the point D in Figure 5
at which the projectile hits the ground. Since the y-coordinate of D is 0, we let

in the y-equation of (2) and solve for t:

given in (2)

let

divide by 

factor

Since we must have We can now use the x-equation of (2)
to obtain the range:

x � 51223 t � 51223�36� � 18,43223 
 31,925 ft

t � 36 sec.t 
 0,

 0 � �t � 36��t � 4�
�16 0 � t2 � 32t � 144

y � 0 0 � �16t 2 � 512t � 2304

y � �16t2 � 512t � 2304

y � 0

x � 51223 t, y � �16t 2 � 512t � 2304; t 
 0.

x � �1024 cos 30��t, y � �
1
2 �32�t2 � �1024 sin 30��t � 2304; t 
 0.

y

x

V�qp, ymax�

H(0, h)

D(r, 0)

E(p, h)a

1024 ft�sec
g � 32 ft�sec2.

ft�sec,t � 0,
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(continued)



(c) To eliminate the parameter t, we solve the x-equation in (2) for t and sub-
stitute this expression for t in the y-equation in (2):

solve x-equation in (2) for t

y-equation in (2)

let

simplify (3)

The last equation is of the form showing that the path of
the projectile is parabolic.

(d) The y-coordinate of point E in Figure 5 is 2304, so we can find the value
of t at E by solving the equation 

given in (2)

let

subtract 2304

factor

So if or Since the path is parabolic, the x-coordinate
of V is one-half of the x-coordinate p of E. Also, the value of t at V is one-half
the value of t at E, so at V. We can find the x- and y-values at
V by substituting 16 for t in (2):

and

Thus, the projectile reaches its maximum altitude when at approxi-
mately

An alternative way of finding the maximum altitude is to use the theorem
for locating the vertex of a parabola to find the x-value of the
highest point on the graph of equation (3) and then use the equations in (2) to
find t and y. L

See Discussion Exercises 7 and 8 at the end of the chapter for related
problems concerning Example 5.

E X A M P L E  6 Finding parametric equations for a cycloid

The curve traced by a fixed point P on the circumference of a circle as the
circle rolls along a line in a plane is called a cycloid. Find parametric equa-
tions for a cycloid.

�x � �b��2a��

�14,189, 6400�.
t � 16

y � �16t 2 � 512t � 2304 � �16�16�2 � 512�16� � 2304 � 6400 ft

x � 51223 t � 51223�16� � 819223 
 14,189 ft

t �
1
2 �32� � 16

t � 32.t � 0y � 2304,

 0 � �16t�t � 32�
 0 � �16t2 � 512t

y � 2304 2304 � �16t 2 � 512t � 2304

y � �16t 2 � 512t � 2304

y � 2304:

y � ax2 � bx � c,

y � �
1

49,152
x2 �

1

23
x � 2304

t �
x

51223
y � �16� x

51223
�2

� 512� x

51223
� � 2304

y � �16t 2 � 512t � 2304

x � 51223 t implies t �
x

51223
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S O L U T I O N Suppose the circle has radius a and that it rolls along (and
above) the x-axis in the positive direction. If one position of P is the origin,
then Figure 6 depicts part of the curve and a possible position of the circle. The
V-shaped part of the curve at is called a cusp.

Figure 6

Let K denote the center of the circle and T the point of tangency with the
x-axis. We introduce, as a parameter t, the radian measure of angle TKP. The
distance the circle has rolled is (formula for the length of a cir-
cular arc). Consequently, the coordinates of K are If we con-
sider an -coordinate system with origin at and if denotes
the point P relative to this system, then, by adding and to the x- and 
y-coordinates of K, we obtain

If, as in Figure 7, u denotes an angle in standard position on the -plane,
then or, equivalently, Hence,

and substitution in gives us parametric equations for
the cycloid:

L

If then the graph of is the in-
verted cycloid that results if the circle of Example 6 rolls below the x-axis.

y � a�1 � cos t�x � a�t � sin t�,a � 0,

x � a�t � sin t�, y � a�1 � cos t�; t in �

y � a � y�x � at � x�,

y� � a sin 	 � a sin �3�

2
� t� � �a cos t,

x� � a cos 	 � a cos �3�

2
� t� � �a sin t

	 � �3��2� � t.	 � t � 3��2
x�y�

x � at � x�, y � a � y�.

y�x�
P�x�, y��K�at, a�x�y�

�x, y� � �at, a�.
d�O, T� � at

y

x

x�

y�

2a

a

O T pa 2pa

t K

P(x, y)

x � 2�a
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Figure 7

x�

y�

(a, 0)

P(x�, y�)

K
t

u



This curve has a number of important physical properties. To illustrate, sup-
pose a thin wire passes through two fixed points A and B, as shown in Figure 8,
and that the shape of the wire can be changed by bending it in any manner.
Suppose further that a bead is allowed to slide along the wire and the only
force acting on the bead is gravity. We now ask which of all the possible paths
will allow the bead to slide from A to B in the least amount of time. It is natu-
ral to believe that the desired path is the straight line segment from A to B;
however, this is not the correct answer. The path that requires the least time co-
incides with the graph of an inverted cycloid with A at the origin. Because the
velocity of the bead increases more rapidly along the cycloid than along the
line through A and B, the bead reaches B more rapidly, even though the dis-
tance is greater.

There is another interesting property of this curve of least descent. Sup-
pose that A is the origin and B is the point with x-coordinate —that is, the
lowest point on the cycloid in the first arc to the right of A. If the bead is re-
leased at any point between A and B, it can be shown that the time required for
it to reach B is always the same.

Variations of the cycloid occur in applications. For example, if a motor-
cycle wheel rolls along a straight road, then the curve traced by a fixed point
on one of the spokes is a cycloidlike curve. In this case the curve does not have
cusps, nor does it intersect the road (the x-axis) as does the graph of a cycloid.
If the wheel of a train rolls along a railroad track, then the curve traced by a
fixed point on the circumference of the wheel (which extends below the track)
contains loops at regular intervals. Other cycloids are defined in Exercises 39
and 40.

�� a �
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Exer. 1–22: Find an equation in x and y whose graph con-
tains the points on the curve C. Sketch the graph of C, and
indicate the orientation.

1 , ;

2 , ;

3 , ;

4 , ;

5 , ; t in

6 , ; t 
 0y � 3t � 4x � 2t

�y � 2t � 3x � 4t2 � 5

�2 � t � 2y � t3 � 1x � t3 � 1

�2 � t � 2y � t2 � 1x � t2 � 1

�1 � t � 4y � 1 � tx � 1 � 2t

0 � t � 5y � 2t � 3x � t � 2

7 , ;

8 , ;

9 , ;

10 , ;

11 , ;

12 , ;

13 , ; t � 0y � 2 ln tx � t2

�� � t � �y � sin tx � cos 2t

���2 � t � ��2y � tan tx � sec t

0 � t � 2�y � sin t � 3x � cos t � 2

0 � t � 2�y � �1 � 3 cos tx � 2 � 3 sin t

0 � t � 2�y � 3 cos tx � 2 sin t

0 � t � 2�y � 3 sin tx � 4 cos t � 1

11.4 E x e r c i s e s

Figure 8

A

B
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14 , ;

15 , ;

16 , ; t in

17 , ;

18 , ;

19 , ;

20 , ;

21 , ;

22 , ; t in

23 , ; t in

24 , ;

25 (a) Describe the graph of a curve C that has the parame-
trization

(b) Change the parametrization to

and describe how this changes the graph from part (a).

(c) Change the parametrization to

and describe how this changes the graph from part (a).

26 (a) Describe the graph of a curve C that has the parame-
trization

(b) Change the parametrization to

and describe how this changes the graph from part (a).

(c) Change the parametrization to

and describe how this changes the graph from part (a).

Exer. 27–28: Curves , , , and are given para-
metrically, for t in . Sketch their graphs, and indicate 
orientations.

27 : ,
: ,
: ,
: , y � �etx � e2tC4

y � sin tx � sin2 tC3

y � t2x � t 4C2

y � tx � t2C1

�

C4C3C2C1

x � �2 � 3 sin t,  y � 3 � 3 cos t;  0 � t � 2p

x � �2 � 3 sin t,  y �  3 � 3 cos t;  0 � t � 2p

x � �2 � 3 sin t,  y �  3 � 3 cos t;  0 � t � 2p.

x � 3 � 2 sin t,  y � �2 � 2 cos t;  0 � t � 2p

x � 3 � 2 sin t,  y � �2 � 2 cos t;  0 � t � 2p

x � 3 � 2 sin t,  y � �2 � 2 cos t;  0 � t � 2p.

���2 � t � ��2y � 1x � tan t

�y � e�2tx � et

�y � t2x � t3

0 � t � 2y � �t � 2�2x � �t � 1�3

�1 � t � 1y � 8t3x � 2t

0 � t � 4y � 2t2 � 2t � 1x � t

� t � � 1y � tx � �221 � t2

� t � 
 1y � 2t2 � 1x � t

�y � e�tx � et

0 � t � ��2y � csc tx � sin t

0 � t � 2�y � sin3 tx � cos3 t 28 : ,
: ,
: ,
: , ;

Exer. 29–30: The parametric equations specify the position
of a moving point P (x, y) at time t. Sketch the graph, and 
indicate the motion of P as t increases.

29 (a) , ;

(b) , ;

(c) , ;

30 (a) , ;

(b) , ;

(c) , ;

31 Show that

, ;

are parametric equations of an ellipse with center and
axes of lengths 2a and 2b.

32 Show that

, ;

and

are parametric equations of a hyperbola with center ,
transverse axis of length 2a, and conjugate axis of length 2b.
Determine the values of t for each branch.

Exer. 33–34: (a) Find three parametrizations that give 
the same graph as the given equation. (b) Find three 
parametrizations that give only a portion of the graph of the
given equation.

33 34

Exer. 35–38: Refer to the equations in (1) of Example 5.
Find the range and maximum altitude for the given values.

35 , ,

36 , ,

37 , ,

38 , , h � 0� � 30�s � 2448

h � 0� � 45�s � 704

h � 1088� � 45�s � 51222

h � 400� � 60�s � 25623

y � ln xy � x2

�h, k�
t � ��2���2 � t � 3��2

y � b tan t � kx � a sec t � h

�h, k�
0 � t � 2�y � b sin t � kx � a cos t � h

0 � t � 2�y � sin2 tx � cos2 t

1 � t � ey � ln tx � 1 � ln t

0 � t � 1y � 1 � t 2x � t 2

�1 � t � 1y � 21 � t 2x � t

0 � t � �y � cos tx � sin t

0 � t � �y � sin tx � cos t

t � 0y � 1 � t � ln tx � ln t � tC4

y � sin2 tx � cos2 tC3

y � t2x � 1 � t2C2

y � 1 � tx � tC1



39 A circle C of radius b rolls on the outside of the circle 
, and . Let P be a fixed point on C, and

let the initial position of P be , as shown in the figure.
If the parameter t is the angle from the positive x-axis to 
the line segment from O to the center of C, show that para-
metric equations for the curve traced by P (an epicycloid)
are

Exercise 39

40 If the circle C of Exercise 39 rolls on the inside of the
second circle (see the figure), then the curve traced by P
is a hypocycloid.

y

xA(a, 0)

b
P

C

O

t

y � �a � b� sin t � b sin �a � b

b
t�; 0 � t � 2�.

x � �a � b� cos t � b cos �a � b

b
t�,

A�a, 0�
b � ay2 � a2x2 �

(a) Show that parametric equations for this curve are

(b) If , show that , , and
sketch the graph.

Exercise 40

41 If in Exercise 39, find parametric equations for the
epicycloid and sketch the graph.

42 The radius of circle B is one-third that of circle A. How many
revolutions will circle B make as it rolls around circle A until
it reaches its starting point? (Hint: Use Exercise 41.)

b �
1
3 a

P
b

A(a, 0)O

t

C

y

x

y � a sin3 tx � a cos3 tb �
1
4 a

y � �a � b� sin t � b sin �a � b

b
t�; 0 � t � 2�.

x � �a � b� cos t � b cos �a � b

b
t�,
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In a rectangular coordinate system, the ordered pair denotes the point
whose directed distances from the x- and y-axes are b and a, respectively. An-
other method for representing points is to use polar coordinates. We begin
with a fixed point O (the origin, or pole) and a directed half-line (the polar
axis) with endpoint O. Next we consider any point P in the plane different
from O. If, as illustrated in Figure 1, and u denotes the measure
of any angle determined by the polar axis and OP, then r and u are polar co-
ordinates of P and the symbols or are used to denote P. As usual,
u is considered positive if the angle is generated by a counterclockwise rota-

P�r, 	��r, 	�

r � d�O, P�

�a, b�11.5
Polar Coordinates
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tion of the polar axis and negative if the rotation is clockwise. Either radian or
degree measure may be used for u.

Figure 1

The polar coordinates of a point are not unique. For example,
and all represent the same point (see Figure 2). We

shall also allow r to be negative. In this case, instead of measuring units
along the terminal side of the angle u, we measure along the half-line with
endpoint O that has direction opposite that of the terminal side. The points
corresponding to the pairs and are also plotted in
Figure 2.

We agree that the pole O has polar coordinates for any u. An as-
signment of ordered pairs of the form to points in a plane is a polar co-
ordinate system, and the plane is an ru-plane.

Let us next superimpose an xy-plane on an ru-plane so that the positive 
x-axis coincides with the polar axis. Any point P in the plane may then be as-
signed rectangular coordinates or polar coordinates If we
have a situation similar to that illustrated in Figure 3(a); if we have that
shown in part (b) of the figure. In Figure 3(b), for later purposes, we have also
plotted the point having polar coordinates and rectangular coordi-
nates ��x, �y�.

�� r �, 	�P�,

r � 0,
r � 0,�r, 	�.�x, y�

�r, 	�
�0, 	�

��3, �3��4���3, 5��4�

� r �
�3, �7��4��3, 9��4�,

�3, ��4�,

Polar axisPole
O

u

r

P(r, u )

Figure 2

OO O O O

P �3, d�

d

P �3, ,� P �3, �j�

�j

h

P ��3, h� P ��3, �f�

�f,



The following result specifies relationships between and 
where it is assumed that the positive x-axis coincides with the polar axis.

P R O O F S

(1) Although we have pictured u as an acute angle in Figure 3, the discussion
that follows is valid for all angles.

If as in Figure 3(a), then and and
hence

If then and from Figure 3(b) we see that

Multiplication by r gives us relationship 1, and therefore these formulas
hold if r is either positive or negative.

If then the point is the pole, and we again see that the formulas
in (1) are true.

r � 0,

sin 	 �
�y

� r �
�

�y

�r
�

y

r
.cos 	 �

�x

� r �
�

�x

�r
�

x

r
,

� r � � �r,r � 0,

x � r cos 	, y � r sin 	.

sin 	 � y�r,cos 	 � x�rr � 0,

�r, 	�,�x, y�
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Relationships Between
Rectangular and Polar

Coordinates

The rectangular coordinates and polar coordinates of a point P
are related as follows:

(1)

(2) r2 � x2 � y2, tan 	 �
y

x
  if x � 0

x � r cos 	, y � r sin 	

�r, 	��x, y�

Figure 3
(a) (b)

y

y

xxO

u

r

P(r, u )
P(x, y)

y

xO

u

�r�

P(r, u )
P(x, y)

P�(�x, �y)

r � 0r � 0
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Figure 4

y

x

'

4

P �4, '�

(2) The formulas in relationship 2 follow readily from Figure 3(a). By the
Pythagorean theorem, From the definition of the trigono-
metric functions of any angle, (if ). If then

from some integer n. L

We may use the preceding result to change from one system of coordi-
nates to the other.

E X A M P L E  1 Changing polar coordinates to rectangular coordinates

If are polar coordinates of a point P, find the rectangular
coordinates of P.

S O L U T I O N The point P is plotted in Figure 4. Substituting and
in relationship 1 of the preceding result, we obtain the following:

Hence, the rectangular coordinates of P are L

E X A M P L E  2 Changing rectangular coordinates to polar coordinates

If are rectangular coordinates of a point P, find three dif-
ferent pairs of polar coordinates for P.

S O L U T I O N Three possibilities for u are illustrated in Figure 5(a)–(c).
Using and in relationship 2 between rectangular and polar
coordinates, we obtain

r2 � x2 � y2 � ��1�2 � �23 �2
� 4,

y � 23x � �1

�r, 	�
�x, y� � ��1, 23 �

�x, y� � ��223, �2�.
y � r sin 	 � 4 sin �7��6� � 4��1�2� � �2

x � r cos 	 � 4 cos �7��6� � 4��23�2� � �223

	 � 7��6
r � 4

�r, 	� � �4, 7��6�

	 � ���2� � �n
x � 0,x � 0tan 	 � y�x

x2 � y2 � r2.

Figure 5
(a)

y

xO

2

u

P(�1, �3)�

x

y

O

2

u

P(�1, �3)�

x

y

O

2

u

P(�1, �3)�

(c)(b)

(continued)



and since r is positive in Figure 5(a), Using

we see that the reference angle for u is and hence

Thus, is one pair of polar coordinates for P.
Referring to Figure 5(b) and the values obtained for P in Figure 5(a), we

get

Hence, is another pair of polar coordinates for P.
In Figure 5(c), In this case we use to obtain

as a third pair of polar coordinates for P. L

A polar equation is an equation in r and u. A solution of a polar equation
is an ordered pair that leads to equality if a is substituted for r and b for
u. The graph of a polar equation is the set of all points (in an ru-plane) that
correspond to the solutions.

The simplest polar equations are and where a is a nonzero
real number. Since the solutions of the polar equation are of the form

for any angle u, it follows that the graph is a circle of radius with
center at the pole. A graph for is sketched in Figure 6. The same graph
is obtained for 

The solutions of the polar equation are of the form for any
real number r. Since the coordinate a (the angle) is constant, the graph of

is a line through the origin, as illustrated in Figure 7 for an acute angle a.
We may use the relationships between rectangular and polar coordinates

to transform a polar equation to an equation in x and y, and vice versa. This
procedure is illustrated in the next three examples.

E X A M P L E  3 Finding a polar equation of a line

Find a polar equation of an arbitrary line.

S O L U T I O N Every line in an xy-coordinate plane is the graph of a linear
equation that can be written in the form Using the formulas

and gives us the following equivalent polar equations:

substitute for x and y

factor out rr �a cos 	 � b sin 	� � c

ar cos 	 � br sin 	 � c

y � r sin 	x � r cos 	
ax � by � c.

	 � a

�r, a�	 � a
r � �a.

a � 0
� a ��a, 	�

r � a
	 � a,r � a

�a, b�

��2, ���3�
r � �2	 � ���3.

�2, 8��3�

r � 2 and 	 �
2�

3
� 2� �

8�

3
.

�2, 2��3�

	 � � �
�

3
�

2�

3
.

	R � ��3,

tan 	 �
y

x
�
23

�1
� �23,

r � 2.
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Figure 6

(a, u ) r � a

O (a, 0)

u

Figure 7

O

a radians

(r, a)

u � a
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If the last equation may be written as follows:

L

E X A M P L E  4 Changing an equation in x and y to a polar equation

Find a polar equation for the hyperbola 

S O L U T I O N Using the formulas and we obtain the
following polar equations:

substitute for x and y

square the terms

factor out 

double-angle formula

divide by 

The division by is allowable because (Note that if
then ) We may also write the polar equation as

L

E X A M P L E  5 Changing a polar equation to an equation in x and y

Find an equation in x and y that has the same graph as the polar equation
with Sketch the graph.

S O L U T I O N A formula that relates and y is given by To in-
troduce the expression into the equation we multiply both
sides by r, obtaining

Next, if we substitute for and y for , the last equation becomes

or

Completing the square in y gives us

or

In the xy-plane, the graph of the last equation is a circle with center 
and radius as illustrated in Figure 8 for the case (the solid circle)
and (the dashed circle). La � 0

a � 0� a ��2,
�0, a�2�

x2 � �y �
a

2�2

� � a

2�2

.

x2 � y2 � ay � � a

2�2

� � a

2�2

,

x2 � y2 � ay � 0.

x2 � y2 � ay,

r sin 	r2x2 � y2

r2 � ar sin 	.

r � a sin 	,r sin 	
y � r sin 	.sin 	

a � 0.r � a sin 	,

r2 � 16 sec 2	.
r2 cos 2	 � 16.cos 2	 � 0,

cos 2	 � 0.cos 2	

cos 2	r2 �
16

cos 2	

r2 cos 2	 � 16

r 2r2�cos2 	 � sin2 	� � 16

r2 cos2 	 � r2 sin2 	 � 16

�r cos 	�2 � �r sin 	�2 � 16

y � r sin 	,x � r cos 	

x2 � y2 � 16.

r �
c

a cos 	 � b sin 	

a cos 	 � b sin 	 � 0,

Figure 8

y

x

r � a sin u,
a � 0

r � a sin u,
a � 0

a
2



Using the same method as in the preceding example, we can show that the
graph of with is a circle of radius of the type illus-
trated in Figure 9.

In the following examples we obtain the graphs of polar equations by plot-
ting points and examining the relationship between u-intervals and r-intervals.
As you proceed through this section, you should try to recognize forms of 
polar equations so that you will be able to sketch their graphs by plotting few,
if any, points.

E X A M P L E  6 Sketching the graph of a polar equation

Sketch the graph of the polar equation 

S O L U T I O N The proof that the graph of is a circle was given in
Example 5. The following table displays some solutions of the equation. We
have included a third row in the table that contains one-decimal-place approxi-
mations to r.

As an aid to plotting points in the ru-plane shown in Figure 10, we have
extended the polar axis in the negative direction and introduced a vertical line
through the pole (this line is the graph of the equation ). Additional
points obtained by letting u vary from p to 2p lie on the same circle. For 
example, the solution gives us the same point as the 

point corresponding to is the same as that obtained from 

and so on. If we let increase through all real numbers, we ob-
tain the same points again and again because of the periodicity of the sine
function. L

E X A M P L E  7 Sketching the graph of a polar equation

Sketch the graph of the polar equation 

S O L U T I O N Since the cosine function decreases from 1 to �1 as u varies
from 0 to p, it follows that r decreases from 4 to 0 in this u-interval. The fol-

r � 2 � 2 cos 	.

	�222, ��4�;
��222, 5��4�

�2, ��6�;��2, 7��6�

	 � ��2

r � 4 sin 	

r � 4 sin 	.

a�2a � 0,r � a cos 	,
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Figure 9

y

x

a
2

r � a cos u,
a � 0

r � a cos u,
a � 0

u 0

r 0 2 4 2 0

r (approx.) 0 2 2.8 3.5 4 3.5 2.8 2 0

222223223222

�
5�

6

3�

4

2�

3

�

2

�

3

�

4

�

6

Figure 10

r � 4 sin u
O

�4, q�
�2�3, u��

�2�2, d��

�2, k��2, l�

�2�2, f��

�2�3, i��
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lowing table exhibits some solutions of together with one-
decimal-place approximations to r.

Plotting points in an ru-plane leads to the upper half of the graph sketched 
in Figure 11. (We have used polar coordinate graph paper, which displays 
lines through O at various angles and concentric circles with centers at the
pole.)

Figure 11

If u increases from p to 2p, then cos u increases from �1 to 1, and con-
sequently r increases from 0 to 4. Plotting points for gives us the
lower half of the graph.

The same graph may be obtained by taking other intervals of length 2p
for u. L

The heart-shaped graph in Example 7 is a cardioid. In general, the graph of
any of the polar equations in Figure 12 on the next page, with is a cardioid.a � 0,

� � 	 � 2�

k
d

u
q

i
f

l

`

'
h

o
w

p
j

z

0

r � 2 � 2 cos 	,

u 0

r 4 3 2 1 0

r (approx.) 4 3.7 3.4 3 2 1 0.6 0.3 0

2 � 232 � 222 � 222 � 23

�
5�

6

3�

4

2�

3

�

2

�

3

�

4

�

6



If a and b are not zero, then the graphs of the following polar equations
are limaçons:

Note that the special limaçons in which are cardioids.
Using the u-interval (or ) is usually sufficient to graph

polar equations. For equations with more complex graphs, it is often helpful to
graph by using subintervals of that are determined by the u-values that
make —that is, the pole values. We will demonstrate this technique in the
next example.

E X A M P L E  8 Sketching the graph of a polar equation

Sketch the graph of the polar equation 

S O L U T I O N We first find the pole values by solving the equation 

let

solve for 

solve for in 

We next construct a table of u-values from 0 to 2p, using subintervals de-
termined by the quadrantal angles and the pole values. The row numbers on
the left-hand side correspond to the numbers in Figure 13.

�0, 2�			 �
2�

3
,
4�

3

cos 	 cos 	 � �
1
2

r � 0 2 � 4 cos 	 � 0

r � 0:

r � 2 � 4 cos 	.

r � 0
�0, 2�	

���, �	�0, 2�	
� a � � � b �

r � a � b cos 	 r � a � b sin 	
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Figure 12

�a, q�

�a, w�
(2a, 0)

(0, p)

r � a(1 � cos u)

�a, q�

�a, w�

(2a, p)
(0, 0)

r � a(1 � cos u)

�2a, q�

�0, w�
(a, p)

(a, 0)

r � a(1 � sin u)

�0, q�

�2a, w�

(a, p)

(a, 0)

r � a(1 � sin u)

Figure 13

r � 2 � 4 cos u

1

2

3

4

5

6
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u cos u 4 cos u r � 2 � 4 cos u

(1)

(2)

(3)

(4)

(5)

(6) 2 l 60 l 40 l 13��2 l 2�

0 l 2�2 l 0�1�2 l 04��3 l 3��2

�2 l 0�4 l �2�1 l �1�2� l 4��3

0 l �2�2 l �4�1�2 l �1�22��3 l �

2 l 00 l �20 l �1�2��2 l 2��3

6 l 24 l 01 l 00 l ��2

You should verify the table entries with the figure, especially for rows 3
and 4 (in which the value of r is negative). The graph is called a limaçon with
an inner loop. L

The following chart summarizes the four categories of limaçons accord-
ing to the ratio of a and b in the listed general equations.

E X A M P L E  9 Sketching the graph of a polar equation

Sketch the graph of the polar equation for 

S O L U T I O N The following table contains u-intervals and the corresponding
values of r. The row numbers on the left-hand side correspond to the numbers
in Figure 14 on the next page.

a � 0.r � a sin 2	

Limaçons a � b cos u, a � b sin u (a > 0, b > 0)

Limaçon with Limaçon with Convex
Name an inner loop Cardioid a dimple limaçon

Condition

Specific

Specific
equation r � 8 � 4 cos 	r � 6 � 4 cos 	r � 4 � 4 cos 	r � 2 � 4 cos 	

a

b

 21 �

a

b
� 2

a

b
� 1

a

b
� 1

graph

(continued)



You should verify the table entries with the figure, especially for rows 3,
4, 7, and 8 (in which the value of r is negative). L

The graph in Example 9 is a four-leafed rose. In general, a polar equation
of the form

or

for any positive integer n greater than 1 and any nonzero real number a has a
graph that consists of a number of loops through the origin. If n is even, there
are 2n loops, and if n is odd, there are n loops.

The graph of the polar equation for any nonzero real number a is
a spiral of Archimedes. The case is considered in the next example.

E X A M P L E  1 0 Sketching the graph of a spiral of Archimedes

Sketch the graph of the polar equation for 

S O L U T I O N The graph consists of all points that have polar coordinates of
the form for every real number Thus, the graph contains the
points and so on. As u increases, r increases at the
same rate, and the spiral winds around the origin in a counterclockwise direc-
tion, intersecting the polar axis at as illustrated in Figure 15.

If u is allowed to be negative, then as u decreases through negative values,
the resulting spiral winds around the origin and is the symmetric image, with
respect to the vertical axis, of the curve sketched in Figure 15. L

If we superimpose an xy-plane on an ru-plane, then the graph of a polar
equation may be symmetric with respect to the x-axis (the polar axis), the
y-axis (the line ), or the origin (the pole). Some typical symmetries
are illustrated in Figure 16. The next result summarizes these symmetries.

	 � ��2

0, 2�, 4�, . . . ,

��, ��,���2, ��2�,�0, 0�,
c 
 0.�c, c�

	 
 0.r � 	

a � 1
r � a	

r � a cos n	r � a sin n	

782 C H A P T E R  1 1  T O P I C S  F R O M  A N A L Y T I C  G E O M E T R Y

Figure 14

r � a sin 2ur � a sin 2u

�a, d���a, j�

�a, h� ��a, f�

5

6 3

2

1

4

7

8

u 2u sin 2u r � a sin 2u

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8) �a l 0�1 l 07��2 l 4�7��4 l 2�

0 l �a0 l �13� l 7��23��2 l 7��4

a l 01 l 05��2 l 3�5��4 l 3��2

0 l a0 l 12� l 5��2� l 5��4

�a l 0�1 l 03��2 l 2�3��4 l �

0 l �a0 l �1� l 3��2��2 l 3��4

a l 01 l 0��2 l ���4 l ��2

0 l a0 l 10 l ��20 l ��4

Figure 15

2p 4p

2p

4p
r � u
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To illustrate, since the graph of the polar equation
in Example 8 is symmetric with respect to the polar axis, by

test 1. Since the graph in Example 6 is symmetric with
respect to the line by test 2. The graph of the four-leafed rose in Ex-
ample 9 is symmetric with respect to the polar axis, the line and the
pole. Other tests for symmetry may be stated; however, those we have listed
are among the easiest to apply.

Unlike the graph of an equation in x and y, the graph of a polar equation
can be symmetric with respect to the polar axis, the line or

the pole without satisfying one of the preceding tests for symmetry. This is true
because of the many different ways of specifying a point in polar coordinates.

Another difference between rectangular and polar coordinate systems is
that the points of intersection of two graphs cannot always be found by solv-
ing the polar equations simultaneously. To illustrate, from Example 6, the
graph of is a circle of diameter 4 with center at (see Fig-
ure 17). Similarly, the graph of is a circle of diameter 4 with cen-
ter at on the polar axis. Referring to Figure 17, we see that the
coordinates of the point of intersection in quadrant I satisfy both
equations; however, the origin O, which is on each circle, cannot be found by

P�222, ��4�
�2, 0�

r � 4 cos 	
�2, ��2�r � 4 sin 	

	 � ��2,r � f�	�

	 � ��2,
	 � ��2,

sin �� � 	� � sin 	,
r � 2 � 4 cos 	

cos ��	� � cos 	,

Tests for Symmetry (1) The graph of is symmetric with respect to the polar axis if
substitution of for u leads to an equivalent equation.

(2) The graph of is symmetric with respect to the vertical line
if substitution of either (a) for u or (b) for r and

for u leads to an equivalent equation.

(3) The graph of is symmetric with respect to the pole if substitu-
tion of either (a) for u or (b) for r leads to an equivalent
equation.

�r� � 	
r � f�	�

�	
�r� � 		 � ��2

r � f�	�
�	

r � f�	�

Figure 16 Symmetries of graphs of polar equations
(a) Polar axis

(r, u )

(r, �u )

u

�u

(r, p � u )
(�r, �u ) (r, u )

u

�u

p � u

(r, u )

p � u

(�r, u )
(r, p � u)

u

(b) Line 	 � ��2 (c) Pole

Figure 17

r � 4 sin u

r � 4 cos u

P �2�2, d��



solving the equations simultaneously. Thus, in searching for points of inter-
section of polar graphs, it is sometimes necessary to refer to the graphs them-
selves, in addition to solving the two equations simultaneously.

An alternative method is to use different (equivalent) equations for the
graphs. See Discussion Exercise 12 at the end of the chapter.
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1 Which polar coordinates represent the same point as
?

(a) (b)

(c) (d)

(e) (f)

2 Which polar coordinates represent the same point as
?

(a) (b)

(c) (d)

(e) (f)

Exer. 3–8: Change the polar coordinates to rectangular
coordinates.

3 (a) (b)

4 (a) (b)

5 (a) (b)

6 (a) (b)

7

8 �10, arccos ��
1
3 ��

�6, arctan 34�

��2, 7��6��4, ���4�

��3, 5��3��8, �2��3�

��6, 7��3��5, 5��6�

��1, 2��3��3, ��4�

��4, ��2���4, �3��2�

�4, �5��2���4, ���2�

�4, 7��2��4, 5��2�

�4, ���2�

��3, ���3���3, �2��3�

�3, �2��3���3, 4��3�

�3, ���3��3, 7��3�

�3, ��3�
Exer. 9–12: Change the rectangular coordinates to polar
coordinates with and .

9 (a) (b)

10 (a) (b)

11 (a) (b)

12 (a) (b)

Exer. 13–26: Find a polar equation that has the same graph
as the equation in x and y.

13 14

15 16

17 18

19 20

21 22

23 24

25

26

Exer. 27–44: Find an equation in x and y that has the same
graph as the polar equation. Use it to help sketch the graph
in an ru-plane.

27 28

29 30 r � 2r � 6 sin 	 � 0

r sin 	 � �2r cos 	 � 5

�x � 2�2 � � y � 3�2 � 13

�x � 1�2 � y2 � 1

xy � 8y2 � x2 � 4

y � 6x2y � �x

2y � �x � 4x � y � 3

x2 � 8yy2 � 6x

x2 � y2 � 2x2 � y2 � 16

y � 2x � �3

��4, 423 ���222, �222 �

�5, 5��7, �723 �

�2, �2��323, 3�

��223, �2���1, 1�

0 � � � 2�r � 0
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

Exer. 45–78: Sketch the graph of the polar equation.

45

46

47

48

49

50

51

52

53

54

55

56

57 r � 2 � 4 sin 	

r � 2�1 � sin 	�

r � �6�1 � cos 	�

r � 3�1 � cos 	�

r � 4�1 � sin 	�

r � 6 cos 	 � 2 sin 	

r � 4 cos 	 � 2 sin 	

r � �2 sin 	

r � 3 cos 	

	 � ��4

	 � ���6

r � �2

r � 5

r � 6 cot 	

r � tan 	

r � 2 cos 	 � 4 sin 	

r � 8 sin 	 � 2 cos 	

r�r sin2 	 � cos 	� � 3

r�sin 	 � r cos2 	� � 1

r�3 cos 	 � 4 sin 	� � 12

r�sin 	 � 2 cos 	� � 6

r 2 sin 2	 � 4

r 2 cos 2	 � 1

r 2�cos2 	 � 4 sin2 	� � 16

r 2�4 sin2 	 � 9 cos2 	� � 36

r � 4 sec 	

	 � ��4 58

59

60

61

62

63

64

65

66

67

68

69 (lemniscate)

70

71 , (spiral)

72 , (logarithmic spiral)

73 ,

74 , (spiral)

75

76

77 (conchoid)

78

79 If and are points in an -plane, use the
law of cosines to prove that

80 Prove that the graph of each polar equation is a circle, and
find its center and radius.

(a)

(b)

(c) r � a sin 	 � b cos 	, a � 0 and b � 0

r � b cos 	, b � 0

r � a sin 	, a � 0

�d�P1, P2�	2 � r2
1 � r 2

2 � 2r1r2 cos �	2 � 	1�.

r	P2�r2, 	2�P1�r1, 	1�

r � 1 � csc 	

r � 2 � 2 sec 	

r � �4 cos2 �	�2�

r � 6 sin2 �	�2�

	 � 0r	 � 1

	 
 0r � 2	

	 
 0r � e2	

	 
 0r � 2	

r 2 � �16 sin 2	

r 2 � 4 cos 2	

r � 8 cos 5	

r � 3 sin 2	

r � 2 sin 4	

r � 8 cos 3	

r � �3 sec 	

r � 4 csc 	

r � 5 � 3 sin 	

r � 2 � cos 	

r � 223 � 4 cos 	

r � 23 � 2 sin 	

r � 1 � 2 cos 	
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The following theorem combines the definitions of parabola, ellipse, and hy-
perbola into a unified description of the conic sections. The constant e in the
statement of the theorem is the eccentricity of the conic. The point F is a focus
of the conic, and the line l is a directrix. Possible positions of F and l are il-
lustrated in Figure 1.

Figure 1

P R O O F If then and, by definition, the resulting
conic is a parabola with focus F and directrix l.

Suppose next that It is convenient to introduce a polar coordi-
nate system in the plane with F as the pole and l perpendicular to the polar axis
at the point with as illustrated in Figure 2. If is a point
in the plane such that then P lies to the left of l. Let
C be the projection of P on the polar axis. Since

and

it follows that P satisfies the condition in the theorem if and only if the fol-
lowing are true:

r �
de

1 � e cos 	

r�1 � e cos 	� � de

r � de � er cos 	

r

d � r cos 	
� e

d�P, Q� � d � r cos 	,d�P, F� � r

d�P, F��d�P, Q� � e � 1,
P�r, 	�d � 0,D�d, 0�,

0 � e � 1.

d�P, F� � d�P, Q�,e � 1,

P

F
Focus

Q

l

Directrix
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11.6
Polar Equations of Conics

Theorem on Conics Let F be a fixed point and l a fixed line in a plane. The set of all points P in
the plane, such that the ratio is a positive constant e with

the distance from P to l, is a conic section. The conic is a parabola
if an ellipse if and a hyperbola if e � 1.0 � e � 1,e � 1,
d�P, Q�

d�P, F��d�P, Q�

Figure 2

F C

r

u

P(r, u)

D(d, 0)

Q

l

de
r � 

1 � e cos u



The same equations are obtained if however, there is no point on
the graph if 

An equation in x and y corresponding to is

Squaring both sides and rearranging terms leads to

Completing the square and simplifying, we obtain

Finally, dividing both sides by gives us an equation of the form

with Consequently, the graph is an ellipse with center at
the point on the x-axis and with

Since

we obtain and hence This proves that F is a focus
of the ellipse. It also follows that A similar proof may be given for
the case L

We also can show that every conic that is not degenerate may be described
by means of the statement in the theorem on conics. This gives us a formula-
tion of conic sections that is equivalent to the one used previously. Since the
theorem includes all three types of conics, it is sometimes regarded as a defi-
nition for the conic sections.

If we had chosen the focus F to the right of the directrix, as illustrated in
Figure 3 (with ), then the equation would have re-
sulted. (Note the minus sign in place of the plus sign.) Other sign changes
occur if d is allowed to be negative.

If we had taken l parallel to the polar axis through one of the points
or as illustrated in Figure 4, then the corresponding equa-

tions would have contained instead of cos 	.sin 	
�d, 3��2�,�d, ��2�

r � de��1 � e cos 	�d � 0

e � 1.
e � c�a.

� h � � c.c � de2��1 � e2�,

c2 � a2 � b2 �
d2e4

�1 � e2�2
,

a2 �
d 2e2

�1 � e2�2
and b2 �

d 2e2

1 � e2
.

�h, 0�
h � �de2��1 � e2�.

�x � h�2

a2
�

y2

b2
� 1,

d2e2��1 � e2�2

�x �
de2

1 � e2�2

�
y2

1 � e2
�

d2e2

�1 � e2�2
.

�1 � e2�x2 � 2de2x � y2 � d2e2.

2x2 � y2 � de � ex.

r � de � er cos 	
1 � cos 	 � 0.

�r, 	�e � 1;
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Figure 3

F C

r

u

P(r, u )

D(d, p)

Q

l

de
r � 

1 � e cos u



The following theorem summarizes our discussion.

E X A M P L E  1 Sketching the graph of a polar equation of an ellipse

Describe and sketch the graph of the polar equation

S O L U T I O N We first divide the numerator and denominator of the fraction
by 3 to obtain the constant term 1 in the denominator:

This equation has one of the forms in the preceding theorem, with 
Thus, the graph is an ellipse with focus F at the pole and major axis along the
polar axis. We find the endpoints of the major axis by letting and 
This gives us the points and Hence,

or

The center of the ellipse is the midpoint of the segment Using the
fact that we obtain

Hence,

Thus, The graph is sketched in Figure 5. For reference, we have su-
perimposed an xy-coordinate system on the polar system. L

b � 220.

b2 � a2 � c2 � 62 � 42 � 36 � 16 � 20.

c � ae � 6�2
3� � 4.

e � c�a,
V�V.�4, ��

a � 6.2a � d�V�, V� � 12,

V��10, ��.V�2, 0�
	 � �.	 � 0

e �
2
3 .

r �

10
3

1 �
2
3 cos 	

r �
10

3 � 2 cos 	
.
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Theorem on Polar 
Equations of Conics

A polar equation that has one of the four forms

or

is a conic section. The conic is a parabola if an ellipse if 
or a hyperbola if e � 1.

0 � e � 1,e � 1,

r �
de

1 � e sin 	
r �

de

1 � e cos 	

Figure 5

V�(10, p)

F V (2, 0)

10
r � 

3 � 2 cos u

�20��

Figure 4
(a) (b)

F

l

de
r � 

1 � e sin u
l

Fde
r � 

1 � e sin u



E X A M P L E  2 Sketching the graph of a polar equation of a hyperbola

Describe and sketch the graph of the polar equation

S O L U T I O N To express the equation in the proper form, we divide the nu-
merator and denominator of the fraction by 2:

Thus, and, by the theorem on polar equations of conics, the graph is a
hyperbola with a focus at the pole. The expression tells us that the trans-
verse axis of the hyperbola is perpendicular to the polar axis. To find the ver-
tices, we let and in the given equation. This gives us the
points and Hence,

or

The points and on the graph can be used to sketch the lower
branch of the hyperbola. The upper branch is obtained by symmetry, as illus-
trated in Figure 6. If we desire more accuracy or additional information, we
calculate

and

Asymptotes may then be constructed in the usual way. L

E X A M P L E  3 Sketching the graph of a polar equation of a parabola

Sketch the graph of the polar equation

S O L U T I O N To obtain the proper form, we divide the numerator and de-
nominator by 4:

Consequently, and, by the theorem on polar equations of conics, the
graph is a parabola with focus at the pole. We may obtain a sketch by plot-
ting the points that correspond to the quadrantal angles indicated in the fol-
lowing table.

e � 1,

r �

15
4

1 � cos 	

r �
15

4 � 4 cos 	
.

b2 � c2 � a2 � 62 � 42 � 36 � 16 � 20.

c � ae � 4�3
2� � 6

�5, ���5, 0�

a � 4.2a � d�V, V�� � 8,

V���10, 3��2�.V�2, ��2�
	 � 3��2	 � ��2

sin 	
e �

3
2 ,

r �
5

1 �
3
2 sin 	

r �
10

2 � 3 sin 	
.
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Figure 6

(5, p) (5, 0)

10
r � 

2 � 3 sin u

V �2, q�

V ���10, w�

(continued)



Note that there is no point on the graph corresponding to since the de-
nominator is 0 for that value. Plotting the three points and using the
fact that the graph is a parabola with focus at the pole gives us the sketch in
Figure 7. L

If we desire only a rough sketch of a conic, then the technique employed
in Example 3 is recommended. To use this method, we plot (if possible) points
corresponding to and These points, together with the
type of conic (obtained from the value of the eccentricity e), readily lead to
the sketch.

E X A M P L E  4 Expressing a polar equation of a conic in terms of x and y

Find an equation in x and y that has the same graph as the polar equation

S O L U T I O N

multiply by the lcd

distribute

substitute for r and

isolate the radical term

square both sides

simplify

We may write the last equation as or, simplified,

We recognize this equation as that of a parabola with vertex

and opening to the right. Its graph on an xy-coordinate system
would be the same as the graph in Figure 7. L

E X A M P L E  5 Finding a polar equation of a conic 
satisfying prescribed conditions

Find a polar equation of the conic with a focus at the pole, eccentricity 
and directrix 

S O L U T I O N The equation of the directrix may be written
which is equivalent to in a rectangular coordinate x � �3r cos 	 � �3,

r � �3 sec 	

r � �3 sec 	.
e �

1
2 ,

V��
15
8 , 0�

x �
2
15 y2 �

15
8 .

x �
16
120 y2 �

225
120

16y2 � 225 � 120x

 16�x2 � y2� � 225 � 120x � 16x2

 4��2x2 � y2 � � 15 � 4x

r cos 	 4��2x2 � y2 � � 4x � 15

4r � 4r cos 	 � 15

r�4 � 4 cos 	� � 15

r �
15

4 � 4 cos 	
.

3��2.�,��2,	 � 0,

1 � cos 	
	 � 0,
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Figure 7

15
r � 

4 � 4 cos u�&, q�

�&, w�

�≥, p�

u 0

r undefined 15
4

15
8

15
4

3�

2
�

�

2



system. This gives us the situation illustrated in Figure 3, with Hence,
a polar equation has the form

We now substitute and 

or, equivalently,
L

r �
3

2 � cos 	
r �

3�1
2�

1 �
1
2 cos 	

e �
1
2 :d � 3

r �
de

1 � e cos 	
.

d � 3.
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Exer. 1–12: Find the eccentricity, and classify the conic.
Sketch the graph, and label the vertices.

1 2

3 4

5 6

7 8

9 10

11 12

Exer. 13–24: Find equations in x and y for the polar equa-
tions in Exercises 1–12.

Exer. 25–32: Find a polar equation of the conic with focus
at the pole that has the given eccentricity and equation
of directrix.

25 , 26 , r cos 	 � 5e � 1r � 2 sec 	e �
1
3

r � csc 	 �csc 	 � cot 	�r �
4 csc 	

1 � csc 	

r �
8 csc 	

2 csc 	 � 5
r �

6 csc 	

2 csc 	 � 3

r �
4 sec 	

2 sec 	 � 1
r �

4

cos 	 � 2

r �
3

2 � 2 sin 	
r �

3

2 � 2 cos 	

r �
12

2 � 6 cos 	
r �

12

2 � 6 cos 	

r �
12

6 � 2 sin 	
r �

12

6 � 2 sin 	

27 , 28 ,

29 , 30 ,

31 , 32 ,

Exer. 33–34: Find a polar equation of the parabola with
focus at the pole and the given vertex.

33 34

Exer. 35–36: An ellipse has a focus at the pole with the 
given center C and vertex V. Find (a) the eccentricity and
(b) a polar equation for the ellipse.

35 36

37 Kepler’s first law Kepler’s first law asserts that planets
travel in elliptical orbits with the sun at one focus. To find
an equation of an orbit, place the pole O at the center of the
sun and the polar axis along the major axis of the ellipse
(see the figure).

(a) Show that an equation of the orbit is

where e is the eccentricity and 2a is the length of the
major axis.

r �
�1 � e2�a

1 � e cos 	
,

C�2, ��, V�1, 0�C�3,
�

2 �, V�1,
3�

2 �

V�5, 0�V�4,
�

2�

r sin 	 � 5e �
3
4r � 4 csc 	e �

2
5

r � �3 csc 	e � 4r sin 	 � �2e � 1

r � �4 sec 	e � 3r cos 	 � �3e �
4
3
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(b) The perihelion distance and aphelion distance 
are defined as the minimum and maximum distances,
respectively, of a planet from the sun. Show that

and .

Exercise 37

Polar axis

Planet

O

r
uSun

raph � a�1 � e�a�1 � e�rper �

raphrper 38 Kepler’s first law Refer to Exercise 37. The planet Pluto
travels in an elliptical orbit of eccentricity 0.249. If the peri-
helion distance is 29.62 AU, find a polar equation for the
orbit and estimate the aphelion distance.

39 Earth’s orbit The closest Earth gets to the sun is about
91,405,950 miles, and the farthest Earth gets from the sun is
about 94,505,420 miles. Referring to the formulas in Exer-
cise 37, find formulas for a and e in terms of and .raphrper
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Exer. 1–16: Find the vertices and foci of the conic, and
sketch its graph.

1 2

3 4

5 6

7

8

9

10

11

12

13

14 4x2 � y2 � 24x � 4y � 36 � 0

y2 � 8x � 8y � 32 � 0

4x2 � y2 � 40x � 8y � 88 � 0

4x2 � 9y2 � 24x � 36y � 36 � 0

x � 2y2 � 8y � 3

x2 � 9y2 � 8x � 90y � 210 � 0

3x2 � 4y2 � 18x � 8y � 19 � 0

25y � 100 � x2

25x2 � 36y2 � 1x2 � y2 � 4 � 0

9y2 � 144 � 16x29y2 � 144 � 16x2

y � 8x2 � 32x � 33y2 � 64x

15

16

Exer. 17–18: Find the standard equation of a parabola with
a vertical axis that satisfies the given conditions.

17 x-intercepts and , y-intercept 80

18 x-intercepts and 3, passing through 

Exer. 19–28: Find an equation for the conic that satisfies
the given conditions.

19 Hyperbola, with vertices and endpoints of conju-
gate axis 

20 Parabola, with focus and directrix 

21 Parabola, with focus and directrix 

22 Parabola, with vertex at the origin, symmetric to the x-axis,
and passing through the point 

23 Ellipse, with vertices and foci F�0, �5�V�0, �10�

�5, �1�

y � 10F�0, �10�

x � 4F��4, 0�

��3, 0�
V�0, �7�

�2, 39��11

�4�10

y2 � 2x2 � 6y � 8x � 3 � 0

x2 � 9y2 � 8x � 7 � 0
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24 Hyperbola, with foci and vertices 

25 Hyperbola, with vertices and asymptotes 

26 Ellipse, with foci and passing through the point

27 Ellipse, with eccentricity and endpoints of minor axis

28 Ellipse, with eccentricity and foci 

29 (a) Determine A so that the point is on the conic
.

(b) Is the conic an ellipse or a hyperbola?

30 If a square with sides parallel to the coordinate axes is
inscribed in the ellipse , express the
area A of the square in terms of a and b.

31 Find the standard equation of the circle that has center at the
focus of the parabola and passes through the origin.

32 Focal length and angular velocity A cylindrical container,
partially filled with mercury, is rotated about its axis so that
the angular speed of each cross section is .
From physics, the function f, whose graph generates the in-
side surface of the mercury (see the figure), is given by

where k is a constant. Determine the angular speed that
will result in a focal length of 2 feet.

Exercise 32

x

y

y � f (x)

�

f �x� �
1
64 �2x2 � k,

� radians�second

y �
1
8 x2

�x2�a2� � � y2�b2� � 1

Ax2 � 2y2 � 4
�2, �3�

F��12, 0�3
4

��5, 0�

2
3

�2, 22 �
F��2, 0�

y � �9xV�0, �6�

V��5, 0�F��10, 0� 33 An ellipse has a vertex at the origin and foci and
, as shown in the figure. If the focus at is

fixed and is on the ellipse, show that approaches
4px as . (Thus, as , the ellipse takes on the
shape of a parabola.)

Exercise 33

34 Alpha particles In 1911, the physicist Ernest Rutherford
(1871–1937) discovered that if alpha particles are shot to-
ward the nucleus of an atom, they are eventually repulsed
away from the nucleus along hyperbolic paths. The figure
illustrates the path of a particle that starts toward the origin
along the line and comes within 3 units of the nu-
cleus. Find an equation of the path.

Exercise 34

Exer. 35–39: Find an equation in x and y whose graph con-
tains the points on the curve C. Sketch the graph of C, and
indicate the orientation.

35 , ;

36 , ;

37 , ;

38 , ;

39 , ; 0 � t � 4y �
2

t
� tx �

1

t
� 1

t 
 0y � 2�tx � 2t

0 � t � 2�y � sin t � 1x � cos2 t � 2

t � 0y � t 2 � 4x � 2�t

�2 � t � 2y � t � 1x � 3 � 4t

y

x
Nucleus

Alpha particle

y � qx

3

y �
1
2 x

y

x

y2 � 4px

F1 F2

c l �c l �
y2�x, y�

F1F2� p � 2c, 0�
F1� p, 0�



40 Curves , , , and are given parametrically for t
in . Sketch their graphs, and discuss their similarities 
and differences.

: ,
: ,
: ,
: ,

41 Refer to the equations in (1) of Example 5 in Section 11.4.
Find the range and maximum altitude for ,

, and .

42 List two polar coordinate points that represent the same
point as .

43 Change to rectangular coordinates.

44 Change to polar coordinates with and
.

Exer. 45–48: Find a polar equation that has the same graph
as the equation in x and y.

45 46

47 48 x2 � y2 � 2xy2x � 3y � 8

x2 � y2 � 3x � 4y � 0y2 � 4x

0 � 	 � 2�
r � 0�223, �2�

�5, 7��4�

�2, ��4�

h � 5120� � 30�
s � 1024

y � �216 � e2tx � etC4

y � 4 sin tx � 4 cos tC3

y � �2tx � �216 � tC2

y � 216 � t2x � tC1

�

C4C3C2C1 Exer. 49–54: Find an equation in x and y that has the same
graph as the polar equation.

49 50

51 52

53

54

Exer. 55–66: Sketch the graph of the polar equation.

55 56

57 58

59 60

61 62

63 64

65 66 r �
�6 csc 	

1 � 2 csc 	
r �

6

3 � 2 cos 	

r � 6 � r cos 	r �
8

1 � 3 sin 	

2r � 	r 2 � 9 sin 2	

r � 2 � 4 cos 	r � 3 � 3 sin 	

r � 6 � 3 cos 	r � 3 sin 5	

r � 8 sec 	r � �4 sin 	

r 2 sin 	 � 6 csc 	 � r cot 	

r � 5 sec 	 � 3r sec 	

	 � 23r 2 � 4 sin 2	

r � 2 cos 	 � 3 sin 	r 2 � tan 	
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1 On a parabola, the line segment through the focus, perpen-
dicular to the axis, and intercepted by the parabola is called
the focal chord or latus rectum. The length of the focal
chord is called the focal width. Find a formula for the focal
width w in terms of the focal length .

2 On the graph of a hyperbola with center at the origin O, draw
a circle with center at the origin and radius ,
where F denotes a focus of the hyperbola. What relationship
do you observe?

3 A point is on an ellipse if and only if

If , derive the general equation of an ellipse—
that is,

4 A point is on a hyperbola if and only if

� d�P, F� � d�P, F�� � � 2a.

P�x, y�

x2

a2
�

y2

b2
� 1.

b2 � a2 � c2

d�P, F� � d�P, F�� � 2a.

P�x, y�

r � d�O, F�

� p �

If , derive the general equation of a hyperbola—
that is,

5 A point is the same distance from as it is from
the circle , as illustrated in the figure. Show that
the collection of all such points forms a branch of a hyper-
bola, and sketch its graph.

Exercise 5 y

x
2

(4, 0)

P

d1

d2

x2 � y2 � 4
�4, 0�P�x, y�

x2

a2
�

y2

b2
� 1.

c2 � a2 � b2
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6 Design of a telescope Refer to Exercise 64 in Section 11.3.
Suppose the upper branch of the hyperbola (shown) has 

equation and an equation of the parabola

is . Find d in terms of a and b.

Exercise 6

7 Maximizing a projectile’s range As in Example 5 in Sec-
tion 11.4, suppose a projectile is to be fired at a speed of
1024 from a height of 2304 feet. Approximate the
angle that maximizes the range.

8 Generalizations for a projectile’s path If , the equa-
tions in (1) of Example 5 in Section 11.4 become

, ; .

Show that each statement is true.

(a) The projectile strikes the ground when

(b) The range r of the projectile is

r �
s2 sin 2�

g
.

t �
2s sin �

g
.

t 
 0y�t� � �
1
2 gt2 � �s sin ��tx�t� � �s cos ��t

h � 0

ft�sec

Hyperbolic
mirror

F 1

Parabolic mirror

l

y � dx2

y �
a

b
2x2 � b2

(c) The angle that maximizes the range r is 45�.

(d) The path of the projectile in rectangular coordinates is

(e) The time at which the maximum height is reached is

(f ) The maximum height reached is

9 Investigating a Lissajous figure Find an equation in x and
y for the curve given by

, ;

10 Sketch the graphs of the equations ,
, and for . Try as

many values of as necessary to generalize results con-
cerning the graphs of and ,
where .

11 Generalized roses Examine the graph of for odd
values of n and even values of n. Derive an expression for
the leaf angle (the number of degrees between consecutive
pole values). What other generalizations do you observe?
How do the graphs change if sin is replaced by cos?

12 Figure 17 of Section 11.5 shows the circles and
. Solve this system of equations for solu-

tions. Now find equations in x and y that have the same
graphs as the polar equations. Solve this system for 
solutions, convert them to solutions, and explain why
your answer to the first system did not reveal the solution at
the pole.

�r, 	�
�x, y�

�r, 	�r � 4 cos 	
r � 4 sin 	

r � sin n	

� � 0
r � f �	 � ��r � f �	 � ��

�
� � ��4r � f �	 � ��r � f �	 � ��

r � f �	� � 2 � 4 cos 	

0 � t � 2�.y � cos tx � sin 2t

y �
s2 sin2 �

2g
.

t �
s sin �

g
.

y � �
g

2s2 cos2 �
x2 � �tan ��x.
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A P P E N D I X I
Common Graphs and Their Equations

(Graphs of conics appear on the back endpaper of this text.)

Horizontal line; constant function Vertical line Identity function

Absolute value function Circle with center and Semicircles
radius r

Parabola with vertical axis; Parabola with horizontal axis Square root function
squaring function

y � �x  � x1/2��

y

x

x � y2

y

x

y � x2

y

x

�0, 0�

x � �r2 � y2������

x � ��r2 � y2������

y � ��r2 � x2������

y � �r2 � x2������

y

x

y

x

x2 � y2 � r2r

�r

�r r

y

x

y � #x #

y

x

y � x

y

x

x � k

(k, 0)

y

x

y � c
(0, c)
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Cube root function A graph with a cusp at the origin Cubing function

Greatest integer function Reciprocal function A rational function

Exponential growth function Exponential decay function Logarithmic function
(includes natural exponential (includes common and
function) natural logarithmic

functions)

y � logax

y

x

y � ax,
0 � a � 1

y

x

y � ax, a � 1

y

x

y � 
1
x2

y

x

y � 
1
x

y

x

y � �x �

y

x

y � x3

y

x

y � x2/3

y

x

y � �x  � x1/3��3

y

x
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A P P E N D I X I I
A Summary of Graph Transformations

The graph of is shown in black in each figure. The domain of f is and the range of f is .��4, 3	��1, 3	y � f �x�

800

The graph of f is shifted vertically upward 3 units.
Domain of g: Range of g:

The graph of f is shifted vertically downward 4 units.
Domain of h: Range of h:

The graph of f is shifted horizontally to the right 3 units.
Domain of g: Range of g:

The graph of f is shifted horizontally to the left 6 units.
Domain of h: Range of h:

The graph of f is stretched vertically by a factor of 2.
Domain of g: Range of g:

The graph of f is compressed vertically by a factor of 2.

Domain of h: Range of h: ��2, 3
2	��1, 3	

�1
2 � 1	y � h�x� �

1
2 f �x�

��8, 6	��1, 3	

�2 � 1	y � g�x� � 2f �x�

��4, 3	��7, �3	

y � h�x� � f �x � 6�

��4, 3	�2, 6	

y � g�x� � f �x � 3�

��8, �1	��1, 3	

y � h�x� � f �x� � 4

��1, 6	��1, 3	

y � g�x� � f �x� � 3

y � h(x)

y

x

y � f (x)

y � g(x)

y � h(x)

y

x

y � f (x)

y � g(x)

y � h(x)

y

x

y � f (x)

y � g(x)



Domain of g: Range of g:

The graph of f is stretched horizontally by a factor of 2.
Domain of h: Range of h:

The graph of f is reflected through the x-axis.
Domain of g: Range of g:

The graph of f is reflected through the y-axis.
Domain of h: Range of h:

Domain of g: Range of g:

Domain of h: Range of h: at most.
In this case, the range is a
subset of .��4, 3	

��4, 3	��3, 3	

y � h�x� � f �� x ��

�0, 4	��1, 3	

y � g�x� � � f �x� �

��4, 3	��3, 1	

y � h�x� � f ��x�

��3, 4	��1, 3	

y � g�x� � �f �x�

��4, 3	��2, 6	

�1
2 � 1	y � h�x� � f �1

2 x�

��4, 3	��1
2 , 3

2	

�2 � 1	y � g�x� � f �2x�

y

y � h(x)

x

y � f (x)
y � g(x)

y � h(x)

y

x

y � f (x)
y � g(x)

y � h(x)

y

x

y � f (x)

y � g(x)

801

Reflect points on f with negative y-values through the x-axis.

The graph of f is compressed horizontally by a factor of 2.

Reflect points on f with positive x-values through the y-axis.



A P P E N D I X I I I
Graphs of Trigonometric Functions and Their Inverses

Domain: � Domain: � Domain:

Range: Range: Range: �

Domain: Domain: Domain:

Range: Range: Range: ����, �1	 
 �1, �����, �1	 
 �1, ��

x � �nx �
�

2
� �nx � �n

y � cot xy � sec xy � csc x

y

xp�p

1

�1

y

xp�p
1

�1
xp�p

1

�1

y

��1, 1	��1, 1	

x �
�

2
� �n

y � tan xy � cos xy � sin x

y

xp�p

1

�1

y

xp�p

1

�1

y

xp�p

1

�1
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Domain: Domain: Domain: �

Range: Range: Range:

Domain: Domain: Domain: �

Range: Range: Range: �0, ���0,
�

2 � 
 ��,
3�

2 ����, �
�

2 � 
 �0,
�

2 �
���, �1	 
 �1, �����, �1	 
 �1, ��

y � cot�1 xy � sec�1 xy � csc�1 x

y

x

q

�q
1�1

y

x

q

�q
1�1

y

x

q

�q
1�1

�� �

2
,

�

2 ��0, �	�� �

2
,

�

2 �
��1, 1	��1, 1	

y � tan�1 xy � cos�1 xy � sin�1 x

y

x

q

�q
1

�1

y

x

q

�q
1�1

y

x

q

�q
1�1
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To find the values of the other trigonometric functions, use the following definitions:

sec t �
1

x
�if x � 0� csc t �

1

y
�if y � 0�

tan t �
y

x
�if x � 0� cot t �

x

y
�if y � 0�

y

x

(0, �1)

(1, 0)

(0, 1)

(�1, 0) t � p

t �
h

t
�

w
t�

q

t �
p

t � j

t � z

t �
k

t �
dt �

ut �
it � f

t � l

t �
o

t �
'

t � 0

�3
2�� , �

1
2 �

�3
2��

1
2 �,

�2
2�� �, �2

2

�� �,1
2

�3
2

�2
2�� , � ��2

2

�3
2�

1
2 ��� , �

�3
2

1
2 �,�

�,� �3
2

1
2

�2
2� �, �2

2

�3
2

1
2 �, � �

�, �� �3
2

1
2

�2
2� , � ��2

2

P(x, y) � P(cos t, sin t)
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A P P E N D I X I V

Values of the Trigonometric Functions
of Special Angles on a Unit Circle



A Student’s Solutions Manual to accompany this textbook is
available from your college bookstore. The guide contains
detailed solutions to approximately one-half of the exercises,
as well as strategies for solving other exercises in the text.

Chapter 1

EXERCISES 1.1

1 (a) Negative (b) Positive (c) Negative
(d) Positive

3 (a) (b) (c)
5 (a) (b) (c)
7 (a) (b) (c) (d)

(e) (f) (g) (h)

(i) 9 (a) 5 (b) 3 (c) 11
11 (a) (b) (c) 11
13 (a) (b) (c)
15 (a) 4 (b) 12 (c) 12 (d) 8
17 (a) 10 (b) 9 (c) 9 (d) 19 19
21 23 25
27 29 31 33 35
37 39 41 (a) 8.4652 (b) 14.1428
43 (a) (b)
45 Construct a right triangle with sides of lengths and 1.

The hypotenuse will have length . Next, construct a
right triangle with sides of lengths and . The 
hypotenuse will have length .

47 The large rectangle has area . The sum of the
areas of the two small rectangles is .

49 (a) (b) (c)
51 (a) 830,000 (b) 0.000 000 000 002 9

(c) 563,000,000
53 55 57 g
59 frames
61 (a) 201.6 lb (b) 32.256 tons

EXERCISES 1.2

1 3 5 7 9 11

13 15 17 19 21

23 25 27 29 31

33 35 37 39 41 4x2y4
8

x1/2

1

9a4
24x3/28a2

9x10y14
20y

x3

s6

4r 8

81

64
y6

9y6

x8

4

xy

12u11

v2

9

2
�2a14

6

x

8x9
1

25

1

8

�47

3

9

8

16

81

4.1472 � 106

1.678 � 10�245.87 � 10121.7 � 10�24

8.1 � 1089.8 � 10�84.27 � 105

ab � ac
a�b � c�
25

2223
23

22
6.708 � 1016.557 � 10�1

��
��x2 � 4b � a2 � x

�x � 3� x � 4 � � 3� �3 � x � 
 8
� 7 � x � � 5

1.5 � 224 � �4 � �
�3�15

� x � � 7

1

w

 9

p

q
� 7�z � 3t 
 5

2 � d � 4q � �y 
 0x � 0
���
���

43 45 1 47 49

51 53 (a) (b)
55 (a) (b) 57 9 59

61 63 65 67

69 71 73

75 77 79 81

83 85 ;
87 ;

89 ;

91 (a) 1.5518 (b) 8.5499
93 (a) 2.0351 (b) 3.9670 95 $232,825.78
97 2.82 m 99 The 120-kg lifter

EXERCISES 1.3

1 3
5 7
9 11

13
15
17 19 21
23 25
27 29
31 33 35
37
39
41
43 4x2 � y2 � 9z2 � 4xy � 12xz � 6yz

a2 � b2 � c2 � 2ab � 2ac � 2bc
8x3 � 36x2y � 54xy2 � 27y3

x3 � 6x2y � 12xy2 � 8y3

x � yx � yx4 � 8x2 � 16
x4 � 6x2y2 � 9y49x2 � 12xy � 4y2

x4 � 5x2 � 36x4 � 4y2

4x2 � 9y23v2 � 2u2 � uv24y2 � 5x
2x6 � 2x5 � 2x4 � 8x3 � 10x2 � 10x � 10
3t 4 � 5t 3 � 15t 2 � 9t � 10

6x3 � 37x2 � 30x � 256u2 � 13u � 12
15x2 � 31xy � 14y26x2 � x � 35

x3 � 2x2 � 412x3 � 13x � 1

�n 1

c
� � 1

c
�1/n

�
11/n

c1/n
�

1

2
n c

�

�ab�xy � axybxy � axby�
�ar�2 � a2r � a�r 2��x2� y � 1 �3

� x3 � y2�3tv2
2x

y2
25 x2y4

3x5

y2

1

2
25 20x4y2

x

3
24 15x2y3

xy

3
23 6y

1

2y2
26xy

2a2

b

3y3

x2

1

2
23 4

�225 223 8 � y8 � 23 y

8x2x4x2x�x 2 � y2�1/2

�a � b�2/3x 3/4
3

x3y2

A1

Answers to Selected Exercises

101 Height Weight Height Weight

64 137 72 168

65 141 73 172

66 145 74 176

67 148 75 180

68 152 76 184

69 156 77 188

70 160 78 192

71 164 79 196



45 47 49
51 53
55 Irreducible 57
59 61 63
65 67
69 71
73 Irreducible 75
77
79
81
83
85 87
89 91
93
95
97
99

Area of I is , area of II is , and

(a) 1525.7; 1454.7
(b) As people age, they require fewer calories. 

Coefficients of w and h are positive because large 
people require more calories.

EXERCISES 1.4

1 3 5 7

9 11 13

15 17 19

21 23 25

27 29 31

33 35 37

39 41

43 45

47 49

51 53

55 57
2

22�x � h� � 1 � 22x � 1

1

�a � b��2a � 2b �

23 a2 � 23 ab � 23 b2

a � b
�9x � 4y��32x � 22y �

t � 102t � 25

t � 25

�12

�3x � 3h � 1��3x � 1�

�
3x2 � 3xh � h2

x3�x � h�3
2x � h � 3

�
3

�x � 1��a � 1�
2x2 � 7x � 15

x2 � 10x � 7

x � y
x2 � xy � y2

x � y
a � b

�
x � 5

�x � 2�2

11u2 � 18u � 5

u�3u � 1�
p2 � 2p � 4

p � 3

2x � 1

x

2�2x � 3�
3x � 4

4�2t � 5�
t � 2

5x2 � 2

x3

6s � 7

�3s � 1�2

�3

x � 2

a

�a2 � 4��5a � 2�
x

x � 1

4 � r

r 2

y � 5

y2 � 5y � 25

x � 3

x � 4

7

120

22

75

� �x � y��x � y�.
A � x2 � y2 � �x � y�x � �x � y�y

�x � y�y�x � y�x
�x8 � 1��x4 � 1��x2 � 1��x � 1��x � 1�
� y � 2�� y2 � 2y � 4�� y � 1�� y2 � y � 1�
� y � 4 � x�� y � 4 � x�
�x � 2 � 3y��x � 2 � 3y�
�a � b��a � b��a2 � ab � b2��a2 � ab � b2�

�a2 � b2��a � b��x � 1��x � 2��x2 � x � 1�
3�x � 3��x � 3��x � 1��2x � y��a � 3b�

�5 � 3x��25 � 15x � 9x2�
�7x � y3��49x2 � 7xy3 � y6�
�4x � y2��16x2 � 4xy2 � y4�
�4x � 3��16x2 � 12x � 9�

3�5x � 4y��5x � 4y�
x2�x � 2��x � 2��z2 � 8w��z2 � 8w�
�6r � 5t��6r � 5t��5x � 2y��9x � 4y�

�5z � 3�2�2x � 5�2�3x � 5��4x � 3�
�3x � 4��2x � 5�

�8x � 3��x � 7�5x3y2�3y3 � 5x � 2x3y2�
3x2y2� y � 3x�3a2b�b � 2�s�r � 4t�

59 61

63 65 67

69

71 73

75 77 79

81

CHAPTER 1 REVIEW EXERCISES

1 (a) (b) (c) (d)

2 (a) (b) (c)

3 (a) (b) (c)

4 (a) 7 (b) (c) 5 (a) 5 (b) 5 (c) 7

6 (a) (b)
7 8
9 (a) No (b) No (c) Yes

10 (a) (b)
11 (a) 68,000,000 (b) 0.000 73

12 (a) 286.7639 (b) 13

14 15 16 17 18

19 20 21 22 23

24 25 26 27 s

28 29 30 31

32 33 34

35 36 37 38

39 40

41 42

43 44
45
46 47 �x2 � 18x � 73z4 � 4z3 � 3z2 � 4z � 1

x4 � x3 � x2 � x � 2

x � 62x � 9

9 � x
�9x � y��32x � 2y �

2a � 2a � 2

2

1 � 22x � x

1 � x

1

3y
23 3x2y2

1

2�
23 4�

a � 2b
2x

y2
c2d 4

1 � 2t

t

2ab2ac2x2y23 x
ab

c
2bc

1

2
23 22xyz23 x2z

x8

y2

y � x2

x2y

u � vs � r
27u2v27

16w20

b6

a2

16x2

z4y6

x3z

y10
c1/3�

p8

2q

b3

a8

xy5

9

3y

r 2
18a5b5

1

8

�71

9
2.868 � 102

4.02 � 10�69.37 � 1010

��x � 2��x � 3��x � 3
�x � 4� � 4��2 � x� 
 7

1

6
�1

� x � � 4
1

3
� a �

1

2
x � 0

���

5

8
�

13

56

39

20
�

5

12

6�3 � 2x�
�4x2 � 9�3/2

x2 � 12

�x2 � 4�4/3

4x�1 � x2�
�x2 � 2�4

27x2 � 24x � 2

�6x � 1�4

�3x � 1�5�39x � 89�
�2x � 5�1/2

�2x � 1�2�8x2 � x � 24�
�x2 � 4�1/2

�3x � 2�3�36x2 � 37x � 6�

1 � x2

x1/2

1 � x5

x3
x�1 � 4x�3 � 4x�5

4x4/3 � x1/3 � 5x�2/3
�1

21 � x � h � 21 � x

A2 A N S W E R S T O S E L E C T E D E X E R C I S E S

103
101

105



48
49
50 51

52 53

54 55
56 57
58 59
60 61
62
63 64
65 66
67 68
69
70
71 72
73 74
75 Irreducible 76
77 78

79 80 81

82 83 84

85 86 87

88 89

90 91

92 93 cells

94 Between and beats
95 0.58 96 0.13 dyne-cm

CHAPTER 1 DISCUSSION EXERCISES

1 0.1% 2 Either or 
3 Add and subtract 10x; are the factors.
4 The first expression can be evaluated at .
5 They get close to the ratio of leading coefficients as x

gets larger.
7 If x is the age and y is the height, show that the final value

is .
8 9 (a) 109–45 (b) 1.88

Chapter 2

EXERCISES 2.1

1 3 1 5 7 9 11 �
1

40

23

18

35

17

26

7

5

3

Vout �
1
3 Vin

100x � y

x � 1
x � 5 � 210x

b � 0a � 0

m2

3.78 � 1092.94 � 109

2.75 � 1013
x4 � 1

x

x3�2 � 10x1�2 � 25x�1�22�5x2 � x � 4�
�6x � 1�2/3�4 � x2�2

�x2 � 1�1/2�x � 5�3�7x2 � 15x � 4�
1

x � 3

x � 5
ab

a � b

�2x2 � x � 3

x�x � 1��x � 3�

x3 � 1

x2 � 1

5x2 � 6x � 20

x�x � 2�2

27

�4x � 5��10x � 1�

3x � 2

x�x � 2�
r 2 � rt � t2

r � t

3x � 5

2x � 1

4x2�x2 � 3x � 5��x � 2��x � 2�2�x2 � 2x � 4�
�x � 7 � 7y��x � 7 � 7y�

3�x � 2��w2 � 1��w4 � w2 � 1�
x2�x � 4�2� p4 � q4�� p2 � q2�� p � q�� p � q�

u3v�v � u��v2 � uv � u2�
8�x � 2y��x2 � 2xy � 4y2�

�2c2 � 3��c � 6�� y � 4z��2w � 3x�
�4a2 � 3b2�2�14x � 9��2x � 1�

2r 2s3�r � 2s��r � 2s�10w�6x � 7�
a2 � b2 � c2 � d 2 � 2�ab � ac � ad � bc � bd � cd�

81x4 � 72x2y2 � 16y4x4 � 4x3 � 10x2 � 12x � 9
8a3 � 12a2b � 6ab2 � b3c6 � 3c4d 2 � 3c2d 4 � d 6

9y2 � 6xy � x2a6 � 2a5 � a4

169a4 � 16b216r 4 � 24r 2s � 9s2

6a2 � 11ab � 35b23p2q � 2q2 �
5

3
p

a4 � b415x3 � 53x2 � 102x � 40
3y5 � 2y4 � 8y3 � 10y2 � 3y � 12
8x3 � 2x2 � 43x � 35

13 15 17 19 21

23 25 27 No solution

29 All real numbers except 31 33

35 No solution 37 0 39 All real numbers except 
41 No solution 43 No solution
45

47

49 51

53 (a) Yes (b) No, 5 is not a solution of the first equation.

55 Choose any a and b such that .

57 59 61

63 65 67

69 71

73 75

EXERCISES 2.2

1 88 3 $820 5 (a) 125 (b) 21

7 120 mo (or 10 yr) 9 Not possible 11 200 children

13 oz of 30% glucose solution and oz of water

15 194.6 g of British sterling silver and 5.4 g of copper
17 (a) After 64 sec (b) 96 m and 128 m, respectively

19 6 21 (a) (b) mi

23 1237.5 ft
25 (a) 4050 (b) 2592 (c) 3600

27 ft 29 55 ft 31 36 min

33 36 min 35 27
37 (a) 40.96�F (b) 6909 ft 39 37�F

EXERCISES 2.3

1 3 5 7

9 11 13

15 (a) No, �4 is not a solution of . (b) Yes

17 19 21 23 �2 �
1

2
2113 � 217�

3

5
�13

x � 4

�
34

5
�

1

2
�

5

2

�
2

3
,

1

5
�

9

2
,

3

4
�

6

5
,

2

3
�

3

2
,

4

3

19

2
�

3�

8

 8.32

ft2ft2ft2

2
2

9

5

9
mi�hrmi�hr

7

3

14

3

q �
fp

p � f
q �

p�1 � S�
S�1 � p�

b1 �
2A � hb2

h
w �

P � 2l

2

m �
Fd 2

gM
h �

2A

b
P �

I

rt

Q �
1

M � 1
K �

D � L

E � T
x � 1 � x � 2

b � �
5

3
a

�
19

3

3x2 � 8

x
�

3x2

x
�

8

x
�

8

x
� 3x

x2 � 9

x � 3
�

�x � 3��x � 3�
x � 3

� x � 3

�4x � 3�2 � 16x2 � �16x2 � 24x � 9� � 16x2 � 9 � 24x

�2

�
2

3

5

9

1

2

31

18

29

4

�
3

61

7

31
�

24

29

4

3

49

4
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25 (a) (b) 16 (c) (d)

27 29 31

33 35 37

39 41 43 No real solutions

45 47

49 (a) (b)

51 53

55 57 cm
59 (a) After 1 sec and after 3 sec (b) After 4 sec
61 (a) 4320 m (b) 96.86�C 63 2 ft
65 12 ft by 12 ft

67 mi or mi

69 (a) (b) 3:30 P.M.
71 14 in. by 27 in. 73 7 75 300 pairs
77 2 ft 79 15.89 sec
81 (a) 0; �4,500,000 (b)

EXERCISES 2.4

1 3 5 7
9 11 13 25

15 (a) (b) 1 17 (a) i (b)

19 21 23

25 27 29

31 33 35 ,

37 , 39 41

43 45

47 �5, 49

51 53

55 0,

57

� �a � bi� � �c � di� � z � w
� �a � c� � �b � d�i � �a � c� � �b � d�i

z � w � �a � bi� � �c � di�

�
3

2
�

1

2
27 i

�2i, �
3

2
i�4, �4i

5

2
, �

25

26
�

15

26
23 i

5

2
�

5

2
23 i

�
1

8
�

1

8
247 i

5

2
�

1

2
255 i

�2 � 3i3 � 2iy � �4x � 3

y � �1x � 4
21

2
i�

44

113
�

95

113
i

�2 � 14i�142 � 65i
2

5
�

4

5
i

34

53
�

40

53
i

1

2
� i

3

10
�

3

5
i

�1�i
�24 � 7i21 � 20i

17 � i41 � 11i18 � 3i2 � 4i

2.13 � 10�7

mi�hr
d � 100220t 2 � 4t � 1

3 �
1

2
214 
 1.13 �

1

2
214 
 4.9

2150�� 
 6.9r � r021 � �V�Vmax�

r �
��h � 2� 2h2 � 2�A

2�
v � �2K

m

y � �2x � 28x2 � 1x �
y � 22y2 � 1

2

(2x � 3)(6x � 1)(x � 6)(x � 5)

9

2

5

2
�

1

2
215

4

3
�

1

3
222

3

4
�

1

4
241�2 � 22

�
1

2
,

2

3

3

2
� 25�3 � 22

�7�12
81

4
59

61 If , then and hence ,
or . Thus, and is real. 
Conversely, if z is real, then and hence

.

EXERCISES 2.5

1 �15, 7 3 5 No solution 7

9 11 0, 25 13 15

17 19 6 21 6 23 5, 7 25 �3

27 �1 29 31 3 33 0, 4 35

37 39 41

43 45 47 49 0, 4096

51 (a) 8 (b) (c) No real solutions (d) 625
(e) No real solutions

53 55 57

59 9.16 61 $4.00 63 cm

65 53.4%
67 There are two possible routes, corresponding to

mi and mi.

EXERCISES 2.6

1 (a) (b) (c)

(d)

3 5

7 9

11
�2 0 5

] )��2, 5�

0 3 7
] ]

�2 0 4
) ]

�3, 7	��2, 4	

]
400�2

(
�4, �����, �2�

1 �
7

3

�
7

3
� �1�11 � �7�2 � 2

x 
 2.2887x 
 0.6743

2�3 432

�

 10.3ft�sec

h 
 97% of Lh �
1

�r
2S2 � � 2r 4l �

gT 2

4� 2

�8

�
4

3
, �

2

3
�

8

27
,

1

125

16

9

8

27
, �8�2, �3�

1

10
�70 � 10229

�3, �4�
5

4

�
1

2
262

9

5
�

57

5
�

1

2
26, �

5

2
, 0

�
2

3
, 2�

2

3
, 2

z � a � 0i � a � 0i � a � 0i � z
b � 0
z � ab � 02bi � 0

�bi � bia � bi � a � biz � z
� �a � bi� � �c � di� � z � w
� a�c � di� � bi�c � di�
� ac � adi � bd � bci
� �ac � bd� � �ad � bc�i
� �ac � bd� � �ad � bc�i

z � w � �a � bi� � �c � di�
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13 15 17

19 21 23

25 27 29 31

33 35 37

39 41 43

45 All real numbers except 1 47
49 51

53 55

57 59 61

63 65

67 69
71 (a) �8, �2 (b)

(c)
73 75
77 79 81

83 yr 85 (a) 5 ft 8 in. (b)

EXERCISES 2.7

1 3 5

7 9

11 13 15

17 19

21 23
25 27

29 31

33 35

37 39

41 43 sec 45 0 � v � 30
1

2
�0, 2	 
 �3, 5	

��1, 0� 
 �1, ���1,
5

3� 
 �2, 5	

��1,
2

3� 
 �4, �����, �1� 
 �2,
7

2�
�3

2
,

7

3����, �3� 
 �0, 3�

��2, 2	 
 �5, ����2, 0� 
 �0, 1	
���, �2� 
 ��2, �1� 
 �0
��2
 
 �2, ��

���, �2	 
 �2, �����, 0	 
 � 9

16
, ��

�� 3

5
,

3

5���4, 4��2, 4�

���, �
5

2 � 
 �1, �����, �2� 
 �4, ��

��2, 3���2, 1	 
 �4, ����
1

3
,

1

2�
65.52 � h � 66.486

2

3

4 � p � 6R 
 1186 � F � 104
5 � � T1 � T2 � � 10� w � 148 � � 2

���, �8� 
 ��2, ��
�8 � x � �2

��2, 1� 
 �3, 6���4, 4�

���,
7

4� 
 �13

4
, �����, �

8

3 � 
 �4, ��

���, 3� 
 �3, �����, ��� 3

5
,

9

5�
��

9

2
, �

1

2 ����, �2.1	 
 ��1.9, ��

��3.01, �2.99����, �5	 
 �5, ��
��3, 3�

� 4

3
, ����

2

3
, �����,

4

5�
���,

8

53��6, 12	��
26

3
,

16

3 �
�9, 19��1, 6���6, ���12, ��

���, �
4

3 ��16

3
, ��x � �5

x 
 4�4 � x � �1�5 � x � 8 47 49 km
51

CHAPTER 2 REVIEW EXERCISES

1 2 5 3 �32 4 No solution

5 Every 6 7

8 9 10

11 �27, 125 12 13

14 15

16 17 18 �5, 4

19 20 21 2 22 �3, 1 23 5

24 25 26 27 3

28 29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44 45

46 47

48 49

50 51

52 53 54

55 56 57 258 58 $79.37

59 56 60 ohms 61 11.055%R2 �
10

3

�2 � 5i�
9

53
�

48

53
i

9

85
�

2

85
i�55 � 48i�28 � 6i

15 � 2ir �
��hR � 212�hV � 3�2h2R2

2�h

h � R �
1

2
24R2 � c2R � �4 8FVL

�P

r � �3 3V

4�
D �

CB3

(A � E )3

C �
2

P � N � 1
�0, 1� 
 �2, 3��1, ��

���, �5� 
 ��1, 5����, �
3

2 � 
 �2, 9�

��3, �1� 
 ��1, 2	���, �2� 
 �0
 
 �3, ��

��2, 5	���, �
3

2 � 
 � 2

5
, ��

�2, 4� 
 �8, 10����,
11

3 � 
 �7, ��

�0, 6	���, 1� 
 �5, ��

��7,
7

2����, �
3

10�
�13

23
, ����11

4
,

9

4�� 2

3
, ��

�5 � 213 i2 � 23�8

13

4

1

4
,

1

9

�
3

2
, 2�

1

2
�6 � 225

�
1

2
214 i, �

2

3
23 i�

1

6
�

1

6
271 i

1

5
�

1

5
214 i�

1

2
27, �

2

5

�
5

2
, �22

1

2
�

1

2
221

5

2
�

1

2
229

�
2

3
�

1

3
219�4,

3

2
x � 0

�
5

6

70.5 � V � 81.4
height � 25,6000 � S � 4000
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62 $168,000 63 64 60.3 g

65 6 oz of vegetables and 4 oz of meat
66 315.8 g of ethyl alcohol and 84.2 g of water
67 80 gal of 20% solution and 40 gal of 50% solution
68 260 kg 69 75 mi 70 2 71 64

72 73 50 minutes 74 5 mi/hr

75 1 hr 40 min 76 165 mi

77 mi 78 micron
79 (a)

(b) , or approximately

11:58 A.M.
80 There are two arrangements: and

.
81 (a) ft (b) 2 ft 82 12 ft by 48 ft

83 10 ft by 4 ft 84 After yr 85

86 Over $100,000 87 K

88

89 90

91 36 to 38 92 $990 to $1040

CHAPTER 2 DISCUSSION EXERCISES

1 No 2

3 (a) (b) Yes

(c) a and b cannot both be 0
5 , : ;

, : ;
, : ;

, : ;

, :

6 (a) 11,006 ft (b)

8
9 1 gallon 
 0.13368 ft3; 586.85 ft2

1�101000; cx � 2�c must be nonnegative

h �
1

6
�2497D � 497G � 64,000�

�x1, x2	D � 0a � 0

x �
�b

2a
D � 0a � 0


�D � 0a � 0
���, x1	 
 �x2, ��D � 0a � 0
x � �D � 0a � 0

ac � bd

a2 � b2
�

ad � bc

a2 � b2
i

�b

2a

trees�acre

20 � w � 25v �
626.4

26472

 7.786 km�sec

�

5
210 � T �

2�

7
25

T � 279.57

4 � p � 87
2

3

222
50 ft � 20 ft

40 ft � 25 ft

t �
5 � 2219,603

145

 1.97

d � 22900t 2 � 200t � 4
325 � 6 
 0.7110 � 523 
 1.34

640

11

 58.2 mi�hr

mi�hr

6

11
 hr Chapter 3

EXERCISES 3.1

1

3 The line bisecting quadrants I and III

5 , , , , ,
7 (a) The line parallel to the y-axis that intersects the 

x-axis at 
(b) The line parallel to the x-axis that intersects the 

y-axis at 
(c) All points to the right of and on the y-axis
(d) All points in quadrants I and III
(e) All points below the x-axis
(f) All points on the y-axis

9 (a) (b)

11 (a) (b)

13 (a) 4 (b)
15 ;
17 and

19 21
23 5x � 2y � 3

d�A, C� � d�B, C� � 2145�13, �28�
d�A, C�2 � d�A, B�2 � d�B, C�2

d�A, B� � d�B, C� � d�C, D� � d�D, A�
area � 28d�A, C�2 � d�A, B�2 � d�B, C�2

�5, �3�

��
7

2
, �1�213

�5, �
1

2 �229

�0, 3�

��2, 0�

F�0, 3�E�3, 0�D�3, �3�C��3, �3�B��3, 3�A�3, 3�

y

xD

C

BA

E

y

x

D C

B A

E

F
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25 ; a circle of radius 5 with center at 
the origin

27 , 29

31 or

33 Let M be the midpoint of the hypotenuse. Show that

.

EXERCISES 3.2

Exer. 1–20: x-intercept(s) is listed, followed by y-intercept(s).

1 3 1; 1

5 0; 0 7

9 0; 0 11
y

x

y

x

3; �23

y

x

y

x

�
1
222; �1

y

x

y

x

1.5; �3

d�A, M� � d�B, M� � d�O, M� �
1

2
2a2 � b2

a � 4a �
2

5

��2, �1��0, 3 � 211 ��0, 3 � 211 �

2x2 � y2 � 5 13 0; 0 15

17 0; 0 19

21 (a) 5, 7 (b) 9, 11 (c) 13

23 25

27 29

31 33 y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

16; �4

y

x

y

x

2; �8
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35 37
39
41
43
45 47 ;

49 ; 51 ;

53 ; (a point)
55 Not a circle, since cannot equal �2
57 ; ; ;

59 ;
;

61 63
65 (a) Inside (b) On (c) Outside
67 (a) 2 (b)
69 71
73 75

EXERCISES 3.3

1 3

5 m is undefined

7 The slopes of opposite sides are equal.
9 The slopes of opposite sides are equal, and the slopes of

two adjacent sides are negative reciprocals.
11 ��12, 0�

y

x

B

A

y

x

B A

y

x

B

A

m � 0m � �
3

4

��1, 0� 
 �0, 1����, �3� 
 �2, ��
25�x � 2�2 � � y � 3�2 � 25

3 � 25

y � �242 � x2(x � 3)2 � (y � 2)2 � 42

x � 2 � 249 � � y � 1�2; x � 2 � 249 � � y � 1�2

y � �1 � 249 � �x � 2�2

y � �1 � 249 � �x � 2�2

x � �236 � y2

x � 236 � y2y � �236 � x2y � 236 � x 2

r 2

r � 0C��2, 1�

r �
1

2
270C�3, �1�r � 11C�0, �2�

r � 7C�2, �3��x � 1�2 � � y � 2�2 � 34
�x � 4�2 � � y � 4�2 � 16
�x � 3�2 � � y � 6�2 � 9
�x � 4�2 � � y � 6�2 � 41

�x �
1

4�2

� y2 � 5�x � 2�2 � � y � 3�2 � 25
13 15

17

19

21 (a) (b) 23
25 27
29 31

33 35

37 39

41 , 43 ,

45 (a) (b) (c)

(d)

47 49

51 Approximately 23 weeks

53 (a) 25.2 tons (b) As large as 3.4 tons

55 (a) (b) 58y �
5

14
x

�x � 3�2 � � y � 2�2 � 49
x

3�2
�

y

�3
� 1

y � 2 � ��x � 3�

y � �
3

2
x � 1y � �

1

2
xy � 3

y

x

y

x

b � �3m �
4

3
b � 5m � �

2

3

y � �x5x � 7y � �15

y � �
1

3
x �

11

3
y �

3

4
x � 3

5x � 2y � 295x � 2y � 18
11x � 7y � 93x � y � 12

4x � y � 17y � �2x � 5

y

x

y � 3 � �
5

4
(x � 2)

y

x

P

m � �1

m � �Q m � q

y

x

y � 3x

y � sx

y � �2x

y � �~x
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57 (a) (b) 50 lb (c) 9 yr

(d)

59

61 (a) (b) 16.54�C

63 (a) (b)
(c) $8000

65 (a) Yes: the creature at (b) No

67 34.95 69 ;

EXERCISES 3.4

1 �6, �4, �24 3 �12, �22, �36
5 (a) (b) (c)

(d) (e) (f) 5
7 (a) (b) (c)

(d) (e)
(f)

9 (a) (b) (c)
(d)
(e) (f)

11 (a) (b) (c) 4a (d) 2a

13 (a) (b) (c)

(d)

15 The graph is that of a function because it passes the
vertical line test.

17

19 (a) (b) (c) 0 (d) �1, , 2

(e)

21 23 ��3, 3	��
7

2
, ��

��1,
1

2� 
 �2, 4	

1

2
��2, 2	��3, 4	

D � ��4, 1	 
 �2, 4�; R � ��3, 3�

22a3 � 2a

a2 � 1

22a

a � 1

a2 � 1

2a

2a

a2 � 1

1

4a2

4

a2

2a � h � 1a2 � h2 � a � h � 6
a2 � 2ah � h2 � a � h � 3

�a2 � a � 3a2 � a � 3a2 � a � 3
�2a � h

�a2 � h2 � 8�a2 � 2ah � h2 � 4
a2 � 4�a2 � 4�a2 � 4

5a � 5h � 45a � 5h � 2
�5a � 2�5a � 25a � 2

b � �0.9425a � 0.321mi�hr

x � 3

P � 0.45R � 3600E � 0.55R � 3600

T � 0.032t � 13.5

H � �
8

3
T �

7520

3

W

t

90

1 12

10

W �
20

3
t � 10 25 All real numbers except �2, 0, and 2

27 29 31

33 (a) ;

(b) Increasing on 
decreasing on 
constant on 

35

37 (a) (b) ,

(c) Increasing on

39 (a) (b) ,

(c) Increasing on
,

decreasing on

41 (a) (b) ,

(c) Increasing on
��4, ��

R � �0, ��
D � ��4, ��y

x

�0, ��

���, 0	

R � ���, 4	
D � ���, ��y

x

���, ��

R � ���, ��
D � ���, ��y

x

y

x�3

2

��1, 1	
��5, �4	 
 �2, 3	;
��4, �3� 
 �3, 4	;

R � ��3
 
 ��1, 4	
D � ��5, �3� 
 ��1, 1	 
 �2, 4	

��2, 2	�2, ��� 3

2
, 4� 
 �4, ��
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43 (a) (b) ,

(c) Constant on

45 (a) (b) ,

(c) Decreasing on
,

increasing on

47

49 51

53 55 Yes 57 No 59 Yes

61 No 63 No 65

67 (a) (b)

69
71 (a)

(b) The yearly increase
in height

(c) 58 in.

73
75 (a) (b) 1280.6 mi

77

EXERCISES 3.5

1 g(�2) � 6f (�2) � 7,

d�x� � 290,400 � x2

y�h� � 2h2 � 2hr

d�t� � 22t 2 � 2500

y

t1

10

(7, 50.5)

(6, 48)

(10, 58)

y�t� � 2.5t � 33
S�h� � 6h � 50

C�x� � 300x �
100,000

x
� 600y�x� �

500

x

V�x� � 4x�15 � x��10 � x�

f �x� �
1

6
x �

3

2

1

2x � 3 � 2a � 3
2x � h

h � 1

�0, 6	

��6, 0	

R � ��6, 0	
D � ��6, 6	y

x

���, ��

R � ��2

D � ���, ��y

x

3 Odd 5 Even 7 Neither 9 Even 11 Odd
13 15

17 19

21 23

25

27 29 31
33 The graph of f is shifted 2 units to the right and 3 units up.
35 The graph of f is reflected about the y-axis and shifted 

2 units down.
37 The graph of f is compressed vertically by a factor of 2

and reflected about the x-axis.

�6, 2��7, �3���2, 4�

y

x

y

x

y

x

y

x

y

x

y

x

y

x
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39 The graph of f is stretched horizontally by a factor of 3,
stretched vertically by a factor of 2, and reflected about
the x-axis.

41 (a) (b)

(c) (d)

(e) (f)

(g) (h) y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

(i) ( j)

(k) (l)

43 (a) (b)
(c)

45 (a) (b) (c)
47 49

51 y

x

y

x

y

x

y � f ��x�y � f �x� � 1y � f �x � 4�
y � �f �x � 7� � 1

y � �f �x�y � f �x � 9� � 1

y

x

y

x

y

x

y

x
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53 (a) (b)

(c) (d)

(e)

55 If , two different points on the graph have 
x-coordinate x.

57 59 y

x

y

x

x � 0

y

x

y

x

y

x

y

x

y

x

A12 A N S W E R S T O S E L E C T E D E X E R C I S E S

61

63 (a) ,

(b) ,

(c) ,

(d) ,

(e) ,

(f) ,

(g) ,

(h) ,

65

67

69 (a) $300, $360

(b)

for

(c) I if , II if 

EXERCISES 3.6

1 3
5 7
9

11

13 (a) 0, 4 (c)
(b) Min: f �2� � �4

y

x

(2, �4)

f �x� � �
3

4
�x � 6�2 � 7

f �x� � �3�x � 1�2 � 2

f �x� � 2�x � 3�2 � 4f �x� � ��x � 2�2 � 4

y � ax2 � 3y � a�x � 3�2 � 1

x � 900x � �0, 900�
x 
 0C2�x� � 235 � 0.25x

C1�x� � �180

180 � 0.40�x � 200�
if 0 � x � 200

if x � 200

R�x� � �1.20x

1.50x � 3000

1.80x � 7500

if 0 � x � 10,000

if 10,000 � x � 15,000

if x � 15,000

T�x� � �0.15x

0.20x � 1000

if 0 � x � 20,000

if x � 20,000

R � �0, 8	D � ��2, 6	
R � ��4, 8	D � ��6, 6	
R � ��8, 4	D � ��2, 6	
R � ��4, 8	D � ��6, 2	
R � ��7, 5	D � ��4, 4	
R � ��3, 9	D � �1, 9	
R � ��4, 8	D � ��4, 12	
R � ��16, 8	D � ��2, 6	

y

x



15 (a) (c)

(b) Max:

17 (a)

(b) Min:

(c)

21 (a) (b) Max:

(c)

23 25

27

29 31

33 35 6.125 37 24.72 km

39 10.5 lb 41 (a) 424 ft (b) 100 ft 43 20 and 20

y � �
1

4
�x � 1�2 � 4

y � �
5

9
�x � 3�2 � 5y � 3�x � 0�2 � 2

y � �
1

2
(x � 2)(x � 4)

y � �
4

9
�x � 2�2 � 4y �

1

8
�x � 4�2 � 1

y

x

(5, 7)

f �5� � 75 �
1

2
214 
 6.87, 3.13

x

y

��d, 0�
2

2

f��
4

3 � � 0

�
4

3

f�11

24� �
841

48

x

y
11
24

841
48� �,

�
3

4
,

5

3
45 (a) (b)

(c) ft by 125 ft

47

49 (a) (b) 282 ft 51 2 ft

53 500 pairs

55 (a)
(b) $45

57 (a)

EXERCISES 3.7

1 (a) 15 (b) �3 (c) 54 (d)

3 (a) ; ; ; 

(b) (c) All real numbers except 

5 (a) ; 0; ; 1 (b) (c)

7 (a) ; ; ;

(b) All real numbers except �5 and 4
(c) All real numbers except �5, 0, and 4

9 (a) (b) (c)
(d)

11 (a) (b) (c) �3 (d) 106x � 86x � 9

�x 4

4x � 3�4x2 � 4x � 1�2x2 � 1

2�x � 5�
x � 4

2x 2

�x � 4��x � 5�
x2 � 14x

�x � 4��x � 5�
3x2 � 6x

�x � 4��x � 5�

��5, ����5, ��x � 522x � 5

�
1

2
22�

x2 � 2

2x2 � 1
2x4 � 3x2 � 23 � x23x2 � 1

2

3

�
4

25
x � 80 if 500 � x � 800

�
1

6250
x 2 � 40 if �500 � x � 500f �x� �

4

25
x � 80 if �800 � x � �500

R

x

100,000

300,000

500,000

10 30 50 70 90

(45, 405,000)

R�x� � 200x�90 � x�

y �
1

500
x2 � 10

y � �
4

27�x �
9

2�2

� 3

166
2

3

A�x� � x�250 �
3

4
x�y�x� � 250 �

3

4
x
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⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

19 (a) None
(b) Min:
(c) y

x

(�2, 5)

f ��2� � 5



13 (a) (b) (c) 304 (d) 155

15 (a) (b) (c) 31
(d) 45

17 (a) (b) (c) �24
(d) 3396

19 (a) 7 (b) �7 (c) 7 (d) �7

21 (a) ;

(b) ;

23 (a) ;

(b) ;

25 (a) ;

(b) ;

27 (a) ;

(b) ;

29 (a) x; (b) x;

31 (a) ; all nonzero real numbers

(b) ; all nonzero real numbers

33 (a) ; all real numbers except 4 and 5

(b) ; all real numbers except 2 and 

35

37 (a) 5 (b) 6 (c) 6 (d) 5 (e) Not possible

39 41 Odd 43 40.16

45 47

49

51

Exer. 53–60: Answers are not unique.

53 , 55 ,

57 ,

59 , 61

CHAPTER 3 REVIEW EXERCISES

1 The points in quadrants II and IV
2 ; area � 10d�A, B�2 � d�A, C�2 � d�B, C�2

5 � 10�13y �
u � 2

u � 2
u � 2x � 4

y � u5u � x4 � 2x2 � 5

y � u�4u � x � 3y � u1/3u � x2 � 3x

d�t� � 290,400 � �500 � 150t�2

h�t� � 52t 2 � 8t

r�t� � 923 tA�t� � 36� t 2

202x2 � 1

�3 � 22

7

3

�2x � 5

�3x � 7

1

5 � x

1

x6

1

x6

��

���, �13	2�x � 13

��5, �4	 
 �4, 5	�3 � 2x2 � 16

�2, ���2x � 2 � 5

��1, ���2x � 5 � 2

���, �2	 
 �2, ��23x2 � 12

�0, ��3x � 4

���, 1	 
 �2, ��2x2 � 3x � 2

��2, ��x � 2 � 32x � 2

128x3 � 20x8x3 � 20x

4x2 � 6x � 98x 2 � 2x � 5

15x2 � 2075x 2 � 4
3 (a) (b) (c)

4 5
6
7

8 9

10 The slope of AD and BC is .

11 (a) (b)

12 13

14 15
16 17 ;

18 ;

19 (a) (b) (c) 0 (d)

(e) (f) (g)

20 Positive 21 Positive

22 (a) ;

(b) All real numbers except �3;

23 24

25

26 (a) Odd (b) Neither (c) Even

Exer. 27–40: x-intercept(s) is listed, followed by y-intercept(s).

27 28
y

x

y

x

None; 3.5�5; none

f �x� �
5

2
x �

1

2

�
1

�a � h � 2��a � 2�
�2a � h � 1

�0, ��

�0, ��� 4

3
, ��

x2

x � 3

x2

2x2 � 3
�

x

2x � 3

�
x

23 � x
�

1

22

1

2

r �
1

2
213C��3, 2�

r � 25C�0, 6�2x � 3y � 5
5x � y � 23x � y � �3

�x � 5�2 � � y � 1�2 � 81y � �
8

3
x � 8

2x � 6y � 318x � 6y � 7

2

3

�
11

19
x � �2 � 29 � y2

�x � 3�2 � � y � 2�2 � 169
�x � 7�2 � � y � 4�2 � 149

�2 � a � 1�0, 1�, �0, 11�

��11, �23���
13

2
, 1�2265
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29 1.6; 4 30

31 0; 0 32 0; 0

33 1; 1 34

35 36 None; 8
y

x

y

x

�4; �4

y

x

y

x

1; �1

y

x

y

x

y

x

y

x

4; �4
3

37 0, 8; 0 38

39 40

41

42 The graph of is the graph of 
shifted to the right 2 units and reflected about the x-axis.

43 (a) (b) ;
(c) Decreasing on

44 (a) (b) ;

(c) Constant on
���, ��

R � �1000

D � �y

x

500

500

���, ��

R � �D � �y

x

y � f �x�y � �f �x � 2�

�28, 28 �

y

x

y

x

�3, 1;  33 �22; 7

y

x

y

x

�3; �3

A N S W E R S T O S E L E C T E D E X E R C I S E S A15



45 (a) (b) ;

(c) Decreasing on
,

increasing on

46 (a) (b)

(c) Decreasing on 
,

increasing on 

47 (a) (b) ;

(c) Decreasing on

48 (a) (b) ;

(c) Decreasing on

49 (a) (b) ;

(c) Increasing on
,

decreasing on
�0, ��

���, 0	

R � ���, 9	
D � �y

x

���, 2	

R � �0, ��
D � ���, 2	y

x

��1, ��

R � ���, 1	
D � ��1, ��y

x

�0, 210	

��210, 0	

R � ��210, 0�
D � ��210, 210 �;y

x

��3, ��

���, �3	

R � �0, ��
D � �y

x

50 (a) (b) ;

(c) Decreasing on
,

increasing on

51 (a) (b) ;

(c) Decreasing on
,

increasing on
, constant 

on

52 (a)

(b) ;
(c) Constant on , where n is any integer

53 (a) (b) y

x

y

x

�n, n � 1�
R � �. . . , �3, �1, 1, 3, . . .
D � �

y

x

�2, ��
�0, 2	

���, 0	

R � �0, ��
D � �y

x

��3, ��

���, �3	

R � �7, ��
D � �y

x
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(c) (d)

(e) (f)

54 (a) (b)

(c) (d)

(e) (f) y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

(g)

55 56

57 58

59 Min: 60 Max:

61 Max: 62 Min:

63 64

65 (a) (b) 66 (a) �1 (b)
67 (a) (b)

68 (a) (b)

69 (a) ;

(b) ;

70 (a) ; all real numbers except �3 and 0

(b) ; all real numbers except and 0

71 , 72 Between 36.1 ft and 60.1 ft

73 (a) 253.42 ft (b) 2028

74 (a) (b)

75 (a) (b) 1.8�F

76 (a) (b) (c) 8800

77 (a) (b)

78

79 (a) (b)

80

81 (a)
(b) for ;

for

(c) for ; for

720 � t � 1680

h � 6 �
t � 720

320
0 � t � 720h � � t

20

6 � h � 9V � 7200 � 3200�h � 6�
0 � h � 6V � 200h2

V � 10t

C�r� �
3��r3 � 16�

10r

V�x� � 4x��
4

5
x � 20�y�x� � �

4

5
x � 20

d�t� � �102 � �20 � 22t�2

C�x� � 180xy�x� �
3

2
x

C2�x� �
3

22
x � 120C1�x� �

3

20
x

F �
9

5
C � 32

2
1

3
V � 6000t � 179,000

y � 23 uu � x2 � 5x

�
2

3

6x � 4

x

1

x � 3

��4, 4	�225 � x2 � 3

�3, 28	228 � x

1

3x � 2�3 � 2x2

x2

6x2 � 15x � 518x2 � 9x � 1

213�0, 2	�0, 2	

y �
3

2
�x � 3�2 � 2f �x� � �2�x � 3�2 � 4

f �4� � �108f ��1� � �37

f �5� � �7f ��3� � 4

y � �� x � 2 � � 1y �
1

2
�x � 2�2 � 4

�x � 2�2 � � y � 1�2 � 252x � 5y � 10

y

x
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82 (a) (b)

83 (a) (b)

(c) ft

84

85

86 (a) (b)

87 hr after 1:00 P.M., or about 2:23 P.M.

88 Radius of semicircle is mi; length of rectangle is mi.

89 (a) 1 sec (b) 4 ft

(c) On the moon, 6 sec and 24 ft

90 (a) (b) 30.625 units

CHAPTER 3 DISCUSSION EXERCISES

2 (a) (b)

(c) (d)

4 5 ; the slope of the tangent line at P

6

7 8

9

10

Chapter 4

EXERCISES 4.1

1 (a) (b) y

x

y

x

f �x� � �0.132�x � 1�2 � 0.7

�0.517x � 7.102

if 1 � x � 6

if 6 � x � 12

x �
0.4996 � 2��0.4996�2 � 4�0.0833��3.5491 � D�

2�0.0833�

f �x� � 40 � 20 ��x�15�h � �ad 2

R�x3, y3� � ��1 �
m

n �x1 �
m

n
x2, �1 �

m

n �y1 �
m

n
y2�

mPQ2ax � ah � b

g�x� � �
1

2
xg�x� � �

1

2
x � 7

g�x� � �
1

2
x � 3g�x� � �

1

2
x � 3

�87.5, 17.5�

1

8

1

8�

18

13

A�x� � x�12 � x�y�x� � 12 � x

y � �
1

4.4752 �x � 4.475�2 � 1

B�x� � �3.61� x

1000�   if 0 � x � 5000

3.61�5� � 4.17�x � 5000

1000 �  if x � 5000

200

7�

 9.1

V�h� �
1

3
�h�a2 � ab � b2�y�h� �

bh

a � b

y �
5

4�
�

1

48
x3r �

1

2
x

3 (a) (b)

5

7

9

11 (a) C (b) D (c) B (d) A

13 15

17 19

y

x
�10

2

�2 � x � 0 or x � 5y

x

0 � x � 5, f �x� � 0 iff �x� � 0 if 0 � � x � � 2
f �x� � 0 if x � �2 orf �x� � 0 if � x � � 2,

y

x

y

x

f �x� � 0 if � x � � 2f �x� � 0 if x � 2
f �x� � 0 if � x � � 2,f �x� � 0 if x � 2,

f��
1

2 � �
19

32
� 0, f ��1� � �1 � 0

f �2� � 5 � 0, f �3� � �5 � 0

f �3� � �2 � 0, f �4� � 10 � 0

y

x

y

x
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21 23

25 27

29

31 (a)

(b) (c) (d) �a, b	 
 �c, �����, a� 
 �b, c��abc

a

b c

y

x

y

x

y

x

3

1

1

�1

y

x

x � 0, x � 122 � � x � � 2
f �x� � 0 if � x � � 2,� x � � 22, f �x� � 0 if
f �x� � 0 if � x � � 2,f �x� � 0 if � x � � 2 or

y

x

y

x

or � x � � 2x � �2 or 3 � x � 4
f �x� � 0 if x � �2or x � 4, f �x� � 0 if
f �x� � 0 if x � 2,f �x� � 0 if �2 � x � 3 33 If n is even, then and hence .

Thus, f is an even function.

35 37

39

41 (b) 43 (a)
and
allowable values
for x are in .

45 (a) (b) The population
becomes extinct after 
5 years.

N

t

100

1

N�t� � 0 for 0 � t � 5

V

x

200

2

12 � t � 24�0, 10�
T � 0 for
0 � t � 12;�15, ��;
T � 0 forV�x� � 0 on �0, 10�

P

x

P�x� � 0 on ���, �
1
5 215 � and �0, 1

5 215 �

P�x� � 0 on ��
1
5 215, 0� and �1

5 215, ��;

�4�
4

3

f ��x� � f �x���x�n � xn

A N S W E R S T O S E L E C T E D E X E R C I S E S A19

(b)

(c)
T �7� � 29.75 � 32
T �6� � 32.4 � 32,

T

t

10

6



47 (a)

(b) They become similar. (c)

EXERCISES 4.2

1 3

5 7 9 26 11 7

13 15 17
19
21
23
25
27
29 73 31

33

35 37

39 3, 5 41 43

45 If and n is even, then .

47 (a)

(b)

49 (a) (b)

EXERCISES 4.3

1 3
5 �2x3 � 6x2 � 8x � 24

3x3 � 3x2 � 36x�4x3 � 16x2 � 4x � 24

213 � 1 
 2.61A � 8x � 2x3

� 1

2
�5 � 245 �, 1

2
�7 � 245 ��

V � �x2�6 � x�
f ��y� � 0f �x� � xn � yn

�14f �c� � 0

f� 1

2� � 0f ��2� � 0

8 � 723

�0.0444
4x3 � 2x2 � 4x � 2; 0
3x4 � 6x3 � 12x2 � 18x � 36; �65
x2 � 3x � 1; �8

2x2 � x � 6; 7
x4 � 2x3 � 9x2 � 2x � 8

x3 � 3x2 � 10xf ��2� � 0f ��3� � 0

9

2
;

53

2
0; 7x � 2

3

2
x;

1

2
x � 42x2 � x � 3; 4x � 3

2x4 7

9

11

13

15 (multiplicity 1); 0 (multiplicity 2);

(multiplicity 3)

17 (multiplicity 2); 0 (multiplicity 3)

19 (multiplicity 3); (multiplicity 2);
3 (multiplicity 5)

21 (each of multiplicity 1)
23
25 f �x� � �x � 1�5�x � 1�

f �x� � �x � 3�2�x � 2��x � 1�
�4i, �3

�3�4

�
3

2

5

2

�
2

3

f �x� � �1�x � 1�2�x � 3�

f �x� �
7

9
�x � 1��x �

3

2��x � 3�

y

x

�10

1

3x6 � 27x5 � 81x4 � 81x3

y

x

20

1

x4 � 2x3 � 23x2 � 24x � 144

A20 A N S W E R S T O S E L E C T E D E X E R C I S E S

x

�60 25,920,000 25,902,001 25,937,999 26,135,880

�40 5,120,000 5,112,001 5,127,999 5,183,920

�20 320,000 318,001 321,999 327,960

20 320,000 318,001 321,999 312,040

40 5,120,000 5,112,001 5,127,999 5,056,080

60 25,920,000 25,902,001 25,937,999 25,704,120

k�x�h�x�g�x�f �x�



Exer. 27–34: The types of possible solutions are listed in the
order positive, negative, nonreal complex.

27 3, 0, 0 or 1, 0, 2 29 0, 1, 2
31 2, 2, 0; 2, 0, 2; 0, 2, 2; 0, 0, 4
33 2, 3, 0; 2, 1, 2; 0, 3, 2; 0, 1, 4
35 Upper, 5; lower, 37 Upper, 2; lower,
39 Upper, 3; lower,

41

43 (a) (b) 108

45 No 47 Yes:

49

EXERCISES 4.4

1 3
5
7
9

Exer. 11–14: Show that none of the possible rational roots
listed satisfy the equation.

11 13 15

17 19

21 (multiplicity 2),

23

25
27 No. If i is a root, then is also a root. Hence, the

polynomial would have factors , , ,
and therefore would be of degree greater than 3.

29 Since n is odd and nonreal complex zeros occur in
conjugate pairs for polynomials with real coefficients,
there must be at least one real zero.

31 (a) The two boxes correspond to and
.

(b) The box corresponding to 
33 (c) In feet: 5, 12, and 13 35 (b) 4 ft

x � 5
x � 5�2 � 22 �

x � 5

x � ix � ix � 1x � 1
�i

f �x� � �3x � 2��2x � 1��x � 1�2�x � 2�

�
3

4
,�

3

4
�

3

4
27 i

1

2
�3, �

2

3
, 0

�7, �22, 4�3, 2, 
5

2

�2, �1, 4�1, �2�1, �2, �3, �6

x�x2 � 4��x2 � 2x � 2�
�x2 � 8x � 25��x2 � 4x � 5�
x�x � 1��x2 � 6x � 10�

�x � 2��x2 � 4x � 29�x2 � 6x � 13

f �t� �
5

3528
t�t � 5��t � 19��t � 24�

1.5�x � 2��x � 5.2��x � 10.1�
f �x� � a�x � 3�3�x � 1��x � 2�2

f �x� � �
1

4
�x � 1�2�x � 1��x � 2�3

�3
�2�2

EXERCISES 4.5

1 (a)

3 VA:
HA:

hole:

5

7 9

11 13 y

x

y � 2

x � �w

(2, 1)

y

x

y � 2

x � �w

y

x

y

x

f (x) �
2(x � 3)(x � 2)

(x � 1)(x � 2)

y

x

��2, �s�

y � 2

x � 1

�3

�6

�6, �
22
3 �

y � �2;
x � 3;

y

x
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(b) all nonzero
real numbers; 

(c) Decreasing on 
and on �0, ��

���, 0�
R � D

D �



15 17

19 21

23 25

27 29

31 33
y

x

y � x � 2

y

x

y � x � 2

y

x

�1

y

x

110

0
60

2

2

y

x

5

5

x � �2
x � 1

y � 3

y

x

y

x

y

x

y

x

y

x

35 37

39 41

43

45 47

49 (a) (b)

(c) Exclude and .

51 (a) (b)

(c) As of salt per gal.
53 (a) (b) 4500 (c) 2000

(d) A 125% increase in S produces only a 12.5% increase
in R.

0 � S � 4000
t l �, c�t� l 0.1 lb

t

10t � 100
V�t� � 50 � 5t, A�t� � 0.5t

r 
 3.5r � 0

V�r� � �r 2hh �
16

�r � 0.5�2
� 1

f �x� �
6x2 � 6x � 12

x3 � 7x � 6
f �x� �

3 � x

x � 4

y

x(�2, 0)

f �x� �
x � 2

x � 1
 for x � �2

y

x
(�2, �3)

y

x�1, �q�

f �x� � x � 1 for x � �2f �x� �
�1

x � 1
 for x � 1

y

x

(�2, 7)

y

x

y � ��q�x

f �x� �
2x � 3

x � 1
 for x � �2y � �

1

2
x
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55 (a) The graph of g is the horizontal line with holes
at .

(b) The graph of h is the graph of p with holes at ,
.

57 (a)

(b) (c)

(d)
(e) Regardless of the number of additional credit hours

obtained at 4.0, a cumulative GPA of 4.0 is not
attainable.

EXERCISES 4.6

1 ; 3 ;

5 ; 7 ;

9 ; 11 ;

13 (a) (b) 59 (c) 295
(d) P (lb/ft2)

P � 59d

d (feet)

118

295

2 5

lb�ft2P � kd

k �
40

3
y � k

2x

z3
k � 36y � k

x

z2

k � �
2

49
z � kx2y3k � 27y � k

x2

z3

k � �14r � k
s

t
k �

2

5
u � kv

x � 4

x y

2.8 2
3.0 12
3.2 27
3.4 52
3.6 102
3.8 252
4.0 undefined

y �
132 � 48x

x � 4

�1, �2, �3
x � 0

x � 0, �1, �2, �3
y � 1

15 (a) (b)

(c)

(d) ohms

17 (a) (b) (c) sec

19 (a) (b) (c) 223.2 days

21 (a) (b) (c) 60.6

23 (a) (b) (c) 154 lb

25 (a) (b) About 2.05 times as hard
27 Increases 250% 29 d is multiplied by 9.

31 33

CHAPTER 4 REVIEW EXERCISES

1 2

y

x10

10

if �26 32 � x � 26 32y

x

or x � 26 32, f �x� � 0f �x� � 0 if x � �2
f �x� � 0 if x � �26 32f �x� � 0 if x � �2,

y � �
10.1

x 2
y � 1.2x

F � kPr 4

25

27
W � kh3

mi�hr
7

2
22V � k2L

365

�93�3/2
T � kd 3/2

3

2
23

3

4
22P � k2l

50

9

R (ohms)

d (inches)

6.25

25

0.01 0.02

R �
1

400d2

1

40,000
R � k

l

d 2
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y

x

500

4



3 4

5 6

7 and . By the
intermediate value theorem for polynomial functions, f
takes on every value between and 561. Hence, there is
at least one real number a in such that .

8 Let . and
. By the intermediate value theorem for

polynomial functions, f takes on every value between 
and 1. Hence, there is at least one real number a in
such that .

9 10
11 12
13

14

15

16
1

4
x�x2 � 2x � 2��x � 3�

2

41
�x2 � 6x � 34��x � 1�

2x2 � �5 � 222 �x � �2 � 522 �; 11 � 222

6x4 � 12x3 � 24x2 � 52x � 104; �200

f �3� � 0�132

4x � 1; 2x � 13x2 � 2; �21x2 � 5x � 9

f �a� � 0
�0, 1	

�4
f �1� � �4 � 0

f �0� � 1 � 0f �x� � x5 � 3x4 � 2x3 � x � 1

f �a� � 100�0, 10	
�9

f �10� � 561 � 100f �0� � �9 � 100

y

x

�2 � x � 0, or 2 � x � 4

5

5

y

x

f �x� � 0 if x � �4,x � �4 or 0 � x � 2
0 � x � 2, or x � 4,or x � 2, f �x� � 0 if
f�x� � 0 if �4 � x � �2,f �x� � 0 if �4 � x � 0

y

x

or x � 2y

x

f �x� � 0 if x � �1if x � �2 or x � 3
or 0 � x � 2,or 1 � x � 3, f �x� � 0
f �x� � 0 if �1 � x � 0f �x� � 0 if �2 � x � 1 17

18
19 1 (multiplicity 5); (multiplicity 1)

20 0, (all have multiplicity 2)

21 (a) Either 3 positive and 1 negative or 1 positive,
1 negative, and 2 nonreal complex

(b) Upper bound, 3; lower bound,

22 (a) Either 2 positive and 3 negative; 2 positive, 1 negative,
and 2 nonreal complex; 3 negative and 2 nonreal
complex; or 1 negative and 4 nonreal complex

(b) Upper bound, 2; lower bound,

23 Since there are only even powers,
for every real number x.

24 25 26

27

28

29 VA: HA: x-intercept: 1;

y-intercept: hole:

30 31 y

x

y

x

��2,
4

7�4

15
;

y �
4

3
;x � 5;

f (x) �
1

16
(x � 3)2x 2(x � 3)2

f (x) � �
1

6
(x � 2)3(x � 1)2(x � 3)

�26, �1�
1

2
,

1

4
,

3

2
�3, �2, �2 � i

7x6 � 2x4 � 3x2 � 10 
 10

�3

�1

� i

�3

�x � 2�3�x � 3��x � 1�

1

10

y

x

x7 � 6x6 � 9x5
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32 33

34 35

36 37

38 39

40 or f (x) �
3x2 � 21x � 30

2x2 � 2x � 12
f (x) �

3(x � 5)(x � 2)

2(x � 3)(x � 2)

y

x

y � x

y

x

y � x � 1

5

10

y

x

x � 2
y � �2

x � 4

�2

y

x

��2, y�

y

x

(1, 0)

y

x

y � �x

(0, �4)

x

yy

x

41 27 42

43 (a)

(b) , and 
if

44 (a)

(b) If .

45 (10:00 A.M.) and 
(12:12 P.M.)

46

47 (a)
(b) k is the maximum rate at which the liver can remove

alcohol from the bloodstream.

48 (a) and
(b)

49 375 50 10,125 watts

CHAPTER 4 DISCUSSION EXERCISES

2 Yes 4 No 5 7
8 (a) No

(b) Yes, when provided the denominator is 

not zero

9 (a) $1476
(b) Not valid for high confidence values

10 The second integer

x �
cd � af

ae � bd
,

f �x� �
�x2 � 1��x � 1�
�x2 � 1��x � 2�

n � 1

10

20

30

C (million dollars)

10 100
x (percent)

C�90� 
 $2.5 millionC�100� � $30 million

R � k

25 � t � 4

t � 16 � 426 
 6.2020t � 4

x � 0, V � 0 when 0 � x � l

V �
1

4�
x�l 2 � x2�

x � 6.2y 
 1.0006 � 1
y 
 0.9754 � 1 if x � 6.1

1

15,000

y

x

2

18

4 12

y �
288
x2

A N S W E R S T O S E L E C T E D E X E R C I S E S A25



11 (a) (b) R approaches S.

(c) As income gets larger, individuals pay more in taxes,
but fixed tax amounts play a smaller role in
determining their overall tax rate.

12 (a) 112.8 (b) 23 (c) 61 yards

Chapter 5

EXERCISES 5.1

1 (a) 4 (b) Not possible

3 (a) Yes (b) No (c) Not a function

5 Yes 7 No 9 Yes 11 No 13 No 15 Yes

Exer. 17–20: Show that .

17 19

21

23

25 27

29 31

33 35 ,

37 39
41 43 (a) 3 (b) �1 (c) 5
45 (a) (b) ;

(c) ;

R1 � ��1, 2	

D1 � � 1

2
, 4�

R � � 1

2
, 4�

D � ��1, 2	y

x

(2, 4)

(4, 2)

�q, �1�
��1, q� f

f �1

y � x

f �1�x� � 3 � 2x � 9
f �1�x� � xf �1�x� � �x � 1�3

x 
 0f �1�x� � 3 � x2f �1�x� � �3 x � 5

2

f �1�x� � ��2 � x

3
f�1�x� �

5x � 2

2x � 3

f �1�x� �
2x � 1

3x
f �1�x� �

x � 5

3

���, 4
3� 
 �4

3 , ��; ���, 8
3� 
 �8

3 , ��
���, 0� 
 �0, ��; ���, 1� 
 �1, ��

y

x

y

x

f �g�x�� � x � g� f �x��

R(I) �
P � SI

I
47 (a) (b) ;

(c) ;

49 (a) Since f is one-to-one, an inverse exists; 

(b) No; not one-to-one
51 (c) The graph of f is symmetric about the line .

Thus, .
53 (a) 805

(b) . Given an air circulation of x cubic feet

per minute, computes the maximum number of
people that should be in the restaurant at one time.

(c) 67

EXERCISES 5.2

1 5 3 �1, 3 5 7 9 3

11 (a) (b)

(c) (d) y

x

y

x

y

x

y

x

18

5
�

4

99

V�1�x�

V�1�x� �
1

35
x

ft3�min
f �x� � f �1�x�

y � x

f �1�x� �
x � b

a

R1 � ��3, 3	
D1 � ��2, 2	
R � ��2, 2	
D � ��3, 3	y

x
(�3, �2)

f

f �1

(�2, �3)

f �1

f
(3, 2)

(2, 3)

y � x
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(e) (f)

(g) (h)

(i) ( j)

13 15

17 19 y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

21 23

25 27

29 31
33 (a) 90 (b) 59 (c) 35

35 (a) 1039; 3118; 5400 37 (a) 50 mg; 25 mg;

(b)

(b)

39

41 (a) $1005.83 (b) $1035.51 (c) $1072.29

(d) $4038.74

43 (a) $19,500 (b) $11,975 (c) $7354

45 $161,657,351,965.80

47 (a) Examine the pattern formed by the value y in the
year n.

(b) Solve for a.

49 (a) $1834.41 (b) $410,387.60

51 $15,495.62

53 (a) 180.1206 (b) 20.9758 (c) 7.3639

55

57 (a) $746,648.43; $1,192,971 (b) 12.44%

(c) exponential; polynomial

y � 0.03(1.0549)t; 48¢

s � �1 � a�Ty0

�
1

1600

f (t) (mg remaining)

t (days)10

201

1000

f (t) (bacteria)

t (hours)

25

2
22 
 17.7 mg

f �x� � 180�1.5��x � 32f �x� � 8�1
2�x

f �x� � 2�2
3�x

� 3f �x� � 2�5
2�x

y

x

y

x
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EXERCISES 5.3

1 (a) (b)

3 (a) (b)

5 $1510.59 7 $31,600.41 9 13% 11 3, 4

13 �1 15 17 19 27.43 g

21 348.8 million 23 13.5% 25 41
27 7.44 in. 29 75.77 cm; 
31 $11.25 per hr 33 (a) 7.19% (b) 7.25%

35

EXERCISES 5.4

1 (a) (b)

(c) (d)

(e) (f)

3 (a) (b) (c)

(d) (e) (f)

5 7

9 t �
1

C
 loga �A � D

B �
t � loga�H � K

C �t � 3 loga

5

2

b3/2 � 51223x�4 � m35 � �x � 2�

t p � r3�5 �
1

243
25 � 32

log0.7 �5.3� � tlog5

a � b

a
� 7t

log3 �4 � t� � xlog t s � r

log4

1

64
� �3log4 64 � 3

y

x1

0.5

15.98 cm�yr

4

�ex � e�x�2
�

3

4
, 0

y

x

y

x

y

x

y

x

11 (a) (b)
(c) (d)
(e)

13 (a) (b) (c)
(d) (e)

15 (a) 0 (b) 1 (c) Not possible (d) 2 (e) 8

(f) 3 (g) �2

17 (a) 3 (b) 5 (c) 2 (d) �4 (e) 2

(f) �3 (g)
19 4 21 No solution 23 �1, �2 25 13

27 27 29 31 3 33 3

35 (a) (b)

(c) (d)

(e) (f)

(g) (h) y

x

y

x

2 2

y

x

y

x

y

x

y

x

y

x

y

x

�
1

e

3e2

e1/6 � z � 2e4�3x � w

e0.1 � x1020 t � x1050 � x

ln �3 � x� � 2t

ln p � 7log �y � 1� � x

log 0.001 � �3log 100,000 � 5
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(i) ( j)

(k) (l)

37 39

41 43

45 47
49
51 (a) 4240 (b) 8.85 (c) 0.0237 (d) 9.97

(e) 1.05 (f) 0.202

53 ; 4.88% 55

57 59 (a) 2 (b) 4 (c) 5t � �
L

R
 ln � I

20�
t � �1600 log2 �q

q0
�f �x� � 1000ex ln 1.05

f �x� � F�x� � 1

f �x� � F�x � 2�f �x� � �F�x�

y

x

f (x) � log3 x

y

x

y

x

x � �10

y

x

y

x

y

x

y

x

61 (a) 10 (b) 30 (c) 40 63 In the year 2047

65 (a) (b) 37.92 kg

67 (a) 10,007 ft (b) 18,004 ft

69 (a) 305.9 kg (b) (1) 20 yr (2) 19.8 yr

71 10.1 mi 73
75 (a) Pedestrians have faster average walking speeds in

large cities.

(b) 570,000

77 (a) 8.4877 (b) �0.0601
79 30%

EXERCISES 5.5

1 (a) (b)

(c)

3

5

7

9 (a) (b) (c)

11 13 15 17

19 21 No solution 23 �7 25 1

27 �2 29 31

33
35 37 y

x

y

x

3 � 210

�1 � 21 � e
�1 � 265

2

525

7

2
ln xlog

y13/3

x2
loga

x223 x � 2

�2x � 3�5

log3 y5log3

2z

x
log3 �5xy�

7

4
 ln x �

5

4
 ln y �

1

4
 ln z

1

3
 log z � log x �

1

2
 log y

3 loga x � loga w � 2 loga y � 4 loga z

1

3
 log4 z

log4 y � log4 xlog4 x � log4 z

21/8 
 1.09

W � 2.4e1.84h

A N S W E R S T O S E L E C T E D E X E R C I S E S A29



39 41

43 45

47 49 51

53 55

57 (a) 0 (b) 59 0.29 cm

EXERCISES 5.6

1 3 5 1.1133

7 �0.7325 9 2 11

13 15 �3 17 5

19 21 1, 2

23 25 1 or 100 27

29 10,000 31 33 7

35 x � log �y � 2y2 � 1 �
ln 3

10100
log �4 � 219 �

log 4

 1.53

2

3 � 101

11

 2.02

log �8�25�
log �4�5�


 5.11

log �2�81�
log 24


 �1.16

4 �
log 5

log 3

 2.54

log 8

log 5

 1.29

R�2x� � R�x� � a log 2

v

z

y �
b

xk


 �7f �x� � log2 �8x�f �x� � log2 x2

y

x

y

x

y

x

y

x

37 39

41

43 y- 45 x-

47 (a) 2.2 (b) 5 (c) 8.3

49 Basic if , acidic if 

51 53 86.4 m

55 (a) (b) 6.58 min

57 (a) (b) After 13,863 generations

59 (a) 4.28 ft (b) 24.8 yr 61
63 The suspicion is correct.

65 The suspicion is incorrect. 67 �0.5764

69 (4)

CHAPTER 5 REVIEW EXERCISES

1 Yes

2 y

x

ln �25�6�
ln �200�35�


 0.82

t �
log �F�F0�

log �1 � m�

1

10

60

t (minutes)

A (mg in bloodstream)

11.58 yr 
 11 yr 7 mo

pH � 7pH � 7

y

x

y

x


 0.7925
 1.5850
intercept � log4 3intercept � log2 3

x �
1

2
 ln � y � 1

y � 1�
x � ln �y � 2y2 � 1 �x �

1

2
 log � 1 � y

1 � y�
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3 (a) 4 (a)

(b) (b)

5 (a) 2 (b) 4 (c) 2 (d) 2 (e)
6 (a) 5 (b) 7 (c) 4

(d) Not enough information is given.

7 8

9 10

11 12 y

x

y

x

y

x

y

x

y

x

y

x

x � 2

y

x

y � x

f �1

f
(0, 9)

(9, 0)

y

x

y � x

f �1

f

f �1�x� � ��9 � x

2
f �1�x� �

10 � x

15

13 14

15 16

17 18

19 20 y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
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21 22

23 (a) �4 (b) 0 (c) 1 (d) 4 (e) 6 (f) 8

(g)

24 (a) (b) 0 (c) 1 (d) 5 (e) 1 (f) 25

(g)

25 0 26 27 9 28 9 29 30 1

31 32 99 33

34 35 36 1 37

38 No solution 39 40 2 41
42 ln 2 43 (a) �3, 2 (b) 2
44 (a) 8 (b)

45

46 47

48

49

50 If , then 

If , then x � log �1 � 21 � 4y2

2y �.y � 0

x � log �1 � 21 � 4y2

2y �.y � 0

x � log �1 � 21 � 4y2

2y �

y

x

x � �2

f (x) � 6�4

3�x

�log �xy2�

4 log x �
2

3
 log y �

1

3
 log z

�4

0, �125

1

4
, 1, 4

log �3�8�
log �32�9�

��log 7

log 3

5 �
log 6

log 2
�1 � 23

33

47
�

6

5

1

3

1

3

1

2

y

x

y

x

51 (a) 1.89 (b) 78.3 (c) 0.472
52 (a) 0.924 (b) 0.00375 (c) 6.05
53 (a)

(b)
54 (a)

(b)
55 (a) 2000

(b) ; ; 6000
56 $1082.43
57 (a) (b) 8 days

58

59 (a) After 17.9 yr (b) 9.9 yr 60 3.16%

61

62 (a)
(b) Examine , where is the intensity

corresponding to � decibels.

63 64

65 66

67 68

69 (a) (b) 12,589; 1585; 200

70 (a) (b)
71 110 days 72 86.8 cm; 

73

74 (a) 26,749 yr (b) 30% 75 31.5 yr

76 3196 yr

t � �
L

R
 ln �V � RI

V �
9.715 cm�yr

7.9 � 1024 ergsE � 1011.4�1.5R

n � 107.7�0.9R

v � a ln �m1 � m2

m1
�h �

ln �29�p�
0.000034

26,615.9 mi2
A1

A2

�
10�R�5.1�/2.3 � 3000

10�R�7.5�/2.3 � 34,000

A � 10�R�5.1�/2.3 � 3000t � �
1

k
 ln �a � L

ab �
I���I�� � 1�

I � I010�$10

t � �ln 100�
L

R

 4.6

L

R

N � 1000� 3

5�t/3

N (amount remaining)

t (days)81

10

60

2000�31/2� � 34642000�31/6� 
 2401

y � 3 � log2 �x � 2�, D � ��2, ��, R � �

D � �, R � ��2, ��
y � 2x � 1, D � �, R � ��1, ��
D � ��1, ��, R � �
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CHAPTER 5 DISCUSSION EXERCISES

1 (a)

2 The vertical asymptotes are 

The horizontal asymptotes of f are .
3 (a) Hint: Take the natural logarithm of both sides first.

(b) Note that Any horizontal line , with

will intersect the graph at points

and , where and

.
4 7.16 yr
5 Hint: Check the restrictions for the logarithm laws.
6 (a) The difference is in the compounding.

(b) Closer to the graph of the second function
7 8.447177%; $1,025,156.25
8 (a) ,

(b) 9.22; yes

9

Chapter 6
EXERCISES 6.1

Exer. 1–4: The answers are not unique.

1 (a) 480°, 840°,
(b) 495°, 855°,
(c) 330°, 690°,

3 (a) 260°, 980°,

(b)

(c)

5 (a) 84° (b) 57.5°
7 (a) 131° (b) 43.58°8�23�

42�26�

7�

4
,
15�

4
, �

9�

4
, �

17�

4

17�

6
,
29�

6
, �

7�

6
, �

19�

6

�100�, �460�
�390�, �750�
�225�, �585�
�240�, �600°

eb, with b �
11 ln 5 � ln 7

ln 35

425 bombs � 1 eruption3.5 earthquakes � 1 bomb

x2 � e

1 � x1 � e�x2,
ln x2

x2
��x1,

ln x1

x1
�

0 � k �
1

e
,

y � kf �e� �
1

e
.

y � �9

x � �9.f �1�x� �
x

281 � x2
.

y

x1

1
y � x

3
f �1(x) � �1 � x � 1

f (x) � �(x � 1)3 � 1

9 (a) (b) (c)

11 (a) (b) (c)

13 (a) 120° (b) 330° (c) 135°
15 (a) (b) 1260° (c) 20°
17 114° 19 286° 21 37.6833°
23 115.4408° 25 63° 27 310°
29 2.5 cm
31 (a) (b)

33 (a) 1.75; (b)

35 (a) (b)

37 In miles: (a) 4189 (b) 3142 (c) 2094
(d) 698 (e) 70

39 41 37.1%

43

45 (a) (b)

47 (a) (b) (c) 380 rpm

(d)

49 (a) (b)

51 Large 53 192.08

EXERCISES 6.2
1 (a) B (b) D (c) A (d) C (e) E

Note: Answers are in the order sin, cos, tan, cot, sec, csc for
any exercises that require the values of the six trigonometric
functions.

3

5

7

9

11 13
15

17 19
5

13
,
12

13
,

5

12
,
12

5
,
13

12
,
13

5

3

5
,

4

5
,

3

4
,

4

3
,

5

4
,

5

3

x � 4�3; y � 4
x � 7�2; y � 7x � 8; y � 4�3

b

c
,
�c2 � b2

c
,

b

�c2 � b2
,
�c2 � b2

b
,

c

�c2 � b2
,

c

b

a

�a2 � b2
,

b

�a2 � b2
,

a

b
,

b

a
,
�a2 � b2

b
,
�a2 � b2

a

2

5
,
�21

5
,

2

�21
,
�21

2
,

5

�21
,

5

2

4

5
,

3

5
,

4

3
,

3

4
,

5

3
,

5

4

rev�min

2

3
d

21�

8

 8.25 ft

S�r� �
1140

r
; inversely

38� cm�sec400� rad�min

100�

3

 104.72 ft�min80� rad�min

7.29 � 10�5 rad�sec

1

8
 radian 
 7�10�

80�

9

 27.93 m220�

9

 6.98 m

14 cm2315

�

 100.27�

8� 
 25.13 cm22� 
 6.28 cm

37�17�10�8�
28�44�35�30�

�630°

5�

9

2�

5

5�

2

5�

4
�

�

3

5�

6
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21

23 25 192 ft 27 1.02 m
29 (a) 0.6691 (b) 0.2250 (c) 1.1924 (d)
31 (a) 4.0572 (b) 1.0323 (c) (d) 4.3813
33 (a) 0.5 (b) (c) 0.9985 (d)
35 (a) (b)
37 (a) 5 (b) 5
39 41

43 45

47

Exer. 49–70: Typical verifications are given.

49
51

53

55
57

59

61

63

65

67

69

� 0 � log sin 	 � �log sin 	

log csc 	 � log � 1

sin 	� � log 1 � log sin 	

� sec2 3	 � csc2 3	
� 1 � tan2 3	 � cot2 3	 � 1

sec2 3	 csc2 3	 � �1 � tan2 3	��1 � cot2 3	�
� sec 	 � cos 	

� 1 � cos 	 �
1

cos 	
� 1 � �cos 	 � sec 	

�
1

tan 	
 tan 	 �

cos 	

sin 	
 sin 	 �

1

sin 	

sin 	

cos 	
�

1

sin 	
 sin 	

� csc 	 sin 	
� cot 	 tan 	 � cot 	 sin 	 � csc 	 tan 	
�cot 	 � csc 	��tan 	 � sin 	�

�
sin 	

cos 	
� sin 	 � tan 	 sin 	

sec 	 � cos 	 �
1

cos 	
� cos 	 �

1 � cos2 	

cos 	
�

sin2 	

cos 	

�
1

sec2 	

�1 � sin 	��1 � sin 	� � 1 � sin2 	 � cos2 	

� sin2 �	�2� � cos2 �	�2� � 1

sin �	�2�
csc �	�2�

�
cos �	�2�
sec �	�2�

�
sin �	�2�

1�sin �	�2�
�

cos �	�2�
1�cos �	�2�

� cos2 	 �
sin2 	

cos2 	
� sin2 	

cos2 	 �sec2 	 � 1� � cos2 	 �tan2 	�
�1 � cos 2	��1 � cos 2	� � 1 � cos2 2	 � sin2 2	

csc 	

sec 	
�

1�sin 	

1�cos 	
�

cos 	

sin 	
� cot 	

sin 	 sec 	 � sin 	 �1�cos 	� � sin 	�cos 	 � tan 	
cos 	 sec 	 � cos 	 �1�cos 	� � 1

sin 	 �
�sec2 	 � 1

sec 	

sec 	 �
1

�1 � sin2 	
cot 	 �

�1 � sin2 	

sin 	

sin 	1 � sin 	 cos 	

�4�1
�1�0.9880

�0.6335
�1.0154

200�3 
 346.4 ft

�11

6
,

5

6
,
�11

5
,

5

�11
,

6

5
,

6

�11
71

73

75

77

79

Note: U denotes undefined.

81 (a) 1, 0, U, 0, U, 1 (b) 0, 1, 0, U, 1, U
(c) (d)

83 (a) IV (b) III (c) II (d) III

85

87

89

91

93 95 97

EXERCISES 6.3

1

3

5 (a) (b)

(c) (d)

7 (a) (b)

(c) (d)

Note: U denotes undefined.

9 (a)
(b)

11 (a)
(b) �0, 1�; 1, 0, U, 0, U, 1

�0, �1�; �1, 0, U, 0, U, �1
��1, 0�; 0, �1, 0, U, �1, U
�1, 0�; 0, 1, 0, U, 1, U

�12

13
, �

5

13���
12

13
,

5

13�
�12

13
,

5

13��12

13
,

5

13�
��

3

5
,

4

5�� 3

5
, �

4

5�
��

3

5
, �

4

5���
3

5
, �

4

5�
�

7

25
,
24

25
, �

7

24
, �

24

7
,
25

24
, �

25

7

8

17
, �

15

17
, �

8

15
, �

15

8
, �

17

15
,
17

8

�sin
	

2
sec 	�tan 	

�15

4
, �

1

4
, ��15, �

1

�15
, �4,

4

�15

�
�8

3
, �

1

3
, �8,

1

�8
, �3, �

3

�8

�
5

13
,
12

13
, �

5

12
, �

12

5
,
13

12
, �

13

5

3

5
, �

4

5
, �

3

4
, �

4

3
, �

5

4
,

5

3

0, �1, 0, U, �1, U�1, 0, U, 0, U, �1

�
7

�53
, �

2

�53
,

7

2
,

2

7
, �

�53

2
, �

�53

7

4

5
,

3

5
,

4

3
,

3

4
,

5

3
,

5

4

4

�17
, �

1

�17
, �4, �

1

4
, ��17,

�17

4

�
5

�29
, �

2

�29
,

5

2
,

2

5
, �

�29

2
, �

�29

5

�
3

5
,

4

5
, �

3

4
, �

4

3
,

5

4
, �

5

3
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13 (a)

(b)

15 (a)

(b)

17 (a) (b) (c)

19 (a) 1 (b) (c) 1

Exer. 21–26: Typical verifications are given.

21

23

25

27 (a) 0 (b) 29 (a) (b)

31 (a) 1 (b) 33 (a) (b)

35 (a) (b) 37 (a) (b) 1

39 41 43

45 47 49

51 (a)

(b)

(c)

5�

6
� x � 2�

�2� � x � �
11�

6
, �

7�

6
� x �

�

6
, and

�
11�

6
� x � �

7�

6
 and 

�

6
� x �

5�

6

�
11�

6
, �

7�

6
,

�

6
,
5�

6

0, �
�

4
,
5�

4

�

4
,

7�

4
,
9�

4
,
15�

4

0, 2�, 4�
�

6
,
5�

6
,
13�

6
,
17�

6

3�

2
,
7�

2

���2�

��1��

�1
�2

2
�1

�
1 � sin2 x

cos x
�

cos2 x

cos x
� cos x

�
1

cos x
�

sin x

cos x
 sin x

�
1

cos x
� ��tan x���sin x�

1

cos ��x�
� tan ��x� sin ��x�

cot ��x�
csc ��x�

�
�cot x

�csc x
�

cos x�sin x

1�sin x
� cos x

� �tan x
� ��sin x��1�cos x�

sin ��x� sec ��x� � ��sin x� sec x

�1

�1�
�2

2
�1

��2

2
, �

�2

2 �; �
�2

2
,
�2

2
, �1, �1, �2, ��2

��
�2

2
, �

�2

2 �; �
�2

2
, �

�2

2
, 1, 1, ��2, ��2

��
�2

2
,
�2

2 �;
�2

2
, �

�2

2
, �1, �1, ��2, �2

��2

2
,
�2

2 �;
�2

2
,
�2

2
, 1, 1, �2, �2 53 (a)

(b)

(c)

55 57

59 61

63 (a)

(b)

65 (a) The tangent function increases on all intervals on
which it is defined. Between and 

, these intervals are 

and

(b) The tangent function is never decreasing on any inter-
val for which it is defined.

69 (a) (b) (c) 0.5, 2.6
71 (a) (b) 0.4 (c) 2.2, 4.1�0.7

�0.9�0.8

�3�

2
, 2��.� �

2
,
3�

2 �,��
�

2
,

�

2 �,

��
3�

2
, �

�

2 �,��2�, �
3�

2 �,2�

�2�

���, �
�

2 �, ��
�

2
, 0�, ��,

3�

2 �, �3�

2
, 2��

��2�, �
3�

2 �, ��
3�

2
, ���, �0,

�

2 �, � �

2
, ��

y

x
1

p

y

x
1

p

y

x
1

p

y

x
1

p

�
4�

3
� x � �

2�

3
 and 

2�

3
� x �

4�

3

4�

3
� x � 2�

�2� � x � �
4�

3
, �

2�

3
� x �

2�

3
, and

�
4�

3
, �

2�

3
,
2�

3
,
4�

3
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73 (a)

(b) Max: 72°F at 6:00 P.M., 80% at 6:00 A.M.;
min: 48°F at 6:00 A.M., 40% at 6:00 P.M.

EXERCISES 6.4

1 (a) 60° (b) 20° (c) 22° (d) 60°

3 (a) (b) (c) (d)

5 (a) (b)
(c) (d)

7 (a) (b) 9 (a) (b)

11 (a) (b) 13 (a) (b)

15 (a) (b) 17 (a) (b) 2

19 (a) 0.958 (b) 0.778 21 (a) 0.387 (b) 0.472

23 (a) 2.650 (b) 3.179 25 (a) 30.46° (b)
27 (a) 74.88° (b)
29 (a) 24.94° (b)
31 (a) 76.38° (b)
33 (a) 0.9899 (b) (c)

(d) 0.7907 (e) (f) 1.3677

35 (a) 214.3°, 325.7° (b) 41.5°, 318.5°

(c) 70.3°, 250.3° (d) 133.8°, 313.8°

(e) 153.6°, 206.4° (f) 42.3°, 137.7°

37 (a) 0.43, 2.71 (b) 1.69, 4.59 (c) 1.87, 5.01

(d) 0.36, 3.50 (e) 0.96, 5.32 (f) 3.35, 6.07

39 0.28 cm

41 (a) The maximum occurs when the sun is rising in 
the east.

(b)

43 �9, 9�3 �

�2

4

 35%

�11.2493

�0.1425�0.1097

76�23�

24°57�

74�53�

30�27�

�
2

�3

2

�3
�2

�3�
�3

3
��3�

�3

3

1

2
�

�3

2
�2

2
�3

2

32� � 100 
 30.4�2� � 5.5 
 44.9�

� � 2 
 65.4�� � 3 
 8.1�

�

4

�

6

�

3

�

4

EXERCISES 6.5

1 (a) (b)

(c) (d)

(e) (f)

(g) (h)

y

x
1

3p

y

x
1

�3p

1,
�

2
4, 2�

y

x

2

p

y

x
1

p

1

2
,

�

2
2, 8�

y

x
1

p

y

x
1

p

1, 8�
1

4
, 2�

y

x�3p

2

y

x
1 p

1,
�

2
4, 2�

A36 A N S W E R S T O S E L E C T E D E X E R C I S E S

Time T H Time T H

12 A.M. 60 60 12 P.M. 60 60

3 A.M. 52 74 3 P.M. 68 46

6 A.M. 48 80 6 P.M. 72 40

9 A.M. 52 74 9 P.M. 68 46



3 (a) (b)

(c) (d)

(e) (f)

(g) (h)
y

x
1 p

y

x
1

p

1,
2�

3
3, 2�

y

x
1

p

y

x
1

p

1

2
,
2�

3
2, 6�

y

xp

2

y

x
1

p

1, 6�
1

3
, 2�

y

x
1 p

y

xp

4

1,
2�

3
3, 2� 5 7

9 11

13 15

17 19
y

x
1

p

y

x
1

3p

1, 4�,
2�

3
2,

2�

3
,

�

3

y

x
1

p

y

x
1

p

1,
2�

3
, �

�

3
1, �,

�

2

y

x
1

2p

y

x

2

p

4, 2�,
�

4
1, 2�, �

�

2

y

x
1

2p

y

x
1

p

3, 2�, �
�

6
1, 2�,

�

2
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21 6, 2, 0 23 2, 4, 0

25 27

29 31

33 35

y

x

3

p

y

x
1 3p

�2, 4, 
1

2
3, 2, �4

y

x
1

2p

y

x

3

p

5, 6�, �
�

2
3, 4�,

�

2

y

x

6

3p

y

x

2

p

5,
2�

3
,

�

6

1

2
, 1, 0

y

x

3

p

y

x

7

�3p

37 39

41 (a) (b)

43 (a) (b)

45 47

49 51

53 (a) with

(b) f (t)

t

2

2

c � �
5�

6
, d � 0b �

�

12
,

a � 10,f �t� � 10 sin ��

12
�t � 10�� � 0,

D(t)

t50

2
365

6

12

18

79

f (t)

t

0.1

4

a � 8, b � 4�4�

y � 2 sin � �

2
x �

3�

2 �2, 4, �3

y � 4 sin �x � ��4, 2�, ��

y

x

8

p

y

x

5

p

5, �, ��2, �,
�

2
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55 (a)

(b)

EXERCISES 6.6

1 3

5 7
y

x
1

p

y

x
1

p

2�2�

y

x
1

p

y

x
1

p

��

f (t)

t2

2

219

b �
�

12
, c � �

3�

4
, d � 20

f �t� � 10 sin ��

12
�t � 9�� � 20, with a � 10, 9 11

13 15

17 19

21 23

y

x
1

p

y

x

8

�3p

3�
�

2

y

x

8

p

y

x
1

p

�2�

y

x
1

p

y

x
1

p

�

2
4�

y

x�3p

y

x

4
p

�

2
�
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25 27

29 31

33 35

37 39

y

x
1

p

y

x
1

p

2�4�

y

x
1

p

y

x

4

p

�6�

y

x
1

p

y

x
1

p

�2�

y

x
1

p

y

x�3p

2�
�

2

41 43

45 47

49 2 51 1

53

55 57 y

xp
1

y

xp

2

y � �cot �x �
�

2 �

y

x
1

1

y

x1
1

9

y

xp
1

y

x
1

p

4��

y

x
1

p

y

x
1

p

6��
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59 61

63 65

67 (a) (b) (c)

69 (a) (b) (c)

EXERCISES 6.7

1

3
5
7
9

11
13
15 17
19 21
23
25 27 28,800 ft 29 160 m
31 9659 ft 33 (a) 58 ft (b) 27 ft 35
37 16.3° 39 2063 ft 41
43 21.8° 45 20.2 m 47 29.7 km 49 3944 mi
51
53 (a) 45%

(b) Each satellite has a signal range of more than 120°.

55 57

59 h � d�tan � � tan ��

h �
d

cot � � cot �
h � d sin � � c

126 mi�hr

1,459,379 ft2

51�20�

250�3 � 4 
 437 ft
b � �c2 � a2

c � a csc �a � b cot �
b � c cos �� 
 69�, � 
 21�, a 
 5.4

� 
 29�, � 
 61�, c 
 51
� � 18�9�, a 
 78.7, c 
 252.6
� � 53�, a 
 18, c 
 30
� � 60�, � � 30�, a � 15
� � � � 45�, c � 5�2
� � 45�, a � b � 15�2

� � 60�, a �
20

3
�3, c �

40

3
�3

ln 2

�

�

k
z0A0e��z

0.603I00.044I0I0

y

xp
1

y

xp

2

y

xp
1

y

xp

2

61 N70°E; N40°W; S15°W; S25°E

63 (a) 55 mi (b) S63°E 65 324 mi

67 Amplitude, 10 cm; period, ; frequency,

The point is at the origin at It moves upward with
decreasing speed, reaching the point with coordinate 10 at 

It then reverses direction and moves downward,

gaining speed until it reaches the origin at It 

continues downward with decreasing speed, reaching the 

point with coordinate at It then reverses 

direction and moves upward with increasing speed, return-

ing to the origin at 

69 Amplitude, 4 cm; period, frequency,

The motion is similar to that in Exercise 67; however, the
point starts 4 units above the origin and moves downward,

reaching the origin at and the point with coordinate 

at It then reverses direction and moves 

upward, reaching the origin at and its initial point 

at

71

73 (a)

(b) 324,000 ft

CHAPTER 6 REVIEW EXERCISES

1

2 810°, 315°, 900°, 36°

3 (a) 0.1 (b)

4 (a) (b)

5 6

7 8

9 10 cot 	 � �csc2 	 � 1tan 	 � �sec2 	 � 1

x �
7

2
�2; y �

7

2
�2x � 6�3; y � 3�3

100�

3
,
105�

4

200�

3
, 90�

175�

16
 cm235�

12
 cm

0.2 m2

�120�,

11�

6
,
9�

4
, �

5�

6
,
4�

3
,

�

5

y � 25 cos 
�

15
t

d � 5 cos 
2�

3
t

t �
4

3
.

t � 1

t �
2

3
.�4

t �
1

3

3

4
 osc�sec.

4

3
 sec;

t �
1

3
.

t �
1

4
.�10

t �
1

6
.

t �
1

12
.

t � 0.

3 osc�sec.
1

3
 sec
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Exer. 11–20: Typical verifications are given.

11

12

13

14

15

16

17

18

�
1

sin 	
� csc 	

1 � sec 	

tan 	 � sin 	
�

1 �
1

cos 	

sin 	

cos 	
�

sin 	 cos 	

cos 	

�

cos 	 � 1

cos 	

sin 	 �1 � cos 	�
cos 	

�
�cos 	 � sin 	� cos 	

�cos 	 � sin 	� sin 	
�

cos 	

sin 	
� cot 	

cot 	 � 1

1 � tan 	
�

cos 	

sin 	
� 1

1 �
sin 	

cos 	

�

cos 	 � sin 	

sin 	

cos 	 � sin 	

cos 	

�
sin 	 � cos 	

sin 	 � cos 	

sec 	 � csc 	

sec 	 � csc 	
�

1

cos 	
�

1

sin 	

1

cos 	
�

1

sin 	

�

sin 	 � cos 	

cos 	 sin 	

sin 	 � cos 	

cos 	 sin 	

1 � tan2 	

tan2 	
�

1

tan2 	
�

tan2 	

tan2 	
� cot2 	 � 1 � csc2 	

�

sin 	

cos 	

1

cos 	

�
tan 	

sec 	

sec 	 � cos 	

tan 	
�

1

cos 	
� cos 	

sin 	

cos 	

�

1 � cos2 	

cos 	

sin 	

cos 	

�

sin2 	

cos 	

sin 	

cos 	

� 1 � sec2 	

� cos2 	 sec2 	 � sec2 	

�cos2 	 � 1��tan2 	 � 1� � �cos2 	 � 1��sec2 	�

�
1

sin 	
� csc 	

�
sin2 	 � cos2 	

sin 	

� sin 	 �
cos2 	

sin 	

cos 	 �tan 	 � cot 	� � cos 	 �
sin 	

cos 	
� cos 	 �

cos 	

sin 	

� 1 � sin2 	 � cos2 	

sin 	 �csc 	 � sin 	� � sin 	 csc 	 � sin2 	
19

20

21

22 (a)

(b)

(c)
23 (a) II (b) III (c) IV

24 (a)

(b)

25

26

27 (a) (b) 65°, 43°, 8°

28 (a) 1, 0, U, 0, U, 1

(b)

(c) 0, 1, 0, U, 1, U

(d)

29 (a) (b) (c) (d)

(e) (f) �
2

�3
�1

�2�
1

2
�

�3

3
�

�2

2

�
1

2
,
�3

2
, �

�3

3
, ��3,

2

�3
, �2

�2

2
, �

�2

2
, �1, �1, ��2, �2

�

4
,

�

6
,

�

8

� 3

5
,

4

5�; � 3

5
,

4

5�; ��
3

5
,

4

5�; ��
3

5
,

4

5�
��3

2
,

1

2���
22

2
, �
22

2 �; �1, 0�;

��1, 0�; �0, �1�; �0, 1�;

2

�13
, �

3

�13
, �

2

3
, �

3

2
, �

�13

3
,
�13

2

�
4

5
,

3

5
, �

4

3
, �

3

4
,

5

3
, �

5

4

�1, 0, U, 0, U, �1

2

�13
, �

3

�13
, �

2

3
, �

3

2
, �

�13

3
,
�13

2

�
4

5
,

3

5
, �

4

3
, �

3

4
,

5

3
, �

5

4

�33

7
,

4

7
,
�33

4
,

4

�33
,

7

4
,

7

�33

�
1

sin 	
� csc 	

�
sin2 	 � cos2 	

sin 	

� sin 	 �
cos2 	

sin 	

� sin 	 �
cos 	�sin 	

1�cos 	

�
1

csc ��	�
�

cot ��	�
sec ��	�

� �
1

�csc 	
�

�cot 	

sec 	

� �csc2 	

� �1 � cot2 	 � ��1 � cot2 	�

tan ��	� � cot ��	�
tan 	

�
�tan 	 � cot 	

tan 	
� �

tan 	

tan 	
�

cot 	

tan 	
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30 310.5° 31 1.2206; 4.3622 32 52.44°; 307.56°

33 5, 34

35 36

37 38

39 2, 2 40 4, 4
y

xp
1

y

xp

3

y

xp
1

y

xp
1

4, �3, 4�

y

xp
1

y

xp

2

1

2
, 6�

1

3
,
2�

3

y

xp
1

y

xp
1

2

3
, 2�2�

41 (a) 1.43, 2 (b)

42 (a) (b)

43 (a) (b)

44 (a) 2, 4 (b)

45 46

47 48

49 50

51 52 y

x
p1

y

xp
1

y

xp
1

y

xp
1

y

xp
1

y

xp
1

y

xp
1

y

xp
1

y � 2 cos 
�

2
x

y � �3 cos 
3

2
x3,

4�

3

y � �3.27 sin 
2

3
x3.27, 3�

y � 1.43 sin �x
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53 54

55 56

57

58

59

60

61 (a) (b) 440.2 62 1048 ft

63 64 52°

65 Approximately 67,900,000 mi

66 762.1 ft 67 (a) 6.76 ft (b) 0.61 ft

68 69 250 ft

70 (a) 231.0 ft (b) 434.5 71 (b) 2 mi

72 (a) (b) 22.54 ft

73 (a) (b) 37.47°

74 (b) 4.69 75 (a) 74.05 in. (b) 24.75 in.

76 (a) (b)

77 (a) (b) h 
 1650 fth � R sec 
s

R
� R

V �
4

3
a3 sin2 	 cos 	S � 4a2 sin 	

25

3
�3 
 14.43 ft-candles

T � h � d�cos � tan 	 � sin ��

6�

5
 radians � 216�

0.093 mi�sec

109�

6

� 
 13�, � 
 77�, b � 40

� 
 68�, � 
 22�, c 
 67

� � 35�20�, a 
 310, c 
 380

� � 30�, a 
 23, c 
 46

y

xp
1

y

x
p1

y

xp
1

y

xp
1

78

79

80 (a) (b) 20.8°C on July 1

81 (a) (b) 45 days into summer

82 (a) The cork is in simple harmonic motion.

(b)

CHAPTER 6 DISCUSSION EXERCISES

1 None

2 (a)

(b)

3 (a)

(b)

4 (a) (b) D�t� � 5 cos �500�

3
t� � 18

500�

3
 rad�sec

x 
 �1.2624, y 
 0.9650

x 
 1.8415, y 
 �0.5403

x 
 �0.8838, y 
 �0.4678

x 
 �0.4161, y 
 0.9093

1 � t � 2

4000

D(t)

t10 90

5

T (t)

t3

y � 98.6 � �0.3� sin ��

12
t �

11�

12 �

y

x

1

1 10
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Chapter 7

EXERCISES 7.1

Exer. 1–50: Typical verifications are given for Exercises 1, 5,
9, . . . , 49.

1

5

9

13

17

21

25

29

�
sin � � 1

cos ��1 � sin ��
�

1

cos �
� sec �

1 � csc �

cot � � cos �
�

1 �
1

sin �

cos �

sin �
� cos �

�

sin � � 1

sin �

cos � � cos � sin �

sin �

�
�1 � sin t�2

�1 � sin t� �1 � sin t�
�

1 � sin t

1 � sin t

�
�1 � sin t�2

cos2 t
�

�1 � sin t�2

1 � sin2 t

�sec t � tan t�2 � � 1

cos t
�

sin t

cos t�2

� �1 � sin t

cos t �2

� sin2 r � cos2 r

� �sin2 r � cos2 r� �1�
sin4 r � cos4 r � �sin2 r � cos2 r� �sin2 r � cos2 r�

� sec x � 1 �
1

cos x
� 1 �

1 � cos x

cos x

tan2 x

sec x � 1
�

sec2 x � 1

sec x � 1
�

�sec x � 1� �sec x � 1�
sec x � 1

� csc2 t � cot2 t

� �csc2 t � cot2 t� �1�
csc4 t � cot4 t � �csc2 t � cot2 t� �csc2 t � cot2 t�

� 2 csc2 ��
2

sin2 �

1

1 � cos �
�

1

1 � cos �
�

1 � cos � � 1 � cos �

1 � cos2 �

� �cos 	

sin 	�2

� cot2 	

csc2 	

1 � tan2 	
�

csc2 	

sec2 	
�

1�sin2 	

1�cos2 	
�

cos2 	

sin2 	

�
cos 	

sin 	
 cos 	 � cot 	 cos 	

csc 	 � sin 	 �
1

sin 	
� sin 	 �

1 � sin2 	

sin 	
�

cos2 	

sin 	

33

37

41

45 , since 

49

Exer. 51–62: A typical value of t or and the resulting non-
equality are given.

51 , 53 , 55 ,

57 , 59 ,

61 Not an identity 63 Identity

65 67 69

71 73 75

EXERCISES 7.2

Exer. 1–34: n denotes any integer.

1 , 3
�

3
� �n

7�

4
� 2�n

5�

4
� 2�n

a4 sec3 	 tan 	a tan 	
1

a2 cos2 	

a sec 	a tan 	 sin 	a3 cos3 	

cos �2 � 1
�

4
�1 � 1�

2 � 1
�

4
1 � �1

3�

2
�1 � 1�

	

� �ln � sec 	 � tan 	 �
� ln � 1 � � ln � sec 	 � tan 	 �

� ln � 1

sec 	 � tan 	 �
� ln � sec2 	 � tan2 	

sec 	 � tan 	 �
ln � sec 	 � tan 	 � � ln � �sec 	 � tan 	��sec 	 � tan 	�

sec 	 � tan 	 �
loga ax � x.log 10tan t � log10 10tan t � tan t

� �1 � tan2 ��2 � LS
� 1 � 2 tan2 � � tan4 �

� 1 � 2 tan2 � � tan4 � � 4 tan2 �

� �1 � tan2 ��2 � 4 tan2 �
RS � sec4 � � 4 tan2 � � �sec2 ��2 � 4 tan2 �

� sin � cos �

1

tan � � cot �
�

1

sin �

cos �
�

cos �

sin �

�
1

sin2 � � cos2 �

cos � sin �

� LS

�
sin � cos � � cos � sin �

cos � cos � � sin � sin �

�

sin � cos � � cos � sin �

cos � cos �

cos � cos � � sin � sin �

cos � cos �

RS �
tan � � tan �

1 � tan � tan �
�

sin �

cos �
�

sin �

cos �

1 �
sin �

cos �
�

sin �

cos �
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5 ,

7 No solution, since .

9 All except 

11 , 13

15 ,

17 , 19 ,

21 23 ,

25 , 27 ,

29 , 31 ,

33 , ,

35 , 37

39 , , , 41 , , ,

43 45

47 49 No solution 51

53 55

57 All in except 0, and 

59 61

63 15°30 , 164°30 65 135°, 315°, 116°30 , 296°30

67 41°50 , 138°10 , 194°30 , 345°30 69 10
71 and 73 (a) 3.29 (b) 4

75 (a) (b) and

25

3
� t � 10

0 � t �
5

3N(t)

t5 10

1000

t 
 8.50t 
 3.50
����

����

3�

4
,
7�

4

�

2
,
3�

2
,
7�

6
,
11�

6

3�

2

�

2
, �,�0, 2���

�

4
,
5�

4
0,

�

2

11�

6
,

�

2

�

2
,
3�

2
,
2�

3
,
4�

3

0, �,
�

4
,
3�

4
,
5�

4
,
7�

4

�

6
,
5�

6
,
3�

2

5�

3

4�

3

2�

3

�

3

15�

8

11�

8

7�

8

3�

8

e���2��� n5�

12
� �n

�

12
� �n

� � 2�n
5�

3
� 2�n

�

3
� 2�n

11�

6
� 2�n

7�

6
� 2�n

5�

6
� �n

�

6
� �n

5�

3
� 2�n

4�

3
� 2�n

2�

3
� �n

�

3
� �n

3�

2
� 2�n2�n

�

4
�

�

2
n

4�

3
� 2�n

2�

3
� 2�n

7�

12
� �n

�

4
� �n

7�

12
� 2�n�

�

12
� 2�n

�

2
� 3�n

11�

12
� �n

�

12
� �n

	 �
�

2
� �n	

�

2
� 1

5�

3
� 2�n

�

3
� 2�n 77 ,

,

79 81 (a) 37.6° (b) 52.5°

EXERCISES 7.3

1 (a) cos 43°23 (b) sin 16°48 (c)

(d) csc 72.72°

3 (a) (b) (c)

(d)

5 (a) (b)

7 (a) (b)

9 (a) (b)

11 cos 25° 13 15

17

19 (a) (b) (c) I

21 (a) (b) (c) IV

23 (a) (b) (c) I

25

27

29

31

� sin x

cos �x �
3�

2 � � cos x cos 
3�

2
� sin x sin 

3�

2

cos �	 � �� � cos 	 cos � � sin 	 sin � � �cos 	

� �cos x

sin �x �
5�

2 � � sin x cos 
5�

2
� cos x sin 

5�

2

� sin 	��1� � cos 	�0� � �sin 	
sin �	 � �� � sin 	 cos � � cos 	 sin �

4�21 � 6

25

 0.97

3�21 � 8

25

 0.23

�
24

7
�

24

25

36

85

77

85

1223 � 5

26

sin ��5�sin ��5°�

�6 � �2

4
�2 � 1

2

�2 � �3�3 � 1

�6 � �2

4
�2 � �3

2

sec ��

2
� 0.53�

cot �� � 2

2 �cos �2� � 1

4 �sin
3�

20

cot
�

3
��

7

360

D�4�

3
,
2�

3
�

1

2
�3�C�2�

3
,

�

3
�

1

2
�3�

B��
2�

3
, �

�

3
�

1

2
�3�,A��

4�

3
, �

2�

3
�

1

2
�3�
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33

35

37

39

41

43

45

�
sin � sin �

sin �� � ��

�
1

cos � sin � � cos � sin �

sin � sin �

1

cot � � cot �
�

1

cos �

sin �
�

cos �

sin �

� sin2 u � sin2 v
� sin2 u � sin2 u sin2 v � sin2 v � sin2 u sin2 v
� sin2 u�1 � sin2 v� � �1 � sin2 u� sin2 v
� sin2 u cos2 v � cos2 u sin2 v

�sin u cos v � cos u sin v�
� �sin u cos v � cos u sin v� �

sin �u � v� � sin �u � v�
� 2 cos u cos v

�cos u cos v � sin u sin v�� �cos u cos v � sin u sin v� �

cos �u � v� � cos �u � v�

tan �u �
�

4 � �

tan u � tan
�

4

1 � tan u tan 
�

4

�
1 � tan u

1 � tan u

�
�2

2
�sin 	 � cos 	�

�
�2

2
 sin 	 �

�2

2
 cos 	

sin �	 �
�

4 � � sin 	 cos 
�

4
� cos 	 sin 

�

4

� cot ��	� � �cot 	

tan �	 �
�

2� � cot ��

2
� �	 �

�

2 ��
�

�cos x

sin x
� �cot x

�

sin x cos 
�

2
� cos x sin 

�

2

cos x cos 
�

2
� sin x sin 

�

2

tan �x �
�

2 � �

sin �x �
�

2 �
cos �x �

�

2 �
47

49

51

53

55 (a) Each side (b)
(c)

57 59

61 is extraneous

63 (a) (b)

(c) f (x)

xp

2

2, �,
�

12
f �x� � 2 cos �2x �

�

6�
�

12
,
5�

12
;

3�

4

�

6
,

�

2
,
5�

6
0,

�

3
,
2�

3

a � 60°, b � 3°
a � 60°
 0.0523

� cos x �cos h � 1

h � � sin x �sin h

h �
�

cos x cos h � cos x

h
�

sin x sin h

h

�
cos x cos h � sin x sin h � cos x

h

f �x � h� � f �x�
h

�
cos �x � h� � cos x

h

� sin u cos v � cos u sin v
� sin u cos ��v� � cos u sin ��v�

sin �u � v� � sin �u � ��v�	

�
cot u cot v � 1

cot v � cot u

�
�cos u cos v � sin u sin v� �1�sin u sin v�
�sin u cos v � cos u sin v� �1�sin u sin v�

cot �u � v� �
cos �u � v�
sin �u � v�

cos u cos v sin w � sin u sin v sin w
sin u cos v cos w � cos u sin v cos w �
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65 (a) (b)

(c)

67

69 (a) with tan 

(b) for every nonnega-

tive integer n

71 (a)

with and 

(b)

73 (a) ,
since and , . Thus,

, and hence .

(b) (c)

EXERCISES 7.4

1 3

5

7

9 (a) (b) (c)

11 sin 10	 � sin �2 � 5	� � 2 sin 5	 cos 5	

�2 � 1
1

2
�2 � �3

1

2
�2 � �2

�
1

2
�2 � �2,

1

2
�2 � �2, ��2 � 1

1

10
�10,

3

10
�10,

1

3

�
4

9
�2, �

7

9
,

4

7
�2

24

25
, �

7

25
, �

24

7

cos # � �B��2A�0, 2�

C � A � BC2 � �A � B�2

B � 0A � 0cos # � 1
C2 � A2 � B2 � 2AB cos # � A2 � B2 � 2AB

� A2 � B2 � 2AB cos #
� A2 � B2�sin2 # � cos2 #� � 2AB cos #
� B2 sin2 # � A2 � 2AB cos # � B2 cos2 #

C2 � �B sin #�2 � �A � B cos #�2

b � A � B cos #a � B sin #
� a cos �t � b sin �t
� �B sin #� cos �t � �A � B cos #� sin �t
� A sin �t � B�sin �t cos # � cos �t sin #�

p�t� � A sin �t � B sin ��t � #�

t � C �
�

2
� �n 
 2.55 � �n

C �
3

2
; �13, 2�y � �13 cos �t � C�


 10�41 cos �60� t � 0.8961�

y � 10�41 cos �60� t � tan�1 5

4�

xp

3

f (x)

2�2,
2�

3
, �

�

12
f �x� � 2�2 cos �3x �

�

4� 13

15

17

19

21

23

25

27

�
3 tan u � tan3 u

1 � 3 tan2 u
�

tan u�3 � tan2 u�
1 � 3 tan2 u

�

2 tan u � tan u � tan3 u

1 � tan2 u

1 � tan2 u � 2 tan2 u

1 � tan2 u

�

2 tan u

1 � tan2 u
� tan u

1 �
2 tan u

1 � tan2 u
� tan u

tan 3u � tan �2u � u� �
tan 2u � tan u

1 � tan 2u tan u

� 2 sin2 2t � �1 � 2 sin2 2t� � 1
2 sin2 2t � cos 4t � 2 sin2 2t � cos �2 � 2t�

�
1

2 � sec2 	

sec2 	

�
sec2 	

2 � sec2 	

sec 2	 �
1

cos 2	
�

1

2 cos2 	 � 1
�

1

2� 1

sec2 	� � 1

�
3

8
�

1

2
 cos 2t �

1

8
 cos 4t

�
1

4
�

1

2
 cos 2t �

1

8
�

1

8
 cos 4t

�
1

4
�

1

2
 cos 2t �

1

4 �1 � cos 4t

2 �
�

1

4
�1 � 2 cos 2t � cos2 2t�

sin4 t � �sin2 t�2 � �1 � cos 2t

2 �2

� 8 cos4 	 � 8 cos2 	 � 1
� 2�4 cos4 	 � 4 cos2 	 � 1� � 1
� 2�2 cos2 	 � 1�2 � 1

cos 4	 � cos �2 � 2	� � 2 cos2 2	 � 1

� 3 sin u � 4 sin3 u � sin u�3 � 4 sin2 u�
� 2 sin u � 2 sin3 u � sin u � 2 sin3 u
� 2 sin u�1 � sin2 u� � sin u � 2 sin3 u
� 2 sin u cos2 u � sin u � 2 sin3 u
� �2 sin u cos u� cos u � �1 � 2 sin2 u� sin u
� sin 2u cos u � cos 2u sin u

sin 3u � sin �2u � u�
� 1 � sin 2t

�sin t � cos t�2 � sin2 t � 2 sin t cos t � cos2 t

� 2 sin x

4 sin 
x

2
 cos 

x

2
� 2 � 2 sin 

x

2
 cos 

x

2
� 2 sin �2 �

x

2�
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29

31

33 35 0,

37 39 41

45 (a) 1.20, 5.09

(b) , ,

47 (a)

(b)

49 (b) Yes, point B is 25 miles from A.

51 (a) (b) 53.13° 53 (b) 12.43 mm

EXERCISES 7.5

1 3

5 7

9 11

13 15

17

19

21

�

tan
1

2
�u � v�

tan
1

2
�u � v�

� cot
1

2
�u � v� tan 

1

2
�u � v�

sin u � sin v

sin u � sin v
�

2 cos 
1

2
�u � v� sin 

1

2
�u � v�

2 sin 
1

2
�u � v� cos 

1

2
�u � v�

� tan
1

2
�u � v�

sin u � sin v

cos u � cos v
�

2 sin 
1

2
�u � v� cos 

1

2
�u � v�

2 cos 
1

2
�u � v� cos 

1

2
�u � v�

sin 4t � sin 6t

cos 4t � cos 6t
�

2 sin 5t cos t

2 sin 5t sin t
� cot t

2 cos 
3

2
x cos 

1

2
x�2 cos 5t sin 2t

�2 sin 4x sin x2 sin 4	 cos 2	

3

2
 sin 3x �

3

2
 sin xsin 12	 � sin 6	

1

2
 cos 2u �

1

2
 cos 10u

1

2
 cos 4t �

1

2
 cos 10t

V �
5

2
 sin 	

0, ��, �2�, �
�

4
, �

3�

4
, �

5�

4
, �

7�

4

�
3�

2
, �

�

2
,

�

2
,
3�

2

R�4�

3
, �1.5�Q��, �1�P�2�

3
, �1.5�

0,
�

3
,
5�

3
0, �

�

3
,
5�

3
, �

�,
2�

3
,
4�

3

3

8
�

1

2
 cos 4x �

1

8
 cos 8x

3

8
�

1

2
 cos 	 �

1

8
 cos 2	

tan
u
2

�
1 � cos u

sin u
�

1

sin u
�

cos u
sin u

� csc u � cot u
23

25 27

29 31

33 35

37

39

EXERCISES 7.6

1 (a) (b) (c)

3 (a) (b) (c)

5 (a) Not defined (b) Not defined (c)

7 (a) (b) (c) 14

9 (a) (b) (c)

11 (a) (b) (c)

13 (a) (b) (c) Not defined

15 (a) (b) (c)

17 (a) (b) 0 (c)

19 (a) (b) (c)

21 (a) (b) (c)

23 25 27

29 31 (a) (b) 0 (c)
�

2
�

�

2�1 � x

2

2x�1 � x2�x2 � 4

2

x

�x2 � 1

1

2

4

17
�17�

1

10
�2

24

7
�

161

289
�

24

25

�
77

36
�3

2

4

�15

�34

5
�5

2

�2

2
�3

2

�
�

4

3�

4
�

�

4

�
�

6

5�

6

�

3

1

2
�

3

10

�

4

�

6

�

4

�

3

�
�

3

2�

3
�

�

4

f �x� �
1

2
 sin 

�n

l
�x � kt� �

1

2
 sin 

�n

l
�x � kt�

0, ��, �2�, �
�

4
, �

3�

4
, �

5�

4
, �

7�

4

�

4
,
3�

4
,
5�

4
,
7�

4
,

�

2
,
3�

2

�

7
�

2�

7
n,

2�

3
n

�

2
� �n,

�

12
�

�

2
n,

5�

12
�

�

2
n

�

2
n

�

4
n

1

2
 sin ��a � b�x	 �

1

2
 sin ��a � b�x	

� sin 2x � sin 4x � sin 6x
� �sin 6x � sin ��2x�	 � �sin 4x � sin 0�
� �2 cos 2x sin 4x� � �2 cos 2x sin 2x�
� 2 cos 2x �sin 4x � sin 2x�

4 cos x cos 2x sin 3x � 2 cos 2x �2 sin 3x cos x�
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33 35

37 39

41 43 (a)

(b)

(c)

45 (a) (b)

(c)

47 49

51 , where 

53 ,

55 ,

57 , ,

, cos�1 ��
1

3
�3� 
 2.1863cos�1 1

3
�3 
 0.9553

cos�1 ��
1

5
�15� 
 2.4569cos�1 1

5
�15 
 0.6847

tan�1 1

4
��9 � �57 � 
 �1.3337

tan�1 1

4
��9 � �57 � 
 �0.3478

2� � cos�1 ��1 � �2 � 
 5.1395
cos�1 ��1 � �2 � 
 1.1437

xR � sin�1 �3

4
 sin y�x � xR or x � � � xR

x � cos�1 �1

2
�15 � y��x � sin�1 ��y � 3�

x �
3

2
 cos 

1

4
y

0 � y � 4��
3

2
� x �

3

2

x � sin 2y � 3

�
�

4
� y �

�

4

2 � x � 4y

x1

y

x1

y

x1

p

q

y

x1

q

1

q
y

x

59

61 , ,

,

63 , ,

,

65 (a) 1.65 m (b) 0.92 m (c) 0.43 m 67 3.07°

69 (a) (b) 40°

71 Let and with 

and . Thus,

and . Since the sine function is one-to-one on 

, we have .

73 Let and with 

and . Thus,

and . Consequently,
. Since the sine function

is one-to-one on , we have .

75 Let and . Since , we

have and , and hence

. Thus,

. Since the denominator is 0, is 

undefined and hence .

CHAPTER 7 REVIEW EXERCISES

1

2

�
cos2 	 � sin2 	

cos 	
�

1

cos 	
� sec 	

cos 	 � sin 	 tan 	 � cos 	 � sin 	 �
sin 	

cos 	

�cot2 x � 1� �1 � cos2 x� � �csc2 x� �sin2 x� � 1

� � � �
�

2

tan �� � ��
x � �1�x�

0

tan �� � �� �
tan � � tan �

1 � tan � tan �
�

x � �1�x�
1 � x � �1�x�

�

0 � � � � � �

0 � � �
�

2
0 � � �

�

2

x � 0� � arctan �1�x�� � arctan x

� � ����
�

2
,

�

2 �
sin � � �sin � � sin ����

sin � � xsin � � �x

�
�

2
� � �

�

2
�

�

2
� � �

�

2

� � arcsin x� � arcsin ��x�

� � ���
�

2
,

�

2�
sin � � x

sin � � x�
�

2
� � �

�

2
�

�

2
� � �

�

2

� � tan�1 x

�1 � x2
� � sin�1 x

� � 	 � sin�1 d

k

5�

3

 5.2360

�

3

 1.0472

2� � cos�1 2

3

 5.4421cos�1 2

3

 0.8411

2� � cos�1 1

3

 5.05222� � cos�1 ��

3

5� 
 4.0689

cos�1 1

3

 1.2310cos�1 ��

3

5� 
 2.2143

sin�1 ��
1

6
�30� 
 �1.1503

A50 A N S W E R S T O S E L E C T E D E X E R C I S E S



3

4

5

6

7

8

9

10

� sin u sin v

LS �
sin u � sin v

csc u � csc v
�

sin u � sin v

1

sin u
�

1

sin v

�
sin u � sin v

sin v � sin u

sin u sin v

� tan � � cot �

�
�tan � � cot �� ��tan2 � � tan � cot � � cot2 ��	

�tan2 � � �1 � cot2 ��	

tan3 � � cot3 �

tan2 � � csc2 �

�
1 � sec v

2 sec v

cos2 v

2
�

1 � cos v

2
�

1 �
1

sec v

2
�

sec v � 1

sec v

2

�
2 cot u

cot2 u � 1
�

2 cot u

�csc2 u � 1� � 1
�

2 cot u

csc2 u � 2

tan 2u �
2 tan u

1 � tan2 u
�

2 �
1

cot u

1 �
1

cot2 u

�

2

cot u

cot2 u � 1

cot2 u

�
tan � � tan �

1 � tan � tan �

sin �� � ��
cos �� � ��

�
�sin � cos � � cos � sin ���cos � cos �

�cos � cos � � sin � sin ���cos � cos �

� �sec t � tan t� sec t

� � 1

cos t
�

sin t

cos t� � sec t

�
1 � sin t

cos t
�

1

cos t

1

1 � sin t
�

1 � sin t

1 � sin t
�

1 � sin t

1 � sin2 t
�

1 � sin t

cos2 t

�
1

cos2 x sin2 x
� sec2 x csc2 x

� �sin2 x � cos2 x

cos x sin x �2

�tan x � cot x�2 � �sin x

cos x
�

cos x

sin x�2

� sin 	

�
tan 	

sin2 	 � cos2 	

cos 	

�
sin 	�cos 	

1�cos 	

�sec2 	 � 1� cot 	

tan 	 sin 	 � cos 	
�

�tan2 	� cot 	

sin 	

cos 	
� sin 	 � cos 	

Since the LS and RS equal the same expression and the
steps are reversible, the identity is verified.

11

12

13

14

15

since .�1 � cos t� 
 0

� ��1 � cos t�2

sin2 t
�

�1 � cos t �
�sin t �

�
1 � cos t

�sin t �
,

� ��1 � cos t�2

1 � cos2 t

�1 � cos t

1 � cos t
� ��1 � cos t�

�1 � cos t�
�

�1 � cos t�
�1 � cos t�

�
cos t � 1

�1 � cos t��1 � cos t�
�

1

1 � cos t

�
cos t � 1

sin2 t
�

cos t � 1

1 � cos2 t

cot ��t� � csc ��t�
sin ��t�

�
�cot t � csc t

�sin t
�

cos t

sin t
�

1

sin t

sin t

�
�1 � sin t��1 � sin t�

1 � sin t
� 1 � sin t

�
cos t

1 � sin t

cos t

�
cos2 t

1 � sin t
�

1 � sin2 t

1 � sin t

cos ��t�
sec ��t� � tan ��t�

�
cos t

sec t � tan t
�

cos t

1

cos t
�

sin t

cos t

� cos � � sin �

�
�cos � � sin �� �cos � � sin ��

cos � � sin �

�
cos2 � � sin2 �

cos � � sin �

�
cos2 �

cos � � sin �
�

sin2 �

sin � � cos �

cos �

1 � tan �
�

sin �

1 � cot �
�

cos �

cos � � sin �

cos �

�
sin �

sin � � cos �

sin �

�
�1�6

�1�12 � 1

�sin2 x

tan4 x�3�csc3 x

cot6 x�2

� � sin6 x

tan12 x��csc6 x

cot12 x� �
�sin x csc x�6

�tan x cot x�12

� sin u sin v

�
1 � sin u sin v

1 � sin u sin v

sin u sin v

RS �
1 � sin u sin v

�1 � csc u csc v
�

1 � sin u sin v

�1 �
1

sin u sin v
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16

since .

17

18

19

20

21

22 Let and . Because

, . Thus, and

. Since the tangent

function is one-to-one on , we have or,

equivalently, .

23 24 25

26 27

28 29

30 31
�

6
,
5�

6
,

�

3
,
5�

3

2�

3
,
4�

3
, �

7�

6
,
11�

6
,

�

2

�

2
,
3�

2
,
�

4
,
5�

4
,
3�

4
,
7�

4

0, �,
2�

3
,
4�

3

�

4
,
3�

4
,
5�

4
,
7�

4

0, �
7�

6
,
11�

6

�

2
,
3�

2
,

�

4
,
7�

4
,
3�

4
,
5�

4

� �
1

2
�

� � 2��� �

2
,

�

2 �
tan � �

2x

1 � x2 �
2 tan �

1 � tan2 �
� tan 2�

tan � � x�
�

4
� � �

�

4
�1 � x � 1

� � arctan
2x

1 � x2� � arctan x

� 8 sin 	 cos 	�1 � 2 sin2 	� �1 � 8 sin2 	 cos2 	�
� 8 sin 	 cos 	�1 � 2 sin2 	� �1 � 2�2 sin 	 cos 	�2	
� 2�2 sin 2	 cos 2	� �1 � 2 sin2 2	�

sin 8	 � 2 sin 4	 cos 4	

tan
1

2
	 �

1 � cos 	

sin 	
�

1

sin 	
�

cos 	

sin 	
� csc 	 � cot 	

� sin � cos3 � � cos � sin3 �

�
1

2
�2 sin � cos �� �cos2 � � sin2 ��

1

4
 sin 4� �

1

4
 sin �2 � 2�� �

1

4
�2 sin 2� cos 2��

tan �x �
3�

4 � �

tan x � tan
3�

4

1 � tan x tan 
3�

4

�
tan x � 1

1 � tan x

cos �x �
5�

2 � � cos x cos 
5�

2
� sin x sin 

5�

2
� sin x

�1 � sin 	� 
 0

�
� cos 	 �

� 1 � sin 	 �
�

� cos 	 �
1 � sin 	

,

� � cos2 	

�1 � sin 	�2

� � 1 � sin2 	

�1 � sin 	�2

�1 � sin 	

1 � sin 	
� ��1 � sin 	�

�1 � sin 	�
�

�1 � sin 	�
�1 � sin 	�

32 All x in except 

33 34

35 36

37 38

39

40 41

42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 (a)

(b)

(c) (d)

58 (a) (b)

(c) (d)

59 60 61 62 63

64 65 66 2 67 Not defined 68

69 70 �
7

25

240

289

�

2

1

2

3�

4

�
�

4
�

�

3

�

4

�

6

6 cos 4x cos 2x2 cos 
9

40
t sin 

1

40
t

2 sin 
11

2
	 sin 

5

2
	2 sin 5u cos 3u

2 sin 10	 � 2 sin 4	3 sin 8x � 3 sin 2x

1

2
 cos 

1

12
u �

1

2
 cos 

5

12
u

1

2
 cos 3t �

1

2
 cos 11t

5

34
�34

1

3

1

10
�10

24

7

�
161

289

240

289
�

36

85

36

85

�
36

77
�

84

13
�

13

85

84

85

2

�2 � �2

�2 � �6

4
�2 � �3

�6 � �2

4

�

5
,
3�

5
, �,

7�

5
,
9�

5

0,
�

8
,
3�

8
,
5�

8
,
7�

8
, �,

9�

8
,
11�

8
,
13�

8
,
15�

8

�

6
,
5�

6
,
7�

6
,
11�

6

�

3
,
5�

3

0, �,
�

3
,
5�

3

3

4
,

7

4
,
11

4
,
15

4
,
19

4
,
23

4

0,
�

3
,
2�

3
, �,

4�

3
,
5�

3

�

3
,
5�

3

�

4
,
3�

4
,
5�

4
,
7�

4
�0, 2��
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71 72

73 74

75

76 (b) (c)

77

78 (a) (b)

79 (a) (b) 43°

80 (a) 78.7° (b) 61.4°

CHAPTER 7 DISCUSSION EXERCISES

1 Hint: Factor as the difference of cubes.

2

3 45; approximately 6.164

� �a cos 	 if 0 � 	 � ��2 or 3��2 � 	 � 2�

�a cos 	 if ��2 � 	 � 3��2

�a2 � x2

sin3 x � cos3 x

d � r�sec
1

2
	 � 1�

d � 1000 ftx � 2d tan 
1

2
	

�
�

4
, �

3�

4
, �

5�

4
, �

7�

4
, �

�

3
, �

5�

3

2

3
�2At � 0, �

�

4b

sin � cos � sin � � cos � sin � sin �
� cos � cos � cos � � sin � sin � cos � �

�sin � cos � � cos � sin �� sin �
� �cos � cos � � sin � sin �� cos � �
� cos �� � �� cos � � sin �� � �� sin �

cos �� � � � �� � cos ��� � �� � �	

y

x

1

1

y

x�1

d

y

x1

2p

y

x1

q

4 (a) The inverse sawtooth function, denoted by , is
defined by for 
and .

(b) 0.85;
(c) saw ;

(d)

5 Hint: Write the equation in the form , and

take the tangent of both sides.

Chapter 8

EXERCISES 8.1

1 , ,
3 , ,
5 , ,
7 No triangle exists.
9 , , ;

, ,
11 , , ;

, ,
13 , ,
15 , , 17 219 yd
19 (a) 1.6 mi (b) 0.6 mi 21 2.7 mi 23 628 m
25 3.7 mi from A and 5.4 mi from B 27 350 ft
29 (a) 18.7 (b) 814 31 (3949.9, 2994.2)

EXERCISES 8.2

1 (a) B (b) F (c) D (d) E
(e) A (f) C

3 (a) (b)
(c) Any angle, law of cosines
(d) Not enough information given
(e)
(f) c, law of sines; or 

5
7
9 c 
 2.75, � 
 21°10�, � 
 43°40�

b 
 180, � 
 25°, � 
 5°
a 
 26, � 
 41°, � 
 79°

g, a � b � g � 180°
g, a � b � g � 180°

a, law of cosinesa, law of sines

a 
 0.146� 
 32.383°� 
 25.993°
c 
 20.6� 
 61°10�� 
 53°40�
b 
 75.45� 
 34.80°� 
 97.46°
b 
 100.85� 
 49.72°� 
 82.54°

b 
 59� 
 24°10�� 
 102°30�
b 
 108� 
 49°10�� 
 77°30�

c 
 17.8a 
 13.6� � 78°30�
c 
 68.7b 
 55.1� � 100°10�

c 
 15.6b 
 14.1� � 62°

�

4
� � � 4	

y

x

2

2

y � arcsaw (x)

(2, 1)

(�2, �1)

saw�1 �saw y� � y if �1 � y � 1
�saw�1 x� � x if �2 � x � 2
�0.4

�1 � y � 1
�2 � x � 2y � saw�1 x iff x � saw y

saw�1
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11
13 15 196 ft
17 24 mi 19 39 mi 21 2.3 mi 23 N55°31 E
25 63.7 ft from first and third base; 66.8 ft from second base
27

29 Hint: Use the formula 

31 (a) 72°, 108°, 36° (b) 0.62 (c) 0.59, 0.36

Exer. 33–40: The answer is in square units.

33 260 35 11.21 37 13.1 39 517.0
41 1.62 acres 43 123.4

EXERCISES 8.3

1
3
5
7 Terminal points are 9 Terminal points are

11 13 f 15

17

19

21

or n�ma�� m�na�
� m�n�a1, a2�� or n�m�a1, a2��
� m�na1, na2� or n�ma1, ma2�
� �mna1, mna2�
� ��mn�a1, �mn�a2�

�mn�a � �mn� �a1, a2�
� �0, 0� � 0
� �a1 � a1, a2 � a2�
� �a1, a2� � ��a1, �a2�

a � ��a� � �a1, a2� � ���a1, a2��
� �a � b� � c
� ��a1, a2� � �b1, b2�� � �c1, c2�
� �a1 � b1, a2 � b2� � �c1, c2�
� �a1 � b1 � c1, a2 � b2 � c2�
� �a1, a2� � �b1 � c1, b2 � c2�

a � �b � c� � �a1, a2� � ��b1, b2� � �c1, c2��

�
1

2
e�b

y

x

a
2

8

2a

b

�3b

a � b

y

x

b a
2a

a � b

�3b

8

8

�6, �9�.
��6, 9�, ��8, 12�,�6, 4�, �3, �15�.
��4, 6�, ��2, 3�,�3, 2�, ��1, 5�, �2, 7�,

4i � 3j, �2i � 7j, 19i � 17j, �11i � 33j, �5
��15, 6�, �1, �2�, ��68, 28�, �12, �12�, �53
�3, 1�, �1, �7�, �13, 8�, �3, �32�, �13

ft2

sin
	

2
� �1 � cos 	

2
.

37,039 ft 
 7 mi

�
� 
 12°30�, � 
 136°30�, � 
 31°00�
� 
 29°, � 
 47°, � 
 104° 23

Also,
25

27

29 31 33

35 37 102 lb 39 7.2 lb

41 89 lb; S66°W 43 5.8 lb; 129°
45 40.96; 28.68 47

49 (a) (b)

51 (a) (b)

53 (a) (b)

55

57 (a) (b)
59 (a)

(b)
61 63 56°; 232 mi hr
65 420 mi hr; 244° 67 N22°W
69
71 (a) (24.51, 20.57) (b)
73 28.2 lb person

EXERCISES 8.4

1 (a) 24 (b)

3 (a) (b)

5 (a) 45 (b)

7 (a) (b)

9 11

13 Opposite 15 Same 17 19

21 (a) (b) 23 �51�23�23

�
3

8

6

5

��4j� � ��7i� � 0�4, �1� � �2, 8� � 0

cos�1 � �149�5

�149�149�25� � 180°�
149

5

cos�1 � 45

�81�41� 
 38°40�

cos�1 � �14

�17�13� 
 160°21��14

cos�1 � 24

�29�45� 
 48°22�

�
��24.57, 18.10�

v1 
 4.1i � 7.10j; v2 
 0.98i � 3.67j
�

�sin�1 �0.4� 
 23.6°
G � �F 
 �5.86, �1.13�
F 
 ��5.86, 1.13�

G � �F � ��7, �2�F � �7, 2�

�
24

�65
i �

42

�65
j

��3,
3

2
���12, 6�

��
2

�29
,

5

�29
�� 2

�29
, �

5

�29
�

8

17
i �

15

17
j�

8

17
i �

15

17
j

�6.18; 19.02

18;
3�

2

tan�1 �� 5

4� � ��41;5; �3�2;
7�

4

� 2 � v �
� �4a2 � 4b2 � 2�a2 � b2 � 2 � �a, b� �

� 2v � � � 2�a, b� � � � �2a, 2b� � � ��2a�2 � �2b�2
� �a � ��b� � �a � b
� ��a1, �a2� � ��b1, �b2�
� ��a1 � b1, �a2 � b2�
� ���a1 � b1�, ��a2 � b2��
� ���a1 � b1, a2 � b2��

��a � b� � ���a1, a2� � �b1, b2��
m0 � m�0, 0� � �m0, m0� � �0, 0� � 0.

0a � 0�a1, a2� � �0a1, 0a2� � �0, 0� � 0.
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25 27 2.2 29 7
31 28 33 12
35

37

39

41
43 (a) ;

(b) 0.53°

45 47 2.6 49 24.33

51 horsepower

EXERCISES 8.5

1 5 3 5 8 7 1 9 0

Note: Point P is the point corresponding to the geometric
representation.

11 13 15
17 19

21 23 25

27 29 31 12 cis 0

33 35 37

39

41

43

45 5 cis �tan�1 �� 3

4� � 2��
�34 cis �tan�1 3

5
� ��

�10 cis �tan�1 �� 1

3� � ��
�5 cis �tan�1 1

2�
10 cis 

4�

3
6 cis 

�

2
7 cis �

20 cis 
3�

2
4�2 cis 

5�

4

4 cis 
�

6
8 cis 

5�

6
�2 cis 

7�

4

17  �6 � 4 i

19  2 i

Imaginary
axis

Real axis

15  �3 � 6 i

11  4 � 2 i

13  3 � 5 i

Imaginary
axis

Real axis

P�0, 2�P��6, 4�
P��3, 6�P�3, �5�P�4, 2�

�85

16�3 
 27.7

� 4

5
,

3

5
�

w � �93 � 106�i � �0.432 � 106�j
v � �93 � 106�i � �0.432 � 106�j

1000�3 
 1732 ft-lb
� 0 � 0 � 0

0 � a � �0, 0� � �a1, a2� � 0�a1� � 0�a2�
� m�a1b1 � a2b2� � m�a � b�
� ma1b1 � ma2b2

� �ma1, ma2� � �b1, b2�
�ma� � b � �m�a1, a2�� � �b1, b2�

� ��a2
1 � a2

2 �2
� � a �2

a � a � �a1, a2� � �a1, a2� � a2
1 � a2

2

17��26 
 3.33 47 49 51
53 55 57

59 , 61

63 65

69 71

73 75 70.43 volts

EXERCISES 8.6

1 3 5

7 9

11 13

15

17

19 , 21 with ,
81°, 153°, 225°, 297°

23 25 ,

27

29 with , 72°, 144°, 216°, 288°

31

CHAPTER 8 REVIEW EXERCISES

1

2 � � 60°, � � 90°, b � 4; � � 120°, � � 30°, b � 2

a � �43, � � cos�1 � 4

43
�43�, � � cos�1 � 5

86
�43�

� rn�cos n	 � i sin n	�
� rnei�n	�
� rn�ei	�n

�r �cos 	 � i sin 	�	n � �r �ei	�	n

	 � 0°3 cis 	

2i, ��3 � i

��3 � i�2i, �3 � i�2, �2i

�2�

y

x

w0

w1

w2

w3
w4

10

y

x(1, 0)

w0

w1w2

w3

w4 w5

�
1

2
�

1

2
�3 i

	 � 9°�10 2 cis 	�1,
1

2
�

1

2
�3 i

3i, �
3

2
�3 �

3

2
i

���4 2

2
�

�4 18

2
i�, ���4 18

2
�

�4 2

2
i�

�� 1

2
�6 �

1

2
�2 i��64�3 � 64i

�
1

2
�

1

2
�3 i�

1

2
�2 �

1

2
�2 i

�8�32i�972 � 972i

�365 ohms

11.01 � 9.24i17.21 � 24.57i

�15 � 10i, �
15

13
�

10

13
i8 � 4i,

8

5
�

4

5
i

40,
5

2
�

2

5
�3 �

2

5
i10�3 � 10i

�2, i2 � i5 � 3i
�5�3 � 3�3 i2�2 � 2�2 i
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3

4

5
6
7
8 9 290 10 10.9

11 Terminal points are

12 (a) (b) (c)
(d)

13 14 109 lb; S78°E
15

16

17 Circle with center and radius c
18 The vectors a, b, and form a triangle with the vec-

tor opposite angle . The conclusion is a direct ap-
plication of the law of cosines with sides , , and

.
19 183°; 70 mi hr

20 (a) 10 (b) (c)

21 (a) 80 (b) (c)

22 56

23 24 25

26 27

28 29

30 31 ,

32 33 34 i
35 36

37 �3,
3

2
�

3

2
�3 i

�219 � 219�3 i�972 � 972i
�512i�4�2 i, �2�2

�
3

2
�12 � 12�3 i12 � 5i

10�3 � 10i�41 cis �tan�1 5

4�
10 cis 

7�

6
12 cis 

3�

2

17 cis �4 cis 
5�

3
10�2 cis 

3�

4

�40cos�1� 40

�40�50�
 26°34�

10

�13
cos�1� 10

�13�17�
 47°44�

�
� a � b �

� b �� a �
	a � b

a � b
�a1, a2�

��
12

�58
,

28

�58
�

�16i � 12j
�14 cos 40°, �14 sin 40°�

�29 � �17 
 1.26

�40 
 6.32�8i � 13j12i � 19j

��8, 10�, ��1, 4�.
��2, �3�, ��6, 13�,

� 
 42°, � 
 87°, � 
 51°

� 
 24°, � 
 41°, b 
 10.1

� 
 19°10�, � 
 137°20�, b 
 258

� � 38°, a 
 8.0, c 
 13

� � cos�1 � 7

8�, � � cos�1 �11

16�, � � cos�1 �� 1

4�
� � 75°, a � 50�6, c � 50�1 � �3 � 38 (a) (b) with , 220°, 340°

39 with , 72°, 144°, 216°, 288°
40 47.6° 41 197.4 yards 42 235.8 mi
43 53,000,000 mi 44 (a) 449 ft (b) 434 ft
45 (a) 33 mi, 41 mi (b) 30 mi 46 204
47 1 hour and 16 minutes 48 (c) 158°
49 (a) 47° (b) 20
50 (a) 72° (b) 181.6 (c) 37.6 ft

CHAPTER 8 DISCUSSION EXERCISES

4 (b) Hint: Law of cosines
5 (a)

6 (a) 1 (b) (c)

7 The statement is true.

Chapter 9

EXERCISES 9.1

1 3

5 7 9 No solution

11 13

15 ,

17 19

21 23
25
27 29
31
33 (a) tangent

(b) intersect twice
(c) no intersection

35 Yes; a solution occurs between 0 and 1.
y

x

y � x
y � 2�x

b � 4;
b � 4;
b � 4;

�1, �1, 2�, ��1, 3, �2�
�3, �1, 2��222, �2�, ��222, �2�

�22, �223 �, ��22, �223 �
��2, 5�, ��25, 4���6, �1�, ��1, 4�

�0, 1�, �4, �3���4, 0�, �12

5
,

16

5 �
��

3

5
�

1

10
286,

1

5
�

3

10
286�

��
3

5
�

1

10
286,

1

5
�

3

10
286�

��2, 2���4, 3�, �5, 0�

�3, �2��0, 0�, � 1

8
,

1

128�
�1, 0�, ��3, 2��3, 5�, ��1, �3�

�2

2
�

�2

2
i; e���2 
 0.2079�i;

�

2
i

�� b �  sin � � � a �  sin ��j
�� b �  cos � � � a �  cos ��i �

ft2

	 � 0°2 cis 	
	 � 100°�3 2 cis 	224
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y

xa � b

a � b
2a

�qb

8

8



37 39

41 12 in. � 8 in.
43 (a) , (b) 77,143

45 , , ; the fourth solution 
is not meaningful.

47 Yes; 1 ft � 1 ft � 2 ft or

49 The points are on the parabola (a) and

(b) .

51 (a)

(b)

EXERCISES 9.2

1 3 5 7

9 11 13

15 No solution
17 All ordered pairs such that 

19 21

23 313 students, 137 nonstudents

25 cm, cm

27 ft, ft 29 2400 adults, 3600 kittens

31 40 g of 35% alloy, 60 g of 60% alloy
33 540 , 60 35 ,
37 20 sofas, 30 recliners

39 (a) for an arbitrary (b) $16 per hour

41 1928; 15.5�C 43 LP: 4 hr, SLP: 2 hr

45 , 47 a � cos x � sec x, b � sin xb � �
1

6
e6xa �

1

6

c � 0�c,
4

5
c�

a � 3v0 � 10mi�hrmi�hr

w �
20

�
l � 10

y � 12 � �30

�� 
 2.45x � �30

�� � 4 
 5.55

��
22

7
, �

11

5��0, 0�

3m � 4n � 2�m, n�

�220

13
,
137

13 �� 8

7
, �

3

7
26��51

13
,

96

13�
�76

53
,

28

53���1,
3

2��8, 0��4, �2�

��
3

2
211, �

1

2� 
 ��4.975, �0.5�

�31.25, �50�

y �
1

4
x 2 � 1

y �
1

2
x 2 �

1

2


 1.30 ft � 1.30 ft � 1.18 ft

213 � 1

2
ft �

213 � 1

2
ft �

8

�213 � 1�2
ft

��100, 150��50, 0��0, 100��0, 0�
b � 40,000a � 120,000

f (x) � 2(3)x � 1
1

4
; tangent

EXERCISES 9.3

1 3

5 7

9 11

13 15 y

x

y � 4

x � �2

y � 2x � 1

3x � y � 6

y

x
y � x � 0

2x � 5y � 10

y

x

4 � y � 2x

3x � y � 3

5

�5

y

x

y � 
x2
1

y

x

y � x2 � 1

y

x
y � x2 � 2

y

x

y � �2x � 1

y

x
3x � 2y � 6
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17 19

21 23

25

27 , ,

29 ,

31 , ,

33 , ,

35 If x and y denote the
numbers of sets of brand A
and brand B, respectively,
then a system is ,

, , .x � y � 100x 
 2yy 
 10
x 
 20

y

x

x � 20

x � y � 100
x � 2y

y � 10

y � �
3

4
x � 4y � x � 4y �

1

8
x �

1

2

�x � 2�2 � � y � 2�2 � 8y � �x � 4y � x

y � �2x � 4x2 � y2 � 9

y 
 x � 4y � �x � 40 � x � 3

y

x

x � 1 � y

x2 � 1 � y

y

x

x � y � 1

x2 � y2 � 4

y

x

y

x

y

x

y � 3

x � 4

x � 2y � 8

37 If x and y denote the
amounts placed in the
high-risk and low-risk
investment, respectively,
then a system is 

, ,
.

39 , ,

41 If the plant is located at , then a system is
, ,

.

(c) Region above the line

y

x

x2 � y2 � 1002

(x � 100)2

� y2 � 1002

10

10

(x � 100)2

� y2 � 602

x2 � y2 � 602

y 
 0
602 � �x � 100�2 � y2 � 1002602 � x2 � y2 � 1002

�x, y�

y

x

x � 1
x � y

x � y � 9

x 
 1y 
 xx � y � 9

x � y � 15,000
y 
 3xx 
 2000

y

x

2000

2000

x � y � 15,000

x � 2000

y � 3x
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43 (a) Yes
(b) P

T

29T � 39P � 450

45

13

8033



EXERCISES 9.4

1 Maximum of 27 at ; minimum of 9 at 
3 Maximum of 21 at 5 Minimum of 21 at 

7 C has the maximum value 24 for any point on the line
segment from to .

9 50 standard and 30 oversized
11 3.5 lb of S and 1 lb of T
13 Send 25 from to A and 0 from to B. 

Send 10 from to A and 60 from to B.
15 None of alfalfa and 80 acres of corn
17 Minimum cost: 16 oz X, 4 oz Y, 0 oz Z; 

maximum cost: 0 oz X, 8 oz Y, 12 oz Z
19 2 vans and 4 buses 21 3000 trout and 2000 bass
23 60 small units and 20 deluxe units

EXERCISES 9.5

1 3 5 No solution

7

Exer. 9–16: There are other forms for the answers; c is any
real number.

9 11

13 �12

7
�

9

7
c,

4

7
c �

13

14
, c�

�0, �c, c��2c, �c, c�

� 2

3
,

31

21
,

1

21�
��2, 4, 5��2, 3, �1�

W2W2

W1W1

y

x(8, 0)

(6, 3)

(2, 5)
(0, 4)

x � 2y � �8

qx � y � 6

3x � 2y � 24

(0, 0)

�6, 3��2, 5�

x

y

2x � 5y � 16
(8, 0)

(3, 2)
(0, 4)

2x � 3y � 12

(4, 6)

y

x

(6, 3)

(5, 0)(0, 0)

(0, 3)

3x � 4y � �12
3x � 2y � 24

3x � y � 15

�3, 2��6, 3�
�0, 2��6, 2�

15

17 19 21 No solution

23 17 of 10%, 11 of 30%, 22 of 50%
25 4 hr for A, 2 hr for B, 5 hr for C
27 380 lb of , 60 lb of , 160 lb of 

29 (a) , , (b) , ,

31 lb Colombian, lb Costa Rican, lb Kenyan

33 (a) A: , B: ,
C: , D:

(b) , ,
(c) ;

35
37

EXERCISES 9.6

1 , , ,

3 , , ,

5 , ,
,

7 Not possible, not possible,

,

9 �18 11 ,

13 ,

15 ,

17 , �1

4

7

2

5

8

3

6

9
��1

4

7

2

5

8

3

6

9
�
� 3

�5

�51

�4

2

26

4

2

10
�� 4

�18

8

11�
� 3

2

15

�20

10

�13

�11

�4

1
�� 3

16

�7

�14

2

�29

�3

�2

9
�

� 4

23

38

�22��16

11

38

�34�
��12

�6

3

0

3

�9
�� 6

0

�6

�4

2

4

4

�8

�2
�

��21 0 15	�8 �6 4	
��3 �3 7	�11 �3 �3	

� �9

3

�18

�3

�15

0
�� 12

4

�6

�2

0

8
�� 3

3

�9

�2

�5

4
��9

1

3

0

5

4
�

��12

9

�3

�6��10

2

�4

6��1

4

�3

1�� 9

�2

�1

5�

f (x) � x3 � 2x2 � 4x � 6
x2 � y2 � x � 3y � 6 � 0

x3 � 225 � x2 � 225 � �150 � x1� � 75 � x1 
 75
x3 � 150 � x4 � 150

x4 � 50x2 � 125x1 � 25
x3 � x4 � 150x2 � x3 � 225

x1 � x2 � 150x1 � x4 � 75

1

2

1

8

3

8

I3 �
9

4
I2 � 3I1 �

3

4
I3 � 2I2 � 2I1 � 0

G3G2G1

��2, �3�� 1

11
,

31

11
,

3

11�
� 7

10
c �

1

2
,

19

10
c �

3

2
, c�
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19 ,

21 , not possible 23

25

35 (a) ,

(b)

(c) The $4,596.00 represents the amount the store would
receive if all the yellow towels were sold.

EXERCISES 9.7

1 Show that and .

3 5 Does not exist

7 9

11 13 ;

17 (a) (b)

19 (a) (b)

EXERCISES 9.8

1 ; ; ;
; ; M22 � 7 � A22A21 � 1M21 � �1

A12 � �5M12 � 5M11 � 0 � A11

�16

3
,

16

3
, �

1

3���
25

3
, �

34

3
,

7

3�
� 7

5
,

6

5��13

10
, �

1

10�

� 1

a

0

0

1

b
�ab � 0

1

2

0

0

0

1

4

0

0

0

1

6

1

3 ��4

�4

1

�5

�8

2

3

3

0
�1

8 � 2

�2

0

1

3

0

0

0

2
�

1

10� 3

�1

4

2�
BA � I2AB � I2

$16,135.50

$15,036.50

$15,986.00

$ 8,342.50

$ 4,596.00

B � �$ 8.99

$10.99

$12.99
�A �

400

400

300

250

100

550

450

500

200

100

500

500

600

300

200

� 18

�40

0

10

�2

�10�
� 4

12

�1
��2

5

0

3

5

�2�
� �3

�12

15

7

28

�35

2

8

�10
��15	

3 ; ; ;
; ; ;
; ; ;

; ; ;

5 5 7 �83 9 2 11 0 13 �125 15 48
17 �216 19 abcd 31 (a) (b) �1, 4
33 (a) (b) �2, 1
35 (a) (b) �2, �1, 1
37 (a) (b) �2, 2, 4
39 41

EXERCISES 9.9

1 3
5 2 is a common factor of and .
7 and are identical.
9 �1 is a common factor of .

11 Every number in is 0. 13
15 �10 17 �142 19 �183 21 44 23 359
33 35
37 , so Cramer’s rule cannot be used.
39 41

43

EXERCISES 9.10

1 3

5 7

9 11

13

15 17

19 21

23 25

27

CHAPTER 9 REVIEW EXERCISES

1 2 No solution 3 ��3, 5�, �1, �3��19

23
, �

18

23�

2x � 3 �
2

x � 1
�

3

2x � 1

3 �
4

x
�

8

x � 4
2x �

1

x � 1
�

3x

x2 � 1

4x � 1

x2 � 1
�

3

�x2 � 1�2

4

x
�

5x � 3

x2 � 2

�
2

x � 1
�

3x � 4

x2 � 1

5

x
�

2

x � 1
�

3

�x � 1�3

24�25

x � 2
�

2�5

�x � 2�2
�

23�25

2x � 1

�
7

x
�

5

x2
�

40

3x � 5

2

x � 1
�

5

�x � 1�2

3

x
�

2

x � 5
�

1

x � 1

2

x � 1
�

3

x � 2
�

1

x � 3

5

x � 6
�

4

x � 2

3

x � 2
�

5

x � 3

x �
cgi � dfi � bfj

cei � afi � bfh

��2, 4, 5��2, 3, �1�
� D � � 0

�8, 0��4, �2�

2C1 � C3 l C3C2

R2

R3R1

R3R1

�R1 � R3 l R3R2 i R3

�6i � 8j � 18k�31i � 20j � 7k
�x3 � 4x2 � 4x � 16
�x3 � 2x2 � x � 2
x2 � x � 2

x2 � 3x � 4

M33 � 6 � A33

A32 � �4M32 � 4M31 � 11 � A31

A23 � �34M23 � 34M22 � �5 � A22

A21 � �7M21 � 7M13 � 15 � A13

A12 � �10M12 � 10M11 � �14 � A11
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4 5

6 7

8 9

10

11 for any real number c 12

13 for any real number c

14 15 16

17 18

19 20

21 22 23

24 25

26 27 28

29 30 31

32 33 �1

0

0

0

2

�1

0

�7

4
�1

11� 8

5

�14

1

2

1

�2

�4

9
�

�
1

2 �2

3

4

5��1

0

0

0

1

0

0

0

1
�� 5

13

9

19�
�0

0

0

0�� a

2b

3a

4b�� a

2a

3a

4a�
��12

6

4

�11

�11

5�� 0

15

�37

�6�
� 0

16

12

4

22

11

�6

1

9
�� 26

�6��4

4

�5

�11

6

5�

y

x

y � 2x � 5

y � x2

y

x

2x � y � 4

x � 2y � 2y � 3x � 4

y � x � 2

x � 5

y � x

y

x

y

x

y � x2

x2 � y2 � 16

�3, �1, �2, 4���1,
1

2
,

1

3��5, �4�

�5c � 1, �
19

2
c �

5

2
, c�

�0, 0, 0���2c, �3c, c�

��
6

29
,

2

29
, �

17

29�
� 6

11
, �

7

11
, 1��log2

25

7
, log3

15

7�
�14

17
,

14

27���1, �1, �1�, �0, �
1

2
26, �

1

2�
�223, �22 �, ��223, �22 ��4, �3�, �3, �4�

34 35 36

37 �6 38 9 39 48 40 �86 41

42 0 43 120 44 �76 45 0 46 �50

47 48

49 2 is a common factor of , 2 is a common factor of ,
and 3 is a common factor of .

50 Interchange with and then with to obtain 
the determinant on the right. The effect is to multiply 
by �1 twice.

51 53 54

55 56

57 58

59 60

61 Inside ft, outside ft

62 ;

63

64 25 pounds of peanuts and 30 pounds of raisins

65

66 In : A, 30; B, 20; C, 50

67 Western 95, eastern 55

68 If x and y denote the
length and width,
respectively, then a 
system is , ,

.

69 , ,
, y 
 0x 
 0

x � y � 18

x � 2y

y

x

2

2

x 
 2yx � y � 18

y 

1

2
x

y � 8x � 12

y (width)

x (length)

y � 8

x � 12

y � qx

x � 0

ft3�hr

1325 mi�hr ; 63 mi�hr

5 mi�hr ; 2 mi�hr

bonus � $125,000Tax � $750,000

radius � 100radius � 90

y � �222x � 34025 ft � 2025 ft

4

x2 � 2
�

x � 2

x2 � 5
�

2

x � 5
�

3x � 1

x2 � 4

2 �
3

x � 1
�

4

�x � 1�2

8

x � 1
�

3

x � 5
�

1

x � 3

� 2

3
,

31

21
,

1

21��76

53
,

28

53�a11a22a33 �� � ann

R3R2R2R1

C3

C2R1

4, �27�1 � 223

�84

��1, 3, 2��2, �5�
1

37��4

3

9

�20

15

8

15

�2

�6
�
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70 80 mowers and 30 edgers
71 High-risk $250,000; low-risk $500,000; bonds $0

CHAPTER 9 DISCUSSION EXERCISES

1 (a) , , ; 
, ,

(b) ,

(c) It gets close to .
2 (a) ;

(b) The elements of 
represent the populations on islands A, B, and C,
respectively, after one year.

(c) The population stabilizes with 10,000 birds on A,
5000 birds on B, and 20,000 birds on C.

3 Hint: Assign a size to A, and examine the definition 
of an inverse.

4 AD: 35%, DS: , SP:

5 , , ; the fourth root is �4

6 (a) Not possible (b)

(c)

(d)

where a is any nonzero real number
(e) Not possible

Chapter 10

EXERCISES 10.1

1 9, 6, 3, 0; �12 3

5 9, 9, 9, 9; 9
7 1.9, 2.01, 1.999, 2.0001; 2.000 000 01

9 11 2, 0, 2, 0; 0

13 15 1, 2, 3, 4; 8
2

3
,

2

3
,

8

11
,

8

9
;

128

33

4, �
9

4
,

5

3
, �

11

8
; �

15

16

1

2
,

4

5
,

7

10
,
10

17
;

22

65

f(x) � ax3 � ��2a �
5

12�x2 � ��3a �
7

12�x � 4,

f (x) � �
5

12
x2 �

7

12
x � 4

x2 � y2 � 1.8x � 4.2y � 0.8 � 0

c � 24b � 10a � �15

31
2

3
%33

1

3
%

F � �11,500 8400 15,100	

E � �0.90

0.00

0.05

0.10

0.80

0.00

0.00

0.20

0.95
�

D � �12,000 9000 14,000	
�4, 0�

y �
1

b � 2
x �

4b � 10

b � 2

y � �1000x � 2004b � 1.999
y � �100x � 204b � 1.99

17 19

21 2, 1, �2, �11, �38 23
25 5, 5, 10, 30, 120 27

29

31

33 �5 35 10 37 25 39 41 61

43 10,000 45 47

49

51 As k increases, the terms approach 1.
53 0.4, 0.7, 1, 1.6, 2.8
55 (a) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

(b) 1, 2, 1.5, , 1.6, 1.625, 1.6153846, 1.6190476,
1.6176471, 1.6181818

57 (a) (b) The fourth day

59

C

n

1031.40

89.95

615.65
703.60
791.55
859.50
945.45

179.90
269.85
359.80
439.75
527.70

2 4 6 8 10 12

m � 85.95

m � 87.95

m � 89.95

C(n) � �89.95n  if 1 � n � 4

87.95n  if 5 � n � 9

85.95n  if n 
 10   

an � 0.8an�1

1.6

� "n
k�1

ak � "n
k�1

bk

� �a1 � a2 � ��� � an� � �b1 � b2 � ��� � bn�
� �a1 � a2 � ��� � an� � ��b1 � b2 � ��� � bn�
� �a1 � b1� � �a2 � b2� � ��� � �an � bn�

"n
k�1

�ak � bk�

7

2
k2

319

3

�
17

15

�1, �1 �
1

22
, �1 �

1

22
�

1

23
, �

1

2
�

1

22
�

1

23

7

2
,
15

2
, 12, 17

2, 2, 4, 43, 412

�3, 32, 34, 38, 316

50

y

x

y

x10

0.5
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61 2.236068 63 2.4493
65 (a) , (b) 1.76

EXERCISES 10.2

1 Show that 3 ; 18; 38
5 ; 1.8; 0.3 7 ; 5.4; 20.9
9 11 �8 13 �8.5

15 17 19 �105 21 30 23 530

25 27

29 or

31 or

33 or

35

37 24 39 12 or 18 41

43 (a) 60 (b) 12,780 45 255 47
49 $1200 51
53 Show that the term is 1 greater than the nth

term.

55 (a) (b) (c) $722.22

EXERCISES 10.3

1 Show that 3

5 ; 0.03; �0.00003 7 ; 3125; 390,625
9 ; 20.25; �68.34375

11 13

15 17 19 21 88,572

23 25 27

29 31 33

35 Since , the sum does not exist.

37 1024 39 41 43 45

47 24 49 4, 20, 100, 500 51

53 (a) (b) 61,917 55 300 ft
57 $3,000,000 59 (b) 375 mg

N�t� � 10,000�1.2�t

25

256
% 
 0.1%

16,123

9999

5141

999

2393

990

23

99

� r � � 22 � 1

50

33

2

3
"4
n�1

��1�n�1
1

4 � 1

3�n�1

"7
n�1

 2n8188 � 55j�
341

1024

23 3; 36
243

8
�23

2�n�1�x�1; 24x�1; 27x�1��1�n�1x2n�2; x8; �x14

4��1.5�n�1

5n300��0.1�n�1

8� 1

2�n�1

� 24�n;
1

2
;

1

16

ak�1

ak

� �
1

4
.

d � �
1

36
; 1

8

36
,

7

36
,

6

36
, . . . , 

1

36

�n � 1�st
16n2

154� ft

10

3
,
14

3
, 6, 

22

3
,
26

3

"1528

n�1

�11n � 3� � 12,845,132

"5
n�0

3 � 3n

7 � 4n
"6
n�1

3n

4n � 3

"66

n�0

�4 � 7n�"67

n�1

�7n � 3�

"4
n�0

�4 � 7n�"5
n�1

�7n � 3�

934j � 838,265
423

2

551

17
�9.8

ln 3n; ln 35; ln 310

3.1n � 10.13.3 � 0.3n
4n � 2ak�1 � ak � 4.

f �2� 
 0.30 � 0f �1� � �1 � 0 61 (a)

(b)

(c)

63 (a) (b) 4,782,969

(c) (d)

65 $38,929.00 67 $7396.67

69 (a)

(b) (c) $16,000

EXERCISES 10.4

Exer. 1–32: A typical proof is given for Exercises 1, 5, 9, . . . , 29.

1 (1) is true, since .
(2) Assume is true:

. Hence,

Thus, is true, and the proof is complete.

5 (1) is true, since 

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.Pk�1

�
1

2
�k � 1��5�k � 1� � 1	.

�
1

2
�k � 1��5k � 4�

�
1

2
�5k2 � 9k � 4�

�
5

2
k2 �

9

2
k � 2

�
1

2
k�5k � 1� � 5�k � 1� � 3

2 � 7 � 12 � ��� � �5k � 3� � 5�k � 1� � 3

2 � 7 � 12 � ��� � �5k � 3� �
1

2
k�5k � 1�.

Pk

5�1� � 3 �
1

2
�1��5�1� � 1	 � 2.P1

Pk�1

� �k � 1��k � 1 � 1�.
� �k � 1��k � 2�
� k�k � 1� � 2�k � 1�

2 � 4 � 6 � ��� � 2k � 2�k � 1�
2 � 4 � 6 � ��� � 2k � k�k � 1�

Pk

2�1� � 1�1 � 1� � 2P1

r �
3

5
;

2882

3125
� 0.92224

2

5
,

6

25
,

18

125
,

54

625
,

162

3125

729

16,384

 4.45%bk �

3k�1

4k
�

1

4 � 3

4�k�1

ak � 3k�1

16a1

4 � 210
Pn � � 1

4
210�n�1

P1

An � � 5

8�n�1

A1,an � � 1

4
210�n�1

a1,

ak�1 �
1

4
210ak
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9 (1) is true, since 

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.

13 (1) is true, since 

(2) Assume is true:

. Hence,

Thus, is true, and the proof is complete.Pk�1

�
3

2
�3k�1 � 1�.

�
3

2
�3 � 3k � 1�

�
9

2
� 3k �

3

2

�
3

2
� 3k �

3

2
� 3 � 3k

�
3

2
�3k � 1� � 3k�1

3 � 32 � 33 � ��� � 3k � 3k�1

3 � 32 � 33 � ��� � 3k �
3

2
�3k � 1�

Pk

31 �
3

2
�31 � 1� � 3.P1

Pk�1

�
�k � 1��k � 2��2k � 3�

6
.

�
�k � 1��2k2 � 7k � 6�

6

� �k � 1��k�2k � 1�
6

�
6�k � 1�

6 �
�

k�k � 1��2k � 1�
6

� �k � 1�2

12 � 22 � 32 � ��� � k2 � �k � 1�2

12 � 22 � 32 � ��� � k2 �
k�k � 1��2k � 1�

6
.

Pk

�1�1 �
1�1 � 1��2�1� � 1	

6
� 1.P1 17 (1) is true, since 

(2) Assume is true:

. Hence,

Thus, is true, and the proof is complete.
21 (1) For , and 4 is a factor of 4.

(2) Assume 4 is a factor of . The term is

By the induction hypothesis, 4 is a factor of 
and 4 is a factor of 4, so 4 is a factor of the 
term. Thus, is true, and the proof is complete.

25 (1) For , is a factor of .
(2) Assume is a factor of . Following the

hint for the term,

Since is a factor of and since by the
induction hypothesis is a factor of , it
follows that is a factor of the term.
Thus, is true, and the proof is complete.

29 (1) is true, since .
(2) Assume is true: . Hence,

Thus, is true, and the proof is complete.

33 35

37 (a) , ,

;

(b) The method used in part (a) shows that the formula is
true for only .n � 1, 2, 3

c �
1

6
b �

1

2
,a �

1

3
,27a � 9b � 3c � 14

8a � 4b � 2c � 5a � b � c � 1

4n3 � 12n2 � 11n

3

n3 � 6n2 � 20n

3

Pk�1

� k � 1.
� �5 � log2 k� � 1
� 5 � log2 2 � log2 k
� 5 � log2 2k

 5 � log2 �k � 1� � 5 � log2 �k � k�
5 � log2 k � kPk

5 � log2 8 � 8P8

Pk�1

�k � 1�sta � b
�ak � bk�a � b

ak�a � b��a � b�
� ak�a � b� � �ak � bk�b.

ak�1 � bk�1 � ak � a � b � ak � b � ak � bk � b
�k � 1�st

ak � bka � b
a1 � b1a � bn � 1

Pk�1

�k � 1�st
5k � 1

� 5�5k � 1� � 4.
� 5 � 5k � 5 � 4

 5k�1 � 1 � 5 � 5k � 1
�k � 1�st5k � 1

5n � 1 � 4n � 1
Pk�1

�
1

8
�2�k � 1� � 1	2.

�
1

8
�2k � 3�2

�
1

8
�4k2 � 12k � 9�

�
1

2
k2 �

3

2
k �

9

8

�
1

8
�2k � 1�2 � �k � 1�

1 � 2 � 3 � ��� � k � �k � 1�

1 � 2 � 3 � ��� � k �
1

8
�2k � 1�2

Pk

1 �
1

8
�2�1� � 1	2 �

9

8
.P1
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39 (1) For 

(2) Assume is true:
Hence,

Thus, is true, and the proof is complete.
41 (1) For 

.
(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.

EXERCISES 10.5

1 1440 3 5040 5 336 7 1 9 21
11 715 13 15
17
19
21

23

25

27

29
31

33 35

37 39 41

43 45 47 4.8, 6.19

49 4x3 � 6x2h � 4xh2 � h3

�
135

16
�216y9x2

448y3x1070x2y2
114,688

9
u2v6

189

1024
c8�1680 � 313z11 � 60 � 314z13 � 315z15

325c10 � 25 � 324c52/5 � 300 � 323c54/5

x5/2 � 5x3/2 � 10x1/2 � 10x�1/2 � 5x�3/2 � x�5/2

� 729x6

x�12 � 18x�9 � 135x�6 � 540x�3 � 1215 � 1458x3

1

243
x5 �

5

81
x4y2 �

10

27
x3y4 �

10

9
x2y6 �

5

3
xy8 � y10

81t 4 � 540t 3s � 1350t 2s2 � 1500ts3 � 625s4

� 7xy6 � y7

x7 � 7x6y � 21x5y2 � 35x4y3 � 35x3y4 � 21x2y5

x6 � 6x5y � 15x4y2 � 20x3y3 � 15x2y4 � 6xy5 � y6

64x3 � 48x2y � 12xy2 � y3

�2n � 2��2n � 1�n�n � 1�

Pk�1

� rk�1�cos �k � 1�	 � i sin �k � 1�		.
i�sin k	 cos 	 � cos k	 sin 	�	

� rk�1��cos k	 cos 	 � sin k	 sin 	� �
� rk�cos k	 � i sin k		�r�cos 	 � i sin 	�	
� �r�cos 	 � i sin 	�	k�r�cos 	 � i sin 	�	

�r�cos 	 � i sin 	�	k�1

�r�cos 	 � i sin 	�	k � rk�cos k	 � i sin k	�.
Pk

�r�cos 	 � i sin 	�	1 � r1�cos �1	� � i sin �1	�	
n � 1,

Pk�1

� ��1�k�1 sin 	.
� ���1�k sin 		 � ��1� � cos �	 � k�� � �0�
� sin �	 � k�� cos � � cos �	 � k�� sin �
� sin ��	 � k�� � �	

sin �	 � �k � 1��	

sin �	 � k�� � ��1�k sin 	.Pk

� �sin 	 � ��1�1 sin 	.
 sin �	 � 1�� � sin 	 cos � � cos 	 sin �

n � 1,
51 and

EXERCISES 10.6

1 210 3 60,480 5 120 7 6 9 1 11
13 (a) 60 (b) 125 15 64 17
19 24 21 (a) 2,340,000 (b) 2,160,000
23 (a) 151,200 (b) 5760 25 1024
27 29
31 (a) 27,600 (b) 35,152 33 9,000,000,000
35 37
39
41 (a) 900

(b) If n is even, ; if n is odd, .

43

EXERCISES 10.7

1 35 3 9 5 n 7 1 9

11 13

15 17
19

21 23
25 (a) (b)
27 and hence 29
31 By finding 
33 (a)

(b)
35
37 (a) 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

(b)
39 The sum of two adjacent numbers is equal to the number

below and between them.

EXERCISES 10.8

1 (a) 1 to 12 (b) 2 to 11 (c) 3 to 10

3 (a) 1 to 5 (b) 1 to 5 (c) 1 to 2

5 (a) 1 to 2 (b) 2 to 3 (c) 3 to 2
9

15
;

6

15
;

5

15
;

2

6
;

1

6
;

1

6
;

12

52
;

8

52
;

4

52
;

Sn � 2n�1

C�4, 3� � C�48, 2� � 4512
P�1000, 30� 
 6.44 � 1089

C�1000, 30� 
 2.43 � 1057

C�31, 3� � 4495
C�6, 3� � 20n � 10C�n, 2� � 45

C�24, 6� � 134,596C�49, 6� � 13,983,816
C�8, 3� � 56C�12, 3� � C�8, 2� � 6160

� 4,082,400
3 � C�10, 2� � C�8, 2� � C�4, 2� � C�6, 2� � 3 � 4

�5! � 4! � 8!� � 3! � 696,729,600C�8, 2� � 28

C�10, 5� � 252
10!

3! 2! 2! 1! 1! 1!
� 151,200

12!

5! 3! 2! 2!
� 166,320

n! 

nn22�n

en

9 � 10�n�1�/29 � 10�n/2��1

�216 � 1� � 17
3! � 23 � 48P�4, 4� � 24

P�6, 3� � 120P�8, 8� � 40,320

P�8, 3� � 336
n!

�
n!

1! �n � 1�!
� n

� n

n � 1� �
n!

�n � �n � 1�	! �n � 1�!

�n

1� �
n!

�n � 1�! 1!
� n
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7 (a) 1 to 17 (b) 5 to 31 (c) 7 to 29

9 11 13 5 to 2; 2 to 5 15 5 to 9; 

17 1.93 to 1 19

21

23 25

27
29 (a) 0.45 (b) 0.10 (c) 0.70 (d) 0.95

31 (a)

(b)

(c)

33 (a) (b)

(c)

(d)

35

37 (a) A representative outcome is (nine of clubs, 3); 312

(b) 20; 292; (c) No; yes; 

(d) Yes; no; 0; 

39 41 (a) (b)

43 (a) (b)

45 (a) 0 (b)

47 (a) (b)

49 12.5% 51 (a) (b)

53 (about 1 chance in 13 million)

55
1970

39,800

 0.0495

2

25,827,165

C�4, 2�
24

�
6

16

1

16

344,391

442,398

 0.778

304,366

442,398

 0.688

1

9

C�4, 2�
4!

�
1

4

C�4, 4�
4!

�
1

24

1 �
1

32
�

31

32

1

32
1 �

10

36
�

26

36

92

312

72

312
;

156

312
;

36

312
;

192

312

20

312

1 �
C�48, 5�
C�52, 5�


 0.34116

C�8, 6� � C�8, 7� � C�8, 8�
28


 0.14453

C�8, 6�
28

� 0.109375

C�8, 7�
28

� 0.03125
C�8, 8�

28

 0.00391

C�10, 0� � C�50, 5�
C�60, 5�

�
C�10, 1� � C�50, 4�

C�60, 5�

 0.8096

1 �
C�30, 0� � C�30, 5�

C�60, 5�

 0.9739

C�20, 5� � C�40, 0�
C�60, 5�


 0.0028

�0.674�4 
 0.2064

4

6

C�13, 5� � 4

C�52, 5�

 0.00198

C�13, 4� � C�13, 1�
C�52, 5�


 0.00358

48 � 13

C�52, 5�

 0.00024

9

14

3

8

6

216

7

36
;

5

36
;

2

36
; 57 (a) (b) (c)

59 (b) 0.76 61 $0.99 63 $0.20

CHAPTER 10 REVIEW EXERCISES

1

2 0.9, �1.01, 0.999, �1.0001; 0.999 999 9

3 4

5 6 2, 2, 2, 2, 2

7 8

9 75 10 11 940 12 �10 13

14 15 16

17 18

19 20

21 22 23

24 25

26 52 27 �31; 50 28 12

29 20, 14, 8, 2, �4, �10 30 64 31 �0.00003

32 1562.5 or 33 34

35 17; 3 36 37 570 38 32.5

39 2041 40 �506 41 42
6268

999

5

7

1

81
;

211

1296

�
12,800

2187
422�1562.5

�5 � 823; �5 � 35231 � "n
k�1

xk

k

1 � "n
k�1

��1�k
x2k

2k
"20

n�0

an x3n"25

n�0

an x4n

"7
n�1

��1�n�1
1

n
"5
n�1

��1�n�1�105 � 5n�

"4
n�1

n

5n � 1
"4
n�1

n

3n � 1

"98

n�1

1

n�n � 1��n � 2�
"99

n�1

1

n�n � 1�
"6
n�1

 23�n

"5
n�1

 3n�
37

10

1,
1

2
,

2

3
,

3

5
,

5

8
9, 3, 23, 24 3, 28 3

10,
11

10
,
21

11
,
32

21
,
53

32

1

12
,

1

15
,

1

15
,

8

105
;

8

45
2,

1

2
,

5

4
,

7

8
;

65

64

5, �2, �1, �
20

29
; �

7

19

244

495

 0.4929

1

36

8

36
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43 (1) is true, since 

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.

44 (1) is true, since .

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.Pk�1

�
2�k � 1��2k � 3��k � 2�

3
.

�
�k � 1��4k2 � 14k � 12�

3

� �k � 1��4k2 � 2k

3
�

12�k � 1�
3 �

�
�2k��2k � 1��k � 1�

3
� �2�k � 1�	2

22 � 42 � 62 � ��� � �2k�2 � �2�k � 1�	2

22 � 42 � 62 � ��� � �2k�2 �
�2k��2k � 1��k � 1�

3
.

Pk

�2�1�	2 �
�2�1�	�2�1� � 1	�1 � 1	

3
� 4P1

Pk�1

�
�k � 1��3�k � 1� � 1	

2
.

�
�k � 1��3k � 4�

2

�
3k2 � 7k � 4

2

�
3k2 � k � 6k � 4

2

�
k�3k � 1�

2
� 3�k � 1� � 1

2 � 5 � 8 � ��� � �3k � 1� � 3�k � 1� � 1

2 � 5 � 8 � ��� � �3k � 1� �
k�3k � 1�

2
.

Pk

3�1� � 1 �
1�3�1� � 1	

2
� 2.P1 45 (1) is true, since .

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.

46 (1) is true, since .

(2) Assume is true:

Hence,

Thus, is true, and the proof is complete.

47 (1) For , and 3 is a factor of 3.

(2) Assume 3 is a factor of . The term is

By the induction hypothesis, 3 is a factor of 
and 3 is a factor of , so 3 is a factor of
the term. 
Thus, is true, and the proof is complete.Pk�1

�k � 1�st
3�k2 � k � 1�

k3 � 2k

� �k3 � 2k� � 3�k2 � k � 1�.
� �k3 � 2k� � �3k2 � 3k � 3�

�k � 1�3 � 2�k � 1� � k3 � 3k2 � 5k � 3

�k � 1�stk3 � 2k

n3 � 2n � 3n � 1

Pk�1

�
�k � 1��k � 2��k � 3�

3
.

� �k � 1��k � 2�� k

3
� 1�

�
k�k � 1��k � 2�

3
� �k � 1��k � 2�

� �k � 1��k � 2�
1 � 2 � 2 � 3 � 3 � 4 � ��� � k�k � 1�

�
k�k � 1��k � 2�

3
.

1 � 2 � 2 � 3 � 3 � 4 � ��� � k�k � 1�
Pk

1�1 � 1� �
�1��1 � 1��1 � 2�

3
� 2P1

Pk�1

�
k � 1

2�k � 1� � 1
.

�
�2k � 1��k � 1�

�2k � 1��2k � 3�

�
2k2 � 3k � 1

�2k � 1��2k � 3�

�
k�2k � 3� � 1

�2k � 1��2k � 3�

�
1

�2k � 1��2k � 3�
�

k

2k � 1
�

1

�2k � 1��2k � 3�

1

1 � 3
�

1

3 � 5
�

1

5 � 7
� ��� �

1

�2k � 1��2k � 1�

1

1 � 3
�

1

3 � 5
�

1

5 � 7
� ��� �

1

�2k � 1��2k � 1�
�

k

2k � 1
.

Pk

1

�2�1� � 1	�2�1� � 1	
�

1

2�1� � 1
�

1

3
P1
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48 (1) is true, since .
(2) Assume is true: . Hence,

Thus, is true, and the proof is complete.
49 (1) is true, since .

(2) Assume is true: . Hence,
.

Thus, is true, and the proof is complete.
50 (1) is true, since .

(2) Assume is true: . Hence,

Thus, is true, and the proof is complete.
51

52

53 54

55 56 52,500,000

57 (a) (b) In ft:

58 24 ft 59 60

61 (a)
(b)

62 (a) (b)
63 (a) (b)

64 65 5 to 8; 

66 (a) (b)

67 (a) (b)

68 (a) (b) (c)

69 1 to 3

70 (a)

(b)

71 (a) (b) 72 0.44 73

74 5.8125

8

36

57

312

1

312

1 �
22

64
�

42

64

C�6, 4� � C�6, 5� � C�6, 6�
26

�
22

64

C�4, 1�
24

�
4

16
;

50

1000

10

1000

1

1000

262 � 252

P�52, 4�

 0.0650

P�26, 4� � 2

P�52, 4�

 0.1104

2

8

2

4

8

13

17!

6! 5! 4! 2!
� 85,765,680

C�9, 5� � 126C�12, 8� � 495
64 � 1296P�6, 4� � 360


 7.094 � 1013
P�13, 5� � P�13, 3� � P�13, 3� � P�13, 2�
P�52, 13� 
 3.954 � 1021

P(10, 10) � 3,628,800
2

1 � f

1
1

4
, 2, 2

3

4
, 3

1

2
d � 1 �

1

2
a1

21,504x10y2

�
63

16
y12c10x8 � 40x7 � 760x6

16x4 � 32x3y3 � 24x2y6 � 8xy9 � y12
� 1458x2y5 � 729y6

x12 � 18x10y � 135x8y2 � 540x6y3 � 1215x4y4

Pk�1

� �k � 1� � �k � 1�k � �k � 1�k�1.
 10k�1 � 10 � 10k � 10 � kk � �k � 1� � kk

10k � kkPk

1010 � 1010P10

Pk�1

2k�1 � 2 � 2k � 2 � k! � �k � 1� � k! � �k � 1�!
2k � k!Pk

24 � 4!P4

Pk�1

� 2 � 2k � 2k�1

� 2k � 2k

� 2k � �k � 1�
� �k2 � 3� � �k � 1�

�k � 1�2 � 3 � k2 � 2k � 4
k2 � 3 � 2kPk

52 � 3 � 25P5 CHAPTER 10 DISCUSSION EXERCISES

1

(The answer is not unique.)
2
3 Examine the number of digits in the exponent of the value

in scientific notation.
4 The coefficient of the

expansion of , namely , is the same as the

number of k-element subsets of an n-element set.
5 4.61 6 $5.33
7 Penny amounts:

$237.37 $215.63 $195.89 $177.95 $161.65
$146.85 $133.40 $121.18 $110.08 $100.00

Realistic ten dollar amounts:
$240.00 $220.00 $200.00 $180.00 $160.00
$140.00 $130.00 $120.00 $110.00 $100.00

8 11 toppings are available.

9 (a) (b) (about 1 in 36.61)

(c) (d) $117,307,932

10 0.43 11 12 The sum equals p.

13 (a)

(b)

Chapter 11

EXERCISES 11.1

1 ; ; 3 ; ;
y

x

F��
3

8
, 0�V�0, 0�y � �2F�0, 2�V�0, 0�

� 1 sin5 xsin 5x � 5 cos4 x sin x � 10 cos2 x sin3 x
� 5 cos x sin4 x; cos 5x � 1 cos5 x � 10 cos3 x sin2 x

tan 5x �
5 tan x � 10 tan3 x � tan5 x

1 � 10 tan2 x � 5 tan4 x

00 � 1

28,800,030

146,107,962

 0.21

3,991,302

146,107,962

1

146,107,962

�n

k��a � b�n

�k � 0, 1, 2, . . . , n��k � 1�st


; j � 94

an � 2n �
1

24
�n � 1��n � 2��n � 3��n � 4��a � 10�
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y

x

x �
3

8



5 ; ; 7 ; ;

9 ; ; 11 ; ;

13
15

17

19
21
23
25
27
29
31
33
35
37
39
41
43 4 in.

x � y2 � 3y � 1
y � �x2 � 2x � 5
x � 2y � 4 � 1
y � �2x � 3 � 1
� y � 3�2 � �8�x � 4�
x2 � 16� y � 1�
� y � 5�2 � 2�x � 3�
3x2 � �4y
y2 � �12�x � 1�
� y � 5�2 � 4�x � 3�
�x � 6�2 � 12� y � 1�
y2 � 8x

(x � 3)2 � 6�y �
1

2�
�x � 2�2 � �16� y � 3�
y2 � 20�x � 1�

y

x

y

x

y �
11

2
y � �

9

4

F�0, �
9

2 �V�0,
1

2�F�2, �
7

4 �V�2, �2�

y

x

y � 3
F�49

16
, 2�V�3, 2�F��2, �1�V��2, 1� 45 ft from the center of the paraboloid

47 in.

49 (a) (b) ft 51 57,000

EXERCISES 11.2

1 ; 3 ;

5 ;

9 ; 11 ;

y

x

y

x

F�4 � 25, 2�F�3 � 27, �4�
V�4 � 3, 2�V�3 � 4, �4�

y

x

F�0, �223 �V�0, �4�

y

x

y

x

F�0, �1�V�0, �4�F��25, 0�V��3, 0�

ft21022p �
r 2

4h

22480 
 43.82

9

16
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y

x

1
16

x �
47

16

7 ;

y

x

0.5

0.5

F��
1

10
221, 0�

V��
1

2
, 0�



13 ;

15 17

19 21

23 25

27 29

31

33 35

37

39 Upper half of 
x2

49
�

y2

121
� 1

y

xF � F

P

37

x2

25
�

y2

9
� 1

x2

64
�

y2

289
� 1

x2

25
�

y2

16
� 1

y

x

�2, 2�, �4, 1�

x2

16
�

4y2

25
� 1

x2

4
� 9y2 � 1

x2

7
�

y2

16
� 1

8x2

81
�

y2

36
� 1

4x2

9
�

y2

25
� 1

x2

64
�

y2

39
� 1

�x � 2�2

25
�

� y � 1�2

4
� 1

x2

4
�

y2

36
� 1

F�5, 2 � 221 �
y

x

V�5, 2 � 5�
41 Left half of 

43 Right half of 

45 Lower half of 

47 ft 49 94,581,000; 91,419,000

51 (a) ;

(b) 16 cm; 2 cm from V

53 5 ft

EXERCISES 11.3

1 ; ; 3 ; ;

5 ; ; 7 ; ;

y

x

y

x

y � �2xy � �224x
F�0, �225 �V�0, �4�F��5, 0�V��1, 0�

y

x

y

x

y � �
3

2
xy � �

2

3
x

F�0, �213 �V�0, �3�F��213, 0�V��3, 0�

d� � h � �h2 �
1

4
k2d � h � �h2 �

1

4
k2

284 
 9.2

�x � 1�2

9
�

� y � 2�2

49
� 1

�x � 1�2

4
�

� y � 2�2

9
� 1

x2 �
y2

9
� 1
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9 ; 11 ;

;

13 ; 15 ;
; ;

17 19

21 23 25

27 29 31

33 Parabola with horizontal axis

35 Hyperbola 37 Circle 39 Ellipse

y2

25
�

x2

49
� 1

x2

25
�

y2

100
� 1

x2

9
�

y2

36
� 1

y2

21
�

x2

4
� 1

x2

9
�

y2

16
� 1y2 �

x2

15
� 1

� y � 3�2 �
�x � 2�2

3
� 1

x2

9
�

y2

16
� 1

y

x

2

y

x4

4

� y � 5� � �
1

2
�x � 2�� y � 2� � �

12

5
�x � 3�

F��2, �5 � 325 �F��3 � 13, �2�
V��2, �5 � 3�V��3 � 5, �2�

y

x

y � �
2

3
x

F��
1

12
213, 0�

V��2, �2 � 3�V��
1

4
, 0� 41 Parabola with vertical axis 43

45 47

49

51 Right branch of 

53 Upper branch of 

55 Lower halves of the branches of 

57 Left halves of the branches of 

59 The graphs have the
same asymptotes.

61 60.97 meters

63 If a coordinate system similar to that in Example 6 is
introduced, then the ship’s coordinates are

.�80

3
234, 100� 
 �155.5, 100�

y

x

y2

36
�

x2

16
� 1

x2

16
�

y2

81
� 1

y2

9
�

x2

49
� 1

x2

25
�

y2

16
� 1

y

F

F �
P

11

3

x

y2

16
�

x2

9
� 1

y2

64
�

x2

36
� 1

x2

144
�

y2

25
� 1

y

x

�0, 4�, � 8

3
,

20

3 �
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;

y

x

�y � 2� � �
3

2
�x � 2�

F��2, �2 � 213 �



65 (a) (b)

EXERCISES 11.4

1 3

5 7

9 11

13 15
y

x

y

x

y � 1�xy � ln x

y

x

y

x

t � 0

x2 � y2 � 1(x � 2)2 � (y � 1)2 � 9

y

x

t � 0

y

x

(x � 1)2

16
�

y2

9
� 1� y � 3�2 � x � 5

y

 t � �2

x

y

x

y � x � 2y � 2x � 7

v � 103,600 m�sec�6.63 � 107, 0� 17 19

21 23

25 (a) The graph is a circle with center and radius 2.
Its orientation is clockwise, and it starts and ends at
the point (3, 0).

(b) The orientation changes to counterclockwise.
(c) The starting and ending point changes to .

27

y

x

y

x

t � q � 2pn

t � w � 2pn

C4C3

y

xt � 0

y

x

C2C1

(3, �4)

(3, �2)

y

x

5

y

x

(27, 16)

(1, 4)

5

y � 1�x2y � �x1/3 � 1�2

y

x

y

xt � �1 t � 1

y � �x � 1�y � �x2 � 1
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29 (a) (b)

(c)

33 Answers are not unique.
(a) (1)

(2)

(3)

(b) (1) (only gives
)

(2) (only gives
)

(3)

35 2704 37 15,488; 3872
41

y � 4b sin t � b sin 4t

b

(a, 0)

y

x

x � 4b cos t � b cos 4t,
3200�3;

�
�

2
� x �

�

2 �
�only givest � �y � �tan�1 t�2;x � tan�1 t,

�1 � x � 1
t � �y � sin2 t;x � sin t,
x � 0
t � �y � e2t;x � et,

t � �y � t6;x � t3,

�
�

2
� t �

�

2
y � tan2 t;x � tan t,

t � �y � t2;x � t,

x

y

x

y

x

y EXERCISES 11.5

1 (a), (c), (e)

3 (a) (b)

5 (a) (b)

7 9 (a) (b)

11 (a) (b)

13 15 17

19 21

23 25
27 29

31 33

35 37 y � 2x � 6x2 � y2 � 1

y2

9
�

x2

4
� 1y � x

x2 � � y � 3�2 � 9x � 5
r � 2 cos 	r2 � �4 sec 2	

	 � tan�1 ��
1

2�r �
3

cos 	 � sin 	

r � 6 cot 	 csc 	r � 4r � �3 sec 	

�5�2,
�

4 ��14,
5�

3 �
�4,

7�

6 ���2,
3�

4 ��24

5
,

18

5 �
��

3

2
,

3

2
�3���4, �4�3 �

� 1

2
, �

1

2
�3�� 3

2
�2,

3

2
�2�
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39

41 43

45 47

49 51

53 55

y2 �
x4

1 � x2�x � 1�2 � � y � 4�2 � 17

y � �x2 � 1 57 59

61 63

65 67

69 71

73 75
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77

79 Let and be points in an -plane. Let
and Substitut-

ing into the law of cosines,
gives us the formula.

EXERCISES 11.6

1 ellipse 3 3, hyperbola

5 1, parabola 7 ellipse

��d, p�
(�4, 0)�!, 0�

1

2
,

�w, p�
(�3, 0)

�w, q�

�3, w�

1

3
,

P2(r2, u2)

P1(r1, u1)

c2 � a2 � b2 � 2ab cos �,
� � 	2 � 	1.c � d�P1, P2�,b � r2,a � r1,

r	P2�r2, 	2�P1�r1, 	1�

9 hyperbola 11 1, parabola

13
15
17 19
21

23 25

27 29

31 33

35 (a) (b)

39

CHAPTER 11 REVIEW EXERCISES

1 ; 2 ;

y

x

y

x

F��2,
33

32�V��2, 1�F�16, 0�V�0, 0�

e �
raph � rper

raph � rper

, a �
raph � rper

2

r �
7

4 � 3 sin 	

3

4

r �
8

1 � sin 	
r �

8

5 � 2 sin 	

r �
2

1 � sin 	
r �

12

3 � 4 cos 	

r �
2

3 � cos 	
x2 � 8y � 16 � 0; x � �4

4x2 � 5y2 � 36y � 36 � 0; x � �3

3x2 � 4y2 � 8x � 16 � 04y2 � 12x � 9 � 0

8x2 � y2 � 36x � 36 � 0

9x2 � 8y2 � 12y � 36 � 0

�2, q���6, w�
�T, q�

3

2
,
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3 ; 4 ;

5 ; 6 ;

7 ; 8 ;

y

x2

2

V�3 � 2, �1�F�0, �
9

4�V�0, 4�

y

x

V��
1

5
, 0�F��222, 0�V��2, 0�

y

x

y

x

F�0, �5�V�0, �4�F�0, �27 �V�0, �4� 9 ; 10 ;

11 ; 12 ;

13 ; 14 ;

15 ; 16 ;

y

x

y

x

F�2, �3 � 26 �F��4 � 210, 0�
V�2, �3 � 2�V��4 � 3, 0�

y

x

V�3, �2 � 2�F�4, �4�V�2, �4�

y

x2

2

y

x

F�5, �4 � 25 �F��3 � 25, 2�
V�5, �4 � 2�V��3 � 3, 2�

y

x

y

x

F��
39

8
, �2�F��4 �

1

3
210, 5�

V��5, �2�V��4 � 1, 5�
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y

x0.5

0.5

F��
1

30
211, 0�

y

x

F�3 � 1, �1�

y

x

F�3, �2 � 23 �



17 18

19 20 21

22 23 24

25 26 27

28 29 (a) (b) Hyperbola

30 31

32 34

35 36

37 38

39 y �
2x2 � 4x � 1

x � 1

x

yy

x

t � 0, p, 2p
t � q

t � w

y � 2�x2� y � 1�2 � ��x � 1�

y

x

y

x

y � x4 � 4x � 4y � 7

x � �9 � 4y2222 rad�sec 
 0.45 rev�sec

x2 � � y � 2�2 � 4A �
4a2b2

a2 � b2

�
7

2

x2

256
�

y2

112
� 1

x2

25
�

y2

45
� 1

x2

8
�

y2

4
� 1

y2

36
�

x2

4

9

� 1

x2

25
�

y2

75
� 1

x2

75
�

y2

100
� 1x � 5y2

x2 � �40yy2 � �16x
y2

49
�

x2

9
� 1

y � �3�x � 4�2 � 147y � 2�x � 7�2 � 18 40

41 9216 42

43 44

45 46

47 48

49 50

51 52

53 54

55 56

y2 � 6 � x8x2 � 9y2 � 10x � 25 � 0

y � �tan �3 � x�x2 � y2�2 � 8xy

x2 � y2 � 2x � 3yx3 � xy2 � y

	 �
�

4
r�2 cos 	 � 3 sin 	� � 8

r � 3 cos 	 � 4 sin 	r � 4 cot 	 csc 	

�4,
11�

6 �� 5

2
�2, �

5

2
�2�

��2,
5�

4 �, �2,
9�

4 �20,480�3;

y

x

y

x

t � 0

C4C3

y

x

y

x

C2C1
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57 58

59 60

61 62

63 64

(3, 0)

��4, q�

�2, w�

65 66

CHAPTER 11 DISCUSSION EXERCISES

1
2 The circle goes through both foci and all four vertices of

the auxiliary rectangle.

5 , ,

or

6 7 43.12°

9

10 The graph of is the graph of rotated
counterclockwise through an angle �, whereas the graph
of is rotated clockwise.

11
12 y � ��4 � �x � 2�2y � 2 � �4 � x2,

�180�n��
r � f �	 � ��

r � f �	�r � f �	 � ��

y � ��1 � �1 � x2

2

d �
1

42a2 � b2

x � 2 � �1 �
y2

3

y

x

P(x, y)

x 
 3
�x � 2�2

1
�

y2

3
� 1

w � 4� p �

�6, q�

�2, w�

(6, p) �T, 0�

1

2
, ellipse

2

3
, ellipse
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BIOLOGY

Bacterial growth, 292, 297, 309, 343,
663, 678

Cell membrane dimensions, 121
Genetic mutation, 340
Genetic sequence, 670
Population growth curve, 338

BUSINESS/FINANCE

Annuities, 679
Apartment rentals, 122, 196
Appreciation, 208, 298
ATM codes, 701
Author’s royalty rates, 184
Ben Franklin’s legacy, 343
Billing for service, 70, 211
Business expenses, 111, 154
Compound interest, 293–295, 297,

299–300, 302, 303, 321, 340, 343,
678, 679

Consumer Price Index, 299
Credit card cashback, 51
Daily savings, 673
Depreciation, 298, 677, 680
Effective yield, 307
Electricity rates, 184
Inflation comparisons, 299
Inventory levels, 589
Inventory value, 622–623
Investments, 64, 120, 580, 589, 620–621,

651
Land values, 307
Loans, 154, 299
Maximizing profit, 593, 597, 598,

609–610, 651
Minimizing cost, 594, 597, 598
Minimum wage growth, 295, 307
Mortgage payment, 298
Multiplier effect, 678
Office assignments, 708
Pareto’s law for capitalist countries, 330
Payroll, 70, 204, 650
Presale price, 120
Price and demand, 87, 101, 328, 330,

582

AGRICULTURE

Crop acreage, 577, 597
Crop growth, 306
Fencing, 71, 86, 122, 194, 572
Fertilizer mixtures, 612
Grain storage structures, 68–69, 72, 246,

669–670
Orchard yield, 122
Watering fields, 580, 650

ANIMALS/WILDLIFE

Birds, 613, 652
Bobcats, 580
Cattle, 15
Competition for food, 572
Deer, 222, 274, 651
Elephants, 322
Elk, 296
Fish, 15, 26, 118, 264, 272, 307, 343,

572, 598
Frogs, 194
German shepherds, 118
Livestock diet, 581
Moose, 598
Rabbits, 456
Whales, 26, 153, 307

ARTS AND ENTERTAINMENT

Backgammon moves, 725
Bridge hands, 709
Cards, 701, 705, 711–712, 713, 714, 724
Carnival game, 720–721
Coin toss, 710, 725
Compact disc rotation, 357
Craps, 722
Die toss, 700, 711, 712, 713, 720
DVD player costs, 663
Gambling survival formula, 275
Horserace results, 701
Human cannonball flight, 195
Lotteries, 708, 718, 721–722, 725
Maze dimensions, 670
Motorcycle daredevil’s jump, 271
Movie attendance, 70
Movie frames, 15

Odds for dice, 714–715
Penrose tiles, 521
Phonograph record rotation, 433
Poker hands, 705, 709
Poster design, 86
Powerball, 726
Prize money, 670, 722, 726
Projection unit mounting, 438
Raffles, 725
Roulette, 721, 722
Slot machines, 720, 725–726
Stadium seating, 669
Ticket sales, 580, 589
Tightrope length, 170, 204
VCR taping, 582
Video games, 154–155, 428–429
Viewing angles for paintings, 495
Violin string vibration, 481

ASTRONOMY

Bode’s sequence, 663
Brightness of stars, 322
Cassegrain telescope design, 761, 795
Comet’s path, 745, 761
Earth

distance to Venus from, 558
orbit of, 749, 792
radius of, 430
rotation of, 357

Gravity simulation, 534
Jodrell Bank radio telescope, 737
Kepler’s laws, 271, 791–792
Light year, 15
Mercury’s orbit, 749
Milky Way galaxy, 15
Moon phases, 373
Period of a planet, 271
Reflecting telescope’s mirror, 736
Satellite

path of, 122, 737
view from, 498

Telescope resolution, 373
Venus

distance from sun of, 436
elongation of, 429

INDEX OF APPLICATIONS
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Price calculations, 63
Property tax rates, 184
Quantity discount, 87, 196
Restaurant bills, 70
Salaries, 121, 345
Sales bonuses, 670
Savings accounts, 26, 70
Services swap, 581
Simple interest, 63–64
Starting work times, 721
Tax rates, 158–159, 178, 184, 275

CHEMISTRY

Acid solution, 65, 612
Avogadro’s number, 15
Bactericide, 120
Copper-silver alloy, 70
Ideal gas law, 271
Mass

of an electron, 15
of a hydrogen atom, 15

pH calculation, 339
Salt dissolved in water, 297
Silver alloy, 581
Threshold response curve, 274

COMMUNICATION

Cable TV fees, 196
CB antenna length, 430
Communications satellite, 431
Express-mail rates, 651
First-class stamp rates, 299
Newspaper delivery, 73
Radio stations

broadcasting ranges of, 140, 419, 420
call letters of, 701
number of, 287

Semaphore, 701
Telephone calls

number of, 274
rates for, 581

Telephone numbers, 701
Television transmitting tower, 429
Two-way radio range, 71, 86, 559

CONSTRUCTION

Bath, 121
Boxes, 82–83, 85, 86, 168, 221, 247
Buildings, 169, 623
Cages, 194, 208

Conference table, 580
Door design, 749
Elastic cylinder, 274
House, 72
Insulation, 70
Kennel, 121
Ladder, 101, 430, 436, 667–668, 724,

740
Pens, 208
Rain gutter, 190–191, 476
Ramp, 428
Sidewalk, 85
Solar heating panel, 120
Storage shelter, 209
Storage units, 598
Tent, 248
Tubing, 571
Wheelchair ramp, 208
Whispering gallery, 749
Window, 72, 589
Wire frame, 86, 210
Withdrawal resistance of nails, 101
Wooden brace placement, 495

EDUCATION

Class officers, 697
College budgets, 652
Committees, 707, 720
Fraternity designations, 701
Grade point average, 73, 265
Multiple-choice test, 701
Scheduling courses, 701
Scholarship selection, 708
Seat arrangement, 701
Teachers’ eligibility for retirement, 120
Test question selection, 724
Test score average, 62, 70
True-or-false test, 701, 708, 719, 725

ELECTRICITY

Circuits and voltage, 51
Confocal parabolas, 736
Coulomb’s law, 85, 271
Current in an electrical circuit, 321, 343,

344, 454, 457, 552, 613, 716
Electrical condenser, 321
Electrical resistance, 270, 612
Electrical switches, 716
Heat production in an AC circuit, 476
Lissajous figure, 795

Ohm’s law, 73, 111, 262
Resistors connected in parallel, 59, 111
Spotlight illuminance, 437
Voltage, 466, 552
Wind rotor power, 274
Windmill power, 101

ENGINEERING

Beams
deflection of, 274
strength of, 229
support load of, 269

Bridges
arches of, 748
specifications for, 195

Crest vertical curves, 196
Cycloid, 768–769, 772
Drainage ditch, 72
Drawbridge, 428
Elliptical reflector, 749
Flexible cables, 304
Highways, 86, 195, 196, 456, 476
Jet fighter, 511–512, 560
Legendre polynomial, 221
Parabolic reflector, 736
Sag vertical curves, 196
Satellite TV antennas, 734, 736
Solar collector, 510
Sound receiving dish, 736
Stonehenge, 373, 536
Tunnel, 436
Water slide, 428

ENVIRONMENTAL SCIENCE

Atmospheric density, 85
Atmospheric pressure, 307, 344
Cable corrosion, 205
Cloud height, 73
Coal reserve depletion, 322
Daylight

intensity of, 411, 412, 545
length of, 409–410, 453–454

Earthquakes, 315, 321, 343, 344, 346,
438, 494, 521
frequency of, 344

Fires, 204, 432, 510
Forest growth, 590
Grassland growth, 590
Meteorological calculations, 400, 427
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Ocean
penetration of light in, 297, 336
photic zone of, 340
salinity of, 153
tides of, 412

Oil-spill clean-up cost, 274
Ozone layer, 194, 211, 330
Precipitation, 211, 264
Radioactive contamination, 170
Radon concentration, 272
River flow rate, 456
Sun’s rays, 400, 456, 545
Temperature

and altitude, 73, 150–151
in a cloud, 73, 122
determination of, 221, 241, 274
in Fairbanks, 412, 456
and humidity, 392
in Ottawa, 439
in Paris, 154, 581
and precipitation, 590
variation in, 412

Tidal waves, 455
Tornados, 15, 357
Tree height, 340, 373
Tsunamis, 433
Urban heat island, 101, 154
Ventilation requirements, 287
Vertical wind shear, 155, 341
Water pollution, 330, 535
Water usage rates, 210
Wind velocity, 330, 530

FOOD

Cheese production, 154
Coffee bean mixtures, 613
Condiment selections, 708
Dietary planning, 598
Hospital food preparation, 120
Ice cream cone dimensions, 72
Ice cream selections, 708
Lunch possibilities, 701
Nut mixtures, 581, 611
Pizza toppings, 726
Pizza values, 358
Trail mix, 651

GENERAL INTEREST

Aquariums, 121, 169, 568–569, 572
Balloons, 102, 201, 204

Book arrangement, 701
Chain weights, 613
Computer functions, 204, 545–546
Eiffel Tower, 435
Family makeup, 707, 720
Fibonacci sequence, 663
Flashlight mirror, 736
Forces on a Christmas ornament, 561
Genealogy, 678
Glottochronology (language dating), 298,

344
Great Pyramid, 436
Height

of a building, 430, 431, 437, 511, 558
of a flagpole, 362
of a kite, 427, 431
of a sign, 373
of a tower, 422–423, 430, 431

Key-ring arrangement, 707
Lawn-mowing rates, 72
Leaning Tower of Pisa, 510–511
Length

of a cable, 427, 515
of a telephone pole, 506–507, 510

Mine shaft rescue, 559
Pentagon, 429
Pools

chlorine levels in, 663
dimensions of, 121, 589
filling of, 73, 209
water in, 612

Reconnaissance sightings, 520
Sand piles, 101, 204
Searchlight reflector, 736
Snow removal, 120
Stacks of logs, 669
Surveying, 427, 431, 436, 438, 509, 510,

512, 520, 559, 588
Wardrobe mix ’n’ match, 700

GEOMETRY

Angles
of a box, 429, 520
of a triangle, 520

Area
of a conical cup, 102
of a parallelogram, 521
of a rectangle in a parabolic arch, 229
of a triangle, 170, 516–517, 518, 522

Center of a circle, 139

Depth of a conical cup, 436
Diagonal

of a cube, 204
of a parallelogram, 515, 521

Isoperimetric problem, 572
Moire pattern, 572
Sierpinski sieve, 679
Surface area

of a pyramid, 438
of a tank, 122

Volume
of a conical cup, 429–430
of a prism, 511
of a pyramid, 438

HEALTH/MEDICINE

Arsenic exposure and cancer, 721
Arterial bifurcation, 476
Bicep muscle, 533
Biorhythms, 411–412
Bone-height relationship, 73
Breathing analysis, 408
Calorie requirements, 40
Childhood growth, 154, 169, 307, 344
Children’s weight, 321
Cholesterol levels, 323
Circadian rhythms, 439
Decreasing height, 111
Drugs

in the bloodstream, 297, 340, 678
concentration of, 71
dosage of, 154, 264

Electroencephalography, 411
Eye drops, 70
Fetal growth, 153
Force of a foot, 497
Glucose solution, 70
Heart action, 411
Heartbeats, 51
Infant growth, 194
Intelligence quotient, 70
Lifetime growth, 102
Limb dimensions, 271
Lithotripter operation, 746, 749
Memory, 341
Men’s weight, 27
Minimum therapeutic level, 111, 116
Pill dimensions, 87, 229, 572
Poiseuille’s law, 272
Protection from sunlight, 456
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Radioactive tracer, 306
Radiotherapy, 304–305
Reaction to a stimulus, 330
Red blood cells, 51
Smoking deaths, 721
Surface area of the body, 26–27, 51
Threshold response curve, 274
Threshold weight, 271
Visual distinction, 498
Walking rates, 71, 322
Women’s weight, 27

OPERATIONS MANAGEMENT

Adding salt water to a tank, 264
Cargo winch rotation, 358
Commercial fishing, 507–508
Computer chip production, 323, 721
Container production, 85, 209, 264, 589
Crayon production, 580
Employee productivity, 340, 341
Emptying a water tank, 73
Filling an extrusion bin, 121
Filling a storage tank, 69
Filtering water, 209
Fitting a box through a door, 196
Hydraulic conveyor belt, 429
Machine wheel speed, 355
Making brass, 120
Oil drum production, 87
Production capability, 612
Production planning, 581, 597, 651
Robotic movement, 392, 400, 535, 536,

559

PHYSICS/GENERAL SCIENCE

Acceleration
of a ball, 581
of a particle, 613

Adiabatic expansion, 51
Air pressure, 321
Alpha particle paths, 793
Astronaut’s weight in space, 118
Boyle’s law, 121
Carbon 14 dating, 344
Cooling tower, 760
Coulomb’s law, 85, 271
Distance

to a hot-air balloon, 170, 204, 430,
431, 510

from lens to image, 107
between points on Earth, 357, 373,

521, 558
to a target, 71
traveled by a bouncing ball, 676, 678,

725
traveled by a falling object, 670
viewing, 26

Earth
magnetic field of, 420
surface area of, 70

Electron energy, 330
Elevation

of a bluff, 438
of a mountain, 431, 437, 438, 509

Energy-releasing events, 345
Flight of a projectile, 194, 766–768, 795
Flow rates, 580, 651
Gas pressure-volume proportionality,

267–268
Height

of a cliff, 87
of a projectile, 118, 194
of a toy rocket, 73–74, 83, 210, 428

Hooke’s law, 111, 270
Ideal gas law, 271
Illumination intensity, 270
Legendre polynomial, 221
Linear magnification, 111
Liquid pressure, 270
Lorentz contraction formula, 118
Magnetic pole drift, 358
Motion

harmonic, 426, 432–433
of a mass, 466

Newton’s law of cooling, 297, 316
Nuclear explosion, 87
Particle stopping distance, 307
Path of a ball, 573
Pendulum swing, 358
Period of a pendulum, 122, 271, 678
Radioactive decay, 272, 293, 297, 307,

317, 321, 322, 343, 344
Range of a projectile, 271, 475, 795
Shadows, 546
Sound intensity, 321, 343, 467, 482
Speed

of a particle, 118
of sound, 121

Sun’s elevation, 428

Temperature
of boiling water, 85
scales for, 58, 110, 155, 208

Vacuum pump, 677
Vapor pressure, 322
Velocity

of a gas, 85
laser measure of, 435
of a rocket, 344

Vertical projection, 85, 581
Volume and decibels, 329
Water

cooling of, 341
cork in, 439
vaporizing of, 101, 154

Weight-latitude relationship, 457
Work done

in pulling, 533, 545
in pushing, 542–545

POLITICS/URBAN ISSUES

City expansion, 86, 121
Cube rule, 102
Municipal funding, 70
Population density, 118, 264, 322
Population growth, 121, 303, 306, 316,

321, 344
Power plant location, 589
Skyline ordinance, 169
Urban canyons, 498
Water demand, 439

SPORTS

Aerobic power, 154
Baseball

batting order in, 699
buying equipment for, 586
choosing a team for, 704–705
distances in, 520
path of, 196
series of games in, 725
stats on, 153
winning percentage in, 51

Basketball
leaps in, 210
series of games in, 708
standings in, 700

Bicycling, 670
Bowling, 120, 722
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Canoeing, 86
Discus throw, 208
Diving, 221–222
Football, 275, 533, 707
Golf, 495
Golf club costs, 663
Hammer throw, 573
Handicapping weight lifters, 26
Long jump, 210
Rowing, 71, 651
Running, 71, 121, 439, 507, 520
Skateboard racecourse, 558
Tennis, 708
Track dimensions, 210, 439, 650
Track rankings, 709

STATISTICS AND PROBABILITY

Birthday probability, 722
Card and die experiment, 720, 725
Chebyshev polynomial, 221
Color arrangement, 701, 725
ESP experiment, 720
Letter and number experiment, 720
Numerical palindromes, 701
Probability demonstration, 721
Probability density function, 307

TRANSPORTATION

Airplanes
distance between, 86
distance to, 510
landing speed of, 118
path of, 427, 428, 432, 520, 533, 558,

760
propeller of, 435
speed of, 430, 651
and windspeed, 120, 534, 535, 557

Airport runway distances, 171, 205
Antifreeze replacement, 66
Automobiles

braking distance of, 118
buying of, 111
design of, 521–522
distance between, 209, 520
gas mileage of, 71, 118, 121, 194,

208
rental charges for, 184
speed of, 120, 271
tires on, 358
trade-in value of, 297
travel times of, 67–68, 121
window wipers of, 357

Bicycle mechanics, 358

Boats
course of, 423–424, 507–509, 520,

535
fuel consumption of, 120
propeller for, 440
speed of, 121, 578, 580
tracking of, 495

Cable car route, 509–510
Destination time, 171
Ferry routes, 99
Gasoline tax, 169
High-speed train travel, 120
Horsepower, 546
License plate numbers, 700
Maximizing passenger capacity, 598
Minimizing fuel cost, 598
Railroad route, 475
Shipping charges, 651
Ships

bearings of, 424–425, 432, 521
distance between, 165, 210, 520
location of, 756, 761
velocity of, 557

Snowplow’s speed, 71
Spacecraft, 170, 210
Traffic flow, 184, 613
Tugboat force, 534



of a parabola, 132, 729
polar, 772
real, 546
transverse, 751

B
Back substitution, 599
Bacterial growth, 292
Base, 11, 16

of an exponential function,
287–288

for exponential notation, 16
logarithmic, 308–310, 331

Bearings, 424, 425, 517
Binomial(s), 28, 686

multiplying, 30–31
Binomial coefficients, 688
Binomial expansion, 690–692
Binomial theorem, 686–693
Bounds for zeros, 236–238
Branches

of a hyperbola, 752
of the tangent, 385

C
Calculators, 12–13

approximating functions values with,
362–363, 396, 397, 398, 452–453

Cancellation of common factors, 41
Cardioid, 779, 780, 781
Cartesian coordinate system, 124–128
Catenary, 304
Center

of a circle, 137
of an ellipse, 737
of a hyperbola, 750

Central angle, 350, 353
Change of base formula, 331
Circle, 728

radius and center of, 137
standard equation of, 135–136
unit, 136

Circular arc, 353
Circular functions, 377
Circular sector, 354
Closed, definition of, 3
Closed curve, 762
Closed interval, 103

A
Abscissa, 124
Absolute value, 10, 11, 21

equations containing, 94
graph of an equation containing, 180
properties of, 108
of a real number, 547
system of inequalities containing, 585
of a trigonometric function, 417

Absolute value function, 172
Addition

of matrices, 614–615
properties of, 4
of vectors, 525, 526, 527
of y-coordinates, 417

Addition formulas, 457, 459, 461, 462
Additive identity, 4
Additive inverse, 4, 615
Adjacent side, 359
Algebraic equation, 55
Algebraic expression, 28–38
Algebraic function, 198
Alternating infinite series, 676
Ambiguous case, 505, 514
Amplitude

of a complex number, 548
of a graph, 402
of harmonic motion, 426
of a trigonometric function, 402, 403,

405, 406
Angle(s), 348–355

acute, 350, 359
central, 350, 354
complementary, 350, 422
coterminal, 348, 349, 393
definition of, 348
degree measure of, 348
of depression, 422, 423
of elevation, 422–423, 506–507
initial side of, 348
measures of, 350–352
negative, 348
obtuse, 350
positive, 348
quadrantal, 348, 370
radian measure of, 350
reference, 393, 394, 395
right, 350

standard position of, 348
straight, 348
subtended, 350
supplementary, 350
terminal side of, 348
trigonometric functions of, 358–372
between vectors, 538
vertex of, 348

Angular speed, 355
Applied problems 

equations in, 61–69
trigonometry in, 420–426

Approximately equal to ( ), 3
Approximations, 13
Arc, of a circle, 350
Arc length, 483
Arccosine function, 486
Arcsine function, 483
Arctangent function, 488
Area

of a circular sector, 354
of a triangle, 126, 472–473, 516

Argand plane, 546
Argument, 178

of a complex number, 548, 550
of a function, 156

Arithmetic mean, 667
Arithmetic sequences, 664–668
Arrangements without repetitions, 696
Associative properties, 4
Astronomical unit (AU), 745
Asymptote

horizontal, 251
for a hyperbola, 751
oblique, 261–262
vertical, 250, 388, 412–413, 415, 485

Augmented coefficient matrix, 600
Augmented matrix, 600
Auxiliary rectangle, 751
Average, 667
Axis (axes)

conjugate, 751
coordinate, 124
of an ellipse, 739
of a hyperbola, 751
imaginary, 546
major, 739
minor, 739
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Coefficient, 16
binomial, 688

Coefficient matrix, 600
Cofactor, 628–629
Cofunction, 459
Cofunction formulas, 460
Column, of a matrix, 600
Column matrix, 619
Column subscript, 600
Column transformation, 635, 636
Combination, 703, 704
Common denominator, 42
Common difference, 664
Common factors, 636–637

cancellation of, 41
Common logarithms, 313
Common ratio, 671
Commutative properties, 4
Complement, of a set, 713
Complementary angles, 350, 422
Complete factorization theorem for

polynomials, 230–231
Completing the square, 76, 136
Complex fraction, 44
Complex number(s), 87–93

absolute value of, 547, 549
addition of, 88–89
amplitude of, 548
argument of, 548, 549, 550
conjugate of, 90–91
difference of, 89
equality of, 89
imaginary part of, 88–89
and imaginary unit i, 88
modulus of, 548, 550
multiplication of, 88–89
multiplication of by a real number, 89
multiplicative inverse of, 91
nth root of, 554–555
product of, 549
quotient of, 91, 549
real part of, 89
trigonometric form of, 546, 548

Complex number system, 88
Complex plane, 546
Component(s)

of a along b, 540, 541
of a vector, 524

Composite function, 198–202
Compound interest, 293, 294

formulas for, 294–295, 299–300
Conclusion, 9

Conditional equation, 55
Conic sections, 728

polar equations of, 786–791
Conics. See Conic sections
Conjugate

of a complex number, 90–91
of an expression, 45

Conjugate axis, of a hyperbola, 751
Conjugate pair zeros of a polynomial,

241
Consistent system of equations, 576
Constant(s), 27, 28

of proportionality, 265
sum of, 660
of variation, 265

Constant force, 541, 542, 543
Constant function, 161 
Constant multiple, of an equation, 574
Constant polynomials, 29
Constant term, 234
Constraints, of an objective function, 590
Continued inequality, 9, 106
Continuous functions, 214
Continuously compounded interest

formulas, 300, 302–303
Converse, 9
Convex limaçon, 781
Coordinate, 7
Coordinate axes, 124
Coordinate line, 7
Coordinate plane, 124
Coordinate system, 7, 124
Correspondence

one-to-one, 7
between sets, 155–156

Cosecant function, 359, 384
Cosine function, 359, 384

addition formula for, 459
subtraction formula for, 457, 458, 460

Cosine wave, 382
Cotangent function, 359, 384, 386, 461
Cotangent identities, 364
Coterminal angles, 348, 349, 393
Cramer’s rule, 638, 639, 640
Cube root function, 160
Cube roots, 20

of unity, 93, 555, 556
Cubic polynomials, 214
Cubing function, 160
Curve, 762, 763

closed, 762
endpoints of, 762

of least descent, 770
orientation of, 764
parametric equations for, 762
parametrized, 763
plane, 762
simple closed, 762

Cusp, 769
Cycle, 382
Cycloid, 768, 769, 770

D
Damped cosine wave, 418
Damped motion, 426
Damped sine wave, 418
Damping factor, 418
Decimal, 2, 3
Decreasing function, 161, 279
Definition

of absolute value, 11
of absolute value of a complex

number, 547
of addition of vectors, 525
of arithmetic sequence, 664
of combination, 703
of common logarithm, 313
of component of a along b, 540
of composite function, 198
of conjugate of a complex number, 90
of determinant of a matrix, 628, 630,

631
of distance between points on a

coordinate line, 11
of dot product, 536
of eccentricity, 744
of ellipse, 737
of equality and addition of matrices,

614
of event, 709
of expected value, 717
of function, 156, 166
of geometric sequence, 671
of graph of a function, 159
of horizontal asymptote, 251
of hyperbola, 750
of i and j, 528
of infinite sequence, 654
of inverse cosine function, 486
of inverse function, 280
of inverse of a matrix, 623
of inverse sine function, 483
of inverse tangent function, 488
of linear function, 163
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of logarithm, 308
of magnitude of a vector, 525
of matrix, 601
of minors and cofactors, 628
of n factorial, 688
of nth root of a number, 20
of natural exponential function, 301
of natural logarithm, 314
of negative of a vector, 527
of odds of an event, 714
of one-to-one function, 278
of parabola, 728
of parallel and orthogonal vectors,

537
of parametric equations, 762
of periodic function, 380
of permutation, 698
of plane curve, 762
of polynomial, 29
of probability of an event, 710
of product of a real number and a

matrix, 616
of product of two matrices, 617
of quadratic function, 185
of radian measure, 350
of rational exponents, 23
of reference angle, 393
of scalar multiple of a vector, 526
of simple harmonic motion, 425
of slope of a line, 140
of subtraction of vectors, 528
of trigonometric functions in terms of

a unit circle, 377
of trigonometric functions of an acute

angle of a right triangle, 359
of trigonometric functions of any

angle, 368
of trigonometric functions of real

numbers, 379
of vertical asymptote, 250
of work, 543
of zero vector, 527 

Degenerate conic, 728
Degree

as an angular measurement, 348
of a polynomial, 29
relation of to radian, 351, 352, 353

Delta, 141
De Moivre’s theorem, 552–555
Denominator, 6

least common, 42
rationalizing, 22, 23, 45, 91

Dependent and consistent system,
576

Dependent variable, 165
Depressed equation, 227
Descartes, René, 124
Descartes’ rule of signs, 234–236
Determinants, 628–632

properties of, 634–640
Difference

common, 664
of complex numbers, 89
of functions, 197
of matrices, 616
of real numbers, 6
of two cubes, 35, 93
of two squares, 35

Difference identity, 457
Difference quotient, 163
Digits, 13
Direct variation, 265
Directed line segment, 522
Direction, 424, 425
Directrix

of a conic, 786
of a parabola, 728, 730

Discriminant, 78
Displacement, 523
Distance, on a coordinate line, 11
Distance formula, 124, 125, 126
Distinguishable permutations, 702
Distributive property, 4
Divisible polynomial, 222
Division

long, 222
of polynomials, 222
of real numbers, 6
synthetic, 225–227, 236–237

Division algorithm, 223
Divisors, 2
Domain

of an algebraic expression, 28
of a composite function, 281
of a function, 156
implied, 157
of a rational function, 249
of a trigonometric function, 388

Dot product, 536–544
Double-angle formulas, 467
Double root, 75
Double subscript notation, 600
Doubling time, 316
Dyne, 542

E
e, the number, 301
Eccentricity, 744, 786
Echelon form, of a matrix, 603–606, 634

reduced, 606
Element

of a matrix, 601
of a set, 27

Elementary row transformations, 602
Ellipse, 728, 737–746, 786

center of, 737
eccentricity of, 744
foci of, 737
major axis of, 739
minor axis of, 739
polar equations of, 788
reflective property of, 746
standard equation of, 739
vertices of, 739

Ellipsoid, 746
End behavior, 131
Endpoints

of a curve, 762
of an interval, 103

Equal to ( ), 27
Equality, 54

of complex numbers, 89
of functions, 157
of matrices, 614
of polynomials, 29
properties of, 5
of real numbers, 2
of sequences, 655
of sets, 27
of vectors, 523

Equation(s), 54–59, 94–100
algebraic, 55
in applied problems, 61–69
of a circle, 136
conditional, 55
depressed, 227
of an ellipse, 739
equivalent, 54
exponential, 290, 330–334
graphs of, 130–138
of a half-ellipse, 741–743
homogeneous, system of, 608
of a hyperbola, 752
identity, 55
linear, 55–56, 146, 573–579
of lines, 144–147
logarithmic, 308, 323–328, 334–338

�
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with no solutions, 57
of a parabola, 187–189, 731
of a perpendicular bisector,

149–150
quadratic, 73–83, 450
quadratic type, 97–98
root of, 133
solution of, 54
systems of, 564–570
theory of, 230
trigonometric, 447–454
in x, 54
in x and y, 130–131

Equivalent equation, 54
Equivalent inequalities, 103, 582
Equivalent matrices, 602
Equivalent notation, 28
Equivalent systems, 567, 574
Equivalent vectors, 522
Erg, 542
Euler’s formula, 548
Even function, 171
Events, 709

independent, 715
mutually exclusive, 712

Expansion of a determinant, 631
Expected value, 717
Experiment, 709
Exponent(s), 11, 16–19

irrational, 24, 288
laws of, 17–18
negative, 16, 19
rational, 23
zero, 16

Exponential decay, 289
Exponential equation, 291, 330–334
Exponential form, 308, 548
Exponential function, 287–295

natural, 299–305
Exponential law of growth, 289
Exponential notation, 11, 16, 24
Extended principle of mathematical

induction, 684–685
Extraneous root, 57
Extraneous solution, 57
Extremum, 215

F
Factor, 2, 33
Factor theorem, 224
Factorial form for a permutation, 699
Factorial notation, 688–689

Factoring, 33
formulas for, 34
by grouping, 37–38
method of, 74
in solving trigonometric equations,

449, 450, 451
with quadratic formula, 80–81
by trial and error, 36, 37

Feasible solutions, 590
First term of a sequence, 654
Focus (foci), 750

of a conic, 786
of an ellipse, 737
of a hyperbola, 750
of a parabola, 728, 730
of a paraboloid, 733

Force, 541
constant, 541, 542, 543

Force vector, 523
Formula

change of base, 331
compound interest, 294, 299–300
continuously compounded interest,

302–303
distance, 124, 125, 126
factoring, 34
law of growth (or decay), 303
midpoint, 127
for negatives, 382, 383–384
product, 32
simple interest, 63
special change of base, 332

Four-leafed rose, 782
Fractional expression, 40–47
Fractions, 6

adding, 42–43
complex, 44
partial, 642–647

Frequency, in harmonic motion, 426
Function(s)

absolute value, 172
algebraic, 198
alternative definition of, 166
amplitude of, 402
circular, 377
of a complex variable, 230
composite, 198–202
constant, 161
continuous, 214
cube root, 160
cubing, 160
decreasing, 161

defined on a set, 157–158
definition of, 156
difference of, 197
domain of, 281
equality of, 157
even, 171
existence of, 158–159
exponential, 287–295
extremum of, 215
graph of, 159, 160, 171–181
greatest integer, 179
growth, 289
hyperbolic cosine, 304
hyperbolic secant, 334
identity, 161
implied domain of, 157
increasing, 161
infinite sequence as, 654
inverse, 278–284
inverse trigonometric, 396, 482–492
linear, 163–165
logarithmic, 308–318
maximum value of, 187, 190–191
minimum value of, 187, 190
natural exponential, 301–305
natural logarithmic, 314
objective, 590
odd, 171
one-to-one, 278
operations on, 197–202
periodic, 380
piecewise-defined, 177–179
polynomial, 198
product of, 197
quadratic, 185–192
quotient of, 197
range of, 281
rational, 248–262
reciprocal, 252
square root, 160
squaring, 160
sum of, 197
test values for, 216
transcendental, 198
trigonometric, 359, 384, 385, 447,

448
undefined, 158
values of, 155–158
zeros of, 160, 216

Fundamental counting principle, 696
Fundamental identities, 363, 364,

365–366, 372



A88 I N D E X

Fundamental theorem
of algebra, 230
of arithmetic, 2

G
Gauss, Carl Friedrich, 230
General form for equation of a line, 147
Geometric mean, 674
Geometric representation, 546
Geometric sequence, 671–676
Geometric series, 674
Graph(s)

amplitude of, 402
common, and their equations, 798–799
definition of, 131
of equations, 130–138
of exponential functions, 289–292,

304
of functions, 159–162, 171–181
hole in, 256, 288
horizontal compressions of, 176–177
horizontal shifts of, 174–175
horizontal stretches of, 176–177
of inequalities, 103
of linear equations, 147
of logarithmic equations, 327
of logarithmic functions, 311–313
of a parametrized curve, 763, 765
of a plane curve, 762
of a polar equation, 776, 778, 780–783
of polynomial functions, 217, 218
of rational functions, 254, 255,

257–260, 262
reflection of, 176, 177
of a sequence, 655, 656
of a set of ordered pairs, 130
of a set of real numbers, 103
summary of transformations of,

800–801
symmetries of, 134–135
of a system of inequalities, 582, 584,

586–587
of trigonometric functions, 379, 386,

387, 400–410, 412–418, 802–804
turning points of, 215
vertical compressions of, 175, 176
vertical shifts of, 173–174
vertical stretches of, 175, 176
x-intercepts of, 472, 479–480

Greater than ( ), 8
Greater than or equal to ( ), 9
Greatest common factor (gcf), 34, 47
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Greatest integer function, 179
Grouping, solving equations using, 95
Growth function, 289
Guidelines

for finding the echelon form of a
matrix, 604

for finding an element in a matrix
product, 617

for finding inverse functions, 281
for finding partial fraction

decompositions, 643
for the method of substitution for two

equations in two variables, 565
for sketching the graph of an

inequality in x and y, 583
for sketching the graph of a rational

function, 254
for solving applied problems, 62
for solving an equation containing

rational expressions, 57
for solving a linear programming

problem, 592
for solving variation problems, 267
for synthetic division, 225

H
Half-angle formulas, 470, 471, 472
Half-angle identity, 469–470
Half-ellipse, equations for, 741–743
Half-life, 293
Half-open interval, 103
Half-plane, 584
Harmonic motion, 425, 426
Hemi-ellipsoid, 746
Heron’s formula, 517, 518
Hole, in a graph, 256, 288
Homogeneous system of equations, 608
Horizontal asymptote, 251, 253
Horizontal compressions of graphs,

176–177
Horizontal line, 144
Horizontal line test, 279
Horizontal shifts of graphs, 174–175
Horizontal stretches of graphs, 176–177
Hyperbola, 252, 728, 750–758, 786

asymptotes for, 751
auxiliary rectangle for, 751
branches of, 752
center of, 750
conjugate axes of, 751
foci of, 750
polar equations of, 789

reflective property of, 757
standard equation of, 752
transverse axis of, 751
vertices of, 751

Hyperbolic cosine function, 304
Hyperbolic secant function, 334
Hypotenuse, 359
Hypothesis, 9

induction, 681

I
i, the complex number, 88
i, the vector, 528, 529
Identity

additive, 4
cotangent, 364
equation as, 55
multiplicative, 4
Pythagorean, 364, 365
reciprocal, 360, 364
tangent, 364
trigonometric, verifying, 367,

442–445
Identity function, 161
Identity matrix, 623, 624
Image, 156
Imaginary axis, 546
Imaginary number, 88
Imaginary part of a complex number,

88–89
Imaginary unit, 88
Implied domain, 157
Inconsistent system of equations, 576
Increasing function, 161, 279
Indefinite interval, 103
Independent events, 715
Independent variable, 165
Index

of a radical, 20
of summation, 658

Induction, mathematical, 680–685
Induction hypothesis, 681
Inequalities, 8, 102

continued, 9, 106
equivalent, 103
graphs of, 103, 583–587
linear, 583, 584
nonstrict, 9
properties of, 104, 117
quadratic, 112, 113
rational, 106
solution of, 102–109
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strict, 8
systems of, 582–587

Inequality signs, 8
Infinite geometric series, 674
Infinite interval, 103
Infinite repeating decimal, 675
Infinite sequence, 654
Infinite series, 675
Infinity ( ), 103, 250
Initial point of a vector, 522
Initial side of an angle, 348
Inner product, 536
Input variable, 165
Integers, 2
Integration, 477
Intercept, of a graph, 132–133
Intercept form, of a line, 153
Interest

compound, 293, 294
compounded continuously, 300, 302
simple, 63–64

Interest period, 299
Intermediate value theorem, 215, 216
Intersection ( ) of sets, 108
Intervals, 103
Inverse

additive, 4, 615
of a matrix, 623–627
multiplicative, 91

Inverse cosine function, 486–487
Inverse functions, 278–284
Inverse method, 626
Inverse sine function, 483–485
Inverse tangent function, 488
Inverse trigonometric functions, 396,

482–492, 802–803
Inverse variation, 266, 267
Inversely proportional, definition of,

265
Invertible matrix, 624
Irrational exponents, 24
Irrational number, 3
Irreducible polynomial, 33
Isosceles triangle, 361, 472–473

J
j, the vector, 528, 529
Joint variation, 268
Joule, 542

K
Kepler, Johannes, 744–745
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L
Law(s)

of cosines, 512, 513–515
of exponents, 17–18
of growth (or decay), 303
of logarithms, 323–325
of radicals, 21
of signs, 9
of sines, 502, 503, 504–506
of trichotomy, 8

Leading coefficient, 29
Least common denominator (lcd), 42
Length

of a circular arc, 353
of a line segment, 11

Less than ( ), 8
Less than or equal to ( ), 9
Limaçon(s), 780, 781
Line(s), 140–151

equation of, 147
general form of, 147
horizontal, 144
intercept form of, 152
parallel, 147
parametric equation of, 766
perpendicular, 148
point-slope form of, 145
polar equation of, 776
slope of, 140–143
slope-intercept form of, 146
vertical, 144

Linear combination 
of i and j, 529, 530
of rows, 611

Linear equation, 55–56, 146
in more than two variables, 598–611
in two variables, 573–579

Linear function, 163–165
Linear inequality, 583
Linear programming, 590–596
Linear programming problem, 591
Linear speed, 355
Linearly related variables, 150
Lithotripter, 746
Logarithm(s)

base of, 308
change of base of, 331
common, 313
laws of, 323–325
natural, 314
properties of, 323–328
special changes of base of, 332

�
�

Logarithmic equation, 334–338
Logarithmic form, 308
Logarithmic functions, 308–318
Logistic curve, 338
Long division, of polynomials, 222
Lower bound, 236

M
Magnitude, of a vector, 522, 524–525
Major axis of an ellipse, 739
Maps, 156
Mathematical induction, 680–685
Mathematical model, 151
Matrix (matrices)

addition of, 614–615
additive inverse of, 615
algebra of, 614–621
augmented, 600
augmented coefficient, 600
coefficient, 600
column, 619
columns of, 600
definition of, 601
determinant of, 628, 631
double subscript notation for, 600
echelon form of, 603–606
element of, 601
elementary row transformations of,

602
equality of, 614
equivalent, 602
identity, 623, 624
inverse of, 623–627
linear combination of rows of, 611
main diagonal elements of, 601
of order n, 601
product of, 617
product of with a real number,

616
reduced echelon form of, 606
row, 619
row equivalent, 602
rows of, 600
size of, 601
square, 601
subtraction of, 616
of a system of equations, 600
zero, 615

Matrix invertibility, 632
Matrix row transformations, 602
Maximum value of a quadratic function,

187, 190–191
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Mean
arithmetic, 667
geometric, 674

Method
of completing the square, 76
of elimination, 575, 578, 598
of factoring, 74
inverse, 627
of substitution, 565–567
of trial and error, 36

Midpoint, 128
Midpoint formula, 127
Minimum value of a quadratic function,

187, 190
Minor, 628–629
Minor axis of an ellipse, 739
Minus infinity ( ), 250
Minute, 350, 353
Mirror image, 134
Modulus, of a complex number, 548,

550
Monomial, 28
Motion, of a point, 764
Multiple-angle formulas, 467–473
Multiplication

of matrices, 616–621
properties of, 4

Multiplicative identity, 4
Multiplicative inverse

of a complex number, 91
of a real number, 4

Multiplicity of a zero, 232–233
Mutually exclusive events, 712

N
n factorial, 688
nth partial sum, 659, 672
nth power, 16
nth root, 19, 552, 554–556

of unity, 556
nth term

of an arithmetic sequence, 665
of a geometric sequence, 671
of a sequence, 654
of a series, 675

Natural exponential function, 299–305
Natural logarithm, 314
Natural logarithmic function, 314
Natural numbers, 2
Negative(s)

formulas for, 382–383
of a real number, 4, 5

��

of a vector, 527
Negative angle, 348
Negative direction, 7
Negative exponents, 16, 19
Negative real numbers, 8

square roots of, 92
Negative slope, 141
Newton, 542
Newton’s law of cooling, 316
Nondistinguishable permutations, 702
Nonnegative integers, 2
Nonpolynomials, 30
Nonreal complex number, 88
Nonstrict inequalities, 9
Nontrivial factors, 33
Normal probability curve, 292
Number e, 301
Number(s)

complex, 87–93
imaginary, 88
irrational, 3
natural, 2
negative real, 8
nonreal complex, 88
positive real, 8
prime, 2
pure imaginary, 88
rational, 2
real, 3
unit real, 93
whole, 2

Numerator, 6
rationalizing, 45–46

O
Objective function, 590
Oblique asymptote, 261–262
Oblique triangle, 502, 503, 512
Obtuse angle, 350
Odd function, 171
Odds, 714
One-to-one correspondence, 7, 524
One-to-one function, 278, 289, 308
Open interval, 103
Opposite side, 359
Order of a matrix, 601
Ordered pair, 124, 130
Ordered r-tuple, 697
Ordered triple, 567
Ordering, 9
Ordinate, 124

Orientation, of a parametrized curve,
764

Origin, 7, 124, 739, 752, 772
Orthogonal vectors, 537, 539
Oscillation, 426
Outcome of an experiment, 709
Output variable, 165

P
Parabola(s), 132, 728–734, 786

axis of, 729
directrix of, 728
focus of, 728
polar equation of, 789–790
reflective property of, 733
standard equation of, 187–189, 730
vertex of, 189, 190, 729

Paraboloid, 733
Parallel lines, 147
Parallel vectors, 537, 539
Parallelogram, diagonals of, 515
Parallelogram law, 524
Parameter, 762
Parametric equations, 762

for a cycloid, 768–770
for a line, 766

Parametrization, 763
Parametrized curve, 763, 765
Partial fraction, 642–647
Partial fraction decomposition, 642,

643–647
Partial sum, 659, 672
Pascal’s triangle, 692
Path of a projectile, 766–768
Period, 380, 388, 402–403, 405, 406, 414

of harmonic motion, 426
Periodic function, 380
Permutations, 695–700

distinguishable, 702
nondistinguishable, 702

Perpendicular bisector, 126, 127,
149–150

Perpendicular lines, 148
Phase shift, 405, 406, 414
Piecewise-defined functions, 177–179
Plane curve, 762
Plotting points, 124
Plus or minus ( ), 23
Point

motion of, 764
on a unit circle corresponding to a real

number, 376

�
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Point-slope form, 145
Polar axis, 772
Polar coordinate system, 773
Polar coordinates, 772–784

relationship of to rectangular
coordinates, 774, 775, 776

Polar equation, 771–784
of conics, 786–791

Polar form of a complex number, 548
Pole, 772
Pole values, 780
Polynomial(s), 28, 29

adding and subtracting, 30
bounds for zeros of, 236–238
conjugate pair zeros of, 241
constant, 29
constant term of, 234
cubic, 214
degree of, 29
dividing, 32, 222
equal, 29
factoring, 33, 34, 37, 224–225
irreducible, 33
leading coefficient of, 29
in more than one variable, 31
multiplying, 31
prime, 33
as a product of linear and quadratic

factors, 244
rational zeros of, 243, 244
real zero of, 216
term of, 29
in x, 28, 29
zero, 29
zeros of, 229–238

Polynomial function, 198, 214–219
Position vector, 524
Positive angle, 348
Positive direction, 7
Positive integers, 2
Positive real numbers, 8
Positive slope, 141
Power functions, 265
Prime factorizations, 43
Prime number, 2
Prime polynomial, 33
Principal, 64
Principal nth root, 19
Principal square root, 20, 91
Principle of mathematical induction,

681
Probability, 709–718

Product(s)
of complex numbers, 88, 549
of functions, 197
involving zero, 5
of matrices, 617–619
of real numbers, 3

Product formulas, 32
Product-to-sum formulas, 477–478
Projectile, path of, 766–768
Projection, of a on b, 541
Properties

of absolute values, 108
of conjugates, 91
of equality, 5
of i, 88
of inequalities, 104, 117
of logarithms, 323–328
of nth roots, 20
of negatives, 5
of quotients, 7
of real numbers, 4

Proportionality
constant of, 265
direct, 265
inverse, 265
joint, 268

Pure imaginary number, 88
Pythagorean identities, 364, 365
Pythagorean theorem, 99, 125, 360, 361,

490

Q
Quadrant(s), 124, 348, 371
Quadrantal angle, 348, 370
Quadratic equations, 73–83, 450
Quadratic formula, 77, 79–82
Quadratic functions, 185–192
Quadratic inequality, 112, 113
Quadratic type equation, 97–98
Quotient, 6, 7, 223

of complex numbers, 91, 549
difference, 163
in division process, 223
of factorials, 688, 689
of functions, 197
of real numbers, 6

R
r -plane, 773
Radian, 350–353, 447

relation of to degree, 351–352
Radian mode, 375, 376

	

Radical(s), 20–25
combining, 25
equations containing, 96–98
laws of, 21
removing factors from, 22–23

Radical sign, 20
Radicand, 20
Radioactive decay, 293
Radiotherapy, 304–305
Radius of a circle, 137
Range of a function, 156, 281, 388
Ratio, common, 671
Rational exponents, 23

equations containing, 95
Rational expressions, 40

equations containing, 57–58
products and quotients of, 42
simplified, 41
sums and differences of, 43

Rational functions, 248–262
Rational inequality, 106
Rational number, 2

infinite repeating decimal as, 675
Rational zeros of polynomials, 243, 244
Rationalizing denominators, 22–23, 45
Rationalizing numerators, 45
Rays, 348
Real axis, 546
Real line, 7
Real numbers, 2–13

properties of, 4
Real part of a complex number, 89
Reciprocal, 4, 6

notation for, 6
of y-coordinates, 386

Reciprocal function, 252
Reciprocal identities, 360, 364
Rectangular coordinate system, 124–128
Rectangular coordinates, 124–128

relation of to polar coordinates,
774–776

Recursive definition, 657
Reduced echelon form, 606
Reduction formulas, 463
Reference angle, 393, 394, 395
Reflection of a graph, 134, 176, 177,

284
Reflective property

of an ellipse, 746
of a hyperbola, 757–758
of a parabola, 733

Remainder, in division process, 223
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Remainder theorem, 223, 224
Resultant force, 524
Resultant vector, 531
Resulting sign, 112
Richter scale, 315
Right angle, 350
Right triangle, 358, 420, 421, 422
Root(s)

cube, 20
double, 75
of an equation, 54, 133
existence of, 21
extraneous, 57
of multiplicity m, 232
of multiplicity 2, 75
nth, of complex numbers, 552–556
principal nth, 19
square, 3, 19, 91–92
of unity, 93, 555

Row, of a matrix, 600
Row equivalent, 602
Row matrix, 619
Row subscript, 600
Row transformation of a matrix, 602,

635, 636
Rule of 70, 317
Rule of 72, 317

S
Sample space, 709
Satisfying an equation, 54
Scalar, 522
Scalar multiple of a vector, 524, 526,

527
Scalar product, 536
Scalar quantity, 522
Scientific form, 12, 13
Secant function, 359, 384, 386
Second, 350, 353
Semicircle, 137
Sequence(s), 654

arithmetic, 664–668
equality of, 655
geometric, 671–676
graph of, 655, 656
infinite, 654
nth term of, 654
of partial sums, 659
recursively defined, 657

Series, 674, 675
Set(s), 27

complement of, 713

correspondence of, 155–156
intersection of, 108
subsets of, 706
union of, 108

Shifts of graphs, 173–175
Sign(s)

laws of, 9
of a real number, 9
of trigonometric functions, 371
variation of, 234

Sign chart, 112, 113
Sign diagram, 112, 113–116
Significant figures, 13
Simple closed curve, 762
Simple harmonic motion, 425
Simple interest, 63–64
Simplification

of an exponential expression, 18, 19
of a radical, 22
of a rational expression, 41

Sine function, 359, 384, 447
addition and subtraction formulas for,

461
Sine wave, 382, 407
Sketching a graph, 103, 254
Slope(s)

of a line, 140–143
of parallel lines, 147
of perpendicular lines, 148

Slope-intercept form, 146
Solution(s)

bounds for, 236–238
of an equation in x, 54
of an equation in x and y, 130
extraneous, 57
feasible, 590
of an inequality, 102
of a polar equation, 776
of a system of equations, 564, 567
of a system of inequalities, 582, 584,

585
trivial, 608

Solving
an equation, 54
an inequality, 103, 104–106
a system of equations, 564
a triangle, 420
for a variable, 58

Special change of base formulas, 332
Speed

angular, 355
linear, 355

Spiral of Archimedes, 782
Square matrix, 601
Square root, 3, 20, 91

of negative numbers, 92
Square root function, 160
Squaring function, 160
Standard equation

of a circle, 135
of an ellipse, 739
of a hyperbola, 752
of a parabola, 730

Standard position, of an angle, 348
Straight angle, 348
Stretching of graphs, 176, 177
Strict inequalities, 8
Subset of a set, 27, 706
Subtended angle, 350
Subtraction

of complex numbers, 90
of matrices, 615, 616
of real numbers, 6

Subtraction formulas, 457, 458, 461
Successive approximations, 216
Sum(s)

of an arithmetic sequence, 666
of complex numbers, 88
of functions, 197
of a geometric sequence, 672–673
of an infinite geometric series, 674,

675–676
of matrices, 615
partial, 659, 672
of real numbers, 3
of a series, 676
theorem on, 661
of trigonometric functions, 417, 463
of two cubes, 35
of vectors, 523

Sum identity, 457
Sum-to-product formulas, 478
Summation notation, 657, 668
Summation variable, 658
Supplementary angle, 350
Symmetries, of graphs

of equations in x and y, 134–135
of inverse functions, 284
of polar equations, 783
of trigonometric equations, 388

Synthetic division, 225–227, 236–237
Systems of equations, 564–570

consistent, 576
dependent and consistent, 576
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equivalent, 567, 574
homogeneous, 608
inconsistent, 576
matrix of, 600
in more than two variables, 598–611
solution of, 564, 567
in two variables, 573–579

Systems of inequalities, 582–587

T
Tangent function, 359, 384, 385, 448

addition and subtraction formulas for,
461

Tangent identity, 364, 461
Tangent line

to a circle, 137
to a parabola, 733

Term
of a polynomial, 29
of a sequence, 654, 655–656, 665,

671–672
of a series, 675

Terminal point of a vector, 522
Terminal side of an angle, 348
Test point, 582
Test value, 112, 216
Tests for symmetry, 134
Theorem

on amplitudes and periods, 402
on amplitudes, periods, and phase

shifts, 405
binomial, 690
on bounds for real zeros of

polynomials, 237
change of base, 331
complete factorization, for

polynomials, 230
on conics, 786
on conjugate pair zeros of a

polynomial, 241
on cosine of the angle between

vectors, 538
De Moivre’s, 552–554
on distinguishable permutations, 702,

703
on dot product, 538
on equivalent systems, 574
on even and odd trigonometric

functions, 384
on exact number of zeros of a

polynomial, 234
on expansion of determinants, 631

on expressing a polynomial as a
product of linear and quadratic
factors, 242

factor, 224
fundamental, of algebra, 230
on graph of the tangent function, 414
on horizontal asymptotes, 253
on identical rows, 635
on independent events, 715
intermediate value, for polynomial

functions, 215
on inverse functions, 280
for locating the vertex of a parabola,

189
on matrix invertibility, 632
on matrix properties, 615, 616
on matrix row transformations, 602
on maximum or minimum value of a

quadratic function, 190
on maximum number of zeros of a

polynomial, 231
on mutually exclusive events, 712
on negative exponents, 19
on nth roots, 554
on number of combinations, 704
on number of different permutations,

698
on one-to-one nature of exponential

functions, 289
on one-to-one nature of increasing or

decreasing functions, 279
on one-to-one nature of logarithmic

functions, 310
on orthogonal vectors, 539
on polar equations of conics, 788
on probability of the occurrence of

either of two events, 713
on products and quotients of complex

numbers, 549
on rational zeros of a polynomial, 243
on reference angles, 395
remainder, 223
on repeated function values for sin and

cos, 380
on row and column transformations of

a determinant, 634
on a row of zeros, 632
on slopes of parallel lines, 147
on slopes of perpendicular lines, 148
on sum of an arithmetic sequence, 666
on sum of a constant, 660
on sum of a geometric sequence, 672

on sum of an infinite geometric series,
674

on sum of a sequence, 661
zero factor, 74

Theory of equations, 230
Tractrix, 336
Transcendental function, 198
Transformation

of determinants, 634, 635
of graphs, 181, 800–801
of systems of equations, 574

Translations, 175
Transverse axis of the hyperbola, 751
Tree diagram, 695, 716–717
Trial and error, method of, 36
Triangle, 420

area of, 125, 516
isosceles, 361, 472–473
oblique, 502, 503, 512
right, 358, 420, 421, 422
vertices of, 420

Triangle law, 523
Trichotomy law, 8
Trigonometric equation, 447–454
Trigonometric expression, 442
Trigonometric form of complex numbers,

546, 548
Trigonometric function(s), 359

absolute value of, 417
amplitude of, 402, 403, 405, 406
of angles, 358–372
and calculators, 396–398
cofunction formulas for, 460
domains of, 387
double-angle formulas for, 467
equations and inequalities involving,

388–389
even and odd, 384
graphs of, 379, 386, 387, 400–410,

412–418, 802–804
half-angle formulas for, 470, 471
half-angle identities for, 469, 470
inverse, 396, 482–492
multiple-angle formulas for, 467–473
product-to-sum formulas for, 477–478
of real numbers, 375–389
and reference angles, 393–396
signs of, 371
special values of, 362, 378–379, 804
subtraction formulas for, 457, 458,

461
sum-to-product formulas for, 478
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in terms of right triangle, 358
in terms of unit circle, 376–377
values of, 360, 369–370, 393–398,

487, 489
Trigonometric identities, 442–445
Trigonometric substitution, 444–445
Trinomial, 28

factorization of, 36
Trivial solution, 608
Turning points, 215

U
Undefined function, 158
Union ( ), of sets, 108
Unit circle, 136, 376–377, 448

arc length on, 483
Unit real number, 93
Unit vector, 528
Unity, roots of, 93, 555–556
Upper bounds, 236

V
Value

of an expression, 28
of a function, 156
of trigonometric functions, 375,

393–398
Variable, 27, 28

dependent, 165
directly proportional, 265
independent, 165
input, 165
inversely proportional, 265
linearly related, 150
output, 165
solving for, 58
summation, 658

Variation, 265–269
constant of, 265
direct, 265
inverse, 265
joint, 268
of sign, 234




Vector(s), 522–531
addition of, 525, 526, 527
angle between, 538
components along, 541
components of, 524
dot product of, 537
equal, 523
equivalent, 522
force, 523
horizontal component of, 529, 530
i, 528, 529
i, j form for, 529
initial point of, 522
inner product of, 536
j, 528, 529
linear combination of, 529, 530
magnitude of, 524–525
negative of, 527
one-to-one correspondence between, 524
orthogonal, 537, 539
parallel, 537, 539
position, 524
projection of, 541
resultant, 531
scalar multiple of, 526, 527
scalar product of, 536
subtraction of, 528
sum of, 523
terminal point of, 522
unit, 528
velocity, 523
vertical component of, 529, 530
wind velocity as, 530
zero, 527

Velocity vector, 523
Verifying trigonometric identities,

442–445
Vertex (vertices)

of an angle, 348
of an ellipse, 739
of a hyperbola, 751
of a parabola, 132, 189, 190, 729
of a triangle, 420

Vertical asymptote, 250, 388, 412–413,
415

Vertical compression of graphs, 175, 176
Vertical line, 144
Vertical line test, 159
Vertical shifts of graphs, 173, 405, 410
Vertical stretching of graphs, 175, 176

W
Wedge notation, 524
Whispering galleries, 746
Whole numbers, 2
Work, 541, 543–544

X
x-axis, 124
x-coordinate, 124
x-equation, 763
x-intercept, 132, 133, 388, 472, 479–480
xy-plane, 124

Y
y-axis, 124
y-coordinate, 124
y-equation, 763
y-intercept, 132, 133

Z
Zero, the number, 5, 7
Zero(s)

of a function, 160, 216, 305
of a graph, 132
of multiplicity m, 232
of a polynomial, 229–238

Zero exponent, 16
Zero factor theorem, 5, 74, 450, 451,

452, 453
Zero matrix, 615
Zero polynomial, 29
Zero vector, 527
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