
Oracle
on Docker

Running Oracle Databases in
Linux Containers
—
Sean Scott

Oracle on Docker
Running Oracle Databases in

Linux Containers

Sean Scott

Oracle on Docker: Running Oracle Databases in Linux Containers

ISBN-13 (pbk): 978-1-4842-9032-3		 ISBN-13 (electronic): 978-1-4842-9033-0
https://doi.org/10.1007/978-1-4842-9033-0

Copyright © 2023 by Sean Scott

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Sean Scott
Boise, ID, USA

https://doi.org/10.1007/978-1-4842-9033-0

iii

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Part I: Introduction to Containers.. 1

Chapter 1: ��Introducing Docker and Oracle�� 3

Why Docker?�� 5

Simplicity�� 5

Self-Contained�� 7

Speed��� 8

Portability��� 10

Reliability�� 11

Cost�� 12

Use Cases�� 12

Exchange Data�� 13

Modular Software��� 14

Orchestration�� 15

Other Uses�� 16

Objections to Docker�� 17

Summary��� 18

Chapter 2: ��Understanding the Container Landscape��� 19

Containers vs. Virtual Machines��� 19

Dedicated vs. Shared��� 22

Performance��� 23

Capacity and Capability�� 23

Table of Contents

iv

Concepts and Terminology��� 24

Images�� 24

Containers�� 26

Resources�� 27

Volumes�� 28

Networking��� 28

Additional Terminology��� 29

Runtimes�� 30

Dockerfiles��� 30

Builds�� 30

Summary��� 31

Chapter 3: ��Container Foundations��� 33

Docker Command-Line Overview�� 33

Run Your First Container�� 34

List Images��� 34

Run a Container�� 35

Explore the Container��� 36

Image Registries��� 37

Minimalism�� 37

Modify the Container�� 38

Persistence�� 39

Check the Container State�� 39

Start the Container��� 40

Interactive vs. Detached��� 41

Connect to the Container�� 41

Verify Persistence��� 42

Remove the Container�� 42

Images Are Immutable��� 42

Start a New Container�� 43

Save a New Image�� 43

Run the New Image�� 44

Table of Contents

v

Union Filesystems�� 44

Commit vs. Build�� 48

Summary��� 49

Chapter 4: ��Oracle Database Quick Start�� 51

Access the Docker Environment�� 51

Terminology��� 51

Docker Commands��� 52

Images and Containers��� 52

Build and Run��� 53

The Docker Command Line�� 53

Obtaining an Image�� 53

Pre-built Images�� 54

Download an Image�� 56

Download a Tag�� 58

Running Pre-built Images��� 58

Pre-built Image Limitations�� 59

Building Images from a Repository�� 60

Oracle Docker GitHub Repo�� 60

Oracle Database Software�� 62

Build an Image�� 63

Running a Container�� 65

Container Properties��� 65

A Full Run Command�� 68

View Container Logs��� 70

Access and Use the Container��� 70

Access a Container Shell�� 71

Run SQL*Plus�� 72

Run Scripts��� 72

Connect from Host Applications��� 74

Manage the Container�� 75

Summary��� 76

Table of Contents

vi

Chapter 5: ��Differences in Database Containers��� 77

Start an Oracle Database Container��� 78

Connect to the Container��� 82

Navigate the Oracle Database Container��� 83

Container Differences�� 84

Hostname��� 84

cron�� 85

Binaries�� 89

Oracle Directories��� 90

Configuration Files�� 92

Volumes��� 95

Summary��� 100

Chapter 6: ��Customize Container Environments��� 103

The Startup Process��� 104

View Environment Values��� 106

docker run�� 110

Command-Line Option�� 111

Values from a File��� 111

Values from the Host Environment��� 112

Overwriting and Creating Variables�� 113

Environment Options in Oracle Images�� 115

Summary��� 116

Chapter 7: ��Persistence�� 117

Container Storage�� 118

Docker Internal Storage�� 119

Drawbacks of Union Filesystems��� 120

Mount Concepts��� 121

Volumes vs. Volumes��� 124

Table of Contents

vii

Mount Types��� 124

Bind Mount��� 125

Docker Volumes�� 125

tmpfs and Secrets�� 128

Volumes vs. Bind Mounts��� 128

Mounting Storage�� 131

Using -v or --volume�� 132

Using --mount�� 133

Undefined Volumes��� 134

Entrypoint Directories��� 135

Manage Space��� 136

Prune Volumes�� 137

Prune Images��� 139

Prune Containers�� 140

Prune the System��� 140

Which Type of Volume Is Best?�� 141

No Volume�� 142

Bind Mounts��� 142

Local Volumes��� 145

Bind-Mounted Volumes�� 146

Summary��� 148

Chapter 8: ��Basic Networking��� 149

Port Publishing��� 150

Publishing Container Ports��� 152

Limits of Container Port Mapping��� 153

Automatic Port Publication��� 155

Connect to a Database in a Container�� 156

Set Up Connections in SQL Developer�� 157

EZConnect�� 160

Creating tnsnames.ora Configurations��� 162

Table of Contents

viii

Connect to Containers on Remote Hosts��� 163

Setting the Container Hostname�� 164

Adding Ports to an Existing Container�� 165

Summary��� 166

Chapter 9: ��Container Networks��� 167

Container Networks��� 167

Docker Network Types�� 168

Demonstrating Bridge Networking��� 171

Displaying Network Information�� 173

List Networks��� 174

Inspect a Network�� 175

Inspect the Container’s Network Entries�� 176

Viewing Virtual Devices on the Container Network�� 178

Limitations of Default Bridge Networks��� 182

Local Connections Work��� 182

Remote Connections Fail�� 183

User-Defined Bridge Networks�� 184

Create the Network�� 184

Attach the Containers��� 186

What About DNS?��� 189

Host Connections��� 191

Problems with Port Mapping�� 192

Container DNS Resolution on Hosts��� 193

You Don’t Need Port Mapping��� 195

Disconnect from the Default Bridge Network��� 196

Assign a Network During Container Creation��� 198

Summary��� 200

Table of Contents

ix

Chapter 10: ��Container Creation Quick Reference�� 201

Conventions��� 201

Storage��� 202

Create Volumes��� 202

Predefined Volumes in Oracle Database Containers�� 202

Preparing Volumes for Oracle Databases��� 203

Networking�� 204

Create User-Defined Bridge Networks�� 204

Connect/Disconnect Containers to/from Networks�� 204

Dedicated DNS��� 204

Containers�� 205

Basic Container Creation�� 205

Naming��� 205

Define Environment Variables��� 206

Assign Storage��� 207

Networking��� 209

Complete Container Examples�� 210

Interact with Containers��� 212

Open a Shell��� 212

Run SQL*Plus�� 212

Run a Script�� 213

Connect As Root��� 213

Manage Passwords�� 213

Docker Deployment Examples��� 214

New Environment Setup��� 214

Add the Oracle Repository�� 215

Networking��� 215

Running Containers�� 216

Summary��� 218

Table of Contents

x

Part II: Building and Customizing Images... 219

Chapter 11: ��Customizing Images��� 221

Script Modifications��� 222

OS Install and Configuration�� 223

setupLinuxEnv.sh�� 223

Dockerfile��� 225

Database Installation��� 229

installDBBinaries.sh��� 229

db_inst.rsp��� 231

Database Creation�� 233

Add a Non-CDB Option��� 234

Start and Run the Database��� 238

Summary��� 239

Chapter 12: ��Dockerfile Syntax��� 241

The Role of Layers in the Build Process��� 242

FROM��� 247

Build Stages��� 248

Configure Environments: ARG and ENV�� 249

Extending Images��� 250

Argument and Environment Scope During Builds�� 251

Build Dockerfile Templates with Arguments��� 254

Assign Multiple Variables��� 255

Variables and Secrets��� 255

LABEL��� 255

USER�� 258

COPY�� 258

Setting Ownership�� 259

Context in the Build Process��� 259

Copy from Images and Build Stages�� 262

Table of Contents

xi

RUN�� 264

Running Commands and Scripts�� 265

Commands or Scripts?��� 265

EXPOSE and VOLUME��� 266

WORKDIR�� 267

CMD��� 267

HEALTHCHECK�� 267

Summary��� 268

Chapter 13: ��Oracle Dockerfile Recipes�� 271

Multipurpose Image Limitations�� 272

Fixed Directory Paths��� 273

Contradictions�� 274

Extended Multitenancy Options��� 277

Create Non-CDB Databases�� 277

Create Multiple Pluggable Databases��� 278

Use the Setup Entrypoint�� 280

Create a Read-Only Database Home�� 288

Convert a Database Home to Read-Only�� 291

Resolve Configuration Directories�� 291

Update Scripts�� 292

Run Containers with Read-Only Homes��� 296

Scripting Image Customization�� 300

Conditional Operations��� 300

Appending Values in Dockerfiles�� 303

Conditional File Copy�� 305

Summary��� 310

Chapter 14: ��Building Images��� 311

Build Command Syntax�� 312

Context��� 312

Select a Dockerfile��� 317

Table of Contents

xii

No Symbolic Links or Shortcuts Allowed in the Context��� 319

Ignore Files��� 321

Tagging Images�� 323

Add Tags to Images�� 324

Tag Images During Builds��� 326

Arguments��� 328

Housekeeping�� 328

Pruning��� 329

Cache Management�� 331

BuildKit��� 332

Progress��� 333

Ignore Files��� 336

BuildKit Syntax��� 338

Summary��� 339

Chapter 15: ��Debugging and Troubleshooting��� 341

View and Manipulate Output�� 342

Echo Information�� 343

Add a Debug Option�� 345

View Container Logs��� 346

Override Container Startup�� 347

Intermediate Containers�� 348

Build to a Target�� 349

Run Cached Layers��� 350

Access Container Files��� 353

Summary��� 354

Chapter 16: ��Docker Hub and Image Repositories�� 357

Docker Hub�� 358

Trusted Content�� 359

Untrusted Images��� 360

Vulnerability Scanning�� 362

Licensing�� 363

Table of Contents

xiii

Docker Hub Accounts��� 364

Image Management��� 366

Registry Login��� 367

Tag an Image�� 367

Push an Image�� 369

CLI Registry Search�� 371

Pulling Images�� 372

Oracle Container Registry�� 377

Summary��� 382

Chapter 17: ��Conclusion�� 383

Part III: �Appendixes��� 385

Appendix A: ��Installing Docker Desktop��� 387

Install Docker Desktop��� 387

Windows 10 and 11�� 387

Mac (Intel)��� 393

Mac (Apple Silicon)��� 395

Docker Desktop and Docker Engine for Linux�� 395

Terminal Environments�� 395

Windows��� 396

Mac Terminal�� 398

Docker Desktop Features��� 399

Container Management�� 399

Image Management�� 401

Volume Management�� 403

Appendix B: ��Aliases and Functions��� 405

Aliases��� 405

Report Containers��� 406

Extended Container Information��� 406

Sorted List of Images��� 407

Table of Contents

xiv

List Dangling Volumes�� 407

List Dangling Images�� 407

Functions��� 407

Start a Container Shell��� 408

Inspect Function��� 408

Index�� 411

Table of Contents

xv

About the Author

Sean Scott is an Oracle ACE Pro and Oracle Certified

Professional. His Oracle career spans over 25 years

as an application developer, database administrator,

systems and database architect, and database reliability

engineer. He specializes in Oracle's Engineered Systems;

migrations, upgrades, and database consolidations; cloud

implementations; database reliability and resilience;

automation; virtualization; and containers. Sean is active

in the user community as a volunteer and has presented at

Oracle OpenWorld, Collaborate, IOUG, and as a featured speaker at regional user groups

worldwide.  

xvii

About the Technical Reviewer

Byron Pearce has a long history working in the technology industry, with most of his

career serving as a professional services consultant. He has served a wide range of

clients from startups to Fortune 100 organizations in the areas of systems administration,

database administration, infrastructure, cloud computing, and information security. He

currently works as a security and compliance engineer for a medical technology services

company.

xix

Acknowledgments

This book is incomplete without extending my gratitude to those who made it possible:

To my friends Reece and the Ligernaut team for introducing

me to the beauty of DevOps and shepherding me through my

beginnings with Docker.

To Maggie, for the love and support over the years and your

endless patience and understanding during this project.

xxi

Introduction

In 2013, Docker took a Linux construct that had existed for years—containerization—

and wrapped it into a convenient interface, making it accessible to a broad audience.

Since then, container adoption has blossomed. Much of the Web runs on containers.

Everything at Google, from Search, through Gmail, to YouTube, runs in containers.

Containers are inescapable!

Inescapable, that is, except by one corner of the enterprise—the database.

Databases are special. Data is the most valuable commodity in an organization, and

for many, they entrust the most precious data—the Crown Jewels of the enterprise—to

Oracle databases. A failed web server is quickly rebuilt or exchanged. Reconstructing

data isn’t so easy, and the prized status of data is often projected onto the database,

mistakenly asserting that the vault is as priceless as its contents.

Objectively, database hosts are little more than compute and storage. As Laine

Campbell and Charity Majors write in Database Reliability Engineering (O'Reilly, 2017),

"Databases are not special snowflakes." As enterprises move toward a consolidated,

containerized platform, the pressure falls on databases to follow. Still, databases

(particularly Oracle) are different. They can't (or, more correctly, shouldn't) run like other

containers!

That's where this book comes in. It's a guide for running Oracle databases on

Docker with the same confidence, reliability, and security as traditional platforms. It's

not a book on Oracle database administration, nor Docker and containers. Instead,

it covers the remarkable marriage of the two technologies. Whether you're an Oracle

database administrator investigating Docker solutions, a systems engineer exploring

infrastructure consolidation, or a user searching for a reliable way to host Oracle

databases for a development team, I’ve attempted to pour the things I wish I’d known

when beginning my Docker journey in 2014 into this book.

PART I

Introduction to Containers

I’ve divided this book into two parts. This first part covers the basics of containers.

You’ll create (or download) an Oracle database as a package, then run it on your system.

These packages are portable across all popular operating systems—Windows, Mac, and

Linux—and are the cornerstone behind the speed and simplicity Docker introduces to

development.

3

CHAPTER 1

Introducing Docker
and Oracle
Over the past decade, we’ve witnessed a fundamental shift in how infrastructure is built,

deployed, and run. The rise of reliability engineering is a response to systems’ increasing

complexity and scale. Without its tools and methods, managing and monitoring the

environments of hundreds or thousands of hosts and services is an unimaginable,

impossible task.

In traditional organizations, deploying infrastructure is a slow, manual process
that relies on operations teams and their specialized skills. When consumers, like
development teams, need new environments, they depend on operations teams to
do the work. Administrators are the bottlenecks in the pipeline.

DevOps is a set of practices, tools, and organizational philosophies that drive
cooperation and collaboration between Development and Operations teams. The
key to successful DevOps organizations is automation. Automated processes can
be delegated to users, empowering them to provision infrastructure on demand
and removing dependencies on operations teams.

DevOps emphasizes quality and performance through observation and
measurement. Responding to performance metrics is only possible when test
environments accurately represent the observed systems. It’s far easier to reliably
reproduce systems backed by automation than those built and managed manually.

DevOps is much more than an organizational approach. It’s a business model
affecting the bottom line. DevOps’ cooperative framework allows teams to
deliver new features faster and with greater confidence, leading to competitive
advantages in the marketplace. Monitoring application performance keeps

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_1

https://doi.org/10.1007/978-1-4842-9033-0_1

4

customers happy. Tracking user behavior offers insight into improvements to
the user experience and potentially exposes methods attackers use against the
organization!

Yet as DevOps practices are accepted and adopted in organizations, databases (and

database administrators) remain largely unaffected. The data tier seems resistant to

automation, configuration management, Infrastructure as Code, and version control.

The argument I often hear is that data is too valuable to trust to these processes—and

by association, databases. Databases are stable, persistent, and unique. They make

up a small fraction of the enterprise, and wasting time on concepts invented for mass-

producing dynamic components with short lifetimes doesn’t make sense.

Yes, data is priceless. Databases are special. But databases are vessels for data. Bank

safes are valued by how well they work. Their value doesn’t change according to their

contents, and whether they hold the Hope Diamond or family documents isn’t relevant.

Safes protect things, and controlled processes allow manufacturers to guarantee every

safe resists threats and secures what’s inside, precisely as those tested by certifying

agencies and independent labs. Adding custom or manual steps introduces variability

and the potential for mistakes or inconsistency.

Databases are no different. The value of data makes consistent, repeatable processes

crucial, perhaps more so than “less important” infrastructure. Database hosts built

and governed under configuration management can be rebuilt precisely and rapidly.

Changes applied and tracked through version control can be reverted in response

to performance problems and promoted from lower environments into production.

Reliability engineering is all about confidence—confidence that changes made in test

behave the same in production; issues in one environment are reproducible elsewhere;

we can recreate any or every component in the stack at will.

Docker (or, more generally, Linux containers1) is a piece of the reliability engineering

puzzle. Docker allows us to confidently build, deploy, and run multiple identical

containers for services—applications, web hosts, monitoring, and even databases!

1 The mechanisms behind containers have been a part of the Linux kernel for years. Docker’s API
lowered the technical threshold for using containers. Making containers more accessible and
easier to use revolutionized the way enterprises develop and deploy code and infrastructure. The
Docker name became synonymous with containers. When someone says, “We’ll put it in Docker,”
they’re really talking about Linux containers. The terms Docker and containers refer to the same
thing and are often used interchangeably.

Chapter 1 Introducing Docker and Oracle

5

�Why Docker?
One of the first questions people ask about running Oracle databases in Docker is

“Why?” Answering this requires an objective look at how we do things now and asking if

there are better tools or ways to accomplish the job. Then, determine if the new methods

are compelling. How will it improve things? Is it worth the effort and risk to change?

What is the return on investment?

When running Oracle on Docker, we can distill these motivations into a handful of

opportunities: simplicity, speed, portability, reliability, and cost.

�Simplicity
Docker is Infrastructure as Code.2 Docker automates operating system preparation,

installing and patching Oracle software, and configuring databases. Users don’t need

to understand or remember detailed steps. Calling Docker and supplying optional

parameters to customize the environment is all that’s required. Users who aren’t familiar

with or comfortable installing a database no longer rely on a DBA to create new working

environments.

Docker presents an even broader set of possibilities for database administrators

beyond just automating database installations. Consider the effort to set up a primary

and standby database in Data Guard. At a high level:

•	 Provision the hosts

•	 Install software

•	 Configure networking

•	 Create and configure a primary database

•	 Prepare and recover the standby database

•	 Set up the broker

•	 Test and validate

2 Infrastructure as Code is a model for defining infrastructure as a set of rules or instructions
that automation tools, like Docker, follow when building platforms to support software and
applications. Code can be saved to source control, shared among teams, and subject to review
and inspection. It leads to repeatable, reliable results, and allows teams to confidently provision
hosts, storage, and networks without specialized knowledge or skills.

Chapter 1 Introducing Docker and Oracle

6

It’s a very linear and time-consuming process: set up the environments before

building the primary; wait for the primary database to be created before restoring the

standby; wait for the standby to come online before setting up the broker. The number

of steps creates opportunities for missed commands and mistakes. One wrong or

overlooked parameter early on may leave things in a questionable state further on.

The expense and complexity of setting up Data Guard makes it something many

DBAs do infrequently, making it challenging to get familiar with the technology. It’s

unusual for most companies to have a Data Guard environment dedicated to testing—

where operations teams can break, fix, and explore how it works.3 In my experience,

most shops that run Data Guard treat the systems with kid gloves. They’re reluctant to

test it to extremes because of the effort needed to rebuild. That’s especially true when

Data Guard only exists in production!

If database teams are uncomfortable building and fixing Data Guard, how effective

can they be if it breaks? Do they have practice diagnosing and addressing problems? Will

they recognize and react to situations appropriately?

With Docker, the effort of building test environments drops significantly and, with

it, concerns of recreating (previously) fragile systems. Suppose staff can create (and

rebuild) full Data Guard Data Guard environments that mimic production topology in

just minutes on a laptop. In that case, they have the opportunity to practice and perfect

their skills and respond confidently in a crisis.

Limited or inadequate testbeds aren’t limited to Data Guard—it applies to any

complex environment or feature. Patch, upgrade, secure, restore—any change

potentially tricky or time-consuming to recover from.

It’s an odd contradiction: we’re often reluctant to practice and test activities, some

critical to business continuity and security, for fear of breaking lower environments. Yet

failing to do so increases risk. Procedures earn less scrutiny and practice. Teams are less

familiar and comfortable with the process when they reach production.

3 It’s unusual to see environments dedicated to infrastructure testing. Test systems are typically
shared by end users, limiting their usefulness for any effort that might jeopardize their availability.
They’re effectively production systems for internal users.

Chapter 1 Introducing Docker and Oracle

7

�Self-Contained
To appreciate Docker, it may help to reframe the way we think of enterprise applications.

Application software are the rules for executing specific tasks installed on a host.

Microsoft Word, for instance, manages and edits documents.

There’s a distinction between having Word and running Word. Installing it means I

have Word, as a static collection of files that define its behavior. Running Word puts the

software into action. It starts a process that executes rules prescribed by the software and

allocates resources like memory and CPU. An active Word process can use existing files

or create new ones and captures configurations and metadata as it’s running, but the

installed software—the rules—don’t change.

It’s easy to lose sight of this when thinking of an Oracle database. We think of

databases as collections of hardware, software, data, and configurations rather than

recognizing individual components, but they’re still just applications. Figure 1-1

illustrates the similarities between Word and an Oracle database. The software in the

ORACLE_HOME specifies the rules for working with data. Starting a database instance

creates processes, allocates resources, and reads and writes data and configurations to

files on disk.

Figure 1-1.  An Oracle database is an application with components like those
found in other applications, including Microsoft Word

Applications are all the rules and dependencies needed to do something, compiled

into a package. “Starting” the package runs the application and performs work.

In Docker, images are the packages containing all the software and dependencies

necessary to support a given application. Images are the software installation—the

files and metadata that prescribe a function. Running an image creates a container for

delivering services.

Chapter 1 Introducing Docker and Oracle

8

The most significant difference between databases running natively on physical

or virtual hosts and those running in containers are the locations of files. In traditional

systems, prerequisite libraries and packages are installed directly into the operating

system. Updating the OS risks changes to these dependencies, and many shops delay or

limit their patching rather than jeopardize database stability and performance.

Systems running in containers, however, are far more forgiving. Dependencies

are built into the image, and changes to the underlying host OS aren’t a concern.4

The flexibility to manage the host operating system, with less regard for database

compatibility, affords greater freedom to stay current with the latest security updates.

Patching and upgrading databases is different, too. Container images are

complete, self-contained collections of database software, entirely separate from

data and configuration. In Docker, rather than updating the active Oracle Home,

stop the container running the old version, then start a new container using a new,

updated image!

�Speed
Docker’s speed benefits go beyond its ability to build infrastructure quickly. Let’s

compare Docker to another technology frequently used for database provisioning on

desktops: Vagrant. Like Docker, Vagrant is an Infrastructure as Code tool. Docker creates

and manages containers, while Vagrant does the same for virtual machines, or guests.

Containers and virtual machines fill similar roles and are often compared against one

another. Oracle maintains official repositories for deploying Oracle databases under

each technology, offering an opportunity to contrast their performance performing

similar tasks.

I performed simple tests of two activities. The first was the time it took to create

a database, including configuring the environment, installing prerequisites and

database software, then creating a new database. The second was starting (or restarting)

the system.

I used Oracle’s Vagrant project (https://github.com/oracle/vagrant-projects)

for my VM and Oracle’s Docker image builds (https://github.com/oracle/docker-

images) for my image. I used the same archive file to install Oracle 19c Enterprise

Edition and create a 19.3 container database and single pluggable database. All assets

4 Provided changes on the OS are compatible with the container engine, of course.

Chapter 1 Introducing Docker and Oracle

https://github.com/oracle/vagrant-projects
https://github.com/oracle/docker-images
https://github.com/oracle/docker-images

9

were already available locally to eliminate dependencies on downloads. Both tests were

performed on the same machine, a MacBook Pro running the latest Vagrant and Docker

Desktop versions. I ran each operation five times, captured timings, and computed their

averages. Docker was just over 25% faster than Vagrant for building a new database and

37% faster to start than resuming a VM.

Why is Docker so much faster? It boils down to differences in the way virtual

machines and containers work. Virtual machines rely on a hypervisor to emulate

hardware, then start an operating system. There’s a level of abstraction that translates

calls from the guest operating system to the host and back.

Docker containers are processes running natively on the host. There’s no operating

system to initialize and nothing to boot. Containers (usually) include only the

dependencies—executables, libraries, and other files—necessary to run the service

they’re meant for, making them smaller than a comparable VM.

Figure 1-2 illustrates the differences between virtual machines and containers.

Both systems have host operating systems and an interpretive layer that supports

virtualization. And in both environments, there are software dependencies—binaries,

libraries, and application code. But virtual machines include a guest operating system

that isn’t present in containers. Why not? Containers leverage files and resources already

present in the host operating system!

Figure 1-2.  Running the same applications in a virtual machine and a container
requires the same application code and dependencies. The difference lies in where
the operating system needed to support the application exists. In virtual machines,
each guest has its own OS. Containers share the host’s OS

Chapter 1 Introducing Docker and Oracle

10

In Figure 1-2, the virtual machines are isolated from one another. Even if the

application files and dependencies are identical, they consume space individually

in each virtual guest. In Docker, three (or three hundred or three thousand) identical

containers all start from the same image, using less space than their counterparts in the

three virtual guests.5

�Portability
Microsoft Word saves files in a standard format. I can share documents with others

running Word on different operating systems or architectures and even with people

using various word processing programs that recognize the standard.

Container images built with Docker (and similar technologies) adhere to the

Open Container Initiative or OCI6 (https://opencontainers.org). They’re portable

across hardware and operating systems and interchangeable across all OCI-compliant

environments. Images built in Docker on Windows work identically on a Mac or Linux

system and vice versa. Virtually every cloud vendor supports the OCI standard, too. A

single, standard database image works the same on any cloud and is portable across

clouds. Why is portability desirable, even essential?

Imagine we need to migrate several databases from on-premises systems to the

cloud. Each database runs on dedicated hardware, with unique versions of Linux and

different database software versions. Our cloud vendor offers pre-built compute images,

but none are identical to our needs.

One option is to recreate each database environment in the cloud, manage and

maintain multiple distributions and configurations, follow separate update and patching

cycles, develop unique test and QA processes, etc.—all while adding overhead to

operations.

Another option is to use a default compute image for every database host and run

the databases in containers. Standard compute can be maintained identically across all

infrastructure. Patching hosts doesn’t affect the database containers—they’re isolated,

using their software. The abstraction and isolation containers offer facilitates and

simplifies changing cloud vendors, running multicloud environments, and hybrid cloud/

on-premises topologies.

5 This concept is covered in detail in Chapter 12.
6 Not to be confused with Oracle Cloud Infrastructure.

Chapter 1 Introducing Docker and Oracle

https://opencontainers.org

11

�Reliability
When discussing reliability, we typically think of how stable a system is, how resilient it

is to failure if its components are durable, and whether critical aspects are redundant.

This describes systems, infrastructure, or hardware reliability. There’s another aspect to

reliability that’s often overlooked but equally important to consider: process reliability.

Building reliable processes means assuring changes promoted from lower

environments through production function predictably at each step. It also seeks to

guarantee problem behaviors in production systems can be reproduced and confidently

fixed elsewhere.

Automation, version control, and configuration management are the best means

of achieving process reliability. Unfortunately, database environments tend to avoid

these approaches, leaning more toward manual administration. The reasoning goes

that the overhead and discipline applied to non-database infrastructure aren’t justified

when databases represent a minority of assets, and databases and hosts change too

infrequently to benefit. Instead, a documented installation and configuration process

substitutes to guarantee databases are consistent throughout the enterprise.

Relying on documentation alone is risky. Documentation is descriptive. It’s a set

of instructions that made sense to the authors when written but may be interpreted or

understood differently by readers. It may be incomplete, particularly if the writer expects

readers to understand certain things. Readers may even skip or miss steps. It’s also only

effective or correct if it’s current.

Docker (and other automation tools) is Infrastructure as Code and lends itself

naturally to centralized version control tools like git. Code is procedural and instructive

and less open to misinterpretation. Incomplete procedures and incorrect syntax lead to

failure. Coded processes are also more reliable and easier to test.

Images produced by Docker are immutable, meaning they can’t be changed, and

offer greater certainty that multiple database containers running from the same image

are identical. It eliminates variables that might confuse troubleshooting efforts and cast

doubt on findings from a process management perspective. It’s easier to create (and

keep) databases running in containers consistent and identical and achieve process

reliability.

Chapter 1 Introducing Docker and Oracle

12

�Cost
Services in containers occupy a smaller footprint than virtualized or bare-metal solutions. It’s

why containers are attractive—they do more with less. While the bottom line is undoubtedly

important, it’s not the only area where Docker and containers help reduce costs.

I saved cost for last because each prior argument includes or implies cost savings

that are more difficult to quantify. Building simpler and faster solutions accelerates

development pipelines. Database teams no longer spend as much time performing data

refreshes. Developer and QA teams have greater autonomy over their environments.

Both sides win in the war between DBAs and developers!

Operations teams use automation, configuration management, and version control

to ensure consistency and simplify their environments. They help achieve efficiency.

Databases often exist outside that envelope, eschewing standards and employing

different or dedicated tools for monitoring and management. Docker introduces a way of

bringing database teams into the operational fold and reducing the overhead associated

with multiple techniques.

Container portability creates opportunities to leverage less powerful hardware

and low-cost cloud services to host nonproduction database environments dedicated

to database testing. The primary obstacles to restore and disaster recovery testing are

preparation difficulty and hardware availability. Containers solve both, automating the

setup and reducing the threshold for what constitutes acceptable test environments.

Finally, Docker creates predictable, reliable results. We solve problems with greater

confidence and spend less time testing by reducing and eliminating doubts. When two

systems behave differently, we typically begin looking for differences that may be to

blame. For manually built databases, we can’t dismiss the possibility of errors or missed

steps. Two systems started from the same image have an identical heritage, and it’s

easier to locate where one diverges from the norm.

�Use Cases
Let’s get this out of the way: My Oracle Support note 2216342.1 outlines Oracle’s support

for Docker. Oracle certifies Docker for single-instance databases using 12.1.0.2 and later

on hosts running

•	 Oracle Linux 7 UEK4 and later

•	 Red Hat Enterprise Linux 7

Chapter 1 Introducing Docker and Oracle

13

In October 2021, Oracle announced production support of RAC databases running

Oracle Database 21c under My Oracle Support note 2488326.1.

Docker is an option for existing databases running on bare metal, a VM, or a cloud

within these limitations.

Docker’s small footprint, low resource demands, and speed make it a natural

solution for sandbox and prototyping on limited hardware like laptops. But its

architecture introduces the potential to work with Oracle in different and exciting ways.

One interesting feature is the ability to easily separate database and operating system

software from data and configuration. It’s easy to save the contents of a database as

reference data, then share, restore, or provision new databases in seconds, using only

basic OS commands—no Recovery Manager or Data Pump required. Let’s examine a few

ways of leveraging this.

�Exchange Data
Running an Oracle database class or lab for anything more than a few students requires

substantial horsepower. Docker’s small footprint allows hardware to accommodate

more students than a virtual guest solution. It also accelerates and simplifies the effort to

provision the lab itself.

In either situation, instructors create a gold image of a database all students will

use. A Vagrant solution saves the gold image as a custom box containing the operating

system, database, and data. Students work on independent virtual guests started from

the custom box.

In Docker, entire databases can be committed as new images and distributed. A

second method creates two components: operating system and database software (host)

and data and configuration (data). In this scenario, the host and data are shared or

copied together or separately.7 The advantage of this method may not be immediately

apparent.

If the “host” piece in this example is a 19.10 database, it will work with any 19.10

“data.” Different labs, with other data, can all use the same “host.” Only the reference

data changes.

7 These methods are described in detail in Chapter 7.

Chapter 1 Introducing Docker and Oracle

14

A similar approach works for refreshing data in QA and development environments.

Whenever reference data changes, copy the newer, self-contained version of the data and

database configurations to the container’s data volume and restart the container. The same

technique is helpful for versioning data. Applications include A/B testing and side-by-side

comparison of function or performance before and after application or parameter changes.

�Modular Software
Docker images consist of a set of files that appear as a regular Linux filesystem. An

image for an Oracle database will contain directories for the ORACLE_BASE, ORACLE_HOME,

inventory files, and so on. These files appear in the image as part of a typical directory

structure. Docker can read and copy some or all of an existing image to build new

images, saving time and effort (and space!).

We can use images and parts of images as building blocks to construct more complex

systems without duplicating effort. GoldenGate and database upgrades offer two

scenarios illustrating ways to leverage a modular approach.

For GoldenGate, an existing database image is extended by adding and configuring

the GoldenGate software and dependencies. The original database image provides

a foundation. Docker adds layers8 to the database image but leaves the original

unchanged. The original image is untouched, and Docker can reuse identical portions of

its filesystem to reduce the size of the final GoldenGate image.

Building an image to test database upgrades can be done the same way, adding

a new database home to an existing database image. But there’s another approach

available, too. If I already have database images for my source and target versions, I can

start with the source database image; copy the ORACLE_HOME from the target; attach or

clone the new ORACLE_HOME to the existing inventory. The final image has source and

target ORACLE_HOME directories and a complete inventory. There’s no need to install the

binaries, and Docker’s storage deduplicates the shared content.

Database patching and upgrades are other applications that work like Oracle’s Rapid

Home Provisioning. Rather than patching software on an existing container, create a

new image at the target release. The image produces consistent database containers,

eliminating variations introduced by manual processes. To patch the database, stop the

running container, start a new container using the updated image, and run any post-

patching steps to modify database metadata.

8 Layers are covered in Chapter 17, Image Efficiency.

Chapter 1 Introducing Docker and Oracle

15

�Orchestration
Docker comes with its own orchestration solution, Docker Compose. Docker Compose

(or simply Compose) typically coordinates two or more containers, manages cross-

container dependencies, and facilitates networking and other shared resources. We can

use Compose to run environments that use multiple databases, such as Data Guard.

Compose uses YAML (Yet Another Markup Language), a plain-text markup language,

to define participating members or services in an orchestration. Besides describing

the members, information passed to each service through the Compose specification

can trigger conditional activities. Compose starts two Oracle 19.10 Enterprise Edition

databases in the following example: DENVER and DALLAS. Each is assigned environment

variables called ROLE and DB_UNQNAME. A script in the database image reads these

values from each database container’s environment and uses them to perform actions

appropriate to each role.

Don’t worry if you’re unfamiliar with YAML or similar markup languages. What you
should notice is the simplicity of the configuration. The orchestration needs just a
few pieces of information to automatically provision two databases in a Data Guard
configuration!

version: '3'

services:

 DENVER:

 image: oracledb:19.10-ee

 container_name: DENVER

 environment:

 ORACLE_SID: ORCL

 DB_UNQNAME: DENVER

 ROLE: PRIMARY

 DALLAS:

 image: oracledb:19.10-ee

 container_name: DALLAS

Chapter 1 Introducing Docker and Oracle

16

 environment:

 ORACLE_SID: ORCL

 DB_UNQNAME: DALLAS

 ROLE: STANDBY

Compose simplifies the setup of complex environments and reduces the effort and
time required to bring a fully configured set of interdependent databases online.
Reduced startup cost makes building models for testing replication and disaster
recovery systems easy. It also removes any reluctance to bend or break those
systems. Once automation is in place, creating fresh models is straightforward.

�Other Uses
As you work with Oracle in Docker, you will undoubtedly recognize new applications.

Docker is my first thought when I need to troubleshoot anything, and my colleagues

enjoy some good-natured teasing about it. Here are some additional ideas to consider:

•	 Troubleshooting: Isolating a bug in production can be difficult

when the environment is restricted or prevents changes. Recreating

a problem in Docker offers the freedom to tweak and test scenarios

that allow better isolation and identification and, ultimately, faster

resolutions.

•	 Practice procedures: Docker provides an excellent practice field

for critical activities such as upgrades, migrations, database restores,

and disaster recovery. It’s an ideal place to become familiar with the

process and perfect and document procedures and runbooks.

•	 Monitoring systems: Create a self-contained, portable monitoring

repository in Docker and deploy it into any infrastructure.

•	 Performance tuning: Export statistics and metadata from a

production database into a database running in Docker to model and

tune optimizer behavior.

•	 Hacking and penetration testing: A local, isolated system

is an excellent testbed to explore vulnerabilities and practice

hacking skills!

Chapter 1 Introducing Docker and Oracle

17

•	 Feature evaluations: Every new release of Oracle introduces a

plethora of new features and capabilities. Docker offers a risk-free

setting where users can get acquainted with what’s new and practice

for certifications.

This is by no means an exhaustive list—hopefully, it sparks your imagination!

�Objections to Docker
Over the years, I’ve heard many concerns about using Docker for databases, mainly

Oracle. I shared many of these when I first began putting data into containers. Oracle

officially supports Docker for production databases, but that doesn’t mean Docker is an

appropriate solution. To tackle that, let’s address some of the myths, misconceptions,

and misunderstandings about containers that exist, particularly in the database world:

•	 I'll lose my data: Containers are processes on a host, accessing the

same storage as non-container processes. Take the same precautions

to protect container and non-container databases.

•	 Containers are ephemeral: It’s not unusual to see containers started

to perform a service or function and destroyed when complete.

There’s no time limit, though, and containers exist until deliberately

removed. They can be stopped and started, and their data persists

across system restarts.

•	 Images are immutable: Yes, and that’s good! Images are templates

for starting new containers. They can’t be changed, assuring us that

every new container is a reliable copy of the original image. Just

because an existing image is immutable doesn’t prevent changing

and saving it as a new image!

I think it’s important to consider some of the opposition to Docker in a historical

light. I’ve witnessed innovations over a long career in technology, including the

introduction of RMAN, Enterprise Manager, virtualization, and the cloud. Each was met

with resistance, not always rational. Humans don’t deal well with change, and it’s easy to

dismiss new technology as a gimmick or marketing vaporware.

Chapter 1 Introducing Docker and Oracle

18

At the risk of dating myself, I remember the introduction of automatic undo

management. Everyone I knew dismissed it, suggesting that undo management was

too complex to automate. Today, I can’t imagine manually tuning rollback. It’s a

primitive idea!

�Summary
Containers are the new way of doing things, and some of the largest, most successful

enterprises are all-in. Infrastructure consolidation saves money and improves

manageability. While database administrators may try to resist it, it’s only a matter of

time before databases are the only things not in containers, at which point someone

will ask, “Why not?” Justifying your answer to that question requires understanding how

containers and databases coexist and operate and how they compare to the alternatives.

In the following chapters, I’ll introduce you to container concepts relevant to

databases and Oracle and walk you through the steps of building databases in Docker.

We’ll begin with simple examples to get Oracle up and running on a laptop or desktop

and build confidence and familiarity. At each step, I provide practical recipes you can

apply, customize, and build on in your environment!

Chapter 1 Introducing Docker and Oracle

19

CHAPTER 2

Understanding
the Container Landscape
Containers have their own language, and those new to Docker should understand

some basic concepts and terminology before jumping in. This chapter introduces the

vocabulary needed to navigate the terrain and a high-level view of how containers

work. Let’s begin by looking at containers in the context of another similar solution that

readers may already be familiar with: virtual machines.

If you’re already confident distinguishing between images and containers and
recognize how containers and virtual machines differ, feel free to skip to Chapter 3.

�Containers vs. Virtual Machines
Ask a group of IT professionals to describe Docker containers, and the chances are good

that at least half will respond that they’re “like lightweight virtual machines.” Some might

even make comparisons:

•	 VMs are like houses; containers are like apartments.

•	 VMs are like semi-tractor trailers; containers are like pickup trucks.

•	 VMs are like supermarkets; containers are like convenience stores.

•	 VMs are a bakery; containers are a slice of cake.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_2

https://doi.org/10.1007/978-1-4842-9033-0_2

20

Virtual machines and containers are both valid solutions for addressing the

challenges of cost, efficiency, scale, isolation, and portability, so it’s natural to compare

them. The misstep these analogies make is framing containers as a lesser, lighter, or

trivial alternative. It perpetuates the myth that containers aren’t capable or robust

enough for production workloads.1

I’d like to reframe this for an Oracle database audience by looking at virtual

machines and containers as different ways of doing similar things. Let’s put Docker aside

for a moment and put on our Oracle hat to consider ways to host three new database

applications in an enterprise. Three possible approaches are as follows:

•	 Three homes, three databases: One database for each application,

each with its own ORACLE_HOME. Individual Oracle software

installations offer greater control over each application’s database

version at the expense of increased overhead. Each ORACLE_HOME

takes up space and must be managed, patched, and supported

separately.

•	 One home, three databases: One database for each application, all

running from a single ORACLE_HOME, reduces the complexity of

maintaining multiple software installations while separating each

application. Each database has overhead associated with its memory

structures, processes, and metadata (SYSTEM, SYSAUX, TEMP, and

UNDO tablespaces).

•	 One database, three schemas: The most efficient approach is a

single database with individual schemas for each application. All

three schemas share one set of memory structures, background

processes, and metadata. Smaller, less expensive hardware provides

equal performance.

1 To appreciate how capably containers handle production workloads and availability, consider
that everything at Google runs on containers: Gmail, YouTube, even search! cloud.google.com/
containers

Chapter 2 Understanding the Container Landscape

21

None of these solutions are right or wrong, good or bad, and there are scenarios

where each is a better or more reasonable choice. Let’s eliminate the first option2 and

narrow in on the second and third. These run from a single ORACLE_HOME and are

therefore limited to running on a single host. Figure 2-1 compares these options side

by side.

Figure 2-1.  Alternatives for hosting three applications from a single ORACLE_
HOME—separate databases vs. separate schemas

From a client standpoint, there is no functional difference. The choice is purely

operational. Separate database instances offer greater flexibility but require more

resources and management (with higher costs).

Spreading schemas across databases may appear to have security benefits and
provide isolation. With a single ORACLE_HOME, vulnerabilities exploited in one
database are there for others. More databases mean a larger attack surface.
Security is a product of how well the infrastructure and schemas are protected.

Most works and explanations on containers compare the resource placement of

containers and virtual machines using a diagram similar to Figure 2-2.

2 Three homes and three databases in this example is analogous to running separate hosts. The
latter two scenarios focus on methods that share infrastructure and resources of a single host and
explore ways of isolating and presenting schemas and data to applications. Containers and virtual
machines perform similar roles.

Chapter 2 Understanding the Container Landscape

22

Figure 2-2.  Resource placement comparison for virtual machines and containers

Both run on a host and have host operating systems.3 Each adds an abstraction layer:

for virtual machines, the hypervisor; for containers, the runtime. Hypervisors allow the

operating systems of each virtual machine guest to access host resources and isolate

VMs from one another. The container runtime performs a similar function. The main

takeaway from Figure 2-2 is that containers don’t have a guest OS.

�Dedicated vs. Shared
Note the parallels between Figures 2-1 and 2-2. Three databases mean three sets of

duplicate metadata, each with process and memory requirements. The same applies

to virtual machines. The guest operating systems are not shared. Independent virtual

machines demand host resources to manage their environments as if they were running

natively.

In contrast, multiple schemas in a single database share a data dictionary. Adding

schemas doesn’t increase the number of background processes or the amount of

memory used. The only system resource affected when adding schemas is the storage

needed by metadata and new objects. Similarly, containers share resources in the host

kernel and environment. Containers enjoy smaller footprints by reducing or eliminating

duplicate files and sharing administrative processes with the host operating system.

3 Type 1 hypervisors combine the hypervisor and operating system. Type 2 hypervisors run atop a
host operating system.

Chapter 2 Understanding the Container Landscape

23

�Performance
Other comparisons apply, too. There’s more time and effort needed to add or start

schemas assigned to individual databases. The same applies to virtual machines.

Creating and starting databases and installing and booting operating systems in

independent virtual machines are time- and resource-intensive activities.

Adding a schema is far less involved in the single database, a limited subset of

creating a dedicated database for an application. There’s also no concept of “starting”

a schema in a database instance. If the database is up, the schema is available, too. The

overhead of accessing a schema is just what’s needed to establish a database connection.

We can look at containers the same way. There’s no prerequisite installation, and

since containers don’t have an operating system, they don’t need to boot. If the host is

running, starting a container is just a matter of creating a process.

�Capacity and Capability
The representation in Figure 2-2 doesn’t provide a complete picture, though. Both

run software at the host level—an OS and some software abstraction or emulation

layer supporting guest interaction and isolation. Both solutions accommodate three

applications. Besides the presence or absence of the operating system, they may seem to

be relatively similar approaches.

Containers and virtual machines are sometimes referred to as “light” and “heavy,”

respectively. A VM’s extra “weight” comes from the guest’s operating systems. Identical

applications (i.e., applications with the same binary, library, and application layers)

duplicate components across virtual guests. In the virtual environment, the overhead of

running parallel operating systems also adds load to the system.

Let’s amend the original virtual machine vs. container comparison by adding a

boundary to capture the relative capacity of the hosts, as shown in Figure 2-3. It’s easier

to understand that applications in the container solution have room to grow or that

smaller and less powerful (and less expensive) hardware can be substituted without

sacrificing capability.

Chapter 2 Understanding the Container Landscape

24

Figure 2-3.  Capacity requirement comparison of virtual machine and container
infrastructure

Virtual machines are the Oracle equivalent of running independent databases for

every schema in an application, each with its own administrative, undo, and temporary

tablespaces, memory structures, background processes, and so on.

Compare containers to running a single database instance with multiple schemas.

Each schema contains only its unique objects. Common features are shared and managed

centrally, reducing overhead and duplication and increasing capability and performance.4

�Concepts and Terminology
Now that you know what containers are and where they fit in the enterprise, let’s dive

into some container concepts and terminology.

�Images
An image is a package of files used to start and run containers. Images bear functional

similarities to Vagrant boxes and VirtualBox images, and those comfortable with Oracle’s

multitenant architecture could even think of them as seed databases. Fundamentally,

these are all starting points for working with technology and delivering reliable, identical

starting points.

4 Containers are even more efficient than shown here. Assuming the three applications hosted in
these examples have similar foundations, most, if not all, of the binary, library, and application
files of these containers are shared through overlay filesystems. This is discussed in greater detail
in Chapter 17.

Chapter 2 Understanding the Container Landscape

25

When Docker starts a new container from an image, it reads image metadata and

presents a filesystem (including the binaries, libraries, and application files we discussed

earlier) to the container. The next chapter goes into more detail on how containers use

filesystems. In the meantime, let’s look at some properties of images: tags, portability,

immutability, and statelessness.

�Tags

A tag (usually) identifies the version of an image in a repository. A repository is a

collection of images, usually related, such as Linux or Python. Tagging an image

differentiates each version and makes it easier to find and use a specific version. Tags

combine with the repository name to create a human-readable or friendly image name

with the form repository-name:tag.

Repository names and tags provide a convenient means for humans to work with

images. There’s even a special tag, latest, that references the current working version of

an image without knowing its details. This highlights an important consideration. Tags

are arbitrary conventions, not absolute identifiers.

Building images creates a unique SHA256 hash value. Images can exist in multiple

repositories with different tags. The hash (sometimes referred to as its digest) identifies

whether the images are the same and comes into play when considering immutability.

�Portable

Docker images are portable because they run on any system that runs Docker—or, for

that matter, any system with a compatible container runtime. This includes Docker

alternatives like Podman and LXC and container services offered by cloud vendors.

Portability in this context is more than just compatibility. It guarantees users have

identical experiences on every platform without changing the image or worrying about

where it will run. If it works on one machine, it will work on every machine.

Portability lowers the threshold for various everyday challenges, including (but not

limited to) building labs, teaching and experimenting, demonstrating new features,

testing security, validating patches and fixes, and verifying procedures.

Chapter 2 Understanding the Container Landscape

26

�Immutable and Stateless

Images are immutable—they can’t be changed. An image can be modified and saved as a

new image and even updated to replace an image using the same tag, but its hash value

changes.

Immutability goes hand in hand with the stateless nature of images. Information

about an image’s condition, or state, can’t be saved to the image.5 Images always start

from the same, known place.

While tags offer a friendly mechanism for working with images, and portability lets

us run an image anywhere, immutability guarantees images shared across multiple

environments are the same. Statelessness assures that every image begins from the same

starting point and delivers identical results.

Portability and immutability are key to sharing images, with hashes uniquely

identifying their version. Docker and container technology are a way of building

Infrastructure as Code. Infrastructure as Code produces reliable environments through

version control and automation and reduces or eliminates manual configuration.

I recently helped troubleshoot a Data Guard issue. A new standby database added
to an existing environment wasn’t working as expected. The DBA team followed
a documented procedure and felt confident the failing system was identical
to the working one. Several hours later, a minor variation in the sqlnet.ora
configuration was identified and fixed. Building from code avoids oversights, saving
time and money (and frustration)!

�Containers
A container is created by “running” an image. Containers perform work. From the host

perspective, a container looks like a single process on the system. “Inside” a container,

things appear differently! Once connected to a container, the environment seems to be a

complete host with a filesystem, processes, users, and networking. Like virtual machines,

things look and behave differently depending on whether you’re “inside” or “outside.”

Containers are stateful and ephemeral invocations of images. These characteristics

are often misunderstood, particularly in the database world.

5 This is an important difference between images and containers. Containers persist their state
information.

Chapter 2 Understanding the Container Landscape

27

�Stateful

A container’s condition, or state, is preserved. Nothing is lost when containers (or

their host) are stopped and restarted. Files and content added and modified on the

container’s filesystem persist through the stop-start cycle. Directories and files deleted

from the container don’t reappear.

It’s easy to confuse the ways images and containers manage state. Remember that

images are like templates or seed databases. Their statelessness provides a reliable

starting point to begin work. That work occurs (and is saved) in stateful containers.

When working with databases, it’s essential to understand that changes to data persist in

containers just as in virtual machines or bare-metal environments.

�Ephemeral

Containers usually do some work, then disappear. Generally speaking, containers are

considered ephemeral, or temporary, processes. Based on this, it’s easy to conclude

containers are inappropriate for hosting long-lived applications like databases. However,

containers don’t expire, and nothing prevents them from running for days, months,

or years.

Containers don’t vanish on their own, either. They are no more or less permanent

than virtual machines, yet there is a mistaken belief in the database world that

containers are dangerous places to put your data.6 Can you remove a container?

Absolutely. You can also remove a virtual machine or delete its disks from the host. To be

clear, these are operational matters and unrelated to the technology itself.

�Resources
Like other processes running on a system, containers use the host’s CPU, memory, and

storage. Docker provides ways of managing and limiting resource use by individual

containers and the Docker runtime. Chapter 16 covers this in more detail. But containers

can interact with the host in other ways. The most common of these are accessing local

storage and exposing network connectivity.

6 Data in containers—including datafiles and configuration—can be persisted outside the
container and protected by the same mechanisms used by databases running on bare-metal and
virtual machines.

Chapter 2 Understanding the Container Landscape

28

�Volumes
Volumes are a mechanism for sharing filesystems from the local host with containers and

separating data from software. Conceptually, volumes are like NFS filesystems visible to

the host and container, allowing access to high-performance and resilient devices and

shared data. They streamline operational activities that are difficult or impractical for

Oracle databases running on other platforms, including

•	 Patch and upgrade: Stop and remove the running container, replace

it with one using the upgraded version, run any post-upgrade steps,

and start the database.

•	 Move and migrate: Containers are portable and run in any

compatible environment. Whether it’s moving to a newer, more

powerful on-premises host or a lift and shift to the cloud, containers

offer a consistent and controllable mechanism for transporting data

and databases.

•	 Clone databases: Separating data and software makes cloning a

database a matter of copying the data volume and starting a new

container referencing the location of the data.

•	 Create reference datasets: Create gold images of data to distribute

among QA and development teams. Stop a container, swap out its

data, and restart it. Or drop and recreate the container using the new

dataset to guarantee teams are testing with clean, consistent data.

Removing a container deletes its data—unless it’s on a volume. Storing data and

configuration files on volumes allows data to outlive containers and is key to these

techniques. Oracle’s official Docker image repository scripts build this capability into

images, and it’s easily accessed through the Docker API when creating a container.

�Networking
Containers run in isolation by default, with connections limited to privileged users on

the host. That isn’t very useful for most applications. Fortunately, Docker can expose

and map ports to the local host. Applications, users, and even other containers access

a container using the mapped port on the host. Only ports deliberately opened in an

image are mappable. Oracle’s Docker images expose ports 1521 and 5500.

Chapter 2 Understanding the Container Landscape

29

Figure 2-4 shows an example of connecting Oracle SQL Developer to an Oracle

database running in a container. The database’s listener port, 1521, is mapped to port

10000 on the local host. The hostname is localhost (or the hostname or IP address of

the Docker host).

Figure 2-4.  Connecting SQL Developer to an Oracle database in a Docker
container

Most of the networking covered in this book uses port mapping for simplicity. There

are more robust and scalable solutions suited to production environments. Chapter 9

covers a Docker-native solution. Tools like Docker Compose and Kubernetes have

facilities for administering and securing connections to containers (and databases).

�Additional Terminology
Readers should know a few additional terms and concepts to complete a basic

understanding of Docker.

Chapter 2 Understanding the Container Landscape

30

�Runtimes
Container runtimes incorporate a suite of capabilities for building, managing, and

running containers. Docker Desktop for Windows and Mac users and Docker Engine

for Linux users are popular and free to download at www.docker.com and provide

straightforward and well-documented avenues for users at the start of their container

journey.

Runtimes include a command set for managing and using containers. Don’t stress

over choosing a runtime. Like Docker, runtimes follow a standard that aliases the

commands and syntax of Docker Desktop and eliminates the risk of switching later.

Simply put, virtually anything you run in Docker Desktop will work elsewhere.

Most Docker commands begin with docker, followed by a keyword and one or more

flags to set or define options. For example, docker run ubuntu runs a container using an

Ubuntu Linux image.

How does it know where to get the Ubuntu image? Runtimes like Docker Desktop

connect to a hub or repository. When a user invokes docker run ubuntu, the runtime

searches its repository for a certified image named ubuntu and pulls or downloads it

automatically.

�Dockerfiles
Recall that images are a collection of files and directories. A Dockerfile is the set of

instructions, or code, used to populate the files in images. Dockerfiles run commands

and call scripts for installing and configuring the final image. They also define the

environment for containers that run the image, including variables, ports, and

directories mapped to host resources. Dockerfiles also determine what scripts containers

run when they start and define checks for reporting container health.

�Builds
Building images executes the instructions in Dockerfiles. The build process steps

through the Dockerfile sequentially. Builds always begin by pulling a base image.

Chapter 2 Understanding the Container Landscape

http://www.docker.com

31

The base image runs as a container, and changes are applied (remember, images can’t

be changed) as a layer. Each layer is a foundation for the following steps until the final

image is complete.7

�Summary
You now understand the language and concepts of Docker and containers and recognize

how containers compare to virtual machines. For database administrators, it may be

helpful to think of virtual machines as databases and containers as schemas. Adding a

schema for a new application is far less costly than creating a new, dedicated database.

There’s nothing to start in a container or a schema, either.

You can differentiate between images and containers and understand that they’re

portable to any container environment to deliver reliable, identical results. You learned

containers can share host resources, including network and storage. Most notably,

volumes allow data—including Oracle databases—to persist independently from a

container.

Next, we’ll lift the veil and explore how containers work by building one, not in

Docker, but at the command line, using Linux commands. This gives insight into

concepts used in later chapters but, most importantly, eliminates some of the mystery

and apprehension you may have when using Docker as a database platform!

7 This is a basic example. Builds can involve multiple images and stages and may incorporate
techniques to maximize layer reuse and minimize the size of the final image. A main objective
of containers is efficiency—smaller images produce containers that pack more densely. Shared
layers lower storage even further and take advantage of caching to improve overall performance.
Techniques for building efficient images are covered in Chapter 17.

Chapter 2 Understanding the Container Landscape

33

CHAPTER 3

Container Foundations
In the previous chapter, I covered some Docker terms and concepts. This chapter builds

on that with more practical, hands-on examples that will help you understand Docker

firsthand, how it works, and why it’s grown so popular.

In addition to presenting basic Docker commands, I want to introduce fundamental

concepts of images and containers. Images are immutable, and containers are ephemeral

and persistent. I hesitate to type that because I know how academic and boring it sounds!

When I started my container journey, I’ll admit that I wrestled with wrapping my mind

around these ideas or appreciating their importance. After a year or so, I saw them

demonstrated and the how and why were immediately apparent! I will do my best to

reproduce those “Aha!” moments and (hopefully) save you from repeating my struggles!

If you’re already familiar with containers and these concepts, feel free to move on to

Chapter 4. If not, I encourage you to take the extra time to follow along with the examples

in this chapter in your environment because there’s one thing you won’t be able to pick

up off the printed page.

Speed.

I can tell you containers are fast or that the Grand Canyon is big, but some things are

best appreciated by seeing for yourself.

If you don’t already have Docker Desktop installed, download and install it from
www.docker.com/products/docker-desktop. The next chapter has details
on installing Docker Desktop for Mac and Windows and configuring Docker on
Linux systems.

�Docker Command-Line Overview
Docker command-line instructions begin with the docker keyword. The list of

commands is relatively brief, and, for the most part, they’re plain and meaningful, even

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_3

http://www.docker.com/products/docker-desktop
https://doi.org/10.1007/978-1-4842-9033-0_3

34

to the uninitiated. docker start starts a container; docker logs displays container logs;

docker run runs containers; and so on.

Docker has some synonymous commands. For example, docker container run and

docker run are the same command, as are docker image ls1 and docker images. The

Docker community tends to use the shorter option when there’s a synonym. I’ll do the

same throughout this book.

Docker alternatives, like Podman, include commands aliased to their Docker

counterparts. I’ve worked in environments with Podman installed instead of Docker, and

some users (including systems administrators) didn’t notice for years!

You can always list all commands with docker --help (or just docker) at the prompt

and get details for individual commands by typing docker <COMMAND> --help. (The

Appendix includes a collection of common commands, with examples and recipes for

running Docker and Oracle.)

�Run Your First Container
Before jumping in and running an Oracle database, let’s cover some basics using

Ubuntu, a popular Linux distribution. It provides an opportunity to take a practical tour

of Docker, explore some concepts behind images and containers, get comfortable with

Docker commands, and demonstrate the essential properties of container environments.

�List Images
Open a shell session on the computer where you’ve installed Docker Desktop and show

the images available on the system by running docker images. Your output will show a

heading but no containers:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

1 A few Docker commands have origins in Unix/Linux commands for file and process
management and may not be immediately obvious to Windows users. In Linux, cp copies files, ls
lists files, ps lists processes, and rm removes files. Their Docker equivalents copy files to and from
containers, list Docker objects, list containers, and remove Docker objects, respectively.

Chapter 3 Container Foundations

35

There’s nothing listed indicating there are no images on the system. Recall that

an image is like a template, and a container is a product of running an image. Before

running a container, we need an image.

�Run a Container
Can we run a container even if there are no images present? Let’s check! Issue the

following command at a shell prompt to run an Ubuntu Linux container:

docker run -it ubuntu

This runs an Ubuntu Linux image. The flags tell Docker to run the container in

interactive mode using standard input and allocate a TTY.2 Or, more simply, “start a

container and give me a prompt.” The -it flags, or modifiers, are shortcuts for

--interactive and --tty (and much faster to type).

Even though there was no image on the system, the command completed

successfully. You should see something like this:

> docker run -it ubuntu

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

7b1a6ab2e44d: Pull complete

Digest: sha256:626ffe58f6e7566e00254b638eb7e0f3b11d4da9675088f4781a50

ae288f3322

Status: Downloaded newer image for ubuntu:latest

root@4a9ddd43e0e2:/#

Let’s break down the output and see what Docker did:

•	 Docker couldn’t find an Ubuntu image locally, as expected.

•	 Without a local source for the image, it “pulled” or downloaded an

image (I’ll address where it came from shortly).

•	 Docker reported the hash value of the image it pulled and its status.

•	 It displayed a prompt.

All of this took just a few moments.

2 TTY means teletype and dates to the “old days” before monitors were common. If you wanted
human-readable output, it was shown on a teletype, or printer!

Chapter 3 Container Foundations

36

The last line is a Linux prompt for the root user and the interactive TTY session

we requested, showing the root user logged in to host 4a9ddd43e0e2 and the current

directory.

�Explore the Container
The command prompt looks like a login to a physical Linux host or virtual machine. Let’s

confirm this by running some commands to interrogate the environment:

whoami

id

echo $$

head -2 /etc/os-release

The output of whoami and id confirms we’re the root user. The result of echo $$

(showing the process ID or PID of the current session) says we’re PID 1. And finally, the

contents of the os-release file show we’re logged in to an Ubuntu host. Your output

(apart from the hostname in the prompt and the Ubuntu version) should match this:

root@4a9ddd43e0e2:/# whoami

root

root@4a9ddd43e0e2:/# id

uid=0(root) gid=0(root) groups=0(root)

root@4a9ddd43e0e2:/# echo $$

1

root@4a9ddd43e0e2:/# head -2 /etc/os-release

NAME="Ubuntu"

VERSION="20.04.3 LTS (Focal Fossa)"

Leave this session open and start a new shell on your computer. Rerun the docker

images command from earlier. The result now shows an Ubuntu image is present:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest ba6acccedd29 4 weeks ago 72.8MB

This image is what Docker pulled so it could run the Ubuntu container requested

earlier. Where did it come from?

Chapter 3 Container Foundations

37

�Image Registries
The Ubuntu image isn’t part of Docker Desktop. Docker requested it from the Docker

Hub, a registry of images built and shared by the Docker community. The Docker Hub

includes Official Images published by Docker, Verified Images produced and maintained

by commercial third parties (including Oracle), and everything else.

As I write this, there are nearly 8.5 million publicly available images on Docker Hub,

mostly added by individuals and companies. Official and Verified Images are scanned

and tested for vulnerabilities. There are no guarantees other images are well written or

even safe. How do we know the Ubuntu image we’re using is any good?

When we executed docker run, we requested an Ubuntu image but didn’t specify a

repository. Docker pulled from its library of Official Images. I’ll cover registries in more

detail in Chapter 16. For now, it’s enough to know that Docker didn’t pull something

at random!

You may also notice that the image tag or version shows the latest in both the output

of docker run and docker images. This is shorthand for the most recent version and

the default if you don’t request a specific tag (when there is more than one) for an

image. This usually isn’t important—you often want the most recent version of Ubuntu

or Oracle Enterprise Linux 7 to guarantee the latest updates and bug fixes are present.

You want to specify the version for applications where dependencies and versions are

relevant. For example, to get a particular build of Node.js, you might call docker run

node:16 or docker run node:17.1.0, where the image tag follows a colon.

�Minimalism
The information for the Ubuntu image from Listing 3-5 shows the image is a

mere 72.8MB. That seems tiny, considering the ISO download from www.ubuntu.

com is 1.2GB. The Docker image of Ubuntu is less than 6% the size of its installed

counterpart. Why?

Images (typically) contain only what’s absolutely necessary to perform their function.

Reducing image footprint by excluding what’s not needed has a slew of benefits:

•	 Less to transfer across networks.

•	 Effectively increases infrastructure capacity.

Chapter 3 Container Foundations

http://www.ubuntu.com
http://www.ubuntu.com

38

•	 Smaller images have smaller attack surfaces.

•	 Fewer dependencies reduce the potential for bugs and

vulnerabilities.

Editors are among the things commonly excluded from images. Containers

usually run autonomously, with lifetimes measured in hours or minutes. It’s rare (even

discouraged) to log in to containers in production environments. Editors simply aren’t

necessary and create security risks.

Return to the container prompt you used before and try running vi test.txt to edit

a new file. It can’t find the command. vi and nano aren’t installed:

root@4a9ddd43e0e2:/# vi /etc/os-release

bash: vi: command not found

root@4a9ddd43e0e2:/# nano test.txt

bash: nano: command not found

There are other indications the Ubuntu image was trimmed down and not

intended to be interactive. Try running man ls to display a manpage, Linux’s built-

in documentation. The OS responds with a message reminding us that this is not a

complete OS:

root@ebb592e975f0:/# man ls

This system has been minimized by removing packages and content that are

not required on a system that users do not log into.

To restore this content, including manpages, you can run the 'unminimize'

command. You will still need to ensure the 'man-db' package is installed.

�Modify the Container
Containers are stripped-down, functional systems for performing a narrow set of tasks,

not running interactive environments. The base images Docker and other publishers

provide are trimmed-down versions without the extra bells and whistles we’re used to

finding in physical and virtual systems.

Some publishers offer “slim” variants for common distributions. While there isn’t

a standard defining what is or isn’t part of the nonslim variants, “slim” usually has the

minimum required for a working system. In contrast, the nonslim versions may include

additional standard or convenient functionality.

Chapter 3 Container Foundations

39

In Chapter 12, we’ll see that container images for Oracle databases are built from
“slim” versions of Oracle Enterprise Linux.

Nothing prevents us from updating the container OS to add functionality. Let’s do

that by running commands to add vi (or nano, if you prefer) to your container. Listing 3-1

shows the commands for installing vim-tiny, a distribution that doesn’t require Python

support.

Listing 3-1.  Commands for installing the vim-tiny package on Ubuntu

apt-get update

apt-get install -y vim-tiny

Note that you need to run apt-get update to update the repository to include vim.

Without the update, apt-get doesn’t know the package exists!

Try creating the file using vi test.txt once again. This time, it works! You

successfully modified the container to add features absent from the original image. Add

some content to the file and save it—you’ll use it again in the next section!

�Persistence
Over the years I’ve talked and taught about Oracle and Docker, the most enduring (or

persistent, pardon the pun!) misconceptions are containers don't persist data and don't

reliably save their contents—particularly across restarts. Let’s test this! Exit your Ubuntu

container by typing exit at the prompt, just as you would if you’d logged in or connected

to a host over SSH.

�Check the Container State
We started the container using docker run and the -it option. It created an interactive

container, tying its state to the session. Logging out of the container stopped it. We can

see containers present on a system and their status using the docker ps command.

At first, ps may not seem intuitive, but Unix and Linux users should recognize this as a

command for reporting running processes on a system.

Chapter 3 Container Foundations

40

Recall that containers are just processes, and it begins to make sense. Type docker

ps -a in your shell and examine the results:

> docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

4a9ddd43e0e2 ubuntu "bash" 2 hours ago Exited (0) 17 seconds ago

fervent_mendeleev

The -a flag is shorthand for --all and displays all processes (or containers) on the

system, whether active or stopped. Without this option, docker ps reports only the

running containers. A few other things to note in the output:

•	 The CONTAINER ID is a random string and matches the hostname we

saw in the container’s shell prompt.

•	 The COMMAND, bash, is the shell we used when the container started. A

container’s default command is defined in its Dockerfile and covered

in Chapters 12 and 13.

•	 The STATUS shows the container exited normally, with an error code

0. (Anything other than 0 is technically an exception, though not

always serious.)

•	 The randomly generated NAME, meant to be human-friendly, is

customizable. I’ll cover that shortly.

To confirm the container is stopped, run docker ps, without the -a option, to see

only the active containers.

�Start the Container
To start the container, type docker start, followed by either the NAME or CONTAINER ID

from your system, then check the status by repeating the docker ps -a command:

> docker start fervent_mendeleev

fervent_mendeleev

> docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

Chapter 3 Container Foundations

41

4a9ddd43e0e2 ubuntu "bash" 2 hours ago Up 3 seconds

fervent_mendeleev

�Interactive vs. Detached
Notice you didn’t reconnect to the container this time. When started this way, the

container process runs as a detached, or background, process. Detached containers

don’t stop when users log out because their state isn’t tied to an interactive session.

To run a container in detached mode at the outset, replace the -it options in
docker run with -d or --detach.

�Connect to the Container
Now that the container is active, reconnect to the prompt. There are different ways of

doing this: attaching or executing a command.

•	 Attaching accesses a container’s running process via the docker

attach <CONTAINER NAME> command. In our case, that command

is bash, as shown by the COMMAND column of docker ps. Only

one session can attach at any given time. Running a container in

interactive mode, as you did earlier, attaches to the container.

•	 Executing a command is akin to logging in to a remote host via

ssh. Running docker exec <CONTAINER NAME> <COMMAND> allows

you to specify a command or script. The execute command can run

interactively or in the background and set the user, working directory,

and environment. Multiple sessions can connect simultaneously with

docker exec.

I’ve rarely needed docker attach when working with Docker and Oracle. I use

docker exec almost exclusively in practice and in this book.

Connect to your container by running docker exec with the same -it options used

when you first ran the container. Follow this with the container name and the command

we want to run, bash, to start a shell:

> docker exec -it fervent_mendeleev bash

root@4a9ddd43e0e2:/#

Chapter 3 Container Foundations

42

�Verify Persistence
Once you’ve reconnected to the container, list the contents of the directory where you

created the file test.txt. The file is still there, and its contents are preserved, even after

restarting the container.

Changes to the filesystem aren’t the only thing that persisted in Docker. Session

state survives, too. Use the keyboard up arrow from your container prompt to scroll the

command history. Commands issued before stopping the container appear.

�Remove the Container
Microservice architectures create containers to perform some work, then destroy them

(more on this later). The container you created served its purpose: you learned how to

run and modify a container, check its state, start and stop it, and connect. Now, we’ll

remove it.

Exit from the container prompt by typing exit as before. Remove the container by

running docker rm -f <CONTAINER NAME> at your host prompt, substituting the name of

the container on your system:

> docker rm -f fervent_mendeleev

fervent_mendeleev

The -f flag forces Docker to remove running containers. Without this option, you

must stop the container before removing it.

�Images Are Immutable
You modified the container by installing vi and adding a file, but it didn’t change the

image. Images are immutable and can’t be changed. Every image has a digest or hash

value, acting as a signature that guarantees the image contents. Every container started

from a given image is identical. This is a desirable property, a foundation of operational

reliability and repeatability, and something we’ll use to our advantage in later chapters.

It does raise an obvious question, though. If you can’t change an image, how can

such a variety of images be present in Docker Hub? Saying images are immutable isn’t

the whole story. Images can’t be changed, but the changes made in a container can be

saved as new images. Building images is just a series of operations that start an image,

run commands to modify the running container, and save the results as a new image.

Chapter 3 Container Foundations

43

�Start a New Container
To demonstrate, start a new Ubuntu container, this time assigning a name with

the --name option rather than letting Docker generate a “friendly” name:

> docker run -it --name my_container ubuntu

root@cadf21663737:/#

Notice how quickly this completed! There were no additional messages like those

you saw the first time you ran an Ubuntu container. Docker didn’t need to pull the image

because it’s already present on the system. It only needed to start a new Linux process on

the local host—remember, with Docker, there’s no initialization or boot cycle!

�Save a New Image
The Ubuntu image we’re using doesn’t include the vi command. But what if we want an

Ubuntu image that does? Installing vi on every new Ubuntu container isn’t a practical

solution. Instead, let’s create a new image to include vi.

Install vi (or nano) in the new container, using the commands from Listing 3-1. Exit

the container, and at the host command prompt, save the container as a new image

using the docker commit command. You’ll need to provide the name of the container

you want to save and the name of the new image:

> docker commit my_container ubuntu_editor

sha256:be90b42f8ef0c5b8e343c7fd5d7aaa5d99f1e7e65dfac9020c4f362dade0410f

Docker responds with the hash value of the new image. Rerun docker images to

confirm it created a new image, following the code in Listing 3-2.

Listing 3-2.  Commit the modified container to a new image

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_editor latest be90b42f8ef0 3 seconds ago 107MB

ubuntu latest ba6acccedd29 4 weeks ago 72.8MB

The new image, ubuntu_editor, is now available.

Chapter 3 Container Foundations

44

Notice the new image size compared to the original. Is vi that big? No! This is a
by-product of how images and layers work, discussed later in this chapter.

�Run the New Image
Start another container using this new image, using docker run -it ubuntu_editor,

and confirm vi is present, as shown in Listing 3-3.

Listing 3-3.  Create a container from the newly committed image and verify vi

is present

> docker run -it ubuntu_editor

root@d3f700a3aae2:/# which vi

/usr/bin/vi

�Union Filesystems
Listing 3-2 showed two images. The original Ubuntu image is 72.8MB. The modified

version, with vi installed, is 107MB. Installing a simple editor increased the size by over

45%. Why?

Docker is very efficient, leveraging operating system features to improve speed and

reduce footprint. One of these features, union filesystems (sometimes called overlay

filesystems), “deduplicates” the contents of containers.

Logically, a system running five containers starting from a single 200MB image

should use 1000MB—200MB per container. With union filesystems, the actual storage

requirement is unrelated to the number of containers. In this example, it could be as

little as 200MB, whether the host is running ten containers or a thousand.

Images provide all the files and dependencies the container needs, but they aren’t

copied from the image. Containers are the image.

How can containers use images in their filesystems if images can’t be changed?

When starting a new container, Docker creates a union filesystem consisting of

multiple layers: lower, upper, and working.

Chapter 3 Container Foundations

45

•	 Lower layer: Docker maps images to the lower layer. Every container

sharing an image references the same immutable set of files in its

lower layer.

•	 Upper layer: Docker creates a unique upper layer for each container.

Creating and editing files adds them to the container’s upper layer

without altering the original copy in the lower layer.

•	 Working layer: The working layer is the union (hence the name) of

the lower and upper layers. It merges unchanged files from the lower

layer with new and modified files saved in the upper layer. Union

filesystems handle deleted files as a particular file type, telling the

working layer to block them from view.

To visualize this, imagine an image for playing out Tic-Tac-Toe game scenarios,

shown in Figure 3-1. The image—the lower layer—holds the game board and the first

few moves of the game. The starting moves are part of the image and appear on the

game board whenever a container starts. Think of the upper layer as a transparent sheet

where players mark their moves. The working layer is the view players see as if they

were looking down, with the transparent upper layer superimposed onto the image

beneath it. The working layer shows the complete game board—the merger of lower and

upper layers.

Chapter 3 Container Foundations

46

Figure 3-1.  The Tic-Tac-Toe moves in the lower layer are part of the image and are
present at the start of every container. Moves added in the running container exist
only in the upper layer. Players “looking down” from the perspective of the working
layer see all the moves

Figure 3-2 shows how this applies to a filesystem. Once again, the image supplies the

lower layer with prepopulated files. Containers get their own upper layers, where they

save local changes. Processes running in containers read the merged result from the

working layer.

Chapter 3 Container Foundations

47

Figure 3-2.  Layers in a union filesystem

In the working layer of Figure 3-2, the changed versions of files 2 and 5 overlay, or

block, their original versions. Files 1, 3, and 4 are unobstructed and “visible” through the

upper layer.

Under normal circumstances, most of the image—the binaries, libraries, and

executables—are static and won’t have copies in the container’s upper layer.3 The fewer

the changes made in the container, the smaller its upper layer.

When you removed the Ubuntu container earlier, Docker deleted the upper layer

of the union filesystem assigned to the container.4 Changes made in the container were

lost, but nothing happened to the underlying image.

Dozens or hundreds of containers started from the same image share a lower layer,

leading to dramatic improvements in efficiency and cost-effectiveness at scale compared

to their physical or virtual machine counterparts. We can see this by running the docker

ps command with the -s or --size option. The following abridged output reports the

real and virtual sizes of these containers:5

3 Significant changes to a container’s filesystem can lead to increased space use in overlay
filesystems. See Chapter 12 for more details.
4 Chapter 7 describes techniques for storing data beyond the container’s union filesystem. Saving
data outside the container decouples it from the container lifecycle, allowing databases in
containers access to dedicated, high-performance storage.
5 Source images are updated regularly, causing the sizes you’ll see in this example to vary.

Chapter 3 Container Foundations

48

> docker ps -as

CONTAINER ID IMAGE SIZE

a5bf2c163d07 ubuntu 0B (virtual 72.8MB)

cadf21663737 ubuntu 33.9MB (virtual 107MB)

d3f700a3aae2 ubuntu_editor 0B (virtual 107MB)

•	 The first container uses no extra space. With no changes made in the

container, its upper layer is empty, and the container’s virtual size,

72.8MB, matches that of the original Ubuntu image.

•	 The second container’s upper layer is 33.9MB. It includes the

modifications needed to update the filesystem and install vi.

•	 The third container, run from the newly created image, doesn’t

include any changes to its environment. Like the first, the upper layer

of this container is empty.

�Commit vs. Build
That explains why the committed image is larger, but not the magnitude of the

difference. That’s a product of how much the container’s layer changed when apt-

get update and apt-get install ran. Those commands retrieved package lists,

decompressed archives, and made incremental changes to files present in the lower

layer. Every operation wrote something to the container’s upper layer.

There is another way to create images. A dockerfile is a set of instructions for building

images from scratch. docker commit is a convenient, albeit brute-force, method.

Building images from scratch affords greater control and produces smaller, more

efficient images.

Listing 3-4 shows a Dockerfile that creates an Ubuntu image with vi “baked in.”

Listing 3-5 shows the command for building an image using this file, followed by the

operation’s results.

Listing 3-4.  A Dockerfile for creating a vi-enabled Ubuntu image

FROM ubuntu:latest AS base

RUN apt-get update \

 && apt-get install -y vim-tiny \

Chapter 3 Container Foundations

49

 && apt-get clean \

 && rm -rf /var/lib/apt/lists/*

CMD bash

Listing 3-5.  The image build and results

> docker build --tag ubuntu_vi .

[+] Building 7.1s (6/6) FINISHED

 => [internal] load build definition from Dockerfile

 => => transferring dockerfile: 179B

 => [internal] load .dockerignore

 => => transferring context: 2B

 => [internal] load metadata for docker.io/library/ubuntu:latest

 => [1/2] FROM docker.io/library/ubuntu:latest

 => [2/2] RUN apt-get update && apt-get install -y vim-tiny && apt-get

clean && rm -rf /var/lib/apt/lists/*

 => exporting to image

 => => exporting layers

 => => writing image sha256:03545fa76800a4ed39a11c9e25aa184d1a60a2b1

cb889730961d47d8c8dde554

 => => naming to docker.io/library/ubuntu_vi

Don’t worry about the syntax for now—we’ll cover this in depth in Chapters 12

through 14. But note the difference in the size of the new image built from the Dockerfile:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu_vi latest 03545fa76800 15 seconds ago 75.1MB

ubuntu latest ba6acccedd29 4 weeks ago 72.8MB

The version built from scratch is only 2.3MB larger. A far more reasonable difference!

�Summary
When I talk to people about running Oracle in Docker, I begin by demonstrating

speed. It’s a compelling opening argument and sets containers apart from competing

technologies. Conversations with DBAs understandably turn to concerns about

Chapter 3 Container Foundations

50

persistence and reliability. People hear containers are ephemeral and think the worst,

dismissing the technology without taking time to understand. I’m not immune—these

misunderstandings clouded my first experiences with Docker.

Containers’ ephemeral labeling originates from their typical use cases, which have

short lifespans. However, what counts as “short” is relative; when you think about it,

everything is temporary! Nothing prevents long-lived applications, including databases,

from running in containers.

You discovered additional distinctions between containers and their physical and

VM counterparts in this chapter. Most of these differences originate in the different use

cases. Physical and virtual hosts fill broad, multipurpose roles requiring various features

and libraries. Their operating systems are often larger, and the extra features increase

potential vulnerabilities. Containers are slimmer systems, purpose-driven to specific

tasks, with filesystems that include only what’s essential. Their smaller footprints are well

suited for sharing across networks, as witnessed when creating your first container!

You should also be comfortable using Docker’s command interface to run basic

commands to report the images and containers present on your system and create,

remove, stop, and start containers. You connected to a running container and updated

the environment, adding an editor.

The foundation of Docker’s speed and efficiency is how it uses union filesystems.

Layers isolate the original image used for starting containers from the changes made

over their lifecycle. Layers implement persistence for containers running on a system

and contribute to the scalability of container infrastructure, all while appearing to defy

common-sense mathematics! You’ll see layers return in the second part of this book, in

the chapters covering Dockerfiles, images, and builds. A deep understanding of layers

isn’t necessary to appreciate these topics, but it is an area I regret not learning sooner in

my Docker journey.

Now that you’re familiar with Docker’s syntax and workflow, you’re ready to begin

working with database containers. We’ll do that in the next chapter, with a quick-start

tutorial covering the steps for running your first Oracle database in a container! Let’s go!

Chapter 3 Container Foundations

51

CHAPTER 4

Oracle Database
Quick Start
Whenever I give webinars and presentations about running Oracle on Docker, the top

request from attendees is a set of step-by-step instructions to get a database up and

running in a container. This chapter is a stand-alone collection of recipes for building

images and running database containers.

Just as a pizza cookbook might offer instructions for making dough without

describing how yeast makes dough rise, this chapter focuses on “how-to” and less on the

“why” or “how.” It covers downloading and building images, creating a basic container

database, allowing client connections from applications outside the container (like SQL

Developer), accessing a shell, and persisting data on the host. First, we must prepare our

system and understand a few basic terms.

�Access the Docker Environment
Continuing with the cooking theme, Docker Desktop is the kitchen where we prepare

images and containers. Docker Desktop is available as a free download from

www.docker.com. Appendix A covers setup and configuration.

�Terminology
Getting a database up and running in Docker requires understanding some of the

language used in the Docker environment. If you’ve jumped ahead to this chapter and

aren’t familiar with what images, containers, and builds are, how to access a command

line on your system, or running basic Docker commands, spend a few moments

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_4

http://www.docker.com
https://doi.org/10.1007/978-1-4842-9033-0_4

52

reviewing this section. If you’re already comfortable with these concepts, feel free to skip

to the next section, “Obtaining an Image.”

�Docker Commands
Docker commands begin with docker and a verb like run, build, exec, or attach,

followed by flags, objects, and options. There are a handful of commands used in this

tutorial. You’ll likely use these commands most as you work with Docker. Years into my

container journey, most of what I do still centers on these commands:

•	 docker images: Displays images available on the system, including

their name, image ID, source, size, and age.

•	 docker ps: Lists running containers, name, status, source image,

and age. Containers are processes on a system, and both Linux

and Docker use ps to list processes. Adding the -a flag shows all

containers, running and stopped.

•	 docker run: Creates a container from an image.

•	 docker start: Starts a running container.

•	 docker stop: Stops a container.

•	 docker logs: Displays log output from a container. For the Oracle

database images we’ll work with, it shows the output of startup

operations, including starting the listener, the database, and the

Database Configuration Assistant when the container runs the first

time. Afterward, it displays output from the database alert log.

•	 docker exec: Executes commands in the container.

These are explained more fully elsewhere in this book.

�Images and Containers
An image contains all the files needed to run an application or service. An Oracle

database image includes its filesystem, operating system libraries and executables,

prerequisite packages, settings, binaries, and configuration files.

Chapter 4 Oracle Database Quick Start

53

Containers are processes started on a host from an image. Many containers can be

started using the same image, and each container can perform work and make changes

to its initial state independently of other containers. Containers can be stopped and

started, and their contents persist across restarts.

�Build and Run
Images are built using a set of instructions called a Dockerfile. Dockerfiles are the recipes

Docker uses to collect ingredients (including files and other images) and prepare them

into a final image. Containers run from an image.

It’s not critical to understand the details of either process for this quick start. Still, it’s

important to recognize the relationships between the actions and objects since you will

build an image and run a container as part of this tutorial.

�The Docker Command Line
Most interactions with Docker Desktop occur through a command line. Windows users

should use Windows Terminal.1 In Mac and Linux environments, open a native terminal

application.

�Obtaining an Image
Before running a database container, we need an image. Like baking a pizza, there are a

few options available for Oracle database images, including

•	 Pre-built images: This is the frozen pizza option. In a pre-built

image, all the preparation is done for you. You only have to bake (or

microwave) it and enjoy the results! In the container world, “baking”

1 Windows command prompt and PowerShell may or may not work for some examples given
here. Variations in the environment settings on individual machines, and the way they interpret
certain environment variables, can lead to unexpected output and behavior. The same is true for
third-party applications like PuTTY, Cygwin, and MobaXterm.

Windows and Docker both recommend running Docker on Windows using the Windows
Subsystem for Linux, version 2. Appendix A includes instructions for installing and configuring
WSL 2 and setting up an Ubuntu virtual environment, where you’ll access Docker on the command
line. It also has information on downloading Windows Terminal, a shell environment integrated
with WSL.

Chapter 4 Oracle Database Quick Start

54

the image is running a container. Pre-built images may not be exactly

what you want. Configurations meet popular or general needs, and

only one company makes pre-built images—Oracle.2 Oracle’s pre-

built images include the database software, and users must accept a

license agreement to download them.

•	 Build from a repository: If you want more control over images,

consider a repository. A repository is a collection of scripts for

building images. This is comparable to assembling a pizza from

a ready-made crust, a jar of sauce, and ingredients you provide—

including the Oracle database software and license. Oracle maintains

an excellent repository for building a wide array of products beyond

just the database. Since repositories don’t include licensed software,

organizations and community members can create and share

repositories. Building from a repository is a bit more time-consuming

but isn’t difficult, much less so than creating images from scratch.

•	 Build from a custom Dockerfile or repository: Complete control

and flexibility come from custom Dockerfiles or repositories. This

is the pizza-making equivalent of preparing the sauce and hand-

kneading dough from scratch. Writing custom Dockerfiles is covered

in Chapter 13.

•	 Database as a Service: Cloud vendors may offer options for

databases as a service or DBaaS. DBaaS is like ordering at a restaurant

where the cloud vendor does the work and customers consume the

results.

Let’s begin with the most straightforward option: working from a pre-built image.

�Pre-built Images
Pre-built images are the easiest way to get up and running. They’re also the most limited

regarding version and edition availability. Oracle maintains these images on their own

2 There are pre-built Oracle database images available on the Web from sources other than Oracle.
Distributing images that include Oracle database software is a violation of Oracle’s licensing.

Chapter 4 Oracle Database Quick Start

55

Oracle Container Registry site at https://container-registry.oracle.com.3 They are

not updated frequently, and you may encounter limited functionality.

As of this writing, the available options are

•	 Version 19.3.0.0 Enterprise Edition, Standard Edition

•	 Version 12.2.0.1 Enterprise Edition, Standard Edition 2 (SE2)

•	 Version 12.1.0.2 Enterprise Edition

If one of these options meets your needs, go to container-registry.oracle.com and

navigate to the Database repository. Figure 4-1 shows the Oracle Container Registry and

the Database repository where the pre-built database images reside.

Figure 4-1.  The Oracle Container Registry and Database repository

3 There is a verified image from Oracle on the Docker Hub, hub.docker.com, but it hasn’t been
updated since 2017. It’s for Enterprise Edition version 12.2.0.1. Images from unverified or
unofficial sources that contain Oracle database software (on Docker Hub and elsewhere) likely
violate Oracle licensing. They are also security risks; running an image from an unknown and
unverified author is like opening an email attachment from an unknown sender!

Chapter 4 Oracle Database Quick Start

https://container-registry.oracle.com

56

There are separate Database repositories for Enterprise and Standard Editions

(as well as Oracle Instant Client and RAC). Choose an edition to move on to the

documentation and download page. For this example, I selected Enterprise Edition.

Figure 4-2 shows the Oracle 19c Docker Image Documentation.

Figure 4-2.  Oracle Database 19c Docker Image Documentation and download

This page includes complete instructions for running and using the image, and

there’s no reason to repeat them here. How to get the image to your local machine is not

well documented!

�Download an Image
First, log in to the site using your My Oracle Support (MOS) Single Sign-On (SSO)

credentials and accept the license agreement. You should see a message in the upper

right of Figure 4-2 indicating that you’ve accepted the license.

Chapter 4 Oracle Database Quick Start

57

In Docker, downloading an image is done with the pull command, and the right

sidebar has a promising element, “Pull Command for Latest.” Unfortunately, copying/

pasting produces an authentication error:

unauthorized: authentication required

We haven’t authenticated to Oracle’s repository. Log in with the following command:

docker login container-registry.oracle.com

Docker will ask for a username and password; these are your Oracle SSO credentials.

Copy the docker pull command from the registry page and paste it into your

shell. Docker will download the image’s layers to your system. Listing 4-1 shows the

abbreviated output from the pull command.

Listing 4-1.  Running docker pull for a 19c Enterprise Edition image

> docker pull container-registry.oracle.com/database/enterprise:19.3.0.0

19.3.0.0: Pulling from database/enterprise

86607bb85307: Pull complete

...

5c2969cb34b8: Pull complete

Digest: sha256:ea9cd805ec49368fd288323e3f41d6c6e45698813e2ae89fd5d09

7c026ab5aa6

Status: Downloaded newer image for container-registry.oracle.com/database/

enterprise:19.3.0.0

container-registry.oracle.com/database/enterprise:19.3.0.0

That’s it! You’ve successfully downloaded a Docker image to your host! Check the

images on your system with the docker images command. You will see something

similar to the output in Listing 4-2.

Listing 4-2.  Running docker images after pulling the 19c Enterprise

Edition image

> docker images

REPOSITORY TAG

 IMAGE ID CREATED SIZE

container-registry.oracle.com/database/enterprise 19.3.0.0

 6ee1b2e4403f 6 months ago 7.87GB

Chapter 4 Oracle Database Quick Start

58

The Repository column reflects the origin of the image. The tag is its version.

�Download a Tag
Earlier, I listed that three versions were available for Enterprise Edition. Where are the

others? Figure 4-3 shows the bottom of the Enterprise Edition repository page, where the

tags from this repository are listed.

Figure 4-3.  Tag listing for all versions available in the Enterprise Edition
repository

Each tag represents a different version and has separate docker pull commands.

Notice there are two tags for version 12.2.0.1. The second, with the “-slim” suffix,

is trimmed down to minimum capabilities. This is common for container images.

Reducing the image to the bare minimum saves space and reduces the attack surface of

containers—you can’t attack software and features that aren’t present. If you only need

basic functionality, tags marked -slim are worth considering.

One final thing to pay attention to is the size. Figure 4-3 suggests the image 19.3.0.0

tag is 3GB, but that’s the compressed download size. Listing 4-2 reports the proper size of

the 19c image, 7.87GB.

�Running Pre-built Images
Once complete, follow the directions on the documentation page or skip ahead to the

section “Running a Container.” The images in this registry use the same scripts discussed

Chapter 4 Oracle Database Quick Start

59

in the next section, and the same functionality should work. The container registry

images are not updated frequently. Oracle’s Docker repository is updated continuously

with new features and capabilities. While unlikely, there is a possibility that images built

from the current script repository will behave differently.

�Pre-built Image Limitations
The images from Oracle’s Container Registry offer convenience but sacrifice variety

and functionality. With a frozen pizza, you can’t change the toppings. With pre-built

images, you can’t change certain functionality built into the image. To illustrate why

pre-built images might not satisfy your cravings, let’s look at two limitations: editors and

multitenancy.

Running Oracle in Docker on a desktop or laptop system is convenient. It’s handy to

have a “throwaway” database available for developing, testing, and experimenting on,

and for most, that includes being able to view and edit files.

Users may be surprised that Oracle’s database images do not contain a text editor,

and the only file viewer included is more. This is by design—remember that containers

typically run services, not interactive sessions, and don’t need editors or file viewers.

Leaving out unnecessary software makes containers smaller and reduces their attack

surface.

Editors (and other utilities) were left out of the image when it was built. We can’t

change the image; manually installing the additional software is the only option. It’s not

difficult to do and isn’t time-consuming to update the container until you find yourself

doing it every time you run a new container! One reason for adopting containers is

their ability to deliver self-contained environments that already include dependencies.

Manually updating every container runs contrary to that purpose.

While you may not consider adding an editor as a compelling reason to build your

own images, the type of database created in the container might.

When an Oracle database container starts, it checks to see if it already has a

database. If not, it runs the Database Configuration Assistant (DBCA) and creates a new

container database4 (CDB) with a single pluggable database (PDB). CDB and PDB are

still not widely adopted, and for those that want a traditional, non-CDB database, the

alternative is to drop the database created by DBCA and create one by hand.

4 Don’t confuse Oracle’s container database (CDB) with Linux containers. Container and
pluggable databases are part of Oracle Multitenant, not Docker.

Chapter 4 Oracle Database Quick Start

60

However, building an image from scripts makes it possible to amend Docker’s

instructions to include an editor, edit the response file for creating databases, and

more. You may find this added control worth the extra minutes it takes to build your

own images.

�Building Images from a Repository
The authors of Oracle’s script repository made building images using its script repository

easy. A wrapper script handles the heavy lifting. Users only need to download the

repository, place the Oracle database installation file in a directory, and run the script.

The repository has scripts for building images for versions:

•	 Oracle 11.2.0.2 Express Edition

•	 Oracle 12.1.0.2 Enterprise Edition, Standard Edition 2

•	 Oracle 12.2.0.1 Enterprise Edition, Standard Edition 2

•	 Oracle 18.3.0 Enterprise Edition, Standard Edition 2

•	 Oracle 18.4.0 Express Edition

•	 Oracle 19.3.0 Enterprise Edition, Standard Edition 2

The following examples use Oracle 19c. The steps are similar to other versions.

�Oracle Docker GitHub Repo
GitHub is a popular version control, management, and distribution platform for code

based on git. Oracle maintains an official repository of scripts on GitHub for building

container images at github.com/oracle/docker-images. In addition to database images,

you’ll find directories here for many other Oracle products, from Instant Client to

GoldenGate to REST Data Services. We need these files on the local machine where

Docker Desktop is running. There are two ways to do this: direct download or using git.

Figure 4-4 shows the dialog window after clicking the Code button.

Chapter 4 Oracle Database Quick Start

61

Figure 4-4.  GitHub options for cloning and downloading the repository

Details for cloning or downloading the repository through git or GitHub Desktop are

out of scope for this book. If you’re using git, these should be familiar.

For readers who aren’t comfortable with git or don’t want to maintain these files

in a repository, click the Download ZIP option at the bottom of the dialog. When the

download completes, unzip the file on the local machine.

Tip T he paths beneath each subdirectory in the repository can be long. The
repository scripts can be anywhere on your computer, but I prefer to keep the path
short and place them in a directory near the root. Most examples in this book use
$HOME/docker-images or $HOME/docker. As you work with containers, you
may find yourself navigating to the repository often and appreciate the keystrokes
saved by planning ahead!

Chapter 4 Oracle Database Quick Start

62

Take a moment to navigate into a folder under the database subdirectory,

OracleDatabase/SingleInstance/dockerfiles, then list the contents. You’ll see a result

similar to Listing 4-3.

Listing 4-3.  Folders in the OracleDatabase/SingleInstance/dockerfiles directory

~/docker-images/OracleDatabase/SingleInstance/dockerfiles

> ls -l

total 32

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 11.2.0.2

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 12.1.0.2

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 12.2.0.1

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 18.3.0

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 18.4.0

drwxrwxr-x 2 lab lab 4096 Mar 31 14:18 19.3.0

-rwxrwxr-x 1 lab lab 6575 Mar 31 14:18 buildContainerImage.sh

The following steps are performed from this directory or one of the subdirectories for

the different database versions.

�Oracle Database Software
For Docker to install the Oracle database in the image, it needs the database software

installation file. For Oracle 19c, the file is available from www.oracle.com/database/

technologies/oracle-database-software-downloads.html. Other versions5 are

available from My Oracle Support, support.oracle.com, or the Oracle Software Delivery

Cloud, edelivery.oracle.com.

Whichever version you choose, be sure to download the installer for Linux x86-64.

The host operating system doesn’t matter—whether running on Windows or Mac,

Docker Desktop uses a Linux VM and the containers run in Linux. Be sure to download

the ZIP file and not the RPM, if present. Figure 4-5 shows the relevant section of the

download page highlighting the operating system and download to select Oracle

Database 19c.

5 The exception is Oracle 18.4.0 Express Edition, which downloads the RPM installation file
automatically when building the image. There is no need to download it separately.

Chapter 4 Oracle Database Quick Start

http://www.oracle.com/database/technologies/oracle-database-software-downloads.html
http://www.oracle.com/database/technologies/oracle-database-software-downloads.html

63

Figure 4-5.  Oracle 19c Database installer ZIP file download for Linux x86-64

Download or copy the file into the subdirectory in the repository that matches the

database version. For Oracle Database 19.3.0, the installation needs to be copied into

OracleDatabase/SingleInstance/dockerfiles/19.3.0.6

Note  Do not unzip the installation file! Docker’s build process looks for the ZIP
file and copies it into its build context. Builds run intermediate containers to do
work, including unzipping the installation file.

We’re ready to build a database image with the repository and installation file

in place!

�Build an Image
The buildContainerImage.sh7 script in the OracleDatabase/SingleInstance/

dockerfiles directory handles the heavy lifting and accepts parameters, as shown in

Listing 4-4.

6 The installer file must be physically present in the directory for Docker to include in the image.
Docker does not recognize linked files.
7 In older versions, the script was called buildDockerImage.sh.

Chapter 4 Oracle Database Quick Start

64

Listing 4-4.  Options available when calling buildContainerImage.sh

Usage: buildContainerImage.sh -v [version] [-e | -s | -x] [-i] [-o]

[container build option]

Builds a container image for Oracle Database.

Parameters:

 -v: version to build

 Choose one of: 11.2.0.2 12.1.0.2 12.2.0.1 18.3.0 18.4.0 19.3.0

 -e: creates image based on 'Enterprise Edition'

 -s: creates image based on 'Standard Edition 2'

 -x: creates image based on 'Express Edition'

 -i: ignores the MD5 checksums

 -o: passes on container build option

* select one edition only: -e, -s, or -x

For now, we need only be concerned with those for version and edition. For this

example, I’ll build an image for a 19c Enterprise Edition database by calling the script

with the -e flag and passing 19.3.0 to the version flag, -v:

./buildContainerImage.sh -e -v 19.3.0

This starts the build process and usually takes 8–15 minutes on most laptops. Docker

displays the output of each step, and you may spot some familiar messages as it updates

the filesystem with prerequisites and installs Oracle software. You should see a message

indicating the image name, tag, and total build time when it completes. Run docker

images and verify your output appears similar to the following:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

oracle/database 19.3.0-ee c0d1669287ad 2 hours ago 6.68GB

We now have an image to use for running database containers!

Chapter 4 Oracle Database Quick Start

65

�Running a Container
Congratulations! You’ve created an image and are just a few minutes away from enjoying

the fruits of your labor! Running a container is like baking our pizza—the steps are the

same whether it’s fresh or frozen! And just like our pizza, the commands for running a

container are the same no matter the source of the image: Oracle Container Registry,

Oracle’s repository scripts, or a custom image.

�Container Properties
docker run starts a container for the first time. It also sets properties for the container

that can’t be changed later, including how it interacts with its environment. Essential

elements of this first database container are the environment variables, port publishing,

volume mounting, and name.

�Port Publishing

Containers are isolated processes on the host; what occurs inside a container is

generally invisible to other applications on the host. Sometimes, we want to interact

with containers, and a prime example is connecting to an Oracle database listener,

typically over port 1521. Mapping, or publishing, this port to one on the host allows

other processes in the host environment to communicate with the database inside the

container.8

Port mapping is controlled by the -p or --publish flag, followed by the host and

container ports. For example, “-p 10000:1521” maps port 1521 in the container to port

10000 on the host.

�Volume Mounting

Just as we may want to communicate across the host-container boundary using port

mapping, there are situations where we need to allow the host and container to share

files or directories. Volume mapping accomplishes this by mapping a filesystem inside

the container to a volume or directory on the local host. For now, think of mapped

volumes as NFS mounts.

8 For security, ports must be explicitly exposed. This is covered more fully in Chapter 14.

Chapter 4 Oracle Database Quick Start

66

In Oracle database images, database configuration and datafiles are located at /opt/

oracle/oradata. Mapping this directory to the local machine allows the database to

utilize high-performance storage, external redundancy, and persistence.

Deleting a container deletes its contents, but the contents of bind-mounted volumes

mapped to host directories remain outside the container. There are many situations

where we want to delete containers but save the data, including database cloning,

patching, and upgrades.9

Volume mounting, or bind mounting, is handled by the -v or --volume flag, followed

by mapping the host directory to the container directory. For example, “-v $HOME/my_

container:/opt/oracle/oradata” maps the container’s oradata directory to a directory

called my_container under the user’s home directory on the host.

�Permissions Issues in Linux and Windows WSL Environments

On Linux and Linux guests in Windows WSL environments, the target directory on the

host must be owned by the oracle user or have permissions that permit the oracle user

to write the directory.

This will likely confuse Windows users due to the different permissions structures

in Linux and Windows environments. Containers created in Docker Desktop, in

PowerShell, or from a command prompt, run under the Windows filesystem. The

Windows user owns both the files and the process, and there’s no conflict when Docker

creates files on the local filesystem.

The --volume or -v options of docker run creates the mapped directories on the

host if they don’t exist. In a Linux environment—including WSL on Windows—they’re

made by and inherit ownership from the calling process. The Docker daemon runs

(and creates directories) as root, as in Figure 4-6. This was captured on a Windows WSL

system after running the following command:

docker run -d --name MYDB \

 -v $HOME/oradata/MYDB:/opt/oracle/oradata \

 oracle\database:19.3.0-ee

9 Persistence and use cases are discussed in depth in Chapter 5.

Chapter 4 Oracle Database Quick Start

67

Figure 4-6.  Directories created by docker run on Linux systems inherit ownership
from the Docker daemon, root

The $HOME/oradata directory path didn’t exist, so Docker created it—as root. But,

when the Database Configuration Assistant ran inside the container as the oracle user,10

it attempted to write files to directories on the container’s volume. Still, it’s mapped to

a directory on the local filesystem the oracle user can’t access. Unable to create the

necessary directories or write files in Figure 4-7, DBCA fails.

Figure 4-7.  The /opt/oracle/oradata directory in the container was mapped to
a directory that didn’t exist. The Docker daemon created the directory on the host
as the root user. The container doesn’t have permission to write files there, and
DBCA failed

There are a variety of options for avoiding this. Perhaps the simplest is adding the

oracle user and oinstall group in the Linux system:

sudo groupadd -g 54321 oinstall

sudo useradd -u 54321 -g oinstall oracle

Precreate directories to be mapped to volumes and set their ownership to

oracle:oinstall:

sudo mkdir -p $HOME/oradata/MYDB

sudo chown -R oracle:oinstall $HOME/oradata/MYDB

10 If the container user isn’t present on the container host, interaction between container
processes and host resources run with a user and group ID of 1000.

Chapter 4 Oracle Database Quick Start

68

Whenever I see a failed Oracle database container on a Windows or Linux system,

I first check whether the logs contain a “Cannot create directory” error. It usually leads

back to a permissions issue, where ownership on a mapped volume was incompatible

with the user requesting the resource inside the container.

�Environment Variables

Containers inherit default environment settings from the parent image, including the

database and pluggable database names, typically ORCLCDB and ORCLPDB1. When a

container runs for the first time, a startup script checks to see if a database exists and,

if not, creates one based on these values. We can override the defaults to customize the

database name with the -e or --env flags, followed by a variable-value pair. For example,

“-e ORACLE_SID=TEST -e ORACLE_PDB=TESTPDB” overrides the default database names

and creates a database called TEST with a pluggable database named TESTPDB.

This illustrates how to set multiple environment variables using separate -e flags.

The same pattern applies to multiple port and volume mappings.

�Container Name

The --name flag sets a “friendly” name for a container. If not specified, Docker generates

a random name like “quirky_elbakyan” or “nifty_buck.” Defining a name is a good

practice. You won’t have to query Docker to find the name of your container, and you’re

more likely to remember the purpose of a container when it has a meaningful name.

Note  Container names are case sensitive.

�A Full Run Command
Let’s run a new container using the command in Listing 4-5.

Listing 4-5.  A practical docker run command for a basic Oracle database

container

docker run -d --name MYDB \

 -p 10000:1521 \

 -v $HOME/oradata/mydb/data:/opt/oracle/oradata \

Chapter 4 Oracle Database Quick Start

69

 -v $HOME/oradata/mydb/diag:/opt/oracle/diag \

 -e ORACLE_SID=MYDB \

 -e ORACLE_PDB=MYPDB \

 oracle/database:19.3.0-ee

There’s a new flag, -d, that we haven’t covered. It tells Docker to run the container as

a detached background process. Without this flag, the container runs interactively in the

local session. Exiting the container causes it to stop.

The command ends with the image Docker should use to start the container. The

image combines the repository and tag fields reported by docker images, connected

with a colon.

Submitting this command causes Docker to start the container and run startup

scripts embedded in the image. There’s no existing database, so the startup script calls

DBCA to create a database called MYDB, with a pluggable database called MYPDB. The

datafiles and configurations are written to a directory under the user’s home. We can

connect to the database listener over port 10000 on the local host.

When running this command on a Linux system or from a Linux shell on a Windows

WSL host, be sure to create the necessary directories first:

sudo mkdir -p $HOME/oradata/mydb/{data,diag}

sudo chown -R oracle:oinstall $HOME/oradata/mydb

The values inside the curly braces—{data,diag}—tell Linux to create two

subdirectories under $HOME/oradata/mydb. I’m assigning them to two volumes in the

container. The first, mapped to /opt/oracle/oradata, is the target for the database’s

datafiles and configurations. The second, mapped to /opt/oracle/diag, receives the

database diagnostic directory.

Mapping Oracle’s diagnostic directory has two benefits. First, this is a volatile

directory. Without a volume, Oracle writes these files into the container’s union

filesystem, causing it to grow. Container layers are managed inside Docker’s private

filesystem. Growing that filesystem can be painful, so saving the files externally from

container layers helps prevent problems later. Second, having them on a volume

preserves them if the container is deleted and makes them more accessible for review.

Chapter 4 Oracle Database Quick Start

70

�View Container Logs
Creating the database will take a few minutes. We can monitor progress in the container

with the docker logs command. Follow the log activity of the MYDB container we just

created using the -f flag:

docker logs -f MYDB

The initial output shows the database creation process. When complete, the startup

scripts report that the database is ready to use, and the content switches to showing the

contents of the alert log, as shown in Listing 4-6.

Listing 4-6.  Log output reporting database availability

#########################

DATABASE IS READY TO USE!

#########################

Datafiles are already patched. Skipping datapatch run.

The following output is now a tail of the alert.log:

ORCLPDB1(3):

ORCLPDB1(3):XDB initialized.

2021-03-01T17:32:38.353181+00:00

ALTER SYSTEM SET control_files='/opt/oracle/oradata/MYDB/control01.ctl'

SCOPE=SPFILE;

The database creation is complete! We can use the database interactively through the

container shell and connections from host applications like SQL Developer.

�Access and Use the Container
Let’s explore ways of accessing and using the database and container environment. We

can interactively connect to the container shell, run scripts, and connect from remote

clients using a mapped port.

Chapter 4 Oracle Database Quick Start

71

�Access a Container Shell
docker exec executes commands, interactively or in the background, in container

environments. Start an interactive shell in the MYDB container we just created with the

following command:

docker exec --interactive --tty MYDB bash

The --interactive flag instructs docker exec to run interactively; the --tty flag

opens a TTY session. These flags have shorthand options, -i and -t, respectively, and

can be combined into a shorter, equivalent command:

docker exec -it MYDB bash

Running either command executes (opens) a bash shell in the container. It may

be helpful to think of this as ssh-ing into a remote server—we’re now in the container

environment. Any commands we run are executed in the container as if we’d connected

to a different host, until we exit the connection.

Once connected, we’re effectively on a different machine—an Oracle database

server. To prove that, run sqlplus / as sysdba at the container prompt and perform

some queries. The result will appear much like Listing 4-7.

Listing 4-7.  Starting SQL*Plus in the database container

[oracle@9fc6a7a36152 ~]$ sqlplus / as sysdba

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Mar 1 19:51:55 2021

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL> select name from v$database;

NAME

MYDB

SQL>

Chapter 4 Oracle Database Quick Start

72

To be clear, this is a fully functional Oracle database, limited only by its host

resources. All commands in a “normal” database installation are present in the container

database (unless removed to reduce image size).

�Run SQL*Plus
SQL*Plus, like bash, is an executable and can be invoked by the docker exec command

in the same way. Listing 4-8 demonstrates how to open an SQL*Plus session directly.

Listing 4-8.  Execute SQL*Plus in a container

> docker exec -it MYDB sqlplus / as sysdba

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Mar 1 20:09:25 2021

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL> select name from v$database;

NAME

MYDB

SQL>

The same pattern holds for running other commands in the container.

�Run Scripts
Calling docker exec without the -it flags runs commands and reports the output.

Listing 4-9 illustrates how to list files from a directory in the container.

Chapter 4 Oracle Database Quick Start

73

Listing 4-9.  List the contents of the /opt/oracle/oradata/MYDB directory in the

MYDB container

> docker exec MYDB ls /opt/oracle/oradata/MYDB

MYPDB

control01.ctl

control02.ctl

pdbseed

redo01.log

redo02.log

redo03.log

sysaux01.dbf

system01.dbf

temp01.dbf

undotbs01.dbf

users01.dbf

The Oracle images include scripts for managing the database in the container

environment. Among these is setPassword.sh, for changing the passwords of the SYS,

SYSTEM, and PDBADMIN users. Listing 4-10 shows how to call the setPassword.sh

script to update these user passwords.

Listing 4-10.  Run setPassword.sh on the MYDB container to change passwords

> docker exec MYDB ./setPassword.sh NewPassword1

The Oracle base remains unchanged with value /opt/oracle

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Mar 1 20:25:55 2021

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL>

User altered.

Chapter 4 Oracle Database Quick Start

74

SQL>

User altered.

SQL>

Session altered.

SQL>

User altered.

SQL> Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 - Production

Version 19.3.0.0.0

These examples should be enough to get you started.

�Connect from Host Applications
If the container’s listener port is published, database clients on the local host can access

the container database using these port mappings. This includes SQL Developer and

SQLcl (www.oracle.com/tools/downloads/sqldev-downloads.html), Oracle Instant

Client (www.oracle.com/database/technologies/instant-client.html), and third-

party tools like Quest Toad (www.quest.com/products/toad-for-oracle/software-

downloads.aspx). The port is the only thing that’s different when connecting to

databases running in containers. Use localhost when connecting to containers on the

local machine or the IP or hostname of the system where the container is running.

Figure 4-8 shows the database connection dialog from SQL Developer, with entries

for the host, port, and service name populated for the MYDB database.

Chapter 4 Oracle Database Quick Start

http://www.oracle.com/tools/downloads/sqldev-downloads.html
http://www.oracle.com/database/technologies/instant-client.html
http://www.quest.com/products/toad-for-oracle/software-downloads.aspx
http://www.quest.com/products/toad-for-oracle/software-downloads.aspx

75

Figure 4-8.  Adding a connection to a database running in a Docker container in
SQL Developer

If you don’t know or remember the port mapping, the docker container ports

command reports this information for containers (it’s also part of the docker ps output):

> docker container port MYDB

1521/tcp -> 0.0.0.0:10000

�Manage the Container
When it comes to managing the new container database, there isn’t much to do.

Databases created from Oracle’s repository and container registry images are set to

NOARCHIVELOG mode by default, so there are no archive logs to manage. There’s no

need to stop the container or its database when shutting down or rebooting the host.

If the host or Docker Desktop restarts, start the container once the system is up. The

database and listener start automatically as part of the process.

Chapter 4 Oracle Database Quick Start

76

docker start and docker stop manage the state of containers:

> docker stop MYDB

MYDB

> docker start MYDB

MYDB

�Summary
This was a fast-start guide for getting a container with an Oracle database up and

running. It’s a recipe, without explanations or reasons behind the “how” or “why.” Use

it as a reference when you need to create a database quickly, to remember common

commands, or as a refresher for building new images. And, like a recipe, feel free to

adjust it to suit your tastes.

Now that you’ve learned how fast and easy it is to build a database, you’re nearly

ready to start customizing images and containers and exploring ways of leveraging

Docker’s capabilities. The next chapter addresses essential differences you’ll encounter

when running Oracle containers. Chapter 6 introduces ways of modifying the basic

container we just created to suit different requirements.

Chapter 4 Oracle Database Quick Start

77

CHAPTER 5

Differences in Database
Containers
I’m old enough to remember the days when Oracle database administrators managed

rollback segments by hand. When Oracle introduced automatic undo retention,

people (myself included) balked at the idea, confident that it couldn’t manage rollback

appropriately. Years later, I can’t imagine a world without that feature!

Database administrators have expressed skepticism toward other new features

and advances over the years, including Recovery Manager, Automatic Shared Memory

Management, and virtual machines. Each introduced new ways of doing things, different

from familiar methods. Over time, our understanding and acceptance grew until these

(and other new features) became the routine we now take for granted.

Change isn’t easy. The mainstream rejects advances initially, often without reason

or understanding, simply because we’re not used to them. They’re called advances for a

reason, though; containers are no exception. Google, for instance, boasts that they run

everything in containers, as shown in the screen capture from https://cloud.google.

com/containers in Figure 5-1.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_5

https://cloud.google.com/containers
https://cloud.google.com/containers
https://doi.org/10.1007/978-1-4842-9033-0_5

78

Figure 5-1.  Google runs everything in containers

Change may be uncomfortable, but it’s necessary, even vital, for organizations

and individuals wanting to advance or improve. So far, we’ve covered basic Docker

concepts and demonstrated how to get started building and running Oracle database

images. These are sufficient if your intentions are limited to running a simple database

in a local environment. In this chapter, I introduce some ways containers differ from

traditional database platforms. Understanding these concepts is essential for integrating

containers into your practice and adapting and customizing them to suit your current

and future needs.

Before we start modifying things, it’s vital to understand how environments in Oracle

containers compare to those of “normal” databases running natively on Linux systems.

To that end, we’ll examine default containers built from Oracle’s repository and explore

unique aspects and features that set them apart.

Readers already comfortable with containers but who haven’t run containerized

Oracle databases should start here. Some concepts may be familiar, but it’s valuable to

see how Oracle databases are adapted and implemented in containers.

�Start an Oracle Database Container
We’ll begin with a basic container built from Oracle’s GitHub scripts (https://github.

com/oracle/docker-images) using a very basic command:

> docker run -d --name ORCL oracle/database:19.3.0-ee

Chapter 5 Differences in Database Containers

https://github.com/oracle/docker-images
https://github.com/oracle/docker-images

79

Let’s break down that command to understand it better:

•	 docker run: Instructs Docker to “run” an image

•	 -d flag: Informs Docker that we want to run the container detached

(not interactively) in the background

•	 --name flag: Assigns a name, ORCL, to the container

•	 oracle/database:19.3.0-ee: Identifies the image Docker will use

Docker responds with a unique hash value identifying the container:

> docker run -d --name ORCL oracle/database:19.3.0-ee

8facfd649aa4fcdbf27ae6908a573c2a16db0be7cba73c3093593507ac12b93f

That doesn’t tell us much! The docker logs command reports what’s happening

inside containers. In Listing 5-1, I ran docker logs, passing the container name along

with an optional flag, -f, to actively “follow” the progress and see events as they occur.

Without this flag, Docker would have reported only the most recent lines in the log.

Listing 5-1.  Following or “tailing” a container log with the docker logs

command. When run with the -f option, docker logs runs continuously—type

ctrl-c to exit the log session

> docker logs -f ORCL

ORACLE EDITION: ENTERPRISE

ORACLE PASSWORD FOR SYS, SYSTEM AND PDBADMIN: 2Fy7ZqtWS9U=1

LSNRCTL for Linux: Version 19.0.0.0.0 - Production on 06-MAR-2022 22:04:37

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Starting /opt/oracle/product/19c/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 19.0.0.0.0 - Production

System parameter file is /opt/oracle/product/19c/dbhome_1/network/admin/

listener.ora

Log messages written to /opt/oracle/diag/tnslsnr/8facfd649aa4/listener/

alert/log.xml

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))

Chapter 5 Differences in Database Containers

80

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)

(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 19.0.0.0.0 -

Production

Start Date 06-MAR-2022 22:04:46

Uptime 0 days 0 hr. 0 min. 8 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /opt/oracle/product/19c/dbhome_1/network/admin/

listener.ora

Listener Log File /opt/oracle/diag/tnslsnr/8facfd649aa4/listener/

alert/log.xml

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)(PORT=1521)))

The listener supports no services

The command completed successfully

Prepare for db operation

8% complete

Copying database files

Creating and starting Oracle instance

32% complete

...

46% complete

Completing Database Creation

54% complete

Creating Pluggable Databases

Chapter 5 Differences in Database Containers

81

The repository authors thoughtfully included extensive log output in the container

scripts! The first two lines show the database edition (Enterprise, in this case) and the

(randomly generated) password for privileged database accounts. Recall that I mentioned

these are not production-ready images; this is one example—credentials displayed in the

log output! Anyone with access to the host or container can view this information!

The container next starts the listener, after which the startup scripts (discussed in the

next chapter) check to see whether a database exists. If so, it starts the database. If not, it

calls the Oracle Database Configuration Assistant, DBCA, to create a new database. This

is the first time we’ve run this container, so DBCA starts building the database.

Creating a database is time-consuming and resource intensive. Depending on

the host’s capabilities, this may take a few minutes to an hour. Later in this book, we’ll

discuss methods for bypassing database creation—even for new containers—that allow

rapid, near-instantaneous database provisioning. For now, monitor the logs as Oracle

creates a database until you see the message in Listing 5-2, “DATABASE IS READY TO

USE,” indicating DBCA completed successfully.

Listing 5-2.  The output of docker logs shows DBCA finished, and the database is

ready to use

77% complete

Executing Post Configuration Actions

100% complete

Database creation complete. For details check the logfiles at:

 /opt/oracle/cfgtoollogs/dbca/ORCLCDB.

Database Information:

Global Database Name:ORCLCDB

System Identifier(SID):ORCLCDB

Look at the log file "/opt/oracle/cfgtoollogs/dbca/ORCLCDB/ORCLCDB.log" for

further details.

...

#########################

DATABASE IS READY TO USE!

#########################

The following output is now a tail of the alert.log:

ORCLPDB1(3):

ORCLPDB1(3):XDB initialized.

Chapter 5 Differences in Database Containers

82

Great! The database is ready. Now what? It’s time to connect to the container and see

what things look like “inside” the container!

�Connect to the Container
Connecting to containers is like making SSH connections to remote hosts. Once

established, we navigate the container’s operating system using familiar shell commands

as if connected to an external machine. Commands run in the container don’t affect the

local environment.

We’ll connect to the container using the docker exec command. The exec in docker

exec stands for execute, and the basic syntax is

docker exec <CONTAINER NAME> <COMMAND>

The container name is the target container, and the command is any executable

script or command present in the container. To start an interactive session in a container,

we’ll execute a shell—in this example, bash:

> docker exec -it ORCL bash

[oracle@8facfd649aa4 ~]$

Let’s break down this command:

•	 The -it flags are a shorthand way of passing multiple flags to
Docker. They represent --interactive (-i) and --tty (-t) and are

used in combination to keep standard input (STDIN) open while

allocating a pseudo-TTY or terminal-like session to the container.

Translated, it just means you get an interactive session. (The order

of the flags doesn’t matter. They can occur individually or combined,

and you can mix and match long and short flags.)

•	 ORCL is the name of the container.

•	 bash is the command Docker runs in the container. bash, the

Bourne Again SHell, is the default shell for many Linux operating

systems, including Oracle Enterprise Linux.

Chapter 5 Differences in Database Containers

83

Docker responds to this with a prompt, [oracle@8facfd649aa4 ~]$. The default

prompt displays the user (oracle), the hostname (8facfd649aa4), and the current

working directory (~, a special shorthand character representing the user’s home).

The container name is ORCL, so shouldn’t the hostname be ORCL, too? Where does

the 8facfd649aa4 originate?

If you open a new session on your host and look at the running containers using

the docker ps command, you’ll see that the hostname, 8facfd649aa4, is also the

container ID:

> docker ps

CONTAINER ID IMAGE NAMES

8facfd649aa4 oracle/database:19.3.0-ee ORCL

Docker still recognizes the “friendly” container name we assigned, and we can

use both the container ID and container name to reference the container when calling

commands. Docker creates unique identifiers for containers and uses them as the

hostname to avoid issues caused by user-assigned names that might violate host-naming

conventions.

You can log in to a container using different shells, as long they’re part of the image,

for instance, substituting sh instead of bash:

> docker exec -it ORCL sh

sh-4.2$

docker exec is the primary method we’ll use for connecting to and running

commands in containers throughout this book.

�Navigate the Oracle Database Container
Now that you’re connected to the database container, let’s look at the environment. At

first glance, it doesn’t seem different than a typical database host running natively in

Linux. Listing 5-3 shows the result of some basic commands to query the environment.

They seem to indicate this is a Linux machine running RHEL 7.8. The oracle user is

there, along with Oracle’s PMON process. An entry for the database is in the /etc/

oratab file. Everything looks normal!

Chapter 5 Differences in Database Containers

84

Listing 5-3.  Review basic information about the container’s user, operating

system, and database

[oracle@8facfd649aa4 ~]$ id

uid=54321(oracle) gid=54321(oinstall) groups=54321(oinstall),54322(dba),

54323(oper),54324(backupdba),54325(dgdba),54326(kmdba),54330(racdba)

[oracle@8facfd649aa4 ~]$ cat /etc/redhat-release

Red Hat Enterprise Linux Server release 7.8 (Maipo)

[oracle@8facfd649aa4 ~]$ ps -ef | grep pmon | grep -v grep

oracle 2464 1 0 22:42 ? 00:00:00 ora_pmon_ORCLCDB

[oracle@8facfd649aa4 ~]$ egrep -v "^$|^#" /etc/oratab

ORCLCDB:/opt/oracle/product/19c/dbhome_1:N

Indeed, most things seem ordinary. That’s part of the magic of containers—for all (or

most) intents and purposes, they’re indistinguishable from full-fledged, native hosts. If

they weren’t, we’d have to work around those differences to get applications—like Oracle

databases—to work as expected!

�Container Differences
We’ve already seen one hint of differences in containers—the hostname. Let’s look at this

and others in greater depth.

�Hostname
Listing 5-4 digs deeper into the host naming we saw earlier. After displaying the contents

of the /etc/hosts file in the container, I tried (and failed) to change the hostname to

something more user-friendly.

Listing 5-4.  The oracle user can’t change the hostname

[oracle@8facfd649aa4 ~]$ hostname

8facfd649aa4

[oracle@8facfd649aa4 ~]$ cat /etc/hosts

127.0.0.1 localhost

Chapter 5 Differences in Database Containers

85

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.7 8facfd649aa4

[oracle@8facfd649aa4 ~]$ hostname ORCL

hostname: you must be root to change the host name

Naturally, the oracle user can’t change the hostname! But it turns out root

can’t change the hostname in a container, as shown in Listing 5-5. I logged in to the

container with docker exec, adding the -u (or --user) flag to define the user as root.

After confirming I logged in as root, I still couldn’t change the hostname. (I’ll show a

workaround for this later. For now, chalk this up as the first of several differences to keep

in mind when working in containers!)

Listing 5-5.  The root user can’t change the hostname, either!

> docker exec -it -u root ORCL bash

bash-4.2# whoami

root

bash-4.2# hostname ORCL

hostname: you must be root to change the hostname

�cron
Containers don’t typically include cron, the Linux scheduling system, either. While

containers have an operating system,1 they aren’t full-fledged systems. Containers call

binaries and reference libraries in that directory structure but rely on the host to perform

system-level actions. The host kernel handles CPU, storage, and networking interactions

like any process. It doesn’t make sense that application processes would duplicate

these tasks!

1 Remember that the operating system in a container isn’t really an operating system. A
container’s operating system is just a filesystem with the binaries and libraries necessary to make
it look and behave like an operating system, for the purpose of performing a specific, limited set
of tasks.

Chapter 5 Differences in Database Containers

86

Containers are no different, and cron is one such system-managed process. Look at

Listing 5-6 to see the processes containing the text “system” in my container. Compare

that with the output in Listing 5-7, showing the system processes on my host running a

complete Ubuntu Linux operating system.

Listing 5-6.  Processes containing “system” in the container

[oracle@8facfd649aa4 ~]$ ps -ef | grep system

oracle 6486 4347 0 23:56 pts/0 00:00:00 grep --color=auto system

Listing 5-7.  Processes containing “system” on the host

> ps -ef | grep system

root 486 1 0 Feb14 ? �00:00:10 /lib/systemd/

systemd-journald

root 520 1 0 Feb14 ? �00:00:14 /lib/systemd/

systemd-udevd

systemd+ 741 1 0 Feb14 ? �00:00:05 /lib/systemd/systemd-

timesyncd

systemd+ 750 1 0 Feb14 ? �00:00:10 /lib/systemd/

systemd-networkd

systemd+ 753 1 0 Feb14 ? �00:00:11 /lib/systemd/

systemd-resolved

message+ 792 1 0 Feb14 ? �00:00:32 /usr/bin/dbus-daemon

--system --address=systemd:

--nofork --nopidfile --systemd

-activation --syslog-only

root 809 1 0 Feb14 ? �00:00:14 /lib/systemd/

systemd-logind

root 812 1 0 Feb14 ? �00:04:09 /usr/sbin/thermald

--systemd --dbus-enable

--adaptive

lab 744954 1 0 Feb26 ? �00:01:05 /lib/systemd/

systemd --user

lab 2348206 2334483 0 23:56 pts/6 �00:00:00 grep --color=auto

system

Chapter 5 Differences in Database Containers

87

There are no system processes in the container. This includes any needed to

schedule and run cron. Yet the crontab command, used to manage cron jobs, is present,

and the oracle user can run it:

[oracle@8facfd649aa4 ~]$ ls -l /bin/crontab

-rwsr-xr-x 1 root root 57656 Jun 9 2019 /bin/crontab

[oracle@8facfd649aa4 ~]$ crontab -l

no crontab for oracle

Let’s try editing the crontab by adding an entry:

[oracle@8facfd649aa4 ~]$ crontab -e

no crontab for oracle - using an empty one

/bin/sh: /usr/bin/vi: No such file or directory

crontab: "/usr/bin/vi" exited with status 127

[oracle@8facfd649aa4 ~]$

It fails—but not for the reason you might expect! crontab -e (for edit) calls the vi

(visual) editor, but vi isn’t there! To solve that, I logged in to a new session using the -u

root option and installed vi using yum:

> docker exec -it -u root ORCL bash

bash-4.2# yum install -y vi

Loaded plugins: ovl

ol7_latest | 3.6 kB 00:00:00

(1/3): ol7_latest/x86_64/group_gz | 136 kB 00:00:00

(2/3): ol7_latest/x86_64/updateinfo | 3.4 MB 00:00:03

(3/3): ol7_latest/x86_64/primary_db | 39 MB 00:00:08

Resolving Dependencies

--> Running transaction check

---> Package vim-minimal.x86_64 2:7.4.629-8.0.1.el7_9 will be installed

--> Finished Dependency Resolution

...

Install 1 Package

Chapter 5 Differences in Database Containers

88

Total download size: 443 k

...

Installed:

 vim-minimal.x86_64 2:7.4.629-8.0.1.el7_9

Complete!

Now that vi is present, I should be able to return to my original session and add an

entry to the oracle user’s crontab. I added this line:

* * * * * touch /home/oracle/added_by_cron

For those unfamiliar with cron syntax, the job will run every minute of every hour of

every day and “touch,” or create, an empty file called /home/oracle/added_by_cron. If

the file isn’t present, cron will create it. When I check the oracle user’s crontab, the line

is present:

[oracle@8facfd649aa4 ~]$ crontab -l

* * * * * touch /home/oracle/added_by_cron

Or rather, cron should create it, but it doesn’t. Listing 5-8 shows that, even after 30

minutes, the file still isn’t there!

Listing 5-8.  cron inside the container doesn’t behave as expected!

[oracle@8facfd649aa4 ~]$ date

Mon Jan 7 00:10:01 UTC 2022

[oracle@8facfd649aa4 ~]$ ls -l /home/oracle

total 0

lrwxrwxrwx 1 root root 26 Apr 10 2021 setPassword.sh -> /opt/oracle/

setPassword.sh

[oracle@8facfd649aa4 ~]$ date

Mon Jan 7 00:44:26 UTC 2022

[oracle@8facfd649aa4 ~]$ ls -l /home/oracle

total 0

lrwxrwxrwx 1 root root 26 Apr 10 2021 setPassword.sh -> /opt/oracle/

setPassword.sh

Chapter 5 Differences in Database Containers

89

Interesting! Perhaps the cron service isn’t running. In Listing 5-9, I returned to the

root session I started earlier, checked the status, and tried starting the service.

Listing 5-9.  The root user can’t start cron inside the container

bash-4.2# service crond status

Redirecting to /bin/systemctl status crond.service

Failed to get D-Bus connection: Operation not permitted

bash-4.2# service crond start

Redirecting to /bin/systemctl start crond.service

Failed to get D-Bus connection: Operation not permitted

This is intentional. cron is a system process, and containers expect the host OS

to handle them. While the binaries are present in the container filesystem—even

executable—there is no system process running in the container to identify and run jobs.

The absence of running init.d or system.d processes in containers raises legitimate

concerns, particularly for Oracle databases. How do we schedule backups in containers?

Better yet, how do products like Oracle Grid Infrastructure, Oracle Real Application

Clusters, and Oracle Restart—which depend extensively on init.d or system.d—work in

containers? Fortunately, there are ways to add this functionality to containers.

Let’s now revisit the vi editor issue we encountered earlier and see why it was

missing!

�Binaries
Containers are frequently deployed at scale. Smaller containers maximize infrastructure

capacity and take less time to copy across networks. When building container

images, the objective is to eliminate anything that isn’t necessary. Editors, like vi, are

not needed.

Without editors, how can anyone change files in containers? The simple answer is

that it’s not something done in most containers. Unlike virtual and physical hosts, images

provide ready-made filesystems that perform specific services or functions. They’re not

multipurpose, interactive systems. If something needs editing, it’s done during the build

and baked into the image, not after the container runs. Automation-friendly editors like

sed are better suited if files in containers require modification.

Chapter 5 Differences in Database Containers

90

You learned in Chapter 3 that changes made in containers write to a layer in a union

filesystem. Union filesystems evaluate the differences between lower and upper layers,

projecting the result to the container. Besides adding space in the container’s layer,

calculating those differences requires a CPU, and limiting changes in a container has

performance implications.

It’s not just about space and performance, though. You’ll discover that the binaries

and tools missing from container images extend beyond editors. Anything unnecessary

adds an attack surface that bad actors can exploit. Attackers can’t take advantage of what

isn’t there.

A system’s attack surface is the collection of possible vectors or points an
unauthorized user might exploit to gain access to the system. Limiting the software
installed on containers reduces what’s available to attackers and highlights another
difference between containers and physical or virtual hosts. Complete operating
systems tend to include tools and utilities that users might need. Container images
have a more limited scope and include only what’s required.

Linux distributions for Docker are often available with a “-slim” option, indicating

a minimized distribution. There’s no convention defining what is and isn’t included

(or, more accurately, excluded from) a slim version, which varies across vendors and

versions. Production-savvy images usually start with a slim version and add what’s

necessary. As we’ll see in Chapter 12, Oracle’s database images follow suit, using a “slim”

distribution of Oracle Enterprise Linux 7 as their foundation.

For most of us, though, the first use case for putting databases in containers includes

some interaction, which implies editors and diagnostic tools. Fortunately, modifying

build scripts to include binaries is easy, as discussed in the next chapter.

�Oracle Directories
Another difference peculiar to Oracle’s container registry images is the location of some

Oracle-specific files. In Listing 5-10, I navigated to the ORACLE_BASE directory and listed

its contents.

Chapter 5 Differences in Database Containers

91

Listing 5-10.  Contents of ORACLE_BASE in an Oracle database container

[oracle@8facfd649aa4 opt]$ cd $ORACLE_BASE

[oracle@8facfd649aa4 oracle]$ pwd

/opt/oracle

[oracle@8facfd649aa4 oracle]$ ls -l

total 92

drwxr-x--- 3 oracle oinstall 4096 Mar 6 22:04 admin

drwxr-x--- 2 oracle oinstall 4096 Mar 6 22:04 audit

drwxr-x--- 4 oracle oinstall 4096 Mar 6 22:15 cfgtoollogs

-rwxrwxr-x 1 oracle dba 1040 Mar 31 2021 checkDBStatus.sh

drwxr-xr-x 2 oracle dba 4096 Apr 10 2021 checkpoints

-rwxrwxr-x 1 oracle dba 4121 Mar 31 2021 createDB.sh

-rw-rw-r-- 1 oracle dba 9204 Oct 11 2020 dbca.rsp.tmpl

drwxrwxr-x 1 oracle dba 4096 Apr 10 2021 diag

drwxrwx--- 1 oracle dba 4096 Mar 6 23:32 oraInventory

drwxr-xr-x 1 oracle dba 4096 Mar 6 23:33 oradata

drwxr-xr-x 1 oracle dba 4096 Apr 10 2021 product

-rwxrwxr-- 1 oracle dba 1941 Oct 11 2020 relinkOracleBinary.sh

-rwxrwxr-x 1 oracle dba 6488 Mar 31 2021 runOracle.sh

-rwxrwxr-x 1 oracle dba 1015 Oct 11 2020 runUserScripts.sh

drwxr-xr-x 1 oracle dba 4096 Apr 10 2021 scripts

-rwxrwxr-x 1 oracle dba 758 Oct 11 2020 setPassword.sh

-rwxrwxr-x 1 oracle dba 678 Oct 11 2020 startDB.sh

Ignore the shell scripts for the time being. I want you to look closely at the directories.

Much of what’s here is what we expect to find. Admin, audit, and diagnostic directories—

check! The product directory that forms the root of the ORACLE_HOME installed on the

system—check! The oradata directory, where Oracle stores database files—check! But,

oraInventory?

Oracle’s database inventory is a collection of metadata for different Oracle products

installed on a host, and Oracle doesn’t recommend installing in or under the ORACLE_

BASE, yet here it is. Why?

It’s linked to the way containers use union filesystems for efficiency. For more on

that, let’s look at the oradata directory.

Chapter 5 Differences in Database Containers

92

�Configuration Files
Navigating further into the ORACLE_BASE/oradata directory, you’ll notice two

subdirectories, ORCLCDB and dbconfig:

[oracle@8facfd649aa4 oradata]$ pwd

/opt/oracle/oradata

[oracle@8facfd649aa4 oradata]$ ls -l

total 8

drwxr-x--- 4 oracle oinstall 4096 Mar 6 22:15 ORCLCDB

drwxr-xr-x 3 oracle oinstall 4096 Mar 6 23:33 dbconfig

The ORCLCDB directory here is expected. It’s part of the Optimal Flexible Architecture,2

or OFA, and forms the root directory containing the control, data, and redo log files

belonging to the ORCLCDB database instance running on the host.

In Listing 5-11, I listed the contents of the ORCLCDB subdirectory. As anticipated,

there are database files and subdirectories for the pluggable database ORCLPDB1 and

PDB seed files. This is consistent with Oracle database installations in non-container

environments.

Listing 5-11.  Contents of $ORACLE_BASE/oradata/$ORACLE_SID in a container

[oracle@8facfd649aa4 oradata]$ ls -l ORCLCDB

total 2341684

drwxr-x--- 2 oracle oinstall 4096 Mar 6 23:32 ORCLPDB1

-rw-r----- 1 oracle oinstall 18726912 Mar 7 01:44 control01.ctl

-rw-r----- 1 oracle oinstall 18726912 Mar 7 01:44 control02.ctl

drwxr-x--- 2 oracle oinstall 4096 Mar 6 22:37 pdbseed

-rw-r----- 1 oracle oinstall 209715712 Mar 7 00:38 redo01.log

-rw-r----- 1 oracle oinstall 209715712 Mar 7 01:44 redo02.log

-rw-r----- 1 oracle oinstall 209715712 Mar 6 23:32 redo03.log

-rw-r----- 1 oracle oinstall 545267712 Mar 7 01:41 sysaux01.dbf

-rw-r----- 1 oracle oinstall 933240832 Mar 7 01:41 system01.dbf

-rw-r----- 1 oracle oinstall 33562624 Mar 6 22:44 temp01.dbf

2 Optimal Flexible Architecture is an organizational and naming convention that separates files of
multiple databases into distinct directories.

Chapter 5 Differences in Database Containers

93

-rw-r----- 1 oracle oinstall 246423552 Mar 7 01:43 undotbs01.dbf

-rw-r----- 1 oracle oinstall 5251072 Mar 7 00:43 users01.dbf

The dbconfig directory, however, is unexpected. Listing 5-12 shows the contents of

the dbconfig directory. There’s a subdirectory for the ORACLE_SID and, beneath that,

some unexpected files!

Listing 5-12.  Contents of $ORACLE_BASE/oradata/dbconfig/$ORACLE_SID

[oracle@8facfd649aa4 oradata]$ ls -l dbconfig

total 4

drwxr-xr-x 2 oracle oinstall 4096 Mar 6 23:33 ORCLCDB

[oracle@8facfd649aa4 oradata]$ ls -l dbconfig/ORCLCDB

total 24

-rw-r--r-- 1 oracle oinstall 234 Mar 6 22:04 listener.ora

-rw-r----- 1 oracle oinstall 2048 Mar 6 22:15 orapwORCLCDB

-rw-r--r-- 1 oracle oinstall 784 Mar 6 23:33 oratab

-rw-r----- 1 oracle oinstall 3584 Mar 6 23:33 spfileORCLCDB.ora

-rw-r--r-- 1 oracle oinstall 53 Mar 6 22:04 sqlnet.ora

-rw-r----- 1 oracle oinstall 211 Mar 6 23:33 tnsnames.ora

These configuration files are customarily saved under the ORACLE_HOME or /etc.

What are they doing here?

To answer that, look first at the default location for the three networking files—

listener.ora, sqlnet.ora, and tnsnames.ora—the ORACLE_HOME/network/admin

directory, in Listing 5-13. These network configuration files link to the files in ORACLE_

BASE/oradata/dbconfig/ORCLCDB!

Listing 5-13.  Contents of $ORACLE_HOME/network/admin in a container. The

listener, SQL*Net, and TNS configurations link to the files under the dbconfig

directory

[oracle@8facfd649aa4 oradata]$ ls -l $ORACLE_HOME/network/admin

total 8

lrwxrwxrwx 1 oracle oinstall 49 Mar 6 23:33 listener.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/listener.ora

drwxr-xr-x 2 oracle dba 4096 Apr 17 2019 samples

Chapter 5 Differences in Database Containers

94

-rw-r--r-- 1 oracle dba 1536 Feb 14 2018 shrept.lst

lrwxrwxrwx 1 oracle oinstall 47 Mar 6 23:33 sqlnet.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/sqlnet.ora

lrwxrwxrwx 1 oracle oinstall 49 Mar 6 23:33 tnsnames.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/tnsnames.ora

Listing 5-14 shows the password file (orapwORCLCDB) and server parameter file, or

spfile (spfileORCLCDB.ora) in their “proper” location, ORACLE_HOME/dbs, are also linked

to ORACLE_BASE/oradata/dbconfig/ORCLCDB!

Listing 5-14.  Database configuration files in $ORACLE_HOME/dbs link to their

counterparts in dbconfig

[oracle@8facfd649aa4 oradata]$ ls -l $ORACLE_HOME/dbs

total 12

-rw-rw---- 1 oracle oinstall 1544 Mar 6 23:32 hc_ORCLCDB.dat

-rw-r--r-- 1 oracle dba 3079 May 14 2015 init.ora

-rw-r----- 1 oracle oinstall 24 Mar 6 22:10 lkORCLCDB

lrwxrwxrwx 1 oracle oinstall 49 Mar 6 23:33 orapwORCLCDB -> /opt/oracle/

oradata/dbconfig/ORCLCDB/orapwORCLCDB

lrwxrwxrwx 1 oracle oinstall 54 Mar 6 23:33 spfileORCLCDB.ora -> /opt/

oracle/oradata/dbconfig/ORCLCDB/spfileORCLCDB.ora

Finally, in Listing 5-15, we see the oratab file, /etc/oratab, is not linked but

identical to the mysterious file in the special dbconfig directory.

Listing 5-15.  The /etc/oratab and /opt/oracle/oradata/dbconfig/ORCLCDB/

oratab files are identical

[oracle@8facfd649aa4 oradata]$ ls -l /etc/oratab

-rw-rw-r-- 1 oracle oinstall 784 Mar 6 23:33 /etc/oratab

[oracle@8facfd649aa4 oradata]$ md5sum /etc/oratab

31f3633542a9883ebd7f0eaac771ec7b /etc/oratab

[oracle@8facfd649aa4 oradata]$ md5sum $ORACLE_BASE/oradata/dbconfig/

ORCLCDB/oratab

31f3633542a9883ebd7f0eaac771ec7b /opt/oracle/oradata/dbconfig/

ORCLCDB/oratab

Chapter 5 Differences in Database Containers

95

What’s the explanation for this? Layers and volumes.

�Volumes
In Chapter 3, you learned how containers use union filesystems to store local data.

Union filesystems allow multiple containers running from the same image to use the

same files. Two containers don’t take up twice the space because both share the original

image. It’s why containers start so quickly, and every container behaves identically.

Creating a container doesn’t copy or change the contents of the image. Every container

uses (and reuses) the directory structure from the image itself!

The image provides the lower layer of the union filesystem. A layer “above” that saves

the changes made in each container. By “looking down” into the layers, each container

sees either the unchanged files in the lower layer (the image) or the local changes held

in the upper layer. (Refer back to the discussion in Chapter 3 about layers and union

filesystems.)

This arrangement works well for short-lived applications that don’t write much

data. On more durable systems with longer lifespans—like databases—activity in the

container may add considerably to the individual container layers. Figure 5-2 shows this

for an Oracle database container. The drawing on the left shows the system immediately

after starting two database containers. Docker adds layers dedicated to each container.

They sit atop the image, and, initially, they’re empty. But soon, Oracle begins creating

databases in the containers. Datafiles added during this step aren’t part of the image, so

they’re written into the container’s layers. (Even if they were in the image, the container

layer would capture the changes to image files.) The drawing on the right shows how the

container layers grew to hold the additional content.

Chapter 5 Differences in Database Containers

96

Figure 5-2.  Representations of a host running two database containers. The image
on the left represents the situation immediately after the containers start. The layers
are empty. The right-side image shows the result after database creation completes.
The layers grew substantially to hold the files added and changed during database
provisioning

This isn’t an ideal situation for several reasons. Computing the differences between

the upper and lower layers of union filesystems loads the host CPU. The database is

limited, too—the container layers are on the host filesystem, which may not be large

enough to accommodate a growing database nor fast enough to satisfy the database’s

performance requirements.

There’s another drawback to saving data in the container layer: durability. The upper

layer assigned to the container is the container. Deleting the container removes the

layer—and with it, the database!

Fortunately, Docker offers a solution called a volume. Container volumes assign

directories inside the container to storage outside the layered filesystem on the local

host. When the container saves data to the mounted directory, it’s writing it to persistent

storage on the local host.

Figure 5-3 shows the same database containers, now using volumes for the /opt/

oracle/oradata directories. Now, container operations writing into this directory are

saved to the host filesystem, not the container layers. All other directories inside the

container behave as they did before.

Chapter 5 Differences in Database Containers

97

Figure 5-3.  Database containers use volumes to store the contents of the /opt/
oracle/oradata directory to the local filesystem

Deleting containers removes the upper and working layers and, along with them, all

the changes they hold. Once the layer is gone, it can’t be recovered or recreated. Volumes

are independent of the container and unaffected when deleting their parent container.

Volumes can act like network filesystems, too, sharing files between the container and

host and even between containers. They can take advantage of high-performance

storage for data, too.

This brings us back to the oradata directory and the mystery behind the placement

of the Oracle database configuration files.

Mounting the oradata directory as a volume keeps Oracle’s volatile datafiles off the

union filesystem, avoiding performance penalties. But configuration files aren’t changed

frequently enough to hamper performance. There’s another explanation.

When database containers first start, there’s a check to see if a database exists,

as shown in Figure 5-4. If the review finds a database, it next looks in the dbconfig

directory, links the configuration files it finds to their expected locations, then starts

the database. Otherwise, it creates a new database. When it finishes, it copies the

Chapter 5 Differences in Database Containers

98

configuration files into the dbconfig directory and replaces them in their usual locations

with links pointing to the copies.

Figure 5-4.  Actions performed when starting Oracle database containers.
Whether the database is old or new, it saves configuration files in the dbconfig
directory

With volumes, the data in the /opt/oracle/oradata directory is written to the

local host. Configuration files under ORACLE_BASE and ORACLE_HOME, the /etc/oratab

file, and the database inventory—saved in the container’s ephemeral layers—are lost

when dropping the container. In this case, it deletes links3 to those files, not the files

themselves. The database configuration files are safely preserved on the volume, as

shown in Figure 5-5.

3 The /etc/oratab file on the container isn’t linked to the volume, it’s copied. The /etc directory
is owned by root, and the oracle user lacks permission to create links there.

Chapter 5 Differences in Database Containers

99

Figure 5-5.  The database configuration files under the ORACLE_HOME in the
container aren’t physically there. They’re links, referencing files under /opt/
oracle/oradata/dbconfig

The volume is a snapshot of everything necessary for recreating the database.

When I delete the container, the volume remains behind. What happens when I start

a new container and map its oradata volume to the directory left over from the prior

container?4

The startup script checks to see if a database exists, and—even though it’s brand

new—it discovers the files from the existing database!5 The container doesn’t know the

files came from a now-deleted container. All it sees are the files it needs for a database.

Instead of creating a new database, it starts the one it discovered.

Every time the startup script runs, it checks for a database and, if found, recreates

the links, if necessary, from their expected locations to the files in the /opt/oracle/

oradata/dbconfig/$ORACLE_SID directory.

We can leverage this feature to provision database clones very quickly. Nothing ties

data on a volume to a specific container. Taking a copy of an existing oradata directory

and using it in a new container lets Oracle skip the database creation process entirely!

Provided the ORACLE_SID and other database-specific environment variables passed

during container creation match the values used in the database on the volume, the

4 Mounting volumes is covered in detail in Chapter 7.
5 The ORACLE_SID and certain other environment variables must match.

Chapter 5 Differences in Database Containers

100

contents of the oradata volume can be used to clone the database on the same system,

copy data to different machines, and even share them across host operating systems—

without modification!

The real power of volumes comes when troubleshooting issues and practicing
or refining complex procedures. I was recently on a screen-sharing session with
Oracle Support to diagnose an issue happening deep in a database upgrade.
After demonstrating the problem, they suggested changing a configuration, then
rerunning the upgrade. The analysts expected it to take a few hours for me to
restore the database to its pre-upgrade state and rerun the process. However,
since I was working in a container and had a copy of the database from just before
the failure, it only took a few minutes to stop the container, restore a copy of the
snapshot, and restart the container!

Volumes are a unique and powerful feature exclusive to databases running in

containers. Restoring and cloning databases in Docker doesn’t require a DBA or

knowledge of RMAN. It’s a straightforward directory copy. Treating data as a self-

contained set of files on a volume, separate from the database software in the container,

transforms the way development teams work. Treating data as a freestanding asset

means organizations can version and share data with little or no dependency on

specialized database skills.

�Summary
Different isn’t good or bad. It’s just different. It’s how we embrace “different” that matters.

That may be as simple as picking something new from the menu or opening yourself to

the possibilities introduced by technological evolution!

In this chapter, you learned the basic commands for starting a container and

monitoring activity and how to connect to and navigate a database container. Once

logged in to the container system, you explored some distinctions that set containers

apart from traditional systems, including the absence of certain binaries and features,

like cron. Remember that containers are not the comprehensive environments we’re

Chapter 5 Differences in Database Containers

101

accustomed to and may force us to rethink how we accomplish specific tasks. These

differences aren’t without reward, however. Using minimal or slimmed-down filesystems

improves performance and reduces containers’ attack surface.

You also discovered how to use volumes to persist data outside the container,

where it’s independent of the container’s lifecycle. Volumes also make durable, high-

performance, network-attached storage accessible to databases hosted in containers.

Perhaps the most vital concept from this chapter is Oracle’s method for relocating

the database configuration files used in container databases. Saving these files to a

volume, alongside the database’s control, data, and redo log files, separates the database

software from the database itself. These distinct boundaries are crucial to managing each

component independently. Organizations running containerized databases can manage

data as a versioned, portable asset, integrate data into DevOps processes, and accelerate

development lifecycles.

With an enhanced appreciation for some of Docker’s internals, you’re ready to move

on to the next chapter and begin customizing containers!

Chapter 5 Differences in Database Containers

103

CHAPTER 6

Customize Container
Environments
Running containers is comparable to calling a sophisticated shell script. Containers and

shell scripts both perform a scoped set of tasks. Scripts can be explicit, with hard-coded

values, but adding some flexibility makes them more portable and valuable. That might

mean deriving specific values from the environment or interpreting parameters passed

to the script at runtime. Take an RMAN backup script as an example. Hard-coding

the database name prevents its use on other databases. Pass the database name as a

variable, and the same script works across an enterprise. Adding additional options for

the backup destination, degree of parallelism, and incremental level makes the script

much more flexible and valuable over various implementations.

Docker is similar in this regard, and in this chapter, we’ll dive into an option to

the docker run command that passes variables and values to the container’s private

environment. Those environment variables act like shell script parameters and allow

one image to work dynamically, supporting various needs or applications. When an

Oracle database container starts, it evaluates the container environment—as the backup

script reads parameters—and applies changes to the container to create and run a

database to match.

The magic behind this is a special instruction Docker runs automatically whenever a

container starts.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_6

https://doi.org/10.1007/978-1-4842-9033-0_6

104

�The Startup Process
I’ve mentioned the startup process previously. At a very high level, it checks to see if a

database exists and, if found, starts it. If not, it runs the Database Configuration Assistant

(DBCA) to create a new database in the container. The startup instruction1 for the Oracle

container repository images we’re working with is a bash shell script called runOracle.

sh. (For reference, all examples in this chapter are based on a default Oracle Database

19c image built using the Oracle-authored repository at https://github.com/oracle/

docker-images but are valid for other database versions as well.) Figure 6-1 adds some

detail to the startup process of an Oracle database container.

1 Chapter 11 describes this and other scripts, including example modifications.

Chapter 6 Customize Container Environments

https://github.com/oracle/docker-images
https://github.com/oracle/docker-images

105

Figure 6-1.  Flowchart of the startup process for an Oracle database container

The runOracle.sh script reads values from the environment, and one of the first

things it looks for is the ORACLE_SID and ORACLE_PDB. If they’re not defined, it assigns

defaults. Only then will it check whether a database matching the SID is present.

Chapter 6 Customize Container Environments

106

�View Environment Values
Let’s look at the container created in the previous chapter and see what values are in its

environment. As a reminder, I used this command:

docker run -d --name ORCL oracle/database:19.3.0-ee

If I log in to the container, run the env command, and limit the results with grep to

just those including ORACLE, as shown in Listing 6-1, the only values that come up are the

ORACLE_BASE and ORACLE_HOME. There’s nothing for the ORACLE_SID or ORACLE_PDB. Yet

if I search active processes and use grep to limit the output to the Oracle database pmon

process, a database with a SID of ORCLCDB is up and running.

Listing 6-1.  Environment variables for the oracle user in a default database

container

docker exec -it ORCL bash

[oracle@8facfd649aa4 ~]$ env | grep ORACLE

ORACLE_BASE=/opt/oracle

ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

[oracle@8facfd649aa4 ~]$ ps -ef | grep pmon | grep -v grep

oracle 88 1 0 Jan1 ? 00:00:16 ora_pmon_ORCLCDB

Perhaps the env command isn’t the right way to check the container environment.

Starting a terminal session calls login and profile scripts for the user and shell,

potentially altering the result. What I want is a way of seeing the same environment the

startup script sees when the container starts. To accomplish that, I’ll use the docker

inspect command to view the container metadata:2

docker container inspect ORCL

docker inspect for my container produces nearly 300 lines of JSON output and

isn’t very user-friendly. It’s a lot to pick through just to see the environment settings!

Fortunately, the inspect command (and many others) have a helpful --format option

we can use to limit and structure its output. In Listing 6-2, I added formatting to confine

2 docker inspect works against a wide range of Docker objects, including images, containers,
volumes, and networks. The JSON output for each object type is different, but the formatting
examples shown here can be adapted to suit your needs!

Chapter 6 Customize Container Environments

107

the result to the environment values in the configuration output, --format='{{.Config.

Env}}'. Unfortunately, it sacrifices brevity for clarity. It puts everything onto a single line

rather than a nice, clean list of variables!

Listing 6-2.  Limiting the result with the --format option places all the output on

a single line with no formatting

> docker container inspect --format='{{json .Config.Env}}' ORCL

[PATH=/opt/oracle/product/19c/dbhome_1/bin:/opt/oracle/product/19c/

dbhome_1/OPatch/:/usr/sbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/

bin:/sbin:/bin ORACLE_BASE=/opt/oracle ORACLE_HOME=/opt/oracle/product/19c/

dbhome_1 INSTALL_DIR=/opt/install INSTALL_FILE_1=LINUX.X64_193000_db_home.

zip INSTALL_RSP=db_inst.rsp CONFIG_RSP=dbca.rsp.tmpl PWD_FILE=setPassword.

sh RUN_FILE=runOracle.sh START_FILE=startDB.sh CREATE_DB_FILE=createDB.

sh SETUP_LINUX_FILE=setupLinuxEnv.sh CHECK_SPACE_FILE=checkSpace.sh CHECK_

DB_FILE=checkDBStatus.sh USER_SCRIPTS_FILE=runUserScripts.sh INSTALL_DB_

BINARIES_FILE=installDBBinaries.sh RELINK_BINARY_FILE=relinkOracleBinary.sh

SLIMMING=true LD_LIBRARY_PATH=/opt/oracle/product/19c/dbhome_1/lib:/usr/lib

CLASSPATH=/opt/oracle/product/19c/dbhome_1/jlib:/opt/oracle/product/19c/

dbhome_1/rdbms/jlib]

To get more human-friendly output, I sent the result through the jq3 utility to parse

the JSON block into something more readable in Listing 6-3. I used additional formatting

options in Listing 6-4 to print entries on separate lines. I like the formatting output from

the second example. I find it more readable, but the command is more verbose and

harder to remember than piping the result through jq.4

Listing 6-3.  Parsing environment information with jq

> docker container inspect --format='{{json .Config.Env}}' ORCL | jq

[

3 jq formats, or “pretty prints” JSON output in more human-readable form. On Ubuntu systems
(the default Linux flavor in Windows WSL), install it with sudo apt-get install jq.
4 Aliases and functions are alternatives to remembering verbose syntax. In Appendix B, I’ve
included examples of what I use in my environment to simplify complex commands.

Chapter 6 Customize Container Environments

108

 �"PATH=/opt/oracle/product/19c/dbhome_1/bin:/opt/oracle/product/19c/

dbhome_1/OPatch/:/usr/sbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/

bin:/sbin:/bin",

 "ORACLE_BASE=/opt/oracle",

 "ORACLE_HOME=/opt/oracle/product/19c/dbhome_1",

 "INSTALL_DIR=/opt/install",

 "INSTALL_FILE_1=LINUX.X64_193000_db_home.zip",

 "INSTALL_RSP=db_inst.rsp",

 "CONFIG_RSP=dbca.rsp.tmpl",

 "PWD_FILE=setPassword.sh",

 "RUN_FILE=runOracle.sh",

 "START_FILE=startDB.sh",

 "CREATE_DB_FILE=createDB.sh",

 "SETUP_LINUX_FILE=setupLinuxEnv.sh",

 "CHECK_SPACE_FILE=checkSpace.sh",

 "CHECK_DB_FILE=checkDBStatus.sh",

 "USER_SCRIPTS_FILE=runUserScripts.sh",

 "INSTALL_DB_BINARIES_FILE=installDBBinaries.sh",

 "RELINK_BINARY_FILE=relinkOracleBinary.sh",

 "SLIMMING=true",

 "LD_LIBRARY_PATH=/opt/oracle/product/19c/dbhome_1/lib:/usr/lib",

 �"CLASSPATH=/opt/oracle/product/19c/dbhome_1/jlib:/opt/oracle/product/19c/

dbhome_1/rdbms/jlib"

]

Listing 6-4.  “Pretty-printing” environment information with an extended

format command

> docker container inspect --format '{{range .Config.Env}}{{printf "%s\n"

.}}{{end}}' ORCL

PATH=/opt/oracle/product/19c/dbhome_1/bin:/opt/oracle/product/19c/dbhome_1/

OPatch/:/usr/sbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin

ORACLE_BASE=/opt/oracle

ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

INSTALL_DIR=/opt/install

Chapter 6 Customize Container Environments

109

INSTALL_FILE_1=LINUX.X64_193000_db_home.zip

INSTALL_RSP=db_inst.rsp

CONFIG_RSP=dbca.rsp.tmpl

PWD_FILE=setPassword.sh

RUN_FILE=runOracle.sh

START_FILE=startDB.sh

CREATE_DB_FILE=createDB.sh

SETUP_LINUX_FILE=setupLinuxEnv.sh

CHECK_SPACE_FILE=checkSpace.sh

CHECK_DB_FILE=checkDBStatus.sh

USER_SCRIPTS_FILE=runUserScripts.sh

INSTALL_DB_BINARIES_FILE=installDBBinaries.sh

RELINK_BINARY_FILE=relinkOracleBinary.sh

SLIMMING=true

LD_LIBRARY_PATH=/opt/oracle/product/19c/dbhome_1/lib:/usr/lib

CLASSPATH=/opt/oracle/product/19c/dbhome_1/jlib:/opt/oracle/product/19c/

dbhome_1/rdbms/jlib

No matter how it’s formatted, there’s still no ORACLE_SID or ORACLE_PDB.

I’ll see similar results by navigating to the container details in Docker Desktop and

selecting the Inspect tab, as in Figure 6-2. The screen lists the container’s environment

variables (but lacks sorting and filtering on the results).

Figure 6-2.  The Inspect tab in Docker Desktop’s container detail page lists all
the environment variables set in the container. But the ORCL container, created
without specifying values for ORACLE_SID or ORACLE_PDB, doesn’t report either
variable in its environment

Chapter 6 Customize Container Environments

110

There are several additional variables we don’t see in “normal” database

environments, like SLIMMING and those identifying directories, files, and scripts. Notice

our startup script is there, too:

RUN_FILE=runOracle.sh

These values come from the parent image and represent the baseline configuration

of any container started from the image. The results of the following commands that

report environment configurations of the container and image are identical:

docker container inspect --format '{{range .Config.Env}}{{printf "%s\n" .}}

{{end}}' ORCL

docker image inspect --format '{{range .Config.Env}}{{printf "%s\n" .}}

{{end}}' oracle/database:19.3.0-ee

Containers inherit environment settings from their parent image. Just as an RMAN

backup script might set default values if not overridden, the database container assigns

defaults for the ORACLE_SID and ORACLE_PDB if not provided when creating a container

with docker run.

�docker run
The command used to create the ORCL database container in the examples so far was

docker run -d --name ORCL oracle/database:19.3.0-ee

Once created, its environment is static, at least from the standpoint of automation. I

could open a session in the container and set environment variables, but they won’t alter

the environment values in the metadata. It’s that metadata the startup script sees and reads

each time the container starts. The only opportunity to change the metadata, potentially

overriding defaults present in the image, is during container creation. (This is true for other

container properties like volumes and networking, as we’ll see in the coming chapters.)

A few methods pass environment variables5 to the docker run command: via the

command line, the host environment, or a file. Each passes a value to the container’s

metadata, making them available to scripts (including startup commands) and

processes.

5 Docker only allows simple values—no arrays!

Chapter 6 Customize Container Environments

111

�Command-Line Option
Use the -e flag or its long form, the --env flag, followed by a single key=value pair, for

example:

docker run ... -e ORACLE_SID=TEST ...

docker run ... --env ORACLE_PDB=TESTPDB1 ...

Pass multiple values using the -e flag separately for each:

docker run ... -e ORACLE_SID=TEST -e ORACLE_PDB=TESTPDB1 ...

The value (the part after the equal sign) can also be a variable from the local

environment. It’s useful for provisioning multiple containers. Listing 6-5 shows an

example of using a for loop in a Linux environment for deploying multiple containers

from a list of values—DEV, TEST, and STAGE—assigning a different database name to

each from the loop variable.

Listing 6-5.  Automatically deploying three Oracle 19c database containers,

passing the ORACLE_SID to each from the environment

for dbname in DEV TEST STAGE

 do docker run -d --name $dbname -e ORACLE_SID=$dbname oracle/

database:19.3.0-ee

done

�Values from a File
Environment files are text files, with each key=value pair on a separate line, making

it easier to share multiple values with docker run. Docker ignores lines starting with

pound signs (#) as comments. Use the --env-file option with the file’s name when

calling docker run. Listing 6-6 shows a sample environment file, named db.env, for an

Oracle database, along with an example of using the --env-file option in the docker

run command.

Chapter 6 Customize Container Environments

112

Listing 6-6.  An example environment file for passing multiple key-value pairs to

docker run

ORACLE_SID=TEST

ORACLE_PDB=TESTPDB1

ORACLE_EDITION=EE

ENABLE_ARCHIVELOG=true

Passing that file to the --env-file option of docker run populates the variables

listed in the file into the container environment:

> docker run ... --env-file db.env ...

�Values from the Host Environment
There’s a particular case for sharing environment variables from the host with a

container. If the variable exists on the host with the same name as the container, it’s only

necessary to provide the variable name (without the equal sign or value). This works for

both the command line and environment file options.

In Listing 6-7, I modified the earlier loop example by changing the loop variable

from dbname to ORACLE_SID. Because the container has a matching variable, I can use the

variable name on its own. Docker interprets the variable and value for me.6

Listing 6-7.  Implicit variable assignment to a container using a host variable

for ORACLE_SID in DEV TEST STAGE

 do docker run -d --name $ORACLE_SID -e ORACLE_SID oracle/

database:19.3.0-ee

done

It isn’t necessary to write ORACLE_SID=$ORACLE_SID in this case. To use a host

variable in an environment file, include the variable on a separate line without an equal

sign or value. Docker reads the value from the host environment.

6 The value in the container is set to the host value at the time docker run is executed. It’s written
to the container metadata, and changes to the value on the host won’t alter the value in the
container once the container is created.

Chapter 6 Customize Container Environments

113

�Overwriting and Creating Variables
Assigning variables with docker run overwrites values from the image. Refer to

Listings 6-3 and 6-4, which list variables and values the example container inherited from

its parent. If I issue a slightly different command and create a new container, seen in

Listing 6-8, this time changing the ORACLE_HOME, the container breaks when the startup

script can’t locate the necessary files.

Listing 6-8.  Overriding the ORACLE_HOME in a container breaks things!

> docker run -d -e ORACLE_HOME=/home/oracle --name OOPS oracle/

database:19.3.0-ee

1c32eb9d016e723256e47199e5801d3bcd4cc64c87099cc40057028cd0177eba

> docker logs -f OOPS

/opt/oracle/relinkOracleBinary.sh: line 13: /home/oracle/bin/oraversion: No

such file or directory

/usr/bin/ar: /home/oracle/lib/libedtn.a: No such file or directory

ORACLE EDITION:

touch: cannot touch '/home/oracle/install/.docker_': No such file or

directory

ORACLE PASSWORD FOR SYS, SYSTEM AND PDBADMIN: vXy8JX7aiE4=1

LSNRCTL for Linux: Version 19.0.0.0.0 - Production on 11-JAN-2022 21:52:59

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Message 1070 not found; No message file for product=network,

facility=TNSTNS-12545: Message 12545 not found; No message file for

product=network, facility=TNS

 TNS-12560: Message 12560 not found; No message file for product=network,

facility=TNS

 TNS-00515: Message 515 not found; No message file for product=network,

facility=TNS

 Linux Error: 2: No such file or directory

cat: /opt/oracle/cfgtoollogs/dbca/ORCLCDB/ORCLCDB.log: No such file or

directory

cat: /opt/oracle/cfgtoollogs/dbca/ORCLCDB.log: No such file or directory

Chapter 6 Customize Container Environments

114

If a variable/value given in docker run isn’t part of the image, Docker adds it to

the container environment (and its metadata). Instead of changing the ORACLE_HOME,

Listing 6-9 shows what happens when I create a container, this time assigning nondefault

values for ORACLE_SID and ORACLE_PDB.

Listing 6-9.  The container environment when using nondefault values for

ORACLE_SID and ORACLE_PDB

> docker run -d -e ORACLE_SID=ORA19C -e ORACLE_PDB=PDB1 --name ORA19C

oracle/database:19.3.0-ee

aba0514d7fb36e70777c69ca4a6b619e3fbdca1f8a13a95935fed8e48c7722c3

> docker container inspect --format '{{range .Config.Env}}{{printf "%s\n"

.}}{{end}}' ORA19C | grep ORACLE

ORACLE_BASE=/opt/oracle

ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

ORACLE_PDB=PDB1

ORACLE_SID=ORA19C

> docker exec -it ORA19C bash

[oracle@aba0514d7fb3 ~]$ env | grep ORACLE

ORACLE_SID=ORA19C

ORACLE_BASE=/opt/oracle

ORACLE_PDB=PDB1

ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

[oracle@aba0514d7fb3 ~]$ ps -ef | grep pmon

oracle 5072 1 0 21:21 ? 00:00:00 ora_pmon_ORA19C

The original container didn’t have ORACLE_SID or ORACLE_PDB in its environment,

and those variables aren’t included or assigned in the parent image. When the startup

script, runOracle.sh, runs, it checks the environment and assigns a default value if they

aren’t set. docker run added the new variables and values to the container in the newly

created container. docker inspect shows them in the container metadata, and they’re

in the oracle user environment. And—last but not least—the startup script created a

database with an ORACLE_SID of ORA19C.

ORACLE_SID is ubiquitous in Oracle database settings, and ORACLE_PDB is part of

multitenant installations. Being common to traditional Oracle database environments,

Chapter 6 Customize Container Environments

115

7 Options for setting the database edition, enabling archive logging, SGA, PGA, and automatic
memory calculation are available for database 19.3 onward.
8 This parameter changes the Oracle Database Edition in the container by relinking the binaries in
the Oracle Home. It reconfigures images with Enterprise Edition homes to use Standard Edition,
and vice versa. The feature is used to start a container using preexisting datafiles created using a
database edition that’s different from the image.

we can make an educated guess they’re meaningful to container environments, despite

being absent from the predefined database image environment. But are there other, less

obvious, or conventional values used in container environments?

�Environment Options in Oracle Images
Oracle’s container image repository has extensive documentation at https://github.

com/oracle/docker-images/tree/main/OracleDatabase/SingleInstance, including

environment options for customizing database startup and creation.

Environment options for customizing Oracle database creation in containers

(defaults shown in brackets [])

•	 ORACLE_SID: The Oracle Database SID [ORCLCDB]

•	 ORACLE_PDB: The Oracle Database PDB name [ORCLPDB1]

•	 ORACLE_EDITION: The Oracle Database Edition7,8

•	 ORACLE_CHARACTERSET: The database character set [AL32UTF8]

•	 ORACLE_PWD: The Oracle Database SYS, SYSTEM, and PDB_

ADMIN password [randomly generated during database creation]

•	 ENABLE_ARCHIVELOG: Enable archive logging [False]7

Chapter 6 Customize Container Environments

https://github.com/oracle/docker-images/tree/main/OracleDatabase/SingleInstance
https://github.com/oracle/docker-images/tree/main/OracleDatabase/SingleInstance

116

Optional environment options available for managing memory in Oracle database

containers.

•	 INIT_SGA_SIZE: The total memory, in MB, for the SGA

components.7

•	 INIT_PGA_SIZE: The target aggregate PGA size, in MB.7

•	 AUTO_MEM_CALCULATION: Calculates total memory allocation

based on the container’s available memory during database creation.

When set to false, the total memory allocation is 2GB. This option is

ignored when either INIT_SGA_SIZE or INIT_PGA_SIZE are set. [True]7

These options cover the most common modifications for creating databases. Chapter 13

offers examples and ideas for additional customizations, extending the possibilities further!

�Summary
In this chapter, you learned that containers inherit environment settings from their

parent images, storing them as metadata. Each time an Oracle database container

starts, the runOracle.sh runs automatically, governing activity in the container and its

database. The startup script evaluates environment variables to customize database

creation and startup—much as a shell script accepts command-line parameters to alter

its default behavior.

You learned different methods for passing environment variables to containers and

can now use docker inspect to report and format metadata from containers. Finally,

you discovered how to create an Oracle database in a Docker container using custom

CDB and PDB names and learned about additional options for adjusting the database

memory allocation, database edition, and archive logging state.

In the following two chapters, you’ll explore additional options of the docker run

command that allow interaction between hosts and containers. Chapter 7 introduces

techniques for sharing host storage with containers and its implications for performance, data

persistence, and efficiency. Chapter 8 covers communication between hosts and containers

and configuring containers to serve clients, whether on the host or in other containers.

Chapter 6 Customize Container Environments

117

CHAPTER 7

Persistence
As I began looking for information on running Oracle in containers back in 2014, the

consensus among Oracle experts wasn’t very promising. Most database administrators

dismissed Docker as the latest technology-de-jour among developers and not something

capable of handling the demands of a database. They cited dire warnings about

instability, poor performance, and data loss. Peers shared horror stories of various

disasters rooted in the immaturity or fragility of Docker.

Those criticisms shared a common theme. Each was an anecdote involving some vague

“friend of a friend” and echoed the warnings made for other new technologies over the

years—technologies we take for granted today, like Recovery Manager (RMAN), automatic

undo management,1 and even virtual machines. It’s also curious that these disasters were

each blamed on a still-new technology used in production environments, which seemed

unlikely. That’s when I understood these stories were by-products of apprehension

surrounding the unknown, even fear that containers might change how we do things.

If there was one objection at the forefront, then it was data persistence. The

(mistaken) belief was since containers are ephemeral, anything associated with

containers was, too. Indeed, a container’s filesystem is linked to the container. Deleting a

container permanently removes its data.

Unless that data is mounted externally.

Docker can save (and persist!) data outside containers using mounted storage

because it’s separate from the container. Deleting a container doesn’t affect the data

stored externally. Thoughtful use of database mounts offers greater control and visibility

and sets the foundation for running efficient, reliable, consistent, and modular database

environments. And mounts are the critical component behind powerful capabilities

unique to Linux containers.

1 I’m guilty of this attitude myself. Not only am I old enough to remember the joys of manually
managing undo segments, I was among those who claimed they were too complicated and
important to trust to one of Larry’s algorithms. I even gave a conference presentation where I
advised against the feature. I can’t imagine how much time I wasted through my stubborn refusal
to accept the newer, better way of doing things!

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_7

https://doi.org/10.1007/978-1-4842-9033-0_7

118

�Container Storage
We’ve seen how containers take advantage of union filesystems to deliver reliable,

consistent results. It’s tempting to say that every container run from a given image

starts with identical filesystems. But containers don’t use exact copies. Throughout their

lifecycle, they all share the same filesystem—the image itself. Starting a container creates

a dedicated union filesystem (sometimes called an overlay filesystem), using the parent

image as a foundation. Figure 7-1 visualizes how container layers work for playing a

game of Tic-Tac-Toe. The image contains the game board and the opening moves, filling

the top row and center square. Every container uses the image as the lower layer but

can’t “touch” or change its contents. Instead, Docker writes container changes to each

container’s private upper layer. The two containers in Figure 7-1 start with the same

board, moves, and an empty upper layer. Docker adds new moves to the upper layers

as the games in each container progress. The view inside the container, provided by the

working layer, is a composite or merger of the lower and upper layers. Looking “down”

through the layers from the container’s perspective, the filesystem appears “flat.”

Figure 7-1.  Containers use union filesystems to project local changes over the base
filesystem provided by their parent image

Chapter 7 Persistence

119

Union filesystems make containers fast and efficient. It doesn’t matter if an image

is a few megabytes or several gigabytes in size because containers aren’t copying them

on startup. They’re just initializing a new union filesystem and adding an initially empty

layer atop the existing image. Running ten containers from a 1GB image doesn’t require

10GB of space. They all use the same 1GB image, so their storage requirement is only the

sum of the space used by changes in each container’s private layer.

�Docker Internal Storage
These images and layers still occupy space on disk in Docker’s /var/lib/docker

directory. The directory is part of the Linux virtual machine running under the covers

on Windows and Mac systems running Docker Desktop. On Linux systems, it’s the

default location for Docker installations.2 In either case, only privileged (root) users

can navigate the directory, and with good reason. Its contents need to be protected to

guarantee the health of container ecosystems.

The only practical way to view information and contents of the /var/lib/docker

directory is indirectly, either through Docker CLI commands to report metadata or

connecting to a container and inspecting its filesystem. It’s not always the most convenient

way of doing things, particularly when sharing information between host and container.

Consider a troubleshooting scenario using a Docker container running an Oracle

database to isolate a potential software bug. At some point, I’ll need to get files from the

container to share with Oracle. How?

Assuming SMTP is configured, I could email or copy-paste them from a container

shell to files on my local host. Neither is very practical. I could sudo into the /var/lib/

docker directory and try to locate the files in their layers and copy them to my home

directory—again, perhaps not the best solution.

A more realistic alternative is the docker cp command. Like its Linux namesake,

cp, docker cp lets me copy files between hosts and containers. I visualize containers

as remote hosts and think of docker cp as equivalent to scp or sftp. The structure of

docker cp is comparable to the scp command:

scp [source file] [destination]

docker cp [source file] [destination]

2 The /var/lib/docker directory on a Linux host typically exists on the host boot volume. It can be
relocated to a dedicated partition

Chapter 7 Persistence

120

The conventions are similar, too. The remote component is the host or container,

followed by a colon and ending with a path or file name:

scp [host or IP address]:[source file] [destination]

docker cp [container name]:[source file] [destination]

That’s certainly a more accessible and better way of transferring files, but for one

thing. docker cp doesn’t honor wildcards. With docker cp, operations are limited

to entire directories or individual files. Moving files between hosts and containers is

inconvenient at best. There are other limitations to union filesystems, particularly for

databases.

�Drawbacks of Union Filesystems
Union filesystems are a significant piece of the magic behind containers, but they are not

an ideal storage mechanism for databases:

•	 They're temporary. Any data written to the container’s private layer

is lost when removing the container. If I delete one of the containers

shown in Figure 7-1, I’m removing its union filesystem and the upper

and working layers along with it.

•	 The efficiency of union filesystems drops as the container's
private layer changes grow. Every modification made against a

file that’s part of the parent image adds to the work the host system

must perform to generate the working view seen by the container.

Getting the functional result involves reading files in the base

and intermediate directories, then computing the difference. The

overhead isn’t significant when the container remains close to the

original image. Applications that write considerable amounts of

data—like databases—add to the container’s upper layer, drawing

resources to calculate results.

•	 Layers in /var/lib/docker are limited to a single filesystem, by
default, the boot volume. Database capacity, performance, and

redundancy are limited to the capabilities of this one disk, with no

option to spread activity across multiple devices.

Chapter 7 Persistence

121

Adding an Oracle spin on this is like running an Oracle database using the host’s

boot volume for the ORACLE_HOME and data. Disk performance isn’t critical for the

database software—once binaries are cached in memory after startup, activity is limited.

The size of the database home remains reasonably stable over its lifetime, so capacity

isn’t a concern, either.

However, collocating data and archive log files on the same disk is a problem.

The database can only grow to the physical limits of one disk. Adding RAID to protect

database files applies to everything on the disk, whether or not that protection is

warranted. Fortunately, Oracle gives us control over the placement of those database

files, and mounts in Docker have a similar purpose for containers: mounted storage.

�Mount Concepts
Mounts expand container storage beyond the union filesystem. Think of them as

networked attached storage or shared filesystems (and containers can use network

storage, too). They’re separate objects, independent of containers and their lifecycles.

With mounts, containers can

•	 Use local storage on the host for persistence, better performance, and

increased capacity

•	 Share files with the host or other containers

•	 Avoid the overhead of union filesystems for volatile directories

•	 Access files and directories that aren’t part of their parent image

•	 Distribute database files across multiple disks, improving

performance, increasing capacity, and controlling redundancy

As you work with mounts, particularly with databases, you’ll see how they expose

differences between software, configuration, and data. The container in Figure 7-2 uses

mounts to separate relatively static components of an Oracle database from its data,

configuration, logs, and scripts. The advantages of such an approach are significant:

•	 The database software and its dependencies are built into an image.

Database software doesn’t change much, and an immutable image

is the most appropriate and efficient provisioning method. Any

database started from this image is guaranteed to have the same

Chapter 7 Persistence

122

version and patches baked in.3 The few changes that might appear

in these directories aren’t significant to the performance of the

container’s union filesystem.

•	 Files that combine to make up the database instance—data, temp,

control, redo, and archive log files—exist on dedicated storage, taking

advantage of high-performance and redundant disks. Configuration

files needed to start and operate a database—including the password,

parameter, oratab, and networking configurations—are separate from

software and data. This and the data are the most necessary parts of

an Oracle database. Cloning or copying these files is all that’s needed

to create an identical copy of the database. Thanks to Docker’s

portability, that copy can be on the same system, a colleague’s

machine running a different operating system, or the cloud.

•	 Saving diagnostic directories to disk makes them visible to processes

on the host and remains available even if the database container is

stopped. Log monitoring and rotation can run from the container

host rather than on the database.

•	 Using mounts for shared support scripts is more sensible than

adding them to the parent image. While these scripts might remain

unchanged, sharing them among containers over a mount is better.

Leaving them out of the image leads to smaller images that don’t

need updating to include modified scripts, nor do those changes

have to be propagated to running containers.

Oracle adopted a similar approach with Read-Only Homes, a feature introduced in

Oracle Database 18c. Once mixed into the software directories, configuration files, like

the password and parameter files and network configurations, are now stored separately

from the ORACLE_HOME. It makes cloning and restoring databases easier and increases the

distinction between the database instance and the database software.

3 But what about patching and upgrades? Rather than patching a container, it’s better to build a
new image for the patched version. The time and effort of patching is spent just once—during
image build—and every container started from that image benefits. In a container environment,
the patching process consists of stopping and removing the container running the old database
version, then starting a new container using a patched image and pointing it at the data on
a mount.

Chapter 7 Persistence

123

Read-Only Homes and mounts lend themselves to a more modular way of thinking

about database components. Look at Figure 7-2 and note how different types of files are

divided between the container’s union filesystem and mounts.

Notice that the relatively static content, including the database software home and

inventory directories, are in the container’s filesystem. Volatile content, like datafiles

and logs under Oracle’s diagnostic directory in /opt/oracle/diag, are separated onto

volumes. Configuration files under $ORACLE_HOME/dbs and $ORACLE_HOME/network/

admin are linked from their expected locations to a subdirectory under /opt/oracle/

oradata, too, which in turn saves them to the database volume.

Figure 7-2.  An Oracle database running in a container, with relatively static
content built into the image. The data, logs, and configuration files are separated
onto mounts dedicated to the database(s) running in the container. The scripts
directory is mounted to a filesystem shared with multiple containers

Chapter 7 Persistence

124

Mounts aren’t limited to data and configuration. The /scripts directory in this

example is mounted to a shared filesystem, giving every container access to a common

library of scripts and utilities.

�Volumes vs. Volumes
Before venturing any further, I want to clarify some terminology. In Docker, volume has

multiple meanings and is often used loosely to describe or reference any external storage

mounted to a container. Officially, a “volume” in Docker describes two things:

•	 A directory, defined in a Dockerfile, which may be associated with a

container host resource. The path of the volume is part of the image

metadata. You can assign persistent storage for the volume when

creating a new container. Oracle’s container repository images define

a volume at /opt/oracle/oradata.

•	 A Docker object used as a target for persisting container data.

A Docker Volume (the latter, object definition) can be a source for a volume directory

(the former, path in the image metadata). But “volume” is often used informally (and

incorrectly) to describe any type of storage mounted outside the container’s union

filesystem, whether or not it’s actually a Docker Volume.

If that’s not already confusing enough, the docker run command has a

-v or --volume option that maps storage to a container. So, we use the --volume option

to map Docker Volumes to volumes when creating containers!

Let’s break down the different methods of storage attachment to help navigate these

overlapping terms.

�Mount Types
The only time for attaching storage to containers is during initial creation, using options

in the docker run command. There’s no going back to edit or add it later, so it’s essential

to get it right! That means understanding the types of storage, their purpose, and their

advantages or limits. The two types used most with our databases are bind mounts and

volumes. Two additional types, tmpfs, and a special case, secrets, are less common.

Chapter 7 Persistence

125

�Bind Mount
You’ve already seen bind mounts used to persist data to the local filesystem. Bind

mounts map files and directories in containers to files and directories on hosts. They’re

arguably more familiar and comfortable for anyone new to Docker and containers, and

the method Oracle demonstrates in their container repository documentation. The

advantage of bind mounts is convenience and, ostensibly, visibility. Using the /opt/

oracle/oradata volume directory of an Oracle database container as an example, I can

navigate to the directory on my local machine to view and manage its contents:

~/oradata> du -sh ./*

1.5G ./ORA11G

2.0G ./ORA12C

2.9G ./ORA19C

4.8G ./ORA21C

I mapped multiple containers to separate subdirectories under $HOME/oradata and

can use standard Linux commands to view and manage those directories. Their space

consumption is readily visible using the du command.

Assigning bind mounts to containers during docker run is straightforward, and the

host directory doesn’t even have to exist! The directory is part of the host filesystem,4

and the same familiar Linux commands used elsewhere on the Docker host work in the

mapped directory. There are no extra commands or prerequisites needed to use bind

mounts. What’s not to love?

�Docker Volumes
Docker Volumes are similar to bind mounts in some regards: each persists data outside

the container’s union filesystem. The differences lie in capabilities and management.

While bind mounts are directories on the host filesystem, Docker Volumes are Docker

4 Windows systems running Windows Subsystem for Linux version 2 are a special case. Where the
container and volume are created—in the native, Windows OS, or in the Linux subsystem—affects
their visibility. More on this later in the chapter!

Chapter 7 Persistence

126

objects and must be created ahead of time,5 adding a step to container creation. The

default location for Docker Volumes is the host’s private /var/lib/docker area.

Using the /var/lib/docker for storage was one of the indictments against union

filesystems, though! If volumes use this location, we’re back in the same boat, putting

data in a limited destination! But that’s merely the default location. We have the

opportunity to create volumes on the local filesystem, just like bind mounts. Volumes

can also reference storage beyond the reach of binds, including Object Storage buckets

on cloud sources.

Docker Volumes are objects in the Docker environment, managed through the

Docker CLI, primarily the docker volume command. In some ways, Docker Volumes

parallel Oracle Automatic Storage Management (ASM)—both provide integrated,

application-aware storage and extended features and capabilities, but with the addition

of dedicated commands. A volume must exist before mapping it to a container, just

as DBAs need to create ASM disks before assigning them to a database. Listing 7-1

offers examples of creating a volume, listing volumes on the system, inspecting volume

metadata, and removing the volume.6 Docker Desktop provides volume management,

too. Figure 7-3 shows the volume management tab in Docker Desktop for the oradata

volume in this example.

Listing 7-1.  Examples of Docker commands for creating a volume, listing

volumes on a system, displaying volume metadata, and removing a volume

> docker volume create oradata

oradata

> docker volume ls

DRIVER VOLUME NAME

local oradata

5 Volumes created “on the fly” when calling docker run are called anonymous volumes. They’re
assigned uniquely generated names, making them more difficult to associate with specific
containers. For clarity, the examples in this book use named volumes.
6 Good news! Docker returns an error if you attempt to remove a volume that’s used by any
containers—whether or not they’re running. The same isn’t true of manually managed
directories!

Chapter 7 Persistence

127

> docker volume inspect oradata

[

 {

 "CreatedAt": "2022-01-01T12:00:00Z",

 "Driver": "local",

 "Labels": {},

 "Mountpoint": "/var/lib/docker/volumes/oradata/_data",

 "Name": "oradata",

 "Options": {},

 "Scope": "local"

 }

]

> docker volume rm oradata

oradata

Figure 7-3.  The Docker Desktop view for the oradata volume. Under the
“Volumes” view (1), I selected the oradata volume (2) to navigate to the volume
details page. Under the “Data” tab (3), I can see the volume’s files and directories

Chapter 7 Persistence

128

�tmpfs and Secrets
The remaining mount types see more limited and specific use.

The tmpfs type saves data to memory but never writes to the host filesystem. They’re

suitable for application or session data used while the container is running that doesn’t

require persistence. A tmpfs mount can share sensitive information with containers,

such as keys and passwords.

Runtime secrets7 are a special type of mount available in Podman, an alternate

container engine. Runtime secrets offer a better, safer way of sharing credentials with

containers. Absent runtime secrets, the options for passing passwords and other

sensitive information to containers may leave visible artifacts threat actors can leverage.

�Volumes vs. Bind Mounts
Docker Volumes are the preferred means for persisting data, per Docker, and enjoy

several advantages over bind mounts, including

•	 Improved performance for Docker Desktop users: Docker Volumes

are Docker-native objects and perform better on Docker Desktop

than bind mounts.

•	 Remote host and cloud integration: Docker Volumes can use

specialized, remote, and cloud storage unavailable to bind mounts.

•	 Increased security: Plugins and drivers allow volume encryption

and access control.

•	 Better ownership and permission management: Bind mounts in

Linux systems (including those running under Windows Subsystem

for Linux) require additional steps to fix directory ownership.

Volumes do not.

•	 Backup and sharing: Volumes are easier to back up and migrate and

safer to share across multiple containers.

7 There are two types of secrets: runtime and build. Build secrets are available in Docker via
Buildah.

Chapter 7 Persistence

129

For those new to containers, it’s easy to forget to manage the volume resources.

Deleting a container orphans its volumes. Over time, starting and dropping database

containers without cleaning up volumes adds space pressure on the host. It’s especially

true for volumes in the Docker’s private /var/lib/docker directory, which can easily

fly under the radar. Only privileged users can identify what’s using the space on Linux

systems. For Docker Desktop users, that space is hidden in a virtual machine.

What happens once volumes8 fill the disk depends on the environment. For Docker

Desktop users, when the Docker VM runs out of space it stops working or reports errors.

On Linux systems, users may observe anything from odd behavior to failures.

The attraction and apparent advantage of bind mounts was their accessibility from

the host. They’re regular directories, and discovering their space use is straightforward.

But volumes can be bind mounts, too! Listing 7-2 shows how I created a volume called

oradata_ORA11G, then listed and inspected its metadata. The volume create command

uses additional options, instructing Docker to bind the volume to a directory on my local

filesystem. In the end, I have a volume using a local directory, just like a bind mount!

Listing 7-2.  Creating a volume that binds to a directory on the local host

> docker volume create --opt type=none --opt o=bind --opt device=/oradata/

ORA11G oradata_ORA11G

oracle_data

> docker volume ls

DRIVER VOLUME NAME

local oradata_ORA11G

> docker volume inspect oradata_ORA11G

[

 {

 "Driver": "local",

 "Mountpoint": "/var/lib/docker/volumes/oradata_ORA11G/_data",

 "Name": "oradata_ORA11G",

 "Options": {

 "device": "/oradata/ORA11G",

 "o": "bind",

8 Images and build artifacts can grow to fill disk, too. See the section on space management
toward the end of this chapter.

Chapter 7 Persistence

130

 "type": "none"

 },

 "Scope": "local"

 }

]

Now I have the best of both worlds! My volume is visible through Docker’s CLI and

uses a directory on the host I can navigate with regular Linux commands!9 The next step

is using this volume to mount the oradata volume in a new container called ORA11G.

There’s a relationship between containers and external data. Docker has a better

understanding of that relationship through volumes. In a simple environment with one

or a few containers and volumes, it’s not that important. With growing complexity, it’s

more critical to understand what’s used and where.

When I first started running Oracle databases in containers, I used a directory

called oradata as the root for all my containers. Each container was bind-mounted to

its own subdirectory, and I managed everything manually. If I had a subdirectory called

TEST123 but no matching container, I knew it was safe to remove that subdirectory to

reclaim space.

It wasn’t long before I mounted multiple directories to a container or shared

directories among numerous containers. Keeping track grew more difficult, and the

ramifications of deleting a directory were more severe.

Oracle databases running in production face similar problems. They’ll likely use

more than one volume per container—one for the diagnostic directory, others for

configuration files and shared scripts, and one or more for data. Keeping track of these

associations is easier when Docker itself understands which volumes are used where.

Creating volumes is a little more trouble. It’s an extra step with some additional

complexity. Developing the habit early in your Docker experience makes it second

nature and puts the benefits of volumes within reach when container projects begin

demanding more from storage.

If you’re still not convinced, there are things bind mounts simply can’t do, for

instance, accessing cloud storage. Listing 7-3 shows an example of a Docker Volume

created for an Object Storage bucket in Oracle Cloud Infrastructure.

9 The mount point is still in /var/lib/docker—it’s Docker’s internal reference telling the container
where to find the volume.

Chapter 7 Persistence

131

Listing 7-3.  A volume backed by an Oracle Cloud Infrastructure Object

Storage bucket

docker volume inspect docker_bucket

[

 {

 "CreatedAt": "0001-01-01T00:00:00Z",

 "Driver": "s3fs:latest",

 "Mountpoint": "",

 "Name": "docker_bucket",

 "Options": {},

 "Scope": "local",

 "Status": {

 "args": [

 "-o", �"nomultipart,use_path_request_

style,url=https://ocid1.tenancy.oc1..

XXXXX.compat.objectstorage.XXXXX-1.

oraclecloud.com/,bucket=docker_bucket"

],

 "mounted": false

 }

 }

]

Oracle’s container registry documentation uses a bind mount (not a volume) for the

/opt/oracle/oradata directory. I suggest mounting two additional directories in your

Oracle containers for diagnostic and audit data. Both have the potential to grow over

time. When saved within the container’s union filesystem, they add to the /var/lib/

docker filesystem.

Docker recommends volumes over bind mounts due to their flexibility and capabilities.

Examples in the following chapters, therefore, use volumes unless otherwise noted.

�Mounting Storage
With an understanding of the different methods of mounting storage in containers, we’re

ready to dig into the syntax. The images in Oracle’s container repository use the /opt/

oracle/oradata directory as a volume. This directory is the default root for datafiles,

Chapter 7 Persistence

132

and I’ll use it as an example to illustrate options for mapping mounts to containers. (For

simplicity, I didn’t include diagnostic and audit directories in these initial examples.)

Mapping storage to containers occurs during container creation through options in

the docker run command. Oracle’s container repository documentation uses the legacy

-v (long form: --volume) option in its examples, but Docker recommends using --mount

instead. Generally speaking, both the --mount and -v options offer the same capabilities.10

The significant difference lies in the expressions for defining each component. -v uses an

ordered format, while --mount separates elements into named components.

Both methods share two things:

•	 A source directory or volume on the host

•	 A target path in the container

�Using -v or --volume
Ultimately, we’re mapping a target path in a container to write data to a source on the

host. For the -v or --volume option, they’re passed as an ordered pair separated by a

colon, source first, followed by the target. For bind mounts, the source is a directory:

docker run ... \

 -v /oradata/ORA19C:/opt/oracle/oradata \

...

docker run ... \

 --volume /oradata/ORA19C:/opt/oracle/oradata \

...

For volumes, the source is the volume name:

docker run ... \

 -v oradata_ORA19C:/opt/oracle/oradata \

...

docker run ... \

 --volume oradata_ORA19C:/opt/oracle/oradata \

...

10 The --mount flag allows added capabilities for some special cases.

Chapter 7 Persistence

133

�Using --mount
The --mount option separates elements into named, comma-delimited lists. The order of

elements doesn’t matter. The --mount equivalent for bind-mounting a directory is

docker run ... \

 --mount type=bind,source=/oradata/ORA19C,target=/opt/oracle/

oradata \

...

For attaching a volume:

docker run ... \

 --mount type=volume,target=/opt/oracle/oradata,source=oradata_

ORA19C \

...

Note the additional field, type, in the --mount syntax. It tells Docker whether

we’re using a volume or bind mount. The type is understood in the -v option based

on whether the source is a Docker Volume or a directory. The first command uses the

same order—source, then target—as the -v option. The second demonstrates that order

doesn’t matter by reversing the elements.

Another difference between -v and --mount is how Docker handles nonexistent

source directories. If the source directory in these examples, /oradata/ORA19C, isn’t

present on the host, -v creates the directory during docker run.11 The --mount option

doesn’t and fails with an error.

According to Docker’s research, the field names in --mount, source and target,

make the command more understandable,12 and they recommend the --mount option.

Oracle’s container registry uses the -v flag in their documentation. Whether you use -v

or --mount is up to you.

11 Linux users (including those running Windows Subsystem for Linux, or WSL) may discover
issues with directory ownership. See the section “Which Type of Volume Is Best” at the end of this
chapter for more details.
12 See: https://docs.docker.com/storage/bind-mounts/

Chapter 7 Persistence

https://docs.docker.com/storage/bind-mounts/

134

�Undefined Volumes
So far, I’ve covered mounting storage to a known volume in the container, the /opt/

oracle/oradata directory. That directory is defined as a volume in the Dockerfile, and

the image metadata understands it’s special. It’s a directory that can be associated with a

host resource, whether a bind mount or a Docker volume.13

What happens if I try to map a host directory to something that doesn’t exist in the

container? How will Docker handle a nonexistent volume? Docker creates the directory

in the container, as shown in Listing 7-4. It’s a convenient way of sharing files between

the Docker host and container!

Listing 7-4.  When mounting a local directory to a nonexistent path in the

container, Docker creates the directory in the container and maps it to the host!

> docker run --rm -it \

> -v $HOME:/not/a/real/directory alpine

/ # ls -l /not/a/real/directory/

total 8302776

drwx------ 7 sean.scott staff 224 Mar 26 11:44 Applications

drwx------@ 88 sean.scott staff 2816 Apr 8 16:57 Desktop

drwx------+ 49 sean.scott staff 1568 Mar 16 08:31 Documents

...

Docker created a new directory inside the container in this example. You can also

mount directories to existing paths in containers. If the container path includes files,

Docker hides the contents of the container’s target directory, projecting the source

directory contents on top. It’s a neat trick to replace an image’s contents for testing. For

example, I can mount an updated or patched copy of an ORACLE_HOME or scripts to a

container for testing purposes—without rebuilding the image!

A word of warning, though: Mounting existing, nonempty directories in containers

can have unexpected and undesirable results if the source directory lacks the files the

container needs. In the previous example, mounting an empty host directory to the

container’s ORACLE_HOME prevents Oracle from starting in the container.

13 Volumes don’t have to be attached to a host resource. If a mapping isn’t given, Docker puts the
files in the container’s private layer, as part of the union filesystem. In my experience, creating
an Oracle database container without a volume for /opt/oracle/oradata is a bad idea—database
creation is orders of magnitude slower!

Chapter 7 Persistence

135

�Entrypoint Directories
Images define startup commands, similar to the boot or initialization processes on

physical or virtual hosts. Startup commands run when creating and starting containers,

directing them to perform predefined work. (Review the Oracle database image startup

procedures in Chapters 5 and 6 if you need a refresher.) When an Oracle database

container starts, it calls a script to discover whether a database exists. If it finds one, it

starts the listener and database. If not, it creates a new database.

An entrypoint directory (not to be confused with container entrypoints, discussed

in Chapter 12) is a special type of empty directory. The startup command scans the

directory for additional scripts and processes them programmatically. The directory

location and how startup evaluates the contents are purely dependent on the startup

command or script.

The startup script in the Oracle database images we’re using looks for these scripts

in either /docker-entrypoint-initdb.d14 or /opt/oracle/scripts, where it expects to

find two subdirectories, setup and startup. It runs shell (.sh) and SQL (.sql) scripts in

the setup directory after initial database creation; those in the startup directory every

time the container starts, including after database creation.

Mounting a volume or local directory to the entrypoint directory, and populating it

with custom scripts, allows greater control of container databases. A caution is in order,

however. Since this directory exists outside the container, changes to its contents affect

future startups, potentially leading to unexpected results.

Listing 7-5 shows how to mount a local directory to the entrypoint directory. It

uses a single path that has existing setup and startup subdirectories. When Docker

mounts this directory to the container, these directories match those expected by the

startup script.

Listing 7-5.  Mounting an entrypoint directory to an Oracle database container

docker run ... \

 �--mount type=bind,source=$HOME/dbscripts,target=/docker-entrypoint-

initdb.d \

...

14 The /docker/entrypoint-initdb.d directory is used by multiple database vendors as an
entrypoint for custom scripts.

Chapter 7 Persistence

136

The example in Listing 7-6 mounts two separate directories, one for setup and

another for startup, to their respective targets.

Listing 7-6.  Mounting separate startup and setup entrypoints to a container

docker run ... \

 �--mount type=bind,source=$HOME/dbstartup,target=/opt/oracle/scripts/

startup \

 �--mount type=bind,source=$HOME/dbsetup,target=/opt/oracle/

scripts/setup \

...

When multiple scripts exist in these directories, Oracle recommends adding a

numerical prefix to ensure the order of execution, for example:

01_first_step.sql

02_second_step.sh

03_last_step.sql

�Manage Space
To see what Docker objects use space on a system, run the docker system df command:

> docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 29 2 157.3GB 143.7GB (91%)

Containers 2 2 540.6MB 0B (0%)

Local Volumes 8 0 15.42GB 15.42GB (100%)

Build Cache 138 0 41.05MB 41.05MB

The output reports a summary of the object types using space in Docker’s private,

/var/lib/docker directory. Images are just that—images built or downloaded on this

system. The Containers line displays the space used by the container’s upper layers. The

last line, Build Cache, lists the size of content cached by build activity.

The third line reports eight Local Volumes that take up 15GB of space. None are

active. Remember that local volumes are those created without drivers and save data in

Docker’s private, /var/lib/docker directory. This does not include volumes associated

to bind mounts on the system, created with an --opt o=bind or similar option.

Chapter 7 Persistence

137

�Prune Volumes
It’s easy to confuse local volumes with volumes that use a local driver, as shown in the

output of docker volume ls:

> docker volume ls

DRIVER VOLUME NAME

local 2ac7d7486083a10a4ed313699e06eba017e63ba

local 4efabdab067033c973d00e73de9a05121e0cb70

local 9fc0fdc81eabd71a07f28a8d79fd2c1a5606747

local 84c91dc6a3f0cb354243cb9ee2ca5a79933ca67

local ORA216_data

local ORA216_diag

local ORA216_audit

local ORA1915_data

local ORA1915_diag

local ORA1915_audit

local oradata_ORCL1_data

local oradata_ORCL1_diag

local oradata_ORCL1_audit

local b26d713b83be8ac8f549f825d19cc2b6e6f19a6

All the volumes use a local driver. The six beginning with “ORA” are bind-mounted

to directories on the host. I can confirm this by inspecting the volumes and looking for

the presence of a device. The output for the ORA216_data volume shows the device in the

Options section:

> docker volume inspect ORA216_data

[

 {

 "Driver": "local",

 "Mountpoint": "/var/lib/docker/volumes/ORA216_data /_data",

 "Name": "ORA216_data",

 "Options": {

 "device": "/oradata/ORA216_data",

 "o": "bind",

 "type": "none"

 },

Chapter 7 Persistence

138

 "Scope": "local"

 }

]

The Options section from the oradata_ORCL1_data volume is empty:

> docker volume inspect oradata_ORCL1_data

[

 {

 "Driver": "local",

 "Mountpoint": "/var/lib/docker/volumes/oradata_ORCL1_data/_data",

 "Name": "oradata_ORCL1_data",

 "Options": {},

 "Scope": "local"

 }

]

~

I know that all eight local volumes are orphaned based on the zero under the

“ACTIVE” column. Since they’re unused by any containers, it’s safe to remove them using

the docker volume prune command:

> docker volume prune

WARNING! This will remove all local volumes not used by at least one

container.

Are you sure you want to continue? [y/N] y

Deleted Volumes:

84c91dc6a3f0cb354243cb9ee2ca5a79933ca67

oradata_ORCL1_data

oradata_ORCL1_diag

4efabdab067033c973d00e73de9a05121e0cb70

9fc0fdc81eabd71a07f28a8d79fd2c1a5606747

oradata_ORCL1_audit

b26d713b83be8ac8f549f825d19cc2b6e6f19a6

2ac7d7486083a10a4ed313699e06eba017e63ba

It’s reassuring knowing Docker won’t remove volumes used by containers (whether

running or stopped)!

Chapter 7 Persistence

139

After running the prune command, I checked the space use a second time:

> docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 29 2 157.3GB 143.7GB (91%)

Containers 2 2 540.6MB 0B (0%)

Local Volumes 0 0 0B 0B

Build Cache 138 0 41.05MB 41.05MB

Docker removed the inactive volumes and reclaimed the space. docker volume ls

confirms the prune didn’t affect the bind-mounted volumes on the host:

> docker volume ls

DRIVER VOLUME NAME

local ORA216_data

local ORA216_diag

local ORA216_audit

local ORA1915_data

local ORA1915_diag

local ORA1915_audit

�Prune Images
There are prune options for images, too:

docker image prune

The image prune command removes “dangling” images—those unused by any

container and not tagged with a name:

> docker image prune

WARNING! This will remove all dangling images.

Are you sure you want to continue? [y/N] y

Total reclaimed space: 0B

Dangling images typically result from rebuilding an existing image and using the

same tag. If any containers use the old image, it’s untagged by Docker. This abbreviated

output of docker ps shows two containers, one using the old (untagged) image

identified only by its Image ID, the other using the newer, tagged version:

Chapter 7 Persistence

140

> docker ps

NAMES IMAGE

ORA19c_old f53962475832

ORA19c_new oracle/database:19.3.0-ee

In the output of docker images, the dangling image has no repository or tag:

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

oracle/database 19.3.0-ee 94d27a821d52 4 weeks ago 6.67GB

<none> <none> f53962475832 4 months ago 6.53GB

docker image prune won’t remove the dangling image—provided any containers

still use it. After removing all dependencies on a dangling image, docker image prune

deletes them.

�Prune Containers
Pruning images is relatively safe. However, you should use docker container prune

with caution! Pruning containers removes all stopped containers from the system:

> docker container prune

WARNING! This will remove all stopped containers.

Are you sure you want to continue? [y/N] y

Total reclaimed space: 0B

Stopped containers aren’t necessarily obsolete! Be careful with this command!

�Prune the System
If you really want to clean up everything on the system in a single command, there’s

docker system prune. It removes stopped containers, dangling images, unused

networks, and build cache:

> docker system prune

WARNING! This will remove:

 - all stopped containers

 - all networks not used by at least one container

Chapter 7 Persistence

141

 - all dangling images

 - all dangling build cache

Are you sure you want to continue? [y/N] y

Total reclaimed space: 0B

The same cautions raised for docker container prune apply to the system prune

command.

�Which Type of Volume Is Best?
You’ve seen several methods for saving and preserving database contents outside

containers, but which is best? There are several criteria affecting container storage

choices:

•	 Access and navigation: Is container data saved to the volume visible

to users on the local operating system?

•	 Docker managed: Does Docker manage the storage as an object,

associate it with containers, and report whether the volume is used?

•	 Directory creation: Will Docker automatically create nonexistent

directory paths on the host?

•	 Directory ownership: For automatically created directories, is

ownership set correctly?

•	 Backup and save data: What mechanisms are available for copying

and saving data?

•	 Consistent across platforms: Does the solution behave identically

on all platforms (Windows, Mac, and Linux)?

Let’s examine how each storage option handles these scenarios. I want to focus on

ramifications for Oracle databases and users, including the steps necessary to create the

container and supporting objects and ease of backing up or copying the contents of a

database’s oradata volume.

Chapter 7 Persistence

142

�No Volume
Containers created with no volume store data in the upper layers of their union

filesystems. Container creation is easy. There are no concerns related to directory

creation or ownership, and it works the same on every OS. However, users lack practical

access to the database’s oradata volume.

Containers run with no volume options keep data in Docker’s private storage. As

databases grow, adding space isn’t a simple task, and it’s a single bucket that may not

meet performance requirements. The space is also shared by all containers on the

host, disqualifying it as a method for anything beyond local implementations and

environments with low expectations for I/O performance.

�Bind Mounts
Bind mounts improve things considerably by mapping a container directory to storage

on the host. Files saved to the host OS are visible to users, and we can back up and copy

the contents of the oradata volume. However, bind mounting fails four of the test criteria

outlined earlier.

�Container Association and Orphans

Bind-mounting directories doesn’t explicitly associate them with a container. Running

docker container inspect shows the source and target of the bind mount, as in this

example formatted to show only the mount information:

> docker inspect -f "{{ .Mounts }}" ORCL

[{bind /oradata/ORCL /opt/oracle/oradata true rprivate}]

However, there’s no good method for identifying whether /oradata/ORCL is used by

any containers, short of inspecting all containers on the system. Bind mounting makes it

easy to lose track of orphaned directories.

�Mounting Method

The mounting method affects whether Docker automatically creates nonexistent

directories. When I use the --volume or -v option, Docker creates the directory. Here,

I’m creating an Alpine container, mounting a directory called $HOME/test_volume that

doesn’t already exist, and listing the contents:

Chapter 7 Persistence

143

> docker run \

 --volume $HOME/test_volume:/test_volume \

 alpine ls -l /test_volume

total 0

> ls -l $HOME

drwxr-xr-x 2 root root 4096 Sep 18 19:36 test_volume

However, if I run the same command, this time using the --mount option for a

different, nonexistent directory, $HOME/test_mount, it fails:

> docker run \

 --mount type=bind,source=$HOME/test_mount,target=/test_mount \

 alpine ls -l /test_mount

docker: Error response from daemon: invalid mount config for type "bind":

bind source path does not exist: /home/sean/test_mount.

See 'docker run --help'.

�Directory Ownership

The preceding --volume example ran on a Linux machine and created the directory, $HOME/

test_volume, for me. But look at the contents of my $HOME folder after running the container:

> ls -l $HOME

drwxrwxr-x 32 sean sean 4096 Aug 20 17:06 docker-images

drwxr-xr-x 2 root root 4096 Sep 18 19:36 test_volume

Notice anything odd?

The newly created directory, test_volume, is owned by root.

I called docker run as a non-root user without using sudo. How, then, did I manage

to create the new directory owned by root in my home directory?

Docker creates nonexistent directories within its daemon, and they inherit their

ownership from the user running the daemon process. On Linux systems, the daemon

runs as the root user. root, therefore, owns the newly created directories.

This creates problems for Oracle database containers on Linux systems and those

initiated from a Linux command prompt in Windows Subsystem for Linux. Docker

creates the directory as root. Oracle processes running within the container can’t write

to the directory, and if that happens to be the mount point for /opt/oracle/oradata,

the Database Configuration Assistant fails!

Chapter 7 Persistence

144

This isn’t an issue for Mac or Windows, provided you issue the docker run

command within a session running from the native Windows operating system. In these

cases, the daemon runs as the local user, and the Oracle processes in the container have

permission to add files in the newly created directories. Starting containers from Docker

Desktop circumvents this issue, too. The “Run a new container” dialog in Figure 7-4

lets users create a mount, assigning a host directory to a container target. (Despite how

it may appear, defining a Host path under the Volumes section of the dialog does not

create a Docker Volume.)

Figure 7-4.  The Docker Desktop “Run a new container” dialog allows users to
assign a local directory to a target in the new container

Chapter 7 Persistence

145

Users in Linux and WSL environments can work around this by precreating the

directories and setting directory ownership:

sudo mkdir -p /oradata/ORCL

sudo chown oracle:oinstall /oradata/ORCL

Setting ownership to oracle:oinstall means the user and group must exist, with

the same user and group ID specified in containers by the Linux preinstall RPMs:

sudo groupadd -g 54321 oinstall

sudo useradd -u 54321 -g oinstall

Alternately, you can assign the directory ownership to the Docker process ID, 1000:

sudo chown 1000 /oradata/ORCL

Bind mounts are a good, but not great, solution for database storage, mainly if you’re

using a Mac or running everything from Docker Desktop. Users working on multiple

operating systems or environments will likely encounter limitations and peculiar or

annoying behaviors.

�Local Volumes
With local volumes, users graduate onto objects fully managed by Docker. Whether

in Docker Desktop or at the command line, containers and their volumes are visibly

associated, making the relationships more manageable.

Recall from the section on volume pruning that local volumes are created without

any type and show nothing in the Options output of docker volume inspect.

Local volumes are Docker objects and behave consistently on all operating systems.

Docker provides tools for saving directories and files on volumes and sharing volume

contents among containers.

However, since local volumes save data inside Docker’s private directory, they suffer

many of the same shortcomings as saving data with no mount or volume. Data in local

volumes isn’t visible from the local operating system, and they’re subject to the same

limitations to performance and space.

Chapter 7 Persistence

146

�Bind-Mounted Volumes
Bind-mounting volumes combines the best of bind mounts with the advantages

of Docker-managed objects. Files saved to the host filesystem are visible to users

and processes—including backups. Docker Desktop or the Docker CLI manages

relationships between containers and bind-mounted volumes, as with local volumes.

Unfortunately, Docker Desktop doesn’t currently offer an option for creating volumes

with bind mounts, forcing us to perform at least this step from the command line.

Let’s compare behaviors between regular bind mounts and volumes that use

bind mounts.

�Directory Creation

I’ll first create a bind mount using the directory $HOME/test_bind:

> docker volume create --opt type=none --opt o=bind \

 --opt device=$HOME/test_bind test_bind

test_bind

So far, so good. Now I try running a test similar to the one I performed before, this

time mapping a directory in the container to the volume:

> docker run \

> --volume test_bind:/test_bind \

> alpine ls -l /test_bind

docker: Error response from daemon: error while mounting volume '/docker/

volumes/test_bind/_data': failed to mount local volume: mount /home/docker/

test_bind:/docker/volumes/test_bind/_data, flags: 0x1000: no such file or

directory.

ERRO[0000] error waiting for container: context canceled

Creating the bind-mounted volume didn’t make the directory! Let’s take care of that

and try again:

> mkdir -p $HOME/test_bind

> docker run \

> --volume test_bind:/test_bind \

> alpine ls -l /test_bind

total 0

Chapter 7 Persistence

147

This time it works! I created the directory as the local user on the system, meaning

it’s not owned by root. But how will this affect our database containers?

�Directory Ownership and Permissions

Remember in the earlier bind mount example that Oracle database processes running

inside containers on Linux systems needed specific permissions on the host directory.

Else, the Database Configuration Assistant fails with “permission denied” errors when

creating a database. I’ll test this, creating a new directory and volume for an Oracle

database container:

> docker volume create --opt type=none --opt o=bind \

> --opt device=$HOME/oracle_bind oracle_bind

oracle_bind

> mkdir -p $HOME/oracle_bind

There’s nothing unusual about the ownership on the new directory:

> ls -l $HOME

total 7386868

drwxrwxr-x 32 sean sean 4096 Aug 20 17:06 docker-images

drwxr-xr-x 3 sean sean 21 Sep 18 22:11 oracle_bind

Without doing anything special with the newly created $HOME/oracle_bind

directory, I start a container, mapping the oradata directory to the volume:

> docker run -d --name bind_test \

> -v oracle_bind:/opt/oracle/oradata \

> oracle/database:19.3.0-ee

d2b25b1f661d7f243984fdcbd77177beb14dc61be9525d421426e0d609917f31

However, once DBCA starts in the container, something unusual happens to this

directory:

> ls -l $HOME

total 7386868

drwxrwxr-x 32 sean sean 4096 Aug 20 17:06 docker-images

drwxr-xr-x 4 oracle 54322 61 Sep 18 22:26 oracle_bind

Chapter 7 Persistence

148

Docker changed the directory ownership! While the Docker daemon runs as root,

processes inside the container propagate the expected ownership to the daemon, which

makes the necessary changes on the container host.

�Mounting Method

With regular bind mounts, the --volume and --mount options treated nonexistent

directories differently. Because the directories used by bind-mounted volumes must be

precreated, the --volume and --mount options are both valid.

Despite the additional effort needed to create the volume and source directory

before running containers, bind-mounted volumes are the best option for databases.

Data on the volumes are accessible from the OS, and we can back up the data using

either operating system commands or Docker’s volume management tools. We see

consistent behavior and operation across platforms and don’t need to worry about

setting permissions or ownership!

�Summary
Understanding storage is arguably among the most important concepts when

implementing database infrastructure in containers. In this chapter, you discovered the

advantages and limitations of container union filesystems and how externally mounted

storage extends capabilities and improves containers’ performance.

You learned the differences between bind mounts and volumes. You now

understand the multiple meanings of volume in Docker circles, as a target directory in an

image, an object for storing data, and how it’s inaccurately used to reference any storage

attached to a container. Finally, you recognize the differences and benefits of different

storage methods and know how to create volumes and mount storage to new containers.

Exploring container storage offered a glimpse into how well-planned images lead to

highly modular, efficient, and portable implementations. In the next chapter, you’ll learn

how to set up communication between hosts and containers. It’s the second half of the

puzzle, joining host resources to containers.

Chapter 7 Persistence

149

CHAPTER 8

Basic Networking
In the early days of Unix, compute resources were expensive. Getting the most from

these costly systems meant finding ways to support many simultaneous connections.

Users from different companies and those working with sensitive information needed

assurance their processes and data were safe. This was a driver behind the Unix Time

Sharing System, or UTS, and provides session isolation and security, the foundation of

modern container implementations.

Insulating and securing containers is the backbone of modern high-density

infrastructure. Service-based and cloud-native computing concentrates the work

of dozens or hundreds of individual systems onto individual servers. Each remains

unaware they’re sharing resources. But what happens when you want containers to

interact? Enterprises aren’t solitary systems cut off from the world, so there must be a

mechanism for describing and managing access.

Container networking builds on “normal” networking concepts. The container

boundary—where packets cross from inside to outside the container—is a network

interface. It follows the same rules, and we can use the same techniques to control and

manipulate traffic. Virtual networks handle communication between a container and

its host, other local containers, and remote resources (including containers on different

machines) in container environments. You’ll see that creating network resources is very

similar to what you learned about defining volumes in the last chapter. There’s a quick,

easy, but limited way of doing things or a more involved method that offers greater

flexibility.

If you’re running a few database containers on a local system and only plan to

connect with command-line or database clients like SQL Developer, the quick and easy

way is probably all you need. Orchestrations and shared environments benefit from

more structured approaches, which deliver more advanced networking capabilities

like DNS. The extra effort spent planning network topologies of more complex,

multicontainer projects (think RAC, GoldenGate, and Data Guard) is well worth the

convenience and time savings once they’re in use.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_8

https://doi.org/10.1007/978-1-4842-9033-0_8

150

With that in mind, this chapter covers the quick, easy method—port publishing—

and demonstrates how to connect clients to a container database. The next chapter digs

into the more formal subject of container networks and their advantages, some practical

examples for creating and managing different network resources, and adding containers

to networks.

�Port Publishing
Port publishing is the simplest way of establishing communication with containers. It’s

perfectly suitable for local desktop systems but lacks container networks’ scalability,

flexibility, and controls. However, if all you want is to connect to an Oracle database

on your desktop or laptop with a client like SQL Developer, the extra time and effort of

creating a dedicated network are academic. Port publishing is all you need.

For Oracle databases, we’re usually interested in port 1521, the default for SQL*Net
traffic to and from the database listener. I’ll use port 1521 as an example while
introducing port mapping (and container networking) in the following examples.

Port publishing binds a port on the local host to a port on the container. For a

container running an Oracle database, traffic to and from the container’s port 1521 is

redirected to a port on the host and vice versa. I’ll use port 51521 as the host port (for

reasons I’ll get to shortly). So, packets leaving the container on port 1521 are mapped

and visible at port 51521 on the host. Anything we want to connect to the listener inside

the container should go to the host’s port 51521, as shown in Figure 8-1.

Chapter 8 Basic Networking

151

Figure 8-1.  Traffic from port 1521 in the container is redirected over port 51521 on
the host’s network interface

The docker run command’s -p (long-form --publish) option defines mappings.

The syntax, shown in Listing 8-1, follows the same pattern as mapping volumes in the

previous chapter:

•	 The local resource first

•	 Then the container resource, separated by a colon

Listing 8-1.  The docker run syntax for publishing ports with the -p and

--publish flags

docker run --name <CONTAINER NAME> \

 -p <HOST PORT>:<CONTAINER PORT> \

...

 <IMAGE NAME>

docker run --name <CONTAINER NAME> \

 --publish <HOST PORT>:<CONTAINER PORT> \

...

 <IMAGE NAME>

Chapter 8 Basic Networking

152

Just as you map multiple volumes by using more than one -v flag, create multiple

port mappings with separate -p (or --publish) declarations:

docker run --name <CONTAINER NAME> \

 -p <HOST PORT 1>:<CONTAINER PORT 1> \

 -p <HOST PORT 2>:<CONTAINER PORT 2> \

...

 <IMAGE NAME>

Here, I’m mapping port 51521 on the host to port 1521 in the container while

creating a new Oracle 19c database:

docker run --name ORCL \

 -p 51521:1521 \

...

 oracle/database:19.3.0-ee

When the traffic is local—where the client and container are both on the same host—

the port is all that’s necessary. There’s no need for hostnames (or anything other than

localhost or its equivalent). The container “sees” incoming traffic arrive at port 1521.

Clients typically connecting to the database on port 1521 will use port 51521 on localhost

instead.

�Publishing Container Ports
The only opportunity for publishing ports is during container creation. You can’t add a

port mapping to an existing container later.1

Following the advice from the previous chapter, I’ll create a volume to hold my

database files. Then, I’ll start a container, assigning a name, mounting the volume, and

mapping container port 1521 to host port 51521. Listing 8-2 shows these commands and

their results.

1 I’ll show you a trick to get around that a bit later!

Chapter 8 Basic Networking

153

Listing 8-2.  Creating the new volume and container we’ll use to demonstrate

client connectivity

> docker volume create \

> --opt type=none \

> --opt o=bind \

> --opt device=/Users/sean.scott/oradata/ORCL \

> oradata_ORCL

oradata_ORCL

> docker run -d \

> --name ORCL \

> --mount type=volume,target=/opt/oracle/oradata,source=oradata_ORCL \

> -p 51521:1521 \

> oracle/database:19.3.0-ee

f502c53c3c272463f6b40860784c95f0c2f0cbf9893e503a7cce83bf2ccd35e6

After starting the container, I see the port mapping listed in the output of docker ps:

NAMES IMAGE PORTS STATUS

ORCL oracle/database:19.3.0-ee 0.0.0.0:51521->1521/tcp Up 6 minutes

(healthy)

Publishing ports does more than just redirect traffic. The mapping, 0.0.0.0:51521-

>1521/tcp, acts as a firewall rule that opens port 1521 on the container and allows traffic

to pass. Unpublished ports aren’t accessible. Since you can’t go back and add ports to

existing containers, it reinforces the importance of anticipating networking needs during

container creation!

�Limits of Container Port Mapping
My container is running and listening for database traffic on host port 51521. Let’s see

what happens when I try adding a second container using the same port mapping:

> docker run -d \

> --name ORCL1 \

> -p 51521:1521 \

> oracle/database:19.3.0-ee

Chapter 8 Basic Networking

154

8ab4c0a09137cebcd99fda61a20942aa4c45350070d5af8d69f3dc2605b6ae9d

docker: Error response from daemon: driver failed programming external

connectivity on endpoint ORCL1: Bind for 0.0.0.0:51521 failed: port is

already allocated.

Port 51521 is already in use! Starting the second container failed because container-

port combinations must use unique, unassigned ports on the host.

The preceding output shows the container was created (as evidenced by its hash,

the string beginning 8ab4… reported before the error message). Listing containers on my

system, using docker ps, confirms this and shows no mapped ports:

NAMES IMAGE PORTS STATUS

ORCL1 oracle/database:19.3.0-ee Created

ORCL oracle/database:19.3.0-ee 0.0.0.0:51521->1521/tcp Up 23 minutes

(healthy)

Before rerunning a corrected docker run command for this container, I need to

remove it.

Keeping track of ports isn’t difficult in small environments, like those running on

laptops for experimentation. As the number of containers (or the number of ports

mapped to the host) grows, port mapping becomes impractical. Ports are a finite

resource, and, eventually, capacity on the host runs out.

Tracking what port goes with what container is more complicated, too. When

assigning host ports, I typically prefix the container’s port with a digit, for example, using

ports 51521 and 55500 for one container, 61521 and 65500 in the next, and so on.

Ports below 1024 are the well-known ports, usually assigned to standard system or

root-owned processes. Mapping container ports to anything below 1024 risks conflict

with these registered processes and can prevent host services (or the system) from

running normally.

Assigning ports in the 1024 to 49151 range isn’t always safe, either. These are the

registered ports, and while not strictly controlled, registration reduces the chances that

vendors duplicate one another. Oracle networking on port 1521 is an example. Other

vendors and services could use it, but it would create conflicts on systems also running

an Oracle database listener.

Dynamic or nonreserved ports in the 49152 to 65535 range aren’t assigned, controlled,

or registered and are generally considered safe for private or temporary use. It’s why I

chose port 51521 earlier. Ideally, only use ports in the dynamic range for port publication.

Chapter 8 Basic Networking

155

�Automatic Port Publication
Rather than defining individual, explicit host-to-container port mappings, there’s an

option to expose ports in the container and let Docker map them to unassigned ports in

the dynamic range by using the -P (or --publish-all) option of docker run.

The help menu for docker run states the --publish-all flag will “Publish all exposed

ports to random ports.” We haven’t covered Dockerfiles yet, but they include an option

that exposes ports in the image metadata. Running docker inspect against an older

version of an Oracle database container image shows it exposes ports 1521 and 5500:

> docker inspect -f '{{.Config.ExposedPorts}}' oracle/database:19.3.0-ee

map[1521/tcp:{} 5500/tcp:{}]

Running that image with the -P flag will randomly assign the exposed ports to

available ports in the dynamic on the host:

> docker run -d \

 --name TEST \

 -P oracle/database:19.3.0-ee

639c6770dacd207f1d9b0a5fa301c9a9d1dc6dac420047ca6c0a41598b9a0203

After starting the container, use docker ps to reveal the port assignments Docker

made for the image’s exposed ports:

> docker ps -a \

 --format "table {{.Names}}\t{{.Ports}}"

NAMES PORTS

TEST 0.0.0.0:32771->1521/tcp, 0.0.0.0:32770->5500/tcp

I noted that this was from an older image. The -P option only works when ports

are explicitly exposed in the image, as in images created from older versions of Oracle’s

container repository scripts. Somewhere along the line, they removed this from

the images:

> docker inspect -f '{{.Config.ExposedPorts}}' oracle/database:19.3.0-ee

map[]

The -P option has nothing to map if ports aren’t exposed in the image.

Chapter 8 Basic Networking

156

Explicitly exposing ports in the image isn’t necessary, though. The capability is

available via docker run’s --expose flag. It does at the container level what the EXPOSE

option in a Dockerfile does for an image and offers more flexibility to define a list of

exposed ports at runtime rather than fixing them into the image. Passing a list or range

of ports to --expose tells Docker what ports to open on the container. When given

alongside the -P option, Docker assigns ports as if they were exposed in the image.

Listing 8-3 shows how --expose and -P work together with a current Oracle database

image, opening and assigning ports 1521 and 5500.

Listing 8-3.  Running an image using --expose and -P to open and publish ports

1521 and 5500, even though no ports are defined in the image

> docker run -d \

 --name TEST \

 --expose 1521 \

 --expose 5500 \

 -P oracle/database:19.3.0-ee

0d34bb1d59f85b67b90f19db16d0ab09b91ee000c81187f8847c4fe2f6c186eb

> docker ps -a \

 --format "table {{.Names}}\t{{.Ports}}"

NAMES PORTS

TEST 0.0.0.0:49157->1521/tcp, 0.0.0.0:49156->5500/tcp

Now that you understand how to open and map ports from the container to the host,

let’s put the knowledge to practical use and connect clients to the database inside the

container!

�Connect to a Database in a Container
Whether adding a new database connection in SQL Developer, building an EZConnect

string, or creating a tnsnames.ora entry, we need the same basic information:

•	 A hostname: Local clients will use the host localhost or IP address

0.0.0.0.

Chapter 8 Basic Networking

157

•	 The listener port: For these examples, I’ll switch back to the ORCL

container I created at the beginning of the preceding section. If you

recall, I mapped the container’s listener port, 1521, to port 51521 on

my host.

•	 The database service or SID: The default service names created by

the Oracle 19c database image I ran earlier are ORCLCDB (for the

CDB or container database—not to be confused with the database

running in the Docker container!) and ORCLPDB1 (for the PDB, or

pluggable database).

•	 A username and password: For demonstration purposes, I changed

the system user’s password to oracle.

�Set Up Connections in SQL Developer
SQL Developer is Oracle’s versatile, popular, and easy-to-use graphical development

utility. It’s free to download from www.oracle.com/tools/downloads/sqldev-

downloads.html. There are dozens of other development tools compatible with Oracle

databases, but the procedure for adding a new connection is similar. They all need the

same four pieces of information, and what’s shown here is adaptable to other products.

After opening SQL Developer, navigate to the connections panel in the upper left and

click the green plus symbol to open the New Connection dialog shown in Figure 8-2.

Chapter 8 Basic Networking

https://www.oracle.com/tools/downloads/sqldev-downloads.html
https://www.oracle.com/tools/downloads/sqldev-downloads.html

158

Figure 8-2.  The Oracle SQL Developer New Connection dialog

Give the new connection a name and enter the username and password, as shown in

Figure 8-3. Optionally, mark the “Save Password” checkbox.

Chapter 8 Basic Networking

159

Figure 8-3.  Enter a connection name and the username and password of a
database user

In the Details tab, leave the connection type set to Basic and Hostname at the default,

localhost. Change the Port to the mapped host port assigned to the container. I’m using

51521 on my system, but yours may be different, notably if you opted to use the -P option

to let Docker assign ports automatically.

Next, check the radio button for “Service name” and enter the service name of the

database running in the container. In Figure 8-4, I provided the default CDB service,

ORCLCDB. Finally, click the “Test” button at the bottom of the dialog and confirm that

the “Status” displayed at the lower left reports “Success.”

Chapter 8 Basic Networking

160

Figure 8-4.  Change the port and service name, then test the connection

Finally, click the “Save” button at the bottom of the dialog to save the connection

settings.

Congratulations! You created a connection to a database in a Docker container!

Feel free to take a few minutes to explore the environment or connect to a user in the

pluggable database, too!

�EZConnect
Oracle’s EZConnect, or Easy Connect, is a simplified method of connecting to Oracle

databases without performing service lookups in traditional tnsnames.ora files. The

basic syntax is

username/password@//host:port/service_name

Plugging in the same information used to build the SQL Developer connection

earlier, I get a working connection string:

system/oracle@//localhost:51521/ORCLCDB

Chapter 8 Basic Networking

161

I can use this string to connect to the database from command-line clients

like Oracle’s SQLcl, a command-line tool similar to SQL*Plus, but with many more

developer-friendly features. It’s free to download from www.oracle.com/tools/

downloads/sqlcl-downloads.html.

This connection string works for any client in my local environment because it tells

the client to connect to a database listening on port 51521 on the localhost. It will not

work inside the container itself. Why not?

The listener runs on port 1521 in the container and doesn’t know about the outside

world. Nor does it see port mappings added by Docker between container and host.

Inside the container, I connect to the database “normally” using an EZConnect string

that includes the host, port, and service. EZConnect assumes port 1521, meaning I can

use just the host and service, too:

SQL> conn system/oracle@//localhost:1521/ORCLCDB

Connected.

SQL> conn system/oracle@//localhost/ORCLCDB

Connected.

Connections from the container host (in this case, my laptop) and clients inside

the container (here, SQL*Plus running in container ORCL) use localhost as the host.

localhost is an alias for “my local host,” but it doesn’t represent the same hosts in the

container and host!

To illustrate this, I ran the Linux hostname command in the container in Listing 8-4,

exited the container environment, and reran it on the host.

Listing 8-4.  The localhost references different hosts inside and outside the

container environment

[oracle@f502c53c3c27 ~]$ hostname

f502c53c3c27

[oracle@f502c53c3c27 ~]$ exit

exit

> hostname

SSCOTT-C02QP2DJG8WN

Chapter 8 Basic Networking

https://www.oracle.com/tools/downloads/sqlcl-downloads.html
https://www.oracle.com/tools/downloads/sqlcl-downloads.html

162

I’ve confused this myself and once spent more time than I’d like to admit trying to

reason why an EZConnect string that worked outside the container, using a translated

port, didn’t work inside the container from SQL*Plus! When setting up connections, be

careful not to lose track of which localhost is which!

�Creating tnsnames.ora Configurations
As you might have guessed from the two previous sections, setting up a TNS connection

requires applying the proper host, port, and service name to connection aliases. Adding

an alias for a container database to a tnsnames.ora on the local machine uses the

hostname and port mapped to the container. Listing 8-5 provides an example of entries

in a tnsnames.ora file, defining a connection to the ORCLPDB1 service in my ORCL

container. Remember, port 51521 on my host maps to the database listener’s port 1521.

Listing 8-5.  The tnsnames.ora entry for connecting from the host to the

ORCLPDB1 service in a database inside a container. Using the port opened and

mapped to the container directs traffic to the database listener

ORCLPDB1 =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 51521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = ORCLPDB1)

)

)

It looks very similar to the tnsnames.ora file in the container, located under

$ORACLE_HOME/network/admin and shown in Listing 8-6. The only differences are the

host and port. Remember, the database and software inside the container aren’t affected

by (or even aware of) the change taking place at the container-host network interface.

Chapter 8 Basic Networking

163

Listing 8-6.  The tnsnames.ora entry for the ORCLPDB1 service inside the

database container doesn’t encounter any port change because its traffic is

entirely internal to the container

ORCLPDB1=

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 0.0.0.0)(PORT = 1521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = ORCLPDB1)

)

)

�Connect to Containers on Remote Hosts
These examples demonstrate connections between the container and client on the same

host. That’s not always the case. I have a local lab environment dedicated to container

builds and operate additional containers on various cloud computing resources.

Accessing Oracle databases on remote hosts, whether another machine inside your

network or a virtual host somewhere in the cloud, is nearly identical to what you’ve seen.

The single change to the connection setup is the hostname. Replace localhost with

the name or IP address of the remote resource. For example, the hostname of my local

Docker lab is lab01. Connections to containers on the remote machine reference the

hostname, but the port remains the same. Provided my network allows connections over

that port, the remote host recognizes and routes traffic to the container.

That raises the additional consideration when connecting to remote Docker hosts.

Firewall rules aren’t a concern in my home lab, where everything is inside my private

network. But connections to containers on the cloud require security rules allowing

traffic to the cloud network and firewall and routing rules on individual hosts.

Chapter 8 Basic Networking

164

�Setting the Container Hostname
One final option available during docker run that makes using containers feel more

normal is the --hostname flag.

Docker assigns unique alphanumeric strings for hostnames when creating

containers, as seen in Listing 8-7. For noninteractive environments, that’s not a problem.

But random strings aren’t very readable to humans working at the command line!

The default prompt includes the hostname but doesn’t offer anything meaningful.

Configuring connections—between two databases, perhaps—that rely on name

resolution is tedious. Who wants to type (or copy/paste) “f502c53c3c27” repeatedly?

Listing 8-7.  Viewing hostname and host information in a container without

setting the hostname

> docker exec -it ORCL bash

[oracle@f502c53c3c27 ~]$ hostname

f502c53c3c27

[oracle@f502c53c3c27 ~]$ cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.2 f502c53c3c27

The --hostname option to docker run sets the hostname in the container. Listing 8-8

is an example of assigning a hostname to a container at creation, followed by verification

within the new container using the same commands from Listing 8-7.

Listing 8-8.  Setting and confirming the hostname in a container with the docker

run --hostname flag

> docker run -d \

> --name TEST \

> --hostname TEST \

> -p 51521:1521 \

Chapter 8 Basic Networking

165

> oracle/database:19.3.0-ee

78f62ede3f889b3805d51428385b5d56826164c2517951019cf5f612c608b8be

> docker exec -it TEST bash

[oracle@TEST ~]$ hostname

TEST

[oracle@TEST ~]$ cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.5 TEST

[oracle@TEST ~]$

Compare the output from the two containers. The second is easier to recognize with its

meaningful name at the shell prompt. It also facilitates naming consistent with the standard

practices in an environment. And, with DNS, intracontainer networking is direct and clear

to human audiences. Alas, DNS in container networks is a topic for the next chapter!

�Adding Ports to an Existing Container
When introducing port publication, I said the only time to open ports in a container was

during creation. I also suggested a workaround, and while there’s no magic for bypassing

Docker’s networking behavior, there’s a way to achieve the result—with one caveat!

In Chapter 7, you discovered how Docker separates data from software and that data

and configuration saved on a volume remain after removing the container. Data and

configuration on a volume can be recycled—to clone databases—or used to recreate a

database. With its /opt/oracle/oradata directory mapped to an existing volume, a new

container doesn’t know it’s a new one. It just starts the existing database.

This same trick lets you add a port mapping to an existing container. Provided data

was persisted to a volume, you can stop, remove, then recreate the container using the

same values for database-specific settings (e.g., the ORACLE_SID and ORACLE_PDB) and the

same volume mappings. Add the overlooked port mappings (or other configurations) to

the new docker run command.

Chapter 8 Basic Networking

166

�Summary
This chapter introduced the basics behind container networking and described how

to use port publication to open communication between a host and its containers. You

learned that ports can’t be added after creating a container, but deleting and recreating a

container can get around that oversight—provided its data was persisted to a volume!

Mapping resources between a host and container using the -p or --publish options

follows the same pattern as assigning volumes with the -v or --volume, but it’s a limited

method. There are a finite number of ports, and not all are suitable destinations for

translated traffic. Only use ports in the nonreserved or dynamic range, from 49152 to

65535, or risk conflicts with other services. To avoid using an already-assigned port, use

the --expose and -P (or --publish-all) flags together to allocate network mappings.

Creating connections to databases running in containers is nearly identical to the

process in non-container environments. The key difference is understanding which host

and port to use and where. Processes running inside the container don’t use the port

mappings, while clients connecting from the host (or containers on remote hosts) will

use the mapped port.

Finally, you learned how to set the hostname for a container and make the

environment feel more normal and friendly. Setting hostnames is a prelude to the next

chapter, where container networks and DNS features make orchestration and multiple

database systems more fluid and natural.

Port publication is adequate for small systems, especially those running in localized

environments like laptops or desktops. It doesn’t make sense to complicate things

by adding container networks. If your motivation for running Oracle databases in

Linux containers is personal, having a few databases for experimentation, feel free

to skip to Chapter 10. To learn more about container networking and how to build

more robust and flexible networks or make containers appear as “normal” network

resources (without remembering which container uses what port), you’ll find answers in

Chapter 9!

Chapter 8 Basic Networking

167

CHAPTER 9

Container Networks
I have a confession: networking intimidates me. I spent years in environments with

dedicated network administrators and didn’t make time to learn much beyond the

basics. It wasn’t until I joined an operations team that I recognized the void in my skills.

From what I’ve heard from other database administrators, I’m not alone.

I used port publishing to handle connections during my first few years working with

Docker. Since I only needed local access to a few containers, it didn’t make sense to go

through the additional effort of creating dedicated networks. Plus, it’s what everyone else

was doing.

As my use and reliance on containers grew, I realized the burden and limitations

port mapping created. It’s a manual process that scales poorly and doesn’t integrate

with automation. I had to keep track of and assign open ports. If I let Docker assign

ports, I needed to identify the mappings. And, if I forgot to set a port, I had to recreate

the container! Network configurations aren’t intuitive under port mapping, either.

Connection strings and host identities vary based on where connections originate.

Container networks eliminate these issues, simplifying access and usability, integrating

containers with existing observation platforms, and reducing operational overhead.

This chapter isn’t a deep dive into networking concepts. Instead, it concentrates

on practical solutions to the networking issues faced when deploying Oracle database

services in containers. Hopefully, it makes the subject less intimidating for others who

share my anxiety about networking!

�Container Networks
We’ve already seen how Docker isolates container resources, whether it’s the ability

to add users in a container that aren’t present on the host or create private filesystems

visible only to the container. But containers can’t be completely cut off from the host.

They still need to share host resources like CPU, memory, storage—and networking—

delivered via container networks.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_9

https://doi.org/10.1007/978-1-4842-9033-0_9

168

Container networks don’t require much attention. They start automatically as

part of the Docker engine startup. Each network has a default gateway and DNS

capabilities, with DHCP services and IP assignments provided by the Docker daemon.

And, operations like starting, stopping, creating, or removing containers don’t impact

networks.

The Docker daemon assigns container IP addresses using DHCP. Addresses are

reassigned (and may change) whenever the host, container engine, or container network

restarts. Treat container IP addresses as temporary and don’t use them for networking

configurations like tnsnames.ora files!

It’s easy to take Docker networking for granted. Many container operations require

a network, including connecting to a container command line or database and building

images (which calls yum to retrieve OS updates over the host’s Internet connection).

Yet we didn’t need to create or configure any networking because Docker added three

default networks when installed: bridge, host, and none.

�Docker Network Types
Container networks are virtual or software-defined networks. Rather than cables and

physical cards, the rules and configurations define the network devices and routes. They

still operate much like “normal” networks, but each type of container network addresses

specific needs.

�Bridge Networks

As the name suggests, bridge networks traverse the gaps between network devices. In

container environments, the gap covered by a bridge network is between the host and

the container network. Containers on the same bridge network can communicate inside

the network while interacting with the host across the bridge. However, rules in the

bridge driver prevent bridge networks from communicating with one another. While

containers assigned to one bridge network can see and communicate with each other,

they can’t see or reach containers over other bridge networks. Bridge networks are

limited to a single host or, more correctly, to the Docker daemon running on the host,

but a single host may have multiple bridge networks.

Because bridge networking exposes containers to one another, it’s most appropriate for

labs and local environments hosting multiple interdependent services. Everything you’ve

seen so far occurred over a bridge network like the one shown in Figure 9-1—specifically,

Chapter 9 Container Networks

169

Docker’s default bridge network. While the default bridge uses the same bridge driver as

user-defined bridges, user-defined bridge networks have additional features and capabilities

that make them more attractive in all but the most basic environments.

Figure 9-1.  Containers attached to bridge networks can see and communicate
with other containers on the same network, while the “bridge” spans the gap
between the container network and the host

�Host Networks

Host networks map container ports directly to the host. In effect, host networks make it

seem like container services are running natively and not in a container. For an Oracle

database container using a container host network, external clients reach the listener

over the host’s port 1521 instead of a mapped port.

One advantage of host networks is DNS transparency. Clients on the external

network can resolve the container host and don’t have to navigate any abstractions

created by Docker. The two downsides are that host networking is only available on

Linux, and a Docker host can’t run multiple containers.

Container host networks like the one shown in Figure 9-2 are helpful for container

hosts dedicated to a single service. They combine container benefits, like isolation and

Infrastructure as Code, without complicating the network environment. When running

Oracle databases, particularly where performance or capacity demands dedicated

resources and infrastructure for individual databases, host networks reduce complexity

and configuration overhead.

Chapter 9 Container Networks

170

Figure 9-2.  Host networks connect containers directly to the host network
interface

�Other Network Types

Docker offers additional network types, including

•	 MACVLAN networks make containers appear more like physical

hosts by creating unique MAC addresses for each container on

the network. Docker routes traffic to containers based on the MAC

address. They’re helpful when migrating legacy applications to

containers on virtual machines (or physical hosts).

•	 IPVLAN networks offer fine-grained control over the IPv4 and

IPv6 addresses assigned to containers. They typically require more

attention and dedicated network design.

•	 The “None” network is just what it seems—no network. Connecting

a container to the none network disables networking. It’s most often

used in conjunction with custom network drivers.

•	 Overlay networks join networks running over multiple Docker

daemons into a single network, transparently linking services

running on various hosts without intruding on existing (non-

container) enterprise networks.

You’re unlikely to encounter these specialty network types as you begin your Docker

journey. The remainder of this chapter concentrates on bridge networking, the default

bridge network and port mapping limitations, and creating and configuring user-defined

Chapter 9 Container Networks

171

bridge networks for multicontainer and multidatabase environments. To better

appreciate these concepts, let’s create a test environment consisting of two Oracle

database containers.

�Demonstrating Bridge Networking
The most common networking scenarios for Oracle databases are as follows:

•	 Connect a client to a local database: The client, in this case, is

usually a command-line tool like SQL*Plus.

•	 Connect a client to a database on a remote host: The client may be

SQL*Plus or a GUI development suite such as Oracle’s SQL Developer

or Quest Software’s TOAD.

•	 Create database links between two databases: In practice, this is

just a particular case of connecting to a remote host, where the local

database is the database client.

•	 Support for services, replication, and high availability: This may

appear to be just another local or remote client connection, but

there’s a twist. The previous examples initiate database connections

via the database listener over a known port. Oracle GoldenGate, for

instance, uses a different range of ports.

Databases hosted in Docker containers introduce an additional scenario: connecting

clients on the host to a container. This seems to fall under the second example—a client

connecting to a remote database—but with an added need to traverse the gap between

the host and the container network.

An ideal networking solution won’t require unique configurations or unreasonable

effort. The same connection strings and tnsnames.ora files should work everywhere—in

containers and on the container host. DNS should resolve containers by their hostname

on the network. To explore and test these scenarios, create two Oracle database

containers using the parameters listed in Table 9-1.

Chapter 9 Container Networks

172

Table 9-1.  Properties assigned to the two database containers, ORCL1 and ORCL2

Container ORCL1 Container ORCL2

Container Name DB1 DB2

Hostname dbhost1 dbhost2

Database SID ORA1 ORA2

PDB Name PDB1 PDB2

Listener Port 1521 1521

Volume for oradata /oradata/ORCL1 /oradata/ORCL2

Mapped Listener Port 51521 61521

SYSTEM Password oracle123 oracle123

Listing 9-1 shows the docker run commands for creating the two containers. The

ORACLE_SID and PDB name are set using environment variables, and the listener ports

are mapped, as shown in the last chapter. Take note of the --hostname option. Docker

adds an entry for the hostname to the container’s /etc/hosts file during docker run. It

defaults to the container name, but --hostname allows us to specify custom values.

Listing 9-1.  Commands for creating the two Oracle database containers, ORCL1

and ORCL2

> docker run -d --name ORCL1 \

> --hostname dbhost1 \

> -e ORACLE_SID=ORA1 \

> -e ORACLE_PDB=PDB1 \

> -v /oradata/ORCL1:/opt/oracle/oradata \

> -p 51521:1521 oracle/database:19.3.0-ee

3a15e84cd484b98f4c2437f4b0eabe10ebeb6c965dc992c09eb1d20d96b3589e

> docker run -d --name ORCL2 \

> --hostname dbhost2 \

> -e ORACLE_SID=ORA2 \

> -e ORACLE_PDB=PDB2 \

Chapter 9 Container Networks

173

> -v /oradata/ORCL2:/opt/oracle/oradata \

> -p 61521:1521 oracle/database:19.3.0-ee

e05023316788349978c96414e2c57bb489cd0d2d54d2168e2c2db2d5221af9d3

Connecting to these databases requires their hostname or IP address, the listener

port, and a service name (or target database SID). If the databases described in Table 9-1

weren’t running in containers, we could connect to them through SQL*Plus, using

EZConnect connection syntax such as

$ORACLE_HOME/bin/sqlplus system/oracle123@//dbhost1:1521/ORA1

Any of the following connection strings1 would work for dbhost1:

system/oracle123@//dbhost1:1521/ORA1

system/oracle123@//dbhost1/ORA1

system/oracle123@//dbhost1:1521/PDB1

system/oracle123@//dbhost1/PDB1

A similar set of connection strings would apply to dbhost2:

system/oracle123@//dbhost2:1521/ORA2

system/oracle123@//dbhost2/ORA2

system/oracle123@//dbhost2:1521/PDB2

system/oracle123@//dbhost2/PDB2

Once database creation completes, we can start exploring Docker’s network

environment.

�Displaying Network Information
As you might expect, network management in Docker uses a set of docker network

commands, summarized in Listing 9-2 using docker network --help. Reading through

the options, notice Docker lets us create and remove networks, list and inspect a

network, and connect containers to (and disconnect them from) a network.

1 For those unfamiliar with EZConnect, it’s a method for passing information normally supplied
in a tnsnames.ora file directly to a database client. The connection string replaces the connection
alias and uses the pattern <hostname>:<port>/<service name>. Including the port in EZConnect
strings is optional if the target listener uses the default port, 1521.

Chapter 9 Container Networks

174

Listing 9-2.  Options for docker networks include commands to create, remove,

list, and inspect networks and connect and disconnect containers to and from

a network

> docker network --help

Usage: docker network COMMAND

Manage networks

Commands:

 connect Connect a container to a network

 create Create a network

 disconnect Disconnect a container from a network

 inspect Display detailed information on one or more networks

 ls List networks

 prune Remove all unused networks

 rm Remove one or more networks

Run 'docker network COMMAND --help' for more information on a command.

Docker Desktop systems run in virtual machines on Windows and Mac, where many

of the host networking components and interfaces aren’t easily visible from the host. The

examples in this chapter are from an Oracle Enterprise Linux system running the Docker

engine to simplify matters and better illustrate how Docker networking works (without

the additional layer of abstraction introduced by the virtual machine).

�List Networks
Show the networks on a system with docker network ls:

> docker network ls

NETWORK ID NAME DRIVER SCOPE

0201c1b85336 bridge bridge local

8e74549be878 host host local

d0ce1f7bd49f none null local

Chapter 9 Container Networks

175

These three networks, bridge, host, and none, are the default networks created by

Docker during installation. Starting the Docker engine on a host starts its container

networks, too. There’s no extra effort required to enable networking in Docker!

�Inspect a Network
Let’s look further into the bridge2 network using docker network inspect bridge. The

abridged output from my system, shown in Listing 9-3, includes entries for containers

ORCL1 and ORCL2, including their IP addresses. Near the bottom, it shows that this is a

default bridge network (com.docker.network.bridge.default_bridge is true) bound

to the host on IP 0.0.0.0, with a network name of docker0.

Listing 9-3.  Example output of docker network inspect bridge, showing details of

the bridge network. Note the two containers created earlier, ORCL1 and ORCL2,

are attached to this network

> docker network inspect bridge

[

 {

 "Name": "bridge",

 "Id": "0201c1b85336336a...",

 "Scope": "local",

 "Driver": "bridge",

 "IPAM": {

 "Driver": "default",

 "Config": [

 {

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

 }

]

 },

2 Don’t confuse the bridge network with the bridge driver. There is only one network with the
name bridge. All bridge networks use the bridge driver.

Chapter 9 Container Networks

176

 "Containers": {

 "3a15e84cd484b98f...": {

 "Name": "ORCL1",

 "IPv4Address": "172.17.0.2/16"

 },

 "e050233167883499...": {

 "Name": "ORCL2",

 "IPv4Address": "172.17.0.3/16"

 }

 },

 "Options": {

 "com.docker.network.bridge.default_bridge": "true",

 "com.docker.network.bridge.enable_icc": "true",

 "com.docker.network.bridge.enable_ip_masquerade": "true",

 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",

 "com.docker.network.bridge.name": "docker0"

 },

 }

]

�Inspect the Container’s Network Entries
You just saw the output of docker network inspect reports the containers connected to

a network. We can also display network information of individual containers with docker

container inspect. Containers typically have more explicit content, and the JSON

output of inspecting a container can be rather lengthy. To filter and refine the output, use

the --format option of docker inspect to show only the JSON for the network settings,

then parse it with jq:

docker container inspect \

 --format '{{json .NetworkSettings}}' \

 <container name> | jq

Abridged networking information for container ORCL1 on my system appears in

Listing 9-4. I trimmed out some information to focus on what’s relevant to us. Notice

that, in addition to showing the container’s IP address, we can see the mapping between

container port 1521 and port 51521 on the host.

Chapter 9 Container Networks

177

Listing 9-4.  The abridged output of the network information from container

ORCL1 is generated by the docker container inspect command

> docker container inspect \

> --format '{{json .NetworkSettings}}' \

> ORCL1 | jq

{

 "Bridge": "",

 "Ports": {

 "1521/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "51521"

 }

]

 },

 "EndpointID": "c3a9bbde24705f37516...",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "Networks": {

 "bridge": {

 "Aliases": null,

 "NetworkID": "0201c1b85336336a...",

 "EndpointID": "c3a9bbde24705f37...",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2"

 }

 }

}

Chapter 9 Container Networks

178

�Viewing Virtual Devices on the Container Network
Near the end of the docker network inspect bridge output in Listing 9-3, it reports

network connections on an interface named docker0,3 corresponding to a virtual (rather

than a physical) host interface. The ifconfig command shows additional information

about this interface, including a matching IP range:

> ifconfig -a docker0

docker0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255

 inet6 fe80::42:ebff:fe95:f6aa prefixlen 64 scopeid 0x20<link>

 ether 02:42:eb:95:f6:aa txqueuelen 0 (Ethernet)

 RX packets 158 bytes 8256 (8.2 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 113 bytes 13510 (13.5 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

It may help to think of this as a network switch. Containers on the bridge network

“plug in” to the switch on interfaces. List the bridge networks on a system with the Linux

ip link show type bridge command:

> ip link show type bridge

4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state

UP mode DEFAULT group default

 link/ether 02:42:eb:95:f6:aa brd ff:ff:ff:ff:ff:ff

Interfaces for each bridge are recorded in /sys/class/net/<BRIDGE NAME>/brif.

Bridge docker0 has two interfaces listed:

> ls /sys/class/net/docker0/brif

veth7d17f7f veth8c9057e

These virtual interfaces correspond to the two containers. The interfaces are also

visible on the host through ifconfig:

3 Remember, in Docker Desktop the container engine runs in a virtual machine. You’ll only see
the docker0 interface directly on Linux systems or within the Docker VM.

Chapter 9 Container Networks

179

> ifconfig veth7d17f7f

veth7d17f7f: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::3cf4:90ff:fe19:17f5 prefixlen 64 scopeid 0x20<link>

 ether 3e:f4:90:19:17:f5 txqueuelen 0 (Ethernet)

 RX packets 104 bytes 6888 (6.8 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 135 bytes 15226 (15.2 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

> ifconfig veth8c9057e

veth8c9057e: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::3845:f5ff:fed4:49c prefixlen 64 scopeid 0x20<link>

 ether 3a:45:f5:d4:04:9c txqueuelen 0 (Ethernet)

 RX packets 21 bytes 1394 (1.3 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 47 bytes 3218 (3.2 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

This is the end of the “cable” plugged into the docker0 interface. Next, connect to the

ORCL1 container:

> docker exec -it ORCL1 bash

Then, show the other end of the connection, attached to eth0 interface in the

container, by running ifconfig on container ORCL1:

[oracle@dbhost1 ~]$ ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

 ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)

 RX packets 134 bytes 15156 (14.8 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 104 bytes 6888 (6.7 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

While connected to the container, display the contents of its /etc/hosts file, shown

in Listing 9-5. The hostname provided to docker run via the --hostname option matches

the IP address. Docker adds this entry during container creation. It also updates the file

Chapter 9 Container Networks

180

whenever the container starts, so even if the container’s address changes, its /etc/hosts

file includes the current IP. The hostname is usually the unique, randomly generated

container name; specifying a hostname to the docker run command overrides that

behavior.

Listing 9-5.  The /etc/hosts file on the ORCL1 container includes an entry

created by Docker for the hostname assigned during container creation

[oracle@dbhost1 ~]$ cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.2 dbhost1

The Linux /etc/resolv.conf files on the containers, controlling DNS resolution,

match the host:

[oracle@dbhost1 ~]$ cat /etc/resolv.conf

This file is managed by man:systemd-resolved(8). Do not edit.

#

This is a dynamic resolv.conf file for connecting local clients

directly to

all known uplink DNS servers. This file lists all configured search

domains.

#

Third-party programs must not access this file directly, but only

through the

symlink at /etc/resolv.conf. To manage man:resolv.conf(5) in a

different way,

replace this symlink by a static file or a different symlink.

#

See man:systemd-resolved.service(8) for details about the supported

modes of

operation for /etc/resolv.conf.

Chapter 9 Container Networks

181

nameserver 192.168.1.1

search Home

They match because they’re the same file:

> md5sum /etc/resolv.conf

c5dd1676e12d6ca9f7c6d03c5ca9b258 /etc/resolv.conf

> docker exec -it ORCL1 bash -c "md5sum /etc/resolv.conf"

c5dd1676e12d6ca9f7c6d03c5ca9b258 /etc/resolv.conf

Docker maps the host DNS configuration into the container as a layer in the

container’s overlay network, giving the container access to the same name resolution

capabilities present on the host.

Figure 9-3 visualizes the network connections on the default bridge network and

offers a starting point for testing network connections. We’ll revisit the commands in this

section to demonstrate the differences in each network configuration.

Figure 9-3.  Interfaces and endpoints of the two containers, ORCL1 and ORCL2,
on the default bridge network

Chapter 9 Container Networks

182

�Limitations of Default Bridge Networks
Default and user-defined bridge networks both use Docker’s bridge network driver, and

a default bridge network is a bridge network, right? Actually, no. The default bridge is a

legacy feature of Docker, lacks capabilities found in user-defined bridges, and generally

isn’t considered suitable for production use. To see how they’re different, connect to

the ORCL1 container and test connections to the database using the connection strings

shown earlier. As a reminder, the connection strings for dbhost1 are

system/oracle123@//dbhost1:1521/ORA1

system/oracle123@//dbhost1/ORA1

system/oracle123@//dbhost1:1521/PDB1

system/oracle123@//dbhost1/PDB1

For dbhost2

system/oracle123@//dbhost2:1521/ORA2

system/oracle123@//dbhost2/ORA2

system/oracle123@//dbhost2:1521/PDB2

system/oracle123@//dbhost2/PDB2

�Local Connections Work
When logged in to container ORCL1, connections to the local databases work as

expected, using the hostname we assigned to the container (dbhost1) and the default

listener port 1521:

SQL> conn system/oracle123@//dbhost1:1521/ORA1

Connected.

SQL> conn system/oracle123@//dbhost1/ORA1

Connected.

SQL> conn system/oracle123@//dbhost1:1521/PDB1

Connected.

SQL> conn system/oracle123@//dbhost1/PDB1

Connected.

Chapter 9 Container Networks

183

Local connections using the container ID work, too. So far, so good:

SQL> conn system/oracle123@//3a15e84cd484:1521/ORA1

Connected.

However, the container doesn’t recognize the container name, ORCL1:

SQL> conn system/oracle123@//ORCL1:1521/ORA1

ERROR:

ORA-12154: TNS:could not resolve the connect identifier specified

�Remote Connections Fail
Connections to the remote database on container ORCL2, however, do not work using

either the default port or the mapped port:

SQL> conn system/oracle123@//dbhost2:1521/ORA2

ERROR:

ORA-12154: TNS:could not resolve the connect identifier specified

Warning: You are no longer connected to ORACLE.

SQL> conn system/oracle123@//dbhost2:61521/ORA2

ERROR:

ORA-12154: TNS:could not resolve the connect identifier specified

The reason? The container doesn’t know any host called dbhost2. Remember that

the /etc/hosts file on ORCL1 had only an entry for the local host, dbhost1. However, if I

try connecting using the IP address of container ORCL2, it succeeds:

SQL> conn system/oracle123@//172.17.0.3:1521/ORA2

Connected.

Why? The default bridge network lacks DNS. Containers on the network are

accessible to each other, but only by IP address, not a hostname. We could add entries

to /etc/hosts for each host, but remember the IP addresses Docker assigns aren’t

guaranteed to work across restarts of the host or Docker resources. And, while Docker

updates the /etc/hosts entry of the local host, it isn’t aware of custom entries.

Chapter 9 Container Networks

184

�User-Defined Bridge Networks
Let’s compare this behavior with a user-defined bridge network by creating a new

network, using the bridge driver, attaching the two database containers, and testing

connectivity.

�Create the Network
Use the following command to create a new, user-defined bridge network named

database-bridge:

docker network create database-bridge --attachable --driver bridge

The --attachable flag tells Docker we want the ability to manually attach containers

to the network, while the --driver (or shorthand -d) option assigns the bridge driver.

Once created, use the same docker network ls and docker network inspect

commands to get information about the new network, as shown in Listing 9-6. The new

network uses the same bridge driver as the default bridge, and Docker assigned a new,

unique IP address range, 172.18.0.0/16. The network doesn’t yet support any containers,

and, compared to Listing 9-3, there is no host binding or bridge name.

Listing 9-6.  The newly created database-bridge network operates on a unique IP

address range but lacks the options present in the default bridge network

> docker network ls

NETWORK ID NAME DRIVER SCOPE

0201c1b85336 bridge bridge local

9dfba096bf9a database-bridge bridge local

8e74549be878 host host local

d0ce1f7bd49f none null local

> docker network inspect database-bridge

[

 {

 "Name": "database-bridge",

 "Id": "9dfba096bf9a740e...",

 "Scope": "local",

 "Driver": "bridge",

Chapter 9 Container Networks

185

 "IPAM": {

 "Driver": "default",

 "Options": {},

 "Config": [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": true,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {},

 "Labels": {}

 }

]

A new bridge also appears in the output of ip link show type bridge:

> ip link show type bridge

4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state

UP mode DEFAULT group default

 link/ether 02:42:eb:95:f6:aa brd ff:ff:ff:ff:ff:ff

20: br-9dfba096bf9a: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default

 link/ether 02:42:14:53:e0:c8 brd ff:ff:ff:ff:ff:ff

However, no interfaces are present for the new network in /sys/class/net/

br-9dfba096bf9a/brif:

> ls /sys/class/net/br-9dfba096bf9a/brif

Chapter 9 Container Networks

186

�Attach the Containers
There are no interfaces because nothing is yet attached to the network. Let’s remedy

that! Connect the containers using docker network connect <network name>

<container name> and reinspect the new network as shown in Listing 9-7.

Listing 9-7.  Connect containers ORCL1 and ORCL2 to the new database-bridge

network and reinspect the output. The containers are in the network and have

unique IP addresses within the 172.18.0.0 subnet

> docker network connect database-bridge ORCL1

> docker network connect database-bridge ORCL2

> docker network inspect database-bridge

[

 {

 "Name": "database-bridge",

 "Id": "9dfba096bf9a740e...",

 "Scope": "local",

 "Driver": "bridge",

 "IPAM": {

 "Driver": "default",

 "Options": {},

 "Config": [

 {

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": true,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

Chapter 9 Container Networks

187

 "Containers": {

 "3a15e84cd484b98f...": {

 "Name": "ORCL1",

 "EndpointID": "e4cb8fea4b119625...",

 "IPv4Address": "172.18.0.2/16"

 },

 "e050233167883499...": {

 "Name": "ORCL2",

 "EndpointID": "a6d9108c93c9b376...",

 "IPv4Address": "172.18.0.3/16"

 }

 },

 "Options": {},

 "Labels": {}

 }

]

In Listing 9-8, we see that attaching the containers to the database-bridge network

updated their network configurations. Each received a new IP address on the new

network and a new interface, eth1, and corresponding entries in /etc/hosts. These new

IP addresses are in addition to those on the default bridge network, as evidenced by the

separate host entries in /etc/hosts, one for each subnet.

Listing 9-8.  Connecting the ORCL1 container to the network added a new

network interface inside the container and updated its /etc/hosts file with the

new IP address

[oracle@dbhost1 ~]$ ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

 ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)

 RX packets 135 bytes 15226 (14.8 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 104 bytes 6888 (6.7 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Chapter 9 Container Networks

188

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.18.0.2 netmask 255.255.0.0 broadcast 172.18.255.255

 ether 02:42:ac:12:00:02 txqueuelen 0 (Ethernet)

 RX packets 17 bytes 1462 (1.4 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[oracle@dbhost1 ~]$ cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.2 dbhost1

172.18.0.2 dbhost1

Connecting the containers to the database-bridge network created virtual

interfaces on the host, corresponding to those in the containers, visible by listing the

contents of /sys/class/net/br-9dfba096bf9a/brif:

> ls /sys/class/net/br-9dfba096bf9a/brif

veth9e1e709 vetheb94b3f

Running ifconfig against these newly created virtual interfaces produces the output

in Listing 9-9.

Listing 9-9.  After connecting the containers to the new bridge, Docker added

virtual interfaces for each container on the Docker host

> ifconfig veth9e1e709

veth9e1e709: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::f412:9dff:fed8:b8c2 prefixlen 64 scopeid 0x20<link>

 ether f6:12:9d:d8:b8:c2 txqueuelen 0 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 18 bytes 1532 (1.5 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Chapter 9 Container Networks

189

> ifconfig vetheb94b3f

vetheb94b3f: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::705e:8aff:fe63:8d14 prefixlen 64 scopeid 0x20<link>

 ether 72:5e:8a:63:8d:14 txqueuelen 0 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 13 bytes 1006 (1.0 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

�What About DNS?
Under the default bridge network, there was no DNS, and containers couldn’t resolve the

hostnames of other containers. Under the user-defined bridge, Docker provides internal

DNS services, as shown by running nslookup.

[oracle@dbhost1 ~]$ nslookup dbhost1

Server: 127.0.0.11

Address: 127.0.0.11#53

Non-authoritative answer:

Name: dbhost1

Address: 172.18.0.2

[oracle@dbhost1 ~]$ nslookup dbhost2

Server: 127.0.0.11

Address: 127.0.0.11#53

Non-authoritative answer:

Name: dbhost2

Address: 172.18.0.3

The /etc/resolv.conf file reveals the DNS services provided by Docker:

[oracle@dbhost1 ~]$ cat /etc/resolv.conf

search Home

nameserver 127.0.0.11

options ndots:0

Chapter 9 Container Networks

190

Compare that to the file’s contents when the container was connected to only the

default bridge network. With the addition of container DNS, both local and remote

connections work as expected:

SQL> conn system/oracle123@//dbhost1:1521/ORA1

Connected.

SQL> conn system/oracle123@//dbhost1/ORA1

Connected.

SQL> select host_name from v$instance;

HOST_NAME

--

dbhost1

SQL> conn system/oracle123@//dbhost2:1521/ORA2

Connected.

SQL> conn system/oracle123@//dbhost2/ORA2

Connected.

SQL> select host_name from v$instance;

HOST_NAME

--

dbhost2

Remember, the default bridge recognized the hostname assigned with the

--hostname option during container creation but not the container name. Under a

user-defined bridge network, DNS also honors container names:

SQL> conn system/oracle123@//ORCL1:1521/ORA1

Connected.

SQL> conn system/oracle123@//ORCL2:1521/ORA2

Connected.

Finally, I can create database links between databases running in separate

containers:

SQL> create database link DB2 connect to system identified by oracle123

using 'dbhost2:1521/ORA2';

Chapter 9 Container Networks

191

Database link created.

SQL> select host_name from v$instance;

HOST_NAME

--

dbhost1

SQL> select host_name from v$instance@DB2;

HOST_NAME

--

dbhost2

The user-defined bridge network satisfies the objectives laid out at the beginning of

the chapter:

•	 Connect a client to a local database: Connections from local clients

behave as expected and recognize the whole gamut of hostnames:

the custom hostname, the container name, and the container ID.

•	 Connect a client to a database on a remote host: Clients on

containers can access remote databases by hostname over the

traditional listener port.

•	 Create database links between two databases: The network

supports the creation of database links between databases on

separate containers.

•	 Support for services, replication, and high availability: Containers

on the bridge network can access one another over any port.

�Host Connections
Imagine how different surfing the Web would be if we had to remember and enter the

IP address and port number of every site we visited! Thankfully, DNS translates human-

friendly domain names into IP addresses in the background, while browsers connect to

the default port 80 unless otherwise specified. At the beginning of the chapter, we set out

to duplicate this experience for database connections, from container to container and

host to container.

Chapter 9 Container Networks

192

Under the user-defined bridge networks, connections between containers meet

this goal and work as expected, using the default ports and standard connection syntax.

Unfortunately, connections from host to container do not work this way with either

default or user-defined bridge networks.

�Problems with Port Mapping
Figure 9-4 gives some idea why. The default bridge network is virtual, defined in Docker,

and insulates the container environment from the host. Port mappings defined during

container startup traverse this firewall-like barrier between the host and containers.

Unlike a regular firewall, though, there’s no opportunity to add or change port mappings.

More importantly, the interface exposing the mapped ports is the Docker host—not the

containers or the container network.

Figure 9-4.  Docker’s default bridge network manages traffic from the containers,
mapping them to ports on the host. Docker only allows connections between the
host and containers using ports mapped during container creation

Chapter 9 Container Networks

193

The strings for connecting from the host to the database in container ORCL1 change

to the following:

system/oracle123@//lab1:51521/ORA1

system/oracle123@//localhost:51521/ORA1

system/oracle123@//lab1:51521/PDB1

system/oracle123@//localhost:51521/PDB1

We need to update the connection strings for the database running in container

ORCL2, also:

system/oracle123@//lab1:61521/ORA2

system/oracle123@//localhost:61521/ORA2

system/oracle123@//lab1:61521/PDB2

system/oracle123@//localhost:61521/PDB2

Port mapping is a manual process that scales poorly and doesn’t integrate well with

automation. I have to find and assign open ports, and if I let Docker do that for me, I still

have to identify the ports assigned to each container. Building network configurations

isn’t intuitive under port mapping, either. Connection strings use localhost or the

Docker host’s hostname and a nondefault port instead of meaningful hostnames.

Recognizing database connections doesn’t follow standard patterns.

To reach the goals set at the beginning of the chapter for connecting to containers

from host clients, we need two additional capabilities: the flexibility to add ports on the

fly and something on the container host that maps container names into DNS.

�Container DNS Resolution on Hosts
Fortunately, there are multiple methods of mapping Linux container names into

DNS. My personal favorite is a simple Docker-based tool called docker-hoster

(https://github.com/dvddarias/docker-hoster). It runs as a container and listens

for events on the Docker daemon. As containers are added, removed, stopped, or

stated, it captures the related network information and updates the /etc/hosts file

on the Docker host. I use docker-hoster in my lab environments with the default,

recommended setup:

docker run -d \

 -v /var/run/docker.sock:/tmp/docker.sock \

Chapter 9 Container Networks

https://github.com/dvddarias/docker-hoster

194

 -v /etc/hosts:/tmp/hosts \

 dvdarias/docker-hoster

After starting docker-hoster, the updated host file includes entries for the

containers running on my system:

> cat /etc/hosts

127.0.0.1 localhost

127.0.1.1 lab01

#-----------Docker-Hoster-Domains----------

172.18.0.3 dbhost2 ORCL2 e05023316788

172.17.0.3 ORCL2 dbhost2

172.18.0.2 3a15e84cd484 ORCL1 dbhost1

172.17.0.2 ORCL1 dbhost1

172.17.0.4 docker-hoster 0d6f558aa6c0

#-----Do-not-add-hosts-after-this-line-----

With these entries present in the /etc/hosts file on my Docker host, I can access the

container databases from the host using a database client like SQLcl (available for free from

Oracle at www.oracle.com/database/sqldeveloper/technologies/sqlcl/download):

> sql system/oracle123@ORCL1:1521/ORA1

SQLcl: Release 22.2 Production on Mon Jul 18 14:32:40 2022

Copyright (c) 1982, 2022, Oracle. All rights reserved.

Last Successful login time: Mon Jul 18 2022 14:32:41 +00:00

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL> select host_name from v$instance;

HOST_NAME

dbhost1

SQL> conn system/oracle123@//dbhost2:1521/ORA2

Connected.

SQL> select host_name from v$instance;

Chapter 9 Container Networks

https://www.oracle.com/database/sqldeveloper/technologies/sqlcl/download/

195

HOST_NAME

dbhost2

The containers now appear as if they were “real” database servers on the network!

�You Don’t Need Port Mapping
What might not jump out immediately in the preceding example is that the databases

were accessible over the default listener port, 1521. These ports aren’t mapped. The

host recognized the containers as endpoints on the virtual interfaces assigned to the

bridge networks and treated them as “ordinary” hosts communicating over a range of

ports. The same technique works on the default bridge network, too, as proven by using

the container IP address (remember, the default bridge network uses the 172.17.0.0/16

address range):

SQL> conn system/oracle123@//172.17.0.2:1521/ORA1

Connected.

SQL> conn system/oracle123@//172.17.0.3:1521/ORA2

Connected.

As long as there’s a mechanism resolving container names to the host, there’s no

need to map ports. The containers are still accessible using the ports mapped to the

Docker host over the default bridge network:

SQL> conn system/oracle123@//lab1:51521/ORA1

Connected.

SQL> conn system/oracle123@//lab1:61521/ORA2

Connected.

However, the only services visible over port mapping are those specified during

container creation. And mapping ports to the host departs from the standard we

established—having one connection string for each database that works anywhere in the

environment.

You’ve seen how to create a custom bridge network with built-in DNS services and

how to add DNS registration that works at the host. With these containers connected to

the user-defined bridge, there’s no reason to leave them attached to the default bridge!

Chapter 9 Container Networks

196

�Disconnect from the Default Bridge Network
Detaching the containers from the default bridge is a straightforward command:

docker network disconnect <network name> <container name>. Disconnecting the

containers (including docker-hoster) completes without fanfare:

> docker network disconnect bridge ORCL1

> docker network disconnect bridge ORCL2

> docker network disconnect docker-hoster

After the commands are complete, the bridge network configuration in Listing 9-10

shows no attached containers.

Listing 9-10.  Abridged configuration details of the default bridge network after

disconnecting the containers. Compare this with the original output in Listing 9-3

> docker network inspect bridge

[

 {

 "Name": "bridge",

 "Id": "0201c1b85336336a...",

 "Scope": "local",

 "Driver": "bridge",

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": [

 {

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

 }

]

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

Chapter 9 Container Networks

197

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": {},

 "Options": {

 "com.docker.network.bridge.default_bridge": "true",

 "com.docker.network.bridge.enable_icc": "true",

 "com.docker.network.bridge.enable_ip_masquerade": "true",

 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",

 "com.docker.network.bridge.name": "docker0",

 "com.docker.network.driver.mtu": "1500"

 },

 "Labels": {}

 }

]

Checking the virtual interfaces under /sys/class/net/docker0/brif confirms their

removal:

> ls /sys/class/net/docker0/brif

The adapter still exists in the output from ifconfig because this is a default network

where all newly created containers are assigned. Inside the containers, the original eth0

interface is gone, as is the entry in /etc/hosts associated with the 172.17.0.0/16 network

segment:

[oracle@dbhost1 ~]$ ifconfig

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.18.0.2 netmask 255.255.0.0 broadcast 172.18.255.255

 ether 02:42:ac:12:00:02 txqueuelen 0 (Ethernet)

 RX packets 298 bytes 57915 (56.5 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 221 bytes 55308 (54.0 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[oracle@dbhost1 ~]$ cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

Chapter 9 Container Networks

198

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.18.0.2 dbhost1

Docker handles these updates automatically whenever the network topology

changes.

With the user-defined bridge network in place and the containers disconnected

from the default bridge, Figure 9-5 represents the new network topology, with virtual

interfaces on the bridge network spanning the host-container interface.

Figure 9-5.  User-defined bridge networks offer a more natural, integrated
container networking environment without the limitations of port mapping

�Assign a Network During Container Creation
Hopefully, the benefits of user-defined bridge networks are clear, but connecting and

disconnecting containers is a bit laborious. The docker run command includes an

option for assigning networks when creating containers, allowing us to skip the extra

effort spent “unplugging” from the default network.

Chapter 9 Container Networks

199

The --network or --net option attaches containers to one or more existing

networks.4 The --network-alias flag assigns a network alias, recognized by Docker’s

DNS services, providing an additional method of identifying containers on networks.

Listing 9-11 shows an updated version of the earlier commands to create two database

containers, add network assignments and aliases, and remove the port mappings.

Listing 9-11.  Updated docker run commands for the two database containers.

The containers are assigned to the database-bridge created earlier, given a

network alias, and no longer map ports to the host

> docker run -d --name ORCL1 \

> --hostname dbhost1 \

> -e ORACLE_SID=ORA1 \

> -e ORACLE_PDB=PDB1 \

> -v /oradata/ORCL1:/opt/oracle/oradata \

> --network database-bridge \

> --network-alias db-alias1 \

> oracle/database:19.3.0-ee

d6e027dee0a65bc4dfccd7eb43bb6143e2a54803d3b6a699bb26dc645cc814e5

> docker run -d --name ORCL2 \

> --hostname dbhost2 \

> -e ORACLE_SID=ORA2 \

> -e ORACLE_PDB=PDB2 \

> -v /oradata/ORCL2:/opt/oracle/oradata \

> --network database-bridge \

> --network-alias db-alias2 \

> oracle/database:19.3.0-ee

c3c1168cdb986f0a284a46eda67c41c1d4d7bfc3c8112db1920dd8be85b99889

Inside the containers, the network recognizes all of the following network identities:

•	 The container names: ORCL1, ORCL2

•	 Their assigned hostnames: dbhost1, dbhost2

4 In multicontainer environments, overlapping networks allow administrators sophisticated,
fine-grained access control. Containers that share a segment can interact, but cannot see the
containers in networks they aren’t attached to.

Chapter 9 Container Networks

200

•	 The network aliases: db-alias1, db-alias2

•	 The container IDs and IP addresses

With the docker-hoster container (or similar provision) translating container names

to host entries, the same names also work from the Docker host!

�Summary
The preceding pages dove deep into the sometimes unpleasant, possibly intimidating,

but necessary subject of networking in Linux container environments! Networks in

Docker play an essential role by isolating and insulating containers from each other, the

host, and the broader network landscape. There’s no need to be an expert, but a solid

foundation in container networking is a valuable skill for Oracle database administrators

working in Docker environments.

Chapter 8 addressed connectivity through port mapping. In this chapter, we

looked deeper at some of port mapping’s limitations and introduced container

networks as an alternative. Port mapping is a reasonable solution for smaller, localized

implementations, but container networks are a better and more extensible alternative,

mainly when working with multiple database containers.

We discussed differences between various network types, reviewed commands for

reporting and managing network objects, and then dove into bridge networks’ details.

Next, we covered the relationship between bridge networks and virtual devices and how

they support connectivity across interfaces. We examined distinctions between default

and user-defined bridges—including limitations inherent in Docker’s default bridge

network. Finally, we discussed DNS in container networks and solutions for extending

DNS to the host.

You now have a solid understanding and appreciation for containers and their

capabilities. Over the last few chapters, you’ve learned how to manage storage and

networking—arguably the most critical considerations for running databases. The next

chapter combines concepts from the book’s first half in a command reference, marrying

lessons and recommendations into actionable recipes to begin and build your journey

with Oracle on Docker!

Chapter 9 Container Networks

201

CHAPTER 10

Container Creation Quick
Reference
The first part of this book covered the essential elements of running Oracle databases

in Linux containers and emphasized the importance of the docker run command.

Anticipating how containers will create their databases, store data, and interact over the

network prevents frustration and saves time revising or rebuilding containers later. The

preceding chapters addressed these concepts individually, explaining the whys behind

each recommendation.

I enjoy a summary covering how to do things when learning new technologies. This

last chapter of Part 1 is just that—a quick reference, distilling everything covered thus far

into a set of recipes and patterns for you to apply on your container journey.

This chapter comprises four parts: creating storage and networks, running

containers, and miscellaneous commands for interacting with containers. While not

required, storage and networking are prerequisites if you intend to persist data to the

container host and take advantage of user-defined networking as described in Chapter 9.

Once created, reference these resources during container creation.

�Conventions
For clarity, more extended commands are split across multiple lines using the Linux

continuation character, the backslash. Individual options are presented on separate

lines, too, helping each to stand out:

docker run --name <CONTAINER NAME> \

 -e ORACLE_SID=<DATABASE SID> \

...

 <IMAGE_NAME>

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_10

https://doi.org/10.1007/978-1-4842-9033-0_10

202

Examples use the shorter flag when more than one is available, for instance, -e to

set an environment variable rather than --env. Text between carets, < and >, identifies

information to substitute according to your requirements.

�Storage
�Create Volumes
There are two ways to persist data to the container host:

•	 Map a directory on the host to a path in the container.

•	 Create a dedicated object called a Docker volume.

The former doesn’t require anything special, but mounting a Docker volume

requires that the volume is precreated. Directories used by bind-mounted volumes must

exist before assigning them to containers.

To create a default volume, which will store data in Docker’s virtual machine (/var/

lib/docker):

docker volume create <VOLUME_NAME>

To create a bind-mounted volume with a user-defined location on the local

filesystem:

docker volume create --opt type=none --opt o=bind \

 --opt device=<DIRECTORY_PATH> \

 <VOLUME_NAME>

�Predefined Volumes in Oracle Database Containers
The ORADATA volume holds database configuration and datafiles under the /opt/

oracle/oradata directory in Oracle’s container images. Its high-level directory

structure:

.

├── dbconfig
│ └── <ORACLE_SID>
├── fast_recovery_area

Chapter 10 Container Creation Quick Reference

203

│ └── <ORACLE_SID>
│ └── archivelog
└── <ORACLE_SID>
 ├── controlfile
 ├── datafile
 └── onlinelog

The special dbconfig subdirectory houses configuration files for the database and

network and where you’ll find the database’s init.ora and spfile, the password and

oratab files, and networking configurations, including tnsnames.ora and listener.ora:

$ ls -l $ORACLE_BASE/oradata/dbconfig/$ORACLE_SID

total 24

-rw-r--r-- 1 oracle oinstall 234 Mar 6 22:04 listener.ora

-rw-r----- 1 oracle oinstall 2048 Mar 6 22:15 orapwORCLCDB

-rw-r--r-- 1 oracle oinstall 784 Mar 6 23:33 oratab

-rw-r----- 1 oracle oinstall 3584 Mar 6 23:33 spfileORCLCDB.ora

-rw-r--r-- 1 oracle oinstall 53 Mar 6 22:04 sqlnet.ora

-rw-r----- 1 oracle oinstall 211 Mar 6 23:33 tnsnames.ora

These files are soft-linked from their typical locations, meaning the ORADATA

volume is a self-contained directory of everything the database needs.

�Preparing Volumes for Oracle Databases
Volumes write data outside of the Docker environment and satisfy two very similar but

distinct purposes:

•	 Saving data to local or attached storage

•	 Removing data from the container filesystem

The first example relates to protecting and persisting data and configurations. In

production environments, it extends to choosing fast, durable storage that satisfies

organizational objectives for performance and availability.

The second case, at first, may appear the same—put files someplace other than

the container—but with a subtle difference. Here, the importance is managing volatile

directories externally to the container. In Oracle databases, these are the log and audit

Chapter 10 Container Creation Quick Reference

204

directories. Leaving them in the container’s filesystem places them at risk if there’s ever a

need to recreate the container, but it also contributes to growth in container layers.

�Networking
�Create User-Defined Bridge Networks
Certain functionality, including DNS, is absent from the default bridge network created

by Docker on installation. User-defined bridge networks offer a more robust feature set.

To create a bridge network:

docker network create <NETWORK_NAME> --attachable --driver bridge

�Connect/Disconnect Containers to/from Networks
Containers may be attached to a network at any time in their lifecycle. Adding containers

without port mappings to a network allows connections from the host using native ports.

To add a container to a network:

docker network connect <NETWORK_NAME> <CONTAINER_NAME>

To disconnect from a network:

docker network disconnect <NETWORK_NAME> <CONTAINER_NAME>

�Dedicated DNS
There are multiple solutions for adding DNS resolution to a container host, allowing

clients on the host to reference containers by container ID, container name, assigned

hostname, or network alias. dvdarias/docker-hoster is one such option. It reads

Docker’s event service and adds or removes containers to the host /etc/hosts file

whenever they start or stop. To run it using the recommended defaults:

docker run -d \

 -v /var/run/docker.sock:/tmp/docker.sock \

 -v /etc/hosts:/tmp/hosts \

 dvdarias/docker-hoster

Chapter 10 Container Creation Quick Reference

205

�Containers
�Basic Container Creation
The minimum command to create a database container:

docker run -d <IMAGE_NAME>

The -d flag runs the container as a background process.

The following command snippets illustrate the use of options for the docker run

command.

�Naming
Assigning names, hostnames, and network aliases to containers must occur during

creation. Docker generates a random container name during creation if a name isn’t

specified.

�Assign a Container Name

The container name is a human-friendly name referenced in container commands such

as docker start, docker logs, or docker exec. Set the container name with the --

name flag:

docker run -d \

 --name <CONTAINER_NAME> \

...

�Assign a Hostname

The hostname is an optional identity separate from the container name. If not set, the

hostname defaults to the container name:

docker run -d \

 --hostname <HOSTNAME> \

...

Chapter 10 Container Creation Quick Reference

206

�Define Environment Variables
The database creation and management scripts read variables from the container

environment and use them to build and start the database. If not set manually, the

container relies on its default settings. The most frequently used variables (with default

values in brackets) are

•	 ORACLE_SID: The Oracle Database SID [ORCLCDB]

•	 ORACLE_PDB: The Oracle Database PDB name [ORCLPDB1]

•	 ORACLE_PWD: The Oracle Database SYS, SYSTEM, and PDB_ADMIN

password [randomly generated during database creation]

•	 ENABLE_ARCHIVELOG: Enable archive logging [False]

To display all environment variables available in an image:

docker image inspect \

 --format '{{range .Config.Env}}{{printf "%s\n" .}}{{end}}' \

 <IMAGE_NAME> | sort

To set an individual variable, in this example ORACLE_SID, at the command line, use

the -e option:

docker run -d \

 -e ORACLE_SID=ORCLDB \

...

Set multiple values using separate -e flags for each. Here, the ORACLE_SID and

ORACLE_PDB are set in the container:

docker run -d \

 -e ORACLE_SID=ORCLDB \

 -e ORACLE_PDB=PDB1 \

...

The docker run command can read values from the host environment. Here, the

ORACLE_SID is set using the value of $dbname defined in the local host environment:

docker run -d \

 -e ORACLE_SID=$dbname \

...

Chapter 10 Container Creation Quick Reference

207

Docker can read values from a file, with each VARIABLE=VALUE pair on separate lines.

Example contents of an environment file called db.env:

> cat db.env

ORACLE_SID=TEST

ORACLE_PDB=TESTPDB1

ORACLE_EDITION=EE

ENABLE_ARCHIVELOG=true

Reference the file in the docker run command with the --env-file option:

docker run -d \

 --env-file db.env \

...

�Assign Storage
Persist data from the container database by mapping or mounting storage.

�Bind-Mount a Directory with -v

Bind mounting maps a directory on the host to a path inside the container. Files in the

container are written (and saved) to the container host’s filesystem and persisted locally,

even if the container is removed.

The /opt/oracle/oradata directory in Oracle database images includes all database

configuration and datafiles. To map it to a directory on the host:

docker run -d \

 -v <HOST_DIRECTORY>:/opt/oracle/oradata

...

�Bind-Mount a Directory with --mount

The syntax of --mount is more verbose and specific, and Docker recommends it over the

-v option. The order of elements in --mount isn’t important. To bind-mount a directory

with --mount, use the type=bind option:

Chapter 10 Container Creation Quick Reference

208

docker run -d \

 --mount type=bind,source=<HOST_DIRECTORY>,target=/opt/oracle/oradata

...

Remember to use unique directories for each container to avoid multiple databases

writing to the same path and files!

�Attach a Predefined Volume with -v

Docker Volumes are named objects managed by Docker. They must be precreated before

being referenced in by docker run. To map the /opt/oracle/oradata directory in the

container to an existing volume:

docker run -d \

 -v <VOLUME_NAME>:/opt/oracle/oradata

...

�Attach a Predefined Volume with --mount

As in the example of using --mount to bind a directory, the order of elements is

unimportant. To map a predefined volume to the /opt/oracle/oradata directory using

--mount, use the type=volume option:

docker run -d \

 --mount type=volume,source=<VOLUME_NAME>,target=/opt/oracle/oradata

...

�Entrypoints

Entrypoints are special directories in containers where scripts will search for and execute

scripts during creation and startup. In Oracle container images, the entrypoints are

•	 Entrypoint roots: /docker-entrypoint-initdb.d or /opt/

oracle/scripts

•	 Startup scripts: /opt/oracle/scripts/startup

•	 Setup scripts: /opt/oracle/scripts/setup

Chapter 10 Container Creation Quick Reference

209

When mapping directories to an entrypoint root path, a startup and a setup

directory must exist in the locally mapped directory. Otherwise, the management scripts

won’t find anything to run. To mount a single directory to the root entrypoint:

docker run -d \

 �--mount type=bind,source=<ENTRYPOINT_DIR>,target=/docker-entrypoint-

initdb.d \

...

To mount directories to the startup and setup entrypoints:

docker run -d \

 �--mount type=bind,source=<STARTUP_DIR>,target=/opt/oracle/scripts/

startup \

 �--mount type=bind,source=<SETUP_DIR>,target=/opt/oracle/

scripts/setup \

...

�Networking
�Map Ports to the Host

Port mapping routes network traffic from its native port on a container to a port on the

host. It allows clients on the host (or host network) to access container resources. To map

the Oracle listener on a container operating on port 1521:

docker run -d \

 -p <HOST_PORT>:1521 \

...

Map multiple ports with a separate declaration for each:

docker run -d \

 -p <HOST_PORT_1>:1521 \

 -p <HOST_PORT_2>:5500 \

...

Chapter 10 Container Creation Quick Reference

210

�Add to a Network

To attach a container to a specific network at startup:

docker run -d \

 --network <NETWORK_NAME> \

...

Containers may be added to (or removed from) networks at will and may even

belong to multiple networks.

�Complete Container Examples
The command in Listing 10-1 creates a simple container for an Oracle database and it

•	 Defines a custom container name

•	 Defines user-defined values for the database CDB and PDB names

•	 Maps the database listener to a port on the container host

•	 Bind-mounts the database’s data directory to local storage for

persistence

The resulting container delivers all the functionality needed to run a database in a

local environment, such as a laptop or small lab, without creating volume or network

objects.

Listing 10-1.  An example for creating a named container with a custom

container name, user-defined CDB, and PDB names, port mapping to the host,

and database files and configuration persisted to a host directory

docker run -d \

 --name <CONTAINER_NAME> \

 -e ORACLE_SID=<ORACLE_SID> \

 -e ORACLE_PDB=<ORACLE_PDB> \

 -p <HOST_PORT>:1521 \

 --mount type=bind,source=<LOCAL_DIR>,target=/opt/oracle/oradata \

 <IMAGE_NAME>

Chapter 10 Container Creation Quick Reference

211

The example in Listing 10-2 adds to the previous command, delivering additional

features, including a Docker-managed volume bind-mounted to a local directory

on the host and a user-defined bridge network that includes DNS. After creating the

prerequisite objects, the docker run command

•	 Names the container

•	 Assigns a custom hostname

•	 Defines the CDB and PDB databases created in the container

•	 Mounts the predefined volume

•	 Attaches to the custom network

This configuration is well suited to intermediate and advanced deployments where

databases interact with other container services (including other databases).

Listing 10-2.  An example of building a more robust container environment is

taking advantage of Docker’s networking and volume management.

docker volume create --opt type=none --opt o=bind \

 --opt device=<DIRECTORY_PATH> \

 <VOLUME_NAME>

docker network create <NETWORK_NAME> --attachable --driver bridge

docker run -d \

 --name <CONTAINER_NAME> \

 --hostname <HOST_NAME> \

 -e ORACLE_SID=<ORACLE_SID> \

 -e ORACLE_PDB=<ORACLE_PDB> \

 �--mount type=volume,source=<VOLUME_NAME>,target=/opt/oracle/

oradata \

 --network <NETWORK_NAME> \

 <IMAGE_NAME>

Finally, the example of Listing 10-3 adds to the previous docker run command by

adding a mapping for the container entrypoint. Docker will run any scripts it discovers

under the startup subdirectory whenever the container starts. Scripts in the setup

subdirectory run immediately after database creation in the container.

Chapter 10 Container Creation Quick Reference

212

Listing 10-3.  The docker run command from Listing 10-2, with the addition of

an entrypoint definition

docker run -d \

 --name <CONTAINER_NAME> \

 --hostname <HOST_NAME> \

 -e ORACLE_SID=<ORACLE_SID> \

 -e ORACLE_PDB=<ORACLE_PDB> \

 �--mount type=volume,source=<VOLUME_NAME>,target=/opt/oracle/

oradata \

 �--mount type=bind,source=<ENTRYPOINT_DIR>,target=/docker-entrypoint-

initdb.d \

 --network <NETWORK_NAME> \

 <IMAGE_NAME>

�Interact with Containers
�Open a Shell
To access the command line inside the container, similar to ssh-ing to a remote host:

docker exec -it <CONTAINER_NAME> bash

The -it flags instruct Docker to open an interactive session. You can specify a

different shell (or different command) by replacing bash with the shell or command

name. Remember, commands that aren’t part of the container’s PATH variable require a

full path.

�Run SQL*Plus
To run SQL*Plus directly in a container:

docker exec -it <CONTAINER_NAME> sqlplus / as sysdba

Chapter 10 Container Creation Quick Reference

213

�Run a Script
To remotely run scripts in the background of a container, omit the -it flags and pass the

path and script name as it exists in the container:

docker exec <CONTAINER_NAME> <PATH_TO_SCRIPT>/<SCRIPT_NAME>

The script must be executable by the container’s default user (the oracle user for the

containers we’re working with).

�Connect As Root
To connect to a container as a user other than the default (including the root user), pass

the username along with the -u flag:

docker exec -it -u <USER> <CONTAINER_NAME> bash

�Manage Passwords
To set (or reset) the privileged database passwords of a container database, use docker

exec to run the /opt/oracle/setPassword.sh script in the container, providing the new

password as an argument:

docker exec <CONTAINER_NAME> /opt/oracle/setPassword.sh <PASSWORD>

Here, I changed the password in container ORCL1 to “oracle123”:

> docker exec ORCL1 /opt/oracle/setPassword.sh oracle123

The Oracle base remains unchanged with value /opt/oracle

SQL*Plus: Release 19.0.0.0.0 - Production on Tue Mar 29 00:44:36 2022

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL>

Chapter 10 Container Creation Quick Reference

214

User altered.

SQL>

User altered.

SQL>

Session altered.

SQL>

User altered.

SQL> Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 - Production

Version 19.3.0.0.0

�Docker Deployment Examples
Over the past few pages, I’ve offered snippets of code, but I want to show you how

my typical Docker workflow looks, using real examples run from a Linux or WSL

command line.

�New Environment Setup
If I’m working in a new container environment, my first step is adding the directories

and users necessary for running Oracle in Docker. On Linux systems, I separate storage

into two partitions, one for databases and another for Docker-related files:

sudo mkdir /oradata /docker

sudo chown $(id -un):$(id -gn) /docker

The second command changes the owner and group of the /docker directory to my

local user so I can add files later without invoking sudo.

The /oradata mount point serves as the root directory for database volumes

and mounts. To avoid issues with bind mounts on Linux, I create an oracle user and

oinstall group, with ID values matching those in the Oracle preinstallation RPMs, then

set the ownership on the /oradata directory:

sudo groupadd -g 54321 oinstall

Chapter 10 Container Creation Quick Reference

215

sudo useradd -u 54321 -g oinstall

sudo chown oracle:oinstall /oradata

By default, Docker saves its data in the /var/lib/docker directory. Linux systems,

particularly those running in cloud services, often have block storage separate from

the boot volume that offers faster or larger partitions for container operations. If so, I

relocate /var/lib/docker to a new partition. Here, I’m moving it under the /docker

partition:

systemctl stop docker.service

systemctl stop docker.socket

sed -i 's|ExecStart=/usr/bin/dockerd|ExecStart=/usr/bin/dockerd -g /

docker|g' /lib/systemd/system/docker.service

rsync -aqxP /var/lib/docker/ /docker/.docker 2>/dev/null

systemctl daemon-reload

systemctl start --no-block docker.service

�Add the Oracle Repository
New systems need a copy of Oracle’s Docker repository. Assuming git is installed, I can

clone the repo into the /docker path:

git clone https://github.com/oracle/docker-images /docker

After copying the appropriate installation media to the version directories under

/docker/OracleDatabase/SingleInstance/dockerfiles/, I can begin building

the images:

cd /docker/OracleDatabase/SingleInstance/dockerfiles/

./buildContainerImage.sh -v 19.3.0 -e

./buildContainerImage.sh -v 21.3.0 -e

�Networking
Next, I turn my attention to networking, adding a new bridge network, which I usually

name oracle-db:

docker network create oracle-db --attachable --driver bridge

Chapter 10 Container Creation Quick Reference

216

More formal environments may require multiple networks for improved isolation. If

so, I will revisit this step.

If I anticipate a need for DNS, I start a docker-hoster container, too:

docker run -d \

 --name oracle-db-dns \

 -v /var/run/docker.sock:/tmp/docker.sock \

 -v /etc/hosts:/tmp/hosts \

 dvdarias/docker-hoster

�Running Containers
The steps I follow when creating containers depend on how I plan to use them. It

generally falls into two categories: “disposable” databases I don’t intend to keep very

long and production or production-like databases.

�Disposable Environments

I persist the /opt/oracle/oradata volume for every database container but rarely do

much more for disposable databases due to their short lifespans. In the example in

Listing 10-4, I set environment variables for the container, database, and PDB name. The

script uses these variables, adding a directory and bind-mounting it to a volume, then

creates an Oracle 19c database container. I’m also mounting a local directory, /oradata/

scripts, into a new mount point on the container, called /scripts. This is a common,

shared directory of—you guessed it—scripts, tools, and utilities I may want available in

the container as I work.

Listing 10-4.  Example code showing steps for creating resources and running a

“disposable” Oracle 19c database container

CONTAINER_NAME=test

ORACLE_SID=ORCLCDB

ORACLE_PDB=ORCLPDB1

mkdir -p /oradata/${CONTAINER_NAME}

docker volume create --opt type=none --opt o=bind \

 --opt device=/oradata/${CONTAINER_NAME} \

 ${CONTAINER_NAME}_data

Chapter 10 Container Creation Quick Reference

217

docker run -d \

 --name ${CONTAINER_NAME} \

 -e ORACLE_SID=${ORACLE_SID} \

 -e ORACLE_PDB={ORACLE_PDB} \

 --volume ${CONTAINER_NAME}_data:/opt/oracle/oradata \

 --volume /oradata/scripts:/scripts \

 --network oracle-db \

 oracle/database:19.3.0-ee

�Persistent Environments

Critical databases require more discipline and resources, including additional volumes

for diagnostic and audit directories. Listing 10-5 is an example of a script for automating

the steps to create directories, assign volumes, and run containers.

Listing 10-5.  A script for automating the creation of multiple directories and

bind-mounted volumes for a database’s audit, data, and diagnostic directories

CONTAINER_NAME=prod

ORACLE_SID=ORCLCDB

ORACLE_PDB=ORCLPDB1

 for dir in audit data diag

 do mkdir -p /oradata/${CONTAINER_NAME}/${dir}

 docker volume create --opt type=none --opt o=bind \

 --opt device=/oradata/${CONTAINER_NAME}/${dir} \

 ${CONTAINER_NAME}_${dir}

done

mkdir -p /oradata/${CONTAINER_NAME}_entry/{setup,startup}

docker run -d \

 --name ${CONTAINER_NAME} \

 -e ORACLE_SID=${ORACLE_SID} \

 -e ORACLE_PDB={ORACLE_PDB} \

 --volume ${CONTAINER_NAME}_data:/opt/oracle/oradata \

 --volume ${CONTAINER_NAME}_diag:/opt/oracle/diag \

 --volume ${CONTAINER_NAME}_audit:/opt/oracle/admin \

Chapter 10 Container Creation Quick Reference

218

 --volume /oradata/${CONTAINER_NAME}_entry:/opt/oracle/scripts \

 --volume /oradata/scripts:/scripts \

 --network oracle-db \

 oracle/database:19.3.0-ee

Notice I create dedicated entrypoint directories for each container. This is where I

place any scripts used to modify the container’s setup and startup operations. Having

dedicated directories allows more control, creating links to global copies or writing

custom scripts as needed.

�Summary
This chapter is a quick reference of the most common commands and options you’ll

use when creating and running containers and closes the first part of the book covering

containers. We covered container fundamentals, focusing on how they apply to Oracle

databases. You should now feel comfortable writing and using docker run commands;

stopping, starting, and managing containers; and getting information from Docker about

images and containers.

A key takeaway of this first part relates to persistence, covered in Chapter 7.

Understanding the benefits of mapping data from volatile directories in containers to

storage on the local host is essential. Containers use layered (or overlay) filesystems to

achieve speed and save space. Layered filesystems are efficient when files are stable but

perform poorly as the number of changes increases. Mapping directories that experience

many changes (particularly those containing database files) to storage outside the

container improves performance and persists data independently of the container’s

lifecycle.

In the case of Oracle databases, everything needed to clone or recreate a database

exists under the /opt/oracle/oradata directory. Saving this directory path to the

container host lets us clone or recreate a database in seconds!

We’ve touched upon a few peculiarities of containers—like the absence of text

editors—and accepted or worked around them as products of their underlying images.

In the next section, our focus moves from running containers to modifying those images

to suit our needs better. That begins with an exploration of image builds and several

scripts that control image and database creation.

Chapter 10 Container Creation Quick Reference

PART II

Building and Customizing
Images
You’re now well versed at running containers, and in this second part, our attention

turns to building and customizing images. We begin by demonstrating modifications

to the existing Oracle container repository introduced in Chapter 4, delve into the art

of writing and troubleshooting Dockerfiles, then conclude with a discussion of saving

images to repositories.

221

CHAPTER 11

Customizing Images
Something I love about working with Oracle (and databases in general) is the variety.

Each day brings something new, and problems often have multiple solutions. Every

shop has its way of doing things, and solutions vary from customer to customer based on

industry practices, security, and conventions.

Docker (and other automation tools) complement and help enforce these standards.

Container images are infrastructure templates. Rather than building things by hand and

introducing the potential for human error, container images offer a guaranteed starting

point, preconfigured to meet specific requirements.

But templates are rarely one size fits all, and neither are container images. In the

images we’ve worked with, Oracle decided how to configure the environment and what

to include. Chapter 3 raised this issue when we discovered the default Ubuntu image

lacks a vi editor. Containers don’t need editors when run at scale, but they may be a

requirement in a test or lab system, and satisfying that need requires a different template.

We could add an editor manually, but we’d be defeating the whole idea of automation

in general and containers in particular: having a ready-to-run image with everything we

need already installed.

When it comes to building Oracle database images to meet specific needs, there are

two options. The first is writing Dockerfiles, the recipes Docker uses to build images, as

described in Chapters 12 and 13. The second technique, covered in this chapter, extends

existing scripts to tailor the generated templates.

Remember, the containers we’re working with run Oracle Enterprise Linux. All the

commands in the container environment, whether running a container or building an

image, must be appropriate to the container’s operating system. For Linux users running

different distribution flavors, bear in mind that commands used on the host may differ

from those needed in the container. For example, Ubuntu users update packages on

their systems with apt-get but use yum in Oracle database containers.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_11

https://doi.org/10.1007/978-1-4842-9033-0_11

222

�Script Modifications
Except for the Dockerfile and two response files, the files reviewed in this chapter are

all bash shell scripts. The intent here isn’t to delve deeply into the scripts themselves

but to point out how and where to update them to accomplish various modifications

to the resulting images. And the good news is you don’t need to be a scripting expert to

understand these changes!

The files we’ll work with in this chapter are part of the Docker repository, introduced

in Chapter 4. Recall that after copying the repository to your system, you navigated down

a (rather lengthy) path to build your first image: docker-images/OracleDatabase/

SingleInstance/dockerfiles. Beneath that directory were several subdirectories, one

for each database version:

drwxr-xr-x 8 seanscott staff 256 May 27 20:51 11.2.0.2

drwxr-xr-x 18 seanscott staff 576 May 27 20:51 12.1.0.2

drwxr-xr-x 16 seanscott staff 512 May 27 20:51 12.2.0.1

drwxr-xr-x 16 seanscott staff 512 May 27 20:51 18.3.0

drwxr-xr-x 8 seanscott staff 256 May 27 20:51 18.4.0

drwxr-xr-x 19 seanscott staff 608 May 27 21:00 19.3.0

drwxr-xr-x 21 seanscott staff 672 May 27 21:00 21.3.0

-rwxr-xr-x 1 seanscott staff 7091 May 27 20:51 buildContainerImage.sh

These version-specific subdirectories all include several scripts that perform the

general setup and configuration operations under four categories:

•	 Operating system installation and configuration

•	 Oracle database software installation

•	 Database creation

•	 Container startup, including starting the Oracle listener and database

The examples in this chapter are based on the 19c scripts but apply to any version.

You’ll navigate to the subdirectory matching the database version you want to work with,

where you’ll find the files have the same names and purposes. Since these files are on

your local system, you can perform the changes using your favorite text editor.

Chapter 11 Customizing Images

223

It’s a good idea to create a backup of each file before making any changes. Still,
if something breaks, remember you can always redownload or copy the files from
the original GitHub repository.

�OS Install and Configuration
Containers running in production environments are designed to be as minimal as

possible, for many reasons, with space savings and security near the top. The container

images used as baselines for more complex or specialized applications (including

Oracle databases) typically leave out anything that isn’t essential. It’s faster and easier

to add what’s needed than remember to remove what isn’t, and safer, too. Attackers

can’t exploit software vulnerabilities in programs and packages that aren’t present in a

container!

One type of functionality commonly excluded from images is editors. All necessary

files are preinstalled in production deployments and the environment preconfigured.

There’s no need to edit anything manually, and the default database images reflect that

thinking.

On the other hand, if you’re using containers as an interactive or experimental

platform, having editors and tools for navigating the environment makes sense. The

same holds for containers used in security or penetration testing, evaluating new

features, and validating patches or procedures.

�setupLinuxEnv.sh
In Linux, packages deliver these capabilities and features through a package manager.

Different “flavors” of Linux use different package managers. Oracle Enterprise Linux 7

uses a package manager called yum, which stands for Yellowdog Updater, Modified.

Navigate to your preferred version subdirectory under docker-images/

OracleDatabase/SingleInstance/dockerfiles in your repository, and you’ll find a

file called setupLinuxEnv.sh. Open that file in your favorite editor and look for a line

beginning yum -y install. The line in the 19.3.0 version is

yum -y install oracle-database-preinstall-19c openssl && \

Chapter 11 Customizing Images

224

For those unfamiliar with Linux or yum, the meanings of elements on this line are as

follows:

•	 yum: Invokes yum.

•	 -y: This flag is a shorthand confirmation, telling yum to proceed

with whatever operations without user input. It allows scripted or

automated commands to complete without human interaction.

•	 install: There are several options available to yum, and, as you might

suspect, install tells the package manager to install something.

•	 oracle-database-preinstall-19c and openssl: These are the

packages yum will install. The first is the Oracle preinstallation

package (itself a collection of packages) containing everything

necessary to install and run an Oracle. Each database version has its

own package, so the version you see may be different. openssl is a

cryptographic package. (The 12cR1 script also installs tar.)

•	 && and \: The double ampersand (&&) is a logical operation

instructing Linux to execute the following command if the

current command completes successfully. The backslash (\) is a

continuation character, telling Linux that this isn’t the end of the

command and to continue reading on the following line for more.

Note that a single yum command can install multiple packages, listing each

individually after the install operation. yum (and other package managers) resolves

(most) dependencies in a given list of packages. The order of packages doesn’t matter.

We can add packages to the existing yum command—packages like editors!

The packages I typically install that improve my interactive experience in Oracle

container images:

•	 oracle-epel-release-el7: EPEL, or Extra Packages for Enterprise

Linux, is a collection of development packages providing additional

features and functionality.

•	 bash-completion: A set of helper functions for autocompleting Linux

commands.

•	 git: Adds libraries necessary for interacting with git-based

repositories.

Chapter 11 Customizing Images

225

•	 less: A file viewer, similar to more, for reading and searching text files

on Linux systems.

•	 strace: A debugging and diagnostic tool for inspecting signals and

system calls. strace is invaluable for investigating potential problems

in the database kernel.

•	 tree: Displays directory structures visually as a hierarchal “tree” of

entries with parent-child relationships.

•	 vi: My editor of choice!

•	 which: A helpful tool for displaying the locations of executables in the

user’s PATH.

To update the yum install command to include additional packages, add them

anywhere between the install keyword and the double ampersand, &&, that marks the

end of the yum command. For example, to add less, strace, tree, and vi, change the

command to

yum -y install oracle-database-preinstall-19c openssl less strace tree vi

&& \

After building a new image using the updated script, all containers run from the new

image will include the added commands.

�Dockerfile
There’s one potential modification for improving or customizing interaction in

containers. This change, in the default Dockerfile, creates a .bashrc file. This file runs

every time an interactive bash session starts and can be used to set the shell prompt,

environment variables, and aliases and even execute commands.

The following two chapters address Dockerfiles in depth, but not everyone
needs the additional control available from custom images. This tip has broader
applications, so I include it here.

Chapter 11 Customizing Images

226

Open the Dockerfile in your repository and navigate to the end of the file. In the 19c

and 21c versions, you’ll find a line that reads

Add a bashrc file to capitalize ORACLE_SID in the environment

RUN echo 'ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_

SID^^}' > .bashrc

If your version doesn’t have this line, you can add one just before the line that begins

HEALTHCHECK.

To understand this command, let’s break down its parts:

•	 RUN: The RUN command in the Dockerfile tells the build process to

run one or more commands. Don’t confuse it with docker run! The

former is a step in the image build process, while the latter is for

creating a new container. Following RUN are commands Docker uses

to construct the image.

•	 echo 'ORACLE_SID= through ${ORACLE_SID^^}': This is the

command Docker runs in the image. echo displays output to

stdout or standard output, usually the terminal. The text it prints is

everything between the single quotes (').

•	 > .bashrc: The single right caret (>) is an output redirection that

sends the output of the echo statements to a file. A single caret

overwrites the file contents; two carets (>>) append the output to the

end of the file. The file receiving the result is .bashrc.

I want to call attention to the use of single quotes in the echo command. Single

quotes treat their contents literally, without interpreting or substituting anything in the

quoted string. If double quotes bounded the string, bash would replace $ORACLE_SID

using its value in the environment. Compare the different results produced by the same

command, using single vs. double quotes:

echo 'ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_SID^^}'

ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_SID^^}

echo "ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_SID^^}"

ORACLE_SID=ORCLCDB; export ORACLE_SID=

Chapter 11 Customizing Images

227

The substitution is empty in the second example, using double quotes,

because $ORACLE_SID isn’t set. This command anticipates an environment where the

$ORACLE_SID is defined but runs during the image build before setting the variable!

This RUN command creates a new .bashrc file in the oracle user’s home directory

and runs each time the oracle user logs in. The first part sets the ORACLE_SID to

whatever value is in the environment. If the docker run command that started the

container included an -e flag and value for ORACLE_SID, that is assigned. If there’s no

value, the bash manipulation, :-ORCLCDB, gives a default value of ORACLECDB:

ORACLE_SID=${ORACLE_SID:-ORCLCDB}

The next part converts the ORACLE_SID to upper case, using the ^^ manipulation, and

exports it to the environment:

export ORACLE_SID=${ORACLE_SID^^}

We can build on the existing RUN command in the 19c and 21c Dockerfiles (or add a

similar line to the Dockerfiles in other versions) that write entries to a .bashrc file. This

pattern facilitates other changes to the container environment, too. Two examples are

modifying the shell prompt and creating a login.sql file for SQL*Plus.

�Modify the Default Shell Prompt

The special PS1 variable controls the appearance of the shell prompt, with a library

of special characters for displaying (among other things) the date, current directory,

and even setting colors. The following syntax sets the prompt to show the user (\u),

the ORACLE_SID, and the current directory (\w), followed by a hash prompt on a new

line (\n#):

export PS1="[\u - ${ORACLE_SID}] \w\n# "

To add this to the existing RUN command:

RUN echo 'ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_

SID^^}; export PS1="[\u - ${ORACLE_SID}] \w\n# "' > .bashrc

The brackets in the PS1 variable are special characters that must be inside quotes.

Chapter 11 Customizing Images

228

�Add a login.sql File

Oracle reads two files whenever starting SQL*Plus: the glogin.sql global login file

under $ORACLE_HOME/sqlplus/admin and an optional login.sql login file present in the

$ORACLE_PATH. These files can contain any SQL or SQL*Plus statements or commands to

run when SQL*Plus sessions start. The global login file runs for everyone, but individual

users can assign custom login files and set the path in their local environment.

To understand why you might want a login file, open SQL*Plus and run the following

statement:

select * from v$database;

The table has one line, with output scattered among repeated headings. It’s ugly

and difficult to read. The underlying cause is Oracle’s default setting of pagesize, which

controls how many lines of text to put on each page:

SQL> show pages

pagesize 14

To see the output presented more digestibly, change the pagesize to a larger

value, 9999:

set pages 9999

If you want to see things formatted differently, you could run this set command

manually every time you log in. Or, add it to a login.sql file and let Oracle do it for you.

To incorporate the latter automated solution into a Docker image, we need to set the

$ORACLE_PATH variable in the image’s .bashrc file and create a new login.sql file in the

$ORACLE_PATH directory.

This is a somewhat more complex set of instructions. We could add multiple RUN

lines to the Dockerfile, but (for reasons covered in Chapter 12), keeping the number of

RUN commands to a minimum is desirable. Instead, I’ll take advantage of the double

ampersand (&&) and backslash (\) we saw before to string several commands together

across multiple lines, all as part of a single RUN instruction:

RUN echo 'ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_

SID^^}' > .bashrc && \

 echo 'export ${ORACLE_PATH}=/home/oracle' >> .bashrc && \

 echo 'set pages 9999' > /home/oracle/login.sql

Chapter 11 Customizing Images

229

Notice that the redirection on the second line uses two carets to append text to the

.bashrc file rather than overwriting it.

Avoid changing the glogin.sql file! It applies to all SQL*Plus activity, including
any automated or background processes. Running SQL or changing the
environment can create odd or devastating effects on your database!

Hopefully, these examples spark your imagination and offer a vehicle for you to

extend and enhance your containers!

�Database Installation
After readying the operating system for Oracle, automated database installation begins.

There isn’t much in the software installation procedure itself; it’s a fairly generic process

controlled by the installDBBinaries.sh script. The exciting part is how the installation

script works with the db_inst.rsp response file.

�installDBBinaries.sh
As mentioned earlier, we generally try to make containers as small as possible, and the

database installation is no exception. There’s a section near the end of the 19c and 21c

scripts dedicated to that purpose:

if $SLIMMING; then

 # Remove not needed components

 # APEX

 rm -rf "$ORACLE_HOME"/apex && \

 # ORDS

 rm -rf "$ORACLE_HOME"/ords && \

 # SQL Developer

 rm -rf "$ORACLE_HOME"/sqldeveloper && \

 # UCP connection pool

 rm -rf "$ORACLE_HOME"/ucp && \

 # All installer files

 rm -rf "$ORACLE_HOME"/lib/*.zip && \

Chapter 11 Customizing Images

230

 # OUI backup

 rm -rf "$ORACLE_HOME"/inventory/backup/* && \

 # Network tools help

 rm -rf "$ORACLE_HOME"/network/tools/help && \

 # Database upgrade assistant

 rm -rf "$ORACLE_HOME"/assistants/dbua && \

 # Database migration assistant

 rm -rf "$ORACLE_HOME"/dmu && \

 # Remove pilot workflow installer

 rm -rf "$ORACLE_HOME"/install/pilot && \

 # Support tools

 rm -rf "$ORACLE_HOME"/suptools && \

 # Temp location

 rm -rf /tmp/* && \

 # Database files directory

 rm -rf "$INSTALL_DIR"/database

fi

At the time of writing, these statements aren’t wrapped in an if statement for

versions before 19c, but similar logic may be added for consistency.

This if statement checks the value of a build argument, SLIMMING, removing several

directories from the database home after installation. To prevent the script from removing

these directories, set the SLIMMING variable to false. One way of accomplishing this is

editing the Dockerfile and changing true in the following line to false:

ARG SLIMMING=true

There’s currently no option in the buildContainerImage.sh script to influence the

build and not remove these directories. Again, that functionality may be added later.

The real reason I highlighted this part of the script relates to 19c upgrades from earlier

versions of Oracle. A powerful use of Docker is planning and preparing for database

upgrades. Before upgrading older versions of Oracle to 19c, you’ll need to remove older

APEX installations. The scripts for removing APEX are located under $ORACLE_HOME/apex.

But look at what the installDBBinaries.sh scripts do when it comes to APEX, for

each version:

rm -rf "$ORACLE_HOME"/apex

Chapter 11 Customizing Images

231

How can you remove APEX if the directory with the script for removing APEX is

missing?

An alternative to changing the value of SLIMMING in the Dockerfile is commenting out

individual lines with a hash (#) character:

#rm -rf "$ORACLE_HOME"/apex

The takeaway is to remember that the database installation script “slims down”

the database home by default. If your plans for Docker include anything in one of the

removed directories, save yourself some headaches and update the installDBBinaries.

sh script appropriately!

�db_inst.rsp
I mentioned before that the installDBBinaries.sh script uses a second file, the

db_inst.rsp response file. For those that haven’t worked with them in the past,

response files store the answers to all the questions typically answered in the GUI-based

installation process. These include the ORACLE_BASE and ORACLE_HOME to the “Do you

want to receive security updates from Oracle” question near the end. Without response

files, we couldn’t perform unattended installations in Docker (or other automation

platforms like Vagrant, Ansible, or Terraform, for that matter).

Oracle provides default response files for each database version, prepopulated with

every available option. Most entries are commented out with hashes (#) and include

some descriptive or informational text. Take this entry from a 19c response file, for

instance, that identifies the purpose and possible options of the oracle.install.option

parameter:

#-----------------------------------

Specify the installation option.

It can be one of the following:

- INSTALL_DB_SWONLY

- INSTALL_DB_AND_CONFIG

- UPGRADE_DB

#-----------------------------------

oracle.install.option=INSTALL_DB_SWONLY

Chapter 11 Customizing Images

232

The db_inst.rsp file is the response file Docker uses to install the database. Working

again with the 19c version of the repository, I’ve selected only the “uncommented” lines

that the installer reads during the installation. These are the “answers” to each of the

“questions” a database installation needs:

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall_

response_schema_v19.0.0

oracle.install.option=INSTALL_DB_SWONLY

UNIX_GROUP_NAME=dba

INVENTORY_LOCATION=###ORACLE_BASE###/oraInventory

ORACLE_HOME=###ORACLE_HOME###

ORACLE_BASE=###ORACLE_BASE###

oracle.install.db.InstallEdition=###ORACLE_EDITION###

oracle.install.db.OSDBA_GROUP=dba

oracle.install.db.OSOPER_GROUP=dba

oracle.install.db.OSBACKUPDBA_GROUP=dba

oracle.install.db.OSDGDBA_GROUP=dba

oracle.install.db.OSKMDBA_GROUP=dba

oracle.install.db.OSRACDBA_GROUP=dba

SECURITY_UPDATES_VIA_MYORACLESUPPORT=false

DECLINE_SECURITY_UPDATES=true

A few of these lines—the ones with ### surrounding part of the “answer”—might

stand out. What do you suppose ###ORACLE_HOME### and ###ORACLE_BASE### mean

here? They’re placeholders that the installDBBinaries.sh script replaces with real

values with this group of commands:

Replace place holders

sed -i -e "s|###ORACLE_EDITION###|$EDITION|g" "$INSTALL_DIR"/"$INSTALL_

RSP" && \

sed -i -e "s|###ORACLE_BASE###|$ORACLE_BASE|g" "$INSTALL_DIR"/"$INSTALL_

RSP" && \

sed -i -e "s|###ORACLE_HOME###|$ORACLE_HOME|g" "$INSTALL_

DIR"/"$INSTALL_RSP"

Chapter 11 Customizing Images

233

The sed command in Linux stands for stream editor, a powerful (and sometimes

cryptic) tool for programmatically modifying text files. The three commands in the

installation script perform a find-and-replace operation against the response file,

identified here as "$INSTALL_DIR"/$INSTALL_RSP". It substitutes values from the

environment for the placeholders. (Keep this bit of code in mind for the next section

on database creation, where it plays a much more valuable role in customizing the

database.)

The default response files produce generic database installations. If your needs go

beyond those in the default responses, make those changes in the db_inst.rsp file.

�Database Creation
As with database installation, the database creation script has a partner response file.

What’s important to remember is these files, createDB.sh and dbca.rsp.tmpl, are

added to the image during the image build but called during docker run. You’ll need to

rebuild the image before new containers recognize changes to these scripts.

Just as the db_inst.rsp contains the answers needed to complete a database

installation, the dbca.rsp.tmpl file includes the answers asked during database

creation. You may even recognize some entries from the last time you ran the Database

Configuration Assistant (DBCA) GUI! And, like the installation response file, the file

contains placeholders identified by three hashes (###). Once again, from the 19c

directory, the noncommented entries are

responseFileVersion=/oracle/assistants/rspfmt_dbca_response_schema_v19.0.0

gdbName=###ORACLE_SID###

sid=###ORACLE_SID###

createAsContainerDatabase=true

numberOfPDBs=1

pdbName=###ORACLE_PDB###

pdbAdminPassword=###ORACLE_PWD###

templateName=General_Purpose.dbc

sysPassword=###ORACLE_PWD###

systemPassword=###ORACLE_PWD###

emConfiguration=DBEXPRESS

emExpressPort=5500

Chapter 11 Customizing Images

234

dbsnmpPassword=###ORACLE_PWD###

characterSet=###ORACLE_CHARACTERSET###

nationalCharacterSet=AL16UTF16

initParams=audit_trail=none,audit_sys_operations=false

automaticMemoryManagement=FALSE

totalMemory=2048

The database creation script, createDB.sh, has similar sed commands:

Replace place holders in response file

cp "$ORACLE_BASE"/"$CONFIG_RSP" "$ORACLE_BASE"/dbca.rsp

Reverting umask to original value

umask 022

sed -i -e "s|###ORACLE_SID###|$ORACLE_SID|g" "$ORACLE_BASE"/dbca.rsp

sed -i -e "s|###ORACLE_PDB###|$ORACLE_PDB|g" "$ORACLE_BASE"/dbca.rsp

�Add a Non-CDB Option
The software install response file doesn’t offer many interesting options, but the DBCA

response file has more exciting possibilities. Take, for instance

createAsContainerDatabase=true

Maybe you’d prefer a 19c database that isn't a container database. You could change

that value to false, but remember this file is written into the image. Once you change

the container database option from true to false, every database created from this

image will necessarily be a non-container database, reversing the original problem.

If you need both, you could maintain separate images for each or create one that has

both! How?

Use this technique to introduce variable-driven control over nearly any option you'd
care to add to the database creation process.

First, update the response file template to read

createAsContainerDatabase=###CREATE_CDB###

Chapter 11 Customizing Images

235

Then, add a default value for a new environment variable that matches the

placeholder, CREATE_CDB, and a sed command to perform the substitution. I chose to

add the code just before the first sed command in the existing script:

["$CREATE_CDB" == "false"] || CREATE_CDB=true

sed -i -e "s|###CREATE_CDB###|$CREATE_CDB|g" "$ORACLE_BASE"/dbca.rsp

The first line checks to see if the value of CREATE_CDB is false. The two pipes (||)

are a logical expression that instructs bash to execute the following command when

the statement is false. In plain English, it says, “If CREATE_CDB is false, leave it that

way; otherwise, set it to true.” The sed expression on the following line performs the

substitution.

Where, then, does the CREATE_CDB value in the condition come from? It will be

present in the container environment, and we can pass a value in a docker run

command with the -e flag:

docker run -d \

 -e CREATE_CDB=false

...

 <IMAGE_NAME>

Any value passed to CREATE_CDB that isn’t false (including no value at all) defaults

to true, and the script creates a CDB and PDB. The container only creates a non-CDB

database when CREATE_CDB is explicitly set to false.

There’s one more change we’ll need to make. The 19c database creation script

includes CDB- and PDB-specific commands that produce errors in databases built as

non-CDB. To adapt these commands to a non-CDB environment, use the same logic

earlier. Near the end of the script, you’ll find a sqlplus command block:

sqlplus / as sysdba << EOF

 �ALTER SYSTEM SET control_files='$ORACLE_BASE/oradata/$ORACLE_SID/

control01.ctl' scope=spfile;

 ALTER SYSTEM SET local_listener='';

 ALTER PLUGGABLE DATABASE $ORACLE_PDB SAVE STATE;

 EXEC DBMS_XDB_CONFIG.SETGLOBALPORTENABLED (TRUE);

 ALTER SESSION SET "_oracle_script" = true;

 CREATE USER OPS\$oracle IDENTIFIED EXTERNALLY;

Chapter 11 Customizing Images

236

 GRANT CREATE SESSION TO OPS\$oracle;

 GRANT SELECT ON sys.v_\$pdbs TO OPS\$oracle;

 GRANT SELECT ON sys.v_\$database TO OPS\$oracle;

 �ALTER USER OPS\$oracle SET container_data=all for sys.v_\$pdbs

container = current;

 exit;

EOF

We need to remove three CDB- and PDB-specific commands for non-CDB

databases:

ALTER PLUGGABLE DATABASE $ORACLE_PDB SAVE STATE;

GRANT SELECT ON sys.v_\$pdbs TO OPS\$oracle;

ALTER USER OPS\$oracle SET container_data=all for sys.v_\$pdbs container =

current;

The following code checks the same CREATE_CDB environment variable and assigns

these commands to three variables, PDB_CMD1, PDB_CMD2, and PDB_CMD3:

["$CREATE_CDB" == "false"] || PDB_CMD1="ALTER PLUGGABLE DATABASE $ORACLE_

PDB SAVE STATE;"

["$CREATE_CDB" == "false"] || PDB_CMD2='GRANT SELECT ON sys.v_$pdbs TO

OPS$oracle;'

["$CREATE_CDB" == "false"] || PDB_CMD3='ALTER USER OPS$oracle SET

container_data=all for sys.v_$pdbs container = current;'

Pay attention to the quotes! The first variable uses double quotes, so bash substitutes

the value of $ORACLE_PDB into the command. The second and third use single quotes,

preventing bash from interpreting the dollar signs ($) as part of an environment variable.

The original commands prefix the dollar signs with the backslash (\) to escape the dollar

sign because they’re part of a “here document.” The here document passes everything

between the << EOF, after the sqlplus login, and the closing tag, EOF, as if typed directly

into SQL*Plus.

Now, substitute these variables into the original code:

sqlplus / as sysdba << EOF

 �ALTER SYSTEM SET control_files='$ORACLE_BASE/oradata/$ORACLE_SID/

contro01.ctl' scope=spfile;

Chapter 11 Customizing Images

237

 ALTER SYSTEM SET local_listener='';

 $PDB_CMD1

 EXEC DBMS_XDB_CONFIG.SETGLOBALPORTENABLED (TRUE);

 ALTER SESSION SET "_oracle_script" = true;

 CREATE USER OPS\$oracle IDENTIFIED EXTERNALLY;

 GRANT CREATE SESSION TO OPS\$oracle;

 $PDB_CMD2

 GRANT SELECT ON sys.v_\$database TO OPS\$oracle;

 $PDB_CMD3

 exit;

EOF

When creating a CDB, the variables equate to the original commands, where they’re

interpreted in the here document and passed to SQL*Plus. For non-CDB databases,

they’ll be undefined, creating blank lines in the script!

There’s one more change to make in the database health check. Docker uses health

checks to report the state of the container. If we omit this step, any container running a

non-CDB database will report an “unhealthy” status. The scripts that run the database

rely on the same checks to identify whether database creation completed properly. Left

as they are, we’ll see errors in the database logs, an unhealthy state in docker ps output,

and potentially break functionality that runs only in a “healthy” database.

The checkDBStatus.sh script performs the database and container health check.

We’ll use the same method to modify the following section, located near the top of

the file:

checkPDBOpen() {

 # Obtain OPEN_MODE for PDB using SQLPlus

 PDB_OPEN_MODE=$(sqlplus -s / << EOF

set heading off;

set pagesize 0;

SELECT DISTINCT open_mode FROM v\$pdbs;

exit;

EOF

Chapter 11 Customizing Images

238

The script assumes it’s working with a CDB. For a non-CDB database, change the

reference from pdbs to database:

["$CREATE_CDB" == "false"] && PDB_CMD=database || PDB_CMD=pdbs

The logic check is like those used before, with the addition of a logical and

represented by two ampersands (&&). This means “If CREATE_CDB is false, set PDB_CMD to

database; otherwise, set it to pdbs.”

Finally, substitute the variable into the SELECT DISTINCT line in the checkDBHealth.

sh script:

SELECT DISTINCT open_mode FROM v\$$PDB_CMD;

Pay attention to the sequence with the backslash and two dollar signs (\$$). The

backslash “escapes” the first dollar sign but allows substitution of $PDB_CMD. The

health check runs its SELECT against v$database or v$pdbs, depending on the value of

CREATE_PDB.

Congratulations! You’ve extended a database image to create CDB and non-CDB

databases, run appropriate post-creation commands, and call the proper health check

command simply by passing a variable to the docker run command!

Adapting database creation scripts to accommodate CDB and non-CDB databases

is a complex change since it touches on multiple moving parts: the response file,

substituting a placeholder and conditionally updating SQL statements in createDB.

sh, and changing the database health check. Not every change is this involved. By

adapting all or part of this technique, you’ll be able to incorporate additional flexibility

into images.

�Start and Run the Database
The final scripts to examine manage the behavior of containers and databases when

containers start. Recalling the “start” event during docker start and docker run

is essential. Thinking back to Chapter 7, cloning databases is possible because the

container doesn’t know whether it’s starting for the first time. The startup script looks to

see if specific files are present and, if so, assumes it’s not a new container and proceeds to

start the database. Otherwise, it creates a new database from scratch.

Chapter 11 Customizing Images

239

The same script, runOracle.sh, handles both scenarios and offers multiple

opportunities to introduce features. It sets the defaults for several environment variables

and calls the createDB.sh script, invokes entrypoint scripts, and starts the database and

listener by calling startDB.sh. It also controls database and listener shutdown when the

container receives a shutdown signal from docker stop.

�Summary
In this chapter, you learned how Docker uses scripts to build images and discovered

ways of updating existing scripts in Oracle’s repository to change and add functionality

to images and containers. You saw where the configuration of container operating

systems occurs. You can add additional packages to container images and modify the

Dockerfile to customize the environment and write files to images. We also covered steps

performed during database installation and how response files complement Oracle

software installation and database creation.

We explored techniques for adding new features to database containers and how

to drive their use through environment variables. You should also have a deeper

appreciation for the inner workings of containers and recognize which scripts are called

during startup. You should also have a general idea of the role health checks play in

reporting database and container status, internally and externally.

For many, the concepts covered in this chapter are adequate for tailoring containers

to suit your needs better. If you’re using Docker exclusively for noncritical work,

it’s unlikely you’ll need to write custom Dockerfiles. If so, feel free to skip ahead to

Chapter 14.

However, if you intend to use containers for more specific or critical applications

or simply want to understand more about Docker’s inner workings, continue with the

following three chapters, beginning with Chapter 12.

Chapter 11 Customizing Images

241

CHAPTER 12

Dockerfile Syntax
One of my favorite activities is cooking, and like any creative endeavor, the best results

come when you understand how to use the tools of the craft. It helps to know the rules,

which are ironclad (don’t add water to hot oil) and which have flexibility (how much

garlic is “too much!”). Others may enjoy the result, but only the chef appreciates the

process!

I see many parallels between cooking and coding and find creative outlets in both.

There are accepted, “right” ways to do certain things, but for the most part, each allows

practitioners liberty to stamp their style into the result. Sometimes, I review code and

come across a block I don’t immediately understand. After working through it, I realize

it’s functionally identical to a technique I’ve used for years, just a completely different

approach. Two authors with different backgrounds, experiences, influences, and habits

still produce the same result. I often adopt those methods into my library of “cool ways to

do stuff.”

Keep that thought in mind across the next few chapters on Dockerfiles. This isn’t an

authoritative or definitive guide but an introduction to the rules and tools you’ll need

to concoct image recipes—Dockerfiles—used by Docker’s build process to construct

images. At its core, that’s what a Dockerfile is:

•	 Ingredients: The files and objects needed by the image. In Docker,

this is known as the build context.

•	 Preparation: The order and method for combining elements. A

recipe can have one step or many. For instance, the first step in

baking a cake combines dry ingredients like flour, sugar, and baking

soda; the second mixes the eggs and milk. In the third, the wet

ingredients from step two are added to the dry ingredients from step

one. The steps in a Dockerfile are called stages, and a multistage build

works along the same lines as the cake recipe. Early stages make

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_12

https://doi.org/10.1007/978-1-4842-9033-0_12

242

intermediate preparations that combine in a later stage, producing a

completed product.

•	 Cooking: How to build and deliver the image. This is metadata. In a

recipe, it’s measurements, temperature, and baking time. In Docker,

the metadata sets the environment, defines runtime commands

called when containers start, and health checks that report status.

Databases have unique needs with different treatments than ordinary container

images, and the following few chapters are more sharply focused on addressing

techniques and considerations for building good database images. Let’s set aside

definitions of “good” database images for now and focus on how Dockerfiles work!

The good news is that there aren’t many commands to learn in the Dockerfile

instruction set! The elements are relatively straightforward, and Dockerfiles read from

top to bottom, with each line a separate instruction that tells the build process how to

construct a new image. They boil down to

•	 What image to start from

•	 How to modify the starting image by adding environment variables,

copying files, and running commands

•	 Finally, how the finished product should behave when run as a

container

This chapter assumes some familiarity with Linux and writing bash shell scripts.

�The Role of Layers in the Build Process
Behind the scenes, the build process is a series of scripted docker run–like operations

that start a container (using an existing image), do something to modify the container,

and save the result as a new image. In builds, Docker doesn’t lump multiple changes into

a single bucket. Every step is its own image. Docker layers the individual images together

to make a final image.

The layers in Docker images are like those in the overlay filesystems we looked at

in Chapter 7. Remember that a layer overlays a base layer with changes. Remember our

layered filesystem example, looking down at a game of Tic-Tac-Toe?

Containers have a single intermediate layer that stores the cumulative changes made

over a container’s lifetime. Everything is lumped together because there’s little chance

Chapter 12 Dockerfile Syntax

243

that individual changes are reusable. Docker handles images differently, though. Where

containers have a single upper layer for all changes, each step in an image build adds its

own “glass shelf,” as in Figure 12-1, adding depth to the stack of layers.

Figure 12-1.  Containers (left) capture all changes into a single upper layer.
The container view is a merger of the upper and lower layers, projected into the
working layer. Images (right) add new layers for every operation. The final image
is a union of many layers

The reason behind this multilayer approach is reusability. Think of the steps

involved in “building” a Tic-Tac-Toe board—you draw the same four lines every time.

It’s a predictable, repeatable process. But drawing lines is fundamental to building the

grids used by other games. Figure 12-2 shows a Tic-Tac-Toe game beside a “La Grille de

Sommes1” (Grid of Sums), introduced in France’s Le Monde newspaper in 2013.

1 In a Grid of Sums, you select a cell and enter a number equal to the sum of its neighbors. If the
adjacent cells have no values, enter “1.” The objective is to reach the highest possible total in
the final cell. See www.dr-mikes-math-games-for-kids.com/le-monde-grid-puzzle.html for
examples and more information.

Chapter 12 Dockerfile Syntax

http://www.dr-mikes-math-games-for-kids.com/le-monde-grid-puzzle.html

244

Figure 12-2.  Adding four lines to a Tic-Tac-Toe board (left) makes a 3x3 grid for
playing “Grid of Sums”

If you didn’t know about Game of Sums, I could describe the steps for building the

game board:

•	 “Draw a horizontal line three inches long.”

•	 “Draw another horizontal line of equal length one inch above

the first.”

•	 “Draw a three-inch vertical line, intersecting the horizontal lines one

inch from their left end.”

•	 Etc.

Or, I could simply ask you to “Draw a Tic-Tac-Toe board and add a border around the

outside.”

You cached those steps into memory as layers when you learned how to build a Tic-

Tac-Toe board. Those layers are reusable foundations you can use for constructing new

and potentially more complex games, and it’s far more efficient to reference the set of

known operations—draw a Tic-Tac-Toe board—than describe the procedure.

Docker builds images the same way. Each layer in an image is reusable and available

to other builds, from “lower horizontal line” through “Tic-Tac-Toe board.” As we build

database images, you’ll see how efficient this is. If I need two images for Oracle Database

19c, one with the 19.10 Release Update and another with the 19.11 Release Update,

Chapter 12 Dockerfile Syntax

245

everything up to applying the patch is identical, as in Figure 12-3: configure the operating

system and environment; add prerequisites; install the Oracle 19c software. I then have a

19.3.0 database I can patch to the desired level.

Figure 12-3.  Creating images for Oracle 19c databases patched with the 19.10
and 19.11 Release Updates follows the same initial steps. Docker doesn’t repeat the
work performed in existing layers. Instead, it starts with the latest or uppermost
recyclable layer

Listing 12-1 shows the simplified output from running docker image history for

an Oracle 19c database image to see how this looks in a Docker image. docker image

history displays the composite layers that form a final image and the commands that

created them.

Listing 12-1.  The first command displays the history of an Oracle 19c database

image. Read the output from bottom to top to see the commands used to create

each layer of the final image and how it evolved from a starting point to its final

form. The second command lists information on the final database and Oracle

Enterprise Linux 7-slim images, including their unique identifiers and sizes

> docker image history -H oracle/database:19.3.0-ee

IMAGE CREATED BY SIZE

f53962475832 /bin/sh -c #(nop) CMD ["/bin/sh" "-c" "exec… 0B

dceea9dcf380 /bin/sh -c #(nop) HEALTHCHECK &{["CMD-SHELL… 0B

Chapter 12 Dockerfile Syntax

246

e6a7408b308b /bin/sh -c #(nop) WORKDIR /home/oracle 0B

f94cd312d82e /bin/sh -c #(nop) USER oracle 0B

1664ac9ff6d4 /bin/sh -c $ORACLE_BASE/oraInventory/orainst… 21.8MB

6688786dc411 /bin/sh -c #(nop) USER root 0B

b6fb885c6988 /bin/sh -c #(nop) COPY --chown=oracle:dbadir… 6.19GB

0dfd2be6867c /bin/sh -c #(nop) USER oracle 0B

64bee30fc72f /bin/sh -c chmod ug+x $INSTALL_DIR/*.sh && … 184MB

53ce8dbf2fe1 /bin/sh -c #(nop) COPY multi:db377117e0d23af… 36.8kB

74619cb4eafe /bin/sh -c #(nop) COPY multi:08c35eebd2349e6… 1.96kB

bd4c7a72aa97 /bin/sh -c #(nop) ENV PATH=/opt/oracle/prod… 0B

167ee23df373 /bin/sh -c #(nop) ENV ORACLE_BASE=/opt/orac… 0B

0e43108d92e1 /bin/sh -c #(nop) ARG INSTALL_FILE_1=LINUX.… 0B

0de06b15c6b1 /bin/sh -c #(nop) ARG SLIMMING=true 0B

d1215483892c /bin/sh -c #(nop) LABEL provider=Oracle iss… 0B

9ec0d85eaed0 /bin/sh -c #(nop) CMD ["/bin/bash"] 0B

<missing> /bin/sh -c #(nop) ADD file:b0df42f2bb614be48… 133MB

> docker images

REPOSITORY TAG IMAGE ID SIZE

oracle/database 19.3.0-ee f53962475832 6.53GB

oraclelinux 7-slim 9ec0d85eaed0 133MB

The last line is the starting image. Each line above it is a layer, or “glass shelf,” that

introduced a modification. By reading the output from the bottom up, you see how the

final image evolved through a series of operations, from a starting image (the ADD file:

entry at the bottom) through completion. Each image layer has a unique ID in the first

column and a size in the last.

While we haven’t yet covered the different Dockerfile commands, look at the size

column. The layers that aren’t zero bytes have something in common. Most ADD or COPY

operations do just that—add or copy something into the mix. The output is truncated

for the remaining two commands, but were the lines printed in their entirety, you’d

see they’re running scripts or commands. These nonzero-byte layers are like the glass

shelves with something on them. The layer’s size matches the amount of change

contained on each shelf.

What about the zero-byte layers? These are metadata instructions Docker uses to run

the image. They don’t occupy space in the image. In keeping with the cooking theme,

Chapter 12 Dockerfile Syntax

247

image metadata is the information needed to prepare and finish a recipe. Things like

oven temperature and baking time aren’t physical ingredients in a cake, yet they’re still

critical to the process. In the Dockerfile, the USER root and USER oracle instructions fill

this role, telling Docker to run one or more subsequent commands as a particular user.

If you’re familiar with Oracle database installations, you might even recognize a familiar

pattern here:

1664ac9ff6d4 /bin/sh -c $ORACLE_BASE/oraInventory/orainst… 21.8MB

6688786dc411 /bin/sh -c #(nop) USER root 0B

Again, reading from the bottom up, Docker sets the user to root and runs something

in $ORACLE_BASE/oraInventory/orasinst.... The full command on that line is

$ORACLE_BASE/oraInventory/orainstRoot.sh && $ORACLE_HOME/root.sh

That’s Docker running Oracle’s post-installation root scripts! Changing the user

is a metadata operation. Running the post-installation root scripts created 21.8MB in

changes to the layers below.

Layers are powerful because they’re reusable. We don’t completely rewrite

documentation just to add a minor change, nor do we rebuild images containing

identical steps. Suppose I changed the Dockerfile used to build the database image

shown earlier. In that case, Docker understands that everything up to my edit is the

same and reuses existing image layers instead of reexecuting the steps. Given the layer

appearing here:

b6fb885c6988 /bin/sh -c #(nop) COPY --chown=oracle:dbadir… 6.19GB

The last column shows the layer uses 6.19GB of disk space. Docker can recycle that

layer (and everything before it) in new images that have changes after that step. In that

case, the 6.19GB layer isn’t duplicated—all images share the same copy!

�FROM
You’ve learned that building an image runs a container, makes changes, then saves the

result as a new image. The first step—running a container—requires an image, and

the FROM command tells Docker the image’s name. The format is straightforward: FROM

<image name>:

Chapter 12 Dockerfile Syntax

248

FROM oraclelinux:7-slim

Building an image requires an image. Where did the first image come from? Isn’t
it a chicken and the egg paradox? Not really! A special image, called scratch,
creates an empty filesystem. The advantage of using existing images is they’re
pre-built, tested, reusable, and save us the time and effort of starting from
“scratch” (literally)!

Notice the sizes of the first layer of the database image (the entry recorded with an

image ID of <missing>) and the Oracle Enterprise Linux 7-slim image in Listing 12-1 are

both 133MB. Docker added the image (ADD file:b0df42f2bb614be48…) in the first step

as the foundation for the following modifications.

�Build Stages
There’s an additional capability of FROM that preserves the result of steps to use locally,

later in the same build. It’s a foundation of multistage builds. Each stage of a multistage

build is a collection of commands—parts of a single step in a recipe. While the alias

appears in the FROM command marking the beginning of the stage, it references the result

after all operations in the stage are complete. To create an alias, add the AS keyword after

the image referenced in FROM:

FROM oraclelinux:7-slim AS base

It’s functionally identical to a recipe that reads

Step 1. Combine flour, sugar, baking soda, and salt in a bowl. Set aside.

The alias is the name of the stage, and it’s referenced in subsequent FROM commands

using the alias:

FROM base

The equivalent in a recipe is

Step 3. Retrieve the bowl of dry ingredients from Step 1 and…

In complex builds, calls to stages can have their own aliases, imparting a very

modular feel to the build process:

FROM base AS builder

Chapter 12 Dockerfile Syntax

249

Stages are local and temporary, and build processes aren’t aware of stages created in

other Dockerfiles.2

base and builder are common aliases for stages in a Dockerfile. base
usually represents a foundation result used repeatedly throughout a build. For
example, a base image for an Oracle database often starts with an OS image
(oraclelinux:7-slim) and adds standard environment variables, the oracle
user, and prerequisite packages.

builder is typically an intermediate or temporary stage for creating or
manipulating content for later use. You’ll see examples of this in the two following
chapters.

�Configure Environments: ARG and ENV
After initiating the build process with a starting image, it’s time to start customizing

things! One of the most common next steps is setting environment variables. On

a regular Linux host, the .login, .bash_login, .bashrc, or similar script sets the

environment at login.

The image in the FROM command doesn’t have the information we need. It needs

to be added. The ENV, or environment, command is the most direct and simple way of

setting environment variables. It assigns a value to a variable following the same pattern

as exporting a variable to the local environment in Linux:

ENV ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

Simple, right?

2 Docker does cache build information internally and, depending on its configuration, may
still take advantage of cached layers to improve performance. However, stage names only exist
locally in the build process and aren’t available to other builds or subsequent executions of the
same build.

Chapter 12 Dockerfile Syntax

250

�Extending Images
There’s just one problem with the preceding command. It sets the ORACLE_HOME to a

static, hard-coded value. Ideally, images should have some flexibility. Users that want

to build an image with Oracle installed under a different directory structure must edit

the ENV command in the Dockerfile and change the assignment of ORACLE_HOME to their

preferred location.

The ARG, or argument, command offers an alternative to assigning static values with

ENV. The format of the two commands is the same:

ARG ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

We still need to configure the environment with a value for ORACLE_HOME, but instead

of a hard-coded value, we’ll assign it using the value of the argument, expressed as a

shell variable ($ORACLE_HOME):

ENV ORACLE_HOME=$ORACLE_HOME

At first, this seems to accomplish the same thing and creates more work! There’s still

a static value, and now two commands instead of one:

ARG ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

ENV ORACLE_HOME=$ORACLE_HOME

What makes this better?

Recall we can override the default values for environment variables using the -e

option of the docker run command. It makes database images far more flexible than

being locked into predefined settings. The docker build command has a similar feature,

--build-arg, for overriding arguments set in the Dockerfile. (We’ll delve into docker

build in Chapter 14.)

There’s some confusion when it comes to ARG and ENV. Briefly:

•	 ARG sets default values for a variable. Arguments are only visible to

the build process and only within the stage where they’re defined.

They aren’t written into the image nor persist into subsequent

build stages. During the build process, the --build-arg option can

override the defaults.

•	 ENV assigns values to variables and preserves them in the image.

Since they’re part of the image, environment variables set in one

Chapter 12 Dockerfile Syntax

251

stage carry over into later stages. Environment variables can’t be

changed during a build.

Any variables that don’t require flexibility can be defined with ENV. Anything that

might need adjustment during the build should use both ARG and ENV.

Assigning an empty value to ARG initializes a variable and makes it available as a

build argument:

ARG INSTALL_OPTIONS=

ENV INSTALL_OPTIONS=$INSTALL_OPTIONS

Here, ARG initializes a variable, INSTALL_OPTIONS, and sets it to an empty value. ENV

assigns the value of the argument to a variable in the environment. It remains empty in

the image unless the build gives it a value.

We can create new variables in containers on the fly, using the docker run -e
flag, but that same functionality doesn’t exist for building images. The --build-
arg option can only reference an argument present in the Dockerfile.

The relationship between ARG and ENV needn’t be one to one. Take the following

example that uses arguments for database version and ORACLE_BASE and constructs an

ORACLE_HOME path:

ARG DB_VERSION=19c

ARG ORACLE_BASE=/opt/oracle

ENV ORACLE_HOME=$ORACLE_BASE/product/$DB_VERSION/dbhome_1

ENV ORACLE_BASE=$ORACLE_BASE

�Argument and Environment Scope During Builds
I mentioned earlier that variables set with ARG are only visible to the build process,

but those set with ENV are passed to the image. We can use the scope of arguments to

disguise certain aspects of the build process.

Connect to an Oracle database container and run env | sort to print a sorted list

of environment variables, as seen in Listing 12-2. It shows entries we expect to see on an

Oracle database host and some residue from the build process.

Chapter 12 Dockerfile Syntax

252

Listing 12-2.  Default environment variables set in an Oracle database container

bash-4.2$ env | sort

ARCHIVELOG_DIR_NAME=archive_logs

CHECKPOINT_FILE_EXTN=.created

CHECK_DB_FILE=checkDBStatus.sh

CHECK_SPACE_FILE=checkSpace.sh

CLASSPATH=/opt/oracle/product/19c/dbhome_1/jlib:/opt/oracle/product/19c/

dbhome_1/rdbms/jlib

CLONE_DB=false

CONFIG_RSP=dbca.rsp.tmpl

CREATE_DB_FILE=createDB.sh

CREATE_OBSERVER_FILE=createObserver.sh

DG_OBSERVER_NAME=

DG_OBSERVER_ONLY=false

ENABLE_ARCHIVELOG=false

HOME=/home/oracle

HOSTNAME=59ae22d8ed19

INSTALL_DB_BINARIES_FILE=installDBBinaries.sh

INSTALL_DIR=/opt/install

INSTALL_FILE_1=LINUX.X64_193000_db_home.zip

INSTALL_RSP=db_inst.rsp

LD_LIBRARY_PATH=/opt/oracle/product/19c/dbhome_1/lib:/usr/lib

ORACLE_BASE=/opt/oracle

ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

ORACLE_SID=ORCLCDB

PATH=/opt/oracle/product/19c/dbhome_1/bin:/opt/oracle/product/19c/dbhome_1/

OPatch/:/usr/sbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin

PRIMARY_DB_CONN_STR=

PWD=/home/oracle

PWD_FILE=setPassword.sh

RELINK_BINARY_FILE=relinkOracleBinary.sh

RUN_FILE=runOracle.sh

SETUP_LINUX_FILE=setupLinuxEnv.sh

SHLVL=1

Chapter 12 Dockerfile Syntax

253

SLIMMING=true

STANDBY_DB=false

START_FILE=startDB.sh

TERM=xterm

USER_SCRIPTS_FILE=runUserScripts.sh

WALLET_DIR=

_=/usr/bin/env

Some of these environment variables don’t need to be here, including those

that begin with INSTALL. These variables all point to files and directories used in the

Dockerfile during the Oracle database software installation step. The artifacts they point

to aren’t present in the final image—they’re removed (or, more accurately, not included)

in the final image used by docker run:

bash-4.2$ ls -l $INSTALL_DIR

ls: cannot access /opt/install: No such file or directory

bash-4.2$ find / -name $INSTALL_DB_BINARIES_FILE 2>/dev/null

bash-4.2$ find / -name $INSTALL_FILE_1 2>/dev/null

bash-4.2$ find / -name $INSTALL_RSP 2>/dev/null

bash-4.2$

For those unfamiliar with the 2>/dev/null syntax: It sends errors into the void!
The number 2 is shorthand for stderr, the error messages we’d generally see
printed to the terminal. The caret, >, redirects these errors to the Linux null device
file, /dev/null. This trick prevents “permission denied” errors for directories the
oracle user can’t read from cluttering the output.

The database software installation scripts need this information. The container

doesn’t. Strictly speaking, they don’t need to persist in the container environment. Don’t

get me wrong—I greatly respect the authors and contributors that maintain Oracle’s

container repository, and their work over the years is remarkable and insightful. I’m

not saying it’s wrong for these variables to be in the final image, merely because my

coding style and preferences differ. But, their presence helps illustrate how to leverage

differences in ARG and ENV!

Chapter 12 Dockerfile Syntax

254

Passing these values as arguments instead of adding them to the environment would

define them to the build process. They’d be visible to the software installation scripts

called during the build but absent from the final image. My arguments in favor of this

approach are as follows:

•	 It produces a “cleaner,” less cluttered environment.

•	 It makes it less apparent the database is running in a Linux container.

•	 It limits information an attacker could use to gain information about

methods used to build the image.

Again, there’s no right or wrong here, just different ways of doing things.

Another option for passing variables to scripts without setting them in the

environment is to define them as part of a command string. The RUN instruction, covered

later in this chapter, can include a locally scoped variable definition as part of its

command:

RUN INSTALL_DIR=/opt/install && \

 INSTALL_DB_BINARIES_FILE=installDBBinaries.sh && \

 $INSTALL_DIR/$INSTALL_DB_BINARIES_FILE

The variables here are set only in the scope of the RUN command that needs them.

�Build Dockerfile Templates with Arguments
The FROM command must be the first command in a Dockerfile. It makes sense—it’s

challenging to do anything without a starting image! The single exception that proves the

rule is the ARG command.

A Dockerfile can have arguments as the first instructions and use those arguments

in a FROM command. It’s helpful for writing Dockerfile templates that add flexibility

to builds. For instance, all the database images we’ve worked with so far use Oracle

Enterprise Linux 7-slim as the base image. That image name is hard-coded into the FROM

statement. But what if we wanted to use a different version? Rewriting the Dockerfile and

changing the image is one option. Another is using an argument-based image:

ARG IMAGE_TAG=7-slim

FROM oraclelinux:$IMAGE_TAG

A Dockerfile written this way is more flexible and potentially future-proof.

Chapter 12 Dockerfile Syntax

255

�Assign Multiple Variables
Another difference between ARG and ENV is that arguments must be set individually, but a

single ENV command can set multiple variables:

ARG VAR1=VALUE1

ARG VAR2=VALUE2

ARG VAR3=VALUE3

ENV VAR1=VALUE1 \

 VAR2=VALUE2 \

 VAR3=VALUE3

The backslash (\) is a continuation character that tells Linux there’s more to the

command on the following line. The preceding ENV command could also be written as

ENV VAR1=VALUE1 VAR2=VALUE2 VAR3=VALUE3

The advantage of the first method is clarity. Each variable could also be defined in

separate ENV commands, but since every instruction in a Dockerfile creates a new layer,

combining commands into as few lines as necessary reduces overhead.

�Variables and Secrets
Don’t use variables to pass secrets to images or containers! As you can see, environment

variables set during the build persist into the final image and are inherited by containers!

Instead, use Docker secrets discussed in the section on RUN later in the chapter.

�LABEL
Labels are optional instructions for setting image metadata. It’s considered good practice

to add labels to images, particularly for injecting usage information users might find

helpful for running your images.

Like ENV, labels are key-value pairs, and a single LABEL instruction can set multiple

labels. The value of a label should be enclosed in double quotes. Any arguments or

environment variables set during the build and included in a label are reflected in the

image metadata. Consider the partial contents of a Dockerfile with some arguments,

environment variables, and labels:

Chapter 12 Dockerfile Syntax

256

ARG ORACLE_BASE=/opt/oracle

ENV ORACLE_BASE=$ORACLE_BASE \

 ORACLE_HOME=$ORACLE_HOME \

 PATH=$PATH:$ORACLE_HOME/bin

LABEL "oracle_home"="$ORACLE_HOME" \

 "oracle_base"="$ORACLE_BASE" \

 "description"="This is a database image"

The metadata of the final image contains three labels (assuming the argument for

ORACLE_BASE isn’t overridden during the build):

"Labels": {

 "description" = "This is a database image"

 "oracle_base"="/opt/oracle"

 "oracle_home"=/opt/oracle/product/19c/dbhome_1"

}

Labels are unstructured, and there are no strict rules covering what should and

shouldn’t be labeled. They often capture image properties such as volumes, ports, and

contact information. In this case, the convention for label names is to separate elements

with dots, such as function.name. There are good examples in the Oracle Dockerfile. It

sets the following labels:

LABEL "provider"="Oracle" \

 "issues"="https://github.com/oracle/docker-images/issues" \

 "volume.data"="/opt/oracle/oradata" \

 "volume.setup.location1"="/opt/oracle/scripts/setup" \

 "volume.setup.location2"="/docker-entrypoint-initdb.d/setup" \

 "volume.startup.location1"="/opt/oracle/scripts/startup" \

 "volume.startup.location2"="/docker-entrypoint-initdb.d/startup" \

 "port.listener"="1521" \

 "port.oemexpress"="5500"

Chapter 12 Dockerfile Syntax

257

To view an image’s label metadata, run the inspect command and review the Labels

section:

"Labels": {

 "issues": "https://github.com/oracle/docker-images/issues",

 "port.listener": "1521",

 "port.oemexpress": "5500",

 "provider": "Oracle",

 "volume.data": "/opt/oracle/oradata",

 "volume.setup.location1": "/opt/oracle/scripts/setup",

 "volume.setup.location2": "/docker-entrypoint-initdb.d/setup",

 "volume.startup.location1": "/opt/oracle/scripts/startup",

 "volume.startup.location2": "/docker-entrypoint-initdb.d/startup"

}

To limit and format the output of docker inspect to only display labels:

docker inspect \

 �--format='{{range $p,$i:=.Config.Labels}}{{printf "%s = %s\n" $p $i}}

{{end}}' \

 <IMAGE NAME>

The result:

issues = https://github.com/oracle/docker-images/issues

port.listener = 1521

port.oemexpress = 5500

provider = Oracle

volume.data = /opt/oracle/oradata

volume.setup.location1 = /opt/oracle/scripts/setup

volume.setup.location2 = /docker-entrypoint-initdb.d/setup

volume.startup.location1 = /opt/oracle/scripts/startup

volume.startup.location2 = /docker-entrypoint-initdb.d/startup

Chapter 12 Dockerfile Syntax

258

�USER
In the section on layers, you saw that the USER instruction sets the login user for running

commands. Docker runs commands as the root user by default, but it’s a good practice

to set the user in your Dockerfile explicitly.

Stages in Dockerfiles aren’t limited to a single user. It’s perfectly acceptable to set a

user, run a command, set a new user, run another command, and so on. You see that in

Listing 12-1, where the user changes from oracle to root and back to oracle. When you

consider what’s happening during an Oracle database software installation, it parallels

the manual steps:

•	 As the oracle user, prepare the environment, copy and unzip the

installation files, and run the installation.

•	 As the root user, run the post-installation root scripts.

•	 As the oracle user, finalize the installation.

The USER command is a “cooking instruction” affecting the commands that follow. It

sets the active user (and with it the group) ID, and the rules are no different than you’d

experience were you directly logged into a system. The active user must have the proper

permissions on files and directories to successfully copy or execute files. The results

inherit permissions just as they do in a typical environment.

�COPY
The COPY instruction adds ingredients into images, copying source files from the local

system to a destination inside the image. It follows the same general rules as the Linux

cp command, including the ordering syntax of source followed by destination and how it

interprets wildcards and regular expressions.

The Dockerfile in Oracle’s container repository includes some examples of COPY in

practice:3

COPY $SETUP_LINUX_FILE $CHECK_SPACE_FILE $INSTALL_DIR/

3 Remember that the file names and directory shown here are set as variables in the container
environment.

Chapter 12 Dockerfile Syntax

259

A single COPY instruction can add multiple source files to a single directory, as

seen here, where the $SETUP_LINUX_FILE and $CHECK_SPACE_FILE are copied to the

$INSTALL_DIR directory. The last argument is the destination, while everything before is

interpreted as a source.

�Setting Ownership
Files copied into images are owned by the current user set in the stage. The ownership

must change if they need to be modified or executed later by a different user. We can

accomplish that in two steps—copy the files, then change the ownership—but COPY has

a facility to do both at once: the --chown flag. With --chown=<USER>:<GROUP>, the user

(and optionally group) ownership is set within the COPY command itself:

COPY --chown=oracle:dba $INSTALL_FILE_1 $INSTALL_RSP $INSTALL_DB_BINARIES_

FILE $INSTALL_DIR/

This example from the Oracle container repository copies three files, the database

installation zip file ($INSTALL_FILE_1) and the software installation and response

files ($INSTALL_DB_BINARIES_FILE and $INSTALL_RSP, discussed in Chapter 11), to

the installation directory path and sets their ownership to the oracle user and dba

group. The oracle user then has the necessary rights to update and run the files later in

the build.

�Context in the Build Process
Look back on these examples of COPY commands and notice that they reference files

using a relative path. An absolute path is fully qualified against the filesystem root, like /

etc/oratab. Absolute paths begin with a slash, while relative paths reference locations

on a filesystem based on the current working directory. If my current working directory

is /etc, the relative path to the oratab file is just oratab. Absolute paths are precise—

there’s no question about what file or directory we’re talking about. Relative paths are,

well, relative. They require some sort of context.

In Docker, this build context is the directory where the build runs. If the Dockerfile

is our recipe, the context is the kitchen and COPY the instructions for finding each

ingredient. I set the context—navigating to the kitchen—and assemble all the ingredients

Chapter 12 Dockerfile Syntax

260

before beginning. (If you’ve ever prepared a meal in someone else’s kitchen, think of the

COPY command as asking where they keep the salt!)

Context isn’t only crucial for the success of a build. It also affects the speed and

size of the build process. How? Listing 12-3 shows a fictitious directory tree, where I

consolidated database installation files into one subdirectory, db_files. The scripts

used to construct an image are in a second subdirectory, scripts.

Listing 12-3.  An alternative, fictitious directory structure consolidating

installation media and management scripts into their directories

> tree .

.

├── db_files
│ ├── linuxamd64_12102_database_1of2.zip
│ ├── linuxamd64_12102_database_2of2.zip
│ ├── linuxamd64_12102_database_se2_1of2.zip
│ ├── linuxamd64_12102_database_se2_2of2.zip
│ ├── linuxx64_12201_database.zip
│ ├── LINUX.X64_180000_db_home.zip
│ ├── LINUX.X64_193000_db_home.zip
│ └── LINUX.X64_213000_db_home.zip
└── scripts
 ├── checkDBStatus.sh
 ├── checkSpace.sh
 ├── createDB.sh
 ├── dbca.rsp.tmpl
 ├── db_inst.rsp
 ├── installDBBinaries.sh
 ├── runOracle.sh
 ├── runUserScripts.sh
 ├── setPassword.sh
 ├── setupLinuxEnv.sh
 └── startDB.sh

When starting a build from this directory, Docker performs an inventory of the

context—the directory where the build is running and all its subdirectories. It’s cataloging

all the available ingredients, whether they’re used in the recipe or not. The database

Chapter 12 Dockerfile Syntax

261

installation media under the db_files directory are roughly 3GB to 4GB per version.

Docker reads all of these files, or just shy of 19GB, into its context. It’s unnecessarily time-

consuming and wastes memory and storage in the Docker engine.

Think back to Chapter 4. You copied the database installation files into a version-

specific directory. Keeping the files for each version separate, in their own directories,

reduces build context. Each directory is its own kitchen, containing only the tools and

ingredients necessary for preparing a single database version.

Context can affect image size, too. COPY accepts directories as a source and works

with wildcards and regular expressions. But be careful! Working from the same directory

structure in Listing 12-3, the following commands are equally bad for build context, but

the second inflates the image size:

COPY db_files/LINUX.X64_193000_db_home.zip /opt/install

COPY db_files/LINUX* /opt/install

In each case, the context includes the whole 19GB db_files directory, but

•	 The first command only copies a single file, LINUX.X64_193000_db_

home.zip, into the image.

•	 The second command uses a wildcard to copy all files beginning with

LINUX into the /opt/install directory, adding 7.2GB to the image!

Wildcard-based and full directory copy operations are convenient but may introduce

confidential information into images. I can copy the full scripts directory:

COPY scripts /home/oracle

This copies the contents of the scripts directory (relative to the directory where

the build runs) into the image’s /home/oracle directory. If keys, certificates, or other

sensitive information exist in the scripts directory, they’re now part of the image!

Anyone with access to the image (or the containers that use the image) can see and

read that information! Keep the scripts and files needed for Docker builds in separate,

dedicated directories. Not only will it shorten build time and save resources, but it also

reduces the likelihood of sharing private information.4

4 If you need to pass sensitive information to a build, use Docker secrets. Secrets securely mount
directories and files for consumption by a build, including files otherwise beyond build context.
Secret information is unavailable outside the step where the secret is mounted into the image.

Chapter 12 Dockerfile Syntax

262

�Copy from Images and Build Stages
Docker takes a very modular approach to building infrastructure. From layers in

containers and images to images themselves, there’s a tendency toward reusability,

extending to the COPY instruction. Besides files on the local host, the source of a COPY

instruction can be files and directories in existing images—including the aliased images

created by build stages.

To copy from existing images, use the --from=<IMAGE NAME> option as in this

example from an Oracle Dockerfile:

COPY --chown=oracle:dba --from=builder $ORACLE_BASE $ORACLE_BASE

Revisiting the cake recipe:

Step 3. Retrieve the bowl of dry ingredients from Step 1 and fold in the wet ingredients

from Step 2.

In the preceding command, the entire $ORACLE_BASE directory is copied from an

image called builder—part of a multistage build—to the $ORACLE_BASE directory in the

target image, with directory ownership set to oracle:dba. On the surface, this might

appear wasteful or redundant. The builder stage is part of the same build, and we can

rightly assume the $ORACLE_BASE directory already exists. Copying it from one place to

another isn’t changing anything in the directory, so why make an effort?

We’ll cover this further in the following two chapters, but briefly, the reason behind

this is (again) image size and layers. The stage, builder, where the $ORACLE_BASE is

created, includes installation media and scripts that aren’t needed in the final database

image. Remember earlier where we looked for the files and directories listed as

environment variables beginning INSTALL? Those are all created in the builder stage, in

directories outside the ORACLE_BASE. The stage creates the ORACLE_BASE directory, which

includes the database software and inventory.5

The other steps involved in the software installation are creating and modifying files

elsewhere in the image. In a “normal” environment, we’d simply delete the files we no

longer needed. But in overlay filesystems, deleting files doesn’t delete them. It just adds

an opaque layer to hide what’s below. The original file is still there. It still takes up space.

To get around this, we copy files into the builder stage and perform the installation,

then copy only what we need—the ORACLE_BASE—into a new, pristine image!

5 While the oraInventory directory normally exists outside the ORACLE_BASE, Oracle’s Docker
builds add the inventory here.

Chapter 12 Dockerfile Syntax

263

Copying from existing images has other applications for Oracle databases, including

patching and database upgrades.

�Patching

Oracle’s quarterly database patches are cumulative. Patches for a new version are valid

for any prior edition. If I’m patching a 19c database with the 19.15 Release Update (RU)

patch, all the following paths should result in the same outcome:

•	 Base database version 19.3; apply 19.15 RU

•	 Base database version 19.3; apply 19.14 RU; apply 19.15 RU

•	 Base database version 19.3; apply 19.7 RU; apply 19.14 RU; apply

19.15 RU

•	 Base database version 19.3; apply 19.7 RU; apply 19.10 RU; rollback to

19.7 RU; apply 19.14 RU; apply 19.15 RU

While they should all work the same, I’ll wager the first is least likely to encounter

problems and reflects the construct in Figure 12-3. It’s one patch. Chances are good it’s

a well-tested, if not the most tested, path. The others introduce complexity and, with it,

uncertainty. How many times do you suppose Oracle tested the last scenario? What’s

the likelihood that others have taken the same steps, discovered issues, and reported

them to Oracle? Now think of the different database features, options, and configurations

unique to your environment that might complicate testing and validation. Multiply this

by every possible Release Update. Wouldn’t you rather upgrade from 19.3 every time?

These scenarios all have one thing in common: they begin with a base version. One

Docker image—a reference or gold image—built with a 19.3 database home supports any

19c patch using the simplest, easiest, and presumably safest path:

COPY --chown=oracle:dba --from=oracle/database:19.3.0-ee $ORACLE_BASE

$ORACLE_BASE

COPY --chown=oracle:dba <patch file> /opt/install

Chapter 12 Dockerfile Syntax

264

The only difference is the patch ID. The process and opatch command are the same.

One automated process that takes the patch ID as a parameter handles any patch. The

final images, one for each Release Update, are reference images in their own right.6

�Database Upgrades

Database upgrades require two database homes: one for the source and another for the

target. You could write a Dockerfile to install source and target database homes from

scratch or copy the already-configured homes from existing database images. For an

upgrade from 12.2.0.1 to 19.3.0:

ENV ORACLE_19C_HOME=$ORACLE_BASE/product/19c/dbhome_1

COPY --chown=oracle:dba --from=oracle/database:12.2.0.1-ee $ORACLE_

BASE $ORACLE_BASE

COPY --chown=oracle:dba --from=oracle/database:19.3.0-ee $ORACLE_19C_HOME

$ORACLE_19C_HOME

Pay attention to the files being copied and the values of environment variables!

The first COPY adds the entire source database installation at the $ORACLE_BASE, which

includes the database inventory—the second copies only the contents of the new

19c database home to a new target location. Using ORACLE_BASE overwrites files and

directories under the 12c structure with the same name, and ORACLE_HOME replaces the

12c database home.7

�RUN
The RUN instruction is where the real work of building images takes place. I’m

concentrating on its applications for building database images: running commands,

executing scripts, and calling secrets.

6 This is one way of patching databases in Docker. Some others

•	 Build a Dockerfile that uses the base database version in the beginning FROM instruction.
•	 Use one Dockerfile recipe and dynamically read patches from a directory.
7 This is a high-level example of the usefulness of copying from existing images. Preparing an
upgrade-ready image requires additional steps. The image that receives the two database homes
must be prepared with the Oracle 19c prerequisites, and the target database home needs to be
registered in the database inventory.

Chapter 12 Dockerfile Syntax

265

�Running Commands and Scripts
RUN calls scripts and shell commands just as you would at an ordinary command prompt.

And as with many instructions covered so far, RUN can include multiple commands and

span more than one line, using two ampersands, &&, as a logical connection between

each instruction and the backslash, \, to continue a line. Reaching once more into

Oracle’s 19c Dockerfile, the following snippet copies files into the image, makes all the

*.sh scripts in the $INSTALL_DIR executable, and runs two scripts:

COPY $SETUP_LINUX_FILE $CHECK_SPACE_FILE $INSTALL_DIR/

RUN chmod ug+x $INSTALL_DIR/*.sh && \

 $INSTALL_DIR/$CHECK_SPACE_FILE && \

 $INSTALL_DIR/$SETUP_LINUX_FILE

Stringing commands together in a single RUN consolidates them into one layer,

producing smaller, more efficient images.

�Commands or Scripts?
We looked at the setupLinuxEnv.sh file in Chapter 11. The commands in Listing 12-4 are

part of that script and prepare the operating system for an Oracle installation.

Listing 12-4.  The commands executed by the setupLinuxEnv.sh script for a

19.3.0 database

mkdir -p "$ORACLE_BASE"/scripts/setup && \

mkdir "$ORACLE_BASE"/scripts/startup && \

mkdir -p "$ORACLE_BASE"/scripts/extensions/setup && \

mkdir "$ORACLE_BASE"/scripts/extensions/startup && \

ln -s "$ORACLE_BASE"/scripts /docker-entrypoint-initdb.d && \

mkdir "$ORACLE_BASE"/oradata && \

mkdir -p "$ORACLE_HOME" && \

chmod ug+x "$ORACLE_BASE"/*.sh && \

yum -y install oracle-database-preinstall-19c openssl && \

rm -rf /var/cache/yum && \

ln -s "$ORACLE_BASE"/"$PWD_FILE" /home/oracle/ && \

Chapter 12 Dockerfile Syntax

266

echo oracle:oracle | chpasswd && \

chown -R oracle:dba "$ORACLE_BASE"

These could be part of the Dockerfile RUN command:

RUN chmod ug+x $INSTALL_DIR/*.sh && \

 $INSTALL_DIR/$CHECK_SPACE_FILE && \

 mkdir -p "$ORACLE_BASE"/scripts/setup && \

 mkdir "$ORACLE_BASE"/scripts/startup && \

 mkdir -p "$ORACLE_BASE"/scripts/extensions/setup && \

 mkdir "$ORACLE_BASE"/scripts/extensions/startup && \

 ln -s "$ORACLE_BASE"/scripts /docker-entrypoint-initdb.d && \

 mkdir "$ORACLE_BASE"/oradata && \

 mkdir -p "$ORACLE_HOME" && \

 chmod ug+x "$ORACLE_BASE"/*.sh && \

 yum -y install oracle-database-preinstall-19c openssl && \

 rm -rf /var/cache/yum && \

 ln -s "$ORACLE_BASE"/"$PWD_FILE" /home/oracle/ && \

 echo oracle:oracle | chpasswd && \

 chown -R oracle:dba "$ORACLE_BASE"

Which is better? There are arguments in favor of both. It boils down to coding style,

needs, and what’s easiest for you and your team to test and manage.

�EXPOSE and VOLUME
Use the EXPOSE instruction to define the specific ports (and protocols) available by

default when the image runs as a container. Chapter 8 discussed that the network ports

exposed by an image could be mapped to ports on the host. Ports that aren’t explicitly

exposed in an image can be added during docker run through the --expose flag. Adding

containers to networks, covered in Chapter 9, is often a better option than port mapping.

The VOLUME instruction sets the directories inside a container that are available as

volumes when running the image.

These instructions don’t provide functionality that isn’t already available through

docker run and, as such, seem to have fallen out of favor.

Chapter 12 Dockerfile Syntax

267

�WORKDIR
WORKDIR, for Working Directory, sets the default directory used by specific following

instructions, including CMD. For our purposes, it’s part of the environment setup for users

logging in to database containers:

USER oracle

WORKDIR /home/oracle

Unless otherwise defined, users log in as the oracle user with their session

beginning in /home/oracle.

�CMD
The CMD, or command instruction, is the default command Docker runs whenever a

container starts. For Oracle’s database containers, it’s the runOracle.sh script. You may

recall from Chapter 11 that this script contains the logic Docker uses to start a database

if one exists. Otherwise, create a new database from values set in or passed to the

environment through the docker run command.

�HEALTHCHECK
The HEALTHCHECK is the set of rules Docker uses for reporting whether running

containers are healthy. Sometimes, a basic command is all that’s needed to check status.

A more conditional set of rules is often necessary for a database, and the health check is

a script. For Oracle’s database images, it’s the checkDBStatus.sh script.

HEALTHCHECK requires a command (or script) that generates an exit code of 0,

resulting in a healthy status, or 1 to show the container as unhealthy. The frequency and

other check characteristics are controlled through optional flags:

•	 --interval=<check interval>: The number of seconds between

each health check. The default is 30 seconds, and the first health

check runs interval seconds after startup or once the startup period

(below) ends.

•	 --timeout=<timeout>: How many seconds Docker waits for the

check to complete before reporting failure. The default is 30 seconds.

Chapter 12 Dockerfile Syntax

268

•	 --start-period=<startup timeout>: How long Docker waits before

attempting the first health check. During the start period, Docker

reports the container as “starting.” The default is zero, meaning

containers show “starting” during the initial interval.

Remember the different actions it performs when selecting startup timeouts for

database containers and viewing status. Starting an existing database takes a few

seconds, while creating a database may take several minutes, and environments that

alert on unhealthy containers must settle on a reasonable balance. A long startup

time that accommodates new database creation won’t immediately recognize existing

databases that didn’t start successfully. A short startup time catches failed database

startups but incorrectly reports containers creating new databases as unhealthy.

�Summary
Understanding Dockerfiles is the key to building images tailored to your own needs.

The knowledge you’ve gained elevates your image “cooking” skills from microwaving

prepackaged frozen entrees to preparing delicious, healthy meals! This was a lot of

information to digest, and you did a great job with this cooking lesson! The essential

concepts we covered in this chapter that will help you understand and write Dockerfiles

were layers, extensibility, and context.

Image layers, like the layers in a container’s overlay filesystem, are the additions

and modifications projected, one atop another, to produce a result. Each instruction

in a Dockerfile creates a layer and can potentially be shared with other similar images.

Reusing layers reduces Docker’s footprint on a host and improves overall speed and

efficiency. Copying images from remote repositories will skip layers already on a host

instead of recopying the existing data.

Extensibility is more art than science since it involves anticipating the things you

might want to do in the future, then integrating that flexibility into your Dockerfiles. The

argument instruction introduces that adaptability into builds. Use it to set defaults while

offering the option to change aspects of images as they’re built.

Context has implications for performance, resource use, and security. It’s essential

to recognize which directories and files are part of the build context to avoid adding

unnecessary content to images or accidentally exposing sensitive information. Use

caution and avoid overly broad COPY commands that could include extraneous files!

Chapter 12 Dockerfile Syntax

269

The Dockerfile is much more than a set of assembly instructions. It’s also the

metadata Docker uses to manage containers. Metadata appears in images as zero-byte

layers that tell Docker what user to invoke, the commands or scripts to run on startup,

and the rules to use for reporting the health and status of containers.

In the next chapter, we’ll look at examples of Dockerfiles and offer some

opportunities and solutions to consider when adapting or developing Dockerfiles for

Oracle databases. If writing custom Dockerfiles from scratch is more than you need, skip

to Chapter 14, covering the commands and options available in docker build.

Chapter 12 Dockerfile Syntax

271

CHAPTER 13

Oracle Dockerfile Recipes
When I was 13 years old, I saw a movie called Breaking Away, a coming-of-age story

about four friends trying to find their place in the world after high school. The main

character is a young man who’s so enamored with bike racing that he pretends to be

an Italian cyclist. The following day, by chance, I attended a local bike race. That one-

two punch was all it took, and that same afternoon I headed to the local bike shop and

announced to anyone who’d listen that I was going to be a bike racer! I was a wide-eyed,

impressionable teenager and soaked up advice and opinions from local cycling club

members, regulars at bike shops, and articles and photos in magazines. One shop in

town had a beautiful Italian Colnago. It was black, with gold accents and gold-plated

Campagnolo components. It was the epitome of Italian cycling equipment, displayed on

the wall behind the register like a piece of art!

I made friends with a gentleman at the shop,1 and he became my mentor in the

sport. He turned my attention away from my dream bike—and for that matter, any

Colnago—and recommended a less-elegant Campania instead. It had an ugly gray paint

job and seemed twice the weight of anything else. In its defense, it sported an Italian

name, and a decal pronounced it was “Professional” in gold script, somewhat softening

its less-than-eye-catching appearance alongside the bike of my dreams!

What was truly important: the Campania turned out to be a near-indestructible

workhorse, forgiving of a clumsy beginner like me, and affordable for a high school kid

with a part-time job. (The same couldn’t be said of any Colnago the shop sold—gold

plated or not!) That bike served me well and survived the mishaps and crashes that were

part of my learning curve. It was the right bike for me at the time. It got me through the

beginner stage of the sport, and when the time came to replace it, I’d learned enough to

know, beautiful as they are, a Colnago wasn’t right for me.

Think of a hobby or activity you enjoy and recall how you started. Chances are you

were unsure where to begin or what equipment you needed. During those early days

1 Thank you Bob from Two Wheel Transit Authority, wherever you are!

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_13

https://doi.org/10.1007/978-1-4842-9033-0_13

272

of learning the ropes, you might have done research or joined a club to get advice on

what to buy and how to hone your skills. You probably didn’t buy the most expensive

equipment, starting instead with something more basic. Spending time improving your

skills with introductory gear prepares you for the next step and helps justify investing in

something better (and likely more expensive).

The Oracle GitHub repository is great for breaking into the world of Linux containers.

It’s full of ready-made formulas that remove the risk and cost of exploring container

platforms. There’s no better introduction for anyone curious about using containers

as a platform for Oracle technology. Indeed, it’s where I got my start with Docker, and

it carried me through my first few years. Without it, you wouldn’t be reading this book!

It’s an introductory resource, though, and there comes the point where you’ll need

something more appropriate and tailored to your needs and plans—particularly if you

intend to use containers as a production platform for Oracle databases.

This chapter opens by highlighting limitations you’re likely to encounter with ready-

made, multipurpose images available in public repositories. We’ll introduce additional

Dockerfile features that broaden the possibilities for repository design and discuss the

pros and cons of dedicated vs. all-in-one directory structures. Then, after demonstrating

techniques for adding extensibility to Dockerfiles and building templates, I’ll offer

patterns for solving challenges you’ll encounter when designing and authoring your own

Dockerfile libraries. Readers should be comfortable with shell scripting and familiar

with basic Dockerfile instructions and concepts. Think of this as a guide to selecting a

“second bike” after putting in some miles, getting comfortable in the saddle, learning

how containers work, and determining where you want to go next!

�Multipurpose Image Limitations
Back in the days when I worked in a physical office with an on-site data center, I carried

a multitool (basically a Swiss Army Knife) on my belt. It had pliers, Phillips and Flathead

screwdrivers, a wire stripper, and a few blades. When I needed to work on something

in the data center, most of the tools I needed were conveniently located on my hip.

The quality of the tools was perfectly adequate for quick work—replacing a hard drive

or network card, securing a server in a rack, or prying loose a stubborn, ill-fitting part.

Would I use a multitool knife for chopping vegetables? No.

Ready-made, multipurpose images fill a similar need. They’re reliable and

convenient and provide an easy on-ramp into the world of containers. But while they’re

Chapter 13 Oracle Dockerfile Recipes

273

adaptable and fit wide-ranging needs, you’ll eventually encounter situations that require

more precise tools. In some cases, you’ll be able to leverage existing scripts, adapting

or rewriting them to add features or modify functionality. We identified the scripts

responsible for implementing basic functionality in Chapter 11. Minor modifications to

these scripts address limitations and oddities in multipurpose image builds.

�Fixed Directory Paths
Containers typically provide services to clients. They’re endpoints that accept input

and produce results. For our container databases, the values of the ORACLE_HOME and

ORACLE_BASE directories inside containers aren’t important if the results are correct. It’s

no different than traditional environments. Clients connecting to databases on physical

hosts or virtual machines don’t care about the implementation details.

These paths are essential for consistency and monitoring, though. If you’re

introducing containers as analogs for simulating or testing existing systems, scripts and

procedures are only portable across systems when the directory structures match. The

same applies to monitoring systems and utilities. Standard configurations shared across

environments simplify management and maintenance.

Users have two choices for adapting existing Dockerfiles and scripts, depending

on the need for flexibility. The first is simply changing hard-coded values to match

standards by editing the ENV assignments in Dockerfiles. The path is still hard-coded. It’s

just set to the same value used elsewhere.

The second option leverages arguments, introducing a default value but adding the

option to override the default during the build:

Set a default value for the ORACLE_BASE:

ARG ORACLE_BASE=/u01/opt/oracle

Assign the ORACLE_BASE to environment variables in the image:

ENV ORACLE_BASE=$ORACLE_BASE

ENV ORACLE_HOME=$ORACLE_BASE/product/19c/dbhome_1

This is more appropriate for users working across multiple environments and a

foundation for more adaptable image construction.

Chapter 13 Oracle Dockerfile Recipes

274

�Contradictions
I confess that one of my pet peeves in Oracle images is having the Oracle Inventory

Directory installed under ORACLE_BASE. Oracle’s OFA, or Optimal Flexible Architecture,

places the inventory outside ORACLE_BASE to support multiple installations. In a Real

Application Clusters, or RAC, system, an OFA-compliant directory structure might look

like this:

Oracle Inventory

/u01/app/oraInventory

Database BASE and HOME:

/u01/app/oracle

/u01/app/oracle/product/$DB_VERSION/dbhome_1

Grid Infrastructure BASE and HOME:

/u01/app/grid

/u01/app/$GRID_VERSION/grid

The separate, dedicated directories allow distinct ownership and permissions

necessary to support role separations, all managed from a single inventory directory.

There’s a reasonable explanation for doing it differently in containers. Look at one of

Oracle’s Dockerfiles, and near the end, you’ll see the following block:

USER oracle

COPY --chown=oracle:dba --from=builder $ORACLE_BASE $ORACLE_BASE

USER root

RUN $ORACLE_BASE/oraInventory/orainstRoot.sh && \

 $ORACLE_HOME/root.sh

The COPY command copies the whole ORACLE_BASE directory structure from a

prior stage, referenced by the --from=builder argument, into the final image. The

following instructions run the post-installation root scripts in the final image, setting the

permissions on the inventory directory and registering the ORACLE_HOME.

If the inventory directory is under the ORACLE_BASE, a single command copies

everything—the inventory, the ORACLE_BASE, and the ORACLE_HOME. Since every

command creates a separate layer in the image, consolidating the inventory under

the ORACLE_BASE reduces the number of layers (and potentially, the final image size).

Chapter 13 Oracle Dockerfile Recipes

275

Running docker history against the image shows the single layer created by this copy.

I’ve used the format command to print just the “CREATED BY” field, showing only the

command used to create the layer for clarity:

> docker image history --no-trunc --format "table {{.CreatedBy}}" oracle/

database:19.3.0-ee

CREATED BY

...

/bin/sh -c $ORACLE_BASE/oraInventory/orainstRoot.sh && $ORACLE_

HOME/root.sh

/bin/sh -c #(nop) USER root

/bin/sh -c #(nop) COPY --chown=oracle:dbadir:7f7ee78c2762cb56f03228b45ce0c

0301ea5fd88c4ac14dd98d74eb5621054e4 in /opt/oracle

/bin/sh -c #(nop) USER oracle

...

This is another situation where, from the end user's perspective, the inventory

location in the container doesn’t matter. It doesn’t make a difference to clients—the

endpoint is a database that does database things. It does matter for

•	 Real Application Clusters or Global Service Manager installations

•	 Systems with multiple ORACLE_BASE directories

•	 Environments with role separation

•	 Remaining consistent with existing infrastructure

•	 Preventing installer errors

In the last case, if the inventory location is under the ORACLE_BASE, the Oracle

installation may return the following warnings (along with a nonzero exit code):

Attention: INS-32056: The specified Oracle Base contains the existing

Central Inventory location.

Recommendation: Oracle recommends that the Central Inventory location is

outside the Oracle Base directory. Specify a different location for the

Oracle Base.

or

Chapter 13 Oracle Dockerfile Recipes

276

[WARNING] [INS-32056] The specified Oracle Base contains the existing

Central Inventory location: /opt/oracle/oraInventory.

ACTION: Oracle recommends that the Central Inventory location is

outside the Oracle Base directory. Specify a different location for the

Oracle Base.

In a perfect world, automation should fail on errors and warnings, flag the conditions

for review, or include conditional exception handlers to ignore them. Suppose the

warning isn’t caught or treated as a potential failure. In that case, there’s no way to

differentiate an expected, “safe to ignore” warning from others that could affect the

reliability or accuracy of images.

There are multiple ways to get around this issue. In my scripts, I create an argument

and environment variable for the ORACLE_INVENTORY and add a second COPY instruction

to the Dockerfile for the inventory directory:

ARG ORACLE_INVENTORY=/u01/app/oraInventory

ENV ORACLE_INVENTORY=$ORACLE_INVENTORY

We’ll also need to add a new COPY instruction to handle the inventory:

USER oracle

COPY --chown=oracle:dba --from=builder $ORACLE_BASE $ORACLE_BASE

COPY --chown=oracle:dba --from=builder $ORACLE_INVENTORY $ORACLE_INVENTORY

Then, update the RUN command that executes the post-installation root scripts by

changing the reference to ORACLE_BASE to the new ORACLE_INVENTORY variable:

USER root

RUN $ORACLE_INVENTORY/oraInventory/orainstRoot.sh && \

 $ORACLE_HOME/root.sh

That addresses the steps in the Dockerfile. We also need to push the new directory

location to the database installation. The database installation response file, db_inst.rsp,

sets the inventory path via the INVENTORY_LOCATION entry. Change the following line from

INVENTORY_LOCATION=###ORACLE_BASE###/oraInventory

to

INVENTORY_LOCATION=###ORACLE_INVENTORY###/oraInventory

Chapter 13 Oracle Dockerfile Recipes

277

The last step is adding a line to the installDBBinaries.sh script to substitute the

placeholder with the inventory location from the environment. Modify the section of

code that replaces the placeholders to read:

Replace place holders

sed -i -e "s|###ORACLE_EDITION###|$EDITION|g" "$INSTALL_DIR"/"$INSTALL_

RSP" && \

sed -i -e "s|###ORACLE_BASE###|$ORACLE_BASE|g" "$INSTALL_DIR"/"$INSTALL_

RSP" && \

sed -i -e "s|###ORACLE_HOME###|$ORACLE_HOME|g" "$INSTALL_DIR"/"$INSTALL_

RSP" && \

sed -i -e "s|###ORACLE_INVENTORY###|$ORACLE_INVENTORY|g" "$INSTALL_

DIR"/"$INSTALL_RSP"

There’s some work involved in updating the inventory. Still, it’s a worthwhile (and

sometimes necessary) step for adding versatility to images, maintaining consistency

with existing conventions, or remaining compliant with standards and recommended

practices. It also removes a disparity between containers and “traditional” environments

that objectors raise as arguments against containers!

�Extended Multitenancy Options
Oracle introduced the multitenant database option in version 12c. Multitenant

architecture becomes mandatory with version 21c and beyond. Oracle container images

create multitenant databases consisting of the container database, or CDB, and a single

pluggable database, or PDB. Users can set the names of the container and pluggable

databases by passing environment variables to the docker run command. However,

there’s no option to create a non-container database or automatically add multiple

pluggable databases during the initial database setup.

�Create Non-CDB Databases
Oracle may prefer we create and use container databases in versions 12c through 19c.

Still, non-CDB installations dominate real-world installations and will likely remain in

the majority for the next several years. It makes sense then that we should be able to

Chapter 13 Oracle Dockerfile Recipes

278

choose the architecture created in containers. Chapter 11 presented the steps for passing

an option to docker run for selecting between container or non-container architectures.

Briefly, it involves

•	 Updating the dbca.rsp.tmpl template, replacing the hard-coded

value given to createAsContainerDatabase with a placeholder.

When a new container starts, it calls the createDB.sh script,

referencing the Database Configuration Assistant, or DBCA,

template for database creation. The placeholder introduces the

option of changing the database creation method by substituting an

environment variable.

•	 Adding a sed find/replace command to conditionally substitute

either true or false, based on an optional environment variable, into

the DBCA template.

•	 Modifying the database health check, in checkDBStatus.sh, to read

the value of open mode from either v$pdbs (for container databases)

or v$database (for non-container) databases.

•	 Conditionally removing commands specific to pluggable databases

from the database creation script.

This pattern, in whole or part, can be adapted to add similar functionality during

database creation and startup.

�Create Multiple Pluggable Databases
Pluggable databases can increase database infrastructure's usefulness, capacity, and

lifespan by consolidating multiple stand-alone databases into pluggable databases,

or PDBs, on a single host. Like schemas, PDBs offer another means of segmenting or

separating data, and it’s not unusual to see container databases housing two or more

PDBs. It makes sense to reflect this practice into database images, adding the ability to

create multiple PDBs during initial container creation. There are two avenues to achieve

this. The first changes the DBCA template and reads variables from the environment.

The second leverages the Docker entrypoint directory and runs a script after the

database setup completes.

Chapter 13 Oracle Dockerfile Recipes

279

The first method works similarly to creating a non-CDB database, inserting a

placeholder to the Database Creation Assistant template, and adding a sed command to

conditionally substitute the placeholder with a value derived from the environment. The

key in the DBCA template is numberOfPDBs, set by default to one:

numberOfPDBs=1

Replace this with a placeholder:

numberOfPDBs=###PDB_COUNT###

Add a sed command to the createDB.sh script to change the placeholder. Keep in

mind the need to validate the incoming variable is a positive number, provide a default

value, and perhaps set a practical upper limit for the number of pluggable databases:

 if ! [[$PDB_COUNT =~ '^[0-9]+$']] �# PDB_COUNT must be

a number

then PDB_COUNT=1

elif ["$PDB_COUNT" -ge 1 -a "$PDB_COUNT" -le 5] �# PDB_COUNT must be

between 1 and 5

then PDB_COUNT=$PDB_COUNT

else PDB_COUNT=1 �# Set all other cases to

the default

fi

sed -i -e "s|###PDB_COUNT###|$PDB_COUNT|g" "$ORACLE_BASE"/dbca.rsp

You could control the creation of CDB vs. non-CDB databases through the same

variable by checking whether PDB_COUNT is zero. If so, create a non-CDB database.

When the numberOfPDBs variable is greater than one, the Database Configuration

Assistant creates the container database and first pluggable database, then creates the

additional pluggable databases. When numberOfPDBs is greater than one, Oracle uses the

value of pdbName in the response file as the prefix and appends the PDB’s index. It derives

the value of pdbName in the template from ORACLE_PDB in the environment. Be aware of

this behavior to avoid unexpected pluggable database names! Remember, the default

value of ORACLE_PDB is ORCLPDB1, and for a PDB count of one, Oracle creates a single PDB

called ORCLPDB1. But, if the PDB count is two, Oracle uses the PDB name as a base value,

and the PDB names will be ORCLPDB11 and ORCLPDB12!

Chapter 13 Oracle Dockerfile Recipes

280

�Use the Setup Entrypoint
We introduced Docker’s entrypoint directories in Chapter 7. If you need a quick refresher,

the entrypoint is a special path in Docker, usually /docker-entrypoint-initdb.d, for

mounting a local host directory. Container startup scripts may look here for scripts and

run them. I say they may look here because it’s up to the author—it’s not an automatic

feature, and if the startup script doesn’t recognize the directory (or looks elsewhere),

Docker treats the files mounted at the entrypoint as, well, files!

Oracle’s container repository recognizes entrypoints at the standard location,

/docker-entrypoint-initdb.d, and /opt/oracle/scripts. It expects two

subdirectories—setup and startup—searching them for scripts with either a .sh or

.sql suffix. Automation built into the container checks for files in the setup directory

and runs them once only after the initial database creation completes.2 The files in

the startup directory run every time the container starts—including after the initial

database setup.

Here are a few tips and cautions when using entrypoints in database containers.

Files in entrypoint directories are processed in alphanumeric order, regardless
of the file type. Name files in the setup and scripts directory with numeric
prefixes to guarantee their execution order:

01_add_pdb.sh

02_add_users.sql

03_update_passwords.sql

Shell scripts, with the .sh suffix, are executed as the container’s default user,
oracle. SQL scripts are passed to SQL*Plus and run as the SYSDBA user.

Remember to set the container in the script for SQL commands intended for
pluggable databases.

2 A new container referencing an oradata volume containing an existing database (a trick for
rapid database cloning) won’t run setup actions. The script logic looks to see whether a database
is present and, if not, executes code to call the Database Configuration Assistant and any post-
installation setup scripts. It will, however, still perform the startup actions.

Chapter 13 Oracle Dockerfile Recipes

281

Files mounted in the startup directory run every time a container starts.
They’re not part of the image. Changes to these files on the local host (or in other
containers) reflect into all containers sharing the host directory, potentially leading
to unexpected behavior and failures when containers restart. Remember this when
using a shared directory for multiple containers and when changing files!

The setup entrypoint lets us invoke the Database Configuration Assistant with the

-createPluggabledatabase option and add pluggable databases via a script like the one

shown in Listing 13-1.

Listing 13-1.  A setup script for creating an additional pluggable database, adding

a TNS entry, and setting the pluggable database state. Save the file to a directory

and mount it to a volume at either /dockerfile-entrypoint-initdb.d/setup or

/opt/oracle/scripts/setup

#!/bin/bash

Create an additional pluggable database.

$ORACLE_HOME/bin/dbca -silent -createPluggableDatabase -pdbName PDB2

-sourceDB $ORACLE_SID -createAsClone true -createPDBFrom DEFAULT

-pdbAdminPassword "oracle123" || exit 1

cat << EOF >> $ORACLE_HOME/network/admin/tnsnames.ora

PDB2 =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 0.0.0.0)(PORT = 1521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = PDB2)

)

)

EOF

$ORACLE_HOME/bin/sqlplus / as sysdba << EOF

alter pluggable database PDB2 save state;

EOF

Chapter 13 Oracle Dockerfile Recipes

282

I named this file 01_add_pdb.sh and ran a new container called SETUP to

demonstrate the call to the script:

docker run -d --name SETUP \

 -e ORACLE_SID=ORCLPDB \

 -e ORACLE_PDB=PDB1 \

 -v ~/setup:/opt/oracle/scripts/setup \

 oracle/database:19.3.0-ee

Docker calls the usual database creation scripts. When DBCA completes, the script

reads the contents of the setup directory and runs files with a .sh or .sql suffix. It finds

and runs the 01_add_pdb.sh script in the setup location. The tail output in Listing 13-2

shows the tail end of the docker logs output where the custom user script ran and

created the pluggable database.

Listing 13-2.  Output from docker logs showing custom user script execution

during container creation. The 01_add_pdb.sh script creates a pluggable

database, named PDB2. When it completes, it returns control to the createDB.sh

script, which in turn reports the database is ready for users

Executing user defined scripts

/opt/oracle/runUserScripts.sh: running /opt/oracle/scripts/setup/01_

add_pdb.sh

Prepare for db operation

13% complete

Creating Pluggable Database

15% complete

19% complete

23% complete

31% complete

53% complete

Completing Pluggable Database Creation

60% complete

Executing Post Configuration Actions

100% complete

Pluggable database "PDB2" plugged successfully.

Chapter 13 Oracle Dockerfile Recipes

283

Look at the log file "/opt/oracle/cfgtoollogs/dbca/CDB/PDB2/CDB.log" for

further details.

SQL*Plus: Release 19.0.0.0.0 - Production on Wed Jan 17 17:55:13 2022

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL>

Pluggable database altered.

SQL> Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 - Production

Version 19.3.0.0.0

DONE: Executing user defined scripts

The Oracle base remains unchanged with value /opt/oracle

#########################

DATABASE IS READY TO USE!

#########################

The example in Listing 13-1 creates a single pluggable database using a fixed name

and password. It works for a limited, specific case. What if we wanted to create multiple

pluggable databases or needed a more flexible solution to add PDBs based on a runtime

condition?

Let’s extend the original script as seen in Listing 13-3. Instead of a static value for the

PDB name, the script checks to see whether a new environment variable, PDB_LIST, is

set. The variable represents a comma-delimited list of one or more pluggable database

names to add once database creation finishes. It loops over each list element and

performs the same steps as the original version—create a new PDB, add a TNS entry,

and set the PDB state—but does so dynamically.

Chapter 13 Oracle Dockerfile Recipes

284

Listing 13-3.  This modified script dynamically adds pluggable databases,

looping over a comma-delimited list of PDB names passed to the container in an

environment variable

#!/bin/bash

Create additional pluggable databases.

 if [-n "$PDB_LIST"] # A PDB list is defined

then

Capture the existing IFS (Internal Field Separator)

OLDIFS=$IFS

Set IFS to a comma before looping:

IFS=,

Loop over PDBs in the list:

 for pdb_name in $PDB_LIST

 do

Return IFS to its original value while inside the loop:

IFS=$OLDIFS

Create the PDB:

$ORACLE_HOME/bin/dbca -silent -createPluggableDatabase -pdbName $pdb_name

-sourceDB $ORACLE_SID -createAsClone true -createPDBFrom DEFAULT

-autoGeneratePasswords || exit 1

Add a TNS entry:

cat << EOF >> $ORACLE_HOME/network/admin/tnsnames.ora

$pdb_name =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 0.0.0.0)(PORT = 1521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = $pdb_name)

)

)

EOF

Chapter 13 Oracle Dockerfile Recipes

285

Open the PDB, save its state:

sqlplus / as sysdba << EOF

alter pluggable database $pdb_name save state;

EOF

Set IFS back to a comma before returning to the next loop step:

IFS=,

done

Set IFS back to its original value:

IFS=$OLDIFS

fi

After dropping the original SETUP container, I rerun the command, this time defining

the PDB_LIST variable to "TEST,DEV":

docker run -d --name SETUP \

 -e ORACLE_SID=ORCLPDB \

 -e ORACLE_PDB=PDB1 \

 -e PDB_LIST="TEST,DEV" \

 -v ~/setup:/opt/oracle/scripts/setup \

 oracle/database:19.3.0-ee

The createDB.sh script checks the setup entrypoint and finds the 01_add_pdb.

sh script, just as before. The script checks whether the PDB_LIST variable is set. If not,

it returns control to the createDB.sh script. The variable is present in this example,

though, and the loop processes the list elements, creating the TEST and DEV pluggable

databases and TNS entries, and saves the PDB states. Listing 13-4 shows the output from

docker logs for the new container, using the updated PDB script.

Chapter 13 Oracle Dockerfile Recipes

286

Listing 13-4.  The tail end of the docker logs output in a container running

the updated version of the 01_add_pdb.sh script, showing the creation of two

pluggable databases, TEST and DEV

Executing user defined scripts

/opt/oracle/runUserScripts.sh: running /opt/oracle/scripts/setup/01_

add_pdb.sh

Prepare for db operation

13% complete

Creating Pluggable Database

15% complete

19% complete

23% complete

31% complete

53% complete

Completing Pluggable Database Creation

60% complete

Executing Post Configuration Actions

100% complete

Pluggable database "TEST" plugged successfully.

Look at the log file "/opt/oracle/cfgtoollogs/dbca/CDB/TEST/CDB.log" for

further details.

SQL*Plus: Release 19.0.0.0.0 - Production on Wed Jan 17 20:16:39 2022

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL>

Pluggable database altered.

SQL> Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 - Production

Version 19.3.0.0.0

Chapter 13 Oracle Dockerfile Recipes

287

Prepare for db operation

13% complete

Creating Pluggable Database

15% complete

19% complete

23% complete

31% complete

53% complete

Completing Pluggable Database Creation

60% complete

Executing Post Configuration Actions

100% complete

Pluggable database "DEV" plugged successfully.

Look at the log file "/opt/oracle/cfgtoollogs/dbca/CDB/DEV/CDB.log" for

further details.

SQL*Plus: Release 19.0.0.0.0 - Production on Wed Jan 17 20:20:34 2022

Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.3.0.0.0

SQL>

Pluggable database altered.

SQL> Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 - Production

Version 19.3.0.0.0

DONE: Executing user defined scripts

The Oracle base remains unchanged with value /opt/oracle

#########################

DATABASE IS READY TO USE!

#########################

Chapter 13 Oracle Dockerfile Recipes

288

One thing to notice in the modified script is the presence of

-autoGeneratePasswords rather than a fixed password in the dbca command. It has to

do with the sequence of events for creating a database in a new container:

•	 The container starts and executes runOracle.sh.

•	 runOracle.sh checks for an existing database and finds none. It

calls createDB.sh and passes the value of ORACLE_PWD to the script.

ORACLE_PWD isn’t exported or present in the environment unless it’s

set explicitly as part of the docker run command or a Podman secret

is passed.3

•	 createDB.sh creates the database. For the password, it first checks

whether an Oracle Wallet is present and, if so, uses the wallet value.

If not, the value of ORACLE_PWD passed from runOracle.sh isn’t

empty; it uses that. Otherwise, it instructs the Database Configuration

Assistant to generate a password.

•	 When it finishes, createDB.sh returns control to runOracle.sh.

•	 runOracle.sh next calls runUserScripts.sh but does not pass the

value of ORACLE_PWD.

•	 runUserScripts.sh discovers the 01_add_pdb.sh script and runs it.

Because of the way Linux shells work, the ORACLE_PWD variable isn’t guaranteed

to have a value beyond the runOracle.sh and createDB.sh scripts. If it doesn’t,

-pdbAdminPassword "$ORACLE_PWD" produces an error. In the interest of simplicity and

brevity, I let PDB creation autogenerate the PDB password. Adding similar logic to that

found in createDB.sh, checking for a wallet and the presence of a Podman secret would

further improve the script.

�Create a Read-Only Database Home
Oracle Database 18c added an option to create read-only database homes, removing

configuration files from the Oracle database software directory. In older versions of

Oracle, the ORACLE_HOME is a mix of software and configuration. The ORACLE_HOME/

3 Podman secrets are mechanisms for sharing confidential information to containers, similar to
build secrets.

Chapter 13 Oracle Dockerfile Recipes

289

dbs directory is the default location for password files and the parameter files used

during database startup. The ORACLE_HOME/network/admin directory holds network

configurations, including the listener.ora, sqlnet.ora, and tnsnames.ora files. When

database homes support multiple instances, these database-specific files aren’t well

separated and are vulnerable to being confused or overwritten by actions from another

database. This shortcoming is evident in how Docker moves and copies configuration

files out of the database home to a special directory under /opt/oracle/oradata/

dbconfig. It’s key to cloning databases from an ordinary directory backup, as covered in

Chapter 5.

With the addition of the read-only homes came the need to track information about

the home. Oracle records this in a special file called the orabasetab. It’s patterned on the

/etc/oratab file and located at $ORACLE_HOME/install/orabasetab. In a legacy, read-

write home, the contents of the file look like this:

#orabasetab file is used to track Oracle Home associated with Oracle Base

/opt/oracle/product/19c/dbhome_1:/opt/oracle:OraDB19Home1:N:

Individual fields, separated by colons, reflect different properties of the home.

In order:

	 1.	 The ORACLE_HOME directory, /opt/oracle/product/19c/dbhome_1.

	 2.	 The ORACLE_BASE used by the home, /opt/oracle.

	 3.	 The unique Oracle Home Name, assigned during installation,

OraDB19Home1.

	 4.	 The read-only status of the home is indicated by Y or N.

The fourth field in this file, set to N, means this home is not read-only, and its

configuration files are in the “normal” places. The database and network configuration

files in a read-only home move from the ORACLE_HOME to new locations under the

ORACLE_BASE. Two new environment variables, the ORACLE_BASE_CONFIG and ORACLE_

BASE_HOME, track these directories, and they default to

ORACLE_BASE_CONFIG=$ORACLE_BASE

ORACLE_BASE_HOME=$ORACLE_BASE/homes/<HOME NAME>

Chapter 13 Oracle Dockerfile Recipes

290

The HOME NAME in the $ORACLE_BASE_HOME is the third field in the orabasetab. Based

on the preceding example, substituting the values from the orabasetab reveals the base

locations for configuration files if this was a read-only home:

ORACLE_BASE_CONFIG=/opt/oracle

ORACLE_BASE_HOME=/opt/oracle/homes/OraDB19Home1

Everything that used to exist under $ORACLE_HOME/dbs—parameter, server

parameter, and password files—moves to $ORACLE_BASE_CONFIG/dbs. What was

previously stored in $ORACLE_HOME/network/admin—the TNS, SQL*Net, and listener

files—relocates to $ORACLE_BASE_HOME/network/admin.

The ORACLE_BASE_CONFIG and ORACLE_BASE_HOME environment variables are

optional, and Oracle provides two new binaries for reporting their locations:

•	 orabaseconfig, for ORACLE_BASE_CONFIG

•	 orabasehome, for ORACLE_BASE_HOME

They derive the correct locations by checking the fourth, read-only home field in the

orabasetab. Through these two environment variables, we can divine the right path to

database configurations in a database home, no matter the type of home. It’s important

to know these directories in any database but essential in a container environment

because they contain configuration files that must relocate to the volume mounted to /

opt/oracle/oradata to retain containers' full function and capability. Remember that

this volume holds the complete contents of a database—including its configuration—

and we begin to realize that modifying the container image to include a Read-Only

Home option involves

•	 Performing actions to convert the database software directory to a

Read-Only Home

•	 Setting the proper directory paths for configuration files

•	 Updating scripts to use the correct destinations when referencing

configurations

Chapter 13 Oracle Dockerfile Recipes

291

�Convert a Database Home to Read-Only
A single command, $ORACLE_HOME/bin/roohctl -enable (for Read-Only Oracle Home

Control), converts pre-21c database homes to read-only.4 It’s executed after installing

the database software but before creating a database.5 There are two opportunities for

running the command in the Docker lifecycle:

•	 During image creation, following the database software

installation steps

•	 When starting a new database container, before creating the database

Converting the ORACLE_HOME to read-only during image creation forces every

container run from the image to use a read-only home. Leaving this option until runtime

offers more flexibility for our containers and is the solution pursued here.

As you’ve probably guessed, we’ll control whether to convert the home by checking a

runtime environment variable. I’m using ROOH:

Enable read-only Oracle Home:

 if ["${ROOH^^}" = "ENABLE"]

then $ORACLE_HOME/bin/roohctl -enable

fi

This reads the value of ROOH from the environment and converts it to uppercase using

bash variable expansion—the ^^ characters. When the result matches ENABLE, the script

converts the home to read-only. Place this command in the createDB.sh script, near

the beginning of the file and before any operations that run the Database Configuration

Assistant. (I added it just before the check for INIT_SGA_SIZE and INIT_PGA_SIZE.)

�Resolve Configuration Directories
We’ll use the two new binaries Oracle added for reporting configuration directories:

orabaseconfig and orabasehome. In a read-write home, they default to the ORACLE_

HOME, but in read-only homes respond with their new placement under ORACLE_

BASE. Regardless of the type of home—read-only or read-write—we use these commands

4 There’s no option to disable a read-only home.
5 Among the tasks performed by DBCA are creating and populating configuration files. Whether
the ORACLE_HOME is read-only or read-write affects the location of those files.

Chapter 13 Oracle Dockerfile Recipes

292

to assign the proper values for ORACLE_BASE_CONFIG and ORACLE_BASE_HOME in scripts.

Since we’ll perform this action repeatedly, I chose to create a function:

function setOracleBaseDirs {

 export ORACLE_BASE_CONFIG="$($ORACLE_HOME/bin/orabaseconfig)"

 export ORACLE_BASE_HOME="$($ORACLE_HOME/bin/orabasehome)"

}

The function should appear at the top of the createDB.sh and runOracle.sh scripts,

above any other function that calls setOracleBaseDirs to populate the configuration

directories.

�Update Scripts
The existing repository only anticipates a read-write home and relies on the “old”

default—ORACLE_HOME—for all its configuration files. We need to change them to use the

new references:

•	 $ORACLE_HOME/dbs becomes $ORACLE_BASE_CONFIG/dbs.

•	 $ORACLE_HOME/network/admin becomes $ORACLE_BASE_HOME/

network/admin.

In createDB.sh, these appear in two functions, setupNetworkConfig

and setupTnsnames. Listing 13-5 shows the modifications I made, calling the

setOracleBaseDirs at the start of each function and using the new variables.

Listing 13-5.  The setOracleBase function assigns appropriate values to

variables. It’s used in the two networking setup functions, and references to

ORACLE_HOME/network/admin change to ORACLE_BASE_HOME/network/admin to

accommodate read-only homes

############## Set the ORACLE_BASE_CONFIG and ORACLE_BASE_HOME variables

##############

function setOracleBaseDirs {

 export ORACLE_BASE_CONFIG="$($ORACLE_HOME/bin/orabaseconfig)"

 export ORACLE_BASE_HOME="$($ORACLE_HOME/bin/orabasehome)"

}

Chapter 13 Oracle Dockerfile Recipes

293

############## Setting up network related config files (sqlnet.ora,

listener.ora) ##############

function setupNetworkConfig {

 setOracleBaseDirs

 mkdir -p "$ORACLE_BASE_HOME"/network/admin

 # sqlnet.ora

 �echo "NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT, HOSTNAME)" > "$ORACLE_

BASE_HOME"/network/admin/sqlnet.ora

 # listener.ora

 echo "LISTENER =

(DESCRIPTION_LIST =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))

 (ADDRESS = (PROTOCOL = TCP)(HOST = 0.0.0.0)(PORT = 1521))

)

)

DEDICATED_THROUGH_BROKER_LISTENER=ON

DIAG_ADR_ENABLED = off

" > "$ORACLE_BASE_HOME"/network/admin/listener.ora

}

####################### Setting up tnsnames.ora ###########################

function setupTnsnames {

 setOracleBaseDirs

 mkdir -p "$ORACLE_BASE_HOME"/network/admin

 # tnsnames.ora

 �echo "$ORACLE_SID=localhost:1521/$ORACLE_SID" > "$ORACLE_BASE_HOME"/

network/admin/tnsnames.ora

 echo "$ORACLE_PDB=

(DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = 0.0.0.0)(PORT = 1521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

Chapter 13 Oracle Dockerfile Recipes

294

 (SERVICE_NAME = $ORACLE_PDB)

)

)" >> "$ORACLE_BASE_HOME"/network/admin/tnsnames.ora

}

I made similar changes to runOracle.sh in Listing 13-6, adding the new function

and updating references to ORACLE_HOME/dbs and ORACLE_HOME/network/admin in the

three helper functions, moveFiles, symLinkFiles, and undoSymLinkFiles.

Listing 13-6.  Updates to the runOracle.sh script for handling the variable

directory paths in read-only and read-write homes

############## Set the ORACLE_BASE_CONFIG and ORACLE_BASE_HOME variables

##############

function setOracleBaseDirs {

 export ORACLE_BASE_CONFIG="$($ORACLE_HOME/bin/orabaseconfig)"

 export ORACLE_BASE_HOME="$($ORACLE_HOME/bin/orabasehome)"

}

########### Move DB files ############

function moveFiles {

 setOracleBaseDirs

 if [! -d "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"]; then

 mkdir -p "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/

 fi;

 �mv "$ORACLE_BASE_CONFIG"/dbs/spfile"$ORACLE_SID".ora "$ORACLE_BASE"/

oradata/dbconfig/"$ORACLE_SID"/

 �mv "$ORACLE_BASE_CONFIG"/dbs/orapw"$ORACLE_SID" "$ORACLE_BASE"/oradata/

dbconfig/"$ORACLE_SID"/

 �mv "$ORACLE_BASE_HOME"/network/admin/sqlnet.ora "$ORACLE_BASE"/oradata/

dbconfig/"$ORACLE_SID"/

 �mv "$ORACLE_BASE_HOME"/network/admin/listener.ora "$ORACLE_BASE"/

oradata/dbconfig/"$ORACLE_SID"/

 �mv "$ORACLE_BASE_HOME"/network/admin/tnsnames.ora "$ORACLE_BASE"/

oradata/dbconfig/"$ORACLE_SID"/

Chapter 13 Oracle Dockerfile Recipes

295

 �mv "$ORACLE_HOME"/install/.docker_* "$ORACLE_BASE"/oradata/

dbconfig/"$ORACLE_SID"/

 # oracle user does not have permissions in /etc, hence cp and not mv

 cp /etc/oratab "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/

 symLinkFiles;

}

########### Symbolic link DB files ############

function symLinkFiles {

 setOracleBaseDirs

 if [! -L "$ORACLE_BASE_CONFIG"/dbs/spfile"$ORACLE_SID".ora]; then

 �ln -s "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/spfile"$ORACLE_

SID".ora "$ORACLE_BASE_CONFIG"/dbs/spfile"$ORACLE_SID".ora

 fi;

 if [! -L "$ORACLE_BASE_CONFIG"/dbs/orapw"$ORACLE_SID"]; then

 �ln -s "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/orapw"$ORACLE_

SID" "$ORACLE_BASE_CONFIG"/dbs/orapw"$ORACLE_SID"

 fi;

 if [! -L "$ORACLE_BASE_HOME"/network/admin/sqlnet.ora]; then

 �ln -s "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/sqlnet.ora

"$ORACLE_BASE_HOME"/network/admin/sqlnet.ora

 fi;

 if [! -L "$ORACLE_BASE_HOME"/network/admin/listener.ora]; then

 �ln -s "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/listener.ora

"$ORACLE_BASE_HOME"/network/admin/listener.ora

 fi;

 if [! -L "$ORACLE_BASE_HOME"/network/admin/tnsnames.ora]; then

 �ln -s "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/tnsnames.ora

"$ORACLE_BASE_HOME"/network/admin/tnsnames.ora

 fi;

 # oracle user does not have permissions in /etc, hence cp and not ln

 cp "$ORACLE_BASE"/oradata/dbconfig/"$ORACLE_SID"/oratab /etc/oratab

}

Chapter 13 Oracle Dockerfile Recipes

296

########### Undoing the symbolic links ############

function undoSymLinkFiles {

 setOracleBaseDirs

 if [-L "$ORACLE_BASE_CONFIG"/dbs/spfile"$ORACLE_SID".ora]; then

 rm "$ORACLE_BASE_CONFIG"/dbs/spfile"$ORACLE_SID".ora

 fi;

 if [-L "$ORACLE_BASE_CONFIG"/dbs/orapw"$ORACLE_SID"]; then

 rm "$ORACLE_BASE_CONFIG"/dbs/orapw"$ORACLE_SID"

 fi;

 if [-L "$ORACLE_BASE_HOME"/network/admin/sqlnet.ora]; then

 rm "$ORACLE_BASE_HOME"/network/admin/sqlnet.ora

 fi;

 if [-L "$ORACLE_BASE_HOME"/network/admin/listener.ora]; then

 rm "$ORACLE_BASE_HOME"/network/admin/listener.ora

 fi;

 if [-L "$ORACLE_BASE_HOME"/network/admin/tnsnames.ora]; then

 rm "$ORACLE_BASE_HOME"/network/admin/tnsnames.ora

 fi;

}

�Run Containers with Read-Only Homes
The preceding script changes are only present in the repository. We’ll have to rebuild or

recreate the image before the modified scripts are available to new containers. Navigate

to the docker-images/OracleDatabase/SingleInstance/dockerfiles directory and run

the buildContainerImage.sh script to recreate the image with the new script versions:

./buildContainerImage.sh -v 19.3.0 -e

When the build completes, run a new container and add the ROOH=ENABLE

environment variable to create a read-only home in the container:

docker run -d --name ROOH \

 -e ROOH=ENABLE \

 oracle/database:19.3.0-ee

Then, report the output by tailing the container log with docker logs -f ROOH. The

first output from the log shows the creation of the read-only home and its assets:

Chapter 13 Oracle Dockerfile Recipes

297

Enabling Read-Only Oracle home.

Update orabasetab file to enable Read-Only Oracle home.

Orabasetab file has been updated successfully.

Create bootstrap directories for Read-Only Oracle home.

Bootstrap directories have been created successfully.

Bootstrap files have been processed successfully.

Read-Only Oracle home has been enabled successfully.

Check the log file /opt/oracle/cfgtoollogs/roohctl/roohctl-220821PM123432.

log for more details.

That’s followed by the familiar listener startup message, but with a twist! It references

the listener.ora in its new location, /opt/oracle/homes/OraDB19Home1/network/

admin, under the ORACLE_BASE_HOME:

LSNRCTL for Linux: Version 19.0.0.0.0 - Production on 21-AUG-2022 12:34:33

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Starting /opt/oracle/product/19c/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 19.0.0.0.0 - Production

System parameter file is /opt/oracle/homes/OraDB19Home1/network/admin/

listener.ora

Log messages written to /opt/oracle/diag/tnslsnr/d06ab6991050/listener/

alert/log.xml

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)

(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 19.0.0.0.0 -

Production

Start Date 21-AUG-2022 12:34:46

Uptime 0 days 0 hr. 0 min. 13 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Chapter 13 Oracle Dockerfile Recipes

298

Listener Parameter File /opt/oracle/homes/OraDB19Home1/network/admin/

listener.ora

Listener Log File /opt/oracle/diag/tnslsnr/d06ab6991050/listener/

alert/log.xml

Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)(PORT=1521)))

The listener supports no services

The command completed successfully

Log in to the container and review the contents of $ORACLE_HOME/install/

orabasetab. The fourth field, indicating whether or not the home is read-only, is Y in the

new container:

#orabasetab file is used to track Oracle Home associated with Oracle Base

/opt/oracle/product/19c/dbhome_1:/opt/oracle:OraDB19Home1:Y:

In the container’s $ORACLE_BASE directory, you’ll see two new directories, dbs and

homes. Once database creation finishes, the runOracle.sh script moves the configuration

files to /opt/oracle/oradata/dbconfig and adds links:

bash-4.2$ ls -l $ORACLE_BASE/dbs

total 12

-rw-rw---- 1 oracle oinstall 1544 Jan 21 15:57 hc_ORCLCDB.dat

-rw-r----- 1 oracle oinstall 43 Jan 21 15:56 initORCLCDB.ora

-rw-r----- 1 oracle oinstall 24 Jan 21 14:43 lkORCLCDB

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 15:58 orapwORCLCDB -> /opt/oracle/

oradata/dbconfig/ORCLCDB/orapwORCLCDB

lrwxrwxrwx 1 oracle oinstall 54 Jan 21 15:58 spfileORCLCDB.ora -> /opt/

oracle/oradata/dbconfig/ORCLCDB/spfileORCLCDB.ora

bash-4.2$ ls -l $ORACLE_BASE/homes/OraDB19Home1/network/admin

total 0

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 15:58 listener.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/listener.ora

lrwxrwxrwx 1 oracle oinstall 47 Jan 21 15:58 sqlnet.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/sqlnet.ora

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 15:58 tnsnames.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/tnsnames.ora

Chapter 13 Oracle Dockerfile Recipes

299

bash-4.2$ ls -l /opt/oracle/oradata/dbconfig/ORCLCDB/

total 24

-rw-r--r-- 1 oracle oinstall 234 Jan 21 14:38 listener.ora

-rw-r----- 1 oracle oinstall 2048 Jan 21 14:47 orapwORCLCDB

-rw-r--r-- 1 oracle oinstall 780 Jan 21 15:58 oratab

-rw-r----- 1 oracle oinstall 3584 Jan 21 16:17 spfileORCLCDB.ora

-rw-r--r-- 1 oracle oinstall 54 Jan 21 14:38 sqlnet.ora

-rw-r----- 1 oracle oinstall 197 Jan 21 15:58 tnsnames.ora

If I create a container without setting the ROOH value, these files appear in their

expected locations:

bash-4.2$ ls -l $ORACLE_HOME/dbs

total 12

-rw-rw---- 1 oracle oinstall 1544 Jan 21 17:42 hc_ORCLCDB.dat

-rw-r--r-- 1 oracle dba 3079 May 14 2015 init.ora

-rw-r----- 1 oracle oinstall 24 Jan 21 16:23 lkORCLCDB

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 17:43 orapwORCLCDB -> /opt/oracle/

oradata/dbconfig/ORCLCDB/orapwORCLCDB

lrwxrwxrwx 1 oracle oinstall 54 Jan 21 17:43 spfileORCLCDB.ora -> /opt/

oracle/oradata/dbconfig/ORCLCDB/spfileORCLCDB.ora

bash-4.2$ ls -l $ORACLE_HOME/network/admin

total 8

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 17:43 listener.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/listener.ora

drwxr-xr-x 2 oracle dba 4096 Apr 17 2019 samples

-rw-r--r-- 1 oracle dba 1536 Feb 14 2018 shrept.lst

lrwxrwxrwx 1 oracle oinstall 47 Jan 21 17:43 sqlnet.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/sqlnet.ora

lrwxrwxrwx 1 oracle oinstall 49 Jan 21 17:43 tnsnames.ora -> /opt/oracle/

oradata/dbconfig/ORCLCDB/tnsnames.ora

bash-4.2$ ls -l /opt/oracle/oradata/dbconfig/ORCLCDB

total 24

-rw-r--r-- 1 oracle oinstall 234 Jan 21 16:19 listener.ora

-rw-r----- 1 oracle oinstall 2048 Jan 21 16:28 orapwORCLCDB

-rw-r--r-- 1 oracle oinstall 780 Jan 21 17:43 oratab

Chapter 13 Oracle Dockerfile Recipes

300

-rw-r----- 1 oracle oinstall 3584 Jan 21 17:46 spfileORCLCDB.ora

-rw-r--r-- 1 oracle oinstall 54 Jan 21 16:19 sqlnet.ora

-rw-r----- 1 oracle oinstall 197 Jan 21 17:43 tnsnames.ora

�Scripting Image Customization
I run a mix of images intended for different environments. My interactive images

include tools I use for viewing and editing files, performing tests, and collecting

diagnostic information. They also set the environment to be familiar and user-

friendly, with my favorite command-line prompt, aliases and shortcuts that simplify

navigation, and a login.sql file to customize my SQL*Plus experience. My production

images follow container principles and aim for minimal footprint, reduced attack

surface, and eliminating unnecessary packages and libraries. I could manage separate

repositories dedicated to different purposes, but that would mean managing two sets

of code, increasing work spent testing and validating changes, and introducing more

opportunities for human error. With build arguments, a single repository can support

both image categories.

Multiple options exist for managing image content, including

•	 Scripts with conditional operations: Useful when options are

limited, well defined, and won’t change significantly over time.

•	 Appending or substituting values: Best for dynamic inputs that

aren’t well defined in advance.

•	 Conditionally copying files: Suitable for relatively static

modifications that are extensive, complex, or environment specific.

The following recipes suggest applications of these techniques to produce

customized images from a single repository.

�Conditional Operations
Supporting multiple outcomes with less code reduces maintenance overhead. Adding

conditions to scripts is one strategy toward that end and works best when deciding

among a limited set of options with clear-cut actions. The source of the condition

could be an argument passed to the docker build command or discovered from the

environment.

Chapter 13 Oracle Dockerfile Recipes

301

The public repository we’ve worked with throughout this book has separate

directories for each database version: 11.2.0.2, 12.1.0.2, 12.2.0.1, 18.3.0, 18.4.0, 19.3.0,

and 21.3.0. Within each of these directories are the same scripts. Some are identical,

others contain minor differences in formatting and style, and a few introduce version-

specific functionality. For instance, if I run the diff command to show the differences

between the 19c and 21c versions of installDBBinaries.sh, I see

> diff 19.3.0/installDBBinaries.sh 21.3.0/installDBBinaries.sh

24c24

< if ["$EDITION" != "EE" -a "$EDITION" != "SE2"]; then

> if ["$EDITION" != "EE"] && ["$EDITION" != "SE2"]; then

They’re identical but for a minor difference in an if statement. Elsewhere are

differences reflecting code improvements, like this check in the runOracle.sh scripts:

< �mv "$ORACLE_HOME"/install/.docker_* "$ORACLE_BASE"/oradata/

dbconfig/"$ORACLE_SID"/

> if [-a "$ORACLE_HOME"/install/.docker_*]; then

> �mv "$ORACLE_HOME"/install/.docker_* "$ORACLE_BASE"/oradata/

dbconfig/"$ORACLE_SID"/

> fi;

The 19c version tries to move files matching $ORACLE_HOME/install/.docker_*.

It will return an error if no files match the pattern. The 21c version wraps the move

command in an if statement, checking whether matching files are present before

attempting to move them. The 21c versions include actions specific to Oracle 21c

Express Edition, but the scripts are mostly the same. Is it practical to combine the 19c

and 21c repositories into a single, common directory, then pass a version to the build?

There are good reasons to separate versions into individual directories. In the

previous chapter, when discussing build context, you learned that Docker reads all the

files beneath the build path. Combining 19c and 21c in a single Dockerfile means storing

the database installation media for both versions in the same directory. They’re large

files, and having both in the same directory increases context size and processing time.

Chapter 13 Oracle Dockerfile Recipes

302

The downside of separate directories is maintenance. The file differences are mostly

minor, but every improvement made in the 21c version hasn’t graduated to others.

As the count of supported versions grows, so does the need to track and test fixes and

improvements to an ever-widening code base.

The context issues can be solved with build features covered in Chapter 14. With

that problem out of the way, it’s more reasonable to consider passing the version to the

Dockerfile through a build argument. The version then controls unique aspects of the

build process, notably:

•	 Applying the correct preinstallation RPM packages in

setupLinuxEnv.sh

•	 Performing additional checks needed for enabling Express

Edition in 21c

•	 Tagging images with the correct database version and edition

Make no mistake: converting existing scripts to handle multiple versions is an

involved task that varies according to your objectives and a single example of why you

might embed conditional checks in setup scripts. Therefore, listing specific changes is

not practical, but we can explore techniques that illustrate the practice. The Linux case

statement, for instance, presents a very convenient method for determining the correct

set of packages by version:

case $DB_VERSION in

 11*) RPM_LIST="oracle-rdbms-server-11gR2-preinstall unzip" ;;

 12.1*) RPM_LIST="oracle-rdbms-server-12cR1-preinstall tar" ;;

 12.2*) RPM_LIST="oracle-database-server-12cR2-preinstall" ;;

 18*) RPM_LIST="oracle-database-preinstall-18c" ;;

 19*) RPM_LIST="oracle-database-preinstall-19c" ;;

 21*) RPM_LIST="oracle-database-preinstall-21c" ;;

 *) exit 1 ;;

 esac

Then, pass the $RPM_LIST variable to the yum install command:6

yum -y install "$RPM_LIST" openssl

6 The openssl package is common to every version and could easily be part of RPM_LIST. Doing so
is repetitive. Sometimes, less is more!

Chapter 13 Oracle Dockerfile Recipes

303

I want to emphasize that neither approach is “right” or “wrong.” Coding is an art,

and teams choose the methods best suited to their style, background, and purpose. In

my practice, I prefer a single set of scripts for every version, but for Oracle’s container

images, I concede that separate directories are better. The code base introduces new

users to containers, and having a directory for each version is easier to understand.

As you grow more comfortable with containers and expand your image library,

consolidating versioned builds beneath a unified directory structure may present a

better alternative. Additional examples of this method (and perhaps inspiration) are

available on my GitHub: https://github.com/oraclesean/docker-oracle.

�Appending Values in Dockerfiles
The yum install command in the preceding section leads to a second opportunity

for modifying images, this time related to the nature of the intended environment.

Production images should be lean and free of unnecessary packages that might add to

image size or introduce vulnerabilities. Images used for experimentation have different

requirements, including editors and diagnostic tools, and these will vary by need and

personal taste. I prefer vi; others like emacs. You may want tree or strace included. The

point here isn’t what packages need installation; it’s the variable nature of the list, and

the challenge to solve is how best to include them.

One approach is logging in to running containers as the root user:

docker exec -it -u root <CONTAINER NAME> bash

Then yum install packages:

yum -y install vi less tree which

The disadvantages of this approach are as follows:

•	 Its manual nature. I have to perform these steps in every container.

•	 It’s a prerequisite to activities requiring the extra packages and one

that’s easily forgotten until you realize something’s not there.

•	 The installation changes files in the container’s overlay filesystem,

adding to the container’s size.

Chapter 13 Oracle Dockerfile Recipes

https://github.com/oraclesean/docker-oracle

304

For unique additions, it makes sense to take this route. It isn’t practical to spend

several minutes building a custom image with “that package you need this one time”

simply because you don’t want to add a few megabytes to a container or run an extra

command, particularly if that container won’t be around very long.

When those tools appear regularly in images, it makes more sense to integrate them

into the image itself through a build argument.

Unlike the environment variables used in docker run, we can’t “make up” build

arguments on the fly. They must be defined through an ARG instruction in the Dockerfile.

However, they don’t require a value. Let’s create a new argument in the Dockerfile to

accept a list of optional packages to install in an image:

ARG RPM_SUPPLEMENT=""

It should appear with the other arguments passed to the first build stage. It’s the

one that runs the $INSTALL_DIR/$SETUP_LINUX_FILE step. There’s no need to add it to

the environment with an associated ENV command. Arguments are available within the

context of the stage and, if not needed in later steps, don’t have to be promoted to the

container’s environment.

Next, in the setupLinuxEnv.sh script, update the yum install command to include

the new argument:

yum -y install oracle-database-preinstall-19c openssl $RPM_SUPPLEMENT

If we pass nothing to the build argument, the Linux setup script runs and appends an

empty string to the end of the yum command. But, if we give the build argument a list of

packages:7

docker build ...

 --build-arg RPM_SUPPLEMENT="vi less tree which"

...

The yum command sees the custom argument in the variable and installs the

additional packages.

7 Builds are covered in Chapter 14.

Chapter 13 Oracle Dockerfile Recipes

305

�Conditional File Copy
The modifications presented in the first part of this section addressed a case where

scripts use arguments for if-then or case-based decision-making. The scripts must

necessarily embed the logic for evaluating and acting on conditions. The example in that

section considered consolidating scripts for two or more versions into a single directory

structure. Many of the helper files in the repository are identical or similar enough to

be interchangeable across versions, and it makes sense to combine them. But others—

including the database installation script—include unique steps for specific conditions.

As Oracle introduces new versions, a “one ring to rule them all” style approach for

database installation may not be practical. Accommodating differences in Express,

Standard, and Enterprise Editions for every version, from 11g to 21c and beyond, is

a complex task. Testing updates against every combination would quickly grow out

of hand.

There’s a security aspect to think about as well. Look at the files present in the

$ORACLE_BASE directory of an Oracle database container:

/opt/oracle/runOracle.sh

/opt/oracle/createObserver.sh

/opt/oracle/relinkOracleBinary.sh

/opt/oracle/setPassword.sh

/opt/oracle/checkDBStatus.sh

/opt/oracle/runUserScripts.sh

/opt/oracle/configTcps.sh

/opt/oracle/createDB.sh

/opt/oracle/dbca.rsp.tmpl

/opt/oracle/startDB.sh

Logic embedded in scripts reveals how things work under different conditions

and might expose ways attackers can exploit your database infrastructure. Someone

with access to one image or an unsecured or “unimportant” container can infer

configurations and even reverse engineer other containers in your environment.

Perhaps there’s a happy medium—one set of shared files that apply to any version

and dedicated files without conditional logic that’s overly complex or revealing. To

imagine how that might work, let’s look at the top section of a 19c Dockerfile, focusing

Chapter 13 Oracle Dockerfile Recipes

306

on the arguments and environment settings in Listing 13-7. I’ve narrowed it down by

removing some of the specialized environment variables that aren’t important to this

exercise.

Listing 13-7.  A portion of an Oracle 19c Dockerfile showing argument and

environment instructions. The environment settings focus on those related to

files and directories

Argument to control removal of components not needed after db software

installation

ARG SLIMMING=true

ARG INSTALL_FILE_1="LINUX.X64_193000_db_home.zip"

Environment variables required for this build (do NOT change)

ENV ORACLE_BASE=/opt/oracle \

 ORACLE_HOME=/opt/oracle/product/19c/dbhome_1 \

 INSTALL_DIR=/opt/install \

 INSTALL_FILE_1=$INSTALL_FILE_1 \

 INSTALL_RSP="db_inst.rsp" \

 CONFIG_RSP="dbca.rsp.tmpl" \

 PWD_FILE="setPassword.sh" \

 RUN_FILE="runOracle.sh" \

 START_FILE="startDB.sh" \

 CREATE_DB_FILE="createDB.sh" \

 SETUP_LINUX_FILE="setupLinuxEnv.sh" \

 INSTALL_DB_BINARIES_FILE="installDBBinaries.sh" \

 # Directory for keeping Oracle Wallet

 WALLET_DIR=""

For argument’s sake, let’s say that the runOracle.sh and createDB.sh scripts are

different enough across database versions that combining their logic isn’t practical or

desirable. The response files aren’t interchangeable, either. In Listing 13-8, I added an

argument for the database version and incorporated it into the existing environment.

Chapter 13 Oracle Dockerfile Recipes

307

Listing 13-8.  A modified Dockerfile that accepts a database version in an

argument and inserts it into the names of select scripts and templates defined in

the environment

Argument to control removal of components not needed after db software

installation

ARG SLIMMING=true

ARG INSTALL_FILE_1="LINUX.X64_193000_db_home.zip"

ARG DB_VERSION=19.3.0

Environment variables required for this build (do NOT change)

ENV ORACLE_BASE=/opt/oracle \

 ORACLE_HOME=/opt/oracle/product/19c/dbhome_1 \

 INSTALL_DIR=/opt/install \

 INSTALL_FILE_1=$INSTALL_FILE_1 \

 INSTALL_RSP="db_inst.${DB_VERSION}.rsp" \

 CONFIG_RSP="dbca.rsp.${DB_VERSION}.tmpl" \

 PWD_FILE="setPassword.sh" \

 RUN_FILE="runOracle.${DB_VERSION}.sh" \

 START_FILE="startDB.sh" \

 CREATE_DB_FILE="createDB.${DB_VERSION}.sh" \

 SETUP_LINUX_FILE="setupLinuxEnv.sh" \

 INSTALL_DB_BINARIES_FILE="installDBBinaries.sh" \

 # Directory for keeping Oracle Wallet

 WALLET_DIR=""

The Dockerfile supports multiple versions without adding complex logic to the

scripts themselves. Files common to all versions are shared. Dedicated scripts are

substituted where necessary. This same technique helps address environmental

differences, too. The .bashrc file used to set up the look and feel of production systems

may be quite different from the one I’d use in an experimental container. The 19c and

21c Dockerfiles add entries to the container’s .bashrc files:

RUN echo 'ORACLE_SID=${ORACLE_SID:-ORCLCDB}; export ORACLE_SID=${ORACLE_

SID^^}' > .bashrc

Chapter 13 Oracle Dockerfile Recipes

308

We could extend that command to include customizations to the prompt:

export PS1="[\u - \${ORACLE_SID}] \w\n# "

Now we’re getting into rough territory, though. Attempting to reproduce this string

with echo:

Without quotes: backslash before the dollar sign and trailing whitespace

are lost.

echo export PS1="[\u - \${ORACLE_SID}] \w\n# "

export PS1=[\u - ${ORACLE_SID}] \w\n#

With double quotes, escaping embedded quotes: backslash is lost.

echo "export PS1=\"[\u - \${ORACLE_SID}] \w\n# \""

export PS1="[\u - ${ORACLE_SID}] \w\n# "

Double-escaped the backslash: works!

echo "export PS1=\"[\u - \\\${ORACLE_SID}] \w\n# \""

export PS1="[\u - \${ORACLE_SID}] \w\n# "

Single quotes prevent bash from evaluating the string: works!

echo 'export PS1="[\u - \${ORACLE_SID}] \w\n# "'

export PS1="[\u - \${ORACLE_SID}] \w\n# "

The bash shell has sensitivities and quirks that aren’t always obvious. Figuring

out how to make it print strings containing special characters can be frustrating! An

alternative is writing dedicated files for each environment in advance, then copying

them into the image. A no-nonsense production file, bashrc.prod:

ORACLE_SID=${ORACLE_SID:-ORCLCDB}

export ORACLE_SID=${ORACLE_SID^^}

And a file for test, bashrc.test, that sets the ORACLE_SID and adds settings for the

prompt and other environment variables:

ORACLE_SID=${ORACLE_SID:-ORCLCDB}

export ORACLE_SID=${ORACLE_SID^^}

export PS1="[\u - \${ORACLE_SID}] \w\n# "

export ORACLE_BASE_CONFIG="$($ORACLE_HOME/bin/orabaseconfig 2>/dev/null ||

echo $ORACLE_HOME)"

Chapter 13 Oracle Dockerfile Recipes

309

export ORACLE_BASE_HOME="$($ORACLE_HOME/bin/orabasehome 2>/dev/null || echo

$ORACLE_HOME)"

export TNS_ADMIN=$ORACLE_BASE_HOME/network/admin

export ORACLE_PATH=/home/oracle

In the following snippet from the 19c Dockerfile, I modified the final build stage to

accept an argument and replaced the RUN command with a COPY for inserting the correct

file into the image:

###

Start new layer for database runtime

###

FROM base

ARG ENV=prod

USER oracle

COPY --chown=oracle:dba --from=builder $ORACLE_BASE $ORACLE_BASE

USER root

RUN $ORACLE_BASE/oraInventory/orainstRoot.sh && \

 $ORACLE_HOME/root.sh

USER oracle

WORKDIR /home/oracle

Add an environment-specific bashrc file to the image

COPY bashrc.$ENV /home/oracle/.bashrc

Whether working with scripts or configuration files, it may be easier (and potentially

less error-prone and frustrating) to work with files containing the exact code or text

needed in the image!

Chapter 13 Oracle Dockerfile Recipes

310

�Summary
As you gain experience working with ready-made container images, you’ll discover

things you like and things you’d like to change. It’s part of the learning curve, and

robust, forgiving tools help build the confidence and skills to take the next step.

Whether it’s a first racing bike or a new technology, time in the saddle creates muscle

memory and familiarity. Once using the tools becomes second nature, your mind can

fully concentrate on developing a clearer vision of what you want to do and, with it,

understand how your tools may limit your progress.

The four friends in Breaking Away struggle against the expectations of parents and

society as they search for their own unique identities. While they can’t change who they

are or where they’re from, they realize their origins don’t define their future direction.

The same holds for the image repositories we’ve worked with throughout this book.

They’re foundations that shape our understanding of running databases in containers

but don’t prevent us from dreaming big and charting our own course.

This chapter introduced recipes to help you take those next steps with containers.

They tackle issues you’re likely to face as you work with database images, but they’re

also adaptable to other needs. That’s the beauty of recipes—whether in cooking or

coding, it’s a blend of art and science. There’s rarely a single answer to a question, yet the

methods or patterns for solving one problem often apply to others. I hope the examples

in this chapter inspire you to imagine solutions for the challenges you encounter on your

Docker journey! The next chapter looks deeper into how Docker builds images with an

eye toward writing efficient and effective Dockerfiles.

Chapter 13 Oracle Dockerfile Recipes

311

CHAPTER 14

Building Images
There are certain mysteries in life I don’t need (or even want) to understand. Avoiding

the knowledge preserves a bit of wonder for the world around me. Sewing machines are

one of those things. I can sew by hand, albeit without much talent, but I’ve never figured

out how a machine can duplicate that effort. Even with easy access to the Internet,

where I could surely find a YouTube video that reveals the entire process in slow motion

with stitch-by-stitch expert narration, I’ve resisted learning the underlying principles of

sewing machines. How a machine pokes a needle partway through the fabric and then

secures each stitch from below is beyond me. I know better, but the best explanation I

can imagine involves tiny gremlins that live inside the machine, furiously looping bobbin

thread through each stitch. I’m content not knowing—it nourishes a fascination and

appreciation of everyday things and reminds me there are wonderfully intelligent and

inventive people all around! Or that magic truly exists!

There are conveniences I simply take for granted. Mulling over the technology

surrounding me, I understand my laptop uses DHCP to get a network address. I don’t

know the details, but it seems like something I could figure out if I needed to, and it

doesn’t hold the same mystery as a sewing machine. It makes joining a network easy and

removes the guesswork of finding an available IP address on hotel WiFi.

Automation and scripts fall into a similar bucket. They make it faster and easier

to perform everyday tasks and allow us “forget” the details. (To be completely honest,

sometimes I look at the code and wonder how I was either so naive or so inspired!)

Codifying knowledge converts it into tools we can share with others and use as the

building blocks of bigger, better things. In Chapter 4, the buildContainerImage.sh

script did just that. You gave it a database version and edition and constructed and ran a

docker build command for you in the background.

Gaining greater control over image creation means getting hands-on with the build

process. Even if your plans don’t include writing custom Dockerfiles, understanding

elements of the build command provides a greater appreciation of what takes place

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_14

https://doi.org/10.1007/978-1-4842-9033-0_14

312

behind the curtains and makes sense of the magic! And I promise that building images

doesn’t approach the mystery of sewing machines nor involves armies of gremlins

laboring inside your computer!

�Build Command Syntax
docker build may be the most straightforward command in the Docker lexicon. In its

most minimal form, this is valid:

docker build .

That doesn’t seem like much! How could something this simple do anything? It all

has to do with context!

�Context
Building images requires a Dockerfile—the instructions or recipe—and a build context,

the files, assets, or ingredients. Context is everything at or below the directory where

the build runs. Oracle database builds include the software installation media, scripts

for managing the build (preparing the operating system and installing a database), and

scripts used by the container runtime (creating a database, starting a database, reporting

health, and so on).

In the preceding build command, the dot represents the context. The dot, or period,

is a shorthand character in Linux that points to the current directory.1 Docker builds

the image using whatever files it finds there. Builds need a Dockerfile, too, and if not

explicitly defined, Docker looks for a file named “Dockerfile” among the context.

To get a better idea for context, I created a simple Dockerfile in a new directory,

shown in Listing 14-1. It begins with the alpine image, a minimalist Linux distribution

popular for containers. The Dockerfile runs a COPY instruction. The first argument, the

asterisk wildcard, copies all files from the build context—the local directory—into the

target destination, the container’s root directory (represented by the slash).

1 A relative path simply means “relative to the current position in the directory tree” and isn’t very
different than giving someone directions for reaching a destination from your current location.
Absolute paths are anchored at a reference point. On Linux systems, it’s the root directory, /.
Relative paths start with a dot; absolute paths begin with a slash.

Chapter 14 Building Images

313

Listing 14-1.  A simple Dockerfile for demonstrating context

FROM alpine

COPY * /

CMD ls -l /

The final CMD instruction runs when executing the image and lists the contents of

the container’s root directory. Listing 14-2 includes the output produced by running the

simple command earlier.

Listing 14-2.  The output generated when running docker build for the

Dockerfile is shown in Listing 14-1

> docker build .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM alpine

latest: Pulling from library/alpine

213ec9aee27d: Pull complete

Digest: sha256:bc41182d7ef5ffc53a40b044e725193bc10142a1243f395ee852a

8d9730fc2ad

Status: Downloaded newer image for alpine:latest

 ---> 9c6f07244728

Step 2/3 : COPY * /

 ---> 1d5ae09bcac7

Step 3/3 : CMD ls -l /

 ---> Running in 7aab4d9ea957

Removing intermediate container 7aab4d9ea957

 ---> 8cf63acc1f17

Successfully built 8cf63acc1f17

Take a look at the output:

•	 “Sending build context to Docker daemon,” read all the files in the

context—the local directory—and sent them to the Docker daemon.

Only then did it begin reading the Dockerfile and performing work.

•	 The first step of the Dockerfile instructed Docker to pull the alpine

image. It added this to a newly created layer, 9c6f07244728. (Each

layer is prefixed by three dashes and a right caret: --->.)

Chapter 14 Building Images

314

•	 The second step copied files into another new layer, 1d5ae09bcac7.

•	 The third step ran the ls -l / command in an intermediate

container, 7aab4d9ea957.

•	 After removing the intermediate container, Docker created a final

layer, 8cf63acc1f17.

Running docker images reports the newly created image, as well as the alpine

image, pulled in by the FROM instruction:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> 8cf63acc1f17 21 seconds ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

oracle/database 19.3.0-ee 1b588736c8c1 2 months ago 6.67GB

The image ID of the new container matches that shown in the image listing. Notice

the image doesn’t have a repository or tag. Commands for managing or reporting image

information, or running the image as a container, must use the ID (for now). Let’s pass

the image ID to the docker history command to view the image’s layers:

> docker history 8cf63acc1f17

IMAGE CREATED CREATED BY SIZE

 COMMENT

8cf63acc1f17 2 minutes ago /bin/sh -c #(nop) CMD ["/bin/sh" "-c" "ls -...

 0B

1d5ae09bcac7 2 minutes ago /bin/sh -c #(nop) COPY file:a45abb589c97bd2f...

 34B

9c6f07244728 2 weeks ago /bin/sh -c #(nop) CMD ["/bin/sh"]

 0B

<missing> 2 weeks ago /bin/sh -c #(nop) ADD file:2a949686d9886ac7c...

 5.54MB

History output reads from newest at the top to oldest at the bottom. Notice the ID

values of each layer correspond to those in the docker build output. One of these,

layer 1d5ae09bcac7, has a size of 34 bytes. That’s the same size as the Dockerfile in this

directory:

Chapter 14 Building Images

315

> ls -l

total 8

-rw-r--r-- 1 seanscott staff 34 Aug 25 10:57 Dockerfile

This layer contains one file, the Dockerfile added to the “base” alpine image by the

COPY command!

The final layer, 8cf63acc1f17, is zero bytes. This is a metadata layer. It’s not part of the

image, at least not in a way that a user inside the container can see. It’s used by Docker

when invoking the image through docker run. We can see that by running the image:

> docker run 8cf63acc1f17

total 60

-rw-r--r-- 1 root root 34 Aug 25 16:57 Dockerfile

drwxr-xr-x 2 root root 4096 Aug 9 08:47 bin

drwxr-xr-x 5 root root 360 Aug 25 17:54 dev

drwxr-xr-x 1 root root 4096 Aug 25 17:54 etc

drwxr-xr-x 2 root root 4096 Aug 9 08:47 home

drwxr-xr-x 7 root root 4096 Aug 9 08:47 lib

drwxr-xr-x 5 root root 4096 Aug 9 08:47 media

drwxr-xr-x 2 root root 4096 Aug 9 08:47 mnt

drwxr-xr-x 2 root root 4096 Aug 9 08:47 opt

dr-xr-xr-x 332 root root 0 Aug 25 17:54 proc

drwx------ 2 root root 4096 Aug 9 08:47 root

drwxr-xr-x 2 root root 4096 Aug 9 08:47 run

drwxr-xr-x 2 root root 4096 Aug 9 08:47 sbin

drwxr-xr-x 2 root root 4096 Aug 9 08:47 srv

dr-xr-xr-x 13 root root 0 Aug 25 17:54 sys

drwxrwxrwt 2 root root 4096 Aug 9 08:47 tmp

drwxr-xr-x 7 root root 4096 Aug 9 08:47 usr

drwxr-xr-x 12 root root 4096 Aug 9 08:47 var

>

Remember that containers perform functions or services somewhat like an

executable program. The CMD instruction defines the action. Everything else in the

container—the libraries, packages, binaries, and scripts—is only there to support its

runtime, or executable, function. It explains why image footprints are typically limited

compared to the filesystem and OS on a VM or physical host. The operation fixed in

Chapter 14 Building Images

316

the image’s CMD instruction confines the container’s scope. In this case, the CMD runs

a command, ls -l /. With that task complete, it exits and returns control to the host

command prompt.

Listing 14-2 included these lines:

Step 3/3 : CMD ls -l /

 ---> Running in 7aab4d9ea957

Removing intermediate container 7aab4d9ea957

Docker didn’t read or save the result of this operation. The “intermediate container”

is where Docker checked the command syntax.

A reminder about layers: Running ls -l / in this container isn’t showing the

filesystem of the container in a customary way. Instead, it shows the merged contents

of two layers: the filesystem in the base alpine image, in layer 9c6f07244728, and the

filesystem in the layer created by the COPY command, 1d5ae09bcac7. Separating these

into layers allows Docker to reuse the same alpine layer in multiple containers without

using additional space!

The build context in this example was the current directory where the build ran. It

needn’t be the current directory. Docker expects a path.2 Substituting a directory path

for the dot controls where builds run and what files are included in the context. In the

preceding command, the dot represents a path to the build context and can be written

more generally as

docker build <PATH>

Docker looks for a file called Dockerfile in the <PATH> and uses everything at or

below the <PATH> as its context. To illustrate how this works, I navigated up one level in

my directory tree and reran docker build, this time passing the relative directory path,

./demo, as the context for the build:

> cd ..

> docker build ./demo

Sending build context to Docker daemon 2.048kB

2 Docker also accepts context using text files and URLs of remote repositories and tarballs. You’re
unlikely to encounter these when building larger images, including databases. URL-based builds
transfer their context over a network. It’s not a practical or efficient method when the context
includes larger files like those used to install Oracle.

Chapter 14 Building Images

317

Step 1/3 : FROM alpine

 ---> 9c6f07244728

Step 2/3 : COPY * /

 ---> Using cache

 ---> 1d5ae09bcac7

Step 3/3 : CMD ls -l /

 ---> Using cache

 ---> 8cf63acc1f17

Successfully built 8cf63acc1f17

Notice anything interesting about this result? It didn’t pull the alpine image and

skipped the intermediate container, yet it reports the identical layer IDs as the original

build! The “using cache” messages indicate that after passing its context to the daemon,

Docker recognized no changes were necessary, and the layers were already in its

build cache!

The COPY and ADD operations in the Dockerfile don’t read files or directories directly

from the host. They read them from the context built at the outset of the build process.

It’s a subtle but essential distinction.

�Select a Dockerfile
We’ve seen that Docker looks for a file named Dockerfile in its context, the directory

where it’s running. We can override that behavior by specifying a Dockerfile outside the

build context using the -f flag:

docker build -f <FILE_NAME> <PATH>

docker build expects but isn’t limited to using files named Dockerfile. It’s the

default, but Docker accepts different file names in the -f option.

I’ll build on the preceding example, moving the Dockerfile out of the demo directory

and copying my /etc/passwd file into the demo directory. This gives Docker something to

consume into its context and copy into the image:

> mv demo/Dockerfile .

> cp /etc/passwd ./demo

> ls -l ./demo

-rw-r--r-- 1 seanscott staff 7868 Aug 25 13:30 passwd

Chapter 14 Building Images

318

> ls -l

-rw-r--r-- 1 seanscott staff 34 Aug 25 10:57 Dockerfile

drwxr-xr-x 3 seanscott staff 96 Aug 25 13:31 demo

The new target directory for the build is demo, under my current directory. Docker

needs the build path, and because there’s no Dockerfile in the demo directory, my build

command needs the location of the Dockerfile via the -f option:

docker build -f ./Dockerfile ./demo

Notice a few differences in the output:

> docker build -f ./Dockerfile ./demo

Sending build context to Docker daemon 10.27kB

Step 1/3 : FROM alpine

 ---> 9c6f07244728

Step 2/3 : COPY * /

 ---> 37b005627fc0

Step 3/3 : CMD ls -l /

 ---> Running in 8188378b8894

Removing intermediate container 8188378b8894

 ---> 70b49717401f

Successfully built 70b49717401f

First, more information was sent to the Docker daemon, thanks to the file I added to

the demo directory. The base image didn’t change, though, and Docker reports the same

image ID, meaning it reused the contents of its cache. However, the remaining layers are

all new. The contents of the demo directory are different, which changed the files copied

into the image. And while the command run in the CMD instruction is identical in both

images, they aren’t shared because the underlying layers are different.

Running the new image produces similar, but not identical, output, reflecting

changes to the build context. It’s the same filesystem from the alpine image layer in both

images (and containers). Adding a file to the demo directory changed the files the COPY

command added to the layer created in Step 2:

Chapter 14 Building Images

319

> docker run 70b49717401f

total 64

drwxr-xr-x 2 root root 4096 Aug 9 08:47 bin

drwxr-xr-x 5 root root 340 Aug 25 23:16 dev

drwxr-xr-x 1 root root 4096 Aug 25 23:16 etc

drwxr-xr-x 2 root root 4096 Aug 9 08:47 home

drwxr-xr-x 7 root root 4096 Aug 9 08:47 lib

drwxr-xr-x 5 root root 4096 Aug 9 08:47 media

drwxr-xr-x 2 root root 4096 Aug 9 08:47 mnt

drwxr-xr-x 2 root root 4096 Aug 9 08:47 opt

-rw-r--r-- 1 root root 7868 Aug 25 19:30 passwd

dr-xr-xr-x 345 root root 0 Aug 25 23:16 proc

drwx------ 2 root root 4096 Aug 9 08:47 root

drwxr-xr-x 2 root root 4096 Aug 9 08:47 run

drwxr-xr-x 2 root root 4096 Aug 9 08:47 sbin

drwxr-xr-x 2 root root 4096 Aug 9 08:47 srv

dr-xr-xr-x 13 root root 0 Aug 25 23:16 sys

drwxrwxrwt 2 root root 4096 Aug 9 08:47 tmp

drwxr-xr-x 7 root root 4096 Aug 9 08:47 usr

drwxr-xr-x 12 root root 4096 Aug 9 08:47 var

�No Symbolic Links or Shortcuts Allowed in the Context
In Chapter 4, you added the Oracle database installation media into a version-

specific directory like $HOME/docker-images/OracleDatabase/SingleInstance/

dockerfiles/19.3.0. When you ran the buildContainerImage.sh script, Docker

processed the files in that directory to develop its context. Docker didn’t read files in

the neighboring directories. They’re outside the build path and not useful to the build

anyway—Oracle doesn’t need 21c installation media for a 19c image, and vice versa. The

assets aren’t shared, and organizing files into separate directories makes sense.

That’s true when versions are entirely different, but things get vague when

dealing with minor releases. The 19.15 and 19.16 Release Updates (RU) use the same

fundamental assets—installation media and OPatch—but not the patches themselves.

Splitting them into versioned directories means duplicating some, but not all, of the files:

Chapter 14 Building Images

320

19c

├── 19.15
│ ├── LINUX.X64_193000_db_home.zip
| ├── p6880880_190000_Linux-x86-64.zip
│ └── patch-for-1915-RU.zip
└── 19.16
 ├── LINUX.X64_193000_db_home.zip
 ├── p6880880_190000_Linux-x86-64.zip
 └── patch-for-1916-RU.zip

Each release adds more duplication, uses more space, and may even mismatch files.

In the preceding directory structure, the OPatch files, beginning p6880880, have the

same name, but that doesn’t guarantee they’re the same file or the latest version. Both

directories should, ideally, use the same centrally managed file.

Could we add a link or shortcut to Docker’s context and avoid duplicating the LINUX.

X64_193000_db_home.zip file in two places? To test this, I added a link to the image

context we’ve been working with and reran the same build:

> ln -s /etc/passwd demo/linked_file

> ls -l ./demo

total 16

lrwxr-xr-x 1 seanscott staff 11 Aug 25 17:28 linked_file -> /

etc/passwd

-rw-r--r-- 1 seanscott staff 7868 Aug 25 13:30 passwd

> docker build -f ./Dockerfile ./demo

Sending build context to Docker daemon 10.8kB

Step 1/3 : FROM alpine

 ---> 9c6f07244728

Step 2/3 : COPY * /

COPY failed: file not found in build context or excluded by .dockerignore:

stat linked_file: file does not exist

Unfortunately, Docker only recognizes physical files in its context. Since linked_

file wasn’t physically present in Docker’s build directory, it wasn’t added to the context.

The COPY command understood the file existed in the directory and tried to copy it but

failed when it wasn’t found in its context.

Chapter 14 Building Images

321

Docker doesn’t follow symbolic links to files stored elsewhere on the filesystem3

to maintain consistency. When context—the media and scripts needed to produce an

image—is self-contained, builds are guaranteed to generate identical results across

hosts. Linking to files or directories outside the context potentially breaks that assurance.

In the preceding example, not only is the file unique, it could be under a different path

on another machine or may not exist at all!

That doesn’t fix the problem we sought to solve—reducing file duplication. But the

error message in the failed build alludes to something called .dockerignore, which, it

turns out, can help us reach that goal!

�Ignore Files
Before sending information to the daemon, Docker looks for a .dockerignore file in its

context directory. The .dockerignore file informs the build of any files or directories to

exclude and prevents builds from sending unnecessary or potentially sensitive content

to the daemon. Ignored files aren’t available to COPY or ADD operations because, while

they may be on the filesystem, they’re not in the build context sent to the Docker engine

in the earliest part of the build.

.dockerignore files match files and directories by name or pattern. Numerous

resources offer details pattern matching, and, rather than duplicating that information,

I’ll cover just the basic options:

•	 Lines that begin with the hash (#) denote comments and are ignored.

•	 The asterisk (*) matches one or more characters in a file or

directory name.

•	 Two consecutive asterisks (**) match any number of directories in

the file’s path.

•	 A question mark (?) matches a single character.

•	 The exclamation point (!) creates an exception.

3 Nothing prevents shortcuts or links in the context, provided they’re not referenced by COPY or
ADD instructions in the Dockerfile.

Chapter 14 Building Images

322

The paths in ignore files are evaluated relative to the root directory of the context—

even if the path in the ignore file begins with a slash, apparently referencing an absolute

path. Some examples:

A comment

Ignore the Dockerfile in the root directory of the build context:

Dockerfile

Ignore all files in a directory called test:

test/*

Ignore files in any directory that begins "patch", followed by a single

character:

patch?/*

Ignore files in any directory with a suffix of ".key"

**/*.key

Ignore files with a ".zip" suffix in any directory immediately below the

root directory:

/.zip

Override the prior exclusion for files named "LINUX.X64_193000_db_

home.zip":

!*/LINUX.X64_193000_db_home.zip

Bear in mind that Docker reads ignore files sequentially. The last condition takes

precedence. In the following example, the first rule ignores all files in the software

directory. The second makes an exception for the LINUX.X64_193000_db_home.zip

file. The third then ignores any file in any directory that ends in .zip, excluding LINUX.

X64_193000_db_home.zip:

Ignore files in the "software" directory:

software/*

Include the "software/LINUX.X64_193000_db_home.zip" file:

!software/LINUX.X64_193000_db_home.zip

Ignore files in any directory that end in ".zip"

**/*.zip

Chapter 14 Building Images

323

Switching the order of these rules, placing the exception for LINUX.X64_193000_db_

home.zip last, allows its inclusion in the context:

Ignore files in the "software" directory:

software/*

Ignore files in any directory that end in ".zip"

**/*.zip

Include the "software/LINUX.X64_193000_db_home.zip" file:

!software/LINUX.X64_193000_db_home.zip

Filtering, especially with wildcards, based on the current or expected directory

contents doesn’t guarantee an outcome. Rather than allowing files based on patterns,

consider a least-privilege model that excludes everything and makes exceptions only for

specific files that should be part of the build. The first pattern in this example excludes

everything. The following lines add exceptions for file1 and file2:

*

!file1

!file2

Everything else in the build directory is omitted and unavailable to ADD or COPY

commands—even those using wildcards!

There’s no separate option, similar to the -f flag for naming Dockerfiles, for

identifying ignore files. Docker looks for ignore files called .dockerfile in the same

directory as the Dockerfile itself:

docker build -f Dockerfile_test .

�Tagging Images
The build command run in the preceding sections created images, but they leave

something to be desired for naming. docker images reports the image ID, but there’s no

human-friendly name:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> 8cf63acc1f17 21 seconds ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

Chapter 14 Building Images

324

This should feel normal by now—Docker seems reluctant to give things helpful or

meaningful names—but in fairness, I didn’t tell it how, or even whether, to name the

image. Fortunately, we have remedies, naming images after the fact or during the build

process, even assigning multiple names to a single image!

Repositories, Image Names, Tags, and Tagging I t’s easy to confuse these
terms. Image names consist of an (optional) repository namespace, an image
name or repository, and an optional tag. The repository namespace, if present, is
separated from the image name by a slash. The tag, if present, is separated from
the image name by a colon:

[<NAMESPACE>/]<IMAGE_NAME>[:<TAG>]

Looking at the oracle/database:19.3.0-ee image used throughout the book,
oracle is the namespace; database is the image name; 19.3.0-ee is the tag,
often used to distinguish different versions of an image.

The output of docker images combines the namespace and image name under
the REPOSITORY column.

The terms “image name” and “tag” are frequently used interchangeably to reference
the combined repository namespace, image name, and tag.

Repository, image name, and tag are nouns that identify the source, name, and
version of images. Tagging is the action of naming images.

�Add Tags to Images
Let’s name this image using the docker tag command. docker tag takes two

arguments—an image ID or name and a new tag. My image doesn’t (yet) have a name. I

need to reference it by its ID:

> docker tag 8cf63acc1f17 alpine-demo

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine-demo latest 8cf63acc1f17 24 minutes ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

Chapter 14 Building Images

325

After tagging the image, it appears in docker images with the new name, listed

under the REPOSITORY column, and a TAG of latest. It replaced the original, unnamed

entry in the image list.

I can create an additional tag for this image, this time referencing it by its new name,

alpine-demo:

> docker tag alpine-demo alpine-new

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine-new latest 8cf63acc1f17 26 minutes ago 5.54MB

alpine-demo latest 8cf63acc1f17 26 minutes ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

It added a second entry for the image with the same image ID value. Docker didn’t

create a new image. Tags are aliases that make it easier for humans to identify, classify,

and work with images.

It may be more appropriate to give this image a tag that identifies its purpose or

version rather than a new name. I’ll tag it again, this time with the alpine name and a tag

of demo:

> docker tag alpine-demo alpine:demo

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine-new latest 8cf63acc1f17 27 minutes ago 5.54MB

alpine demo 8cf63acc1f17 27 minutes ago 5.54MB

alpine-demo latest 8cf63acc1f17 27 minutes ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

This is rather messy—three aliases for the same image! Let’s use docker rmi and

clean up the duplicate images, alpine-demo, and alpine-new:

> docker rmi alpine-demo

Untagged: alpine-demo:latest

> docker rmi alpine-new

Untagged: alpine-new:latest

Chapter 14 Building Images

326

Notice the response from Docker. It untagged the images but didn’t delete them.

docker images shows a single entry for this image, using the alpine:demo name/tag

combination:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine demo 8cf63acc1f17 29 minutes ago 5.54MB

alpine latest 9c6f07244728 2 weeks ago 5.54MB

With only one alias remaining for this image, running docker rmi alpine:demo

completely removes the image from the system:4

> docker rmi alpine:demo

Untagged: alpine:demo

Deleted: sha256:8cf63acc1f17c28d78ce7efac26f19f428847e895db81182ec1063e41b4246b4

Deleted: sha256:1d5ae09bcac7b79cb3dea2209118be4199b2cc91050968aca0037d

aea0a4728c

�Tag Images During Builds
The tag command provides a means of naming existing images and adding aliases. It’s

far easier to assign names and tags during the build itself. docker build’s -t option does

just that:

docker build ...

 -t [<NAMESPACE>/]<IMAGE_NAME>[:<TAG>]

...

We’ve seen this pattern in the images used throughout this book:

oracle/database:19.3.0-ee

oraclelinux:7-slim

4 You won’t be able to remove images used by any containers without adding the -f option to
docker rmi or first deleting its container(s) with docker rm.

Chapter 14 Building Images

327

And in the output of the docker images command:

REPOSITORY TAG IMAGE ID CREATED SIZE

oracle/database 19.3.0-ee 1b588736c8c1 2 months ago 6.67GB

oraclelinux 7-slim 9ec0d85eaed0 4 months ago 133MB

To read an image name

•	 The part before the last slash5 is the repository namespace, oracle.

The Oracle Linux image isn’t associated with a namespace.

•	 The image names are database and oraclelinux.

•	 Tags, preceded by a colon, typically represent version information

that differentiates otherwise similar images, like 19.3.0-ee

and 7-slim.

I lean heavily on tags and consistent image naming to organize and make sense of

my images. As you begin building images, take a moment to consider the patterns that

will work best for you or your team!

You can assign multiple tags to a single build:

docker build ...

 -t oracledb:19.15-ee \

 -t my_namespace/oracledb:19.15-ee \

...

This saves time in environments with local and remote repositories. The image in

this example has two aliases: oracledb:19.15-ee and my_namespace/oracledb:19.15-

ee. The second references a remote repository, and once the build completes, the

finished image is already tagged and available to upload or push to the destination.

Chapter 16 discusses this in detail.

5 Repositories may have multiple parts to their path, like this example from a repository in the
Oracle Cloud: phx.ocir.io/ax3qrddf103e/oracle/database:19.13.1-ee. The image name is database.
Everything before that is the repository path.

Chapter 14 Building Images

328

�Arguments
The section on arguments in Chapter 12 covered their implementation in Dockerfiles. As

a reminder, arguments initiate variables and (optionally) set their default values:

ARG ORACLE_HOME=/opt/oracle/product/19c/dbhome_1

ENV ORACLE_HOME=$ORACLE_HOME

Use the --build-arg option to pass custom values to arguments during a build:

docker build ...

 --build-arg ORACLE_HOME=/u01/oracle/product/19.3.0/dbhome_1

 ...

The build process overrides the value of the ORACLE_HOME argument in the Dockerfile,

which in turn assigns the environment value in the image.

In Chapter 12, you learned that ARG is the only Dockerfile command that can precede

a FROM statement. The argument is only available to the FROM statement that follows and

allows manipulation of the base image used by the build:

ARG IMAGE_NAME=oraclelinux:7-slim

FROM $IMAGE_NAME

...

Using --build-arg alters the base image used by the Dockerfile in the preceding

example:

docker build ...

 --build-arg IMAGE_NAME=oraclelinux:7

...

Define multiple arguments with an individual --build-arg for each.

�Housekeeping
Every step in a Dockerfile runs a container based on an image generated in a previous

step or referenced in a FROM statement. It makes sense—images are immutable, after

all—and the commands in Dockerfiles are essentially scripts that run a series of images

Chapter 14 Building Images

329

as containers, make some changes, and save the result. It’s visible when looking back

at Listing 14-2. Notice the build process creates two intermediate containers before

completing the image.

There’s a saying, “To find the easiest way of doing something, ask a lazy person.”

In that sense, Docker is extremely lazy, doing everything in its power to limit the work

it has to do! In the build process, that means caching layers and saving intermediate

containers, just in case it might need them later!

I didn’t realize this when I began exploring Docker and building images. As a hands-

on learner who likes to experiment, I did my fair share of trial and error, making minor

changes to Dockerfiles and examining the results.

Every change, every experiment, and every mistake along the way resulted in new

intermediate containers that Docker helpfully cached away, just in case I needed

them later.

Until one day, Docker just… stopped. My build cache grew to several gigs,

consuming all the space in Docker’s virtual machine! Fortunately, there are reactive and

proactive solutions to this situation.

�Pruning
The reactive fix is purging Docker’s build cache. We can view space used in the build

cache, along with other objects like images, containers, and volumes, with docker

system df:

> docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 12 10 21.89GB 11.13MB (0%)

Containers 12 7 24.87GB 434.1MB (1%)

Local Volumes 6 4 853.6MB 1.53kB (0%)

Build Cache 19 0 48.38MB 48.38MB

You notice I have 19 objects in my build cache, using just over 48MB. Docker

identified all of that space as reclaimable. Purge the space with docker builder prune:

> docker builder prune

WARNING! This will remove all dangling build cache. Are you sure you want

to continue? [y/N]

Chapter 14 Building Images

330

Docker asks for confirmation and reports the cache it removed from the system:

> docker builder prune

WARNING! This will remove all dangling build cache. Are you sure you want

to continue? [y/N] y

Deleted build cache objects:

h5x3svswlc8ju3p6kpfp3kfxq

zq3ddt7nkeurbb7dw9wh87yfv

vhxgyd4wznuu43d8petp2byq0

7xesrmsi56gium8iir4e3wdey

krhuiazatl6wovkvljxnicdyr

s6p7a4olr4ioaj8rjo0klbehr

vxc9v14ogunwqi2see58xmj35

fm2kxjek8n93c91sczhp4ld3z

wodldqvqsfgtd40s8ulo3nkb2

b1ua49rpznnz4t1wk4c16zzqr

ssz3lpns9rxxp2agb2011kvwl

Total reclaimed space: 48.38MB

Once completed, rerun docker system df and verify it reclaimed the space:

> docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 12 10 21.89GB 11.13MB (0%)

Containers 12 7 24.87GB 434.1MB (1%)

Local Volumes 6 4 853.6MB 1.53kB (0%)

Build Cache 8 0 0B 0B

Another command, docker system prune, takes a more severe approach by

removing build cache, unused networks, stopped containers, and dangling images:

> docker system prune

WARNING! This will remove:

 - all stopped containers

 - all networks not used by at least one container

 - all dangling images

 - all dangling build cache

Are you sure you want to continue? [y/N] n

Chapter 14 Building Images

331

This is the same as running four separate commands:

docker container prune

docker network prune

docker image prune

docker builder prune

Use it with caution!6 Pruning Docker objects is irreversible!

�Cache Management
If you’d rather avoid the mystery and unpleasantness of “things not working,” apply

an ounce of prevention to your builds and remove or bypass cache altogether with the

build’s cache management options: --rm, --force-rm, and --no-cache.

•	 --rm=true removes intermediate containers (the ones created

in steps 1 and 2 in Listing 14-2) after a build succeeds. This is the

default. Setting this to false may improve build performance if you

frequently build images with the same or similar hierarchy, where

only the final few steps are different. Allowing Docker to keep

intermediate images increases the chance that subsequent, similar

builds will find matching layers and bypass some work.

•	 --force-rm=true deletes intermediate containers whether or not

the build succeeds. Forcing removal, even for failed images, limits

troubleshooting options (as you’ll see in Chapter 15).

•	 --no-cache=true prevents Docker from using (or creating) cache.

Besides saving space on your system, the --no-cache=true option

has a less obvious benefit—forcing Docker to pull the latest base

image. The --no-cache=true option effectively causes Docker to

build every image from scratch.

Including cache management in builds, alongside checks to monitor space

consumption, helps keep the system healthy and trim. These settings apply fine-grained

control to caching in individual build activities. For testing and troubleshooting,

6 If you’re absolutely sure that you want to prune a resource and prefer to skip Docker’s nagging
“Are you sure?” dialog, add the -f or --force flag.

Chapter 14 Building Images

332

--rm=false preserves build artifacts that can aid in diagnosing failures. The --force-

rm=true or --no-cache=true options suit unique images that are unlikely to share

content. And preventing caching altogether through --no-cache=true guarantees

images are reading the latest versions of assets.

The downside of --no-cache=true is the risk of change to base images that can

break a build. For instance, using FROM centos, without any version or tag, really means

centos:latest.7 The “latest” version of CentOS is a moving target, over time changing

from centos:6 to centos:7 to centos:8, with stops at minor releases along the way. An

image that worked when the “latest” was CentOS 7 may break by moving to CentOS 8—

and this illustrates why it’s always a good idea to identify specific versions for the assets

you source!8

Note T he buildContainerImage.sh script provided by Oracle manages
cache with hard-coded values of --force-rm=true and --no-cache=true.

�BuildKit
BuildKit is an advanced image builder that adds security features, better cache

efficiency, and speed to existing build activities. It’s been part of Docker since version

18.06. It supports builds of Linux-based container images on Windows, Mac, and Linux

systems.

BuildKit is an improvement over the legacy build engine and the default builder on

newer Docker releases. Verify whether it’s the default in Docker Desktop environments,

as in Figure 14-1, by navigating to the settings pane and confirming the following line is

present:

"features": { "buildkit": true }

7 I’m using CentOS as an example here because the official images publish a “latest” tag. The
official Oracle Linux images don’t typically provide a “latest” tag that leads to this confusion.
8 It’s easy to imagine base images are static and overlook them as the cause behind errors or
changing behavior in images. Fixing the version of source images referenced in the Dockerfile’s
FROM clause makes troubleshooting image development easier and eliminating them as variables
in the equation.

Chapter 14 Building Images

333

Figure 14-1.  In Docker Desktop, navigate to the Settings pane and look under the
Docker Engine section for the BuildKit feature entry

If BuildKit isn’t enabled and you’d like to try it out, add the BuildKit flag, DOCKER_

BUILDKIT=1, to the beginning of any build command:

DOCKER_BUILDKIT=1 docker build ...

Notice there’s nothing between the environment setting and the docker build

command itself in this example, and this syntax enables BuildKit only for the build in

question. You can also export the value in the environment:

export DOCKER_BUILDKIT=1

Alternately, disable BuildKit by setting the DOCKER_BUILDKIT variable to zero.

�Progress
The most noticeable difference between BuildKit and the legacy engine is the output.

The default output from the legacy engine in Listing 14-3 is a continuous log of activity.

Chapter 14 Building Images

334

Listing 14-3.  The legacy engine generates a continuous, lengthy output stream

at the command line

Building image 'oracle/database:19.3.0-ee' ...

Sending build context to Docker daemon 3.06GB

Step 1/24 : FROM oraclelinux:7-slim as base

 ---> 03c22334cf5a

Step 2/24 : LABEL "provider"="Oracle"

"issues"="https://github.com/oracle/docker-images/issues"

"volume.data"="/opt/oracle/oradata"

"volume.setup.location1"="/opt/oracle/scripts/setup"

"volume.setup.location2"="/docker-entrypoint-initdb.d/setup"

"volume.startup.location1"="/opt/oracle/scripts/startup"

"volume.startup.location2"="/docker-entrypoint-initdb.d/startup"

"port.listener"="1521"

"port.oemexpress"="5500"

 ---> Running in 82a69d6a2ffc

Removing intermediate container 82a69d6a2ffc

 ---> d3e64e2a7cad

The output from BuildKit, in Listing 14-4, is more compact.

Listing 14-4.  BuildKit produces more compact output during a build

Building image 'oracle/database:19.3.0-ee' ...

[+] Building 63.7s (7/14)

 => [internal] load build definition from Dockerfile 2.5s

 => => transferring dockerfile: 5.11kB 0.2s

 => [internal] load .dockerignore 4.0s

 => => transferring context: 2B 0.1s

 => [internal] load metadata for docker.io/library/oraclelinux:7-slim 0.0s

 => CACHED [base 1/4] FROM docker.io/library/oraclelinux:7-slim 0.0s

 => [internal] load build context 13.5s

 => => transferring context: 3.06GB 11.2s

 => [base 2/4] COPY setupLinuxEnv.sh checkSpace.sh /opt/install/ 29.1s

Chapter 14 Building Images

335

The --progress option of docker build controls the output format.

Set --progress=plain to produce output as seen in Listing 14-3 or --progress=tty to

see results like those in Listing 14-4.

I prefer the TTY-style output of BuildKit for several reasons. First, the Oracle

database build is lengthy, and running --progress=plain sends several thousand lines

to the terminal. But it’s more than just brief. Progress in the TTY method, seen in

Listing 14-5, is more granular and informative.

Listing 14-5.  The complete output from building an Oracle Database 19c image

with BuildKit

Building image 'oracle/database:19.3.0-ee' ...

[+] Building 1045.0s (15/15) FINISHED

 => [internal] load build definition from Dockerfile 2.5s

 => => transferring dockerfile: 5.11kB 0.2s

 => [internal] load .dockerignore 4.0s

 => => transferring context: 2B 0.1s

 => [internal] load metadata for docker.io/library/or 0.0s

 => CACHED [base 1/4] FROM docker.io/library/oracleli 0.0s

 => [internal] load build context 13.5s

 => => transferring context: 3.06GB 11.2s

 => [base 2/4] COPY setupLinuxEnv.sh checkSpace.sh /o 29.1s

 => [base 3/4] COPY runOracle.sh startDB.sh createDB. 4.2s

 => [base 4/4] RUN echo "INSTALL_DIR = /opt/install" 393.8s

 => [builder 1/2] COPY --chown=oracle:dba LINUX.X64_1 43.8s

 => [builder 2/2] RUN chmod ug+x /opt/install/*.sh && 329.0s

 => [stage-2 1/4] COPY --chown=oracle:dba --from=buil 157.2s

 => [stage-2 2/4] RUN /opt/oracle/oraInventory/orains 9.3s

 => [stage-2 3/4] WORKDIR /home/oracle 4.4s

 => [stage-2 4/4] RUN echo 'ORACLE_SID=${ORACLE_SID:- 2.9s

 => exporting to image 28.0s

 => => exporting layers 27.9s

 => => writing image sha256:b0be5db0705d826560d064522 0.0s

 => => naming to docker.io/oracle/database:19.3.0-ee 0.0s

Chapter 14 Building Images

336

Several things are worth noticing in the result:

•	 The second line shows the elapsed time, the current step, and its status.

•	 BuildKit counts steps in the Dockerfile differently and breaks them

down by stage. The plain output in Listing 14-3 shows a total step

count of 24. The TTY output reports progress separately within the

base, builder, and stage-2 stages. While the step is running, the

timing at the right updates continuously, showing its progress. When

complete, it displays elapsed time for the action.

•	 While steps are active, the TTY output scrolls activity in a windowed

section at the bottom of the screen.

The timings and labels for stage and step make it clear where builds spend their

time. It’s a bit like an AWR report for a Docker build! If I wanted to speed up this build, I’d

look at step 4 in the base stage, step 2 in the builder stage, and perhaps step 1 of stage-2.9

�Ignore Files
We discussed separating context earlier, exploring a directory structure for building

similar images:

19c

├── 19.15
│ ├── Dockerfile
│ ├── LINUX.X64_193000_db_home.zip
| ├── p6880880_190000_Linux-x86-64.zip
│ └── patch-for-1915-RU.zip
└── 19.16
 ├── Dockerfile
 ├── LINUX.X64_193000_db_home.zip
 ├── p6880880_190000_Linux-x86-64.zip
 └── patch-for-1916-RU.zip

9 In step 1 of stage-2, Docker copies directories from the image created in the builder stage. As an
OS operation, I can’t easily improve it short of moving to faster storage. However, I could look at
the size and contents copied in this step and either limit what’s being copied or reduce the size at
the source, created in earlier stages.

Chapter 14 Building Images

337

The first two files in each subdirectory are identical. Docker doesn’t allow links or

aliases in the build context, and it appeared there was no good solution that prevented

duplicating the files other than putting them all in one directory:

19c

├── Dockerfile
├── LINUX.X64_193000_db_home.zip
├── p6880880_190000_Linux-x86-64.zip
├── patch-for-1915-RU.zip
└── patch-for-1916-RU.zip

Now we have a single copy of the software media and OPatch files, but left wondering

which version the Dockerfile belongs to! Fortunately, you learned earlier that we could

specify custom Dockerfiles with the -f option, meaning we can write different Dockerfile

recipes for each database version:

19c

├── Dockerfile.19.15
├── Dockerfile.19.16
├── LINUX.X64_193000_db_home.zip
├── p6880880_190000_Linux-x86-64.zip
├── patch-for-1915-RU.zip
└── patch-for-1916-RU.zip

Then, build either version by calling the appropriate Dockerfile:

docker build -f Dockerfile.19.15 .

docker build -f Dockerfile.19.16 .

This eliminates duplicate files, but now both patch files are in context. When

building a database patched with the 19.15 version, docker build reads both the 19.15

and 19.16 patches. That might not matter if there are just a few small patches, but

in reality, we’re more likely to encounter growing numbers of patches added during

Oracle’s quarterly updates.

An ignore file could solve this, telling the build to ignore all but the desired patch:

Ignore all files:

*

Chapter 14 Building Images

338

Add an exception for LINUX.X64_193000_db_home.zip:

!LINUX.X64_193000_db_home.zip

Add an exception for p6880880_190000_Linux-x86-64.zip p:

!p6880880_190000_Linux-x86-64.zip

Add an exception for the 19.15 patch:

!patch-for-1915-RU.zip

The ignore file limits Docker’s context to the three files used for building a

version 19.15 database. However, it breaks builds for version 19.16! docker build has no

facility for referencing a custom ignore file, only the default, .dockerignore.

BuildKit solves this. Rather than introducing a switch for picking an ignore file, it

adds support for custom ignore files with names derived from custom Dockerfiles.

Typically, the build looks for a file named .dockerignore in the same directory as

the Dockerfile. When BuildKit features are enabled, it first looks for an ignore file with

the same name as the Dockerfile, suffixed by “.dockerignore.” If it doesn’t find a custom

ignore file, it searches next for a file with the default name.

Now, each Dockerfile version can have its own ignore file:

19c

├── Dockerfile.19.15
├── Dockerfile.19.15.dockerignore
├── Dockerfile.19.16
├── Dockerfile.19.16.dockerignore
├── LINUX.X64_193000_db_home.zip
├── p6880880_190000_Linux-x86-64.zip
├── patch-for-1915-RU.zip
└── patch-for-1916-RU.zip

Custom ignore files, tied to version-specific Dockerfiles, address the build context

problem created by consolidating duplicate or common files into a single directory!

�BuildKit Syntax
Certain BuildKit features must be enabled at the top of the Dockerfile as a comment

identifying the frontend builder version. For instance:

syntax=docker/dockerfile:1.4

Chapter 14 Building Images

339

Syntax directives enable new build features and bug fixes without requiring an

update of the Docker daemon and allow users to test experimental features. These

typically enable advanced components. If BuildKit isn’t enabled, the syntax directive

behind the comment is simply ignored.

�Summary
Images, and the automation they contain, might seem mysterious or even magical at

first. After pulling back the curtain, it’s clear that there’s nothing unusual or special going

on, just shell scripts and ordinary Linux commands!

You can build images and assign names with your new understanding of Docker’s

build syntax. You’ve seen the similarities between build arguments in images and

environment variables in containers and learned how to extend Dockerfiles by

dynamically adding functionality and flexibility with build arguments.

We discussed features for gaining control over the build cache and tools for viewing

and managing the artifacts left behind during builds. As your container use grows, I

promise the purge commands we covered will prove their worth!

One of the challenges I’ve encountered while building database images is managing

the source files—the database installation media and patches needed for each version.

Preventing duplicates and tracking file versions is easier with files centrally located in

a single, dedicated inventory. Saving space by condensing everything into one location

comes with a cost, and every file contributes to the potential build context. Employing

named Dockerfiles, alongside custom ignore files enabled through BuildKit, avoids any

need to sacrifice context against control.

With this knowledge, building images should feel less intimidating, and I hope you’ll

consider stitching together a few of your own! Like anything, there’s a learning curve, but

don’t let that stop you! While you’re sure to encounter some bumps along the way, I’ve

shared some of the troubleshooting and debugging techniques I’ve found helpful when

working with images and containers in the next chapter!

Chapter 14 Building Images

341

CHAPTER 15

Debugging and
Troubleshooting
“New” and “different” are often intimidating and scary. We’re forced to learn or invent

new approaches to familiar or comfortable tasks and perhaps even alter our perceptions

and understanding. Tried and true is stable, even secure.

Yet everything we do, especially in IT, was once new and different. I started on

Oracle 7, long before the days of RMAN, Real Application Clusters, or Data Guard. The

cloud? Not a thing. Exadata was still a dream. Today, I take them for granted as part of

my day-to-day work with Oracle, but I had to learn my way around each technology at

some point.

Docker is no different. When I started working with containers, I didn’t fully grasp

the relationship between images and containers or realize that builds were a series

of “run an image in a container, do something, save the result as an image, repeat”

operations. Understanding that made it easier to see how and where to troubleshoot the

process.

I read an article recently by a new developer who said the second worst part of their

job was not understanding why code didn’t work. (The worst? Not understanding why

their code did work!) This chapter discusses approaches and recipes to help navigate

the new and different world of containers! I’ll cover ways of extracting information

from failing images and containers that lead to understanding what happened, why it

happened, and how to fix it!

Most of this isn’t new in its own right—echoing variables from scripts goes back

decades, at least. But how these methods are applied and work in containers isn’t always

obvious or intuitive.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_15

https://doi.org/10.1007/978-1-4842-9033-0_15

342

�View and Manipulate Output
If you’ve built an Oracle Database using the buildContainerImage.sh script, you’ve

probably seen output like that in Listings 15-1 and 15-2 displayed on your screen.

Listing 15-1.  A portion of the output generated while building an Oracle

database image. Note the ID values identified with “--->,” the step tracking, and

the list of commands executed in each step

 ---> f33a827c1bc8

Step 6/24 : ENV PATH=$ORACLE_HOME/bin:$ORACLE_HOME/OPatch/:/

usr/sbin:$PATH LD_LIBRARY_PATH=$ORACLE_HOME/lib:/usr/

lib CLASSPATH=$ORACLE_HOME/jlib:$ORACLE_HOME/rdbms/jlib

 ---> Running in d64a3700b791

Removing intermediate container d64a3700b791

 ---> bb272db209e2

Step 7/24 : COPY $SETUP_LINUX_FILE $CHECK_SPACE_FILE $INSTALL_DIR/

 ---> 18dc49d4a53b

Step 8/24 : COPY $RUN_FILE $START_FILE $CREATE_DB_FILE $CREATE_OBSERVER_

FILE $CONFIG_RSP $PWD_FILE $CHECK_DB_FILE $USER_SCRIPTS_FILE $RELINK_

BINARY_FILE $CONFIG_TCPS_FILE $ORACLE_BASE/

 ---> 183467ad6373

Step 9/24 : RUN chmod ug+x $INSTALL_DIR/*.sh && sync && $INSTALL_

DIR/$CHECK_SPACE_FILE && $INSTALL_DIR/$SETUP_LINUX_FILE && rm -rf

$INSTALL_DIR

 ---> Running in 5367f8d86861

Listing 15-2.  Part of an image build for an Oracle 19c database, showing part of

the database software installation step

Launching Oracle Database Setup Wizard...

[WARNING] [INS-32055] The Central Inventory is located in the Oracle base.

 �ACTION: Oracle recommends placing this Central Inventory in a location

outside the Oracle base directory.

[WARNING] [INS-13014] Target environment does not meet some optional

requirements.

Chapter 15 Debugging and Troubleshooting

343

 �CAUSE: Some of the optional prerequisites are not met. See logs for

details. installActions2022-09-24_10-13-19PM.log

 �ACTION: Identify the list of failed prerequisite checks from the log: in

stallActions2022-09-24_10-13-19PM.log. Then either from the log file or

from installation manual find the appropriate configuration to meet the

prerequisites and fix it manually.

The response file for this session can be found at:

 /opt/oracle/product/19c/dbhome_1/install/response/

db_2022-09-24_10-13-19PM.rsp

You can find the log of this install session at:

 /tmp/InstallActions2022-09-24_10-13-19PM/installActions2022-09-24_10-

13-19PM.log

As a root user, execute the following script(s):

 1. /opt/oracle/oraInventory/orainstRoot.sh

 2. /opt/oracle/product/19c/dbhome_1/root.sh

Execute /opt/oracle/oraInventory/orainstRoot.sh on the following nodes:

[331db970408a]

Execute /opt/oracle/product/19c/dbhome_1/root.sh on the following nodes:

[331db970408a]

Removing intermediate container 331db970408a

This progress output from the build should be the first place to look for clues in

identifying the cause of failures. There’s nothing special about this output, and it’s no

different than what you’d see by manually executing the commands. That allows us to

employ techniques similar to those we’d use in a “normal” system.

If the log output doesn’t show anything obvious, the next step is adding output to

report the information and details needed to diagnose the situation.

�Echo Information
Step 9, shown in Listing 15-1, runs a series of commands:

RUN chmod ug+x $INSTALL_DIR/*.sh && sync && $INSTALL_DIR/$CHECK_

SPACE_FILE && $INSTALL_DIR/$SETUP_LINUX_FILE && rm -rf $INSTALL_DIR

Chapter 15 Debugging and Troubleshooting

344

These correspond to a RUN block in the Dockerfile:

RUN chmod ug+x $INSTALL_DIR/*.sh && \

 sync && \

 $INSTALL_DIR/$INSTALL_DB_BINARIES_FILE $DB_EDITION

If one or more variables from this block were set incorrectly, I’d have no way of

knowing by looking at the output. Everything references environment variables. But,

I can add commands to this block of code and display the variable settings in the

build output:

RUN echo "INSTALL_DIR = $INSTALL_DIR" && \

 echo "INSTALL_DB_BINARIES_FILE = $INSTALL_DB_BINARIES_FILE" && \

 echo "DB_EDITION = $DB_EDITION" && \

 chmod ug+x $INSTALL_DIR/*.sh && \

 sync && \

 $INSTALL_DIR/$INSTALL_DB_BINARIES_FILE $DB_EDITION

When I rerun the build, I’ll see the values printed to the build output:

Step 9/24 : RUN echo "INSTALL_DIR = $INSTALL_DIR" && echo "INSTALL_DB_

BINARIES_FILE = $INSTALL_DB_BINARIES_FILE" && echo "DB_EDITION = $DB_

EDITION" && chmod ug+x $INSTALL_DIR/*.sh && sync && $INSTALL_DIR/$CHECK_

SPACE_FILE && $INSTALL_DIR/$SETUP_LINUX_FILE && rm -rf $INSTALL_DIR

 ---> Running in e5331bac34fc

INSTALL_DIR = /opt/install

INSTALL_DB_BINARIES_FILE = installDBBinaries.sh

DB_EDITION =

Be aware that the position of diagnostic checks may affect results. In this example,

I echoed the values as part of an existing step in the Dockerfile. Had I added them to a

separate RUN block, either before or after, they would run in their own container. The

values might not reflect their settings during the step in question.

Echoing values isn’t limited to the Dockerfile. The scripts Docker uses to complete

each build task interact with the process output, as in Listing 15-2, and the same

techniques apply.

Chapter 15 Debugging and Troubleshooting

345

�Add a Debug Option
Calling bash scripts with bash -x enables debugging output that prints the commands

and arguments executed within the script. If you experienced problems during step 9 in

the last example and wanted to see details of everything the database binary installation

did, you could modify the Dockerfile to

RUN chmod ug+x $INSTALL_DIR/*.sh && \

 sync && \

 bash -x $INSTALL_DIR/$INSTALL_DB_BINARIES_FILE $DB_EDITION

Adding bash -x before the script execution on the last line adds visibility into the

script’s actions without changing the result. The downside comes in the effort required

to add and remove debugging commands in the Dockerfile. But, with the help of our

friend, ARG, that’s not a problem!

Add a new, empty argument called DEBUG at the top of the Dockerfile:

ARG DEBUG=

Then prefix each script executed in the Dockerfile with $DEBUG:

RUN chmod ug+x $INSTALL_DIR/*.sh && \

 sync && \

 $DEBUG $INSTALL_DIR/$INSTALL_DB_BINARIES_FILE $DB_EDITION

Any regular call to docker build harmlessly substitutes the empty DEBUG argument

before the script execution. However, passing a value to the argument turns on

debugging:

docker build ...

 --build-arg DEBUG="bash -x" \

...

This trick has an additional application for debugging containers, too. Remember

that containers perform services defined by scripts, and with our database containers,

the root of these activities is runOracle.sh. As you discovered in Chapter 6, runOracle.

sh calls other scripts to perform functions like starting and creating databases. Modifying

these calls with a similar $DEBUG variable adds runtime debugging to containers, as in

Listing 15-3.

Chapter 15 Debugging and Troubleshooting

346

Listing 15-3.  Adding a $DEBUG option to the individual script executions, such as

this call to the database startup script, enables runtime debugging in containers

through an environment variable

 # Start database

 $DEBUG "$ORACLE_BASE"/"$START_FILE";

In this case, the DEBUG variable isn’t an argument interpreted during the build. It’s

part of the script copied into the image. The DEBUG variable is visible in the container

and, left undefined, is empty. As before, it adds nothing to the script nor alters the

container’s behavior or function. Defining a value for the environment variable as part of

the docker run command activates debugging:

docker run ...

 -e DEBUG="bash -x" \

...

Do not implement built-in debugging like this in production images—it’s command

injection, plain and simple—but including it in development images has saved me

countless hours. There’s no need to update the Dockerfile or scripts or to rebuild images

with debugging included if it’s already there!

�View Container Logs
When containers fail, it’s generally during the startup phase, caused by errors in

automation scripts. For databases, the events most likely to fail are database creation in

new containers and database startup on existing ones. Error messages are nearly always

visible in the container logs.

To check the logs from a container, run

docker logs <CONTAINER NAME>

This dumps the entire content of the log to the command line, and it may be easier

to read by piping the command output into a file reader like less or more, also adding

search capabilities:

docker logs <CONTAINER NAME> | less

Chapter 15 Debugging and Troubleshooting

347

The logs are available in Docker whether the container is running or not, and since

most errors occur shortly after startup, there’s a good chance you’ll spot trouble in the

opening lines!

�Override Container Startup
Just because an image builds successfully doesn’t mean it works. When containers fail

or misbehave, the root cause is in the image. Fixing those problems ultimately means

rebuilding the image after integrating the necessary fixes. How and where you identify,

develop, and test those fixes matters. If you can’t try and test things in a container, your

only course is updating the Dockerfile and its automation, then rebuilding the image.

That’s a potentially time-consuming cycle.

It may feel like you’ve hit a dead end when containers fail on startup. Is there any

option if you can’t log in and the container won’t run? Absolutely!

The following techniques alter container behavior during startup. They’re not

methods for diagnosing problems with the build process per se, but they can help get

failing images up and running long enough to discover what’s broken!

Through most of this book, I’ve shown you how to run containers using the -d flag,

creating them as detached processes in the background:

docker run -d ...

You might think of this as running a database service or daemon in the

background—the container starts and prepares to service client requests. What runs—

and, in turn, provides the service—is defined by the CMD instruction in the Dockerfile.

docker run reads the image metadata and kicks off that command in the container.

If the command fails, the container typically stops because it couldn’t perform the

actions necessary to sustain its service. As a user, you’ll usually only see the container

name reported at the command prompt after it starts, with no indication it’s failed. It

isn’t until something attempts to consume the container’s services that you begin to see

something isn’t right!

If the container status displayed by docker ps -a reports a nonzero exit code, it’s

unlikely to respond favorably to docker start, either. Running containers as detached

processes invokes the startup command, but you can bypass this behavior by passing a

different command—like a shell—to the container in interactive mode:

Chapter 15 Debugging and Troubleshooting

348

docker run -it oracle/database:19.3.0-ee bash

This looks like connecting to a container with docker exec, using the image name

instead of the container name. Giving the container something different to do short-

circuits the startup process. Even after several minutes, no database processes are

running in the container:

> docker run -it oracle/database:19.3.0-ee bash

bash-4.2$ ps -ef | grep oracle

oracle 1 0 0 21:07 pts/0 00:00:00 bash

oracle 132 1 0 21:12 pts/0 00:00:00 ps -ef

oracle 133 1 0 21:12 pts/0 00:00:00 grep oracle

Checking the container logs in a separate session shows only the commands I ran at

the command prompt!

> docker logs -f adoring_colden

bash-4.2$ ps -ef | grep oracle

oracle 1 0 0 21:07 pts/0 00:00:00 bash

oracle 132 1 0 21:12 pts/0 00:00:00 ps -ef

oracle 133 1 0 21:12 pts/0 00:00:00 grep oracle

With a running container, I’m positioned to query the environment, run scripts, and

even step through the failing startup commands.

The container in this example is tied to my session, and when I exit, the container

stops. However, the commands usually called at startup are replaced by bash. Every

future docker start follows suit, starting bash in the container. From this point, I can

stop and start the container, and while it doesn’t do what’s expected, I can duplicate the

failure by running the “normal” startup command!

�Intermediate Containers
Every step in a build consists of running a container, doing some work, then saving

the container as an image to use in a subsequent step. A single image may have

dozens of steps, each building upon the last and contributing to the outcome. It also

means multiple layers can contribute to a problem, making it less intuitive to find

what’s broken.

Chapter 15 Debugging and Troubleshooting

349

Some problems are best addressed by building an image partially, up to the point

of failure, then running it as a container and stepping through the automation scripts

manually. Every intermediate image generated during a build is a target for work defined

in the Dockerfile.

If Docker can run these images, so can we—the only trick is identifying the right

image to run! With visibility of the system state and logs at each point and an inventory

of commands to run, we can apply and test changes manually in the intermediate

containers under the same conditions Docker experiences during a build.

�Build to a Target
One avenue for reaching this “partial” state is trimming the Dockerfile down by

commenting or removing lines. There’s a more straightforward, built-in option for

multistage builds: the --target option. Targeting a named stage in a Dockerfile halts the

build on completion of the stage:

docker build ...

 --target stage-name \

...

In the following Dockerfile, I removed everything but the FROM statements,

highlighting its three stages: base, builder, and a final, unnamed stage:

FROM oraclelinux:7-slim as base

<snip>

FROM base AS builder

<snip>

FROM base

<snip>

With --target, I can tell Docker to build through the builder stage, stopping before

performing the final stage:

docker build \

 --target builder \

 -t builder-stage \

 -f Dockerfile .

Chapter 15 Debugging and Troubleshooting

350

Tagging the image with a new name, builder-stage, identifies the image. After the

build completes, run the image interactively, starting a bash shell:

docker run -it builder-stage bash

The image is incomplete without a startup command, so we need an approach

similar to that used to override the default operations in a container, namely, giving the

container a command to run. Here, I ran the container with the -it flags, which started

an interactive session and opened a bash shell.

�Run Cached Layers
I can apply a similar approach to layers in Docker’s build cache—assuming they’re still

there! The buildContainerImage.sh script builds images using the --force-rm=true

and --no-cache=true options. The --force-rm=true switch removes intermediate

images, even if the build fails, so intermediate images aren’t available until the option is

changed in the script:1

"${CONTAINER_RUNTIME}" build --force-rm=false --no-cache=false \

 �"${BUILD_OPTS[@]}" "${PROXY_SETTINGS[@]}" --build-arg DB_

EDITION=${EDITION} \

 -t "${IMAGE_NAME}" -f "${DOCKERFILE}" . || {

 echo ""

 �echo "ERROR: Oracle Database container image was NOT successfully

created."

 �echo "ERROR: Check the output and correct any reported problems with the

build operation."

 exit 1

}

Comment the prune instruction appearing just after the build command, too:

Remove dangling images (intermitten images with tag <none>)

#yes | "${CONTAINER_RUNTIME}" image prune > /dev/null

1 Don’t delete these flags and leave build as the last thing on the line. The Docker CLI expects
something to follow build, before the backslash continuation character. With nothing there, the
build will fail with unable to prepare context: path “ “ not found.

Chapter 15 Debugging and Troubleshooting

351

With these changes in place, progress reported from the build, shown in Listing 15-4,

appears slightly different from that seen earlier, under Listing 15-1. The “Removing

intermediate container” messages are gone, replaced by “Using cache.”

Listing 15-4.  A portion of the build output after disabling cache management in

the buildContainerImage.sh script

Step 6/24 : ENV PATH=$ORACLE_HOME/bin:$ORACLE_HOME/OPatch/:/

usr/sbin:$PATH LD_LIBRARY_PATH=$ORACLE_HOME/lib:/usr/

lib CLASSPATH=$ORACLE_HOME/jlib:$ORACLE_HOME/rdbms/jlib

 ---> Using cache

 ---> 2d1f2466fe4f

Step 7/24 : COPY $SETUP_LINUX_FILE $CHECK_SPACE_FILE $INSTALL_DIR/

 ---> Using cache

 ---> 2e6a13841ca5

Step 8/24 : COPY $RUN_FILE $START_FILE $CREATE_DB_FILE $CREATE_OBSERVER_

FILE $CONFIG_RSP $PWD_FILE $CHECK_DB_FILE $USER_SCRIPTS_FILE $RELINK_

BINARY_FILE $CONFIG_TCPS_FILE $ORACLE_BASE/

 ---> Using cache

 ---> bd581e634499

Step 9/24 : RUN echo "INSTALL_DIR = $INSTALL_DIR" && echo "INSTALL_DB_

BINARIES_FILE = $INSTALL_DB_BINARIES_FILE" && echo "DB_EDITION = $DB_

EDITION" && chmod ug+x $INSTALL_DIR/*.sh && sync && $INSTALL_

DIR/$CHECK_SPACE_FILE && $INSTALL_DIR/$SETUP_LINUX_FILE && rm -rf

$INSTALL_DIR

 ---> Running in 3ea3d1739ebb

The ID values of each image processed in the build are visible in the output. Under

BuildKit and builds using --progress=tty, the image IDs aren’t printed. In these cases,

or if the original build output isn’t available, the intermediate images are still available in

the image’s history:

> docker history oracle/database:19.3.0-ee

IMAGE CREATED CREATED BY SIZE

 COMMENT

bdbb8b83217b 3 minutes ago /bin/sh -c #(nop) CMD ["/bin/sh" "-c"

"exec... 0B

Chapter 15 Debugging and Troubleshooting

352

fa9ccf999db3 3 minutes ago /bin/sh -c #(nop) HEALTHCHECK &{["CMD-

SHELL... 0B

a6382dfde8a3 3 minutes ago /bin/sh -c echo 'ORACLE_SID=${ORACLE_SID:-

OR... 69B

8b9a86303988 3 minutes ago /bin/sh -c #(nop) WORKDIR /home/

oracle 0B

2a63bb2ba0e2 3 minutes ago /bin/sh -c #(nop) USER

oracle 0B

3dc4a02582f5 3 minutes ago /bin/sh -c $ORACLE_BASE/oraInventory/

orainst... 21.8MB

b8ad822c9f7b 3 minutes ago /bin/sh -c #(nop) USER

root 0B

a51c124a4630 4 minutes ago /bin/sh -c #(nop) COPY

--chown=oracle:dbadir... 6.19GB

80165c9dd6e6 6 minutes ago /bin/sh -c #(nop) USER

oracle 0B

7df11e1c33c2 13 minutes ago /bin/sh -c echo "INSTALL_DIR = $INSTALL_

DIR"... 332MB

bd581e634499 5 weeks ago /bin/sh -c #(nop) COPY

multi:267aa3de5580180... 43kB

2e6a13841ca5 5 weeks ago /bin/sh -c #(nop) COPY

multi:08c35eebd2349e6... 1.96kB

2d1f2466fe4f 5 weeks ago /bin/sh -c #(nop) ENV PATH=/opt/oracle/

prod... 0B

6f7b027f7ba1 5 weeks ago /bin/sh -c #(nop) ENV ORACLE_BASE=/opt/

orac... 0B

bfa620b5677f 5 weeks ago /bin/sh -c #(nop) ARG INSTALL_

FILE_1=LINUX.... 0B

6fbdf293ec56 5 weeks ago /bin/sh -c #(nop) ARG

SLIMMING=true 0B

e930d325050c 5 weeks ago /bin/sh -c #(nop) LABEL provider=Oracle

iss... 0B

03c22334cf5a 2 years ago /bin/sh -c #(nop) CMD ["/bin/

bash"] 0B

Chapter 15 Debugging and Troubleshooting

353

<missing> 2 years ago /bin/sh -c #(nop) ADD

file:0846801b1ef59a751... 131MB

<missing> 2 years ago /bin/sh -c #(nop) LABEL org.

opencontainers.... 0B

The output of docker image history shows the latest operations first and identifies

the images where each command ran. Now, examine a step by running the associated

image and supplying a command, like bash, to execute:

docker run --name test -it 3dc4a02582f5 bash

You can also run intermediate images in the background, using the -d flag:

docker run --name test -d 3dc4a02582f5 bash

When running intermediate images, it’s critical to remember the image won’t have

a built-in instruction. Without supplying something for the container to do, like open a

shell, it exits immediately!

After starting intermediate images as containers, they behave just like the “regular”

images we’ve worked with throughout the book. The same commands used to manage

and connect still work. For the two examples earlier, you can open a bash terminal using

docker exec:

docker exec -it test bash

There’s usually no need to add environment variables, assign a network, or map

ports while troubleshooting processes in intermediate images. However, you might

consider mapping a bound volume.

�Access Container Files
Let’s assume you’ve written a Dockerfile and used it to build an image. When you ran

the image, something went wrong. You followed some of the recommendations in this

chapter, allowing you to start a container and change some scripts. How do you access

the changed files from the container?

You could copy and paste the file contents from the container’s shell into a file on the

local host. I can’t count how many times I’ve done this, and it’s a perfectly reasonable

solution up to a point.

Chapter 15 Debugging and Troubleshooting

354

For larger files where copy and paste aren’t practical, use Docker’s copy utility,

docker cp. It takes two arguments, copying from the first (source) to the second

(destination). Identify the location in the container by prefixing the container name,

followed by a colon:

docker cp my_container:/source_path/filename /destination_path/

This copies /source_path/filename from container “my_container” to

/destination_path on the host.

Unfortunately, docker cp won’t process wildcards:

> docker cp ORCL:/home/oracle/* $HOME/

Error: No such container:path: ORCL:/home/oracle/*

Nor does it copy directory contents. Copying a few files is viable, but dozens could

get tedious!

Managing multiple files during troubleshooting is best addressed with attached

volumes. I suggest mapping a bind volume to a nonexistent mount point in the container

and associating it to a directory on the local host:

docker run -it \

 -v $HOME:/debug \

 3dc4a02582f5 bash

This has uses for sharing files into the container, too. Most database administrators

have a collection of diagnostic scripts they’re comfortable using. You’ll do yourself a

favor by anticipating the need and making them available in the container environment!

�Summary
When I was younger, I discovered a love of mathematics and logic. I remember

stumbling on a book of logic puzzles at my library, Aha! Insight, by Scientific American

columnist Martin Gardner. Every problem seemed to fall one piece short of having

enough information to solve the paradox. Often, though, it turned out he gave too much

data by including a red herring—some “fact” or random number—that I’d stew over until

realizing (sometimes only after skimming the answers in the back) it was a distraction!

Most of the puzzles had simple, elegant solutions that led to “Aha! Insight!” moments!

Chapter 15 Debugging and Troubleshooting

355

I see the same patterns in troubleshooting and debugging code. All too often, a

simple answer hides among meaningless information that confuses and clutters the

scene. The trick is understanding how to extract data from systems and where to focus

the search for solutions.

The most obvious starting point is logs. In image builds, Docker relays script output

and messages to the console, and in this chapter, you learned strategies for adding

supplemental debugging information to existing output. Perhaps my favorite method,

adding DEBUG arguments before script calls, has saved me hours. Just remember that

it’s a potential attack vector and not something to use in production code!

You also discovered ways of circumventing container startup failures by bypassing

initialization and starting them at a shell prompt. Then, you can step through the

automation code and (hopefully) find and fix whatever’s interfering with the container’s

operations. The same technique, applied to intermediate images, is valuable for

identifying hiccups in builds.

With these approaches added to your toolkit, you’re fully prepared to confidently

build and troubleshoot container images and reach your “Aha! Insight!” moment as

quickly and painlessly as possible!

Chapter 15 Debugging and Troubleshooting

357

CHAPTER 16

Docker Hub and Image
Repositories
Docker is an Infrastructure as Code tool, or IaC. Dockerfiles are the code, a set of

instructions that direct Docker through the steps of creating (or recreating) images.

Since Docker is platform agnostic, the same Dockerfile generates identical images on

Windows, Mac, and Linux, on private machines, or in the cloud!

There’s a caveat, though. You’ve seen how the arguments in Dockerfiles add

flexibility and variety to builds. I maintain a repository with a single Dockerfile capable

of building versions of Oracle from 11g through 21c and applying one or more patches

to the final image. On its own, a Dockerfile is merely a template, and just as a Word

template provides a foundation for new documents, the thought and content poured

into each file makes it unique. And so it is with Dockerfiles. The supporting scripts and

resources make a difference in the outcome.

Database images depend heavily on third-party content—the database installation

files and patches. It makes little sense for database administrators to tell developers,

“Download files from Oracle, put them in the right directories, and build your image with

this Dockerfile according to some instructions.” It’s faster than filling individual requests

for database images but lacks guarantees that everyone’s working with the same image.

Image repositories address this precise need. Authors run a build and produce an

asset—the image—which they then “push” to a central image repository. Anyone with

access to the repository can “pull” specific images, ready to use according to need.

Without realizing it, you’ve been using a repository called Docker Hub for the exercises in

this book when calling docker run ... alpine or writing and building Dockerfiles with

FROM clauses referencing existing image content like Oracle Linux.

The primary focus of this chapter is Docker Hub, but other vendors offer similar

container registries for personal and enterprise use. Individuals and organizations can

turn to container registry services from cloud vendors, like Oracle Cloud Infrastructure,

or OCI, to manage and host their content.

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_16

https://doi.org/10.1007/978-1-4842-9033-0_16

358

�Docker Hub
I mentioned you’ve been using Docker Hub this whole time. Even without signing in or

registering an account, the nearly ten million images stored in Docker Hub are available

to users! Navigate to https://hub.docker.com, seen in Figure 16-1, and click the

“Explore” link in the upper right.

Figure 16-1.  Click the “Explore” link from the Docker Hub home page to browse
repository images

The registry explorer, shown in Figure 16-2, lists all public images and includes

filtering functions on the left-hand side for narrowing the scope of the content. Notice

that the “Trusted Content” section has options for Docker Official Images, Verified

Publishers, and Sponsored OSS.

Chapter 16 Docker Hub and Image Repositories

https://hub.docker.com

359

Figure 16-2.  The main screen from Docker Hub’s image repository search. Note
the filter options at the left, particularly those for selecting only “Trusted Content”

�Trusted Content
Docker Hub is a bit of a free for all! Registered users can upload and share most anything,

including malicious content! Bad actors will take advantage of any opportunity to

compromise unsuspecting users. Docker marks content as “Trusted” to assure those

image authors are reputable and their images free of malware. There are levels of “trust”:

•	 Docker Official Images are standard solutions that make developing

and deploying software easier. They’re typically the most popular

images, scanned for vulnerabilities, maintained by trusted

organizations actively engaged in open source software development,

and vetted by the large community of users that consume the

content.

Chapter 16 Docker Hub and Image Repositories

360

•	 Verified Publishers are commercial partners in Docker’s ecosystem

verified by Docker. Verified publishers are directly responsible

for maintaining their content and often follow the same rigorous

practices as official images.1

•	 Docker Sponsored Open Source Software (OSS for short) are

images published by open source projects sponsored by Docker.

While these are not corporate projects, the content undergoes strict

review for malware and vulnerabilities.

And then, there’s everything else.

�Untrusted Images
View untrusted public images with extreme caution. Containers run with elevated

permissions in Docker. There is no shortage of ways to take advantage of that, from

relaying sensitive information from your system to mining cryptocurrency in the

background. Remember that images are like applications that perform a service. You

wouldn’t download and run apps from unknown sources. Treat public images with the

same skepticism!

That’s not to say every image is intentionally malicious! Docker partners with several

third parties, including Snyk (www.snyk.io), that offer scanning services (and even

remediation). Scanned images display a summary of any identified vulnerabilities.

Figure 16-3 shows an example of vulnerabilities identified by scanning an Oracle 11.2.0.4

database image. Figure 16-4 displays a detailed list of each problem and its associated

Common Vulnerability and Exposure, or CVE note.

1 Docker Hub once included verified images for Oracle database products. Oracle stopped
updating the content and instead maintains images in the Oracle Container Registry.

Chapter 16 Docker Hub and Image Repositories

http://www.snyk.io

361

Figure 16-3.  Image summary (from a private repository) for an Oracle 11.2.0.4
Enterprise Edition image. Scanning is an optional feature authors can request
when uploading images to Docker Hub. Here, the image shows when it was last
scanned and a summary of the high, medium, and low severity vulnerabilities
present in the image

Figure 16-4.  The Snyk scan result for an Oracle 11.2.0.4 Enterprise Edition
image. It shows a detailed list of the vulnerability and severity score, the CVE note
detailing the problem, the source package and version, and the package version
that fixed the issue

Chapter 16 Docker Hub and Image Repositories

362

�Vulnerability Scanning
You can scan images before pulling them from public repositories with the docker

scan command. This invokes Snyk’s third-party scanning service and produces a list of

issues it detects in the image. Listing 16-1 shows an example of running a scan on the

Ubuntu image.

Listing 16-1.  Abbreviated output from a Snyk scan of an Ubuntu image, showing

low and medium severity vulnerabilities

> docker scan ubuntu

Docker Scan relies upon access to Snyk, a third party provider, do you

consent to proceed using Snyk? (y/N)

y

Testing ubuntu...

✗ Low severity vulnerability found in shadow/passwd
 Description: Time-of-check Time-of-use (TOCTOU)

 Info: https://snyk.io/vuln/SNYK-UBUNTU2204-SHADOW-2801886

 Introduced through: shadow/passwd@1:4.8.1-2ubuntu2, adduser@3.118ubuntu5,

shadow/login@1:4.8.1-2ubuntu2

 From: shadow/passwd@1:4.8.1-2ubuntu2

 From: adduser@3.118ubuntu5 > shadow/passwd@1:4.8.1-2ubuntu2

 From: shadow/login@1:4.8.1-2ubuntu2

✗ Low severity vulnerability found in gmp/libgmp10
 Description: Integer Overflow or Wraparound

 Info: https://snyk.io/vuln/SNYK-UBUNTU2204-GMP-2775169

 Introduced through: gmp/libgmp10@2:6.2.1+dfsg-3ubuntu1,

coreutils@8.32-4.1ubuntu1, apt@2.4.7

 From: gmp/libgmp10@2:6.2.1+dfsg-3ubuntu1

 From: coreutils@8.32-4.1ubuntu1 > gmp/libgmp10@2:6.2.1+dfsg-3ubuntu1

 From: apt@2.4.7 > gnutls28/libgnutls30@3.7.3-4ubuntu1.1 > gmp/

libgmp10@2:6.2.1+dfsg-3ubuntu1

 and 1 more...

Chapter 16 Docker Hub and Image Repositories

363

✗ Medium severity vulnerability found in zlib/zlib1g
 Description: Out-of-bounds Write

 Info: https://snyk.io/vuln/SNYK-UBUNTU2204-ZLIB-2975633

 Introduced through: meta-common-packages@meta

 From: meta-common-packages@meta > zlib/zlib1g@1:1.2.11.dfsg-2ubuntu9

✗ Medium severity vulnerability found in perl/perl-base
 Description: Improper Verification of Cryptographic Signature

 Info: https://snyk.io/vuln/SNYK-UBUNTU2204-PERL-2789081

 Introduced through: meta-common-packages@meta

 From: meta-common-packages@meta > perl/perl-base@5.34.0-3ubuntu1

Package manager: deb

Project name: docker-image|ubuntu

Docker image: ubuntu

Platform: linux/amd64

Base image: ubuntu:22.04

Tested 102 dependencies for known vulnerabilities, found 12

vulnerabilities.

According to our scan, you are currently using the most secure version of

the selected base image

For more free scans that keep your images secure, sign up to Snyk at

https://dockr.ly/3ePqVcp

For untrusted public images, avoid unknown or anonymous contributors, do your

research, and take advantage of free scanning services!

�Licensing
One more thing to consider before downloading public images from Docker Hub:

licensing. Oracle prohibits users from distributing its database content, and anyone

downloading Oracle software must agree to their licensing agreement. Anyone

distributing images containing Oracle database software through a public repository is

probably violating that license. Downloading such an image may place you at risk, too.

Chapter 16 Docker Hub and Image Repositories

364

�Docker Hub Accounts
Docker Hub makes a wealth of free content available to users without requiring

registration or login. Creating an account entitles you to additional services across

four plans: Personal, Pro, Team, and Business. I’ve highlighted the significant feature

differences between the Personal and Pro accounts, which are most suited for

individuals wanting the advantages of Docker Hub:

•	 A Personal subscription is free and includes the use of Docker Desktop

and an unlimited number of public repositories and one private

repository. It also includes 200 monthly local vulnerability scans with

Snyk. This is probably everything most people need—unless you intend

to maintain multiple private repositories of Oracle database images!

•	 The Pro subscription is $7 a month or $60 annually.2 It includes

everything offered in the Personal tier, plus unlimited private

repositories; automated tests and builds; integration with GitHub,

Bitbucket, and Slack; and commercial support. (I subscribe to the Pro

tier to take advantage of the unlimited private repositories.)

After creating an account and logging in to the Docker Hub, create a repository

by clicking the “Repository” menu item at the upper right, followed by the “Create

repository” button at the far right, as in Figure 16-5.

Figure 16-5.  Create a new repository in Docker Hub. Click the “Repository” item
in the menu (1), then the “Create repository” button (2)

This takes you to the screen in Figure 16-6, where you give the new repository a name,

select whether the content is public or private, and finally create the repository. This example

is from a Personal subscription, and I’ve made a private repository named “database.”

2 Features and pricing as of September 2022. For full details, see www.docker.com/pricing.

Chapter 16 Docker Hub and Image Repositories

http://www.docker.com/pricing

365

Figure 16-6.  To create a repository, give it a name (1), select either Public or
Private visibility (2), and click the “Create” button (3)

After creating the repository, you’re taken to the repository details screen in

Figure 16-7. Here, you can add descriptive information and manage the content.

Figure 16-7.  The detail screen for a newly created repository in Docker Hub

Chapter 16 Docker Hub and Image Repositories

366

Click the repository’s “Settings” tab, shown in Figure 16-8, and you have access to

enable vulnerability scanning (available in paid subscriptions) and the option to change

the visibility of the repo from public to private, and vice versa.

Figure 16-8.  Manage the repository through the “Settings” option (1). This screen
is where you manage the repository’s visibility (2) and, in paid subscriptions,
enable image scanning

Now that I have a repository, I can begin tagging and uploading images into

Docker Hub!

�Image Management
Whether you’re using Docker Hub or different public or private container registry,

uploading and curating images follows the same steps—log in and provide credentials,

then tag and push images.

Chapter 16 Docker Hub and Image Repositories

367

�Registry Login
Log in to access your registry from the command line or Docker Desktop. Here, I’m

logging in to my newly created account with the username and password I created

earlier, using the docker login command:

> docker login

Login with your Docker ID to push and pull images from Docker Hub. If you

don't have

a Docker ID, head over to https://hub.docker.com to create one.

Username: oracleondocker

Password:

Login Succeeded

Logging in with your password grants your terminal complete access to your

account.

For better security, log in with a limited-privilege personal access

token. Learn

more at https://docs.docker.com/go/access-tokens/

Once you’ve logged in to a registry, Docker preserves your credentials for future use,

and there’s no persistent state that requires repeated login.3 However, if you’re into an

account and wish to remove the stored credentials, use docker logout:

> docker logout

Removing login credentials for https://index.docker.io/v1/

Once logged in, I can tag and push images.

�Tag an Image
Chapter 14 covered the components of tags and how to use docker tag for assigning a

namespace, image or repository name, and a tag to an image. Now that we’ve created a

registry account, the purpose of the namespace should be more apparent—it’s the name

of the registry account.

3 Logging in to a registry doesn’t preclude access to public Docker Hub images, and the public
images on Docker Hub are always available.

Chapter 16 Docker Hub and Image Repositories

368

When listing images on my system, I see an image built from Oracle’s GitHub

repository, tagged oracle/database:19.3.0-ee, followed by four more database images

belonging to my namespace, oraclesean, saved to a repository called db:

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

oracle/database 19.3.0-ee bdbb8b83217b 3 days ago 6.68GB

oraclesean/db 11.2.0.4-EE c1015174e910 6 months ago 6.72GB

oraclesean/db 12.1-EE 1db44c287b80 6 months ago 6.9GB

oraclesean/db 19.13.1-EE 27fdf297483b 5 months ago 7.81GB

oraclesean/db 21.5-EE 656c63dad153 5 months ago 8.69GB

In the examples from the previous section, I created a new user and repository

in Docker Hub, with a username of oracleondocker and a private repository named

database. I’d like to push a copy of one of these images to my new account, but I first

need to tag it.4

I can share the oraclesean/db:11.2.0.4-EE image with either of the following

commands, referencing the image by an existing tag or its image ID value:

docker tag oraclesean/db:11.2.0.4-EE oracleondocker/database:11.2.0.4-EE

docker tag c1015174e910 oracleondocker/database:11.2.0.4-EE

When I list images from my system once again, I see the new tag appearing on the

second line:

> docker tag oraclesean/db:11.2.0.4-EE oracleondocker/database:11.2.0.4-EE

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

oracle/database 19.3.0-ee bdbb8b83217b 3 days ago 6.68GB

oracleondocker/database 11.2.0.4-EE c1015174e910 6 months ago 6.72GB

oraclesean/db 11.2.0.4-EE c1015174e910 6 months ago 6.72GB

oraclesean/db 12.1-EE 1db44c287b80 6 months ago 6.9GB

oraclesean/db 19.13.1-EE 27fdf297483b 5 months ago 7.81GB

oraclesean/db 21.5-EE 656c63dad153 5 months ago 8.69GB

The Image ID is the same for both images. Only the tag is different.

4 Remember that tagging doesn’t make a new copy of an image. It’s merely creating an alias.

Chapter 16 Docker Hub and Image Repositories

369

�Push an Image
Tagging an image doesn’t physically add it to the repository. If I navigate to Docker Hub

and search the repository, it’s still empty. I need to upload, or push, the image:

docker push oracleondocker/database:11.2.0.4-EE

Pushing implies a remote registry, and I can’t use an image ID for this operation—I

have to specify the tag. The tag tells Docker I want to upload a tagged image, 11.2.0.4-

EE, to my oracleondocker namespace and place it in the database repository. Docker

reports the upload progress:

> docker push oracleondocker/database:11.2.0.4-EE

The push refers to repository [docker.io/oracleondocker/database]

5f70bf18a086: Pushed

d67ad3eaa615: Pushing [=>] 40.07MB/1.094GB

fb92f0f7e7a1: Pushed

8741e0584bcd: Pushing [>] 32.31MB/4.875GB

b9cd4d53c8a0: Pushed

0c7211f52f51: Pushed

59e93d414d42: Pushed

4fa651f55709: Pushing [>] 2.146MB/619.3MB

4d82e938e5ad: Pushed

d7d3f0b240dc: Mounted from library/oraclelinux

Notice it’s pushing multiple items—as you might have guessed, these are the image

layers. When various images share layers, Docker saves time and bandwidth during

upload (push) and download (pull) actions by skipping any layers already present on

the system!

The completed push command reports the image’s digest, a hash that uniquely

identifies the image:

> docker push oracleondocker/database:11.2.0.4-EE

The push refers to repository [docker.io/oracleondocker/database]

5f70bf18a086: Pushed

d67ad3eaa615: Pushed

fb92f0f7e7a1: Pushed

8741e0584bcd: Pushed

Chapter 16 Docker Hub and Image Repositories

370

b9cd4d53c8a0: Pushed

0c7211f52f51: Pushed

59e93d414d42: Pushed

4fa651f55709: Pushed

4d82e938e5ad: Pushed

d7d3f0b240dc: Mounted from library/oraclelinux

11.2.0.4-EE: digest: sha256:e94665072e69fa398181a9d852d193beee5ca3fedfe65c2

6c8684762b90c710f size: 2417

Once the image is pushed to the registry, it’s visible in Docker Hub’s console, as in

Figure 16-9.

Figure 16-9.  After successfully pushing the image to my new account, the tag is
visible in the online Docker Hub console

If I rebuilt this image, either locally or in a different repository, the new version isn’t

propagated to or replace the image in oracleondocker/database:11.2.0.4-EE. The

hash (and image ID) metadata provides a unique identity for the image, useful for

tracking the version of images stored and shared across multiple locations.

Chapter 16 Docker Hub and Image Repositories

371

�CLI Registry Search
The Docker command-line interface, or CLI, includes a feature for searching repositories

and images in a registry:

docker search <KEYWORD>

I find the CLI search capability is limited. It shows 25 results by default, extendable to

100, and doesn’t include an ability to list tags. So, it may not be helpful unless you know

the tag you want (or you’re satisfied with the “latest” version).

Listing 16-2 shows the top results when searching for oracle in Docker Hub. You’ll

notice the output is sorted by Stars, indicating the number of people who’ve marked the

repository as a favorite. There’s also an “Official” column, which, as you might expect,

indicates this is an Official repository.

Listing 16-2.  The truncated output from searching Docker Hub for repositories

including the keyword “oracle”

> docker search oracle

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

oraclelinux   Official Docker builds of Oracle Linux.  928 [OK]

oracleinanutshell/oracle-xe-11g 237

gvenzl/oracle-xe Oracle Database XE (21c, 18c, 11g) for every...   115

There are options for refining search results:

•	 is-official=true: Set to true shows only official repositories.

•	 is-automated=true: Shows only automated image builds.

Automated builds are a paid subscription feature that builds images

from source code, automatically pushing them to Docker Hub.

•	 stars=n: Limit results to repositories with at least n stars, where n is

an integer value.

Chapter 16 Docker Hub and Image Repositories

372

Pair these options with the -f or --filter flag. For example, to search Docker Hub

for Official images with the oracle keyword:

> docker search -f is-official=true oracle

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

oraclelinux Official Docker builds of Oracle Linux. 928 [OK]

Perform a search of images with at least 100 stars:

> docker search -f stars=100 oracle

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

oraclelinux Official Docker builds of Oracle Linux. 928 [OK]

oracleinanutshell/oracle-xe-11g 237

gvenzl/oracle-xe Oracle Database XE (21c, 18c, 11g) for every... 115

Apply multiple search criteria using a separate -f flag for each. Here, I searched for

Official repositories with at least 100 stars:

> docker search -f stars=100 -f is-official=true oracle

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

oraclelinux Official Docker builds of Oracle Linux. 928 [OK]

�Pulling Images
Throughout this book, we’ve pulled images like alpine, ubuntu, and oraclelinux

without using a namespace (the part before the / in the push command earlier). These

were all Official images in Docker Hub and existed under the “root” of the registry.

They’re not part of a namespace owned by an individual or organization.

However, when I say we pulled these images, we didn’t do so explicitly. Issuing

docker run for an image not already present on the system performs a docker pull in

the background. Maybe you’ve noticed:

> docker run alpine

Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine

213ec9aee27d: Pull complete

Digest: sha256:bc41182d7ef5ffc53a40b044e725193bc10142a1243f395ee852a

8d9730fc2ad

Status: Downloaded newer image for alpine:latest

Chapter 16 Docker Hub and Image Repositories

373

Pulling or running images from public repositories requires the same fully qualified

registry format as the docker push example earlier—a namespace, a registry or image

name, and a tag (if present). In Figure 16-10, I browsed through the Docker Hub and

located a Verified Publisher image for bitnami/mariadb.

Figure 16-10.  The main repository page for Bitnami’s MariaDB distribution

MariaDB is a popular MySQL fork, and it stands to reason there’s an official image

available, too. If I docker pull mariadb without any namespace, I get something:

> docker pull mariadb

Using default tag: latest

latest: Pulling from library/mariadb

2b55860d4c66: Pull complete

4bf944e49ffa: Pull complete

020ff2b6bb0b: Pull complete

977397ae9bc6: Pull complete

b361cf449d40: Pull complete

21d261950157: Pull complete

Chapter 16 Docker Hub and Image Repositories

374

296a47dd9435: Pull complete

bbe841bf5cfe: Pull complete

758db05dd921: Pull complete

9c2c0a21c9e6: Pull complete

4bc311b9359a: Pull complete

Digest: sha256:05b53c3f7ebf1884f37fe9efd02da0b7faa0d03e86d724863f359

1f963de632c

Status: Downloaded newer image for mariadb:latest

docker.io/library/mariadb:latest

But is it the Bitnami version? No. For that, I need to add the Bitnami namespace:

> docker pull bitnami/mariadb

Using default tag: latest

latest: Pulling from bitnami/mariadb

1d8866550bdd: Pull complete

cfd1823a275f: Pull complete

Digest: sha256:320745f11755f950a6ffa80a7e16dca108b3fe6df76873e2ec22

fa3900fecb20

Status: Downloaded newer image for bitnami/mariadb:latest

docker.io/bitnami/mariadb:latest

Docker retrieved the “latest” version for me in each case because I didn't specify a

tag. If I go to the Tags section of the Bitnami image in Figure 16-11, I see a variety of tags.

To get something other than “latest,” I have to use its tag, here 10.5.17:

> docker pull bitnami/mariadb:10.5.17

10.5.17: Pulling from bitnami/mariadb

1d8866550bdd: Already exists

0f5b0c3c18cf: Pull complete

Digest: sha256:ec6bb285c67d5b66a6ee1fca667e9d73906d767b02cc5dbb2bff

1159d97e7fbe

Status: Downloaded newer image for bitnami/mariadb:10.5.17

docker.io/bitnami/mariadb:10.5.17

Chapter 16 Docker Hub and Image Repositories

375

Notice Docker didn’t download the first layer in the image, 1d8866550bdd. It’s

identical to the first layer of the “latest” image and indicates it’s most likely the

underlying foundation of many of Bitnami’s MariaDB images. Version-specific content is

confined to the second layer.

There’s something else worth noticing in the two MariaDB images. The Bitnami

image is just two layers, while the official image is eleven. This reflects differences in how

they’re built. The Official, trusted MariaDB image exposes every step in the build process

as layers. The Bitnami image reduces the layer content to improve security. Pull these

images on your own and run the following docker history commands (the --no-trunc

flag prevents Docker from truncating the output in the original Dockerfile):

docker image history --no-trunc bitnami/mariadb

docker image history --no-trunc mariadb

Compare the output and look for information like default passwords and

configurations an attacker might leverage against the system. The lesson? Just because

images are Official or Trusted doesn’t necessarily mean they’re appropriate for

production environments!

Chapter 16 Docker Hub and Image Repositories

376

Figure 16-11.  The Bitnami MariaDB repository includes multiple images for
different versions, each identified by its tag

If I run docker images on my system, I see the three images are all different:

REPOSITORY TAG IMAGE ID CREATED SIZE

bitnami/mariadb 10.5.17 0470be367c25 9 hours ago 341MB

bitnami/mariadb latest ca73fbad9ff3 5 hours ago 344MB

mariadb latest 11aee66fdc31 6 days ago 384MB

By referencing the MariaDB images in Bitnami’s namespace and using tags for

discrete versions, I obtained slightly different versions of MariaDB.

Chapter 16 Docker Hub and Image Repositories

377

Pulling private images follows the same pattern, with the additional requirement that

the user is logged in to the correct namespace (or has a security token granting access to

the repository).

�Oracle Container Registry
Oracle once kept official database images on Docker Hub but removed them for the

licensing concerns I noted before. Anybody could download the content without

accepting Oracle’s licensing agreement.

Oracle database images are still available, however, in the Oracle Container Registry,

at https://container-registry.oracle.com. Before accessing its images, you must

first log in using your My Oracle Support credentials and accept the Standard Terms and

Restrictions. The good news is once you accept the terms, the registry recognizes the

status and allows future access to your account without further “nagging!”

Before pulling images from Oracle’s registry, log in from a terminal session, using the

registry address, container-registry.oracle.com:

> docker login container-registry.oracle.com

Authenticating with existing credentials...

Login Succeeded

Once logged in, you’ll have access to the registry and can search and pull images,

just as you saw with Docker Hub. Unfortunately, the CLI’s search capabilities are touchy.

After logging in to the container registry, if I search for Official images matching “oracle,”

the results don’t appear any different than before:

> docker search -f is-official=true oracle

INDEX NAME DESCRIPTION

STARS OFFICIAL AUTOMATED

docker.io oraclelinux Official Docker builds of Oracle

Linux. 928 [OK]

Chapter 16 Docker Hub and Image Repositories

https://container-registry.oracle.com

378

However, if I change the search string to the container registry’s namespace, I get the

results I expected. In this example, I narrowed the search to the database registry within

the namespace, container-registry.oracle.com/database:

> docker search -f is-official=true container-registry.oracle.com/database

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED

oracle.com database/enterprise Oracle Database Enterprise Edition 0 [OK]

oracle.com database/express Oracle Database Express Edition 0 [OK]

oracle.com database/gsm Oracle Global Service Manager 0 [OK]

oracle.com database/instantclient Oracle Instant Client 0 [OK]

oracle.com �database/observability-exporter Oracle Database Observability

Exporter (Metr... 0 [OK]

oracle.com database/operator �This image is part of and for use with

the O... 0 [OK]

oracle.com database/ords �Oracle REST Data Services (ORDS) with

Applic... 0 [OK]

oracle.com database/otmm �Oracle Transaction Manager for

Microservice 0 [OK]

oracle.com database/rac �Oracle Real Application Clusters 0 [OK]

oracle.com database/sqlcl �Oracle SQLDeveloper Command Line

(SQLcl) 0 [OK]

oracle.com database/standard Oracle Database Standard Edition 2 0 [OK]

The output reveals options for Standard and Enterprise Edition database images

but offers no details of how they’re tagged. For that, it’s best to return to the Container

Registry page in Figure 16-12.

Chapter 16 Docker Hub and Image Repositories

379

Figure 16-12.  The Oracle Container Registry home page shows the available
repositories. The Database repository at the top left is highlighted

Chapter 16 Docker Hub and Image Repositories

380

After clicking the Database repository, you’ll see the list of its subrepositories in

Figure 16-13, which matches the output of the docker search performed before.

Figure 16-13.  The first five database repositories in the Oracle Container Registry.
Note the far right-hand column, where the green check marks indicate whether the
user accepted the licensing agreements

Selecting the “enterprise” repository takes me to the repository page seen in

Figure 16-14. Here, you’ll find information on using the image and a docker pull

command at the far right. However, this is the command for the latest image tag. To see

all available tags, scroll to the bottom of the page, as in Figure 16-15.

Chapter 16 Docker Hub and Image Repositories

381

Figure 16-14.  The Enterprise Edition repository page includes instructions for
using the image, plus a docker pull command, highlighted at the right, for
downloading the latest version of the image

Figure 16-15.  At the bottom of each repository page is a summary of all available
tags, each listing image information, and the appropriate docker pull command

Chapter 16 Docker Hub and Image Repositories

382

The images in the Oracle Container Registry are ready-made solutions for running

Oracle databases in Docker. While convenient, they lack the customizations afforded by

building your own images.

�Summary
After all the hard work poured into building the perfect database image, it’s a shame

not to share it! Docker Hub is a free, popular solution for doing just that. Remember,

though, publicly sharing images containing Oracle database software is a violation of the

licensing agreement. The free, personal tier of Docker Hub allows you to create a single,

private repository you can use for this purpose.

Bear in mind that Docker runs containers with an elevated set of privileges. Be

cautious of what you download from public repositories, sticking to Trusted content

whenever possible. If you must use an untrusted image, take advantage of Docker Hub’s

free scanning services.

Docker Hub isn’t your sole repository option. Cloud vendors, including Oracle, offer

container management services that are easily set up and often free. Organizations can

deploy homegrown repositories that integrate with existing development workflows.

Chapter 16 Docker Hub and Image Repositories

383

CHAPTER 17

Conclusion
In the first part of this book, you discovered how containers work and how to run an

Oracle database in Docker. You learned methods for persisting vital database content—

the datafiles and configuration—outside the confines of the container. You’re also fluent

in container networking concepts and can connect client applications running on a host,

like SQL Developer, to databases in containers. You can also leverage container networks

to communicate among databases running containers.

The second part covered images and the recipes for building them: Dockerfiles. You

discovered how to customize the stock images provided in Oracle’s container repository

and gained insights into techniques for extending Dockerfiles to suit your needs. Of

course, not every image runs smoothly at first! Fortunately, we covered several methods

and approaches for troubleshooting images and containers. Once everything runs

smoothly, you learned how to add and manage images in repositories.

My introduction to running Oracle databases in containers wasn’t positive. I was

convinced it was a fool’s errand and destined for miserable failure. In the years since, I’ve

seen the power and potential of containers firsthand. They’re an integral, indispensable

part of my daily work. In this book, I’ve attempted to capture my appreciation of the

technology behind Linux containers and share with you the things I wish I’d known

earlier in my Docker experience. I sincerely hope you find it helpful and that it inspires

you to begin or further your journey with Docker!

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_17

https://doi.org/10.1007/978-1-4842-9033-0_17

PART III

Appendixes

387

APPENDIX A

Installing Docker Desktop

�Install Docker Desktop
Docker Desktop is available as a free download from www.docker.com. Linux users can

install Docker Desktop or Docker Engine, a native environment for running Docker

containers.

�Windows 10 and 11
Behind the scenes, Docker Desktop on Windows runs Linux in a Hyper-V virtual

machine. Earlier versions of Docker Desktop were notorious for conflicts between

Hyper-V and VirtualBox, and performance often left something to be desired.

Windows Subsystem for Linux version 2, or WSL 2,1 available on Windows 10, marked

a significant improvement for Docker Desktop on Windows. Docker Desktop under WSL

2 boasts improved system resource management, better performance, and more robust

integration with the host operating system.

WSL provides a fully functional Linux experience inside the Windows operating

system. The command examples used throughout this book work identically in the WSL

environment, as in Linux or Mac systems.

1 WSL (or Windows Subsystem for Linux 1) is a Linux interpretation or translation layer sitting
between the Linux shell and the Windows OS. In WSL 2, the Linux kernel runs natively within
a virtual machine and offers tighter integration and wider compatibility with Linux tools—
including Docker!

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_18

http://www.docker.com
https://doi.org/10.1007/978-1-4842-9033-0_18

388

�Set Up Windows Subsystem for Linux

Set up the Windows Subsystem for Linux according to Microsoft’s instructions at

https://docs.microsoft.com/en-us/windows/wsl/install. On my system

(Windows 10), I opened a PowerShell session as an administrator, then ran

wsl --install, as in Figure A-1. This performs a default installation of WSL and installs

Ubuntu Linux. After the command completes, reboot the machine.

Figure A-1.  Install WSL 2 from a PowerShell session running as an administrator

By default, WSL downloads Ubuntu Linux and requires a restart, as shown in

Figure A-2. Reboot the machine to finish setting up WSL and begin the Linux installation.

Figure A-2.  After WSL finishes installing, reboot the machine

�Configure and Update Linux

After the machine reboots, WSL installs the Linux distribution. This takes a few minutes.

When the installation completes, you’ll need to create a Linux user, as seen in Figure A-3.

I used docker as the user on my system.

Appendix A Installing Docker Desktop

https://docs.microsoft.com/en-us/windows/wsl/install

389

Figure A-3.  After installation finishes, create a user to use in the Linux subsystem

Be sure to update your Linux distribution. For Ubuntu systems, run the following

command in the terminal window:

sudo apt update && sudo apt upgrade

Now is also an excellent time to install Windows Terminal from the Windows Store.

For details on installing Windows Terminal, see the section “Terminal Environments.”

�Install Docker Desktop

When WSL setup completes, refer to Docker’s installation guide at https://docs.

microsoft.com/en-us/windows/wsl/install-manual and follow the latest instructions,

completing all prerequisites, then download and install Docker Desktop from www.

docker.com.

Double-click the installation files to open the installation wizard. Be sure the box for

“Use WSL 2 instead of Hyper-V (recommended)” is marked, as in Figure A-4.

Appendix A Installing Docker Desktop

https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://docs.microsoft.com/en-us/windows/wsl/install-manual
http://www.docker.com
http://www.docker.com

390

Figure A-4.  In the Docker Desktop install wizard, mark the option to “Use WSL 2
instead of Hyper-V”

Navigate to the Start menu and select Docker Desktop from the list of applications.

After accepting the license agreement, Docker Desktop starts and opens a brief tutorial.

�Configure Docker Desktop

Click the gear icon at the upper right to access the Settings menu to access the General

settings shown in Figure A-5. Ensure the “Use the WSL 2 based engine” box is checked.

Appendix A Installing Docker Desktop

391

Figure A-5.  Under Docker Desktop’s General settings panel, check the “Use the
WSL 2 based engine” option

Next, click the Resources option and select WSL Integration. Confirm that “Enable

integration with my default WSL distro” is enabled as in Figure A-6. Set the slider “on”

for the distributions you’ll use with Docker that appear under the “Enable integration

with additional distros” section. If the “Apply & Restart” button at the lower right is

highlighted, click it to commit your changes.

Appendix A Installing Docker Desktop

392

Figure A-6.  Confirm WSL integration is turned on for the default distribution, and
it’s enabled for any other distributions that need Docker Desktop integration

�Set WSL Resources

The default resources assigned to Docker Desktop under WSL are usually adequate.

If you experience issues and need to adjust CPU, memory, or other settings, they’re

configurable through the .wslconfig file in the user’s home directory (typically C:\

Users\<User Name>\.wslconfig).

Before editing or adding the .wslconfig file, stop WSL from a terminal session as an

administrator:

wsl --shutdown

Then edit the file:

notepad "$env:USERPROFILE/.wslconfig"

Listing A-1 shows an example of a .wslconfig file to limit the memory and processor

available to WSL. For complete information on options available in the .wslconfig file,

see https://docs.microsoft.com/en-us/windows/wsl/wsl-config.

Appendix A Installing Docker Desktop

https://docs.microsoft.com/en-us/windows/wsl/wsl-config

393

Listing A-1.  An example of a .wslconfig file for limiting CPU and memory

consumption for Windows Subsystem for Linux

[wsl2]

processors=4 # Limit of 4 processors for WSL.

memory=8GB # Limit WSL to 8GB memory.

�Mac (Intel)
Before installing Docker Desktop for Mac, review and complete the prerequisites at

https://docs.docker.com/desktop/install/mac-install/, then download Docker

Desktop from www.docker.com. Navigate to the download directory and double-click the

Docker.dmg file to open the installer seen in Figure A-7. Drag the Docker.app file to the

Applications folder.

Figure A-7.  Drag and drop the Docker.app file to the Applications folder

Appendix A Installing Docker Desktop

https://docs.docker.com/desktop/install/mac-install/
http://www.docker.com

394

When the file copy completes, navigate to the Applications folder, scroll to the

Docker.app application, and double-click to start Docker Desktop. Accept the licensing

terms and continue to Docker Desktop’s main screen.

�Configure Resources

Click the gear icon in the upper right, or press the Command and comma keys together

(⌘ + ,) to access Docker Desktop’s settings and preferences. The default values in the

General preferences pane shown in Figure A-8 are appropriate.

Figure A-8.  The default General preferences for Mac are acceptable for running
Oracle containers

Next, click the Resources tab in the left-side menu and select Advanced as in Figure A-9.

To run Oracle database containers, allocate a minimum of 4GB of memory. Oracle is

a memory-intensive application, and the more memory you can assign, the better it

performs. The same is true for CPUs. 10–20GB is a reasonable starting point for disk

space. You can harmlessly increase disk space for Docker Desktop later if you need to.

Shrinking disk space, however, removes all images, containers, and volumes.

Appendix A Installing Docker Desktop

395

Figure A-9.  Configure resources for the Docker environment

�Mac (Apple Silicon)
As of this writing, architecture differences prevent Oracle database images from running

in Docker on Apple Silicon machines. The community is actively working to address this

issue, with promising progress.

�Docker Desktop and Docker Engine for Linux
See Docker’s website for information on installing Docker Desktop and Docker Engine

for different flavors of Linux. Instructions for Docker Desktop are located at https://

docs.docker.com/desktop/install/linux-install, while directions for Docker

Engine are found at https://docs.docker.com/engine/install.

�Terminal Environments
Most interaction with Docker occurs at the command line or shell. You’ll need a terminal

program to access the command line on your host, and there are plenty to choose from

on each operating system.

Appendix A Installing Docker Desktop

https://docs.docker.com/desktop/install/linux-install
https://docs.docker.com/desktop/install/linux-install
https://docs.docker.com/engine/install

396

�Windows
The Windows OS includes PowerShell and the familiar Windows command prompt.

The third option from Microsoft, Windows Terminal, combines these two tools and

adds integration for Windows Subsystem for Linux. I started using it recently and

am pleased—it’s my new favorite shell for Windows systems, replacing PuTTY and

MobaXterm! All Windows shell examples in this book were captured from Windows

Terminal.

The command-line examples given throughout this book work seamlessly in a Linux

shell accessed through Windows Terminal. The way that tools like command prompt,

PowerShell, PuTTY, and MobaXterm interpret environment variables, along with

variations in local configurations, can cause unusual or erroneous results. If you’re using

one of those applications and encounter any difficulties, try again using a Windows

Terminal shell running on the WSL Linux environment.

To install Windows Terminal, open the Windows Start menu and select the Microsoft

Store app. Search for and install Windows Terminal, as shown in Figure A-10.

Figure A-10.  Search for “terminal” in the Windows Store and install the Windows
Terminal application

This adds Windows Terminal to the system. Go to the Start menu and open the new

Terminal application. The Terminal session in Figure A-11 shows the options for opening

new tabs. Clicking the “plus” icon to the right of the tab will open a new default session.

Appendix A Installing Docker Desktop

397

Clicking the down arrow opens a dialog with options for opening a command prompt, a

PowerShell session, a Linux (Ubuntu) session, or an Azure Cloud Shell.

Figure A-11.  Windows Terminal supports multiple shell types and automatically
integrates with any virtual environments running under the Windows Subsystem
for Linux

The Ubuntu option is thanks to Windows Terminal integration with the Windows

Subsystem for Linux. It detects the virtual environments running in WSL and

includes shell options for each. Figure A-12 illustrates examples of the different shell

environments: Ubuntu Linux, a command prompt, and PowerShell.

Figure A-12.  Examples of an Ubuntu Linux shell (top), a Windows command
prompt (middle), and a PowerShell session (bottom) running as tabs in Windows
Terminal

Appendix A Installing Docker Desktop

398

�Mac Terminal
OS-X includes a Terminal application built into the operating system. Navigate to /

Applications/Utilities on the system and double-click the Terminal app seen in

Figure A-13.

Figure A-13.  The Terminal application is built into OS-X systems in the /
Applications/Utilities folder

Terminal is a native Linux shell. Installing Docker Desktop adds the docker

command to the user’s shell path, and all Docker features are available at the

command line.

Appendix A Installing Docker Desktop

399

�Docker Desktop Features
Users can inspect and manage containers, images, and volumes from Docker Desktop

and create new volumes and containers.

�Container Management
The container menu lists all containers on the system and includes controls for starting,

stopping, pausing, and deleting containers. Users can also navigate to individual

containers and access logs, inspect the environment and container statistics, and access

a command line inside the container.

�Container Terminal

Docker recently updated Docker Desktop, adding an integrated command shell. You can

access the CLI for any running container on the host from within Docker Desktop, with

identical results on any operating system.

To use the integrated shell, first, ensure it’s enabled. Open Docker Desktop’s settings

menu by clicking the gear icon, seen in Figure A-14, at the upper-right corner of the

screen. Then, ensure the “Integrated” option under “Choose container terminal”

is marked.

Figure A-14.  Select the gear icon in the upper-right corner of Docker Desktop to
access the Settings page. Then, select “Integrated” as the container terminal in the
General options pane

From Docker Desktop, choose “Containers” from the left menu to see a list of

containers running on the system. Select a container; then click the three vertical dots

Appendix A Installing Docker Desktop

400

on the far right to access the “Show container actions” options. From the drop-down box

that appears, select “Open in terminal” as in Figure A-15.

Figure A-15.  To access a container’s shell, select the Container menu (1), click the
three dots to access the “Show container actions” drop-down (2), and select the
“Open in terminal” option

This opens a /bin/sh terminal session (not /bin/bash) on the container, as in Figure

A-16. The terminal window is fully functional, with copy/paste and scroll capabilities.

It’s also persistent—if you navigate away from the CLI session, it remains active in the

background. Reaccess it through the CLI tab in the upper right of the container page.

Figure A-16.  A container page in Docker Desktop displays the container in the
heading (1) and the command-line environment (2). The session is persistent—
if you navigate away from the window, reaccess it via the CLI tab at the upper
right (3)

�Container Logs and Statistics

View container logs from the Logs tab in the container view, seen in Figure A-17.

Appendix A Installing Docker Desktop

401

Figure A-17.  The Logs tab shows the container’s log output

�Container Statistics

The Stats tab in Figure A-18 displays the container’s current CPU, memory, I/O, and

network usage.

Figure A-18.  Resource consumption of a container from the Stats tab

�Image Management
The Images page in Docker Desktop lists images on the system and provides an

interactive service for creating a new container from an image.

To create a new container from an image, hover over the image, revealing the “RUN”

option in Figure A-19. Click the RUN button, which starts the container creation dialog.

Appendix A Installing Docker Desktop

402

Figure A-19.  Hover over an image to access the option to create a new container

This opens the dialog in Figure A-20. Expand the “Optional settings” by clicking the

arrow to the right.

Figure A-20.  The container creation dialog

Some options available on the command line are present in the dialog seen in

Figure A-21, including assigning a name, mounting volumes, and setting environment

variables. However, since the image doesn’t expose ports in its metadata, users don’t

have the option of mapping a port.

Appendix A Installing Docker Desktop

403

Figure A-21.  The “Run a new container” dialog includes only basic container
creation options

�Volume Management
Volume management in Docker Desktop is limited. Users can list volumes (but not bind

mounts) on a system but can only create internally stored volumes.

Appendix A Installing Docker Desktop

405

APPENDIX B

Aliases and Functions
Aliases and functions simplify and accelerate command-line tasks. By adding them

to your shell login profile, they’re loaded into your environment every time you log in.

The following are some I’ve adopted over the years to make working with Docker faster

and easier.

�Aliases
Aliases are shortcuts for long or complex commands. They can even pull values from the

environment! Even if you’re not familiar with aliases, you’ve probably used them without

realizing it—many Linux installations include default aliases.

To see the aliases defined in your session, simply type alias at the command prompt:

$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l.='ls -d .* --color=auto'

alias ll='ls -l --color=auto'

alias ls='ls --color=auto'

alias vi='vim'

alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot

--show-tilde'

These are aliases included in bash on Oracle Linux 7.9.

I use aliases extensively to apply --format options to Docker commands, reordering

and customizing their output, sometimes called “pretty printing.”

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0_19

https://doi.org/10.1007/978-1-4842-9033-0_19

406

�Report Containers
This was the first Docker alias I created. Initially, I used it to make the output of docker

ps -a more compact and readable during presentations and live demos:

alias dps='docker ps -a --format "table {{.Names}}\t{{.Image}}\t{{.

Ports}}\t{{.Status}}"'

The default output of docker ps includes columns I wasn’t interested in and made

the result too wide for some displays. This alias reorders the fields, placing the human-

friendly name of each container at the left, and omits fields I don’t usually need:

> dps

NAMES IMAGE PORTS STATUS

ORA19C oracle/database:19.3.0-ee Up 13 days (healthy)

ORCL oracle/database:19.3.0-ee Up 2 weeks (healthy)

�Extended Container Information
docker ps shows port assignments but doesn’t display mounts or container size. I need

this information now and then, but not frequently enough for the -s=true part to stick in

my memory!

alias dpm='docker ps -a -s=true --no-trunc=true --format "table

{{.Names}}\t{{.Image}}\t{{.Ports}}\t{{.Size}}\t{{.Mounts}}\t{{.Status}}"'

This command may take a few moments to run as it has to collect the size of all

containers:

> dpm

NAMES IMAGE PORTS SIZE MOUNTS STATUS

ORA19C oracle/database:19.3.0-ee 5.04GB (virtual 11.7GB) �Up 13 days

(healthy)

ORCL oracle/database:19.3.0-ee 5.35GB (virtual 12GB) �Up 2 weeks

(healthy)

Appendix B Aliases and Functions

407

�Sorted List of Images
The default sorting for docker images is by created date. If you’d rather see them sorted

by image name, try this:

alias images="docker images | awk 'NR<2{print \$0; next}{print \$0 |

\"sort\"}'"

It passes the output of docker images through awk to preserve the header rows

(NR<2{ print \$0; next } prints rows with a row number, RN, less than 2), then sorts

the remaining output.

�List Dangling Volumes
“Dangling” volumes—those not referenced by any containers—are potentially unused,

consuming space on the host. To find them, check the dangling flag of docker volume:

alias dangvol='docker volume ls -f dangling=true'

�List Dangling Images
Like volumes, unused or “dangling” images may take up space in a system. Find

them with

alias dangimg='docker images -f dangling=true'

�Functions
Functions, like aliases, make it easier to call repetitive or lengthy commands. Aliases

support fixed or passive actions, but functions are more powerful. They’re shell scripts in

their own right, can accept and process input variables, and perform more extensive or

sophisticated tasks.

Appendix B Aliases and Functions

408

�Start a Container Shell
Without question, the action I perform most in Docker is connecting to a container.

Rather than typing the full command each time:

docker exec -it <container name> bash

I created this function. It takes the container name as input and substitutes it into

docker exec to start a shell session:

dbash(){

 docker exec -it $1 bash

}

�Inspect Function
The docker inspect command reports metadata information for Docker objects—

containers, images, volumes, etc.—in JSON format. I typically run docker inspect to see

one section of its total output, which can be lengthy for images and containers.

Like other Docker CLI commands, docker inspect accepts the --format option,

with additional syntax for filtering out individual metadata sections. Of course, it means

you need to know how Docker identifies the section you want and remember the

expression for formatting the result.

I don’t use either often enough to commit the syntax to memory, so I created a

function to do it for me!

I’m including this snippet to demonstrate the capabilities of functions and hopefully

spark your imagination. It’s something you can adapt to fit your needs:

di() {

 case $1 in

 �env) docker inspect --format '{{range .Config.Env}} {{printf "%s\n"

.}} {{end}}' $2 | sort ;;

 �ip) docker inspect --format '{{range.NetworkSettings.Networks}}

{{.IPAddress}} {{end}}' $2 ;;

 �ports) docker inspect --format '{{range $p,$i := .NetworkSettings.

Ports}} {{$p}} -> {{(index $i 0).HostPort}} {{end}}' $2 ;;

Appendix B Aliases and Functions

409

 �mount) docker inspect --format '{{.Name}} {{.Options.o}}:{{.Options.

device}}' $2 ;;

 *) ;;

 esac

}

Call it with

di <inspection type> <object name>

The case statement processes the first value, the type of inspection to perform,

and calls docker inspect against the object, applying the appropriate template to

the output.

The inspection types included here are as follows:

•	 env: Reports a container’s environment variables

•	 ip: Shows the IP address of a container

•	 ports: Lists all ports mapped to a container

•	 mount: Displays a volume’s mount option and device name or

directory

•	 *: Exits when there’s no matching type

Be sure to revisit your functions often! As you use Docker and learn more about its

capabilities, you’ll encounter new opportunities to add or build your function library,

and this last case is a great example!

Appendix B Aliases and Functions

411

Index

A
ADD instruction, see Dockerfiles
Aliases, 405

extended container information, 406
report containers, 406
sorting, 407

Ansible, 231
Application software, 7
ARG Instruction, see Dockerfiles
Attack surface, 90
Automated processes, 3
Automatic Shared Memory

Management, 77
Automation, 3, 11, 12, 16, 26, 89, 110, 221,

276, 280, 311, 349

B
.bash_login file, 249
.bashrc file, 225, 227, 228, 249, 307
Bridge networks, 168–173, 175, 178,

181–185, 189–192, 195–198,
204, 211

Build cache, 136, 140, 329, 330
reporting size, 329

buildContainerImage.sh, 63, 64, 230, 296,
311, 342, 350, 351

buildDockerImage.sh, 63
Build context, 63, 241, 259, 312

ignore Files, 321 (see also Dockerfiles)
and image size, 261, 301
links and shortcuts not allowed, 63, 319

Building images, 30, 48, 63
build cache, 244, 317 (see also Cache

management)
layers, 247
troubleshooting, 343 (see also

Dockerfiles)
BuildKit, 332

enable, disable, 333
feature entry, 333
ignore files, 336–338

(see also Dockerfiles)
limiting context, 338

progress, 333, 335
syntax, 338

Business continuity, 6

C
Cache management, 331, 332

build cache, pruning, 140, 329
reporting size, 136

checkDBStatus.sh, 237, 267, 278
non-CDB option, adding, 237

CMD Instruction, see Dockerfiles
Common Vulnerability and Exposure

(CVE), 360
Configuration management, 4, 11, 12
Container advantages, 5, 8, 20, 49

autonomy, 5, 12, 100
confidence, 12
consistency, 11
cost, 12, 16

© Sean Scott 2023
S. Scott, Oracle on Docker, https://doi.org/10.1007/978-1-4842-9033-0

https://doi.org/10.1007/978-1-4842-9033-0

412

dependencies, 8
efficiency, 9, 12, 22, 31, 37, 44, 119
flexibility, 8
footprint, 13
freedom, 8
patching and upgrades, 8, 14, 25
portability, 10, 13, 14, 28
predictability, 12
reliability, 11
self-contained, 7, 8
simplicity, 6, 10, 13
size, 9, 10, 37, 44
software modularity, 14
speed, 8–10, 14, 33, 50, 119
standards, 10
for training, 13, 25

Container databases (CDB), 59
(see also Multitenant architecture)

Container environment, 36, 68, 83,
84, 206

create variables, 113, 114
customizing Oracle containers, 115
defaults, 68, 105, 110
hostname, 83
inheritance, 110
vs. legacy, for Oracle, 78
list variables in an image, 206
minimalist, 38, 59, 89
setting at runtime, 110, 206
setting database editions, 115
setting from host variables, 112, 206
setting in a file, 111, 207
user, 83

Container filesystems, see Union
filesystems

Container images, see Images
Container layers, see Union filesystems

Container logs, 70, 81, 122, 346
alert log, 70
database installation, 70, 81
following/tailing activity, 79 (see also

Docker logs)
Container networks, 27, 28, 166, 168

bridge networks, 168, 215
default, 169, 182, 190, 196
default vs. user defined, 169, 182
user defined, 184, 189, 191, 192,

195, 198, 204
concepts, 149, 167
configuration, 181
custom drivers, 170
DNS, 149, 165, 180, 189, 191, 193, 199,

204, 216
docker-hoster, 193, 200

host networks, 169
interface, 170

IP addresses, 168, 175
IPVLAN networks, 170
MACVLAN networks, 170
network interface, 149
“None” network, 170
overlay networks, 170, 181
unused, removing, 140
virtual interfaces, 178, 195, 197

Container registries, 37, See also
Docker Hub

Container runtimes, 22, 27, 30
Containers, 9, 18, 26, 95, 183, 201, 383

at Google, 20, 77, 78
connections, 82, 83
container hash, 79
environment values

formatting, 107
health checks, 30, 40, 237
host applications, 74, 75

Container advantages (cont.)

INDEX

413

hostname, 84, 85, 205
insulating and securing, 149
interactive vs. detached, 41, 69
lightweight virtual machines, 19, 23
logs (see Container logs)
management, 75
naming, 40, 43, 68, 83, 205
navigation, 82
network alias, 199, 204, 205
removing, 47, 66, 117, 120 (see also

docker rm)
running scripts, 213 (see also

docker exec)
saving changes, 42, 43 (see also

docker commit)
space management, 136, 139

prune containers, 140
system prune, 140
virtual size, 48

vs. virtual machines (see Containers vs.
Virtual Machines)

Container startup, 30, 68–70, 81, 97, 103,
104, 110, 238, 288

configuration directory check, 99
entrypoints, 135, 239 (see also

Entrypoints)
overriding startup, 347 (see also

startOracle.sh)
Container storage, see Storage
Containers vs. Virtual Machines, 8, 9, 19,

20, 23, 27, 31, 47, 50, 90, 315
abstraction, 22
capability, 23
capacity, 23
databases vs. schemas, 21, 31
isolation, 22, 23
performance, 23
resource placement, 21

resource sharing, 22
security, 21
startup process, 23

Container volumes, see Volumes
COPY instruction, see Dockerfiles
cp command, 119
CREATE_CDB, 235
createDB.sh, 233, 234, 238, 239, 285,

288, 292
add support for Read-Only Oracle

Homes, 292
non-CDB option, adding, 234
response files, 233

placeholders, 233, 278
cron, 85, 86, 89
crontab command, 87
Customized images

appending values, 303, 304
conditional file copy, 305, 306, 308, 309
conditional operations, 300–303

D
Data as Code, 13, 28, 99, 100, 122, 165,

203, 289
data versioning, 14, 100
portability, 100
reference data, 14

Database administrators, 31, 77, 117
Database as a Service (DBaaS), 54
Database clients, 149
Database Configuration Assistant (DBCA),

59, 67, 69, 81, 104, 143, 147, 233,
234, 279, 281, 288

monitor progress, 70
“permission denied” error, 147
response files, 229, 231, 278

Databases are special, 4

INDEX

414

Databases vs. Data, 13
reference data, 13

Database teams, 6, 12
Data Guard, 5, 6, 15, 26, 149, 341
Data Pump, 13
dbca command, see Database

Configuration Assistant (DBCA)
DevOps, 3
Disaster recovery, 12, 16
Disposable environments, 216
Docker, 4, 164, 167, 170, 211, 221

orchestration (see Orchestrations)
return on investment, 5
volumes, 130

docker attach, 41
docker build, 48, 269, 311–314, 316, 317,

326, 333, 335, 337, 338, 345
assign arguments during builds,

250, 328
assign multiple tags, 327
--build-arg, 250, 328
--target flag, 349
-t flag, 326

docker builder, 329
Docker command-line, 33, 50, 52, 126

flags and modifiers, 35
formatting output, 106, 405
online help, 34

docker commit, 43, 48
Docker Compose, 15, 29
docker container, 176

inspect, 142, 176
ports, 75
prune, 140
run (see also docker run)

Docker containers, see Containers
docker cp, 34, 119, 354

wildcards, 354

Docker daemon, 66, 67, 143, 148, 168, 170,
193, 313, 318, 339

Docker Desktop, 30, 33, 37, 51, 60, 62, 66,
75, 119, 129, 144–146, 174, 367

command line, 53, 395, 399
configuration, 394
container management, 402

logs, 400
starting containers, 401, 403
stats, 401

Docker Engine, Linux, 30, 395
download, 30, 33, 51, 387
image management, 401, 402
inspecting containers, 109
installation, 389
Mac (Apple Silicon), 395
Mac (Intel), 393, 394
volume management, 126, 403

docker exec, 41, 52, 71, 82, 83, 85, 205, 212,
348, 353

alias, 408
connecting as root, 85
interactive, tty, 82
to run commands in containers, 72
to run sqlplus in containers, 72
setting the container user, 85, 213
shells, 83
to start a shell, 82
-u/--user flag, 85, 213

Dockerfiles, 30, 40, 48, 50, 53, 124, 221,
222, 227, 241, 246, 311, 312, 357

ADD, 246, 248
ARG, 250

extending images, 250, 251
for templating Dockerfiles, 254

ARG vs. ENV, 250, 253
building from outside context, 317
CMD, 267, 315

INDEX

415

COPY, 246, 258, 259, 315, 316
absolute vs. relative paths, 259
from aliased stages, 262
build process, 259–261
file ownership, 259

.dockerignore file, 321
ENV, 249, 250, 304

argument and environment
scope, 251–254

for secrets, 255
setting multiple variables, 255

FROM, 247, 254, 314, 328
base, 249
builder, 249, 262
Multistage builds, 248 (see also

Multistage builds)
scratch, 248
stage aliases, 248

HEALTHCHECK, 226, 267
LABEL, 255

examples, 256
reading image metadata, 257

layers, 242–247
RUN, 226, 254, 265

local scope variables, 254
multiple commands, 265

stages, 241, 258
USER, 247, 258
WORKDIR, 267

docker history, 275, 314, 375
--no-trunc flag, 375 (see also docker

image history)
Docker Hub, 30, 37, 42, 55, 357, 358

accounts
image scanning, 366
personal subscription, 364
pro subscription, 364

repository, 364
Docker Sponsored OSS, 358, 360
home page, 358, 359
integrations

Bitbucket, 364
GitHub, 364
Slack, 364

licensing, 363
Official Images, 37, 358, 359, 371, 372
Oracle database images, 360
repository

create, 364
public/private visibility, 365
scanning, 366

scan images, 360, 362–364
searching, 371
support, 364
trusted content, 358–360

warnings, 375
untrusted images, 37, 360, 361
Verified Images, 37
Verified Publishers, 358, 360

docker image, 34, 37, 43, 52, 57, 64, 69,
140, 314, 323–327, 376

alias, 407
history, 245, 353

output, reading, 245, 314 (see also
docker history)

list dangling images, 407
ls, 34 (see also docker images)
prune, 139, 140

docker inspect, 106, 114, 155, 176, 257, 408
--format flag, 106
formatting function, 408

docker login, 57, 367
Oracle Container Registry, 377

docker logout, 367

INDEX

416

docker logs, 34, 52, 70, 79–81, 205, 346
exiting, 79
-f flag, 79

docker network, 173, 174
connect, 186, 204
create, 215
disconnect, 196, 204
inspect, 176, 178, 184
ls, 184 (see also Container networks)

docker ps, 34, 39, 40, 47, 52, 75, 83, 139,
154, 347

-a/--all flag, 40
alias, 406
list port assignments, 153

docker pull, 57, 372, 373, 381
specifying namespaces, 372, 374

docker push, 369, 373
docker rm, 34, 42

force container removal, 42
docker rmi, 325, 326
docker run, 30, 34, 35, 37, 39, 44, 52, 65,

78, 79, 103, 110, 114, 132, 154, 172,
179, 198, 201, 250, 315, 346,
347, 357

assign a hostname, 164
defining volumes, 66
-d flag, 69, 79
-e/--env flag, 68, 111
--env-file flag, 111
example for an Oracle database

container, 68, 210, 216
--expose flag, 156
expose ports at runtime, 156, 266
--hostname flag, 164
interactive, tty, 35, 39, 71
--mount flag, 133
--mount vs.--volume flags, 132, 133,

142, 148, 207

--name flag, 43, 68, 79
--net/--network flag, 199
--network-alias, 199
--network flag, 210
-P/--publish-all flag, 155
-p/--publish flag, 65, 151
publishing exposed ports, 155
-v/--volume flag, 66, 124, 132

docker scan, 362
docker search, 371, 380

limitations, 371
Docker’s event service, 204
docker start, 34, 40, 52, 76, 205, 347, 348
docker stop, 52, 76, 239
docker system, 329, 330

df, 136
prune, 140

docker tag, 324, 367, 368
docker volume, 124, 126, 407

create, 126, 129
inspect, 126, 137, 145
list dangling volumes, 407
ls, 126, 137
prune, 138
rm, 126

Docker volumes, see Volumes

E
echo command, 226
ENABLE_ARCHIVELOG, 115, 206
Entrypoints, 208, 280

script execution logs, 282
tips and cautions, 280

env command, 106, 250, 251, 255, 304
ENV Instruction, see Dockerfiles
Ephemeral, 27, 33, 42, 50, 117
/etc/hosts, 84, 179, 187, 194, 204

INDEX

417

/etc/oratab, 83, 93, 94, 98, 289
/etc/resolv.conf, 180, 189
Exadata, 341
EXPOSE instruction, see Dockerfiles
EZConnect/Easy Connect, 160, 161, 173,

see also Oracle database networking

F
FROM instruction, see Dockerfiles
Functions

container shell, 408
inspection, 408, 409

G
git, 11, 60, 61, 215, 224

clone, 61 (see also Version control)
GitHub, 60, 61, 223, 272, 303, 364, 368
Global Service Manager (GSM), 275
GoldenGate, 14, 60, 149, 171
Grid of Sums game, 243

H
HEALTHCHECK Instruction, see

Dockerfiles
Host networks, 162, 169–170, 209
Hyper-V, 387, 390

I
ifconfig command, 179
Image builds, 30
Image layers, 14, 31, 44, 45, 246, 314,

316, 369
reuse, 247

Image management

digest, 25, 42, 369
image hash, 25, 26, 35, 42, 370
namespace, 324, 327, 367
pulling from repositories, 30, 35, 373
pushing to a repository, 369
registry login, 57, 367
searching, 372
tagging, 367

image aliases, 325
Images, 10, 24, 52, 221

dangling, 139, 140
removing, 140 (see also

docker image)
Dockerfiles (see Dockerfiles)
image hash, 314
portability, 25
port exposure, 155
pre-built, 54

Oracle, 54
unlicensed (non-Oracle), 54

repository, 25, 54
space management

prune images, 139
tags, 25, 58, 139, 323

latest, 25, 37, 332, 371, 374
slim, 38, 58, 90

Immutability, 11, 17, 25, 26, 33, 42, 118,
121, 328

Infrastructure as Code, 4, 5, 8, 11, 26, 30,
221, 231, 357

init.d/system.d, 89
installDBBinaries.sh, 229–232

response files, 231
placeholders, 232

slimming, 229
Intermediate container, 316, 329, 348

build a target, 349, 350
run cache layers, 350, 351, 353

INDEX

418

J
JSON, formatting with jq, 107, 176

K
Kubernetes, 29

L
LABEL instruction, see Dockerfiles
Legacy systems, 6, 11, 12

dependencies, 8
discipline, 11
documentation, 11, 26
fragility, 6
inconsistencies, 11
limitations, 6
overhead, 11
patching and upgrades, 6
performance, 8
risk, 6, 8
stability, 8
testing, 6

Le Monde newspaper, 243
Linux containers, see Containers
Listener, see Oracle Listener
.login file, 249
LXC, 25

M
Metadata, 22, 25, 91, 106, 119, 124, 155,

242, 255
zero-byte layers, 246, 315

Microsoft Store, 396
MobaXterm, 396
Mounts, 96, 117, 121, 127

advantages, 121
for audit directory, 131
bind mounts, 66, 125, 128, 130, 131,

142, 146, 202, 207
convenience, 125
directory creation, 146
directory ownership, 66, 143,

145, 147
mounting method, 142
orphans, 142
pre-creating directories, 69
visibility, 125

for diagnostic directory, 69, 122, 131
directory ownership, 145

adding the oracle user, group, 145
assigning UID 1000, 145

Docker Volumes, 127
entrypoints, 135, 208

/docker-entrypoint-initdb.d, 135
/opt/oracle/scripts, 135
setup, startup, 135, 209

for file sharing, 122, 124
methods, 132
overwriting container directories, 134
runtime secrets, 128
tmpfs, 124, 128
undefined volumes, 134 (see also

Volumes)
Multipurpose images

contradictions, 274, 275, 277
limitations, 273

Multistage builds, 31, 248, 262
building to stages, 349
image size, reducing, 262

Multitenant architecture, 24, 59, 114, 277
non-CDB databases, 234, 277, 278

enabling as an option, 278

INDEX

419

pluggable databases, 278, 279
multiple PDB option, 278, 281 (see

also Pluggable databases (PDB))
My Oracle Support (MOS), 12, 13,

56, 62, 100

N
Network identities, 199
Networking

dynamic/nonreserved ports, 154
firewalls, 163
registered ports, 154
well-known ports, 154

O
Open Container Initiative (OCI), 10
Operations teams, 3, 6, 12
Optimal Flexible Architecture

(OFA), 92, 274
directory structure, 274

Oracle Automatic Storage Management
(ASM), 126

ORACLE_BASE, 14, 90–92, 98, 106, 251,
262, 274

multiple, 275
ORACLE_CHARACTERSET, 115
Oracle Cloud Infrastructure (OCI), 10,

130, 131, 357
Object Storage, 130

Oracle Container Registry, 55, 377
command line login, 377
database repositories, 380
downloads, 56
Editions, 381
image limitations, 59
limitations, 382

pulling images, 57
searching, 378

Oracle container repository on GitHub,
28, 60, 78, 115, 124, 132, 215, 222,
272, 368

adding database software, 62
database directory, 62

Oracle database networking, 154
EZConnect string, 156
Oracle Wallet, 288
SQL*Net, 150

Oracle databases, 169, 171
archive logging, 75, 115
audit directory, 131
datafile and configuration directory,

66, 69, 97, 122, 203, 207 (see also
ORADATA directory)

diagnostic
directory, 69, 123, 131

edition, 115, 305
installation

Cannot create directory error, 68
instance vs. software, 122
patching, 263, 264, 337
set database properties, 68
SGA, PGA management, 116
starting and stopping, 75
upgrades, 264

Oracle Database software, 62
ORACLE_EDITION, 115
Oracle Enterprise Linux, 37, 82, 90, 174,

221, 223, 245, 248, 254
Oracle Enterprise Manager, 17
Oracle Express Edition, 60, 62, 301
Oracle Grid Infrastructure, 89
ORACLE_HOME, 7, 14, 20, 21,

93, 98, 106, 122, 134, 250, 251, 274
Oracle Instant Client, 56, 60, 74

INDEX

420

Oracle Inventory, 14, 98
oraInventory directory location, 91,

262, 274
changing, 276

ORACLE_INVENTORY, 276
Oracle Listener, 81, 150, 171, 209, 239

configuration files, 93, 122, 203
starting and stopping, 75 (see also

Oracle database networking)
ORACLE_PATH, 228
ORACLE_PDB, 105, 106, 109, 110, 114,

115, 206, 236
ORACLE_PWD, 115, 206
Oracle Restart, 89
Oracle’s container repository on

GitHub, 104
Oracle’s container repository on GitHub, 59
ORACLE_SID, 99, 105, 106, 109, 114, 115,

206, 226, 227
Oracle Software Delivery Cloud, 62
Oracle, support for Docker and

containers, 12, 125
ORADATA directory, 91, 125, 131, 165,

202, 207
dbconfig directory, 92, 93, 97, 203,

289, 298
modularity, 99

ORADATA volume, 99, 100, 124, 126, 127,
130, 131, 141, 142, 202, 203

Orchestrations, 15, 149, 166
OS install and configuration

functionality, 223
Overlay filesystems, see Union filesystems

P, Q
Package managers, 223
Password files, 94, 122, 203

Password management, 73, 213 (see also
setPassword.sh)

Patching and Upgrades, 14, 16, 28, 122,
263 (see also Oracle databases)

Performance tuning, 16
Persistence, 17, 26, 27, 31, 33, 39, 42, 50,

66, 96, 98, 117, 124, 125, 128, 202,
203, 217

Pluggable databases (PDB), 59, 92, 278,
279, See also Multitenant
architecture

Podman, 25, 34, 128, 288
Port mapping, 29, 65, 154, 193, 209 (see

also Port publishing)
Port publishing, 65, 150, 166

automatic port publication, 155
binding, 150
create volume/container, 153
limitations, 150, 153,

154, 161, 192
workaround, 165

unpublished ports, 153
PowerShell, 53, 66, 388, 396, 397
Prototyping, 13, 25
PuTTY, 53, 396

R
Rapid Home Provisioning, 14
Read-Only Oracle Homes, 123, 288,

291, 299
configuration files, 292
disabling, 291
orabaseconfig, 290
orabasehome, 290
orabasetab, 289, 290
ORACLE_BASE_CONFIG, 289, 292
ORACLE_BASE_HOME, 289, 292

INDEX

421

roohctl command, converting existing
homes, 291

script adaptions, 290, 292, 296
Real Application Clusters (RAC), 13, 56,

89, 149, 274, 275, 341
Recovery Manager (RMAN), 13, 17, 77,

100, 103, 110, 117, 341
Reliability, 11, 31, 50

for process and procedure,
11, 25, 26

Reliability engineering, 3, 4, 26, 42
REST, 60
Reusability, 243, 262
RUN Instruction, see Dockerfiles
runOracle.sh, 97, 104, 105, 110, 114, 116,

135, 239, 267, 288, 292, 294, 298,
301, 306, 345

add support for Read-Only Oracle
Homes, 294

check for existing database, 99
runUserScripts.sh, 288

S
Sandboxes, 13
scp command, 119
Security, 6, 16, 25, 29, 37, 50, 55, 59, 81, 90,

128, 223, 261, 305, 359, 360, 375
sed command, 89, 233–235
Service-based and cloud-native

computing, 149
setPassword.sh, 73, 213
setupLinuxEnv.sh, 223, 224, 265, 302, 304

modifying, 224
Snyk, 360, 364
spfile, parameter files, 94, 122, 203
SQLcl, 74, 161, 194

download, 161

SQL Developer, 29, 51, 70, 74, 149, 150,
156, 157, 160, 171

downloading, 157
New Connection dialog, 157, 158
testing, 159, 160

SQL*Plus, 71, 72, 161, 171, 212
glogin.sql, login.sql

files, 228, 300
here document, 236

startDB.sh, 239
startOracle.sh, 81
Statefulness, 26, 27, 39, 42, 118
Statelessness, 26
Storage, 27, 148, 207

bind mounts, 124
space management, 125 (see

also Mounts)
bind mounts vs. volumes, 125, 128
options, 141
secrets, 124 (see also Mounts)
space management, 129, 130, 136
tmpfs, 124 (see also Mounts)
/var/lib/docker, 119
volumes, 124 (see also Volumes)

T
Tags, see Image management
Terminal program

Mac, 398
Windows OS, 396

Terraform, 231
Test systems, see Troubleshooting

and Testing
Tic-Tac-Toe game, 45, 46, 118, 242–244
tnsnames.ora, 156, 160, 162, 163, 171

using container IP addresses, 168 (see
also Oracle database networking)

INDEX

422

Toad by Quest Software, 74, 171
Troubleshooting and Testing, 6, 11, 12, 14,

16, 25, 28, 100, 119, 341
with bash-x, 345, 346
debugging, 345
DEBUG variable, 345, 346
echo information from

scripts, 343, 344
error redirection, 253
failed database container, 68
mounts and log availability, 122
overriding startup processes, 347
running cached layers, 350
with volumes, 354

U
Ubuntu, 53, 388

image, 221
updating, 389

Union filesystems, 44, 50, 69, 90, 91, 95,
118–121, 242, 262

commit vs. build, 48, 49
default location, 120
layers, 44, 46, 47, 50, 95, 96
limitations, 96, 120
performance, 90, 96, 120, 122
Tic-Tac-Toe game, 45

Unix Time Sharing System (UTS), 149
USER instruction, see Dockerfiles

V
Vagrant, 8, 13, 24, 231

Oracle Vagrant project, 8
Version control, 4, 11, 12, 25, 26, 60
VirtualBox, 24, 387

Virtual machines, 8–10, 22, 23, 26, 27, 31,
36, 77, 117

hypervisor, 9, 22
Virtual networks, see Container networks
VOLUME instruction, see Dockerfiles
Volumes, 28, 31, 65, 96, 125, 128, 202, 208

anonymous volumes, 126
bind mounting volumes, 129, 130, 146,

148, 202
vs. bind mounts, 128–131, 139, 145
clone and copy databases, 99, 122,

165, 238
for debugging, 354
default location, 126
for file sharing, 97
independence, 97
local volumes, 136, 145, 202

identifying orphans, 138
limitations, 145

multiple definitions of, 124
for /opt/oracle/oradata, 96, 98
prune volumes, 137–139
security, 128
space management, 136

W, X
Windows, 53

command prompt, 53, 396
Windows Store, see Microsoft Store
Windows Subsystem for Linux (WSL), 53,

66, 125, 214, 387, 396
bind mounts, permissions, 143
configure and update Linux, 388
configure resources, 392, 393
installation, 388
set up, 388

INDEX

423

setup Docker Desktop, 389
WSL 1 vs. WSL 2, 387

Windows Terminal, 53, 389, 396
WORKDIR Instruction, see Dockerfiles

Y, Z
Yet Another Markup

Language (YAML), 15
yum command, 223, 224, 303, 304

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Introduction to Containers
	Chapter 1: Introducing Docker and Oracle
	Why Docker?
	Simplicity
	Self-Contained
	Speed
	Portability
	Reliability
	Cost

	Use Cases
	Exchange Data
	Modular Software
	Orchestration
	Other Uses

	Objections to Docker
	Summary

	Chapter 2: Understanding the Container Landscape
	Containers vs. Virtual Machines
	Dedicated vs. Shared
	Performance
	Capacity and Capability

	Concepts and Terminology
	Images
	Tags
	Portable
	Immutable and Stateless

	Containers
	Stateful
	Ephemeral

	Resources
	Volumes
	Networking

	Additional Terminology
	Runtimes
	Dockerfiles
	Builds

	Summary

	Chapter 3: Container Foundations
	Docker Command-Line Overview
	Run Your First Container
	List Images
	Run a Container
	Explore the Container
	Image Registries

	Minimalism
	Modify the Container

	Persistence
	Check the Container State
	Start the Container
	Interactive vs. Detached
	Connect to the Container
	Verify Persistence
	Remove the Container

	Images Are Immutable
	Start a New Container
	Save a New Image
	Run the New Image

	Union Filesystems
	Commit vs. Build

	Summary

	Chapter 4: Oracle Database Quick Start
	Access the Docker Environment
	Terminology
	Docker Commands
	Images and Containers
	Build and Run
	The Docker Command Line

	Obtaining an Image
	Pre-built Images
	Download an Image
	Download a Tag
	Running Pre-built Images
	Pre-built Image Limitations

	Building Images from a Repository
	Oracle Docker GitHub Repo
	Oracle Database Software
	Build an Image

	Running a Container
	Container Properties
	Port Publishing
	Volume Mounting
	Permissions Issues in Linux and Windows WSL Environments
	Environment Variables
	Container Name

	A Full Run Command
	View Container Logs

	Access and Use the Container
	Access a Container Shell
	Run SQL*Plus
	Run Scripts
	Connect from Host Applications

	Manage the Container
	Summary

	Chapter 5: Differences in Database Containers
	Start an Oracle Database Container
	Connect to the Container
	Navigate the Oracle Database Container
	Container Differences
	Hostname
	cron
	Binaries
	Oracle Directories
	Configuration Files

	Volumes
	Summary

	Chapter 6: Customize Container Environments
	The Startup Process
	View Environment Values
	docker run
	Command-Line Option
	Values from a File
	Values from the Host Environment

	Overwriting and Creating Variables
	Environment Options in Oracle Images
	Summary

	Chapter 7: Persistence
	Container Storage
	Docker Internal Storage
	Drawbacks of Union Filesystems

	Mount Concepts
	Volumes vs. Volumes
	Mount Types
	Bind Mount
	Docker Volumes
	tmpfs and Secrets

	Volumes vs. Bind Mounts
	Mounting Storage
	Using -v or --volume
	Using --mount
	Undefined Volumes
	Entrypoint Directories

	Manage Space
	Prune Volumes
	Prune Images
	Prune Containers
	Prune the System

	Which Type of Volume Is Best?
	No Volume
	Bind Mounts
	Container Association and Orphans
	Mounting Method
	Directory Ownership

	Local Volumes
	Bind-Mounted Volumes
	Directory Creation
	Directory Ownership and Permissions
	Mounting Method

	Summary

	Chapter 8: Basic Networking
	Port Publishing
	Publishing Container Ports
	Limits of Container Port Mapping
	Automatic Port Publication

	Connect to a Database in a Container
	Set Up Connections in SQL Developer
	EZConnect
	Creating tnsnames.ora Configurations

	Connect to Containers on Remote Hosts
	Setting the Container Hostname
	Adding Ports to an Existing Container
	Summary

	Chapter 9: Container Networks
	Container Networks
	Docker Network Types
	Bridge Networks
	Host Networks
	Other Network Types

	Demonstrating Bridge Networking
	Displaying Network Information
	List Networks
	Inspect a Network
	Inspect the Container’s Network Entries
	Viewing Virtual Devices on the Container Network

	Limitations of Default Bridge Networks
	Local Connections Work
	Remote Connections Fail

	User-Defined Bridge Networks
	Create the Network
	Attach the Containers
	What About DNS?

	Host Connections
	Problems with Port Mapping
	Container DNS Resolution on Hosts
	You Don’t Need Port Mapping
	Disconnect from the Default Bridge Network

	Assign a Network During Container Creation
	Summary

	Chapter 10: Container Creation Quick Reference
	Conventions
	Storage
	Create Volumes
	Predefined Volumes in Oracle Database Containers
	Preparing Volumes for Oracle Databases

	Networking
	Create User-Defined Bridge Networks
	Connect/Disconnect Containers to/from Networks
	Dedicated DNS

	Containers
	Basic Container Creation
	Naming
	Assign a Container Name
	Assign a Hostname

	Define Environment Variables
	Assign Storage
	Bind-Mount a Directory with -v
	Bind-Mount a Directory with --mount
	Attach a Predefined Volume with -v
	Attach a Predefined Volume with --mount
	Entrypoints

	Networking
	Map Ports to the Host
	Add to a Network

	Complete Container Examples

	Interact with Containers
	Open a Shell
	Run SQL*Plus
	Run a Script
	Connect As Root
	Manage Passwords

	Docker Deployment Examples
	New Environment Setup
	Add the Oracle Repository
	Networking
	Running Containers
	Disposable Environments
	Persistent Environments

	Summary

	Part II: Building and Customizing Images
	Chapter 11: Customizing Images
	Script Modifications
	OS Install and Configuration
	setupLinuxEnv.sh
	Dockerfile
	Modify the Default Shell Prompt
	Add a login.sql File

	Database Installation
	installDBBinaries.sh
	db_inst.rsp

	Database Creation
	Add a Non-CDB Option

	Start and Run the Database
	Summary

	Chapter 12: Dockerfile Syntax
	The Role of Layers in the Build Process
	FROM
	Build Stages

	Configure Environments: ARG and ENV
	Extending Images
	Argument and Environment Scope During Builds
	Build Dockerfile Templates with Arguments
	Assign Multiple Variables
	Variables and Secrets

	LABEL
	USER
	COPY
	Setting Ownership
	Context in the Build Process
	Copy from Images and Build Stages
	Patching
	Database Upgrades

	RUN
	Running Commands and Scripts
	Commands or Scripts?

	EXPOSE and VOLUME
	WORKDIR
	CMD
	HEALTHCHECK
	Summary

	Chapter 13: Oracle Dockerfile Recipes
	Multipurpose Image Limitations
	Fixed Directory Paths
	Contradictions

	Extended Multitenancy Options
	Create Non-CDB Databases
	Create Multiple Pluggable Databases
	Use the Setup Entrypoint

	Create a Read-Only Database Home
	Convert a Database Home to Read-Only
	Resolve Configuration Directories
	Update Scripts
	Run Containers with Read-Only Homes

	Scripting Image Customization
	Conditional Operations
	Appending Values in Dockerfiles
	Conditional File Copy

	Summary

	Chapter 14: Building Images
	Build Command Syntax
	Context
	Select a Dockerfile
	No Symbolic Links or Shortcuts Allowed in the Context
	Ignore Files

	Tagging Images
	Add Tags to Images
	Tag Images During Builds

	Arguments
	Housekeeping
	Pruning
	Cache Management

	BuildKit
	Progress
	Ignore Files
	BuildKit Syntax

	Summary

	Chapter 15: Debugging and Troubleshooting
	View and Manipulate Output
	Echo Information
	Add a Debug Option
	View Container Logs

	Override Container Startup
	Intermediate Containers
	Build to a Target
	Run Cached Layers

	Access Container Files
	Summary

	Chapter 16: Docker Hub and Image Repositories
	Docker Hub
	Trusted Content
	Untrusted Images
	Vulnerability Scanning
	Licensing

	Docker Hub Accounts
	Image Management
	Registry Login
	Tag an Image
	Push an Image
	CLI Registry Search
	Pulling Images

	Oracle Container Registry
	Summary

	Chapter 17: Conclusion

	Part III: Appendixes
	Appendix A: Installing Docker Desktop
	Install Docker Desktop
	Windows 10 and 11
	Set Up Windows Subsystem for Linux
	Configure and Update Linux
	Install Docker Desktop
	Configure Docker Desktop
	Set WSL Resources

	Mac (Intel)
	Configure Resources

	Mac (Apple Silicon)
	Docker Desktop and Docker Engine for Linux

	Terminal Environments
	Windows
	Mac Terminal

	Docker Desktop Features
	Container Management
	Container Terminal
	Container Logs and Statistics
	Container Statistics

	Image Management
	Volume Management

	Appendix B: Aliases and Functions
	Aliases
	Report Containers
	Extended Container Information
	Sorted List of Images
	List Dangling Volumes
	List Dangling Images

	Functions
	Start a Container Shell
	Inspect Function

	Index

