
M A N N I N G

Erik Engheim

General purpose programming
with a taste of data science

Number

ComplexReal

Unsigned

Integer

Irrational

Bool

Int64

Float64

Abstract
float

Abstract
irrational

Signed

UInt64Int32

Float32

Rational

UInt8

Type hierarchy for numbers in Julia, showing abstract and concrete number types
in dark gray and light gray, respectively

AbstractRange

AbstractArray

DenseArray

OrdinalRange Array

StepRangeAbstract
UnitRange

UnitRange

Type hierarchy for arrays and ranges in Julia. The dark gray types are
abstract while the light gray are concrete types.

Julia as a Second Language

Julia as a Second
Language

GENERAL PURPOSE PROGRAMMING
WITH A TASTE OF DATA SCIENCE

ERIK ENGHEIM

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Milan Ćurčić
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Kathleen Rossland

Copy editor: Christian Berk
Proofreader: Jason Everett

Technical proofreader: Maurizio Tomasi
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617299711
Printed in the United States of America

www.manning.com

 To my grandparents,
who paid for my first computer: an Amiga 1000.

brief contents
PART 1 BASICS ..1

1 ■ Why Julia? 3

2 ■ Julia as a calculator 16

3 ■ Control flow 34

4 ■ Julia as a spreadsheet 59

5 ■ Working with text 86

6 ■ Storing data in dictionaries 104

PART 2 TYPES . ..119

7 ■ Understanding types 121

8 ■ Building a rocket 141

9 ■ Conversion and promotion 160

10 ■ Representing unknown values 176

PART 3 COLLECTIONS. ..187

11 ■ Working with strings 189

12 ■ Understanding Julia collections 217
vii

BRIEF CONTENTSviii
13 ■ Working with sets 242

14 ■ Working with vectors and matrices 260

PART 4 SOFTWARE ENGINEERING ...275

15 ■ Functional programming in Julia 277

16 ■ Organizing and modularizing your code 299

PART 5 GOING IN DEPTH...321

17 ■ Input and output 323

18 ■ Defining parametric types 335

contents
preface xvii
acknowledgments xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 BASICS ..1

1 Why Julia? 3
1.1 What is Julia? 4

Pros and cons of statically and dynamically typed languages 4

1.2 Julia combines elegance, productivity, and
performance 5

1.3 Why Julia was created 6
Scientists need the interactive programming that dynamically typed
languages offer 7 ■ Developers in other fields also need the
interactivity a dynamically typed language offers 8

1.4 Julia’s higher performance solves the two-language
problem 9

1.5 Julia is for everyone 10
ix

CONTENTSx
1.6 What can I build with Julia? 11
Julia in the sciences 11 ■ Nonscience uses of Julia 12

1.7 Where Julia is less ideal 12
1.8 What you will learn in this book 13

2 Julia as a calculator 16
2.1 The Julia command line 17
2.2 Using constants and variables 18

Assigning and binding values to variables 21 ■ Using the ans
variable 22 ■ What is a literal coefficient? 23

2.3 Different number types and their bit length in Julia 23
Writing numbers using different number formats 25

2.4 Floating-point numbers 26
Performing operations on integers and floating-point numbers 27

2.5 Defining functions 27
Storing function definitions in a file 29 ■ Working with functions
in the REPL 30 ■ Functions everywhere 30 ■ Functions to work
with numbers 31

2.6 How to use numbers in practice 32

3 Control flow 34
3.1 Navigation and trigonometry 35
3.2 Boolean expressions 37

Compound statements 38

3.3 Looping 39
Flowchart 41 ■ Making a mathematical table for the sine
function 42 ■ Range objects 44 ■ For loops 44

3.4 Multiline functions 45
Implementing the sine trigonometric function 46

3.5 Implementing factorial 47
3.6 Factorial with recursion 48
3.7 If statements 49

If-else statements 49 ■ Elseif clause 50

3.8 Throwing exceptions to handle errors 51
3.9 Control flow vs. data flow 53

CONTENTS xi
3.10 Counting rabbits 54
Base case 56 ■ Iteration vs. recursion 56 ■ To return
or not return 57

4 Julia as a spreadsheet 59

4.1 Analyzing pizza sales 60
4.2 Different types of arrays 61
4.3 Performing operations on arrays 62
4.4 Working with the statistics module 65
4.5 Accessing elements 67
4.6 Creating arrays 69
4.7 Mapping values in an array 71
4.8 Introducing characters and strings 74
4.9 Storing pizza data in tuples 77

4.10 Filtering pizzas based on predicates 80
Combining higher-order functions 81

4.11 Mapping and reducing an array 82
Sine table with map and reduce 83

4.12 Counting matches with Boolean arrays 84

5 Working with text 86

5.1 Making a pretty pizza sales table 87
Print, println, and printstyled 88 ■ Printing multiple
elements 91 ■ Printing multiple pizzas 92 ■ Align with
lpad and rpad 92 ■ Adding lines 94

5.2 Printing a trigonometric table 95
5.3 Reading and writing pizza sales to CSV files 97

Writing pizza sales to a file 98 ■ Reading pizza sales
from a file 99

5.4 Interacting with the user 101

6 Storing data in dictionaries 104

6.1 Parsing Roman numerals 105
6.2 Using the Dict type 106
6.3 Looping over characters 108

CONTENTSxii
6.4 Enumerating values and indices 109
6.5 Explaining the conversion process 110
6.6 Using dictionaries 111

Creating dictionaries 111 ■ Element access 113

6.7 Why use a dictionary? 114
6.8 Using named tuples as dictionaries 116

When do you use a named tuple? 117 ■ Tying it all together 118

PART 2 TYPES . ..119

7 Understanding types 121
7.1 Creating composite types from primitive types 122
7.2 Exploring type hierarchies 124 7.3

Creating a battle simulator 127
Defining warrior types 128 ■ Adding behavior to warriors 130
Using multiple dispatch to invoke methods 132

7.4 How Julia selects method to call 136
Contrasting Julia’s multiple dispatch with object-oriented
languages 138 ■ How is multiple dispatch different from
function overloading? 139

8 Building a rocket 141
8.1 Building a simple rocket 142
8.2 Maintaining invariants in your code 146
8.3 Making objects with constructor functions 147
8.4 Differences between outer and inner constructors 148
8.5 Modeling rocket engines and payloads 149
8.6 Assembling a simple rocket 151
8.7 Creating a rocket with multiple stages and engines 152
8.8 Launching a rocket into space 156

9 Conversion and promotion 160
9.1 Exploring Julia’s number promotion system 161
9.2 Understanding number conversion 163
9.3 Defining custom units for angles 166

Defining angle constructors 168 ■ Defining arithmetic operations
on angles 168 ■ Defining accessors to extract degrees, minutes,

CONTENTS xiii
and seconds 170 ■ Displaying DMS angles 170 ■ Defining
type conversions 171 ■ Making pretty literals 172 ■ Type
promotions 173

10 Representing unknown values 176
10.1 The nothing object 177
10.2 Using nothing in data structures 178

What is a parametric type? 179 ■ Using union types to end the
wagon train 180

10.3 Missing values 182
10.4 Not a number 183
10.5 Undefined data 184
10.6 Putting it all together 184

PART 3 COLLECTIONS . ..187

11 Working with strings 189
11.1 UTF-8 and Unicode 190

Understanding the relation between code points and code units 191

11.2 String operations 196
Converting from camel case to snake case 198 ■ Converting
between numbers and strings 200 ■ String interpolation and
concatenation 202 ■ sprintf formatting 204

11.3 Using string interpolation to generate code 205
11.4 Working with nonstandard string literals 208

DateFormat strings 209 ■ Raw strings 210 ■ Using regular
expressions to match text 211 ■ Making large integers with
BigInt 214 ■ MIME types 215

12 Understanding Julia collections 217
12.1 Defining interfaces 218
12.2 Propellant tank interface example 220
12.3 Interfaces by convention 224
12.4 Implementing engine cluster iteration 225

Making clusters iterable 227

12.5 Implementing rocket stage iteration 229
Adding support for map and collect 231

CONTENTSxiv
12.6 Comparison of linked lists and arrays 233
Adding and removing elements 235

12.7 Utility of custom types 240

13 Working with sets 242
13.1 What kind of problems can sets help solve? 243
13.2 What is a set? 244

Comparing properties of sets and arrays 245

13.3 How to use set operations 249
13.4 How to use sets in your code 251
13.5 Searching for products using set operations 252

Defining and using enumerations 254 ■ Creating test data to
perform queries on 254 ■ Searching for screws 255 ■ Putting
screw objects into sets 256 ■ Looking up screws using
dictionaries 256

13.6 Search in bug tracker using sets 257
13.7 Relational databases and sets 258

14 Working with vectors and matrices 260
14.1 Vectors and matrices in mathematics 261
14.2 Constructing a matrix from rows and columns 261
14.3 The size, length, and norm of an array 262
14.4 Slicing and dicing an array 264
14.5 Combining matrices and vectors 269
14.6 Creating matrices 272

PART 4 SOFTWARE ENGINEERING.................................275

15 Functional programming in Julia 277
15.1 How does functional programming differ from object-

oriented programming? 278
15.2 How and why you should learn to think functionally 279
15.3 Avoid deeply nested calls with function chaining 279

Understanding anonymous functions and closures 281 ■ Using
the pipe operator |> 282 ■ Conveniently produce new functions
using partial application 282

CONTENTS xv
15.4 Implementing Caesar and substitution ciphers 284
Implementing the Caesar cipher 285 ■ Implementing substitution
ciphers 287

15.5 Creating a cipher-algorithm-agnostic service 289
15.6 Building an encryption service using object-oriented

programming 290
15.7 Building an encryption service using functional

programming 293
Defining a functional Caesar cipher 294 ■ Defining a functional
substitution cipher 295 ■ Implementing a functional password-
keeper service 296

16 Organizing and modularizing your code 299

16.1 Setting up a work environment 300
Using a package in the REPL 303 ■ How modules relate to
packages 305

16.2 Creating your own package and module 306
Generating a package 306 ■ Adding code to your package 309

16.3 Modifying and developing a package 311
16.4 Tackling common misconceptions about modules 315
16.5 Testing your package 316

PART 5 GOING IN DEPTH. ..321

17 Input and output 323

17.1 Introducing Julia’s I/O system 324
17.2 Reading data from a process 326
17.3 Reading and writing to a socket 327
17.4 Parsing a CSV file 328

Loading rocket engine data 330 ■ Saving rocket engine data 333

18 Defining parametric types 335

18.1 Defining parametric methods 336
18.2 Defining parametric types 338
18.3 Type safety benefits from parametric types 340

CONTENTSxvi
18.4 Performance benefits from parametric types 343
18.5 Memory benefits of parametric types 345

appendix A Installing and configuring the Julia environment 346
appendix B Numerics 353

index 361

 preface
I began programming as a teenager, learning from fun books containing comic strips
with wizards and turtles. I read magazines that showed me how to make my own sim-
ple games or cause silly effects to appear on the screen. I had fun.

 But when I went to university, my books began discussing bank accounts, bal-
ances, sales departments, employees, and employers. I wondered if my life as a pro-
grammer would mean putting on a gray suit and writing code handling payroll
systems. Oh, the horror!

 At least half of my class hated programming with a passion. I could not blame
them. Why did programming books have to be so boring, functional, and sensible?

 Where was the sense of adventure and fun? Fun is underrated. Who cares if a
book is silly and has stupid jokes if it makes you learn and enjoy learning?

 That is one of the reasons I wrote this book. I wanted the reader to enjoy learn-
ing programming—not through cracking jokes but by working through program-
ming examples that are interesting and fun to do.

 I promise you, there will be no examples modeling a sales department. Instead, we
will do things like simulate rocket launches, pretend to be Caesar sending a secret mes-
sage to his army commanders using old Roman encryption techniques, and many others.

 The second important reason why I wanted to write this book is because people
keep asking me, “Julia? Isn’t that a language only for science and scientists?” Julia has
had major success in this area, which is why the Julia community today is full of brainy
people working on hard problems, such as developing new drugs and modeling the
spread of infectious diseases, climate change, or the economy.
xvii

PREFACExviii
 But no, you don’t need to be a genius or a scientist to use Julia. Julia is a wonderful
general purpose programming language for everyone! I am not a scientist, and I have
enjoyed using it for over 9 years now. With Julia, you will find that you can solve prob-
lems more quickly and elegantly than you have done in the past. And as a cherry on
top, computationally intensive code will run blisteringly fast.

acknowledgments
This book has lived through several incarnations. At one point, it was a self-published
book. Later, chance brought me in touch with Manning Publications, and we agreed
to work on publishing my book. Back then, I did not realize how much work I was get-
ting myself into. In my mind, I would do minor revisions to the existing book, but
from all the feedback I got, I realized I had to make many revisions.

 At times I felt like giving up. However, despite the difficulties, I believe the exten-
sive system Manning has set up to aid us authors has helped me make a significantly
better book. For that, I must thank Nicole Butterfield, who got me to sign on with
Manning. I have had two Manning editors: Lesley Trites, in the early phase of the
book, and Marina Michaels, who with her considerable experience and steady hand
has helped get me over the finish line. I would like to extend a thanks to Milan Ćurčić,
my technical development editor, who helped me a lot with his feedback in determin-
ing when material was understandable (or not) to my target audience. My copyeditor
Christian Berk was invaluable for me as a non-native English speaker in correcting any
odd constructs or grammar I may have written.

 Furthermore, I’d like to thank the reviewers who took the time to read my manu-
script at various stages during its development and who provided invaluable feedback:
Alan Lenton, Amanda Debler, Andy Robinson, Chris Bailey, Daniel Kenney, Darrin
Bishop, Eli Mayost, Emanuele Piccinelli, Ganesh Swaminathan, Geert Van Laethem,
Geoff Barto, Ivo Balbaert, Jeremy Chen, John Zoetebier, Jonathan Owens, Jort
Rodenburg, Katia Patkin, Kevin Cheung, Krzysztof Jędrzejewski, Louis Luangkesorn,
Mark Thomas, Maura Wilder, Mike Baran, Nikos Kanakaris, Ninoslav Čerkez, Orlando
xix

ACKNOWLEDGMENTSxx
Alejo Méndez Morales, Patrick Regan, Paul Silisteanu, Paul Verbeke, Samvid Mistry,
Simone Sguazza, Steve Grey-Wilson, Timothy Wolodzko, and Thomas Heiman.

 Special thanks go to Maurizio Tomasi, technical proofreader, for his careful review
of the code one last time, shortly before the book went into production. Finally, thank
you to the creators of Julia. You have created the programming language for the
future, which I believe will transform the computer industry. That may sound like
hyperbole, but I truly believe Julia is a major milestone in the evolution of program-
ming languages.

about this book
Julia as a Second Language is an introduction to the Julia programming language for
software developers. It not only covers the syntax and semantics of the language but
also tries to teach the reader how to think and work like a Julia developer through
extensive focus on interactive coding in a read–evaluate–print–loop (REPL) based
environment.

Who should read this book?
Julia as a Second Language is written for developers curious about the Julia program-
ming language but who do not necessarily have a scientific or mathematical back-
ground. The book is also a good starting point for anyone who wants to explore data
science or scientific computing, as Julia is a language very well designed for such work.
However, that does not exclude other uses. Any developer who would like to program
in a modern, high performance language that makes them more productive would
benefit from this book.

How this book is organized
The book is organized into five parts, consisting of 18 chapters.

 Part 1 covers the basics of the language.

 Chapter 1 explains what kind of language Julia is, why it got created, and the
advantages of using the Julia programming language.

 Chapter 2 discusses working with numbers in Julia. It shows how you can use
the Julia REPL environment as a very sophisticated calculator.
xxi

ABOUT THIS BOOKxxii
 Chapter 3 explains control flow statements, such as if statements, while loops,
and for loops, by implementing a trigonometry function and calculating the
Fibonacci numbers.

 Chapter 4 explains how to work with collections of numbers using the array
type. Readers will work through an example involving pizza sales data.

 Chapter 5 is about working with text. This chapter walks you through making
nicely formatted displays of pizza sales data with colors as well as reading and
writing pizza data to files.

 Chapter 6 discusses how a program to convert Roman numerals to decimal
numbers can be implemented using the dictionary collection type.

Part 2 covers the Julia type system in greater detail.

 Chapter 7 explains type hierarchies in Julia and how you can define your own
composite types. This is one of the most important chapters because it also
explains multiple dispatch, which is one of the most important and unique fea-
tures in Julia.

 Chapter 8 introduces a rocket simulation code example we will use through sev-
eral chapters. This chapter is focused on defining types for different rocket
parts.

 Chapter 9 gets into depth on numerical conversion and promotion in Julia by
building up a code example dealing with different units for degrees. This chap-
ter helps cement an understanding of the multiple dispatch system in Julia.

 Chapter 10 explains how you can represent objects that are nonexistent, miss-
ing, or undefined in Julia.

Part 3 revisits collection types, such as arrays, dictionaries, and strings covered in part 1,
but this time digs into more details.

 Chapter 11 goes into much more detail about strings, including topics such as
Unicode and UTF-8 usage in Julia as well as their effects on your use of strings.

 Chapter 12 explains traits common to all Julia collections, such as iterating over
elements and building your own collections.

 Chapter 13 walks through several code examples to show how sets and set oper-
ations are used to organize and search for data in many types of applications.

 Chapter 14 shows how you can work with and combine arrays of different
dimensions, such as vectors and matrices.

Part 4 focuses on methods for organizing your code at different levels, including mod-
ularizing at the function level all the way up to packages, files, and directories.

 Chapter 15 digs deeper into using functions in Julia, with emphasis on how
functional programming differs from object-oriented programming.

 Chapter 16 is about organizing your code into modules, using third-party pack-
ages, and creating your own packages for sharing code with others.

ABOUT THIS BOOK xxiii
Part 5 digs into details that were hard to explain without the previous chapters as a
foundation.

 Chapter 17 builds on chapter 5. You will get into the details of the Julia I/O sys-
tem by reading and writing rocket engines to files, sockets, and pipes in CSV
format.

 Chapter 18 explains how a parametric data type can be defined and why para-
metric types are beneficial for performance, memory usage, and correctness.

About the code
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this. Code annotations accompany many of the listings, highlighting important
concepts.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the sourcecode have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Much of the code you write is in the Julia REPL (read-evaluate-print-loop) environ-
ment or in a Unix shell. In these cases, you see a prompt such as julia>, shell>,
help?> or $. These should not be included when you type. However, Julia is normally
able to filter out the prompt if you paste code examples into your terminal window.

 Code meant to be written into a file will usually not be shown with a prompt. How-
ever, you can typically paste this code into the Julia REPL if you like.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/julia-as-a-second-language. The complete
code for the examples in the book is available for download from the Manning web-
site at https://www.manning.com/books/julia-as-a-second-language, and from GitHub
at https://github.com/ordovician/code-samples-julia-second-language.

 Julia version 1.7 or higher is recommended to run the example code in this book.

liveBook discussion forum
Purchase of Julia as a Second Language includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://livebook.manning.com/
book/julia-as-a-second-language/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can take

https://livebook.manning.com/book/julia-as-a-second-language
https://livebook.manning.com/book/julia-as-a-second-language/discussion
https://livebook.manning.com/book/julia-as-a-second-language/discussion
https://livebook.manning.com/book/julia-as-a-second-language/discussion
https://www.manning.com/books/julia-as-a-second-language
https://github.com/ordovician/code-samples-julia-second-language
https://livebook.manning.com/discussion

ABOUT THIS BOOKxxiv
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
Need additional help? The Julia language has an active Slack workspace/community
with over 10,000 members, many of whom you can communicate with in real time.
Find information about registration at https://julialang.org/slack.

 Julia Discourse (https://discourse.julialang.org) is the go-to place for Julia-
related questions.

 The Julia community page at https://julialang.org/community has info about
YouTube channels, upcoming Julia events, GitHub, and Twitter.

 Official documentation of the Julia language and standard library can be found
at https://docs.julialang.org/en/v1/.

https://julialang.org/slack
https://discourse.julialang.org
https://julialang.org/community
https://docs.julialang.org/en/v1/

about the author
ERIK ENGHEIM is a writer, conference speaker, video course
author, and software developer. He has spent much of his
career developing 3D modeling software for reservoir modeling
and simulation in the Norwegian gas and oil industry. Erik also
spent several years as an iOS and Android developer. Erik has
programmed in Julia and written and made videos about Julia
since 2013.
xxv

about the cover illustration
The figure on the cover of Julia as a Second Language is “Paysanne Anglaise,” or
“English peasant woman,” taken from a collection by Jacques Grasset de Saint-Sau-
veur, published in 1788. Each illustration is finely drawn and colored by hand.
 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxvi

Part 1

Basics

These chapters cover all of Julia at a basic level. Later chapters will expand on
topics covered in this part. You will learn about working with numbers, arrays,
if statements, for loops, text strings, basic I/O, and storing and retrieving data
from dictionaries. Subsequent parts of the text then discuss these topics in
greater depth.

Why Julia?
You can choose from hundreds of programming languages—many of them much
more popular than Julia. So why pick Julia?

 How would you like to write code faster than you have done before? How about
building systems with a fraction of the number of lines of code you normally
require? Surely, such productivity will come at the cost of deplorable performance
and high memory consumption. Nope. In fact, Julia is the language of choice for
next-generation climate models, which have extreme performance and memory
requirements.

 I know such accolades may come across like a bad sales pitch from a used car
salesman, but there is no denying that Julia, in many ways, is a revolutionary pro-
gramming language. You may ask, “If Julia is so great, then why isn’t everybody
using it? Why are so many people still using the C programming language?” Famil-
iarity, packages, libraries, and community matter. Mission-critical software built up
in large organizations isn’t just transitioned away from on a whim.

This chapter covers
 The type of problems Julia solves

 The benefits of a fast, dynamically typed language

 How Julia increases programmer productivity
3

4 CHAPTER 1 Why Julia?
 Many of you reading this book may not care about having the more efficient and pro-
ductive programming language. Instead, what you care about is what you can build with
it. The simple answer is: anything. Julia is a general-purpose programming language.

 That may not be a satisfactory answer. You could build anything with JavaScript
too, in principle. Yet you know JavaScript dominates frontend web development. You
could write anything with Lua as well, but it is mostly used as a scripting language for
computer games. Your primary interest in reading this book may be the kind of job
Julia can land you.

 Presently, the Julia community is strongest within scientific computing, data sci-
ence, and machine learning. But learning Julia is also a bet on the future. A language
with such strong capabilities will not remain within a small niche. If you read on, it will
become clearer what Julia is and why it has such potential. I will also cover areas where
Julia is not ideal.

1.1 What is Julia?
Julia is a general-purpose, multi-platform programming language that is

 Suited for numerical analysis and computational science
 Dynamically typed
 High performance and just-in-time compiled
 Using automatic memory management (garbage collection)
 Composable

That’s a lot, and some of these things sound like contradictions. So how can Julia be a
general-purpose language and also tailored toward numerical programming? It’s
general-purpose because, like Python, Julia can be used for almost anything. It’s numer-
ical because, like MATLAB, it is well suited for numerical programming. But it isn’t
limited to numerical programming; it’s good for other uses as well. By composable I
mean that Julia makes it easy to express many object-oriented and functional pro-
gramming patterns facilitating code reuse.

1.1.1 Pros and cons of statically and dynamically typed languages

Let’s focus on one aspect of Julia: the fact that it’s dynamically typed. Usually, pro-
gramming languages are divided into two broad categories:

 Dynamically typed
 Statically typed

In static languages, expressions have types; in dynamic languages, values have types.

—Stefan Karpinski
Julia Creator

Examples of statically typed languages are C/C++, C#, Java, Swift, Go, Rust, Pascal,
and Fortran. In a statically typed language, type checks are performed on all your
code before your program is allowed to run.

51.2 Julia combines elegance, productivity, and performance
 Examples of dynamically typed languages are Python, Perl, Ruby, JavaScript, MAT-
LAB, and LISP. Dynamically typed languages perform type checks while the program
is running. Unfortunately, dynamically typed languages tend to be very slow.

 In dynamic languages values such as numbers, characters, and strings have attached
tags that say what type they are. These tags allow programs written in a dynamically
typed language to check type correctness at runtime.

 Julia is unusual in that it is both a dynamically typed language and high perfor-
mance. To many, this is a contradiction. This unique trait of Julia is made possible
because the language was explicitly designed for just-in-time (JIT) compilation and
uses a feature called multiple-dispatch for all function calls. Languages such as C/C++
and Fortran use ahead-of-time (AOT) compilation. A compiler translates the whole
program into machine code before it can run. Other languages, such as Python, Ruby,
and Basic, use an interpreter. With interpreted languages, a program reads each line
of source code and interprets it at runtime to carry out the instructions given. Now
that you have an idea of what kind of language Julia is, I can begin discussing the
appeal of Julia.

1.2 Julia combines elegance, productivity,
and performance
While performance is one of the key selling points of Julia, what caught my attention
back in 2013 when I first discovered it was how well thought out, powerful, and easy to
use it was. I had a program I had rewritten in several languages to compare how
expressive, easy to use, and productive each language was. With Julia, I managed to
make the most elegant, compact, and easily readable variant of this code ever. Since
then, I have tried many programming languages but have never gotten close to what
I achieved with Julia. Here are some one-liners that exemplify the expressiveness
of Julia.

filter(!isempty, readlines(filename)) # strip out empty lines
filter(endswith(".png"), readdir()) # get PNG files
findall(==(4), [4, 8, 4, 2, 5, 1]) # find every index of the number 4

Having been programming since the 1990s, I have had periods where I have felt I had
enough of programming; Julia helped me regain my joy for programming. Part of the

Language design and JIT compilation
In principle, a programming language is decoupled from the method used to run it.
Yet you will find that I talk about Julia as a JIT-compiled language and Fortran as an
AOT compiled language. Strictly speaking, this is imprecise. For instance, Julia can
run through an interpreter as well. However, most languages have been designed for
a particular form of execution. Julia was designed for JIT compilation.

Listing 1.1 Julia one-liners

6 CHAPTER 1 Why Julia?
reason is that once you master Julia, you will feel that you have a language in your tool-
box that works as a member of your team rather than against you. I think many of us
have had the experience of working on a problem we have a good idea of how to
solve, but the language we are using is getting in our way. The limitations of the lan-
guage force us to add one hack after another. With Julia, I can build software the way I
want without the language putting up obstacles.

 Another aspect that adds to your productivity and sense of fun is that Julia comes
bundled with a rich standard library. You hit the ground running. You can get a lot
done without hunting all over the web for some library to do what you want. Julia has
you covered, whether you want to do linear algebra, statistics, HTTP, or string manip-
ulation or you want to work with different date formats. And if the capability you want
isn’t in the standard library, Julia has a tightly integrated package manager that makes
adding third-party libraries a walk in the park. Programming with Julia almost makes
you feel guilty or spoiled because you can build rich and elegant abstractions without
taking a performance hit.

 Another essential advantage of Julia is that it is easy to learn. This ease of learning
can help Julia gain a larger community over time. To understand why Julia is easy to
learn, consider the famous Hello world program written in Julia:

print("Hello world")

When run, this code writes the text Hello world to the screen. While trivial, many lan-
guages require a lot of complex scaffolding to do something that simple. The follow-
ing is a Java program which does the same thing:

public class Main {
 public static void main(String[] args) {
 System.out.print("hello world");
 }
}

That exposes the beginner to a lot more concepts all at once, which can be over-
whelming. Julia is easier to learn because you can focus on learning one concept at a
time. You can learn to write a function without ever seeing a type definition. With a lot
of functionality available out of the box, you don’t even need to know how to import
external libraries to write helpful code.

1.3 Why Julia was created
To truly understand what Julia brings to the table, you need to understand better why
Julia was created in the first place. The creators of the Julia programming language
wanted to solve what they have called the two-language problem.

 This problem refers to the fact that a lot of software is written using two different
programming languages, each with different characteristics. In the scientific domain,
machine learning and data analysis dynamic languages are often preferred. However,

71.3 Why Julia was created
these languages usually don’t give good enough performance. Thus solutions often
have to be rewritten in higher-performance, statically typed languages. But why does
this preference exist? Why not write everything in a traditional high-performance,
statically typed language?

1.3.1 Scientists need the interactive programming that dynamically
typed languages offer

Scientists began writing software, including large weather simulations, in Fortran1 and
neural networks2 in C or C++.3 These languages offer the kind of performance you
need to tackle these large-scale problems. However, these languages come at a price.
They tend to be rigid, verbose, and lacking in expressiveness—all of which reduce
programmer productivity.

 The fundamental problem, however, is that these languages are not suited for inter-
active programming. What do I mean by that? Interactive programming is the ability to
write code and get immediate feedback.

 Interactive programming matters a lot in data science and machine learning. In a
typical data analysis process, data is explored by a developer loading large amounts of
data into an interactive programming environment. Then the developer performs
various analyses of this data. These analyses could include finding averages and maxi-
mum values or plotting a histogram. The results of the first analysis tell the program-
mer what the next steps should be.

 Figure 1.1 shows this process in a dynamically typed language. You start by running
the code, which loads the data, which you can then observe. However, you don’t have
to go through this whole process after you change the code. You can change the code
and observe changes immediately. You don’t need to load massive amounts of data
over again.

Let’s contrast this experience with the use of a statically typed language, such as For-
tran, C/C++, or Java.4 The developer would write some code to load the data and

1 Fortran is an old language for scientific computing.
2 Neural networks are a kind of algorithm inspired by the workings of the human brain.
3 C and C++ are related and widely used statically typed languages for systems programming.
4 Java is used for a lot of web server software and Android phones.

Run Load data

ObserveCode

Figure 1.1 In dynamically typed languages
you can ping-pong between coding and
observing. Large data sets do not need
to be reloaded into memory.

8 CHAPTER 1 Why Julia?
explore it, without knowing anything about what the data looks like. They would then
have to wait for the program to do the following:

1 Compile
2 Launch, then load a large amount of data

At this point the developer sees a plot of the data and statistics, which gives them the
information they need to choose the next analysis. But choosing the next analysis
would require repeating the whole cycle over again. The large blob of data has to be
reloaded on every iteration. This makes each iteration exceedingly slow, which slows
down the whole analysis process. This is a static, noninteractive way of programming
(figure 1.2).

1.3.2 Developers in other fields also need the interactivity
a dynamically typed language offers

This problem isn’t unique to scientists; game developers have long faced the same
problem. Game engines are usually written in a language such as C or C++, which can
compile to fast machine code. This part of the software often does well-understood
and well-defined things, such as drawing objects on the screen and checking if they
collide with each other.

 Like a data analyst, a game developer has a lot of code, which will need numerous
iterations to work satisfactorily. Specifically, developing good game play requires a
lot of experimentation and iteration. One has to tweak and alter code for how char-
acters in the game behave. The layout of a map or level has to be experimented with
repeatedly to get it right. For this reason, almost all game engines use a second lan-
guage that allows on-the-fly change of code. Frequently, this is a language such as Lua,5

JavaScript, and Python.6

 With these languages, the code for game characters and maps can be changed
without requiring a recompile and reloading of maps, levels, and characters. Thus

5 Lua was originally made as a configuration language, but today it is primarily used to write games.
6 Python is one of the most popular languages for data science and machine learning today.

Code

Build

Run Load data

Observe

Figure 1.2 Statically typed languages
require the whole loop to be repeated.

91.4 Julia’s higher performance solves the two-language problem
one can experiment with game play, pause, make code changes, and continue straight
away with the new changes.

 Machine learning professionals face similar challenges. They build predictive mod-
els, such as neural networks, which they feed large amounts of data to train. This is
often as much of a science as an art. Getting it right requires experimentation. If you
need to reload training data every time you modify your model, you will slow down the
development process. For this reason, dynamically typed languages, such as Python, R,
and MATLAB, became very popular in the scientific community.

 However, because these languages aren’t very fast, they get paired with languages
such as Fortran and C/C++ to get good performance. A neural network made with
TensorFlow7 or PyTorch8 is made up of components written in C/C++. Python is used
to arrange and connect these components. Thus at runtime you can rearrange these
components using Python, without reloading the whole program.

 Climate and macroeconomic models may get developed in a dynamic language
first and tested on a small dataset while being developed. Once the model is finished,
many organizations hire C/C++ or Fortran developers to rewrite the solution in a
high-performance language. Thus there is an extra step, complicating the develop-
ment processes and adding costs.

1.4 Julia’s higher performance solves the two-language
problem
Julia was created to solve the problem of needing to use two languages. It makes it possi-
ble to combine the flexibility of a dynamically typed language with the performance of a
statically typed language. That’s why the following saying has gained some popularity:

Julia walks like Python, runs like C.

—Popular saying in Julia community

Using Julia, developers within many fields can write code with the same productivity as
with languages such as Python, Ruby, R, and MATLAB. Because of this, Julia has had a
profound impact on the industry. In the July 2019 edition of Nature, several interviews
were conducted with various scientists about their use of Julia.

 For instance, the University of Melbourne has seen an 800x improvement by port-
ing computational models from R to Julia. Jane Herriman, Materials Science Caltech,
reports seeing tenfold-faster runs since rewriting her Python code in Julia.

You can do things in an hour that would otherwise take weeks or months.

—Michael Stumpf

At the International Conference for Supercomputing in 2019 (SC19), Alan Edelman,
one of the Julia creators, recounts how a group at the Massachusetts Institute of

7 TensorFlow is a popular machine learning library and platform for Python.
8 PyTorch is a popular machine learning framework for Python.

10 CHAPTER 1 Why Julia?
Technology (MIT) rewrote part of their Fortran climate model into Julia. They deter-
mined ahead of time that they would tolerate a 3x slowdown of their code. That was
an acceptable tradeoff for gaining access to a high-level language with higher produc-
tivity, in their view. Instead, they got a 3x speed boost by switching to Julia.

 These are just a few of the many stories that abound today about how Julia is revo-
lutionizing scientific computing and high-performance computing in general. By
avoiding the two-language problem, scientists can work much faster than before.

1.5 Julia is for everyone
These stories might give the false impression that Julia is a language for brainiacs in
white lab coats. But nothing could be further from the truth. It turns out that a lot of
the traits that make Julia a great language for scientists also make it an excellent lan-
guage for everybody else. Julia offers

 Strong facilities for modularizing and reusing code.
 A strict type system that helps catch bugs in your code when it runs.
 A sophisticated system for reducing repetitive boilerplate code (metapro-

gramming9).
 A rich and flexible type system that allows you to model a wide variety of problems.
 A well-equipped standard library and various third-party libraries to handle var-

ious tasks.
 Great string processing facilities. This ability is usually a key selling point for any

Swiss-Army-knife-style programming language. It is what initially made languages
such as Perl, Python, and Ruby popular.

 Easy interfacing with a variety of other programming languages and tools.

While Julia’s big selling point is that it fixes the two-language problem, that does
not mean the need to interface with existing Fortran, C, or C++ code is alleviated.
The point of fixing the two-language problem is to avoid having to write Fortran or
C code each time you hit a performance problem. You can stick with Julia the
whole way.

 However, if somebody has already solved a problem you have in another language,
it may not make sense for you to rewrite that solution from scratch in Julia. Python, R,
C, C++, and Fortran have large packages that have been built over many years, and the
Julia community can’t replace those overnight. To be productive, Julia developers
need to be able to take advantage of existing software solutions.

 In the long term, there is an obvious advantage to transitioning legacy software to
Julia. Maintaining old Fortran libraries will often require a lot more developer effort
than maintaining a Julia library.

 The greatest benefit is probably in the combinatorial power Julia gives. There are
certain types of problems that require the construction of large monolithic libraries.

9 Metaprogramming is code that writes code. It is an advanced concept not covered in this book.

111.6 What can I build with Julia?
Julia, in contrast, is exceptionally well suited for making small libraries that can easily
be combined to match the functionality offered by large monolithic libraries in other
languages. Let me give one example.

 Machine learning, a hot topic, powers self-driving cars, face recognition, voice rec-
ognition, and many other innovative technologies. The most famous packages for
machine learning are PyTorch and TensorFlow. These packages are enormous mono-
liths maintained by large teams. There is no code sharing between them. Julia has a
multitude of machine learning libraries, such as Knet, Flux (see https://fluxml.ai),
and Mocha (see http://mng.bz/epxG). These libraries are tiny in comparison. Why?
Because the capabilities of PyTorch and TensorFlow can be matched by combining
multiple small libraries in Julia. Explaining more about why this works is a complex
topic that requires a much deeper knowledge of Julia and how neural network librar-
ies work.

 Having many small libraries is an advantage for general applications. Anyone
building any kind of software will benefit from the ability to reuse existing pieces of
software in a multitude of new ways, instead of having to reinvent the wheel. With leg-
acy programming languages, one often needs to repeatedly implement the same func-
tionality. TensorFlow and PyTorch, for instance, have a lot of duplicate functionality.
Julia avoids duplication by putting a lot more functionality in libraries shared between
many machine learning libraries. As you work through the chapters in this book, it
will become increasingly clear how Julia can pull this off and why this capability is
hard to achieve in many other languages.

1.6 What can I build with Julia?
In principle, you can use Julia to build anything. However, every language has an eco-
system of packages and a community that may push you toward some types of develop-
ment over others. Julia is no different.

1.6.1 Julia in the sciences

Julia has a strong presence in the sciences. It is used, for example, in

 Computational biology
 Statistics
 Machine learning
 Image processing
 Computational calculus
 Physics

But Julia covers many more areas. For instance, it’s used in energy trading. The Amer-
ican Federal Reserve uses it to build complex macroeconomic models. Nobel Laure-
ate Thomas J. Sargent founded QuantEcon, a platform that advances pedagogy in
quantitative economics using both Julia and Python. He is a strong proponent of
Julia, since the big problems in macroeconomics will be difficult to solve with other

https://fluxml.ai
http://mng.bz/epxG

12 CHAPTER 1 Why Julia?
programming languages. In interviews with Lukas Biewald, Peter Norvig, a famous arti-
ficial intelligence (AI) researcher working at Google, has expressed how he thinks the
machine learning world would benefit greatly from switching to Julia.

I would be happier if Julia were the main language for AI.

—Peter Norvig
Author of Artificial Intelligence, A Modern Approach

Life sciences is another obvious area for Julia. By 2025, 2-40 exabytes of human genome
data will be collected every year. Most mainstream software cannot handle data at that
scale. You will need a high-performance language, such as Julia, that can work with a
variety of formats on a variety of hardware at the highest possible performance.

 At the time of writing this chapter, COVID-19 is still a major challenge in the
world. The Julia package Pathogen is used to model infectious disease and has been
used by COVID-19 researchers.

1.6.2 Nonscience uses of Julia

What about its nonscience uses? Julia also has a multitude of packages for other interests:

 Genie—A full-stack MVC web framework
 Blink—For creating Electron GUI apps in Julia
 GTK—For making Julia GUI applications using the popular Linux GUI tool-

kit GTK
 QML—For creating cross-platform GUIs using the QML markup language used

in the Qt GUI toolkit
 GameZero—For beginner game developing
 Luxor—For drawing vector images
 Miletus—For writing financial contracts
 TerminalMenus—For allowing interactive menus in the terminal
 Gumbo—For parsing HTML pages
 Cascadia—A CSS selector library for web scraping, extracting useful informa-

tion from web pages
 QRCode—For creating images of QR codes popular with ads to show machine-

readable URLs

As you can see, Julia has packages for general-purpose programming.

1.7 Where Julia is less ideal
In principle, Julia can be used for almost anything, but being a young language means
the selection of libraries is not equally comprehensive in every area. For example, the
selection of packages for web development is limited. Building something like a mobile
application would not work well with Julia. It is also not great for small, short-running
scripts—the kind you often write in Bash, Python, or Ruby. These limitations are due
to Julia being JIT compiled.

131.8 What you will learn in this book
 That means Julia programs start more slowly than, for example, Python or Bash
programs but begin to run much faster once the JIT compiler has converted critical
parts of the code to machine code. There is an ongoing effort in the Julia community
to reduce this problem, and there are myriad ways it can be tackled. Solutions include
better caching of previous JIT compilations to being more selective about when some-
thing is JIT compiled.

 Julia is also not ideal for real-time systems. In a real-time system, the software must
respond to things that happen in the real world. You can contrast this with, for instance,
a weather simulator. With a weather simulator, it doesn’t matter what happens in the
world outside the computer running the simulation.

 However, if your program has to process data arriving from a measuring instru-
ment every millisecond, then you can’t have sudden hiccups or delays. Otherwise, you
risk losing important measurements. Julia is a garbage-collected language. That means
data no longer used in your program gets automatically recycled for other purposes.
The process of determining what memory to recycle tends to introduce small random
delays and hiccups in program execution.

 This problem cannot be overstated. Robotics that require real-time behavior are
being done in Julia. Researchers at MIT have simulated real-time control of the Bos-
ton Dynamics Atlas humanoid robot balancing on flat ground, which was done to
prove that Julia can be used for online control of robots by tweaking how it allocates
and releases memory.

 Julia is not well suited for embedded systems with limited memory. The reason is
that Julia achieves high performance by creating highly specialized versions of the
same code. Hence memory usage for the code itself would be higher in Julia than for,
say, C, C++, or Python.

 Finally, just like Python, Ruby, and other dynamic languages, Julia is not suited for
typical systems programming, such as making database systems or operating system
kernels. These tasks tend to require detailed control of resource usage, which Julia
does not offer. Julia is a high-level language aimed at ease of use, which means many
details about resource usage get abstracted away.

1.8 What you will learn in this book
If you already program in another language, this book is for you. Every programming
language has a unique set of features, tools, and communities. In this book, I focus on
Julia’s unique characteristics as a language and on the tools and programming com-
munity built up around Julia, including the following integral aspects:

1 Interactive programming using a read–evaluate–print loop (REPL)10

2 Science- and mathematics-oriented code examples
3 Julia’s unique multiple-dispatch feature and type system

10 REPL refers to an interactive command line for a programming language.

14 CHAPTER 1 Why Julia?
4 Functional programming and how it compares with object-oriented programming
5 Package-oriented development over app-oriented development

Julia’s REPL-based development means you can launch the Julia command-line tool
and start typing Julia expressions, which get evaluated when you press Enter:

julia> reverse("abc")
"cba"

julia> 3+5
8

I follow this approach through most of the book; it may be unfamiliar to readers who
come from languages such as C/C++, Java, and C#, but in the Julia community, this
development style is often favored. The REPL environment is used for experimenta-
tion, testing, and debugging.

 Because Julia is used heavily in data science, machine learning, mathematics, and
science, I use many science- and math-oriented examples in this book, such as calcu-
lating sine values or simulating a rocket launch, rather than building a website or an
inventory system. I keep the mathematics in this text at a high-school level.

 In this book, you will find in-depth coverage of Julia’s multiple-dispatch system and
type system. These systems matter because they are a crucial reason Julia achieves such
high performance. Because many Julia beginners are confused about these systems, I
go into somewhat greater detail on these topics.

 Because the software industry is still dominated by object-oriented programming
languages, it can be disorienting to jump into the more functional programming style
of Julia. Thus I have devoted space to show how the same problems can be solved in a
functional and object-oriented style. Many of the preferred functional programming
practices are used throughout the book.

 When working through this book, you will not see a lot of applications made—that
is, the kind where you click an icon, and it launches. Nor will you see command-line
tools made in Julia that can be run from the console. This choice will be new to, for
example, Ruby and Python developers, who are very accustomed to building software
as command-line tools.

 The Julia community is, instead, very package oriented. They encourage you to build
packages over standalone applications, as these can more easily be shared with others
and reused. This preference is reflected in the Julia toolchain and package manager.
Julia doesn’t prevent you from building applications, but this book will get you into the
package-first mindset. Build a package first, and then turn that into an application.

 The package-oriented mindset is visible in how Julia’s tools tend to be delivered.
The package manager and debugger are handled by loading particular packages into
the Julia interactive environment and issuing commands there instead of in the shell.
This way of working might be familiar to MATLAB and R users. One tends to focus on
packages rather than applications in these two languages.

15Summary
 A typical statistician, scientist, or data analyst using Julia may load up favored pack-
ages into their Julia environment and execute Julia commands rather than clicking on
some application made using Julia. The Julia REPL will typically be an integral part of
most Julia workflows.

Summary
 Static typing makes it easier to construct high-performance programming lan-

guages and catch type mistakes before the program is run.
 Dynamic typing makes it possible to make highly interactive programming lan-

guages. For programming that requires rapid iteration, this is an advantage.
 Development of scientific code often requires the ability to experiment on large

datasets easily. This requires interactive programming offered by dynamically
typed languages.

 Scientific code often needs high performance, which dynamically typed languages
normally cannot offer.

 Julia is able to solve the two-language problem by offering a high-performance,
dynamically typed language. This ability drives the adoption of Julia in performance-
demanding fields, such as climate modeling, astronomy, and macro-economic
simulations.

 Julia is not limited to science but is also an excellent general-purpose program-
ming language.

Julia as a calculator
Even if you never end up using Julia as your primary language, you may still value it
as a replacement for your desk calculator. Julia can even double as an advanced
high-school graphing calculator (figure 2.1). As a bonus, it’s completely free to use.

 Remember you have to walk before you can run, and exploring numbers is a
great way to get introduced to the core concepts of Julia. Since Julia is not just a
general-purpose programming language but specifically tailored towards numeri-
cal computing, manipulating numbers plays a unique role in Julia.

 In this chapter, you will look at the aspects of Julia that let you do the same kinds
of things in Julia that you would do with a calculator. Of course, you may object that
you don’t intend to use Julia as a calculator, but this is simply a way to give you the
foundation to understand the more complex topics.

This chapter covers
 Working with integers, floating-point numbers,

and fractions

 Using variables to store long numbers

 Creating reusable calculations by defining
functions

 The most basic types in Julia
16

172.1 The Julia command line
2.1 The Julia command line
If you have Julia properly installed and configured (see appendix A), you can type
Julia at your terminal prompt to start the Julia REPL. This interactive command-line
program reads your input much like a calculator and prints out the result as soon as
you hit enter. The REPL is a place for testing your code, looking up documentation,
and installing third-party software.

 In this chapter, you will focus on evaluating mathematical expressions in the REPL.
The next code example demonstrates how to launch the Julia command line from the
terminal (console) application. After it has launched, type in 2 + 3 and hit enter. Julia
evaluates this expression and prints 5:

$ julia
 _
 _ _ _(_)_ | Documentation: https:/ /docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.6.0 (2021-03-24)
 _/ |__'_|_|_|__'_| | Official https:/ /julialang.org/ release
|__/ |

julia> 2 + 3
5

You can do far more complex operations than adding two single-digit numbers. In the
next example, you perform some very common mathematical operations, including
getting the logarithm, sine, and square root. rand is a mathematical function that eval-
uates to a random number between 0 and 1:

Figure 2.1 Retro scientific calculator.
Can we replace the usage of a handheld
calculator with a Julia REPL?

18 CHAPTER 2 Julia as a calculator
julia> 4 * 5
20

julia> (1.5 + 3.5)*4
20.0

julia> 2^3
8

julia> log(2.71828^4)
3.999997309389128

julia> sin(3.1415926/2)
0.9999999999999997

julia> sqrt(9)
3.0

julia> rand()
 0.14765146459147327

2.2 Using constants and variables
Remembering all the digits in numbers such as 3.1415926… (π) or 2.71828… (Euler’s
number e) is tedious. In fact, it is impossible, since both numbers are what we call irra-
tional numbers, which means they have an infinite number of digits. Therefore, it is
much better to give each number a name—or, to be more accurate, an identifier.

IMPORTANT Variables and constants define areas in memory in which values
(data) are stored. Think of memory as a long list of numbered mailboxes,
each holding a value. To avoid remembering the number of the mailbox con-
taining a value, affix a named identifier. You can change the value of a vari-
able after it has been created but not the value of a constant.

Identifiers can be used to give names to constants, variables, types, and functions in
Julia. pi (π), golden (ϕ), and Euler’s number e are identifiers used to refer to
numerical constants. Both constants and variables simplify remembering long, com-
plicated numbers:

julia> using Base.MathConstants

julia> pi
π = 3.1415926535897...

julia> e
ℯ = 2.7182818284590...
julia> golden
ϕ = 1.6180339887498...

julia> catalan
 catalan = 0.9159655941772...

Complex expressions
can be nested with
parentheses.

Exponents; taking two
to the power of three

The natural logarithm
of 2.71, also known as
Euler’s number e

Get sine of π/2 radians.

The square root of 9

Generate a random
number from 0 to 1.

You can make common mathematical
constants available to Julia. pi is always
available, but the others are not.

Euler’s number is commonly
used with logarithms.

The golden ratio is often used in the arts
for aesthetic reasons and appears in nature,
such as the spiral arrangement of leaves.

Catalan’s constant

192.2 Using constants and variables
With these constants, it becomes more convenient to write mathematical expressions.
You also get more accurate results because it isn’t possible to write e or π with enough
digits. These are irrational numbers with an infinite number of digits. Mathematicians
don’t actually know if Catalan’s number is irrational, but it is modeled as an irrational
number in Julia:

julia> log(e^4)
4.0

julia> sin(pi/2)
1.0

You are, however, not limited to using built-in constants. You can define your own in
Julia with the const keyword and use them in calculations instead of number literals:1

julia> const foo = 3481
3481

julia> const bar = 200
200

julia> foo + bar
3681

julia> const qux = 8
8

julia> qux + 2
10

You might be wondering about the funny-sounding names foo, bar, and qux. These
are nonsense words commonly used in code examples to inform the reader that they
can pick whatever word they like in this case. These are different from words like if,
while, const and function, which are reserved words; you are not allowed to use
them as variable names.

 When writing Julia identifiers, you can mix and match cases. foObAr and FOObar are
equally valid. But Julia is case sensitive, so they will be treated as different identifiers.

TIP Julia’s identifiers are case sensitive. foo, Foo, and FOO will not be treated
as the same identifiers by Julia. That is standard practice in most modern pro-
gramming languages today.

You can add numbers as long as they are not at the start of the word. Thus f00bar is
valid, but 1oobar is not. You should be used to similar rules from other programming
languages.

1 A number literal is made up of digits from 0 to 9 instead of being expressed as a named variable.

20 CHAPTER 2 Julia as a calculator
 Julia is unusual in its frequent use of Greek letters, such as π, θ, α, and Δ. The rea-
son for this is that mathematics is usually written using Greek letters. When a mathe-
matical equation is implemented in code, it becomes easier to read the code if it looks
similar to the equation.

 To accommodate this, the Julia creators built in special features in the Julia REPL
and Julia editor plugins to make writing Greek letters and other Unicode characters
easy. For example, in the REPL environment, you write a backslash, then you write the
name of the character you want, and then you press tab:

julia> \pi

After I hit the tab key, this turns into

julia> π

The following is an overview of some popular Greek letters and Unicode characters
you may like to use in your code, with some comments on what they usually mean.

What makes variables different from constants? Creating variables is very similar, except
you don’t use the const keyword:

julia> y = 7
7

julia> z = 3
3

julia> y + z + 2
12

So what exactly is the difference? This REPL interaction demonstrates the difference
between variables and constants:

julia> const x = 9
9

julia> y = 7
7

Character Tab Completion Usage

π \pi Circle equation

θ \theta Angle

Δ \Delta Difference or change in something

e \euler Euler’s number (important in logarithms)

√ \sqrt Square root of a number

ϕ \varphi The golden ratio

212.2 Using constants and variables
julia> x = 12
WARNING: redefinition of constant x. This may fail, cause incorrect answers,
or produce other errors.
12

julia> y = 8
8

In this example, you made x a constant and y a variable. Notice how Julia warns you
that you are trying to change the value of a constant. While this may indeed work,
Julia makes no guarantees it will, which is why Julia gives you a warning. Never make
your code rely on undefined behavior.

USEFUL HOTKEYS Use Ctrl-D to exit Julia. Ctrl-C will break execution of some
code that has gotten stuck. Clearing the terminal screen varies between oper-
ating systems. On Mac, use Command-K to clear the terminal, and use Ctrl-L
on Linux.

Restart Julia to make all identifiers available again.

2.2.1 Assigning and binding values to variables

The = operator is used to assign a value to a variable in Julia. Comparing two expres-
sions for equality is done with a double equal sign ==. However, to be accurate, what
Julia does is not an assignment but binding. To better understand how binding works, I
will present a code example in which the variable x is first bound to the value 2. Next
it is rebound to the value x + 3:

julia> x = 2
2

julia> x = x + 3
 5

If this code example had been a language such as C/C++, Fortran, or Pascal, then the
system would have put aside a slot of memory to hold the x variable. Each time you
assign a new value to variable x, the number stored in this memory location would be
changed.

 With binding, it works differently. You have to think about each calculation as pro-
ducing a number that gets put in a different memory location. Binding involves mov-
ing the x label itself to a new memory location. The variable moves to the result rather
than the result moving to the variable. Figure 2.2 shows the step-by-step explanation
and should help clarify how this works.

1 The value 2 is stored in memory cell number 2. You attach the label x to this
value, which is equivalent to the initial assignment statement x = 2.

2 Julia begins to evaluate x + 3 in the expression x = x + 3. It stores the result of
this calculation at memory cell number 4.

Set the initial
value of x to 0.

Increment x
with two.

22 CHAPTER 2 Julia as a calculator
3 To complete the evaluation of the x = x + 3 statement, Julia moves the x label to
memory cell 4.

But why do Julia and other dynamically typed languages perform binding rather
than assignment? With a language such as C/C++ you can write statements such as
the following.

int x = 4;
x = 5;

char ch = 'A';
ch = 'B';

This works because the compiler will make sure you never attempt to put a value that
cannot fit inside the memory slot set aside for the variable x and variable ch. In a
dynamically typed language, any value can be assigned to x, and thus, it cannot have a
predefined size in a predefined location in memory.

2.2.2 Using the ans variable

There is a special variable in Julia that only exists when you use Julia interactively,
called ans (answer). The Julia REPL assigns the value of the last expression you evalu-
ate to it. Expressions in normal programs are not assigned to it.

 Many people will be familiar with a similar variable if they have used advanced cal-
culators. ans is a variable that always holds the result of the last calculation. This
behavior is practical, as it allows you to easily use the result from the last calculation in
the next calculation:

julia> 3 + 2
5

Listing 2.1 Assignment in C/C++

2

x

x + 32

x

52

4321

x

Figure 2.2 Binding variable x to
different memory locations

232.3 Different number types and their bit length in Julia
julia> ans*4
20

julia> ans
20

julia> ans - 8
12

2.2.3 What is a literal coefficient?

If you read mathematics, you may have noticed that something like 3 × x + 2 × y would
be written as 3x + 2y. Julia lets you write a multiplication in the same manner. We refer
to these as literal coefficients, which is shorthand for multiplication between a number
literal and a constant or variable:

julia> x = 3
3

julia> 2x
6

julia> 2*(3+2)
10

julia> 2(3+2)
10

Literal coefficients only work for actual number literals. π, e, and ϕ, for instance, are
not number literals. You can write 2π but not π2 because the latter would imply an
identifier.

 There is a subtle difference between using literal coefficients and performing mul-
tiplication. See if you can make sense of the following example:

julia> x = 5
5

julia> 1/2x
0.1

julia> 1/2*x
2.5

What is going on here? 1/2x is interpreted as 1/(2*x). Literal coefficients have higher
precedence than division.

2.3 Different number types and their bit length in Julia
Julia has a variety of different number types such as signed integers, unsigned inte-
gers, and floating-point numbers with different bit lengths. If these concepts are unfa-
miliar to you, I advise you read about different number types in appendix B.

24 CHAPTER 2 Julia as a calculator
 Let’s focus on what is particular to Julia. In Julia, signed integers are named Int8,
Int16, Int32, Int64, and Int128. The number suffix indicates the bit length of the
number. Unsigned integer type names are formed by prefixing with a U, which gives
you UInt8, UInt16, UInt32, UInt64, and UInt128.

 While running code, it is often practical to know the minimum and maximum value
of a particular integer type. You can use the typemin and typemax functions to discover
minimum and maximum values. For instance, typemin(Int8) returns -128 because an
8-bit integer cannot represent smaller values than -128. typemax(Int8) will return 127:

julia> typemax(Int8)
127

julia> typemin(Int8)
-128

The default bit length of a Julia number literal is a signed 64-bit integer. You can easily
verify that using the typeof function, which returns the type of the input argument:

julia> typeof(1)
Int64

How do you form numbers of other bit lengths then? If you want to create a signed
8-bit number, you write Int8(x), where x is the number you would like to turn into an
8-bit number. This works for any number type. Naturally, if you try to input a number
too large for the bit length, you will get an error message:

julia> y = Int8(42)
42

julia> typeof(y)
Int8

julia> typeof(Int16(4))
Int16

julia> UInt8(256)
ERROR: InexactError: trunc(UInt8, 256)

You should know that, unlike other popular dynamically typed languages such as
Python, Ruby, and R, Julia doesn’t automatically pick a number type large enough to
hold the result of an arithmetic operation. In Julia, if you add two Int8 values, the
result will always be an Int8 value.

 Other dynamic languages would have upgraded to an Int16 if the result was too
large to represent as an 8-bit integer. In Julia, you will instead get an overflow. Read
appendix B if the concept of integer overflow is unfamiliar to you.

 Sometimes even Int128 isn’t large enough to hold a value. In these cases you use
BigInt, which can hold an integer of arbitrary size. This flexibility is paid for in higher
memory consumption and lower performance, so only use BigInt when you have to.

252.3 Different number types and their bit length in Julia
2.3.1 Writing numbers using different number formats

How you write a number and how that number is actually stored in memory are two
different things. The numbers 0b1101, 0x0d, and 13 are stored as exactly the same
binary number in computer memory. Julia defaults to showing all signed numbers in
decimal format and unsigned numbers, such as UInt8, in hexadecimal format:

julia> Int(0b1101)
13

julia> Int(0x0d)
13

julia> UInt8(13)
0x0d

Hexadecimal numbers are popular in low-level, bit-oriented programming. This is
because four bits can be represented by exactly one hexadecimal digit. Octal numbers
are also popular because exactly three bits can be used to represent one octal digit.

To write an octal number, use the 0o prefix—you don’t need to understand this very
well. The point is making you aware of the fact that there are different ways of repre-
senting the same number. This is to avoid confusion when playing with unsigned inte-
gers in this chapter, as Julia defaults to displaying them in hexadecimal form:

julia> 0o5 == 0b101
true

julia> 0o6 == 0b110
true

julia> 0o7 == 0b111
true

julia> 0o10 == 0b1000
true

Hexadecimal and octal numbers
Decimal numbers are created by combining digits from 0 to 9. Octal numbers are cre-
ated by combining digits from 0 to 7. Thus the number 8 would be written as 10 in
the octal number system.

With hexadecimal numbers, there is a problem because the digits in the hexadeci-
mal number system have to cover values 1 to 15; however, there are only symbols
for digits 0 to 9. The solution has been using letters for digits beyond 9; thus the
value 10 is represented as A, 11 is represented as B, and so on. F stands for 15.
The largest value an 8-bit unsigned integer can hold is 0xff, which translates to 255
in decimal.

26 CHAPTER 2 Julia as a calculator
julia> Int(0o10)
8

julia> Int(0o23)
19

julia> 2 * 8 + 3
19

2.4 Floating-point numbers
Like integers there are floating-point numbers of different bit length. In Julia the
default size is 64 bit, which means each floating-point number consumes 8 bytes of
memory. By using more bits you can not only represent larger numbers but also repre-
sent numbers with higher precision. However, precision is not always important. For
scientific calculations precision is important, but when calculating (e.g., for computer
graphics), precision matters less. One pixel out of millions that is slightly wrong in
position or color does not matter much. The most common floating-point types,
Float64 and Float32, can be written as number literals:

julia> 42.98
42.98

julia> typeof(ans)
Float64

julia> 34.23f0
34.23f0

julia> typeof(ans)
Float32

Notice the use of the f0 suffix to make the number of a 32-bit floating-point number.
Why isn’t there just an f like in Java and C/C++? This is due to the literal coefficients
feature. If you look at the following REPL session you may be able to figure out what is
going on:

julia> 0.5f
ERROR: UndefVarError: f not defined

julia> f = 2
2

julia> 0.5f
1.0

julia> 2f
4

If you try to write a 32-bit floating-point number like in Java or C/C++, Julia thinks you
are trying to multiply a number with the variable f. In the first case this fails because

A 64-bit floating-point
literal. You can verify
that with typeof.

A 32-bit floating-
point number

272.5 Defining functions
you have not yet defined the f variable. In the second case it works because f has been
defined.

 How about other floating-point values, such as 16-bit values? In these cases you
need to perform an explicit conversion:

julia> x = Float16(3.5)
Float16(3.5)

julia> typeof(x)
Float16

julia> z = Float16(4) + 5f0
9.0f0

julia> typeof(z)
Float32

2.4.1 Performing operations on integers and floating-point numbers

While you can do many of the same operations on floating-point and integer numbers,
the operations don’t always have the same kind of results. And there are operations
that only work on certain number types.

 For instance the \ division operator gives floating-point numbers as result. That is
not always what you want. When working with integers you often want the quotient
and remainder instead. This is achieved with the div and rem functions:

julia> 4/2
2.0

julia> 5/2
2.5

julia> 5.0/2.0
2.5

julia> div(5,2)
2

julia> rem(5,2)
1

julia> 5%2
1

2.5 Defining functions
You’ve already been exposed to some functions, such as sin, cos, and √. These are func-
tions you can find on a regular calculator; they take a number as input and return a
number as output. But what is the fundamental idea behind functions? And secondly,
are functions in mathematics and in Julia the same kind of thing? The details differ, but

Convert a 64-bit
floating-point value
to a 16-bit one.

Mixing numbers of different bit
length causes Julia to pick the
largest type to store the result in.

Regular division
operator gives
floating-point
result

Integer division, which
gives an integer result

You also get a remainder,
which you obtain with %
the operator.

28 CHAPTER 2 Julia as a calculator
conceptually, they are the same kind of thing. Functions have zero or more inputs called
arguments. They can be considered to be returning a value or evaluating to a value. Con-
sider the volume of a sphere:

How good are you at remembering exactly how this calculation is performed? I
often have to look it up. You could perform this calculation in Julia by writing the
following code:

julia> r = 4.5
4.5

julia> V = 4*pi*r^3/3
381.7035074111598

Variables and constants make it easy to remember long, complicated numbers. In
many ways you can think of functions as an extension of this idea. They allow you to
remember complicated calculations. Instead of remembering what numbers to multi-
ply and divide, you only need to remember the name of a function:

julia> sphere_volume(r) = 4*pi*r^3/3
sphere_volume (generic function with 1 method)

julia> sphere_volume(2)
33.510321638291124

julia> sphere_volume(4)
268.082573106329

julia> sphere_volume(1)
4.1887902047863905

Notice that when you define a function, unlike a variable, you specify one or more
arguments. Arguments are variables in your calculation that you want to change each
time you perform a calculation. For example, when calculating the volume of a
sphere you want the value of π to be the same each time; hence π is not an argument
to the function. The radius, however, is an argument because you are interested in cal-
culating the volume of spheres of different radii:

foo(x, y, z) = 2x + 4y - z

In the preceding code snippet you see a simple function definition. It’s a function
with the name foo, taking three different arguments named x, y and z. You could
have just a few or many arguments. The rules for how you name them are the same as
for any Julia identifier.

The radius of the sphere

Storing the volume of
the sphere in variable V

Define the sphere_volume function,
which takes a single argument r,
specifying the radius of the sphere.

Use the previously defined sphere
function to calculate the volume of a
sphere with a radius of 2.

The volume of a sphere
with a radius of 4

292.5 Defining functions
2.5.1 Storing function definitions in a file

Writing the definition of every function you want to use in the Julia REPL every time
you restart Julia would be impractical. Instead you can store function definitions
inside separate source code files.

CODE COMMENTS WITH # You can write comments in your code to remind your-
self what various parts of your code does. Comments start with a hash or pound
sign: #. Anything after the hash symbol is ignored by the Julia compiler.

This file can then later be loaded into the Julia REPL when the functions contained
within are needed. Let me demonstrate with an example. You will create a file called
volumes.jl. Inside you store functions to calculate the volume of a sphere, cylinder,
and cone.

Volume calculations
sphere_volume(r) = 4π*r^3/3
cylinder_volume(r, h) = π*r^2*h
cone_value(r, h) = π*r^2*h/3

You can get the code in this file into Julia in three different ways. Perhaps the least
sophisticated way is simply copying and pasting the text into the Julia command line.
Alternatively, you could load the file when you start Julia:

$ julia -i volumes.jl
 _
 _ _ _(_)_ | Documentation: https:/ /docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.6.0 (2021-03-24)
 _/ |__'_|_|_|__'_| | Official https:/ /julialang.org/ release
|__/ |

julia> cone_value(2, 4)
16.755160819145562

However the more flexible solution is using the include function. This removes the
need to restart your Julia REPL session:

julia> include("volumes.jl")
cone_value (generic function with 1 method)

julia> cylinder_volume(1, 2)
 6.283185307179586

You can make changes to the code in this file and reload it using include to capture
changes in the function implementations.

Listing 2.2 volumes.jl source code file

Loads the code in the given
file into your current session

Runs one of the functions defined in
the file loaded into current session

30 CHAPTER 2 Julia as a calculator
2.5.2 Working with functions in the REPL

Once complex calculations have been stored inside functions, you can easily reuse
those calculations. But how do you deal with a large number of functions? The Julia
REPL offers many ways to help.

 If you start typing the first letters in a function and press Tab, Julia will attempt to
complete the function name. If you start typing sphere, then hit the Tab key, Julia will
complete this as sphere_volume. Sometimes there are many possible completions. In
these cases you can press Tab twice to get a full list of possible completions:

julia> find
findall findlast findmax! findmin! findprev
findfirst findmax findmin findnext

On the web page of the Julia programming language you can also find a manual,
which gives you a complete list of all the functions built in to the Julia standard library.
You can access the manual on the following webpage: docs.julialang.org/en/v1.

2.5.3 Functions everywhere

Functions are central to Julia. In fact, even common mathematical operators are
defined as functions in Julia. Let me give you some examples:

julia> 5 + 3
8

julia> +(5, 3)
8

julia> 8 - 2
6

julia> -(8, 2)
6

julia> +(2, 3, 5)
10

To describe the placement of identifiers, use the following terms: prefix, infix, and
suffix. Thus +(3, 4) would be considered a prefix form, while 3 + 4 would be the equiv-
alent infix form.

 How do you know if you can use a function on infix form? It’s simple: the function
name needs to be a symbol. For instance you cannot use a function named foo on
infix form. Let’s make some to demonstrate:

Press Tab twice here to get the full list of
functions starting with the word find.

It looks like you are using
an operator, but it is
actually a function call
written on infix form.

These are operators called like regular
functions. This is called prefix form.

The benefit of using + as a function
is that you can use more than two
arguments (e.g., you can use it to
add up multiple values).

312.5 Defining functions
julia> ×(a, b) = a^2 + b^2
× (generic function with 1 method)

julia> ×(4, 10)
116

julia> 4 × 10
116

julia> 2 × 3
13

Here we made a function named × (write \times), and because it takes two arguments
and is a symbol, we can use it on infix form. The simplest way to get a symbol is writing
a LaTeX-like abbreviation and pressing tab (e.g., \Delta for Δ). Symbol completion
will work in the Julia REPL and many Julia code editors. The LaTeX-like abbreviations
supported by Julia can be found in the official Julia documentation at https://docs
.julialang.org/en/v1/manual/unicode-input/.

2.5.4 Functions to work with numbers

You have already seen a number of functions you can use to operate on numbers, but
Julia has a large collection of them. I would like to show some of the most useful ones,
in particular for working with integers and floating-point numbers. Previously, I showed
some operations on integers and floating-point numbers. However now you know that
operations are really just functions. All of these variants are equivalent:

julia> 9 % 6
3

julia> %(9, 6)
3

julia> rem(9, 6)
3

The principle in Julia is that you should never have to use special Unicode symbols.
Operations such as integer division can also be performed with simple functions:

julia> 9÷4
2

julia> ÷(9, 4)
2

julia> div(9, 4)
2

In fact, if you hit the ? key and write an integer division, you will get the built-in help
system showing you that div has two names:

https://docs.julialang.org/en/v1/manual/unicode-input/
https://docs.julialang.org/en/v1/manual/unicode-input/
https://docs.julialang.org/en/v1/manual/unicode-input/

32 CHAPTER 2 Julia as a calculator
help?> div(9, 4)
 div(x, y)
 ÷(x, y)

The quotient from Euclidean division. Computes x/y, truncated to an integer.

It is very useful to know how to round numbers in different ways. Julia has the func-
tions floor, ceil, and round for this purpose:

julia> floor(3.2)
3.0

julia> floor(3.6)
3.0

julia> ceil(3.2)
4.0

julia> ceil(3.8)
4.0

julia> round(3.2)
3.0

julia> round(3.5)
4.0

But if you are rounding to integers, then you probably want integer types:

julia> Int(round(3.5))
4

julia> round(Int64, 3.5)
4

julia> round(Int8, 3.5)
4

julia> typeof(ans)
Int8

2.6 How to use numbers in practice
A lot of the details covered here are not things you need to think about when doing
normal coding. I don’t want you to pack your brain with too many unnecessary details.
The key point here is providing you with an understanding of how numbers work in
Julia. This is not unique to Julia, but it may be unfamiliar to developers coming from
other dynamic languages, such as Python, R, or Ruby.

 To make things easy for yourself, here are some simple rules to follow:

1 Just use the default integer and floating-point sizes. Only consider smaller or
larger numbers when performance or the nature of your problem demands it.

Always rounds
downward

Always rounds
upward

Rounds to the closest
whole number

This is the native approach
to get an integer.

This is the intended and most efficient
approach: you provide the type you
want as output as the first argument.

33Summary
2 Prefer signed integers to unsigned. It is very easy to make a mistake using
unsigned numbers. To make it easy for yourself, stick with signed numbers most
of the time.

Summary
 Julia supports different kinds of numbers, but the two most important types are

integer numbers and floating-point numbers.
 Unlike numbers used by mathematicians, numbers used in programming have

particular bit lengths. This determines how large and small of values you can
store. For instance a signed 8-bit integer cannot store numbers smaller than -128
or larger than 127.

 Variables give names to numbers. Functions give names to calculations depen-
dent on zero or more arguments.

 Assigning a value to a variable means sticking an identifier on that value. Reas-
signing another value to the same variable means moving the sticker to the new
value. This is called binding.

 Two numbers that look identical in memory can look different on your screen
because they are of different type.

 You can input numbers using a variety of different formats: binary, decimal, and
hexadecimal. Unless you do systems programming, decimal will usually be the
preferred format.

Control flow
Control flow is what separates a computer from a mere calculator. Calculators are
for computing single expressions. Computers, on the other hand, have the ability
to repeat the same calculations with different inputs numerous times without human
intervention. Computers can choose to perform one calculation over another based
on whether or not a condition holds true.

 In this chapter you will explore code examples oriented around producing math-
ematical tables. You will learn about tables for trigonometric functions, as such tables
are well known and of historical importance. Later you will explore conditional

This chapter covers
 Using Boolean values in conditions

 Running the same code multiple times using
while and for loops

 Deciding what code to run with an if statement

 Looping over ranges of numbers

 Defining functions spanning multiple lines
of code

 Implementing control flow using recursion
or iteration
34

353.1 Navigation and trigonometry
execution to help track the growth of rabbits using a method developed by Italian
mathematician Fibonacci 800 years ago.

3.1 Navigation and trigonometry
In the age of sail the use of mathematical tables became more widespread, and a need
to develop ways to automate the calculation of these tables developed (navigation is
based on the calculation of angles and the sides of triangles; figure 3.1). This meant
calculating trigonometric functions such as sine, cosine, and tangent.

Nautical maps contain heights of different lighthouses. Thus if you want to know your
position at sea while close to shore, you could measure the angle between the horizon
and the top of a lighthouse of known height. This would give you the distance to that
lighthouse. However all of these calculations require calculating trigonometric func-
tions such as sine and cosine, and sea captains of the 1700s did not have pocket calcu-
lators (table 3.1).

Instead they used mathematical tables. Large, printed tables detailing the value of sine,
cosine, and tangent for different angles were common tools for navigators of the time.
Let me just refresh you on your high-school math if you have not used trigonometric
functions in a while. Looking at the triangle in figure 3.2, sine, cosine, and tangent are
defined as follows:

Table 3.1 A simple trigonometric table

angle 0° 30° 45° 60° 90°

sin 0.000 0.500 0.707 0.866 1.000

Height Sextant

Distance θ
Ship

Figure 3.1 A captain on a ship could use
a sextant to measure angle θ between the
horizon and top of a lighthouse.

36 CHAPTER 3 Control flow
So for example, the sine of an angle is equal to the length of the opposing side
divided by the longest side (the hypothenuse) in a right triangle (one angle is 90°).
Today you use a calculator to calculate these trigonometric functions. But what if you
lived before 19721? How would you do these calculations by hand? There is, in fact, no
canonical way of calculating sine and cosine. Instead there are various methods of
approximation. A popular method of calculating sine is called the Taylor series:

You can write this in a more compact and generalized form as

But mathematical tables are not limited to trigonometric functions. Tables are useful
for many other functions to reduce the amount of hand calculations required.

 This spurred Charles Babbage to begin the construction of a massive mechanical
calculating machine called the Difference Engine in 1819 (figure 3.3). It could calcu-
late multiple values for tables by repeating the same calculation many times over. In
modern programming terms it was creating the tables using loops. Loops are based
on evaluating (running) the same code multiple times as long as a given condition
holds true. In all programming languages Boolean expressions are used to define con-
ditions. You will follow in Babbage’s footsteps by creating such loops in Julia.

 Your goal is implementing trigonometric functions in Julia using the Taylor series.
Before that is possible you need to develop your understanding of Boolean expres-
sions, which make it possible to understand while loops, for loops, and if statements.
You will develop this understanding through a number of smaller code examples,
printing out numbers, adding numbers, and converting from degrees to radians.

1 In 1972 Hewlett-Packard released HP-35, the first calculator with sine and cosine functions.

θθ

bb

hh

aa

Figure 3.2 A right triangle with sides of length
a, b, and h. The longest side h is called the
hypotenuse and has an angle θ.

373.2 Boolean expressions
3.2 Boolean expressions
One of the first things you learn about in elementary school is Boolean expressions.
Ironically, most students never practice using them for anything. Nobody tells you
they are one of the most important parts of any programming language. You have
already looked at numerical expressions, such as 3 + 5; these evaluate to a number.
Boolean expressions, in contrast, evaluate to true or false. They are easier to grasp
with some practical examples:

julia> 3 > 5
false

julia> 8 > 3
true

julia> 8 == 5 + 3
true

julia> 3 == 5
false

julia> 3 ≤ 3
true

julia> 3 <= 3
true

In the example you use a Unicode version of the less than or equal operator. Several
Boolean operators have Unicode variants. The following table shows you how to write
some of them in the Julia REPL:

Figure 3.3 A part of Charles
Babbage’s Difference Engine, which
was a precursor to the Analytical
Engine—the first mechanical
general-purpose computer

Is 3 larger than 5?

Is 8 larger than 3?

Check if values are equal.
This is not an assignment
operator.

Less than
or equal

38 CHAPTER 3 Control flow
Boolean expressions return Boolean values, of which there are only two: true and
false. Remember how I said everything is numbers inside a computer? Boolean val-
ues are no different:

julia> typeof(7 > 3)
Bool

julia> typeof(false)
Bool

julia> reinterpret(UInt8, false)
0x00

julia> reinterpret(UInt8, true)
0x01

Unlike many other programming languages, Julia actually allows you to perform arith-
metic on Boolean values. In arithmetic, Boolean values are treated as 0 or 1:

julia> true + true
2

julia> 3true + true
4

julia> true + false + true
2

julia> false + false
0

For clarity it is best to avoid using Boolean values as numbers. However there are cases
when this is very useful. Julia developers frequently use it to count how many things
are true. In chapter 4 you will see an example of this.

3.2.1 Compound statements

Boolean expressions can be combined with the || and && operators. These perform
what are called logical OR and logical AND operations. Thus given a variable x, I could
ask, for example, if it is smaller than 4 or larger than 10:

Character Tab Completion Description

≤ \leq less than or equal <=

≥ \geq greater than or equal >=

≠ \ne not equal !=

≈ \approx isapprox(x, y)

Boolean expressions
give values of type
Bool.

The false value
is stored as a 0.

true is stored
as a 1.

393.3 Looping
julia> x = 3
3

julia> x < 4 || x > 10
true

julia> x = 5
5

julia> x < 4 || x > 10
false

Alternatively, you could ask if x is larger than 4 and smaller than 10:

julia> x > 4 && x < 10
true

julia> x = 12
12

julia> x > 4 && x < 10
false

Next you will use Boolean expressions to define conditions for repeating the same
code multiple times.

3.3 Looping
The simplest looping construct in any programming language is the while loop. It
allows you to repeat the same code over and over again as long as a Boolean condition
is true, as shown in the following listing.

i = 0
while i < 5
 i = i + 1
end

All the code between the keywords while and end gets repeated over and over again as
long as the condition i < 5 is true. You could copy and paste this code into your Julia
REPL, but you would not see any output. Why? Because while end is an expression
that evaluates to nothing. That may sound a bit abstract, so let me give an example:
3 + 4 is an expression that evaluates to 7. You could store the value of an expression in
variables like this:

julia> x = 3 + 4
7

julia> y = while false end

julia> typeof(y)
Nothing

Listing 3.1 A simple while loop

Pointless while loop
that terminates
immediately

The Julia REPL does not
print nothing values.

40 CHAPTER 3 Control flow
The while loop example illustrates a couple of different things. The loop itself evalu-
ates to a value, just like 3 + 4. You store this value in variable y. However you cannot
see the value in the REPL because it is of type Nothing.

 Also notice that it is perfectly possible to place a while loop on a single line.
Whitespace is not significant in Julia like it is in Python; in Python you must remember
to indent statements belonging to a loop. But whitespace does play a role in Julia.
Consider these three assignments:

x = 4
y = 8
z = 3

If you want them on a single line you need to separate them with a semicolon:

x = 4; y = 8; z = 3

You might wonder why I stored the value of the while expression in a variable. I did
that purely for teaching purposes, to make you aware of the fact that nearly everything
in Julia is an expression that evaluates to a value. Even an assignment evaluates to a
value (see listing 3.2). While this may sound like a theoretical curiosity of no interest
to you, it does have many practical consequences. It makes the REPL show what value
you gave a variable in an assignment statement. You will also see the benefit of treating
everything as an expression later in the chapter when if statements are discussed.

julia> z = 3 + 2
5

NOTE Calling an assignment a statement is technically wrong because every-
thing in Julia is an expression. However I will use the word statement about
many expressions in this book. The reason is that it makes it easier to distin-
guish between assignments and control flow, such as if statements and while-
loops, and more mathematical expressions.

The REPL will always show the value of the outer expression and not the inner expres-
sion. For instance if you evaluate 1 + (3+2), you will never see 5 printed because that
is the value of subexpression 3+2. Likewise you will not see i = i + 1 inside a loop. To
see the value of i for every iteration, you need to explicitly tell Julia to print the value
to the console. This is done with the print and println functions:

julia> i = 0
0

julia> while i < 5
 i = i + 1
 print(i)
 end

Listing 3.2 The assignment evaluates to a value

413.3 Looping
12345
julia> i = 0
0

julia> while i < 5
 i = i + 1
 println(i)
 end
1
2
3
4
5

From these examples you can probably tell the difference. println is short for print
line. It prints a variable on a separate line. You can use print and println to explicitly
print values outside of loops, but that is rarely needed:

julia> print(3 + 4)
7
julia> print(i)
5

3.3.1 Flowchart

Text doesn’t visualize the control flow of a program very well. You have to know the
semantics. Because of this, flowchart diagrams, which depict the flow of programs
using boxes and arrows, used to be very popular (figure 3.4).

In the past, students would be taught to design their programs as flowcharts and then
write the code. The popularity of object-oriented programming caused flowcharts to
fall out of use, as they cannot model object relations. However, flowchart diagrams are
still very useful in teaching control flow in a program. If you are not familiar with
loops, flowcharts can help you develop an intuition for how they work (figure 3.5).

 The square boxes represent actions performed, while the diamond-shaped boxes
represent decisions where the flow of control branches into different directions. If the
condition is i < 5 ? is true, then the flow will follow the arrow marked with yes. Oth-
erwise control flow would follow the no arrow.

Start and stop of program Action to perform Input and output Decision making

Figure 3.4 Standard flowchart boxes

42 CHAPTER 3 Control flow
3.3.2 Making a mathematical table for the sine function

You now have all the basic building blocks to repeat what Charles Babbage’s Differ-
ence Engine did: calculating mathematical tables. To keep things simple let’s begin by
printing out angles, as follows.

angle = 0
while angle <= 90
 println(angle)
 angle = angle + 15
end

You could copy and paste this code into your Julia REPL, and you would get this result
printed out:

0
15
30
45
60
75
90

Before calculating the sine of these angles you need to convert them to radians, as
sine, cosine, and tangent functions generally don’t work with degrees from 0° to 360°
but rather radians from 0 to 2π. The illustrations in figure 3.6 show how 1 radian is

Listing 3.3 A loop printing out angles in increments of 15

i ← 0

Count to 4.

Stop.

Is i < 5?

i ← i + 1

Print i.

No

Yes

Figure 3.5 Visualization of the
control flow in a while loop

433.3 Looping
defined. If you have a circle with radius r and draw an arch s of length r along the
perimeter of the circle, then the pie slice has an angle equal to 1 radian.

 The circumference C and arc length s of a circle are defined as the following:

From this you can derive a function deg2rad to convert from degrees to radians.

deg2rad(θ) = (θ/360)*2π

In fact you don’t have to write this function because Julia already comes with it in its
standard library. With this function you can modify the code in listing 3.3 and create a
small program that produces a table of sine values, as follows.

angle = 0
while angle <= 90
 rad = deg2rad(angle)
 x = sin(rad)
 println(x)
 angle = angle + 15
end

When you run this you will get the following output:

0.0
0.25881904510252074
0.49999999999999994
0.7071067811865475
0.8660254037844386
0.9659258262890683
1.0

Listing 3.4 Converting degrees to radians

Listing 3.5 Loop printing out a sine table

Figure 3.6 The relationship between
a radian and the radius of a circle

44 CHAPTER 3 Control flow
3.3.3 Range objects

When reading normal Julia code you will find that looping based on conditions is, in
fact, not the normal approach. Instead loops tend to be defined using range objects;
ranges are constructed with the : operator. You can do a number of things with
ranges, such as checking whether a particular value is within the given range. In this
example you will get the first and last part of a range, before querying whether a par-
ticular number is within a given range:

julia> r = 2:4
2:4

julia> first(r)
2

julia> last(r)
4

julia> in(1, r)
false

julia> in(3, r)
true

julia> 3 in r
true

3.3.4 For loops

Range objects are commonly used in for loops, but before showing a for loop example
let me just show you how you might use it in a while loop. The loop is repeated as long
as the i in 0:4 condition remains true, as follows.

i = 0
while i in 0:4
 println(i)
 i = i + 1
end

This is such a common and useful idiom that for loops are made to remove a lot of the
boilerplate. The following code is equivalent in behavior.

for i in 0:4
 println(i)
end

Listing 3.6 While loop using a range

Listing 3.7 For loop over a range

Construct a range object, and store it
in variable r. Or more correctly, bind
the label r to the range object.

Get the start of the range.

Get the end of the range.

Check if 1 is within the range 2 to 4.
Since 1 is outside of the range this
expression will evaluate to false.

Check if 3 is within the range. It is.

Normally, you can only use Unicode symbols
in infix form, but in is an exception. 3 in r is
equivalent to in(3, r).

453.4 Multiline functions
What about cases when you don’t want to increment by 1 on each iteration? When you
calculated angles you did it in increments of 15. Is that possible to do with a for loop?
No problem; ranges allow you to define a step size, as in the following listing.

for angle in 0:15:90
 println(angle)
end

When you run this code you get the following output:

0
15
30
45
60
75
90

Objects you can use in a for loop, such as range objects, are referred to as iterable. There
are many different iterable objects in Julia, which we will explore in later chapters.

3.4 Multiline functions
The functions you have used up until now have been defined on a single line. That is
quite limiting. More complex problems require multiple lines of code. How do you do
that? You need a way to mark the beginning and end of the code that should be
included in the function. The for loop and while loop may already give you a hint at
how you to do that. A multiline function starts with the keyword function and ends
with the keyword end. In the following example code you use a loop to print out the
sine value for all angles from 0 to max_angle with an angle increment.

function print_sin_table(increment, max_angle)
 angle = 0
 while angle <= max_angle
 rad = deg2rad(angle)
 x = sin(rad)
 println(x)
 angle = angle + increment
 end
end

Notice how listing 3.9 modifies previous code listing 3.5 to use function arguments
increment and max_angle instead of hard coding 15- and 90-degree angles. Thus
users can easily change the table they produce. For example, users can produce sine
values with 1-degree increments, with print_sin_table(1, 90).

Listing 3.8 For loop with stepped range

Listing 3.9 Code for creating a sine table stored in a function

46 CHAPTER 3 Control flow
 So how does this relate to the Difference Engine made by Charles Babbage? Bab-
bage’s equivalent of println would not have written numbers on a computer screen
but to a sort of printer. The Difference Engine was meant to be attached to a machine
that would imprint numbers on metal plates. These could then be used for printing
number tables in books. You could also send the numbers you produce to other
devices, but this will be covered in later chapters on input and output.

3.4.1 Implementing the sine trigonometric function

Now that you have learned to use loops and multiline functions, you actually have all the
building blocks necessary to build your own sin function, meaning you can replicate
what a calculator does. Review the Taylor series used to calculate the sin(x) function:

This function can be written as a summation:

I will not prove mathematically how to arrive at this definition; your interest here is
demonstrating how computers can be used to solve such problems. Computing by
hand became a real problem in the 1800s, as the importance of mathematics and sci-
ence expanded.

 If you are unfamiliar with mathematical notation, let me demonstrate in code how
the Σ operator works. Let’s start with a simple case:

The bottom and top half of the Σ symbol basically define a range. You are stating that
you will iterate over the variable x from 1 to n. You can think of the Σ operator as per-
forming a loop; it iterates across a range and adds up values of the expression it iter-
ates over. You can mimic this behavior with a for loop, as follows.

function f(n)
 total = 0
 for x in 1:n
 total += 2x + 1
 end
 total
 end

Listing 3.10 How the sum operator works

For storing the
total sum

A shorthand for total =
total + 2x + 1

Return value

473.5 Implementing factorial
A function evaluates to the value of its last expression. In many other languages this is
called the return value, and the last expression would have been written as

return total

This is also valid in Julia, but it is only used when you need to exit a function early.
Otherwise return is usually omitted in Julia functions. The following listing should
help you understand how you can use the Taylor series to implement a sine function.

function sine(x)
 n = 5
 total = 0
 for i in 0:n
 total += (-1)^i*x^(2i+1)/factorial(2i + 1)
 end
 total
end

Placing this function in a separate file (e.g., trig.jl) along with other trigonometric
functions you implement is a good exercise for the reader. Implement cosine and tan-
gent as well; you can perform an internet search to find their Taylor series definition.
You can then load this file into Julia and compare with the built-in sin function:

julia> sine(0.5)
0.4794255386041834

julia> sin(0.5)
0.479425538604203

julia> sine(1.0)
0.841470984648068

julia> sin(1.0)
0.8414709848078965

You can see that the results are quite similar despite the fact that you only iterate up to
n = 5. The accurate definition implies that n = ∞, which is impractical to implement in
code. Try with different values of n to see if you can get as accurate result as the built-
in sin function.

3.5 Implementing factorial
Your custom sine function uses the built-in factorial function. The factorial of a
number n means multiplying every number from 1 up to n. So the factorial of five
would be 5 × 4 × 3 × 2 × 1. How would you implement this yourself? There are many
approaches. We will look at some of them in this section:

Listing 3.11 Sine implemented using the Taylor series

48 CHAPTER 3 Control flow
1 Using the built-in prod function.
2 Using a while loop to perform multiple multiplications.
3 Multiplying repeatedly by combining recursion with an if statement.

The prod function is able to multiply all the numbers in a range:

julia> fac(n) = prod(1:n)

julia> fac(5)
120

julia> factorial(5)
 120

Experiment with both of these functions to make sure you get the same result. You
could do this by using a loop as before.

function fac(n)
 prod = 1
 while n >= 1
 prod *= n
 n -= 1
 end
 prod
end

On each iteration in the loop you decrease the value of n by 1 until the condition n >= 1
no longer holds true and exit with the product2 of all numbers in the range n to 1.

3.6 Factorial with recursion
There is another way you can achieve looping without using the while and for loops,
called recursion. Check out the following code.

fac(n) = n*fac(n-1)

Try running this. It doesn’t quite work. You get the following error message:

ERROR: StackOverflowError:
Stacktrace:
 [1] fac(n::Int64) (repeats 79984 times)

This is because the fac function keeps calling fac indefinitely. Or more specifically, it
calls fac 79,984 times in my example, until it blows up by running out of memory.

Listing 3.12 Factorial implemented using a loop

2 Product is the result of multiplying numbers, in contrast to sum which is the result of addition.

Listing 3.13 Broken factorial function implemented using recursion

Define your own factorial function
named fac, implemented with prod.

Check that fac and factorial
give the same result.

493.7 If statements
This produces a stackoverflow error message. This is because you keep calling fac, even
when the n argument has become less than 1. Somehow you need to check whether n
has become less than 1 and exit. You are lucky because Julia’s if statement can help
you do that.

3.7 If statements
Now rewrite your recursive fac function using an if statement. The following code is
the first attempt. You will expand on this code until the factorial function handles all
edge cases, such as fac(0).

function fac(n)
 if n <= 2
 return n
 end
 n*fac(n-1)
 end

3.7.1 If-else statements

Instead of using the return statement to exit the function early, you can choose
between two different blocks of code to execute by adding an else clause, as in the
following listing.

function fac(n)
 if n <= 2
 n
 else
 n*fac(n-1)
 end
end

If the n <= 2 condition is not true, you will evaluate the code between the else-end
block. The whole if-else statement, like all other statements in Julia, is an expression
that evaluates to a value. The statement evaluates to the value of the code block that
was evaluated. You can try this out in the Julia REPL yourself. Experiment with differ-
ent values for x, and see how the value of y changes:

julia> x = 4
4

Listing 3.14 Almost-working factorial function implemented using recursion

Listing 3.15 If–else statement

You exit the fac function using the return statement
if the n argument is less than or equal to 2. You
explicitly call return here to do an early return,
rather than waiting until you get to the last
expression in the function.

Call fac again but with n-1, and multiply the returned
result with n. Remember the last expression in a Julia
function does an implicit return.

50 CHAPTER 3 Control flow
julia> y = if x > 3
 6
 else
 4
 end
6

julia> y
6

However your fac function doesn’t actually work correctly yet:

julia> factorial(0)
1

julia> factorial(-1)
ERROR: DomainError with -1:
`n` must not be negative.

julia> fac(0)
0

julia> fac(-1)
-1

fac(0) returns 0, but it should return 1. Also, fac(n) with n < 0 should not even be
allowed. Thus you need to handle the case in which n == 0 and n < 0 differently.

3.7.2 Elseif clause

In this scenario the elseif clause comes to the rescue. You can add several of these
clauses to any if statement. You have done just that in the following listing to handle
all the unique cases. Go ahead and test in the REPL whether fac(0) and fac(-1)
behave correctly with this update.

function fac(n)
 if n > 2
 n*fac(n-1)
 elseif n > 0
 n
 elseif n == 0
 1
 else
 err = DomainError(n, "`n` must not be negative.")
 throw(err)
 end
end

Each elseif clause adds another condition check. First check if n > 2, then check if it
is n > 0. Continue performing every elseif check, until you hit a condition that

Listing 3.16 If–else statement

Return 1 if
n is zero.

Create an exception
object. These are used

to store information
about an error that

occurred.

Report an error indicating that
n is not allowed to be negative.

513.8 Throwing exceptions to handle errors
evaluates to true. If no condition is true, evaluate the else clause that reports an
error (figure 3.7).

Before discussing error handling further, I will conclude by clarifying the rules for
writing an if statement:

1 There must be exactly one if keyword used, and it has to be at the start.
2 else is optional, but it can only be used once and only at the very end.
3 You can write any number of elseif clauses, but they have to come after the if

clause.

3.8 Throwing exceptions to handle errors
In programming speak, functions return values but throw exceptions. In Julia this is
used to handle programmer mistakes. As a programmer you should not provide nega-
tive numbers to fac. However, mistakes happen, and have to be dealt with. The idea is
to report a problem as early as possible—as soon as you have discovered it. This makes
it easier to diagnose problems when you are developing and testing your software.

 How is throwing an exception different from returning a value? Let me explain
with an example (figure 3.8).

 If function alpha calls beta which calls gamma, then you get what is called a call
stack. The call stack is a place in memory storing the location of function calls. This is
necessary because when your CPU finishes processing instructions in gamma, it needs

Is n > 2?

No

Yes

Start fac(n).

Is n > 0?

Yes

No

Return

n × fac(n-1)

Return n

Is n = 0? Return 1

Yes

Throw

exception.

No

Figure 3.7 If statement with elseif and else

52 CHAPTER 3 Control flow
to get back to the location in beta where gamma was called initially. This location is
stored in memory. You call it the return address. Likewise you need to remember how to
return to alpha from beta. These nested function calls create a stack of return
addresses. This is the call stack.

 As figure 3.8 shows, return carries you back the same way you came. throw is dif-
ferent; it allows you to skip many steps in the call stack. throw skips every function
called until it reaches a point where there is a catch defined:

function alpha()
 try
 beta()
 catch e
 # handle exception
 end
end

Information about the error is stored in an exception object, which was passed to the
throw function. The variable e gets set to this object; thus the catch block is able to
access information about the error that occurred. At this point we cannot discuss
exceptions in great detail, as this requires a firmer understanding of the Julia type sys-
tem. You can, however, experiment with this in the REPL yourself to get a feel for how
exceptions break the normal flow of control:

julia> y = try
 fac(3)
 catch e
 42
 end
6

julia> y = try
 fac(-3)
 catch e
 42
 end
42

alpha()

beta()

gamma()

Return

Return

Call

Call

alpha()

beta()

gamma()

Throw

Call

Call

Catch

Error

occurs

Figure 3.8 Difference between regular returns and throwing exceptions

Defines a block of code, where somewhere
in the callstack an exception may occur

If an exception does occur it will be
caught, and this block of code is meant
to clean up or handle the exception.

533.9 Control flow vs. data flow
julia> fac(-3)
ERROR: DomainError with -3:
`n` must not be negative.

Remember, almost everything in Julia is an expression, including try-catch blocks.

3.9 Control flow vs. data flow
Now that you have looked at different forms of control flow, we’ll discuss the meaning
of control flow in greater depth. Comparing control flow with data flow may help you
better grasp the concept. Consider this simple code snippet:

alice = encrypt(bob)

There are two different perspectives when looking at this code: a message stored in
bob flows into the encrypt function, and a cipher text object flows out of the function
(figure 3.9).

With data flow, data is flowing along the arrow between the boxes. In figure 3.9 the
light boxes are sources and sinks, and the dark box is a filter. It transforms incoming
data into another type of data.

 In a control flow diagram (e.g., a flowchart), arrows don’t represent movement of
data, but transition of control. Control flow is about how control flows from one box
to the other and how that flow can be altered and redirected:

y = gamma(beta(alpha(x)))

In this example, you can think of how control is passed from the alpha function to the
beta function and finally to the gamma function: there is a flow of control. From a data
flow perspective, we think of data flowing into alpha, out of it, and then into beta.

 When analyzing complex code, sketching out a data flow diagram can be useful. By
labeling arrows with the type of data going in and out of functions (filters) you can get
a better overview of complex data flows through your code.

encrypt

bob

Message

Cipher

text

alice

encrypt
message

start

stop

store
cipher text

Data flow Control flow

Figure 3.9 Contrasting data
flow and control flow

54 CHAPTER 3 Control flow
3.10 Counting rabbits
In many programming books you will find an implementation of the fib function,
which is short for Fibonacci. Why is this function so popular in programming? And why
should you care? Consider the following reasons:

1 It is a simple way of demonstrating transformation of a mathematical definition
into code.

2 Implementing it allows you to contrast solving problems through recursion and
iteration (loops).

3 Fibonacci numbers pop up in all sorts of real-life circumstances: in the number
of flower petals, spirals on a sunflower or nautilus shell, and fractions that
appear in phyllotaxis.

4 It is a simple demonstration of how you build models of real-world phenomena.

This is what the number sequence looks like. The sequence goes on towards infinity:

Each of the numbers in this sequence is called a Fibonacci number. Mathematicians like
to refer to each of these numbers using the letter F. The first number in the sequence
is F0, the second is F1 and so on. In other words, the indexing starts at 0. Mathemati-
cally, Fibonacci numbers are defined as follows:

This may seem as enlightening as a Wikipedia page (i.e., not very), so I’ll try to provide
some intuition behind this mathematical definition with a concrete example: the growth
of a rabbit population. In fact, this is how Fibonacci numbers were discovered. Leonardo
of Pisa, also known as Fibonacci, was wondering some 800 years ago how a rabbit popula-
tion would grow each month. He asked the following hypothetical question:

If we have one pair of rabbits at the start of the year, how many will there be at the end of
the year?

To answer this question, you need to build models of reality. When building models, try
to extract the most important features of the specific traits you are trying to model. For
instance, you don’t care about how the rabbits spread out, what they look like, what they
eat, or how they obtain food. Your model is only concerned with how their population
grows. All models are built for a particular purpose; if you want to check how well a new
cellphone will fit in somebody’s pocket, then the model doesn’t need to be anything
more advanced than a block of wood. The only thing you need to mimic is the physical
dimensions of the phone, not the color of the exterior or crispness of the screen.

553.10 Counting rabbits
 Models, thus, always involve major simplifications of reality. In Fibonacci’s model of
rabbit growth, you deal with immortal rabbits. They never actually die. They are born,
and a month after birth they start reproducing. You always model them as pairs. One
pair of rabbits produces another pair of rabbits every month as soon as they reach
reproductive age (figure 3.10).

Mathigon (https://mathigon.org/course/sequences/fibonacci) is an excellent online
source demonstrating interactively how rabbit populations grow according to the Fibo-
nacci number sequence. The hexagons in the screenshot show how many rabbit pairs
exist for a given month. In the first month you only have 1 pair, while in the sixth month
you have 8 pairs. When you implement the fib function (listing 3.17) to calculate Fibo-
nacci numbers, it works like this: fib(1) is the same as F1; fib(n) corresponds to Fn.

function fib(n)
 if n == 0
 0
 elseif n == 1
 1
 else

Listing 3.17 Calculating a Fibonacci number

Figure 3.10 Rabbit population growth each month, as illustrated by Mathigon

The mathematical definition
says F0 = 0, F1 = 1, which
is expressed here.

https://mathigon.org/course/sequences/fibonacci

56 CHAPTER 3 Control flow
 fib(n-1) + fib(n-2)
 end
end

Let’s try to walk through how this function works in practice. What happens when you
try to evaluate fib(3)? This sets n = 3. Whenever n > 1 the following line is evaluated:

fib(n-1) + fib(n-2)

This will get evaluated over and over again, but the argument n is reduced by 1 and 2
each time, meaning sooner or later the first conditions of the fib function becomes
true. The result then bubbles back up, completing earlier requests. Thus you have a
sort of double recursion in this case. These REPL examples provide a sense of how the
Fibonacci function works:

julia> fib(3) == fib(2) + fib(1)
true

julia> fib(4) == fib(3) + fib(2)
true

julia> n = 5
5

julia> fib(n) == fib(n-1) + fib(n-2)
true

3.10.1 Base case

To avoid the recursion running until you consume all your stack memory, you need to
define the base case. This is the if statement that lets you exit the recursion at some point.

function fib(n)
 if 0 <= n <= 1
 n
 else
 fib(n-1) + fib(n-2)
 end
end

The 0 <= n <= 1 condition defines the base condition or exist point. You need something
similar for every recursive function. A recursive function is a function that calls itself.

3.10.2 Iteration vs. recursion

Earlier you demonstrated that recursion is just one of many ways of solving a problem;
it is never a requirement. A recursion can always be replaced by an iteration. By itera-
tion I mean looping (e.g., using a for loop or while loop). For example, with the fol-
lowing code you are iterating over the range 0 to 4:

Listing 3.18 Calculating a Fibonacci number

For all other values of n, they are equal to the two
preceding Fibonacci numbers. This expresses a recursion.
The fib function is calling itself with another argument.

Check if n is within the range of 0 to 1.
Is it equal to or greater than zero as
well as smaller or equal to one?

573.10 Counting rabbits
for i in 0:4
 println(i)
end

If you can solve the same problem with iteration, then why use recursion? Let’s look at
the iteration solution to discuss its pros and cons.

function fibi(n)
 if 0 <= n <= 1
 return n
 end

 prev = 0
 x = 1
 for i in 2:n
 tmp = x
 x += prev
 prev = tmp
 end
 x
end

While this code may be easier conceptually, you may notice that iteration makes every-
thing a lot messier. You get a lot more bookkeeping, meaning we have more variables
to maintain and update properly. I spent markedly longer time creating this example
code, while making several mistakes in the initial version. The recursive variant, in
contrast, I wrote correctly on my first attempt.

 Thus while recursion may take some time getting accustomed to, it frequently
makes your code much simpler. One downside is that recursion is often slower. Thus,
often you will implement your solution through recursion first, and if it turns out to
be too slow, you rewrite it using iteration.

3.10.3 To return or not return

The last example used a return statement to perform an early exit from the function.
This is also optional, but as you can see, writing the code without return can make it
harder to read. This is because you can end up with deep nesting of control-flow state-
ments, as seen in the following listing.

function fibi(n)
 if 0 <= n <= 1
 n
 else
 prev = 0
 x = 1
 for i in 2:n

Listing 3.19 Calculating a Fibonacci number using iteration

Listing 3.20 Calculating a Fibonacci number without early return

Early exit; to avoid deep nesting you use
the return keyword to exit the function
immediately with the value n.

prev is used to
represent fib(n-2).

To hold the final
result fib(n)

This is shorthand for x = x +
prev, which is equivalent to the
fib(n-1) + fib(n-2) calculation.

58 CHAPTER 3 Control flow
 tmp = x
 x += prev
 prev = tmp
 end
 x
 end
end

There are no hard rules here. You will just have to use common sense and rely on your
own sense of good taste. As a rule of thumb, I try to avoid nesting deeper than three
levels; however, avoid creating strict rules. An obsession with rules carved in stone has
always plagued the software industry. It is better to be flexible and use common sense.
Julia itself is a language that tries to be pragmatic.

Summary
 Control-flow statements use conditions composed using Boolean expressions.

Loops repeat as long as condition remains true.
 Even control-flow statements are expressions in Julia, meaning they evaluate to

a value. In Julia, even nothing is a value.
 Computers’ ability to repeat similar calculations a large number of times makes

them suited for computations that are hard to do by hand, such as calculating
trigonometric functions.

 A recursive function is a function that calls itself. Recursive functions must have
a base case, or they will never terminate execution.

 Recursion and iteration can solve the same problems. Recursion often makes
the code easier to write, while iteration usually provides better performance.

Julia as a spreadsheet
In the second chapter we discussed how to work with Julia as a calculator. However,
people working with numbers today don’t usually use desk calculators; they use
spreadsheet tools, such as Microsoft Excel or Apple Numbers (figure 4.1).

 In these applications, numbers are stored in tables. All serious scientific work
involves working with large tables of data, including whole columns of numbers.
Scientists and data analysts get survey data or measurements they want to analyze.
Julia is excellent for this type of work. You are not literally working with a graphical
spreadsheet tool, but you are manipulating data in table form, much like a modern
spreadsheet application.

This chapter covers
 Working with collections of numbers using the

Array and Tuple types

 Useful types to put into collections, such as
numbers, characters, and text strings

 Performing statistics

 Transforming lists of numbers with map

 Using predicates with the filter function
59

60 CHAPTER 4 Julia as a spreadsheet
You will only scratch the surface of what is possible in this chapter. Instead, the main
purpose is introducing the Array and Tuple datatypes. Because these are containers for
other values, you will also touch upon the Char (character) and String (text string)
types to have something interesting to put in your arrays and tuples. In fact, you will put
numbers, characters, text strings, and Boolean values into these two collection types.

4.1 Analyzing pizza sales
To better understand the purpose of different Array operations, I will use an example
of pizza sales. Table 4.1 shows different types of pizza sold in different amounts and at
different prices. You will explore how Julia code can be used to answer questions such
as the following:

 How many pizzas were sold in total?
 How much revenue did you get in total from your pizza sales?
 What was the average price of pizzas sold?
 What was the average number of pizzas sold in each category?

Table 4.1 Pizza sales data, where each row says how many pizzas of each type were sold

Pizza Amount Price

Pepperoni 4 15.0

Margherita 1 11.5

Figure 4.1 Apple Numbers is a spreadsheet application for working with rows and columns of numbers.

614.2 Different types of arrays
4.2 Different types of arrays
An array in Julia can represent a row, column, or table of numbers. In fact, arrays can
contain any type of element, not just numbers. You could have arrays of Booleans,
characters, or text strings (e.g., elements in an array are ordered). You can ask for ele-
ments at a specific position, such as, “Give me the third element in array A.”

 Let’s create a column of numbers containing the number of pizzas sold. Notice how
the numbers are listed vertically. This is Julia’s way of telling you that you just made a col-
umn vector. When creating a column vector, separate each element with a comma:

julia> amounts = [4, 1, 5, 3, 2]
5-element Vector{Int64}:
 4
 1
 5
 3
 2

It is also possible to create a row vector instead by separating each element with a space:

julia> row = [4 1 5 3 2]
1×5 Matrix{Int64}:
 4 1 5 3 2

Each of the values in the vector has an associated element index, as illustrated in figure 4.2.
The index of the first element is 1.

The word vector is commonly used to refer to one-dimensional arrays, while a two-
dimensional array is called a matrix. You can think of a matrix as the same as a table in
a spreadsheet application. In Julia, you can construct tables by stacking row vectors on
top of each other.

BBQ Chicken 5 13.0

Hawaiian 3 12.75

Prosciutto 2 14.25

Table 4.1 Pizza sales data, where each row says how many pizzas of each type were sold (continued)

Pizza Amount Price

234 1 5

54321

row = [4 1 5 3 2]

Element indicies

Figure 4.2 Illustration of how elements
are organized in a row vector

62 CHAPTER 4 Julia as a spreadsheet
 Notice how each row is separated with a semicolon. Here you have a table with the
amounts and prices columns:

julia> pizzas = [4 15.0;
 1 11.5;
 5 13.0;
 3 12.75;
 2 14.25]
5×2 Matrix{Float64}:
 4.0 15.0
 1.0 11.5
 5.0 13.0
 3.0 12.75
 2.0 14.25

The new lines are not required; they just make it easier to read the code. You would
have gotten exactly the same matrix by writing the following:

pizzas = [4 15.0; 1 11.5; 5 13.0; 3 12.75; 2 14.25]

To conceptualize how columns and matrices are organized, you can look at the follow-
ing illustration (figure 4.3). With one-dimensional vectors we normally talk about ele-
ment indices, but for a matrix, both the rows and the columns are numbered.

In this chapter, however, you will focus primarily on column vectors. They correspond
most closely to what are called arrays in other languages. Multidimensional arrays are
not a central feature in other languages like they are in Julia.

4.3 Performing operations on arrays
Lists of numbers aren’t very interesting, unless they allow you to do something useful.
Fortunately, many functions operate on arrays. For instance, Julia’s sum function can

1 2

Column indicies

5

4

2

3

1

Prices

14.25

12.75

13.0

11.5

15.0

Amounts

3

1

2

4

5

Pizzas

1

3

5

2

4

14.25

12.75

13.0

11.5

15.0

R
o
w

 i
n
d
ic

ie
s

Figure 4.3 Comparison of column
vectors and matrices

634.3 Performing operations on arrays
be used to add up all the elements in an array. Here you calculate the total number of
pizzas sold:

julia> no_pizzas_sold = sum(amounts)
15

If you want to find out how many elements there are in amounts, you can use length.
This also allows you to calculate the average number of pizzas sold of each type:

julia> length(amounts)
5

julia> avg = sum(amounts) / length(amounts)
3.0

Let’s put the prices in a variable to have something to experiment with:

julia> prices = [15.0, 11.5, 13.0, 12.75, 14.25]
5-element Vector{Float64}:
 15.0
 11.5
 13.0
 12.75
 14.25

To make it easier to get an overview of the different prices you have, you can sort
them:

julia> sorted = sort(prices)
5-element Vector{Float64}:
 11.5
 12.75
 13.0
 14.25
 15.0

julia> prices
5-element Vector{Float64}:
 15.0
 11.5
 13.0
 12.75
 14.25

When you call sort, you create a new vector. The prices vector is not modified. By
convention, Julia functions never modify any of their inputs. Sometimes it is necessary
to modify inputs to a function. Julia developers have established the convention of
tacking on an exclamation mark (!) to the name of any function which modifies its
input. Hence, many Julia functions that don’t modify their inputs have sibling functions

Sorted prices
stored in sorted

sort did not
modify prices.

64 CHAPTER 4 Julia as a spreadsheet
that do. For instance, the sort! function will sort its input vector rather than return-
ing a new sorted version:

julia> sort!(prices)
5-element Vector{Float64}:
 11.5
 12.75
 13.0
 14.25
 15.0

julia> prices
5-element Vector{Float64}:
 11.5
 12.75
 13.0
 14.25
 15.0

What if you live in a country with value-added tax? To figure out the sticker price on
your pizzas, you need to add the sales tax. If you live in Norway, the value added tax is
25%. Let’s calculate new prices with taxes:

julia> prices = [15.0, 11.5, 13.0, 12.75, 14.25];
julia> prices_with_tax = prices * 1.25
5-element Vector{Float64}:
 18.75
 14.375
 16.25
 15.9375
 17.8125

But what if you want to find out how much money you made on each type of pizza?
You could try to multiply the amounts with the prices:

julia> amounts * prices
ERROR: MethodError: no method matching *(::Vector{Int64}, ::Vector{Float64})

Don’t worry about the error message. I will explain the concepts you need to grasp to
read it in later chapters.

 For now, what you need to know is that there is no obvious definition of what a
multiplication between two columns of numbers should produce. One can imagine
numerous ways of interpreting this. Thus you have to explicitly tell Julia that you want
elementwise operations. You can achieve this by adding a dot to the mathematical
operator. +, -, *, and / are for performing arithmetic on individual numbers (scalars).
To perform elementwise operations on arrays of numbers you need to use the .+, .-,
.*, and ./ operators:

julia> amounts .* prices
5-element Vector{Float64}:

Prices were
modified by sort!

654.4 Working with the statistics module
 60.0
 11.5
 65.0
 38.25
 28.5

You can feed this result to the sum function to compute your total profit from sell-
ing pizza:

julia> sum(amounts .* prices)
203.25

4.4 Working with the statistics module
Professionals doing statistics and data analysis usually work with tables of data; you can
easily implement your own functions to perform statistics on individual columns of
data. Following is a basic example of an average function.

average(A) = sum(A) / length(A)

Instead of reinventing the wheel, you can use ready-made statistical functions. These
are bundled with Julia but placed in the Statistics module (see https://docs.julialang
.org/en/v1/stdlib/Statistics/). Modules will be covered more extensively later, but
you can think of them as bundles of premade functionality that you can use in your
programs. To use a module, write

using Statistics

This will cause the functions, types, and constants defined in the module to be loaded
and made available to you. It will also make documentation available for the module.
Remember, you can enter Julia’s documentation mode by writing a question mark (?)
at the beginning of the line:

julia> using Statistics

help?> Statistics
search: Statistics

 Statistics

 Standard library module for basic statistics functionality.

help?> middle(3, 4)
 middle(x, y)

 Compute the middle of two numbers x and y, which is equivalent in both
 value and type to computing their mean ((x + y) / 2).

Listing 4.1 Calculating arithmetic mean

https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/
https://docs.julialang.org/en/v1/stdlib/Statistics/

66 CHAPTER 4 Julia as a spreadsheet
To get an overview of what types and functions exist in the module, write the module
name and a dot, and then press the Tab key twice. This will show all possible comple-
tions (I have edited out some of the results for clarity):

julia> Statistics.
corm mean realXcY
corzm mean! sqrt!
cov median std
cov2cor! median! stdm
covm middle unscaled_covzm
covzm quantile var
eval quantile! varm
include range_varm varm!

Let’s explore some of the statistics functions in the REPL:

julia> mean(amounts)
3.0

julia> mean(prices)
13.3

julia> median(amounts)
3.0

julia> median(prices)
13.0

julia> std(amounts)
1.5811388300841898

julia> std([3, 3, 3])
0.0

mean and median are both used to compute averages, but work slightly differently.
With mean you add up all the values and divide by the number of values. If there are a
few extreme values, the average can be heavily skewed. Thus, when, for instance, cal-
culating the average income of a family, you usually use the median. Median income is
calculated by sorting all the household incomes and then picking the income in the
middle of the sorted list. That way, a few ultra-rich families will not skew the result.

 With the std function, you find the standard deviation in a collection of values.
The standard deviation is a measure of how much values differ. If every element is the
same, then the standard deviation will be zero. Thus far, you have looked at dealing
with arrays as a whole, but to be able to build your own functionality processing arrays,
you need to know how to access individual elements in the array.

Compute the
arithmetic mean
of amounts.

The middle value
when values are
sorted

Standard
deviation

674.5 Accessing elements
4.5 Accessing elements
Every element in a Julia array is numbered starting from 1. This is called 1-based index-
ing and is very common in numerical and mathematically oriented languages. However,
mainstream languages, such as Python, C, C++, and Java, use 0-based indexing.

Use square brackets to define array literals as well as to access individual elements
by index:

julia> amounts = [4, 1, 5, 3, 2]
5-element Vector{Int64}:
 4
 1
 5
 3
 2

julia> amounts[1]
4

julia> amounts[2]
1

julia> amounts[5]
2

Use square brackets both to define an array literal and to access individual elements.
Of course you also want to be able to change individual elements. This is done in
identical fashion:

julia> xs = [2, 3]
2-element Vector{Int64}:
 2
 3

julia> xs[1] = 42
42

julia> xs
2-element Vector{Int64}:
 42
 3

1-based vs. 0-based indexing
The best way to index arrays is a topic developers love to argue about. In mathemat-
ics, it is a common convention to number elements, rows, and columns using 1-based
indexing. When discussing hardware details, such as computer memory addresses,
it is more common to use 0-based indexing. Thus, languages with a numerical focus
have tended to use 1-based indexing, while languages closer to the hardware, such
as C, have used 0-based indexing.

Access the first
element in the
amounts array.

Get the fifth (last)
element in the
amounts array.

68 CHAPTER 4 Julia as a spreadsheet
julia> xs[2] = 12
12

julia> xs
2-element Vector{Int64}:
 42
 12

Each time you change an element, you can print it out to show what the array cur-
rently looks like. All these examples are neat and tidy. What happens if you try to
access an element with an invalid index?

julia> xs[3] = 5
ERROR: BoundsError: attempt to access 2-element Vector{Int64} at index [3]

julia> xs[0]
ERROR: BoundsError: attempt to access 2-element Vector{Int64} at index [0]

The behavior you see here is common across most mainstream languages. However,
some older popular langauges allow you to set elements at any index, regardless of
how large you made the array in advance.

 There are some challenges with the way you have accessed elements in these
examples:

1 You don’t always know the index of the last element, as arrays can have different
sizes and can be grown.

2 While 1-based indexing is the standard, it is possible to construct 0-based arrays
in Julia.

To deal with the fact that you cannot always know where an array starts or ends, use
the begin and end keywords to access the first and last element, respectively:

julia> amounts[1]
4

julia> amounts[begin]
4

julia> amounts[5]
2

julia> amounts[end]
2

julia> amounts[4]
3

julia> amounts[end-1]
3

The array xs has only two values, so you cannot attempt to
set the third element. Julia checks if you use valid indices.

Elements start at index 1.
There are no values at index 0.

Access the first element.
[1] and [begin] are identical.

Access the last element.
[5] and [end] are the same.

By subtracting, you can
do things like access the
second-last element.

694.6 Creating arrays
4.6 Creating arrays
Thus far, you have created arrays using array literals. An array literal means you literally
list each element an array is composed of. For example, [4, 8, 1] and [false, false,
true] are both examples of array literals. The variable xs may refer to an array, but it
is not an array literal. However, array literals are not very effective at creating large
arrays. You have a number of functions, such as zeros, ones, fill, and rand, which
makes it easier to quickly create arrays containing particular values.

 For instance, what if you want an array containing 50 elements, all with the value 0?
For this you can use the zeros function:

julia> xs = zeros(50)
50-element Vector{Float64}:
 0.0
 0.0
 0.0
⋮

 0.0
 0.0
 0.0
 0.0

julia> length(xs)
50

It is so common to initialize vectors elements to 1 that there is a function, ones, to do
that explicitly. The function creates an array of specified length with every element set
to the value 1:

julia> ones(5)
5-element Vector{Float64}:
 1.0
 1.0
 1.0
 1.0
 1.0

But it is possible to fill a large array with any value using the fill function. Here you
create an array with six elements, each set to the value 42:

julia> fill(42, 6)
6-element Vector{Int64}:
 42
 42
 42
 42
 42
 42

In many situations you need arrays with large number of random values. rand(n) cre-
ates a vector holding n random numbers between 0 and 1:

70 CHAPTER 4 Julia as a spreadsheet
julia> rand(3)
3-element Vector{Float64}:
 0.5862914538673218
 0.8917281248249265
 0.37928032685681234

When you create arrays, the description of the array made in the Julia REPL will look
something like this:

5-element Vector{Float64}

This says that the vector you have made contains five elements, and each of those ele-
ments is of type Float64. But what if you want elements of a different type? Say you
want 8-bit signed integers instead. How do you do that? The ones, zeros, and rand
functions allow you to specify element type. Here are some examples:

julia> ones(Int8, 5)
5-element Vector{Int8}:
 1
 1
 1
 1
 1

julia> zeros(UInt8, 4)
4-element Vector{UInt8}:
 0x00
 0x00
 0x00
 0x00

julia> rand(Int8, 3)
3-element Vector{Int8}:
 -50
 125
 58

Even array literals allow you to specify the element type. Thus, you can indicate that
you want a vector of 8-bit signed integers:

julia> xs = Int8[72, 69, 76, 76, 79]
5-element Vector{Int8}:
 72
 69
 76
 76
 79

The array literal is prefixed with the type you want for each element—Int8 in this
case. If you don’t prefix with the type, Julia will infer the element type. The details of
how that works will become apparent when I discuss types in chapter 7. If you want to

Make an array containing signed
8-bit integers with the value 1.
Notice the description of the
vector says Vector{Int8}.

Create four zeros of type unsigned 8-bit.
Notice how zero is written in hexadecimal
form, as that is the default way of formatting
unsigned integers in Julia.

Create three random 8-bit signed
integer values. The values will be
randomly picked from the full
range: -128 to 127.

714.7 Mapping values in an array
check what type each element in an array is, you can use the eltype (short for ele-
ment type) function:

julia> eltype(xs)
Int8

julia> eltype([3, 4, 5])
Int64

julia> eltype([true, false])
Bool

4.7 Mapping values in an array
You can do more than simply adding and multiplying values. Across all programming
languages that support functional style programming, you will find a trio of functions
called map, reduce, and filter. Let’s explore the map function first by revisiting your
earlier sine table calculations. Do you remember this function?

function print_sin_table(increment, max_angle)
 angle = 0
 while angle <= max_angle
 rad = deg2rad(angle)
 x = sin(rad)
 println(x)
 angle = angle + increment
 end
end

However, instead of printing out the table of sine values, you can create an array of all
the sine values. For this you use the map function, which is designed to transform a col-
lection of values into another array of values. Here an array of degrees is transformed
to an array of radians using map. map applies the deg2rad function to every element in
the input arrays:

julia> degs = [0, 15, 30, 45, 60];

julia> rads = map(deg2rad, degs)
5-element Vector{Float64}:
 0.0
 0.2617993877991494
 0.5235987755982988
 0.7853981633974483
 1.0471975511965976

map is referred to as a higher order function. These are functions that take other func-
tions as arguments and/or return functions. This is different from the functions you
have seen thus far, which take numbers as arguments exclusively. The basic form of

Listing 4.2 Code for creating a sine table stored in a function

72 CHAPTER 4 Julia as a spreadsheet
map takes a function f as first argument and applies that function to every element in a
collection, xs, producing a new collection, ys, as output:

ys = map(f, xs)

The second argument, representing a collection, does not need to be an actual array.
It could be anything one can iterate over and get multiple elements; thus you can also
use a range object. Here you use a range from 0 to 90, with 15 degrees as a step value:

julia> map(deg2rad, 0:15:90)
7-element Vector{Float64}:
 0.0
 0.2617993877991494
 0.5235987755982988
 0.7853981633974483
 1.0471975511965976
 1.3089969389957472
 1.5707963267948966

You can combine this to create a sine table:

julia> map(sin, map(deg2rad, 0:15:90))
7-element Vector{Float64}:
 0.0
 0.25881904510252074
 0.49999999999999994
 0.7071067811865475
 0.8660254037844386
 0.9659258262890683
 1.0

However, this is not normally how you do it. Instead, you collect all transformations
you want to do into a single function. This is more memory efficient, as every call to
map produces a new array. Another solution is to preallocate an array of the same size
as the output and use this array in repeated mappings. The mutating map! function
allows you to do just that.

 It writes its outputs straight to the array given as the second argument. The third
argument is the input, which will not be modified by the map! function.

 However, if the input is of the same type and length as required by the output,
then you can reuse the input argument as your output argument:

result = zeros(Float64, length(0:15:90))
map!(deg2rad, result, 0:15:90)
 map!(sin, result, result)

However, this is not an elegant way of writing the code, and mutating function calls are
best avoided, as they make analyzing data flow much more difficult. Thus, you collect

Allocate array
to hold results.

The input and destination
array must have equal length.

734.7 Mapping values in an array
all transformations into one function, which reduces the number of memory alloca-
tions the code has to do and is often easier to read:

degsin(deg) = sin(deg2rad(deg))
map(degsin, 0:15:90)

The first line is just a one-liner function definition. You could have used a multiline
definition instead, but it would take more space:

function degsin(deg)
 sin(deg2rad(deg))
end

map(degsin, 0:15:90)

A great way of understanding built-in functions is implementing them yourself. To
better understand map, create your own map function called transform. It contains
new concepts, which we will discuss in more detail.

function transform(fun, xs)
 ys = []
 for x in xs
 push!(ys, fun(x))
 end
 ys
 end

transform takes two arguments, fun and xs, where the former is a function, and the
latter is an array or other iterable collection object. Functions can be stored in vari-
ables and used. The following is a simple demonstration:

julia> sin(1.0)
0.8414709848078965

julia> g = sin
sin (generic function with 13 methods)

julia> g(1.0)
0.8414709848078965

julia> add = +
+ (generic function with 190 methods)

julia> add(2, 3)
5

This is why you can use fun as a function and call it, despite it being an argument to
the transform function. The next part that needs some further explanation is

push!(xs, x)

Listing 4.3 Knock-off version of the built-in map function

An empty array to
hold the final result

Add a transformed
element to the result
array ys.Return the

final result.

Calling the sin
function

Remember the plus
operator in Julia is
a function.

74 CHAPTER 4 Julia as a spreadsheet
This function adds the element x to the array xs. Remember, the exclamation mark
warns you that the push! function potentially alters its inputs. In this case, the xs argu-
ment is modified.

 You must add the exclamation mark to call the right function; the exclamation
mark is part of the function name, so push and push! would count as two different
function names. In Julia, there is no function named push. If it had existed, you could
imagine it would have returned a new array with an extra element.

 There is no requirement to add the exclamation mark to functions you define, but
you should get in the habit of doing it to aid fellow developers reading your code.
This way, it is easy to see where a variable is potentially modified (mutated).

TIP To a beginner, mutating functions may not seem like a big deal. How-
ever, when writing larger programs you will start to notice that functions that
mutate inputs often make programs harder to read and follow. The exclama-
tion mark helps reduce mental load when reading source code. Without it,
every function call could potentially modify its input, making code analysis
much more difficult.

The following is a simple demonstration of how push! works. You create an empty
array ys and add numbers to it. Each time you can see how the array grows larger:

julia> ys = []
Any[]

julia> push!(ys, 3)
1-element Vector{Any}:
 3

julia> push!(ys, 8)
2-element Vector{Any}:
 3
 8

julia> push!(ys, 2)
3-element Vector{Any}:
 3
 8
 2

4.8 Introducing characters and strings
Thus far, you have worked almost exclusively with numbers, but your pizza table con-
tains more than just numbers. The table contains text as well, such as the names of the
pizzas. How do you work with text in Julia?

 Let’s start with the most basic building block. Text is made up of characters, and a
single character is represented by the Char type in Julia. In computer memory, every-
thing is a number, including characters. Here is a little challenge: look at the follow-
ing example, and see if you can make sense of it:

Create an
empty array.

Add the number
3 to the array.

754.8 Introducing characters and strings
julia> x = Int8(65)
65

julia> ch = Char(65)
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> ch = Char(66)
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

julia> 'A'
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> Int8('A')
65

You put single quotes around individual characters to create a character literals.1 'A'
and 'Y' are both character literals.

 This code example shows that characters in Julia are just numbers with a different
type. Remember how an UInt8 and Int8 consume the same number of bits and can hold
the same data but interpret it differently? The same thing holds true for characters.
While in memory they look the same, the type determines what you can do with them.
For instance, you cannot add two characters, but you can add a number to a character:

julia> 'A' + 'B'
ERROR: MethodError: no method matching +(::Char, ::Char)

julia> 'A' + 3
'D': ASCII/Unicode U+0044 (category Lu: Letter, uppercase)

You can create arrays of characters, just like you can create arrays of numbers or
Booleans:

julia> chars = ['H', 'E', 'L', 'L', 'O']
5-element Vector{Char}:
 'H': ASCII/Unicode U+0048
 'E': ASCII/Unicode U+0045
 'L': ASCII/Unicode U+004C
 'L': ASCII/Unicode U+004C
 'O': ASCII/Unicode U+004F

NOTE To improve readability and clarity, I occasionally edit the REPL out-
put. For example, I remove the (category Lu: Letter, uppercase) descrip-
tion tacked on characters, as it creates a lot of visual noise.

1 A character literally is a character from A to Z rather than, for example, a variable or constant containing a
character.

Creating an 8-bit signed integer
number from the 64-bit number
with a value of 65

Creating a
character from
the number 65

A character
literal

Creating an 8-bit number
from a character literal

76 CHAPTER 4 Julia as a spreadsheet
A text string is just characters joined together. Notice from the output that text strings
are identified with double quotes, while individual characters are identified with sin-
gle quotes:

julia> join(chars)
"HELLO"

join can take any iterable object (objects you can use in a for loop) as input. Hence
you can provide a range of characters as well:

julia> join('A':'G')
"ABCDEFG"

Skip every other character by using a step size of ‘2’ in the range object:

julia> join('A':2:'G')
"ACEG"

You can collect the individual characters in a text string, so you can get back an array
of characters:

julia> collect("HELLO")
5-element Vector{Char}:
 'H': ASCII/Unicode U+0048
 'E': ASCII/Unicode U+0045
 'L': ASCII/Unicode U+004C
 'L': ASCII/Unicode U+004C
 'O': ASCII/Unicode U+004F

collect is a versatile function; it can turn any object that allows iterating over many
values into an array. Thus you can collect ranges as well:

julia> collect(2:5)
4-element Vector{Int64}:
 2
 3
 4
 5

 julia> collect('B':'D')
3-element Vector{Char}:
 'B': ASCII/Unicode U+0042
 'C': ASCII/Unicode U+0043
 'D': ASCII/Unicode U+0044

Strings and characters are very useful for representing pizza data. Let’s a look at how
you can bundle together information about each pizza.

774.9 Storing pizza data in tuples
4.9 Storing pizza data in tuples
To do this you will use a close sibling of arrays called tuples. To write them, replace the
square brackets [] with parentheses (). Below is an example of a tuple describing
sales info about pepperoni pizza. It says a small (S) Hawaiian pizza was sold for $10.50:

pizza_tuple = ("hawaiian", 'S', 10.5)

Since a number of popular languages, such as Python and JavaScript, use both single
quotes and double quotes to denote strings, it is worth reminding the reader that in
this example 'S' denotes a character and not a string. You cannot write strings in Julia
using single quotes:

julia> 'hawaiian'
ERROR: syntax: character literal contains multiple characters

Thus there is an important distinction between 'S' and "S". The latter is a string,
which you must think of as a collection of characters. The difference is similar to the
difference between the number 42 and the array [42]. Instead of writing a tuple to
contain pizza data you could use an array:

pizza_array = ["hawaiian", 'S', 10.5]

So what exactly is the difference? Arrays are meant for homogenous data. Every ele-
ment has to be of the same type. But clearly, in this case they are not of the same type.
The result is that the element type of the array becomes the Any type:

julia> pizza = ["hawaiian", 'S', 10.5]
3-element Vector{Any}:
 "hawaiian"
 'S': ASCII/Unicode U+0053
 10.5

julia> eltype(pizza)
Any

You will explore the Julia type system in greater detail later. For now you can think of
Any as meaning that anything goes. You can put any kind of value into the array. This
would not have worked if the element type was more specific, such as an Int64:

julia> xs = [4, 5, 3]
3-element Vector{Int64}:
 4
 5
 3

julia> xs[1] = "hi"
ERROR: MethodError: Cannot `convert` an object of type String to an object
of type Int64

Julia infers that
each element is
of type Int64. Julia doesn’t know

how to turn a string
into a number.

78 CHAPTER 4 Julia as a spreadsheet
Pizza arrays, in contrast, are completely indiscriminate, meaning they don’t care about
the object type. You can assign anything to the individual elements because the ele-
ment type of the pizza array is Any:

julia> pizza[3] = true
true

julia> pizza[1] = 42
42

julia> pizza
3-element Vector{Any}:
 42
 'S': ASCII/Unicode U+0053
 true

Tuples, on the other hand, are much stricter. A tuple keeps track of the type of every
element; you can see this if you perform a typeof on a tuple:

julia> pza = ("hawaiian", 'S', 10.5)
("hawaiian", 'S', 10.5)

julia> typeof(pza)
Tuple{String, Char, Float64}

Secondly, tuples are immutable, meaning they cannot be changed. You can only read
values from them; you cannot change the values.

julia> pza[1]
"hawaiian"

julia> pza[1] = "pepperoni"
ERROR: MethodError: no method matching
 setindex!(::Tuple{String, Char, Float64}, ::String, ::Int64)

In other aspects, tuples are very similar to arrays. You can loop over a tuple just like an
array or range:

julia> for item in pza
 println(item)
 end
hawaiian
S
10.5

You can pass them to functions such as sum, median, and mean, given they actually con-
tain numbers:

julia> nums = (3, 4, 1)
(3, 4, 1)

794.9 Storing pizza data in tuples
julia> sum(nums)
8

julia> median(nums)
3.0

You can look at how to create a list of pizza sales data (table 4.2) by combining tuples
and arrays. This is the data you want to store in Julia.

You want to be able to process this data and find out information such as how much
you made in total or how many large pizzas you sold. You can represent this in Julia in
the following manner:

julia> sales = [
 ("hawaiian", 'S', 10.5),
 ("sicilian", 'S', 12.25),
 ("hawaiian", 'L', 16.5),
 ("bbq chicken", 'L', 20.75),
 ("bbq chicken", 'M', 16.75)
]

You are using floating-point numbers to represent currency data, which is a bad
choice. If you build software for customers handling currency data, you should always
use fixed-point numbers,2 but I am keeping things simple for educational purposes.

 To make it easier to process pizza data, you will define accessor functions3 for differ-
ent properties. You will call the accessor for pizza size portion because Julia already
has a function called size in the standard library:

name(pizza) = pizza[1]
portion(pizza) = pizza[2]
price(pizza) = pizza[3]

Table 4.2 Pizza sales data, where each row is a sold pizza

Pizza Size Price

Hawaiian S 10.5

Sicilian S 12.25

Hawaiian L 16.5

BBQ chicken L 20.75

BBQ chicken M 16.75

2 Look up the FixedPointDecimals.jl or CurrenciesBase.jl to work with currency data.
3 Functions used to set and get values within a more complex data structure are referred to as accessor functions,

or simply accessors.

80 CHAPTER 4 Julia as a spreadsheet
These are just regular functions. Here I use the Julia one-liner syntax for function
definitions, but I could have used the multiline definition as well:

function price(pizza)
 pizza[3]
end

Remember that the last expression in a Julia function is the return value. You don’t
have to write return pizza[3].

 What type are these pizza arguments? Are they tuples or arrays? Actually, it doesn’t
matter what they are because index access works on both in identical fashion. These
accessor functions are useful with map because they allow you to do things like getting
the names of all the pizzas:

julia> map(name, sales)
5-element Vector{String}:
 "hawaiian"
 "sicilian"
 "hawaiian"
 "bbq chicken"
 "bbq chicken"

The preceding code snippet simply applied the name function to every element in the
sales array and collected all the result values into a new array.

4.10 Filtering pizzas based on predicates
With some useful data to work with, I can introduce you to the next higher-order function:

ys = filter(p, xs)

The filter function takes a collection of values, xs, and returns a subset, ys, of those
values. The specific values from xs that are included in the resulting ys are deter-
mined by the predicate p. What is a predicate you ask?

DEFINITION A predicate is a function that takes some value and always returns a
Boolean value, such as true or false.

Julia has a number of predicate functions bundled with its standard library. Here are
some examples:

julia> iseven(3)
false

julia> iseven(2)
true

julia> isodd(3)
true

julia> isodd(4)
false

Check if numbers
are even (dividable
by two).

Check if numbers are
odd (not dividable
by two).

814.10 Filtering pizzas based on predicates
Predicates are not limited to numbers. There are also predicates for characters:

julia> isuppercase('A')
true

julia> isuppercase('a')
false

julia> isspace(' ')
true

julia> isspace('X')
false

Predicates are very useful with the filter function. The following is an example of
getting even numbers from a range:

julia> filter(iseven, 1:10)
5-element Vector{Int64}:
 2
 4
 6
 8
 10

But to work with the pizza data you will need to define your own predicates, which
allows us to retrieve sales of a particular pizza size or type:

issmall(pizza) = portion(pizza) == 'S'
islarge(pizza) = portion(pizza) == 'L'
isbbq(pizza) = name(pizza) == "bbq chicken"

4.10.1 Combining higher-order functions

You can use the following approach to combine map, accessors, filter, and predicates
to find out how much money you made selling large pizzas or BBQ chicken pizzas, for
example. First, find the large pizzas:

julia> filter(islarge, sales)
2-element Vector{Tuple{String, Char, Float64}}:
 ("hawaiian", 'L', 16.5)
 ("bbq chicken", 'L', 20.75)

Next, you get the price of the large pizzas:

julia> map(price, filter(islarge, sales))
2-element Vector{Float64}:
 16.5
 20.75

Using sum, you can figure out how much money you made selling large pizzas:

julia> sum(map(price, filter(islarge, sales)))
37.25

Is the provided
character an
uppercase letter?

Is the character a space?
For example, x is a letter,
not a blank space.

82 CHAPTER 4 Julia as a spreadsheet
In the final example, you determine how much money was made selling BBQ chicken
pizzas:

julia> bbq_sales = filter(isbbq, sales)
2-element Vector{Tuple{String, Char, Float64}}:
 ("bbq chicken", 'L', 20.75)
 ("bbq chicken", 'M', 16.75)

julia> sum(map(price, bbq_sales))
37.5

It turns out that in programming, mapping many values to another set of values and
then reducing all these values to 1 is such a common practice that it has its own name:
mapreduce. In the last case, you were mapping BBQ chicken sales items to sales prices
and then adding them up. Adding up all the numbers is, in functional programming
speak, called a reduction.

4.11 Mapping and reducing an array
With the mapreduce function you could have written the last part as a single func-
tion call:

julia> mapreduce(price, +, bbq_sales)
37.5

mapreduce is composed of two higher-order functions: map and reduce. To demon-
strate how this works, create your own variant of mapreduce, called mapcompress, to
avoid a naming conflict:

mapcompress(f, g, xs) = reduce(g, map(f, xs))

Let me clarify how reduce works: it takes some binary function, g, as the first argu-
ment, and then uses this function to combine the elements in the collection, xs, pro-
vided as the second argument.

g(x, y) = ...
y = reduce(g, xs)

Unlike map, reduce requires an input function taking two arguments. That is why it is
called a binary function. Regular mathematical operators, such as +, - and *, are binary
functions in Julia. Thus you can use them with reduce to perform the equivalent of
sum and factorial:

julia> sum(2:4)
9

julia> reduce(+, 2:4)
9

834.11 Mapping and reducing an array
julia> factorial(4)
24

julia> reduce(*, 1:4)
24

NOTE Many developers find the naming of the function reduce unintuitive.
Potentially better names would have been accumulate, aggregate, or compress. In
some languages it is called inject.

4.11.1 Sine table with map and reduce

The sine function itself is, in fact, a classic case of mapping and reducing. For each
argument to sin(x) you get an infinite sequence of numbers, which you reduce to
one value by adding. This is how you implemented your own sine function, called
sine, without conflicting with the built-in sin function.

function sine(x)
 n = 5
 total = 0
 for i in 0:n
 total += (-1)^i*x^(2i+1)/factorial(2i + 1)
 end
 total
end

You can express this calculation more elegantly using the mapreduce higher-order
function.

function sinus(x)
 n = 5
 taylor(i) = (-1)^i*x^(2i+1)/factorial(2i + 1)
 mapreduce(taylor, +, 0:n)
end

Here you are doing something new: inside the sinus function you are defining a new
function called taylor, which takes a single argument i. The function is used to calcu-
late a term in the Taylor series, meaning one of the numbers in the Taylor series that
gets added up. It is perfectly possible to define a function inside other functions.

 But why not define this function outside? This is because it uses the x variable, and
the value of x would not be known outside of the sinus function definition. If this
makes your head spin, don’t worry. These concepts will be revisited many times later
in the book and will likely make more sense at that point.

Listing 4.4 Sine function implemented using the Taylor series

Listing 4.5 Sine function through mapreduce on a Taylor’s series

84 CHAPTER 4 Julia as a spreadsheet
mapreduce(taylor, +, 0:n) will first apply the taylor function to every value in
the range 0:n. This will produce an array of values, which will then be combined with
the + operator, which is the second argument to the mapreduce function.

4.12 Counting matches with Boolean arrays
In chapter 3, I mentioned it can be useful to treat Boolean values as integers 0 or 1.
Now that you have been exposed to array we will explore a concrete example.

julia> matches = map(islarge, sales)
5-element Vector{Bool}:
 0
 0
 1
 1
 0

julia> sum(matches)
2

Since you are combining a map and sum higher-order function you could replace this
with a single call to mapreduce. However, adding elements after mapping is so com-
mon that Julia’s sum function allows mapping and adding. This gives you an elegant
way to calculate the number of large pizzas, how many are BBQ chicken, and so on:

julia> sum(islarge, sales)
2

julia> sum(isbbq, sales)
2

sum will transform all the pizza sales into Boolean values by applying the first argu-
ment as a predicate. That will produce an array of zeros and ones, which are added up
by sum.

 After reading this chapter you have managed to learn about the most fundamental
concepts in programming. Without control flow and collections of data, program-
ming wouldn’t be very useful. The ability to easily work with multiple elements of data
is what makes computers so versatile and powerful.

Summary
 Julia supports many different kinds of arrays. A vector is a one-dimensional array,

while a matrix is a two-dimensional array.
 Both in mathematics and in Julia, one distinguishes between column vectors and

row vectors. Column vectors most closely resemble what are called arrays in other
programming languages.

Listing 4.6 Counting pizzas matching predicates

85Summary
 Julia represents row vectors as matrices with only one row, which is why row vec-
tors are very different from one-dimensional arrays in other languages.

 Arrays in Julia default to 1-based indexing. That means the first element starts
at index 1.

 Mathematical operation can be performed on whole arrays on every element.
To do this, prefix the normal math operators with a dot: .+, .-, .*, and ./.

 Operations on arrays can be described as either a mapping, filtering, or reduc-
tion (e.g., sum and mean perform a reduction, since multiple values are reduced
to one).

 The functions zeros, ones, fill, and rand make it easy to create arrays with a
large number of elements.

 An array of Char objects is not quite the same as a String. Characters must be
joined together to form a string. However, strings behave similarly to arrays.

 Tuples have similar behavior to arrays but are immutable, meaning you cannot
change them.

Working with text
This chapter will focus on practical aspects of working with text in Julia, such as
how to show text on the screen and read or write it to a file. You will also look at a
simple interactive application where the user writes responses to questions.

 However, first I will focus on different ways of displaying text on the screen, revis-
iting your pizza sales and sine table examples. The tables you created before were
not very readable. How about creating a neat display like the one in figure 5.1?

 Here sine and cosine values are neatly arranged in separate columns. Likewise,
would it not be better to neatly organize information about pizza sales into clearly
separated columns, as seen in figure 5.2?

 You will use the printstyled function for coloring your text and the rpad and
lpad functions for formatting the output. You will use the ^ operator to repeat
characters. Next you will use the open function to allow you to use print and

This chapter covers
 Representing text with the String type

 Formatting text with lpad and rpad

 Reading text from a keyboard or file

 Writing text to the screen or a file

 Creating a simple interactive program
86

875.1 Making a pretty pizza sales table
println for writing text output to files. To read and process input you will use the
readline, split, and parse functions.

5.1 Making a pretty pizza sales table
You will start by looking at the final result, the code you want to write, and then work-
ing your way backward to explain how you got there. The code should not be entirely
alien, but there are some new concepts I will explain.

function print_pizzatable(pizzas)
 print("│ ")
 printstyled(rpad("name", 12), color=:cyan)
 print(" │ ")
 printstyled("size", color=:cyan)
 print(" │ ")
 printstyled(rpad("price", 5), color=:cyan)
 println(" │")

 for pz in pizzas
 print("│ ", rpad(name(pz), 12))

Listing 5.1 Creating a pretty table of pizza sales

Figure 5.1 Neatly formatted
display of a cosine and sine table

Figure 5.2 Formatted display
of pizza sales using alignment and
colors in a Unix terminal window

88 CHAPTER 5 Working with text
 print(" │ ", rpad(portion(pz), 4), " │ ")
 println(lpad(price(pz), 5), " │")
 end
end

You have new functions—printstyled, rpad, and lpad—which need further explora-
tion and explanation. To get the print_pizzatable function to work, you also need
the accessor functions you defined in chapter 4. All of these functions take a pizza
tuple, such as ("bbq chicken", 'L', 20.75), as an argument and return one of the
elements in the tuple.

name(pizza) = pizza[1]
portion(pizza) = pizza[2]
price(pizza) = pizza[3]

I will cover each function used inside print_pizzatable in more detail with some
simple examples. I only briefly covered print and println in past chapters, so let’s
cover the details.

5.1.1 Print, println, and printstyled

These are versatile functions that can be used to write text to your screen or even files
or a network connection (see chapter 18 for greater detail). Let’s look at some simple
examples to demonstrate how these functions work:

julia> println("hello world")
hello world
julia> print("hello world")
hello world

Huh? Are they not doing the exact same thing? No, but it isn’t easy to tell with this
example. Instead you will use a semicolon ; to separate statements on a single line.
That will help make the difference clearer:

julia> println("hello"); println("world")
hello
world

julia> print("hello"); print("world")
helloworld
julia> print("hello\n"); print("world\n")
hello
world

This code shows you that println is just short for print, with a newline character \n
added to the end. Julia, like many other languages, allows you to express nonvisible
control characters, like a newline, by using a backslash with different letter combina-
tions. Table 5.1 shows some of the more common control characters you can use in
Julia to influence how text is written to a Unix terminal window.

Listing 5.2 Pizza tuple accessor functions

895.1 Making a pretty pizza sales table
The double quotation mark is not a control character, but since you use it to mark the
start and end a string, you need to use an escape sequence to represent it. But what is
the utility of knowing the hex value? You can use this directly to create characters.
Here, a new line is created with the 0x0a hex value:

julia> newln = Char(0x0a)
'\n': ASCII/Unicode U+000A

julia> print("hi"); print(newln); print("world")
hi
world

Let’s look at more examples of the effect of using these different escape sequences
combined with regular text:

julia> println("hello \v world")
hello
 world

julia> println("hello \n world")
hello
 world

julia> println("hello \r world")
 world

julia> println("ABC\n\tABC\n\tABC")
ABC
 ABC
 ABC

This requires some context. Why do characters in your text strings cause the cursor to
move around? It has to do with the history of the text printing system you have today.
When the Unix operating system was first developed, there were no electronic dis-
plays, like the ones you use today. Instead, computer users used electro-mechanical

Table 5.1 Escape sequences to write common control characters used in Unix terminals

Escape sequence Hex value Effect

\n 0x0A Newline

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\r 0x0D Carriage return

\b 0x08 Backspace

\\ 0x5C Backslash

\" 0x22 Double quotation marks

This uses a vertical tab \v as
opposed to the more widely
known horizontal tab \t.

The carriage return moves the
cursor to the start of the line.
Hence the word, world, overwrites
hello, written initially.

90 CHAPTER 5 Working with text
devices called teletypes (figure 5.3). A teletype is very similar to an old-fashioned type-
writer in operation.

These also served as your screen. If the computer wanted to give you some informa-
tion, it had to send characters to your typewriter, which would cause it to print the
characters sent onto paper. This created a need for control characters, meaning char-
acters that bossed around your teletype, telling it to create a new line and move the
caret down or back.

 The terminal applications you use today are simulators of these old teletypes. This was
so programs written to work with teletypes could still work. Unix commands such as ls,
cp, cat, and echo have no idea they are running on modern computers with electronic
displays. As far as they are concerned, they are interacting with a good old teletype.

 Eventually, these paper-based terminals were replaced by electronic terminals. At
this point one expanded the control characters with new ones to represent colors. For
instance, when an electronic terminal would receive the escape sequence \u001b[33m
it would switch to writing yellow letters. If it got \u001b[31m, it would write red letters.
So to write hello world in yellow letters, you can write the following:

julia> print("\u001b[33m hello world")
hello world

Figure 5.3 Teletype Type 68D from Siemens (Norsk Teknisk Museum)

915.1 Making a pretty pizza sales table
However, remembering these escape sequences for different colors is cumbersome.
Thus, Julia provides the printstyled function, which lets you specify a color to use by
name. The color is specified using the keyword argument color:

julia> printstyled("hello world", color = :cyan)
hello world

This statement produces hello world in cyan color. You can look up the help for
printstyled to get overview of what colors you can use. Just move the text cursor to
the beginning of the line (Ctrl-A) and press ? to go into help mode:

help?> printstyled("hello world", color = :cyan)
 printstyled([io], xs...; bold=false, color=:normal)

 Print xs in a color specified as a symbol or integer,
 optionally in bold.

 color may take any of the values :normal, :default,
 :bold, :black, :blink, :blue, :cyan, :green, :hidden,
 :light_black, :light_blue, :light_cyan, :light_green,
 :light_magenta, :light_red, :light_yellow, :magenta,
 :nothing, :red, :reverse, :underline, :white, or :yellow
 or an integer between 0 and 255 inclusive. Note that not
 all terminals support 256 colors. If the keyword bold is
 given as true, the result will be printed in bold

All the colors are given as symbols. A symbol is very similar to a text string. It is often
used for text strings, which only matter to programmers and not users of your pro-
gram. You can programmatically create symbol objects:

julia> sym = Symbol("hello")
:hello

julia> sym == :hello
true

5.1.2 Printing multiple elements

All the print functions are quite versatile in what they allow you to print and how
many elements you can print:

julia> print("abc", 42, true, "xyz")
abc42truexyz

Numbers and Boolean values get converted to text strings when passed as arguments
to the various print functions. It is worth knowing that the string function works
exactly the same way, except it returns a String instead of printing to the screen:

julia> string("abc", 42, true, "xyz")
"abc42truexyz"

92 CHAPTER 5 Working with text
This allows you to use a single println statement to display information about one
pizza. Notice the use of accessor functions defined earlier:

julia> pizza = ("hawaiian", 'S', 10.5)
("hawaiian", 'S', 10.5)

julia> println(name(pizza), " ", portion(pizza), " ", price(pizza))
hawaiian S 10.5

5.1.3 Printing multiple pizzas

You can use this functionality to write out a simple table regarding pizza sales.

pizzas = [
 ("hawaiian", 'S', 10.5),
 ("mexicana", 'S', 13.0),
 ("hawaiian", 'L', 16.5),
 ("bbq chicken", 'L', 20.75),
 ("sicilian", 'S', 12.25),
 ("bbq chicken", 'M', 16.75),
 ("mexicana", 'M', 16.0),
 ("thai chicken", 'L', 20.75),
]

for pz in pizzas
 println(name(pz), " ", portion(pz), " ", price(pz))
end

The problem with this code is that the name, size, and price columns don’t get aligned,
but end up like this:

hawaiian S 10.5
mexicana S 13.0
hawaiian L 16.5
bbq chicken L 20.75
sicilian S 12.25
bbq chicken M 16.75
mexicana M 16.0
thai chicken L 20.75

To perform alignment you need to add left padding and right padding using the lpad
and rpad functions.

5.1.4 Align with lpad and rpad

With the Julia padding functions you can specify that a text string should always be of
a given length. If the text you supply is smaller, it will get padded with a chosen charac-
ter. If no character is specified, the padding character defaults to space.

julia> lpad("ABC", 6, '-')
"---ABC"

Listing 5.3 Primitive pizza table printing

Padding on the left

935.1 Making a pretty pizza sales table
julia> rpad("ABC", 6, '-')
"ABC---"

First, you pad with the - character on the left side, until the whole string is 6 char-
acters long. The second example is identical, except you pad on the right side with
the - character.

 With lpad and rpad you can define how wide each column in your table should be
and add padding, such as spaces, wherever the supplied text string is shorter. In this
example, you’ll keep it simple and check what width the widest strings in each column
would be:

julia> length("thai chicken")
12

julia> length("size")
4

julia> max(length("16.75"), length("price"))
5

Let’s modify the initial code to use padding. You could just paste this code into your
terminal or store it in a file you load into the terminal with, for example, include.
Notice in the code that you don’t specify the padding character. If you don’t specify, it
will default to a space.

function simple_pizzatable(pizzas)
 pname = rpad("name", 12)
 psize = rpad("size", 4)
 pprice = rpad("price", 5)

 printstyled(pname, " ",
 psize, " ",
 pprice,
 color=:cyan)
 println()

 for pz in pizzas
 pname = rpad(name(pz), 12)
 psize = rpad(portion(pz), 4)
 pprice = lpad(price(pz), 5)
 println(pname, " ", psize, " ", pprice)
 end
end

You can test this in the terminal:

julia> simple_pizzatable(pizzas)
name size price
hawaiian S 10.5

Listing 5.4 Simple aligned pizza table

Right-side padding

Width for pizza
name column

Width for
size column Width for

price column

You use cyan color for
the header describing
each column.

Numbers are padded
on the left, so the
decimals align.

94 CHAPTER 5 Working with text
mexicana S 13.0
hawaiian L 16.5
bbq chicken L 20.75
sicilian S 12.25
bbq chicken M 16.75
mexicana M 16.0
thai chicken L 20.75

Notice how the points are not aligned. There are many ways to solve that, but in the
next example with trigonometric tables, you will make sure each number has the same
number of decimals after the point.

5.1.5 Adding lines

Adding separating lines is actually quite simple. You simply use the symbol for a long
vertical line: '│':

julia> '│'
'│': Unicode U+2502 (category So: Symbol, other)

This is Julia’s way of telling you that this character is represented by the hexadecimal
value 0x2502. Thus, you could get this character in two different ways:

julia> Char(0x2502)
'│': Unicode U+2502

julia> '\U2502'
'│': Unicode U+2502

In fact, there are many useful characters for making tables:

julia> collect("─├┼┤")
3-element Vector{Char}:
 '├': Unicode U+251C
 '─': Unicode U+2500
 '┼': Unicode U+253C
 '┤': Unicode U+2524

To draw lines, it is useful to know how to easily repeat characters. In Julia, the expo-
nent ^ operator is used to repeat characters:

julia> "A2"^3
"A2A2A2"

julia> "-"^4
"----"

julia> "─"^2
"──"

955.2 Printing a trigonometric table
5.2 Printing a trigonometric table
You can reuse what you’ve learned to create a trigonometry table. This code uses
many of the same functions as you have seen already: print, printstyled, lpad, and
rpad. Don’t try to run this function yet; I am just giving you an overview.

function print_trigtable(inc, maxangle)
 print("│ ")
 printstyled("θ ", color=:cyan)
 print(" │ ")
 printstyled(rpad("cos", n),
 color=:cyan)
 print(" │ ")
 printstyled(rpad("sin", n),
 color=:cyan)
 println(" │")
 angle = 0
 while angle <= maxangle
 rad = deg2rad(angle)
 cosx = format(cos(rad))
 sinx = format(sin(rad))
 print("│ ")
 print(lpad(angle, 3), " │ ",
 lpad(cosx, 6), " │ ",
 lpad(sinx, 6))
 println(" │")
 angle += inc
 end
end

There are not a lot of new ideas in this code; I covered the core logic in chapter 3.
However, numbers need special handling to align the decimal point. You need an
equal number of digits after the point on every number, and you don’t want numbers
that are too long. If you use the results as they are, you get way too many digits:

julia> rads = map(deg2rad, 0:15:90);

julia> map(sin, rads)
7-element Vector{Float64}:
 0.0
 0.25881904510252074
 0.49999999999999994
 0.7071067811865475
 0.8660254037844386
 0.9659258262890683
 1.0

Instead you want something like this:

Listing 5.5 Creating a trigometric table

Write out the header
for each column of
numbers.

Write out row
of trig values for
each angle.

96 CHAPTER 5 Working with text
julia> print_trigtable(15, 180)
│ θ │ cos │ sin │
│ 0 │ 1.000 │ 0.000 │
│ 15 │ 0.966 │ 0.259 │
│ 30 │ 0.866 │ 0.500 │
│ 45 │ 0.707 │ 0.707 │
│ 60 │ 0.500 │ 0.866 │
│ 75 │ 0.259 │ 0.966 │
│ 90 │ 0.000 │ 1.000 │
│ 105 │ -0.259 │ 0.966 │
│ 120 │ -0.500 │ 0.866 │
│ 135 │ -0.707 │ 0.707 │
│ 150 │ -0.866 │ 0.500 │
│ 165 │ -0.966 │ 0.259 │
│ 180 │ -1.000 │ 0.000 │

To achieve this, you have a helper function you can see in the main code listing: format.

n = length("-0.966")

function format(x)
 x = round(x, digits=3)
 if x < 0
 rpad(x, n, '0')
 else
 rpad(x, n-1, '0')
 end
end

n stores the maximum character width of a number. I am basically using a worst-case
scenario, such as a negative number to get the maximum characters needed for the
number string:

julia> format(3.1)
"3.100"

julia> format(-3.1)
"-3.100"

You can see in the preceding example that when you use negative numbers you must
allow more characters. Later you will print with lpad using spaces, which means the
total width doesn’t change, whether the number is negative or not:

julia> lpad(format(4.2), 6)
" 4.200"

julia> lpad(format(-4.2), 6)
"-4.200"

Listing 5.6 Helper function for formating numbers

Round down to
three decimals.

If you have a negative number
you must allow for an extra
character for the - sign.

975.3 Reading and writing pizza sales to CSV files
5.3 Reading and writing pizza sales to CSV files
The data you have been dealing with thus far is in table format, which is exactly what a
spreadsheet application has been designed to deal with. A very common file format
for exchanging data between various types of spreadsheet applications and scientific
applications is called CSV, which is short for comma separated values. You will imple-
ment a store_pizzatable function to write pizza data in CSV format to a file and a
load_pizzatable function to read the same CSV file. The following is an example of
the pizza data CSV file format both functions will work with:

name,size,price
hawaiian,S,10.5
mexicana,S,13.0
hawaiian,L,16.5
bbq chicken,L,20.75
sicilian,S,12.25
bbq chicken,M,16.75
mexicana,M,16.0
thai chicken,L,20.75

The first line is referred to as the header. It gives a name to each column in the file. For
each row you separate each value with a comma. Figure 5.4 is an example of loading
such a CSV file into Apple Numbers.

Figure 5.4 Pizza sales data loaded into the Apple Numbers spreadsheet application

98 CHAPTER 5 Working with text
Say you produce lots of useful calculations you want to share, examine in a table, or
plot graphically; exporting to CSV format helps. Julia already has built-in functions for
this and very good external libraries, such as CSV.jl at csv.juliadata.org. However, your
focus will be on learning the basics of reading and writing to files; thus you will not be
using external packages or functions.

5.3.1 Writing pizza sales to a file

You will define a simple function, store_pizzatable, which outputs pizza sales data as
comma separated values.

function store_pizzatable(io, pizzas)
 println(io, "name,size,price")

 for pz in pizzas
 println(io, name(pz), ",",
 portion(pz), ",",
 price(pz))
 end
end

This function should look familiar to you. What is new is that the println function is
taking a new first argument named io. This presents some common pitfalls, so let me
use this function incorrectly at first:

julia> store_pizzatable("-->", pizzas[1:3])
-->name,size,price
-->hawaiian,S,10.5
-->mexicana,S,13.0
-->hawaiian,L,16.5

This is predictable. It just writes out the io object as a regular text string. But if the first
argument is of a special type—not a string, not a number, and not a Boolean but an IO
object, then you alter where the print and println functions write their output.

println("hello") is actually short for println(stdout, "hello"). What is stdout?
It is short for standard out, which represents a destination for your printing. stdout
represents the default destination for anything printed. The default is your terminal
window; however, the destination could be a file or even a network connection. You
can try using stdout instead of the string "--->", although the result will be rather
boring:

julia> store_pizzatable(stdout, pizzas[1:3])
name,size,price
hawaiian,S,10.5
mexicana,S,13.0
hawaiian,L,16.5

Listing 5.7 Function for exporting pizza sales data as comma separated values

Write out the
CSV header.

A line for each
pizza sold

995.3 Reading and writing pizza sales to CSV files
It gets more interesting when you provide a file as a destination. To do that you need
to create an IO object representing a file.

julia> io = open("pizza-sales.csv", "w")
IOStream(<file pizza-sales.csv>)

julia> store_pizzatable(io, pizzas)

julia> close(io)

You can go into shell mode by writing a semicolon ; at the beginning of the line.
Whenever you want to go back to the Julia mode, you can press Backspace at the start
of the line. Go into shell mode, and look at the file you created by using the Unix cat
command:

shell> cat pizza-sales.csv
name,size,price
hawaiian,S,10.5
mexicana,S,13.0
hawaiian,L,16.5
bbq chicken,L,20.75
sicilian,S,12.25
bbq chicken,M,16.75
mexicana,M,16.0
thai chicken,L,20.75

5.3.2 Reading pizza sales from a file

You may commonly download a CSV file from the internet that you want to read from.
Statistical data for anything from school results to unemployment numbers to GDP
per capita can be downloaded as a CSV file.

 You can open the pizza-sales.csv file and try to read from it. There are lots of clever
ways of doing this, which I will cover in greater detail in chapter 17. This example
keeps it simple using the readline function; it reads one line at a time:

julia> io = open("pizza-sales.csv")
IOStream(<file pizza-sales.csv>)

julia> line = readline(io)
"name,size,price"

julia> line = readline(io)
"hawaiian,S,10.5"

The source it reads from doesn’t need to be a file. As we discussed earlier, your termi-
nal window is treated as an IO object called stdout. There is a corresponding IO

Open the file pizza-sales.csv. The
second argument, w, tells Julia you
want to open it for writing. Hence,
the file will be created if it doesn’t
already exist.

Use the io object to
write pizza sales data
to the open file.

The connection to the file has to be closed when
you are done. Reading and writing to a file can

be buffered. Hence, unless you close, not all data
will have necessarily been written yet.

100 CHAPTER 5 Working with text
object representing your keyboard called stdin. This gives you a way of reading key-
board inputs:

julia> s = readline(stdin)
hello
"hello"

julia> print(s)
hello

To get a feel for how it works, it is best to try another example. You will make a simple
application that utilizes this shortly.

 Anyway, let’s get back to the pizzas. How do you turn a comma-separated string
into a pizza tuple or array? For this you can use the split function. It allows you to
split a string into multiple parts and collect the parts into an array:

julia> pizza = split(line, ',')
3-element Vector{SubString{String}}:
 "hawaiian"
 "S"
 "10.5"

There are, however, a number of problems with treating this as a pizza. Say you want
to add a value-added tax of 25%. That will not work:

julia> p = price(pizza)
"10.5"

julia> p*1.25
ERROR: MethodError: no method matching *(::SubString{String}, ::Float64)

This problem exists because the price, p, isn’t actually a number but a string (or, more
specifically, a substring, but let’s not get bogged down in details):

julia> typeof(p)
SubString{String}

This applies to anything you read from a file; Julia will treat it as text. It cannot know
that you might want part of the file to be represented as numbers, Boolean values, or
something else. However Julia has a function called parse, which allows you to con-
vert a text string to anything else. In the following snippet you can see the conversion
to a number:

julia> parse(Int, "42")
42

julia> parse(Float64, "42")
42.0

The text you wrote, which
got captured by readline

The value stored in s. Notice the
use of quotation marks to
indicate this value is a string.

1015.4 Interacting with the user
julia> parse(Bool, "true")
true

julia> parse(Bool, "1")
true

Here the number 42 is parsed twice. In the first case it is turned into a integer, while in
the second case it is turned into a floating-point number. Thus the same text can be
interpreted in many different ways. It is your choice how to interpret it.

 There are also entirely different text strings that can be interpreted as the same
object. For example, both "true" and "1" can be parsed as the Boolean value true.
With these building blocks you can put together a pizza loading function.

function load_pizzatable(io)
 pizzas = []
 readline(io)
 while !eof(io)
 pz = split(readline(io), ',')
 pr = parse(Float64, price(pz))
 sz = portion(pz)
 push!(pizzas, (name(pz), sz[1], pr))
 end
 pizzas
end

If you try this function in the REPL you should get a result similar to this:

julia> io = open("pizza-sales.csv");

julia> pizzas = load_pizzatable(io)
8-element Vector{Any}:
 ("hawaiian", 'S', 10.5)
 ("mexicana", 'S', 13.0)
 ("hawaiian", 'L', 16.5)
 ("bbq chicken", 'L', 20.75)
 ("sicilian", 'S', 12.25)
 ("bbq chicken", 'M', 16.75)
 ("mexicana", 'M', 16.0)
 ("thai chicken", 'L', 20.75)

julia> close(io)

5.4 Interacting with the user
Let’s make an interactive application demonstrating the utility of being able to read
user input through stdin. This one was inspired by a simple application I made to
help my children practice their multiplication tables (figure 5.5).

Listing 5.8 Loading pizza sales data

A place to store
a list of pizzas

Skip the header
name, size, price.

eof is short for end of file. This
function will be true when there
is nothing more to read.

Turn the price text string into
an actual number with parse.

Add an entry to your list of pizzas.
Notice sz[1]; this is your way of
turning a string such as "M" into
the character 'M'.

102 CHAPTER 5 Working with text
The app repeatedly asks the user to multiply two numbers and checks the answer. At
the end you get a summary of how many correct answers you got. Let’s look at the
implementation of the practice function.

function practice(n)
 correct = 0
 for i in 1:n
 x = rand(2:9)
 y = rand(2:9)
 print(x, " * ", y, " = ")
 answer = readline(stdin)
 z = parse(Int, answer)
 if z == x*y
 correct += 1
 else
 printstyled("Wrong, it is ", x*y, color = :red)
 println()
 end
 end
 println("Correct: ", correct, " of ", n)
end

You can start this program by invoking the practice function from the REPL. Say you
want to practice on eight different multiplications. You would write the following:

julia> practice(8)

Whenever you deal with more complex functions you are trying to understand, you
can explore how they work by simply copying and pasting lines of code like this:

julia> x = rand(2:9)
3

julia> y = rand(2:9)
6

Listing 5.9 Practice multiplication: Asks user to write n answers

Figure 5.5 Running the
multiplication testing
application

Keep track of how many
answers the user got right.

Random numbers
in the range 2 to 9

Convert the number the
user wrote to an integer.

Check if the user got
the answer right.

103Summary
julia> print(x, " * ", y, " = ")
3 * 6 =
julia> answer = readline(stdin)
18
"18"

The benefit is that you can see the value of every expression. This allows you to see
how a value gets transformed in multiple steps. For example, you can explore why
comparing the answer directly doesn’t work:

julia> z = parse(Int, answer)
18

julia> answer == x*y
false

julia> z == x*y
true

To cement your understanding you can experiment with improving this program.
Here are some ideas: Time yourself. Record how long you spend answering the ques-
tions. You can use the time() function for this purpose. Record the time before ask-
ing questions and after you are done. Look at the difference. You might want to round
to nearest second with the round() function. Use the Julia help system to see how to
best use these functions.

 You might also want to provide the range used with rand as an argument to the
practice function. There might be a particular range of numbers you want to prac-
tice more on. It could also be fun experimenting with creating nice tables using the
─,├, ┤, and ┼ symbols.

Summary
 print, println, and printstyled can all be used to send text to a destination

such as a terminal window or a file.
 In a terminal, one can use special control character sequences to write colored

text. printstyled simplifies this task, so you only have to remember the names
of different colors.

 To write to files or read from them, you need to open them. When you are
done, you need to close them.

 While reading a file, you can check if you are done with eof.
 The lpad and rpad functions help you align text in columns. This is done by

padding with a chosen character either on the left or right side until the
desired string width is achieved.

 Text can be written or read from IO objects. IO objects are placeholders for real
physical things, such as files on a hard drive, a keyboard, a network connection,
or a terminal window—or even a teletype.

 Text strings can be converted to a variety of objects using the parse function.

Storing data
in dictionaries
This chapter introduces a new data type called a dictionary. In some other languages
this datatype is also referred to as a map. In dictionaries, values are looked up by keys,
as opposed to being looked up exclusively using integer indices, like in an array. The
code example illustrates the difference. Each line performs the following operations:

1 Looking up the 42nd value x in array xs. Values in arrays are ordered. How-
ever, xs could have been a dictionary as well, since dictionary keys can be
anything, including integers.

2 Looking up a value y in dictionary ys with the key "foo".
3 Using a character 'D' rather than a string as the key in the dictionary zs to

lookup value z.

x = xs[42]
y = ys["foo"]
z = zs['D']

This chapter covers
 Storing values on keys in dictionaries

 Working with pair objects

 Using tuples to create dictionaries

 Comparing dictionaries and arrays

 Comparing named tuples and dictionaries
104

1056.1 Parsing Roman numerals
You will discover the utility of dictionaries by working through a code example involv-
ing the conversion of Roman numerals to decimal values and back. A dictionary will
be used to keep track of what value a letter such as I, V, or X corresponds to in the dec-
imal system.

6.1 Parsing Roman numerals
While Roman numerals are not very practical to use today, they are useful to learn
about for understanding number systems. In particular, when programming, you will
encounter various number systems.

 Both Roman numerals and binary—the system used by computers—may seem very
cumbersome to use. However it often appears that way because you don’t use the
numbers as they were intended.

 It is hard to make calculations using Roman numerals with pen and paper com-
pared to Arabic numerals (which is what you typically use for numerals). However, the
Romans did not use pen and paper to perform calculations. Rather they performed
their calculations using a Roman abacus (figure 6.1).

It is divided into multiple columns. Going from right to left, you can see columns of
pebbles marked as I, X, and C; they each contain four pebbles. Each of these pebbles
represents a different value, depending on what column they are in:

 In the I column every pebble represents 1.
 In the X column, every pebble represents 10.
 In the C column, every pebble represents 100.

These columns contain a single pebble each. They are called V, L, and D and repre-
sent the values 5, 50, and 500. (On a Roman abacus you cannot actually see the
VLD letters.)

NOTE The beauty of the Roman system is that you can quickly write down
exactly what the pebbles on the abacus say. Likewise, it is quick to arrange
pebbles on a Roman abacus to match a Roman numeral you have read. For
this reason Roman numerals were used all the way into the 1500s in Europe,
long after Arabic numerals had been introduced.

Figure 6.1 A Roman abacus with
pebbles representing different values.
The column decides how much value
each pebble is given.

106 CHAPTER 6 Storing data in dictionaries
Let’s look at how you can use this knowledge to parse Roman numerals and turn them
into Arabic numerals. Put the following code into a text file, and save it. Don’t worry
about the new syntax; we will cover that.

roman_numerals =
 Dict('I' => 1, 'X' => 10, 'C' => 100,
 'V' => 5, 'L' => 50, 'D' => 500,
 'M' => 1000)

function parse_roman(s)
 s = reverse(uppercase(s))
 vals = [roman_numerals[ch] for ch in s]
 result = 0
 for (i, val) in enumerate(vals)
 if i > 1 && val < vals[i - 1]
 result -= val
 else
 result += val
 end
 end
 result
end

Load this file into the Julia REPL environment to test it out. This is an example of
using parse_roman with different Roman numerals as input:

julia> parse_roman("II")
2

julia> parse_roman("IV")
4

julia> parse_roman("VI")
6

julia> parse_roman("IX")
9

julia> parse_roman("XI")
11

Let’s go through how the code works.

6.2 Using the Dict type
You map or translate the Roman letters I, V, X, and so on to numbers using what is
called a dictionary. A dictionary is made up of multiple pairs; pairs are constructed
using the arrow operator, =>. You cannot use the equals operator, =, because it is used
for assignment. x = y assigns the value of y to variable x, while x => y creates a pair of
the values in x and y:

Listing 6.1 Parsing and converting Roman numerals to decimal numbers

1076.2 Using the Dict type
julia> 'X' => 10
'X' => 10

julia> pair = 'X' => 10
'X' => 10

julia> dump(pair)
Pair{Char,Int64}
 first: Char 'X'
 second: Int64 10

julia> pair.first
'X': ASCII/Unicode U+0058 (category Lu: Letter, uppercase)

julia> pair.second
10

Pairs are composite objects with the fields first and second. These fields allow you to
access both values given when the pair was constructed. However, you should consider
that an implementation detail and access the fields of pairs with first and last acces-
sor functions. This behavior makes pairs very similar to range objects covered in chap-
ter 3 and tuples covered in chapter 4:

julia> range = 2:4
2:4

julia> pair = 8=>9
8 => 9

julia> tuple = (3, 'B')
(3, 'B')

julia> first(range), first(pair), first(tuple)
(2, 8, 3)

julia> last(range), last(pair), last(tuple)
(4, 9, 'B')

In this code example I accessed several values in one line by separating them with a
comma. That produced a tuple with three values.

 It may seem confusing that the second field of a pair is accessed with the function
last. The reason is that last element also exists for arrays and tuples. Hence last gen-
eralizes better across multiple collection types.

NOTE Out of curiosity you may try to use the dump function on a dictionary
object. It has fields such as slots, idxfloor, maxprobe, and so on, which
likely won’t make much sense. That is because dump exposes implementation
details. As a user of a datatype, you should not need to know what fields it has,
only which function you can use to operate on it.

A pair of the letter X
and the number 10

Pairs can be stored in a
variable and examined later.

dump allows you to look at
the fields of any value.

Extracting the first
value in the pair

108 CHAPTER 6 Storing data in dictionaries
You provide a list of these pairs to create a dictionary. The following code shows how
to create a dictionary to map letters used by Roman numerals to their corresponding
decimal value.

julia> roman_numerals =
 Dict('I' => 1, 'X' => 10, 'C' => 100,
 'V' => 5, 'L' => 50, 'D' => 500,
 'M' => 1000)
Dict{Char,Int64} with 7 entries:
 'M' => 1000
 'D' => 500
 'I' => 1
 'L' => 50
 'V' => 5
 'X' => 10
 'C' => 100

When used in a dictionary, you refer to the first values in each pair as the keys in the
dictionary. The second values in each pair form the values of the dictionary. So I, X,
and C are keys, while 1, 10, and 100 are values.

 You can ask a dictionary for the value corresponding to a key. This takes a Roman
letter and returns the corresponding value:

julia> roman_numerals['C']
100

julia> roman_numerals['M']
1000

6.3 Looping over characters
You can use this dictionary to help you convert Roman letters to corresponding val-
ues. At line 8 in the parse_roman function, you do this conversion with what is called
an array comprehension. You iterate over every character, ch, in the string, s. On each
iteration, you evaluate roman_numerals[ch], and all of these values get collected into
an array:

vals = [roman_numerals[ch] for ch in s]

A comprehension is like a for-loop, where a value is evaluated on each iteration and
added to a collection. You can create a comprehension for any collection, including
dictionaries:

julia> Dict('A'+i=>i for i in 1:4)
Dict{Char, Int64} with 4 entries:
 'C' => 2
 'D' => 3
 'E' => 4
 'B' => 1

1096.4 Enumerating values and indices
But in the Roman-numeral code the comprehension for loop is used to build an array.
To better understand how an array comprehension works let’s look at a regular for loop
doing the exact same thing. In this example, you start with Roman numerals "XIV",
which you want to convert:

julia> s = "XIV"
"XIV"

julia> vals = Int8[]
Int8[]

julia> for ch in s
 push!(vals, roman_numerals[ch])
 end

julia> vals
3-element Vector{Int8}:
 10
 1
 5

"XIV" is turned into the array of values [10, 1, 5], named vals. However, the job is
not quite done. Later, you need to combine these values into one number.

 Before converting input strings, the code sets every letter in uppercase. "xiv"
would not get processed correctly because all the keys to the dictionary are uppercase.

 I will walk you through the mechanics of the process and save the explanation for
why you perform these steps for last. Reverse the order of the letters, so you can pro-
cess numerals conveniently from right to left in a loop:

julia> s = "xiv"
"xiv"

julia> s = reverse(uppercase(s))
"VIX"

6.4 Enumerating values and indices
When processing a value, val, in the loop, you want to be able to compare with the
preceding value. You could have accomplished that with a variable, say prev, store
value from the previous iteration. Instead, you will use the enumerate function to get
the index, i, of each value, val, being processed. The value preceding val is then sim-
ply vals[i-1]:

for (i, val) in enumerate(vals)
 if i > 1 && val < vals[i - 1]
 result -= val
 else
 result += val
 end
end

110 CHAPTER 6 Storing data in dictionaries
To better understand how enumerate works, let’s use some examples focused exclu-
sively on enumerate:

julia> enumerate([4, 6, 8])
enumerate([4, 6, 8])

That output wasn’t very useful at all. The reason is that enumerate is lazy. You don’t get
any values out because this expression doesn’t actually need any values to be evalu-
ated. But you can use the collect function to collect all the values enumerate would
have produced into an array. The following is a simple example of collecting a range:

julia> collect(2:3:11)
4-element Vector{Int64}:
 2
 5
 8
 11

More interesting is how you collect values from an enumeration:

julia> collect(enumerate(2:3:11))
4-element Vector{Tuple{Int64, Int64}}:
 (1, 2)
 (2, 5)
 (3, 8)
 (4, 11)

julia> collect(enumerate([4, 6, 8]))
3-element Vector{Tuple{Int64, Int64}}:
 (1, 4)
 (2, 6)
 (3, 8)

The collect function will simulate looping over something, just like a for loop,
except it will collect all the values encountered into an array, which it returns. So you
can see with enumerate you get a pair of values upon each iteration: an integer index
and the value at that index.

6.5 Explaining the conversion process
You cannot simply add up the individual Roman letters converted to their correspond-
ing values. Consider the Roman number XVI. It turns into [10, 5, 1]. You could add
up the elements and get the correct result: 16. However, XIV is supposed to mean 14
because when a smaller Roman numeral is in front of a larger one, such as in IV, you
subtract the smaller value from the larger.

 You cannot just sum up the corresponding array [10, 1, 5]. Instead, you reverse it
to work your way backwards through the values. At every index you ask if the current
value is lower than the previous one. If it is, you subtract from the result; otherwise
you add the following:

1116.6 Using dictionaries
if i > 1 && val < vals[i - 1]
 result -= val
else
 result += val
end

That is what val < vals[i - 1] does. It compares the current value, val, to the previ-
ous value, vals[i -1]. result is used to accumulate the value of all the individual
Roman letters.

6.6 Using dictionaries
Now that you have looked at a practical code example utilizing the dictionary type
Dict in Julia, let’s explore some more ways of interacting with a dictionary.

6.6.1 Creating dictionaries

There are a multitude of ways to create a dictionary. In this section, I’ll discuss some
examples, starting with multiple arguments, where each argument is a pair object:

julia> Dict("two" => 2, "four" => 4)
Dict{String,Int64} with 2 entries:
 "two" => 2
 "four" => 4

Pass an array of pairs to the dictionary constructor (a function named the same as the
type it makes instances of):

julia> pairs = ["two" => 2, "four" => 4]
2-element Vector{Pair{String, Int64}}:
 "two" => 2
 "four" => 4

julia> Dict(pairs)
Dict{String,Int64} with 2 entries:
 "two" => 2
 "four" => 4

Pass an array of tuples to the dictionary constructor. Unlike pairs, tuples may contain
more than two values. For dictionaries they must only contain a key and a value
though:

julia> tuples = [("two", 2), ("four", 4)]
2-element Vector{Tuple{String, Int64}}:
 ("two", 2)
 ("four", 4)

julia> Dict(tuples)
Dict{String,Int64} with 2 entries:
 "two" => 2
 "four" => 4

112 CHAPTER 6 Storing data in dictionaries
How do you know which variant to use? That depends on the problem you are trying to
solve. For instance, when you read pizza data in chapter 5, you got an array of tuples back:

pizzas = [
 ("mexicana", 13.0),
 ("hawaiian", 16.5),
 ("bbq chicken", 20.75),
 ("sicilian", 12.25),
]

You might want to put this data into a dictionary to quickly look up the price for a
given pizza:

julia> pizza_dict = Dict(pizzas)
Dict{String, Float64} with 4 entries:
 "sicilian" => 12.25
 "bbq chicken" => 20.75
 "mexicana" => 13.0
 "hawaiian" => 16.5

julia> pizza_dict["mexicana"]
13.0

However, if keeping pizza data in order is not important, you could define this dictio-
nary directly instead:

Dict(
 "sicilian" => 12.25,
 "bbq chicken" => 20.75,
 "mexicana" => 13.0,
 "hawaiian" => 16.5)

Sometimes you need an empty dictionary, which you later fill up. One example would
be loading from file straight into a dictionary. Instead of appending values to the end
of an array, you could insert them into a dictionary:

julia> d = Dict()
Dict{Any, Any}()

Notice the {Any, Any} part. This describes what Julia has inferred is the type of key and
value in the dictionary. However, when you created your pizza dictionary, you would
have noticed that Julia described it as having the Dict{String, Float64} type. String
refers to the type of keys in the dictionary, and Float64 refers to the type of values. You
can, however, specify the types of keys and values for an empty dictionary as well:

julia> d = Dict{String, Float64}()
Dict{String,Int64} with 0 entries

julia> d["hawaiian"] = 16.5
16.5

1136.6 Using dictionaries
The benefit of specifying the type of the key and value is that it is easier to catch wrong
usage of the dictionary at runtime. If you try to use values of the wrong type for key
and value, Julia will throw an exception to indicate an error (chapter 6 covers differ-
ent types in greater depth). In this case you are trying to use an integer 5 as a key
when a text string key is expected:

julia> d[5] = "five"
ERROR: MethodError: Cannot `convert` an object of type Int64
to an object of type String

Sometimes you get keys and values in separate arrays. However you can still combine
them into pairs to create dictionaries using the zip function.

julia> words = ["one", "two"]
2-element Vector{String}:
 "one"
 "two"

julia> nums = [1, 2]
2-element Vector{Int64}:
 1
 2

julia> collect(zip(words, nums))
2-element Vector{Tuple{String,Int64}}:
 ("one", 1)
 ("two", 2)

julia> Dict(zip(words, nums))
Dict{String,Int64} with 2 entries:
 "two" => 2
 "one" => 1

6.6.2 Element access

You have already looked at one way of getting and setting dictionary elements. But
what happens if you try to retrieve a value for a key that does not exist, such as
"seven"?

julia> d["hawaiian"]
16.5

julia> d["seven"]
ERROR: KeyError: key "seven" not found

You get an error. You can, of course, simply add it:

julia> d["seven"] = 7;

julia> d["seven"]
7.0

114 CHAPTER 6 Storing data in dictionaries
But how do you avoid producing an error when you are not sure a key exists? One
solution is the get() function. If the key does not exist, a sentinel value is returned
instead. The sentinel can be anything.

NOTE In computer programming, a sentinel value (also referred to as a flag
value, a trip value, a rogue value, a signal value, or dummy data) is a special value
in the context of an algorithm that uses its presence as a condition of termina-
tion, typically in a loop or recursive algorithm.

This is a strategy used in many programming languages when working with dictionar-
ies. The following example uses -1 as a sentinel value:

julia> get(d, "eight", -1)
-1

Or you could simply ask the dictionary if it has the key:

julia> haskey(d, "eight")
false

julia> d["eight"] = 8
8

julia> haskey(d, "eight")
true

6.7 Why use a dictionary?
In principle, you could use an array to do the conversion of Roman numerals to deci-
mal numbers. Here is an example of how you could do that.

function lookup(key, table)
 for (k, v) in table
 if key == k
 return v
 end
 end
 throw(KeyError(key))
 end

You could define the lookup table as an array of pairs instead of a dictionary:

numerals = ['I' => 1, 'X' => 10, 'C' => 100,
 'V' => 5, 'L' => 50, 'D' => 500,
 'M' => 1000]

With this you could do lookup of values based on keys in a similar fashion to a dictionary.

Listing 6.2 Look up a value by key in an array of key–value pairs

Pull out the key k and value
v of each pair in the array.

It found a matching key, so
return the corresponding value.

If iterating over all the pairs didn’t find a matching
key, then you are unable to return anything and must
throw an exception instead. The KeyError exception is the
convention to use in Julia in cases where keys are missing.

1156.7 Why use a dictionary?
julia> lookup('X', roman_numerals)
10

julia> lookup('D', roman_numerals)
500

julia> lookup('S', roman_numerals)
 ERROR: KeyError: key 'S' not found

Avoid arrays when doing key-based lookup because the time to perform a lookup
grows linearly with the size of the array. Looking up an element among 30 entries
takes, on average, three times as long as looking up an entry among 10 elements. It
is not hard to see how this does not scale well with large arrays. Looking for one ele-
ment among 1 million elements will take 1,000 times longer than locating it among
1,000 elements.

 Dictionaries, in contrast, are made so that the lookup time is independent of how
many elements the dictionary contains. Looking up 1 element among 100 is similar to
doing it among 1 million.

But don’t discount arrays. Short arrays are very fast to search—faster than a dictionary
of comparable size. Thus, while the number of elements is less than 100, arrays are
still a viable choice. In fact, the Roman-numeral code example used a dictionary
because dictionaries are convenient to work with when dealing with key-based lookup,
and you never have to worry about performance taking a nosedive because you added
too many elements.

 However, there are special cases in which using an array can work really well
(e.g., if you never modify the array). If elements are never added or removed you
can simply keep the array sorted. A sorted array can be searched very quickly using
Julia’s searchsortedfirst function. In fact, the Roman numeral code example is
well suited for this approach, since the mapping between numerals and decimal
values is fixed. You can do this by keeping the keys and values in separate arrays
sorted by the key values.

keys = ['C', 'D', 'I', 'L', 'M', 'V', 'X']
vals = [100, 500, 1, 50, 1000, 5, 10]

Why are dictionary lookups so fast?
Why dictionaries allow fast lookup of a value given a key is outside the scope of this
book. Books about data structures and algorithms usually cover this topic in detail,
and a dictionary refers more to the interface to the data than the actual data structure
used to achieve fast lookups. In Julia, hash tables are used to allow fast lookups, but
it is also possible to implement a dictionary using a binary search tree data structure.

Listing 6.3 Array of sorted keys with a matching array of values

A demonstration of looking
up a key that doesn’t exist,
producing an exception

116 CHAPTER 6 Storing data in dictionaries
With searchsortedfirst you can find the index of a particular key.

julia> i = searchsortedfirst(keys, 'I')
3

Make sure the value for key I is located at the same index i in the vals array:

julia> vals[i]
1

Here’s another example:

julia> j = searchsortedfirst(keys, 'V')
6

julia> vals[j]
5

6.8 Using named tuples as dictionaries
Before rounding off this chapter, I want to show you another neat trick that allows you
to write more-readable code with better performance. You have already seen tuples
where you can access elements by index. What you have not seen is accessing tuple val-
ues by key, just like a dictionary.

 Remember you created a pizza tuple like this: ("hawaiian", 'S', 10.5). It is possi-
ble to give names to each value; the names you give will not be text strings but Julia
symbols (built-in Julia type to represent identifiers). In chapter 5, you used symbols
such as :cyan, :green, and :red to specify color of printed text. Similarly, you can
access individual values in the pizza tuple using symbols such as :name and :price:

julia> pizza = (name = "hawaiian", size = 'S', price = 10.5)
(name = "hawaiian", size = 'S', price = 10.5)

julia> pizza[:name]
"hawaiian"

julia> pizza[:price]
10.5

julia> pizza.name
"hawaiian"

julia> pizza.size
'S': ASCII/Unicode U+0053

Notice how you use a shortcut in the last two expressions; pizza[:price] is equivalent
to writing pizza.price. This way of working with data will look familiar to JavaScript
developers.

 Keep in mind that symbols are a lot more limited in functionality than strings. In
most cases they are treated as atomic values. You cannot access individual characters

1176.8 Using named tuples as dictionaries
in a symbol or combine and manipulate them like strings. Fortunately, it is easy to con-
vert back and forth between keys and strings:

julia> s = "price"; t = :name;

julia> Symbol(s)
:price

julia> string(t)
 "name"

With this knowledge you can rewrite your parse_roman function from listing 6.1 to
use a named tuple instead of a dictionary. Observe that you have to change the lookup
roman_numerals[ch] to roman_numerals[Symbol(ch)] because roman_numerals no
longer have characters as keys but symbols.

roman_numerals =
 (I = 1, X = 10, C = 100,
 V = 5, L = 50, D = 500,
 M = 1000)

function parse_roman(s)
 s = reverse(uppercase(s))
 vals = [roman_numerals[Symbol(ch)] for ch in s]
 result = 0
 for (i, val) in enumerate(vals)
 if i > 1 && val < vals[i - 1]
 result -= val
 else
 result += val
 end
 end
 result
end

6.8.1 When do you use a named tuple?

Named tuples look very similar to dictionaries, so what is the point of having them? All
types of tuples are immutable, meaning you cannot change them. You cannot add values
to a tuple after you have created it, nor can you modify existing values. In contrast, both
arrays and dictionaries allow you to add values. Dictionaries give you a wider selection of
types which can by used as keys. A named tuple only allows you to use symbols as keys.

 The benefit of any tuple type over an array or a dictionary is that the Julia JIT com-
piler will know exactly which elements will be in the tuple at any given time, which
allows for more aggressive optimizations. Thus you can assume a tuple will generally
give you equal or better performance compared to an array or a dictionary.

 While only using symbols as keys is a limitation, it also allows named tuples to offer
more convenient syntax for accessing values. For example, pizza.name is easier to
write and read than pizza[:name].

Listing 6.4 Parsing Roman numerals using named tuples

Create a symbol from a string.

Create a string from a symbol.

Changed from
dictionary to
named tuple

Lookup with
Symbol(ch)
instead of ch

118 CHAPTER 6 Storing data in dictionaries
6.8.2 Tying it all together

This chapter has covered all the key types any programmer should know. With num-
bers, ranges, strings, arrays, tuples, and dictionaries you can do almost anything. How-
ever, I have not yet said much about what a type actually is or how you can make your
own custom types. This is crucial for facilitating the construction of larger, more fea-
ture-rich applications. That will be the focus of the next two chapters.

Summary
 Dictionaries hold key–value pairs, where the key has to be unique.
 Key–value pairs can quickly be looked up, added, or removed from a dictionary.

This differs from large arrays, which may require time-consuming searches.
 Arrays offer better performance when the number of elements is small or when

you can do index-based rather than key-based accessing of elements.
 In Julia, keys and values are typed. Hence, Julia is able to catch the usage of keys

of the wrong type as well as attempts at inserting values of the wrong type.
 Named tuples work like an immutable version of dictionaries. You can look up

values, but you cannot modify them or add new entries.

Part 2

Types

In part 1, Basics, you looked at types in a superficial manner. Part 2 discusses
the Julia type system in greater detail by building up various examples, such as a
recurring rocket example, that demonstrate how the type system works and what
benefits it offers.

 This part introduces what makes Julia special. The greater depth of coverage
of the type system in this part also allows me to cover how functions and meth-
ods work in Julia. In particular, it allows a proper explanation of multiple dis-
patch, which is the killer feature in Julia. Multiple dispatch is at the heart of what
makes Julia such an expressive and high-performance language, despite being
dynamically typed.

Understanding types
All objects in Julia are of a particular type. Remember, you can use typeof to dis-
cover the type of any object:1

julia> typeof(42)
Int64

julia> typeof('A')
Char

This chapter covers
 Understanding type hierarchies

 Differences between abstract and concrete types

 Combining primitive types to make composite
types

 Harnessing the power of multiple dispatch to
solve complex tasks elegantly

 How multiple dispatch differs from single
dispatch in object-oriented languages1

1 Most mainstream languages today are object oriented. They are designed to couple behavior to types and
reuse functionality through what we call inheritance.
121

122 CHAPTER 7 Understanding types
julia> typeof("hello")
String

The type decides what you can do with an object. For example, a dictionary allows you
to look up a value by key, while an array stores elements in order. An expression evalu-
ating to a Bool value, such as true or false, can be used in an if statement and while
loops, while expressions evaluating to a floating-point value can’t:

julia> if 2.5
 print("this should not be possible")
 end
ERROR: TypeError: non-boolean (Float64) used in boolean context

Thus, if you want to create objects with different behavior and features, you need to
define new types. In programming, we often try to mimic the real world:

 Banking apps have types representing bank accounts, customers, and transac-
tions.

 Video games have objects representing monsters, heroes, weapons, spaceships,
traps, and so on.

 Graphical user interfaces have objects representing buttons, menu entries, pop-
up menus, and radio buttons.

 Drawing applications have objects representing different shapes, strokes, col-
ors, and drawing tools.

So whatever type of application you want to make, you will need to know how to create
relevant types to the application. This chapter and the next one will define types rele-
vant to model behavior in a video game and rocket simulator.

7.1 Creating composite types from primitive types
Let’s start with the basics: Integers, characters, and floating-point numbers are all
examples of primitive types. You cannot break them further down into smaller parts.
In some languages, such as LISP, these are aptly named atoms. With the isprimitive-
type you can check whether a type is primitive:

julia> isprimitivetype(Int8)
true

julia> isprimitivetype(Char)
true

julia> isprimitivetype(String)
false

You can combine primitive types to create composite types. Composite types can even be
made out of other composite types. For example, a string is a composite type made up
of multiple characters, which are primitive types. Let’s demonstrate this with a concrete

1237.1 Creating composite types from primitive types
example by defining a composite type that could be useful in a video game to repre-
sent an archer shooting arrows at opponents.

struct Archer
 name::String
 health::Int
 arrows::Int
end

Think of types as templates or cookie cutters, which you use to stamp out multiple
objects. The objects you make from a type are called instances.

WARNING Julia composite types may look very similar to classes in Java, C++,
or Python, but they are not the same thing. They don’t support implementa-
tion inheritance and don’t have methods attached.

The following snippet shows the creation of instances of the Archer type. You may also
hear people use phrases such as, “Instantiate an Archer object.”

julia> robin = Archer("Robin Hood", 30, 24)
Archer("Robin Hood", 30, 24)

julia> william = Archer("William Tell", 28, 1)
Archer("William Tell", 28, 1)

julia> robin.name
"Robin Hood"

julia> robin.arrows
 24

The definition of a composite type has some similarities with using a dictionary. For
example, you define fields for storing values that can be accessed through their field
name. However, unlike a dictionary, you can specify a different type for each field
using a type annotation.

IMPORTANT In Julia the :: is used to annotate variables and expressions with
their type. x::T means variable x should have type T. It helps Julia figure out
how many bytes are needed to hold all fields in a struct.

To clarify this point, define a dictionary to hold information about an archer.

julia> robin = Dict("name" => "Robin Hood",
 "health" => 30,
 "arrows" => 24)
Dict{String, Any} with 3 entries:
 "name" => "Robin Hood"

Listing 7.1 Definition of a composite type

Listing 7.2 Using a dictionary to store information about an archer

The name of the
archer—say Robin Hood

Health points left

Arrows left in the quiver

Access the name field
of the robin object.

Access the arrows field
of the robin object.

Dictionary with String
key and where the
value is of type Any

124 CHAPTER 7 Understanding types
 "health" => 30
 "arrows" => 24

julia> robin["name"]
"Robin Hood"

julia> robin["arrows"]
24

A problem with using a dictionary is that it requires every value to be of the same type.
But wait a minute, how can this be the case? name and arrows are entirely different
types?

 The short answer is that the values in the dictionary are of type Any. That means
you can store values of any type. The keys are more restrictive, as they are defined to
be of type String. But to really understand how this works you need to explore Julia
type hierarchies.

7.2 Exploring type hierarchies
If you are familiar with object-oriented languages, then you should be familiar with
class2 inheritance hierarchies. In Julia, you also have type hierarchies, but a significant
difference is that these hierarchies also exist for primitive types. For example, in a lan-
guage such as Java or C++, an integer or floating-point number is just one concrete
type. However, in Julia, even numbers, collections, and strings are part of deeper type
hierarchies (figure 7.1).

 You can explore these hierarchies with the supertype and subtypes functions. You
can recreate the type hierarchy for numbers in figure 7.1 by starting at the top of the
type hierarchy and working your way downward, using the subtypes function to find
subtypes, which can then be explored further:

julia> subtypes(Number)
2-element Vector{Any}:
 Complex
 Real

julia> subtypes(Real)
4-element Vector{Any}:
 AbstractFloat
 AbstractIrrational
 Integer
 Rational

julia> subtypes(Integer)
3-element Vector{Any}:
 Bool
 Signed
 Unsigned

2 A class in object-oriented programming is a type that can be part of a type hierarchy and has associated func-
tions called methods.

Accessing
value stored
for name key

Find immediate
subtypes of the
Number type.

Discover
subtypes of
real numbers.

Integers can
be signed or
unsigned.

1257.2 Exploring type hierarchies
But how do you know that the root of the number hierarchy is the Number type? You
could work your way upward from number types you already know:

julia> T = typeof(42)
Int64

julia> T = supertype(T)
Signed

julia> T = supertype(T)
Integer

julia> T = supertype(T)
Real

julia> T = supertype(T)
Number

You can even continue to pass the root of the number hierarchy, until you get to the
root of the whole Julia type hierarchy. Once you reach Any, you know you have reached
the top of the type hierarchy because the supertype of Any is also Any:

Number

ComplexReal

Unsigned

Integer

Irrational

Bool

Int64

Float64

Abstract
float

Abstract
irrational

Signed

UInt64Int32

Float32

Rational

UInt8

Figure 7.1 Type hierarchy for numbers, showing abstract and concrete types
in dark and light shaded boxes

Store the type of
42 in variable T.

Look up
supertype Int64,
and store it in T.

126 CHAPTER 7 Understanding types
julia> T = supertype(T)
Any

julia> T = supertype(T)
Any

It is essential to realize that Julia’s types are first-class objects that you can pass around
as arguments or store in variables. For example, here you are storing the type of the
integer 42 in a variable called T. It is a convention in many languages to use T as a name
for an arbitrary type. Let’s explore the type hierarchy with some simple functions.

function findroot(T)
 T2 = supertype(T)
 println(T)
 if T2 != T
 findroot(T2)
 end
end

This is a recursive3 function, which you can use to find the top of the type hierarchy:

julia> findroot(typeof(42))
Int64
Signed
Integer
Real
Number
Any

julia> supertype(Any)
Any

You can see that the type hierarchy stops at Any, since the supertype of Any is Any. So
what is the significance of these type of hierarchies? How do they help you as a pro-
grammer? Let me give you this example in the REPL to give you a hint:

julia> anything = Any[42, 8]
2-element Vector{Any}:
 42
 8

julia> integers = Integer[42, 8]
2-element Vector{Integer}:
 42
 8

Listing 7.3 Finding the root of the type hierarchy

3 A recursive function is a function that calls itself as opposed to using a loop.

Check if the
supertype of T is
the same as T.

Define an array
that can hold
Any value.

Define an array
to hold Integer
values.

1277.3 Creating a battle simulator
julia> anything[2] = "hello"
"hello"

julia> integers[2] = "hello"
ERROR: MethodError: Cannot `convert` an object
 of type String to an object of type Integer

Since every object in Julia conforms to the Any type, you can put any object into an
array where you have specified that each element must be of type Any. However, not
every Julia object is of type Integer. Thus, putting a text string such as "hello" into
an array where each element must be of type Integer will not work.

 How do you know what types are compatible? The value you try to store has to be
of a type that is a subtype of the allowed element type. It turns out you can check this
programmatically with the <: operator.

julia> String <: Any
true

julia> String <: Integer
false

julia> Int8 <: Integer
true

julia> Float64 <: Integer
 false

You can see from this example that types cannot be merely somewhat related (e.g.,
floating-point numbers and integers). For example, 4.5 is a floating-point number but
not an integer. However both Int8(4) and Int32(5) are integer numbers; they are
subtypes of Integer.

 That should give you a hint about the advantages of defining composite types to
hold related data over using a dictionary. Each field can have a different type. That
provides better type checking at runtime.

7.3 Creating a battle simulator
To further explore these concepts, you will develop a simple simulator of battles
between different warriors, as is frequently done in board games, card games, and
video games.

 Many computer games work on the rock-paper-scissors principle. Let me clarify:
there are archers, knights, and pikemen in your game, which you would set up so that

 archers beat pikemen,
 knights beat archers, and
 pikemen beat knights.

Listing 7.4 Examining which types are subtypes of each other

Putting a string
into anything array
works fine.

The integers array will not accept strings.

A string is
not a kind of
integer.

Float64 is a
number but
not an integer.

128 CHAPTER 7 Understanding types
That is roughly how these units worked historically. Archers would fire arrows at slow-
moving pikemen and beat them before they could get close enough to attack the
archers. This strategy would fail with knights who could ride up to the archers before
they managed to loosen many arrows and cut them down. However, the knights could
not use this strategy against pikemen, as a wall of spears would prevent the knights
from charging the pikemen, lest they get skewered.

 You will be implementing the following in code:

 An abstract type Warrior for all warrior types
 Concrete warrior types Archer, Pikeman, and Knight
 An explanation of the relation between concrete and abstract types
 Behavior for each warrior type by defining functions such as shoot! and mount!
 An attack! function to simulate one warrior attacking another
 A battle! function to simulate two warriors repeatedly attacking each other

until one is victorious or both perish

7.3.1 Defining warrior types

Make a file named warriors.jl to store the code you will develop. Start with a defini-
tion of the types you will use.

abstract type Warrior end

mutable struct Archer <: Warrior
 name::String
 health::Int
 arrows::Int
end

mutable struct Pikeman <: Warrior
 name::String
 health::Int
end

mutable struct Knight <: Warrior
 name::String
 health::Int
 mounted::Bool
 end

The code in listing 7.5 is creating a type hierarchy illustrated below. In these hierar-
chies you make distinctions between abstract and concrete types. Archer, Pikeman,
and Knight are examples of concrete types, while Warrior is an example of an
abstract type. You can create objects of a concrete type but not of an abstract type:

julia> robin = Archer("Robin Hood", 34, 24)
Archer("Robin Hood", 34, 24)

Listing 7.5 Definition of types in battle simulator

Defines an
abstract type
Warrior

Archer defined as a
mutable subtype of
Warrior

Knights can be
mounted on a
horse or on foot.

1297.3 Creating a battle simulator
julia> Warrior()
ERROR: MethodError: no constructors have been defined for Warrior

The purpose of abstract types is to facilitate the construction of type hierarchies.
 In figure 7.2, I have added name and health to the Warrior type box. However, this

is just to clarify that all subtypes are required to have these fields. Julia offers no syntax
to enforce this. Instead, this is something you do by convention.

In Julia, if you define a type as abstract type it cannot have any fields. Only concrete
types can have fields or a value. A composite type is a concrete type with fields, while a
primitive type is a concrete type with a single value.

 The subtype operator <: is not only used to check if a type is a subtype of another
but also to define a type as subtype:

struct B <: A
 ...
end

This code snippet defines type B as a subtype of type A. In Julia, you cannot subtype
concrete types. If you have used popular object-oriented languages such as Java, C++,
C#, Python, or Ruby this will likely come as a surprise to you. If you consider the num-
ber hierarchy we have just covered this makes sense. You know how much space an
Int32 or Float64 needs, but how many bytes of storage would you need to hold an
Integer or Real number? You cannot know that. That is why most of the number
types are abstract.

Warrior

name : String
health : Int

Archer

name : String
health : Int
arrows : Int

Pikeman

name : String
health : Int

Knight

name : String
health : Int
mounted : Bool

Figure 7.2 Warrior type hierarchy. The dark box is abstract and light boxes are
concrete types.

130 CHAPTER 7 Understanding types
7.3.2 Adding behavior to warriors

Warriors containing only data isn’t exciting. So you will add behavior to them by defin-
ing several functions with accompanying methods. Add these to the warrior.jl
source code file (listing 7.6).

 All these functions have an exclamation mark in their name because they modify a
field (remember, this is only a convention). That’s why the composite types have the
mutable keyword added to their definitions. If a struct type is not defined as mutable,
it will not support functions that modify a field. Without the mutable keyword, a com-
posite type will default to being immutable.

function shoot!(archer::Archer)
 if archer.arrows > 0
 archer.arrows -= 1
 end
end

function resupply!(archer::Archer)
 archer.arrows = 24
end

function mount!(knight::Knight)
 knight.mounted = true
end

function dismount!(k::Knight)
 knight.mounted = false
end

Here is a short description of what each function does:

 shoot!—An archer shoots an arrow. Deplete the number of arrows by one.
 resupply!—Simulate that archer gets a resupply of 24 arrows.
 mount!—Change the state of the knight to be mounted on a horse.
 dismount!—Dismount the knight to make ready for foot combat.

Listing 7.6 Adding behavior to warrior types

Mutable vs. immutable types
The following is an important insight developed within the functional programming
community: if objects cannot be modified, your program will be less likely to have
bugs. Objects that cannot be modified are called immutable. If they can be modified,
they are referred to as mutable.

In older languages, objects have tended to be mutable by default. Julia follows a mod-
ern trend: making objects immutable unless explicitly marked as mutable.

1317.3 Creating a battle simulator
With the shoot! function you can simulate how the archer will spend arrows in battle.
Usually a medieval archer would have 24 arrows in a quiver. When those had been
spent, the archer would need to resupply:

julia> robin = Archer("Robin Hood", 34, 24)
Archer("Robin Hood", 34, 24)

julia> shoot!(robin)
23

julia> shoot!(robin)
22

julia> robin
Archer("Robin Hood", 34, 22)

You can improve the shoot! function with a trick I use frequently when developing
Julia software: I return the object that is most useful to see displayed when running a
function in the REPL (see listing 7.7). When calling functions that modify an object, it
is very useful to see what that object looks like after the modification. Thus, it is a good
habit to return the modified object in mutating functions.

function shoot!(archer::Archer)
 if archer.arrows > 0
 archer.arrows -= 1
 end
 archer
end

function resupply!(archer::Archer)
 archer.arrows = 24
 archer
 end

This makes testing functions you are developing, and checking whether they perform
the correct operations, much simpler:

julia> robin = Archer("Robin Hood", 34, 24)
Archer("Robin Hood", 34, 24)

julia> shoot!(robin)
Archer("Robin Hood", 34, 23)

julia> shoot!(robin)
Archer("Robin Hood", 34, 22)

julia> shoot!(robin)
Archer("Robin Hood", 34, 21)

julia> resupply!(robin)
Archer("Robin Hood", 34, 24)

Listing 7.7 Modifying mutating functions to be REPL-friendly

Archer created
with 24 arrows

Number of
arrows left

Twenty-two
arrows left

Returns the
archer object
modified

Show how the
number of arrows
is decremented.

The number of arrows has
been increased to 24.

132 CHAPTER 7 Understanding types

a
you

of
You can use these functions to construct new functions to simulate a warrior attacking
another. Again, add this code to the warriors.jl file. It looks as if you defined
attack! twice. How is that possible?

function attack!(a::Archer, b::Archer)
 if a.arrows > 0
 shoot!(a)
 damage = 6 + rand(1:6)
 b.health = max(b.health - damage, 0)
 end
 a.health, b.health
end

function attack!(a::Archer, b::Knight)
 if a.arrows > 0
 shoot!(a)
 damage = rand(1:6)
 if b.mounted
 damage += 3
 end
 b.health = max(b.health - damage, 0)
 end
 a.health, b.health
end

If this was a regular dynamic language, such as JavaScript, Python, Ruby, or Lua, the
last definition of attack! would have overwritten the first one. If this was a statically
typed language, such as Java, C#, or C++, you would have created something called
function overloading4. But in Julia, something entirely different happens.

7.3.3 Using multiple dispatch to invoke methods

In Julia, you are not actually defining two functions but rather two methods attached to
the attack! function. I know this sounds confusing, so let me break it down in more
detail. In Julia, you actually define functions as shown in the following listing.

function shoot! end
function resupply! end
function attack! end

Functions are just names. Unless you attach methods to them, they cannot do any-
thing. Start up a fresh Julia REPL, and paste the following function definitions along
with the definitions of the Warrior, Archer, and Knight types (see listing 7.5), and cre-
ate some objects to work with:

Listing 7.8 Two methods for simulating battle between archers and knights

4 Function overloading is a feature of many statically typed languages. It allows defining the same function multiple
times with arguments of different types. When the code gets compiled, the compiler picks the right function.

Listing 7.9 Function definitions in Julia without methods

Simulate an archer
attacking another archer.

Cannot
ttack if

 are out
 arrows

Roll a six-sided die
(d6) to compute
arrow damage.

Use max to avoid
ending up with
negative health.Simulate an archer

attacking a knight.Roll a six-
sided die (d6)

to compute
arrow

damage.

1337.3 Creating a battle simulator

T
to c
fun
wit
de

met
julia> robin = Archer("Robin Hood", 34, 24)
Archer("Robin Hood", 34, 24)

julia> white = Knight("Lancelot", 34, true)
Knight("Lancelot", 34, true)

Now you can try to do things with these objects and see what happens:

julia> attack!(robin, white)
ERROR: MethodError: no method matching attack!(::Archer, ::Knight)

julia> shoot!(robin)
ERROR: MethodError: no method matching shoot!(::Archer)

julia> mount!(white)
 ERROR: UndefVarError: mount! not defined

You can see from these errors that Julia distinguishes between functions you have not
defined at all, such as mount!, and functions that are defined but have no methods,
such as shoot! and attack!. But how do you know they don’t have any methods? Julia
has a function called methods, which allows you to inspect how many methods are
attached to a function:

julia> methods(attack!)
0 methods for generic function "attack!":

julia> methods(mount!)
 ERROR: UndefVarError: mount! not defined

You can see that Julia reports that attack! doesn’t have any methods. Let’s compare
this result with loading the warriors.jl file into the REPL.

julia> include("warriors.jl")

julia> methods(shoot!)
1 method for generic function "shoot!":
[1] shoot!(archer::Archer)

julia> methods(attack!)
2 methods for generic function "attack!":
[1] attack!(a::Archer, b::Archer)
[2] attack!(a::Archer, b::Knight)

julia> methods(mount!)
1 method for generic function "mount!":
[1] mount!(knight::Knight)

Figure 7.3 illustrates what you see in the REPL. Internally, Julia has a list of functions.
Every function enters another list containing the methods for the corresponding

rying
all a

ction
h no
fined
hods

Attempting to call an
undefined function

Show that attack! is a
function with no methods.

mount! cannot be
found by Julia.

Loads the code
into the Julia REPL

134 CHAPTER 7 Understanding types

H
p
le

atta

defe
function entry. Methods can span different types, as they are not attached to types but
to functions. Nothing prevents you from adding a shoot! method, which operates on
a dictionary or array type.

 Let’s create some objects that allow you to play around a bit:

julia> robin = Archer("Robin Hood", 34, 24)
Archer("Robin Hood", 34, 24)

julia> tell = Archer("William Tell", 30, 20)
Archer("William Tell", 30, 20)

julia> white = Knight("Lancelot", 34, true)
Knight("Lancelot", 34, true)

julia> black = Knight("Morien", 35, true)
Knight("Morien", 35, true)

With some objects, you can experiment with using objects of different type when invok-
ing the attack! function:

julia> attack!(robin, white)
(34, 30)

julia> attack!(robin, white)
(34, 26)

julia> attack!(tell, robin)
(30, 22)

attack!(Archer, Archer)

attack!(Archer, Knight)

Methods

mount!

attack!

shoot!

resupply!

Functions

mount!(Knight)

Methods

shoot!(Archer)

Methods

Figure 7.3 How Julia attaches
methods to functions. Each
method handles a unique set
of arguments.

Attack a knight
with an archer.ealth

oints
ft for
cker
and

nder Let an archer attack
another archer.

1357.3 Creating a battle simulator

kn
atta
kn
julia> attack!(black, white)
ERROR: MethodError: no method matching attack!(::Knight, ::Knight)
Closest candidates are:
 attack!(::Archer, ::Knight)

I advise you to experiment a bit with this yourself. You can look at how health points
get depreciated with different attacks. To make it easier to keep track of how health
points change, each method is set up to return a tuple with the health points of the
attacker and defender at the end of the fight.

 The interesting point here is the last part, when you try to have a battle between
two knights. You might have noticed that we have not yet added a method for dealing
with a fight between two knights. We add one in the following listing.

function attack!(a::Knight, b::Knight)
 a.health = max(a.health - rand(1:6), 0)
 b.health = max(b.health - rand(1:6), 0)
 a.health, b.health
end

You can add this method to the warriors.jl file and reload it. Instead of reloading
everything, you could just paste the definition into the REPL. Afterward, you will
notice that having the black knight Sir Morien attack the white knight Sir Lancelot
works fine:

julia> attack!(black, white)
(33, 22)

And you will notice that Julia reports that the attack! function has three methods now:

julia> methods(attack!)
3 methods for generic function "attack!":
[1] attack!(a::Archer, b::Archer)
[2] attack!(a::Archer, b::Knight)
[3] attack!(a::Knight, b::Knight)

Let’s add another attack! method to allow archers to attack pikemen. Then you can
see for yourself how the number of methods has changed.

function attack!(a::Archer, b::Pikeman)
 if a.arrows > 0
 shoot!(a)
 damage = 4 + rand(1:6)
 b.health = max(b.health - damage, 0)
 end

Listing 7.10 Method for simulating an attack by a knight against another knight

Listing 7.11 Archer attacking pikeman

Let a
ight
ck a
ight.

Method with closest match
to the attempted call

Only allow an attack if
an archer has greater
than zero arrows.

136 CHAPTER 7 Understanding types
 a.health, b.health
end

7.4 How Julia selects method to call
When you invoke attack!(a, b), Julia will find the type of every argument to find a
tuple of all the argument types:

argtypes = (typeof(a), typeof(b))

Julia will use this tuple of argument types to look through the list of all methods to
find the one matching. Remember, functions don’t have code in Julia; methods have
code. If a function doesn’t have any methods, you cannot run that function. This pro-
cess is illustrated in figure 7.4.

We assume in this example that an archer is attacking a pikeman, so the a is an
Archer, and the b is a Pikeman. Let’s look at what happens step by step:

1 Julia tries to evaluate (execute) the attack!(a, b) expression in your program.
2 It takes the name of the function attack! and looks through a table of all func-

tions, until it finds the entry for attack!.
3 Julia does the equivalent of (typeof(a), typeof(b)) to get the tuple (Archer,

Pikeman). Julia scans the list of methods stored on the attack! function from
top to bottom, until it finds a match at the 4th entry.

(Archer, Knight)

(Archer, Pikeman)

(Warrior, Warrior)

(Archer, Archer)

(Pikeman, Knight)

Methodsattack!(a, b)

(Archer, Pikeman)

Abstract syntax

tree01101101001

Machine code

attack!

mount!

battle!

shoot!

resupply!

Functions

Figure 7.4 How a method is invoked using multiple-dispatch

1377.4 How Julia selects method to call
4 Julia locates the method. The method is encoded as an abstract syntax tree
(AST). This is a common data structure5 in dynamic languages6 for represent-
ing functions and methods at runtime.

5 The Julia JIT compiler converts the AST to machine code,7 which gets exe-
cuted. The compiled machine code gets stored in the methods table, so next
time the attack(Archer, Pikeman) gets looked up, it can just execute cached
machine code.

Understanding all of this fully would require a deep dive into compiler and inter-
preter theory, which would be outside the scope of this book. Thus, the best way for
you to think about this is that you are done at step 4. Somehow you find a represen-
tation of your method you can run. The last steps are useful mainly to those inter-
ested in understanding why Julia has such high performance compared to other
languages.

5 A data structure is a particular way of organizing data in a computer program. Arrays, strings, binary trees, linked
lists, and hash tables are examples of data structures. But almost any composite type could be thought of as
defining a data structure.

6 In a dynamic language, you don’t have a compiler analyzing type correctness before a program is allowed to
run. Julia has a compiler, but it is invoked at runtime.

7 A microprocessor doesn’t understand programming languages such as Julia or Java. It only understands
machine code.

ASTs for the curious
This is not a book about compiler concepts, such as ASTs. But I will offer a little bit
of information about them to help you understand Julia. Consider an expression such
as

y = 4*(2 + x)

When a compiler or interpreter reads such code it will usually turn it into a tree struc-
ture called an AST, like in the following figure:

In Julia, every method is turned into such a tree structure. The methods table for each
function keeps track of each of these tree structures. The Julia compiler uses these
to create actual machine code that the computer understands.

=

y

4 +

2 x

*

AST of the expression y = 4*(2 + x)

138 CHAPTER 7 Understanding types
7.4.1 Contrasting Julia’s multiple dispatch with object-oriented languages

Multiple dispatch is often confusing to developers with a background in object-oriented
programming languages. Thus I will try to contrast the Julia approach with how object-
oriented languages work. In an object-oriented language method, implementations to
execute are picked based on a single argument type. That is why we call the approach
single dispatch. In an object-oriented language, you would not write attack!(archer,
knight) but the code in the following listing.

archer.attack!(knight)
archer.shoot!()
knight.mount!()

While you cannot write Julia code like that, you can simulate this behavior in Julia.

function attack(archer::Archer, opponent)
 if typeof(opponent) == Archer
 ...
 elseif typeof(opponent) == Knight
 ...
 elseif typeof(opponent) == Pikeman

 end
end

function attack(knight::Knight, opponent)
 if typeof(opponent) == Archer
 ...
 elseif typeof(opponent) == Knight
 ...
 elseif typeof(opponent) == Pikeman

 end
end

That illustrates the limitations of single dispatch. Because attack! methods can only
be picked based on the first argument type, you need a long list of if-else statements to
deal with opponents of different types. Let me clarify how single dispatch works with a
step-by-step explanation (figure 7.5).

1 When a.attack!(b) is evaluated, lookup the object referred to by a.
2 On this archer object, there is a hidden field, isa, which points to the type of

the archer object.
3 The type Archer is an object itself with various fields. It has fields for each

method: shoot!, attack!, and so on. It is like a dictionary, where you use the
function name attack! to look up the correct method.

4 The method is an AST, which you can evaluate.

Listing 7.12 Syntax if Julia was an object-oriented language

Listing 7.13 Single dispatch in Julia

Handle all the cases
where the attacker
is an Archer.

Handle all the cases
where the attacker
is a Knight.

1397.4 How Julia selects method to call
So the key difference to realize with Julia is that in most mainstream languages, meth-
ods are stored on the type of an object, while in Julia methods are stored on functions.

7.4.2 How is multiple dispatch different from function overloading?

Statically typed languages, such as Java, C#, and C++, have something called function
overloading, which looks superficially the same as multiple dispatch. The key differ-
ence is that with function overloading, the correct method to call is decided at compi-
lation time, which means a method like the one shown in the following listing isn’t
possible in a statically typed language.

function battle!(a::Warrior, b::Warrior)
 attack!(a, b)
 if a.health == 0 && b.health == 0
 println(a.name, " and ", b.name, " destroyed each other")
 elseif a.health == 0
 println(b.name, " defeated ", a.name)
 elseif b.health == 0
 println(a.name, " defeated ", b.name)
 else
 println(b.name, " survived attack from ", a.name)
 end
end

Add this method to your warriors.jl source code file. Reload everything, and recreate
the usual suspects, white and robin, to test out battle! in the REPL. Robin Hood
attacks Sir Lancelot multiple times, until the health points of Lancelot drop low
enough that battle! prints out that he has been defeated:

Listing 7.14 Writing out the outcome of a battle between two warriors

arrows

health

isa

name

Object

shoot!()

attack!(b)

battle!(b)

super

resupply!()

Archerattack!(a, b)
a.attack(b)

lookup("attack!")

Abstract syntax

tree

Figure 7.5 How a method is invoked using single dispatch

Both a and b must be subtypes
of the Warrior type.

140 CHAPTER 7 Understanding types
julia> battle!(robin, white)
Lancelot survived attack from Robin Hood

julia> battle!(robin, white)
Lancelot survived attack from Robin Hood

julia> battle!(robin, white)
Robin Hood defeated Lancelot

When you call battle!(robin, white), Julia will look for a method with the signature
battle!(a::Archer, b::Knight), but this cannot be found. However battle!(a::War-
rior, b::Warrior) is a valid match, because both Knight and Archer are subtypes
of Warrior.

 When the Julia compiler compiles the battle! method, it cannot know what con-
crete type argument a and b will have. It can only know they are some subtype of
Warrior. Thus the compiler cannot pick the correct attack! method to call. This deci-
sion can only be made at runtime. That is what makes this different from function
overloading. Function overloading, as found in Java and C++, relies on the compiler
being able to pick the correct method.

Summary
 Numbers in Julia are part of an elaborate type hierarchy.
 In a type hierarchy, only the leaf nodes can be concrete types. All other types

are abstract.
 The typeof, supertype, and subtypes functions can be used to explore type

hierarchies.
 A function is just a name. Without attached methods, they cannot do anything.

Code is always stored inside methods. The type of the arguments determines
which method will get executed at runtime.

 Object-oriented languages use single dispatch, meaning only the type of the
first function argument decides what method is selected. Julia is multiple dis-
patch, meaning all arguments influence which method gets selected.

 A composite type, unlike a primitive type, is composed of zero or more fields.
The struct keyword is used to define a composite type.

 By adding the mutable keyword to a struct definition, you allow individual
fields in the composite to be modified at runtime.

Building a rocket
In the last chapter, you made some simple composite types to represent different
types of warriors. However, in more realistic applications, you will have to combine
many different types of objects into more complex data structures.

 To explore this topic, you will be building a rocket in code. Why a rocket?
Because rockets are made up of many different parts. That gives you an opportu-
nity to build composite types out of other composite types and show different ways
in which abstract types can be used in Julia to facilitate the construction of complex
data structures. This rocket example will be used to explore many other topics later
in the book, such as how Julia represents collections of objects.

 The code example will start by defining a simple rocket of type Rocket, con-
sisting of a Payload, a Tank, and an Engine object. Later you will modify the simple
type definition to create a more complex multistage rocket made up of multiple
StagedRocket objects. Next you will modify the code further to add a type Cluster,
representing a cluster of rocket engines, which can be attached to any rocket

This chapter covers
 Building complex data structures made up of

many different objects of different types

 Abstracting away differences between different
but related types
141

142 CHAPTER 8 Building a rocket
stage. At the end you will define the function launch! to simulate the launch of a mul-
tistage rocket.

8.1 Building a simple rocket
Let’s start by modeling a simple space rocket in code. This is a single-stage rocket
made up of the following parts from bottom to top (see figure 8.1):

 Rocket engine—Providing propulsion
 Propellant tank—Containing matter expelled by the engine
 Payload—Such as a capsule or satellite

The payload is the useful stuff you want to
move around in space. It could be a crew mod-
ule for astronauts or a probe with instruments
to explore other planets.

 Such a rocket could be defined by a com-
posite type (listing 8.1). But don’t type this out
yet; this is just to get you to think about the types
you will need to define. You will implement dif-
ferent types for tanks and engines. Then you will
add different attributes and behavior, such as
refilling tanks and consuming propellant.

struct Rocket
 payload::Payload
 tank::Tank
 engine::Engine
end

Instead you will focus your attention on the propellant tank. Propellant is the matter a
rocket engine expels to move forward. In its simplest form, it is a compressed gas
being released. In real space rockets, however, it is a combination of a fuel such as ker-
osene or hydrogen and an oxidizer such as liquid oxygen (LOX). However, these are
details you don’t have to include in your model. Instead, consider the following:

 Dry mass—Mass of an empty tank
 Total mass—Mass of a full tank
 Propellant mass—Propellant currently left in the tank
 Mass—Dry mass plus propellant currently left

I will show some different way of modeling this in Julia and talk about pros and cons
of these different approaches.

 To make it easier to organize the code you write in this chapter, you can spread it
over multiple files and then have one file (e.g., Rockets.jl), which includes all of them.

Listing 8.1 The first definition of a simple rocket

Rocket engine

Propellant tank

Payload

Rocket

Figure 8.1 The parts a rocket is made of

1438.1 Building a simple rocket
That way, you can load just this file into your REPL to get all the code imported. List-
ing 8.2 assumes you have already made the tanks.jl, engines.jl, and payloads.jl files and
want to load all of them in one go.

include("tanks.jl")
include("engines.jl")
include("payloads.jl")

This is just a suggestion. You can dump all the code into one file if you find that more
practical.

IMPORTANT When changing the definition of a type in your source code, you
will need to restart your Julia REPL completely and load your code anew.
Changing functions, however, only requires pasting the new code into the
REPL to take effect.

To allow a rocket to contain many different types of tanks, make Tank an abstract type.
Since the medium and large tanks defined in the following listing are subtypes of
Tank, they can be inserted into any field expecting a Tank object.

abstract type Tank end

mutable struct SmallTank <: Tank
 propellant::Float64
end

mutable struct MediumTank <: Tank
 propellant::Float64
end

mutable struct LargeTank <: Tank
 propellant::Float64
end

Accessor functions (getters)
drymass(::SmallTank) = 40.0
drymass(::MediumTank) = 250.0
drymass(::LargeTank) = 950.0

totalmass(::SmallTank) = 410.0
totalmass(::MediumTank) = 2300.0
totalmass(::LargeTank) = 10200.0

The dry mass and total mass of these tanks is tied to their type. However, you could
also make a flexible tank, where you can set dry mass and total mass to whatever
you like, as in the following listing.

Listing 8.2 Rockets.jl

Listing 8.3 Defining different propellant tanks with fixed capacity

Make Tank an
abstract type.

Mutable to allow
propellant mass
to change

drymass and
totalmass are
not stored.

144 CHAPTER 8 Building a rocket
mutable struct FlexiTank <: Tank
 drymass::Float64
 totalmass::Float64
 propellant::Float64
end

Accessors (getters)
drymass(tank::FlexiTank) = tank.drymass
totalmass(tank::FlexiTank) = tank.totalmass

At the moment, your tanks are just dumb containers of information. They don’t do
anything useful, so let’s add useful behavior.

Accessors (setters and getters)
propellant(tank::Tank) = tank.propellant
function propellant!(tank::Tank, amount::Real)
 tank.propellant = amount
end

isempty(tank::Tank) = tank.propellant <= 0
mass(tank::Tank) = drymass(tank) + propellant(tank)

Actions
function refill!(tank::Tank)
 propellant!(tank, totalmass(tank) - drymass(tank))
 tank
end

function consume!(tank::Tank, amount::Real)
 remaining = max(propellant(tank) - amount, 0)
 propellant!(tank, remaining)
 remaining
end

Let’s make some tanks to demonstrate the behavior of these functions:

julia> small = SmallTank(50)
SmallTank(50.0)

julia> consume!(small, 10)
40.0

julia> consume!(small, 10)
30.0

julia> small
SmallTank(30.0)

julia> refill!(small)
SmallTank(370.0)

Listing 8.4 Propellant tank with flexible capacity

Listing 8.5 Adding propellant tank abilities and behavior

Accessors for the
propellant field

Check if the
tank is empty.

Calculate the
current total
mass of a tank.

Refill the tank
with propellant.

Make the changed
tank state available
to the REPL.

Consume the
propellant.

Make a small tank with
50 kg of propellant.

Consume 10 kg
of propellant.

Check how
much propellant
is left.

1458.1 Building a simple rocket
julia> flexi = FlexiTank(5, 50, 0)
FlexiTank(5.0, 50.0, 0.0)

julia> refill!(flexi)
FlexiTank(5.0, 50.0, 45.0)

In the code example, you are using two different tanks: a small tank and a flexi tank.
Although consume! and refill! have only been written to deal with the Tank type,
you can use these functions for both SmallTank and FlexiTank because you have
implemented drymass and totalmass for all concrete subtypes of Tank.

propellant and propellant! are implemented on the assumption that all Tank
subtypes have a propellant field. That may not always be the case. However, this is not
a problem. If you define propellant accessor functions for a concrete Tank subtype,
these will always take precedence. When Julia searches through the method list of a
function, it always looks for the methods with the most concrete argument types.

NOTE In object-oriented languages, accessor functions, also known as setters
and getters, are important. For instance, in Java, if a type has the propellant
field, you might write a GetPropellant and SetPropellant method. In Julia,
the equivalent is propellant for getting a value and propellant! for setting a
value. However, Julia is not an object-oriented language, so avoid overusing
this pattern.

You can use the refill! methods to have tanks automatically filled to the max when
constructed.

function SmallTank()
 refill!(SmallTank(0))
end

function MediumTank()
 refill!(MediumTank(0))
end

function LargeTank()
 refill!(LargeTank(0))
end

The code examples have shown there are different ways of modeling a propellant
tank. How do you decide which approach to use in your own code? The first approach
of having specific types for each capacity, such as having a SmallTank, MediumTank,
and LargeTank, potentially saves memory if you are creating a lot of these objects. The
number of bytes an object requires to be stored in memory is dependent on the num-
ber of fields it has and the size of each field. An Int8 field only consumes one byte,
but an Int64 field would consume eight bytes. Each FlexiTank object consumes three
times as much space in memory as the fixed tank objects.

Listing 8.6 Extra constructors, making it easy to create full tanks

5 kg dry mass, 50 kg
total mass, and 0 kg
propellant

146 CHAPTER 8 Building a rocket
 However, in the code you are writing, this is of no concern. You don’t have very
many tanks, and even if you had thousands of tanks, it would not matter. The Flexi-
Tank would be a better option, as it offers more flexibility in usage. So why does the
book contain definitions of fixed tanks?

 By contrasting these different approaches to modeling a tank, you get a better
sense of what is possible with Julia’s type system. There will be cases where this kind of
tradeoff is worth it. For example, imagine simulating a city of millions of people. Each
person might have attributes such as position, hunger, tiredness, money in pocket,
clothes, shoes, and so on. When dealing with that many objects, you might want to
think harder about reducing the size of your objects.

8.2 Maintaining invariants in your code
An important concept to know when writing code is invariants. Invariants are things
that must always be true during execution of your whole program or during some por-
tion of it. This will probably sound very abstract, so let me motivate the need to
express invariants by implementing a function, propellant!, which sets the quantity
of propellant in a tank.

julia> tank = FlexiTank(5, 50, 10)
FlexiTank(5.0, 50.0, 10.0)

julia> propellant!(tank, 100)
100

julia> totalmass(tank)
50.0

julia> mass(tank)
105.0

What is wrong here? You set the mass of the propellant to be larger than the max total
mass of the tank. That should not be possible. At any time, the following tank invari-
ant should be true:

0 <= propellant(t) + drymass(t) <= totalmass(t)

One way to make sure this remains true is modifying the propellant! setter method
to throw an exception if the inputs are wrong.

function propellant!(tank::Tank, amount::Real)
 if 0 <= amount + drymass(tank) <= totalmass(tank)
 tank.propellant = amount
 else
 msg = "Propellant mass plus dry mass must be less than total mass"
 throw(DomainError(amount, msg))
 end
end

Listing 8.7 Propellant setter maintaining the tank invariant

Dry mass 5 kg, total
mass 50 kg, and 10 kg
of propellant

Set propellant
mass to 100 kg.

Check if the new
propellant amount
breaks the tank
invariant.

Signal a domain error by
throwing an exception.

1478.3 Making objects with constructor functions
DomainError is an exception type defined in Julia’s standard library. Domain refers to
the set of legal input values for a function argument. Thus, providing an amount
larger than the totalmass is a domain error.

 However, this is not the only way you can end up breaking your tank invariant.
Here you are making a tank with 90 kg of propellant, while the total mass can only be
50 kg:

julia> t = FlexiTank(5, 50, 90)
FlexiTank(5.0, 50.0, 90.0)

julia> mass(t), totalmass(t)
(95.0, 50.0)

Dealing with these problems forces you to learn about how composite objects are cre-
ated in Julia.

8.3 Making objects with constructor functions
When you define a composite type, Julia creates a special function called a constructor
with the same name as your type. A constructor is responsible for making an instance
(object) of the type it is associated with. Julia adds two methods to the constructor
function, which takes the same number of arguments as you have fields. One method
uses type annotations for its arguments, as specified for each field in the struct. The
other takes arguments of Any type.

 However, you can add methods to this constructor function in the same manner as
any other function. You can add methods that create a full tank if the amount of pro-
pellant is not specified.

function FlexiTank(drymass::Number, totalmass::Number)
 FlexiTank(drymass, totalmass, totalmass - drymass)
end

MediumTank() = refill!(MediumTank(0))
LargeTank() = refill!(LargeTank(0))

If you use methods, you can see that a third method has been added to the FlexiTank
function:

julia> methods(FlexiTank)
3 methods for type constructor:
[1] FlexiTank(drymass::Float64, totalmass::Float64, propellant::Float64)
[2] FlexiTank(drymass::Number, totalmass::Number)
[3] FlexiTank(drymass, totalmass, propellant)

Listing 8.8 Creating full tanks when the amount of propellant is not specified

Existing methods
defined by Julia

New method
you’ve added

148 CHAPTER 8 Building a rocket
The following is an example of using these new methods to create full tanks:

julia> FlexiTank(5, 50)
FlexiTank(5.0, 50.0, 45.0)

julia> MediumTank()
MediumTank(2050.0)

julia> LargeTank()
LargeTank(9250.0)

But what do you do if you don’t want users of your types to set propellant mass inde-
pendently? Perhaps you want to reduce the chance of breaking the important tank
invariant discussed earlier. Is there, perhaps, a way of preventing Julia from making its
own constructor methods?

8.4 Differences between outer and inner constructors
What you have just covered is called outer constructors, when using Julia terminology.
The constructors are defined outside of the composite type definition. Outer construc-
tors add methods to the built-in ones. If, instead, you want to replace Julia’s construc-
tor methods with your own, you need to define the constructor functions inside the
struct definition, as follows.

mutable struct FlexiTank <: Tank
 drymass::Float64
 totalmass::Float64
 propellant::Float64

 function FlexiTank(drymass::Number, totalmass::Number)
 new(drymass, totalmass, totalmass - drymass)
 end
end

Inner constructors introduce you to a special function called new. It is only available
inside an inner constructor—nowhere else. You need it because creating an inner
constructor removes all constructor methods created by Julia. In other words, you can
no longer call any of them.

new is very similar to the default constructor methods provided by Julia, with some
important differences: you can supply new with zero or more arguments but never
more arguments than the number of fields in your composite type. What happens to
the fields you don’t provide a value for? They get a random value.

 How do you know that your inner constructor replaces all Julia-provided construc-
tor methods? You can reload your REPL environment and test:

julia> t = FlexiTank(5, 50)
FlexiTank(5.0, 50.0, 45.0)

Listing 8.9 Defining an inner constructor for FlexiTank

Automatically filled up
with 45 kg of propellant

Filled up with
2,050 kg of
propellant

Notice new
replaces
FlexiTank

1498.5 Modeling rocket engines and payloads
julia> t = FlexiTank(5, 50, 150)
ERROR: MethodError: no method matching FlexiTank(::Int64, ::Int64, ::Int64)
Closest candidates are:
 FlexiTank(::Number, ::Number)

julia> methods(FlexiTank)
1 method for type constructor:
[1] FlexiTank(drymass::Number, totalmass::Number)

You can now see that methods only reports a single method for the FlexiTank constructor.

8.5 Modeling rocket engines and payloads
Let’s switch gears and talk about the payload you want to send into space and the
rocket engines that will provide the rocket’s propulsion. The payload could be a
probe; satellite; crew capsule; or, I suppose, a Tesla Roadster if you are Elon Musk.

struct Payload
 mass::Float64
end

This may seem simplistic, but remember you are creating models. Models only con-
tain properties required to answer questions of interest. For example, an initial model
of smartphone may just be a block of wood, with no buttons, screen, or color scheme.
Why? Because, initially, the questions you want answered are, “Is this shape and size
comfortable to carry in my pocket? How much space do you have available to create a
screen and electronics inside?”

 The same applies to designing and building a rocket. Initially, you are only inter-
ested in mass budgets. You want to know things such as the following:

1 How much propellant do I need?
2 How big of a payload can I launch into orbit?
3 How far can a given rocket go?

To answer such questions you don’t need to include what sort of instruments exist on
the space probe or what kind of batteries or solar cells it has in your model. Important
attributes of a rocket engine are mass, thrust, and Isp (specific impulse). You can
think of thrust as how powerful the engine is and Isp as how fuel efficient it is.

abstract type Engine end

struct CustomEngine <: Engine
 mass::Float64
 thrust::Float64
 Isp::Float64
end

Listing 8.10 Defining rocket payload

Listing 8.11 Defining a custom rocket engine

Julia can no longer find
a method accepting a

third argument.

Check the number of
methods attached to
constructor.

Mass of rocket
engine in kg

Thrust exerted by rocket
engines in Newtons

Specific impulse
(propellant efficiency)

150 CHAPTER 8 Building a rocket
mass(engine::CustomEngine) = engine.mass
thrust(engine::CustomEngine) = engine.thrust
Isp(engine::CustomEngine) = engine.Isp

You can also define types for specific engines with known properties, such as the
Rutherford engine used in the Electron rocket and the Merlin engine used in the
Falcon 9 rocket.

struct Rutherford <: Engine end
struct Merlin <: Engine end

mass(::Rutherford) = 35.0
thrust(::Rutherford) = 25000.0
Isp(::Rutherford) = 311.0

mass(::Merlin) = 470.0
thrust(::Merlin) = 845e3
Isp(::Merlin) = 282.0

thrust is the force produced by the rocket engine. If you know the total mass of the
rocket you can calculate how much the whole rocket accelerates once the rocket
engines are fired up. You get this from Newton’s second law, which states that force F
is proportional to mass m times acceleration a.

However, to know how much mass you are pushing at any given time, you need to
know how much propellant the engine consumes each second. Thrust alone cannot
tell you that; you need specific impulse (Isp). A high-Isp engine is more propellant
efficient, meaning it will consume less propellant for the same amount of thrust.

NOTE In physics, you usually denote impulse with an I. Thus Isp clarifies you
are referring to specific impulse.

Isp is analogous to gas mileage for a car. However, unlike a car on the road, a rocket in
outer space continues moving even without thrust, so you cannot measure fuel effi-
ciency (or propellant efficiency) by how far one kg of propellant gets you. Instead,
you measure it in terms of how many seconds a unit of propellant can sustain a force
of 1 G (the force of gravity on Earth). This allows you to calculate mass flow (con-
sumption of propellant per second):

g = 9.80665
function mass_flow(thrust::Number, Isp::Number)
 thrust / (Isp * g)
end

Listing 8.12 Defining the Rutherford and Merlin rocket engines

Engines are
empty structs.

Use accessor
functions to get
engine properties.

m/s² acceleration of
gravity on Earth

The amount of mass
exiting the engine is
measured in kg/s.

1518.6 Assembling a simple rocket
You can, for example, use this to calculate the propellant consumed per second in a
Falcon 9 rocket. It has nine Merlin 1D engines, each with a specific impulse of 282 s
and thrust of 845 kN:

julia> engine_thrust = 845e3
845000.0

julia> isp = 282
282

julia> thrust = engine_thrust * 9
7.605e6

julia> flow = mass_flow(thrust, isp)
2749.979361594732

So you get that a Falcon 9 rocket consumes an estimated 2.7 tons of propellant each
second.

8.6 Assembling a simple rocket
Now you have all the pieces to assemble your rocket. So let the rocket building start!

struct Rocket
 payload::Payload
 tank::Tank
 engine::Engine
end

You will make a rocket resembling the Electron rocket manufactured by Rocket Lab.1

It can put a payload into low Earth orbit weighing 300 kg. You will make one stage of
this rocket with a small tank and a Rutherford engine. The Rutherford engine, a small
rocket engine, is used in the first and second stage of the Electron rocket.

 For compactness I have instructed the REPL not to print the value of the first
three assignments by tacking on a semicolon ;. You can remove the semicolon to see
the difference:

julia> payload = Payload(300);

julia> tank = SmallTank();

julia> engine = Rutherford();

julia> rocket = Rocket(payload, tank, engine)
Rocket(Payload(300.0), SmallTank(370.0), Rutherford())

Listing 8.13 Rocket with payload, tank, and engine

1 Rocket Lab is a space company originating in New Zealand, which launches small satellites of a few hundred
kg into orbit.

152 CHAPTER 8 Building a rocket
If you know a bit about rocketry, you may realize there are multiple problems with the
previous rocket configuration:

1 The real-world Electron rocket has nine Rutherford engines, not just one.
2 Space rockets have multiple stages, which separate as the rocket goes higher;

your rocket only has a single stage.

8.7 Creating a rocket with multiple stages and engines
Let’s fix these problems. An important insight is realizing that a multistage rocket is a
bit like a Russian Matryoshka doll.2 You could make the payload of rocket another
rocket. The payload of this next rocket could be another rocket and so on. Figure 8.2
illustrates how a staged rocket is composed of multiple nested rockets.

 It shows a multistage rocket, where you keep popping off the top to expose the
rocket’s payload. Let me cover each numbered stage:

1 The whole multistage rocket with all parts is called a space vehicle. The first stage
is called the booster.

2 Pop open the space vehicle, and the second stage rocket is exposed.
3 The payload of the second stage is the third stage.
4 The third stage is protected by a fairing, a protective shell for the payload (your

model will ignore the fairing).
5 When the launch is finished, the final payload is delivered into space. This pay-

load will be a spacecraft, such as a satellite, moon lander, or capsule.

To make it possible to put rockets inside rockets, you will change Rocket to an abstract
type and define new concrete subtypes, as follows.

abstract type Rocket end

struct Payload <: Rocket
 mass::Float64
end

struct StagedRocket <: Rocket
 nextstage::Rocket
 tank::Tank
 engine::Engine
end

function Rocket(payload::Rocket, tank::Tank,

➥ engine::Engine)
 StagedRocket(payload, tank, engine)
end

thrust(r::Payload) = 0.0 # no engines
thrust(r::StagedRocket) = thrust(r.engine)

2 A matryoshka is a Russian nesting doll. Each doll has a smaller wooden doll inside.

Listing 8.14 Allowing a rocket to be the payload of another rocket

Make Rocket an
abstract type.

Turn Payload into a
subtype of Rocket.

Rename payload
to next stage for
clarity.

Allow use of the
old constructor.

1538.7 Creating a rocket with multiple stages and engines
But before you build a rocket, you need some more adjustments. The real-life Elec-
tron rocket has nine Rutherford engines in the first stage—what we call the booster.
You currently have no way to add more than one engine. To solve this, you will define
a new engine subtype called Cluster. This new type is designed to model a cluster of
many identical engines.

 Figure 8.3 doesn’t show every type. For instance, I could only get space for the
MediumTank and FlexiTank under the abstract Tank type.

 Using hollow arrows, the diagram shows how StagedRocket and Payload are sub-
types of the abstract type Rocket. The filled arrow shows that StagedRocket has a
field, nextstage, that points to another Rocket object.

Spacecraft

3rd stage

2nd stage

Booster

Figure 8.2 Rocket stages

154 CHAPTER 8 Building a rocket
Let’s look at how to implement the Cluster type (listing 8.15). The UML diagram says
it is both a subtype of Engine and it points to another engine through the engine field.

struct Cluster <: Engine
 engine::Engine
 count::Int
end

Listing 8.15 Defining a cluster of rocket engines

Rocket

mass : Float64
thrust: Float64

Cluster

count : Float64

StagedRocket

Engine

mass : Float64
thrust : Float64
Isp : Float64

Tank

drymass : Float64
totalmass : Float64
propellant: Float64

MediumTank

propellant: Float64

FlexiTank

drymass : Float64
totalmass : Float64
propellant: Float64

Payload

mass: Float64

nextstage

engine

Rutherford

Figure 8.3 A UML diagram of relations between different parts of a rocket

Number of
identical engines
in the cluster

1558.7 Creating a rocket with multiple stages and engines
Isp(cl::Cluster) = Isp(cl.engine)
mass(cl::Cluster) = mass(cl.engine) * cl.count
thrust(cl::Cluster) = thrust(cl.engine) * cl.count

You will notice that the specific impulse does not change. Fuel efficiency does not
change just because you add more engines. However, adding more engines will
increase the mass of the cluster as well as the total thrust.

WHAT ABOUT A HETEROGENOUS ENGINE CLUSTER? Could you make a cluster of
engines of different types? The challenge is deciding how to calculate the Isp
of a cluster in which each engine has a different specific impulse. You will,
however, make a heterogenous cluster of engines in chapter 12.

You can use these abstractions to define a function, update!, that takes care of deplet-
ing propellant as you simulate your rocket flying. You simulate by performing small
time steps Δt.

 This is a common strategy employed when writing simulations of real-time systems.
When simulating something complex with many parts, it becomes too complicated to
perform an analytical solution by solving a single math equation. Video games are
made like this as well. Every object moving around in a game will have an update!
function akin to the one shown in the following listing.

function update!(r::StagedRocket, t::Number, Δt::Number)
 mflow = mass_flow(thrust(r), Isp(r.engine))
 consume!(r.tank, mflow * Δt)
end

Payload has no tanks with propellant to consume
update!(r::Payload, t::Number, Δt::Number) = nothing

Say you want to make a three-stage Electron rocket. The third stage is tiny and, thus,
only needs a very tiny engine. The company developing the Electron rocket is making
a tiny engine, named Curie, for this purpose. The full specifications for this engine
are not yet known, so you will define this engine based on some guesswork.

struct Curie <: Engine end

mass(::Curie) = 8.0
thrust(::Curie) = 120.0
Isp(::Curie) = 317.0

Listing 8.16 Updating the propellant mass after Δt time has elapsed

Listing 8.17 Defining a tiny engine for the third stage

Mass and
Isp had to
be guessed.

The only known
specification

156 CHAPTER 8 Building a rocket
You now have enough functionality to define an Electron rocket composed of multi-
ple stages:

julia> payload = Payload(300)
Payload(300.0)

julia> thirdstage = Rocket(payload, SmallTank(), Curie())
StagedRocket(Payload(300.0), SmallTank(370.0), Curie())

julia> secondstage = Rocket(thirdstage, MediumTank(), Rutherford())
StagedRocket(StagedRocket(Payload(300.0),
 SmallTank(370.0),
 Curie()),
 MediumTank(2050.0),
 Rutherford())

julia> booster = Rocket(secondstage, LargeTank(), Cluster(Rutherford(), 9))
StagedRocket(StagedRocket(StagedRocket(
 Payload(300.0),
 SmallTank(370.0),
 Curie()),
 MediumTank(2050.0),
 Rutherford()),
 LargeTank(9250.0),
 Cluster(Rutherford(), 9))

Later, when performing physics calculations, it is helpful to abstract away how a prop-
erty, such as mass, is determined for a rocket or part of a rocket.

mass(payload::Payload) = payload.mass

function mass(r::StagedRocket)
 mass(r.nextstage) + mass(r.tank) + mass(r.engine)
end

You can see the benefits of abstraction of mass in how mass(r::StagedRocket) is
defined. After implementing this function you don’t have to concern yourself with
details about the payload (nextstage). It could be a payload or another staged rocket
with 20 stages. You don’t have to know; the differences are abstracted away.

 Likewise, you don’t have to concern yourself with whether you are getting the mass
of a single engine or an engine cluster. Imagine you had implemented this function before
creating the Cluster type. You would not need to change this implementation because
as long as Cluster is of type Engine and has implemented mass, everything works.

8.8 Launching a rocket into space
The update! function allows you to keep track of propellant consumption. When
called, it gives you the remaining propellant. When this quantity has reached zero,
you know your rocket cannot fly much higher, as the velocity will steadily decline until

Listing 8.18 Calculating the total mass of a staged rocket

1578.8 Launching a rocket into space
it becomes negative. You will implement a new function, launch!, which figures out
the altitude your rocket reaches before it runs out of propellant, as well as how much
time has passed when that occurs.

 The rocket is pushed up with a certain force determined by the thrust of the
engines T. However, this force has to work against the forces of gravity. Gravity exerts
force on a rocket proportional to the mass m of the rocket and the acceleration g of
gravity on Earth:

From this you can determine the acceleration of the rocket when it is launched:

During the discussion on update! I noted you are simulating the launch as a set of
small time increments Δt. For one small time increment you can find how much the
velocity changes in that increment (figure 8.4).

Figure 8.4 Velocity of rocket after launch. The x-axis shows number of seconds after launch.

Time (seconds)

V
e
lo

c
it
y
 (

m
/s

)

158 CHAPTER 8 Building a rocket
These observations are the basis for implementing the launch! function. You add up
changes in velocity, Δv, over many small time increments. For every increment, you
assume velocity is constant and use that to calculate distance traveled Δh = v × Δt.
Adding up all the distances traveled across every little increment you get the total dis-
tance traveled, h.

 This calculation can be visualized with a plot. Every bar is equal to Δh because each
bar is Δt wide and v tall. Thus, adding up the area of all the bars is equal to the dis-
tance traveled. The smaller you make the increments Δt, the more accurate the calcu-
lation will become:

In mathematical terms you are performing an approximation of the integral of the
velocity. The code in listing 8.19 is an implementation of these ideas.

NOTE The code uses a cutoff point of 1,000 seconds. The rocket may not
have consumed all fuel within that time if you use large tanks. You could use a
while loop instead, but you would risk an infinite loop.

function launch!(rocket::Rocket, Δt::Real)
 g = 9.80665 # acceleration caused by gravity
 v = 0.0 # velocity
 h = 0.0 # altitude (height)

 for t in 0:Δt:1000
 m = mass(rocket)
 F = thrust(rocket) - m*g

 remaining = update!(rocket, t, Δt)

 # Any propellant and thrust left?
 if remaining == 0 || F <= 0
 return (t, h)
 end

 h += v*Δt
 a = F/m
 v += a*Δt
 end
end

I put the launch! function into a file called simulate.jl, but you can just paste it into
the REPL. You can then construct a rocket and launch it:

julia> engine = Rutherford();
julia> tank = SmallTank();
julia> payload = Payload(300);
julia> rocket = Rocket(payload, tank, engine)

Listing 8.19 Simulating a rocket launch and determining the maximum altitude of the rocket

Stop the simulation
at 1,000 seconds.

Mass changes because
propellant is consumed.

Return time spent
and distance traveled

Use velocity from
the previous time
increment.

159Summary
julia> launch!(rocket, 0.5)
(45.0, 31117.8036364191)

From the output, you can see that your rocket spent 45 seconds getting to an altitude
of about 31 kilometers. For real rockets this will be different because they have to deal
with air resistance. You basically launched this rocket on an Earth without atmo-
sphere. You can see that all the fuel in the tank has been spent:

julia> tank
SmallTank(0.0)

As an exercise, you can try launching the rocket with different payload and tank sizes.
Do you notice that larger tanks don’t always get you further? This is because they
cause the gravitational pull on your rocket to increase. Thus the force of gravity may
end up being stronger than the force of thrust from your rocket engine.

 This simulated launch has a number of limitations beyond not considering air
resistance. The simulation is also unable to deal with staged rockets.

Summary
 You can define your own custom constructors to make sure objects are initial-

ized with valid values.
 An inner constructor replaces the default constructor provided by Julia. Outer

constructors are just convenient constructors defined outside the composite
type definition.

 An abstract type is defined with, for example, abstract type Payload end.
Abstract types cannot have fields, and you cannot make objects of them (you
cannot instantiate an abstract type).

 Both abstract and concrete types can be a subtype of another abstract type.
However, no concrete type can be a subtype of another concrete type. <: is the
subtype operator.

 Combining abstract types with multiple dispatch allows you to abstract away dif-
ferences between related types, so they can be used interchangeably.

Conversion
and promotion
Julia and other mainstream programming languages handle arithmetic involving
different number types so effortlessly that most of us likely don’t pay much atten-
tion to this fact:

julia> 3 + 4.2
7.2

julia> UInt8(5) + Int128(3e6)
3000005

julia> 1//4 + 0.25
0.5

This chapter covers
 Conversion of one related type to another

 How promotion finds the least common
denominator among related types in an
expression

 Exploring the Julia standard library using
the @edit macro

Numbers in the expression
converted to floating-point numbers

All integers
converted to Int128
160

1619.1 Exploring Julia’s number promotion system
In reality, doing this involves quite a lot of complexity. Under the hood, most pro-
gramming languages have defined a set of promotion rules, which say what should be
done if you combine numbers of different types. Promotion rules make sure all the
numbers are converted to a sensible common number type that can be used in the final
calculation. Don’t confuse number conversion with parsing text strings to produce
numbers.

 You might wonder why you should care about these concepts. Mastering Julia’s
promotion and conversion system opens the door to a deeper insight into how num-
bers work in Julia. That will make you capable of doing a wide variety of tasks, such as
the following:

 Defining custom number types
 Defining a physical units system and performing conversions between different

units

The main programming example in this chapter will do just that: define a unit system
for different types of angles, such as degrees and radians. I will then demonstrate how
the Julia promotion and conversion system can combine different angle types in the
same expression.

 But why create numbers with units? Why not let numbers be numbers? Because a
lot of mistakes happen in software development because feet, meters, and other units
get mixed up. By using numbers with units you can reduce the number of bugs in
your software.

 In many cases in Julia it doesn’t matter what order the arguments are. For instance,
if you want to check if two geometric objects overlap, then overlap(circle, triangle)
should give the same result as overlap(triangle, circle). You could imagine a simi-
lar situation when simulating battle between different types of warriors in a video
game. The Julia promotion system provides an elegant technique for handling such
cases without implementing the same algorithms twice.

9.1 Exploring Julia’s number promotion system
Inside a microprocessor, mathematical operations are always performed between
identical types of numbers. A microprocessor does not have an instruction to add an
integer to a floating-point number. Microprocessors always perform arithmetic opera-
tions between identical number types.

 Thus, when dealing with expressions composed of different number types, all
higher-level programming languages have to convert all arguments in the expression
to the same number type. But what should this common number type be? Figuring
out this common type is what promotion is all about.

 We express this as promoting arguments of mathematical operators to a com-
mon type. In most mainstream languages, the mechanisms and rules governing
number promotion are hardwired into the language and detailed in the specifica-
tions of the language.

162 CHAPTER 9 Conversion and promotion
NOTE You will see the term type coercion used in other programming lan-
guages. Coercion is implicit conversion carried out by the compiler. Julia’s
compiler does not do that, and thus coercion does not occur in Julia.

Julia takes a radically different approach. In Julia, numbers are first-class objects. They
are not special types with unique hardwired rules. Julia promotion rules are defined
in the standard library, not in the internals of the Julia JIT compiler. That provides the
benefit of you, as a developer, being able to extend the conversion and promotion sys-
tem yourself. You can add new number types as well as new rules.

 But doesn’t that increase the risk of developers messing up the number type sys-
tem? No, because you extend the existing system; you don’t modify it.

 Promotion rules are handled by plain-old Julia functions. Hooking into the exist-
ing system is simply a matter of adding your own methods to existing functions. You
can explore the Julia source code for promotion using the @edit macro.

In the following snippet you are adding an integer and floating-point number. By pre-
fixing with the @edit macro, Julia jumps to the definition of the function being called
to handle this expression, allowing you to have a look at the source code.

julia> @edit 2 + 3.5

The following code shows how every arithmetic operation on some Number in Julia
first calls promote before performing the actual arithmetic operation.

Julia environment variable setup
For the @edit macro to work, you need to have set the JULIA_EDITOR environment
variable. This will depend on your operating system. For example, I use the fish shell.
It requires modifying the startup configuration, $HOME/.config/fish/config.fish,
by adding the following line:

set -x JULIA_EDITOR mate

If you use the bash shell you would modify the $HOME/.profile file instead:

export JULIA_EDITOR=mate

Both examples work on macOS and Linux. Windows users would use a GUI dialog to
modify the JULIA_EDITOR environment variable. Alternatively, Windows users can
install a Unix shell.

Everything is a function!
It is worth being aware that almost everything in Julia is a function call. When you write
3 + 5, that is syntactic sugar for calling a function named + like this: +(3, 5). Every
function using a symbol such as +, -, *, and so on supports being used in prefix form.

1639.2 Understanding number conversion
+(x::Number, y::Number) = +(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)

The ... is called the splat operator, which you can use to turn arrays or tuples into
function arguments. This means foo([4, 5, 8]…) is the same as foo(4, 5, 8). You can
also use it to turn the tuple returned by promote into arguments to the various arith-
metic functions, including +, -, *, and so on. You can perform some experiments in
the Julia REPL to better understand how the promote function works:

julia> promote(2, 3.5)
(2.0, 3.5)

julia> typeof(1//2), typeof(42.5), typeof(false), typeof(0x5)
(Rational{Int64}, Float64, Bool, UInt8)

julia> values = promote(1//2, 42.5, false, 0x5)
(0.5, 42.5, 0.0, 5.0)

julia> map(typeof, values)
(Float64, Float64, Float64, Float64)

This shows that promote returns a tuple of numbers converted to the most appropri-
ate common type. However, for everyday programming you can use typeof instead to
figure out what an expression will get promoted to.

9.2 Understanding number conversion
Number conversion means converting from one type of number to another. This
should not be confused with parsing. For instance, a text string can be parsed to pro-
duce a number, but a string and a number are not related types; hence you should not
call it a conversion.

 The recommended and simplest way of doing number conversion in Julia is to use
the constructor of the type you want to convert to. So if you have a value x and you
want to convert to some type T, then just write T(x). I’ll provide some examples:

julia> x = Int8(32)
32

julia> typeof(x)
Int8

julia> Int8(4.0)
4

julia> Float64(1//2)
0.5

Listing 9.1 Definition of arithmetic operations on numbers in Julia’s standard library

164 CHAPTER 9 Conversion and promotion
julia> Float32(24)
24.0f0

Keep in mind that a conversion is not always possible to perform:

julia> Int8(1000)
ERROR: InexactError: trunc(Int8, 1000)

julia> Int64(4.5)
ERROR: InexactError: Int64(4.5)

An 8-bit number cannot hold values larger than 255 (28 – 1), and integers cannot rep-
resent decimals.

 In many cases, conversions are done implicitly by Julia. Julia uses the convert func-
tion to achieve this, not the constructor. However you are free to call convert explic-
itly yourself. Here is a demonstration:

julia> convert(Int64, 5.0)
5

julia> convert(Float64, 5)
5.0

julia> convert(UInt8, 4.0)
0x04

julia> 1//4 + 1//4
1//2

julia> convert(Float32, 1//4 + 1//4)
0.5f0

Notice the first argument in these function calls Int64, Float64, and so on. These are
type objects. Types are first-class objects in Julia, meaning they can be handled like any
other object. You can pass them around, store them, and define methods that operate
on them. Type objects even have a type. The type of Int64 is Type{Int64}, and for
Float64 it is Type{Float64}:

julia> 3 isa Int64
true

julia> Int64 isa Type{Int64}
true

julia> "hi" isa String
true

julia> String isa Type{String}
true

julia> Int64 isa Type{String}
 false

Convert floating-point
number 5.0 to integer 5.

Convert integer 5 to
floating-point number 5.0.

Number 3 is of type Int64.

Type Int64 is of
type Type{Int64}.

Type Int64 is not of
type Type{String}.

1659.2 Understanding number conversion
You can almost think about Type as a special kind of function. Feeding this “function”
an argument T returns the type of T. Formally, Type is a paramatric type, which can be
parameterized with a type argument T to produce a concrete type. Don’t worry if this
does not make sense; it is a complex topic, and I explain this topic more thoroughly in
the next chapter.

 The convert function is called implicitly when performing various types of assign-
ments, including the following:

 Assigning to an array element
 Setting the value of the field of a composite type
 Assigning to local variables with a type annotation
 Returning from a function with a type annotation

Let’s look at some examples demonstrating implicit conversion:

julia> values = Int8[3, 5]
2-element Vector{Int8}:
 3
 5

julia> typeof(values[2])
Int8

julia> x = 42
42

julia> typeof(x)
Int64

julia> values[2] = x
 42

In the next example, you create a composite type Point with the fields x and y. Next,
you create an instance p of Point and assign an 8-bit integer value to its x field. Since
the field is of type Float64, an implicit number conversion happens.

julia> mutable struct Point
 x::Float64
 y::Float64
 end

julia> p = Point(3.5, 6.8)
Point(3.5, 6.8)

julia> p.x = Int8(10)
 10

Here a type annotation is added to a function to make sure the return value is of a cer-
tain type. If it is not, a conversion is attempted with convert:

Assigning an Int64 value
to an array element defined
to be Int8, which causes
convert(Int8, x) to be called

Causes convert(Float64,
Int8(10)) to be called

166 CHAPTER 9 Conversion and promotion
julia> foo(x::Int64) :: UInt8 = 2x
foo (generic function with 1 method)

julia> y = foo(42)
0x54

julia> typeof(y)
UInt8

Next, we will get into the details of how conversion and promotion is done using a
larger code example.

9.3 Defining custom units for angles
In general, calculations within science can easily go wrong if you mix up units. For
instance, in the petroleum industry, mixing feet and meters is easy because the coordi-
nates of an oil well are usually given in meters, while the depth of the well is given in feet.

 A famous example is the Mars Climate Orbiter (http://mng.bz/m2l8), a robotic
space probe launched by NASA, which was lost due to NASA and Lockheed using differ-
ent units of measure. NASA was using metric units, and Lockheed used US customary
units, such as feet and pounds. Thus, there is an advantage in designing code where one
does not accidentally mix up units.

 In this example we will demonstrate working with different units for angles. In
mathematics, angles are usually given as radians, while people navigating using maps
will tend to use degrees. When using degrees, you split up the circle in 360 degrees.
One degree is, thus, 1/360th of the circumference of that circle.

 With radians, in contrast, we deal with how many times the radius of a circle is
duplicated along the circumference to get that angle (figure 9.1). So 1 radian is the
angle you get when you mark off a distance along the circumference equal to the
radius of the circle.

Degrees, in contrast, are more strongly tied to navigation—celestial navigation in par-
ticular. Each day the earth moves about 1 degree around the sun, since the year is

Figure 9.1 Definition of a radian

https://solarsystem.nasa.gov/missions/mars-climate-orbiter/in-depth/

1679.3 Defining custom units for angles
made up of 365 days. An angle is further divided into 60 arcminutes, and an arcmin-
ute is divided into 60 arcseconds.

Actually, you can work with both metric degrees and degrees, minutes, seconds (DMS),
but you are working with DMS here to keep things interesting.

 In this code example you will implement the following functionality:

 Radian and DMS types to represent different types of angle units
 Constructors to make it easier to construct angle objects, given degrees, arcmin-

utes, and arcseconds
 Operations on angle types, such as addition and subtraction
 Accessors to extract degrees, minutes, and seconds
 Extending the show function to create a pretty display of different angle units
 Extending the convert function to support conversion from one angle unit to

another
 Overriding the sin and cos functions to only work with angle units
 Coupling together some clever tricks to make pretty number literals for angle

units
 Extending the promotion_rule function, so different angle units can be used in

the same expression

Let’s start by implementing the Radian and DMS angle types.

abstract type Angle end

struct Radian <: Angle
 radians::Float64
end

Degrees, Minutes, Seconds (DMS)
struct DMS <: Angle
 seconds::Int
end

Listing 9.2 Defining radians and degrees as subtypes of the abstract Angle type

Figure 9.2 How
degrees, arcminutes,
and arcseconds are
subdivided

168 CHAPTER 9 Conversion and promotion
As in the rocket example, you have defined an abstract type, Angle, which all the con-
crete angle units are subtypes of. The benefits of this will become clear later.

9.3.1 Defining angle constructors

That DMSs are stored as seconds should be regarded as an implementation detail and
not exposed to the user. Hence, users should not use that constructor directly. Instead,
you will define more natural constructors, as follows.

Degree(degrees::Integer) = Minute(degrees * 60)
Degree(deg::Integer, min::Integer) = Degree(deg) + Minute(min)

function Degree(deg::Integer, min::Integer, secs::Integer)
 Degree(deg, min) + Second(secs)
end

function Minute(minutes::Integer)
 DMS(minutes * 60)
end

function Second(seconds::Integer)
 DMS(seconds)
end

9.3.2 Defining arithmetic operations on angles

To be able to actually run these constructors you need to be able to add together DMS
numbers. The code snippet Degree(deg) + Minute(min) basically does a DMS(deg, 0,
0) + DMS(0, min, 0). However, the + operator has not been defined for DMS types. Nor
have you defined them for radians, so let’s do both in the following listing.

import Base: -, +

+(Θ::DMS, α::DMS) = DMS(Θ.seconds + α.seconds)
-(Θ::DMS, α::DMS) = DMS(Θ.seconds - α.seconds)

+(Θ::Radian, α::Radian) = Radian(Θ.radians + α.radians)
-(Θ::Radian, α::Radian) = Radian(Θ.radians - α.radians)

I’ll clarify how this works. As discussed in section 7.3.3, defining a method in Julia will
automatically create a function if no corresponding function already exists. For exam-
ple, if the + function is not imported, Julia will not know that it already exists when
you define +methods. Thus, Julia will create an entirely new +function and attach your
angle-specific methods to it.

THE MAIN AND BASE MODULES All Julia types and functions belong to a module.
You can think of a module as a namespace or library. Most of the functionality

Listing 9.3 Angle constructors for degrees, minutes, and seconds

Listing 9.4 Arithmetic for DMS and radian angles

1699.3 Defining custom units for angles
that comes bundled with Julia is in the module called Base. Previously, you
have used the Statistics module. Functions and types you have not explic-
itly made part of a named module become part of the Main module. Every
function and type you create in the Julia REPL is part of the Main module.

If you then try to evaluate 3 + 4, Julia will attempt a lookup of matching methods on
this newly defined + function. But it has no methods dealing with regular numbers,
only for angles. Thus, if you had forgotten to write import Base: +, you would have
gotten this error message:

julia> 3 + 4
ERROR: MethodError: no method matching +(::Int64, ::Int64)
You may have intended to import Base.+

Essentially, you end up shadowing the + function defined in Base and its attached meth-
ods. By doing import, you are essentially telling Julia you want to add methods to a func-
tion defined in an existing module, such as Base. If you don’t do that, your newly defined
+ function will become part of the Main module. Everything defined in the REPL that
has not been imported from somewhere else is made part of the Main module.

Figure 9.3 is an illustration of the shadowing problem. Function list A is what you get
when you don’t import + and - from Base before adding methods to these functions.

Figure 9.3 Shadowing of functions that occurs when you don’t import functions before extending them

(Int32, Int32)

(Rational, Rational)

(Number, Number)

(Int64, Int64)

(Float64, Float64)

Base.+ methods

shadowed (DMS, DMS)

(Angle, Angle)

(Radian, Radian)

Main.+ methods

(Angle, Angle)

(Radian, Radian)

(DMS, DMS)

(Int32, Int32)

(Rational, Rational)

(Number, Number)

(Int64, Int64)

(Float64, Float64)

Base.+ methods

Base.-

Base.+

Functions

Main.-

Base.+

Base.-

Main.+

Functions

170 CHAPTER 9 Conversion and promotion
The result is two separate method tables for each operator: one for Base and another
for Main. In the B example + and - were imported; thus, the methods are added to the
method table defined by Base, rather than a new method table in the Main module
being created.

9.3.3 Defining accessors to extract degrees, minutes, and seconds

Given an angle in DMS, let’s discover the degrees, minutes, and seconds part in the
following listing.

function degrees(dms::DMS)
 minutes = dms.seconds ÷ 60
 minutes ÷ 60
end

function minutes(dms::DMS)
 minutes = dms.seconds ÷ 60
 minutes % 60
end

seconds(dms::DMS) = dms.seconds % 60

You can use these functions to provide a custom display of these angles on the Julia
REPL. To write that the angle is 90 degrees, 30 arcminutes, and 45 arcseconds you
would use the notation 90° 30' 45''.

9.3.4 Displaying DMS angles

If you use the constructors now, the display you get out of the box isn’t very good. It
exposes the internal representation of DMS degrees as being made up of arcseconds:

julia> α = Degree(90, 30, 45)
DMS(325845)

julia> degrees(α)
90

julia> minutes(α)
30

julia> seconds(α)
45

julia> β = Degree(90, 30) + Degree(90, 30)
DMS(651600)

julia> degrees(β)
181

julia> minutes(β)
0

Listing 9.5 Degree and minute accessors for DMS objects

1719.3 Defining custom units for angles
You can define an alternative view by adding a method to the Julia show function. The
Julia REPL environment uses the show(io::IO, data) to display data of some specific
type to the user. Remember in Julia you can define methods to work on generic
abstract types; however, you can also add methods dealing with more concrete types,
which is what you would want to do in this situation.

import Base: show

function show(io::IO, dms::DMS)
 print(io, degrees(dms), "° ", minutes(dms), "' ", seconds(dms), "''")
end

function show(io::IO, rad::Radian)
 print(io, rad.radians, "rad")
end

You will learn more about the show and IO objects in chapter 11. But for now, this
gives you a nice way of looking at DMS angles:

julia> α = Degree(90, 30, 45)
90° 30' 45''

julia> β = Degree(90, 30) + Degree(90, 30)
181° 0' 0''

9.3.5 Defining type conversions

Now that you have the basics in place, you want to be able to do something useful with
these angles. You may want to use them with functions such as sin and cos, but these
just take plain numbers that are radians. You need to define conversions, so DMS
angles can be turned into radians.

import Base: convert

Radian(dms::DMS) = Radian(deg2rad(dms.seconds/3600))
Degree(rad::Radian) = DMS(floor(Int, rad2deg(rad.radians) * 3600))

convert(::Type{Radian}, dms::DMS) = Radian(dms)
convert(::Type{DMS}, rad::Radian) = DMS(rad)

This contains a number of new things I’ll discuss in greater detail. Notice that the con-
vert method definitions don’t specify the name of the argument, only its type. This is
similar to the rocket example, where you defined the mass of a Rutherford engines as

mass(::Rutherford) = 35

Listing 9.6 Defining string representation of Radian and DMS objects

Listing 9.7 Definining methods for direct and indirect type conversion

Convert the
DMS value to a
Radian value.Convert the Radian

value to a DMS value.

172 CHAPTER 9 Conversion and promotion
You could have written engine::Rutherford, but what would the point be? The
Rutherford composite type did not have any fields you could access. Likewise
Type{Radian} and Type{DMS} don’t have any fields you are interested in accessing in
the convert definition. With these conversions in place you can implement versions
of sin and cos that take numbers with units as arguments.

sin(rad::Radian) = Base.sin(rad.radians)
cos(rad::Radian) = Base.cos(rad.radians)

sin(dms::DMS) = sin(Radian(dms))
cos(dms::DMS) = cos(Radian(dms))

In this case you are not importing sin and cos before creating the methods. This is
because you actually want to shadow the real sin and cos functions, since you don’t
want people to accidentally call these functions using plain numbers. You want them
to use radians or degrees explicitly:

julia> sin(?/2)
ERROR: MethodError: no method matching sin(::Float64)
You may have intended to import Base.sin

julia> sin(90)
ERROR: MethodError: no method matching sin(::Int64)
You may have intended to import Base.sin

julia> sin(Degree(90))
1.0

julia> sin(Radian(?/2))
1.0

Now you cannot accidentally use an angle as input to a trigonometric function with-
out having specified whether it is given in radians or degrees.

9.3.6 Making pretty literals

This is nice, but it would look a lot better if you could write sin(90°) instead of
sin(Degree(90)) and sin(1.5rad) instead of sin(Radian(1.5)).

 In fact, you can achieve this. Observe that Julia interprets 1.5rad as 1.5*rad. Thus
by defining multiplication of regular scalars with units of degrees or radians you have
magically solved the problem.

import Base: *, /

*(coeff::Number, dms::DMS) = DMS(coeff * dms.seconds)
*(dms::DMS, coeff::Number) = coeff * dms
/(dms::DMS, denom::Number) = DMS(dms.seconds/denom)

Listing 9.8 Overriding standard sin and cos functions to use DMS and Radian

Listing 9.9 Operations and constants to allow pretty angle literals

1739.3 Defining custom units for angles
*(coeff::Number, rad::Radian) = Radian(coeff * rad.radians)
*(rad::Radian, coeff::Number) = coeff * rad
/(rad::Radian, denom::Number) = Radian(rad.radians/denom)

const ° = Degree(1)
const rad = Radian(1)

The last two lines show the secret sauce. They mean 90° is read by Julia as 90 *
Degree(1), which, when computed, will result in Degree(90):

julia> sin(90°)
1.0

julia> sin(1.5rad)
0.9974949866040544

julia> cos(30°)
0.8660254037844387

julia> cos(90°/3)
0.8660254037844387

julia> sin(3rad/2)
0.9974949866040544

9.3.7 Type promotions

The simple but labor-intensive way of adding support for doing arithmetic with differ-
ent angle units would mean defining lots of functions with all possible combinations.
Imagine you had another angle type: MetricDegree. It would quickly cause a combi-
natorial explosion, as shown in the following listing.

+(α::DMS, β::Radian) = Radian(α) + β
+(α::MetricDegree, β::DMS) = α + MetricDegree(β)
+(α::Radian, β::MetricDegree) = α + Radian(β)
+(α::Radian, β::DMS) = α + Radian(β)

I have not even shown all the combinations. The point I am making is that you get
many combinations that are hard to manage. Instead, the better solution is defining
generic functions for different units, as shown in the following listing.

+(Θ::Angle, α::Angle) = +(promote(Θ, α)...)
-(Θ::Angle, α::Angle) = -(promote(Θ, α)...)

The only remaining problem is that you have not told promote how to promote angle
types. It only knows about Number types. A first guess of how to add the temperature
type would be adding another promote method, but that’s not how it works. Instead,

Listing 9.10 Combinatorial explosion of arithmetic operations

Listing 9.11 Simplifying arithmetic operations by utilizing promotion

174 CHAPTER 9 Conversion and promotion
promote does its job by calling a function called promote_rule. You need to register
your types by defining promote_rule methods for your types.

import Base: promote_rule

promote_rule(::Type{Radian}, ::Type{DMS}) = Radian

These methods are unusual, as all the arguments are type objects. In addition, you
haven’t given a name to any of the arguments because the type objects are not used for
anything but getting multiple dispatch to select the correct method of the promote_
rule function.

 The promote_rule function takes two type objects as arguments and returns
another type object:

julia> promote_rule(Int16, UInt8)
Int16

julia> promote_rule(Float64, UInt8)
Float64

julia> promote_rule(Radian, DMS)
Radian

You can pose the promotion rule as the following question: given two different types,
what type should they all be promoted to? Now you have put all the pieces in place.
You have plugged into the Julia convert and promote machinery by implementing
methods for the convert and promote_rule functions:

julia> sin(90° + 3.14rad/2)
0.0007963267107331024

julia> cos(90° + 3.14rad/2)
-0.9999996829318346

julia> 45° + 45°
90° 0' 0''

julia> Radian(45° + 45°)
1.5707963267948966rad

julia> 45° + 3.14rad/4
1.5703981633974484rad

This example gives you a hint about the advantages of using a multiple-dispatch lan-
guage, such as Julia. Implementing this behavior using object-oriented programming
is harder and gets increasingly difficult as you add more types into the mix. If you
defined each angle as a class, you would need several methods for every operation—
one for each type.

Listing 9.12 Defining type promotion of Radian and DMS

175Summary
 And there are more practical problems with the object-oriented approach. Should
you ever need to add another angle unit, it will require the following:

1 Adding another class with four methods for each operator
2 Modifying every other angle class, including the base class, Angle, by adding a

version of each operator handling the new angle unit
3 Adding another constructor in each class to handle the new angle unit (to allow

conversion)

This obviously does not scale, and it breaks the open–close principle1 in object-oriented
programming. The open–close principle can be summed up in the following saying:
open for extension, closed for modification.

 If angle units were provided as a library, you could not extend it with other units
without modifying the library itself. That is obviously impractical.

 Julia elegantly solves this by not making functions a part of the types. Thus, you can
add new constructor functions to a type without modifying the type definition itself.
Adding convert and promote_rule functions does not require modification of the
library providing the types you are attempting to define promotion rules and conver-
sion for.

Summary
 Type promotion is handled in Julia by defining promotion rules. This is done

by adding methods to the promote_rule function.
 Conversion of a value x to a type T is accomplished via two different approaches:

T(x) and convert(T, x). The latter is used when dealing with implicit conversions.
 An object x can have a type T. Type{T} is the type of a type object T. This knowl-

edge helps you to add methods to the convert function correctly.
 By defining your own promotion rules and conversion functions, you can add

new number types to Julia or add units such as degrees, meters, feet, celsius, or
fahrenheit to Julia numbers. Units help make numerical code more robust.
New number types can help improve accuracy in calculations, reduce memory
requirements, and improve performance.

 To add methods to a function defined in another module, you need to explic-
itly import those functions from the module. If you don’t, you will end up shad-
owing those functions, which will usually not provide your desired result.

1 Object Oriented Software Construction, Bertrand Meyer, Prentice Hall, 1988, p 23.

Representing
unknown values
Something important to deal with in any programming language is representing
the absence of a value. For a long time, most mainstream programming languages,
such as C/C++, Java, C#, Python, and Ruby, had a value called null or nil, which is
what a variable would contain if it did not have any value. More accurately phrased:
null or nil indicates that a variable is not bound to a concrete object.

 When would this be useful? Let’s use Julia’s findfirst function as an example.
It locates the first occurrence of a substring:

julia> findfirst("hello", "hello world")
1:5

julia> findfirst("foo", "hello world")

This chapter covers
 Understanding how undefined values are used

 Representing the absence of a value with the
Nothing type

 Dealing with values that exist but are unknown
using the Missing type

Substring
hello found.

Substring foo
not found.
176

17710.1 The nothing object
But how do you indicate that a substring cannot be found? Languages such as Java,
C#, and Python would use the null or nil keywords to indicate this. However, it is not
without reason its inventor, British computer scientist Tony Hoare, called the null
pointer his billion-dollar mistake.

 It makes it difficult to write safe code because any variable could be null at any
given time. In programs written using languages supporting null, you need a lot of
boilerplate code performing null checks. That is because it is unsafe to perform oper-
ations on null objects.

 For this reason, modern languages have tended to avoid having null objects or
pointers. Julia does not have a generic null object or pointer. Instead, it has a variety
of types representing unknown or absent values. This chapter will teach you more
about these different types, how to use them, and when to use them.

10.1 The nothing object
The closest thing to null Julia has, is the nothing object of type Nothing. It is a simple
concrete type defined in Julia, as shown in the following listing.

struct Nothing
 # look, no fields
end

const nothing = Nothing()

The nothing object is an instance of the type Nothing. However, every instance of
Nothing is the same object. You can test that yourself in the REPL:

julia> none = Nothing()

julia> none == nothing
true

julia> Nothing() == Nothing()
true

However, there is nothing magical going on here. When you call the constructor of a
composite type with zero fields, you always get the same object returned. To state this
in more formal terms: for a type T with no fields, every instance t of type T is the same
object. This example should help clarify:

julia> struct Empty end

julia> empty = Empty()
Empty()

julia> none = Empty()
Empty()

Listing 10.1 Nothing type and nothing constant as defined by Julia

178 CHAPTER 10 Representing unknown values
julia> empty == none
true

julia> Empty() == Empty()
true

Instances of different empty composite types are, however, considered different.
Hence Empty() does not return the same object as Nothing():

julia> Empty() == Nothing()
false

julia> empty = Empty()
Empty()

julia> empty == nothing
false

Empty composite types make it easy to make special-purpose objects in Julia, which
you want to assign special meaning. By convention, Julia uses nothing to indicate that
something could not be found or does not exist:

julia> findfirst("four", "one two three four")
15:18

julia> findfirst("four", "one two three")

julia> typeof(ans)
Nothing

julia> findfirst("four", "one two three") == nothing
true

10.2 Using nothing in data structures
The multistage rocket is similar to a more generic data structure called a linked-list. Just
like with the rocket example, it can often be useful to chain together multiple objects.
You could, for example, use this to represent a train made up of multiple wagons hold-
ing some cargo. The following definition will not work. Can you determine why?

struct Wagon
 cargo::Int
 next::Wagon
end

cargo(w::Wagon) = w.cargo + cargo(w.next)

There is no way of building a train made out of these wagons with the definition we
have given. I’ll clarify with an example:

train = Wagon(3, Wagon(4, Wagon(1, Wagon(2,))))

Listing 10.2 Defining an infinite train

Tons of cargo in
the train wagon

The next wagon
linked to this one

Calculate the
total cargo in
all wagons.

17910.2 Using nothing in data structures
There is no way to end this chain of wagons. Every Wagon constructor requires a wagon
object as its second argument. To illustrate an infinite chain of wagons I inserted …. in
the code example. The next field always has to be a Wagon. But what if you made Wagon
an abstract type instead? That is one possible solution, which was already employed in
the multistage rocket example.

 Remember, not every Rocket subtype had a next stage field. However, in this chapter
I will introduce a more generic solution to this problem, utilizing parametric types. This
will just cover the basics, since chapter 18 is completely devoted to parametric types.

IMPORTANT Parametric types may look like an add-on feature only of interest
to advanced Julia programmers. However, I have deliberately minimized
usage of parametric types in the code examples. Real-world Julia code uses
parametric types extensively. Parametric types are crucial for type correctness,
performance, and reducing code duplication.

10.2.1 What is a parametric type?

You were exposed to parametric types when I defined ranges and pairs. If P{T} is a
parametric type P, then T is the type parameter. I know this sounds very abstract, but it
will become a lot clearer with some examples:

julia> ['A', 'B', 'D']
3-element Vector{Char}:
 'A'
 'B'
 'D'

julia> typeof(3:4)
UnitRange{Int64}

julia> typeof(0x3//0x4)
Rational{UInt8}

You can think of Vector as a template to make an actual type. To make an actual con-
crete vector you need to know the types of the elements in the vector. In the first
example, the type parameter is Char because each element is a character. For Unit-
Range, the type parameter represents the type of the start and end of the range. For
Rational, the type parameter specifies the type of the nominator and denominator in
a fraction.

 Type parameters are to parametric types what values are to functions. You input a
value to a function and get a value out:

y = f(x)

You input x to function f and get value y out. One could make the same analogy for
parametric types:

S = P{T}

Parametric type Vector
with type parameter Char

Parametric type
UnitRange with type
parameter Int64

Parametric type
Rational with type
parameter UInt8

180 CHAPTER 10 Representing unknown values
You input the type T to P and get the type S out. You can demonstrate this with some
actual Julia types:

julia> IntRange = UnitRange{Int}
UnitRange{Int64}

julia> FloatRange = UnitRange{Float64}
UnitRange{Float64}

julia> IntRange(3, 5)
3:5

julia> FloatRange(3, 5)
3.0:5.0

julia> NumPair = Pair{Int, Float32}
Pair{Int64, Float32}

julia> NumPair(3, 5)
3 => 5.0f0

julia> 3 => 5
3 => 5

In this example you can see how types can be treated much like objects. You make new
type objects and bind them to variables IntRange, FloatRange, and NumPair. These
custom types are then used to instantiate different types of objects.

10.2.2 Using union types to end the wagon train

Union is a parametric type. You can supply it with multiple type parameters to con-
struct a new type. Union types are special in that they can serve as placeholders for any
of the types listed as type parameters. Alternatively, you can think of union types as a
way of combining two or more types into one type.

 Say you have types named T1, T2, and T3. You can create a union of these types by
writing Union{T1, T2, T3}. This creates a new type, which can be a placeholder for any
of those types. This means if you wrote a method with the signature f(x::Union{T1,
T2, T3}), this particular method would get called whenever x was of type T1, T2 or T3.
Let’s look at a concrete example:

julia> f(x::Union{Int, String}) = x^3
f (generic function with 1 method)

julia> f(3)
27

julia> f(" hello ")
" hello hello hello "

julia> f(0.42)
ERROR: MethodError: no method matching f(::Float64)

Create a range type
called IntRange.

Make a range type
based on floating-point
numbers.

Construct a range using
the custom range type.

18110.2 Using nothing in data structures
Closest candidates are:
 f(!Matched::Union{Int64, String}) at none:1

The last example fails because x is a floating-point number, and we have only defined
a method for function f taking a union of Int and String. Float64 is not included.

 Every type included in a type union will be counted as a subtype of that union. You
use the <: operator to either define a subtype or test whether a type is a subtype:

julia> String <: Union{Int64, String}
true

julia> Int64 <: Union{Int64, String}
true

julia> Float64 <: Union{Int64, String}
false

julia> Union{Int64, String} == Union{String, Int64}
 true

The ordering of type parameters in a Union definition does not matter, as shown by
the last evaluated expression. Armed with union types you can solve your problem
with infinite trains.

struct Wagon
 cargo::Int
 next::Union{Wagon, Nothing}
end

cargo(w::Wagon) = w.cargo + cargo(w.next)
cargo(w) = 0

Reload your Julia REPL, and paste in the new type definition. This code will allow you
to create a finite chain of wagons. Notice how two cargo methods have been defined.
You have two different cases to deal with, since next can be either a Wagon or nothing:

julia> train = Wagon(3, Wagon(4, Wagon(1, nothing)))
Wagon(3, Wagon(4, Wagon(1, nothing)))

julia> cargo(train)
8

julia> train = Wagon(3, Wagon(4, Wagon(1, 42)))
ERROR: MethodError: Cannot `convert` an object of type Int64
to an object of type Wagon

The last example was included to demonstrate that due to the Union definition, next
can only be a Wagon or a Nothing object. Therefore, setting next to an integer, such as
42, is not legal. It causes the Julia type system to protest loudly by throwing an exception.

Listing 10.3 Defining a finite train

Type parameter
order does not
matter.

The next linked
wagon can be
nothing.

Values that are
not wagons have
no cargo.

Attempt to use
42 as the next
wagon.

182 CHAPTER 10 Representing unknown values
10.3 Missing values
Missing values are represented in Julia with the missing object, which is of type Miss-
ing. This seems very similar to nothing, so why do you need it?

 This comes about because Julia aims to be a good language for academics doing
scientific computing, statistics, big data, and so on. In statistics, missing data is an
important concept. It happens all the time because in almost any data collection for
statistics there will be missing data. For instance, you may have a situation in which
participants are filling out forms and some of them fail to fill out all the fields.

 Some participants may leave a study before it is finished, leaving those who con-
duct the experiment with incomplete data. Missing data can also exist due to errors in
data entry. So unlike the concept of nothing, missing data actually exists in the real
world. We simply don’t know what it is.

 Specialized software for statisticians, such as R (see https://www.r-project.org) and
SAS (see https://www.sas.com), has long established that missing data should propa-
gate rather than throw exceptions. This means that if a missing value is introduced in
any part of a larger calculation, the whole calculation evaluates to missing. Julia has
chosen to follow this convention as well. Let’s look at what that means in practice.

julia> missing < 10
missing

julia> nothing < 10
ERROR: MethodError: no method matching isless(::Nothing, ::Int64)

julia> 10 + missing
missing

julia> 10 + nothing
ERROR: MethodError: no method matching +(::Int64, ::Nothing)

You can see in listing 10.4 that every mathematical operation involving a missing
value evaluates to missing, unlike nothing, which causes exceptions to be thrown.
The rationale for this is that a lot of serious mistakes have been made in statistical
work in the past, stemming from not noticing there are missing values. Since missing
spreads like a virus in Julia, an unhandled missing value will quickly get caught.

 Missing can be handled explicitly. For instance, if you want to calculate the sum or
averages of an array that may contain missing values, you can use the skipmissing
function to avoid attempting to include missing values in the result:

julia> using Statistics

julia> xs = [2, missing, 4, 8];

julia> sum(xs)
missing

Listing 10.4 Comparing behavior of missing and nothing in mathematical expressions

The presence of a missing
value pollutes the whole
calculation, causing the
result to be missing.

https://www.r-project.org
https://www.sas.com

18310.4 Not a number
julia> sum(skipmissing(xs))
14

julia> median(skipmissing(xs))
4.0

julia> mean(skipmissing(xs))
4.666666666666667

10.4 Not a number
Somewhat related to missing values is the floating-point number NaN (not a number).
You get NaN as a result when the result of an operation is undefined. This typically
becomes an issue when dividing zero by zero:

julia> 0/0
NaN

julia> 1/0
Inf

julia> -1/0
-Inf

In this case Inf stands for infinity and is what you get when dividing a number other
than zero by zero. This makes some sense. As the divisor approaches zero, the result
tends to grow larger.

 It is tempting to consider NaN as similar to missing and that they are interchange-
able. After all, NaN also propagates through all calculations.

julia> NaN + 10
NaN

julia> NaN/4
NaN

julia> NaN < 10
false

julia> NaN > 10
false

However, NaN comparisons return false. The following reason is why you should not
use NaN for missing values: if you have a mistake in your algorithm that causes a 0/0
to happen, you will get NaN. This will be indistinguishable from having missing val-
ues as input.

Listing 10.5 Propagation of NaN in mathematical operations

You skip the missing
values, so you can add
up the non-missing
values.

184 CHAPTER 10 Representing unknown values
julia> calc(x) = 3x/x;

julia> calc(0)
NaN

julia> calc(NaN)
NaN

You may falsely believe your algorithm is working because it is removing missing values
in the calculation, thus masking a defect. For example, in listing 10.6 you are not
checking if the input x is zero before dividing. Thus when x is 0, you get a NaN as
result. If you pass NaN as input to the calc function in order to indicate a missing
value, then you are unable to make a distinction between a programmer mistake and
a missing value.

10.5 Undefined data
Undefined data is something you rarely encounter in Julia, but it is worth being aware
of. Undefined data occurs when a variable or field of a struct has not been set. Usually,
Julia tries to be smart about this; if you define a struct with number fields, Julia will
automatically initialize them to zero if you don’t do anything. However, if you define a
struct without telling Julia what the type of its fields are, Julia has no way of guessing
what the fields should be initialized to.

julia> struct Person
 firstname
 lastname
 Person() = new()
 end

julia> friend = Person()
Person(#undef, #undef)

julia> friend.firstname
ERROR: UndefRefError: access to undefined reference

Julia allows the construction of composite objects with uninitialized fields. However, it
will throw an exception if you try to access an uninitialized field. There are no benefits
to having uninitialized values, but they help catch programmer mistakes.

10.6 Putting it all together
Distinguishing between each of these concepts of nothing can be a bit daunting, so I’ll
briefly summarize the differences: nothing is the programmer’s type of null. It is what a
programmer wants when something does not exist. missing is the statistician’s type of

Listing 10.6 Cannot distinguish between calculation causing NaN or input being NaN

Listing 10.7 Defining a composite type, instantiated with undefined values

185Summary
null. It is what they want when a value is missing in their input data. NaN indicates that
somewhere in your code there was an illegal math operation. In other words, this has
to do with calculations and not with the statistical collection of data. Undefined is when
you, the programmer, forgot to do your job and initialize all used data. Most likely, it
points to a bug in your program.

 As a final reminder: Julia does not have null in the common sense because you
need to explicitly allow for a nothing value using type unions. Otherwise, a function
argument cannot accidentally pass a nothing value.

Summary
 Unknown values in Julia are represented by nothing, missing, NaN, and unde-

fined.
 nothing is of type Nothing and indicates something doesn’t exist. Use as

return value when a find function fails or in data structures (e.g., to terminate
a linked list).

 missing is data that exists but which is missing, such as in a survey. It is of type
Missing. When implementing code that reads in statistical data from a file, use
missing as a placeholder for data which is missing.

 NaN is the result of illegal math operations. Should your function return NaN,
you should investigate whether you have made a programming mistake. For
example, are you making sure 0/0 never happens in your code?

 Undefined is when a variable was not initialized to a known value.
 Neither nothing nor missing are built-in values in the language, but they are

defined as composite types without any fields.
 The Union parameterized type is practical to use with Nothing and Missing

types. For instance, if a field can be either a string or nothing, define the type as
Union{Nothing, String}.

Part 3

Collections

Collections are objects that store and organize other objects. In this part
you look at unique features and capabilities of collections, such as arrays, sets, and
strings. However, you also delve into what is common across all collections, such as
iterating over all the elements in a for loop and higher-order functions, such as
map, filter, and reduce. I briefly covered collections in the part 1, but here I go
deeper on each topic.

Working with strings
You’ve already had some hands-on experience working with strings in earlier chap-
ters; however, I’ll cover many more details that will help you correctly use text
strings in this chapter. In this chapter you will examine these details more closely.
As long as you are working with the letters A–Z, things will be simple. However,
there are a multitude of languages in the world with their own unique set of charac-
ters that Julia needs to be able to deal with.

 That means the minimal required knowledge for working effectively with Julia
strings includes some knowledge of Unicode. Unicode is the international standard
for mapping numbers (code points) to characters.

This chapter covers
 Understanding the relationships between

Unicode, code points, and UTF-8 encoding

 Comparing strings, converting them to lowercase,
and performing other string operations

 When and how to use raw strings

 Learning about different kinds of string literals,
including regular expressions, MIME types, and
BigInt literals
189

190 CHAPTER 11 Working with strings
 Julia also has support for special string literals to aid in performing a variety of
tasks. For example, there are special strings called regular expressions that allow you to
check whether another string matches a particular pattern, such as an email address,
IP address, or zip code.

11.1 UTF-8 and Unicode
Text strings in Julia are Unicode, encoded in UTF-8 format. But what does that mean,
and why should you care? I’ll walk you through a simple example illustrating the
importance of understanding Unicode better.

Æser is the plural of norse gods in Norwegian. It is a four-letter word, as confirmed
with the length function:

julia> length("Æser")
4

But when attempting to access individual characters in the word, you will notice some-
thing strange:

julia> "Æser"[1]
'Æ': Unicode U+00C6 (category Lu: Letter, uppercase)

julia> "Æser"[2]
ERROR: StringIndexError("Æser", 2)

julia> "Æser"[3]
's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)

julia> "Æser"[4]
'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase)

How about another word? Þrúðvangr is the name of the realm of the Norse god Thor:

julia> length("Þrúðvangr")
9

julia> "Þrúðvangr"[9]
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

This is a nine-character word, but the character at index 9 is the sixth character, 'a'.
What is going on here? To understand, you need to understand Unicode and how
Julia strings support it through the UTF-8 encoding:

julia> sizeof("Æser")
5

julia> sizeof("Þrúðvangr")
12

Works as
expected

You get an exception. Trying to
access the character s at index 2
apparently doesn’t work.

Instead, the second character is at
index 3. Does this seem strange?

Æser is encoded
with 5 bytes.

Þrúðvangr is encoded
with 12 bytes.

19111.1 UTF-8 and Unicode
In UTF-8, every character is encoded into one to 4 bytes. Normal letters, such as A, B,
and C, will take just 1 byte, while letters such as Æ, Þ, and ð, which are not used in the
English language, will typically require more than 1 byte to encode. However, before I
delve further into how Julia deals with this, it is useful to understand some key con-
cepts in Unicode that are not specific to the Julia programming language.

11.1.1 Understanding the relation between code points and code units

Unicode and character encodings are complex topics many developers will struggle
with at some point. Understanding the history of why Unicode and UTF-8 exist will
provide important context for understanding.

 Both standards evolved from the older ASCII standard, which encoded every char-
acter as 8 bit. Numbers 65 to 90 would encode letters from A–Z, and numbers 97 to
122 would encode lowercase letters a–z. You can explore the relation between ASCII
codes and their corresponding characters in the Julia REPL using the constructor for
the Char type:

julia> Char(65)
'A': ASCII/Unicode U+0041

julia> Char(90)
'Z': ASCII/Unicode U+005A

To deal with different languages, one would need to operate with different interpreta-
tions of these numbers from 1 to 255. However, this quickly became impractical. You
could not, for example, mix text written using different alphabets on the same page.
The solution was Unicode, which aimed to give a unique number to every character in
the world—not just those in the Latin alphabet but also for Cyrillic, Chinese, Thai,
and all the Japanese character sets.

 The number given to each character is called a code point in Unicode terminology
(https://www.unicode.org/glossary/#code_point). Originally, it was believed 16 bits
would be enough to store every Unicode code point. 16 bits gives 216 – 1 = 65,535
unique numbers. Thus, one of the first Unicode encodings, UCS, used 16 bits (2 bytes)
to encode every Unicode code point (https://www.unicode.org/glossary/#UCS).

 Later it was determined that this would not be enough, and there would need to
be 4 bytes (32 bits) to encode every possible Unicode character. At this point the UCS
approach started to look flawed for the following reasons:

1 UCS was already incompatible with 8-bit ASCII code.
2 A total of 4 bytes for every character would consume a lot of space.

UTF-8 encoding solved these problems by using a variable number of bytes per char-
acter (https://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt). That way, frequently
used characters could be encoded with a single byte, saving space. The 1-byte charac-
ters were intentionally made backward compatible with ASCII.

https://www.unicode.org/glossary/#code_point
https://www.unicode.org/glossary/#UCS
https://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

192 CHAPTER 11 Working with strings
 With variable length character encoding a distinction between the code point of a
character and the code units required to encode the character needs to be made. Every
Unicode character has one number, the code point, that identifies it. Code units are
used to store these code points in memory. UTF-8 requires a variable number of code
units to do that (figure 11.1).

UCS, in contrast, has fixed-sized code units. Each UCS code unit is 16 bit. Figure 11.1
illustrates the relationship between characters, code points, and code units. Every gray
block for the code points represents 4 bytes. A variable number of code units are
required for each character. Therefore they have been stacked to show which bytes
are related to the same character. The black balls give the byte index of some of the
code units making up the characters. To help clarify these concepts, you will engage
in some hands-on experimentation with Unicode characters in the Julia REPL:

julia> codepoint('A')
0x00000041

julia> Int(codepoint('A'))
65

julia> ncodeunits('A')
1

julia> isascii('A')
 true

Let’s explore characters that are not part of the original ASCII standard. They should
have more than one code unit and not return true when isascii() is called:

julia> codepoint('Æ')
0x000000c6

rðÞ r ú

54321

114240222 114 250

158

195 114 195

186

195

176

114

Characters

Code points

Code units

4 byte

1–4-byte

units

Byte index

Figure 11.1 Unicode code
points encoded to UTF-8 code
units (not every index is shown)

Get the code point of the
letter A in hexadecimal form.

The code point of A as
a decimal number

The number of code units required to
encode the code point for the letter A

Is this letter part of the
original ASCII standard?

19311.1 UTF-8 and Unicode
julia> ncodeunits('Æ')
2

julia> isascii('Æ')
false

julia> codepoint(' ')
0x0001f60f

julia> ncodeunits(' ')
4

julia> isascii(' ')
false

There is no isUnicode function because every Julia character is a Unicode character.
isascii is simply a way to test whether a given Unicode character is also part of the
original ASCII standard.

 Just typing letters at the REPL will also give you useful information when the char-
acter literal is evaluated:

julia> 'A'
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> 'Æ'
'Æ': Unicode U+00C6 (category Lu: Letter, uppercase)

julia> ' '
' ': Unicode U+1F60F (category So: Symbol, other)

Notice how this tells you what the Unicode code point number is.

TIP You can use backslash \ and the Tab key to easily write unusual charac-
ters not present on your keyboard. For instance, to write , type \:smirk: in
the Julia REPL, and press Tab, to get a completion.

You can even press Tab after writing just \: to get a full list of possible emojis.
Norwegian letters such as ÆØÅ, which I occasionally use in my examples, can
easily be written on a Mac by simply holding down the option key and enter-
ing character O, A, or ' (English keyboard layout). For other operating sys-
tems, switch to Norwegian keyboard layout or copy the letters.

Unicode code points can be written explicitly in Julia in various ways:

julia> '\U41'
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> Char(0x41)
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> '\U00c6'
'Æ': Unicode U+00C6 (category Lu: Letter, uppercase)

You need 2 bytes to encode
an Æ character in the UTF-8
standard used by Julia.

Æ is not part of the
original ASCII standard.

Code point
for a smiley

A smiley emoji
requires 4 bytes
to encode.

194 CHAPTER 11 Working with strings
julia> Char(0xc6)
'Æ': Unicode U+00C6 (category Lu: Letter, uppercase)

julia> '\U01f60f'
' ': Unicode U+1F60F (category So: Symbol, other)

julia> Char(0x01f60f)
' ': Unicode U+1F60F (category So: Symbol, other)

You can combine these with map to create various ranges. For instance a range does
not need to be merely written as numbers. 'A':'F', for example, is a perfectly valid
range:

julia> map(lowercase, 'A':'F')
6-element Vector{Char}:
 'a'
 'b'
 'c'
 'd'
 'e'
 'f'

julia> map(codepoint, 'A':'F')
6-element Vector{UInt32}:
 0x00000041
 0x00000042
 0x00000043
 0x00000044
 0x00000045
 0x00000046

And you can, of course, go the opposite direction as well:

julia> map(Char, 65:70)
6-element Vector{Char}:
 'A'
 'B'
 'C'
 'D'
 'E'
 'F'

Given that the number of a character and its index is not entirely correlated, you must
take care when working with strings and indices. You should use the lastindex and
nextind functions, which also work for non-strings, as demonstrated with the follow-
ing example:

julia> xs = [4, 5, 3]

julia> i = firstindex(xs)
1

Get the index of the first element. Thus,
you don’t have to assume the first element
is at index 1. You can make Julia arrays
with different start indices.

19511.1 UTF-8 and Unicode
julia> while i <= lastindex(xs)
 println((i,xs[i]))
 i = nextind(xs, i)
 end
(1, 4)
(2, 5)
(3, 3)

In the following listing you can see if you do this with a string, the logic is entirely
the same.

julia> s = "Þrúðvangar"

julia> i = firstindex(s)
1

julia> while i <= lastindex(s)
 println((i, s[i]))
 i = nextind(s, i)
 end
(1, 'Þ')
(3, 'r')
(4, 'ú')
(6, 'ð')
(8, 'v')
(9, 'a')
(10, 'n')
(11, 'g')
(12, 'a')
(13, 'r')

By using these functions, you abstract away the difference between strings and regular
arrays. You can see this in how, for example, nextind is implemented in the standard
library. For arrays it is just a simple increment:

nextind(::AbstractArray, i::Integer) = Int(i)+1

For strings this is a much more complex operation. I will only show parts of the imple-
mentation, edited for clarity.

function nextind(s::String, i::Int)
 i == 0 && return 1
 n = ncodeunits(s)
 between(i, 1, n) || throw(BoundsError(s, i))
 l = codeunit(s, i)
 (l < 0x80) | (0xf8 =< l) && return i+1

Listing 11.1 Iterating over characters in a string using a while loop

Listing 11.2 Excerpt of the base implementation of nextind for strings

Check if you have
reached the last index.

Finds the index of the
element following index
i in array xs

Notice you skip from
index 1 to 3, going
from Þ to r.

Going from ð to v
requires skipping
index 7.

196 CHAPTER 11 Working with strings
 if l < 0xc0
 i' = thisind(s, i)
 return i' < i ? nextind(s, i') : i+1
 end
 …
end

For normal code, you don’t need to deal with nextind and lastindex. Instead, you
use for loops, since they will automatically fetch a whole character on each iteration:

julia> for ch in "Þrúðvangar"
 print(ch, " ")
 end
Þ r ú ð v a n g a r

If you need the indices of each character, use the eachindex function:

julia> for i in eachindex(s)
 print(i, s[i], " ")
 end
1Þ 3r 4ú 6ð 8v 9a 10n 11g 12a 13r

11.2 String operations
Working with text is such a common thing to do that it pays to be aware of the possibil-
ities that exist in the language. My intention is not to show every single string opera-
tion that exists but to give an idea of what is possible.

 I tend to frequently use Julia as an assistant when working with other programming
languages. I use Julia for transforming code in different ways. I’ll walk you through an
example. In many programming languages it is common to see these sorts of varia-
tions in text formatting of identifiers:

 FooBar—Pascal case (upper camel case); it is a frequently used style for types or
classes. It is sometimes used for constants.

 foo_bar—Snake case; it is often used for the name of variables, methods and
functions.

 fooBar—Camel case (lower camel case); it is frequently used for methods and
variable names.

 FOO_BAR—Upper snake case; it is often used for constants and enum values.
 foo-bar—Kebab case; you will find this in LISP programs and configuration files.

I will demonstrate several ways of converting between these styles and how you can
turn them into handy utility functions for aiding your programming.

 The following is my typical process for developing a simple function to do some-
thing: Since I am not certain about how an unfamiliar function works, I first try it out.
Then I gradually combine it with more function calls to get what I want. Eventually, I
have enough to implement my function.

19711.2 String operations
julia> s = "foo_bar"
"foo_bar"

julia> split(s, '_')
2-element Vector{SubString{String}}:
 "foo"
 "bar"

julia> uppercasefirst("foo")
"Foo"

julia> map(uppercasefirst, split(s, '_'))
2-element Vector{String}:
 "Foo"
 "Bar"

julia> join(["Foo", "Bar"])
"FooBar"

julia> join(map(uppercasefirst, split(s, '_')))
"FooBar"

julia> camel_case(s::AbstractString) = join(map(uppercasefirst,
 split(s, '_')))
camel_case (generic function with 1 method)

Now you have a function that will do the conversion, but often you want to be able to
do this quickly. Select some text in your code editor that is in snake case and which
you want to turn into camel case and paste back in.

 This is where Julia’s clipboard() function comes in handy. It can both read from
and write to the clipboard. The clipboard is the place where everything you copy
resides.

WARNING On Linux the clipboard function will not work unless you have
the xsel or xclip commands installed. On Debian or Ubuntu you can install
these with the following:

$ sudo apt-get install xsel

On Red Hat or Fedora Linux you can them install with the following:

$ sudo yum install xsel

In listing 11.4, a method is added to the camel_case function, which does not take
any string arguments but, instead, reads the clipboard. Just mark some text and copy
it before running clipboard(). I marked the first part of this paragraph.

Listing 11.3 Iterative development of a camel case function

198 CHAPTER 11 Working with strings
julia> s = clipboard()
"HiHowAreYou"

julia> function camel_case()
 s = camel_case(clipboard())
 clipboard(s)
 s
 end

clipboard() gets the contents of the clipboard, while clipboard(s) stores the con-
tent of s on the clipboard. Whenever you are coding and want to change a snake case
text to camel case, you can follow these steps:

1 Copy the text.
2 Switch to your open Julia REPL.
3 Start typing came…, and press the up-arrow key. This should complete to

camel_case() if you called it before. Alternatively, press Tab.
4 Go back to the editor, and paste the result.

11.2.1 Converting from camel case to snake case

Let’s look at code for going the other direction. In this case using the split function
will not work, but why? In this case you cannot split on a specific character; however,
split can take functions instead of characters to decide where to split. To split on

Listing 11.4 Turn text in the clipboard into camel case

Using the Julia REPL more efficiently
To work quickly with Julia it is important to become accustomed to all the hotkeys.
The up-arrow key is used to quickly search through your history. If you start writing
a few letters it will filter that history to only match history beginning with those first
letters.

The Tab key is used to complete a word matching a function Julia knows about. That
could be a built-in one or one you have defined yourself.

Ctrl-A and Ctrl-E are used to jump to the beginning and end of a line in the Julia REPL.
Say you just wrote

map(uppercasefirst, split(s, '_'))

You may want to alter this to

join(map(uppercasefirst, split(s, '_')))

Press up arrow to get back the line you just wrote. Press Ctrl-A, to jump to the begin-
ning of the line. Write join(. Finally, press Ctrl-E to jump to the end, and write).

19911.2 String operations
whitespace, use split(s, isspace), so you could try to use the isuppercase function.
It checks whether a character is uppercase. That is useful, since you split where char-
acters are uppercase:

julia> isuppercase('a')
false

julia> isuppercase('A')
true

julia> s = "oneTwoThreeFour"
"oneTwoThreeFour"

julia> split(s, isuppercase)
4-element Vector{SubString{String}}:
 "one"
 "wo"
 "hree"
 "our"

As you can see, this approach does not work because split strips away the character
you use for splitting. Instead, you will use one of Julia’s many find functions. If you
write find in the REPL and press Tab, you will see a number of possible choices:

julia> find
findall findfirst findlast
findmax findmax! findmin
findmin! findnext findprev

findfirst finds the first occurrence of a match, while findall finds all occurrences.
Let’s look at an example to clarify:

julia> s = "The quick brown fox";

julia> findfirst(isspace, s)
4

julia> indices = findall(isspace, s)
3-element Vector{Int64}:
 4
 10
 16

julia> s[indices]
" "

You can loop over all the indices of the uppercase letters and capture the substrings
using ranges.

200 CHAPTER 11 Working with strings
function snake_case(s::AbstractString)
 i = 1
 for j in findall(isuppercase, s)
 println(s[i:j-1])
 i = j
 end
 println(s[i:end])
end

Listing 11.5 is just a demonstration of how to gradually develop the function. In this
case println will ensure the correct output. Here, the ranges i:j-1 will extract a
substring:

julia> snake_case("oneTwoThreeFour")
one
Two
Three
Four

The following listing shows a complete example. You have removed the println and
added an array of strings called words to store each individual capitalized word.

function snake_case(s::AbstractString)
 words = String[]
 i = 1
 for j in findall(isuppercase, s)
 push!(words, lowercase(s[i:j-1]))
 i = j
 end
 push!(words, lowercase(s[i:end]))
 join(words, '_')
end

Once you have collected the words in the array, join them into one string using
join(words, '_'). The second argument, '_', causes each word to be joined, with _
as a separator.

11.2.2 Converting between numbers and strings

Chapter 5 covered reading input from the user. Whether input comes from the key-
board or a file, it usually comes in the form of text strings; however you may need the
input numbers. In that chapter you looked at the parse function to deal with this; let’s
look at it again in greater detail. Provide a type object as first argument to specify what
type of number type you want to parse to. This could be anything from different types
of integers to floating-point numbers:

Listing 11.5 Print out each capitalized word

Listing 11.6 Turning a camel-case string into a snake-case string

20111.2 String operations
julia> parse(UInt8, "42")
0x2a

julia> parse(Int16, "42")
42

julia> parse(Float64, "0.42")
0.42

You can even specify the base. Julia assumes base 10 by default when parsing numbers,
which refers to digits running from 0 to 9. However, you could parse the numbers as if
they were binary, base 2, if you wanted. That assumes you only have the digits 0 and 1
to form numbers:

julia> parse(Int, "101")
101

julia> parse(Int, "101", base=2)
5

julia> parse(Int, "101", base=16)
 257

These conversions can also be done in reverse. You can take a number and decide
what base you want to use when converting to a text string:

julia> string(5, base=2)
"101"

julia> string(17, base=16)
"11"

julia> string(17, base=10)
 "17"

From the previous string chapter you may remember the named argument
color=:green. Here you have another named argument base=2. This is a typical
case of named argument usage because you are specifying something that only occa-
sionally needs to be specified. Sticking with the rocket theme, I will now cover some
string manipulations involving the RD-180 rocket engine made by Energomash (fig-
ure 11.2).

42 in hexadecimal
form (see chapter 2)

Interpret the string 101
as a decimal number.

As a binary
number (base 2)

Parse 101 as if it represents
a hexadecimal number.

Create a text string with
binary number digits from
decimal number 5.

Turn decimal number
17 into a string in
hexadecimal form.

Convert to a string using the
decimal number system.

202 CHAPTER 11 Working with strings
11.2.3 String interpolation and concatenation

Strings can be combined in myriad ways in Julia; I will compare some different ways of
doing it. Often you have objects, such as numbers, you want to turn into text strings. The
following code defines some variables of different types to use in the string examples:

julia> engine = "RD-180"
"RD-180"

julia> company = "Energomash"
"Energomash"

julia> thrust = 3830
3830

julia> string("The ", engine,
 " rocket engine, produced by ",
 company,

Figure 11.2 Energomash RD-180 rocket engine

20311.2 String operations
 " produces ", thrust,
 " kN of thrust")

"The RD-180 rocket engine, produced
 by Energomash produces 3830 kN of thrust"

The preceding code used the string() function to perform concatenation of strings
and to convert non-strings to strings. Alternatively, one could use the string concate-
nation operator *. If you come from other languages you may be more familiar with +
operator being used for string concatenation. Julia has instead opted for the operator
commonly used to denote concatenation in mathematical notation:

julia> "The " * engine *
 " rocket engine, produced by " *
 company *
 " produces " *
 string(thrust) *
 " kN of thrust"

"The RD-180 rocket engine, produced by Energomash
produces 3830 kN of thrust"

When dealing with lots of variables it is usually better to use string interpolation.
String interpolation is done with the $ sign:

julia> "The $engine rocket engine, produced by $company produces
$thrust kN of thrust"
"The RD-180 rocket engine, produced by Energomash produces 3830 kN
of thrust"

Observe that you often need to use $(variable) instead of $variable when there
is no whitespace that can clearly distinguish the variable name from the surround-
ing text. The same applies if you are trying to interpolate an expression rather than
a variable. For instance, consider a case when you want to write 3830kN without
the space:

julia> "produces $thrustkN of thrust"
ERROR: UndefVarError: thrustkN not defined

julia> "produces $(thrust)kN of thrust"
"produces 3830kN of thrust"

julia> "two engines produces $(2 * thrust) kN of thrust"
 "two engines produces 7660 kN of thrust"

You cannot interpolate
the thrust variable
this way.

Correct way to do string
interpolation when there is
no surrounding whitespace

String
interpolation of
an expression

204 CHAPTER 11 Working with strings
11.2.4 sprintf formatting

If you are familiar with C programming you may be familiar with the printf and
sprintf functions. Julia has macros called @printf and @sprintf, which mimic these
functions. Unlike string interpolation, these macros allow you to specify how a vari-
able should be displayed in greater detail.

NOTE Macros are distinguished from Julia functions with the @ prefix. A macro
is akin to a code generator; the call site of a macro gets replaced with other
code. Macros allow advanced metaprogramming this book will not cover.

For instance you can specify the number of digits that should be used when printing
a decimal number. @printf outputs the result to the console, but @sprintf and
@printf are not in the Julia base module that is always loaded. Thus to use these mac-
ros you need to include the Printf module, which explains the first line:

julia> using Printf

julia> @printf("π = %0.1f", pi)
π = 3.1
julia> @printf("π = %0.2f", pi)
π = 3.14
julia> @printf("π = %0.5f", pi)
π = 3.14159

The following is a short overview of some common formatting options:

 %d—integer numbers
 %f—floating point numbers
 %x—integers shown in hexadecimal notation
 %s—shows arguments as a string

With each of these formatting options you can specify things like number of digits, deci-
mals, or padding. First let’s go over some examples of the base formatting options:

julia> @sprintf("|%d|", 29)
"|29|"

julia> @sprintf("|%f|", 29)
"|29.000000|"

julia> @sprintf("|%x|", 29)
"|1d|"

I’ve included bars in front of and behind the numbers, so the following padding exam-
ples are easier to read:

julia> @sprintf("|%2d|", 42)
"|42|"

20511.3 Using string interpolation to generate code
julia> @sprintf("|%4d|", 42)
"| 42|"

julia> @sprintf("|%-2d|", 42)
"|42|"

julia> @sprintf("|%-4d|", 42)
"|42 |"

Notice padding can be applied to either the right or left side. Right padding is
achieved by adding a hyphen. Padding is useful if you want to display columns of num-
bers you want aligned. You can add padding as zeros instead of space by prefixing the
padding number with 0:

julia> @sprintf("|%02d|", 42)
"|42|"

julia> @sprintf("|%04d|", 42)
"|0042|"

The padding doesn’t say how many spaces or zeros to add but rather how many char-
acters the numbers should fill in total. If the padding is two and the number has two
digits, then nothing will happen. However, if the padding is four, two spaces are
added, resulting in a total of four characters.

11.3 Using string interpolation to generate code
You can create small utility functions with what you just learned. This example will cover
generating C++ code. Julia may not be your primary work language; instead you could
be using a more verbose language, such as C++ or Java at work, but Julia can be used as a
companion to make your job easier. Next you’ll review an example of how a C++ devel-
oper could simplify their work by taking advantage of the Julia programming language.

 The Visualization Toolkit (VTK; https://vtk.org) is an amazing C++ library for visu-
alizing scientific data. You can use it to create visualizations like the one in figure 11.3.

Figure 11.3 Visualization in VTK

https://vtk.org

206 CHAPTER 11 Working with strings
Unfortunately, writing VTK C++ code is tedious, due to all the typical boilerplate
needed in C++. The following is an example of some of the C++ code used in VTK to
define a geometric line. It is not important to understand what the code in the listing
does; it has been edited to remove unnecessary details from the example code.

#ifndef vtkLine_h
#define vtkLine_h

class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell
{
public:
 static vtkLine *New();
 vtkTypeMacro(vtkLine,vtkCell);
 void PrintSelf(ostream& os, vtkIndent indent) override;

 int GetCellType() override {return VTK_LINE;};

protected:
 vtkLine();
 ~vtkLine() override {}

private:
 vtkLine(const vtkLine&) = delete;
 void operator=(const vtkLine&) = delete;
};

Compare this code to the next block of code in listing 11.8 for defining a polygon; you
will notice a lot of repetition. This goes for all VTK code written to define geometric
primitives.

#ifndef vtkPolygon_h
#define vtkPolygon_h

class VTKCOMMONDATAMODEL_EXPORT vtkPolygon : public vtkCell
{
public:
 static vtkPolygon *New();
 vtkTypeMacro(vtkPolygon,vtkCell);
 void PrintSelf(ostream& os, vtkIndent indent) override;

 int GetCellType() override {return VTK_POLYGON;};

protected:
 vtkPolygon();
 ~vtkPolygon() override;

private:
 vtkPolygon(const vtkPolygon&) = delete;
 void operator=(const vtkPolygon&) = delete;
};

#endif

Listing 11.7 Line class in the VTK

Listing 11.8 Polygon class in the VTK

20711.3 Using string interpolation to generate code
Imagine you frequently write new C++ classes (types) like this for different geometric
types; it would be tedious to repeat all this boilerplate. Fortunately, you can make
small Julia utility functions to help (listing 11.9).

 When generating text consisting of multiple lines it is practical to use triple quota-
tion marks: """. This allows you to write strings across multiple lines.

function create_class(class::AbstractString)
 s = """
 #ifndef vtk$(class)_h
 #define vtk$(class)_h

 class VTKCOMMONDATAMODEL_EXPORT vtk$class : public vtkCell
 {
 public:
 static vtk$class *New();
 vtkTypeMacro(vtk$class,vtkCell);
 void PrintSelf(ostream& os, vtkIndent indent) override;

 int GetCellType() override {return VTK_$(uppercase(class));};

 protected:
 vtk$class();
 ~vtk$class() override;

 private:
 vtk$class(const vtk$class&) = delete;
 void operator=(const vtk$class&) = delete;
 };

 #endif
 """
 clipboard(s)
 println(s)
end

The following is an example of using this utility function to create a Hexagon class. Notice
in the two preceding lines that the generated code is also stored on the clipboard.

julia> create_class("Hexagon")
#ifndef vtkHexagon_h
#define vtkHexagon_h

class VTKCOMMONDATAMODEL_EXPORT vtkHexagon : public vtkCell
{
public:
 static vtkHexagon *New();
 vtkTypeMacro(vtkHexagon,vtkCell);
 void PrintSelf(ostream& os, vtkIndent indent) override;

Listing 11.9 VTK C++ code generator in Julia code

Listing 11.10 Use Julia to generate a C++ Hexagon class

Make it easy to paste
generated source code for
the class into a code editor.

208 CHAPTER 11 Working with strings
 int GetCellType() override {return VTK_HEXAGON;};

protected:
 vtkHexagon();
 ~vtkHexagon() override;

private:
 vtkHexagon(const vtkHexagon&) = delete;
 void operator=(const vtkHexagon&) = delete;
};

#endif

11.4 Working with nonstandard string literals
In many programming languages there are useful objects, such as dates, regular
expressions, MIME types, and numbers, that start their life as strings. For instance, you
cannot express very large numbers as number literals in Julia, so you have to express
them as a string that gets parsed. For example, floating-point number literals are 64
bit in Julia, and that is not enough to hold a number such as 1.4e600. There are types
in Julia, such as BigInt and BigFloat, which can hold arbitrarily large numbers. But
how do you create such a number when number literals are limited to 64-bit floating-
point values? The solution is parsing a string containing the number definition:

julia> 1.4e600
ERROR: syntax: overflow in numeric constant "1.4e600"

julia> x = parse(BigFloat, "1.4e600")
1.3999…9994e+600

julia> typeof(x)
BigFloat

Another example can be shown when working with dates. Take a scenario in which
you are reading a number of dates from a file and you want to parse them. To do that,
specify a date format, such as yyyy-mm-dd. This date format indicates that years come
first and days last and that each component is separated by a hyphen: -. The following
is an example of converting from one date format to another (date formatting
options will be covered later).

using Dates

dates = ["21/7", "8/12", "28/2"];
for s in dates
 date = Date(s, DateFormat("dd/mm"))
 dstr = Dates.format(date, DateFormat("E-u"))
 println(dstr)
end

Listing 11.11 Converting from one data format to another

20911.4 Working with nonstandard string literals
If you run this code you will get the following output:

Saturday-Jul
Saturday-Dec
Wednesday-Feb

This date formatting code illustrates a problem with all objects derived from strings. If
you write the code in a natural fashion you end up parsing the same string over and
over again. On every loop iteration you parse the strings "dd/mm" and "E-u", but this
should not be necessary. Those strings are the same on every iteration; only the date
strings themselves change. To avoid having to parse strings to create objects such as
BigFloat and DateFormat, Julia provides special string literals such as big"1.4e600"
and dateformat"dd/mm".

 When the Julia parses your program code and encounters these strings it does not
create String objects but rather BigInt, BigFloat, or DateFormat objects. The bene-
fit of this approach is that objects are created when the code is parsed and not when it
is run.

 That may sound like a geeky detail of no significance; however, this does make a sig-
nificant difference. Julia will parse the code for a for loop in your program once. But it
will potentially execute the code inside the loop many times. Thus, by creating objects
such as DateFormat at parse time rather than runtime, you improve performance.

 I will cover each nonstandard string literal in turn in separate sections. By reading
through these sections it will become clearer what this strategy implies.

11.4.1 DateFormat strings

Let’s revisit the DateFormat example. In other programming languages, if you want to
avoid the performance overhead of parsing DateFormat strings multiple times, you
might restructure the code, as in the following listing.

using Dates

informat = DateFormat("dd/mm")
outformat = DateFormat("E-u")

dates = ["21/7", "8/12", "28/2"]
for s in dates
 date = Date(s, informat)
 dstr = Dates.format(date, outformat)
 println(dstr)
end

From a performance perspective, this works. The problem is that the code becomes
less clear. Glancing at the lines parsing and formatting the dates, you cannot immedi-
ately see what kind of format is used. For readability it is much nicer to be able to put

Listing 11.12 Optimized but less-readable date formatting code

210 CHAPTER 11 Working with strings
the date format definition right where it is used. With the dateformat string literal
you can do just that, as shown in the following listing.

using Dates

dates = ["21/7", "8/12", "28/2"]
for s in dates
 date = Date(s, dateformat"dd/mm")
 dstr = Dates.format(date, dateformat"E-u")
 println(dstr)
end

I haven’t yet covered exactly how to specify a date format string. Fortunately, the Julia
online help system gives a great overview; just go into helpmode (?), and write Date-
Format, which will provide you with a list of all the letters you can use and what they
mean. Basically, you use letters such as y, m, and d to represent year, month, and day. If
you want to write years as four digits, you specify that as yyyy. A few code examples in
the REPL should give you a sense of how this works:

julia> d = Date(2022, 8, 28)
2022-08-28

julia> Dates.format(d, dateformat"dd-mm-yyyy")
"28-08-2022"

julia> Dates.format(d, dateformat"mm-yy")
"08-22"

julia> Dates.format(d, dateformat"yy/m")
"22/8"

Not all formats deal with numbers. u and U give the name of the month, such as Janu-
ary and February. e and E give the name of the day, such as Monday and Tuesday:

julia> Dates.format(d, dateformat"e u yyyy")
"Sun Aug 2022"

julia> Dates.format(d, dateformat"E U yyyy")
"Sunday August 2022"

11.4.2 Raw strings

One issue with regular Julia strings is that characters such as $ and \n have special
meaning. For particular kinds of text this can be cumbersome. You can solve it by
using the escape character, \\; thus $ would be written as \$ and \n as \\n. However, if
you don’t want to do that and don’t need string interpolation, you can use raw strings:

julia> thrust = 3830
3830

Listing 11.13 Optimized and readable date formatting code

21111.4 Working with nonstandard string literals
julia> raw"produces $thrust kN of thrust" # Don't work
"produces \$thrust kN of thrust"

In this case the nonstandard string literal doesn’t create a new type of object. Instead,
it interprets the contents of the string literal differently when constructing a string
object.

11.4.3 Using regular expressions to match text

Regular expressions are a kind of miniature language you can use to specify text to
match. Regular expressions are widely used in Unix text processing tools and in many
coding editors. For example, you can use regular expressions to search for a particular
text string in your code.

 In this example, you have some Julia source code stored in the variable s. You have
decided you want to change the name of the Rocket type to SpaceCraft. You can use
the function replace to locate some text to replace:

julia> s = """
 struct RocketEngine
 thrust::Float64
 Isp::Float64
 end

 mutable struct Rocket
 tank::Tank
 engine::RocketEngine
 end
 """;

julia> result = replace(s, "Rocket"=>"SpaceCraft");

julia> println(result)
struct SpaceCraftEngine
 thrust::Float64
 Isp::Float64
end

mutable struct SpaceCraft
 tank::Tank
 engine::SpaceCraftEngine
end

As you remember from chapter 6, you use the => operator to create a pair; this was
used to create key–value pairs to store in the dictionary. In this case the pair rep-
resents text to find and substitution text. So "Rocket"=>"SpaceCraft" means locate
"Rocket", and replace it with "SpaceCraft".

 However, as you can see from the example, this does not do exactly what you would
have expected. "RocketEngine" also gets replaced with "SpaceCraftEngine". How-
ever, in this case, you only want the Rocket type to be changed. With regular expres-
sions it is easier to be more specific about what you are looking for.

Some source code text in
which you imagine a string
substitution is needed

Replace the
occurrence of
Rocket with
SpaceCraft.

212 CHAPTER 11 Working with strings
 In regular expressions "." means any character; [A-D] means any character from A to
D; and writing [^A-D] means any character not in the range A to D. So "Rocket[^A-Za-z]"
would mean finding the word Rocket and where the first succeeding character is not
a letter, as follows.

julia> result = replace(s, r"Rocket[^A-Za-z]"=>"SpaceCraft");

julia> println(result)
struct RocketEngine
 thrust::Float64
 Isp::Float64
end

mutable struct SpaceCraft
 tank::Tank
 engine::RocketEngine
end

In this example, you turn the string you are searching for into a regular expression by
prefixing it with a r. That means it will not be a string object. This can be demon-
strated in the REPL:

julia> rx = r"Rocket[^A-Za-z]"
r"Rocket[^A-Za-z]"

julia> typeof(rx)
Regex

This regular expression object is created during parsing, not at runtime. Thus, just
like with DateFormat, you avoid parsing the same regular expression multiple times
during runtime.

 There is a lot of good documentation on regular expression syntax, so I will only
provide an overview of the most basic characters used in regular expressions. The fol-
lowing is a list of what are called character classes:

You also have special characters, which influence how the matching of character classes
is done; these are called quantifiers. They can show how many times a character class
should be repeated:

Listing 11.14 Text substitution using regular expressions

Character Meaning Example

\d Match any digit "387543"

\w Match any alphanumeric word with underscore "foo_bar_42"

\s Match any whitespace, tabs, linefeed, space " "

. Match any character "aA ;%4t"

21311.4 Working with nonstandard string literals
More complex interaction with the Julia regular expression system would involve work-
ing with RegexMatch objects. In this example, you want to pick out a number with multi-
ple digits, \d+, and a word composed of multiple letters, \w+. You can do this with the
match function, which will return a RegexMatch object containing all the matches:

julia> rx = r"\w+ (\d+) (\w+) \d+"

julia> m = match(rx, "foo 123 bar 42")
RegexMatch("foo 123 bar 42", 1="123", 2="bar")

julia> m[1]
"123"

julia> m[2]
"bar"

Notice how some parts of the regular expression contain parentheses; these capture
that part of the string. You have set up your regular expression object rx to capture a
number and a word. You can access these captures through integer indices, such as
m[1] and m[2].

 For more complex regular expressions it can be difficult to keep track of the posi-
tion of each capture. Fortunately, regular expressions allow you to name your cap-
tures. Say you want to capture hours and minutes from the string 11:30. You could use
the regular expression r"(\d+):(\d+)", but instead you will name each match using
?<s>, where s is the name of the capture:

julia> rx = r"(?<hour>\d+):(?<minute>\d+)"
r"(?<hour>\d+):(?<minute>\d+)"

julia> m = match(rx, "11:30 in the morning")
RegexMatch("11:30", hour="11", minute="30")

julia> m["minute"]
"30"

julia> m["hour"]
"11"

RegexMatch objects act a lot like Julia collections, so you can iterate over a RegexMatch
object with a for loop. When naming your regular expression captures, the Regex-
Match object works with many of the same functions applicable to dictionaries:

Character Meaning

* Repeat character 0 or more times

+ Repeat one or more times

? Zero or one time

Define a regular
expression.

Match regex
against a string.

Access the first
and second
match.

214 CHAPTER 11 Working with strings
julia> keys(m)
2-element Vector{String}:
 "hour"
 "minute"

julia> haskey(m, "hour")
true

julia> haskey(m, "foo")
false

While regular expressions are extremely powerful and versatile, it is easy to end up
overusing them. Rob Pike, one of the creators of the Go, Plan 9, UTF-8, and many
other popular technologies in systems programming, has repeatedly warned against
the overuse of regular expressions. They can get complex and difficult to modify as
new requirements arise.

 Personally, I rarely use them. In Julia you get very far with basic string and character
functions, such as split, endswith, startswith, isdigit, isletter, and isuppercase.

11.4.4 Making large integers with BigInt

A literal syntax exists for most number types, as shown in these examples:

julia> typeof(42)
Int64

julia> typeof(0x42)
UInt8

julia> typeof(0x42000000)
UInt32

julia> typeof(0.42)
Float64

julia> typeof(0.42f0)
Float32

julia> typeof(3//4)
Rational{Int64}

In the cases it does not exist, you can do a conversion like this Int8(42), which takes a
64-bit signed integer and turns it into an 8-bit signed integer. When writing integers of
arbitrary precision (any number of digits) you can do this as well by writing BigInt(42);
however, this may cause some inefficiency. Everywhere this is encountered an integer
has to be converted to a big int. Instead, if you write big"42", the big integer is cre-
ated when the program is parsed—not each time it is run.

 This isn’t built into the language. Anyone can define a number literal. The follow-
ing is an example of adding support for writing int8"42" to create 42 at parse time as

21511.4 Working with nonstandard string literals
a signed 8-bit integer. You can use this as an example to also demonstrate that macros,
unlike functions, only get called once.

macro int8_str(s)
 println("hello")
 parse(Int8, s)
 end

Now you can try it out in a loop. If macros work like functions you should get a func-
tion call each time you add to the total in the loop:

julia> total = 0
0

julia> for _ in 1:4
 total += int8"10"
 end
hello

julia> total
40

However, you only see hello written once, instead of four times. That is all I will say
about macros, as it is a too big topic to cover in a beginner-level textbook. However, it
is useful to be aware of some of the more powerful features that exist in Julia, even if
you will be unlikely to need them for your first Julia programs.

11.4.5 MIME types

Various operating systems have different systems for keeping track of the type of its
files. For example, Windows famously uses a three-letter filename extension to indi-
cate the type of a file. The original macOS stored the file type in special attributes.

 However, to send files of different types between computers on the internet, one
needs a common standard to identify the file types; this is what MIME types are. They
are typically described as a type and subtype separated by a slash. HTML pages are
denoted as text/html, while JPEG images are denoted as image/jpeg. A PNG file type
would be written as image/png and so on. You can create a MIME type object in Julia
with the following:

julia> MIME("text/html")
MIME type text/html

julia> typeof(ans)
MIME{Symbol("text/html")}

Listing 11.15 Defining string literals for an 8-bit signed integer

For a string literal with the
prefix foo, such as foo"42",

write foo_str.
By writing out a message
each time the macro is
called, you can see how
often it is called.

Parsing the number string and
returning an 8-bit number

216 CHAPTER 11 Working with strings
So a MIME type object MIME("foo/bar") would have the type MIME{Symbol{"foo/bar"}}.
This will look somewhat cryptic until I cover parametric types in chapter 18.
MIME{Symbol{"foo/bar"}} is long and cumbersome to write, which is why Julia offers
the shortcut MIME"foo/bar".

 This is easy to mix up. MIME("foo/bar") and MIME"foo/bar" are not the same
thing. The first case is an object, while the latter is the object type. The following is a
simple example of how you could use this to create methods giving different outputs
for different MIME types:

say_hello(::MIME"text/plain") = "hello world"
say_hello(::MIME"text/html") = "<h1>hello world</h1>"

This is useful because it allows you to define functions in Julia, which can provide dif-
ferent formatted textual outputs for different contexts:

julia> say_hello(MIME("text/plain"))
"hello world"

julia> say_hello(MIME("text/html"))
"<h1>hello world</h1>"

Julia code executing in a graphical notebook style environment, such as Jupyter
(https://jupyter.org), would get passed an HTML MIME type, so graphs and tables
can be rendered as HTML.

Summary
 Julia strings are encoded in UTF-8, which means each code point is encoded as

a variable number of code units.
 parse is used to convert strings to other types, such as numbers.
 string can be used to convert numbers into strings.
 Julia strings can be combined with other object types using either the string

interpolation with the $ symbol or string function with a variable number of
arguments.

 Strings can be concatenated with the multiplication operator *.
 Formatted output to stdout is achieved using the @printf macro. Use @sprintf

to get a string value returned instead. Both are in the Printf module.
 String literals in Julia are extendible, but it comes with several built-in ones: raw

strings, big integers, and regular expressions.

https://jupyter.org

Understanding
Julia collections
You have already looked at collections such as arrays and dictionaries, but there
are many other types of collections, including sets, linked lists, heaps, stacks, and
binary trees. In this chapter, I will cover the commonalities between different
types of collections. Every collection organizes and stores multiple elements, and
each collection type offers unique ways of accessing these elements. For example,
with a dictionary, you can access elements by providing a key, while an array
requires an index.

 However, collections also have core functionality that all collections must sup-
port, such as being iterable. If something is iterable, you can access the individual
elements in a for loop or use a higher-order function, such as map or filter.

 What exactly makes something a collection? What are the differences and simi-
larities between different collection types? And how can you make your own? You
will explore these questions by expanding on the multistage rocket example from

This chapter covers
 Understanding how collections are categorized

according to the type of operations they support

 Turning staged rockets into an iterable collection

 Using common operations supported by various
collection types
217

218 CHAPTER 12 Understanding Julia collections
chapter 8. Because the rocket is made up of many different parts, it is possible to turn
it into something Julia will recognize as a collection.

 In this chapter you will add code to the Tank abstract type to show how interfaces
are defined. You will modify the engine Cluster type to support iterating over
engines. In the final example you will modify the StagedRocket type to support itera-
tion over a multistage rocket.

12.1 Defining interfaces
What exactly is an interface? It helps to contrast interfaces with implementations.
When you interact with a computer, you use a mouse and a keyboard; that is the inter-
face to your computer—you don’t need to know how the particular computer you use
is built (figure 12.1). You can use the same mouse and keyboard with many different
computers built in very different ways. Regardless of how much memory or what
microprocessor your computer has, you can interact with it by clicking the same icons
and moving around the same windows. In other words, there is a shared interface
between many computer models, which insulates you from the specific hardware
implementation of each computer.

Separating components with clearly defined interfaces allows you to build large, com-
plex structures. The various parts making up your system do not need to know details
about implementation as long as each part uses a well-defined interface. Let’s relate
this to programming with Julia. Arrays and ranges are both subtypes of Abstract-
Array, as shown in figure 12.2.

 Thus if you have defined a function operating on an AbstractArray, you don’t
have to deal with the difference between an array and a range. You can make a func-
tion addup (see listing 12.1), which works whether you pass an array or a range as an
argument.

Q
W

R
T

A E

S
D

F

Figure 12.1 A computer does not need to know how an input device works.

21912.1 Defining interfaces
function addup(xs::AbstractArray)
 total = 0
 for x in xs
 total += x
 end
 total
end

Let’s call this function with different arguments. Notice it is very similar in function to
the sum function, except it does not allow you to add up a tuple of values. Why is that?

julia> addup(3:5)
12

julia> addup([3, 4, 5])
12

julia> addup((3, 4, 5))
ERROR: MethodError: no method matching addup(::Tuple{Int64, Int64, Int64})

julia> sum((3, 4, 5))
12

The Tuple type is nowhere to be found in the AbstractArray type hierarchy, and thus
values of type Tuple are not valid arguments to addup. Another example of a common

Listing 12.1 Function for adding up elements in an abstract array

AbstractRange

AbstractArray

DenseArray

Abstract
UnitRange

StepRange

OrdinalRange Array

UnitRange Figure 12.2 Type hierarchy
for arrays and ranges

Store the total.

Return the total.

Adding a range of values

Adding an
array of values

Attempting to add
a tuple of values

220 CHAPTER 12 Understanding Julia collections
interface can be seen in accessing elements by index both for ranges and arrays. Keep
in mind that the first element of Julia arrays is at index 1:

julia> r = 3:5
3:5

julia> r[2]
4

julia> sum(r)
12

julia> a = [3, 4, 5]
3-element Vector{Int64}:
 3
 4
 5

julia> a[2]
4

julia> sum(a)
12

A range doesn’t have elements; elements exist implicitly. However, you can abstract
away that difference by giving range and array a similar-looking interface. That allows
us to define functions such as sum to work for both types, without creating two differ-
ent methods.

 In an object-oriented language, such as Java, C++, or C#, interfaces for an Abstract-
Array are defined explicitly. The type definition in these languages includes a list of
methods that subtypes must implement. Failing to do so produces a compiler error.

 However, in Julia, interfaces are informally defined. Therefore there is no compiler
telling you that you implemented an interface incorrectly.

12.2 Propellant tank interface example
To clarify how to define and work with interfaces in Julia, we will take a look at the
propellant tank example from chapter 8 (see listing 12.2). Say you are supplying a
propellant tank interface other developers can use, and you want to enable them to
create their own Tank subtypes they can use when assembling rockets.

abstract type Tank end

propellant(tank::Tank) = tank.propellant

function refill!(tank::Tank)
 propellant!(tank, totalmass(tank) - drymass(tank))
 tank
end

Listing 12.2 Defining an abstract propellant tank

Accessing the second
element looks the same.

Summing a range and an
array works the same.

Define a similar-looking
range and array.

Accessing the second
element looks the same.

Summing a range and an
array works the same.

Filling a propellant
tank to the max

22112.2 Propellant tank interface example
Now imagine that another developer tries to create a concrete Tank subtype to use in
the rocket simulation. The developer writes the following code.

mutable struct FlexiTank <: Tank
 drymass::Float64
 totalmass::Float64
 propellant::Float64
end

The developer wants to try out their new tank and writes the following code in the
Julia REPL:

julia> tank = FlexiTank(10, 100, 0)
FlexiTank(10.0, 100.0, 0.0)

julia> refill!(tank)
ERROR: UndefVarError: totalmass not defined

This error message makes it difficult for somebody trying to implement the Tank
interface to know what they are supposed to do. The Julia convention to solve this
problem is defining the functions in the interface and documenting them.

 When looking at the code in listing 12.4, you may ask the following questions: Why
is this focusing on documenting the code? Where is the interface defined? And what
is the syntax for defining an interface? The answer is that there is none. That is why I
say interfaces in Julia are informally defined. Hence documentation is a key part of
defining a Julia interface.

 Remember from chapter 7 that in Julia, methods are attached to functions, not
types. You cannot associate functions with any particular type. The only reason total-
mass, drymass, and propellant belong to the Tank interface is that we said so in the
documentation. It is all make believe.

"Stores propellant for a rocket"
abstract type Tank end

"""
 totalmass(t::Tank) -> Float64
Mass of propellant tank `t` when it is full.
"""
function totalmass end

"""
 drymass(t::Tank) -> Float64
Mass of propellant tank `t` when it is empty.
"""
function drymass end

Listing 12.3 Defining a propellant tank subtype

Listing 12.4 Defining a well-documented interface to propellant tanks

Julia has no idea
what totalmass is.

222 CHAPTER 12 Understanding Julia collections
"""
 propellant(t::Tank) -> Float64
Get remaining propellant in tank. Propellant is fuel plus oxidizer
"""
propellant(tank::Tank) = tank.propellant

"""
 refill!(tank::Tank) -> Tank
Fill propellant tankt to the max. Returns full tank
"""
function refill!(tank::Tank)
 propellant!(tank, totalmass(tank) - drymass(tank))
 tank
end

The Julia documentation system works by prefixing a function or type definition with
a regular Julia text string. Inside this text string you document your function or type
using markdown1 syntax. In markdown you indent lines you want formatted as source
code. To highlight individual words as code you use backticks `.

TIP Sometimes you want to write function definitions right in the Julia
REPL. However, when you press Enter after the end of the documentation
string, it gets evaluated before you can write your function definition. How do
you fix this? If you hold down the Alt or Option key when you press Enter,
Julia will allow you to continue writing code.

To add documentation to your functions, you can use double-quoted or triple-quoted
strings (" or """). Please keep in mind that this is different from adding a comment
with the hash # symbol. Comments don’t get stored in the Julia help system.

 Triple quotation and double quotation work slightly different. For instance if you
want to use double quotes inside double-quoted text you need to escape the quotes by
using a backslash. That is not necessary for triple quotation:

julia> print("file \"foo.txt\" not found")
file "foo.txt" not found
julia> print("""file "foo.txt" not found""")
file "foo.txt" not found

Your documentation does not need to match Julia syntax. For instance, you have
used an arrow in the documentation to inform readers what sort of object the func-
tions return:

"drymass(t::Tank) -> Float64"

Put this new definition of Tank in a file together with FlexiTank, and reload your Julia
REPL with it. You can organize this almost whatever way you like. I use a file called

1 Markdown is a lightweight markup language for creating formatted text using a plain-text editor.

22312.2 Propellant tank interface example
tank-interface.jl, which looks like the following (I’ve removed documentation
strings for compactness):

abstract type Tank end

function totalmass end
function drymass end

propellant(tank::Tank) = tank.propellant

function refill!(tank::Tank)
 propellant!(tank, totalmass(tank) - drymass(tank))
 tank
end

mutable struct FlexiTank <: Tank
 drymass::Float64
 totalmass::Float64
 propellant::Float64
end

Let’s explore what error messages appear this time while attempting to refill the
flexi tank:

julia> t = FlexiTank(10, 100, 0)
FlexiTank(10.0, 100.0, 0.0)

julia> refill!(t)
ERROR: MethodError: no method matching totalmass(::FlexiTank)

In this case, you get a better error message. Julia lets us know that totalmass is indeed
a function, but it lacks a method for the FlexiTank type. By checking which methods
exist, you can deduce that a method dealing with the FlexiTank type is necessary:

julia> methods(totalmass)
0 methods for generic function "totalmass":

To enter the Julia help system, hit the ? key, as discussed in chapter 2:

help?> totalmass
search: totalmass

 totalmass(t::Tank) -> Float64

 Mass of propellant tank t when it is full.

Usually, you would provide a guide to your library to explain how developers should use
it. This guide explains what interfaces exist and how to implement these interfaces.

224 CHAPTER 12 Understanding Julia collections
 In a statically typed language, such as Java, the compiler and a sophisticated IDE2

can inform developers about the required methods to implement and their argu-
ments. Since Julia is a dynamically typed language, you don’t have this luxury. You
must adequately document your functions, so other developers know what arguments
are expected and what the functions should return. As the following example shows,
you can press the Tab key before you have finished writing a function call to get a list
of methods and their arguments that match what you have written:

refill!(tank::Tank)
julia> refill!(

However, this strategy is useless for totalmass and drymass, as these functions don’t
have any attached methods. That is why it is essential to document required argu-
ments for these functions.

12.3 Interfaces by convention
Not all interfaces in Julia are connected to a specific abstract type, as demonstrated in
the previous example. For instance, there is an iteration interface. If you implement
this interface, you will be able to iterate over your collection using a for loop. This will
also make it possible to use it with functions, such as map, reduce, and filter, which
operate on iterable collections.

 The iteration interface is not represented by any particular abstract type you need
to implement. Rather it is informally described. You are, at a minimum, expected to
extend the iterate function for your collection type with the following methods:

There are several of these methods, which are documented thoroughly in the official
Julia documentation. The following are the most useful ones:

2 IDE is short for integrated development environment. Visual Studio and IntelliJ IDEA are some examples of IDEs.

Required methods Purpose

iterate(iter) First item and initial state

iterate(iter, state) Current item and next state

Optional methods Purpose

IteratorSize(IterType) Indicate whether a collection has a known length

eltype(IterType) The type of each element

length(iter) The number of items in a collection

Press tab, and available
methods pop up.

22512.4 Implementing engine cluster iteration
I will cover two different rocket-related examples in which you will implement some of
these methods. In the first example, you will iterate over the engines a cluster. In the
second, you will iterate over the stages of a multistage rocket.

12.4 Implementing engine cluster iteration
In chapter 8, we defined a cluster of engines like the following.

struct Cluster <: Engine
 engine::Engine
 count::Int
end

With this definition all the engines in the cluster have to be of the same type. But what
if you want a mix of different types of engines? Some rockets actually do have a mix of
engines, and you cannot model such rockets with the given Cluster type definition.
To solve this, you will turn Cluster into an abstract type instead. This abstract type will
have two concrete subtypes:

 A UniformCluster, representing identical engines
 A MixedCluster, representing a mix of different engines

But why introduce a second level of abstraction? Why can’t UniformCluster and
MixedCluster be direct subtypes of Engine? As you develop your code the benefits of
this layer of abstraction will become clear. Open the source code for your Cluster
type from chapter 8, and modify it with the following code.

abstract type Cluster <: Engine end

struct UniformCluster <: Cluster
 engine::Engine
 count::Int
end

struct MixedCluster <: Cluster
 engines::Vector{Engine}
end

function Cluster(engine::Engine, count::Integer)
 UniformCluster(engine, count)
end

function Cluster(engine::Engine, engines::Engine...)
 sametype(e) = (typeof(engine) == typeof(e))

 if all(sametype, engines)
 UniformCluster(engine, length(engines) + 1)
 else

Listing 12.5 Old definition of rocket engine cluster

Listing 12.6 Redesigned cluster type hierarchy

A vector of elements
that are subtypes of
Engine

Define function checking
if engine e is the same as
the first engine.

Check if all engines
are of the same type.

Return a UniformCluster
if all engines are of the
same type.

226 CHAPTER 12 Understanding Julia collections
 MixedCluster([engine, engines...])
 end
end

You add Cluster methods, which look at the types of engines passed as arguments to
determine whether a uniform or mixed cluster should be created. You use a couple of
new tricks here.

 The sametype function is defined inside the Cluster constructor. This means it
has access to the engine argument, without having to pass it as an argument. This is
beneficial because all is a higher-order function expecting a function taking a sin-
gle argument and returning true or false. The following are some examples to
give you an idea.

julia> iseven(3)
false

julia> iseven(4)
true

julia> all(iseven, [4, 8, 10])
true

julia> all(iseven, [3, 8, 10])
 false

By hiding the type used to represent a cluster, you can create the illusion that there is
only one Cluster type. That you use two different types internally becomes an imple-
mentation detail. Let’s demonstrate how this works in the Julia REPL:

julia> Cluster(Rutherford(), Rutherford())
UniformCluster(Rutherford(), 2)

julia> Cluster(Rutherford(), Merlin())
MixedCluster(Engine[Rutherford(), Merlin()])

You will need to redefine your Isp, mass, and thrust methods with these changes.
Remember that in chapter 8 these functions were defined as

Isp(cl::Cluster) = Isp(cl.engine)
mass(cl::Cluster) = mass(cl.engine) * cl.count
thrust(cl::Cluster) = thrust(cl.engine) * cl.count

Implement an iterable interface on these cluster types to allow you to write only one
implementation of mass and thrust, which works for both cluster types.

Listing 12.7 Demonstrating usage of the all function

Return a MixedCluster if
engines are of different types.

Every number is
even in this case.

The number 3
is not even.

Since all arguments are
of the same type you get
a UniformCluster.

You need a mixed cluster to hold a
Merlin and Rutherford engine.

22712.4 Implementing engine cluster iteration
12.4.1 Making clusters iterable

You can try to iterate over a cluster, as it is currently defined but will not work:

julia> cl = Cluster(Rutherford(), 3)
UniformCluster(Rutherford(), 3)

julia> for engine in cl
 println(mass(engine))
 end
ERROR: MethodError: no method matching iterate(UniformCluster)

The Julia JIT compiler will convert this for loop into a lower-level while loop, which
looks like the code in the following listing.

cluster = Cluster(Rutherford(), 3)

next = iterate(cluster)
while next != nothing
 (engine, i) = next
 println(mass(engine))
 next = iterate(cluster, i)
 end

So your for loop does not work because you have not yet implemented the required
iterate methods. The following listing shows how to add these methods to allow iter-
ation over the engines making up a mixed cluster.

import Base: iterate

function iterate(cluster::MixedCluster)
 cluster.engines[1], 2
end

function iterate(cluster::MixedCluster, i::Integer)
 if i > length(cluster.engines)
 nothing
 else
 cluster.engines[i], i+1
 end
end

Importing the iterate function from Base is important, since the for loop is made to
use iterate from Base and not an iterate function of the same name defined in
another module. When you start iteration you need to return the very first element

Listing 12.8 For loop implementation in Julia

Listing 12.9 Implementing the iteration interface for MixedCluster

Begin iteration.

Check if you reached
the end of the iteration.

Extract values in
the next tuple.

Advance to the next
element in collection.

Add methods to the iterate function
defined in the Base module.

Used to start
the iteration Advance to the

next element in
the collection.

Return nothing to indicate
you reached the end.

The current element and
index of the next element

228 CHAPTER 12 Understanding Julia collections

F

en
and the index of the next element. Thus when you start iteration you must return the
index of the second element. That is why you return cluster.engines[1], 2. You can
call iterate manually to get a sense of how it works:

cluster = Cluster(Rutherford(), Merlin());

julia> next = iterate(cluster)
(Rutherford(), 2)

julia> (engine, i) = next
(Rutherford(), 2)

julia> next = iterate(cluster, i)
(Merlin(), 3)

julia> (engine, i) = next
(Merlin(), 3)

julia> next = iterate(cluster, i)

Now the implementation of iteration for UniformCluster in the following listing
should make more sense.

import Base: iterate

function iterate(cluster::UniformCluster)
 cluster.engine, 2
end

function iterate(cluster::UniformCluster, i::Integer)
 if i > cluster.count
 nothing
 else
 cluster.engine, i+1
 end
end

You can see that this implementation is simpler because you are always returning the
same engine. The i index is only used to keep track of whether you have reached the end
of the iteration. Because both Cluster types now support iteration, you can imple-
ment mass and thrust in terms of iteration, as in the following listing.

mass(cluster::Cluster) = sum(mass, cluster)
thrust(cluster::Cluster) = sum(thrust, cluster)

How does this work? The sum function iterates over the collection supplied as the second
argument. sum will apply the function provided as the first argument to each element it

Listing 12.10 Implementing iteration for UniformCluster

Listing 12.11 Defining mass and thrust for clusters

Get the
initial state.

Extract the engine
and next index from
the next tuple.

etch
the

next
gine.

It has reached the end, so
next equals nothing.

22912.5 Implementing rocket stage iteration
iterates over. sum(thrust, cluster) is equivalent to writing sum(map(thrust, cluster)).
Neither call will work until you implement length for clusters (listing 12.12); otherwise
Julia cannot figure out how large the result vector should be before starting iteration.

import Base: length

length(cluster::UniformCluster) = cluster.count
length(cluster::MixedCluster) = length(cluster.engines)

Remember, there are sum methods that take both one and two arguments. For Isp you
cannot sum values; rather you would have to find an average, as follows.

Isp(cl::Cluster) = sum(Isp, cl)/length(cl)

This code also lets the collection support length, which is sensible for most collec-
tions to support. Naturally, developers want to be able to check how many elements
are contained within a collection.

 With these changes, it should be more apparent why you made Cluster an abstract
type. It allowed you to share your implementation of mass, Isp, and thrust across multi-
ple cluster types. The usage of abstract types is a good way of achieving code reuse.

 Next you will explore iterating across rocket stages. This will be a bit different,
since you cannot access rocket stages by index.

12.5 Implementing rocket stage iteration
The following listing shows the definition of a rocket stage used in chapter 8.

struct StagedRocket <: Rocket
 nextstage::Rocket
 tank::Tank
 engine::Engine
end

Notice that you don’t have a vector from which you can pull individual stages. Thus,
the element in the tuple you return from iterate will not be an integer index.

import Base: iterate

iterate(r::StagedRocket) = (r, r.nextstage)
iterate(r::Rocket) = nothing

Listing 12.12 Giving Julia a way to figure out how many engines are in a cluster

Listing 12.13 Calculating the specific impulse of a cluster of engines

Listing 12.14 Definition of a rocket stage

Listing 12.15 Initiate iteration of a staged rocket

Extend the length function
to support cluster types.

230 CHAPTER 12 Understanding Julia collections
The code in listing 12.15 handles two different cases:

 A staged rocket that actually has a payload
 All other rockets that are not staged and thus have no next element

This means you don’t have to add iterate for every possible subtype of Rocket.
Instead, you make Rocket types default to not supporting iteration. You also need to
support advancing through the collection of stages, which is what the iteration
methods in the following listing will do.

function iterate(first::StagedRocket,

➥ current::StagedRocket)
 current, current.nextstage
end

function iterate(first::StagedRocket, current::Rocket)
 nothing
end

You have defined these new methods such that you default to ending the iteration. That
is accomplished by specifying the type of current as Rocket. Then you make an excep-
tion for when current is of type StagedRocket. In this case you know there is a next-
stage field, which you can access to advance to the next element in the collection.

 Thus, while the first example with the Cluster type makes it look as if current is
an integer index, that is not really true. The second argument to iterate does not need
to be an integer. It can be any data that helps you remember your current position in a
collection you are iterating over. You can test iteration with a small program by putting
the code in the following listing in the REPL or a file you load into the REPL.

payload = Payload(300)

thirdstage = Rocket(payload, SmallTank(), Curie())
secondstage = Rocket(thirdstage, MediumTank(), Rutherford())
booster = Rocket(secondstage, LargeTank(), Cluster(Rutherford(), 9))

for rocket in booster
 println("Mass of rocket: ", mass(rocket))
 println("Thrust of rocket: ", thrust(rocket))
 println()
end

Make sure you have loaded your rocket code into your REPL first. When you run this
program you should get the following output:

Mass of rocket: 13568.0
Thrust of rocket: 225000

Listing 12.16 Advance to the next stage of the rocket

Listing 12.17 Iterating over rocket stages

Called when next stage is
also a staged rocket

Default handling of
iterating to next stage

23112.5 Implementing rocket stage iteration
Mass of rocket: 3053.0
Thrust of rocket: 25000

Mass of rocket: 718.0
Thrust of rocket: 120

This shows that iteration within a for loop works. However you cannot use it with
functions such as sum, map, and collect. The following REPL session shows a failed
attempt at using the map and collect functions on the booster stage.

julia> map(mass, booster)
ERROR: MethodError: no method matching length(::StagedRocket)

julia> collect(booster)
ERROR: MethodError: no method matching length(::StagedRocket)

Making this work will be the next step.

12.5.1 Adding support for map and collect

map and collect fail because you lack implementation for a length method for the
Rocket type. To develop an understanding of this problem, I will first show a naive
solution, as follows.

import Base: length

length(::Rocket) = 0
length(r::StagedRocket) = 1 + length(r.nextstage)

While this works, it has poor performance characteristics. The time it takes to calcu-
late the length of a stage rocket is proportional to its length. Such algorithms are
referred to as linear or O(n) in big-O notation.

Julia gives us a way of telling its iteration machinery that there is no effective method
for determining the length of the collection you iterate over. You do that by imple-
menting an IteratorSize method, as follows.

Listing 12.18 Calculating a number of stages in a staged rocket

BIG-O NOTATION
In computer science, we often talk about memory requirements and processing power
of data structures and algorithms in what is called big-O notation. If the time it takes to
find an item with an algorithm is linear (e.g., it depends on the number of elements in
a collection), then we write that as O(n). The n refers to n elements in your whole col-
lection. Thus, if n doubles, then an O(n) algorithm will take twice the amount of time
to finish. An algorithm that uses a for loop to look at every element is referred to as a
O(n) algorithm, and an algorithm with constant time is written as O(1).

232 CHAPTER 12 Understanding Julia collections
import Base: iterate, IteratorSize

IteratorSize(::Type{<:Rocket}) = Base.SizeUnknown()

This concept is not easy to grasp at first glance. It is what we call the holy traits pattern.
Patterns in programming refer to particular ways of solving problems that get reused
in many different contexts. In Julia you use the holy traits pattern to add traits to
types. A trait is like an ability or characteristic (figure 12.3). For instance, an archer
might have the CanShoot trait; a knight could have the CanRide trait; and a horse
archer, such as a Mongol warrior, could have both the CanShoot and CanRide traits.

Iterable Julia collections can have different traits, with one of these traits being
IteratorSize. How exactly does this work? When you call collect(rocket), this gets
translated to the following code.

_collect(rocket, IteratorEltype(rocket), IteratorSize(rocket)).

Attached to the _collect function are several different methods for dealing with col-
lections with different traits. You can see here that the behavior of collect depends
on two different traits: IteratorEltype and IteratorSize. You don’t always have to
register traits for your collections because the defaults are fine. The following listing
shows how the default for IteratorSize is defined.

IteratorSize(x) = IteratorSize(typeof(x))
IteratorSize(::Type) = HasLength()

Listing 12.19 Add the SizeUnknown trait to the Rocket subtypes

Listing 12.20 Implementation of the collect function

Listing 12.21 Default IteratorSize for Julia collections

HasShape IsInfinite SizeUnknownHasLength

IteratorSize

IteratorSize(collection)

Figure 12.3 The IteratorSize trait and its subtypes

23312.6 Comparison of linked lists and arrays
When the IteratorSize trait is defined as HasLength, Julia will call length to deter-
mine the size of the result array produced from collect. When you define this trait as
SizeUnknown, Julia will instead use an empty array for output that grows as needed.

 In Julia, traits are defined as abstract types. The values a trait can have are deter-
mined by a concrete subtype. HasLength and SizeUnknown are both subtypes of Iter-
atorSize. You may recognize a similar pattern from chapter 9: both the convert and
promote_rule functions take types as arguments; however in this case you add the lit-
tle twist of describing the argument type as Type{<:Rocket}.

 The subtype operator <: is used to indicate that all subtypes of Rocket have the
value SizeUnknown for the IteratorSize trait. I know this is a mouthful, but fortu-
nately, it is something you can usually look up when needed. It is more important to
be aware of traits than to remember exactly how they work. Having defined the Iter-
atorSize trait for Rocket, you can now use map, sum, and other higher-order functions
operating on collections:

julia> booster = Rocket(secondstage,
 LargeTank(),
 Cluster(Rutherford(), 9));

julia> map(mass, booster)
3-element Vector{Float64}:
 13568.0
 3053.0
 718.0

julia> sum(thrust, booster)
 250120

The most basic operation a collection needs to be able to support is iteration. You
have looked at how that is achieved on two different types of collections. The rocket
clusters behave mostly like arrays; however, your staged rocket behaves more like a
data structure called a linked list. In the next section, you will compare linked lists and
arrays to better understand how different collection types have different tradeoffs.

12.6 Comparison of linked lists and arrays
The way you link stages to each other through nextstage, is the same as how a linked
list works: they are often contrasted with arrays. With an array, you can quickly deter-
mine the length or look up an arbitrary element, given an index. You will add support
for index-based lookup to your Cluster subtypes and later contrast it with the linked
list of rocket stages.

 Recalling that for loops actually get turned into while loops, there is actually a sim-
ilar case when accessing and replacing elements in an array. Say you have created a
cluster in which you access elements.

Remember to define the
second and third state if
you haven’t already.

Get the mass
of every stage.

Add up the thrust of all engines
on the multistage rocket.

234 CHAPTER 12 Understanding Julia collections
cluster = Cluster(Rutherford(), Merlin())
engine = cluster[1]
cluster[2] = Rutherford()

The code in listing 12.22 will be translated by the Julia compiler through several stages.
One of these stages, called lowering, turns this code into the following.

cluster = Cluster(Rutherford(), Merlin())
engine = getindex(cluster, 1)
setindex!(cluster, Rutherford(), 2)

Thus to make your Cluster subtypes support accessing elements by index, you need to
add methods to the getindex and setindex! functions found in the Base module.
These are the functions used for implementing element access with square brackets: [].

import Base: getindex, setindex!

function getindex(cluster::MixedCluster, i::Integer)
 cluster.engines[i]
end

function setindex!(cl::MixedCluster, egn::Engine,
➥i::Integer)
 cl.engines[i] = egn
end

function getindex(cluster::UniformCluster, _)
 cluster.engine
end

You can see some differences between MixedCluster and UniformCluster, and you
can easily support getting elements from a UniformCluster because every element
is the same. However, you cannot support setting an element because it would no
longer be uniform. Hence, you have not added a method for setindex! dealing
with the UniformCluster. While you could define index-based access for a linked list,
it isn’t very efficient, as shown in the following listing.

import Base: getindex
function getindex(r::StagedRocket, i::Integer)
 for _ in 1:i-1
 r = r.nextstage
 end
 r
end

Listing 12.22 Index-based access

Listing 12.23 Index-based access under the hood

Listing 12.24 Adding index-based access to rocket clusters

Listing 12.25 Accessing rocket stage by index

Read the first
element.

Change the second element.

Get the ith element
in the cluster.

Set the ith element
in cluster to egn.

You don’t care about the
index for a UniformCluster.

_ is used when you
don’t care about the
name of a variable.

23512.6 Comparison of linked lists and arrays
Such a lookup is an O(n) operation (linear). The more stages you have, the more
times the for loop has to be repeated. A lookup in an array, in contrast, is a O(1) oper-
ation. That is another way of saying it is a constant operation. The time to look up an ele-
ment in an array with three elements is exactly the same as in an array with millions
of elements.

 However, you can add support for other types of operations that work faster. Let’s
look at some of the most common operations supported in Julia for adding elements
to collections.

12.6.1 Adding and removing elements

Arrays allow you to add elements to the front and back of the array as well as remove
elements from both ends. Notice in the examples how push! and pushfirst! allow
you to add more than one element in a single function call.

julia> xs = Int[7]
1-element Vector{Int64}:
 7

julia> push!(xs, 9, 11)
3-element Vector{Int64}:
 7
 9
 11

julia> pushfirst!(xs, 3, 5)
5-element Vector{Int64}:
 3
 5
 7
 9
 11

julia> pop!(xs)
11

julia> popfirst!(xs)
 3

Figure 12.4 may help clarify how these operations work.
 For linked lists, removing and adding elements to the front is effective (figure 12.5).

Thus, you can support operations like pushfirst! and popfirst!. However, you need
to make some adjustments and preparations to make it more convenient to imple-
ment these functions.

 When dealing with linked lists, it is useful to have something obvious to terminate
a chain of objects. Often this will be a nothing object, but with the multistage rocket,
an emptypayload would be a natural fit.

Create array xs with
one element 7.

Add 9 and 11 to the
back of the array.

Add 3 and 5 to the
front of the array.

Remove the
last element.

Remove the
first element.

236 CHAPTER 12 Understanding Julia collections

f

struct EmptyPayload <: Rocket end
const emptypayload = EmptyPayload()

mass(::EmptyPayload) = 0.0
thrust(r::EmptyPayload) = 0
update!(r::EmptyPayload, t::Number, ?t::Number) = nothing

function Rocket(tank::Tank, engine::Engine)
 StagedRocket(emptypayload, tank, engine)
end

Having a representation of an empty payload provides a number of advantages,
such as having a sensible default constructor for a single-stage rocket, as shown in
listing 12.26. The example, however, is not quite done. A new type is needed and an
existing one needs to be modified. StagedRocket was initially made immutable,
which will hinder, for example, popfirst! from working, as you need to modify the
nextstage field. You cannot modify fields on immutable objects (objects which can-
not be changed).

IMPORTANT Whenever you change a type definition, such as by making a struct
mutable, you need to restart the Julia REPL. This is because Julia types are fixed;
they cannot be modified at runtime like many other dynamic languages.

Listing 12.26 An empty payload object to terminate a list of rocket stages

7

7 9 11

93 5 7

3 5

9 11

117 93 5

11

3 5 97

push!

pop!

pushfirst!

popfirst!

Figure 12.4 Adding and removing
elements from an array

nextstage nextstage nextstage

EmptyPayloadStagedRocketStagedRocketStagedRocket

Figure 12.5 Terminated linked list of staged rockets

No
ields

Every instance has the same
objects as with nothing.

Implement the
rocket interface.

23712.6 Comparison of linked lists and arrays
Next I will introduce the SpaceVehicle type (listing 12.27). Figure 12.6 shows how it is
conceptually related to other rocket parts.

Space vehicle

Fly from planet surface

to space

Spacecraft

Craft holding

astronauts—a satellite

or probe. It performs

orbital maneuvers.

Launch vehicle

Gets the spacecraft

into orbit

Booster rocket

The powerful first stage

to get the rocket off the

ground

2nd-stage rocket

Pushes the rocket into

orbit

3rd-stage rocket

Gets the spacecraft

into desired orbit

Figure 12.6 Rocket terminology overview

238 CHAPTER 12 Understanding Julia collections
The SpaceVehicle is the whole thing with all the rocket stages. This abstraction is use-
ful to wrap around the stages, so you can keep track of where the first rocket stage
starts. This is useful when implementing pushfirst! and popfirst! because it allows
you to add and remove stages relative to something else.

mutable struct StagedRocket <: Rocket
 nextstage::Rocket
 tank::Tank
 engine::Engine
end

mutable struct SpaceVehicle
 activestage::Rocket
 end

With these type definitions in place, you have the foundation for implementing your
popfirst! and pushfirst! methods (listing 12.28). Because they are standard func-
tions for Julia collections, you import them from Base to extend them with methods
dealing with your specific collection: SpaceVehicle.

import Base: popfirst!, pushfirst!

tail(r::StagedRocket) = r.nextstage
tail(r::Rocket) = nothing

function popfirst!(ship::SpaceVehicle)
 r = tail(ship.activestage)
 if r == nothing
 throw(throw(ArgumentError
 ➥
("no rocket stages left")))
 else
 discarded = ship.activestage
 discarded.nextstage = emptypayload
 ship.activestage = r
 end
 discarded
 end

The tail function requires some explanation. You add two methods: one for han-
dling a StagedRocket and another for subtypes of Rocket. This is a simple way to
check whether there are any stages left on the SpaceVehicle. Since the activestage
field of SpaceVehicle is of type Rocket, you cannot be guaranteed that a nextstage

Listing 12.27 New and modified type definitions

Listing 12.28 Removing stages from the bottom

Change
StagedRocket
to mutable.

You want
nextstage to
be changeable.

Wrapper around
rocket stages

Stage with the engines
currently firing

Check if more
stages are left.

Not allowed to pop stages
from an empty space vehicle

discarded stage.

Discard the
bottom stage.

Unchain the The next stage
becomes the
active stage.

Show what
stage was
discarded
in REPL.

23912.6 Comparison of linked lists and arrays
exists. Why not make it a StagedRocket then? Because you want to allow stages to be
detached until you have only a payload representing a satellite or crew capsule left.

function pushfirst!(ship::SpaceVehicle, r::StagedRocket)
 r.nextstage = ship.activestage
 ship.activestage = r
 ship
end

With pushfirst! you put a new stage r in front of the existing active stage (listing 12.29).
The old active stage changes its role to become the next stage of the new active stage.
You can make all these edits and modifications and spin up a new REPL to get a feel
for how these new functions work. To help make it more visually distinct, I will present
an example of a rocket with stages named a, b, and c. Each stage has bigger tanks and
a bigger engine than the previous one:

julia> a = Rocket(SmallTank(), Curie());

julia> b = Rocket(MediumTank(), Rutherford());

julia> c = Rocket(LargeTank(), Merlin());

The example begins by creating a space vehicle with a small 40-kg payload:

julia> ship = SpaceVehicle(Payload(40));

Next, pushfirst! is used to add stages to this space vehicle:

julia> pushfirst!(ship, a)
SpaceVehicle(StagedRocket(Payload(40.0), SmallTank(370.0), Curie()))

julia> pushfirst!(ship, b)
SpaceVehicle(StagedRocket(
 StagedRocket(
 Payload(40.0),
 SmallTank(370.0),
 Curie()),
 MediumTank(2050.0),
 Rutherford()))

julia> pushfirst!(ship, c)
SpaceVehicle(StagedRocket(
 StagedRocket(
 StagedRocket(
 Payload(40.0),
 SmallTank(370.0),
 Curie()),
 MediumTank(2050.0),
 Rutherford()),

Listing 12.29 Adding a stage to the bottom

The current
stage becomes
the next stage.The new stage becomes

the current stage.

240 CHAPTER 12 Understanding Julia collections
 LargeTank(9250.0),
 Merlin()))

I have edited the REPL output by adding whitespace and indentation to more clearly
show the structure being created while adding more stages. You can see how the small-
est stage is at the deepest indentation level. That is because it is nested deepest. The
booster stage with the large engine and tank is at the bottom.

 You can knock off all these stages again using the popfirst! function:

julia> popfirst!(ship)
StagedRocket(EmptyPayload(), LargeTank(9250.0), Merlin())

julia> popfirst!(ship)
StagedRocket(EmptyPayload(), MediumTank(2050.0), Rutherford())

julia> popfirst!(ship)
StagedRocket(EmptyPayload(), SmallTank(370.0), Curie())

julia> ship
SpaceVehicle(Payload(40.0))

On each pop, the stage that was discarded is returned. Notice how the largest stage
with the Merlin engine comes off first. The next stage involves the medium-sized tank.
The top stage with the small tank comes last. Finally, the space vehicle only containing
the initial 40-kg payload remains.

12.7 Utility of custom types
A linked list isn’t used often in actual code, as arrays are more versatile and have bet-
ter performance most of the time. However, linked lists are useful to understand, as
the principles applied here apply to more complex data structures. Tree structures
and graphs also link elements together.

 While you are unlikely to spend much time writing completely generic data struc-
tures, such as arrays, linked lists, and dictionaries, you will find it helpful to turn cus-
tom data structures (rocket stages) into collections. Once a data structure implements
the interface of a well-established category of types, such as a collection, you make a
host of functions applicable to them. For example, by making a staged rocket iterable,
you can suddenly use map, reduce, filter, sum, collect, and other functions with it
for free.

Summary
 For loops and index access with square brackets both translate to Julia function

calls such as iterate, getindex, and setindex!.
 Collections must, at a minimum, support iterations. That is done by implement-

ing two iterate methods for your collection type—one to start the iteration
and another to get the next element.

241Summary
 Julia types can be configured with different capabilities using the holy traits pat-
tern. Julia collections can be configured with different traits, such as Iterator-
Size and IteratorEltype.

 Collections for which calculating the number of elements is slow should config-
ure IteratorSize to SizeUnknown.

 Arrays offer fast access of elements at any index but don’t allow quick insertion
of elements except at the end of the array.

 Linked lists have slow access of elements by index but fast insertion and
removal of elements at the front.

 Implementing well established Julia interfaces can make your own data types
more versatile. For example, by turning your data structure into a Julia collec-
tion, you can leverage many of the prebuilt Julia-collection-related functions.

Working with sets
It does not take much time to define a set and show what operations they can be
used for. What does take time is developing an understanding or intuition about
what sort of problems you can solve with sets.

 Many problems related to organizing and locating data can be solved beauti-
fully by utilizing sets and set operations, but that is not always apparent. In this
chapter, I will go through what sets are as well as what you can do with them, and
then I’ll walk you through various realistic examples showing the power of storing
data in sets.

This chapter covers
 Comparing differences between sets and arrays

 Creating sets in different ways

 Using union and intersect operations to locate
items in different types of software

 Understanding tradeoffs between usings sets
and search operations
242

24313.1 What kind of problems can sets help solve?
13.1 What kind of problems can sets help solve?
Lots of software requires organizing large amounts of data, including the following:

 Photo albums
 Email clients
 Bug-tracking systems
 Online shopping
 Software-development projects
 Specialist software, like modeling software for geologists

For a long time the most popular way of organizing data was via tree structures. To
find an item you would drill down into subcategories until you found what you were
looking for. The problem with this approach is that many items can potentially exist
underneath multiple subcategories instead of just one.

 A webshop such as McMaster-Carr (figure 13.1), which sells a huge number of
mechanical components, is a great example of this problem.

Figure 13.1 McMaster-Carr webshop showing how screws can be categorized in multiple ways

244 CHAPTER 13 Working with sets
On the side of the screen you can see various categories for screws:

 System of measurement—Are the screw dimensions given in imperial or metric
units?

 Thread size—What is the actual measurement of the threads and threads per
inch?

 Material—Is the screw made of steel, plastic, or wood?
 Length—What is the length from under the screw head to the end of the

threads?
 Head type—Is it flat, rounded, or hex shaped?

There are far more categories than I have shown here. The point, however, is that you
cannot turn this into a tree hierarchy. Both a plastic screw and a steel screw can have a
rounded head, for example.

 Another case is photo albums. How do you organize them? You could organize pic-
tures by every family member, so your wife and each child gets their own album. Or
maybe organizing albums based on events, such as visiting Barcelona or Hawaii,
makes more sense. Or maybe one would prefer activity-based organization such as by
creating albums for particular types of attractions like technical museums or zoos.
Organization is difficult, so let’s look at how sets and set operations can help you
achieve this task.

13.2 What is a set?
A set is a collection type just like arrays or dictionaries. The following is an example of
creating a set:

julia> fruits = Set(["apple", "banana", "pear", "orange"])
Set{String} with 4 elements:
 "pear"
 "orange"
 "banana"
 "apple"

julia> fruits = Set([:apple, :banana, :pear, :orange])
Set{Symbol} with 4 elements:
 :pear
 :apple
 :banana
 :orange

julia> odds = Set([1, 3, 5, 7, 9])
Set{Int64} with 5 elements:
 5
 7
 9
 3
 1

Symbols
instead of
strings

24513.2 What is a set?
julia> nodups = Set([3, 3, 3, 1, 2])
Set{Int64} with 3 elements:
 2
 3
 1

In the first case, a set of fruits is created, where each fruit is represented by a string.
The second case is similar, but symbols are used instead of strings to represent fruits.
It is a useful example, since symbols are often used in Julia to represent keys.

 Sets are like the keys of a dictionary; no element occurs twice. Notice in the last
example, nodups, 3 is attempted to be added multiple times. Like a dictionary, the ele-
ments don’t exist in any particular order. When you iterate over a set, elements will
appear in a specific order. However, you have no control over this order. If you add or
remove elements the order can change.

 That behavior is different from, say, an array, where you have full control over how
the addition and removal of elements affects the order of the array. If you add an ele-
ment to an array using push!, then every element stays in the same position as before.
Every element can be accessed with the exact same index as previously.

13.2.1 Comparing properties of sets and arrays

You can get a better sense of what a set is by comparing its properties with those of an
array (table 13.1).

The following are two desirable properties offered by sets:

1 Sets are guaranteed not to have any duplicate elements.
2 It is very quick to check if a set contains a specific object.

Arrays, in contrast, don’t offer a quick way of checking whether they contain a specific
object because determining whether an array contains an element or not requires
looking at every element in the array. So looking for a particular element in an array
of two million elements will, on average, take twice as long as looking for it in an
array of one million elements.

Table 13.1 Differences and similarities between sets and arrays

Property Sets Arrays

Duplicates allowed No Yes

Elements ordered No Yes

Random access No Yes

Quick membership test Yes No

Iterable Yes Yes

Attempted to
add duplicates

246 CHAPTER 13 Working with sets
 This is called a linear relationship. However, for a set, the number of operations
required to locate an element does not grow with the size of the set. There is no linear
relationship.

 Sets can be implemented in different ways; thus, in some variants on average, log(n)
checks are required to look up an element in a set of n elements. To help you better
understand the benefits of using sets, let’s make some comparisons of sets with arrays
for different types of operations sets are optimized for.

SEARCHING A SORTED ARRAY

In a sorted array you can perform a binary search. Consider the following sorted array
of numbers for a quick idea of how that works:

A = [2, 7, 9, 10, 11, 12, 15, 18, 19]

This sorted array has 9 numbers. Say you are looking for the number 18. The number
is somewhere in the range 1:9 (index range). Normally, finding the number would
require 8 comparisons, but with binary search you begin in the middle A[5] == 11 and
ask if 18 > 11 or if 18 < 11.

 Because the array is sorted, you can conclude 18 is somewhere in the upper half of
the array or, more specifically, the index range 6:9. This search process is repeated by
checking the middle of this range. Since there isn’t a middle in this range one could
round down the index to A[7] == 15. You find that 18 is above this value. Hence in 3
comparisons, rather than 8, you can locate the answer. Julia has several functions for
doing this type of search:

julia> searchsorted(A, 18)
8:8

julia> searchsortedfirst(A, 18)
8

julia> searchsortedlast(A, 18)
8

The downside of using sorted arrays is that the programmer has to make sure the
array is sorted at all times. It makes insertions slow, as you must re-sort the array each
time. Sets have the benefit of allowing not only fast checks on membership (e.g.,
determining whether an element is in the set) but also fast insertion and removal.

PERFORMING OBJECT MEMBERSHIP TESTS

You can turn the array A into a set S. Both support membership test with in or its
Greek equivalent ∈. You can also use ⊆ or issubset to check if multiple elements
are members:

julia> S = Set(A);

julia> 18 in S
true

24713.2 What is a set?
julia> 18 ∈ A
true

julia> [11, 15] ⊆ A
true

julia> issubset([11, 15], S)
true

Arrays look similar in behavior, but these operations will happen faster on a set. The
exception is for small collections. With few elements, no collection is as fast as an
array. Once you go above 30–40 elements a set will start outperforming an unsorted
array on membership tests.

 However, it is still advisable to use sets for small collections if maintaining a unique
set of elements is important and order isn’t. It helps communicate to the reader of your
code how it is supposed to work. Using more sophisticated collection types, such as
Dictionary or Set, really starts to pay off once you have a large number of elements.

SETS DON’T ALLOW DUPLICATES

What happens when you attempt to create a Set with duplicates? The following exam-
ple explores this topic:

julia> apples = ["apples", "apples", "apples"]
3-element Vector{String}:
 "apples"
 "apples"
 "apples"

julia> appleset = Set(apples)
Set(["apples"])

julia> length(appleset)
1

julia> numbers = [1, 1, 1, 2, 2, 2, 3, 3];

julia> length(numbers)
8

julia> S = Set(numbers)
Set([2, 3, 1])

julia> length(S)
3

Duplicates are allowed in arrays but not in sets.

RANDOM ACCESS AND ORDERING OF ELEMENTS

I will create a set and an array with the same elements to demonstrate how random
access and ordering is entirely different:

A = [3, 5, 7]
S = Set(A)

248 CHAPTER 13 Working with sets
If you use collect or foreach they will iterate over the collections. You can see the
order is different; it is not guaranteed and can change between different versions
of Julia:

julia> collect(S)
3-element Vector{Int64}:
 7
 3
 5

julia> collect(A)
3-element Vector{Int64}:
 3
 5
 7

julia> foreach(print, S)
735

julia> foreach(print, A)
357

I am able to use brackets to access array elements by index:

julia> A[2]
2

But this is not possible to do with a set:

julia> S[2]
ERROR: MethodError: no method matching getindex(::Set{Int64}, ::Int64)

With an array, push! adds each element to a predictable location:

julia> push!(A, 9)
4-element Vector{Int64}:
 3
 5
 7
 9

However for sets, the element can end up anywhere:

julia> push!(S, 9)
Set([7, 9, 3, 5])

With an array, pop! will remove the last element added:

julia> pop!(A)
9

24913.3 How to use set operations
However, with a Set this operation is best avoided, as you have no control over what
element you actually end up removing:

julia> pop!(S)
7

In this case, it may have been more appropriate for Julia to throw an exception, rather
than letting the user perform pop!.

13.3 How to use set operations
Set operations are used to combine sets to create new sets. However, set operations are
not actually limited to sets. You can perform set operations between arrays as well. The
difference is that sets are designed to support this, while arrays are not. Arrays only
perform set operations efficiently for small collections of elements.

 Set operations allow you to answer questions such as the following: Give me the pic-
tures of Bob when he visited Spain and Greece. If Bob represents all images of your uncle
Bob in your photos application, Spain is a set of all your pictures from Spain, and
Greece is a set of all your pictures from Greece, then such a question can be answered
with either of these two equivalent expressions:

S = Bob ∩ (Spain ∪ Greece)
S = intersect(Bob, union(Spain, Greece))

This demonstrates the use of the union and intersect operations. These can also be
written using the ∪ and ∩ symbols. The best way to visualize the behavior of the differ-
ent set operations is by using Venn diagrams1 (figure 13.2).

The two circles in each example represent the sets A and B. These are overlapping
sets, meaning some of the elements in A also exist in B.

 The colored area shows which elements are included in the set resulting from the
set operation. For instance, with a set union all the elements in A and B are included in
the result. For set intersection, however, only elements shared between A and B are part
of the result. You might recognize an analogy with the AND && and OR || operators

1 Venn diagrams are usually used to illustrate the logical relationships between two or more sets of items.

Union DifferenceIntersection

A BU A B∩ setdiff(A, B)
Figure 13.2 Venn diagrams
helping explain set operations

250 CHAPTER 13 Working with sets
used in Boolean logic. With union the elements must be in set A or set B. With intersec-
tion they must be in set A and set B.

 With set difference the order is important. setdiff(A, B) returns the elements in A
remaining after you’ve removed elements in A that also exist in B. Let’s look at a prac-
tical example of how this is used. Imagine having some sets of photo captions:

bob = Set(["Bob in Spain", "Bob in Greece", "Joe and Bob in Florida"])
joe = Set(["Joe in Texas", "Joe and Eve in Scotland", "Joe and Bob in Florida"])
eve = Set(["Eve in Wales", "Joe and Eve in Scotland", "Eve in Spain"])

So there are three people—Bob, Joe, and Eve—who have been on various vacations
abroad, where they have taken pictures. In this example, those pictures are repre-
sented as their caption text.

 In this scenario, you want to use set operations to find pictures containing more
than one of these people. bob is a set of all pictures Bob has been in, joe is a set of all
pictures Joe has been in, and eve is a set of all pictures Eve has been in. This code
finds pictures in which Bob and Joe were together on vacation:

julia> bob ∩ joe
Set{String} with 1 element:
 "Joe and Bob in Florida"

Perhaps Eve broke up with Joe, so you don’t want pictures with Joe in them. Eve can
then use setdiff to exclude Joe pictures:

julia> setdiff(eve, joe)
Set{String} with 2 elements:
 "Eve in Wales"
 "Eve in Spain"

Perhaps Joe wants to find all vacations he spent together with somebody else:

julia> (bob ∪ eve) ∩ joe
Set{String} with 2 elements:
 "Joe and Eve in Scotland"
 "Joe and Bob in Florida"

Sets can, of course, contain any kind of object. Let’s do some slightly less exciting set
operations with numbers. A is a set of mostly even numbers, while B contains mostly
odd numbers:

A = Set([1, 2, 4, 6])
B = Set([1, 3, 5, 6])

You can get the set intersection in two different ways:

julia> A ∩ B
Set{Int64} with 2 elements:
 6
 1

25113.4 How to use sets in your code
julia> intersect(A, B)
Set{Int64} with 2 elements:
 6
 1

You can also get the set union:

julia> A ∪ B
Set{Int64} with 6 elements:
 5
 4
 6
 2
 3
 1

julia> union(A, B)
Set{Int64} with 6 elements:
 5
 4
 6
 2
 3
 1

And finally, you can get the set difference of A and B:

julia> setdiff(A, B)
Set{Int64} with 2 elements:
 4
 2

julia> setdiff(B, A)
Set{Int64} with 2 elements:
 5
 3

As you can see, order matters with set difference.

13.4 How to use sets in your code
The basic operations of sets are not hard to learn. It takes more time to get a sense of
when to use sets in your code.

 Often I have been surprised by how sets can provide powerful and elegant solu-
tions to difficult problems. It is very easy to forget that sets are lying in your toolbox.

 In the following sections you will look at problems that can be solved using sets. I
will also contrast using sets with other solutions.

 I will first show how to create sets for different product categories using the Set
constructor. Afterwards, I will demonstrate the process of finding screws matching
different criteria by using the intersect and setdiff operations. The alternative
solution will be based on defining a Screw composite type with different properties.

252 CHAPTER 13 Working with sets
I will show how to use the filter function to find Screw objects matching desired
criteria.

13.5 Searching for products using set operations
When dealing with products in, say, a Web shop, you would typically use an SQL2 data-
base. This process is conceptually similar to using set operations, which is why I will
expand on the example of buying screws from an online hardware shop.

 A screw can have different head types:

head_type = [rounded, flat, headless, tslot]

You may want a flat screw if you want the screw flush with the surface or a headless one
for things like set screws for axle collars. The screw can have a drive style, which indi-
cates what kind of tip you need to have on your screwdriver to turn the screw around:

drive_style = [hex, phillips, slotted, torx]

Material should be obvious:

material = [aluminium, brass, steel, plastic, wood]

This is the list of categories. Each item in the list is actually a Set, and the set contains
a product number uniquely identifying that screw. For practical reasons I will demon-
strate inventing some 3-digit product numbers. The following example uses ranges to
quickly create a large number of product numbers:

rounded = Set(100:4:130)
flat = Set(101:4:130)
headless = Set(102:4:130)
tslot = Set(103:4:130)

hex = Set(100:108)
phillips = Set(109:115)
slotted = Set(116:121)
torx = Set(122:129)

aluminium = Set(100:3:120)
brass = Set(101:3:120)
steel = Set(102:3:120)
plastic = Set(121:2:130)
wood = Set(122:2:130)

If you look carefully at the numbers, you will see that they are overlapping. For
example, some of the aluminum product numbers are the same as the hex product
numbers.

2 Structured Query Language (SQL) is a specialized language for formulating database queries. A query is a
request for data in a database matching one or more criteria.

25313.5 Searching for products using set operations
 With these sets defined, I can ask various useful questions, such as the following:
Which screws in your product catalog have a rounded head, are made of wood, and
can be fastened with a torx screwdriver? Answering this requires just a simple set
operation:

julia> intersect(rounded, torx, wood)
Set{Int64} with 2 elements:
 124
 128

Or how about getting all steel screws that can be fastened with a Phillips screwdriver?

julia> intersect(phillips, steel)
Set{Int64} with 2 elements:
 114
 111

Or maybe you just want to know whether T-slot screws not made of plastic exist:

julia> setdiff(tslot, plastic)
Set{Int64} with 5 elements:
 107
 103
 115
 111
 119

This is one way of using sets, but you can accomplish the same with entirely different
designs, not utilizing sets at all. Instead, you could define a screw as a richer data type
with properties for each attribute:

struct Screw
 prodnum::Int
 headtype::HeadType
 drivestyle::DriveStyle
 material::Material
end

Instead of dealing with screws as just numbers, there is a data type with properties,
with which you could attempt to match some given search criteria. You can see the
various properties are represented by the custom types HeadType, DriveStyle, and
Material. In a different example, these could be with these strings or symbols, but
instead they are made as particular types to catch cases in which an illegal category is
assigned to any of the attributes.

254 CHAPTER 13 Working with sets
13.5.1 Defining and using enumerations

To represent different categories, you use enumerations, or enum for short. Enumera-
tions exist in a number of different languages. In Julia they are a bit peculiar because
they are defined using macros. Now restart Julia, as these variables are already defined;
otherwise there will be complaints about variables already being defined:

@enum HeadType rounded flat headless tslot
@enum DriveStyle hex phillips slotted torx
@enum Material aluminum brass steel plastic wood

The giveaway is the @ prefix. You can think of hex, slotted, and torx as instances of
the DriveStyle type. In fact, you can use the DriveStyle constructor to create them:

julia> DriveStyle(2)
slotted::DriveStyle = 2

julia> DriveStyle(3)
torx::DriveStyle = 3

julia> DriveStyle(4)
ERROR: ArgumentError: invalid value for Enum DriveStyle: 4

However, you can see the added type safety in the last example. It is not possible to
create other values for DriveStyle than the ones specified when the enumeration
was defined.

13.5.2 Creating test data to perform queries on

To demonstrate using this type to locate screws with different properties, you need to
create some test data to operate on:

function make_screw(prodnum)
 headtype = rand(instances(HeadType))
 drivestyle = rand(instances(DriveStyle))
 material = rand(instances(Material))

 Screw(prodnum, headtype, drivestyle, material)
end

screws = map(make_screw, 100:150)

This code creates an array of screws with product numbers in the range 100 to 150,
and you pick values for each property at random. The instances function returns an
array of every possible value for an enumeration:

julia> instances(DriveStyle)
(hex, phillips, slotted, torx)

julia> instances(Material)
(aluminium, brass, steel, plastic, wood)

25513.5 Searching for products using set operations
13.5.3 Searching for screws

The first example showed screws matching your desired criteria using set operations.
Now you will find desired screws by searching through all the screws in an array and
checking whether each screw matches all desired criteria. The example will show how
to do that by specifying predicate functions. A predicate function will take a screw as
an argument and return true or false, depending on whether the criteria the predi-
cate function tests for was met. isroundwood will test whether the given screw has
rounded heads made of wood:

function isroundwood(screw)
 screw.headtype == rounded &&
 screw.material == wood
end

This predicate can then be used (function returning a Boolean value) to filter screws:

julia> roundedwood = filter(isroundwood, screws)
3-element Vector{Screw}:
 Screw(100, rounded, torx, wood)
 Screw(113, rounded, slotted, wood)
 Screw(129, rounded, torx, wood)

How about finding what nonplastic T-slot screws are offered in the store?

julia> function isnonplastic(screw)
 screw.headtype == tslot &&
 screw.material != plastic
 end

julia> nonplastic = filter(isnonplastic, screws)
15-element Vector{Screw}:
 Screw(105, tslot, hex, wood)
 Screw(106, tslot, hex, wood)
 Screw(107, tslot, hex, brass)
 Screw(108, tslot, phillips, steel)
 Screw(117, tslot, phillips, wood)
 Screw(118, tslot, hex, wood)
 Screw(125, tslot, phillips, wood)
 Screw(128, tslot, phillips, wood)
 Screw(130, tslot, phillips, wood)
 Screw(131, tslot, torx, brass)
 Screw(133, tslot, hex, wood)
 Screw(134, tslot, slotted, wood)
 Screw(138, tslot, hex, steel)
 Screw(141, tslot, phillips, steel)
 Screw(146, tslot, torx, brass)

256 CHAPTER 13 Working with sets
13.5.4 Putting screw objects into sets

The best solution for each case is not always easy to determine, so it is worth knowing
about different approaches. Sometimes it makes sense to combine solutions. You can
put these screw objects into sets as well.

 You can use the filter function to produce sets, which can be reused later:

julia> issteel(screw) = screw.material == steel;
julia> steel_screws = Set(filter(issteel, screws));

julia> ishex(screw) = screw.drivestyle == hex
julia> hex_screws = Set(filter(ishex, screws))

You can then use these sets in set operations:

julia> steel_screws ∩ hex_screws
Set(Screw[
 Screw(126, headless, hex, steel),
 Screw(115, headless, hex, steel),
 Screw(121, flat, hex, steel),
 Screw(107, headless, hex, steel),
 Screw(108, flat, hex, steel)
])

However, this solution can be further improved upon.

13.5.5 Looking up screws using dictionaries

Frequently, buyers know the product number of the screw they want and want to lookup
the screw using this number rather than a complex search critera. By storing screws in a
dictionary, where the key is the product number, you can solve this use case:

julia> screwdict = Dict(screw.prodnum => screw for screw in screws)
Dict{Int64,Screw} with 51 entries:
 148 => Screw(148, rounded, hex, brass)
 124 => Screw(124, rounded, hex, aluminium)
 134 => Screw(134, tslot, slotted, wood)
 136 => Screw(136, rounded, torx, aluminium)
 131 => Screw(131, tslot, torx, brass)
 144 => Screw(144, rounded, slotted, steel)
 142 => Screw(142, flat, slotted, steel)
 150 => Screw(150, rounded, hex, steel)
 ...

julia> screwdict[137]
Screw(137, headless, phillips, aluminium)

julia> screwdict[115]
Screw(115, flat, phillips, aluminium)

This code change allows you to get back to the original solution where you use prod-
uct numbers in your sets. Let’s first make some new sets based on product numbers:

25713.6 Search in bug tracker using sets
prodnums = keys(screwdict)

function isbrass(prodnum)
 screw = screwdict[prodnum]
 screw.material == brass
end
brass_screws = Set(filter(isbrass, prodnums))

function istorx(prodnum)
 screw = screwdict[prodnum]
 screw.drivestyle == torx
end
torx_screws = Set(filter(istorx, prodnums))

Now you are back to the elegance of using set operations to pick desired products,
based on product keys in sets:

julia> brass_screws ∩ torx_screws
Set([100, 122, 144])

julia> [screwdict[pn] for pn in brass_screws ∩ torx_screws]
3-element Vector{Screw}:
 Screw(100, rounded, torx, brass)
 Screw(122, tslot, torx, brass)
 Screw(144, flat, torx, brass)

13.6 Search in bug tracker using sets
When developing larger pieces of software, particularly in a team, companies will usu-
ally use some form of bug-tracking tool. Commonly, these are web applications that
allow testers to submit descriptions of bugs. Managers or product specialists may then
review these bugs and assign priorities and severity before the bugs finally get assigned
to software developers.

 Some common attributes recorded for a bug include the following:

 Project—What software project is it part of?
 Priority—How important is this bug to fix?
 Severity—Is it a minor annoyance or a crash in critical functionality?
 Component—Is this in a user interface, client, server, or so on?
 Assignee—Who is assigned to deal with the bug currently?

Just like with products, bugs will usually be uniquely identified by a bug number. Thus, a
very similar approach to the one described previously can be used: you can use bugs
in dictionaries, where the keys are the bug numbers.

 I’ll demonstrate defining sets composed of different bug numbers. The following
are some questions you can imagine being solved using sets:

What are the most critical bugs assigned to Bob in the Lunar Lander project?

bob ∩ critical ∩ lunar_lander

258 CHAPTER 13 Working with sets
It may not be practical to have names for each set like this, and sets should be orga-
nized according to the fields in the bug tracker. The following shows using dictionar-
ies to group related sets:

assignees["Bob"] ∩ severity[:critical] ∩ projects["Lunar Lander"]

When doing the set operation on multiple objects, it may be more practical not to use
the operator symbols. This is equivalent:

intersect(assignees["Bob"], severity[:critical], projects["Lunar Lander"])

A manager may ask the following:

What top priority bugs are being handled by Bob and Eve?

assignees["Bob"] ∪ assignees["Bob"] ∩ priorities[:top]

We could have looked at many more examples, but hopefully, this gives you a good
idea of how you can use sets to simplify problems in your own applications.

13.7 Relational databases and sets
If you have worked with SQL and relational databases before, then a lot of what you
have seen in this chapter might look familiar. In the SQL database query language,
one can perform many operations similar to set operations. What is called an inner
join in the database world is equivalent to a set intersection.

 Relational databases are built upon a branch of mathematics called relational alge-
bra, which covers modeling data and queries on it. In this chapter, you have explored
set theory, which is more basic. With relational databases, you can create tables of data
with multiple columns that have relations to other tables. The Julia data structure
most similar to database tables is called a DataFrame3 and exists in the DataFrames
package.4 For in-depth coverage of the DataFrames package, see Bogumił Kamiński’s
Julia for Data Analysis (Manning, 2022).

Summary
 Sets can help you organize data such as photo albums, defects in a bug-tracking

tool, or items sold in a web shop.
 Sets don’t have duplicates and allow very quick membership tests, unlike arrays

of elements.
 Elements in sets have no well-defined order, unlike arrays. Elements cannot be

inserted at specific positions in the set.

3 A dataframe has multiple named columns. Each column can contain different types of data.
4 See https://dataframes.juliadata.org/ for more information on DataFrames packages.

https://dataframes.juliadata.org/

259Summary
 Create a set by providing an array of elements such as Set([4, 8, 10]).
 Combine sets using set operations such as union, intersect, and setdiff.
 Check if an element x is in a set S with the in function. This can be written as

in(x, S) or x in S.
 Create an enum type with the @enum macro. @enum Fruit apple banana creates

an enum type Fruit with legal values apple and banana.
 You can achieve operations similar to set operations using filter on an array.

However, performance will not be equally good for large datasets.
 Set theory and relational algebra (used in relational databases) allow you to do

similar operations. However, sets deal with values, while relational databases
deal with tables and their relations.

Working with
vectors and matrices
In chapter 4, you explored basic operations, such as push!, on one-dimensional
arrays, called vectors. In this chapter, you will focus more on working with multidi-
mensional arrays, such as matrices.

 What can you use a matrix and vector for? They can be combined to solve a
great number of problems. For example, it is popular to use vectors in a geometric
interpretation; in this case they represent points in space. You can use matrices to
move and rotate these points.

 Matrices can even be used to solve mathematical equations, and they are very
popular in machine learning. A matrix can be used to represent an image. Every
element in a matrix can represent the color of a single pixel. Each of these topics

This chapter covers
 Working with numbers in matrices and performing

calculations

 Slicing and dicing arrays

 Concatenating arrays along different dimensions
to form larger arrays
260

26114.2 Constructing a matrix from rows and columns
deserves its own chapter or book, so in this chapter I will only cover the essentials of
working with vectors and matrices.

14.1 Vectors and matrices in mathematics
A matrix or a vector is not just a dumb container of numbers. For instance, in mathe-
matics, sets, tuples, and vectors may all look like a list of numbers and, hence, seem
similar. But what you can do with them is different.

 The study of vectors and matrices is part of the field of mathematics called linear
algebra. In linear algebra, single values such as 1, 4, and 8 are called scalars. While mul-
tiple values in a row or column are vectors, tables are matrices, and if the data is arranged
in a 3D array, it may be referred to as a cube. Vectors can further be divided into col-
umn vectors and row vectors (figure 14.1).

14.2 Constructing a matrix from rows and columns
A matrix can be constructed either by specifying multiple rows stacked on top of each
other or by columns lined up, one after the other. When constructing a matrix from
row vectors, you separate each row with a semicolon ;; notice how you don’t separate
individual elements with a comma. If you have forgotten about this, then review the
discussion of row vectors and column vectors in chapter 4:

julia> table = [2 6 12;
 3 4 12;
 6 2 12;
 12 1 12]
4×3 Matrix{Int64}:
 2 6 12
 3 4 12
 6 2 12
 12 1 12

34

14

24

13

33

23

32

22

12

31

21

11

9

8

7

5

Row vector

95 7 8

Column vector

Matrix

Figure 14.1 Arrays of different dimensions

262 CHAPTER 14 Working with vectors and matrices
To create a matrix from multiple columns, you can define each column separately and
then combine them into a matrix:

julia> x1 = [2, 3, 6, 12]
julia> x2 = [6, 4, 2, 1]
julia> x3 = [12, 12, 12, 12]
julia> table = [x1 x2 x3]
4×3 Matrix{Int64}:
 2 6 12
 3 4 12
 6 2 12
 12 1 12

This is identical to writing the column vectors inline like this:

table = [[2, 3, 6, 12] [6, 4, 2, 1] [12, 12, 12, 12]]

Notice how Julia provides a summary of what kind of Array you are getting as a result,
with the line 4×3 Matrix{Int64}. This tells you that Julia made an array with 4 rows
and 3 columns, where each element is of type Int64.

 You can query an arbitrary array about these properties: eltype provides the type
of each element in the array, ndims provides the number of dimensions, and size pro-
vides the number of components (elements) along each dimension. Normally, we
think of the dimensions as length, height, and depth, but in this case I will normally
speak of rows and columns:

julia> eltype(table)
Int64

julia> size(table)
(4, 3)

julia> ndims(table)
2

Figure 14.2 helps clarify what these different properties mean by showing vectors and
matrices of different shapes. They have different numbers of rows and columns as well
as different orientations and dimensions.

14.3 The size, length, and norm of an array
If you come from other programming languages it can be easy to confuse these array
concepts:

 size—The dimensions of an array
 length—Total number of elements in array
 norm—Magnitude of a vector

Type of each element
in the array

The number of
rows and columns

The number of
dimensions

26314.3 The size, length, and norm of an array
A table with 4 rows and 3 columns has been created, making a total of 12 elements:

julia> length(table)
12

The norm function is trickier to grasp. To explain it, I will use a small vector, with the
elements 3 and 4:

julia> using LinearAlgebra

julia> norm([3, 4])
5.0

Looking at a right-angled triangle will help you visualize what norm is doing. You can
think of the elements of the vector as the sides a and b in the triangle (figure 14.3).
norm provides the length of the longest side, the hypotenuse.

ndims(A) = 1

length(A) = 3

size(A) = (3,)

A

D

B

E

ndims(D) = 2

length(D) = 4

size(D) = (2, 2)

ndims(B) = 2

length(B) = 3

size(B) = (1, 3)

ndims() = 2E

length() = 6E

size() = (3, 2)E

C

ndims(C) = 3

length(C) = 6

size(C) = (3, 1, 2)

Figure 14.2 Properties of
arrays of different shape

264 CHAPTER 14 Working with vectors and matrices
The Pythagorean theorem reveals the relationship between all the sides in a right-angled
triangle. You can think of norm as applying the Pythagorean theorem to figure out the
length of the hypotenuse:

14.4 Slicing and dicing an array
Julia has great support for selecting slices of arrays of different dimensions. This flexi-
bility comes from the fact that the setindex! and getindex functions are invoked
when you use square brackets [] to access elements or assign to them. I’ll now explore
how this slicing works (table 14.1).

I’ll begin simply by first looking at accessing individual elements on a one-
dimensional array. Figure 14.1 illustrates how one or more elements can be selected
in one-dimensional arrays. While the figure shows selections within row vectors, the
same principles apply to column vectors.

 You can use begin and end within square brackets to refer to the first or last ele-
ment in a vector along a row or column. In Julia, the first element in an array is at
index 1 by default. However, it is possible to create arrays with any start index in Julia,
which makes the begin keyword very useful (figure 14.4).

 Notice how there are many ways of accessing the same elements. For example, if you
had an array A, then A[3] and A[begin+2] would represent the exact same element.

Table 14.1 Relation between element access and Julia function calls

Syntax sugar Translates to Description

xs[i] getindex(xs, i) Get element at index i

xs[i,j] getindex(xs, i, j) Get element at row i and column j

xs[i] = 42 setindex!(xs, 42, i) Set element at index i

xs[i,j] = 42 setindex!(xs, 42, i, j) Set element at row i and column j

b = 3
h = 5

a = 4

90° Figure 14.3 A right-angled triangle
with sides of length a, b, and h

26514.4 Slicing and dicing an array
For an array with four elements, as in the first two examples, A[4] and A[end] refer to
the same element. Likewise A[3] and A[end-1] grab the same array element. You can
experiment with these concepts in the Julia REPL:

julia> A = collect('A':'F')
6-element Vector{Char}:
 'A'
 'B'
 'C'
 'D'
 'E'
 'F'

julia> A[begin+1]
'B': ASCII/Unicode U+0042

julia> A[end-1]
'E': ASCII/Unicode U+0045

julia> A[2:5]
4-element Vector{Char}:
 'B'
 'C'
 'D'
 'E'

julia> A[begin+1:end-1]
4-element Vector{Char}:
 'B'
 'C'
 'D'
 'E'

4321

A[3]

4321

Element indicies

A[2:3]

A[1:9] A[begin:end]A[:]

A[2:end-1]A[begin+2]

987654321

Figure 14.4 Slicing a one-dimensional array A in different ways

266 CHAPTER 14 Working with vectors and matrices
If you don’t care about the specific index, and just want all the elements, you can write
A[:]. How is that different from just writing A? All slice operations return copies of
data. This example will help clarify:

julia> A = [8, 1, 2, 7];

julia> B = A[:];

julia> B[2] = 42
42

julia> B
4-element Vector{Int64}:
 8
 42
 2
 7

julia> A
4-element Vector{Int64}:
 8
 1
 2
 7

Do you see how the second element of B got changed but not the second element of A?
Had you written B = A instead of B = A[:], the second element would have been changed
in A as well, since A and B would have referred to exactly the same array object.

 But what if you want to select a slice of an array without making a copy? Especially
when working with very large amounts of data, it can kill performance to frequently
copy thousands of elements in some tight inner loop. In these cases, you can create
what is called a view in a subsection of the array. The slices are not copies of elements
of an array but are those elements themselves. You can turn a slice into a view by using
the @view macro:

julia> B = @view A[3:end]
2-element view(::Vector{Int64}, 3:4) with eltype Int64:
 2
 7

julia> B[2] = 1331
1331

julia> A
4-element Vector{Int64}:
 8
 1
 2
 1331

The last result shows that changing the second element of B caused the fourth ele-
ment of A to be changed.

26714.4 Slicing and dicing an array
 Many of these examples should be relatable, since you have worked with one-
dimensional arrays in many previous chapters. It gets more interesting when you are
dealing with slices for multidimensional arrays, such as matrices.

 Let’s create a 2D matrix A to experiment on, using Julia’s reshape function.
reshape takes an AbstractArray as input. Let me explain the next code example:
The range 1:12 is used as input. All ranges are subtypes of AbstractArray, hence Julia
sees the range as a one-dimensional array with 12 elements. The reshape function
rearrange these 12 elements to a matrix with 3 rows and 4 columns, referred to as a
3×4 matrix.

julia> A = reshape(1:12, 3, 4)
3×4 reshape(::UnitRange{Int64}, 3, 4) with eltype Int64:
 1 4 7 10
 2 5 8 11
 3 6 9 12

I will demonstrate how to slice a matrix in different ways, but first I will give some
advice on how to think about slicing, so you can make sense of the demonstrations.

IMPORTANT The shape of a matrix is how many rows and columns it has.
Hence, the function for changing the number of rows and columns is called
reshape in Julia. Keep in mind that the length of the matrix cannot be
changed by reshape. You can reshape an array A of six elements to a 3 × 2 or
2 × 3 matrix, but you cannot reshape it to a 3 × 3 matrix, as that contains nine
elements (see figure 14.5).

A

3

4

2

1

6

5 5

6

3

2 4

1

1

5

3

4

2

6

reshape(A, 3, 2)
reshape(A, 3, 3)

reshape(A, 2, 3)

1

5

3

4

2

6

Not enough elements to create 3 x 3 matrix

2 x 3 matrix

3 x 2 matrix

Figure 14.5 An array can be reshaped to matrices with the same number of elements.
The cross indicates that you cannot reshape an array of six elements to one with nine
elements.

268 CHAPTER 14 Working with vectors and matrices
I like to think about array slicing in terms of the set intersection operation ∩. Thus,
A[2, 3] can be read as the following: Give me the intersection of all the elements of row 2 and
column 3.

 Figure 14.6 provides a visualization of this idea. The shaded squares represent the
row and columns you have selected, and the squares in darker shade represent the inter-
section between these row and column selections.

This conceptualization makes it easier to understand the selection A[2:3, 2:4]. You
can read this as the following: Give me the intersection of all the elements in rows 2 to 3 and
columns 2 to 4.

 Following this logic, it becomes apparent how to select an entire row or column in
a matrix. You can experiment with this in the REPL:

julia> A[1, 2]
4

julia> A[3, 4]
12

2

3

1

4321

Column indicies

4321

A[2, 3] A[2:3, 2:4]

2

3

1

A[2, :] A[:, 3]

R
o
w

 i
n
d
ic

ie
s

Figure 14.6 Slicing two-dimensional arrays.

26914.5 Combining matrices and vectors
julia> A[:, 4]
3-element Vector{Int64}:
 10
 11
 12

julia> A[2, :]
4-element Vector{Int64}:
 2
 5
 8
 11

It is also worth noting that even multidimensional arrays can be treated as one-
dimensional ones:

julia> A[1]
1

julia> A[4]
4

14.5 Combining matrices and vectors
Data does not always come in the shape and form you’d like for performing matrix oper-
ations. You may have n vectors, but really have wanted a matrix with n columns instead.

 Fortunately, Julia has a number of functions for concatenating matrices. This first
example shows how to concatenate two row vectors, either horizontally using hcat or
vertically using vcat (figure 14.7).

7 9 111 3 5

A = [1 3 5] B = [7 9 11]

7 9 111 3 5

hcat(A, B)

cat(A, B, dims = 2)

7 9 11

1 3 5

vcat(A, B)

cat(A, B, dims = 1)
Figure 14.7 Horizontal and vertical
concatenation of row vectors

270 CHAPTER 14 Working with vectors and matrices
The cat function allows you to specify along which dimension you are concatenating.
This is useful if you are dealing with higher-dimension arrays. You can perform similar
operations with column vectors (figure 14.8).

The same principles apply to combining matrices; you can concatenate along any
dimension. Horizontal and vertical concatenation have their own functions, hcat and
vcat, because they are done so frequently (figure 14.9).

 These concatenation functions can take any number of argument; you are not lim-
ited to two:

julia> x = [1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

julia> y = [8, 6, 4]
3-element Vector{Int64}:

11

7

9

5

3

1

A = [1, 3, 5] B = [7, 9, 11]

11

7

9

5

3

1

vcat(A, B)

cat(A, B, dims = 1)

11

7

9

5

3

1

hcat(A, B)

cat(A, B, dims = 2)

Figure 14.8 Horizontal and vertical
concatenation of column vectors

27114.5 Combining matrices and vectors
 8
 6
 4

julia> hcat(x, y, x, y)
3×4 Matrix{Int64}:
 1 8 1 8
 2 6 2 6
 3 4 3 4

julia> hcat(x, 2y, 2x, 3y)
3×4 Matrix{Int64}:
 1 16 2 24
 2 12 4 18
 3 8 6 12

8 1210

7 9 11

2 4 6

1 3 5

A = [1 3 5; 7 9 11] B = [7 9 11; 8 10 12]

8 1210

7 9 11

2 4 6

1 3 5

hcat(A, B)

cat(A, B, dims = 2)

8 1210

7 9 11

2 4 6

1 3 5

vcat(A, B)

cat(A, B, dims = 1)
Figure 14.9 Horizontal and vertical
concatenation of matrices

272 CHAPTER 14 Working with vectors and matrices
14.6 Creating matrices
When working with matrices, you often need special kinds of matrices. Creating matri-
ces with only zeros or ones is so common there are special functions to do this:

julia> zeros(Int8, 2, 3)
2×3 Matrix{Int8}:
 0 0 0
 0 0 0

julia> ones(2, 3)
2×3 Matrix{Float64}:
 1.0 1.0 1.0
 1.0 1.0 1.0

Notice how you can optionally specify what type you want each element to be as the
first argument. If you don’t specify type, then it will default to Float64.

 Creating a whole array of random numbers is also often practical. For instance in
deep learning, large matrices with random values are frequently used. You will often
use random values to create test data:

julia> rand(UInt8, 2, 2)
2×2 Matrix{UInt8}:
 0x8e 0x61
 0xcf 0x0d

Sometimes you just want to fill a whole matrix with a specific value:

julia> fill(12, 3, 3)
3×3 Matrix{Int64}:
 12 12 12
 12 12 12
 12 12 12

Vectors and matrices are huge topics, and if we had more time I would have covered
the geometric interpretation of vectors and matrices. What are some possible uses?
You could have represented the orientation of your rocket with a matrix and its posi-
tion as a vector. You could have used matrices to rotate or move the rocket around in
the coordinate system. For in-depth discussion on working with matrices, Julia for Data
Analysis (Manning, 2022) by Bogumił Kamiński is an excellent resource.

Summary
 Arrays can be used to define column vectors, row vectors, and matrices.
 Matrices are two-dimensional arrays that can be constructed in many ways. It is

most common to define it as a set of rows, but it is also possible to define matri-
ces as a set of columns.

273Summary
 Arrays have properties such as ndims, size, and length. These describe the
number of dimensions, number of elements along each dimension, and total
number of elements in the array.

 Arrays can be sliced by specifying ranges, which also generalize to matrices. You
can give ranges for rows and columns to cut out a submatrix.

 Slices are copies of data. If you don’t want slices to be copies, but directly reference
data in the original array, then you can create a slice view with the @view macro.

 Matrices and vectors can be combined horizontally and vertically using hcat
and vcat. For arrays of higher dimensions, you can use cat and specify the
dimension to concatenate along as an argument.

 Matrices can quickly be created with functions such as rand, fill, ones, and
zeros.

Part 4

Software engineering

Software engineering is about how we organize and structure larger pro-
grams, so they are easier to maintain, modify, and evolve. Chapter 15 covers
functional programming and how it helps create more maintainable software
and encourages new perspectives on how to think about code.

 Chapter 16 focuses on the physical organization of software into modules,
directories, and files, tying this in with dependency management. Large software
is most often composed of many packages made by different teams. This part
focuses on developing a solid system to handle versioning of software packages
that depend on each other.

Functional
programming in Julia
Julia is a multi-paradigm programming language, but a functional programming
style is far more common in Julia than in other mainstream languages you may be
familiar with, such as Python, Ruby, Java, or C++. Thus, it is natural to have an
understanding of the principles of functional programming to become a good Julia
developer.

 Functional programming is not always the best approach to solving every prob-
lem. In this chapter, you will learn to build up a password-keeping service in both an
object-oriented and a functional style, allowing you to explore the pros and cons of
different programming styles (paradigms). Before building up a larger code example

This chapter covers
 Why understanding functional programming is

important in Julia

 The differences between functional and object-
oriented program design

 Practical usage of higher-order functions

 Making your code more readable with function
chaining

 Developing a password-keeping service
277

278 CHAPTER 15 Functional programming in Julia
you will look at the core building blocks of functional programming, such as higher-
order functions, closures, function chaining, and composition.

15.1 How does functional programming differ
from object-oriented programming?
Let’s take a high-level perspective on what functional programming is and why its cov-
ered in a Julia programming book. The first problem when discussing functional pro-
gramming is that there is no single clear definition. In this chapter, I will use what I
deem a pragmatic definition. Figure 15.1 shows how functional programming fits in
with other programming paradigms.

The most important thing I want to highlight in figure 15.1 is that procedural program-
ming and functional programming are not the same thing. Writing code with a bunch of
functions rather than using an object-oriented approach does not automatically make
your code functional. That technique has been used for a long time in languages such
as C, Fortran, and Pascal in an approach called procedural programming.

 Instead, functional programming usually involves a variety of different practices
and approaches:

Imperative

• Step by step

• Mutate state

• Statement

Procedural

• Data and functions are separate.

• Verb-based thinking

Object oriented

• Data and functions combined into classes

• Noun-based thinking

Programming

Functional

• Data and functions are separate.

• Immutable state

Declarative

• The order of the statement is not important.

• Declares facts and constraints

Figure 15.1 Diagram of different programming paradigms and how they are related

27915.3 Avoid deeply nested calls with function chaining
 Handling functions as first class objects, meaning you can pass around functions
and store them as if they were regular data

 Supporting higher-order functions, which are functions taking functions as
arguments

 Using map, filter, and reduce instead of for loops when iterating over collec-
tions to perform different operations on them

 Preferring closures or lambdas instead of objects with methods to manage state

Functional programming offers many ways to combine functions in different ways and
modularize your code at a function level.

15.2 How and why you should learn to think functionally
In functional programming, we try to avoid modifying (mutating) input data, which
makes reasoning about the flow of data through your code easier. Functions take inputs
and transform those inputs to produce outputs, which allows you to think about your
programs as elaborate pipelines through which data flows.

 The following listing illustrates this concept with the camel_case function from
chapter 11, which is a nesting of multiple function calls. Each call produces input for
the next function.

"Turns hello_to_you into HelloToYou"
function camel_case(input::AbstractString)
 join(map(uppercasefirst, split(input, '_')))
end

We can use a data-flow diagram to visualize how the data flows between functions. The
rounded boxes represent data transformations in a data-flow diagram, and the arrows
are annotated with the type of data that flows along them. For instance string and
character data flows into split, and then an array of strings flows out of split and
into map.

 Imperative programming styles, such as object-oriented programming, often make
it very hard to perform such an analysis of data flow because functions or methods
mutate their inputs. Instead of thinking about flows of data getting transformed, it is
better to conceptualize the process as objects sending messages to each other to
mutate their state.

15.3 Avoid deeply nested calls with function chaining
Before building up larger code examples demonstrating pros and cons of functional
programming, I want you to get a better grasp of some of the fundamental building
blocks you have at your disposal. The camel_case function in the previous section was
implemented in quite a functional manner but isn’t very easy to read because it is deeply
nested. You don’t end up with anything looking like the neat pipeline in figure 15.2.

Listing 15.1 Converting snake case to camel case

280 CHAPTER 15 Functional programming in Julia
However, it is possible to build something like that figure using the Julia pipe operator
|>. It allows you to pipe the output from one function into another function. The fol-
lowing is a complete example, which I’ll break down afterward.

splitter(dlm) = str -> split(str, dlm)
mapper(fn) = xs -> map(fn, xs)

function camel_case(input::AbstractString)
 input |> splitter('_') |> mapper(uppercasefirst) |> join
end

In the REPL you can experiment with how the splitter and mapper functions work:

julia> f = splitter('_')
#13 (generic function with 1 method)

julia> words = f("hello_how_are_you")
4-element Vector{SubString{String}}:
 "hello"
 "how"
 "are"
 "you"

julia> g = mapper(uppercasefirst)
#15 (generic function with 1 method)

julia> g(words)
4-element Vector{String}:
 "Hello"
 "How"
 "Are"
 "You"

To understand listing 15.2 you need to understand the -> and |> operators. The ->
operator is used to define what are called anonymous functions in Julia.

Listing 15.2 Camel case through function chaining

split

string

map join

'_'

input

output
char

string

uppercasefirst

array array

function

Figure 15.2 Data flow for the camel_case function

28115.3 Avoid deeply nested calls with function chaining
15.3.1 Understanding anonymous functions and closures

An anonymous function is a function without a name. You can create one-line anony-
mous functions with the -> operator. Without anonymous functions, you would need
to write splitter and mapper, as shown in the following listing.

"Create a function which splits on `dlm` character"
function splitter(dlm)
 function f(str)
 split(str, dlm)
 end
 return f
end

"Create a function applying function `fn` on all its input"
function mapper(fn)
 function g(xs)
 map(fn, xs)
 end
 return g
end

The example shows that the names of the functions being returned is not important.
To the users of splitter and mapper it is not important that internally these functions
got named f and g. Thus, anonymous functions are used whenever the name is not
important. You can take one of the code examples from chapter 4 dealing with
degrees and sine and make it neater, as in the following listing.

degsin(deg) = sin(deg2rad(deg))
map(degsin, 0:15:90)

map(deg->sin(deg2rad(deg)), 0:15:90)

map(0:15:90) do deg
 rads = deg2rad(deg)
 sin(rads)
end

If you cannot fit an anonymous function within a single line, then the -> operator
is impractical. In these cases you can use the do-end form shown at the end of list-
ing 15.4.

 The f and g functions returned by splitter and mapper are called closures. A clo-
sure is a function that has captured some external state not supplied as an argument.
The f function only accepts a string str as an argument. The delimiter dlm used to

Listing 15.3 splitter and mapper without anonymous functions

Listing 15.4 Simplifying code with anonymous functions

The return is not needed; it
is just added to emphasize
that f is returned.

This return is also not needed,
but the last expression is
returned anyway.

Named function
variant

One-line variant

Multi-line
variant

282 CHAPTER 15 Functional programming in Julia
split the string str was captured from its enclosing scope. In this case the splitter
function definition defines the scope f inside.

 The g function only takes collection of data xs to work on. The function fn to
apply to each element in xs was captured from its enclosing scope defined by the
mapper function.

 Closures don’t need to be named. The splitter and mapper functions in listing 15.2
return anonymous functions. These anonymous functions are also closures, as they
capture variables from their enclosing scope. In fact, it is a fairly common misunder-
standing to believe that a closure is just a fancy term for an anonymous function. That is
not a surprising misconception, given that anonymous functions are so frequently
used to define closures.

15.3.2 Using the pipe operator |>

Julia pipeline syntax is used to chain together functions taking single arguments as
inputs. That allows you to rewrite a call such as f(g(x)) to x |> g |> f.

 That fact helps explain why you had to make the splitter and mapper functions.
Normal split and map functions require multiple inputs and thus cannot be used
with the pipe operator |>. The functions (closures) returned by splitter and mapper
can be used in a pipeline:

julia> f = splitter('_');

julia> g = mapper(uppercasefirst);

julia> "hi_there_world" |> f
3-element Vector{SubString{String}}:
 "hi"
 "there"
 "world"

julia> "hi_there_world" |> f |> g
3-element Vector{String}:
 "Hi"
 "There"
 "World"

julia> "hi_there_world" |> f |> g |> join
"HiThereWorld"

The next important functional concept, partial application, is arrived at by simply ask-
ing the following questions: Why do you need to use the name splitter and mapper?
Can’t you just call them split and map as well?

15.3.3 Conveniently produce new functions using partial application

In computer science, partial function application refers to the process of fixing a num-
ber of arguments to a function, producing another function accepting fewer arguments.

28315.3 Avoid deeply nested calls with function chaining
This definition of partial application may sound complicated, but with a practical
example you will see that it is a lot easier than it sounds.

 If you import the split and map functions you can add new methods to them tak-
ing only single arguments, and thus you can define a slightly more elegant version of
the camel_case function, as in the following listing.

import Base: split, map

split(dlm::Char) = s -> split(s, dlm)
map(fn::Function) = xs -> map(fn, xs)

function camel_case(s)
 s |> split('_') |> map(uppercasefirst) |> join
end

In essence you allow the user of the split function to fix the dlm argument. The new
split function returned as the dlm value fixed. The same principle applies to map.
This process of fixing specific arguments to a function is partial function application.

 Since such capability is so practical many functions in the Julia standard library
have been extended, with methods taking a subset of all required arguments, instead
returning a function taking the rest of the arguments. Let me clarify with some built-
in functions from the Base module (the built-in Julia module that is always loaded):

julia> images = ["bear.jpg", "truck.png", "car.jpg", "duck.png"];

julia> findfirst(img->img == "truck.png", images)
2

julia> findfirst(==("truck.png"), images)
2

julia> filter(img->endswith(img, ".png"), images)
2-element Vector{String}:
 "truck.png"
 "duck.png"

julia> filter(endswith(".png"), images)
2-element Vector{String}:
 "truck.png"
 "duck.png"

You can verify for yourself that when the endswith function is only given a single argu-
ment it calls a method returning a function:

julia> ispng = endswith(".png")

julia> ispng isa Function
true

Listing 15.5 Camel case with partial application

To allow us to extend the
split and map functions Fixing the delimiter

argument dlm of split

Fixing the mapping
function fn of map

284 CHAPTER 15 Functional programming in Julia
julia> ispng("truck.png")
true

julia> ispng("car.jpg")
false

These are some good examples of mixing and matching functions in clever ways,
which is a large part of what functional programmers do.

15.4 Implementing Caesar and substitution ciphers
I promised I would demonstrate how to build a password encryption service both in
an object-oriented and a functional style. Before I do that, I need to explain how you
can use ciphers to encrypt and decrypt passwords.

 A cipher is an algorithm that takes as input what is called the message and, using a
secret key, encrypts the message to produce what is called the cipher text. When you can
use the same key to encrypt and decrypt it is called symmetric encryption (figure 15.3).

I will demonstrate implementing two different ciphers: the Caesar cipher and the substi-
tution cipher (figure 15.4). By making two ciphers, I will show you how to configure a
password-keeping service to use different ciphers. Making ciphers exchangeable requires
making abstractions, which provides an opportunity to compare how abstractions are
built using object-oriented principles and functional programming principles.

 Each cipher algorithm is based on looking up a letter in the input message on the
outer dial. Next, you will look at the corresponding letter at the inner dial to figure
out what it should be translated to in the cipher text.

 In the Caesar cipher, you can see that the letter A will translate to C, while B will be
translated to D, and so on. Both the inner and outer dials of the Caesar cipher are
alphabetical. The cipher key is how much you have rotated the inner dial (shifted two
letters counterclockwise).

 When Roman generals sent secret messages to each other, each general would
have to know this secret key to know how much the inner dial had been rotated.
Should the enemy learn this secret they could decrypt any message intercepted.

 The substitution cipher is more complex in that the inner dial itself is the secret
key. You don’t rotate the dial but replace it entirely. For two parties to send secret mes-
sages to each other they need to have the same inner dial installed. We characterize the

Cipher Cipher textMessage

Key

Figure 15.3 Symmetric
encryption using a secret key

28515.4 Implementing Caesar and substitution ciphers
substitution cipher as a mapping between two alphabets. The letters on the outer dial
form one alphabet, which is mapped to the letters on the inner dial; this is known as
the substitution alphabet.

 I will start by demonstrating a straightforward implementation of both ciphers
before showing an inflexible password-keeping service, which is hardwired to a single
cipher. The next step involves showing how you can modify the ciphers and password-
keeping service to allow the cipher used for encrypting and decrypting passwords to
be swapped out. In the first approach, I will show how this goal can be accomplished
using an object-oriented design, then I will demonstrate a functional approach.

15.4.1 Implementing the Caesar cipher

In listing 15.6, I demonstrate implementing the Caesar cipher. The number of letters
rotated is passed in the shift argument, and ch is the character being encrypted or
decrypted. For both caesar_encrypt and caesar_decrypt, you need to check if the
input character ch is actually in the alphabet. This ensures special symbols and
whitespace will not get encrypted or decrypted.

count number of letters in the English alphabet
const n = length('A':'Z')

function caesar_encrypt(ch::Char, shift::Integer)
 if ch in 'A':'Z'
 'A' + mod((ch - 'A') + shift, n)
 else
 ch
 end
end

Listing 15.6 Caesar cipher encryption and decryption

Caesar cipher Substitution cipher

A B
C

D

E
F

G
H

I
J

K

L
M

NO
P

Q

R

S
T

U
V

W

X

Y
Z

R
L T B I

W

U
E

F
V

A
K

J

C
SQPY

G

M
X

Z
D

H
O

N

A B
C

D

E
F

G
H

I
J

K

L
M

NO
P

Q

R

S
T

U
V

W

X

Y
Z

Rotates

A
B C D E

F

G
H

I
J

K
L

M

N
OPQR

S

T
U

V
W

X
Y

Z

Figure 15.4 The inner dial of a Caesar cipher can rotate. The inner dial of a substitution cipher
is fixed, but the order of the alphabet will be random.

Ignore characters
not in the alphabet.

Use mod to cause a
wraparound when at the
end of the alphabet.The character is not in the alphabet,

so the return is unchanged.

286 CHAPTER 15 Functional programming in Julia
function caesar_decrypt(ch::Char, shift::Integer)
 if ch in 'A':'Z'
 'A' + mod((ch - 'A') - shift, n)
 else
 ch
 end
end

In figure 15.4 you will notice that we get a wrap-around effect. The letters at the end
of the alphabet, such as Y and Z, map to letters at the beginning A and B. That is why
you cannot just add a Shift to each letter, ch + shift. The mod function (modulo oper-
ator) makes your numbers work akin to what you see on a 12-hour analog clock:

julia> mod(1, 12)
1

julia> mod(9, 12)
9

julia> mod(13, 12)
1

julia> mod(21, 12)
9

julia> mod(17, 12)
 5

In this example, I input ch - 'A' to mod, so that I can turn letters into values in the
range 0 to 25. This makes it easier to calculate the wrap-around value. Afterward, I
need to turn the numbers from 0 to 25 into a letter. Fortunately, Julia math operations
between numbers and letters are set up to do that for you in a predictable manner, as
illustrated in the next REPL session:

julia> 'A' + 1
'B': ASCII/Unicode U+0042

julia> 'A' + 4
'E': ASCII/Unicode U+0045

julia> ch = 'Z'; n = 26; shift = 2
2

julia> 'A' + mod((ch - 'A') + shift, n)
 'B': ASCII/Unicode U+0042

You may notice that I am using the same shift value as used in figure 15.4.
 Now you know how to encrypt a single character, but how can you use that knowl-

edge to encrypt and decrypt whole messages? You can use the map function to encrypt

The input is larger
than 12, so it wraps
around.

You can separate
statements with a
semicolon.

Z wraps around
to become B.

28715.4 Implementing Caesar and substitution ciphers
a message and then attempt to decrypt it afterward to make sure you get back what
you put in:

julia> message = "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG";

julia> shift = 2;

julia> cipher_text = map(ch -> caesar_encrypt(ch, shift), message)
"VJG SWKEM DTQYP HQZ LWORU QXGT VJG NCBA FQI"

julia> map(cipher_text) do ch
 caesar_decrypt(ch, shift)
 end
"THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

Notice I used the do-end form to call decrypt, so you can compare code readability.
Sometimes I find the do-end form to be easier to read, even if only dealing with a sin-
gle line of code.

15.4.2 Implementing substitution ciphers

To create a substitution cipher, I need to create a mapping between two alphabets. For
this purpose I need to use the shuffle function found in the Random module.

 Notice in the following code the use of the range 'A':'Z' to quickly create a string
containing all the letters in the alphabet. collect applied to this range would have
given an array of letters, but in this case I want a string, so I use join instead.

shuffle will randomly rearrange the elements in an array. Remember that a range
is a subtype of AbstractArray, which is why you can shuffle a range as if it were a reg-
ular array:

julia> using Random

julia> join('A':'Z')
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

julia> shuffle([1, 2, 3])
3-element Vector{Int64}:
 2
 3
 1

julia> shuffle(1:5)
5-element Vector{Int64}:
 1
 2
 5
 4
 3

julia> join(shuffle('A':'Z'))
"PKTAVEQDXGWJMBZOFSLICRUNYH"

288 CHAPTER 15 Functional programming in Julia
These functions provide the tools needed to create a dictionary mapping between the
two alphabets. When creating a dictionary you normally need key–value pairs, but in
the following code, keys and values are created as separate arrays, so how can I make a
dictionary out of this?

julia> alphabet = join('A':'F')
"ABCDEF"

julia> substitute = join(shuffle('A':'F'))
"ACFBDE"

The zip function solves this problem. zip can take two arrays of elements and turn
them into an iterable object, which when collected provides an array of pairs:

julia> collect(zip(alphabet, substitute))
6-element Vector{Tuple{Char, Char}}:
 ('A', 'A')
 ('B', 'C')
 ('C', 'F')
 ('D', 'B')
 ('E', 'D')
 ('F', 'E')

You can take the iterable object returned from the zip function and feed it to the
Dict constructor. Because this iterable object returns value pairs on each iteration I
will use the object returned from zip to create a dictionary:

julia> mapping = Dict(zip(alphabet, substitute))
Dict{Char, Char} with 6 entries:
 'C' => 'F'
 'D' => 'B'
 'A' => 'A'
 'E' => 'D'
 'F' => 'E'
 'B' => 'C'

This provides input data that can be used with an encryption function for the substitu-
tion cipher.

function substitution_encrypt(ch::Char, mapping::Dict{Char, Char})
 get(mapping, char, char)
end

There is one glaring problem with this approach: decryption requires a reverse
lookup. Looking at the mapping as equivalent to the encryption key is a bad solution.
For symmetric encryption it is best to use the same key for both encryption and
decryption. Thus, instead of doing lookup using a dictionary, I will instead search an
array of pairs, as shown in the following listing.

Listing 15.7 Substitution cipher encryption based on dictionary lookup

Use range A–F to make
examples shorter.

28915.5 Creating a cipher-algorithm-agnostic service
using Random

alphabet = join('A':'Z')
substitute = join(shuffle('A':'Z'))
mapping = collect(zip(alphabet, substitute))

function substitution_encrypt(ch::Char, mapping::Vector)
 i = findfirst(row->first(row) == ch, mapping)
 if isnothing(i)
 ch
 else
 mapping[i][2]
 end
end

function substitution_decrypt(ch::Char, mapping::Vector)
 i = findfirst(row->last(row) == ch, mapping)
 if isnothing(i)
 ch
 else
 mapping[i][1]
 end
end

The solution is similar to the Caesar cipher solution in that you don’t need to perform
any encryption or decryption if the character ch is not in the alphabet. It is based on a
linear search with the findfirst function to find the index of the tuple with the key
you are interested in. If row is the tuple ('B', 'Q'), then first(row) is 'B', and
last(row) is 'Q'. When doing encryption, first use first(row) as the lookup key
then last(row) as the lookup key when doing decryption.

 You might ask, Isn’t doing a linear search through an array a lot slower than doing a dictio-
nary lookup? No. For such a short array of simple values, a linear search would be
faster. You would need at least 100 entries before there would be any noticeable differ-
ence in lookup performance.

15.5 Creating a cipher-algorithm-agnostic service
Imagine you have a service using a cipher and want to make it easier to swap out
which cipher you are using. Here I will present a toy example to convey the concept of
using a password-keeping service. It maintains a dictionary with logins as keys and
encrypted passwords as values.

mutable struct Vault
 passwords::Dict{String, String}
 shift::Int64
end

Listing 15.8 Substitution cipher encryption based on an array lookup

Listing 15.9 Password keeping service

Find the index
where first
character is
equal to ch.

If the character isn’t in the
mapping, nothing is returned.

Return the second character
at mapping row i.

Vault is made mutable,
since it must be possible
to add passwords.

290 CHAPTER 15 Functional programming in Julia
function Vault(shift::Integer)
 emptydict = Dict{String, String}()
 Vault(emptydict, shift)
end

function addlogin!(vault::Vault,
 login::AbstractString,
 password::AbstractString)
 vault.passwords[login] = map(password) do ch
 encrypt(ch, vault.shift)
 end
end

function getpassword(vault::Vault, login::AbstractString)
 map(ch -> decrypt(ch, vault.shift), vault.passwords[login])
 end

While the code works, there are numerous problems with this approach:

1 It is hardcoded to only support one encryption scheme: using a Caesar cipher.
There should be a choice of any cipher.

2 The service assumes encryption, and decryption is done one character at a
time. Encryption should be generalized to deal with whole strings because it is
not necessarily implemented as character substitution.

15.6 Building an encryption service using
object-oriented programming
In code listing 15.9 the cipher is hardcoded; you want to be able to swap the cipher
with a different one. Let’s look at how that can be achieved.

 The solution is an abstract interface to the ciphers, so users of a password service
do not need to know any particular details about each type of cipher. Listing 15.10
illustrates an object-oriented approach to this problem. First I define a Cipher as an
abstract type, with a number of functions it has to support. I will add methods to each
of these functions to add support for my particular cipher.

abstract type Cipher end

function encrypt(cipher::Cipher, char::Char)
 error("Implement encrypt(::", typeof(cipher), ", char)")
end

function decrypt(cipher::Cipher, char::Char)
 error("Implement decrypt(::", typeof(cipher), ", char)")
end

function encrypt(cipher::Cipher, message::AbstractString)
 map(ch -> encrypt(cipher, ch), message)
end

Listing 15.10 Defining an abstract cipher interface

Initialize with the
empty passwords
dictionary.

Add an encrypted
password to the
password dictionary.

Look up the
password for

the login name.

29115.6 Building an encryption service using object-oriented programming
function decrypt(cipher::Cipher, ciphertext::AbstractString)
 map(ch -> decrypt(cipher, ch), ciphertext)
end

The way this code has been set up, I have made implementing encrypt and decrypt
for message strings and cipher text strings optional. The default implementation will use
encrypt and decrypt of single characters. However, in your own code, if you have not
implemented these you will get an error message if you try to perform encryption or
decryption with your cipher.

 You may notice that I have taken a slightly different approach in specifying inter-
faces here than I took in chapter 12. The normal recommended approach is defining
functions and documenting which methods the user of your API is supposed to imple-
ment. Here I make an explicit error message explaining what you need to do. It is use-
ful to know both practices. In this case, I felt it was more practical, as the same
functions exist for dealing with strings as for dealing with individual characters. First, I
will implement the Cipher interface for the Caesar cipher.

struct CaesarCipher <: Cipher
 shift::Int
end

const n = length('A':'Z')

function encrypt(cipher::CaesarCipher, ch::Char)
 if ch in 'A':'Z'
 'A' + mod((ch - 'A') + cipher.shift, n)
 else
 ch
 end
end

function decrypt(cipher::CaesarCipher, ch::Char)
 if ch in 'A':'Z'
 'A' + mod((ch - 'A') - cipher.shift, n)
 else
 ch
 end
end

This new Caesar cipher implementation is almost exactly like the previous implemen-
tation (listing 15.6), except in this example, I obtain the shift from the cipher object
instead of getting it directly.

 Listing 15.12 shows the object-oriented substitution cipher. It is similar to the
original implementation (listing 15.8), except I am storing the mapping in the
SubstitutionCipher object, and calling to encrypt and decrypt requires passing
the cipher object rather than the mapping.

Listing 15.11 Caesar cipher implementing the Cipher interface

292 CHAPTER 15 Functional programming in Julia
using Random

struct SubstitutionCipher <: Cipher
 mapping::Vector{Tuple{Char, Char}}

 function SubstitutionCipher(substitute)
 mapping = zip('A':'Z', collect(substitute))
 new(collect(mapping))
 end
end

function encrypt(cipher::SubstitutionCipher, ch::Char)
 i = findfirst(row->first(row) == ch, cipher.mapping)
 if isnothing(i)
 ch
 else
 cipher.mapping[i][2]
 end
end

function decrypt(cipher::SubstitutionCipher, ch::Char)
 i = findfirst(row->last(row) == ch, cipher.mapping)
 if isnothing(i)
 ch
 else
 cipher.mapping[i][1]
 end
end

You can now modify your password-keeping service to point to an abstract cipher
rather than a concrete one (listing 15.13). That allows you to swap out the cipher used
with any concrete cipher implementing the Cipher interface.

mutable struct Vault
 passwords::Dict{String, String}
 cipher::Cipher
end

function Vault(cipher::Cipher)
 Vault(Dict{String, String}(), cipher)
end

function addlogin!(vault::Vault, login::AbstractString,

➥ password::AbstractString)
 vault.passwords[login] = encrypt(vault.cipher, password)
end

function getpassword(vault::Vault, login::AbstractString)
 decrypt(vault.cipher, vault.passwords[login])
end

Listing 15.12 Substitution cipher implementing the Cipher interface

Listing 15.13 Cipher-algorithm-agnostic password-keeping service

Used to look up what a
character should be
encrypted as

Create a list of
character pairs.

Create an instance of
SubstitutionCipher.

29315.7 Building an encryption service using functional programming
I can now try the upgraded password-keeping service with different ciphers. I’ll show
an example with a Caesar cipher first. I start by creating a vault to store the passwords
in. The vault is initialized with the cipher it will use to encrypt and decrypt passwords
stored within it.

 Next I call addlogin! to add passwords to the vault. Afterward I use getpassword
to make sure I get the same passwords out that I put in:

julia> vault = Vault(CaesarCipher(23))
Vault(Dict{String,String}(), CaesarCipher(23))

julia> addlogin!(vault, "google", "BING")
"YFKD"

julia> addlogin!(vault, "amazon", "SECRET")
"PBZOBQ"

julia> getpassword(vault, "google")
"BING"

julia> getpassword(vault, "amazon")
"SECRET"

Next I’ll show an example with the substitution cipher. In this case, I initialize the sub-
stitution cipher with a substitution alphabet. You can see from this that the letters ABC
would get replaced by CQP:

julia> substitute = "CQPYXVFHRNZMWOITJSUBKLEGDA";
julia> cipher = SubstitutionCipher(substitute);
julia> vault = Vault(cipher);

julia> addlogin!(vault, "amazon", "SECRET")
"UXPSXB"

julia> addlogin!(vault, "apple", "JONAGOLD")
"NIOCFIMY"

julia> getpassword(vault, "amazon")
"SECRET"

julia> getpassword(vault, "apple")
"JONAGOLD"

15.7 Building an encryption service using functional
programming
The point of showing how to accomplish the abstraction using an object-oriented
approach first is that more programmers are already familiar with this approach. In
this case object oriented means I am solving the problem by thinking in terms of type
hierarchies and objects. I represented the cipher as an object and defined functions
with methods that operated on these cipher objects.

294 CHAPTER 15 Functional programming in Julia
 With the functional approach, I will instead aim to solve the problem by thinking
in terms of functions: higher-order functions and closures. The purpose is exposing
you to two different mindsets on solving programming problems. To be a good Julia
programmer you need to understand both.

15.7.1 Defining a functional Caesar cipher

I will define a Caesar cipher by using the partial application technique first shown in
listing 15.5. This approach allows expansion of the original solution developed with
the caesar_encrypt and caesar_decrypt functions (listing 15.6).

 Notice in listing 15.14 how there are no cipher types in the code anymore. There is
no data object representing the Caesar cipher. Instead I am adding new methods to
the caesar_ encrypt and caesar_decrypt to allow partial application, so when only a
shift argument is provided I will return a function taking a character rather than an
character in the cipher text.

const n = length('A':'Z')

Original cipher functions
function caesar_encrypt(ch::Char, shift::Integer)
 if ch in 'A':'Z'
 'A' + mod((ch - 'A') + shift, n)
 else
 ch
 end
end

function caesar_decrypt(ch::Char, shift::Integer)
 caesar_encrypt(ch, -shift)
end

Implement a functional interface using partial application
function caesar_encrypt(shift::Integer)
 msg -> map(msg) do ch
 caesar_encrypt(ch, shift)
 end
end

function caesar_decrypt(shift::Integer)
 msg -> map(msg) do ch
 caesar_decrypt(ch, shift)
 end
end

Let’s look at how these functions get used. I’ll start by calling caesar_encrypt with a
shift value of 1. It returns a function meant to be used for encryption. I’ll then use that
function to encrypt the text string "ABC". A similar pattern is used to create and use
the decryption function:

Listing 15.14 A Caesar cipher with functional flavor

Trick to avoid implementing
nearly identical code

Return closure
capturing shift

29515.7 Building an encryption service using functional programming
julia> encrypt = caesar_encrypt(1)

julia> encrypt("ABC")
"BCD"

julia> decrypt = caesar_decrypt(1)

julia> decrypt("BCD")
"ABC"

julia> encrypt('A')
0-dimensional Array{Char, 0}:
'B'

julia> decrypt('B')
0-dimensional Array{Char, 0}:
'A'

A benefit of this solution is that it is easy to chain together results with the pipe opera-
tor |>:

julia> "HELLO" |> caesar_encrypt(2)
"JGNNQ"

julia> "HELLO" |> caesar_encrypt(2) |> caesar_decrypt(2)
"HELLO"

15.7.2 Defining a functional substitution cipher

To make the substitution cipher, I will expand on the substitution cipher code written
in listing 15.8. I will employ the partial application technique again, adding two meth-
ods to the existing substitution_encrypt and substitution_decrypt (listing 15.15).
They only take mapping as an argument but return cipher functions, which will
encrypt or decrypt a message given to them.

function substitution_encrypt(mapping::Vector)
 msg -> map(msg) do ch
 substitution_encrypt(ch, mapping)
 end
end

function substitution_decrypt(mapping::Vector)
 msg -> map(msg) do ch
 substitution_decrypt(ch, mapping)
 end
end

I will use the substitution cipher in a similar fashion to the Caesar cipher. The main
difference is that I use a mapping instead of a shift as the cipher key:

Listing 15.15 A substitution cipher with functional flavor

This works because
map can map across
individual characters.

296 CHAPTER 15 Functional programming in Julia
julia> alphabet = join('A':'Z');

julia> substitute = join(shuffle('A':'Z'));

julia> mapping = collect(zip(alphabet, substitute))

julia> "HELLO" |> substitution_encrypt(mapping)
"NEPPR"

julia> "HELLO" |> substitution_encrypt(mapping) |>

➥ substitution_decrypt(mapping)
"HELLO"

Now you know the pieces to make a password keeper based on functional design prin-
ciples.

15.7.3 Implementing a functional password-keeper service

Now let’s put it all together and create a password keeper that uses the encryption and
decryption functions to allow logins and passwords to be stored and retrieved. There
are many ways of doing this. In listing 15.16, I will deliberately go over the top to cre-
ate a strong contrast with the object-oriented solution.

function makevault(encrypt::Function, decrypt::Function)
 passwords = Dict{String, String}()

 function addlogin(login::AbstractString, password::AbstractString)
 passwords[login] = encrypt(password)
 end

 function getpassword(login::AbstractString)
 decrypt(passwords[login])
 end

 addlogin, getpassword
end

Let’s look at an example of using this implementation to define a password keeper
using a Caesar cipher. The Vault gets initialized with two function objects produced
by calls to caesar_encrypt and caesar_decrypt, respectively:

julia> addlogin, getpasswd = makevault(
 caesar_encrypt(2),
 caesar_decrypt(2));

julia> addlogin("google", "SECRET")
"UGETGV"

julia> addlogin("amazon", "QWERTY")
"SYGTVA"

Listing 15.16 A password-keeper service with excessively functional style

29715.7 Building an encryption service using functional programming
julia> getpasswd("google")
"SECRET"

julia> getpasswd("amazon")
"QWERTY"

With the substitution cipher there is a bit more setup to create the mapping vector. In
all other aspects the password-keeper vault is set up the same way as the Caesar cipher:

julia> using Random

julia> alphabet = join('A':'Z')
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

julia> substitute = join(shuffle('A':'Z'))
"TQRBVPMHNFUESGZOLIDXCAWYJK"

julia> mapping = collect(zip(alphabet, substitute));

julia> addlogin, getpasswd = makevault(
 substitution_encrypt(mapping),
 substitution_decrypt(mapping));

julia> addlogin("google", "SECRET")
"DVRIVX"

julia> addlogin("amazon", "QWERTY")
"LWVIXJ"

julia> getpasswd("google")
"SECRET"

julia> getpasswd("amazon")
"QWERTY"

Now it is time to take a few steps back and reflect upon why exactly you would want to
design the closures in the way shown in the examples. The objective is the same as that
of the object-oriented case: presenting a generic interface to ciphers, so you can
change which cipher is used without changing the implementation of the password-
keeper implementation.

 I did this by returning encryption and decryption functions, which don’t expose
any implementation details in their function signature. A function signature refers to
what arguments a function takes, their order, and their type. The Caesar cipher and
substitution cipher produce encryption and decryption functions with the same signa-
tures. That is why they are interchangeable.

 I attempted to make each presented solution as different as possible to make it
clearer what the difference between functional and object-oriented programming is.
Sometimes a caricature is helpful in getting a point across. Yet for real solutions you
should always try to use good taste and find a sensible balance between an object-
oriented and a functional approach.

298 CHAPTER 15 Functional programming in Julia
 In the case of making a password-keeper solution, the object-oriented approach
was superior in my opinion, while converting snake case to camel case worked very
well with a functional approach. Why the difference? Functional programming works
very well when your problem can be reduced to some sort of data transformation.
Instead, when you are dealing with something inherently stateful, such as a password-
keeper service, an object-oriented approach is a more natural fit, as object-oriented
programming is all about modifying state.

Summary
 Functional and procedural programming are often thought of as being inter-

changeable, but they are not the same. In functional programming, functions
are first-class objects that can be passed around and manipulated with higher-
order functions.

 Functionally oriented code is easier to analyze and debug, as it forms a clearer
flow of data.

 Difficult-to-read function call nesting can be solved by using the function chain-
ing operator |>.

 Anonymous functions are functions without names. They help simplify the cre-
ation of inline closures.

 Anonymous functions can be created with the -> operator or the do-end form.
 A closure is a function that captures state from its enclosing scope; it is a function

with memory. Closures can be used to mimic objects with state, facilitate partial
application, and manage resource acquisition and release (opening and closing
a file).

 Partial application is a technique in which you return a function rather than a
result when not all arguments have been provided to a function. This simplifies
creating function arguments to higher-order functions, such as map, filter,
and reduce.

 Elements in an array can be randomly shuffled around with the shuffle func-
tion from the Random built-in module. Many encryption algorithms need ran-
domly shuffled input, and this is also a good way of creating input to test sorting
functions on.

 Combine functional and object-oriented techniques for optimal results in Julia.
Different problems require different approaches. Through practice you will
develop a better intuition for when one approach is better than the other.

Organizing and
modularizing your code
For large-scale software development you cannot dump code ad hoc into Julia
source code files as has been shown in previous chapters. Instead, code must be
modularized and organized. Organized code is easier to understand and navigate.
In this chapter, you will learn how to take the geometry code you worked on earlier
and organize it into a Julia package.

This chapter covers
 Introducing the concept of environments to

managed dependencies

 Adding and removing package dependencies
using environments

 Developing code in different environments and
switching between them

 Creating a Julia package and adding
dependencies to it

 Organizing code within a package

 Adding tests to packages

 Exploring the relationship between modules
and packages
299

300 CHAPTER 16 Organizing and modularizing your code
 Packages are useful because they give you a way of bundling related code, distribut-
ing it, and version controlling it. Packages can depend on other packages in elaborate
dependency trees. Real-world systems are built by combining numerous packages into
one larger system. If you were working in a large organization on a wide-ranging proj-
ect, then different teams would likely make different packages, which would then be
combined to create the complete system.

 In this chapter, I will teach you to organize code within a package, add and remove
dependencies to other packages, and set up tests for your package. Remember to load
modules with statements such as using Statistics and using LinearAlgebra. I will
also explain how the module concept relates to the package concept.

16.1 Setting up a work environment
When developing software, you may want to use different versions of the same pack-
ages. While developing Julia code for your workplace, you may want to use the most
stable and well-tested version of each package; this might not be as crucial for your
hobby projects, and you may prefer instead to use the most recent versions with the
latest cool features.

 Julia environments let you switch between a job and a hobby environment setup with
different package versions. I am using the word job instead of work to avoid confusing
it with a working directory, which refers to the directory you are currently working in.
In this section you will look at the following:

 Creating environments
 Adding and removing different package versions to and from an environment
 Activating and switching between different environments
 Understanding the relationship between a module and a package

Creating environments is just a matter of creating a directory to hold each environ-
ment. In this example, I will start Julia and go into shell mode by pressing ;, and then
I will issue Unix shell commands to create directories. Using a graphical file manager,
such as Finder or File Explorer, is a perfectly valid alternative approach:

shell> mkdir job hobby

shell> ls
hobby job

Remember, in the Julia REPL you enter package mode by pressing]. In package
mode you can execute commands to activate different environments and add pack-
ages to them. When you switch to an environment, the prompt will change to show
which environment you are in. For instance, if you are in the job environment, the
prompt will look like (job) pkg>. In this example, I will activate the job environment,
so all following commands modify the job environment:

Make job and
hobby directories.

List current
directory contents.

30116.1 Setting up a work environment
(@v1.7) pkg> activate job

(job) pkg>

I will add some package dependencies to this environment. For demonstration purposes
it is not important which Julia packages I add, but I have chosen to demonstrate with the
CairoMakie (https://makie.juliaplots.org) plotting package and the link ElectronDisplay
(https://github.com/queryverse/ElectronDisplay.jl) package for showing plots in win-
dow. If you use Visual Studio Code you don’t need the ElectronDisplay package, as it
can already display any Julia plot.

NOTE CairoMakie is part of a collection of related Julia plotting packages
called Makie. All Makie packages give users the same types and functions, and
the only difference is the type of graphics produced. CairoMakie offers the
ability to create high-quality 2D vector plots, while GLMakie enables creating
interactive 3D plots.

Let’s assume you like to use the latest version of CairoMakie for your hobby proj-
ects, but your employer is a bit conservative. Instead, you must use the version
0.5.10 at work:

(job) pkg> add CairoMakie@0.5.10
 Updating registry at `~/.julia/registries/General.toml`
 Resolving package versions...
 [13f3f980] + CairoMakie v0.5.10
 Updating `~/dev/job/Manifest.toml`

(job) pkg> add ElectronDisplay
 Resolving package versions...
 Updating `~/dev/job/Project.toml`
 [d872a56f] + ElectronDisplay v1.0.1
 Updating `~/dev/job/Manifest.toml`

(job) pkg> status
 Status `~/dev/job/Project.toml`
 [13f3f980] CairoMakie v0.5.10
 [d872a56f] ElectronDisplay v1.0.1

When you run the add package commands you will see a lot more info than I am show-
ing you here. I edited out most of it because it would have filled several pages, but I
have kept the most important bits of information.

 When calling add ElectronDisplay you are informed that the ~/dev/job/Proj-
ect.toml file is modified. What file is that? My job environment is in the ~/dev/job
directory. If you don’t have a Project.toml file in your currently active environment,
then Julia will create it for you to store information about what packages you have
added to your environment.

 The ElectronDisplay v1.0.1 line tells you what version of ElectronDisplay was
installed. That was the latest version in 2022 when I wrote this book.

Add CairoMakie
version 0.5.10 to
the job environment.

Add the latest version
of ElectronDisplay.

Check what
packages are added
to this environment.

https://makie.juliaplots.org
https://github.com/queryverse/ElectronDisplay.jl

302 CHAPTER 16 Organizing and modularizing your code
 Notice how the add command for CairoMakie was slightly different. I tacked on a
@0.5.10 to the package name to inform Julia’s package manager that I wanted version
0.5.10 rather than whatever the current latest version of CairoMakie might be. When
switching to the hobby environment I will use the latest version instead:

(work) pkg> activate hobby
 Activating new project at `~/dev/hobby`

(hobby) pkg> add CairoMakie ElectronDisplay
 Resolving package versions...
 Updating `~/dev/hobby/Project.toml`
 [13f3f980] + CairoMakie v0.7.5
 [d872a56f] + ElectronDisplay v1.0.1
 Updating `~/dev/hobby/Manifest.toml`

(hobby) pkg> status
 Status `~/dev/hobby/Project.toml`
 [13f3f980] CairoMakie v0.7.5
 [d872a56f] ElectronDisplay v1.0.1

In the hobby environment, I used the add command slightly different. I listed all pack-
ages I wanted to add, so I could do it all in one go. Afterward, Julia notifies me that
the CairoMakie v0.7.5 package was installed.

 You can always use the status command to get an overview of what packages have
been installed in your currently active environment. The command reads info stored
in the Project.toml. This information is used to locate the correct package in your
local package depot at ~/.julia/packages:

shell> ls hobby
Manifest.toml Project.toml

shell> cat hobby/Project.toml
[deps]
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
ElectronDisplay = "d872a56f-244b-5cc9-b574-2017b5b909a8"

The long strings of letters and numbers starting with 13f3f980 and d872a56f, respec-
tively, are the universally unique identifier (UUID) of each package. Package names
need not be unique. Several developers could be making a package named Cairo-
Makie; thus, to be able to uniquely identify a specific package, they each need a unique
UUID. Because there is currently no other package named CairoMakie, there is no
package name conflict.

 What if there was another CairoMakie package? In that case the package would
need to be added with the following command:

(hobby) pkg> add CairoMakie=13f3f980-e62b-5c42-98c6-ff1f3baf88f0

The package system comes with its own help system, so you can write ? add to get a
full overview of all the different ways of adding a package. To remove packages use

30316.1 Setting up a work environment
the rm command. You can add a package and check how the Project.toml file
changes as you remove it again. The following is an example of adding and remov-
ing the Dates package:

(hobby) pkg> add Dates
 Resolving package versions...
 Updating `~/dev/hobby/Project.toml`
 [ade2ca70] + Dates

(hobby) pkg> status
 Status `~/dev/hobby/Project.toml`
 [13f3f980] CairoMakie v0.7.5
 [d872a56f] ElectronDisplay v1.0.1
 [ade2ca70] Dates

(hobby) pkg> rm Dates
 Updating `~/dev/hobby/Project.toml`
 [ade2ca70] - Dates

(hobby) pkg> status
 Status `~/dev/hobby/Project.toml`
 [13f3f980] CairoMakie v0.7.5
 [d872a56f] ElectronDisplay v1.0.1

16.1.1 Using a package in the REPL

Adding a package to your active environment doesn’t make the functions and types
the package provides available in the Julia REPL or to the Julia project you are coding.
Rather they become available after you run using or import statements. Makie has
many different functions for plotting graphs. I will show how to use two functions:
lines and scatter. Unless you use VS Code, you will need to load the Electron-
Display package before anything becomes visible.

 I will use Makie to plot a sine and cosine curve. To achieve that I will generate
many x, y coordinates stored in xs, ys1, and ys2, respectively.

using ElectronDisplay
using CairoMakie

xs = 1:0.1:10
ys1 = map(sin, xs)
ys2 = map(cos, xs)

scatter(xs, ys1)
scatter!(xs, ys2)

current_figure()

Listing 16.1 Plotting a sine and cosine curve with Makie

Create window to
show plot output.

Make scatter, scatter! and
current_figure available.

Create values from 1 to 10
with stepping value of 0.1.

Modify current figure
by adding cosine plot.

Sends current figure to
the electron display

304 CHAPTER 16 Organizing and modularizing your code
When Julia evaluates using CairoMakie it will look for a package named CairoMakie
in its current environment. If your environment is hobby, then it will load the code for
the v0.7.5 version of Makie. However, if you evaluated this code in the job environ-
ment the v0.5.10 version would be loaded instead. If you run the code in the Julia
REPL you should get a figure with two dotted plots (figure 16.1).

These plots are called scatter plots. Every (x, y) coordinate produces a colored dot. If
you want lines connecting each coordinate point you would use the lines and lines!
functions instead, as follows.

lines(xs, ys1, linewidth=5)
lines!(xs, ys2, linewidth=5)

current_figure()

Listing 16.2 Plotting sine and cosine with smooth lines

Figure 16.1 Makie scatter plot of the sine and cosine functions

Plot lines with
thickness 5

30516.1 Setting up a work environment
Evaluating the code will give you the plot shown in figure 16.2. There are many
named arguments that can modify the appearance of each plot. For example, the
linewidth=5 named argument makes the lines thicker.

You can visit the official Makie website (https://docs.makie.org/stable/) to learn more
about plotting in Julia using Makie.

16.1.2 How modules relate to packages

My description of the package loading process was not entirely accurate. Packages
define a module of the same name as the package. Hence, when you write using
Dates, you are looking up the Dates package and loading the Dates module defined
within it. The distinction will become much clearer once you define your own pack-
age and module.

 You can think of a Julia package as a physical bundle of source code, resources,
and metadata, such as version, name, and dependencies. These things matter to the
package-loading machinery of Julia but are not language constructs. Just like there are

Figure 16.2 Makie line plot of the sine and cosine functions

https://docs.makie.org/stable/

306 CHAPTER 16 Organizing and modularizing your code
the keywords function and struct for defining functions or composite types in Julia,
there is also the module keyword for defining a module.

 While functions allow you to group chunks of code, modules allow you to group
related functions and types. Modules also create a namespace, just like a function. That
means you can use variables with the same name in different functions, and they won’t
interfere with each other because each function forms a separate namespace. The
volume functions in the following listing don’t interfere with each other, since they are
in two separate modules: Cylinder and Cone.

module Cylinder
 volume(r,h) = π*r^2*h
end

module Cone
 volume(r, h) = π*r^2*h/3
end

You could evaluate these modules in the REPL and call the different volume functions
like this:

julia> Cylinder.volume(2.5, 3)
58.90486225480862

julia> Cone.volume(2.5, 3)
19.634954084936208

In this chapter you will, however, focus on defining a single module per package. That
is the most pragmatic solution in Julia.

16.2 Creating your own package and module
On the following pages I will show you how to create your own package and module
by taking the volume and trigonometric functions from chapter 2 and chapter 4 and
organizing them into a module ToyGeometry stored in a package. You could build a
package from scratch manually, but it is more convenient to use the Julia package
manager to generate the scaffolding for you.

 After generating the package and looking at its structure, I will show you how to
add code to the package. You will then learn to expand your package with plotting
functionality, so you can better grasp how to deal with package dependencies.

16.2.1 Generating a package

I start out in my ~/dev directory, where I have the hobby and job directories. You
could, of course, organize this any way you want. I use shell mode to jump into the
hobby directory, where I want to create my ToyGeometry package. The generate com-
mand is used in package mode to create a package:

Listing 16.3 Functions with the same name in different modules

30716.2 Creating your own package and module
shell> cd hobby/
~/dev/hobby

(hobby) pkg> generate ToyGeometry
 Generating project ToyGeometry:
 ToyGeometry/Project.toml
 ToyGeometry/src/ToyGeometry.jl

A more sophisticated way of creating packages is using the PkgTemplate library, but
generate is a good way of getting started, as it makes a minimalist package. If you look
at the contents of the package, you will see it only contains two files: Project.toml and
src/ToyGeometry.jl:

shell> tree ToyGeometry
ToyGeometry
├── Project.toml
└── src
 └── ToyGeometry.jl

You may be surprised to see the Project.toml file in there. Isn’t that used to define
environments? Exactly! And a Julia package is, in fact, its own environment. By being
an environment, a Julia package can add other packages it depends on.

NOTE Environments can be nested, but that has no practical implications. It is
more useful to nest modules, but I will not cover module nesting in this book.

At the moment there are no dependencies, so the Project.toml file will only show data
about the package, such as its names, the unique UUID identifying the package, the
author of the package, and the current package version:

shell> cat ToyGeometry/Project.toml
name = "ToyGeometry"
uuid = "bbcec4ee-a196-4f18-8a9a-486bb424b745"
authors = ["Erik Engheim <erik.engheim@mac.com>"]
version = "0.1.0"

Let’s add a dependent package to ToyGeometry to show how adding dependencies
works. I will add two packages, Dates and Base64, which exist in the standard library
bundled with Julia (no download from the internet is necessary). Since I don’t want to
add these dependencies to the hobby environment, but to the ToyGeometry environ-
ment, I first have to switch active environments:

(hobby) pkg> activate ToyGeometry/
 Activating project at `~/dev/hobby/ToyGeometry`

(ToyGeometry) pkg> add Dates Base64
 Resolving package versions...
 Updating `~/dev/hobby/ToyGeometry/Project.toml`
 [2a0f44e3] + Base64
 [ade2ca70] + Dates

308 CHAPTER 16 Organizing and modularizing your code
 Updating `~/dev/hobby/ToyGeometry/Manifest.toml`
 [2a0f44e3] + Base64
 [ade2ca70] + Dates
 [de0858da] + Printf
 [4ec0a83e] + Unicode

(ToyGeometry) pkg> status
 Project ToyGeometry v0.1.0
 Status `~/dev/hobby/ToyGeometry/Project.toml`
 [2a0f44e3] Base64
 [ade2ca70] Dates

The Project.toml file in ToyGeometry will now be updated to show the dependencies
of the package:

shell> cat ToyGeometry/Project.toml
name = "ToyGeometry"
uuid = "bbcec4ee-a196-4f18-8a9a-486bb424b745"
authors = ["Erik Engheim <erik.engheim@mac.com>"]
version = "0.1.0"

[deps]
Base64 = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"

I will have also gotten a new file called Manifest.toml, which stores information about
the packages Dates and Base64 depend on. For instance, Dates depends on the
Printf package to format text strings of dates. Further, Printf depends on the
Unicode package:

shell> cat ToyGeometry/Manifest.toml
julia_version = "1.7.2"
manifest_format = "2.0"

[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"

[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"

[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"

[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"

For packages not part of the Julia standard library, the entries will be more complex.
The following is an entry from the Manifest.toml file in the job environment for the
Colors package:

30916.2 Creating your own package and module
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"

You can see it doesn’t just list the UUID but also the version of Colors. You don’t need
to know what the git-tree-sha1 string means, except that it helps Julia locate the
correct package in the local package depot to load.

16.2.2 Adding code to your package

At the moment, the package doesn’t do anything, so let’s add code by copying the vol-
ume and trigonometry code from chapters 2 and 4. I will start by creating two files,
volume.jl and trig.jl, to hold this code:

shell> cd ToyGeometry/
~/dev/hobby/ToyGeometry

shell> touch src/volume.jl src/trig.jl

shell> tree .
.
├── Manifest.toml
├── Project.toml
└── src
 ├── ToyGeometry.jl
 ├── trig.jl
 └── volume.jl

Add the code shown in listing 16.4 to the src/volume.jl.

"""
 sphere_volume(r)
Calculate the volume of a sphere with radius `r`
"""
function sphere_volume(r::Number)
 4π*r^3/3
end

"""
 cylinder_volume(r, h)
Calculate the volume of a cylinder with radius `r`
and height `h`.
"""
function cylinder_volume(r::Number, h::Number)
 π*r^2*h
end

"""
 cone_value(r, h)
Calculate the volume of a cone with radius `r`

Listing 16.4 ToyGeometry/src/volume.jl

310 CHAPTER 16 Organizing and modularizing your code
and height `h`.
"""
function cone_value(r::Number, h::Number)
 π*r^2*h/3
end

Next I add the function from chapter 4 that used the Taylor series to compute sine;
later I will add a cosine function. This code will go into the src/trig.jl file, as follows.

"""
 sine(x)
Calculate the sine of an angle `x` given in radians
"""
function sine(x::Number)
 n = 5
 total = 0
 for i in 0:n
 total += (-1)^i*x^(2i+1)/factorial(2i + 1)
 end
 total
end

The ToyGeometry package defines a module named ToyGeometry. I want all the func-
tions I have written to be part of the ToyGeometry module. By running the include
functions inside the module definition, all the function definitions get evaluated
inside the ToyGeometry module and become part of it.

module ToyGeometry

include("volume.jl")
include("trig.jl")

end # module

The workings of include may not be obvious to you if you are thinking like a C/C++
developer, but it is really quite simple. Let’s do a quick experiment to demonstrate.

 Start by creating a file named arithmetic.jl, and write 3 + 4 inside it. include can be
called anywhere, even inside a function definition:

julia> x = include("arithmetic.jl")
7

julia> function calc()
 include("arithmetic.jl")
 end

julia> calc()
7

Listing 16.5 ToyGeometry/src/trig.jl

Listing 16.6 ToyGeometry/src/ToyGeometry.jl

31116.3 Modifying and developing a package
You don’t have to split up your code into multiple files and add them to the module
with include. You could have defined the ToyGeometry module as follows.

module ToyGeometry

sphere_volume(r) = 4π*r^3/3
cylinder_volume(r, h) = π*r^2*h
cone_value(r, h) = π*r^2*h/3

function sine(x)
 n = 5
 total = 0
 for i in 0:n
 total += (-1)^i*x^(2i+1)/factorial(2i + 1)
 end
 total
end

end # module

So why not define it this way? Putting all the code inside the module definition file
ToyGeometry.jl does not scale well. As your package becomes larger it becomes
impractical to have all your code in one file. That’s why I split the code for a package
up into multiple files and include those files inside the module definition.

16.3 Modifying and developing a package
If you are following along, you now have a correct package structure and definition;
the next step is understanding the package development process. This is an iterative
process in which you are testing the functionality of your package and adding new fea-
tures over and over again.

 While you develop your own package there are many Julia packages you may want to
use to aid your development efforts but which should not be part of the dependencies of
your package. The following are some packages I like to use to increase productivity:

 OhMyREPL—Provides syntax highlighting and history matching in the Julia REPL
 Revise—Monitors code changes to packages loaded into the REPL and updates

the REPL with these changes

Returning to the example, I will now switch to the hobby environment, since I don’t
want these packages added as dependencies of ToyGeometry:

shell> pwd
~/dev/hobby/ToyGeometry

(ToyGeometry) pkg> activate ..
 Activating project at `~/dev/hobby`

Listing 16.7 ToyGeometry/src/ToyGeometry.jl

Just check where you
currently are.

The hobby environment
is one directory up.

312 CHAPTER 16 Organizing and modularizing your code
(hobby) pkg> add OhMyREPL Revise
 Resolving package versions...
 Updating `~/dev/hobby/Project.toml`
 [5fb14364] + OhMyREPL v0.5.12
 [295af30f] + Revise v3.3.3
 Updating `~/dev/hobby/Manifest.toml`

I can now load OhMyREPL and Revise into the REPL, but trying to load ToyGeometry
will fail. Can you guess why?

julia> using ToyGeometry
ERROR: ArgumentError: Package ToyGeometry not found in current path:
- Run `import Pkg; Pkg.add("ToyGeometry")` to install the ToyGeometry package.

The error message in this case is not very helpful. Julia, for instance, never looks in
the current filesystem path for packages. The actual issue is that I have not added Toy-
Geometry to the hobby environment. The environment I am currently working in
doesn’t know about my custom package.

 I could inform it about the package by using the add command in the package
manager. However, the problem with using add is that it captures the latest package
version and freezes it. Normally, that is a good thing because you don’t want third-
party packages added to your working environment to suddenly change. But when
you actively develop a package your needs are different than when you are using a
package. You want all your code changes to be available in your working environment
without using an explicit update command to get latest changes. Thus instead of add,
I will show how you can use the dev package command. The dev command needs the
directory path of your package:

shell> pwd
~/dev/hobby

shell> ls
Manifest.toml Project.toml ToyGeometry

(hobby) pkg> dev ./ToyGeometry
 Resolving package versions...
 Updating `~/dev/hobby/Project.toml`
 [bbcec4ee] + ToyGeometry v0.1.0 `ToyGeometry`
 Updating `~/dev/hobby/Manifest.toml`
 [bbcec4ee] + ToyGeometry v0.1.0 `ToyGeometry`

Looking at the status of the hobby environment you can now see that OhMyREPL,
Revise, and ToyGeometry have all been added:

(hobby) pkg> status
 Status `~/dev/hobby/Project.toml`
 [13f3f980] CairoMakie v0.7.5
 [d872a56f] ElectronDisplay v1.0.1

31316.3 Modifying and developing a package
 [5fb14364] OhMyREPL v0.5.12
 [295af30f] Revise v3.3.3
 [bbcec4ee] ToyGeometry v0.1.0 `ToyGeometry`

Now your current working environment knows where ToyGeometry can be found, so it
knows what code to load when you write using ToyGeometry. Remember, there could
be many packages with the name ToyGeometry, so your environment needs to be
explicitly told which package should be loaded:

julia> using ToyGeometry
[Info: Precompiling ToyGeometry [bbcec4ee-a196-4f18-8a9a-486bb424b745]

julia> ToyGeometry.sphere_volume(4)
268.082573106329

julia> ToyGeometry.sine(π/2)
0.999999943741051

julia> sin(π/2)
1.0

julia> sine(π/2)
 ERROR: UndefVarError: sine not defined

It is awkward to write ToyGeometry.sine every time you want to call the custom sine
function, but as the example shows, Julia doesn’t currently know how to call it if you
don’t prefix it with the module name. Yet, as you have seen with other packages, such
as CairoMakie, you don’t need to prefix plot functions, such as scatter and lines,
with the module name. How can you achieve the same?

 The trick is to use the export statement to tell Julia which functions and types are
to be exported (made public) from the module. While I’m at it, I’ll add a cosine func-
tion and export that as well:

export sine, cosine

"""
 sine(x)
Calculate the sine of an angle `x` given in radians
"""
function sine(x::Number)
 n = 5
 total = 0
 for i in 0:n
 total += (-1)^i*x^(2i+1)/factorial(2i + 1)
 end
 total
end

function cosine(x::Number)
 n = 5

Call your custom
sine function.

Julia’s built-in sine function

Trying to call sine without
specifying module name

Make sine and
cosine public.

314 CHAPTER 16 Organizing and modularizing your code
 mapreduce(+, 0:n) do i
 (-1)^i*x^(2i)/factorial(2i)
 end
end

You may notice that with cosine I am replacing the clunky for loop with a more ele-
gant mapreduce, which was covered in chapter 4. mapreduce is a combination of the
higher-order functions map and reduce.

 You will notice it is now possible to write sine and cosine without any module
name prefixing. The following simple test shows that the custom functions give similar
output as the built-in functions:

julia> sine(π/2)
0.999999943741051

julia> sin(π/2)
1.0

julia> cosine(π)
-1.0018291040136216

julia> cos(π)
-1.0

How was Julia suddenly able to know sine and even cosine without any package
reloading? This is thanks to the magic of Revise. Because I loaded Revise before
ToyGeometry it will monitor changes to the module and incorporate them into the
REPL automatically.

 Should you always use Revise? Sometimes you make code changes you don’t want
reflected in the REPL immediately. Just use common sense. You can even use Revise
for single files by calling includet instead of include.

 When writing code you will naturally make mistakes. The REPL helps you quickly
check your code to see if you are getting the right results. One of the best ways to
quickly analyze a lot of data and spot problems is achieved by visualizing the data. So
let’s plot both the built-in sin and the custom sine to see if you get similar-looking
plots. Evaluate the following code in your REPL.

using ToyGeometry, CairoMakie, ElectronDisplay

xs = 0:0.1:2π
ys1 = map(sin, xs)
ys2 = map(sine, xs)

lines(xs, ys1, linewidth=5)
lines!(xs, ys2, linewidth=5)

current_figure()

Listing 16.8 Comparing built-in sin with custom sine

31516.4 Tackling common misconceptions about modules
Ouch! They are not the same. At around 4.5 along the x-axis your custom sine func-
tion fails visibly.

Fortunately, thanks to Revise you can modify the line that says n = 5. Try some differ-
ent values for n to see how the plot changes. Setting n = 8 should solve your problem.
There is no magical reason 8 works aside from the fact that higher values offer greater
accuracy, meaning there is a tradeoff between performance and accuracy.

16.4 Tackling common misconceptions about modules
If you are coming from a different programming language there are likely many con-
cepts relating to environments, packages, and modules you find confusing. For instance,
in the Java world, a module is called a package, and a Julia package is closer to a JAR file.1

Table 16.1 gives an overview of the differences in terminology used to described mod-
ules, packages, and environments in different programming languages.

1 A Java Archive (JAR) is a package file format typically used to aggregate Java class files and associated metadata
and resources (e.g., text and images) into one file for distribution.

Figure 16.3 Makie scatter plot of the sine and cosine functions, n = 5

316 CHAPTER 16 Organizing and modularizing your code
Another problem is that mainstream programming languages tend to put keywords
such as public in front of functions that are meant to be exported or made public, as
shown in the following listing.

The Julia way
export sphere_volume

function sphere_volume(r::Number)
 4π*r^3/3
end

A Java-style way of exporting
IMPORTANT: This doesn't work in Julia!
public function sphere_volume(r::Number)
 4π*r^3/3
end

While Julia’s include function may seem similar to #include in C/C++, you have to
take into account that include is a regular function call in Julia that returns a result.
#include in C/C++ is not a function call at all but essentially a mechanism that pastes
the content of the included files into the file with the include statements.

16.5 Testing your package
While you develop a package you can quickly test functions in the REPL. For long-
term, large-scale development, that is not enough. You need to be able to quickly ver-
ify that a code you wrote weeks or months ago still works. In real-world software
development you will make code changes in many different files. Keeping track of all
functions affected by your code edits can be difficult; thus you need to have set up an
extensive set of tests that can verify all previously written code still works.

 Testing is a larger topic, so I will only cover the very basics in this book. You can
read the following articles from my Erik Explores Substack to explore the topic further:

 “Organizing Tests in Julia” (https://erikexplores.substack.com/p/julia-test-
organizing)

 “Julia Test Running: Best Practices” (https://erikexplores.substack.com/p/julia-
testing-best-pratice)

Table 16.1 Differences in package and module terminology usage across popular programming languages

Julia Java C++ Python

Module Package Namespace Module

Package JAR DLL Package

Environment Environment Sandbox or container Virtual environment

Listing 16.9 Comparing Julia with a Java-style way of exporting functions

https://erikexplores.substack.com/p/julia-test-organizing
https://erikexplores.substack.com/p/julia-test-organizing
https://erikexplores.substack.com/p/julia-testing-best-pratice
https://erikexplores.substack.com/p/julia-testing-best-pratice

31716.5 Testing your package
Tests in Julia can be run from the package manager. It will try to execute a file named
test/runtests.jl. In the example, I don’t have this file or the test directory, so I will have
to make both:

shell> pwd
~/dev

shell> cd hobby/ToyGeometry/
~/dev/hobby/ToyGeometry

shell> mkdir test

shell> touch test/runtests.jl test/trigtests.jl

Julia uses the concept of nested test sets, meaning a test set succeeds if all the test sets it
contains succeed. The Julia convention is putting all test sets within one top-level test
set. That is what I will demonstrate in the test/runtests.jl (listing 16.10); however, I will
follow the same strategy by spreading tests across multiple files and including those
files within the top-level test set.

using ToyGeometry
using Test

@testset "All tests" begin

include("trigtests.jl")

end

Tests are run separately from your module, so you need to load the module you are
testing with the using statement. Getting access to testing macros like @testset and
@test requires importing the Test package. This package is not in your ToyGeometry
environment. It does not make sense to add Test to this environment, since it will
only be used while testing.

 Julia offers a neat solution to this problem. You can treat the test directory as its
own environment and only add Test to that environment:

shell> pwd
~/dev/hobby/ToyGeometry

(hobby) pkg> activate test
 Activating project at `~/dev/hobby/ToyGeometry/test

(test) pkg> add Test
 Resolving package versions...
 Updating `~/dev/hobby/ToyGeometry/test/Project.toml`
 [8dfed614] + Test
 Updating `~/dev/hobby/ToyGeometry/test/Manifest.toml`

Listing 16.10 ToyGeometry/test/runtests.jl

Show what directory you
are running package
commands in.

318 CHAPTER 16 Organizing and modularizing your code
Before attempting to run the tests, you need to actually add them to your code. I will
demonstrate this by adding tests to the test/trigtests.jl file, which contains tests related
to trigonometric functions.

 Each actual test is specified with the @test macro. Because floating-point numbers
are difficult to make exactly the same, I will not compare function results using == but
≈, which you can write in the Julia REPL by writing \approx and pressing the Tab key.

 Sometimes the default tolerance of ≈ is too strict and you need a looser definition
of equality. In those cases use the isapprox function to compare values. It takes a
named argument atol, which you can use to specify how great the difference between
the two results you are comparing you consider acceptable, as follows.

@testset "cosine tests" begin
 @test cosine(π) ≈ -1.0
 @test cosine(0) ≈ 1.0

 for x in 0:0.1:2π
 @test isapprox(cos(x), cosine(x), atol=0.05)
 end
end

@testset "sine tests" begin
 @test sine(0) ≈ 0.0
 @test sine(π/2) ≈ 1.0

 for x in 0:0.1:2π
 @test isapprox(sin(x), sine(x), atol=0.05)
 end
end

If you attempt to run this test while in the test environment it will, ironically, not
work because test doesn’t actually know about the ToyGeometry package. Hence you
need to switch to the hobby or ToyGeometry environment to run the tests:

(test) pkg> test ToyGeometry
ERROR: The following package names could not be resolved:
 * ToyGeometry (not found in project or manifest)

(test) pkg> activate .
 Activating project at `~/dev/hobby/ToyGeometry`

(ToyGeometry) pkg> test ToyGeometry
 Testing ToyGeometry

Test Summary: | Pass Fail Total
All tests | 108 22 130
 cosine tests | 43 22 65
 sine tests | 65 65
ERROR: LoadError: Some tests did not pass:
 108 passed, 22 failed, 0 errored, 0 broken

Listing 16.11 ToyGeometry/test/trigtests.jl

Test if all cosine values
in range 0 to 2π with 0.1
increments are roughly equal.

Cannot test
from the test
environment

319Summary
Because of the for loops, I am able to perform a total of 130 tests in the preceding list-
ing. The cosine test fails because I used n = 5, which does not make the results accu-
rate enough. So I will set n = 9 instead for better accuracy. Please note that running
tests causes a lot of output I’ve edited out.

function cosine(x::Number)
 n = 9 # modified
 mapreduce(+, 0:n) do i
 (-1)^i*x^(2i)/factorial(2i)
 end
end

When I run the tests again they should pass:

(ToyGeometry) pkg> test
 Testing ToyGeometry
Test Summary: | Pass Total
All tests | 130 130
 Testing ToyGeometry tests passed

The topic of testing and environments is much broader than I can cover here. What
we have covered in this chapter provides you with a solid foundation from which to
explore further. Here are some starting points:

 pkgdocs.julialang.org—The site for the Pkg module, which provides the function-
ality of the package manager.

 docs.julialang.org—The site for the official Julia documentation. You can look
up detailed descriptions of modules, packages, and environments here, includ-
ing testing.

Summary
 An environment is like a work area where you set up what packages you want to

work with and use.
 Julia allows you to maintain different environments configured to use different

packages and different versions of those packages.
 CairoMakie is a Julia package for plotting 2D vector graphics. It is part of a col-

lection of plotting packages called Makie.
 scatter and lines are functions used in the Makie library to plot functions.
 ElectronDisplay is a package that provides a window for showing graphics,

such as output from Makie. It is an alternative to plotting in the VS Code editor.
 You can switch between different environments using the activate package

command. For instance, you might use this command when you want to modify
the dependencies of another package you are developing.

 To make a module available in your code, add it with the add package command.

Listing 16.12 Modifying a cosine function in trig.jl

320 CHAPTER 16 Organizing and modularizing your code
 Remove the package for modules no longer used in your program with the
remove package command.

 Check what packages have been added to an environment using the status
command. You can use this to check what dependencies your custom-made
package has.

 In cases when many packages have the same name, specify the UUID of the
package you are interested in when adding it to your work environment.

 Create a package with the generate package command.
 Project.toml shows direct dependencies of your environment, while Manifest

.toml shows indirect dependencies.
 When adding a local package you are developing, use dev instead of add. That

ensures the latest code changes are incorporated whenever you load a module
from that package.

 Use the Revise package to monitor code changes to packages loaded after
Revise.

 Use test <package name> to run tests for a package. For instance, test Toy-
Geometry will run tests for the ToyGeometry package.

 The test directory is its own environment that allows you to add the Test pack-
age as a dependency only to your test environment.

Part 5

Going in depth

You now have the foundation to go into more depth. In chapter 5, I/O could
only be covered superficially because the Julia type system had not yet been cov-
ered. Chapter 17 expands on chapter 5 by focusing on the I/O type hierarchy.

 In chapter 10, you saw how parametric types are used to represent various
forms of nothing, and in chapter 6 how they help define strongly typed collec-
tions. In chapter 18, I will explain how parametric types aid in type correctness,
performance, and memory usage.

Input and output
Real programs need to be able to read input from users and write out results. In
this chapter, you will learn about the Julia I/O system (input and output system).
It provides an abstraction for working with files, network communications, and
interprocess communications as well as interacting with the console (keyboard
and screen).

 Julia is very popular in data science, where we work a lot with input data in the
form of CSV files (comma separated values). That is why the main code example
will center on parsing a CSV file containing data about rocket engines, as well as
writing rocket engine data to a CSV file.

This chapter covers
 Understanding Julia’s I/O system

 Using the most common functions for reading
and writing to files

 Reading and writing to strings, sockets, and
processes

 Adding code to the rocket example for loading
rocket engines from CSV files
323

324 CHAPTER 17 Input and output
17.1 Introducing Julia’s I/O system
Let’s get a bird’s-eye view of the I/O system in Julia. It is centered on the abstract type
IO. It has concrete subtypes, such as IOStream, IOBuffer, Process, and TCPSocket.
Each type allows you to read and write data from different I/O devices, such as files,
text buffers, running processes (programs you started), or network connections.

 From the type hierarchy in figure 17.1 you can see that functions such as print,
show, read, readline, and write are available for all I/O types. Some functions, such
as eof and position, are not available for all I/O types.

Different I/O objects are opened in different ways, but once created, you can use
many of the same functions on all of them. I will demonstrate working with similar

IO

print(io, data)
show (io, data)

read (io, type)
write(io, data)
readline(io)

Process

AbstractPipe

close(io)
eof(io)

IOContext

IOContext(io, properties)
haskey(io, key)
get(io, key default)

Wrapper
around IO
objects to add
metadata

Read and write to
external process.

Regular
filesystem files

Treat a string like a file.

Allows code
to be agnostic
with respect
to specific IO
devices

IOStream

close(io)
eof(io)
position(io)
seek(io, pos)
skip(io, delta)

IOBuffer

IOBuffer(string)
take!(io)

LibuvStream

isopen(io)
close(io)
eof(io)

TCPSocket

connect(host, port)

Network communication

Figure 17.1 Type hierarchy of an I/O system showing what different subtypes are used for. Light gray boxes
represent concrete types.

32517.1 Introducing Julia’s I/O system
data from a file, string, and process. The data used will be from a CSV file called
rocket-engines.csv with the following content:

name,company,mass,thrust,Isp
Curie,Rocket Lab,0.008,0.12,317
RS-25,Aerojet Rocketdyne,3.527,1860,366
Merlin 1D,SpaceX,0.47,845,282
Kestrel 2,SpaceX,0.052,31,317
RD-180,NPO Energomash,5.48,3830,311
Rutherford,Rocket Lab,0.035,25,311

I will open the file, read from it until I reach the end, and close it. In listing 17.1, I
read one line at a time using the readline function and check whether I have reached
the end of the file with eof. I split every line using the split function into multiple
words by using commas as delimiters. Each read line is printed to the console. All
these functions are in the Base module, which is always loaded.

io = open("rocket-engines.csv")
while !eof(io)
 line = readline(io)
 words = split(line, ',')
 println(join(words, '\t'))
end
close(io)

You can process data from a text string in a very similar fashion. I’ll demonstrate by
creating a string with the first line in the rocket-engines.csv file and looking at how to
process it with different I/O functions. I will use readuntil, which reads from an IO
object, until hitting a particular character or string. I will use position to check how
many characters into the IOStream I am, periodically using eof to check if I have
reached the end of the I/O object:

julia> s = "name,company,mass,thrust,Isp";

julia> io = IOBuffer(s);

julia> readuntil(io, ',')
"name"

julia> position(io), eof(io)
(5, false)

julia> readuntil(io, ','), position(io), eof(io)
("company", 13, false)

julia> readuntil(io, ','), position(io), eof(io)
("mass", 18, false)

Listing 17.1 Reading a CSV file line by line to demonstrate basic I/O functionality

326 CHAPTER 17 Input and output
julia> readuntil(io, ','), position(io), eof(io)
("thrust", 25, false)

julia> readuntil(io, ','), position(io), eof(io)
("Isp", 28, true)

You can experiment with doing the same operations on an I/O object obtained by
opening the rocket-engines.csv file. Remember to call close(io) when you are done;
otherwise you will leak limited OS resources. Especially when writing to an I/O object,
it is important to close it, or you may lose data.

17.2 Reading data from a process
Script languages such as Python, Ruby, and Perl gained popularity in part for being
good glue languages. A glue language excels at connecting existing software compo-
nents, often written in different languages.

 You will briefly look at Julia’s ability to work as a glue language. Let’s pretend Julia
lacks the ability to search through text files and you want to leverage the Unix grep
tool1 for that purpose. First you would jump into shell mode by pressing semicolon,
just to demonstrate what your grep command will do: it finds lines with the text
"Rocket Lab". By pressing backspace, you go back to Julia mode. Next you would open
a connection to the grep process you launched (spawn). Notice the use of backticks to
quote shell commands you want to run:

shell> grep "Rocket Lab" rocket-engines.csv
Curie,Rocket Lab,0.008,0.12,317
Rutherford,Rocket Lab,0.035,25,311

julia> io = open(`grep "Rocket Lab" rocket-engines.csv`);

julia> readuntil(io, ',')
"Curie"

julia> readuntil(io, ',')
"Rocket Lab"

julia> readuntil(io, ',')
"0.008"

julia> position(io)
ERROR: MethodError: no method matching position(::Base.Process)

julia> close(io)

Unlike many script languages, such as Perl and Ruby, the backticks in Julia do not cause
a shell command to run right away. Instead they cause the creation of a command object
of a type called Cmd. When you call open on a command object, the command actually

1 grep is a standard command-line utility on Unix systems for finding lines in a file matching a given search criteria.

32717.3 Reading and writing to a socket
gets executed and spawns a process. The io object returned is of the Process type and
represents a connection to the output of the running process. This way you can read
from the process almost as if it were a file (figure 17.2).

Why do you get an error message when calling the position function? Because there
are no methods attached to position that work on Process objects. Only IOStream
objects working on files have the notion of a position in the stream.

17.3 Reading and writing to a socket
A socket represents a network connection. I’ll present a quick example demonstrating
a network connection using the Unix netcat utility. Netcat is a simple tool for experi-
menting with TCP/IP-socket-based communication.2 You can run netcat as either a
client or a server.

NOTE netcat is already installed on Linux and macOS. Windows users can
download the nmap utility as a substitute from nmap.org/ncat. Any time I
write the nc command in the text, in Windows you should write ncat instead.

Follow these steps: Open two terminal windows. In the first window launch Julia, and
in the second window launch netcat as a server listening for connections on port
1234. You can specify almost any port number you like as long as it is not already
taken. After launching netcat write the line "name,company,mass,thrust,Isp" and
press Enter:

shell> nc -l 1234
name,company,mass,thrust,Isp

In the Julia window use the connect function to connect to the local server running at
port 1234. The connect function will return an I/O object of type TCPSocket:

2 TCP/IP is the protocol used on the internet for communication.

julia

outin

grep

Pipe

connection

juliaio

Access the pipe through
the io object created by open.

Parent process

Child process

Spawn process

grep

Figure 17.2 The open function spawns a child process. Both processes are connected
through a pipe represented by the I/O object returned from the open function.

328 CHAPTER 17 Input and output
julia> using Sockets

julia> sock = connect(1234)
TCPSocket(RawFD(23) open, 0 bytes waiting)

julia> readuntil(sock, ',')
"name"

julia> readuntil(sock, ','), isopen(sock)
("company", true)

julia> readline(sock)
"mass,thrust,Isp"

A socket is usually two-way, so you can write messages to the socket and see them pop
up in the windows running netcat:

julia> println(sock, "hello netcat")

julia> close(sock)

Did you see the text string "hello netcat" pop up in the second window?
 With these simple examples I have demonstrated that you can use the same func-

tions, such as read, readuntil, readline, and println, for every type of I/O object,
whether it represents a text string, file, or network connection.

17.4 Parsing a CSV file
Let’s build up a more comprehensive code example. You will enhance your rocket code
from the recurring example by adding the ability to load definitions of rocket engines
from CSV files. To practice your Julia package making skills, make a Julia package called
ToyRockets to contain your rocket code. I have already made this package and placed
it on GitHub at github.com/ordovician/ToyRockets.jl, so you can follow along.

 The ToyRockets package is created with the generate command in the Julia pack-
age manager. Next create a data directory to hold the rocket-engines.csv file. Add the
following files to the src directory:

 interfaces.jl—Contains definitions of abstract types, such as Engine
 custom-engine.jl—The definition of a concrete engine type
 io.jl—A collection of functions for loading and saving rocket parts

Now run the necessary commands to make this happen, paying attention to the prompts.
When the prompt says (@v1.7) pkg>, it means you must press] first to enter package
mode. When the prompt says shell> it means you must press ; to enter shell mode:

(@v1.7) pkg> generate ToyRockets
 Generating project ToyRockets:
 ToyRockets/Project.toml
 ToyRockets/src/ToyRockets.jl

32917.4 Parsing a CSV file
shell> cd ToyRockets/
~/Development/ToyRockets

shell> mkdir data

shell> cd src
~/Development/ToyRockets/src

shell> touch interfaces.jl custom-engine.jl io.jl

If you followed the instructions correctly and put the rocket-engines.csv file in the
data/ directory, then your ToyRockets package should look like this:

ToyRockets/
├── Project.toml
├── data
│ └── rocket-engines.csv
└── src
 ├── ToyRockets.jl
 ├── custom-engine.jl
 ├── interfaces.jl
 └── io.jl

Make sure you include all your source code files in the ToyRockets.jl file (listing 17.2),
which defines your package module.

module ToyRockets

include("interfaces.jl")
include("custom-engine.jl")

include("io.jl")

end

Next you need to turn every row in rocket-engines.csv into a CustomEngine object, so
first you need to define Engine types.

interfaces.jl file
export Engine
abstract type Engine end

custom-engine.jl file
export CustomEngine

struct CustomEngine <: Engine
 mass::Float64
 thrust::Float64
 Isp::Float64
end

Listing 17.2 src/ToyRockets.jl file

Listing 17.3 Defining engine types

330 CHAPTER 17 Input and output
In the next two sections you will load and save rocket engine data.

17.4.1 Loading rocket engine data

You will now take a look at the final code (listing 17.4) before I walk through all the
details and explain how its different parts work. The code starts by reading all the rows
in the CSV file, with each row representing a rocket engine. Loop over each row, parse
it, and turn it into a CustomEngine object that gets added to a dictionary, rocket_
engines, containing all the engines loaded from our input file.

export load_engines

function load_engines(path::AbstractString)
 rocket_engines = Dict{String, Engine}()

 rows = readlines(path)
 for row in rows[2:end]
 cols = split(row, ',')

 if any(isempty, cols)
 continue
 end

 name, company = cols[1:2]
 mass, thrust, Isp = map(cols[3:end]) do col
 parse(Float64, col)
 end

 engine = CustomEngine(
 mass * 1000,
 Isp,
 thrust * 1000)
 rocket_engines[name] = engine
 end

 rocket_engines
end

load_engines take the path to the CSV file that contains rocket engine data and
parses it to produce a dictionary of rocket engines. Here is an example of using it:

julia> using Revise, ToyRockets

julia> pwd()
"~/Development/ToyRockets"

julia> engines = load_engines("data/rocket-engines.csv")
Dict{String, Engine} with 6 entries:
 "RD-180" => CustomEngine(5480.0, 311.0, 3.83e6)
 "Kestrel 2" => CustomEngine(52.0, 317.0, 31000.0)
 "Curie" => CustomEngine(8.0, 317.0, 120.0)

Listing 17.4 An io.jl file containing code to load engine objects into a dictionary

From tons
to kg

kN to Newton

33117.4 Parsing a CSV file
 "Merlin 1D" => CustomEngine(470.0, 282.0, 845000.0)
 "RS-25" => CustomEngine(3527.0, 366.0, 1.86e6)
 "Rutherford" => CustomEngine(35.0, 311.0, 25000.0)

julia> engines["Curie"]
CustomEngine(8.0, 317.0, 120.0)

The load_engines function follows a pretty standard pattern I use when processing
data, which is neatly organized by lines such as CSV files (see chapter 5). You use
readlines here to get the rows in the file and split to get each of the columns of
every row (figure 17.3).

To better understand how the code works, copy and paste parts of the source code
lines into the REPL to see how the input data gets processed:

julia> path = "data/rocket-engines.csv"
"data/rocket-engines.csv"

julia> rows = readlines(path)
7-element Vector{String}:
 "name,company,mass,thrust,Isp"
 "Curie,Rocket Lab,0.008,0.12,317"
 "RS-25,Aerojet Rocketdyne,3.527,1860,366"
 "Merlin 1D,SpaceX,0.47,845,282"
 "Kestrel 2,SpaceX,0.052,31,317"
 "RD-180,NPO Energomash,5.48,3830,311"
 "Rutherford,Rocket Lab,0.035,25,311"

Next, pick an arbitrary row and split it into columns to verify the parsing works as
expected. Occasionally, there can be missing data, so be sure to check that every col-
umn contains data. You can achieve this with the higher-order function any(isempty,
cols), which applies isempty to every column. If any of the columns are empty, it will
return true:

Original file Reading lines Splitting into
columns

Mapping selected
columns to floats

Merging into
engine objects

Figure 17.3 The rocket engine’s file is split into parts, transformed, and composed
into rocket engines in multiple steps.

332 CHAPTER 17 Input and output
julia> row = rows[2]
"Curie,Rocket Lab,0.008,0.12,317"

julia> cols = split(row, ',')
5-element Vector{SubString{String}}:
 "Curie"
 "Rocket Lab"
 "0.008"
 "0.12"
 "317"

julia> any(isempty, cols)
false

Next, you will use a little Julia magic called destructuring to pull out the name of the
engine and the company making it. With destructuring you place multiple variables
on the left side of the assignment operator =. On the right side, you must place an iter-
able collection with at least as many elements as variables on the left side:

julia> name, company = cols[1:2]
2-element Vector{SubString{String}}:
 "Curie"
 "Rocket Lab"

julia> name
"Curie"

julia> company
"Rocket Lab"

cols[1:2] gives you a two-element array. Julia iterates over this array and assigns the
elements in the array to name and then company. A tuple or dictionary would have
worked just as well.

 The next part is a bit more complex, as you take the three last elements,
cols[3:end], and map them to floating-point values using the parse(Float64, col)
function. This turns the textual representations of mass, thrust, and Isp into floating-
point values, which you can feed to the CustomEngine constructor to make an engine
object:

julia> mass, thrust, Isp = map(cols[3:end]) do col
 parse(Float64, col)
 end
3-element Vector{Float64}:
 0.008
 0.12
 317.0

julia> engine = CustomEngine(
 mass * 1000,
 Isp,
 thrust * 1000)
CustomEngine(8.0, 317.0, 120.0)

33317.4 Parsing a CSV file
The last step is storing this engine in a dictionary under the engine name.

17.4.2 Saving rocket engine data

At this point you can add code to your io.jl file to allow the saving of rocket engines
to a file. By default a file is opened for reading. If you want to write to it you need to
pass a "w" for the write argument to the open function. There are still a number of
other new concepts in this code you will need to look at in greater detail.

function save_engines(path::AbstractString, engines)
 open(path, "w") do io
 println(io, "name,company,mass,thrust,Isp")
 for (name, egn) in engines
 row = [name, "", egn.mass, egn.thrust, egn.Isp]
 join(io, row, ',')
 println(io)
 end
 end
end

Do you notice how you use the do-end form with your open function? That means it
takes a function as the first argument. What is the point of that? Study the following
implementation to see if you can make a guess.

function open(f::Function, args...)
 io = open(args...)
 f(io)
 close(io)
end

The benefit of this solution is that you can pass the responsibility of closing your io
object to Julia when you are done with it. You will also notice the use of the splat
operator It is used to represent a variable number of parameters. Regardless of
how many arguments you pass to open they will be collected into a tuple args. When
calling open(args...) you expand this tuple into arguments again by using the
splat operator.

 What about the join taking an I/O argument as the first argument? Instead of
returning the result of joining multiple elements with a separator, the join function
will write the result to the supplied I/O object. Here is a demonstration of writing the
result to standard out:

julia> join(stdout, [false, 3, "hi"], ':')
false:3:hi

Listing 17.5 An io.jl file with added save_engines code

Listing 17.6 Implementing open(f, args…)

334 CHAPTER 17 Input and output
You should now have a broad understanding of the I/O Julia system. Study the docu-
mentation of the functions and types covered here using the built-in help system to
learn more.

Summary
 IOStream, IOBuffer, Process, and TCPSocket are I/O objects for reading and

writing to files, text strings, running processes, or network connections.
 Use functions such as readuntil, readline, readlines, and read to read data

from any I/O object.
 Use functions such as print and println to write data to an I/O object.
 split is a convenient function for turning strings into arrays of objects by split-

ting them up using a delimiter.
 Destructuring assigns multiple elements in a collection to multiple variables,

providing a compact and elegant way of accessing elements.

Defining
parametric types
In chapter 10, I introduced parametric types to help explain how the union type
works. We have also discussed parametric types in relation to collections such as
arrays, dictionaries, and sets. With type parameters, you can restrict which ele-
ments can be used in your collections and thus get better type safety. However, all
previous usage of parametric types have been as users of parametric types defined
by others.

 In this chapter, I will show you how to make your own parametric types and
cover some common misconceptions and pitfalls when dealing with parametric
types. But why would you want to make your own parametric types? Parametric
types in Julia have two key benefits, which we will explore in detail in this chapter:

This chapter covers
 Working with and defining parametric methods

and types

 Using parametric types to improve type safety
and catch bugs

 Improving memory usage and performance by
using parametric types
335

336 CHAPTER 18 Defining parametric types
1 Enabling more type-safe code. Julia can catch errors early at runtime, such as
trying to put a string into an array of numbers.

2 Improving performance when working with large datasets.

You will explore these topics through geometric code in 2D space (for simplicity). I
will attempt to motivate you with a possible use in your rocket example project: to
express the position of a rocket in space you need a Point type to represent a posi-
tion in space and a Vec2D type to represent force, acceleration, and velocity in differ-
ent directions.

18.1 Defining parametric methods
I’ll start simply by presenting methods that take type parameters and exploring how type
parameters can make your methods more type safe and reduce boilerplate. Before
jumping in, let me refresh you on the concept of type parameters. Previously, I used an
analogy with a function call y = f(x), where the function f takes a value x and produces
a new value y (figure 18.1). Likewise, you can think of the type expression S = P{T} as
parametric type P, taking a type parameter T and returning a new concrete type S.
Both T and S are concrete types, while P is just a template for making types.

The linearsearch function defined in listing 18.1 does a linear search through the
array haystack, looking for the element needle.

NOTE Using a linear search means you are not doing anything clever. You just
start at the first element and look at every element in succession. When you find
the element you are looking for, you return the index of that element.

linearsearch is a parametric method because it takes a type parameter T. It is the
where T clause that defines T as a type parameter.

fx y
Function transforming
value to value

PT S
Parametric type taking type
parameter to produce type

Input OutputFunction

Input OuputParametric type

Type parameter Concrete type

y f x= ()

S P T= { }

yx

T S
P

f

Figure 18.1 Analogy between a function and a parameterized type. The former
produces values, while the latter produces types.

33718.1 Defining parametric methods
function linearsearch(haystack::AbstractVector{T}, needle::T) where T
 for (i, x) in enumerate(haystack)
 if needle == x
 return i
 end
 end
 nothing
end

What advantages does using a type parameter provide in this case? Could you instead
annotate haystack with the AbstractVector type and give needle the Any type anno-
tation? No. That would not give the same strong type checking at runtime. You have
defined linearsearch such that needle must have the same type as all the elements
of haystack. Let me demonstrate in the REPL:

julia> linearsearch([4, 5, 8], 5)
2

julia> linearsearch([4, 5, 8], "five")
ERROR: MethodError: no method matching linearsearch(::Vector{Int64}, ::String)

The error message tells you there is no method taking a vector with Int64 elements
and a String search object. I have defined linearsearch such that whatever type T is,
it must be the same for the haystack elements and the needle object.

 Parametric types do not only improve type safety, but they also provide opportunities
for reducing boilerplate code. Say you wanted to implement your own version of the
Julia typeof function. A naive approach would be writing the code like the following.

kindof(x::Int64) = Int64
kindof(x::Float64) = Float64
kindof(x::String) = String

You can try kindof in the REPL and see that it works for 64-bit integer values, floating-
point values, and strings. However, that’s it. Trying to add a method for every type in
Julia is a fool’s errand. As you may have guessed already, defining kindof as a paramet-
ric method solves the problem elegantly, as follows.

function kindof(x::T) where T
 return T
end

While names like T, S, T1, and T2 are popular for denoting type parameters, you could
use any name; the name is not essential. It is the where clause that turns the name into

Listing 18.1 linearsearch in collection haystack for element needle

Listing 18.2 Naive implementation of a typeof-style function

Listing 18.3 Implementing kindof using a type parameter

338 CHAPTER 18 Defining parametric types
a type parameter. Let’s hammer this point home by restarting Julia and defining a type
parameter named Int64:

julia> kindof(x::Int64) where Int64 = Int64
kindof (generic function with 1 method)

julia> kindof(3)
Int64

julia> kindof('C')
Char

julia> kindof(4.2)
Float64

julia> kindof(3 => 8)
Pair{Int64, Int64}

The fact that Int64 is an actual type doesn’t matter here. The where clause turns
Int64 into a type parameter and prevents it from being interpreted as a concrete type.
Of course, you should avoid using known types as type parameter names, as this would
massively confuse readers of your code.

18.2 Defining parametric types
Through the whole book we’ve used parametric types such as arrays, dictionaries,
and tuples, but we have not defined such types ourselves. Let’s look at how that can
be done.

 I will define the types Point and Vec2D. Figure 18.2 shows the relation between
points and vectors in the coordinate space. Points are usually drawn like dots, while
vectors are drawn like arrows. A vector represents a displacement along each axis in
the coordinate system.

A

C D

E

B

F
u

v

10

–1

–2

1

2

3

4

5

2 4 5 6 73

Figure 18.2 The geometric relation
between points and vectors

33918.2 Defining parametric types
Mathematically speaking, points and vectors are related through different operations.
If you subtract the point E from point F, you get vector u. You could flip this around
and add vector u to point E to get point F. I will discuss these details in greater depth
later. First, I want to walk you through the details of a parametric type definition (list-
ing 18.4). Don’t define these in the REPL yet because you will modify the definitions.

"A point at coordinate (x, y)"
struct Point{T}
 x::T
 y::T
end

"A vector with displacement (Δx, Δy)"
struct Vec2D{T}
 Δx::T
 Δy::T
end

"Calculate magnitude of a vector (how long it is)"
norm(v::Vec2D) = sqrt(v.Δx^2 + v.Δy^2)

Use \Delta to get the Δ symbol. It is a symbol commonly used in mathematics to rep-
resent differences or displacements.

Point and Vec2D should not be thought of as types but templates for creating
actual types. To create an actual type, you must provide a concrete type for the type
parameter T. Without parametric types, you would have had to define numerous
concrete types to deal with different numbers. Every method would have had to be
defined for every type, leading to code bloat. For instance, with a parametric type, you
could define norm once. Without it, you would need to define it for every concrete 2D
vector type, as shown in the following listing.

struct IntVec2D
 x::Int
 y::Int
end

struct FloatVec2D
 Δx::Float64
 Δy::Float64
end

norm(v::IntVec2D) = sqrt(v.Δx^2 + v.Δy^2)
norm(v::FloatVec2D) = sqrt(v.Δx^2 + v.Δy^2)

A Python, Ruby, or JavaScript developer, however, would object to this approach
and say it is completely unnecessary to define multiple concrete types. If you want

Listing 18.4 Defining parametric types Point and Vec2D

Listing 18.5 Code bloat when you don’t have parametric types

340 CHAPTER 18 Defining parametric types
flexibility in the type for Δx and Δy just leave out the type annotation, as shown in the
following listing.

struct Vec2D
 Δx
 Δy
end

Nothing prevents you from defining a 2D vector in this manner. So why not do it that
way and avoid all the extra complexities introduced by parametric types? Dropping
annotations is bad for numerous reasons:

1 You take away valuable type checking at runtime performed by the Julia JIT
compiler.

2 You increase memory usage and reduce performance.

I’ll cover each of these points in greater detail.

18.3 Type safety benefits from parametric types
I will compare 2D vectors with and without type annotations to show the type safety
benefits of using parametric types. I’ll start by creating two throwaway types, GVec2D
and PVec2D, just for this comparison. I will not be building on these types further.
Notice how it is perfectly valid to define a type definition on a single line—just sepa-
rate individual statements with a semicolon. GVec2D is the weakly typed variant, and
PVec2D is the strongly typed variant:

julia> struct GVec2D Δx; Δy end

julia> struct PVec2D{T} Δx::T; Δy::T end

julia> v = GVec2D(2, 3.0)
GVec2D(2, 3.0)

julia> u = PVec2D(2, 3.0)
ERROR: MethodError: no method matching PVec2D(::Int64, ::Float64)

julia> u = PVec2D(2, 3)
PVec2D{Int64}(2, 3)

julia> u = PVec2D{Int}(2, 3.0)
 PVec2D{Int64}(2, 3)

The GVec2D does not use type annotations, and thus when creating the q point I get
no complaints from Julia about using two different numbers types for representing
the x and y delta. If you were to try that with PVec2D, which has type annotations, the

Listing 18.6 Vec2 type without type annotations (any type)

Create a composite data type
without type annotations.

Add type annotations to
fields in the new data type.

There are no restrictions
on argument types.

Type annotations prevent
wrong types from being input.

Infer the type parameter
from arguments.

Explicitly set the type
parameter to Int.

34118.3 Type safety benefits from parametric types
Julia JIT compiler would complain because you are trying to use two different types of
Δx and Δy. Because of this problem, Julia has no way of inferring what the type param-
eter T should be, and it must give up and throw an exception. That helps you catch
cases in which you are not paying attention to the types of numbers you are passing
around in your code.

 This issue can be solved in two ways: Either make sure each argument is of the
same type or use the curly braces {} to explicitly state what the type parameter is
rather than asking Julia to infer it. Julia will then know the type of each field and per-
form an automatic conversion to that number type. Both are valid choices.

 Type safety can be taken much further with parametric types. Do you remember
the <: subtype operator? You have used this operator in a variety of cases, including
testing whether one type is a subtype of another and indicating that a composite type
is a subtype of an abstract type. You can also use this operator to impose constraints on
the type parameter T. Currently, T can be any type, including nonnumerical types.
That is not desirable, as coordinates are represented by numbers. The final Vec2D
type, shown in the following listing, will constrain T to being a number.

import Base: +, -

struct Point{T<:Number}
 x::T
 y::T
end

struct Vec2D{T<:Number}
 Δx::T
 Δy::T
end

"Adding vector `v` to point `p` creates a new point"
function +(p::Point{T}, v::Vec2D{T}) where T
 Point(p.x + v.Δx, p.y + v.Δy)
end

"Subtracting two points gives a vector"
function -(p::Point{T}, q::Point{T}) where T
 Vec2D(p.x - q.x, p.y - q.y)
end

You can see there is no problem creating a PVec2D of characters because the type
parameter T has not been constrained in any way. Vec2D, on the other hand, will not
accept characters as arguments. Try experimenting with different values yourself to
validate that the type constraints work:

julia> v = PVec2D('A', 'B')
PVec2D{Char}('A', 'B')

Listing 18.7 Point and Vec2D defined so the type parameter must be a number type

342 CHAPTER 18 Defining parametric types
julia> u = Vec2D('A', 'B')
ERROR: MethodError: no method matching Vec2D(::Char, ::Char)

julia> u = Vec2D(8, 4)
Vec2D{Int64}(8, 4)

Thus far you have only used one type parameter in all expressions. But you know from
using dictionaries, tuples, and pairs that there can be many type parameters. For the
point subtraction operator in listing 18.7, I have required each point p and q to have
the same number type, but this is not required. Listing 18.8 demonstrates the subtrac-
tion operator implemented with different number types for point p and q.

function -(p::Point{T}, q::Point{S}) where {T, S}
 Vec2D(p.x - q.x, p.y - q.y)
end

function -(p::Point, q::Point)
 Vec2D(p.x - q.x, p.y - q.y)
end

Because in this example I am not using the type parameters T and S to constrain any-
thing, I can omit them entirely. In Julia, writing Point is equivalent to writing Point{T}
if T is unconstrained (figure 18.3 illustrates these type relationships). For instance, if you
have a function sum that takes a vector as argument and you aren’t concerned with the
types of the elements, you could write sum(xs::Vector), which is identical to writing
sum(xs::Vector{T}) where T.

Listing 18.8 Substract defined so arguments p and q don’t need to be the same type

Shorthand version without
explicit type parameters

A{T}

A{Int64} A{Char}

A

A{Int64} A{Char}

A{<:Number}

A{Int64} A{Float64}

Figure 18.3 Subtype relations between parametric types. Functions taking parametric type A will, for
instance, accept values of type A{Int64} and A{Char}.

34318.4 Performance benefits from parametric types
In parametric methods, the key reason for using a named type parameter such as T is
that you want to express that two or more arguments use the same type parameter. In
other cases you don’t want to enforce such a strict requirement. Instead you simply
want the type parameters to be of a similar type. Say you want subtraction between
points to only apply to integers (see the following listing).

function -(p::Point{<:Integer}, q::Point{<:Integer})
 Vec2D(p.x - q.x, p.y - q.y)
end

In this case, p could have UInt8 fields, while q could have Int16 fields. The example
is, of course, contrived, as this particular restriction does not make sense. So why
didn’t I constrain p and q to Number? Wouldn’t that be more realistic? It would not
because there is no way to create Point objects that don’t contain numbers. Remem-
ber that is a constraint on the type parameter to the Point type itself and its associated
constructor.

18.4 Performance benefits from parametric types
Julia is a high-performance, dynamic language. Without parametric types, that would
not be possible. Let’s discuss how parametric types influence performance. A benefit
of understanding this is that you can more easily anticipate performance problems in
your code.

 One of the key reasons dynamically typed languages are slow is because of some-
thing called boxing. Its name comes from the fact that most values have to be put in
special containers that contain information about the value they contain, including its
type and garbage collection details, which could be a mark or a reference count (see
figure 18.4). The specifics of how the garbage collection occurs (i.e., how memory is
freed) is not essential to this argument. The key point is that these generic containers
have a bunch of bookkeeping data.

What is the point of this bookkeeping data? It is what allows you to handle arbitrary val-
ues at runtime. Imagine a simple function multiply for scaling a vector by a constant k
(see the following listing).

Listing 18.9 Arguments p and q constrained to have integer-based type parameters

data

type

refcount

pointer

Boxed value

data data

Unboxed

value

Figure 18.4 The difference
between boxed and unboxed
values

344 CHAPTER 18 Defining parametric types
struct Vec2D
 Δx::Number
 Δy::Number
end

function multiply(u::Vec2D, k::Number)
 Vec2D(k * u.Δx, k * u.Δy)
end

This looks simple, right? But in a dynamic language, lots of code must run to perform
this operation. In the following listing, I will walk you through a Julia pseudocode vari-
ant of what is going on.

function multiply(u::Vec2D, k::Number)
 ux = getfield(u, :Δx)
 if !isa(ux, Float64)
 error("x must be a float")
 end

 uy = getfield(u, :Δy)
 if !isa(uy, Float64)
 error("y must be a float")
 end

 c = convert(Float64, k)
 Vec2D(floatmul(c, ux), floatmul(c, uy))
end

This code is not meant to be an accurate representation of what is going on. Think of
it more as a form of pseudocode to help develop a rough intuition about how
dynamic languages work under the hood.

 In most dynamic languages, you don’t know what fields a composite type has until
runtime. That means you cannot generate code accessing fields directly, which is why
you see the getfield(u, :Δx) line in listing 18.11. You must verify that each field is
actually present and of the expected type.

 Julia does not have this problem because it imposes a series of restrictions on its
types that are not common in other dynamic languages:

 Fields are fixed by the type. Instances of a type cannot add or remove fields at
runtime.

 You cannot store values that don’t match the field types on a composite object.

These restrictions greatly simplify the job for the Julia JIT compiler when it tries to gen-
erate optimized machine code. For a refresher on Julia method calls see section 7.4.

Listing 18.10 Vec2D defined with abstract type fields to mimic regular dynamic languages

Listing 18.11 Pseudocode of how multiply would work in a normal dynamic language

To support explanation
not for running

Need to be boxed

345Summary
The key takeaway is that when Julia generates code for a method, it knows exactly what
the type of every input argument is. Since types cannot change in Julia, the JIT com-
piler will also know exactly what fields the arguments have and their types. This allows
Julia to generate highly optimized machine code.

18.5 Memory benefits of parametric types
The benefits of parametric types don’t stop at allowing the compiler to create more
optimized code and include making it easier to have a more optimized layout of data
in memory. If you define an array of type Vector{Point{Int32}} with N number of
elements, then the Julia JIT can figure out exactly how many bytes are required to
hold all those elements. That allows you to avoid memory fragmentation, which
reduces the amount of available memory and performance of your applications. In
short, parametric types give you better type safety, performance, and memory usage.

Summary
 Parametric types improve type safety at runtime.
 Julia determines whether a type is a type parameter in a function definition by

looking at the where clause.
 Type parameters can be named anything, including actual type names, such as

Int8 and Char. However, to avoid confusing developers reading your code, try
to use names such as T, T1, T2, and S.

 For composite types use {T1, T2, T3} to specify a type with three different type
parameters.

 Use the subtype operator T <: S to constrain a parametric type T to being a sub-
type of another type S.

 Boxing is when values are stored with bookkeeping information to help deter-
mine the data type stored at runtime.

 Boxing kills the performance of dynamic languages. Parametric types com-
bined with immutable types minimize the usage of boxing in Julia and thus
allow the compiler to generate optimized machine code.

 Parametric types provide a more optimal memory layout for collections and
individual objects, reducing memory usage and improving performance.

appendix A
Installing and configuring

the Julia environment

This appendix covers downloading and installing Julia on Linux, macOS, and Win-
dows. I will also cover how to configure your Julia environment to improve your
efficiency.

 The instructions in this appendix rely on understanding concepts such as the
path for command utilities as well as knowing how to set it; these instructions will
vary depending on operating system. For Unix-like systems such as macOS and
Linux, you configure the search path by editing configuration files such as .zshrc,
.profile, or .config/fish/config.fish. In these files, you can set environment vari-
ables such as PATH, EDITOR, and JULIA_EDITOR. If you are unfamiliar with the Unix
command line, here are some resources from my Substack Erik Explores:

 “Unix Command Line Crash Course” (https://erikexplores.substack.com/
p/unix-crash-course)

 “Unix Commands, Pipes, and Processes” (https://erikexplores.substack.com/
p/unix-pipes)

 “Unix Shells and Terminals” (https://erikexplores.substack.com/p/unix-
shells-and-terminals)

A.1 Downloading Julia
1 Navigate to the Julia downloads webpage (figure A.1): https://julialang.org/

downloads.
2 Select the correct Julia version for your operating system. I recommend

installing Julia 1.7 or higher.
346

https://erikexplores.substack.com/p/unix-crash-course
https://erikexplores.substack.com/p/unix-crash-course
https://erikexplores.substack.com/p/unix-pipes
https://erikexplores.substack.com/p/unix-pipes
https://erikexplores.substack.com/p/unix-shells-and-terminals
https://erikexplores.substack.com/p/unix-shells-and-terminals
https://julialang.org/downloads
https://julialang.org/downloads

347A.3 On Linux
A.2 Installing Julia
Read through the installation instructions for the operating system you use.

NOTE Some shell commands are prefixed with sudo, which gives the com-
mand you are running superuser privileges. These privileges are needed to
modify files or directories not owned by the logged-in user.

A.3 On Linux
There are many different Linux distributions, but in the instructions here, I am
assuming there is a Downloads directory where you store downloaded files. Adjust
command given based on where you store downloads on your Linux machine.

1 Unpack the .tar.gz file with a name similar to julia-1.7.3-linux-x86_64.tar.gz.
2 Move the unpacked directory to /opt. If /opt does not exist, create it. Create an

/opt/bin directory as well, as it will be needed later:

Figure A.1 The Julia homepage

348 APPENDIX A Installing and configuring the Julia environment
$ sudo mkdir -p /opt/bin
$ cd $HOME/Downloads
$ sudo mv julia-1.7.3 /opt

Next, to run Julia from the terminal easily, make a symbolic link:

$ sudo rm /opt/bin/julia
$ sudo ln -s /opt/julia-1.7.3/bin/julia /opt/bin/julia

A.3.1 On macOS

1 Open your downloaded .dmg file named something like julia-1.7.3-mac64.dmg.
2 Drag and drop the Julia application bundle to your /Applications folder.

This completes the installation. It’s that easy!
 The next step is optional but convenient. Take the following steps if you would like

to launch Julia by simply typing julia in the terminal rather than having to click the
Julia application icon:

1 Open the Terminal.app console application.
2 Create a symbolic link from the installation location to a directory in your path,

such as /usr/local/bin.

$ ln -s /Applications/Julia-1.7.app/Contents/Resources/julia/bin/julia
/usr/local/bin/julia

A.3.2 On Windows

Download the .exe file, which is a self-contained Julia installer. Double-click and fol-
low the prompts to install Julia. The installation process is similar to installing most
other Windows software.

A.4 Configuring Julia
Let’s configure Julia to make it more convenient to use. Linux and macOS have very
similar configurations, as they are both Unix-like operating systems.

A.4.1 On Linux and macOS

To make it easy to run Julia from the terminal, it is useful to configure your shell envi-
ronment for Julia. If your shell is the Z shell (zsh), you need to edit the .zshrc file in
your home directory. If you use Bourne Again SHell, bash, you need to edit the .pro-
file file instead. Z shell is currently the standard on macOS.

 Here is an example of configuring Julia for use with the bash shell on Linux,
where Sublime Text (see https://www.sublimetext.com), subl, is used as the text edi-
tor for Julia code:

~/.zshrc file
export JULIA_EDITOR=subl
export PATH=/opt/bin:$PATH

Remove any
old link.

https://www.sublimetext.com

349A.4 Configuring Julia
You may use a custom shell. For instance, I use the fish shell, which is a modern, user-
friendly shell for all Unix-like systems. In this case, you would edit the .config/fish/
config.fish in your home directory. In the following code, I am configuring my Mac to
use the VS Code editor, which is launched with the code command:

~/.config/fish/config.fish file
set -x JULIA_EDITOR code
set -x PATH /usr/local/bin $PATH

A.4.2 On Windows

On Windows, environment variables are configured through the GUI shown in fig-
ure A.2. The steps for opening this dialog depend on your windows version. For Win-
dows 8 and newer, follow these steps:

1 In Search, search for and then select System (Control Panel).
2 Click the Advanced System Settings link.

Figure A.2 Dialog for configuring the Windows binary search path

350 APPENDIX A Installing and configuring the Julia environment
For Windows Vista and Windows 7, follow these steps:

1 From the desktop, right-click the Computer icon.
2 Choose Properties from the context menu.
3 Click the Advanced System Settings link.

You don’t need to set the JULIA_EDITOR environment variable on Windows, as the
operating system will open a dialog and ask you what editor to use when needed. Win-
dows will then associate an application with .jl files.

 Configuring the shell environment is likely less needed on Windows than on
Linux/macOS because command-line interfaces are not as frequently used by Win-
dows developers. Developers interested in the command line on Windows may prefer
to use the Window Subsystem for Linux (WSL; https://docs.microsoft.com/en-us/
windows/wsl/about). If you use WSL, then follow the Linux installation and configu-
ration steps instead.

A.5 Running Julia
Now that Julia is installed and configured, you can try running it. Either click on the
Julia application icon or open a terminal window, type julia, and then press Enter.

 When the Julia program is launched, it enters what is called the Julia REPL (read–
evaluate–print–loop). The Julia REPL is a program that accepts Julia code, evaluates
it, and then prints the result of evaluating that code:

$ julia
 _
 _ _ _(_)_ | Documentation: https:/ /docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.7.2 (2022-02-06)
 _/ |__'_|_|_|__'_| | Official https:/ /julialang.org/ release
|__/ |

julia> print("hello world")
hello world

julia> 3 + 2
5

julia> reverse("ABCD")
"DCBA"

Each line of code is usually referred to as an expression. (Many other languages distin-
guish between statements and expressions.) After pressing Enter, evaluate the expres-
sion, and Julia will show what value the expression evaluates to.

HOW DO YOU EXIT JULIA? You can interrupt anything you are doing in Julia by
holding down the Ctrl key and pressing C. We write this as Ctrl-C. To exit
Julia, hold down Ctrl-D or type exit().

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

351A.7 Installing third-party packages
Ctrl-C is commonly used to stop execution of Julia code that has gotten stuck.
For instance, you may want to stop execution if you are executing an infinite
loop.

A.6 Julia REPL Modes
The Julia REPL can be in different modes indicated by the prompt currently showing.
A green prompt with the name julia> means you are in the standard Julia mode.
Here are the other modes you will see in code examples:

 help?>—Look up help about a function or type. Enter help mode by pressing ?.
 pkg>—Package mode is intended for installing and removing packages. Enter

package mode by pressing].
 shell>—Shell mode allows you to issue Unix shell commands, such as ls, cp,

and cat. Enter shell mode by pressing ;.

You can exit a mode by going to the start of the line and pressing backspace. That will
take you back to Julia mode.

 While reading this book, look at the prompt to determine which mode we are in. If
you don’t put the REPL in the correct mode, the commands you issue will not work.
The following is an example of being in help mode. The prompt will be yellow:

help?> 4 / 2
 /(x, y)

 Right division operator: multiplication of x by the inverse of y on the right.
 Gives floating-point results for integer arguments.

REPL modes are covered in greater detail in chapters 5, 16, and 17.

A.7 Installing third-party packages
There are several third-party packages that, while not necessary, can improve your
workflow. Packages are covered in greater detail in chapter 16.

 Enter package mode to install packages. We will install the packages OhMyREPL,
Revise, and Debugger here:

(@v1.7) pkg> add OhMyREPL, Revise, Debugger
 Resolving package versions...

Load the package into the Julia environment with the using keyword. Multiple pack-
ages can be loaded by separating them with a comma.

julia> using OhMyREPL, Revise, Debugger

The OhMyREPL package provides syntax highlighting and a better search history in the
REPL. Debugger allows you to step through code with the @enter macro. For instance,

352 APPENDIX A Installing and configuring the Julia environment
the following code will step into the execution of the titlecase function. Step by
pressing N, and exit by pressing Ctrl-D:

julia> @enter titlecase("hello")

The most interesting and useful package is Revise, which allows you to monitor code
changes. Normally, you load the code of a single file into the Julia REPL with the
include function. If you use the includet function from the Revise package instead,
the code in the file will be monitored. Say you create a file named hello.jl with the fol-
lowing code:

greet() = "hello world"

You could load this file in the Julia REPL using Revise:

julia> includet("hello.jl")

julia> greet()
"hello world"

You could modify the source code file to say "hello Mars", and this change would be
picked up without needing to explicitly load the file again:

julia> greet()
"hello Mars"

appendix B
Numerics

This appendix covers some common issues and questions about numbers in pro-
gramming. These topics are not entirely unique to Julia; for instance, I will discuss
what happens if the result of an integer arithmetic operation results in a higher or
lower number than can be represented by the integer type. I will also discuss why
floating-point numbers, unlike integers, are inaccurate.

B.1 Different number types and their bit lengths
A number is not just a number. There are different types of numbers, such as inte-
gers, real numbers, irrational numbers, and so on. For example, integers are whole
numbers, such as 2, 7, 43, 820, –52, 0, 6, and –4, while real numbers contain numbers
that have a decimal point, such as 3.45, 0.042, 1331.0, 78.6.

 However, the way a mathematician and the way a programmer tend to look at
numbers is fundamentally different. On a computer, we care about things such as
the bit length of a number and whether the number is signed or unsigned.1 If you
have used programming languages such as Java, C#, C, or C++, then you may be
very familiar with this already.

 If your programming background is in another dynamic language, such as
Python, Ruby, JavaScript, or Lua, these concepts may be unfamiliar to you. While
Julia is also a dynamic language, numbers play a more central role. In, for example,
Python and JavaScript, you don’t have to pay much attention to different number
types. In Julia, this is more important, as numbers have been carefully designed to
make Julia suitable for high-performance computing.

 I’ll provide you with the basics. When filling out a form, you are probably famil-
iar with restrictions on the number of digits you can enter. Computers are the

1 Signed numbers can be negative, while unsigned numbers can only be positive.
353

354 APPENDIX B Numerics
same. If you store your numbers as four digits, then the largest number you could use
in any calculation is 9999. The key difference is that for a modern digital computer, all
numbers are stored in memory as binary numbers, not decimal numbers. Thus the
number types you select from are not 4-digit numbers, 8-digit numbers, and so on.
Rather, the number types you pick from are, for example, 8-bit, 16-bit, or 64-bit num-
bers. How does this affect you in practice?

 Numbers are written with ones and zeros. An 8-bit number is a number with 8
binary digits. The largest number you can represent with 8 bits, written in binary
form, is 0b11111111. The 0b prefix on this number is intended to clarify it is not a dec-
imal number. Translated to decimal notation, this would be 255. Thus, if you try to
store 256 as an 8-bit number, it will fail. (Note that I have shortened the error mes-
sages for clarity.)

julia> UInt8(256)
ERROR: InexactError: trunc(UInt8, 256)

julia> UInt8(255)
0xff

julia> Int(ans)
255

But why should you restrict the size of the numbers you work with? Why not simply use
the largest possible number every time? Because you don’t have infinite amounts of
memory on your computer. If you only use a few numbers, it doesn’t matter if they
are large. However, if you process millions of numbers, then the bit length starts to
matter. Secondly, it frequently takes a longer time to perform calculations on large
numbers compared to small numbers. Julia defaults to 64-bit numbers because they
are very practical to work with. A signed 64-bit integer has a maximum value of
9,223,372,036,854,775,807. You are unlikely to work with larger numbers than that.

 But how do you know the largest and smallest value a number type can hold? For-
tunately, Julia gives you the functions typemax and typemin, which let you find that
out for yourself. However, for now, you will just have to take at face value how these
functions work. You give them the name of a Julia number type, such as Int8, Int16,
or UInt8, and these functions give you back the lowest and highest number value you
can represent with that number type. For instance, an 8-bit signed integer, Int8, can-
not represent values larger than 127:

julia> typemax(Int8)
127

julia> typemin(Int8)
-128

julia> typemax(Int16)
32767

355B.1 Different number types and their bit lengths
julia> typemax(Int64)
9223372036854775807

julia> typemin(Int32)
-2147483648

typemin(Int8) returns the value -128 because a signed 8-bit integer cannot represent
number values smaller than -128.

 While all these number types can seem complicated, you rarely need to think
about them in practice. Sticking with the default types, such as Int64, is the best
choice in most cases. You only need to consider other integer number sizes if you pro-
cess many numbers and get into performance or memory problems. Or you may need
a bigger number because you are working with very large values. In that case, you
could consider Int128 or even BigInt.

DIFFERENCES BETWEEN 64-BIT AND 32-BIT JULIA INSTALLATION If you down-
loaded and installed a 32-bit version of Julia, then the default integer type will
be Int32 rather than Int64. Code examples in this book will assume you run
64-bit Julia.

Did you try to find the maximum value of a BigInt but could not get it to work? Read
on to find out why.

 To learn what type is used to represent a particular number literal, you can use the
typeof function. Just give it a number, and it will return the number type used to rep-
resent that number. Actually, it can be used for any type. If this doesn’t make a lot of
sense, don’t worry, as typeof will be covered more extensively later:

julia> typeof(797298432432432432)
Int64

julia> typeof(797298432432432432709090)
Int128

julia> typeof(797298432432432432709090697343)
Int128

julia> typeof(7972984324324324327090906973430912321321)
BigInt

BigInt is a very special number type, as it does not have a predefined number of dig-
its. Instead, it simply keeps growing to fit all digits, so your computer memory is its
only real limit; that’s why there is no well-defined maximum value for a BigInt.

 Why not use BigInt all the time? Then you wouldn’t have to think about what bit
size you need. The obvious answer is that it would make for bad performance. Thus,
you should try to limit the use of BigInt to sections of your code that benefit from it
and which are not performance critical.

356 APPENDIX B Numerics
B.2 Overflow and signed and unsigned numbers
Let’s put together everything we have learned about number formats and bit lengths
in chapter 2 to cover some important topics. The first is the concept of overflow. Think
about mechanical counters, like the one shown in figure B.1. It has four digits, so what
happens when you get to 9999? It wraps around, and you get to 0000 again.

Numbers work exactly the same way on computers. Because each number type can
hold a maximum value, you can end up performing arithmetic operations that give
results larger than the values that can be held in your variables. Here are some exam-
ples of this in practice:

julia> UInt8(255) + UInt8(1)
0x00

julia> UInt8(255) + UInt8(2)
0x01

julia> 0xff + 0x01
0x00

julia> 0xff + 0x05
0x04

Because an UInt8 can only hold values up to 255, you get a wraparound when you add
more—or to use more accurate language, you get an overflow. In this case, it is easier
to understand the concept by working with hexadecimal numbers. An 8-bit number
can hold a max of two hexadecimal digits, and the last digit value in a hexadecimal is
F. For 16-bit numbers, you need much higher values to get overflow:

julia> UInt16(65535) + UInt16(1)
0x0000

Figure B.1 A mechanical counter.
It increments each time you click
the metal button.

357B.2 Overflow and signed and unsigned numbers
julia> UInt16(65535) + UInt16(3)
0x0002

The way overflow works differs for signed and unsigned numbers. Look at the follow-
ing behavior of signed and unsigned numbers, and see if you can make sense of it:

julia> UInt8(127) + UInt8(1)
0x80

julia> Int(ans)
128

julia> Int8(127) + Int8(1)
-128

julia> Int8(127) + Int8(2)
-127

julia> Int8(127) + Int8(127)
-2

This output looks odd, right? You are adding positive numbers and ending up with
negative ones. How on Earth is that possible? This has to do with the fact that com-
puter memory can only store numbers. There is no negative sign stored anywhere.
Instead, you will use the wraparound behavior to simulate negative numbers. Return-
ing to the mechanical counter example in figure B.1, storing four-digit decimal num-
bers; 4 + 9998 would end up as 2. Imagine clicking four times on the mechanical
counter starting at 9998. The counter would wrap around and end up as 2.

 That means an alternative way of thinking about the number 9998 is to imagine it
as the number –2. 4 + (–2) = 2. This way, 9999 becomes –1, 9995 becomes –5, and so
on. By following this logic, 1 could be interpreted as –9999. However, one should not
go that far; otherwise, it isn’t possible to represent positive numbers with four digits.

 The scheme used on modern computers is to divide each number range roughly
in half, so half the values are used to represent negative numbers and the other half
are used to represent positive numbers. An unsigned 8-bit integer can represent num-
bers from 0 to 255; however a signed 8-bit integer represents values from –128 to 127,
which you already saw earlier:

julia> typemin(Int8)
-128

julia> typemax(Int8)
127

julia> typemin(Int16)
-32768

julia> typemax(Int16)
32767

358 APPENDIX B Numerics
Thus, what is stored in memory is actually no different. The only difference is how to
interpret what is stored there when doing different calculations. When using unsigned
numbers, it is assumed all the numbers are positive. When using signed numbers, it is
assumed half of the values are negative. In fact, Julia can show you how the exact same
bits in memory can be interpreted differently using the reinterpret function:

julia> reinterpret(Int8, UInt8(253))
-3

julia> reinterpret(UInt8, Int8(-1))
0xff

julia> Int(ans)
255

B.3 Floating-point numbers
Integer numbers cannot represent numbers with decimal points, such as 4.25, 80.3, or
0.233; there are different ways of representing such numbers. Historically, fixed-point
numbers have been used, but on modern computers we tend to use what are called
floating-point numbers. Fixed-point numbers are used for such things as currency calcu-
lation. The number of decimals after the decimal point is fixed in this type of number
representation: you always have two decimals.

 Computers cannot store signs or decimal points in memory. Computer memory
only stores numbers, and it only stores them in binary format. This is not all that dif-
ferent from, say, an abacus. There is no way to explicitly store negative numbers or
represent a decimal point on an abacus; however, one can establish conventions.

 You could simply decide, for example, that the two last digits of the numbers you
work with are supposed to be after the decimal point. That means that if you wish to
input 1, you actually need to input 100. Likewise 23 becomes 2300. In a similar fash-
ion one can simulate fixed-point numbers using only integers. You could take integer
numbers such as 4250 and 850 and pretend there is a decimal point before the two
last digits. Thus you could interpret those numbers as 42.50 and 8.50. This works
fine in calculations:

julia> 4250 + 850
5100

julia> 42.50 + 8.50
51.0

For calculations with money, this is the appropriate choice; as such calculations typi-
cally involve rounding to the nearest two decimals. But for scientific calculations with
lots of digits after the decimal point, this is simply too impractical. That is why we have
floating-point numbers, which are based on the idea that you can represent any num-
ber in this fashion (figure B.2).

Reinterpret the unsigned 8-bit
number 253 as a signed 8-bit number.
253 interpreted as signed is -3.

Reintepret the bits in memory for the signed
number -1 as an unsigned number. Unsigned
-1 is the same as 255 for 8-bit numbers.

359B.3 Floating-point numbers
Consider the first line: The number 1234 is referred to as the significand. The second
part indicates the base of the number. In this case the base is 10, and the exponent is –2.
Internally, a floating-point number stores the significand and exponent separately.
This arrangement is what allows the decimal point to float. Floating-point number
types can represent much larger numbers than integers but with the downside that
they are not entirely accurate. Why? That is too large of a topic to get into in this
beginner’s book, but I can offer some hints about it. Consider a number such as ⅔.
With decimal numbers we write this as 0.6666666666666666. The digits just keep on
going. With decimal numbers, the digits behind the decimal point represent frac-
tions in which the denominator is a multiple of 10. Thus we approximate as shown
in figure B.3.

This can never be entirely accurate. In the examples I use in this book, this will gener-
ally not be a problem, but it is something worth being aware of if you start working
seriously with floating-point numbers. But don’t assume every floating-point number
has to be inaccurate. Many numbers can be expressed accurately, such as 0.5 or 42.0.
For computers, floating-point numbers are obviously not represented as fractions
using base 10, but fractions using base 2.

Figure B.2 Representing any decimal number
using integers multiplied by a number with base
10 and a positive or negative exponent

Figure B.3 Approximation of a
fraction with decimal numbers

index
Symbols

@edit macro 160, 162
@enter macro 351
@printf macro 204
@sprintf macro 204
@test macro 317–318
@testset macro 317
@view macro 266
ϕ (golden) identifier 18

A

AbstractArray type 219
accessor functions 79, 88
accessors 79, 170
add command 301–302, 312
ahead-of-time (AOT) compilation 5
all function 226
Angle abstract type 168
Angle base class 175
angle units 166–175

accessors to extract degrees, minutes, and
seconds 170

angle constructors 168
arithmetic operations on angles 168–170
displaying DMS angles 170–171
pretty angle literals 172–173
type conversions 171–172
type promotions 173–175

anonymous functions 281–282
ans variable 22
any(isempty, cols) function 331
Any type 77, 124, 127, 147
AOT (ahead-of-time) compilation 5
approximation 36

args tuple 333
arithmetic operations on angles 168–170
array comprehension 108–109
Array datatype 59–60
Array operations 60
arrays 233–240

adding and removing elements 235–240
Boolean 84
comparing properties of sets and 245–249

duplicates 247
object membership tests 246–247
random access and ordering of

elements 247–249
sorted array 246

creating 69–71
mapping and reducing 82–84
mapping values in 71–74
performing operations on 62–65
types of 61–62
vectors and matrices

combining 269–270
constructing matrix from rows and

columns 261–262
creating matrices 272
in mathematics 261
size, length, and norm of array 262–264
slicing and dicing array 264–269

atoms 122
attack! function 128, 132–133, 135–136, 138
attack! methods 135, 138, 140
average function 65

B

Base64 package 307–308
base case 56
361

INDEX362
base function 172
Base module 169, 234, 283, 325
base of numbers 359
battle! function 128
battle! method 140
battle simulator 127–135

adding behavior to warriors 130–132
defining warrior types 128–129
using multiple dispatch to invoke methods

132–135
begin keyword 68, 264
BigFloat object 209
BigInt (Big Integer) 24, 209, 214–215
binary function 82
binary search 246
binary search tree data structure 115
binding 21
bit length 353–355
Boolean arrays 84
Boolean expressions

compound statements 38–39
overview 37–39

booster 152
boxing 343
bug tracker searches 257–258

C

Caesar ciphers 284–289
encryption service 294–295
implementing 285–287

caesar_decrypt function 294
caesar_encrypt function 294
CairoMakie package 302, 304
calc function 184
calculator-like functionality 32–33

command line 17–18
constants and variables 18–23

ans variable 22
assigning and binding values to variables

21–22
literal coefficients 23

floating-point numbers 26–27
functions

central nature of 30–31
defining 27–32
storing definitions in files 29
useful 31–32
working with in REPL 30

number types
bit length 23–25
writing numbers using different number

formats 25
call stack 51–52
camel_case function 197, 279, 283

camel case string 198–200
cat command 99
cat function 270
ceil function 32
character classes 212
characters 74–76
Char type 60, 74, 179
ch character 289
cipher-algorithm-agnostic service 289–290
Cipher interface 291–292
cipher text 284, 291
classes 124
clipboard() function 197–198
closures 279, 281–282
Cluster abstract type 229
Cluster constructor 226
Cluster methods 226
clusters 227–229
Cluster subtypes 153, 233–234
Cluster type 154, 156, 218, 225–226, 228, 230
Cmd type 326
code

maintaining invariants in 146–147
organizing and modularizing

creating own package and module 306–311
misconceptions about modules 315–316
modifying and developing package

311–315
setting up work environment 300–306
testing package 316–319

string interpolation generating 205–207
using sets in 251–252

code command 349
code points 191–196
code units 191–196
coercion 162
_collect function 232
collect function 76, 110, 231–233
collections

comparison of linked lists and arrays
233–240

implementing engine cluster iteration
225–229

implementing rocket stage iteration 229–233
interfaces 218–220
interfaces by convention 224–225
propellant tank interface example 220–224
utility of custom types 240

color keyword argument 91
Colors package 308
columns 261–262
column vector 61
compiler 140
Component attribute 257
composite types 122–124, 129

INDEX 363
compound statements 38–39
concatenation of arrays 260
concatenation of strings 202–203
Cone module 306
configuring Julia 348–350

on Linux and macOS 348–349
on Windows 349–350

connect function 327
constant operation 235
constants

literal coefficients 23
overview 18–23

const keyword 19–20
constructor functions 147–148
constructors, angle 168
control flow

Boolean expressions
compound statements 38–39
overview 37–39

data flow vs. 53
error handling via exception throwing

51–53
factorial

implementing 47–48
with recursion 48–49

if statements 49–51
elseif clause 50–51
if-else statements 49–50

looping 39–45
flowchart diagrams 41
for loops 44–45
range objects 44
sine mathematical tables 42–43

multiline functions
overview 45–47
sine trigonometric function 46–47

navigation and trigonometry 35–36
rabbit population growth example 54–58

base case 56
iteration vs. recursion 56–57
to return or not return 57–58

conversion
angle units 166–175

accessors to extract degrees, minutes, and
seconds 170

angle constructors 168
arithmetic operations on angles 168–170
displaying DMS angles 170–171
pretty angle literals 172–173
type conversions 171–172
type promotions 173–175

number conversion 163–166
number promotion system 161–163

convert function 164–165, 167, 174–175, 233
convert method definitions 171

cos function 27, 167, 171
CSV (comma separated values) files 97–101

parsing 328–334
loading rocket engine data 330–333
saving rocket engine data 333–334

reading from 99–101
writing to 98–99

CustomEngine constructor 332
custom-engine.jl 328
CustomEngine object 329
Cylinder module 306

D

data flow, control flow vs. 53
DataFrames package 258
data structures 137, 178–181

parametric type 179–180
using union types to end wagon train

180–181
DateFormat object 209
dateformat string literal 210
DateFormat strings 209–210
Dates module 305
Dates package 303, 305, 307–308
Debugger package 351
decrypt (do-end form) 287
deg2rad function 43, 71
degrees 170
destructuring 332
dev command 312
developing packages 311–315
dev package command 312
Dict constructor 288
dictionaries

conversion process 110–111
creating 111–113
Dict type 106–108
element access 113–114
enumerating values and indices 109–110
looking up screws using 256–257
looping over characters 108–109
named tuples as 116–118
parsing Roman numerals 105–106
reasons for using 114–116
using 111–114

Dictionary collection type 247
dictionary data type 104, 106
Dict{String, Float64} type 112
Dict type 106–108
div function 27
dlm delimiter 281
DMS angle type 167
DMS (degrees, minutes, seconds) 167
DMS numbers 168

INDEX364
DMS types 167–168
DomainError exception type 147
downloading Julia 346
DriveStyle constructor 254
DriveStyle type 253–254
dry mass 142
drymass function 224
dump function 107
duplicates 247
dynamically typed languages

developers’ need for 8–9
pros and cons of 4–5
scientists’ need for 7–8

E

eachindex function 196
EDITOR environment variable 346
ElectronDisplay package 301, 303
element index 61
elements

accessing
dictionaries 113–114
spreadsheet-like functionality 67–68

adding and removing 235–240
ordering of 247–249
printing multiple 91–92

elseif clause 50–51
eltype (element type) function 71
encrypt function 53
encryption service 293–298

building using object-oriented
programming 290–293

defining functional Caesar cipher 294–295
defining functional substitution cipher

295–296
functional password-keeper service

296–298
end keyword 39, 45, 68
endswith function 214, 283
engine cluster iteration 225–229
Engine object 141
Engine types 329
e number identifier 18
enumerate function 109
enumerations 254
environment 300–306

how modules relate to packages 305–306
using package in REPL 303–305

eof function 324–325
Erik Explores Substack 316, 346
error handling 51–53
exception throwing 51–53
export statement 313
expressions 350

F

factorial
implementing 47–48
with recursion 48–49

fairing 152
fib function 54, 56
Fibonacci number 54
fill function 69
filter function 59, 71, 80–81, 217, 224, 240, 252,

256
findfirst function 176, 289
find functions 199
first accessor function 107
first class objects 279
flag value 114
Float32 type 26
Float64 type 26, 70, 164
floating-point numbers 358–359

overview 26–27
performing operations on 27

FloatRange variable 180
floor function 32
flowchart diagrams 41
for loops 44–45, 48
functional programming

avoiding deeply nested calls with function
chaining 279–284

anonymous functions and closures 281–282
producing new functions using partial

application 282–284
using pipe operator |> 282

building encryption service using 293–298
defining functional Caesar cipher 294–295
defining functional substitution cipher

295–296
functional password-keeper service 296–298

Caesar and substitution ciphers 284–289
Implementing substitution ciphers 287–289
Implementing the Caesar cipher 285–287

creating cipher-algorithm-agnostic service
289–290

how and why to think functionally 279
object-oriented programming

building encryption service using 290–293
differences between functional programming

and 278–279
function keyword 45, 306
function overloading 132
functions

chaining 279–284
anonymous functions and closures 281–282
producing new functions using partial

application 282–284
using pipe operator |> 282

INDEX 365
functions (continued)
combining higher-order functions 81–82
multiline

overview 45–47
sine trigonometric function 46–47

overloading 139–140
function signature 297

G

generate command 306, 328
get() function 114
getindex function 234, 264
GetPropellant method 145
GLMakie 301
glue languages 326
golden (ϕ) identifier 18
grep command 326
grep process 326
grep tool 326

H

hash tables 115
HasLength subtype 233
hcat function 270
header 97
HeadType custom type 253
Hello world program 6
help?> mode 351
hierarchies, type 124–127
higher-order functions 71, 279
hobby environment 300, 302, 304, 307, 311–312,

318
holy traits pattern 232
hypotenuse 263–264

I

I/O (input and output) system
overview 324–326
parsing CSV file 328–334

loading rocket engine data 330–333
saving rocket engine data 333–334

reading and writing to socket 327–328
reading data from process 326–327

IDE (integrated development environment) 224
identifiers 18
if-else statements 49–50
if keyword 51
if statements 49–51

elseif clause 50–51
if-else statements 49–50

immutable objects 78, 130
import statement 303

include functions 29, 310, 316, 352
indices, enumerating 109–110
Inf (infinity) 183
infix form 30
inheritance 121
inner constructors 148–149
inner join 258
installing Julia

downloading 346
on Linux 347–348

on macOS 348
on Windows 348

REPL modes 351
third-party packages 351–352

instances 123
instances function 254
Int8(4) integer number 127
Int8 integer 24
Int8 Julia number type 354
Int16 integer 24
Int16 Julia number type 354
Int32(5) integer number 127
Int32 integer 24
Int64 integer 24
Int64 type 164, 262, 338
Int128 integer 24
integers 24, 353

making large integers with BigInt 214–215
performing operations on 27

Integer type 127
interactive programming 7
interfaces

by convention 224–225
overview 218–220
propellant tank interface example 220–224

interpolation of strings 202–203, 205–207
intersect operation 249, 251
IntRange variable 180
invariants 146–147
IOBuffer concrete subtype 324
IO object 98–100, 171, 325
io object 98, 327
IOStream concrete subtype 324
IOStream objects 327
irrational numbers 18
isapprox function 318
isdigit function 214
isletter function 214
Isp method 226
Isp (specific impulse) 150
isuppercase function 199, 214
iterable collections 217
iterable interface 226
iterable objects 45
iterate function 224, 227

INDEX366
iterate methods 227
iteration

engine cluster iteration 225–229
implementing rocket stage iteration

229–233
iteration, recursion vs. 56–57
iteration interface 224
iteration loop 54
iteration methods 230
IteratorEltype trait 232
IteratorSize method 231
IteratorSize trait 232–233

J

JAR files 315
JIT (just-in-time) compilation 5
job environment 300, 304, 308
join function 333
Julia

as universal solution 10–11
configuring 348–350

on Linux and macOS 348–349
on Windows 349–350

defined 4–5
dynamically vs. statically typed languages 4–5
elegance, productivity, and performance 5–6
focus of book 13–15
installing

downloading 346
on Linux 347–348
REPL modes 351
third-party packages 351–352

limitations of 12–13
running 350–351
two-language problem 6–10
uses for 11–12

nonscience uses 12
science uses 11–12

JULIA_EDITOR environment variable 162, 346,
350

Julia for Data Analysis (Kamiński) 258, 272
Julia REPL (read–evaluate–print–loop) 350
just-in-time (JIT) compilation 5

K

Kamiński, Bogumił 258, 272
KeyError exception 114

L

lambdas 279
last accessor function 107
last function 107

lastindex function 194
launch! function 142, 156–158
launching rocket 156–159
length function 190
length method 231
length of array 262–264
length of array concept 262
less than or equal operator 37
linear algebra 261
linear alorithms 231
linear relationshipS 246
linearsearch function 336
linearsearch parametric method 336
lines! functions 304
lines function 303–304
linked lists 178, 233–240
Linux

configuring Julia on 348–349
installing Julia on 347–348

on macOS 348
on Windows 348

literal coefficients 23
literals, angle 172–173
load_engines function 331
loading rocket engine data 330–333
logical AND operation 38
logical OR operation 38
looping 39–45

flowchart diagrams 41
for loops 44–45
over characters 108–109
range objects 44
sine mathematical tables 42–43

lowering stage 234
lpad function 86, 88, 92–95

M

macOS
configuring Julia on 348–349
installing Julia on 348

Main module 169–170
Makie packages 301
map datatype 104
map function 71, 224, 231–233, 240, 282–283,

286
arrays 82–84
sine mathematical table with 83–84

map high-order function 84, 217, 233
mapper function 280–282
mapreduce function 82, 84
mapreduce high-order function 83
mass 142, 150, 157
mass method 226
Material custom type 253

INDEX 367
mathematics 261
matrices 61

combining vectors and 269–270
constructing from rows and columns 261–262
creating 272
in mathematics 261
size, length, and norm of array 262–264
slicing and dicing array 264–269

mean function 78
membership tests 246–247
memory 345
Merlin engine 240
messages 284
message strings 291
methods 124, 136–140

contrasting Julia multiple dispatch with object-
oriented languages 138–139

how multiple dispatch different from function
overloading 139–140

methods function 133
MetricDegree angle type 173
MIME types 215–216
minutes 170
missing object 182
Missing type 176, 182
missing values 182–183
MixedCluster concrete subtype 225
mod function 286
modifying packages 311–315
module keyword 306
modules 315

creating 306–311
adding code to package 309–311
generating package 306–309

misconceptions about 315–316
modifying and developing package 311–315
setting up work environment 300–306

how modules relate to packages 305–306
using package in REPL 303–305

testing package 316–319
mount! function 128, 130
multiline functions

overview 45–47
sine trigonometric function 46–47

multiple dispatch
contrasting object-oriented languages

with 138–139
function overloading different from

139–140
invoking methods with 132–135

multiple-dispatch 5, 13
multiply function 343
multistage rocket 152–156
mutable keyword 130
mutable objects 130

N

named tuples, as dictionaries 116–118
namespace 306
NaN (not a number) 183–184
navigation 35–36
nc command 327
nested test sets 317
netcat utility 327
new function 148
nextind function 194
nil keyword 177
nmap utility 327
nonstandard string literals 208–216

DateFormat strings 209–210
making large integers with BigInt 214–215
MIME types 215–216
Raw strings 210–211
using regular expressions to match text

211–214
norm array concept 262
norm function 263
norm of array 262–264
nothing object 235

in data structures 178–181
parametric type 179–180
using union types to end wagon train

180–181
overview 177–178

Nothing type 40, 176–177
null keyword 177
number types

bit length 23–25, 353–355
conversion 163–166
converting between strings and 200–201
floating-point numbers 358–359
promotion system 161–163
signed and unsigned 356–358
writing numbers using different number

formats 25
NumPair variable 180

O

object membership tests 246–247
object-oriented programming

building encryption service using 290–293
contrasting with multiple dispatch

138–139
differences between functional programming

and 278–279
objects 147–148
OhMyREPL package 311, 351
ones function 69–70
open function 86, 333

INDEX368
operations, set
how to use 249–251
searching for products using 252–257

creating test data to perform queries on 254
enumerations 254
looking up screws using dictionaries

256–257
putting screw objects into sets 256
searching for screws 255

operations, string 196–205
converting between numbers and strings

200–201
converting from camel case to snake case

198–200
sprintf formatting 204–205
string interpolation and concatenation

202–203
ordering of elements 247–249
outer constructors 148–149
overflow 356–358

P

packages
creating 306–311

adding code to package 309–311
generating package 306–309

misconceptions about modules 315–316
modifying and developing 311–315
setting up work environment 300–306

how modules relate to packages
305–306

using package in REPL 303–305
testing 316–319

parametric types 179–180
defining 338–340
memory benefits of 345
parametric methods 336–338
performance benefits from 343–345
type safety benefits from 340–343

parse(Float64, col) function 332
parse function 87, 100, 200
parse_roman function 108, 117
parsing CSV file 328–334

loading rocket engine data 330–333
saving rocket engine data 333–334

partial application 282–284
partial function application 282
password-keeper service 296–298
PATH environment variable 346
payloads 142, 149–151
performance 5–6, 9–10, 343–345
pgk> mode 351
pi (π) identifier 18
pipe operator 282

pizza sales analysis example 60–61
filtering pizzas based on predicates

80–82
storing pizza data in tuples 77–80

pizza sales table example 87–94, 97–101
adding lines 94
aligning text 92–94
print function 88–91
printing multiple elements 91–92
printing simple tables 92
println function 88–91
printstyled function 88–91
reading from CSV files 99–101
writing to CSV files 98–99

Pkg module 319
PkgTemplate library 307
Point composite type 165
Point objects 343
Point type 336, 338–339, 343
pop! array 248
popfirst! function 240
popfirst! method 238
position function 324, 327
practice function 102–103
predicates

combining higher-order functions
81–82

filtering based on 80–82
prefix form 30
prices vector 63
primitive types 122–124
printf function 204
Printf module 204
Printf package 308
print function 40, 88–91, 95, 98, 324
printing

multiple elements 91–92
print function 88–91
println function 88–91
printstyled function 88–91
simple tables 92
trigonometric tables 95–96

println function 40, 88–91, 98, 328
println statement 92
printstyled function 86, 88, 91, 95
Priority attribute 257
procedural programming 278
Process concrete subtype 324
Process objects 327
Process type 327
prod function 48
Project attribute 257
promote function 163
promote method 173
promote_rule function 174–175, 233

INDEX 369
promotion
angle units 166–175

accessors to extract degrees, minutes, and
seconds 170

angle constructors 168
arithmetic operations on angles

168–170
displaying DMS angles 170–171
pretty angle literals 172–173
type conversions 171–172
type promotions 173–175

number conversion 163–166
number promotion system 161–163

promotion_rule function 167
propellant! function 146
propellant! setter method 146
propellant accessor functions 145
propellant mass 142
propellant tank interface example

220–224
push! array 248
push! function 74
pushfirst! method 238
push function 74
PVec2D type 340
Pythagorean theorem 264

Q

quantifiers 212
queries 254

R

rabbit population growth example 54–58
base case 56
iteration vs. recursion 56–57
return statements 57–58

Radian type 167
rand function 69–70
random access 247–249
Random module 287
range objects 44
raw strings 210–211
read function 324, 328
reading

data from process 326–327
to socket 327–328

readline function 87, 99, 324–325, 328
Real numbers 353
recursion

factorial with 48–49
iteration vs. 56–57

recursion loop 54
recursive function 126

reduce function 71, 240
arrays 82–84
sine mathematical table with 83–84

reduction 82
refill! methods 145
RegexMatch objects 213
regular expressions 190, 211–214
reinterpret function 358
relational algebra 258
relational databases 258
rem function 27
replace function 211
REPL command-line program

installing 351
overview 17–18
using package in 303–305
working with functions in 30

REPL (read–evaluate–print loop) 13
reshape function 267
resupply function 130
return address 52
return statements 57–58
return value 47, 51
Revise package 311, 351
rm command 303
rocket build

assembling simple rocket 151–152
building simple rocket 142–146
creating with multiple stages and engines

152–156
differences between outer and inner

constructors 148–149
implementing rocket stage iteration 229–233
launching into space 156–159
maintaining invariants in code 146–147
making objects with constructor functions

147–148
modeling rocket engines and payloads 149–151
parsing CSV file 328–334

loading rocket engine data 330–333
saving rocket engine data 333–334

rogue value 114
Roman numerals, parsing 105–106
round() function 32, 103
rows 261–262
row vector 61
rpad function 86, 88, 92–95
running Julia 350–351
Rutherford composite type 172

S

sales array 80
sametype function 226
saving rocket engine data 333–334

INDEX370
scalars 261
scatter function 303
scatter plots 304
science

need for dynamically typed languages 7–8
uses for Julia 11–12

Screw object 252
screws

looking up using dictionaries 256–257
putting screw objects into sets 256
searching for 255

searchsortedfirst function 115
seconds 170
sentinel value 114
Set collection type 247
Set constructor 251
set difference 250
setdiff operation 251
setindex! function 234, 264
set intersection 249, 258
sets

comparing properties of arrays and 245–249
duplicates 247
object membership tests 246–247
random access and ordering of

elements 247–249
sorted array 246

kind of problems sets help solve 243–244
operations

how to use 249–251
searching for products using 252–257

relational databases 258
searching in bug tracker using 257–258
using in code 251–252

set union 249
Severity attribute 257
shell> mode 351
shoot! function 128, 130–131, 133
shoot! method 134, 138
show function 167, 171, 324
show object 171
shuffle function 287
signal value 114
signed numbers 356–358
significand 359
simplifications 55
sine function 47, 83, 315
sine mathematical tables

looping 42–43
with map and reduce 83–84

sin function 27, 46–47, 83, 167, 171–172
single dispatch 138
sinus function 83
size of array 262–264
SizeUnknown subtype 233

skipmissing function 182
slicing array 264–269
snake case string 198–200
sockets 327–328
sort! function 64
sorted array 246
specific impulse 150
splat operator 163, 333
split function 87, 100, 198, 214, 282–283, 325
splitter function 280–282
spreadsheet-like functionality

accessing elements 67–68
arrays

Boolean 84
creating 69–71
mapping and reducing 82–84
mapping values in 71–74
performing operations on 62–65
types of 61–62

characters 74–76
pizza sales analysis example 60–61
predicates

combining higher-order functions 81–82
filtering based on 80–82

statistics module 65–66
storing data in tuples 77–80
strings 74–76

sprintf formatting 204–205
sprintf function 204
SQL (Structured Query Language) 252
square root. rand mathematical function 17
stackoverflow error message 49
startswith function 214
statements 40
statically typed languages, pros and cons

of 4–5
statistician’s type of null 184
Statistics module 65, 169
status command 302
stdin keyboard 100
stdout (standard out) 98
string() function 91, 203
strings 74–76

nonstandard string literals 208–216
DateFormat strings 209–210
making large integers with BigInt 214–215
MIME types 215–216
raw strings 210–211
using regular expressions to match text

211–214
operations 196–205

converting between numbers and
strings 200–201

converting from camel case to snake
case 198–200

INDEX 371
functions, operations (continued)
sprintf formatting 204–205
string interpolation and concatenation 202–203

using string interpolation to generate
code 205–207

UTF-8 and Unicode 190–196
String search object 337
String (text string) type 60
String type 86
struct 130, 148, 184, 306
SubstitutionCipher object 291
substitution ciphers 284–289

encryption service 295–296
implementing 287–289

subtypes function 124
sum function 84, 228, 233, 240, 342
sum median function 78
sum methods 229
supertype function 124
symbols 91, 116
symmetric encryption 284

T

tables
pizza sales table example 87–94, 97–101
printing

simple tables 92
trigonometric tables 95–96

sine mathematical tables
looping 42–43
with map and reduce 83–84

tail function 238
Tank interface 221
Tank object 143
Tank type 145, 153, 218, 220–221
taylor function 83
Taylor series 36
TCPSocket type 324, 327
teletypes 90
test environment 318
testing packages 316–319
Test package 317
text

adding lines 94
aligning 92–94
CSV files 97–101

reading from CSV files 99–101
writing to CSV files 98–99

printing
multiple elements 91–92
print function 88–91
println function 88–91
printstyled function 88–91

user interaction 101–103

third-party packages 351–352
throw exceptions 51
throw function 52
thrust method 226
time() function 103
titlecase function 352
Total mass 142
totalmass function 223–224
ToyGeometry environment 307, 317–318
ToyGeometry module 306, 310–311
ToyGeometry package 306, 318
ToyRockets package 328–329
T type parameter 336–337, 339, 341–342
Tuple datatype 59–60, 219
tuples

named, as dictionaries 116–118
storing data in 77–80

two-language problem 6–9
developers’ need for dynamically typed

languages 8–9
Julia and 9–10
scientists’ need for dynamically typed

languages 7–8
type annotation 123
type coercion term 162
typemax function 24, 354
typemin function 24, 354
typeof function 24, 337, 355
type parameters 336
types

conversions 171–172
creating battle simulator 127–135

adding behavior to warriors 130–132
defining warrior types 128–129
using multiple dispatch to invoke

methods 132–135
creating composite types from primitive

types 122–124
hierarchies 124–127
how Julia selects method to call 136–140

contrasting Julia multiple dispatch with
object-oriented languages 138–139

how multiple dispatch different from function
overloading 139–140

promotions 173–175
safety benefits from parametric types 340–343
utility of custom types 240

U

UInt8 Julia number type 354
undefined data 184
Unicode 189–196
Unicode package 308
UniformCluster subtype 225

INDEX372
Union definition 181
union operation 249
union types 180–181
unknown values

missing values 182–183
NaN (not a number) 183–184
nothing object 177–178
undefined data 184
using nothing in data structures 178–181

parametric type 179–180
using union types to end wagon train 180–181

unsigned integers 25
unsigned numbers 356–358
update! function 155–156
update command 312
user interaction 101–103
using keyword 351
using statement 303
UTF-8 190–196
UUID (universally unique identifier) 302

V

vals array 116
values

assigning and binding to variables 21–22
enumerating 109–110
mapping in arrays 71–74

variables 18–23
ans variable 22
assigning and binding values to 21–22
literal coefficients 23

vcat function 270
Vec2D type 336, 338–339, 341
vectors 61

combining matrices and 269–270
constructing matrix from rows and

columns 261–262
creating matrices 272
in mathematics 261
size, length, and norm of array 262–264
slicing array 264–269

views 266

W

Wagon constructor 179
wagon train 180–181
while keyword 39
Windows

configuring Julia on 349–350
installing Julia on 348

write function 324
writing, to socket 327–328

X

xclip command 197
xsel command 197

Z

zeros function 69–70
zip function 113, 288

attack!(Archer, Archer)

attack!(Archer, Knight)

Methods

mount!

attack!

shoot!

resupply!

Functions

mount!(Knight)

Methods

shoot!(Archer)

Methods

Functions to manipulate instances of the Archer and Knight types. Unlike object-oriented languages,
Julia methods are not attached to the types of the objects they manipulate but to related functions.

(Archer, Knight)

(Archer, Pikeman)

(Warrior, Warrior)

(Archer, Archer)

(Pikeman, Knight)

Methodsattack!(a, b)

(Archer, Pikeman)

Abstract syntax

tree01101101001

Machine code

attack!

mount!

battle!

shoot!

resupply!

Functions

How Julia locates and potentially compiles the machine code for an invoked method. The example is from
calling the attack! function with an Archer and Pikeman object as arguments. Julia has to first find the
attack! function. Next it locates the method attached to the attack! function which handles the case
where an Archer object attacks a Knight object.

Erik Engheim

ISBN-13: 978-1-61729-971-1

O
riginally designed for high-performance data science,
Julia has become an awesome general purpose program-
ming language. It off ers developer-friendly features like

garbage collection, dynamic typing, and a fl exible approach to
concurrency and distributed computing. It is the perfect mix
of simplicity, fl exibility and performance.

Julia as a Second Language introduces Julia by building on your
existing programming knowledge. You’ll see Julia in action as
you create a series of interesting projects that guide you from
Julia’s basic syntax through its advanced features. Master types
and data structures as you model a rocket launch. Use diction-
aries to interpret Roman numerals. Use Julia’s unique multiple
dispatch feature to send knights and archers into a simulated
battle. Along the way, you’ll even compare the object-oriented
and functional programming styles–Julia supports both!

What’s Inside
● Data types like numbers, strings, arrays, and dictionaries
● Immediate feedback with Julia’s read-evaluate-print-loop
 (REPL)
● Simplify code interactions with multiple dispatch
● Share code using modules and packages

For readers comfortable with another programming language
like Python, JavaScript, or C#.

Erik Engheim is a writer, conference speaker, video course
author, and software developer.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Julia as a Second Language

JULIA / PROGRAMMING

M A N N I N G

“Helped kickstart my use
of Julia for serious projects.
It’s a solid review of the core
language features that doesn’t

get bogged down on
programming fundamentals

you already know.”—Jonathan Owens
GE Global Research

“Everything you need
 to learn Julia.”—Amanda Debler

Schaeffl er Technologies

“Julia for seasoned
 programmers.”—Kevin Cheung
Carleton University

“Perfect for anyone who
needs to learn Julia but doesn’t

know where to start.”—Simone Sguazza
University of Applied Sciences and

Arts of Southern Switzerland

See first page

	Julia as a Second Language
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—Basics
	1 Why Julia?
	1.1 What is Julia?
	1.1.1 Pros and cons of statically and dynamically typed languages

	1.2 Julia combines elegance, productivity, and performance
	1.3 Why Julia was created
	1.3.1 Scientists need the interactive programming that dynamically typed languages offer
	1.3.2 Developers in other fields also need the interactivity a dynamically typed language offers

	1.4 Julia’s higher performance solves the two-language problem
	1.5 Julia is for everyone
	1.6 What can I build with Julia?
	1.6.1 Julia in the sciences
	1.6.2 Nonscience uses of Julia

	1.7 Where Julia is less ideal
	1.8 What you will learn in this book
	Summary

	2 Julia as a calculator
	2.1 The Julia command line
	2.2 Using constants and variables
	2.2.1 Assigning and binding values to variables
	2.2.2 Using the ans variable
	2.2.3 What is a literal coefficient?

	2.3 Different number types and their bit length in Julia
	2.3.1 Writing numbers using different number formats

	2.4 Floating-point numbers
	2.4.1 Performing operations on integers and floating-point numbers

	2.5 Defining functions
	2.5.1 Storing function definitions in a file
	2.5.2 Working with functions in the REPL
	2.5.3 Functions everywhere
	2.5.4 Functions to work with numbers

	2.6 How to use numbers in practice
	Summary

	3 Control flow
	3.1 Navigation and trigonometry
	3.2 Boolean expressions
	3.2.1 Compound statements

	3.3 Looping
	3.3.1 Flowchart
	3.3.2 Making a mathematical table for the sine function
	3.3.3 Range objects
	3.3.4 For loops

	3.4 Multiline functions
	3.4.1 Implementing the sine trigonometric function

	3.5 Implementing factorial
	3.6 Factorial with recursion
	3.7 If statements
	3.7.1 If-else statements
	3.7.2 Elseif clause

	3.8 Throwing exceptions to handle errors
	3.9 Control flow vs. data flow
	3.10 Counting rabbits
	3.10.1 Base case
	3.10.2 Iteration vs. recursion
	3.10.3 To return or not return

	Summary

	4 Julia as a spreadsheet
	4.1 Analyzing pizza sales
	4.2 Different types of arrays
	4.3 Performing operations on arrays
	4.4 Working with the statistics module
	4.5 Accessing elements
	4.6 Creating arrays
	4.7 Mapping values in an array
	4.8 Introducing characters and strings
	4.9 Storing pizza data in tuples
	4.10 Filtering pizzas based on predicates
	4.10.1 Combining higher-order functions

	4.11 Mapping and reducing an array
	4.11.1 Sine table with map and reduce

	4.12 Counting matches with Boolean arrays
	Summary

	5 Working with text
	5.1 Making a pretty pizza sales table
	5.1.1 Print, println, and printstyled
	5.1.2 Printing multiple elements
	5.1.3 Printing multiple pizzas
	5.1.4 Align with lpad and rpad
	5.1.5 Adding lines

	5.2 Printing a trigonometric table
	5.3 Reading and writing pizza sales to CSV files
	5.3.1 Writing pizza sales to a file
	5.3.2 Reading pizza sales from a file

	5.4 Interacting with the user
	Summary

	6 Storing data in dictionaries
	6.1 Parsing Roman numerals
	6.2 Using the Dict type
	6.3 Looping over characters
	6.4 Enumerating values and indices
	6.5 Explaining the conversion process
	6.6 Using dictionaries
	6.6.1 Creating dictionaries
	6.6.2 Element access

	6.7 Why use a dictionary?
	6.8 Using named tuples as dictionaries
	6.8.1 When do you use a named tuple?
	6.8.2 Tying it all together

	Summary

	Part 2—Types
	7 Understanding types
	7.1 Creating composite types from primitive types
	7.2 Exploring type hierarchies
	7.3 Creating a battle simulator
	7.3.1 Defining warrior types
	7.3.2 Adding behavior to warriors
	7.3.3 Using multiple dispatch to invoke methods

	7.4 How Julia selects method to call
	7.4.1 Contrasting Julia’s multiple dispatch with object-oriented languages
	7.4.2 How is multiple dispatch different from function overloading?

	Summary

	8 Building a rocket
	8.1 Building a simple rocket
	8.2 Maintaining invariants in your code
	8.3 Making objects with constructor functions
	8.4 Differences between outer and inner constructors
	8.5 Modeling rocket engines and payloads
	8.6 Assembling a simple rocket
	8.7 Creating a rocket with multiple stages and engines
	8.8 Launching a rocket into space
	Summary

	9 Conversion and promotion
	9.1 Exploring Julia’s number promotion system
	9.2 Understanding number conversion
	9.3 Defining custom units for angles
	9.3.1 Defining angle constructors
	9.3.2 Defining arithmetic operations on angles
	9.3.3 Defining accessors to extract degrees, minutes, and seconds
	9.3.4 Displaying DMS angles
	9.3.5 Defining type conversions
	9.3.6 Making pretty literals
	9.3.7 Type promotions

	Summary

	10 Representing unknown values
	10.1 The nothing object
	10.2 Using nothing in data structures
	10.2.1 What is a parametric type?
	10.2.2 Using union types to end the wagon train

	10.3 Missing values
	10.4 Not a number
	10.5 Undefined data
	10.6 Putting it all together
	Summary

	Part 3—Collections
	11 Working with strings
	11.1 UTF-8 and Unicode
	11.1.1 Understanding the relation between code points and code units

	11.2 String operations
	11.2.1 Converting from camel case to snake case
	11.2.2 Converting between numbers and strings
	11.2.3 String interpolation and concatenation
	11.2.4 sprintf formatting

	11.3 Using string interpolation to generate code
	11.4 Working with nonstandard string literals
	11.4.1 DateFormat strings
	11.4.2 Raw strings
	11.4.3 Using regular expressions to match text
	11.4.4 Making large integers with BigInt
	11.4.5 MIME types

	Summary

	12 Understanding Julia collections
	12.1 Defining interfaces
	12.2 Propellant tank interface example
	12.3 Interfaces by convention
	12.4 Implementing engine cluster iteration
	12.4.1 Making clusters iterable

	12.5 Implementing rocket stage iteration
	12.5.1 Adding support for map and collect

	12.6 Comparison of linked lists and arrays
	12.6.1 Adding and removing elements

	12.7 Utility of custom types
	Summary

	13 Working with sets
	13.1 What kind of problems can sets help solve?
	13.2 What is a set?
	13.2.1 Comparing properties of sets and arrays

	13.3 How to use set operations
	13.4 How to use sets in your code
	13.5 Searching for products using set operations
	13.5.1 Defining and using enumerations
	13.5.2 Creating test data to perform queries on
	13.5.3 Searching for screws
	13.5.4 Putting screw objects into sets
	13.5.5 Looking up screws using dictionaries

	13.6 Search in bug tracker using sets
	13.7 Relational databases and sets
	Summary

	14 Working with vectors and matrices
	14.1 Vectors and matrices in mathematics
	14.2 Constructing a matrix from rows and columns
	14.3 The size, length, and norm of an array
	14.4 Slicing and dicing an array
	14.5 Combining matrices and vectors
	14.6 Creating matrices
	Summary

	Part 4—Software engineering
	15 Functional programming in Julia
	15.1 How does functional programming differ from object-oriented programming?
	15.2 How and why you should learn to think functionally
	15.3 Avoid deeply nested calls with function chaining
	15.3.1 Understanding anonymous functions and closures
	15.3.2 Using the pipe operator |>
	15.3.3 Conveniently produce new functions using partial application

	15.4 Implementing Caesar and substitution ciphers
	15.4.1 Implementing the Caesar cipher
	15.4.2 Implementing substitution ciphers

	15.5 Creating a cipher-algorithm-agnostic service
	15.6 Building an encryption service using object-oriented programming
	15.7 Building an encryption service using functional programming
	15.7.1 Defining a functional Caesar cipher
	15.7.2 Defining a functional substitution cipher
	15.7.3 Implementing a functional password-keeper service

	Summary

	16 Organizing and modularizing your code
	16.1 Setting up a work environment
	16.1.1 Using a package in the REPL
	16.1.2 How modules relate to packages

	16.2 Creating your own package and module
	16.2.1 Generating a package
	16.2.2 Adding code to your package

	16.3 Modifying and developing a package
	16.4 Tackling common misconceptions about modules
	16.5 Testing your package
	Summary

	Part 5—Going in depth
	17 Input and output
	17.1 Introducing Julia’s I/O system
	17.2 Reading data from a process
	17.3 Reading and writing to a socket
	17.4 Parsing a CSV file
	17.4.1 Loading rocket engine data
	17.4.2 Saving rocket engine data

	Summary

	18 Defining parametric types
	18.1 Defining parametric methods
	18.2 Defining parametric types
	18.3 Type safety benefits from parametric types
	18.4 Performance benefits from parametric types
	18.5 Memory benefits of parametric types
	Summary

	Appendix A—Installing and configuring the Julia environment
	A.1 Downloading Julia
	A.3 On Linux
	A.3.1 On macOS
	A.3.2 On Windows

	A.4 Configuring Julia
	A.4.1 On Linux and macOS
	A.4.2 On Windows

	A.5 Running Julia
	A.7 Installing third-party packages

	Appendix B—Numerics
	B.1 Different number types and their bit lengths
	B.2 Overflow and signed and unsigned numbers
	B.3 Floating-point numbers

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

