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Preface

The subject of this book, traditionally called celestial mechanics, is the oldest
branch of theoretical physics. The publication in 1687 of the Principia, New-
ton’s masterpiece on celestial mechanics, is widely regarded as the capstone
of the Scientific Revolution. Since then, celestial mechanics has attracted the
attention of many of the greatest physicists and mathematicians of the past
several centuries, including Lagrange, Laplace, Gauss, Poincaré, Kolmogorov,
and others. Concepts first explored in celestial mechanics are central to many
if not most branches of physics, and its successful high-precision predictions of
the motions of the planets have impacted disciplines as diverse as navigation
and philosophy.

Celestial mechanics experienced a renaissance in the second half of the twen-
tieth century. Starting in 1957, space flight created a demand for accurate and
rapid orbit calculations as well as a need to understand the qualitative behavior
of a wide variety of orbits. The development of high-speed digital computation
enabled the study of classic problems in celestial mechanics with new tools. Ad-
vances in nonlinear dynamics and chaos theory provided new insights into the
long-term behavior of orbits. Spacecraft visited every planet in the solar sys-
tem and sent back data that dramatically expanded our understanding of the
rich dynamics of their orbits, spins, and satellites. Finally, we have discovered
thousands of planets outside the solar system, and celestial mechanics plays a
central role in the analysis of the observations and the interpretation of their
implications for the formation and evolution of planetary systems.

The primary goal of this book is to provide an introduction to celestial
mechanics that reflects these developments. The reader is assumed to have an
undergraduate background in classical mechanics and methods of mathematical
physics (vectors, matrices, special functions, and so on), and much of what is
needed is summarized in Appendixes B, C and D. The book contains most of
the material that is needed for the reader to carry out research in the dynamics
of planetary systems.

A book is defined in large part by what is left out, and a lot has been left
out of this one. There is no analysis of spacecraft dynamics, except for a few
examples and problems. There is almost no discussion of planet formation, since
the tools that are needed to study this subject are mostly different from those of
celestial mechanics. For similar reasons there is no discussion of planetary rings.
Although general relativity offers a more accurate description of planetary mo-
tions than does Newtonian mechanics, its main use is in compiling high-accuracy
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planetary ephemerides and so it is only described briefly, in Appendix J. Pertur-
bation theory for planets and satellites on nearly circular, nearly coplanar orbits
was the main focus of celestial mechanics in the nineteenth and early twentieth
centuries, but many of the problems for which this theory was needed can now
be solved using computer algebra or numerical orbit integration; thus the topic
is described in much less detail than in earlier books at this level. There is only
limited discussion of the rich phenomenology of extrasolar planets, since this is
a large and rapidly growing subject that deserves a book of its own.

There are problems at the end of the book, many of which are intended to
elaborate on topics that are not covered fully in the main text. Some of the
problems are more easily done using a computer algebra system.

The notation in the book is mostly standard. We regularly use the notation
f(x) = O(x) to indicate that |f(x)/x| is no larger than a constant value as
|x| → ∞. We assume that 00 = 1, although most mathematical and scientific
software treats it as undefined. The symbols ' and ∼ are used to indicate
approximate equality, with ' suggesting higher accuracy than ∼. Vectors and
matrices are denoted by boldface type (a, A) and operators by boldface sans-
serif type (A). We usually do not distinguish row vectors from column vectors;
thus we write a = (a1, a2, a3), in which a is a row vector, as well as Aa, in which
the matrix A multiplies the column vector a.

We are all indebted to the Smithsonian/NASA Astrophysics Data System,
https://ui.adsabs.harvard.edu, and the arXiv e-print service, https://arxiv.org, which
have revolutionized access to the astronomy literature. In large part thanks
to their efforts, most of the literature referenced here can easily and freely be
accessed on the web.

All of the plots were prepared using Matplotlib (Hunter 2007), and most of
the orbit integrations were done using REBOUND (Rein & Liu 2012).

I have learned this subject largely through my colleagues, collaborators and
students, including Eugene Chiang, Luke Dones, Subo Dong, Martin Duncan,
Wyn Evans, Dan Fabrycky, Eric Ford, Jean-Baptiste Fouvry, Adrian Hamers,
Julia Heisler, Kevin Heng, Matthew Holman, Mario Jurić, Boaz Katz, Jacques
Laskar, Renu Malhotra, Norman Murray, Fathi Namouni, Annika Peter, Cristo-
bal Petrovich, Gerald Quinlan, Thomas Quinn, Roman Rafikov, Nicole Rap-
paport, Hanno Rein, Prasenjit Saha, Kedron Silsbee, Aristotle Socrates, Serge
Tabachnik, Dan Tamayo, Alar Toomre, Jihad Touma, Paul Wiegert, Jack Wis-
dom, Qingjuan Yu and Nadia Zakamska. I thank Hanno Rein, Renu Malhotra
and her students, and especially Alar Toomre, who read and commented on large
parts of the manuscript, as well as Alysa Obertas and David Vokrouhlický, who
contributed their research results for the figures. Above all, I am indebted to
Peter Goldreich, who introduced me to this subject. My long collaboration with
him was one of the highlights of my research career.

Much of this book was completed at home during the pandemic that began
in 2020. I am grateful to my wife Marilyn for her unswerving support for this
project, without which it would neither have been started nor finished.

https://ui.adsabs.harvard.edu
https://arxiv.org
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Chapter 1

The two-body problem

1.1 Introduction

The roots of celestial mechanics are two fundamental discoveries by Isaac
Newton. First, in any inertial frame the acceleration of a body of mass m

subjected to a force F is
d
2
r

dt2
= F

m
. (1.1)

Second, the gravitational force exerted by a point mass m1 at position r1 on
a point mass m0 at r0 is

F = Gm0m1(r1 − r0)�r1 − r0�3 , (1.2)

with G the gravitational constant.1 Newton’s laws have now been super-
seded by the equations of general relativity but remain accurate enough
to describe all observable phenomena in planetary systems when they are
supplemented by small relativistic corrections. A summary of the relevant
effects of general relativity is given in Appendix J.

The simplest problem in celestial mechanics, solved by Newton but
known as the two-body problem or the Kepler problem, is to determine
1 For values of this and other constants, see Appendix A.

1



2 CHAPTER 1. THE TWO-BODY PROBLEM

the orbits of two point masses (“particles”) under the influence of their mu-
tual gravitational attraction. This is the subject of the current chapter.2

The equations of motion for the particles labeled 0 and 1 are found by
combining (1.1) and (1.2),

d
2
r0

dt2
= Gm1(r1 − r0)�r1 − r0�3 ,

d
2
r1

dt2
= Gm0(r0 − r1)�r0 − r1�3 . (1.3)

The total energy and angular momentum of the particles are

Etot = 1
2m0�ṙ0�2 + 1

2m1�ṙ1�2 − Gm0m1�r1 − r0� ,
Ltot =m0r0 × ṙ0 +m1r1 × ṙ1, (1.4)

in which we have introduced the notation ṙ = dr�dt. Using equations (1.3)
it is straightforward to show that the total energy and angular momentum
are conserved, that is, dEtot�dt = 0 and dLtot�dt = 0.

We now change variables from r0 and r1 to

rcm ≡ m0r0 +m1r1

m0 +m1
, r ≡ r1 − r0; (1.5)

here rcm is the center of mass or barycenter of the two particles and r is
the relative position. These equations can be solved for r0 and r1 to yield

r0 = rcm − m1

m0 +m1
r, r1 = rcm + m0

m0 +m1
r. (1.6)

Taking two time derivatives of the first of equations (1.5) and using equa-
tions (1.3), we obtain

d
2
rcm

dt2
= 0; (1.7)

2 Most of the basic material in the first part of this chapter can be found in textbooks on clas-
sical mechanics. The more advanced material in later sections and chapters has been treated
in many books over more than two centuries. The most influential of these include Laplace
(1799–1825), Tisserand (1889–1896), Poincaré (1892–1897), Plummer (1918), Brouwer &
Clemence (1961) and Murray & Dermott (1999).
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thus the center of mass travels at uniform velocity, a consequence of the
absence of any external forces.

In these variables the total energy and angular momentum can be written

Etot = Ecm +Erel, Ltot = Lcm +Lrel, (1.8)

where

Ecm = 1
2M �ṙcm�2, Lcm =Mrcm × ṙcm,

Erel = 1
2µ�ṙ�2 − GµM

�r� , Lrel = µ r × ṙ; (1.9)

here we have introduced the reduced mass and total mass

µ ≡ m0m1

m0 +m1
, M ≡m0 +m1. (1.10)

The terms Ecm and Lcm are the kinetic energy and angular momentum as-
sociated with the motion of the center of mass. These are zero if we choose
a reference frame in which the velocity of the center of mass ṙcm = 0. The
terms Erel and Lrel are the energy and angular momentum associated with
the relative motion of the two particles around the center of mass. These
are the same as the energy and angular momentum of a particle of mass µ
orbiting around a mass M (the “central body”) that is fixed at the origin of
the vector r.

Taking two time derivatives of the second of equations (1.5) yields

d
2
r

dt2
= − GM

r3
r = − GM

r2
r̂, (1.11)

where r = �r� and the unit vector r̂ = r�r. Equation (1.11) describes any one
of the following:

(i) the motion of a particle of arbitrary mass subject to the gravitational
attraction of a central body of mass M that is fixed at the origin;

(ii) the motion of a particle of negligible mass (a test particle) under the
influence of a freely moving central body of mass M ;
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(iii) the motion of a particle with mass equal to the reduced mass µ around
a fixed central body that attracts it with the force F of equation (1.2).

Whatever the interpretation, the two-body problem has been reduced to a
one-body problem.

Equation (1.11) can be derived from a Hamiltonian, as described in §1.4.
It can also be written

r̈ = −∇�K, (1.12)

where we have introduced the notation ∇f(r) for the gradient of the scalar
function f(r) (see §B.3 for a review of vector calculus). The function
�K(r) = −GM�r is the Kepler potential. The solution of equations (1.11)
or (1.12) is known as the Kepler orbit.

We begin the solution of equation (1.11) by evaluating the rate of change
of the relative angular momentum Lrel from equation (1.9):

1

µ

dLrel

dt
= dr

dt
× dr
dt
+ r × d2r

dt2
= − GM

r2
r × r̂ = 0. (1.13)

Thus the relative angular momentum is conserved. Moreover, since Lrel

is normal to the plane containing the test particle’s position and velocity
vectors, the position vector must remain in a fixed plane, the orbital plane.
The plane of the Earth’s orbit around the Sun is called the ecliptic, and the
directions perpendicular to this plane are called the north and south ecliptic
poles.

We now simplify our notation. Since we can always choose an inertial
reference frame in which the center-of-mass angular momentum Lcm = 0

for all time, we usually shorten “relative angular momentum” to “angular
momentum.” Similarly the “relative energy” Erel is shortened to “energy.”
We usually work with the angular momentum per unit mass Lrel�µ = r × ṙ
and the energy per unit mass 1

2 �ṙ�2− GM��r�. These may be called “specific
angular momentum” and “specific energy,” but we shall just write “angular
momentum” or “energy” when the intended meaning is clear. Moreover
we typically use the same symbol—L for angular momentum and E for
energy—whether we are referring to the total quantity or the quantity per
unit mass. This casual use of the same notation for two different physical
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quantities is less dangerous than it may seem, because the intended meaning
can always be deduced from the units of the equations.

1.2 The shape of the Kepler orbit

We let (r, ) denote polar coordinates in the orbital plane, with  increas-
ing in the direction of motion of the orbit. If r is a vector in the orbital
plane, then r = rr̂ where (r̂,  ̂) are unit vectors in the radial and azimuthal
directions. The acceleration vector lies in the orbital plane and is given by
equation (B.18),

r̈ = (r̈ − r ̇2)r̂ + (2ṙ ̇ + r ̈) ̂, (1.14)

so the equations of motion (1.12) become

r̈ − r ̇2 = −d�K(r)
dr

, 2ṙ ̇ + r ̈ = 0. (1.15)

The second equation may be multiplied by r and integrated to yield

r
2
 ̇ = constant = L, (1.16)

where L = �L�. This is just a restatement of the conservation of angular
momentum, equation (1.13).

We may use equation (1.16) to eliminate  ̇ from the first of equations
(1.15),

r̈ − L
2

r3
= −d�K

dr
. (1.17)

Multiplying by ṙ and integrating yields

1
2 ṙ

2 + L
2

2r2
+�K(r) = E, (1.18)

where E is a constant that is equal to the energy per unit mass of the test
particle. Equation (1.18) can be rewritten as

1
2v

2 − GM

r
= E, (1.19)
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where v = (ṙ2 + r2 ̇2)1�2 is the speed of the test particle.
Equation (1.18) implies that

ṙ
2 = 2E + 2GM

r
− L

2

r2
. (1.20)

As r → 0, the right side approaches −L2�r2, which is negative, while the
left side is positive. Thus there must be a point of closest approach of the
test particle to the central body, known as the periapsis or pericenter.3 In
the opposite limit, r →∞, the right side of equation (1.20) approaches 2E.
Since the left side is positive, when E < 0 there is a maximum distance that
the particle can achieve, known as the apoapsis or apocenter. Orbits with
E < 0 are referred to as bound orbits since there is an upper limit to their
distance from the central body. Orbits with E > 0 are unbound or escape
orbits; they have no apoapsis, and particles on such orbits eventually travel
arbitrarily far from the central body, never to return.4

The periapsis distance q and apoapsis distance Q of an orbit are de-
termined by setting ṙ = 0 in equation (1.20), which yields the quadratic
equation

2Er
2 + 2GMr −L2 = 0. (1.22)

For bound orbits, E < 0, there are two roots on the positive real axis,

q = GM − �(GM)2 + 2EL
2�1�2

2�E� , Q = GM + �(GM)2 + 2EL
2�1�2

2�E� .

(1.23)
For unbound orbits, E > 0, there is only one root on the positive real axis,

q = �(GM)2 + 2EL
2�1�2 − GM

2E
. (1.24)

3 For specific central bodies other names are used, such as perihelion (Sun), perigee (Earth),
periastron (a star), and so forth. “Periapse” is incorrect—an apse is not an apsis.

4 The escape speed vesc from an object is the minimum speed needed for a test particle to
escape from its surface; if the object is spherical, with mass M and radius R, equation
(1.19) implies that

vesc = �2GM

R
�1�2 . (1.21)
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To solve the differential equation (1.17) we introduce the variable u ≡
1�r, and change the independent variable from t to  using the relation

d

dt
=  ̇ d

d 
= Lu2 d

d 
. (1.25)

With these substitutions, ṙ = −Ldu�d and r̈ = −L2
u
2
d
2
u�d 2, so equa-

tion (1.17) becomes
d
2
u

d 2
+ u = − 1

L2

d�K

du
. (1.26)

Since �K(r) = −GM�r = −GMu the right side is equal to a constant,
GM�L2, and the equation is easily solved to yield

u = 1

r
= GM

L2
[1 + e cos( −$)], (1.27)

where e ≥ 0 and $ are constants of integration.5 We replace the angular
momentum L by another constant of integration, a, defined by the relation

L
2 = GMa(1 − e2), (1.28)

so the shape of the orbit is given by

r = a(1 − e2)
1 + e cos f , (1.29)

where f =  −$ is known as the true anomaly.6
The closest approach of the two bodies occurs at f = 0 or azimuth  =$

and hence$ is known as the longitude of periapsis. The periapsis distance
is r(f = 0) or

q = a(1 − e). (1.30)
5 The symbol $ is a variant of the symbol for the Greek letter ⇡, even though it looks more

like the symbol for the letter !; hence it is sometimes informally called “pomega.”
6 In a subject as old as this, there is a rich specialized vocabulary. The term “anomaly” refers

to any angular variable that is zero at periapsis and increases by 2⇡ as the particle travels
from periapsis to apoapsis and back. There are also several old terms we shall not use:
“semilatus rectum” for the combination a(1− e2), “vis viva” for kinetic energy, and so on.
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When the eccentricity is zero, the longitude of periapsis $ is undefined.
This indeterminacy can drastically slow or halt numerical calculations that
follow the evolution of the orbital elements, and can be avoided by replacing
e and $ by two new elements, the eccentricity components or h and k

variables
k ≡ e cos$, h ≡ e sin$, (1.31)

which are well defined even for e = 0. The generalization to nonzero incli-
nation is given in equations (1.71).

Substituting q for r in equation (1.22) and replacing L
2 using equation

(1.28) reveals that the energy per unit mass is simply related to the constant
a:

E = − GM

2a
. (1.32)

First consider bound orbits, which have E < 0. Then a > 0 by equation
(1.32) and hence e < 1 by equation (1.28). A circular orbit has e = 0 and
angular momentum per unit mass L = (GMa)1�2. The circular orbit has the
largest possible angular momentum for a given semimajor axis or energy, so
we sometimes write

j ≡ L

(GMa)1�2 , where j = �j� = (1 − e2)1�2 (1.33)

ranges from 0 to 1 and represents a dimensionless angular momentum at a
given semimajor axis.

The apoapsis distance, obtained from equation (1.29) with f = ⇡, is

Q = a(1 + e). (1.34)

The periapsis and the apoapsis are joined by a straight line known as the
line of apsides. Equation (1.29) describes an ellipse with one focus at the
origin (Kepler’s first law). Its major axis is the line of apsides and has
length q +Q = 2a; thus the constant a is known as the semimajor axis. The
semiminor axis of the ellipse is the maximum perpendicular distance of the
orbit from the line of apsides, b = maxf [a(1 − e2) sin f�(1 + e cos f)] =
a(1 − e2)1�2. The eccentricity of the ellipse, (1 − b2�a2)1�2, is therefore
equal to the constant e.
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Box 1.1: The eccentricity vector
The eccentricity vector offers a more elegant but less transparent derivation of
the equation for the shape of a Kepler orbit. Take the cross product of L with
equation (1.11),

L × r̈ = − GM

r3
L × r. (a)

Using the vector identity (B.9b), L × r = −r ×L = −r × (r × ṙ) = r2ṙ − (r ⋅ ṙ)r,
which is equal to r

3
dr̂�dt. Thus

L × r̈ = −GM
dr̂

dt
. (b)

Since L is constant, we may integrate to obtain

L × ṙ = −GM(r̂ + e), (c)

where e is a vector constant of motion, the eccentricity vector. Rearranging
equation (c), we have

e = ṙ × (r × ṙ)
GM

− r

r
. (d)

To derive the shape of the orbit, we take the dot product of (c) with r̂ and use the
vector identity (B.9a) to show that r̂ ⋅ (L × ṙ) = −L2�r. The resulting formula is

r = L
2

GM

1

1 + e ⋅ r̂ =
a(1 − e2)
1 + e ⋅ r̂ ; (e)

in the last equation we have eliminated L
2 using equation (1.28). This result is

the same as equation (1.29) if the magnitude of the eccentricity vector equals the
eccentricity, �e� = e, and the eccentricity vector points toward periapsis.

The eccentricity vector is often called the Runge–Lenz vector, although its
history can be traced back at least to Laplace (Goldstein 1975–1976). Runge
and Lenz appear to have taken their derivation from Gibbs & Wilson (1901), the
classic text that introduced modern vector notation.
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Unbound orbits have E > 0, a < 0 and e > 1. In this case equation (1.29)
describes a hyperbola with focus at the origin and asymptotes at azimuth

 =$ ± f∞, where f∞ ≡ cos−1(−1�e) (1.35)

is the asymptotic true anomaly, which varies between ⇡ (for e = 1) and
1
2⇡ (for e → ∞). The constants a and e are still commonly referred to
as semimajor axis and eccentricity even though these terms have no direct
geometric interpretation.

Figure 1.1: The geome-
try of an unbound or hy-
perbolic orbit around mass
M . The impact parame-
ter is b, the deflection an-
gle is ✓, the asymptotic true
anomaly is f∞, and the pe-
riapsis is located at the tip
of the vector q.

Suppose that a particle is on an unbound orbit around a mass M . Long
before the particle approaches M , it travels at a constant velocity which we
denote by v (Figure 1.1). If there were no gravitational forces, the particle
would continue to travel in a straight line that makes its closest approach to
M at a point b called the impact parameter vector. Long after the particle
passes M , it again travels at a constant velocity v

′, where v ≡ �v� = �v′�
because of energy conservation. The deflection angle ✓ is the angle between
v and v

′, given by cos ✓ = v ⋅ v′�v2. The deflection angle is related to the
asymptotic true anomaly f∞ by ✓ = 2f∞ − ⇡; then

tan
1
2✓ = −cos f∞sin f∞ =

1

(e2 − 1)1�2 . (1.36)

The relation between the pre- and post-encounter velocities can be written

v
′ = v cos ✓ − b̂v sin ✓. (1.37)
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In many cases the properties of unbound orbits are best described by the
asymptotic speed v and the impact parameter b = �b�, rather than by orbital
elements such as a and e. It is straightforward to show that the angular
momentum and energy of the orbit per unit mass are L = bv and E = 1

2v
2.

From equations (1.28) and (1.32) it follows that

a = − GM

v2
, e

2 = 1 + b
2
v
4

(GM)2 . (1.38)

Then from equation (1.36),

tan
1
2✓ = GM

bv2
. (1.39)

The periapsis distance q = a(1 − e) is related to the impact parameter b by

q = GM

v2
��1 + b

2
v
4

G2M2
�1�2 − 1� or b

2 = q2 + 2GMq

v2
. (1.40)

Thus, for example, if the central body has radius R, the particle will collide
with it if

b
2 ≤ b2coll ≡ R2 + 2GMR

v2
. (1.41)

The corresponding cross section is ⇡b2coll. If the central body has zero mass
the cross section is just ⇡R2; the enhancement arising from the second term
in equation (1.41) is said to be due to gravitational focusing.

In the special case E = 0, a is infinite and e = 1, so equation (1.29) is
undefined; however, in this case equation (1.22) implies that the periapsis
distance q = L2�(2GM), so equation (1.27) implies

r = 2q

1 + cos f , (1.42)

which describes a parabola. This result can also be derived from equation
(1.29) by replacing a(1 − e2) by q(1 + e) and letting e→ 1.
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1.3 Motion in the Kepler orbit

The period P of a bound orbit is the time taken to travel from periapsis to
apoapsis and back. Since d �dt = L�r2, we have ∫ t2

t1
dt = L−1 ∫  2

 1
r
2
d ;

the integral on the right side is twice the area contained in the ellipse be-
tween azimuths  1 and  2, so the radius vector to the particle sweeps out
equal areas in equal times (Kepler’s second law). Thus P = 2A�L, where
the area of the ellipse is A = ⇡ab with a and b = a(1− e2)1�2 the semimajor
and semiminor axes of the ellipse. Combining these results with equation
(1.28), we find

P = 2⇡ � a
3

GM
�1�2 . (1.43)

The period, like the energy, depends only on the semimajor axis. The mean
motion or mean rate of change of azimuth, usually written n and equal to
2⇡�P , thus satisfies7

n
2
a
3 = GM, (1.44)

which is Kepler’s third law or simply Kepler’s law. If the particle passes
through periapsis at t = t0, the dimensionless variable

` = 2⇡ t − t0
P
= n(t − t0) (1.45)

is called the mean anomaly. Notice that the mean anomaly equals the true
anomaly f when f = 0,⇡,2⇡, . . . but not at other phases unless the orbit is
circular; similarly, ` and f always lie in the same semicircle (0 to ⇡, ⇡ to
2⇡, and so on).
7 The relation n = 2⇡�P holds because Kepler orbits are closed—that is, they return to the

same point once per orbit. In more general spherical potentials we must distinguish the
radial period, the time between successive periapsis passages, from the azimuthal period
2⇡�n. For example, in a harmonic potential �(r) = 1

2
!
2
r
2 the radial period is ⇡�! but the

azimuthal period is 2⇡�!. Smaller differences between the radial and azimuthal period arise
in perturbed Kepler systems such as multi-planet systems or satellites orbiting a flattened
planet (§1.8.3). For the Earth the radial period is called the anomalistic year, while the
azimuthal period of 365.256363 d is the sidereal year. The anomalistic year is longer than
the sidereal year by 0.00327 d. When we use the term “year” in this book, we refer to the
Julian year of exactly 365.25 d (§1.5).



1.3. MOTION IN THE KEPLER ORBIT 13

The position and velocity of a particle in the orbital plane at a given time
are determined by four orbital elements: two specify the size and shape of
the orbit, which we can take to be e and a (or e and n, q and Q, L and E,
and so forth); one specifies the orientation of the line of apsides ($); and
one specifies the location or phase of the particle in its orbit (f , `, or t0).

The trajectory [r(t), (t)] can be derived by solving the differential
equation (1.20) for r(t), then (1.16) for  (t). However, there is a simpler
method.

First consider bound orbits. Since the radius of a bound orbit oscillates
between a(1 − e) and a(1 + e), it is natural to define a variable u(t), the
eccentric anomaly, by

r = a(1 − e cosu); (1.46)

since the cosine is multivalued, we must add the supplemental condition that
u and f always lie in the same semicircle (0 to ⇡, ⇡ to 2⇡, and so on). Thus
u increases from 0 to 2⇡ as the particle travels from periapsis to apoapsis
and back. The true, eccentric and mean anomalies f , u and ` are all equal
for circular orbits, and for any bound orbit f = u = ` = 0 at periapsis and ⇡
at apoapsis.

Substituting equation (1.46) into the energy equation (1.20) and using
equations (1.28) and (1.32) for L2 and E, we obtain

ṙ
2 = a2e2 sin2 u u̇2 = − GM

a
+ 2GM

a(1 − e cosu) −
GM(1 − e2)

a(1 − e cosu)2 , (1.47)

which simplifies to

(1 − e cosu)2u̇2 = GM

a3
= n2 = ˙̀2. (1.48)

Since u̇, ˙̀ > 0 and u = ` = 0 at periapsis, we may take the square root of this
equation and then integrate to obtain Kepler’s equation

` = u − e sinu. (1.49)

Kepler’s equation cannot be solved analytically for u, but many efficient
numerical methods of solution are available.
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The relation between the true and eccentric anomalies is found by elim-
inating r from equations (1.29) and (1.46):

cos f = cosu − e
1 − e cosu, cosu = cos f + e

1 + e cos f , (1.50)

with the understanding that f and u always lie in the same semicircle. Sim-
ilarly,

sin f = (1 − e2)1�2 sinu
1 − e cosu , sinu = (1 − e2)1�2 sin f

1 + e cos f , (1.51a)

tan
1
2f = �1 + e1 − e�

1�2
tan

1
2u, (1.51b)

exp(if) = exp(iu) − �
1 − � exp(iu) , exp(iu) = exp(if) + �

1 + � exp(if) , (1.51c)

where

� ≡ 1 − (1 − e2)1�2
e

. (1.52)

If we assume that the periapsis lies on the x-axis of a rectangular coordinate
system in the orbital plane, the coordinates of the particle are

x = r cos f = a(cosu − e), y = r sin f = a(1 − e2)1�2 sinu. (1.53)

The position and velocity of a bound particle at a given time t can be
determined from the orbital elements a, e, $ and t0 by the following steps.
First compute the mean motion n from Kepler’s third law (1.44), then find
the mean anomaly ` from (1.45). Solve Kepler’s equation for the eccentric
anomaly u. The radius r is then given by equation (1.46); the true anomaly
f is given by equation (1.50); and the azimuth  = f+$. The radial velocity
is

vr = ṙ = ndr
d`
= ndr�du

d`�du =
nae sinu

1 − e cosu =
nae sin f

(1 − e2)1�2 , (1.54)

and the azimuthal velocity is

v = r ̇ = L

r
= na(1 − e2)1�2

1 − e cosu = na
1 + e cos f
(1 − e2)1�2 , (1.55)
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in which we have used equation (1.28).
For unbound particles, recall that a < 0, e > 1, and the period is unde-

fined since the particle escapes to infinity. The physical interpretations of
the mean anomaly ` and mean motion n that led to equations (1.44) and
(1.45) no longer apply, but we may define these quantities by the relations

` = n(t − t0), n
2�a�3 = GM. (1.56)

Similarly, we define the eccentric anomaly u by

r = �a�(e coshu − 1). (1.57)

The eccentric and mean anomalies increase from 0 to∞ as the true anomaly
increases from 0 to cos

−1(−1�e) (eq. 1.35).
By following the chain of argument in equations (1.47)–(1.49), we may

derive the analog of Kepler’s equation for unbound orbits,

` = e sinhu − u. (1.58)

The relation between the true and eccentric anomalies is

cos f = e − coshu
e coshu − 1 , coshu = e + cos f

1 + e cos f , (1.59a)

sin f = (e2 − 1)1�2 sinhu
e coshu − 1 , sinhu = (e2 − 1)1�2 sin f

1 + e cos f , (1.59b)

tan
1
2f = �e + 1

e − 1�
1�2

tanh
1
2u. (1.59c)

A more direct but less physical approach to deriving these results is to sub-
stitute u→ iu, `→ −i` in the analogous expressions for bound orbits.

For parabolic orbits we do not need the eccentric anomaly since the
relation between time from periapsis and true anomaly can be determined
analytically. Since ḟ = L�r2, we can use equation (1.42) to write

t − t0 = � f

0

df r
2

L
= � 8q

3

GM
�1�2 � f

0

df

(1 + cos f)2 . (1.60)
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In the last equation we have used the relation L
2 = 2GMq for parabolic

orbits. Evaluating the integral, we obtain

� GM

2q3
�1�2 (t − t0) = tan 1

2f + 1
3 tan

3 1
2f. (1.61)

This is a cubic equation for tan 1
2f that can be solved analytically.

1.3.1 Orbit averages
Many applications require the time average of some quantity X(r,v) over
one period of a bound Kepler orbit of semimajor axis a and eccentricity e.
We call this the orbit average of X and use the notation

�X� = � 2⇡

0

d`

2⇡
X = � 2⇡

0

du

2⇡
(1 − e cosu)X, (1.62)

in which we have used Kepler’s equation (1.49) to derive the second inte-
gral. An alternative is to write

�X� = � P

0

dt

P
X = � 2⇡

0

df

P ḟ
X = 1

PL
� 2⇡

0
df r

2
X; (1.63)

here P and L = r2ḟ are the orbital period and angular momentum. Substi-
tuting equations (1.28), (1.29) and (1.43) for the angular momentum, orbit
shape and period, the last equation can be rewritten as

�X� = (1 − e2)3�2 � 2⇡

0

df

2⇡

X

(1 + e cos f)2 . (1.64)

Equation (1.62) provides the simplest route to derive such results as

�a�r� = 1, (1.65a)

�r�a� = 1 + 1
2e

2
, (1.65b)

�(r�a)2� = 1 + 3
2e

2
, (1.65c)

�(r�a)2 cos2 f� = 1
2 + 2e2, (1.65d)
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�(r�a)2 sin2 f� = 1
2 − 1

2e
2
, (1.65e)

�(r�a)2 cos f sin f� = 0. (1.65f)

Equation (1.64) gives

�(a�r)2� = (1 − e2)−1�2, (1.66a)

�(a�r)3� = (1 − e2)−3�2, (1.66b)

�(a�r)3 cos2 f� = 1
2(1 − e2)−3�2, (1.66c)

�(a�r)3 sin2 f� = 1
2(1 − e2)−3�2, (1.66d)

�(a�r)3 sin f cos f� = 0. (1.66e)

Additional orbit averages are given in Problems 1.2 and 1.3.

1.3.2 Motion in three dimensions
So far we have described the motion of a particle in its orbital plane. To
characterize the orbit fully we must also specify the spatial orientation of
the orbital plane, as shown in Figure 1.2.

We work with the usual Cartesian coordinates (x, y, z) and spherical
coordinates (r, ✓,�) (see Appendix B.2). We call the plane z = 0, corre-
sponding to ✓ = 1

2⇡, the reference plane. The inclination of the orbital
plane to the reference plane is denoted I , with 0 ≤ I ≤ ⇡; thus cos I = ẑ ⋅ L̂,
where ẑ and L̂ are unit vectors in the direction of the z-axis and the angular-
momentum vector. Orbits with 0 ≤ I ≤ 1

2⇡ are direct or prograde; orbits
with 1

2⇡ < I < ⇡ are retrograde.
Any bound Kepler orbit pierces the reference plane at two points known

as the nodes of the orbit. The particle travels upward (ż > 0) at the ascend-
ing node and downward at the descending node. The azimuthal angle �
of the ascending node is denoted ⌦ and is called the longitude of the as-
cending node. The angle from ascending node to periapsis, measured in
the direction of motion of the particle in the orbital plane, is denoted ! and
is called the argument of periapsis.

An unfortunate feature of these elements is that neither ! nor ⌦ is de-
fined for orbits in the reference plane (I = 0). Partly for this reason, the
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Figure 1.2: The angular elements of a Kepler orbit. The usual Cartesian coordinate
axes are denoted by (x, y, z), the reference plane is z = 0, and the orbital plane
is denoted by a solid curve above the equatorial plane (z > 0) and a dashed curve
below. The plot shows the inclination I , the longitude of the ascending node ⌦, the
argument of periapsis ! and the true anomaly f .

argument of periapsis is often replaced by a variable called the longitude of
periapsis which is defined as

$ ≡ ⌦ + !. (1.67)

For orbits with zero inclination, the longitude of periapsis has a simple
interpretation—it is the azimuthal angle between the x-axis and the peri-
apsis, consistent with our earlier definition of the same symbol following
equation (1.29)—but if the inclination is nonzero, it is the sum of two angles
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measured in different planes (the reference plane and the orbital plane).8
Despite this awkwardness, for most purposes the three elements (⌦,$, I)
provide the most convenient way to specify the orientation of a Kepler orbit.

The mean longitude is

� ≡$ + ` = ⌦ + ! + `, (1.68)

where ` is the mean anomaly; like the longitude of perihelion, the mean
longitude is the sum of angles measured in the reference plane (⌦) and the
orbital plane (! + `).

Some of these elements are closely related to the Euler angles that de-
scribe the rotation of one coordinate frame into another (Appendix B.6). Let(x′, y′, z′) be Cartesian coordinates in the orbital reference frame, defined
such that the z

′-axis points along the angular-momentum vector L and the
x
′-axis points toward periapsis, along the eccentricity vector e. Then the

rotation from the (x, y, z) reference frame to the orbital reference frame is
described by the Euler angles

(↵,�,�) = (⌦, I,!). (1.69)

The position and velocity of a particle in space at a given time t are
specified by six orbital elements: two specify the size and shape of the or-
bit (e and a); three specify the orientation of the orbit (I , ⌦ and !), and
one specifies the location of the particle in the orbit (f , u, `, �, or t0).
Thus, for example, to find the Cartesian coordinates (x, y, z) in terms of
the orbital elements, we write the position in the orbital reference frame as(x′, y′, z′) = r(cos f, sin f,0) and use equation (1.69) and the rotation ma-
trix for the transformation from primed to unprimed coordinates (eq. B.61):

x

r
= cos⌦ cos(f + !) − cos I sin⌦ sin(f + !),

y

r
= sin⌦ cos(f + !) + cos I cos⌦ sin(f + !),

z

r
= sin I sin(f + !); (1.70)

8 Thus “longitude of periapsis” is a misnomer, since $ is not equal to the azimuthal angle of
the eccentricity vector, except for orbits of zero inclination.
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here r is given in terms of the orbital elements by equation (1.29).
When the eccentricity or inclination is small, the polar coordinate pairs

e–$ and I–⌦ are sometimes replaced by the eccentricity and inclination
components9

k ≡ e cos$, h ≡ e sin$, q ≡ tan I cos⌦, p ≡ tan I sin⌦. (1.71)

The first two equations are the same as equations (1.31).
For some purposes the shape, size and orientation of an orbit can be de-

scribed most efficiently using the angular-momentum and eccentricity vec-
tors, L and e. The two vectors describe five of the six orbital elements: the
missing element is the one specifying the location of the particle in its orbit,
f , u, `, � or t0 (the six components of the two vectors determine only five
elements, because e is restricted to the plane normal to L).

Note that ! and ⌦ are undefined for orbits with zero inclination; ! and
$ are undefined for circular orbits; and $, ⌦ and I are undefined for radial
orbits (e → 1). In contrast the angular-momentum and eccentricity vectors
are well defined for all orbits. The cost of avoiding indeterminacy is redun-
dancy: instead of five orbital elements we need six vector components.

1.3.3 Gauss’s f and g functions

A common task is to determine the position and velocity, r(t) and v(t),
of a particle in a Kepler orbit given its position and velocity r0 and v0 at
some initial time t0. This can be done by converting r0 and v0 into the
orbital elements a, e, I,!,⌦, `0, replacing `0 by ` = `0 + n(t − t0) and then
reversing the conversion to determine the position and velocity from the new
orbital elements. But there is a simpler method, due to Gauss.

Since the particle is confined to the orbital plane, and r0,v0 are vectors
lying in this plane, we can write

r(t) = f(t, t0)r0 + g(t, t0)v0, (1.72)

9 The function tan I in the elements q and p can be replaced by any function that is propor-
tional to I as I → 0. Various authors use I , sin 1

2
I , and so forth. The function sin I is not

used because it has the same value for I and ⇡ − I .
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which defines Gauss’s f and g functions. This expression also gives the
velocity of the particle,

v(t) = @f(t, t0)
@t

r0 + @g(t, t0)
@t

v0. (1.73)

To evaluate f and g for bound orbits we use polar coordinates (r, )
and Cartesian coordinates (x, y) in the orbital plane, and assume that r0
lies along the positive x-axis ( 0 = 0). Then the components of equation
(1.72) along the x- and y-axes are:

r(t) cos (t) = f(t, t0)r0 + g(t, t0)vr(t0),
r(t) sin (t) = g(t, t0)v (t0), (1.74)

where vr and v are the radial and azimuthal velocities. These equations
can be solved for f and g:

f(t, t0) = r(t)
r0
� cos (t) − vr(t0)

v (t0) sin (t)�,
g(t, t0) = r(t)

v (t0) sin (t). (1.75)

We use equations (1.16), (1.28), (1.29), (1.54) and the relation  = f −f0 to
replace the quantities on the right sides by orbital elements (unfortunately
f is used to denote both true anomaly and one of Gauss’s functions). The
result is

f(t, t0) = cos(f − f0) + e cos f
1 + e cos f ,

g(t, t0) = (1 − e2)3�2 sin(f − f0)
n(1 + e cos f)(1 + e cos f0) . (1.76)

Since these expressions contain only the orbital elements n, e and f , they are
valid in any coordinate system, not just the one we used for the derivation.
For deriving velocities from equation (1.73), we need

@f(t, t0)
@t

= ne sin f0 − e sin f − sin(f − f0)(1 − e2)3�2 ,
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@g(t, t0)
@t

= e cos f0 + cos(f − f0)
1 + e cos f0 . (1.77)

The f and g functions can also be expressed in terms of the eccentric ano-
maly, using equations (1.50) and (1.51a):

f(t, t0) = cos(u − u0) − e cosu0

1 − e cosu0
,

g(t, t0) = 1

n
[sin(u − u0) − e sinu + e sinu0],

@f(t, t0)
@t

= − n sin(u − u0)(1 − e cosu)(1 − e cosu0) ,
@g(t, t0)

@t
= cos(u − u0) − e cosu

1 − e cosu . (1.78)

To compute r(t), v(t) from r0 ≡ r(t0), v0 = v(t0)we use the following
procedure. From equations (1.19) and (1.32) we have

1

a
= 2

r
− v

2

GM
; (1.79)

so we can compute the semimajor axis a from r0 = �r0� and v0 = �v0�. Then
Kepler’s law (1.44) yields the mean motion n. The total angular momentum
is L = �r0 × v0� and this yields the eccentricity e through equation (1.28).
To determine the eccentric anomaly at t0, we use equation (1.46) which
determines cosu0, and then determine the quadrant of u0 by observing that
the radial velocity ṙ is positive when 0 < u0 < ⇡ and negative when ⇡ <
u0 < 2⇡. From Kepler’s equation (1.49) we then find the mean anomaly `0
at t = t0.

The mean anomaly at t is then ` = `0 + n(t − t0). By solving Kepler’s
equation numerically we can find the eccentric anomaly u. We may then
evaluate the f and g functions using equations (1.78) and the position and
velocity at t from equations (1.72) and (1.73).
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1.4 Canonical orbital elements

The powerful tools of Lagrangian and Hamiltonian dynamics are essential
for solving many of the problems addressed later in this book. A summary
of the relevant aspects of this subject is given in Appendix D. In this section
we show how Hamiltonian methods are applied to the two-body problem.

The Hamiltonian that describes the trajectory of a test particle around a
point mass M at the origin is

HK(r,v) = 1
2v

2 − GM

�r� . (1.80)

Here r and v are the position and velocity, which together determine the
position of the test particle in 6-dimensional phase space. The vectors r and
v are a canonical coordinate-momentum pair.10 Hamilton’s equations read

dr

dt
= @HK

@v
= v, dv

dt
= −@HK

@r
= − GM

�r�3 r. (1.81)

These are equivalent to the usual equations of motion (1.11).
The advantage of Hamiltonian methods is that the equations of motion

are the same in any set of phase-space coordinates z = (q,p) that are ob-
tained from (r,v) by a canonical transformation (Appendix D.6). For ex-
ample, suppose that the test particle is also subject to an additional potential
�(r, t) arising from some external mass distribution, such as another planet.
Then the Hamiltonian and the equations of motion in the original variables
are

H(r,v, t) =HK(r,v) +�(r, t), dr

dt
= @H
@v

,
dv

dt
= −@H

@r
. (1.82)

10 We usually—but not always—adopt the convention that the canonical momentum p that is
conjugate to the position r is velocity v rather than Newtonian momentum mv. Velocity
is often more convenient than Newtonian momentum in gravitational dynamics since the
acceleration of a body in a gravitational potential is independent of mass. If necessary, the
convention used in a particular set of equations can be verified by dimensional analysis.
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In the new canonical variables,11

H(z, t) =HK(z) +�(z, t), dq

dt
= @H
@p

,
dp

dt
= −@H

@q
. (1.83)

If the additional potential is small compared to the Kepler potential,��(r, t)� � GM�r, then the trajectory will be close to a Kepler ellipse.
Therefore the analysis can be much easier if we use new coordinates and
momenta z in which Kepler motion is simple.12 The six orbital elements—
semimajor axis a, eccentricity e, inclination I , longitude of the ascending
node ⌦, argument of periapsis ! and mean anomaly `—satisfy this require-
ment as all of the elements are constant except for `, which increases linearly
with time. This set of orbital elements is not canonical, but they can be rear-
ranged to form a canonical set called the Delaunay variables, in which the
coordinate-momentum pairs are:

`, ⇤ ≡ (GMa)1�2,
!, L = [GMa(1 − e2)]1�2,
⌦, Lz = L cos I. (1.84)

Here Lz is the z-component of the angular-momentum vector L (see Figure
1.2); L = �L� (eq. 1.28); and ⇤ is sometimes called the circular angular
momentum since it equals the angular momentum for a circular orbit. The
proof that the Delaunay variables are canonical is given in Appendix E.

The Kepler Hamiltonian (1.80) is equal to the energy per unit mass,
which is related to the semimajor axis by equation (1.32); thus

HK = − GM

2a
= −(GM)2

2⇤2
. (1.85)

11 For notational simplicity, we usually adopt the convention that the Hamiltonian and the
potential are functions of position, velocity, or position in phase space rather than functions
of the coordinates. Thus H(r,v, t) and H(z, t) have the same value if (r,v) and z are
coordinates of the same phase-space point in different coordinate systems.

12 However, the additional potential �(z, t) is often much more complicated in the new vari-
ables; for a start, it generally depends on all six phase-space coordinates rather than just
the three components of r. Since dynamics is more difficult than potential theory, the
tradeoff—simpler dynamics at the cost of more complicated potential theory—is generally
worthwhile.
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Since the Kepler Hamiltonian is independent of the coordinates, the mo-
menta ⇤, L and Lz are all constants along a trajectory in the absence of ad-
ditional forces; such variables are called integrals of motion. Because the
Hamiltonian is independent of the momenta L and Lz their conjugate coor-
dinates ! and ⌦ are also constant, and d`�dt = @HK�@⇤ = (GM)2⇤−3 =(GM�a3)1�2 = n, where n is the mean motion defined by Kepler’s law
(1.44). Of course, all of these conclusions are consistent with what we al-
ready know about Kepler orbits.

Because the momenta are integrals of motion in the Kepler Hamiltonian
and the coordinates are angular variables that range from 0 to 2⇡, the De-
launay variables are also angle-action variables for the Kepler Hamiltonian
(Appendix D.7). For an application of this property, see Box 1.2.

One shortcoming of the Delaunay variables is that they have coordinate
singularities at zero eccentricity, where ! is ill-defined, and zero inclination,
where ⌦ and ! are ill-defined. Even if the eccentricity or inclination of an
orbit is small but nonzero, these elements can vary rapidly in the presence of
small perturbing forces, so numerical integrations that follow the evolution
of the Delaunay variables can grind to a near-halt.

To address this problem we introduce other sets of canonical variables
derived from the Delaunay variables. We write q =(`,!,⌦), p =(⇤, L,Lz)
and introduce a generating function S2(q,P) as described in Appendix
D.6.1. From equations (D.63)

p = @S2

@q
, Q = @S2

@P
, (1.86)

and these equations can be solved for the new variables Q and P. For
example, if S2(q,P) = (` + ! + ⌦)P1 + (! + ⌦)P2 + ⌦P3 then the new
coordinate-momentum pairs are

� = ` + ! +⌦, ⇤,

$ = ! +⌦, L −⇤ = (GMa)1�2�(1 − e2)1�2 − 1�,
⌦, Lz −L = (GMa)1�2(1 − e2)1�2(cos I − 1). (1.87)

Here we have reintroduced the mean longitude � (eq. 1.68) and the longi-
tude of periapsis $ (eq. 1.67). Since � and $ are well defined for orbits of
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zero inclination, these variables are better suited for describing nearly equa-
torial prograde orbits. The longitude of the node ⌦ is still ill-defined when
the inclination is zero, although if the motion is known or assumed to be
restricted to the equatorial plane the first two coordinate-momentum pairs
are sufficient to describe the motion completely.

With the variables (1.87) two of the momenta L − ⇤ and Lz − L are
always negative. For this reason some authors prefer to use the generating
function S2(q,P) = (` + ! +⌦)P1 − (! +⌦)P2 −⌦P3, which yields new
coordinates and momenta

� = ` + ! +⌦, ⇤,

−$ = −! −⌦, ⇤ −L = (GMa)1�2�1 − (1 − e2)1�2�,
−⌦, L −Lz = (GMa)1�2(1 − e2)1�2(1 − cos I). (1.88)

Another set is given by the generating function S2(q,P) = `P1 + (` +
!)P2 +⌦P3, which yields coordinates and momenta

`, ⇤ −L = (GMa)1�2�1 − (1 − e2)1�2�,
` + !, L = (GMa)1�2(1 − e2)1�2,
⌦, Lz = (GMa)1�2(1 − e2)1�2 cos I. (1.89)

The action ⇤−L that appears in (1.88) and (1.89) has a simple physical
interpretation. At a given angular momentum L, the radial motion in the
Kepler orbit is governed by the Hamiltonian H(r, pr) = 1

2p
2
r
+ 1

2L
2�r2 −

GM�r (cf. eq. 1.18). The corresponding action is Jr = � dr pr�(2⇡) (eq.
D.72). The radial momentum pr = ṙ by Hamilton’s equations; writing r

and ṙ in terms of the eccentric anomaly u using equations (1.46) and (1.54)
gives

Jr = na
2
e
2

2⇡
� 2⇡

0
du

sin
2
u

1 − e cosu = na2[1 − (1 − e2)1�2] = ⇤ −L. (1.90)

Thus ⇤ − L is the action associated with the radial coordinate, sometimes
called the radial action. The radial action is zero for circular orbits and
equal to 1

2(GMa)1�2e2 when e� 1.
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Box 1.2: The effect of slow mass loss on a Kepler orbit
If the mass of the central object is changing, the constant M in equations like
(1.11) must be replaced by a variable M(t). We assume that the evolution of the
mass is (i) due to some spherically symmetric process (e.g., a spherical wind from
the surface of a star), so there is no recoil force on the central object; (ii) slow, in
the sense that �dM�dt� �M�P , where P is the orbital period of a planet.

Since the gravitational potential remains spherically symmetric, the angular
momentum L = (GMa)1�2(1 − e2)1�2 (eq. 1.28) is conserved.

Moreover, actions are adiabatic invariants (Appendix D.10), so during slow
mass loss the actions remain almost constant. The Delaunay variable ⇤ =(GMa)1�2 (eq. 1.84) is an action. Since ⇤ and L are distinct functions of Ma

and e, and both are conserved—one adiabatically and one exactly—then both Ma

and e are also conserved. In words, during slow mass loss the orbit expands, with
a(t) ∝ 1�M(t), but its eccentricity remains constant. The accuracy of this ap-
proximate conservation law is explored in Problem 2.8.

At present the Sun is losing mass at a rate Ṁ�M = −(1.1±0.3)×10−13 yr−1
(Pitjeva et al. 2021). Near the end of its life, the Sun will become a red-giant
star and expand dramatically in radius and luminosity. At the tip of the red-
giant branch, about 7.6Gyr from now, the solar radius will be about 250 times
its present value or 1.2 au and its luminosity will be 2700 times its current value
(Schröder & Connon Smith 2008). During its evolution up the red-giant branch
the Sun will lose about 30% of its mass, and according to the arguments above the
Earth’s orbit will expand by the same fraction. Whether or not the Earth escapes
being engulfed by the Sun depends on the uncertain relative rates of the Sun’s
future expansion and its mass loss.

Finally, consider the generating function S2(q,P) = P1(` + ! + ⌦) +
1
2P2

2
cot(! +⌦) + 1

2P3
2
cot⌦, which yields the Poincaré variables

� = ` + ! +⌦, ⇤,

[2(⇤ −L)]1�2 cos$, [2(⇤ −L)]1�2 sin$,

[2(L −Lz)]1�2 cos⌦, [2(L −Lz)]1�2 sin⌦. (1.91)

These are well defined even when e = 0 or I = 0. In particular, in the limit
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of small eccentricity and inclination the Poincaré variables simplify to

�, ⇤,

(GMa)1�4e cos$, (GMa)1�4e sin$,

(GMa)1�4I cos⌦, (GMa)1�4I sin⌦. (1.92)

Apart from the constant of proportionality (GMa)1�4 these are just the
Cartesian elements defined in equations (1.71).

All of these sets of orbital elements remain ill-defined when the incli-
nation I = ⇡ (retrograde orbits in the reference plane) or e = 1 (orbits with
zero angular momentum); however, such orbits are relatively rare in plane-
tary systems.13

1.5 Units and reference frames

Measurements of the trajectories of solar-system bodies are some of the
most accurate in any science, and provide exquisitely precise tests of physi-
cal theories such as general relativity. Precision of this kind demands careful
definitions of units and reference frames. These will only be treated briefly
in this book, since our focus is on understanding rather than measuring the
behavior of celestial bodies.

Tables of physical, astronomical and solar-system constants are given in
Appendix A.

1.5.1 Time
The unit of time is the Système Internationale or SI second (s), which is
defined by a fixed value for the frequency of a particular transition of ce-
sium atoms. Measurements from several cesium frequency standards are
combined to form a timescale known as International Atomic Time (TAI).

13 A set of canonical coordinates and momenta that is well defined for orbits with zero angular
momentum is described by Tremaine (2001). Alternatively, the orbit can be described using
the angular-momentum and eccentricity vectors, which are well defined for any Kepler
orbit; see §5.3 or Allan & Ward (1963).
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In contrast, Universal Time (UT) employs the Earth’s rotation on its
axis as a clock. UT is not tied precisely to this clock because the Earth’s
angular speed is not constant. The most important nonuniformity is that
the length of the day increases by about 2 milliseconds per century because
of the combined effects of tidal friction and post-glacial rebound. There
are also annual and semiannual variations of a few tenths of a millisecond.
Despite these irregularities, a timescale based approximately on the Earth’s
rotation is essential for everyday life: for example, we would like noon to
occur close to the middle of the day. Therefore all civil timekeeping is based
on Coordinated Universal Time (UTC), which is an atomic timescale that
is kept in close agreement with UT by adding extra seconds (“leap seconds”)
at regular intervals.14 Thus UTC is a discontinuous timescale composed of
segments that follow TAI apart from a constant offset.

An inconvenient feature of TAI for high-precision work is that it mea-
sures the rate of clocks at sea level on the Earth; general relativity implies
that the clock rate depends on the gravitational potential and hence the rate
of TAI is different from the rate measured by the same clock outside the so-
lar system. For example, the rate of TAI varies with a period of one year and
an amplitude of 1.7 milliseconds because of the eccentricity of the Earth’s
orbit. Barycentric Coordinate Time (TCB) measures the proper time ex-
perienced by a clock that co-moves with the center of mass of the solar
system but is far outside it. TCB ticks faster than TAI by 0.49 seconds per
year, corresponding to a fractional speedup of 1.55 × 10−8.

The times of astronomical events are usually measured by the Julian
date, denoted by the prefix JD. The Julian date is expressed in days and
decimals of a day. Each day has 86400 seconds. The Julian year consists of
exactly 365.25 days and is denoted by the prefix J. For example, the initial
conditions of orbits are often specified at a standard epoch, such as

J2000.0 = JD 2451545.0, (1.93)

which corresponds roughly to noon in England on January 1, 2000. The
modified Julian day is defined as

MJD = JD − 2400000.5; (1.94)
14 The utility of leap seconds is controversial, and their future is uncertain.
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the integer offset reduces the length of the number specifying relatively re-
cent dates, and the half-integer offset ensures that the MJD begins at mid-
night rather than noon.

In contrast to SI seconds (s) and days (1 d = 86400 s) there is no unique
definition of “year”: most astronomers use the Julian year but there is also
the anomalistic year, sidereal year, and the like (see footnote 7). For this
reason the use of “year” as a precise unit of time is deprecated. However,
we shall occasionally use years, megayears and gigayears (abbreviated yr,
Myr, Gyr) to denote 1, 106 and 10

9 Julian years. The age of the solar
system is 4.567Gyr and the age of the Universe is 13.79Gyr. The future
lifetime of the solar system as we know it is about 7.6Gyr (see Box 1.2).

The SI unit of length is defined in terms of the second, such that the
speed of light is exactly

c ≡ 299792458m s−1. (1.95)

1.5.2 Units for the solar system
The history of the determination of the scale of the solar system and the
mass of the Sun is worth a brief description. Until the mid-twentieth cen-
tury virtually all of our data on the orbits of the Sun and planets came from
tracking their positions on the sky as functions of time. This information
could be combined with the theory of Kepler orbits developed earlier in this
chapter (plus small corrections arising from mutual interactions between the
planets, which are handled by the methods of Chapter 4) to determine all of
the orbital elements of the planets including the Earth, except for the overall
scale of the system. Thus, for example, the ratio of semimajor axes of any
two planets was known to high accuracy, but the values of the semimajor
axes in meters were not.15 To reflect this uncertainty, astronomers intro-
duced the concept of the astronomical unit (abbreviated au), which was
originally defined to be the semimajor axis of the Earth’s orbit. Thus the
semimajor axes of the planets were known in astronomical units long be-
fore the value of the astronomical unit was known to comparable accuracy.
15 This indeterminacy follows from dimensional analysis: measurements of angles and times

cannot be combined to find a quantity with dimensions of length.
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Since Kepler’s third law (1.44) is GM = 4⇡2
a
3�P 2, and orbital periods P

can be determined so long as we have accurate clocks, any fractional uncer-
tainty ✏ in the astronomical unit implies a fractional uncertainty of 3✏ in the
solar mass parameter GM⊙.

Over the centuries, the astronomical unit was measured by many dif-
ferent techniques, including transits of Venus, parallaxes of nearby solar-
system objects over Earth-sized baselines and stellar aberration. Never-
theless, even in the 1950s the astronomical unit was only known with a
fractional accuracy of about 10−3. Soon after, radar observations of Venus
and Mars and ranging data from interplanetary spacecraft reduced the un-
certainty by several orders of magnitude. The current uncertainty is much
smaller than variations in the Earth’s semimajor axis due to perturbations
from the other planets, so in 2012 the International Astronomical Union
(IAU) re-defined the astronomical unit to be an exact unit of length,

1 au ≡ 149597870700m. (1.96)

Distances to other stars are measured in units of parsecs (abbreviated
pc), the distance at which 1 au subtends one second of arc. Thus the parsec
is also an exact unit of length, though an irrational number of meters:

1 pc = 648000

⇡
au � 3.0856776 × 1016 m. (1.97)

The determination of the scale of the solar system allowed the deter-
mination of GM⊙ to comparable accuracy. In contrast, the gravitational
constant G, determined by laboratory experiments, is only known to a frac-
tional accuracy of 2 × 10−5 (see Appendix A). Therefore the masses of the
Sun and solar-system planets are much less well known than G times the
masses, and for accurate work they should always be quoted along with the
assumed value of G.

In 2015 the IAU recommended that orbit calculations should be based
on the nominal value of the solar mass parameter

GM⊙ ≡ 1.3271244 × 1020 m3 s−2. (1.98)
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The adjective “nominal” means that this should be understood as a standard
conversion factor that is close to the “actual” value (probably with a frac-
tional error of less than 1 × 10−9). For most dynamical problems it is better
to use a consistent set of constants that is common to the whole community
rather than the best current estimate of each constant.

1.5.3 The solar system reference frame
The Barycentric Celestial Reference System (BCRS) is a coordinate sys-
tem created in 2000 by the IAU. The system uses harmonic coordinates (eq.
J.6), with origin at the solar system barycenter and time given by TCB. This
is the reference system appropriate for solving the equations of motion of
solar system bodies. The orientation of the BCRS coordinate system co-
incides with that of the International Celestial Reference System (ICRS),
which is defined by the adopted angular coordinates of a set of extragalactic
radio sources. For more detail see Kaplan (2005) and Urban & Seidelmann
(2013).

These definitions are based on the assumption that the local inertial ref-
erence frame (the BCRS) is not rotating relative to the distant universe (the
ICRS), sometimes called Mach’s principle. This assumption is testable:
the relative rotation of these frames is consistent with zero and less than
4 × 10−5 arcsec yr−1 (Folkner 2010).

1.6 Orbital elements for exoplanets

The orbital elements of extrasolar planets (“exoplanets”) are much more
difficult to determine accurately than the elements of solar-system bodies.
In most cases we only know some of the six orbital elements, depending on
the detection method.

Here we describe three methods of planet detection based on the clas-
sical observational techniques of spectroscopy, photometry, astrometry and
imaging. We do not discuss a further important technique, gravitational mi-
crolensing, because it measures only the mass of the planet and its projected
separation from the host star and thus provides only limited constraints on
the orbital elements and dynamics (Gaudi 2011).
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1.6.1 Radial-velocity planets

One of the most powerful methods to detect and characterize exoplanets is
through periodic variations in the velocity of their host star, which arise as
both star and planet orbit around their common center of mass.16 These
variations can be detected through small Doppler shifts in the stellar spec-
trum.17

To illustrate the analysis, we consider a system containing a single pla-
net. The star is at r0 and the planet is at r1. The velocity of the star is given
by the time derivative of equation (1.6),

v0 = vcm − m1

m0 +m1
v, (1.99)

where v is the velocity of the planet relative to the star. The velocity of the
center of mass vcm is constant (eq. 1.7). We may choose our coordinates
such that the positive z-axis is parallel to the line of sight from the observer
to the system and pointing away from the observer; thus edge-on orbits have
I = 90○, face-on orbits have I = 0, and positive line-of-sight velocity implies
that the star is receding from us. Then the line-of-sight velocity of the star
relative to the center of mass is

vlos ≡ (v0 − vcm) ⋅ ẑ = − m1

m0 +m1
v ⋅ ẑ. (1.100)

From equation (1.70), v ⋅ ẑ = ż = sin I[ṙ sin(f + !) + r cos(f + !)ḟ] =
sin I[vr sin(f+!)+v cos(f+!)]. Then using equations (1.54) and (1.55),

vlos = − m1

m0 +m1

na

(1 − e2)1�2 sin I� cos(f + !) + e cos!�. (1.101)

16 The possibility of detecting planets by radial-velocity variations and by transits was first
discussed in a prescient short paper by Struve (1952).

17 Unfortunately the term “radial velocity” is commonly used to denote two different quanti-
ties: (i) the component of the planet’s velocity relative to the host star along the line joining
them, and (ii) the component of the star’s velocity relative to the observer along the line
joining them. In practice the meaning is usually clear from the context, but when there is
the possibility of confusion we shall use the term “line-of-sight velocity” as an unambiguous
replacement for (ii).
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Since the orbital period P = 2⇡a3�2�[G(m0+m1)]1�2 is directly observable
while the semimajor axis is not, we eliminate a in favor of P to obtain

vlos = − m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3 sin I

(1 − e2)1�2 � cos(f + !) + e cos!�.
(1.102)

Using equations (1.50) and (1.51a), this result can also be expressed in terms
of the eccentric anomaly,

vlos = − m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3sin I

× (1 − e2)1�2 cosu cos! − sinu sin!
1 − e cosu . (1.103)

To obtain vlos(t), the line-of-sight velocity as a function of time (the velo-
city curve), we write the mean anomaly as ` = 2⇡(t − t0)�P where t0 is
the time of periapsis passage, solve Kepler’s equation (1.49) for u, and then
substitute u into equation (1.103). The velocity curve is not sinusoidal un-
less the orbit is circular, but it is still useful to define the semi-amplitude K
as half the difference between the maximum and minimum velocity. From
equation (1.102) the extrema of vlos occur at f = −! and f = ⇡ − !, so

K = m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3 sin I

(1 − e2)1�2 . (1.104)

These results tell us what can and cannot be determined from the velo-
city curve. The orbital period P is equal to the period of the velocity curve,
and the eccentricity e and argument of periapsis ! can be determined from
the shape of the curve. The longitude of the node ⌦ is not constrained. The
masses of the star and planet, m0 and m1, and the inclination I cannot be
individually determined, only the combination

µ ≡ m
3
1 sin

3
I

(m0 +m1)2 , (1.105)
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known as the mass function. The mass function is related to the semi-
amplitude and period by

µ = P

2⇡G
K

3(1 − e2)3�2. (1.106)

Since exoplanet masses are usually much smaller than the mass of their host
star, and the mass of the host star can usually be determined from its spectral
properties, the mass function yields a combination of the planetary mass and
orbital inclination, m1 sin I .

The semi-amplitude K varies as a
−1�2 for planets of a given mass, so

radial-velocity searches are most sensitive to planets orbiting close to the
host star. Planets whose orbital periods are much larger than the survey
duration will contribute a constant acceleration or linear drift to the line-
of-sight velocity of the host star, and this signal provides evidence for the
existence of a distant planet but only weak constraints on its properties.

The most precisely measured radial-velocity planets are found orbiting
pulsars. The pulsar emits pulsed radio signals at regular intervals �t. The
pulse emitted at tn = n�t + const arrives at t′

n
= tn + r(tn)�c where r(tn)

is the distance of the pulsar at tn and c is the speed of light. Now write
r(t) = const + vlost where vlos is the line-of-sight velocity of the pulsar,
and we have �t

′
n
= t′

n+1 − t′n = �t(1 + vlos�c). Thus measuring the inter-
vals between pulses yields the line-of-sight velocity (up to an undetermined
constant, since the rest-frame pulse interval �t is unknown), and as usual
periodic variations in the line-of-sight velocity are the signature of a planet.

Pulsar planets are rare, presumably because planets cannot survive the
supernova explosion that creates the pulsar, and only a handful are known.
The prototype is the system of three planets discovered around the pulsar
PSR B1257+12 (Wolszczan & Frail 1992).

1.6.2 Transiting planets

In a small fraction of cases, a planetary system is oriented such that one or
more of its planets crosses the face of the host star as seen from Earth, an
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event known as a transit.18 During the transit, there is a characteristic dip
in the stellar flux, which repeats with a period equal to the planet’s orbital
period.

Suppose that the planet has radius Rp and the star has radius R∗. In
most cases Rp � R∗; for example, the radii of Earth and Jupiter relative
to the Sun are R⊕�R⊙ = 0.009153 and RJ�R⊙ = 0.09937.19 During a
transit the visible area of the stellar disk is reduced to a fraction 1 − f of its
unobscured value, where

f = R
2
p

R2∗ , (1.107)

and the flux from the star is reduced by a similar amount (depending on limb
darkening, to be discussed later in this subsection). An observer watching
Earth or Jupiter transit the Sun would find f = 8.377×10−5 and f = 0.00988
respectively. With current technology, Jupiter-like transits can be detected
from the ground but Earth-like transits can only be detected by space-based
observatories.

The probability that a planet will transit depends strongly on its semima-
jor axis. To determine this probability, we again use a coordinate system in
which the z-axis is parallel to the line of sight. Then the planet transits if and
only if the minimum value of x2 + y2 is less than (R∗ +Rp)2. From equa-
tions (1.70), x2 + y2 = r2 − z2 = r2[1− sin2 I sin2(f +!)] so the minimum
value of x2 + y2 is r

2
cos

2
I . Therefore if the planet is on a circular orbit

with semimajor axis a, it transits if and only if � cos I � < (R∗ +Rp)�a. If the
distribution of orientations of the planetary orbits is random—an untested

18 Transits and occultations are usually distinguished from eclipses. In an eclipse (e.g., an
eclipse of the Sun by the Moon) both bodies have similar angular size. In a transit (e.g.,
a transit of Venus across the Sun) a small body passes in front of a large one, and in an
occultation a small body passes behind a large one.

19 Planets are not perfect spheres: in general, the polar radius Rpol of a rotating planet is
smaller than its equatorial radius Req, and the planet is said to have an equatorial bulge
(Box 1.3). If we assume that the spin and orbital axes of the planet are aligned, then both
are normal to the line of sight if the planet transits the star. Approximating the shape of the
planet as an ellipse, its area on the plane normal to the line of sight is ⇡ReqRpol so the
effective radius for computing the transit depth is Re↵ = (ReqRpol)1�2. For the Earth and
Jupiter the effective radii are R⊕,e↵ = 6367.4 km and RJ,e↵ = 69134 km. In contrast the
Sun is nearly spherical, with a fractional difference in the polar and equatorial radii � 10−5.
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but extremely plausible assumption—then � cos I � is uniformly distributed
between 0 and 1, so the probability of transit is

p = R∗ +Rp

a
. (1.108)

A useful reference time for the duration of the transit is

⌧0 = 2R∗
v
= 2R∗ � a

GM∗ �
1�2 = 12.98 hours

R∗
R⊙ �

a

au
M⊙
M∗ �

1�2
. (1.109)

Here v is the planet’s orbital velocity, M∗ is the stellar mass, and a is the
planet’s semimajor axis; in deriving these equations we have assumed that
the planet’s orbit is circular. The reference time equals the actual transit
time only if the planet radius Rp � R∗, the stellar radius R∗ � a, and the
transit passes through the center of the star. The actual transit time is usually
shorter than ⌧0 since the planet travels along a chord across the star rather
than through its center.

The interval between transits equals the orbital period (eq. 1.43),

P = 2⇡ � a
3

GM∗ �
1�2

. (1.110)

The shape and duration of the transit event can be described more accu-
rately using Figure 1.3. The point of closest approach of the planet to the
center of the star is bR∗ where the impact parameter b is a dimensionless
number in the range 0 to ∼ 1. There are four milestones during the transit
event: first contact, where the projected planetary disk first touches the edge
of the star; second contact, where the entire planetary disk first obscures the
star, third contact, the last time at which the entire planetary disk obscures
the star, and fourth contact, when the transit ends. Between first and sec-
ond contact the flux from the star is steadily decreasing as more and more
of the stellar disk is obscured; between second and third contact the flux is
constant; and between third and fourth contact the flux is steadily return-
ing to its original value. If the closest approach to the center of the star is
at t = 0, then straightforward trigonometry shows that the times associated
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Figure 1.3: The geometry of a planetary transit. The large shaded circle of radius
R∗ shows the disk of the host star, and the unshaded circles of radius Rp show the
position of the planetary disk at first, second, third and fourth contact. The minimum
distance between the centers of the planet and the star is bR∗, where b is the impact
parameter. In this image b = 0.6 and Rp�R∗ = 0.15. The curves at the bottom of
the figure show the stellar flux as a function of time in two cases: no limb darkening
(top), and solar limb darkening (bottom) as described in the paragraph containing
equation (1.114). Analytic expressions for transit light curves are given by Sackett
(1999), Mandel & Agol (2002) and Seager & Mallén-Ornelas (2003).

with these events are

t4 = −t1 = 1

v
�(R∗ +Rp)2 − b2R2∗�1�2 = 1

2⌧0[(1 +Rp�R∗)2 − b2]1�2,
t3 = −t2 = 1

v
�(R∗ −Rp)2 − b2R2∗�1�2 = 1

2⌧0[(1 −Rp�R∗)2 − b2]1�2.
(1.111)

Here we have assumed that R∗ � a so the planet travels across the star at
nearly constant velocity v; an equivalent constraint is that the transit dura-
tion is much less than the orbital period, ⌧0 � P . The total duration of the
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transit is

t4 − t1 = 2

v
�(R∗ +Rp)2 − b2R2∗�1�2 = ⌧0�(1 +Rp�R∗)2 − b2�1�2, (1.112)

and the duration of the flat part of the transit, between second and third
contact, is

t3 − t2 = ⌧0�(1 −Rp�R∗)2 − b2�1�2. (1.113)

What can we measure from the transit depth, duration and shape? The
fractional depth f of the transit determines the ratio of the planetary and
stellar radii Rp�R∗ through equation (1.107). Once this is known, the total
duration t4 − t1 (eq. 1.112) and the duration of the flat part of the transit
t3 − t2 (eq. 1.113) give two constraints on the impact parameter b and the
reference time ⌧0, so both can be determined. If the stellar mass M∗ and
radius R∗ can be determined from the star’s luminosity, colors and spectrum
then equations (1.109) for the reference time and (1.43) for the orbital period
give two constraints on the semimajor axis: if these agree then the planetary
orbit is likely to be circular, and if not it must be eccentric.

This simple model predicts that the flux from the star is constant be-
tween second and third contact, which requires that the surface brightness
of the star is uniform. In practice the surface brightness of the stellar disk is
usually higher near the center, a phenomenon called limb darkening. One
common parametrization of limb darkening is that the surface brightness at
distance R from the center of the stellar disk of radius R∗ is given by

I(R)
I(0) = 1− a(1−µ)− b(1−µ)2, where µ = (1−R2�R2∗)1�2. (1.114)

The limb-darkening coefficients a and b depend on the spectral type of the
star and the wavelength range in which the surface brightness is measured.
For a solar-type star measured in the Kepler wavelength band, a � 0.41 and
b � 0.26.20

The depth of a transit (eq. 1.107) is independent of the semimajor axis a
of the planet, but the probability that a planet will transit varies as a−1 (eq.

20 Limb-darkening models for a wide range of stars are described in Claret & Bloemen (2011).
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1.108), so transit searches are most sensitive to planets close to the host star.
Planets whose orbital periods are larger than the survey duration are difficult
to verify: a useful rule of thumb is that at least three transits are needed for
a secure detection.

1.6.3 Astrometric planets

Planets can be detected by the periodic variations in the position of their
host star as the star orbits around the center of mass of the star and planet.

The Kepler ellipse described by the star is projected onto an ellipse on
the sky plane perpendicular to the line of sight. However, the semimajor
axis and eccentricity of the projected ellipse are generally different from
those of the original ellipse, and the focus of the projected ellipse differs
from the projection of the focus of the original ellipse. Nevertheless all of
the orbital elements, with some minor degeneracies, can be deduced from
these measurements.

We consider a system containing a single planet of mass m1 orbiting
a star of mass m0. We choose coordinates such that the positive z-axis
is parallel to the line of sight from the observer to the system and pointing
toward the observer.21 The position of the star is r0 = rcm−m1r�(m0+m1)
(eq. 1.6), where rcm is the position of the center of mass and r = r1 − r0 is
the vector from the star to the planet. Using equations (1.29) and (1.70) the
position of the star on the sky, in the Cartesian coordinates x and y, is

x0 = xcm − 1 − e2
1 + e cos f (A cos f + F sin f),

y0 = ycm − 1 − e2
1 + e cos f (B cos f +G sin f), (1.115)

21 Unfortunately this orientation is opposite to the orientation of the coordinate system in
§1.6.1. The line-of-sight velocity is always defined to be positive if the star is receding
from the observer, which implies that the positive z-axis points away from the observer.
For astrometric binaries the x-y coordinate system on the sky is assumed to be right-handed
(the positive y-axis is 90○ counterclockwise from the positive x-axis), which requires that
the positive z-axis points toward the observer.
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where the Thiele–Innes elements are

A = m1a

m0 +m1
(cos⌦ cos! − cos I sin⌦ sin!),

B = m1a

m0 +m1
(sin⌦ cos! + cos I cos⌦ sin!),

F = m1a

m0 +m1
(− cos⌦ sin! − cos I sin⌦ cos!),

G = m1a

m0 +m1
(− sin⌦ sin! + cos I cos⌦ cos!); (1.116)

as usual a and e are the semimajor axis and eccentricity of the relative orbit,
and f , I , ! and ⌦ are the true anomaly, inclination, argument of periapsis
and longitude of the ascending node. The four Thiele-Innes elements re-
place a, I , ⌦ and !; their advantage is that the positions are linear functions
of these elements, which simplifies orbit fitting.

Equations (1.115) are simpler when written in terms of the eccentric
anomaly, using equations (1.46), (1.50) and (1.51a):

x0 = xcm −A(cosu − e) − F (1 − e2)1�2 sinu,
y0 = ycm −B(cosu − e) −G(1 − e2)1�2 sinu. (1.117)

The eccentric anomaly is related to the time t through Kepler’s equation
(1.49), and with equation (1.45) this reads n(t − t0) = u − e sinu. Using
these results we can fit the observations of x0 and y0 as a function of time
to equations (1.117) to determine xcm, ycm, A, B, F and G, the eccentricity
e, the mean motion n and the epoch of periapsis t0.

The usual orbital elements are straightforward to derive from the Thiele–
Innes elements. First,

tan(⌦ + !) = B − F
A +G, tan(⌦ − !) = B + F

A −G, (1.118)

and these equations can be solved for ⌦ and !. If these are solutions then
so are ⌦ + k1⇡ and ! + k2⇡, where k1 and k2 are integers. All but one of
these solutions can be discarded because we also require that (i) sin(⌦+!)
has the same sign as B − F ; (ii) sin(⌦ − !) has the same sign as B + F ;



42 CHAPTER 1. THE TWO-BODY PROBLEM

(iii) 0 ≤ ! < 2⇡; and (iv) 0 ≤ ⌦ < ⇡. The last of these is a convention
that is imposed because astrometric observations alone cannot distinguish
the solutions (⌦,!) and (⌦ + ⇡,! + ⇡).

Next define

q1 = A +G
cos(⌦ + !) , q2 = A −G

cos(⌦ − !) . (1.119)

Then

I = 2 tan−1(q2�q1)1�2, m1a

m0 +m1
= 1

2(q1 + q2). (1.120)

Figure 1.4: The astromet-
ric signal from the solar
system over the 50-year pe-
riod from 2000 to 2050,
as viewed from a star 100
parsecs away in the direc-
tion of the north ecliptic
pole. The arrows mark
an angular distance of 0.1
milliarcseconds.

The fit to the observations also yields the mean motion n, which con-
strains the semimajor axis and masses through Kepler’s third law, n2

a
3 =

G(m0 +m1) (eq. 1.44). Combining this relation with the last of equations
(1.120), we have

m
3
1(m0 +m1)2 =

(q1 + q2)3n2

8G
; (1.121)
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the quantities on the right are observables and the left side is the mass func-
tion for astrometric planets. The mass m0 of the host star can usually be
determined from its spectral properties, so the mass function determines the
planetary mass m1.

The astrometric signal from a planet is proportional to its semimajor
axis, so planets on larger orbits are easier to detect astrometrically. However,
a reliable determination of the orbital elements usually requires data over
at least one orbit, unless the data are extremely accurate. Thus the easiest
planets to detect astrometrically are those with an orbital period smaller than
the span of observations, but not by too much.

Astrometric data from multi-planet systems are hard to interpret if any

of the massive planets in the system has an orbital period longer than the
span of the observations. As an example, the astrometric signal arising from
the motion of the Sun around the barycenter of the solar system is shown
in Figure 1.4, as seen from a star 100 parsecs away. The figure shows that
determining the masses and orbits of the giant planets in a planetary system
like our own, even with an astrometric baseline of 1–2 decades, would be
quite difficult.

1.6.4 Imaged planets
Imaging planets is difficult because the host star is so much brighter than
the planet. For example, the luminosity of the Earth at visible wavelengths
is only about 10−10 times the luminosity of the Sun. The contrast ratio
is more favorable for young, massive planets at infrared wavelengths, in
part because such planets are self-luminous, emitting thermal energy as they
contract (Burrows et al. 1997). Even Jupiter emits roughly as much energy
per unit time from contraction as it reflects from the Sun.

Most planets that have been successfully imaged are in orbits with large
semimajor axes, where they are not swallowed in the glare from their host
star: the median estimated semimajor axis of planets detected by direct
imaging is well over 100 au. For a solar-mass host star the orbital period
at 100 au is 1000 yr, so the motion of most imaged planets relative to their
host star has not been detected at all. What motion has been detected covers
only a small fraction of the orbit, so the uncertainties in the orbital elements
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are large. Nevertheless, it is worth examining briefly what elements can be
detected in principle for imaged planets.

In contrast to astrometric planets, where the position of the host star
relative to the center of mass is measured on the sky plane, we measure
the position of an imaged planet at r1 relative to the host star at r0. By
analogy with equations (1.117) we may write the Cartesian coordinates of
this relative position on the sky plane as

x = x1 − x0 = A′(cosu − e) + F ′(1 − e2)1�2 sinu,
y = y1 − y0 = B′(cosu − e) +G′(1 − e2)1�2 sinu, (1.122)

where u is the eccentric anomaly, e is the eccentricity, and the Thiele–Innes
elements are

A
′ = a(cos⌦ cos! − cos I sin⌦ sin!),

B
′ = a(sin⌦ cos! + cos I cos⌦ sin!),

F
′ = a(− cos⌦ sin! − cos I sin⌦ cos!),

G
′ = a(− sin⌦ sin! + cos I cos⌦ cos!). (1.123)

As usual a, ! and ⌦ are the semimajor axis, argument of periapsis and
longitude of the ascending node. The eccentric anomaly is related to the
time t through Kepler’s equation (1.49), which reads n(t − t0) = u − e sinu
where n is the mean motion. We can fit the observations of x and y as
a function of time to equations (1.122) to determine A

′, B′, F ′, G′, e, n
and t0. Then we can follow the procedure in equations (1.118)–(1.120)
to determine the other orbital elements. Like astrometry, imaging cannot
distinguish the solutions (⌦,!) and (⌦ + ⇡,! + ⇡). A check of the results
comes from Kepler’s third law (1.44): this determines the mass of the host
star from the mean motion and the semimajor axis, and this mass can be
determined independently from the spectral properties of the star.

1.7 Multipole expansion of a potential

In most cases the distance between a planet and its host star, or a satellite
and its host planet, is large enough that both can be treated as point masses.
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However, accurate dynamical calculations must sometimes account for the
distribution of mass within one or both of these bodies. Examples include
tracking artificial satellites of the Earth, measuring the relativistic preces-
sion of Mercury’s perihelion, or determining the precession rate of a planet’s
spin axis.

Let ⇢(r) denote the density of a planet at position r. The total mass of
the planet is M and we assume that the origin is the center of mass of the
planet. Then

� dr⇢(r) =M, � dr⇢(r)r = 0. (1.124)

Using equations (C.44) and (C.55), the gravitational potential can be written
in spherical coordinates r = (r, ✓,�) as

�(r, ✓,�) = −G� dr
′
⇢(r′)
�r − r′� (1.125)

= −G ∞�
l=0� dr

′
⇢(r′) r

l<
rl+1> Pl(cos�)

= − ∞�
l=0

4⇡G
2l + 1

l�
m=−l� dr

′
⇢(r′) r

l<
rl+1> Y

∗
lm
(✓′,�′)Ylm(✓,�).

Here Pl(cos�) and Ylm(✓,�) are a Legendre polynomial and a spherical
harmonic (Appendices C.6 and C.7), r< and r> are the smaller and larger of
r and r

′, cos� = r′ ⋅ r�(r′r) is the cosine of the angle between the vectors r
and r

′, and the asterisk denotes the complex conjugate. Any satellite must
orbit outside all of the planetary mass, so the potential seen by the satellite
simplifies to

�(r, ✓,�) ≡ ∞�
l=0
�l(r, ✓,�), (1.126)

where

�l(r, ✓,�) = − G
rl+1 � dr

′
⇢(r′)r′lPl(cos�) (1.127)

= − 4⇡G
(2l + 1)rl+1

l�
m=−l

Ylm(✓,�)� dr
′
⇢(r′)r′lY ∗

lm
(✓′,�′).

We examine the first three of these terms:
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Monopole (l = 0) Since P0(cos�) = 1 (eq. C.45) and ∫ dr′ ⇢(r′) = M

(eq. 1.124), we have �0(r, ✓,�) = −GM�r, the same as if all the mass of
the planet were concentrated in a point at the origin.

Dipole (l = 1) Since P1(cos�) = cos� = r
′ ⋅ r�(r′r), the combination

r
′P1(cos�) is a linear function of r′ at fixed r and zero at r′ = 0. Then

the second of equations (1.124) implies that the integral in the first line of
equation (1.127) is zero. Thus �1(r, ✓,�) = 0.

Quadrupole (l = 2) Since P2(cos�) = 3
2 cos

2
� − 1

2 , the combination
r
′2P2(cos�) = 3

2(r′ ⋅r)2�r2 − 1
2r
′2. Therefore the quadrupole potential can

be written

�2(r, ✓,�) = G
2r5
� dr

′
⇢(r′)�r′2r2 − 3(r′ ⋅ r)2�. (1.128)

When written in terms of the inertia tensor I of the planet (eq. D.85), this
yields MacCullagh’s formula

�2(r, ✓,�) = 3G
2r5

3�
ij=1

riIijrj− G
2r3

3�
i=1

Iii = 3G
2r5

r
T
Ir− G

2r3
Tr(I); (1.129)

here r
T is the row vector that is the transpose of the column vector r, and

Tr (I) is the trace of the inertia tensor.

Since �l(r, ✓,�) in equation (1.127) falls off with distance ∝ r
−l−1,

at large distances from the host planet the potential is dominated by the
monopole potential (∝ r

−1) and quadrupole potential (∝ r
−3).

1.7.1 The gravitational potential of rotating fluid bodies
Small bodies, such as rocks, comets and most asteroids, are irregularly
shaped. Larger astronomical bodies are nearly spherical, because the forces
due to gravity overwhelm the ability of any solid material to maintain other
shapes (a brief quantitative discussion of this transition is given at the end of
§8.6). Stars and planets are large enough that they can usually be treated as
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a fluid. In this case the distribution of the matter is determined by a balance
between gravity, pressure and centrifugal force due to rotation. Models of
stellar and planetary interiors show that the resulting density distribution is
always axisymmetric around the spin axis.22

Axisymmetry allows us to simplify the spherical-harmonic expansion
(1.127) for the gravitational potential of the planet. If the axis of sym-
metry of the planet is chosen to be the polar axis (✓ = 0), the second
line of equation (1.127) vanishes when m �= 0 since ∫ d�′ Ylm(✓′,�′) ∝∫ d�′ exp(im�′) = 0 when m �= 0. Using the definition (C.46) of spherical
harmonics in terms of associated Legendre functions, equations (1.126) and
(1.127) can be rewritten as

�(r, ✓) = − GM

r
�1 − ∞�

l=2
Jl �Rp

r
�l Pl(cos ✓)� , (1.130)

where the dimensionless multipole moments Jl are given by

Jl ≡ − 1

MRl
p
� dr

′
⇢(r′)Pl(cos ✓′)r′l. (1.131)

The quantity Rp is an arbitrary reference radius that is introduced so that
Jl is dimensionless; conventionally it is chosen to be close to the planetary
radius.

Since P2(cos ✓) = 1
2(3 cos2 ✓ − 1) (eq. C.45), the quadrupole moment

J2 can be written in Cartesian coordinates as

J2 = 1

MR2
p
� dr⇢(r)(12x2 + 1

2y
2 − z2). (1.132)

For an axisymmetric body we define the moments of inertia of the planet
around the equatorial and polar axes as (cf. eqs. D.87)

A = � dr⇢(r)(y2 + z2) = Ixx = Iyy,
22 Non-axisymmetric equilibrium bodies of self-gravitating fluid do exist. The first and most

famous example is the sequence of Jacobi ellipsoids (Chandrasekhar 1969), which are uni-
formly rotating masses of homogeneous, incompressible fluid. However, only axisymmet-
ric equilibria exist for typical planets, in which the material is compressible so the mass is
concentrated toward the center.
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C = � dr⇢(r)(x2 + y2) = Izz, (1.133)

which implies that

J2 = C −A
MR2

p

. (1.134)

Then either MacCullagh’s formula (1.129) or equation (1.130) yields23

�(r, ✓) = − GM

r
+ GMJ2R

2
p

2r3
(3 cos2 ✓ − 1) +O(r−4)

= − GM

r
+ GC −A

2r3
(3 cos2 ✓ − 1) +O(r−4). (1.135)

Notice that measurements of the potential external to the planet allow us
to determine the difference between the moments of inertia A and C but
not the moments themselves. The rate of precession of the spin axis due
to the torque from an external body, such as the Sun, yields the dynamical
ellipticity(C − A)�C (cf. eq. 7.10), so measurements of both the external
gravitational field and the precession are needed to determine both moments
of inertia C and A.

We also expect that rotating planets or stars are symmetric about the
equatorial plane (the plane normal to the polar axis that passes through their
center of mass),24 so ⇢(r, ✓) is an even function of cos ✓ if the center of mass
coincides with the origin. Since Pl(− cos ✓) = (−1)lPl(cos ✓) (eq. C.38),
all multipole moments Jl with odd values of l vanish. In this case there is a
sharper limit on the error in equation (1.135): O(r−5) rather than O(r−4).

Rotation flattens the density distribution of a planet (i.e., the planet be-
comes oblate), so the moment of inertia C around the polar axis is larger
than the moment A around an equatorial axis, which in turn implies through
equation (1.134) that the quadrupole moment J2 is positive. In general the

23 A function f(r) is O(r−p) if rpf(r) is less than some constant when r is large enough.
24 This result can be proved analytically in simple models of a planetary interior. In particular,

if the planet is uniformly rotating (i.e., the fluid has zero velocity in a frame rotating at
a constant angular speed ⌦) and the equation of state is barotropic (i.e., the pressure is a
function only of the density), then Lichtenstein’s theorem states that in equilibrium the
fluid has reflection symmetry around a plane perpendicular to ⌦ (e.g., Lindblom 1992).
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Box 1.3: Rotation, quadrupole moment and flattening
If the quadrupole moment J2 is much larger than all of the Jn with n > 2, equa-
tion (1.135) implies that the gravitational potential outside the planet is

�(r, ✓) = − GM

r
�1 − J2R

2
p

2r2
(3 cos2 ✓ − 1)�. (a)

We assume that the planet is rotating uniformly with angular speed ⌦ around its
polar axis. Then the centrifugal potential is (eq. D.21)

�cent(r, ✓) = − 1

2
⌦

2(x2 + y2) = − 1

2
⌦

2
r
2
sin

2
✓. (b)

If the surface of the planet can be treated as a fluid—that is, if it has an atmosphere
or is large enough that the strength of the material at its surface is negligible—then
the effective potential �e↵(r, ✓) ≡ �(r, ✓)+�cent(r, ✓)must be constant on the
surface.a Let the surface be r = Rp+�R(✓); we assume that the reference radius
Rp is close enough to the mean radius of the surface that ��R(✓)� � Rp. Then
we may expand the effective potential to first order in �R(✓), ⌦2 and J2:

�e↵(R, ✓) = constant+ GM

R2
p

�R(✓)+ 3GM

2Rp

J2 cos
2
✓+ 1

2
⌦

2
R

2

p cos
2
✓. (c)

If this is to be independent of the polar angle ✓ on the surface, we require

�R(✓)
Rp

= −�� 3

2
J2 + ⌦

2
R

3
p

2GM

�
� cos2 ✓ + constant. (d)

Thus the difference between the equatorial radius Req = Rp +�R( 1
2
⇡) and the

polar radius Rpol = Rp +�R(0) is

Req −Rpol

Rp

= 3

2
J2 + ⌦

2
R

3
p

2GM
. (e)

This simple relation connects three observables: the flattening or oblateness of the
planet, the rotation rate and the quadrupole moment.

a Hydrostatic equilibrium in the rotating frame requires ∇p = −⇢∇�e↵ where
p(r) is the pressure and ⇢(r) is the density. Since ∇ ×∇p = 0 for any scalar
field p(r) (eq. B.36a), we must have ∇⇢ × ∇�e↵ = 0. This result implies
that the gradient of the density must be parallel to the gradient of the effective
potential, so surfaces of constant density and effective potential coincide.
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multipole moments with even values of l decrease rapidly as l grows, so the
non-spherical part of the potential is dominated by the quadrupole term even
at the surface of the planet. Given this, there is a simple relation between
the rotation rate, the quadrupole moment and the flattening of the planetary
surface (Box 1.3).

1.8 Nearly circular orbits

1.8.1 Expansions for small eccentricity
Most planet and satellite orbits are nearly circular, so expansions of the
trajectory in powers of the eccentricity e were an essential tool for studying
orbits in the days when all algebra was done by hand. Such expansions
continue to provide insight in many problems of celestial mechanics. Here
we illustrate the derivations of these expansions, which are given to O(e3).
Expansions for other variables, or higher order expansions, can easily be
derived by computer algebra.

(a) True anomaly in terms of eccentric anomaly Take the log of the first
of equations (1.51c),

f = u − i log[1 − � exp(−iu)] + i log[1 − � exp(iu)], (1.136)

and replace � by its expression (1.52) in terms of the eccentricity e. Then
expand as a Taylor series in e:

f = u + e sinu + 1
4e

2
sin 2u + e3(14 sinu + 1

12 sin 3u) +O(e4). (1.137)

(b) Eccentric anomaly in terms of true anomaly Similarly, using the
second of equations (1.51c),

u = f − e sin f + 1
4e

2
sin 2f − e3(14 sin f + 1

12 sin 3f) +O(e4). (1.138)

(c) Mean anomaly in terms of eccentric anomaly This is simply Kep-
ler’s equation (1.49),

` = u − e sinu. (1.139)
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(d) Mean anomaly in terms of true anomaly Combining Kepler’s equa-
tion with equation (1.138) and expanding as a Taylor series in e yields

` = f − 2e sin f + 3
4e

2
sin 2f − 1

3e
3
sin 3f +O(e4). (1.140)

The most important expansions are those in terms of the mean anomaly,
since time is the natural independent variable for a trajectory and mean
anomaly is a linear function of time.

(e) Eccentric anomaly in terms of mean anomaly Kepler’s equation im-
plies that the eccentric anomaly u changes by 2⇡ when the mean anomaly `
changes by 2⇡. Thus any function g(u) is a periodic function of the mean
anomaly, which can be expanded in a Fourier series (see Appendix B.4). In
particular, setting g(u) = exp(iju) with j an integer, we may write

exp(iju) = ∞�
m=−∞ cm(j) exp(im`), (1.141)

where (eq. B.48)

cm(j) = 1

2⇡
� 2⇡

0
d` exp[i(ju −m`)]. (1.142)

Eliminating ` using Kepler’s equation ` = u − e sinu,

cm(j) = 1

2⇡
� 2⇡

0
du (1 − e cosu) exp[i(j −m)u + ime sinu]. (1.143)

For m = 0 it is straightforward to show that

c0(j) = �j0 − 1
2e�j1 − 1

2e�j,−1, (1.144)

where �mn is the Kronecker delta (eq. C.1). For m �= 0 we write (eq. C.29)

exp(ime sinu) = ∞�
k=−∞

Jk(me) exp(iku), (1.145)
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where Jk(z) is a Bessel function (Appendix C.5). Using the first of the
identities (C.28), equation (1.143) simplifies to

cm(j) = j

m
Jm−j(me), m �= 0. (1.146)

Now set j = 1 and take the imaginary part of equation (1.141):

sinu = ∞�
m=−∞
m�=0

Jm−1(me)
m

sinm`. (1.147)

Using relations (C.26) and (C.28), this result simplifies to

sinu = 2 ∞�
m=1

Jm(me)
me

sinm`, (1.148)

which may be combined with Kepler’s equation to yield

u = ` + 2 ∞�
m=1

Jm(me)
m

sinm`. (1.149)

Finally, the power series for Bessel functions (C.24) can be used to convert
equation (1.149) into a power series in eccentricity:

u = ` + e sin ` + 1
2e

2
sin 2` + 1

8e
3(3 sin 3` − sin `) +O(e4). (1.150)

(f) True anomaly in terms of mean anomaly Inserting the series (1.150)
into equation (1.137) and expanding the result as a power series in eccentri-
city, we find

f = ` + 2e sin ` + 5
4e

2
sin 2` + 1

12e
3(13 sin 3` − 3 sin `) +O(e4). (1.151)

(g) Radius in terms of mean anomaly Take the real part of equation
(1.141) with j = 1. We find

cosu = −1
2e +

∞�
m=−∞
m�=0

Jm−1(me)
m

cosm`; (1.152)
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using equations (C.26) and (C.28), this result simplifies to

cosu = −1
2e + 2

∞�
m=1

J
′
m
(me)
m

cosm`. (1.153)

Since r�a = 1 − e cosu (eq. 1.46) we have

r

a
= 1 + 1

2e
2 − 2e ∞�

m=1
J
′
m
(me)
m

cosm`. (1.154)

Finally, using the power series (C.24), we obtain a power series in eccentri-
city,
r

a
= 1 − e cos ` + 1

2e
2(1 − cos 2`) + 3

8e
3(cos ` − cos 3`) +O(e4). (1.155)

All of these expansions share the following important property. Con-
sider a term of the form e

k
cosnx or e

k
sinnx, where k and n are non-

negative integers and x is any of the three anomalies u, f , or `. Then k is
always at least as large as n; for example, a term proportional to cos 3` is
always multiplied at least by e

3. This behavior, which is also seen in ex-
pansions of the Hamiltonian in powers of the eccentricity and inclination
(§4.3), is sometimes called the d’Alembert property.

1.8.2 The epicycle approximation
The equation of motion for orbits with small eccentricities and inclinations
can be solved in more general axisymmetric potentials than the Kepler po-
tential �K(r) = −GM�r. Applications of such solutions include the study
of satellites orbiting an oblate planet, planets in a massive circumstellar disk,
and planets orbiting close enough to the host star that relativistic corrections
are important.

We consider an axisymmetric potential �(R, z) in cylindrical coordi-
nates (R,�, z), and assume that the potential is symmetric about the equa-
torial plane z = 0, so �(R,−z) = �(R, z). The equations of motion for a
test particle, r̈ = −∇�, can be written (eq. B.18):

R̈ −R�̇2 = −@�(R, z)
@R

, 2Ṙ�̇ +R�̈ = 0, z̈ = −@�(R, z)
@z

. (1.156)
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The second equation may be multiplied by R and integrated to yield

R
2
�̇ = constant = Lz, (1.157)

which states that the z-component of the angular momentum is conserved,
a consequence of the axisymmetry of the potential. The first of equations
(1.156) can then be rewritten as

R̈ − L
2
z

R3
= −@�(R, z)

@R
. (1.158)

We first examine a circular orbit in the equatorial plane, R(t) ≡ Rg =
constant, z(t) = 0; we assume the orbit is prograde so �̇ > 0. The third of
equations (1.156) is trivially satisfied because the potential is even in z, so
@��@z must vanish at z = 0. Equation (1.158) yields

L
2
z
= R3

g
�@�
@R
�(Rg,0) , (1.159)

which relates the orbital radius to the angular momentum. Equation (1.157)
can then be solved,

�(t) = �(Rg)t + �0, (1.160)

where �0 is an integration constant and the azimuthal frequency is

�(Rg) ≡ Lz

R2
g

= � 1
R

@�

@R
�1�2(Rg,0) . (1.161)

The azimuthal period P� ≡ 2⇡��.
Now consider a nearly circular orbit with the same z-component of an-

gular momentum Lz as in equation (1.159). We let

x ≡ R −Rg, (1.162)

and expand the potential in a Taylor series around (R, z) = (Rg,0):
�(R, z) = �@�

@R
�(Rg,0)x + 1

2 �@
2
�

@R2
�
(Rg,0)

x
2 + 1

2 �@
2
�

@z2
�
(Rg,0)

z
2
, (1.163)
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plus terms that are O(x3
, xz

2
, z

4) and an unimportant constant. The terms
in the expansion proportional to @��@z and @2��@R@z have vanished be-
cause the potential is even in z. The epicycle approximation consists of
neglecting all terms in this expansion that are higher than second order in x

and z, which corresponds to ignoring all terms in the equations of motion
(which involve ∇�) that are higher than first order in x and z.

We first examine motion in the z-direction, substituting the Taylor series
(1.163) into the third of equations (1.156) to obtain

z̈ + 2
z
z = 0, (1.164)

where the vertical frequency is

z(Rg) = �@2�
@z2
�1�2
(Rg,0)

. (1.165)

Thus, in the epicycle approximation the vertical motion is decoupled from
the horizontal motion and described by the solution to the harmonic-oscil-
lator equation (1.164),

z(t) = z0 cos(zt + ⇣), (1.166)

with integration constants z0 ≥ 0 and ⇣.
We next turn to the radial equation of motion (1.158), replacing R̈ by

ẍ, the potential �(R, z) by its Taylor expansion (1.163), and L
2
z
�R3 by

its Taylor expansion L
2
z
�(Rg + x)3 = L

2
z
�R3

g
− 3(L2

z
�R4

g
)x +O(x2). The

terms independent of x cancel because of equation (1.159), and discarding
all terms that are higher than first order in x or z, we obtain

ẍ + 2
R
x = 0, (1.167)

where the radial or epicycle frequency is

R(Rg) = �3L2
z

R4
+ @2�
@R2
�1�2
(Rg,0)

= � 3
R

@�

@R
+ @2�
@R2
�1�2
(Rg,0)

, (1.168)

and the radial period is PR ≡ 2⇡�R.



56 CHAPTER 1. THE TWO-BODY PROBLEM

Like the vertical motion, the radial motion is described by the solution
to a harmonic-oscillator equation,

x(t) = x0 cos(Rt + ⌘), (1.169)

with integration constants x0 ≥ 0 and ⌘.
Finally, we solve for the azimuthal motion by writing equation (1.157)

in the form �̇ = Lz�(Rg + x)2 = �(1 − 2x�Rg) +O(x2); dropping terms
higher than O(x) and using equation (1.169), we find

�(t) = �t + �0 − 2x0

Rg

�

R

sin(Rt + ⌘). (1.170)

Thus, although the radial and vertical motions are decoupled, the radial and
azimuthal motions are not. In particular, motion in the orbital plane is the
superposition of (i) uniform circular motion of a guiding center with co-
ordinates (R,�) = (Rg,�t + �0), and (ii) motion around an ellipse (the
epicycle) centered on the guiding center. The motion around the epicycle
is retrograde, that is, clockwise if the motion of the guiding center is coun-
terclockwise. The semi-axes of the ellipse are x0 in the radial direction and
2x0��R in the azimuthal direction, so the axis ratio of the ellipse is

radial axis
azimuthal axis

= R

2�
. (1.171)

Since the motion around the epicycle has fixed frequency R, this is also
the ratio of the root-mean-square velocities relative to the guiding center in
the radial and azimuthal directions.

For example, in the Kepler potential �K(R, z) = −GM�(R2 + z2)1�2,

R = � = z = n = � GM

R3
g

�1�2 , (1.172)

where n is the usual mean motion. The periapsis and apoapsis are Rg − x0

and Rg + x0 and since these equal a(1− e) and a(1+ e) in the usual orbital
elements, we conclude that Rg = a and x0 = ae.
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We can also describe the shape of the orbit. Since we are only working
to first order in the displacement from a circular orbit, the time t appearing
in the oscillatory first-order terms of equations (1.166) and (1.169) can be
replaced by the azimuth � using the zero-order part of equation (1.170),
�(t) = �t + �0. Thus we find

x = x0 cos �R
�

(� − �R)� , z = z0 cos �z
�

(� − �z)� , (1.173)

where the constants �R ≡ �0 − (��R)⌘ and �z ≡ �0 − (��z)⇣. Unless
R�� and z�� are rational numbers (as in eq. 1.172), the orbit is not
closed; eventually the particle passes arbitrarily close to every point in the
square �x� ≤ x0, �z� ≤ z0.

The longitude of periapsis $ is the azimuth at which the orbital radius
is smallest25 and is determined by setting the argument of the cosine in the
first of equations (1.173) to ⇡,3⇡,5⇡, . . .. Thus $ = �R + ⇡��R,�R +
3⇡��R, . . .. For Kepler orbits, with � = R, these angles are all the same
modulo 2⇡ so the longitude of periapsis is fixed. If the potential is close to a
Kepler potential, the longitude of periapsis will appear to change slowly, by
an amount �$ = 2⇡[(��R) − 1] between successive periapsis passages.
Since the time between such passages is �t = 2⇡�R, the longitude of
periapsis advances at an average rate

d$

dt
= �$
�t
= � − R. (1.174)

Similarly, the longitude of the ascending node ⌦ is the azimuth at which
the particle pierces the equatorial plane traveling upward, and is determined
by setting the argument of the cosine in the second of equations (1.173) to
3
2⇡,

7
2⇡, . . .. The longitude of the ascending node advances at a rate

d⌦

dt
= � − z. (1.175)

25 This definition differs slightly from the one given in §1.3.2, which measures the longitude
of periapsis as the sum of two angles in different planes. However, the difference between
the two definitions is O(z2) and hence is negligible in the context of the epicycle approxi-
mation.
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Box 1.4: Osculating elements
Orbital elements such as semimajor axis and eccentricity are defined in the Kepler
potential. For these to be useful when additional forces are present we must agree
on the prescription to be used for calculating the elements from the position and
velocity. The osculating elements at time t are defined to be the elements that
the orbit would have if the perturbing forces were switched off instantaneously at
time t. In other words the position and velocity are converted to orbital elements
using the same formulas that would apply if there were no forces other than the
Kepler gravitational force.

This definition sounds obvious, but some of its consequences are not. For
example, consider a particle on a circular orbit of radius R in the equatorial plane
of an oblate planet, in which the quadrupole moment J2 �= 0 but all the higher
multipoles vanish. Then the semimajor axis a is not equal to the radius, and the
eccentricity e is not equal to zero, even though the orbit is circular. Quantitatively,
the radial velocity vR = 0 and from equation (1.176) the azimuthal velocity is
v� = R�(R) = (GM�R)1�2(1 + 3

2
J2R

2
p�R2)1�2. In a Kepler potential

the semimajor axis and eccentricity are related to the position and velocity by
1

2
(v2

R
+ v2

�
) − GM�R = − 1

2
GM�a, and (Rv�)2 = GMa(1 − e2). Therefore

a = R

1 − 3

2
J2R

2
p�R2

, e = 3J2R
2
p

2R2
. (a)

An example of non-osculating elements is given in §7.1.1.

1.8.3 Orbits and the multipole expansion

As an example of the use of the epicycle approximation, we compute the
apsidal and nodal precession rates $̇ and ⌦̇ for low-eccentricity, low-incli-
nation orbits in the gravitational field of a oblate, axisymmetric planet.

We expand the gravitational potential using equation (1.130). In the
z = 0 plane we have ✓ = 1

2⇡ and r = R. As in the preceding subsection, we
assume that the potential �(R, z) is an even function of z, which implies
that the multipole moments Jl vanish for odd l. Then equations (1.161) and
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(1.168) yield


2
�
(R) = GM

R3
�1 − ∞�

l=2
(l + 1)Pl(0)Jl �Rp

R
�l� , (1.176)


2
R
(R) = GM

R3
�1 + ∞�

l=2
(l2 − 1)Pl(0)Jl �Rp

R
�l� . (1.177)

Here Pl(0) is given by equation (C.42) and the sums can be restricted to
even values of l.

To derive 2
z

we write r = (R2 + z2)1�2, cos ✓ = z�(R2 + z2)1�2, and
note that

@
2
r
−p

@z2
�
z=0
= − p

Rp+2 ,
@
2Pl(cos ✓)
@z2

�
z=0
= P′′

l
(0)
R2

= − l(l + 1)
R2

Pl(0),
(1.178)

where the last equality follows from equation (C.36). Thus equation (1.165)
yields


2
z
(R) = GM

R3
�1 − ∞�

l=2
(l + 1)2Pl(0)Jl �Rp

R
�l� . (1.179)

These expressions for �, R and z can be employed in equations
(1.174) and (1.175) to derive exact expressions for the apsidal and nodal
precession rates $̇ and ⌦̇ in the limit of very small eccentricity and incli-
nation. However, simpler expressions are usually sufficient, because the
corrections to the Kepler potential from the multipole potentials are gener-
ally small even for the first term, l = 2, and decrease rapidly with increasing
l. For most purposes, expressions of sufficient accuracy can be derived by
(i) neglecting all multipole moments Jl with l > 4; and (ii) taking the square
root of equations (1.176), (1.177) and (1.179), expanding the result as a se-
ries in J2 and J4, and dropping all terms of order J3

2 or higher and J
2
4 and

higher. With these approximations,

d$

dt
= � GM

R3
�1�2�3J2R2

p

2R2
− 15J4R

4
p

4R4
+O(J3

2 , J
2
4 , J6)�, (1.180a)
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d⌦

dt
= � GM

R3
�1�2� − 3J2R

2
p

2R2
+ 15J4R

4
p

4R4
+ 9J

2
2R

4
p

4R4
+O(J3

2 , J
2
4 , J6)�.

(1.180b)

If the terms of order J2
2 are neglected as well, we have d$�dt = −d⌦�dt;

at this level of approximation, the nodes regress at the same rate that the
apsides advance. The generalization to orbits of arbitrary eccentricity and
inclination is given in Problem 5.3.

1.9 Response of an orbit to an external force

The evolution of a planetary trajectory under the influence of a force other
than the attraction of the host star (an external force) is described by the
equation

d
2
r

dt2
= − GM

r3
r +Fext, (1.181)

where r is the position of the planet relative to the host star, M is the sum
of the masses of the planet and star, and Fext is the external force per unit
mass on the planet (for an explicit derivation of this result, follow the steps
leading to eq. 1.11).26

If the external force is weak, the trajectory is approximately a Kepler el-
lipse, and therefore can be described more economically in terms of the time
evolution of the orbital elements rather than the time evolution of the posi-
tion. The main goal of this section is to derive the equations that describe
this evolution.

26 The interpretation of the external force Fext requires care in more general cases. If there are
forces per unit mass Fp and F∗ on the planet and star, then Fext = Fp−F∗. If the external
force arises from the negative gradient of a potential of the form mpm∗�(rp − r∗), say
because one or both of the bodies is not a point mass, then Fext = −(m∗+mp)@�(r)�@r.
Notice that in this case Fext is larger than the actual force per unit mass on the planet by a
factor 1 +mp�m∗. Of course, in most practical cases mp � m∗ so this distinction is not
important.
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1.9.1 Lagrange’s equations

When the external force can be derived from a Hamiltonian Hext, we can
use the tools of Hamiltonian dynamics to find the evolution of the orbital
elements. Since the Delaunay variables q ≡ (`,!,⌦), p ≡ (⇤, L,Lz) (eq.
1.84) are canonical, the equation of motion is simply (eq. D.13)

dz

dt
= J @

@z
(HK +Hext), (1.182)

where z = (q,p), J is the symplectic matrix (eq. D.14), and the Kepler
Hamiltonian HK = −1

2(GM)2�⇤2 (eq. 1.85).
Despite the simplicity of the Delaunay variables, it is often easier to

work with the non-canonical elements E ≡ (�,$,⌦, a, e, I)—mean lon-
gitude, longitude of periapsis, longitude of the ascending node, semimajor
axis, eccentricity and inclination. Then from equations (D.49)

dE

dt
=GJG

T @

@E
(HK +Hext), (1.183)

where Gij ≡ @Ei�@zj is the Jacobian matrix relating z and E.
The Jacobian matrix is straightforward to evaluate using the relations

� = `+!+⌦, $ = !+⌦, a = ⇤
2

GM
, e = (1−L2�⇤2)1�2, I = cos−1Lz�L.

(1.184)
We find

G =

������������������

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0
2⇤

GM
0 0

0 0 0
L
2

⇤2(⇤2 −L2)1�2 − L

⇤(⇤2 −L2)1�2 0

0 0 0 0
Lz

L(L2 −L2
z)1�2 − 1

(L2 −L2
z)1�2

������������������

.

(1.185)
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Then

GJG
T = 1

na2

�����������������������

0 0 0 2a − j(1 − j)
e

− tan 1

2
I

j

0 0 0 0 − j
e

− tan 1

2
I

j

0 0 0 0 0 − 1

j sin I−2a 0 0 0 0 0

j(1 − j)
e

j

e
0 0 0 0

tan
1

2
I

j

tan
1

2
I

j

1

j sin I
0 0 0

�����������������������

,

(1.186)
where j ≡ (1−e2)1�2 and the mean motion n = (GM�a3)1�2. Inserting this
matrix into (1.183), we obtain Lagrange’s equations:27

d�

dt
= n + 2

na

@Hext

@a
− j(1 − j)

na2e

@Hext

@e
− tan

1
2I

na2j

@Hext

@I
,

d$

dt
= − j

na2e

@Hext

@e
− tan

1
2I

na2j

@Hext

@I
,

d⌦

dt
= − 1

na2j sin I

@Hext

@I
, (1.187)

da

dt
= − 2

na

@Hext

@�
,

de

dt
= j(1 − j)

na2e

@Hext

@�
+ j

na2e

@Hext

@$
,

dI

dt
= tan

1
2I

na2j

@Hext

@�
+ tan

1
2I

na2j

@Hext

@$
+ 1

na2j sin I

@Hext

@⌦
.

When the eccentricity and inclination are small, we can simplify Lagrange’s
equations by evaluating the factors multiplying the partial derivatives of

27 Traditionally, Lagrange’s equations have been written using a function R = −Hext on the
right side, so all of the signs are reversed. Probably this convention arose because R is
positive when the external forces arise from a gravitational potential.



1.9. RESPONSE OF AN ORBIT TO AN EXTERNAL FORCE 63

Hext as power series in e and I and dropping all terms that are O(e, I)
or higher:

d�

dt
= n + 2

na

@Hext

@a
,

da

dt
= − 2

na

@Hext

@�
,

d$

dt
= − 1

na2e

@Hext

@e
,

de

dt
= 1

na2e

@Hext

@$
,

d⌦

dt
= − 1

na2I

@Hext

@I
,

dI

dt
= 1

na2I

@Hext

@⌦
. (1.188)

Several of Lagrange’s equations are ill-defined when the eccentricity e

or inclination I is zero, and as a result the equations are difficult to integrate
numerically or analytically when e or I is small. In these situations it is bet-
ter to work with the orbital elements E′ = (�, k, q, a, h, p). From equations
(1.71) we have

� = ` + ! +⌦,
k = e cos$ = (1 −L2�⇤2)1�2 cos(! +⌦),
q = tan I cos⌦ = (L2 −L2

z
)1�2

Lz

cos⌦,

a = ⇤
2

GM
,

h = e sin$ = (1 −L2�⇤2)1�2 sin(! +⌦),
p = tan I sin⌦ = (L2 −L2

z
)1�2

Lz

sin⌦. (1.189)
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The Jacobian matrix G
′
ij
= @E′

i
�@zj is

G
′ =

����������������������

1 1 1 0 0 0

0 −h −h L
2

⇤(⇤2 −L2)k − L

⇤2 −L2
k 0

0 0 −p 0
L

L2 −L2
z

q − L
2

Lz(L2 −L2
z)q

0 0 0
2⇤

GM
0 0

0 k k
L
2

⇤(⇤2 −L2)h − L

⇤2 −L2
h 0

0 0 q 0
L

L2 −L2
z

p − L
2

Lz(L2 −L2
z)p

����������������������

.

(1.190)
Then

G
′
JG

′T = 1

na2

��������������������

0 − jk

1 + j − q

jc
2a − jh

1 + j − p

jc

jk

1 + j 0
hq

jc
0 j

hp

jc

q

jc
−hq
jc

0 0
kq

jc

1

j cos3 I−2a 0 0 0 0 0

jh

1 + j −j −kq
jc

0 0 −kp
jc

p

jc
−hp

jc
− 1

j cos3 I
0

kp

jc
0

��������������������

,

(1.191)
where as usual j = (1 − e2)1�2 = (1 − k2 − h2)1�2, and c ≡ cos I + cos2 I .
The analog to equation (1.183) for the primed elements gives

d�

dt
= n + 2

na

@Hext

@a
− j

na2(1 + j) �k
@Hext

@k
+ h@Hext

@h
�

− 1

na2jc
�q@Hext

@q
+ p@Hext

@p
� ,

dk

dt
= jk

na2(1 + j)
@Hext

@�
+ j

na2

@Hext

@h
+ h

na2jc
�q@Hext

@q
+ p@Hext

@p
� ,

dq

dt
= q

na2jc

@Hext

@�
+ q

na2jc
�k@Hext

@h
− h@Hext

@k
� + 1

na2j cos3 I

@Hext

@p
,
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da

dt
= − 2

na

@Hext

@�
, (1.192)

dh

dt
= jh

na2(1 + j)
@Hext

@�
− j

na2

@Hext

@k
− k

na2jc
�q@Hext

@q
+ p@Hext

@p
� ,

dp

dt
= p

na2jc

@Hext

@�
+ p

na2jc
�k@Hext

@h
− h@Hext

@k
� − 1

na2j cos3 I

@Hext

@q
.

When the eccentricity and inclination are small, we can simplify these
equations using the same approximations that we used to derive equations
(1.188):

d�

dt
= n + 2

na

@Hext

@a
,

da

dt
= − 2

na

@Hext

@�
,

dk

dt
= 1

na2

@Hext

@h
,

dh

dt
= − 1

na2

@Hext

@k
,

dq

dt
= 1

na2

@Hext

@p
,

dp

dt
= − 1

na2

@Hext

@q
. (1.193)

1.9.2 Gauss’s equations
An alternative approach is to work directly with the external force per unit
mass Fext rather than the corresponding Hamiltonian Hext. To do so, we
first introduce the orbital elements E ≡ (f,!,⌦, a, e, I) where f is the true
anomaly and ! = $ − ⌦ is the argument of periapsis. In Cartesian coordi-
nates, the position of the planet is given by equations (1.70), which can be
written

r =RT(⌦, I, f + !)
�������

r

0

0

�������
, (1.194)

in which R
T is the transpose of the rotation matrix (B.60), given explicitly

by equation (B.61). The radius r = a(1 − e2)�(1 + e cos f) (eq. 1.29), so
equation (1.194) expresses r as a function of the elements E.

We assume that the Hamiltonian Hext is written as a function of the
orbital elements E but that it is derived from a potential that depends only



66 CHAPTER 1. THE TWO-BODY PROBLEM

Box 1.5: Radiation pressure and Poynting–Robertson drag
Small bodies orbiting a star experience forces from the radiation field of the star.

We first assume that the small body is spherical, with radius R, and perfectly
absorbing. If the luminosity of the star is L, the flux of radiation (energy per
unit time crossing unit area on a spherical surface at a distance r from the star)
is F = L�(4⇡r2). A stationary body at this distance absorbs energy at a rate
Ė = ⇡R2

F . If the body is moving at velocity v, the rate of energy absorption is
modified by the Doppler effect to Ė = ⇡R2

F (1−v⋅r̂�c)where r̂ is the unit vector
from the star to the body. Since a photon of energy ✏ carries momentum ✏�c, the
corresponding rate of absorption of linear momentum is ṗ = Ėr̂�c. The rate of
change of momentum equals the force, so the force due to radiation pressure is

Frad = r̂LR2

4r2c
�1 − v ⋅ r̂

c
� . (a)

In thermal equilibrium, the body re-radiates all the energy that it absorbs.
Since a photon of energy ✏ has mass ✏�c2, this re-radiation implies a mass-loss
rate Ṁ = −Ė�c2. If the re-radiation is isotropic in the body’s rest frame, the net
rate of momentum change associated with this mass loss is ṗ = Ṁv = −vĖ�c2
in the inertial frame, equivalent to a Poynting–Robertson drag forcea

FPR = −v LR
2

4r2c2
; (b)

here we have dropped a term that is smaller by O(v�c). The total force is

F = Frad +FPR = LR
2

4r2c
��1 − v ⋅ r̂

c
�r̂ − v

c
� +O(v2�c2). (c)

In practice this result should be multiplied by an efficiency factor Q that accounts
for scattering, diffraction and incomplete absorption (Burns et al. 1979).

A useful reference number is the ratio of the radiation force on a stationary
body to the gravitational force from the host star, Fg = GM∗m�r2, where m =
4

3
⇡⇢R

3 is the mass of the body and ⇢ is its density:

� ≡ Frad(v = 0)
Fg

= 3LQ

16⇡GM∗c⇢R = 0.191Q
L

L⊙
M⊙
M∗

3 g cm−3
⇢

1µ

R
; (d)

here we have written the radius in units of microns (1µ = 10
−4 cm = 10

−6 m).
Note that � is independent of the distance from the star, r.

In general Q� 1 for particles orbiting the Sun with sizes much smaller than
the wavelength at the peak of the solar spectrum, around 0.5µ. Thus � peaks
for most materials at R ∼ 0.1µ. When � > 1 the outward force from radiation
pressure exceeds the inward force from gravity, and the body is unbound.

a Some authors label the velocity-dependent term in equation (a) as part of the
Poynting–Robertson drag rather than the radiation pressure, while others label
the radial component of equation (b) as part of the radiation pressure.
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on r; then the external force per unit mass is Fext = −@Hext�@r and we
have

@Hext

@Ej

= 3�
k=1

@Hext

@rk

@rk

@Ej

= − 3�
k=1

Fext,k
@rk

@Ej

= − 3�
k=1

Fext,k
@

@Ej

rR1k.

(1.195)
Then the derivatives of the Hamiltonian in terms of the orbital elements
E = (�,$,⌦, a, e, I) are

@Hext

@Em

= 6�
j=1

@Hext

@Ej

Cjm = − 6�
j=1

Cjm

3�
k=1

Fext,k
@

@Ej

rR1k, (1.196)

where C is the Jacobian matrix28

C = � @Ej

@Em

� = @(f,!,⌦, a, e, I)
@(�,$,⌦, a, e, I) (1.197)

=

���������������

(1 + e cos f)2
j3

− (1 + e cos f)2
j3

0 0
sin f(2 + e cos f)

j2
0

0 1 −1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

���������������

.

The expression (1.196) gives the derivatives of the Hamiltonian as func-
tions of the external force components along the three coordinate axes,
Fext = ∑3

k=1 Fext,kn̂k with (n̂1, n̂2, n̂3) = (x̂, ŷ, ẑ). The results are much
simpler if we use new coordinates, Fext = ∑3

k=1 F ′ext,kn̂′k, with n̂
′
1 along the

outward radial direction through the planet; n̂′2 in the orbital plane, perpen-
dicular to the radius vector and in the direction of orbital motion; and n̂

′
3

normal to the orbital plane, positive in the direction from which the orbital
motion appears counterclockwise. Thus (n̂′1, n̂′2, n̂′3) form a right-handed

28 Evaluating this matrix is tedious but straightforward using Kepler’s equation (1.49) in the
form � = u − e sinu +$, the relation $ = ! +⌦ (eq. 1.67), and the relations (1.50) and
(1.51a) between the eccentric anomaly u and the true anomaly f .
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triad of unit vectors. The relation between these components is given by
equation (B.61), Fext,k = ∑3

p=1RT
kn
F
′
ext,n Then equation (1.196) becomes

@Hext

@Em

= − 6�
j=1

Cjm

3�
k,n=1

F
′
ext,nRnk

@

@Ej

rR1k. (1.198)

For brevity, write (F ′ext,1, F ′ext,2, F ′ext,3) = (R,T,N); thus R is the ex-
ternal force per unit mass along the radial direction, T is the azimuthal or
tangential force per unit mass in the orbital plane, and N is the force per
unit mass normal to the orbital plane. Evaluating (1.198) gives

@Hext

@�
= −Rae sin f

j
− T a

2
j

r
,

@Hext

@$
= Rae sin f

j
− T �r − a

2
j

r
� ,

@Hext

@⌦
= Tr(1 − cos I) +Nr cos(f + !) sin I,

@Hext

@a
= −Rr

a
,

@Hext

@e
= Ra cos f − T r(2 + e cos f) sin f

j2
,

@Hext

@I
= −Nr sin(f + !). (1.199)

Inserting these results in equations (1.187), we obtain Gauss’s equations,

d�

dt
= n −R2r(1 + j) + aej cos f

na2(1 + j) + T r(1 − j)(2 + e cos f) sin f
na2je

+N r tan
1
2I sin(f + !)
na2j

,

d$

dt
= −R j cos f

nae
+ T r(2 + e cos f) sin f

na2je
+N r tan

1
2I sin(f + !)
na2j

,

d⌦

dt
= N r sin(f + !)

na2j sin I
,
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da

dt
= R 2e sin f

nj
+ T 2aj

nr
,

de

dt
= R j sin f

na
+ T j(cosu + cos f)

na
,

dI

dt
= N r cos(f + !)

na2j
. (1.200)

Although we derived Gauss’s equations by assuming that the forces were
derived from a Hamiltonian, they remain valid for any forces.

Alternative derivations of Gauss’s equations are given by Brouwer &
Clemence (1961) and Burns (1976); see also Problem 1.21.

As an illustration we compute the orbital evolution of a body subjected
to radiation forces from its host star. From equation (c) of Box 1.5 the radial,
tangential and normal radiation forces per unit mass are

R = krad

r2
�1 − 2vr

c
� , T = −kradv 

r2c
, N = 0, where krad ≡ LR

2

4mc
,

(1.201)
vr and v are the radial and azimuthal velocities, and m is the mass of
the body. We substitute expressions for vr and v from equations (1.54)
and (1.55) and insert the results in Gauss’s equations for the evolution of
the semimajor axis and eccentricity. Eliminating the radius using equation
(1.29) and the eccentric anomaly using equation (1.50), we find

da

dt
= 2krad e sin f(1 + e cos f)2

na2j5
− 4krad e

2
sin

2
f(1 + e cos f)2

acj6

− 2krad(1 + e cos f)4
acj6

,

de

dt
= krad sin f(1 + e cos f)2

na3j3
− 2krad e sin

2
f(1 + e cos f)2

a2cj4

− krad(e + 2 cos f + e cos2 f)(1 + e cos f)2
a2cj4

. (1.202)

If the radiation forces are weak, the orbital elements will be relatively con-
stant over a single orbit, so we can determine their long-term evolution by
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averaging these equations over an orbit. Using equation (1.64) we have

�da
dt
� = −krad(2 + 3e2)

ac(1 − e2)3�2 , �de
dt
� = − 5krade

2a2c(1 − e2)1�2 . (1.203)

The exact solution of these equations is described in Problem 1.22, or see
Wyatt & Whipple (1950). For circular orbits, the equation for �da�dt� is
easily integrated to give

a(t) = a0�1 − t

trad
�1�2, where trad = mc

2
a
2
0

LR2
. (1.204)

Here a0 is the semimajor axis at the initial time t = 0. In terms of �, the
ratio of the radiation pressure to the gravitational attraction from the host
star (eq. d of Box 1.5),

trad = a
2
0c

4GM∗� =
400.5 yr

�
� a0

1 au
�2 M⊙

M∗ . (1.205)

Since we have orbit-averaged the equations of motion, these results are only
valid if the evolution is slow, that is, if �da�dt� � a�P , where P is the orbital
period.



Chapter 2

Numerical orbit integration

2.1 Introduction

The trajectories in any system containing more than one planet cannot be
determined analytically, except in special cases. Therefore numerical orbit
integration is indispensable for celestial mechanics.

A brief and readable introduction to numerical integration of differential
equations is given by Press et al. (2007). For more comprehensive treat-
ments see Hairer et al. (1993, 2006) and Blanes & Casas (2016).

The equation of motion for a planetary system can be written in the
general form

dz

dt
= f(z, t), (2.1)

where t is the time and z is a vector representing the coordinates of the
system in phase space. The trajectory or orbit of a system is the curve z(t)
that is determined by equation (2.1). If we know a single point on the curve,
say z(t0), the entire trajectory can be determined by solving this equation.

The simplest example is a single test particle with position r and velocity
v that orbits in a gravitational potential�(r, t). Its phase-space position can
be written1 as a 6-dimensional vector z ≡ (r,v). The right side of equation

1 This differs from the conventional definition of phase space, in which the momentum is mv
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(2.1) is then
f(z, t) = [v,−∇�(r, t)] . (2.2)

This equation of motion can equally well be written as a second-order dif-
ferential equation

d
2
r

dt2
= −∇�(r, t); (2.3)

we shall call this the Newtonian form of the equation of motion, even
though the concept of force as the gradient of a scalar potential was de-
veloped after Newton’s death.

A more general example is motion in a dynamical system governed by a
Hamiltonian H(q,p, t) where q and p are vectors of canonical coordinates
and momenta. Then z = (q,p), and according to Hamilton’s equations
(D.12) the right side of equation (2.1) is

f(z, t) = �@H
@p

,−@H
@q
� . (2.4)

The equation of motion (2.2) is a special case in which q = r, p = v and
H(q,p, t) = 1

2p
2 +�(q, t).

The demands of celestial mechanics are varied enough that no single
numerical method for solving the differential equation (2.1) always works
well. Consider the following example problems:

Solar-system ephemeris Fit the trajectories of the Sun, Moon, Earth, the
other solar-system planets and satellites, and the most massive asteroids to
determine their orbital elements and masses. The relevant data include radio
ranges to interplanetary spacecraft, laser ranges to the Moon, radar ranges to
Mercury and Venus, and optical observations of asteroids, the outer planets,
and their satellites. The numerical errors in the integrations should be less
than a centimeter (cm) over 100 years or more, to ensure that they are much
smaller than the residuals from the fits (currently a few cm for the Moon and
a few tens of meters for the terrestrial planets Mercury, Venus and Mars).
For this task, the integration algorithm must be extremely precise; on the

rather than v. See footnote 10 of Chapter 1.
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Box 2.1: Extended phase space
The differential equation (2.1) is said to be autonomous if the right side is in-
dependent of the time t. Any equation such as (2.1) can be converted to an au-
tonomous one. To do this, define a vector Z ≡ (z, t) and a fictitious time ⌧ ,
related to the time t by dt = g(z)d⌧ (note that the fictitious time may be different
for different trajectories at the same instant of real time t). Then the equation

dZ

d⌧
= F(Z), where F(Z) ≡ g(z) [f(Z),1] (a)

has the same solution as (2.1) but is autonomous (because t is now a component
of Z rather than the independent variable). We are free to choose any function for
g(z), and if g(z) = 1 the fictitious time is the same as the true time.

Similarly, a time-dependent Hamiltonian H(q,p, t) can be converted to an
autonomous Hamiltonian �(Q,P) in an extended phase space with fictitious
time ⌧ . The extended phase space has coordinates and momenta Q ≡ (Q0,q),
P ≡ (P0,p), where Q0 ≡ t. If we set

�(Q,P) ≡ g(q,p)[H(q,p,Q0) + P0], (b)

then Hamilton’s equations for the evolution of q, p and Q0 are

dq

d⌧
= @�

@p
= g @H

@p
+ @g

@p
(H + P0), dQ0

d⌧
= @�

@P0

= g, (c)

dp

d⌧
= −@�

@q
= −g @H

@q
− @g

@q
(H + P0), dP0

d⌧
= − @�

@Q0

= −g @H

@Q0

. (d)

The equation for dQ0�d⌧ says that

dt = g(q,p)d⌧. (e)

Using this result to eliminate d⌧ in favor of dt, the remaining equations become

dq

dt
= @H

@p
+1
g

@g

@p
(H+P0), dp

dt
= −@H

@q
−1
g

@g

@q
(H+P0), dP0

dt
= −@H

@t
. (f)

There is a simple interpretation of the momentum P0. Since the Hamiltonian
�(Q,P) is independent of ⌧ it is conserved along a trajectory. Let E(t) be the
energy on that trajectory, E(t) =H[q(t),p(t), t]. If we choose P0 = −E at the
initial point of the trajectory, then � = 0 at that point so � vanishes on the whole
trajectory. Therefore P0(t) = −E(t) at all times. In words, the momentum P0

conjugate to the time coordinate Q0 is minus the energy.
If P0 = −E so � = 0, or if g(q,p) = const, then the first two of equations

(f) reduce to the original Hamilton’s equations (2.1) and (2.4).
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other hand the speed of the calculation is not a major consideration, since
the integration interval is only a few thousand orbital periods for the Moon
and much less for the other bodies.2

Long-term stability of planetary systems Determine the stability of an
exoplanet system over the lifetime of the Galaxy, ∼ 10Gyr. Exoplanets can
have orbital periods as short as a few hours, so we must follow up to 10

13

orbits of a planet, which requires the fastest possible integration algorithm.
On the other hand the masses and orbital parameters of exoplanets are not
well known, so accuracy is not so important as long as the qualitative fea-
tures of the orbital evolution are correct.

Evolution of cometary orbits Follow the orbits of thousands of comets
from the Oort cloud as they pass through the Sun’s planetary system. A
typical Oort-cloud comet has a semimajor axis of ∼ 30000 au and thus an
orbital period of 5Myr (§9.5). However, if it has a close encounter with
Jupiter, its orbital elements can change dramatically within a few hours.
This task requires a fast and accurate algorithm that can follow occasional
changes in an orbit on timescales as short as 10−10 orbital periods.

Evolution of the spin of Mars The current obliquity of Mars—the angle
between the spin and orbital angular-momentum vectors—is 25.19○, and the
spin angular momentum precesses with a period of 1.70×105 yr, mostly due
to torques from the Sun. If there were no other planets in the solar system,
the obliquity and precession rates would be constant. However, gravitational
torques from other planets cause the obliquity to vary chaotically between
nearly zero and almost 65○ (see §7.1.2). To follow the history of the Martian
obliquity requires integrating both the equations of motion of the planets and
the rigid-body equations of motion for Mars for the age of the solar system,
4.57Gyr.
2 High-precision ephemerides are currently available from several sources: the Harvard–

Smithsonian Center for Astrophysics in Cambridge, Massachusetts (Chandler et al. 2021),
the Institute of Geodesy in Hannover (Müller et al. 2019), the Jet Propulsion Laboratory
in Pasadena (Park et al. 2021), the Paris Observatory (Viswanathan et al. 2018) and the
Institute of Applied Astronomy in St. Petersburg (Pitjeva & Pitjev 2014).
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Over the last several decades the capabilities of scientific computing
have grown exponentially, mostly through two trends: declining cost of
computer memory and improvements in hardware and software for parallel
computing. Unfortunately, neither of these trends has a big impact on most
problems in celestial mechanics: the number of bodies is small enough that
the memory requirements are small, and following a trajectory is an intrin-
sically serial calculation that is difficult to parallelize.

Many of the integrators described in this chapter are implemented in
open-source software packages, such as SciPy for python. The most sophis-
ticated general-purpose software for orbit integrations is REBOUND (Rein
& Liu 2012) at https://rebound.readthedocs.io/en/latest/#. REBOUND was
used for all the long orbit integrations in this book.

2.1.1 Order of an integrator
Numerical integration produces a sequence of phase-space positions zn at
times tn. To keep the exposition simple, we assume at first that the timestep
h is fixed, so tn = t0 + nh.

Given the position zn, and possibly information from earlier positions
zn−1,zn−2, and so on, we are seeking a formula—an integrator—that gen-
erates a new phase-space position zn+1 that approximates the trajectory at
tn+1. The local error3 of the integrator is the difference between zn+1 and
the phase-space position that would be found by an exact solution of the
equation of motion, starting from the initial condition zn at tn. The order
of the integrator is k if the local error varies with timestep as O(hk+1). It is
prudent to assume the worst-case scenario in which the error accumulates at
every step, in which case the error after a fixed time interval �t = Nh (the
global error) can be as large as O(Nh

k+1) = �tO(hk). An integrator is
only useful if the global error approaches zero as the timestep approaches
zero, which requires k > 0.

High order does not necessarily imply high accuracy. The local error in
a k

th-order integrator typically involves derivatives of order k + 1 in z(t).
3 Sometimes called the local truncation error in contradistinction to roundoff error, which

arises because arithmetic operations cannot be carried out exactly in a computer for most
real numbers. We discuss roundoff error in §2.7, assuming for now that it is negligible.

https://rebound.readthedocs.io/en/latest/#
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Thus, if the solution z(t) varies rapidly, its high-order derivatives can be
large enough that the local error actually grows as the order of the integrator
is increased beyond some critical value.

The relative performance of integrators is often measured by comparing
the local error at a given timestep h. This may not be a fair comparison,
in part because the computing time needed for a single timestep can be
very different for different integrators. Since the most expensive part of the
calculation is usually the evaluation of the force −∇� (eq. 2.2), it is fairer
to compare the local error at an “effective” timestep, which is the mean
interval between force evaluations. For example, the classical Runge–Kutta
integrator in equation (2.65) has four force evaluations per timestep, so its
effective timestep is 1

4h.
Numerical methods for integrating ordinary differential equations are

simpler in celestial mechanics than in most other subjects in one respect:
many important problems can be done with a fixed timestep, such as inte-
grations of multi-planet systems like the solar system. Nevertheless, some
applications require an adaptive timestep, which shrinks or grows depend-
ing on the changing behavior of the orbit. A challenging task requiring
an adaptive timestep is to follow a particle on a highly eccentric orbit; for
example, the typical eccentricity of comets coming from the Oort cloud is
e = 0.9999 (Problem 2.9).

2.1.2 The Euler method
The simplest integrator is the Euler method, in which the equation of mo-
tion (2.1) is approximated by

zn+1 = zn + hf(zn, tn). (2.5)

The method is explicit, which means that zn+1 can be computed directly
from zn. Later we will encounter implicit methods, in which a nonlinear
equation involving both zn and zn+1 has to be solved at each step.

We now determine the order of the Euler method. The exact trajectory
z(t) that passes through zn can be expanded in a Taylor series around tn,

z(t) = zn + ż(tn)(t − tn) + 1
2 z̈(tn)(t − tn)2 +O[(t − tn)3]. (2.6)
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Figure 2.1: The absolute value of the fractional energy error as a function of time
during integrations of a Kepler orbit with eccentricity e = 0.2. Each integrator
is allowed 200 force evaluations per orbit. The integrations are carried out using
the Euler and modified Euler methods (eqs. 2.9 and 2.21), which are first-order;
leapfrog, which is second-order (eq. 2.29); and the classical fourth-order Runge–
Kutta method (eq. 2.65). The energy error for modified Euler and leapfrog oscillates
between positive and negative values; to reduce clutter these curves are truncated
below 10% of the maximum error. Note the poor performance of the Euler method.
In contrast, the modified Euler method and leapfrog exhibit no long-term growth in
the error.
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Since this is a solution of equation (2.1) we must have ż(tn) = f(zn, tn) so

z(t) = zn + f(zn, tn)(t − tn) + 1
2 z̈(tn)(t − tn)2 +O[(t − tn)3]. (2.7)

The difference between zn+1 and the exact trajectory at tn+1 = tn + h is
obtained by subtracting (2.7) from (2.5):

zn+1 − z(tn+1) = −1
2h

2
z̈(tn) +O(h3). (2.8)

Thus the integrator is first-order.
The Euler method provides a prototype for more powerful integrators,

but should never be used for practical calculations. To illustrate why, we
follow the orbit of a test particle in a point-mass potential. In this system,
the motion is governed by equations (2.1) and (2.2) with �(r) = −GM�r,
and the Euler method is

rn+1 = rn + hvn, vn+1 = vn − h GM

�rn�3 rn. (2.9)

To measure the accuracy of the integrator we use the fractional energy error�En�E0 − 1�, where En = 1
2v

2
n
− GM��rn�; since the energy is conserved

by the equation of motion, a small fractional energy error is necessary (but
not sufficient) for an accurate integrator. Figure 2.1 shows the results for an
orbit with eccentricity e = 0.2, integrated with 200 steps per orbital period.
The behavior of the Euler method is remarkably bad: in less than 100 orbits
the fractional energy error is of order unity.4

The behavior of the Euler method can also be investigated analytically
using the simple harmonic potential, �(r) = 1

2!
2
r
2—although this is less

realistic than the Kepler potential for our purposes, the performance of most
integrators in the harmonic and Kepler potentials is qualitatively similar. If
we treat the vector z = (r,v) as a column matrix,5 the equation of motion
can be written

ż = f(z) =Az, where A ≡ � 0 I−!2
I 0

� . (2.10)

4 The fractional error En�E0 − 1 asymptotically approaches −1 because the semimajor axis
an of the orbit grows without limit, so the energy En = − 1

2
GM�an → 0.

5 Our notation does not distinguish whether vectors such as z are 1 ×N column matrices or
N × 1 row matrices if the meaning is clear from the context.
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Here 0 and I are the 3 × 3 zero and identity matrices. The general solution
of this matrix differential equation is

r(t) = 1
2r0
�ei!t + e−i!t� − 1

2 i!
−1
v0�ei!t − e−i!t�,

v(t) = 1
2 i!r0

�ei!t − e−i!t� + 1
2v0�ei!t + e−i!t�, (2.11)

where r0 and v0 are the position and velocity at t = 0. Of course, despite
the complex numbers in equations (2.11), r(t) and v(t) are always real.

Using this notation, Euler’s method is

zn+1 = zn + hAzn. (2.12)

The general solution of this matrix equation is a linear combination of se-
quences of the form

zn = na, (2.13)

where the scale factor  is a nonzero (possibly complex) constant. Substi-
tuting (2.13) into (2.12), we have

 − 1
h

a =Aa. (2.14)

Thus a must be an eigenvector of A, with ( − 1)�h the corresponding
eigenvalue. The eigenvalues � are the solutions of det(A − �I) = 0, where
“det” is shorthand for the determinant. It is simple to show that there are
two eigenvalues, �± = ±i!. Then zn = n+a+ + n−a−, where

± = 1 ± i!h, a± = � c±±i! c± � , (2.15)

and c± is a 1 × 3 column vector determined by the initial conditions.
These results can be rewritten to give the position and velocity at step n

in terms of their values at step 0,

rn = 1
2r0
�n+ + n−� − 1

2 i!
−1
v0�n+ − n−�,

vn = 1
2 i!r0

�n+ − n−� + 1
2v0�n+ + n−�. (2.16)
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Comparing equations (2.11) and (2.16), we see that the Euler method
simply replaces the exponential exp(±i!h) by the scale factor ± = 1 ±
i!h. The difference between the two is O(h2), as expected since the Euler
method is first-order. A less obvious but equally important difference is
that � exp(±i!h)� = 1 but �±� = (1 + !2

h
2)1�2 > 1. Equation (2.16) shows

that rn and vn are the sum of terms that vary in magnitude as �±�n, so
on average the radius �rn� and speed �vn� grow as (1 + !2

h
2)n�2. Setting

n = (t− t0)�h, we find that the radius and speed tend to grow exponentially,
as exp[�(t − t0)] with

� = 1

h
log �±� = 1

2h
log(1 + !2

h
2) = 1

2!
2
h +O(h3). (2.17)

This exponential growth is the cause of the poor performance of the Euler
method in Figure 2.1.

The implicit or backward Euler method differs from the explicit Euler
method (2.5) in that the force is evaluated at the end of the timestep rather
than the start:

zn+1 = zn + hf(zn+1, tn+1). (2.18)

This is an implicit equation for zn+1, which is solved iteratively starting
from a first guess for zn+1 that can be provided by the explicit Euler method.
The qualitative behavior of implicit Euler can be found without any new
calculations. We simply rewrite equation (2.18) as

zn = zn+1 − hf(zn+1, tn+1), (2.19)

which shows that implicit Euler with timestep h is equivalent to explicit
Euler with timestep −h. Thus if the radius or energy grows rapidly with
explicit Euler in a given system, it will decay just as fast with implicit Eu-
ler. Needless to say, growth or decay of this kind is unacceptable numerical
behavior in a conservative system such as the two-body problem. For dis-
sipative systems, implicit integrators are usually more reliable than explicit
ones, but this is not true for orbit integrations.
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2.1.3 The modified Euler method
We can do better—much better—than the Euler method in a large class of
dynamical systems. The equations describing the motion of a test particle
in a potential �(r, t) are (2.1) and (2.2), and for these equations the Euler
method is

rn+1 = rn + hvn, vn+1 = vn − h∇�(rn, tn), (2.20)

with tn+1 = tn + h. The modified Euler method is

rn+1 = rn + hvn, vn+1 = vn − h∇�(rn+1, tn + h). (2.21)

The only change is that the force is evaluated at the new position and time
rn+1 and tn+1 rather than the old position and time rn and tn. The key
feature that allows us to make this modification without solving a nonlinear
equation at each step is that the time derivative of the position r depends
only on the velocity v, while the derivative of v depends only on r (and the
time).

The performance of the modified Euler method for a test particle in a
Kepler potential is shown in Figure 2.1. Although modified Euler is still
only a first-order method, the rapid growth in energy error seen in the Euler
method is completely absent: the energy error oscillates rather than growing.
The sharp downward cusps in the error arise because we are plotting the
logarithm of the absolute value of the error, which diverges to −∞ as the
oscillations pass through zero. With a larger timestep, the amplitude of the
oscillations is larger but there is still no growth in the maximum error, no
matter how long the integration continues.

The secret of this success is illuminated by examining the harmonic os-
cillator, as we did in equations (2.10)–(2.17). Using the same notation, the
modified Euler method can be written

zn+1 = zn + hAmodzn, where Amod ≡ � 0 I−!2
I −!2

hI
� . (2.22)

The solution of this equation is a linear combination of sequences of the
form (2.13), with scale factor

± = 1 − 1
2!

2
h
2 ± i!h�1 − 1

4!
2
h
2�1�2. (2.23)
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In this case it is simple to show that �±� = 1, independent of the timestep
h so long as h ≤ 2�! (which is much larger than the timesteps used in
practice). Thus, remarkably, the exponential growth in �rn� and �vn� that
arises with the Euler method is eliminated completely in the modified Euler
method.

It is useful to think of a single timestep of the modified Euler method
as the composition of two separate steps. First we advance the position at
constant velocity, which we represent by an operator

Dh(r,v) = (r + hv,v); (2.24)

this is called the drift operator since the particle drifts without accelerat-
ing. The drift operator also advances the time by the timestep h. Then we
advance the velocity at constant position and time, as represented by the
operator

Kh(r,v) = [r,v − h∇�(r, t)], (2.25)

called the kick operator since it gives an instantaneous kick or impulse to
the velocity without affecting the position. Note that

Dh�2Dh�2 = D2
h�2 = Dh, D−h = D−1h ; (2.26)

with similar relations for the kick operator Kh.
The modified Euler method (2.21) can be written

zn+1 = (rn+1,vn+1) = KhDhzn; (2.27)

here the operators are applied sequentially, starting at the right. More pre-
cisely, (2.27) is the “drift-kick” version of modified Euler. Equally good is
the “kick-drift” integrator, in which a single timestep has the form

zn+1 = DhKh zn. (2.28)
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2.1.4 Leapfrog

A single step of the leapfrog integrator can be written6

r
′ = rn + 1

2hvn,

vn+1 = vn − h∇�(r′, tn + 1
2h),

rn+1 = r′ + 1
2hvn+1. (2.29)

These equations can be written in terms of the drift and kick operators as

zn+1 = Dh�2KhDh�2 zn, (2.30)

so this method is also called “drift-kick-drift” leapfrog. An equally good
alternative is “kick-drift-kick” leapfrog,

zn+1 = Kh�2DhKh�2zn. (2.31)

Leapfrog is a second-order method, as can be shown using an approach
analogous to equations (2.6)–(2.8).

The performance of leapfrog for a test particle in a Kepler potential is
shown in Figure 2.1. As with the modified Euler method, the energy er-
ror is oscillatory rather than growing. The maximum error of leapfrog is
much smaller than the maximum error of modified Euler, as expected since
leapfrog is second-order rather than first-order.

An integration of P steps of drift-kick-drift leapfrog can be written

zP = (Dh�2KhDh�2)P z0. (2.32)

Using equations (2.26), this result can be rewritten in several equivalent
forms (recall that the operators are applied from right to left):

zP = D−h�2(DhKh)PDh�2 z0
= Dh�2(KhDh)PD−h�2 z0

6 Leapfrog is also known as the Störmer or the Verlet method, although the concepts can be
traced back to Newton (Hairer et al. 2006).
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= Dh�2Kh�2(Kh�2DhKh�2)P−1Kh�2Dh�2 z0. (2.33)

These formulas show that apart from one or two steps at the beginning and
end of the integration, the drift-kick and kick-drift forms of the modified Eu-
ler method and the drift-kick-drift and kick-drift-kick forms of leapfrog are
all identical. They also show, remarkably, that a multistep integration using
modified Euler can be improved in accuracy from first-order to second-order
simply by adding two drift steps of opposite sign before and after the inte-
gration.7

Despite its simplicity, the leapfrog integrator is widely used to study the
N -body problem in molecular dynamics, cosmology, galaxy formation and
evolution, and so forth. One of its advantages for large N , where computer
memory is a limiting factor, is that the phase-space positions can be updated
at each timestep without any temporary additional storage: following equa-
tions (2.29), the position rn is replaced by r

′, then the velocities vn are
replaced by vn+1, then r

′ is replaced by rn+1.
These results prompt an obvious but deep question: what properties of

the modified Euler and leapfrog integrators lead to oscillatory energy errors
rather than growing ones, and how can we design more accurate integrators
with similar properties? These issues are the subject of the next section.

2.2 Geometric integration methods

The goal of general-purpose integrators is to minimize the local error—
the difference accrued over a single timestep between the true phase-space
position and the position predicted by the integrator. However, not all errors
are equally important.

To illustrate this point, suppose that two integrators A and B having the
same timestep h are used to follow a circular orbit with semimajor axis a in
the gravitational field of a point mass M . Integrator A makes an error ✏ in
the azimuthal coordinate or orbital phase at each timestep, but is otherwise
exact. Then the phase error after an integration time T , requiring N =
7 The application of these extra steps to improve the order of an integrator is called symplectic

correction (Wisdom et al. 1996).



2.2. GEOMETRIC INTEGRATION METHODS 85

Box 2.2: Taylor-series methods
The Taylor series for the trajectory z(t + h) is

z(t+h) = z(t)+h d

dt
z(t)+ h

2

2

d
2

dt2
z(t)+�+ h

n

n!

d
n

dtn
z(t)+O(hn+1). (a)

If we discard all terms in the Taylor series that are O(h2) or higher and use (2.1)
to eliminate dz�dt then z(t+h) = z(t) +hf[z(t), t], which is simply the Euler
method (2.5). A natural approach to constructing more accurate integrators is to
include more terms in the series. For example, including the next term yields

zj(t + h) = zj(t) + hfj + 1

2
h
2 ��

k

fk

@fj

@zk

+ @fk

@t
� , (b)

where f and its derivatives are all evaluated at [z(t), t].
Similar formulas can be derived to any desired order. However, the func-

tions on the right side rapidly become quite complicated, particularly if the phase
space has many degrees of freedom. Because the other integrators described in
this chapter are usually much simpler at a given order, Taylor-series methods have
only seen limited use in celestial mechanics. This situation is changing as com-
puter algebra now enables Taylor-series expansions of the gravitational N -body
problem to arbitrarily high order (e.g., Hayes 2008; Biscani & Izzo 2021).

T �h steps, is (��)A = N✏ = T ✏�h. In contrast, integrator B makes a
fractional error ✏ in the semimajor axis at each timestep. Since the mean
motion n is equal to (GM)1�2a−3�2 by Kepler’s law, this semimajor axis
error corresponds to an error in n of −3

2n✏ per step or −3
2n✏�h per unit

time. The orbital phase grows in time as d��dt = n, so the error in phase
for integrator B grows as d

2(��)B�dt2 = −3
2n✏�h. So long as ✏ is small

enough that n is approximately constant, this is easily integrated to give(��)B = −3
4n✏T

2�h. These arguments show that local phase errors lead to
a global phase error that grows linearly with the integration time T , while
local semimajor axis errors lead to much worse behavior: a global phase
error that grows quadratically with T . For example, with an integration
time T = 10

10 years, an orbital period of 1 year and a timestep h = 0.01
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years these estimates yield (��)A = 1 × 1012✏ and (��)B = −5 × 1022✏,
larger by a factor of more than 10

10.
As this example illustrates, semimajor axis or energy errors are far more

dangerous than phase errors in long orbit integrations, but general-purpose
integrators do not distinguish between the two. Similarly they do not distin-
guish cumulative errors from oscillatory errors, although the former are far
more damaging in long integrations.

How do we use this insight to design integrators? One powerful ap-
proach is through geometric integrators, which preserve (some of) the ge-
ometric properties of the phase-space flow described by the original equa-
tion of motion. Geometric integrators accept a larger local error at the end
of one timestep to ensure that the geometrical properties of the flow in phase
space are the same in the numerical trajectory and the true trajectory.

A simple example of a geometric integrator would be one that conserves
the total energy and angular momentum of an N -body system. In practice,
such integrators have not proved to be very useful in celestial mechanics.
One reason is that smaller planets may contribute very little to the total en-
ergy and angular momentum. For example, because of its high eccentricity
and short orbital period Mercury is the most difficult planet to follow accu-
rately in numerical integrations of the solar system, yet it contains less than
0.2% of the orbital energy in the solar system and an even smaller fraction
of the angular momentum.

Most geometric integrators are designed to inherit one or both of two
specific properties of the phase-space flow: in reversible integrators, a par-
ticle returns to its exact starting point in phase space if its velocity is re-
versed; while in symplectic integrators, the transformation from initial to
final phase-space position is symplectic or canonical.

For book-length treatments of geometric integrators see Hairer et al.
(2006) and Blanes & Casas (2016).

2.2.1 Reversible integrators
In an autonomous dynamical system, the equation of motion (2.1) reads
dz�dt = f(z); that is, the right side has no explicit time dependence (see
Box 2.1). In an inertial reference frame, isolated gravitational N -body sys-
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tems are autonomous. They are also reversible, by which we mean the fol-
lowing. Suppose the initial position and velocity of a particle are (r0,v0)
and we integrate the trajectory for an interval h, at which point its phase-
space coordinates are (r1,v1). Now reverse the velocity to obtain phase-
space coordinates (r1,−v1) and integrate again for an interval h. Then
the final position and velocity will be (r2,−v2). We now reverse the vel-
ocity again, so the particle is at (r2,v2). The integrator is reversible if
the particle has now returned to its original phase-space position, that is, if(r2,v2) = (r0,v0).

We now restate this concept more generally. The trajectory of a dynam-
ical system is its position z(t) in phase space as a function of time t. For
any autonomous dynamical system we may define a nonlinear operator or
propagator Gh that maps z(t) to z(t + h). It follows from the definition
that G0 = I, the identity operator, and that

Gh+k = GhGk. (2.34)

Setting k = −h, we conclude that

G−h = G−1h . (2.35)

We define the time-reversal operator T such that Tz is the phase-space
position that corresponds to z if the direction of time is reversed. For ex-
ample if we use phase-space coordinates in which z = (z1,z2), where z1

represents position and z2 represents velocity, then T(z1,z2) = (z1,−z2).
Since T is linear in these coordinates, it can be written as a matrix:

T � z1

z2
� = � I 0

0 −I � � z1

z2
� . (2.36)

To keep the discussion general, we shall make the weaker assumption that
T is a linear operator, that is, T(z1 + z2) = Tz1 + Tz2 and T(cz) = cTz.
This assumption is not valid in all phase-space coordinates. For example, in
Delaunay variables

T(⇤, L,Lz, `,!,⌦) = (⇤, L,−Lz,−`,⇡ − !,⇡ +⌦). (2.37)
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Reversing the direction of time twice has no effect, so in any coordinates
T2 = I.

An autonomous dynamical system is time-reversible or just reversible
if (Arnold 1984; Roberts & Quispel 1992)

GhTGh = T. (2.38)

Because of equation (2.35), an equivalent statement is

TGh = G−hT. (2.39)

What properties of the equation of motion are required for reversibility?
By applying equation (2.34) repeatedly, the operator Gh can be rewritten as(Gh�N)N for any integer N and it is straightforward to show by induction
that if Gh�N is reversible, then Gh must be as well. By letting N → ∞
we conclude that it is sufficient to show that Gh is reversible for very small
timesteps h. If the equation of motion is dz�dt = f(z), then

Gh = I + hF +O(h2), (2.40)

where F is the nonlinear operator defined by Fz = f(z). The system is
reversible if and only if equation (2.38) is satisfied up to terms of order h;
since T is linear this requires

TF + FT = 0 or Tf(z) = −f(Tz). (2.41)

For example, in the differential equations (2.1) and (2.2) we have z =(r,v) and f(z) = [v,−∇�(r)]. Using equation (2.36), Tz = (r,−v)
and Tf(z) = [v,∇�(r, t)], while f(Tz) = [−v,−∇�(r)]. Thus equation
(2.41) is satisfied and the system is reversible.

We now apply these concepts to integrators. Let �h be the operator
corresponding to an integrator with timestep h, that is, if the phase-space
position at time t is z then the position at the next timestep t+h is z′ = �hz.

The definition of an integrator with negative timestep needs some at-
tention. In principle there need be no relation between �h and �−h; for
example, �h could be leapfrog for h > 0 and the modified Euler method
for h < 0. However, it is natural to assume that �hz is a smooth (analytic)
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function of h, that is, it has a Taylor-series expansion in h that is valid for
both positive and negative h. Moreover, integrating a reversible dynamical
system with timestep h > 0 should give the same result as integrating the
time-reversed system with timestep −h, that is,

T�h = �−hT or �−1−hT�h = T. (2.42)

We say that an integrator is normal if it satisfies this constraint when ap-
plied to a reversible dynamical system, as defined by equation (2.41). For
example, the Euler method (eq. 2.5) is �h = I + hF so T�h = T + hTF and
�−hT = (I − hF)T = T − hFT; then the relation (2.41) shows that it is nor-
mal. Similarly, it is straightforward to show that the drift and kick operators
(2.24) and (2.25) are normal. Moreover, if Ah and Bh are normal then so
is AhBh. Thus the modified Euler method and leapfrog are both normal,
since they are composed of kick and drift operators. In fact almost all of the
integrators that we encounter in this chapter are normal.

An integrator is said to be symmetric if

�−h = �−1h . (2.43)

The analogous equation (2.35) for autonomous systems with continuous
time holds automatically. However, (2.43) does not hold automatically for
integrators. For example, the drift-kick modified Euler method (2.27) has
�h = KhDh. From the second of equations (2.26) and its analog for the kick
operator we have �−1−h = D−1−hK−1−h = DhKh, which is the kick-drift integrator
(2.28), not drift-kick. Thus the modified Euler method is not symmetric.
Another example is the Euler method (2.5), which has �hz = z + hf(z); in
this case �−1−h is the backward Euler method (2.18). Thus the Euler method
is also not symmetric. The simplest symmetric method is leapfrog.

We now show that any symmetric integrator must have even order. If an
integrator �h has order k, then it must be related to the propagator Gh that
describes the exact flow by

�h = Gh + hk+1E +O(hk+2), (2.44)

where h
k+1Ez is the dominant error term for a single timestep h starting at

z. Similarly,
�−h = G−h + (−h)k+1E +O(hk+2). (2.45)
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Therefore

�−h�h = I + (−h)k+1EGh + hk+1G−hE +O(hk+2). (2.46)

Since Gh = I +O(h), we have

�−h�h = I + [(−h)k+1 + hk+1]E +O(hk+2). (2.47)

If the integrator is symmetric, the right side must equal the identity, so the
quantity in square brackets must vanish, which requires that the order k is
even.

By analogy with equation (2.38), an integrator is reversible if

�hT�h = T. (2.48)

Comparing this condition with equations (2.42) and (2.43), we conclude
that a normal integrator is reversible if and only if it is symmetric. Since
leapfrog is symmetric and normal it is also reversible.

Of course, reversibility of an integrator is only a useful property if the
underlying dynamical system is reversible, that is, if it satisfies (2.38) or
(2.41).

Any normal, non-symmetric integrator can be used to construct a time-
reversible one: it is straightforward to show from equation (2.42) that if
�h is normal, then �−1−h�h is a reversible integrator with timestep 2h. For
example, let �h = KhDh, the drift-kick version of modified Euler. Just be-
low equation (2.43) we showed that �−1−h = DhKh, so �−1−h�h = DhK2hDh,
which is the drift-kick-drift leapfrog operator with timestep 2h (this is an-
other proof that leapfrog is reversible). Similarly, If Eh denotes the Euler
method, then E−1−hEh is the trapezoidal rule (2.75), an implicit integrator that
is reversible. See Problem 2.4 for another example.

2.2.2 Symplectic integrators
The motion of most systems relevant to celestial mechanics is governed by
a Hamiltonian H(q,p, t). In Hamiltonian systems the flow of trajectories
through phase space is strongly constrained; for example, Liouville’s the-
orem tells us that phase-space volumes are conserved by the flow (see the
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discussion surrounding eq. D.47). Thus integrators derived from Hamilto-
nians, by the methods described below, may be able to follow Hamiltonian
systems more accurately than general-purpose integrators.

Let �h be an integrator with timestep h, so a single timestep of the inte-
grator is z′ = �hz. Its Jacobian matrix �h(z) is defined by (cf. eq. D.42)

�h,ij(h,z) ≡ @z′i
@zj

= @

@zj

[�h(z)]i. (2.49)

If the integrator is derived from a Hamiltonian then its Jacobian matrix must
be symplectic, that is, it must satisfy the symplectic condition (D.46),

�
T
h
J�h = J, (2.50)

where J is the symplectic matrix (D.14) and “T” denotes the transpose.
Integrators satisfying this condition are known as symplectic integrators.8

The symplectic condition (2.50) superficially resembles the reversibil-
ity condition (2.48), but there are important differences. In particular, re-
versibility is a feature of an individual orbit specified by the operator �h,
while symplecticity is a feature of a family of nearby orbits because it de-
pends on the Jacobian matrix of �h.

For an example of a symplectic integrator, consider a system in which
the canonical coordinates and momenta are q = r and p = v, the position
and velocity, and the Hamiltonian is H(r,v, t) = 1

2v
2+�(r, t). To construct

an integrator with timestep h, we introduce the periodic delta function de-
fined by equation (C.9),

�h(t) = h ∞�
k=−∞

�(t − kh). (2.51)

Over time intervals much longer than h, the average value of the periodic
delta function is nearly unity, which suggests that so long as the orbital
period is much larger than the timestep we can approximate the Hamiltonian
by

Hnum(r,v, t) = 1
2v

2 + �h(t − t0 − fh)�(r, t), (2.52)
8 Yoshida (1993) gives a clear review of early work on symplectic integrators.
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where t0 is the initial time of the integration and f is a constant between 0
and 1. We call this the numerical Hamiltonian. The corresponding equa-
tions of motion are
dr

dt
= @Hnum

@v
= v, dv

dt
= −@Hnum

@r
= −�h(t − t0 − fh)∇�(r, t). (2.53)

We now solve these to determine r(t) and v(t) over the interval from tn =
t0 + nh to tn+1 = t0 + (n + 1)h. Let t′ = tn + fh; t′ must lie between tn

and tn+1. Let t′− and t
′+ denote times slightly before and after t′. Then from

t = tn to t = t
′− we have �h(t − t0 − fh) = 0, so the velocity is constant

at vn and the position advances to r
′ ≡ rn + fhvn. From t = t

′− to t = t
′+

the change in position is negligible but the velocity is subject to an impulse
�v = −∇�(r′, t′) ∫ t

′+
t′− dt �h(t− t′) = −h∇�(r, t′). Thus r(t′+) = r(t′−) = r′

and v(t′+) = v(t′−)−h∇�(r′, t′). Finally, between t
′+ and tn+1 the position

advances to rn+1 = r
′ + (1 − f)hv(t′+) and the velocity is constant, so

vn+1 = v(t′+). Summarizing, the position and velocity at tn+1 = tn + h are
given by

r
′ = rn + fhvn,

vn+1 = vn − h∇�(r′, tn + fh),
rn+1 = r′ + (1 − f)hvn+1. (2.54)

By letting f → 1 we recover the drift-kick modified Euler method of equa-
tion (2.27). If f → 0 we obtain the kick-drift modified Euler method (2.28),
and if f = 1

2 we obtain the drift-kick-drift leapfrog integrator (2.29). There-
fore all of these integrators and operators can be derived from the Hamil-
tonian (2.52), and thus all are symplectic. Moreover the composition of
symplectic operators is symplectic (see discussion in the paragraph follow-
ing eq. D.47), so other compositions of the kick and drift operators such as
kick-drift-kick leapfrog are symplectic as well.

An alternative proof that these integrators are symplectic is based on the
Jacobian matrices of the drift and kick operators Dh (eq. 2.24) and Kh (eq.
2.25). In N -dimensional space, these are the 2N × 2N matrices

D(h) = � I hI

0 I
� , K(h, r, t) = � I 0−h� I

� . (2.55)
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Here 0 and I are the N × N zero and identity matrices, and �(r, t) is
the Hessian of the potential �(r, t), that is, the N × N matrix with en-
tries �ij(r, t) = @2��@ri@rj . It is straightforward to show that D(h) and
K(h, r, t) satisfy the symplectic condition (2.50). Therefore the operators
Dh and Kh are symplectic, and so are compositions of these operators such
as the modified Euler and leapfrog integrators.

If the original Hamiltonian is time-independent, then it is conserved
along a trajectory and equal to the energy. A symplectic integrator does
not conserve the energy. However, experiments such as those reported in
Figure 2.1 show that in most cases, the energy oscillates around a mean that
is close to the conserved energy of the exact trajectory.

We have derived explicit symplectic integrators for Hamiltonians such
as H(r,v, t) = 1

2v
2 +�(r, t). Symplectic integrators also exist for general

Hamiltonians H(q,p, t) but these are usually implicit. The simplest first-
order symplectic integrator with timestep h is

qn+1 = qn + h @H

@pn+1 (qn,pn+1, t), pn+1 = pn − h @H
@qn

(qn,pn+1, t).
(2.56)

Informally, the superior performance of symplectic integrators over long
integration times arises because the geometrical constraints on Hamiltonian
flows in phase space are so strong that systematic errors (in, say, the energy,
phase-space volume, or other conserved quantities) cannot accumulate. The
properties of symplectic integrators are discussed further in §2.5.1.

2.2.3 Variable timestep
One serious limitation of symplectic integrators is that they work well only
with fixed timesteps, as the following example shows. Suppose the timestep
depends on phase-space position, h = ⌧(r,v). The Hamiltonian (2.52) be-
comes

Hnum(r,v, t) = 1
2v

2 + �⌧(r,v)[t − t0 − f⌧(r,v)]�(r, t). (2.57)

Since Hamilton’s equations (D.37) require derivatives of Hnum they now
involve derivatives of delta functions, which means that there are no simple
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Box 2.3: How do geometric integrators fail?
The usual criterion for the success of a numerical integration is that the global
error—the difference between the numerical solution and the true solution at the
end of the integration—is sufficiently small. Geometric integrators, however, pre-
serve the properties of the phase-space flow and therefore can give qualitatively
correct results even when the global error is relatively large. For example, a geo-
metric integrator could fail to predict the orbital phases in a multi-planet system
after a 1Gyr integration, but still correctly predict whether the system is stable.

To illustrate this behavior, we integrate the equation of motion for a simple
pendulum using the modified Euler method. The pendulum Hamiltonian for a
particle of unit mass is (eq. 6.1)

H(q, p) = 1

2
p
2 − !2

cos q, (a)

where ! is the frequency of small-amplitude oscillations. The equations of motion
are

dq

dt
= @H

@p
= p, dp

dt
= −@H

@q
= −!2

sin q. (b)

The kick-drift modified Euler integrator (2.28) with timestep h is

pn+1 = pn − !2
h sin qn, qn+1 = qn + hpn+1. (c)

We set yn ≡ hpn and xn ≡ qn + ⇡ to derive a simpler form,

yn+1 = yn +K sinxn, xn+1 = xn + yn+1 (d)

with K ≡ !2
h
2. This is the Chirikov–Taylor map described in Appendix F.

Plots of this map (modulo 2⇡) are shown in Figure F.1 for K = 0.1, 0.5, 1.0,
and 2.0. For small K, the trajectories in the map closely match the level surfaces
of the Hamiltonian (a), as they must since the modified Euler method is a well-
behaved integrator for sufficiently small timestep. As K increases, the trajectories
become more distorted and a significant fraction of phase space becomes chaotic.
This example illustrates that symplectic integrators with too large a timestep can
fail by introducing spurious structure, such as chaotic regions, into the phase space
of a system described by a regular Hamiltonian.
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analytic operators corresponding to this Hamiltonian. In words, a symplec-
tic integrator with fixed timestep is generally no longer symplectic once the
timestep is varied.9

Fortunately, the geometric constraints on the phase-space flow imposed
by time reversibility are also strong, so the leapfrog integrator retains its
good behavior if the timestep is adjusted in a time-reversible manner, even
though the resulting integrator is no longer symplectic. Here is one simple
way to do this: we modify equations (2.29) to

r
′ = rn + 1

2hvn,

v
′ = vn − 1

2h∇�(r′, tn + 1
2h),

tn+1 = tn + 1
2(h + h′),

vn+1 = v′ − 1
2h
′∇�(r′, tn+1 − 1

2h
′),

rn+1 = r′ + 1
2h
′
vn+1. (2.58)

Here h
′ is determined from h by solving the equation u(h,h′) = ⌧(r′,v′),

where u(h,h′) is a symmetric function of h and h
′ such that u(h,h) = h;

for example, u(h,h′) = 1
2(h + h′) or u(h,h′) = 2hh

′�(h + h′). Inspec-
tion of these equations shows that they are reversible, and like leapfrog the
integrator is explicit and requires no auxiliary storage.

This result can be generalized to any normal integrator �h for which
there is an explicit inverse �−1

h
. A single step of a reversible integrator is

given by

z
′ = �h�2zn, u(h,h′) = ⌧(z′), zn+1 = �−1−h′�2z′. (2.59)

A different approach to developing symplectic integrators with variable
timestep is based on the extended phase space described in Box 2.1. Sup-
pose that the optimum timestep for an integrator at the phase-space position(q,p) is g(q,p). We introduce the fictitious time ⌧ defined by equation

9 A symplectic integrator does remain symplectic if the timesteps are varied in some fixed
pattern that does not depend on the phase-space coordinates, but this sort of behavior of the
timestep has little practical use.
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(e) of Box 2.1; then a constant timestep of 1 in ⌧ corresponds to a vari-
able timestep g(q,p) in the real time t, so long as we replace the Hamilto-
nian H(q,p, t) by the Hamiltonian �(Q,P) defined in equation (b) in the
box. The principal limitation of this approach is that symplectic integrators
for the Hamiltonian �(P,Q) are usually implicit (cf. eq. 2.56), in contrast
to the explicit integrators (such as leapfrog) that can be used on a simpler
Hamiltonian such as H(r,v) = 1

2v
2 +�(r, t) (Mikkola & Tanikawa 1999;

Preto & Tremaine 1999).

2.3 Runge–Kutta and collocation integrators

2.3.1 Runge–Kutta methods
This is a broad class of integrators in which the function f(z, t) on the right
side of the differential equation (2.1) is evaluated at several intermediate
times (“stages”) between tn and tn+1, and the evaluations are combined
to match a Taylor-series expansion of the trajectory to as high an order as
possible.

We illustrate this process for explicit second-order methods. We write

z
′ = zn + ↵hf(zn, tn),

zn+1 = zn + �hf(zn, tn) + �hf(z′, tn + �h), (2.60)

where the Greek letters ↵, �, �, � denote four coefficients that are to be
determined.

To keep the next few equations simpler, we temporarily replace the vec-
tors z and f by scalars z and f . This restriction does not affect any of our
conclusions. Combining equations (2.60) and expanding them in powers of
the timestep h, we have

zn+1 = zn + (� + �)hf + ↵�h2
fzf + ��h2

ft +O(h3); (2.61)

here fz ≡ @f�@z, ft ≡ @f�@t, and all of the functions on the right side of
the equation are evaluated at (zn, tn). Using the same notation, the Taylor
series for the solution of zt = f(z, t) (eq. 2.1) is

zn+1 = zn + hzt + 1
2h

2
ztt +O(h3)
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= zn + hf + 1
2h

2
fzf + 1

2h
2
ft +O(h3). (2.62)

If the integrator (2.61) is to match the Taylor series (2.62) up to and includ-
ing terms of order h2, we must have

� + � = 1, ↵ = � = 1

2�
. (2.63)

Since there are three equations for four unknowns, there is one free param-
eter for second-order methods of this class, which we can choose to be �.
The most common choice is � = 1, which implies � = 0 and ↵ = � = 1

2 and
gives the explicit midpoint integrator,

zn+1 = zn + hf[zn + 1
2hf(zn, tn), tn + 1

2h]. (2.64)

Runge–Kutta methods with more stages and higher orders can be gen-
erated similarly. The most popular is a fourth-order, four-stage integrator
known as RK4 or the “classical” Runge–Kutta method, defined by

k1 = f(zn, tn),
k2 = f(zn + 1

2hk1, tn + 1
2h),

k3 = f(zn + 1
2hk2, tn + 1

2h),
k4 = f(zn + hk3, tn + h),

zn+1 = zn + 1
6h(k1 + 2k2 + 2k3 + k4). (2.65)

There are four evaluations of f(z), so the effective timestep is 1
4h.

When RK4 is applied to the harmonic oscillator the solution is again a
sum of sequences of the form zn = na (eq. 2.13), with two solutions for
the scale factor given by

± = 1 − 1
2!

2
h
2 + 1

24!
4
h
4 ± i(!h − 1

6!
3
h
3). (2.66)

The radius and speed tend to decay exponentially as exp[�(t − t0)] with

� = 1

h
log �±� = 1

2h
log �1 − 1

72!
6
h
6 + 1

576!
8
h
8� = − 1

144!
6
h
5 +O(h8).

(2.67)
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The rate of decay is far smaller than the rate of growth that we found with
the Euler method in equation (2.17). The numerical experiment shown in
Figure 2.1 confirms that RK4 is a much more accurate integrator, although
with 200 force evaluations per orbit it still fails after less than 1000 orbits.

The general form of an s-stage Runge–Kutta method is

ki = f(zn + h s�
j=1

Aijkj , tn + hci), i = 1, . . . , s,
zn+1 = zn + h s�

j=1
wjkj . (2.68)

The method is explicit if Aij = 0 for j ≥ i. For example, RK4 has

A =
���������

0 0 0 0
1
2 0 0 0

0
1
2 0 0

0 0 1 0

���������
, c = �0 1

2
1
2 1�, w = �16 1

3
1
3

1
6
�. (2.69)

Runge–Kutta methods are good choices for short integrations—hund-
reds or thousands of orbits—but not for the Gyr integrations needed to in-
vestigate the long-term stability of planetary systems. They are also well
matched to problems that require a variable timestep, such as following the
evolution of highly eccentric orbits.

Current practice is to estimate the timestep required for a given accu-
racy using an embedded Runge–Kutta integrator. These are integrators
designed such that the same function evaluations can be used with two dif-
ferent weights to give Runge–Kutta methods of different orders. Then the
local error can be estimated from the difference between the two methods,
so the timestep can be adjusted if the local error is too large or too small
compared to some pre-set accuracy criterion.

For example, the Dormand–Prince method (Shampine 1986; Hairer et
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al. 1993) is an explicit seven-stage Runge–Kutta integrator with

A =

������������������

0 0 0 0 0 0 0
1
5 0 0 0 0 0 0

3
40

9
40 0 0 0 0 0

44
45 −56

15
32
9 0 0 0 0

19372
6561 −25360

2187
64448
6561 −212

729 0 0 0

9017
3168 −355

33
46732
5247

49
176 − 5103

18656 0 0

35
384 0

500
1113

125
192 −2187

6784
11
84 0

������������������

, (2.70)

and
c = �0 1

5
3
10

4
5

8
9 1 1�. (2.71)

This yields a fifth-order integrator if we choose

w = � 35
384 0

500
1113

125
192 − 2187

6784
11
84 0�. (2.72)

Although this is a seven-stage method, it only requires six evaluations of
f(z, t) per step because the last stage of step n is evaluated at the same
location as the first stage of step n+ 1 (because the last row of the matrix A

is the same as the vector w). Equations (2.70) and (2.71) also produce an
embedded fourth-order integrator if we replace w by

w
′ = � 5179

57600 0
7571
16695

393
640 − 92097

339200
187
2100

1
40
�. (2.73)

Let the new phase-space position obtained by equations (2.68) and (2.70)–
(2.72) be zn+1, while the position obtained by replacing (2.72) by (2.73) is
z
′
n+1. The local error in zn+1 should be much smaller than the local error in

z
′
n+1 since the former is derived by a fifth-order method and the latter by a

fourth-order method. Therefore the local error in z
′
n+1 is � � z′

n+1 − zn+1
and scales as O(h5). If we change the timestep to some new value hnew,
the error should be �(hnew�h)5. If we want the error to be less than some
pre-set value ✏ in all coordinates of the vector z′

n+1 then the new timestep
should be

hnew = h � ✏

�max(�i)� �
1�5

. (2.74)
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This formula allows the timestep to be expanded if �max(�i)� < ✏ or shrunk
if �max(�i)� > ✏; of course, in the latter case the trial timestep has failed to
give the desired accuracy and so must be re-taken with the smaller timestep.
The error estimate applies to z

′
n+1, but in practice we use zn+1 as the pre-

dicted position at tn+1 since it is more accurate.
The Dormand–Prince integrator is implemented in many software pack-

ages, including the Python-based SciPy package.
There are geometric Runge–Kutta methods. The simplest of these are

the trapezoidal rule,

zn+1 = zn + 1
2hf(zn, tn) + 1

2hf(zn+1, tn+1), (2.75)

and the implicit midpoint method,

zn+1 = zn + hf�12(zn + zn+1), tn + 1
2h
�. (2.76)

These are both second-order methods. They are implicit integrators since
the new position zn+1 appears as an argument of f(z, t). Both methods
are symmetric (eq. 2.43), and when applied to reversible systems they are
normal (eq. 2.42) and therefore reversible (eq. 2.48). The implicit midpoint
method is also symplectic when applied to Hamiltonian systems, but the
trapezoidal rule is not. Both methods are closely related to Euler’s method,
as described at the end of §2.2.1 and in Problem 2.4.

In terms of the general formula (2.68), the trapezoidal rule can be written

A = � 0 0
1
2

1
2

� , c = �0 1�, w = �12 1
2
�, (2.77)

and the implicit midpoint method is

A1 = 1
2 , c1 = 1

2 , w1 = 1. (2.78)

Unfortunately, all Runge–Kutta integrators described by equation (2.68)
that are reversible or symplectic are also implicit (Hairer et al. 2006) and so
require several iterations per step to converge.

An alternative approach, which we now describe, is to develop explicit
Runge–Kutta integrators of sufficiently high order that the local truncation
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error is smaller than the roundoff error. Then if the original dynamical sys-
tem is reversible or symplectic the integrator will be as well, at least to
within roundoff error.

2.3.2 Collocation methods
Integrators for ordinary differential equations are closely related to numer-
ical methods for evaluating integrals, since integration of the differential
equation dz�dt = f(t) is equivalent to finding the integral ∫ dt f(t). To re-
duce confusion in this subsection, we shall always use the term quadrature
to denote the evaluation of integrals, in contradistinction to integration,
which denotes the solution of differential equations.

For example, if b = a+h then the Euler method (2.5) yields the following
approximation to the integral I = ∫ b

a
dt f(t):

I = hf0, (2.79)

in which f↵ ≡ f(a +↵h). This quadrature rule requires one function evalu-
ation per timestep h and is first-order, that is, the error over an interval h is
O(h2). The explicit midpoint method (2.64) gives the approximation

I = hf1�2. (2.80)

The classical Runge–Kutta or RK4 method (2.65) gives

I = h�16f0 + 2
3f1�2 + 1

6f1
�, (2.81)

which is Simpson’s quadrature rule. The trapezoidal rule (2.75) gives

I = h�12f0 + 1
2f1
�. (2.82)

These observations motivate integrators known as collocation methods.
Let c1, . . . , cs be distinct real numbers, usually between 0 and 1, called the
nodes. To integrate the differential equation (2.1), we seek a polynomial
u(t) of degree s such that

u(tn) = zn, u̇(tn +hcj) = f[u(tn +hcj), tn +hcj], j = 1, . . . , s. (2.83)
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For each dimension of the vector u(t), these equations give s+1 constraints
on the s + 1 coefficients of the polynomial, so usually the degree-s polyno-
mial satisfying (2.83) is unique. Once the polynomial is found, the next step
of the integration is zn+1 = u(tn+h). The Euler method (2.5), the backward
Euler method (2.18), and the implicit midpoint method (2.76) are colloca-
tion methods with s = 1 and c1 = 0,1, 12 , respectively. The trapezoidal rule
(2.75) is a collocation method with s = 2 and c1 = 0, c2 = 1. Collocation
methods are special cases of Runge–Kutta methods (see Box 2.4).

All collocation methods other than the Euler method are implicit, and
they are reversible if and only if the nodes ci are symmetrically distributed
around 1

2 , that is, cs−i+1 = 1 − ci for i ≤ 1 ≤ s.
The general quadrature rule that underlies equations (2.79)–(2.82) is

I = h s�
j=1

wjf(t0 + hcj). (2.84)

Not surprisingly, if the error in the quadrature rule is O(hk+1) then the error
in the collocation method with the same nodes is also O(hk+1). Therefore
high-order quadrature rules can be used to generate high-order integrators.

The principle of Gaussian quadrature is that a wise choice of the nodes
ci yields a quadrature rule whose order k can be as large as twice the number
s of nodes per timestep. In practice, most collocation methods use either the
Gauss–Legendre or the Gauss–Radau rule for choosing the nodes.

The Gauss–Legendre rule has order k = 2s, which is the theoretical
maximum. Moreover it can be shown that collocation methods using this
rule are symplectic (Sanz–Serna 1988). The nodes are given by the roots
of the Legendre polynomials of Appendix C.6, Ps(2ci − 1) = 0, and the
weights are

wi = 1

4(ci − c2i )[P′s(2ci − 1)]2 , i = 1, . . . , s. (2.85)

For example, the two-stage, fourth-order Gauss–Legendre rule has

c1 = 1
2 − 1

2 ⋅ 3−1�2, c2 = 1
2 + 1

2 ⋅ 3−1�2, w1 = w2 = 1
2 . (2.86)
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Box 2.4: Collocation and Runge–Kutta methods
To explore the relation between these two types of integrator, write

u̇(t) = s�
j=1kjPj � t − tn

h
� , (a)

where Pj(⌧) is the Lagrange interpolating polynomial

Pj(x) ≡ s�
l=1
l�=j

x − cl
cj − cl , (b)

which equals 1 at x = cj and zero at x = cl if l �= j, and has degree s − 1. The
second of equations (2.83) implies that for a collocation method

ki = f[u(tn + hci), tn + hci]. (c)

Integrating equation (a) from tn to tn +hci and using the first of equations (2.83)
we find

u(tn + hci) = zn + h s�
j=1Aijkj , where Aij ≡ � ci

0

d⌧ Pj(⌧), (d)

and integrating from tn to tn + h gives

zn+1 = zn + h s�
j=1wjkj where wj ≡ � 1

0

d⌧ Pj(⌧). (e)

Equations (c)–(e) are equivalent to the definition (2.68) of an s-stage Runge–Kutta
method. Thus all collocation methods are Runge–Kutta methods. The converse is
not true, because not all choices of the coefficients Aij and wj satisfy equations
(d) and (e).
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The Gauss–Radau rule has one node c1 = 0 at the start of the timestep
and order k = 2s − 1. The order is one less than the Gauss–Legendre rule,
but the force at the first node is just f(zn, tn) and can be computed once and
for all at each step without iterating to convergence. The nodes and weights
for the Gauss–Radau rule are given by

c1 = 0, w1 = 1

s2
, (2.87)

Ps−1(2ci − 1) + Ps(2ci − 1) = 0, wi = 1 − ci
s2[Ps−1(2ci − 1)]2 , i = 2, . . . , s.

For example the two-stage, third-order Gauss–Radau rule has

c1 = 0, c2 = 2
3 , w1 = 1

4 , w2 = 3
4 . (2.88)

This can be written in the notation of equation (2.68) as

A = � 0 0
1
3

1
3

� , c = �0 2
3
�, w = �14 3

4
�. (2.89)

Gauss–Legendre or Gauss–Radau integrators can also be designed for
the Newtonian form (2.3) of the equation of motion. The most popular of
these (Everhart 1985; Rein & Spiegel 2015) is a Gauss–Radau integrator
with order k = 15 and requires s = 8n function evaluations per step, where
n is the number of iterations that the implicit integrator needs to converge
(typically only 2–3 if the differential equations are well behaved and the
timestep is well chosen). These integrators are particularly well suited for
high-accuracy integrations of orbits with rapidly changing accelerations that
require a variable timestep. For typical planetary orbits, high-order integra-
tors of this kind can achieve local errors smaller than the roundoff error
(§2.7) with timesteps of a few percent of the orbital period.

2.4 Multistep integrators

2.4.1 Multistep methods for first-order differential equations
The integrators that we have described so far are one-step methods, that is,
the only information used to predict zn+1 is zn, and all the history contained
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in the earlier steps of the trajectory is discarded. In contrast, multistep
methods also use the positions zn−m and derivatives f(zn−m, tn−m) from
several earlier steps m = 1,2, . . . to enhance the accuracy of the predicted
position (Henrici 1962; Gear 1971; Hairer et al. 1993, 2006).

The most common multistep methods for the differential equation (2.1)
are defined by the formula

M�
m=0↵mzn+1−m + h M�

m=0�mf(zn+1−m, tn+1−m) = 0, (2.90)

where h is the timestep and at least one of ↵M and �M is nonzero. Without
loss of generality we can set ↵0 = −1, and rewrite the formula as

zn+1 = M�
m=1↵mzn+1−m + h M�

m=0�mf(zn+1−m, tn+1−m), (2.91)

which shows how zn+1 is predicted from up to M earlier positions and
M + 1 derivatives. The method is explicit if �0 = 0; otherwise it depends on
the derivative at the predicted point, f(zn+1, tn+1), and thus is implicit. A
method can be specified compactly by its characteristic polynomials

⇢(x) ≡ M�
m=0↵mx

m
, �(x) ≡ M�

m=0�mx
m
. (2.92)

We define the order of a multistep integrator as follows. If z�(t) is an
exact solution of the differential equation ż = f(z, t), and z

�
n
≡ z�(tn), then

a method of order k satisfies

M�
m=0↵mz

�
n+1−m + h M�

m=0�mf(z�
n+1−m, tn+1−m) = O(hk+1). (2.93)

We justify this definition and describe its relation to the definition of order
for one-step methods later in this section.

We now determine the coefficients ↵m and �m. Any solution of the
differential equation ż = f(z, t) can be written as a Taylor series expansion
around tn+1, z�(t) = ∑∞j=0 aj(t − tn+1)j . Then z

�
n+1−m = ∑∞j=0 aj(−mh)j
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and f(zn+1−m, tn+1−m) = ż
�(tn+1−m) = ∑∞j=0 jaj(−mh)j−1. Equation

(2.93) becomes

∞�
j=0
(−1)jhj

aj � M�
m=0m

j
↵m − j M�

m=0m
j−1
�m� = O(hk+1). (2.94)

Therefore the integrator has order k if and only if

Ej ≡ M�
m=0m

j
↵m − j M�

m=0m
j−1
�m = 0 for j = 0,1, . . . , k (2.95)

and Ek+1 �= 0. The quantities Ej can be written in terms of the characteristic
polynomials: E0 = ⇢(1), E1 = ⇢′(1) − �(1), and so forth.

For an integrator of order k there are k + 1 constraints, E0 = E1 = � =
Ek = 0. In an M -step method there are are 2(M + 1) coefficients ↵m and
�m, but we have set ↵0 = −1, and �0 = 0 if the method is explicit. Thus there
are 2M or 2M+1 unknowns, depending on whether the integrator is explicit
or implicit. Since linear equations usually have a solution if the number
of equations is less than or equal to the number of unknowns, we might
hope to choose the coefficients such that the integrator has order 2M − 1
(explicit) or 2M (implicit). This can be done, but such integrators have little
or no practical value because of the Dahlquist barrier, a theorem showing
that the maximum order of a stable M -step method is M if the method is
explicit, M+1 if the method is implicit and M is odd, or M+2 if the method
is implicit and M is even.

Given the limitations on order imposed by the Dahlquist barrier, it is
simpler to construct integrators by choosing the coefficients ↵m and then
solving for the �m. The ↵m can be arbitrary except that (i) ↵0 = −1 by
assumption, and (ii) the condition E0 = 0 requires ∑M

m=0 ↵m = 0. Once the
↵m are fixed, we have k constraints on the �m from E1 = � = Ek = 0.
For explicit methods �0 = 0, so we have M variables �m to satisfy these
constraints. Typically this can be done if M ≥ k, so the maximum order of
an M -step method of this kind is k = M , as high as can be expected given
the Dahlquist barrier.

The simplest polynomial consistent with the constraints ↵0 = −1 and∑↵m = 0 has ↵1 = 1 and ↵2 = ↵3 = � = ↵M = 0. The corresponding
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characteristic polynomial is ⇢(x) = x − 1. This choice yields the explicit
Adams–Bashforth methods; for orders k = 1,2,3,4 these are

zn+1 = zn + hfn,
zn+1 = zn + 1

2h
�3fn − fn−1�,

zn+1 = zn + 1
12h
�23fn − 16fn−1 + 5fn−2�,

zn+1 = zn + 1
24h
�55fn − 59fn−1 + 37fn−2 − 9fn−3�. (2.96)

Here fn ≡ f(zn, tn). The first line is just the Euler method.
For implicit methods we have M + 1 variables �m and k equations,

so the maximum order is k = M + 1, again consistent with the Dahlquist
barrier. The same choice of characteristic polynomial ⇢(x) = x − 1 yields
the implicit Adams–Moulton methods: for orders 1,2,3,4 these are

zn+1 = zn + hfn+1,
zn+1 = zn + 1

2h
�fn+1 + fn�,

zn+1 = zn + 1
12h
�5fn+1 + 8fn − fn−1�,

zn+1 = zn + 1
24h
�9fn+1 + 19fn − 5fn−1 + fn−2�. (2.97)

The first line is the implicit Euler method (2.18) and the second is the trape-
zoidal rule (2.75).

In predictor-corrector methods an explicit integrator is used to esti-
mate zn+1, which then provides the starting estimate of fn+1 for an implicit
integrator. The Adams–Bashforth and Adams–Moulton pair produce a suc-
cessful predictor-corrector method for many problems.

The behavior of multistep methods can be explored further by following
a test particle in a harmonic potential, along the lines of the discussion in
§2.1.2. Substituting ż = f(z) =Az (eq. 2.10) into equation (2.90), we have

M�
m=0↵mzn+1−m + h M�

m=0�mAzn+1−m = 0, (2.98)

where z ≡ (r,v) and

A ≡ � 0 I−!2
I 0

� . (2.99)
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The solution of this difference equation is a linear combination of sequences
of the form zn = na. Substituting this expression in equation (2.98), we
have

⇢(−1)a + h�(−1)Aa = 0. (2.100)

Thus a must be an eigenvector of A. The eigenvalues of A are �± = ±i! so
the solutions of equation (2.100) are ± where

⇢(−1± ) ± i!h�(−1± ) = 0. (2.101)

In general there are multiple solutions of each of these equations. Assuming
that the coefficients ↵m and �m are real, the solutions of equations (2.101)
are related by − = ∗+ where the asterisk denotes a complex conjugate.

We now use these results to provide a heuristic justification of the def-
inition (2.93) of the order of a multistep method. The general solution of
the difference equation (2.98) at timestep n is a sum of terms of the form
c±n±a± where c± are constants, a± are eigenvectors of A, and ± is a solu-
tion of (2.101). The exact solution at t1 = t0 + h with initial condition c±a±
at t0 is c± exp(±i!h)a±. Thus the one-step error between t0 and t1 is a sum
of terms of the form c±✏±a+ where ✏± ≡ ± − exp(±i!h). Eliminating ±
from equation (2.101) in favor of ✏±, we have

⇢[(e±i!h + ✏±)−1] ± i!h�[(e±i!h + ✏±)−1] = 0; (2.102)

and keeping only terms up to first order in the small quantity ✏±,

⇢(e∓i!h)±i!h�(e∓i!h)−✏±e∓2i!h�⇢′(e∓i!h)±i!h�′(e∓i!h)� = 0. (2.103)

The sum of the first two terms must be O(hk+1) according to the definition
(2.93). Since the quantity in square brackets in (2.103) is of order unity, ✏±
must be O(hk+1), so the one-step error is also O(hk+1), consistent with the
definition of order for one-step methods in §2.1.1.

In the limit h→ 0, the solutions of (2.101) reduce to the roots of ⇢(−1);
one of these is  = 1 because of the constraint E0 = 0. However, since ⇢(x)
is a polynomial of order ≤M , there are up to M − 1 additional (“parasitic”)
roots, and the behavior of the integrator depends on these as well. In partic-
ular, if any of these roots have �� > 1 then small perturbations (e.g., due to
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roundoff error) grow exponentially, no matter how small the timestep may
be. If there are roots with �� = 1 with multiplicity greater than 1 (say, p)
then small perturbations grow as np−1. Whether the growth is exponential
or polynomial, the behavior of the numerical trajectory is eventually dom-
inated by these parasitic roots. Therefore any useful multistep integrator
must be zero-stable, by which we mean that there are no roots of ⇢(−1)
with �� > 1 and all roots with �� = 1 have multiplicity 1. For example, the
Adams–Bashforth and Adams–Moulton methods have ⇢(x) = x − 1, so the
only root is x = 1 and the methods are zero-stable. Zero-stability is a neces-
sary condition for a practical multistep integrator but it is not sufficient. For
example, the Euler method is zero-stable but performs badly, as we saw in
§2.1.2.

2.4.2 Multistep methods for Newtonian differential equations

The Newtonian form (2.3) of the equation of motion is

d
2
r

dt2
= F(r, t), (2.104)

where F = −∇� is the force per unit mass. A linear multistep method for
this equation can be written (cf. eq. 2.90)

M�
m=0↵mrn+1−m + h2

M�
m=0�mF(rn+1−m, tn+1−m) = 0, (2.105)

and if we set ↵0 = −1,

rn+1 = M�
m=1↵mrn+1−m + h2

M�
m=0�mF(rn+1−m, tn+1−m). (2.106)

The method is explicit if �0 = 0 and otherwise implicit.
We define the method to have order k if

M�
m=0↵mr

�
n+1−m + h2

M�
m=0�mF(r�

n+1−m, tn+1−m) = O(hk+2), (2.107)
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where r
�
n
(t) is an exact solution of the differential equation (2.104). Note

the exponent k + 2 on the right side compared to k + 1 on the right side of
the analogous definition in equation (2.93);10 the reasons for this choice are
described after equation (2.113).

We derive the coefficients ↵m and �m using the same arguments that
follow equation (2.93). Any solution of the differential equation can be
written as a Taylor series expansion around tn+1, r�(t) = ∑∞j=0 aj(t−tn+1)j .
Then r

�
n+1−m = ∑∞j=0 aj(−mh)j and F(rn+1−m, tn+1−m) = r̈

�(tn+1−m) =∑∞j=0 j(j − 1)aj(−mh)j−2. Equation (2.107) becomes

∞�
j=0
(−1)jhj

aj � M�
m=0m

j
↵m + j(j − 1) M�

m=0m
j−2
�m� = O(hk+2). (2.108)

Therefore the integrator has order k if and only if

Ej ≡ M�
m=0m

j
↵m + j(j − 1) M�

m=0m
j−2
�m = 0 for j = 0,1, . . . , k + 1

(2.109)
and Ek+2 �= 0. The quantities Ej can be written in terms of the characteristic
polynomials: E0 = ⇢(1), E1 = ⇢′(1), and so forth.

Once again the simplest way to construct integrators is to choose the co-
efficients ↵m and then solve equations (2.109) for the �m. We have assumed
that ↵0 = −1; in addition, the constraints E0 = E1 = 0 imply that ∑↵m = 0
and ∑m↵m = 0, independent of the choice of �m. The simplest choice
consistent with these constraints is ↵1 = 2, ↵2 = −1, with ↵3 = � = ↵M = 0.
The corresponding characteristic polynomial is ⇢(x) = −(x−1)2. This pro-
cess yields the explicit Störmer multistep methods of orders k = 2,3,4,5:

rn+1 = 2rn − rn−1 + h2
Fn,

rn+1 = 2rn − rn−1 + 1
12h

2�13Fn − 2Fn−1 +Fn−2�, (2.110)

rn+1 = 2rn − rn−1 + 1
12h

2�14Fn − 5Fn−1 + 4Fn−2 −Fn−3�,
rn+1 = 2rn − rn−1

10 Not all authors subscribe to the same definition: some use an exponent k + 1 in both (2.93)
and (2.107).
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+ 1
240h

2�299Fn − 176Fn−1 + 194Fn−2 − 96Fn−3 + 19Fn−4�.
Here Fn = F(rn, tn). The first of these is closely related to leapfrog (see
Box 2.5).

The first two implicit Cowell methods have orders 4 and 5:

rn+1 = 2rn − rn−1 + 1
12h

2�Fn+1 + 10Fn +Fn−1�, (2.111)

rn+1 = 2rn − rn−1 + 1
240h

2�19Fn+1 + 204Fn + 14Fn−1 + 4Fn−2 −Fn−3�.

Box 2.5: Leapfrog and the Störmer method
The simplest Störmer multistep method, from the first line of equation (2.110), is

rn+1 = 2rn − rn−1 + h2Fn, (a)

where rn is the position at step n, Fn is the force at rn, and h is the timestep.
The average velocities between steps n − 1 and n and between steps n and n + 1
are

vn−1�2 = rn − rn−1
h

, vn+1�2 = rn+1 − rn
h

. (b)

The positions at timesteps n ± 1

2
can be estimated as

rn−1�2 = rn + rn−1
2

, rn+1�2 = rn+1 + rn
2

. (c)

Now solve equations (b) for rn−1 and rn+1 and eliminate these variables from
equations (a) and (c). We find

rn = rn−1�2 + 1

2
hvn−1�2,

vn+1�2 = vn−1�2 + hFn,

rn+1�2 = rn + 1

2
hvn+1�2. (d)

Apart from minor differences in notation, this is the drift-kick-drift leapfrog inte-
grator of equation (2.29).

The behavior of these methods can be explored by following a test par-
ticle orbiting in a harmonic potential with force law F(r) = −!2

r. Substi-
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tuting this force law into equation (2.105), we have

M�
m=0(↵m − �m!2

h
2)rn+1−m = 0. (2.112)

The solution of this difference equation is a linear combination of sequences
of the form rn = na. Substituting this expression in equation (2.112), we
have

⇢(−1) − !2
h
2
�(−1) = 0. (2.113)

We now provide a heuristic justification for the definition (2.107) of the
order of these integrators. Following arguments similar to those leading to
equation (2.103), we find that the error between timesteps n and n + 1 is of
order ✏± where to first order in ✏±
⇢(e∓i!h) − !2

h
2
�(e∓i!h) − ✏±e∓2i!h�⇢′(e∓i!h) − !2

h
2
�
′(e∓i!h)� = 0.

(2.114)
From equation (2.107) the sum of the first two terms is O(hk+2). The quan-
tity in square brackets is equal to ⇢′(1) ∓ i!h⇢′′(1) +O(h2) which equals∓i!h⇢′′(1)+O(h2) because of the condition E1 = ⇢′(1) = 0. Therefore the
quantity in square brackets is O(h), which implies that the one-step error is
O(hk+1), consistent with the definition of order for one-step methods.

As we discussed after equation (2.103), a practical integrator must be
zero-stable, that is, all roots of ⇢(−1) must lie inside or on the unit circle
in the complex plane, and roots on the unit circle must be simple.11

A minor disadvantage of all multistep methods is that they require a
special procedure, usually employing some other integrator, to generate the
M − 1 initial positions needed to get the multistep integrator started. A
more serious disadvantage is that changing the timestep is much more com-
plicated than in one-step methods. For this reason, multistep integrators are
mostly used for long orbit integrations in planetary systems like the solar
system, in which all of the planets are on well separated, nearly circular and

11 With one exception: the conditions E0 = E1 = 0 are equivalent to ⇢(1) = ⇢
′(1) = 0,

so there is always a double root at  = 1. Because of the double root the effect of a
small perturbation grows as n, corresponding physically to a small perturbation in the initial
velocity.



2.4. MULTISTEP INTEGRATORS 113

nearly coplanar orbits. Almost all long solar-system integrations up to the
1990s (e.g., Cohen et al. 1973) used a Störmer method with M = 13 steps
and order k = 13, having coefficients defined by the characteristic polyno-
mials ⇢(x) = −(x − 1)2 and12

�(x) = (4621155471343x−13232841914856x2+47013743726958x3

−114321700672600x4+202271967611865x5−266609549584656x6

+264429021895332x7−197106808276656x8+108982933333425x9

−43427592828040x10+11807143978638x11−1962777574776x12

+150653570023x13��2615348736000. (2.115)

Polynomials of high degree such as this should be always be evaluated using
a method that minimizes roundoff error, as described in §2.7.2.

Störmer and Cowell integrators are neither reversible nor symplectic.
Therefore test-particle orbits in a fixed potential are subject to energy drift.
However, with a high-order multistep method and a suitable timestep the
energy drift can be negligible for a well behaved planetary system (Grazier
et al. 2005).

2.4.3 Geometric multistep methods
The concept of symplectic integration (§2.2.2) is difficult to apply to multi-
step integrators because they map multiple times in the present and past to
a single future time. In contrast, the condition for reversibility (§2.2.1) is
easy to state: the coefficients ↵m and �m in equation (2.101) must satisfy

↵M−j = ↵j , �M−j = �j , j = 0,1, . . . ,M. (2.116)

A multistep method satisfying this condition is said to be symmetric13

(Lambert & Watson 1976). It is straightforward to show that if the method is

12 These coefficients are straightforward to derive by solving the linear system of equations
(2.109) using computer algebra. Tables of coefficients are given by Maury & Segal (1969).

13 Here “symmetric” refers to the symmetry of the coefficients, but the usage is consistent with
our earlier definition of a symmetric integrator in equation (2.43).
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symmetric and  is a root of equation (2.101) then so is 1�; thus if there is
any root inside the unit circle there must also be one outside. If the method
is zero-stable then none of the roots of ⇢(−1) is outside the unit circle, so
they must all lie on the circle.

Since they are reversible, all symmetric methods have even order (see
discussion surrounding eq. 2.44). Of the Störmer methods shown in equa-
tions (2.110), only the first is symmetric and therefore reversible; similarly,
only the first of the Cowell methods in (2.111) is symmetric.

As we have shown, when h = 0 all of the solutions  of equation (2.101)
for a zero-stable symmetric method lie on the unit circle. As h increases
from zero, there comes a point h0, the termination of the interval of period-
icity, at which one pair of solutions moves off the unit circle, one inside and
one outside. For example, the interval of periodicity for the k = 2 Störmer
method on the first line of equation (2.110) terminates at h0 = 2�!. In prac-
tice, a reliable integration of a Kepler orbit requires a timestep substantially
smaller than h0 because any small eccentricity adds higher frequencies that
lead to instability.

High-order symmetric multistep methods exhibit a variety of resonances
and instabilities—narrow ranges of timestep in which the errors are much
larger than normal (Quinlan 1999). These appear only when integrating
nonlinear systems and are unrelated to the instability that arises at the ter-
mination of the interval of periodicity.

To construct high-order symmetric multistep methods we must use a
characteristic polynomial of higher degree than the simple ⇢(x) = −(x −
1)2 used in the Störmer and Cowell methods. For a method of order k we
must satisfy equations (2.109) and (2.116), but these conditions still leave
considerable freedom, so the design of good multistep methods is something
of an art. In practice, a reasonable goal is to seek an integrator of a given
order with a large interval of periodicity and weak resonances (Quinlan &
Tremaine 1990; Quinlan 1999; Fukushima 1999).
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2.5 Operator splitting

In many systems, the right side of the equation of motion (2.1) can be de-
composed into a sum of terms arising from different physical effects; thus

dz

dt
= f(z, t) = fA(z, t) + fB(z, t) +�. (2.117)

For example, the motion of a test particle with phase-space coordinates z ≡(r,v) in a gravitational potential �(r, t) is governed by equation (2.117)
with f(z, t) = [v,−∇�(r, t)], so we may choose

fA(z, t) = (v,0), fB(z, t) = −[0,∇�(r, t)]. (2.118)

A second example is motion in a multi-planet system, where the accelera-
tion of a planet is the sum of the accelerations from the central star and the
other planets.

Usually the equation of motion resulting from a single term in this sum
[ż = fA(z, t), ż = fB(z, t), and so forth] is simpler than the original equation
of motion, and may even be analytically soluble. The concept of operator
splitting (Glowinski et al. 2016) is that the full equation of motion (2.117)
can be solved numerically by advancing the trajectory for a short time under
the influence of fA(z, t), then under the influence of fB(z, t), and so on until
all of the terms in the sum have contributed, and then repeating the process.

The most important applications of this approach involve splitting into
two components, f(z, t) = fA(z, t) + fB(z, t), and we restrict ourselves to
this case from now on. To simplify the presentation we also restrict our-
selves to autonomous systems in which f(z) is independent of time, since
non-autonomous systems can always be converted to this form as described
in Box 2.1.

We shall use the operator notation of §2.2.1, in which the trajectory of
the system in phase space is

z(t + h) = Ghz(t). (2.119)

The propagator Gh satisfies dGh�dh = F, where F is the nonlinear operator
defined by Fz = f(z). Similarly, GA,h satisfies dGA,h�dh = FA, where
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FAz = fA(z), with analogous definitions for GB,h and FB . For example,
the propagators for the splitting (2.118) are

GA,h(r,v) = (r + hv,v), GB,h(r,v) = (r,v − h∇�). (2.120)

These are simply the drift and kick operators Dh and Kh from equations
(2.24) and (2.25).

Let �h be the propagator corresponding to an integrator with timestep
h, so zn+1 = �hzn. The integrator defined by Lie–Trotter splitting is (as
usual, operators are applied from right to left)

�h = GB,hGA,h or GA,hGB,h. (2.121)

For the operators (2.120) these are KhDh and DhKh, the first-order drift-
kick and kick-drift modified Euler integrators of equations (2.27) and (2.28).
In general, Lie–Trotter splitting produces a first-order integrator.

A more accurate integrator is defined by Strang splitting (Strang 1968),

�h = GA,h�2GB,hGA,h�2 or GB,h�2GA,hGB,h�2. (2.122)

For the operators (2.120) these are drift-kick-drift leapfrog Dh�2KhDh�2
(eq. 2.30) and kick-drift-kick leapfrog Kh�2DhKh�2 (eq. 2.31). Strang split-
ting produces a second-order integrator.

If one or both of the propagators GA and GB is not analytic, it can
be evaluated numerically using one of the integration methods described
already in this chapter. Naturally, there is no reason to use an integrator for
GA or GB that is higher order than the splitting scheme.

2.5.1 Operator splitting for Hamiltonian systems
Most of the systems in celestial mechanics are Hamiltonian, and Hamil-
tonian dynamics provides a powerful tool for analyzing operator-splitting
methods.

We consider a Hamiltonian that is the sum of two simpler ones, H =
HA +HB . In Hamiltonian systems the propagator Gh (eq. 2.119) is given
by equation (D.39),

Gh ≡ exp(hLH) (2.123)
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where H(z) is the Hamiltonian and the Lie operator LHf = {f,H} is the
Poisson bracket of the Hamiltonian and any function f(z).

Box 2.6: The Baker–Campbell–Hausdorff formula
This states that the product of the exponentials of operators X and Y is given by

exp(✏X) exp(✏Y) = exp(✏Z), (a)

where

Z = X +Y + 1

2
✏[X,Y] + 1

12
✏
2 ([X, [X,Y]] + [Y, [Y,X]])

− 1

24
✏
3[Y, [X, [X,Y]]] +O(✏4). (b)

Here [X,Y] ≡ XY −YX is the commutator of X and Y, and ✏� 1.
The series in equation (b) is not necessarily convergent. It should be regarded

as an asymptotic series, that is, if the series is truncated at order ✏n, the error will
be of order ✏n+1 as ✏→ 0.

A related formula is

exp(✏X) exp(✏Y) exp(✏X) = exp(✏Z), (c)

where
Z = 2X +Y + 1

6
✏
2 ([Y, [Y,X]] − [X, [X,Y]]) +O(✏4). (d)

The Baker–Campbell–Hausdorff formula requires that the operators have
suitable definitions of addition (X + Y), multiplication (XY) and multiplication
by a complex number � (�X). Addition and multiplication of operators are both
associative [(X+Y) +Z = X+ (Y +Z); X(YZ) = (XY)Z]. Moreover addition
commutes (X +Y = Y +X), although multiplication need not do so (if it did, all
commutators would be zero). These conditions are all satisfied by the Lie operator
Lg (eq. D.33).

Using this result, the first of the integrators (2.122) is

Sh ≡ exp(12hLHA) exp(hLHB) exp(12hLHA); (2.124)

here we have introduced the symbol Sh as a reminder that the integrator
is based on Strang splitting. The integrator is symplectic since it is the
composition of symplectic propagators (see the discussion near the end of
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Appendix D.5). Moreover it is straightforward to show that if the dynamical
systems governed by the Hamiltonians HA and HB are reversible (eq. 2.38),
then the integrator Sh is also reversible.

Using the Baker–Campbell–Hausdorff formula (eq. d of Box 2.6), equa-
tion (2.124) can be written as Sh = exp(hZ) where

Z = LHA + LHB (2.125)

+ 1
24h

2�2[LHB , [LHB ,LHA]] − [LHA , [LHA ,LHB ]]� +O(h4).
Equation (D.36) implies that any commutator such as [La, [Lb, [Lc,�]]] is
equal to Lg where g ≡ {{{�, c}, b}, a}. Moreover La + Lb + Lc = La+b+c
because the Poisson bracket is linear. Therefore we can write Z = LH where
the numerical Hamiltonian is

Hnum ≡HA +HB +Herr(h), (2.126)

and the error Hamiltonian is

Herr(h) = 1
24h

2�2{{HA,HB},HB} − {{HB ,HA},HA}� +O(h4).
(2.127)

In words, we have shown that the integrator (2.124) follows exactly the
trajectory of a particle in a new Hamiltonian that differs from the original
one by the error Hamiltonian, which is smaller that the original by O(h2).

In most numerical analysis of Hamiltonian systems, we think of an inte-
grator as yielding an approximate trajectory in the exact Hamiltonian. This
result illuminates a quite different point of view: the integrator yields an
exact trajectory in a Hamiltonian that differs from the exact one by an error
Hamiltonian Herr. Integrators of higher order correspond to error Hamilto-
nians of higher order, and a method of order k has an error Hamiltonian that
is O(hk). One advantage of this viewpoint is that errors in the trajectory can
be analyzed using Hamiltonian perturbation theory, which is simpler and
more powerful than analyzing the errors in numerical integrators directly
(of course this tool is only available if the integrator is symplectic, which is
one of the reasons for the popularity of integrators of this kind). Ironically,
numerical integration became the central tool in celestial mechanics because
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of the limitations of perturbation theory, yet perturbation theory turns out to
be the best way to analyze the errors in numerical integrations.

As described in Box 2.6, series such as (2.127) are asymptotic rather
than convergent; in practice this means that they describe the behavior of
the integrator only when the timestep h is sufficiently small. To illustrate
this limitation, consider a Hamiltonian HA + HB that is autonomous and
has one degree of freedom (i.e., is time-independent with two phase-space
dimensions). Such Hamiltonians are always integrable (Appendix D.7) and
therefore cannot exhibit chaos. Equation (2.127) implies that the numeri-
cal Hamiltonian Hnum is also autonomous with one degree of freedom, and
therefore should not exhibit chaos either; however, simple symplectic inte-
grators for autonomous Hamiltonians with one degree of freedom do exhibit
chaos when the timestep is large enough (see Box 2.3). The resolution of
this apparent paradox lies in the lack of convergence of the series for the
error Hamiltonian.

An alternative approach is to express the numerical Hamiltonian using
the periodic delta function, as in equation (2.52). This approach avoids
concerns about convergence but yields a time-dependent numerical Hamil-
tonian rather than an autonomous one.

2.5.2 Composition methods

Operator splitting can be generalized to construct symplectic and reversible
integrators of arbitrarily high order. Consider the integrator

�h ≡ SahSbhSah, (2.128)

where S is given by equation (2.124). The integrator is symplectic since it
is the composition of operators that are individually symplectic (see the dis-
cussion near the end of Appendix D.5). Moreover if the dynamical systems
governed by HA and HB are reversible, then Sh is reversible and so �h is
also reversible.

Equation (2.125) implies that

Sh = exp[hZ1 + h3Z3 +O(h5)], (2.129)
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where Z1 ≡ LHA + LHB . Then

�h ≡ exp �ahZ1 + a3h3Z3 +O(h5)� exp �bhZ1 + b3h3Z3 +O(h5)�
× exp �ahZ1 + a3h3Z3 +O(h5)�

= exp �(2a + b)hZ1 + (2a3 + b3)h3Z3 +O(h5)�; (2.130)

the last equation follows from equation (d) of Box 2.6. The exact propagator
is exp(hLHA+HB) = exp(−hLHA − hLHB) = exp(−hZ1) so if we choose
2a + b = 1, 2a3 + b3 = 0, the one-step error will be O(h5) and �h will be a
fourth-order integrator. These constraints on a and b require that

a = 1

2 − 21�3 = 1.35121, b = − 2
1�3

2 − 21�3 = −1.70241, (2.131)

and this equation together with (2.128) define the Forest–Ruth integrator
(Forest & Ruth 1990; Suzuki 1990; Yoshida 1990). Notice that b < 0; thus
by taking one Strang step forward, one back and a third forward we have
promoted the second-order Strang integrator to a fourth-order one.

This procedure can be generalized to construct sequences of Strang
splittings that yield reversible, symplectic integrators of any even order (e.g.,
Yoshida 1993; Hairer et al. 2006; Blanes & Casas 2016). In general these
have one or more backward timesteps and because of this the errors tend to
be larger than the errors in other (non-symplectic) integrators of the same
order.

2.5.3 Wisdom–Holman integrators
So far we have applied operator splitting to follow the motion of a test parti-
cle governed by the Hamiltonian H = 1

2v
2 +�(r, t), by splitting the Hamil-

tonian into HA = 1
2v

2, HB = �(r, t) (eqs. 2.118 and 2.120). However,
other splits are possible. Suppose that we have a Hamiltonian of the form
1
2v

2 − GM��r� + ✏�(r, t), representing a test particle orbiting in a Kepler
potential with an additional perturbing potential that is smaller by O(✏).
We can make the split HA = 1

2v
2 − GM��r� and HB = ✏�(r, t). Then the

operator GA,h corresponds to advancing the particle on a Kepler orbit for a
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time h—most easily done using the Gauss f and g functions—and GB,h is
the usual kick operator (2.120) due to the potential ✏�(q). The advantage
of this approach is that the integration errors after one timestep are of order
✏h

3 rather than h
3 as in standard leapfrog (Wisdom & Holman 1991). The

term “mixed-variable” is sometimes used to describe these methods because
the integrator consists of alternating steps that are trivial in orbital elements
and Cartesian coordinates.

The most important use of these methods is for long-term integrations
of planetary systems. In this case, we must split the Hamiltonian for the
N -body problem into a sum of Kepler Hamiltonians of the form 1

2p
2�m −

GMm�r, which will be HA, and an interaction term that depends only on
the coordinates, which will be HB . Unfortunately this cannot be done in
barycentric coordinates, because of the presence of the kinetic energy of the
host star in the Hamiltonian (the term 1

2p
2
0�m0 in eq. 4.3). Astrocentric coor-

dinates can also be used, but in this case the Hamiltonian (4.13) contains an
additional term 1

2 �∑j p
�
j
�2�m0 so the Hamiltonian has to be split three ways

(Duncan et al. 1998; Wisdom 2006). The best choice is Jacobi coordinates,
for which the Hamiltonian is given in equation (4.39). A comparison of the
merits of different coordinate systems is given by Rein & Tamayo (2019),
and Wisdom–Holman schemes of higher order are reviewed by Rein et al.
(2019). Wisdom–Holman integrators are usually the method of choice for
long integrations of planetary systems in which the planets are on nearly
circular and coplanar orbits.

2.6 Regularization

High-eccentricity orbits are difficult for most integrators to handle, because
the acceleration is very large for a small fraction of the orbit. The simplest,
and most extreme, version of this problem arises for a collision orbit, an
orbit with negligible angular momentum. In this case the radius of the orbit
varies as r(t)∝ �t−t0�2�3 as r(t)→ 0 (see Problem 1.14), and no integrator
can easily manage a non-differentiable trajectory of this kind.

This obstacle can be circumvented by transforming to a coordinate sys-
tem in which the two-body problem has no singularity—a procedure called
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regularization. Standard integrators can then be used to solve the equation
of motion in the regularized coordinates.

2.6.1 Time regularization

The simplest form of regularization is time transformation. We write the
equation of motion for the perturbed two-body problem as

r̈ = − GM

r3
r −∇�ext, (2.132)

where �ext(r, t) is the gravitational potential from sources other than the
central mass M . We change to a fictitious time ⌧ defined by

dt = rp d⌧. (2.133)

If a collision occurs at t = 0, then the radius satisfies r(t) ∝ �t�2�3 so equa-
tion (2.133) implies that �⌧ � ∝ �t�1−2p�3 and r(⌧)∝ �⌧ �2�(3−2p). The simplest
choice that makes the radius a smooth function of ⌧ across the encounter is
p = 1, which yields r(⌧) ∝ ⌧

2, and henceforth we restrict ourselves to this
value of p.

Denoting derivatives with respect to ⌧ by primes, we find for p = 1
ṙ = d⌧

dt

dr

d⌧
= r
′
r
, r̈ = d⌧

dt

d

d⌧

r
′
r
= r
′′
r2
− (r ⋅ r′)

r4
r
′
. (2.134)

Substituting these results into the equation of motion, we obtain

r
′′ = (r ⋅ r′)

r2
r
′ − GM

r

r
− r2∇�ext. (2.135)

The eccentricity vector e helps us to simplify this equation. From Box
1.1, using the vector identity (B.9b), we have

e = ṙ × (r × ṙ)
GM

− r

r
= 1

GM
� �r′�2
r2

r − (r ⋅ r′)
r2

r
′� − r

r
. (2.136)
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By using this result to eliminate the term proportional to (r ⋅ r′)r′, equation
(2.135) can be written

r
′′ = �r′�2 r

r2
− 2GM

r

r
− GMe − r2∇�ext. (2.137)

The energy of the orbit is

E = 1
2v

2 − GM

r
+�ext = �r′�2

2r2
− GM

r
+�ext, (2.138)

so we may eliminate the term proportional to �r′�2, giving (Burdet 1967;
Heggie 1973)

r
′′ − 2Er + GMe = −∇(r2�ext). (2.139)

This equation of motion must be supplemented by equations for the rates of
change of t, E and e with fictitious time ⌧ ,

t
′ = r,

E
′ = r@�ext

@t
,

e
′ = 1

GM
�r′(r ⋅∇�ext) +∇�ext(r ⋅ r′) − 2r(r′ ⋅∇�ext)�. (2.140)

When the external potential vanishes the energy E and the eccentricity vec-
tor e are constant, and (2.139) is the equation of motion of a harmonic os-
cillator with frequency ! = (−2E)1�2 that is subject to a constant force−GMe. Therefore r(⌧) is a smooth function, even for a collision orbit.
Moreover it is straightforward to show from equations (1.46) and (1.49)
that in this case the fictitious time ⌧ is related to the eccentric anomaly u by
u = na⌧ + const, where n and a are the mean motion and semimajor axis.
We therefore call this method eccentric-anomaly regularization.

Figure 2.2 shows the fractional energy error that arises in the integration
of an orbit with eccentricity e = 0.999 using eccentric-anomaly regulariza-
tion. Note that regularization by time transformation in this way is different
from integrating in Cartesian coordinates with a variable timestep; in partic-
ular, regularization allows us to integrate collision orbits, while the use of a
variable timestep does not.
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Figure 2.2: Relative energy error ��E�E� in the integration of a Kepler orbit with
eccentricity e = 0.999 over one periapsis passage. The orbit is integrated from
r = 1

2
a, ṙ < 0 to r = 1

2
a, ṙ > 0. The x-axis is the number of force evaluations

n. All orbits are followed using the Dormand–Prince integrator defined in equations
(2.70)–(2.73); since this is a fifth-order integrator we expect the energy error to scale
as ��E� ∝ n−5, shown by a short solid line. The curve labeled “no regularization” is
computed in Cartesian coordinates; the curve labeled “eccentric-anomaly” is com-
puted in Cartesian coordinates using eccentric-anomaly regularization; and the curve
labeled “Kustaanheimo–Stiefel” is computed as described in §2.6.2.
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2.6.2 Kustaanheimo–Stiefel regularization
This is an alternative regularization procedure that involves the transforma-
tion of both the coordinates and the time. The Kustaanheimo–Stiefel (KS)
formulas can be derived using the symmetry group of the Kepler problem,
the theory of quaternions and spinors, or several other methods (Stiefel &
Scheifele 1971; Yoshida 1982; Waldvogel 2008; Saha 2009; Mikkola 2020),
but since the derivation has limited relevance to other aspects of celestial
mechanics we only give the results.

We define a 4-vector u = (u1, u2, u3, u4) that is related to the position
r = (x, y, z) by

u1 = �12(x + r)�1�2 cos , u4 = �12(x + r)]1�2 sin ,
u2 = yu1 + zu4

x + r , u3 = zu1 − yu4

x + r , (2.141)

where  is an arbitrary parameter. The inverse relations are

x = u2
1−u2

2−u2
3+u2

4, y = 2(u1u2−u3u4), z = 2(u1u3+u2u4). (2.142)

Then

ẋ = 2(u1u̇1 − u2u̇2 − u3u̇3 + u4u̇4),
ẏ = 2(u1u̇2 + u2u̇1 − u3u̇4 − u4u̇3),
ż = 2(u1u̇3 + u3u̇1 + u2u̇4 + u4u̇2). (2.143)

The equations of motion for u(t) are not uniquely determined by the equa-
tions of motion for r(t). We may therefore impose the additional constraint

u4u̇1 − u1u̇4 + u2u̇3 − u3u̇2 = 0. (2.144)

The inverse relation for time derivatives is then

u̇1 = 1

2r
(u1ẋ + u2ẏ + u3ż), u̇2 = 1

2r
(−u2ẋ + u1ẏ + u4ż),

u̇3 = 1

2r
(−u3ẋ − u4ẏ + u1ż), u̇4 = 1

2r
(u4ẋ − u3ẏ + u2ż). (2.145)



126 CHAPTER 2. NUMERICAL ORBIT INTEGRATION

These relations imply that the radius r and velocity v are given by

r = �u�2 = u2
1 +u2

2 +u2
3 +u2

4, v
2 = �ṙ�2 = 4�u�2�u̇�2 = 4r(u̇2

1 + u̇2
2 + u̇2

3 + u̇2
4).

(2.146)
Now consider a test particle subject to the gravitational field of a point

mass M and an additional potential �ext(r, t). The Lagrangian is

L(r, ṙ, t) = 1
2v

2 + GM

r
−�ext(r, t). (2.147)

In the new variables

L(u, u̇, t) = 2�u�2�u̇�2 + GM

�u�2 −�ext(u, t). (2.148)

The momentum conjugate to the coordinates u is pu = @L�@u̇ = 4�u�2u̇,
and the Hamiltonian is

H(u,pu) = pu ⋅ u̇ −L = �pu�2
8�u�2 −

GM

�u�2 +�ext(u, t). (2.149)

We now introduce a transformation to an extended phase space as de-
scribed in Box 2.1. The fictitious time is defined by equation (e) of that
box, with g(u,pu) = r = �u�2 (the same transformation used in eccentric-
anomaly regularization). The new coordinates (now 5-vectors) are U =(U0,u) where U0 = t and P ≡ (P0,pu). The transformed Hamiltonian is
given by equation (b) of Box 2.1,

�(U,P) = 1
8 �pu�2 − GM + �u�2�ext(U) + P0�u�2. (2.150)

Denoting derivatives with respect to the fictitious time ⌧ by a prime, the
regularized equations of motion are

u
′′ + 1

2P0u = −1
4

@

@u
��u�2�ext� , P

′
0 = −�u�2 @�ext

@t
, t

′ = �u�2. (2.151)

We may choose the initial condition for P0 such that �(U,P) = 0 at the
initial time. Since �(U,P) is independent of the fictitious time ⌧ , it will
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remain zero everywhere on the trajectory, so P0 = −1
8p

2
u
��u�2 −�ext(U) +

GM��u�2. Comparison with equation (2.149) shows that P0 = −E, where
E is the energy. Thus we can rewrite the regularized equations of motion as

t
′ = �u�2,

E
′ = �u�2 @�ext

@t
,

u
′′ − 1

2Eu = −1
4

@

@u
��u�2�ext� ,

E = 1
2v

2 − GM

r
+�ext = 2 �u′�2�u�2 −

GM

�u�2 +�ext. (2.152)

When the external potential vanishes, the energy E is conserved and the
equation of motion is that of a harmonic oscillator with frequency ! =(−1

2E)1�2.
The equations of motion (2.152) resemble equations (2.139) and (2.140)

resulting from time regularization: both describe the trajectory of a particle
in a harmonic potential, with squared frequency !

2 proportional to −E.
An important difference is that in eccentric-anomaly regularization the fre-
quency is ! = (−2E)1�2, while in KS regularization ! = (−E�2)1�2, a
factor of two smaller. Because the frequency is smaller, an integrator can
follow the motion more accurately at a given timestep.

Figure 2.2 shows the fractional energy error that arises in the integra-
tion of an orbit with eccentricity e = 0.999 using KS regularization. This
approach reduces the energy error by two orders of magnitude compared to
eccentric-anomaly regularization and even more compared to integration in
Cartesian coordinates.

2.7 Roundoff error

Computer arithmetic with real numbers is not exact. The integrators dis-
cussed in this chapter have been designed to minimize the truncation er-
ror that arises when a differential equation is approximated using finite
timesteps, but even the most accurate integrators are subject to roundoff
error arising from the limitations of computer arithmetic. Shrinking the
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timestep h of a k
th-order integrator shrinks the global error over a fixed

time interval as h
k (§2.1.1) but only so long as the roundoff error is less

than the truncation error; if the timestep is reduced too far the error will
be dominated by roundoff and will grow again, typically as h− where  is
between 0.5 and 1 (see §2.7.3).

Roundoff error is more difficult to study and to control than truncation
error. Fortunately, with modern computers roundoff is usually unimportant
except in the most demanding orbit integrations. The aim of this section is
to provide a brief introduction to the properties of roundoff error and how it
can be managed.14

In numerical calculations, reproducibility is almost as important as ac-
curacy. Ideally, when the same code is run with different compilers or dif-
ferent machines it should give the same answer, down to the last bit (Rein &
Tamayo 2017). To accomplish this goal, the computing community has
agreed on a set of conventions for floating-point formats and arithmetic
known as IEEE 754 (The Institute of Electrical and Electronics Engineers
Standard for Floating-Point Arithmetic). Most modern computers are com-
pliant with IEEE 754,15 and we shall refer our discussion to this standard.

An alternative approach is to use integer arithmetic, which does not suf-
fer from roundoff. Either the phase space can be discretized on a grid of in-
tegers (Rannou 1974; Earn & Tremaine 1992), or selected operations can be
carried out in integer arithmetic (Levesque & Verlet 1993; Rein & Tamayo
2018).

14 A classic description of the early history and basic algorithms of floating-point arithmetic
is Knuth (1981). William Kahan is responsible for many of the advances in understanding,
improving and standardizing floating-point arithmetic, and his many papers on the web are
worth reading to learn about the history and the subtleties of this subject. A comprehensive
reference is Muller et al. (2010).

15 Graphics processing units (GPUs) can be an exception.
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2.7.1 Floating-point numbers

Almost all computers store real numbers in floating-point format: a real
number x is represented as a sequence [k0, k2, . . . , kp−1; s, e] where

x = s p−1�
n=0knb

e−n
. (2.153)

Here s = ±1 is the sign, p is the precision, e is the exponent, and b is the base.
Almost always b = 2 (binary arithmetic). The set of numbers (k0, . . . , kp−1)
is called the significand; each kn is an integer between 0 and b − 1 (0 or
1 in binary arithmetic). The exponent e is an integer in the range emin ≤
e ≤ emax. To ensure that the representation of a given number is unique, we
require that the leading digit k0 is nonzero unless x = 0 or e = emin.

Any number that has the form (2.153) is a representable number. All
integers j with �j� < b

p are representable. All representable numbers are
rational numbers but not all rational numbers are representable; for example,
1
3 is not representable in binary arithmetic. Irrational numbers such as ⇡ or√
2 are never representable.

Numbers that are not representable are rounded to one of the two adja-
cent representable numbers. The best approach, and the default in the IEEE
754 standard, is to round to the nearest, and if the distances are equal round
to the one whose least significant digit is even (round to nearest, ties to
even). We denote the rounded value of a real number x by rnd (x).

The most common format for floating-point numbers in IEEE 754 is the
binary64 format. Here the precision p = 53, corresponding to a fractional
difference between adjacent representable numbers of 2−53 � 1×10−16. The
exponent range is from emin = −1022 to emax = +1023, which allows the
significand, exponent and sign to be stored in 64 bits.

2.7.2 Floating-point arithmetic

When two representable numbers x and y are added, subtracted, multiplied
or divided, the result is often not representable. The designer of the com-
puter’s arithmetic engine must decide what representable number to use to
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approximate the result of each of these operations, along with others such
as square roots.

The most important principle guiding this design is exact rounding,
which states that the result of a function operating on representable numbers
should be the representable number that is closest to the exact result of the
same function.

In mathematical notation, let F (x1, . . . , xN) be a function of N real
numbers and let fl [F (x1, . . . , xN)] be the representable number that results
from evaluating this function in floating-point arithmetic.16 Then rounding
is exact for the function F if

rnd [F (x1, . . . , xN)] = fl [F (x1, . . . , xN)]. (2.154)

In the IEEE 754 standard, addition, subtraction, multiplication, division and
square roots are rounded exactly (the inclusion of square roots is a blessing
for orbit integration). The current version, IEEE 754-2019, recommends but
does not require exact rounding of exponentials, logarithms, trigonometric
and other common transcendental functions as well.

Exact rounding enables floating-point arithmetic to preserve many of
the properties of exact arithmetic. For example, the binary operations of
addition and multiplication commute: x+ y = y +x and x× y = y ×x for all
real x and y. These properties are preserved with exact rounding:

fl (x + y) = fl (y + x) and fl (x × y) = fl (y × x). (2.155)

for all representable x and y. Many other familiar arithmetic properties are
preserved with exact rounding; for example,

fl (x + 0) = x,
fl (x − y) = fl [x + (−y)],
fl (x�x) = 1,

16 Note that fl is not a function of F (x1, . . . , xN ). Mathematically, fl is a functional of F and
x1, . . . , xN are parameters. Also note that the result of operating with fl on some functions
such as F (x1, x2, x3) = x1 + x2 + x3 is ambiguous because we need to specify the order
in which the additions are performed, e.g., x1 + (x2 + x3) or (x1 + x2) + x3.
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fl (x�1) = x,
fl (x + y) = 0 if and only if x = −y,
fl (x × y) = 0 if and only if x = 0 or y = 0. (2.156)

On the other hand, the associative [x+(y+z) = (x+y)+z, x(yz) = (xy)z],
and distributive [z(x + y) = zx + zy] properties of normal arithmetic no
longer hold.

The lack of an associative property means that sums of the form∑N

i=1 xi

depend on the order in which the summation is done. Worse still, there can
be catastrophic loss of accuracy if there is near-cancellation between two
or more terms in this sum. Exact rounding allows us to fix this problem by
implementing a compensated summation algorithm, which dramatically
reduces the error in the sum. The basic idea is to track an extra variable that
keeps a running total of the roundoff errors. The pseudocode for compen-
sated summation is
s = 0 {This is the running sum}
c = 0 {This is an estimate of the error in the sum}
for i = 1 to N do
y = xi − c {c is initially zero}
t = s + y
c = (t − s) − y {The brackets ensure that t − s is evaluated first}
s = t

end for
print s {This is the required sum}

A variant of this algorithm allows the roundoff error in an addition to
be eliminated entirely, by a sum-conserving transformation that converts
x and y into two floating-point numbers s and c with exactly the same sum.
The first number s is the rounded sum, while c is the roundoff error. In the
usual case that the base b is 2 (binary arithmetic), if rounding is exact and x

and y are representable then (Dekker 1971; Knuth 1981)

x + y = s + c where s = fl (x + y), c = � fl [(x − s) + y] if �x� ≥ �y�,
fl [(y − s) + x] if �y� ≥ �x�.

(2.157)
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A product-conserving transformation also exists, but requires many more
operations (Dekker 1971).

Many other small changes in the evaluation of algebraic expressions
can reduce roundoff error. For example, the polynomial p(x) = ∑N

j=0 ajxj

should be evaluated by Horner’s rule,
p = aN
for j = N − 1 to 0 do
p = px + aj

end for
print p {This is p(x)}

2.7.3 Good and bad roundoff behavior
The equation of motion for a bound test particle in a time-independent po-
tential �(r) conserves the energy E = 1

2v
2 +�(r). If we follow the motion

numerically the energy will not be conserved, because of both truncation
error and roundoff error. For the current discussion we ignore truncation
error, and assume that the integration is carried out in base b = 2 floating-
point arithmetic with precision p. We can write the energy error accrued in
the timestep from tj to tj + h as�Ej = 2−pfjE where �fj � varies from step
to step but is always of order unity (although for a complicated integrator,�fj � could be as large as a few hundred).

Since the roundoff error in a given timestep depends on the least sig-
nificant bits of the phase-space coordinates at the start of the timestep, it
is useful to think of each fj as an independent random variable, sampled
from a distribution with a mean f and a standard deviation �. Now con-
sider the total fractional energy error �E�E after an integration time T

requiring N = T �h � 1 timesteps. So long as ��E�E� � 1 we can write
�E�E = 2−p∑N

j=1 fj . Since this is the sum of a large number of indepen-
dent random variables, the central-limit theorem implies that �E�E will
have a Gaussian probability distribution with mean and standard deviation
given by

�E

E
= T

2ph
f,

��E�E� = 2−p�N1�2 = T
1�2

2ph1�2�. (2.158)
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The effect of roundoff on the orbital phase is much larger than the effect
on the energy. By Kepler’s law, the mean motion n = (GM�a3)1�2 (eq.
1.44) and the semimajor axis a = −1

2 GM�E (eq. 1.32) so n ∝ (−E)3�2.
Therefore if the fractional energy error is �E�E, the fractional error in
mean motion will be �n�n ∼ �E�E and the error in orbital phase that
accumulates over time T will be �` ∼ T�n ∼ nT�E�E. Then so long as��E�E� � 1, equations (2.158) imply that �` ∼ nT

2
f�(2ph) and ��l ∼

nT
3�2
��(2ph1�2). We replace the mean motion by the orbital period P =

2⇡�n and add numerical coefficients derived from analytic solutions of the
drift and diffusion equations to obtain (Problem 2.10)

�` = 3⇡T
2

2p+1Ph
f, ��l = 3

1�2
⇡T

3�2
2pPh1�2 �. (2.159)

This analysis shows that there are two contributions to the roundoff er-
ror in a long integration: drift yielding an energy error that grows as the
integration time T and a phase error that grows as T 2, and diffusion yield-
ing an energy error that grows as T 1�2 and a phase error that grows as T 3�2.
Over long integrations the drift errors are far larger than the diffusion errors
unless f = 0.

As an illustration, suppose we integrate the motion of a planet using
binary64 floating-point arithmetic (p = 53) and a timestep h = 0.01 yr = 3.65
days. Then equations (2.158) and (2.159) yield

�E

E
= 1.1 × 10−6 f T

108 yr
0.01 yr

h
,

��E�E� = 1.1 × 10−11� �
T

108 yr
0.01 yr

h
�1�2 ,

�` = 523 f � T

108 yr
�2 0.01 yr

h

1 yr
P

,

��l = 0.006� � T

108 yr
�3�2 �0.01 yr

h
�1�2 1 yr

P
. (2.160)

This result implies that even after an integration time of only 100Myr, only
2% of the age of the solar system, drift leads to errors in the planet’s mean
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longitude of many radians, while the diffusion errors are almost 105 times
smaller.

These arguments lead to a crude but useful characterization of roundoff
error in long integrations: bad roundoff exhibits linear growth �E ∝ T

in the errors of conserved quantities such as energy, while good roundoff
exhibits the much slower growth �E ∝ T

1�2, behavior sometimes referred
to as Brouwer’s law (Newcomb 1899; Brouwer 1937). Achieving good
roundoff requires that the mean energy error per timestep vanishes, that is,
f = 0.

Good roundoff behavior is a necessary component of accurate long-term
orbit integrations but requires unusual care in programming. The following
practices help:

• Use only compilers that comply with the IEEE 754 standard for float-
ing-point arithmetic, to ensure that arithmetic operations are exactly
rounded and that the code is portable.

• Check that compiler optimization flags do not lead to unexpected be-
havior such as replacing (x+y)+z by x+(y+z) or x�y by x×(1�y).
Fused multiply-add replaces fl [fl (x × y) + z] by rnd (x × y + z); the
latter is more accurate but portability demands that the same formula
is used on all compilers.

• Use the “round to nearest, ties to even” rounding mode to eliminate
one source of drift in the phase-space positions.

• At each timestep, an integrator increments the phase-space positions
zj by some amount �zj that is proportional to the timestep h. This
addition should be carried out using compensated summation or some
other algorithm that minimizes or eliminates roundoff error in addi-
tion.

• Use extended-precision arithmetic on critical operations if it is avail-
able and not too slow.
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• Avoid using mathematical functions such as sin and cos since these
often depend on the compiler and may yield biased results that lead
to bad roundoff behavior.

• Avoid using any mathematical constants that are not representable.
For example, in the classical Runge–Kutta integrator (2.65) the factor
1
6 will be rounded to a slightly different number, leading to drift in
the phase-space positions. This problem can be evaded by writing all
multiplications of x by a fixed rational number p�q as (x×p)�q rather
than x×(p�q); since the least significant bits of x vary randomly from
step to step, the roundoff error from the multiplication and subsequent
division should lead to diffusion rather than drift. Irrational constants
such as ⇡ should be avoided in repetitive operations.





Chapter 3

The three-body problem

The three-body problem is to determine the trajectories of three points in-
teracting through their mutual gravity. In contrast to the two-body problem
described in Chapter 1, there is no general analytic solution to the three-
body problem. The three-body problem was originally stated by Newton,
and ever since then has driven much of our understanding of the physics
and mathematics of dynamical systems. In his famous treatise on mechan-
ics the mathematician E. T. Whittaker (1873–1956) called it “the most cele-
brated of all dynamical problems” (Whittaker 1937). Books focused on the
three-body problem include Szebehely (1967), Marchal (1990), Valtonen
& Karttunen (2005) and Musielak & Quarles (2014). See Barrow–Green
(1997) for a historical review.

We label the three bodies by the subscripts 0, 1, 2, so their masses and
trajectories are m0, m1, m2 and r0(t), r1(t), r2(t). In an inertial frame,
the equations of motion are

d
2
ri

dt2
= −G �

j=0,1,2
j�=i

mj

ri − rj�ri − rj �3 , i = 0,1,2. (3.1)

137
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The total energy is

Etot = 1
2

2�
i=0

mi�ṙi�2 − G
2�

i,j=0
j>i

mimj�ri − rj � . (3.2)

The total momentum is

Ptot = 2�
i=0

miṙi, (3.3)

and the total angular momentum is

Ltot = 2�
i=0

miri × ṙi. (3.4)

The total energy, momentum, and angular momentum are all conserved, as
can be verified by substituting equation (3.1) into the equations for Ėtot,
Ṗtot, and L̇tot. It is often convenient to work in the barycentric frame, the
inertial frame in which the center of mass ∑imiri�∑imi is fixed at the
origin (§4.1).

The phase space for the three-body problem has 18 dimensions (6 for the
positions and velocities of each of the three bodies). Using the 10 conserved
quantities (Etot, Ptot, Ltot, and the position of the center of mass), the
phase space can be reduced to a manifold of 8 dimensions, although this is
still much too large for a comprehensive exploration of the trajectories.

The most important special case is the restricted three-body problem,
in which one of the masses, say m2, is set to zero (i.e., particle 2 is a test
particle). Usually body 1 is then chosen to be the less massive of m0 and
m1, so m1 < m0. In the restricted problem the massive bodies follow a
Kepler orbit as described in Chapter 1, so we need only study the motion of
m2. In the circular restricted three-body problem, the orbit of the massive
bodies m0 and m1 is further assumed to be circular.

3.1 The circular restricted three-body problem

In the restricted problem, it makes sense to drop the subscript “2” on the
position and velocity of the test particle. Then the equation of motion for
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the test particle is

d
2
r

dt2
= r̈ = −Gm0

r − r0�r − r0�3 − Gm1
r − r1�r − r1�3 = −

@�

@r
, (3.5)

where

�(r, t) = − Gm0�r − r0(t)� −
Gm1�r − r1(t)� . (3.6)

The test particle’s energy and angular momentum per unit mass1 are

E = 1
2 �ṙ�2 +�(r, t) = 1

2 �ṙ�2 − Gm0�r − r0(t)� −
Gm1�r − r1(t)� ,

L = r × ṙ. (3.7)

In general, neither E nor L is constant along a trajectory governed by the
equation of motion (3.5), in contrast to the total energy and angular mo-
mentum Etot and Ltot, which are conserved in a system with three nonzero
masses.

In the circular restricted problem, the two massive bodies are separated
by a fixed distance equal to their semimajor axis a, and orbit at a constant
angular speed ⌦, whose magnitude is given by Kepler’s law (1.44),

⌦
2 = G(m0 +m1)

a3
. (3.8)

The equation of motion for the test particle is simplest in the rotating frame
in which the massive bodies are stationary. We denote the position in this
frame by x = (xa, xb, xc). The origin is chosen at the center of mass with
the positive xc-axis parallel to ⌦. The massive bodies labeled 0 and 1 are
chosen to lie on the negative and positive xa-axis at x0 and x1, so

x0 = − m1

m0 +m1
a x̂a, x1 = + m0

m0 +m1
a x̂a. (3.9)

1 Since a test particle has zero mass, these are actually the ratio of the energy and angular
momentum to the mass in the limit as the mass approaches zero.
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The equation of motion of the test particle is (eq. D.20)

ẍ = −Gm0
x − x0�x − x0�3 − Gm1

x − x1�x − x1�3 − 2⌦ × ẋ −⌦ × (⌦ × x), (3.10)

where the velocity ẋ of the test particle in the rotating frame is related to
its velocity in the inertial frame, ṙ, by equation (D.17), which reads in the
current notation

ẋ = ṙ −⌦ × x. (3.11)

The last term in equation (3.10) is the centrifugal force, which is the
negative gradient of the centrifugal potential �cent(x) ≡ −1

2 �⌦ × x�2 (eq.
D.21). Then the Jacobi constant is

EJ ≡ 1
2 �ẋ�2 +�(x) +�cent(x) = 1

2 �ẋ�2 +�e↵(x), (3.12)

where the effective potential is the sum of the gravitational and centrifugal
potentials,

�e↵(x) ≡ − Gm0�x − x0� −
Gm1�x − x1� − 1

2 �⌦ × x�2
= − Gm0�x − x0� −

Gm1�x − x1� − 1
2⌦

2(x2
a
+ x2

b
). (3.13)

In terms of the effective potential, the equation of motion (3.10) reads

ẍ = −2⌦ × ẋ −∇�e↵ ; (3.14)

in words, the acceleration of the test particle in the rotating frame is the sum
of the Coriolis acceleration and the gradient of the effective potential.

Using equation (3.11) and the vector identity (B.9a) we can show that
the Jacobi constant is related to the energy and angular momentum per unit
mass in the non-rotating frame (eq. 3.7) by (cf. eq. D.24)

EJ = E −⌦ ⋅L. (3.15)

Although neither E nor L are constants of motion, it is straightforward to
show from equation (3.14) that EJ is a constant or integral of motion. The
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existence of this constant is peculiar to the circular, restricted three-body
problem. If either m2 �= 0 or the eccentricity of the orbit of m0 and m1 is
nonzero, then no such constant exists.

Since �ẋ�2 ≥ 0, a particle with Jacobi constant EJ is restricted to the
region where �e↵(x) ≤ EJ. The surface on which �e↵(x) = EJ is called
the zero-velocity surface and separates regions forbidden to the motion
from those allowed—though of course there is no guarantee that the test
particle will explore all of the allowed region.

The contours of the effective potential in the plane of the orbit of the two
massive bodies are shown in Figure 3.1 for a system with m1�m0 = 0.1. If
the initial position and velocity vectors lie in the z = 0 plane (the orbital
plane of the two massive bodies), they will remain so; this “planar, circu-
lar, restricted three-body problem” is the simplest version of the three-body
problem, yet as we shall see it still yields rich and instructive dynamical
behavior.

If the smaller mass m1 � m0 and the test particle is not close to the
smaller mass, the Jacobi constant takes on a simplified form called the Tis-
serand parameter (Box 3.1).

3.1.1 The Lagrange points

The first step in exploring the circular restricted three-body problem is to
look for trajectories that are stationary in the rotating frame. These are
located at isolated positions called Lagrange points. Such trajectories must
have zero velocity ẋ and zero acceleration ẍ, so equation (3.14) implies that∇�e↵ = 0, which means that the Lagrange points are located at extrema—
minima, maxima, or saddle points—of the effective potential.

Differentiating equation (3.13) with respect to the three coordinates and
using equation (3.9) gives

@�e↵

@xa

= (⌫2 −⌦2)xa + Gm0m1a

m0 +m1
� 1

�x − x0�3 −
1

�x − x1�3 � ,
@�e↵

@xb

= (⌫2 −⌦2)xb,
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Figure 3.1: Contours of the effective potential (3.13), also known as zero-velocity
curves, for the planar, circular, restricted three-body problem. The Lagrange points
L1, . . . ,L5 are marked by crosses. Shading marks regions in which the effective
potential is greater than the value at the L1 point. The massive bodies, located at the
centers of the black circles, have mass ratio m1�m0 = 0.1. The smaller mass is on
the right.
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Box 3.1: The Tisserand parameter
In many planetary systems, the gravitational fields from the host star and one
planet—typically the most massive one—dominate the motion of small bodies
over a large region. For example, the dynamics of asteroids is determined mostly
by the Sun and Jupiter.

Suppose that the star and planet have masses M and mp � M , and the
planet travels on a circular orbit with semimajor axis ap. In most of the vol-
ume of the planetary system the gravitational potential from the planet is small
compared to the potential from the host star, so the Jacobi constant (3.15) can
be written as EJ = EK − ⌦ ⋅ L + O(mp�M) where EK is the Kepler en-
ergy (1.19). We have EK = − 1

2
GM�a from equation (1.32) and ⌦ ⋅ L =

⌦(GMa)1�2(1 − e2)1�2 cos I from equation (1.28), where e is the eccentricity
and I is the inclination relative to the orbital plane of the planet. Thus

EJ = − GM

2a
−⌦(GMa)1�2(1 − e2)1�2 cos I +O(mp�M). (a)

Furthermore the planet’s angular speed ⌦ = (GM�a3p)1�2 so the Jacobi constant
can be written

EJ = − GM

2ap

T +O(mp�M), (b)

where the Tisserand parameter is

T ≡ ap

a
+ 2� a

ap

�1�2 (1 − e2)1�2 cos I. (c)

One use of the Tisserand parameter is to connect fragmentary observations
of small bodies such as asteroids and comets. Since the parameter is conserved
during an encounter with a planet, it can be used to determine whether or not a
newly discovered body is the same as a known one that recently suffered a close
encounter that changed its orbital elements.

In the solar system, the Tisserand parameter is usually defined using Jupiter’s
semimajor axis, ap = 5.203 au. Classes of small bodies in the solar system are
sometimes defined by a range of Tisserand parameters.
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@�e↵

@xc

= ⌫2xc, (3.16)

where a is the orbital radius of the binary and

⌫
2 ≡ Gm0�x − x0�3 +

Gm1�x − x1�3 (3.17)

is positive-definite. The right side of the last of equations (3.16) is nonzero
whenever xc �= 0. Therefore any extrema of �e↵ must have xc = 0, that
is, they lie in the orbital plane of the two massive bodies. The second of
equations (3.16) implies that at an extremum either ⌫2 = ⌦2 or xb = 0. We
examine each of these possibilities in turn.

Triangular Lagrange points Consider first the case xb �= 0. Then the
condition @�e↵�@xb = 0 requires that ⌫2 = ⌦2, and @�e↵�@xa = 0 requires
that

1

�x − x0�3 −
1

�x − x1�3 = 0, (3.18)

which in turn requires that �x − x0� = �x − x1�. Let us call this distance b;
then (3.17) implies that ⌫2 = G(m0 +m1)�b3, so the condition ⌫2 = ⌦2

together with (3.8) requires that a = b, which means that the triangle formed
by m0, m1, and the test particle is equilateral, and since xc = 0 the triangle
must lie in the orbital plane. The positions occupied by the test particle in
this configuration are the two triangular Lagrange points, labeled L4 and
L5 in Figure 3.1. The L4 point leads m1 by 60

○ in the direction of orbital
motion, and L5 trails by the same angle.

Collinear Lagrange points We next look for solutions with xb = xc = 0.
In this case we can use the first of equations (3.16) to write the condition
@�e↵�@xa = 0 as

f(X) = 1 − µ
�X + µ�3 (X + µ) +

µ

�X − 1 + µ�3 (X − 1 + µ) −X = 0, (3.19)



3.1. THE CIRCULAR RESTRICTED THREE-BODY PROBLEM 145

Figure 3.2: The locations of the three collinear Lagrange points as a function of
µ = m1�(m0 +m1) are shown as the solid line (eq. 3.19). The circles indicate the
locations of m0 and m1, and the narrow shaded band shows the region where the
equilibria would be stable (eq. 3.32). All three collinear points are always unstable.

where X ≡ xa�a and µ ≡m1�(m0 +m1). The function f(X) is singular at
the locations of the two masses, X0 = −µ and X1 = 1 − µ. For X <X0,

f(X) = − 1 − µ
(X + µ)2 −

µ

(X − 1 + µ)2 −X. (3.20)

This function decreases monotonically from f(X) → ∞ as X → −∞ to
f(X) → −∞ as X → X0 = −µ from below. Therefore it has one and
only one root for X < X0. Similar arguments show that there is one root
in the range X0 < X < X1 and one with X > X1. These are the three
collinear Lagrange points, shown by crosses in Figure 3.1. The usual
(but not universal) conventions are that m1 ≤ m0 and that L1, L2 and L3
are labeled as shown in Figure 3.1. In general the roots f(X) = 0 that
determine the locations of the collinear Lagrange points must be determined
numerically. These locations are plotted as a function of µ in Figure 3.2.

The zero-velocity surfaces close to each body are closed. As we move
away, we eventually encounter the last closed zero-velocity surface around
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each body, which is the one passing through L1 (the effective potential at
L2 or L3 is always larger, although the fractional difference approaches zero
as m1 → 0); this surface is called the escape surface or Roche lobe. Any
test particle interior to the escape surface of a massive body, with Jacobi
constant smaller than �e↵(L1), can never cross the escape surface and thus
is permanently bound to the body. In other words the condition EJ = 1

2 �ẋ�2+
�e↵(x) ≥ �e↵(L1) is a necessary condition for escape, analogous to the
condition 1

2 �ṙ�2 − GM�r ≥ 0 in the two-body problem. On the other hand, a
test particle that crosses the escape surface may escape but whether or not it
does so depends on the details of its orbit. Thus, in contrast to the two-body
problem, there is no simple sufficient condition for escape in the three-body
problem.

The most important special case of the collinear Lagrange points arises
when µ � 1, which occurs, for example, when m0 and m1 are respec-
tively a star and a planet, or a planet and a satellite. As µ → 0, f(X) →
sgn(X)�X2 −X except near X = 1.2 The only root of this function away
from X = 1 is at X = −1, corresponding to the Lagrange point L3. The
other roots of f(X), corresponding to the Lagrange points L1 and L2, are
close to m1, so we write X =X1+�X = 1−µ+�X . Substituting this result
into equation (3.19), the condition f(X) = 0 can be written

1 − µ
(1 + �X)2 +

µ sgn(�X)
(�X)2 − 1 + µ − �X = 0. (3.21)

Expanding the left side as a Taylor series in �X and µ, we obtain

µ sgn(�X)
(�X)2 − 3�X +O(�X2

, µ�X) = 0, (3.22)

and dropping the higher order terms,

��X � = �13µ�1�3 . (3.23)

At this order of accuracy we can set µ = m1�m0. We conclude that when
m1 � m0, the collinear Lagrange points L1 and L2 are separated from the
2 The function sgn(X) is +1 if X > 0 and −1 if X < 0.
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mass m1 by the Hill radius,

rH ≡ a� m1

3m0
�1�3 , (3.24)

named after the American mathematician and astronomer George W. Hill
(1838–1914).

The sphere centered on m1 with radius equal to the Hill radius is some-
times called the sphere of influence.3

3.1.2 Stability of the Lagrange points
A casual observer might conclude that the Lagrange points are all unsta-
ble equilibria, because they lie at maxima or saddle points of the effective
potential �e↵ , so a particle at rest at the equilibrium can always slide down-
hill. This conclusion is wrong, because the Coriolis force can stabilize the
motion.

Let xL be the location of one of the Lagrange points. To determine
its stability to small perturbations we substitute x = xL + �x = xL +(�xa,�xb,�xc) in the equation of motion (3.14) and expand to first order
in ��x�. Since ⌦ is parallel to the positive xc-axis, we have

�ẍa = 2⌦�ẋb −�aa�xa −�ab�xb −�ac�xc,

3 Sometimes the radius of the sphere of influence is defined to be rs = a(m1�m0)2�5, based
on the following argument. Consider a test particle a distance r from m1, which is much
less massive than the central body m0. The acceleration of the test particle due to m1

is Gm1�r2 and the acceleration due to m0 is approximately Gm0�a2, where a is the
semimajor axis of the m0-m1 orbit. The ratio of these accelerations, which measures the
relative strength of the perturbation from m1, is g0 ∼ m1a

2�(m0r
2). Now switch to

the non-inertial frame centered on m1. The acceleration due to m1 is again Gm1�r2.
The dominant perturbation is the acceleration due to the quadrupole potential from m0

(eq. 3.71), Gm0r�a3. The ratio of these accelerations, which measures the strength of
the perturbation from m0, is g1 ∼ m0r

3�(m1a
3). The sphere of influence is defined

by g0 = g1 which implies r ∼ a(m1�m0)2�5 = rs. Inside the sphere of influence it is
more accurate to consider the trajectory as a Kepler orbit around m1 that is perturbed by
m0, while outside it is more accurate to treat the trajectory as a Kepler orbit around m0

that is perturbed by m1. Which of the two definitions of the sphere of influence is more
appropriate depends on the dynamical context.
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�ẍb = −2⌦�ẋa −�ba�xa −�bb�xb −�bc�xc,

�ẍc = −�ca�xa −�cb�xb −�cc�xc, (3.25)

where �aa = (@2�e↵�@x2
a
)xL , and so forth. The Lagrange points lie in the

xc = 0 plane and the potential �e↵ is even in xc, so �ac = �bc = �ca =
�cb = 0. Moreover �ba = �ab from the properties of partial derivatives.

The solution of equations (3.25) is a sum of terms of the form x =
a exp(�t) where a and � satisfy the matrix equation

A(�)a = 0, A(�) ≡
�������

�
2 +�aa −2⌦� +�ab 0

2⌦� +�ab �
2 +�bb 0

0 0 �
2 +�cc

�������
. (3.26)

Solutions other than the trivial solution a = 0 exist only if the determinant
of A vanishes, which requires

(�2 +�cc)�(�2 +�aa)(�2 +�bb) + 4⌦2
�
2 −�2

ab
� = 0. (3.27)

One pair of roots of this equation is � = ±i�1�2
cc . Using the last line of

equations (3.16) (@2�e↵�@x2
c
)xc=0 = ⌫2, so �cc = ⌫2L where ⌫L ≡ ⌫(xL);

since ⌫2 is positive-definite, ⌫L is real. Thus x = a exp(±i⌫Lt), and since
the motion is oscillatory these terms in the solution are stable.

The other solutions of equation (3.27) have

(�2 +�aa)(�2 +�bb) + 4⌦2
�
2 −�2

ab
= 0, (3.28)

and investigating these takes more work. We rewrite this equation as

�
4+b�2+c = 0, where b ≡ �aa+�bb+4⌦2

, c = �aa�bb−�2
ab
. (3.29)

This is a polynomial containing only even powers of �. Thus if � is a root
then so is −�. A stable solution must have Re� ≤ 0 for all roots, but this
can only be true for both � and −� if Re� = 0. Therefore stability requires
that z ≡ �2 is real and negative or zero for all roots. The variable z satisfies
the quadratic equation z

2 + bz + c = 0, which has solutions z = −1
2b± 1

2(b2 −
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4c)1�2. These are real and negative or zero—implying that the Lagrange
point is stable—if and only if

b
2 ≥ 4c, b ≥ 0, c ≥ 0. (3.30)

The parameter c is negative if and only if the Lagrange point is a saddle point
of the effective potential. Therefore all saddle points are unstable, whereas
maxima or minima of the potential may be either stable or unstable.

First consider the collinear Lagrange points. From equation (3.13) we
have

�aa = −2⌫2L −⌦2
, �bb = ⌫2L −⌦2

, �ab = 0, (3.31)
where ⌫2L = ⌫2(xL) is given by equation (3.17) evaluated at the collinear
Lagrange point xL. Then b = 2⌦2 − ⌫2L and c = (⌦2 − ⌫2L)(⌦2 + 2⌫2L). The
stability constraints (3.30) then require

8
9⌦

2 ≤ ⌫2L ≤ ⌦2
. (3.32)

The narrow regions where these inequalities are satisfied are marked in gray
in Figure 3.2. They do not intersect the locations of the collinear Lagrange
points, shown by a black line, for any value of the mass ratio m1�(m0+m1),
so we conclude that the collinear points are always unstable.

At the triangular Lagrange points,

�aa = −3
4⌦

2
, �bb = −9

4⌦
2
, �ab = ∓33�2

4

m0 −m1

m0 +m1
⌦

2
; (3.33)

in the last equation the minus and plus signs refer to the L4 and L5 points
respectively. Then b = ⌦2 and c = 27

4 ⌦
4
m0m1�(m0 + m1)2. Stability

requires b2 ≥ 4c or
m0m1(m0 +m1)2 ≤ 1

27 or
m1

m0 +m1
≤ 1

2 − 1
2
�23
27
�1�2 = 0.0385, (3.34)

assuming as usual that m1 is the smaller mass. We conclude that the L4 and
L5 Lagrange points are stable provided that the mass ratio µ = m1�(m0 +
m1) is sufficiently small. This is the case for all of the planets in the solar
system—even for Jupiter, the most massive planet, µ = M ′

J�(M⊙ +M ′
J) =

0.0009539.4 For the Earth–Moon system M%�(M⊕ +M%) = 0.01215, so
4 Here M

′
J

denotes the mass of Jupiter plus its satellites.
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L4 and L5 are stable in this system as well. The triangular points are also
stable for all the satellites of the giant planets.

In most cases of interest m1 �m0; then at the triangular points b� c �
27
4 ⌦

4
m1�m0, and the quadratic equation z

2 + bz + c = 0 has solutions

z = �2 = −⌦2 +O(m1�m0), z = �2 = −27
4 ⌦

2m1

m0
+O(m1�m0)2. (3.35)

The first solution corresponds to displacements from the Lagrange points
that oscillate as exp(±i⌦t); these are simply the epicyclic oscillations de-
scribed in §1.8.2, which would be present even in the absence of the sec-
ondary mass m1. The second solution describes slow oscillations with the
much lower frequency ±1

23
3�2
⌦(m1�m0)1�2, mainly in the azimuthal di-

rection. Oscillations of this kind, in which the frequency approaches zero as
the strength of the perturbation (in this case m1) approaches zero, are called
librations. A more complete description of librations around the triangular
Lagrange points is given in §3.2.

The solar system contains a wide variety of objects at the triangular
points. Thousands of asteroids orbit around the L4 and L5 points of the Sun–
Jupiter system; these are called Trojan asteroids and by association the L4
and L5 points are sometimes called Trojan points in this and other systems.
Although we have only proved that orbits near L4 and L5 are linearly stable
in the circular restricted three-body problem, most of the Jupiter Trojans
appear to orbit stably around the Lagrange points for the lifetime of the
solar system despite perturbations from the other planets, eccentricities as
large as 0.3, and inclinations as large as almost 60○ (Problem 3.1).

The triangular Lagrange points also exist in some cases of the general
three-body problem, in which all three masses are nonzero and the orbits
all have the same eccentricity. For some values of the mass ratios and the
eccentricity, motion around the triangular points is stable (Danby 1964a,b).

A handful of asteroids have also been discovered orbiting the triangular
Lagrange points of the Sun–Neptune, Sun–Uranus, and Sun–Mars systems,
and Earth has at least one known asteroid orbiting the L4 point. The absence
of similar asteroids in the Sun–Saturn system is probably because of long-
term instabilities induced by Jupiter. Saturn’s satellites Tethys and Dione
each have two smaller satellites orbiting their triangular Lagrange points.
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The L1 and L2 points of the Sun–Earth system are popular destinations
for spacecraft. Even though orbits near these Lagrange points are unsta-
ble, spacecraft can be kept close to them using occasional small “station-
keeping” thruster burns (see Problem 3.3). Orbits near L1 are useful for ob-
servations of the Earth, since they always view the sunlit hemisphere, and
for observations of the Sun and solar wind. Orbits near L2 are the best sites
for many space observatories since the Sun, Earth and Moon are relatively
close together in the sky, so the spacecraft optics can be shielded by a single
sunshade. A spacecraft placed exactly at L1 or L2 has the undesirable prop-
erty that the Sun is in line with the Earth and the spacecraft and interferes
with radio transmissions. Thus most spacecraft are placed in orbits around
the Lagrange points (Problem 3.4).

The unstable orbits leading from the L1 and L2 points visit much of
the solar system (the interplanetary transport network), so trajectories
starting from these points can reach distant targets with very little additional
fuel if the mission designer is prepared to wait long enough. For example,
NASA’s ISEE-3/ICE spacecraft visited the L1 and L2 Sun–Earth Lagrange
points and two comets over 8 years.

3.1.3 Surface of section

The simplest autonomous (time-independent) Hamiltonians have one de-
gree of freedom. Understanding the geometry of their trajectories in phase
space is straightforward because the phase space has only two dimensions,
so the trajectories can be shown as curves on a plane surface (e.g., Figures
6.2 or 6.4). The simplest version of the three-body problem is the planar,
circular, restricted three-body problem, which has four phase-space dimen-
sions that can be taken to be the two components of the position and velocity
of the test particle in the orbital plane of the two massive bodies. The conser-
vation of the Jacobi constant (3.12) implies that the trajectory is restricted
to a manifold of 3 dimensions in this 4-dimensional space, but even in 3
dimensions trajectories are difficult to visualize.

The surface of section or Poincaré map is a device invented by the
mathematician Henri Poincaré (1854–1912) that enables us to study dynam-
ical systems such as these. We consider the events when an orbit crosses a
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given curve in the orbital plane; the curve is in principle arbitrary but a
simple choice is the line joining the two massive bodies, that is, the lo-
cus xb = 0. We restrict ourselves to crossings from negative to positive
xb (ẋb > 0). From equation (3.12) the Jacobi constant can be written
EJ = 1

2 ẋ
2
a
+ 1

2 ẋ
2
b
+�e↵(xa, xb), so at one of these crossings

ẋb = [2EJ − 2�e↵(xa,0) − ẋ2
a
]1�2. (3.36)

For a given value of EJ an orbit is completely defined by the two coordinates(xa, ẋa), since xb = 0 by definition and ẋb is given by (3.36). Therefore we
can represent a crossing by a point in the (xa, ẋa) plane. Since this point
defines the orbit, it also defines the coordinates of the next crossing (x′

a
, ẋ
′
a
).

Thus the trajectory has been reduced to a mapping of the (xa, ẋa) plane into
itself, the Poincaré map, which we may write as P(xa, ẋa) = (x′a, ẋ′a).

Several properties of Poincaré map are worth noting:

• There is a different map for each value of the Jacobi constant EJ; thus
a better notation for the map is PEJ .

• The map does not cover the whole plane; it is only defined in the
region where the argument of the square root in equation (3.36) is
non-negative, or

ẋ
2
a
≤ 2EJ − 2�e↵(xa,0). (3.37)

• The map provides no information on orbits that do not cross the line
xb = 0 with ẋb > 0, such as orbits that remain close to the triangular
Lagrange points.

• The map is area-preserving, that is, if PEJ is the Jacobian matrix
of PEJ (cf. eq. 2.49), then the Jacobian determinant det(PEJ) = 1.
This result is reminiscent of Liouville’s theorem, which states that
phase-space volume is conserved by a Hamiltonian flow (see discus-
sion following eq. D.47), but Liouville’s theorem relates the volumes
at two successive times whereas the Poincaré map relates the areas
at successive crossings of the line xb = 0, which generally occur at
different times for different trajectories. For proofs see Binney et al.
(1985), Tabor (1989) or Lichtenberg & Lieberman (1992).
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• Suppose the trajectory has a second constant or integral of motion in
addition to the Jacobi constant, say g(xa, xb, ẋa, ẋb) = const. Then
we can set xb = 0 and eliminate ẋb using (3.36) to obtain a rela-
tion between xa and ẋa that specifies a curve in the (xa, ẋa) plane.
Therefore if a trajectory has a second integral, its successive images
P,P2

, . . . ,PN must lie on a curve in the surface of section. Of course,
if the orbit is N -periodic, that is, if PN(xa, ẋa) = (xa, ẋa), then the
curve degenerates into N distinct points.

Surfaces of section are shown in Figures 3.3 and 3.4 for two values of
the Jacobi constant. In the first figure, EJ = −2 is smaller than the effective
potential at L1, �e↵(L1) = −1.7851. In this case the test-particle trajecto-
ries are permanently confined either to the region around m0, to the region
around m1, or to the region outside the Lagrange points L2 and L3 (cf.
Figure 3.1); the last of these regions is outside the boundary of the plots
here. The dots arrange themselves on well defined closed curves—usually
there is one curve per orbit but occasionally, if one of the orbital frequen-
cies is nearly resonant with the orbital frequency of the m0-m1 binary, a
single orbit may appear as two or more distinct closed curves. Although the
plot shows only 200 iterations of the Poincaré map, the trajectories would
remain on the curves if we iterated the Poincaré map millions or billions
of times (the justification for this claim comes from the application of the
KAM theorem to autonomous Hamiltonians with 2 degrees of freedom, as
described in Appendix D.8). Thus almost all of the orbits enjoy a second
integral of motion in addition to the Jacobi constant.

In the second figure, 3.4, the Jacobi constant EJ = −1.75 is larger than
the effective potential at L1 but smaller than the effective potential at L2
and L3. There is a single allowed region that encloses both m0 and m1

but particles cannot escape to infinity. The surface of section exhibits some
closed curves but most of the allowed region is filled by points that are
scattered randomly over an area, rather than a curve. In fact almost all of the
area not occupied by curves could be filled by a single orbit if we iterated the
Poincaré map enough times. Similar behavior—“islands” of regular orbits
surrounded by a chaotic “sea”—is seen in many Hamiltonian systems, as
described in Appendix D.8.
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Figure 3.3: Surface of section for the planar, circular, restricted three-body prob-
lem. The mass ratio is m1�m0 = 0.1, as in Figure 3.1. The units are chosen such
that G = 1, m0 + m1 = 1, a = 1, which implies that the angular speed of the
m0–m1 binary is ⌦ = [G(m0 +m1)�a3]1�2 = 1. In these units the Jacobi con-
stant is EJ = −2. For comparison, the effective potential at the Lagrange points
L1, L2, and L3 is −1.7851, −1.7258, and −1.5453 respectively. The surface of
section is defined by xb = 0, ẋb > 0 and the plots show xa and ẋa on the horizon-
tal and vertical axes. The trajectories are excluded from the shaded regions, where
1

2
ẋ2

b +�e↵(xb,0) > EJ. Additional allowed regions outside the Lagrange points L2
and L3 are not shown.
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Figure 3.4: As in Figure 3.3, but for Jacobi constant EJ = −1.75.

A sequence of surfaces of section of this kind, for different values of
the Jacobi constant, provides a complete picture of the behavior of orbits in
the planar, circular, restricted three-body problem. Unfortunately it is not
possible to generalize this approach to Hamiltonian systems with more than
two degrees of freedom.

3.2 Co-orbital dynamics

Motion near the triangular Lagrange points is a special case of the general
problem of co-orbital dynamics, the determination of the behavior of two
or more bodies orbiting a common host with almost the same semimajor
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Table 3.1: Janus and Epimetheus

Janus Epimetheus

mass (1018 kg) 1.897 ± 0.001 0.5263 ± 0.0003
mass/10−9 Saturn mass 3.338 ± 0.002 0.9262 ± 0.0005
mean radius R ( km) 89.2 ± 0.8 58.2 ± 1.2
eccentricity 0.0068 0.0097

inclination 0.1639
○

0.3525
○

mean semimajor axis a 151450 km
difference �a 50 km
mean orbital period P 0.69459 days
libration period PL 2.92 × 103 days
minimum separation �min 5.2

○
Inclination is measured relative to Saturn’s equator. Mean semimajor axis is

the mass-weighted average of the semimajor axes of Janus and Epimetheus
(eq. 3.47). Mean orbital period is 2⇡�n where n is the mass-weighted av-
erage of the mean motions. Mean radius R is determined from V = 4

3
⇡R

3

where V is the estimated volume. The libration period PL is determined
from equation (3.52). Data from Nicholson et al. (1992), Spitale et al. (2006),
Jacobson et al. (2008), Thomas et al. (2013), and JPL Solar System Dynam-
ics at https://ssd.jpl.nasa.gov/. For Saturn’s properties see Appendix A.

axes. This subject dates back to Maxwell’s 1856 work on Saturn’s rings5

and was investigated long ago by Brown (1911). The study of co-orbital
dynamics was re-kindled by the Voyager flybys of Saturn in 1980 and 1981,
which provided close-up observations of Janus and Epimetheus, two co-
orbital satellites of Saturn (Table 3.1).

We examine a three-body system consisting of a host mass M and two

5 Maxwell examined the equilibria and stability of N small satellites with identical masses
orbiting a massive central body. The satellites are assumed to have the same mean motion
and are equally spaced in azimuth. Maxwell concluded that this configuration of satellites
is stable for all N if the mass of the satellites is sufficiently small. Unfortunately, Maxwell
assumed that Saturn was fixed and thereby neglected the indirect term of the potential (eq.
4.6). In fact, equally spaced satellites are only stable if N ≥ 7 (Pendse 1935; Salo & Yoder
1988).

https://ssd.jpl.nasa.gov/
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small satellites with masses m1,m2 � M . In the frame centered on the
host, the gravitational potential experienced by satellite 1 due to satellite 2
is given by equation (4.6),

�1(r1) = − Gm2�r1 − r2� +
Gm2 r2 ⋅ r1�r2�3 . (3.38)

The second term is the indirect potential that arises because the frame cen-
tered on the host is not an inertial frame. The potential experienced by
satellite 2 is obtained by exchanging the subscripts 1 and 2.

We assume that the satellite semimajor axes a1 and a2 are nearly the
same, and that the eccentricities and inclinations are small (we shall show
below that if the eccentricities and inclinations are initially small, they will
remain so unless the two satellites have a close encounter). Since the orbits
are nearly circular and coplanar and the semimajor axes are nearly equal,
we can replace the orbital radii r1 = �r1� and r2 = �r2� in equation (3.38)
by the average semimajor axis of the two satellites, which we denote by a

(see eq. 3.47). We introduce polar coordinates (r,�) in the common orbital
plane, oriented such that the satellite orbits are prograde, �̇1, �̇2 > 0. In
these coordinates the gravitational potential on satellite 1 due to satellite 2
becomes

�1(r1) = − Gm2

a[2 − 2 cos(�1 − �2)]1�2 +
Gm2 cos(�1 − �2)

a

= − Gm2

2a� sin 1
2(�1 − �2)� +

Gm2 cos(�1 − �2)
a

. (3.39)

In this equation a should be regarded as a constant.
Since the orbits are nearly circular and coplanar, the primary effect of

the mutual gravity of the two satellites is on their semimajor axes. The
relation between semimajor axis and angular momentum for satellite 1 is
L1 = m1(GMa1)1�2 (eq. 1.28). The rate of change of angular momentum
is dL1�dt = N1, where N1 = −m1@�1�@�1 is the torque due to the potential
�1(r1,�1). Thus

da1

dt
= − 2a

1�2
1(GM)1�2

@�1

@�1
� − 2a

1�2
(GM)1�2

@�1

@�1
. (3.40)
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Moreover from Kepler’s law (1.44),

d�1

dt
= [G(M +m1)]1�2

a
3�2
1

� (GM)1�2
a
3�2 �1 − 3(a1 − a)

2a
� ; (3.41)

the last equation uses the first two terms of a Taylor expansion of a1 around
a. Taking the time derivative and substituting equation (3.40) gives

d
2
�1

dt2
= −3(GM)1�2

2a
5�2

da1

dt
= 3

a
2

@�1

@�1
. (3.42)

This simple expression can be compared to the equation of motion for a
rotating rigid body. Consider a body of mass m at the end of a massless rod
of length a that rotates in a plane around the origin, with azimuthal angle
�. The moment of inertia of the rod and body is I = ma

2 and its angular
momentum is L = I�̇. The torque on the body due to an external potential
� is N = −m@��@�. The resulting angular acceleration is given by L̇ = N
so

d
2
�

dt2
= N

I
= −m

I

@�

@�
= − 1

a2

@�

@�
. (3.43)

Comparing equations (3.42) and (3.43) we see that co-orbital satellites act
as if they have a negative moment of inertia I = −1

3ma
2, that is, an attrac-

tive torque tends to repel them. The basis of this counterintuitive behavior,
sometimes called the donkey principle, is simple to describe physically.
Suppose that satellite 2 leads satellite 1 in its orbit (0 < �2 − �1 < ⇡). Then
2 exerts a positive torque on 1, which adds angular momentum to its orbit,
which increases its semimajor axis. As its semimajor axis grows, the mean
motion of satellite 1 shrinks and it orbits more slowly, thereby receding from
satellite 2 as if it were being repelled.

Combining the potential (3.39) with the angular acceleration (3.42), we
arrive at the equation of motion for a co-orbital satellite,

d
2
�1

dt2
= 3Gm2

a
3 � s cos 1

2(�1 − �2)
4 sin

2 1
2(�1 − �2) − sin(�1 − �2)� . (3.44)
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Here s = sgn[sin 1
2(�1 − �2)]. Similarly, the equation of motion for �2 is

d
2
�2

dt2
= −3Gm1

a
3 � s cos 1

2(�1 − �2)
4 sin

2 1
2(�1 − �2) − sin(�1 − �2)� . (3.45)

We now change variables from �1 and �2 to

�cm ≡ m1�1 +m2�2

m1 +m2
, � ≡ �1 − �2. (3.46)

The first of these can be thought of as the angular center of mass of the
two bodies and the second is their relative angle or angular separation (cf.
eq. 1.5). Using equations (3.44) and (3.45) we find that d2�cm�dt2 = 0,
so the speed of the angular center of mass is constant. Moreover using
this result together with equation (3.41) and its analog for d�2�dt, we find
that d(m1a1 +m2a2)�dt = 0 so the mass-weighted mean semimajor axis is
constant. Therefore it makes sense to define the average semimajor axis as

a = m1a1 +m2a2

m1 +m2
. (3.47)

Using equations (3.44) and (3.45) and the second of equations (3.46),
we find

d
2
�

dt2
= 3G(m1 +m2)

a
3 � s cos 1

2�

4 sin
2 1

2�
− sin��. (3.48)

We can multiply by d��dt and integrate to find

a
2

2
�d�
dt
�2 − 3G(m1 +m2)

a
� cos� − 1

2� sin 1
2�� � ≡ Ec = constant. (3.49)

The corotation constant Ec is an integral of motion with the dimensions
of energy per unit mass that is reminiscent of the Jacobi constant (3.12),
but the two are not the same. For example, equation (3.49) is valid for two
arbitrary small masses m1 and m2 and contains the average semimajor axis
a as a constant parameter, while the Jacobi constant is an integral of motion
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Figure 3.5: Trajectories of co-orbital satellites as described by equation (3.51). The
radius is a +�a and the azimuth is �, where a is the mean semimajor axis and �a
and � are the differences in semimajor axes and azimuth of the two satellites. The
mass ratio (m1 +m2)�M = 0.003. The Lagrange points L3, L4, and L5 are marked
by crosses (cf. Figure 3.1).

only when one of the masses is zero and does not contain the semimajor
axis.

The corotation constant can also be written in terms of the difference
in semimajor axes �a ≡ a1 − a2: from equation (3.41) and its analog for
d�2�dt,

d�

dt
= d�1

dt
− d�2

dt
� −3(GM)1�2

2a
5�2 �a, (3.50)
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so equation (3.49) becomes

9(�a)2
8a

2 − 3(m1 +m2)
M

� cos� − 1

2� sin 1
2�� � =

aEc

GM
= constant. (3.51)

These contours are plotted in Figure 3.5, in which the radius is a +�a and
the azimuth is �. Since the orbits are nearly circular, a +�a is nearly equal
to the radius so the contours show the actual shape of the orbits. The figure
is reminiscent of Figure 3.1, but here the contours represent orbits rather
than zero-velocity surfaces.

Figure 3.5 shows two types of orbit. Tadpole orbits librate around the
Lagrange points L4 and L5 and never cross the line � = ⇡, while horseshoe
orbits librate around the collinear Lagrange point L3 and are symmetric
around the line � = ⇡. Tadpole orbits have corotation constant Ec < Ecrit

where the critical value Ecrit = 9
2 G(m1 +m2)�a, while horseshoes have

Ec > Ecrit. The largest tadpole orbit has Ec = Ecrit and librates between
� = ⇡ and � = �min = 0.41723 = 23.906

○, where �min is given by the
solution of cos�min − 1

2 � sin 1
2�min�−1 + 3

2 = 0.
The equilibrium solutions of (3.48) are found by setting d

2
��dt2 = 0.

By replacing sin� with 2 sin
1
2� cos

1
2� we find that equilibrium requires

either (i) cos 1
2� = 0 or (ii) � sin3 1

2�� = 1
8 . Condition (i) implies � = ⇡ = 180○

and condition (ii) requires � = ±1
3⇡ = ±60○, which correspond respectively

to the collinear Lagrange point L3 and the triangular Lagrange points L4
and L5. L4 and L5 are minima of the corotation constant (3.51).6

Small perturbations to � around the Lagrange points have time depen-
dence exp(�t), where �2 = 21

8 G(m1 +m2)�a3 at the collinear Lagrange
point and �

2 = −27
4 G(m1 + m2)�a3 at the triangular points. Thus the

collinear Lagrange point is unstable but the triangular points are stable, ex-
tending the conclusions we already reached in §3.1.1 from the case m2 = 0
to the case where m1,m2 �M .

To determine the period PL of the librations, we can integrate equation

6 But recall that L4 and L5 are maxima of the effective potential �e↵ (3.13).
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(3.49):

PL = 2� �max

�min

d� �6G(m1 +m2)
a
3 � cos� − 1

2� sin 1
2�� � +

2Ec

a
2 �
−1�2

= P

⇡
� M

6(m1 +m2)�
1�2
� �max

�min

d�

�cos� − 1
2 � sin 1

2��−1 + 1
3✏c
�1�2

(3.52)

where

✏c = aEc

G(m1 +m2) . (3.53)

Here P = 2⇡a3�2�(GM)1�2 is the Kepler orbital period at semimajor axis a
(eq. 1.43), and �min and �max are the two azimuths at which the square root
in the denominator of the second of equations (3.52) vanishes. For ✏c < 9

2
the orbits are tadpoles and both �min and �max are between 0 and ⇡, while
for ✏c > 9

2 the orbits are horseshoes and �max = 2⇡ − �min.
For Janus and Epimetheus the closest approach angle is �min = 5.2

○
and the libration period is PL = 2.92 × 103 d = 8.00 yr. This is the only
known pair of satellites in permanent horseshoe orbits, although some quasi-
satellites of Earth spend part of their time on horseshoe orbits as described
in the next subsection. Many small bodies in the solar system are found in
tadpole orbits, such as the Trojan asteroids.

We now investigate the effect of the interactions between co-orbital
satellites on their eccentricities and inclinations. For simplicity we consider
a test particle that co-orbits with a massive satellite on a circular orbit, but
the results apply equally well to satellites of comparable mass. We denote
the mean motion of the massive satellite by n0 and describe the test-particle
orbit using the canonical angles (�,−$,−⌦) and actions (⇤,⇤−L,L−Lz)
(eq. 1.88). The Hamiltonian for the test particle is the sum of the Kep-
ler Hamiltonian −1

2(GM)2�⇤2 and the gravitational potential � due to the
massive satellite. The latter depends on azimuth only through the difference
in azimuth between the satellite and the test particle, so it must have the
form �(�−n0t,$ −n0t,⌦−n0t,⇤,⇤−L,L−Lz). This form motivates a
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canonical transformation to new angles ✓ and new actions J defined by the
generating function

S2(J,�,−$,−⌦, t) = J1(� − n0t) − J2($ − n0t) − J3(⌦ − n0t). (3.54)

Then from equations (D.63),

⇤ = J1, ⇤ −L = J2, L −Lz = J3,
✓1 = � − n0t, ✓2 = n0t −$, ✓3 = n0t −⌦, (3.55)

and the new Hamiltonian is

H(✓,J) =H0(J) +�(✓,J) (3.56)

where

H0(J) = −(GM)2
2J2

1

− n0(J1 − J2 − J3). (3.57)

The frequencies associated with the unperturbed Hamiltonian H0(J) are
⌦ = @H0�@J = [(GM)2�J3

1 − n0, n0, n0] = (n − n0, n0, n0), where n =(GM�a3)1�2 is the mean motion of the test particle. Since �n − n0� � n0

for a co-orbiting particle, the angle ✓1 varies slowly while ✓2 and ✓3 vary
rapidly. Then according to the averaging principle (Appendix D.9), we
can average �(✓,J) over the fast angles ✓2 and ✓3. The averaged Hamil-
tonian is independent of the fast angles so the conjugate actions J2 and
J3 are integrals of motion. Since J2 = (GMa)1�2[1 − (1 − e2)1�2] and
J3 = (GMa)1�2(1 − e2)1�2(1 − cos I) and the fractional variation of the
semimajor axis a is small for a co-orbital satellite, we conclude that the
eccentricity e and inclination I are almost constant in co-orbital dynamics.
In particular, if the eccentricities and inclinations of the test particle are ini-
tially small or zero, they will remain so.

As the corotation constant increases above Ecrit, the horseshoe orbits
become wider and the minimum separation �min between the satellites be-
comes smaller. Eventually the assumption on which this averaging principle
is based—that the changes in the azimuthal angle � are much slower than
the orbital frequency n0—becomes invalid. We can use equation (3.48)
to estimate when this occurs. When ��� � 1 this equation simplifies to
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�̈ = 3G(m1 + m2)s�(a3�2). The averaging principle fails unless ��̈� �����P 2 which requires ��� � [(m1 +m2)�M]1�3, equivalent to the state-
ment that the minimum separation of the two satellites must be much larger
than the Hill radius rH = a[(m1 +m2)�(3M)]1�3 (eq. 3.112). For Janus
and Epimetheus the minimum separation is roughly 90 Hill radii, so the
averaging principle is safe by a large margin.

There is no consensus on how Janus and Epimetheus formed on or
evolved into their current orbits.

3.2.1 Quasi-satellites

We showed in §3.1.1 that the circular restricted three-body problem ad-
mits a necessary condition for escape but has no simple sufficient condition.
Quasi-satellites are an example of this distinction: they orbit a planet sta-
bly at distances much larger than the Hill radius (3.24), outside the escape
surface of their host planet.

This behavior can be interpreted using the epicycle approximation of
§1.8.2. In the simplest case the satellite is a test particle on an eccentric
orbit, and its host planet is on a circular orbit and located close to the guiding
center of the satellite’s epicyclic motion. Even though the test particle is not
bound to the planet, it can orbit around it permanently if the gravitational
attraction from the planet is sufficiently strong to keep the guiding center
bound to it.

Because the motion of the satellite around the epicycle is much faster
than the motion of the guiding center relative to the planet, we can use
the averaging principle again: in effect, we replace the satellite by a rigid,
elliptical wire that has the same size, shape and mass distribution as the
epicycle. Normally, a rigid wire or hoop centered on the planet would be
unstable, because the gravitational potential of the wire has a maximum at
its center.7 However, in this case the donkey principle described earlier in
this section suggests that the wire repels the planet instead of attracting it, so

7 This instability was known to Laplace (1799–1825) and was used by Maxwell in 1856 to
argue that Saturn’s rings could not be composed of solid material. Laplace’s argument is
valid if and only if the radius of the ring is much less than the Hill radius (3.24).
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the motion of the guiding center is stable when the planet is at a maximum
of the wire potential.

We now provide a quantitative description of this phenomenon.

Figure 3.6: The quasi-satellite potential W (u) defined in equation (3.61).

Since the planet is on a circular orbit, its polar coordinates can be writ-
ten (ap, p) with ap = const and  p increasing uniformly. The location of
the guiding center of the satellite orbit can be written (a, ) where a is the
semimajor axis. The satellite eccentricity is e; we assume for simplicity that
the inclination is zero although the analysis is straightforward to generalize
to nonzero inclination. We then average the gravitational potential due to
the satellite’s mass m over the epicycle orbit. To do this we use Cartesian
coordinates with origin at the guiding center, x-axis pointing radially out-
ward, and y-axis pointing in the direction of the planet’s motion. In these
coordinates the epicyclic motion is given by equations (1.169) and (1.170)
as x = x0 cos ⌧ , y = −2x0 sin ⌧ , where ⌧ is the epicycle phase and x0 = ae.
If �a−ap� � ap and � − p� � 1, the position of the planet is approximately
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x = ap − a, y = ap( p − ). Then the averaged potential is

�(a, ) = − Gm

2⇡
� 2⇡

0

d⌧

�
, (3.58)

where m is the mass of the planet and

�
2 = (a + ae cos ⌧ − ap)2 + (ap − 2ae sin ⌧ − ap p)2. (3.59)

As in the case of co-orbital satellites, the oscillations in azimuth of the guid-
ing center induced by the planet are much larger than the radial oscillations
(this statement is justified below), so we can set a = ap. Thus

�(ap, ) = Gm

ape
W � −  p

e
� (3.60)

where
W (u) ≡ − 1

2⇡
� 2⇡

0

d⌧

[cos2 ⌧ + (u − 2 sin ⌧)2]1�2 . (3.61)

This integral is straightforward to evaluate numerically and is shown in Fig-
ure 3.6.

If we set � ≡  −  p, the analog to equation (3.42) is

d
2
� 

dt2
= 3

a2p

@�

@� 
, (3.62)

and this can be multiplied by d� �dt and integrated to give the integral of
motion

a
2
p

2
�d� 

dt
�2 − 3Gm

ape
W (� �e) ≡ Eq = constant. (3.63)

The analog of equation (3.50) is

d� 

dt
= −3(GM)1�2

2a
5�2
p

(a − ap), (3.64)

so equation (3.63) can be rewritten

9(a − ap)2
8a2p

− 3m

Me
W (� �e) ≡ apEq

GM
= constant. (3.65)
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Thus the guiding center of the quasi-satellite orbit undergoes coupled os-
cillations in semimajor axis and azimuth relative to the planet. Since the
ratio of planet mass to stellar mass m�M � 1, the fractional amplitude
of the oscillations in semimajor axis is much smaller than the amplitude in
azimuth.

Equations (3.63) and (3.65) are the analogs of equations (3.49) and
(3.51) for co-orbital satellites.

If the oscillations of the guiding center are small, �� � � e, we can
expand the potential W (� �e) in a Taylor series around the origin, and
equation (3.62) becomes

d
2
 

dt2
= 3Gm

a3pe
3
W
′′(0)� = −0.30095 Gm

a3pe
3
� , (3.66)

corresponding to stable harmonic oscillations of the guiding center around
the planet. This result is valid only for small oscillations; for larger excur-
sions of the guiding center, we must use the full potential from equation
(3.61). Eventually when �� � > 2e there can be close encounters or colli-
sions between the planet and the satellite, and the analysis here is no longer
valid. The condition �� � � 2e requires in turn by equation (3.65) that�a − ap� � ap(m�M)1�2e−1�2. Thus if the planet mass is small, the semima-
jor axis of the quasi-satellite must be nearly equal to that of the planet.

A typical quasi-satellite orbit is shown in Figure 3.7. All quasi-satellites
are on retrograde orbits (i.e., clockwise if the planet’s orbit is counterclock-
wise) since the motion around the epicyclic ellipse is retrograde. The prop-
erties of periodic quasi-satellite orbits are described further in §3.4.1.

Several small asteroids currently occupy horseshoe and quasi-satellite
orbits around the Earth, although the estimated lifetimes of these orbits are
far less than the age of the solar system. Most of these undergo multiple
transitions between horseshoe and quasi-satellite orbits. Quasi-satellite or-
bits that are stable for the lifetime of the solar system exist around several
of the outer planets (Wiegert et al. 2000; Shen & Tremaine 2008), but so far
no objects have been found in these orbits.

These dynamical arguments suggest that retrograde satellites can orbit
stably at distances from their host planet much larger than are possible for
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Figure 3.7: A quasi-satellite orbit, as seen in a frame rotating with the planet. The
black circle marks the location of the planet, which travels on a counterclockwise
circular orbit around a host star located at the origin, off the bottom of the plot. The
crosses mark the locations of the Lagrange points L1 and L2. The planet mass is
10
−4 times the mass of its host star. The quasi-satellite orbit is retrograde and has

eccentricity e = 0.1.

prograde satellites. In fact almost all of the dozens of small satellites found
at large distances (� 0.3 Hill radii) from Jupiter and Saturn have retrograde
orbits.

3.3 The hierarchical three-body problem

The co-orbiting systems that we described in the preceding two sections are
interesting but rare. The vast majority of three-body systems in astrophysics
are hierarchical, which means that they consist of two bodies orbiting one
another (the “inner binary”) plus a third at much larger distance that orbits
the center of mass of the inner two (the “outer binary”). Such systems are
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generally stable if the ratio of the semimajor axes of the outer and inner
binary is large enough. Examples include systems consisting of a planet, a
satellite, and the planet’s host star; systems of two planets with very differ-
ent semimajor axes; a planet orbiting a star that belongs to a binary system;
and triple star systems.

In this section we focus on hierarchical systems in which the orbits of
the inner and outer binaries are nearly circular and coplanar. Some of the
behavior of systems with large eccentricities and/or inclinations is described
in §5.4.

Let m1 and m2 denote the masses of the bodies in the inner binary, with
m0 the mass of the distant body. Here we focus on the dynamics of the inner
binary, treating the distant body as traveling around the center of mass of
the inner two bodies in a fixed orbit. We work in a reference frame centered
on one of the two bodies in the inner binary, which we take to be body 1.
Then the equation of motion for body 2 has the form r̈2 = −@�2(r2, t)�@r2,
where (eq. 4.6)8

�2(r, t) = − G(m1 +m2)�r� − Gm0�r − r0(t)� +
Gm0 r(t) ⋅ r0�r0(t)�3 , (3.67)

and the positions r2 and r0 of bodies 2 and 0 are measured relative to body
1.

In a hierarchical system r = �r� is much smaller than r0 = �r0�, so we
may expand the potential in powers of r�r0. To keep track of the ordering it
is helpful to replace r0 by �r0 and then expand (3.67) as a power series in
�
−1:

�2(r, t) = − G(m1 +m2)
r

− Gm0

�r0
+ Gm0r

2

2�3r30

− 3Gm0(r ⋅ r0)2
2�3r50

+ 3Gm0r
2(r ⋅ r0)

2�4r50

− 5Gm0(r ⋅ r0)3
2�4r70

+O(�−5). (3.68)

8 There are notational differences between equations (3.67) and (4.6). Here the positions are
measured relative to body 1, while in §4.1.2 the positions are measured relative to body 0.
The reason for this difference is that in both cases we would like to attach the label “0” to
the most massive body—the Sun in the Earth-Moon-Sun system to be examined in §3.3.1,
and the central star in a multi-planet system.
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Notice that the dipole term proportional to �−2 has vanished (as it does in
the discussion following eq. 1.127).

An alternative approach that leads to the same answer is to rewrite the
term −Gm0���r − r0(t)� in (3.67) using the expansion (C.44):

�2(r, t) = − G(m1 +m2)
r

− Gm0

∞�
l=0

r
l

(�r0)l+1Pl(cos�) + Gm0r ⋅ r0
�2r30

,

(3.69)
where Pl(cos�) is a Legendre polynomial, � is the angle between r and r0,
and cos� = r ⋅ r0�(rr0). Using the formulas for the Legendre polynomials
in equations (C.45), it is straightforward to verify that the series in (3.69)
yields (3.68).

The term of order �−1 is called the monopole potential; since it is inde-
pendent of r its gradient vanishes, so it exerts no force and can be dropped.
Then equation (3.68) simplifies to

�2(r, t) = − G(m1 +m2)
r

+ Gm0r
2

2�3r30

− 3Gm0(r ⋅ r0)2
2�3r50

+ 3Gm0r
2(r ⋅ r0)

2�4r50

− 5Gm0(r ⋅ r0)3
2�4r70

+O(�−5). (3.70)

There are two terms proportional to �−3 that represent the quadrupole tidal
potential and two terms proportional to �−4 for the octopole tidal poten-
tial. If we keep only the quadrupole terms and set � = 1, we can rewrite this
result as

�2(r, t) = − G(m1 +m2)
r

+ Gm0r
2

2r30

− 3Gm0(r ⋅ r0)2
2r50

+ Gm0

r0
O(r3�r30).

(3.71)
The corresponding equation of motion for body 2 is

d
2
r2

dt2
= −@�2(r2, t)

@r2
(3.72)

= − G(m1 +m2)
r
3
2

r2 − Gm0

r
3
0

r2 + 3Gm0(r2 ⋅ r0)
r
5
0

r0 + Gm0

r
2
0

O(r2�r20).
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3.3.1 Lunar theory

The prototypical hierarchical three-body problem is the Earth–Moon–Sun
system, which is hierarchical because the Sun is roughly 400 times more
distant than the Moon. The development of “lunar theories”—analytic ex-
pressions for the trajectory of the Moon, usually based on expansions of the
Hamiltonian representing the dynamical effects of the Sun as power series
in the lunar eccentricity and inclination—was a centerpiece of solar-system
dynamics until the mid-twentieth century (Gutzwiller 1998). Since then,
the lunar orbit has been studied more simply and accurately by numerical
integrations. Nevertheless, the most important features of analytic lunar the-
ories still provide insight into the history of the lunar orbit and the properties
of planetary and satellite orbits in exoplanet systems.

In our notation the Earth, Moon, and Sun are bodies 1, 2, and 0 respec-
tively. The reference frame is centered on the Earth, so from this view-
point both the Moon and Sun orbit the Earth. We work in Cartesian co-
ordinates in which the z-axis is normal to the orbital plane of the solar
orbit around the Earth (the ecliptic). Thus the coordinates of the Sun are
r0 = (x0, y0,0) = r0[cos(f0 +$0), sin(f0 +$0),0], where f0 and $0 are
the true anomaly and longitude of periapsis of the Sun, and r0 is its distance
from Earth. The potential is then given by equation (3.71) as:

�2(r, t) =HK +H⊙, where HK = − G(m1 +m2)
r

(3.73)

is the Kepler Hamiltonian and

H⊙ = Gm0

r0
� r2
2r20

− 3[x cos(f0 +$0) + y sin(f0 +$0)]2
2r20

+O(r3�r30)�
(3.74)

is the Hamiltonian due to the Sun.
Perturbation theory requires that H⊙ is “small” relative to the Hamil-

tonian HK that describes the Kepler motion of the Earth-Moon two-body
system. Many of the complications of lunar theory arise because “small”
can have three distinct meanings in this context:
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(i) As described earlier in this section, the solar Hamiltonian H⊙ con-
tains quadrupole, octopole, and higher multipole terms, each smaller
than its predecessor by a factor ∼ a�a0 = 0.002570, the ratio of the
semimajor axes of the Moon and Sun. In this section we keep only the
quadrupole terms, which corresponds to dropping the terms O(r3�r30)
from the Hamiltonian (3.74).

(ii) The eccentricity and inclination of the lunar orbit relative to the eclip-
tic, e = 0.0549 and I = 5.145○, are both small, as is the eccentricity
of the Sun’s orbit relative to the Earth, e0 = 0.0167. Thus the Hamil-
tonian H⊙ is simplified further by expanding it as a power series in e,
I , and e0, and truncating the power series at some maximum degree.
In this section we keep terms up to O(e2, e20, ee0, I2).

(iii) The Kepler Hamiltonian HK is of order G(m1 +m2)�a, while the
solar Hamiltonian H⊙ is of order Gm0a

2�a30, so their ratio H⊙�HK ∼
m0a

3�[(m1+m2)a30]. The mean motion n0 of the solar orbit is given
by Kepler’s law, n2

0a
3
0 = G(m0 +m1 +m2); the masses of the Earth

and Moon, m1 and m2, are so much smaller than the solar mass m0

that we can write Gm0 = n
2
0a

3
0. Similarly the mean motion n of

the lunar orbit is given by G(m1 +m2) = n
2
a
3. Thus H⊙�HK ∼

n
2
0�n2, where n0�n = 0.0748 is the ratio of the sidereal month to

the sidereal year, that is, the ratio of the orbital periods of the Moon
and Sun relative to the fixed stars. Solving Hamilton’s equations to
higher and higher order using perturbation theory yields expressions
for the trajectory involving higher and higher powers of n0�n. In this
section we solve the equations of motion only to first order; that is,
we use the unperturbed Kepler motion of the Moon on the right side
of Hamilton’s equations.

As the accuracy of a lunar theory is improved, both items (i) and (iii)
give rise to series in powers of a�a0, the first because the ratio of radii r�r0
expressed in orbital elements is proportional to a�a0, and the second be-
cause n0�n = [m0�(m1 +m2)]1�2(a�a0)3�2. However, the origin of these
expansions is quite different: the first is a series of better and better approx-
imations to the Hamiltonian H⊙, while the second is a series of better and
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better approximations to the solutions of Hamilton’s equations for a given
H⊙. Note that the small parameter n0�n is much larger than the small pa-
rameter a�a0, so it may be appropriate to include higher orders in n0�n than
in a�a0. The developer of any lunar theory must decide the maximum or-
ders of e, I , e0, a�a0 and n0�n that will be accurately represented in the
solutions.

Using equations (1.70), (1.151), and (1.155) to rewrite equation (3.74) in
terms of orbital elements, and truncating the expansion of the Hamiltonian
as described in items (i) and (ii), we obtain

H⊙ = Gm0a
2

a
3
0

� − 1
4 − 3

8e
2 − 3

8e
2
0 + 3

8I
2

+ (−3
4 + 15

8 e
2 + 15

8 e
2
0 + 3

8I
2) cos(2� − 2�0)

+ 1
2e cos(� −$) − 3

4e cos(3� − 2�0 −$) + 9
4e cos(� − 2�0 +$)− 21

8 e0 cos(2� − 3�0 +$0) + 3
8e0 cos(2� − �0 −$0)

− 3
4e0 cos(�0 −$0) − 9

8e
2
0 cos(2�0 − 2$0)

+ 1
8e

2
cos(2� − 2$) − 15

8 e
2
cos(2�0 − 2$) − 3

4e
2
cos(4� − 2�0 − 2$)

− 3
8I

2
cos(2� − 2⌦) − 3

8I
2
cos(2�0 − 2⌦) − 51

8 e
2
0 cos(2� − 4�0 + 2$0)

+ 3
8ee0 cos(3� − �0 −$ −$0) + 3

4ee0 cos(� + �0 −$ −$0)
− 9

8ee0 cos(� − �0 +$ −$0) − 21
8 ee0 cos(3� − 3�0 −$ +$0)

+ 3
4ee0 cos(� − �0 −$ +$0) + 63

8 ee0 cos(� − 3�0 +$ +$0)�. (3.75)

The main effects of solar perturbations on the lunar orbit are best explained
by looking one by one at a few selected collections of these terms.

Secular terms These are independent of the mean longitudes of the Moon
and Sun,9 � and �0:

Hsec = Gm0a
2

a
3
0

� − 1
4 − 3

8e
2 − 3

8e
2
0 + 3

8I
2�. (3.76)

9 The adjective “secular” is used in astronomy generally and celestial mechanics in particular
to denote changes that are long-lasting rather than oscillating on short timescales.
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Since we have already discarded terms in the disturbing function that are of
order higher than O(e2, e20, ee0, I2), there is no additional loss of accuracy if
we analyze the effects of these perturbations using the simplified Lagrange
equations (1.188). From these we find that a, e, and I are all constants,
which we call a, e, and I . Then

d$

dt
= 3Gm0

4na30

,
d⌦

dt
= −3Gm0

4na30

, (3.77)

where n
2
a
3 = G(m0 +m1). Thus the line of apsides precesses forward,

while the line of nodes precesses backward at the same rate (compare the
discussion following eqs. 1.180, and see Problem 1.20). Writing Kepler’s
law for the solar orbit as Gm0 = n2

0a
3
0, equations (3.77) simplify to

d$

dt
= −d⌦

dt
= 3n

2
0

4n
. (3.78)

Of course these formulas are only a first approximation to the time-
averaged apsidal and nodal precession rates of the Moon. As described
earlier in this subsection, if we neglect the octopole and higher multipole
moments and assume that the eccentricity and inclination of the lunar orbit
are small, the precession rates are given by power series in m ≡ n0�n, of
which equations (3.78) give the first terms. The next few terms are10

1

n

d$

dt
= 3

4m
2 + 225

32 m
3 + 4071

128 m
4 + 265493

2048 m
5 +O(m6),

1

n

d⌦

dt
= −3

4m
2 + 9

32m
3 + 273

128m
4 + 9797

2048m
5 +O(m6). (3.79)

The series for $̇ is given to m
11 by Hill (1894) and the series for ⌦̇ is given

to m
6 by Delaunay (1860, 1867). The series for $̇ is notorious for its slow

convergence. In the case of the Moon, with m = 0.07480, the value of
$̇ obtained from the first term in the series is smaller than the exact result
by a factor 2.04257, illustrating the danger of using first-order perturbation

10 The second terms in the series are derived in equation (5.111).
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theory in hierarchical systems when the period ratio is not very small.11

The series for ⌦̇ converges more quickly. Numerical solutions for $̇ are
described in §3.4.1 and shown in Figure 3.12.

The evection This is the term in the disturbing function (3.75)

Hev = −15Gm0a
2

8a30

e
2
cos(2�0 − 2$). (3.80)

The simplified Lagrange equations (1.188) show that under the influence of
this term a, I , and ⌦ are constants and

d�

dt
= n−15n2

0e
2

2n
cos(2�0 − 2$),

d$

dt
= 15n

2
0

4n
cos(2�0 − 2$), de

dt
= −15n2

0e

4n
sin(2�0 − 2$). (3.81)

The solar mean longitude advances at a uniform rate, �0 = n0t + const.
We use first-order perturbation theory, which means that we integrate these
equations assuming that the other orbital elements on the right sides are
fixed, at e and $. Then

� = nt + �i − 15n0e
2

4n
sin(2�0 − 2$), (3.82)

$ =$ + 15n0

8n
sin(2�0 − 2$), e = e + 15n0e

8n
cos(2�0 − 2$).

The most obvious signature of these variations is in the longitude or az-
imuthal angle � of the Moon, which is related to the mean longitude by
equation (1.151),

� = � + 2e sin(� −$) +O(e2). (3.83)
11 This problem was recognized by Newton, who complained in the Principia that the rotation

of “the lunar apsis is about twice as speedy” as his calculations implied. He is reported to
have said that “his head never ached but with his studies of the Moon” (Whiteside 1976;
Cook 2000). In the eighteenth century, the discrepancy between equation (3.78) and the
observed apsidal precession of the Moon prompted speculation that Newton’s law of gravity
was incorrect.



176 CHAPTER 3. THE THREE-BODY PROBLEM

Inserting equations (3.82) and keeping only the lowest order terms in the
eccentricity and in the strength of the perturbation, we have

� = nt + �i + 2e sin(nt + �i −$) + 15n0e

4n
sin(nt + �i − 2�0 +$). (3.84)

The first three terms describe the unperturbed Kepler orbit, and the last term
is the evection. This is the largest periodic perturbation in the Moon’s az-
imuth, with amplitude 15

4 n0e�n = 0.882
○ according to this calculation. A

more accurate estimate of the coefficient of this term, according to the lunar
theory of Brown (1897–1908), is 1.274○.

An evection resonance can occur in the three-body problem if the mean
motion n0 of the distant body (the Sun) is equal to the apsidal precession rate
$̇ of the satellite (the Moon), for example due to the quadrupole moment of
the host body (the Earth). In resonance the longitude of periapsis $ librates
around an azimuth that is ±90○ from the azimuth of the distant body. An
example is shown in Figure 3.8.

If the Moon formed close to the Earth as debris from a giant impact and
subsequently evolved to its current orbit as a result of tidal friction between
the Earth and Moon, then it likely passed through an evection resonance
early in its history (at this time, the apsidal precession is mostly due to the
equatorial bulge of the rapidly rotating Earth, not the tidal field from the
Sun as is presently the case). The evection resonance can excite the lunar
eccentricity, leading to substantial tidal heating and perhaps melting of the
lunar interior, and it can drain orbital angular momentum from the Earth-
Moon system and transfer it to the solar orbit.

There is an inclination-dependent term in the Hamiltonian (3.75) analo-
gous to the evection,

H = −3Gm0a
2

8a30

I
2
cos(2�0 − 2⌦). (3.85)

This term is responsible for the largest non-Kepler oscillations in the Moon’s
latitude. Nevertheless its effects are less significant than those of evection,
in part because the numerical coefficient is five times smaller.
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Figure 3.8: The evection resonance. The figure shows the evolution of the eccen-
tricity vectors e = (ex, ey) of three test particles orbiting a host body that in turn is
orbited by a distant companion. The host body and the companion have unit mass,
the test particle has unit semimajor axis, and the companion is on a circular orbit
with semimajor axis 10. The evolution is plotted in a frame that rotates with the
orbital motion of the distant companion, and the positive x-axis points toward the
companion. The host body has a quadrupole moment J2R

2 = 0.01 (eq. 1.135). The
three test particles have initial eccentricity e = 0.1, 0.3, and 0.5. The last of these is
in an evection resonance, in which the mean precession rate due to the quadrupole
moment $̇ = ⌦̇+ !̇ (eq. P.30) equals the mean motion of the distant companion, and
the eccentricity vector librates around a direction perpendicular to the companion.
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The variation We next examine the terms

Hvar = Gm0a
2

a
3
0

� − 3
4 cos(2� − 2�0) − 3

4e cos(3� − 2�0 −$)
+ 9

4e cos(� − 2�0 +$)�. (3.86)

In this case it is easier to work with the variables (cf. eq. 1.71)

k = e cos$, h = e sin$, (3.87)

so the Hamiltonian becomes

Hvar = Gm0a
2

a
3
0

� − 3
4 cos(2� − 2�0) − 3

4k cos(3� − 2�0)
− 3

4h sin(3� − 2�0) + 9
4k cos(� − 2�0) − 9

4h sin(� − 2�0)�. (3.88)

Inserting this into the simplified Lagrange equations (1.193) and replac-
ing Gm0�a30 by n

2
0 we find that

d�

dt
= n + n

2
0

n
� − 3 cos(2� − 2�0) − 3k cos(3� − 2�0)

− 3h sin(3� − 2�0) + 9k cos(� − 2�0) − 9h sin(� − 2�0)�,
da

dt
= n

2
0a

n
� − 3 sin(2� − 2�0) − 9

2k sin(3� − 2�0) + 9
2h cos(3� − 2�0)

+ 9
2k sin(� − 2�0) + 9

2h cos(� − 2�0)�,
dk

dt
= n

2
0

n
� − 3

4 sin(3� − 2�0) − 9
4 sin(� − 2�0)�,

dh

dt
= n

2
0

n
�3
4 cos(3� − 2�0) − 9

4 cos(� − 2�0)�. (3.89)

In first-order perturbation theory, we solve the differential equations for
da�dt, dk�dt, and dh�dt by replacing the orbital elements a, k, h on the
right side with fixed quantities a, k, h, and by replacing the mean longi-
tude � with � = nt + constant. The mean longitude of the Sun is �0 =
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n0t+constant; this variable is not perturbed, as we can ignore perturbations
of the Sun by the Moon. We have

a = a + n
2
0a

n
�3 cos(2� − 2�0)

2n − 2n0
+ 9k cos(3� − 2�0)

2(3n − 2n0) + 9h sin(3� − 2�0)
2(3n − 2n0)

− 9k cos(� − 2�0)
2(n − 2n0) + 9h sin(� − 2�0)

2(n − 2n0) �,
k = k + n

2
0

n
�3 cos(3� − 2�0)

4(3n − 2n0) +
9 cos(� − 2�0)
4(n − 2n0) �,

h = h + n
2
0

n
�3 sin(3� − 2�0)

4(3n − 2n0) −
9 sin(� − 2�0)
4(n − 2n0) �. (3.90)

The small parameter in this perturbation expansion is the ratio of the mean
motion of the Sun to the mean motion of the Moon, n0�n, so at the accuracy
to which we are working we can simplify these expressions by replacing
denominators like 2n − 2n0 by 2n. Furthermore, since the eccentricity is
small we may focus on the case where k = h = 0, so these expressions
simplify to

a = a + 3n
2
0a

2n
2 cos(2� − 2�0),

k = n
2
0

n
2 �14 cos(3� − 2�0) + 9

4 cos(� − 2�0)�,
h = n

2
0

n
2 �14 sin(3� − 2�0) − 9

4 sin(� − 2�0)�. (3.91)

To integrate the equation in (3.89) for d��dt at the same level of accu-
racy, we must use Kepler’s law n

2
a
3 = G(m1 +m2) to write the term n as

n− 3
2(n�a)(a−a) and substitute for a−a from the first of equations (3.91).

Upon integrating the result we have

� = � − 21n
2
0

8n
2 sin(2� − 2�0). (3.92)

To interpret these expressions in terms of the shape of the lunar orbit,
we use the expansions (1.155) and (1.151) for the radius r and azimuthal
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angle �. Truncating these at first order in the eccentricity, we have

r = a(1 − k cos� − h sin�), � = � + 2k sin� − 2h cos�. (3.93)

Then substituting from equations (3.91) and (3.92) and truncating at first
order in the small parameter n2

0�n2, we find

r = a − n
2
0a

n2
cos(2� − 2�0), � = � + 11n

2
0

8n2
sin(2� − 2�0). (3.94)

The amplitude of the periodic variation in the azimuth is 11
8 n

2
0�n2 = 0.441○;

a more accurate estimate from Brown’s lunar theory is 0.658○.
At the order to which we are working, eliminating � in favor of � gives

the following polar equation:

r = a − n
2
0a

n2
cos(2� − 2�0). (3.95)

This is an approximate ellipse with short axis pointing toward the Sun and
long axis 90○ away from the Sun, sometimes called the variational ellipse.
The variational ellipse is centered on body 1 (the Earth), in contrast to the
Kepler ellipse which has one focus at body 1. A more direct derivation
of equation (3.95) is described in Problem 3.7. The variational ellipse is a
member of family “g” of periodic orbits in Hill’s problem, as described in
the following section.

Additional terms of the lunar Hamiltonian are analyzed in Problems 3.8
and 3.9.

3.4 Hill’s problem

Hill’s problem is a simplified version of the hierarchical three-body problem
that can be used when the third body is much more massive and more distant
than the other two, as in the case of the Earth–Moon–Sun system (the ratio
of the solar mass to the mass of the Earth and Moon is 3.289 × 105 and the
ratio of the Sun-Earth semimajor axis to the Earth–Moon semimajor axis
is 389.17). Hill’s problem is perhaps the simplest non-integrable case of
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the N -body problem, with no free parameters, yet it is accurate enough to
reproduce most of the complex behavior of the lunar orbit.

As in the preceding section, m1 and m2 denote the masses of the bodies
in the inner binary, and m0 is the mass of the distant massive body. We
initially work in a frame with origin at body 0. The equation of motion for
m1 is (cf. eq. 4.5)

r̈1 = − G(m0 +m1)�r1�3 r1 + Gm2�r2 − r1�3 (r2 − r1) −
Gm2�r2�3 r2, (3.96)

with a similar equation for r2.
In a hierarchical three-body system such as this one, the motion of the

center of mass of m1 and m2 relative to m0 is not far from the motion
of a test particle on a Kepler orbit around m0. Therefore we introduce a
reference vector a(t) from the origin at r0 to a point close to m1 and m2

that obeys the equation of motion

d
2
a

dt2
= − Gm0�a�3 a, (3.97)

and define a new coordinate �r1 to be the difference between the position
of m1 and the tip of a; thus�r1 ≡ r1 − a, with a similar definition for�r2.
The equation of motion becomes

d
2
�r1

dt2
= Gm2��r2 −�r1�3 (�r2 −�r1) − G(m0 +m1)�a +�r1�3 (a +�r1)
− Gm2�a +�r2�3 (a +�r2) + Gm0�a�3 a, (3.98)

with a similar equation for �r2.
We are interested in the case where m0 � m1,m2 and the distance to

m0 is much larger than the distance between m1 and m2. Hill’s insight was
that we can represent this case by replacing a by �a and m0 by �3m0 and
letting �→∞. To carry out this procedure, we use the identity

1

��a +�r�3 =
1

�3a
3 �1 − 3a ⋅�r

�a
2 +O(�−2)�. (3.99)



182 CHAPTER 3. THE THREE-BODY PROBLEM

Keeping only the terms proportional to �k with k ≥ 0 we find

d
2
�r1

dt2
= Gm2��r2 −�r1�3 (�r2 −�r1) − Gm0�a�3 �r1 + 3Gm0�a�5 (a ⋅�r1)a.

(3.100)
So long as the eccentricities and inclinations of the orbits of m1 and m2

around m0 are small, we may assume that the reference vector a traces out
a circular orbit, so a = �a� is a constant and a rotates at constant angular
speed ⌦ = (Gm0�a3)1�2. The equation of motion then simplifies to

d
2
�r1

dt2
= Gm2��r2 −�r1�3 (�r2 −�r1) −⌦2

�r1 + 3⌦2 a ⋅�r1

a
2 a. (3.101)

We now transform to a uniformly rotating reference frame in which the
reference vector a is fixed. In this frame we denote the vectors from a to
r1,2 by �x1,2 rather than �r1,2, and we must include the Coriolis force−2⌦ × d�x1�dt and the centrifugal force −⌦ × (⌦ × �x1) = ⌦2

�x1 −
⌦(⌦ ⋅�x1) (eq. D.20):

d
2
�x1

dt2
+ 2⌦ × d�x1

dt
= Gm2��x2 −�x1�3 (�x2 −�x1) −⌦(⌦ ⋅�x1)
+ 3⌦2 a ⋅�x1

a
2 a. (3.102)

We may choose the x-axis to be parallel to a and the z-axis to be parallel
to ⌦, so the positive x-axis points radially outward and the positive y-axis
points in the direction of orbital motion. Then we arrive at Hill’s equations,

d
2
�x1

dt2
− 2⌦d�y1

dt
= Gm2��x2 −�x1�3 (�x2 −�x1) + 3⌦2

�x1,

d
2
�y1

dt2
+ 2⌦d�x1

dt
= Gm2��x2 −�x1�3 (�y2 −�y1),

d
2
�z1

dt2
= Gm2��x2 −�x1�3 (�z2 −�z1) −⌦2

�z1. (3.103)

Notice that a and m0 have disappeared from the equations—they enter only
through the orbital frequency ⌦.
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If m2 = 0 or the distance ��x2 − �x1� is large enough that the force
from m2 is negligible, the solution of Hill’s equations of motion is analytic:

�x1 = ↵1 − ✏1 cos(⌦t + �1),
�y1 = −3

2↵1⌦t + �1 + 2✏1 sin(⌦t + �1),
�z1 = ✏z1 cos(⌦t + �z1). (3.104)

This solution corresponds to the epicyclic motion described in §1.8.2. The
difference between the two treatments is that epicycle theory provides an ap-

proximate solution of the exact equations of motion for the two-body prob-
lem, while equations (3.104) are an exact solution of Hill’s equations, which
approximate the two-body problem. The variables ↵, ✏ and ✏z are closely re-
lated to the semimajor axis a, eccentricity e and inclination I in the original
Kepler problem. In particular, for an assumed value of a we have a � a+↵,
e � ✏�a, I � ✏z�a (of course, strictly speaking, Hill’s equations are only
valid in the limit a→∞).

Just as in the two-body problem, we can change variables from�x1 and
�x2 to

xcm ≡ m1�x1 +m2�x2

m1 +m2
, x ≡�x2 −�x1; (3.105)

here xcm is the barycenter of m1 and m2 and x is the relative position. The
barycenter satisfies the equations of motion

ẍcm − 2⌦ẏcm = 3⌦2
xcm,

ÿcm + 2⌦ẋcm = 0,
z̈cm = −⌦2

zcm, (3.106)

which have solutions analogous to equations (3.104).
The relative position satisfies the equations of motion

d
2
x

dt2
− 2⌦dy

dt
= − G(m1 +m2)�x�3 x + 3⌦2

x,

d
2
y

dt2
+ 2⌦dx

dt
= − G(m1 +m2)�x�3 y,
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d
2
z

dt2
= − G(m1 +m2)�x�3 z −⌦2

z. (3.107)

To study these we introduce a dimensionless time ⌧ ≡ ⌦t and coordinates

(⇠,⌘, ⇣) ≡ � ⌦
2

G(m1 +m2)�
1�3 (x, y, z) = 1

a
� m0

m1 +m2
�1�3 (x, y, z),

(3.108)
and we arrive at a dimensionless version of Hill’s equations,

d
2
⇠

d⌧2
− 2d⌘

d⌧
= − ⇠

⇢3
+ 3⇠,

d
2
⌘

d⌧2
+ 2d⇠

d⌧
= − ⌘

⇢3
,

d
2
⇣

d⌧2
= − ⇣

⇢3
− ⇣, (3.109)

where ⇢2 ≡ ⇠2 + ⌘2 + ⇣2. Notice that there are no free parameters in these
equations. A Hamiltonian formulation of Hill’s equations is described in
Problem 3.12.

It is straightforward to verify that the dimensionless Hill’s equations
have an integral of motion

EH = 1
2 �d⇠d⌧ �

2 + 1
2 �d⌘d⌧ �

2 + 1
2 �d⇣d⌧ �

2 − 1

⇢
− 3

2⇠
2 + 1

2⇣
2
, (3.110)

which we call the Jacobi–Hill constant, analogous to the Jacobi constant.12

It is also straightforward to show that the stationary solutions of Hill’s equa-
tions are

⇠ = ±3−1�3, ⌘ = 0, ⇣ = 0, (3.111)

analogous to the collinear Lagrange points L2 and L1. In this approximation
L2 and L1 are at the same distance, known as the Hill radius. Restoring the
12 We use the term “analogous to” rather than “special case of,” because Hill’s problem is

not a special case of the restricted three-body problem—the masses of all three bodies are
nonzero, whereas in the restricted problem one mass must vanish.
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dimensional factors, the Hill radius is

rH = � G(m1 +m2)
3⌦2

�1�3 = a�m1 +m2

3m0
�1�3 , (3.112)

where a is the distance from the center of mass of m1 and m2 to the distant
body m0. The distance rH is sometimes called the mutual Hill radius
since it depends on the masses of both small bodies. The special case of the
restricted three-body problem, in which m2 = 0, was already described by
equation (3.24).

The Jacobi–Hill constant restricts the motion to the region

�e↵(⇠,⌘, ⇣) ≤ EH, where �e↵(⇠,⌘) = − 1

(⇠2 + ⌘2 + ⇣2)1�2 − 3
2⇠

2 + 1
2⇣

2

(3.113)
is the effective potential and the surface �e↵ = EH is the zero-velocity sur-
face, concepts introduced in §3.1 in the context of the restricted three-body
problem. Figure 3.9 shows the zero-velocity curves in the planar Hill’s prob-
lem (⇣ = d⇣�d⌧ = 0), analogous to Figure 3.1.

3.4.1 Periodic orbits in Hill’s problem

To study the behavior of trajectories in Hill’s problem we focus on periodic
orbits, which form the “skeleton” around which other orbits can be grouped.
There is an infinite number of periodic orbits, so we examine only the sim-
plest of them: we restrict our attention to orbits that (i) remain in the ⇣ = 0
plane; (ii) are symmetric with respect to the radial or ⇠-axis; and (iii) are
simple-periodic, by which we mean that they intersect the ⇠-axis at only
two locations—one with d⌘�d⌧ > 0 and the other with d⌘�d⌧ < 0—before
returning to their original position and velocity. These conditions imply
that the orbits must cross the ⇠-axis at right angles, that is, d⇠�d⌧ = 0 when
⌘ = 0.

In Hill’s problem, periodic orbits of this kind are organized in one-
parameter families. The parameter is usually chosen to be the Jacobi–Hill
constant EH of equation (3.110). Since the orbit remains in the ⇣ = 0 plane,



186 CHAPTER 3. THE THREE-BODY PROBLEM

Figure 3.9: Contours of the effective potential (3.113), also known as zero-velocity
curves, for the planar Hill’s problem. The Lagrange points L1 and L2 are marked by
crosses. Shading marks regions in which the effective potential is greater than the
value at the L1 and L2 points, �e↵ = −34�3�2 = −2.16337. Note that the horizontal
or ⌘-axis increases from right to left such that (⇠,⌘) is a right-handed coordinate
system.

it must have ⇣ = d⇣�d⌧ = 0. Thus

EH = 1
2 �d⇠d⌧ �

2 + 1
2 �d⌘d⌧ �

2 − 1

(⇠2 + ⌘2)1�2 − 3
2⇠

2
. (3.114)

The periodic orbit can be specified completely by EH and the value ⇠ = ⇠p
at which it crosses the ⇠-axis in the direction of increasing ⌘. To see this,
note that at this point ⌘ = d⇠�d⌧ = 0 since the orbit is simple-periodic. Then
equation (3.114) can be solved to find (d⌘�d⌧)⇠=⇠p,⌘=0, which we know to
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be positive by assumption:

�d⌘
d⌧
�
⇠=⇠p,⌘=0 = �2EH + 2

⇠p
+ 3⇠2p�

1�2
. (3.115)

Thus all of the initial phase-space coordinates are specified, and the trajec-
tory can be determined by numerical integration of the first two of equations
(3.109).

Let us imagine integrating a trajectory numerically, starting at ⌧ = 0

when the particle crosses the ⇠-axis at ⇠ = ⇠p in the direction of increasing ⌘
and continuing until the orbit crosses the ⇠-axis again in the direction of de-
creasing ⌘. Let ⇠′1�2(EH, ⇠p) and ⌧1�2(EH, ⇠p) be the values of d⇠�d⌧ and ⌧
at the end of the integration. If ⇠′1�2(EH, ⇠p) = 0 the orbit is periodic, since it
will return to its starting point after an additional interval ⌧1�2. Thus to find
a periodic orbit with a given Jacobi–Hill constant EH, we simply solve nu-
merically the equation ⇠′1�2(EH, ⇠p) = 0 for ⇠p, using standard methods for
finding the roots of nonlinear equations (e.g., Press et al. 2007). The period
of the orbit in the rotating frame or synodic period13 is 2⌧1�2(EH, ⇠p).

Determining the stability of a periodic orbit requires only a simple ex-
tension of these arguments. Once again consider a particle—not necessarily
on a periodic orbit—that crosses the ⇠-axis in the direction of increasing ⌘;
at this point its coordinates are ⇠ ≡ ⇠0, ⌘ = 0, d⇠�d⌧ ≡ ⇠′0 and d⌘�d⌧ > 0, the
last of which is determined by the given value of the Jacobi–Hill constant
EH. When the particle next crosses the ⇠-axis in the direction of increas-
ing ⌘, its coordinates are ⇠1, ⌘ = 0, d⇠�d⌧ ≡ ⇠′1 and d⌘�d⌧ , which is again
determined by the Jacobi–Hill constant. Thus we can write

⇠1 =X(⇠0, ⇠′0,EH), ⇠
′
1 = Y (⇠0, ⇠′0,EH). (3.116)

13 For a more general definition of the synodic period, suppose that bodies m2 and m0 are
in coplanar orbits in the same direction around body m1 (one may think of m1 as the
Earth, m2 as the Moon and m0 as the Sun). Then the synodic period is the time between
successive conjunctions of m2 and m0 as viewed from m1 (a conjunction occurs when
the two bodies have the same azimuth). Quantitatively, if the orbital periods are P2 and P0

in an inertial frame, then the synodic period of m2 is given by P
−1
syn = �P−12

− P−1
0
�. The

same concept can be applied to spins: the synodic period of the Earth’s spin with respect to
the Sun is 1 day, but the period of the Earth’s spin in an inertial frame (the sidereal period)
is 0.99727 days.
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A simple-periodic orbit is a fixed point of this transformation, with ⇠1 = ⇠0 ≡
⇠p and ⇠′1 = ⇠′0 = 0. Now consider a neighboring orbit with initial conditions
⇠0 = ⇠p +�⇠0, ⇠′0 = �⇠′0, which is transformed to ⇠1 = ⇠p +�⇠1, ⇠′1 = �⇠′1.
In the linear approximation

�⇠1 = a�⇠0 + b�⇠′0, �⇠
′
1 = c�⇠0 + d�⇠′0, (3.117)

where
a = @X

@⇠0
, b = @X

@⇠
′
0

, c = @Y
@⇠0

, d = @Y
@⇠
′
0

, (3.118)

with the derivatives evaluated at ⇠0 = ⇠p and ⇠′0 = 0. This map can be iterated
to determine the linearized phase-space location at successive orbits, ⇠p +
�⇠2, �⇠′2, and so on. The map can be written in matrix notation as

�zn+1 =A�zn where A = � a b

c d
� , (3.119)

with�zn = [�⇠n�⇠′n] (we do not distinguish whether vectors such as z are
1×N column matrices or N × 1 row matrices, as the meaning is clear from
the context). The general solution of this equation is a linear combination
of sequences of the form

�zn = kna, (3.120)

where a is an eigenvector of A and k is a (possibly complex) eigenvalue,
given by

k = k± ≡ 1
2(a + d) ± 1

2 [(a − d)2 + 4bc]1�2. (3.121)

The orbit is stable if and only if �k+� ≤ 1 and �k−� ≤ 1.
To calculate the constant a numerically, we simply integrate two or-

bits with the same value of EH and ⇠′0 and values of ⇠0 differing by some
small �⇠0. After both orbits return to ⌘ = 0 with d⌘�d⌧ > 0—which typ-
ically will occur at slightly different times—we calculate the difference in
their ⇠ coordinates, �⇠1, and then a = �⇠1��⇠0. The constants b, c, and d

are calculated similarly. Although we do not need these results except as
a numerical check, it can be shown that (i) the map defined by equation
(3.119) is area-preserving (Binney et al. 1985; Tabor 1989; Lichtenberg &
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Lieberman 1992), which in turn requires that ad− bc = 1; (ii) for symmetric
periodic orbits, a = d (Hénon 1965). The first of these results implies that
k− = 1�k+, so either (i) (a− d)2 + 4bc > 0, which implies that k+ and k− are
real, one of them exceeds unity in absolute value, and the orbit is unstable;
or (ii) (a − d)2 + 4bc ≤ 0, in which case k+ and k− are complex conjugates,�k+� = �k−� = 1, and the orbit is stable.

Figure 3.10: Periodic orbits in Hill’s problem. Each family of periodic orbits is de-
noted by a line, which is solid if the orbits are stable and dashed if they are unstable.
Each orbit is specified by the value of the Jacobi–Hill constant EH (eq. 3.110) and
the value of ⇠ = ⇠p when the orbit crosses the ⇠-axis with d⌘�d⌧ > 0. The diagram
only shows periodic orbits that (i) lie in the ⇣ = 0 plane; (ii) are symmetric with
respect to the ⇠-axis and (iii) cross the ⇠-axis only twice. The shaded regions are
forbidden, because the argument of the square root in equation (3.115) is negative.
The Lagrange points of equation (3.111) are marked as L1 and L2. Prograde orbits
have ⇠p > 0 and retrograde orbits have ⇠p < 0. For further detail see Hénon (1969).
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Figure 3.11: Examples of periodic orbits in Hill’s problem. Each orbit is shown
by a solid line if stable, and by a dashed line if unstable. The origin is marked by
a black circle. Additional orbits in family g′ can be derived by reflection in the
line ⇠ = 0. Orbits in family c can be derived from orbits in family a by the same
reflection. Note that the horizontal or ⌘-axis increases from right to left, as in Figures
3.9 and 3.13. The values of the Jacobi–Hill constant EH for each family are: family
g, −1.5, −2.25, −3, −4; family g′, −2.25, −2.2, −2.13571, −2; family f , 1.5, 0.5,
0, −1; family a, 4.5, 2, 1, 0. The orbits in families g and g′ with EH = −2.25 and
EH = −2.13571 respectively are the last stable members of each family.
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The main families of periodic orbits in Hill’s problem are shown in Fig-
ure 3.10, taken from Hénon (1969). Stable orbits are shown by solid lines
and unstable orbits by dashed lines.

Family f These are retrograde orbits (here “retrograde” means orbiting
in the opposite direction to the orbit of m2 around m0). The orbits are
symmetric around the ⇠-axis by construction but they are also symmetric
around the ⌘-axis. Examples are shown in the bottom left panel of Figure
3.11.

As EH → −∞ and ⇠p → 0, the perturbing effects of the mass m0 be-
come negligible and the periodic orbits of family f approach circular orbits
described by Kepler’s laws. At the other extreme, as EH becomes large, the
orbits become quasi-satellite orbits, with dynamics described in §3.2.1. All
orbits in family f are stable.

Family g These are prograde orbits, symmetric around both the ⇠-axis and
the ⌘-axis. Examples are shown in the top left panel of Figure 3.11.

As EH → −∞ and ⇠p → 0, the periodic orbits of family g approach
circular orbits described by Kepler’s laws. As EH grows from −∞, so the
perturbations from m0 are small but not negligible, the shape of the peri-
odic orbits is described by the variational ellipse of equation (3.95). As EH

continues to grow, the periodic orbit becomes more and more non-circular.
Finally, at EH = −2.250 family g becomes unstable and branches to a stable
family g

′ of orbits that are asymmetric around the ⌘-axis.

The results we have derived can be used to determine numerically the
apsidal precession rate of nearly circular orbits induced by the distant com-
panion. To see how to do this, consider a test particle on a nearly circular
Kepler orbit. To first order in the eccentricity, the orbit has radius r = a+�r

and radial velocity �vr where (eqs. 1.29 and 1.54)

�r = −ae cos(� −$), �vr = nae sin(� −$). (3.122)

We now transform to the frame rotating with the distant body, at constant
angular speed ⌦, but for the moment we ignore the gravitational effects
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of this body. As usual in this section we let ⌧ = ⌦t be the dimensionless
time, and we denote by P the synodic period of the test particle in units
of the dimensionless time. Then the time of the j

th conjunction of the test
particle with the distant body, when their azimuths in the rotating frame are
the same, is ⌧j = jP + ⌧0. Similarly the azimuth of the conjunction in the
inertial frame is �j = jP + �0.

If the line of apsides precesses at a mean rate $̇ in an inertial frame,
then the longitude of periapsis at conjunction j is $j = $̇jP �⌦ +$0. The
radius and radial velocity at conjunction j are then given by

�rj = −ae cos(�j −$j) = −ae cos[jP (1 − $̇�⌦) + �0 −$0],
�vrj = nae sin(�j −$j) = nae sin[jP (1 − $̇�⌦) + �0 −$0]. (3.123)

These equations can be rewritten as

�rj+1 = cos �rj + 1

n
sin �vrj , �vr,j+1 = −n sin �rj + cos �vrj

(3.124)
with  = P (1 − $̇�⌦).

We now include the gravitational forces from the distant body. To do
so, we replace the circular orbit by the periodic orbit from family g, and
equations (3.124) by equations (3.117). In making this replacement, we can
identify a = d = cos , b = n−1 sin and c = −n sin . Thus for any stable
orbit, the mean precession rate $̇ can be determined from the coefficients
a, b, c, d and the synodic period P .

The properties of family g are plotted in Figure 3.12 as a function of
the synodic period, in units where the mean motion of the distant body
m0 is ⌦ = 1. The stable branch of family g terminates when the synodic
period P = 1.2259, at which point the orbital radius—defined as the av-
erage of its maximum and minimum radii—is r = 0.29767, about 43%
of the Hill radius 3

−1�3 = 0.69336. For comparison, the Moon’s synodic
period is 29.531 d and the sidereal year—the time taken for the Earth to
orbit the Sun once with respect to the fixed stars—is 365.256 d, so P =
2⇡ × 29.531�365.256 = 0.50800.

A comprehensive study of bound orbits in Hill’s problem is given by
Hénon (1969, 1970, 1974).
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Figure 3.12: Stable orbits in family g in Hill’s problem. The solid curves
show the negative of the Jacobi–Hill constant, the mean apsidal precession rate $̇,
r = 1

2
(rmax + rmin) and rmax − rmin, where rmax and rmin are the maximum and

minimum radius of the periodic orbit. All quantities are plotted as functions of the
synodic period P , in units where the orbital period of the distant body is 2⇡. The
dashed line shows the estimate of the apsidal precession rate from equation (3.77).
The synodic period of the Moon is marked by an arrow at P = 0.50800. The plots
terminate at P = 1.2259, EH = −2.250, where family g of periodic orbits becomes
unstable.
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3.4.2 Unbound orbits in Hill’s problem
One of the fundamental problems in celestial mechanics is to understand the
behavior of two small bodies on nearby circular orbits as they pass through
conjunction: how does the close encounter affect their orbits?

This question is best investigated through Hill’s problem. We assume
for simplicity that the two small bodies orbit in the same plane (⇣ = 0) and
that they approach one another on circular orbits—the results are straight-
forward to generalize to inclined or eccentric orbits. When the distance be-
tween them is large, we can drop the terms involving ⇢−3 in Hill’s equations
(3.109), and the simplest solution is

⇠(⌧) = ↵0 = constant, ⌘(⌧) = −3
2↵0⌧, (3.125)

which corresponds to a circular orbit passing through conjunction at ⌧ =
0. The parameter ↵0 is the impact parameter, the minimum separation
between the two masses along the unperturbed orbit, in the units defined by
equation (3.108). Long after the encounter the terms on the right side are
also negligible, and the most general solution is (cf. eq. 3.104)

⇠ = ↵ − ✏ cos(⌧ + �), ⌘ = −3
2↵⌧ + � + 2✏ sin(⌧ + �), (3.126)

which can be rewritten as

⇠ = ↵−kH cos ⌧ +hH sin ⌧, ⌘ = −3
2↵⌧ +�+2kH sin ⌧ +2hH cos ⌧, (3.127)

where the Hill eccentricity components are

kH = ✏ cos �, hH = ✏ sin �. (3.128)

We are mostly interested in the constants ↵, kH, and hH, which deter-
mine the change in semimajor axis and the eccentricity excited during the
encounter. These can be written in terms of the phase-space coordinates as

↵ = 4⇠ + 2d⌘
d⌧

,

kH = 2d⌘
d⌧

cos ⌧ + 3⇠ cos ⌧ + d⇠

d⌧
sin ⌧,
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hH = −2d⌘
d⌧

sin ⌧ − 3⇠ sin ⌧ + d⇠

d⌧
cos ⌧. (3.129)

Taking the time derivatives of these equations and simplifying the results
using Hill’s equations (3.109), we have

d↵

d⌧
= −2 ⌘

⇢3
,

dkH

d⌧
= − 1

⇢3
(2⌘ cos ⌧ + ⇠ sin ⌧),

dhH

d⌧
= 1

⇢3
(2⌘ sin ⌧ − ⇠ cos ⌧). (3.130)

If the impact parameter is large enough, then the distance ⇢ between the two
bodies is also large, so the changes in the orbit are small. In this case we
can determine these changes in ↵, kH and hH by evaluating the right sides of
equations (3.130) along the unperturbed circular orbit (3.125). Since ⌘(⌧)
is an odd function of ⌧ and ⇢(⌧) = �↵0�(1 + 9

4⌧
2)1�2 is even, the change

in ↵ integrates to zero at this level of approximation. For similar reasons
the change in kH integrates to zero. The value of hH changes from zero to
(Julian & Toomre 1966)

�hH = −3 sgn(↵0)
↵
2
0

� ∞
−∞

d⌧ ⌧ sin ⌧

(1 + 9
4⌧

2)3�2 −
sgn(↵0)
↵
2
0
� ∞
−∞

d⌧ cos ⌧

(1 + 9
4⌧

2)3�2
= −8 ⋅ 2.5195 sgn(↵0)

9↵2
0

= −2.2396 sgn(↵0)
↵
2
0

, (3.131)

where the factor 2.5195 = 2K0(23)+K1(23), and Kn(⋅) is a Bessel function
(Appendix C.5). This linearized approximation to the change in the orbit
should be accurate if ��hH� � �↵0� or �↵0� � 3.

We can use these results to determine the change in the constant ↵ more
accurately. The Jacobi–Hill constant EH (eq. 3.110) is conserved exactly in
Hill’s problem. Its value long before the encounter is EH = −3

8↵
2
0, as can

be seen by substituting equations (3.125) into equation (3.110) and letting
⌧ → −∞. Likewise, its value long after the encounter is obtained from
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equation (3.127), EH = −3
8↵

2 + 1
2k

2
H + 1

2h
2
H. The two expressions for EH

must be equal, so we may conclude that

↵
2 = ↵2

0 + 4
3(�hH)2 = ↵2

0 + 2
8 ⋅ 2.51952
35↵4

0

. (3.132)

Writing ↵ = ↵0 +�↵ and keeping only terms linear in �↵, we obtain

�↵ = 2
7 ⋅ 2.51952
35↵5

0

= 3.3438

↵
5
0

. (3.133)

Rescaling to physical units using equation (3.108), the change in impact
parameter due to the encounter is

�(a2 − a1) = 2
7 ⋅ 2.51952 a6
35(a2 − a1)5

(m1 +m2)2
m

2
0

. (3.134)

This result does not contradict our earlier finding that the change in ↵ is
zero: that result was accurate to first order in the maximum strength of the
perturbation, which is proportional to ↵−20 , whereas equation (3.132) shows
that the change in ↵2 is proportional to ↵−40 and thus is second order in the
maximum strength of the perturbation. Using the Jacobi–Hill constant has
allowed us to extract a result accurate to second order from a first-order
calculation.

Notice that equation (3.132) implies that ↵2 is always greater than ↵2
0

so the semimajor-axis difference between the two bodies is always larger
in absolute value after the conjunction than it was before. In this sense
the bodies repel one another despite the attractive force between them, an
example of the donkey principle described after equation (3.43).

Figure 3.13 shows the trajectories in Hill’s problem of particles that ap-
proach conjunction on circular orbits. For impact parameters ↵0 � 3, the
encounter simply excites the eccentricity, as described by the linear anal-
ysis leading to equation (3.131). For ↵0 � 0.5 the approaching body re-
verses course without significant eccentricity excitation, the same behavior
described for co-orbital satellites in §3.2. At intermediate impact parame-
ters, the encounter leads to complex behavior that can include close encoun-
ters or collisions between the two small bodies. See Hénon & Petit (1986)
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Figure 3.13: Unbound orbits in Hill’s problem, as described by the differential
equations (3.109) with ⇣ = d⇣�dt = 0. The bodies approach on circular orbits,
coming from the upper left on an initial orbit described by equations (3.125). A
symmetric set of orbits coming from the lower right is not shown. The Lagrange
points (3.111) are marked by crosses. Note that the horizontal or ⌘-axis increases
from right to left, as in Figures 3.9 and 3.11.

and Petit & Hénon (1986) for a thorough description of encounters in Hill’s
problem.

3.5 Stability of two-planet systems

The configuration of an isolated planetary system is specified by the masses
and orbits of its planets and the mass of its host star. An observed planetary
system should normally be in a configuration that is stable over times com-
parable to the age of its host star, except in the unlikely case that it was born
in the recent past or will change in the near future.
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Roughly speaking, “stability” means that the size and shape of the orbits
do not change much. When more precise language is used, several comple-
mentary definitions emerge.

A multi-planet system is Hill stable if the planets can never have a close
encounter. In practical terms, “never” means over the lifetime of the host
star, while “close” means much less than the mutual Hill radius (eq. 3.112).
In practice, long orbit integrations of multi-planet systems are usually termi-
nated after the first close encounter, for two reasons: first, close encounters
usually lead to chaotic and unpredictable evolution, collision, or ejection of
one of the planets on relatively short timescales; second, more sophisticated
and expensive integrators are needed to follow orbits accurately through
close encounters.

A multi-planet system is chaotic if the phase-space distance between
two nearby orbits diverges exponentially over long time intervals. The e-
folding time for this divergence is called the Liapunov time (see Appendix
D.8). Planetary systems can be Hill stable even if they are chaotic. In
particular, in many cases the exponential divergence is mainly in the mean
longitudes of the two orbits and only affects the size and shape of the orbit
over intervals much longer than the Liapunov time.

A multi-planet system is Lagrange stable if no planet can escape the
system or collide with the host star. A two-planet system can be Hill stable
but Lagrange unstable or vice versa.

We now describe the stability of two-planet systems using these cate-
gories.14

Hill stability The simplest example of a multi-planet system consists of
two planets on nearly circular and coplanar orbits around the same host star.
In this case the configuration is specified by the planet masses m1 and m2,
the mass of the host star m0, and the initial semimajor axes a1 and a2. The
planetary masses are much less than the mass of the star, m1,m2 �m0, so
we expect that orbits that are well separated are likely to be stable. Thus we
are mostly interested in the stability of orbits having �a1 − a2� � a where a

14 A closely related problem is the stability of a single planet that orbits in a binary-star system,
as described briefly in Box 3.2.



3.5. STABILITY OF TWO-PLANET SYSTEMS 199

Box 3.2: Stability of planetary orbits in binary-star systems
Many planets are found in binary-star systems. Planets that circle one of the two
stars are said to have S-type orbits, while those that circle both have P-type or
circumbinary orbits.

The possible orbits that such planets can occupy are constrained by the re-
quirement that they be stable over long times. As a simple example, consider a
system containing two stars of equal mass on an orbit with semimajor axis a∗ and
eccentricity e∗, along with a single zero-mass planet. Numerical orbit integrations
show that a planet on an initially circular S-type orbit will survive if its semimajor
axis satisfies (Holman & Wiegert 1999)

a

a∗ � 0.27 − 0.34e∗ + 0.05e2∗. (a)

A planet on an initially circular P-type orbit survives if
a

a∗ � 2.3 + 3.8e∗ − 1.7e2∗. (b)

These results are based on simulations lasting ∼ 104 binary periods—far less than
the ages of typical binary stars but still long enough that the stability boundary is
evolving only slowly.

is the mean semimajor axis. In this case we can approximate the three-body
problem by Hill’s problem.

Figure 3.9 shows the contours of the effective potential �e↵(⇠,⌘) in
Hill’s problem. The effective potential becomes large and negative close to
the origin and at large values of �⇠�. These regions are separated by saddle
points at the Lagrange points L1 and L2, where �e↵ = �L ≡ −34�3�2 =−2.16337. Orbits having Jacobi–Hill constant EH < �L cannot cross these
saddle points. Therefore if the two planets have EH < �L and are initially
at large separation, they can never have a close encounter. In particular if
the two planets are initially far from conjunction, on circular orbits with
impact parameter ↵0 (eq. 3.125), their Jacobi–Hill constant is EH = −3

8↵
2
0

so they can never have a close encounter if �↵0� > 2.40187. Restoring the
dimensional factors using equation (3.108), we conclude that the planets are
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Hill stable if

�a1 − a2� > 2 ⋅ 31�6 a�m1 +m2

m0
�1�3= 2.40a�m1 +m2

m0
�1�3= 3.46 rH,

(3.135)
where rH is the mutual Hill radius defined in equation (3.112). This result
is valid so long as m1,m2 �m0 and the eccentricities and inclinations are
small compared to �a1 −a2��a. This is a sufficient criterion for Hill stability,
not a necessary one. For example the tadpole and horseshoe orbits shown in
Figure 3.5 do not satisfy (3.135) but never have a close encounter.

Similarly, if the two planets start on eccentric orbits with Hill eccentri-
city components (kH, hH) and impact parameter ↵0 (eq. 3.127), the Jacobi–
Hill constant for the relative orbit is EH = −3

8↵
2
0 + 1

2k
2
H + 1

2h
2
H. Restoring

the dimensional factors, we find that the planets are Hill stable if

�a1 − a2� > 2 ⋅ 31�6 a ��m0 +m1

m0
�2�3 + (e1 − e2)2

34�3 �1�2 , (3.136)

where e1 and e2 are the eccentricity vectors of the two planets. If the planets
are on circular orbits with mutual inclination I , a similar calculation yields

�a1 − a2� > 2 ⋅ 31�6 a ��m0 +m1

m0
�2�3 + I

2

34�3 �
1�2

. (3.137)

Similar arguments can be used to determine Hill stability in the case
where the mass m1 of planet 1 is comparable to the stellar mass m0, so long
as the mass of the second planet m2 = 0 and m1 and m0 are on a circular
orbit. This is the circular restricted three-body problem studied in §3.1, and
the system is Hill stable if its Jacobi constant (3.12) is smaller than the value
of the effective potential (3.13) at the Lagrange point L1 (if m2 is initially
interior to m1), or L2 (if m2 is exterior to m1).

The most general criterion for Hill stability is based on the conservation
of the total energy and angular momentum of the three-body system, and
can be applied for arbitrary masses and initial conditions. The derivation of
this criterion is described in Appendix G.
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Figure 3.14: The chaotic evolution of a two-planet system. The host star has unit
mass and the planet masses are m1 = m2 = 10

−6. The planets initially are on
circular orbits with semimajor axes 1 ± 1

2
�, � = 0.033. We use units in which

G = 1 so the orbital period is about 2⇡. The top panel shows the semimajor axes of
the two planets and the bottom panel shows the eccentricities. In the bottom panel
the eccentricities are difficult to separate because they closely track each other, for
reasons described in the text. The system is Hill stable according to equation (3.135),
but chaotic according to (3.140).
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Chaos We begin with a heuristic derivation of the size of the chaotic zone
created by the interaction of two nearby planets. The mean motions of the
two planets are n1,2 = (Gm0�a31,2)1�2. The time between conjunctions (the
synodic period) is

Psyn = 2⇡

�n1 − n2� =
2⇡

(Gm0)1�2�a−3�21 − a−3�22 � �
4⇡a

3n�a2 − a1� , (3.138)

where n = (Gm0�a3)1�2 � n1, n2, and a is the average semimajor axis (eq.
3.47). Each conjunction of the planets leads to a change �(a2 − a1) in the
semimajor axis difference and this in turn leads to a change in the azimuth
or mean longitude at the next conjunction. The change is

�� = n�Psyn � −4⇡a sgn(a2 − a1)
3(a2 − a1)2 �(a2 − a1). (3.139)

Chaos is expected to set in when the azimuth change ���� is larger than
about one radian. The reason is that the change in semimajor axis in a
conjunction of two planets on eccentric orbits depends on the orientation
of the eccentricity vectors of the two planets relative to the longitude of
conjunction, so if ���� � c, with c of order unity, the system “forgets” the
azimuth it had at the preceding conjunction and chaotic behavior sets in.
Using equation (3.134), we find that orbits should be chaotic if

�a2 − a1�
a

� f �m1 +m2

m0
�2�7 , (3.140)

where f = 1.46�c1�7. This estimate is consistent with an approximate esti-
mate of the size of the chaotic zone using the resonance-overlap criterion,
as described in §6.2.1, and with numerical orbit integrations, which yield
f � 1.2–1.5 (Wisdom 1980; Gladman 1993; Deck et al. 2013; Morrison
& Malhotra 2015). This estimate excludes tadpole and horseshoe orbits.
The boundary of the chaotic zone is not precisely defined, because there is
a transition range of semimajor axes in which some orbits are chaotic and
some are regular.

Notice that the exponent of equation (3.140) is slightly smaller than the
exponent of (3.135)— 2

7 = 0.2857 versus 1
3 = 0.3333. Thus for sufficiently



3.5. STABILITY OF TWO-PLANET SYSTEMS 203

small planetary masses, there is a range of semimajor axes at which the
orbits are Hill stable but chaotic. Despite the chaotic nature of the orbits,
the planets can never suffer a close encounter.

Orbits in the chaotic region exhibit significant and irregular excursions
in semimajor axis and eccentricity. An example is shown in Figure 3.14,
which follows the evolution over 108�(2⇡) orbital periods of two planets
with masses m1 = m2 = 10

−6
m0 on initially circular orbits in the chaotic

zone. The figure exhibits several striking features. Despite the long integra-
tion time and the chaotic nature of the evolution there are no close encoun-
ters, and both the semimajor axes and the eccentricities remain bounded
within narrow ranges. There are long quiescent intervals, lasting for up
to 10

7�(2⇡) orbital periods, in which the semimajor axes remain nearly
constant and there is no obvious sign of chaos. The top panel shows that
the variations in the semimajor axes are out of phase, such that the av-
erage semimajor axis is nearly conserved. This is simply a consequence
of energy conservation: in a two-planet system the total Kepler energy is−1

2 GM�(m1�a1 + m2�a2), so if the two semimajor axes are nearly the
same they must vary out of phase. In contrast, the bottom panel shows that
the variations in the eccentricity are in phase, such that e1 � e2. The reasons
for this are explored in Problem 3.10.

Lagrange stability A two-planet system is Lagrange unstable if one pla-
net either escapes or collides with the host star. To obtain some analytic
insight, we examine a system containing two planets: planet 1 has mass
m1 � m0 and follows a circular orbit with semimajor axis a1, while pla-
net 2 has zero mass and initially follows a nearly circular, coplanar orbit
with semimajor axis a2 � a1. The initial value of the Tisserand param-
eter of planet 2 (see Box 3.1) is T � 3, and the Tisserand parameter is
conserved, except for short intervals when the two planets are in close prox-
imity. If planet 2 escapes, it is likely to do so with near-zero energy; in this
case a

−1
2 � 0, e2 � 1 and a2(1 − e22) � 2q2 where q2 is the periapsis dis-

tance, so T = 2(2q2�a1)1�2. Equating the two values of T , we conclude that
q2 = 9

8a1; thus planet 2 escapes when its periapsis is only 12% larger than
the semimajor axis of planet 1, so the two can still interact strongly. On the
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other hand, if the test particle collides with the host star, then e2 = 1 and
so T = a2�a1, and we may conclude that at collision the semimajor axis is
a2 = 1

3a1 and the apoapsis distance is Q2 = a2(1 + e2) = 2
3a1, too far from

planet 1 for strong gravitational interactions.
These considerations suggest that Lagrange instability usually leads to

escape rather than collision with the host star, and this is confirmed by nu-
merical orbit integrations (Deck et al. 2013; Morrison & Malhotra 2015).
The simulations also show that (i) for typical planetary masses, the Lagrange
stability boundary lies close to the boundaries for Hill stability and for
chaos; and (ii) for systems containing two low-mass planets, the timescale
for Lagrange instability is very long—roughly 0.02(m2�m0)−1.5 orbital pe-
riods according to Morrison & Malhotra (2015)—so orbits like the ones
shown in Figure 3.14 may still escape in the future.

3.6 Disk-driven migration

Gaseous protoplanetary disks disperse a few Myr after their host star forms
(e.g., Williams & Cieza 2011). Giant planets such as Jupiter and Saturn
must have formed before the disk dispersed, since it is the only plausible
source for the gas that comprises their massive atmospheres. Therefore any
theory of planet formation and evolution must account for the dynamical
interactions between a massive planet and a surrounding gaseous disk. Our
understanding of this behavior is still incomplete, and this understanding
requires analytic and numerical tools from fluid mechanics that are outside
the scope of this book (see Baruteau et al. 2014 for a review), but some
of the most important features of disk-planet interactions can be described
with the tools we have already developed.

We examine the behavior of a small body of mass m on a circular orbit
of semimajor axis a, passing through conjunction with a planet of mass Mp

on a circular orbit with semimajor axis ap. Both objects orbit a host star of
mass M∗, with m � Mp � M∗ and �a − ap� � ap. The orbital period of
the planet is Pp = 2⇡�np with np = (GM∗�a3p)1�2, and the orbital period of
the small body is P = 2⇡�n with n = (GM∗�a3)1�2. The synodic period is
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given by equation (3.138), which in the present notation reads

Psyn = 4⇡ap

3np�a − ap� . (3.141)

We now take the small body m to be an element of gas in the protoplan-
etary disk. We assume that the interaction with the planet at conjunction
excites the eccentricity of the gas element in the same way that it excites the
eccentricity of a test particle. Thus, following conjunction the eccentricity
of the gas element should be given by equation (3.131). Over the synodic
period Psyn, which is much longer than the time needed to pass through
conjunction, viscous or other collective interactions within the gas disk are
likely to damp the eccentricity, so the gas element will approach the next
conjunction having returned to a circular orbit. Nevertheless, the orbits are
not the same at the two conjunctions: the gas element also suffers a change
in its semimajor axis according to equation (3.134), which is rewritten in
the present context as

�a = 2
7 ⋅ 2.51952G2

M
2
p

35n4
p(a − ap)5 . (3.142)

The change in semimajor axis corresponds to a change in angular momen-
tum, and this change accumulates as it is repeated at subsequent conjunc-
tions. The long-term rate of change of the semimajor axis of the gas element
is therefore given by

1

ap

da

dt
= 1

ap

�a

Psyn
= sgn(a − ap)25 ⋅ 2.51952G2

M
2
p

34⇡n3
pa

2
p(a − ap)4 . (3.143)

For a solar-mass host star,

1

ap

da

dt
= sgn(a − ap)

244 yr
�Mp

MJ
�2 � 0.1ap

a − ap �
4 �5 au

ap
�3�2 (3.144)

where MJ is the mass of Jupiter. The characteristic timescale is only ∼
10
−4 of the lifetime of the gas disk, confirming that disk-planet gravitational

interactions must play a central role in sculpting planetary systems.



206 CHAPTER 3. THE THREE-BODY PROBLEM

Equation (3.143) shows that the planet repels the disk material, and this
repulsion has two important consequences. First, if the interactions with the
planet are stronger than viscous stresses or other mechanisms such as den-
sity waves that transport angular momentum within the disk, the planet will
carve out an annular gap in the disk. Such gaps are seen in Saturn’s rings
(e.g., the Encke gap, caused by the satellite Pan). Gaps in the dust distribu-
tion are also common features in images of protoplanetary disks (Andrews
et al. 2018), although at the present time there is little direct evidence that
these gaps are caused by planets.

Second, just as the planet repels the disk, the disk repels the planet, caus-
ing the planetary orbit to spiral inward or outward, a process known as disk-
driven migration of planets. The migration rate of the planet due to a ring
of material of mass mr at semimajor axis a is dap�dt = −(mr�Mp)da�dt,
where da�dt is given by equation (3.143). If the planet is embedded in
the disk, the repulsion from gas inside the planet is largely canceled by the
repulsion from gas outside the planet. The cancellation is not exact, but
whether the inner or outer disk wins cannot be determined from the analysis
leading to equation (3.143), in part because the contribution from a ring of
material diverges strongly as �a − ap� → 0. In a real disk the divergence is
suppressed when �a − ap� < max(rH, h), where rH is the Hill radius (eq.
3.24) and h is the thickness of the disk.

Careful analyses of realistic protoplanetary disk models show that, in
general, the repulsion from the outer disk is stronger and the planet mi-
grates inward. The migration rate depends strongly on whether the planet
is massive enough to open a gap in the disk, and the process is called Type
I migration if there is no gap, and otherwise Type II. In either case the
migration timescale is typically much shorter than the lifetime of the proto-
planetary disk for planets of Earth mass or larger.

Perhaps the biggest surprise in the early history of exoplanet discover-
ies was that giant planets were found at semimajor axes much smaller than
those of the giant planets in the solar system. The distribution of orbital pe-
riods of exoplanets discovered by radial-velocity surveys (§1.6.1) is shown
in Figure 3.15. Not shown are planets discovered by transit surveys, to avoid
the strong bias of transit surveys toward planets with small semimajor axes
and orbital periods (see discussion at the end of §1.6.2); radial-velocity sur-
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Figure 3.15: Orbital periods of 529 planets with Mp sin I between 0.1 and 10
Jupiter masses. Only planets discovered by radial-velocity surveys are plotted.
Data are from the NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.
edu/index.html.

veys are also biased toward planets with small semimajor axes, but the bias
is weaker. Only planets with Mp sin I between 0.1 and 10 Jupiter masses
are plotted in the figure, which should mostly be giants with massive atmo-
spheres. The plot shows that most known giant planets have orbital periods
between about 300 and 3 000 days, but there is a significant tail at smaller
periods containing about one-third of the planets. The most extreme ex-
amples are the hot Jupiters, typically defined as giant planets with orbital
periods < 10 d. Similarly, warm Jupiters are defined to have orbital periods
between 10 d and 100 d.

It is difficult to form hot Jupiters in situ and disk-driven migration offers
a mechanism to explain why giant planets are found at such small semi-

https://exoplanetarchive.ipac.caltechedu/index.html
https://exoplanetarchive.ipac.caltechedu/index.html
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major axes.15 However, the short migration timescales lead to one of the
fundamental puzzles of planet formation: why have all the giant planets not
migrated into their host star? Perhaps migration stops at the inner edge of
the disk, which might be truncated by interactions with the star at a few
stellar radii, but then why is the distribution of orbital periods relatively flat
all the way out to 100 d?

15 An alternative mechanism is high-eccentricity migration, described in §5.4.2.



Chapter 4

The N -body problem

Determining the trajectories of N − 1 planets orbiting a common host star
is an example of the gravitational N -body problem. The gravitational
N -body problem also describes the behavior of many other astrophysical
systems: multiple-star systems, stars in star clusters and galaxies, galaxies
in clusters of galaxies, elementary particles in dark-matter halos, and so
forth. Celestial mechanics is distinguished by its focus on systems in which
(i) there is a dominant central mass; (ii) the eccentricities and inclinations
are small; and (iii) a large number of orbital periods elapse in the lifetime
of the system, typically 10

9–1011.

4.1 Reference frames and coordinate systems

A host star with mass m0 and position r0 is orbited by N − 1 planets with
masses mj and positions rj , j = 1, . . . ,N − 1. We assume that these co-
ordinates are defined in an inertial reference frame: a frame in which an
isolated body does not accelerate, or, equivalently, there are no fictitious
forces.

Fictitious forces can arise from rotation of the frame around its origin
or from linear acceleration of the origin of the frame. The rotation of any
solar-system reference frame relative to an inertial frame can be determined

209
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dynamically—by finding the Coriolis and centrifugal forces required for a
dynamical model to fit the observed trajectories of the Moon and planets—
or cosmologically, by assuming that the positions of distant extragalactic
objects such as quasars are fixed in an inertial frame (§1.5.3). Linear accel-
eration of the frame does not lead to fictitious forces so long as the frame is
freely falling.

We can almost always assume that planetary systems are isolated, at
least if we are investigating the trajectories of objects within a few tens of
astronomical units of the host star. Tidal forces on planetary systems arise
from the overall Galactic mass distribution and individual nearby stars, but
these are far too small to be detectable—for example, the mean density of
the solar system inside Neptune’s orbit is more than ∼ 1012 times the mean
density of the Galaxy in the solar neighborhood (see Problem 9.6). Tidal
forces of this kind are only relevant for the dynamics of comets, as described
in §9.4.

The equations of motion of an isolated N -body system in an inertial
frame are

r̈j = N−1�
k=0,k�=j

Gmk(rk − rj)�rj − rk �3 , j = 0, . . . ,N − 1. (4.1)

In terms of a gravitational potential,

r̈j = −@�j(rj , t)
@rj

, where �j(r, t) = − N−1�
k=0,k�=j

Gmk�r − rk(t)� . (4.2)

These equations of motion result from the Hamiltonian

H(r0, . . . , rN−1,p0, . . . ,pN−1) ≡ N−1�
j=0

p
2
j

2mj

− N−1�
j=0

N−1�
k=j+1

Gmjmk�rj − rk � , (4.3)

where pj =mj ṙj is the momentum conjugate to rj .

4.1.1 Barycentric coordinates
The most widely used inertial frame is the center-of-mass or barycentric
frame, in which the center of mass of the system is at rest at the origin
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Figure 4.1: Schematic dia-
grams of the three coordinate
systems defined in §4.1. The
shaded circle represents the
host star.

(Figure 4.1). This condition can be written as

N−1�
j=0

mjrj = 0, N−1�
j=0

pj = N−1�
j=0

mj ṙj = 0. (4.4)

It is straightforward to show from (4.1) that if the conditions (4.4) hold at
any time, then they hold at all times.

Despite their simplicity, barycentric coordinates are not ideal for many
problems in celestial mechanics. One drawback is inefficiency: there are
3N second-order differential equations (4.1), or 6N first-order equations if
we write the equations for ṙj and ṗj separately, but because of the conserved
quantities (4.4), six of the 6N equations are redundant so the work done to
solve them numerically is wasted. A second drawback is that for many
purposes, it is more convenient to have the host star located at the origin.

4.1.2 Astrocentric coordinates

The non-inertial, non-rotating frame centered on the host star is called the
astrocentric frame, or the heliocentric frame for the solar system (Figure
4.1). Let r�

j
= rj − r0 be the position of planet j relative to the host star.

Then from equations (4.1) it is straightforward to show that

r̈
�
j
= − G(m0 +mj)�r�

j
�3 r

�
j
+ N−1�
k=1,k�=j

Gmk�(r�k − r�j )�r�
k
− r�

j
�3 −

r
�
k�r�
k
�3 �, j = 1, . . . ,N − 1.

(4.5)
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We can rewrite this equation in terms of a gravitational potential:

r̈
�
j
= −@�j(r�j , t)

@r�
j

, (4.6)

where

�j(r, t) = − G(m0 +mj)�r� − N−1�
k=1,k�=j

Gmk�r − r�
k
(t)� +

N−1�
k=1,k�=j

Gmkr
�
k
(t) ⋅ r

�r�
k
(t)�3 .

The last term is called the indirect potential.
To derive a Hamiltonian for the N -body system in astrocentric coordi-

nates, we must (i) define an additional coordinate r
�
0 to provide a complete

set of N coordinate 3-vectors r�
j
; and (ii) find N momentum 3-vectors p�

j

conjugate to these coordinates. To do so we use the generating function

S2(p�0, . . . ,p�N−1, r0, . . . , rN−1)
= p�0 ⋅ �r0 + � N−1�

k=1
mk(rk − r0)� + N−1�

k=1
p
�
k
⋅ (rk − r0), (4.7)

where � is a constant parameter. From equations (D.63),

r
�
0 = @S2

@p�0
= r0 + � N−1�

k=1
mk(rk − r0), (4.8a)

p0 = @S2

@r0
= p�0 − N−1�

k=1
(�mkp

�
0 + p�k), (4.8b)

r
�
j
= @S2

@p�
j

= rj − r0, (4.8c)

pj = @S2

@rj

= �mjp
�
0 + p�j , (4.8d)

for j = 1, . . . ,N − 1. The inverse transformations are

p
�
0 = N−1�

k=0
pk, (4.9a)
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r0 = r�0 − � N−1�
k=1

mkr
�
k
, (4.9b)

p
�
j
= pj − �mj

N−1�
k=0

pk, (4.9c)

rj = r�j + r�0 − � N−1�
k=1

mkr
�
k
. (4.9d)

Equation (4.9a) is proved by substituting the right side of (4.8d) into (4.8b);
it shows that p�0 is the total momentum. Then (4.9c) is proved by substitut-
ing (4.9a) into (4.8d). A similar process is used to derive (4.9b) and (4.9d).

The Hamiltonian is derived by replacing rj and pj in the Hamiltonian
(4.3) by r

�
j

and p
�
j
:

H(r�0, . . . , r�N−1,p�0, . . . ,p�N−1) (4.10)

= 1
2p
�
0
2�1 − 2�(M −m0)

m0
+ �2 M

m0
(M −m0)� + N−1�

j=1
� p�j 2
2mj

− Gm0mj�r�
j
� �

− N−1�
j=1

N−1�
k=j+1

Gmjmk�r�
j
− r�

k
� +

�M − 1
m0

p
�
0 ⋅ N−1�

j=1
p
�
j
+ 1

2m0

N−1�
j=1

N−1�
k=1

p
�
j
⋅ p�

k
,

where M ≡ ∑N−1
k=0 mk is the total mass of the system. We can extract the

terms from the final sum in which k = j and add them to the terms propor-
tional to p

�
j

2. Introducing µj ≡ m0mj�(m0 +mj) for the reduced mass of
the two-body system consisting of the host star and planet j (cf. eq. 1.10),
we have

H(r�0, . . . , r�N−1,p�0, . . . ,p�N−1) (4.11)

= 1
2p
�
0
2�1 − 2�(M −m0)

m0
+ �2 M

m0
(M −m0)�

+ N−1�
j=1
�p�j 2
2µj

− Gµj(m0 +mj)�r�
j
� �

− N−1�
j=1

N−1�
k=j+1

Gmjmk�r�
j
− r�

k
� +

�M − 1
m0

p
�
0 ⋅ N−1�

j=1
p
�
j
+ 1

m0

N−1�
j=1

N−1�
k=j+1

p
�
j
⋅ p�

k
.
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There are two natural choices for the parameter �. In convention A or
Poincaré coordinates, � = 0 (Poincaré 1896). Then r

�
0 = r0 is the position

of the host star in the barycentric frame and equation (4.11) becomes

HA = p
�
0
2

2m0
+ N−1�

j=1
�p�j 2
2µj

− Gµj(m0 +mj)�r�
j
� � (4.12)

− N−1�
j=1

N−1�
k=j+1

Gmjmk�r�
j
− r�

k
� −

p
�
0

m0
⋅ N−1�
j=1

p
�
j
+ 1

m0

N−1�
j=1

N−1�
k=j+1

p
�
j
⋅ p�

k
.

If the original inertial coordinates are barycentric then p
�
0 = 0; however, we

cannot remove the terms proportional to p
�
0 ⋅p�j from the Hamiltonian, since

otherwise Hamilton’s equations would erroneously imply that ṙ�0 = 0. The
first line of equation (4.12) is simply the kinetic energy of the host star plus
the sum of the two-body Hamiltonians for all the planets. The second line is
the perturbing Hamiltonian. The first term is the sum of the gravitational po-
tential energies of the pairwise interactions between the planets. The cross
term involving p

�
j
⋅p�

k
is an inconvenient but inevitable complication of the

change to a non-inertial frame.
An interesting feature of convention A, easy to see from equations (4.8)

with � = 0, is that the coordinates of the planets r�
j

are astrocentric but the
momenta p

�
j

are barycentric.
In some cases we may want to express the Kepler terms in the Hamilto-

nian (4.12) in terms of Delaunay variables, as described in Box 4.1.
In convention B or democratic coordinates, � = M

−1 (Duncan et al.
1998). Then r

�
0 is the position of the center of mass of the system, rather

than the position of the host star. The Hamiltonian from equation (4.10) is

HB = p
�
0
2

2M
+N−1�

j=1
� p�j 2
2mj

− Gm0mj�r�
j
� �−

N−1�
j=1

N−1�
k=j+1

Gmjmk�r�
j
− r�

k
� +

1

2m0
�N−1�
j=1

p
�
j
�2,

(4.13)
while equation (4.11) yields

HB = p
�
0
2

2M
+ N−1�

j=1
�p�j 2
2µj

− Gµj(m0 +mj)�r�
j
� �
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Box 4.1: Momenta and actions in N -body systems
In descriptions of the two-body problem or of the motion of a test particle in a
given potential, it is usually simplest to define the momentum to have dimensions
of (length)/(time) (see footnote 10 in §1.4). Similarly, angular momentum and
actions such as the Delaunay variables ⇤, L, and Lz (eq. 1.84) have dimensions
of (length)2/(time). In systems of N bodies with different masses, it is better to
follow the usual convention in physics, in which momentum has dimensions of
(mass)×(length)/(time) and actions have dimensions of (mass)×(length)2/(time).

Thus, suppose that a Kepler Hamiltonian has the form (cf. eq. 1.80)

H = p2

2ma

− Gmamb�q� . (a)

The corresponding Delaunay variables are

⇤ =ma(Gmba)1�2, L = ⇤(1 − e2)1�2, Lz = L cos I, (b)

where a, e and I are the semimajor axis, eccentricity and inclination. The Hamil-
tonian can be written

H = − Gmamb

2a
= − G2

m
3
am

2

b

2⇤2
. (c)

For example, in astrocentric coordinates the Kepler Hamiltonian for planet j
is contained in the square brackets in equation (4.12) or (4.14). Then ma = µj ,
mb =m0 +mj , and the first Delaunay variable and the Hamiltonian are

⇤j = m0mj

m0 +mj

[G(m0 +mj)aj]1�2, HK,j = − G2
m

3

0
m

3

j

2(m0 +mj)⇤2

j

, (d)

where the semimajor axis is measured relative to the host star. On the other hand,
if the Hamiltonian is written in the form (4.13), then ma =mj , mb =m0, and

⇤j =mj(Gm0aj)1�2, HK,j = − G2
m

2

0
m

3

j

2⇤2

j

. (e)

In Jacobi coordinates, the Kepler Hamiltonian is contained in the square
brackets in equation (4.39). Then ma = µ̃j , mb =Mj , and

⇤j = mjMj−1
Mj

(GMjaj)1�2, HK,j = − G2
m

3

j
M

3

j−1
2Mj⇤

2

j

. (f)

Here Mj is the sum of the host-star mass and the masses of all the planets interior
to and including planet j, and the semimajor axis is measured relative to the center
of mass of the host star and all of the planets interior to j.
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− N−1�
j=1

N−1�
k=j+1

Gmjmk�r�
j
− r�

k
� +

1

m0

N−1�
j=1

N−1�
k=j+1

p
�
j
⋅ p�

k
. (4.14)

In either Poincaré or democratic coordinates, the equations of motion de-
rived from the astrocentric Hamiltonian are the same as equations (4.5),
supplemented by an equation of motion for r�0 and the constraint p�0 = const.

The total angular momentum of the system can also be expressed in
astrocentric coordinates. We write the generating function (4.7) in the form

S2(p�0, . . . ,p�N−1, r0, . . . , rN−1) = N−1�
j,k=0

Ajkp
�
j
⋅ rk, (4.15)

where A is a constant N ×N matrix. Then

r
�
i
= @S2

@p�
i

= N−1�
k=0

Aikrk, pi = @S2

@ri

= N−1�
n=0 Anip

�
n
. (4.16)

The first equation can be inverted to give

ri = N−1�
k=0

A
−1
ik
r
�
k
. (4.17)

The total angular momentum is

L = N−1�
i=0

ri × pi = N−1�
i,k,n=0

A
−1
ik
Anir

�
k
× p�

n
= N−1�

i=0
r
�
i
× p�

i
. (4.18)

The last equality follows from the identity ∑iAniA
−1
ik
= �ik, where �ik is

the Kronecker delta (eq. C.1). Equation (4.18) shows that the total angular
momentum has the same form in inertial and astrocentric coordinates.

Astrocentric coordinates are poor choices for the description of the tra-
jectories of bodies orbiting at large distances from a planetary system. The
reason can be illustrated by a simplified system consisting of a star, one pla-
net and a distant test particle. The motion of the star around the barycenter
introduces a fictitious force in the astrocentric frame that does not decline
with distance. Because this force oscillates with the period of the planet,
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any integrator following the test particle has to use a timestep that is much
less than this period, no matter how long the period of the test particle may
be. Numerical integrations of distant objects in astrocentric coordinates are
therefore extremely inefficient.

As this illustration suggests, astrocentric coordinates work well for in-
ner planets, and barycentric coordinates work well for outer planets. The
coordinate system described in the next section incorporates some of the
advantages of both systems.

4.1.3 Jacobi coordinates

The limitations of barycentric and astrocentric coordinates are partly re-
moved by Jacobi coordinates. In Jacobi coordinates the position and velo-
city of body mk are given relative to the barycenter of bodies m0, . . . ,mk−1.
Thus the transformation to Jacobi coordinates depends on the ordering of
the labels assigned to the planets; it is said to be “undemocratic.” If the pla-
nets are on well separated orbits, the best approach is to arrange the labels
in order of increasing semimajor axis. Thus m0 is the host star, m1 is the
innermost planet, and mN−1 is the outermost. More generally the ordering
should be from the subsystems with the shortest orbital period to those with
the longest period; for example, in the Earth–Moon–Sun system we should
choose m0 to be the Earth, m1 the Moon, and m2 the Sun.

The Jacobi coordinates and momenta are labeled (r̃j , p̃j)with the index
j running from 0 to N − 1 in an N -body system (star plus N − 1 planets).
We define Jacobi coordinates in terms of barycentric coordinates rj by

r̃0 ≡ 1

MN−1
N−1�
k=0

mkrk, r̃j ≡ rj − 1

Mj−1
j−1�
k=0

mkrk, j = 1, . . . ,N − 1,
(4.19)

where Mj ≡ ∑j

k=0mk. The coordinate r̃0 is the position of the barycenter of
the system. For k = 1, . . . ,N − 1, the Jacobi coordinate r̃k is the difference
between the position of planet j and the center of mass of all the bodies with
smaller labels (see Figure 4.1). Thus the Jacobi coordinates are astrocentric
for the innermost body and barycentric for a test particle orbiting outside
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the planetary system. We can rewrite equations (4.19) as

r̃j = N−1�
k=0

Qjkrk, (4.20)

where

Qjk =
�������������

mk�MN−1, j = 0;−mk�Mj−1, k < j;
1, k = j > 0;
0, k > j > 0.

(4.21)

We also need the inverse transformation from Jacobi to barycentric co-
ordinates. To derive this, note that equation (4.19) for r̃N−1 can be rewrit-
ten as MN−2r̃N−1 =MN−2rN−1 −∑N−2

k=0 mkrk =MN−2rN−1 −MN−1r̃0 +
mN−1rN−1 =MN−1rN−1 −MN−1r̃0; and this can be solved to give

rN−1 = r̃0 + MN−2
MN−1 r̃N−1. (4.22)

This gives rN−1 in terms of Jacobi coordinates. Similarly we can solve for
rN−2 in terms of rN−1 and Jacobi coordinates, and eliminate rN−1 using
equation (4.22) to obtain

rN−2 = r̃0 + MN−3
MN−2 r̃N−2 −

mN−1
MN−1 r̃N−1. (4.23)

This process can be continued, and we find

r0 = r̃0−N−1�
k=1

mk

Mk

r̃k, rj = r̃0+Mj−1
Mj

r̃j− N−1�
k=j+1

mk

Mk

r̃k, j = 1, . . . ,N −1;
(4.24)

here it is understood that the summation is zero for j = N − 1, where the
lower limit of the index k is larger than the upper limit. This transformation
can also be written

rj = N−1�
k=0

Q
−1
jk
r̃k, (4.25)
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where

Q
−1
jk
=
�������������

1, k = 0;−mk�Mk, k > j;
Mk−1�Mk, k = j > 0;
0, j > k > 0.

(4.26)

We must now find the momenta conjugate to the Jacobi coordinates. To
do so we choose the generating function (cf. eq. 4.15)

S2(p̃0, . . . , p̃N−1, r0, . . . , rN−1) = N−1�
j,k=0

Qjkp̃j ⋅ rk. (4.27)

Then

r̃j = @S2

@p̃j

= N−1�
k=0

Qjkrk, pj = @S2

@rj

= N−1�
k=0

Qkjp̃k. (4.28)

The first of these is identical to (4.20). The second is a matrix equation that
can be inverted to give

p̃k = N−1�
j=0

Q
−1
jk
pj . (4.29)

Then using equations (4.26), we have

p̃0 = N−1�
j=0

pj , p̃k = Mk−1
Mk

pk − mk

Mk

k−1�
j=0

pj , k = 1, . . . ,N − 1. (4.30)

The inverse transformation is given by the second of equations (4.28),

p0 = m0

MN−1 p̃0 − N−1�
k=1

m0

Mk−1 p̃k, pj = mj

MN−1 p̃0 + p̃j − N−1�
k=j+1

mj

Mk−1 p̃k,

(4.31)
for j = 1, . . . ,N − 1. As in equations (4.24) it is understood that the sum-
mation is zero for j = N − 1, where the lower limit of the dummy index is
larger than the upper limit.

The arguments leading to equation (4.18) apply both to astrocentric and
Jacobi coordinates, so the total angular momentum is

L = N−1�
k=0

r̃k × p̃k. (4.32)
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The total energy can also be expressed with a simple formula. Using the
second of equations (4.28), the kinetic energy can be written

T = N−1�
j=0

p
2
j

2mj

= N−1�
j,k,n=0

QkjQnj

2mj

p̃k ⋅ p̃n. (4.33)

Using equations (4.21) it is straightforward to show that

N−1�
j=0

QkjQnj

mj

=
���������

1�MN−1, k = n = 0;
Mk�(mkMk−1), k = n > 0;
0, k �= n. (4.34)

Therefore the kinetic energy can be written

T = N−1�
k=0

p̃
2
k

2µ̃k

, (4.35)

where

µ̃k =
���������

MN−1, k = 0;
mkMk−1

Mk

, k = 1, . . . ,N − 1. (4.36)

Thus the kinetic energy in Jacobi coordinates has the same form as in bary-
centric coordinates, except that the masses mk are replaced by µ̃k: this is
far simpler than the expression for the kinetic energy in astrocentric coordi-
nates, equations (4.10) or (4.11).

The Hamiltonian in Jacobi coordinates is

H = p̃
2
0

2µ̃0
+ N−1�

j=1
p̃
2
j

2µ̃j

− N−1�
j=0

N−1�
k=j+1

Gmjmk�rj − rk � , (4.37)

where rk is defined in terms of r̃k by equations (4.24). The Hamiltonian
is independent of r̃0 so the total momentum p̃0 is conserved, and the time
derivatives of the Jacobi coordinates are related to their conjugate momenta
in the usual way,

dr̃k

dt
= @H
@p̃k

= p̃k

µ̃k

. (4.38)
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The Hamiltonian can also be written in the form

H = p̃
2
0

2µ̃0
+ N−1�

j=1
� p̃2

j

2µ̃j

− GMj µ̃j�̃rj � �
− N−1�

j=1
N−1�
k=j+1

Gmjmk�rj − rk � +
N−1�
k=1

Gmk�Mk−1�̃rk � −
m0�rk − r0� �. (4.39)

The terms on the first line consist of the kinetic energy of the system as a
whole—which we can drop since it is constant—and the usual two-body
Hamiltonian for the motion of a body of mass µ̃k around a fixed point lo-
cated at the barycenter of the first k masses (k − 1 planets and the host
star). The terms on the second line are smaller—by a factor of roughly the
ratio of the planetary masses to the stellar mass—and depend only on the
Jacobi coordinates, since rj can be converted to r̃j using equations (4.24).
Therefore Jacobi coordinates can be used in the Wisdom–Holman integra-
tors described in §2.5.3.

Jacobi coordinates are well suited for systems of planets on orbits that
never cross. If the orbits cross, the equations of motion based on Jacobi
coordinates remain valid, but the planets are no longer ordered by their dis-
tances from the host, so numerical integrators based on these coordinates
may be inefficient.

4.2 Hamiltonian perturbation theory

The Hamiltonian for a system of N − 1 planets orbiting a common host star
can be written in the form

H(q1,�,qN−1,p1,�,pN−1)
= N−1�

i=1
HK,i(qi,pi) + N−1�

i=1
N−1�
j=i+1

Hij(qi,pi,qj ,pj). (4.40)

Here HK,i is the Kepler Hamiltonian for planet i, and Hij represents the
interaction between planets i and j. In general �Hij � � �HK,i� because plan-
etary masses are much smaller than stellar masses. The goal of perturbation
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theory in celestial mechanics is to exploit the small masses of planets to
find approximate descriptions of the evolution of trajectories in multi-planet
systems—in fact, it was for this purpose that perturbation theory was origi-
nally invented.

The Hamiltonian in astrocentric coordinates has the form (4.40) in either
convention A or B (eqs. 4.12 or 4.14), provided we treat the total momen-
tum p

�
0 as a constant—which it is, since the Hamiltonian is independent

of the conjugate coordinate r
�
0—and drop the constant term proportional to

p
�
0
2. Similarly the Hamiltonian in Jacobi coordinates (4.37) has this form,

provided we treat p̃0 as a constant and drop the term proportional to 1
2 p̃

2
0.

The Delaunay variables for the Kepler Hamiltonian HK,i may be written(✓i,Ji), where the vector of coordinates or angles is ✓i ≡ (`i,!i,⌦i) and
the vector of momenta or actions is Ji ≡ (⇤i, Li, Lzi), as defined in Box
4.1. We can rewrite the Hamiltonian (4.40) in these variables as

H(✓1,�,✓N−1,J1,�,JN−1)
= N−1�

i=1
HK,i(Ji) + N−1�

i=1
N−1�
j=i+1

Hij(✓i,Ji,✓j ,Jj), (4.41)

where the Kepler Hamiltonians HK,i are given in Box 4.1 for astrocentric
and Jacobi coordinates. The remaining terms Hij are called the disturbing
function.1

Calculating the disturbing function is much harder in Delaunay variables
than in Cartesian coordinates (for example, it depends on all six Delaunay
variables but only three Cartesian coordinates), but the advantage of work-
ing in angle-action variables like the Delaunay variables is so great that this
price is often worth paying. Wisdom–Holman integrators (§2.5.3) are based
on splitting the Hamiltonian into two parts: a Kepler Hamiltonian that is
simple to integrate in Delaunay variables, and a disturbing function that is
simple to integrate in Cartesian coordinates.

1 Unfortunately, for many authors this name refers to −Hij , not Hij .
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4.2.1 First-order perturbation theory
Equation (4.41) is an example of a Hamiltonian of the form

H(✓,J) =H0(J) + ✏H1(✓,J), (4.42)

where ✓ and J are vectors of angle-action variables (of dimension 3N − 3
in eq. 4.41). Here ✏ � 1 is an ordering parameter that is used to keep track
of the size of the changes due to the perturbing Hamiltonian.

Because ✓ is a vector of angles, H1 must be periodic with period 2⇡ in
each of its components ✓j . Therefore it can be expanded as a Fourier series
(Appendix B.4),

H(✓,J) =H0(J) + ✏�
m

hm(J) exp(im ⋅ ✓), (4.43)

where m is a vector of integers having the same dimension as ✓. Since both
H0 and H1 are real, when we take the complex conjugate of this equation
and replace the dummy index m by −m we have

H(✓,J) =H0(J) + ✏�
m

h
∗−m(J) exp(im ⋅ ✓). (4.44)

The two equations must be the same for all ✓, which requires that h∗−m(J) =
hm(J). If we write hm(J) = Hm(J) exp[−i�m(J)] where Hm and �m
are real, then this requirement implies that

H−m =Hm and �−m = −�m. (4.45)

Equation (4.43) can now be rewritten as

H(✓,J) =H0(J)+✏�
m

Hm(J)[cos(m⋅✓−�m)+i sin(m⋅✓−�m)]. (4.46)

Because of the conditions (4.45) the sine terms with indices m and −m
cancel and the sine term with m = 0 vanishes, so this result simplifies to

H(✓,J) =H0(J) + ✏�
m

Hm(J) cos(m ⋅ ✓ − �m). (4.47)
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Hamilton’s equations are

dJ

dt
= −@H

@✓
= −i✏�

m

mhm(J) exp(im ⋅ ✓), (4.48a)

d✓

dt
= @H
@J
= @H0

@J
(J) + ✏�

m

@hm

@J
(J) exp(im ⋅ ✓). (4.48b)

If ✏ = 0 the solution is

J = Jin, ✓ = ✓in +⌦(Jin)t, (4.49)

where Jin and ✓in are the values of the actions and angles at the initial time
t = 0, and ⌦(J) ≡ @H0�@J. For example, in Delaunay variables the actions
are J = (⇤, L,Lz), and in astrocentric coordinates the Kepler Hamiltonian
is given by equation (d) of Box 4.1, HK(J) = −G2

m
3
0m

3�[2(m0 +m)⇤2],
so

⌦(J) = � G2
m

3
0m

3

(m0 +m)⇤3
,0,0� = � [G(m0 +m)]1�2

a3�2 ,0,0� = (n,0,0),
(4.50)

where n is the usual mean motion.
Now assume that ✏ is small but nonzero. We write the trajectory in

angle-action variables as a power series in ✏,

J(t) = J(0)(t) + ✏J(1)(t) + ✏2J(2)(t) + . . . ,
✓(t) = ✓(0)(t) + ✏✓(1)(t) + ✏2✓(2)(t) + . . . . (4.51)

We substitute these expressions in Hamilton’s equations (4.48), expand fac-
tors like hm(J(0) + ✏J(1) +�) as Taylor series in ✏, and collect all of the
terms with the same power of ✏.

The terms independent of ✏ have the solutions (4.49),

J
(0)(t) = Jin, ✓(0)(t) = ✓in +⌦(Jin)t. (4.52)

The terms proportional to ✏ are

dJ
(1)
j

dt
= −i�

m

mj hm exp �im ⋅ ✓(0)�, (4.53a)
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d✓
(1)
j

dt
=�

k

@
2
H0

@Jj@Jk

J
(1)
k
+�

m

@hm

@Ji

exp �im ⋅ ✓(0)�. (4.53b)

In these equations all functions of the actions on the right side, such as hm

and @2H0�@Jj@Jk, are evaluated at the zero-order actions J(0).
At this point we divide the terms in the Fourier series into two sets.

Let S denote the set of all integer triples m such that m ⋅ ⌦(J(0)) = 0.
When m ∈ S, the corresponding component of the Fourier series is called
a secular term, otherwise it is a short-period term. In Delaunay variables
the Hamiltonian H0 depends only on J1 = ⇤, so the secular terms are those
with m1 = 0.

We now substitute equations (4.52) into the right side of equation (4.53a)
and integrate:

J
(1)
j
(t) = −it �

m∈S
mjhm(Jin) exp(im ⋅ ✓in) (4.54)

− �
m�∈S

mj hm(Jin)
m ⋅⌦(Jin) exp(im ⋅ ✓in)� exp[im ⋅⌦(Jin)t] − 1�.

This expression includes an integration constant chosen such that J(1)(t =
0) = 0, consistent with the initial conditions. The secular terms on the
first line lead to changes in the actions that are linear in time; however, the
secular terms have m1 = 0 so there is no secular change in the action J1 = ⇤,
which implies that there is no secular change in the semimajor axis.

The solution for the angles ✓(1)(t) is similar, although we must sub-
stitute the solution (4.54) for J(1)(t) into the right side of the differential
equation (4.53b) before integrating. This procedure can be repeated to de-
termine the angles and actions to order ✏2, ✏3, and so on, but the labor grows
rapidly at higher orders, and the insight gained from the solution diminishes
equally rapidly. More efficient approaches are described in the following
subsections, but in practice perturbation theory is rarely applied to Hamil-
tonian systems beyond order ✏2.

In principle, equation (4.54) and its analog for the angles provide a com-
plete description of the dominant effects of mutual gravitational interac-
tions on planetary orbits. However, the practical application of these re-
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sults encounters two obstacles. The first of these is the presence of terms
proportional to t in the equation for J(t). These imply that perturbations
in the actions grow without limit, so long as there are any secular terms
with m �= 0—for Delaunay variables these would be all terms with m1 = 0
and m2 or m3 nonzero, so changes in the eccentricity and inclination can
grow linearly, but changes in the semimajor axis cannot. This result raises
the uncomfortable possibility that the eccentricities and inclinations of the
planets in the solar system may grow until the orbits cross and planets col-
lide.2 Fortunately this is not the case: as described in §5.2, the perturbations
in eccentricity and inclination are oscillatory but with a frequency that is
smaller than the mean motion by of order ✏, so the oscillations look linear
in a perturbation series3 that is valid only to O(✏).

The second problem is the presence of the factor m ⋅⌦ in the denomina-
tor in equations (4.54). Since m is the set of all integer N -tuples in a 2N di-
mensional phase space, m ⋅⌦ can be arbitrarily close to zero for some value
of m, which means that the series does not converge. This is a physical
phenomenon, not just a mathematical inconvenience: in general, nonlinear
Hamiltonian systems with more than one degree of freedom are not inte-
grable, so chaotic trajectories are found in the neighborhood of every point
in phase space, and this complexity is not captured by perturbation theory
(see Appendix D.8). The results of perturbation theory should be thought of
instead as asymptotic series: over a fixed time interval they provide a better
and better description of the motion as the parameter ✏ becomes smaller and
smaller. In practical terms, perturbation theory is useful for describing the
motion of planets and satellites over intervals of hundreds or thousands of
orbits but not for the lifetime of the universe.

4.2.2 The Poincaré–von Zeipel method
The perturbation theory developed in the preceding subsection is straight-
forward but cumbersome. An alternative and simpler approach is to find a

2 This was a fundamental scientific issue in the eighteenth century. See §4.5 for a brief history.
3 A simple example of this phenomenon is given by the differential equation ż = i✏z with

initial condition z = 1 at t = 0. The solution is z(t) = exp(i✏t), which is oscillatory, but a
power-series expansion of the solution gives linear growth, z(t) = 1 + i✏t +O(✏2).
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canonical transformation to new variables that obey a simpler Hamiltonian
(Poincaré 1892–1897; von Zeipel 1916).

Let J′ and ✓′ be new variables derived from J and ✓ by the generating
function

S2(J′,✓) = J′ ⋅ ✓ + ✏�
m

sm(J′) exp(im ⋅ ✓). (4.55)

Then from equations (D.63),

J = @S
@✓
= J′ + i✏�

m

m sm(J′) exp(im ⋅ ✓), (4.56a)

✓′ = @S
@J′ = ✓ + ✏�m

@sm

@J′ (J′) exp(im ⋅ ✓). (4.56b)

These equations can be rewritten to express the old variables in terms of the
new ones. To order ✏,

J = J′ + i✏�
m

m sm(J′) exp(im ⋅ ✓′) +O(✏2), (4.57a)

✓ = ✓′ − ✏�
m

@sm

@J′ (J′) exp(im ⋅ ✓′) +O(✏2). (4.57b)

Since the generating function is independent of time, the value of the
Hamiltonian is the same in the old and new variables, H ′(J′,✓′) =H(J,✓)
with H(J,✓) given by equation (4.43). Eliminating the old variables us-
ing equations (4.57), expanding the result to O(✏) in a Taylor series, and
replacing the derivatives @H0(J)�@J by ⌦(J), we find

H
′(J′,✓′) =H0(J′) + i✏�

m

m ⋅⌦(J′)sm(J′) exp(im ⋅ ✓′)
+ ✏�

m

hm(J′) exp(im ⋅ ✓′) +O(✏2). (4.58)

We now set

sm(J′) =
�����������
0, m ∈ S,
i
hm(J′)

m ⋅⌦(J′) , m �∈ S, (4.59)
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where as usual S is the set of integer multiplets m for which m ⋅ ⌦ = 0.
With this substitution

H
′(J′) =H0(J′) + ✏ �

m∈S
hm(J′) exp(im ⋅ ✓′) +O(✏2). (4.60)

Thus at first order in ✏ the new Hamiltonian is equal to the old Hamiltonian
with all of the short-period terms removed.

The Poincaré–von Zeipel method is better than the approach in §4.2.1
for two reasons. First, the effects of the perturbation are encapsulated in
two scalar functions, the Hamiltonian and the generating function, rather
than in 2N actions and angles; second, the secular Hamiltonian—the sum
over terms with m ∈ S in equation (4.60)—is retained intact, so it can be
analyzed more accurately to eliminate the misleading linear growth in the
perturbations in the actions or angles (see §5.2).

Despite these advantages, the Poincaré–von Zeipel method is still awk-
ward when extended to second or higher order in the perturbation strength
✏, mostly because of the need to work with a mixture of the old and new
variables.

4.2.3 Lie operator perturbation theory

The basic idea of the Poincaré–von Zeipel method is to find a new set of
canonical variables close to the original ones in which the Hamiltonian has
a simple form. Lie operator perturbation theory is based on the same idea
but avoids the use of mixed-variable generating functions.

Let z be a set of canonical variables and H(z) the Hamiltonian in these
variables. For brevity we assume that the Hamiltonian is time-independent;
this assumption is not restrictive, because any time-dependent Hamiltonian
can be converted to a time-independent one in an extended phase space as
described in Box 2.1.

Now let z′(z, ✏) be a new family of canonical variables, depending on
the parameter ✏. We assume that ✏� 1 and that z′(z,0) = z.

Write z
′
1 = z′(z, ✏) and z

′
2 = z′(z, ✏ + d✏). The transformation from z

′
1

to z
′
2 is canonical and so can be written in terms of a generating function
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S2(q′1,p′2) = q′1 ⋅ p′2 +w(q′1,p′2, ✏)d✏. From equations (D.63) we have

q
′
2 − q′1 = @

@p′2
w(q′1,p′2, ✏)d✏, p

′
2 − p′1 = − @

@q′1
w(q′1,p′2, ✏)d✏. (4.61)

Now let ✏ shrink toward zero. Then the difference between z
′
1 and z

′
2 also

shrinks to zero, so we lose no accuracy if we replace p
′
2 by p

′
1 on the right

side. Thus

q
′
2 − q′1
d✏

= @

@p′1
w(q′1,p′1), p

′
2 − p′1
d✏

= − @

@q′1
w(q′1,p′1), (4.62)

which can be written more compactly as

@z
′

@✏
= {z′,w} = Lwz

′
, (4.63)

in which {⋅, ⋅} is the Poisson bracket (Appendix D.3), and we have intro-
duced the Lie operator Lw defined in Appendix D.4. Although this result
was derived using the coordinates z′1, the Poisson bracket is the same in any
canonical coordinates (Appendix D.6). The function w(z′, ✏) is called the
local generating function.

The Lie operator Lw maps the space of scalar phase-space functions onto
itself. For each ✏ we define a second operator of this kind, T✏, as follows: if
f(z) is any function, then

(T✏f)(z) = f[z′(z, ✏)]; (4.64)

in words, T✏f evaluates f at the transformed point z′. The derivative of
equation (4.64) is

@

@✏
(T✏f)(z) =�

i

@f

@z
′
i

@z
′
i

@✏
=�

i

@f

@z
′
i

{z′
i
,w} = {f,w}z′

= (Lwf)(z′) = (T✏Lwf)(z). (4.65)

This result can be written more compactly as

@T✏
@✏
= T✏Lw. (4.66)
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We also need the inverse operator T−1
✏

, defined by T✏T
−1
✏
= T−1

✏
T✏ = I

where I is the identity operator. Differentiating T✏T
−1
✏
= I with respect to ✏

and using equation (4.66) gives

T✏LwT
−1
✏
+T✏ @T−1✏

@✏
= 0, (4.67)

and left-multiplying by T−1
✏

gives

@T−1
✏

@✏
= −LwT

−1
✏
. (4.68)

We now apply these results to a system with Hamiltonian h(z)=h0(z)+
✏h1(z). Usually the Hamiltonian h0(z) is integrable and the variables z are
angle-action variables for h0(z), but these assumptions are not necessary
for the derivation below. We denote the Hamiltonian in the new canonical
variables z′(z, ✏) by H(z′). Since the canonical transformation has no ex-
plicit time dependence, H(z′) = h0(z) + ✏h1(z) or, using equation (4.64),

T✏H = h0 + ✏h1. (4.69)

Differentiating this expression with respect to ✏ and using equation (4.66),

T✏LwH +T✏ @H
@✏
= h1. (4.70)

Then left-multiplying by T−1
✏

gives

LwH + @H
@✏
= T−1

✏
h1. (4.71)

We now expand the functions w and H and the operators T✏ and T−1
✏

in
power series,

w = ∞�
n=0wn+1✏n, H = ∞�

n=0Hn✏
n
, T✏ = ∞�

n=0 ✏
nTn, T−1

✏
= ∞�

n=0 ✏
nT−1

n
.

(4.72)



4.2. HAMILTONIAN PERTURBATION THEORY 231

When ✏ = 0, z′(z,0) = z, so H0 = h0 and T0 = T−10 = I. Notice however
that in this notation T−1

n
is not the inverse of Tn for n > 0.

Since Lw is linear in w, we can write

Lw = ∞�
n=0 ✏

nLn+1, where Lnf = Lwnf = {f,wn}. (4.73)

Substituting these expansions into equations (4.66) and (4.68) and collecting
the terms proportional to ✏n−1 with n > 0,

Tn = 1

n

n−1�
m=0TmLn−m, T−1

n
= − 1

n

n−1�
m=0Ln−mT−1

m
. (4.74)

Since T0 = T−10 = I, these relations can be used recursively to determine
any Tn or T−1

n
in terms of the operators L1, . . . ,Ln. Up to n = 2,

T0 = I, T1 = L1, T2 = 1
2L2 + 1

2L
2
1,

T−10 = I, T−11 = −L1, T−12 = −1
2L2 + 1

2L
2
1. (4.75)

A similar expansion of equation (4.71) yields for the terms proportional to
✏
n

n�
m=0Ln−m+1Hm + (n + 1)Hn+1 −T−1n h1 = 0. (4.76)

We evaluate these equations for n = 0,1,2, using equations (4.75) to sim-
plify the results:

L1H0 +H1 − h1 = 0, L2H0 + 2H2 + L1(h1 +H1) = 0,
L3H0 + 3H3 + L2H1+L1H2 + 1

2(L2 − L2
1)h1 = 0. (4.77)

Similar expressions are straightforward to derive for higher orders. Equa-
tions (4.77) can be rewritten as

{w1,H0} =H1 − h1, {w2,H0} = 2H2 + L1(h1 +H1),
{w3,H0} = 3H3+L2H1 + L1H2 + 1

2(L2 − L2
1)h1. (4.78)
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We are now free to choose the terms in the new Hamiltonian, Hn,
and solve the differential equations (4.78) for the corresponding generating
function wn. Typically Hn is chosen so that wn has only oscillating terms,
thereby ensuring that the new and old variables differ only by oscillating
terms.

For example, suppose that the Hamiltonian has the form (4.43). In the
present notation the canonical variables z are the angles and actions (✓,J),
the unperturbed Hamiltonian is h0(J), and the perturbation is h1(J,✓) =∑m hm(J) exp(im ⋅ ✓). Now consider the first of equations (4.78), corre-
sponding to first-order perturbation theory. We choose H1 so the average of
the right side over angles vanishes. This requires H1 = ∑m∈S hm(J), where
S is the set of all integer multiplets m for which m ⋅⌦(J) =m ⋅@h0�@J = 0
(the secular terms). Then the first of equations (4.78) becomes

{w1,H0} =⌦(J) ⋅ @w1

@✓
=H1 − h1 = − �

m�∈S
hm(J) exp(im ⋅ ✓), (4.79)

which is easily solved for w1:

w1(J,✓) = i �
m�∈S

hm(J) exp(im ⋅ ✓)
m ⋅⌦(J) . (4.80)

Once w1 is determined we can find the relation between the old and new
phase-space variables, z and z

′(✏,z). Let Zk(z) be the function that gives
the k

th coordinate of z, zk = Zk(z). Then equation (4.64) implies that

z
′
k
= (T✏Zk)z. (4.81)

From equations (4.75),

z
′
k
= zk + ✏{zk,w1} +O(✏2). (4.82)

Thus to O(✏),
J
′ = J + ✏{J,w1} = J − ✏@w1

@✓
= J + ✏ �

m�∈S
mhm(J)
m ⋅⌦ exp(im ⋅ ✓), (4.83)
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✓′ = ✓ + ✏{✓,w1} = ✓ + ✏@w1

@J
= ✓ + i✏ �

m�∈S
@

@J
� hm(J)
m ⋅⌦(J)� exp(im ⋅ ✓).

Notice that at order ✏ the local generating function w1 is identical to the
mixed-variable generating function used in the Poincaré–von Zeipel ap-
proach (eq. 4.59), as is the relation between the primed and unprimed angles
and actions (eqs. 4.56).

In second-order perturbation theory, we use the second of equations
(4.78), which can be written

{w2,H0} =⌦(J) ⋅ @w2

@✓
= 2H2 + {h1,w1} + {H1,w1}. (4.84)

We choose H2 so the average of the right side over angles vanishes. Denot-
ing this average by �⋅� we have

H2 = −1
2 �{h1,w1} + {H1,w1}�. (4.85)

Since H1 depends only on the actions,

�{H1,w1}� = −�
i

@H1

@Ji

�@w1

@✓i

� = 0; (4.86)

thus the second Poisson bracket in equation (4.85) vanishes. Since h1 is
real, it can be replaced by its complex conjugate h

∗
1 and then

H2 = −1
2 �{h1,w1}�

= −1
2 i�

m
�

m′�∈S
��h∗m(J) exp(−im ⋅ ✓), hm′ exp(im′ ⋅ ✓)

m′ ⋅⌦ ��
= −1

2 �
m�∈S

m ⋅ @
@J

�hm(J)�2
m ⋅⌦(J) . (4.87)

This result can be substituted into equation (4.84), which can then be solved
for w2(✓,J); then w2 can be used to find the relation between the old and
new angle-action variables through equation (4.82).
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Thus we have shown that the solution to Hamilton’s equations for the
Hamiltonian h0(J)+ ✏h1(✓,J) is given by the solution for the Hamiltonian

H(✓′,J′) =H0(J′) + ✏H1(J′) + ✏2H2(J′) +O(✏3) (4.88)

= h0(J′) + �
m∈S

hm(J′) − 1
2 �
m�∈S

m ⋅ @
@J′
�hm(J′)�2
m ⋅⌦(J′) +O(✏3),

in which (✓′,J′) and (J,✓) differ by terms that are O(✏) and average to
zero over the angles.

This process is straightforward to continue to higher orders in ✏. Of
course, all of the perturbation theories described in this section continue to
suffer from one of the problems described at the end of §4.2.1: the presence
of small divisors. Because of these, the sum over m only converges like an
asymptotic series, that is, the results of perturbation theory at any order are
valid over a fixed time interval as ✏ → 0, but not over an arbitrarily large
time interval for any fixed value of ✏.

For more thorough treatments of Lie operator perturbation theory, see
Deprit (1969), Cary (1981), Lichtenberg & Lieberman (1992), or Sussman
& Wisdom (2001).

4.3 The disturbing function

In most planetary systems the planets travel on nearly circular orbits close
to a common plane. In this case the interaction Hamiltonian or disturbing
function Hij(✓i,Ji,✓j ,Jj) between planets i and j (eq. 4.41) can be eval-
uated as an expansion in powers of the eccentricities and inclinations of the
two planets. Thousands of pages have been written about these expansions,
but the analysis is straightforward in principle, and using computer algebra
it is straightforward in practice as well.

The interaction Hamiltonian contains both the gravitational interaction
potential and the additional terms that arise in non-inertial coordinate sys-
tems such as astrocentric or Jacobi coordinates (§4.1). We focus first on the
interaction potential,

�ij(ri, rj) = − Gmimj

�ij

, where �ij ≡ �ri − rj �. (4.89)
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We shall work with the orbital elements a, e, I , �, $, ⌦—semimajor axis,
eccentricity, inclination, mean longitude, longitude of periapsis, and longi-
tude of the ascending node—which are related to the Delaunay variables
by

⇤ = (GMa)1�2, L = ⇤(1 − e2)1�2, Lz = L cos I,

` = � −$, ! =$ −⌦; (4.90)

the variable ⌦ is common to both sets. We set the dummy variables i = 1

and j = 2.
Some restrictions on the form of �−112 can be derived from symmetry

arguments. If we replace �1 by �1 + 2⇡ the position of the planet is un-
changed, so�−112 is unchanged. Thus�−112 must be a periodic function of �1
with period 2⇡. Similarly it must be a periodic function of $1 and ⌦1 and
of the same variables with label 2. Thus it can be written as a Fourier series
(Appendix B.4):

1

�12
= �

j1k1m1
j2k2m2

Hj1k1m1j2k2m2(a1, e1, I1, a2, e2, I2)
× cos(j1�1 + k1$1 +m1⌦1 − j2�2 − k2$2 −m2⌦2). (4.91)

A general Fourier series contains both sine and cosine terms, but the sine
terms in this expansion all vanish.4

When the eccentricity e1 is zero, �−112 cannot depend on the periapsis
direction $1. Similarly, when the inclination I1 is zero,�−112 cannot depend
4 Proof: Consider two coordinate systems defined by the Cartesian axes (x̂, ŷ, ẑ) and(x̂′, ŷ′, ẑ′). The primed axes are obtained by a rotation of 180○ around the x-axis; thus

x̂′ = x̂, ŷ′ = −ŷ, ẑ′ = −ẑ. If the elements of a point on an orbit in the unprimed coordi-
nates are a, e, I , �, $, ⌦, then the elements of the same point in the primed coordinates
are a, e, I′, �′, $′, ⌦′ with �

′ = � − 2⌦, $′ = $ − 2⌦, ⌦′ = ⇡ − ⌦ and I
′ = ⇡ − I

(all quantities modulo 2⇡). If we now time-reverse the orbit, the elements become (eq.
2.37) a, e, I′′, �′′, $′′, ⌦′′ with �

′′ = 2⌦
′ − �

′, $′′ = 2⌦
′ − $

′, ⌦′′ = ⇡ + ⌦
′ and

I
′′ = ⇡ − I

′. Then �
′′ = −�, $′′ = −$, and ⌦

′′ = −⌦. The gravitational potential
between two mass points must be independent of which coordinate system we use and
whether or not the orbits are time reversed. Therefore the potential has to be the same in the
unprimed and doubly primed coordinates, which implies that it must be an even function of
j1�1 + k1$1 +m1⌦1 − j2�2 − k2$2 −m2⌦2, so no sine terms are present.
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on the nodal longitude ⌦1. More generally, H1 has to be an analytic func-
tion of the position and this restricts the possible forms of H1 to satisfy the
d’Alembert property,5 which states the following: if the eccentricities and
inclinations e1, e2, I1, I2 are small, then

Hj1k1m1j2k2m2(a1, e1, I1, a2, e2, I2) = O(e�k1�
1 e

�k2�
2 I

�m1�
1 I

�m2�
2 ). (4.92)

Now suppose that we rotate the origin of the azimuthal coordinate sys-
tem by some angle  . Then all of the angular variables increase by  , so the
argument of the cosine increases by (j1 + k1 +m1 − j2 − k2 −m2) . Since
the interaction potential must be independent of the choice of the origin, we
require that

j1 + k1 +m1 − j2 − k2 −m2 = 0. (4.93)

To obtain an explicit expression for �−112 we assume that the eccentric-
ities e1 and e2 and the inclinations I1 and I2 are of order ✏ � 1. To make
this dependence explicit, we replace e1 and I1 by ✏e1 and ✏I1, with the same
replacement for e2 and I2, then set ✏ to unity once we have obtained a con-
sistent ordering. We refer to terms in the disturbing function proportional to
✏
k as having degree k.

We seek an expression for �−112 that is correct to O(✏k). We write

1

�12
= 1

�r1 − r2� =
1

(r21 + r22 − 2 r1 ⋅ r2)1�2 , (4.94)

then use equations (1.70) to evaluate r1 ⋅ r2 in terms of r1 and the orbital
elements f1, !1, ⌦1, and I1 and their analogs for body 2. We replace r1, f1,
r2 and f2 by their expressions (1.151) and (1.155) in terms of a, e, and `,
keeping terms up to O(✏k). We also expand cos I and sin I , keeping terms
up to O(✏k). We then substitute these expansions into equation (4.94) and
expand the result to O(✏k). For example, if k = 1,

1

�12
= 1

[a21+a22−2a1a2 cos(�1−�2)]1�2 +
✏

[a21+a22−2a1a2 cos(�1−�2)]3�2
5 Similarly, if a smooth function f(x, y) of the Cartesian coordinates x and y is rewritten

in polar coordinates (r,�), then its expansion in powers of r will have the form c0 +
c1r cos(� − �1) + c2r2 cos 2(� − �2) +�; that is, the coefficient of cosm(� − �n) will
be O(rm).
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× �a21e1 cos(�1−$1) + a22e2 cos(�2−$2)
+ 1

2a1a2e1 cos(2�1−�2−$1) + 1
2a1a2e2 cos(2�2−�1−$2)

− 3
2a1a2e1 cos(�2−$1) − 3

2a1a2e2 cos(�1−$2)� +O(✏2).
(4.95)

This expression and its more complicated cousins for higher k con-
tain denominators of the form [a21 + a

2
2 − 2a1a2 cos(�1 − �2)]−s where

s = 1
2 ,

3
2 ,

5
2 , . . .. We replace these denominators by a Fourier series (Ap-

pendix B.4), using the expansion (eq. 4.105)

�1 + ↵2 − 2↵ cos��−s = 1
2

∞�
m=−∞ b

m

s
(↵) cosm�, (4.96)

where bm
s
(↵) is a Laplace coefficient. The Laplace coefficients play a cen-

tral role in the evaluation of the disturbing function, and their properties are
described in detail in §4.4. In most cases the body labels 1 and 2 are chosen
such that ↵ = a1�a2 and ↵ < 1, but the Laplace coefficients are well defined
for any positive value of ↵.

Once this replacement is made, products of trigonometric functions are
converted to sums of trigonometric functions using the identity cosa cos b =
1
2 cos(a + b) + 1

2 cos(a − b). We then adjust the dummy index m such that
(i) all terms with the same argument of the cosine function are collected to-
gether; (ii) the variable �1 always appears in the argument in the combina-
tion m�1; (iii) the variable �2 always appears in the combination (m+j)�2
where j ≥ 0. We have

1

�12
= 1

2a2

∞�
m=−∞b

m

1�2 cos(m�1 −m�2) + ✏

a2

∞�
m=−∞ (4.97)

��14↵bm+23�2 + 1
2↵

2
b
m+1
3�2 − 3

4↵b
m

3�2�e1 cos[m�1 − (m + 1)�2 +$1]
+ �14↵bm−13�2 + 1

2b
m

3�2 − 3
4↵b

m+1
3�2 �e2 cos[m�1 − (m + 1)�2 +$2]�

+ ✏2 ∞�
m=−∞Xm +O(✏3).



238 CHAPTER 4. THE N -BODY PROBLEM

In this expression the argument of all the Laplace coefficients is ↵ = a1�a2,
and Xm represents the terms of degree k = 2.

Notice that there are no inclination-dependent terms at order ✏; these
only appear at O(✏2).

As described in §4.4 there are many relations between different Laplace
coefficients, so the factors in front of the cosines can be written in many
different forms. The most compact form for equation (4.97) is

1

�12
= 1

2a2

∞�
m=−∞b

m

1�2 cos(m�1 −m�2) + ✏

a2

∞�
m=−∞ (4.98)

� − (m + 1 + 1
2↵D)bm+11�2 e1 cos[m�1 − (m + 1)�2 +$1]

+ (m + 1
2 + 1

2↵D)bm1�2e2 cos[m�1 − (m + 1)�2 +$2]�
+ ✏2 ∞�

m=−∞Xm +O(✏3),
where Db

m

s
≡ dbm

s
(↵)�d↵.

The second-degree terms are given by

a2Xm = �(e21 + e22)(18↵2
D

2 + 1
4↵D − 1

2m
2)bm1�2

− 1
16(I21 + I22)↵(bm−13�2 + bm+13�2 )� cos(m�1 −m�2)

+ 1
8e

2
1 �6 + 11m + 4m2 + (6 + 4m)↵D + ↵2

D
2� bm+21�2× cos[m�1 − (m + 2)�2 + 2$1]

+ 1
8e

2
2 �4 + 9m + 4m2 + (6 + 4m)↵D + ↵2

D
2� bm1�2× cos[m�1 − (m + 2)�2 + 2$2]

− 1
4e1e2

�6 + 10m + 4m2 + (6 + 4m)↵D + ↵2
D

2� bm+11�2× cos[m�1 − (m + 2)�2 +$1 +$2]
+ 1

4e1e2
�2 + 6m + 4m2 − 2↵D − ↵2

D
2� bm+11�2× cos(m�1 −m�2 +$1 −$2)

− 1
4I1I2↵b

m+1
3�2 cos[m�1 − (m + 2)�2 +⌦1 +⌦2]

+ 1
4I1I2↵b

m+1
3�2 cos(m�1 −m�2 +⌦1 −⌦2)
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+ 1
8I

2
1↵b

m+1
3�2 cos[m�1 − (m + 2)�2 + 2⌦1]

+ 1
8I

2
2↵b

m+1
3�2 cos[m�1 − (m + 2)�2 + 2⌦2]. (4.99)

Since �12 is a symmetric function of the labels 1 and 2, the expan-
sions (4.98) and (4.99) are also symmetric; that is, they are invariant un-
der the exchange operator, which swaps the labels 1 and 2. More pre-
cisely, we set a1 = a

′
2, a2 = a

′
1, ↵ = a1�a2 = a

′
2�a′1 = 1�↵′, �1 = �′2,

and so forth. In some cases a single term of the disturbing function is
invariant under the action of the exchange operator, that is, it looks the
same in the primed and unprimed variables. Thus, for example, the term
I ≡ (2a2)−1bm1�2(↵) cosm(�1 − �2) in the first line of equation (4.98) is
transformed to I

′ ≡ (2a′1)−1bm1�2(1�↵′) cosm(�′2 − �′1) and using (4.108)
it is straightforward to show that I ′ = (2a′2)−1bm1�2(↵′) cosm(�′1 − �′2), the
same as I except in primed variables. In other cases a pair of terms are
transformed into one other by the exchange operator. For example, the term

J = − 1

a2
[(m + 1)bm+11�2 (↵) + 1

2↵Db
m+1
1�2 (↵)]

× e1 cos[m�1 − (m + 1)�2 +$1] (4.100)

is transformed to

J
′ = − 1

a
′
1

[(m + 1)bm+11�2 (1�↵′) + 1
2↵
′−1

Db
m+1
1�2 (1�↵′)]

× e′2 cos[m�′2 − (m + 1)�′1 +$′2]. (4.101)

Setting m = −m′ − 1 and using the symmetry relations (4.106), (4.108) and
(4.137), we find

J
′ = 1

a
′
2

[(m′ + 1
2)bm′1�2(↵′) + 1

2↵
′
Db

m
′

1�2(↵′)]
× e′2 cos[m′�′1 − (m′ + 1)�′2 +$′2], (4.102)

which is the same as the term on the third line of equation (4.98), except in
primed variables.
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These relations provide valuable checks of the accuracy of algebraic
expansions of the disturbing function.6

In astrocentric coordinates the indirect potential contributes additional
terms to the disturbing function. The indirect potential exerted by body 2
on body 1 is (eq. 4.6)

�
ind
1 = Gm2r2 ⋅ r1�r2�3 = Gm2a1

a
2
2

a
2
2 r2 ⋅ r1
a1�r2�3 . (4.103)

The expansion to degree 2 is

a
2
2 r2 ⋅ r1
a1�r2�3 = cos(�1 − �2) + ✏�12e1 cos(2�1 − �2 −$1) − 3

2e1 cos(�2 −$1)
+ 2e2 cos(�1 − 2�2 +$2)�

+✏2� − �12e21 + 1
2e

2
2 + 1

4I
2
1 + 1

4I
2
2� cos(�1 − �2) (4.104)

+ 3
8e

2
1 cos(3�1 − �2 − 2$1) + 1

8e
2
1 cos(�1 + �2 − 2$1)

+ 1
8e

2
2 cos(�1 + �2 − 2$2) + 27

8 e
2
2 cos(�1 − 3�2 + 2$2)

+ e1e2 cos(2�1−2�2−$1+$2)−3e1e2 cos(2�2−$1−$2)
+ 1

2I1I2 cos(�1−�2−⌦1+⌦2)− 1
2I1I2 cos(�1+�2−⌦1−⌦2)

+ 1
4I

2
1 cos(�1+�2−2⌦1)+ 1

4I
2
2 cos(�1+�2−2⌦2)� +O(✏3).

The indirect potential exerted by body 1 on body 2 is found by exchanging
the labels 1 and 2. Notice that the indirect potential is not a symmetric
function of the labels and is not invariant under the exchange operator.

Expansions to higher degree in the eccentricities and inclinations are
available in a variety of references. Most of these, with the exception of
Murray & Dermott (1999), give the expansion in terms of the mutual in-
clination and the mutual ascending node—in effect, they assume that the
coordinate system is chosen such that one of the inclinations is zero.
6 Expansions of the disturbing function would be shorter and simpler if the Laplace coeffi-

cients were re-defined to be symmetric functions of a1 and a2. We have kept the traditional
definition to facilitate comparison to expressions in the literature, and because symmetriz-
ing the Laplace coefficients would eliminate the ability of the exchange operator to detect
algebraic errors.
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Murray & Dermott (1999) give the expansion to fourth degree in the ec-
centricities and inclinations. Among older references, Peirce (1849) gives
the expansion to sixth degree, Le Verrier (1855) to seventh degree, and Bo-
quet (1889) to eighth degree. Le Verrier made only one nontrivial error,
discovered a century later by computer algebra (Murray 1985).

There are two disadvantages to this approach. First, in many cases we
are only interested in a single cosine term (for example, when the dynamics
is dominated by a resonance), but to find the factor in front of the cosine
requires the complete expansion of the disturbing function to the degree of
that term. Second, we would like to find the disturbing function using com-
puter algebra, and the approach we have described requires sophisticated
algebra including Taylor series expansions, derivatives, and the like, as well
as judgments on how to simplify the results. Alternative approaches are de-
scribed by Murray & Dermott (1999). A review of early work on computer
determination of the disturbing function is given by Henrard (1989).

4.4 Laplace coefficients

The Laplace coefficients bm
s
(↵) are defined by the generating function

�1 − 2↵ cos� + ↵2�−s = 1
2

∞�
m=−∞ b

m

s
(↵) cosm� (4.105)

and the assumption
b
−m
s
(↵) = bm

s
(↵). (4.106)

Equation (4.105) is equivalent to

(1 + ↵2 − ↵z − ↵z−1)−s = (1 − ↵z)−s(1 − ↵z−1)−s = 1
2

∞�
m=−∞ b

m

s
(↵)zm.

(4.107)
For our purposes ↵ is always real and positive, m is an integer, and s =
1
2 ,

3
2 ,

5
2 , . . ., although most of the results in this section do not require these

restrictions. It is easy to show that

b
m

s
(↵−1) = ↵2s

b
m

s
(↵). (4.108)
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Now multiply equation (4.105) by z
−k where k is an integer, set z =

exp(i�), and integrate over � from 0 to 2⇡. Since ∫ 2⇡
0 d� exp[i(m−k)�] =

0 if k �=m and 2⇡ if k =m, we have

b
m

s
(↵) = 1

⇡
� 2⇡

0

d� exp(−im�)
(1 − 2↵ cos� + ↵2)s =

2

⇡
� ⇡

0

d� cosm�

(1 − 2↵ cos� + ↵2)s .
(4.109)

In terms of standard special functions

b
m

s
(↵) = 2 �(s + �m�)

�(s)�(�m� + 1)↵�m�F (s, s + �m�; �m� + 1;↵2), 0 ≤ ↵ < 1,
(4.110)

and the Laplace coefficient with argument ↵ > 1 is found from equation
(4.108). Here �(z) is the gamma function (Appendix C.3), and F (a, b; c; z)
is the hypergeometric function defined by the series

F (a, b; c; z) = �(c)
�(a)�(b)

∞�
n=0

�(a + n)�(b + n)
�(c + n)�(n + 1)zn, (4.111)

which converges for �z� < 1; this function is also written as 2F1(a, b; c; z) in
some references. Thus

b
m

s
(↵) = 2

�2(s)↵�m�
∞�
n=0

�(s + n)�(�m� + s + n)
�(�m� + 1 + n)�(n + 1)↵2n

, 0 ≤ ↵ < 1.
(4.112)

The most important special cases are

b
0
1�2(↵) = 4

⇡
K(↵) = 4

⇡
RF (0,1 − ↵2

,1),
b
1
1�2(↵) = 4

⇡↵
�K(↵) −E(↵)� = 4↵

3⇡
RD(0,1 − ↵2

,1). (4.113)

Here K(⋅), E(⋅), RF (⋅) and RD(⋅) are elliptic integrals (Appendix C.4).
Any Laplace coefficient can be evaluated by numerical quadrature of

equation (4.109). A second approach is to use equation (4.110) to ex-
press the Laplace coefficient in terms of a hypergeometric function, since
many programming languages have procedures for evaluating hypergeo-
metric functions. A third approach, which was preferred when calculations
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were done by hand, is to use recursion relations as described in the next
subsection.

4.4.1 Recursion relations

In principle, all of the Laplace coefficients with half-integral values of s can
be found from the coefficients in equations (4.113) using a set of recursion
relations. To derive the first of these, differentiate equation (4.107) with
respect to z to obtain

↵s(1 − z−2)
(1 + ↵2 − ↵z − ↵z−1)s+1 = 1

2

∞�
m=−∞ b

m

s
(↵)mz

m−1
. (4.114)

Now multiply the result by z(1 + ↵2 − ↵z − ↵z−1):
↵s(z − z−1)

(1 + ↵2 − ↵z − ↵z−1)s = 1
2

∞�
m=−∞mb

m

s
(↵)�zm(1+↵2)−↵zm+1 −↵zm−1�.

(4.115)
We replace the denominator on the left side using equation (4.107) and in-
crement or decrement the dummy index m such that the variable z enters as
z
m in all terms:

∞�
m=−∞ s�bm−1

s
(↵) − bm+1

s
(↵)�zm (4.116)

= ∞�
m=−∞ �mb

m

s
(↵)(↵ + ↵−1) − (m − 1)bm−1

s
(↵) − (m + 1)bm+1

s
(↵)� zm.

Since the coefficient of zm must be the same on each side of the equation,

b
m+1
s
(↵) = m

m − s + 1 �↵ +
1

↵
� bm

s
(↵) − m + s − 1

m − s + 1bm−1s
(↵). (4.117)

Similarly, we can solve for bm−1
s
(↵) to find

b
m−1
s
(↵) = m

m + s − 1 �↵ +
1

↵
� bm

s
(↵) − m − s + 1

m + s − 1bm+1s
(↵). (4.118)
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This result can also be derived from equation (4.117) by replacing m with−m and using the symmetry relation (4.106). With these two equations we
can find the Laplace coefficients for all values of the superscript m at given
s from any two coefficients with adjacent values of m.

To derive a second recursion relation, replace the denominator in the left
side of equation (4.114) using equation (4.105) in the form

(1 + ↵2 − ↵z − ↵z−1)−s−1 = 1
2

∞�
m=−∞ b

m

s+1(↵)zm. (4.119)

Then increment or decrement the index m such that the variable z enters as
z
m−1 in all terms. The requirement that the equation is satisfied for each m

yields
↵sb

m−1
s+1 (↵) − ↵sbm+1s+1 (↵) =mb

m

s
(↵). (4.120)

Now use (4.117) to replace b
m+1
s+1 by b

m

s+1 and b
m−1
s+1 (this derivation is not

valid for m = 0 but the formula below is still correct):
2s↵

m − sbm−1s+1 (↵) − s

m − s �1 + ↵2� bm
s+1(↵) = bms (↵). (4.121)

Replacing m by 1 −m and using the symmetry relation (4.106) gives

s

m + s − 1 �1 + ↵2� bm−1
s+1 (↵) − 2s↵

m + s − 1bms+1(↵) = bm−1s
(↵). (4.122)

We can eliminate b
m−1
s+1 (↵) from (4.121) and (4.122) to obtain

b
m

s+1(↵) = (s −m)(1 + ↵2)bm
s
(↵) + 2(m + s − 1)↵bm−1

s
(↵)

s(1 − ↵2)2 . (4.123)

If we replace m by −m and use the symmetry relation (4.106), we find

b
m

s+1(↵) = 2(s − 1 −m)↵bm+1
s
(↵) + (s +m)(1 + ↵2)bm

s
(↵)

s(1 − ↵2)2 . (4.124)

Thus if we know the Laplace coefficients with a given subscript s, we can
compute the coefficients with subscript s + 1.

The recursion relations (4.117), (4.118), (4.123) and (4.124) allow the
determination of bm

s
(↵) for all m and s = 1

2 ,
3
2 ,

5
2 , . . . given the expressions

for b01�2(↵) and b
1
1�2(↵) in equation (4.113).
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4.4.2 Limiting cases
When the argument ↵ � 1, the Laplace coefficient can be approximated
using the first few terms of the Taylor series (4.112). For m ≥ 0
b
m

s
(↵) = 2�(m + s)↵m

�(m + 1)�(s)�1+
s(m + s)
m + 1 ↵

2+ s(s + 1)(m + s)(m + s + 1)
2(m + 1)(m + 2) ↵

4

+ s(s + 1)(s + 2)(m + s)(m + s + 1)(m + s + 2)
3!(m + 1)(m + 2)(m + 3) ↵

6 +O(↵8)�, (4.125)

and this result can be extended to m < 0 using (4.106). The asymptotic
behavior as ↵ →∞ is found from (4.125) using equation (4.108).

The Laplace coefficients diverge as ↵ → 1. Inspection of equation
(4.109) shows that the main contribution to this divergence occurs when
cos� is nearly unity, thus when � is nearly zero. In this case cos� =
1 − 1

2�
2 +O(�4), so

b
m

s
(↵)��→

↵→1

2

⇡
� ⇡

0

d� cosm�

[(1 − ↵)2 + ↵�2]s . (4.126)

The factor ↵ multiplying �2 can be replaced by unity and the integration
variable � can be replaced by u ≡ ���1−↵�. The upper limit of the integration
is at u = ⇡��1 − ↵�, which approaches infinity as ↵ → 1. Thus

b
m

s
(↵)��→

↵→1

2

⇡�1 − ↵�2s−1 �
∞

0

du cos(m�1 − ↵�u)
(1 + u2)s (4.127)

= 2
3�2−s

⇡1�2�(s) �
m

1 − ↵ �
s−1�2

Ks−1�2(�m(1 − ↵)�), s > 0,
where K⌫(⋅) is a modified Bessel function (eq. C.30). If m is fixed and
nonzero and ↵ → 1 the Laplace coefficient is obtained from the limiting
form of the modified Bessel function, equation (C.31):

b
m

s
(↵)��→

↵→1

�����������
�(s − 1

2)
⇡
1�2
�(s)�1 − ↵�2s−1 , s > 1

2 ,

2
⇡
� − � − log[12 �m(1 − ↵)�]�, s = 1

2 ,

(4.128)
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where � = 0.577216� is Euler’s constant.
To determine the behavior of the Laplace coefficients for large m, we

use the relation (C.15a), �(z + a)��(z + b)→ z
a−b as �z� → ∞. For z = �m�,

a = s + n, b = 1 + n, equation (4.112) yields

b
m

s
(↵)���→

m→∞
2

�2(s)↵�m��m�s−1
∞�
n=0

�(s + n)
�(n + 1)↵2n

, 0 ≤ ↵ < 1. (4.129)

The binomial series for (1 − ↵2)−s is

(1 − ↵2)−s = ∞�
n=0

(−1)n�(1 − s)
�(1 − s − n)�(n + 1)↵2n

. (4.130)

Using the relation (C.14b), this expression can be rewritten as

(1 − ↵2)−s = 1

�(s)
∞�
n=0

�(s + n)
�(n + 1)↵2n

. (4.131)

Thus equation (4.129) simplifies to

b
m

s
(↵)���→

m→∞
2↵
�m��m�s−1

�(s)(1 − ↵2)s , 0 ≤ ↵ < 1, (4.132)

showing that the Laplace coefficients decay as �m�s−1 exp(�m� log↵) when�m� → ∞. The behavior for ↵ > 1 is found using equation (4.108).

4.4.3 Derivatives
Expansions of the disturbing function such as (4.98) and (4.99) are often ex-
pressed concisely using derivatives of the Laplace coefficients with respect
to the argument ↵. To find these we differentiate equation (4.107):

s(z + z−1 − 2↵)
�1 + ↵2 − ↵z − ↵z−1)s+1 = 1

2

∞�−∞
db

m

s
(↵)

d↵
z
m
. (4.133)

Using equation (4.119) and requiring that the coefficient of zm be the same
on both sides of the equation, we find

Db
m

s
(↵) ≡ db

m

s
(↵)

d↵
= s�bm−1

s+1 (↵) − 2↵bms+1(↵) + bm+1s+1 (↵)�. (4.134)
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We then use equation (4.120) to eliminate b
m+1
s+1 , (4.123) to eliminate b

m

s+1
and (4.124) with m→m − 1 to eliminate b

m−1
s+1 . We find

Db
m

s
(↵) = 2(s +m − 1)↵bm−1

s
(↵) − [m + ↵2(m − 2s)]bm

s
(↵)

↵(1 − ↵2) . (4.135)

Replacing m by −m and using the symmetry relation (4.106), we obtain a
formula involving b

m

s
and b

m+1
s

,

Db
m

s
(↵) = [m + ↵2(m + 2s)]bm

s
(↵) − 2(m − s + 1)↵bm+1

s
(↵)

↵(1 − ↵2) . (4.136)

The analogs to the symmetry relations (4.106) and (4.108) are7

Db
−m
s
(↵) =Db

m

s
(↵), Db

m

s
(↵−1) = −↵2+2s

Db
m

s
(↵) − 2s↵1+2s

b
m

s
(↵).

(4.137)

4.5 The stability of the solar system

This is one of the oldest and most famous problems in theoretical physics
and one of the simplest to state. According to perturbation theory (§4.2),
each planet excites small oscillatory variations in the orbits of the other pla-
nets. Although the fractional variations in the orbits are small (typically less
than 10

−3–10−4), the age of the system is large (108–1010 orbital periods).
Over these vary large times, do the variations in the orbits remain strictly
oscillatory or do they gradually grow, leading eventually to the catastrophic
disruption of the solar system?

This question has fascinated physicists and mathematicians since the
time of Newton. Newton apparently believed that the perturbations did

grow, stating in his book Opticks in 1730 that the “irregularities” in the so-
lar system arising “from the mutual actions of comets8 and planets upon one
7 The notation Db

m
s (1�↵) is somewhat ambiguous. More precisely, let f(x) ≡

db
m
s (x)�dx; then Db

m
s (1�↵) = f(↵−1).

8 Newton did not know that the masses of comets are many orders of magnitude smaller than
the masses of the planets.
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another” would gradually grow until the solar system “wants a reformation,”
that is, until God intervenes to restore order (e.g., Iliffe 2017). This theistic
view was mocked by Leibniz, Newton’s rival, who believed that the perfec-
tion of God required the perfection of the solar system, and complained in
1715 that “according to [Newton’s] doctrine, God Almighty wants to wind
up his watch from time to time . . .he had not, it seems, sufficient foresight
to make it a perpetual motion.”

4.5.1 Analytic results

The controversy between Newton and Leibniz was influenced by observa-
tions of Jupiter and Saturn dating back to Johannes Kepler in 1625, which
seemed to show that their semimajor axes were changing linearly in time.
Adding to the confusion, the development of perturbation theory during the
eighteenth century showed that terms linear in time are present in the secular
perturbations to the actions (see §5.1).

These issues were only resolved a half-century after Newton’s death,
when Joseph–Louis Lagrange (1736–1813) and Pierre–Simon Laplace
(1749–1827) showed that the secular perturbations are not linear in time but
oscillatory with long periods (see §5.2), and the amplitudes of the oscilla-
tions are small enough that they do not compromise the stability of the solar
system. Then in 1785, Laplace showed that the apparent drift in the semi-
major axes of Jupiter and Saturn arises because of a near-resonance between
the two planets: their mean motions are related by 2nJupiter � 5nSaturn.9
This near-resonance, sometimes called the Great Inequality, leads to oscil-
lations in the mean motions with a period of about 900 years, as shown
in Figure 4.2, and this variation appeared nearly linear over the 150 years
between Kepler and Laplace. See Laskar (2013) and Wilson (1985) for his-
torical reviews.

These investigations led to three fundamental results. First, they showed
that Newton’s law of gravitation is universal, in the sense that it determines

9 The d’Alembert property (4.92) implies that terms in the disturbing function with this fre-
quency are third degree in the eccentricities and inclinations of Jupiter and Saturn, which is
why they had escaped earlier researchers.
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Figure 4.2: Oscillations of the longitude of Jupiter and Saturn. The plot shows
 ≡ �−!t−�0 where � is the longitude of Jupiter or Saturn, and �0 and ! are chosen
such that � � = � ̇� = 0. The time interval shown is from 0 CE to 2 000 CE. The
longitudes have been smoothed to eliminate much larger short-period oscillations, by
convolving  with a Gaussian with standard deviation 10 yr. The slow oscillations
visible in the diagram, with a period of about 900 yr, are called the Great Inequality.

not just the forces between the planets and the Sun but also the forces be-
tween the planets. Second, they provided tools that allowed the motions of
solar-system bodies to be computed and predicted to any desired level of
accuracy over historical timescales (apart from the small corrections due to
general relativity described in Appendix J). Finally, they demonstrated that
the solar system was stable, at least according to perturbation theory car-
ried to first order in the planetary masses using a disturbing function that is
second degree in the inclinations and eccentricities.

The belief that the solar system is stable was buttressed by the demon-
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strations by Laplace in 1776 and by Siméon Denis Poisson in 1809 that
secular perturbations to the semimajor axes vanish at first and second or-
der in the masses. Of course, a belief is not a proof and these analyses
do not establish the stability of the solar system over timescales compara-
ble to its lifetime, nor do they allow the motions of solar-system bodies to
be computed over geological timescales of ∼ 100Myr. As Henri Poincaré
remarked in 1897, “Those who are interested in the progress of celestial
mechanics . . .must feel some astonishment at seeing how many times the
stability of the Solar System has been demonstrated. Lagrange established
it first, Poisson has demonstrated it again, other demonstrations came after-
ward, others will come again. Were the old demonstrations insufficient, or
are the new ones unnecessary?”

Poincaré quantified the skepticism expressed in this quotation by show-
ing that Hamiltonian perturbation theory as derived in §4.2 is generally di-
vergent: as it is carried to higher and higher orders in the planetary masses,
the terms first become smaller and then begin to grow—this is the problem
of small divisors described in §4.2.1. Mathematically, these are asymptotic
series rather than convergent series. If the series are truncated at first or sec-
ond order, they can accurately predict the motion of the planets over long
times—certainly over the hundreds or thousands of years needed for most
purposes—but they cannot be used to establish rigorously whether the solar
system is stable forever, or even over timescales comparable to the lifetime
of the Sun.

Motion in the potential of a point mass like the Sun is integrable, that is,
there exist angle-action variables like the Delaunay variables (eq. 1.84) and
the Hamiltonian depends only on the actions, H = H0(J). The trajecto-
ries of an integrable Hamiltonian system are restricted to an N -dimensional
torus in a 2N -dimensional phase space, and they are quasi-periodic—that
is, the Fourier transform of the trajectory r(t) is a line spectrum consisting
of integer combinations of N fundamental frequencies ⌦i = @H�@Ji (in a
point-mass or Kepler potential the actions can be chosen such that two of
the three frequencies are zero). The fundamental question that determines
the stability of a non-integrable Hamiltonian system like the solar system is
whether or not a small perturbation to an integrable system leads to trajecto-
ries that are still permanently restricted to tori in phase space. This question
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is not addressed by the perturbation theory of §4.2, which always produces
trajectories that lie on tori. A fundamental insight into this question was pro-
vided by the Kolmogorov–Arnold–Moser or KAM theorems, developed in
a series of papers in the 1950s and 1960s by Andrei Kolmogorov, Vladimir
Arnold and Jürgen Moser. These theorems show that in Hamiltonian sys-
tems that are subjected to a sufficiently small perturbation some of the tori
survive, and that these occupy a nonzero volume of phase space. The orbits
whose tori are destroyed become chaotic. The chaotic and quasi-periodic
trajectories are mixed together in phase space, in the sense that any finite
phase-space neighborhood of any point, no matter how small, contains both
types of trajectory: both the chaotic and quasi-periodic orbits are said to be
dense in phase space.

It is difficult to apply the KAM theorems directly to the solar system,
for several reasons. First, the mathematical proofs require planetary masses,
eccentricities and inclinations that are far smaller than the actual values in
the solar system, although it is probably safe to assume that the theorems are
valid within a much larger parameter space than their current proofs require.
Second, because the quasi-periodic orbits are mixed with chaotic orbits, an
arbitrarily small external perturbation can convert one kind of trajectory to
the other. Finally, for systems with more than N = 2 degrees of freedom,
like the solar system, the N -dimensional tori do not divide up the phase
space; in other words the phase space occupied by chaotic orbits is not only
dense but also connected. Thus any chaotic trajectory can, and eventually
will, visit every neighborhood of the phase space, a phenomenon known as
Arnold diffusion. In principle, an arbitrarily small perturbation to any orbit
can cause it to eventually pass arbitrarily close to any point in phase space.

Although we know that Arnold diffusion exists, there is no reliable way
to calculate the rate of diffusion in any realistic model of a planetary sys-
tem. The only rigorous results are Nekhoroshev estimates, which state
that the chaotic orbits will remain close to their quasi-periodic neighbors
for a time that is an exponential function of the strength of the perturbation
(Yalinewich & Petrovich 2020).
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4.5.2 Numerical results

To investigate the stability of the actual solar system over the Sun’s life-
time,10 we must use numerical integrations. The first long integrations of
the solar system followed only Jupiter, Saturn, Uranus, Neptune, and Pluto,
since this subsystem is not expected to be strongly influenced by the inner
planets, which have much smaller masses. Early milestones were the outer
solar system integrations lasting 0.12 Myr (Cohen & Hubbard 1965), 1 Myr
(Cohen et al. 1973), 5 Myr (Kinoshita & Nakai 1984), 100 Myr (Roy et
al. 1988), 200 Myr (Applegate et al. 1986), 845 Myr (Sussman & Wisdom
1988), and 5.5Gyr (Kinoshita & Nakai 1996). All eight planets and Pluto
were followed for 4 400 yr by Newhall et al. (1983), 3 Myr by Quinn et
al. (1991), 100 Myr by Sussman & Wisdom (1992) and ∼ 10Gyr by Ito &
Tanikawa (2002). A careful comparison of integration methods is given by
Hayes (2008).

In a parallel line of investigation, Laskar (1986, 1989) used computer
algebra to develop secular perturbation theory to second order in the plane-
tary masses, using a disturbing function that was sixth degree in the eccen-
tricities and inclinations—for comparison recall that the Lagrange–Laplace
theory is only first order in the masses and second degree in the eccentric-
ities and inclinations. The resulting differential equations contained some
150 000 polynomial terms; nevertheless they were straightforward to inte-
grate numerically and much faster than N -body integrations.

These integrations reveal that in most cases the solar system is stable
over timescales of a few Gyr. All of the planets survive, and mostly they re-
main in orbits very similar to their present ones. On 10

5-year timescales, the
Lagrange–Laplace theory gives a reasonably good description of the varia-
tions of the eccentricities and inclinations (see Figure 5.1). However, inte-
grations over timescales of 100 Myr and longer reveal that all the planetary
orbits are chaotic, with a Liapunov time tL ∼ 107 years. Thus, on timescales� tL, small changes in the orbits grow exponentially, as exp(t�tL). This
means that small changes now in the orbits of the planets—for example

10 By “lifetime” we mean about 10Gyr: the solar system was born 4.57Gyr ago and the Sun
will survive in its present form for about 7.6Gyr into the future (see Appendix A and Box
1.2).
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from the difference in the gravitational attraction of Jupiter on Earth caused
when you raise your coffee cup to drink—will be amplified by a factor of∼ exp(7.6Gyr�tL) ∼ 10330 before the death of the Sun.

The nature of the chaotic behavior is different in the inner and outer
solar system. In the outer solar system (Jupiter, Saturn, Uranus, Neptune),
the chaotic behavior is restricted to narrow regions in phase space associated
with high-order mean-motion resonances (see the discussion at the start of
Chapter 6). As a result, the exponential divergence is limited to the orbital
phase and the other elements (such as semimajor axis or eccentricity) remain
close to their initial values. In contrast, in the inner solar system (Mercury,
Venus, Earth, Mars) chaos arises from overlap of secular resonances and
directly affects the eccentricities and inclinations of the planets.

This difference is illustrated in Figure 4.3, which shows the mean eccen-
tricity of the planets over intervals of 10Myr, long enough that the oscil-
lations in Lagrange–Laplace theory average to nearly zero. If Lagrange–
Laplace theory were correct—or more generally if the eccentricity oscilla-
tions were quasi-periodic with periods much less than 10Myr—the curves
should be flat, and this is approximately correct for the outer planets, where
the chaos is due to high-order mean-motion resonances. For the inner pla-
nets, in contrast, the eccentricity undergoes a chaotic diffusion or random
walk, which is strongest for Mercury but still significant for Venus, Earth
and Mars.

Of course, this figure only shows one possible trajectory for the planets,
as the evolution is chaotic and therefore extremely sensitive to the initial
conditions. To illustrate this sensitivity, Figure 4.4 shows an expanded view
of the future evolution of Mercury’s eccentricity. There are five curves, each
resulting from a change in the initial position of Mercury of a few centime-
ters. After ∼ 1Gyr these tiny differences have grown to be comparable to
the size of Mercury’s orbit. The conclusion is that there is no practical way
to predict Mercury’s eccentricity over Gyr timescales.

Integrations of a large ensemble of solar systems with slightly different
initial conditions by Laskar & Gastineau (2009) show that there is about
a 1% probability that Mercury will experience some catastrophic event—a
collision with the Sun, Venus, or even Earth—some time in the next 5Gyr.
Of course, long after such an event there would be no obvious sign that
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Figure 4.3: The mean eccentricity of each planet in successive intervals of 10Myr,
over the next 5Gyr. The behavior of the outer four planets is sufficiently regular that
the curves appear as straight horizontal lines, while the inner four planets exhibit
chaotic diffusion. Data from Brown & Rein (2020).
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Figure 4.4: The mean eccentricity of Mercury in successive intervals of 10Myr,
over the next 5Gyr. The plot shows five integrations starting from slightly different
initial conditions. Data from Brown & Rein (2020).

Mercury had ever been present. Thus it is plausible that the solar system
had more planets early in its history, and that one or more of these has been
lost.

We can conclude that the question “is the solar system stable?” does
not have a simple “yes” or “no” answer: in the future the solar system is
probably stable, at least up to the time when the Sun swallows the inner
planets about 7–8Gyr from now; in the past it may well have been unstable
but we will never know for sure.
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4.6 The stability of planetary systems

The lessons learned from studying the stability of the solar system can be
applied to exoplanet systems. Obviously, we would be unlikely to find in na-
ture any system that was unstable on a timescale much less than its age, so
stability requirements can constrain otherwise unmeasurable properties of
exoplanets. For example, radial-velocity surveys measure only m sin I , the
product of the planetary mass and the sine of the orbital inclination (§1.6.1),
but if the system has more than one planet we may constrain the inclination
by requiring that the planetary masses are not so large that the system be-
comes unstable.

Stability requirements also raise a deeper question about the evolution
of exoplanet systems. There is strong indirect evidence that planets formed
soon after the formation of their host stars. Most planets with radii � 2R⊕
have substantial atmospheres—in fact gas giants such as Jupiter are mostly
composed of gas—and this gas must be acquired before the gaseous proto-
planetary disk is dispersed when the host star is a few Myr old. The for-
mation time for smaller planets may be longer, but studies of radioactive
isotope systems in the oldest Earth rocks and in meteorites suggest that the
formation of the Earth was largely complete when the solar system was only
1% of its current age (Dalrymple 2001).

These considerations prompt the simple question: did the solar system,
and by extension other planetary systems, look the same after 50–100Myr
as they do after 5–10Gyr? In other words, do planetary systems generally
form in states that are stable over much longer timescales? Or do insta-
bilities lead to continued evolution of planetary systems, with the number
of planets slowly whittled down by collisions and ejections resulting from
instabilities that emerge over longer and longer timescales?

To address this question effectively, we would like to have theoretical
tools that allow us to determine whether a given planetary system is stable,
without having to integrate the planetary orbits for billions of years. When
developing these tools, we should bear in mind two discouraging lessons
from studies of the stability of the solar system. First, small changes in the
initial conditions or system parameters can lead to large changes in behavior.
Second, chaos does not necessarily imply instability: in the solar system the
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Liapunov time of ∼ 10
7 yr is 500 times smaller than the age, and in some

planetary systems (such as Kepler-36) the Liapunov time for stable orbits
with initial conditions consistent with the observations can be as short as∼ 10 yr, even though the orbits are stable for at least 107 yr (Deck et al.
2012).

The stability of two-planet systems is described in §3.5. A characteristic
feature of two-planet systems is that instability—if it occurs at all—occurs
quickly. In other words the instability boundary in a two-planet system is
sharp, dividing the phase space into stable trajectories that persist forever,
and unstable ones that evolve on a timescale of only a few orbital periods.
In contrast, instabilities in systems of three or more planets develop over
timescales that can vary by many orders of magnitude, depending on the
masses and initial orbits.

N -planet systems have a large number of free parameters—six orbital
elements and a mass for each of the N planets. We focus here on the rel-
atively simple case in which the planets all have the same mass and are
initially on circular, coplanar orbits with constant logarithmic spacing, that
is, the ratio of the semimajor axes of adjacent planets is fixed. The lifetime
of the system is defined to be the time elapsed until the first close encounter
between two planets, since these usually lead rapidly to ejection of a planet
or a collision between two planets.

We expect that systems with smaller planets can survive with smaller
separations between the orbits. To parametrize this dependence, we define
the characteristic radius associated with a pair of adjacent planets to be

rµ = 1
2(an + an+1)�mn +mn+1

M∗ �µ , (4.138)

where an and mn are the semimajor axes and masses of the two planets,
and M∗ is the mass of the host star.

Different values of the exponent µ are relevant in different contexts. The
mutual Hill radius defined in (3.112) is rH = 3

−1�3
r1�3. A system of two

small planets on nearby circular, coplanar orbits is Hill stable if �a2 − a1� >
2 ⋅ 31�6r1�3 (eq. 3.135), and chaotic if �a2 − a1� � 1.4r2�7 (eq. 3.140). For
systems of three or more planets, both numerical experiments and analytic
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models of the long-term dynamics suggest that the relevant characteristic
radius is defined by µ = 1

4 (Quillen 2011; Petit et al. 2020).

Figure 4.5: The lifetimes of systems of five Earth-mass planets on initially circu-
lar, coplanar orbits around a solar-mass star. The initial semimajor axes have equal
logarithmic spacing. The horizontal axis is the initial separation in units of the char-
acteristic radius (4.138) with µ = 1

4
and the vertical axis is the lifetime ⌧ in units of

the initial orbital period P0 of the innermost planet. Integrations of surviving sys-
tems were terminated at ⌧ = 10

10P0. The straight line shows the fit (4.139). Data
from Obertas et al. (2017).

Figure 4.5 plots the lifetimes of ∼ 2×104 systems of five equally spaced
Earth-mass planets. The orbits are followed for up to 10

10
P0, where P0 is

the initial orbital period of the innermost planet, and the lifetime ⌧ of each
system is plotted as a function of the semimajor axis difference in units of
the characteristic radius r1�4.

On average, the lifetime grows exponentially with separation; the fit
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shown in the figure is

log10
⌧

P0
= −1.10 + 3.74 ��a�

r1�4 . (4.139)

The scatter around the mean at a given separation is substantial, about 0.4
in log10 ⌧�P0, measured as the distance between the median and the quar-
tiles. The scatter is also asymmetric, mostly because the lifetimes drop pe-
riodically by up to two orders of magnitude at the mean-motion resonances
between the planets, where small perturbations are amplified by the reso-
nance (see Chapter 6). At separations larger than about ��a� = 2r1�4, the
lifetimes grow substantially above the predictions of the fit (4.139), with
many systems surviving for at least 1010 orbits.

Most of these features are generic for systems of three or more planets
on nearly circular orbits. In particular, if the planetary masses and separa-
tions are fixed, the instability time is not a strong function of the number of
planets so long as N ≥ 3.

It is likely that this behavior arises from the overlap of weak but numer-
ous resonances that contribute terms to the disturbing function that are either
O(m2) where m is the planet mass or O(ek) where e is the eccentricity and
k > 1 (Quillen 2011; Petit et al. 2020); however, our analytic understand-
ing of the origin of long-term instabilities in multi-planet systems is still
incomplete.

These considerations illuminate the answer to the question raised at the
beginning of this section: have long-term instabilities led to significant
evolution of planetary systems after their initial formation was complete?
Figure 4.6 shows the distribution of separations in units of the characteris-
tic radius for 543 pairs of adjacent planets discovered by the Kepler mis-
sion (Weiss et al. 2018). The density of separations shows a sharp rise at��a��r1�4 � 2–3, not far from the separations required for stability over
the lifetime of a typical planetary system. This finding suggests that many
planets with smaller separations may have been lost due to dynamical insta-
bilities long after the original planet-formation process was complete.

There are several caveats to any argument of this kind. First, since Kep-
ler only measures radii, not masses, the masses have been determined using
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Figure 4.6: The distribution of separations between adjacent planets in units of the
characteristic radius, for a sample of 349 multi-planet systems discovered by Kepler.
Black dots mark the separations of adjacent planets in the solar system. Data from
Weiss et al. (2018).

an empirical relation between mass and radius (Weiss et al. 2018); however,
since the masses only enter the characteristic radius as m1�4, the results are
not very sensitive to errors in the mass. Second, we have few direct mea-
surements of the eccentricities of the Kepler planets, and eccentric orbits are
usually less stable than the circular ones used to construct Figure 4.5. And
finally, not all planets in a given system were discovered by Kepler, and ac-
counting for missing planets would squeeze the distribution toward smaller
separations. In particular, many of the planets with the largest separations,��a��r1�4 � 10, are probably adjacent to undiscovered planets.



Chapter 5

Secular dynamics

5.1 Introduction

To introduce this chapter, let us imagine a test particle orbiting a mass M

with semimajor axis a and mean motion n = (GM�a3)1�2. The test particle
is perturbed by a distant, nearly stationary mass that exerts a small force per
unit mass of order ✏GM�a2 with 0 < ✏ � 1. This perturbing force induces
small periodic variations in the position and velocity of the test particle, with
a fractional amplitude of order ✏ and frequency of order n.

In addition, the distant mass can produce changes in the orbit that are
much slower and larger than these periodic variations. For example, if the
orbit is circular and the perturber lies outside the orbital plane, it exerts
a steady torque that changes the direction of the angular momentum of the
test particle, just as the torque from the Earth’s gravity causes a spinning top
to precess. If the orbit is eccentric the perturber can exert a steady torque
even if it lies in the orbital plane, since the test particle spends most of its
time near apoapsis and the orientation of the line of apsides is fixed for a
Kepler orbit. The rate of change of the eccentricity or inclination is only of
order ✏n, but the changes accumulate over a time of order (✏n)−1, at which
point the total change in the eccentricity or inclination has grown to be of
order unity.

261
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As indicated by these arguments, the effects of a perturber with frac-
tional strength ✏ � 1 on the test-particle orbit can usefully be divided into
two broad classes: short-period perturbations, which have oscillation fre-
quencies of order n and fractional amplitudes of order ✏; and secular per-
turbations, which have oscillation frequencies of order ✏n and amplitudes
of order unity.

To provide a concrete example, we now solve the equations of motion
for an abstract dynamical system that illustrates the distinction between
short-period and secular dynamics. The system has two degrees of free-
dom, with coordinates (q1, q2), momenta (p1, p2) and Hamiltonian

H(q1, q2, p1, p2) =H0(q1, p1) + ✏H1(q1, q2, p1, p2), (5.1)

where ✏ is a small positive number and

H0(q1, p1) = 1
2p

2
1 + 1

2q
2
1 , H1(q1, q2, p1, p2) = 1

2p
2
2 + 1

2q
2
2 + q1q2. (5.2)

The key features of this system are that (i) the unperturbed Hamiltonian
H0 describes a harmonic oscillator with unit frequency; (ii) the coordinate-
momentum pair (q2, p2) does not appear in the unperturbed Hamiltonian;
and (iii) the perturbation Hamiltonian H1 contains a term q1q2 that couples
the two coordinate-momentum pairs. The (q1, p1) pair are called “fast”
variables since their frequency in the unperturbed system is !f = 1, and(q2, p2) are called “slow” variables since their frequency in the unperturbed
system is !s = 0.

Hamilton’s equations are

ṗ1 = −q1 − ✏q2, q̇1 = p1, ṗ2 = −✏(q1 + q2), q̇2 = ✏p2; (5.3)

or we can eliminate the momenta to obtain

q̈1 = −q1 − ✏q2, q̈2 = −✏2(q1 + q2). (5.4)

The solution to these equations of motion can be written

q1(t) = af cos!ft + bf sin!ft + as cos!st + bs sin!st,

q2(t) = ffaf cos!ft + ffbf sin!ft + fsas cos!st + fsbs sin!st, (5.5)
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where

ff ≡ !2
f − 1
✏

, fs ≡ !2
s − 1
✏

, (5.6)

and the constants af , bf , as, bs are determined by the initial conditions. The
frequencies are

!f = 1√
2
�1 + ✏2 + �1 − 2✏2 + 4✏3 + ✏4�1�2 �1�2

= 1 + 1
2✏

3 +O(✏5),
!s = 1√

2
�1 + ✏2 − �1 − 2✏2 + 4✏3 + ✏4�1�2 �1�2

= ✏ − 1
2✏

2 − 1
8✏

3 − 9
16✏

4 +O(✏5). (5.7)

The oscillations with frequency !f are short-period perturbations since !f

is close to unity, while those characterized by !s are secular perturbations
since !s is of order ✏.

To illustrate the behavior of the system, assume that the initial conditions
are q1 = q2 = 1, p1 = p2 = 0 at time t = 0. The unperturbed motion (✏ = 0)
corresponding to these initial conditions is q1(t) = cos t, q2(t) = 1. It is
straightforward to show that when ✏ is nonzero,

q1(t) = 1
2 [(1 + 2✏ − ✏2)� + 1] cos!ft − 1

2 [(1 + 2✏ − ✏2)� − 1] cos!st,

q2(t) = 1
2 [(3✏2 − 1)� + 1] cos!ft − 1

2 [(3✏2 − 1)� − 1] cos!st, (5.8)

where � ≡ (1 − 2✏2 + 4✏3 + ✏4)−1�2. An expansion of the amplitudes of the
cosine terms in powers of ✏ gives

q1(t) = [1 + ✏ +O(✏4)] cos!ft − [✏ +O(✏4)] cos!st,

q2(t) = [✏2 +O(✏3)] cos!ft + [1 +O(✏2)] cos!st. (5.9)

These equations illustrate the rich, and occasionally confusing, behavior
of secular perturbations. The perturbations modify the fast frequency from 1
to 1+O(✏3) and modify the slow frequency from 0 to ✏+O(✏2). The ampli-
tude of the oscillations in the fast variable q1(t) are also modified by O(✏).
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The effect on the slow variable q2(t) is more dramatic: the perturbation
causes it to oscillate on the secular timescale !−1

s
with approximately unit

amplitude. As the perturbation becomes smaller and smaller, the frequency
of this slow oscillation declines but its amplitude does not. In other words,
in this system an arbitrarily small perturbation can cause a large change in
the phase-space position, provided that we wait long enough.

Notice that a straightforward expansion of equations (5.7) and (5.9) in
powers of ✏ gives

q1(t) = cos t + ✏(cos t − 1) + 1
2✏

3(t2 − t sin t) +O(✏4),
q2(t) = 1 + ✏2(cos t − 1 − 1

2 t
2) +O(✏3). (5.10)

This result is formally correct but seriously misleading, as it suggests
that the perturbations in both the slow and fast variables contain compo-
nents that grow as polynomials in time rather than oscillating slowly. The
problem is that the expansion (5.10) breaks down after a time t ∼ ✏−1; math-
ematically, the expansion is convergent, but not uniformly convergent. The
techniques for handling differential equations such as (5.4) that have dis-
parate timescales depending on the perturbation parameter are known as
“multiple-scale analysis” (Kevorkian & Cole 1996; Bender & Orszag 1999).

The most important of these techniques in celestial mechanics is orbit
averaging, an example of the averaging principle described in Appendix
D.9: since the changes in the slow variables occur on much longer time-
scales than the oscillation period of the fast variables, we time-average the
perturbing Hamiltonian H1 over one period of the fast variables, assuming
that the trajectories of the fast variables are determined by the unperturbed
Hamiltonian H0 and that the slow variables are frozen in time. The resulting
orbit-averaged Hamiltonian is then used to describe the secular evolution
of the system.

For the Hamiltonian (5.2) the orbit average of H1 is just

�H1� = 1
2p

2
2 + 1

2q
2
2 + �q1�q2. (5.11)

For the example described above, the unperturbed trajectory is q1(t) = cos t,
so �q1� = 0 and the total Hamiltonian is

H0 + ✏�H1� = 1
2p

2
1 + 1

2q
2
1 + ✏(12p22 + 1

2q
2
2), (5.12)
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consisting of two uncoupled harmonic oscillators, one with frequency 1 and
one with frequency ✏. The solution satisfying the initial conditions q1 = q2 =
1, p1 = p2 = 0 at time t = 0 is

q1(t) = cos t, q2(t) = cos ✏t. (5.13)

Comparing this result to equations (5.7), we find that the orbit-averaged ap-
proximation gives the correct fast and slow frequencies !f and !s to leading
order in ✏. Similarly, equations (5.9) show that the amplitudes of the fast
oscillations in q1(t) and the slow oscillations in q2(t) are correct to leading
order. Similar results hold in most applications: orbit-averaging correctly
finds the amplitude and frequency of the oscillations, both short-period and
secular, but only to leading order in the strength of the perturbation.

The application of orbit averaging to near-Kepler systems is simplest
using angle-action variables such as the Delaunay variables (eq. 1.84). The
Hamiltonian for a test particle orbiting a mass M and perturbed by a time-
independent Hamiltonian ✏H1 is

H = −(GM)2
2⇤2

+ ✏H1(`,!,⌦,⇤, L,Lz). (5.14)

We now orbit average H1. In the unperturbed system, the actions ⇤, L and
Lz are all fixed, as are the two angles ! and ⌦. Since the mean anomaly `
increases uniformly with time in the unperturbed system, the average of H1

over one unperturbed orbit is simply the average over ` with all the other
Delaunay variables fixed. Thus the orbit-averaged Hamiltonian becomes

�H� = −(GM)2
2⇤2

+ ✏�H1�, where �H1� = 1

2⇡
� 2⇡

0
d`H1. (5.15)

Since we have averaged over `, �H1� is independent of `; therefore �H� is
independent of ` as well, so d⇤�dt = −@�H��@` = 0. Since ⇤ = (GMa)1�2
we conclude that the semimajor axis is conserved in the orbit-averaged dy-

namical system. More precisely, just as in the example system with Hamil-
tonian (5.2), the semimajor axis undergoes both fast and slow oscillations
with fractional amplitude O(✏), while the slow variables—L and Lz or the
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eccentricity and inclination—undergo fast oscillations with amplitude O(✏)
and slow oscillations with amplitude O(1).

Physically, orbit-averaging the potential or force due to a particle of
mass m on a Kepler orbit corresponds to replacing the particle by an ec-
centric wire with the same shape as its orbit—essentially the wire is a long
time exposure of the orbit. If the orbit is eccentric, then the mass density
of the wire is nonuniform. In particular, if the orbital radius as a function
of azimuth is r(�), then the density (mass per unit length) �(�) of the wire
must satisfy �rd� = mdt�P , where dt is the time the orbit spends in the
azimuthal interval d�. Then Kepler’s laws imply that

�(�) = mr(�)
2⇡a2(1 − e2)1�2 , (5.16)

where a and e are the semimajor axis and eccentricity of the orbit. This
insight, and the equations describing the forces from the wire, are due to
Carl Friedrich Gauss (1777–1855). For a recent treatment see Touma et al.
(2009).

The most important application of these results is to multi-planet sys-
tems such as the solar system. Here the perturbation Hamiltonian represents
the gravitational interactions among the planets, and the small parameter ✏
can be thought of as the typical ratio of the masses of the planets to the
mass of the host star. Thus in multi-planet systems we expect that the fast
and slow oscillations of the planetary semimajor axes will be much smaller
than the oscillations in eccentricity and inclination.1

The oscillations of the semimajor axes can be larger if there is a near-
resonance between two or more planets. For example, Uranus and Neptune
are not far from a 2:1 resonance (PNeptune�PUranus − 2 = −0.0385), and
Jupiter and Saturn are not far from a 5:2 resonance (PSaturn�PJupiter − 5

2 =−0.0167), and the effects of these near-resonances dominate the long-term
variations in the semimajor axes of these planets (Figure 4.2).

These arguments are consistent with numerical integrations of the orbits
of planets in the solar system. The root-mean-square fractional variations

1 We have shown that the slow oscillations in the semimajor axes are no larger than O(✏),
but according to a theorem of Poisson (1809) they are even smaller, O(✏2).
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of the semimajor axes are � 4 × 10−3 for the giant planets Jupiter, Saturn,
Uranus and Neptune, and � 4 × 10

−5 for the terrestrial planets Mercury,
Venus, Earth and Mars, while the variations in eccentricity and inclination
are much larger (see Figures 4.3 and 5.1).

5.2 Lagrange–Laplace theory

Lagrange–Laplace theory is an approximate description of the secular dy-
namics of a system of planets on nearly circular, nearly coplanar orbits.2
The description is approximate because it uses orbit averaging and thus, as
described in the preceding section, the results are only accurate to lowest
order in the planetary masses. Moreover the secular Hamiltonian is trun-
cated by keeping only terms up to O(e2, I2) in the eccentricities and in-
clinations of the planets. Despite these drastic simplifications, Lagrange–
Laplace theory provided the most accurate description of the long-term be-
havior of the solar system for over a century. In particular it showed that
variations in the orbital elements that were polynomial functions of time
in less sophisticated analyses (cf. eq. 5.10) were actually oscillatory with
long periods, and hence did not threaten the long-term stability of the solar
system. Lagrange–Laplace theory has been superseded by more accurate
secular theories, but these are usually too complicated to be investigated
without the aid of computers. In the most important of these theories, due
to Laskar (1986, 1989), the differential equations are accurate to second or-
der in the planetary masses and contain polynomials of up to degree five
in the eccentricities and inclinations [corresponding to a Hamiltonian that
retains all terms up to O(e6, I6)], but these equations contain over 150 000
terms.

The disturbing function of a system of planets on nearly circular, nearly
coplanar orbits was derived in §4.3 as a series of terms involving cosines of
the form cos(ki�i−kj�j+✓i−✓j). Here �i is the mean longitude of planet i,
ki is an integer, and ✓i is some combination of the longitude of periapsis $i

and the longitude of the node⌦i. As we described in §5.1, to find the secular

2 The history of the development of this theory is described by Laskar (2013) and in greater
detail by Wilson (1985).
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behavior of this system to first order in the masses, we simply average the
disturbing function over the mean longitudes. This average vanishes unless
ki = kj = 0, in which case the average is cos(✓i−✓j). From equations (4.98)
and (4.99) it is straightforward to show that the orbit-averaged value of the
inverse distance between bodies 1 and 2 is

� 1

�12
� = 1

2a2
b
0
1�2 + ✏2

a2
�(e21 + e22)(18↵2

D
2 + 1

4↵D)b01�2 − 1
8(I21 + I22)↵b13�2

+ 1
4e1e2(2 − 2↵D − ↵2

D
2)b11�2 cos($1 −$2)

+ 1
4I1I2↵b

1
3�2 cos(⌦1 −⌦2)�. (5.17)

Here the argument of the Laplace coefficients is ↵ = a1�a2 and ✏ is an or-
dering parameter, which from now on we set to unity. The orbit-averaged
contribution from the indirect potential (4.104) vanishes. The initial term
proportional to b

0
1�2 depends only on the semimajor axes so the resulting

term in Hamilton’s equations does not affect the inclinations or eccentrici-
ties and can be dropped. Equation (5.17) can be simplified further using the
relations

(2↵D + ↵2
D

2)b01�2 = ↵b13�2, (2 − 2↵D − ↵2
D

2)b11�2 = −↵b23�2, (5.18)

so we have

� 1

�12
� = 1

a2
�1
8↵b

1
3�2(↵)[e21 + e22 − I21 − I22 + 2I1I2 cos(⌦1 −⌦2)]

− 1
4↵b

2
3�2(↵)e1e2 cos($1 −$2)�. (5.19)

Since �12 is symmetric in the arguments 1 and 2, the right side must be a
symmetric function as well, and this can be checked using equation (4.108).

It is straightforward to generalize this result to a system of N planets.
The potential that governs the motion of planet i is the Lagrange–Laplace
disturbing function

�
LL
i
= − N�

j=1
j�=i
� Gmj

�ij

�
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= − N�
j=1
j�=i

Gmj

aj

�1
8↵ijb

1
3�2(↵ij)[e2i + e2j − I2i − I2j + 2IiIj cos(⌦i −⌦j)]

− 1
4↵ijb

2
3�2(↵ij)eiej cos($i −$j)�, (5.20)

with ↵ij = ai�aj . The Lagrange-Laplace disturbing function is limited to
terms that are secular (no dependence on the mean longitudes) and quadratic
in the eccentricities or inclinations.

We may now analyze the dynamics of an N -planet system governed
by the Lagrange–Laplace disturbing function. In astrocentric coordinates
(eq. 4.6) the Hamiltonian for planet i is Hi = HK,i + �LL

i
, where HK,i =−1

2 G
2(m0+mi)2�⇤2

i
is the Kepler Hamiltonian for planet i, m0 is the mass

of the host star and ⇤i = [G(m0 +mi)ai]1�2 = nia
2
i
, where ni is the mean

motion. Because the Lagrange–Laplace disturbing function is averaged over
the mean longitudes it is independent of them, so Hamilton’s equations give
d⇤i�dt = −@Hi�@�i = 0. Thus the semimajor axes of the planets are con-
served. The evolution of the mean longitude �i is dominated by the Kepler
Hamiltonian and is not of interest here. We define dimensionless variables
(a simplification of eqs. 1.71 in the limit I � 1):

ki ≡ ei cos$i, hi ≡ ei sin$i, qi = Ii cos⌦i, pi = Ii sin⌦i. (5.21)

Then the remaining Hamilton’s equations can be written (eq. 1.193):

dki

dt
= 1

⇤i

@�
LL
i

@hi

,
dhi

dt
= − 1

⇤i

@�
LL
i

@ki

,

dqi

dt
= 1

⇤i

@�
LL
i

@pi

,
dpi

dt
= − 1

⇤i

@�
LL
i

@qi

. (5.22)

Apart from the constant factors of ⇤i, these resemble Hamilton’s equations
if ki and qi are interpreted as coordinates and hi and pi as momenta. In
terms of these variables, equation (5.20) becomes

�
LL
i
= − N�

j=1
j�=i

Gmj

aj

�1
8↵ijb

1
3�2(↵ij)(k2i + h2

i
+ k2

j
+ h2

j
(5.23)

− q2
i
− p2

i
− q2

j
− p2

j
+ 2qiqj + 2pipj) − 1

4↵ijb
2
3�2(↵ij)(kikj + hihj)�.
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The terms k2
j
, h2

j
, q2

j
and p

2
j

can be dropped since they do not involve ki, hi,
qi or pi and hence do not contribute to the equations of motion.

The equations of motion (5.22) become

dki

dt
= − di
⇤i

hi + 1

⇤i

N�
j=1

bijhj ,
dhi

dt
= di

⇤i

ki − 1

⇤i

N�
j=1

bijkj ,

dqi

dt
= di

⇤i

pi − 1

⇤i

N�
j=1

aijpj ,
dpi

dt
= − di
⇤i

qi + 1

⇤i

N�
j=1

aijqj , (5.24)

where

aij = (1 − �ij) Gmj

4aj
↵ijb

1
3�2(↵ij), bij = (1 − �ij) Gmj

4aj
↵ijb

2
3�2(↵ij),

di = N�
k=1
k�=i

Gmk

4ak
↵ikb

1
3�2(↵ik). (5.25)

Here �ij is the Kronecker delta (Appendix C.1).
These can be simplified by introducing rescaled variables

Ki ≡ (mi⇤i)1�2ki, Hi ≡ (mi⇤i)1�2hi,

Qi ≡ (mi⇤i)1�2qi, Pi ≡ (mi⇤i)1�2pi, (5.26)

and rescaled matrices with components

Aij = m
1�2
i

aij

m
1�2
j
⇤
1�2
i
⇤
1�2
j

= (1 − �ij) G(mimj)1�2
4aj⇤

1�2
i
⇤
1�2
j

↵ijb
1
3�2(↵ij),

Bij = m
1�2
i

bij

m
1�2
j
⇤
1�2
i
⇤
1�2
j

= (1 − �ij) G(mimj)1�2
4aj⇤

1�2
i
⇤
1�2
j

↵ijb
2
3�2(↵ij),

Dij = �ij di
⇤i

= �ij
⇤i

N�
k=1
k�=i

Gmk

4ak
↵ikb

1
3�2(↵ik). (5.27)

The rescaling has been chosen such that the matrices A and B are symmet-
ric in the indices i and j; this claim can be checked using equation (4.108).
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The matrix D is automatically symmetric since it is diagonal. Then we can
write in vector notation

dK

dt
= (B −D)H,

dH

dt
= −(B −D)K,

dQ

dt
= −(A −D)P,

dP

dt
= (A −D)Q. (5.28)

Finally we introduce complex vectors Ze ≡ K + iH, ZI ≡ Q + iP. These
obey the equations

dZe

dt
= −i(B −D)Ze,

dZI

dt
= i(A −D)ZI . (5.29)

These equations show that the evolution of Ze and ZI is decoupled: in
the Lagrange–Laplace approximation, the evolution of the eccentricities and
longitudes of periapsis is independent of the evolution of the inclinations
and the longitudes of the nodes. The solutions of these equations are sums
of terms of the form Re exp(igt) or RI exp(ift), where

−(B −D)Re = gRe, (A −D)RI = fRI . (5.30)

Thus g and f are eigenvalues of −(B −D) and (A −D) respectively, and
Re and RI are the corresponding eigenvectors. The eigenvalues or secular
frequencies are given by the solutions of

det[(B −D) + gI] = 0, det[−(A −D) + fI] = 0, (5.31)

where “det” is shorthand for the determinant and I is the N ×N unit matrix.
Since A, B, and D are all real, symmetric matrices and the eigenvalues
of such matrices are real, g and f must be real; thus the solutions of the
Lagrange–Laplace equations are all stable.

Let R� ≡ [(m1⇤1)1�2, . . . , (mN⇤N)1�2]. Then it is straightforward
to show that (A − D)R� = 0. In other words, R� is an eigenvector of
A −D with eigenvalue 0, so one of the solutions for the evolution of the
inclinations and nodes has frequency f = 0. Physically, this solution arises
because the planetary system is neutrally stable to an overall tilt.



272 CHAPTER 5. SECULAR DYNAMICS

Table 5.1: Lagrange–Laplace secular frequencies for the solar sys-
tem

Lagrange–Laplace Laskar et al. (2004b) Period(arcsec yr−1) (arcsec yr−1) ( yr)

g1 5.462 5.59 2.318 × 105
g2 7.347 7.452 1.739 × 105
g3 17.332 17.368 7.462 × 104
g4 18.006 17.916 7.234 × 104
g5 3.733 4.257 3.044 × 105
g6 22.512 28.245 4.588 × 104
g7 2.707 3.088 4.197 × 105
g8 0.635 0.673 1.926 × 106
f1 −5.201 −5.59 2.318 × 105
f2 −6.571 −7.05 1.838 × 105
f3 −18.747 −18.850 6.875 × 104
f4 −17.637 −17.755 7.299 × 104
f5 0 0 —
f6 −25.989 −26.348 4.919 × 104
f7 −2.908 −2.993 4.331 × 105
f8 −0.679 −0.692 1.874 × 106

Lagrange–Laplace frequencies are determined from equations (5.31).
Laskar et al. (2004b) frequencies are determined from numerical inte-
gration of the equations of motion over tens of Myr. Periods are 2⇡��gi�,
2⇡��fi�, as derived from Laskar et al.
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If there are N planets, then A, B and D are N ×N matrices and there
are N eigenvalues gn and N eigenvectors R

n

e
that describe the evolution

of the eccentricities. The same number of eigenvalues and eigenvectors fn,
R

n

I
describe the inclinations. The general solution of the Lagrange–Laplace

equations of motion is thus

Ze =K + iH = N�
n=1↵ne

igntR
n

e
, ZI =Q + iP = N�

n=1�ne
ifntR

n

I
, (5.32)

where ↵n and �n are constants. Given the initial conditions Ze(t = t0) =
Ze0, we can determine the constants ↵n as follows: evaluating the first of
equations (5.32) at t = t0 yields

Ze0 = N�
n=1↵ne

ignt0R
n

e
. (5.33)

The eigenvectors of a real, symmetric matrix with distinct eigenvalues are
orthogonal, that is, Rm

e
⋅Rn

e
= ∑N

i=1Rm

ei
R

n

ei
= 0 if gm �= gn. Assuming all

the eigenvalues are distinct, as is usually the case, we can multiply (5.33)
by R

m

e
to obtain

↵m = R
m

e
⋅Ze0

Rm
e
⋅Rm

e

e
−igmt0 . (5.34)

A similar derivation yields an expression for �m.
Geometrically, equations (5.32) can be interpreted as representing each

eccentricity vector and angular-momentum vector as the sum of N vectors
of fixed length, each rotating uniformly at a different frequency.

The secular frequencies for the solar system, as derived from equations
(5.31), are given in Table 5.1. Also shown are the best current estimates
for these frequencies, obtained from the power spectrum of the positions
of the planets over an interval of 20 Myr from the present (Laskar et al.
2004b).3 The Lagrange–Laplace estimates are accurate to within 20% and
usually much better than this; the largest errors arise because of the 5:2
3 Over longer time intervals some of the secular frequencies vary substantially due to the

chaotic nature of the planetary orbits (§4.5.2); the largest variations, in g3, g4 and f2, reach
0.2 arcsec yr−1 over 100 Myr.
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Figure 5.1: The history of the Earth’s eccentricity over the last Myr. The solid line
shows the result from a numerical integration of the orbits of the planets in the solar
system, and the dashed line shows the result from Lagrange–Laplace theory.

near-resonance between Jupiter and Saturn, which contributes to the secular
frequencies at second order in the planetary masses.

Figure 5.1 shows the behavior of the Earth’s eccentricity over the past
million years (studies of this kind are usually run backward, rather than for-
ward, because the past history of the Earth’s orbit is reflected in the geologi-
cal record). The figure compares the results from a numerical integration of
the orbits of the Earth and other planets, which has negligible uncertainties
over this timescale, and from Lagrange–Laplace theory. The latter theory is
reasonably accurate over the past 20000 yr or so; beyond that time, it qual-
itatively reproduces the amplitude and period of the oscillations but is not
quantitatively accurate.
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An important special case is the motion of a test particle—a comet, as-
teroid, or even a very small planet—in the gravitational field of a set of N
massive planets. If we denote the orbital elements of the test particle by
variables without subscripts, equations (5.24) and (5.25) become

dk

dt
+ gh = 1

⇤

N�
j=1

bjhj ,
dh

dt
− gk = − 1

⇤

N�
j=1

bjkj ,

dq

dt
− gp = − 1

⇤

N�
j=1

ajpj ,
dp

dt
+ gq = 1

⇤

N�
j=1

ajqj , (5.35)

where

ai = Gmj

4aj
↵jb

1
3�2(↵j), bj = Gmj

4aj
↵jb

2
3�2(↵j),

g = 1

⇤

N�
k=1

Gmk

4ak
↵kb

1
3�2(↵k). (5.36)

Here ↵j = a�aj and ⇤ = (Gm0a)1�2. By setting ze ≡ k + ih and zI ≡ q + ip
equations (5.35) can be simplified to

dze

dt
−igze = − i

⇤

N�
j=1

bj(kj+ihj), dzI

dt
+igzI = i

⇤

N�
j=1

aj(qj+ipj). (5.37)

The functions on the right side of equations (5.37) are linear combina-
tions of terms oscillating with the frequencies {gn, fn}. Thus we can write

dze

dt
− igze = N�

n=1 ⌫ne
ignt,

dzI

dt
+ igzI = N�

n=1µne
ifnt, (5.38)

where the complex constants ⌫n and µn are determined by the initial condi-
tions for the massive planets. The solutions are

ze(t) = ⌫eigt + i N�
n=1

⌫n

g − gn eignt, zI(t) = µe−igt − i N�
n=1

µn

g + fn eifnt,
(5.39)
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where the complex constants ⌫ and µ are determined by the initial condi-
tions for the test particle. The eccentricity and inclination associated with
the natural precession frequencies g and −g are given by �⌫� and �µ�, and
these are sometimes called the free or proper eccentricity and free in-
clination. Similarly, the absolute values of the summations in equations
(5.39) are called the forced eccentricity and forced inclination. The forced
eccentricity and inclination diverge at secular resonances, where g = gn or
g = −fn respectively; in the vicinity of these resonances, the Lagrange–
Laplace theory does not give an accurate description of the secular dynam-
ics. See §6.6 for a more complete description of secular resonance.

The free and forced eccentricity have a simple geometrical interpre-
tation. If we write ze = k + ih and treat k and h as Cartesian coordi-
nates, then the vector from the origin to (k, h) has length e and makes
an angle $ with the k-axis. This vector is the sum of two others: the
tip of the first has length equal to the proper eccentricity and rotates uni-
formly at angular speed g, while the second has time-varying coordinates[−Im ∑n ⌫n exp(ignt)�(g − gn),Re ∑n ⌫n exp(ignt)�(g − gn)] and repre-
sents the forced eccentricity. The interpretation of the proper and forced
inclinations is similar.

The free eccentricity and inclination are constant in time, apart from
short-period perturbations, and contain more information on the dynamical
history of a particle than the forced eccentricity and inclination, which are
determined by the semimajor axis of the particle and the orbits of the mas-
sive bodies in the system. Asteroids exhibit clustering in phase space and the
clustering is stronger when plotted using the proper eccentricity and incli-
nation rather than the total or osculating eccentricity and inclination (Figure
5.2). These clusters, or families, are probably the fragments from collisions
that have led to the breakup of, or large craters in, parent asteroids.

5.3 The Milankovich equations

We have shown in §5.1 how secular dynamics can be described by the
orbit-averaged Hamiltonian �H� (eq. 5.15) and how the semimajor axis is
conserved in this description. The evolution of the mean longitude � is
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Figure 5.2: The distribution of proper inclination versus proper eccentricity for
500000 asteroids. The clumps are asteroid families. For example the Vesta family,
consisting of fragments from a collision with Vesta, is centered at e = 0.10, I = 6.7○.
Data from https://newton.spacedys.com/astdys/index.php?pc=0.

dominated by the unperturbed mean motion and is not of interest in secular
theory. The behavior of the remaining four orbital elements e, I , $, ⌦ is
described by Lagrange’s equations (1.187). Unfortunately these equations
are complicated and lack any natural structure; moreover they are ill-defined
when the eccentricity e or inclination I is zero, or when e = 1. These dis-
advantages can be remedied in a vector-based formalism for secular theory,
which we now derive.

The angular momentum per unit mass L = r × v = ✏ijkn̂irjvk, where
✏ijk is the permutation symbol (Appendix C.1); throughout this section the
summation convention described in Appendix B is in force. Since r and v

https://newton.spacedys.com/astdys/index.php?pc=0
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form a canonical coordinate-momentum pair, their Poisson brackets are (eq.
D.31)

{ri, rj} = 0, {vi, vj} = 0, {ri, vj} = −{vi, rj} = �ij , (5.40)

where �ij is the Kronecker delta (Appendix C.1). The Kepler Hamiltonian
for a test particle orbiting a mass M at the origin is (eqs. 1.80 and 1.85)

HK(r,v) = 1
2v

2 − GM

r
= − GM

2a
= −(GM)2

2⇤2
, (5.41)

where a is the semimajor axis and ⇤ = (GMa)1�2 is a Delaunay variable
(eq. 1.84). It is straightforward to show that

{HK, Li} = 0, (5.42)

and then equation (D.38) implies that L is conserved on a Kepler orbit, a
result that we already derived (more simply) in equation (1.13). Since HK

depends only on the phase-space variable a (or ⇤), it follows that

{a,Li} = 0 or {⇤, Li} = 0. (5.43)

Using equations (5.40) and the identity (C.2), it is straightforward to
show that the Poisson brackets of the components of angular momentum
are {Li, Lj} = ✏ijkLk. (5.44)

Since �L� = [GMa(1− e2)]1�2 = ⇤(1− e2)1�2 (eq. 1.28), it proves useful to
define a dimensionless angular momentum

j ≡ L

⇤
= (1 − e2)1�2L̂, (5.45)

whose magnitude varies between 0 and 1. Using equations (D.32c) and
(D.32d), it is straightforward to show that equations (5.43) and (5.44) can
be rewritten as

{a, ji} = 0, {ji, jj} = 1

⇤
✏ijkjk. (5.46)
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The eccentricity vector defined in Box 1.1 is

e = v × (r × v)
GM

− r̂ = r v
2

GM
− v r ⋅ v

GM
− r

r
. (5.47)

In terms of the usual orbital elements (§1.3.2), the Cartesian components of
these vectors can be written

e = e(cos⌦ cos! − cos I sin⌦ sin!, sin⌦ cos! + cos I cos⌦ sin!,

sin I sin!),
j = (1 − e2)1�2(sin I sin⌦,− sin I cos⌦, cos I). (5.48)

Similarly to equation (5.42), we can show that

{HK, ei} = 0, (5.49)

which confirms that the eccentricity vector is conserved on a Kepler orbit.
Since HK depends only on a (or ⇤), it follows that

{a, ei} = 0 or {⇤, ei} = 0. (5.50)

It is straightforward, though tedious, to show that the Poisson brackets
of the components of the eccentricity vector are

{ei, ej} = 1

⇤
✏ijkjk. (5.51)

Similarly we can show that

{ji, ej} = {ei, jj} = 1

⇤
✏ijkek. (5.52)

The elegant relations (5.46), (5.51) and (5.52) arise because the symme-
try group of the Kepler problem is the group of rotations in 4-dimensional
space, SO(4).

The orbit-averaged Hamiltonian �H� is a function of the size and shape
of the orbit, and possibly the time. These can be specified by the orbital
elements a, e, I , $, ⌦ (the mean longitude � does not appear because of
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the orbit averaging). Alternatively, we can specify the orbit by the semi-
major axis a and the two vectors j and e. Thus we can write the orbit-
averaged Hamiltonian as �H�(a, j,e, t). Note that these arguments contain
seven phase-space variables (a and the three components of each of the two
vectors), but only five are independent, because they are related by the con-
straints

j ⋅ e = 0, j
2 + e2 = 1. (5.53)

The time evolution of ji under the influence of �H� is given by equation
(D.38),

dji

dt
= {ji, �H�}. (5.54)

Then from the chain rule
dji

dt
= {ji, jk}@�H�

@jk

+ {ji, ek}@�H�
@ek

+ {ji, a}@�H�
@a

. (5.55)

Using the evaluations of the Poisson brackets in equations (5.46) and (5.52),
the result simplifies to

dji

dt
= 1

⇤
✏ikmjm

@�H�
@jk

+ 1

⇤
✏ikmem

@�H�
@ek

. (5.56)

This can be rewritten in vector notation as
dj

dt
= − 1
⇤
�j × @

@j
�H� + e × @

@e
�H�� , (5.57)

where @f�@j is the vector having components (@f�@j1,@f�@j2,@f�@j3)
for any function f(j1, j2, j3). Similarly, the time evolution of the eccentri-
city vector is given by

de

dt
= − 1
⇤
�e × @

@j
�H� + j × @

@e
�H�� . (5.58)

Equations (5.57) and (5.58) are the Milankovich equations.4

4 Milutin Milankovich (1879–1958) was a Serbian applied mathematician. He is responsible
for the concept that long-term changes in Earth’s climate are quasi-periodic and driven
mainly by secular variations in the Earth’s orbit and the precession of its spin axis. These
Milankovich cycles have periods between 2 × 10

4 yr and 1 × 10
5 yr. The equations first

appear in Milankovich (1939).
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It is straightforward to show that the Milankovich equations conserve
j ⋅e and j

2+e2. Thus if the constraints (5.53) are satisfied by the initial con-
ditions, they continue to be satisfied for all time. Because of this property
the formula for a given Hamiltonian in terms of j and e is not unique—for
example, �H� = j2 could also be written �H� = −e2 or �H� = j2 +e ⋅ j—but
the trajectories determined by the Milankovich equations are the same for
all of these.

A more compact form of these equations is obtained by defining new
variables

b̂+ ≡ j + e, b̂− ≡ j − e, (5.59)

which imply that

j = 1
2(b̂+ + b̂−), e = 1

2(b̂+ − b̂−). (5.60)

Using the constraints (5.53), it is straightforward to show that �b̂±�2 = (j ±
e) ⋅ (j ± e) = 1; thus b̂+ and b̂− are unit vectors that can be represented
by points on the unit sphere. In terms of these the Milankovich equations
become

db̂+
dt
= − 2
⇤
b̂+ × @

@b̂+
�H�, db̂−

dt
= − 2
⇤
b̂− × @

@b̂−
�H�. (5.61)

Despite the simplicity of these equations, we shall usually work with equa-
tions (5.57) and (5.58), since the vectors j and e have a direct physical in-
terpretation.

We have written the Milankovich equations for an orbit-averaged Hamil-
tonian, which is independent of the mean anomaly. A more general form
of these equations, valid for Hamiltonians that are not necessarily orbit-
averaged, is described by Allan & Ward (1963).

5.3.1 The Laplace surface
Most of the inner satellites orbiting the giant planets in the solar system
likely formed from a thin disk of gas and solid material surrounding the pla-
net. The orientation of this disk is determined by the shape of the gravita-
tional potential in which it orbits. If the disk were oriented in some arbitrary
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direction, the angular-momentum vector j of each fluid element in the disk
would precess at a different rate, depending on its semimajor axis, so the
disk would rapidly dissolve. Therefore the only possible orientations for
the disk are those for which the angular-momentum vectors do not precess.5

In the most common case, the disk orientation required for zero pre-
cession rate is determined by the competition between the torques from the
quadrupole potential of the planet’s equatorial bulge and the quadrupole po-
tential from the Sun. Consider a flattened planet with mass Mp, quadrupole
moment J2 and radius Rp. Assume that the higher multipole moments J3,
J4, and so forth are negligible. Its non-Kepler potential is given by equation
(1.135),

Hp = GMpJ2R
2
p

2r3
(3 cos2 ✓ − 1) = GMpJ2R

2
p

2r5
(2z2 − x2 − y2); (5.62)

here the first expression is in spherical coordinates and the second in Carte-
sian coordinates, with the equators of both coordinate systems aligned with
the equator of the planet. Using equations (1.70), the potential can be rewrit-
ten as

Hp = GMpJ2R
2
p

2r3
�3 sin2 I sin2(f + !) − 1�. (5.63)

We orbit average using equations (1.66c)–(1.66e) to obtain

�Hp� = GMpJ2R
2
p

4a3(1 − e2)3�2 �3 sin2 I − 2� =
(GMp)4J2R2

p

4L5⇤3
�L2 − 3L2

z
�

= GMpJ2R
2
p

4a3

j
2 − 3j2

z

j5
, (5.64)

where the dimensionless angular momentum j is defined in equation (5.45).
We can write this result in a coordinate-free form by defining a unit vector
n̂p that is normal to the planet’s equator, which so far we have assumed to

5 Strictly, they must precess at the same rate as the planet’s spin axis precesses due to the
torque from its host star (see §7.1), but this rate is usually slow enough that the spin axis
can be assumed to be fixed.
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be the z-axis:

�Hp� = GMpJ2R
2
p

4a3

j
2 − 3(j ⋅ n̂p)2

j5
. (5.65)

The Milankovich equation (5.58) is satisfied if e = 0; thus a circular orbit
will remain circular. Since we expect the orbits in a gas disk to be circular
anyway, we set e = 0 henceforth.6 Then the Milankovich equation (5.57)
becomes

dj

dt
= 3(GMp)1�2J2R2

p

2a7�2 (j ⋅ n̂p) j × n̂p. (5.66)

The simplest solutions to this equation have j×n̂p = 0 or j⋅n̂p = 0. In the
first of these, j is parallel or antiparallel to the planet’s spin axis so the disk
lies in the equatorial plane of the planet; in the second, j is perpendicular to
n̂p so the disk crosses the pole of the planet. In practice, equatorial disks
are favored over polar disks, in part because gas disks dissipate energy so
they tend to evolve toward a state of minimum energy at a given semimajor
axis; and equation (5.65) shows that the Hamiltonian is minimized at fixed
a and j when the disk is equatorial.

At large distances from the planet, the orientation of the disk is governed
by the tidal field from the host star. Consider a planet that orbits a host star
with mass M∗, on an orbit with semimajor axis ap and eccentricity ep. In
coordinates centered on the planet the quadrupole tidal potential from the
star is given by equation (3.71):

H∗ = GM∗r2
2r3∗ − 3GM∗(r ⋅ r∗)2

2r5∗ , (5.67)

with r∗ the position of the star.
Let (x̂, ŷ, ẑ) be an orthogonal triad of unit vectors, with x̂ pointing to

the periapsis of the orbit of a disk particle around the planet, ẑ parallel to
its orbital angular momentum, and ŷ ≡ ẑ × x̂, with similar definitions for(x̂∗, ŷ∗, ẑ∗). The position of the disk particle is r = r(x̂ cos f + ŷ sin f),
where f is the true anomaly, and similarly r∗ = r∗(x̂∗ cos f∗ + ŷ∗ sin f∗).
6 The behavior of orbits with nonzero eccentricity is discussed in Problem 5.4.
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We now average H∗ over the orbit of the test particle. Using equations
(1.65c)–(1.65f), we have

�H∗�= GM∗a2
2r5∗

�(1 + 3
2e

2)r2∗ − 3(x̂ ⋅ r∗)2(12 + 2e2) − 3
2(ŷ ⋅ r∗)2(1 − e2)� .

(5.68)
Now eliminate ŷ using the relation (ŷ ⋅ r∗)2 = r2∗ − (x̂ ⋅ r∗)2 − (ẑ ⋅ r∗)2 (eq.
B.6a), and replace x̂ and ẑ with the eccentricity and dimensionless angular-
momentum vectors using the relations e = ex̂, j = (1 − e2)1�2ẑ:

�H∗� = GM∗a2
4r5∗

�(6e2 − 1)r2∗ − 15(e ⋅ r∗)2 + 3(j ⋅ r∗)2� . (5.69)

We now carry out a similar average over the orbit of the host star around the
planet, using equations (1.66b)–(1.66e). We denote the second average by
double angle brackets:

�H∗� = GM∗a2
8a3∗(1 − e2∗)3�2 �15(e ⋅ n̂∗)

2 − 6e2 + 1 − 3(j ⋅ n̂∗)2�, (5.70)

where n̂∗ = ẑ∗ is normal to the orbit of the host star. If we adopt a co-
ordinate system in which the host-star orbit is in the equatorial plane, the
Hamiltonian can be rewritten in terms of orbital elements or Delaunay vari-
ables using equations (5.48):

�H∗�= GM∗a2
8a3∗(1 − e2∗)3�2 (3 sin

2
I−2−3e2−3e2 sin2 I+15e2 sin2 I sin2 !)

= GM∗a2
8a3∗(1 − e2∗)3�2 �

6L
2

⇤2
− 5 − 3L

2
z

⇤2
+ 15�1 − L

2
z

L2
− L

2

⇤2
+ L

2
z

⇤2
� sin2 !�.

(5.71)

Using the Hamiltonian (5.70), the Milankovich equations read

dj

dt
= 3G1�2

M∗a3�2
4M

1�2
p a3∗(1 − e2∗)3�2 �(j ⋅ n̂∗)j × n̂∗ − 5(e ⋅ n̂∗)e × n̂∗�, (5.72)
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de

dt
= 3G1�2

M∗a3�2
4M

1�2
p a3∗(1 − e2∗)3�2 �(j ⋅ n̂∗)e × n̂∗ − 5(e ⋅ n̂∗)j × n̂∗ + 2j × e�.

Once again we assume that the disk orbits are circular, e = 0, so the second
of these equations is automatically satisfied. The simplest solutions have
j × n̂∗ = 0 or j ⋅ n̂∗ = 0, so the disk lies either in the orbital plane or perpen-
dicular to the orbital plane, with the former configuration favored because
the energy (5.70) is smaller at fixed semimajor axis when j is parallel or
antiparallel to n̂∗.

The obliquity of a planet is the angle between its spin angular momen-
tum and orbital angular momentum. The obliquities of planets in the solar
system range from less than a few degrees for Mercury and Jupiter to 98

○ for
Uranus and 177

○ for Venus (see Appendix A). If the obliquity of a planet is
nonzero, then the preferred orientation of the disk must transition from the
equatorial plane of the planet at small distances to the orbital plane of the
planet at large distances. To determine the shape of this transition, we add
the Milankovich equations (5.66) for the effects of the planetary quadrupole
and (5.72) for the effects of the tide from the host star and look for solutions
with zero precession. For circular disks the equation dj�dt = 0 is satisfied
if

J2R
2
p

a5
(j ⋅ n̂p)j × n̂p + M∗

2Mpa
3∗(1 − e2∗)3�2 (j ⋅ n̂∗)j × n̂∗ = 0. (5.73)

We define the Laplace radius rL by

r
5
L ≡ J2R2

pa
3∗(1 − e2∗)3�2Mp

M∗ ; (5.74)

then
2r

5
L(j ⋅ n̂p)j × n̂p + a5(j ⋅ n̂∗)j × n̂∗ = 0. (5.75)

In the simplest solutions, n̂p, n̂∗ and j all lie in a common plane. The
obliquity ✏ is the angle between n̂p and n̂∗; by convention the obliquity lies
between 0 and 180

○. Let � be the angle between j and n̂p, measured in the
same direction as the obliquity in the common plane. Then the constraint
(5.75) becomes

2r
5
L sin 2� + a5 sin 2(� − ✏) = 0. (5.76)
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Figure 5.3: The shape of the Laplace surface as a function of the obliquity ✏, ob-
tained by solving equation (5.76). The horizontal axis is a�rL, where a is the semi-
major axis and the Laplace radius rL is defined in equation (5.74). The vertical axis
is �, where � = 0 when the surface coincides with the equatorial plane of the planet,
and � = ✏ when the surface coincides with the orbital plane of the planet. Solutions
for planets with obliquity > 90○ can be obtained by the transformation ✏→ 180

○ − ✏,
�→ 180

○ − �.
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The surface mapped out by this constraint is the Laplace surface. When
a � rL the constraint requires sin 2� = 0, so � = 0, 1

2⇡, or ⇡. The energy
arguments following equation (5.66) favor the solutions � = 0,⇡, in which
the Laplace surface coincides with the equatorial plane of the planet. Simi-
larly, for a� rL we must have sin 2(�−✏) = 0, and energy arguments favor
� = ✏ or ✏+⇡ so the Laplace surface lies in the plane of the orbit. The shape
at intermediate radii is shown in Figure 5.3. See Tremaine et al. (2009) for
a comprehensive description of the Laplace surface.

The shape of the Laplace surface motivates the division of satellites into
inner satellites, which have semimajor axes a � rL and orbit close to the
planet’s equator; and outer satellites with a � rL, which orbit close to the
ecliptic. The Moon is an outer satellite but almost all of the major satellites
of the giant planets except for Saturn’s satellite Iapetus are inner satellites.

Of course, the gas disks from which the satellites of the giant planets
formed disappeared long ago. Nevertheless, we still expect that the present
orbits of these satellites will lie close to the Laplace surface. Whether or not
this is true, the angular-momentum vector of a satellite will precess around
the direction defined by the normal to the Laplace surface at its semimajor
axis. This is why the JPL Solar System Dynamics database, https://ssd.jpl.
nasa.gov/, quotes the inclinations and nodes of many satellites relative to
the local Laplace surface.

5.3.2 Stellar flybys
The solar system, like most planetary systems, is far from the other stars
in the solar neighborhood: the nearest star, Proxima Centauri, is almost
10

4 times farther than the outermost planet, Neptune. Nevertheless, many
stars, perhaps including the Sun, were born in dense star clusters that later
dissolved, and/or migrated through the Galactic disk from locations closer to
the Galactic center with much higher stellar densities. Therefore we need to
examine the possible effects of encounters with a passing star on a planetary
system.

The velocities of stars in the solar neighborhood relative to the Sun
are sufficiently high (V ∼ 50 km s−1) and their distances sufficiently large
that they pass us on straight-line orbits, unaffected by the Sun’s gravity. If

https://ssd.jpl.nasa.gov/
https://ssd.jpl.nasa.gov/
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the impact parameter or distance of closest approach to the Sun is b, then
the duration of an encounter, when the gravitational force from the star is
strongest, is roughly

⌧ ≡ b

V
= 94.8 yr

b

103 au
50 km s−1

V
; (5.77)

thus all but the closest encounters last much longer than a typical planetary
orbital period, so their effects can be studied using secular dynamics.

We first calculate the rate of stellar encounters with the Sun in its present
environment. Let f(v)dv be the number of stars per unit volume with
velocities in the range v to v + dv. The number of encounters with these
stars per unit time with impact parameter less than b is f(v)dv times the
volume of an annulus with radius b and length equal to the relative speed�v − v⊙�. The total rate of encounters with impact parameter less than b is
then

R(b) = � dv f(v)⇡b2�v − v⊙�. (5.78)

To evaluate the integral we make two simplifying assumptions. First, we
assume that the velocity distribution is Maxwellian with dispersion � in one
dimension,

f(v) = n

(2⇡�2)3�2 exp�− v
2

2�2
� , (5.79)

where n is the number of stars per unit volume. A more accurate repre-
sentation of the velocity distribution in the solar neighborhood is a triaxial
Gaussian distribution, equation (9.17), but this refinement is not needed for
the estimates we make here. The root-mean-square velocity of the stars
is approximately 50 km s−1 (Dehnen & Binney 1998) so the dispersion in
one dimension can be taken to be � = (50 km s−1)�√3 � 30 km s−1. Sec-
ond, we assume that the Sun is at rest with respect to the mean velocity of
nearby stars. The actual value of the Sun’s velocity in this frame is only
18 km s−1 (Schönrich et al. 2010) compared to the root-mean-square velo-
city of 50 km s−1, so this approximation is not too bad. Then

R(b) = b
2
n

23�2⇡1�2�3 � dv �v� exp�− v
2

2�2
�
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= 2
1�2
⇡
1�2

b
2
n

�3 � ∞
0

dv v
3
exp�− v

2

2�2
� = 23�2⇡1�2

b
2
n�

= 0.36

Gyr
� b

1000 au
�2 n

0.10 pc−3
�

30 km s−1 . (5.80)

We may conclude that the closest encounter the Sun has had in its lifetime
tss = 4.57Gyr is b ∼ 800 au, corresponding to R(b)tss = 1. Of course, there
are large uncertainties in this result, both because the closest encounter is
a random event7 and because the Sun’s environment at the time of its birth
was probably much denser than the present solar neighborhood.

We now examine the effect of an encounter on a planetary orbit. The
trajectory of the star relative to the Sun can be written r∗(t) = b + Vt,
where V is the velocity of the star relative to the Sun, t = 0 is the time of
closest approach and b is the impact parameter vector, the position of the
star at the periapsis or point of closest approach. This definition implies that
b is perpendicular to V and �b� = b, the impact parameter. We use Cartesian
coordinates in which the origin is at the Sun, the trajectory of the star is in
the x-y plane and the x-axis points to the periapsis of the passing star. In
these coordinates r∗(t) = (b, V t,0) and the quadrupole tidal field from the
star at position r = (x, y, z) is given by equation (3.71),

H∗ = GM∗r2
2(b2 + V 2t2)3�2 −

3GM∗(xb + yV t)2
2(b2 + V 2t2)5�2 , (5.81)

where M∗ is the mass of the passing star. We want to average over the
planetary orbit. The averaging can be written symbolically as

�H∗� = GM∗�r2�
2(b2 + V 2t2)3�2 −

3GM∗(�x2�b2 + 2�xy�bV t + �y2�V 2
t
2)

2(b2 + V 2t2)5�2 .

(5.82)
As usual with orbit averaging the Hamiltonian �H∗� is independent of the
mean longitude, so the semimajor axis of the planet is conserved during the
encounter.
7 A more precise statement is that the probability that the closest encounter has an impact

parameter greater than b is exp[−R(b)tss].
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Since the changes�j and�e in the angular-momentum and eccentricity
vectors from a single encounter are expected to be small, we can solve the
Milankovich equations (5.57) and (5.58) by evaluating the right sides on the
original planetary orbit. In this case the only time-varying component of the
right sides is �H�, so we can write

�j = − 1
⇤
�j × @

@j
+ e × @

@e
�� ∞
−∞ dt �H∗�,

�e = − 1
⇤
�e × @

@j
+ j × @

@e
�� ∞
−∞ dt �H∗�, (5.83)

where ⇤ = (GM⊙a)1�2. Since the term involving �xy� in equation (5.82)
is odd in t, its integral will vanish and it can be dropped from this analysis.
We also use the integrals

� ∞
−∞

dt

(b2 + V 2t2)3�2 =
2

b2V
, � ∞

−∞
dt

(b2 + V 2t2)5�2 =
4

3b4V
,

� ∞
−∞

dt t
2

(b2 + V 2t2)5�2 =
2

3b2V 3
. (5.84)

Then

� ∞
−∞ dt �H∗� = GM∗

b2V
��r2� − 2�x2� − �y2��. (5.85)

The average �r2� = a2(1 + 3
2e

2) by equation (1.65c) and the averages �x2�
and �y2� are evaluated in equation (P.3). We find

� ∞
−∞ dt �H∗� = GM∗a2

b2V
�3e2− 1

2 −5(e ⋅b̂)2+(j ⋅b̂)2− 5
2(e ⋅V̂)2+ 1

2(j ⋅V̂)2�.
(5.86)

Here we have used the unit vector b̂ pointing toward the point of closest
approach b (the x-axis) and the unit vector V̂ along the direction of the
velocity V (the y-axis).

Substituting this result into the Milankovich equations (5.83), we have
(Heggie & Rasio 1996)

�j = G1�2
M∗a3�2

M
1�2⊙ b2V

� − 2(j ⋅ b̂)j × b̂ − (j ⋅ V̂)j × V̂
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+ 10(e ⋅ b̂)e × b̂ + 5(e ⋅ V̂)e × V̂�,
�e = G1�2

M∗a3�2
M

1�2⊙ b2V

� − 2(j ⋅ b̂)e × b̂ − (j ⋅ V̂)e × V̂
− 6j × e + 10(e ⋅ b̂)j × b̂ + 5(e ⋅ V̂)j × V̂�. (5.87)

The right side of each equation contains a geometric factor in square
brackets that is of order unity, multiplied by a pre-factor that gives the typi-
cal magnitude of the changes. The geometric factor in the second equation
shows that a circular orbit (e = 0) remains circular (�e = 0); physically,
this is because the torque exerted by any gravitational potential on any ax-
isymmetric mass distribution must be perpendicular to its symmetry axis.
The pre-factor is

G1�2
M∗a3�2

M
1�2⊙ b2V

= 6.66×10−6 M∗
M⊙ �

a

5 au
�3�2 �1000 au

b
�2 50 km s−1

V
. (5.88)

Thus the changes in the orbits of the solar-system planets due to passing
stars are negligible, even for an encounter with the smallest plausible impact
parameter predicted by equation (5.80). One immediate consequence of this
conclusion is that the direction of the ecliptic pole is fixed so long as the
stellar environment of the Sun is similar to the present one.8

This result is based on three main approximations: that the duration of
the encounter is much larger than the orbital period of the planet (eq. 5.77),
that the stars pass the planetary system on straight-line orbits and that the
smallest impact parameter over the lifetime of the system is much larger
than the semimajor axis of the planet (eq. 5.80). In denser environments
such as star clusters, the conditions are quite different—in particular the star
density can be 106 times larger than in the solar neighborhood—so some or
all of these assumptions may fail and different tools are needed to determine
the fate of a planetary system (Spurzem et al. 2009).

8 An additional effect is precession of the ecliptic pole due to the tidal field of the Galaxy, but
this is also negligible. See Problem 9.6.
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5.4 ZLK oscillations

In some planetary systems a distant body such as a companion star can
excite large oscillations in the eccentricity and inclination of the planetary
orbits. A remarkable feature of these von Zeipel–Lidov–Kozai (ZLK) os-
cillations9 is that the amplitude of the oscillations is independent of the
mass of the perturber.

We borrow the analysis of equations (5.67)–(5.72), except that now we
are investigating a planet orbiting a host star in the tidal field of a companion
star, rather than a satellite orbiting a planet in the tidal field of its host star.
The planet is represented as a zero-mass test particle with semimajor axis
a, eccentricity vector e and dimensionless angular-momentum vector j; as
usual these are related by �e�2+ �j�2 = e2+j2 = 1. The host star has mass Mh

and belongs to a binary system in which the companion star has mass Mc.
The relative orbit of the two stars has semimajor axis ac and eccentricity ec.
In this notation, the disturbing function (5.70) has the form

�Hquad� = GMca
2

8a3c(1 − e2c)3�2 �15(e ⋅ n̂c)2 − 6e2 + 1 − 3(j ⋅ n̂c)2�, (5.89)

and the Milankovich equations (5.72) read

dj

dt
= 3G1�2

Mca
3�2

4M
1�2
h a3c(1 − e2c)3�2 �(j ⋅ n̂c)j × n̂c − 5(e ⋅ n̂c)e × n̂c�, (5.90)

de

dt
= 3G1�2

Mca
3�2

4M
1�2
h a3c(1 − e2c)3�2 �(j ⋅ n̂c)e × n̂c − 5(e ⋅ n̂c)j × n̂c + 2 j × e�.

9 Named after three astronomers: Hugo von Zeipel (1873–1959) from Sweden, Mikhail Li-
dov (1926–1993) from Russia and Yoshihide Kozai (1928–2018) from Japan. The history of
ZLK oscillations is complicated (Ito & Ohtsuka 2020). They were discovered and investi-
gated in detail by von Zeipel (1910), but this paper was mostly forgotten. Lidov discovered
the phenomenon independently, probably in the course of investigating the trajectory of
Luna 3, the first spacecraft to image the far side of the Moon. He presented his results at
a conference in Moscow in 1961 (Lidov 1961) that was attended by Kozai, who extended
Lidov’s results substantially and disseminated them outside the Soviet Union (Kozai 1962).
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Let us assume that the planet is on a circular orbit, e = 0. Then the
second Milankovich equation is trivially satisfied and the first reads

dj

dt
= 3G1�2

Mca
3�2

4M
1�2
h a3c(1 − e2c)3�2 (j ⋅ n̂c)j × n̂c. (5.91)

It is straightforward to show from this equation that j ⋅ dj�dt = 0 so j
2 =

1 − e2 is conserved, confirming that a circular planet orbit remains circular.
Similarly n̂c ⋅ dj�dt = 0, and since the binary orbit normal n̂c is fixed, j ⋅ n̂c

is conserved. Since the orbit is circular, j ⋅ n̂c = cos I , where I is the fixed
inclination of the planetary orbit relative to the binary-star orbit. Then equa-
tion (5.91) describes uniform precession of the angular-momentum vector j
around the orbital axis of the binary, at a constant rate

!c = − 3G1�2
Mca

3�2
4M

1�2
h a3c(1 − e2c)3�2 cos I n̂c. (5.92)

Note that !c ⋅ n̂c < 0, so the precession is retrograde in the frame in which
the positive z-axis is parallel to n̂c.

We now ask whether these precessing circular orbits are stable. We write
e = ✏e1 and expand the Milankovich equations (5.90) to first order in ✏. The
first of these is unchanged at this order, so the angular-momentum vector
of the planet continues to precess uniformly at the rate !c. The second
equation becomes

de1

dt
= 3G1�2

Mca
3�2

4M
1�2
h a3c(1 − e2c)3�2 �(j⋅n̂c)e1×n̂c−5(e1⋅n̂c)j×n̂c+2 j×e1�. (5.93)

To analyze the solutions of this equation it is helpful to transform to a frame
that rotates with the unperturbed precession of the angular-momentum vec-
tor, so the unperturbed solution is stationary. In this frame the rate of change
of the eccentricity vector is (eq. D.16) (de1�dt)rot = de1�dt−!c×e1. Thus
the linearized Milankovich equation is simplified to

�de1
dt
�
rot
= 3G1�2

Mca
3�2

4M
1�2
h a3c(1 − e2c)3�2 �2 j × e1 − 5(e1 ⋅ n̂c)j × n̂c�
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≡Ae1. (5.94)

In Cartesian coordinates with n̂c = ẑ we have

A = 3G1�2
Mca

3�2
4M

1�2
h a3c(1 − e2c)3�2

�������
0 −2jz −3jy
2jz 0 3jx−2jy 2jx 0

�������
(5.95)

where j = (jx, jy, jz) is now a constant. We may assume that e1 ∝ exp(�t)
and find the solution of the resulting equation for �, which can be written
det(A − �I) = 0. We find that either � = 0 or

� = ± 3G1�2
Mca

3�2
23�2M1�2

h a3c(1 − e2c)3�2 �3 − 5 cos
2
I)1�2, (5.96)

where cos I = j ⋅ n̂c = jz since the unperturbed planet orbit is circular.
The motion is unstable if any solution for � has a positive real part, which
occurs if � cos I � < (35)1�2. Thus stability requires either 0 ≤ I ≤ IZLK or
⇡ − IZLK ≤ I ≤ ⇡, where IZLK = cos−1(35)1�2 = 39.23○ is the critical ZLK
angle. If these conditions are not satisfied the circular orbit is unstable and
the planet undergoes ZLK oscillations.10

To explore the nature of ZLK oscillations it is more convenient to use
Delaunay variables (eq. 1.84). The orbit-averaged Hamiltonian arising from
the quadrupole tidal field of the companion star is given by equation (5.71).
The Hamiltonian is independent of the mean anomaly ` because it is orbit-
averaged. Therefore the conjugate momentum ⇤ and the semimajor axis
a are conserved, as usual in secular dynamics. Moreover the Hamiltonian
is independent of the longitude of the node ⌦. Therefore the conjugate

10 This analysis shows that ZLK oscillations arise in the quadrupole field from a distant com-
panion star, i.e., a mass that is exterior to the body whose orbit we are following. A
quadrupole field can also arise from mass interior to the body we are following, such as
a quadrupole moment of the host star. In this case there are no ZLK oscillations, because
the orbit-averaged Hamiltonian (5.64) is independent of the argument of periapsis ! when
expressed in Delaunay variables, or independent of the direction of the eccentricity vector
when expressed in terms of e and j. This is an accidental property of the potential due to an
interior quadrupole moment. See Tremaine & Yavetz (2014) for more detail.
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momentum Lz , the z-component of angular momentum, is also conserved
(as we discuss below, this is an accidental but helpful property of the po-
tential due to an exterior quadrupole moment, which does not extend to
more general potentials). Since both Lz = [GMha(1 − e2)]1�2 cos I and a

are conserved, we can write Lz = (GMha)1�2 cos I0, where I0 is an inte-
gral of motion equal to the inclination of the circular orbit with the given
z-component of angular momentum. Then the conservation of the Hamilto-
nian (5.71) implies that the ZLK function

CZLK(e,!) ≡ 5�1 − cos
2
I0

1 − e2 � e2 sin2 ! − 2e2 (5.97)

is conserved along a trajectory. In words, the existence of the two con-
served momenta ⇤ and Lz has reduced the dynamics from three degrees of
freedom to one degree of freedom, corresponding to two phase-space di-
mensions. Since the Hamiltonian is conserved, the trajectory in these two
dimensions must lie along contours of constant Hamiltonian, which coin-
cide with contours of constant ZLK function.11

Not all values of e correspond to physical trajectories. In particular the
definition of I0 implies that cos2 I = cos2 I0�(1 − e2), and since cos

2
I < 1

we must have e ≤ sin I0.
The contours of the ZLK function are shown in Figure 5.4. These are

plotted using (e,!) as polar coordinates, which is appropriate since ! is ill-
defined when e = 0. There is an extremum of CZLK(e,!) at eccentricity e =
0, and the onset of ZLK oscillations corresponds to a change in the nature
of this extremum, from a maximum when � cos I0� > cos IZLK = (35)1�2
to a saddle point when � cos I0� < cos IZLK. In the former case a nearly
circular orbit remains nearly circular, while in the latter case an initially
circular orbit oscillates between eccentricity e = 0 and a maximum value
emax, which is reached when ! = ±1

2⇡. The value of emax is found by
solving the equation CZLK(e,±1

2⇡) = 0:

emax = �1 − 5
3 cos

2
I0�1�2 . (5.98)

11 The corresponding equations of motion can be solved in terms of elliptic integrals (Ki-
noshita & Nakai 2007) but we shall not use these solutions.
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Figure 5.4: Contours of the ZLK function CZLK(e,!) (eq. 5.97), with the eccen-
tricity e and argument of periapsis ! plotted as polar coordinates. Shaded regions
have e > sin I0 and are unphysical. Plots are shown for four values of I0, the inclina-
tion of a circular orbit. Prograde circular orbits are unstable for I0 > IZLK = 39.23○.
Heavy contours have CZLK(e,!) ≥ 0. Compare Figure 9.5.

Thus emax → 1 as I0 → ±1
2⇡, showing that a planet on an initially circular,

nearly polar orbit executes ZLK oscillations that are so large that it may
collide with its host star.

For � cos I0� > cos IZLK, all orbits circulate in the sense that ! rotates
between 0 and 2⇡ and !̇ is never zero. For � cos I0� < cos IZLK, orbits with
CZLK < 0 circulate but orbits with CZLK ≥ 0 librate in the sense that !
oscillates around ±1

2⇡. The boundary between the circulating and librating
orbits is a separatrix passing through the origin. In the presence of other
perturbations the separatrix becomes chaotic, so circular orbits are chaotic
whenever � cos I0� < cos IZLK.

The trajectories in Figure 5.4 are independent of the strength of the tidal
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field from the companion star. Shrinking the tidal field leaves the ampli-
tude of the eccentricity oscillation the same but increases the period of the
oscillations.

The time dependence of the oscillations in e and ! can be found using
the Hamiltonian (5.71) and Hamilton’s equations in Delaunay variables:

d!

dt
= 3GMc

4na3c(1 − e2c)3�2 �
5 cos

2
I0 sin

2
!

(1 − e2)3�2 + (1 − e2)1�2(2 − 5 sin2 !)�
de

dt
= 15GMc

4na3c(1 − e2c)3�2 e(1 − e
2)1�2�1 − cos

2
I0

1 − e2 � sin! cos!, (5.99)

where n = (GMh�a3)1�2 is the mean motion of the planet around its host.
There is a stable equilibrium state—a maximum of CZLK(e,!)—at ! =±1

2⇡ and e = e0 ≡ [1 − (53)1�2� cos I0�]1�2. The libration period around this
equilibrium is of order the square of the orbital period of the binary divided
by the orbital period of the planet (see Problem 5.6).

ZLK oscillations are important in a remarkable variety of astrophysical
contexts: the irregular satellites of the giant planets, the excitation of exo-
planet eccentricities by companion stars, high-eccentricity planetary migra-
tion (§5.4.2), the formation of close binary stars, blue-straggler stars, Type
Ia supernovae, black-hole mergers, comets (§9.4), and so forth.

5.4.1 Beyond the quadrupole approximation

The analysis so far assumes that that the only non-Kepler forces arise from
the quadrupole tidal field of the companion star. Any additional sources of
apsidal precession, even small ones, can dramatically alter the nature of the
ZLK oscillations.

Relativistic precession According to equation (J.15) of Appendix J the
orbit-averaged relativistic correction to the Kepler Hamiltonian is

�H�gr = − 3G2
M

2
h

c2a2(1 − e2)1�2 +
15G2

M
2
h

8c2a2
+O(c−4). (5.100)
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We drop the second term on the right since it has no effect on the secular
dynamics, and drop all terms that are O(c−4). The relativistic Hamiltonian
becomes

�H�gr = −3G2
M

2
h

c2a2j
, (5.101)

where as usual j = (1 − e2)1�2. The addition of this Hamiltonian has no
effect on the Milankovich equation (5.57) for the evolution of the dimen-
sionless angular momentum j. The linearized Milankovich equation for the
evolution of the eccentricity vector e, equation (5.94), becomes

�de1
dt
�
rot
= (A +Agr)e1, (5.102)

where we have assumed that j = �j� � 1, A is given by equation (5.95), and

Agr = 3G3�2
M

3�2
h

c2a5�2
�������

0 −jz jy

jz 0 −jx−jy jx 0

�������
. (5.103)

Then e1 ∝ exp(�t) and equation (5.96) is modified to

� = ± 3G1�2
Mca

3�2
23�2M1�2

h a3c(1 − e2c)3�2 (1+2✏gr)
1�2�3−4✏gr −5 cos2 I�1�2, (5.104)

where

✏gr ≡ GM
2
ha

3
c(1 − e2c)3�2

c2a4Mc

= 0.009871�Mh

M⊙ �
2 �M⊙

Mc
�� ac

100 au
�3 �1 au

a
�4 (1 − e2c)3�2 (5.105)

parametrizes the relative rates of apsidal precession from general relativity
and the tidal field from the companion star. The circular orbit is unstable,
and ZLK oscillations set in, when cos

2
I < 3

5 − 4
5✏gr. When ✏gr > 3

4 the
circular orbit is stable at all inclinations. Thus relativistic precession can
completely suppress ZLK oscillations, one of the few cases in which general
relativity plays an important role in celestial mechanics.
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Octopole potential The relatively simple characteristics of ZLK oscilla-
tions described so far arise because the z-component of angular momentum
is conserved, a property that reduces the dynamics to a single degree of
freedom. This conservation law arises because both the quadrupole tidal
potential described by the Hamiltonian in equation (5.71) and the relativis-
tic Hamiltonian (5.100) are independent of the longitude of the ascending
node ⌦. This property does not extend to more general tidal potentials. To
see this, we examine the next order in the multipole expansion of the tidal
potential in equation (3.68). This is the octopole potential, given by the
terms of order �−4 in that equation:

Hoct = 3GMcr
2(r ⋅ rc)

2r5c

− 5GMc(r ⋅ rc)3
2r7c

. (5.106)

Following steps similar to those in equations (5.67)–(5.70), we can average
this potential over the orbits of both the planet and the companion star to
obtain (Brown 1936; Breiter & Vokrouhlický 2015)

�Hoct� = 15GMca
3

64a4c(1 − e2c)5�2 �e ⋅ ec[8e
2 − 1 + 5(j ⋅ ⌘̂c)2 − 35(e ⋅ ⌘̂c)2]

+ 10(e ⋅ ⌘̂c)(j ⋅ ec)(j ⋅ ⌘̂c)�. (5.107)

The Hamiltonian can be converted to the usual orbital elements using equa-
tions (5.48). Notice that �Hoct� = 0 if the companion-star orbit is circular
(ec = 0); because of this feature, the influence of the octopole tidal potential
on ZLK oscillations is sometimes called the eccentric ZLK effect (Ford et
al. 2000; Naoz 2016; Shevchenko 2017).

Motion in the orbit-averaged quadrupole plus octopole Hamiltonian, the
sum of equations (5.89) and (5.107), conserves semimajor axis because the
Hamiltonians are independent of mean longitude as a result of the orbit-
averaging. However, the motion does not conserve the z-component of an-
gular momentum Lz . As a result, the addition of even a weak octopole
component to the quadrupole Hamiltonian leads to much richer dynamical
behavior and enables the trajectory to explore a much wider volume of phase
space. In particular, in the quadrupole approximation a distant planet must
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be on a nearly polar orbit (Lz � 0) if it is to make a close approach to its
host star as a result of ZLK oscillations, but once the octopole contribution
is included planets on a much wider range of orbits may eventually interact
with their hosts.

Nonlinear dynamics All of the analysis above is based on first-order per-
turbation theory. If the ratio of the mean motion of the companion to the
mean motion of the planet is m ≡ nc�n, then second-order perturbations
change the apsidal precession rate of the planet by a fraction that is O(m),
as in equation (3.79) for the case of nearly circular and coplanar orbits. The
strongest second-order perturbations arise from terms that were eliminated
when we averaged over the companion orbit having period Pc = 2⇡�nc.
These are much more important than terms that are eliminated by averaging
over the planet orbit, with period 2⇡�n � Pc. For this reason, calcula-
tions that include the strongest second-order perturbations are sometimes
said to use the single-averaging approximation as opposed to the double-
averaging approximation used elsewhere in this section.

The effects of these second-order perturbations can be incorporated by
adding a secular Hamiltonian proportional to the square of the strength
of the field from the companion, derived from the Poincaré–von Zeipel
method or Lie operator perturbation theory (eq. 4.85). Following Breiter
& Vokrouhlický (2015) we have

H2 = 9GM
2
c a

7�2
16M

1�2
h (Mh +Mc)1�2a9�2c (1 − e2c)3 �A(ec)(j ⋅ ⌘̂c)�24e

2−15(e ⋅ ⌘̂c)2
− (j ⋅ ⌘̂c)2 + 1� +B(ec)�(j ⋅ ⌘̂c)�1 − 2(j ⋅ êc)2 − (j ⋅ ⌘̂c)2 + 4e2
− 10(e ⋅ êc)2 − 15(e ⋅ ⌘̂c)2� − 20(e ⋅ êc)(j ⋅ êc)(e ⋅ ⌘̂c)��. (5.108)

Here

A(ec) ≡ −3 + 2e2c
12

, B(ec) ≡ 4(1 − e2c)3�2 − 4 + 6e2c + 3e4c
12e2c

. (5.109)

The function B(ec) is defined as ec → 0 by its limit, B(ec) = 3
8e

2
c +O(e4c).

In some systems the magnitude of the nonlinear Hamiltonian H2 can exceed
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the magnitude of the octopole Hamiltonian �Hoct�. An approximate crite-
rion for this is that nc�n � a�ac (Luo et al. 2016), which by Kepler’s law
is equivalent to 1 +Mc�Mh � ac�a. Thus the double-averaged octopole ap-
proximation is usually appropriate in hierarchical systems (ac � a) consist-
ing of a planet orbiting one member of a binary-star system with Mc ∼Mh,
but not necessarily in systems consisting of a satellite orbiting a planet,
where Mh is the planet mass and Mc �Mh is the mass of the host star.

In the Earth–Moon–Sun system we have Mc = M⊙ � Mh = M⊕ �
M%, and as a first approximation we can assume that the Sun is on a cir-
cular orbit, ec = 0. In the frame with polar axis normal to the ecliptic, the
Hamiltonian (5.108) becomes

H2 = −9GM⊕
64a

n
3⊙

n3
(25e2 + I2) +O(e4, I4, e2I2); (5.110)

here n⊙ = (GM⊙�a3c)1�2 and n = (GM⊕�a3)1�2 are the mean motions of
the Sun and Moon around the Earth. Using the Lagrange equations (1.188),
we find that this Hamiltonian contributes to the apsidal and nodal precession

d$

dt
= 225

32 nm
3
,

d⌦

dt
= 9

32nm
3
, (5.111)

where m ≡ n⊙�n. These are the second terms in the series (3.79).

5.4.2 High-eccentricity migration
As described in §3.6, hot Jupiters—giant planets with orbital periods less
than 10 days—likely formed at much larger distances from their host stars
and migrated to their current orbits. One possibility is that they migrated
early in the history of their planetary system, within the first few Myr after
the formation of their host star, through gravitational torques exerted by the
gaseous protoplanetary disk from which they formed (§3.6). An alternative
hypothesis is that they migrated long after planet formation was complete,
through high-eccentricity migration.

Hot Jupiters formed by high-eccentricity migration begin their lives in
nearly circular orbits with orbital periods in the range � 300 d where most
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giant planets are now found (Figure 3.15). High-eccentricity migration then
requires two steps. First, some process excites the planetary orbit to high
eccentricity e—close enough to e = 1 that the periapsis distance a(1 − e)
is only a few stellar radii. Second, tidal friction drains energy from the
planetary orbit until the planet settles on a circular orbit with a period of
only a few days (§8.5.1).

Planetary orbits can be excited to high eccentricities either by a close
encounter between two planets or through ZLK oscillations induced by a
distant companion, either a planet or a star, on an inclined orbit.

One important feature of high-eccentricity migration is that in the final
state the planet’s orbital angular-momentum vector is generally not aligned
with the host star’s spin angular momentum, even if the two vectors were
aligned when the planet was originally formed. This misalignment can
be probed observationally if the hot Jupiter transits the host star, by ac-
curate radial-velocity measurements of the host star during the transit (the
Rossiter–McLaughlin effect; see for example Winn & Fabrycky 2015).
These observations show that the spin and orbital angular momenta are
misaligned in about one-third of all systems containing hot Jupiters, often
by more than 90

○—supporting, but not proving, the hypothesis that high-
eccentricity migration is responsible for many hot Jupiters.

The classic example of high-eccentricity migration is the system HD
80606. This is a solar-mass star hosting a single planet with mass 3.9 Jupiter
masses, orbital period 111.4 d, and semimajor axis a = 0.45 au. The planet
is detected through both radial-velocity variations and transits. The orbit
has a remarkably large eccentricity, e = 0.934. Its periapsis a(1 − e) is only
0.030 au = 6.4R⊙, small enough that tidal friction from its interaction with
the host is sapping energy from the orbit. Thus the planet in HD 80606
likely will eventually settle on a circular orbit with a period of < 10 d—that
is, it will become a hot Jupiter (Wu & Murray 2003).

One difficulty with models of high-eccentricity migration is that they
only produce planets with orbital periods of a few days, whereas the obser-
vations show a relatively flat distribution of orbital periods out to ∼ 100 d
(Figure 3.15). Some other mechanism is needed to produce warm Jupiters
with periods between 10 d and 100 d, and this mechanism must be roughly
as efficient as high-eccentricity migration—an unlikely coincidence.



Chapter 6

Resonances

Informally, a resonance occurs when two or more of the fundamental fre-
quencies governing the dynamics of one or more planets are in a simple
integer ratio. In mean-motion resonances, the frequencies are the mean
motions of the two planets. In spin-orbit resonances, one frequency is the
spin angular speed of the planet and the other is its mean motion (§7.2). In
secular resonances, the two frequencies are the secular frequencies govern-
ing the slow precession of the apsides and nodes (§6.6). There are other va-
rieties of resonance as well, for example between the precession frequency
of a planet’s spin angular momentum and one of the secular frequencies
(§7.1.2), or mean-motion resonances involving three or more bodies called
resonant chains.

A resonance is typically labeled by (p+q) ∶ p, where p and q are integers
and (p + q)�p is the ratio of the resonant frequencies. Thus, for example, in
a 2:1 mean-motion resonance the mean motion of the inner planet is twice
the mean motion of the outer planet. The co-orbital satellites described in
§3.2 may be said to be in a 1:1 mean-motion resonance. A satellite like the
Moon that is in synchronous rotation, with equal spin and orbital periods, is
in a 1:1 spin-orbit resonance.

There are two preliminary questions to address before embarking on a
study of resonant dynamics in planetary systems.

303
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First, since every real number can be approximated arbitrarily closely
by the ratio of two integers, is not every pair of planets in resonance? Tech-
nically, of course, the answer is “yes,” but the strength of most of these
resonances is very small. To see why, consider the typical case of two
planets on low-eccentricity, low-inclination orbits. Formally this means
that e1, e2, I1, I2 are O(✏), where ✏ is a small parameter. The disturb-
ing function between these planets can be expanded in a Fourier series as
shown in equation (4.91), in which each term has the form Hj cos�j where
j ≡ {j1, k1,m1, j2, k2,m2} is a vector of integers, Hj is a function of the ac-
tions of the two planets, and�j ≡ j1�1+k1$1+m1⌦1−j2�2−k2$2−m2⌦2.
The terms that govern the dynamics of a (p+ q) ∶ p mean-motion resonance
are those in which�j varies slowly when the mean motions �̇1 and �̇2 are in
the ratio (p+q)�p, which requires that (p+q)�q = j2�j1. Without loss of gen-
erality, we can assume that p+q and q have no common factor, so this condi-
tion implies that j1 = rp and j2 = r(p+q)where r is a nonzero integer. Then
equation (4.93) implies that k1+m1−k2−m2 = rq. Since∑�ai� ≥ ∑i ai for
any sequence {ai}, we must have �k1�+�k2�+�m1�+�m2� ≥ �rq� and then equa-
tion (4.92) implies that the amplitude Hj1k1m1j2k2m2(a1, e1, I1, a2, e2, I2)
associated with the resonance is O(✏�rq�). Since �r� ≥ 1 the largest ampli-
tudes, corresponding to the strongest resonances, have �r� = 1 and these
are O(✏�q�). Therefore if the eccentricities and inclinations are small, res-
onances of the form (p ± 1) ∶ p are much stronger than those of the form(p ± 2) ∶ p, these are much stronger than (p ± 3) ∶ p resonances, and so on.
In practice this means that only a small set of resonances are likely to be
strong enough to have an important effect on the dynamics.

Second, if planets or satellites form independently and their masses are
small, should not the fraction that are in resonance be small, and if so then
why is the dynamics of resonances important? In fact, the fraction of solar-
system objects found in some kind of resonance is remarkably large. Nep-
tune and Pluto are in a 3:2 mean-motion resonance (§6.4); Mercury is in a
3:2 spin-orbit resonance (§7.2); Saturn’s satellites Mimas and Tethys are in
a 2:1 mean-motion resonance, as are its satellites Enceladus and Dione; Sat-
urn’s satellites Titan and Hyperion are in a 4:3 mean-motion resonance; and
Jupiter’s satellites Io, Europa and Ganymede are in a three-body resonant
chain (the Laplace resonance) in which their mean motions are related by
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nIo − 3nEuropa + 2nGanymede = 0. Members of the Hilda group of asteroids
are in a 3:2 resonance with Jupiter, and many trans-Neptunian objects are in
resonances with Neptune (§9.6). Most inner satellites and the Moon are in
synchronous rotation, corresponding to a 1:1 spin-orbit resonance. Saturn’s
satellites Janus and Epimetheus are in a 1:1 mean-motion resonance (§3.2),
and there are thousands of asteroids in 1:1 mean-motion resonances with
Jupiter (the Trojan asteroids, see §3.1.1).

The most likely explanation for the large number of resonant configura-
tions is that slow changes in the properties of the system have led to slow
changes in the mean motions, spins and other dynamical frequencies. These
changes can cause the ratios of mean motions or other frequencies to drift
through resonance. As we show later in this chapter, if the drift is slow
enough and the resonance is strong enough, the system can be trapped in
resonance and then will remain in resonance even as the planetary system
continues to evolve.

Mean-motion resonances are also found in exoplanetary systems. One
of the most exotic examples is Kepler-223, which contains four planets that
are found in two three-body resonant chains and one four-body chain, with
the mean motions satisfying1

nb − 2nc + nd = 0, nc − 3nd + 2ne = 0 and
3nb − 4nc − 3nd + 4ne = 0 (Mills et al. 2016). Another example is the
planetary system in TRAPPIST-1, a nearby (12 pc), low-mass (0.08M⊙) star
containing seven transiting planets with orbital periods ranging from 1.51 d
to 18.77 d, named TRAPPIST-1b to TRAPPIST-1h. The planets are found
in a complex, interlocking set of five three-body mean-motion resonances
such as 2nb − 5nc + 3nd = 0 and nc − 3nd + 2ne = 0 (Luger et al. 2017).

A broader view of the occurrence of resonances in exoplanet systems is
provided by Figure 6.1, which plots the period ratios of all pairs of planets
in a given system. The figure shows two histograms, one for a sample of
130 multi-planet systems discovered by radial-velocity surveys, and one for
439 systems discovered by the Kepler transit survey. The plots show tanta-
lizing hints of a concentration of planets near the strongest resonances—in
particular there is a strong, narrow peak at the 3:2 resonance in the Kepler

1 Typically planets in a given system are labeled b, c, d, and so forth, from the inside out.
Label “a” is reserved for the host star.
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Figure 6.1: Distribution of period ratios in multi-planet systems. The open his-
togram shows systems discovered by the Kepler mission and the filled histogram
shows systems discovered by radial-velocity surveys. A system with n planets con-
tributes 1

2
n(n − 1) data points, found by taking the ratio of the larger to the smaller

period for all possible pairs of planets. Some of the (p + 1) ∶ p and (p + 2) ∶ p
resonance locations are marked by dashed and dotted lines respectively. Data from
the NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/index.html.

https://exoplanetarchive.ipac.caltech.edu/index.html
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sample and peaks at the 3:2 and 2:1 resonances in the radial-velocity sam-
ple. In contrast, the Kepler sample exhibits a significant dip in the number
of planets near the 2:1 resonance.

6.1 The pendulum

The pendulum is the fundamental model for resonance, and we begin our
study of resonances with a review of its properties.

The pendulum Hamiltonian for a particle of mass m can be written

H(q, p) = p
2

2m
−m!2

cos q. (6.1)

For a simple pendulum of length L in a gravitational field g we have !2 =
g�L, but the pendulum Hamiltonian is more general than this specific sys-
tem. We assume that m > 0; if not, we simply replace q by q

′ = q −⇡ and m

by m
′ = −m.

Hamilton’s equations read

q̇ = @H
@p
= p

m
, ṗ = −@H

@q
= −m!2

sin q, (6.2)

and by eliminating p we have

q̈ = −!2
sin q. (6.3)

The equilibrium solutions have p = 0 and q = n⇡, where n is an integer. The
stability of the equilibria can be determined by writing q = n⇡ + q1, where
q1 � 1. Then equation (6.3) becomes q̈1 = −!2(−1)nq1+O(q31); if we drop
the higher order terms, the solutions are the sum of terms ∝ exp(±i!t) if
n is even, and ∝ exp(±!t) if n is odd. Thus the equilibria with even n

are stable and those with odd n are unstable; the former are minima of the
Hamiltonian and the latter are saddle points (Figure 6.2).

The Hamiltonian is conserved along a trajectory, so if m✏ is the constant
value of the Hamiltonian we can rewrite equations (6.1) and (6.2) as

p =mq̇ = ±m[2(✏ + !2
cos q)]1�2. (6.4)
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Figure 6.2: Phase plane of the pendulum Hamiltonian (6.1). Librating regions with
H <m!2 are shaded in gray, and circulating regions with H >m!2 are unshaded.
The directions of motion are indicated by arrows.

From equation (6.1) the smallest possible value of the Hamiltonian is −m!2

so ✏ ≥ −!2. If −!2 < ✏ < !2, then q̇ = 0 at q = 2n⇡ ± qmax where
qmax = cos−1(−✏�!2), and motion in the regions where cos q < cos qmax is
forbidden; for example, if n = 0 then q oscillates between −qmax and qmax.
In this case the pendulum is said to librate. The period of the oscillation is2

P = 2� qmax

−qmax

dq

�q̇� = 2�
qmax

−qmax

dq

[2(✏ + !2 cos q)]1�2 =
4

!
K(k), 0 ≤ k < 1,

(6.5)

2 The last equality is proved by changing the integration variable to �, where � is defined by
equation (6.9), and then using the first of equations (C.16).
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where K(⋅) is an elliptic integral (Appendix C.4) and

k = �✏ + !2

2!2
�1�2 . (6.6)

The argument k is related to the amplitude qmax by k = sin
1
2qmax. In the

limit ✏ → −!2 (k → 0), the pendulum equation of motion becomes that of
a harmonic oscillator and P → 2⇡�!. In contrast as ✏ → !

2 (k → 1), the
period approaches infinity.

The action for librating orbits is

J = 1

2⇡
� dq p = 2m

⇡
� qmax

0
dq [2(✏ + !2

cos q)]1�2
= 8m!

⇡
[E(k) − (1 − k2)K(k)], 0 ≤ k < 1, (6.7)

where E(⋅) is also an elliptic integral. We choose the zero point of the
angle variable ✓ that is conjugate to this action to be at q = 0, p > 0. Then ✓
increases from 0 to 1

2⇡ as q increases from 0 to qmax with p > 0, increases
from 1

2⇡ to 3
2⇡ as q varies from qmax to −qmax with p < 0, and finally

increases to 2⇡ as q varies from −qmax to 0 with p > 0. An explicit formula
for the range 0 to 1

2⇡ is (Problem 6.1)

✓ = ⇡F (�, k)
2K(k) , 0 ≤ k < 1. (6.8)

Here 0 ≤ � ≤ 1
2⇡ and � is related to q by

k sin� = sin 1
2q; (6.9)

the function F (�, k) is an incomplete elliptic integral (eq. C.17). The rela-
tion between q and ✓ in other quadrants is easy to determine using symmetry
arguments.

If ✏ > !2 then equation (6.4) shows that q̇ can never vanish, and the
pendulum is said to circulate. In this case the period is defined as the time
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needed for q to change by ±2⇡,3

P = � 2⇡

0

dq

�q̇� = �
2⇡

0

dq

[2(✏ + !2 cos q)]1�2 =
2

k!
K(k−1), k > 1. (6.10)

In the limit ✏ → ∞, the period approaches ⇡(2�✏)1�2, as expected since the
influence of the potential −!2

cos q becomes negligible so the trajectory has
constant velocity q̇ = ±(2✏)1�2. As ✏→ !

2 the period approaches infinity.
The action for circulating orbits is found by treating the coordinate q as

an angle that varies between 0 and 2⇡:

J = 1

2⇡
� 2⇡

0
dq p = m

⇡
� ⇡

0
dq [2(✏ + !2

cos q)]1�2
= 4m!k

⇡
E(k−1), k > 1. (6.11)

The zero point of the conjugate angle ✓ is chosen to correspond to q = 0.
Then ✓ increases from 0 to 2⇡ as q increases from 0 to 2⇡ when p > 0, or as
q decreases from 0 to −2⇡ when p < 0. An explicit formula for the range 0
to ⇡ when p > 0 is (Problem 6.1)

✓ = ⇡F (12q, k−1)
K(k−1) , k > 1. (6.12)

The trajectory with ✏ = !2 has k = 1, separating librating from circulat-
ing trajectories, and is called the separatrix. The period of the separatrix
orbit is infinite. Notice that the action of the separatrix orbit is 8m!�⇡
according to equation (6.7) and 4m!�⇡ according to equation (6.11), a con-
sequence of the different geometry used to compute the action for librating
and circulating orbits. The trajectory of a particle on the separatrix is given
in Problem 6.2.

The width of the resonance is defined as the difference between the
largest and smallest momentum in librating orbits and is given by

w = pmax − pmin = 4m!. (6.13)

3 The last equality is proved by changing the integration variable to � = 1

2
q and using the

first of equations (C.16).
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6.1.1 The torqued pendulum
The simplest model for possible resonance trapping in Hamiltonian systems
is the torqued pendulum. Its equation of motion is

q̈ = −!2
sin q +N(t), (6.14)

which describes a pendulum of length L in a gravitational field g = !2
L

subjected to a torque mL
2
N(t). For brevity let us call N(t) the torque.

This equation of motion can be derived from the Hamiltonian

H1(q, p, t) = p
2

2m
−m!2

cos q −mN(t)q, (6.15)

or

H2(q, p′, t) = [p′ + c(t)]2
2m

−m!2
cos q, (6.16)

where mq̇ = p = p′ + c(t) and ċ(t) =mN(t).

Figure 6.3: The potential
�(q) (eq. 6.17) for a pen-
dulum subjected to a con-
stant torque N > 0. The
lower curve shows �(q)
for the case of a large
torque, N > !2, and the
upper curve shows the case
N < !2.

If the torque is time-independent, the Hamiltonian of equation (6.15)
is also time-independent and describes motion of a particle in the potential
m�(q), where

�(q) = −!2
cos q −Nq. (6.17)
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This potential is plotted in Figure 6.3. Notice that there are equilibrium
points (d��dq = 0) if and only if �N � < !2. Thus if the torque is sufficiently
large, �N � > !2, the pendulum can only circulate. In particular, if N > 0

and the initial motion is retrograde (q̇ < 0), the pendulum will travel to
the left in Figure 6.3, climbing the potential and circulating more and more
slowly until eventually it reverses direction and starts traveling to the right,
circulating more and more rapidly in the prograde direction (q̇ > 0).

If however �N � < !2, the pendulum can either circulate or librate. A
librating pendulum is restricted to one of the potential wells in Figure 6.3,
and the angle q varies only over a limited range. In this case we say that
the pendulum is trapped in resonance. In this simple model an initially
circulating pendulum can never librate; we say that the pendulum can never
be captured in resonance. In general resonance capture requires that either
the torque or the characteristic frequency ! of the pendulum varies with
time; the mechanics of resonance capture in this case are described in §6.3.

6.1.2 Resonances in Hamiltonian systems
The Hamiltonian for a nearly integrable system can be written (eq. 4.47)

H(✓,J, t) =H0(J) + ✏�
m

Hm(J, t) cos[m ⋅ ✓ − �m(t)]. (6.18)

Here H0(J) is the integrable Hamiltonian (the Kepler Hamiltonian in the
case of planetary systems), ✓ and J are the corresponding angle-action vari-
ables, m is an integer n-tuple where n is the number of degrees of freedom,
and �m is a phase. Note that H−m = Hm and �−m = −�m (see eq. 4.45),
so the terms with index ±m are identical.

A resonance arises when the argument of one or more of the cosine
terms varies slowly with time. Since the evolution of the angles is dominated
by the unperturbed Hamiltonian, ✓̇ � @H0(J)�@J = ⌦(J) so resonance
requires m ⋅ ⌦(J) − �̇m � 0. This condition can only be satisfied if �̇m
is approximately constant, so we write �m = �0m + !mt where !m is a
constant. Then exact resonance occurs when

m ⋅⌦ = !m. (6.19)
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In the simplest and most common case, a single term in the potential
dominates the resonant response, so we are interested in the dynamics gov-
erned by the Hamiltonian

H(✓,J, t) =H0(J) + ✏Hm(J) cos(m ⋅ ✓ − �0 − !t); (6.20)

here we have assumed for simplicity that the amplitude Hm(J) is time-
independent and dropped the subscripts “m” on �0 and !. To study this
Hamiltonian we perform a canonical transformation to new angle-action
variables. The new variables consist of one angle-action pair (�s, Js) (“s”
for “slow”) in which we will isolate the effects of the resonance, and n − 1
angle-action pairs (�f,i, Jf,i), i = 1, . . . , n−1 (“f” for “fast”). We use the no-
tation �f and Jf for the (n − 1)-dimensional vectors (�f,1, . . . ,�f,n−1) and(Jf1, . . . , Jf,n−1). The transformation is defined by a generating function
that depends on the old angles, the new actions, and time:

S2(✓, Js,Jf , t) = Js(m ⋅ ✓ − �0 − !t) + Jf1✓1 +� + Jf,n−1✓n−1. (6.21)

Then from equations (D.63),

Jn = @S2

@✓n

=mnJs, �s = @S2

@Js
=m ⋅ ✓ − �0 − !t,

Ji = @S2

@✓i

=miJs + Jf,i, �f,i = @S2

@Jf,i
= ✓i, i = 1, . . . , n − 1. (6.22)

The motivation for the terms “fast” and “slow” is that near the resonance,
�s varies much more slowly than any of the other new angles.

The Hamiltonian in the new variables is

Hres(�s,�f , Js,Jf) =H(✓,J, t) + @S2

@t
=H(✓,J, t) − !Js (6.23)

=H0[J(Js,Jf)] + ✏Hm[J(Js,Jf)] cos�s − !Js.
Here we have written the relation (6.22) between the old and new actions as
J(Js,Jf).

The Hamiltonian Hres is autonomous (time-independent) and is also in-
dependent of the fast angles �f1, . . . ,�f,n−1. Thus both the Hamiltonian and



314 CHAPTER 6. RESONANCES

the n − 1 fast actions are conserved, and the dynamics have been reduced
from those of a time-dependent Hamiltonian with n degrees of freedom to
an autonomous Hamiltonian with only one degree of freedom.

Since the perturbation is weak (✏� 1) the variations in Js are expected
to be small, even near resonance. Therefore we write Js = Js,res + �Js,
where Js,res is the slow action corresponding to exact resonance (eq. 6.19)
at the fixed values of the fast actions. We expand H0 in a Taylor series
around Js,res, again at the fixed values of the fast actions. Equations (6.22)
show that (@Ji�@Js)Jf =mi so

�@H0

@Js
�
Jf

= n�
i=1

mi

@H0

@Ji

= n�
i=1

mi⌦i, �@2H0

@J2
s

�
Jf

= n�
i,j=1

mimj

@
2
H0

@Ji@Jj

,

(6.24)
and the Taylor series becomes

H0[J(Js,Jf)] =H0[J(Js,res,Jf)] + n�
i=1

mi

@H0

@Ji

�Js

+ 1
2

n�
i,j=1

mimj

@
2
H0

@Ji@Jj

(�Js)2 +O[(�Js)3]. (6.25)

We write the final term in the resonant Hamiltonian (6.23) as −!(Js,res +
�Js). Using the resonance condition (6.19), we find that the terms linear in
�Js cancel in the resonant Hamiltonian. The constant terms play no role in
the dynamics and can be dropped, so the resonant Hamiltonian simplifies to

Hres = 1
2

n�
i,j=1

mimj

@
2
H0

@Ji@Jj

(�Js)2 + ✏Hm[J(Js,res +�Js,Jf)] cos�s.
(6.26)

We can drop the dependence of the small term ✏Hm on�Js to obtain finally

Hres = 1
2↵(�Js)2 + � cos�s, (6.27)

where

↵ ≡ n�
i,j=1

mimj

@
2
H0

@Ji@Jj

, � ≡ ✏Hm, (6.28)
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both evaluated at J(Js,res,Jf). This is the pendulum Hamiltonian of equa-
tion (6.1), apart from the changes in notation m

−1 → ↵ and −m!2 → �.
In the pendulum Hamiltonian the inverse mass m−1 is always positive and−m!2 is always negative. This is not so for ↵ and �, which can have either
sign. However, we can always change the signs of ↵ and � by the transfor-
mations described in Box 6.1. There is therefore no loss in generality if we
assume that ↵ > 0 and � < 0, as they are for the pendulum.

Box 6.1: Symmetry relations for resonant Hamiltonians
A general resonant Hamiltonian can be written in the form

H(I,�) = A(I) +B(I) cos�, (a)

where (I,�) is an angle-action pair for the unperturbed Hamiltonian A(I). The
Hamiltonians (6.27), (6.37) and (6.58) are all of this form.

Changes in the definition of the angle variable � lead to modifications in the
Hamiltonian (a). If we let � = �

′ + ⇡, then (I,�′) satisfy Hamilton’s equations
for the Hamiltonian

H
′(I,�′) = A(I) −B(I) cos�′. (b)

Similarly, if we let � = −�′′, then (I,�′′) satisfy Hamilton’s equations for the
Hamiltonian

H
′′(I,�′′) = −A(I) −B(I) cos�′′. (c)

Finally, if � = ⇡ −�′′′, then (I,�′′′) satisfy Hamilton’s equations for the Hamil-
tonian

H
′′′(I,�′′′) = −A(I) +B(I) cos�′′′. (d)

These arguments show that the pendulum Hamiltonian describes the
generic behavior of nearly integrable Hamiltonian systems at resonances.
In particular the width of the resonance, defined as in equation (6.13), is
obtained by replacing m by �↵�−1 and m!

2 by ���:
w = Js,max −�Js,min = 4 ��

↵
�1�2 ; (6.29)

thus the width of the resonance in action space varies as the square root of
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the strength of the perturbation. The libration period for small amplitudes is
given by equation (6.5) in the limit k → 0,

P = 2⇡

�↵��1�2 , (6.30)

so the libration period varies as the inverse square root of the strength of
the perturbation. Weaker resonances are narrower and have larger libration
periods.

6.2 Resonance for circular orbits

The pendulum model of the preceding section describes resonances in a
wide variety of Hamiltonian systems, but not all of them. The most impor-
tant exception in celestial mechanics occurs for nearly circular orbits.

To discuss resonant dynamics in this case we shall assume that the mo-
tion is restricted to the equatorial plane, so there are only two degrees of
freedom. We use the angle-action variables defined in equation (1.88),

J1 = ⇤ = (GMa)1�2, J2 = ⇤ −L = (GMa)1�2[1 − (1 − e2)1�2],
✓1 = � = ` +$, ✓2 = −$, (6.31)

where as usual a, e, $ and � are the semimajor axis, eccentricity, longitude
of periapsis and mean longitude. We examine the behavior of a test particle4

subjected to perturbations from a planet of mass Mp with orbital elements
ap, ep,$p and �p. To first order in the eccentricities e and ep, the disturbing
function is given by equations (4.98) and (4.104) as

H1 = ✏ ∞�
m=−∞�Am cosm(� − �p) +Bme cos[m� − (m + 1)�p +$]

+Cmep cos[m� − (m + 1)�p +$p]�. (6.32)

Here Am, Bm and Cm are functions of the semimajor axes, which we can
treat as constants since the variations in semimajor axes are small—even in
4 The case of a resonance between two bodies of comparable mass is discussed in Problem

6.8.
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resonance—if the planet mass is small. The terms proportional to Am are
only in resonance if the mean motions n = �̇ and np = �̇p are equal; this case
requires that the orbits nearly coincide and is better treated using the anal-
ysis of §3.2 for co-orbital satellites. The terms proportional to Cm involve
the eccentricity ep of the perturbing planet and can be treated using the pen-
dulum Hamiltonian, as described in the preceding section. Thus from now
on, we focus on the terms proportional to Bm. For small eccentricity we
can write J2 � 1

2(GMa)1�2e2, so the factor Bme can be rewritten without
additional loss of accuracy as (2J2)1�2Hm, where Hm = Bm(GMa)−1�4.
Isolating the resonance belonging to a single m, we arrive at the Hamilto-
nian (cf. eq. 6.20)

H(✓,J, t) =H0(J) + ✏(2J2)1�2Hm cos(m✓1 − ✓2 − !t − �0), (6.33)

where ! = (m + 1)np and �0 is a constant.
We specialize to the case where H0 is the Kepler Hamiltonian, H0 =−1

2(GM)2�J2
1 . In the absence of the perturbation ✓̇1 = n = @H0�@J1 =(GM�a3)1�2 and ✓̇2 = 0, so exact resonance occurs when n = (1+1�m)np.

For m > 0 this condition implies that the test particle orbits interior to the
perturbing planet, while for m < 0 the test particle is exterior to the planet.

We now follow the route from equation (6.20) to (6.27) to derive the
resonant Hamiltonian. We define the canonical transformation to fast and
slow angle-action variables as

S2(✓1, ✓2, Js, Jf , t) = Js(m✓1 − ✓2 − !t − �0) + Jf✓1. (6.34)

Then from equations (D.63),

J1 = @S2

@✓1
=mJs + Jf , �s = @S2

@Js
=m✓1 − ✓2 − !t − �0,

J2 = @S2

@✓2
= −Js, �f = @S2

@Jf
= ✓1. (6.35)

The resonant Hamiltonian in the new variables is

Hres =H(✓,J, t) + @S2

@t
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= − (GM)2
2(mJs + Jf)2 + ✏(−2Js)1�2Hm cos�s − !Js. (6.36)

The Hamiltonian is independent of the fast angle �f , so the fast action Jf is
constant.

In the preceding section we assumed that the fractional variations in the
slow action Js were small, so the coefficient of cos�s could be set to a
constant. This assumption is no longer correct in the case we are examining
here, since the eccentricity and therefore Js ∝ e

2 is initially small but can
be excited by the resonance. Instead we can assume that the coefficient Hm

is constant.
We now expand the first term as a Taylor series around Js = 0, using the

result (1 + x)−2 = 1 − 2x + 3x2 + O(x3). After dropping an unimportant
constant term, we have

Hres = ↵Js + �J2
s + �(−2Js)1�2 cos�s, (6.37)

where

↵ ≡ (GM)2m
J
3
f

− !, � ≡ −3(GM)2m2

2J4
f

, � ≡ ✏Hm. (6.38)

The factor ↵ has a simple physical interpretation. If the eccentricity is small
then Js is small, so Jf � J1 = ⇤ = (GMa)1�2. Moreover ! = (m + 1)np.
Then ↵ = mn − (m + 1)np, which parametrizes the distance of the test
particle away from exact resonance with the planet.

To study the behavior of orbits in this Hamiltonian, we first rescale it to
a standard form. To do this, we begin with Hamilton’s equations

d�s

dt
= @Hres

@Js
,

dJs

dt
= −@Hres

@�s
. (6.39)

Now let Js = cR, Hres(Js,�s) = bH
′
res(R,�s), t = t0⌧ , where b, c and t0

are constants. Then R is a momentum conjugate to the coordinate �s and
H
′
res is a Hamiltonian relative to the rescaled time ⌧ if

d�s

d⌧
= @H ′res

@R
,

dR

d⌧
= −@H ′res

@�s
. (6.40)
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Equations (6.39) and (6.40) can be satisfied simultaneously if and only if
t0 = c�b.

We now set

b = ���4�3
24�3���1�3 , c = − � �

2�
�2�3 , t0 = � 4

��2
�1�3 . (6.41)

The rescaled Hamiltonian is

H
′
res = −� sgn(�)R + sgn(�)R2 + 2 sgn(�)(2R)1�2 cos�s, (6.42)

where

� ≡ sgn(�) 2
2�3
↵

���2�1�3 (6.43)

and sgn(x) is +1 (−1) if x is positive (negative). We can eliminate the
dependence of the Hamiltonian on the signs of � and � by defining a new
angle, following the arguments given in Box 6.1. Let

r = � sgn(�)�s if �� < 0,
sgn(�)�s + ⇡ if �� > 0. (6.44)

Then (r,R) is a canonical coordinate-momentum pair, with Hamiltonian

� = −�R +R2 − 2(2R)1�2 cos r. (6.45)

This is the Henrard–Lemaitre Hamiltonian (Henrard & Lemaitre 1983),
sometimes called the second fundamental model for resonance—the first
one being the pendulum.

For some purposes it is more useful to write the Hamiltonian in terms
of a new canonical momentum x and conjugate coordinate y defined by the
generating function S2(r, x) = 1

2x
2
tan r. Then from equations (D.63),

R = @S2

@r
= x

2

2 cos2 r
, y = x tan r, (6.46)

and these equations yield

x = (2R)1�2 cos r, y = (2R)1�2 sin r. (6.47)
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In these coordinates

� = −1
2�(x2 + y2) + 1

4(x2 + y2)2 − 2x. (6.48)

By rescaling the Hamiltonian to a standard form, we can make order-
of-magnitude estimates of the response of the orbit to the resonance. The
strength of the perturbing Hamiltonian is proportional to � and � is of order
Mp�M , the ratio of the planet mass to the stellar mass. The scalings (6.41)
imply that the characteristic eccentricity excited by the resonance scales as
J
1�2
s ∝ c

1�2 ∝ �
1�3 ∝ (Mp�M)1�3. The small exponent of 1

3 means that
even a small planet can excite a relatively large eccentricity at resonance.
The characteristic timescale t0 for resonant orbits is given by nt0 ∝ �

−2�3 ∝(Mp�M)−2�3.
The contours of the Hamiltonian � are plotted in the Cartesian coordi-

nates (x, y) for several values of the parameter � in Figure 6.4. The plots
show that for � < 3 there is only one extremum of the Hamiltonian, repre-
senting an equilibrium solution. For� > 3 there are three extrema, of which
the leftmost is a saddle point and an unstable equilibrium, while the other
two are stable. Two separatrices emerge from the saddle point, and these
divide the phase space into three zones: an internal zone inside the smaller
separatrix, a resonance zone between the two separatrices, and an external
zone outside the larger separatrix.

As defined in the preceding section, an orbit is librating if it has a slow
angle �s that oscillates between fixed values, so �̇s periodically changes
sign, while circulating orbits have �̇s of fixed sign. In the Henrard–Lemaitre
Hamiltonian, it is not useful to distinguish librating orbits from circulating
ones. All of the panels of Figure 6.4 contain both librating and circulat-
ing orbits, depending on whether the two intersections of the corresponding
level curve of the Hamiltonian with the x-axis have the same or opposite
signs, but this distinction has no particular dynamical significance. The di-
vision into internal, external and resonant zones replaces the division into
librating and circulating zones.

Since y and x are a canonical coordinate-momentum pair, the area en-
closed by a contour of the Hamiltonian in Figure 6.4 is the same in all canon-
ical variables. Moreover the area is an adiabatic invariant (Appendix D.10),
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Figure 6.4: Contours of the Hamiltonian (6.48). The gray shading in plots with� ≥
3 marks the resonance zone, which surrounds the internal zone and is surrounded by
the external zone. The coordinates are x and y.

that is, the area enclosed by a trajectory is invariant under slow changes in
the parameters of the Hamiltonian. Figure 6.5 shows the areas of the inter-
nal and resonance zones as a function of the parameter �. This plot will be
used in §6.3 to describe evolution through resonance.

The behavior described in this section is governed by a resonant term in
the Hamiltonian proportional to e cos[m�− (m+1)�p +$] (eq. 6.32). The
characteristic feature of this term is that the strength of the perturbation is
proportional to the first power of the eccentricity or the square root of the
corresponding action. These are sometimes called eccentricity resonances.
There are also inclination resonances, in which the resonant Hamiltonian
is proportional to I

2
cos[m�−(m+2)�p+2⌦] (eq. 4.99). Here the strength
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Figure 6.5: The phase-space areas of the internal and resonance zones of the Hamil-
tonian (6.48). See Problem 6.4.

is proportional to the square of the inclination or the first power of the corre-
sponding action L−Lz (eq. 1.88). Inclination resonances can be investigated
using methods similar to those used in this section (Borderies & Goldreich
1984).

More generally, any resonant Hamiltonian contains a cosine function
with argument m�−(m+k)�p plus some combination of angles such as $
and ⌦ that are stationary in the unperturbed Kepler orbit. Exact resonance
occurs when mn − (m + k)np = 0, where n and np are the mean motions
of the test particle and the perturbing body. Resonances with k = 0, called
co-orbital resonances, are discussed in §3.2. Resonances with m = k = 0

are called secular resonances and all others are mean-motion resonances.
Such resonances are sometimes labeled by the ratio n�np (e.g., a 2:1 res-
onance). Resonances with k�m > 0 have n > np, so the test particle has
smaller semimajor axis than the perturber; these are interior resonances,
while resonances with n < np are exterior resonances.
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6.2.1 The resonance-overlap criterion for nearly circular orbits
The analysis so far in this section has been based on the assumption that
a single near-resonant term in the disturbing function (6.32) dominates the
dynamics. This assumption is valid if the width of the resonance is much
less than the distance in action space to adjacent resonances; if not, the
resonances overlap and the motion is likely to be chaotic (Appendix F.1).

For the Hamiltonian (6.33), exact resonance occurs when the mean mo-
tion is n = (1 + 1�m)np, where np is the mean motion of the perturber and
m is the index characterizing the resonance. Thus as �m� → ∞, the separa-
tion of the resonances in mean motion or semimajor axis becomes smaller.
Moreover the test particle and perturber become closer, so the strength of
the perturbations and thus the resonance width become larger. Therefore
resonance overlap is inevitable if �m� is large enough. We now make this
argument quantitative.

From equations (6.33) or (6.88) the strength of the resonance is para-
metrized by

Hm = G3�4
Mp

apa
1�4M1�4 �12↵�m,−2 + (m + 1 + 1

2↵D)bm+11�2 �. (6.49)

Here Mp and ap are the mass and semimajor axis of the perturber, M is
the mass of the central star, ↵ = a�ap, and we have assumed that m �= 0.
The term involving the Laplace coefficient bm+11�2 (↵) comes from equation
(4.98) and the term involving the Kronecker delta �m,−2 comes from the
indirect potential. As usual we assume that Mp�M � 1, which implies
that resonance overlap occurs only close to the planet, when �m� � 1. Thus
we can drop the contribution from the indirect potential and assume that
a � ap and ↵ � 1. More precisely, the resonance condition n = (1+1�m)np

together with Kepler’s law implies

a − ap = ap(1 + 1�m)−2�3 − ap � −2ap
3m

or ↵ � 1 − 2

3m
. (6.50)

For �m� � 1, equations (4.127) and (C.34) imply that

b
m+1
1�2 (↵) � 2

⇡
K0[�m(1 − ↵)�],
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Db
m+1
1�2 (↵) � 2m

⇡
sgn[m(1 − ↵)]K1[�m(1 − ↵)�], (6.51)

where K0(⋅) and K1(⋅) are modified Bessel functions, described in Ap-
pendix C.5. Equation (6.50) implies that at resonance the argument of the
Bessel functions is 2

3 , so

Hm = 2.5195mG3�4
Mp

⇡a
5�4
p M1�4 �1 +O(m−1)�, (6.52)

where the factor 2.5195 = 2K0(23) +K1(23) (cf. eq. 3.131).
The resonance-overlap criterion is only approximate, so we parametrize

the resonance “width” to be used in this criterion as �R, where R is the
rescaled dimensionless momentum and �R is of order unity. Then the width
in terms of the slow action is �Js = �c��R, where c is defined by equation
(6.41). The fast action Jf = J1 −mJs (eq. 6.35) is conserved, so the width
in terms of J1 is �J1 = �mc��R. Since J1 = (GMa)1�2, the width in terms
of semimajor axis is �a � 2�mc�a1�2�R�(GM)1�2 � 2�mc��R�(npap).
The distance between resonances differing in index by �m � m is ob-
tained by differentiating equation (6.50) to obtain �a � 2ap�m�(3m2).
The distance between adjacent resonances corresponds to ��m� = 1, thus��a� = 2ap�(3m2). Resonances overlap if �a > ��a� or

�m�3 > npa
2
p

3�c��R. (6.53)

For small eccentricities and �m� � 1, equations (6.38), (6.41) and (6.52)
imply that

�c� = 2.5195
2�3G1�2

M
2�3
p a

1�2
p(3⇡)2�3�m�2�3M1�6 ; (6.54)

in deriving this we have replaced Jf by J1 = (GMa)1�2, which is valid
so long as the eccentricity is sufficiently small. Combining this result with
(6.53), we find that resonance overlap occurs when

�m� > 0.910� M
Mp
�2�7 (�R)−3�7, (6.55)
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or in terms of the semimajor axis difference, when

�a − ap�
ap

< 0.732�Mp

M
�2�7 (�R)3�7. (6.56)

This result demonstrates that the width of the chaotic zone around a
planet of mass Mp should scale as M2�7

p for nearly circular orbits. We have
not attempted to determine the appropriate value of the width �R since the
resonance-overlap criterion is approximate anyway, but it should be of order
unity. Analytic calculations of the width, supplemented by numerical orbit
integrations, imply that the boundary of the chaotic zone is (Wisdom 1980;
Gladman 1993; Deck et al. 2013; Morrison & Malhotra 2015)

�a − ap�
ap

� f �Mp

M
�2�7 , (6.57)

where f � 1.2–1.5. The boundary is fuzzy because it contains a mixture of
chaotic and regular orbits. A more general discussion of the stability and
orbits in two-planet systems, including a heuristic derivation of equation
(6.57), is given in §3.5.

6.3 Resonance capture

A dynamical system that is described by angle-action variables is said to
be trapped in resonance if some linear combination of the angle variables
librates, or if the system is found in a resonance zone as described in the
preceding section. The system is said to be captured in resonance if the
combination of angle variables changes from circulation to libration, or if
the system enters the resonance zone. In the absence of dissipation, external
forces, or changes in the parameters of the dynamical system, permanent
capture in resonance can never occur: if there is a trajectory leading to cap-
ture, then there must also be a time-reversed trajectory leading to escape
from the resonance, and eventually the system will take this path to exit the
resonance.

Permanent capture can occur if the parameters of the system vary slowly
with time due to processes such as mass loss or tidal dissipation. To explore
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Figure 6.6: The level surfaces of the Hamiltonian (6.58) near a separatrix. The
libration or resonance zone (zone B) is colored gray. The directions of motion of the
orbits are plotted on the assumption that the stable equilibrium is a minimum of the
Hamiltonian.

this process, we can investigate the behavior of trajectories governed by
such resonant Hamiltonians as (6.27) or (6.45) as their parameters are var-
ied. To do so, we follow Henrard (1982) and work with a more general
Hamiltonian,

H(I,�;�) = A(I,�) +B(I,�) cos�, (6.58)

where (I,�) is an angle-action pair in the unperturbed Hamiltonian A(I,�),
and �(⌧) represents some parameter of the system that varies slowly with
time ⌧ . Hamilton’s equations of motion are

d�

d⌧
= @H
@I
= @A
@I
+ @B
@I

cos�,
dI

d⌧
= −@H

@�
= B sin�. (6.59)
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When � is frozen there are equilibria at (I�,��), where

cos�
� = ±1, @(A ±B)

@I
�
I�
= 0. (6.60)

The contours of the Hamiltonian that pass through the unstable equilibria
are the separatrices and the value of the Hamiltonian on the separatrices is
denoted by E

�(�).
To be definite, we shall assume that one of the two equilibria is stable

and the other is unstable, and that (i) the unstable equilibria are at �� = 0

and 2⇡ and the stable equilibrium is at �� = ⇡; (ii) the stable equilibrium is
a minimum of the Hamiltonian. Conditions (i) and (ii) can always be satis-
fied by transformations of the angle variable as described in Box 6.1. The
overall geometry is sketched in Figure 6.6. Note that with these assump-
tions the orbits in the top half of the figure travel to the right, and those in
the bottom half travel to the left. The upper and lower separatrices have
actions I1,2(�,�). We shall say that the Hamiltonian governs the motion
of a “particle,” although of course the results are valid for any Hamiltonian
system.

The action for the Hamiltonian (6.58) is proportional to the area in phase
space enclosed by the trajectory at fixed � (eq. D.72),

J(E,�) = 1

2⇡
� d� I(E,�;�), (6.61)

where I(E,�;�) is obtained by solving E = H(I,�;�) for the action I

in the unperturbed Hamiltonian. The actions for librating and circulating
orbits in the pendulum Hamiltonian are given by equations (6.7) and (6.11).
The action is an adiabatic invariant (Appendix D.10), which means that if
the parameter � varies slowly compared to the orbital period then J(E,�) is
approximately conserved, and this requirement determines how the energy
E changes with �.

To understand resonance capture, we need to know what happens as an
orbit approaches one of the separatrices in Figure 6.6 as a result of slow
changes in the Hamiltonian. In particular, we would like to know whether
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an orbit that is initially circulating to the right (�̇ > 0) evolves into a librat-
ing orbit (resonance capture) or an orbit circulating to the left (resonance
crossing).

Unfortunately the adiabatic invariant is not conserved near the separatri-
ces, for two reasons. The first (trivial) reason is that there is a discontinuity
in J(E,�) across the separatrix, because the geometry of librating and cir-
culating orbits is different. We already encountered this phenomenon in the
pendulum Hamiltonian, as discussed after equation (6.12). A second, more
fundamental problem is that the period of the separatrix orbit is infinite, so
the assumption that � changes slowly compared to the orbital period is not
valid.

Thus we need a more careful treatment of the dynamics near a separa-
trix. The following is a shortened heuristic version of the rigorous analysis
by Henrard (1982). We define the relative energy to be the difference be-
tween the energy of an orbit and the energy of a nearby separatrix,

K(I,�;�) =H(I,�;�) −E�(�). (6.62)

This expression can be rewritten as

K(I,�;�) =H(I,�;�) −H(I,�;�)�
I=I1,2(�,�), (6.63)

depending on whether the orbit is close to the upper or lower separatrix in
Figure 6.6. The rate of change of the relative energy is

dK

d⌧
= �̇ @

@�
H(I,�;�) − �̇ � @

@�
H(I,�;�)�

I=I1,2(�,�)
− �̇ @

@I
[H(I,�;�)]

I=I1,2(�,�)
@

@�
I1,2(�,�), (6.64)

where �̇ ≡ d��d⌧ . The contributions from the first two terms cancel if the
orbit is sufficiently close to the separatrix. The final term can be simplified
by observing that �̇ = d��dt = @H�@I , so we can divide both sides of the
equation by �̇ to obtain

dK

d�
= −�̇ @

@�
I1,2(�,�). (6.65)
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We can now compute the total change in the relative energy as an orbit
traverses the separatrix through an angle of 2⇡ as5

�E1,2 = ∓�̇� 2⇡

0
d�

@

@�
I1,2(�,�), (6.66)

where the − sign applies if the orbit travels from � = 0 to � = 2⇡ on separa-
trix 1, and the + sign applies if it travels in the reverse direction on separatrix
2. The quantity �E1,2 is sometimes called the energy balance.

Now look again at Figure 6.6, where the phase space is divided into two
circulating zones A and C and a librating or resonance zone B. By definition,
the relative energy K is zero on each separatrix, and since we have assumed
that the stable equilibrium is a minimum of the Hamiltonian we must have
K > 0 in zones A and C and K < 0 in zone B. A particle in zone A that is
close to the separatrix circulates with d��d⌧ > 0. At each orbit, as � grows
from 0 to 2⇡, it gains relative energy �E1. Similarly, a particle in zone C
circulates with d��d⌧ < 0. At each orbit it gains relative energy �E2. A
particle in zone B near the separatrices alternately gains energy �E1 when
it orbits near separatrix 1 and�E2 when it orbits near separatrix 2.

Consider a trajectory that starts in zone A, with K > 0. If �E1 > 0, the
trajectory recedes from the separatrix as K increases by �E1 at each orbit,
so it never crosses the separatrix. Thus the only case of interest is�E1 < 0.
In this case the trajectory approaches closer and closer to separatrix 1 until
eventually K becomes negative, and it transitions to separatrix 2. Now if
�E2 < 0 the trajectory continues to alternate between separatrix 1 and sep-
aratrix 2, losing energy on both, so it librates in zone B with smaller and
smaller amplitude until it approaches the stable minimum-energy equilib-
rium.

In contrast, if �E1 < 0, �E2 > 0 and �E1 +�E2 > 0, then the energy
lost on the last passage near separatrix 1 will be more than regained on
the first passage near separatrix 2. Therefore at the end of this passage,
the trajectory has K > 0 and transitions directly from zone A to zone C,

5 Since the time required to traverse the separatrix is infinite, this statement is strictly true
only for orbits that are close to but not on the separatrix, in a sense defined precisely by
Henrard.
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gaining energy �E2 at every orbit and receding from the separatrix. Thus
the particle has crossed the resonance without being captured.

Finally we consider the case where �E1 < 0, �E2 > 0 and �E1 +
�E2 < 0. Since ��E1� is of order �̇ and therefore small, we can assume
that the relative energy is uniformly distributed between 0 and ��E1� as the
particle begins its last passage along separatrix 1. At the end of this pas-
sage, the energy will be uniformly distributed between �E1 < 0 and 0. At
the end of the subsequent first passage along separatrix 2, the energy will
be uniformly distributed between �E1 +�E2 < 0 and �E2 > 0. If this en-
ergy is negative the particle will continue to librate with smaller and smaller
amplitude, losing energy on separatrix 1 and gaining a smaller amount on
separatrix 2. However, if the energy after the first passage along separatrix
2 is positive, the particle will continue to circulate near separatrix 2, gaining
energy at each passage until it escapes into zone C. Thus the probability of
capture in the resonance zone B is

pB = �E1 +�E2

�E1
, (6.67)

while the probability of crossing into zone C is pC = 1 − pB .
Similarly we can describe how a particle librating in zone B escapes

from resonance. The libration amplitude will grow if �E1 + �E2 > 0,
until the particle eventually approaches the separatrix. Then if�E1 > 0 and
�E2 < 0, the particle will escape from resonance into zone A. If �E1 < 0
and �E2 > 0, the particle will escape from resonance into zone C. And if
�E1 > 0 and�E2 > 0, the particle will escape into zone A with probability

pA = �E1

�E1 +�E2
, (6.68)

and it will escape into zone C with probability pC = 1 − pA.
This analysis provides a complete description of how particles are cap-

tured in and escape from resonance when the parameters of the governing
Hamiltonian vary slowly with time.
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6.3.1 Resonance capture in the pendulum Hamiltonian

Here we analyze resonance capture in the torqued pendulum (§6.1.1). We
write the governing Hamiltonian (6.16) as

H(I,�;�) = 1
2↵(�)[I + c(�)]2 + �(�) cos�. (6.69)

For simplicity we assume that ↵ > 0 and � > 0; if necessary this can be
arranged using the transformations in Box 6.1. When � is frozen there are
unstable equilibria at �� = 0,2⇡ and I

� = −c(�). The energy at the unstable
equilibria is E� = �(�), and the separatrices are located at

I1,2(�,�) = −c(�) ± [2�(�)�↵(�)]1�2(1 − cos�)1�2. (6.70)

The corresponding energy balances (6.66) are

�E1,2 = ∓�̇� 2⇡

0
d�

@

@�
I1,2(�,�). (6.71)

Substituting from equation (6.70) and using the result �̇(@f�@�) = df�d⌧ =
ḟ for arbitrary functions f and the integral ∫ 2⇡

0 d� (1− cos�)1�2 = 25�2, we
have

�E1,2 = ±2⇡ċ − 4�̇

(↵�)1�2 +
4�

1�2
↵̇

↵3�2 . (6.72)

The system discussed in §6.1.1 provides a simple example of the appli-
cation of these results. From the Hamiltonian (6.16) we have ↵ = m−1 and
� = m!

2 (after setting q = � + ⇡ to ensure that � > 0). The mass m and
frequency ! are constants, so ↵̇ = �̇ = 0. Thus �E1 = −�E2 = 2⇡ċ, so
�E1 +�E2 = 0. This result implies that (i) the probability of capture for
an initially circulating orbit is zero according to equation (6.67); and (ii) a
librating orbit has no net gain of relative energy, so it does not escape from
resonance. We reached these conclusions already in §6.1.1, but the anal-
ysis here makes it easy to generalize the results to pendulums with slowly
varying mass or length.
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6.3.2 Resonance capture for nearly circular orbits
To understand resonance capture in this case, we investigate the Henrard–
Lemaitre Hamiltonian (6.45),

�(R, r;�) = −�(t)R +R2 − 2(2R)1�2 cos r, (6.73)

in which �(t) is slowly varying. The analysis below follows Henrard &
Lemaitre (1983).

First consider the case in which �(⌧) decreases with time from a large
positive value. Initially, any low-eccentricity trajectory should be in the
internal zone, since this is large when � is large and positive—in this limit
the equation for the inner separatrix is R = 1

2�+O(�1�4). As� shrinks, the
trajectory conserves its adiabatic invariant, which is equal to (2⇡)−1 times
the phase-space area enclosed by the trajectory. However, as � shrinks the
area of the internal zone decreases, becoming zero when � = 3 (see Figure
6.5). Thus the orbit crosses the separatrix before � = 3, at the point where
its initial area equals the area of the internal zone. When this occurs, the
orbit cannot enter the resonance zone, since the area of the resonance zone
is also decreasing as � shrinks (Figure 6.5). Therefore the orbit must jump
to the external zone; its enclosed area after the jump is given by the sum of
the areas of the internal and resonance zones, and this area is conserved as
� continues to decrease. Thus the orbit cannot be captured in resonance,
but its eccentricity is excited as it crosses the resonance. If the eccentricities
long before and long after resonance crossing are ei and ef , then e

2
f
�e2

i
=(Ar+Ai)�Ai, where Ai and Ar are the areas in Figure 6.5 at the point where

the orbit transitions from the internal zone to the external zone.
Now suppose that �(⌧) increases with time. In the distant past, �

was negative and all trajectories were external. As � slowly increases, the
area enclosed by the trajectories is conserved. When � = 3, the resonance
zone suddenly appears and all trajectories with area less than A = 6⇡ (see
Problem 6.4) or R0 < A�(2⇡) = 3 enter the resonance zone. The remaining
trajectories stay in the external zone, but since the area of the internal plus
resonance zones grows without bound as � increases they must eventually
cross the separatrix at the outer edge of the resonance zone. When they
cross, they can be captured into the resonance or cross the resonance into the
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Figure 6.7: The probability of capture in the Hamiltonian (6.73) as a function of
the parameter � at resonance crossing (solid line) or the initial action R0 (dashed
line). Capture is certain if� < 3 or R0 < 3.

internal zone. The probability of capture can be computed using equations
(6.66) and (6.67), with separatrices 1 and 2 replaced by the outer and inner
separatrices that bound the resonance zone. The calculation can be done
either numerically (Henrard & Lemaitre 1983) or analytically (Borderies &
Goldreich 1984). Figure 6.7 shows the capture probability in two ways:
first as a function of the value of � at which resonance capture or crossing
occurs, and second as a function of R0, the dimensionless action of the
orbit in the distant past. The two are related by adiabatic invariance, which
ensures that the phase-space area enclosed by the orbit remains constant
except when the orbit encounters a separatrix at resonance crossing. Thus
2⇡R0, the area enclosed by the orbit in the distant past, must equal the sum
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of the areas of the internal and resonance zones at the time of resonance
crossing.

If the trajectory crosses the resonance into the internal zone, it will re-
main there since the phase-space area of the internal zone grows as � con-
tinues to grow (Figure 6.5). In the distant future, it will be found in an orbit
with dimensionless action Rf such that 2⇡Rf is the area of the internal zone
at the time of resonance crossing. In general Rf < R0—the final eccentri-
city is less than the initial eccentricity—because the phase-space area of the
trajectory jumps to a smaller value when it crosses the resonance.

If the trajectory is captured in the resonance zone it will remain there,
since the phase-space area of the resonance zone grows with �. As � in-
creases, the libration amplitude shrinks and the mean eccentricity and di-
mensionless action grow.

These arguments show that the direction of evolution—the sign of �̇—
plays a central role in resonance capture. If �̇ < 0, capture never occurs. If
�̇ > 0, the orbit may or may not be captured, although capture is certain if
the initial eccentricity is small enough. If the orbit crosses the resonance, the
eccentricity jumps to a larger value when �̇ < 0 and otherwise to a smaller
one.

From equation (6.43), �̇ depends on the parameters ↵, �, � defined in
equations (6.38). Of these, the fractional rate of change of ↵ is largest since
it is nearly zero near resonance. Moreover � is always negative. Thus the
sign of �̇ is the opposite of the sign of ↵̇. From equations (6.31), (6.35) and
(6.38), we have

↵ =mn[1 +m −m(1 − e2)1�2]−3 − (m + 1)np, (6.74)

where np and n are the mean motions of the perturber and the test particle.
For small eccentricities,

↵ �mn − (m + 1)np. (6.75)

For m > 0 resonance occurs when n > np, so the test particle orbits interior
to the perturber and ↵̇ < 0 if ṅ < 0 or ṅp > 0, which means that the ratio
of semimajor axes n�np is approaching unity from above. On the other
hand for m < −1 the test particle orbits exterior to the perturber, and ↵̇ <
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0 if n�np approaches unity from below. Slow changes of the semimajor
axes of the test particle and/or the perturber that cause n�np to approach
unity are called convergent migration, and when n�np recedes from unity
we have divergent migration. We conclude that resonance capture from a
low-eccentricity orbit requires convergent migration, and if the migration is
convergent then capture is certain if the eccentricity is small enough.

This analysis is based on the assumption that the evolution of the Hamil-
tonian is slow, but how slow is slow enough? In particular we have shown
that capture in resonance is certain if the initial eccentricity is zero, �̇ > 0,
and the evolution of �(t) is slow enough. We may then ask, what is the
maximum value of �̇ such that capture is certain from an initially circular
orbit? Since the Henrard–Lemaitre Hamiltonian (6.73) has no free param-
eters once �(t) is specified, we expect that this maximum is some number
f of order unity, that is, capture is certain if 0 < d��d⌧ < f . Numeri-
cal integrations of Hamilton’s equations—best done using equations (6.47)
and (6.48)—show that f = 8.2567 (Friedland 2001; Quillen 2006). We can
express this result in physical units using equation (6.43) for �, equations
(6.38) for � and �, equation (6.41) for t0, and equation (6.75) for ↵. A
zero-eccentricity orbit is always captured at resonance if

0 < d

dt
[(m + 1)np −mn] < 3

2�3�m�4�3f✏4�3�Hm�4�3
4a4�3 . (6.76)

6.4 The Neptune–Pluto resonance

Pluto’s perihelion and aphelion distances, 29.65 au and 49.30 au, span the
semimajor axis of Neptune at 30.07 au. Therefore it is possible that Pluto
could collide with Neptune. In one of the first long-term numerical integra-
tions of the orbits of the planets, Cohen & Hubbard (1965) discovered that
such collisions are avoided because Pluto is locked into a 3:2 mean-motion
resonance with Neptune.

The geometry of the resonance is shown in Figure 6.8, which plots the
orbits of the outer planets and Pluto in a frame rotating with the mean mo-
tion of Neptune. The positions are projected onto the plane of the ecliptic,
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Figure 6.8: The orbits of Jupiter, Saturn, Uranus, Neptune and Pluto for 20000 yr
into the future, in a frame rotating with the mean motion of Neptune. The orbits
have been projected onto the ecliptic plane. The Sun is at the origin.

represented by coordinates x and y, and the orientation of the x-axis is cho-
sen such that Neptune lies near x = 30 au, y = 0. Over the 20000 yr timespan
shown in the figure, the perihelion of Pluto librates around mean positions
90
○ ahead of and 90

○ behind Neptune. Thus although the radial ranges of
the orbits of Neptune and Pluto overlap, the two bodies never come close.
Much longer integrations confirm that this resonance protects Pluto from
close encounters with Neptune for the lifetime of the solar system (Malho-
tra & Williams 1997).
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The resonance involves a slowly varying angle

�s = 3�P − 2�N −$P, (6.77)

where �P and $P are the mean longitude and longitude of perihelion of
Pluto and �N is the mean longitude of Neptune. This angle librates around
180

○ with a period of about 20000 yr and an amplitude of about 85○. When
�s = 180○ and Pluto is at perihelion (�P =$P), then 2(�P − �N) = 180○ so
the two bodies are separated by approximately ±90○ in azimuth, as seen in
Figure 6.8.

We may treat Pluto as a test particle, since its mass is only about 10−4
Neptune masses. We assume for heuristic purposes that Pluto’s eccentricity
and inclination are small—this is not a very good assumption, since e =
0.250 and I = 17.09○, but it allows us to treat the dynamics analytically. The
relevant term in the disturbing function is obtained from equation (4.98). We
replace body 1 by Pluto and body 2 by Neptune; we drop the terms in the
first line, since these are resonant only for bodies co-orbiting with Neptune;
and we drop the terms in the third line, since these are proportional to the
eccentricity of Neptune which is small (eN = 0.0086). We also set the
ordering parameter ✏ = 1. Then the term containing the resonant angle
(6.77) corresponds to m = −3, and we have

H = − GmN

�
= − GmN

aN
eP(2 − 1

2↵D)b21�2(↵) cos�s, (6.78)

where ↵ = aP�aN, the ratio of semimajor axes, and we have used the relation
b
−2
1�2(↵) = b21�2(↵) (eq. 4.106). At the 3:2 resonance ↵ = (32)2�3 = 1.3104,
b
2
1�2 = 0.4712 and Db

2
1�2 = db21�2�d↵ = −1.4549, so

H = −1.8957 GmN

aN
eP cos�s. (6.79)

Analogous expressions for other resonances are given in Table 6.1.
In terms of the angle-action variables (6.31), the slow angle �s =m1✓1+

m2✓2 − 2nNt − 2�N,0 where m1 = 3, m2 = 1, nN is the mean motion of
Neptune and �N,0 is its mean longitude at t = 0. The slow and fast actions
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are given by equations (6.22),

Js = J2 = (GM⊙aP)1�2[1 − (1 − e2P)1�2],
Jf = J1 − 3J2 = (GM⊙aP)1�2[3(1 − e2P)1�2 − 2]. (6.80)

The Kepler Hamiltonian is H0 = −1
2(GM⊙)2�J2

1 = −1
2(GM⊙)2�(Jf +

3Js)2 and the resonant Hamiltonian can be approximated by the pendulum
Hamiltonian (6.27),

Hres = 1
2↵(�Js)2 + � cos�s, (6.81)

with

↵ = −27(GM⊙)2
J
4
1,res

, � = −1.8957 GmN

aN
eP. (6.82)

Here J1,res is the action corresponding to exact resonance, given by 3nP =
3(GM⊙)2�J3

1,res = 2nN. Since ↵ < 0 and � < 0, the stable equilibria are at
�s = ±180○. The libration period is given by equation (6.5),

P = 4

!
K(k); (6.83)

here !2 = �↵�� and k = sin 1
2�s,max, where �s,max is the libration amplitude.

Inserting values for Neptune’s mass and semimajor axis, mN = 5.151 ×
10
−5
M⊙ and aN = 30.0699 au, and Pluto’s current eccentricity eP = 0.2502,

we find ! = 2.37 × 10−11 s−1. For a libration amplitude of 85○ we have k =
0.676 and P = 9.74×103 yr. This analytic calculation of the libration period
yields about half of the correct value of 1.99×104 yr; the main reason for this
disagreement is that Pluto’s eccentricity is large enough that the expansion
to O(e) in equation (6.79) is inadequate to represent the disturbing function
(see Problem 6.5).

The width of the resonance is the difference between the largest and
smallest value of the slow action in librating orbits and is given by (cf. eq.
6.29)

w = 4 ��
↵
�1�2 = 1.389nNa

2
N �mN

M⊙ �
1�2

e
1�2
P . (6.84)
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Inserting values for the parameters, we have w�(nNa
2
N) = 0.0050, but be-

cause of the error due to the use of the low-eccentricity approximation for
the disturbing function, the correct value is closer to 0.002. The width is a
rough measure of the fractional volume of phase space occupied by the res-
onance. It is highly improbable that Pluto formed by accident in this small
volume, so we must explain why Pluto is found in the 3:2 resonance.

The most plausible answer (Malhotra 1993) is that Pluto was captured
into the resonance during the late stages of planet formation, when Nep-
tune’s semimajor axis grew through planetesimal-driven migration (see the
discussion at the end of §9.3). We can explore this process with a simple
model for the evolution of Neptune and Pluto. We assume that (i) Neptune
is born on a circular orbit with a semimajor axis aN0, 6–10 au inside its cur-
rent position at aN = 30.07 au; (ii) Neptune’s orbit is always circular and
expands slowly and smoothly from aN0 to aN; (iii) Pluto is born on a nearly
circular orbit with a semimajor axis aP0 that is outside the 3:2 resonance
when Neptune is at its initial semimajor axis.

Since Pluto’s orbit is nearly circular, capture in resonance is governed by
the Henrard–Lemaitre Hamiltonian as described in §6.3.2. The migration of
Neptune relative to Pluto is convergent, that is, the ratio of mean motions
nP�nN is approaching unity. As argued following equation (6.75), capture
in resonance is then certain if Pluto’s initial eccentricity is small enough and
the evolution is slow enough.

After capture, Neptune continues to migrate outward, and Pluto’s semi-
major axis must increase as well to maintain the resonant ratio of mean
motions. The fast action given by equation (6.80) is conserved during the
evolution; thus as Pluto’s semimajor axis grows, its eccentricity must grow
as well. Conservation of the fast action, combined with our assumption that
the initial eccentricity was nearly zero, enables us to compute Pluto’s ini-
tial semimajor axis aP0 from its current semimajor axis and eccentricity.
We find aP0 = 32.3 au. Capture occurred when Neptune migrated through
semimajor axis (23)2�3aP0 = 24.6 au.

These analytic arguments can be extended by numerical simulations.
Figure 6.9, which follows Malhotra (1993), shows an N -body simulation of
the evolution of Pluto’s orbit in a solar system containing Jupiter, Saturn,
Uranus and Neptune. The planets are assumed to form on circular, coplanar
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Figure 6.9: Evolution of Pluto’s semimajor axis, eccentricity and resonant angle �s

(eq. 6.77) when the giant planets migrate outward according to equation (6.85). The
bottom panel shows the ratio of Neptune’s mean motion to Pluto’s.
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orbits and then to migrate outward in semimajor axis following the simple
model

a(t) = a0 −�a exp(−t�⌧), (6.85)

where a0 is the planet’s current semimajor axis and�a, the migration range,
is set to 0, 1, 3 and 6 au for Jupiter, Saturn, Uranus and Neptune, respec-
tively. The migration timescale ⌧ is set to 1Myr. Pluto’s initial semimajor
axis is aP0 = 32.3 au. The figure shows that Pluto is captured into the 3:2
resonance with Neptune at t = 0.11Myr, after which it migrates outward
such that its mean motion remains in resonance, while growing in eccentri-
city to conserve the fast action. The libration amplitude reflects the small
but nonzero initial eccentricity of Pluto in this simulation (e = 0.02).

The discussion so far has focused on the case in which all of the giant
planets and Pluto are coplanar. In fact Pluto’s inclination of 17.1

○ is far
larger than the inclination of any of the planets in the solar system, and
it is natural to ask whether this inclination could also be generated by the
resonance with Neptune. Much longer integrations than the one shown in
Figure 6.8 show that Pluto exhibits a rich set of additional resonances, the
most important of which involves Pluto’s nodal longitude ⌦P, with slow
angle 6�P − 4�N − 2⌦P. Pluto’s inclination can be excited through this
resonance, although for most initial conditions the excitation is somewhat
less than the observed inclination.

Additional support for the hypothesis that Pluto was captured into the
3:2 resonance when Neptune migrated outward comes from the observation
that many objects (“Plutinos”) are also found in the 3:2 resonance (see §9.6).
Like Pluto, these were presumably swept into the resonance when Neptune
migrated, and their current eccentricities reflect their initial semimajor axes
through conservation of the fast action. Additional objects are found in other
resonances with Neptune; see Figure 9.10.

We must also ask why Neptune stopped migrating at its current semi-
major axis of 30.07 au. The most likely explanation is that 30 au marked the
outer boundary of the massive planetesimal disk that drove the migration.
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Table 6.1: Resonance coefficients

m n1 ∶ n2 ↵ = a1�a2 Fm Gm

1 2 ∶ 1 0.62996 1.19049 −0.42839
2 3 ∶ 2 0.76314 2.02522 −2.48401
3 4 ∶ 3 0.82548 2.84043 −3.28326
4 5 ∶ 4 0.86177 3.64962 −4.08371−2 1 ∶ 2 1.58740 −0.26987 0.74996−3 2 ∶ 3 1.31037 −1.89565 1.54553−4 3 ∶ 4 1.21141 −2.71027 2.34472−5 4 ∶ 5 1.16040 −3.51923 3.14515

The principal coefficients of the disturbing function at (m +
1) ∶ m resonances. Here n2 and n1 = (1 + 1�m)n2 are the
mean motions of the perturber and the perturbed particle, re-
spectively. The constants Fm and Gm are defined in equa-
tions (6.89). They are related by equation (P.40).

6.5 Transit timing variations

A transiting planet in an isolated single-planet system obscures its host star
at perfectly regular intervals. Transit timing variations or TTVs are pe-
riodic oscillations in the transit time induced by gravitational forces from
another planet or a companion star. TTVs provide a powerful tool for mea-
suring or constraining the masses and orbital properties of both the transit-
ing planet and the perturber, whether or not it also transits (Agol et al. 2005;
Holman & Murray 2005; Agol & Fabrycky 2018).

The TTV amplitude is enhanced if the planets are near a mean-motion
resonance, so many of the systems with well measured TTVs are near res-
onance. The goal of this section is to describe the relation between TTVs
and orbit dynamics in such systems (Lithwick et al. 2012).

We assume that the two planets are in nearly circular, coplanar orbits
around a star of mass M . The planets are labeled 1 and 2, and initially we
examine the transits of planet 1. The transiting planet is near resonance in
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the sense that its mean motion satisfies the relation

n1 � (1 + 1�m)n2, (6.86)

where m is an integer; the perturber is external to the transiting planet (a2 >
a1 and n2 < n1) if m > 0 and internal if m < −1. The dominant terms in
the perturbing Hamiltonian are given by equation (4.98) for the direct terms
and (4.104) for the indirect ones:

H2 = Gm2

a2
��1

2↵�m,−2+(m+1+ 1
2↵D)bm+11�2 �e1 cos[m�1−(m+1)�2+$1]

+ �2↵�m1−(m+ 1
2+ 1

2↵D)bm1�2�e2 cos[m�1−(m+1)�2+$2]�, (6.87)

where �1 and �2 are the mean longitudes, $1 and $2 are the longitudes of
periapsis, m2 is the mass of the perturber, and �ij is the Kronecker delta
(Appendix C.1). The Laplace coefficients b

m

1�2 (eq. 4.109) are functions
of ↵ = a1�a2, and D ≡ d�d↵. Since the orbits are near resonance, ↵ �
↵res(m) = (1 + 1�m)−2�3 and we can write

H2 = Gm2

a2
�Fme1 cos[m�1 − (m + 1)�2 +$1]
+Gme2 cos[m�1 − (m + 1)�2 +$2]�, (6.88)

where

Fm ≡ �12↵�m,−2 + (m + 1 + 1
2↵D)bm+11�2 �↵res

,

Gm ≡ �2↵�m1 − (m + 1
2 + 1

2↵D)bm1�2�↵res
. (6.89)

Values of these constants for the principal low-order resonances are given
in Table 6.1.

The perturbing Hamiltonian (6.88) can be rewritten in terms of ki =
ei cos$i, hi = ei sin$i, as

H2 = Gm2

a2
[Fm(k1 cos − h1 sin ) +Gm(k2 cos − h2 sin )] ,

(6.90)



344 CHAPTER 6. RESONANCES

where  ≡m�1 − (m + 1)�2.
Since the eccentricities are small and we restrict ourselves to the case of

coplanar motion, Hamilton’s equations can be written in the form (1.193):

d�1

dt
= n1 + 2

n1a1

@H2

@a1
,

da1

dt
= − 2

n1a1

@H2

@�1
,

dk1

dt
= 1

n1a
2
1

@H2

@h1
,

dh1

dt
= − 1

n1a
2
1

@H2

@k1
. (6.91)

For the moment we drop the term involving @H2�@a1 (this approximation
will be justified below). Then we have

da1

dt
= 2mGm2

n1a1a2
[Fm(k1 sin + h1 cos ) +Gm(k2 sin + h2 cos )] ,

d�1

dt
= n1,

dk1

dt
= − Gm2Fm

n1a
2
1a2

sin ,
dh1

dt
= − Gm2Fm

n1a
2
1a2

cos . (6.92)

We solve these equations using first-order perturbation theory, evaluat-
ing the right sides along the unperturbed trajectories on which the semimajor
axes ai, the mean motions ni = (GM�a3

i
)1�2, and the eccentricity parame-

ters ki and hi are constant, with values ai, ni, ki and hi. The angle  along
the unperturbed trajectory is denoted  , and this changes at a rate

d 

dt
=mn1 − (m + 1)n2 ≡�res. (6.93)

The solutions of the last two equations are

k1 = k1 + �k1, h1 = h1 + �h1, (6.94)

where

�k1 = Gm2Fm

n1a
2
1a2�res

cos , �h1 = − Gm2Fm

n1a
2
1a2�res

sin . (6.95)

The constants k1 and h1 are sometimes referred to as components of the
free or proper eccentricity since these can take on any value, independent
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of the actions of the perturber. The terms �k1 and �h1 are components of
the forced eccentricity, which is proportional to the perturber mass m2.

We next solve the equation for da�dt in (6.92). Again we work to first
order in the perturber mass, which means that the eccentricity parameters ki
and hi on the right side can be replaced by their unperturbed values ki and
hi. Thus a1 = a1 + �a1, where

�a1 = 2mGm2

n1a1a2�res
�Fm(h1 sin − k1 cos ) +Gm(h2 sin − k2 cos )�.

(6.96)
Finally, the equation for d�1�dt = n1 = (GM�a31)1�2 can be solved by
replacing a1 by a1 + �a1, expanding the result to first order in the perturber
mass, and then integrating. We find � = �1,0 + n1t + ��1, where

��1 = 3mGm2

a
2
1a2�

2
res

�Fm(k1 sin + h1 cos ) +Gm(k2 sin + h2 cos )�.
(6.97)

This result shows that the perturbation to �1 is proportional to e1,2m2��2
res

where ei = (k2i + h2

i
)1�2 is the free eccentricity; and it justifies our neglect

of the term proportional to @H2�@a in the first of equations (6.91), since
this term yields a perturbation proportional to e1,2m2��res which is much
smaller for near-resonant planets, by of order�res�n1.

The azimuth of planet 1 is �1 = f1 +$1, where f1 is its true anomaly.
Using the relation (1.151) between the true anomaly and the mean anomaly
`1 = �1 −$1, we have

�1 = �1 +2e1 sin(�1 −$1)+O(e21) = �1 +2k1 sin�1 −2h1 cos�1 +O(e21).
(6.98)

The perturbation to the azimuth is ��1 and to first order in the perturber
mass m2,

��1 = ��1[1 + 2k1 cos(�1,0 + n1t) + 2h1 sin(�1,0 + n1t)]+ 2�k1 sin(�1,0 + n1t) − 2�h1 cos(�1,0 + n1t). (6.99)

Since the eccentricity is small, the second and third terms in the square
bracket are small compared to unity and can be dropped. The term involv-
ing ��1 is of order e1,2m2��2

res while the terms involving �k1 and �h1 are
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of order m2��res; either set can dominate depending on whether the free
eccentricities ei are larger or smaller than the fractional distance from reso-
nance ��res�n0�. Thus we arrive at

��1 = ��1 + 2�k1 sin(�1,0 + n1t) − 2�h1 cos(�1,0 + n1t). (6.100)

The TTV is approximately �t1 = −��1�n1. The transit occurs when the
planet crosses a fixed value of �, which we may take to be � = 0. Since
� = 0 at transit, the mean longitude is also nearly zero, so when evaluating
��1 to leading order we can set �1,0 + n1t = 0. Using equations (6.95) and
(6.97), we then have

�t1 = 1

n1
(2�h1 − ��1) = − 3mGm2

n1a
2
1a2�

2
res

�Fm(k1 sin + h1 cos )
+Gm(k2 sin + h2 cos )� − 2Gm2

n
2
1a

2
1a2�res

Fm sin . (6.101)

Using the resonance relation a1�a2 = m
2�3�(m + 1)2�3 and Kepler’s law

n
2
1a

3
1 = GM , this result can be written as

�t1 = ↵1 cos + �1 sin , (6.102)

where

↵1 = − 3m
5�3

n1(m + 1)2�3�2
res

m2

M
(Fmh1 +Gmh2), (6.103)

�1 = − 3m
5�3

n1(m + 1)2�3�2
res

m2

M
(Fmk1 +Gmk2) − 2m

2�3
(m + 1)2�3�res

m2

M
Fm.

The perturbations to the orbit of planet 2 are described by the Hamilto-
nian H1 = (m1�m2)H2, where H2 is given by equation (6.90). Repeating
the analysis from that point, we find that if planet 2 transits and is mainly
influenced by planet 1, its TTV will be

�t2 = ↵2 cos + �2 sin , (6.104)
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where

↵2 = 3mn1

�2
res

m1

M
(Fmh1 +Gmh2), (6.105)

�2 = 3mn1

�2
res

m1

M
(Fmk1 +Gmk2) − 2

�res

m1

M
Gm.

The TTV signal is characterized by its amplitude ATTV and period Ps,
commonly called the superperiod:

Ps = 2⇡

��res� , ATTV,1 = (↵2
1+�2

1)1�2, ATTV,2 = (↵2
2+�2

2)1�2. (6.106)

We may now ask what we can determine about the system if both of
the near-resonant planets transit. From the transits we know the mean mo-
tions n1 and n2, and the index m is the integer such that equation (6.86)
is approximately satisfied. Once we know these three quantities, we can
determine �res = mn1 − (m + 1)n2 and the expected superperiod (6.106).
If the superperiod derived in this way agrees with the periods of the TTVs
from each planet, then we have confirmed that their resonant interactions
dominate the TTV signal.

Measurement of the amplitudes and phases of the two TTVs then yields
the parameters ↵1, �1, ↵2 and �2. These can be used to determine the four
unknown quantities in equations (6.103) and (6.105), the two mass ratios
m1�M and m2�M , and the combinations Fmk1+Gmk2 and Fmh1+Gmh2.

An important special case is when the free eccentricities are negligible,
as we expect if the planets formed in an environment with dissipation from a
gas disk. Then ↵1 = ↵2 = 0 and the amplitudes �1 and �2 directly yield the
mass ratios m1�M and m2�M . The converse is not correct—the observa-
tion that ↵1 = ↵2 = 0 does not imply that the free eccentricities vanish—but
if this condition is satisfied in most double TTV systems, it is probably safe
to assume that most of them have zero free eccentricity.

As an example, the system Kepler-18 contains three planets (Cochran et
al. 2011; Lithwick et al. 2012). The outer two planets, c and d, are close to
a 2 ∶ 1 resonance and exhibit TTVs. The periods are Pc = 7.641596 d and
Pd = 14.8589 d, so the expected superperiod is Ps = 267.6 d, consistent with
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the observed periods of the TTVs in both planets to within ∼ 1%. The am-
plitude ratios �↵1��1� � 0.15 and �↵2��2� � 0.28, so we may assume that the
free eccentricities are much less than the forced eccentricities. The ampli-
tudes are ATTV,1 = 0.0037±0.0003 d and ATTV,2 = 0.0028±0.0003 d. The
derived planet masses are mc = 19 ± 1M⊕ and md = 25 ± 3M⊕, assuming a
stellar mass M = 0.97M⊙.

6.6 Secular resonance

The dynamics of secular resonances can be illustrated using Lagrange–
Laplace theory (§5.2). We consider a system of N planets and one zero-
mass test particle representing an asteroid. The trajectory of the test parti-
cle is described by equations (5.35) and (5.36). The complex eccentricity
ze = k+ ih = e exp(i$) and the complex inclination zI = q+ ip = I exp(i⌦)
are the sum of a free part that circulates at frequency g for ze and −g for
zI , and a forced part that is the sum of N terms, each circulating at one of
the eigenfrequencies of the N -planet Lagrange–Laplace system. The forced
eccentricity or inclination diverges at the secular resonances, where the fre-
quency g or −g is equal to one of the eigenfrequencies (see eq. 5.39).

Figure 6.10 shows the precession frequency as a function of semima-
jor axis in the solar system, along with the eigenfrequencies from the third
column of Table 5.1. Within the asteroid belt, the two most important reso-
nances occur when the precession frequency equals g6 = 28.245 arcsec yr−1
and f6 = −26.348 arcsec yr−1. These are sometimes referred to as the ⌫6 and
⌫16 resonances (the convention that associates these labels with the eigen-
frequencies is ⌫i = gi, ⌫10+i = fi, i = 1, . . . ,8).

More accurate treatments that include terms of higher degree in the ec-
centricities and inclinations and higher order in the masses show that the
secular resonances occupy surfaces in the 3-dimensional space with coordi-
nates a, e, and I (Williams & Faulkner 1981; Knežević et al. 1991), and this
structure is reflected in the distribution of asteroids, probably because the
resonance excites eccentricities that are large enough to allow the asteroid
to collide with Mars or have a close encounter with Jupiter.
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Figure 6.10: The apsidal and nodal precession rates of a test particle as a function
of semimajor axis in the solar system. The horizontal lines mark the eigenfrequen-
cies gj and −fj from the third column of Table 5.1, where gj > 0 are the apsidal
frequencies (dashed lines) and fj < 0 are the nodal frequencies (dotted lines). Sec-
ular eccentricity resonances occur when the free precession frequency g = gj , and
secular inclination resonances occur when −g = fj .

6.6.1 Resonance sweeping

Planets or planetesimals embedded in a protoplanetary disk experience ap-
sidal and nodal precession due to the gravitational field from the disk. Al-
though the mass of the disk is much smaller than the mass of the host star,
the Kepler potential from the star induces no precession, so even a low-
mass disk can dominate both free precession rates: in effect, when a disk is
present the precession frequencies of the periapsis and the node in equations
(5.37)—$̇ = g and ⌦̇ = −g—are determined mainly by the disk rather than
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by the other planets.
The precession rates for a nearly circular orbit can be derived either from

Gauss’s equations (1.200) or from the epicycle equations (1.161), (1.168),
and (1.174). The relevant formulas are given in Problem 1.13. If the gravita-
tional potential from the disk is �(R, z) and the disk mass is much less than
the mass of the central star, the apsidal precession rate is given by equations
(P.4),

$̇ = − 1

nR

@�

@R
− 1

2n

@
2
�

@R2
= 1

nR
F + 1

2n

dF

dR
, (6.107)

where n is the mean motion, F = −@��@R is the radial force from the disk,
and all quantities are evaluated in the disk midplane z = 0. For a power-law
disk with surface density ⌃(R) = ⌃0(R0�R)k+1, −1 < k < 1, the force F is
given in equation (e) of Box 6.2 and we have

$̇ = −(1 − k) G⌃0C(k)
2nR0

(R0�R)k+2. (6.108)

The nodal precession rate is

⌦̇ = 1

2nR

@�

@R
− 1

2n

@
2
�

@z2
, (6.109)

with all quantities evaluated in the midplane. If the disk is thin the second
term will be much larger than the first, and Poisson’s equation (B.44) can
be approximated by its 1-dimensional form @

2
��@z2 = 4⇡G⇢(R), where

⇢(R) is the density of the disk in the midplane. Thus

⌦̇ = −2⇡G⇢(R)
n

. (6.110)

The simplest model of the Sun’s protoplanetary disk is constructed as
follows. The mass of solid material or heavy elements belonging to each
planet in the solar system is spread out into an annulus around the Sun reach-
ing halfway to the adjacent planets. Then the mass in each annulus is aug-
mented by adding gas until the annulus has the same composition as the Sun,
and a smooth surface-density profile is fit to the result. This recipe gives the
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Box 6.2: The gravitational potential of a disk
To find the apsidal precession rate due to a disk, we must first determine the
gravitational potential and force arising from a disk-like mass distribution. There
are many ways to do this with varying degrees of generality (Binney & Tremaine
2008) and we focus on the simplest. Consider Kuzmin’s potential

�Kuz(R, z) = − GM

[R2 + (a + �z�)2]1�2 , a > 0, (a)

with R and z the usual cylindrical coordinates. For z < 0, �Kuz(R, z) equals
the potential of a point mass M located at (R, z) = (a,0). Similarly when
z > 0, �Kuz(R, z) equals the potential of a mass M at (R, z) = (−a,0). Hence∇2

�Kuz(R, z) vanishes everywhere except on the plane z = 0, and by Poisson’s
equation (B.44) �Kuz(R, z) must therefore be generated by a mass distribution
confined to this plane. By applying Gauss’s theorem to a volume containing a
small portion of the plane, we find that �Kuz is generated by a surface density

⌃Kuz(R, z) = aM

2⇡(R2 + a2)3�2 , (b)

known as Kuzmin’s disk. The corresponding radial force in the disk plane is

FKuz = −@�Kuz

@R
�
z=0
= − GMR

(R2 + a2)3�2 . (c)

More general models can be constructed by combining a continuous distri-
bution of Kuzmin disks of different masses and scale lengths:

⌃(R) = 1

2⇡
� ∞
0

daaM(a)
(R2 + a2)3�2 , �(R, z) = −G� ∞

0

daM(a)
[R2 + (a + �z�)2]1�2 ,

(d)
where M(a) is now an arbitrary function. For example, we can construct disks
with a power-law surface density distribution by setting M(a)∝ a

−k with −1 <
k < 1. We find the surface-density and force paira

⌃(R) = ⌃0(R0�R)k+1, F (R) = −G⌃0C(k)(R0�R)k+1, (e)

where

C(k) ≡ 2⇡�( 1
2
− 1

2
k)�(1 + 1

2
k)

�(1 − 1

2
k)�( 1

2
+ 1

2
k) , (f)

and �(z) is the gamma function described in Appendix C.3.

a The potential is only well defined over the smaller range 0 < k < 1.
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minimum-mass solar nebula (Weidenschilling 1977; Hayashi 1981),

⌃(R) = 1.7 × 103 g cm−2 �1 au
R
�1.5 . (6.111)

Given this surface density, the thickness and therefore the midplane density
can be estimated by assuming that the gas is in thermal equilibrium with the
solar radiation (Hayashi 1981):

⇢(R) = 1.4 × 10−9 g cm−3 �1 au
R
�2.75 . (6.112)

The corresponding precession rates are

$̇ = −8.52 × 102 arcsec yr−1�1 au
R
� ,

⌦̇ = −1.92 × 104 arcsec yr−1�1 au
R
�1.25 . (6.113)

Notice that both the apsidal and nodal precession rates due to the disk
are negative.6 Thus as the disk disperses, the free precession rates for $
and⌦ both approach zero from below, then stabilize at positive and negative
values respectively once they are dominated by the gravitational fields of the
planets rather than the disk. During this evolution, the secular resonances
can sweep through a large fraction of the planetary system.

To examine how this process of resonance sweeping affects the ec-
centricities and inclinations of small bodies, we write the first of equations
(5.38) in a simplified form involving only one resonance:

dze

dt
= ig(t)ze + ⌫n exp(ignt), (6.114)

where ⌫n is a complex constant and gn is one of the Lagrange–Laplace
eigenfrequencies. We assume that gn is constant, although in practice the

6 Although if the planet opens a gap in the disk, as described in §3.6, the apsidal precession
rate due to the disk mass will be positive.
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eigenfrequencies are likely to evolve as the disk disperses. This equation
can be solved to give

ze(t) = ⌫n exp[i�(t)]� t

−∞ dt
′
exp[ignt′ − i�(t′)], (6.115)

where
�(t) = � t

dt
′
g(t′); (6.116)

in this equation we have assumed that the eccentricity �ze(t)� was zero in
the distant past.

Resonance occurs at a time t = t0 when g(t0) = gn, and we can approx-
imate �(t) in the vicinity of the resonance by �(t) = �0 +gnt+ 1

2 ġ(t− t0)2,
where ġ = dg�dt�t0 . Then equation (6.116) becomes

ze(t) = ⌫n exp[ignt + 1
2 iġ(t − t0)2]� t−t0

−∞ d⌧ exp(−iġ⌧2). (6.117)

Long after resonance crossing, the eccentricity is

�ze(t→∞)� = �⌫n� �� ∞
−∞ d⌧ exp(−iġ⌧2)� = � ⇡

2�ġ� �
1�2 �⌫n�. (6.118)

Thus the secular resonance excites the eccentricities and/or inclinations of
small bodies and planets as it sweeps through the system. Slower dispersal
(smaller �ġ�) excites larger eccentricities and inclinations.

Resonance sweeping has a wide variety of possible effects, still only
partly explored. By exciting the eccentricities and inclinations of small
bodies, it may inhibit planet formation and even clear a wide gap in a plan-
etesimal disk if high-velocity collisions grind the planetesimals into dust. It
may trap planets in secular resonances in which their nodes or apsidal lines
are locked together. Although the semimajor axes of the planets and plan-
etesimals are conserved by secular resonances, subsequent damping of the
eccentricities may lead to radial migration of the planetary orbits.





Chapter 7

Planetary spins

7.1 Precession of planetary spins

Tidal torques exerted on the equatorial bulge of a planet cause the planet’s
spin to precess. The most common sources of these torques are the planet’s
host star or a massive satellite. For example, the Earth’s spin precesses with
a period of about 25700 yr due to torques from the Moon and Sun. Tradi-
tionally this effect is called the precession of the equinoxes: the equinoxes
are the points on the celestial sphere where the plane perpendicular to the
Earth’s orbital angular momentum (the ecliptic) intersects the plane perpen-
dicular to its spin (the equator).

We first consider a rotating, flattened planet with no satellites that orbits
a host star of mass M∗. We assume that the host star is sufficiently far
away that it can be approximated as a point mass. At large distances, the
non-spherical component of the gravitational field from the planet can be
written (eq. 1.135)

�(r) = GMpJ2R
2
p

2r5
[3(Ŝ ⋅ r)2 − r2], (7.1)

where Mp, Rp and J2 are the mass, radius and quadrupole moment of the
planet, and Ŝ is a unit vector parallel to its spin angular momentum S, which

355
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is assumed to coincide with its symmetry axis (for reasons given in Box 7.1).
If the host star is located at position r relative to the center of the planet, the
torque exerted by the planet on the star is

N = −M∗r ×∇� = 3GM∗MpJ2R
2
p

r5
(Ŝ ⋅ r)Ŝ × r. (7.2)

The total angular momentum residing in the motions of the centers of
mass of the planet and star is the sum of two components (eq. 1.9). The
first is (M∗ +Mp)rcm × ṙcm, where rcm is the position of the barycenter
of the system in an inertial frame; this angular momentum is fixed if there
are no external forces, so we can ignore it from now on. The second1 is
L = µr × ṙ, where µ = M∗Mp�(M∗ +Mp) is the reduced mass of the star
and planet. If the star and planet are in a Kepler orbit with semimajor axis
a and eccentricity e, then �L� = µ[G(M∗ +Mp)a(1 − e2)]1�2 (eq. 1.28).

Now erect a Cartesian coordinate system in which the positive z-axis
is parallel to L and the positive x-axis points toward periapsis. Thus ẑ =
L��L� = L̂ and the position of the star can be written r = x̂ cos f + ŷ sin f ,
where f is the true anomaly of the star relative to the planet. Then orbit-
averaging equation (7.2) using equations (1.66c)–(1.66e) gives

�N� = −3GM∗MpJ2R
2
p

2a3(1 − e2)3�2 (Ŝ ⋅ L̂)Ŝ × L̂. (7.3)

The torque exerted on the planet is −�N�, so the orbit-averaged equations
of motion for the spin and orbital angular momenta are

dL

dt
= �N�, dS

dt
= −�N�. (7.4)

Equations (7.4) imply that d(L+S)�dt = 0 so the total angular momen-
tum L + S is conserved, as expected. Moreover L ⋅ �N� = 0 so L ⋅ dL�dt =
1
2dL

2�dt = 0, where L = �L� is the scalar orbital angular momentum.

1 There are two differences in notation from earlier chapters: (i) the symbol L denotes angular
momentum rather than angular momentum per unit mass; (ii) the relative position vector r
points from the planet to the star rather than from the star to the planet.
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We conclude that the torque changes the direction of the orbital angular-
momentum vector but not its magnitude. Similarly, the torque changes
the direction of the spin angular-momentum vector but not its magnitude.
Moreover it is straightforward to show from equations (7.3) and (7.4) that
d(L⋅S)�dt = 0; since the magnitudes of L and S are conserved we conclude
that the angle between L and S (the obliquity, denoted by ✏) also remains
constant.

Figure 7.1: Precession of a pla-
net’s spin and orbital angular mo-
menta, S and L, due to the torque
between the host star and the pla-
net’s equatorial bulge. The total an-
gular momentum L + S is constant.
The angle ✏ is the obliquity.

The geometry is illustrated in Figure 7.1. The spin and orbital angular
momenta precess around the fixed vector L + S; the lengths L = �L� and
S = �S� remain fixed, as do the angles  1,  2 and ✏. From equations (7.3)
and (7.4) we have

dS

dt
= 3GM∗MpJ2R

2
p

2a3(1 − e2)3�2LS (Ŝ ⋅ L̂)S ×L
= 3GM∗MpJ2R

2
p

2a3(1 − e2)3�2LS (Ŝ ⋅ L̂)S × (L + S)
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=⌦p × S, (7.5)

where

⌦p = − 3GM∗MpJ2R
2
p

2a3(1 − e2)3�2LS cos ✏ (L + S) (7.6)

is the angular speed or precession rate of the spin vector (cf. eq. D.16).
Using the law of cosines, this can be rewritten as

⌦p = −3GM∗MpJ2R
2
p[1 + 2(S�L) cos ✏ + (S�L)2]1�2
2a3(1 − e2)3�2S cos ✏ â, (7.7)

where â is a unit vector pointing in the direction of L + S. Notice that
the precession is retrograde, that is, the precession angular velocity ⌦p is
antiparallel to the conserved angular momentum L + S.

Equation (7.7) also yields the precession rate due to a massive satellite,
if the parameters M∗, L, a and e of the host star are replaced by those of the
satellite.

In most cases the spin angular momentum of the planet is much less than
its orbital angular momentum, so the precession rate simplifies to

⌦p = −3GM∗MpJ2R
2
p

2a3(1 − e2)3�2S cos ✏ L̂. (7.8)

If the planet has spin period Ps or angular speed ! = 2⇡�Ps, then its spin
angular momentum is S = C! where C is the moment of inertia around
the polar axis (eqs. 1.133 and D.91). The dimensionless ratio C�(MpR

2
p)

is sometimes called the moment of inertia factor; this factor is 2
5 for a ho-

mogeneous planet and smaller in the usual case where the density increases
toward the planet’s center (moment of inertia factors for the solar-system
planets are given in Appendix A). Then

⌦p = − 3GM∗J2Ps

4⇡a3(1 − e2)3�2
MpR

2
p

C
cos ✏ L̂ (7.9a)

� − 3⇡J2Ps

P 2(1 − e2)3�2
MpR

2
p

C
cos ✏ L̂; (7.9b)
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in the second of these equations we have replaced GM∗�a3 by 4⇡
2�P 2

where P is the orbital period of the planet, an approximation that is valid
when Mp � M∗ (eq. 1.43). An alternative expression replaces J2 by the
difference between the equatorial and polar moments of inertia, using equa-
tion (1.134):

⌦p = − 3GM∗Ps

4⇡a3(1 − e2)3�2
C −A
C

cos ✏ L̂. (7.10)

Thus a measurement of the precession rate of the spin axis of the planet
yields the combination of moments of inertia (C−A)�C, called the dynami-
cal ellipticity. Similarly, measurements of the apsidal and nodal precession
rates of satellites of the planet measure its quadrupole moment or C − A,
so the two measurements can be combined to determine both moments of
inertia of an axisymmetric planet.

As an example, we calculate the rate of precession of the Earth’s spin.
First consider the precession due to the Sun. The Earth’s spin angular
momentum is far smaller than its orbital angular momentum, so we can
use expression (7.9a) for the precession rate. From Appendix A, we have
GM∗ = GM⊙ = 1.327 × 10

20 m3 s−2, a = 1.496 × 10
11 m, e = 0.0167,

J2 = 0.0010826, Ps = 86164.1 s and ✏ = 23.44
○. These yield �⌦p� =

8.1028 × 10−13 s−1M⊕R2⊕�C.
Calculating the precession due to the Moon is more complicated. In

contrast to the Sun, the Moon’s orbital angular momentum is only about
five times the Earth’s spin angular momentum. Thus, if the Earth and
Moon were an isolated system we would use equation (7.7) to compute
the precession rate. However, the torques on the lunar orbit due to the
Sun are far larger than the torques due to the Earth’s equatorial bulge. As
a result, the Moon’s angular-momentum vector precesses rapidly around
the normal to the ecliptic, with a period of only 18.6 yr. To compute the
torque that the Moon exerts on the Earth’s equatorial bulge, we must aver-
age equation (7.3) over this period. To do so, we write Ŝ and L̂ in Carte-
sian coordinates (x, y, z), with the z-axis normal to the ecliptic. Then
the averages of the components of L̂ are �L̂x� = �L̂y� = �L̂xL̂y� = 0,�L̂2

x
� = �L̂2

y
� = 1

2 sin
2
I and L̂z = cos I , where I is the inclination of the

lunar orbit to the ecliptic. From these results it is straightforward to show
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that �(Ŝ ⋅ L̂)Ŝ× L̂� = (1− 3
2 sin

2
I)(Ŝ ⋅ ẑ)Ŝ× ẑ, so equation (7.3) is modified

to

�N� = −3GM%M⊕J2R2⊕
2a3(1 − e2)3�2 (1 − 3

2 sin
2
I)(Ŝ ⋅ ẑ)Ŝ × ẑ, (7.11)

where M% denotes the lunar mass and the orbital elements now refer to the
lunar orbit. The corresponding precession rate is

⌦p = − 3GM%J2Ps

4⇡a3(1 − e2)3�2
M⊕R2⊕

C
(1 − 3

2 sin
2
I) cos ✏ ẑ. (7.12)

From Appendix A, we have GM% = 4.903 × 1012 m3 s−2, a = 384400 km,
e = 0.0549, I = 5.145

○, and we find �⌦p� = 1.7503 × 10−12 s−1M⊕R2⊕�C,
about twice as large as the contribution from the Sun.

We add the contributions of the Moon and Sun to obtain the total pre-
cession rate, �⌦p� = 2.5606 × 10−12 s−1M⊕R2⊕�C. In practice this estimate
is combined with the observed precession rate,2 �⌦p� = 7.7405 × 10−12 s−1,
to determine the moment of inertia C and thus constrain the properties of
the Earth’s interior. We find C�(M⊕R2⊕) = 0.3308, close to the accepted
value of 0.3307 (Appendix A).

This analysis illustrates that the precession of a planet can be strongly
influenced by gravitational interactions with its satellites, and we now turn
to a more complete description of these interactions.

7.1.1 Precession and satellites
If a satellite orbit is fixed in inertial space, its inclination relative to the
equator of its host planet varies as the planetary spin precesses. For example,

2 In the literature the precession rate is variously defined in two different frames: (i) an in-
ertial frame whose polar axis is perpendicular to the plane of the Earth’s orbit on the date
J2000.0, and (ii) a non-inertial frame whose polar axis is always perpendicular to the plane
of the Earth’s orbit, which varies slowly with time due to secular perturbations from the
other planets. We work in the inertial frame, where �⌦p� = 7.7405×10−12 s−1, while in the
non-inertial frame the rate is 7.7257×10−12 s−1. These rates are known to many more sig-
nificant digits than quoted here; in more traditional units they correspond to 50.38481507

and 50.28796195 arcseconds per Julian year (arcsec yr−1), respectively (Capitaine et al.
2003).
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if the obliquity is ✏ and the initial inclination is zero, then the inclination
varies periodically between 0 and 2✏. Nevertheless, both satellites of Mars
as well as the inner satellites of Jupiter, Saturn, Uranus and Neptune all
orbit near the equator of their host planet.3 Thus we are obliged to explain
why these satellites have remained near the equator of their host planet as it
precesses (Goldreich 1965).

We restrict our attention to an axisymmetric planet orbited by a single
satellite of negligible mass. To start the analysis, we introduce two reference
frames. The first is an inertial set of Cartesian coordinates (X,Y,Z) in
which the X-Y plane coincides with the orbital plane of the planet. Thus
both the orbital angular momentum of the star around the planet L and the
angular velocity of precession ⌦p lie along the Z-axis. The second is a
set of Cartesian coordinates (x, y, z) in which the x-y plane coincides with
the planet’s equator, the spin angular momentum S is parallel to ẑ, and the
x-axis lies in the X-Y or orbital plane. The second system is non-inertial
because of the precession of the planet’s spin.

The transformation from (X,Y,Z) to (x, y, z) is described by the Euler
angles of Appendix B.6, with � = ✏, the obliquity of the planet; � = 0

because the x-axis lies in the X-Y plane; and ↵̇ = ⌦p where ⌦p = ⌦pẐ.
The planet precesses at fixed obliquity ✏, so �̇ = �̇ = 0 and equation (B.65a)
implies that the transformation from (X,Y,Z) to (x, y, z) is a rotation with
angular speed ⌦p. The non-inertial nature of the (x, y, z) frame gives rise
to a disturbing function (eq. D.24)

Hnon−in = −⌦p ⋅Ls = −⇤s⌦p ⋅ js. (7.13)

Here Ls is the orbital angular momentum of the satellite, ⇤s = (GMpas)1�2
where as is the semimajor axis of the satellite, js = Ls�⇤s is its dimension-
less angular momentum, and js = � js� = (1 − e2s)1�2 where es is the eccen-
tricity of the satellite. The disturbing function also has a component that

3 The ring systems of the four outer planets also lie close to the equator, but for a different
reason: planetary rings are dissipative, and circular orbits in the equatorial plane are a
minimum-energy state for a given semimajor axis. See discussion after equation (5.66).
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arises from the quadrupole moment of the planet, given by equation (5.64):

�Hp� = GMpJ2R
2
p

4a3s

j
2
s − 3(js ⋅ Ŝ)2

j5s

, (7.14)

where as usual the angle bracket �⋅� denotes an average over the orbit of the
satellite.

The Milankovich equations (5.57) and (5.58) for the evolution of the
angular-momentum and eccentricity vectors js and es under the influence
of the disturbing function Hnon−in + �Hp� are

djs

dt
= −⌦p × js + 3(GMp)1�2J2R2

p

2a
7�2
s j5s

(js ⋅ Ŝ)js × Ŝ,
des

dt
= −⌦p × es + 3(GMp)1�2J2R2

p

2a
7�2
s j7s

�j2s (js ⋅ Ŝ)es × Ŝ
+ 1

2j
2
s es × js − 5

2(js ⋅ Ŝ)2es × js�. (7.15)

To investigate the behavior of trajectories governed by these equations
of motion, we specialize to the case of a circular orbit (es = 0, � js� = js = 1),
and initially small inclination (js ⋅ Ŝ � 1). Then the second of equations
(7.15) is trivially satisfied and the first simplifies to

djs

dt
= (!Q −⌦p) × js, (7.16)

where the precession due to the planet’s quadrupole moment is

!Q ≡ −3(GMp)1�2J2R2
p

2a
7�2
s

Ŝ. (7.17)

When the planetary spin precession ⌦p = 0, this equation describes the
usual retrograde precession of the line of nodes due to the planet’s quad-
rupole moment (cf. eq. 1.180b). When the spin precession is nonzero, the
precession rate shifts in direction. However, so long as �⌦p� � �!Q� the
shift is small, and the normal to the satellite orbit will continue to precess
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around an axis close to the spin axis. Thus, the condition that the satellite’s
orbital inclination remains small is

�⌦p� � (GMp)1�2J2R2
p

a
7�2
s

. (7.18)

In words, if the nodal precession rate of the satellite is much faster than the
spin precession rate of the planet, the satellite orbit remains locked in the
equator even as the orientation of the equator changes due to the precession
of the planet. For example, in the case of Mars the nodal precession peri-
ods of the satellites, 2.26 yr for Phobos and 54.5 yr for Deimos,4 are much
shorter than the spin precession period of the planet, 2⇡��⌦p� = 1.7Myr
(Table 7.1).

This discussion neglects the effects of perturbations caused by the host
star, described by the disturbing function (5.70), and mutual perturbations
between satellites. In some cases these may need to be included, but the
physical principles remain the same.

One curious feature of the present analysis deserves to be mentioned.
In most cases the orbital elements in a perturbed Kepler potential are oscu-
lating (Box 1.4), that is, if the perturbation were turned off instantaneously
the resulting Kepler orbit would have the same elements. In this analysis,
however, the elements are not osculating (Goldreich 1965). The reason is
that the generalized momentum in the non-inertial frame is p = ṙ +⌦p × r
(eq. D.22), which is not equal to the velocity. A more physical reason is that
the disturbing function depends on both position and velocity, whereas in
most problems in celestial mechanics it depends only on position.

When one or more massive satellites are locked to the planet’s equato-
rial plane in this way, the derivation of the spin precession rate of the planet
must treat these satellites as if they were part of the planet. Thus the pla-
net’s quadrupole moment J2 must be augmented by the orbit-averaged mass
distribution of the satellites (eq. 1.132), and the spin angular momentum S

must be augmented by the orbital angular momentum of the satellites. If the
satellites have masses mi �Mp, semimajor axes ai, inclinations Ii relative

4 See https://ssd.jpl.nasa.gov/?sat elem.

https://ssd.jpl.nasa.gov/?sat_elem
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Table 7.1: Spin precession periods of solar-system planets

spin obliquity quadrupole moment precession
period moment of inertia period
Ps( d) ✏ J2(J ′2) C�MpR

2
p ( yr)

Venus 243.0 177.36
○

4.404 × 10−6 0.34 2.9 × 104
Earth 0.9973 23.44

○
0.00108 0.3307 2.57 × 104

Mars 1.026 25.19
○

0.00196 0.364 1.70 × 105
Jupiter 0.4135 3.13

○
0.0147(0.0450) 0.276 5.1 × 105

Saturn 0.4440 26.73
○

0.0163(0.0650) 0.22 1.8 × 106
Uranus 0.7183 97.77

○
0.00351(0.0191) 0.22 2.1 × 108

Neptune 0.6713 28.32
○

0.00341(0.0193) 0.26 1.5 × 108
Mercury is not included because it has near-zero obliquity. The modified quad-

rupole moment J ′2 is defined by equation (7.19a). The satellite Callisto and all
satellites interior to it precess with Jupiter’s spin; similarly for Hyperion (Sat-
urn), Oberon (Uranus) and Triton (Neptune). Data from Appendix A and https:
//ssd.jpl.nasa.gov.

to the planet’s equator, and zero eccentricity, then the modified quadrupole
moment and spin angular momentum are

J
′
2 = J2 + 1

2�
i

mi

Mp
� ai
Rp
�2 �1 − 3

2 sin
2
Ii�, (7.19a)

S
′ = Ŝ�C! +�

i

mi(GMpai)1�2 cos Ii�, (7.19b)

where the sum is over all the satellites whose orbits are locked to the pla-
net’s equator. For the giant planets in the solar system, the correction to
the quadrupole moment varies from a factor of 3 to a factor of 6, while the
correction to the spin angular momentum is at most a few percent. The
precession periods of solar-system planets are shown in Table 7.1.

https://ssd.jpl.nasa.gov
https://ssd.jpl.nasa.gov
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7.1.2 The chaotic obliquity of Mars

The precession frequency of Mars’s pole is given by equation (7.10),

⌦p = −↵(L̂ ⋅ Ŝ)L̂; (7.20)

and using the properties of Mars and its orbit from Appendix A, we find ↵ =
8.397 arcsec yr−1. At Mars’s current obliquity ✏ = 25.19○, the correspond-
ing precession frequency is �⌦M� = ↵(L̂ ⋅ Ŝ) = ↵ cos ✏ = 7.599 arcsec yr−1.

According to Lagrange–Laplace theory (§5.2), the normal L̂ to Mars’s
orbit also precesses, with a more complicated motion that is the sum of
eight components with different amplitudes and frequencies. The preces-
sion frequencies fi (Table 5.1) are negative—the motion of the tip of L̂ is
clockwise as viewed from the north ecliptic pole—as is the precession of
Mars’s spin axis Ŝ. Moreover, one of the eight Lagrange–Laplace preces-
sion frequencies, �f2� = 7.05 arcsec yr−1, is not far from Mars’s spin preces-
sion frequency. Thus we expect that secular oscillations in the orientation
of Mars’s orbit may drive oscillations in its spin direction.

To investigate this interaction, we first rewrite equation (7.5) as

dŜ

dt
= −↵(L̂ ⋅ Ŝ)L̂ × Ŝ. (7.21)

The orientation of Mars’s orbit can be written in terms of the ascending node
⌦ and the inclination I as

L̂ = (sin I sin⌦,− sin I cos⌦, cos I). (7.22)

The most accurate way to determine the time history of the orientation L̂

is through N -body integrations of the solar system. We sacrifice some ac-
curacy for the sake of simplicity and insight by expanding sin I cos⌦ and
sin I sin⌦ as trigonometric series in the time. These series can be written
compactly as

sin I exp(i⌦) = N�
j=1

Aj exp[i(⌫jt + �j)]. (7.23)
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The simplest version of this approach is Lagrange–Laplace theory, in which
N = 8 and the amplitudes Aj , phases �j and frequencies ⌫j are determined
by the analytic approach of §5.2. This approach neglects additional harmon-
ics that arise from higher powers of the eccentricities and inclinations and
nonlinear contributions to the secular dynamics. A more accurate approach
(Laskar 1988) is to fit the amplitudes, frequencies and phases to numerical
integrations. For our purposes we keep only the strongest few terms with
frequencies close to the current spin precession frequency:

⌫1 = −7.05311 arcsec yr−1, A1 = 0.001318, �1 = 144.957○,
⌫2 = −6.96311 arcsec yr−1, A2 = 0.0010367, �2 = 311.799○,
⌫3 = −7.00251 arcsec yr−1, A3 = 0.0007314, �3 = 118.035○,
⌫4 = −7.14832 arcsec yr−1, A4 = 0.0006883, �4 = 327.622○,
⌫5 = −6.86059 arcsec yr−1, A5 = 0.0006112, �5 = 298.460○. (7.24)

The origin of time is J2000.0, and the reference frame is the ecliptic coordi-
nate system at J2000.0.

We now integrate the equation of motion (7.21) backward in time, using
equations (7.22), (7.23) and (7.24) to determine the orbit orientation L̂ at
any time. Figure 7.2 shows three histories of the obliquity ✏ = cos−1 L̂ ⋅ Ŝ.
Each history is based on the same equation of motion but uses initial condi-
tions for the spin axis that differ by random amounts of about 1 arcsecond.
The differences between the integrations grow rapidly, and by 100Myr the
trajectories are completely different. This behavior is a signature of chaos
(Laskar & Robutel 1993; Touma & Wisdom 1993). The corresponding Lia-
punov time is about 5Myr.

The figure shows that the obliquity of Mars varies between about 25○
and 40

○. The actual variations are even larger—from near-zero to 65
○ over

this interval—since the restriction of the series (7.23) to near-resonant fre-
quencies suppresses terms with shorter periods that also lead to obliquity
oscillations, although they play no role in the chaotic behavior (Laskar et al.
2004a).

The chaos arises because of the overlap of resonances associated with
the terms in equation (7.21). If a single term dominates, such that the orbital
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Figure 7.2: The obliquity of Mars over the past 200 Myr. The plot shows three
integrations with differences in the orientation of the initial spin vector of about one
part in 10

5. Oscillations with periods � 0.2Myr have been suppressed.

angular momentum of Mars precesses uniformly, the motion is integrable as
described in §7.4. However, the terms in equation (7.24) have similar ampli-
tudes and are sufficiently closely spaced in frequency ⌫i that the resonances
associated with them overlap. Remarkably, the chaos persists even if we
simplify the model further by discarding all but the strongest two terms.

In contrast to Mars, Earth’s obliquity is quite stable, varying only by
about ±1○. The reason is that Earth’s spin precession is dominated by
torques from the Moon, not the Sun, so its precession frequency is higher
than the frequencies of the secular variations in its orbit.



368 CHAPTER 7. PLANETARY SPINS

7.2 Spin-orbit resonance

The spins of planets and satellites in the solar system are often in resonance
with their orbits. The most intriguing example is Mercury, whose spin pe-
riod of 58.646 d is exactly 2

3 of its orbital period. The Moon and most of the
inner satellites of the giant planets have spin periods that equal their orbital
periods; that is, their spins are synchronous. The goal of this section is to
describe the dynamics of these resonances.

We consider the case of a satellite orbiting a host planet, although the
same derivations apply to a planet orbiting a host star. The minimum-
energy state of an isolated spinning body is achieved when its spin vector
is aligned with the principal axis having the largest moment of inertia (Box
7.1). This alignment generally occurs on timescales much shorter than the
evolution timescale due to tides, so we may assume that the satellite is in
this minimum-energy state. For simplicity we also assume that the spin and
orbital angular-momentum vectors of the satellite are aligned.

The gravitational potential of the satellite at large distances is given by
MacCullagh’s formula (1.129),

� = 3G
2r5
(Ax

′2 +By
′2 +Cz

′2) − G
2r3
(A +B +C), (7.25)

where (x′, y′, z′) are the coordinates along the principal axes, A ≤ B ≤ C
are the corresponding moments of inertia (eqs. D.87), and r = (x′2 + y′2 +
z
′2)1�2 is the distance from the center of mass of the satellite. Since any

spherical potential has no effect on the spin dynamics, we can simplify this
expression by subtracting G(A − 1

2B − 1
2C)�r3 to obtain

� = 3G
2r5
[(B −A)y′2 + (C −A)z′2]. (7.26)

Our assumption that the spin vector is aligned with the principal axis having
the largest moment of inertia implies that the spin vector is parallel to the
z
′-axis.

We now introduce a non-rotating reference frame centered on the satel-
lite, with coordinates (x, y, z), which is oriented so the host planet orbits
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Box 7.1: Principal-axis rotation
Spinning bodies such as planets and satellites experience internal stresses that can
dissipate their rotational energy.

In the principal-axis frame (x′, y′, z′) the inertia tensor of a body is diagonal,
with components A = Ix′x′ , B = Iy′y′ , C = Iz′z′ (eqs. D.87). Without loss of
generality we may assume that A ≤ B ≤ C. The rotational energy is given by
equation (D.96),

T = 1

2
A!

2

x′ + 1

2
B!

2

y′ + 1

2
C!

2

z′ . (a)

In the principal-axis frame the spin angular momentum S = Sx′ x̂′ + Sy′ ŷ′ +
Sz′ ẑ′ = A!x′ x̂′ +B!y′ ŷ′ +C!z′ ẑ′. Thus the kinetic energy can be written

T = S
2

x′
2A
+ S

2

y′
2B
+ S

2

z′
2C

. (b)

If the body is isolated the spin angular momentum S is conserved. Therefore
the rotational energy is minimized if Sx′ = Sy′ = 0 and Sz′ = ±�S�; in other
words the spin angular momentum in the minimum-energy state is parallel to
the principal axis with the largest moment of inertia. Usually this is the shortest
principal axis—the one with the smallest distance from the center of mass to the
surface.

If the spin angular momentum is not aligned with one of the principal axes,
rotation induces time-varying internal stresses that dissipate energy, so the orienta-
tion of the principal axes evolves toward the minimum-energy state. In principle,
the body could persist indefinitely in a state with S parallel to a different principal
axis. However, rotation around the principal axis with the intermediate moment of
inertia is dynamically unstable, even without dissipation (Problem 7.1). Rotation
around the principal axis with the smallest moment of inertia is an energy max-
imum, so any small misalignment of the angular momentum from the principal
axis will initiate dissipation that forces the misalignment to grow.

We therefore expect that most solid astronomical bodies should rotate around
the principal axis with the largest moment of inertia. Some small solar-system
bodies such as comets and asteroids do not spin around any of the principal axes—
they are sometimes said to be “tumbling”—presumably because of recent impacts,
outgassing, or the YORP effect (§7.5).
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the satellite in the (x, y) plane and the positive z-axis points in the di-
rection of the orbital angular momentum. Then the position of the planet
relative to the satellite is r = r cos(f + $)x̂ + r sin(f + $)ŷ, where f

and $ are the true anomaly and longitude of periapsis of the planet, and
r = a(1−e2)�(1+e cos f), where a and e are the semimajor axis and eccen-
tricity of the orbit (eq. 1.29). Since the spin and orbital axes are aligned by
assumption, we have z = z′ and

x
′ = x cos ✓ + y sin ✓, y

′ = −x sin ✓ + y cos ✓, (7.27)

where ✓(t) is the angle between the x̂ and x̂
′ axes. When evaluated at the

position of the planet, equation (7.26) becomes

� = 3G(B −A)
2r3

sin
2(f +$ − ✓). (7.28)

The torque exerted on the planet by the satellite is N = −M(@��@f)ẑ,
where M is the planet mass. This torque affects both the orbit of the planet
around the satellite and the spin of the satellite, but in most cases the orbital
angular momentum is much larger than the satellite’s spin angular momen-
tum, so changes in the orbit can be neglected compared to changes in the
spin. The spin angular momentum S = C ✓̇ẑ changes at a rate Ṡ = −N, so

✓̈ = 3GM

2r3

B −A
C

sin 2(f +$ − ✓). (7.29)

In the absence of resonances, the angles f and ✓ circulate independently
and the right side of this equation averages to zero. More interesting be-
havior occurs when there is a spin-orbit resonance, which occurs when the
mean motion in the orbit n and the spin rate of the satellite ✓̇ are related by
✓̇ � pn, where n is the mean motion and p is an integer (or half-integer, as
we shall see). To investigate this behavior we write  ≡ 2(✓−p`−$) where
` is the mean anomaly, eliminate ✓ from equation (7.29), and then average
over time, or equivalently over `. The result can be written as

 ̈ = −3GM

a3

B −A
C

Y (p, e) sin , (7.30)
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where
Y (p, e) ≡ �(a�r)3 cos 2(f − p`)�. (7.31)

Here �⋅� denotes the orbit average; note that �(a�r)3 sin 2(f−p`)� = 0, since
f is an odd function of ` while r is even. The average in equation (7.31)
can only be nonzero if 2p` varies by an integer multiple of 2⇡ when ` varies
by 2⇡, so p must be an integer or half-integer. The values of Y (p, e) can be
determined numerically or as power series in the orbital eccentricity e:

Y (2, e) = 17
2 e

2 − 115
6 e

4 +O(e6), Y (32 , e) = 7
2e − 123

16 e
3 +O(e5),

Y (1, e) = 1 − 5
2e

2 + 13
16e

4 +O(e6), Y (12 , e) = −1
2e + 1

16e
3 +O(e5),

Y (0, e) = 0, Y (−1
2 ,0) = 1

48e
3 +O(e5),

Y (−1, e) = 1
24e

4 +O(e6), Y (−3
2 , e) = 81

1280e
5 +O(e7).

(7.32)

Equation (7.30) is the equation of motion for a pendulum (§6.1). The
variable  can either circulate or librate; if  librates the satellite is said to
be in a spin-orbit resonance. In a spin-orbit resonance the average of  ̇
vanishes, so the time average of ✓̇ = pn. Since B −A > 0 the resonant angle
librates around  = 0 if Y (p, e) > 0 and otherwise around ⇡. Equilibrium
at  = 0 implies that when ` = 0 we have ✓ = $; in words, the long axis
of the satellite points toward the host planet at periapsis. The resonance is
stable even in the presence of additional torques on the satellite, so long as
the torques are not too large (see discussion following eq. 6.17).

There is an infinite number of spin-orbit resonances corresponding to
different half-integer values of p, but most of these are very weak. If the
planetary orbit has a small eccentricity, the strongest resonances are those in
which Y (p, e) depends on the lowest power of the eccentricity: according
to equations (7.32) these have p = 1 [Y (p, e) = O(1)] and p = 1

2 or p =
3
2 [Y (p, e) = O(e)]. For circular orbits the only resonance is p = 1, the
synchronous resonance.

The nature of the synchronous resonance is different from other spin-
orbit resonances. As we shall see in Chapter 8, tidal friction naturally tends
to decrease the spin rate of a satellite if this rate exceeds the mean motion
and increase the spin rate if it is less than the mean motion. Thus satellites
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subjected to tidal friction generally evolve toward the synchronous state,
even if there is no resonance (e.g., if the satellite is axisymmetric, so B−A =
0).

The Moon and most of the inner satellites in the solar system are syn-
chronous, as are Pluto and its satellite Charon, while Mercury is found in
the p = 3

2 resonance. The current libration amplitudes of these bodies are all
near zero, having been damped long ago by internal stresses.

The existence of stable resonances does not address the question of why

satellites and planets are found in these resonances—or why, for example,
Mercury is found in the p = 3

2 resonance and not a resonance with larger p or
the synchronous state. In general, satellites and planets found in spin-orbit
resonance have timescales for tidal despinning that are short compared to
the age of the solar system, which strongly suggests that resonance capture
is a consequence of tidal evolution. However, for the simplest model of
despinning, in which tides produce a constant torque with the opposite sign
to ✓̇ − n, we showed in §6.1.1 that capture in resonance cannot occur.

7.2.1 The chaotic rotation of Hyperion

We derived equation (7.30) by averaging equation (7.29) over time, keep-
ing the slow variable  (t) fixed. We can derive an equation of motion for
 (t) without averaging by treating the functions Y (p, e) as coefficients in
a Fourier series for (a�r)3 exp[2i(f − p`)] (Appendix B.4). We find

 ̈ = −3GM

a3

B −A
C

∞�
k=−∞

Y (p + 1
2k, e) sin( − k`). (7.33)

To simplify the notation we use units in which GM�a3 = 1. Then the mean
motion n = 1, and we can choose the origin of time so ` = t. Equation (7.33)
is derived from a Hamiltonian

H(Q,P, t) = 1
2P

2 − 3B −A
C

∞�
k=−∞

Y (p + 1
2k, e) cos(Q − k`), (7.34)

where Q =  is the coordinate and P =  ̇ is the conjugate momentum.
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Assume for the moment that a single term in the sum dominates the
Hamiltonian. We change to a new coordinate-momentum pair (Q′, P ′) us-
ing the generating function S2(Q,P

′) = P ′Q+ kQ− kP ′t. Then equations
(D.63) imply that P = @S2�@Q = P ′ + k, Q′ = @S2�@P ′ = Q − kt, and the
new Hamiltonian is

H
′(Q′, P ′) =H+ @S2

@t
= 1

2P
′2+ 1

2k
2−3B −A

C
Y (p+ 1

2k, e) cosQ′. (7.35)

The constant 1
2k

2 plays no role and can be dropped. Then the Hamiltonian is
the pendulum Hamiltonian of §6.1, with m = 1 and !2 = 3Y (p+ 1

2k, e)(B−
A)�C. The equilibria are at P ′ = 0, corresponding to P = k, and the width
of the resonance is given by equation (6.13),

wk = 4 �3B −A
C

Y (p + 1
2k, e)�

1�2
. (7.36)

According to the resonance-overlap criterion (Appendix F.1), a region
of phase space near a resonance is chaotic when the sum of the half-widths
of two adjacent resonances exceeds their separation. The separation of
adjacent resonances (��k� = 1) is �P = 1, and for small eccentricities,
the largest pair of adjacent coefficients in equations (7.32) are Y (1, e) =
1 +O(e2) and Y (32 , e) = 7

2e +O(e3). Therefore we expect to find a region
of chaotic spin when (Wisdom et al. 1984)

�3B −A
C
�1�2 [2 + (14e)1�2] � f, (7.37)

where f � 0.6 from numerical investigations of the standard map (Appendix
F.1). The chaotic region surrounds the p = 1 and p = 3

2 resonances, corre-
sponding to spins ✓̇ between 1 and 1.5 times the mean motion.

The most interesting case in the solar system is Saturn’s satellite Hype-
rion, which has e = 0.123 and (B −A)�C = 0.29, so the left side of (7.37)
is 3.2, well above what is needed for chaos. Numerical integrations confirm
that Hyperion’s spin is chaotic. Moreover the integrations show that rotation
in which the spin and orbital angular momenta are aligned is unstable. Thus
Hyperion is tumbling chaotically, with a remarkably short Liapunov time of
only ∼ 40 days (Wisdom et al. 1984).
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7.3 Andoyer variables

The behavior of a rotating rigid body is usually described by Euler’s equa-
tions (Appendix D.11.2). However, there are several reasons why a Hamil-
tonian description of the motion is more useful. First, the powerful tool
of Hamiltonian perturbation theory is not available when the differential
equations do not have a Hamiltonian structure. Second, numerical stud-
ies of Hamiltonian systems can employ symplectic integration algorithms
(§2.2.2), which are more accurate than general-purpose integration algo-
rithms over long times. Finally, we shall find that the internal symmetries
of the dynamics are more explicit in the Hamiltonian formulation than in
Euler’s equations.

Let (x, y, z) be the coordinates in a reference frame, usually but not
always inertial. Similarly, let (x′, y′, z′) be coordinates in the principal-axis
frame of the body, in which the inertia tensor is diagonal with components
A = Ix′x′ , B = Iy′y′ , C = Iz′z′ (eq. D.87). Without loss of generality we
may assume that A ≤ B ≤ C.

The Euler angles (↵,�,�) describe rotation from the reference frame
to the principal-axis frame. The Hamiltonian for rotation of a rigid body
is given in equation (D.99) in terms of these angles and their conjugate
momenta (p↵, p� , p�), but the expressions are relatively cumbersome. The
dynamics can be simplified by a canonical transformation to Andoyer vari-
ables.

The Andoyer variables are derived by supplementing (↵,�,�) with two
additional sets of Euler angles. If the body is in free rotation (i.e., there
are no external torques), its spin angular momentum S is conserved, so the
plane perpendicular to S is fixed. The presence of this fixed plane prompts
us to define a new set of Cartesian coordinates (xs, ys, zs) in which the xs-
axis lies in the x-y plane of the original reference coordinate system and
the positive zs-axis is parallel to S. The Euler angles of the spin frame
relative to the reference frame are denoted (h, i,0), and the Euler angles of
the principal-axis frame relative to the spin frame are denoted (g, J, `). The
geometry is illustrated in Figure 7.3.

The components of the spin angular momentum in the principal-axis or
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Figure 7.3: Andoyer coordinates for a rotating body. The figure shows three Carte-
sian frames: the reference frame (x, y, z), the principal-axis frame (x′, y′, z′) fixed
to the rotating body, and the spin frame (xs, ys, zs) in which the positive zs-axis is
parallel to the body’s spin angular momentum and the xs-axis lies in the reference
plane. The Euler angles (↵,�,�) specify the rotation from the reference frame to
the principal-axis frame, the Euler angles (h, i,0) specify the rotation from the ref-
erence frame to the spin frame, and the Euler angles (g, J, `) specify the rotation
from the spin frame to the principal-axis frame. The spherical triangle in the lower
right is an enlarged view of the triangle whose vertices are marked by open circles
in the main figure. The Andoyer coordinates are (`, g, h).
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(x′, y′, z′) frame are

S = S(sin ` sinJ, cos ` sinJ, cosJ), (7.38)

where S = �S�—this result can be obtained by inspection of Figure 7.3 or
from equation (B.60), by setting x = y = 0, z = S and replacing (↵,�,�) by(g, J, `). In these coordinates we also have S = (A!x′ ,B!y′ , C!z′), where
! is the spin angular velocity. Using these results to eliminate the compo-
nents of ! from equations (D.97), we find that the momenta conjugate to
the Euler angles (↵,�,�) are

p↵ = S cos i ≡ Sz, p� = −S sinJ sin(� − `), p� = S cosJ ≡ ⇤. (7.39)

In writing the first of these we have introduced the symbol i for the spin
inclination, the angle between S = Sẑs and the normal to the reference
plane ẑ. We have also used the identity5

cos i = cos� cosJ + sin� sinJ cos(� − `). (7.40)

These results show that p↵ is the projection of the spin angular momentum
on the z-axis of the reference frame, and that p� is the projection of the spin
angular momentum on the body-fixed z

′-axis.
The Andoyer coordinates are (`, g, h) and the momenta are (⇤, S, Sz).

Notice the analogy with Delaunay variables (⇤, L,Lz): the variables L and
Lz are the orbital angular momentum and its z-component in Delaunay vari-
ables, while S and Sz are the spin angular momentum and its z-component
in Andoyer variables.

We now show that Andoyer coordinates and momenta are canonical
variables (Deprit 1967). We examine the triangle whose vertices are marked
with open circles in Figure 7.3. Using the spherical cosine law, the first of
equations (B.49) with A = ⇡ − �, we find

cos g = cos(↵ − h) cos(� − `) − sin(↵ − h) sin(� − `) cos�. (7.41)
5 This can be derived in two ways. (i) Apply the first of equations (B.56) to the triangle

marked with open circles in Figure 7.3, using A = i. (ii) Evaluate ẑ and ẑs in the principal-
axis frame, using equation (B.60) and the Euler angles (↵,�,�) and (g, J, `) respectively;
then cos i = ẑ ⋅ ẑs.
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Taking the differential of this expression, we have

sin g dg = � sin(↵ − h) cos(� − `) + cos(↵ − h) sin(� − `) cos��d(↵ − h)
+ � cos(↵ − h) sin(� − `) + sin(↵ − h) cos(� − `) cos��d(� − `)
− sin(↵ − h) sin(� − `) sin� d�. (7.42)

This result can be simplified by eliminating sin� using the spherical sine
law, equation (B.55), in the form sin� = sin g sinJ� sin(↵ − h); and by
eliminating cos� using equation (7.41):

dg = cos(� − `) − cos(↵ − h) cos g
sin g sin(↵ − h) d(↵ − h) (7.43)

+ cos(↵ − h) − cos(� − `) cos g
sin g sin(� − `) d(� − `) − sin(� − `) sinJ d�.

The spherical cosine law can be applied again to simplify each of the first
two terms, giving

dg = cos id(↵ − h) + cosJ d(� − `) − sin(� − `) sinJ d�. (7.44)

Using equations (7.39) this result can be rewritten as

⇤d` + Sdg + Szdh = p↵d↵ + p�d� + p�d�. (7.45)

This equation relates the new momenta (⇤, S, Sz) and the differentials of
the new coordinates (`, g, h) to the old momenta (p↵, p� , p�) and the dif-
ferentials of the old coordinates (↵,�,�). The proof that the transformation
is then canonical is given after equation (D.52).

The Hamiltonian for a rotating body Hrot is given in terms of the old
variables in equation (D.99). To convert this to Andoyer variables, we set

p� = S cosJ, p� = −S sinJ sin(� − `),
p↵ = S cos� cosJ + S sin� sinJ cos(� − `), (7.46)

using equations (7.39) and (7.40). The Hamiltonian simplifies to

Hrot = S2
sin

2
J �sin2 `

2A
+ cos

2
`

2B
� + S

2
cos

2
J

2C
+�. (7.47)
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Since cos
2
J = ⇤2�S2 we obtain finally

Hrot = (S2 −⇤2)� sin2 `
2A

+ cos
2
`

2B
� + ⇤2

2C
+�. (7.48)

In the old variables the orientation of the body, and thus the potential �, is
determined entirely by the Euler angles (↵,�,�), independent of the mo-
menta (p↵, p� , p�). In Andoyer variables the orientation is determined by
both the coordinates and the momenta: the orientation of the spin frame(xs, ys, zs) relative to the reference frame (x, y, z) is determined by h and
i = cos−1 Sz�S, while the orientation of the principal-axis frame relative to
the spin frame is determined by g, J = cos−1⇤�S and `.

If the body is rotating freely and the reference frame is inertial, then
� = 0 and the Hamiltonian is independent of both g and h, so their con-
jugate momenta S and Sz are both conserved. The Hamiltonian is also
independent of Sz , so h is conserved. All of these are consequences of
the conservation of the spin angular momentum S. The only remaining
variables are the coordinate-momentum pair (`,⇤), so the problem has one
degree of freedom. The trajectories can be explored through the contours
of constant Hrot (Deprit 1967) or by solving the equations of motion using
elliptic functions (Kinoshita 1972). If the body is axisymmetric (B = A)
then the Hamiltonian is independent of `, so the conjugate momentum ⇤ is
also conserved.

In the spin frame the spin vector has coordinates S(0,0,1). Its coordi-
nates in the principal-axis frame are given by equation (7.38). Thus in the
principal-axis frame, the spin vector precesses or nutates around the sym-
metry axis at a rate � ˙̀� = ⇤(A−1 − C−1). When the angle J between the
symmetry axis and the spin angular momentum is small, and the dynamical
ellipticity (C −A)�C � 1, the precession rate is smaller than the spin rate
by a factor equal to the dynamical ellipticity.

Note that when the satellite is rotating around its principal axis (ẑ′ par-
allel to ẑs), the angle J is zero, ⇤ = S, and the coordinates g and ` are not
well defined: only their sum g + ` is physically meaningful. A similar sin-
gularity occurs when the spin is normal to the reference plane (ẑ parallel to
ẑs), so g and h are not well defined. In such cases we can transform to mod-
ified Andoyer variables with the same approach that was used to modify
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the Delaunay variables in equations (1.87)–(1.92). For example the gen-
erating function S2(q,P) = (` + g + h)P1 + (g + h)P2 − hP3 yields new
coordinate-momentum pairs

✓1 = ` + g + h, ✓2 = g + h, ✓3 = −h, (7.49)
P1 = ⇤, P2 = S −⇤ = S(1 − cosJ), P3 = S − Sz = S(1 − cos i).

7.4 Colombo’s top and Cassini states

Earlier sections in this chapter described the spin dynamics of a satellite
traveling on a fixed orbit around its host planet. In practice, the orientation
of satellite orbits often precesses due to forces from the planet’s equatorial
bulge, other satellites, or the host star. These variations can in turn strongly
affect the evolution of the satellite’s spin. The study of these effects dates
back more than three centuries (Box 7.2).

The simplest example is a satellite such as the Moon, whose orbit pre-
cesses due to torques from the planet’s host star.6 For simplicity we assume
that the satellite is axisymmetric and that its orbit around the planet is cir-
cular. To describe the spin evolution we use Andoyer variables with the ref-
erence (x, y, z) coordinate system chosen such that the satellite orbits the
planet in the x-y plane. Then ẑ is parallel to the satellite’s orbital angular
momentum. As usual, the (x′, y′, z′) coordinate system is the principal-axis
frame, with the largest moment of inertia C around the z

′-axis.
Because the satellite’s orbit precesses, the (x, y, z) frame is not inertial:

it precesses around the Z-axis of an inertial frame (X,Y,Z) with angular
speed ⌦s = ⌦sẐ. We assume that the dominant torque on the satellite orbit
arises from the host star, so the (X,Y ) plane is the plane of the planet’s
orbit around the Sun, which we assume to be fixed. We may assume that
the positive x-axis lies in the (X,Y ) plane, at the ascending node of the
satellite’s orbit, and that the inclination of the satellite orbit to this plane is
I .
6 The derivation here follows Henrard & Murigande (1987) but beware of differences in no-

tation
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Box 7.2: Cassini’s laws
In 1693 Giovanni Cassini stated three empirical laws that characterize the motion
of the Moon. In modern language, these are:

(i) The Moon’s spin period equals the period of its orbit around the Earth.

(ii) The angle between the Moon’s spin axis and the normal to its orbit around
the Earth is constant (about 1.54○), even as the orbital plane precesses due
to the gravitational influence of the Sun.

(iii) The Moon’s spin axis, the normal to the Moon’s orbit around the Earth,
and the normal to the Earth’s orbit around the Sun all lie in the same plane.

The first law is a consequence of tidal friction, which has transferred angular
momentum from the Moon’s spin to the Earth–Moon orbit (§8.4.2). The second
and third laws arise because the Moon is in a Cassini state, an extremum of its ro-
tational energy in the sense described in the paragraphs following equation (7.67).

Cassini’s third law implies that the precession period of the Moon’s spin axis
equals the precession period of the axis of its orbit around the Earth, about 18.60
years.

The non-inertial nature of the (x, y, z) frame gives rise to a disturbing
function (cf. eq. 7.13)

Hnon−in = −⌦s ⋅ S, (7.50)

where S is the satellite’s spin angular momentum. In the (x, y, z) coordi-
nates the precession frequency and the spin angular momentum are

⌦s = ⌦sẐ = ⌦s(0, sin I, cos I),
S = S(sin i sinh,− sin i cosh, cos i)
= [(S2 − S2

z
)1�2 sinh,−(S2 − S2

z
)1�2 cosh,Sz], (7.51)

where i and h are defined in Figure 7.3. Then

Hnon−in = ⌦s�(S2 − S2
z
)1�2 sin I cosh − Sz cos I�. (7.52)

Note that ⌦s is usually negative because the nodes of satellite orbits usually
regress.
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The next step is to determine the contribution to the Hamiltonian from
the host planet’s tidal field. This is given by equation (7.26),

M� = 3GM

2r5
(C −A)z′2, (7.53)

where M is the planet mass, z′ and r are evaluated at the position of the
planet, and we have set A = B since the satellite is axisymmetric. As usual,
let (↵,�,�) be the Euler angles describing the rotation from the (x, y, z)
reference frame to the (x′, y′, z′) principal-axis frame; then from (B.60)
z
′ = x sin↵ sin�−y cos↵ sin�+z cos�. At the position of the planet z = 0,

x = r cos f and y = r sin f , where f is the true anomaly. Averaging over
the circular orbit of the satellite around the planet using equations (1.66c)–
(1.66e), we have

M��� = 3GM

4a3
(C −A) sin2 �, (7.54)

where a is the satellite’s semimajor axis and we assume that the orbit eccen-
tricity e = 0. To express the Euler angle � in terms of Andoyer variables, we
apply the first of the trigonometric identities (B.56) to the spherical triangle
at the lower right of Figure 7.3, setting A = ⇡ − �, B = J , C = i, a = g to
find

cos� = cos i cosJ − sin i sinJ cos g. (7.55)
To simplify equation (7.54) we can replace sin2 � by − cos2 �—the constant
term generates no torques and can be dropped—to obtain finally

M��� = −3GM

4a3
(C −A)(cos i cosJ − sin i sinJ cos g)2, (7.56)

in which i and J are related to the Andoyer variables by Sz = S cos i and
⇤ = S cosJ .

The total Hamiltonian governing the spin dynamics is the sum of (i) the
Hamiltonian (7.48) representing the rotational energy, with A = B since
the satellite is axisymmetric; (ii) the Hamiltonian (7.52) representing the
fictitious forces that arise because the reference frame is non-inertial, and
(iii) the Hamiltonian (7.56) representing the orbit-averaged tidal forces from
the planet. Thus

H =Hrot +Hnon−in +M��� (7.57)
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= S
2 −⇤2

2A
+ ⇤2

2C
+⌦s[(S2 − S2

z
)1�2 sin I cosh − Sz cos I]

− 3GM

4a3S4
(C −A)�Sz⇤ − (S2 − S2

z
)1�2(S2 −⇤2)1�2 cos g�2.

For the same reasons as in §7.2, we assume that the spin angular mo-
mentum S is nearly parallel to the principal axis with the largest moment
of inertia. In this case the angle J is nearly zero, so ⇤ is nearly equal to S.
Note that (i) with these assumptions, the angle i is equal to the obliquity ✏ of
the satellite—the angle between the spin and orbital angular momenta—and
we will change our notation accordingly; and (ii) the equations of motion
depend on the derivatives of the Hamiltonian, so by setting ⇤ = S (as we
shall now do) we abandon our ability to follow the evolution of the conju-
gate variables g and `, which determine the rotational phase of the satellite.

Replacing ⇤ by S, the Hamiltonian (7.57) simplifies to

H = S
2

2C
+⌦s�(S2 − S2

z
)1�2 sin I cosh − Sz cos I�

− 3GM

4a3
(C −A)S2

z

S2
. (7.58)

Since H is independent of the coordinates ` and g, the momenta ⇤ and S

are conserved. Therefore the term 1
2S

2�C is a constant and can be dropped.
The remaining Hamiltonian can be rescaled to a standard form, as de-

scribed in equations (6.39) and (6.40). Let R = Sz�S = cos i = cos ✏, r = h
and H(Sz, h) = bHC(R,h), and define a rescaled time ⌧ = t�t0. Then R

is a momentum conjugate to the coordinate h and HC is a Hamiltonian re-
lated to the rescaled time ⌧ if and only if t0 = S�b (recall that the spin S is
constant). We choose

t0 = 2a
3
S

3GM(C −A) =
2!

3n2

C

C −A ; (7.59)

in the last equation we have introduced the satellite’s mean motion n =(GM�a3)1�2 and its spin angular speed ! = S�C. The inverse of the char-
acteristic time t0 is roughly the precession frequency of the satellite’s spin
(cf. eq. 7.10).
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The rescaled Hamiltonian can be written

HC(R, r) = −1
2(R − p)2 − q(1 −R2)1�2 cos r; (7.60)

we have added an unimportant constant −1
2p

2 to complete the square and
defined

p ≡ −⌦st0 cos I, q ≡ −⌦st0 sin I. (7.61)

Usually p and q are positive since ⌦s is negative and 0 < I � 1. If not,
they can be made positive using the transformations in Box 6.1. This is the
Hamiltonian for the dynamical system known as Colombo’s top (Colombo
1966; Henrard & Murigande 1987).7

The equations of motion resulting from the Hamiltonian (7.60) are

dR

d⌧
= −q(1 −R2)1�2 sin r, dr

d⌧
= p −R + qR

(1 −R2)1�2 cos r. (7.62)

The equilibrium solutions of these equations are the Cassini states, found
at

r = 0,⇡; R − p = ± qR

(1 −R2)1�2 . (7.63)

Using equations (7.61) and the relation R = cos ✏, the equilibrium condition
can be rewritten as

sin ✏ cos ✏ +⌦st0 sin(✏ ± I) = 0. (7.64)

Squaring the second of equations (7.63) and rearranging the terms gives
us a quartic equation for R,

f(R) ≡ (R − p)2(1 −R2) − q2R2 = 0. (7.65)

A quartic always has 0, 2, or 4 real roots, but these are only physical if�R� ≤ 1. Since f(±1) = −q2 < 0 and f(0) = p2 > 0, there must be at least
two roots between −1 and +1. There cannot be three roots between −1 and
7 Giuseppe (“Bepi”) Colombo (1920–1984) was an Italian mathematician and engineer.

Among other contributions, he redesigned the trajectory of the Mariner 10 spacecraft to
accomplish three flybys of Mercury rather than just one.
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+1 since f(1) and f(−1) have the same sign. Therefore there are either two
or four Cassini states, depending on the values of p and q. There are four
states when8

�p�2�3 + �q�2�3 ≤ 1, (7.66)

otherwise there are only two.
The natural manifold for the phase space of Colombo’s top is the unit

sphere traced out by the normalized spin vector Ŝ = S�S. In the (x, y, z)
coordinate system, Ŝ = [(1 −R2)1�2 sin r,−(1 −R2)1�2 cos r,R] (eq. 7.51)
so the Hamiltonian (7.60) can be written

HC = −1
2(Ŝz − p)2 + qŜy. (7.67)

A smooth function on a sphere must have at least one maximum and
one minimum. Thus when there are two Cassini states, one is a maximum
of the Hamiltonian, one is a minimum, and both are therefore stable. For a
smooth function on a sphere the number of maxima and minima minus the
number of saddle points equals 2, the Euler characteristic of a sphere. When
there are four Cassini states this constraint can only be satisfied if two are
maxima of the Hamiltonian, one is a minimum, and one is saddle point; or
if two are minima, one a maximum, and one a saddle point. In either case
there are three stable and one unstable Cassini states.

Since the Cassini states have r = 0,⇡, they have Ŝx = 0. With this
restriction the phase space for Colombo’s top is the circle Ŝ

2
y
+ Ŝ

2
z
= 1,

and the Hamiltonian (7.67) is a parabola. The Cassini states occur at values
of HC for which the parabola is tangent to the circle. The geometry is

8 Proof: The number of roots between R = −1 and +1 is a function of the parameters (p, q).
The transition from four roots to two can occur either because (i) the roots move outside
the interval �R� ≤ 1 or (ii) the total number of roots drops from four to two. Transition (i)
is not allowed because f(±1) = −q2 is nonzero, so there can never be a root at R = ±1.
Transition (ii) occurs when there is a double root, which requires that both f(R) = 0 and
f
′(R) = 0 are satisfied simultaneously. Eliminating q

2 from these two equations yields
R = sgn(p)�p�1�3, and substituting this result back into f(R) = 0 yields �p�2�3+�q�2�3 = 1.
This is the locus of parameters (p, q) on which there is a double root and hence the locus on
which the transition between two and four roots must occur. Examination of special cases
(e.g., �p�, �q� � 1, �p�, �q� � 1) shows that there are four roots when �p� and �q� are small and
two when they are large.
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Figure 7.4: The state of Colombo’s top is defined by the components (Ŝx, Ŝy, Ŝz)
of the unit spin vector in the non-inertial frame, where ẑ is parallel to the satellite’s
orbital angular momentum and x̂ points to the ascending node of the satellite orbit
on the orbit of its host planet. The figure shows the Ŝx = 0 plane for p = q = 0.5
(left panel) and p = q = 0.2 (right panel). The unit spin vector is restricted to the
circle Ŝ2

y + Ŝ2

z = 1, and the parabolas opening to the right are the contours of the
Hamiltonian (7.67). The Cassini states, labeled C1, C2, C3, C4, are located where
the contours of the Hamiltonian are tangent to the unit circle.

illustrated in Figure 7.4 for the usual case when p, q > 0. The left panel
shows the case p = q = 0.5, for which there are two Cassini states, and the
right panel shows the case p = q = 0.2, for which there are four.

First consider Cassini state 4, labeled C4 in the right panel. The Hamil-
tonian is constant along the parabolic contours and increases to the right.
If we move a small distance away from C4 along the unit circle, keeping
Ŝx = 0, then the value of the Hamiltonian decreases. In contrast, if we move
away from Ŝx = 0, keeping Ŝy and Ŝz constant, the value of the Hamiltonian
remains the same; however, this movement takes us outside the unit sphere.
To return to the unit sphere, we must move to the right, so the Hamiltonian
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increases. Comparing these two results, we conclude that C4 is a saddle
point and therefore unstable.

Similar arguments show that C1 and C3 are minima of the Hamiltonian
and C2 is a maximum, and therefore stable. Cassini states C1, C3 and C4
have r = h = 0, so Ŝy < 0—in this case the spin vector Ŝ and the normal to
the planet’s orbit Ẑ are on opposite sides of the normal to the satellite orbit
ẑ (compare the y-components of eqs. 7.51). C2 has r = h = ⇡, so Ŝ and Ẑ

are on the same side of ẑ.
Figure 7.5 shows the obliquity ✏ in the Cassini states as a function of the

dimensionless precession frequency ⌦st0 and the orbital inclination I .
We can now interpret Cassini’s laws (Box 7.2). The first law states that

the Moon is in a synchronous state, and we showed in §7.2 that this is a
consequence of tidal friction. The second and third laws can be explained
if the Moon is in a Cassini state. The second law states that the angle i =
✏ between the Moon’s spin axis and the reference plane (the plane of its
orbit around the Earth) is constant; this is obviously true for a Cassini state,
as any equilibrium of Colombo’s top has constant spin in the non-inertial
frame defined by the satellite’s orbit. The third law states that the Moon’s
spin axis, the normal to its orbit around the Earth, and the normal to the
Earth’s orbit around the Sun all lie in the same plane. In our notation the
normal to the Earth’s orbit is parallel to ⌦s and the spin axis is parallel to
the angular momentum S. In the (x, y, z) coordinate frame the normal to
the Moon’s orbit is ẑ = (0,0,1). In this frame, equation (7.51) tells us that
⌦s = ⌦s(0, sin I, cos I) and that S = S(0,∓ sin i, cos i) in a Cassini state
with r = h = 0,⇡. Thus ⌦s, ẑ, and S all lie in the y-z plane, so Cassini’s
third law is satisfied.

In a Cassini state the spin angular momentum of the satellite is not
aligned with its orbital angular momentum. Because of this misalignment,
the material in the satellite is subject to time-dependent internal stresses
leading to energy dissipation, even if the satellite is in synchronous rotation.
The source of this energy is the satellite’s orbit.

Planets can also be found in Cassini states (e.g., Correia 2015). In this
case the precession of the planet’s orbital plane is forced by other planets
with nonzero mutual inclinations (for example, Mercury is in state C1). If
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Figure 7.5: The obliquity ✏ of Cassini states as a function of the orbital precession
rate ⌦s and the characteristic time t0 (eq. 7.59). Results are shown for ⌦s < 0, as
is usual in planetary systems; the results for ⌦s > 0 are found by replacing ✏ with
180

○ − ✏. Results are shown for I = 10
○,20○, . . . ,90○ where I is the inclination

of the precessing satellite orbit relative to the orbit of its host planet; the results for
90
○ < I < 180○ are also found by replacing ✏ by 180

○ − ✏. The curves with ✏ > 90○
are Cassini state C3 and the curves with ✏ < 90

○ that extend to the right edge of
the figure are Cassini state C2. The remaining curves in the region ✏ < 90

○ and−⌦st0 � 0.63 are Cassini states C1 (solid) and C4 (dashed). State C4 is unstable.



388 CHAPTER 7. PLANETARY SPINS

a hot Jupiter is in a Cassini state, the energy dissipation rate may be large
enough to cause significant decay of the planet’s orbit. If the orbital pre-
cession is due to exterior planets, then as the orbit decays ⌦st0 shrinks, and
the Cassini state moves to the left in Figure 7.5. In Cassini state C2, this
evolution causes the obliquity to increase, leading to the surprising result
that tidal dissipation excites obliquity rather than damping it. Eventually
the dissipative tidal torque overwhelms the torque arising from the orbital
precession, the planet escapes from Cassini state C2, and the obliquity is
damped into Cassini state C1.

7.5 Radiative forces on small bodies

The primary effects of radiation from the host star on an orbiting body
are radiation pressure and Poynting–Robertson drag, as described briefly
in Box 1.5. The Yarkovsky9 and YORP (Yarkovsky–O’Keefe–Radzievskii–
Paddack) effects are more subtle processes that nevertheless can determine
the long-term evolution of the orbits and spins of bodies as large as aster-
oids. See Bottke et al. (2006) or Vokrouhlický et al. (2015) for a review.

7.5.1 Yarkovsky effect

We begin by examining the emission and absorption of radiation by an as-
teroid. We assume that the asteroid orbit is circular, that the asteroid is
spherical, and that its spin and orbital axes are aligned (of course, none of
these are good approximations for real asteroids). On average, the aster-
oid is in thermal equilibrium: the energy absorbed from the Sun, mostly at
visible wavelengths, is re-radiated by the asteroid, mostly at infrared wave-
lengths. In the description of Poynting–Robertson drag in Box 1.5, we as-
sumed that the energy was re-radiated isotropically in the rest frame of the
body, in which case it exerts no net force on the body. This is equivalent to
the assumption that the temperature and emissivity of the body’s surface are

9 Ivan Osipovich Yarkovsky (1844—1902) was a Polish–Russian civil engineer who first
described the effect in 1901 (Beekman 2005).
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uniform across its surface, and this is a good approximation for the small
dust grains for which Poynting–Robertson drag is significant.

On much larger bodies such as asteroids, however, the surface tempera-
ture is not uniform. Of course, the night side pointing away from the Sun is
cooler than the day side. More importantly, because of the asteroid’s spin the
temperature is not the same on the leading and trailing faces of the asteroid:
just as on Earth, the surface is hotter during the asteroid’s afternoon than
in the morning, and hotter after sunset than before sunrise. This time lag
is sometimes called “thermal inertia,” and a precise definition of this term
is given in equation (H.8). If the asteroid spin is prograde, this asymmetry
implies that the momentum carried away by infrared photons is larger on
the trailing face than on the leading face. As a result, the thermal emission
adds angular momentum to the orbit. Similarly, if the spin is retrograde the
emission drains orbital angular momentum. This Yarkovsky effect is neg-
ligible if the body is either very small (because the body reaches thermal
equilibrium on a timescale that is much shorter than the spin period) or very
large (because the area to mass ratio is small).10

The Yarkovsky force in this system is derived in Appendix H. The most
important component, along the azimuthal direction in the orbital plane, is
given by equation (H.19b):

FY = sgn(!syn)↵L⊙R2

9ca2

⇤∗
1 + 2⇤∗ + 2⇤2∗ , (7.68)

where FY > 0 if the force points in the direction of orbital motion, and

⇤∗ ≡ (�!syn�CV )1�2
25�2✏�T 3∗

, ✏�T
4∗ = 3

1�2
↵L⊙

8⇡2a2
. (7.69)

Here the surface properties of the asteroid are its radius R, its absorption co-
efficient ↵, and its emissivity ✏; its bulk properties are its density ⇢, its heat
capacity per unit volume CV , and its thermal conductivity ; and its dy-
namical properties are the semimajor axis a and the synodic spin frequency

10 The mechanism described is sometimes called the diurnal or daily Yarkovsky effect. There
is also a seasonal Yarkovsky effect if the obliquity of the asteroid is nonzero.
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!syn = !in −n, where !in is the spin frequency in an inertial frame and n is
the mean motion. The characteristic temperature of the asteroid surface is
T∗, � = 5.670374 . . .× 10−8 W m−2 K−4 is the Stefan–Boltzmann constant,
and L⊙ is the solar luminosity.

The azimuthal force changes the orbital angular momentum at a rate
L̇ = aFY; for an asteroid of mass m = 4

3⇡⇢R
3 on a circular orbit, the

semimajor axis a is related to the angular momentum by L =m(GM⊙a)1�2
so

ȧ

a
= sgn(!syn) ↵L⊙

6⇡⇢Rc(GM⊙)1�2a3�2 �
⇤∗, ⇤∗ � 1,
1
2⇤
−1∗ , ⇤∗ � 1.

(7.70)

The thermal conductivity  of common materials varies by more than
four orders of magnitude. Iron-rich objects have  ∼ 10–100W m−1K−1,
rocky and icy objects have  ∼ 1W m−1K−1, and regoliths11 have much
smaller values,  ∼ 10

−3 W m−1K−1. The volumetric heat capacity varies
much less; typically CV � 2 × 106 J m−3 K−1. From equations (7.69) and
(7.70),

T∗ = 165K�↵
✏
�1�4 �3 au

a
�1�2 , (7.71)

⇤∗ = 8.14

✏
�200K

T∗ �
3 � 8 hr

Psyn

CV

2 × 106 J m−3 K−1


W m−1K−1 �
1�2

,

ȧ

a
= sgn(!syn)↵

4.86Gyr
3 g cm−3

⇢

1 km
R
�3 au

a
�3�2 � ⇤∗, ⇤∗ � 1,

1
2⇤
−1∗ , ⇤∗ � 1.

This analysis is based on the plane-parallel approximation to the heat-
conduction equation (eq. H.1) and therefore requires that the thermal diffu-
sion length or skin depth �k�−1 (eq. H.5) is less than the size of the body; in
other words we need �k�R � 1 or

R � � 

�!syn�CV

�1�2 = 0.048m�Psyn

8 hr


W m−1K−1
2 × 106 J m−3 K−1

CV

�1�2 .
(7.72)

11 Regolith is a surface layer of unconsolidated deposits, such as dust, gravel, ash, liquids, and
so forth. Regolith covers most of the Earth, Moon, Mars, and asteroids. See also §8.6.2.
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For bodies smaller than this limit, the Yarkovsky force is reduced below the
values given by equation (7.68)—see Vokrouhlický (1998) for the general-
ization of the calculations in this section.

For a black body (↵ = ✏ = 1), the ratio of the Yarkovsky force to the
Poynting–Robertson force, equation (c) of Box 1.5, is

FY

FPR
= − sgn(!syn) 4c

9v

⇤∗
1 + 2⇤∗ + 2⇤2∗ , (7.73)

where v is the orbital speed. Since v � c in planetary systems, the Yarkov-
sky force is much larger if ⇤∗ is of order unity, but the Poynting–Robertson
drag dominates for very small bodies with ⇤∗ � 1, and very large ones with
⇤∗ � 1.

The Yarkovsky force can be measured directly from changes in the
orbits of artificial satellites and near-Earth asteroids (Bottke et al. 2006;
Vokrouhlický et al. 2015; Greenberg et al. 2020). According to equations
(7.71), over the lifetime of the solar system it can cause significant changes
in the semimajor axes (say, � 0.1 au) for asteroids as large as a few kilo-
meters in radius. The most important consequence of these changes is to
deliver asteroids at a steady rate into mean-motion and secular resonances
with Jupiter, from where they can be excited onto Earth-crossing orbits (see
§9.7). Without the Yarkovsky effect the flux of meteorites striking the Earth
would be drastically reduced.

7.5.2 YORP effect

The absorption, scattering, and re-emission of sunlight from the surface of
an asteroid of irregular shape can exert a torque relative to the center of mass
of the asteroid. This is the YORP effect, distinct from the Yarkovsky effect
because it affects the asteroid’s spin rather than its orbit and does not rely on
the thermal inertia of the asteroid. The acronym “YORP” was coined by Ru-
bincam (2000) and recognizes early contributions by Yarkovsky, O’Keefe
(1976), Radzievskii (1954), and Paddack (1969).

A simple, though artificial, example of the YORP effect would be a
propeller or windmill with its axis facing the Sun: sunlight reflected from
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Figure 7.6: Spin-up of an asymmetrical asteroid due to the YORP effect. The as-
teroid consists of a sphere with 45

○ wedges A and B attached to its equator. The
asteroid’s spin angular velocity is normal to its orbital plane. The incoming solar ra-
diation exerts the same force on each wedge, but the force exerted by the re-radiated
thermal emission is in a different direction—in the orbital plane for wedge B but at±45○ to the orbital plane for wedge A (assuming that the emission from the aster-
oid surface satisfies Lambert’s law). The resulting net torque causes the asteroid to
rotate faster and faster in the clockwise direction, as viewed from above.

or absorbed by the blades causes the windmill to spin.12 A somewhat more

12 There is a close conceptual relation between the YORP effect and the Crookes radiometer,
an airtight, partially evacuated glass bulb containing a set of four lightweight vanes mounted
vertically on a low-friction spindle. Each vane is painted black on one side and white on
the other. When the bulb is exposed to light, the spindle begins to turn, with the dark
sides retreating from the radiation source and the white sides approaching it. The torque
causing this spin is due to differences in gas pressure between the hotter black side and the
cooler white side of each vane, a mechanism that is not relevant to asteroids. If the bulb
were completely evacuated, the spindle would still turn due to the YORP effect, though at a
much slower rate and in the opposite direction.
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realistic model is described in Figure 7.6.
To quantify this effect, once again we assume that the asteroid is in a

circular orbit with semimajor axis a and that its spin axis is normal to the or-
bital plane. The flux of incoming energy per unit surface area is L⊙�(4⇡a2).
A small area dA of the asteroid surface with normal n̂ intercepts this energy
at a rate dAW (−X̂⋅n̂)L⊙�(4⇡a2), where X̂ is the unit vector pointing from
the Sun to the asteroid and W (x) = x if x > 0 (day side) and 0 if x < 0 (night
side).13 This corresponds to a momentum flux onto the surface or force per
unit area

dFin

dA
= L⊙
4⇡a2c

W (−X̂ ⋅ n̂)X̂. (7.74)

Now assume for simplicity that the asteroid is a black body with negligible
thermal inertia. Then the same energy flux must be re-radiated from the
surface, and if the surface satisfies Lambert’s law (Appendix H) the corre-
sponding force per unit area is given by equations (H.3) and (H.17):

dFout

dA
= − L⊙

6⇡a2c
W (−X̂ ⋅ n̂)n̂. (7.75)

The torque on the asteroid is

N = � dA r× �dFin

dA
+ dFout

dA
� = L⊙

4⇡a2c
� dAW (−X̂ ⋅ n̂)r× (X̂− 2

3 n̂),
(7.76)

where r is the vector from the center of mass of the asteroid to the surface
area element dA.

We now average the torque over the spin period of the asteroid. Let(x, y, z) be Cartesian coordinates that are fixed on the asteroid, with origin
at the center of mass, ẑ parallel to the spin angular momentum of the aster-
oid, and x̂ coinciding with the unit vector X̂ from the Sun at t = 0. We have
X̂ = x̂ cos�− ŷ sin�, with � = !synt and !syn the synodic frequency. If the
integral (7.76) is done in the body-fixed coordinates (x, y, z), then n̂ and r

13 This calculation neglects the possibility of self-shadowing of one part of the asteroid by
another, in which the line of sight from the Sun intersects the asteroid surface more than
twice. Self-shadowing is best accounted for by numerical calculations.
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are fixed as the asteroid spins, and the average over � gives14

�W (−X̂ ⋅ n̂)(X̂ − 2
3 n̂)��= �W (−x̂ ⋅ n̂ cos� + ŷ ⋅ n̂ sin�)(x̂ cos� − ŷ sin� − 2

3 n̂)��
= −1

4 [n̂ − ẑ(n̂ ⋅ ẑ)] − 2

3⇡
[1 − (n̂ ⋅ ẑ)2]1�2n̂. (7.77)

Therefore equation (7.76) becomes

�N�� = − L⊙
16⇡a2c

� dA r × �n̂− ẑ(n̂ ⋅ ẑ) + 8

3⇡
[1− (n̂ ⋅ ẑ)2]1�2n̂�. (7.78)

The first two terms in the braces arise from the incoming radiation and
the last term arises from the outgoing radiation. The first term can be rewrit-
ten as an integral over the body of the asteroid using the identity (B.37),
∫ dA r × n̂ = −∫ dA n̂ × r = −∫ dr∇ × r = 0. Similarly, the component
of the second term along axis i can be rewritten using the identity (B.32),−∫ dA (r × ẑ)i(n̂ ⋅ ẑ) = −∫ dA n̂ ⋅ [ẑ(r × ẑ)i] = −∫ dr∇ ⋅ [ẑ(r × ẑ)i] = 0.
We conclude that the average torque from the incoming solar radiation, aris-
ing from dFin�dA, always vanishes. Thus any average torque arises solely
from the outgoing thermal radiation, and equation (7.78) simplifies to

�N�� = − L⊙
6⇡2a2c

� dA [1 − (n̂ ⋅ ẑ)2]1�2(r × n̂). (7.79)

It is straightforward to show that this integral vanishes if the asteroid is
spherical, or even an ellipsoid rotating around one of its principal axes.

If the torque is along the spin axis, �N�� = N ẑ, we have

N = − L⊙
6⇡2a2c

� dA (1 − n2
z
)1�2(xny − ynx). (7.80)

The spin angular momentum of the asteroid is S = Sẑ, where S = C!in, !in

is the spin frequency in an inertial frame, and C = ⇢ ∫ dr (x2 + y2) is the
14 The integral involved in the average can be done by writing −x̂ ⋅ n̂ cos� + ŷ ⋅ n̂ sin� =

A sin(� −B) where A sinB = x̂ ⋅ n̂ and A cosB = ŷ ⋅ n̂, then integrating from � = B to
� = B + ⇡ if A > 0 or from � = B − ⇡ to B if A < 0. The result is then simplified using
the identities (B.6) with A = n̂.



7.5. RADIATIVE FORCES ON SMALL BODIES 395

moment of inertia (eq. 1.133). Then Ṡ = N or

!̇in = L⊙fYORP

6⇡2⇢a2cR2
where fYORP ≡ −R2 ∫ dA (1 − n2

z
)1�2(xny − ynx)

∫ dr (x2 + y2) .

(7.81)
Here R is the mean radius of the asteroid and fYORP is the YORP coef-
ficient, a dimensionless measure of the irregularity in the asteroid surface
that contributes to the YORP effect. The size of the YORP coefficient is
difficult to estimate, but the handful of near-Earth asteroids in which the
YORP effect has been measured suggest �fYORP� ∼ 0.01.

The characteristic timescale for spin-up or spin-down due to the YORP
effect is given by

�!̇in�
!in
= 1

19.3Myr
P

8 hr
3 g cm−3

⇢

fYORP

0.01
�3 au

a

1 km
R
�2 . (7.82)

Thus the YORP effect can significantly alter the spins of asteroids as large
as R ∼ 10 km over the lifetime of the solar system.

Since the YORP torque is independent of the asteroid’s angular velocity
(so long as the thermal conductivity of the asteroid is unimportant), it can
spin up asteroids to angular speeds sufficiently large that the centrifugal
force exceeds the self-gravitational force and tensile strength of the asteroid,
causing it to break apart and perhaps forming a binary asteroid or a pair of
unbound asteroids on similar orbits (Walsh 2018). A complication in such
scenarios is that the YORP torque also tends to increase the obliquity, and
once the obliquity exceeds 90○ the torque will be reversed and the asteroid
will begin to spin down. Changes in the spin angular momentum due to the
YORP effect must also compete with changes due to collisions with other
asteroids.

The spin evolution due to the YORP effect also determines the magni-
tude and direction of semimajor axis evolution due to the Yarkovsky effect.





Chapter 8

Tides

The analysis in earlier chapters of this book was focused on time-reversible
Hamiltonian systems. However, this analysis does not provide a complete
picture of celestial mechanics. Time-dependent tidal forces inside a satel-
lite, planet, or star create internal strains that dissipate energy. This process
of tidal friction ultimately converts spin or orbital energy into heat and
thereby leads to irreversible changes in the dynamics of a planetary system.
Our understanding of the physics of tidal friction is still incomplete, but its
consequences can be explored using simple parametrized models (Darwin
1899; Cartwright 1999; Souchay et al. 2013).

The tidal force per unit mass exerted at the surface of a body of mass
M and radius R by a body of mass m at distance d � R is approximately
Ftide = GmR�d3 (eq. 3.71). The force at the surface due to M ’s self-gravity
is Fself = GM�R2. Thus the fractional strength of the tides is characterized
by the dimensionless number

✏tide = Ftide

Fself
= m

M
�R
d
�3 . (8.1)

On the Earth, ✏tide = 5.6 × 10−8 from the Moon and ✏tide = 2.6 × 10−8 from
the Sun. Exoplanets in short-period orbits experience much stronger tides;
for example, WASP-12b has ✏tide = 0.060. When ✏tide approaches unity the
body may be tidally disrupted, a process described in §8.6.

397
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8.1 The minimum-energy state

For an initial orientation to the effects of tidal friction, we examine a system
of two bodies—planet and satellite, star and planet, or binary star—in a
circular orbit. The masses are M1 and M2, the semimajor axis is a, and the
spin angular momenta of the two bodies are parallel to the orbital angular
momentum (i.e., the obliquities are zero), with magnitudes S1 = C1!1 and
S2 = C2!2. Here !i and Ci are the angular speed and moment of inertia for
each body.

In the center-of-mass frame, the angular momentum of the system is

Ltot = Lorb(a) +C1!1 +C2!2, (8.2)

where the orbital angular momentum is (eqs. 1.9 and 1.28)

Lorb(a) = µ[G(M1 +M2)a]1�2 (8.3)

with the reduced mass
µ = M1M2

M1 +M2
. (8.4)

The orbital plus spin energy of the system is (eqs. 1.9, 1.32 and D.92)

Etot = − Gµ(M1 +M2)
2a

+ 1
2C1!

2
1+ 1

2C2!
2
2 = − GM1M2

2a
+ 1

2C1!
2
1+ 1

2C2!
2
2 .

(8.5)
Tidal friction dissipates energy but conserves angular momentum, so

tides drive the system toward the minimum-energy state consistent with its
initial angular momentum. To find this equilibrium state, we rewrite the
energy as

Etot = − GM1M2

2a
+ 1

2C1!
2
1 + [Ltot −Lorb(a) −C1!1]2

2C2
. (8.6)

Suppose that the semimajor axis and the spin frequencies in the minimum-
energy state are aeq, !1,eq and !2,eq. Set a = aeq +�a, !1 = !1,eq +�!1

and expand the result in the small quantities�a and �!1. To first order,

Etot = � GM1M2

2a2eq

− G1�2
M1M2 !2,eq

2(M1 +M2)1�2a1�2eq

��a
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+C1(!1,eq − !2,eq)�!1 + const, (8.7)

where !2,eq is obtained by evaluating equation (8.2) using aeq and !1,eq. If
the parameters (aeq,!1,eq,!2,eq) are an extremum of the energy, then the
first-order variation in energy must vanish, which requires

!1,eq = !2,eq = � G(M1 +M2)
a3eq

�1�2 = neq; (8.8)

in the last equality we have introduced the mean motion n(a) = [G(M1 +
M2)�a3]1�2. These conditions mean that an equilibrium system is syn-
chronous: the angular speeds of both spins and the orbit are the same. A
local example of such an equilibrium is Pluto and its satellite Charon.

Substituting (8.8) into (8.2), we arrive at an implicit equation for the
equilibrium semimajor axis aeq,

Ltot = µ[G(M1 +M2)aeq]1�2 + (C1 +C2)� G(M1 +M2)
a3eq

�1�2. (8.9)

This equation has no roots if Ltot is smaller than

Lmin ≡ 4 � G2
M

3
1M

3
2 (C1 +C2)

27(M1 +M2) �1�4, (8.10)

while if Ltot > Lmin there are two roots. One of the two roots for the
semimajor axis is smaller than a0 and the other is larger than a0, where

a
2
0 = 3(C1 +C2)

µ
. (8.11)

Any equilibrium state is an extremum of the energy—a maximum, min-
imum, or saddle point—but the equilibrium is only stable in the presence of
dissipation if it is a minimum of the energy. To determine whether an equi-
librium is stable, we must therefore expand equation (8.6) to second order
in the small quantities �a and �!1. Since the first-order terms vanish at
equilibrium, we have

Etot −Eeq = (�a)2µn2
eq

8C2
(µa2eq − 3C2) + (�a�!1) C1

2C2
µneqaeq
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+ (�!1)2C1(C1 +C2)
2C2

. (8.12)

The right side of this expression is the quadratic form px
2 + rxy + qy2. If

p is negative, the expression is negative whenever y = 0 and x is nonzero,
so x = y = 0 cannot be a minimum. If p is non-negative, the expression can
be rewritten as (p1�2x + 1

2rp
−1�2

y)2 + (q − 1
4r

2�p)y2. Since the square is
non-negative, the complete expression is non-negative for all x and y if and
only if pq ≥ 1

4r
2. Therefore the equilibrium is a minimum-energy state if

and only if
µa

2
eq ≥ 3C2 and µa

2
eq ≥ 3(C1 +C2). (8.13)

The second condition is always stronger, and corresponds to aeq > a0 where
a0 is defined in equation (8.11). We conclude that for Ltot > Lmin, there is
a unique minimum-energy state having a semimajor axis that is the larger
of the two solutions of equation (8.9). A generalization of these arguments
to non-circular orbits and nonzero obliquities is given by Hut (1980).

So far we have only used two basic laws of physics: the total angular
momentum of the binary system is conserved, and the total kinetic and po-
tential energy must decrease when tides convert this energy to heat. As we
have seen, these are sufficient to describe completely the stable equilibrium
state of the binary—if there is one. The description of the evolutionary path
by which the system reaches this equilibrium is much more complicated and
uncertain, and this description will occupy most of the rest of this chapter.
However, one basic feature of almost every dynamical model of tides is that
when the spin of a body exceeds the angular speed of its companion in its
orbit, then tides transfer angular momentum from the spin to the orbit, and
vice versa.

The implications of this feature are easiest to describe in the case where
the binary orbit is circular and the spin and orbital angular momenta are
aligned. Let n and ! be the mean motion and the spin rate of the body we
are examining. Then if ! > n, tides drain angular momentum from the spin,
so ! shrinks, eventually approaching the synchronous state if we ignore
changes to the orbit. Similarly if ! < n, tides add angular momentum to the
spin so ! grows.
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The situation for the orbit is reversed: if ! > n, tides add angular mo-
mentum to the orbit, but the mean motion of a circular orbit is a decreasing
function of its angular momentum, n ∝ L

−3, so the orbit expands and the
mean motion shrinks, diverging from the spin rate—another example of the
donkey principle described in §3.2. Similarly if ! < n, tides drain angu-
lar momentum from the orbit, which shrinks, and the mean motion grows,
again diverging from the spin rate.

We can now describe what happens when Ltot < Lmin so there is no
equilibrium state for the binary. For simplicity, suppose that body 2 is a
point mass, so C2 = 0, and suppose that the mean motion is initially larger
than the angular speed of body 1. Then tidal friction transfers angular mo-
mentum from the orbit to body 1, so !1 grows. In so doing the orbit loses
angular momentum, its semimajor axis shrinks, and n grows. If n grows
faster than !1, the synchronous state can never be achieved—the orbit will
continue to shrink until the two bodies collide. Similarly, if n is initially
smaller than !1, the orbit will expand to infinity without ever reaching the
synchronous state.1

As an example, we can apply these arguments to the Earth–Moon sys-
tem. To keep the example simple, we neglect the obliquity of the Earth,
the eccentricity of the lunar orbit, and the influence of the Sun, although
all of these play an important role in the evolution of the lunar orbit. At
present the semimajor axis is a = 384400 km and 83% of the total angu-
lar momentum is in the orbit, with almost all the rest in the Earth’s spin.
The total angular momentum is Ltot = 2.33Lmin and the critical semimajor
axis is a0 = 57670 km. The mean motion is much smaller than the angu-
lar speed of the Earth—the month is much longer than the day—so angular
momentum is being transferred by tides from the Earth’s spin to the Moon’s
orbit. As a result the Moon’s orbit is expanding and the Earth’s spin is slow-
ing down, and both the month and the day are getting longer. If and when
the system reaches the synchronous equilibrium, the semimajor axis will be
554200 km = 86.9R⊕ and the spin and orbital periods will be 47.2 d. De-
scriptions of the past and future evolution of the Earth–Moon system are

1 This behavior is often called the Darwin instability, after G. H. Darwin (1845–1912), the
son of Charles Darwin and one of the first physicists to investigate tides.
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given by Goldreich (1966) and Touma & Wisdom (1994).
In contrast to the Earth–Moon system, most of the exoplanets that are

close enough to their host stars to have significant tidal interactions (orbital
periods less than a few days) have angular momenta less than the critical
value Lmin and mean motions larger than the stellar spin velocity, and thus
their orbits will shrink until the planet is consumed by its host star (Mat-
sumura et al. 2010).

8.2 The equilibrium tide

In this section we describe the response of a body to the tidal field from an
orbiting companion. To keep the analysis general, we refer to the two ob-
jects as the “responding body” (subscript “r”) and the “forcing body” (sub-
script “f”). In planetary systems the forcing body or the responding body
may be a planetary satellite, a planet or a star. In almost all circumstances
we can treat the forcing body as a point mass, and we shall do so here. For
a complete picture of the tidal interactions in a two-body system, we must
treat first one body then the other as the forcing body.

We work in a frame centered on the responding body. The potential due
to a forcing body of mass mf at position rf is given in terms of spherical
harmonics by equation (C.55),

�(r) = − Gmf�rf − r� = −
∞�
l=0

4⇡Gmf

2l + 1
r
l

r
l+1
f

l�
m=−l

Y
∗
lm
(✓f ,�f)Ylm(✓,�). (8.14)

Here (r, ✓,�) and (rf , ✓f ,�f) are the spherical coordinates of the points r

and rf respectively, and we have assumed that rf > r since the two bodies
cannot overlap. The monopole or l = 0 term is independent of r and there-
fore generates no force. The dipole or l = 1 term is canceled by the fictitious
force due to the acceleration of the reference frame (see the discussion fol-
lowing eq. 3.70). Thus the forcing potential can be written

�f(r) = − ∞�
l=2

4⇡Gmf

2l + 1
r
l

r
l+1
f

l�
m=−l

Y
∗
lm
(✓f ,�f)Ylm(✓,�). (8.15)
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In most cases rf � r, so we can drop all terms with l > 2. Then if we write
the time dependence explicitly, we have

�f(r, t) = −4⇡Gmf

5

r
2

r
3
f (t)

2�
m=−2Y

∗
2m[✓f(t),�f(t)]Y2m(✓,�). (8.16)

An equivalent expression is (cf. eq. 3.71)

�f(r, t) = Gmfr
2

2r3f (t) −
3Gmf[rf(t) ⋅ r]2

2r5f (t) . (8.17)

The equilibrium tide is the distortion of the responding body in re-
sponse to a static tidal potential. In practice, “static” means either that (i)
the orbital period of the forcing body is much longer than the character-
istic response time of the responding body’s interior (and atmosphere and
oceans, if present), or (ii) the two bodies are static in a rotating frame of
reference, as in the case of a planet and satellite in the synchronous state.

For example, suppose that the responding body is rigid and surrounded
by a low-density atmosphere. The surface of the atmosphere subjected to a
static tide is an equipotential surface (see footnote to Box 1.3), given by the
equation

− Gmr

r
+�f(r, ✓,�) = const, (8.18)

where mr is the mass of the responding body. Writing r(✓,�) = Rr +
�R(✓,�) (where Rr is the mean radius of the responding body), expanding
to first order in �R, and assuming that the tidal potential is small, we find

�R(✓,�) � −�f(Rr, ✓,�)
g

, where g = Gmr

R2
r

(8.19)

is the gravitational acceleration at the surface of the unperturbed responding
body. Using equation (8.17) we have

�R = mf

mr

R
4
r

r
3
f

�3
2(r̂f ⋅ r̂)2 − 1

2
� , (8.20)
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where r̂ and r̂f are unit vectors pointing from the center of the planet to the
location on the surface and to the forcing body. Low tide occurs when rf is
perpendicular to r, and high tide occurs when they are parallel or antiparal-
lel, which of course is why there are two tides per day on Earth.

8.2.1 Love numbers

In practice, the responding body is not rigid and so it is distorted by any
imposed tidal potential. The tidal potential can be decomposed into a sum
of spherical harmonics, as in equation (8.15), and each term of the sum can
be written in the form �f(r, ✓,�) = f

f
lm
(r�Rr)lYlm(✓,�), where f

f
lm

is a
function of time depending on the trajectory of the forcing body. If the un-
perturbed responding body is spherical and non-rotating, and the tidal field
is small enough for its response to be linear, then a tidal potential of this
form creates a density response that also has angular dependence propor-
tional to Ylm(✓,�). This density response generates a potential response
due to the self-gravity of the responding body, and this response �r(r, ✓,�)
will also be proportional to Ylm(✓,�). The potential response must sat-
isfy Laplace’s equation outside the radius of the responding body Rr; thus
its radial dependence for r > Rr is determined by its angular dependence,
�r(r) = f

r
lm
(Rr�r)l+1Ylm(✓,�). The response is a linear function of the

forcing, so f
r
lm
∝ f

f
lm

or2

�r(Rr, ✓,�)
�f(Rr, ✓,�) =

f
r
lm

f
f
lm

≡ kl. (8.21)

where the gravitational Love number kl is a constant3 that depends only
on the internal properties of the responding body; because of the assumed

2 In equation (8.21) we have assumed that �r is well defined at the surface of the responding
body, even though the density may be discontinuous there. This assumption is justified
by Poisson’s equation (B.44), which implies that a discontinuous density gives rise to a
potential that is continuous and has a continuous first derivative.

3 The Love number measures the same physical property as the apsidal-motion constant in
the theory of binary stars. The apsidal-motion constant is a factor of two smaller than the
Love number, but unfortunately both are denoted by k2.
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spherical symmetry of the planet, the Love number is independent of m at
fixed l.

Other properties of the response can also be characterized by dimension-
less numbers. The displacement Love number hl is defined by the ratio of
the height of the tidal distortion of the surface to the height of the tide in a
rigid body with a low-density atmosphere (eq. 8.19),

− g�R(✓,�)
�f(Rr, ✓,�) ≡ hl. (8.22)

Small solar-system bodies can be approximated as incompressible elas-
tic solids. The response of such bodies to a tidal field is derived in Appendix
I. In particular the Love numbers for the dominant l = 2 tidal fields are given
by equations (I.30) and (I.31),

k2 = 3

2[1 + 19µ�(2g⇢Rr)] , h2 = 5

2[1 + 19µ�(2g⇢Rr)] , (8.23)

where ⇢ and µ are the density and rigidity of the solid, assumed to be con-
stant.4 For completely rigid planets (µ → ∞) the Love numbers vanish,
k2 = h2 = 0. For large planets of uniform density, in which self-gravity is
much more important than rigidity, k2 = 3

2 and h2 = 5
2 . In gaseous pla-

nets, the density increases toward the center and for these the Love numbers
are smaller, typically 0.1 � k2 � 0.6. The Love numbers of stars are even
smaller; for the Sun k2 � 0.030 (Claret 2019).

The Earth’s Love numbers are k2 = 0.295 and h2 = 0.608. Its tides
arise from forcing by the Moon and Sun. The difference in height between
high and low tide is given by equation (8.20) as 3

2h2(mf�mr)(R4
r �r3f ), or

0.33m for lunar tides and 0.15m for solar tides. These numbers refer to
solid Earth tides. The tides in the Earth’s oceans are larger—the difference
between high and low tide can exceed 16m—in part because the oceans

4 The rigidities of typical materials are ∼ 3GPa for ice, ∼ 20GPa for rock, and ∼ 80GPa for
steel. One gigapascal = 109 Pa = 109 kg m−1 s−2.
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have no rigidity.5 The ocean tides are also much more complicated than the
solid tides, because the natural oscillation periods of ocean basins and bays
can be comparable to the tidal forcing frequency of about half a day.

Bodies much smaller than Earth have Love numbers much less than
unity because of the factor µ�(g⇢Rr) in equations (8.23) reflecting the dif-
ference between fluid and elastic response; for example the Moon has k2 =
0.024 and h2 = 0.042. The gravitational Love numbers of the four inner
planets plus Jupiter and Saturn have been measured by tracking orbiting
spacecraft (see Appendix A).

8.3 Tidal friction

To explore the effects of dissipation due to gravitational tides, we first ex-
amine the simple case of a damped harmonic oscillator subjected to a sinu-
soidally varying external force. The equation of motion is

ẍ + !2
0x = −⌫ẋ + F cos!ft, (8.24)

where ⌫ > 0 is the damping rate; !0 > 0 is the oscillation frequency of the
undamped, unforced oscillator; and !f is the forcing frequency. After any
initial transients have died away, the solution is x = A cos(!ft + �) where �
is the phase offset or lag angle. We allow A to have either sign so we can
assume that ��� ≤ 1

2⇡. Substituting this solution into the equation of motion,
we find

A = F sgn(!2
0 − !2

f )[(!2
0 − !2

f )2 + ⌫2!2
f ]1�2 , tan � = − ⌫!f

!
2
0 − !2

f

. (8.25)

With our conventions the phase offset can be positive or negative, and the
relation between the signs of F , A, and � is

sgn(AF ) = − sgn(!f�) = sgn(!2
0 − !2

f ). (8.26)
5 In 1863 William Thompson, later Lord Kelvin (1824–1907), pointed out that if the Earth

had no rigidity the solid tides would have the same amplitude as the ocean tides, so the
shorelines would move up and down with the oceans and there would be no relative ocean
tides. This was one of the first important constraints on the structure of the Earth’s interior.
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We are mostly interested in systems with weak damping, in which ��� � 1.
The rate at which the external force does work on the oscillator is the

product of force and velocity,

Ẇ = (F cos!ft)ẋ = −FA!f cos!ft sin(!ft + �)
= −1

2FA!f[sin(2!ft + �) + sin �]. (8.27)

This result can be integrated to give

W (t) = FA �14 cos(2!ft + �) − 1
2!ft sin �� + const. (8.28)

The total work done over one oscillation period, 2⇡��!f �, is

�W =W (t + 2⇡�!f) −W (t) = −⇡FA sgn(!f) sin �, (8.29)

which is always positive since work must be done to replace the energy lost
through dissipation. The maximum energy stored in the oscillation is the
difference between the maximum and minimum values of W (t); neglecting
the linear term in equation (8.28) since ��� � 1, this difference is

W
∗ = 1

2 �FA�. (8.30)

The quality factor is defined as

Q ≡ 2⇡W
∗

�W
, (8.31)

and equations (8.29) and (8.30) imply that

Q = −sgn(FA!f)
sin �

= 1

� sin �� �
1

��� . (8.32)

The behavior of harmonic oscillators is relevant to tidal friction because
the response of a planet or satellite to weak tidal forces can be decomposed
into normal modes, each of which acts like a damped harmonic oscillator.
Each normal mode has an eigenfrequency !0 and a quality factor Q. The
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equilibrium tide described in §8.2 is based on the assumption that the forc-
ing frequency is much less than the eigenfrequency, �!f � � !0, so equations
(8.25) simplify to

A = F

!
2
0

, tan � = −⌫!f

!
2
0

. (8.33)

Since ⌫ > 0, the sign of the phase shift is the opposite of the sign of the
forcing frequency; thus the replacement rule for adding friction from the
equilibrium tide is to change

!ft⇒ !ft + �, � = −sgn(!f)
Q

. (8.34)

In particular, the dominant l = 2 component of the tidal potential can be
written as a sum of terms of the form (cf. eq. 8.16)

�f(r, t) = amr
2
Y2m(✓,�) exp(−i!ft), (8.35)

where (r, ✓,�) are spherical coordinates centered on the responding body
that is subjected to the tides. In the absence of dissipation, the tide distorts
the responding body and this distortion generates an additional potential (eq.
8.21)

�r(r, t) = amk2R
5
r

r3
Y2m(✓,�) exp(−i!ft), (8.36)

where k2 is the Love number. Dissipation is modeled by adding a phase
offset,6 changing this result to

�r(r, t) = amk2R
5
r

r3
Y2m(✓,�) exp[−i(!ft + �)]. (8.37)

In effect, we have replaced the Love number k2 by a complex Love number
k2 exp(−i�).
6 This approach accounts for the phase offset due to dissipation but not the change in the

amplitude (see the first of eqs. 8.25). Changes in the amplitude of the damped harmonic
oscillator are second order in the damping rate, whereas changes in the lag angle are first
order, so neglecting the changes in amplitude is justified so long as the dissipation is weak.
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We can also write the exponential as

exp[−i!f(t − ⌧)], where ⌧ = − �
!f
= ⌫

!
2
0

= 1

�!f �Q (8.38)

is the time offset. The last expression follows from the second of equations
(8.33) when ��� � 1. Thus the time offset is always positive (i.e., there is a
time lag in the peaks and troughs of the forced oscillation) for the equilib-
rium tide. The replacement rule for adding friction can be written

!ft⇒ !f(t − ⌧), ⌧ = 1

�!f �Q. (8.39)

The assumption of constant time lag is widely used because it leads to rela-
tively simple expressions for the evolution of the orbital elements (see Box
8.1).

A third parametrization of the phase offset is obtained by observing that
Y2m(✓,�) varies with azimuth as exp(im�), so we may write

Y2m(✓,�) exp[−i(!ft + �)] = Y2m(✓,0) exp[im� − i(!ft + �)]
= Y2m(✓,0) exp[im(� −��) − i!ft], where �� = �

m
. (8.40)

Thus we have replaced the phase offset � by an azimuthal offset ��. It is
this angular offset that leads to torques that slowly change the spin or orbit
of a body subjected to tidal forces. The replacement rule is

m� − !ft⇒m(� −��) − !ft, �� = −sgn(!f)
mQ

= −!f⌧

m
. (8.41)

These arguments suggest two distinct empirical approaches to charac-
terizing tidal friction. In models with constant time offset, the response of
the perturbed body is displaced in time by a fixed offset ⌧ so Q ∝ 1��!f �.
In models with constant angle offset, the response is displaced in angle by
a fixed offset �� so Q is independent of the forcing frequency !f . Con-
stant angle offset has the unphysical property that the offset jumps abruptly
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from a nonzero positive value to a nonzero negative one as the forcing fre-
quency decreases smoothly from positive values to negative ones (Efroim-
sky & Makarov 2013). Constant time offset also has the advantage that the
resulting formulas for spin and orbit evolution are generally simpler (see
Box 8.1). However, neither model is physically justified: Q is likely to have
a complicated dependence on the forcing frequency !f and can also depend
on the amplitude, and the characterization of tidal friction by a lag angle, or
a time offset, or a quality factor is just a convenient parametric representa-
tion of a nonlinear dynamical system.

The source of the dissipation or lag depends on the nature of the re-
sponding body. In solid planets or planetary cores, the dissipation is pre-
sumably due to viscoelasticity but the nature of the appropriate viscoelastic
model is not well understood. In gaseous planets the dissipation may arise
from turbulent viscosity in convective regions or from the excitation of in-
ternal waves that eventually damp by viscosity or nonlinear effects.

Even in the simplest case of a weak, static tidal force our current obser-
vational and theoretical constraints on Q in satellites, planets, and stars are
limited (Lainey 2016). The most accurate estimates are for the Earth–Moon
system: the Earth’s oceans have Q � 10 and the solid Earth has Q � 300,
while the Moon has Q � 40. Mars has Q � 100 as measured from secular
changes in the orbit of its satellite Phobos (Problem 8.3).

Estimates of Q for other solar-system planets have traditionally been
derived from indirect arguments (Goldreich & Soter 1966). For example,
Mercury’s Q must be small enough, � 200, that tidal torques from the Sun
have substantially slowed its spin angular velocity, or else it would not have
been captured in the 3:2 spin-orbit resonance (§7.2). Since tidal friction
from the planet causes satellite orbits to expand, the existence of the inner-
most satellites of Jupiter, Saturn, and Uranus sets a lower limit of Q � 105
in the host planet, assuming that the satellites are as old as the solar system.

Astrometric measurements of orbit evolution are available for several of
the satellites of the outer planets, and these yield Q � 5 × 104 for Jupiter
and Q � 2500 for Saturn (Lainey 2016), 2–3 orders of magnitude smaller
than expected from the indirect arguments in the preceding paragraph. The
reason for this discrepancy is not yet understood, although a possible ex-
planation is that the satellite orbits are locked in resonance with the normal



8.4. SPIN AND ORBIT EVOLUTION 411

modes of their host planet (§8.5.2).
A complication in all these estimates is that the rate of spin or orbital

evolution depends on both the quality factor Q and the amplitude of the
response to tidal forces, which is proportional to the Love number k2. Thus
arguments based on tidal evolution constrain only Q�k2. This is not a big
concern for the larger planets, where k2 is of order unity, but is much more
important for small bodies and stars where k2 � 1.

Tidal friction in stars can change the orbits of planets with small semi-
major axes and can even cause the planets to spiral into the star. Fortunately,
fairly reliable estimates of Q in stars can be obtained from binary stars found
in clusters. All of the stars in a cluster have nearly the same age (say, T ),
and within a cluster it is found that binary stars with orbital periods less
than some critical value P (T ) have nearly circular orbits, while binaries
with periods exceeding P (T ) have a wide range of eccentricities (Meibom
& Mathieu 2005). The interpretation of this finding is that binaries are born
on eccentric orbits, and those with periods < P (T ) have been circularized
by tidal friction, so P (T ) can be used to estimate Q. The results are consis-
tent with Q�k2 ∼ 106 for solar-type stars. More massive stars are expected
to have quality factors that are larger by 2–3 orders of magnitude as the
outer parts of the star are in radiative rather than convective equilibrium, so
the effective viscosity is much lower (see Ogilvie 2014 for a review).

8.4 Spin and orbit evolution

We assume that the forcing body orbits the responding body with semimajor
axis a. Its mean motion n = [G(mr+mf)�a3]1�2, where mr and mf are the
masses of the responding and forcing bodies. The responding body’s spin
angular velocity is !r. As usual we may treat the forcing body as a point
mass, since interactions between the quadrupole moments of the two bodies
are negligible compared to the interaction between the quadrupole moment
of one and the monopole moment of the other.

In the absence of dissipation, the potential generated by the tidal distor-
tion of the responding body can be determined from equations (8.16), (8.35)
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and (8.36):

�r = −4⇡Gmfk2,rR
5
r

5r3f r
3

2�
m=−2Y

∗
2m(✓f ,�f)Y2m(✓,�), (8.42)

where k2,r is the gravitational Love number of the responding body. Using
equation (8.17), this relation can also be written as

�r = Gmfk2,rR
5
r

2r5f r
5
�r2f r2 − 3(rf ⋅ r)2�. (8.43)

8.4.1 Semimajor axis migration

We may assume without loss of generality that the orbit lies in the plane
✓f = 1

2⇡; then from the definitions of the spherical harmonics in equations
(C.56) we have

�r = −3Gmfk2,rR
5
r

4r3f r
3

sin
2
✓ cos 2(� − �f) + Gmfk2,rR

5
r

4r3f r
3
(3 cos2 ✓ − 1).

(8.44)
For the following derivation, we also assume that the forcing body trav-

els on a circular orbit and that the spin axis of the responding body is aligned
with the orbital axis. In this case we can replace rf(t) by a, the semimajor
axis, and we can drop the second term in the potential (8.44) since it is time-
independent and does not contribute to tidal friction. According to equation
(8.41), we can model tidal dissipation by adding an azimuthal phase shift to
the time-dependent tidal potential,

�r = −3Gmfk2,rR
5
r

4a3r3
sin

2
✓ cos 2(� − �f −��). (8.45)

To relate the phase shift �� to the quality factor Qr we work in the
frame in which the responding body is stationary, which rotates at angular
speed !r. In this frame the azimuth of the forcing body changes at a rate
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Box 8.1: Tides with constant time lag
The spin and orbit evolution are simplified if the quality factor is inversely pro-
portional to frequency, Q∝ 1��!f �, so the time lag ⌧ is independent of frequency.

When the forcing body is at rf the tidal potential at position r is given by
equation (8.43); we write this as �r(r, rf). We model tidal friction by evaluat-
ing the potential at time t using the position of the forcing body relative to the
responding body at time t − ⌧ . To find this, we want to know the velocity of
the forcing body in the frame in which the responding body is non-rotating. If
the latter’s spin angular velocity is !r, the velocity of the former in this frame is
vrot = v − !r × rf , where v is the velocity in a non-rotating frame (eq. D.17).
Then if the time lag is small, rf(t − ⌧) � rf(t) − ⌧vrot(t), so the potential is
�r[r, rf(t − ⌧)] � �r[r, rf(t)] − ⌧(v − !r × rf) ⋅ @�r[r, rf(t)]�@rf . The
components of the force on the forcing body are

Ftide,i = −@�r(r, rf)
@ri

�
rf=r
+ ⌧[v − (!r × rf)]j @2

�r(r, rf)
@ri@rf,j

�
rf=r

. (a)

For the potential (8.43) the term −@�r�@ri contributes only a radial force,
which does not lead to any evolution of the orbit. The remaining term yields

Ftide = −3Gmfk2,rR
5
r ⌧

r
8

f

[v + 2(v ⋅ r̂f)r̂f −!r × rf]. (b)

It is now straightforward to evaluate the evolution of the orbital elements.
As an example, we find the rate of change of the semimajor axis a. The Kepler
energy per unit mass is E = − 1

2
G(mr +mf)�a (eq. 1.32) and multiplying this

by the reduced mass mrmf�(mr +mf) we find the total energy in the center-of-
mass frame E = − 1

2
Gmfmr�a. The rate of change of this energy is dE�dt =

Fr ⋅ vr +Ff ⋅ vf , where vi is the velocity of body i in the center-of-mass frame
and Fi is the force on body i. Now vf = mrv�(mr +mf), vr = −mfv�(mr +
mf) (eq. 1.6), Ff = Ftide, and Fr = −Ftide by Newton’s third law. Therefore
dE�dt = Ftide ⋅ v. We substitute equation (b) and then average over the orbit
using equation (1.64). If the spin vector !r is normal to the orbit plane, then

da

dt
= −6Gmfk2,rR

5
r ⌧

a7(1 − e2)15�2
mr +mf

mr

�1 + 31

2
e
2 + 255

8
e
4 + 185

16
e
6 + 25

64
e
8

− !r

n
(1 − e2)3�2(1 + 15

2
e
2 + 45

8
e
4 + 5

16
e
6)�. (c)

This result agrees with equation (8.50) in the limit e → 0, if we make the substi-
tution Q = 1�(�!f �⌧) (eq. 8.39) with !f = 2(n − !r).

Expressions for other orbital elements are given in the text and in Alexander
(1973), Hut (1981) and Matsumura et al. (2010).
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�̇f = n−!r, so cos 2(�−�f) = cos(2�−!ft+ const) with7
!f = 2(n−!r).

Then according to equation (8.41),

�� � sgn(!r − n)
2Qr

. (8.46)

If the semimajor axis is larger than the synchronous radius rsync where the
mean motion and the spin rate are equal, then !r > n and �� > 0, which
means that the tidal bulge on the responding body is carried ahead of the
forcing body; while if the forcing body is interior to the synchronous radius
the bulge lags behind it.

The torque exerted on the forcing body is N = −mf@�r�@� evaluated
at r = a, ✓ = 1

2⇡ and � = �f :
N = 3Gm

2
f k2,rR

5
r

2a6
sin 2�� � 3Gm

2
f k2,rR

5
r

2Qra
6

sgn(!r − n). (8.47)

The orbital angular momentum is (eqs. 1.9 and 1.28)

L = mfmr

mf +mr
[G(mf +mr)a]1�2. (8.48)

The torque causes the orbital angular momentum to change at a rate L̇ = N ,
which causes the semimajor axis to migrate at a rate

ȧ = 3G1�2(mf +mr)1�2mfk2,rR
5
r

mrQra
11�2 sgn(!r − n) (8.49)

or
ȧ

a
= 3k2,rn

Qr

mf

mr
�Rr

a
�5 sgn(!r − n). (8.50)

This result deserves some comments. (i) Note the strong dependence
on semimajor axis, ȧ ∝ a

−11�2; only close binaries are subject to signif-
icant tidal friction. (ii) The migration rate in (8.50) is proportional to the

7 Note that !f is the forcing frequency, not the spin rate of the forcing body, which is always
treated as a point mass.
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mass of the forcing body; the orbits of more massive forcing bodies evolve
more quickly. (iii) Bodies outside the synchronous radius spiral out, while
those inside the synchronous radius spiral in; in both cases the orbits evolve
away from the synchronous radius. (iv) The discontinuous jump in the semi-
major axis evolution rate at the synchronous radius, ȧ ∝ sgn(!r − n), is
unphysical; more realistic models such as those with constant time offset
rather than constant phase offset have 1�Qr → 0 as the forcing frequency
!f = 2(n − !r) → 0 and thus avoid this discontinuity. (v) There is an ad-
ditional contribution to the migration from tides raised by the responding
body on the forcing body. In general the response of the larger of the two
bodies dominates the evolution, because small bodies subject to significant
tidal friction rapidly achieve synchronous rotation and thereafter make no
contribution to the semimajor axis evolution (see discussion following eq.
8.54).

The Moon lies far outside the synchronous radius for the Earth, rsync =
42164 km (Problem 1.1), so its orbit is expanding from tidal friction. Equa-
tion (8.50) for the rate of semimajor axis evolution due to the Earth yields

ȧ = 4.50 cm yr−1 k2⊕
0.30

10

Q⊕ . (8.51)

The actual value is 3.83 cm yr−1.
Most of the other solar-system satellites also lie outside their host pla-

nets’ synchronous radii. The exceptions are the Martian satellite Phobos and
a handful of small satellites orbiting Jupiter, Uranus and Neptune. The orbit
of Phobos is shrinking at 3.85 cm yr−1. Phobos will crash into the surface
of Mars in about 40Myr (see Problem 8.3); apparently we are observing it
in the last few percent of its lifetime.

Semimajor axis migration due to tidal friction is also important for sev-
eral satellites of the outer planets (Peale 1999). These lie outside the syn-
chronous radius, so they gain angular momentum and migrate outward.
Not coincidentally, these satellites are usually found in mean-motion res-
onances, since migration can lead to resonance capture (§6.3) if it is con-
vergent (see discussion following eq. 6.75). Convergent migration of two
satellites requires that the ratio of their mean motions approaches unity, and
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this is expected for outward migration if the satellite masses are not too
different, since the migration rate is a strongly decreasing function of semi-
major axis. The list of resonant satellite pairs includes Mimas and Tethys,
Enceladus and Dione, and Titan and Hyperion, all satellites of Saturn.

Planets also migrate due to tidal friction from their host star. This pro-
cess is negligible for any of the planets in the solar system but can be impor-
tant for exoplanets, which are often found much closer to their host stars.
Most tidally evolving exoplanets lie inside the synchronous radius and so
migrate inward. The best current example is the exoplanet WASP-12b,
which has orbital period P = 1.091 d and mass m = 1.5MJ (MJ = Jupiter
mass). Assuming that the planet rotates synchronously with its orbit—
the justification for this assumption is described after equation (8.54)—the
torques on the orbit arise solely from the tidal response of the star to forcing
by the planet. Applying equation (8.50) we find

ȧ

a
= − 1

3.9 × 107 yr
10

6
k2,∗

Q∗
m

1.5MJ
�1.4M⊙

M∗ �
8�3 � R∗

1.65R⊙ �
5

. (8.52)

Here we have used estimates of the host star’s mass and radius, and k2,∗ and
Q∗ are the star’s Love number and quality factor. The decay rate measured
from transit timing is given by a�ȧ = (4.9 ± 0.4) × 106 yr, which implies
Q∗�k2∗ ∼ 1 × 105 (Yee et al. 2020), consistent with plausible models for
tidal friction in stars of this type. Indirect evidence that tidal friction has
played a role in modifying the distribution of short-period giant exoplanets
includes the scarcity of gas giants with periods less than a day, and the
anomalously rapid rotation of some host stars of these planets.

8.4.2 Spinup and spindown

In the preceding subsection we examined the effects of the torque N (eq.
8.47) exerted by the responding body on the forcing body (recall that we are
approximating the forcing body as a point mass). The forcing body exerts
an equal and opposite torque on the responding body, which changes its
spin angular momentum. This equals Cr!r, where !r is the spin angular
velocity and Cr is the moment of inertia of the responding body around the
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polar axis (eq. 1.133). Thus

!̇r = −3Gm
2
f k2,rR

3
r

2Qrmra
6

mrR
2
r

Cr
sgn(!r − n). (8.53)

For example, the Earth’s rotation is slowing due to the tidal torque from the
Moon.

In general each of the two members of a binary system exerts a torque
on the other. If we label the bodies by 1 and 2, then equation (8.53) implies
that if neither body rotates synchronously with the orbit,

�!̇1��!̇2� =
k2,1

k2,2

Q2

Q1

m1R
2
1

C1

C2

m2R
2
2

m
3
2

m
3
1

R
3
1

R
3
2

. (8.54)

If the two bodies have similar Love numbers, quality factors and dimension-
less moments of inertia C�mR

2, and similar mean densities, then �!̇1�!̇2� ∼
R

6
2�R6

1; thus the smaller body in the binary spins down much faster. It is
therefore usually safe to assume that the smaller body—the satellite in a
planet-satellite system or the planet in a star-planet system—rotates syn-
chronously whenever there has been significant tidal evolution. This is con-
sistent with the observation that many of the satellites in the solar system
are in synchronous rotation or tidally locked, with ! = n; these include
the Moon, the two Martian satellites Phobos and Deimos, all four of the
Galilean satellites of Jupiter, and the five large satellites of Uranus.

A tidal model with constant time lag (Box 8.1) allows equation (8.53)
to be generalized to arbitrary eccentricity (Matsumura et al. 2010):

!̇r = 3Gm
2
f k2,rR

3
r

mra
6(1 − e2)6

mrR
2
r

Cr
n⌧�1 + 15

2 e
2 + 45

8 e
4 + 5

16e
6

− !r

n
(1 − e2)3�2(1 + 3e2 + 3

8e
4)�. (8.55)

This result agrees with equation (8.53) in the limit e → 0, if we make the
substitution Qr = 1�(�!f �⌧) (eq. 8.39) with !f = 2(n − !r).

A body on an eccentric orbit is said to be pseudo-synchronous if the
spin rate does not evolve under the influence of tides from the forcing body.
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Equation (8.55) implies that the pseudo-synchronous spin rate is

!ps = n 1 + 15
2 e

2 + 45
8 e

4 + 5
16e

6

(1 − e2)3�2(1 + 3e2 + 3
8e

4) . (8.56)

Since tidal forces are a strongly decreasing function of distance, the pseudo-
synchronous spin rate is always close to (within 20% of) the angular speed
of the orbit at periapsis, n(1 + e)1�2(1 − e)−3�2.

These arguments have traditionally been applied to planet-satellite sys-
tems in which the satellite is the forcing body and the planet is the respond-
ing body. However, they are also relevant to star-planet systems in which
the star is the forcing body and the planet is the responding body. In terms
of typical parameters, the deceleration of the planet’s spin can be written

!̇p

!p
= − sgn(!p − n)

7.62 × 107 yr
10

6
k2,p

Qp

0.4mpR
2
p

Cp

MJ

mp
�Rp

RJ
�3 � 10 d

Porb
�4 Pspin

1 d
,

(8.57)
where Porb and Pspin are the orbital and the spin period of the planet and
MJ and RJ are the mass and radius of Jupiter. This result suggests that most
giant planets in orbits with periods less than ∼ 30 d should be synchronous.

8.4.3 Eccentricity damping

We now ask whether and how tidal friction damps the eccentricity of the
orbit. To begin we must evaluate the tidal response potential (8.44) for an
eccentric orbit. To simplify the calculations, we assume that the eccentricity
is small and work only to first order in e. We also assume that the orbit lies
in the equatorial plane ✓f = 1

2⇡. Then r
−3
f � a−3(1 + 3e cos `f) +O(e2) and

�f = ff + $f = `f + $f + 2e sin `f + O(e2) (from eqs. 1.155 and 1.151),
where ff , `f and $f are the true anomaly, mean anomaly and longitude of
periapsis of the forcing body. Thus

�r = −3Gmfk2,rR
5
r

4a3r3
sin

2
✓� cos(2� − 2`f − 2$f) − 1

2e cos(2� − `f − 2$f)
+ 7

2e cos(2� − 3`f − 2$f)�
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+ Gmfk2,rR
5
r

4a3r3
(3 cos2 ✓ − 1)(1 + 3e cos `f) +O(e2). (8.58)

In the frame rotating with the responding body at angular speed !r, the
mean anomaly and longitude of periapsis change at rates ˙̀

f = n and $̇f =−!r, where n is the mean motion. Therefore the first three time-varying
cosine terms have the form cos(2�−!ft+const) with the forcing frequency
!f equal to 2n − 2!r, n − 2!r, and 3n − 2!r respectively. The final time-
varying term, cos `f , corresponds to a forcing frequency !f = n. The effects
of tidal friction can be modeled by adding an offset to each of these terms:

�r = −3Gmfk2,rR
5
r

4a3r3
sin

2
✓� cos(2� − 2`f − 2$f − 2��1)

− 1
2e cos(2� − `f − 2$f − 2��2) + 7

2e cos(2� − 3`f − 2$f − 2��3)�
+ Gmfk2,rR

5
r

4a3r3
(3 cos2 ✓ − 1)[1 + 3e cos(`f + �4)] +O(e2). (8.59)

These offsets are related to the responding body’s quality factor by equa-
tions (8.41) and (8.34),

��1 = sgn(!r − n)
2Qr

, ��2 = sgn(2!r − n)
2Qr

,

��3 = sgn(2!r − 3n)
2Qr

, �4 = − 1

Qr
. (8.60)

Note that the quality factor in each of these expressions may be different,
since Qr likely depends on the forcing frequency.

We now determine the radial and azimuthal forces per unit mass on the
forcing body,

R = −@�r

@r
, T = −1

r

@�r

@�
. (8.61)

The forces must be evaluated at the position of the forcing body, so after
differentiating we set r = rf = a(1 − e cos `f) + O(e2f ), ✓ = ✓f = 1

2⇡ and
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� = �f = `f +$f + 2e sin `f +O(e2f ). To first order in the eccentricity,8

R = −9Gmfk2,rR
5
r

4a7

mr +mf

mr
� cos 2��1 + 4e cos(`f − 2��1)

− 1
2e cos(`f − 2��2) + 7

2e cos(`f + 2��3)+ 1
3 + 4

3e cos `f + e cos(`f + �4)�,
T = 3Gmfk2,rR

5
r

2a7

mr +mf

mr
� sin 2��1 − 4e sin(`f − 2��1)

+ 1
2e sin(`f − 2��2) + 7

2e sin(`f + 2��3)�. (8.62)

From equations (1.200), the rate of change of the eccentricity due to
these forces is

de

dt
= R (1 − e2)1�2 sin ff

na
+ T (1 − e2)1�2(cosuf + cos ff)

na
, (8.63)

where ff and uf are the true and eccentric anomaly, and n = [G(mr +
mf)�a3]1�2 is the mean motion. To first order in the eccentricity we can
write ff = `f + 2e sin `f +O(e2) (eq. 1.151), uf = `f + e sin `f +O(e2) (eq.
1.150) and (1 − e2)1�2 = 1 +O(e2), so

de

dt
= R sin `f + e sin 2`f

na
+ T 4 cos `f − 3e + 3e cos 2`f

2na
+O(e2). (8.64)

Combining equations (8.62) and (8.64) and orbit-averaging, we find the rate
of change of eccentricity:

1

e

de

dt
= −3G1�2

mf(mr +mf)1�2k2,rR5
r

16mra
13�2 (8.65)

× �4 sin 2��1 + sin 2��2 − 49 sin 2��3 − 6 sin �4�.
Thus tides can cause the eccentricity to either decay or grow, depending on
the spin and the quality factors associated with the four components of the
tide.
8 The origin of the factor (mr +mf)�mr is described in the footnote following equation

(1.181).
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The situation is simpler if the responding body is synchronously rotat-
ing, !r = n. In this case ��1 = 0 by symmetry. Moreover the forcing
frequencies associated with the offsets ��2 and ��3 are −n and +n (see
discussion following eq. 8.58), so ��2 = −��3 and ��2 > 0 by equations
(8.60). Therefore equation (8.65) is modified to

1

e

de

dt
= −3G1�2

mf(mr +mf)1�2k2,rR5
r

8mra
13�2 �25 sin 2��2 − 3 sin �4�. (8.66)

Equations (8.60) imply that ��2 > 0 and �4 < 0, so tides raised in a syn-
chronously rotating body always damp the eccentricity. If we assume that
the phase lags are small (quality factor Qr � 1) and that Qr is the same for
both phase lags in equations (8.60), then

1

e

de

dt
= −21G1�2

mf(mr +mf)1�2k2,rR5
r

2mrQra
13�2 . (8.67)

We conclude that in a system consisting of a planet and a synchronously
rotating satellite, tides raised on the planet can damp or excite the eccen-
tricity, but tides raised on the satellite always damp the eccentricity. If we
label the two bodies in a binary system by 1 and 2, and the two bodies have
similar Love numbers and phase lags, then the ratio of the rate of change
of eccentricity due to dissipation in body 1 to the rate due to dissipation in
body 2 is

� ė1
ė2
� ∼ m

2
2

m
2
1

R
5
1

R
5
2

. (8.68)

If the two bodies have similar mean densities, then this ratio is ∼ R2�R1.
Thus dissipation in the smaller body tends to dominate the eccentricity evo-
lution, so if the smaller body is synchronously rotating the eccentricity will
damp. This conclusion is consistent with the observation that all of the
solar-system satellites for which the eccentricity evolution time is shorter
than the age of the solar system have very small eccentricities.

In a model with constant time lag (quality factor inversely proportional
to frequency), the rate of eccentricity damping can be evaluated for arbitrary
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eccentricity (Matsumura et al. 2010):

1

e

de

dt
= −27Gmfk2,rR

5
r ⌧

a8(1 − e2)13�2
mr +mf

mr
�1 + 15

2 e
2 + 15

8 e
4 + 5

64e
6

− 11!r

18n
(1 − e2)3�2(1 + 3

2e
2 + 1

8e
4)�. (8.69)

This result agrees with equation (8.65) if we assume that ���i�, ��� � 1

and use equations (8.39) and (8.60) and the forcing frequencies given above
equation (8.59) to set 2��1 = 2(!r − n)⌧ , 2��2 = (2!r − n)⌧ , 2��3 =(2!r − 3n)⌧ and �4 = −n⌧ .

The energy dissipated by tidal friction heats satellites. The most extreme
case in the solar system is Jupiter’s satellite Io, which has a molten interior
and widespread vulcanism powered by tidal friction (Peale 2003).

The eccentricities of the orbits of planets can also be altered by tides
from the host star. The rates can be determined from equations (8.65) and
(8.66). From the arguments in the paragraph containing equation (8.68) we
expect that the eccentricity evolution is dominated by tides raised in the pla-
net. As described at the end of §8.4.2, planets that are subject to significant
tidal evolution are expected to be synchronously rotating, so tidal friction
damps the eccentricity, consistent with the observation that most giant exo-
planets with orbital periods less than a few days are on nearly circular orbits
(see Problem 8.5).

8.5 Non-equilibrium tides

The theory of equilibrium tides developed earlier in this chapter is based on
two ingredients: a description of the equilibrium response of a star or planet
to a static tidal potential, and a parametrized framework that modifies this
response to describe tidal friction (the parameter being the lag angle, time
lag, or quality factor). The equilibrium tide should be an adequate descrip-
tion of tides in which the forcing frequency is much smaller than the natural
oscillation frequencies of the body subjected to the tide. However, the lag
angle cannot be computed from first principles, and moreover depends on
the frequency and amplitude of the forcing. Therefore it is difficult to make
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clean quantitative predictions from the theory, and even more difficult to
test them in the solar system. Moreover, there are situations in which the
equilibrium tide cannot capture the important physics involved in the tidal
interaction.

The next step beyond equilibrium tides is the theory of dynamical tides,
which accounts for the dynamical response of the star or planet to a time-
varying tidal field.

The forcing frequencies of tidal potentials are generally lower than the
characteristic frequency (GM�R3)1�2 of a star or planet of mass M and
radius R; hence the only modes that couple well to tidal forcing are those
with low eigenfrequencies. For gaseous bodies such as stars or giant pla-
nets, these include the g modes (“g” for “gravity”) found in stably stratified
regions and the inertial modes found in rotating bodies. The restoring force
for g modes is buoyancy and that for inertial modes is the Coriolis force.

Linear calculations allow us to determine how each of these modes is
excited by a tidal potential. A more complicated question is how the modes
are damped once they have been excited. The ordinary viscosity in a star
or planet due to two-body collisions between ions, atoms, or molecules is
far too small to damp these waves on any timescale of interest. Instead the
waves are damped by turbulent viscosity in convectively unstable regions, or
radiative viscosity in stably stratified regions, and possibly also by nonlinear
effects such as wave breaking (Ogilvie 2014).

A mature theory of dynamical tides would allow us to calculate the
quality factor associated with a given forcing frequency, at least to order
of magnitude. Unfortunately this theory is not yet available for most stars
and planets.

8.5.1 Planets on high-eccentricity orbits

We described in §5.4.2 how hot Jupiters may be formed through high-
eccentricity migration, in which a planet on a nearly radial orbit—typically
a semimajor axis of several au and a periapsis of only a few times the stellar
radius—loses energy and orbital eccentricity through tidal friction, eventu-
ally settling onto a circular orbit close to the star.
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For high-eccentricity orbits, the physical description of tidal friction is
quite different from that of the equilibrium tide. During periapsis passage,
the tidal force from the star excites nonradial oscillations in the planet. The
energy deposited in these oscillations comes from the orbit. The nature
of the dissipation—that is, the value of the quality factor—in the planet
is unimportant so long as the damping timescale is long compared to the
duration of periapsis passage and short compared to the orbital period.

The approximate energy loss per periapsis passage is straightforward
to estimate. The tidal or forcing potential from the star at the surface of
the planet is �f(Rp, ✓,�) ∼ GM∗R2

p�r3, where M∗ is the stellar mass,
Rp is the planetary radius, and r is the distance between the planet and
the star (eq. 8.17). The corresponding potential due to the response of the
planet is �r(r, ✓,�) ∼ k2,p�f(Rp, ✓,�)(Rp�r)3 ∼ k2,pGM∗R5

p�r6, where
k2,p is the planet’s gravitational Love number (eq. 8.21). The force on the
star is F ∼ −M∗∇�r so �F� ∼ M∗�r�r. During periapsis passage, the
force acts over a distance ∼ r, leading to an energy change �E ∼ �F�r ∼
k2,pGM

2∗R5
p�q6 where q is the periapsis distance. A more accurate for-

mula is

�E = f(⌘) GM
2∗R5

p

q6
, ⌘ ≡ � Mp

M∗ +Mp
�1�2 � q

Rp
�3�2 ; (8.70)

here ⌘ is the ratio of the characteristic frequency (GMp�R3
p)1�2 of the nor-

mal modes in the planet to the circular angular speed [G(M∗ +Mp)�q3]1�2
at periapsis passage, and the dimensionless function f(⌘) measures how
well the normal modes of the planet couple to external tides as a function of
frequency. In a stably stratified planet, f(⌘) declines as an inverse power of
⌘ when ⌘ � 1 because of the dense spectrum of low-frequency g modes.

The planet also excites tides in the star, but the energy change due to
these is smaller by a factor (k2,∗�k2,p)(Mp�M∗)2(R∗�Rp)5. In terms
of the mean densities, this ratio is (k2,∗�k2,p)(⇢p�⇢∗)2(Rp�R∗); we are
mostly interested in giant planets, which have mean densities similar to
those of stars, larger Love numbers, and smaller radii, so the dominant en-
ergy change is due to tides induced in the planet.
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The process is more complicated if the excitations are not fully damped
in one orbital period. In this case energy can flow back and forth between
the oscillations and the orbit, depending on the phase of the oscillations at
the time of the next periapsis passage. As a result the semimajor axis of
the planet orbit may evolve chaotically. A further complication is that the
orbital energy that must be dissipated often exceeds the internal binding
energy of the planet, so unless this energy is radiated away efficiently the
planet may be disrupted.

8.5.2 Resonance locking
The internal structures of giant planets can evolve significantly over their
lifetimes as they lose energy and cool. As they evolve, the frequencies of
their normal modes evolve as well, and in some cases these frequencies
may cross a resonance with the mean motion of a satellite. By analogy
with the arguments in §6.3 the satellite may then be captured in resonance,
and its orbit will thereafter evolve at a rate determined by the evolution
of the planet’s normal-mode frequency rather than by the equilibrium tide
(Fuller et al. 2016). For distant satellites the rate of orbit evolution will be
much faster after resonance locking, and the rate of tidal dissipation will be
correspondingly higher.

Resonance locking may explain the rates of evolution for several of the
satellites of the outer planets, which appear to be 2–3 orders of magnitude
faster than predicted by the equilibrium tide (Lainey 2016). In particular
if more than one satellite is locked the outward migration rate ȧ�a will be
similar for all the locked satellites, in contrast to models based on the equi-
librium tide, which imply that more distant satellites evolve much more
slowly.

Resonance locking may also determine the rate of semimajor axis evo-
lution for some hot Jupiters on very short-period orbits (Ma & Fuller 2021).

8.6 Tidal disruption

A satellite can be disrupted by tidal forces if it comes too close to its host
planet. The dynamics and the outcome of this process depend on many
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factors: Is the satellite held together by self-gravity or tensile strength? Is
it homogeneous or centrally concentrated? Does it approach the planet on
an inspiraling circular orbit or a highly eccentric one? And so forth. This
complex process is best studied by examining a variety of simplified model
problems.

We consider a satellite of mass ms orbiting a planet of mass mp, and
we assume for simplicity that ms � mp. If the satellite has radius R and
is separated from the planet by a distance rp, the tidal force at its surface
is Ftide ∼ GmpR�r3p (the gradient of the quadrupole potential 3.71). The
force from the self-gravity of the satellite is Fself ∼ Gms�R2. If the satellite
is held together by its own gravity, we expect that tidal disruption will occur
when Ftide � Fself , or

rp � R�mp

ms
�1�3 . (8.71)

We can also express this result as

� ≡ mp

2⇡⇢r3p

= 2⇢p

3⇢
� 1, (8.72)

where ⇢ is the mean density of the satellite and ⇢p =mp�(43⇡r3p) is the mean
density of the planet within the radius of the satellite’s orbit. The problems
that we examine below confirm these crude arguments and provide exact
criteria for tidal disruption in idealized situations.

8.6.1 The Roche limit
We first examine a satellite composed of incompressible fluid, on a circular
orbit around the planet. The satellite is assumed to be in synchronous rota-
tion, so the fluid is stationary in a frame rotating with the orbit. The effective
potential �e↵ in the rotating frame is given by the sum of three components,
the tidal potential �tide, the potential due to self-gravity �self , and the cen-
trifugal potential �cent (eq. D.21). Since the satellite is much less massive
than the planet, tidal disruption will occur at a distance much larger than the
size of the satellite, so the tidal potential inside the satellite is dominated
by the quadrupole terms and hence is a quadratic function of the Cartesian
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coordinates relative to the center of the satellite. Similarly, the potential due
to self-gravity satisfies Poisson’s equation (B.44), ∇2

�self = 4⇡G⇢, and
⇢ is constant because the satellite’s material is incompressible, so �self is
also a quadratic function of the coordinates; and the centrifugal potential is
quadratic as well. Therefore the effective potential is quadratic.9 The sur-
face of the satellite must be an equipotential (see footnote in Box 1.3) and
therefore is an ellipsoid, called the Roche ellipsoid.

The properties of this ellipsoid as a function of the orbital radius rp were
computed by Édouard Roche (1820–1883). When rp is sufficiently large
the tidal and centrifugal forces are negligible compared to the self-gravity
of the satellite, and the ellipsoid is a sphere. As the orbital radius shrinks
the ellipsoid deviates more and more from a sphere. There is no solution if
rp is less than the Roche limit

r
e=0
Roche = 1.523�mp

⇢
�1�3 , (8.73)

corresponding to � > 0.0450. At the Roche limit the axes of the ellipsoid
are in the ratio 1.5947 ∶ 0.8151 ∶ 0.7693, with the longest axis pointing
toward the planet and the shortest axis perpendicular to the orbital plane
(Chandrasekhar 1963, 1969).

If an incompressible fluid satellite is in a parabolic orbit, it will be dis-
rupted at periapsis passage if the periapsis distance is less than (Sridhar &
Tremaine 1992)

r
e=1
Roche = 1.05�mp

⇢
�1�3 , (8.74)

corresponding to � > 0.137 if rp is taken to be the periapsis distance in
equation (8.72).

9 This argument is not rigorous, because the potential includes a solution of Laplace’s equa-
tion that must be added to match the boundary conditions at the surface of the satellite and at
infinity. It is a fortunate accident that this solution vanishes inside the satellite if its surface
is ellipsoidal.
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8.6.2 Tidal disruption of regolith
A more realistic model for small satellites is a rigid spherical body of density
⇢ and radius R surrounded by a thin ocean, atmosphere, or regolith.10 For
simplicity we assume that the satellite is in a circular orbit around its host
planet and is synchronously rotating. We also assume—less realistically—
that the density of the regolith is negligible, so it does not contribute to the
gravitational field. We work in rotating coordinates fixed on the satellite,
with the positive x-axis pointing toward the planet and the z-axis normal to
the plane of the satellite orbit.

The gravitational potential outside the satellite is �(r) = �self(r) +
�cent(r) + �tide(r). The first component is the potential due to the rigid
central body, �self = −Gms�r = −4

3⇡G⇢R
3�r where r = (x2 + y2 + z2)1�2.

The centrifugal potential �cent(r) = −1
2n

2(x2 + y
2) (eq. D.21), where

n = (Gmp�r3p)1�2 is the mean motion, which is equal to the spin angu-
lar velocity of the satellite since it is synchronous by assumption. The tidal
potential is given by equation (8.17),

�tide(r) = Gmp

2r3p

(y2 + z2 − 2x2). (8.75)

The radial force exerted on an element of regolith on the surface of the
asteroid, at position r = (R, ✓,�) in spherical coordinates, is

Fr = −r̂ ⋅∇(�self +�cent +�tide)
= −4

3⇡G⇢R + GmpR

r3p

(3 sin2 ✓ cos2 � − cos2 ✓). (8.76)

The radial force is negative (inward) at all positions on the surface if

rp > � 9

4⇡
�1�3 �mp

⇢
�1�3 = 0.8947�mp

⇢
�1�3 or R < rp � ms

3mp
�1�3 , (8.77)

10 Regolith is a surface layer of unconsolidated deposits such as dust, gravel, ash, or liquid.
Regolith covers most of the Earth, Moon, Mars and asteroids. Because regolith has little or
no ability to withstand tensile or shear stresses, it can be approximated for our purposes as
a fluid.
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corresponding to � = 0.222 in equation (8.72). If this condition is violated,
regolith near x = ±R, y = 0, z = 0 (the points on the satellite surface closest
to and farthest from the planet) will be levitated from the surface by the tidal
force and lost from the satellite. Moreover the forces parallel to the satellite
surface arising from the tidal potential push regolith toward these points,
thereby tending to deplete the entire regolith.

The conditions (8.77) are the same as the condition that the satellite’s
physical radius R is less than its Hill radius rH (eq. 3.24).

8.6.3 Tidal disruption of rigid bodies

The disruption of large astronomical bodies is determined by the competi-
tion between tidal forces and self-gravity. Small bodies are held together by
the tensile strength of the material of which they are composed, so these can
survive in regions where massive bodies of the same density cannot.

For an approximate analysis, consider a satellite of density ⇢, radius R
and mass ms = 4

3⇡⇢R
3 in a circular orbit of radius rp around a planet of

mass mp. We now imagine replacing the satellite by two points of mass
1
2ms. In the coordinate system used in the preceding subsection, the two
masses are located at x = ±1

2R, y = z = 0 (i.e., symmetrically placed along
the line from the planet to the satellite and separated by a distance R). The
two points are held together by a string. The force per unit mass on each
body is F = −∇(�cent +�tide) = (3n2

x,0,0) = ±3
2(n2

R,0,0), so the ten-
sion on the string is ∼ n2

msR. The force between the two halves of a single
spherical satellite should be similar, so the tensile stress at the midplane of
the satellite should be approximately force/area = n

2
msR�(⇡R2) ∼ ⇢n2

R
2.

If the tensile strength of the material is T , the tides will disrupt the body
unless

T � ⇢n2
R

2 = Gmp⇢R
2

r3p

, (8.78)

where mp is the mass of the host planet and rp is the satellite’s orbital radius.
The more careful calculation in Appendix I shows that the satellite survives
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if

T > 5

19

Gmp⇢R
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r3p

, � = mp
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Gmp⇢R
2

r3p

�1 − 38⇡⇢r
3
p

75mp
� , � = mp

2⇡⇢r3p

> 19

60
. (8.79)

In the first case, the body fractures first at the edge, in the second case at
the center. The threshold between these two modes of fracture occurs at a
distance from the planet rp = (30�19⇡)1�3(mp�⇢)1�3 = 0.795(mp�⇢)1�3
corresponding to � = 0.317.

A summary of the characteristic disruption distances is in Table 8.1.
Typical tensile strengths are ∼ 1MPa for ice, ∼ 10MPa for rock and∼ 300MPa for steel (1MPa = 1 megapascal = 10

6 Pa = 10
6 kg m−1 s−2).

According to the first of equations (8.79), at the Roche limit (8.73) a body
with tensile strength T can survive without the assistance of its own self-
gravity if its radius is smaller than

R = 473 km
3 g cm−3

⇢
� T

10MPa
�1�2 . (8.80)

These considerations also determine the shapes of satellites. Objects much
smaller than the radius defined by equation (8.80), like rocks, can have ar-
bitrary shapes, while larger objects must be nearly spherical because the
stresses due to gravity exceed the ability of solid material to maintain any
other shape.11 The transition from small, irregular bodies to large, spherical
ones can be seen in the asteroids and the satellites of the giant planets of the
solar system. The largest asteroid, Ceres (radius R = 470 km), and Saturn’s
satellite Mimas (R = 198 km) are nearly spherical, but smaller asteroids and
satellites are not (e.g., Saturn’s satellite Hyperion with R = 135 km). The
transition radius is larger for rocky bodies like Ceres than for icy bodies like
Mimas, because rock is stronger than ice.12

11 According to the International Astronomical Union, a spherical shape is one of the defining
characteristics of a “planet.” For further discussion see the end of §9.2.

12 Weisskopf (1975) gives an elegant order-of-magnitude derivation of this transition radius in
terms of fundamental constants.
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Table 8.1: Tidal disruption radii

�

Roche limit for circular orbit 0.045
Roche limit for parabolic orbit 0.137
regolith escapes 0.222
cracks propagate from center 0.317

The quantity � is defined by equation (8.72).

Most small bodies in the solar system, in particular asteroids and comets,
have strengths much smaller than expected for solid rock or ice, probably
because they are rubble piles: a collection of unconsolidated smaller bodies
held together by gravity, with significant interior voids (Walsh 2018).

Striking evidence that most asteroids are rubble piles comes from the
distribution of asteroid rotation periods as a function of size, shown in Fig-
ure 8.1. The figure shows a sharply defined minimum rotation period, P �
2.5 hours, independent of the asteroid size over the range 0.3 km–10 km.
The maximum rotation rate for a spherical body covered with regolith is
attained when the outward centrifugal force at the equator equals the grav-
itational force, corresponding to !2

maxR = Gm�R2 or !2
max = 4

3⇡G⇢ for a
body with uniform density ⇢. In terms of the rotation period P = 2⇡�!,

Pmin = � 3⇡G⇢�
1�2 = 2.334 h�2 g cm−3

⇢
�1�2 , (8.81)

close to the observed limit for a plausible estimate of the mean density of
rubble-pile asteroids. If asteroids had significant tensile strength they could
rotate much faster, and the absence of any such rapidly rotating asteroids
suggests that their tensile strength is � 0.001MPa.
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Figure 8.1: The distribution of spin periods, in hours, of � 3700 asteroids as a
function of diameter. Data from Warner et al. (2019), restricted to asteroids with
rotation period quality code U3 (highest).



Chapter 9

Planet-crossing orbits

Almost all plausible models of planet formation begin with the condensa-
tion of small solid particles (“dust”) from the gaseous disk surrounding a
newly formed star. The dust particles stick together to form small solid
bodies (“planetesimals”), and the planetesimals collide and coalesce, even-
tually forming planets and the cores of gas-giant planets. This process is
remarkably complicated, involving growth over 40 orders of magnitude in
mass and a wide variety of complicated and often messy physical processes.
Despite this complexity, and despite the many gaps in our understanding
of planet formation, a clear prediction of these models is that both plan-
etesimals and planets should be formed on nearly circular, nearly coplanar
orbits—and indeed the mean eccentricity and inclination of the planets in
the solar system are only 0.06 and 2.3

○.
A characteristic feature of systems that contain multiple planets on low-

eccentricity orbits is that the planets cannot collide or even suffer close en-
counters. Adjacent low-mass planets with semimajor axes a1 and a2 > a1

and eccentricities e1 and e2 cannot collide if a1e1 + a2e2 < a2 − a1, since
the apoapsis of the inner planet is smaller than the periapsis of the outer, so
the orbits cannot cross. It is the absence of close encounters that allows the
perturbation techniques developed earlier in this book, which are based on
expansions in the small parameters e1a1�(a2 − a1) and e2a2�(a2 − a1), to

433
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offer accurate descriptions of planetary motion.
Nevertheless there are both theoretical and observational motivations to

understand the behavior of particles on planet-crossing orbits. From the the-
oretical side, many processes can excite eccentricity after a planet is formed;
these include long-term instabilities (§4.5), ZLK oscillations (§5.4) and res-
onance capture (§6.4). From the observational side, many exoplanets have
high eccentricities—HD 80606b has e = 0.933—and the mean eccentri-
city of exoplanets discovered through radial-velocity surveys is 0.22, much
larger than for solar-system planets. Debris disks detected by thermal emis-
sion from dust surround many stars (Wyatt 2008), and the small particles in
these disks are probably produced in ongoing collisions between larger bod-
ies on crossing orbits. The mean eccentricity of the asteroids is 0.14; many
asteroids cross the orbits of Earth and Mars; and Earth-crossing asteroids
pose a potential hazard to civilization. A more extreme solar-system exam-
ple is the population of comets, icy kilometer-sized bodies that are believed
to be residual planetesimals formed at distances ∼ 20–40 au from the Sun.
Many comets have eccentricities of 0.9999 or higher, and the vast majority
of known comets cross the orbits of one or more planets.

9.1 Local structure of a planetesimal disk

So far we have studied the dynamics of individual objects in planetary sys-
tems. The numbers of planetesimals, asteroids and comets are so large that
a continuum description can be more useful. As an illustration of this ap-
proach, we discuss the macroscopic properties of a large population of test
particles orbiting in a disk. We shall call this a “planetesimal disk,” but the
results are applicable to other systems.

In disks that contain large numbers of particles, the mean eccentricity
and inclination �e� and �I� are related to the dispersion in velocities of the
particles in a small volume of the disk (see eqs. 9.19 below). Thus it is useful
to think of the mean eccentricity and inclination at a given semimajor axis as
a kind of “temperature” of the disk: disks composed of particles on circular,
coplanar orbits are “cold” and as the mean eccentricity and inclination grow
the disk becomes “hotter.”
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Planetesimal disks are expected to have mean eccentricities and inclina-
tions �e�, �I� � 1 and thus are “cool.” The large-scale properties of such
disks are determined by the distribution of eccentricity and inclination and
the number density of particles as a function of semimajor axis a. In this
section we focus instead on the distribution of particles in phase space on
small scales, on which the gradients with semimajor axis can be ignored.

We use cylindrical coordinates (r,�, z) with the equatorial plane z =
0 coinciding with the midplane of the disk, and we assume that the disk
is axisymmetric. The number density of planetesimals is n(r, z), and the
surface number density is ⌃N(r) = ∫ ∞−∞ dz n(r, z).

We can write the number of planetesimals in a small volume element of
phase space as

dN = f(r,v)drdv, (9.1)

where f(r,v) is the distribution function. We can also specify the phase-
space position of a particle by its Delaunay variables (1.84) and write

dN = f ′(⇤, L,Lz, `,!,!)d⇤dLdLzd`d!d⌦. (9.2)

Because phase-space volumes are conserved in a canonical transformation
(Appendix D.6), drdv = d⇤dLdLzd`d!d⌦ and so

f(r,v) = f ′(⇤, L,Lz, `,!,!). (9.3)

In words, the distribution function is the same in all canonical variables.
Given this result, for notational simplicity we can adopt the convention that
the distribution function is a function of position in phase space rather than a
function of the coordinates. Thus f(r,v) and f(⇤, L,Lz, `,!,⌦) are taken
to have the same value if (r,v) and (⇤, L,Lz, `,!,⌦) denote the same
phase-space position in different coordinate systems.

Since the distribution function is time-independent, it must be indepen-
dent of the mean anomaly `. If the disk is axisymmetric, then the distribution
function must also be independent of the ascending node ⌦. In principle the
distribution function could depend on the argument of periapsis !, but the
rate of apsidal precession due to effects such as the self-gravity of the disk
is generally large enough that any dependence on ! is washed out. Thus the
distribution function can be written f(⇤, L,Lz).
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The Delaunay variables can be expanded as Taylor series in the eccen-
tricity and inclination:

⇤ −L � 1
2⇤e

2 +O(e4), L −Lz � 1
2⇤I

2 +O(I4, e2I2). (9.4)

In a disk with small eccentricities and inclinations, the variations of the dis-
tribution function with ⇤ −L and L −Lz are much faster than the variation
with ⇤. Therefore to describe the local dynamics of the disk, we can ignore
the variation of the distribution function with ⇤ and treat it as a function of
just the two variables ⇤ − L and L − Lz . In contrast to the case of a gas in
a box, where the distribution function must be a Maxwellian function of the
velocity because of the Boltzmann H-theorem, there is no simple physical
argument that predicts the distribution function in planetesimal disks. How-
ever, the following empirical form is widely used and generally consistent
with numerical experiments on the evolution of planetesimal disks:

f(L,Lz) = A exp � − �(⇤ −L) − ��2(L −Lz)�
� A exp � − 1

2⇤�(e2 + �2I2)�, (9.5)

where A, � and � are constants. Our assumption that the eccentricities and
inclinations are small implies that ⇤� � 1.

The number of particles in a small range of semimajor axis da is

dN = d⇤

da
da� ⇤

0
dL� L

−LdLz � 2⇡

0
d`� 2⇡

0
d!� 2⇡

0
d⌦ f(L,Lz)

= (2⇡)3 d⇤
da

da� ⇤

−∞ dL� L

−∞ dLz f(L,Lz)
= 4⇡3 A

�2�2
� GM∗

a
�1�2 da, (9.6)

where M∗ is the mass of the host star. Here we have extended the lower lim-
its of the integrals over L and Lz to minus infinity, which introduces almost
no error since ⇤� � 1. The surface number density ⌃N = dN�(2⇡ada),
so

⌃N = 2⇡2 A

�2�2
� GM∗

a3
�1�2 . (9.7)
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The probability that a planetesimal has eccentricity and inclination in
the ranges e→ e + de, I → I + dI is

p(e, I)dedI ∝ dLdLz exp � − �(⇤ −L) − ��2(L −Lz)�
∝ d(⇤ −L)d(L −Lz) exp � − �(⇤ −L) − ��2(L −Lz)�
∝ d(12e2)d(12I2) exp[−1

2⇤�(e2 + �2I2)�. (9.8)

Since p(e, I) is a probability distribution we must have ∫ dedI p(e, I) = 1,
so

p(e, I) = pe(e)pI(I), (9.9)

where

pe(e) = ⇤�e exp �− 1
2⇤�e

2�, pI(I) = ⇤��2I exp �− 1
2⇤��

2
I
2�. (9.10)

The probability distribution is separable, that is, p(e, I) is the product of
independent probability distributions in e and I . Each of these is a Rayleigh
distribution of the form

pR(x) = �x exp � − 1
2�x

2�. (9.11)

It is straightforward to verify that the mean of a Rayleigh distribution is�x� = ∫ ∞0 dxxpR(x) = (12⇡��)1�2. Therefore

� = ⇡

2⇤�e�2 , � = �e��I� ; (9.12)

thus � measures the inverse “temperature” of the disk, while � measures the
anisotropy between eccentricities and inclinations. Now equations (9.10)
can be rewritten as

pe(e) = ⇡

2�e�2 e exp�−
⇡e

2

4�e�2 �, pI(I) = ⇡

2�I�2 I exp�−
⇡I

2

4�I�2 �. (9.13)

Notice that pe(e) ∝ e as e approaches zero, with a similar result for pI(I);
loosely speaking, this means that the probability of finding a planetesimal on
an exactly circular or equatorial orbit is zero. This property arises from the
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geometry of phase space and our assumption that the distribution function
is approximately constant near e = I = 0.1

We can also write the distribution function (9.5) in terms of the plan-
etesimal velocities. To do so, we introduce a reference particle traveling
on a circular orbit of radius r in the disk midplane. The reference particle
has speed vc = (GM∗�r)1�2. We work in a frame rotating with the ref-
erence particle and erect Cartesian coordinates with origin at the reference
particle, positive x-axis pointing radially outward, positive y-axis pointing
in the direction of rotation, and z-axis perpendicular to the midplane. Then
an orbit passing through the origin has r = a(1 − e cosu) (eq. 1.46) and
velocity vx = (GM∗�a)1�2e sinu�(1 − e cosu) (eq. 1.54). If we keep only
terms up to first order in the eccentricity then these equations imply that vx �
vce sinu. Similarly the velocity vy = v�−vc = (GM∗�a)1�2(1−e2)1�2�(1−
e cosu) − vc (eq. 1.55). To evaluate this to first order in the eccentricity, we
write (GM∗�a)1�2 = (GM∗�r)1�2(1 − e cosu)1�2 � vc(1 − 1

2e cosu); then
vy � 1

2vce cosu. Combining these results we have

v
2
x
+ 4v2

y
= v2ce2(sin2 u + cos2 u) = v2ce2. (9.14)

Similarly, from equations (1.70) we find that to O(e, I), z � rI sin(f + !)
and vz � rI cos(f + !)ḟ � vcI cos(f + !) so

v
2
c

r2
z
2 + v2

z
= v2cI2[sin2(f + !) + cos2(f + !)] = v2cI2. (9.15)

Therefore the distribution function (9.5) becomes

f(r,v) = A exp �−⇤�
2v2c

(v2
x
+ 4v2

y
) − ⇤��2

2v2c

v
2
z
− ⇤��2

2r2
z
2� . (9.16)

Using equations (9.12), this result can be rewritten as

f(r,v)=A exp �− ⇡

4v2c �e�2 (v
2
x
+ 4v2

y
)− ⇡

4v2c �I�2 v
2
z
− ⇡

4r2�I�2 z2� . (9.17)

1 An analogy is the case of a circle of unit radius that is uniformly filled with N points. The
number of points with distance from the center between r and r + dr is n(r)dr, where
n(r) = 2Nr. Thus n(r)∝ r as r → 0.
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This is a triaxial Gaussian distribution in velocity, called a Schwarzschild
distribution because Karl Schwarzschild (1873–1916) used it to describe
the distribution of velocities of stars in the solar neighborhood. The normal-
ization constant A is simply related to the number density of planetesimals
in the disk midplane, n0: since n0 = ∫ dv f(z = 0,v) = 4Av

3
c �e�2�I�,

A = n0

4v3c �e�2�I� . (9.18)

This analysis shows that an exponential distribution in the actions or De-
launay variables corresponds to a Rayleigh distribution in the eccentricities
and inclinations, and a Gaussian distribution in the velocities (relative to
the local circular velocity). The velocity dispersions or root-mean-square
velocities in the three orthogonal directions are

�v2
x
�1�2 = � 2

⇡
�1�2vc�e�, �v2y�1�2 = � 1

2⇡
�1�2vc�e�, �v2z�1�2 = � 2

⇡
�1�2vc�I�.

(9.19)
Thus the velocity dispersion in the azimuthal direction is always half the dis-
persion in the radial direction,2 while the ratio of dispersions in the radial
and vertical directions depends on the arbitrary ratio � = �e���I�. Neither
observations nor theory point to a unique value of �. Dynamical models of
planetesimal disks that evolve through gravitational scattering have � � 2

(Ida et al. 1993); the asteroid belt has � � 0.8, although this value is largely
determined by the requirement that the orbits be stable in the presence of
Jupiter; and the trans-Neptunian belt has � � 0.7, although this sample is
subject to strong observational selection effects depending on the eccentri-
city and inclination.

The distribution function (9.17) also implies that the number density of
planetesimals as a function of height above the disk midplane is

n(z) = n0 exp � − 1
2z

2�z20�, z0 ≡ (2�⇡)1�2r�I� = 0.798 r�I�; (9.20)
2 This result contrasts with the root-mean-square azimuthal velocity of a single particle rel-

ative to its guiding center, which is twice as large as its root-mean-square radial velocity
(see text following eq. 1.171). The difference arises because the analysis here refers to the
azimuthal velocity relative to the circular speed at the same radius, rather than the azimuthal
velocity relative to the guiding center.
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here z0 is the root-mean-square height of the planetesimals relative to the
midplane, and the central number density n0 is related to the surface number
density ⌃N by ⌃N = ∫ ∞−∞ dz n(z) = (2⇡)1�2n0z0 = 2n0r�I�.

9.2 Disk-planet interactions

A planet embedded in a planetesimal disk interacts with the disk mainly
through two mechanisms: (i) collisions between the planetesimals and the
planet, which lead to growth of the planet mass and depletion of the plan-
etesimal population in the vicinity of the planet; and (ii) gravitational scat-
tering or “stirring” of the disk by the planet, which excites the eccentricities
and inclinations of the planetesimals near the planet. Both processes are
central to planet formation and to the evolution of the disk.

We study these in a disk surrounding a star of mass M∗ that contains
a planet of mass Mp and radius R, on a circular orbit of semimajor axis
ap in the midplane of the disk. The planet’s orbital speed is the circular
speed vc = (GM∗�ap)1�2, and the escape speed from its surface is vesc =(2GMp�R)1�2 (eq. 1.21).

The response of the disk depends strongly on its velocity dispersion (the
root-mean-square velocity of the planetesimals relative to the local circular
speed), which we denote by �. We only use this symbol in approximate
arguments, for which a sufficiently good approximation is that � � vc�e�,
where �e� is the mean eccentricity of the particles in the vicinity of the pla-
net (cf. eq. 9.19). A second characteristic velocity that governs the local
dynamics is s ≡ vcrH�ap; here rH = ap[Mp�(3M∗)]1�3 is the Hill radius
(eq. 3.24). Since the disk is differentially rotating, s is a measure of the
shear in the disk across one Hill radius. A shear-dominated disk is one in
which � � s; in this case the relative velocity between planet and planetes-
imal before an encounter is dominated by the contribution from differential
rotation; the interactions with the planet are strongest if the impact param-
eter b � rH; and the interaction decays rapidly when b � rH (see Figure
3.13). In contrast, in a dispersion-dominated disk, with � � s, the relative
velocity before an encounter is dominated by the non-circular motion of the
planetesimal, and all encounters with impact parameter b � ap��vc can lead
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to strong interactions with the planet.
In general, the effect of encounters with a planet in a shear-dominated

disk is to “heat” or “stir” the disk until it becomes dispersion-dominated in
the vicinity of the planet. When the impact parameter b � rH, this heating
requires only a few encounters with the planet, that is, a time interval of a
few times rH�vc. As a consequence, most planetesimal disks containing pla-
nets are dispersion-dominated near each planet, and we restrict ourselves to
dispersion-dominated disks from now on. For more general discussions of
the collision rate see Greenzweig & Lissauer (1992) and Dones & Tremaine
(1993), and for more general discussions of gravitational stirring see Stewart
& Ida (2000) and Rafikov (2003).

9.2.1 Collisions

First we examine the rate of collisions between the planetesimals and the
planet. Suppose that a planetesimal makes a close approach to the planet
on a trajectory with relative velocity v. The collision cross section is (eq.
1.41)3

⇡b
2
coll = ⇡R2 + 2⇡GMpR

v2
. (9.21)

Let f(v) be the distribution function, so f(v)dv is the number of plan-
etesimals per unit volume with velocities in the range v → v+dv, measured
in the rotating frame centered on the planet. Then the number of collisions
per unit time with planetesimals in this velocity range is just f(v)dv times
the volume of a cylinder with cross section ⇡b2coll and length v = �v�. The
total collision rate is thus

�coll = � dv f(v)�⇡R2
v + 2⇡GMpR

v
� . (9.22)

We use the Schwarzschild distribution function defined by equations (9.17)
and (9.18), which we evaluate at z = 0 since the planet orbits in the disk

3 This expression ignores the differential effects of the gravitational field of the host star
on the orbits of the planetesimal and the planet during the encounter between them, an
approximation that is generally valid in dispersion-dominated disks.
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midplane. Then

�coll = n0

4v3c �e�2�I� � dv �⇡R2
v + 2⇡GMpR

v
�

× exp �− ⇡

4v2c �e�2 (v
2
x
+ 4v2

y
) − ⇡

4v2c �I�2 v
2
z
� , (9.23)

where n0 is the number density in the midplane, and �e� and �I� are the
mean eccentricity and inclination of the planetesimals in the disk. By re-
placing the integration variable v with u = v�(vc�e�), the expression can be
rewritten as

�coll = n0vcR
2�e� [ a(�) +⇥ b(�)] , (9.24)

where � = �e���I� and

 a(�) ≡ 1
4⇡� � duu exp �−1

4⇡(u2
x
+ 4u2

y
+ �2u2

z
)� ,

 b(�) ≡ 1
4⇡� � duu

−1
exp �−1

4⇡(u2
x
+ 4u2

y
+ �2u2

z
)� . (9.25)

Here du = duxduyduz , u = (u2
x
+ u2

y
+ u2

z
)1�2,

⇥ ≡ 2GMp

Rv2c �e�2 =
2

�e�2
Mp

M∗
ap

R
= v

2
esc

v2c �e�2 (9.26)

is the Safronov number,4 and vesc is the escape speed from the planet’s
surface (eq. 1.21).

The first term in equation (9.24) is the collision rate that would occur if
the planet’s mass (but not radius) were zero; the second term accounts for
the enhancement in the collision rate due to the deflection of orbits by the
planet’s mass (gravitational focusing).

The functions  a(�) and  b(�) are plotted in Figure 9.1. Typical val-
ues are  a(1.5) = 2.959,  b(1.5) = 4.388.

4 There is no common standard for the definition of the Safronov number; for example, some
authors replace vc�e� by the radial dispersion �v2x�1�2 (eq. 9.19), others remove a factor of
two, and others drop the factor �e�2. See equation (9.46) for an alternative definition.
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Figure 9.1: The func-
tions  a(�),  b(�),
 c(�) and  d(�)
defined in equations
(9.25) and (9.39). The
argument � is the ratio
of mean eccentricity to
mean inclination.

Table 9.1: Safronov numbers, collision times and stirring times for
solar-system planets

ap M⊙�Mp ⇥ tcoll tstir(au) (Myr) (Myr)
Mercury 0.387 6.024 × 106 0.79 5.64 4.06

Venus 0.723 4.085 × 105 8.75 1.27 0.069

Earth 1.000 3.329 × 105 14.09 2.26 0.077

Mars 1.524 3.099 × 106 4.33 103 9.09

Jupiter 5.203 1047.6 2079 0.041 0.0011

Saturn 9.537 3498.8 1353 0.741 0.0012

Uranus 19.19 22905 981 65.7 0.057

Neptune 30.07 19416 1871 177 0.085

The Safronov number ⇥, collision time tcoll and eccentricity stirring time
tstir are defined in equations (9.26), (9.27) and (9.42). The numerical values
in the table are for mean eccentricity �e� = 0.1 and � = �e���I� = 1.5. The
Coulomb logarithm log⇤ appearing in tstir is given by equation (9.36).
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Eventually collisions deplete the population of planetesimals that cross
the planet’s orbit. The total number of planetesimals that cross the orbit is
�N = 4⇡a

2
p⌃N �e� (Problem 9.1), where ⌃N = 2n0ap�I� is the surface

number density (eq. 9.20). The characteristic time needed to deplete the
disk, the collision time, is

tcoll ≡ �N

�coll
= 4P a

2
p

R2

�e�
�[ a(�) +⇥ b(�)] ; (9.27)

here we have introduced the orbital period of the planet, P = 2⇡ap�vc. Of
course the planet-crossing orbits are not completely cleared on this time-
scale, since the rate of collisions declines gradually as the planetesimals are
consumed. Equations (9.26) and (9.27) can be rewritten as

⇥ = 18.91 ⇢p

3 g cm−3
M⊙
M∗

ap

1 au
� R

104 km
0.1

�e��
2

,

tcoll = 20.2Myr� ap

1 au
�7�2 �M⊙

M∗ �
1�2 �104 km

R
�2 �e�

0.1
(1 + 1.48⇥)−1;

(9.28)

here we have written the results in terms of the planet’s density ⇢p and radius
R, related to the mass through Mp = 4

3⇡⇢pR
3, and in the second equation

we have set � = �e���I� = 1.5.
The Safronov numbers and collision times for planets in the solar system

are given in Table 9.1, for representative values �e� = 0.1, � = �e���I� = 1.5.

9.2.2 Gravitational stirring
Planetesimals that pass close to the planet, but not close enough to collide,
are deflected from their trajectories by the planet’s gravitational field. These
deflections gradually accumulate, leading to growth in the mean eccentricity
and inclination (“stirring”) of the population of planetesimals in the region
of the disk neighboring the planet. As described in the following section, in
extreme cases planetesimals can even be ejected from the planetary system
by this process.
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The calculation of the rate of eccentricity and inclination growth due to
gravitational stirring has some subtleties. In the rotating frame in which we
are working the planet is stationary, and in a dispersion-dominated disk the
effects of the Coriolis, centrifugal and tidal forces during a close encounter
with the planet are generally negligible. Therefore the kinetic energy of the
planetesimal in the rotating frame is unchanged during the encounter, just as
it would be for a test particle that scattered off a stationary gravitational po-
tential in an inertial frame. How then can the mean eccentricity and inclina-
tion increase, since they are related to the kinetic energy through equations
(9.19)? To resolve this apparent paradox we must recognize that scattering
by a stationary body tends to isotropize the velocity distribution function,
that is, to produce a distribution function in which �v2

x
� = �v2

y
� = �v2

z
�.

However, an isotropic distribution function is inconsistent with equations
(9.19). Therefore, the scattering process must be accompanied by a redistri-
bution of the semimajor axes of the scattered planetesimals that returns the
distribution function to the shape (9.19). This redistribution liberates energy
that is transferred to the non-circular motion of the planetesimals, causing
the mean eccentricities and inclinations to grow.5

The squared eccentricity and inclination of an orbit are given by equa-
tions (9.14) and (9.15):

e
2 = 1

v2c

[(x̂ ⋅ v)2 + 4(ŷ ⋅ v)2], I
2 = (ẑ ⋅ r)2

a2p

+ (ẑ ⋅ v)2
v2c

. (9.29)

Recall that the origin of the coordinate system coincides with the planet, the
positive x-axis points radially outward and the positive y-axis points in the
direction of rotation, and the velocity v is measured relative to the planet.

During a close encounter with the planet, the change in position r of
the planetesimal is negligible and the post-encounter velocity v

′ is given in
terms of the deflection angle ✓ by equation (1.37). Thus the change in the
squared eccentricity and inclination during an encounter are

�e
2 = cos

2
✓ − 1
v2c

�(x̂ ⋅ v)2 + 4(ŷ ⋅ v)2� − 2v sin ✓ cos ✓

v2c

�(x̂ ⋅ v)(x̂ ⋅ b̂)
5 A similar process occurs in shear-dominated disks, as described in §3.4.2.
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+ 4(ŷ ⋅ v)(ŷ ⋅ b̂)� + v
2
sin

2
✓

v2c

�(x̂ ⋅ b̂)2 + 4(ŷ ⋅ b̂)2�, (9.30)

�I
2 = cos

2
✓ − 1
v2c

(ẑ ⋅ v)2 − 2v sin ✓ cos ✓

v2c

(ẑ ⋅ v)(ẑ ⋅ b̂) + v
2
sin

2
✓

v2c

(ẑ ⋅ b̂)2.
Now let û and ŵ be unit vectors perpendicular to v, so û, v̂ and ŵ form
an orthonormal triad. Since b̂ is also perpendicular to v, we may write b̂ =
û cos + ŵ sin . The angle  —the azimuthal angle relative to the positive
v-axis at which the particle makes its closest approach to the planet—should
be uniformly distributed between 0 and 2⇡ for close encounters, so we can
average over it. Denoting this average by �⋅� , we have �x̂⋅b̂� = �ŷ⋅b̂� = 0
and �(x̂ ⋅ b̂)2� = 1

2(x̂ ⋅ û)2 + 1
2(x̂ ⋅ ŵ)2. Using the identity (B.6a), the last

of these expressions must equal 1
2 − 1

2(x̂ ⋅ v̂)2, with a similar result for
�(ŷ ⋅ b̂)2� and �(ẑ ⋅ b̂)2� . Then equations (9.30) can be rewritten to give
the average change in eccentricity and inclination,

��e
2� = sin

2
✓

2v2c

�5v2 − 3(x̂ ⋅ v)2 − 12(ŷ ⋅ v)2�,
��I

2� = sin
2
✓

2v2c

�v2 − 3(ẑ ⋅ v)2�. (9.31)

The number of encounters with the planet per unit time by planetesimals
in the velocity range v → v + dv having impact parameters in the range
b → b + db is 2⇡bvf(v)dbdv. Then if ∑i e

2
i

is the sum of the squared
eccentricities of all the planetesimals in the disk, the total heating or stirring
rate is

d∑i e
2
i

dt
= ⇡

v2c
� dv vf(v)� db b sin

2
✓�5v2 − 3(x̂ ⋅ v)2 − 12(ŷ ⋅ v)2�,

(9.32)
with a similar expression for the inclinations.

From equation (1.39) the deflection angle is related to the impact pa-
rameter through

sin
2
✓ = 4 tan

2 1
2✓(1 + tan2 1
2✓)2 =

4(GMp)2b2v4[(GMp)2 + b2v4]2 . (9.33)
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The integral over the impact parameter b is carried out between lower
and upper limits bmin and bmax. The minimum impact parameter is given by
the trajectory that just skims the planet’s surface (eq. 9.21), since trajectories
with smaller impact parameters collide with the planet. For simplicity we
neglect the possibility of collisions in this calculation, so we set bmin = 0;
then using equation (9.33), the integral becomes

� bmax

0
db b sin

2
✓ = 2(GMp)2

v4
�log(1 +⇤2) − ⇤

2

1 +⇤2
� with ⇤ ≡ bmaxv

2

GMp
.

(9.34)
We shall see shortly that ⇤ � 1 in typical cases, so we can approximate
the quantity in square brackets by 2 log⇤ with a fractional error of order(log⇤)−1. Then equation (9.32) becomes

d∑i e
2
i

dt
= 4⇡(GMp)2

v2c
� dv

v3
f(v) log⇤�5v2 − 3(x̂ ⋅ v)2 − 12(ŷ ⋅ v)2�.

(9.35)
The quantity log⇤ is called the Coulomb logarithm; a similar logarithm
appears in calculations of the transport properties of electrostatic plasmas
and stellar systems (e.g., Binney & Tremaine 2008).

The choice of the appropriate value for the maximum impact parameter
bmax needs some care. We cannot set bmax →∞ since then log⇤ diverges.
However, the divergence is slow (∝ log bmax) so an approximate estimate of
bmax is sufficient. Our calculation so far has been based on the assumption
that the density of planetesimals is homogeneous near the planet and there-
fore fails once the impact parameter is comparable to the disk thickness.
Therefore we should choose bmax to be roughly the root-mean-square disk
thickness z0 = 0.798ap�I� (eq. 9.20); the density at this impact parameter
is exp(−1

2) = 0.606 of the central density in the ẑ direction and close to
unity in the x̂ and ŷ directions. Given the approximations we have made
so far, there is little further loss of accuracy if we make some further sim-
plifications to the definition of ⇤: we assume that �e� = �I�; we replace the
variable v by vc�e�, and we drop all dimensionless factors of order unity.
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Then bmax � ap�e�, v2 = v2c �e�2 = (GM∗�ap)�e�2 and

⇤ = M∗
Mp
�e�3. (9.36)

For example, a disk around a solar-mass star with mean eccentricity �e� =
0.1 that contains an Earth-mass planet has ⇤ � 330, confirming our earlier
assertion that ⇤� 1 in typical cases. In this case the fractional error due to
the approximations we have made in evaluating ⇤ is ∼ (log⇤)−1 ∼ 0.2.

Substituting the Schwarzschild distribution function, equations (9.17)
and (9.18), into equation (9.35) we find that the rate of eccentricity growth
is

d∑i e
2
i

dt
= ⇡n0(GMp)2

v5c �e�2�I� log⇤� dvxdvydvz

v3
(9.37)

× exp �− ⇡

4v2c �e�2 (v
2
x
+ 4v2

y
) − ⇡

4v2c �I�2 v
2
z
� �5v2 − 3v2

x
− 12v2

y
�.

As in equations (9.23) and (9.24), this expression and the analogous expres-
sion for the inclinations can be rewritten as

d∑i e
2
i

dt
= n0(GMp)2 log⇤

v3c �e�  c(�),
d∑i I

2
i

dt
= n0(GMp)2 log⇤

v3c �e�  d(�), (9.38)

where � = �e���I� and

 c(�) ≡ ⇡�� du

u3
exp �−1

4⇡(u2
x
+ 4u2

y
+ �2u2

z
)� �2u2

x
− 7u2

y
+ 5u2

z
�,

 d(�) ≡ ⇡�� du

u3
exp �−1

4⇡(u2
x
+ 4u2

y
+ �2u2

z
)� �u2

x
+ u2

y
− 2u2

z
). (9.39)

The functions c(�) and d(�) are plotted in Figure 9.1. Typical values are
 c(1.5) = 12.586, d(1.5) = 0.694. When � < 1.390 the coefficient d(�)
is negative, so gravitational scattering causes the mean inclination to shrink
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as the vertical velocities of the planetesimals are converted to horizontal
velocities.

This analysis neglects the excitation of the eccentricities of planetesi-
mals that do not cross the planet’s orbit, but these make a contribution to
d∑i e

2
i
�dt that is smaller by a factor of order 1� log⇤ (e.g., Stewart & Ida

2000).
Equations (9.38) imply that the eccentricities grow faster than the incli-

nations if  c(�) >  d(�) and vice versa. If the distribution function in
the disk has the Schwarzschild form, as we have assumed throughout this
section, then ∑i e

2
i∑i I
2
i

= �e�2�I�2 = �2. (9.40)

Taking the time derivative of this equation and using equations (9.38),

d�
2

dt
= d

dt
log ��

i

I
2
i
� � c(�)
 d(�) − �2� . (9.41)

If gravitational stirring by planets or large planetesimals is the primary
mechanism that excites the eccentricities and inclinations, the evolution will
approach a self-similar form in which  c(�) = �2 d(�), which in turn re-
quires � = 1.832.

Eventually gravitational stirring by the planet excites the eccentricities
of a significant fraction of the planetesimals that cross the planet’s orbit,
which depletes the surface density of the disk near the planets because the
planetesimals visit a wider range of radii. The sum of the squared ec-
centricities of all the planetesimals that cross the planet’s orbit is ∑i e

2
i
=

24a
2
p⌃N �e�3, where ⌃N = 2n0ap�I� is the surface number density (Prob-

lem 9.1). Then the characteristic depletion time is

tstir ≡ ∑i e
2
i

d∑i e
2
i
�dt =

24P

⇡
�M∗
Mp
�2 �e�5
� c(�) log⇤ . (9.42)

The depletion times for planets in the solar system are given in Table 9.1 for
representative values �e� = 0.1, � = �e���I� = 1.5. Note that the results are
quite sensitive to the assumed value of �e� since tstir ∝ �e�5.
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Gravitational stirring also excites the inclinations of the planetesimals.
This process does not directly affect the surface density of the planetesimal
disk but does reduce the number density in the midplane.

Figure 9.2: In the unshaded regions a body of radius R (vertical axis) and semima-
jor axis ap (horizontal axis) can clear the neighborhood of its orbit from planetes-
imals. The broken heavy line is the solution of the equation min(tcoll, tstir) = tss
where tss = 4.57Gyr is the age of the solar system, tcoll is the collision time (9.27)
and tstir is the stirring time (9.42). The mean eccentricity in the disk is assumed to
be �e� = 0.1, the mean density of the body is 3 g cm−3, the ratio of mean eccentricity
to mean inclination is � = �e���I� = 1.5, and the mass of the host star is 1M⊙. The
figure also shows contours of constant Safronov number (9.26) as dotted lines.

We can now ask whether collisions or gravitational stirring dominates
the depletion of a planetesimal disk in the vicinity of a planet. Collisions
dominate if tcoll � tstir. Using the definition of the Safronov number ⇥ (eq.
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9.26), this condition requires

⇥
2 � 24

⇡

 a(�) +⇥ b(�)
 c(�) log⇤ . (9.43)

If we replace the inequality by an equality, we have a quadratic equation for
⇥ with two roots. One is always negative and therefore of no interest since
⇥ must be positive. If we call the positive root ⇥crit, we may conclude that
collisions are more important than stirring when ⇥ � ⇥crit. For example, if
� = 1.5 and log⇤ = 5, we find⇥crit = 0.922. For the range 1 ≤ � ≤ 2 and 1 ≤
log⇤ ≤ 10, ⇥crit varies between 0.46 and 5.7. Given these variations, and
the approximations we have made, an appropriate heuristic conclusion is
that collisions dominate the evolution if ⇥� 1, while gravitational stirring
dominates if ⇥� 1.

In 2006 the International Astronomical Union (IAU) defined a “planet”
to be a celestial body that (i) is in orbit around the Sun, (ii) has sufficient
mass for its self-gravity to overcome rigid-body forces such that it assumes
a hydrostatic equilibrium (nearly round) shape (see the discussion following
eq. 8.80), and (iii) has cleared the neighborhood around its orbit. The last
of these is approximately equivalent to the condition that the smaller of the
collision time tcoll and the gravitational stirring time tcoll is less than the age
of the solar system, 4.57Gyr. This constraint on the planetary radius R as a
function of semimajor axis ap is plotted in Figure 9.2 for planetary density
⇢p = 3 g cm−3 and mean eccentricity �e� = 0.1. Bodies in the shaded region
below the line are not “planets” according to the IAU definition.

9.3 Evolution of high-eccentricity orbits

We have seen in the preceding section that particles can be pumped into
high-eccentricity orbits by gravitational stirring. The goal of this section is
to investigate the behavior of particles once their orbits achieve high eccen-
tricity.

We consider a test particle belonging to a system containing a single
planet on a circular orbit with semimajor axis ap. The test-particle orbit has
an eccentricity e that is not far from unity and is planet-crossing. We shall
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assume that the periapsis q = a(1 − e) is not far inside the planet and that
the apoapsis is far outside it.

For an orbit with a � ap, the Tisserand parameter (eq. c of Box 3.1)
becomes

T = ap�a + 2(a�ap)1�2(1 − e2)1�2 cos I � 23�2(q�ap)1�2 cos I. (9.44)

Thus particles in low-inclination orbits conserve their periapsis distance so
long as they remain at low inclination. Even if we allow for inclination
variations, the periapsis of the test particle can never grow to be significantly
larger than ap. The reason is that if the test particle never comes close to the
planet it cannot interact strongly with it (note the rapid falloff in the root-
mean-square energy change in Figure 9.3 as q�ap grows beyond unity), so
such an orbit would survive for an indefinite period in the future without
becoming planet-crossing; but since Newton’s laws are time-reversible this
means it could never have been planet-crossing in the past.6

The energy of the test-particle orbit is −1
2 GM∗�a, where M∗ is the mass

of the host star. To simplify the notation it is easier to follow the variable
x ≡ 1�a, which is proportional to the energy (with a negative proportionality
constant); where the chance of confusion is small we shall adopt the com-
mon practice of calling x the “energy.” Let the root-mean-square change
in x resulting from a single periapsis passage—from r � a pre-periapsis
to r � a post-periapsis—be �x. Simple scaling arguments imply that
�x = fx(Mp�M∗)�ap where fx is a constant of order unity that depends on
the inclination, the periapsis distance, and the argument of periapsis (but not
the semimajor axis so long as a � ap, or the longitude of the node, which
is random since the phase of the encounter is random).7 Since the mean

6 This argument bears on the formation of the curious trans-Neptunian object Sedna and a
handful of objects on similar orbits, called the detached disk. Sedna has periapsis distance
76.4 au, eccentricity e = 0.85, inclination 11.9

○ relative to the ecliptic, and orbital period
P = 11500 yr. Sedna’s periapsis distance is 2.5 times the semimajor axis of Neptune,
and its orbit is unaffected by perturbations from Neptune or other known planets over the
lifetime of the solar system. How then did it acquire its current orbit?

7 A more careful analysis shows that fx is of order log(M∗�Mp) rather than unity. This
factor is the Coulomb logarithm described in the preceding section (Binney & Tremaine
2008).
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energy change is zero (see below), the root-mean-square change in energy
after N passages is �(�x)2�1�2

N
= N1�2

�x = N1�2
fx(Mp�M∗)�ap. We de-

fine Nrelax to be the characteristic number of orbits needed for the orbit to
random-walk from x � 0 to x ∼ 1�ap; more precisely �(�x)2�1�2

N
= 1�ap

when N = Nrelax, so Nrelax = f−2x
(M∗�Mp)2.

Figure 9.3: Root-mean-square change in x = 1�a for an initially parabolic orbit
during a single periapsis passage through a planetary system. The system contains
a single planet on a circular orbit with semimajor axis ap, having mass 0.001 times
the stellar mass. Each curve is determined from 10

4 incoming orbits with random
values of the longitude of node and periapsis. Three Monte–Carlo realizations are
shown for each curve to indicate the uncertainties. The inclinations of the parabolic
orbits are chosen from either a Rayleigh distribution with mean inclination �I� = 10○
(labeled “flat”) or a uniform distribution in cos I (labeled “isotropic”).

Figure 9.3 shows the root-mean-square change in x per periapsis pas-
sage for incoming particles on parabolic orbits, with a planet mass Mp =
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0.001M∗ (roughly appropriate for Jupiter and the Sun). The figure shows re-
sults for two inclination distributions: one corresponding to parabolic orbits
from a spherical source (labeled “isotropic”); and one for a Rayleigh distri-
bution (eq. 9.11) with mean inclination 10

○ (labeled “flat”), corresponding
to parabolic orbits in nearly the same plane as the planet. The curves are rel-
atively flat when the periapsis distance q � ap, with a weak peak at q � ap
since then close encounters are more likely. In the range q � ap, fx � 6 for
an isotropic distribution and fx � 20 when �I� = 10○. For q � ap the root-
mean-square energy change declines rapidly—by two orders of magnitude
as q�ap increases from 1 to 2.

We must account for the possibility that the test particle collides with
the planet as it crosses the planet orbit. Suppose that the typical number of
periapsis passages before a collision is Ncoll. For an approximate estimate
of Ncoll we can use the formula (9.27) for the collision time tcoll, replacing
tcoll�P by Ncoll and setting �e� = 1,

Ncoll = a
2
p

R2

fc

1 + fs⇥1
, (9.45)

where fc and fs are constants of order unity and the Safronov number for
parabolic orbits is

⇥1 ≡ 2GMp

Rv2c

= 2Mp

M∗
ap

R
= v

2
esc

v2c

. (9.46)

Here vc is the circular speed at the planet’s semimajor axis, and vesc is the
escape speed from the planet’s surface (eq. 1.21). The constant fc grows
roughly as the inverse of the mean inclination of the planet-crossing orbits
(Problem 9.5).

The ratio of the collision lifetime to the relaxation lifetime is

Ncoll

Nrelax
= f

2
x
fc

1 + fs⇥1
�ap
R

Mp

M∗ �
2 = f

2
x
fc

4

⇥
2
1

1 + fs⇥1
. (9.47)

Thus if the parabolic Safronov number ⇥1 � 1, Ncoll � Nrelax, and the
test particle is likely to collide with the planet long before its orbit suffers
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Table 9.2: Safronov numbers ⇥1 for solar-system planets

ap M⊙�Mp radius ⇥1

(au) (km)

Mercury 0.387 6.024 × 106 2440 0.007 88
Venus 0.723 4.085 × 105 6051 0.0875
Earth 1.000 3.329 × 105 6378 0.1409
Mars 1.524 3.099 × 106 3396 0.0433
Jupiter 5.203 1047.6 71492 20.79
Saturn 9.537 3498.8 60330 13.52
Uranus 19.19 22905 25559 9.81
Neptune 30.07 19416 24764 18.71

The parabolic Safronov number is defined in equation (9.46).

significant changes. However, if ⇥1 � 1 collisions are unimportant and the
fate of the test particle is determined by its orbital evolution, as if the planet
were a point mass (Wyatt et al. 2017).

Table 9.2 gives the parabolic Safronov numbers for the solar-system pla-
nets. The terrestrial planets have Safronov numbers in the range ∼ 0.01–0.1
and therefore bodies that cross their orbits are likely to collide with them
long before their orbits evolve to high eccentricities. In contrast, the giant
planets, from Jupiter to Neptune, have Safronov numbers � 10 so collisions
are unimportant compared to orbital evolution. The goal of the following
discussion is to investigate how planet-crossing orbits in the outer solar sys-
tem evolve and what their fate is.

Figure 9.4 shows the root-mean-square change in the energy x = 1�a
for a parabolic orbit passing through the solar system. As in Figure 9.3, two
sets of curves are shown, one for an isotropic distribution of incoming orbits
and one for a Rayleigh distribution with a mean inclination of 10○. There
are spikes when the periapsis distance is close to the semimajor axis of one
of the giant planets (Table 9.2), and the root-mean-square energy change
declines rapidly when the periapsis distance exceeds the semimajor axis of
the outermost planet, Neptune with aNep = 30.07 au.
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Figure 9.4: As in Figure 9.3, but for a system containing the four giant planets of
the solar system.

We now have the tools to investigate the evolution of a test particle on
a high-eccentricity orbit in the solar system, with initial semimajor axis
a � aNep but periapsis distance q � aNep. This analysis is based on three
assumptions:

(i) We assume that the semimajor axis and orbital period of the particle
are large enough that the phases of the planets can be treated as ran-
dom variables at each periapsis passage (the random-phase approxi-
mation).8 Thus we can describe the changes in x = 1�a during each

8 Here is a heuristic derivation of the accuracy of this approximation. The period of the
orbit is P = 2⇡(GM∗x3)−1�2, so the typical change in period per periapsis passage is
�P ∼ 3⇡(GM∗x5)−1�2�x, which represents the change in arrival time of the particle
at its next periapsis. If the change in arrival time is larger than the time needed for the
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periapsis passage by a probability distribution g(�x), where

� d�xg(�x) = 1, � d�xg(�x)�x = 0,
� d�xg(�x)(�x)2 = �2

x
. (9.48)

The first expression holds because g(�x) is a probability distribu-
tion, so its integral must be unity. The second holds because Newton’s
laws are time-reversible, so the mean has to be the same whether we
trace the particle forward or backward in time and therefore must be
zero.9 The third is simply the definition of the root-mean-square en-
ergy change per orbit �x.

(ii) We ignore changes in the periapsis distance and inclination (see the
discussion at the start of this section), which allows us to assume that
�x is constant as the orbit evolves.

(iii) With assumptions (i) and (ii) the orbital evolution is a random walk
in the energy x at constant q and I . If the energy changes are small,
�x � x, then the random walk can be approximated by the diffusion
equation that we now derive.

Let the probability that the particle lies in a small range of x = 1�a at
time t be p(x, t)dx, and let the change in x in a single periapsis passage
be denoted by �x. In a small time interval dt the probability that a par-
ticle with energy x passes through periapsis is dt�P (x), where P (x) =
2⇡a

3�2�(GM∗)1�2 = 2⇡�(GM∗x3)1�2 is the orbital period. The particle is

phase of the planet to change by a radian or so, then the phase can be treated as a random
variable; this requires np�P � 1, where np = (GM∗�a3p)1�2 and ap are the mean
motion and semimajor axis of the planet. Thus the random-phase approximation requires
x � (3⇡)2�5�2�5

x �a3�5p . For a particle crossing Neptune’s orbit at low inclination, we have
ap = 30.1 au and �x � 3 × 10

−5 au−1 from Figure 9.4, so we require x � 0.005 au−1 or
a � 200 au.

9 This argument is not strictly correct. A more accurate statement is that when �xap � 1,
the integral is of order �2

xap rather than of order �x. In the analysis of this section we shall
assume that the integral is exactly zero.
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perturbed to a different energy as it passes through the planetary system, so
p(x, t)dx is reduced by an amount p(x, t)dxdt�P (x). On the other hand,
if the particle has some other energy it can be scattered into the energy
interval (x,x + dx), and the probability for this process is ∫ d�xp(x −
�x, t)g(�x)dtdx�P (x −�x). Combining these two processes, we find

@p(x, t)
@t

= � d�xg(�x)p(x −�x, t)
P (x −�x) −

p(x, t)
P (x) . (9.49)

Since the energy changes are small by assumption (iii)—that is, since p(x, t)
and P (x) vary on characteristic scales much larger than �x—we can ex-
pand p(x, t)�P (x) in a Taylor series:

@p(x, t)
@t

= p(x, t)
P (x) � d�xg(�x) − @

@x
�p(x, t)
P (x) �� d�xg(�x)�x

+ 1
2

@
2

@x2
�p(x, t)
P (x) �� d�xg(�x)(�x)2 − p(x, t)

P (x) +O(�x)3.
(9.50)

We drop the term that is O(�x)3; then using equations (9.48) this result
simplifies to

@p(x, t)
@t

= 1
2�

2
x

@
2

@x2
�p(x, t)
P (x) � =

�
2
x
(GM∗)1�2

4⇡

@
2

@x2
x
3�2

p(x, t). (9.51)

We seek a Green’s function solution to this equation, that is, a solution
in which p(x, t = 0) = �(x − x0), implying that the particle is at x = x0

at t = 0. The procedure for finding this solution is outlined in Yabushita
(1980), and yields

p(x, t) = 2kx
1�2
0

xt
exp � − 4k(x1�2

0 + x1�2)
t

�I2�8k
t
(x0x)1�4�, (9.52)

where I2(⋅) is a modified Bessel function (Appendix C.5) and

k ≡ 4⇡

(GM∗)1�2�2
x

. (9.53)
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The probability that the particle will survive for a time t or longer is
found from equation (C.35),

f(t) = � ∞
0

dxp(x, t) = 1 − (1 + z)e−z, where z ≡ 4kx
1�2
0

t
. (9.54)

At the initial time t = 0, f(0) = 1 as required; at large times

f(t)→ 8k
2
x0

t2
= 128⇡

2
x0

GM∗�4
x
t2
. (9.55)

The half-life of a particle is defined by f(t1�2) = 1
2 and given by

t1�2(x0) = 2.3833kx1�2
0 = 29.95

(GM∗a0)1�2�2
x

= 5.30 × 108 yr�100 au
a0
�1�2 �3 × 10−5 au−1

�x

�2 , (9.56)

in which we have used a typical root-mean-square energy change �x for
orbits with perihelion in the Uranus–Neptune region, 20–30 au (Figure 9.4).

This simple model captures much of the dynamics that governs the long-
term evolution of particles on planet-crossing orbits. In particular, it shows
that the lifetime of particles is a decreasing function of semimajor axis—
particles with large semimajor axes interact with the planets less often but
have a smaller distance to diffuse to reach escape energy. However, the
diffusion equation (9.51) is not accurate enough for quantitative calculations
for several reasons: (i) The root-mean-square change per orbit �x is a strong
function of the periapsis distance q (Figure 9.4) and enters the half-life as
�
−2
x

, so modest changes in periapsis distance can have a dramatic influence
on the lifetime. (ii) Particles may be “protected” from energy diffusion for
extended periods because of resonances with the planet, as in the case of
Pluto and Neptune (§6.4). (iii) ZLK oscillations (§5.4) can lead to large
changes in the inclination and periapsis distance if the particle is initially
on a highly inclined orbit. (iv) Close encounters cannot be treated with
the diffusion approximation, nor can encounters in the region near escape
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energy where x � �x. (v) We have assumed that the mean energy change is
exactly zero, when in fact its influence on the diffusion can be comparable
to that of the root-mean-square energy change (see footnote 9). The insights
provided by the diffusion approximation are important, but in the end there
is no substitute for long-term numerical integrations to study the survival
and fate of particles on planet-crossing orbits, as described in §9.5.

We have approximated the planetesimals as test particles, but in reality
they have a small but nonzero mass. Therefore the ejection of planetesi-
mals on escape orbits with positive energy causes the semimajor axis of the
planet to shrink, a process known as planetesimal-driven migration. The
migration will be substantial when the mass of the ejected planetesimals is
comparable to the mass of the planet. When multiple planets are present, the
amount and even the direction of planetesimal-driven migration depend on
the configuration of the planets. For example, in the outer solar system Sat-
urn, Uranus and Neptune migrate outward, while Jupiter migrates inward
by a much smaller amount. The reason is that particles scattered by (for
example) Neptune diffuse to both larger and smaller semimajor axes, and
the particles scattered to smaller semimajor axes come under the influence
of Jupiter and are rapidly ejected. Thus there is an absorbing boundary due
to Jupiter at small semimajor axes, which is more important than the more
distant absorbing boundary at the escape energy. As a result, on average the
particles diffuse inward causing Neptune to migrate outward (Fernández &
Ip 1984). It is this outward migration that enables Neptune to capture Pluto
in the 3:2 resonance, as described in §6.4.

9.4 The Galactic tidal field

The Sun and most nearby stars are part of the disk of our home galaxy,
known as the Milky Way or simply the Galaxy. The gravitational effects of
the Galaxy are negligible at typical planetary distances of a few au or less
but play a critical role in the evolution of solar-system bodies with much
larger semimajor axes.

The distribution of stars and gas in the Galactic disk is approximately
symmetric around a plane known as the Galactic midplane. We work with



9.4. THE GALACTIC TIDAL FIELD 461

a Cartesian coordinate system (X,Y,Z) in which the Z = 0 plane coincides
with the midplane. The Ẑ-direction is often referred to as “vertical” or the
“north Galactic pole.” The north pole of the ecliptic is inclined to the north
Galactic pole by 60.2

○.
We denote the density of the stars and gas in the Galaxy as ⇢(X,Y,Z).

Since the variation of density within the plane is much slower than the ver-
tical variation (i.e., the disk is thin), we can approximate the density in the
solar neighborhood as ⇢(Z). The corresponding gravitational potential is
�(Z), and Poisson’s equation (B.44) implies that

d
2
�

dZ2
= 4⇡G⇢(Z). (9.57)

The vertical acceleration of the Sun due to the Galactic potential is
Z̈⊙ = −d��dZ �Z⊙ . Similarly, the vertical acceleration of a particle orbit-
ing the Sun at position Z is Z̈ = −GM⊙(Z − Z⊙)�r3 − d��dZ �Z , where r

is the distance of the particle from the Sun. We now change to heliocentric
coordinates (x, y, z) aligned with (X,Y,Z), so z = Z − Z⊙ and the Sun is
at x = y = z = 0. Since the size of bound heliocentric orbits (less than a
parsec, even for the most distant comets) is much less than the thickness of
the Galactic disk (several hundred parsecs), we can write

z̈ = Z̈ − Z̈⊙ = − GM⊙
r3

z − d�

dZ
�
Z

+ d�

dZ
�
Z⊙
� − GM⊙

r3
z − d

2
�

dZ2
�
Z⊙

z

= − GM⊙
r3

z − 4⇡G⇢(Z⊙)z = − @
@z
� − GM⊙

r
+�G(z, t)�, (9.58)

where the Galactic tidal potential is

�G(z, t) = 2⇡G⇢(t)z2, (9.59)

with ⇢(t) the mass density at the Sun’s location Z⊙(t). The other coordi-
nates are governed by the Kepler equations of motion,

ẍ = − GM⊙
r3

x, ÿ = − GM⊙
r3

y. (9.60)
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The current vertical position and velocity of the Sun are Z⊙ � 20 pc
(Bennett & Bovy 2019) and Ż⊙ � 7 km s−1 (Schönrich et al. 2010). For
plausible estimates of the potential �(z, t), the Sun oscillates above and
below the Galactic midplane with an amplitude of about 90 pc and a half-
period (time between midplane crossings) of about 40Myr. The density
⇢(t) varies substantially along this orbit, mostly because of a thin, dense gas
layer in the midplane (Holmberg & Flynn 2000; Guo et al. 2020). However,
for the sake of simplicity we will ignore this variation and approximate the
density by the average over the solar orbit, ⇢ � 0.1M⊙ pc−3.

Averaging over the orbit of the bound particle using equations (1.70)
and (1.65d)–(1.65f), we have

��G� = ⇡G⇢a2 sin2 I(1 − e2 + 5e2 sin2 !). (9.61)

Here the inclination I and argument of perihelion ! are measured relative to
the x–y plane parallel to the Galactic midplane, not relative to the ecliptic.
In terms of the Delaunay variables (1.84),

��G� = ⇡⇢⇤
2

GM
2⊙L2
(L2 −L2

z
)[L2 + 5(⇤2 −L2) sin2 !]. (9.62)

Kepler orbits in this potential undergo secular oscillations similar to ZLK
oscillations (§5.4), as we now describe (Heisler & Tremaine 1986; Hamil-
ton & Rafikov 2019). The Hamiltonian is independent of the mean anomaly
` because it is orbit-averaged. Therefore the conjugate momentum⇤ and the
semimajor axis a are conserved, as usual in secular dynamics. Moreover the
Hamiltonian is independent of the longitude of the node ⌦, so the conjugate
momentum Lz = [GM⊙a(1− e2)]1�2 cos I is conserved. Therefore we can
write Lz = (GM⊙a)1�2 cos I0, where I0 is an integral of motion equal to
the inclination of the circular orbit with the given z-component of angu-
lar momentum. Then the conservation of the orbit-averaged Hamiltonian−1

2 GM⊙�a + ��G� implies that the function

CG(e,!) ≡ �1 − cos
2
I0

1 − e2 � (1 − e2 + 5e2 sin2 !) − sin2 I0 (9.63)
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is conserved along a trajectory (the term sin
2
I0 is added so that CG = 0 at

e = 0). In words, the existence of the two conserved quantities ⇤ and Lz

has reduced the dynamics from three degrees of freedom to one degree of
freedom, corresponding to two phase-space dimensions, which can be taken
to be the eccentricity e and the argument of periapsis !.

Not all values of CG(e,!) correspond to physical trajectories. In par-
ticular the definition of I0 implies that cos2 I = cos2 I0�(1 − e2), and since
cos

2
I < 1 we must have e ≤ sin I0. If this condition is satisfied the large

bracket in equation (9.63) is positive or zero, and since the small bracket in
that equation is also positive CG(e,!) ≥ − sin2 I0. Therefore contours with
CG(e,!) < − sin2 I0 are unphysical.

Figure 9.5: Contours of the function CG(e,!) (eq. 9.63), with the eccentricity
e and argument of periapsis ! plotted as polar coordinates. Shaded regions have
e > sin I0 and are unphysical. Plots are shown for four values of I0, the inclination
of a circular orbit. Circular orbits are unstable for I0 > 26.57○. Heavy contours have
CG(e,!) ≥ 0. Compare Figure 5.4.
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The contours of CG(e,!) are shown in Figure 9.5, which resembles
Figure 5.4. It is straightforward to show that there are two stationary solu-
tions, corresponding to maxima of ��G�, when �Lz ��⇤ = � cos I0� < (45)1�2;
the maxima are located at ! = ±1

2⇡ and L
2�⇤2 = 1− e2 = (54)1�2Lz�⇤. Cir-

cular orbits are an additional stationary solution, and these are stable if and
only if the contours near e = 0 describe a maximum or minimum rather than
a saddle point; this requires that the inclination I0 relative to the Galactic
plane satisfies � cos I0� > (45)1�2, that is, I0 < 26.57○ or I0 > 153.43○ (Prob-
lem 9.7).

Figure 9.6: An orbit in the gravitational field of the Sun and the Galactic tide (eq.
9.59). The orbit has inclination I = I0 = 90○ and initial eccentricity e = 0.1. The z-
axis is perpendicular to the Galactic plane. The initial and final positions are marked
by white and black arrows.

Figure 9.6 shows an orbit with inclination I = 90
○ that is confined to
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the x–z plane. The orbit is initially nearly circular and counterclockwise,
with eccentricity e = 0.1 and eccentricity vector pointing along the nega-
tive z-axis. Under the influence of the torque from the Galactic tidal field,
the eccentricity grows until it reaches nearly unity; at this point the an-
gle ! between the apoapsis direction and the positive x-axis is ! − ⇡ =
sin
−1

5
−1�2 = 26.57○. The continuing torque from the tide reverses the direc-

tion of motion, so the orbit is now clockwise, and the eccentricity shrinks,
becomes nearly zero, then grows again until it reaches nearly unity with
! −⇡ = 153.43○—at which point the cycle repeats but our integration stops.

In terms of the eccentricity vector e (Box 1.1) and the dimensionless
angular-momentum vector j (eq. 1.33), the orbit-averaged Galactic potential
is

��G� = ⇡G⇢a2[j2 − (j ⋅ ẑ)2 + 5(e ⋅ ẑ)2]. (9.64)

The Milankovich equations (5.57) and (5.58) read

dj

dt
= 2⇡G1�2

⇢a
3�2

M
1�2⊙

[(j ⋅ ẑ)(j × ẑ) − 5(e ⋅ ẑ)(e × ẑ)],
de

dt
= 2⇡G1�2

⇢a
3�2

M
1�2⊙

[(j ⋅ ẑ)(e × ẑ) − 5(e ⋅ ẑ)(j × ẑ) + j × e]. (9.65)

We are particularly interested in particles that are initially on planet-
crossing orbits with large semimajor axes, and for these orbits j is initially
nearly zero. Thus the conserved quantity j ⋅ ẑ = Lz�⇤ � 0, and the con-
served quantity ��G� = ⇡G⇢a2(1 − e2 + 5e2z). The orbit oscillates between
unit eccentricity and a minimum eccentricity emin along contours on which
1 − e2 + 5e2

z
= 5 cos2 ✓, where ✓ is the angle between the eccentricity vector

and the z-axis (the north Galactic pole) at the initial time. It is straightfor-
ward to show that if cos2 ✓ > 1

5 then emin = 1
2(5 cos2 ✓−1)1�2 and is achieved

when the eccentricity vector points along the z-axis, while if cos2 ✓ < 1
5 then

emin = (1 − 5 cos2 ✓)1�2, achieved when the eccentricity vector is perpen-
dicular to the z-axis.

When the angular momentum is near zero, the Milankovich equations
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simplify to

dj

dt
� −10⇡G1�2

⇢a
3�2

M
1�2⊙

(e ⋅ ẑ)(e × ẑ) +O(j2), de

dt
= O(j). (9.66)

The rate of change dj�dt seen in the first of these equations simply reflects
the orbit-averaged torque exerted by the Galactic tide (see Problem 9.8).
The direction of the torque is determined by the direction of e × ẑ and is
independent of j so long as j � 1; thus we can write j(t) � j(t0) + (t −
t0)dj�dt. The perihelion q � a corresponds to a dimensionless angular
momentum j = (2q�a)1�2 so we expect that if the initial perihelion is q0,
then it will exceed q (q0 � q � a) after a drift time tq given by tq �dj�dt� =(2q�a)1�2. We have

tq(a) = M
1�2⊙ q

1�2
501�2⇡G1�2⇢a2� sin ✓ cos ✓�
= 3.44Gyr
� sin ✓ cos ✓� �

q

30 au
�1�2 �1000 au

a
�2 0.1M⊙ pc−3

⇢
, (9.67)

where ✓ is the angle between the eccentricity vector and the north Galactic
pole. We shall also define the critical semimajor axis, where the drift time
tq(a) equals the orbital period P (a) = 2⇡a3�2�(GM⊙)1�2,

acrit(q) = 0.244 q
1�7

� sin ✓ cos ✓�2�7 �
M⊙
⇢
�2�7

= 2.75 × 104 au
� sin ✓ cos ✓�2�7 �

q

30 au
�1�7 �0.1M⊙ pc−3

⇢
�2�7 . (9.68)

The primary importance of this drift in angular momentum or perihelion
distance induced by the Galactic tide is that it can lift the perihelion of a par-
ticle on a planet-crossing orbit beyond the orbits of the planets in the system,
at which point the energy perturbations at perihelion passage become negli-
gible and the semimajor axis is frozen in place. This is the mechanism that
forms the Oort comet cloud described in the following section.
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We have focused so far on steady tides arising from the time-averaged
density distribution of gas and stars in the Galaxy. The time-varying forces
from individual stars in the solar neighborhood that happen to pass close to
the solar system can also perturb the semimajor axes and perihelia of parti-
cles with large semimajor axes. In the case of the Sun, the effects of these
encounters are qualitatively similar to those of the overall Galactic tide at
the semimajor axes ∼ 3 × 104 au where both play their most important roles
(Heisler & Tremaine 1986; Duncan et al. 1987; Collins & Sari 2010). One
important difference is that the secular evolution of the orbit due to the tide
is periodic, whereas the evolution due to stellar encounters is stochastic. In
particular, under the influence of the tide alone an orbit with near-zero angu-
lar momentum would eventually return to the same small angular momen-
tum; however, gravitational kicks from individual stellar encounters cause
the angular momentum to random-walk to larger values long before this oc-
curs. A second difference is that the semimajor axis or energy is conserved
by the Galactic tide, whereas kicks from individual stars introduce a slow
random walk in energy that can lead to escape.

We shall not discuss the influence of individual stellar encounters ana-
lytically since the best approach is to analyze the effects of tides and stellar
encounters simultaneously using N -body simulations, as described in the
following section.

9.5 The Oort cloud

Comets are chunks of ice and rock with typical sizes of ∼ 1 km (Fernández
2005). Comets are visible—and have inspired awe since prehistoric times—
because of the long tails of dust and ionized gas evaporated from the comet’s
surface when it comes near the Sun. At distances d � 1 au evaporation is
negligible and the comets are visible only by reflected sunlight from their
surface; thus the brightness of a comet varies as 1�d4 (the incident flux
varies as 1�d2 and the fraction of the reflected flux that we receive also
varies as 1�d2). The result of this rapid falloff in brightness is that few
comets are detected at distances larger than a few au. Moreover, a typical
comet that comes close enough to the Sun to be visible loses material by
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evaporation sufficiently rapidly that it cannot survive for more than a few
hundred orbits, much less than the age of the solar system.

Comets are believed to be planetesimals, or fragments of them: small
solid bodies that grew from dust that condensed out of the gaseous disk
surrounding the newly formed Sun. The planetesimals collided and grew
to form the terrestrial planets and the cores of the giant planets, but not all
planetesimals were incorporated in the planets, and the residual population
of planetesimals is presumably the original source of comets.

These considerations imply that there must be one or more cometary
“reservoirs”—regions in phase space in which vast numbers of comets have
been stored since soon after the formation of the solar system. Orbits in
the reservoir must be sufficiently stable to remain there for Gyr timescales,
but sufficiently unstable to provide a slow, steady supply of comets that will
eventually come close enough to the Sun to become visible. In other words
the reservoir has to leak, but not too much.

Figure 9.7 shows the semimajor axes and inclinations (relative to the
ecliptic) of known comets. The figure shows two distinct classes of comet.
The first appears as a dense clump with semimajor axes a � 10 au and in-
clination I � 30

○; these are the Jupiter-family comets, usually defined to
be comets with orbital period P < 20 yr (a < 7.37 au). The second class has
an approximately isotropic distribution of inclinations (uniform in cos I , as
expected for a spherical source) and a wide range of semimajor axes, from
a � 10 au to a = 10

4 au and beyond. These are classified as Halley-type
comets if 20 yr < P < 200 yr and long-period comets if P > 200 yr, but
this distinction is based on tradition rather than physical or kinematical dif-
ferences between Halley-type and long-period comets.

The flat distribution of the Jupiter-family comets compared to the iso-
tropic distribution of the Halley-type and long-period comets strongly sug-
gests that they originate in different reservoirs, one flat and the other spher-
ical. It is believed that the reservoir for the Jupiter-family comets is the
trans-Neptunian belt, to be discussed in the following section, and the reser-
voir for the Halley-type and long-period comets is the Oort cloud, which we
now describe. It is highly likely that analogs of the Oort cloud and trans-
Neptunian belt exist in many exoplanetary systems.

The analyses earlier in this chapter show that the evolution of a particle
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Figure 9.7: Semimajor axis versus inclination relative to the ecliptic, for comets
from the JPL Small Body Database, https://ssd.jpl.nasa.gov/sbdb query.cgi. Comets
with semimajor axes � 10 au are underrepresented, since comets are only detected
near perihelion and astronomical survey techniques are improving on a timescale
shorter than the orbital period P = 31.6 yr(a�10 au)3�2.

on a high-eccentricity planet-crossing orbit is determined by a competition
between two dynamical processes: random walk of the semimajor axis or
energy due to interactions with the planets near perihelion (§9.3), and drift
in the perihelion distance due to Galactic tidal forces near aphelion (§9.4).
If the first process dominates, the particle eventually reaches escape energy
and is lost from the solar system. If the second process dominates, the
perihelion expands outside Neptune’s orbit and the energy perturbations at
perihelion passage are quenched (Figure 9.4). In the latter case we say that
the particle has been injected into the Oort cloud, named for the Dutch
astronomer Jan Oort (1900–1992), whose 1950 paper was a watershed in

https://ssd.jpl.nasa.gov/sbdb_query.cgi
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the study of comets.
The outcome of the competition between planetary perturbations and

the tide depends on the relative sizes of �x and xcrit = 1�acrit. Here �x
is the root-mean-square change in x = 1�a per perihelion passage (Figure
9.4) and acrit is the semimajor axis at which the perihelion distance changes
substantially in one orbital period due to the Galactic tide (eq. 9.68).

First consider the case �x � xcrit, in which most particles escape. Since
the typical energy change per perihelion passage is ∼ �x, on the last or-
bit before a particle escapes it is likely to have an energy that is roughly
uniformly distributed between x = 0 and x ∼ �x. During this orbit the
tides will be strong enough to inject the particle into the Oort cloud if
x < xcrit. Thus we expect that a fraction xcrit��x of the particles will
join the Oort cloud, with the rest being ejected. For example, particles on
Jupiter-crossing orbits have q < 5 au, so acrit = x

−1
crit � 2 × 10

4 au from
equation (9.68), and �x � 0.003 au−1 for low-inclination orbits (Figure 9.4).
Thus xcrit��x � 0.02 so the expected injection efficiency is only a few per-
cent.

In contrast, if �x � xcrit, most particles are injected into the Oort cloud.
We can describe how this occurs using the diffusion approximation for the
evolution due to planetary perturbations. Since the diffusion half-life t1�2
varies as a

−1�2 (eq. 9.56) while the drift time tq varies as a
−2 (eq. 9.67),

semimajor axis diffusion dominates the evolution at small semimajor axes
while the Galactic tide dominates at large semimajor axes. The crossover
occurs where t1�2 = tq , corresponding to the semimajor axis

aOort = 7.50 × 103 au
� sin ✓ cos ✓�2�3 �

0.1M⊙ pc−3
⇢

�2�3 � q

30 au
�1�3 � �x

3 × 10−5 au−1 �
4�3

.

(9.69)
Numerical simulations show that comets are injected into the Oort cloud

with a wide range of semimajor axes centered on aOort, from ∼ 2×103 au to
10

5 au. The wide variation reflects the stochastic nature of the energy diffu-
sion process, variations in the projection factor � sin ✓ cos ✓�, and variations
in the root-mean-square energy change �x with perihelion distance.

After they are injected into the Oort cloud, orbits continue to change, al-
though more slowly. The Galactic tide causes the eccentricity and angular-
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momentum vectors to evolve according to equations (9.65). Perturbations
from passing stars lead to a random walk in all of the orbital elements in-
cluding semimajor axis and gradually deplete the cloud as particles diffuse
to escape energy. Estimates of the rate of the random walk in the orbital
elements, confirmed by numerical simulations, show that the comets in the
Oort cloud fill the available phase space at a given semimajor axis approxi-
mately uniformly,10 at least for a � 104 au. This result implies that the cloud
is spherical and that the probability that a comet has eccentricity less than e

is (Problem 9.9)
p(< e) = e2. (9.70)

From time to time the comets wandering through the Oort cloud reach
eccentricities near unity. If q = a(1− e) is less than ∼ 30 au, then the energy
will once again begin to suffer random perturbations at each perihelion pas-
sage, and the comet may rapidly escape the solar system or evolve to much
smaller semimajor axes.

There is direct evidence of the existence and properties of the Oort
cloud, or at least its outer parts. We have argued that most comets are
only visible when they come within a few au of the Sun. If the semima-
jor axis of the comet exceeds acrit(q = 40 au) � 3 × 104 au (eq. 9.68) then
the Galactic tide can bring the comet from q � 40 au, where it is immune
to planetary perturbations, to q � 1 au, where it is easily visible, in a single
orbit. Such comets are called new comets, since we are seeing them dur-
ing their first passage through the planetary system since leaving the Oort
cloud. The semimajor axis of a new comet at the time of observation equals
the semimajor axis it had in the Oort cloud modified by the perturbations it
received in its passage through the planetary system so far. These modifi-
cations are straightforward to remove by numerical integration of the comet
orbit backward from the time of observation until it is well outside the plan-
etary system, and its semimajor axis at this point, relative to the barycenter
of the solar system, is called the original semimajor axis aorig.

Figure 9.8 plots the inverse of the original semimajor axes of comets
having well-determined orbits with near-zero energy. A handful of comets

10 In statistical mechanics a distribution that is uniform in phase space at a given energy is
called a microcanonical ensemble.
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Figure 9.8: Inverse original semimajor axes of comets. The original semimajor
axis is the semimajor axis that the comet had before it entered the planetary system.
Only the range �a� > 2500 au is shown. Negative semimajor axes correspond to
unbound orbits. The contribution of each of the 277 comets is represented by a unit
Gaussian with standard deviation equal to the estimated observational error. Data
from Królikowska & Dybczyński (2020).

have negative energies (unbound orbits), but all of these can be attributed to
observational error or non-gravitational forces due to outgassing from the
comet surface. Most of the comets are bound to the solar system and there
is a strong concentration, known as the Oort spike, centered at a = (2–3)×
10

4 au.11 The existence of the Oort spike, and its impressive agreement with
the estimate of acrit = 3 × 104 au from the preceding paragraph, provide

11 Remarkably, Oort’s seminal paper (Oort 1950) describing and interpreting the spike was
based on a catalog that contained only 14 comets with inverse semimajor axes between 0
and 1 × 10−4 au.
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convincing evidence of the existence of the Oort cloud.
The Oort cloud is often divided by semimajor axis into an inner and

outer part, with the dividing line at a = 2×104 au. The inner cloud is mostly
invisible to us, since the orbits of comets from the inner cloud are drastically
altered by the giant planets before they become visible.

We can now estimate the total population of comets in the outer cloud.
The flux of new comets with perihelion q < 2.5 au and diameter > Dmin =
2.3 km, where current surveys are reasonably complete, is roughly 1 per
year (Dones et al. 2015). At these large distances, the distribution of ec-
centricities is given by equation (9.70). A comet with semimajor axis a and
perihelion q � a has eccentricity e = 1 − q�a. Therefore the fraction of
comets with perihelion less than 2.5 au is f = 1−[1−(2.5 au�a)]2 � 5 au�a;
for a typical semimajor axis of new comets, a = 3 × 104 au, this fraction is
f = 0.00017. The orbital period at this semimajor axis is P = 5.2Myr. Thus
the total reservoir of potential new comets is (1� yr) × f−1 × P = 3 × 1010.
For a typical comet density of 0.5 g cm−3 the mass of a comet with diameter
Dmin is 3.2×1012 kg, so if the cloud were composed entirely of comets with
diameter Dmin the total mass of the outer cloud would be 0.016M⊕. The
actual mass is several times larger, and quite uncertain, since most of the
mass of the cloud appears to be in rare high-mass comets. Adding the un-
certain contribution of the inner Oort cloud increases the mass still further,
so the best we can say is that the total Oort cloud mass is probably ∼ 1M⊕,
with an uncertainty of almost an order of magnitude.

These arguments are no substitute for long-term N -body integrations of
planetesimal orbits in the outer solar system. These integrations typically
include the four giant planets, the Galactic tide, and a Monte Carlo model
of the perturbations from passing stars. The comets are represented by an
ensemble of test particles, initially on nearly circular orbits near the plane of
the ecliptic with a smooth distribution of semimajor axes out to 40–50 au. In
the “standard model” for the formation and evolution of the Oort cloud, the
planets are in their current orbits, the Sun is at its current distance from the
center of the Galaxy—that is, there is no migration of either the planets or
the Sun—and the gravitational effects of the dense cluster of stars in which
the Sun was likely to have been born are neglected. More general models
relax one or more of these assumptions.
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Figure 9.9: The present distribution of orbital elements of comets in a simulation of
Oort cloud formation (Vokrouhlický et al. 2019). The simulation began with 10

6 test
particles distributed in low-eccentricity, low-inclination orbits near the ecliptic, with
semimajor axes between 25 au and 30 au. Uranus and Neptune migrated during the
simulation from 17 au and 24 au to their current semimajor axes (19 au and 30 au).
The plots show the ∼ 50000 particles still bound to the solar system after 4.5Gyr.
The top plot shows eccentricity as a function of semimajor axis and the bottom plot
shows inclination relative to the ecliptic.
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Figure 9.9 shows the distribution of comets surviving 4.5Gyr after the
formation of the solar system, about its current age, in a simulation from
Vokrouhlický et al. (2019). Most of the parameters were those of the stan-
dard model, except that Uranus and Neptune migrated outward to their cur-
rent semimajor axis over the first ∼ 0.1Gyr after the formation of the solar
system. The plots show eccentricity (top panel) and inclination (bottom
panel) versus semimajor axis.

A striking feature is the arc extending from eccentricity e � 0 at a �
40 au to e � 1 at a � 10

3 au. The arc traces a line of constant perihelion
distance q = a(1−e) � 35 au and contains comets whose semimajor axes are
being perturbed at perihelion passage by the giant planets. This population
of comets is called the scattered disk. They have median inclination of only
25
○. Many of the comets in the scattered disk with a � 100 au are trapped in

mean-motion resonances with the giant planets, which appear in the figure
as vertical bars. About 9% of the surviving comets belong to the scattered
disk.

The simulations show that the Oort cloud extends from a few thousand
au to more than 10

5 au. The cloud comets have a wide range of eccentric-
ities and inclinations; for semimajor axes � 5 × 103 au the cloud is approx-
imately spherical and the squared eccentricity is approximately uniformly
distributed, as expected from the arguments in the paragraph containing
equation (9.70). The inner and outer clouds, separated at a = 2 × 104 au,
contain 51% and 40% of the surviving comets.

In the absence of resonances the eventual fate of almost every solar-
system object on a planet-crossing orbit is ejection, or collision with a planet
or the host star. This ejection process, modified by the different planetary
configurations around different stars, is probably the origin of interstellar
comets and asteroids such as ‘Oumuamua.

9.6 The trans-Neptunian belt

The trans-Neptunian belt is a disk of bodies in the outer solar system ex-
tending roughly from Neptune’s orbit at 30 au to � 50 au. In the decades
following the discovery of Pluto in 1930, several astronomers argued that
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there were two possible explanations for the absence of large planets beyond
Neptune: either (i) the protoplanetary disk ended at or near Neptune’s orbit,
or (ii) planet formation by the collision and growth of planetesimals became
slower and less efficient at larger distances, where the orbital periods were
longer and the density in the disk was lower. If explanation (ii) were correct
then we might expect to find a disk of fossil planetesimals outside Nep-
tune. Additional support for this hypothesis came from the observation that
the low-inclination Jupiter-family comets (§9.5) must have originated in a
flattened cometary reservoir somewhere outside Neptune (Fernández 1980;
Duncan et al. 1988).

The first object to be found beyond Neptune was Pluto, but it took more
than four decades before the larger population of trans-Neptunian objects
(TNOs)12 began to be discovered and characterized (Jewitt & Luu 1993).
By now several thousand TNOs are known; most have radii ∼ 100 km or
smaller but the largest are ten times bigger. The total mass of the trans-
Neptunian belt is poorly known but the best estimate is ∼ 0.05–0.1M⊕. See
Gladman & Volk (2021) for a review.

The closest analogs of the trans-Neptunian belt around other stars are
debris disks (Wyatt 2020), which are detected by thermal emission from
dust produced by collisions between parent bodies that are probably simi-
lar to TNOs. These are mostly detected around stars younger than the Sun,
because the population of parent bodies declines with age as they are de-
stroyed in collisions. The debris disks detected so far all contain orders of
magnitude more dust than is present in trans-Neptunian space.

By definition, a TNO has semimajor axis a greater than Neptune’s semi-
major axis aNep = 30.07 au; objects in the outer solar system with smaller
semimajor axes are called Centaurs. Figure 9.10 plots the semimajor axes
and eccentricities of TNOs. The complex structure seen in this plot is usu-
ally organized by dividing the TNOs into several distinct groups.

Classical belt This is the large population of TNOs between the 3:2 and
2:1 Neptune resonances with eccentricities � 0.2. Most classical TNOs do
not cross or come close to Neptune’s orbit (i.e., they lie well below the

12 The belt is sometimes called the Kuiper belt and its members Kuiper belt objects (KBOs).
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Figure 9.10: Semimajor axis versus eccentricity for ∼ 3000 TNOs. The vertical
dotted lines denote the semimajor axes corresponding to several mean-motion reso-
nances with Neptune; for example, objects in the 3:2 resonance have a mean motion
that is 2

3
of Neptune’s. The curved dashed line traces the location where the peri-

helion q = a(1 − e) equals Neptune’s semimajor axis, aNep = 30.07 au. The data
are from https://www.minorplanetcenter.net/iau/lists/MPLists.html, and the plot shows
all objects with a > aNep from their lists of trans-Neptunian objects, Centaurs, and
scattered-disk objects.

https://www.minorplanetcenter.net/iau/lists/MPLists.html
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dashed line in Figure 9.10 that traces orbits with perihelion q = aNep) and
are dynamically stable for the lifetime of the solar system—of course, if
this were not so, we would not expect to see these objects today. Indeed, the
distribution of TNOs in phase space is partly determined by the demands of
stability; for example, the near-absence of TNOs inside the 3:2 resonance is
mostly because this region is unstable, but the low density of TNOs outside
the 2:1 resonance requires a different explanation and is still not understood
(Duncan et al. 1995).

The classical belt contains a significant “cold” population, so called be-
cause the typical inclination of these objects is only a few degrees. In con-
trast the more numerous “hot” population mostly has inclinations � 10○ and
often has eccentricities � 0.2. Members of the cold population also have
distinct surface properties and size distribution.

Resonant population The most prominent feature of Figure 9.10 is the
concentration of objects near a = 39 au. Most of these TNOs, like Pluto,
are trapped in the 3:2 resonance with Neptune and librate around a reso-
nant semimajor axis a = 39.40 au = (32)2�3aNep as described in §6.4. Such
objects are sometimes called Plutinos. The large number of Plutinos of-
fers strong support for the hypothesis that Pluto and the Plutinos were all
trapped in the 3:2 resonance when Neptune migrated outward early in the
history of the solar system. Populations of TNOs are also trapped in several
other Neptune resonances, such as the 2:1 resonance.

Scattered disk This population is visible in Figure 9.10 as a broad band
parallel to but somewhat below the dashed line q = aNep. TNOs in the
scattered disk come close enough to Neptune that they undergo a random
walk in energy, as described in §9.3. Over the lifetime of the solar system,
some evolve to less tightly bound orbits and will eventually escape or join
the Oort cloud along the band seen in the top panel of Figure 9.9, while
others evolve to more tightly bound orbits and become Centaurs. Because
of these processes, the population of the scattered disk is steadily eroding.

There is also the detached disk described in footnote 6.
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About one-third of Centaurs evolve to semimajor axes less than 7.37 au,
at which point the orbital period is less than 20 yr so they are classified
as Jupiter-family comets (Di Sisto & Rossignoli 2020). The lifetimes of
Centaurs are much less than the age of the solar system—typically ∼ 10Myr
with a range from < 1Myr to > 100Myr (Tiscareno & Malhotra 2003)—
which explains why the number of known Centaurs is much smaller than
the number of TNOs, even though the Centaurs are typically closer and
therefore easier to discover.

These arguments strongly suggest that the trans-Neptunian belt is the
reservoir in which the Jupiter-family comets have been stored for the past
several Gyr. The small inclinations of the Jupiter-family comets reflect the
small inclinations of TNOs, just as the isotropic distribution of comets with
longer periods reflects the spherical shape of the Oort cloud.

The details of the evolutionary path from TNOs to Centaurs to Jupiter-
family comets are not yet fully understood. Most likely the Centaurs come
mainly from the scattered-disk population (Duncan & Levison 1997). One
difficulty in interpreting the observations is that the typical observed Jupiter-
family comet is much smaller than the typical Centaur or TNO, so connect-
ing the flux of Jupiter-family comets to the properties of the trans-Neptunian
belt requires an uncertain extrapolation of the size distribution of TNOs.

Binary TNO systems are common, particularly in the cold classical belt,
where ∼ 30% of TNOs are binary (Noll et al. 2020). The components of
TNO binaries have almost the same colors despite the wide range of col-
ors found among TNOs, which suggests that the systems were formed as
binaries (rather than, say, by capture), as does the prevalence of prograde
binary orbits. The survival of binaries in the cold classical belt sets strong
constraints on its history (Morbidelli & Nesvorný 2020).

There are puzzling aspects of the current configuration of the trans-
Neptunian belt. (i) The total mass is much less than the mass that we would
expect in the region 30–50 au from an extrapolation of the solid masses in
the outer planets.13 (ii) The present quantity of material in the belt is too
small for the observed TNOs to have grown by collision and accumulation
13 For example, assume that the surface density varies with radius as r−1.5 as in the minimum-

mass solar nebula (eq. 6.111), and that all the mass between 15 au and 35 au was incorpo-
rated in Uranus and Neptune. Then the mass between 35 au and 50 au should be ∼ 20M⊕,
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of smaller bodies. (iii) Given the eccentricities and inclinations of the clas-
sical TNOs, the typical collision velocities are high enough (∼ 1 km s−1)
that most collisions will result in shattering or erosion, so the objects cannot
grow.

A possible resolution to these puzzles is that originally the belt had much
more mass and much smaller eccentricities and inclinations; that some event
excited the eccentricities and inclinations of the TNOs after they were fully
formed; and that since then most of the mass of the belt has been ground
down to dust in erosive collisions and then lost through radiation pressure or
Poynting–Robertson drag. A second, more plausible resolution is that most
objects in the belt were formed closer to the Sun and then transported to their
current locations during the migration of the giant planets, and that only
the cold classical belt was formed with its current properties (Morbidelli
& Nesvorný 2020; Gladman & Volk 2021).14 However, no single proposed
migration model has yet been able to explain all of the properties of the TNO
population. Perhaps some ingredients are missing, such as interactions with
the Sun’s birth cluster or additional planets that were subsequently scattered
into much larger orbits.

The rich dynamical structure of the thousands of objects in the trans-
Neptunian region offers a unique, though still ambiguous, fossil record of
the early history of the outer solar system.

9.7 Earth-crossing asteroids

Most of the objects in the asteroid belt have semimajor axes between 2 au
and 3.3 au and eccentricities e � 0.3. The corresponding perihelion dis-
tances q = a(1 − e) exceed 1.4 au, a distance that is well outside the orbit
of Earth. However, a small fraction of asteroids come much closer. The
near-Earth asteroids, or NEAs, are conventionally defined to be those with

far larger than the observed belt mass of ∼ 0.05–0.1M⊕.
14 In these models the density of the massive planetesimal disk declines sharply outside ∼

30 au, consistent with the requirement to stop Neptune’s outward migration at its current
semimajor axis. Thus, ironically, of the two explanations for the absence of planets beyond
Neptune described at the beginning of this section, the one that does not predict the trans-
Neptunian belt is more nearly correct.
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q < 1.3 au. A subclass of NEAs is the Earth-crossing asteroids, those with
orbits having a radial extent—from perihelion q = a(1 − e) to aphelion
Q = a(1 + e)—that overlaps the radial extent of the Earth’s orbit, from
q⊕ = 0.983 au to Q⊕ = 1.017 au. The Earth-crossing asteroids are further
subdivided into Apollo asteroids, which have semimajor axes a > 1 au but
perihelion distances q < Q⊕, and Aten asteroids, which have a < 1 au but
aphelion distance Q > q⊕.

Earth-crossing asteroids have the potential to collide with Earth. For
example, the meteor that exploded over the city of Chelyabinsk on Febru-
ary 15, 2013, with an estimated energy 400–500 kilotons of TNT,15 was
an Apollo asteroid with an estimated radius of about 10m. The 150-km
diameter Chicxulub crater in the Yucatan peninsula of Mexico is the rem-
nant of an impact that is believed to have caused the mass extinction at the
Cretaceous–Tertiary boundary 65Myr ago. The impact frequency as a func-
tion of mass, on the upper atmosphere and at the Earth’s surface, is given by
Bland & Artemieva (2006).

Small colliding bodies can be found on the Earth’s surface as meteorites,
and these provide invaluable insights into the early physical and chemical
history of the solar system.

Not all Earth-crossing asteroids come close to the Earth, even over many
thousands of orbits. For example, an Earth-crossing asteroid on an inclined
orbit can only have a close encounter with Earth if it crosses the ecliptic
plane at a radius between q⊕ and Q⊕—in terms of orbital elements this
requires q⊕ < a(1 − e2)�(1 ± e cos!) < Q⊕. A more sensitive measure
of the likelihood of collision is the minimum orbit intersection distance
(MOID), the distance between the closest points of the osculating orbits of
the Earth and the asteroid. Asteroids with an MOID ≤ 0.05 au are defined
to be potentially hazardous asteroids if their radius exceeds about 70m.16

Normally, it takes many centuries before an asteroid with a MOID of
(say) 0.05 au actually comes within 0.05 au of the Earth, since the aster-
oid and Earth must arrive at the location of the MOID at the same time.

15 1 kiloton of TNT equals 4.184 × 1012 J.
16 In practice the radius is estimated from the observed brightness of the asteroid and an as-

sumption about its albedo.
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And even when this happens, the chance of a collision is only of order(R⊕�0.05 au)2 � 10
−6. Nevertheless, the danger of collisions with Earth

is a good reason to discover as many potentially hazardous asteroids as pos-
sible and to determine their orbits accurately.

The typical lifetime of an asteroid on an Earth-crossing orbit is a few
Myr (Table 9.1). Only a few percent of Earth-crossing asteroids end up
colliding with Earth; most of the rest impact the Sun or are ejected from
the solar system by Jupiter (Morbidelli & Gladman 1998). Because the
lifetimes are only a small fraction of the lifetime of the solar system, some
mechanism is needed to resupply the Earth-crossing orbits from the main
part of the asteroid belt.

One of the most important components in this supply chain is the zones
in phase space associated with resonances, particular the 3:1 mean-motion
resonance with Jupiter and the ⌫6 secular resonance (§6.6). Numerical and
analytic studies show that particles in these zones can have their eccentric-
ities excited within a few Myr to the point where the orbits become Mars-
crossing or even Earth-crossing. Once this happens, one or more close en-
counters with Mars or Earth can extract the particle from the resonance and
place it in an orbit similar to those we see in the current population of Earth-
crossing asteroids (Morbidelli et al. 2002).

We still need a mechanism to re-supply the resonance zones. One possi-
bility is collisions between asteroids. Collisions lead to cratering and frag-
mentation, and the velocities of the fragments may differ from the velocity
of their parent body by several hundred m s−1. Thus collisions can inject
small bodies into the resonance zones. A second possibility is that aster-
oids drift into the resonance zones by the Yarkovsky effect (§7.5). The
Yarkovsky effect is probably more important than collisions for this pro-
cess. First, the cosmic-ray exposure ages of meteorites measure the time
since the most recent fragmentation of the meteorite’s parent body. If col-
lisions trigger the process of transferring an asteroid from the main belt to
an Earth-crossing orbit, then many meteorites should have cosmic-ray ex-
posure ages of only a few Myr, but most have ages much longer than this.
Second, the size distribution of the NEAs is not compatible with collisional
debris. Finally, the estimated collision rate in the main belt appears to be too
small to maintain the Earth-crossing asteroid population in a steady state.
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Physical, astronomical, and
solar-system constants

Numbers in parentheses indicate one standard deviation uncertainty in the last digit
of the preceding number. Values labeled “exact” are defined by convention; values
labeled “nominal” are used to simplify comparisons of different studies but may
not be precisely correct; and values labeled “theory” come from theoretical models
constrained by other observations. For additional details see §1.5.

Orbital elements and obliquities are given for the year J2000.0.
The mean radius R is the volumetric mean radius, the radius of a sphere con-

taining the same volume as the body. For a spheroidal body R = (R2

eqRpol)1�3,
where Req is the equatorial radius and Rpol is the polar radius. The reference ra-
dius Rp is the radius used in defining quantities such as the moment of inertia factor
C�(MR2) and the quadrupole moment J2.

The gravitational fields of solar-system bodies are often expressed in terms of
mass coefficients Cn,m, Sn,m or normalized mass coefficients Cn,m, Sn,m. These
are related to the quadrupole moment J2 and the moments of inertia A ≤ B ≤ C (eq.
D.87) by the formulas:

J2 = C − 1

2
(A +B)

MR2
p

= −C2,0 = −51�2C2,0,

B −A
MR2

p

= 4�C2

2,2 + S2

2,2�1�2 = ( 203 )1�2�C2

2,2 + S2

2,2�1�2. (A.1)
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The main sources for the constants below include:

• Particle Data Group, https://pdg.lbl.gov/

• JPL Solar System Dynamics, https://ssd.jpl.nasa.gov/

• NASA Planetary Fact Sheets, https://nssdc.gsfc.nasa.gov/planetary/planetfact.
html

• Report of the IAU Working Group on Cartographic Coordinates and Rota-
tional Elements: 2015 (Archinal et al. 2018)

• International Earth Rotation and Reference Systems Service (IERS) Conven-
tions (2010), Technical Note No. 36, version 1.3.0, https://www.iers.org/IERS/
EN/DataProducts/Conventions/conventions.html

• The Astronomical Almanac for the year 2020 (Washington, D.C.: U.S. Gov-
ernment Publishing Office)

• Explanatory Supplement to the Astronomical Almanac (Urban & Seidelmann
2013)

Other sources are referenced in the tables.

Physical and astronomical constants

gravitational constant G = 6.67430(15) × 10−11 m3 kg−1 s−2
g = G�(6.67430 × 10−11 m3 kg−1 s−2)

speed of light c = 299792458 m s−1 (exact)
Stefan–Boltzmann constant � = 5.670374419 . . . × 10−8 W m−2 K−4 (exact)
astronomical unit au = 149597870700m (exact)
parsec pc = au × 648000�⇡

= (3.08567758 . . .) × 1016 m (exact)
Julian year yr = 365.25 days = 31557600 s (exact)
age of the Universe1 t0 = 13.787(20)Gyr
age of the solar system2 tss = 4.5673(2)Gyr

1 Planck Collaboration et al. (2020).
2 Connelly et al. (2012).

https://pdg.lbl.gov/
https://ssd.jpl.nasa.gov/
https://nssdc.gsfc.nasa.gov/planetary/planetfact.html
https://www.iers.org/IERS/EN/DataProducts/Conventions/conventions.html
https://nssdc.gsfc.nasa.gov/planetary/planetfact.html
https://www.iers.org/IERS/EN/DataProducts/Conventions/conventions.html
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Solar constants
solar mass parameter GM⊙ = 1.3271244 × 1020 m3 s−2 (nominal)
solar mass M⊙ = 1.98841�g × 1030 kg
obliquity ✏ = 7.25○
moment of inertia3 C�(M⊙R2⊙) = 0.070
solar quadrupole moment4 J2 = 2.25(2) × 10−7
gravitational Love number3 k2 = 0.030
solar radius R⊙ = 695700 km (nominal)
solar luminosity L⊙ = 3.828 × 1026 W (nominal)

Planetary constants

Mercury

semimajor axis a = 0.38710 au
eccentricity e = 0.20564
inclination I = 7.00○
orbital period P = 87.969 d = 0.24085 yr
mass parameter5 GM = 2.20319 × 1013 m3 s−2
mass M = 3.30100�g × 1023 kg
Sun/planet mass ratio M⊙�M = 6.02366 × 106
spin period Ps = 58.6462 d
obliquity5 ✏ = 0.03○
moments of inertia5 C�(MR2

p) = 0.333(2)
J2 = [C − 1

2
(A +B)]�(MR2

p) = 5.032(1) × 10−5(B −A)�(MR2

p) = 3.216(2) × 10−5
gravitational Love number5 k2 = 0.569(8)
equatorial radius6 Req = 2440.53 km
polar radius6 Rpol = 2438.26 km
reference radius Rp = 2440 km

3 Claret (2019). Note that the symbol k2 in this paper refers to the apsidal-motion constant,
which is a factor of two smaller than the Love number.

4 Genova et al. (2018).
5 Genova et al. (2019).
6 Archinal et al. (2018).
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Venus
semimajor axis a = 0.72334 au
eccentricity e = 0.00678
inclination I = 3.39○
orbital period P = 224.701 d = 0.61520 yr
mass parameter7 GM = 3.24859 × 1014 m3 s−2
mass M = 4.86731�g × 1024 kg
Sun/planet mass ratio M⊙�M = 408523.7
spin period Ps = 243.018 d
obliquity ✏ = 177.36○
moments of inertia7,8 C�(MR2

p) = 0.34(2)
J2 = [C − 1

2
(A +B)]�(MR2

p) = 4.46(1) × 10−6(B −A)�(MR2

p) = 2.17(1) × 10−6
gravitational Love number9 k2 = 0.30(7)
mean radius6 R = 6052 km
reference radius Rp = 6051 km

Earth
semimajor axis a = 1.00000 au
eccentricity e = 0.01671
inclination I = 0.00○
orbital period P = 365.256 d = 1.00002 yr
mass parameter GM⊕ = 3.986004 × 1014 m3 s−2 (nominal)
mass M⊕ = 5.97217�g × 1024 kg
Sun/planet mass ratio M⊙�M⊕ = 332946.1
Sun/system mass ratio M⊙�(M⊕ +M%) = 328900.6
spin period Ps = 0.99727 d
obliquity ✏ = 23.44○
moment of inertia C�(M⊕R2⊕) = 0.33070
quadrupole moment J2 = 0.00108264
gravitational Love number k2 = 0.295
displacement Love number h2 = 0.608

7 Konopliv et al. (1999).
8 Margot et al. (2021).
9 Konopliv & Yoder (1996).
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equatorial radius Req = 6378.1 km (nominal)
polar radius Rpol = 6356.8 km (nominal)
reference radius R⊕ = 6 378.136 km

Moon
semimajor axis a = 384400 km
eccentricity e = 0.0549
inclination I = 5.15○
orbital period P = 27.322 d
mass parameter10 GM% = 4.90280 × 1012 m3 s−2
mass M% = 7.34579�g × 1022 kg
Earth/Moon mass ratio M⊕�M% = 81.3005
spin period Ps = 27.322 d
obliquity ✏ = 6.68○
moment of inertia10 C�(M%R2%) = 0.39273
quadrupole moment J2 = 0.00020322
gravitational Love number10 k2 = 0.0242(2)
displacement Love number10 h2 = 0.0424(1)
mean radius10 R = 1737.15 km
reference radius R% = 1738 km

Mars
semimajor axis a = 1.52371 au
eccentricity e = 0.09339
inclination I = 1.85○
orbital period P = 686.980 d = 1.88085 yr
mass parameter11 GM = 4.28284 × 1013 m3 s−2
mass M = 6.41691�g × 1023 kg
Sun/planet mass ratio M⊙�M = 3.09871 × 106
spin period Ps = 1.02596 d
obliquity ✏ = 25.19○

10 Williams et al. (2014).
11 Genova et al. (2016).
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moments of inertia11,12 C�(MR2

p) = 0.3644(5)
J2 = [C − 1

2
(A +B)]�(MR2

p) = 0.00195661(B −A)�(MR2

p) = 0.00025243
gravitational Love number11 k2 = 0.170(1)
equatorial radius6 Req = 3396.2 km
polar radius6 Rpol = 3376 km
reference radius Rp = 3396 km

Jupiter

semimajor axis a = 5.2029 au
eccentricity e = 0.04839
inclination I = 1.30○
orbital period P = 4332.820 d = 11.8626 yr
mass parameter13 GM = 1.2668653 × 1017 m3 s−2 (nominal)
mass M = 1.89812�g × 1027 kg
Sun/planet mass ratio M⊙�M = 1047.57
Sun/system mass ratio M⊙�M ′ = 1047.35
spin period14 Ps = 0.41354 d
obliquity ✏ = 3.13○
moment of inertia15 C�(MR2

p) = 0.28 (theory)
quadrupole moment13 J2 = 0.014697
gravitational Love number13 k2 = 0.57(2)
equatorial radius16 Req = 71492 km (nominal)
polar radius16 Rpol = 66854 km (nominal)
reference radius Rp = 71492 km

Saturn
semimajor axis a = 9.5367 au

12 Konopliv et al. (2011).
13 Durante et al. (2020).
14 The spin period refers to the rotation of the magnetic field of the planet.
15 Ni (2018).
16 At a pressure of 1 bar, from Archinal et al. (2018).
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eccentricity e = 0.05386
inclination I = 2.49○
orbital period P = 10755.7 d = 29.4475 yr
mass parameter GM = 3.79312 × 1016 m3 s−2
mass M = 5.68317�g × 1026 kg
Sun/planet mass ratio M⊙�M = 3498.77
Sun/system mass ratio M⊙�M ′ = 3497.90
spin period14 Ps = 0.44401 d
obliquity ✏ = 26.73○
moment of inertia C�(MR2

p) = 0.22 (theory)
quadrupole moment J2 = 0.016291
gravitational Love number17 k2 = 0.39(2)
equatorial radius16 Req = 60268 km
polar radius16 Rpol = 54364 km
reference radius Rp = 60330 km

Uranus
semimajor axis a = 19.1892 au
eccentricity e = 0.04726
inclination I = 0.77○
orbital period P = 30687.2 d = 84.0168 yr
mass parameter GM = 5.79395 × 1015 m3 s−2
mass M = 8.68099�g × 1025 kg
Sun/planet mass ratio M⊙�M = 22905.3
Sun/system mass ratio M⊙�M ′ = 22903.0
spin period14 Ps = 0.71833 d
obliquity ✏ = 97.77○
moment of inertia18 C�(MR2

p) = 0.22 (theory)
quadrupole moment J2 = 0.003511
gravitational Love number19 k2 = 0.10 (theory)
equatorial radius16 Req = 25559 km
polar radius16 Rpol = 24973 km
reference radius Rp = 25559 km

17 Lainey et al. (2017).
18 Nettelmann et al. (2013).
19 Gavrilov & Zharkov (1977).
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Neptune

semimajor axis a = 30.0699 au
eccentricity e = 0.00859
inclination I = 1.77○
orbital period P = 60190.0 d = 164.7913 yr
mass parameter GM = 6.83510 × 1015 m3 s−2
mass M = 1.02409�g × 1026 kg
Sun/planet mass ratio M⊙�M = 19416.3
Sun/system mass ratio M⊙�M ′ = 19412.2
spin period Ps = 0.67125 d
obliquity ✏ = 28.32○
moment of inertia18 C�(MR2

p) = 0.26 (theory)
quadrupole moment J2 = 0.003536
gravitational Love number19 k2 = 0.13 (theory)
equatorial radius16 Req = 24764 km
polar radius16 Rpol = 24341 km
reference radius Rp = 24764 km



Appendix B

Mathematical background

B.1 Vectors

The position of the point with Cartesian coordinates (x, y, z) may be described by
a position vector,

r = xx̂ + yŷ + zẑ, (B.1)
where x̂, ŷ, and ẑ are fixed unit vectors that point along the x, y, and z axes. The
distance of the point from the origin is written r or �r� and is equal to (x2+y2+z2)1�2.

Similarly, we may represent an arbitrary vector A in component form as

A = Axx̂ +Ayŷ +Az ẑ. (B.2)

The magnitude of a vector A is A ≡ �A� ≡ (A2

x +A2

y +A2

z)1�2.
The scalar or dot product of two vectors A and B is

A ⋅B ≡ �A��B� cos , (B.3)

where  is the angle between the two vectors, placed tail to tail. Note that A ⋅B =
B ⋅A and A ⋅A = �A�2. Since x̂ ⋅ x̂ = ŷ ⋅ ŷ = ẑ ⋅ ẑ = 1, and x̂ ⋅ ŷ = x̂ ⋅ ẑ = ŷ ⋅ ẑ = 0,
we may write the dot product in component form as

A ⋅B = 3�
i=1

AiBi, (B.4)

where the subscripts 1, 2, and 3 stand for x, y, and z, respectively. We often adopt
the summation convention, in which we automatically sum from 1 to 3 over any

491
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dummy subscript that appears twice in one term of an equation. Thus the preceding
equation simplifies to

A ⋅B = AiBi. (B.5)

Two obvious but useful identities are

A2 = (Â ⋅ x̂)2 + (Â ⋅ ŷ)2 + (Â ⋅ ẑ)2, (B.6a)
A = (x̂ ⋅A)x̂ + (ŷ ⋅A)ŷ + (ẑ ⋅A)ẑ = (n̂i ⋅A)n̂i; (B.6b)

here n̂i is the unit vector along coordinate axis i ∈ {1,2,3} in a Cartesian coordinate
system.

The vector or cross product of two vectors is

A ×B ≡ AB sin p̂, (B.7)

where p̂ is a unit vector that is perpendicular to the plane containing A and B and
points in the direction of movement of the right thumb as the fingers rotate A into
B around their common tail. Note that A×B = −B×A, A×A = 0, and x̂× ŷ = ẑ,
ŷ × ẑ = x̂, ẑ × x̂ = ŷ. In component form the cross product may be written

A ×B = 3�
ijk=1

✏ijkn̂iAjBk = ✏ijkn̂iAjBk. (B.8)

Here ✏ijk is the permutation symbol defined in Appendix C.1, and the last equality
uses the summation convention.

Some identities that involve the dot and cross product include:

A ⋅ (B ×C) =C ⋅ (A ×B) =B ⋅ (C ×A), (B.9a)
A × (B ×C) = (A ⋅C)B − (A ⋅B)C, (B.9b)

(A ×B) ⋅ (C ×D) = (A ⋅C)(B ⋅D) − (A ⋅D)(B ⋅C), (B.9c)
(A ×B) × (C ×D) = [A ⋅ (B ×D)]C − [A ⋅ (B ×C)]D

= [C ⋅ (D ×A)]B − [C ⋅ (D ×B)]A. (B.9d)

In proving these identities, it is helpful to use the relation (C.2) between the permu-
tation symbol and the Kronecker delta.

The velocity and acceleration of a particle may be written in Cartesian compo-
nents as

v ≡ ṙ ≡ dr

dt
= ẋx̂ + ẏŷ + żẑ, a ≡ r̈ ≡ d

2
r

dt2
= ẍx̂ + ÿŷ + z̈ẑ. (B.10)
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B.2 Coordinate systems

Figure B.1: The three main coordinate
systems: Cartesian (x, y, z), cylindrical(R,�, z), and spherical (r, ✓,�).

B.2.1 Cylindrical and polar coordinates
In cylindrical coordinates the location of a particle is denoted by (R,�, z), where R
is the perpendicular distance from the z-axis to the particle, and � is the azimuthal
angle between the x-axis and the projection of the position vector onto the (x, y)
plane (Figure B.1). Thus the relation to Cartesian coordinates is

x = R cos�, y = R sin�, z = z. (B.11)

Polar coordinates are simply the restriction of cylindrical coordinates to the z = 0

plane; in some cases we use  instead of � to denote the azimuthal angle in polar
coordinates.

In cylindrical coordinates the position vector is

r = RR̂ + zẑ. (B.12)

An arbitrary vector may be written A = ARR̂ +A��̂ +Az ẑ, where �̂ = ẑ × R̂ and

Ax = AR cos� −A� sin�, Ay = AR sin� +A� cos�, Az = Az. (B.13)
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The expressions for dot and cross products in cylindrical coordinates are simply
equations (B.4) and (B.8), with the subscripts (1,2,3) denoting (R,�, z) instead
of (x, y, z). Note that the decomposition into components must be carried out at
the same position for both vectors in the product, since the directions of R̂ and �̂
depend on position.

The velocity in cylindrical coordinates is

v = dr

dt
= dR

dt
R̂ +RdR̂

dt
+ dz

dt
ẑ. (B.14)

To compute dR̂�dt, we use equations (B.13) with AR = 1, A� = 0, Az = 0. Thus
R̂ = cos�x̂ + sin�ŷ, and dR̂ = (− sin�x̂ + cos�ŷ)d�. The expression in paren-
theses is just �̂. After carrying out a similar analysis for d�̂, we have

dR̂

d�
= �̂, d�̂

d�
= −R̂. (B.15)

Thus
dR̂

dt
= �̇�̂, d�̂

dt
= −�̇R̂. (B.16)

The velocity is
v = ṘR̂ +R�̇�̂ + żẑ, (B.17)

and the acceleration is

a = d
2
r

dt2
= (R̈ −R�̇2)R̂ + (2Ṙ�̇ +R�̈)�̂ + z̈ẑ. (B.18)

.

B.2.2 Spherical coordinates
The position of a particle is denoted by (r, ✓,�). The coordinate r is the radial
distance from the origin to the particle; ✓ is the angle between the position vector
and the z-axis, sometimes called the polar angle or the colatitude; and � is the
same azimuthal angle used in cylindrical coordinates (Figure B.1). The relation to
Cartesian coordinates is

x = r sin ✓ cos�, y = r sin ✓ sin�, z = r cos ✓. (B.19)

In spherical coordinates the position vector is simply

r = rr̂. (B.20)
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An arbitrary vector may be written A = Ar r̂ +A✓✓̂ +A��̂, where ✓̂ = �̂ × r̂ and

Ax = Ar sin ✓ cos� +A✓ cos ✓ cos� −A� sin�,

Ay = Ar sin ✓ sin� +A✓ cos ✓ sin� +A� cos�,

Az = Ar cos ✓ −A✓ sin ✓. (B.21)

Once again, the expressions for dot and cross products in spherical coordinates are
simply equations (B.4) and (B.8), with the subscripts (1,2,3) denoting (r, ✓,�)
instead of (x, y, z), and with the understanding that the decomposition into compo-
nents must be carried out at the same position for both vectors in the product.

The rate of change of the unit vectors in spherical coordinates is

dr̂

dt
= ✓̇✓̂+�̇ sin ✓�̂, d✓̂

dt
= −✓̇r̂+�̇ cos ✓�̂, d�̂

dt
= −�̇ sin ✓r̂−�̇ cos ✓✓̂. (B.22)

Thus the velocity is
v = ṙ = ṙr̂ + r✓̇✓̂ + r sin ✓�̇�̂, (B.23)

and the acceleration is

a = dv

dt
= (r̈ − r✓̇2 − r sin2 ✓�̇2)r̂ + (2ṙ✓̇ + r✓̈ − r sin ✓ cos ✓�̇2)✓̂
+ (r sin ✓�̈ + 2ṙ sin ✓�̇ + 2r cos ✓✓̇�̇)�̂. (B.24)

B.3 Vector calculus

Gradient In Cartesian coordinates we define the gradient of a scalar function of
position f(x) to be the vector

∇f ≡ x̂@f
@x
+ ŷ@f

@y
+ ẑ@f

@z
= n̂i

@f

@xi

, (B.25)

where in the last equality (x1, x2, x3) = (x, y, z) and we have used the summation
convention. The symbol ∇ is called grad, del, or nabla. An alternative notation is

∇f = @f
@r

. (B.26)

The direction of the gradient is the direction in which f(r) increases most rapidly,
and �∇f � is the rate of increase in that direction.
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The change in the value of f between the points r and r + dr is

df = @f

@xi

dxi = ∇f ⋅ dr. (B.27)

If r and r+dr lie on a surface S on which f is constant then df = 0 and∇f ⋅dr = 0,
so ∇f is orthogonal to dr and hence to the surface S itself. In other words the
gradient of f is normal to surfaces of constant f .

In cylindrical coordinates dr = dRR̂ +Rd��̂ + dzẑ (note that the coefficient
of �̂ is Rd�, not d�). Hence for consistency with equation (B.27) we must have

∇f = R̂ @f

@R
+ �̂

R

@f

@�
+ ẑ@f

@z
. (B.28)

Similarly, in spherical coordinates

∇f = r̂@f
@r
+ ✓̂

r

@f

@✓
+ �̂

r sin ✓

@f

@�
. (B.29)

Divergence In Cartesian coordinates we define the divergence of a vector func-
tion F(r) to be the scalar function

∇ ⋅F ≡ @Fx

@x
+ @Fy

@y
+ @Fz

@z
= @Fi

@xi

. (B.30)

To illuminate the physical meaning of this expression, consider a cubical volume V
occupying the region xia ≤ xi ≤ xib, i = 1,2,3. Then

�
V

dr∇ ⋅F = � x1b

x1a

dx1 � x2b

x2a

dx2 � x3b

x3a

dx3 �@F1

@x1

+ @F2

@x2

+ @F3

@x3

�
= � x2b

xsa

dx2 � x3b

x3a

dx3 [F1(x1b, x2, x3) − F1(x1a, x2, x3)]
+ two similar terms. (B.31)

This expression can be written more compactly as ∫S dA n̂ ⋅F, where the integral is
over the surface S surrounding the volume V , dA is a small element of area on the
surface, and n̂ is a unit vector normal to the surface and pointing outward. We may
generalize this result to an arbitrary volume by dividing the volume into many small
cubes and noting that the surface integrals from the inside faces of the cubes cancel.
Hence for an arbitrary volume V ,

�
V

dr∇ ⋅F = �
S

dA n̂ ⋅F. (B.32)
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This result is known as the divergence theorem. The theorem gives a physical
meaning to the divergence: the divergence of a vector field in a small volume mea-
sures the net flux of that field through a closed surface enclosing the volume.

In cylindrical coordinates

∇ ⋅F = 1

R

@

@R
(RFR) + 1

R

@F�

@�
+ @Fz

@z
. (B.33)

This result can be derived by writing∇ ⋅F = (R̂@�@R+ �̂@�@�+ ẑ@�@z) ⋅(FRR̂+
F��̂ + Fz ẑ) and evaluating the expression using equations (B.15). In spherical
coordinates

∇ ⋅F = 1

r2
@

@r
(r2Fr) + 1

r sin ✓

@

@✓
(sin ✓F✓) + 1

r sin ✓

@F�

@�
. (B.34)

Curl In Cartesian coordinates we define the curl of a vector function F(r) to be
the vector function

∇×F ≡ r̂�@Fz

@y
− @Fy

@z
� + ŷ �@Fx

@z
− @Fz

@x
� + ẑ�@Fy

@x
− @Fx

@y
� . (B.35)

Note that this definition is the same as the cross product of the vector operator ∇
with the vector function F.

Some useful identities are

∇×∇f = 0, (B.36a)
∇ ⋅ (∇×F) = 0, (B.36b)
∇× (fF) = ∇f ×F + f∇×F, (B.36c)
∇ ⋅ (G ×F) = F ⋅∇×G −G ⋅∇×F. (B.36d)

If we replace F by G ×F in the divergence theorem (B.32), where G is a constant
vector, then using equations (B.9a) and (B.36d) we find G⋅∫ dr∇×F =G⋅∫ dA n̂×
F. Since this result must hold for any constant vector G, we conclude that

�
V

dr∇×F = �
S

dA n̂ ×F. (B.37)

In cylindrical and spherical coordinates

∇×F = � 1
R

@Fz

@�
− @F�

@z
� R̂ + �@FR

@z
− @Fz

@R
� �̂ + �@F�

@R
+ F�

R
− 1

R

@FR

@�
� ẑ
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= �1
r

@F�

@✓
+ cos ✓

r sin ✓
F� − 1

r sin ✓

@F✓

@�
� r̂ (B.38)

+ � 1

r sin ✓

@Fr

@�
− @F�

@r
− F�

r
� ✓̂ + �@F✓

@r
+ F✓

r
− 1

r

@Fr

@✓
� �̂.

Laplacian The divergence of the gradient of a scalar function is called the Lapla-
cian of that function. Thus the Laplacian of F (r) is

∇2F ≡ ∇ ⋅∇F. (B.39)

Applying the divergence theorem (B.32) to ∇F , we have

�
V

dr∇2F = �
S

dA n̂ ⋅∇F. (B.40)

In Cartesian, cylindrical, and spherical coordinates we have

∇2F = @2F

@x2
+ @2F

@y2
+ @2F

@z2

= 1

R

@

@R
�R@F

@R
� + 1

R2

@2F

@�2
+ @2F

@z2

= 1

r2
@

@r
�r2 @F

@r
� + 1

r2 sin ✓

@

@✓
�sin ✓ @F

@✓
� + 1

r2 sin2 ✓

@2F

@�2
. (B.41)

An important special case is the Laplacian of F (r) = 1�r. Using the last of
equations (B.41), we find∇2F = 0 for r �= 0. The behavior of∇2F near r = 0 needs
to be handled more carefully because of the singularity. In equation (B.40), let V
be a spherical volume of radius r0 centered on the origin. Since ∇F = −r̂�r2 the
integral on the right side is −4⇡, independent of r0. Thus ∫V dr∇2F = −4⇡. Since∇2F = 0 for r �= 0, this result must hold for any volume V that contains the origin,
whatever its shape and size. These results imply that in three dimensions

∇2(1�r) = −4⇡�(r) or ∇2 1�r − r′� = −4⇡�(r − r′), (B.42)

where �(r) is the 3-dimensional delta function (Appendix C.2).
The gravitational potential from a point mass m at r′ is �(r) = −Gm��r − r′�.

Therefore the gravitational potential from a mass density distribution ⇢(r′) is

�(r) = −G� dr
′⇢(r′)�r − r′� . (B.43)
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Thus

∇2
�(r) = −G� dr

′⇢(r′)∇2 1�r − r′� = 4⇡G� dr
′⇢(r′)�(r − r′) = 4⇡G⇢(r),

(B.44)
which is Poisson’s equation. In a vacuum the right side is zero, so the potential
must satisfy Laplace’s equation, ∇2

� = 0.

B.4 Fourier series

If a function f(x) is periodic with period h, that is, f(x + h) = f(x) for all x, then
it can be represented as a Fourier series,

f(x) = ∞�
n=0
�an cos

2⇡nx

h
+ bn sin

2⇡nx

h
� . (B.45)

We will use the more compact expression

f(x) = ∞�
n=−∞

cn exp�2⇡inx
h
� . (B.46)

To determine the coefficients cn we multiply (B.46) by exp(−2⇡imx�h), with
m an integer, and integrate from x = 0 to x = h. We use the identity

� h

0

dx exp �2⇡i(n −m)x
h

� = h �mn, (B.47)

where �mn is the Kronecker delta (eq. C.1). Then

cm = 1

h �
h

0

dx exp�−2⇡imx

h
� f(x). (B.48)

B.5 Spherical trigonometry

Spherical triangles are defined by three intersecting great circles on the unit sphere.
The lengths of the sides are conventionally labeled a, b, c and the angles opposite
these sides are labeled A, B, C; by convention these angles are less than ⇡ (Figure
B.2).

The spherical cosine law states that

cosa = cos b cos c + sin b sin c cosA,
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Figure B.2: A triangle on the
unit sphere with sides a, b, c and
angles A, B, C.

cos b = cos c cosa + sin c sina cosB,

cos c = cosa cos b + sina sin b cosC. (B.49)

We now prove the first of these. Let O denote the center of the sphere, and let Â, B̂,
Ĉ denote the unit vectors from O to the points A, B, C on the surface of the sphere.
The normal to the plane through A, O and B is Â×B̂ and this vector has magnitude
sin c. Similarly the normal to the plane through A, O, and C is Â × Ĉ and this has
magnitude sin b. The angle between these normals is A, so we have

(Â × B̂) ⋅ (Â × Ĉ) = sin b sin c cosA. (B.50)

Using the identity (B.9c),

(Â×B̂) ⋅(Â×Ĉ) = (Â ⋅Â)(B̂ ⋅Ĉ)−(Â ⋅Ĉ)(Â ⋅B̂) = cosa−cos b cos c, (B.51)

and the first of equations (B.49) follows from eliminating the left sides of (B.50) and
(B.51). The second and third of equations (B.49) follow from the first by re-labeling
the sides and angles.

Using the steps that led to equation (B.50), we can also write

�(Â × B̂) × (Â × Ĉ)� = sin b sin c sinA. (B.52)

Using the identity (B.9d),

�(Â × B̂) × (Â × Ĉ)� = �A ⋅ (B ×C)�. (B.53)



B.6. EULER ANGLES 501

Eliminating the left side of equations (B.52) and (B.53) gives

sinA

sina
= �A ⋅ (B ×C)�
sina sin b sin c

. (B.54)

Because of the identities (B.9a), the right side is unchanged if we exchange the label
pairs {a,A}, {b,B}, and {c,C}, so the left side must be as well. Therefore we
arrive at the spherical sine law,

sinA

sina
= sinB

sin b
= sinC

sin c
. (B.55)

We also have

cosA = − cosB cosC + sinB sinC cosa,

cosB = − cosC cosA + sinC sinA cos b,

cosC = − cosA cosB + sinA sinB cos c. (B.56)

B.6 Euler angles

Figure B.3: The Euler angles(↵,�,�) that specify a rotation
from coordinate axes (x, y, z)
to (x′, y′, z′).
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The Euler angles (↵,�,�) shown in Figure B.3 describe the rotation of one
Cartesian coordinate frame into another. Many different conventions are used to
define the Euler angles, but the following is probably the most common in physics
and astronomy.

Let the coordinates of a point be (x, y, z) in the initial frame and (x′, y′, z′) in
the final frame. We convert from the initial to the final frame by three rotations of
the coordinate axes. We begin by rotating the original axes counterclockwise around
ẑ by an angle ↵; the coordinates in the new frame are labeled (x1, y1, z1) and are
related to the original coordinates by

�������
x1

y1
z1

�������
=
�������

c↵ s↵ 0−s↵ c↵ 0

0 0 1

�������
�������

x
y
z

�������
. (B.57)

Here and below we abbreviate cos↵ by c↵, sin↵ by s↵, and so forth. Next we rotate
the axes counterclockwise around x̂1 by an angle �; the coordinates in this frame
are labeled (x2, y2, z2) and are given by

�������
x2

y2
z2

�������
=
�������

1 0 0

0 c� s�
0 −s� c�

�������
�������

x1

y1
z1

�������
. (B.58)

Finally we rotate the axes counterclockwise around ẑ2 by an angle �; the coordinates(x′, y′, z′) in this frame are

�������
x′
y′
z′

�������
=
�������

c� s� 0−s� c� 0

0 0 1

�������
�������

x2

y2
z2

�������
. (B.59)

The matrix relating the original and final coordinates is obtained by multiplying the
three matrices in equations (B.57)–(B.59):

r
′ =
�������

x′
y′
z′

�������
=R(↵,�,�)r

=
�������

c↵c� − s↵c�s� s↵c� + c↵c�s� s�s�−c↵s� − s↵c�c� −s↵s� + c↵c�c� s�c�
s↵s� −c↵s� c�

�������
�������

x
y
z

�������
. (B.60)
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Any matrix describing a rotation of the coordinate axes is orthogonal, and hence
its inverse is equal to its transpose. Thus the transformation from the final to the
original coordinates is

r =
�������

x
y
z

�������
=RT(↵,�,�)r′

=
�������

c↵c� − s↵c�s� −c↵s� − s↵c�c� s↵s�
s↵c� + c↵c�s� −s↵s� + c↵c�c� −c↵s�

s�s� s�c� c�

�������
�������

x′
y′
z′

�������
. (B.61)

The position of a particle can be specified by its radius r and the three Euler
angles if the particle is assumed to be located at (x′, y′, z′) = (r,0,0).1 From
equation (B.61),

r = (x, y, z) = r(c↵c� − s↵c�s� , s↵c� + c↵c�s� , s�s�). (B.62)

If the Euler angles of the particle are changing with time, then its angular speed is

⌦ = ↵̇ẑ + �̇x̂1 + �̇ẑ2, (B.63)

where the unit vectors ẑ, x̂1, and ẑ2 point in the directions shown in Figure B.3. The
velocity due to a rotation at angular velocity⌦ is⌦ × r (eq. D.17). Thus

ṙ = ṙr̂ +⌦ × r = ṙr̂ + (↵̇ẑ + �̇x̂1 + �̇ẑ2) × r. (B.64)

In terms of the unit vectors of the original coordinates (x, y, z) or the final
coordinates (x′, y′, z′), we have ẑ = s�s� x̂

′ + s�c� ŷ′ + c� ẑ′, x̂1 = c↵x̂ + s↵ŷ =
c� x̂

′ − s� ŷ′, and ẑ2 = ẑ′ = s↵s�x̂ − c↵s�ŷ + c� ẑ. Then

⌦ = (c↵�̇ + s↵s� �̇)x̂ + (s↵�̇ − c↵s� �̇)ŷ + (↵̇ + c� �̇)ẑ (B.65a)

= (s�s�↵̇ + c� �̇)x̂′ + (s�c� ↵̇ − s� �̇)ŷ′ + (c�↵̇ + �̇)ẑ′. (B.65b)

1 This representation is not unique as it uses four variables (r,↵,�,�) to specify the 3-
dimensional vector r.
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B.7 Calculus of variations

Let r = r(t), t0 ≤ t ≤ t1, be an arbitrary smooth curve, which we label by �. We
define a functional

S[�] ≡ � t1

t0

dtL[r(t), ṙ(t), t]. (B.66)

Now consider a nearby curve �′ defined by r = r(t) + ✏h(t), where h(t0) =
h(t1) = 0. As ✏→ 0 we have

S[�′] − S[�] = � t1

t0

dt [L(r + ✏h, ṙ + ✏ḣ, t) −L(r, ṙ, t)]
= ✏� t1

t0

dt�h ⋅ @L
@r
+ ḣ ⋅ @L

@ṙ
� +O(✏2), (B.67)

where the integral on the second line is evaluated along the unperturbed curve �. On
this curve L can be considered to be a function only of time, L(t) = L[r(t), ṙ(t), t].
Hence we may integrate by parts to obtain

S[�′] − S[�] = −✏� t1

t0

dth ⋅ � d
dt
�@L
@ṙ
� − @L

@r
� +O(✏2). (B.68)

The boundary term arising from the integration by parts vanishes since h(t0) =
h(t1) = 0.

The curve � is an extremum of S[�] if I(�)−I(�′) = O(✏2) for all variations h.
On an extremal curve, the integral in equation (B.68) must vanish for all variations
h(t) for which h(t0) = h(t1) = 0; thus the condition for an extremal curve is

d

dt
�@L
@ṙ
� − @L

@r
= 0. (B.69)

This is the Euler–Lagrange equation.



Appendix C

Special functions

In general we follow the conventions of the NIST Digital Library of Mathemati-
cal Functions, https://dlmf.nist.gov/, or Olver et al. (2010). Other standard references
include Erdélyi (1953–1955) and Gradshteyn & Ryzhik (2015). Algorithms for eval-
uating many of these functions are described by Press et al. (2007).

C.1 Kronecker delta and permutation symbol

The Kronecker delta is a function �mn of two integers m and n, defined by

�mn = � 0 if m �= n,
1 if m = n. (C.1)

The 3-dimensional permutation symbol ✏ijk is defined to be zero if two or
more of the indices i, j, and k are equal, +1 if (i, j, k) is an even permutation of(1,2,3) [the even permutations are (2,3,1) and (3,1,2)], and −1 if (i, j, k) is an
odd permutation of (1,2,3).

A useful relation is

3�
k=1

✏ijk✏klm = �il�jm − �im�jl. (C.2)
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C.2 Delta function

The delta function or Dirac delta function is a singular function defined by the
properties

�(x) = � ∞ x = 0,
0 x �= 0, � ∞

−∞ dx �(x) = 1. (C.3)

Thus
� ∞
−∞ dxf(x)�(x − a) = f(a) (C.4)

if f(x) is an arbitrary continuous function. We also have

�[g(x)] =�
i

�(x − xi)�g′(xi)� , (C.5)

where g(x) is differentiable and {xi} is the set of all roots of g(x), that is, solutions
of g(xi) = 0.

The delta function can be written as

�(x) = 1

⇡
lim
✏→0

✏

✏2 + x2
= lim

a→∞� a⇡ �
1�2

e
−ax2 = lim

a→∞
sinax

⇡x
= 1

2⇡ �
∞
−∞ dx eixt.

(C.6)
The 3-dimensional delta function is

�(r) = �(x)�(y)�(z), (C.7)

where r = (x, y, z) in Cartesian coordinates. The analog of equations (C.3) is

�(r) = � ∞ r = 0,
0 r �= 0, �

V

dr �(r) = 1 (C.8)

if the volume V contains the origin.
The delta function on the surface of a sphere is related to the spherical harmonics

through equation (C.49).
The periodic delta function with period h is a sum of delta functions at x =

. . . ,−2h,−h,0, h,2h, . . .:
�h(t) = h ∞�

k=−∞
�(t − kh); (C.9)

the normalizing factor of h is chosen such that the average value of �h(t) over any
nonzero interval approaches unity as h→ 0.
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The Fourier series for the periodic delta function is derived from equations
(B.46) and (B.48):

�h(x) = ∞�
n=−∞

exp�2⇡inx
h
� = ∞�

n=−∞
cos�2⇡nx

h
� = ∞�

n=0
(2 − �n0) cos�2⇡nx

h
� .

(C.10)

C.3 Gamma function

The gamma function is defined by

�(z) ≡ � ∞
0

dt tz−1e−t, (Re z > 0). (C.11)

For Re z ≤ 0, �(z) can be defined by analytic continuation for all complex numbers
z except 0,−1,−2, . . .. Special values of �(z) include

�(1) = 1, �( 1
2
) = ⇡1�2 = 1.77245, �( 3

2
) = 1

2
⇡1�2 = 0.88623. (C.12)

For non-negative integers n, the factorial function is defined as

n! ≡ �(n + 1) = 1 ⋅ 2 ⋅ 3�n. (C.13)

Useful relations include

�(z + 1) = z�(z), (C.14a)

�(z)�(1 − z) = ⇡

sin⇡z
, (C.14b)

�(2z) = 2
2z−1
⇡1�2 �(z)�(z + 1

2
). (C.14c)

As �z� → ∞ with �arg(z)� < ⇡,

�(z + a)
�(z + b) → za−b �1 +O(�z�−1)� , (C.15a)

�(z)→ (2⇡)1�2zz−1�2e−z �1 +O(�z�−1)� . (C.15b)

The second of these results is Stirling’s approximation.
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C.4 Elliptic integrals

The elliptic integrals are defined by1

K(k) ≡ � ⇡�2
0

d�

(1 − k2 sin
2 �)1�2 = �

1

0

dt(1 − t2)1�2(1 − k2t2)1�2 ,
E(k) ≡ � ⇡�2

0

d� (1 − k2
sin

2 �)1�2 = � 1

0

dt(1 − k2t2)1�2(1 − t2)1�2 . (C.16)

The incomplete elliptic integrals are

F (�, k) ≡ � �

0

d�

(1 − k2 sin
2 �)1�2 = �

sin�

0

dt(1 − t2)1�2(1 − k2t2)1�2 ,
E(�, k) ≡ � �

0

d� (1 − k2
sin

2 �)1�2 = � sin�

0

dt(1 − k2t2)1�2(1 − t2)1�2 . (C.17)

Thus F ( 1
2
⇡, k) = K(k) and E( 1

2
⇡, k) = E(k). A complete description of elliptic

integrals is given by Byrd & Friedman (1971).
For our purposes 0 ≤ k < 1. As k → 1, E(k)→ 1 and

K(k)→ 1

2
log � 16

1 − k2
� [1 +O(1 − k)]. (C.18)

The derivatives of the elliptic integrals are

dK(k)
dk

= E(k) − (1 − k2)K(k)
k(1 − k2) ,

dE(k)
dk

= E(k) −K(k)
k

. (C.19)

If the factor k2 in the definition of the elliptic integrals is replaced by −k2, we
have

� ⇡�2
0

d�

(1 + k2 sin
2 �)1�2 =

1(1 + k2)1�2K � k(1 + k2)1�2 � ,
� ⇡�2

0

d� (1 + k2
sin

2 �)1�2 = (1 + k2)1�2E � k(1 + k2)1�2 � . (C.20)

1 Unfortunately, in some references and software, the argument of the elliptic integral is k2

rather than k; thus, for example, K(m) ≡ ∫ ⇡�2
0

d��(1 −m sin
2
�)1�2.
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The elliptic integrals can also be defined in the Carlson or symmetric forms

RF (x, y, z) ≡ 1

2 � ∞
0

dt

s(t) , RD(x, y, z) ≡ 3

2 � ∞
0

dt(t + z)s(t) , (C.21)

where s2(t) = (t + x)(t + y)(t + z) and for our purposes x, y, z ≥ 0. The relation
between the forms is

K(k) = RF (0,1 − k2,1), E(k) = RF (0,1 − k2,1) − 1

3
k2RD(0,1 − k2,1).

(C.22)

C.5 Bessel functions

The Bessel functions of the first and second kind, J⌫(z) and Y⌫(z), are linearly
independent solutions of the differential equation

1

z

d

dz
�z dw

dz
� + �1 − ⌫2

z2
�w = 0. (C.23)

In series form,

J⌫(z) = ∞�
k=0

(−1)k
k!�(⌫ + k + 1)( 12z)⌫+2k. (C.24)

The function Y⌫(z), which diverges as z → 0, is defined by the relation

Y⌫(z) = cos ⌫⇡J⌫(z) − J−⌫(z)
sin ⌫⇡

, (C.25)

or by its limiting value if ⌫ is an integer. The most comprehensive description of
Bessel functions is given by Watson (1944).

If ⌫ ≡ n is an integer,

J−n(z) = (−1)nJn(z) = Jn(−z), Y−n(z) = (−1)nYn(z), (C.26)

Jn(z) = 1

⇡ �
⇡

0

d✓ cos(z sin ✓ − n✓). (C.27)

If C⌫ denotes either J⌫ or Y⌫ ,

C⌫−1(z) +C⌫+1(z) = 2⌫

z
C⌫(z), C⌫−1(z) −C⌫+1(z) = 2dC⌫(z)

dz
. (C.28)
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We shall also use the identity

exp(iz sinu) = ∞�
k=−∞

Jk(z) exp(iku). (C.29)

The modified Bessel functions are

I⌫(z) = i−⌫J⌫(iz), K⌫(z) =K−⌫(z) = ⇡
2

I−⌫(z) − I⌫(z)
sin ⌫⇡

; (C.30)

the second equation is replaced by its limiting value if ⌫ is an integer. For small �z�,
I⌫(z)→ 1

�(⌫ + 1) � 12z�⌫ �1 +O(�z�2)� , (⌫ �= −1,−2, . . .),
K⌫(z)→

�������
1

2
�(⌫) � 1

2
z�−⌫ �1 +O(�z�2)� , (Re ⌫ > 0),

− � − log( 1
2
z) +O(�z�2 log �z�), (⌫ = 0), (C.31)

where � = 0.577216� is Euler’s constant. As �z� → ∞ with �arg(z)� < 1

2
⇡,

I⌫(z)→ e
z

(2⇡z)1�2 �1 +O(�z�−1)� , K⌫(z)→ � ⇡
2z
�1�2 e−z �1 +O(�z�−1)� .

(C.32)
If Z⌫ denotes either I⌫ or ei⇡⌫K⌫ ,

Z⌫−1(z) −Z⌫+1(z) = 2⌫

z
Z⌫(z), Z⌫−1(z) +Z⌫+1(z) = 2dZ⌫(z)

dz
; (C.33)

for ⌫ = 0 these imply

I ′0(z) = I1(z), K ′0(z) = −K1(z). (C.34)

We shall use the result (Erdélyi 1954, Table 4.16)

� ∞
0

dxx1−⌫
e
−px2

I⌫(ax) = (2p)⌫−1
�(⌫)a⌫

exp[a2�(4p)]�[⌫, a2�(4p)], a, p > 0,
(C.35)

where �(⌫, x) is an incomplete gamma function.
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C.6 Legendre functions

The associated Legendre functions, Pm

l (x) and Qm

l (x), are linearly independent
solutions of the differential equation

d

dx
�(1 − x2)dw

dx
� − m2

1 − x2
w + l(l + 1)w = 0. (C.36)

For our purposes we need only consider functions of the first kind, Pm

l (x), for real
arguments in the interval −1 ≤ x ≤ 1, with l = 0,1,2, . . . and m an integer in the
range �m� ≤ l. Then

Pm

l (x) = (−1)m
2ll!

(1 − x2)m�2 d
l+m

dxl+m (x2 − 1)l. (C.37)

When m is even, Pm

l (x) is a polynomial of degree l, and when m = 0, these are
called Legendre polynomials Pl(x) ≡ P0

l (x).
The associated Legendre functions satisfy the relations

Pm

l (−x) = (−1)l−mPm

l (x), (C.38)

P−ml (x) = (−1)m (l −m)!(l +m)!Pm

l (x), (C.39)

� 1

−1 dxPm

l (x)Pm

l′ (x) = (l +m)!(l −m)! 2

2l + 1�ll′ , (C.40)

Pm

l (1) = �m0, (C.41)

Pm

l (0) =
�����������

2
m⇡1�2

�( 1
2
l − 1

2
m + 1)�( 1

2
− 1

2
l − 1

2
m) , (l −m even),

0, (l −m odd).
(C.42)

The Legendre polynomials are generated by the relation

1(1 − 2xt + t2)1�2 =
∞�
l=0

Pl(x)tl, �t� < 1, �x� ≤ 1. (C.43)

Thus the inverse distance between the points x and x
′ can be written

1�x − x′� =
∞�
l=0

rl<
rl+1> Pl(cos�), (C.44)
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where r< and r> are the smaller and larger of �x� and �x′�, and � is the angle between
the two vectors.

The associated Legendre functions can be written most compactly using the
substitution x = cos ✓; since −1 ≤ x ≤ 1, we may take 0 ≤ ✓ ≤ ⇡ and let c = cos ✓,
s = sin ✓:

P0(c) = 1, (C.45)

P1(c) = c, P1

1(c) = −s,
P2(c) = 3

2
c2 − 1

2
, P1

2(c) = −3cs, P2

2(c) = 3s2,
P3(c) = 5

2
c3 − 3

2
c, P1

3(c) = s( 32 − 15

2
c2), P2

3(c) = 15cs2, P3

3(c) = −15s3.

C.7 Spherical harmonics

A spherical harmonic is defined by the expression

Ylm(✓,�) = �2l + 1
4⇡

(l −m)!(l +m)!�
1�2

Pm

l (cos ✓)eim�. (C.46)

The variables lie in the range 0 ≤ ✓ ≤ ⇡ and 0 ≤ � ≤ 2⇡ and usually represent the
angular coordinates in a spherical coordinate system (Appendix B.2.2). The indices
are usually restricted to be integers with l = 0,1,2, . . ., and �m� ≤ l. With this
definition

Yl,−m(✓,�) = (−1)mY ∗lm(✓,�), (C.47)

where the asterisk denotes complex conjugation.
The most important feature of the spherical harmonics, easily proved using

equation (C.40), is that they are orthonormal in the sense that

� ⇡

0

d✓ sin ✓� 2⇡

0

d�Y ∗kn(✓,�)Ylm(✓,�) = � d⌦Y ∗kn(✓,�)Ylm(✓,�) = �kl�nm,

(C.48)
where �kl is the Kronecker delta (Appendix C.1), and d⌦ ≡ sin ✓d✓d� represents
an element of solid angle. We also have

∞�
l=0

l�
m=−l

Y ∗lm(✓′,�′)Ylm(✓,�) = �(cos ✓ − cos ✓′)�(� − �′), (C.49)
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where �(x) is the delta function (Appendix C.2).
The spherical harmonics satisfy the partial differential equation

� 1

sin ✓

@

@✓
�sin ✓ @

@✓
� + 1

sin
2 ✓

@2

@�2
+ l(l + 1)�Ylm(✓,�) = 0. (C.50)

An arbitrary scalar function of position r can be written in spherical coordinates
as a series of spherical harmonics,

f(r) = f(r, ✓,�) = ∞�
l=0

l�
m=−l

flm(r)Ylm(✓,�). (C.51)

Multiplying by Y ∗kn(✓,�), integrating over solid angle and using equation (C.48),
we find

flm(r) = � d⌦Y ∗lm(✓,�)f(r), (C.52)

where the integral is over the unit sphere.
If the directions (✓,�) and (✓′,�′) in spherical coordinates are separated by an

angle �, then
cos� = cos ✓ cos ✓′ + sin ✓ sin ✓′ cos(� − �′), (C.53)

and the addition theorem for spherical harmonics states that

Pl(cos�) = 4⇡

2l + 1
l�

m=−l
Y ∗lm(✓′,�′)Ylm(✓,�). (C.54)

Together with equation (C.44), this leads to an expression for the inverse distance
between the points x = (r, ✓,�) and x

′ = (r′, ✓′,�′):
1�x − x′� =

∞�
l=0

4⇡

2l + 1 rl<
rl+1>

l�
m=−l

Y ∗lm(✓′,�′)Ylm(✓,�). (C.55)

The first few spherical harmonics are:

Y00(✓,�) = � 1

4⇡
�1�2 ,

Y10(✓,�) = � 3

4⇡
�1�2 cos ✓, Y1,±1(✓,�) = ∓� 3

8⇡
�1�2 sin ✓ e±i�,

Y20(✓,�) = � 5

16⇡
�1�2 (3 cos2 ✓ − 1), Y2,±1(✓,�) = ∓� 15

8⇡
�1�2 sin ✓ cos ✓ e±i�,

Y2,±2(✓,�) = � 15

32⇡
�1�2 sin2 ✓ e±2i�.

(C.56)
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C.8 Vector spherical harmonics

The following discussion uses the notation and proofs of Barrera et al. (1985). We
define three vector-valued functions of position,

Ylm(✓,�) ≡ Ylmr̂,  lm(✓,�) ≡ r∇Ylm, �lm(✓,�) ≡ r × ∇Ylm, (C.57)

where Ylm(✓,�) is a spherical harmonic, and the gradient operator ∇ in spherical
coordinates is given by equation (B.29).

An arbitrary vector field A(r) can be written in spherical coordinates as a series
of vector spherical harmonics (cf. eq. C.51),

A(r) = ∞�
l=0

l�
m=−l

�flm(r)Ylm(✓,�) + glm(r) lm(✓,�) + hlm(r)�lm(✓,�)�.
(C.58)

The vector spherical harmonics are orthogonal in two senses: first,

Ylm(✓,�) ⋅ lm(✓,�) =Ylm(✓,�) ⋅�lm(✓,�) = lm(✓,�) ⋅�lm(✓,�) = 0;
(C.59)

and second,

� d⌦Y
∗
lm(✓,�) ⋅ l′m′(✓,�) = � d⌦Y

∗
lm(✓,�) ⋅�l′m′(✓,�)

= � d⌦ 
∗
lm(✓,�) ⋅�l′m′(✓,�) = 0 (C.60)

for all l,m, l′,m′. We also have

� d⌦Y
∗
lm(✓,�) ⋅Yl′m′(✓,�) = �l,l′�m,m′ ,

� d⌦ 
∗
lm(✓,�) ⋅ l′m′(✓,�) = l(l + 1)�l,l′�m,m′ ,

� d⌦�
∗
lm(✓,�) ⋅�l′m′(✓,�) = l(l + 1)�l,l′�m,m′ . (C.61)

The divergence is

∇ ⋅ [f(r)Ylm] = �df
dr
+ 2f

r
�Ylm,

∇ ⋅ [f(r) lm] = − l(l + 1)f
r

Ylm,

∇ ⋅ [f(r)�lm] = 0. (C.62)
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The curl is

∇× [f(r)Ylm] = −f
r
�lm,

∇× [f(r) lm] = �df
dr
+ f

r
��lm,

∇× [f(r)�lm] = − l(l + 1)f
r

Ylm − �df
dr
+ f

r
� lm. (C.63)

The Laplacian is

∇2[f(r)Ylm] = � 1

r2
d

dr
r2

df

dr
�Ylm − 2 + l + l2

r2
fYlm + 2f

r2
 lm,

∇2[f(r) lm] = � 1

r2
d

dr
r2

df

dr
� lm + 2l(l + 1)

r2
fYlm − l(l + 1)

r2
f lm,

∇2[f(r)�lm] = � 1

r2
d

dr
r2

df

dr
��lm − l(l + 1)

r2
f�lm. (C.64)





Appendix D

Lagrangian and Hamiltonian
dynamics

The goal of this appendix is to provide a review and summary of the results in this
subject that are employed in this book. We assume a background in classical me-
chanics at the advanced undergraduate level, including basic Hamiltonian mechan-
ics (Tabor 1989; Lichtenberg & Lieberman 1992; José & Saletan 1998; Sussman &
Wisdom 2001; Goldstein et al. 2002).

Let r = (x, y, z) denote the Cartesian coordinates of a particle moving in the
force field arising from the potential �(r, t). We define the Lagrangian

L(r, ṙ, t) ≡ 1

2
m�ṙ�2 −m�(r, t), (D.1)

where �ṙ�2 = ẋ2 + ẏ2 + ż2 is the square of the speed of the particle and m is its mass.
The action maps a trajectory r(t) into a scalar S, given by

S ≡ � t1

t0

dtL[r(t), ṙ(t), t]. (D.2)

Hamilton’s principle states that the motion of the particle from time t0 to t1 is
along a trajectory r(t) that is an extremum of the action for fixed end points r(t0)
and r(t1). The proof is straightforward. According to the Euler–Lagrange equation
(B.69), the trajectory is an extremum of S if and only if

0 = d

dt
�@L
@ṙ
� − @L

@r
=mr̈ +m@�

@r
(D.3)
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along the trajectory, and this is simply Newton’s second law.
Hamilton’s principle is also called the principle of least action, since in most

cases the extremum is a minimum of the action, rather than a maximum or a saddle
point.

The power of this approach is that the Lagrangian is a scalar function. Hence it
is straightforward to compute as a function1 L(q, q̇, t) of arbitrary or generalized
coordinates q and their time derivatives q̇. Extremizing the action with L expressed
in this form yields Lagrange’s equations

d

dt
�@L
@q̇
� − @L

@q
= 0, (D.4)

which are the equations of motion in the generalized coordinates. This approach
evades the lengthy algebra that is often required to express vector differential equa-
tions, such as Newton’s second law, in non-Cartesian coordinates.

For a given set of generalized coordinates q, we define the generalized mo-
menta p to be

p ≡ �@L
@q̇
�
q,t

. (D.5)

In this approach the momentum p depends on the choice of the coordinate q, so q

and p are sometimes called a conjugate coordinate-momentum pair or a canoni-
cal coordinate-momentum pair.

The Hamiltonian is

H(q,p, t) ≡ p ⋅ q̇ −L(q, q̇, t), (D.6)

where it is understood that q̇ is to be eliminated in favor of q, p, and t using equation
(D.5).

As an example, in spherical coordinates q = (r, ✓,�) the Lagrangian (D.1) is

L(q, q̇, t) = 1

2
m(ṙ2 + r2✓̇2 + r2 sin2✓ �̇2) −m�(r, ✓,�, t), (D.7)

where the expression for �ṙ�2 is taken from equation (B.23). The corresponding
momenta are

pr = @L
@ṙ
=mṙ, p✓ = @L

@✓̇
=mr2✓̇, p� = @L

@�̇
=mr2 sin2✓ �̇. (D.8)

1 For notational simplicity, in this appendix we adopt the convention that symbols such as
�(r, t), L(q, q̇, t), and H(q,p, t) denote functions of position and velocity in phase
space rather than functions of the coordinates. Thus �(r, t) and �(q, t) have the same
value if r and q are coordinates of the same point in different coordinate systems.
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Notice that p� is simply the z-component of the angular momentum. The Hamilto-
nian is

H(q,p, t) = p2r
2m
+ p2✓
2mr2

+ p2�
2mr2 sin2 ✓

+m�(r, ✓,�, t). (D.9)

The analogous expressions for cylindrical coordinates are given in equations (D.25)–
(D.27).

D.1 Hamilton’s equations

The total derivative of each side of equation (D.6) is

dH = �@H
@q
�
p,t

⋅ dq + �@H
@p
�
q,t

⋅ dp + �@H
@t
�
q,p

dt (left side)

= dp ⋅ q̇ + p ⋅ dq̇ − �@L
@q
�
q̇,t

⋅ dq − �@L
@q̇
�
q,t

⋅ dq̇ − �@L
@t
�
q,q̇
dt (right side)

= dp ⋅ q̇ − �@L
@q
�
q̇,t

⋅ dq − �@L
@t
�
q,q̇
dt, (D.10)

where the second and fourth terms in the middle line have canceled because of equa-
tion (D.5). Since the first and third line must be the same, we conclude that

q̇ = �@H
@p
�
q,t

, �@H
@q
�
p,t

= −�@L
@q
�
q̇,t

, �@H
@t
�
q,p
= −�@L

@t
�
q,q̇

. (D.11)

We may combine the first two of these equations with equations (D.4) and (D.5) and
simplify the notation to obtain Hamilton’s equations,2

q̇ = @H
@p

, ṗ = −@H
@q

. (D.12)

The configuration space of a system is the n-dimensional space with coor-
dinates q = (q1, . . . , qn). The corresponding momentum space has coordinates(p1, . . . , pn). A system with n-dimensional configuration and momentum spaces is

2 The vectors on the right side of Hamilton’s equations define a direction in phase space,(@H�@p,−@H�@q), just as the gradient defines a direction (@H�@q,@H�@p). The
phase-space directions defined by these two vectors are orthogonal: the first vector points
along the direction in which the rate of change of H is zero, and the second points along
the direction in which the rate of change is as large as possible.
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said to have n degrees of freedom. Phase space is the 2n-dimensional space with
coordinates (q1, . . . , qn, p1, . . . , pn) ≡ (q,p) ≡ z; that is, z denotes a collection of
2n variables, with the first half being the values of the qi’s and the second half the
values of the pi’s. The position of a system in phase space describes its dynamical
state completely. Thus, through each point z0 in phase space there passes a unique
phase-space trajectory z(t), which gives the future and past phase-space coordi-
nates3 of the particle that has coordinates z0 at t = t0. No two distinct trajectories
can ever intersect.

In terms of the 2n-dimensional phase-space vector z ≡ (q,p), Hamilton’s equa-
tions can be written compactly as

dz

dt
= J@H

@z
, (D.13)

where the 2n × 2n symplectic matrix is

J ≡ � 0 I−I 0
� , (D.14)

with 0 and I the n × n zero and unit matrix respectively. The symplectic matrix has
the properties

J
−1 = JT = −J, J

2 = −I, det (J) = 1, (D.15)

where J
T is the transpose of J, and det (J) is its determinant.

D.2 Rotating reference frame

We can use Lagrange’s and Hamilton’s equations to find the equation of motion of a
particle in a rotating frame of reference.

Let r be the vector of Cartesian coordinates of the particle in an inertial reference
frame, that is, a frame in which an isolated body does not accelerate. The equation
of motion in the inertial frame is determined by the Lagrangian L(r, ṙ, t) given by
equation (D.1).

Now let q denote Cartesian coordinates of the particle in a frame that rotates
with angular velocity⌦(t) around the origin. We want to determine the Lagrangian
in the new coordinates, L(q, q̇, t).
3 Notice the imprecise use of the term “coordinates,” which refers both to the generalized

coordinates q that are conjugate to p, and to the phase-space coordinates (q,p).
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The rate of change of any physical vector u as observed in the rotating frame is
related to its rate of change in the inertial frame by

�du
dt
�
in

= �du
dt
�
rot

+⌦ × u. (D.16)

Thus the velocities observed in the inertial and rotating frames are related by

ṙ = q̇ +⌦ × q or q̇ = ṙ −⌦ × r. (D.17)

The kinetic energy per unit mass is
1

2
�ṙ�2 = 1

2
�q̇ +⌦ × q�2 = 1

2
�q̇�2 + q̇ ⋅ (⌦ × q) + 1

2
�⌦ × q�2

= 1

2
�q̇�2 +⌦ ⋅ (q × q̇) + 1

2
⌦

2�q�2 − 1

2
(⌦ ⋅ q)2; (D.18)

in deriving the last expression we have used the vector identities (B.9a) and (B.9c).
In the rotating coordinates, the Lagrangian (D.1) becomes

L(q, q̇, t) = 1

2
m�q̇�2+m⌦ ⋅(q×q̇)+ 1

2
m⌦2�q�2− 1

2
m(⌦ ⋅q)2−m�(q, t). (D.19)

Substituting this result into Lagrange’s equation (D.4) yields

q̈ = −@�
@q
− 2⌦ × q̇ − ⌦̇ × q +⌦2

q − (⌦ ⋅ q)⌦
= −@�

@q
− 2⌦ × q̇ − ⌦̇ × q −⌦ × (⌦ × q). (D.20)

The second, third and remaining terms on the right side are fictitious forces arising
from the rotation of the frame of reference; respectively, the Coriolis, Euler, and
centrifugal force. The centrifugal force per unit mass can be written as the negative
gradient of the centrifugal potential,

�cent(r) = 1

2
(⌦ ⋅ q)2 − 1

2
⌦

2�q�2 = − 1

2
�⌦ × q�2. (D.21)

The canonical momentum in the rotating frame is

p = @L
@q̇
=mq̇ +m⌦ × q. (D.22)

Notice that the canonical momentum in the rotating frame is the same as the Newto-
nian momentum in the inertial frame, mṙ (by the first of eqs. D.17), and is not equal
to mq̇. The Hamiltonian is

H(q,p, t) = p
2

2m
+m�(q, t) −⌦ ⋅ (q × p). (D.23)
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Since r and q are the same vector and p =mṙ, the factor q×p is simply the angular
momentum per unit mass L in the inertial frame. Therefore

H(q,p, t) = p
2

2m
+m�(q, t) −⌦ ⋅L. (D.24)

Thus, the rotation of the frame adds an extra term −⌦ ⋅L to the Hamiltonian of the
orbiting particle.

This analysis can also be carried out in cylindrical polar coordinates (Appendix
B.2.1). Here we assume for simplicity that the angular speed of the rotating frame is
constant and parallel to the positive z-axis, so ⌦ = ⌦ẑ. If (R,�, z) are cylindrical
coordinates in the inertial frame, then the azimuthal coordinate in the rotating frame
is ' = � −⌦t and the Lagrangian can be written (cf. eq. D.7)

L(q, q̇, t) = 1

2
m[Ṙ2 +R2('̇ +⌦)2 + ż2] −m�(R,$, z, t). (D.25)

The corresponding momenta are

pR = @L
@R
=mṘ, p' = @L

@'̇
=mR2('̇ +⌦), pz = @L

@ż
=mż, (D.26)

and the Hamiltonian is

H(q,p, t) = p2R
2m
+ p2'
2mR2

+ p2z
2m
+m�(R,', z, t) −⌦p'. (D.27)

Note that p' is simply the z-component of the angular momentum, so the last term
is the same as the last term of equation (D.24).

D.3 Poisson brackets

Let f(z) and g(z) be any two scalar functions of a set of phase-space coordinates
z = (q,p). The Poisson bracket is another scalar function of z, defined by

{f, g} ≡ @f
@q
⋅ @g
@p
− @f
@p
⋅ @g
@q

. (D.28)

An equivalent definition is

{f, g} = 2n�
i,j=1

Jij

@f

@zi

@g

@zj
= �@f

@z
�T J

@g

@z
. (D.29)
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Here “T” denotes the transpose of a vector or matrix, and the symplectic matrix J is
defined in equation (D.14).

The Poisson bracket of the phase-space coordinates themselves is

{zi, zj} = Jij , (D.30)

that is,

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = −{pi, qj} = �ij , (D.31)

where �ij is the Kronecker delta (eq. C.1). For any functions f(z), g(z), and h(z):
{f, g} = −{g, f}, (D.32a)
{f, f} = 0, (D.32b)
{fg, h} = f{g, h} + g{f, h}, (D.32c)

{fg, fh} = fh{g, f} + fg{f, h} + f2{g, h}, (D.32d)
0 = {{f, g}, h} + {{g, h}, f} + {{h, f}, g}. (D.32e)

The last of these, the only one that needs significant algebra to prove, is called the
Jacobi identity.

D.4 The propagator

The Poisson bracket can be regarded as an operator Lg , sometimes called the Lie
operator, that depends on the function g(z) and is defined by

Lgf ≡ {f, g}. (D.33)

Thus Lfg = −Lgf . Powers of this operator are

Ln

g f = LgLg�Lg�������������������������������������
n times

f = {�{{f, g}, g},�, g}, (D.34)

with L0

gf ≡ f . We can define the exponential of Lg using the Taylor series for the
exponential of a scalar:

exp(Lg) ≡ ∞�
n=0

Ln

g

n!
. (D.35)
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It is straightforward to show from the Jacobi identity (D.32e) that the commutator
of L is [Lf ,Lg] ≡ LfLg − LgLf = L{g,f}. (D.36)

Hamilton’s equations (D.13) may be written

ż = {z,H} or ż = LHz; (D.37)

here the Poisson bracket of a vector z = zin̂i with components zi along fixed unit
vectors n̂i is understood to be {z,H} = ∑i

n̂i{zi,H}.
The rate of change of any function f(z, t) along a trajectory determined by

Hamilton’s equations is

d

dt
f[z(t), t] = {f,H} + @f

@t
= LHf + @f

@t
. (D.38)

We now show that Hamilton’s equations have a simple formal solution. For
brevity we assume that the Hamiltonian is autonomous or time-independent, that
is, H(q,p, t) = H(q,p). This assumption is not restrictive, because any time-
dependent Hamiltonian can be converted to a time-independent one in an extended
phase space, as described in Box 2.1. The solution is motivated by the observation
that the differential equation ż = �z has the solution z(t) = exp(�t)z(0). The
solution for Hamilton’s equations has the analogous form

z(t) = Gtz(0), where Gt ≡ exp(tLH) (D.39)

is the propagator. To prove this, use equation (D.35) to write

exp �tLH) = ∞�
n=0

tn

n!
Ln

H . (D.40)

Then

ż(t) = dGt

dt
z(0) = d

dt

∞�
n=0

tn

n!
Ln

Hz(0) = ∞�
n=1

tn−1(n − 1)!Ln

Hz(0)
= LH

∞�
m=0

tm

m!
Lm

Hz(0) = LHz(t), (D.41)

consistent with equation (D.37). In going from the first line to the second, we have
made the replacement n→m + 1.
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D.5 Symplectic maps

The propagator Gt acts on a phase-space position z at time t0 to produce a new
position Z = Gtz, the image of z under the Hamiltonian flow after time t. The
Jacobian matrix G of the propagator is defined such that Gij(t,z) is the derivative
of the ith component of Gtz with respect to the jth component of z:

Gij(t,z) = @Zi

@zj
= @

@zj
[Gt(z)]i. (D.42)

Using Hamilton’s equations (D.13), the time derivative of the Jacobian matrix is

@Gij

@t
= @2Zi

@t@zj
= @

@zj

2n�
k=1

Jik

@H

@Zk

= 2n�
k,m=1

Jik

@2H

@Zk@Zm

@Zm

@zj
= 2n�

k,m=1
Jik

@2H

@Zk@Zm

Gmj . (D.43)

This can be written more compactly in matrix notation as

@G

@t
= JHG, where Hkm ≡ @2H

@Zk@Zm

(D.44)

is the Hessian matrix of the Hamiltonian. Notice that G is a function of t and z

while H is a function of Z.
Now consider

@

@t
G

T
JG = @GT

@t
JG +GT

J
@G

@t
= (JHG)TJG +GT

J
2
HG. (D.45)

Using the relations (ABC)T = CT
B

T
A

T and J
T
J = −J2 = I (eq. D.15) and ob-

serving that the Hessian is symmetric so H
T = H, we conclude that the expression

(D.45) vanishes. Since G = I when t = t0 we have4

G
T
JG = J or GJG

T = J. (D.46)

Any matrix satisfying these constraints, and by extension the operator G that gives
rise to G, is said to be symplectic. Thus the propagator for a phase-space flow
governed by Hamilton’s equations is symplectic.

4 The second of these expressions is proved by left-multiplying the first by GJ and then
right-multiplying by G−1J and using the relation J2 = −I (eq. D.15).
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A small volume element dz in phase space at time t = 0 is carried by the Hamil-
tonian flow into a new volume dZ at time t. The two volumes are related by

dZ = �det(G)�dz, (D.47)

where det(G) is the determinant of the Jacobian matrix G. From equation (D.46),�det(GT
JG)� = �det(J)� = 1. Since det(AB) = det(A)det(B) and det(AT) =

det(A) for any square matrices A and B, we conclude that �det(G)� = 1, so
dZ = dz. Thus volumes in canonical coordinates are conserved by a Hamiltonian
flow (Liouville’s theorem).

Note that if the operator G = G2G1 is the composition of two operators, G1

and G2, then its Jacobian matrix is the product of their two Jacobian matrices, G =
G2G1. From this result it is straightforward to show that the composition of two
symplectic operators is also symplectic.

For most purposes, the adjectives “symplectic” and “Hamiltonian” can be ap-
plied interchangeably to describe propagators in dynamical systems. The difference
is that “symplectic” describes a local property of a phase-space flow because it de-
pends only on the Jacobian matrix, while “Hamiltonian” describes a global property,
the existence of a function H(q,p) that governs the flow through Hamilton’s equa-
tions.

Informally, a symplectic map is a generalization of an area-preserving map to a
space of 2n dimensions where n > 1.

D.6 Canonical transformations and coordinates

The advantage of Lagrange’s equations is that they retain their form under any co-
ordinate transformation Q = Q(q, t). Hamilton’s equations allow an even wider
range of transformations, of the form

Q =Q(q,p, t), P = P(q,p, t). (D.48)

Not all such transformations preserve the form of Hamilton’s equations. Neverthe-
less, those that do—called canonical transformations—are sufficiently general to
make Hamilton’s equations a more powerful tool than Lagrange’s for most problems
in classical mechanics.

Consider a transformation from the original phase-space coordinates z = (q,p)
to some new set of phase-space coordinates Z. Hamilton’s equations (D.12) become

dZi

dt
=�

j

@Zi

@zj

dzj
dt
=�

jk

GijJjk

@H

@zk
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= �
jkm

GijJjk

@H

@Zm

@Zm

@zk
=�

m

(GJG
T)im @H

@Zm

, (D.49)

where G is the matrix with components Gij defined in equation (D.42), although
now G is derived from an operator G that describes a coordinate transformation at
fixed time rather than time evolution in a fixed set of coordinates. Thus the form
of Hamilton’s equations is preserved if and only if equation (D.46) is satisfied; in
other words canonical transformations are symplectic. The reverse is also true: all
symplectic transformations are canonical. It is remarkable that these results are in-
dependent of the form of the Hamiltonian.

Any set of phase-space coordinates in which Hamilton’s equations are valid is
said to be a set of canonical coordinates or variables. The position r and New-
tonian momentum mṙ in Cartesian coordinates are canonical and so is any set of
coordinates derived from these by a canonical transformation.

Phase-space volumes are conserved by canonical transformations; this is an ob-
vious consequence of the proof of Liouville’s theorem following equation (D.47).

The Poisson bracket of any two of the new coordinates is (eq. D.29)

{Zk, Zl} =�
ij

Jij

@Zk

@zi

@Zl

@zj
=�

ij

JijGkiGlj = (GJG
T)kl = Jkl, (D.50)

where the last equation follows from (D.46) if the transformation is canonical and
thus symplectic. Thus the Poisson bracket relation (D.30) is preserved in canonical
transformations.

Similarly, let f and g be any two functions and write {f, g}z for their Poisson
bracket with respect to the variables z = (q,p). Then if Z is a set of canonical
coordinates,

{f, g}z =�
ij

Jij

@f

@zi

@g

@zj
= �

ijkl

Jij

@f

@Zk

@Zk

@zi

@g

@Zl

@Zl

@zj

= �
ijkl

JijGkiGlj

@f

@Zk

@g

@Zl

=�
kl

Jkl

@f

@Zk

@g

@Zl

= {f, g}Z. (D.51)

Thus the Poisson bracket can be taken with respect to any set of canonical variables.
We now show that a transformation from z = (q,p) to Z = (Q,P) is canonical

if
P ⋅ dQ = p ⋅ dq or Q ⋅ dP = q ⋅ dp. (D.52)
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We only prove the first of these results since the proof of the second is almost iden-
tical. In index notation, the first of equations (D.52) is

�
ij

ZiKijdZj =�
ij

ziKijdzj , where K ≡ � 0 0

I 0
� . (D.53)

We consider the new coordinates to be a function of the old, Z(z), with Jacobian
matrix Gij = @Zi�@zj . Then equation (D.53) can be written

�
ijk

ZiKijGjkdzk =�
ij

ziKijdzj . (D.54)

This is satisfied for arbitrary dz if and only if

�
ij

ZiKijGjk =�
i

ziKik. (D.55)

Differentiating this result with respect to zm gives

�
ij

GimKijGjk +�
ij

ZiKij

@2Zj

@zk@zm
=Kmk. (D.56)

Now switch the indices m and k, and in the first sum switch the dummy indices i
and j:

�
ij

GimKjiGjk +�
ij

ZiKij

@2Zj

@zk@zm
=Kkm. (D.57)

Subtract (D.57) from (D.56) and use the result Kij −Kji = −Jij , where J is the
symplectic matrix. The result is GT

JG = J, which implies that the transformation
is symplectic and therefore canonical.

D.6.1 Generating functions
Let (q,p) and (Q,P) be canonical variables (“old” and “new,” respectively), with
H(q,p, t) =H ′(Q,P, t) the corresponding Hamiltonians. The trajectories in both
sets of coordinates must be extrema of the action (D.2). Using equation (D.6), the
action can be written

� t1

t0

dt [p ⋅ q̇ −H(q,p, t)] = � t1

t0

dt [P ⋅ Q̇ −H ′(Q,P, t)]. (D.58)
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The two extremal trajectories must be the same, a requirement that can be satisfied
if the two integrands satisfy the relation

p ⋅ q̇ −H(q,p, t) = P ⋅ Q̇ −H ′(Q,P, t) + dS

dt
, (D.59)

where the generating function S is a function of the time and phase-space coordi-
nates.

The generating function can be regarded as a function of (q,p, t) or (Q,P, t),
or a mixture of the old and new phase-space coordinates. First suppose that S ≡
S1(q,Q, t). Then equation (D.59) becomes

p ⋅ q̇ −H(q,p, t) = P ⋅ Q̇ −H ′(Q,P, t) + @S1

@t
+ @S1

@q
⋅ q̇ + @S1

@Q
⋅ Q̇. (D.60)

This can be rewritten as

�p − @S1

@q
� ⋅ q̇−�P + @S1

@Q
� ⋅ Q̇−�H(q,p, t) −H ′(Q,P, t) + @S1

@t
� = 0. (D.61)

Since q and Q can be varied independently, this equation holds identically only if
all of the terms in square brackets vanish, which requires

p = @S1

@q
, P = −@S1

@Q
, H ′(Q,P, t) =H(q,p, t) + @S1

@t
. (D.62)

Every well behaved function S1(q,Q) defines a canonical transformation through
these relations. The definition is implicit since the generating function depends on
both old and new coordinates, which is an inconvenience except in the simplest
transformations.

Now let S = S2(q,P, t) −Q ⋅P. The analog of equations (D.62) is

p = @S2

@q
, Q = @S2

@P
, H ′(Q,P, t) =H(q,p, t) + @S2

@t
. (D.63)

Let S = S3(Q,p, t) + q ⋅ p. Then (D.62) becomes

q = −@S3

@p
, P = −@S3

@Q
, H ′(Q,P, t) =H(q,p, t) + @S3

@t
. (D.64)

Finally, let S = S4(P,p, t) + q ⋅ p −Q ⋅P. Then (D.62) becomes

q = −@S4

@p
, Q = @S4

@P
, H ′(Q,P, t) =H(q,p, t) + @S4

@t
. (D.65)
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D.7 Angle-action variables

In rare but important cases, the trajectories in a Hamiltonian system with n degrees
of freedom (i.e., a 2n-dimensional phase space) admit n independent integrals of
motion, that is, phase-space functions Ci(q,p), i = 1, . . . , n that are constant along
all trajectories. Such systems are said to be integrable (see Appendix D.8). Inte-
grable systems include all autonomous Hamiltonians with one degree of freedom,
a test particle orbiting in a spherically symmetric time-independent potential, and
the gravitational two-body problem, but not the gravitational N -body problem for
N ≥ 3.

When n integrals of motion are present, the trajectory of the system is restricted
to an n-dimensional manifold in the 2n-dimensional phase space. It can be shown
that this manifold is an n-dimensional torus (e.g., Arnold 1989).

Much of the power of Hamiltonian mechanics lies in the ability to choose co-
ordinates and momenta that simplify the dynamics. The dynamics is simplest if the
momenta are integrals of motion, and because the manifold on which the integrals
are fixed is a torus, it is natural for the coordinates to range from 0 to 2⇡. Such
pairs of coordinates and momenta are called angle-action variables. If the Hamil-
tonian has dimensions of energy (mass times velocity squared) then the actions must
have dimensions of angular momentum, or energy divided by frequency, to satisfy
Hamilton’s equations.

If we denote the angle-action variables by (✓,J), Hamilton’s equations read

dJ

dt
= −@H

@✓
,

d✓

dt
= @H
@J

. (D.66)

Since the actions are integrals of motion, @H�@✓ must vanish, so the Hamiltonian
depends only on the actions, H = H(J). The equation of motion for the angles is
then easy to solve,

✓(t) = ✓0 +⌦t, where ⌦(J) = @H
@J

. (D.67)

Thus knowing the n integrals (the actions) is sufficient to allow integrating the 2n
Hamilton’s equations exactly.

To find the canonical transformation from variables (q,p) to angle-action co-
ordinates (✓,J), we assume that the transformation is described by a generating
function S2(q,J). Then from equations (D.63),

p = @S2(q,J)
@q

, ✓ = @S2(q,J)
@J

. (D.68)
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On the n-torus there are n topologically distinct closed curves or cycles �i, that is,
curves that cannot be continuously deformed into one another. The first of equations
(D.68) shows that along one of these curves

S2(q,J) = � q

q0

dq
′ ⋅ p(J,q′) + c(J), (D.69)

where q0 is an arbitrary point on the torus, c(J) is an arbitrary function, and the
integral is unchanged by continuous deformations of the path from q0 to q. After a
circuit of the closed curve �i the generating function has changed by

�S2(J) = �
�i

dq
′ ⋅ p(J,q′). (D.70)

Thus the generating function is multi-valued on the torus. The increment in S2 in
one circuit of the curve �i is the area in phase space enclosed by the curve, and
this area is independent of deformations of the curve. Because S2 is multi-valued,
✓ = @S2�@J is also multi-valued. To satisfy the condition that the angle variables
vary from 0 to 2⇡ during one circuit of the closed curve �i we need

2⇡ = @�S2

@Ji

; (D.71)

here we have associated the ith component of the action vector J with the area
enclosed by the curve �i. This equation is satisfied if we choose

Ji = 1

2⇡ ��i

dq
′ ⋅ p(J,q′). (D.72)

D.8 Integrable and non-integrable systems

In this section we summarize some geometric features of trajectories in Hamiltonian
systems, mostly without providing formal proofs—for more detail, see books such as
Arnold (1989), Tabor (1989), Lichtenberg & Lieberman (1992) and Dumas (2014).
We consider only autonomous Hamiltonians since all Hamiltonians can be converted
to this form by extending the phase space (Box 2.1). We assume that the system has
n degrees of freedom so the phase space has 2n dimensions.

Systems with one degree of freedom are straightforward to analyze, at least in
principle. The Hamiltonian H(q, p) = E where the energy E is a constant or integral
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of motion, so this equation can be inverted to give the momentum as a function of
the coordinate and energy,

p = p(q,E). (D.73)

Using this relation, the function @H�@p can be rewritten as a function of q and E,
which we call g(q,E); then Hamilton’s equation q̇ = @H�@p = g(q,E), which can
be integrated to give

t = � q

q0

dq′
g(q′,E) , (D.74)

and this can be inverted to give q(t,E). Thus the determination of the trajectory
has been reduced to the determination of inverse functions and a quadrature (the
evaluation of an indefinite integral). This process is analytic in simple cases and can
always be done numerically.

Systems with two or more degrees of freedom can sometimes be solved simi-
larly. Consider a canonical transformation to new variables (Q,P), defined by a
generating function S2(q,P). We seek variables such that the new Hamiltonian
H ′(Q,P) depends only on the momenta P. Using equations (D.63) this require-
ment can be written

H �q, @S2

@q
(q,P)� =H ′(P). (D.75)

This is the Hamilton–Jacobi equation, a first-order partial differential equation for
the generating function S2(q,P). Since H ′(P) is independent of the coordinates
Q, Hamilton’s equation Ṗ = −@H ′�@Q implies that each of the n momenta Pi is
an integral of motion. Moreover Hamilton’s equation Q̇ = @H ′�@P implies that
Q increases linearly with time, Q = ⌦t + const, where ⌦ = @H ′�@P is constant
because it depends only on the momenta. Therefore we have solved the equations of
motion if we can find the generating function S2(q,P).

In general the Hamilton–Jacobi equation is no easier to solve than Hamilton’s
equations of motion in the original coordinates. However, in some systems the
Hamilton–Jacobi equation is separable, that is,

H �q, @S2

@q
(q,P)� = n�

i=1
Hi �qi, @S2i

@qi
(qi,P)� . (D.76)

Since each coordinate qi is independent, equation (D.75) is equivalent to the n sep-
arate Hamilton–Jacobi equations

Hi �qi, @S2i

@qi
(qi,P)� =H ′i(P), where

n�
i=1

H ′i(P) =H ′(P). (D.77)
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Since the momenta P are constants along any trajectory, each of these equations can
be solved by a quadrature to yield the generating function S2i(qi,P) and thus the
relation between the old and new coordinates and momenta.

Hamiltonians of this kind are said to be separable or integrable. Any integrable
system with n degrees of freedom has n integrals of motion, the n components of
the momentum P. The most important examples are the Hamiltonian for the n-
dimensional harmonic oscillator and the Hamiltonian for motion of a test particle in
a central potential, including the potential −GM�r that governs the Kepler problem.

In the special case of angle-action variables (Appendix D.7), the conserved mo-
menta are the actions, and the phase space is periodic in the angle coordinates with
period 2⇡. Each trajectory lies on an n-dimensional torus; the surface of the torus is
defined by the n actions, and the position on the surface is defined by the n angles. If
the frequencies d✓i�dt = ⌦i are incommensurate, the trajectory eventually densely
covers the whole surface of the torus, while if they are commensurate—as in the
Kepler problem—the trajectory traces a 1-dimensional curve on the torus. The tori
are sometimes called invariant tori since a trajectory that is on the torus at any time
can never leave it.

Most Hamiltonians are not integrable. However, many of the systems that are
important in celestial mechanics are near-integrable in the sense that their Hamil-
tonians can be written in the form

H(✓,J) =H0(J) + ✏H1(✓,J), (D.78)

where H0 is integrable, (✓,J) are angle-action variables for H0, and ✏ is a small
parameter. The most important example from our perspective is a multi-planet sys-
tem, in which H0(J) is the sum of the Kepler Hamiltonians for each planet, and
✏H1(✓,J) is the gravitational potential due to interactions among the planets. The
system is near-integrable because planetary masses are much smaller than stellar
masses.

The centerpiece of the study of near-integrable Hamiltonian systems is the Kol-
mogorov–Arnold–Moser or KAM theorem. Loosely speaking, the theorem states
that if (i) H0(J) is a nonlinear function of J; (ii) H1(✓,J) is sufficiently smooth;
and (iii) ✏ is sufficiently small, then most of phase space remains filled with invariant
tori.5 In other words most of the invariant tori are distorted by the perturbation but
not destroyed. Orbits on the surviving tori are called regular orbits.

5 “Most” means that the measure of the phase space in which the tori do not survive is small
and goes to zero as ✏→ 0.
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Trajectories that do not lie on an invariant torus are extremely sensitive to small
changes in the initial conditions or the parameters of the Hamiltonian. Specifically,
if z(t) is an orbit that does not lie on an invariant torus, and �z(t) is its separation
from a nearby orbit, then as �t� → ∞ the separation grows exponentially, ��z(t)� ∝
exp(�t��tL) so long as ��z(t)� � �z(t)�. Trajectories with this property are said
to be chaotic. The growth time tL is called the Liapunov time. This exponential
divergence implies that, in practice, the future or past of the trajectory cannot be
computed over timescales� tL even though the trajectory is deterministic.

The behavior of chaotic trajectories in systems with 2 degrees of freedom is fun-
damentally different from the behavior in phase spaces of higher dimension. With 2
degrees of freedom, the phase space has 4 dimensions, and conservation of energy
restricts the motion to a 3-dimensional manifold in phase space, sometimes called
the energy surface. A 2-torus has 2 dimensions, so an invariant torus divides the
3-dimensional space into volumes inside and outside the torus. Chaotic trajectories
inside the torus are therefore permanently trapped inside, just as air molecules inside
an inner tube are trapped inside the tube. In regions of phase space with a significant
density of invariant tori, the chaotic trajectories are trapped between two tori, so their
actions always remain close to their initial values. In other words the exponential
divergence of nearby chaotic orbits is seen only in the angles.

In contrast, when the number of degrees of freedom n ≥ 3, the energy surface
has 2n − 1 dimensions, the tori have n dimensions, and the difference between the
dimensionality of the energy surface and the tori is n − 1 > 1. Thus the tori do
not divide the energy surface, so any chaotic trajectory is free to wander throughout
the available phase space. The actions will therefore diffuse away from their initial
values, a process usually called Arnold diffusion, although this is not diffusion in
the usual sense of statistical mechanics. In regions where the invariant tori occupy a
large fraction of phase space, the rate of Arnold diffusion may be extremely slow6

and impractical to calculate except by numerical experiments.
All of these results are strictly valid only when the strength of the perturbing

Hamiltonian ✏H1(✓,J) is extremely small—far smaller than implied by typical ra-
tios of planetary to stellar masses. Nevertheless the qualitative picture that emerges
from the KAM theorem appears to remain valid for relatively large values of the
perturbation parameter ✏. Numerical experiments show that as ✏ grows, the density
of invariant tori declines until eventually the tori disappear in macroscopically large
regions of phase space. The disappearance of the last torus in a region of phase space

6 Typically the instability time is of order exp[↵✏−�], where ↵ and � are positive constants
and � < 1 (see Yalinewich & Petrovich 2020).
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allows orbits to wander rapidly throughout that region, a phenomenon called global
chaos. The generic structure of phase space is often described as “islands” of nested
invariant tori surrounded by a “sea” of chaotic orbits. The sea can also be thought
of as a single chaotic orbit, since any one orbit will eventually pass arbitrarily close
to every point in the sea. For examples of this process, see Figure F.1 for the stan-
dard map, and Figures 3.3 and 3.4 for the circular, restricted three-body problem.
The value of the perturbation parameter ✏ required for the emergence of a chaotic
sea can be predicted approximately by the resonance overlap criterion, described in
Appendix F.

D.9 The averaging principle

We wish to study the behavior of trajectories in the near-integrable Hamiltonian
(D.78), having n degrees of freedom. We assume that the unperturbed Hamiltonian
H0(J) is independent of k of the n actions, so we may write the actions as J ≡(Js,1, . . . , Js,k, Jf,1, . . . , Jf,n−k), where @H0�@Js,i = 0 and @H0�@Jf,i �= 0. The
angles conjugate to Js and Jf are ✓s and ✓f . The subscript “s” stands for “slow,”
since the rate of change of ✓s under the influence of H0 is ✓̇s = @H0�@Js = 0, while
the rate of change of the components of ✓f (the “fast” angles) is nonzero.

The averaging principle consists of the replacement of the Hamiltonian (D.78)
by the averaged Hamiltonian

H(✓s,J) =H0(J) + ✏H1(✓s,J), (D.79)

where
H1(✓s,J) ≡ 1(2⇡)n−k � d✓f H1(✓s,✓f ,J); (D.80)

in words, H(✓s,J) is the average of H(✓,J) over the fast angles. Since H(✓s,J)
is independent of the fast angles, their conjugate actions Jf are conserved, so the
averaged Hamiltonian can be considered to have only k degrees of freedom.

The averaging principle can also be applied either to Hamiltonians in which the
slow frequencies @H0�@Js are small but not zero, or to time-dependent Hamiltoni-
ans of the form

H(✓,J, t) =H0(J, t) + ✏H1(✓,J, t), (D.81)

so long as the changes in the Hamiltonian are slow compared to the orbital frequen-
cies⌦ = @H0�@Jf . Note that the averaging principle may fail if there is a resonance
or near-resonance between two of the fast frequencies.
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Arnold (1989, p. 292) has commented: “this principle is neither a theorem, an
axiom, nor a definition, but rather a physical proposition, i.e., a vaguely formulated
and, strictly speaking, untrue assertion.” For example, if the original Hamiltonian
has n = 2 degrees of freedom and k = 1 slow action, a significant fraction of phase
space may be covered by chaotic orbits, but the averaged Hamiltonian will have
only one degree of freedom so it is always integrable. Despite these concerns, there
is strong analytic and numerical evidence that the averaging principle provides an ac-
curate description of the slow evolution of dynamical systems that are close enough
to being integrable.

D.10 Adiabatic invariants

Informally, an adiabatic invariant of a dynamical system is a function of the phase-
space position that remains nearly constant along a trajectory when the parameters
of the system are changed slowly.

In more detail, suppose that the Hamiltonian of the system is H(z,�), where
z = (q,p) and � is a parameter (e.g., the mass of the central star in a planetary
system). For simplicity we focus on the case of a single parameter, although the
arguments below can be generalized to several parameters.

During the interval 0 ≤ t ≤ ⌧ , the parameter varies as �(t) = f(t�⌧) with ⌧
much larger than the characteristic dynamical time in the system (e.g., the orbital
period P of a planet). Over a short period of time near t = 0, the trajectory of the
system will not differ significantly from a trajectory of the “frozen” system in which
� is fixed at �0 = f(0), and we call this frozen trajectory z0(t). Similarly, near
t = ⌧ the trajectory will be close to a trajectory in the frozen system with �1 = f(1),
which we call z1(t). An adiabatic invariant is a scalar function of � and the frozen
trajectory, A[z(t),�], with the property that A[z1(t),�1] − A[z0(t),�0] → 0 as
⌧ →∞.

The existence of adiabatic invariants is remarkable, because it implies that some
properties of the trajectory at t = ⌧ are independent of the history of the evolution of
the parameter from �0 to �1. In other words the adiabatic invariant is independent
of the function f(x) for 0 < x < 1, so long as f(0) and f(1) are fixed, f(x) is
sufficiently smooth, and there are no resonances.

To find the adiabatic invariants of an integrable system, we revisit the derivation
of angle-action variables in Appendix D.7. Let S2(q,J,�) be the generating func-
tion for the angles and actions, now time-dependent because of the time dependence
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of �. Then equation (D.68) is generalized to

p = @S2(q,J,�)
@q

, ✓ = @S2(q,J,�)
@J

, H ′(✓,J, t) =H(J,�) + @S2

@�

d�

dt
.

(D.82)
The generating function S2 is multi-valued and increases by �S2 = 2⇡Ji when ✓i
increases from 0 to 2⇡. Therefore S∗ ≡ S2 − 2⇡J ⋅ ✓ is periodic in ✓ with zero
average over any angle, and we can write

H ′(✓,J, t) =H(J,�) + @S∗
@�

d�

dt
. (D.83)

Since d��dt is of order ��⌧ , with ⌧ large, this Hamiltonian is near-integrable and
has the form (D.81). Therefore we can apply the averaging principle, which states
that the trajectory can be approximated by

H
′(✓,J, t) =H(J,�) + @S∗

@�

d�

dt
. (D.84)

Since the average of S∗ over any angle vanishes, S
∗ = 0. Therefore H

′(✓,J, t) =
H(J,�), so the averaged Hamiltonian is independent of all the angles. Thus the ac-
tions are constant in the averaged Hamiltonian, which implies that they are adiabatic
invariants in the original (unaveraged) Hamiltonian. Since the action is proportional
to the area enclosed by the orbit in phase space (eq. D.72), an equivalent statement
is that the area enclosed by an orbit is an adiabatic invariant.

If the change in parameters is sufficiently smooth (i.e., if f(x) is analytic)
then the actions are conserved to remarkably high accuracy, with an error of order
exp(−k⌧�P ) where k is a positive constant. See Lichtenberg & Lieberman (1992)
or Henrard (1993) for a more thorough discussion of adiabatic invariants in classical
mechanics.

D.11 Rigid bodies

The inertia tensor I of a body with density distribution ⇢(r) is defined by

Iij ≡ � dr⇢(r)(r2�ij − rirj), (D.85)
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where r = (r1, r2, r3) = (x, y, z) is the position relative to the center of mass. An
alternative formula is

I ≡ � dr
′ ⇢(r′)

�������
y2 + z2 −xy −xz−xy z2 + x2 −yz−xz −yz x2 + y2

�������
. (D.86)

The principal axes of the body are those in which the inertia tensor is diagonal; it is
always possible to find such axes because the inertia tensor is symmetric (Iij = Iji).
In this principal-axis frame,

Ixx = A ≡ � dr⇢(r)(y2 + z2),
Iyy = B ≡ � dr⇢(r)(x2 + z2),
Izz = C ≡ � dr⇢(r)(x2 + y2), (D.87)

and Ixy = Ixz = Iyz = 0.

D.11.1 Rotation of a rigid body
Consider a rigid body that rotates about its center of mass at r = 0. Its kinetic energy
and spin angular momentum are

T = 1

2 � dr⇢(r)�v(r)�2, S = � dr⇢(r)r × v, (D.88)

where v(r) is the velocity at r. If the angular velocity of the body is !, then v(r) =
! × r (eq. D.17). Using the vector identity (B.9a), we have

T = 1

2 � dr⇢(r)v ⋅ (! × r) = 1

2 � dr⇢(r)! ⋅ (r × v) = 1

2
! ⋅ S. (D.89)

Moreover using the identity (B.9b),

S = � dr⇢(r)r × (! × r) = � dr⇢(r)[r2! − r(! ⋅ r)]; (D.90)

thus

Sj = 3�
k=1

Ijk!k or S = I ⋅!, (D.91)

where I is the inertia tensor defined in equation (D.85). Combining (D.89) and
(D.91), we have

T = 1

2

3�
j,k=1

!jIjk!k = 1

2
! ⋅ I ⋅!. (D.92)
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D.11.2 Euler’s equations
If the body is subjected to an external torque N, then the rate of change of the spin
angular momentum in an inertial frame is (dS�dt)in = N. We transform to the
rotating principal-axis frame; in this frame the rate of change of angular momentum
is (eq. D.16)

�dS
dt
�
rot

= �dS
dt
�
in

−! × S =N −! × S. (D.93)

Using equation (D.91),

�dI ⋅!
dt
�
rot

+! × (I ⋅!) =N. (D.94)

In the principal-axis system, the inertia tensor is diagonal and time-independent, so
we arrive at Euler’s equations

I11!̇1 + (I33 − I22)!2!3 = N1,

I22!̇2 + (I11 − I33)!3!1 = N2,

I33!̇3 + (I22 − I11)!1!2 = N3. (D.95)

D.11.3 Hamilton’s equations for a rotating rigid body
The Euler angles ↵, �, �, described in Appendix B.6, can be used as generalized
coordinates that relate an inertial reference frame to a frame fixed in the body. We
choose these such that the body frame (x′, y′, z′) is the principal-axis frame. Then
from equations (B.65b), (D.87), and (D.92), the kinetic energy is

T = 1

2
A!2

x′ + 1

2
B!2

y′ + 1

2
C!2

z′
= 1

2
A(↵̇ sin� sin� + �̇ cos�)2 + 1

2
B(↵̇ sin� cos� − �̇ sin�)2

+ 1

2
C(↵̇ cos� + �̇)2. (D.96)

The Lagrangian can be written L(↵,�,�, ↵̇, �̇, �̇) = T − �(↵,�,�), where �
is the potential energy as a function of the orientation of the body. The generalized
momenta are

p↵ = @L
@↵̇
= A!x′ sin� sin� +B!y′ sin� cos� +C!z′ cos�,

p� = @L
@�̇
= A!x′ cos� −B!y′ sin�,
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p� = @L
@�̇
= C!z′ . (D.97)

It is straightforward to solve these for ! in terms of the momenta:

!x′ = 1

A sin�
(p↵ sin� + p� sin� cos� − p� cos� sin�),

!y′ = 1

B sin�
(p↵ cos� − p� sin� sin� − p� cos� cos�),

!z′ = p�
C

. (D.98)

Since Sz′ = C!z′ , the momentum p� is simply the projection of the total spin
angular momentum along the body-fixed z′-axis. It is straightforward to show, using
either equation (B.61) or equation (7.39), that p↵ is the projection of the spin angular
momentum along the z-axis of the original (x, y, z) reference frame.

The Hamiltonian Hrot(↵,�,�, p↵, p� , p�) = p ⋅ q̇ − L = q̇ ⋅ (@L�@q̇) − L.
Now L = T −�, � is independent of q̇, and T is a quadratic function of q̇, so it is
straightforward to show that H = T +�. Thus

Hrot = 1

2A sin
2 �
(p↵ sin� + p� sin� cos� − p� cos� sin�)2

+ 1

2B sin
2 �
(p↵ cos� − p� sin� sin� − p� cos� cos�)2

+ 1

2C
p2� +�(↵,�,�). (D.99)

If the potential � is zero or independent of ↵, the Hamiltonian is independent of the
coordinate ↵, so the momentum p↵ is conserved.

The Hamiltonian can be simplified by a canonical transformation to the Andoyer
variables described in §7.3.



Appendix E

Hill and Delaunay variables

A basic task in celestial mechanics is to develop canonical coordinates and momenta
in which trajectories in the Kepler potential can be described as simply as possible.
This can be done by finding angle-action variables (Appendix D.7) for the Kepler
Hamiltonian (1.80). An additional benefit of angle-action variables is that they are
adiabatic invariants (Appendix D.10) and therefore are conserved during slow vari-
ations in the parameters of the Hamiltonian.

E.1 Hill variables

We begin with the usual Cartesian coordinates r and v = ṙ for a test particle in
6-dimensional phase space.1 We define the Hill variables

q = (r,w,⌦), p = (ṙ, L,Lz). (E.1)

Here r and ṙ are the radius and radial velocity, L = r × v is the angular momentum
per unit mass, L = �L�, Lz = L cos I , w = ! + f , and !, f , ⌦ and I are the usual
orbital elements seen in Figure 1.2: argument of periapsis, true anomaly, longitude
of the ascending node, and inclination.

We now show that the Hill variables are a canonical coordinate-momentum pair.
The position vector r is completely determined by the orbital elements r, w, ⌦ and
I . A small change dr produces a change in position drr̂. A change dw corresponds

1 This derivation partly follows Laskar (2017).

541



542 APPENDIX E. HILL AND DELAUNAY VARIABLES

to an infinitesimal rotation about the orbit normal L̂, which gives rise to a change
in position dr = dw L̂ × r. Similarly, a change dI corresponds to a rotation about
the line of nodes, whose direction is defined by a unit vector n̂ = (cos⌦, sin⌦,0)
(Figure 1.2), and gives rise to a change in position dr = dI n̂ × r. Finally, a change
d⌦ corresponds to an infinitesimal rotation about the z-axis, which gives rise to a
change in position dr = d⌦ ẑ × r. Thus

dr = dr r̂ + dw L̂ × r + dI n̂ × r + d⌦ ẑ × r. (E.2)

Taking the dot product with the velocity v results in

v ⋅ dr = drv ⋅ r̂ + dwv ⋅ (L̂ × r) + dI v ⋅ (n̂ × r) + d⌦v ⋅ (ẑ × r)
= dr ṙ + dw L̂ ⋅ (r × v) + dI n̂ ⋅ (r × v) + d⌦ ẑ ⋅ (r × v); (E.3)

in the second line we have used the vector identity (B.9a) to rearrange each of the last
three terms. Since r × v = L, the angular momentum, and n̂ ⋅L = 0, this expression
simplifies to

v ⋅ dr = ṙ dr +Ldw +Lz d⌦ = p ⋅ dq, (E.4)
where the last equation follows from the definition (E.1) of the Hill variables. Ac-
cording to equation (D.52), the conservation of this dot product proves that the trans-
formation from Cartesian coordinates and momenta to Hill variables is canonical.

E.2 Delaunay variables

Derivations of these or closely related variables are given in many textbooks (Landau
& Lifshitz 1976; Goldstein et al. 2002; Binney & Tremaine 2008); however, we may
simplify those derivations by starting with the Hill variables.

We consider a canonical transformation from the Hill variables (E.1) to new
coordinates and momenta (Q,P) defined by the generating function

S2(q,P) = P2w + P3⌦ + s(r,P1, P2). (E.5)

Then from equations (D.63) we have

L = @S2

@w
= P2, Lz = @S2

@⌦
= P3, Q3 = @S2

@P3

= ⌦; (E.6)

thus the second and third new momenta are the same as the old, as is the third
coordinate. We also have

ṙ = @S2

@r
= @s
@r

, (E.7)
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which is satisfied if we define (cf. eq. 1.20)

s(r,P1, P2) = � r

dr′ � �2E + 2GM

r′ − P 2

2

r′2 �
1�2

. (E.8)

Here E is the energy per unit mass of the Kepler orbit, considered to be a function
of P1 and P2 = L. The integral starts at periapsis and follows the orbit in and out;
� = +1 as the radius grows from periapsis to apoapsis, −1 as it shrinks back to
periapsis, and so forth.

The first coordinate is then

Q1 = @s(r,P1, L)
@P1

= @E(P1, L)
@P1

� r

dr′ � �2E + 2GM

r′ − L2

r′2 �
−1�2

. (E.9)

At this point we replace E = − 1

2
GM�a and L = [GMa(1−e2)]1�2 by the semima-

jor axis a and eccentricity e, and change the dummy variable from radius to eccentric
anomaly, setting r′ = a(1 − e cosu′) (eqs. 1.28, 1.32, 1.46). The integral simplifies
to

Q1 = (GM)1�2
2a1�2

@a

@P1

� du′ (1 − e cosu′)� sgn(sinu′). (E.10)

Since both � and sgn(sinu′) are +1 when the radius is increasing and −1 when it is
decreasing, the factor � sgn(sinu′) is always unity; and since the integral starts at
periapsis, where u = 0,

Q1 = (GM)1�2
2a1�2

@a

@P1

(u − e sinu). (E.11)

We are free to choose @P1�@a = 1

2
(GM)1�2�a1�2. Then P1 = (GMa)1�2, a

quantity we call ⇤ throughout this book, and Kepler’s equation (1.49) implies that
Q1 = `, the mean anomaly.

A similar analysis for Q2 yields

Q2 = w − (1− e2)1�2� u

0

du′
1 − e cosu′ = w − 2 tan−1 ��1 + e1 − e�

1�2
tan

1

2
u� = w − f,

(E.12)
where the last equality follows from equation (1.51b). Since w = f +!, we conclude
that Q2 = !, the argument of periapsis.

In summary, the new canonical coordinates and momenta (Q,P), called the
Delaunay variables, are

`, ⇤ = (GMa)1�2,
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!, L = [GMa(1 − e2)]1�2,
⌦, Lz = L cos I. (E.13)

The coordinates (`,!,⌦) vary in the range 0 to 2⇡, and the Kepler Hamiltonian
(1.85) depends only on the momenta, not the coordinates (in fact it depends on only
one of the three momenta). Therefore the Delaunay variables are also angle-action
variables for the Kepler Hamiltonian. Several canonical coordinate-momentum pairs
derived from Delaunay variables are described in §1.4.



Appendix F

The standard map

The standard map, also known as the Chirikov–Taylor map, is a map from the(x, y) plane into itself. The map is

yn+1 = yn +K sinxn, xn+1 = xn + yn+1 = xn + yn +K sinxn. (F.1)

The map depends on one parameter K, which can be chosen to be positive (if K < 0,
simply replace xn by xn+⇡ to obtain a map with K > 0). The map is area-preserving
since the Jacobian determinant is unity:

�����������������

@xn+1
@xn

@xn+1
@yn

@yn+1
@xn

@yn+1
@yn

�����������������
= � 1 +K cosxn 1

K cosxn 1
� = 1. (F.2)

If the sequence {xn, yn} is a solution of equations (F.1), then so is {xn + 2⇡p, yn},
where p is an arbitrary integer. Thus the dynamics can be restricted to a cylinder by
treating xn as the azimuthal coordinate of the cylinder and taking the modulus of x
relative to 2⇡ after every step. Moreover {xn, yn + 2⇡q} is also a solution, where
q is an arbitrary integer, so the dynamics can be restricted to a torus by taking the
modulus of x and y relative to 2⇡ at the end of every step. However, the restriction of
the phase space to a torus does obscure some important information: in particular, we
must do extra bookkeeping if we want to answer the important question of whether
yn can grow or decay without limit over many steps.
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When x and y are interpreted as a coordinate and a momentum respectively, the
standard map is generated by the time-dependent Hamiltonian

H(x, y, t) = 1

2
y2 +K�1(t) cosx, (F.3)

where �1(t) is the periodic delta function with unit period (eq. C.9), xn is the coordi-
nate at time t = n, and yn is the momentum just before the kick at t = n. Physically,
this Hamiltonian describes the kicked rotor: a simple pendulum of unit mass (cf.
eq. 6.1), with the gravitational field switched on in short pulses at integer times.

Plots of the standard map are shown in Figure F.1 for K = 0.1, 0.5, 1.0 and
2.0. For small K, the trajectories in the map follow 1-dimensional curves in the
2-dimensional phase space. As K increases, significant chaotic regions emerge,
mapped out by single trajectories that cover 2-dimensional regions of phase space
rather than a 1-dimensional curve. For K = 2 most of the phase space is covered
by a single chaotic trajectory, and chaos is global in the sense that the momentum
yn can grow or decay without limit; in effect the chaotic orbit diffuses in momen-
tum with the characteristic long-time behavior �yn+k − yn� ∼ K1�2k1�2. Numerical
experiments show that global chaos is present for all K >Kcrit = 0.9716.

Much of the behavior of the standard map is generic for area-preserving maps
or Hamiltonian flows: as described in Appendix D.8, the phase space exhibits “is-
lands” of regular orbits embedded in a chaotic “sea,” and the fraction of phase space
occupied by the chaotic sea grows with the amplitude of the perturbation parameter
K.

F.1 Resonance overlap

Using the Fourier series for the periodic delta function, equation (C.10), the Hamil-
tonian for the standard map can be written

H(x, y, t) = 1

2
y2 +K cosx

∞�
n=−∞

cos(2⇡nt) = 1

2
y2 +K ∞�

n=−∞
cos(x−2⇡nt). (F.4)

If the parameter K is small enough, the resonances associated with each term will be
narrow, and we can examine the effects of each term separately. Thus we consider

Hn(x, y, t) = 1

2
y2 +K cos(x − 2⇡nt). (F.5)

We apply a canonical transformation to a new coordinate and momentum (X,Y )
defined by the generating function

S2(x,Y, t) = (Y + 2⇡n)(x + ⇡ − 2⇡nt); (F.6)
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Figure F.1: Trajectories in the standard map (F.1) for K = 0.1, 0.5, 1 and 2. The
coordinates are xn and yn.
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from equations (D.63) we have X = @S2�@Y = x+⇡−2⇡nt, y = @S2�@x = Y +2⇡n,
and the new Hamiltonian H ′n =Hn+@S2�@t = 1

2
(Y +2⇡n)2−K cosX−2⇡n(Y +

2⇡n) = 1

2
Y 2 −K cosX − 2⇡2n2. Dropping the unimportant constant 2⇡2n2, we

have the pendulum Hamiltonian, whose properties are described in §6.1. In partic-
ular the resonance is centered at momentum Y = 0 or y = 2⇡n, so the separation
in momentum between resonances of different n is 2⇡. This linear sequence of
pendulum-type resonances of equal strength is what makes the standard map a good
model for the local behavior of many dynamical systems.

The width of the resonance in momentum space is given by equation (6.13),
w = 4K1�2. The dynamics of each resonance will be independent if the separation
is much larger than the width, or K � 1

4
⇡2. If the resonances are sufficiently close,

the motion will be more complicated. There are few analytic results describing the
motion of a particle under the influence of two or more nearby resonances; how-
ever, in 1959 Boris Chirikov famously conjectured that when the resonance width
exceeded the separation between resonances, the motion would become chaotic in
most of the phase space covered by the resonances. This conjecture, known as the
Chirikov criterion or the resonance-overlap criterion, has been confirmed by nu-
merical experiments in a wide range of dynamical systems.

For the standard map a natural definition for “mostly chaotic” is that the chaos
is global, in the sense defined earlier in this appendix. Global chaos occurs when
K > Kcrit = 0.9716; at this point the ratio of the resonance width to the separation
is w�(2⇡) = 2K1�2

crit
�⇡ = 0.63. This result suggests a sharper version of the Chirikov

criterion: motion is mostly chaotic when the resonance width exceeds about 60% of
the separation between resonances.



Appendix G

Hill stability

The goal of this appendix is to derive sufficient conditions for Hill stability of an
arbitrary three-body system. See Golubev (1968), Marchal & Bozis (1982) and
Gladman (1993) for more details.

A general three-body system is Hill stable if none of the three bodies can have
a close encounter. Hill stability does not preclude the escape of one of the bodies to
infinity.1

Let the masses of the three bodies be m0, m1 and m2, with positions and vel-
ocities in the barycentric frame denoted by ri, vi, i = 0,1,2. The kinetic energy,
potential energy and angular momentum of the system are

T = 1

2

2�
i=0

miv
2

i , W = −G 2�
i,j=0
i>j

mimj�ri − rj � , L = 2�
i=0

miri × vi. (G.1)

We shall also define

I = 2�
i=0

mir
2

i ; (G.2)

this quantity—or sometimes half of it—is often referred to as the moment of inertia,
since it is related to the moments of inertia (D.87) in the principal-axis frame by
2I = A +B +C.

1 In a planetary system, Hill stability is often interpreted more liberally, to mean that the
planets cannot have a close encounter. In this usage Hill stability does not preclude the
collision of one of the planets with the host star.
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We may write

L = 2�
i=0

aibi (G.3)

where
ai ≡m1�2

i
ri, bi ≡m1�2

i

ri × vi

ri
. (G.4)

Then

L2 = � 2�
i=0

aibix�2 + � 2�
i=0

aibiy�2 + � 2�
i=0

aibiz�2, (G.5)

where bix, biy , biz are the components of b along three Cartesian axes x, y, z. Ac-
cording to the Cauchy–Schwarz inequality, (∑i

aibix)2 ≤ ∑i
a2

i ∑i
b2ix with similar

relations for the y and z components. Thus

L2 ≤ 2�
i=0

a2

i � 2�
i=0

b2ix + 2�
i=0

b2iy + 2�
i=0

b2iz� = 2�
i=0

a2

i

2�
i=0
�bi�2

= I 2�
i=0

mi

�ri × vi�2
r2
i

. (G.6)

Using the vector identity (B.9c), we can write �ri × vi�2 = r2i (v2i − ṙ2i ), so we arrive
at the inequality2

L2 ≤ I 2�
i=0

mi(v2i − ṙ2i ) ≤ 2IT. (G.7)

Now set T = E −W , where E is the total energy. We shall assume that the
system is bound, so E < 0. Then we can rewrite equation (G.7) as

−I1�2W ≥ L2

2I1�2 + I1�2�E�. (G.8)

If we vary the moment of inertia I at fixed energy E and angular momentum L, the
right side is minimized at I = 1

2
L2��E� where it is equal to 2

1�2L�E�1�2. Hence

I1�2W ≤ −21�2L�E�1�2. (G.9)

The right side of this equation depends only on the conserved energy E and angular
momentum L, while the left side depends only on the positions of the three masses.

2 This is a weak form of the Sundman inequality, which states that L2+ 1

4
(dI�dt)2 ≤ 2IT

(e.g., Saari 1971).
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Moreover it is straightforward to show that

I = 1

2(m0 +m1 +m2)
2�

i=0
2�

j=0
mimj(ri − rj)2 (G.10)

(recall that we are in the barycentric frame, so ∑i
miri = 0), so I1�2�W � depends

only on the relative positions ri − rj of the three masses. We then have

I1�2W = − G
M1�2 (m0m1r

2

01 +m0m2r
2

02 +m1m2r
2

12)1�2
× �m0m1

r01
+ m0m2

r02
+ m1m2

r12
� , (G.11)

where M ≡m0 +m1 +m2 and rij ≡ �ri − rj �.
If we rescale the vectors ri to �ri with � a fixed real number, then I ∝ �2 and

W ∝ �−1 so I1�2W is independent of �. Therefore we can plot contours of I1�2W
as a function of the position of m2 in a figure in which we assume without loss of
generality that (i) the three masses lie in the (x, y) plane; (ii) m0 and m1 lie along
the x-axis; (iii) the unit of length is r01.

Figure G.1 shows contours of I1�2W for the case m1 = m2 = 0.1m0. The
geometry is remarkably similar to that of the zero-velocity curves in the circular
restricted three-body problem (Figure 3.1). In particular, (i) there are five extrema—
maxima or saddle points—of I1�2W , which we may call Lagrange points by analogy
to the discussion in §3.1; (ii) the maxima at the Lagrange points L4 and L5 occur
when the three masses form an equilateral triangle; and (iii) when m2 → 0 the
contours of I1�2W are the same as the zero-velocity curves in the planar, circular,
restricted three-body problem (Problem 3.14).

Let (I1�2W )L denote the minimum value of I1�2W at the three collinear La-
grange points. The inequality (G.9) shows that if

(I1�2W )L > −21�2L�E�1�2 (G.12)

then the region of possible motions contains three disconnected parts: either (i) m2

always orbits m0 and can never have a close encounter with m1, (ii) m2 always
orbits m1 and never has a close encounter with m0, or (iii) m2 never has a close en-
counter with either m0 or m1. Whether or not this inequality is satisfied is straight-
forward to determine: the left side can be determined given the three masses m0, m1

and m2, and the right side is an integral of motion that is determined by the initial
conditions.
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Figure G.1: Contours of I1�2W (eq. G.11) for the three-body problem. Here I is
the moment of inertia in the barycentric frame, and W is the potential energy (eqs.
G.1). The plot shows I1�2W as a function of the position of body 2, in coordinates
where bodies 0 and 1 are separated by unit distance along the x-axis. The Lagrange
points L1, . . . ,L5 are marked by crosses. Shading denotes regions in which I1�2W
is greater than the minimum of the values at the collinear Lagrange points L1, L2,
L3. The bodies have masses m1 = m2 = 0.1m0. This figure can be compared to
Figure 3.1, which shows the zero-velocity surfaces in the planar, circular, restricted
three-body problem.
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It is worthwhile to rewrite the inequality (G.12) for the case of a two-planet
system with m1,m2 � m0. We introduce a small parameter ✏ and assume that m1

and m2 are O(✏). To find the location of the collinear Lagrange points L1 and L2,
we write r01 = 1, r02 = 1 + x, and r12 = �x� and assume �x� = O(✏1�3). We expand
I1�2W in powers of ✏ and find the extremum in x of the non-constant term with the
smallest power of ✏. We find x = ±rH, where

rH = �r0 − r1� �m1 +m2

3m0

�1�3 +O(m1,m2�m0)2�3. (G.13)

This result is similar to the definition of the Hill radius in equation (3.112) except
that here �r0 − r1� is not necessarily constant, so rH varies during the evolution of
the three-body system. The value of I1�2W at L1 and L2 is

(I1�2W )L1,L2 = −Gm0(m1 +m2)3�2
× �����1 +

3
4�3m1m2

2m2�3
0
(m1 +m2)4�3 +O(m1,m2�m0)����� . (G.14)

In these formulas the distances to L1 and L2 and the values of I1�2W at L1 and
L2 are the same, but differences between the two values arise at higher order in(m1,m2)�m0.

In the limit where m1,m2 �m0, the dominant contributions to the energy and
angular momentum are

E = − Gm0m1

2a1

− Gm0m2

2a2

,

L = (L2

1 +L2

2 + 2L1L2 cos i)1�2,
L1 =m1[Gm0a1(1 − e21)]1�2, (G.15)

with a similar expression for L2. Here i is the inclination between the orbits of m1

and m2. We substitute these expressions into the right side of (G.12) and simplify
by introducing a small parameter � and assuming that �a1 − a2�, e1, e2 and I are all
O(�). Then we find that the planets are Hill stable if

�a1 − a2� ≥ 2 ⋅ 31�6a
× ��m1 +m2

m0

�2�3 + i2

34�3 + m1 +m2

34�3m1m2

(m1e
2

1 +m2e
2

2)�
1�2

, (G.16)
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where a = 1

2
(a1 + a2) is the mean semimajor axis. When the orbits are circular,

e1 = e2 = 0, this result reduces to the stability criterion (3.137) derived using Hill’s
approximation. When the orbits are coplanar but eccentric, i = 0, the result is less
sharp than (3.136); that is, systems that are guaranteed to be Hill stable by equation
(3.136) are not guaranteed to be stable by (G.16).



Appendix H

The Yarkovsky effect

Our goal is to determine the Yarkovsky force on a spherical body traveling on a
circular orbit around its host star. The following derivations can be skipped without
affecting the reader’s understanding of the rest of the book.

The spin axis of the body is assumed to be normal to its orbital plane. To be
definite, we refer to the body as an asteroid and the host star as the Sun. We first
examine a patch of the asteroid surface that is small enough to be considered flat. Let
z denote the height relative to this surface, so the asteroid body occupies the volume
z < 0. The diffusion of heat through the asteroid is described by the heat-conduction
equation (e.g., Landau & Lifshitz 1987)

@T

@t
= 

CV

@2T

@z2
, z ≤ 0, (H.1)

in which T (z, t) is the temperature and  and CV are the thermal conductivity and
the heat capacity per unit volume, assumed constant within the asteroid. We denote
the surface temperature by Ts(t) = T (z = 0, t).

The surface temperature is determined by three processes:

Absorption of solar radiation Let f(t) be the incident solar flux, that is, the
solar energy impacting unit surface area of the asteroid in unit time. Then the rate
of energy absorption per unit area is ↵f where ↵ < 1 is the absorption coefficient.1

1 A black body has ↵ = 1. The Bond albedo, the ratio of the energy incident on the body to
the energy that is immediately re-emitted, is AB = 1 − ↵.
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Thermal emission The asteroid emits thermal radiation at a rate ✏�T 4

s per
unit area, where ✏ is the emissivity and the Stefan–Boltzmann constant is � =
5.670374 . . . × 10−8 W m−2 K−4. A black body has ✏ = 1.

Thermal conduction The heat flux—the rate at which energy is conducted out-
ward through the asteroid per unit area—is −@T �@z.

The rate of energy gain at the surface from solar radiation and conduction from
the interior must balance the rate of loss from emission, so

↵f − @T
@z
�
z=0
= ✏�T 4

s . (H.2)

We now separate this equation into time-averaged and variable components, de-
noting the time average by an overline. The time average of the heat flow at any
depth must vanish, so the time-averaged temperature T must be independent of
depth. Since @T �@z = 0, the time average of equation (H.2) is

↵f = ✏�T 4
s . (H.3)

In most circumstances the temporal variation of the surface temperature is small,
even at the surface, so we may write Ts(z, t) = T +�T (0, t), where ��T � � T .
The thermal emission ✏�T 4

s can then be approximated as ✏�[T 4 + 4T 3

�T (0, t)],
and the average T 4

s can be approximated as T
4

. Then we can subtract (H.3) from
(H.2) to obtain

↵(f − f) − @T
@z
�
z=0
= 4✏�T 3

�T �z=0. (H.4)

Now suppose that f − f is equal to the real part of A exp(i!t), where the fre-
quency ! is real and the amplitude A may be complex. Then the time-varying com-
ponent of the temperature �T (z, t) must equal the real part of some function of
the form B(z) exp(i!t); and the heat-conduction equation (H.1) implies that B(z)
must be proportional to exp(kz), where k2 = i!CV �. Since the time-varying com-
ponent of the temperature must die away deep in the body of the asteroid, the real
part of k must be positive, which implies that

k = [1 + i sgn(!)]� �!�CV

2
�1�2 . (H.5)
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Combining these results with equation (H.4), we find that the time-varying compo-
nent of the temperature in the asteroid interior is the real part of

�T (z, t) = ↵A

4✏�T
3 + k exp(kz + i!t), z ≤ 0. (H.6)

The variable component of the rate of emission per unit area is the real part of

4✏�T
3

�T (0, t) = 4✏�T
3

↵A

4✏�T
3 + k exp(i!t) = ↵A

1 +⇤ + i sgn(!)⇤ exp(i!t), (H.7)

where

⇤(!) ≡ �!�1�2Ith
25�2✏�T 3

, and Ith ≡ (CV )1�2 (H.8)

is the thermal inertia, which depends only on the bulk—not surface—properties of
the asteroid material.

The factor [1+⇤+ i sgn(!)⇤]−1 in equation (H.7) can be written as (1+ 2⇤+
2⇤

2)−1�2 exp(−i�th), where

cos�th = 1 +⇤(1 + 2⇤ + 2⇤2)1�2 , sin�th = sgn(!)⇤(1 + 2⇤ + 2⇤2)1�2 . (H.9)

Then

4✏�T
3

�T (0, t) = ↵A(1 + 2⇤ + 2⇤2)1�2 exp[i(!t − �th)]. (H.10)

Thus the peak emission lags the peak solar flux by a time ⌧ = �th�!.
We may now generate a map of the thermal emission on the asteroid surface.

We work in the frame rotating with the asteroid’s circular orbit and erect a Cartesian
coordinate system (X,Y,Z) centered on the asteroid, with the Z-axis parallel to
the orbital angular momentum, the X-Y plane coinciding with the orbital plane,
and the X-axis pointing away from the Sun. Thus the trailing face of the asteroid
has coordinates Y < 0. The corresponding spherical coordinates are (✓,�). The
asteroid’s spin rate in this rotating frame is the synodic frequency !syn, which we
assume to be nonzero.2

2 If the asteroid’s spin frequency in an inertial frame is !in, with !in > 0 for prograde spin
and !in < 0 for retrograde spin, then !syn = !in − n, where n is the mean motion. The
synodic period is 2⇡��!syn�. See footnote 13 in §3.4 for more on the synodic frequency
and period.
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In this coordinate system, the solar flux and the thermal emission at a given
point are time-independent, and the time variability at a given point on the surface
arises because of the asteroid’s spin. The normal to the surface at (✓,�) is n̂ =
sin ✓ cos�X̂ + sin ✓ sin�Ŷ + cos ✓Ẑ. The incident solar flux is then

f(✓,�) = L⊙
4⇡a2

W (−X̂ ⋅ n̂) = L⊙
4⇡a2

W (− sin ✓ cos�), (H.11)

where W (x) = x if x > 0 (day side) and 0 if x < 0 (night side). Here L⊙ =
3.828 × 10

26 W is the solar luminosity and a is the asteroid’s semimajor axis—
recall that we assume that the orbit is circular. The flux can be written as a Fourier
series (Appendix B.4)

f(✓,�) = L⊙
4⇡a2

sin ✓
∞�

m=−∞
cm exp(im�), (H.12)

where (eq. B.48)

cm = − 1

2⇡ �
3⇡�2

⇡�2 d� cosm� cos�. (H.13)

For example, c0 = 1�⇡, c1 = c−1 = − 1

4
.

A given point attached to the asteroid surface (call it P ) has polar angle ✓ =
constant and azimuthal angle � = !synt + const. Therefore the incident flux at
P corresponding to the term with index m in equation (H.12) varies with time as
exp(i!t) with ! =m!syn. The term with m = 0 gives the mean flux,

f = L⊙c0
4⇡a2

sin ✓ = L⊙
4⇡2a2

sin ✓, (H.14)

and this gives the mean temperature T (✓) through equation (H.3). The terms with
m �= 0 give rise to temperature variations that are time-independent in the (X,Y,Z)
frame but time-variable at the point P . From equation (H.10) the emission is

4✏�T
3

�T (✓,�) = ↵L⊙
4⇡a2

sin ✓
∞�

m=−∞
m�=0

cm(1 + 2⇤ + 2⇤2)1�2 exp[i(m� − �th)],
(H.15)

where ⇤ and �th are functions of m through their dependence on the forcing fre-
quency ! = m!syn. We show below that only terms with m = ±1 contribute to the
total force on the asteroid, so we may simplify this result to

4✏�T
3

�T (✓,�) = − ↵L⊙
8⇡a2

sin ✓(1 + 2⇤ + 2⇤2)1�2 cos(� − �th), (H.16)
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where ⇤ and �th are now evaluated at ! = !syn.
To determine the force exerted by this emission, we need to know the angular

distribution of the radiation emitted from an element of its surface. The simplest
realistic model is Lambert’s law (e.g., Seager 2010). In spherical polar coordinates
with the polar axis parallel to the surface normal n̂, Lambert’s law states that the
probability that an emitted photon will be directed into a small solid angle d⌦ =
sin#d#d' is dp(#) = ⇡−1 cos#d⌦ for # < 1

2
⇡, and zero otherwise since the body

is opaque. By symmetry, the net force per unit surface area dF�dA must be along
the n̂-axis. A photon with energy E carries momentum E�c, where c is the speed
of light, and if the photon is emitted at an angle (#,') then the component of its
momentum along n̂ is (E�c) cos#. By Newton’s third law the net force on the
surface is equal and opposite to the rate of emission of momentum, so

dF

dA
= − ✏

c
�T 4

s n̂� dp(#) cos# = −2✏
c
�T 4

s n̂� ⇡�2
0

d# sin# cos2 #

= −2✏
3c

n̂�T 4

s � −2✏
3c

n̂�(T 4 + 4T 3

�T ), (H.17)

where we have assumed as usual that the temperature variations are small.
The force in the Z direction, perpendicular to the orbital plane, must vanish after

integrating over the entire surface of the spherical asteroid, so we will not consider
it further. The force in the Y direction, dFY �dA, is proportional to (Ŷ ⋅ n̂)�T =
sin ✓ sin��T ; similarly dFX�dA is proportional to sin ✓ cos��T . When we inte-
grate these forces over the azimuthal angle �, any component of �T proportional
to exp(im�) with m �= ±1 integrates to zero, which justifies the restriction of equa-
tion (H.16) to terms with m = ±1. Using equations (H.16) and (H.17) we obtain an
explicit expression for the force per unit polar angle,

dFX

d✓
= R2

sin ✓� 2⇡

0

d�
dFX

dA
(✓,�) = ↵L⊙R2

sin
3 ✓

12ca2(1 + 2⇤ + 2⇤2)1�2 cos�th;

(H.18)
in the expression for dFY �d✓, cos�th is replaced by sin�th.

The final step is to integrate the forces over the polar angle ✓ of the asteroid
surface. A complication is that ⇤ and the lag angle �th depend on polar angle
through the mean temperature, T (✓) ∝ sin

1�4 ✓ (eqs. H.3 and H.14). Because of
this dependence the integrals for FX,Y = ∫ ⇡

0
d✓ dFX,Y �d✓ are not analytic. We

adopt a simple fix that leads to only a small loss of accuracy. We replace ⇤ by ⇤∗,
defined by replacing T (✓) by T∗ ≡ T (✓∗) in equation (H.8). Similarly we replace
�th by �∗th, defined by replacing ⇤ with ⇤∗ in equations (H.9). We choose ✓∗ = 1

3
⇡.
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The fractional errors in FX and FY due to this approximation are � 1.5%. Using
the result ∫ ⇡

0
d✓ sin

3 ✓ = 4

3
we then have

FX = ↵L⊙R2

9ca2

1 +⇤∗
1 + 2⇤∗ + 2⇤2∗ , (H.19a)

FY = sgn(!syn)↵L⊙R2

9ca2

⇤∗
1 + 2⇤∗ + 2⇤2∗ , (H.19b)

where

⇤∗ ≡ (�!syn�CV )1�2
25�2✏�T 3∗ , ✏�T 4∗ = 3

1�2↵L⊙
8⇡2a2

. (H.20)

The azimuthal force FY is positive if the force is in the direction of orbital motion;
thus if the spin is prograde (!syn > 0) the Yarkovsky effect adds angular momentum
to the orbit.

In the limiting case where the thermal inertia is negligible, ⇤∗ is much less than
unity so

FX = ↵L⊙R2

9ca2
, FY = 0. (H.21)

The expression for the radial force FX can be compared to the radiation pressure
force derived in Box 1.5, which in the current notation is FX = L⊙R2�(4ca2).
The coefficient is different because the assumptions are different in the two calcu-
lations: in Box 1.5 we assumed that the body was a perfect absorber (↵ = 1) and
that the absorbed energy was re-radiated isotropically; while here we assume that
the absorption coefficient ↵ ≤ 1, we neglect the additional pressure due to incident
photons that are absorbed or scattered, and we assume that the absorbed energy is
re-radiated according to Lambert’s law. The azimuthal force FY vanishes in equa-
tion (H.21); there is no analog to Poynting–Robertson drag, because we are only
working to O(1�c) whereas the Poynting–Robertson force is O(1�c2).



Appendix I

Tidal response of rigid bodies

The response of a body to tidal forces depends on its internal structure. Giant pla-
nets and stars are mostly or entirely composed of gas. Smaller planets such as the
Earth can be approximated as fluids for some purposes, since the gravitational forces
within them are much larger than the strength of the solid material of which they are
composed. Even smaller bodies, including many planetary satellites in the solar sys-
tem, should instead be treated as elastic solids (Love 1944; Landau & Lifshitz 1986;
Wisdom & Meyer 2016), and these respond quite differently to tidal forces. As an
extreme example, a completely rigid body would not be distorted at all by a tidal
field, so its Love numbers kl (eq. 8.21) would be zero.

The following derivations can be skipped without affecting the reader’s under-
standing of the rest of the book.

We model the solid body as a uniform, incompressible sphere having the linear
stress-strain relation (Hooke’s law)

�ij = −p�ij + µ� @ui

@xj

+ @uj

@xi

� . (I.1)

Here u(r) is the displacement vector, the change in position of the mass element
originally at position r as a result of the tidal force, �ij(r) is the stress tensor, p(r)
is the pressure, �ij is the Kronecker delta (Appendix C.1) and µ is the rigidity of
the solid, assumed independent of position. Hooke’s law is valid only so long as the
displacements are small, �@ui�@xj � � 1.
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Since the body is incompressible we must have

∇ ⋅ u = @ui

@xi

= 0; (I.2)

here and throughout this appendix we have adopted the summation convention of
Appendix B.1. Equation (I.2) implies that the displacement field can be written in
terms of a vector potential A(r),

u(r) = ∇×A(r). (I.3)

If the displacement is caused by a static gravitational potential �(r), then force
balance requires

@�ij

@xj

= ⇢ @�
@xi

. (I.4)

Equations (I.1) and (I.4) can be combined to give

µ∇2
u = ∇(p + ⇢�) or µ

@2ui

@x2

j

= @(p + ⇢�)
@xi

. (I.5)

The function p + ⇢� can be expanded as a series in spherical harmonics, as in
equation (C.51). Taking the divergence of equation (I.5) and using equation (I.2),
we find that ∇2(p + ⇢�) = 0. Therefore p + ⇢� is a solution of Laplace’s equation,
which in turn requires that the radial function associated with the spherical harmonic
Ylm(✓,�) must be proportional to rl or r−l−1. The latter function is singular at the
center of the body and therefore is not allowed. Since equation (I.5) is linear, we can
determine its solution for an assumed form

p(r) + ⇢�(r) = almrlYlm(✓,�), (I.6)

and then add the results for different harmonics. Similarly, we write the tidal po-
tential and self-gravitational potential at the surface, the radial displacement of the
surface due to the tidal field, and the pressure at the surface as

�tide(R, ✓,�) = f tide

lm Ylm(✓,�), (I.7a)

�self(R, ✓,�) = f self

lm Ylm(✓,�), (I.7b)
�R(✓,�) = dlmYlm(✓,�), (I.7c)

p(✓,�) = plmYlm(✓,�). (I.7d)
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The gradient of equation (I.6) can be written in terms of vector spherical har-
monics (Appendix C.8),

∇(p + ⇢�) = alm∇rlYlm(✓,�) = almrl−1[lYlm(✓,�) + lm(✓,�)]. (I.8)

Similarly, the vector potential A(r) can be expanded in vector spherical har-
monics according to equation (C.58):

A(r) = ∞�
l′=0

l
′
�

m′=−l′
�fl′m′(r)Yl′m′(✓,�) + gl′m′(r) l′m′(✓,�)
+ hl′m′(r)�l′m′(✓,�)�. (I.9)

According to equations (I.3) and (C.63), the terms involving f(r) and g(r) give
rise to a displacement field proportional to�lm. According to equations (C.64), the
Laplacian of this field is also proportional to�lm, but this is orthogonal to the right
side of equation (I.5) according to equations (I.8) and (C.60). Therefore we may
set fl′m′(r) = gl′m′(r) = 0. Moreover according to equations (C.61), the terms in
the Laplacian with index l′,m′ are orthogonal to (I.8) unless l = l′ and m = m′.
Therefore

u(r) = ∇×A = − l(l + 1)
r

hlm(r)Ylm(✓,�) − �h′lm(r) + hlm(r)
r
� lm(✓,�).

(I.10)
Using equations (C.64) we can now reduce equation (I.5) to

µl(l + 1)
r3

�l(l + 1)hlm − 2rh′lm − r2h′′lm�Ylm + µ

r3
� − l(l + 1)hlm

+l(l + 1)rh′lm − 3r2h′′lm − r3h′′′lm� lm = almrl−1(lYlm + lm). (I.11)

Since Ylm and lm are orthogonal, this equation can only be satisfied if the coeffi-
cients of both vanish. This is true if

hlm(r) = −alm

rl+2 + blmrl

2µ(l + 1)(2l + 3) , (I.12)

where blm is arbitrary; in addition there can be a term ∝ r−l−1 which we discard
because it is singular at the center of the body.

The radial distortion �R(✓,�) is simply the radial component of the displace-
ment field at r = R:

�R = r̂ ⋅ u�r=R = − l(l + 1)
R

hlm(R)Ylm(✓,�). (I.13)
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Then equations (I.7c) and (I.12) yield

dlm = lalm

2µ(2l + 3)(Rl+1 + blmRl−1). (I.14)

We next determine the self-gravitational potential arising from the tidal distor-
tion. Since the body has constant density, the only changes to the density distribution
are at the surface, and their effect on the potential can be approximated as that of a
razor-thin surface-density distribution ⌃(✓,�) = ⇢�R(✓,�) that is painted onto
the sphere of radius R. The potentials internal and external to R satisfy Laplace’s
equation, and so they are the sums of terms of the form

�self,int(r) = f self

lm � rR�
l

Ylm(✓,�), �self,ext(r) = f self

lm �Rr �
l+1

Ylm(✓,�);
(I.15)

the coefficients f self

lm are the same because the potential must be continuous at r = R.
Poisson’s equation (B.44), 4⇡G⇢ = ∇2

�, can be integrated across the boundary at
R at constant angular position (✓,�) to give

4⇡G⌃ = @�self,ext

@r
�
r=R
− @�self,int

@r
�
r=R

, (I.16)

and evaluating this result gives f self

lm = −4⇡G⇢dlmR�(2l + 1). Thus the potential
due to self-gravity inside the body is

�self,int(r)=f self

lm � rR�
l

Ylm(✓,�), (I.17)

where

f self

lm = − 2⇡G⇢lRl+2alm

µ(2l + 1)(2l + 3)(1 + blm�R2). (I.18)

The final condition is that the stress acting outward across the surface r = R
must be balanced by the gravitational force from the weight of material above it,
which requires [x̂i�ijxj + (1 − �)g⇢r�R](R,✓,�) = 0; (I.19)

here g = GM�R2 = 4

3
⇡G⇢R is the gravitational acceleration at the surface of

the body. The quantity � = 0, but we shall use other values of � in the following
subsection to account for the effects of rotation, so we retain it for now. Using
equation (I.1), we have

x̂i�ijxj = −pr + µ[(r ⋅∇)u +∇(r ⋅ u) − u]. (I.20)
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We use equation (I.10) as well as the identities (r ⋅ ∇)f(r)Ylm = rf ′Ylm, (r ⋅∇)f(r) lm = rf ′ lm,∇[f(r)r⋅Ylm] = (rf)′Ylm+f lm,∇[f(r)r⋅ lm] = 0
to obtain

x̂i�ijxj = −pr + 2µl(l + 1)
R

(hlm − rh′lm)r=RYlm

+ µ
R
[(2 − l − l2)hlm − r2h′′lm]r=R lm. (I.21)

To satisfy the component of equation (I.19) perpendicular to r, we must have (2 −
l − l2)hlm − r2h′′lm = 0 at r = R, which requires1

blm = − l(l + 2)
l2 − 1 R2, (I.22)

which implies from (I.14) that

dlm = − l(2l + 1)almRl+1
2µ(2l + 3)(l2 − 1) . (I.23)

To satisfy the component parallel to r we require

plm = 2µl(l + 1)
R2

(hlm − rh′lm)r=R + (1 − �)g⇢dlm, (I.24)

and this yields

plm = almRl �↵l − (1 − �)�l
⌫
� , (I.25)

where
↵l ≡ l(2l + 3)(l + 1) , �l ≡ l(2l + 1)

2(2l + 3)(l2 − 1) , (I.26)

and
⌫ ≡ µ

g⇢R
(I.27)

is a dimensionless measure of the relative importance of rigidity and self-gravity.
Applying equation (I.22) to (I.18) and using the relation g = GM�R2 = 4

3
⇡G⇢R,

we have

f self

lm = 3almRl

2⌫⇢
�l, where �l ≡ l(2l + 3)(l2 − 1) . (I.28)

1 This expression and others in the derivation diverge when l = 1. The divergence arises
because an isolated body is neutrally stable to a rigid-body displacement, which can be
written in spherical coordinates as an l = 1 displacement field.
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Now equation (I.6) can be rewritten almRl = plm + ⇢f self

lm + ⇢f tide

lm . Moreover
f self

lm �f tide

lm = kl, the gravitational Love number, so we have

almRl = amRl �↵l − (1 − �)�l
⌫
� + 3almRl

2⌫
�l �1 + 1

kl
� . (I.29)

Eliminating the common factor of almRl, setting � = 0 since we neglect rotation,
and rearranging the terms, we arrive at an expression for the Love number,

kl = 3

2l − 2 1

1 + ⌫̃l , where ⌫̃l = 2l2 + 4l + 3
l

⌫ = 2l2 + 4l + 3
l

µ

g⇢R
. (I.30)

The displacement Love number hl is obtained from the definitions (8.22) and
(8.21), which imply that

hl = −kl g�R

�self

= −kl gdlm
f self

lm

= 2l + 1
3

kl = 2l + 1
2l − 2 1

1 + ⌫̃l . (I.31)

I.1 Tidal disruption of a rigid body

We examine the stresses on a homogeneous spherical satellite in a circular orbit of
radius rp around a planet of mass mp (Aggarwal & Oberbeck 1974). The satellite is
assumed to be synchronously rotating, and we work in rotating coordinates centered
on the satellite, with the positive x-axis pointing away from the host planet and the
z-axis normal to the orbit. The satellite is subject to two potentials in addition to
its own self-gravity: a centrifugal potential �cent(r) = − 1

2
n2(x2 + y2) (eq. D.21)

with n2 = Gmp�r3p, and the dominant l = 2 component of the tidal field, given by
equation (8.75). The sum of these potentials can be written

�cent(r) +�tide(r) = − Gmp

2r3p
(x2 + y2) + Gmp

2r3p
(y2 + z2 − 2x2)

= Gmp

2r3p
(z2 − 3x2)

= �1(r) +�2(r), (I.32)

where
�1(r) = − Gmp

3r3p
r2, �2(r) = Gmp

6r3p
(−7x2 + 2y2 + 5z2). (I.33)
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The potential �1(r) is spherically symmetric. Thus it can be combined with the
potential due to the self-gravity of the unperturbed satellite, �0(r) = 2

3
⇡G⇢r2. We

simply replace �0(r) by �0(r) +�1(r) = 2

3
⇡(1 − �)G⇢r2, where

� ≡ mp

2⇡⇢r3p
. (I.34)

The parameter �, already seen in equation (8.72), is a dimensionless measure of the
relative importance of tides and self-gravity; far from the planet � → 0, and when
the satellite radius equals the Hill radius � = 2

9
.

The pressure p0(r) in the unperturbed satellite is obtained by solving the equa-
tion of hydrostatic equilibrium dp0�dr = ⇢d(�0 +�1)�dr with the boundary con-
dition p0(R) = 0. Thus we find

p0(r) = 2

3
⇡(1 − �)G⇢2(R2 − r2). (I.35)

The second potential �2(r) is a solution of Laplace’s equation, ∇2
�2 = 0,

and thus can be written in spherical coordinates as a sum of terms of the form
f tide

lm (r�R)lYlm(✓,�) with l = 2. The strain field induced by such a potential was
studied earlier in this appendix. The total potential �self + �tide is a similar sum
with terms f tide

lm (1 + kl)(r�R)lYlm(✓,�), where kl is the Love number. Then the
coefficients alm defined in equation (I.6) satisfy almRl = plm +⇢f tide

lm (1+kl) with
plm given by equation (I.25). With these relations we can determine the coefficients
alm as functions of f tide

lm . Now the displacement field is determined by the vector
potential A = hlm(r)�lm, with hlm(r) related to alm by (I.12) and (I.22). To
reduce the complexity of the formulas, we restrict ourselves to l = 2 and a perfectly
rigid satellite, µ →∞. Thus the Love number kl = 1 from (I.30). Then the pressure
field and vector potential induced by the tide are

ptide(r) = p2m(r�R)lY2m(✓,�) = 2

19
⇢f tide

2m (r�R)lY2m(✓,�),
A(r) = ⇢f tide

2m

114µR2
r2(8R2 − 3r2)�2m(✓,�). (I.36)

The corresponding strain field is

u(r) = ∇×A = ⇢f tide

2m

38µR2
[(6r3 − 16R2r)Y2m(✓,�) + (5r3 − 8R2r) (✓,�)]

= ⇢f tide

2m

38µR2
� − 14rr2Y2m(✓,�) +∇[(5r2 − 8R2)r2Y2m(✓,�)]�. (I.37)
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To express the strain field in Cartesian coordinates we just replace f tide

2m r2Y2m(✓,�)
in the second of equations (I.37) by the quadratic potential �2(r) from equation
(I.33), and replace r2 by x2 + y2 + z2. The stress field then follows from equation
(I.1), with the pressure p replaced by the sum of the equilibrium pressure p0(r) from
equation (I.35) and the pressure induced by the tidal field ptide(r) from equation
(I.36). For example,

�xx(x, y, z) = 2

57
⇡G⇢2�(75� − 19)R2 + (19 − 75�)x2 + (19 − 60�)y2

+ (19 − 69�)z2�,
�xy(x, y, z) = − 10

19
⇡G⇢2�xy. (I.38)

The expressions for the stresses show that the principal planes on which the
shear stresses �xy = �xz = �yz = 0 are the coordinate planes, and that the stresses in
the coordinate planes are linear functions of x2, y2 and z2. Therefore the maximum
stresses in these planets will occur either at the center of the body, r = 0, or at the
intersection of one of the coordinate axes with the surface. At these locations

�xx(0,0,0) = 2⇡

57
(75� − 19)G⇢2R2,

�yy(0,0,0) = 2⇡

57
(3� − 19)G⇢2R2,

�zz(0,0,0) = −2⇡
57
(21� + 19)G⇢2R2,

�xx(R,0,0) = �yy(0,R,0) = �zz(0,0,R) = 0,
�xx(0,R,0) = �yy(R,0,0) = 10⇡

19
�G⇢2R2,

�xx(0,0,R) = �zz(R,0,0) = 4⇡

19
�G⇢2R2,

�yy(0,0,R) = �zz(0,R,0) = −14⇡
19

�G⇢2R2. (I.39)

Most materials are much stronger in compression than in tension, so positive
stresses are more dangerous than negative ones. For � < 19

60
the largest positive

stresses are at the edge, �xx(0,R,0) and �yy(R,0,0). For � > 19

60
the largest

positive stress is at the center, �xx(0,0,0). These results suggest that the tidal
disruption may occur either as a fracture at the edge that propagates to the center or
a fracture at the center that propagates to the edge, depending on the distance rp,
which is related to � by equation (I.34). These arguments lead directly to the tidal
disruption criterion (8.79).



Appendix J

Relativistic effects

By far the most important effect of general relativity on planetary orbits is the rel-
ativistic precession of the line of apsides. In the Newtonian two-body problem the
line of apsides is fixed, so even the slow precession induced by general relativity can
have important consequences for celestial mechanics (see for example §5.4.1).

If a test particle orbits a point mass M with semimajor axis a and eccentricity
e, the orbit-averaged relativistic precession rate of the line of apsides is1

d!

dt
= 3(GM)3�2
c2a5�2(1 − e2) , (J.1)

where c is the speed of light. The fractional error in this expression is O(v2�c2).
Here we sketch the derivation of the Hamiltonian that describes the dominant rela-
tivistic corrections to the Kepler Hamiltonian, from which the result (J.1) follows.
Our main goal is to describe the equations of motion in forms that can be used for
numerical integration. The derivation is self-contained, but it will be easier to fol-
low for readers with some background in general relativity (Weinberg 1972; Hartle
2003; Poisson & Will 2014; Carroll 2019).

The motion of a freely falling particle between two points A and B in curved
spacetime is along a geodesic, a path on which the elapsed proper time ⌧ is an

1 Because of spherical symmetry, relativity has no effect on the longitude of the ascending
node, ⌦, so the argument of periapsis ! precesses at the same rate as the longitude of
periapsis $ = ! +⌦.
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extremum:
0 = �� B

A

d⌧ = �� B

A

�gµ⌫dxµ
dx⌫�1�2. (J.2)

Here (x0, x1, x2, x3) ≡ (t, r), where t is time and r is position, {gµ⌫} are the com-
ponents of the metric tensor, and µ and ⌫ are integer indices in the set {0,1,2,3}.
We have adopted the summation convention of Appendix B, except that here the
summation runs over integers from 0 to 3 instead of 1 to 3.

The metric tensor in the gravitational field of a point mass M was derived by
Karl Schwarzschild in 1916. The point mass is assumed to be at rest at the ori-
gin, and the coordinates are chosen such that the relation between proper time and
coordinates approaches the Minkowski or flat-space metric far from the point mass,

d⌧2 = c2dt2 − dr2. (J.3)

There are several commonly used coordinates consistent with these requirements,
and in each of these the relativistic corrections have a different appearance. In iso-
tropic Schwarzschild coordinates the metric is given by

d⌧2 = [1 − 1

2
 (r)]2

[1 + 1

2
 (r)]2 c2dt2 − [1 + 1

2
 (r)]4dr2, where  (r) ≡ GM

c2r
; (J.4)

in standard Schwarzschild coordinates

d⌧2 = [1 − 2 (r)]c2dt2 − 2 (r)
1 − 2 (r) (r ⋅ dr)

2

r2
− dr2; (J.5)

and in harmonic Schwarzschild coordinates

d⌧2 = 1 − (r)
1 + (r)c2dt2 − 1 + (r)

1 − (r)  
2(r)
r2
(r ⋅ dr)2 − �1 + (r)�2dr2. (J.6)

We parametrize the spacetime trajectory by t so we may rewrite (J.2) in isotropic
coordinates as

0 = �� B

A

dt
d⌧

dt
= �� B

A

dt� [1 − 1

2
 (r)]2

[1 + 1

2
 (r)]2 c2 − [1 + 1

2
 (r)]4�ṙ�2�1�2, (J.7)

where ṙ = dr�dt is the velocity. There are similar expressions in the other coordinate
systems.

The classical result analogous to equation (J.7) is Hamilton’s principle: the tra-
jectory of the particle is an extremum of the action, ∫ B

A
dtL(r, ṙ), where L(r, ṙ) is
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the Lagrangian (eq. D.2). Thus we can define the Lagrangian in isotropic coordinates
to be any linear function of the integrand of equation (J.7),

L(r, ṙ) = a + b� [1 − 1

2
 (r)]2

[1 + 1

2
 (r)]2 c2 − [1 + 1

2
 (r)]4�ṙ�2�1�2, (J.8)

where a and b are constants.
The velocities in planetary systems are much smaller than the speed of light and

the gravitational field is weak, in the sense that �ṙ��c� 1 and  (r) = GM�(c2r)�
1. Therefore to isolate the strongest relativistic effects, we can expand the La-
grangian in powers of 1�c:

L(r, ṙ)=a+bc− b
c
� 1

2
�ṙ�2+ GM

r
�− b

c3
�3GM

2r
�ṙ�2− G2M2

2r2
+ 1

8
�ṙ�4�+O� b

c5
� .
(J.9)

We now set a = c2 and b = −c to ensure that the Lagrangian approaches its Newto-
nian form L(r, ṙ) = 1

2
�ṙ�2 + GM�r as c→∞. Carrying out the same analysis in all

three coordinate systems, we find

L(r, ṙ) = 1

2
�ṙ�2 + GM

r
+ 1

c2
�� 3

2
− ↵� GM

r
�ṙ�2 + �↵ − 1

2
� G2M2

r2

+ ↵ GM

r3
(r ⋅ ṙ)2 + 1

8
�ṙ�4� +O(c−4), (J.10)

where ↵ = 0 for isotropic or harmonic coordinates and ↵ = 1 for standard coordi-
nates.

The momentum is

p = @L
@ṙ
= ṙ �1 + (3 − 2↵) GM

c2r
+ �ṙ�2
2c2
� + 2↵ GM

c2r3
(r ⋅ ṙ)r +O(c−4). (J.11)

The Hamiltonian is

H(r,p) = p ⋅ ṙ −L(r, ṙ)
= 1

2
p2 − GM

r
+ 1

c2
��↵ − 3

2
� GM

r
p2 + � 1

2
− ↵� G2M2

r2

− ↵ GM

r3
(r ⋅ p)2 − 1

8
p4� +O(c−4). (J.12)
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The first two terms are, of course, the usual Kepler Hamiltonian for a test particle
(eq. 1.80), and the terms proportional to 1�c2 are the dominant relativistic correction.

Hamilton’s equations of motion become

dr

dt
= @H
@p
= p �1 + (2↵ − 3) GM

c2r
− p2

2c2
� − 2↵ GM

c2r3
(r ⋅ p)r +O(c−4),

dp

dt
= −@H

@r
= − GM

r3
r �1 + ( 3

2
− ↵)p2

c2
+ (2↵ − 1) GM

c2r
+ 3↵(r ⋅ p)2

c2r2
�

+ 2↵ GM

c2r3
(r ⋅ p)p +O(c−4). (J.13)

These can be combined into a second-order differential equation for the acceleration,

d
2
r

dt2
= − GM

r3
r + (4 − 2↵) G2M2

c2r4
r − (1 + ↵) GM �ṙ�2

c2r3
r

+ (4 − 2↵) GM

r3c2
(r ⋅ ṙ)ṙ + 3↵ GM

c2r5
(r ⋅ ṙ)2r +O(c−4). (J.14)

If the relativistic corrections are small, then for many purposes we can orbit
average their effects on the Hamiltonian. The first two terms of equation (J.12)
are equal to the Kepler Hamiltonian − 1

2
GM�a (eq. 1.85). Since the remaining

terms are already smaller by O(c−2), their orbit averages can be evaluated under the
assumption that the orbits are Kepler orbits and that p = ṙ (eq. J.11). Then using
equation (1.66a) and the results from Problem 1.2, we obtain

�H� = − GM

2a
− 3G2M2

c2a2(1 − e2)1�2 + 15G2M2

8c2a2
+O(c−4)

= − G2M2

2⇤2
− 3G4M4

c2⇤3L
+ 15G4M4

8c2⇤4
+O(c−4). (J.15)

In the second line we have expressed the result in terms of Delaunay elements (eq.
1.84). Note that the terms proportional to ↵ have canceled, so the orbit-averaged
post-Newtonian Hamiltonian is the same for all three coordinate systems.

The second term in the Hamiltonian yields the relativistic precession rate (J.1)
through the relation !̇ = @H�@L. The third term does not contribute to the preces-
sion since it is independent of L.
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J.1 The Einstein–Infeld–Hoffmann equations

The results so far in this appendix describe the motion of a test particle around a point
mass. The more general case of N bodies of masses m1, . . . ,mN , with positions
and velocities ri, vi, is described by the Einstein–Infeld–Hoffmann equations of
motion. In the barycentric frame and harmonic coordinates,

d
2
ri

dt2
= −�

j�=i
Gmjrij

r3
ij

+ 1

c2
�
j�=i

Gmjrij

r3
ij

� − v2i − 2v2j + 4vi ⋅ vj + 3(rij ⋅ vj)2
2r2

ij

+ 4�
k�=i

Gmk

rik
+�

k�=j
Gmk

rjk
− �

k�=j
Gmk

2r3
jk

rij ⋅ rjk�
+ 1

c2
�
j�=i

Gmj

r3
ij

rij ⋅ (4vi − 3vj)(vi − vj)
− 7

2c2
�
j�=i
�
k�=j

G2mjmkrjk

rijr3jk
+O(c−4). (J.16)

Here rij = ri−rj and rij = �rij �. When there is only one massive body, the equations
of motion for a test particle reduce to (J.14) with ↵ = 0. Thorough discussions of
these equations are given by Misner et al. (1973), Will (1993), and Poisson & Will
(2014).





Problems

Problems are marked [1], [2], [3] in order of increasing difficulty.

1.1 [1] A geosynchronous orbit is an orbit with period equal to the spin period
of the Earth. Show that a circular geosynchronous orbit has radius rsync =
42164 km. You may approximate the Earth as spherical and ignore the effects
of the Moon and Sun. Hint: 42241 km is not correct.

1.2 [1] Prove the following formulas for time averages over a bound Kepler orbit
of semimajor axis a and eccentricity e:

�v4� = � GM

a
�2 �4(1 − e2)−1�2 − 3�, (P.1a)

�v2�r� = GM

a2
�2(1 − e2)−1�2 − 1�, (P.1b)

�(r ⋅ v)2�r3� = GM

a2
�(1 − e2)−1�2 − 1�. (P.1c)

1.3 [1] Prove the following formulas for time averages over a bound Kepler orbit
of semimajor axis a and eccentricity e:

�(a�r)4 cos f� = e(1 − e2)5�2 , (P.2a)

�(a�r)4 cos3 f� = 3e

4(1 − e2)5�2 , (P.2b)

�(a�r)4 cos f sin
2 f� = e

4(1 − e2)5�2 , (P.2c)

�(r�a)3 cos f� = − 5

8
e(4 + 3e2), (P.2d)

�(r�a)3 cos3 f� = − 5

8
e(3 + 4e2), (P.2e)

575
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�(r�a)3 cos f sin
2 f� = − 5

8
e(1 − e2). (P.2f)

1.4 [1] Many computing languages provide the function atan2(y, x), which yields
the angle in radians between the positive x-axis and the vector from the origin
to the point (x, y). Find an expression for the true anomaly of a bound orbit in
terms of the eccentric anomaly using this function.

1.5 [1] Find the maximum time that a comet on a parabolic orbit can spend inside
the Earth’s orbit (r < 1 au) during a single perihelion passage. You may ignore
perturbations from the planets.

1.6 [1] A spacecraft travels around the Earth on a circular orbit with an altitude
of 300 km. The spacecraft engine can give it one or more velocity impulses
�v. (a) What�v (in km s−1) is needed to place the spacecraft on an orbit that
escapes from the Earth’s gravitational field? (b) The mission designers want to
place the spacecraft in a geosynchronous orbit, that is, a circular orbit of radius
rsync = 42164 km (Problem 1.1). This can be done by two impulses, the first
to place the spacecraft on an eccentric orbit with apoapsis equal to rsync (a
Hohmann transfer orbit) and the second at apoapsis to circularize the orbit.
What is the total�v required? (c) Suppose that the transfer to geosynchronous
orbit is accomplished by a slow steady burn, so the spacecraft spirals out on a
nearly circular orbit. What is the total�v required?

1.7 [2] A spacecraft travels around a star with a mass of 1M⊙, in a circular orbit
with a semimajor axis of 1 au. The spacecraft engine can give it one or more
velocity impulses �v. What is the minimum total �v needed to crash the
spacecraft into the star? You may assume that the radius of the star is very
small. Hint: a single impulse�v = 29.8 km s−1 is not the best solution.

1.8 [2] A body on a Kepler orbit suffers an instantaneous velocity impulse or kick
when it passes through periapsis. Show that (a) the periapsis distance of the
orbit after the kick must be the same as or smaller than the original periapsis
distance; (b) if the velocity kick is O(✏), then the change in periapsis is O(✏2).

1.9 [1] In July 2015 the New Horizons spacecraft encountered Pluto. The im-
pact parameter of the encounter was 13700 km and the relative velocity was
13.8 km s−1. By what angle was the spacecraft’s trajectory deflected during
the encounter? The mass of Pluto is 1.303 × 1022 kg.

1.10 [2] A test particle orbits a central mass. Erect a Cartesian coordinate sys-
tem (x1, x2, x3) with origin at the central mass, the positive x1-axis point-
ing toward the periapsis of the orbit, the positive x2-axis pointing toward true
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anomaly f = 1

2
⇡, and the positive x3-axis parallel to the angular-momentum

vector. Thus the unit vectors (x̂1, x̂2, x̂3) form a right-handed orthonormal
triad. The position of the test particle can be written r = r(x̂1 cos f+x̂2 sin f).
Let n̂ be an arbitrary unit vector. Show that the orbit average of the square of
the projection of r along n̂ is

�(r ⋅ n̂)2� = 1

2
a2�j2 + 5(e ⋅ n̂)2 − (j ⋅ n̂)2�, (P.3)

where e is the eccentricity vector (Box 1.1) and j is the dimensionless angular
momentum (eq. 1.33). Hint: use equations (1.65d)–(1.65f) and (B.6a).

1.11 [3] Write code to solve Kepler’s equation (1.49) for the eccentric anomaly u.
The algorithm should converge quickly for all values of the mean longitude `
and eccentricity e < 1.

1.12 [2] Find Gauss’s f and g functions for unbound orbits, in terms of the true
anomaly and eccentricity.

1.13 [2] A test particle orbits in an axisymmetric, near-Kepler potential of the form
�(R, z) = −GM�(R2+z2)1�2+✏�(R, z), where (R, z) are cylindrical coor-
dinates and �(R, z) is an even function of z. If the orbit is nearly circular and
lies near the equatorial plane z = 0, show that the apsidal and nodal precession
rates are

d$

dt
= −✏� R3

g

GM
�1�2 � 1

R

@�

@R
+ 1

2

@2�

@R2
�
(Rg ,0)

+O(✏2),
d⌦

dt
= 1

2
✏� R3

g

GM
�1�2 � 1

R

@�

@R
− @2�

@z2
�
(Rg ,0)

+O(✏2), (P.4)

where Rg is the guiding center of the orbit.

1.14 [1] A collision orbit is an orbit with negligible angular momentum. Suppose
that a test particle approaches a point mass M on a collision orbit. Show that
as the angular momentum approaches zero, (a) the test particle approaches and
recedes from the central body in the same direction; (b) the radius of the test
particle before and after the encounter is

r(t) = �9GM

2
�1�3 �t − t0�2�3 +O(�t − t0�4�3), (P.5)

where t0 is the collision time.



578 PROBLEMS

1.15 [2] Show that the following set of coordinates (left column) and momenta
(right column) are canonical:

� = ` + ! +⌦, ⇤,

−[2(⇤ −L)]1�2 sin$, [2(⇤ −L)]1�2 cos$,

−[2(L −Lz)]1�2 sin⌦, [2(L −Lz)]1�2 cos⌦. (P.6)

This is an alternative form of the Poincaré variables (1.91).
1.16 [2] Show that the following set of coordinates (left column) and momenta

(right column) are canonical:

� = ` + ! +⌦, ⇤,

(⇤ −L)1�2ei$, i(⇤ −L)1�2e−i$,

(L −Lz)1�2ei⌦, i(L −Lz)1�2e−i⌦. (P.7)

1.17 [3] A planet of radius Rp transits a star of radius R∗. Assume that the stellar
disk has uniform surface brightness (i.e., there is no limb darkening). Let
r ≡ Rp�R∗ < 1 and let R∗d be the distance between the centers of the star
and planet. Show that between first and second contact (1 − r < d < 1 + r), the
flux from the star is a fraction 1− f of its unobscured value, where (Mandel &
Agol 2002)

⇡f(r, d) = r2cos−1 d2 + r2 − 1
2rd

+cos−1 d2 − r2 + 1
2d

−�d2− 1

4
(d2−r2+1)2�1�2.

(P.8)
1.18 [1] An imaged planet is detected and tracked, but only for a small fraction

of its orbit. The observations are used to estimate the orbital elements of the
planet, following the procedure in §1.6.4. It is found that the semimajor axis
a and orbital period P are poorly determined but the ratio a3�P 2 is relatively
reliable. Why is this so?

1.19 [2] Show that r exp(if) can be written in terms of the mean anomaly ` as a
power series in the eccentricity,
r

a
exp(if) = exp(i`) + � − 3

2
+ 1

2
exp(2i`)�e + � − 3

8
cos ` − 5

8
i sin `

+ 3

8
exp(3i`)�e2 + � − 1

3
cos 2` − 5

12
i sin 2` + 1

3
exp(4i`)�e3 +O(e4), (P.9)

and evaluate the term proportional to e4.
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1.20 [2] Equations (1.176), (1.177) and (1.179) imply that around an oblate planet

2

R(R) + 2

z(R) − 22

�(R) = 0. (P.10)

(a) Without using a multipole expansion, prove that this result holds in any

axisymmetric potential �(R, z), so long as the potential is an even function of
z and the local density of the mass generating the potential vanishes. Hint: if
the density is zero, the potential must satisfy Laplace’s equation

∇2
� = 1

R

@

@R
R
@�

@R
+ @2

�

@z2
= 0. (P.11)

(b) Show that if equation (P.10) holds and the apsidal and nodal precession
rates $̇ and ⌦̇ are small, then

$̇ = −⌦̇ (P.12)

with an error O($̇2, ⌦̇2). Hint: use equations (1.174) and (1.175).

1.21 [3] If a particle orbiting in a Kepler potential is subjected to an external force
per unit mass Fext, its energy E and angular momentum L change at a rate
dE�dt = Fext ⋅ v and dL�dt = r × Fext. Starting from these results prove
Gauss’s equations (1.200) for the rate of change of semimajor axis, eccentri-
city, inclination and longitude of the ascending node.

1.22 [1] Prove that the general solution to the differential equations (1.203) for the
evolution of an orbit under weak radiation forces is given implicitly by

t = t0 + 2ca2

0

5kradA2 � e0

e

de
e3�5(1 − e2)3�2 , a = a0

A

e4�5
1 − e2 ; (P.13)

here a0 and e0 are the semimajor axis and eccentricity at the initial time t0,
and the constant A = e4�5

0
�(1 − e20).

1.23 [3] A small body orbiting a planet is subject to radiation pressure from the
planet’s host star. Approximate the radiation pressure by its lowest order term
in an expansion in powers of v�c. Thus, from equation (a) of Box 1.5, the
force per unit mass on a body of mass m and radius R is kr̂∗ where k =
LR2�(4mr2∗c), L is the luminosity of the star, and the vector from the star to
the planet is r∗ = r∗r̂∗. Find the differential equations for the evolution of the
small body’s semimajor axis, eccentricity and inclination. You should average
over the orbit of the small body but not over the orbit of the planet, and ignore
the possibility that the small body is occulted by the planet. Express the result



580 PROBLEMS

in terms of x̂ ⋅ r̂∗, ŷ ⋅ r̂∗ and ẑ ⋅ r̂∗, where x̂ points from the planet to the
periapsis of the small body, ẑ is parallel to the angular momentum of the small
body, and ŷ = ẑ × x̂.

2.1 [2] (a) Analyze the behavior of the drift-kick-drift leapfrog integrator in a har-
monic potential, following the steps in equations (2.12)–(2.17). Show that the
scale factor ± is given by equation (2.23), the same as for the modified Euler
method. (b) If the scale factor is the same for modified Euler and leapfrog,
why is the former first-order and the latter second-order in accuracy?

2.2 [1] Prove that the implicit first-order integrator (2.56) is symplectic.
2.3 [3] Prove that the trapezoidal rule (2.75) and the implicit midpoint method

(2.76) are reversible when applied to reversible systems, and that the implicit
midpoint method is symplectic when applied to Hamiltonian systems.

2.4 [2] Let Eh denote Euler’s method with timestep h. Prove that the implicit
midpoint method (2.76) can be written as Eh�2E−1−h�2.

2.5 [1] In a central potential, where ∇�(r) is parallel or anti-parallel to r, the
angular momentum r × v of a test particle is conserved. Prove that the drift
and kick operators conserve angular momentum exactly in a central potential,
and hence that the modified Euler and leapfrog integrators conserve angular
momentum as well.

2.6 [2] Let Ph be an integrator of order k with timestep h. Then PahPbhPah is
an integrator with timestep h if 2a + b = 1. Prove that this integrator has order
k + 1 or higher if k is even and a−1 = 2 − 21�(k+1).

2.7 [3] Evaluate the coefficients {�m} for a Störmer integrator of order k = 8.
2.8 [3] At time t → −∞ a test particle is in a bound orbit around a star of mass

M . The orbit has semimajor axis a and eccentricity e. The star loses mass in
a spherically symmetric wind at a rate

dM

dt
= − �M(2⇡�2)1�2 exp �− t2

2�2
� . (P.14)

This exercise uses numerical orbit integrations to find the eccentricity of the
planet as t → ∞. Assume �M = 0.5M and consider initial eccentricities
e = 0 and 0.6. For each of these values, plot the difference between the initial
and final eccentricity as a function of the dimensionless ratio ��P , where P =
2⇡a3�2(GM)−1�2 is the initial orbital period. Hint: when e �= 0 the answer
depends on the orbital phase of the particle at t = 0.
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2.9 [3] Write code that can follow a test particle on a highly eccentric Kepler orbit,
and use it to integrate an orbit with an eccentricity e = 0.9999 for 1 000 orbital
periods. You may use public or commercial software in the code. The goal is
to achieve a fractional energy error less than 10

−6 at the end of the integration.
How many evaluations of the force per orbit are needed to reach this accuracy?

2.10 [2] In the numerical integration of a Kepler orbit, roundoff error produces a
relative energy error at step j given by �E�E = 2−pfj , where p is the preci-
sion and fj is of order unity. The corresponding error in the mean motion is
given by �n�n = 3

2
�E�E if ��E�E� � 1. (a) Show that the error in mean

longitude after N steps is�` = h∑N

j=1�nj(N − j), where h is the timestep.
(b) Assume that the errors fj are statistically independent, with mean f and
standard deviation �. Then prove equations (2.159) for N � 1.

3.1 [1] Plot the eccentricities and inclinations of the Jupiter Trojan asteroids, using
data from the JPL Small-Body Database Search Engine https://ssd.jpl.nasa.
gov/sbdb query.cgi.

3.2 [1] What is the libration period in years for a Trojan asteroid? You may model
the Sun–Jupiter–asteroid system using the circular restricted three-body prob-
lem, and assume that the libration amplitude is small.

3.3 [2] Spacecraft located near the Sun–Earth Lagrange points L1 or L2 are unsta-
ble, in the sense that their mean distance from the Lagrange point grows with
time as exp(�t). What is the e-folding time �−1 in days?

3.4 [2] This problem investigates the behavior of spacecraft orbits around the Sun–
Earth Lagrange points L1 or L2. (a) In the limit m1 � m0, show that the
quantity ⌫2L in equations (3.31) is equal to 4⌦

2, where ⌦ is the mean motion of
m1 around m0. (b) Show that a solution of the linearized equations of motion
(3.25) is

xa = A cos(!t+�), xb = −bA sin(!t+�), xc = B cos(!ct+�c), (P.15)

where A, B, � and �c are arbitrary constants and !,!c > 0. Find !, !c and
b. (c) Why does this motion appear to be stable when we have shown that the
collinear Lagrange points are unstable? Comment: the frequencies ! and !c

are found to differ by less than 4%. By varying the amplitudes A and B, we
also vary the frequencies ! and !c through nonlinear terms in the equations of
motion. If the amplitudes and phases are chosen such that ! = !c and � = �c,

https://ssd.jpl.nasa.gov/sbdb query.cgi
https://ssd.jpl.nasa.gov/sbdb query.cgi
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we have a periodic orbit called a halo orbit. Such orbits never intersect the
Sun–Earth line xb = xc = 0, so the Sun does not interfere with spacecraft
communications. Many spacecraft are launched into halo orbits around L1 or
L2.

3.5 [2] The gravitational force exerted on a body of mass m1 at position r1 by a
body of mass m2 at r2 is Gm1m2(r2−r1)��r2−r1�3. Suppose that this force
is modified to Gm1m2(r2 − r1)��r2 − r1�↵. How does the position of the
triangular Lagrange point in the circular restricted three-body problem depend
on the parameter ↵?

3.6 [1] A satellite travels around the Earth in a circular orbit. (a) At what semima-
jor axis is the nodal precession due to the Earth’s quadrupole moment equal to
the average nodal precession rate due to the Sun? You may neglect the obliq-
uity of the Earth relative to the ecliptic and the eccentricity of the Earth’s orbit.
(b) Explain the relation of this radius to the Laplace radius defined in equation
(5.74).

3.7 [2] This exercise derives the variational ellipse (3.95) without using Hamilton’s
equations. (a) For simplicity, assume that the Moon orbits the Earth in the
plane of the ecliptic and that the Earth–Sun orbit is circular. Show that the
quadrupole potential due to the Sun can be written in polar coordinates as

�⊙(r,�, t) = − Gm0r
2

4r3
0

− 3Gm0r
2

4r3
0

cos 2(� − �0), (P.16)

where r0, m0 and �0 are the distance, mass and azimuthal angle of the Sun.
(b) Ignore the first, axisymmetric, term in equation (P.16) since it causes only
a small fractional change in the mean motion (see Problems 3.8 and 3.9). The
second term causes a fractional change in the potential that is of order ✏ =
m0r

3�[(m1 + m2)r30], where m1 and m2 are the masses of the Earth and
Moon and r is the mean radius of the lunar orbit. Write r(t) = r + �r(t),
�(t) = �(t) +��(t), where �r(t) and ��(t) are O(✏) and d��dt = n =[G(m1 +m2)�r3]1�2. Then using equation (B.18), show that to the lowest
order in ✏ the trajectory of the Moon can be written in the form

d
2
�r

dt2
− 2nr

d��

dt
− 3n2

�r = 3Gm0r

2r3
0

cos 2(� − �0),
d
2
��

dt2
+ 2n

r

d�r

dt
= −3Gm0

2r3
0

sin 2(� − �0). (P.17)
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(c) Let n2

0 = Gm0�r30 be the squared mean motion of the Sun. Show that
n2

0�n2 = ✏ and thus that terms like d(� − �0)�dt can be set equal to n with
a fractional error that is O(✏1�2). Using this approximation, show that the
solution to equations (P.17) is

�r = −n2

0r

n2
cos 2(� − �0) + ↵r cos(nt + �),

�� = 11n2

0

8n2
sin 2(� − �0) − 2↵ sin(nt + �), (P.18)

where ↵ and � are arbitrary constants. The terms independent of ↵ describe
the variational ellipse (3.94). (d) What is the interpretation of the terms pro-
portional to ↵? (e) Show that the azimuthal term independent of ↵ vanishes
at lunar and solar eclipses, which is probably why this term was not known to
Greek astronomers.

3.8 [2] Consider the term in the disturbing function (3.75)

Hann = −3Gm0a
2

4a3

0

e0 cos(�0 −$0). (P.19)

(a) Using Lagrange’s equations (1.187), show that this term leaves the semi-
major axis, eccentricity, inclination, longitude of periapsis, and longitude of
node constant, and gives rise to variations in the azimuthal angle

�� = −3n0

n
e0 sin(�0 −$0). (P.20)

This term is known as the annual equation. (b) Physically, the annual varia-
tion (P.20) arises because the angular speed of the Moon is determined by the
net gravitational attraction from the Earth and Sun. The Sun’s attraction tends
to cancel the attraction from the Earth, and this cancellation is stronger when
the Sun is at its periapsis. Using this physical picture, derive equation (P.20)
without using Hamilton’s equations. Hint: approximate the effect of the solar
potential using the first term of equation (P.16), and observe that since this term
is spherically symmetric, the angular momentum of the orbit remains constant.
Comment: the amplitude of this periodic variation in the Moon’s azimuth is
3n0e0�n = 0.215○; the accurate estimate from Brown’s lunar theory is 0.186○.

3.9 [2] Consider the term in the disturbing function (3.75)

H = Gm0a
2

2a3

0

e cos(� −$) = 1

2
n2

0a
2(k cos� + h sin�). (P.21)
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(a) Evaluate the effects of this Hamiltonian using the simplified Lagrange’s
equations (1.193), working to first order in the strength of the perturbation and
assuming that the unperturbed eccentricity is zero. Show that the resulting
perturbation in azimuth vanishes, and that the radius is constant and equal to
r = a + 1

2
a(n0�n)2. Thus the radius of a circular orbit is not equal to the

semimajor axis. Comment: a similar situation arises for orbits around an oblate
planet; see Box 1.4. (b) Derive this relation between r and a without using
Hamilton’s equations. Hint: approximate the effect of the solar potential using
the first term of equation (P.16).

3.10 [3] Examine the motion of two bodies in the planar Hill’s problem. The bodies
have masses m1 and m2. In the absence of forces other than the gravitational
attraction of the host star, their positions relative to the reference vector a can
be written (cf. eq. 3.104)

�xi = ↵i − kH,i cos⌦t + hH,i sin⌦t,

�yi = − 3

2
↵i⌦t + �i + 2kH,i sin⌦t + 2hH,i cos⌦t, (P.22)

where kH,i and hH,i are the Hill eccentricity components (3.128) and i = 1,2.
Now subject each body to some additional force Fi. (a) Show that

mi

dkH,i

dt
= sin⌦t

⌦
Fx,i + 2 cos⌦t

⌦
Fy,i,

mi

dhH,i

dt
= cos⌦t

⌦
Fx,i − 2 sin⌦t

⌦
Fy,i. (P.23)

Hint: cf. equations (3.129) and (3.130). (b) If the forces Fi arise from the
mutual interaction of the two bodies, gravitational or otherwise, show that
m1kH,1 +m2kH,2 and m1hH,1 +m2hH,2 are conserved. (c) In Hill’s problem
the eccentricity ✏i = (k2

H,i + h2

H,i)1�2. Show that if the two bodies initially
have circular orbits, ✏1 = ✏2 = 0, then m1✏1 =m2✏2 at all future times.

3.11 [3] A planet composed of a massive compact core and an extended, opaque,
low-density atmosphere travels on a circular orbit around its host star. The
planet fills its Roche lobe. Let (x, y, z) be Cartesian coordinates with origin at
the center of mass of the planet, x-axis pointing along the star-planet line and
z-axis normal to the orbital plane. (a) Show that the lengths of the principal
axes of the planet (the intersections of the planetary surface with the coordinate
axes) are rH, 2

3
rH, and (32�3 − 31�3)rH, where rH is the Hill radius. (b) Show

that the area obscured by the planet when it transits its host star is 1.3349 r2H.
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3.12 [3] (a) Prove that Hill’s equations (3.109) can be derived from the Hamiltonian

H = 1

2
(p2⇠ + p2⌘ + p2⇣) + ⌘p⇠ − ⇠p⌘ − ⇠2 + 1

2
⌘2 + 1

2
⇣2 − 1

⇢
, (P.24)

where ⇢2 = ⇠2 + ⌘2 + ⇣2. (b) For simplicity, ignore motion in ⇣ by setting
⇣ = p⇣ = 0. Transform to new canonical coordinates (�, h) and momenta(p�, ph) using the generating function

S2(p�, ph, ⇠,⌘, ⌧) = ( 1
2
⇠2 + 2p2� + 1

2
p2h − 2⇠p�) cot ⌧

+ (⇠ph − 2p�ph) csc ⌧ − ⇠⌘ + p�⌘, (P.25)

and show that the old coordinates and momenta can be written in terms of the
new as

⇠ = 2p� + h sin ⌧ − ph cos ⌧,
⌘ = � + 2h cos ⌧ + 2ph sin ⌧,
p⇠ = −� − h cos ⌧ − ph sin ⌧,
p⌘ = −p� − h sin ⌧ + ph cos ⌧. (P.26)

(c) Show that the new Hamiltonian is

H ′ =H + @S2

@⌧
= − 3

2
p2� − 1

⇢
. (P.27)

(d) Show that at large distances (⇢ → ∞) the coordinate-momentum pair(h, ph) is equal to (hH, kH), where kH and hH are the Hill eccentricity com-
ponents defined in equation (3.128).

3.13 [2] Consider Hill’s problem when body 1 is on a circular orbit. Show that the
Hill eccentricity components kH, hH defined in equations (3.128) are related
to the usual eccentricity components k = e cos$, h = e sin$ (eqs. 1.71) of
body 2 by

kH + ihH = � m0

m1 +m2

�1�3 ei�0(k − ih), (P.28)

where �0 is the mean longitude at time t = 0. You may assume that �k�, �h� � 1.
3.14 [2] Equation (G.11) defines the function I1�2W in the general three-body prob-

lem. (a) Show that this function has an extremum when the three bodies form
an equilateral triangle. (b) Show that as m2 → 0, the contours of I1�2W have
the same shape as the zero-velocity surfaces in the orbital plane of the circular
restricted three-body problem.
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4.1 [2] Prove that the equations of motion resulting from the astrocentric Hamilto-
nian (4.14) are the same as equations (4.5).

4.2 [1] Let (q,p) be a set of canonical coordinates and momenta. Define a new set
of coordinates q′ by a linear transformation, q′ = Aq, where A is a constant
matrix. What are the new momenta p

′ canonically conjugate to q
′?

4.3 [2] Let {ri,pi}, i = 0, . . . ,N − 1 be a set of canonical coordinates and
momenta for an N -body system. Define a new set of coordinates by r

′
i =∑N−1

j=0 Ajkrk, and let p′i be the momentum conjugate to r
′
i. The total angular

momentum of the system is L = ∑N−1
i=0 ri × pi. Prove that in the new coordi-

nates the angular momentum has the same form, L = ∑N−1
i=0 r

′
i × p′i.

4.4 [3] The expansion of the disturbing function in equations (4.98), (4.99) and
(4.104) is simplified in hierarchical three-body systems in which ↵ = a1�a2 �
1. Expand the disturbing function defined by these equations in powers of ↵
and discard all terms that are O(↵3) or higher. Also assume that the inclina-
tion of the outer body I2 = 0. Show that the result is equivalent to the lunar
disturbing function (3.75).

4.5 [3] Write code to evaluate the Laplace coefficient bms (↵) and its derivative
Dbms (↵) = dbms (↵)�d↵.

4.6 [2] Show by numerical examples that the Laplace coefficient bms (↵) can be
evaluated by making crude estimates of bns (↵) and bn−1s (↵) for n � m and
then repeatedly using the recursion relation (4.118) to evaluate the sequence
bn−2s (↵), bn−3s (↵), . . . , b0s(↵). Hint: prove and use the sum rule 1

2
b0s(↵) +∑∞m=1 bms (↵) = �1 − ↵�−2s.

4.7 [1] An ensemble of systems of equally spaced, equal-mass planets has a uni-
form distribution of separations ��a� over the range 0.5r1�4–2.5r1�4 in which
the relation (4.139) between separation and lifetime is approximately correct.
Show that the number of systems that survive for a time ⌧ → ⌧ + d⌧ is
dN ∝ d⌧�⌧ .

5.1 [1] Prove equations (5.42), (5.44) and (5.49).
5.2 [1] (a) Show that the quantities∑N

k=1 �Ze,k �2 and∑N

k=1 �ZI,k �2 are constants of
motion for the Lagrange–Laplace equations (5.29). (b) The angular-momen-
tum deficit is minus the difference between the z-component of the total angu-
lar momentum of a planetary system and the z-component of the total angular
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momentum of a system with the same planetary masses and semimajor axes but
zero eccentricities and inclinations. Show that the angular-momentum deficit
is

AMD ≡ N�
k=1

mk[G(m0 +mk)ak]1�2�1 − (1 − e2k)1�2 cos Ik�, (P.29)

where m0 is the mass of the central star and mk, ak, ek and Ik are the masses,
semimajor axes, eccentricities and inclinations of the planets. (c) Show that the
angular-momentum deficit is conserved in the secular dynamics of an isolated
planetary system. (d) What is the relation between the angular-momentum
deficit and the conserved quantities in part (a)?

5.3 [2] A satellite orbits a flattened planet. (a) Use the orbit-averaged quadrupole
potential, equation (5.64), and Lagrange’s equations (1.187) to show that the
longitude of the ascending node ⌦ and the argument of periapsis ! = $ − ⌦
precess at the rates

d⌦

dt
= −3(GMp)1�2J2R

2

p

2a7�2(1 − e2)2 cos I,

d!

dt
= 3(GMp)1�2J2R

2

p

4a7�2(1 − e2)2 (5 cos2 I − 1). (P.30)

(b) Compare these results in the limit e� 1, I � 1 to equations (1.180). Why
is the term proportional to J2

2 in equation (1.180b) missing? (c) At the critical
inclination, I = cos

−1(1�√5) = 63.4○, the argument of periapsis does not
precess. Why might an orbit of this kind be useful for an artificial satellite?

5.4 [2] This problem examines the same system as Problem 5.3, a satellite orbit-
ing a flattened planet, using Milankovich’s equations rather than Lagrange’s
equations. (a) Find the equations governing the rate of change of the dimen-
sionless angular momentum j and the eccentricity vector e. (b) Show that the
scalar eccentricity e and the inclination I relative to the planet’s equator are
constants of motion. (c) Show that the angular-momentum vector precesses
uniformly around the spin axis n̂p of the planet at angular speed

!j = −3(GMp)1�2J2R
2

p cos I

2a7�2(1 − e2)2 n̂p. (P.31)

(d) In the frame rotating with the precession of the angular-momentum vector,
the rate of change of eccentricity is (de�dt)rot = de�dt − !j × e (eq. D.16).
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Show that

�de
dt
�
rot

= 3(GMp)1�2J2R
2

p

4a7�2j7 �j2 − 5(j ⋅ n̂p)2�e × j. (P.32)

(e) Show that in this frame the eccentricity vector precesses uniformly around
the angular-momentum vector at angular speed

!e = 3(GMp)1�2J2R
2

p

4a7�2(1 − e2)2 (5 cos2 I − 1) ⌘̂, (P.33)

where ⌘̂ = j�j is the unit vector parallel to j. (f) Compare these results to
equations (P.30).

5.5 [3] Suppose that the orbit of the Moon is suddenly rotated such that its incli-
nation relative to the ecliptic is 90○. The semimajor axis and the eccentricity
are unchanged, and the line of apsides lies in the ecliptic. Use the secular
equations of motion to estimate how long it will take for the Moon to collide
with the Earth. You may solve the equations analytically or numerically. The
elements of the lunar and solar orbits are given in Appendix A.

5.6 [2] A planet orbits a star of mass Mh in a binary-star system. The compan-
ion star has mass Mc and the binary orbit has semimajor axis ac and eccen-
tricity ec. The planet executes small-amplitude ZLK librations around the
equilibrium point ! = ± 1

2
⇡ and e = e0 ≡ [1 − ( 5

3
)1�2� cos I0�]1�2 where

(GMha)1�2 cos I0 is the conserved component of the planet’s angular mo-
mentum normal to the binary orbit (see §5.4 for notation). Show that the libra-
tion period is

PL = 4⇡

33�2
na3

c

GMc

(1 − e2c)3�2
e0(2 + 3e20)1�2 =

2

33�2
P 2

c

P

Mh +Mc

Mc

(1 − e2c)3�2
e0(2 + 3e20)1�2 .

(P.34)
Here P = 2⇡�n = 2⇡a3�2(GMh)−1�2 is the orbital period of the planet and
Pc = 2⇡a3�2

c [G(Mh +Mc)]−1�2 is the orbital period of the companion. Com-
ment: this result gives rise to the rule of thumb that the libration period is of
order the square of the binary period divided by the planet period.

5.7 [2] A planet orbits a host star that belongs to a binary system. The semimajor
axis ac of the stellar companion is much greater than the semimajor axis a of
the planet, so the effects of the companion can be investigated in the quadru-
pole approximation. The planet is initially on a circular orbit, close enough to
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the host star that relativistic precession is important. If the planetary orbit is
unstable to ZLK oscillations, show that the maximum value of the cosine of
the inclination to the companion orbit (cos I)max coincides with the maximum
eccentricity emax, and the two are related by

(cos I)2max = 3

5
+ 8✏gr
5e2max

�1 − (1 − e2max)−1�2� , (P.35)

where ✏gr is defined by equation (5.105).

6.1 [2] Prove that the angle variables for the pendulum Hamiltonian are given by
equations (6.8) and (6.12).

6.2 [2] Prove that the trajectory on the separatrix of the pendulum Hamiltonian
(6.1) with initial conditions q = 0, q̇ > 0 at t = 0 is q(t) = 4 tan−1 exp(!t)−⇡.

6.3 [2] Saturn’s satellites Mimas and Tethys are in a 2:1 mean-motion resonance.
Call the inner satellite (Mimas) body 1 and the outer satellite (Tethys) body
2. Thus n1 � 2n2. (a) Keeping terms in the disturbing function up to de-
gree 2 (eqs. 4.98, 4.99 and 4.104), show that there are six slow angles as-
sociated with this resonance: �1 = �1 − 2�2 + $1, �2 = �1 − 2�2 + $2,
�3 = 2�1 − 4�2 +$1 +$2, �4 = 2�1 − 4�2 +⌦1 +⌦2, �5 = 2�1 − 4�2 + 2⌦1

and �6 = 2�1 − 4�2 + 2⌦2. The indirect potential (4.104) modifies the coef-
ficient of the term involving �2 but does not add any new slow angles. The
associated sub-resonances are sometimes labeled e1, e2, e1e2, I1I2, I21 , and
I22 since these factors determine the strength of the corresponding terms in the
disturbing function. The sub-resonances are separated in semimajor axis be-
cause of apsidal and nodal precession due to Saturn’s quadrupole moment (see
§1.8.3 and Appendix A). (b) Order the sub-resonances by increasing semima-
jor axis of Mimas and determine the separation of each sub-resonance from
its neighbors (in km). (c) If Mimas and Tethys undergo convergent migration
due to tidal friction from Saturn, which sub-resonance is encountered first?
(d) Mimas and Tethys are found in the I1I2 sub-resonance. Using the pendu-
lum model for resonances from §6.1.2, show that the width of the I1I2 sub-
resonance is much less than the distance to its neighboring sub-resonances, so
the dynamics of each sub-resonance can be treated in isolation. The semimajor
axis, eccentricity, and inclination (relative to Saturn’s equator) of Mimas are
a = 1.855 × 105 km, e = 0.020, I = 1.6○, and for Tethys a = 2.947 × 105 km,
e = 0.001, I = 1.1○. The mass of Tethys is 1.087 × 10−6 times the mass of
Saturn and the mass of Mimas is only 6% of the mass of Tethys.
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6.4 [3] (a) Show that the separatrices that exist in the Henrard–Lemaitre Hamil-
tonian (6.48) for � > 3 can be written parametrically as r = � + � cos�,
where (r,�) are polar coordinates relative to a center at (x, y) = (↵,0), with
0 < � ≤ 2 and

↵ = − 4

�2
, � = 8

�2
, � = 16

�4
+ �2

2
. (P.36)

This curve is sometimes called the limaçon of Pascal. (b) Show that the areas
of the interior and resonance zones are

Aint = (�2 + 32��4) cos−1(�3�8) − 12

�
(1 − �6�64)1�2,

Ares = (�2 + 32��4)[⇡ − 2 cos−1(�3�8)] + 24

�
(1 − �6�64)1�2. (P.37)

(c) What is the area inside the resonance zone at the critical point� = 3?

6.5 [3] Equation (6.79), which describes the resonant component of Neptune’s dis-
turbing function at Pluto as a function of the slow angle �s = 3�P−2�N−$P,
is valid only when the eccentricity and inclination of Pluto are small. (a) Show
that without this restriction the resonant disturbing function can be written

H(�s) = − GmN

4⇡ � 4⇡

0

duP

1 − e cosuP

�
, (P.38)

where
�

2 = (xP − aN cos�N)2 + (yP − aN sin�N)2 + z2P. (P.39)

Here �N ≡ 3

2
(uP − eP sinuP) + !P − 1

2
�s, (xP, yP, zP) is the position of

Pluto as a function of its orbital elements (eqs. 1.70); uP, eP, and !P are
Pluto’s eccentric anomaly, eccentricity, and argument of periapsis; aN is the
semimajor axis of Neptune; and we have assumed that the orbit of Neptune is
circular and lies in the ecliptic plane z = 0. (b) Why does the indirect potential
not contribute to H(�s)? (c) Why is the result independent of the longitude of
Pluto’s node? (d) By evaluating H(�s) numerically, find the libration period
when the libration amplitude is small. For Pluto’s orbital parameters use eP =
0.2502, IP = 17.09○, !P = 112.6○.

6.6 [2] Saturn’s satellites Enceladus and Dione are locked in a 2:1 mean motion
resonance, with the resonant argument �s = �E − 2�D +$E. This argument
librates around 0 with a very small amplitude. Assume that Enceladus is much
less massive than Dione (the actual mass ratio is about 0.1). The eccentricity
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of Enceladus is eE = 0.0047, the mean motions are �̇E = 262.732○ d−1 and
�̇D = 131.535○ d−1 (these include the effects of Saturn’s quadrupole moment)
and the apsidal precession rate of Enceladus due to the Saturn quadrupole is
$̇E = 0.416○ d−1. Find the mass of Dione. Hint: use the relevant term from
the disturbing function (4.98), Table 6.1 and Lagrange’s equations (1.188).

6.7 [2] Prove that the coefficients Fm and Gm in equations (6.89) and Table 6.1
are related by

Fm = �m + 1
m
�2�3G−m−1, m �= 0,−1. (P.40)

6.8 [2] Two planets travel around a star of mass M∗ in coplanar and nearly circular
orbits. The inner planet has mass, semimajor axis, mean longitude and longi-
tude of periapsis M , a, � and $. The analogous quantities for the outer planet
are M ′, a′, �′ and $′. The planets are close to a mean-motion resonance with
resonant angle m� − (m + 1)�′ +$, so their interactions are governed by the
Hamiltonian (eq. 4.98)2

H1 = GMM ′
a′ (m + 1 + 1

2
↵D)bm+11�2 (↵)e cos[m� − (m + 1)�′ +$]

≡ Bme cos[m� − (m + 1)�′ +$], (P.41)

where ↵ = a�a′ and bm+1
1�2 (↵) is a Laplace coefficient. We assume that the

planet masses are small, M,M ′ � M∗, so the angle-action variables for the
inner planet can be written (see eqs. 1.88 and Box 4.1)

J1 = ⇤ =M(GM∗a)1�2, J2 = ⇤ −L =M(GM∗a)1�2[1 − (1 − e2)1�2],
✓1 = � = ` +$, ✓2 = −$, (P.42)

with analogous expressions for M ′. The total Hamiltonian for the two planets
is then

Hres = − G2M2∗M3

2⇤2
− G2M2∗M ′3

2⇤′2 +H1. (P.43)

2 This formula assumes that m �= −2 so no indirect term is present in the resonant Hamilto-
nian. We also ignore other terms associated with this resonance, such as the one proportional
to e

′
cos[m� − (m + 1)�′ +$′]. One reason why this simplification is often valid is that

the apsidal precession rates $̇ and $̇
′ are different, due to the quadrupole moment of the

star, relativistic precession, or precession due to a third planet. See Problem 6.3.
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(a) Show that there are two conserved fast actions,

Jf = J1 +mJ2, J ′f = J ′1 − (m + 1)J2. (P.44)

(b) The variation in semimajor axis is small if the planet masses are small,
so we can treat Bm as a constant. Moreover, for small eccentricity J2 �
1

2
M(GM∗a)1�2e2, so without additional loss of accuracy we can write Bme =
(2J2)1�2�, where � = BmM−1�2(GM∗a)−1�4 is assumed to be constant. Fol-
lowing the derivation in §6.2, show that the Hamiltonian can be written in the
standard form (6.37), with parameters

↵ = (GM∗)2M3m

J3

f

− (GM∗)2M ′3(m + 1)
J ′
f

3
,

� = −3(GM∗)2M3m2

2J4

f

− 3(GM∗)2M ′3(m + 1)2
2J ′

f

4
. (P.45)

Thus the analysis in §6.2 applies not just to a test particle in resonance with
a massive planet but also to two planets of comparable mass. (c) What is the
physical interpretation of the factor ↵?

7.1 [1] Using Euler’s equations (Appendix D.11.2), prove that rotational motion of
an isolated rigid body around one of its three principal axes is unstable if and
only if the principal axis is the one with the intermediate moment of inertia.
This effect is sometimes called the “tennis racket instability.”

7.2 [1] The Earth’s spin angular velocity and angular momentum are not precisely
aligned with its symmetry axis. (a) Assuming that the Earth is rigid and axi-
symmetric, calculate the rate of precession of the angular velocity and angular-
momentum vectors relative to the surface of the Earth using Euler’s equations.
You may assume that there are no external torques. (b) Carry out the same
calculation using Andoyer variables. Comment: the actual precession, known
as Chandler wobble or free nutation, has a period about 40% longer than this
estimate because the Earth is not rigid.

7.3 [1] A small satellite with inertia tensor I orbits a planet of mass M . The
position vector of the satellite relative to the center of the planet is r. Prove
that the torque on the satellite is

N = 3GM

r5
r × (I ⋅ r); (P.46)
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here I ⋅ r ≡ ∑3

i,j=1 n̂iIijrj , where n̂i is the unit vector along axis i.

7.4 [1] A triaxial satellite is in a circular orbit around its host planet. Because of
tidal friction, the satellite is in synchronous rotation. The moments of inertia
associated with the principal axes n̂1, n̂2 and n̂3 are I11, I22 and I33 with
I11 < I22 < I33 (eqs. D.87). In what directions do the axes point?

7.5 [2] Let S = (S1, S2, S3) be the spin angular momentum in a reference frame
with Cartesian unit vectors n̂i, i = 1,2,3. (a) Show that in this frame S can be
written in terms of Andoyer variables as S = [sinh(S2−S2

3)1�2,− cosh(S2−
S2

3)1�2, S3]. (b) Show that the Poisson brackets of the spin components are
(cf. eq. 5.46) {Si, Sj} = ✏ijkSk. (P.47)

(c) The orientation-dependent gravitational potential energy H of an axisym-
metric body in an external field depends only on the direction of its symmetry
axis. If the spin angular momentum is parallel to the symmetry axis we can
write H =H(S). In this case, prove that (cf. eq. 5.57)

dS

dt
= −S × @H

@S
. (P.48)

(d) Use this result to derive equation (7.10) for the precession rate of a planet.

7.6 [1] The precession rate of the unit spin vector of an axisymmetric satellite is
dŜ�dt = −↵(Ŝ ⋅ L̂)L̂× Ŝ, where L̂ is the unit normal to the orbit and (eq. 7.10)

↵ = 3GM

2a3!(1 − e2)3�2 C −A
C

, (P.49)

with M the planet mass, ! the satellite spin frequency, and A = B and C the
principal moments of inertia. We assume here that the eccentricity e of the
satellite orbit is zero. If the orbit normal L̂ precesses with frequency ⌦s, the
rate of change of the spin vector in the precessing frame is (cf. eq. D.16)

dŜ

dt
= −⌦s × Ŝ − ↵(Ŝ ⋅ L̂)L̂ × Ŝ. (P.50)

A Cassini state is a stationary solution of this equation. Prove Cassini’s third
law and the equilibrium condition (7.64).

7.7 [2] A spherical asteroid has a surface that emits according to Lambert’s law. Is
there any distribution of Bond albedo AB(✓,�) on the surface that will produce
a steady-state YORP torque?
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8.1 [1] Prove that a synchronous equilibrium state of a two-body system is stable
if and only if the orbital angular momentum is more than three times the spin
angular momentum.

8.2 [2] (a) Assuming that the Moon’s spin is negligible, show that the rate of energy
dissipation in the Earth–Moon system is

Ė = GM⊕M%
2a2

�1 − !
n
� ȧ, (P.51)

where ! is the Earth’s spin angular velocity, n = [G(M⊕ +M%)�a3]1�2 is
the mean motion, and ȧ = 3.83 cm yr−1 is the rate of change of the semimajor
axis. (b) Evaluate Ė in watts. (c) What is the ratio of the energy lost from the
Earth’s spin to the total energy lost from the Earth–Moon system?

8.3 [2] Mars’s satellite Phobos has a semimajor axis of 9376 km, which is shrink-
ing at 3.85 cm yr−1 due to tides from Mars (Jacobson 2010). (a) When will
Phobos crash into Mars? (b) What was the initial semimajor axis of Pho-
bos, assuming it was born at the time of formation of the solar system, and
how does this compare to the synchronous radius? (c) The mass of Phobos
is 1.06 × 1016 kg, and the gravitational Love number of Mars is k2 = 0.170.
What is Mars’s quality factor Q? (d) The shrinkage of Phobos’s orbit was
first detected in 1945. How could this have been done using ground-based
telescopes?

8.4 [1] The Moon is receding from the Earth at 3.83 cm yr−1. Assuming that the
quality factor and other properties of the Earth and Moon have remained con-
stant, when was the Moon at 1 Earth radius? Compare this result to the age of
the Earth.

8.5 [2] A planet identical to Jupiter orbits a star identical to the Sun in a nearly
circular orbit. The planet is in synchronous rotation. The ratio of the qual-
ity factor to the Love number in both the star and the planet may be written
Q�k2 = 10

6q6, where q6 is a free parameter. (a) At what semimajor axis is
the semimajor axis decay time a��da�dt� equal to 10

10 yr? (b) At what semi-
major axis is the eccentricity decay time e��de�dt� equal to 10

10 yr? (c) Use a
database such as the Extrasolar Planets Encyclopedia (http://exoplanet.eu/) or
the NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu/index.
html) to plot eccentricity versus semimajor axis for known exoplanets. Is there
a clear signature of eccentricity damping, and if not, can you suggest why?

http://exoplanet.eu/
https://exoplanetarchive.ipac.caltech.edu/index
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8.6 [2] A rigid, homogeneous body is covered by an ocean with density q times
the density of the body. Show that the gravitational and displacement Love
numbers are

kl = 3q

2l + 1 − 3q , hl = 2l + 1
2l + 1 − 3q . (P.52)

8.7 [1] The displacement Love number of a planet with an extended atmosphere
is defined by the surfaces of constant pressure. Prove that in this case, the
displacement Love number hl is related to the gravitational Love number kl
by hl = 1 + kl.

8.8 [1] A satellite travels around a planet in an orbit with mean motion n and
eccentricity e� 1. The satellite is small, in the sense that its mass is much less
than the planet’s mass and its Love number (8.23) is dominated by the factor
proportional to the rigidity µ. The eccentricity is damped by tidal friction in
the satellite, as described by equation (8.67). Argue that the orbital angular
momentum is conserved and hence that the rate of tidal heating of the satellite
is

Ė = 42⇡

19

⇢2R7n5

µQ
e2, (P.53)

where ⇢, R and Q are the density, radius, and quality factor of the satellite.

9.1 [2] At radius a, a planetesimal disk has surface number density ⌃N and a Ray-
leigh eccentricity distribution (eq. 9.13). Assuming that the mean eccentricity�e� � 1, prove that (a) the total number of planetesimals on orbits that cross
a is 4⇡a2

⌃N �e�; (b) the sum of the squared eccentricities of all the planetesi-
mals on orbits that cross a is 24a2

⌃N �e�3.
9.2 [1] The Fisher probability distribution for the angle ✓ between two unit vec-

tors, 0 ≤ ✓ ≤ ⇡, is

p(✓) = 

2 sinh
sin ✓ exp( cos ✓). (P.54)

As required for a probability distribution, ∫ ⇡

0
dxp(x) = 1. What is the relation

between the Fisher distribution and the Rayleigh distribution for the inclination
I (eq. 9.13)?

9.3 [2] The velocity distribution function f(v) in a planetesimal disk is a Schwarz-
schild distribution, equation (9.17). Let

Vn ≡ � dv1dv2f(v1)f(v2)�v2 − v1�n. (P.55)
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(a) Argue that the mean collision velocity between planetesimals in the disk
is V2�V1 (neglect gravitational focusing). (b) The trans-Neptunian belt has
mean eccentricity and inclination �e� = 0.14 and �I� = 11

○. What is the
mean collision velocity at a heliocentric distance of 45 au? Hint: carry out the
integrations over velocity space numerically.

9.4 [1] A comet enters the Sun’s planetary system on a nearly parabolic orbit and
has a close encounter with Jupiter that converts it to a Jupiter-family comet
(orbital period P < 20 yr). Show that its Tisserand parameter (Box 3.1) cannot
exceed 2

3�2 = 2.828. You may neglect the influence of planets other than
Jupiter and assume that Jupiter is on a circular orbit.

9.5 [3] A distribution of comets on parabolic orbits has a Rayleigh distribution of
inclinations, dn ∝ I exp(− 1

2
�I2)dI; you may assume that � � 1, so the

inclinations are small. The comets all have the same periapsis distance q, and
the arguments of periapsis and longitudes of the node are randomly distributed.
They orbit in a system containing a planet of radius R on a circular orbit in the
equatorial plane, with semimajor axis ap > q � R. The probability that a
comet will collide with the planet on a single periapsis passage is fc(R�ap)2.
Find fc as a function of the mean inclination �I�. You may neglect gravita-
tional focusing, and you may use numerical or analytic methods.

9.6 [2] How fast does the ecliptic precess due to the tidal field from the Galaxy? (a)
First make an approximate estimate by modeling the solar system as consisting
of a single planet on a circular orbit, with the semimajor axis of Jupiter. (b)
For a more accurate estimate include all of the planets, assuming they are on
circular, coplanar orbits and that the planetary system precesses as a rigid body.
(c) Why is this last assumption accurate?

9.7 [2] (a) Show that circular orbits around a star are stable in the Galactic tidal
field if and only if � cos I � > ( 4

5
)1�2, where I is the inclination relative to the

Galactic midplane. Hint: use equations (9.65) and follow the derivation in
equations (5.91)–(5.96). (b) Are circular orbits in the solar system stable (ig-
nore perturbations from the planets)? (c) If the orbits are unstable, at what
semimajor axis is the growth time of the instability shorter than the age of the
solar system?

9.8 [2] Find the orbit-averaged torque exerted by the Galactic tidal potential (9.59)
on an orbit with eccentricity e = 1, and thereby derive the first of equations
(9.66) without using the Milankovich formalism.
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9.9 [2] Comets in the outer Oort cloud are uniformly distributed in phase space at
a given semimajor axis. (a) Prove that in this case, the probability that a comet
has eccentricity and inclination in the interval dedI is e sin I dedI . (b) Prove
equation (9.70). Hint: use Delaunay variables.

9.10 [2] TNO 26308 is a binary system with an orbital period of 130.16 d and a
semimajor axis of 11370 km. The ratio of the brightnesses of the two compo-
nents is 0.11. (a) Assuming the components have the same albedo and a mean
density of 0.5 g cm−3, what is the mass and radius of each component? (b)
The system’s heliocentric orbit has a semimajor axis of 47.998 au. What is its
Hill radius (you may approximate the orbit as circular)? (c) The eccentricity
of the binary orbit is e = 0.473, and the inclination relative to the heliocentric
orbit is 75.4○. If the system undergoes ZLK oscillations, what is the maximum
eccentricity achieved (eq. 5.98), and is there a danger of collision? (d) Using
equation (P.34), estimate roughly the period of the ZLK oscillations. (e) Sug-
gest a reason why the oscillations might be suppressed in this system. (f) Using
equations (8.23) and (8.67), estimate the eccentricity damping time ⌧ = e��ė�.
You may assume that the smaller member of the binary is synchronously ro-
tating, with quality factor Q = 20 and rigidity µ = 3GPa. (g) The typical
collision velocity in the trans-Neptunian belt is about 1 km s−1 (Problem 9.3).
Estimate roughly the minimum radius of a TNO that would disrupt the binary
if it collided with the smaller member.

9.11 [1] An asteroid with a semimajor axis of 1.2 au and an eccentricity e = 0.3
collides with the Earth. The asteroid is approximately spherical, with a radius
R = 1 km and a density ⇢ = 3 g cm−3. Estimate the energy of the impact in
kilotons of TNT (1 kiloton of TNT equals 4.184 × 1012 J).
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Borderies, N. & Goldreich, P. 1984, Ce-
Mec, 32, 127

Bottke, W. F., Vokrouhlický, D., Rubin-
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MNRAS, 449, 1691

Brouwer, D. 1937, AJ, 46, 149
Brouwer, D. & Clemence, G. M. 1961,

Methods of Celestial Mechanics (New
York: Academic Press)

Brown, E. W. 1897–1908, Memoirs of
the Royal Astronomical Society, 53,
39; 53, 163; 54, 1; 57, 51; 59, 1

Brown, E. W. 1911, MNRAS, 71, 438
Brown, E. W. 1936, MNRAS, 97, 62
Brown, G. & Rein, H. 2020, Research

Notes of the AAS, 4, 221
Burdet, C. A. 1967, Zeitschrift für ange-

wandte Mathematik und Physik, 18,
434

Burns, J. A. 1976, American Journal of
Physics, 44, 944



REFERENCES 601

Burns, J. A., Lamy, P. L. & Soter, S.
1979, Icarus, 40, 1

Burrows, A., Marley, M., Hubbard,
W. B., et al. 1997, ApJ, 491, 856

Byrd, P. F. & Friedman, M. D. 1971,
Handbook of Elliptic Integrals for
Engineers and Scientists, 2nd ed.
(Berlin: Springer–Verlag)

Capitaine, N., Wallace, P. T. & Chapront,
J. 2003, A&A, 412, 567

Carroll, S. M. 2019, Spacetime and Ge-
ometry (Cambridge: Cambridge Uni-
versity Press)

Cartwright, D. E. 1999, Tides: A Scien-
tific History (Cambridge: Cambridge
University Press)

Cary, J. R. 1981, Physics Reports, 79,
129

Chandler, J. F., Battat, J.B.R., Murphy,
T. W., et al. 2021, AJ, 162, 78

Chandrasekhar, S. 1963, ApJ, 138, 1182
Chandrasekhar, S. 1969, Ellipsoidal Fig-

ures of Equilibrium (New Haven, CT:
Yale University Press)

Claret, A. 2019, A&A, 628, A29
Claret, A. & Bloemen, S. 2011, A&A,

529, A75
Cochran, W. D., Fabrycky, D. C., Torres,

G., et al. 2011, ApJS, 197, 7
Cohen, C. J. & Hubbard, E. C. 1965, AJ,

70, 10
Cohen, C. J., Hubbard, E. C. & Oester-

winter, C. 1973, Astronomical Papers
prepared for the use of the American

Ephemeris and Nautical Almanac, 22,
Part I

Collins, B. F. & Sari, R. 2010, AJ, 140,
1306

Colombo, G. 1966, AJ, 71, 891

Connelly, J. N., Bizzarro, M., Krot,
A. N., et al. 2012, Science, 338, 651

Cook, A. 2000, Astronomy & Geo-
physics, 41, 6.21

Correia, A.C.M. 2015, A&A, 582, A69

Dalrymple, G. B. 2001, in C.L.E. Lewis
& S. J. Knell, eds. The Age of the
Earth, Geological Society, London,
Special Publications, 190, 205

Danby, J.M.A. 1964a, AJ, 69, 165

Danby, J.M.A. 1964b, AJ, 69, 294

Darwin, G. H. 1899, The Tides (Boston:
Houghton Mifflin)

Deck, K. M., Holman, M. J., Agol, E., et
al. 2012, ApJL, 755, L21

Deck, K. M., Payne, M. & Holman, M. J.
2013, ApJ, 774, 129

Dehnen, W. & Binney, J. J. 1998, MN-
RAS, 298, 387

Dekker, T. J. 1971, Numerische Mathe-
matik, 18, 224

Delaunay, C. E. 1860, Mémoires de
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l’Académie des Sciences, 29, 1

Deprit, A. 1967, American Journal of
Physics, 35, 424

Deprit, A. 1969, CeMec, 1, 12



602 REFERENCES

Di Sisto, R. P. & Rossignoli, N. L. 2020,
CeMDA, 132, 36

Dones, L. & Tremaine, S. 1993, Icarus,
103, 67

Dones, L., Brasser, R., Kaib, N., et al.
2015, Space Science Reviews, 197,
191

Dumas, H. S. 2014, The KAM Story
(Singapore: World Scientific)

Duncan, M. & Levison, H. F. 1997, Sci-
ence, 276, 1670

Duncan, M., Levison, H. F. & Budd,
S. M. 1995, AJ, 110, 3073

Duncan, M., Levison, H. F. & Lee, M. H.
1998, AJ, 116, 2067

Duncan, M., Quinn, T. & Tremaine, S.
1987, AJ, 94, 1330

Duncan, M., Quinn, T. & Tremaine, S.
1988, ApJL, 328, L69

Durante, D., Parisi, M., Serra, D., et al.
2020, GeoRL, 47, e2019GL086572

Earn, D.J.D. & Tremaine, S. 1992, Phys-
ica D, 56, 1

Efroimsky, M. & Makarov, V. V. 2013,
ApJ, 764, 26
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Schröder, K.-P. & Connon Smith, R.

2008, MNRAS, 386, 155
Seager, S. 2010, Exoplanet Atmospheres

(Princeton, NJ: Princeton University
Press)

Seager, S. & Mallén–Ornelas, G. 2003,
ApJ, 585, 1038

Shampine, L. F. 1986, Mathematics of
Computation, 46, 135

Shen, Y. & Tremaine, S. 2008, AJ, 136,
2453

Shevchenko, I. I. 2017, The Lidov–
Kozai Effect—Applications in Exo-



REFERENCES 609

planet Research and Dynamical As-
tronomy (Cham: Springer)

Souchay, J., Mathis, S. & Tokieda, T.,
eds. 2013, Tides in Astronomy and
Astrophysics (Heidelberg: Springer)

Spitale, J. N., Jacobson, R. A., Porco,
C. C., et al. 2006, AJ, 132, 692

Spurzem, R., Giersz, M., Heggie, D. C.,
et al. 2009, ApJ, 697, 458

Sridhar, S. & Tremaine, S. 1992, Icarus,
95, 86

Stewart, G. R. & Ida, S. 2000, Icarus,
143, 28

Stiefel, E. L. & Scheifele, G. 1971, Lin-
ear and Regular Celestial Mechanics
(Berlin: Springer–Verlag)

Strang, G. 1968, SIAM Journal on Nu-
merical Analysis, 5, 506

Struve, O. 1952, The Observatory, 72,
199

Sussman, G. J. & Wisdom, J. 1988, Sci-
ence, 241, 433

Sussman, G. J. & Wisdom, J. 1992, Sci-
ence, 257, 56

Sussman, G. J. & Wisdom, J. 2001,
Structure and Interpretation of Classi-
cal Mechanics (Cambridge, MA: MIT
Press)

Suzuki, M. 1990, Physics Letters A, 146,
319

Szebehely, V. 1967, Theory of Orbits:
the Restricted Problem of Three Bod-
ies (New York: Academic Press)

Tabor, M. 1989, Chaos and Integrability
in Nonlinear Dynamics (New York:
Wiley)

Thomas, P. C., Burns, J. A., Hedman, M.,
et al. 2013, Icarus, 226, 999

Tiscareno, M. S. & Malhotra, R. 2003,
AJ, 126, 3122

Tisserand, F. 1889–1896, Traité de mé-
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Page numbers ending in “p” refer to problems.

action, 517
angle-action variables, 530–531
as adiabatic invariant, 27, 536
as area in phase space, 537
dimensions, 215
fast and slow, 313, 535
for co-orbital satellites, 163
for Kepler Hamiltonian, 24–26
in general relativity, 570
in Hamiltonian perturbation

theory, 221
of pendulum Hamiltonian, 309
of separatrix, 310
principle of least, 518
radial, 26

action-angle variables, see

angle-action variables
Adams–Bashforth integrator, 107
Adams–Moulton integrator, 107
adiabatic invariant, 536–537

and mass loss, 27
and resonance crossing, 327, 332
in Henrard–Lemaitre

Hamiltonian, 320

age of the solar system, 484
age of the Universe, 484
Andoyer variables, 374–379, 593p
angle-action variables, 530–531

and integrable Hamiltonians, 533
Delaunay variables, 25, 541–544
for Kepler Hamiltonian, 24–26
in Hamiltonian perturbation

theory, 221
angular momentum

center of mass, 3
circular, 24
deficit, 586p
in two-body problem, 2
relative, 3

annual equation, 583p
anomalistic year, 12
anomaly, 7

eccentric, 13
for unbound orbits, 15
mean, 12
true, 7

apoapsis, 6
Apollo asteroids, 481
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apsidal precession
in near-Kepler potential, 577p
in quadrupole potential, 59

apsidal-motion constant, 404
apsides, line of, 8
argument of periapsis, 17
Arnold diffusion, 251, 534
ascending node, 17
asteroids

Apollo, 481
Aten, 481
Earth-crossing, 481–482
families, 276
near-Earth, 480
potentially hazardous, 481
shapes of, 430
spin periods, 432

astrocentric frame, 211
astrometric planets, 40–43
astronomical unit (au), 30, 484
Aten asteroids, 481
autonomous differential equation, 73
averaging principle, 264, 535–536
azimuthal period, 12, 54

bad roundoff, 134
Baker–Campbell–Hausdorff

formula, 117
barycenter, 2

barycentric coordinates, 210
Barycentric Celestial Reference

System, 32
Barycentric Coordinate Time, 29
Bessel functions, 509–510
binary stars

minimum-energy state, 398–402
stability of orbits in, 199
tidal friction in, 411

binary64 floating-point format, 129
Bond albedo, 555
bound orbit, 6
Brouwer’s law for roundoff error,

134

canonical transformations, 526–529
conservation of volume in, 527

canonical variables, 527
Cassini states, 383, 593p
Cassini’s laws, 380
Centaurs, 476
center of mass, see barycenter
centrifugal force and potential, 521
Chandler wobble, 592p
chaos, 534

global, 535, 546
in Hyperion’s spin, 372–373
in Mars’s obliquity, 365–367
in Mercury’s orbit, 253
in solar system orbits, 252
Liapunov time, 534

Chirikov criterion, see resonance
overlap

Chirikov–Taylor map, 545–548
and modified Euler method, 94

circular angular momentum, 24
circulation, 309
colatitude, 494
collision orbit, 121, 577p
collisions, in planetesimal disk,

441–444
collocation integrators, 101–104

Gauss–Legendre, 102
Gauss–Radau, 102

Colombo’s top, 383–388
comets

Halley-type, 468
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Jupiter-family, 468, 479
long-period, 468
Oort cloud, 467–475, 597p
trans-Neptunian belt, 475–480

compensated summation, 131
conjunction, 187
constant time offset, 409
convergent migration, 335
co-orbital satellites, 155–168

Janus and Epimetheus, 155
coordinate systems

astrocentric, 211–217
barycentric, 210
cylindrical and polar, 493
democratic, 214
Jacobi, 217–221
Poincaré, 214
rotating, 520–522
spherical, 494

Coordinated Universal Time, 29
Coriolis force, 521
corotation constant, 159
Coulomb logarithm, 447
Cowell integrator, 111
critical inclination, 587p
cross product, 492
curl, 497
cylindrical coordinates, 493

Dahlquist barrier, 106
d’Alembert property, 53, 236
damped harmonic oscillator, 406
Darwin instability, 401
debris disks, 476
degrees of freedom, 520, 531

and invariant tori, 534
and surface of section, 151

Delaunay variables, 24, 541–544

in astrocentric coordinates, 215
in Jacobi coordinates, 215

delta function, 506–507
periodic, 506

democratic coordinates, 214
detached disk, 452
dipole potential, 46, 170
Dirac delta function, see delta

function
direct orbits, 17
disk-driven migration, 204–208
dispersion-dominated disk, 440
displacement Love number, 405
distribution function, 435

Schwarzschild, 439
disturbing function, 222, 234–241
divergence, 496
divergence theorem, 497
divergent migration, 335
donkey principle, 158
Dormand–Prince integrator, 98
dot product, 491
double-averaging approximation,

300
drift operator, 82
dynamical ellipticity, 48, 359
dynamical tides, 423

Earth-crossing asteroids, 481–482
Earth–Moon system

properties of, 486
spin precession in, 359
tidal evolution in, 401, 415

eccentric anomaly, 13
for unbound orbits, 15
in terms of mean anomaly, 51
in terms of true anomaly, 14
regularization, 123
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eccentric ZLK effect, 299
eccentricity, 8

components, 8
evolution due to tidal friction, 418
forced, 276, 345
free or proper, 276, 344
vector, 9

eccentricity resonances, 321
ecliptic, 4
effective potential, 49, 140, 185
effective timestep, 76
Einstein–Infeld–Hoffmann

equations of motion, 573
elliptic integrals, 508–509
energy

center-of-mass, 3
in two-body problem, 2
minimum in a binary system,

398–402
minimum of spinning body, 369
of spinning body, 538
relative, 3, 328

energy balance, 329
ephemerides, solar-system, 74
epicycle approximation, 53–57
epicycle frequency, 55
Epimetheus, see Janus and

Epimetheus
equatorial bulge, 36

gravitational potential of, 48
secular Hamiltonian of, 282

equilibrium tide, 402–404
equinox, precession of, 355
error Hamiltonian, 118
escape speed, 6
escape surface, 146
Euler angles, 502–503
Euler force, 521

Euler method, 76–82
backward, 80
implicit, 80
modified, 81

Euler’s equations, 539
Euler–Lagrange equation, 504
evection, 175

resonance, 176
exact rounding, 130
exchange operator, 239
exoplanets

distribution of separations, 260
HD 80606, 302
Kepler-18, 347
Kepler-223, 305
Kepler-36, 257
orbital periods of, 207
period ratios of, 305
TRAPPIST-1, 305

expansions in powers of eccentricity,
50–53, 234–241

explicit midpoint integrator, 97
extended phase space, 73
exterior resonance, 322
external zone of Henrard–Lemaitre

Hamiltonian, 320
extrasolar planets, see exoplanets

f and g functions, 21
fast variables, 262, 313
fictitious forces, 521

centrifugal, 521
Coriolis, 521
Euler, 521

fictitious time, 73
Fisher distribution, 595p
floating-point arithmetic, 129
floating-point numbers, 129
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forced eccentricity and inclination,
276, 345

Forest–Ruth integrator, 120
Fourier series, 499
free eccentricity and inclination,

276, 344

g modes, 423
Galactic midplane, 460
Galactic tide, 460–467, 596p
gamma function, 507
Gauss’s f and g functions, 21
Gauss’s equations, 65–69, 579p
Gauss’s method, 266
Gauss–Legendre integrator, 102
Gauss–Radau integrator, 102
Gaussian quadrature, 102
general relativity, 569–573

and ZLK oscillations, 297
generalized coordinates and

momenta, 518
generating function, 528–529

local, 229
geometric integrators, 84–96
geosynchronous orbit, 575p
global chaos, 546
global error, 75
good roundoff, 134
gradient, 495
gravitational N -body problem, 209
gravitational constant (G), 484
gravitational focusing, 11

and Safronov number, 442
gravitational Love number, 404
gravitational stirring, 444–450
Great Inequality, 248
guiding center, 56

h and k variables, 8
Halley-type comets, 468
halo orbit, 582p
Hamilton’s equations, 519
Hamilton’s principle, 517
Hamilton–Jacobi equation, 532
Hamiltonian, 518

Colombo’s top, 383
error, 118
Henrard–Lemaitre, 319
integrable, 533
near-integrable, 533
numerical, 92, 118
pendulum, 307
resonant, 313
separable, 533

Hamiltonian mechanics, 518–520
Hamiltonian perturbation theory,

221
Poincaré–von Zeipel method,

227–228
with Lie operators, 228–234

harmonic oscillator, damped, 406
harmonic potential, 12
HD 80606, 302
heliocentric frame, 211
Henrard–Lemaitre Hamiltonian,

319, 590p
external zone, 320
internal zone, 320
resonance zone, 320

high-eccentricity migration, 301
tidal friction in, 423

Hill radius, 147, 184
Hill stability, 198, 549–554
Hill variables, 541
Hill’s equations, 182

Hamiltonian form, 585p
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Hill’s problem, 180–197
periodic orbits in, 185
unbound orbits in, 194

Hohmann transfer orbit, 576p
Horner’s rule, 132
horseshoe orbits, 161
hot Jupiter, 207
Hyperion, spin of, 373

IEEE 754 standard, 128
imaged planets, 43–44
impact parameter, 10

for transits, 37
in Hill’s problem, 194

implicit midpoint integrator, 100,
580p

inclination, 17
forced, 276
free or proper, 276

inclination resonances, 321
indirect potential, 212
inertia tensor, 537

and MacCullagh’s formula, 46
inertia, moments of, see moments of

inertia
inertial modes, 423
inertial reference frame, 209
inner satellites, 287
integrable system, 530–533
integrals of motion, 25, 153, 530
integrator, 75

Adams–Bashforth, 107
Adams–Moulton, 107
backward Euler, 80
collocation, 101–104
Cowell, 111
Dormand–Prince, 98
Euler, 76–82

explicit, 76
explicit midpoint, 97
Forest–Ruth, 120
Gauss–Legendre, 102
Gauss–Radau, 102
geometric, 84–96
global error of, 75
implicit, 76
implicit Euler, 80
implicit midpoint, 100, 580p
leapfrog, 83
local error of, 75
modified Euler, 81
multistep, 104–114
normal, 89
order of, 75
predictor-corrector, 107
reversible, 86–90
Runge–Kutta, 96–101
Störmer, 110
symmetric, 89–90
symplectic, 90–96
Taylor series, 85
trapezoidal, 90, 100, 580p
truncation error, 75
variable-timestep, 93
Wisdom–Holman, 120

interior resonance, 322
internal zone of Henrard–Lemaitre

Hamiltonian, 320
International Atomic Time, 28
interplanetary transport network,

151
interval of periodicity, 114

Jacobi constant, 140
Jacobi coordinates, 217–221
Jacobi identity, 523
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Jacobi–Hill constant, 184
Jacobian matrix and determinant,

525
Janus and Epimetheus

as co-orbital satellites, 156
properties, 156

Julian date, 29
Julian year, 12
Jupiter-family comets, 468

Kepler orbit, 4
Kepler potential, 4
Kepler problem, 1
Kepler’s equation, 13

for unbound orbits, 15
Kepler’s first law, 8
Kepler’s second law, 12
Kepler’s third law, 12
Kepler-18, 347
Kepler-223, 305
Kepler-36, 257
kick operator, 82
kicked rotor, 546
kiloton of TNT, energy equivalent,

481
Kolmogorov–Arnold–Moser (KAM)

theorems, 251, 533
Kozai oscillations, see ZLK

oscillations
Kronecker delta, 505
Kuiper belt, see trans-Neptunian belt
Kustaanheimo–Stiefel

regularization, 125–127
Kuzmin’s disk, 351

Lagrange interpolating polynomial,
103

Lagrange points, 141–151

collinear, 144
halo orbit, 582p
Hill radius, 147
stability of, 147–150
triangular, 144
Trojan asteroids, 150

Lagrange stability, 198
Lagrange’s equations, 61–65, 518
Lagrange–Laplace theory, 267–276

and secular resonance, 348
disturbing function, 268
secular frequencies, 272

Lagrangian, 517
Lagrangian mechanics, 517–519
Lambert’s law, 559
Laplace coefficients, 237, 241–247

derivatives, 246
limiting cases, 245
recursion relations, 243

Laplace radius, 285
Laplace resonance, 304
Laplace surface, 281–287

and inner and outer satellites, 287
Laplace’s equation, 499
Laplacian, 498
leapfrog integrator, 83

drift-kick-drift, 83
kick-drift-kick, 83

Legendre functions, 511–512
Legendre polynomials, 511
Liapunov time, 534

of Hyperion’s spin, 373
of Kepler-36, 257
of Mars’s obliquity, 366
of solar system orbits, 252

libration
and ZLK oscillations, 297, 588p
around Lagrange points, 150
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of Janus and Epimetheus, 156
of pendulum, 308
of Pluto, 338
of Trojan asteroids, 581p

Lichtenstein’s theorem, 48
Lidov–Kozai oscillations, see ZLK

oscillations
Lie operator, 523

perturbation theory with, 228–234
Lie–Trotter splitting, 116
limaçon of Pascal, 590p
limb darkening, 39
line of apsides, 8
line-of-sight velocity, see radial

velocity
line-of-sight velocity curve, 34
Liouville’s theorem, 526
local error, 75
local generating function, 229
long-period comets, 468
longitude of ascending node, 17
longitude of periapsis, 7, 18
Love numbers, 404–406, 595p

of rigid body, 561–566
of solar-system bodies, 484–490

lunar theory, 171–180
annual equation, 583p
evection, 175
secular terms, 173
variation, 178, 582p

MacCullagh’s formula, 46, 368
Mach’s principle, 32
mass function

astrometric, 43
from radial velocities, 35

matrix, symplectic, 520, 525
mean anomaly, 12

for unbound orbits, 15
relation to eccentric and true

anomaly, 51–52
mean longitude, 19
mean motion, 12
mean-motion resonances, 303, 322

Enceladus–Dione, 590p
Mimas–Tethys, 589p
Neptune–Pluto, 335–341, 590p
of two massive bodies, 591p

migration
and Neptune–Pluto resonance,

339
convergent and divergent, 335
disk-driven, 204–208
high-eccentricity, 301
planetesimal-driven, 460
Type I and Type II, 206

Milankovich cycles, 280
Milankovich equations, 276–281
minimum orbit intersection distance,

481
minimum-energy state of binary

system, 398–402, 594p
minimum-mass solar nebula, 352,

479
modified Euler method, 81

and standard map, 94
moment of inertia factor, 358
moments of inertia, 537

dynamical ellipticity, 48, 359
of axisymmetric body, 47
of solar-system bodies, 484–490

monopole potential, 46, 170
multipole moments, 47
multipole potential, 44–50
multistep integrators, 104–114

Adams–Bashforth, 107
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Adams–Moulton, 107
Cowell, 111
Dahlquist barrier, 106
interval of periodicity, 114
reversible, 113
Störmer, 110
symmetric, 113
zero-stability, 109

mutual Hill radius, 185

near-Earth asteroids, 480
Nekhoroshev estimates, 251
Neptune–Pluto resonance, 335–341
new comets, 471
Newtonian form of equation of

motion, 72
nodal precession

in near-Kepler potential, 577p
in quadrupole potential, 59

nodes, 17
normal integrators, 89
numerical Hamiltonian, 92, 118
nutation, 378, 592p

obliquity, 285, 357
chaotic, of Mars, 365–367
of solar-system bodies, 484–490

octopole potential, 170
Oort cloud, 467–475, 597p
operator splitting, 115–121

Lie–Trotter splitting, 116
Strang splitting, 116

orbit averaging, 16, 264, 575p
orbital elements, 13

apoapsis distance, 6
argument of periapsis, 17
eccentric anomaly, 13
eccentricity, 8

inclination, 17
longitude of ascending node, 17
longitude of periapsis, 7, 18
mean anomaly, 12
mean longitude, 19
mean motion, 12
non-osculating, 363
non-singular, 8, 25–28
of solar-system bodies, 484–490
parabolic orbits, 11, 15
periapsis distance, 6
period, 12
semimajor axis, 8
true anomaly, 7
unbound orbits, 10–11, 15

orbital plane, 4
orbital torus, 533

and degrees of freedom, 534
orbits

bound, 6
chaotic, 202, 252, 534
escape, 6
horseshoe, 161
P-type, 199
parabolic, 15
prograde, 17
regular, 533
retrograde, 17
S-type, 199
tadpole, 161
unbound, 6

original semimajor axis, 471
osculating elements, 58, 363
‘Oumuamua, 475
outer satellites, 287

P-type orbits, 199
parabolic orbits, 15
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parsec (pc), 31, 484
pendulum, 307–310

action, 309, 310
circulation, 309
Hamiltonian, 307
libration, 308
resonance width, 310
torqued, 311

periapsis, longitude of, 7, 18
periapsis, periastron, perigee,

perihelion, 6
period, 12

circulation, 309
libration, 308

periodic orbits in Hill’s problem,
185

permutation symbol, 505
perturbation theory, see Hamiltonian

perturbation theory
phase space, 520

extended, 73
momentum vs. velocity, 23

planet detection
astrometry, 40–43
imaging, 43–44
radial velocity, 33–35
transits, 35–40

planetesimal disk
collisions in, 441–444
dispersion-dominated, 440
distribution function of, 435–440
gravitational stirring in, 444–450
shear-dominated, 440
temperature of, 434

planetesimal-driven migration, 460
Plutinos, 341, 478
Poincaré coordinates, 214
Poincaré map, 151–155

Poincaré variables, 27, 578p
Poincaré–von Zeipel method,

227–228
Poisson bracket, 522

and Lie operator, 229, 523
of eccentricity and

angular-momentum vectors,
278

Poisson’s equation, 499
polar coordinates, 493
pomega, 7
potential

dipole, 46
indirect, 212
Kepler, 4
MacCullagh’s formula, 46
monopole, 46, 170
multipole expansion, 44
octopole, 170
quadrupole, 46, 170

potentially hazardous asteroids, 481
Poynting–Robertson drag, 66, 69
precession

and satellites, 360–364
Earth’s spin (equinoxes), 355, 360
of planetary spin, 355–360

predictor-corrector integrator, 107
principal-axis frame, 538
principal-axis rotation, 369
principle of least action, 518
prograde orbits, 17
propagator, 87, 524
proper eccentricity, 276, 345
proper time, 569
pseudo-synchronous rotation, 417

quadrature, 101
quadrupole moment, 47
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effect of satellites, 364
of solar-system bodies, 484–490
relation to flattening, 49
relation to moments of inertia, 48

quadrupole potential, 46, 170
apsidal and nodal precession in,

59, 587p
quality factor, 407

relation to time and phase lag,
409

quasi-satellites, 164

radial period, 12, 55
radial velocity, 33

disambiguation, 33
mass function, 35
semi-amplitude, 34

radial-velocity curve, 34
radial-velocity planets, 33–35
radiation pressure, 66, 69
Rayleigh distribution, 437
reduced mass, 3
reference frames, see coordinate

systems
regolith, 428
regular orbits, 533
regularization, 121–127

eccentric-anomaly, 123
Kustaanheimo–Stiefel, 125–127

relative energy, 328
representable numbers, 129
resonance

capture and crossing, 328
capture, in Henrard–Lemaitre

Hamiltonian, 332
capture, in pendulum

Hamiltonian, 331
exterior, 322

interior, 322
mean-motion, 303, 322
Neptune–Pluto, 335–341
spin-orbit, 303, 368–372
trapping vs. capture, 312
width, 310, 315

resonance locking, and tides, 425
resonance overlap, 546–548

and chaotic spin, 373
and obliquity of Mars, 366
in three-body problem, 202,

323–325
resonance sweeping, 351
resonance zone of

Henrard–Lemaitre
Hamiltonian, 320

resonant chains, 303
retrograde orbits, 17
reversible dynamical system, 88
reversible integrator, 86–90
rigid body

Andoyer variables, 374–379
Euler’s equations, 539
Hamilton’s equations, 539
Love numbers, 561–566
rotation of, 538–540
tidal disruption of, 429–430,

566–568
Roche ellipsoid, 427
Roche limit, 426
Roche lobe, 146, 584p
Rossiter–McLaughlin effect, 302
roundoff error, 127–135

bad roundoff, 134
Brouwer’s law, 134
compensated summation, 131
exact rounding, 130
floating-point arithmetic, 129
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floating-point numbers, 129
good roundoff, 134
Horner’s rule, 132
IEEE 754 standard, 128
sum-conserving transformation,

131
rubble piles, 431
Runge–Kutta integrator, 96–101

classical, 97
Dormand–Prince, 98
embedded, 98

Runge–Lenz vector, see eccentricity,
vector

S-type orbits, 199
Safronov number, 442

for parabolic orbits, 454
scalar product, 491
scattered disk, 475
Schwarzschild coordinates, 570
Schwarzschild distribution, 439,

595p
second fundamental model for

resonance, 319
second, SI, 28
secular

definition, 173
example system, 262–265
frequency, 271
Lagrange–Laplace theory,

267–276
orbit-averaging, 264–266
resonance, 276, 322, 348–353
resonance sweeping, 351
terms in lunar theory, 173
terms in perturbation theory, 225,

262
semi-amplitude, 34

semilatus rectum, 7
semimajor axis, 8

evolution due to tidal friction, 412
separatrix, 296, 310, 589p

crossing, 325–335
sgn(x), 146
shear-dominated disk, 440
short-period term, 225, 262
sidereal period, 187
sidereal year, 12
significand, 129
Simpson’s quadrature rule, 101
single-averaging approximation, 300
skin depth, 390
slow variables, 262, 313
solar mass parameter, 31, 485
speed of light, 30, 484
sphere of influence, 147
spherical coordinates, 494
spherical cosine law, 499
spherical harmonics, 512–513

vector, 514–515
spherical sine law, 501
spherical trigonometry, 499–501
spin

evolution due to tidal friction, 416
precession of, 355–364
precession periods of

solar-system planets, 364
spin-orbit resonance, 303, 368–372
stability of planetary orbits

chaos, 202
Hill stability, 198
in binary stars, 199
in multi-planet systems, 256–260
in the solar system, 247–255
Lagrange stability, 198
ZLK oscillations, 293
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standard map, 545–548
and modified Euler method, 94

Stefan–Boltzmann constant, 484
stellar flybys, 287–291
Stirling’s approximation, 507
Störmer integrator, 110
Strang splitting, 116
sum-conserving transformation, 131
summation convention, 491
Sun

death of, 27
mass parameter, 31
properties of, 485

Sundman inequality, 550
superperiod, 347
surface of section, 151–155
symmetric integrator, 89–90
symplectic

correction, 84
integrator, 90–96
map, 525–526
matrix, 520, 525
operator, 525

synchronous orbit, 575p
synchronous rotation, 368, 399

pseudo-synchronous, 417
synodic period, 187

tadpole orbits, 161
tensile strength of typical materials,

430
test particle, 3
thermal inertia, 389, 557
Thiele–Innes elements, 41, 44
three-body problem, 137

circular restricted, 138–155
hierarchical, 168–180
Hill’s problem, 180–197

tidal disruption, 425–431
of regolith, 428
of rigid body, 429–430, 566–568
Roche limit, 426

tidal friction, 397, 406–411, 594p
and eccentricity evolution, 418
and semimajor axis evolution,

412
and spin evolution, 416
constant angle lag, 409
constant phase lag, 409
constant time lag, 409, 413
heating, 595p
non-equilibrium, 422–425

tidally locked, 417
time

Barycentric Coordinate, 29
Coordinated Universal, 29
fictitious, 73
International Atomic, 28
Julian date, 29

time-reversible dynamical system,
88

time-reversible integrator, 86–90
timestep, 75

effective, 76
variable, in geometric integrators,

93
Tisserand parameter, 143, 203, 452,

596p
trans-Neptunian belt, 475–480

binaries in, 479, 597p
classical belt, 478
cold classical belt, 478
detached disk, 452
resonant population, 478
scattered disk, 475, 478

transit timing variations, 342–348
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transiting planets, 35–40
trapezoidal integrator, 90, 100, 580p
TRAPPIST-1, 305
Trojan asteroids, 150
true anomaly, 7

asymptotic, 10
in terms of eccentric anomaly, 14
in terms of mean anomaly, 52

truncation error, 75, 127
two-body problem, 1
Type I and Type II migration, 206

unbound orbit, 6, 10–11, 15
Universal Time, 29

variables
Delaunay, 24, 542–544
fast and slow, 262, 313
Hill, 541–542
Poincaré, 27

variational ellipse, 180, 582p
vector product, 492
vector spherical harmonics, 514–515
vectors, 491–498

identities, 492, 497
in cylindrical coordinates, 493
in spherical coordinates, 494
summation convention, 491

vector calculus, 495–498
vertical frequency, 55
vis viva, 7
von Zeipel–Lidov–Kozai

oscillations, see ZLK
oscillations

warm Jupiter, 207
Wisdom–Holman integrator, 120

Yarkovsky effect, 388–391, 555–560
year, 30

anomalistic, 12
Julian, 12, 484
sidereal, 12

YORP effect, 391–395, 593p

zero-stability, 109
zero-velocity surface, 141, 186
ZLK oscillations, 292–301

and octopole potential, 299
and relativistic precession, 297
and single-averaging

approximation, 300
critical angle, 294
in Galactic tidal field, 462
libration period, 588p
ZLK function, 295


	Cover
	Contents
	Preface��������������
	1. The two-body problem
	1.1 Introduction�����������������������
	1.2 The shape of the Kepler orbit����������������������������������������
	1.3 Motion in the Kepler orbit�������������������������������������
	1.3.1 Orbit averages���������������������������
	1.3.2 Motion in three dimensions���������������������������������������
	1.3.3 Gauss's f and g functions��������������������������������������

	1.4 Canonical orbital elements�������������������������������������
	1.5 Units and reference frames�������������������������������������
	1.5.1 Time�����������������
	1.5.2 Units for the solar system���������������������������������������
	1.5.3 The solar system reference frame���������������������������������������������

	1.6 Orbital elements for exoplanets������������������������������������������
	1.6.1 Radial-velocity planets������������������������������������
	1.6.2 Transiting planets�������������������������������
	1.6.3 Astrometric planets��������������������������������
	1.6.4 Imaged planets���������������������������

	1.7 Multipole expansion of a potential���������������������������������������������
	1.7.1 The gravitational potential of rotating fluid bodies

	1.8 Nearly circular orbits���������������������������������
	1.8.1 Expansions for small eccentricity����������������������������������������������
	1.8.2 The epicycle approximation���������������������������������������
	1.8.3 Orbits and the multipole expansion�����������������������������������������������

	1.9 Response of an orbit to an external force����������������������������������������������������
	1.9.1 Lagrange's equations���������������������������������
	1.9.2 Gauss's equations������������������������������


	2. Numerical orbit integration
	2.1 Introduction�����������������������
	2.1.1 Order of an integrator�����������������������������������
	2.1.2 The Euler method�����������������������������
	2.1.3 The modified Euler method
	2.1.4 Leapfrog���������������������

	2.2 Geometric integration methods����������������������������������������
	2.2.1 Reversible integrators�����������������������������������
	2.2.2 Symplectic integrators�����������������������������������
	2.2.3 Variable timestep������������������������������

	2.3 Runge–Kutta and collocation integrators
	2.3.1 Runge–Kutta methods
	2.3.2 Collocation methods��������������������������������

	2.4 Multistep integrators��������������������������������
	2.4.1 Multistep methods for first-order differential equations
	2.4.2 Multistep methods for Newtonian differential equations
	2.4.3 Geometric multistep methods����������������������������������������

	2.5 Operator splitting�����������������������������
	2.5.1 Operator splitting for Hamiltonian systems�������������������������������������������������������
	2.5.2 Composition methods��������������������������������
	2.5.3 Wisdom–Holman integrators

	2.6 Regularization�������������������������
	2.6.1 Time regularization��������������������������������
	2.6.2 Kustaanheimo–Stiefel regularization

	2.7 Roundo error
	2.7.1 Floating-point numbers�����������������������������������
	2.7.2 Floating-point arithmetic��������������������������������������
	2.7.3 Good and bad roundo behavior


	3. The three-body problem
	3.1 The circular restricted three-body problem�����������������������������������������������������
	3.1.1 The Lagrange points��������������������������������
	3.1.2 Stability of the Lagrange points���������������������������������������������
	3.1.3 Surface of section�������������������������������

	3.2 Co-orbital dynamics������������������������������
	3.2.1 Quasi-satellites�����������������������������

	3.3 The hierarchical three-body problem����������������������������������������������
	3.3.1 Lunar theory�������������������������

	3.4 Hill's problem�������������������������
	3.4.1 Periodic orbits in Hill's problem����������������������������������������������
	3.4.2 Unbound orbits in Hill's problem���������������������������������������������

	3.5 Stability of two-planet systems������������������������������������������
	3.6 Disk-driven migration��������������������������������

	4. The N-body problem
	4.1 Reference frames and coordinate systems��������������������������������������������������
	4.1.1 Barycentric coordinates������������������������������������
	4.1.2 Astrocentric coordinates�������������������������������������
	4.1.3 Jacobi coordinates�������������������������������

	4.2 Hamiltonian perturbation theory������������������������������������������
	4.2.1 First-order perturbation theory��������������������������������������������
	4.2.2 The Poincaré–von Zeipel method
	4.2.3 Lie operator perturbation theory���������������������������������������������

	4.3 The disturbing function����������������������������������
	4.4 Laplace coefficients
	4.4.1 Recursion relations��������������������������������
	4.4.2 Limiting cases���������������������������
	4.4.3 Derivatives������������������������

	4.5 The stability of the solar system��������������������������������������������
	4.5.1 Analytic results�����������������������������
	4.5.2 Numerical results������������������������������

	4.6 The stability of planetary systems���������������������������������������������

	5. Secular dynamics
	5.1 Introduction�����������������������
	5.2 Lagrange–Laplace theory
	5.3 The Milankovich equations������������������������������������
	5.3.1 The Laplace surface��������������������������������
	5.3.2 Stellar flybys

	5.4 ZLK oscillations���������������������������
	5.4.1 Beyond the quadrupole approximation������������������������������������������������
	5.4.2 High-eccentricity migration����������������������������������������


	6. Resonances
	6.1 The pendulum�����������������������
	6.1.1 The torqued pendulum���������������������������������
	6.1.2 Resonances in Hamiltonian systems����������������������������������������������

	6.2 Resonance for circular orbits����������������������������������������
	6.2.1 The resonance-overlap criterion for nearly circular orbits�����������������������������������������������������������������������

	6.3 Resonance capture����������������������������
	6.3.1 Resonance capture in the pendulum Hamiltonian����������������������������������������������������������
	6.3.2 Resonance capture for nearly circular orbits���������������������������������������������������������

	6.4 The Neptune–Pluto resonance
	6.5 Transit timing variations������������������������������������
	6.6 Secular resonance����������������������������
	6.6.1 Resonance sweeping�������������������������������


	7. Planetary spins
	7.1 Precession of planetary spins����������������������������������������
	7.1.1 Precession and satellites��������������������������������������
	7.1.2 The chaotic obliquity of Mars������������������������������������������

	7.2 Spin-orbit resonance�������������������������������
	7.2.1 The chaotic rotation of Hyperion���������������������������������������������

	7.3 Andoyer variables����������������������������
	7.4 Colombo's top and Cassini states�������������������������������������������
	7.5 Radiative forces on small bodies�������������������������������������������
	7.5.1 Yarkovsky effect
	7.5.2 YORP effect


	8. Tides
	8.1 The minimum-energy state�����������������������������������
	8.2 The equilibrium tide�������������������������������
	8.2.1 Love numbers�������������������������

	8.3 Tidal friction�������������������������
	8.4 Spin and orbit evolution�����������������������������������
	8.4.1 Semimajor axis migration�������������������������������������
	8.4.2 Spinup and spindown��������������������������������
	8.4.3 Eccentricity damping���������������������������������

	8.5 Non-equilibrium tides��������������������������������
	8.5.1 Planets on high-eccentricity orbits������������������������������������������������
	8.5.2 Resonance locking������������������������������
	8.6 Tidal disruption���������������������������
	8.6.1 The Roche limit����������������������������
	8.6.2 Tidal disruption of regolith�����������������������������������������
	8.6.3 Tidal disruption of rigid bodies���������������������������������������������


	9. Planet-crossing orbits
	9.1 Local structure of a planetesimal disk�������������������������������������������������
	9.2 Disk-planet interactions�����������������������������������
	9.2.1 Collisions�����������������������
	9.2.2 Gravitational stirring�����������������������������������

	9.3 Evolution of high-eccentricity orbits������������������������������������������������
	9.4 The Galactic tidal field
	9.5 The Oort cloud�������������������������
	9.6 The trans-Neptunian belt�����������������������������������
	9.7 Earth-crossing asteroids�����������������������������������

	Appendix A. Physical, astronomical and solar-system constants
	Appendix B. Mathematical background
	B.1 Vectors������������������
	B.2 Coordinate systems�����������������������������
	B.3 Vector calculus��������������������������
	B.4 Fourier series�������������������������
	B.5 Spherical trigonometry���������������������������������
	B.6 Euler angles�����������������������
	B.7 Calculus of variations���������������������������������

	Appendix C. Special functions
	C.1 Kronecker delta and permutation symbol�������������������������������������������������
	C.2 Delta function�������������������������
	C.3 Gamma function�������������������������
	C.4 Elliptic integrals�����������������������������
	C.5 Bessel functions���������������������������
	C.6 Legendre functions�����������������������������
	C.7 Spherical harmonics������������������������������
	C.8 Vector spherical harmonics�������������������������������������

	Appendix D. Lagrangian and Hamiltonian dynamics
	D.1 Hamilton's equations�������������������������������
	D.2 Rotating reference frame�����������������������������������
	D.3 Poisson brackets���������������������������
	D.4 The propagator�������������������������
	D.5 Symplectic maps��������������������������
	D.6 Canonical transformations and coordinates����������������������������������������������������
	D.7 Angle-action variables���������������������������������
	D.8 Integrable and non-integrable systems������������������������������������������������
	D.9 The averaging principle����������������������������������
	D.10 Adiabatic invariants��������������������������������
	D.11 Rigid bodies������������������������

	Appendix E. Hill and Delaunay variables
	E.1 Hill variables�������������������������
	E.2 Delaunay variables�����������������������������

	Appendix F. The standard map
	F.1 Resonance overlap����������������������������

	Appendix G. Hill stability
	Appendix H. The Yarkovsky effect
	Appendix I. Tidal response of rigid bodies
	I.1 Tidal disruption of a rigid body�������������������������������������������

	Appendix J. Relativistic effects
	J.1 The Einstein–Infeld–Hoffmann equations

	Problems���������������
	References�����������������
	Index������������



