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PREFACE

This book is for people who want to get acquainted with the concepts of
basic trigonometry without taking a formal course. It can serve as a supple-
mental text in a classroom, tutored, or home-schooling environment. It
should also be useful for career changers who need to refresh their knowledge
of the subject. I recommend that you start at the beginning of this book and
go straight through.

This 1s not a rigorous course in theoretical trigonometry. Such a course
defines postulates (or axioms) and provides deductive proofs of statements
called theorems by applying mathematical logic. Proofs are generally omitted
in this book for the sake of simplicity and clarity. Emphasis here is on
practical aspects and scientific applications. You should have knowledge of
middle-school algebra before you begin this book.

This introductory work contains an abundance of practice quiz, test, and
exam questions. They are all multiple-choice, and are similar to the sorts of
questions used in standardized tests. There i1s a short quiz at the end of every
chapter. The quizzes are “open-book.” You may (and should) refer to the
chapter texts when taking them. When vou think you're ready, take the quiz,
write down your answers, and then give your list of answers to a friend. Have
the friend tell you your score, but not which questions you got wrong. The
answers are listed in the back of the book. Stick with a chapter until you get
most of the answers correct.

This book is divided into two sections. At the end of each section is a
multiple-choice test. Take these tests when you're done with the respective
sections and have taken all the chapter quizzes. The section tests are “closed-
book,” but the questions are not as difficult as those in the quizzes. A satis-
factory score is three-quarters of the answers correct. Again, answers are in
the back of the book.

Copyright © 2003 by Tl McGraw-Hill Companivs, Inc. Click lrere for Terms of Use.
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There is a final exam at the end of this course. It contains questions drawn
uniformly from all the chapters in the book. Take it when you have finished
both sections, both section tests, and all of the chapter quizzes. A satisfactory
score is at least 75 percent correct answers.,

With the section tests and the final exam, as with the quizzes, have a friend
tell you your score without letting you know which questions you missed.
That way, you will not subconsciously memorize the answers. You can check
to see where your knowledge is strong and where it is not.

I recommend that you complete one chapter a week. An hour or two daily
ought to be enough time for this. When you're done with the course, you can
use this book, with its comprehensive index, as a permanent reference.

Suggestions for future editions are welcome.

Stan GIBILISCO
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CHAPTER

The Circle Model

Trigonometry involves angles and their relationships to distances. All of
these relationships arise from the characteristics of a circle, and can be
defined on the basis of the graph of a circle in the Cartesian plane.

The Cartesian Plane

The Cartesian plane, also called the rectangular coordinate plane or rectan-
gular coordinates, consists of two number lines that intersect at a right angle.
This makes it possible to graph equations that relate one variable to another.
Most such graphs look like lines or curves.

TWO PERPENDICULAR NUMBER LINES

Figure 1-1 illustrates the simplest possible set of rectangular coordinates. Both
number lines have uniform increments. That is, the points on the axes that
represent consecutive integers are always the same distance apart. The two
number lines intersect at their zero points. The horizontal {or east/westl) axis is
called the x axis; the vertical {or north/south) axis is called the y axis.

—®
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CHAPTER 1 The Circle Model
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Fig. 1-1.  The Cartesian planc is defined by two number lines that intersect at right angles.

ORDERED PAIRS

Figure 1-2 shows two points plotted in rectangular coordinates. Points are
denoted as ordered pairs in the form (x,y) in which the first number represents
the value on the x axis and the second number represents the value on the v
axis. The word “ordered” means that the order in which the numbers are
listed is important. For example, the ordered pair (3.5,5.0) is not the same as
the ordered pair (5.0,3.5), even though both pairs contain the same two
numbers.

In ordered-pair notation, there is no space after the comma, as there is in
the notation of a set or sequence. When denoting an ordered pair, it is
customary to place the two numbers or variables together right up against
the comma.

ABSCISSA AND ORDINATE

In most sets of coordinates where the axes are labeled x and y, the variable y
is called the dependent variable (because its value “depends” on the value of
x), and the variable x is called the independent variable. The independent-
variable coordinate (usually x) of a point on the Cartesian plane is called the
abscissa, and the dependent-variable coordinate {usually y) is called the ordi-
nate. The point (0,0) is called the origin.
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Fig. 1-2. Two points, plotted in rectangular coordinates.

In Fig. 1-2, two points are shown, one with an abscissa of 3.5 and an
ordinate of 5.0, and the other with an abscissa of —5.2 and an ordinate of
—4.7.

RELATIONS

Mathematical relationships, technically called refations, between two vari-
ables x and y can be written in such a way that y is expressed in terms of
x. The following are some examples of relations denoted in this form:

y=2>5
y=x+1
y=2x
y=x

SOME SIMPLE GRAPHS

Figure 1-3 shows how the graphs of the above equations look on the
Cartesian plane. Mathematicians and scientists call such graphs curves,
even if they are straight lines.
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y
A
6

Fig. 1-3.  Graphs of four simple functions. See text for details.

The graph of y = 5 (curve A) is a horizontal line passing through the point
{0,5) on the y axis. The graph of y = x + | (curve B) is a straight line that
ramps upward at a 457 angle (from left to right) and passes through the point
(0,1) on the y axis. The graph of y = 2x (curve C) is a straight line that ramps
upward more steeply, and that passes through the origin. The graph of y = ¥
{curve D) is known as a parabola. In this case the parabola rests on the origin,
opens upward, and is symmetrical with respect to the y axis.

RELATIONS VS FUNCTIONS

All of the relations graphed in Fig. 1-3 have something in common. For every
abscissa, each relation contains at most one ordinate. Never does a curve
portray two or more ordinates for a single abscissa, although one of them
{(the parabola, curve D) has two abscissas for all positive ordinates.

A mathematical relation in which every abscissa corresponds to at most
one ordinate is called a function. All of the curves shown in Fig. 1-3 arc
araphs of functions of y in terms of x. In addition, curves A, B, and C
show functions of x in terms of y (if we want to ““go non-standard’™ and
consider y as the independent variable and x as the dependent variable).

Curve D does not represent a function of x in terms of y. If x is considered
the dependent variable, then there are sonmie values of y (that is, some abscis-
sas) for which there exist two values of x (ordinates).
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PROBLEM 1-1

Suppose a certain relation has a graph that looks like a circle. Is this a
function of y in termis of x? Is it a function of x in terms of y?

SOLUTION 1-1

The answer is no in both cases. Figure 1-4 shows why. A simple visual “test”
to determine whether or not a given relation is a function 1s to imagine an
infinitely long, straight line parallel to the dependent-variable axis, and that
can be moved back and forth. If the curve ever intersects the line at more
than one point, then the curve is not a function.

Y
yisnota | A
function of x | 8 xlsnota
| function of ¥
-
> x
4 6

Fig. 1-4. TIllustration for Problems 1-1 and 1-2.

A “vertical line™ (parallel to the y axis) test can be used to determine
whether or not the circle is a function of the form y — f{x), meaning “yisa
function of x.”” Obviously, the answer is no, because there are some positions
of the line for which the line intersects the circle at two points.

A “horizontal line™ (parallel to the x axis) test can be used to determine if
the circle is a function of the form x = f{y), meaning “x is a function of y.”
Again the answer is no; there are some positions of the line for which the line
intersects the circle twice.

PROBLEM 1-2

How could the circle as shown in Fig. 1-4 be modified to become a function
of y in terms of x?
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SOLUTION 1-2

Part of the circle must be removed, such that the resulting curve passes the
“vertical line” test. For example, either the upper or the lower semicircle can
be taken away, and the resulting graph will denote y as a function of x. But
these are not the only ways to modify the circle to get a graph of a function.
There are infinitely many ways in which the circle can be partially removed or
broken up in order to get a graph of a function. Use your imagination!

Circles in the Plane

Circles are not technically functions as represented in the Cartesian coordi-
nate system, but they are often encountered in mathematics and science. They
are defined by equations in which either x or y can be considered the depen-
dent variable.

EQUATION OF A CIRCLE

The equation that represents a circle depends on the radius of the circle, and
also on the location of its center point.

Suppose r is the radius of a circle, expressed in arbitrary units. Imagine
that the center point of the circle in Cartesian coordinates is located at the
point x = @ and y = b, represented by the ordered pair (a,h). Then the
equation of that circle looks like this:

(x—a) +(y—h)¥ =+

If the center of the circle happens to be at the origin, that is, at (0,0) on the
coordinate plane, then the general equation is simpler:

THE UNIT CIRCLE
Consider a circle in rectangular coordinates with the following equation:

This is called the wnit cirele because its radius is one unit, and it is centered at
the origin {0,0). This circle 1s significant, because it gives us a simple basis to
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define the common trigonometric functions, which are called circular func-
tions. We'll define these shortly.

IT'S GREEK TO US

In geometry, and especially in trigonometry, mathematicians and scientists
have acquired the habit of using Greek letters to represent angles. The most
common symbol for this purpose is an italicized, lowercase Greck theta
{pronounced “THAY-wh™). It looks like a numeral zero leaning to the
right, with a horizontal line through it {(0).

When writing about two different angles, a second Greek letter is used
along with 6. Most often, it is the italicized, lowercase letter phi {(pronounced
“fie’” or “fee’). It looks like a lowercase English letter o leaning to the right,
with a forward slash through it {¢). You should get used to these symbols,
because if you have anything to do with engineering and science, vou're going
to find them often.

Sometimes the italic, lowercase Greek alpha (“*AL-fuh™), beta (“BAY-
tuh™), and gamma (“GAM-uh™) are used to represent angles. These,
respectively, look like this: «, 8, y. When things get messy and there are
a lot of angles to talk about, numeric subscripts are sometinies used with
Greek letters, so don’t be surprised if you see angles denoted ¢, 6,, 05, and
50 on.

RADIANS

Imagine two rays emanating outward from the center point of a circle. The
rays each intersect the circle at a point. Call these points P and (2. Suppose
the distance between P and {2, as measured along the arc of the circle, is equal
to the radius of the circle. Then the measure of the angle between the rays is
one radian {1 rad).

There are 27 rad in a full circle, where 7 {the lowercase, non-italic Greek
letter pi, pronounced “pie”) stands for the ratio of a circle’s circumference to
its diameter. The value of 7 15 approximately 3.14159265359, often rounded
off to 3.14159 or 3.14. A quarter circle is /2 rad, a half circle is 7w rad, and a
three-quarter circle is 37/2 rad. Mathematicians generally prefer the radian
when working with trigonometric functions, and the “rad™ is left out. So if
you see something like #; = n/4, you know the angle ¢, 15 expressed in
radians.
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DEGREES, MINUTES, SECONDS

The angular degree (7), also called the degree of are, is the unit of angular
measure most familiar to lay people. One degree (17) is 1/360 of a full circle.
An angle of 907 represents a quarter circle, 1807 represents a half circle, 2707
represents a three-quarter circle, and 360° represents a full circle. A right
angle has a measure of 907, an acute angle has a measure of more than 0”
but less than 907, and an obtuse angle has a measure of more than 90° but
less than 180",

To denote the measures of tiny angles, or to precisely denote the measures
of angles in general, smaller units are used. One minute of arc or arc minute,
symbolized by an apostrophe or accent (') or abbreviated as m or min, is 1/60
of a degree. One secand of arc or arc secand, symbolized by a closing quota-
tion mark (') or abbreviated as s or sec, is 1/60 of an arc minute or 1/3600 of
a degree. An example of an angle in this notation is 30° 15" 0", which denotes
30 degrees, 15 minutes, 0 seconds.

Alternatively, fractions of a degree can be denoted in decimal form. You
might see, for example, 30.25". This is the same as 30° 15" 0”. Decimal
fractions of degrees are easier to work with than the minute/second scheme
when angles must be added and subtracted, or when using a conventional
calculator to work out trigonometry problems. Nevertheless, the minute/
second system, like the English system of measurements, remains in wide-
spread use.

PROBLEM 1-3
A text discussion tells vou that #; = 7/4. What is the measure of #; in degrecs?

SOLUTION 1-3
There are 27 rad in a full circle of 360", The value 7/4 is equal to 1/8 of 2x.
Therefore, the angle ¢, is 1/8 of a full circle, or 45°.

PROBLEM 14

Suppose your town is listed in an almanac as being at 40° 20’ north latitude
and 93" 48" west longitude. What are these values in decimal form? Express
vour answers to two decimal places.

SOLUTION 14

There are 60 minutes of arc in one degree. To calculate the latitude, note that
207 = (20/60)° = 0.337; that means the latitude is 40.33" north. To calculate
the longitude, note that 48" — (48/60)" = 0.80"; that means the longitude is
93,80 west.
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Primary Circular Functions

Consider a circle in rectangular coordinates with the following equation:
X+ =1

This equation, as defined earlier in this chapter, represents the unit circle. Let
@ be an angle whose apex is at the origin, and that is measured counter-
clockwise from the x axis, as shown in Fig. 1-5. Suppose this angle corre-
sponds to a ray that intersects the unit circle at some point £ = {xp,)). We
can define three basic trigonometric functions, called circular functions, of
the angle # in a simple and clegant way.

Unit
circle |l

15 -

Fig. 1-5.  The unit circle is the basis for the tdgonometric funclions.

THE SINE FUNCTION

The ray from the origin (point () passing outward through point P can be
called ray OP. Imagine ray OF pointing right along the x axis, and then
starting to rotate counterclockwise on its end point O, as if point O is a
mechanical bearing. The point P, represented by coordinates (xp,)p), there-
fore revolves around point O, following the perimeter of the unit circle.
Imagine what happens to the value of y, {the ordinate of point P) during
one complete revolution of ray OF. The ordinate of P starts out at y; = 0,
then increases until it reaches yy = 1 after P has gone 90" or 7/2 rad around
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the circle (¢ = 907 = 7/2). After that, yy begins to decrease, getting back to yq
= 0 when P has gone 180 or 7 rad around the circle (¢ = 180" = 7). As P
continues on its counterclockwise trek, yo keeps decreasing until, at & = 270
= 37/2, the value of y, reaches its minimum of —1. After that, the value of y,
rises again until, when £ has gone completely around the circle. it returns to
vy = 0 for 6 = 360" = 2n.

The value of y; is defined as the sine of the angle 6. The sine function is
abbreviated sin, so we can state this simple equation:

sin @ = y

CIRCULAR MOTION

Suppose you swing a glowing ball around and around at the end of a string,
at a rate of one revolution per second. The ball describes a circle in space
(Fig. 1-6A). Imagine that you make the ball orbit around your head so it 18
always at the same level above the ground or the floor; that is, so that it takes
a path that lies in a horizontal plane. Suppose you do this in a dark gym-
nasium. If a friend stands several meters away, with his or her eyes right in
the plane of the ball’s orbit, what will vour friend see?

" You Ball
Top view /
\. String &
/Ball
. B . T H
Side view

Fig. 1-6. Orbiling ball and string. At A, as seen from above; at B, as seen edge-on.

Close your eyes and use your imagination. You should be able to envision
that the ball, seen from a few mieters away, will appear to oscillate back and
forth in a straight line {Fig. 1-6B). It 1s an illusion: the glowing dot seems to
move toward the right, slow down, then stop and reverse its direction, going
back toward the left. It moves faster and faster, then slower again, reaching
its left-most point, at which it stops and turns around again. This goes on and
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on, at the rate of one complete cycle per second, because you are swinging the
ball around at one revolution per second.

THE SINE WAVE

If vou graph the position of the ball, as seen by vour friend, with respect to
time, the result is a sine wave (Fig. 1-7), which is a graphical plot of a sine
function. Some sine waves are “taller” than others {corresponding to a longer
string), some are “‘stretched out™ {corresponding to a slower rate of rotation),
and some are “‘squashed” (corresponding to a faster rate of rotation). But the
characteristic shape of the wave is the same in every case. When the ampli-
tude and the wavelength are multiplied and divided by the appropriate
numbers (or constants), any sine wave can be made to fit exactly along the
curve of any other sine wave.

Left
-~ -~
AN AN
’ N ’ N
= / \ ’ \
E ’ \ ‘ \
V; \ 1 \
w ’ \ ’ \
o ’ \ ’ \
5t y / \—>» Time
= \ ’
T \ )
b \ ’
a \ /
\ ’
\ ’
i ~ 4
s
Right

Fig. 1-7. Position of orbiting ball as seen edge-on, as a function of 1ime.

You can whirl the ball around faster or slower than one revolution per
second. The string can be made longer or shorter. These adjustments alter the
height andjor the frequency of the sine wave graphed in Fig. 1-7. But the
fundamental rule always applies: the sine wave can be reduced to circular
motion. Conversely, circular motion in the (x,y) plane can be defined in terms
of a general formula:

y=a sin bt

where @ is a constant that depends on the radius of the circle, and b is a
constant that depends on the revolution rate.
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THE COSINE FUNCTION

Look again at Fig. 1-5. Imagine, once again, a ray from the origin outward
through point P on the circle, pointing right along the x axis, and then
rotating in a counterclockwise direction.

What happens to the value of xp (the abscissa of point P) during one
complete revolution of the ray? The abscissa of P starts out at x5 = 1,
then decreases until it reaches xy = 0 when 8 = 907 = 7/2. After that, x,
continues to decrease, getting down to x5 — —1 when # = 180" = 7. As P
continues counterclockwise around the circle, xp begins to increase again; at 0
= 270" = 3x7/2, the value gets back up to xo = 0. After that, x; increases
further unt1l_. \\'hen P has gone completely around the circle, it returns to xp =
| for 6 = 3607 =2

The value of xp is defined as the casine of the angle &. The cosine function is
abbreviated cos. So we can write this;

cos = x

THE TANGENT FUNCTION

Once again, refer to Fig. 1-5. The tangent {abbreviated tan) of an angle # 13
defined using the same ray O P and the same point P = (x,,vp) as is done with
the sine and cosine functions. The definition is:

tan @ = yu/xp

Because we already know that sin # = y, and cos # = x;, we can express the
tangent function in terms of the sine and the cosine:

tan @ = sin 6/cos @

This function is interesting because, unlike the sine and cosine functions, it
“blows up™ at certain values of 6. Whenever xp = 0, the denominator of
either quotient above becomes zero. Division by zero is not defined, and that
means the tangent function is not defined for any angle ¢ such that cos 6 = 0.
Such angles are all the odd multiples of 90~ (7/2 rad).

PROBLEM 1-5
What is tan 4577 Do not perform any calculations. You should be able to
infer this without having to write down a single numeral.

SOLUTION 1-5

Draw a diagram of a unit circle, such as the one in Fig. 1-5, and place ray
OFP such that it subtends an angle of 45° with respect to the x axis. That



angle 1s the angle of which we want to find the tangent. Note that the ray
0P also subtends an angle of 457 with respect to the y axis, because the x
and y axes are perpendicular {(they are oriented at 90" with respect to each
other), and 45" is exactly half of 90", Every point on the ray OP is equally
distant from the x and y axes; this includes the point {xp,rp). It follows that
Xg = Vp, and neither of them is equal to zero. From this, we can conclude

that yo/xp = 1. According to the definition of the tangent function, there-
fore, tan 45" = 1.

Secondary Circular Functions

The three functions defined above form the cornerstone for the whole branch
of practical mathematics commonly called trigonometry. However, three
more circular functions exist. Their values represent the reciprocals of the
values of the preceding three functions. To understand the definitions of these
functions, look again at Fig. 1-5.

THE COSECANT FUNCTION

Imagine the ray OP, sublending an angle 6 with respect to the x axis, and
emanating out from the origin and intersecting the unit circle at the point P =
{xp,20)- The reciprocal of the ordinate, that is, 1/yg, is defined as the cosecant
of the angle 8. The cosecant function is abbreviated csc, so we can state this
simple equation:

csc =17y,

This function is the reciprocal of the sine function. That is to say, for any
angle 9, the following equation is always true as long as sin # is not equal to
Zero:

cse 0 = 1/(sin )

The cosecant function is not defined for 0° (0 rad), or for any multiple of 180
{m rad). This is because the sine of any such angle is equal to 0, which would
mean that the cosecant would have to be equal to 1/0. But we can’t do
anything with a quotient in which the denominator is 0. (Resist the tempta-
tion to call it “infinity™!)
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THE SECANT FUNCTION

Keeping the same vision in mind, consider 1/xy. This is defined as the secant
of the angle #. The secant function is abbreviated sec, so we can define it like
this:
sec 0 =1/x

The secant of any angle 1s the reciprocal of the cosine of that angle. That is,
as long as cos ¢ 1s not equal to zero:

sec 0 = 1/{cos &)
The secant function is not defined for 90° (/2 rad), or for any odd multiple
thereof.

THE COTANGENT FUNCTION

There's one more circular function to go. You can guess it by elimination;
xo/ve. It is called the corangent function, abbreviated cot. For any ray
anchored at the origin and crossing the unit circle at an angle ¢:

col &= .\fg/)"o
Because we already know that sin @ = y, and cos 6 = xp, we can express the
cotangent function in terms of the sine and the cosine:
col & = cos #/sin 6
The cotangent function is the reciprocal of the tangent function:
col ¢ = 1/tan 0

This function, like the tangent function, “blows up’ at certain values of #.
Whenever y, = 0, the denominator of either quotient above becomes zero,

and the cotangent function is not defined. This occurs at all integer multiples
of 180~ (mr rad).

CONVENTIONAL ANGLES

Once in a while you will hear or read about an angle whose measure is
ncgative, or whose measure is 360" (27 rad) or more. In triconomnetry, any
such angle can always be reduced to something that is at least 0° {0 rad), but
less than 360" (27 rad). If you look at Fig. 1-5 one more time, you should be
able to see why this is true. Even if the ray O P makes more than one complete
revolution counterclockwise from the x axis, or if it turns clockwise instead,



its orientation can always be defined by some counterclockwise angle of least
(" (0 rad) but less than 360" (27 rad) relative to the x axis.

Any angle ¢ of the non-standard sort, like 730" or —9x/4 rad, can be
reduced to an angle # that is at least 0 (0 rad) but less than 360" (27 rad)
by adding or subtracting some whole-number multiple of 360" (27 rad).

Multiple revolutions of objects, while not usually significant in pure trigo-
nometry, are sometimes important in physics and engineering. We don’t have
to worry about whether a vector pointing along the positive y axis has under-
gone 0.25, 1.25, or 101.25 revolutions counterclockwise, or 0.75, 2.75, or
202.75 revolutions clockwise. But scientists must sometimes deal with things
like this, and when that happens, non-standard angles such as 36,450° must
be expressed in that form.

VALUES OF CIRCULAR FUNCTIONS

Now that you know how the circular functions are defined, you might won-
der how the values are calculated. The answer: with an electronic calculator!
Most personal computers have a calculator program built into the operating
system. You might have to dig around in the operating system folders to find
it, but once you do, you can put a shortcut to it on your computer’s desktop.
Use the calculator in the “scientific” mode.

The values of the sine and cosine function never get smaller than —1 or
larger than 1. The values of other functions can vary wildly. Put a few
numbers into your calculator and see what happens when you apply the
circular functions to them. Pay attention to whether you're using degrees
or radians. When the value of a function “blows up” (the denominator in
the unit-circle equation defining it becomes zero), you’ll get an error message
on the calculator.

PROBLEM 1-6

Use a portable scientific calculator, or the calculator program in a personal
computer, to find all six circular functions of 66°. Round your answers ofl to
three decimal places. If your calculator does not have keys for the cosecant
{csc), secant (sec), or cotangent {cot) functions, first find the sine {sin), cosine
{cos), and tangent {tan) respectively, then find the reciprocal, and finally
round off your answer to three decimal places.

SOLUTION 1-6
You should get the following results. Be sure your calculator is set to work
with degrees, not radians.
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Quiz

sin 660" =0.914
cos 66" = 0.407
tan 66" = 2.246
csc 667 = 1/(sin 667) = 1.095
sec 66" = 1/(cos 667y = 2.459
col 66 = 1/{lan 667) = (.445

Refer to the text in this chapter if necessary. A good score is cight correct.
Answers are in the back of the book.

L.

R

A relation has the equation x* — y* = 16. The graph of this relation, in
Carlesian coordinates, looks like

(a) a straight line

{b) a parabola

{(c) a spiral

(d) a circle

The value of tan 907 1s
(a) 0

(b) 1

{c) =

{d) not defined

Which of the following statements is true?
(a) tan & = 1 / cot A, provided cot 6 £ 0
(b) tan & = 1 - cos #, provided cos 7 £ 0
(c) tan & = | + sin 6, provided sin 8 £ 0
(d) tan 6 + cot ¥ = 0, provided cot # £ 0 and tan 0 £ 0

With regard to the circular functions, an angle of 57 rad can be con-
sidered the same as an angle of

{a) 0”

{b) 90°

{c) 180r

{d) 2707
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5. An ordinate is
{a) the value of a dependent variable
(b) the value of an independent variable
(¢) a relation
(d) a function

6. The sine of (7 is the same as the sine of
(a) 45
(b) 90
(c) 180"
(d) 270~

7. Suppose the tangent of a certain angle is —1.0000, and its cosine is
—0.7071, approximated to four decimal places. The sine of this angle,
approximated to four decimal places, is

{a) 1.0000
(b) 0.7071
{c) 0.7071
(d) 0.0000

8. What is the approximate measure of the angle described in Question 7?
(a) 07
(b) 90~
{c) 1807
(d) None of the above

9. Set your scientific calculator, or the calculator program in your coni-
puter, to indicate radians. Activate the inverse-function key (in
Windows, put a checkmark in the box labeled “Inv’"). Be sure the
calculator is set to work with decimal numbers {(in Windows, put a
dot or a check in the space labeled “Dec™). Next, find the difference
1 — 2 using a calculator, so it displays —1. Then hit the *‘cos™ function
key, thereby finding the measure of the angle, in radians, whose cosine
is equal to —1. The resulting number on the display is an excellent
approximation of
(a) =/2
(b) =
(c) 3x/2
(d) 2z

10. Use your scientific calculator, or the calculator program in your com-
puter, to find the cosine of 1.6x rad (that is, 87/5 rad). Rounding the
answer to two decimal places, you should get
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{a) an error or an extremely large number
{b) 0.95

©) -0.31
(d) 0.31



CHAPTER

A Flurry of Facts

Trigonometry involves countless relationships among lines, angles, and dis-
tances. It seems that each situation has its own function or formula. Throw in
the Gireek symbology, and things can look scary. But all complicated struc-
tures are built using simple blocks, and difficult problems can be unraveled
{or concocled, if you like) using circular trigonometric functions.

The Right Triangle Model

In the previous chapter, we defined the six circular functions sine, cosine,
tangent, cosecant, secant, and cotangent in terms of points on a circle.
There is another way to define these functions: the right-triangle model.

TRIANGLE AND ANGLE NOTATION

In geometry, it is customary to denote triangles by writing an uppercase
Greek letter delta { A) followed by the names of the three points representing
the corners, or vertices, of the triangle. For example, if P, 2, and R are the

—— @
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names of three points, then /A POR is the triangle formed by connecting these
points with straight line segments. We read this as “triangle POR.”

Angles are denoted by writing the symbol / {which resembles an extremely
italicized, uppercase English letter L without serifs) followed by the names of
three points that uniquely determiine the angle. This scheme lets us specify the
extent and position of the angle, and also the rotational sense in which it is
expressed. For example, if there are three points P, O, and R, then /PQOR
(read “angle PQR”) has the same measure as /RQP, but in the opposite
direction. The middle point, { in either case, is the vertex of the angle.

The rotational sense in which an angle is measured can be significant in
physics, astronomy, and engineering, and also when working in coordinate
systems. In the Cartesian plane, angles measured counterclockwise are con-
sidered positive by convention, while angles measured clockwise are consid-
ered negative. If we have /PQOR that measures 307 around a circle in
Cartesian coordinates, then /RQP measures —30°, which is the equivalent
of 3307, The cosines of these (wo angles happen to be the same, but the sines
differ.

RATIOS OF SIDES

Consider a right triangle defined by points P, . and R, as shown in Fig.
2-1. Suppose that /QPR is a right angle, so APQOR is a right triangle. Let d
be the length of line segment O F, e be the length of line segment PR, and f
be the length of line seement (R. Let 6 be /POR, the angle measured
counterclockwise between line segments QP and QR. The six circular tri-
gonometric functions can be defined as ratios between the lengths of the
sides, as follows:

sin 6 =e/f
cos B =d/f
tan 6 =e¢/fd
cse 0 = f/e
sec ¢ = f/d
col #=dje

The longest side of a right triangle is always opposite the 90" angle, and is
called the Aypotenuse. In Fig. 2-1, this is the side QR whose length is f. The
other two sides are called adjacent sides because they are both adjacent to the
right angle.
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o
Q d P
Fig. 2-1. The right-triangle medel for defining trigonometric functions. All right triangles
obey the theorem of Pythagoras.

SUM OF ANGLE MEASURES

In any triangle, the sum of the measures of the interior angles is 1807 (7 rad).
This holds true whether it is a right triangle or not, as long as all the angles
are measured in the plane defined by the three vertices of the triangle.

THEOREM OF PYTHAGORAS

Suppose we have a right triangle defined by points P, (2, and R whose sides
have lengths ¢, e, and f as shown in Fig. 2-1. Then the following equation is
always true;

d*t+et = f*

The converse of this is also true: If there is a triangle whose sides have lengths
¢, e, and f, and the above equation is true, then that triangle is a right
triangle. This 1s known as the theorem of Pythageras (named after the math-
ematician who supposedly first discovered it, thousands of years ago). It is
also called the Pythagorean thearemn.

If you want to avoid symbology, you can state the Pythagorean theorem
like this: ““The square of the length of the hypotenuse of any right triangle is
equal to the sum of the squares of the lengths of the other two sides.”” There's
one important condition, however. This holds true only in Euclidean geome-
try, when the triangle is defined in a perfectly “flat” plane. It does not hold
for triangles on, say, the surface of a sphere. We are dealing only with
Euclidean geometry now, and will not concern ourselves with the idiosyn-
crasies of nan-Euclidean situations. That little extra bit of fun is reserved for
the last chapter in this book.
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RANGE OF ANGLES

In the right-triangle model, the values of the circular functions are defined
only for angles between (but in some cases not including) 0° and 90° (0 rad
and /2 rad). All angles outside this range are better dealt with using the unit-
circle model. This is the main shortcoming of the right-triangle model. In the
olden days, trigonometry was often taught using the triangle model first,
perhaps for the benefit of people who did not understand graphs. But now-
adays, when graphs appear on web sites from St. Paul to Sydney, most people
are familiar with them.

Using the right-triangle scheme, a trigonometric function is not defined
whenever the denominator in its “‘side ratio” {according to the formulas
above) is equal to zero. The length of the hypotenuse (side /) is never zero,
but if a right triangle is “squashed” or “squeezed’ flat either horizontally or
vertically, then the length of one of the adjacent sides (¢ or ¢) can beconie
zero. Such objects aren’t triangles in the strict sense, because they have only
two vertices rather than three two of the vertex points merge into one but
some people like to include them, in order to take into account angles of
(0 rad) and 90" (z/2 rad).

Geometric purists insist that the right-triangle model can apply only for
true triangles, and therefore only to angles ¢ such that ( < 6 < 907, exclud-
ing the angles 07 and 90°. In this sense, the purist is likely to agree with the
real-world scientist, who has little interest in 07 angles or “ratios™ that have
zero in their denominators.

PROBLEM 2-1
Suppose there is a triangle whose sides are 3, 4, and 5 units, respectively.
What is the sine of the angle ¢ opposite the side that measures 3 units?

SOLUTION 2-1
If we are to use the right-triangle model to solve this problem, we must first
be certain that a triangle with sides of 3, 4, and 5 units is a right triangle.
Otherwise, the scheme won't work. We can test for this by seeing if the
Pythagorean theorem applies. If this triangle is a right triangle, then the
side measuring 5 units is the hypotenuse, and we should find that 37 — 4°
=5 Checking, we see that 3° = 9and 4° = 16. Therefore, 3° +4° =9 + 16 =
25, which is equal to 5% It’s a right triangle, all right!

It helps to draw a picture here, after the fashion of Fig. 2-1. Put the angle
, which we are analyzing, at lower left {corresponding to the vertex point ().

—1

Label the hypotenuse f = 5. Now we must figure out which of the other sides
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shiould be called «, and which should be called e. We want to find the sine of

the angle opposite the side whose length is 3 units, and this angle, in Fig. 2-1,

is opposite side PR, whose length is equal to e. So we set ¢ = 3. That leaves us

with no other choice for d than to set & = 4.

According to the formulas above, the sine of the angle in question is equal
to e/f. In this case, that means sin # = 3/5 = 0.6.

PROBLEM 2-2
What are the values of the other five circular functions for the angle ¢ as
defined in Problem 2-17

SOLUTION 2-2
Simiply plug numbers into the formulas given above, representing the ratios
of the lengths of sides in the right triangle;

cos 0 =d/f =4/5 =038

tan 0 =e/d =3/4 =0.75
csc 0= f/e=5/3=1.67
sec 0 =f/d=5/4=1.25
cot @ =dje=4/3= 133

SQUIGGLY OR STRAIGHT?

You will notice a new symbol in the above solution: the squiggly equals sign
{=). This reads “is approximately equal to.” It is used by some scientists and
mathematicians when working with decimal numbers thal are approxima-
tions of the actual numerical values. It is also used when instrument readings
are known to contain some error.

There is a lot of carelessness when it comes to the use of the squiggly equals
sign. The straight equals sign (=) 1s often used even when, if one is to be
rigorous, the squiggly equals sign ought to be used. But the reverse situation
is not encountered in pure mathematics. You will never see a mathematician
seriously write, for example, 5 + 3 & §, although a technician might be able to
gct away with it if the numbers are based on instrument readings. Henceforth,
we won't concern ourselves with the occasionally strained relationship
between these two symbols. We will use the straight equals sign throughout,
even when stating approximations or rounded-off values.
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®‘
Pythagorean Extras

The theorem of Pythagoras can be extended to cover two important facts
involving the circular trigonometric functions. These are worth remembering.

PYTHAGOREAN THEOREM FOR SINE AND COSINE

The sum of the squares of the sine and cosine of an angle is always equal to 1.
The following formula holds:

. el

sin? 6 4cos’ #=1
. s 2 ‘ .

The expression sin” 6 refers to the sine of the angle, squared {not the sine of
the square of the angle). That 15 to say:

sin? § = (sin 0)*

The same holds true for the cosine, tangent, cosecant, secant, cotangent, and
for all other similar expressions vou will see in the rest of this book.

PYTHAGOREAN THEOREM FOR SECANT AND TANGENT

The difference between the squares of the secant and tangent of an angle 18
always equal to either 1 or —1. The following formulas apply for all angles
excepl & = 90" (n/2 rad) and 0 = 270" (3x/2 rad):

sec” 0 — (an‘ g = 1

tan® 0 — sec’f = —1

USE YOUR CALCULATOR!

Trigonometry is a branch of mathematics with extensive applications. You
should not be shy about using a calculator to help solve problems. (Neither
should you feel compelled to use a calculator if you can easily solve a
problem without one.)

PROBLEM 2-3

Use a drawing of the unit circle to help show why it is true that sin® 6 4 cos* ¢
= 1 for angles # greater than 07 and less than 907, (Hint: a right triangle is
involved.)
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SOLUTION 2-3

Figure 2-2 shows a drawing of the unit circle, with the angle ¢ defined coun-
terclockwise between the x axis and a ray emanating from the origin. When
the angle is greater than 07 but less than 907, a right trnangle is fornied, with a
segment of the ray as the hypotenuse. The length of this segment is equal to
the radius of the unit circle, and this radius, by definition, is | unit. According
to the Pythagorean theorem for right triangles, the square of the length of the
hypotenuse is equal to the sum of the squares of the lengths of the other two
sides. It is casy to see from Fig. 2-2 that the lengths of these other two sides
are sin ¢ and cos . Therefore

3
P4

(sin 0)% + (cos 6)* =1

. . . . 2
which is the same as saying that sin® ¢ + cos” ¢ = 1.

Fig. 2-2. Illustration for Problem 2-3.

PROBLEM 24

Use another drawing of the unit circle to help show why it is true that sin” & +
cos® # = 1 for angles ¢ greater than 270" and less than 360°. (Hint: this range
of angles can be thought of as the range belween, but not including, —90°
and (7))

SOLUTION 24

Figure 2-3 shows how this can be done. Draw a mirror image of Fig. 2-2,
with the angle ¢ defined clockwise instead of counterclockwise. Again we
have a right triangle; and this triangle, like all right triangles, must obey
the Pythagorean theorem.
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Unit
circle

Length =
1 unit

Fig. 2-3. Illustration for Problem 2-4.

Identities

The following paragraphs depict common trigonometric identities for the
circular functions. Unless otherwise specified, these formulas apply to angles
f and ¢ in the standard range, as follows:

Orad <6 < 2mrad
07 =<0 < 360°
Orad < ¢ < 2n rad

< ¢ < 3607

Angles outside the standard range are converted to values within the
standard range by adding or subtracting the appropriate multiple of 360~
(27 rad). You might occasionally hear of an angle with negative measure or
with a measure of more than 360" (2x rad), but this can always be converted
to some angle with positive measure that is at least zero but less than 360°
{27 rad).

AN ENCOURAGING WORD

When you look at the next few paragraphs and see one equation afler
another, peppered with Greek symbols, exponents, and parentheses, don’t
let them intimidate vou. All vou have to do when working with them is



substitute numbers for the angles, and work through the formulas with a
calculator. You are not expected to memorize these formulas. They are here
for your reference. If you ever need one of these identities, you can refer back
to this chapter and look it up!

Trigonometric identities can be useful in solving complicated angle/
distance problems in the real world, because they allow the substitution of
“clean™ expressions for “messy” ones. It’s a lot like computer programming.
There are many ways to get a compulter to perform a specific task, but one
scheme is always more efficient than any of the others. Trigonometric iden-
tities are intended to help scientists and engineers minimize the number of
calculations necessary to get a desired result. This in turn minimizes the
opportunity for errors in the calculations. As any scientist knows, the chance
that a mistake will be made goes up in proportion to the number of arith-
metic computations required to solve a problem.

SINE OF NEGATIVE ANGLE

The sine of the negative of an angle {an angle measured in the direction
opposite to the normal direction) is equal to the negative (additive inverse)
of the sine of the angle. The following formula holds:

sin —f = —sin @

COSINE OF NEGATIVE ANGLE

The cosine of the negative of an angle is equal to the cosine of the angle. The
following formula holds:

cos —f# = cos

TANGENT OF NEGATIVE ANGLE

The tangent of the negative of an angle is equal to the negative (additive
inverse) of the tangent of the angle. The following formula applies for all
angles excepl 0 = 90 (x/2 rad) and ¢ = 270" (372 rad):

tan —0@ = —tan ¢
PROBLEM 2-5

Why does the above formula not work when ¢ = 90" {z/2 rad) or ¢ = 270"
(37/2 rad)?
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SOLUTION 2-5

The value of the tangent function is not defined for those angles. Remember
that the tangent of any angle is equal to the sine divided by the cosine. The
cosine of 90 {z/2 rad) and the cosine of 270" (3x7/2 rad) arc both equal to
zero. When a quotient has zero in the denominator, that quotient is not
defined. This is also the reason for the restrictions on the angle measures
in some of the equations that follow.

COSECANT OF NEGATIVE ANGLE

The cosecant of the negative of an angle is equal to the negative (additive
verse) of the cosecant of the angle. The following formula applies for all
angles except # = 07 (0 rad) and # = 180" (z rad):

cs¢ —f) = —c¢se #

SECANT OF NEGATIVE ANGLE

The secant of the negative of an angle is equal to the secant of the angle. The
following formula applies for all angles except & = 90" (=/2 rad) and 6 = 270"
(37/2 rad):

sec —f = sec ¢

COTANGENT OF NEGATIVE ANGLE

The cotangent of the negative of an angle is equal to the negative (additive
inverse) of the cotangent of the angle. The following formula applies for all
angles except # = 07 (0 rad) and # = 180 (x rad):

cot —f = —cot &

SINE OF DOUBLE ANGLE

The sine of twice any given angle 1s equal to twice the sine of the original
angle times the cosine of the original angle:

sin 26 =2 sin & cos ¢
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—
COSINE OF DOUBLE ANGLE

The cosine of twice any given angle can be found according to either of the
following:

2

cos 20 =1 —(2 sin” &)

cos 268 = (2 cos” 4y —1

SINE OF ANGULAR SUM

The sine of the sum of two angles # and ¢ can be found using this formula:

sin (& + ¢) = (sin B)cos ¢) + (cos H)sin ¢)

COSINE OF ANGULAR SUM

The cosine of the sum of two angles ¢ and ¢ can be found using this formula:

cos {f + ¢) = (cos B)(cos ¢) — (sin O)sin ¢)

SINE OF ANGULAR DIFFERENCE

The sine of the difference between two angles # and ¢ can be found using this
formula:

sin (6 — ¢) = (sin @)cos ¢) — (cos A)sin ¢)

COSINE OF ANGULAR DIFFERENCE

The cosine of the difference between two angles 0 and ¢ can be found using
this formula:

cos (6 — ¢) = {cos 6){(cos ¢) +(sin G)sin ¢)

That's enough fact-stating for now. Some of these expressions look messy,
but they involve nothing more than addition, subtraction, multiplication,
division, squaring, and taking the square roots of numbers you work out
on a calculator.
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PRECEDENCE OF OPERATIONS

When various operations and functions appear in an expression that you
want to solve or simplify, there is a well-defined protocol to follow. If vou
have trouble comprehending the sequence in which operations should be
performed, use a pencil and scratch paper to write down the numbers derived
by performing functions on variables; then add, subtract, multiply, divide, or
whatever, according to the following rules of precedence.

Simplify all expressions within parentheses from the inside out
Perform all exponential operations, proceeding from left to right
Perform all products and quotients, proceeding from left to right
Perform all sums and differences, proceeding from left to right

Here are a couple of examples of this process, in which the order of the
numerals and operations 1s the same in each case, but the groupings differ.

[(2+3%=3 = 1))
=[5 x (=41
= (5 x 16)
= §0?
= 6400

2+ G x =3 - 1]}’
= [2+(=9) - D
_ (—8Y)?
= 64°
= 4096
PROBLEM 2-6
INustrate, using the unit circle model, examples of the following facts:
sin —@ = —sin ¢
cos —f =cos ¢
SOLUTION 2-6

See Fig. 2-4. This shows an example for an angle @ of approximately 60~ {(7/3
rad). Note that the angle —@ is represented by rotation to the same extent as,
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_\@

—>{ cos -8

Fig. 2-4. Illustration for Problem 2-6.

but in the opposite direction from, the angle #. Generally, positive angles are
represented by counterclockwise rotation from the x axis, and negative angles
are represented by clockwise rotation from the x axis. The ray from the origin
for —# looks like the reflection of the ray for ¢ from a pane of glass that
contains the x axis and is perpendicular to the page. The above identities can
be inferred geometrically from this diagram. The two rays intersect the circle
at points whose y values (representing sines) are negatives of each other, and
whose x values {representing cosines) are the same.

PROBLEM 2-7

Simiplify the expression sin {120° — #). Express coeflicients to three decimal
places.

SOLUTION 2-7

Use the formula for the sine of an angular difference, given above, substitut-
ing 120" for 6 in the formula, and # for ¢ in the formula:

sin{120° — &) = (sin 120" )cos #) — (cos 120°)Ksin )
= (1.866 cos 8 —(—0.500) sin 0
= 0.866 cos 6 +0.500 sin 0
In case you don’t already know this definition, a coefficient 1s a number by

which a variable or function is multiplied. In the answer to this problem, the
coeflicients are 0.866 and 0.500.
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PROBLEM 2-8
Ilustrate, using the unit circle model, examples of the following facts:

sin{ 180" — @) = sin @
cos{180°" — @) = —cos 0

SOLUTION 2-8

See Fig. 2-5. This shows an example for an angle ¢ of approximately 30 (/6
rad). The ray from the origin for 180" — & looks like the reflection of the ray
for # from a pane of glass that contains the y axis and is perpendicular to the
page. The above identities can be inferred geometrically from this diagram.
The two rays intersect the circle at points whose y values (representing sines)
are the same, and whose x values {representing cosines) are negatives of each

other.
¥y
wmedmma 180°- 8
Q~~.
A
sin {180° - 8)
cos (180° — 9} cos

Fig. 2-5. Illustration for Problem 2-8.

Quiz

Refer to the text in this chapter if necessary. A good score is eight correct.
Answers are in the back of the book.
1. Refer to Fig. 2-6. The tangent of /ABC is equal to

{a) the length of line segment AC divided by the length of line segment
AB
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{b) the length of linc scement 4D divided by the length of line segment

BD
{c) the length of line segment A D divided by the length of line segment
AB

(d) no ratio of lengths that can be shown here

1
1
1
1
1
1
1
1
—

¢ D

Fig. 2-6. Tllustration for quiz questions.

2. Refer to Fig. 2-6. Suppose we know that the measure of /BCA 13 507
and the length of line segment A0 is 5.3 units. What is the length of line

seament ACT? Express your answer to one decimal place (that is, the

nearest tenth of a unit). Use a calculator if necessary.

(a) 6.9 units

(b) 8.2 units

(c) 6.3 units

(d) More information is needed to determine the answer

3. Refer again to Fig. 2-6. Suppose we know that the measure of /BCA is
507 and the length of line segment AD is 5.3 units. What is the length of
line seement 4 B? Express your answer to one decimal place {that is, the
nearest tenth of a unit). Use a calculator if necessary.

(a) 6.9 units
(b) 8.2 units
(¢) 6.3 units
(d) More information is needed to determine the answer

4. Suppose we have a right triangle, and the interior vertex angle at one
end of the hypotenuse nieasures 30”7, What is the measure of the interior
vertex angle at the other end of the hypotenuse?

(a) m/3 rad
(b) /4 rad
(c) mj6 rad
(d) More information is needed to determine the answer
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5. Refer again to Fig. 2-6. Suppose we know that line segment 4D is
exactly 2/3 as long as line segment AB. What is the measure of
/DAB? Express your answer to the nearest tenth of a degree. Use a
calculator if necessary.
{a) 33.7°
{b) 41.8°
{c) 48.2°
{d) 56.3°

6. Suppose, in reference to Fig. 2-6, we are told that the measure of /BCA
is 50” and the measure of /4ABC is 38°. We think that the person who
says this must be mistaken because
{a) it would imply that A ABC is a right triangle, which is impossible
(b) it would imply that the measure of /CAD is something other than
407, but it must be 407 to fulfill the rule that the sum of the
measures of the interior angles of any triangle is 180~

{¢) we know that the measure of /4ABC is 407 because /A ABC is an
isosceles triangle

(d) of a rush to judgment! It is entirely possible that the measure of
/BCA is 507 and the measure of /4BC is 38"

7. Suppose you are told that the sine of a certain angle is 0.5299, accurate
to four decimal places, and the cosine of that same angle 1s 0.8480, also
accurate to four decimal places. What is the sine of twice this angle,
accurale to two decimal places? Don’t use the trigonometric function
keys on your calculator to figure this out.

{a) 0.90
{b) 0.45
{c) 1.60
{d) 0.62

8. You are told that the sine of a certain angle is equal to —1.50. You can
surmise from this that
{a) the angle has a measure greater than 7/2 rad but less than = rad
{b) the angle has a measure greater than 7 rad but less than 37/2 rad
{c) the angle has a measure greater than 37,2 rad but less than 27 rad
(d) either you didn’t hear the figure correctly, or else the person who
told it to you is misinformed

9. Suppose there is a triangle whose sides are 6, 8, and 10 units, respec-
tively. What, approximalely, is the tangent of the angle 6 opposite the
side that measures 8 units?
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(a) 0.600
(b) 0.750

(c) 1.333
(d) It 13 not defined

10. Suppose there 1s a triangle whose sides are 6, 8, and 10 units, respec-
tively. What, approximately, is the secant of the angle # opposite the
side that measures 10 units?

{a) 0.600
{b) 0.750
(c) 1.333
(d) It 13 not defined
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i
Graphs and Inverses E

Each circular function relates the value of one variable to the value of
another, and can be plotted as a graph in rectangular coordinates. Each of
the circular functions can be “turned inside-out™: that is, the independent
variable and the dependent variable can be interchanged. This gives rise to
the inverse circular functions. In this chapter, we'll look at the graphs of the
circular functions, and also at the graphs of their inverses.

Graphs of Circular Functions

Now that you have begun to get familiar with the use of Greek letters to
denote angles, we are going to go back to English letters for a while. In
rectangular coordinates, the axes are usually labeled x (for the independent
variable) and y (for the dependent variable). Let’s use x and y instead of ¢
and ¢ as the variables when graphing the circular functions. Let’s also define
the terms dowmain of a function and range of a function.

Dy
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DOMAIN AND RANGE

Suppose f'is a function that maps (or assigns) some or all of the elements
from a set A to some or all of the elements of a set B. Let A* be the set of all
elements in set A for which there 1s a corresponding element in set B. Then A*
is called the domain of /. Let B* be the set of all elements in set B for which
there is a corresponding element in set 4. Then B* is called the range of f.

PROBLEM 3-1

Suppose we take the unit circle, as defined in previous chapters, and cut ofl its
bottom half, but leaving the points {x,v) = (1,0) and {(x,») = (=1,0). This
produces a true mathematical function, as opposed (o a mere relation,
because it ensures that there is never more than one value of y for any
value of x. What 1s the domain of this function?

SOLUTION 3-1
You might want to draw the graph of the unit circle and erase its bottom
half, placing a dot at the point {1,0) and another dot at the point {(—1,0) to
indicate that these points are included in the curve. The domain of this
function is represented by the portion of the x axis for which the function
1s defined. It's easy to see that this is the span of values x such that x is
between —1 and 1, inclusive. Formally, if we call A* the domain of this
function. we can write this:

A" ={x: -1 <x=<1}
The colon means “‘such that,” and the curly brackets are set notation. So this
“mathematese” statement literally reads “4* equals the set of all real num-
bers x such that x is greater than or equal to —1 and less than or equal to 1.”
Sometimes a straight, vertical line is used instead of a colon to mean “such
that,” so it is also acceptable to write the statement like this:

AT ={x-1=<x=<1}

PROBLEM 3-2
What is the range of the function described above?

SOLUTION 3-2

Look at the drawing you made, showing the graph of the function. The range
of this function is represented by the portion of the y axis for which the
function is defined: all the values y such that y is between 0 and 1, inclusive.
Formally, if we call B* the range of this function, we can write

B ={y:0<y<l)
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GRAPH OF SINE FUNCTION

Figure 3-1 is a graph of the function y = sin x for values of the domain
between —5407 and 5407 (- 3z rad and 3x rad). Actually, the domain of the
sine function extends over all possible values of x; it is the entire set of real
numbers. We limit it here because our page is not infinitely wide! The range
of the sine function is limited to values between, and including, —1 and 1.
This curve 15 called a sine wave or sinusoid. 1t 15 significant in electricity,
electronics, acoustics, and optics, because it represents an alternating-current
{a.c.) signal with all of its energy concentrated at a single frequency.

2 1

_3 —

Fip. 3-1. Graph of the sine function for values of x between —3x rad and 3z rad.

GRAPH OF COSINE FUNCTION

Figure 3-2 is a graph of the function y = cos x for values of the domain
between --540° and 540° (-3x rad and 3z rad). As is the case with the sine
function, the domain of the cosine function extends over the whole set of real
numbers. Also like the sine function, the range of the cosine function is
limited to values between, and including, —1 and 1. The shape of the cosine
wave 1s exactly the same as the shape of the sine wave. Like the sine wave, the
cosine wave is sinusoidal. The only difference is that the cosine wave is shifted
horizontally in the graph by 90" (7/2 rad), or Y, cycle, with respect to the sine
wave.
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Fig. 3-2. Graph of the cosine functlion for values of x between -3 rad and 37 rad.

GRAPH OF TANGENT FUNCTION

Figure 3-3 is a graph of the function y = tan x for values of the domain
between -540° and 540" (=37 rad and 37 rad). The range of the tangent
function encompasses the entire set of real numbers. But the domain docs
not! The function “blows up™ for certain specific values of x. The “blow-up
values™ are shown as vertical, dashed lines representing asymptotes. For
values of x where these asymptotes intersect the x axis, the function y =

¥
3 -+

Fig. 3-3.  Graph of the tangent {unction for values of x between --3x rad and 37 rad.
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tan x is undefined. These values, which include all odd integral multiples of
90" {72 rad), are not part of the domain of the tangent function, but all other
real numbers are. The term integral multiple means that the quantity can be

multiplied by any integer, that is, any number in the set {..., -3, -2, —1, 0, 1,
2,3, ...

GRAPH OF COSECANT FUNCTION

Figure 3-4 15 a graph of the function y = csc x for values of the domain
between -5407 and 540" (-3x rad and 3z rad). The range of the cosecant
function encompasses all real numbers greater than or equal to 1, and all real
numbers less than or equal to —1. The open interval representing values of v
between, but not including, —1 and 1 is not part of the range of this function.
The domain includes all real numbers except integral multiples of 180" (7
rad). When x is equal to any integral multiple of 180" {x rad), the cosecant
function “blows up.”

2n 3Iﬂ

Fig. 3-4.  Graph ot the cosecant function tor values of x between —3zr rad and 3z rad.

GRAPH OF SECANT FUNCTION

Figure 3-5 15 a graph of the function y = sec x for values of the domain
between -540° and 5407 (-3z rad and 37 rad). The range of the secant
function encompasses all real numbers greater than or equal to 1, and all
real numbers less than or equal to —1. Thus, the range of the secant function
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Fig. 3-5.  Graph of the secant function for values of x belween --3x rad and 3 rad.

is the same as the range of the cosecant function. But the domain is different.
It includes all real numbers except odd integral multiples of 90° (7/2 rad).
The cosecant and secant functions have the same general shape, but they are
shifted by 90° (7/2 rad), or '/, cycle, with respect to each other. This should
nol come as a surprise, because the cosecant and secant functions are the
reciprocals of the sine and cosine functions, respectively, and the sine and
cosine are horizontally displaced by Y, cycle.

GRAPH OF COTANGENT FUNCTION

Figure 3-6 is a graph of the function y = cot x for values of the domain
between -540" and 5407 (-3x rad and 3w rad). The range of the cotangent
function encompasses the entire set of real numbers. The domain skips over
the integral multiples of 180" (& rad). The graph of the cotangent function
looks similar to that of the tangent function. The curves have the same
general shape, but while the tangent function always slopes upward as you
move toward the right, the cotangent always slopes downward. There is also
a phase shift of Y, cycle, similar to that which occurs between the cosecant
and the secant functions.

PROBLEM 3-3

The domain of the sine function is the same as the domain of the cosine
function. In addition, the ranges of the two functions are the same. How can
this be true, and yel the two functions are not identical?
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Fig. 3-6. Graph of the cotangent function for values of x between -3z rad and 37 rad.

SOLUTION 3-3

The diflerence, as you can see by comparing the graphs of the two functions,
is that the curves are displaced along the x axis by 90~ (7r/2 rad). In general,
the cosine of a number is not the same as the sine of that number, although
there are certain specific instances in which the two functions have the same
value.

PROBLEM 34
Draw a graph that shows the specific points where sin x = cos x.

SOLUTION 34

This can be done by supcrimposing the sinc wave and the cosine wave on the
same set of coordinates, as shown in Fig. 3-7. The functions attain the same
value where the curves intersect.

Inverses of Circular Functions

Each of the circular functions has an inverse: a function that “undoes™
whatever the original function does. Defining and working with inverse {unc-
tions can be tricky.
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Fig. 3-7. Tllustration for Problem 3-2, showing points where the sine and cosine functions
attain the same y value.

WHAT IS AN INVERSE FUNCTION?

What is meant by the term inverse function, or the inverse of a function? In
general terms, the inverse of a function, if it exists, does exactly the reverse of
what the function does. We'll get more formal in a moment. But first, we
must clarify something about notation.

When a function fhas an inverse, it is customary to denote it by a super-
script, so it reads /' This superscript is not an exponent. The function f ™' is
not the same thing as the reciprocal of /. If you see f '(¢) written somewhere,
it means the inverse function of fapplied to the variable ¢. It does not mean
A

Here is the formal definition. Suppose we have a function f. The inverse of
f,callit £ !, isa function such that /' [f{x)] = x for all x in the domain of /,
and £/ '] = y for all y in the range of /. The function /' “undoes™ what
fdoes, and the function f “undoes” what /' ~! does. If we apply a function to
some value of a variable x and then apply the function’s inverse to that, we
sct x back. If we apply the inverse of a {function to some value of a variable y
and then apply the original function to that, we get y back.

Not every function has an inverse without some restriction on the domain
and/or the range. Sometimes a function / has an inverse /' without any
restrictions; that is, we can simply turn /" “inside-out™ and get its inverse
without worrying about whether this will work for all the values in the
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domain and range of /. But often, it is necessary to put restrictions on a
function in order to be able to define an inverse. Let’s look at an example.

SQUARE VS SQUARE ROOT

Figure 3-8 is a graph of a simple function, f{x) = x*. In this graph, the values
of f(x) are plotted on the y axis, so we are graphing the equation y = x*. This
has a shape familiar to anyone who has taken first-year algebra. It 1s a
parabola opening upward, with its vertex at the origin.

Fig. 3-8. The relation y = v% is a function of v.

What do you suppose is the inverse function of /? You might be tempted
to say “The square root.” If you say that, you're right partly. Try graphing
the parabola with the x and y variables interchanged. You'll plot the curve
for the equation x = y* in that case, and you’ll get Fig. 3-9. This is a parabola
with exactly the same shape as the one for the equation y = x%, but because
the x and y axes are switched, the parabola is turned on its side. This is a
perfectly good mathematical relation, and it also happens to be a function
that maps values of y to values of x. But it is not a function that maps values
of x to values of y. If we call this relation, g{x) = +x'* a function, we are
mistaken. We end up with some values of x for which g has no y value (that is
okay), and some values of x for which g has two y values (that is not okay).
This is easy to see from Fig. 3-9.
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Fig. 3-9. The relation y = +x'/%, while the inverse of the function graphed in Fig. 3-8, is not a
function.

Whalt can we do Lo make g into a legitimate function? We can require that
the y values not be negative, and we have a function. Alternatively, we can
require that the y values not be positive, and again we have a function. Figure
3-10 shows the graph of y = x/%, with the restriction that y > 0. There exists
no abscissa (x value) that has more than one ordinate (y value).

If you are confused by this, go back to Chapter 1 and review the distinc-
tion between a relation and a function.

ARC WHAT?

We can now define the inverses of the circular functions. There are two ways
of denoting an inverse when talking about the sine, cosine, tangent, cosecant,
secant, and cotangent. We can use the standard abbreviation and add a
superscript —1 after it, or we can write ““arc” in front of it. Herc are the
animals, one by one:

e The inverse of the sine function is the arcsine lunction. If we are
operating on some variable x, the arcsine of x is denoted sin ' (x) or
arcsin {(x)



CHAPTER 3  Graphs and Inverses

A\

12

Fig. 3-10. The relation y = x7' is a function if we require that y be non-negative.

e The inverse of the cosine function is the arccosine function. If we are
operating on some variable x, the arccosine of x is denoted cos ™' (x) or
arccos {x)

e The inverse of the tangent function is the arctangent function. If we are
operaling on some variable x, the arctangent of x is denoted tan ™' (x)
or arclan {x)

e The inverse of the cosecant function is the arccosecant function. If we
are operating on some variable x, the arccosecant of x is denoted cse™!
{x) or arcese (x)

e The inverse of the secant function is the arcsecant function. If we are
operating on some variable x, the arcsecant of x is denoted sec ! (x) or
arcsec {x)

e The inverse of the cotangent function is the arccotangent function. If
we are operating on sowne variable x, the arccotangent of x 1s denoted
cot ™! {x) or arccot {x)

The sine, cosine, tangent, cosecant, secanl, and cotangent require special
restrictions in order for the inverses to be definable as legitimate functions.
These limits are shown in the graphs of the inverse functions that follow.
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USE (AND MISUSE) OF THE —1 SUPERSCRIPT

When using —1 as a superscripl in trigonometry, we have to be careful.
Ambiguity, or even nonsense, can be the result of improper usage. The
expression sin ' x is not the same thing as (sin x) ' The former expression
refers to the inverse sine of x, or the arcsine of x (arcsin x); but the latter
expression means the reciprocal of the sine of x, that is, 1/(sin x). These are
not the same. If you have any question about this, plug in a few numbers and
test then.

This brings to light an inconsistency in mathematical usage. It is custom-
ary to write (sin x)* as sin® x. But don’t try that with the exponent — 1, for the
reason just demonstrated. You might wonder why the numbers 2 and —1
should be treated so much differently when they are used as superscripts
in trigonometry. There is no good answer, except that it is “mathematical
convention,”

What about other numbers? Does sin™ x, for example, mean the reciprocal
of the cube of the sine of x, or the cube of the arcsine of x? Or does il mean
the arcsine of the cube of x? If vou are worried that the use of a certain
notation or expression might produce confusion, don’t use it. Use something
else, even if it looks less elegant. Saying what you mean is more important
than conservation of symbols. It is better to look clumsy and be clear and
correct, than to look slick and be ambiguous or mistaken.

PROBLEM 35
Is there such a thing as a function that 13 its own inverse? If so, give one
example.

SOLUTION 3-5

The function f{x) = x is its own inverse, and the domain and range both
happen to span the entire set of real numbers. If f{x) = x, then f "'(y) = y. To
be sure that this is true, we can check to see if the function “undoes its own
action,” and that this ““undoing operation’ works both ways. Let /! be the
inverse of /. We claim that /[ f(x)] = x for all real numbers x, and /] /()]
— y for all real numbers y. Checking:

SAOI=S o = x
URGIEYOES,
It works! In fact, it is almost trivial. Why go through such pains to state the

obvious? Well, sometimes the obvious turns out to be false, and the wise
mathematician or scientist is always wary of this possibility.
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PROBLEM 3-6
Find another function that is its own nverse.

SOLUTION 3-6

Consider g{x) = l/x, with the restriction that the domain and range can
attain any real-number value except zero. This function is its own inverse;
that is, g '(x) = 1/x. To prove this, we must show that g '[g(x)] = x for all
real numbers x except x = 0, and also that g[g~ '(3)] = y for all real numbers y
except y = 0. Checking:

g g0 = g7 (1/x) = 1/(1/x) = x
glg ' Ml=g/=1//»=y

It works! This is a little less trivial than the previous example.

PROBLENMI 3-7
I'ind a function for which there exists no inverse function.

SOLUTION 3-7

Consider the function A(x) = 3 for all real numbers x. If we try to apply this
in reverse, we have to set y = 3 in order for #7'(y) to mean anything. Then we
end up with all the real numbers at once. Clearly, this is not a function. {Plot
a graph of it and see.) Besides this, it is not evident what 4 () might be for
some value of y other than 3.

Graphs of Circular Inverses

Now that you know what the inverse of a function is, we are ready to look at
the graphs of the circular inverses, with the restrictions on the domain and
the range necessary o ensure that they are legitimate functions.

GRAPH OF ARCSINE FUNCTION

Figure 3-11 is a graph of the function y = arcsin x {or y = sin ~ x) with its
domain limited to values of x between, and including, —1 and 1 (that is, —1 <
x < 1). The range of the arcsine function is limited to values of y between,
and including, -90° and 90" {(-z/2 rad and #/2 rad).

1
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Fip. 3-11.  Graph of the arcsine funciion tor -1 < x < .

GRAPH OF ARCCOSINE FUNCTION

Figure 3-12 is a graph of the function y = arccos x (or y = cos™ " x) with its
domain limited to values of x between, and including, —1 and 1 {that s, —1 <
x < 1). The range of the arccosine function is limited to values of y between,
and including, 0° and 180" (0 rad and 7 rad).
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Fig. 3-12. Graph of the arccosine function for -1 < x =< 1,
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GRAPH OF ARCTANGENT FUNCTION

Figure 3-13 is a graph of the function y = arctan x (or y = tan™' x). The
domain encompasses the entire set of real numbers. The range of the arctan-
gent function is himited to values of y between, but not including, 90" and
90" (-x/2 and x/2 rad).

= ——

Fig. 3-13. Graph of the arctangent function for -3 < x < 3,

GRAPH OF ARCCOSECANT FUNCTION

Figure 3-14 is a graph of the function y = arccse x (or y = csc™! &) with its
domain limited to values of x less than or equal to —1, or greater than or
equal to | {that is, x < —1 or x > 1). The range of the arccosecant function is
limited to values of y between, and including, -90™ and 90" (-z/2 rad and 7/2
rad), with the exception of (" (0 rad). Mathematically, if R represents the
range, we can denote it like this in set notation for degrces and radians,
respectively:

R={y:-90" <y <0 or <y=<907}
R={y:—m/2<y<0Qor0<y=<mn/2}

In the latter expression, the “rad” abbreviation is left out. In pure mathe-
maltics, the lack of unit specification for angles implies the use of radians by
default. If you see angles expressed in mathematical literature and there are
no units specified, you should assume that radians are being used, unless the
author specifically states otherwise.
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Fip. 3-14.  Graph of the arccosecant function for x = —1 and v = 1.

GRAPH OF ARCSECANT FUNCTION

Figure 3-15 is a graph of the function y = arcsec x (or y = sec™' x) with its
domain hmited to values of x such that x < —1 or x > 1. The range of the
arcsecant function is limited to values of y such that 0" < y < 90" or 90™ < y
< 180" (0 rad < y < #/2 rad or 7/2 rad < y < w rad).

=7

Fig. 3-15. Graph of the arcsecant function for x = --1 and x = 1.
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GRAPH OF ARCCOTANGENT FUNCTION

Figure 3-16 is a graph of the function y = arccol x {or y = cot™" x). Its
domain encompasses the entire set of real numbers. The range of the arcco-
tangent function is limited to values of y between, but not including, 0" and
1807 {0 rad and = rad).

Quiz

Refer to the text in this chapter if necessary. A good score is eight correct.
Answers are in the back of the book.

1. The sine function and the tangent function
{a) have identical shapes when graphed
{b) have different ranges
(¢) have identical domains
{d) are inverses of each other

2. The restrictions on the domain and range of the inverse circular func-
tions are necessary in order to ensure that:
(2) no negative angles are involved
{b) they never “‘blow up”
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{¢) none of them have more than one y value (ordinate) for any x
value (abscissa)
(d) the domains are defined for all real numbers

3. The graph of the cosine function

(a) has the same shape as the graph of the sine function, but is
“stretched™ vertically

{b) has the same shape as the graph of the sine function, but is shifted
horizontally

{c) has the same shape as the graph of the sine function, but is shifted
vertically

(d) has the same shape as the graph of the sine function, but is
“*squashed” horizontally

4. The domain of the arccotangent function
{a) encompasses only the real numbers between, and including, —1
and |
{b) encompasses only the values belween 90 (/2 rad) and 270" (3z/2
rad)
(c) encompasses only the real numbers less than —1 or greater than 1
{d) encompasses all of the real numbers

5. What does the expression (sin x)~' denote?
{a) The reciprocal of the sine of x
(b) The sine of 1/x
(¢) The arcsine of x
(d) None of the above

6. Look at Fig. 3-11. Consider the interval S of all values of y such that y
18 between, and including, —1 rad and 1 rad. Which of the following
statements is true?

{a) S constitutes part of the domain of the function shown in the
graph

{b) S constitutes part of the range of the function shown in the graph

{c) S constitutes all of the domain of the function shown in the graph

(d) & constitutes all of the range of the function shown in the graph

7. Look at Fig. 3-13. What can be said about this function based on its
appearance in the graph?
(a) Its range is limited
{b) Its range spans the entire set of real numbers
{c) Its domain is limited
(d) It is not, in fact, a legitimate function
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§. The graph of the function y = sin x “*blows up™ at
{a) all values of x that are multiples of 90~
(b) all values of x that arc odd multiples of 90~
{(c) all values of x that are cven multiples of 90"
{d) no values of x

9, The function y = c¢s¢ x 15 defined for
(a) only those values of x less than —1 or greater than 1
{b) only those values of x between, and including, —1 and |
{c) all values of x except integral multiples of & rad
(d) all values of x except integral multiples of /2 rad

10. Which of the following graphs does not “*blow up™ for any value of x?
{a) The curve for y — arctan x
(b) The curve for y = tan x
(¢) The curve for y = arcesc x
{d) The curve for y — csc x
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g Hyperbolic Functions

There are six hyperbolic functions that are similar in some ways o the circular
functions. They arc known as the hyperbolic sine, hiyperbolic cosine, hyperbolic
tangent, hyperbolic cosecant, hyperbolic secant, and hyperbolic cotangent. In
fonmulas and equations, they are abbreviated sinh, cosh, tanh, csch, sech, and
coth respectively.

The hyperbolic functions are based on certain characteristics of the wnit
hyperbola, which has the equation X - yz = 1 in rectangular coordinates.
Hyperbolic functions are used in certain engineering applications.

You can have fun trying to pronounce the abbreviations for hyperbolic
functions {but not with your mouth full of food); but it is best Lo name a
hyperbolic function straightaway when talking about it. For example, when
you see “tanh.” say “hyperbolic tangent.”

The Hyper Six

The circular functions operate on angles. In theory, the hyperbolic functions
do too. Units are generally not mentioned for the quantities on which the
hyperbolic functions operate, but they are understood to be in radians. Greek
symbols are not always used to denote these variables. Plain lowercase

——@
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English italicized x and y are common. Some mathematicians, scientists, and
engineers prefer to use # and v. Once in a while you’ll come across a paper
where the author uses the lowercase italicized Greek alpha (&) and beta (8) to
represent the angles in hyperbolic functions.

POWERS OF e

Once we define the hyperbolic sine and the hyperbolic cosine of a quantity,
the other four hyperbolic functions can be defined, just as the circular
tangent, cosecant, secant, and cotangent follow from the circular sine and
cosine.

In order to clearly define what is meant by the hyperbolic sine and the
hyperbolic cosine, we use base-c¢ exponential functions. These revolve around
a number that is denoted ¢. This number has some special properties. It is an
irrational muomber a2 number that can’t be precisely expressed as a ratio
of two whole numbers. The best we can do is approximate it. {The term
“irrational,” in mathemalics, means “not expressible as a ratio of whole
numbers.” It does not mean “‘unreasonable™ or “crazy.”)

If you have a calculator with a function key marked “¢*™ you can deter-
mine the value of e to several decimal places by entering the number 1 and
then hitting the “¢™ key. If your calculator does not have an “‘e™ key, it
should have a key marked “In’" which stands for natural logaritivn, and a key
marked “inv’” which stands for inverse. To get e from these keys, enter the
number 1, and then hit “inv’” and “In” in succession. You should get a
number whose first few digits are 2.71828.

If you want to determine the value of ¢* for some quantity x other than 1,
you should enter the value x and then hit either the “e™ key or else hit the
“inv” and “In” keys in succession, depending on the type of calculator you
have. In order to find ¢ ¥, find ¢* first, and then find the reciprocal of this by
hitting the “1/x” key.

If your calculator lacks exponential or natural logarithm functions, it is
time for you to go out and buy one. Most personal computers have calculator
programis that can be placed in “scientific mode,” where these functions are
available.

L gt

TWO TO START

Let x be a real number. The hyperbolic sine and the hyperbolic cosine can be
defined in terms of powers of ¢, like this:



CHAPTER 4 Hyperbolic Functions _\@

sinh x = (¢* —e™)/2

cosh x =(c* +~¢ *)/2

If these look intimidating, just remember that using them involves nothing
more than entering numbers into a calculator and hitting certain keys in the
correct sequence.

In a theoretical course, you will find other ways of expressing the hyper-
bolic sine and cosine functions, but for our purposes, the above two formulas
are sufficient.

THE OTHER FOUR

The remaining four hyperbolic functions follow from the hyperbolic sine and
the hyperbolic cosine, like this:

tanh x = sinh x/cosh x

[l

sch x = 1/sinh x

Wi
(]

ech x = l/cosh x

coth x = cosh x/sinh x
In terms of exponential functions, they are expressed this way:

tanh x = (¢" —e )/{e" +¢ ™)
csch x =2/(¢* —¢ )
sech x =2/(¢" e )

coth x — (¢ = &) /(e" — &™)

Now let’s look at the graphs of the six hyperbolic functions. As is the case
with the inverses of the circular functions, the domain and/or range of the
inverse of a hyperbolic function may have to be restricted to ensure that there
is never more than one ordinate (y value) for a given abscissa (x value).

HYPERBOLIC SINE

Figure 4-1 is a graph of the function y = sinh x. Its domain and range both
extend over the entire set of real numbers.
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42 -
Fip. 4-1.  Graph of the hyperbolic sine funciion.

HYPERBOLIC COSINE

Figure 4-2 is a graph of the function y = cosh x. Its domain extends over the
whole set of real numbers, and its range is the set of real numbers y greater
than or equal to 1.

42 L

Fig. 4-2. Graph of the hyperbolic cosine function.
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HYPERBOLIC TANGENT

Figure 4-3 is a graph of the function y = tanh x. Its domain encompasses the
entire set of real numbers. The range of the hyperbolic tangent function 1s
limited to the set of real numbers y between, but not including, —1 and 1; that

-

is, =1 < y < 1,

Iig. 4-3.  Graph of the hyperbolic tangent function.

HYPERBOLIC COSECANT

Figure 4-4 is a graph of the function y = csch x. Its domain encompasses the
set of real numbers x such that x £ 0. The range of the hyperbolic cotangent
function encompasses the set of real numbers y such that y £ 0.

HYPERBOLIC SECANT

Figure 4-5 is a graph of the function y = sech x. Its domain encompasses the
entire set of real numbers. Its range is limited to the set of real numbers y

areater than O but less than or equal to 1; that is, 0 < y < 1.

HYPERBOLIC COTANGENT

Figure 4-6 is an approximalte graph of the function y = coth x. Its domain
encompasses the entire set of real numbers x such that x # 0. The range of
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Fig. 4-4. Graph of the hyperbolic cosecant {unction.

15 —+

Fig. 4-5. Graph ot the hyperbolic secant functlion.

the hyperbolic cotangent function encompasses the set of real numbers y less
than —1 or greater than 1; that is, y < —l or y > .

PROBLENMI 4-1

Why does the graph of y = csch x “*blow up” when x = 07 Why is csch x not
defined when x = 0?

SOLUTION 4-1

Remember that the hyperbolic cosecant {csch) is the reciprocal of the hyper-
bolic sine (sinh). If x = 0, then sinh x = 0, as you can sec {rom Fig. 4-1. As x
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Fig. 4-6. Graph of the hyperbolic cotangent function.

approaches zero (writien x — 0) from either side, the value of the hyperbolic
sine also approaches zero (sinh x — (). Thus, csch x, which is equal to
l/(sinh x) and is graphed in Fig. 4-4, gerows without limit as x — 0
from either direction. The value of y “blows up™ positively as x — 0 from
the positive, or right, side (written x — 07) and negatively as x — 0 from the
negative, or left, side (x — 07). When x = 0, the reciprocal of the hyperbolic
sine is not defined, because it is a quotient with 0 in the denominator.

PROBLEM 4-2
What is the hyperbolic cotangent of 07 Express it in two ways.

SOLUTION 4-2
This quantity is not defined. The easiest way to demonstrate this fact is to
look at the graph of the hyperbolic cotangent function (FFig. 4-6). The graph
of the function y = coth x “blows up™ at x = 0. It doesn’t have a y value
there.

We can also express coth 0 by first finding the values of sinh 0 and cosh 0
using the exponential definitions. Remember the formulas;

sinh x = (e* —e ™)/2
cosh x = (" +e7%)/2

¥ = |. Therefore:

Ifx=0thene =1 and e
sinh 0 =(1—-1)/2=0/2=0
=1

cosh 0 = (1 +1)/2=2/2.
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The hyperbolic cotangent is the hyperbolic cosine divided by the hyperbolic
sine:

coth 0 = cosh 0/sinh 0 = 1/0

This expression is undefined, because it is a quotient with 0 in the denomi-
nator.

Hyperbolic Inverses

Each of the six hyperbolic functions has an inverse relation. These are known
as the hyperbolic arcsine, hyperbolic arccosine, hyperbolic arctangent, hyper-
holic arccosecant, hyperbolic arcsecant, and hyperbolic arccotangent. In for-
mulas and equations, they are abbreviated aresinh or sinh ', arccosh or
cosh 7', arctanh or tanh ™", arcesch or eseh ™', arcsech or sech ™!, and arccoth
or coth™! respectively. These relations become functions when their domains
are resiricted as shown in the graphs of Figs. 4-7 through 4-12.

THE NATURAL LOGARITHM

Now it is time to learn a little about logarithms. It is common to write “the
natural logarithm of x*" as “In x.”” This function is the inverse of the base-e
exponential function. The natural logarithm function and the base-e expo-
nential function “undo™ each other. Suppose x and v are real numbers, and v
and u are positive real numbers. If ¢ = y, then x =In y, and if In « = v, then «
=t

The natural logarithm function is useful in expressing the inverse hyper-
bolic functions, just as the exponential function can be used to express the
hyperbolic functions.

You can find the natural logarithm of a specific number using a calculator.
Enter the number for which you want to find the natural logarithm, and then
hit the “In” key. Beware: the logarithm of (0 or any negative real number is
not defined in the set of real numbers.

HYPERBOLIC INVERSES AS LOGARITHMS

You can find hyperbolic inverses of specific quantities using a calculator that
has the “In” function. Here are the expressions for the hyperbolic inverses, in
terms of natural logarithms. (The ]/3 power represents the square root.)
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arcsinh x = In [x + (x? = /7]

arccosh x = In [x + (x* — 1)”2]

arctanh x = 0.5 In [{1 + x)/(1 — x)]

arcesch x = In [x7! +(x7% + 1)

arcsech x = In [x : —l—(,\":2 — 1)1/2]

arccoth x =05 In [{x+ 1)/{x — D]

In these expressions, the values 0.5 represent exactly '/,. The formulas are a
little bit messy, but if you plug in the numbers and take vour time doing the
calculations, vou shouldn’t have trouble. Be careful about the order in which
vou perform the operations. Perform the operations in the innermost sets of
parentheses or brackets first, and then work outward.

Let’s see what the graphs of the inverse hyperbolic functions look like.

HYPERBOLIC ARCSINE

Figure 4-7 is a graph of the function y = arcsinh x (or y = sinh ! x). Its
domain and range both encompass the entire set of real numbers.

HYPERBOLIC ARCCOSINE

Figure 4-8 is a graph of the function y = arceosh x (or y = cosh ! x). The
domain includes real numbers x such that x = 1. The range of the hyperbolic

3L

Fig. 4-7.  Graph of the hyperbolic aresine function.
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Fig. 4-8. Graph of the hyperbolic arccosine {unction.

arccosine function is limited to the non-negative reals, that is, to real numbers
y such that y > (.

HYPERBOLIC ARCTANGENT

Figure 4-9 is a graph of the function y = arctanh x (or y = tanh™" x). The
domain is limited to real numbers x such that —1 < x < 1. The range of the
hyperbolic arctangent function spans the entire set of real numbers.

Yy
I |
2 |
o+ )
1 F————1—1 x
-3 -2 i 1 i 2 3
| 41
[ 1=
|

Fig. 4-9. Graph of the hyperbolic arctangent function.



CHAPTER 4 Hyperbolic Functions _@

HYPERBOLIC ARCCOSECANT

Figure 4-10 is a graph of the function y = arcesch x (or y = csch™' x). Both
the domain and the range of the hyperbolic arccosecant function include all
real numbers excepl zero.

3H,
zgf
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Fig. 4-10. Graph of the hyperbolic arccosecant function.

HYPERBOLIC ARCSECANT

Figure 4-11 is a graph of the function y = arcsech x (or y = sech ' x). The
domain of this function is limited to real numbers x such that 0 < x < 1. The
range of the hyperbolic arcsecant function is limited to the non-negative
reals, that is, to real numbers y such that y > 0.

HYPERBOLIC ARCCOTANGENT

Figure 4-12 is a graph of the function y = arccoth x (or y = coth ' x). The
domain of this function includes all real numbers x such that x < —1 or x >
I. The range of the hyperbolic arccotangent function includes all real
numbers excepl zero.

PROBILEM 4-3

What is the value of arcsinh 0? Use a calculator if you need it.
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Fip. 4-11.  Graph of the hyperbolic arcsecant function.
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Fig. 4-12. Graph of the hyperboelic arccotangent function.

SOLUTION 4-3
From the graph in Fig. 4-7, it appears that it ought to be 0. We can verify this
by using the formula above along with a calculator if needed:

arcsinh x = In [x + (x> + D]

arcsinh 0 = In [0 + (0¢ + 1))
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= In(0+1Y%
=In{0=+1)
=Inl
=0
If you've had any experience with logarithms, you don’t need a calculator to

do the above calculation, because you alrcady know that the natural loga-
rithm of 1 is equal to 0.

PROBLEM 44

What is the value of arcesch 1?7 Use a caleulator if you need it. Use the
logarithm-based formulas to deternune the answer, and express it to three
decimal places.

SOLUTION 44

From the graph in Fig. 4-10, we can guess that arcesch | ought to be a little
less than 1. Let’s use the formula above and find out;

arcesch x = In [x7 " + (x7% + DY

arcesch 1 =1In [1’l (1% 1)1/2]
=In[l+(1+D"

=1In(1+2"%

=In (1 +1.41421)

=1In 2.41421

= 0.881 (rounded to three decimal places)

Hyper Facts

Here’s another flurry of facts, this time involving the hyperbolic functions.
You arc not expected to memorize any of these, but you should be able to use
them in calculations if you are given numbers to “plug in.”

PYTHAGOREAN THEOREM FOR SINH AND COSH

The difference between the squares of the hyperbolic sine and hyperbolic
cosine of a variable is always equal to either 1 or —1. The following formulas
hold for all real numbers x:



@,_ CHAPTER 4 Hyperbolic Functions
sinh? x — cosh? x = —1

2 L2
cosh™ x —sinh” x =1

PYTHAGOREAN THEOREM FOR CSCH AND COTH

The difference between the squares of the hyperbolic cotangent and hyper-
bolic cosecant of a variable is always equal to either 1 or —1. The following
formulas hold for all real numbers x except (:

esch? x — coth? x = —1

3
coth? x —csch? x = 1

PYTHAGOREAN THEOREM FOR SECH AND TANH

The sum of the squares of the hyperbolic secant and hyperbolic tangent of
a variable 15 always equal to 1. The following formula holds for all real
numbers x:

sech? x + tanh? x = |

HYPERBOLIC SINE OF NEGATIVE VARIABLE

The hyperbolic sine of the negative of a variable 1s equal to the negative of
the hyperbolic sine of the variable. The following formula holds for all real
numbers x;

sinh — x = —sinh x

HYPERBOLIC COSINE OF NEGATIVE VARIABLE

The hyperbolic cosine of the negative of a variable is equal to the hyperbolic
cosine of the variable. The following formula holds for all real numbers x:

cosh —x =cosh x
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HYPERBOLIC TANGENT OF NEGATIVE VARIABLE

The hyperbolic tangent of the negative of a variable is equal to the negative
of the hyperbolic tangent of the variable. The following formula holds for all
real numbers x:

tanh — x = —tanh x

HYPERBOLIC COSECANT OF NEGATIVE VARIABLE

The hyperbolic cosecant of the negative of a variable is equal to the negative
of the hyperbolic cosecant of the variable. The following formula holds for
all real numbers x except O

csch — x = —csch x

HYPERBOLIC SECANT OF NEGATIVE VARIABLE

The hyperbolic secant of the negative of a variable is equal to the hyperbolic
secant of the variable. The following formula holds for all real numbers x:

sech — x = sech x

HYPERBOLIC COTANGENT OF NEGATIVE VARIABLE

The hyperbolic cotangent of the negative of a variable is equal to the negative
of the hyperbolic cotangent of the variable. The following formula holds for
all real numbers x except O

coth — x = —coth x

HYPERBOLIC SINE OF DOUBLE VALUE

The hyperbolic sine of twice any given variable is equal to twice the hyper-
bolic sine of the original variable times the hyperbolic cosine of the original
variable. The following formula holds for all real numbers x:

sinh 2x = 2 sinh x cosh x
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HYPERBOLIC COSINE OF DOUBLE VALUE

The hyperbolic cosine of twice any given variable can be found according to
any of the following three formulas for all real numbers x:

cosh 2x = cosh” x + sinh” x
. 2
cosh 2x = 1 + 2 smih” x

a3
cosh 2x =2 cosh” x— 1

HYPERBOLIC TANGENT OF DOUBLE VALUE

The hyperbolic tangent of twice a given variable can be found according to
the following formula for all real numbers x:

tanh 2x = (2 tanh x)/(1 + tanh? x)

HYPERBOLIC SINE OF HALF VALUE

The hyperbolic sine of half any given variable can be found according to the
following formula for all non-negative real numbers x:

sinh (x/2) = [(1 —cosh _\-)/211_/2
For negative real numbers x, the formula is:

sinh (x/2) = —[(1 — cosh x)/2]"/*

HYPERBOLIC COSINE OF HALF VALUE

The hyperbolic cosine of half any given variable can be found according to
the following formula for all real numbers x:

cosh (x/2) = [(1 - cosh x)/2]"/*

HYPERBOLIC SINE OF SUM

The hyperbolic sine of the sum of two variables x and y can be found
according to the following formula for all real numbers x and y:

sinh (x + y) = sinh x cosh y 4+ cosh x sinh y
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HYPERBOLIC COSINE OF SUM

The hyperbolic cosine of the sum of two variables x and y can be found
according to the following formula for all real numbers x and y:

cosh (x + y) = cosh x cosh y +sinh x sinh y

HYPERBOLIC TANGENT OF SUM

The hyperbolic tangent of the sum of two variables x and y can be found
according to the following formula for all real numbers x and y:

tanh {x + y) = ({tanh x + tanh y)/(1 + tanh x tanh y)

HYPERBOLIC SINE OF DIFFERENCE

The hyperbolic sine of the difference between two variables x and y can be
found according to the following formula for all real numbers x and y:

sinh {(x — y) = sinh x cosh y —cosh x sinh y

HYPERBOLIC COSINE OF DIFFERENCE

The hyperbolic cosine of the difference between two variables x and y can be
found according to the following formula for all real numbers x and y:

cosh {(x — y) = cosh x cosh y —sinh x sinh y

HYPERBOLIC TANGENT OF DIFFERENCE

The hyperbolic tangent of the difference between two variables x and y can be
found according to the following formula for all real numbers x and y,
provided the product of tanh x and tanh y is nol equal to 1.

tanh {x — y) = {tanh x — tanh y)/(1 — tanh x tanh y)

PROBLEM 4-5

Based on the above formulas, find a formula for the hyperbolic sine of three
times a given value. Thalt is, find a general formula for sinh 3x. Express the
answer in terms of functions of x only.
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SOLUTION 4-5

Let’s start oul by supposing that y = 2x, so x +y = x + 2x = 3x. We have a
formula for the hyperbolic sine of the sum of two values. It is:

sinh {x + y) = sinh x cosh y +cosh x sinh y
Substituting 2x in place of y, we know this:
sinh 3x = sinh (x + 2x) = sinh x cosh 2x + cosh x sinh 2x
We have formulas to determine cosh 2x and sinh 2x. They are:
~aeh 7 <12 IS
cosh 2x = cosh® x + sinh® x
sinh 2x = 2 sinh x cosh x
We can substitute these equivalents in the previous formula, getting this:
. . . el .
sinh 3x = sinh x (cosh2 x +sinh® x) 4 cosh x {2 sinh x cosh x)
: 2 Lo . 12
—sinh x cosh® x +sinh” x + 2 sinh x cosh” x
. : . 3
= 3 sinh x cosh® x +sinh? x

There are two other ways this problem can be solved, because there are three
different formulas for the hyperbolic cosine of a double value.

PROBLEM 4-6
Verify (approximately) the following formula for x = 3 and y = 2:

sinh (x — y) = sinh x cosh y — cosh x sinh y

SOLUTION 4-6
Let’s plug in the numbers:
sinhi (3 —2) — sinh 3 cosh 2 —cosh 3 sinh 2
sinh 1 = sinh 3 cosh 2 — cosh 3 sinh 2
Using a calculator, we find these values based on the exponential formulas
for the hyperbolic sine and cosine:
sinh 1 = 1.1752
sinh 2 = 3.6269
sinh 3 = 10.0179
cosh 2 =3.7622
cosh 3 = 10.0677
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We can put these values into the second formula above and see if the num-
bers add up. We should find that the following expression calculates out to
approximalely sinh 1, or 1.1752. Here we go:

10.0179 x 3.7622 — 10.0677 x 3.6269
= 37.689 — 36.515
=1.174

This is close enough, considering that errar accwmnulation occurs when per-
forming repeated calculations with numbers that aren’t exact. Error accumu-
lation involves the idiosyncrasies of scientific notation and significant figures.
When significant figures aren’t taken seriously, they (or their lack) can cause
trouble for experimental scientists, engineers, surveyors, and navigators.
You'll learn about scientific notation and significant figures in Chapter 7.

Refer to the text in this chapter if necessary. A good score is eighl correct.
Answers are in the back of the book.

1. Suppose we know that the hyperbolic cosine of a certain variable is
equal to 1. What is the hyperbolic cosine of twice that variable?
(a) 1
(b) O
(c) e
(d) e

2. From the logarithm formulas, it is apparent that the hyperbolic arc-
tangent of 1 is
(a) equal to ¢
{b) equal to l/e
(c) equal to 0
(d) not defined

3. The number e is equal to the ratio of
(a) a circle’s area to its radius
(b) a circle’s diameter to its radius
{c) two large negative integers
(d) no two whole numbers

— @

Quiz
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4. As the value of x becomes larger without limit, the value of cosh x
{a) also becomies larger without limit
{b) approaches zero
{c) approaches |
{d) becomes larger without limit, negatively

5. How is the hyperbolic secant of 10 related to the hyperbolic secant of
—10?
{a) They are reciprocals
{b) They add up Lo zero
(¢) Their ratio is equal to e
{d) They are the same

6. A unit hyperbola can be represented by the equation
{a) =1+ _}»‘2
b) x*+y° =1
{c) y=1- x?
(d)y y =1+ x°

7. A simpler way to express e to the power of arcsech x 13
{(a) non-existent because such an expression is too complicated to deal
with
) x '+ (x?- DY
(€ x '+t + D
(d) x7' - (x* - 72

8. As the value of x increases without limit, what happens to the value of
e
(a) It becomes larger and larger, positively
{b) It stays the same
{c) It approaches zero
(d) It becomes larger and larger, negatively

9. The hyperbolic tangent is equivalent to
{a) the reciprocal of the hyperbolic sine
{b) the ratio of the hyperbolic sine to the hyperbolic cosine
() the reciprocal of the circular sine
{d) the ratio of the circular sine to the circular cosine
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10. Using the exponential formulas, the hyperbolic sine of 3 is expressed as

() (@~ P2

(b) 2{{e” — e )

(c) (" + e )2

(d) any of the above
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Polar Coordinates

The Cartesian scheme is not the only way that points can be located on a flat
surface. Instead of moving right-left and up-down from an origin point, we
can travel outward a certain distance, and in a certain direction, from thal
point. The outward distance is called the radius or range. 1t is measured in
lincar units, cither arbitrary or specific (such as meters or kilometers). The
direction 1s measured in angular units {either radians or degrees). It is some-
times called the azimuth, bearing, or heading.

The Mathematician’s Way

The polar coordinate plane, as used by mathematicians and also by some
engineers, 18 shown in Figs. 5-1 and 5-2. The independent variable is plotted
as an angle ¢ relative to a reference axis pointing to the right {or ““east’”), and
the dependent variable is plotted as the distance or radius » from the origin.
Coordinate points are thus denoted as ordered pairs (6,r).

Oy
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Fig. 5-1. The pelar coordinate plane. The angle #1s in degrees, and the radius r is in arbitrary
units.

3nf2

Fig. 5-2. Another form of the polar coordinate plane. The angle # is in radians, and the
radius r is in arbitrary units,

THE RADIUS

In any polar plane, the radii are shown by concentric circles. The larger the
circle, the greater the value of . In Figs. 5-1 and 5-2, the circles are not
labeled in units. Imagine each concentric circle, working outward, as increas-
ing by any number of units vou want. For example, each radial division
might represent one unit, or five units, or 10, or 100.
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THE DIRECTION

Direction can be expressed in degrees or radians counterclockwise from a
reference axis pointing to the right or “‘east.” In Fig. 5-1, the direction # is in
degrces. Figure 5-2 shows the same polar plane, using radians to express the
direction. {The “rad” abbreviation is not used, because it is obvious from the
fact that the angles are multiples of =.) Regardless of whether degrees or
radians arc used, the angular scale is linear. That is, the physical angle on the
araph is directly proportional to the value of 6.

NEGATIVE RADII

In polar coordinales, it is all right to have a negative radius. If some point is
specified with » < 0, we multiply » by —1 so it becomes positive, and then add
or subtract 180° (7 rad) to or from the direction. That's like saying, “Proceed
10 kilometers east” instead of “Proceed negative 10 kilometers west.”
Negative radii are allowed in order to graph figures that represent functions
whose ranges can atlain negative values.

NON-STANDARD DIRECTIONS

It’s all right to have non-standard direction angles in polar coordinates. If the
value of ¢ is 360 (27 rad) or more, it represents more than one complete
counterclockwise revolution from the 0° (0 rad) reference axis. If the direc-
tion angle is less than 07 (0 rad), it represents clockwise revolution instead of
counterclockwise revolution. Non-standard direction angles are allowed in
order to graph figures that represent functions whose domains go outside the
standard angle range.

Some Examples

To see how the polar coordinate system works, let’s look at the graphs of
some familiar objects. Circles, ellipses, spirals, and other figures whose equa-
tions arc complicated in Cartesian coordinates can often be expressed much
more simply in polar coordinates. In general, the polar direction # is
expressed in radians. In the examples that follow, the “rad™ abbreviation 13
climinated, because it 1s understood that all angles are in radians.
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CIRCLE CENTERED AT ORIGIN

The equation of a circle centered at the origin in the polar plane is given by
the following formula:

F=a

where @ 15 a real-number constant greater than 0. This is illustrated in Fig.
5-3.

Fig. 5-3. Polar graph of a circle centered at the origin, with radius a.

CIRCLE PASSING THROUGH ORIGIN

The general form for the equation of a circle passing through the origin and
centered at the point {6p,ro) in the polar plane (Fig. 5-4) is as follows:

r=2ry cos {8 —0)

ELLIPSE CENTERED AT ORIGIN

The equation of an ellipse centered at the origin in the polar plane is given by
the following formula:

= ab/(d2 sin? @ + b? cos? (—))”2

where @ and b are real-number constants greater than (.
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Fig. 5-4. Polar graph of a circle passing through the origin, with center at (#,,7,) and radius

I'n.

In the ellipse, @ represents the distance from the origin to the curve as
measured along the “horizontal” ray @ = 0, and b represents the distance
from the origin to the curve as measured along the “vertical™” ray # = n/2.
This 1s illustrated in Fig. 5-5. The values a and b represent the lengths of the
semi-axes of the ellipse. The greater value is the length of the major semi-axis,
and the lesser value is the length of the minor semi-axis.

Fip. 5-5. Polar graph of an ¢llipse centered at the origin, with semi-axes @ and &.
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HYPERBOLA CENTERED AT ORIGIN

The general form of the equation of a hyperbola centered at the origin in the
polar plane is given by the following formula:

r = ab/{a® sin* 6 — b* cos® B)!/*

where a and # are real-number constants greater than 0.

Let D represent a rectangle whose center is at the origin, whose vertical
edges are tangent to the hyperbola, and whose vertices {corners) lie on the
asymptotes of the hyperbola (Fig. 5-6). Let @ represent the distance from the
origin to D as measured along the “horizontal” ray 6 = 0, and let » represent
the distance from the origin to