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Preface

The subject of this book, traditionally called celestial mechanics, is the oldest
branch of theoretical physics. The publication in 1687 of the Principia, New-
ton’s masterpiece on celestial mechanics, is widely regarded as the capstone
of the Scientific Revolution. Since then, celestial mechanics has attracted the
attention of many of the greatest physicists and mathematicians of the past
several centuries, including Lagrange, Laplace, Gauss, Poincaré, Kolmogorov,
and others. Concepts first explored in celestial mechanics are central to many
if not most branches of physics, and its successful high-precision predictions of
the motions of the planets have impacted disciplines as diverse as navigation
and philosophy.

Celestial mechanics experienced a renaissance in the second half of the twen-
tieth century. Starting in 1957, space flight created a demand for accurate and
rapid orbit calculations as well as a need to understand the qualitative behavior
of a wide variety of orbits. The development of high-speed digital computation
enabled the study of classic problems in celestial mechanics with new tools. Ad-
vances in nonlinear dynamics and chaos theory provided new insights into the
long-term behavior of orbits. Spacecraft visited every planet in the solar sys-
tem and sent back data that dramatically expanded our understanding of the
rich dynamics of their orbits, spins, and satellites. Finally, we have discovered
thousands of planets outside the solar system, and celestial mechanics plays a
central role in the analysis of the observations and the interpretation of their
implications for the formation and evolution of planetary systems.

The primary goal of this book is to provide an introduction to celestial
mechanics that reflects these developments. The reader is assumed to have an
undergraduate background in classical mechanics and methods of mathematical
physics (vectors, matrices, special functions, and so on), and much of what is
needed is summarized in Appendixes B, C and D. The book contains most of
the material that is needed for the reader to carry out research in the dynamics
of planetary systems.

A book is defined in large part by what is left out, and a lot has been left
out of this one. There is no analysis of spacecraft dynamics, except for a few
examples and problems. There is almost no discussion of planet formation, since
the tools that are needed to study this subject are mostly different from those of
celestial mechanics. For similar reasons there is no discussion of planetary rings.
Although general relativity offers a more accurate description of planetary mo-
tions than does Newtonian mechanics, its main use is in compiling high-accuracy



xii Preface

planetary ephemerides and so it is only described briefly, in Appendix J. Pertur-
bation theory for planets and satellites on nearly circular, nearly coplanar orbits
was the main focus of celestial mechanics in the nineteenth and early twentieth
centuries, but many of the problems for which this theory was needed can now
be solved using computer algebra or numerical orbit integration; thus the topic
is described in much less detail than in earlier books at this level. There is only
limited discussion of the rich phenomenology of extrasolar planets, since this is
a large and rapidly growing subject that deserves a book of its own.

There are problems at the end of the book, many of which are intended to
elaborate on topics that are not covered fully in the main text. Some of the
problems are more easily done using a computer algebra system.

The notation in the book is mostly standard. We regularly use the notation
f(z) = O(x) to indicate that |f(z)/x| is no larger than a constant value as
|z| — co. We assume that 0° = 1, although most mathematical and scientific
software treats it as undefined. The symbols ~ and ~ are used to indicate
approximate equality, with ~ suggesting higher accuracy than ~. Vectors and
matrices are denoted by boldface type (a, A) and operators by boldface sans-
serif type (A). We usually do not distinguish row vectors from column vectors;
thus we write a = (a1, ag, az), in which a is a row vector, as well as Aa, in which
the matrix A multiplies the column vector a.

We are all indebted to the Smithsonian/NASA Astrophysics Data System,
https://ui.adsabs.harvard.edu, and the arXiv e-print service, https://arxiv.org, which
have revolutionized access to the astronomy literature. In large part thanks
to their efforts, most of the literature referenced here can easily and freely be
accessed on the web.

All of the plots were prepared using Matplotlib (Hunter 2007), and most of
the orbit integrations were done using REBOUND (Rein & Liu 2012).

I have learned this subject largely through my colleagues, collaborators and
students, including Eugene Chiang, Luke Dones, Subo Dong, Martin Duncan,
Wyn Evans, Dan Fabrycky, Eric Ford, Jean-Baptiste Fouvry, Adrian Hamers,
Julia Heisler, Kevin Heng, Matthew Holman, Mario Juri¢, Boaz Katz, Jacques
Laskar, Renu Malhotra, Norman Murray, Fathi Namouni, Annika Peter, Cristo-
bal Petrovich, Gerald Quinlan, Thomas Quinn, Roman Rafikov, Nicole Rap-
paport, Hanno Rein, Prasenjit Saha, Kedron Silsbee, Aristotle Socrates, Serge
Tabachnik, Dan Tamayo, Alar Toomre, Jihad Touma, Paul Wiegert, Jack Wis-
dom, Qingjuan Yu and Nadia Zakamska. I thank Hanno Rein, Renu Malhotra
and her students, and especially Alar Toomre, who read and commented on large
parts of the manuscript, as well as Alysa Obertas and David Vokrouhlicky, who
contributed their research results for the figures. Above all, I am indebted to
Peter Goldreich, who introduced me to this subject. My long collaboration with
him was one of the highlights of my research career.

Much of this book was completed at home during the pandemic that began
in 2020. T am grateful to my wife Marilyn for her unswerving support for this
project, without which it would neither have been started nor finished.


https://ui.adsabs.harvard.edu
https://arxiv.org
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Chapter 1

The two-body problem

1.1 Introduction

The roots of celestial mechanics are two fundamental discoveries by Isaac
Newton. First, in any inertial frame the acceleration of a body of mass m
subjected to a force F is ,
dr = E (1.1)
di2  m
Second, the gravitational force exerted by a point mass m4 at position r; on
a point mass myg at rg is

F _ Gmoml(rl — 1‘0)

v = roP , (1.2)
with G the gravitational constant.! Newton’s laws have now been super-
seded by the equations of general relativity but remain accurate enough
to describe all observable phenomena in planetary systems when they are
supplemented by small relativistic corrections. A summary of the relevant
effects of general relativity is given in Appendix J.

The simplest problem in celestial mechanics, solved by Newton but
known as the two-body problem or the Kepler problem, is to determine

' For values of this and other constants, see Appendix A.
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the orbits of two point masses (“particles”) under the influence of their mu-
tual gravitational attraction. This is the subject of the current chapter.?

The equations of motion for the particles labeled 0 and 1 are found by
combining (1.1) and (1.2),

d21'0 _ Gm1 (1‘1 - I'()) d2r1 Gmo(ro - 1‘1)

= = . (1.3)
dt2 |I'1 - I‘(]|3 ’ dt2 |I‘() - I'1|3
The total energy and angular momentum of the particles are
Gmom
1 2,1 .12 M1
Eiot = §m0|r0| + §m1|r1| )
vy — o
Liot = moro x Io + mqry x 'y, (1.4)

in which we have introduced the notation ¥ = dr/d¢. Using equations (1.3)
it is straightforward to show that the total energy and angular momentum
are conserved, that is, d Fyo /dt = 0 and dLy/dt = 0.
We now change variables from r( and r to
morg +miry

em = —————, T =T1-T; (1.5)
mo +my

here r,, is the center of mass or barycenter of the two particles and r is
the relative position. These equations can be solved for ry and r; to yield
my mo
rg=rem— ———7r, I{=rgy+ ——T. (1.6)
mo +my mo+mq
Taking two time derivatives of the first of equations (1.5) and using equa-
tions (1.3), we obtain
d®rem
de?
2 Most of the basic material in the first part of this chapter can be found in textbooks on clas-
sical mechanics. The more advanced material in later sections and chapters has been treated
in many books over more than two centuries. The most influential of these include Laplace

(1799-1825), Tisserand (1889-1896), Poincaré (1892—-1897), Plummer (1918), Brouwer &
Clemence (1961) and Murray & Dermott (1999).

= 0; (1.7)
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thus the center of mass travels at uniform velocity, a consequence of the
absence of any external forces.
In these variables the total energy and angular momentum can be written

Eiot = Eem + Erel, Lot = Lem + Liel, (1.8)
where
Eem = 3 M|feml?, Lem = Mrem X Fem,
Eyel = Spftf - Gﬁfw, Lyel = T X T (1.9)

here we have introduced the reduced mass and total mass

momq

" M =mg+mg. (1.10)

mo+my’
The terms E.,, and L, are the kinetic energy and angular momentum as-
sociated with the motion of the center of mass. These are zero if we choose
a reference frame in which the velocity of the center of mass 1., = 0. The
terms Eye and L, are the energy and angular momentum associated with
the relative motion of the two particles around the center of mass. These
are the same as the energy and angular momentum of a particle of mass p
orbiting around a mass M (the “central body”) that is fixed at the origin of
the vector r.
Taking two time derivatives of the second of equations (1.5) yields
d?r GM GM

e (1.11)

where 7 = |r| and the unit vector ¥ = r/r. Equation (1.11) describes any one
of the following:

(i) the motion of a particle of arbitrary mass subject to the gravitational
attraction of a central body of mass M that is fixed at the origin;

(i1) the motion of a particle of negligible mass (a test particle) under the
influence of a freely moving central body of mass M;
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(iii) the motion of a particle with mass equal to the reduced mass p around
a fixed central body that attracts it with the force F of equation (1.2).

Whatever the interpretation, the two-body problem has been reduced to a
one-body problem.
Equation (1.11) can be derived from a Hamiltonian, as described in §1.4.
It can also be written
r=-Vog, (1.12)

where we have introduced the notation V f (r) for the gradient of the scalar
function f(r) (see §B.3 for a review of vector calculus). The function
Dk (r) = —GM/r is the Kepler potential. The solution of equations (1.11)
or (1.12) is known as the Kepler orbit.

‘We begin the solution of equation (1.11) by evaluating the rate of change
of the relative angular momentum L, from equation (1.9):

1dL,q dr dr d’r GM |
— = — —_— —_——— :0. 113
PRPT TR TR SrxE (1.13)

Thus the relative angular momentum is conserved. Moreover, since Ly
is normal to the plane containing the test particle’s position and velocity
vectors, the position vector must remain in a fixed plane, the orbital plane.
The plane of the Earth’s orbit around the Sun is called the ecliptic, and the
directions perpendicular to this plane are called the north and south ecliptic
poles.

We now simplify our notation. Since we can always choose an inertial
reference frame in which the center-of-mass angular momentum L., = 0
for all time, we usually shorten “relative angular momentum” to ‘“angular
momentum.” Similarly the “relative energy” E,. is shortened to “energy.”
We usually work with the angular momentum per unit mass Ly /= © x T
and the energy per unit mass £|£|*— GM/|r|. These may be called “specific
angular momentum” and “specific energy,” but we shall just write “angular
momentum” or “energy” when the intended meaning is clear. Moreover
we typically use the same symbol—L for angular momentum and E' for
energy—whether we are referring to the total quantity or the quantity per
unit mass. This casual use of the same notation for two different physical
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quantities is less dangerous than it may seem, because the intended meaning
can always be deduced from the units of the equations.

1.2 The shape of the Kepler orbit

We let (r,1) denote polar coordinates in the orbital plane, with 4/ increas-
ing in the direction of motion of the orbit. If r is a vector in the orbital
plane, then r = r* where (%, '&) are unit vectors in the radial and azimuthal
directions. The acceleration vector lies in the orbital plane and is given by
equation (B.18),

¥ = (7 = rp?)E + (20 + 1)), (1.14)
so the equations of motion (1.12) become
. d® . .
f—rqu:—i:f(r), 2v) + 1) = 0. (1.15)
T

The second equation may be multiplied by r and integrated to yield
r%j) = constant = L, (1.16)

where L = |L|. This is just a restatement of the conservation of angular
momentum, equation (1.13). .

We may use equation (1.16) to eliminate ¢ from the first of equations
(1.15),

L? dox
- = =- . 1.17
r3 dr (117
Multiplying by 7 and integrating yields
2, L?
15+ 53t Ok (r) = F, (1.18)

where F is a constant that is equal to the energy per unit mass of the test
particle. Equation (1.18) can be rewritten as

2

E, (1.19)
.
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where v = (72 +12¢)?)1/2 is the speed of the test particle.
Equation (1.18) implies that
2GM  L?

72 =2F + =
r r2

(1.20)

As r — 0, the right side approaches —L?/r?, which is negative, while the
left side is positive. Thus there must be a point of closest approach of the
test particle to the central body, known as the periapsis or pericenter.’ In
the opposite limit, 7 — oo, the right side of equation (1.20) approaches 2.
Since the left side is positive, when E' < 0 there is a maximum distance that
the particle can achieve, known as the apoapsis or apocenter. Orbits with
E < 0 are referred to as bound orbits since there is an upper limit to their
distance from the central body. Orbits with £ > 0 are unbound or escape
orbits; they have no apoapsis, and particles on such orbits eventually travel
arbitrarily far from the central body, never to return.*

The periapsis distance ¢ and apoapsis distance ) of an orbit are de-
termined by setting 7 = 0 in equation (1.20), which yields the quadratic
equation

2Er? +2GMr - L* = 0. (1.22)
For bound orbits, E' < 0, there are two roots on the positive real axis,
GM -[(GM)? +2B12]""? GM +[(GM)? +2B12]"?
- 2|E| R 2|E| '
(1.23)

For unbound orbits, £ > 0, there is only one root on the positive real axis,
[(GM)? +2BL2]'* -
2F

For specific central bodies other names are used, such as perihelion (Sun), perigee (Earth),
periastron (a star), and so forth. “Periapse” is incorrect—an apse is not an apsis.

The escape speed vesc from an object is the minimum speed needed for a test particle to
escape from its surface; if the object is spherical, with mass M and radius R, equation

(1.19) implies that
2GM \1/?
Vese = (GT) ' (-2h

GM

q= (1.24)
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To solve the differential equation (1.17) we introduce the variable v =
1/r, and change the independent variable from ¢ to v using the relation

A g4y ad

TR (1.25)

With these substitutions, 7 = —Ldu/di and # = —L?*u?d?u/dv?, so equa-
tion (1.17) becomes
d*u 1 dok
—tu=-———.
dy? L? du
Since Pk (r) = ~GM/r = - GMu the right side is equal to a constant,
GM /L?, and the equation is easily solved to yield

1 GM

u=—-—=
r L?

(1.26)

[1+ecos(vp—w)], (1.27)

where e > 0 and o are constants of integration.> We replace the angular
momentum L by another constant of integration, a, defined by the relation

L* = GMa(1-¢€?), (1.28)
so the shape of the orbit is given by

a1 -e?)

= 1.29
1+ecosf’ (1.29)

where f = 1) — w is known as the true anomaly.’

The closest approach of the two bodies occurs at f = 0 or azimuth ¢ = @
and hence w is known as the longitude of periapsis. The periapsis distance
isr(f=0)or

g=a(l-e). (1.30)

3> The symbol w is a variant of the symbol for the Greek letter 7, even though it looks more
like the symbol for the letter w; hence it is sometimes informally called “pomega.”

© In a subject as old as this, there is a rich specialized vocabulary. The term “anomaly” refers
to any angular variable that is zero at periapsis and increases by 27 as the particle travels
from periapsis to apoapsis and back. There are also several old terms we shall not use:
“semilatus rectum” for the combination a(1 — 62), “vis viva” for kinetic energy, and so on.
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When the eccentricity is zero, the longitude of periapsis o is undefined.
This indeterminacy can drastically slow or halt numerical calculations that
follow the evolution of the orbital elements, and can be avoided by replacing
e and w by two new elements, the eccentricity components or i and k
variables

k=ecosw, h=esinw, (1.31)

which are well defined even for e = 0. The generalization to nonzero incli-
nation is given in equations (1.71).

Substituting ¢ for r in equation (1.22) and replacing L? using equation
(1.28) reveals that the energy per unit mass is simply related to the constant
a:

E=- GM. (1.32)
2a

First consider bound orbits, which have E < 0. Then a > 0 by equation
(1.32) and hence e < 1 by equation (1.28). A circular orbit has e = 0 and
angular momentum per unit mass L = (GMa)'/?. The circular orbit has the
largest possible angular momentum for a given semimajor axis or energy, so
we sometimes write

L

(G~ where j = |j| = (1-¢?)'/2 (1.33)

j=
ranges from O to 1 and represents a dimensionless angular momentum at a
given semimajor axis.
The apoapsis distance, obtained from equation (1.29) with f = 7, is

Q=a(l+e). (1.34)

The periapsis and the apoapsis are joined by a straight line known as the
line of apsides. Equation (1.29) describes an ellipse with one focus at the
origin (Kepler’s first law). Its major axis is the line of apsides and has
length ¢ + QQ = 2a; thus the constant a is known as the semimajor axis. The
semiminor axis of the ellipse is the maximum perpendicular distance of the
orbit from the line of apsides, b = maxy[a(1 - e?)sin f/(1 + ecos f)] =
a(1 - €2)'/2. The eccentricity of the ellipse, (1 — b?/a®)'/2, is therefore
equal to the constant e.
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Box 1.1: The eccentricity vector

The eccentricity vector offers a more elegant but less transparent derivation of
the equation for the shape of a Kepler orbit. Take the cross product of L with
equation (1.11),

GM
Lxr=-——Lxr. (a)
r3

Using the vector identity (B.9b), Lxr = —rx L = —r x (r x ') = 72% — (r - I')r,
which is equal to r3d#/dt. Thus
dr

Lxi=-GM—. (b)
dt

Since L is constant, we may integrate to obtain
Lxr=-GM(t+e), (c)

where e is a vector constant of motion, the eccentricity vector. Rearranging
equation (c), we have
rx(rxr) r
e= ——= — —. d
GM r
To derive the shape of the orbit, we take the dot product of (c) with ¥ and use the

vector identity (B.9a) to show that # - (L x ) = —L?/r. The resulting formula is
L? 1 a(l-e?)

r= =—>; (®
GM1+e-t l+e-t

in the last equation we have eliminated L2 using equation (1.28). This result is
the same as equation (1.29) if the magnitude of the eccentricity vector equals the
eccentricity, |e| = e, and the eccentricity vector points toward periapsis.

The eccentricity vector is often called the Runge-Lenz vector, although its
history can be traced back at least to Laplace (Goldstein 1975-1976). Runge
and Lenz appear to have taken their derivation from Gibbs & Wilson (1901), the
classic text that introduced modern vector notation.
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Unbound orbits have E' > 0, a < 0 and e > 1. In this case equation (1.29)
describes a hyperbola with focus at the origin and asymptotes at azimuth

=+ foo, Where foo =cos'(-1/e) (1.35)

is the asymptotic true anomaly, which varies between 7 (for e = 1) and
%77 (for e - o00). The constants a and e are still commonly referred to
as semimajor axis and eccentricity even though these terms have no direct
geometric interpretation.

Figure 1.1: The geome-
try of an unbound or hy-
perbolic orbit around mass
M. The impact parame-
ter is b, the deflection an-
gle is 6, the asymptotic true
anomaly is f., and the pe-
riapsis is located at the tip
of the vector q.

Suppose that a particle is on an unbound orbit around a mass M. Long
before the particle approaches M, it travels at a constant velocity which we
denote by v (Figure 1.1). If there were no gravitational forces, the particle
would continue to travel in a straight line that makes its closest approach to
M at a point b called the impact parameter vector. Long after the particle
passes M, it again travels at a constant velocity v’, where v = |v| = |[v/|
because of energy conservation. The deflection angle € is the angle between
v and v/, given by cos = v - v/ /v%. The deflection angle is related to the
asymptotic true anomaly f., by 6 = 2f,, — 7; then

ool L (1.36)

0= = .
sin foo  (e2-1)1/2

tan

1
2
The relation between the pre- and post-encounter velocities can be written

v/ = vcosf - busin. (1.37)
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In many cases the properties of unbound orbits are best described by the
asymptotic speed v and the impact parameter b = |b|, rather than by orbital
elements such as a and e. It is straightforward to show that the angular
momentum and energy of the orbit per unit mass are L = bv and F = %vQ.

From equations (1.28) and (1.32) it follows that

GM 9 b2t
=_ = B — 1.38
a=-—5 * TG (1.38)
Then from equation (1.36),
GM
1p_
tan 50 = 2 (1.39)

The periapsis distance ¢ = a(1 — ¢) is related to the impact parameter b by

GM ot |2 , o, 2GMqg
q= 2 [(1+G2M2) —1] or b"=q"+ 2 (1.40)

Thus, for example, if the central body has radius R, the particle will collide

with it if

2GMR
02

232 _ p2
b” <biyy = R+

: (1.41)

The corresponding cross section is ngon. If the central body has zero mass
the cross section is just m R?; the enhancement arising from the second term
in equation (1.41) is said to be due to gravitational focusing.

In the special case E = 0, a is infinite and e = 1, so equation (1.29) is
undefined; however, in this case equation (1.22) implies that the periapsis
distance q = L?/(2G M), so equation (1.27) implies

2q

R - 1.42
" 1+cosf’ (1.42)

which describes a parabola. This result can also be derived from equation
(1.29) by replacing a(1 - €?) by q(1 + ¢) and letting e — 1.
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1.3 Motion in the Kepler orbit

The period P of a bound orbit is the time taken to travel from periapsis to
apoapsis and back. Since dv/dt = L/r?, we have ff dt = L1 ffl? r2dy;
the integral on the right side is twice the area contained in the ellipse be-
tween azimuths 11 and 15, so the radius vector to the particle sweeps out
equal areas in equal times (Kepler’s second law). Thus P = 2A/L, where
the area of the ellipse is A = wab with a and b = a(1 — €?)/? the semimajor
and semiminor axes of the ellipse. Combining these results with equation

(1.28), we find
o 1/2

The period, like the energy, depends only on the semimajor axis. The mean
motion or mean rate of change of azimuth, usually written n and equal to
27/ P, thus satisfies’

n?a® = GM, (1.44)

which is Kepler’s third law or simply Kepler’s law. If the particle passes
through periapsis at ¢ = ¢y, the dimensionless variable

t—1
{=27 0

=n(t-ty) (1.45)

is called the mean anomaly. Notice that the mean anomaly equals the true
anomaly f when f = 0,7, 27, ... but not at other phases unless the orbit is
circular; similarly, ¢ and f always lie in the same semicircle (0 to 7, 7 to
27, and so on).

7 The relation n = 27/ P holds because Kepler orbits are closed—that is, they return to the
same point once per orbit. In more general spherical potentials we must distinguish the
radial period, the time between successive periapsis passages, from the azimuthal period
2 [n. For example, in a harmonic potential ®(r) = %w2r2 the radial period is 7/w but the
azimuthal period is 27 /w. Smaller differences between the radial and azimuthal period arise
in perturbed Kepler systems such as multi-planet systems or satellites orbiting a flattened
planet (§1.8.3). For the Earth the radial period is called the anomalistic year, while the
azimuthal period of 365.256 363 d is the sidereal year. The anomalistic year is longer than
the sidereal year by 0.003 27 d. When we use the term “year” in this book, we refer to the
Julian year of exactly 365.25d (§1.5).
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The position and velocity of a particle in the orbital plane at a given time
are determined by four orbital elements: two specify the size and shape of
the orbit, which we can take to be e and a (or e and n, g and ), L and E,
and so forth); one specifies the orientation of the line of apsides (w); and
one specifies the location or phase of the particle in its orbit (f, ¢, or tg).

The trajectory [r(t),t(t)] can be derived by solving the differential
equation (1.20) for r(¢), then (1.16) for ¢)(¢). However, there is a simpler
method.

First consider bound orbits. Since the radius of a bound orbit oscillates
between a(1 — ¢) and a(1 + e), it is natural to define a variable u(t), the
eccentric anomaly, by

r=a(l-ecosu); (1.46)

since the cosine is multivalued, we must add the supplemental condition that
uw and f always lie in the same semicircle (0 to 7, 7 to 27, and so on). Thus
u increases from 0 to 27 as the particle travels from periapsis to apoapsis
and back. The true, eccentric and mean anomalies f, u and £ are all equal
for circular orbits, and for any bound orbit f = u = ¢ = 0 at periapsis and 7
at apoapsis.

Substituting equation (1.46) into the energy equation (1.20) and using
equations (1.28) and (1.32) for L? and E, we obtain

M 2GM M(1-¢?
i = a2t sin?uil = -2 ¢ _GMA-€) g
a a(l-ecosu) a(l-ecosu)?
which simplifies to
M .
(1—ecosufu2:A§iA—:n2:€? (1.48)

a3

Since @, ¢ > 0and u = £ = 0 at periapsis, we may take the square root of this
equation and then integrate to obtain Kepler’s equation

{=u-esinu. (1.49)

Kepler’s equation cannot be solved analytically for u, but many efficient
numerical methods of solution are available.
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The relation between the true and eccentric anomalies is found by elim-
inating r from equations (1.29) and (1.46):

cosu—e cos f+e

cos f = cosy = ————
/ 1+ecosf’

) (1.50)
1-ecosu

with the understanding that f and u always lie in the same semicircle. Sim-
ilarly,

—e2)1/2 g _2\1/2
sin fo L) Tsinu o (=) Psinf (1.51a)
1-ecosu 1+ecos f
1/2
tan%f:(?re) tan%u, (1.51b)
—-e
: exp(iu) - 8 . exp(if) + 8
- = 1.51
exp(if) = Boxp(in)’ exp(iu) T+ Boxp(f)’ (1.51c)
where 2v1/2
1-(1-
g l21-e) " (1.52)
e

If we assume that the periapsis lies on the x-axis of a rectangular coordinate
system in the orbital plane, the coordinates of the particle are

z=rcosf=a(cosu—e), y=rsinf=a(l-e>)?sinu. (1.53)

The position and velocity of a bound particle at a given time ¢ can be
determined from the orbital elements a, e, 7 and ¢y by the following steps.
First compute the mean motion n from Kepler’s third law (1.44), then find
the mean anomaly ¢ from (1.45). Solve Kepler’s equation for the eccentric
anomaly u. The radius r is then given by equation (1.46); the true anomaly
f is given by equation (1.50); and the azimuth ¢ = f+w. The radial velocity
is

o= —nd—r _ndr/du _ naesinu _ naesin f (1.54)
T Tde T dldu 1-ecosu (1-e2)1/?’ '
and the azimuthal velocity is
. L 1-¢2)1/2 1
vwzm/}:—:na( e’) _ +ecos f (155)

na ,
T 1-ecosu (1-e2)1/2
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in which we have used equation (1.28).

For unbound particles, recall that @ < 0, e > 1, and the period is unde-
fined since the particle escapes to infinity. The physical interpretations of
the mean anomaly ¢ and mean motion n that led to equations (1.44) and
(1.45) no longer apply, but we may define these quantities by the relations

L=n(t-ty), n’la)*=GM. (1.56)
Similarly, we define the eccentric anomaly u by
r = |a|(ecoshu —1). (1.57)

The eccentric and mean anomalies increase from 0 to oo as the true anomaly
increases from 0 to cos™*(-1/e) (eq. 1.35).

By following the chain of argument in equations (1.47)—(1.49), we may
derive the analog of Kepler’s equation for unbound orbits,

f =esinhu - u. (1.58)

The relation between the true and eccentric anomalies is

- cosh
cos fo LU e EFesS (1.59)
ecoshu —1 1+ecos f

2 _ 1)1/24inh 2 _1)1/2
sinfo (oD Tsimhu TS s

ecoshu —1 1+ecosf

1 1/2

tan%f: (Zil) tanh %u (1.59¢)

A more direct but less physical approach to deriving these results is to sub-
stitute u — iu, £ - —if in the analogous expressions for bound orbits.

For parabolic orbits we do not need the eccentric anomaly since the
relation between time from periapsis and true anomaly can be determined
analytically. Since f = L/r?%, we can use equation (1.42) to write

orfafer (8¢ Y2y df
t_to_fo L _(GM) ./0 (1+cos f)?’ (1.60)
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In the last equation we have used the relation L? = 2GMgq for parabolic
orbits. Evaluating the integral, we obtain

GM\'/?
(2q3 ) (t—to):tan%er%tan?’% : (1.61)
This is a cubic equation for tan % f that can be solved analytically.

1.3.1 Orbit averages

Many applications require the time average of some quantity X (r,v) over
one period of a bound Kepler orbit of semimajor axis a and eccentricity e.
We call this the orbit average of X and use the notation

27 df 27 dU
(X)_/O %X—/(; S (L-ccosu)X, (1.62)

in which we have used Kepler’s equation (1.49) to derive the second inte-
gral. An alternative is to write

~ Pg ~ 271'% _L 27 2.
(x)- [ PX-[O Tk Lfo df r2X; (1.63)

here P and L = 72 f are the orbital period and angular momentum. Substi-
tuting equations (1.28), (1.29) and (1.43) for the angular momentum, orbit
shape and period, the last equation can be rewritten as

(X) - (1—62)3/2f27r f X (1.64)

o 2w (1+ecosf)?

Equation (1.62) provides the simplest route to derive such results as

(a/r) =1, (1.65a)
(rlay=1+1e?, (1.65b)

((rla)?) =1+ 3¢, (1.65¢)
((r]a)? cos® f) = 3+ 2¢?, (1.65d)
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((r/a)*sin f)—% le 2 (1.65¢)
((r/a)?cos fsin f) = 0. (1.65f)
Equation (1.64) gives
((afr)?) = (1-€*)772, (1.66a)
((afr)®) = (1 =€), (1.66b)
((afr)cos® f) = 1(1-€*)™2, (1.66¢)
((a/r)?sin® f) = 2(1-€*)%2, (1.66d)
((a/r)®sin f cos f) = 0. (1.66¢)

Additional orbit averages are given in Problems 1.2 and 1.3.

1.3.2 Motion in three dimensions

So far we have described the motion of a particle in its orbital plane. To
characterize the orbit fully we must also specify the spatial orientation of
the orbital plane, as shown in Figure 1.2.

We work with the usual Cartesian coordinates (z,y,z) and spherical
coordinates (r,0,¢) (see Appendix B.2). We call the plane z = 0, corre-
sponding to 6 = %w, the reference plane. The inclination of the orbital
plane to the reference plane is denoted I, with 0 < I < 7; thus cos I = z - L,
where z and L are unit vectors in the direction of the z-axis and the angular-
momentum vector. Orbits with 0 < [ < %77 are direct or prograde; orbits
with 17 < I < are retrograde.

Any bound Kepler orbit pierces the reference plane at two points known
as the nodes of the orbit. The particle travels upward (z > 0) at the ascend-
ing node and downward at the descending node. The azimuthal angle ¢
of the ascending node is denoted (2 and is called the longitude of the as-
cending node. The angle from ascending node to periapsis, measured in
the direction of motion of the particle in the orbital plane, is denoted w and
is called the argument of periapsis.

An unfortunate feature of these elements is that neither w nor €2 is de-
fined for orbits in the reference plane (I = 0). Partly for this reason, the
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particle

line of apsides

line of nodes

Figure 1.2: The angular elements of a Kepler orbit. The usual Cartesian coordinate
axes are denoted by (z,y, z), the reference plane is z = 0, and the orbital plane
is denoted by a solid curve above the equatorial plane (z > 0) and a dashed curve
below. The plot shows the inclination I, the longitude of the ascending node €2, the
argument of periapsis w and the true anomaly f.

argument of periapsis is often replaced by a variable called the longitude of
periapsis which is defined as

w=0+w. (1.67)

For orbits with zero inclination, the longitude of periapsis has a simple
interpretation—it is the azimuthal angle between the z-axis and the peri-
apsis, consistent with our earlier definition of the same symbol following
equation (1.29)—but if the inclination is nonzero, it is the sum of two angles
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measured in different planes (the reference plane and the orbital plane).’

Despite this awkwardness, for most purposes the three elements (2, w, I)

provide the most convenient way to specify the orientation of a Kepler orbit.
The mean longitude is

A=w+l=Q+w+/, (1.68)

where ¢ is the mean anomaly; like the longitude of perihelion, the mean
longitude is the sum of angles measured in the reference plane (2) and the
orbital plane (w + ¢).

Some of these elements are closely related to the Euler angles that de-
scribe the rotation of one coordinate frame into another (Appendix B.6). Let
(2',y’, z") be Cartesian coordinates in the orbital reference frame, defined
such that the z’-axis points along the angular-momentum vector L and the
x'-axis points toward periapsis, along the eccentricity vector e. Then the
rotation from the (z,y, z) reference frame to the orbital reference frame is
described by the Euler angles

(o, 8,7) = (0, I, w). (1.69)

The position and velocity of a particle in space at a given time ¢ are
specified by six orbital elements: two specify the size and shape of the or-
bit (e and a); three specify the orientation of the orbit (/, €2 and w), and
one specifies the location of the particle in the orbit (f, u, ¢, A\, or tp).
Thus, for example, to find the Cartesian coordinates (z,y,z) in terms of
the orbital elements, we write the position in the orbital reference frame as
(2',y',2") = r(cos f,sin f,0) and use equation (1.69) and the rotation ma-
trix for the transformation from primed to unprimed coordinates (eq. B.61):

=cos Qcos(f +w) —cosIsinQsin(f +w),
=sinQcos(f +w) + cos I cosNsin(f +w),

=sinIsin(f +w); (1.70)

SNl |38

8 Thus “longitude of periapsis” is a misnomer, since <o is not equal to the azimuthal angle of
the eccentricity vector, except for orbits of zero inclination.
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here r is given in terms of the orbital elements by equation (1.29).

When the eccentricity or inclination is small, the polar coordinate pairs
e—w and I-{) are sometimes replaced by the eccentricity and inclination
component59

k=ecosw, h=esinw, g¢g=tanlcos{), p=tanlsinQ). (1.71)

The first two equations are the same as equations (1.31).

For some purposes the shape, size and orientation of an orbit can be de-
scribed most efficiently using the angular-momentum and eccentricity vec-
tors, L and e. The two vectors describe five of the six orbital elements: the
missing element is the one specifying the location of the particle in its orbit,
f>u, £, X or tg (the six components of the two vectors determine only five
elements, because e is restricted to the plane normal to L).

Note that w and €2 are undefined for orbits with zero inclination; w and
oo are undefined for circular orbits; and o, (2 and I are undefined for radial
orbits (e — 1). In contrast the angular-momentum and eccentricity vectors
are well defined for all orbits. The cost of avoiding indeterminacy is redun-
dancy: instead of five orbital elements we need six vector components.

1.3.3 Gauss’s f and g functions

A common task is to determine the position and velocity, r(¢) and v(t),
of a particle in a Kepler orbit given its position and velocity ro and v at
some initial time ¢g. This can be done by converting ry and vg into the
orbital elements a, e, I, w, Q, £y, replacing £y by £ = £y + n(t — to) and then
reversing the conversion to determine the position and velocity from the new
orbital elements. But there is a simpler method, due to Gauss.

Since the particle is confined to the orbital plane, and r(, v are vectors
lying in this plane, we can write

r(t) = f(t,to)ro + g(t, to)vo, (1.72)

9 The function tan I in the elements g and p can be replaced by any function that is propor-

tional to I as I — 0. Various authors use I, sin %I, and so forth. The function sin I is not

used because it has the same value for I and 7 — I.
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which defines Gauss’s f and g functions. This expression also gives the
velocity of the particle,

of(t,t Og(t,t
V(t): f(at O)I'0+ g(at O)VO-

To evaluate f and g for bound orbits we use polar coordinates (7, 1))
and Cartesian coordinates (x,y) in the orbital plane, and assume that rg
lies along the positive x-axis (19 = 0). Then the components of equation
(1.72) along the z- and y-axes are:

’I'(t) COS 1,[)(15) = f(t,to)’f‘g + g(t,to)’l}r(to),
r(t) siny(t) = g(t,to)vy (to), (1.74)

where v, and vy, are the radial and azimuthal velocities. These equations
can be solved for f and g:

(1.73)

Ftoto) = " cos iy - 40 gy oy |
70 vy (to)
r(t .
g(t,to) = oulio) siny(t). (1.75)

We use equations (1.16), (1.28), (1.29), (1.54) and the relation ¢ = f — fj to
replace the quantities on the right sides by orbital elements (unfortunately
f is used to denote both true anomaly and one of Gauss’s functions). The
result is

cos(f — fo) +ecos f

1+ecos f

(1-¢e)*2sin(f - fo)
n(1+ecos f)(1+ecos fo)’

f(tat()) =

)

g(t,to) = (1.76)
Since these expressions contain only the orbital elements n, e and f, they are
valid in any coordinate system, not just the one we used for the derivation.
For deriving velocities from equation (1.73), we need

df(t,tg)  esin fo —esin f —sin(f - fo)
o (1—e2)3/2 ’
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dg(t,to) ecos fo +cos(f - fo)
ot 1+ ecos fy '

(1.77)

The f and g functions can also be expressed in terms of the eccentric ano-
maly, using equations (1.50) and (1.51a):

cos(u —ug) — ecosug

f(tto) =

1-ecosug
1
g(t,to) = —[sin(u —up) —esinu + esinug],
n
of(t,ty) nsin(u — ug)

ot " (1-ecosu)(1-ecosug)’

dg(t,to) cos(u—wug)—ecosu

1.78
ot 1-ecosu ( )

To compute r(t), v(t) fromrg = r(tg), vo = v(tg) we use the following
procedure. From equations (1.19) and (1.32) we have

1 2 2?2
o r GM (1.79)

so we can compute the semimajor axis a from rg = |ro| and vy = |vg|. Then
Kepler’s law (1.44) yields the mean motion n. The total angular momentum
is L = |rg x vo| and this yields the eccentricity e through equation (1.28).
To determine the eccentric anomaly at t3, we use equation (1.46) which
determines cos ug, and then determine the quadrant of 1 by observing that
the radial velocity 7 is positive when 0 < ug < 7 and negative when 7 <
ug < 2m. From Kepler’s equation (1.49) we then find the mean anomaly £,
att = tg.

The mean anomaly at ¢ is then £ = £y + n(t — tg). By solving Kepler’s
equation numerically we can find the eccentric anomaly u. We may then
evaluate the f and g functions using equations (1.78) and the position and
velocity at ¢ from equations (1.72) and (1.73).
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1.4 Canonical orbital elements

The powerful tools of Lagrangian and Hamiltonian dynamics are essential
for solving many of the problems addressed later in this book. A summary
of the relevant aspects of this subject is given in Appendix D. In this section
we show how Hamiltonian methods are applied to the two-body problem.

The Hamiltonian that describes the trajectory of a test particle around a
point mass M at the origin is

GM

|

(1.80)

Here r and v are the position and velocity, which together determine the
position of the test particle in 6-dimensional phase space. The vectors r and
v are a canonical coordinate-momentum pair.'” Hamilton’s equations read

Q_QHK_V dl__aHK__GMr (1.81)
dt ov 7 A&t or e '

These are equivalent to the usual equations of motion (1.11).

The advantage of Hamiltonian methods is that the equations of motion
are the same in any set of phase-space coordinates z = (q, p) that are ob-
tained from (r,v) by a canonical transformation (Appendix D.6). For ex-
ample, suppose that the test particle is also subject to an additional potential
®(r,t) arising from some external mass distribution, such as another planet.
Then the Hamiltonian and the equations of motion in the original variables
are

dr  O0H dv__@iH. (1.82)

H(r,v.0) = He(rv) + @(r.t), — =20 ==

10" We usually—but not always—adopt the convention that the canonical momentum p that is
conjugate to the position r is velocity v rather than Newtonian momentum mv. Velocity
is often more convenient than Newtonian momentum in gravitational dynamics since the
acceleration of a body in a gravitational potential is independent of mass. If necessary, the
convention used in a particular set of equations can be verified by dimensional analysis.
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In the new canonical variables,!!

dq OH dp OH
H(z,t) = Hx(2z) + ®(z,1), & op At oq

If the additional potential is small compared to the Kepler potential,
|p(r,t)] < GM/r, then the trajectory will be close to a Kepler ellipse.
Therefore the analysis can be much easier if we use new coordinates and
momenta z in which Kepler motion is simple.'? The six orbital elements—
semimajor axis a, eccentricity e, inclination I, longitude of the ascending
node €2, argument of periapsis w and mean anomaly /—satisfy this require-
ment as all of the elements are constant except for ¢, which increases linearly
with time. This set of orbital elements is not canonical, but they can be rear-
ranged to form a canonical set called the Delaunay variables, in which the
coordinate-momentum pairs are:

(1.83)

l, A=(GMa)'/?,
w, Lz[GMa(l—eQ)]l/z,
Q, L.=Lcosl. (1.84)

Here L., is the z-component of the angular-momentum vector L (see Figure
1.2); L = |L| (eq. 1.28); and A is sometimes called the circular angular
momentum since it equals the angular momentum for a circular orbit. The
proof that the Delaunay variables are canonical is given in Appendix E.

The Kepler Hamiltonian (1.80) is equal to the energy per unit mass,
which is related to the semimajor axis by equation (1.32); thus

_GM _ (GM)?
20 2A?

1 For notational simplicity, we usually adopt the convention that the Hamiltonian and the
potential are functions of position, velocity, or position in phase space rather than functions
of the coordinates. Thus H(r,v,t) and H(z,t) have the same value if (r,v) and z are
coordinates of the same phase-space point in different coordinate systems.

However, the additional potential ®(z,t) is often much more complicated in the new vari-
ables; for a start, it generally depends on all six phase-space coordinates rather than just
the three components of r. Since dynamics is more difficult than potential theory, the
tradeoff—simpler dynamics at the cost of more complicated potential theory—is generally
worthwhile.

Hy =

(1.85)
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Since the Kepler Hamiltonian is independent of the coordinates, the mo-
menta A, L and L, are all constants along a trajectory in the absence of ad-
ditional forces; such variables are called integrals of motion. Because the
Hamiltonian is independent of the momenta L and L, their conjugate coor-
dinates w and € are also constant, and d¢/dt = OHy /OA = (GM)?A~3 =
(GM/a*)'? = n, where n is the mean motion defined by Kepler’s law
(1.44). Of course, all of these conclusions are consistent with what we al-
ready know about Kepler orbits.

Because the momenta are integrals of motion in the Kepler Hamiltonian
and the coordinates are angular variables that range from O to 27, the De-
launay variables are also angle-action variables for the Kepler Hamiltonian
(Appendix D.7). For an application of this property, see Box 1.2.

One shortcoming of the Delaunay variables is that they have coordinate
singularities at zero eccentricity, where w is ill-defined, and zero inclination,
where ) and w are ill-defined. Even if the eccentricity or inclination of an
orbit is small but nonzero, these elements can vary rapidly in the presence of
small perturbing forces, so numerical integrations that follow the evolution
of the Delaunay variables can grind to a near-halt.

To address this problem we introduce other sets of canonical variables
derived from the Delaunay variables. We write q = (¢,w, ), p=(A, L, L,)
and introduce a generating function Ss(q, P) as described in Appendix
D.6.1. From equations (D.63)

p= %, Q= %,
q oP
and these equations can be solved for the new variables Q and P. For
example, if So(q,P) = ({ +w + Q)P + (w + Q) Py + QP53 then the new
coordinate-momentum pairs are

A=l+w+Q, A
w=w+, L—A:(([;,]\4&)1/2[(1_62)1/2_1]7
Q, L.-L=(GMa)"2(1-e*)"?(cosI-1). (1.87)

(1.86)

Here we have reintroduced the mean longitude A (eq. 1.68) and the longi-
tude of periapsis w (eq. 1.67). Since A and w are well defined for orbits of
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zero inclination, these variables are better suited for describing nearly equa-
torial prograde orbits. The longitude of the node {2 is still ill-defined when
the inclination is zero, although if the motion is known or assumed to be
restricted to the equatorial plane the first two coordinate-momentum pairs
are sufficient to describe the motion completely.

With the variables (1.87) two of the momenta L — A and L, — L are
always negative. For this reason some authors prefer to use the generating
function S2(q,P) = ({ + w + Q)P — (w + Q) Py - QPs, which yields new
coordinates and momenta

A=l+w+Q, A,
~w=-w-Q, A-L=(GMa)'*[1-(1-¢*)"?],
-Q, L-L.=(GMa)"?(1-e*)?(1-cosI). (1.88)

Another set is given by the generating function So(q,P) = ¢P; + (£ +
w) Py + Q) P3, which yields coordinates and momenta

, A-L=(GMa)'?[1-(1-¢*)?],
€+w’ L:(GMCI,)I/2(1—€2)1/27
Q, LZ:(GMa)1/2(1—62)1/2cosI. (1.89)

The action A — L that appears in (1.88) and (1.89) has a simple physical
interpretation. At a given angular momentum L, the radial motion in the
Kepler orbit is governed by the Hamiltonian H (r,p,) = $p? + 1L?/r* -
GM [r (cf. eq. 1.18). The corresponding action is J,. = ¢ drp,/(27) (eq.
D.72). The radial momentum p, = 7 by Hamilton’s equations; writing r
and 7 in terms of the eccentric anomaly u using equations (1.46) and (1.54)
gives

2,2 - .2
g, = nee f2 du 2 pg?1-(1-e2) V2] =A-L. (1.90)
2r  Jo 1-ecosu
Thus A — L is the action associated with the radial coordinate, sometimes
called the radial action. The radial action is zero for circular orbits and
equal to 5(GMa) 1/2¢2 when e « 1.
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Box 1.2: The effect of slow mass loss on a Kepler orbit

If the mass of the central object is changing, the constant M in equations like
(1.11) must be replaced by a variable M (¢). We assume that the evolution of the
mass is (i) due to some spherically symmetric process (e.g., a spherical wind from
the surface of a star), so there is no recoil force on the central object; (ii) slow, in
the sense that |dM /dt| < M /P, where P is the orbital period of a planet.

Since the gravitational potential remains spherically symmetric, the angular
momentum L = ( GMa)/2(1 - €2)1/2 (eq. 1.28) is conserved.

Moreover, actions are adiabatic invariants (Appendix D.10), so during slow
mass loss the actions remain almost constant. The Delaunay variable A =
(GMa)1/2 (eq. 1.84) is an action. Since A and L are distinct functions of Ma
and e, and both are conserved—one adiabatically and one exactly—then both Ma
and e are also conserved. In words, during slow mass loss the orbit expands, with
a(t) o< 1/M(t), but its eccentricity remains constant. The accuracy of this ap-
proximate conservation law is explored in Problem 2.8.

At present the Sun is losing mass at arate M /M = —(1.1+0.3)x10713 yr~?
(Pitjeva et al. 2021). Near the end of its life, the Sun will become a red-giant
star and expand dramatically in radius and luminosity. At the tip of the red-
giant branch, about 7.6 Gyr from now, the solar radius will be about 250 times
its present value or 1.2 au and its luminosity will be 2 700 times its current value
(Schroder & Connon Smith 2008). During its evolution up the red-giant branch
the Sun will lose about 30% of its mass, and according to the arguments above the
Earth’s orbit will expand by the same fraction. Whether or not the Earth escapes
being engulfed by the Sun depends on the uncertain relative rates of the Sun’s
future expansion and its mass loss.

Finally, consider the generating function S2(q,P) = P1({ + w + Q) +
%Pf cot(w+ Q) + %sz cot €0, which yields the Poincaré variables

A=l+w+Q, A,
[2(A - L)]*? cos w, [2(A-L)]"?sinw,
[2(L - L.)]"Y? cos 2, [2(L - L.)]Y?sin Q. (1.91)

These are well defined even when e = 0 or I = 0. In particular, in the limit
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of small eccentricity and inclination the Poincaré variables simplify to

A’ A‘7
(GMa)Y*e cos w, (GMa)Y4esinw,
(GMa)'’*I cos, (GMa)*I'sin Q. (1.92)

Apart from the constant of proportionality (GMa)'/*

Cartesian elements defined in equations (1.71).

All of these sets of orbital elements remain ill-defined when the incli-
nation I = 7 (retrograde orbits in the reference plane) or e = 1 (orbits with
zero angular momentum); however, such orbits are relatively rare in plane-
tary systems. '3

these are just the

1.5 Units and reference frames

Measurements of the trajectories of solar-system bodies are some of the
most accurate in any science, and provide exquisitely precise tests of physi-
cal theories such as general relativity. Precision of this kind demands careful
definitions of units and reference frames. These will only be treated briefly
in this book, since our focus is on understanding rather than measuring the
behavior of celestial bodies.

Tables of physical, astronomical and solar-system constants are given in
Appendix A.

1.5.1 Time

The unit of time is the Systéme Internationale or SI second (s), which is
defined by a fixed value for the frequency of a particular transition of ce-
sium atoms. Measurements from several cesium frequency standards are
combined to form a timescale known as International Atomic Time (TAI).

13" A set of canonical coordinates and momenta that is well defined for orbits with zero angular
momentum is described by Tremaine (2001). Alternatively, the orbit can be described using
the angular-momentum and eccentricity vectors, which are well defined for any Kepler
orbit; see §5.3 or Allan & Ward (1963).
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In contrast, Universal Time (UT) employs the Earth’s rotation on its
axis as a clock. UT is not tied precisely to this clock because the Earth’s
angular speed is not constant. The most important nonuniformity is that
the length of the day increases by about 2 milliseconds per century because
of the combined effects of tidal friction and post-glacial rebound. There
are also annual and semiannual variations of a few tenths of a millisecond.
Despite these irregularities, a timescale based approximately on the Earth’s
rotation is essential for everyday life: for example, we would like noon to
occur close to the middle of the day. Therefore all civil timekeeping is based
on Coordinated Universal Time (UTC), which is an atomic timescale that
is kept in close agreement with UT by adding extra seconds (“leap seconds’)
at regular intervals.!* Thus UTC is a discontinuous timescale composed of
segments that follow TAI apart from a constant offset.

An inconvenient feature of TAI for high-precision work is that it mea-
sures the rate of clocks at sea level on the Earth; general relativity implies
that the clock rate depends on the gravitational potential and hence the rate
of TAl is different from the rate measured by the same clock outside the so-
lar system. For example, the rate of TAI varies with a period of one year and
an amplitude of 1.7 milliseconds because of the eccentricity of the Earth’s
orbit. Barycentric Coordinate Time (TCB) measures the proper time ex-
perienced by a clock that co-moves with the center of mass of the solar
system but is far outside it. TCB ticks faster than TAI by 0.49 seconds per
year, corresponding to a fractional speedup of 1.55 x 1075,

The times of astronomical events are usually measured by the Julian
date, denoted by the prefix JD. The Julian date is expressed in days and
decimals of a day. Each day has 86 400 seconds. The Julian year consists of
exactly 365.25 days and is denoted by the prefix J. For example, the initial
conditions of orbits are often specified at a standard epoch, such as

J2000.0 = JD 2451 545.0, (1.93)

which corresponds roughly to noon in England on January 1, 2000. The
modified Julian day is defined as

MID =JD - 2400 000.5; (1.94)

14 The utility of leap seconds is controversial, and their future is uncertain.
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the integer offset reduces the length of the number specifying relatively re-
cent dates, and the half-integer offset ensures that the MJD begins at mid-
night rather than noon.

In contrast to SI seconds (s) and days (1 d = 86 400 s) there is no unique
definition of “year”: most astronomers use the Julian year but there is also
the anomalistic year, sidereal year, and the like (see footnote 7). For this
reason the use of “year” as a precise unit of time is deprecated. However,
we shall occasionally use years, megayears and gigayears (abbreviated yr,
Myr, Gyr) to denote 1, 10° and 10° Julian years. The age of the solar
system is 4.567 Gyr and the age of the Universe is 13.79 Gyr. The future
lifetime of the solar system as we know it is about 7.6 Gyr (see Box 1.2).

The SI unit of length is defined in terms of the second, such that the
speed of light is exactly

€=299792458 ms™ L. (1.95)

1.5.2 Units for the solar system

The history of the determination of the scale of the solar system and the
mass of the Sun is worth a brief description. Until the mid-twentieth cen-
tury virtually all of our data on the orbits of the Sun and planets came from
tracking their positions on the sky as functions of time. This information
could be combined with the theory of Kepler orbits developed earlier in this
chapter (plus small corrections arising from mutual interactions between the
planets, which are handled by the methods of Chapter 4) to determine all of
the orbital elements of the planets including the Earth, except for the overall
scale of the system. Thus, for example, the ratio of semimajor axes of any
two planets was known to high accuracy, but the values of the semimajor
axes in meters were not."”> To reflect this uncertainty, astronomers intro-
duced the concept of the astronomical unit (abbreviated au), which was
originally defined to be the semimajor axis of the Earth’s orbit. Thus the
semimajor axes of the planets were known in astronomical units long be-
fore the value of the astronomical unit was known to comparable accuracy.

15 This indeterminacy follows from dimensional analysis: measurements of angles and times
cannot be combined to find a quantity with dimensions of length.
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Since Kepler’s third law (1.44) is GM = 47%a3/P?, and orbital periods P
can be determined so long as we have accurate clocks, any fractional uncer-
tainty e in the astronomical unit implies a fractional uncertainty of 3¢ in the
solar mass parameter GM.

Over the centuries, the astronomical unit was measured by many dif-
ferent techniques, including transits of Venus, parallaxes of nearby solar-
system objects over Earth-sized baselines and stellar aberration. Never-
theless, even in the 1950s the astronomical unit was only known with a
fractional accuracy of about 1073. Soon after, radar observations of Venus
and Mars and ranging data from interplanetary spacecraft reduced the un-
certainty by several orders of magnitude. The current uncertainty is much
smaller than variations in the Earth’s semimajor axis due to perturbations
from the other planets, so in 2012 the International Astronomical Union
(IAU) re-defined the astronomical unit to be an exact unit of length,

lau = 149597870700 m. (1.96)

Distances to other stars are measured in units of parsecs (abbreviated
pc), the distance at which 1 au subtends one second of arc. Thus the parsec
is also an exact unit of length, though an irrational number of meters:

648000

™

1pc au ~ 3.0856776 x 10'% m. (1.97)

The determination of the scale of the solar system allowed the deter-
mination of GMg to comparable accuracy. In contrast, the gravitational
constant G, determined by laboratory experiments, is only known to a frac-
tional accuracy of 2 x 1075 (see Appendix A). Therefore the masses of the
Sun and solar-system planets are much less well known than G times the
masses, and for accurate work they should always be quoted along with the
assumed value of G.

In 2015 the IAU recommended that orbit calculations should be based
on the nominal value of the solar mass parameter

GMy=1.3271244x 10 m3s72. (1.98)
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The adjective “nominal” means that this should be understood as a standard
conversion factor that is close to the “actual” value (probably with a frac-
tional error of less than 1 x 107?). For most dynamical problems it is better
to use a consistent set of constants that is common to the whole community
rather than the best current estimate of each constant.

1.5.3 The solar system reference frame

The Barycentric Celestial Reference System (BCRS) is a coordinate sys-
tem created in 2000 by the IAU. The system uses harmonic coordinates (eq.
J.6), with origin at the solar system barycenter and time given by TCB. This
is the reference system appropriate for solving the equations of motion of
solar system bodies. The orientation of the BCRS coordinate system co-
incides with that of the International Celestial Reference System (ICRS),
which is defined by the adopted angular coordinates of a set of extragalactic
radio sources. For more detail see Kaplan (2005) and Urban & Seidelmann
(2013).

These definitions are based on the assumption that the local inertial ref-
erence frame (the BCRS) is not rotating relative to the distant universe (the
ICRS), sometimes called Mach’s principle. This assumption is testable:
the relative rotation of these frames is consistent with zero and less than
4 x 107® arcsec yr‘1 (Folkner 2010).

1.6 Orbital elements for exoplanets

The orbital elements of extrasolar planets (“exoplanets”) are much more
difficult to determine accurately than the elements of solar-system bodies.
In most cases we only know some of the six orbital elements, depending on
the detection method.

Here we describe three methods of planet detection based on the clas-
sical observational techniques of spectroscopy, photometry, astrometry and
imaging. We do not discuss a further important technique, gravitational mi-
crolensing, because it measures only the mass of the planet and its projected
separation from the host star and thus provides only limited constraints on
the orbital elements and dynamics (Gaudi 2011).
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1.6.1 Radial-velocity planets

One of the most powerful methods to detect and characterize exoplanets is
through periodic variations in the velocity of their host star, which arise as
both star and planet orbit around their common center of mass.'® These
variations can be detected through small Doppler shifts in the stellar spec-
trum.!’

To illustrate the analysis, we consider a system containing a single pla-
net. The star is at ro and the planet is at ry. The velocity of the star is given
by the time derivative of equation (1.6),

Vo = Vem— —2L v, (1.99)

mo+mq

where v is the velocity of the planet relative to the star. The velocity of the
center of mass v, is constant (eq. 1.7). We may choose our coordinates
such that the positive z-axis is parallel to the line of sight from the observer
to the system and pointing away from the observer; thus edge-on orbits have
I =90°, face-on orbits have I = 0, and positive line-of-sight velocity implies
that the star is receding from us. Then the line-of-sight velocity of the star
relative to the center of mass is

Ulos = (VO_ch)'ZZ_LV'i- (1.100)
mo + My
From equation (1.70), v -z = Z = sinI[7sin(f + w) + rcos(f + w)f] =
sin I{v, sin( f+w)+vy, cos(f+w)]. Then using equations (1.54) and (1.55),
mq
mo +my (1 -e2)1/2

Vlos = — sinI[cos(f+w)+ecosw]. (1.101)

16 The possibility of detecting planets by radial-velocity variations and by transits was first
discussed in a prescient short paper by Struve (1952).

17 Unfortunately the term “radial velocity” is commonly used to denote two different quanti-
ties: (i) the component of the planet’s velocity relative to the host star along the line joining
them, and (ii) the component of the star’s velocity relative to the observer along the line
joining them. In practice the meaning is usually clear from the context, but when there is
the possibility of confusion we shall use the term “line-of-sight velocity” as an unambiguous
replacement for (ii).
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Since the orbital period P = 27a®/? /[ G(mg+m1)]"/? is directly observable
while the semimajor axis is not, we eliminate a in favor of P to obtain

[cos(f+w) +ecosw].

(1.102)
Using equations (1.50) and (1.51a), this result can also be expressed in terms
of the eccentric anomaly,

Vlos = —

my [2%@(m0+m1)]1/3 sin I
(

mo +my P 1—62)1/2

UVlos = —

1/3
2
m [WG(W;)-FTTM)] sin ]

(1-e?)'2 cosucosw — sin usinw
X .

mo +Mmy

(1.103)

1-ecosu

To obtain v,s(t), the line-of-sight velocity as a function of time (the velo-
city curve), we write the mean anomaly as ¢ = 27 (t — to)/P where ¢, is
the time of periapsis passage, solve Kepler’s equation (1.49) for u, and then
substitute u into equation (1.103). The velocity curve is not sinusoidal un-
less the orbit is circular, but it is still useful to define the semi-amplitude K
as half the difference between the maximum and minimum velocity. From
equation (1.102) the extrema of v},5 occur at f = —w and f = 7 — w, so

K=
mo + My

s
my [27?@(m0+m1)] sin 1 (1.104)

P (1-e2)i2’

These results tell us what can and cannot be determined from the velo-
city curve. The orbital period P is equal to the period of the velocity curve,
and the eccentricity e and argument of periapsis w can be determined from
the shape of the curve. The longitude of the node €2 is not constrained. The
masses of the star and planet, mg and m4, and the inclination I cannot be
individually determined, only the combination

3 i3
_ mysin” [
H G+ ) (10
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known as the mass function. The mass function is related to the semi-
amplitude and period by

= %Kg’(l—ﬁ)g/?. (1.106)

Since exoplanet masses are usually much smaller than the mass of their host
star, and the mass of the host star can usually be determined from its spectral
properties, the mass function yields a combination of the planetary mass and
orbital inclination, m sin /.

The semi-amplitude K varies as a~'/? for planets of a given mass, so
radial-velocity searches are most sensitive to planets orbiting close to the
host star. Planets whose orbital periods are much larger than the survey
duration will contribute a constant acceleration or linear drift to the line-
of-sight velocity of the host star, and this signal provides evidence for the
existence of a distant planet but only weak constraints on its properties.

The most precisely measured radial-velocity planets are found orbiting
pulsars. The pulsar emits pulsed radio signals at regular intervals At¢. The
pulse emitted at ¢, = nA¢ + const arrives at t, = t,, + (¢, )/c where r(¢,)
is the distance of the pulsar at ¢,, and c is the speed of light. Now write
r(t) = const + vj,st Where vy is the line-of-sight velocity of the pulsar,
and we have At/ =t/ ., -t/ = At(1 + vjps/c). Thus measuring the inter-
vals between pulses yields the line-of-sight velocity (up to an undetermined
constant, since the rest-frame pulse interval At is unknown), and as usual
periodic variations in the line-of-sight velocity are the signature of a planet.

Pulsar planets are rare, presumably because planets cannot survive the
supernova explosion that creates the pulsar, and only a handful are known.
The prototype is the system of three planets discovered around the pulsar
PSR B1257+12 (Wolszczan & Frail 1992).

1.6.2 Transiting planets

In a small fraction of cases, a planetary system is oriented such that one or
more of its planets crosses the face of the host star as seen from Earth, an
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event known as a transit.'8 During the transit, there is a characteristic dip
in the stellar flux, which repeats with a period equal to the planet’s orbital
period.

Suppose that the planet has radius R, and the star has radius R,. In
most cases 7, < I,; for example, the radii of Earth and Jupiter relative
to the Sun are Rg/Re = 0.009153 and Rj/Re = 0.09937." During a
transit the visible area of the stellar disk is reduced to a fraction 1 — f of its
unobscured value, where
R2
P
R2’
and the flux from the star is reduced by a similar amount (depending on limb
darkening, to be discussed later in this subsection). An observer watching
Earth or Jupiter transit the Sun would find f = 8.377x1075 and f = 0.009 88
respectively. With current technology, Jupiter-like transits can be detected
from the ground but Earth-like transits can only be detected by space-based
observatories.

The probability that a planet will transit depends strongly on its semima-
jor axis. To determine this probability, we again use a coordinate system in
which the z-axis is parallel to the line of sight. Then the planet transits if and
only if the minimum value of 22 + y? is less than (R, + R,)?. From equa-
tions (1.70), 22 + 42 = % — 22 = r?[1 - sin” I sin?(f + w)] so the minimum
value of 22 + 2 is 72 cos® I. Therefore if the planet is on a circular orbit
with semimajor axis a, it transits if and only if | cos I| < (R. + Rp)/a. If the
distribution of orientations of the planetary orbits is random—an untested

f= (1.107)

18 Transits and occultations are usually distinguished from eclipses. In an eclipse (e.g., an
eclipse of the Sun by the Moon) both bodies have similar angular size. In a transit (e.g.,
a transit of Venus across the Sun) a small body passes in front of a large one, and in an
occultation a small body passes behind a large one.

Planets are not perfect spheres: in general, the polar radius Ry, of a rotating planet is
smaller than its equatorial radius Req, and the planet is said to have an equatorial bulge
(Box 1.3). If we assume that the spin and orbital axes of the planet are aligned, then both
are normal to the line of sight if the planet transits the star. Approximating the shape of the
planet as an ellipse, its area on the plane normal to the line of sight is mReq Rp01 S0 the
effective radius for computing the transit depth is Reg = (ReqRpol) 1/2_For the Earth and
Jupiter the effective radii are Rg o = 6 367.4km and Rj o = 69 134 km. In contrast the
Sun is nearly spherical, with a fractional difference in the polar and equatorial radii $ 107°.
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but extremely plausible assumption—then | cos I| is uniformly distributed
between 0 and 1, so the probability of transit is

R, + R,
—

p= (1.108)

A useful reference time for the duration of the transit is

2R.
T0 =

a
GM.

(%

1/2 1/2
) =12.98 hours ) . (1.109)

:23*( R*(a%

Ro \ au M,

Here v is the planet’s orbital velocity, M, is the stellar mass, and a is the
planet’s semimajor axis; in deriving these equations we have assumed that
the planet’s orbit is circular. The reference time equals the actual transit
time only if the planet radius R, << R,, the stellar radius R, < a, and the
transit passes through the center of the star. The actual transit time is usually
shorter than 7 since the planet travels along a chord across the star rather
than through its center.
The interval between transits equals the orbital period (eq. 1.43),

3

u 1/2
P=2 . 1.110
(it ) (1110

The shape and duration of the transit event can be described more accu-
rately using Figure 1.3. The point of closest approach of the planet to the
center of the star is bR, where the impact parameter b is a dimensionless
number in the range 0 to ~ 1. There are four milestones during the transit
event: first contact, where the projected planetary disk first touches the edge
of the star; second contact, where the entire planetary disk first obscures the
star, third contact, the last time at which the entire planetary disk obscures
the star, and fourth contact, when the transit ends. Between first and sec-
ond contact the flux from the star is steadily decreasing as more and more
of the stellar disk is obscured; between second and third contact the flux is
constant; and between third and fourth contact the flux is steadily return-
ing to its original value. If the closest approach to the center of the star is
at ¢ = 0, then straightforward trigonometry shows that the times associated
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Figure 1.3: The geometry of a planetary transit. The large shaded circle of radius
R. shows the disk of the host star, and the unshaded circles of radius R, show the
position of the planetary disk at first, second, third and fourth contact. The minimum
distance between the centers of the planet and the star is bR., where b is the impact
parameter. In this image b = 0.6 and R,/R. = 0.15. The curves at the bottom of
the figure show the stellar flux as a function of time in two cases: no limb darkening
(top), and solar limb darkening (bottom) as described in the paragraph containing
equation (1.114). Analytic expressions for transit light curves are given by Sackett
(1999), Mandel & Agol (2002) and Seager & Mallén-Ornelas (2003).

with these events are
by =t = S[(Re + Ry)? = 02R2]" = Ly (1 + Ry/R.)? - 0?]1/2
1=t = [(Re Bp)? = PR = S [(1+ Ry /R - 172,
1 1/2
ts = > = ~[(R. ~ y)* -V R?] P 1ol Ry/R)? - 2]V,
(1.111)
Here we have assumed that R. << a so the planet travels across the star at

nearly constant velocity v; an equivalent constraint is that the transit dura-
tion is much less than the orbital period, 79 << P. The total duration of the
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transit is

Vo n [+ Ry R - 8], (112

2
t4 - tl = *[(R* + RP)2 - bQRE]
v
and the duration of the flat part of the transit, between second and third
contact, is

]1/2

ts—ta=7o[ (1 - Rp/R.)* - b? (1.113)

What can we measure from the transit depth, duration and shape? The
fractional depth f of the transit determines the ratio of the planetary and
stellar radii R, /R, through equation (1.107). Once this is known, the total
duration ¢4 — t1 (eq. 1.112) and the duration of the flat part of the transit
t3 —t2 (eq. 1.113) give two constraints on the impact parameter b and the
reference time 7y, so both can be determined. If the stellar mass M, and
radius R, can be determined from the star’s luminosity, colors and spectrum
then equations (1.109) for the reference time and (1.43) for the orbital period
give two constraints on the semimajor axis: if these agree then the planetary
orbit is likely to be circular, and if not it must be eccentric.

This simple model predicts that the flux from the star is constant be-
tween second and third contact, which requires that the surface brightness
of the star is uniform. In practice the surface brightness of the stellar disk is
usually higher near the center, a phenomenon called limb darkening. One
common parametrization of limb darkening is that the surface brightness at
distance R from the center of the stellar disk of radius R. is given by

?g?:l—aﬂ—u)—dl—uf7 where = (1-R?/R2)Y2. (1.114)
The limb-darkening coefficients a and b depend on the spectral type of the
star and the wavelength range in which the surface brightness is measured.
For a solar-type star measured in the Kepler wavelength band, @ ~ 0.41 and
b=~0.26.2

The depth of a transit (eq. 1.107) is independent of the semimajor axis a
of the planet, but the probability that a planet will transit varies as a~* (eq.

20 Limb-darkening models for a wide range of stars are described in Claret & Bloemen (2011).



40 CHAPTER 1. THE TWO-BODY PROBLEM

1.108), so transit searches are most sensitive to planets close to the host star.
Planets whose orbital periods are larger than the survey duration are difficult
to verify: a useful rule of thumb is that at least three transits are needed for
a secure detection.

1.6.3 Astrometric planets

Planets can be detected by the periodic variations in the position of their
host star as the star orbits around the center of mass of the star and planet.

The Kepler ellipse described by the star is projected onto an ellipse on
the sky plane perpendicular to the line of sight. However, the semimajor
axis and eccentricity of the projected ellipse are generally different from
those of the original ellipse, and the focus of the projected ellipse differs
from the projection of the focus of the original ellipse. Nevertheless all of
the orbital elements, with some minor degeneracies, can be deduced from
these measurements.

We consider a system containing a single planet of mass my orbiting
a star of mass mg. We choose coordinates such that the positive z-axis
is parallel to the line of sight from the observer to the system and pointing
toward the observer.?! The position of the star is ro = rep —mir/(me+my)
(eq. 1.6), where r,, is the position of the center of mass and r = r; —rg is
the vector from the star to the planet. Using equations (1.29) and (1.70) the
position of the star on the sky, in the Cartesian coordinates z and y, is

1-¢?
=Tem-——(A Fsin f),
ZTo =2 1+ecosf( cos f + Fsin f)
12 Beosf+Gsinf) (1.115)
= Yom — cos sin f), .
Jo =y 1+ecos f

21 Unfortunately this orientation is opposite to the orientation of the coordinate system in
§1.6.1. The line-of-sight velocity is always defined to be positive if the star is receding
from the observer, which implies that the positive z-axis points away from the observer.
For astrometric binaries the z-y coordinate system on the sky is assumed to be right-handed
(the positive y-axis is 90° counterclockwise from the positive z-axis), which requires that
the positive z-axis points foward the observer.
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where the Thiele-Innes elements are

mia . .
A=————(cosQcosw - cos [ sin Qsinw),
mo +my
mia . .
B-= (sinQcosw + cos I cos Nsinw),
mo +my
mia . .
F=————(-cosQsinw - cos [ sin 2 cosw),
mo+my
mia . .
G=———(-sinQsinw + cos I cos N cosw); (1.116)
mo+my

as usual a and e are the semimajor axis and eccentricity of the relative orbit,
and f, I, w and Q are the true anomaly, inclination, argument of periapsis
and longitude of the ascending node. The four Thiele-Innes elements re-
place a, I, 2 and w; their advantage is that the positions are linear functions
of these elements, which simplifies orbit fitting.

Equations (1.115) are simpler when written in terms of the eccentric
anomaly, using equations (1.46), (1.50) and (1.51a):

20 = Tem — A(cosu —e) — F(1-e*)?sinu,

Yo = Yem — B(cosu - ) — G(1 - €2)?sinw. (1.117)

The eccentric anomaly is related to the time ¢ through Kepler’s equation
(1.49), and with equation (1.45) this reads n(t — tg) = u — esinu. Using
these results we can fit the observations of zy and g as a function of time
to equations (1.117) to determine T, Yem, 4, B, F and G, the eccentricity
e, the mean motion n and the epoch of periapsis #g.

The usual orbital elements are straightforward to derive from the Thiele—
Innes elements. First,

B-F B+ F
27 Q-w) =
Arq @-w)=T—a

and these equations can be solved for € and w. If these are solutions then
so are €2 + kym and w + kom, where k1 and ko are integers. All but one of
these solutions can be discarded because we also require that (i) sin(€ + w)
has the same sign as B — F'; (ii) sin(Q2 — w) has the same sign as B + F;

tan(Q +w) =

(1.118)
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(iii) 0 € w < 2m; and (iv) 0 < © < 7. The last of these is a convention
that is imposed because astrometric observations alone cannot distinguish
the solutions ({2, w) and (Q + 7, w + 7).

Next define
A+G A-G
o SRS i S 1.119
n cos(Q +w) 2 cos(Q - w) ( )
Then

_ mia

I=2tan""(q2/q1)"?, —— =1 + @) (1.120)
mo+my
2020

Figure 1.4: The astromet-
ric signal from the solar
system over the 50-year pe-
riod from 2000 to 2050,
as viewed from a star 100
parsecs away in the direc-
tion of the north ecliptic
pole. The arrows mark
an angular distance of 0.1
milliarcseconds. 0.1 mas

A
\

The fit to the observations also yields the mean motion n, which con-
strains the semimajor axis and masses through Kepler’s third law, n?a® =
G(mg + m1) (eq. 1.44). Combining this relation with the last of equations

(1.120), we have

mi  (qu+q2)®n?

(m0+m1)2 N 8G ’

(1.121)
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the quantities on the right are observables and the left side is the mass func-
tion for astrometric planets. The mass mg of the host star can usually be
determined from its spectral properties, so the mass function determines the
planetary mass m;.

The astrometric signal from a planet is proportional to its semimajor
axis, so planets on larger orbits are easier to detect astrometrically. However,
a reliable determination of the orbital elements usually requires data over
at least one orbit, unless the data are extremely accurate. Thus the easiest
planets to detect astrometrically are those with an orbital period smaller than
the span of observations, but not by too much.

Astrometric data from multi-planet systems are hard to interpret if any
of the massive planets in the system has an orbital period longer than the
span of the observations. As an example, the astrometric signal arising from
the motion of the Sun around the barycenter of the solar system is shown
in Figure 1.4, as seen from a star 100 parsecs away. The figure shows that
determining the masses and orbits of the giant planets in a planetary system
like our own, even with an astrometric baseline of 1-2 decades, would be
quite difficult.

1.6.4 Imaged planets

Imaging planets is difficult because the host star is so much brighter than
the planet. For example, the luminosity of the Earth at visible wavelengths
is only about 107! times the luminosity of the Sun. The contrast ratio
is more favorable for young, massive planets at infrared wavelengths, in
part because such planets are self-luminous, emitting thermal energy as they
contract (Burrows et al. 1997). Even Jupiter emits roughly as much energy
per unit time from contraction as it reflects from the Sun.

Most planets that have been successfully imaged are in orbits with large
semimajor axes, where they are not swallowed in the glare from their host
star: the median estimated semimajor axis of planets detected by direct
imaging is well over 100au. For a solar-mass host star the orbital period
at 100 au is 1000 yr, so the motion of most imaged planets relative to their
host star has not been detected at all. What motion has been detected covers
only a small fraction of the orbit, so the uncertainties in the orbital elements
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are large. Nevertheless, it is worth examining briefly what elements can be
detected in principle for imaged planets.

In contrast to astrometric planets, where the position of the host star
relative to the center of mass is measured on the sky plane, we measure
the position of an imaged planet at r; relative to the host star at ry. By
analogy with equations (1.117) we may write the Cartesian coordinates of
this relative position on the sky plane as

x=x1—-x0=A(cosu—e)+F'(1-e*)2sinu,
y=y1—yo = B'(cosu—e) +G'(1-e*)?sinu, (1.122)

where w is the eccentric anomaly, e is the eccentricity, and the Thiele-Innes
elements are

A=
B'=

cosQ cosw — cos I sin Qsinw),
sinQ cosw + cos I cos Qsinw),
—cos Qsinw — cos I sin Q cosw),

a(
a(
a(
G’ =af

—sinQsinw + cos I cos Q cosw). (1.123)

As usual a, w and 2 are the semimajor axis, argument of periapsis and
longitude of the ascending node. The eccentric anomaly is related to the
time ¢ through Kepler’s equation (1.49), which reads n(t — t¢) = u — esinu
where n is the mean motion. We can fit the observations of x and y as
a function of time to equations (1.122) to determine A’, B’, F', G', e, n
and tg. Then we can follow the procedure in equations (1.118)—(1.120)
to determine the other orbital elements. Like astrometry, imaging cannot
distinguish the solutions (2,w) and (Q + m,w + 7). A check of the results
comes from Kepler’s third law (1.44): this determines the mass of the host
star from the mean motion and the semimajor axis, and this mass can be
determined independently from the spectral properties of the star.

1.7 Multipole expansion of a potential

In most cases the distance between a planet and its host star, or a satellite
and its host planet, is large enough that both can be treated as point masses.
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However, accurate dynamical calculations must sometimes account for the
distribution of mass within one or both of these bodies. Examples include
tracking artificial satellites of the Earth, measuring the relativistic preces-
sion of Mercury’s perihelion, or determining the precession rate of a planet’s
spin axis.

Let p(r) denote the density of a planet at position r. The total mass of
the planet is M and we assume that the origin is the center of mass of the
planet. Then

f drp(r) = M, f dr p(r)r =0. (1.124)

Using equations (C.44) and (C.55), the gravitational potential can be written
in spherical coordinates r = (1,0, ¢) as

dr’ p(r’
‘1>(r,97¢):—Gf|rf(r,|) (1.125)
- A A ’rl
= —GZ/dr p(r )lel P;(cos7y)
=0 >
> 4r G

! ! ! Tl< * ! 4
e O R COF R AR D)
Here P;(cos~) and Y},,,(0, ¢) are a Legendre polynomial and a spherical
harmonic (Appendices C.6 and C.7), r. and r, are the smaller and larger of
rand r’, cosy =1"-r/(r'r) is the cosine of the angle between the vectors r
and r’, and the asterisk denotes the complex conjugate. Any satellite must
orbit outside all of the planetary mass, so the potential seen by the satellite
simplifies to

O(r,0,¢) = i Dy(r,0,0), (1.126)
where l:O
®;(r,0,0) = _r;% fdr’p(r')r’lPl(cosy) (1.127)
A G L

/ INIU % ot o
:_Wm;lnm(a’qS)/dr p(I‘ )7’ lem(07¢)

We examine the first three of these terms:
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Monopole (I = 0) Since Py(cosy) =1 (eq. C.45) and [ dr’ p(r') = M
(eq. 1.124), we have ®((r,0,¢) = —GM /r, the same as if all the mass of
the planet were concentrated in a point at the origin.

Dipole (! = 1) Since Py(cosvy) = cosy = r' - r/(r'r), the combination
r'P1(cos~) is a linear function of r’ at fixed r and zero at r’ = 0. Then
the second of equations (1.124) implies that the integral in the first line of
equation (1.127) is zero. Thus ®;(r, 6, ¢) = 0.

Quadrupole (I = 2) Since Py(cosvy) = %COSQ’Y - %, the combination
r"*Py(cosy) = 2(x'-r)2/r? - 11"%. Therefore the quadrupole potential can
be written

G

275

By (r,0,0) = f dr’ p(r')[r'*r? = 3(r' - 1)?]. (1.128)
When written in terms of the inertia tensor I of the planet (eq. D.85), this
yields MacCullagh’s formula

3G & G & 3G G
P2(r,0,9) = 55 > rilijrj—ﬁ;m = ﬁrT Ir— o5 Tr(D); (1.129)

ij=1

here rT is the row vector that is the transpose of the column vector r, and
Tr (I) is the trace of the inertia tensor.

Since ®;(r,6,$) in equation (1.127) falls off with distance o< 7771,
at large distances from the host planet the potential is dominated by the
monopole potential (o< r~1) and quadrupole potential (o< 772).

1.7.1 The gravitational potential of rotating fluid bodies

Small bodies, such as rocks, comets and most asteroids, are irregularly
shaped. Larger astronomical bodies are nearly spherical, because the forces
due to gravity overwhelm the ability of any solid material to maintain other
shapes (a brief quantitative discussion of this transition is given at the end of
§8.6). Stars and planets are large enough that they can usually be treated as
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a fluid. In this case the distribution of the matter is determined by a balance
between gravity, pressure and centrifugal force due to rotation. Models of
stellar and planetary interiors show that the resulting density distribution is
always axisymmetric around the spin axis.??

Axisymmetry allows us to simplify the spherical-harmonic expansion
(1.127) for the gravitational potential of the planet. If the axis of sym-
metry of the planet is chosen to be the polar axis (# = 0), the second
line of equation (1.127) vanishes when m # 0 since [ d¢’ Y, (6',¢") o<
[ d¢’ exp(im@') = 0 when m # 0. Using the definition (C.46) of spherical
harmonics in terms of associated Legendre functions, equations (1.126) and
(1.127) can be rewritten as

M[, & (RpY
@(r,@)z—G[l—ZJl(p) Pl(cose)], (1.130)
r = r
where the dimensionless multipole moments .J; are given by
1 l
Jy = _W [ dr’ p(r")P;(cos 0" )r". (1.131)

The quantity [?, is an arbitrary reference radius that is introduced so that
J; is dimensionless; conventionally it is chosen to be close to the planetary
radius.

Since P2 (cos ) = %(3 cos? § — 1) (eq. C.45), the quadrupole moment
Jo can be written in Cartesian coordinates as

1
MR2

Jo = fdrp(r)(%x2+%y2—22). (1.132)

For an axisymmetric body we define the moments of inertia of the planet
around the equatorial and polar axes as (cf. eqs. D.87)

A= / drp(r)(y® +2%) = Iy = Ly,

22 Non-axisymmetric equilibrium bodies of self-gravitating fluid do exist. The first and most
famous example is the sequence of Jacobi ellipsoids (Chandrasekhar 1969), which are uni-
formly rotating masses of homogeneous, incompressible fluid. However, only axisymmet-
ric equilibria exist for typical planets, in which the material is compressible so the mass is
concentrated toward the center.
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C:/0lrp(r)(9€2+y2):]zz7 (1.133)
which implies that
C-4A
Ja = . 1.134
2 MER2 ( )

Then either MacCullagh’s formula (1.129) or equation (1.130) yields>®

M GMJ,R?
o(r,0) :_Gr 2r32 P(3cos?0-1)+0(r™)
:——GM+ Gic_A(300529—1)+O(T_4). (1.135)
r 2r3

Notice that measurements of the potential external to the planet allow us
to determine the difference between the moments of inertia A and C' but
not the moments themselves. The rate of precession of the spin axis due
to the torque from an external body, such as the Sun, yields the dynamical
ellipticity(C' — A)/C (cf. eq. 7.10), so measurements of both the external
gravitational field and the precession are needed to determine both moments
of inertia C' and A.

We also expect that rotating planets or stars are symmetric about the
equatorial plane (the plane normal to the polar axis that passes through their
center of mass),?* so p(r, #) is an even function of cos @ if the center of mass
coincides with the origin. Since P;(-cos®) = (-1)'P;(cosf) (eq. C.38),
all multipole moments .J; with odd values of [ vanish. In this case there is a
sharper limit on the error in equation (1.135): O(r~°) rather than O(r™%).

Rotation flattens the density distribution of a planet (i.e., the planet be-
comes oblate), so the moment of inertia C around the polar axis is larger
than the moment A around an equatorial axis, which in turn implies through
equation (1.134) that the quadrupole moment J5 is positive. In general the

23 A function f(r) is O(r~P) if 7P f(r) is less than some constant when 7 is large enough.

24 This result can be proved analytically in simple models of a planetary interior. In particular,
if the planet is uniformly rotating (i.e., the fluid has zero velocity in a frame rotating at
a constant angular speed €2) and the equation of state is barotropic (i.e., the pressure is a
function only of the density), then Lichtenstein’s theorem states that in equilibrium the
fluid has reflection symmetry around a plane perpendicular to €2 (e.g., Lindblom 1992).
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Box 1.3: Rotation, quadrupole moment and flattening

If the quadrupole moment .J2 is much larger than all of the J,, with n > 2, equa-
tion (1.135) implies that the gravitational potential outside the planet is

GM[ J2R}

(r,0) =———|1- 2 P (3cos?0-1)|. (a)
T 2r2

We assume that the planet is rotating uniformly with angular speed €2 around its

polar axis. Then the centrifugal potential is (eq. D.21)

Deent (1,0) = -10% (2% + %) = -1 0% sin”0. (b)

If the surface of the planet can be treated as a fluid—that is, if it has an atmosphere
or is large enough that the strength of the material at its surface is negligible—then
the effective potential Peg (7, 0) = P(7, 0) + Pcent (7, ) must be constant on the
surface. Let the surface be r = Rp +AR(6); we assume that the reference radius
Ry, is close enough to the mean radius of the surface that [AR(0)| < Rp. Then
we may expand the effective potential to first order in AR(6), Q2 and Ja:

3GM
Jocos® 0+ %QZRg cos? 6. ©)
2Rp

GM
Do (R, 0) = constant + ?AR(Q) +
P

If this is to be independent of the polar angle 6 on the surface, we require

A 0 Q2 3
& =- %Jg + —L2 | cos? 6 + constant. (d)
Ry 2GM

Thus the difference between the equatorial radius Req = Rp + AR( %7‘1’) and the
polar radius Rp,o1 = Rp + AR(0) is

Req B Rpol
RP

2 p3
Q2R3
2GM

-3
—2J2+

(e)

This simple relation connects three observables: the flattening or oblateness of the
planet, the rotation rate and the quadrupole moment.

¢ Hydrostatic equilibrium in the rotating frame requires Vp = —pV®.g where

p(r) is the pressure and p(r) is the density. Since V x Vp = O for any scalar
field p(r) (eq. B.36a), we must have Vp x V®.g = 0. This result implies
that the gradient of the density must be parallel to the gradient of the effective
potential, so surfaces of constant density and effective potential coincide.
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multipole moments with even values of [ decrease rapidly as [ grows, so the
non-spherical part of the potential is dominated by the quadrupole term even
at the surface of the planet. Given this, there is a simple relation between
the rotation rate, the quadrupole moment and the flattening of the planetary
surface (Box 1.3).

1.8 Nearly circular orbits

1.8.1 Expansions for small eccentricity

Most planet and satellite orbits are nearly circular, so expansions of the
trajectory in powers of the eccentricity e were an essential tool for studying
orbits in the days when all algebra was done by hand. Such expansions
continue to provide insight in many problems of celestial mechanics. Here
we illustrate the derivations of these expansions, which are given to O(e?).
Expansions for other variables, or higher order expansions, can easily be
derived by computer algebra.

(a) True anomaly in terms of eccentric anomaly Take the log of the first
of equations (1.51c),

f=u-1ilog[1- Bexp(-iu)]+ilog[1- Bexp(iu)], (1.136)

and replace (3 by its expression (1.52) in terms of the eccentricity e. Then
expand as a Taylor series in e:

f=u+esinu+ ie2 sin 2u + 63(%sinu+ %sin3u) +0(e?). (1.137)

(b) Eccentric anomaly in terms of true anomaly Similarly, using the
second of equations (1.51c),

u=f—esinf+ iez sin2f — es(i sin f + % sin3f) +0(e*). (1.138)
(c) Mean anomaly in terms of eccentric anomaly This is simply Kep-

ler’s equation (1.49),
{=u-esinu. (1.139)
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(d) Mean anomaly in terms of true anomaly Combining Kepler’s equa-
tion with equation (1.138) and expanding as a Taylor series in e yields

(= f-2esinf+3e*sin2f - Le’sin3f + O(e*). (1.140)

The most important expansions are those in terms of the mean anomaly,
since time is the natural independent variable for a trajectory and mean
anomaly is a linear function of time.

(e) Eccentric anomaly in terms of mean anomaly Kepler’s equation im-
plies that the eccentric anomaly u changes by 27 when the mean anomaly ¢
changes by 27r. Thus any function g(u) is a periodic function of the mean
anomaly, which can be expanded in a Fourier series (see Appendix B.4). In
particular, setting g(u) = exp(iju) with j an integer, we may write

exp(iju) = Y, cn(j)exp(imd), (1.141)
where (eq. B.48)
1 27
em () = — d? exp[i(ju —mel)]. (1.142)
2m Jo

Eliminating ¢ using Kepler’s equation ¢ = u — esin u,
1 2
em(9) = Py f du (1 - ecosu)exp[i(j - m)u +imesinu]. (1.143)
m Jo
For m = 0 it is straightforward to show that
Co(j) = 5]'0 - %eéjl - %eéjy,l, (1144)

where §,,,,, is the Kronecker delta (eq. C.1). For m # 0 we write (eq. C.29)

exp(imesinu) = > Jp(me) exp(iku), (1.145)
k

=—00
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where Ji(2) is a Bessel function (Appendix C.5). Using the first of the
identities (C.28), equation (1.143) simplifies to

em(§) = L Jm_j(me), m#0. (1.146)
m
Now set j = 1 and take the imaginary part of equation (1.141):
sinu= ) Jna(me) e, (1.147)
m=—00 m
m#0

Using relations (C.26) and (C.28), this result simplifies to

sinu = 2 Z

which may be combined with Kepler’s equation to yield
u=»~0+2 Z i ( )

Finally, the power series for Bessel functions (C.24) can be used to convert
equation (1.149) into a power series in eccentricity:

‘]’”(me) sinme, (1.148)

sinm/. (1.149)

u=~{+esinl+ %ez sin 20 + ée?’(?) sin3( —sinf) + O(e*).  (1.150)

(f) True anomaly in terms of mean anomaly Inserting the series (1.150)
into equation (1.137) and expanding the result as a power series in eccentri-
city, we find

f=C+2esinl+3e*sin20+ Le?(13sin 30 - 3sin ) + O(e!). (1.151)

(g) Radius in terms of mean anomaly Take the real part of equation
(1.141) with j = 1. We find

oo
Cosu = —l€+ Z

Jm-1(me)
2 m

cosm/; (1.152)

m#0
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using equations (C.26) and (C.28), this result simplifies to

oo J/
cosu:—%e+2 Z Mcosmf. (1.153)
m=1 m

Since r/a = 1 — ecosu (eq. 1.46) we have

(o] /
f:1+%¢€2—2e Z Mcosmf. (1.154)
a —om

Finally, using the power series (C.24), we obtain a power series in eccentri-
city,
r 1.2 3.3 4

P 1-ecosl+ze”(1-cos2f) + ge’(cosl—cos3l) +O(e”). (1.155)

All of these expansions share the following important property. Con-
sider a term of the form e* cosnx or e” sinnz, where k and n are non-
negative integers and x is any of the three anomalies u, f, or £. Then k is
always at least as large as n; for example, a term proportional to cos 3¢ is
always multiplied at least by e*. This behavior, which is also seen in ex-
pansions of the Hamiltonian in powers of the eccentricity and inclination

(§4.3), is sometimes called the d’Alembert property.

1.8.2 The epicycle approximation

The equation of motion for orbits with small eccentricities and inclinations
can be solved in more general axisymmetric potentials than the Kepler po-
tential Pk (1) = —GM /r. Applications of such solutions include the study
of satellites orbiting an oblate planet, planets in a massive circumstellar disk,
and planets orbiting close enough to the host star that relativistic corrections
are important.

We consider an axisymmetric potential ®(R, z) in cylindrical coordi-
nates (R, ¢, z), and assume that the potential is symmetric about the equa-
torial plane z = 0, so ®(R,—-z) = ®(R, z). The equations of motion for a
test particle, i = -V ®, can be written (eq. B.18):

_0P(R,2)
OR

2R+ R =0, é:_ggggﬁ_ (1.156)

R-R¢* =
¢ 0z
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The second equation may be multiplied by R and integrated to yield
ché = constant = L, (1.157)

which states that the z-component of the angular momentum is conserved,
a consequence of the axisymmetry of the potential. The first of equations
(1.156) can then be rewritten as
. L2 0P(R
_L__9%(R2) (1.158)
R3 OR
We first examine a circular orbit in the equatorial plane, R(t) = R, =
constant, z(t) = 0; we assume the orbit is prograde so ¢ > 0. The third of
equations (1.156) is trivially satisfied because the potential is even in z, so
0®/0z must vanish at z = 0. Equation (1.158) yields

(8<I>

12 - R 7) ’
IR/ (r,.0)

z = g

(1.159)

which relates the orbital radius to the angular momentum. Equation (1.157)
can then be solved,

B(t) = ky(Rg)t + ¢o, (1.160)

where ¢ is an integration constant and the azimuthal frequency is

L. ( 1 a@)lﬂ

= (== 1.161
Rz \ROR (-1eh

H¢(Rg) = (R 0).
9>

The azimuthal period P, = 27/k.
Now consider a nearly circular orbit with the same z-component of an-
gular momentum L, as in equation (1.159). We let

v=R-R, (1.162)

and expand the potential in a Taylor series around (R, z) = (Ry,0):

od PRk 0%
@(R,z):(—) x+1() 2%+ () 2%, (1.163)
OR)(r,0) *\OR? (Ry,0) 9z* (Ry,0)

N[
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plus terms that are O(22, 222, 2*) and an unimportant constant. The terms
in the expansion proportional to 9®/dz and §*>®/OR0~z have vanished be-
cause the potential is even in z. The epicycle approximation consists of
neglecting all terms in this expansion that are higher than second order in x
and z, which corresponds to ignoring all terms in the equations of motion
(which involve V®) that are higher than first order in z and z.

We first examine motion in the z-direction, substituting the Taylor series
(1.163) into the third of equations (1.156) to obtain

P+ k22=0, (1.164)

where the vertical frequency is

9\ 1/2
0 ‘I)) (1.165)

K2 (Rg) = (322

(R_fl 70)

Thus, in the epicycle approximation the vertical motion is decoupled from
the horizontal motion and described by the solution to the harmonic-oscil-
lator equation (1.164),

z(t) = zg cos(k t + (), (1.166)

with integration constants zy > 0 and (.

We next turn to the radial equation of motion (1.158), replacing R by
i#, the potential ®(R,z) by its Taylor expansion (1.163), and L%/R? by
its Taylor expansion L2/(Ry + z)* = L2/R3 - 3(L%/Ry)x + O(z?). The
terms independent of x cancel because of equation (1.159), and discarding
all terms that are higher than first order in x or z, we obtain

P+ kAT =0, (1.167)

where the radial or epicycle frequency is

322 020\’ 300 020\
“R(Rg)=(34 aR) (RaRaR)

and the radial period is Pg = 27/kRg.

. (1.168)

(RSHO) (Rgvo)
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Like the vertical motion, the radial motion is described by the solution
to a harmonic-oscillator equation,

x(t) = g cos(krt + 1), (1.169)

with integration constants xo > 0 and 7).

Finally, we solve for the azimuthal motion by writing equation (1.157)
in the form ¢ = L,/(R, + )% = k4(1 - 22/R,) + O(x?); dropping terms
higher than O(z) and using equation (1.169), we find

2
B(t) = gt + do — —2 0 sin(rpt +1). (1.170)
Rg KR

Thus, although the radial and vertical motions are decoupled, the radial and
azimuthal motions are not. In particular, motion in the orbital plane is the
superposition of (i) uniform circular motion of a guiding center with co-
ordinates (R, ¢) = (R, ket + ¢o), and (ii) motion around an ellipse (the
epicycle) centered on the guiding center. The motion around the epicycle
is retrograde, that is, clockwise if the motion of the guiding center is coun-
terclockwise. The semi-axes of the ellipse are x in the radial direction and
2x0K4 /K r in the azimuthal direction, so the axis ratio of the ellipse is

_radialaxis _ rp (1.171)
azimuthal axis 2k

Since the motion around the epicycle has fixed frequency xp, this is also
the ratio of the root-mean-square velocities relative to the guiding center in
the radial and azimuthal directions.
For example, in the Kepler potential &k (R, z) = - GM/(R? + 2%)'/?,
1/2
GM
/{R:n¢:m2:n:(RB) , (1.172)
g
where n is the usual mean motion. The periapsis and apoapsis are R, — xg
and Ry + ¢ and since these equal a(1 - e) and a(1 + e) in the usual orbital
elements, we conclude that R, = a and z¢ = ae.
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We can also describe the shape of the orbit. Since we are only working
to first order in the displacement from a circular orbit, the time ¢ appearing
in the oscillatory first-order terms of equations (1.166) and (1.169) can be
replaced by the azimuth ¢ using the zero-order part of equation (1.170),
&(t) = Kyt + ¢o. Thus we find

x:xocos[lm((b—(bg)], z:zocos[ﬁz(qb—qbz)], (1.173)
K¢ K¢

where the constants ¢g = ¢ — (kg¢/kr)n and ¢, = ¢g — (k¢/K,)C. Unless
Kkr/ke and Kk, /Ky are rational numbers (as in eq. 1.172), the orbit is not
closed; eventually the particle passes arbitrarily close to every point in the
square |z| < zo, |2 < zo.

The longitude of periapsis w is the azimuth at which the orbital radius
is smallest? and is determined by setting the argument of the cosine in the
first of equations (1.173) to 7, 3w, 5m,.... Thus w = ¢g + TKy/KR, PR +
3mKg /KR, . ... For Kepler orbits, with k4 = kg, these angles are all the same
modulo 27 so the longitude of periapsis is fixed. If the potential is close to a
Kepler potential, the longitude of periapsis will appear to change slowly, by
an amount Aw = 27[(k4/kR) — 1] between successive periapsis passages.
Since the time between such passages is At = 27/kpg, the longitude of
periapsis advances at an average rate

dw Aw

dt At
Similarly, the longitude of the ascending node €2 is the azimuth at which
the particle pierces the equatorial plane traveling upward, and is determined

by setting the argument of the cosine in the second of equations (1.173) to
37

=R¢ = KRR- (].174)

57, 57, .... The longitude of the ascending node advances at a rate
dQ
E:K}qg—/ﬁz. (1175)

25 This definition differs slightly from the one given in §1.3.2, which measures the longitude
of periapsis as the sum of two angles in different planes. However, the difference between
the two definitions is O(z2) and hence is negligible in the context of the epicycle approxi-
mation.
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Box 1.4: Osculating elements

Orbital elements such as semimajor axis and eccentricity are defined in the Kepler
potential. For these to be useful when additional forces are present we must agree
on the prescription to be used for calculating the elements from the position and
velocity. The osculating elements at time ¢ are defined to be the elements that
the orbit would have if the perturbing forces were switched off instantaneously at
time ¢. In other words the position and velocity are converted to orbital elements
using the same formulas that would apply if there were no forces other than the
Kepler gravitational force.

This definition sounds obvious, but some of its consequences are not. For
example, consider a particle on a circular orbit of radius R in the equatorial plane
of an oblate planet, in which the quadrupole moment J2 # O but all the higher
multipoles vanish. Then the semimajor axis a is not equal to the radius, and the
eccentricity e is not equal to zero, even though the orbit is circular. Quantitatively,
the radial velocity vp = 0 and from equation (1.176) the azimuthal velocity is
vy = Rrg(R) = (GM/R)Y2(1 + %JgR%/RQ)l/Q. In a Kepler potential
the semimajor axis and eccentricity are related to the position and velocity by
%(v% + vi) - GM/R = 7% GM/a, and (Rvg)? = GMa(1 - e?). Therefore

2
R _3RRY

, €= (2)
- 3J2R2/R? 2R?2

An example of non-osculating elements is given in §7.1.1.

1.8.3 Orbits and the multipole expansion

As an example of the use of the epicycle approximation, we compute the
apsidal and nodal precession rates w and €2 for low-eccentricity, low-incli-
nation orbits in the gravitational field of a oblate, axisymmetric planet.

We expand the gravitational potential using equation (1.130). In the
z = 0 plane we have 6§ = %77 and r = R. As in the preceding subsection, we
assume that the potential ®(R, z) is an even function of z, which implies

that the multipole moments .J; vanish for odd /. Then equations (1.161) and
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(1.168) yield

oo l
ko (R) = (C;M [1 Z(l+1)Pl(0)Jl(Pi))] (1.176)
2 GM & 2 RP :
W(R) = [“Z;(l —1)Pl(O)Jl(R)]. (1.177)

Here P;(0) is given by equation (C.42) and the sums can be restricted to
even values of [.
To derive k2 we write rr = (R? + 22)1/2, cosf = z/(R? + 2?)/?, and
note that
0*rp
022

D 0?P;(cosf)
Rp+2’ 022

_PI(0) _ u(i+1)
- R2? R2?

z=0

P1(0),

(1.178)
where the last equality follows from equation (C.36). Thus equation (1.165)
yields

z=0

K2 (R) =

l
Rs [1—Z(l+1)2pz(0) (]; ) ] (1.179)

These expressions for k¢, kg and x, can be employed in equations
(1.174) and (1.175) to derive exact expressions for the apsidal and nodal
precession rates ¢o and €2 in the limit of very small eccentricity and incli-
nation. However, simpler expressions are usually sufficient, because the
corrections to the Kepler potential from the multipole potentials are gener-
ally small even for the first term, [ = 2, and decrease rapidly with increasing
l. For most purposes, expressions of sufficient accuracy can be derived by
(i) neglecting all multipole moments .J; with [ > 4; and (ii) taking the square
root of equations (1.176), (1.177) and (1.179), expanding the result as a se-
ries in J, and J, and dropping all terms of order .J5 or higher and .J7 and
higher. With these approximations,

dew ( GM)1/2[3J2R2 15J4RY

at  \ Rms 2R2 ARA O(J27J47J6) (1.180a)
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+ O(J§’7 Jf? J6) .
(1.180b)

A (GM\"*[ 3LR: 15L,R. 9JIR}
- = - + +
a \ R 2R?  AR'  4RS

If the terms of order J3 are neglected as well, we have deo/dt = —~dQ/d¢;
at this level of approximation, the nodes regress at the same rate that the
apsides advance. The generalization to orbits of arbitrary eccentricity and
inclination is given in Problem 5.3.

1.9 Response of an orbit to an external force

The evolution of a planetary trajectory under the influence of a force other
than the attraction of the host star (an external force) is described by the
equation
2
%:—%r+Fext, (1.181)

where r is the position of the planet relative to the host star, M is the sum
of the masses of the planet and star, and Fy is the external force per unit
mass on the planet (for an explicit derivation of this result, follow the steps
leading to eq. 1.11).26

If the external force is weak, the trajectory is approximately a Kepler el-
lipse, and therefore can be described more economically in terms of the time
evolution of the orbital elements rather than the time evolution of the posi-
tion. The main goal of this section is to derive the equations that describe
this evolution.

26 The interpretation of the external force Fox requires care in more general cases. If there are
forces per unit mass F', and F'x on the planet and star, then Fext = Fp, —F . If the external
force arises from the negative gradient of a potential of the form mpm«@(rp — ry), say
because one or both of the bodies is not a point mass, then Fext = —(m« +myp )0¢(r)/Or.
Notice that in this case Fexy is larger than the actual force per unit mass on the planet by a
factor 1 + mp/ms. Of course, in most practical cases mp << m so this distinction is not
important.
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1.9.1 Lagrange’s equations

When the external force can be derived from a Hamiltonian H.,;, we can
use the tools of Hamiltonian dynamics to find the evolution of the orbital
elements. Since the Delaunay variables q = (¢,w,Q), p = (A, L, L.) (eq.
1.84) are canonical, the equation of motion is simply (eq. D.13)

%:J%(HKJrcht), (1.182)
where z = (q,p), J is the symplectic matrix (eq. D.14), and the Kepler
Hamiltonian Hy = -1 (GM)?/A? (eq. 1.85).

Despite the simplicity of the Delaunay variables, it is often easier to
work with the non-canonical elements E = (), @,, a,e,)—mean lon-
gitude, longitude of periapsis, longitude of the ascending node, semimajor
axis, eccentricity and inclination. Then from equations (D.49)

dE 0
E:GJGT@(HK+Hext), (1183)
where G;; = OF;/0z; is the Jacobian matrix relating z and E.

The Jacobian matrix is straightforward to evaluate using the relations

A2
A=l+w+Q, w=w+Q, a:G—M, e:(l—LZ/AQ)l/Q, I=cos™' L,/L.

(1.184)
We find
[1 1 1 0 0 0 ]
0 1 1 0 0 0
0 01 0 0 0
2A
G=|0 00 @ 0 0
L L
0 0 A2(A2 - L2)1/2  A(A2 - L2)1/2 0
0 0 L, _ 1
L L(L2-L2)1/2 (L2 - L2)1/2 ]

(1.185)
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Then
[ 0 0 0 2a _M _ﬂ |
e J
0 0 o o i _tensl
€ J
1
1 0 0 0 0 -
el [era — jsinl |,
-2a 0 0 0 0 0
-9 4 0 0 0 0
e e
tan%[ tan%[ . 1 0 0
| J J jsinl )
(1.186)

where j = (1-¢?)'/? and the mean motion n = ( GM /a*)'/?. Inserting this
matrix into (1.183), we obtain Lagrange’s equations:>’

A\ _ 2 OHew  j(1-J) OHex tangl 0He,

dt na Oa nale  Oe na?j OI ’
dw ] aI—Iext tan %I 8[{ext

At na2e e na?j OI ’

a0 1 OHu,

E:_nazjsinf oI’ (1.187)
da 2 OHext

dt  na Ox

% — .7(1 _.7) aIq'ext i .7 aHext

dt na2e O\ na2e Ow ’

g _ tan %I aHext n tanél 8-E[ext 4 1 8I—Iext
dt  na2j O\ na?j Ow  mna?jsinl 0N

When the eccentricity and inclination are small, we can simplify Lagrange’s
equations by evaluating the factors multiplying the partial derivatives of

27 Traditionally, Lagrange’s equations have been written using a function R = — Hext on the
right side, so all of the signs are reversed. Probably this convention arose because R is
positive when the external forces arise from a gravitational potential.
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Heyt as power series in e and I and dropping all terms that are O(e, I)
or higher:

Q _ + iaHext % _ _3 aI{ext
dt na Oa ’ dt  na O\
dﬂ _ 1 8Hext % _ 1 aI{ext
dt  na2e Oe ’ dt  na2e 0w ’
dQ 1 OHgy dl 1 OHgy
=t — = . 1.188
dt na?l O0I ’ dt na2l 09 ( )

Several of Lagrange’s equations are ill-defined when the eccentricity e
or inclination I is zero, and as a result the equations are difficult to integrate
numerically or analytically when e or I is small. In these situations it is bet-
ter to work with the orbital elements E’ = (A, k, ¢, a, h,p). From equations
(1.71) we have

A=Ll+w+1,
k=ecosw = (1 - L?/A%)Y? cos(w + Q),
(12 - 12)17

q=tanlcos() =
L,

cos €,
A2

GM’

h=esinw = (1 - L?/A%)?sin(w + Q),
(L2 - 12)17

z

p=tanlsin() = sin 2. (1.189)
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The Jacobian matrix G, = OE;[0z; is

1 1 1 0 0 0
L? L
0 ~h ~h sra—pk gk 0
o 0 - 0 _L _Liz
o b \ roz? Ty
= 2
0 0 GQ—M 0 0
L L
0k kK jpEommh poph 0
0 0 0 L R
[ 1 -zl T -y? |
(1.190)
Then
LA 0 hq 0 np
1+3 je J Jje
T - o o ™M !
G'JG'T = — je je jc jcos3 T ,
na?| -2a 0 0 0 0 0
T .
1+ jc jc
p hp 1 kp
- - T 37 0 - 0
L jc jc jcoss I jc .
(1.191)

where as usual j = (1 -€2)"/2 = (1 - k? - h?)Y/2, and ¢ = cos I + cos® I.
The analog to equation (1.183) for the primed elements gives

d)\ 2 chxt ] chxt 5cht
—=n+— - — |k +h
dt na Oa na?(1+7) ok oh
1 ( aHext 6Hext )
- . +p )
na?jc Oq Op
dk ]k 8quext .7 8];Iext h ( aHext aI_Iext )
—= . + = + , +p ,
dt  na?(1+j) OA na® Oh najc 0q Op
% _ q 8Hext + q ( a]{ext _ haHext) + 1 aI_Iext
dt  na%jc OA na?jc oh Ok na2jcos3I Op ’
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da _ 3 8Hext

T e o (1.192)
% — jh aHext _ L aI—Iext _ k ( 8Hext +paHext )

dt  na?(l1+j) 0OA na? Ok na2jc dq op )’

d£ — p aI—Iext + p (]f 8Hext _ haHext) _ 1 a]—Iext
dt  na2jc O na?jc oh ok na’jcosdl dq

When the eccentricity and inclination are small, we can simplify these
equations using the same approximations that we used to derive equations
(1.188):

dr_ 2 OHex da _ _2 OHex

dt na Oda ’ dt na O\ '

dk 1 OHex dh 1 OHex

At na? h At na® 9k

dg_ 1 OHew dp__ 1 0o (1.193)
dt mna? Op d¢ na? 0Oq

1.9.2 Gauss’s equations

An alternative approach is to work directly with the external force per unit
mass Foy rather than the corresponding Hamiltonian Hey¢. To do so, we
first introduce the orbital elements E = (f,w,Q, a, e, ) where f is the true
anomaly and w = w — ) is the argument of periapsis. In Cartesian coordi-
nates, the position of the planet is given by equations (1.70), which can be
written

r=RT(Q, I, f+w) (1.194)

O O3

in which R is the transpose of the rotation matrix (B.60), given explicitly
by equation (B.61). The radius » = a(1 - e?)/(1 + ecos f) (eq. 1.29), so
equation (1.194) expresses r as a function of the elements E.

We assume that the Hamiltonian H.y is written as a function of the
orbital elements E but that it is derived from a potential that depends only
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Box 1.5: Radiation pressure and Poynting—Robertson drag

Small bodies orbiting a star experience forces from the radiation field of the star.
We first assume that the small body is spherical, with radius R, and perfectly
absorbing. If the luminosity of the star is L, the flux of radiation (energy per
unit time crossing unit area on a spherical surface at a distance r from the star)
is ' = L/(47r?). A stationary body at this distance absorbs energy at a rate
E = nR2F. If the body is moving at velocity v, the rate of energy absorption is
modified by the Doppler effect to E = w R? F (1-v-i/c) where f is the unit vector
from the star to the body. Since a photon of energy e carries momentum €/c, the
corresponding rate of absorption of linear momentum is p = Ef'/ c. The rate of
change of momentum equals the force, so the force due to radiation pressure is

_LR? (1 v~f‘). @

Frad = TR c

In thermal equilibrium, the body re-radiates all the energy that it absorbs.
Since a photon of energy ¢ has mass €/c?, this re-radiation implies a mass-loss
rate M = —E/cQ. If the re-radiation is isotropic in the body’s rest frame, the net
rate of momentum change associated with this mass loss is p = Mv = —vE/ c?
in the inertial frame, equivalent to a Poynting—Robertson drag force®

LR?
Fpgr = —VW; (®)
here we have dropped a term that is smaller by O(v/c). The total force is
LR? -F
F=F,q+Fpg = 1- Y0 - Yy o@w?/e?). ©
4r2c c c

In practice this result should be multiplied by an efficiency factor () that accounts
for scattering, diffraction and incomplete absorption (Burns et al. 1979).

A useful reference number is the ratio of the radiation force on a stationary
body to the gravitational force from the host star, Fiy = GM. *m/r2, where m =
%ﬂ'pR3 is the mass of the body and p is its density:

Fraa(v=0) _ 3LQ 0 191Q£ Mo 3gem™ 1y @
Fy 16r GM.cpR Lo M, P R’

B=

here we have written the radius in units of microns (1 p = 10~*cm = 1076 m).
Note that 3 is independent of the distance from the star, .

In general ) < 1 for particles orbiting the Sun with sizes much smaller than
the wavelength at the peak of the solar spectrum, around 0.5 u. Thus 8 peaks
for most materials at R ~ 0.1 . When S > 1 the outward force from radiation
pressure exceeds the inward force from gravity, and the body is unbound.

¢ Some authors label the velocity-dependent term in equation (a) as part of the
Poynting—Robertson drag rather than the radiation pressure, while others label
the radial component of equation (b) as part of the radiation pressure.
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on r; then the external force per unit mass is Feyy = —0Hext/Or and we
have
OHex 3. OHoxt Or 3 0
7‘522 : j:_ZFextk :_ZFextk—Tle-
8Ej k=1 ark an k=1 6Ej 8Ej
(1.195)

Then the derivatives of the Hamiltonian in terms of the orbital elements
E=(\w,Qa,e,I)are

aH ext 8H ext 3

6
0
Z jm = Z C Z ext,k == E rRig, (1.196)

j=1 j=1 k=1 J

where C is the Jacobian matrix?®

OF; o(f,w,Q,a,e,I)
C- | OF,, N O\, w@,Q,a,e,1) (1.197)
[ (1+e‘cgosf)2 _(1+e‘c3osf)2 0 0 sinf(Zercosf) 0 ]
J J J
0 1 -1 0 0 0
= 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 O 1 0
| 0 0 0 O 0 1 ]

The expression (1.196) gives the derivatives of the Hamiltonian as func-
tions of the external force components along the three coordinate axes,
Foy = Z‘zzl Fxt xRy, with (7, g, Ai3g) = (X,¥,2). The results are much
simpler if we use new coordinates, Fo,; = Y3, F ¢ xD, with 0} along the
outward radial direction through the planet; i/, in the orbital plane, perpen-
dicular to the radius vector and in the direction of orbital motion; and i}
normal to the orbital plane, positive in the direction from which the orbital
motion appears counterclockwise. Thus (7}, 5, nf) form a right-handed

28 Evaluating this matrix is tedious but straightforward using Kepler’s equation (1.49) in the
form A\ = u — esinu + w, the relation w = w + 2 (eq. 1.67), and the relations (1.50) and
(1.51a) between the eccentric anomaly w and the true anomaly f.
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triad of unit vectors. The relation between these components is given by
equation (B.61), Foy 1 = Zp 1 Rkn ext,n Lhen equation (1.196) becomes

chxt _

6 0
Ciim Lt Bk —=—=1Rup. 1.198
; J kgl nfto 5 B (1.198)

For brevity, write (Fuy 1, Foxg 2> Fexe 3) = (R, T, N); thus R is the ex-
ternal force per unit mass along the radial direction, T is the azimuthal or

tangential force per unit mass in the orbital plane, and NV is the force per
unit mass normal to the orbital plane. Evaluating (1.198) gives

OH oyt aesin f a’j

o\ j r’

. 2 .

OH oyt :Raesenf —T(r— a])7

Ow J r

H.
Lag‘t =Tr(1-cosl)+ Nrcos(f+w)sinl,
6Hext _ &

da  a’
OHext _ Racos f _TT(2 +ecesf) smf7

Oe 72
EH;I? = —Nrsin(f +w). (1.199)

Inserting these results in equations (1.187), we obtain Gauss’s equations,

dA - 2r(1+j) +aejcos f +T7“(1—j)(2+ecosf)sinf

dt na?(1+j) na2je
Nrtan%[sin(f +tw)
na?j ’
dw _ chosf r(2+ecosf)smf rtan%]sin(f+w)
dt nae naZje na2;j g

@_Nrsin(f+w)

dt naZjsinl ’
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@:RQesu-q +T2ﬂ,
dt nj nr
%:stinf+Tj(cosu+cosf)’
dt na na
I
dr_ reos(f+w) (1.200)
dt na2j

Although we derived Gauss’s equations by assuming that the forces were
derived from a Hamiltonian, they remain valid for any forces.

Alternative derivations of Gauss’s equations are given by Brouwer &
Clemence (1961) and Burns (1976); see also Problem 1.21.

As an illustration we compute the orbital evolution of a body subjected
to radiation forces from its host star. From equation (c) of Box 1.5 the radial,
tangential and normal radiation forces per unit mass are

k LR?
R = Frad (1—21’“) 7o _Frd% 0 ghere kg = 22

2 ) 2 ) ) )

r c réc dmc
(1.201)
v, and vy, are the radial and azimuthal velocities, and m is the mass of
the body. We substitute expressions for v, and v, from equations (1.54)
and (1.55) and insert the results in Gauss’s equations for the evolution of
the semimajor axis and eccentricity. Eliminating the radius using equation

(1.29) and the eccentric anomaly using equation (1.50), we find

da  2kpaqesin f(1 +ecos f)? B Ak, qq €2 sin? f(1+ecosf)?

dt na?j®° acjS
2kraa(1 +ecos f)*
- acjS ’
de  kraa sin f(1 +ecos f)? 2kradesin2f(1+ecosf)2
dat na3j3 - aZcj*
_krad(e+2005f+e2cgi2f)(1+ecosf)2. (1.202)
a2cj

If the radiation forces are weak, the orbital elements will be relatively con-
stant over a single orbit, so we can determine their long-term evolution by
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averaging these equations over an orbit. Using equation (1.64) we have

<da> _k;rad(2+362) (de) 5kraqe
~ac(l-e2)32’

— — )= 1.203
dt dt 2a2c(1 - e2)1/2 ( )
The exact solution of these equations is described in Problem 1.22, or see
Wyatt & Whipple (1950). For circular orbits, the equation for (da/dt) is
easily integrated to give

mc?ad

LR? -

1/2
) ,  where t.,q = (1.204)

t
a(t) = ao(l -
trad
Here ag is the semimajor axis at the initial time ¢ = 0. In terms of (3, the
ratio of the radiation pressure to the gravitational attraction from the host
star (eq. d of Box 1.5),

(1.205)

. age 400.5yr( ag )2 Mo
rad = =

4GM,.8 B \lau) M,
Since we have orbit-averaged the equations of motion, these results are only
valid if the evolution is slow, that is, if |da/d¢| << a/ P, where P is the orbital

period.



Chapter 2

Numerical orbit integration

2.1 Introduction

The trajectories in any system containing more than one planet cannot be
determined analytically, except in special cases. Therefore numerical orbit
integration is indispensable for celestial mechanics.

A brief and readable introduction to numerical integration of differential
equations is given by Press et al. (2007). For more comprehensive treat-
ments see Hairer et al. (1993, 2006) and Blanes & Casas (2016).

The equation of motion for a planetary system can be written in the

general form
dz

i f(z,1), (2.1)
where t is the time and z is a vector representing the coordinates of the
system in phase space. The trajectory or orbit of a system is the curve z(t)
that is determined by equation (2.1). If we know a single point on the curve,
say z(to), the entire trajectory can be determined by solving this equation.

The simplest example is a single test particle with position r and velocity
v that orbits in a gravitational potential ®(r,t). Its phase-space position can
be written' as a 6-dimensional vector z = (r, v). The right side of equation

' This differs from the conventional definition of phase space, in which the momentum is mv

71
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(2.1) is then
f(z,t) =[v,-V®(r,t)]. (2.2)

This equation of motion can equally well be written as a second-order dif-
ferential equation
e 23
@__V (I'7t), ( . )
we shall call this the Newtonian form of the equation of motion, even
though the concept of force as the gradient of a scalar potential was de-
veloped after Newton’s death.

A more general example is motion in a dynamical system governed by a
Hamiltonian H (q, p,t) where q and p are vectors of canonical coordinates
and momenta. Then z = (q,p), and according to Hamilton’s equations
(D.12) the right side of equation (2.1) is

£(z,1) - (‘lH —‘lH). 2.4)

op’ 9q
The equation of motion (2.2) is a special case in whichq = r, p = v and
H(q,p,t) = 3p° + ®(q,t).
The demands of celestial mechanics are varied enough that no single
numerical method for solving the differential equation (2.1) always works
well. Consider the following example problems:

Solar-system ephemeris Fit the trajectories of the Sun, Moon, Earth, the
other solar-system planets and satellites, and the most massive asteroids to
determine their orbital elements and masses. The relevant data include radio
ranges to interplanetary spacecraft, laser ranges to the Moon, radar ranges to
Mercury and Venus, and optical observations of asteroids, the outer planets,
and their satellites. The numerical errors in the integrations should be less
than a centimeter (cm) over 100 years or more, to ensure that they are much
smaller than the residuals from the fits (currently a few cm for the Moon and
a few tens of meters for the terrestrial planets Mercury, Venus and Mars).
For this task, the integration algorithm must be extremely precise; on the

rather than v. See footnote 10 of Chapter 1.
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Box 2.1: Extended phase space

The differential equation (2.1) is said to be autonomous if the right side is in-
dependent of the time ¢. Any equation such as (2.1) can be converted to an au-
tonomous one. To do this, define a vector Z = (z,t) and a fictitious time 7,
related to the time ¢ by dt = g(z)d7 (note that the fictitious time may be different
for different trajectories at the same instant of real time ¢). Then the equation

dZ

e F(Z), where F(Z)=g(z)[f(Z),1] (a)
has the same solution as (2.1) but is autonomous (because ¢ is now a component
of Z rather than the independent variable). We are free to choose any function for
g(2z), and if g(z) = 1 the fictitious time is the same as the true time.

Similarly, a time-dependent Hamiltonian H(q, p,t) can be converted to an
autonomous Hamiltonian I'(Q, P) in an extended phase space with fictitious
time 7. The extended phase space has coordinates and momenta Q = (Qo,q),
P = (Po,p), where Qo = ¢. If we set

F(Q7P)Eg(qvp)[H(q7p7Q0)+P0]7 (b)

then Hamilton’s equations for the evolution of q, p and Qo are

d r H d r
dgq _or _ 87+@(H+p0)’ &:i:% ©
dr Op op Op dr  0R
d or oH 0 dF or oH
Lot R, e (@
dr dq dq Oq dr 0Qo 0Qo
The equation for dQo/d 7 says that
dt = g(q,p)dr. (e)
Using this result to eliminate d7 in favor of d¢, the remaining equations become
d O0H 10 d O0H 10 dF oH
A9 gipy), R T 2 (gapyy, S0 g
dt Op g¢gOJp dt dq g oq dt ot

There is a simple interpretation of the momentum F,. Since the Hamiltonian
I'(Q,P) is independent of 7 it is conserved along a trajectory. Let E(t) be the
energy on that trajectory, E(t) = H[q(t), p(t), t]. If we choose Py = —F at the
initial point of the trajectory, then I" = O at that point so I" vanishes on the whole
trajectory. Therefore Py(t) = —E(t) at all times. In words, the momentum Py
conjugate to the time coordinate Q)¢ is minus the energy.

If P =-FEsol =0,orif g(q,p) = const, then the first two of equations
(f) reduce to the original Hamilton’s equations (2.1) and (2.4).
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other hand the speed of the calculation is not a major consideration, since
the integration interval is only a few thousand orbital periods for the Moon
and much less for the other bodies.?

Long-term stability of planetary systems Determine the stability of an
exoplanet system over the lifetime of the Galaxy, ~ 10 Gyr. Exoplanets can
have orbital periods as short as a few hours, so we must follow up to 1013
orbits of a planet, which requires the fastest possible integration algorithm.
On the other hand the masses and orbital parameters of exoplanets are not
well known, so accuracy is not so important as long as the qualitative fea-
tures of the orbital evolution are correct.

Evolution of cometary orbits Follow the orbits of thousands of comets
from the Oort cloud as they pass through the Sun’s planetary system. A
typical Oort-cloud comet has a semimajor axis of ~ 30000 au and thus an
orbital period of 5 Myr (§9.5). However, if it has a close encounter with
Jupiter, its orbital elements can change dramatically within a few hours.
This task requires a fast and accurate algorithm that can follow occasional
changes in an orbit on timescales as short as 10719 orbital periods.

Evolution of the spin of Mars The current obliquity of Mars—the angle
between the spin and orbital angular-momentum vectors—is 25.19°, and the
spin angular momentum precesses with a period of 1.70x 10° yr, mostly due
to torques from the Sun. If there were no other planets in the solar system,
the obliquity and precession rates would be constant. However, gravitational
torques from other planets cause the obliquity to vary chaotically between
nearly zero and almost 65° (see §7.1.2). To follow the history of the Martian
obliquity requires integrating both the equations of motion of the planets and
the rigid-body equations of motion for Mars for the age of the solar system,
4.57 Gyr.

2 High-precision ephemerides are currently available from several sources: the Harvard—
Smithsonian Center for Astrophysics in Cambridge, Massachusetts (Chandler et al. 2021),
the Institute of Geodesy in Hannover (Miiller et al. 2019), the Jet Propulsion Laboratory
in Pasadena (Park et al. 2021), the Paris Observatory (Viswanathan et al. 2018) and the
Institute of Applied Astronomy in St. Petersburg (Pitjeva & Pitjev 2014).
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Over the last several decades the capabilities of scientific computing
have grown exponentially, mostly through two trends: declining cost of
computer memory and improvements in hardware and software for parallel
computing. Unfortunately, neither of these trends has a big impact on most
problems in celestial mechanics: the number of bodies is small enough that
the memory requirements are small, and following a trajectory is an intrin-
sically serial calculation that is difficult to parallelize.

Many of the integrators described in this chapter are implemented in
open-source software packages, such as SciPy for python. The most sophis-
ticated general-purpose software for orbit integrations is REBOUND (Rein
& Liu 2012) at https://rebound.readthedocs.io/en/latest/#. REBOUND was
used for all the long orbit integrations in this book.

2.1.1 Order of an integrator

Numerical integration produces a sequence of phase-space positions z,, at
times t,,. To keep the exposition simple, we assume at first that the timestep
h is fixed, so t,, = tg + nh.

Given the position z,,, and possibly information from earlier positions
Zn-1,Zn-2, and so on, we are seeking a formula—an integrator—that gen-
erates a new phase-space position z,,,1 that approximates the trajectory at
tn+1. The local error’ of the integrator is the difference between z,,,; and
the phase-space position that would be found by an exact solution of the
equation of motion, starting from the initial condition z,, at ¢,,. The order
of the integrator is % if the local error varies with timestep as O(R**1). It is
prudent to assume the worst-case scenario in which the error accumulates at
every step, in which case the error after a fixed time interval At = Nh (the
global error) can be as large as O(Nh**1) = At O(h¥). An integrator is
only useful if the global error approaches zero as the timestep approaches
zero, which requires & > 0.

High order does not necessarily imply high accuracy. The local error in
a k*I-order integrator typically involves derivatives of order k + 1 in z(t).

3 Sometimes called the local truncation error in contradistinction to roundoff error, which

arises because arithmetic operations cannot be carried out exactly in a computer for most
real numbers. We discuss roundoff error in §2.7, assuming for now that it is negligible.
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Thus, if the solution z(t) varies rapidly, its high-order derivatives can be
large enough that the local error actually grows as the order of the integrator
is increased beyond some critical value.

The relative performance of integrators is often measured by comparing
the local error at a given timestep h. This may not be a fair comparison,
in part because the computing time needed for a single timestep can be
very different for different integrators. Since the most expensive part of the
calculation is usually the evaluation of the force —V® (eq. 2.2), it is fairer
to compare the local error at an “effective” timestep, which is the mean
interval between force evaluations. For example, the classical Runge—Kutta
integrator in equation (2.65) has four force evaluations per timestep, so its
effective timestep is ih.

Numerical methods for integrating ordinary differential equations are
simpler in celestial mechanics than in most other subjects in one respect:
many important problems can be done with a fixed timestep, such as inte-
grations of multi-planet systems like the solar system. Nevertheless, some
applications require an adaptive timestep, which shrinks or grows depend-
ing on the changing behavior of the orbit. A challenging task requiring
an adaptive timestep is to follow a particle on a highly eccentric orbit; for
example, the typical eccentricity of comets coming from the Oort cloud is
e =0.9999 (Problem 2.9).

2.1.2 The Euler method

The simplest integrator is the Euler method, in which the equation of mo-
tion (2.1) is approximated by

Zn+l =Zp t hf(znvtn)- (2.5)

The method is explicit, which means that z,,.; can be computed directly
from z,,. Later we will encounter implicit methods, in which a nonlinear
equation involving both z,, and z,,,1 has to be solved at each step.

We now determine the order of the Euler method. The exact trajectory
z(t) that passes through z,, can be expanded in a Taylor series around ¢,,,

2(t) =2, +2(t,)(t—t) + 32(t,) (t—£,)> +O[(t - ta)*].  (2.6)
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Figure 2.1: The absolute value of the fractional energy error as a function of time
during integrations of a Kepler orbit with eccentricity e = 0.2. Each integrator
is allowed 200 force evaluations per orbit. The integrations are carried out using
the Euler and modified Euler methods (eqs. 2.9 and 2.21), which are first-order;
leapfrog, which is second-order (eq. 2.29); and the classical fourth-order Runge—
Kutta method (eq. 2.65). The energy error for modified Euler and leapfrog oscillates
between positive and negative values; to reduce clutter these curves are truncated
below 10% of the maximum error. Note the poor performance of the Euler method.
In contrast, the modified Euler method and leapfrog exhibit no long-term growth in
the error.
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Since this is a solution of equation (2.1) we must have z(t,,) = f(z,,t,) so
2(t) = 2o + £(Zn, tn) (t—tn) + 32(t) (- ta)* + O[(t - t,)°].  (2.7)

The difference between z,,1 and the exact trajectory at t,,,1 = t, + h is
obtained by subtracting (2.7) from (2.5):

Zoi1 — 2(tns1) = —Sh7E(t,) + O(h%). (2.8)

Thus the integrator is first-order.

The Euler method provides a prototype for more powerful integrators,
but should never be used for practical calculations. To illustrate why, we
follow the orbit of a test particle in a point-mass potential. In this system,
the motion is governed by equations (2.1) and (2.2) with ®(r) = -GM/r,
and the Euler method is

GM

—=TIn.

Ipylp =Tp + hVn, Vpel =V — h (29)
To measure the accuracy of the integrator we use the fractional energy error
|En/Eo - 1|, where E,, = 202 — GM/|r,|; since the energy is conserved
by the equation of motion, a small fractional energy error is necessary (but
not sufficient) for an accurate integrator. Figure 2.1 shows the results for an
orbit with eccentricity e = 0.2, integrated with 200 steps per orbital period.
The behavior of the Euler method is remarkably bad: in less than 100 orbits
the fractional energy error is of order unity.*

The behavior of the Euler method can also be investigated analytically
using the simple harmonic potential, ®(r) = 2w?r?—although this is less
realistic than the Kepler potential for our purposes, the performance of most
integrators in the harmonic and Kepler potentials is qualitatively similar. If
we treat the vector z = (r,v) as a column matrix,’ the equation of motion
can be written

-w?1 0

The fractional error E,,/Eo — 1 asymptotically approaches —1 because the semimajor axis
an, of the orbit grows without limit, so the energy E,, = —% GM/an — 0.

Our notation does not distinguish whether vectors such as z are 1 x N column matrices or
N x 1 row matrices if the meaning is clear from the context.

z=1(z) = Az, where Az[ 0 I:|. (2.10)
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Here 0 and I are the 3 x 3 zero and identity matrices. The general solution
of this matrix differential equation is

I‘(t) - %ro(eiwt + e—iwt) _ %iw—lvo(eiwt _ e—io.)t)7
v(t) = %iwrg (ei‘*’t - e’i‘*’t) + %Vo (ei“’t + efi‘*’t), (2.11)
where r( and v are the position and velocity at ¢ = 0. Of course, despite
the complex numbers in equations (2.11), r(¢) and v(¢) are always real.
Using this notation, Euler’s method is

Zp+l = Zp + hAZ,. (2.12)

The general solution of this matrix equation is a linear combination of se-
quences of the form
z, = Kk"a, (2.13)

where the scale factor x is a nonzero (possibly complex) constant. Substi-
tuting (2.13) into (2.12), we have

-1

f A= Aa (2.14)

h
Thus a must be an eigenvector of A, with (x — 1)/h the corresponding
eigenvalue. The eigenvalues A are the solutions of det(A — AI) = 0, where
“det” is shorthand for the determinant. It is simple to show that there are
two eigenvalues, A, = +iw. Then z,, = k}a, + k"a_, where

ke =1+ iwh, ai:|: Cx ] (2.15)

+iw Cy

and c; is a 1 x 3 column vector determined by the initial conditions.
These results can be rewritten to give the position and velocity at step n
in terms of their values at step 0,

1
2

ro(/@f + /@f) - diw”

ry, = 1V0("Q:—L_K’?)’
Vi, = iwrg (K7 = k1) + Lvo (k] + k7). (2.16)
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Comparing equations (2.11) and (2.16), we see that the Euler method
simply replaces the exponential exp(+iwh) by the scale factor ky = 1 +
iwh. The difference between the two is O(h?), as expected since the Euler
method is first-order. A less obvious but equally important difference is
that | exp(iwh)| = 1 but || = (1 + w?h?)'/2 > 1. Equation (2.16) shows
that r,, and v,, are the sum of terms that vary in magnitude as |k.|™, so
on average the radius |r,| and speed |v,,| grow as (1 + w?h?)™/?. Setting
n = (t-to)/h, we find that the radius and speed tend to grow exponentially,
as exp[y(t - tp)] with

1 1
v = Elog|ni| = %1og(1+w2h2) = 1w?h + O(R®). (2.17)

This exponential growth is the cause of the poor performance of the Euler
method in Figure 2.1.

The implicit or backward Euler method differs from the explicit Euler
method (2.5) in that the force is evaluated at the end of the timestep rather
than the start:

Zp+1 =Zn t hf(zn+17tn+1)~ (2.18)

This is an implicit equation for z,;, which is solved iteratively starting
from a first guess for z,,,1 that can be provided by the explicit Euler method.
The qualitative behavior of implicit Euler can be found without any new
calculations. We simply rewrite equation (2.18) as

Zp = Zpyl — hf(ZnJrlathrl)a (2.19)

which shows that implicit Euler with timestep h is equivalent to explicit
Euler with timestep —h. Thus if the radius or energy grows rapidly with
explicit Euler in a given system, it will decay just as fast with implicit Eu-
ler. Needless to say, growth or decay of this kind is unacceptable numerical
behavior in a conservative system such as the two-body problem. For dis-
sipative systems, implicit integrators are usually more reliable than explicit
ones, but this is not true for orbit integrations.
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2.1.3 The modified Euler method

We can do better—much better—than the Euler method in a large class of
dynamical systems. The equations describing the motion of a test particle
in a potential ®(r,t) are (2.1) and (2.2), and for these equations the Euler
method is

pyl =Ty + hV", Vpn+l = Vp — hv@(rvu tn)» (220)
with ¢,,41 = t,, + h. The modified Euler method is
Cnil =T +AVy,  Vpi =V — AVO(rpe1, b0 +h). (2.21)

The only change is that the force is evaluated at the new position and time
r,+1 and ¢,.; rather than the old position and time r, and t,. The key
feature that allows us to make this modification without solving a nonlinear
equation at each step is that the time derivative of the position r depends
only on the velocity v, while the derivative of v depends only on r (and the
time).

The performance of the modified Euler method for a test particle in a
Kepler potential is shown in Figure 2.1. Although modified Euler is still
only a first-order method, the rapid growth in energy error seen in the Euler
method is completely absent: the energy error oscillates rather than growing.
The sharp downward cusps in the error arise because we are plotting the
logarithm of the absolute value of the error, which diverges to —oo as the
oscillations pass through zero. With a larger timestep, the amplitude of the
oscillations is larger but there is still no growth in the maximum error, no
matter how long the integration continues.

The secret of this success is illuminated by examining the harmonic os-
cillator, as we did in equations (2.10)—(2.17). Using the same notation, the
modified Euler method can be written

Znil = Zn + hAodZn, Where Apoq = |: _(SQI _wIQhI ] (2.22)

The solution of this equation is a linear combination of sequences of the
form (2.13), with scale factor

1/2

ke =1-3w’h? 2iwh(1 - 1w’h?) (2.23)
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In this case it is simple to show that |r.| = 1, independent of the timestep
h so long as h < 2/w (which is much larger than the timesteps used in
practice). Thus, remarkably, the exponential growth in |r,,| and |v,,| that
arises with the Euler method is eliminated completely in the modified Euler
method.

It is useful to think of a single timestep of the modified Euler method
as the composition of two separate steps. First we advance the position at
constant velocity, which we represent by an operator

Dy(r,v) = (r+hv,v); (2.24)

this is called the drift operator since the particle drifts without accelerat-
ing. The drift operator also advances the time by the timestep h. Then we
advance the velocity at constant position and time, as represented by the
operator

Kp(r,v) =[r,v-hvo(r,t)], (2.25)

called the kick operator since it gives an instantaneous kick or impulse to
the velocity without affecting the position. Note that

Dy,/sDpj2 = Diijy =Dy, D_j =Dyl (2.26)

with similar relations for the kick operator Kj,.
The modified Euler method (2.21) can be written

Zny1 = (I‘n+1,Vn+1) = KhDth; (227)
here the operators are applied sequentially, starting at the right. More pre-
cisely, (2.27) is the “drift-kick” version of modified Euler. Equally good is

the “kick-drift” integrator, in which a single timestep has the form

Zp+1 = DhKh Zy,. (228)



2.1. INTRODUCTION 83

2.14 Leapfrog

A single step of the leapfrog integrator can be written®

r=r,+ %hvn,
/ 1
Vp+l = Vp — hV(I)(I‘ o+ §h)a

Tpe1 =1 + %hvnﬂ. (2.29)
These equations can be written in terms of the drift and kick operators as
Zn+1 = DpyoKpDyyo 2, (2.30)

so this method is also called “drift-kick-drift” leapfrog. An equally good
alternative is “kick-drift-kick” leapfrog,

Zn+1 = KpjoDnKpj2zn. (2.31)

Leapfrog is a second-order method, as can be shown using an approach
analogous to equations (2.6)—(2.8).

The performance of leapfrog for a test particle in a Kepler potential is
shown in Figure 2.1. As with the modified Euler method, the energy er-
ror is oscillatory rather than growing. The maximum error of leapfrog is
much smaller than the maximum error of modified Euler, as expected since
leapfrog is second-order rather than first-order.

An integration of P steps of drift-kick-drift leapfrog can be written

zp = (Dy,2KiDyy2) " zo. (2.32)

Using equations (2.26), this result can be rewritten in several equivalent
forms (recall that the operators are applied from right to left):

zp = D_y/5(DK,) Dy, 2 2o
=Dy,/2(KiDy) "D _p,/2 20

6 Leapfrog is also known as the Stormer or the Verlet method, although the concepts can be
traced back to Newton (Hairer et al. 2006).
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= Dh/QKh/Z(Kh/QDhKh/2)P_1Kh/2Dh/2 Zp. (2.33)

These formulas show that apart from one or two steps at the beginning and
end of the integration, the drift-kick and kick-drift forms of the modified Eu-
ler method and the drift-kick-drift and kick-drift-kick forms of leapfrog are
all identical. They also show, remarkably, that a multistep integration using
modified Euler can be improved in accuracy from first-order to second-order
simply by adding two drift steps of opposite sign before and after the inte-
gration.’

Despite its simplicity, the leapfrog integrator is widely used to study the
N-body problem in molecular dynamics, cosmology, galaxy formation and
evolution, and so forth. One of its advantages for large N, where computer
memory is a limiting factor, is that the phase-space positions can be updated
at each timestep without any temporary additional storage: following equa-
tions (2.29), the position r,, is replaced by r’, then the velocities v,, are
replaced by v, .1, then r’ is replaced by ry, ;1.

These results prompt an obvious but deep question: what properties of
the modified Euler and leapfrog integrators lead to oscillatory energy errors
rather than growing ones, and how can we design more accurate integrators
with similar properties? These issues are the subject of the next section.

2.2 Geometric integration methods

The goal of general-purpose integrators is to minimize the local error—
the difference accrued over a single timestep between the true phase-space
position and the position predicted by the integrator. However, not all errors
are equally important.

To illustrate this point, suppose that two integrators A and B having the
same timestep h are used to follow a circular orbit with semimajor axis a in
the gravitational field of a point mass M. Integrator A makes an error € in
the azimuthal coordinate or orbital phase at each timestep, but is otherwise
exact. Then the phase error after an integration time 7, requiring N =

7" The application of these extra steps to improve the order of an integrator is called symplectic
correction (Wisdom et al. 1996).
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Box 2.2: Taylor-series methods

The Taylor series for the trajectory z(t +h)is

L oy L rommy. @

z(t+h) —z(t)+h—z(t) 3

2 de2
If we discard all terms in the Taylor series that are O(h?) or higher and use (2.1)
to eliminate dz/dt then z(t + h) = z(¢t) + hf[z(t), ¢], which is simply the Euler
method (2.5). A natural approach to constructing more accurate integrators is to
include more terms in the series. For example, including the next term yields

8fk)

o (b)

zj(t+h) =z;(t) + hfj + 1n° (Zf ZZ
where f and its derivatives are all evaluated at [z(t), ¢].
Similar formulas can be derived to any desired order. However, the func-
tions on the right side rapidly become quite complicated, particularly if the phase
space has many degrees of freedom. Because the other integrators described in
this chapter are usually much simpler at a given order, Taylor-series methods have
only seen limited use in celestial mechanics. This situation is changing as com-
puter algebra now enables Taylor-series expansions of the gravitational N-body
problem to arbitrarily high order (e.g., Hayes 2008; Biscani & 1zzo 2021).

T/h steps, is (Ap)a = Ne = Te/h. In contrast, integrator B makes a
fractional error € in the semimajor axis at each timestep. Since the mean
motion 7 is equal to (GM)/2a=3/% by Kepler’s law, this semimajor axis
error corresponds to an error in n of —%ne per step or —%ne/h per unit
time. The orbital phase grows in time as d¢/d¢ = n, so the error in phase
for integrator B grows as d?(A¢) p/dt* = —3ne/h. So long as € is small
enough that n is approximately constant, this is easily integrated to give
(AP)p = —%neT2 /h. These arguments show that local phase errors lead to
a global phase error that grows linearly with the integration time 7', while
local semimajor axis errors lead to much worse behavior: a global phase
error that grows quadratically with 7'. For example, with an integration
time 7 = 10'° years, an orbital period of 1 year and a timestep h = 0.01
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years these estimates yield (A¢)a = 1 x 10'2¢ and (A¢)p = -5 x 102,
larger by a factor of more than 101°.

As this example illustrates, semimajor axis or energy errors are far more
dangerous than phase errors in long orbit integrations, but general-purpose
integrators do not distinguish between the two. Similarly they do not distin-
guish cumulative errors from oscillatory errors, although the former are far
more damaging in long integrations.

How do we use this insight to design integrators? One powerful ap-
proach is through geometric integrators, which preserve (some of) the ge-
ometric properties of the phase-space flow described by the original equa-
tion of motion. Geometric integrators accept a larger local error at the end
of one timestep to ensure that the geometrical properties of the flow in phase
space are the same in the numerical trajectory and the true trajectory.

A simple example of a geometric integrator would be one that conserves
the total energy and angular momentum of an N-body system. In practice,
such integrators have not proved to be very useful in celestial mechanics.
One reason is that smaller planets may contribute very little to the total en-
ergy and angular momentum. For example, because of its high eccentricity
and short orbital period Mercury is the most difficult planet to follow accu-
rately in numerical integrations of the solar system, yet it contains less than
0.2% of the orbital energy in the solar system and an even smaller fraction
of the angular momentum.

Most geometric integrators are designed to inherit one or both of two
specific properties of the phase-space flow: in reversible integrators, a par-
ticle returns to its exact starting point in phase space if its velocity is re-
versed; while in symplectic integrators, the transformation from initial to
final phase-space position is symplectic or canonical.

For book-length treatments of geometric integrators see Hairer et al.
(2006) and Blanes & Casas (2016).

2.2.1 Reversible integrators

In an autonomous dynamical system, the equation of motion (2.1) reads
dz/dt = f(z); that is, the right side has no explicit time dependence (see
Box 2.1). In an inertial reference frame, isolated gravitational N-body sys-
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tems are autonomous. They are also reversible, by which we mean the fol-
lowing. Suppose the initial position and velocity of a particle are (rg, Vo)
and we integrate the trajectory for an interval h, at which point its phase-
space coordinates are (ry,vi). Now reverse the velocity to obtain phase-
space coordinates (ri,—vy) and integrate again for an interval h. Then
the final position and velocity will be (ra, —v2). We now reverse the vel-
ocity again, so the particle is at (r2,vo). The integrator is reversible if
the particle has now returned to its original phase-space position, that is, if
(1‘27V2) = (I‘O7V()).

We now restate this concept more generally. The trajectory of a dynam-
ical system is its position z(¢) in phase space as a function of time ¢. For
any autonomous dynamical system we may define a nonlinear operator or
propagator G, that maps z(¢) to z(t + h). It follows from the definition
that Go = |, the identity operator, and that

G.r = G, Gy. (2.34)
Setting k£ = —h, we conclude that
G, =G, (2.35)

We define the time-reversal operator T such that Tz is the phase-space
position that corresponds to z if the direction of time is reversed. For ex-
ample if we use phase-space coordinates in which z = (z1,22), where z;
represents position and zs represents velocity, then T(zy,22) = (21, —22).
Since T is linear in these coordinates, it can be written as a matrix:

VAl _ I 0 VAl
EA N HY Y

To keep the discussion general, we shall make the weaker assumption that
T is a linear operator, that is, T(z1 + z2) = Tz; + Tz, and T(cz) = ¢Tz.
This assumption is not valid in all phase-space coordinates. For example, in
Delaunay variables

T(A L, L, 6,w,Q) = (A, L,-L,,~l,7 — w, 7+ Q). (2.37)
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Reversing the direction of time twice has no effect, so in any coordinates
T =1

An autonomous dynamical system is time-reversible or just reversible
if (Arnold 1984; Roberts & Quispel 1992)

G, TG, =T. (2.38)
Because of equation (2.35), an equivalent statement is
TG, =G, T. (2.39)

What properties of the equation of motion are required for reversibility?
By applying equation (2.34) repeatedly, the operator Gj, can be rewritten as
(Gyy ~)¥ for any integer N and it is straightforward to show by induction
that if G,y is reversible, then G, must be as well. By letting N — oo
we conclude that it is sufficient to show that Gy, is reversible for very small
timesteps h. If the equation of motion is dz/d¢ = f(z), then

G, =1+ hF +O(h?), (2.40)

where F is the nonlinear operator defined by Fz = f(z). The system is
reversible if and only if equation (2.38) is satisfied up to terms of order h;
since T is linear this requires

TF+FT=0 or Tf(z)=—f(Tz). (2.41)

For example, in the differential equations (2.1) and (2.2) we have z =
(r,v) and f(z) = [v,-V®(r)]. Using equation (2.36), Tz = (r,-v)
and Tf(z) = [v,V®(r,t)], while £(Tz) = [-v,-V®(r)]. Thus equation
(2.41) is satisfied and the system is reversible.

We now apply these concepts to integrators. Let ', be the operator
corresponding to an integrator with timestep h, that is, if the phase-space
position at time ¢ is z then the position at the next timestep ¢ + h is 2z’ = [, z.

The definition of an integrator with negative timestep needs some at-
tention. In principle there need be no relation between I, and I'_; for
example, I, could be leapfrog for & > 0 and the modified Euler method
for h < 0. However, it is natural to assume that ',z is a smooth (analytic)
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function of h, that is, it has a Taylor-series expansion in A that is valid for
both positive and negative h. Moreover, integrating a reversible dynamical
system with timestep 2 > 0 should give the same result as integrating the
time-reversed system with timestep —h, that is,

T, =TT or F;Tr,=T. (2.42)

We say that an integrator is normal if it satisfies this constraint when ap-
plied to a reversible dynamical system, as defined by equation (2.41). For
example, the Euler method (eq. 2.5)is ', =1+ hFso Tl;, =T + AhTF and
M, T=(-hF)T =T - hFT,; then the relation (2.41) shows that it is nor-
mal. Similarly, it is straightforward to show that the drift and kick operators
(2.24) and (2.25) are normal. Moreover, if A;, and Bj, are normal then so
is ApBy,. Thus the modified Euler method and leapfrog are both normal,
since they are composed of kick and drift operators. In fact almost all of the
integrators that we encounter in this chapter are normal.
An integrator is said to be symmetric if

ro,=r" (2.43)

The analogous equation (2.35) for autonomous systems with continuous
time holds automatically. However, (2.43) does not hold automatically for
integrators. For example, the drift-kick modified Euler method (2.27) has
I, = K, Dy,. From the second of equations (2.26) and its analog for the kick
operator we have [, = D_} K_; = D;,K},, which is the kick-drift integrator
(2.28), not drift-kick. Thus the modified Euler method is not symmetric.
Another example is the Euler method (2.5), which has I,z = z + hf(z); in
this case I':,ll is the backward Euler method (2.18). Thus the Euler method
is also not symmetric. The simplest symmetric method is leapfrog.

We now show that any symmetric integrator must have even order. If an
integrator I}, has order &, then it must be related to the propagator G;, that
describes the exact flow by

I, =Gy + A" E + O(RF*?), (2.44)

where h**1Ez is the dominant error term for a single timestep h starting at
z. Similarly,
M =G_p+(-h)*E+O(h"*?). (2.45)
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Therefore
ol =1+ (-h)"EG), + h"*1G_,E + O(hF*?). (2.46)
Since Gy, = 1 + O(h), we have
F_nln =1+ [(=R)* + RFHE + O(RF2). (2.47)

If the integrator is symmetric, the right side must equal the identity, so the
quantity in square brackets must vanish, which requires that the order £ is
even.

By analogy with equation (2.38), an integrator is reversible if

r,Tr, =T. (2.48)

Comparing this condition with equations (2.42) and (2.43), we conclude
that a normal integrator is reversible if and only if it is symmetric. Since
leapfrog is symmetric and normal it is also reversible.

Of course, reversibility of an integrator is only a useful property if the
underlying dynamical system is reversible, that is, if it satisfies (2.38) or
(2.41).

Any normal, non-symmetric integrator can be used to construct a time-
reversible one: it is straightforward to show from equation (2.42) that if
I, is normal, then r:irh is a reversible integrator with timestep 2h. For
example, let [y, = K; Dy, the drift-kick version of modified Euler. Just be-
low equation (2.43) we showed that F:,ll = Dy,Ky, so F:,lll'h = D,K5, Dy,
which is the drift-kick-drift leapfrog operator with timestep 2h (this is an-
other proof that leapfrog is reversible). Similarly, If E;, denotes the Euler
method, then E:,ILEh is the trapezoidal rule (2.75), an implicit integrator that
is reversible. See Problem 2.4 for another example.

2.2.2 Symplectic integrators

The motion of most systems relevant to celestial mechanics is governed by
a Hamiltonian H(q, p,t). In Hamiltonian systems the flow of trajectories
through phase space is strongly constrained; for example, Liouville’s the-
orem tells us that phase-space volumes are conserved by the flow (see the
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discussion surrounding eq. D.47). Thus integrators derived from Hamilto-
nians, by the methods described below, may be able to follow Hamiltonian
systems more accurately than general-purpose integrators.

Let I';, be an integrator with timestep h, so a single timestep of the inte-
grator is z’ = 'y z. Its Jacobian matrix I';,(z) is defined by (cf. eq. D.42)

0z, 0

92, = afzj[rh(z)]z’- (2.49)

Fhﬂ;j(h, Z) =

If the integrator is derived from a Hamiltonian then its Jacobian matrix must
be symplectic, that is, it must satisfy the symplectic condition (D.46),

r.Jr, =17, (2.50)

where J is the symplectic matrix (D.14) and “T” denotes the transpose.
Integrators satisfying this condition are known as symplectic integrators.

The symplectic condition (2.50) superficially resembles the reversibil-
ity condition (2.48), but there are important differences. In particular, re-
versibility is a feature of an individual orbit specified by the operator Iy,
while symplecticity is a feature of a family of nearby orbits because it de-
pends on the Jacobian matrix of I',.

For an example of a symplectic integrator, consider a system in which
the canonical coordinates and momenta are q = r and p = v, the position
and velocity, and the Hamiltonian is H (r, v,t) = %vQ +®(r,t). To construct
an integrator with timestep h, we introduce the periodic delta function de-
fined by equation (C.9),

n(t)=h S 6(t - kh). 2.51)
k=—o00

Over time intervals much longer than h, the average value of the periodic
delta function is nearly unity, which suggests that so long as the orbital
period is much larger than the timestep we can approximate the Hamiltonian
by

Hnum(rav7t) = %02 +(()ih(t_to _fh)q)(rvt)v (2.52)

8 Yoshida (1993) gives a clear review of early work on symplectic integrators.
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where ¢ is the initial time of the integration and f is a constant between 0O
and 1. We call this the numerical Hamiltonian. The corresponding equa-
tions of motion are

% - % - v, % - —% = —6n(t—to — fR)VD(r,1). (2.53)
We now solve these to determine r(t) and v(¢) over the interval from ¢,, =
to +nh to tye =to+ (n+ 1)h. Lett’ = ¢, + fh; t' must lie between ¢,
and t,,41. Let ¢ and ¢, denote times slightly before and after ¢'. Then from
t = t, tot =t we have §,(¢t — to — fh) = 0, so the velocity is constant
at v,, and the position advances to t’ = r,, + fhv,. Fromt =t tot = ¢,
the change in positior} is negligible but the velocity is subject to an impulse
Av = —vo(r',t') [, dt 8, (t—t') = ~hv®(r,t'). Thus r(t}) = r(t") =1’
and v(t,) = v(tL) - hv®(r’,t'). Finally, between ¢/, and ¢,,,1 the position
advances to r,1 = v’ + (1 — f)hv(t,) and the velocity is constant, so
V1 = V(t,). Summarizing, the position and velocity at t,,,1 = t,, + h are
given by

r' =r, + fhv,,
Vip+l =V — th)(rlvtn + fh)a
T =1 + (1= f)hv,. (2.54)

By letting f — 1 we recover the drift-kick modified Euler method of equa-
tion (2.27). If f — 0 we obtain the kick-drift modified Euler method (2.28),
and if f = % we obtain the drift-kick-drift leapfrog integrator (2.29). There-
fore all of these integrators and operators can be derived from the Hamil-
tonian (2.52), and thus all are symplectic. Moreover the composition of
symplectic operators is symplectic (see discussion in the paragraph follow-
ing eq. D.47), so other compositions of the kick and drift operators such as
kick-drift-kick leapfrog are symplectic as well.

An alternative proof that these integrators are symplectic is based on the
Jacobian matrices of the drift and kick operators Dy, (eq. 2.24) and K}, (eq.
2.25). In N-dimensional space, these are the 2/NV x 2N matrices

D(h):[ o ] K(h,r,t):[ e Y ] (2.55)
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Here 0 and I are the N x N zero and identity matrices, and ®(r,¢t) is
the Hessian of the potential ®(r,t), that is, the N x N matrix with en-
tries ®;;(r,t) = 9*®/0r;Or;. It is straightforward to show that D(h) and
K(h,r,t) satisfy the symplectic condition (2.50). Therefore the operators
D;, and K}, are symplectic, and so are compositions of these operators such
as the modified Euler and leapfrog integrators.

If the original Hamiltonian is time-independent, then it is conserved
along a trajectory and equal to the energy. A symplectic integrator does
not conserve the energy. However, experiments such as those reported in
Figure 2.1 show that in most cases, the energy oscillates around a mean that
is close to the conserved energy of the exact trajectory.

We have derived explicit symplectic integrators for Hamiltonians such
as H(r,v,t) = v* + ®(r,t). Symplectic integrators also exist for general
Hamiltonians H(q, p,t) but these are usually implicit. The simplest first-
order symplectic integrator with timestep h is

or

’ 7t .
aqn (qn Pn+1 )

(2.56)

Informally, the superior performance of symplectic integrators over long

integration times arises because the geometrical constraints on Hamiltonian

flows in phase space are so strong that systematic errors (in, say, the energy,

phase-space volume, or other conserved quantities) cannot accumulate. The
properties of symplectic integrators are discussed further in §2.5.1.

oH
dn+1 =qn t hai(Qm Pn+1,t), Pns1=Pn-h
Pn+1

2.2.3 Variable timestep

One serious limitation of symplectic integrators is that they work well only
with fixed timesteps, as the following example shows. Suppose the timestep
depends on phase-space position, A = 7(r,v). The Hamiltonian (2.52) be-
comes

Huum (1, v, 1) = 20% + 6, p vy [t —to — f7(r,v)]2(r,1). (2.57)

Since Hamilton’s equations (D.37) require derivatives of Hy,n, they now
involve derivatives of delta functions, which means that there are no simple
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Box 2.3: How do geometric integrators fail?

The usual criterion for the success of a numerical integration is that the global
error—the difference between the numerical solution and the true solution at the
end of the integration—is sufficiently small. Geometric integrators, however, pre-
serve the properties of the phase-space flow and therefore can give qualitatively
correct results even when the global error is relatively large. For example, a geo-
metric integrator could fail to predict the orbital phases in a multi-planet system
after a 1 Gyr integration, but still correctly predict whether the system is stable.

To illustrate this behavior, we integrate the equation of motion for a simple
pendulum using the modified Euler method. The pendulum Hamiltonian for a
particle of unit mass is (eq. 6.1)

H(q,p) = 3p° - w”cosq, (@)

where w is the frequency of small-amplitude oscillations. The equations of motion
are
d oOH d oOH
—q=—:p, —p:——:—wzsinq. (b)
dt  Op dt dq
The kick-drift modified Euler integrator (2.28) with timestep h is

Pr+1 = Pn — W hsiNgn,  dne1 = dn + hpnit. ©
We set yn, = hpy, and x,, = g, + 7 to derive a simpler form,
Yn+l = Yn + KSINTn, Tnil =Tn +Yn+l (d)

with K = w?h?. This is the Chirikov—Taylor map described in Appendix F.

Plots of this map (modulo 27) are shown in Figure F.1 for K = 0.1, 0.5, 1.0,
and 2.0. For small K, the trajectories in the map closely match the level surfaces
of the Hamiltonian (a), as they must since the modified Euler method is a well-
behaved integrator for sufficiently small timestep. As K increases, the trajectories
become more distorted and a significant fraction of phase space becomes chaotic.
This example illustrates that symplectic integrators with too large a timestep can
fail by introducing spurious structure, such as chaotic regions, into the phase space
of a system described by a regular Hamiltonian.
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analytic operators corresponding to this Hamiltonian. In words, a symplec-
tic integrator with fixed timestep is generally no longer symplectic once the
timestep is varied.’

Fortunately, the geometric constraints on the phase-space flow imposed
by time reversibility are also strong, so the leapfrog integrator retains its
good behavior if the timestep is adjusted in a time-reversible manner, even
though the resulting integrator is no longer symplectic. Here is one simple
way to do this: we modify equations (2.29) to

r' =1, + shv,,

v =v, - Lhve(r',t, + $h),
tne1 =tp + 5(h+ 1),
Vi1 =V = SRV b1 — $H),

Ipi1 = r' + %hlvvul- (258)

Here h' is determined from h by solving the equation u(h, h') = 7(r',v'),
where u(h,h'") is a symmetric function of h and b’ such that u(h,h) = h;
for example, u(h,h') = S(h+h') or u(h,h') = 2hh'[(h + }'). Inspec-
tion of these equations shows that they are reversible, and like leapfrog the
integrator is explicit and requires no auxiliary storage.

This result can be generalized to any normal integrator I';, for which
there is an explicit inverse I';Ll. A single step of a reversible integrator is
given by

2 =Thpzn,  u(h 1) =7(2), Zne1 =T} 7. (2.59)

A different approach to developing symplectic integrators with variable
timestep is based on the extended phase space described in Box 2.1. Sup-
pose that the optimum timestep for an integrator at the phase-space position
(a,p) is g(q,p). We introduce the fictitious time 7 defined by equation

9 A symplectic integrator does remain symplectic if the timesteps are varied in some fixed
pattern that does not depend on the phase-space coordinates, but this sort of behavior of the
timestep has little practical use.
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(e) of Box 2.1; then a constant timestep of 1 in 7 corresponds to a vari-
able timestep g(q, p) in the real time ¢, so long as we replace the Hamilto-
nian H(q, p,t) by the Hamiltonian I'(Q, P) defined in equation (b) in the
box. The principal limitation of this approach is that symplectic integrators
for the Hamiltonian I'(P, Q) are usually implicit (cf. eq. 2.56), in contrast
to the explicit integrators (such as leapfrog) that can be used on a simpler
Hamiltonian such as H(r,v) = $v® + ®(r,t) (Mikkola & Tanikawa 1999;
Preto & Tremaine 1999).

2.3 Runge-Kutta and collocation integrators

2.3.1 Runge-Kutta methods

This is a broad class of integrators in which the function f(z,t) on the right
side of the differential equation (2.1) is evaluated at several intermediate
times (“stages”) between t, and t,.1, and the evaluations are combined
to match a Taylor-series expansion of the trajectory to as high an order as
possible.

We illustrate this process for explicit second-order methods. We write

z' =2z, + ahf(zn,t,),
Zni1 = Zp + BhE (20, t,) + YhE(Z t, + OR), (2.60)

where the Greek letters «, /3, 7y, § denote four coefficients that are to be
determined.

To keep the next few equations simpler, we temporarily replace the vec-
tors z and f by scalars z and f. This restriction does not affect any of our
conclusions. Combining equations (2.60) and expanding them in powers of
the timestep h, we have

Zns1 = 2+ (B+)Bf + ayh® f. f +700° fi + O(R?); (2.61)

here f, = 0f/0z, f; = Of/0t, and all of the functions on the right side of
the equation are evaluated at (z,,t, ). Using the same notation, the Taylor
series for the solution of z; = f(z,t) (eq. 2.1) is

Znal = 2Zp + hze + %hzztt + O(h3)
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=2y +hf + SR L f + LR f + O(RP). (2.62)

If the integrator (2.61) is to match the Taylor series (2.62) up to and includ-
ing terms of order h?, we must have

Bry=1, a=6=—. (2.63)
2y

Since there are three equations for four unknowns, there is one free param-
eter for second-order methods of this class, which we can choose to be .
The most common choice is v = 1, which implies S =0and a = § = = and
gives the explicit midpoint integrator,

Zn+l = Zp + WE[Zp + %hf(zn,tn), t, + %h] (2.64)

Runge—Kutta methods with more stages and higher orders can be gen-
erated similarly. The most popular is a fourth-order, four-stage integrator
known as RK4 or the “classical” Runge—Kutta method, defined by

=f(2n,tn),
Zn 1hk1,t + 1h)
Zy, + hkg,t + = h)
k4 :f(zn + hks,t, +h),
Zy1 = Zn + (ks + 2ko + 2kg + ky). (2.65)

f(
f(

There are four evaluations of f(z), so the effective timestep is %h.

When RK4 is applied to the harmonic oscillator the solution is again a
sum of sequences of the form z,, = k™a (eq. 2.13), with two solutions for
the scale factor given by

ke =1-2wh? + Lw'h* £i(wh - Lw’h®). (2.66)

The radius and speed tend to decay exponentially as exp[’y(t —tp)] with

log [r.| =

1 5
= —log(l—%wGhG 1 8hs)——iw h® + O(h®).

E 2h 576 144
(2.67)
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The rate of decay is far smaller than the rate of growth that we found with
the Euler method in equation (2.17). The numerical experiment shown in
Figure 2.1 confirms that RK4 is a much more accurate integrator, although
with 200 force evaluations per orbit it still fails after less than 1 000 orbits.

The general form of an s-stage Runge—Kutta method is

ki:f(Zn-l-hZAijkj,tn-FhCi), z':l,...,s,
j=1

Zpit = Zn+h ) wik;. (2.68)

j=1

The method is explicit if A;; = 0 for j > 4. For example, RK4 has

O OoON= O
o O O
_ o O O
O O O O

Runge—Kutta methods are good choices for short integrations—hund-
reds or thousands of orbits—but not for the Gyr integrations needed to in-
vestigate the long-term stability of planetary systems. They are also well
matched to problems that require a variable timestep, such as following the
evolution of highly eccentric orbits.

Current practice is to estimate the timestep required for a given accu-
racy using an embedded Runge—Kutta integrator. These are integrators
designed such that the same function evaluations can be used with two dif-
ferent weights to give Runge—Kutta methods of different orders. Then the
local error can be estimated from the difference between the two methods,
so the timestep can be adjusted if the local error is too large or too small
compared to some pre-set accuracy criterion.

For example, the Dormand-Prince method (Shampine 1986; Hairer et
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al. 1993) is an explicit seven-stage Runge—Kutta integrator with

0 0 0 0 0 0 0
3 0 0 0 0 0 0
3 9
ﬁ @6 3O2 0 0 0 0
A= = -1 5 0 0 0 0], (70
19372 25360 64448 _ 212 0 0 0
6561 2187 6561 729
9017 355 46732 49 5108
3168 33 5247 176 18656
35 0 500 125 _2187 11
L 384 1113 192 6784 84 ]
and
(0l 3 48
c=(013123811). (2.71)
This yields a fifth-order integrator if we choose
_ (35 500 125 _ 2187 11
w= (357 0 105 To3 ~ a7s1 51 0)- 2.72)

Although this is a seven-stage method, it only requires six evaluations of
f(z,t) per step because the last stage of step n is evaluated at the same
location as the first stage of step n + 1 (because the last row of the matrix A
is the same as the vector w). Equations (2.70) and (2.71) also produce an
embedded fourth-order integrator if we replace w by

w' = ( 5179 7571 393 92097 187 1 ) (273)

57600 16695 640 339200 2100 40

Let the new phase-space position obtained by equations (2.68) and (2.70)—
(2.72) be z,,+1, while the position obtained by replacing (2.72) by (2.73) is
z,,,1- The local error in z,,,; should be much smaller than the local error in
z! .1 since the former is derived by a fifth-order method and the latter by a
fourth-order method. Therefore the local error in z],; iS A ~ 2! | — Zp41
and scales as O(h5). If we change the timestep to some new value Apey,
the error should be A (hyew/h)°. If we want the error to be less than some
pre-set value € in all coordinates of the vector z, ,, then the new timestep

should be
. 1/5
hnew =h| ———— . 2.74
[|max(Ai)|] ( )
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This formula allows the timestep to be expanded if | max(A;)| < € or shrunk
if [max(A;)| > €; of course, in the latter case the trial timestep has failed to
give the desired accuracy and so must be re-taken with the smaller timestep.
The error estimate applies to z/,, ;, but in practice we use z,1 as the pre-
dicted position at ¢,,,1 since it is more accurate.

The Dormand-Prince integrator is implemented in many software pack-
ages, including the Python-based SciPy package.

There are geometric Runge—Kutta methods. The simplest of these are
the trapezoidal rule,

Zp+l = Zp + %hf(znytn) + %hf(zn+17tn+1)7 (275)
and the implicit midpoint method,
Zns1 = Zn + hE[ (2 + Zni1), tn + A (2.76)

These are both second-order methods. They are implicit integrators since
the new position z,.; appears as an argument of f(z,¢). Both methods
are symmetric (eq. 2.43), and when applied to reversible systems they are
normal (eq. 2.42) and therefore reversible (eq. 2.48). The implicit midpoint
method is also symplectic when applied to Hamiltonian systems, but the
trapezoidal rule is not. Both methods are closely related to Euler’s method,
as described at the end of §2.2.1 and in Problem 2.4.

In terms of the general formula (2.68), the trapezoidal rule can be written

A:[? ?] c=(01), w=(31), (2.77)
2 2

and the implicit midpoint method is

A = %, c| = %7 wy = 1. (2.78)

Unfortunately, all Runge—Kutta integrators described by equation (2.68)
that are reversible or symplectic are also implicit (Hairer et al. 2006) and so
require several iterations per step to converge.

An alternative approach, which we now describe, is to develop explicit
Runge—Kutta integrators of sufficiently high order that the local truncation
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error is smaller than the roundoff error. Then if the original dynamical sys-
tem is reversible or symplectic the integrator will be as well, at least to
within roundoff error.

2.3.2 Collocation methods

Integrators for ordinary differential equations are closely related to numer-
ical methods for evaluating integrals, since integration of the differential
equation dz/d¢ = f(¢) is equivalent to finding the integral [ d¢ f(¢). To re-
duce confusion in this subsection, we shall always use the term quadrature
to denote the evaluation of integrals, in contradistinction to integration,
which denotes the solution of differential equations.

For example, if b = a+h then the Euler method (2.5) yields the following
approximation to the integral I = [ab dt f(¢):

I=hf, 2.79)

in which f,, = f(a + ah). This quadrature rule requires one function evalu-
ation per timestep h and is first-order, that is, the error over an interval A is
O(h?). The explicit midpoint method (2.64) gives the approximation

I =hfis. (2.80)
The classical Runge—Kutta or RK4 method (2.65) gives
I=h(3fo+2fi2+ 2 f1), (2.81)
which is Simpson’s quadrature rule. The trapezoidal rule (2.75) gives
I=h(3fo+1f). (2.82)

These observations motivate integrators known as collocation methods.
Let cq,...,cs be distinct real numbers, usually between 0 and 1, called the
nodes. To integrate the differential equation (2.1), we seek a polynomial
u(t) of degree s such that

u(t,) = z,, u(t,+hc;) =flu(t, +hej),tn+hej], j=1,...,s. (2.83)
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For each dimension of the vector u(t), these equations give s+ 1 constraints
on the s + 1 coefficients of the polynomial, so usually the degree-s polyno-
mial satisfying (2.83) is unique. Once the polynomial is found, the next step
of the integration is Z, 1 = u(t, +h). The Euler method (2.5), the backward
Euler method (2.18), and the implicit midpoint method (2.76) are colloca-
tion methods with s = 1 and ¢; = 0,1, %, respectively. The trapezoidal rule
(2.75) is a collocation method with s = 2 and ¢; = 0, co = 1. Collocation
methods are special cases of Runge—Kutta methods (see Box 2.4).

All collocation methods other than the Euler method are implicit, and
they are reversible if and only if the nodes c; are symmetrically distributed
around %, thatis, cs_;41 =1 —c¢; fori <1< s.

The general quadrature rule that underlies equations (2.79)—(2.82) is

I=h i 'wjf(to + th). (2.84)
j=1

Not surprisingly, if the error in the quadrature rule is O(h**1) then the error
in the collocation method with the same nodes is also O(h**1). Therefore
high-order quadrature rules can be used to generate high-order integrators.

The principle of Gaussian quadrature is that a wise choice of the nodes
¢; yields a quadrature rule whose order k can be as large as twice the number
s of nodes per timestep. In practice, most collocation methods use either the
Gauss-Legendre or the Gauss—Radau rule for choosing the nodes.

The Gauss—Legendre rule has order k£ = 2s, which is the theoretical
maximum. Moreover it can be shown that collocation methods using this
rule are symplectic (Sanz—Serna 1988). The nodes are given by the roots
of the Legendre polynomials of Appendix C.6, P4(2¢; — 1) = 0, and the
weights are

1
(e - D[Py (2¢; - 1))

i=1,....5. (2.85)

W;

For example, the two-stage, fourth-order Gauss—Legendre rule has

c=i-1.3720 =l L3t l20 =y = L (2.86)
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Box 2.4: Collocation and Runge-Kutta methods

To explore the relation between these two types of integrator, write

u(t) = ; k; P (t _ht" ) ,

where P;(7) is the Lagrange interpolating polynomial

Sox—-q

Pj(z) = ,
=16 —¢a
i#j

second of equations (2.83) implies that for a collocation method

k; = f[u(tn +hei), tn + hci].

we find
s ci
u(tn +he;) =zn +h Y Ajjk;, where A;j; = /(; dr P;(71),
j=1
and integrating from ¢,, to t,, + h gives

s 1
Zn+1 = Zn +h ) wik;  where w; = f dr P (7).
j=1 ’

(d) and (e).

(®)

which equals 1 at z = ¢; and zero at © = ¢; if | # j, and has degree s — 1. The

(©)

Integrating equation (a) from ¢, to t,, + hc; and using the first of equations (2.83)

(C))

(e)

Equations (c)—(e) are equivalent to the definition (2.68) of an s-stage Runge—Kutta
method. Thus all collocation methods are Runge—Kutta methods. The converse is
not true, because not all choices of the coefficients A;; and w; satisfy equations
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The Gauss—Radau rule has one node c¢; = 0 at the start of the timestep
and order k£ = 2s — 1. The order is one less than the Gauss—Legendre rule,
but the force at the first node is just f(z,,, ¢,,) and can be computed once and
for all at each step without iterating to convergence. The nodes and weights
for the Gauss—Radau rule are given by

1
=0, w=-—, (2.87)
s
Po1(2¢;—1) + Py(2¢; = 1) = 0, w; = 1-¢ i=2,...,5
s—1 1 s T =Y 1_52[P5_1(20i—1):|27 T Ay ey 9
For example the two-stage, third-order Gauss—Radau rule has
=0, =2, wi=7, wy=3. (2.88)
This can be written in the notation of equation (2.68) as
0 0
Al 0] e ween e
3 3

Gauss—Legendre or Gauss—Radau integrators can also be designed for
the Newtonian form (2.3) of the equation of motion. The most popular of
these (Everhart 1985; Rein & Spiegel 2015) is a Gauss—Radau integrator
with order £ = 15 and requires s = 8n function evaluations per step, where
n is the number of iterations that the implicit integrator needs to converge
(typically only 2-3 if the differential equations are well behaved and the
timestep is well chosen). These integrators are particularly well suited for
high-accuracy integrations of orbits with rapidly changing accelerations that
require a variable timestep. For typical planetary orbits, high-order integra-
tors of this kind can achieve local errors smaller than the roundoff error
(§2.7) with timesteps of a few percent of the orbital period.

2.4 Multistep integrators

2.4.1 Multistep methods for first-order differential equations

The integrators that we have described so far are one-step methods, that is,
the only information used to predict z,,+1 i z,,, and all the history contained
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in the earlier steps of the trajectory is discarded. In contrast, multistep
methods also use the positions z,,_,, and derivatives f(Z,—,, tp—m ) from
several earlier steps m = 1,2,... to enhance the accuracy of the predicted
position (Henrici 1962; Gear 1971; Hairer et al. 1993, 2006).

The most common multistep methods for the differential equation (2.1)
are defined by the formula

M M
Z OUmZnyl-m + h Z ﬁmf(zn-%—l—m; tn+1—m) = Oa (290)
m=0 m=0

where h is the timestep and at least one of ap; and 5, is nonzero. Without
loss of generality we can set aig = —1, and rewrite the formula as

M M
Zp+1 = Z OUmZpt1-m t h Z Bmf(zn+1—m7tn+1—m)a (291)
m=1 m=0

which shows how z, .1 is predicted from up to M earlier positions and
M +1 derivatives. The method is explicit if 5y = 0; otherwise it depends on
the derivative at the predicted point, £(2,+1,tn+1), and thus is implicit. A
method can be specified compactly by its characteristic polynomials

M M
p(x)= Y apa™, o(z)= ) Bna™. (2.92)
m=0

m=0

We define the order of a multistep integrator as follows. If z* (%) is an
exact solution of the differential equation z = f(z,t), and 2z, = z*(¢,,), then
a method of order £ satisfies

M M
S amzim 0D B (21 tnsiom) = O(RF1). (2.93)

m=0 m=0

We justify this definition and describe its relation to the definition of order
for one-step methods later in this section.

We now determine the coefficients «,, and (3,,. Any solution of the
differential equation z = f(z,¢) can be written as a Taylor series expansion
around t,,11, 2" (t) = £520a;(t = tns1)’. Then z),,, ,, = ¥72 a;(-mh)’
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and f(Zns1-m,tns1-m) = 2" (tns1-m) = Xiogjaj(-mh)?~". Equation
(2.93) becomes

oo M M
SN (-1 a; | Y Ml -5 Y mPT B [ = O(RFH). (2.94)
§=0 m=0 m=0
Therefore the integrator has order k if and only if
M M
Eiz Y maym-j Y m' ' B,=0 forj=01,...,k (2.95)
m=0 m=0

and Ej.1 # 0. The quantities E; can be written in terms of the characteristic
polynomials: Eg = p(1), Fy = p'(1) — o(1), and so forth.

For an integrator of order k there are k + 1 constraints, Fy = Fy = -+ =
Ey = 0. In an M-step method there are are 2(M + 1) coefficients a,, and
Bm, but we have set ap = —1, and 5y = 0 if the method is explicit. Thus there
are 2M or 2M +1 unknowns, depending on whether the integrator is explicit
or implicit. Since linear equations usually have a solution if the number
of equations is less than or equal to the number of unknowns, we might
hope to choose the coefficients such that the integrator has order 2M — 1
(explicit) or 2M (implicit). This can be done, but such integrators have little
or no practical value because of the Dahlquist barrier, a theorem showing
that the maximum order of a stable M -step method is M if the method is
explicit, M +1 if the method is implicit and M is odd, or M +2 if the method
is implicit and M is even.

Given the limitations on order imposed by the Dahlquist barrier, it is
simpler to construct integrators by choosing the coefficients «,,, and then
solving for the (,,. The «a,, can be arbitrary except that (i) oy = —1 by
assumption, and (ii) the condition Fy = 0 requires Z%:o a,, = 0. Once the
o, are fixed, we have k constraints on the 3, from E; = --- = E; = 0.
For explicit methods By = 0, so we have M variables (,, to satisfy these
constraints. Typically this can be done if M > k, so the maximum order of
an M -step method of this kind is k£ = M, as high as can be expected given
the Dahlquist barrier.

The simplest polynomial consistent with the constraints g = —1 and
Y, =0has oy = 1and ag = a3 = - = aypy = 0. The corresponding
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characteristic polynomial is p(x) = = — 1. This choice yields the explicit
Adams-Bashforth methods; for orders k£ = 1, 2, 3, 4 these are

Zp+1 =Zp t hfrm
Zn+1 = Zp + %h(?’fn - fn—1)7
Zne1 = 2 + 150(238, - 16£,1 + 58, 5),
Zoi1 = Zn + 55 h(558, — 59F, -1 + 376,20 — 9f,_3). (2.96)
Here f,, = f(2,,t,). The first line is just the Euler method.
For implicit methods we have M + 1 variables 3,, and k equations,
so the maximum order is k = M + 1, again consistent with the Dahlquist

barrier. The same choice of characteristic polynomial p(z) = = — 1 yields
the implicit Adams—Moulton methods: for orders 1, 2, 3,4 these are

Zn41 = Zp + hfn+17
1
Zn+1 =Zn t §h(fn+1 + fn)a
1
Zn+1 =Zn t Eh(5f7z+1 +8f, - fn—l);

Zye1 =2 + 55 h(9F0 11 + 196, — 56,1 +£,0). (2.97)

The first line is the implicit Euler method (2.18) and the second is the trape-
zoidal rule (2.75).

In predictor-corrector methods an explicit integrator is used to esti-
mate z,1, which then provides the starting estimate of f,, 1 for an implicit
integrator. The Adams—Bashforth and Adams—Moulton pair produce a suc-
cessful predictor-corrector method for many problems.

The behavior of multistep methods can be explored further by following
a test particle in a harmonic potential, along the lines of the discussion in
§2.1.2. Substituting z = f(z) = Az (eq. 2.10) into equation (2.90), we have

M M
Z OmZn+1-m t h Z ﬁ7nAzn+1—7n = 07 (298)
m=0 m=0

where z = (r,v) and

A

1l
—
=]

T (I) ] . (2.99)
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The solution of this difference equation is a linear combination of sequences
of the form z,, = k" a. Substituting this expression in equation (2.98), we
have

p(k Ha+ho(k)Aa=0. (2.100)

Thus a must be an eigenvector of A. The eigenvalues of A are )\, = +iw so
the solutions of equation (2.100) are x. where

p(r1Y) £iwho (k') = 0. (2.101)

In general there are multiple solutions of each of these equations. Assuming
that the coefficients «,,, and (3,, are real, the solutions of equations (2.101)
are related by x_ = k7 where the asterisk denotes a complex conjugate.

We now use these results to provide a heuristic justification of the def-
inition (2.93) of the order of a multistep method. The general solution of
the difference equation (2.98) at timestep n is a sum of terms of the form
c.Kkla, where c. are constants, a, are eigenvectors of A, and k. is a solu-
tion of (2.101). The exact solution at ¢1 = ¢t + h with initial condition c a,
at tq is ¢, exp(+iwh)a,. Thus the one-step error between to and ¢1 is a sum
of terms of the form c.e a, where e, = K, — exp(xiwh). Eliminating .
from equation (2.101) in favor of €., we have

pl (e + e )] 2 iwho[ (e +e,.)7] = 0; (2.102)
and keeping only terms up to first order in the small quantity €.,
p(e;i”h)iiwha(e*i”h)—eie;mh [p'(e;iwh)ﬂ:iwhal(eﬁwh)] =0. (2.103)

The sum of the first two terms must be O(h**1) according to the definition
(2.93). Since the quantity in square brackets in (2.103) is of order unity, €.
must be O(h**1), so the one-step error is also O(h**1), consistent with the
definition of order for one-step methods in §2.1.1.

In the limit 4 — 0, the solutions of (2.101) reduce to the roots of p(x~1);
one of these is x = 1 because of the constraint £y = 0. However, since p(x)
is a polynomial of order < M, there are up to M — 1 additional (“parasitic’)
roots, and the behavior of the integrator depends on these as well. In partic-
ular, if any of these roots have |«| > 1 then small perturbations (e.g., due to
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roundoff error) grow exponentially, no matter how small the timestep may
be. If there are roots with |x| = 1 with multiplicity greater than 1 (say, p)
then small perturbations grow as n?~!. Whether the growth is exponential
or polynomial, the behavior of the numerical trajectory is eventually dom-
inated by these parasitic roots. Therefore any useful multistep integrator
must be zero-stable, by which we mean that there are no roots of p(x~!)
with |x| > 1 and all roots with |x| = 1 have multiplicity 1. For example, the
Adams—Bashforth and Adams—Moulton methods have p(x) = z — 1, so the
only root is « = 1 and the methods are zero-stable. Zero-stability is a neces-
sary condition for a practical multistep integrator but it is not sufficient. For
example, the Euler method is zero-stable but performs badly, as we saw in
§2.1.2.

2.4.2 Multistep methods for Newtonian differential equations
The Newtonian form (2.3) of the equation of motion is

d?r

o =F0), (2.104)

where F = -V ® is the force per unit mass. A linear multistep method for
this equation can be written (cf. eq. 2.90)

M M
Z Omlpyl-m t+ h2 Z ﬁmF(rnJrl—m; tn+1—m) = 07 (2105)

m=0 m=0

and if we set ag = -1,

M M
Tpy1 = Z amTpti-m + h2 Z ﬁmF(rn+1—m7tn+1—m)- (2106)
m=1 m=0

The method is explicit if Sy = 0 and otherwise implicit.
We define the method to have order k if

M M X
S mrniyom B Y B F (T s tnaiom) = O(R**?), (2.107)

m=0 m=0
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where 1}, (t) is an exact solution of the differential equation (2.104). Note
the exponent k + 2 on the right side compared to k£ + 1 on the right side of
the analogous definition in equation (2.93);'° the reasons for this choice are
described after equation (2.113).

We derive the coefficients o, and (,, using the same arguments that
follow equation (2.93). Any solution of the differential equation can be
written as a Taylor series expansion around ¢,,1, r*(t) = Z;ZO a;(t-tps ).
Then r:ﬁ-l—m = Z;C:’O aj(_mh)J and F(rn+1—m7tn+1—m) = .I;*(tn+1—'rn) =
¥320J(j - 1)a;(-mh)’>. Equation (2.107) becomes

oo o M ) M ]
SN (-1 Ra;| Y mlan +5(-1) > m? 2B, | = O(h"?). (2.108)
7=0 m=0 m=0

Therefore the integrator has order k if and only if

M M
Ejz Y mlan+7i(j-1) > m' 2B, =0 forj=0,1,...,k+1

m=0 m=0
(2.109)
and Ey.o # 0. The quantities Ej can be written in terms of the characteristic
polynomials: Eq = p(1), E1 = p’(1), and so forth.

Once again the simplest way to construct integrators is to choose the co-
efficients av,, and then solve equations (2.109) for the 5,,,. We have assumed
that oy = —1; in addition, the constraints £ = E; = 0 imply that ¥ av,,, = 0
and Y. ma,, = 0, independent of the choice of 3,,. The simplest choice
consistent with these constraints is a1 = 2, ag = -1, with g = --- = aipy = 0.
The corresponding characteristic polynomial is p(z) = —(z — 1)2. This pro-
cess yields the explicit Stormer multistep methods of orders k = 2, 3,4, 5:

Tp41 =20, —Tpo1 + h2Fn7
Tpi1 =20, —Tpoy + 5517 (13F, - 2F, 1 + F,,0), (2.110)
Tyt = 20, — Tyt + 3507 (14F, - 5F, 1 +4F, 5 - F,,_3),

Tp4l =2, —Tpoy

10 Not all authors subscribe to the same definition: some use an exponent k + 1 in both (2.93)
and (2.107).
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+ 5550 (299F,, — 176F,,_; + 194F,,_5 — 96F,,_3 + 19F,,_4).

Here F,, = F(r,,t,). The first of these is closely related to leapfrog (see
Box 2.5).
The first two implicit Cowell methods have orders 4 and 5:

it =28 = Tpog + 150 (Frpr + 10F, + Fyy), (2.111)
Tni1 =20, — Tpo1 + o h?(19F 00 + 204F,, + 14F,, 1 +4F, 5 - F,,_3).

Box 2.5: Leapfrog and the Stormer method
The simplest Stormer multistep method, from the first line of equation (2.110), is
Tn+l =20p —Tpo1 + h2Fp, (@)

where r, is the position at step n, F, is the force at ry,, and h is the timestep.
The average velocities between steps n — 1 and n and between steps n and n + 1
are

'p —rp-1 Tntl —In
Vn-1/2= T Vesl2 = T (b)
The positions at timesteps n + % can be estimated as
_I'p+Tp-1 _T'ny1+0In
Tno1/2= =5 Tnyy2=— o (©)

Now solve equations (b) for r,,—1 and r,4+1 and eliminate these variables from
equations (a) and (c). We find

1
In =Ty 12+ 5hvy_1)2,
Vn+1/2 = Vp-1/2 T hFn,
_ 1
Tni1j2 =Tn + 5hve 0. (@

Apart from minor differences in notation, this is the drift-kick-drift leapfrog inte-
grator of equation (2.29).

The behavior of these methods can be explored by following a test par-
ticle orbiting in a harmonic potential with force law F(r) = —w?r. Substi-
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tuting this force law into equation (2.105), we have

M
> (atm = BB Tpi1my = 0. 2.112)

m=0

The solution of this difference equation is a linear combination of sequences
of the form r,, = k™a. Substituting this expression in equation (2.112), we
have

p(k™h) —w?h?o (k™) = 0. (2.113)

We now provide a heuristic justification for the definition (2.107) of the
order of these integrators. Following arguments similar to those leading to
equation (2.103), we find that the error between timesteps n and n + 1 is of
order €, where to first order in €,

p(eﬁwh) _ w2h20(e¥iwh) _ 6:ke¥2io.)h [pl(e:Fiwh) _ w2h20_/(e¥iwh)] =0.
(2.114)
From equation (2.107) the sum of the first two terms is O(h**?). The quan-
tity in square brackets is equal to p’(1) ¥ iwhp’ (1) + O(h?) which equals
Fiwhp' (1) + O(h?) because of the condition E; = p’(1) = 0. Therefore the
quantity in square brackets is O(h), which implies that the one-step error is
O(h**1), consistent with the definition of order for one-step methods.

As we discussed after equation (2.103), a practical integrator must be
zero-stable, that is, all roots of p(m‘l) must lie inside or on the unit circle
in the complex plane, and roots on the unit circle must be simple.!!

A minor disadvantage of all multistep methods is that they require a
special procedure, usually employing some other integrator, to generate the
M -1 initial positions needed to get the multistep integrator started. A
more serious disadvantage is that changing the timestep is much more com-
plicated than in one-step methods. For this reason, multistep integrators are
mostly used for long orbit integrations in planetary systems like the solar
system, in which all of the planets are on well separated, nearly circular and

' With one exception: the conditions Eog = E1 = 0 are equivalent to p(1) = p’(1) = 0,
so there is always a double root at x = 1. Because of the double root the effect of a
small perturbation grows as n, corresponding physically to a small perturbation in the initial
velocity.
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nearly coplanar orbits. Almost all long solar-system integrations up to the
1990s (e.g., Cohen et al. 1973) used a Stormer method with M = 13 steps
and order k = 13, having coefficients defined by the characteristic polyno-
mials p(z) = —(x - 1)? and'?

o(x) = (4621155471 343213232841 914 85622 +47 013 743 726 958>
~114321700 672 6002 +202 271 967 611 8652° — 266 609 549 584 6565
+264429 021 895 33227 —197 106 808 276 65625 +108 982 933 333 425"
-43427592828 04020 +11 807 143978 638z —1962 777 574 77622
+150653 570 0232") /2615 348 736 000. (2.115)

Polynomials of high degree such as this should be always be evaluated using
a method that minimizes roundoff error, as described in §2.7.2.

Stormer and Cowell integrators are neither reversible nor symplectic.
Therefore test-particle orbits in a fixed potential are subject to energy drift.
However, with a high-order multistep method and a suitable timestep the
energy drift can be negligible for a well behaved planetary system (Grazier
et al. 2005).

2.4.3 Geometric multistep methods

The concept of symplectic integration (§2.2.2) is difficult to apply to multi-
step integrators because they map multiple times in the present and past to
a single future time. In contrast, the condition for reversibility (§2.2.1) is
easy to state: the coefficients o, and f3,,, in equation (2.101) must satisfy

041\4_j=()éj7 61\4_]':51', jZO,L...,M. (2116)

A multistep method satisfying this condition is said to be symmetric'?
(Lambert & Watson 1976). It is straightforward to show that if the method is

12 These coefficients are straightforward to derive by solving the linear system of equations
(2.109) using computer algebra. Tables of coefficients are given by Maury & Segal (1969).

13 Here “symmetric” refers to the symmetry of the coefficients, but the usage is consistent with
our earlier definition of a symmetric integrator in equation (2.43).
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symmetric and « is a root of equation (2.101) then so is 1/k; thus if there is
any root inside the unit circle there must also be one outside. If the method
is zero-stable then none of the roots of p(x~1) is outside the unit circle, so
they must all lie on the circle.

Since they are reversible, all symmetric methods have even order (see
discussion surrounding eq. 2.44). Of the Stérmer methods shown in equa-
tions (2.110), only the first is symmetric and therefore reversible; similarly,
only the first of the Cowell methods in (2.111) is symmetric.

As we have shown, when h = 0 all of the solutions x of equation (2.101)
for a zero-stable symmetric method lie on the unit circle. As h increases
from zero, there comes a point h, the termination of the interval of period-
icity, at which one pair of solutions moves off the unit circle, one inside and
one outside. For example, the interval of periodicity for the k£ = 2 Stormer
method on the first line of equation (2.110) terminates at iy = 2/w. In prac-
tice, a reliable integration of a Kepler orbit requires a timestep substantially
smaller than h( because any small eccentricity adds higher frequencies that
lead to instability.

High-order symmetric multistep methods exhibit a variety of resonances
and instabilities—narrow ranges of timestep in which the errors are much
larger than normal (Quinlan 1999). These appear only when integrating
nonlinear systems and are unrelated to the instability that arises at the ter-
mination of the interval of periodicity.

To construct high-order symmetric multistep methods we must use a
characteristic polynomial of higher degree than the simple p(z) = —(z —
1)? used in the Stormer and Cowell methods. For a method of order k& we
must satisfy equations (2.109) and (2.116), but these conditions still leave
considerable freedom, so the design of good multistep methods is something
of an art. In practice, a reasonable goal is to seek an integrator of a given
order with a large interval of periodicity and weak resonances (Quinlan &
Tremaine 1990; Quinlan 1999; Fukushima 1999).
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2.5 Operator splitting

In many systems, the right side of the equation of motion (2.1) can be de-
composed into a sum of terms arising from different physical effects; thus

dz

% =f(z,t) =fa(z,t) +fp(z,t) + - (2.117)
For example, the motion of a test particle with phase-space coordinates z =
(r,v) in a gravitational potential ®(r,¢) is governed by equation (2.117)
with f(z,t) = [v,-V®(r,t)], so we may choose

fa(z,t) = (v,0), fp(z,t)=-[0,VvP(r,1)]. (2.118)

A second example is motion in a multi-planet system, where the accelera-
tion of a planet is the sum of the accelerations from the central star and the
other planets.

Usually the equation of motion resulting from a single term in this sum
[z =fA(z,t), 2z = f5(z,1), and so forth] is simpler than the original equation
of motion, and may even be analytically soluble. The concept of operator
splitting (Glowinski et al. 2016) is that the full equation of motion (2.117)
can be solved numerically by advancing the trajectory for a short time under
the influence of f4 (z, t), then under the influence of f5(z, t), and so on until
all of the terms in the sum have contributed, and then repeating the process.

The most important applications of this approach involve splitting into
two components, f(z,t) = f4(z,t) + f5(z,t), and we restrict ourselves to
this case from now on. To simplify the presentation we also restrict our-
selves to autonomous systems in which f(z) is independent of time, since
non-autonomous systems can always be converted to this form as described
in Box 2.1.

We shall use the operator notation of §2.2.1, in which the trajectory of
the system in phase space is

z(t+h) = Gpz(t). (2.119)

The propagator Gy, satisfies dGj,/dh = F, where F is the nonlinear operator
defined by Fz = f(z). Similarly, G4 satisfies dG4 5 /dh = F4, where
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Faz = f4(z), with analogous definitions for Gp 5 and Fp. For example,
the propagators for the splitting (2.118) are

Gan(r,v)=(r+hv,v), Gpgp(r,v)=(r,v-hvo). (2.120)

These are simply the drift and kick operators Dy, and K;, from equations
(2.24) and (2.25).

Let I';, be the propagator corresponding to an integrator with timestep
h, s0 z,+1 = M, z,. The integrator defined by Lie-Trotter splitting is (as
usual, operators are applied from right to left)

rh:GB,hGA,h or GA,hGB,h~ (2121)

For the operators (2.120) these are K;, Dy, and D, K}, the first-order drift-
kick and kick-drift modified Euler integrators of equations (2.27) and (2.28).
In general, Lie-Trotter splitting produces a first-order integrator.

A more accurate integrator is defined by Strang splitting (Strang 1968),

M =Ganp2GB1nGan2 o GpupGanGa e (2.122)

For the operators (2.120) these are drift-kick-drift leapfrog Dy, /oKDy, /2
(eq. 2.30) and kick-drift-kick leapfrog K;, /oD K}, /2 (eq. 2.31). Strang split-
ting produces a second-order integrator.

If one or both of the propagators G4 and Gp is not analytic, it can
be evaluated numerically using one of the integration methods described
already in this chapter. Naturally, there is no reason to use an integrator for
G 4 or Gp that is higher order than the splitting scheme.

2.5.1 Operator splitting for Hamiltonian systems

Most of the systems in celestial mechanics are Hamiltonian, and Hamil-
tonian dynamics provides a powerful tool for analyzing operator-splitting
methods.
We consider a Hamiltonian that is the sum of two simpler ones, H =
H 4 + Hp. In Hamiltonian systems the propagator Gy, (eq. 2.119) is given
by equation (D.39),
G, =exp(hlLy) (2.123)
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where H(z) is the Hamiltonian and the Lie operator Ly f = {f, H} is the
Poisson bracket of the Hamiltonian and any function f(z).

Box 2.6: The Baker—-Campbell-Hausdorff formula

This states that the product of the exponentials of operators X and Y is given by
exp(eX) exp(eY) = exp(eZ), (a)
where
Z=X+Y+3e[X, Y]+ 5 (X [X Y]] +[Y,[Y,X]])

- LEYLIX X, Y]] + O(eh). (b)

Here [X, Y] = XY — YX is the commutator of X and Y, and € <« 1.

The series in equation (b) is not necessarily convergent. It should be regarded
as an asymptotic series, that is, if the series is truncated at order ¢, the error will
be of order €”*! as € — 0.

A related formula is

exp(eX) exp(eY) exp(eX) = exp(eZ), ©

where
Z=2X+Y+ 1 ([Y,[Y,X]]- [X,[X,Y]]) + O(e"). 6))
The Baker—Campbell-Hausdorff formula requires that the operators have
suitable definitions of addition (X + Y), multiplication (XY) and multiplication
by a complex number A (AX). Addition and multiplication of operators are both
associative [(X+Y)+Z =X+ (Y +2Z); X(YZ) = (XY)Z]. Moreover addition
commutes (X +Y =Y + X), although multiplication need not do so (if it did, all
commutators would be zero). These conditions are all satisfied by the Lie operator
Ly (eq. D.33).

Using this result, the first of the integrators (2.122) is
Sh=exp(3hlp,)exp(hlp,)exp(3hly,); (2.124)

here we have introduced the symbol S;, as a reminder that the integrator
is based on Strang splitting. The integrator is symplectic since it is the
composition of symplectic propagators (see the discussion near the end of
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Appendix D.5). Moreover it is straightforward to show that if the dynamical
systems governed by the Hamiltonians H 4 and H p are reversible (eq. 2.38),
then the integrator Sy, is also reversible.

Using the Baker—Campbell-Hausdorff formula (eq. d of Box 2.6), equa-
tion (2.124) can be written as Sy, = exp(hZ) where

Z:LHA+LHB (2]25)
+ ih2(2[LHB’ [LHav LHA]] - [LHA’ [LHA7 LHB]]) + O(h4)

Equation (D.36) implies that any commutator such as [L,, [Ls, [Lc,--]]] is
equal to L, where g = {{{--,¢},b},a}. Moreover L, + Ly + Lc = Lotpic
because the Poisson bracket is linear. Therefore we can write Z = L g where
the numerical Hamiltonian is

Hyum E-H'A"'-E[B""]:-[err(h); (2126)
and the error Hamiltonian is

Hew(h) = 0% (2{{Ha, Hp}, Hp} - {{Hp,Ha},Ha}) + O(h").
(2.127)
In words, we have shown that the integrator (2.124) follows exactly the
trajectory of a particle in a new Hamiltonian that differs from the original
one by the error Hamiltonian, which is smaller that the original by O(h?).
In most numerical analysis of Hamiltonian systems, we think of an inte-
grator as yielding an approximate trajectory in the exact Hamiltonian. This
result illuminates a quite different point of view: the integrator yields an
exact trajectory in a Hamiltonian that differs from the exact one by an error
Hamiltonian H,,,. Integrators of higher order correspond to error Hamilto-
nians of higher order, and a method of order k has an error Hamiltonian that
is O(h*). One advantage of this viewpoint is that errors in the trajectory can
be analyzed using Hamiltonian perturbation theory, which is simpler and
more powerful than analyzing the errors in numerical integrators directly
(of course this tool is only available if the integrator is symplectic, which is
one of the reasons for the popularity of integrators of this kind). Ironically,
numerical integration became the central tool in celestial mechanics because
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of the limitations of perturbation theory, yet perturbation theory turns out to
be the best way to analyze the errors in numerical integrations.

As described in Box 2.6, series such as (2.127) are asymptotic rather
than convergent; in practice this means that they describe the behavior of
the integrator only when the timestep h is sufficiently small. To illustrate
this limitation, consider a Hamiltonian H 4 + Hp that is autonomous and
has one degree of freedom (i.e., is time-independent with two phase-space
dimensions). Such Hamiltonians are always integrable (Appendix D.7) and
therefore cannot exhibit chaos. Equation (2.127) implies that the numeri-
cal Hamiltonian H,,, is also autonomous with one degree of freedom, and
therefore should not exhibit chaos either; however, simple symplectic inte-
grators for autonomous Hamiltonians with one degree of freedom do exhibit
chaos when the timestep is large enough (see Box 2.3). The resolution of
this apparent paradox lies in the lack of convergence of the series for the
error Hamiltonian.

An alternative approach is to express the numerical Hamiltonian using
the periodic delta function, as in equation (2.52). This approach avoids
concerns about convergence but yields a time-dependent numerical Hamil-
tonian rather than an autonomous one.

2.5.2 Composition methods

Operator splitting can be generalized to construct symplectic and reversible
integrators of arbitrarily high order. Consider the integrator

®;, =S,4S1San, (2.128)

where S is given by equation (2.124). The integrator is symplectic since it
is the composition of operators that are individually symplectic (see the dis-
cussion near the end of Appendix D.5). Moreover if the dynamical systems
governed by H 4 and H g are reversible, then Sy, is reversible and so ®, is
also reversible.

Equation (2.125) implies that

S, = exp[hZ; + h3Z3 + O(R%)], (2.129)
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where Z; =Ly, + Lyg,. Then

®), = exp[ahZ; + a’h*Zs + O(h°) ] exp [bhZy + B*h*Z5 + O(R°)]
X exp [ah21 +a*h3Zs + O(hS)]
=exp[(2a +b)hZy + (2a° + b*)h’Z3 + O(R°)]; (2.130)

the last equation follows from equation (d) of Box 2.6. The exact propagator
isexp(hly,+m,) = exp(-hLy, — hLpg,) = exp(—hZy) so if we choose
2a +b =1, 2a® + b* = 0, the one-step error will be O(h®) and ®;, will be a
fourth-order integrator. These constraints on a and b require that

21/3

¢ IPEPIE

=1.35121, b= =-1.70241, (2.131)

and this equation together with (2.128) define the Forest—Ruth integrator
(Forest & Ruth 1990; Suzuki 1990; Yoshida 1990). Notice that b < 0; thus
by taking one Strang step forward, one back and a third forward we have
promoted the second-order Strang integrator to a fourth-order one.

This procedure can be generalized to construct sequences of Strang
splittings that yield reversible, symplectic integrators of any even order (e.g.,
Yoshida 1993; Hairer et al. 2006; Blanes & Casas 2016). In general these
have one or more backward timesteps and because of this the errors tend to
be larger than the errors in other (non-symplectic) integrators of the same
order.

2.5.3 Wisdom-Holman integrators

So far we have applied operator splitting to follow the motion of a test parti-
cle governed by the Hamiltonian H = %v2 +®(r,t), by splitting the Hamil-
tonian into H4 = %vQ, Hp = ®(r,t) (egs. 2.118 and 2.120). However,
other splits are possible. Suppose that we have a Hamiltonian of the form
%UQ - GM/|r| + ep(r,t), representing a test particle orbiting in a Kepler
potential with an additional perturbing potential that is smaller by O(e).
We can make the split H4 = $v® — GM/[r| and Hp = e¢(x,t). Then the
operator G 4 j, corresponds to advancing the particle on a Kepler orbit for a
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time h—most easily done using the Gauss f and g functions—and Gp,j, is
the usual kick operator (2.120) due to the potential e¢(q). The advantage
of this approach is that the integration errors after one timestep are of order
eh? rather than h® as in standard leapfrog (Wisdom & Holman 1991). The
term “mixed-variable” is sometimes used to describe these methods because
the integrator consists of alternating steps that are trivial in orbital elements
and Cartesian coordinates.

The most important use of these methods is for long-term integrations
of planetary systems. In this case, we must split the Hamiltonian for the
N-body problem into a sum of Kepler Hamiltonians of the form % p?/m -
GMm/r, which will be H 4, and an interaction term that depends only on
the coordinates, which will be Hp. Unfortunately this cannot be done in
barycentric coordinates, because of the presence of the kinetic energy of the
host star in the Hamiltonian (the term % pg /mo ineq. 4.3). Astrocentric coor-
dinates can also be used, but in this case the Hamiltonian (4.13) contains an
additional term 3| °; p}|?/myq so the Hamiltonian has to be split three ways
(Duncan et al. 1998; Wisdom 2006). The best choice is Jacobi coordinates,
for which the Hamiltonian is given in equation (4.39). A comparison of the
merits of different coordinate systems is given by Rein & Tamayo (2019),
and Wisdom—Holman schemes of higher order are reviewed by Rein et al.
(2019). Wisdom—Holman integrators are usually the method of choice for
long integrations of planetary systems in which the planets are on nearly
circular and coplanar orbits.

2.6 Regularization

High-eccentricity orbits are difficult for most integrators to handle, because
the acceleration is very large for a small fraction of the orbit. The simplest,
and most extreme, version of this problem arises for a collision orbit, an
orbit with negligible angular momentum. In this case the radius of the orbit
varies as 7(t) o< |t—to[*/® as 7(t) — 0 (see Problem 1.14), and no integrator
can easily manage a non-differentiable trajectory of this kind.

This obstacle can be circumvented by transforming to a coordinate sys-
tem in which the two-body problem has no singularity—a procedure called
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regularization. Standard integrators can then be used to solve the equation
of motion in the regularized coordinates.

2.6.1 Time regularization

The simplest form of regularization is time transformation. We write the
equation of motion for the perturbed two-body problem as

_GM

i;:
r3

r— V®eys, (2.132)

where ®ey((r,t) is the gravitational potential from sources other than the
central mass M. We change to a fictitious time 7 defined by

dt = P dr. (2.133)

If a collision occurs at ¢ = 0, then the radius satisfies () o< [t[*/* so equa-
tion (2.133) implies that | 7| o< [¢|*=2P/% and () o< |7|>/(3-2P) The simplest
choice that makes the radius a smooth function of 7 across the encounter is
p = 1, which yields r(7) o< 72, and henceforth we restrict ourselves to this
value of p.

Denoting derivatives with respect to 7 by primes, we find for p = 1

! 4 " !
f:dlgzi’ f:giizi_@r’_ (2.134)
dtdr r dtdr r 7?2 rt

Substituting these results into the equation of motion, we obtain

!
o (T > ) ' GME 2y, (2.135)
T T
The eccentricity vector e helps us to simplify this equation. From Box
1.1, using the vector identity (B.9b), we have

rx(rxt) r 1 [|r'|2 _(r~r')r,:|_r.

GM r GM| r2

(2.136)
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By using this result to eliminate the term proportional to (r - r’)r’, equation
(2.135) can be written

= P2 - 2GME - GMe - 12 Ve (2.137)
T T

The energy of the orbit is

GM "2 GM
b M, P
r 272 r

+ et (2.138)

so we may eliminate the term proportional to [r/|?, giving (Burdet 1967;
Heggie 1973)
r’ —2Er + GMe = -V (1’ ®ey). (2.139)

This equation of motion must be supplemented by equations for the rates of
change of ¢, E and e with fictitious time T,

t'=r,
0P
E/ _ ext
ot
I 1 / / /
e'= =7 [/(r V®ext) + VOexi (r-1') = 2r(x' - VPexi)].  (2.140)

When the external potential vanishes the energy E and the eccentricity vec-
tor e are constant, and (2.139) is the equation of motion of a harmonic os-
cillator with frequency w = (—2E)1/ 2 that is subject to a constant force
—GMe. Therefore r(7) is a smooth function, even for a collision orbit.
Moreover it is straightforward to show from equations (1.46) and (1.49)
that in this case the fictitious time 7 is related to the eccentric anomaly u by
u = naT + const, where n and a are the mean motion and semimajor axis.
We therefore call this method eccentric-anomaly regularization.

Figure 2.2 shows the fractional energy error that arises in the integration
of an orbit with eccentricity e = 0.999 using eccentric-anomaly regulariza-
tion. Note that regularization by time transformation in this way is different
from integrating in Cartesian coordinates with a variable timestep; in partic-
ular, regularization allows us to integrate collision orbits, while the use of a
variable timestep does not.
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Figure 2.2: Relative energy error |AE/E)| in the integration of a Kepler orbit with
eccentricity e = 0.999 over one periapsis passage. The orbit is integrated from
r o= %a,i‘ <0tor = %a,f > 0. The z-axis is the number of force evaluations
n. All orbits are followed using the Dormand-Prince integrator defined in equations
(2.70)-(2.73); since this is a fifth-order integrator we expect the energy error to scale
as |AE| o< n™°, shown by a short solid line. The curve labeled “no regularization” is
computed in Cartesian coordinates; the curve labeled “eccentric-anomaly” is com-
puted in Cartesian coordinates using eccentric-anomaly regularization; and the curve
labeled “Kustaanheimo—Stiefel” is computed as described in §2.6.2.
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2.6.2 Kustaanheimo-Stiefel regularization

This is an alternative regularization procedure that involves the transforma-
tion of both the coordinates and the time. The Kustaanheimo-Stiefel (KS)
formulas can be derived using the symmetry group of the Kepler problem,
the theory of quaternions and spinors, or several other methods (Stiefel &
Scheifele 1971; Yoshida 1982; Waldvogel 2008; Saha 2009; Mikkola 2020),
but since the derivation has limited relevance to other aspects of celestial
mechanics we only give the results.

We define a 4-vector u = (u1, us,us,us) that is related to the position

r=(z,y,2) by

up = [%(m+r)]1/2 cos 1, Uy = [%(x +1r)]Y2sine,
Us = w, u3 = w7 (2.141)
T+T T+T

where 1) is an arbitrary parameter. The inverse relations are
_ 2 .2 2. 2 _ _
r=ui-us—usz+uy, y=2(ujuz-usug), z=2(ujuztusug). (2.142)
Then
T = 2(u11l1 - UQHQ - U3’ll3 + U4’d4),

:l) = 2(u11l2 + u2'l:t1 - U3’[L4 - ’U,4’I'Lg),

Z = 2(’&11.13 + ’LL3’[I,1 + 'LL2@4 + 'Ll/41-1,2). (2143)

The equations of motion for u(t) are not uniquely determined by the equa-
tions of motion for r(¢). We may therefore impose the additional constraint

'LL4’l.1,1 - Ul’l-l,4 + ’U,QQ-Lg - ’U,3@.L2 =0. (2144)

The inverse relation for time derivatives is then
1

1
Uy = —— (i +ugy +uzd),  Ug = —(~ued +ury +us?),
2r 2r

1
ug = f(—U3.f—U4y+U17;’), ’1164 = f(U4i‘—U3y+u22‘1). (2145)
2r 2r
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These relations imply that the radius r and velocity v are given by

r=luf® =l vud+udvul, 0 = |F? = 4luPaf = 4r(ad v ad +ad +ad).

(2.146)
Now consider a test particle subject to the gravitational field of a point
mass M and an additional potential ®ey(r,t). The Lagrangian is

M
L(r,1,t) = %vg + G = Doyt (1, t). (2.147)
In the new variables
M
L(u,u,t) = 2lul*[a)* + CM_ ey (1, ). (2.148)

uf?
The momentum conjugate to the coordinates u is p,, = OL/00 = 4|u)1,
and the Hamiltonian is

_ P GM
8[ul?>  [uf?

H(u,py)=pu-u-L + Doyt (u, t). (2.149)

We now introduce a transformation to an extended phase space as de-
scribed in Box 2.1. The fictitious time is defined by equation (e) of that
box, with g(u, p,) = r = [uf? (the same transformation used in eccentric-
anomaly regularization). The new coordinates (now 5-vectors) are U =
(Ug,u) where Uy = t and P = (Py, py). The transformed Hamiltonian is
given by equation (b) of Box 2.1,

T(U,P) = Lpul* - GM + [uf*@ex (U) + Polul”. (2.150)

Denoting derivatives with respect to the fictitious time 7 by a prime, the
regularized equations of motion are

0 oP
1 2 2 ext
78?““' Pext), P=-|ul ETRE

We may choose the initial condition for Py such that I'(U,P) = 0 at the
initial time. Since I'(U, P) is independent of the fictitious time 7, it will

u”+1Pu= t' =|u]*. (2.151)
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remain zero everywhere on the trajectory, so Py = —%pi Ju? = @t (U) +
GM /|u*. Comparison with equation (2.149) shows that P = —E, where
E is the energy. Thus we can rewrite the regularized equations of motion as

t':|u|2,
0Pyt
E/_ 2 ex ;
ul*—,
u,,—lEuz—li(|u|2®ext)7
2 4811
GM 2 GM
gt OM g o CM g @isy

> fuf?

When the external potential vanishes, the energy E is conserved and the
equation of motion is that of a harmonic oscillator with frequency w =
(_% E) 1/2.

The equations of motion (2.152) resemble equations (2.139) and (2.140)
resulting from time regularization: both describe the trajectory of a particle
in a harmonic potential, with squared frequency w? proportional to —E.
An important difference is that in eccentric-anomaly regularization the fre-
quency is w = (-2E)Y/2, while in KS regularization w = (-E/2)'/?, a
factor of two smaller. Because the frequency is smaller, an integrator can
follow the motion more accurately at a given timestep.

Figure 2.2 shows the fractional energy error that arises in the integra-
tion of an orbit with eccentricity e = 0.999 using KS regularization. This
approach reduces the energy error by two orders of magnitude compared to
eccentric-anomaly regularization and even more compared to integration in
Cartesian coordinates.

2.7 Roundoff error

Computer arithmetic with real numbers is not exact. The integrators dis-
cussed in this chapter have been designed to minimize the truncation er-
ror that arises when a differential equation is approximated using finite
timesteps, but even the most accurate integrators are subject to roundoff
error arising from the limitations of computer arithmetic. Shrinking the
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timestep h of a k*'-order integrator shrinks the global error over a fixed
time interval as ¥ (§2.1.1) but only so long as the roundoff error is less
than the truncation error; if the timestep is reduced too far the error will
be dominated by roundoff and will grow again, typically as h™" where & is
between 0.5 and 1 (see §2.7.3).

Roundoff error is more difficult to study and to control than truncation
error. Fortunately, with modern computers roundoff is usually unimportant
except in the most demanding orbit integrations. The aim of this section is
to provide a brief introduction to the properties of roundoff error and how it
can be managed.'*

In numerical calculations, reproducibility is almost as important as ac-
curacy. Ideally, when the same code is run with different compilers or dif-
ferent machines it should give the same answer, down to the last bit (Rein &
Tamayo 2017). To accomplish this goal, the computing community has
agreed on a set of conventions for floating-point formats and arithmetic
known as IEEE 754 (The Institute of Electrical and Electronics Engineers
Standard for Floating-Point Arithmetic). Most modern computers are com-
pliant with IEEE 754,'5 and we shall refer our discussion to this standard.

An alternative approach is to use integer arithmetic, which does not suf-
fer from roundoff. Either the phase space can be discretized on a grid of in-
tegers (Rannou 1974; Earn & Tremaine 1992), or selected operations can be
carried out in integer arithmetic (Levesque & Verlet 1993; Rein & Tamayo
2018).

14" A classic description of the early history and basic algorithms of floating-point arithmetic
is Knuth (1981). William Kahan is responsible for many of the advances in understanding,
improving and standardizing floating-point arithmetic, and his many papers on the web are
worth reading to learn about the history and the subtleties of this subject. A comprehensive
reference is Muller et al. (2010).

15 Graphics processing units (GPUs) can be an exception.
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2.7.1 Floating-point numbers

Almost all computers store real numbers in floating-point format: a real
number z is represented as a sequence [ko, k2, . .., kp-1; s, e] where

p-1
rT=5 Z kb7, (2.153)
n=0

Here s = 1 is the sign, p is the precision, e is the exponent, and b is the base.
Almost always b = 2 (binary arithmetic). The set of numbers (ko, ..., kp-1)
is called the significand; each k,, is an integer between 0 and b — 1 (0 or
1 in binary arithmetic). The exponent e is an integer in the range e, <
e < emax- To ensure that the representation of a given number is unique, we
require that the leading digit k is nonzero unless = 0 or € = epiy-

Any number that has the form (2.153) is a representable number. All
integers j with |j| < bP are representable. All representable numbers are
rational numbers but not all rational numbers are representable; for example,
% is not representable in binary arithmetic. Irrational numbers such as 7 or
/2 are never representable.

Numbers that are not representable are rounded to one of the two adja-
cent representable numbers. The best approach, and the default in the IEEE
754 standard, is to round to the nearest, and if the distances are equal round
to the one whose least significant digit is even (round to nearest, ties to
even). We denote the rounded value of a real number x by rnd ().

The most common format for floating-point numbers in IEEE 754 is the
binary64 format. Here the precision p = 53, corresponding to a fractional
difference between adjacent representable numbers of 273 ~ 1x 10715, The
exponent range is from ey, = —1022 to epax = +1023, which allows the
significand, exponent and sign to be stored in 64 bits.

2.7.2 Floating-point arithmetic

When two representable numbers x and y are added, subtracted, multiplied
or divided, the result is often not representable. The designer of the com-
puter’s arithmetic engine must decide what representable number to use to
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approximate the result of each of these operations, along with others such
as square roots.

The most important principle guiding this design is exact rounding,
which states that the result of a function operating on representable numbers
should be the representable number that is closest to the exact result of the
same function.

In mathematical notation, let F'(x1,...,2x) be a function of N real
numbers and let fl [F'(x1, ..., x5 )] be the representable number that results
from evaluating this function in floating-point arithmetic.'® Then rounding
is exact for the function F' if

md [F(21,...,2n5)] =8 [F(21,...,25)] (2.154)

In the IEEE 754 standard, addition, subtraction, multiplication, division and
square roots are rounded exactly (the inclusion of square roots is a blessing
for orbit integration). The current version, IEEE 754-2019, recommends but
does not require exact rounding of exponentials, logarithms, trigonometric
and other common transcendental functions as well.

Exact rounding enables floating-point arithmetic to preserve many of
the properties of exact arithmetic. For example, the binary operations of
addition and multiplication commute: z +y =y +z and z x y = y x x for all
real x and y. These properties are preserved with exact rounding:

fA(z+y)=fl(y+2) and f(zxy)=f(yx=z). (2.155)

for all representable x and y. Many other familiar arithmetic properties are
preserved with exact rounding; for example,

fl(z+0)=ux,
fi(z-y)=fifz+(-y)],
fl(z/x) =1,
16 Note that l is nor a function of F(x1, ...,z ). Mathematically, l is a functional of F' and
x1,...,xN are parameters. Also note that the result of operating with fl on some functions

such as F'(z1,22,x3) = x1 + T2 + x3 is ambiguous because we need to specify the order
in which the additions are performed, e.g., 1 + (x2 + x3) or (z1 + x2) + x3.
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fi(z/1) =,
fl (z +y) = 0 if and only if = = —y,
fl(x xy)=0ifand only if z =0ory =0. (2.156)

On the other hand, the associative [z+ (y+2) = (z+y) +2, (yz) = (zy)z],
and distributive [z(x + y) = zx + zy] properties of normal arithmetic no
longer hold.

The lack of an associative property means that sums of the form Zfil ;
depend on the order in which the summation is done. Worse still, there can
be catastrophic loss of accuracy if there is near-cancellation between two
or more terms in this sum. Exact rounding allows us to fix this problem by
implementing a compensated summation algorithm, which dramatically
reduces the error in the sum. The basic idea is to track an extra variable that
keeps a running total of the roundoff errors. The pseudocode for compen-
sated summation is

s = 0 {This is the running sum}
¢ =0 {This is an estimate of the error in the sum}
fori=1to N do

y = x; — ¢ {cis initially zero}

t=s+y
¢ = (t - s) —y {The brackets ensure that ¢ — s is evaluated first}
s=t

end for

print s {This is the required sum}

A variant of this algorithm allows the roundoff error in an addition to
be eliminated entirely, by a sum-conserving transformation that converts
x and y into two floating-point numbers s and ¢ with exactly the same sum.
The first number s is the rounded sum, while ¢ is the roundoff error. In the
usual case that the base b is 2 (binary arithmetic), if rounding is exact and x
and y are representable then (Dekker 1971; Knuth 1981)

[((z—-s)+y] iflz]>]yl,
[(y-s)+x] iflyl>|z|.
(2.157)

x+y=s+c where s=fl(z+y), c:{ g
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A product-conserving transformation also exists, but requires many more
operations (Dekker 1971).

Many other small changes in the evaluation of algebraic expressions
can reduce roundoff error. For example, the polynomial p(x) = Z;»V:O a; @l
should be evaluated by Horner’s rule,

pb=an

for j=N-1to0do
D =Dpx+aj

end for

print p {Thisis p(x)}

2.7.3 Good and bad roundoff behavior

The equation of motion for a bound test particle in a time-independent po-
tential ®(r) conserves the energy E = %1)2 +®(r). If we follow the motion
numerically the energy will not be conserved, because of both truncation
error and roundoff error. For the current discussion we ignore truncation
error, and assume that the integration is carried out in base b = 2 floating-
point arithmetic with precision p. We can write the energy error accrued in
the timestep from ¢; to t; + h as AE; = 27 f; E where | f;| varies from step
to step but is always of order unity (although for a complicated integrator,
|f7] could be as large as a few hundred).

Since the roundoff error in a given timestep depends on the least sig-
nificant bits of the phase-space coordinates at the start of the timestep, it
is useful to think of each f; as an independent random variable, sampled
from a distribution with a mean f and a standard deviation 0. Now con-
sider the total fractional energy error AE/FE after an integration time 7'
requiring N = T'/h > 1 timesteps. So long as |AE/E| <« 1 we can write
AE/E =277 Zjl\il f;. Since this is the sum of a large number of indepen-
dent random variables, the central-limit theorem implies that AE/E will
have a Gaussian probability distribution with mean and standard deviation
given by

AE _ T 7, AL _opaN1/2 - T

— 7, 2ar - . 2.158
E 2o B orpirz” (2.158)
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The effect of roundoff on the orbital phase is much larger than the effect
on the energy. By Kepler’s law, the mean motion n = (GM /a®)"/? (eq.
1.44) and the semimajor axis a = —3 GM/FE (eq. 1.32) so n o (-E)32.
Therefore if the fractional energy error is AE/FE, the fractional error in
mean motion will be An/n ~ AE/E and the error in orbital phase that
accumulates over time 7' will be Al ~ TAn ~ nTAE/E. Then so long as
|AE/E| « 1, equations (2.158) imply that A¢ ~ nT2f/(2Ph) and op; ~
nT??5/(2Ph?). We replace the mean motion by the orbital period P =
27 /n and add numerical coefficients derived from analytic solutions of the
drift and diffusion equations to obtain (Problem 2.10)

3T - _312Ts2
“oeippt T eppin

This analysis shows that there are two contributions to the roundoff er-
ror in a long integration: drift yielding an energy error that grows as the
integration time 7" and a phase error that grows as 72, and diffusion yield-
ing an energy error that grows as 7'*/2 and a phase error that grows as 7°%/2.
Over long integrations the drift errors are far larger than the diffusion errors
unless f = 0.

As an illustration, suppose we integrate the motion of a planet using
binary64 floating-point arithmetic (p = 53) and a timestep & = 0.01 yr = 3.65
days. Then equations (2.158) and (2.159) yield

(2.159)

AE Z11x10°F T O.Olyr7
E 108yr h
1/2
O'AJ - 1.1 x 107110_ T OOlyr 7
|E| 108yr A
2
-— - T 0.0lyr1lyr
Al =523 —
f(lOS yr) h P’
3/2 1/2
T 0.01 yr) lyr
=0.006 —. 2.160
al C7(108 yr) ( h P (2.160)

This result implies that even after an integration time of only 100 Myr, only
2% of the age of the solar system, drift leads to errors in the planet’s mean
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longitude of many radians, while the diffusion errors are almost 107 times
smaller.

These arguments lead to a crude but useful characterization of roundoff
error in long integrations: bad roundoff exhibits linear growth AE o T
in the errors of conserved quantities such as energy, while good roundoff
exhibits the much slower growth AF o< T/ 2, behavior sometimes referred
to as Brouwer’s law (Newcomb 1899; Brouwer 1937). Achieving good
roundoff requires that the mean energy error per timestep vanishes, that is,
f=0.

Good roundoff behavior is a necessary component of accurate long-term
orbit integrations but requires unusual care in programming. The following
practices help:

* Use only compilers that comply with the IEEE 754 standard for float-
ing-point arithmetic, to ensure that arithmetic operations are exactly
rounded and that the code is portable.

¢ Check that compiler optimization flags do not lead to unexpected be-
havior such as replacing (z+y)+z by 2+ (y+2) or z/y by z x (1/y).
Fused multiply-add replaces fl [fl (z x ) + z] by rnd (2 x y + 2); the
latter is more accurate but portability demands that the same formula
is used on all compilers.

e Use the “round to nearest, ties to even” rounding mode to eliminate
one source of drift in the phase-space positions.

* At each timestep, an integrator increments the phase-space positions
z; by some amount Az; that is proportional to the timestep h. This
addition should be carried out using compensated summation or some
other algorithm that minimizes or eliminates roundoff error in addi-
tion.

» Use extended-precision arithmetic on critical operations if it is avail-
able and not too slow.
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* Avoid using mathematical functions such as sin and cos since these
often depend on the compiler and may yield biased results that lead
to bad roundoff behavior.

* Avoid using any mathematical constants that are not representable.
For example, in the classical Runge—Kutta integrator (2.65) the factor
% will be rounded to a slightly different number, leading to drift in
the phase-space positions. This problem can be evaded by writing all
multiplications of x by a fixed rational number p/q as (x x p)/q rather
than x x (p/q); since the least significant bits of x vary randomly from
step to step, the roundoff error from the multiplication and subsequent
division should lead to diffusion rather than drift. Irrational constants
such as 7 should be avoided in repetitive operations.






Chapter 3

The three-body problem

The three-body problem is to determine the trajectories of three points in-
teracting through their mutual gravity. In contrast to the two-body problem
described in Chapter 1, there is no general analytic solution to the three-
body problem. The three-body problem was originally stated by Newton,
and ever since then has driven much of our understanding of the physics
and mathematics of dynamical systems. In his famous treatise on mechan-
ics the mathematician E. T. Whittaker (1873—-1956) called it “‘the most cele-
brated of all dynamical problems” (Whittaker 1937). Books focused on the
three-body problem include Szebehely (1967), Marchal (1990), Valtonen
& Karttunen (2005) and Musielak & Quarles (2014). See Barrow—Green
(1997) for a historical review.

We label the three bodies by the subscripts 0, 1, 2, so their masses and
trajectories are mg, my, me and ro(t), r1(t), r2(t). In an inertial frame,
the equations of motion are

d?r; r,—r;
=G Y m—, i=0,1,2. (3.1)
d? J-%;_,z s 1P
JF



138 CHAPTER 3. THE THREE-BODY PROBLEM

The total energy is

2
. m;m;
Eor = 2> mylii]* - G Z —L (3.2)
i=0 “0|rz—rj|
7>
The total momentum is
2
Piot = ) mty, (3.3)
i=0
and the total angular momentum is
2
Ltot = Z m;r; X I'7 (34)
i=0

The total energy, momentum, and angular momentum are all conserved, as
can be verified by substituting equation (3.1) into the equations for Fiy,
Ptot, and Ltot. It is often convenient to work in the barycentric frame, the
inertial frame in which the center of mass Y, m;r;/ >, m; is fixed at the
origin (§4.1).

The phase space for the three-body problem has 18 dimensions (6 for the
positions and velocities of each of the three bodies). Using the 10 conserved
quantities (Eiot, Ptot, Ltot, and the position of the center of mass), the
phase space can be reduced to a manifold of 8 dimensions, although this is
still much too large for a comprehensive exploration of the trajectories.

The most important special case is the restricted three-body problem,
in which one of the masses, say mso, is set to zero (i.e., particle 2 is a test
particle). Usually body 1 is then chosen to be the less massive of my and
mi, S0 my < mg. In the restricted problem the massive bodies follow a
Kepler orbit as described in Chapter 1, so we need only study the motion of
ms. In the circular restricted three-body problem, the orbit of the massive
bodies mg and m; is further assumed to be circular.

3.1 The circular restricted three-body problem

In the restricted problem, it makes sense to drop the subscript “2” on the
position and velocity of the test particle. Then the equation of motion for
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the test particle is

d?r . r-ry r-rp 0P
—=fr=-Gmy——= - Gm;—— = —— 3.5
a " m0|r—r0|3 ml\r—r1|3 or’ (3-5)
where
B(r,t) = —— M0 Gmy (3.6)

Ce-ro()] fr-ri ()]
1

The test particle’s energy and angular momentum per unit mass' are

E= 1P+ d(r,t)= L - _Cmo __Gmi
Foro(D]  frori(0)
L=rxi. (3.7)

In general, neither F nor L is constant along a trajectory governed by the
equation of motion (3.5), in contrast to the total energy and angular mo-
mentum Fyo and Ly, which are conserved in a system with three nonzero
masses.

In the circular restricted problem, the two massive bodies are separated
by a fixed distance equal to their semimajor axis a, and orbit at a constant
angular speed 2, whose magnitude is given by Kepler’s law (1.44),

_ G(mo +mq)

0?2 (3.8)

a3
The equation of motion for the test particle is simplest in the rotating frame
in which the massive bodies are stationary. We denote the position in this
frame by x = (24, xp, z.). The origin is chosen at the center of mass with
the positive x.-axis parallel to £2. The massive bodies labeled 0 and 1 are
chosen to lie on the negative and positive x,-axis at x¢ and x1, SO

my mo

Xg=———aX,, X|1=+—aX,. 3.9)
mo + my mo +my

! Since a test particle has zero mass, these are actually the ratio of the energy and angular

momentum to the mass in the limit as the mass approaches zero.
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The equation of motion of the test particle is (eq. D.20)

X —Xp X —X1

- Gm1

— —3 ~20xx-Qx(2xx), (3.10)
|x — o] |x — x|

)"{:—(Grmo

where the velocity x of the test particle in the rotating frame is related to
its velocity in the inertial frame, r, by equation (D.17), which reads in the
current notation

X =1-Qxx. (3.11)

The last term in equation (3.10) is the centrifugal force, which is the
negative gradient of the centrifugal potential ®cent(x) = —%|Q x x|? (eq.
D.21). Then the Jacobi constant is

E; = %‘XF +@(x) + Peent (x) = %|X|2 + Do (x), (3.12)

where the effective potential is the sum of the gravitational and centrifugal
potentials,

Gm() Gm1

Do (x) = %|Q ><x|2

_|X—X0|_|X—X1|_
G G

- 0 10252 4 a2). (3.13)
|x - xo| |x-—x1]

In terms of the effective potential, the equation of motion (3.10) reads
X=-2Qxx-V®P.g; (3.14)

in words, the acceleration of the test particle in the rotating frame is the sum
of the Coriolis acceleration and the gradient of the effective potential.

Using equation (3.11) and the vector identity (B.9a) we can show that
the Jacobi constant is related to the energy and angular momentum per unit
mass in the non-rotating frame (eq. 3.7) by (cf. eq. D.24)

Ey=F-Q-L. (3.15)

Although neither ' nor L are constants of motion, it is straightforward to
show from equation (3.14) that Ey is a constant or integral of motion. The
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existence of this constant is peculiar to the circular, restricted three-body
problem. If either mo # 0 or the eccentricity of the orbit of mg and m; is
nonzero, then no such constant exists.

Since |x|> > 0, a particle with Jacobi constant Ej is restricted to the
region where ®.g(x) < Ej. The surface on which ®.g(x) = Ej is called
the zero-velocity surface and separates regions forbidden to the motion
from those allowed—though of course there is no guarantee that the test
particle will explore all of the allowed region.

The contours of the effective potential in the plane of the orbit of the two
massive bodies are shown in Figure 3.1 for a system with m; /mg = 0.1. If
the initial position and velocity vectors lie in the z = O plane (the orbital
plane of the two massive bodies), they will remain so; this “planar, circu-
lar, restricted three-body problem” is the simplest version of the three-body
problem, yet as we shall see it still yields rich and instructive dynamical
behavior.

If the smaller mass m; < mg and the test particle is not close to the
smaller mass, the Jacobi constant takes on a simplified form called the Tis-
serand parameter (Box 3.1).

3.1.1 The Lagrange points

The first step in exploring the circular restricted three-body problem is to
look for trajectories that are stationary in the rotating frame. These are
located at isolated positions called Lagrange points. Such trajectories must
have zero velocity x and zero acceleration X, so equation (3.14) implies that
V&g = 0, which means that the Lagrange points are located at extrema—
minima, maxima, or saddle points—of the effective potential.

Differentiating equation (3.13) with respect to the three coordinates and
using equation (3.9) gives

d 1 1
0ot _ (V2 -0z, + Gmomia — - ,
0xq mo+my \|x—%o]3 |[x-x
aq)cf‘f

= (V¥ - QY)my,

8.%‘17
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Figure 3.1: Contours of the effective potential (3.13), also known as zero-velocity
curves, for the planar, circular, restricted three-body problem. The Lagrange points
L1,...,L5 are marked by crosses. Shading marks regions in which the effective
potential is greater than the value at the L1 point. The massive bodies, located at the
centers of the black circles, have mass ratio m1/mo = 0.1. The smaller mass is on
the right.
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Box 3.1: The Tisserand parameter

In many planetary systems, the gravitational fields from the host star and one
planet—typically the most massive one—dominate the motion of small bodies
over a large region. For example, the dynamics of asteroids is determined mostly
by the Sun and Jupiter.

Suppose that the star and planet have masses M and m, << M, and the
planet travels on a circular orbit with semimajor axis ap. In most of the vol-
ume of the planetary system the gravitational potential from the planet is small
compared to the potential from the host star, so the Jacobi constant (3.15) can
be written as Ej = Ex — - L + O(mp/M) where Ex is the Kepler en-
ergy (1.19). We have Ex = *%GM/(Z from equation (1.32) and 2 - L =
Q(GMa)?(1 - e2)1/2 cos I from equation (1.28), where e is the eccentricity
and [ is the inclination relative to the orbital plane of the planet. Thus

Ej= —G;—M - Q(GMa)?(1 - e?)? cos I + O(myp/M). (a)
a

Furthermore the planet’s angular speed 2 = (GM/ af))l/ 2 50 the Jacobi constant

can be written
GM

Ey=-
2

T+ O(myp /M), (b)
ap
where the Tisserand parameter is

T

1/2
a—p+2(i) (1—62)1/2COSI. (©
a ap

One use of the Tisserand parameter is to connect fragmentary observations
of small bodies such as asteroids and comets. Since the parameter is conserved
during an encounter with a planet, it can be used to determine whether or not a
newly discovered body is the same as a known one that recently suffered a close
encounter that changed its orbital elements.

In the solar system, the Tisserand parameter is usually defined using Jupiter’s
semimajor axis, ap = 5.203 au. Classes of small bodies in the solar system are
sometimes defined by a range of Tisserand parameters.
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— =V x,, (3.16)

where a is the orbital radius of the binary and

2 Gmo Gml

14

+ - 3.17
PR — G4

is positive-definite. The right side of the last of equations (3.16) is nonzero
whenever x. # 0. Therefore any extrema of ®.¢ must have x. = 0, that
is, they lie in the orbital plane of the two massive bodies. The second of
equations (3.16) implies that at an extremum either 2 = Q2 or a5 = 0. We
examine each of these possibilities in turn.

Triangular Lagrange points Consider first the case z;, # 0. Then the
condition 0®.g/dzy, = 0 requires that 12 = Q2, and 0P.g/0z, = 0 requires
that

1 1

|x —xo[3 - |x - x1|3

=0, (3.18)

which in turn requires that |x — xo| = |x — x1|. Let us call this distance b;
then (3.17) implies that 1% = G(mg + m1)/b3, so the condition 12 = 02
together with (3.8) requires that a = b, which means that the triangle formed
by mg, m1, and the test particle is equilateral, and since x. = O the triangle
must lie in the orbital plane. The positions occupied by the test particle in
this configuration are the two triangular Lagrange points, labeled L4 and
L5 in Figure 3.1. The L4 point leads m; by 60° in the direction of orbital
motion, and L5 trails by the same angle.

Collinear Lagrange points We next look for solutions with x;, = 2. = 0.
In this case we can use the first of equations (3.16) to write the condition
OPer[Ox, =0 as

F(X) = |3(X+,u) W(X—l+/i)—X:0, (3.19)

|X
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Figure 3.2: The locations of the three collinear Lagrange points as a function of
w1 =ma1/(mo + m1) are shown as the solid line (eq. 3.19). The circles indicate the
locations of mo and m1, and the narrow shaded band shows the region where the
equilibria would be stable (eq. 3.32). All three collinear points are always unstable.

where X = z,/a and 1 = mq/(mg +mq). The function f(X) is singular at
the locations of the two masses, Xy = - and X; = 1 — p. For X < X,

L-p |4 _
(X+p)?  (X-1+p)?

F(X)=- (3.20)

This function decreases monotonically from f(X) — oo as X — —oo to
f(X) » —oc0 as X - Xy = —pu from below. Therefore it has one and
only one root for X < Xj. Similar arguments show that there is one root
in the range Xy < X < X; and one with X > X;. These are the three
collinear Lagrange points, shown by crosses in Figure 3.1. The usual
(but not universal) conventions are that m; < mg and that L1, L2 and L3
are labeled as shown in Figure 3.1. In general the roots f(X) = 0 that
determine the locations of the collinear Lagrange points must be determined
numerically. These locations are plotted as a function of x in Figure 3.2.

The zero-velocity surfaces close to each body are closed. As we move
away, we eventually encounter the last closed zero-velocity surface around
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each body, which is the one passing through L1 (the effective potential at
L2 or L3 is always larger, although the fractional difference approaches zero
as mp — 0); this surface is called the escape surface or Roche lobe. Any
test particle interior to the escape surface of a massive body, with Jacobi
constant smaller than ®.¢(L1), can never cross the escape surface and thus
is permanently bound to the body. In other words the condition Ey = %|x\2 +
Do (x) > Pegr(L1) is a necessary condition for escape, analogous to the
condition [#* = GM /r > 0 in the two-body problem. On the other hand, a
test particle that crosses the escape surface may escape but whether or not it
does so depends on the details of its orbit. Thus, in contrast to the two-body
problem, there is no simple sufficient condition for escape in the three-body
problem.

The most important special case of the collinear Lagrange points arises
when p <« 1, which occurs, for example, when mg and m; are respec-
tively a star and a planet, or a planet and a satellite. As p — 0, f(X) —
sgn(X)/X? - X except near X = 1. The only root of this function away
from X = 1is at X = -1, corresponding to the Lagrange point L3. The
other roots of f(X), corresponding to the Lagrange points L1 and L2, are
close to my, so we write X = X1 +6X =1-p+9dX. Substituting this result
into equation (3.19), the condition f(X) = 0 can be written

1-u . wsgn(0X)
(1+6X)2 (6X)2

—1+p-6X=0. (3.21)

Expanding the left side as a Taylor series in § X and p, we obtain

wsgn(0X)

X2 30X +O(6X?%, u6X) =0, (3.22)

and dropping the higher order terms,

0X] = (1) (3.23)

At this order of accuracy we can set p = mq/mg. We conclude that when
my << my, the collinear Lagrange points L1 and L2 are separated from the

2 The function sgn(X) is +1 if X > 0 and -1 if X < 0.
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mass my by the Hill radius,

1/3
rig = a(ﬂ) : (3.24)
3m0

named after the American mathematician and astronomer George W. Hill
(1838-1914).

The sphere centered on m; with radius equal to the Hill radius is some-
times called the sphere of influence.’

3.1.2 Stability of the Lagrange points

A casual observer might conclude that the Lagrange points are all unsta-
ble equilibria, because they lie at maxima or saddle points of the effective
potential ®.g, so a particle at rest at the equilibrium can always slide down-
hill. This conclusion is wrong, because the Coriolis force can stabilize the
motion.

Let x1, be the location of one of the Lagrange points. To determine
its stability to small perturbations we substitute x = xp, + Ax = xp, +
(Az,, Axy, Az,.) in the equation of motion (3.14) and expand to first order
in |Ax|. Since €2 is parallel to the positive x.-axis, we have

A(i’a = QQAl'b - (I)aana - (I)abAlL'b - @achc,

3 Sometimes the radius of the sphere of influence is defined to be s = a(m1/ mo)g/ 5 based
on the following argument. Consider a test particle a distance r from mj, which is much
less massive than the central body mg. The acceleration of the test particle due to m1
is Gmq/r? and the acceleration due to mg is approximately Gmg/a?, where a is the
semimajor axis of the mo-m1 orbit. The ratio of these accelerations, which measures the
relative strength of the perturbation from my, is go ~ mia?/(mor?). Now switch to
the non-inertial frame centered on my. The acceleration due to m; is again Gmy /r2.
The dominant perturbation is the acceleration due to the quadrupole potential from mg
(eq. 3.71), Gmgor/ a®. The ratio of these accelerations, which measures the strength of
the perturbation from mo, is g1 ~ mor3/(m1a®). The sphere of influence is defined
by go = g1 which implies 7 ~ a(my/mg)?/® = re. Inside the sphere of influence it is
more accurate to consider the trajectory as a Kepler orbit around m that is perturbed by
mo, while outside it is more accurate to treat the trajectory as a Kepler orbit around mg
that is perturbed by m1. Which of the two definitions of the sphere of influence is more
appropriate depends on the dynamical context.
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Aib = —QQAJ'TG - q)bana - @bbeb - CI)bCAJZC,
Ao = -0y Ay — Py Axy — PooAe, (3.25)

where ®,, = (0*®cg/022)y, , and so forth. The Lagrange points lie in the
z. = 0 plane and the potential ®.¢ is even in x., S0 P, = Py = Py =
®., = 0. Moreover &, = P, from the properties of partial derivatives.

The solution of equations (3.25) is a sum of terms of the form x =
aexp(\t) where a and ) satisfy the matrix equation

AN +d,, 200+ Dy 0
ANa=0, AN\ =| 200+ By A2+ Dy 0o | 326
0 0 A2+ O,

Solutions other than the trivial solution a = 0 exist only if the determinant
of A vanishes, which requires

(N + @eo)[(A + @aa) (A + D) + 497N - D2, ] = 0. (3.27)

One pair of roots of this equation is A = ii@if. Using the last line of
equations (3.16) (9?®eg/022),.-0 = V2, 30 @, = V¥ where vy, = v(xL);
since 12 is positive-definite, vy, is real. Thus x = aexp(+ivyt), and since
the motion is oscillatory these terms in the solution are stable.

The other solutions of equation (3.27) have

(A2 + @) (A2 + D) +40°0% - 2, =0, (3.28)
and investigating these takes more work. We rewrite this equation as
M4bX2+c=0, where b= ®u,+ Py +407% ¢ = Boq Oy — P2, (3.29)

This is a polynomial containing only even powers of A. Thus if A is a root
then so is —A. A stable solution must have Re A < 0 for all roots, but this
can only be true for both A and -\ if Re A = 0. Therefore stability requires
that z = \? is real and negative or zero for all roots. The variable z satisfies
the quadratic equation z2 + bz + ¢ = 0, which has solutions z = — %b + %( b2 -
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4(:)1/ 2. These are real and negative or zero—implying that the Lagrange
point is stable—if and only if

b2 >4e, b>0, ¢>0. (3.30)

The parameter c is negative if and only if the Lagrange point is a saddle point
of the effective potential. Therefore all saddle points are unstable, whereas
maxima or minima of the potential may be either stable or unstable.

First consider the collinear Lagrange points. From equation (3.13) we
have

Boo =207 — Q% Dy =17 -0, D, =0, (3.31)

where 12 = v?(xy,) is given by equation (3.17) evaluated at the collinear
Lagrange point x1,. Then b = 20% — 2 and ¢ = (2% - 12)(Q? + 21%). The
stability constraints (3.30) then require

SO <uf <2 (3.32)

The narrow regions where these inequalities are satisfied are marked in gray
in Figure 3.2. They do not intersect the locations of the collinear Lagrange
points, shown by a black line, for any value of the mass ratio m; /(mg+m;),
so we conclude that the collinear points are always unstable.
At the triangular Lagrange points,
3/2
Do =302 By, =207, B,y = ¢£MQQ; (3.33)
4 mo +my
in the last equation the minus and plus signs refer to the L4 and L5 points
respectively. Then b = Q2 and ¢ = 2TQ*mqomy/(mo + m1)?. Stability
requires b% > 4c or

momq 1 my
or

11 (23\1/2 _
(mo+mi)? S % et B ()77 =0.0385, (3.34)

2\27

IA

assuming as usual that m; is the smaller mass. We conclude that the L4 and
L5 Lagrange points are stable provided that the mass ratio u = my/(mg +
my ) is sufficiently small. This is the case for all of the planets in the solar
system—even for Jupiter, the most massive planet, ;1 = Mj/(Mg + Mj) =
0.0009539.* For the Earth-Moon system My /(Mg + My) = 0.01215, so

4 Here M; denotes the mass of Jupiter plus its satellites.
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L4 and L5 are stable in this system as well. The triangular points are also
stable for all the satellites of the giant planets.

In most cases of interest m << mg; then at the triangular points b > ¢ ~
210*my /my, and the quadratic equation 22 + bz + ¢ = 0 has solutions

2=XA=-0%+ O(my/mg), z= A2 = —24—792% + O(ml/m0)2. (3.35)
The first solution corresponds to displacements from the Lagrange points
that oscillate as exp(+iQ2t); these are simply the epicyclic oscillations de-
scribed in §1.8.2, which would be present even in the absence of the sec-
ondary mass m1. The second solution describes slow oscillations with the
much lower frequency i%33/ 2Q(my /mo)l/ 2, mainly in the azimuthal di-
rection. Oscillations of this kind, in which the frequency approaches zero as
the strength of the perturbation (in this case m) approaches zero, are called
librations. A more complete description of librations around the triangular
Lagrange points is given in §3.2.

The solar system contains a wide variety of objects at the triangular
points. Thousands of asteroids orbit around the L4 and L5 points of the Sun—
Jupiter system; these are called Trojan asteroids and by association the L4
and L5 points are sometimes called Trojan points in this and other systems.
Although we have only proved that orbits near L4 and L5 are linearly stable
in the circular restricted three-body problem, most of the Jupiter Trojans
appear to orbit stably around the Lagrange points for the lifetime of the
solar system despite perturbations from the other planets, eccentricities as
large as 0.3, and inclinations as large as almost 60° (Problem 3.1).

The triangular Lagrange points also exist in some cases of the general
three-body problem, in which all three masses are nonzero and the orbits
all have the same eccentricity. For some values of the mass ratios and the
eccentricity, motion around the triangular points is stable (Danby 1964a,b).

A handful of asteroids have also been discovered orbiting the triangular
Lagrange points of the Sun—Neptune, Sun—Uranus, and Sun—Mars systems,
and Earth has at least one known asteroid orbiting the L4 point. The absence
of similar asteroids in the Sun—Saturn system is probably because of long-
term instabilities induced by Jupiter. Saturn’s satellites Tethys and Dione
each have two smaller satellites orbiting their triangular Lagrange points.
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The L1 and L2 points of the Sun—Earth system are popular destinations
for spacecraft. Even though orbits near these Lagrange points are unsta-
ble, spacecraft can be kept close to them using occasional small “station-
keeping” thruster burns (see Problem 3.3). Orbits near L1 are useful for ob-
servations of the Earth, since they always view the sunlit hemisphere, and
for observations of the Sun and solar wind. Orbits near L2 are the best sites
for many space observatories since the Sun, Earth and Moon are relatively
close together in the sky, so the spacecraft optics can be shielded by a single
sunshade. A spacecraft placed exactly at L1 or L2 has the undesirable prop-
erty that the Sun is in line with the Earth and the spacecraft and interferes
with radio transmissions. Thus most spacecraft are placed in orbits around
the Lagrange points (Problem 3.4).

The unstable orbits leading from the L1 and L2 points visit much of
the solar system (the interplanetary transport network), so trajectories
starting from these points can reach distant targets with very little additional
fuel if the mission designer is prepared to wait long enough. For example,
NASA'’s ISEE-3/ICE spacecraft visited the L1 and L2 Sun—Earth Lagrange
points and two comets over 8 years.

3.1.3 Surface of section

The simplest autonomous (time-independent) Hamiltonians have one de-
gree of freedom. Understanding the geometry of their trajectories in phase
space is straightforward because the phase space has only two dimensions,
so the trajectories can be shown as curves on a plane surface (e.g., Figures
6.2 or 6.4). The simplest version of the three-body problem is the planar,
circular, restricted three-body problem, which has four phase-space dimen-
sions that can be taken to be the two components of the position and velocity
of the test particle in the orbital plane of the two massive bodies. The conser-
vation of the Jacobi constant (3.12) implies that the trajectory is restricted
to a manifold of 3 dimensions in this 4-dimensional space, but even in 3
dimensions trajectories are difficult to visualize.

The surface of section or Poincaré map is a device invented by the
mathematician Henri Poincaré (1854—1912) that enables us to study dynam-
ical systems such as these. We consider the events when an orbit crosses a
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given curve in the orbital plane; the curve is in principle arbitrary but a
simple choice is the line joining the two massive bodies, that is, the lo-
cus zp = 0. We restrict ourselves to crossings from negative to positive
xp (p > 0). From equation (3.12) the Jacobi constant can be written
Ey =12+ 142 + ®og (24, 2p), so at one of these crossings

iy = [2E) - 2®eg (24,0) - 22]12 (3.36)

For a given value of E an orbit is completely defined by the two coordinates

(24, Zq), since z; = 0 by definition and &}, is given by (3.36). Therefore we

can represent a crossing by a point in the (xz,,%,) plane. Since this point

defines the orbit, it also defines the coordinates of the next crossing (z/,, &/,).

Thus the trajectory has been reduced to a mapping of the (z,, &, ) plane into

itself, the Poincaré map, which we may write as P(z,,%,) = (2!, %}).
Several properties of Poincaré map are worth noting:

 There is a different map for each value of the Jacobi constant Ey; thus
a better notation for the map is Pz, .

* The map does not cover the whole plane; it is only defined in the
region where the argument of the square root in equation (3.36) is
non-negative, or

i <2F5 - 2®.(z4,0). (3.37)

* The map provides no information on orbits that do not cross the line
xp = 0 with 2 > 0, such as orbits that remain close to the triangular
Lagrange points.

» The map is area-preserving, that is, if Pg, is the Jacobian matrix
of Pg, (cf. eq. 2.49), then the Jacobian determinant det(Pg,) = 1.
This result is reminiscent of Liouville’s theorem, which states that
phase-space volume is conserved by a Hamiltonian flow (see discus-
sion following eq. D.47), but Liouville’s theorem relates the volumes
at two successive times whereas the Poincaré map relates the areas
at successive crossings of the line z; = 0, which generally occur at
different times for different trajectories. For proofs see Binney et al.
(1985), Tabor (1989) or Lichtenberg & Lieberman (1992).



3.1. THE CIRCULAR RESTRICTED THREE-BODY PROBLEM 153

* Suppose the trajectory has a second constant or integral of motion in
addition to the Jacobi constant, say g(x,Zp, <q,<p) = const. Then
we can set x; = 0 and eliminate % using (3.36) to obtain a rela-
tion between x, and %, that specifies a curve in the (x4,%,) plane.
Therefore if a trajectory has a second integral, its successive images
PP ..., P" must lie on a curve in the surface of section. Of course,
if the orbit is N-periodic, that is, if PY (24,44) = (24,44), then the
curve degenerates into N distinct points.

Surfaces of section are shown in Figures 3.3 and 3.4 for two values of
the Jacobi constant. In the first figure, F'y = —2 is smaller than the effective
potential at L1, ®.(L1) = —1.7851. In this case the test-particle trajecto-
ries are permanently confined either to the region around my, to the region
around m, or to the region outside the Lagrange points L2 and L3 (cf.
Figure 3.1); the last of these regions is outside the boundary of the plots
here. The dots arrange themselves on well defined closed curves—usually
there is one curve per orbit but occasionally, if one of the orbital frequen-
cies is nearly resonant with the orbital frequency of the mg-m binary, a
single orbit may appear as two or more distinct closed curves. Although the
plot shows only 200 iterations of the Poincaré map, the trajectories would
remain on the curves if we iterated the Poincaré map millions or billions
of times (the justification for this claim comes from the application of the
KAM theorem to autonomous Hamiltonians with 2 degrees of freedom, as
described in Appendix D.8). Thus almost all of the orbits enjoy a second
integral of motion in addition to the Jacobi constant.

In the second figure, 3.4, the Jacobi constant E; = —1.75 is larger than
the effective potential at L1 but smaller than the effective potential at L.2
and L3. There is a single allowed region that encloses both mgy and m;
but particles cannot escape to infinity. The surface of section exhibits some
closed curves but most of the allowed region is filled by points that are
scattered randomly over an area, rather than a curve. In fact almost all of the
area not occupied by curves could be filled by a single orbit if we iterated the
Poincaré map enough times. Similar behavior—*islands” of regular orbits
surrounded by a chaotic “sea”—is seen in many Hamiltonian systems, as
described in Appendix D.8.
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Figure 3.3: Surface of section for the planar, circular, restricted three-body prob-
lem. The mass ratio is m1/mo = 0.1, as in Figure 3.1. The units are chosen such
that G = 1, mo + m1 = 1, a = 1, which implies that the angular speed of the
mo—my binary is Q = [G(mo + m1)/a®]*? = 1. In these units the Jacobi con-
stant is £y = —2. For comparison, the effective potential at the Lagrange points
L1, L2, and L3 is —1.7851, —1.7258, and —1.5453 respectively. The surface of
section is defined by x = 0, 5 > 0 and the plots show x, and %, on the horizon-
tal and vertical axes. The trajectories are excluded from the shaded regions, where
%xf +®es (7p,0) > Fj. Additional allowed regions outside the Lagrange points L.2
and L3 are not shown.
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Figure 3.4: As in Figure 3.3, but for Jacobi constant Ey = -1.75.

A sequence of surfaces of section of this kind, for different values of
the Jacobi constant, provides a complete picture of the behavior of orbits in
the planar, circular, restricted three-body problem. Unfortunately it is not
possible to generalize this approach to Hamiltonian systems with more than
two degrees of freedom.

3.2 Co-orbital dynamics

Motion near the triangular Lagrange points is a special case of the general
problem of co-orbital dynamics, the determination of the behavior of two
or more bodies orbiting a common host with almost the same semimajor
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Table 3.1: Janus and Epimetheus

Janus Epimetheus
mass (1018 kg) 1.897 £ 0.001 0.5263 £ 0.0003
mass/1072 Saturn mass 3.338 £ 0.002 0.9262 + 0.0005
mean radius R ( km) 89.2£0.8 58.2+1.2
eccentricity 0.0068 0.0097
inclination 0.1639° 0.3525°
mean semimajor axis a 151450 km
difference Aa 50km
mean orbital period P 0.694 59 days
libration period Pr, 2.92 x 103 days
minimum separation @iy 5.2°

Inclination is measured relative to Saturn’s equator. Mean semimajor axis is

the mass-weighted average of the semimajor axes of Janus and Epimetheus
(eq. 3.47). Mean orbital period is 27 /7 where 7 is the mass-weighted av-
erage of the mean motions. Mean radius R is determined from V' = %Trﬁs
where V' is the estimated volume. The libration period Py, is determined
from equation (3.52). Data from Nicholson et al. (1992), Spitale et al. (2006),
Jacobson et al. (2008), Thomas et al. (2013), and JPL Solar System Dynam-
ics at https://ssd.jpl.nasa.gov/. For Saturn’s properties see Appendix A.

axes. This subject dates back to Maxwell’s 1856 work on Saturn’s rings’
and was investigated long ago by Brown (1911). The study of co-orbital
dynamics was re-kindled by the Voyager flybys of Saturn in 1980 and 1981,
which provided close-up observations of Janus and Epimetheus, two co-
orbital satellites of Saturn (Table 3.1).

We examine a three-body system consisting of a host mass M and two

3> Maxwell examined the equilibria and stability of N small satellites with identical masses
orbiting a massive central body. The satellites are assumed to have the same mean motion
and are equally spaced in azimuth. Maxwell concluded that this configuration of satellites
is stable for all IV if the mass of the satellites is sufficiently small. Unfortunately, Maxwell
assumed that Saturn was fixed and thereby neglected the indirect term of the potential (eq.
4.6). In fact, equally spaced satellites are only stable if NV > 7 (Pendse 1935; Salo & Yoder
1988).
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small satellites with masses m, my << M. In the frame centered on the
host, the gravitational potential experienced by satellite 1 due to satellite 2
is given by equation (4.6),

Gm Gmaory -1
By (1) = 2 2T I

- (3.38)
vy — o [r2f?

The second term is the indirect potential that arises because the frame cen-

tered on the host is not an inertial frame. The potential experienced by

satellite 2 is obtained by exchanging the subscripts 1 and 2.

We assume that the satellite semimajor axes a; and ag are nearly the
same, and that the eccentricities and inclinations are small (we shall show
below that if the eccentricities and inclinations are initially small, they will
remain so unless the two satellites have a close encounter). Since the orbits
are nearly circular and coplanar and the semimajor axes are nearly equal,
we can replace the orbital radii 1 = |r1| and r9 = |r3| in equation (3.38)
by the average semimajor axis of the two satellites, which we denote by a
(see eq. 3.47). We introduce polar coordinates (7, ¢) in the common orbital
plane, oriented such that the satellite orbits are prograde, gf)l, gﬁg > 0. In
these coordinates the gravitational potential on satellite 1 due to satellite 2
becomes

_ Gma Gmy cos(¢1 - ¢2)
Bulrn) = a[2 - 2cos(¢1 - ¢2)]1/2 i a
Gma Gmg cos(¢1 — ¢2)
—_— . 3.39
2] sin L (1 - ¢2)] a (3-39)

In this equation @ should be regarded as a constant.

Since the orbits are nearly circular and coplanar, the primary effect of
the mutual gravity of the two satellites is on their semimajor axes. The
relation between semimajor axis and angular momentum for satellite 1 is
Ly =my( GMa1)1/2 (eq. 1.28). The rate of change of angular momentum
isdLj/dt = Ny, where N1 = —m;9®1/0¢; is the torque due to the potential
@1(7’1, ¢1) Thus

day 20 0%, 27 09, (3.40)
dt — (GM)YV29¢,  (GM)Y2 9y’ '
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Moreover from Kepler’s law (1.44),

dér  [CG(M +m)]"?>  (GM)Y? [1_ 3(ay —a)]; (3.41)

a P BT 2a

the last equation uses the first two terms of a Taylor expansion of a; around
a. Taking the time derivative and substituting equation (3.40) gives

d*¢1  3(GM)Y*day; 3 99y

a2 o2 At @ ody

(3.42)

This simple expression can be compared to the equation of motion for a
rotating rigid body. Consider a body of mass m at the end of a massless rod
of length a that rotates in a plane around the origin, with azimuthal angle
¢. The moment of inertia of the rod and body is I = ma? and its angular
momentum is L = I¢. The torque on the body due to an external potential
® is N = -m 0P /0¢. The resulting angular acceleration is given by L=N
SO

2
M_E__ﬂag:_iaj. (3.43)
dez I I 0¢ a? 9¢

Comparing equations (3.42) and (3.43) we see that co-orbital satellites act
as if they have a negative moment of inertia I = —%m&Q, that is, an attrac-
tive torque tends to repel them. The basis of this counterintuitive behavior,
sometimes called the donkey principle, is simple to describe physically.
Suppose that satellite 2 leads satellite 1 in its orbit (0 < ¢2 — ¢1 < 7). Then
2 exerts a positive torque on 1, which adds angular momentum to its orbit,
which increases its semimajor axis. As its semimajor axis grows, the mean
motion of satellite 1 shrinks and it orbits more slowly, thereby receding from
satellite 2 as if it were being repelled.

Combining the potential (3.39) with the angular acceleration (3.42), we
arrive at the equation of motion for a co-orbital satellite,

A¢1  3Gmy [ scos 5 (d1 - d2)
dt? @ [4sin® (g1 - ¢2)

—sin(¢1 — ¢2) | (3.44)
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Here s = sgn[sin 1 (¢1 - ¢2)]. Similarly, the equation of motion for ¢, is

d2¢2 _ 3Gmy SCOS%(QSl _¢2) - _
a2 @ |4sin? 2(¢1 - 92) “sinor = 02) | G4

‘We now change variables from ¢; and ¢4 to

L Rl 2 A (3.46)

mi+Mmy
The first of these can be thought of as the angular center of mass of the
two bodies and the second is their relative angle or angular separation (cf.
eq. 1.5). Using equations (3.44) and (3.45) we find that d®¢c,,, /dt? = 0,
so the speed of the angular center of mass is constant. Moreover using
this result together with equation (3.41) and its analog for d¢/d¢t, we find
that d(maj + maas)/dt = 0 so the mass-weighted mean semimajor axis is
constant. Therefore it makes sense to define the average semimajor axis as

_  Mmia1 +Mmaaz
a=——/—""-.

(3.47)
mi +Mmy

Using equations (3.44) and (3.45) and the second of equations (3.46),
we find

d2¢  3G(m +m2)( scoszp )
— = — — 1 —sing|. (3.48)
de? a 4sin” 5

We can multiply by d¢/dt and integrate to find

2 2

a”(d 3G(my+m 1

a(de) _ y cos ¢ — ——— | = E.. = constant. (3.49)
2\ dt a 2|sin 5 )|

The corotation constant E. is an integral of motion with the dimensions
of energy per unit mass that is reminiscent of the Jacobi constant (3.12),
but the two are not the same. For example, equation (3.49) is valid for two
arbitrary small masses m1 and mso and contains the average semimajor axis
@ as a constant parameter, while the Jacobi constant is an integral of motion



160 CHAPTER 3. THE THREE-BODY PROBLEM
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Figure 3.5: Trajectories of co-orbital satellites as described by equation (3.51). The
radius is @ + Aa and the azimuth is ¢, where @ is the mean semimajor axis and Aa
and ¢ are the differences in semimajor axes and azimuth of the two satellites. The
mass ratio (my +msz)/M = 0.003. The Lagrange points L3, L4, and L5 are marked
by crosses (cf. Figure 3.1).

only when one of the masses is zero and does not contain the semimajor
axis.

The corotation constant can also be written in terms of the difference
in semimajor axes Aa = a; — ag: from equation (3.41) and its analog for
dgo/dt,

dp dey  dgo  3(GM)Y?
B I VP S A\ 3.50
dt dt dt 2g5/2 . ( )
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so equation (3.49) becomes

, _
9(Aa)®  3(ma + m2)( s 1 ) ake _ constant. (3.51)

8a’ M T 9sinig|)  GM

These contours are plotted in Figure 3.5, in which the radius is @ + Aa and
the azimuth is ¢. Since the orbits are nearly circular, @ + Aa is nearly equal
to the radius so the contours show the actual shape of the orbits. The figure
is reminiscent of Figure 3.1, but here the contours represent orbits rather
than zero-velocity surfaces.

Figure 3.5 shows two types of orbit. Tadpole orbits librate around the
Lagrange points L4 and L5 and never cross the line ¢ = 7, while horseshoe
orbits librate around the collinear Lagrange point L3 and are symmetric
around the line ¢ = m. Tadpole orbits have corotation constant F, < Et
where the critical value F.;; = % G(mq + mg)/a, while horseshoes have
E. > E.;. The largest tadpole orbit has E. = FE..;; and librates between
¢ =mand ¢ = Ppin = 0.41723 = 23.906°, where ¢, is given by the
solution of cos ¢y — %| sin %¢min|‘1 + % =0.

The equilibrium solutions of (3.48) are found by setting d?¢/dt? = 0.
By replacing sin ¢ with 2sin %d) oS %g{) we find that equilibrium requires
either (i) cos ¢ = 0 or (ii) | sin®  ¢| = £. Condition (i) implies ¢ = 7 = 180°
and condition (ii) requires ¢ = :t%ﬂ = +£60°, which correspond respectively
to the collinear Lagrange point L3 and the triangular Lagrange points L4
and L5. L4 and L5 are minima of the corotation constant (3.51).°

Small perturbations to ¢ around the Lagrange points have time depen-
dence exp(\t), where \? = % G(my +msy)/a@ at the collinear Lagrange
point and \? = —% G(my + my)/a® at the triangular points. Thus the
collinear Lagrange point is unstable but the triangular points are stable, ex-
tending the conclusions we already reached in §3.1.1 from the case mg =0
to the case where mq, mo << M.

To determine the period Pr, of the librations, we can integrate equation

© But recall that L4 and L5 are maxima of the effective potential ®.g (3.13).
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(3.49):
-1/2
bmax 6 G(m1 + mg) 1 2Ec
Pr =2 d - = T ol 1
v ¢min (b [ 63 o (b 2| Sin %¢| 62
_ P[M]”Qf%x d¢
m 6(m1 +m2) min (COS¢_ %|sin %(]ﬂ_l + %60)1/2
(3.52)
where _
. ak (3.53)

- G(my +my)’

Here P = 27a/?/(GM)'/? is the Kepler orbital period at semimajor axis @
(eq. 1.43), and ¢y and @ ax are the two azimuths at which the square root
in the denominator of the second of equations (3.52) vanishes. For €. < %
the orbits are tadpoles and both ¢y, and ¢p,ax are between 0 and 7, while
for e, > % the orbits are horseshoes and P ax = 27 — Gmin.

For Janus and Epimetheus the closest approach angle is ¢p,i, = 5.2°
and the libration period is P, = 2.92 x 103d = 8.00yr. This is the only
known pair of satellites in permanent horseshoe orbits, although some quasi-
satellites of Earth spend part of their time on horseshoe orbits as described
in the next subsection. Many small bodies in the solar system are found in
tadpole orbits, such as the Trojan asteroids.

We now investigate the effect of the interactions between co-orbital
satellites on their eccentricities and inclinations. For simplicity we consider
a test particle that co-orbits with a massive satellite on a circular orbit, but
the results apply equally well to satellites of comparable mass. We denote
the mean motion of the massive satellite by ny and describe the test-particle
orbit using the canonical angles (A, —w, -?) and actions (A,A—L,L-L.)
(eq. 1.88). The Hamiltonian for the test particle is the sum of the Kep-
ler Hamiltonian —% ( GM)?/A? and the gravitational potential ® due to the
massive satellite. The latter depends on azimuth only through the difference
in azimuth between the satellite and the test particle, so it must have the
form ®(\ - not, w - not, 2 —not, A\, A— L, L - L,). This form motivates a
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canonical transformation to new angles 8 and new actions J defined by the
generating function

SQ(J, )\, -, —Q,t) = Jl()\ - ’not) - JQ(W - not) - J3(Q - ’not). (354)
Then from equations (D.63),

A=, A-L=J,, L-L,=Js,
91 =\ —not, 92 = nof— w, 93 = not— Q, (355)

and the new Hamiltonian is

H(0,J)=HyJ)+®(0,J) (3.56)
where G
Ho(J):—( 2J2) —no(J1 = J2 = J3). (3.57)
1

The frequencies associated with the unperturbed Hamiltonian Hy(J) are
Q = 0H,/0J = [(GM)?]J} - ng,ng,no] = (n - ng,n0,n9), where n =
(GM /a®)'/? is the mean motion of the test particle. Since |n — ng| < ng
for a co-orbiting particle, the angle ¢, varies slowly while 65 and 65 vary
rapidly. Then according to the averaging principle (Appendix D.9), we
can average ®(0,J) over the fast angles 65 and 03. The averaged Hamil-
tonian is independent of the fast angles so the conjugate actions J» and
Js are integrals of motion. Since J, = (GMa)'?[1 - (1 - €2)'/?] and
Js = (GMa)'?(1 - ¢?)Y2(1 — cos I) and the fractional variation of the
semimajor axis a is small for a co-orbital satellite, we conclude that the
eccentricity e and inclination I are almost constant in co-orbital dynamics.
In particular, if the eccentricities and inclinations of the test particle are ini-
tially small or zero, they will remain so.

As the corotation constant increases above E,;;, the horseshoe orbits
become wider and the minimum separation ¢,,;,, between the satellites be-
comes smaller. Eventually the assumption on which this averaging principle
is based—that the changes in the azimuthal angle ¢ are much slower than
the orbital frequency nop—becomes invalid. We can use equation (3.48)
to estimate when this occurs. When |¢| <« 1 this equation simplifies to
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é = 3G(my +ms)s/(a¢?). The averaging principle fails unless |@| <«
|¢|/P? which requires |@| > [(m1 + mg)/M]/3, equivalent to the state-
ment that the minimum separation of the two satellites must be much larger
than the Hill radius ri = a[(m; + m2)/(3M)]*/? (eq. 3.112). For Janus
and Epimetheus the minimum separation is roughly 90 Hill radii, so the
averaging principle is safe by a large margin.

There is no consensus on how Janus and Epimetheus formed on or
evolved into their current orbits.

3.2.1 Quasi-satellites

We showed in §3.1.1 that the circular restricted three-body problem ad-
mits a necessary condition for escape but has no simple sufficient condition.
Quasi-satellites are an example of this distinction: they orbit a planet sta-
bly at distances much larger than the Hill radius (3.24), outside the escape
surface of their host planet.

This behavior can be interpreted using the epicycle approximation of
§1.8.2. In the simplest case the satellite is a test particle on an eccentric
orbit, and its host planet is on a circular orbit and located close to the guiding
center of the satellite’s epicyclic motion. Even though the test particle is not
bound to the planet, it can orbit around it permanently if the gravitational
attraction from the planet is sufficiently strong to keep the guiding center
bound to it.

Because the motion of the satellite around the epicycle is much faster
than the motion of the guiding center relative to the planet, we can use
the averaging principle again: in effect, we replace the satellite by a rigid,
elliptical wire that has the same size, shape and mass distribution as the
epicycle. Normally, a rigid wire or hoop centered on the planet would be
unstable, because the gravitational potential of the wire has a maximum at
its center.” However, in this case the donkey principle described earlier in
this section suggests that the wire repels the planet instead of attracting it, so

7 This instability was known to Laplace (1799-1825) and was used by Maxwell in 1856 to
argue that Saturn’s rings could not be composed of solid material. Laplace’s argument is
valid if and only if the radius of the ring is much less than the Hill radius (3.24).
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the motion of the guiding center is stable when the planet is at a maximum
of the wire potential.

We now provide a quantitative description of this phenomenon.

L e e e B e e B

|
Wi

Figure 3.6: The quasi-satellite potential W (u) defined in equation (3.61).

Since the planet is on a circular orbit, its polar coordinates can be writ-
ten (ap,1p) with ap = const and 1), increasing uniformly. The location of
the guiding center of the satellite orbit can be written (a, ) where a is the
semimajor axis. The satellite eccentricity is e; we assume for simplicity that
the inclination is zero although the analysis is straightforward to generalize
to nonzero inclination. We then average the gravitational potential due to
the satellite’s mass m over the epicycle orbit. To do this we use Cartesian
coordinates with origin at the guiding center, x-axis pointing radially out-
ward, and y-axis pointing in the direction of the planet’s motion. In these
coordinates the epicyclic motion is given by equations (1.169) and (1.170)
as x = xocosT, y = —2x¢sinT, where T is the epicycle phase and x( = ae.
If |a—ap| < ap and [1p —1);,| < 1, the position of the planet is approximately
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T =ap—a, Yy =ap(1p — ). Then the averaged potential is

Gm (27 dr
P =—— — 3.58
where m is the mass of the planet and
A% = (a+aecosT - ap)? + (apy) — 2aesin T — apihy ). (3.59)

As in the case of co-orbital satellites, the oscillations in azimuth of the guid-
ing center induced by the planet are much larger than the radial oscillations
(this statement is justified below), so we can set a = a;,. Thus

®(ap, ) = GmW(M) (3.60)
ape e
where . ) d
” T
W(u) :_gfo [cos? T + (u - 2sinT)2]H/2’ (3.61)

This integral is straightforward to evaluate numerically and is shown in Fig-
ure 3.6.
If we set A = ) — 1, the analog to equation (3.42) is

d*Ay 3 0P
A2 a2 0AY’

(3.62)

and this can be multiplied by dA/dt and integrated to give the integral of
motion

ap (dmp )2 _3Gm
2\ dt
The analog of equation (3.50) is

dAy  3(GM)'/?

W (Av/e) = E, = constant. (3.63)
ape

Tl 2a15)/2 (a-ap), (3.64)
so equation (3.63) can be rewritten
9(a-ap)® 3m _apE,
W - mW(Aw/e) =GM - constant. (3.65)
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Thus the guiding center of the quasi-satellite orbit undergoes coupled os-
cillations in semimajor axis and azimuth relative to the planet. Since the
ratio of planet mass to stellar mass m/M <« 1, the fractional amplitude
of the oscillations in semimajor axis is much smaller than the amplitude in
azimuth.

Equations (3.63) and (3.65) are the analogs of equations (3.49) and
(3.51) for co-orbital satellites.

If the oscillations of the guiding center are small, |Ay| <« e, we can
expand the potential W (Aq)/e) in a Taylor series around the origin, and
equation (3.62) becomes

dzl _3Gm
dez a§e3

W (0)Ay = -0.300 95%@, (3.66)
ape

corresponding to stable harmonic oscillations of the guiding center around
the planet. This result is valid only for small oscillations; for larger excur-
sions of the guiding center, we must use the full potential from equation
(3.61). Eventually when |A1)| > 2e there can be close encounters or colli-
sions between the planet and the satellite, and the analysis here is no longer
valid. The condition |A| $ 2e requires in turn by equation (3.65) that
la - ap| $ ap(m/M)' 212, Thus if the planet mass is small, the semima-
jor axis of the quasi-satellite must be nearly equal to that of the planet.

A typical quasi-satellite orbit is shown in Figure 3.7. All quasi-satellites
are on retrograde orbits (i.e., clockwise if the planet’s orbit is counterclock-
wise) since the motion around the epicyclic ellipse is retrograde. The prop-
erties of periodic quasi-satellite orbits are described further in §3.4.1.

Several small asteroids currently occupy horseshoe and quasi-satellite
orbits around the Earth, although the estimated lifetimes of these orbits are
far less than the age of the solar system. Most of these undergo multiple
transitions between horseshoe and quasi-satellite orbits. Quasi-satellite or-
bits that are stable for the lifetime of the solar system exist around several
of the outer planets (Wiegert et al. 2000; Shen & Tremaine 2008), but so far
no objects have been found in these orbits.

These dynamical arguments suggest that retrograde satellites can orbit
stably at distances from their host planet much larger than are possible for
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1.1

0.9 ———— ' .

Figure 3.7: A quasi-satellite orbit, as seen in a frame rotating with the planet. The
black circle marks the location of the planet, which travels on a counterclockwise
circular orbit around a host star located at the origin, off the bottom of the plot. The
crosses mark the locations of the Lagrange points L1 and L2. The planet mass is
107 times the mass of its host star. The quasi-satellite orbit is retrograde and has
eccentricity e = 0.1.

prograde satellites. In fact almost all of the dozens of small satellites found
at large distances (3 0.3 Hill radii) from Jupiter and Saturn have retrograde
orbits.

3.3 The hierarchical three-body problem

The co-orbiting systems that we described in the preceding two sections are
interesting but rare. The vast majority of three-body systems in astrophysics
are hierarchical, which means that they consist of two bodies orbiting one
another (the “inner binary”) plus a third at much larger distance that orbits
the center of mass of the inner two (the “outer binary”). Such systems are
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generally stable if the ratio of the semimajor axes of the outer and inner
binary is large enough. Examples include systems consisting of a planet, a
satellite, and the planet’s host star; systems of two planets with very differ-
ent semimajor axes; a planet orbiting a star that belongs to a binary system;
and triple star systems.

In this section we focus on hierarchical systems in which the orbits of
the inner and outer binaries are nearly circular and coplanar. Some of the
behavior of systems with large eccentricities and/or inclinations is described
in §5.4.

Let m, and mo denote the masses of the bodies in the inner binary, with
my the mass of the distant body. Here we focus on the dynamics of the inner
binary, treating the distant body as traveling around the center of mass of
the inner two bodies in a fixed orbit. We work in a reference frame centered
on one of the two bodies in the inner binary, which we take to be body 1.
Then the equation of motion for body 2 has the form ¥y = 9P (ra,t)/0rs,
where (eq. 4.6)°

~G(mi+m2)  Gmy Gmor(t) -ro
] e —ro(t)] ro(®)F

and the positions rs and rg of bodies 2 and 0 are measured relative to body
1.

In a hierarchical system 7 = |r| is much smaller than ro = |ro|, so we
may expand the potential in powers of r/rg. To keep track of the ordering it
is helpful to replace ry by Arg and then expand (3.67) as a power series in
AL

Po(r,t) = (3.67)

G(my+m2) Gmg Gmgr? 3Gmg(r-1o)?
r Y 22373 N 22375

. 3Gmor®(r-rp) ~ 5Gmg(r-1o)?
22478 2M4r]

@2(1‘7 t) = -

+0O(\°).  (3.68)

8 There are notational differences between equations (3.67) and (4.6). Here the positions are
measured relative to body 1, while in §4.1.2 the positions are measured relative to body 0.
The reason for this difference is that in both cases we would like to attach the label “0” to
the most massive body—the Sun in the Earth-Moon-Sun system to be examined in §3.3.1,
and the central star in a multi-planet system.
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Notice that the dipole term proportional to A~2 has vanished (as it does in
the discussion following eq. 1.127).

An alternative approach that leads to the same answer is to rewrite the
term — Gmy|/|r — ro(t)| in (3.67) using the expansion (C.44):

Gmgr - rg
- Gmyg Z s O )l+1 Pi(cosy) + )\277"3”
(3.69)

where P;(cos~) is a Legendre polynomial, + is the angle between r and rg,
and cosy =r - rg/(rro). Using the formulas for the Legendre polynomials
in equations (C.45), it is straightforward to verify that the series in (3.69)
yields (3.68).

The term of order A~! is called the monopole potential; since it is inde-
pendent of r its gradient vanishes, so it exerts no force and can be dropped.
Then equation (3.68) simplifies to

(1) = - G(m1 +ms3)

2 R
By (1) = - G(mq +ms2) . Gntaor ~ 3Gm0§r rg)
’ r 22373 22375
" 3Gm0T2(I‘ . I'()) _ 5Gm0(r . r0)3
20475 22478

+0O(\°).  (3.70)

There are two terms proportional to A~ that represent the quadrupole tidal
potential and two terms proportional to A\=* for the octopole tidal poten-
tial. If we keep only the quadrupole terms and set A = 1, we can rewrite this
result as

(G(m1 + mg) Gmor 3@7’)’10(1‘ I‘o) Gmo
Do(r,t) = - + 3 O( °[75)-
r 2rg 2rp
3.71)
The corresponding equation of motion for body 2 is
d21'2 (9‘1)2(1‘27t)
=- 3.72
dt? 81"2 ( )
G(mi+m Gm, 3Gmy(ra-r Gm
__&( 1 2, - 0yt 0(52 o) OO( 2/,2).

"o
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3.3.1 Lunar theory

The prototypical hierarchical three-body problem is the Earth-Moon—Sun
system, which is hierarchical because the Sun is roughly 400 times more
distant than the Moon. The development of “lunar theories”—analytic ex-
pressions for the trajectory of the Moon, usually based on expansions of the
Hamiltonian representing the dynamical effects of the Sun as power series
in the lunar eccentricity and inclination—was a centerpiece of solar-system
dynamics until the mid-twentieth century (Gutzwiller 1998). Since then,
the lunar orbit has been studied more simply and accurately by numerical
integrations. Nevertheless, the most important features of analytic lunar the-
ories still provide insight into the history of the lunar orbit and the properties
of planetary and satellite orbits in exoplanet systems.

In our notation the Earth, Moon, and Sun are bodies 1, 2, and 0 respec-
tively. The reference frame is centered on the Earth, so from this view-
point both the Moon and Sun orbit the Earth. We work in Cartesian co-
ordinates in which the z-axis is normal to the orbital plane of the solar
orbit around the Earth (the ecliptic). Thus the coordinates of the Sun are
rg = (l‘o, Yo, 0) = T()[COS(f() + w0)7sin(f0 + WO),O], where fo and wq are
the true anomaly and longitude of periapsis of the Sun, and ry is its distance
from Earth. The potential is then given by equation (3.71) as:

_ G(ml + m2)

®y(r,t) = Hx + Hy, where Hg = (3.73)
T
is the Kepler Hamiltonian and
G > 3[wcos i §
H, - mo % _ 3[xcos(fo + o) +2y51n(f0 +wp)] +OUP )
To 27’0 27’0
(3.74)

is the Hamiltonian due to the Sun.

Perturbation theory requires that H, is “small” relative to the Hamil-
tonian Hy that describes the Kepler motion of the Earth-Moon two-body
system. Many of the complications of lunar theory arise because “small”
can have three distinct meanings in this context:
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(i) As described earlier in this section, the solar Hamiltonian H con-
tains quadrupole, octopole, and higher multipole terms, each smaller
than its predecessor by a factor ~ a/ag = 0.002 570, the ratio of the
semimajor axes of the Moon and Sun. In this section we keep only the
quadrupole terms, which corresponds to dropping the terms O(7?/r3)
from the Hamiltonian (3.74).

(ii) The eccentricity and inclination of the lunar orbit relative to the eclip-
tic, e = 0.0549 and I = 5.145°, are both small, as is the eccentricity
of the Sun’s orbit relative to the Earth, eg = 0.0167. Thus the Hamil-
tonian H, is simplified further by expanding it as a power series in e,
1, and e, and truncating the power series at some maximum degree.
In this section we keep terms up to O(e?, e, eeg, I?).

(iii) The Kepler Hamiltonian H is of order G(m; + mz)/a, while the
solar Hamiltonian H, is of order Gmga? /a3, so their ratio Ho / Hy ~
moa®/[(m1+mz)aj]. The mean motion ng of the solar orbit is given
by Kepler’s law, n3a3 = G(mg +my + my); the masses of the Earth
and Moon, m; and ms, are so much smaller than the solar mass m
that we can write Gmg = n3aj. Similarly the mean motion n of
the lunar orbit is given by G(mj + mz) = n?a®. Thus Hy/Hk ~
ng/n?, where ng/n = 0.0748 is the ratio of the sidereal month to
the sidereal year, that is, the ratio of the orbital periods of the Moon
and Sun relative to the fixed stars. Solving Hamilton’s equations to
higher and higher order using perturbation theory yields expressions
for the trajectory involving higher and higher powers of ng/n. In this
section we solve the equations of motion only to first order; that is,
we use the unperturbed Kepler motion of the Moon on the right side
of Hamilton’s equations.

As the accuracy of a lunar theory is improved, both items (i) and (iii)
give rise to series in powers of a/ay, the first because the ratio of radii r/r
expressed in orbital elements is proportional to a/ag, and the second be-
cause ng/n = [mo/(mq + ma)]?(a/ag)*?. However, the origin of these
expansions is quite different: the first is a series of better and better approx-
imations to the Hamiltonian H, while the second is a series of better and
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better approximations to the solutions of Hamilton’s equations for a given
Hg. Note that the small parameter ng/n is much larger than the small pa-
rameter a/ay, so it may be appropriate to include higher orders in ng/n than
in a/ag. The developer of any lunar theory must decide the maximum or-
ders of e, I, eq, afap and ng/n that will be accurately represented in the
solutions.

Using equations (1.70), (1.151), and (1.155) to rewrite equation (3.74) in
terms of orbital elements, and truncating the expansion of the Hamiltonian
as described in items (i) and (ii), we obtain

2
oo Bmeatr 1 30 s e
©T 3 4 8 g T
0
3,15,2 15,2 372
+(=3+ge + gep+ 317 cos(2X - 2))

+ %e cos(A\—w) - Ze cos(BA\—2)\g — @) + Ze cos(A—2Xg + @)

— 2Legcos(2X = 3Mg + wp) + %eo cos(2X\ — Ao — wp)

8
- 3egcos(Ag - o) - %e% cos(2Mg — 2wq)
+ éeQ cos(2\ — 2w) - 62 cos(2Xo - 2w) — Ze 2 cos(4X\ - 2\ - 2w)

- 512 cos(2X -2Q) - I2 cos(2Mg - 2Q) - 6(2) cos(2A — 4\ + 2wg)
+ %eeo cos(BA - —w —wp) + 1660 cos(A+ Ny —w —wp)

- %eeo cos(A—Xg+w@w-w@p) - ﬂeeo cos(3\ =3\ — @ + w@p)

+ ieeo cos(A—\g — @ + @) + & eeo cos(A =3 +w + wo)] (3.75)
The main effects of solar perturbations on the lunar orbit are best explained
by looking one by one at a few selected collections of these terms.

Secular terms These are independent of the mean longitudes of the Moon
and Sun,” \ and \¢:

Gmoa®
Heoo = T;[ —1-32-3e5+ 2. (3.76)
0

°  The adjective “secular” is used in astronomy generally and celestial mechanics in particular
to denote changes that are long-lasting rather than oscillating on short timescales.
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Since we have already discarded terms in the disturbing function that are of
order higher than O(e?, e%, eeq, I?), there is no additional loss of accuracy if
we analyze the effects of these perturbations using the simplified Lagrange
equations (1.188). From these we find that a, e, and I are all constants,
which we call @, €, and I. Then

dw 3Gmyg dQ__3Gmo

dt dnad ’ dt 4na}

, (3.77)

where 72> = G(mg + my). Thus the line of apsides precesses forward,
while the line of nodes precesses backward at the same rate (compare the
discussion following eqs. 1.180, and see Problem 1.20). Writing Kepler’s
law for the solar orbit as Gmg = n2a3, equations (3.77) simplify to

dw dﬂ_%

dt  dt 4m’ G.78)

Of course these formulas are only a first approximation to the time-
averaged apsidal and nodal precession rates of the Moon. As described
earlier in this subsection, if we neglect the octopole and higher multipole
moments and assume that the eccentricity and inclination of the lunar orbit
are small, the precession rates are given by power series in m = ng/m, of
which equations (3.78) give the first terms. The next few terms are'?

1dw
= _3,.2,225 3, 4071, 4 , 265493 5 6
=Ty = 9mS+ Som” + Joom” + aeEm +0(m°),

1d9
ndt

=3m2+ Zm® + 2Bt 4+ 50900 + O(mP). (3.79)

The series for <o is given to m'! by Hill (1894) and the series for () is given
to m% by Delaunay (1860, 1867). The series for < is notorious for its slow
convergence. In the case of the Moon, with m = 0.074 80, the value of
wo obtained from the first term in the series is smaller than the exact result
by a factor 2.042 57, illustrating the danger of using first-order perturbation

10" The second terms in the series are derived in equation (5.111).
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theory in hierarchical systems when the period ratio is not very small.!!
The series for {2 converges more quickly. Numerical solutions for w are
described in §3.4.1 and shown in Figure 3.12.

The evection This is the term in the disturbing function (3.75)

B 15Gmoa?

Hev =
8a3

e? cos(2)\g - 2w). (3.80)

The simplified Lagrange equations (1.188) show that under the influence of
this term a, I, and 2 are constants and

dA 15n2e?
s =n- ;%e cos(2) - 2w),
dw  15n2 de  15m2
d—?: ig(’ cos(2Xo - 2), Ei:_ 547%065111(2)\0—273). (3.81)

The solar mean longitude advances at a uniform rate, Ao = mngt + const.
We use first-order perturbation theory, which means that we integrate these
equations assuming that the other orbital elements on the right sides are
fixed, at € and zo. Then

5710@2

1
A=Tt+ A\ —

sin(2)o - 259), (3.82)

w=w +

15”0 15’/105

sin(2\g - 2w), e=e+

3(200 — 20).
< e cos(2)g - 2@)

The most obvious signature of these variations is in the longitude or az-
imuthal angle ¢ of the Moon, which is related to the mean longitude by
equation (1.151),

¢ =X+2esin(\-w) + O(e?). (3.83)

"' This problem was recognized by Newton, who complained in the Principia that the rotation
of “the lunar apsis is about twice as speedy” as his calculations implied. He is reported to
have said that “his head never ached but with his studies of the Moon” (Whiteside 1976;
Cook 2000). In the eighteenth century, the discrepancy between equation (3.78) and the
observed apsidal precession of the Moon prompted speculation that Newton’s law of gravity
was incorrect.
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Inserting equations (3.82) and keeping only the lowest order terms in the
eccentricity and in the strength of the perturbation, we have

15n0€

¢p=mnt+ X\ +2esin(nt+ )\ -w@) + sin(mt + A —2Xg + ). (3.84)
The first three terms describe the unperturbed Kepler orbit, and the last term
is the evection. This is the largest periodic perturbation in the Moon’s az-
imuth, with amplitude %noé/ﬁ = (.882° according to this calculation. A
more accurate estimate of the coefficient of this term, according to the lunar
theory of Brown (1897-1908), is 1.274°.

An evection resonance can occur in the three-body problem if the mean
motion n of the distant body (the Sun) is equal to the apsidal precession rate
w of the satellite (the Moon), for example due to the quadrupole moment of
the host body (the Earth). In resonance the longitude of periapsis w librates
around an azimuth that is £90° from the azimuth of the distant body. An
example is shown in Figure 3.8.

If the Moon formed close to the Earth as debris from a giant impact and
subsequently evolved to its current orbit as a result of tidal friction between
the Earth and Moon, then it likely passed through an evection resonance
early in its history (at this time, the apsidal precession is mostly due to the
equatorial bulge of the rapidly rotating Earth, not the tidal field from the
Sun as is presently the case). The evection resonance can excite the lunar
eccentricity, leading to substantial tidal heating and perhaps melting of the
lunar interior, and it can drain orbital angular momentum from the Earth-
Moon system and transfer it to the solar orbit.

There is an inclination-dependent term in the Hamiltonian (3.75) analo-
gous to the evection,

3Gmoa?

-
8a3

I? cos(2X0 - 29). (3.85)

This term is responsible for the largest non-Kepler oscillations in the Moon’s
latitude. Nevertheless its effects are less significant than those of evection,
in part because the numerical coefficient is five times smaller.
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Figure 3.8: The evection resonance. The figure shows the evolution of the eccen-
tricity vectors e = (e, ey ) of three test particles orbiting a host body that in turn is
orbited by a distant companion. The host body and the companion have unit mass,
the test particle has unit semimajor axis, and the companion is on a circular orbit
with semimajor axis 10. The evolution is plotted in a frame that rotates with the
orbital motion of the distant companion, and the positive x-axis points toward the
companion. The host body has a quadrupole moment J> R* = 0.01 (eq. 1.135). The
three test particles have initial eccentricity e = 0.1, 0.3, and 0.5. The last of these is
in an evection resonance, in which the mean precession rate due to the quadrupole
moment ¢ = Q+w (eq. P.30) equals the mean motion of the distant companion, and
the eccentricity vector librates around a direction perpendicular to the companion.
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The variation We next examine the terms

Gmgoa?

3
)

Hvar =

[ — 3 cos(2X - 2X) — 2ecos(3X - 2Xo - @)
+Jecos(A -2\ + @)]. (3.86)
In this case it is easier to work with the variables (cf. eq. 1.71)
k=ecosw, h=esinw, (3.87)
so the Hamiltonian becomes

HVB.T - 3
)

- 3hsin(3X = 2X) + Jkcos(A - 2X) - Jhsin(A - 2Xo)]. (3.88)

[ - 2 cos(2A - 2)g) = 2k cos(3A - 2X9)

Inserting this into the simplified Lagrange equations (1.193) and replac-
ing Gmg/a} by n2 we find that

dA 2
ki @[ —3cos(2X —2Xg) — 3k cos(3X — 2)\g)
n
= 3hsin(3A - 2Xg) + 9k cos(A — 2Xg) — 9hsin(A — 2Xo)],
da

2
- D081~ 3sin(2 - 22) = 2Esin(3X = 209) + 2T cos(3A - 2))
n
+ 2ksin(X - 2Xg) + 2hcos(A - 2X0)],

dk  n? . .

o = 2 2sin(3h=220) - §sin(A - 20)].

dh  n2;.

i ?O[icos(?))\—w\o) - %COS()\—2>\0)]‘ (3.89)

In first-order perturbation theory, we solve the differential equations for
da/dt, dk/dt, and dh/dt by replacing the orbital elements a, k, h on the
right side with fixed quantities @, k, h, and by replacing the mean longi-
tude \ with X = 7t + constant. The mean longitude of the Sun is \g =
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not + constant; this variable is not perturbed, as we can ignore perturbations
of the Sun by the Moon. We have

a_a+n0a[3cos(2)\ 2)\0)+9kcos(3)\ 2X0) QEsin(SX—L\O)
n 2m - 2ng 2(3m - 2ng) 2(3m - 2nyg)
~ 9k cos(A - 2)\o) N 9hsin(\ —2)\0)]
2(m - 2ng) 2(m - 2ng)
. no[Bcos(BA 2)\0)+9cos()\—2)\0)]
n| 4(3m-2ng) 4(m - 2ng)
h=h+

(3.90)

n

ng[3sin(8A=2Xp)  9sin(A - 2)o)
4(3m - 2ng) 4(n-2n9) |

The small parameter in this perturbation expansion is the ratio of the mean
motion of the Sun to the mean motion of the Moon, 1/, so at the accuracy
to which we are working we can simplify these expressions by replacing
denominators like 2n — 2ny by 2n. Furthermore, since the eccentricity is
small we may focus on the case where k = h = 0, so these expressions
simplify to

27
a=a+ 37102(1 cos(2X - 2)g),

k= n[ cos(3X = 2Xg) + 2 cos(A - 2Xg) ],
n

2
-0
2
2
-0
2

h = n[ sin(3X = 2X) - 2 sin(A - 2)\0)] (3.91)
n

To integrate the equation in (3.89) for d\/d¢ at the same level of accu-
racy, we must use Kepler’s law n2a3 = G(m; + ms) to write the term n as
n- 2(n/a)(a-a) and substitute for a — @ from the first of equations (3.91).
Upon integrating the result we have

2
A:X—2¥?
8n

sin(2X - 2)). (3.92)

To interpret these expressions in terms of the shape of the lunar orbit,
we use the expansions (1.155) and (1.151) for the radius r and azimuthal
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angle ¢. Truncating these at first order in the eccentricity, we have
r=a(l-kcosA—hsin)\), ¢=\+2ksin\-2hcos . (3.93)

Then substituting from equations (3.91) and (3.92) and truncating at first
order in the small parameter n% /ﬁQ, we find
2 1 2

I o -
r=d- 0% 052X - 200), b= A+ —Dgin(2h-2X0).  (3.94)
n? 8n?

The amplitude of the periodic variation in the azimuth is & n§/n? = 0.441°;
a more accurate estimate from Brown’s lunar theory is 0.658°.

At the order to which we are working, eliminating \ in favor of ¢ gives
the following polar equation:

27
r=a- 0% cos(26 - 2X). (3.95)
n

This is an approximate ellipse with short axis pointing toward the Sun and
long axis 90° away from the Sun, sometimes called the variational ellipse.
The variational ellipse is centered on body 1 (the Earth), in contrast to the
Kepler ellipse which has one focus at body 1. A more direct derivation
of equation (3.95) is described in Problem 3.7. The variational ellipse is a
member of family “g” of periodic orbits in Hill’s problem, as described in
the following section.

Additional terms of the lunar Hamiltonian are analyzed in Problems 3.8
and 3.9.

3.4 Hill’s problem

Hill’s problem is a simplified version of the hierarchical three-body problem
that can be used when the third body is much more massive and more distant
than the other two, as in the case of the Earth-Moon—Sun system (the ratio
of the solar mass to the mass of the Earth and Moon is 3.289 x 10° and the
ratio of the Sun-Earth semimajor axis to the Earth-Moon semimajor axis
is 389.17). Hill’s problem is perhaps the simplest non-integrable case of
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the N-body problem, with no free parameters, yet it is accurate enough to
reproduce most of the complex behavior of the lunar orbit.

As in the preceding section, m and my denote the masses of the bodies
in the inner binary, and mg is the mass of the distant massive body. We
initially work in a frame with origin at body 0. The equation of motion for
my 1is (cf. eq. 4.5)

Gmg

_GCmo+m) B2y 1) - T G99
ry

ri+

I =

v f? Ir2 =13

with a similar equation for rs.

In a hierarchical three-body system such as this one, the motion of the
center of mass of my and ms relative to mg is not far from the motion
of a test particle on a Kepler orbit around mg. Therefore we introduce a
reference vector a(t) from the origin at r to a point close to m; and mo
that obeys the equation of motion

27
dfa__Gmoy (3.97)
de? [a]®
and define a new coordinate Ar; to be the difference between the position
of my and the tip of a; thus Ar; = ry —a, with a similar definition for Ars.
The equation of motion becomes

d2AI‘1 Gmo G(mO + ml) —
- Ary-Ar) - 2"z A
A2 " [Ar, - Anp Atz AT - A (B An)
Gm _ Gmg_
_ m(wmg) + |5—|3°a, (3.98)

with a similar equation for Ars.

We are interested in the case where mg > my,mo and the distance to
myg is much larger than the distance between m and mo. Hill’s insight was
that we can represent this case by replacing a by \a and mg by A\*mg and
letting A - oo. To carry out this procedure, we use the identity

1 1 3a- Ar

=—|1- o). 3.99
[Aa+Ar]3  A3g3 Y ) (399
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Keeping only the terms proportional to A\¥ with k& > 0 we find

d? Al‘l Gmg Gmo 3 GmO
- Ars - Ary) - =0 Ap, 4 220
W2 " A, - Anp A2 AT - o Ant T

(5 . AI‘l )5

(3.100)

So long as the eccentricities and inclinations of the orbits of m; and my

around my are small, we may assume that the reference vector a traces out

a circular orbit, so @ = |a| is a constant and a rotates at constant angular
speed Q = (Gmy/a>)'/?. The equation of motion then simplifies to

dQAI‘l GTTLQ

42 " Ar Ar |3(Ar2—Ar1)—QzAr1 +302
2~ 1

A
2 20a (3101
a

We now transform to a uniformly rotating reference frame in which the
reference vector a is fixed. In this frame we denote the vectors from a to
ri 2 by Ax; o rather than Ar; 5, and we must include the Coriolis force
-2Q x dAx; /dt and the centrifugal force —§2 x (2 x Ax;) = Q?Ax; -
Q(Q2- Axy) (eq. D.20):

d2AX1 dAXl sz
20 - Axz - Ax1) - (- A
az T H T T A — AP (A% T Ax) — (€ Ax)
pg2dAxg (3.102)

52

We may choose the z-axis to be parallel to a and the z-axis to be parallel
to €2, so the positive x-axis points radially outward and the positive y-axis
points in the direction of orbital motion. Then we arrive at Hill’s equations,

d2Az, dAy; Gma 2
-2Q = Az — A 30°A
at2 dt [Axg - Axgp (A2 T AT+ 3T AD,
d2Ay1 dA$1 sz
2Q = Ays — A
az dt |Axy — Axq |3 (Ayz = Ay),
d2Azl Gmg

e :|AX2_AXI|3(AZQ—Azl)—Q2A21. (3.103)

Notice that @ and m have disappeared from the equations—they enter only
through the orbital frequency 2.
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If mo = 0 or the distance |[Axs — Ax;| is large enough that the force
from my is negligible, the solution of Hill’s equations of motion is analytic:

Azy = a1 — €1 cos(Q +d1),
Ay = —%ath + 91 + 261 sin(Qt + 67),
AZl =€x1 COS(Qt+521). (3104)

This solution corresponds to the epicyclic motion described in §1.8.2. The
difference between the two treatments is that epicycle theory provides an ap-
proximate solution of the exact equations of motion for the two-body prob-
lem, while equations (3.104) are an exact solution of Hill’s equations, which
approximate the two-body problem. The variables «, € and €, are closely re-
lated to the semimajor axis a, eccentricity e and inclination I in the original
Kepler problem. In particular, for an assumed value of @ we have a ~ @ + «,
e ~ ¢fa, I ~ €,/a (of course, strictly speaking, Hill’s equations are only
valid in the limit @ — o0).
Just as in the two-body problem, we can change variables from Ax; and
Axs to
Xy = TUAXIHMaAXD A Ak (3.105)

mi +mo

here x.p, is the barycenter of m; and ms and x is the relative position. The
barycenter satisfies the equations of motion

Zem — Qchm = 3Q2$cma
ycm + 2Qi'crn = 07
Zem = =% zem, (3.106)

which have solutions analogous to equations (3.104).
The relative position satisfies the equations of motion
2
Tr ooy Glmtma) a5,
de? dt |x[3
d?y

a7y _ G(ml + mg)
dt2

|X|3 y?

+ 2QE =
dt
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d?z G(mq +ms2) 9
— =2 -z 3.107
ar? xp (3.107)

To study these we introduce a dimensionless time 7 = ()¢ and coordinates

2 1/3 m 1/3
(f,n,oE[G“] (.2) = = (=20 ) T (o, 2),

(m1 + mg) mi1 + Mmoo
(3.108)
and we arrive at a dimensionless version of Hill’s equations,
¢ dnp ¢
— —-2— =-=+ 3,
dr?z T dr p? ¢
2
W pde 1
dr2 dr p°
S
==, 3.109
5 ¢ (3.109)

where p? = €2 + 1% + (2. Notice that there are no free parameters in these
equations. A Hamiltonian formulation of Hill’s equations is described in
Problem 3.12.

It is straightforward to verify that the dimensionless Hill’s equations
have an integral of motion

de? dn\? dcy? 1
() ) ) S tese oo

which we call the Jacobi—Hill constant, analogous to the Jacobi constant. 12
It is also straightforward to show that the stationary solutions of Hill’s equa-
tions are

€=+3"13 p=0, (=0, (3.111)

analogous to the collinear Lagrange points L2 and L1. In this approximation
L2 and L1 are at the same distance, known as the Hill radius. Restoring the

12 We use the term “analogous to” rather than “special case of.” because Hill’s problem is
not a special case of the restricted three-body problem—the masses of all three bodies are
nonzero, whereas in the restricted problem one mass must vanish.
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dimensional factors, the Hill radius is

1/3

G(m1 +m2) (m1 +m2)1/3
- A —a|l —= 3.112
TH |: 302 a 3m0 9 ( )

where @ is the distance from the center of mass of m; and ms to the distant
body mg. The distance ry is sometimes called the mutual Hill radius
since it depends on the masses of both small bodies. The special case of the
restricted three-body problem, in which mgy = 0, was already described by
equation (3.24).

The Jacobi—Hill constant restricts the motion to the region

1
(I)eﬂ“(gvnvg) < EH» where (beff(gan) = _W - 252 + %CQ
(3.113)

is the effective potential and the surface ®.g = Ey is the zero-velocity sur-
face, concepts introduced in §3.1 in the context of the restricted three-body
problem. Figure 3.9 shows the zero-velocity curves in the planar Hill’s prob-
lem (¢ = d¢/d7 = 0), analogous to Figure 3.1.

3.4.1 Periodic orbits in Hill’s problem

To study the behavior of trajectories in Hill’s problem we focus on periodic
orbits, which form the “skeleton” around which other orbits can be grouped.
There is an infinite number of periodic orbits, so we examine only the sim-
plest of them: we restrict our attention to orbits that (i) remain in the ( = 0
plane; (ii) are symmetric with respect to the radial or £-axis; and (iii) are
simple-periodic, by which we mean that they intersect the £-axis at only
two locations—one with dn/dr > 0 and the other with dn/dr < 0—before
returning to their original position and velocity. These conditions imply
that the orbits must cross the £-axis at right angles, that is, d¢/d7 = 0 when
n = 0.

In Hill’s problem, periodic orbits of this kind are organized in one-
parameter families. The parameter is usually chosen to be the Jacobi—Hill
constant E'y; of equation (3.110). Since the orbit remains in the ¢ = 0 plane,
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Figure 3.9: Contours of the effective potential (3.113), also known as zero-velocity
curves, for the planar Hill’s problem. The Lagrange points L1 and L2 are marked by
crosses. Shading marks regions in which the effective potential is greater than the
value at the L1 and L2 points, ®egr = —34/3 /2 = -2.163 37. Note that the horizontal
or n-axis increases from right to left such that (£, 7) is a right-handed coordinate
system.

it must have ¢ = d¢/dr = 0. Thus

_1(d€ 2 1 (dn ? 1 342
mi-d(5) S(F) -Eopm e o

The periodic orbit can be specified completely by Ey and the value £ = &,
at which it crosses the £-axis in the direction of increasing 7. To see this,
note that at this point = d¢/dr = 0 since the orbit is simple-periodic. Then
equation (3.114) can be solved to find (dn/dr)¢-¢, n-0, Wwhich we know to
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be positive by assumption:

1/2
dn) ( 2 2)
=0 =|2Fg + — + 3¢ . (3.115)
(dT £=£p,m=0 &p P

Thus all of the initial phase-space coordinates are specified, and the trajec-
tory can be determined by numerical integration of the first two of equations
(3.109).

Let us imagine integrating a trajectory numerically, starting at 7 = 0
when the particle crosses the £-axis at £ = &, in the direction of increasing 7
and continuing until the orbit crosses the &-axis again in the direction of de-
creasing 7. Let 51/2 (En,&p) and 7y )2 (Fw, &) be the values of d§/d7 and 7
at the end of the integration. If £] /2 (Ewu,&p) = 0 the orbit is periodic, since it
will return to its starting point after an additional interval 7 /5. Thus to find
a periodic orbit with a given Jacobi—Hill constant Ey, we simply solve nu-
merically the equation &/ /Q(EH, &p) = 0 for &, using standard methods for
finding the roots of nonlinear equations (e.g., Press et al. 2007). The period
of the orbit in the rotating frame or synodic period'? is 27, 2(Ew, &p).

Determining the stability of a periodic orbit requires only a simple ex-
tension of these arguments. Once again consider a particle—not necessarily
on a periodic orbit—that crosses the £-axis in the direction of increasing 7;
at this point its coordinates are & = &g, 7 = 0, d§/d7 = £ and dn/d7 > 0, the
last of which is determined by the given value of the Jacobi—Hill constant
FEy. When the particle next crosses the £-axis in the direction of increas-
ing ), its coordinates are &1, n = 0, d§/dr = &} and dn/dr, which is again
determined by the Jacobi-Hill constant. Thus we can write

51 :X(£07€6aEH)7 fi :Y(g()af(l)vEH)' (3116)

13 For a more general definition of the synodic period, suppose that bodies mz and mg are
in coplanar orbits in the same direction around body m; (one may think of mq as the
Earth, ma as the Moon and mq as the Sun). Then the synodic period is the time between
successive conjunctions of mao and mo as viewed from m1 (a conjunction occurs when
the two bodies have the same azimuth). Quantitatively, if the orbital periods are Ps and Py
in an inertial frame, then the synodic period of ma is given by P;yln =|Py 1 Py 1. The
same concept can be applied to spins: the synodic period of the Earth’s spin with respect to
the Sun is 1 day, but the period of the Earth’s spin in an inertial frame (the sidereal period)
is 0.997 27 days.
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A simple-periodic orbit is a fixed point of this transformation, with &; = £y =
&p and &) = &) = 0. Now consider a neighboring orbit with initial conditions
&o = & + A&, & = A&y, which is transformed to & = &, + A&y, & = AE].
In the linear approximation

A€ = alé + DAL, AL = cAgy + dAE), (3.117)

where aX aX oy oy
OO L L 3.118
““oe "o Toe T og G-118)

with the derivatives evaluated at &y = &, and & = 0. This map can be iterated
to determine the linearized phase-space location at successive orbits, &, +
A&, A&, and so on. The map can be written in matrix notation as

Az, = AAz, where A:[Z g] (3.119)

with Az, = [A&, AE/,] (we do not distinguish whether vectors such as z are
1 x N column matrices or N x 1 row matrices, as the meaning is clear from
the context). The general solution of this equation is a linear combination
of sequences of the form

Az, = k"a, (3.120)

where a is an eigenvector of A and k is a (possibly complex) eigenvalue,
given by
k=ky=1(a+d)+L[(a-d)?®+4bc]? (3.121)

The orbit is stable if and only if |k,| < 1 and |k_| < 1.

To calculate the constant a numerically, we simply integrate two or-
bits with the same value of Ey and & and values of & differing by some
small §&y. After both orbits return to p = 0 with dn/dr > O—which typ-
ically will occur at slightly different times—we calculate the difference in
their £ coordinates, §£;, and then a = 6&1/6&y. The constants b, ¢, and d
are calculated similarly. Although we do not need these results except as
a numerical check, it can be shown that (i) the map defined by equation
(3.119) is area-preserving (Binney et al. 1985; Tabor 1989; Lichtenberg &
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Lieberman 1992), which in turn requires that ad — bc = 1; (ii) for symmetric
periodic orbits, a = d (Hénon 1965). The first of these results implies that
k_ =1/ky, so either (i) (a — d)? + 4bc > 0, which implies that k, and k_ are
real, one of them exceeds unity in absolute value, and the orbit is unstable;
or (ii) (a — d)? + 4bc < 0, in which case k, and k_ are complex conjugates,
|k4+| = |k-| = 1, and the orbit is stable.
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Figure 3.10: Periodic orbits in Hill’s problem. Each family of periodic orbits is de-
noted by a line, which is solid if the orbits are stable and dashed if they are unstable.
Each orbit is specified by the value of the Jacobi—Hill constant Ey (eq. 3.110) and
the value of £ = &, when the orbit crosses the £-axis with dn/dr > 0. The diagram
only shows periodic orbits that (i) lie in the { = 0 plane; (ii) are symmetric with
respect to the £-axis and (iii) cross the £-axis only twice. The shaded regions are
forbidden, because the argument of the square root in equation (3.115) is negative.
The Lagrange points of equation (3.111) are marked as L1 and L2. Prograde orbits
have &, > 0 and retrograde orbits have &, < 0. For further detail see Hénon (1969).
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Figure 3.11: Examples of periodic orbits in Hill’s problem. Each orbit is shown
by a solid line if stable, and by a dashed line if unstable. The origin is marked by
a black circle. Additional orbits in family g’ can be derived by reflection in the
line £ = 0. Orbits in family c can be derived from orbits in family a by the same
reflection. Note that the horizontal or n7-axis increases from right to left, as in Figures
3.9 and 3.13. The values of the Jacobi—Hill constant E'y for each family are: family
g, —1.5, =2.25, =3, —4; family ¢, -2.25, -2.2, =2.135 71, —-2; family f, 1.5, 0.5,
0, —1; family a, 4.5, 2, 1, 0. The orbits in families g and g’ with By = -2.25 and
Ewn = -2.13571 respectively are the last stable members of each family.
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The main families of periodic orbits in Hill’s problem are shown in Fig-
ure 3.10, taken from Hénon (1969). Stable orbits are shown by solid lines
and unstable orbits by dashed lines.

Family f These are retrograde orbits (here “retrograde” means orbiting
in the opposite direction to the orbit of my around mg). The orbits are
symmetric around the £-axis by construction but they are also symmetric
around the n-axis. Examples are shown in the bottom left panel of Figure
3.11.

As B — —oo and &, — 0, the perturbing effects of the mass mg be-
come negligible and the periodic orbits of family f approach circular orbits
described by Kepler’s laws. At the other extreme, as Fy; becomes large, the
orbits become quasi-satellite orbits, with dynamics described in §3.2.1. All
orbits in family f are stable.

Family g These are prograde orbits, symmetric around both the &-axis and
the n-axis. Examples are shown in the top left panel of Figure 3.11.

As BFg — —oo and &, — 0, the periodic orbits of family g approach
circular orbits described by Kepler’s laws. As Fy grows from —oo, so the
perturbations from mg are small but not negligible, the shape of the peri-
odic orbits is described by the variational ellipse of equation (3.95). As Ey
continues to grow, the periodic orbit becomes more and more non-circular.
Finally, at E'y = —2.250 family g becomes unstable and branches to a stable
family ¢’ of orbits that are asymmetric around the 7-axis.

The results we have derived can be used to determine numerically the
apsidal precession rate of nearly circular orbits induced by the distant com-
panion. To see how to do this, consider a test particle on a nearly circular
Kepler orbit. To first order in the eccentricity, the orbit has radius r = a+ Ar
and radial velocity Av, where (eqs. 1.29 and 1.54)

Ar =-aecos(¢p-w), Av,=naesin(¢-w). (3.122)

We now transform to the frame rotating with the distant body, at constant
angular speed €, but for the moment we ignore the gravitational effects
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of this body. As usual in this section we let 7 = ()¢ be the dimensionless
time, and we denote by P the synodic period of the test particle in units
of the dimensionless time. Then the time of the j*" conjunction of the test
particle with the distant body, when their azimuths in the rotating frame are
the same, is 7; = jP + 79. Similarly the azimuth of the conjunction in the
inertial frame is ¢; = 7P + ¢g.

If the line of apsides precesses at a mean rate ¢o in an inertial frame,
then the longitude of periapsis at conjunction j is w, = wj P/ + w. The
radius and radial velocity at conjunction j are then given by

Arj = —aecos(¢; —w;) = —aecos[jP(1 - w/Q) + ¢ — wp],
Av,j =naesin(¢; — w;) = naesin[jP(1 - w/Q) + ¢pg —wp]. (3.123)

These equations can be rewritten as

Arji1 = cospAr; + : sinypAvyj,  Awvp i = —nsinypAr; + cospAvy;
" (3.124)
with ¢ = P(1 - /).

We now include the gravitational forces from the distant body. To do
so, we replace the circular orbit by the periodic orbit from family g, and
equations (3.124) by equations (3.117). In making this replacement, we can
identify a = d = cos®, b = n~1sin4 and ¢ = —nsin). Thus for any stable
orbit, the mean precession rate o can be determined from the coefficients
a, b, ¢, d and the synodic period P.

The properties of family g are plotted in Figure 3.12 as a function of
the synodic period, in units where the mean motion of the distant body
myg is £ = 1. The stable branch of family g terminates when the synodic
period P = 1.2259, at which point the orbital radius—defined as the av-
erage of its maximum and minimum radii—is 7 = 0.29767, about 43%
of the Hill radius 37'/% = 0.69336. For comparison, the Moon’s synodic
period is 29.531d and the sidereal year—the time taken for the Earth to
orbit the Sun once with respect to the fixed stars—is 365.256d, so P =
27 x 29.531/365.256 = 0.508 00.

A comprehensive study of bound orbits in Hill’s problem is given by
Hénon (1969, 1970, 1974).
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Figure 3.12: Stable orbits in family ¢g in Hill’s problem. The solid curves
show the negative of the Jacobi—Hill constant, the mean apsidal precession rate o,

r= %(Tmax + 7”min) and max — Tmin, Where rmax and ryi, are the maximum and

minimum radius of the periodic orbit. All quantities are plotted as functions of the
synodic period P, in units where the orbital period of the distant body is 27. The
dashed line shows the estimate of the apsidal precession rate from equation (3.77).
The synodic period of the Moon is marked by an arrow at P = 0.508 00. The plots
terminate at P = 1.2259, By = —2.250, where family g of periodic orbits becomes

unstable.
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3.4.2 Unbound orbits in Hill’s problem

One of the fundamental problems in celestial mechanics is to understand the
behavior of two small bodies on nearby circular orbits as they pass through
conjunction: how does the close encounter affect their orbits?

This question is best investigated through Hill’s problem. We assume
for simplicity that the two small bodies orbit in the same plane (¢ = 0) and
that they approach one another on circular orbits—the results are straight-
forward to generalize to inclined or eccentric orbits. When the distance be-
tween them is large, we can drop the terms involving p~3 in Hill’s equations
(3.109), and the simplest solution is

&(7) = ag = constant, n(7) = —%Oéo’]', (3.125)

which corresponds to a circular orbit passing through conjunction at 7 =
0. The parameter « is the impact parameter, the minimum separation
between the two masses along the unperturbed orbit, in the units defined by
equation (3.108). Long after the encounter the terms on the right side are
also negligible, and the most general solution is (cf. eq. 3.104)

E=a—ecos(T+9), n:—%ar+’y+265in(7+§), (3.126)
which can be rewritten as
E=a-kygcosT+hgsinT, n-= —%a7+fy+2kH sin 7+ 2hy cos 7, (3.127)
where the Hill eccentricity components are

ky =€cosd, hy =e€sind. (3.128)

We are mostly interested in the constants «, ky, and hyg, which deter-
mine the change in semimajor axis and the eccentricity excited during the
encounter. These can be written in terms of the phase-space coordinates as
dn

)

=4£+2—
=4 dr

d d
ky = 27 cos T+ 3€cosT + —g sin T,
dr dr
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d d
hH:—Z—nsinT—3£sinT+—§cos7'. (3.129)
dr dr

Taking the time derivatives of these equations and simplifying the results
using Hill’s equations (3.109), we have

da_ 51
dr p3
dk 1
—df = —E(chos7'+§sin7),
dh 1
i g — (2nsinT - Ecos 7). (3.130)
dr p

If the impact parameter is large enough, then the distance p between the two
bodies is also large, so the changes in the orbit are small. In this case we
can determine these changes in «, ki and hyy by evaluating the right sides of
equations (3.130) along the unperturbed circular orbit (3.125). Since 7(7)
is an odd function of 7 and p(7) = |ap|(1 + %7'2)1/2 is even, the change
in « integrates to zero at this level of approximation. For similar reasons
the change in ky integrates to zero. The value of hy changes from zero to
(Julian & Toomre 1966)

AR _3sgn(ag) /"" drrsint  sgn(ag) [~ drcosT
T e (149020 a2 S (14 272)3R2
8-2.5195sgn(ag)  2.2396sgn(ag)

(3.131)

2 2 )
9ag ag

where the factor 2.5195 = 2K (2) + K1(2), and K, (-) is a Bessel function
(Appendix C.5). This linearized approximation to the change in the orbit
should be accurate if |Ahp| < |ag]| or |ag| 2 3.

We can use these results to determine the change in the constant o more
accurately. The Jacobi—Hill constant Eyg (eq. 3.110) is conserved exactly in
Hill’s problem. Its value long before the encounter is By = —%ag, as can
be seen by substituting equations (3.125) into equation (3.110) and letting

T — —oo. Likewise, its value long after the encounter is obtained from
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equation (3.127), Ey = —%oﬂ + 2k + Shfj. The two expressions for Ey
must be equal, so we may conclude that

28.2.51952

2_ 2.4 2 _ 2
a” =ag+5(Ahn)" = a5+ Tl
0

(3.132)

Writing « = g + A and keeping only terms linear in Ac, we obtain

_27.25195%  3.3438

55 5
3 ag ag

A«

(3.133)
Rescaling to physical units using equation (3.108), the change in impact
parameter due to the encounter is

27.2.51952@° (my +ms)?
35(az —ap)® m3

Aas —ay) = (3.134)
This result does not contradict our earlier finding that the change in « is
zero: that result was accurate to first order in the maximum strength of the
perturbation, which is proportional to ag?, whereas equation (3.132) shows
that the change in o is proportional to ag* and thus is second order in the
maximum strength of the perturbation. Using the Jacobi—Hill constant has
allowed us to extract a result accurate to second order from a first-order
calculation.

Notice that equation (3.132) implies that o is always greater than o2
so the semimajor-axis difference between the two bodies is always larger
in absolute value after the conjunction than it was before. In this sense
the bodies repel one another despite the attractive force between them, an
example of the donkey principle described after equation (3.43).

Figure 3.13 shows the trajectories in Hill’s problem of particles that ap-
proach conjunction on circular orbits. For impact parameters o 2 3, the
encounter simply excites the eccentricity, as described by the linear anal-
ysis leading to equation (3.131). For ay < 0.5 the approaching body re-
verses course without significant eccentricity excitation, the same behavior
described for co-orbital satellites in §3.2. At intermediate impact parame-
ters, the encounter leads to complex behavior that can include close encoun-
ters or collisions between the two small bodies. See Hénon & Petit (1986)
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Figure 3.13: Unbound orbits in Hill’s problem, as described by the differential
equations (3.109) with ¢ = d¢/d¢ = 0. The bodies approach on circular orbits,
coming from the upper left on an initial orbit described by equations (3.125). A
symmetric set of orbits coming from the lower right is not shown. The Lagrange
points (3.111) are marked by crosses. Note that the horizontal or n-axis increases
from right to left, as in Figures 3.9 and 3.11.

and Petit & Hénon (1986) for a thorough description of encounters in Hill’s
problem.

3.5 Stability of two-planet systems

The configuration of an isolated planetary system is specified by the masses
and orbits of its planets and the mass of its host star. An observed planetary
system should normally be in a configuration that is stable over times com-
parable to the age of its host star, except in the unlikely case that it was born
in the recent past or will change in the near future.
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Roughly speaking, “stability” means that the size and shape of the orbits
do not change much. When more precise language is used, several comple-
mentary definitions emerge.

A multi-planet system is Hill stable if the planets can never have a close
encounter. In practical terms, “never” means over the lifetime of the host
star, while “close” means much less than the mutual Hill radius (eq. 3.112).
In practice, long orbit integrations of multi-planet systems are usually termi-
nated after the first close encounter, for two reasons: first, close encounters
usually lead to chaotic and unpredictable evolution, collision, or ejection of
one of the planets on relatively short timescales; second, more sophisticated
and expensive integrators are needed to follow orbits accurately through
close encounters.

A multi-planet system is chaotic if the phase-space distance between
two nearby orbits diverges exponentially over long time intervals. The e-
folding time for this divergence is called the Liapunov time (see Appendix
D.8). Planetary systems can be Hill stable even if they are chaotic. In
particular, in many cases the exponential divergence is mainly in the mean
longitudes of the two orbits and only affects the size and shape of the orbit
over intervals much longer than the Liapunov time.

A multi-planet system is Lagrange stable if no planet can escape the
system or collide with the host star. A two-planet system can be Hill stable
but Lagrange unstable or vice versa.

We now describe the stability of two-planet systems using these cate-
gories. '

Hill stability The simplest example of a multi-planet system consists of
two planets on nearly circular and coplanar orbits around the same host star.
In this case the configuration is specified by the planet masses m, and mo,
the mass of the host star my, and the initial semimajor axes a; and as. The
planetary masses are much less than the mass of the star, mq, my << mg, so
we expect that orbits that are well separated are likely to be stable. Thus we
are mostly interested in the stability of orbits having |a; — as| << @ where @

14" A closely related problem is the stability of a single planet that orbits in a binary-star system,
as described briefly in Box 3.2.
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Box 3.2: Stability of planetary orbits in binary-star systems

Many planets are found in binary-star systems. Planets that circle one of the two
stars are said to have S-type orbits, while those that circle both have P-type or
circumbinary orbits.

The possible orbits that such planets can occupy are constrained by the re-
quirement that they be stable over long times. As a simple example, consider a
system containing two stars of equal mass on an orbit with semimajor axis a« and
eccentricity ey, along with a single zero-mass planet. Numerical orbit integrations
show that a planet on an initially circular S-type orbit will survive if its semimajor
axis satisfies (Holman & Wiegert 1999)

2 <027~ 0.34e, +0.05¢2. ()
Q%
A planet on an initially circular P-type orbit survives if

2 523438, - 1.72. ()

QA%

These results are based on simulations lasting ~ 10% binary periods—far less than
the ages of typical binary stars but still long enough that the stability boundary is
evolving only slowly.

is the mean semimajor axis. In this case we can approximate the three-body
problem by Hill’s problem.

Figure 3.9 shows the contours of the effective potential g (&,n) in
Hill’s problem. The effective potential becomes large and negative close to
the origin and at large values of |£|]. These regions are separated by saddle
points at the Lagrange points L1 and L2, where ®og = P, = -34/3 /2 =
—2.163 37. Orbits having Jacobi-Hill constant Fy; < @, cannot cross these
saddle points. Therefore if the two planets have Ey < ®r, and are initially
at large separation, they can never have a close encounter. In particular if
the two planets are initially far from conjunction, on circular orbits with
impact parameter g (eq. 3.125), their Jacobi—Hill constant is Eyy = —%a%
so they can never have a close encounter if |og| > 2.401 87. Restoring the

dimensional factors using equation (3.108), we conclude that the planets are
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Hill stable if

mq +m2)1/3:2 406(7711 + Mo
mo ’

1/3
) =3.46 TH,

(3.135)
where 7y is the mutual Hill radius defined in equation (3.112). This result
is valid so long as m1, ms << mg and the eccentricities and inclinations are
small compared to |a; — as|/a. This is a sufficient criterion for Hill stability,
not a necessary one. For example the tadpole and horseshoe orbits shown in
Figure 3.5 do not satisfy (3.135) but never have a close encounter.

Similarly, if the two planets start on eccentric orbits with Hill eccentri-
city components (kg, hy ) and impact parameter g (eq. 3.127), the Jacobi—
3.2

Hill constant for the relative orbit is Fy = —3ad + 1k + $hf;. Restoring

the dimensional factors, we find that the planets are Hill stable if

|a1 —a2| >2'31/66(
mo

2/3 271/2

mo+m e —e

lay —as| >2-3%G ( 0 1) GRS , (3.136)
mo 34/3

where e; and e are the eccentricity vectors of the two planets. If the planets

are on circular orbits with mutual inclination /, a similar calculation yields

23 2 M2
|a1—a2|>2-31/6a[(7w> +34/3] . (3.137)

Similar arguments can be used to determine Hill stability in the case
where the mass my of planet 1 is comparable to the stellar mass m, so long
as the mass of the second planet m9 = 0 and m; and mg are on a circular
orbit. This is the circular restricted three-body problem studied in §3.1, and
the system is Hill stable if its Jacobi constant (3.12) is smaller than the value
of the effective potential (3.13) at the Lagrange point L1 (if my is initially
interior to my), or L2 (if ms is exterior to mq).

The most general criterion for Hill stability is based on the conservation
of the total energy and angular momentum of the three-body system, and
can be applied for arbitrary masses and initial conditions. The derivation of
this criterion is described in Appendix G.
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Figure 3.14: The chaotic evolution of a two-planet system. The host star has unit
mass and the planet masses are m; = ma = 107°. The planets initially are on
circular orbits with semimajor axes 1 + %A, A = 0.033. We use units in which
G =1 so the orbital period is about 27r. The top panel shows the semimajor axes of
the two planets and the bottom panel shows the eccentricities. In the bottom panel
the eccentricities are difficult to separate because they closely track each other, for
reasons described in the text. The system is Hill stable according to equation (3.135),
but chaotic according to (3.140).
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Chaos We begin with a heuristic derivation of the size of the chaotic zone
created by the interaction of two nearby planets. The mean motions of the
two planets are ny 2 = (Gmy/ a‘(iQ)l/ 2 The time between conjunctions (the
synodic period) is

2 21 dma

Pyyn = = - - ~
v [n1 — no| (Gmo)1/2|a13/2 B a;3/2| 3njag — aq|’

(3.138)

where n = (Gmg/a*)/? ~ ny,ny, and @ is the average semimajor axis (eq.
3.47). Each conjunction of the planets leads to a change A(as — aq) in the
semimajor axis difference and this in turn leads to a change in the azimuth
or mean longitude at the next conjunction. The change is

4ra sgn(as —ay)

BT e T a2

A(as - ay). (3.139)

Chaos is expected to set in when the azimuth change |Ag)| is larger than
about one radian. The reason is that the change in semimajor axis in a
conjunction of two planets on eccentric orbits depends on the orientation
of the eccentricity vectors of the two planets relative to the longitude of
conjunction, so if |A¢| > ¢, with ¢ of order unity, the system “forgets” the
azimuth it had at the preceding conjunction and chaotic behavior sets in.
Using equation (3.134), we find that orbits should be chaotic if

_ 27
a2 = a] sf(m1+m2) : (3.140)
mo

where f = 1.46/c/7. This estimate is consistent with an approximate esti-
mate of the size of the chaotic zone using the resonance-overlap criterion,
as described in §6.2.1, and with numerical orbit integrations, which yield
f ~ 1.2-1.5 (Wisdom 1980; Gladman 1993; Deck et al. 2013; Morrison
& Malhotra 2015). This estimate excludes tadpole and horseshoe orbits.
The boundary of the chaotic zone is not precisely defined, because there is
a transition range of semimajor axes in which some orbits are chaotic and
some are regular.

Notice that the exponent of equation (3.140) is slightly smaller than the
exponent of (3.135)—% = 0.2857 versus % = 0.3333. Thus for sufficiently
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small planetary masses, there is a range of semimajor axes at which the
orbits are Hill stable but chaotic. Despite the chaotic nature of the orbits,
the planets can never suffer a close encounter.

Orbits in the chaotic region exhibit significant and irregular excursions
in semimajor axis and eccentricity. An example is shown in Figure 3.14,
which follows the evolution over 10%/(27) orbital periods of two planets
with masses mq = mo = 10™%mg on initially circular orbits in the chaotic
zone. The figure exhibits several striking features. Despite the long integra-
tion time and the chaotic nature of the evolution there are no close encoun-
ters, and both the semimajor axes and the eccentricities remain bounded
within narrow ranges. There are long quiescent intervals, lasting for up
to 107/(27) orbital periods, in which the semimajor axes remain nearly
constant and there is no obvious sign of chaos. The top panel shows that
the variations in the semimajor axes are out of phase, such that the av-
erage semimajor axis is nearly conserved. This is simply a consequence
of energy conservation: in a two-planet system the total Kepler energy is
-2 GM.,(m1/ay + ma/faz), so if the two semimajor axes are nearly the
same they must vary out of phase. In contrast, the bottom panel shows that
the variations in the eccentricity are in phase, such that e; ~ es. The reasons
for this are explored in Problem 3.10.

Lagrange stability A two-planet system is Lagrange unstable if one pla-
net either escapes or collides with the host star. To obtain some analytic
insight, we examine a system containing two planets: planet 1 has mass
m1 << mg and follows a circular orbit with semimajor axis a;, while pla-
net 2 has zero mass and initially follows a nearly circular, coplanar orbit
with semimajor axis as =~ a;. The initial value of the Tisserand param-
eter of planet 2 (see Box 3.1) is T' ~ 3, and the Tisserand parameter is
conserved, except for short intervals when the two planets are in close prox-
imity. If planet 2 escapes, it is likely to do so with near-zero energy; in this
case a;' =~ 0, eg ~ 1 and az(1 - €3) ~ 2o where ¢y is the periapsis dis-
tance, so T' = 2(2¢s/ al)l/ 2. Equating the two values of 7', we conclude that
qo = %al; thus planet 2 escapes when its periapsis is only 12% larger than
the semimajor axis of planet 1, so the two can still interact strongly. On the
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other hand, if the test particle collides with the host star, then e5 = 1 and
so T = ay/ay, and we may conclude that at collision the semimajor axis is
as = %al and the apoapsis distance is Q2 = as(1 + e3) = %al, too far from
planet 1 for strong gravitational interactions.

These considerations suggest that Lagrange instability usually leads to
escape rather than collision with the host star, and this is confirmed by nu-
merical orbit integrations (Deck et al. 2013; Morrison & Malhotra 2015).
The simulations also show that (i) for typical planetary masses, the Lagrange
stability boundary lies close to the boundaries for Hill stability and for
chaos; and (ii) for systems containing two low-mass planets, the timescale
for Lagrange instability is very long—roughly 0.02(mz/mg) -5 orbital pe-
riods according to Morrison & Malhotra (2015)—so orbits like the ones
shown in Figure 3.14 may still escape in the future.

3.6 Disk-driven migration

Gaseous protoplanetary disks disperse a few Myr after their host star forms
(e.g., Williams & Cieza 2011). Giant planets such as Jupiter and Saturn
must have formed before the disk dispersed, since it is the only plausible
source for the gas that comprises their massive atmospheres. Therefore any
theory of planet formation and evolution must account for the dynamical
interactions between a massive planet and a surrounding gaseous disk. Our
understanding of this behavior is still incomplete, and this understanding
requires analytic and numerical tools from fluid mechanics that are outside
the scope of this book (see Baruteau et al. 2014 for a review), but some
of the most important features of disk-planet interactions can be described
with the tools we have already developed.

We examine the behavior of a small body of mass m on a circular orbit
of semimajor axis a, passing through conjunction with a planet of mass M,
on a circular orbit with semimajor axis a,,. Both objects orbit a host star of
mass M., with m < M, < M, and |a — ap| < a,. The orbital period of
the planet is P, = 27 /n,, with n, = (GM /ag)l/Q, and the orbital period of
the small body is P = 2r/n with n = (GM, /a®)/2. The synodic period is
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given by equation (3.138), which in the present notation reads

dmay

Paygn = (3.141)

3npla - ap|

We now take the small body m to be an element of gas in the protoplan-
etary disk. We assume that the interaction with the planet at conjunction
excites the eccentricity of the gas element in the same way that it excites the
eccentricity of a test particle. Thus, following conjunction the eccentricity
of the gas element should be given by equation (3.131). Over the synodic
period Py, which is much longer than the time needed to pass through
conjunction, viscous or other collective interactions within the gas disk are
likely to damp the eccentricity, so the gas element will approach the next
conjunction having returned to a circular orbit. Nevertheless, the orbits are
not the same at the two conjunctions: the gas element also suffers a change
in its semimajor axis according to equation (3.134), which is rewritten in
the present context as

27-2.5195 G* M}

a =
3nt(a-ap)®

(3.142)

The change in semimajor axis corresponds to a change in angular momen-
tum, and this change accumulates as it is repeated at subsequent conjunc-
tions. The long-term rate of change of the semimajor axis of the gas element
is therefore given by

1da 1 Aa
ap dt N ap Poyn

2°-2.5195° G* M}

3tmn3a2(a—ap)*

=sgn(a - ap) (3.143)

For a solar-mass host star,
ap dt — 244yr  \M;) \a-a, ap '

where Mj is the mass of Jupiter. The characteristic timescale is only ~
107 of the lifetime of the gas disk, confirming that disk-planet gravitational
interactions must play a central role in sculpting planetary systems.
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Equation (3.143) shows that the planet repels the disk material, and this
repulsion has two important consequences. First, if the interactions with the
planet are stronger than viscous stresses or other mechanisms such as den-
sity waves that transport angular momentum within the disk, the planet will
carve out an annular gap in the disk. Such gaps are seen in Saturn’s rings
(e.g., the Encke gap, caused by the satellite Pan). Gaps in the dust distribu-
tion are also common features in images of protoplanetary disks (Andrews
et al. 2018), although at the present time there is little direct evidence that
these gaps are caused by planets.

Second, just as the planet repels the disk, the disk repels the planet, caus-
ing the planetary orbit to spiral inward or outward, a process known as disk-
driven migration of planets. The migration rate of the planet due to a ring
of material of mass m, at semimajor axis a is da,/dt = —(m,/M,)da/dt,
where da/dt is given by equation (3.143). If the planet is embedded in
the disk, the repulsion from gas inside the planet is largely canceled by the
repulsion from gas outside the planet. The cancellation is not exact, but
whether the inner or outer disk wins cannot be determined from the analysis
leading to equation (3.143), in part because the contribution from a ring of
material diverges strongly as |a — ap| — 0. In a real disk the divergence is
suppressed when |a — a,| < max(rg, h), where rg is the Hill radius (eq.
3.24) and h is the thickness of the disk.

Careful analyses of realistic protoplanetary disk models show that, in
general, the repulsion from the outer disk is stronger and the planet mi-
grates inward. The migration rate depends strongly on whether the planet
is massive enough to open a gap in the disk, and the process is called Type
I migration if there is no gap, and otherwise Type II. In either case the
migration timescale is typically much shorter than the lifetime of the proto-
planetary disk for planets of Earth mass or larger.

Perhaps the biggest surprise in the early history of exoplanet discover-
ies was that giant planets were found at semimajor axes much smaller than
those of the giant planets in the solar system. The distribution of orbital pe-
riods of exoplanets discovered by radial-velocity surveys (§1.6.1) is shown
in Figure 3.15. Not shown are planets discovered by transit surveys, to avoid
the strong bias of transit surveys toward planets with small semimajor axes
and orbital periods (see discussion at the end of §1.6.2); radial-velocity sur-
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Figure 3.15: Orbital periods of 529 planets with M, sin I between 0.1 and 10
Jupiter masses. Only planets discovered by radial-velocity surveys are plotted.
Data are from the NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.
edu/index.html.

veys are also biased toward planets with small semimajor axes, but the bias
is weaker. Only planets with M, sin I between 0.1 and 10 Jupiter masses
are plotted in the figure, which should mostly be giants with massive atmo-
spheres. The plot shows that most known giant planets have orbital periods
between about 300 and 3 000 days, but there is a significant tail at smaller
periods containing about one-third of the planets. The most extreme ex-
amples are the hot Jupiters, typically defined as giant planets with orbital
periods < 10d. Similarly, warm Jupiters are defined to have orbital periods
between 10d and 100d.

It is difficult to form hot Jupiters in situ and disk-driven migration offers
a mechanism to explain why giant planets are found at such small semi-
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major axes.!> However, the short migration timescales lead to one of the

fundamental puzzles of planet formation: why have all the giant planets not
migrated into their host star? Perhaps migration stops at the inner edge of
the disk, which might be truncated by interactions with the star at a few
stellar radii, but then why is the distribution of orbital periods relatively flat
all the way out to 100d?

15" An alternative mechanism is high-eccentricity migration, described in §5.4.2.



Chapter 4

The IN-body problem

Determining the trajectories of N — 1 planets orbiting a common host star
is an example of the gravitational IN-body problem. The gravitational
N-body problem also describes the behavior of many other astrophysical
systems: multiple-star systems, stars in star clusters and galaxies, galaxies
in clusters of galaxies, elementary particles in dark-matter halos, and so
forth. Celestial mechanics is distinguished by its focus on systems in which
(i) there is a dominant central mass; (ii) the eccentricities and inclinations
are small; and (iii) a large number of orbital periods elapse in the lifetime
of the system, typically 10°-10*!.

4.1 Reference frames and coordinate systems

A host star with mass mg and position r is orbited by N — 1 planets with
masses m; and positions r;, 7 = 1,..., N — 1. We assume that these co-
ordinates are defined in an inertial reference frame: a frame in which an
isolated body does not accelerate, or, equivalently, there are no fictitious
forces.

Fictitious forces can arise from rotation of the frame around its origin
or from linear acceleration of the origin of the frame. The rotation of any
solar-system reference frame relative to an inertial frame can be determined

209
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dynamically—by finding the Coriolis and centrifugal forces required for a
dynamical model to fit the observed trajectories of the Moon and planets—
or cosmologically, by assuming that the positions of distant extragalactic
objects such as quasars are fixed in an inertial frame (§1.5.3). Linear accel-
eration of the frame does not lead to fictitious forces so long as the frame is
freely falling.

We can almost always assume that planetary systems are isolated, at
least if we are investigating the trajectories of objects within a few tens of
astronomical units of the host star. Tidal forces on planetary systems arise
from the overall Galactic mass distribution and individual nearby stars, but
these are far too small to be detectable—for example, the mean density of
the solar system inside Neptune’s orbit is more than ~ 102 times the mean
density of the Galaxy in the solar neighborhood (see Problem 9.6). Tidal
forces of this kind are only relevant for the dynamics of comets, as described
in §9.4.

The equations of motion of an isolated N-body system in an inertial
frame are

N-1 G .
= Y M;J) j=0,...,N—-1. 4.1)
k=0,k#j |rj — v
In terms of a gravitational potential,
0P;(r;,t = Gmyg
;= —M, where ®;(r,t)=- > — % _ (42
or; je0iag [T =T (0]

These equations of motion result from the Hamiltonian

— 2
Nlpj N-1 N-1

Gm My
H(r07"'arN—17p07'--;pN—l)E Z Z Z —L = (43)
7=0 2m] 7=0 k= ]+1 k|

where p; = m,r; is the momentum conjugate to r;.

4.1.1 Barycentric coordinates

The most widely used inertial frame is the center-of-mass or barycentric
frame, in which the center of mass of the system is at rest at the origin
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Figure 4.1:  Schematic dia-
grams of the three coordinate
systems defined in §4.1. The

shaded circle represents the
barycentric astrocentric Jacobi host star.

(Figure 4.1). This condition can be written as

N-1
Z m;r; =0, Z p; = Z m,r; = 0. 4.4
3=0

It is straightforward to show from (4.1) that if the conditions (4.4) hold at
any time, then they hold at all times.

Despite their simplicity, barycentric coordinates are not ideal for many
problems in celestial mechanics. One drawback is inefficiency: there are
3N second-order differential equations (4.1), or 6V first-order equations if
we write the equations for r; and p; separately, but because of the conserved
quantities (4.4), six of the 6N equations are redundant so the work done to
solve them numerically is wasted. A second drawback is that for many
purposes, it is more convenient to have the host star located at the origin.

4.1.2 Astrocentric coordinates

The non-inertial, non-rotating frame centered on the host star is called the
astrocentric frame, or the heliocentric frame for the solar system (Figure
4.1). Letr; = r; — ro be the position of planet j relative to the host star.
Then from equations (4.1) it is straightforward to show that

[(rk_r ) rk

P

. G(mg+m
I‘j= 7(;) J) +2Gk

:|,]—1 ,IN - 1.
|J| k=1,k#j

[r; —r

4.5)
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We can rewrite this equation in terms of a gravitational potential:

O, (rs,t
10N (4.6)
J or;
where
. N-1 N-1 * () .
o, (r1) :_G(m0+mj) S Gmy S Gmyri(t)-r

x| petdgy TRl Ty IR@OP

The last term is called the indirect potential.

To derive a Hamiltonian for the /N-body system in astrocentric coordi-
nates, we must (i) define an additional coordinate rg to provide a complete
set of N coordinate 3-vectors r7; and (ii) find N momentum 3-vectors p;
conjugate to these coordinates. To do so we use the generating function

* *
SQ(p(Jv"-7pN—17r07"'arN—1)

N-1 N-1
=Pg- [Po +B Y mu(rk —Po)] + Y pp-(re—ro), 4.7
k=1 k=1

where [ is a constant parameter. From equations (D.63),

. 05, N-1
To = oor ro + [ Z my(ry — o), (4.8a)
Po k=1
a8 L N= N .
bo = 2= Po — Z (Bmipg +Pr), (4.8b)
al'() =1
* aSQ
rj=-2— =Tj-To, (4.8¢)
op;
055 . .
pj = - =PBm;py +Ppj, (4.8d)
J or; iPo T P;
for j =1,..., N — 1. The inverse transformations are

N-1
Po= ). Pk (4.92)
k=0
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N-1
ro=r;-0 Z mMETy, (4.9b)
k=1
N-1
p; =p; - Bm; ). Pk, (4.9¢)
k=0
N-1
rj= r; +ry - Z mETy,. (4.9d)

k=1
Equation (4.9a) is proved by substituting the right side of (4.8d) into (4.8b);
it shows that pg is the total momentum. Then (4.9¢) is proved by substitut-
ing (4.9a) into (4.8d). A similar process is used to derive (4.9b) and (4.9d).
The Hamiltonian is derived by replacing r; and p; in the Hamiltonian
(4.3) by rj and p}:

H(I‘S,. "7r*I(\[717p63"'7p’I(\f—1) (410)
1-28(M N-1(p*? @ ,
- 1p? M (M m )]+ (;’a _ 7|”0|m;
mo j=1 mJ I‘j
N1 N1 Gmymy, M -1 N-1 N-1N-1
31k * * * *
- * * (U Z P+ -— Z Z P; Pk,
J=1 k=j+1 |I'J Ly 0 j=1 ! 0 j=1 k=1 !

where M = Y1 o' my, is the total mass of the system. We can extract the
terms from the final sum in which £ = j and add them to the terms propor-
tional to p;Q. Introducing p; = mom;/(mg +m;) for the reduced mass of
the two-body system consisting of the host star and planet j (cf. eq. 1.10),
we have

H(r{,...,tN_1,P0s---sPN- 1) 4.11)

+NZ [pa B Gﬂj(mg+mj)]

1 L 21y ‘rj|

N-1 N-1 Gm.m M—l N- 1 N-1 N-1
Z Z * ’ *k + ﬂ Z p; p;;
J=1 k=j+1 |rj -1y mo j=1 0 j=1 k=j+1
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There are two natural choices for the parameter 5. In convention A or
Poincaré coordinates, 5 = 0 (Poincaré 1896). Then r() = r is the position
of the host star in the barycentric frame and equation (4.11) becomes

* _ *2
Py +N HPiT Gpy(mo +my)

Hy = - (4.12)
2m0 Jj= 2#] |r]|
NlNlemk p6N1 N-1 N-1
-2 Z M PO LSS pph
J=1 k=j+1 |r -] mo j=1 mo J=1 k=j+1

If the original inertial coordinates are barycentric then p;; = 0; however, we
cannot remove the terms proportional to pg-p; from the Hamiltonian, since
otherwise Hamilton’s equations would erroneously imply that ©; = 0. The
first line of equation (4.12) is simply the kinetic energy of the host star plus
the sum of the two-body Hamiltonians for all the planets. The second line is
the perturbing Hamiltonian. The first term is the sum of the gravitational po-
tential energies of the pairwise interactions between the planets. The cross
term involving p7 - pj, is an inconvenient but inevitable complication of the
change to a non-inertial frame.

An interesting feature of convention A, easy to see from equations (4.8)
with 8 = 0, is that the coordinates of the planets rJ*» are astrocentric but the
momenta p; are barycentric.

In some cases we may want to express the Kepler terms in the Hamilto-
nian (4.12) in terms of Delaunay variables, as described in Box 4.1.

In convention B or democratic coordinates, 3 = A/~! (Duncan et al.
1998). Then ry is the position of the center of mass of the system, rather
than the position of the host star. The Hamiltonian from equation (4.10) is

Hp =

P D>

j=1 j=1 k=j+1

—| Z

py? Nl pj*» ~ Gmem; | & Gmek
2m; b r% -1yl 2mo
\@13)

while equation (4.11) yields

a2
Hy = Py +Nzl[pj _ Gﬂj(mo+mj)]
2M A | 2wy I3
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Box 4.1: Momenta and actions in N-body systems

In descriptions of the two-body problem or of the motion of a test particle in a
given potential, it is usually simplest to define the momentum to have dimensions
of (length)/(time) (see footnote 10 in §1.4). Similarly, angular momentum and
actions such as the Delaunay variables A, L, and L, (eq. 1.84) have dimensions
of (length)zl(time). In systems of IV bodies with different masses, it is better to
follow the usual convention in physics, in which momentum has dimensions of
(mass)x(length)/(time) and actions have dimensions of (mass)x(length)z/(time).
Thus, suppose that a Kepler Hamiltonian has the form (cf. eq. 1.80)

2 G
o P Gmamy @
2maq lal
The corresponding Delaunay variables are
A=ma(Gmba)1/2, L=A(1—62)1/27 L,=LcoslI, (b)

where a, e and I are the semimajor axis, eccentricity and inclination. The Hamil-
tonian can be written

Gmegmy, szimg
H=- =- . (©)
2a 2A2
For example, in astrocentric coordinates the Kepler Hamiltonian for planet j
is contained in the square brackets in equation (4.12) or (4.14). Then mq = p;,

my = mo + mj, and the first Delaunay variable and the Hamiltonian are

. G?m3m3

mom; 1/2 0"
Aj = ———[G(mo +mj)a;]"'°, Hgj=-—"—""-,
J m0+m]~[ (mo 3)a;] K. 2(m0+mj)1\? @

where the semimajor axis is measured relative to the host star. On the other hand,
if the Hamiltonian is written in the form (4.13), then mq = m;j, my = mo, and

2,2 3
Gmomj

Aj =mj(Gmoay)'?, Hy;=- 2A2
i

(e)

In Jacobi coordinates, the Kepler Hamiltonian is contained in the square
brackets in equation (4.39). Then mq = fij, my, = M, and

2,,37073
m M. G*m>M >
Aj = N (GMja)?, Hy = -— 07 @)
M; ’ 2M;A:

J
Here Mj is the sum of the host-star mass and the masses of all the planets interior
to and including planet 7, and the semimajor axis is measured relative to the center
of mass of the host star and all of the planets interior to j.
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N-1 N-1 Gm.m 1 N-1 N-1
g1k
X X et P Pi (414
§=1 k=j+1 ‘rj Tl 0 =1 k=gt

In either Poincaré or democratic coordinates, the equations of motion de-
rived from the astrocentric Hamiltonian are the same as equations (4.5),
supplemented by an equation of motion for rj and the constraint p;; = const.

The total angular momentum of the system can also be expressed in
astrocentric coordinates. We write the generating function (4.7) in the form

N-1
52(136, . ap;\f—l,r(% . aerl) = Z Ajkp; ‘T, (415)
J,k=0
where A is a constant N x N matrix. Then
352 N-1 852 N-1
I‘%Z = Ai rg, = = Anv’ *. 416
i opr k;) ikTk, Di or, n;) iPn (4.16)

The first equation can be inverted to give
N-1
ri= Y Ajri. (4.17)
k=0

The total angular momentum is

N-1 N-1 . N-1
L= Zrixpi: Z A;kAmI‘ZXp:Lz erxp;. 4.18)
i=0 i,k,n=0 i=0

The last equality follows from the identity >, AmAi‘kl = 0;1, Where 9y, is
the Kronecker delta (eq. C.1). Equation (4.18) shows that the total angular
momentum has the same form in inertial and astrocentric coordinates.
Astrocentric coordinates are poor choices for the description of the tra-
jectories of bodies orbiting at large distances from a planetary system. The
reason can be illustrated by a simplified system consisting of a star, one pla-
net and a distant test particle. The motion of the star around the barycenter
introduces a fictitious force in the astrocentric frame that does not decline
with distance. Because this force oscillates with the period of the planet,
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any integrator following the test particle has to use a timestep that is much
less than this period, no matter how long the period of the test particle may
be. Numerical integrations of distant objects in astrocentric coordinates are
therefore extremely inefficient.

As this illustration suggests, astrocentric coordinates work well for in-
ner planets, and barycentric coordinates work well for outer planets. The
coordinate system described in the next section incorporates some of the
advantages of both systems.

4.1.3 Jacobi coordinates

The limitations of barycentric and astrocentric coordinates are partly re-
moved by Jacobi coordinates. In Jacobi coordinates the position and velo-
city of body my, are given relative to the barycenter of bodies my, . .., mg_1.
Thus the transformation to Jacobi coordinates depends on the ordering of
the labels assigned to the planets; it is said to be “undemocratic.” If the pla-
nets are on well separated orbits, the best approach is to arrange the labels
in order of increasing semimajor axis. Thus my is the host star, m; is the
innermost planet, and my_; is the outermost. More generally the ordering
should be from the subsystems with the shortest orbital period to those with
the longest period; for example, in the Earth-Moon—Sun system we should
choose mg to be the Earth, m; the Moon, and ms the Sun.

The Jacobi coordinates and momenta are labeled (T, p;) with the index
7 running from O to N — 1 in an N-body system (star plus N — 1 planets).
We define Jacobi coordinates in terms of barycentric coordinates r; by

1 N1 1 4=l
ro= mgry, T,=T;— mgry, j=1,...,N-1,
Mn-1 iz T My k;)
. 4.19)
where M; = 3] _, my.. The coordinate ¥ is the position of the barycenter of
the system. For k = 1,..., N — 1, the Jacobi coordinate T, is the difference

between the position of planet 5 and the center of mass of all the bodies with
smaller labels (see Figure 4.1). Thus the Jacobi coordinates are astrocentric
for the innermost body and barycentric for a test particle orbiting outside
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the planetary system. We can rewrite equations (4.19) as
N-1
f‘J = Z ijrk, (420)
k=0

where

mi/Mn-1, J=0;
—mk./Mj_l, k<j;

1, k=3>0;
0, k>j>0.

Qi = 4.21)

We also need the inverse transformation from Jacobi to barycentric co-
ordinates. To derive this, note that equation (4.19) for r_; can be rewrit-
~ N-2 ~
ten as My _ofn_1 = MN_orN_1 — Dj—g MiTk = MN_orn_1 — MN_1To +
mpy-1rN-1 = Mn_1rn-1 — M_1T0; and this can be solved to give

Mpy-
N2 Fno1. (4.22)

ry-i1= f‘o +
N-1
This gives r_; in terms of Jacobi coordinates. Similarly we can solve for
ry-o in terms of ry_; and Jacobi coordinates, and eliminate ry_; using
equation (4.22) to obtain

Mpy_3_ MN-1 -
o — 1. 4.23
M y_2 My ry_1 (4.23)

ry_g= f’o +

This process can be continued, and we find

N- M N-1
Zm— v =Fot —2F- Y SEg j=1,...,N-1;
=1 Mg M; w1 M

4.24)
here it is understood that the summation is zero for j = N — 1, where the
lower limit of the index k is larger than the upper limit. This transformation
can also be written

Z Q51 (4.25)
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where
1, k=0;
) -mi/My, k> j;
Qik =) Mya/My, k= >0, (4.26)
0, j>k>0.

We must now find the momenta conjugate to the Jacobi coordinates. To
do so we choose the generating function (cf. eq. 4.15)

N-1
S2(Po,-- - PN-1T0,---,TN-1) = Y. QjkDj - Tk (4.27)
4,k=0
Then Ny Nt
- 0859 ! 0859 - -
= 0% _ e, pi 222 B 428
Fi 8]3] l;) ij k Pj aI‘j kz:;) ijpk ( )

The first of these is identical to (4.20). The second is a matrix equation that
can be inverted to give

N-1 1
Pr= ). Qjipj (4.29)
j=0

Then using equations (4.26), we have

Bo= 3 by Bre Ml TR L i1 N-1 @30)
=0 Mj, My 5

The inverse transformation is given by the second of equations (4.28),

N-1 N-1
mo . mo . my o~ - m;
= Po - — Pk, P;j= Po+DP; —
Mn_1 2 7 My ! k;ﬂ My

i=1 Mr-a
4.31)
forj =1,...,N — 1. As in equations (4.24) it is understood that the sum-
mation is zero for j = N — 1, where the lower limit of the dummy index is
larger than the upper limit.
The arguments leading to equation (4.18) apply both to astrocentric and
Jacobi coordinates, so the total angular momentum is

Po Iska

N-1

L= Z fk X ﬁk. (432)
k=0
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The total energy can also be expressed with a simple formula. Using the
second of equations (4.28), the kinetic energy can be written

N-1 ? N-1 ngQ i
-3 Pi _ Thi%nd g B 4.33)
]Z:;J 2mj j,k;:O 2m]‘

Using equations (4.21) it is straightforward to show that

N-1 QriQni 1/ZMN—h k=n=0;
Y, T = My /(mgMy-y), k=n>0; (4.34)
7=0 My 0, k#mn.

Therefore the kinetic energy can be written
N-1 =2

P
T = £ (4.35)
kZ:%J 2/

where
M N-1, k= 0;
Ao =y MM
My,
Thus the kinetic energy in Jacobi coordinates has the same form as in bary-
centric coordinates, except that the masses my, are replaced by fi: this is
far simpler than the expression for the kinetic energy in astrocentric coordi-
nates, equations (4.10) or (4.11).
The Hamiltonian in Jacobi coordinates is

4.36
k=1,...,N-1. (4.36)

~ N-1 §2 N-1 N-1 G
= PO s P e e T (4.37)
200 3 205 D0 k54 vy Tkl

where ry, is defined in terms of T; by equations (4.24). The Hamiltonian
is independent of ¥ so the total momentum pg is conserved, and the time
derivatives of the Jacobi coordinates are related to their conjugate momenta
in the usual way,

dty, OH Py

=91 _ Bk (4.38)
dt  Opr [
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The Hamiltonian can also be written in the form

~ _ ~2 ~
u- B[P c]
j=1

2fio 2t %]
N-1 N-1

MDY Gmgmy, Z Gm k(Mkl Mo ) (4.39)

o Rl | SR VY [Fx|  |rx — o

The terms on the first line consist of the kinetic energy of the system as a
whole—which we can drop since it is constant—and the usual two-body
Hamiltonian for the motion of a body of mass /i, around a fixed point lo-
cated at the barycenter of the first k¥ masses (k — 1 planets and the host
star). The terms on the second line are smaller—by a factor of roughly the
ratio of the planetary masses to the stellar mass—and depend only on the
Jacobi coordinates, since r; can be converted to T'; using equations (4.24).
Therefore Jacobi coordinates can be used in the Wisdom—Holman integra-
tors described in §2.5.3.

Jacobi coordinates are well suited for systems of planets on orbits that
never cross. If the orbits cross, the equations of motion based on Jacobi
coordinates remain valid, but the planets are no longer ordered by their dis-
tances from the host, so numerical integrators based on these coordinates
may be inefficient.

4.2 Hamiltonian perturbation theory

The Hamiltonian for a system of N — 1 planets orbiting a common host star
can be written in the form

H(q17"'an—17p1a"'7pN—1)
N-1 N-1

z Hg z(qupz) + z Z (qzapzaqjap]) (4.40)

i=1 j=i+1

Here Hy ; is the Kepler Hamiltonian for planet 7, and H;; represents the
interaction between planets 7 and j. In general |H,;| < |Hk ;| because plan-
etary masses are much smaller than stellar masses. The goal of perturbation
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theory in celestial mechanics is to exploit the small masses of planets to
find approximate descriptions of the evolution of trajectories in multi-planet
systems—in fact, it was for this purpose that perturbation theory was origi-
nally invented.

The Hamiltonian in astrocentric coordinates has the form (4.40) in either
convention A or B (egs. 4.12 or 4.14), provided we treat the total momen-
tum pg as a constant—which it is, since the Hamiltonian is independent
of the conjugate coordinate r;—and drop the constant term proportional to
p62. Similarly the Hamiltonian in Jacobi coordinates (4.37) has this form,
provided we treat pg as a constant and drop the term proportional to %f)%

The Delaunay variables for the Kepler Hamiltonian Hy ; may be written
(6;,J;), where the vector of coordinates or angles is 8; = (¢;,w;, ;) and
the vector of momenta or actions is J; = (A;, L;, L.;), as defined in Box
4.1. We can rewrite the Hamiltonian (4.40) in these variables as

H(61,.0n-1,d1,,IN"1)

N-1 N-1 N-1
= Y Hix:(Ji)+ Y, . Hij(0:,3:,0;,3;), (4.41)
i=1 i=1 j=itl

where the Kepler Hamiltonians Hx ; are given in Box 4.1 for astrocentric
and Jacobi coordinates. The remaining terms H;; are called the disturbing
function.!

Calculating the disturbing function is much harder in Delaunay variables
than in Cartesian coordinates (for example, it depends on all six Delaunay
variables but only three Cartesian coordinates), but the advantage of work-
ing in angle-action variables like the Delaunay variables is so great that this
price is often worth paying. Wisdom—Holman integrators (§2.5.3) are based
on splitting the Hamiltonian into two parts: a Kepler Hamiltonian that is
simple to integrate in Delaunay variables, and a disturbing function that is
simple to integrate in Cartesian coordinates.

1 Unfortunately, for many authors this name refers to —Hj;, not H;;.
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4.2.1 First-order perturbation theory
Equation (4.41) is an example of a Hamiltonian of the form

H(6,3) = Ho(J) + eHy(6,J), (4.42)

where 0 and J are vectors of angle-action variables (of dimension 3N -3
in eq. 4.41). Here € «< 1 is an ordering parameter that is used to keep track
of the size of the changes due to the perturbing Hamiltonian.

Because 0 is a vector of angles, H; must be periodic with period 27 in
each of its components 6;. Therefore it can be expanded as a Fourier series
(Appendix B.4),

H(6,3)=Ho(J)+€) hm(J)exp(im-0), (4.43)
where m is a vector of integers having the same dimension as 6. Since both

Hy and H; are real, when we take the complex conjugate of this equation
and replace the dummy index m by —m we have

H(6,J) =Ho(J)+e) h*,(J)exp(im- ). (4.44)
The two equations must be the same for all 8, which requires that A*,, (J) =
hm(J). If we write hy, (J) = Hpm(J) exp[-idm(J)] where Hyy, and ¢y,
are real, then this requirement implies that
H w=Hy and ¢_m = —¢m. (4.45)
Equation (4.43) can now be rewritten as

H(6,3) = Hy(J)+€ ) Hyn(J)[cos(m-0—¢m)+isin(m-0-¢m)]. (4.46)

Because of the conditions (4.45) the sine terms with indices m and —-m
cancel and the sine term with m = O vanishes, so this result simplifies to

H(6,3)=Ho(J)+€e) Hn(J)cos(m- 6 - ¢r,). (4.47)
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Hamilton’s equations are

dJ OH . .
E = —% = —legmhm(.]) exp(1m~9), (4483)
dé@ OH O0OH, Ohm .
— == —_— -0). 4.4
% -8 - 83 (J) +e¢ ; 53 (J) exp(im- 0) (4.48b)
If € = 0 the solution is
J=Jun, 0=0i,+Q(Jin)t, (4.49)

where J;,, and 6;,, are the values of the actions and angles at the initial time
t =0, and Q(J) = 9Hy/dJ. For example, in Delaunay variables the actions
are J = (A, L, L), and in astrocentric coordinates the Kepler Hamiltonian
is given by equation (d) of Box 4.1, Hx (J) = - G*m3m3/[2(mg + m)A?],
)

Q(J):( G*mgm? 070)2([G(m0+m)]1/2

(mo +m)A3’ ad/? 0, O) = (n,0,0),
(4.50)
where n is the usual mean motion.
Now assume that € is small but nonzero. We write the trajectory in

angle-action variables as a power series in e,

Jt) =IO +eID (1) + TP () + ...,

0(t) =0 (t) + 0D (t) + 20P (1) + .. .. (4.51)
We substitute these expressions in Hamilton’s equations (4.48), expand fac-
tors like fg (J(© + eI + ...) as Taylor series in €, and collect all of the

terms with the same power of e.
The terms independent of € have the solutions (4.49),

JOW) =3, 09() =6;, + Q(JIin)t. (4.52)
The terms proportional to € are
aJ"
Tjt =i m; hm exp (im-0®), (4.53a)
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aotM 0%H Oh
i _ 0 (1) m . (0)

=> J PP m-6'0). 4.53b
dt = 0J;0J " " —~0J; exp (i ) ( )

In these equations all functions of the actions on the right side, such as Ay,
and 9% H/0J;0Jy, are evaluated at the zero-order actions J(9).

At this point we divide the terms in the Fourier series into two sets.
Let S denote the set of all integer triples m such that m - Q(J(®)) = 0.
When m € S, the corresponding component of the Fourier series is called
a secular term, otherwise it is a short-period term. In Delaunay variables
the Hamiltonian Hy depends only on J; = A, so the secular terms are those
with my = 0.

We now substitute equations (4.52) into the right side of equation (4.53a)
and integrate:

TN (t) = it ZS 1P (J5n) exp(im - 65, (4.54)

This expression includes an integration constant chosen such that J™) (¢ =
0) = 0, consistent with the initial conditions. The secular terms on the
first line lead to changes in the actions that are linear in time; however, the
secular terms have m4 = 0 so there is no secular change in the action J; = A,
which implies that there is no secular change in the semimajor axis.

The solution for the angles 0(1)(t) is similar, although we must sub-
stitute the solution (4.54) for J(M)(¢) into the right side of the differential
equation (4.53b) before integrating. This procedure can be repeated to de-
termine the angles and actions to order €2, €3, and so on, but the labor grows
rapidly at higher orders, and the insight gained from the solution diminishes
equally rapidly. More efficient approaches are described in the following
subsections, but in practice perturbation theory is rarely applied to Hamil-
tonian systems beyond order €.

In principle, equation (4.54) and its analog for the angles provide a com-
plete description of the dominant effects of mutual gravitational interac-
tions on planetary orbits. However, the practical application of these re-
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sults encounters two obstacles. The first of these is the presence of terms
proportional to ¢ in the equation for J(¢). These imply that perturbations
in the actions grow without limit, so long as there are any secular terms
with m # 0—for Delaunay variables these would be all terms with m; =0
and meo or mg nonzero, so changes in the eccentricity and inclination can
grow linearly, but changes in the semimajor axis cannot. This result raises
the uncomfortable possibility that the eccentricities and inclinations of the
planets in the solar system may grow until the orbits cross and planets col-
lide.? Fortunately this is not the case: as described in §5.2, the perturbations
in eccentricity and inclination are oscillatory but with a frequency that is
smaller than the mean motion by of order ¢, so the oscillations look linear
in a perturbation series® that is valid only to O(e).

The second problem is the presence of the factor m- (2 in the denomina-
tor in equations (4.54). Since m is the set of all integer N-tuples in a 2N di-
mensional phase space, m- €2 can be arbitrarily close to zero for some value
of m, which means that the series does not converge. This is a physical
phenomenon, not just a mathematical inconvenience: in general, nonlinear
Hamiltonian systems with more than one degree of freedom are not inte-
grable, so chaotic trajectories are found in the neighborhood of every point
in phase space, and this complexity is not captured by perturbation theory
(see Appendix D.8). The results of perturbation theory should be thought of
instead as asymptotic series: over a fixed time interval they provide a better
and better description of the motion as the parameter € becomes smaller and
smaller. In practical terms, perturbation theory is useful for describing the
motion of planets and satellites over intervals of hundreds or thousands of
orbits but not for the lifetime of the universe.

4.2.2 The Poincaré-von Zeipel method

The perturbation theory developed in the preceding subsection is straight-
forward but cumbersome. An alternative and simpler approach is to find a

2 This was a fundamental scientific issue in the eighteenth century. See §4.5 for a brief history.

3 A simple example of this phenomenon is given by the differential equation z = iez with
initial condition z = 1 at ¢ = 0. The solution is z(t) = exp(iet), which is oscillatory, but a
power-series expansion of the solution gives linear growth, z(t) = 1 + iet + O(€?).
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canonical transformation to new variables that obey a simpler Hamiltonian
(Poincaré 1892-1897; von Zeipel 1916).

Let J’ and 6’ be new variables derived from J and @ by the generating
function

52(3',0)=J"-0+¢€) 5:m(I)exp(im-0). (4.55)
Then from equations (D.63),
88 / . / .
J= 20 =J' +ie) msy,(J)exp(im-0), (4.56a)
, 0S OSm , <1 .
0 =ﬁ=9+€;W(J)exp(1m-0). (456b)

These equations can be rewritten to express the old variables in terms of the
new ones. To order e,

J=J +ie)> msm(I)exp(im-0') + O(e?), (4.57a)
0=0"-c2, ?9? (3 exp(im - 0") + O(€?). (4.57b)

Since the generating function is independent of time, the value of the
Hamiltonian is the same in the old and new variables, H'(J’,0") = H(J,0)
with H(J,0) given by equation (4.43). Eliminating the old variables us-
ing equations (4.57), expanding the result to O(e) in a Taylor series, and
replacing the derivatives H(J)/0J by 2(J), we find

H'(J',0") = Ho(J') +ieY m-Q(J" )5, (I") exp(im - 0")

+€> hm(J)exp(im-0') + O(%). (4.58)
We now set
0, me .S,
m(J) = ! 4.59
sm(I) = ) o (459)

m-Q(J)’
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where as usual S is the set of integer multiplets m for which m - € = 0.
With this substitution

H'(3')=Ho(J')+€ Y, hm(I)exp(im-0") + O(?). (4.60)

mesS

Thus at first order in e the new Hamiltonian is equal to the old Hamiltonian
with all of the short-period terms removed.

The Poincaré—von Zeipel method is better than the approach in §4.2.1
for two reasons. First, the effects of the perturbation are encapsulated in
two scalar functions, the Hamiltonian and the generating function, rather
than in 2V actions and angles; second, the secular Hamiltonian—the sum
over terms with m € S in equation (4.60)—is retained intact, so it can be
analyzed more accurately to eliminate the misleading linear growth in the
perturbations in the actions or angles (see §5.2).

Despite these advantages, the Poincaré—von Zeipel method is still awk-
ward when extended to second or higher order in the perturbation strength
€, mostly because of the need to work with a mixture of the old and new
variables.

4.2.3 Lie operator perturbation theory

The basic idea of the Poincaré—von Zeipel method is to find a new set of
canonical variables close to the original ones in which the Hamiltonian has
a simple form. Lie operator perturbation theory is based on the same idea
but avoids the use of mixed-variable generating functions.

Let z be a set of canonical variables and H (z) the Hamiltonian in these
variables. For brevity we assume that the Hamiltonian is time-independent;
this assumption is not restrictive, because any time-dependent Hamiltonian
can be converted to a time-independent one in an extended phase space as
described in Box 2.1.

Now let z'(z, €) be a new family of canonical variables, depending on
the parameter e. We assume that € << 1 and that z'(z,0) = z.

Write z| = z'(z,¢) and z}, = 2'(z, € + de). The transformation from z}
to z/, is canonical and so can be written in terms of a generating function
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Sa(dl, ph) = q] - psy + w(q), ph, €)de. From equations (D.63) we have

0 0
! 4 U ! ! 4 ! !
d—q; = Tp,zw((hd)zi)de; P2 —P1 = _aiq,lw((hapzaﬁ)dﬁ (4.61)
Now let € shrink toward zero. Then the difference between z/ and z also
shrinks to zero, so we lose no accuracy if we replace p’, by p} on the right
side. Thus

a-q; 0 P — Pl

0
= 1P =- 1P 4.62
de 8p/1w(q1?p1)? de aqllw(qlapl)v ( )

which can be written more compactly as

!
0z ={z ,w} = L,7Z, (4.63)
Oe
in which {-,-} is the Poisson bracket (Appendix D.3), and we have intro-
duced the Lie operator L,, defined in Appendix D.4. Although this result
was derived using the coordinates z/, the Poisson bracket is the same in any
canonical coordinates (Appendix D.6). The function w(z’, €) is called the
local generating function.
The Lie operator L, maps the space of scalar phase-space functions onto
itself. For each ¢ we define a second operator of this kind, T, as follows: if
f(z) is any function, then

(Tef)(2) = f[2'(2,€)]; (4.64)

in words, T.f evaluates f at the transformed point z’. The derivative of
equation (4.64) is

0 B gaz; < of _
86 (TEf)(Z) - 21: aZ’Z 66 - Zz: aZ:{Z“w} - {f7w}Z'
=(Luf)(Z") = (TLyf)(2). (4.65)
This result can be written more compactly as
T =T.L,. (4.66)

Oe
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We also need the inverse operator T;l, defined by TET;1 = T;lT6 =1
where | is the identity operator. Differentiating TET;1 = | with respect to €
and using equation (4.66) gives

T71
TL, T, +T. o _ 0, (4.67)
€
and left-multiplying by T;l gives
-1
o, _ -L, TN (4.68)
Oe

We now apply these results to a system with Hamiltonian h(z)=ho(z) +
€h1(z). Usually the Hamiltonian ho(z) is integrable and the variables z are
angle-action variables for ho(z), but these assumptions are not necessary
for the derivation below. We denote the Hamiltonian in the new canonical
variables z’(z, ¢) by H(z'). Since the canonical transformation has no ex-
plicit time dependence, H(z') = ho(z) + e¢h1(z) or, using equation (4.64),

T.H =ho+ehy. (4.69)
Differentiating this expression with respect to € and using equation (4.66),

OH

TL,H+T.— =h;. (4.70)
Oe
Then left-multiplying by T;l gives
H
L,H + 8@— =T 'hy. 4.71)
€

We now expand the functions w and H and the operators T, and T_" in
power series,

5} oo

we S wane’, H= Y To= YT, TeYeTh
n=0 =0 o " am)
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When € = 0, 2'(2,0) = z, so Hy = hg and Ty = Tal = |. Notice however
that in this notation T;l is not the inverse of T, for n > 0.
Since L,, is linear in w, we can write

L, = Z €"Ln+1, where Lyf =Ly, f={fwy}. (4.73)
n=0

Substituting these expansions into equations (4.66) and (4.68) and collecting
the terms proportional to €"~! with n > 0,

1 n-1 1 n-1
T,=— Z T L'n—m: T;Ll = Z Ln—’"bT;nl' (4.74)
™ m=o0 N m=0
Since To = T;' = |, these relations can be used recursively to determine
any T, or T;l in terms of the operators L;,...,L,. Upton =2,
To=1, T =Ly, T2=%L2+%Lf,
T, =1, T =-Ly, T, =3l + L0 (4.75)

A similar expansion of equation (4.71) yields for the terms proportional to
ETL

3 Loomar Hy + (n+ 1) Hyyq = T, by = 0. (4.76)

m=0
We evaluate these equations for n = 0, 1, 2, using equations (4.75) to sim-
plify the results:
L1H0+H1—h1:0, L2H0+2H2+L1(h1 +H1):0,
L3H0+3H3+L2H1+L1H2+%(LQ—L%)hl =0. (477)
Similar expressions are straightforward to derive for higher orders. Equa-
tions (4.77) can be rewritten as
{wi,Ho} = Hi—h1, {w2,Ho}=2Hs+Li(h1+Hi),
{’IU,?,,HQ} :3H3+L2H1+L1H2+%(L2—L%)h1. (478)
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We are now free to choose the terms in the new Hamiltonian, H,,,
and solve the differential equations (4.78) for the corresponding generating
function w,,. Typically H,, is chosen so that w,, has only oscillating terms,
thereby ensuring that the new and old variables differ only by oscillating
terms.

For example, suppose that the Hamiltonian has the form (4.43). In the
present notation the canonical variables z are the angles and actions (0, J),
the unperturbed Hamiltonian is hy(J), and the perturbation is h;(J,0) =
Y m Am(J) exp(im - 8). Now consider the first of equations (4.78), corre-
sponding to first-order perturbation theory. We choose H; so the average of
the right side over angles vanishes. This requires H; = ¥ ,,,c5 hm(J), where
S is the set of all integer multiplets m for which m-Q(J) = m-0h/0J =0
(the secular terms). Then the first of equations (4.78) becomes

é)wl .
{wy, Ho} = Q(T) - 20 - Hi-hi== ) hn(J)exp(im-8), (4.79)
m¢S

which is easily solved for wy:

. hm(J)exp(im- @)
w1(J,0) =1 . (4.80)
Inz;é:S m - (J)
Once w is determined we can find the relation between the old and new
phase-space variables, z and z'(¢,z). Let Z,(z) be the function that gives
the k*® coordinate of z, z;, = Zj(z). Then equation (4.64) implies that

2. = (T Zy)z. (4.81)
From equations (4.75),
zp = 2 + €z, w1} + O(€2). (4.82)
Thus to O(e),
J=J+e{J,w} = J—e% =J+e ) Mexp(imﬂ), (4.83)

00 mis m-Q
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hn(J)

ow
0 =0+c{0,w )= 0+ea— ie Y — [m~Q(J)

]exp(im'O).
m¢S

Notice that at order e the local generating function w; is identical to the
mixed-variable generating function used in the Poincaré—von Zeipel ap-
proach (eq. 4.59), as is the relation between the primed and unprimed angles
and actions (eqs. 4.56).

In second-order perturbation theory, we use the second of equations
(4.78), which can be written

{wo, Ho} = Q(J) - % = 2Hy + {hy, w1} + {Hy, w1 ). (4.84)

We choose H> so the average of the right side over angles vanishes. Denot-
ing this average by (-) we have

Hy = —5{{h1, w1} + {Hy,wi}). (4.85)

Since H; depends only on the actions,

6H1 (8’11)1) :0;

a7, \ 8, (4.86)

({Hiwi})==-3

thus the second Poisson bracket in equation (4.85) vanishes. Since h; is
real, it can be replaced by its complex conjugate h] and then

Hy = =5 ({h1,w1})

=-2iy > <{hfn(.])exp(—im.9)7 W})

m m’¢S
0 |hm(I)P

1
=—3 m- (4.87)

2 m%:s 0Jm-Q@J)
This result can be substituted into equation (4.84), which can then be solved
for wy(0,J); then wy can be used to find the relation between the old and
new angle-action variables through equation (4.82).
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Thus we have shown that the solution to Hamilton’s equations for the
Hamiltonian ho(J) +ehq(6,J) is given by the solution for the Hamiltonian

H(0',J') = Ho(J') +eH (J) + €€Hy(I') + O(e®) (4.88)
=ho(J')+ > hm(I) -1 Y m- 0 w+0(e3)
0 i 28s 0V m-Q) ’

in which (0’,J") and (J, ) differ by terms that are O(¢) and average to
zero over the angles.

This process is straightforward to continue to higher orders in e. Of
course, all of the perturbation theories described in this section continue to
suffer from one of the problems described at the end of §4.2.1: the presence
of small divisors. Because of these, the sum over m only converges like an
asymptotic series, that is, the results of perturbation theory at any order are
valid over a fixed time interval as e — 0, but not over an arbitrarily large
time interval for any fixed value of e.

For more thorough treatments of Lie operator perturbation theory, see
Deprit (1969), Cary (1981), Lichtenberg & Lieberman (1992), or Sussman
& Wisdom (2001).

4.3 The disturbing function

In most planetary systems the planets travel on nearly circular orbits close
to a common plane. In this case the interaction Hamiltonian or disturbing
function H;;(6;,J;,6;,J;) between planets 7 and j (eq. 4.41) can be eval-
uated as an expansion in powers of the eccentricities and inclinations of the
two planets. Thousands of pages have been written about these expansions,
but the analysis is straightforward in principle, and using computer algebra
it is straightforward in practice as well.

The interaction Hamiltonian contains both the gravitational interaction
potential and the additional terms that arise in non-inertial coordinate sys-
tems such as astrocentric or Jacobi coordinates (§4.1). We focus first on the
interaction potential,

Gmimj

D, (ri,rj) = AL where A;; =|r; —r;|. (4.89)
ij
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We shall work with the orbital elements a, e, I, A\, @, {2—semimajor axis,
eccentricity, inclination, mean longitude, longitude of periapsis, and longi-
tude of the ascending node—which are related to the Delaunay variables
by

A=(GMa)'/?, L=A(1-e*)"? L,=LcoslI,
l=)-w, w=w-; (4.90)

the variable €2 is common to both sets. We set the dummy variables i = 1
and j = 2.

Some restrictions on the form of A7s can be derived from symmetry
arguments. If we replace A\; by A\; + 27 the position of the planet is un-
changed, so A7 is unchanged. Thus A74 must be a periodic function of \;
with period 27. Similarly it must be a periodic function of zw; and €2; and
of the same variables with label 2. Thus it can be written as a Fourier series
(Appendix B.4):

1
A = Z Hj1k1m1j2k2m2(a13617Ilaa2,623-[2)
12 jikimq
Jakama

X COS(lel + k1w1 + mlﬁl - jg)\g - k2?ﬂ2 - mQQQ). (491)

A general Fourier series contains both sine and cosine terms, but the sine
terms in this expansion all vanish.*

When the eccentricity e; is zero, A7s cannot depend on the periapsis
direction ;. Similarly, when the inclination /; is zero, A{% cannot depend

4 Proof: Consider two coordinate systems defined by the Cartesian axes (X,y,%) and

(%',¥',2"). The primed axes are obtained by a rotation of 180° around the x-axis; thus

X' = %,y = -y, 2’ = —2. If the elements of a point on an orbit in the unprimed coordi-
nates are a, e, I, A\, w, €2, then the elements of the same point in the primed coordinates
area, e, I', N, @/, QY with N =XA-20, @' =w-2Q0, QU =7-Qand I' =7 -1
(all quantities modulo 27). If we now time-reverse the orbit, the elements become (eq.
23N a, e, I", N, @, Q" with M =2Q' - N, @” =20 - @', Q" = 7+ Q and
I" =7 -1 Then \" = -\, @” = —w, and Q" = —-Q. The gravitational potential
between two mass points must be independent of which coordinate system we use and
whether or not the orbits are time reversed. Therefore the potential has to be the same in the
unprimed and doubly primed coordinates, which implies that it must be an even function of
J1A + k1o + m1Qq — joAg — ko — mafda, so no sine terms are present.
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on the nodal longitude €2;. More generally, H; has to be an analytic func-
tion of the position and this restricts the possible forms of H; to satisfy the
d’Alembert property,’ which states the following: if the eccentricities and
inclinations e, es, I, I> are small, then

Hj kymajakams (@1, €1, 11, a2, €9, 1) = O(elk1| ‘kz‘flmllflmz‘) (4.92)

Now suppose that we rotate the origin of the azimuthal coordinate sys-
tem by some angle v. Then all of the angular variables increase by v, so the
argument of the cosine increases by (j1 + k1 +mq — ja — ko — m2 ). Since
the interaction potential must be independent of the choice of the origin, we
require that

j1+k1 +m1—j2—k2—m2:0. (493)

To obtain an explicit expression for A74 we assume that the eccentric-
ities e; and es and the inclinations I; and I are of order ¢ << 1. To make
this dependence explicit, we replace e; and I; by ee; and €I, with the same
replacement for es and I5, then set € to unity once we have obtained a con-
sistent ordering. We refer to terms in the disturbing function proportional to
€* as having degree k.

We seek an expression for A74 that is correct to O(e*). We write

11 1
Alg B |I‘1 —I‘2| (7‘1 +T2 21‘1 1‘2)1/2’

(4.94)

then use equations (1.70) to evaluate r; - ro in terms of 7; and the orbital
elements f1, wy, 21, and I; and their analogs for body 2. We replace r1, f1,
ro and fo by their expressions (1.151) and (1.155) in terms of a, e, and /,
keeping terms up to O(e¥). We also expand cos I and sin I, keeping terms
up to O(e¥). We then substitute these expansions into equation (4.94) and
expand the result to O(ek). For example, if k =1,

1 1 €
Tlg [a2+a2 2a1agcos()\1—/\2)]1/2 [a2+a2 20,1(12(308()\1 )\2)]3/2

5 Similarly, if a smooth function f(z,y) of the Cartesian coordinates = and y is rewritten
in polar coordinates (7, ¢), then its expansion in powers of r will have the form cg +
c17cos(p — 1) + car? cos 2(é — p2) + ---; that is, the coefficient of cos m (¢ — ¢y, ) will
be O(r™).
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x [afel cos( A\ —w1) + a%eg cos(Ay—to2)
+ %alaQel cos(2M\1—Ao—w1) + %alag@ cos(2 = A1 —w2)
- %alazel COS(AQ—wl) - %alageg COS()\l—WQ)] + 0(62).
4.95)

This expression and its more complicated cousins for higher £ con-

tain denominators of the form [a? + a3 — 2ajaz cos(\; — A2)]™* where
§ = %, g, %, .... We replace these denominators by a Fourier series (Ap-
pendix B.4), using the expansion (eq. 4.105)

(1 +a? -2 cos ¢)7S = % Z b (o) cos me, (4.96)

where b7" () is a Laplace coefficient. The Laplace coefficients play a cen-
tral role in the evaluation of the disturbing function, and their properties are
described in detail in §4.4. In most cases the body labels 1 and 2 are chosen
such that & = a1 /as and « < 1, but the Laplace coefficients are well defined
for any positive value of a.

Once this replacement is made, products of trigonometric functions are
converted to sums of trigonometric functions using the identity cos a cosb =
2 cos(a +b) + 2 cos(a — b). We then adjust the dummy index m such that
(1) all terms with the same argument of the cosine function are collected to-
gether; (ii) the variable \; always appears in the argument in the combina-
tion mAy; (iii) the variable Ay always appears in the combination (7 +j) Az
where j > 0. We have

1 1 € X
b, cos(mA —mAg) + — 4.97)
A12 2ao mz 1/2 ( ! 2) az mzoo
{[labg}gz + la2bg}§1 - %abgb]el cos[mA; — (m + 1) A2 + @1 ]

[ b3/2 b3/2 abg};l]eg cos[mAy — (m +1)Ag + wQ]}

Z X +O(e%).

m=—00
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In this expression the argument of all the Laplace coefficients is o = a;/as,
and X, represents the terms of degree k = 2.

Notice that there are no inclination-dependent terms at order €; these
only appear at O(€?).

As described in §4.4 there are many relations between different Laplace
coefficients, so the factors in front of the cosines can be written in many
different forms. The most compact form for equation (4.97) is

1 1 o0 o0
= > 1/2 cos(mAL —mAs) + £ > (4.98)
a

Tw - T"Q m=—oo 2 m=—o0
{-(m+1+ laD)b;’};rlel cos[mAy — (m + 1) Az + 1]
+(m+ 5+ aD)b1/262 cos[mA; —(m+1)Ag + wz]}

+é2 Z X +O(e),

m=—0o

where Db”* = db™ («) /da.
The second-degree terms are given by

a2 Xm [(el + 62)(8 o’D? + 1aD - fm2)b1/2
(11 + Iz)a(b3/2 g}gl Jcos(mA1 = mA2)
+ éel [6 +11m +4m® + (6 + 4m)aD + o*D?| b’f}f
x cos[mA; — (m + 2)Ag + 2001 ]
+ 3¢5 [4+9m+4m® + (6 +4m)aD + a*D?| b},
x cos[mA; — (m + 2)Ag + 22|
- ieleg [6 +10m + 4m? + (6 + 4m)aD + a2D2] b;’};’l
x cos[mAy — (m +2) A2 + w1 + w2 ]
+ ieleg (2 +6m +4m? - 2aD - a2D2) b’f};l
x cos(mA1 —mAg + wy — wa)
11[201173/2 cos[mA; — (m+2) g + Q1 + Q2]
+ 7 .[1]20lb3/2 cos(mA; —mAg + Q1 — Qo)
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+ é]lzabg'};l cos[mA; — (m +2)Ag + 20 ]

+ §13abyst cos[mAy = (m +2)Ag +20s]. (4.99)

Since Ajs is a symmetric function of the labels 1 and 2, the expan-
sions (4.98) and (4.99) are also symmetric; that is, they are invariant un-
der the exchange operator, which swaps the labels 1 and 2. More pre-
cisely, we set a; = aj, az = a}, a = ajfas = abfa] = 1/a’, Ay = A,
and so forth. In some cases a single term of the disturbing function is
invariant under the action of the exchange operator, that is, it looks the
same in the primed and unprimed variables. Thus, for example, the term
I= (2a2)’1b’1’;2(a) cosm(A; — Ag) in the first line of equation (4.98) is
transformed to I’ = (2a’1)_1b;’}2(1/a') cosm (A5 — A}) and using (4.108)
it is straightforward to show that I’ = (2a’2)‘1b71’}2(o/) cosm(A] = \}), the
same as I except in primed variables. In other cases a pair of terms are
transformed into one other by the exchange operator. For example, the term

1 s m
J = —a—2[(m + 1)b1/;1(a) + %anl/gl(a)]
x ey cos[mA; — (m+1)Ag + 1] (4.100)
is transformed to

J' = =—[(m+ )75 (/o) + Lo/ Db (1a))]

x e cos[mAy — (m + 1)\ + wj]. (4.101)

1
T
ay

Setting m = —m’ — 1 and using the symmetry relations (4.106), (4.108) and
(4.137), we find

]_ m’ m’
J' = a—,[(m' + %)bl/Z(a,) + %O/Dbl/z(a/)]
2
x eh cos[m' A} — (m' + 1) Ay + @5 ], (4.102)

which is the same as the term on the third line of equation (4.98), except in
primed variables.
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These relations provide valuable checks of the accuracy of algebraic
expansions of the disturbing function.®

In astrocentric coordinates the indirect potential contributes additional
terms to the disturbing function. The indirect potential exerted by body 2
on body 1 is (eq. 4.6)

Gmary -ty Gmaay a% Iy Iy

o a3 agfro

Pind = (4.103)

The expansion to degree 2 is

ag;i_;;l =cos(A; — o) + e[%el cos(2M\1 = Ag — @) — %el cos(Ag — 1)
+2e9 cos( A — 2Xo + wQ)]
+e?[ - (el +2e + 117 + 113) cos(A1 — As) (4.104)
+ 2T cos(3A1 = Az — 2mm1) + 2] cos(A1 + A - 2w1)
+ %eg cos( A + Ao — 2w09) + %76% cos(A1 — 32 + 2w2)

+e1€9 COS(2)\1—2>\2—W1 +7E2)—36162 COS(2A2—W1—W2)
+ %Illg COS(Al _A2_Ql +Qg)—%]1[2 COS(Al +A2—Ql—92)
+ 117 cos(Ap + A2 =20 )+ 113 cos(A1 + A2 —202) | + O(€”).

The indirect potential exerted by body 1 on body 2 is found by exchanging
the labels 1 and 2. Notice that the indirect potential is not a symmetric
function of the labels and is not invariant under the exchange operator.
Expansions to higher degree in the eccentricities and inclinations are
available in a variety of references. Most of these, with the exception of
Murray & Dermott (1999), give the expansion in terms of the mutual in-
clination and the mutual ascending node—in effect, they assume that the
coordinate system is chosen such that one of the inclinations is zero.

6 Expansions of the disturbing function would be shorter and simpler if the Laplace coeffi-
cients were re-defined to be symmetric functions of a1 and a2. We have kept the traditional
definition to facilitate comparison to expressions in the literature, and because symmetriz-
ing the Laplace coefficients would eliminate the ability of the exchange operator to detect
algebraic errors.
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Murray & Dermott (1999) give the expansion to fourth degree in the ec-
centricities and inclinations. Among older references, Peirce (1849) gives
the expansion to sixth degree, Le Verrier (1855) to seventh degree, and Bo-
quet (1889) to eighth degree. Le Verrier made only one nontrivial error,
discovered a century later by computer algebra (Murray 1985).

There are two disadvantages to this approach. First, in many cases we
are only interested in a single cosine term (for example, when the dynamics
is dominated by a resonance), but to find the factor in front of the cosine
requires the complete expansion of the disturbing function to the degree of
that term. Second, we would like to find the disturbing function using com-
puter algebra, and the approach we have described requires sophisticated
algebra including Taylor series expansions, derivatives, and the like, as well
as judgments on how to simplify the results. Alternative approaches are de-
scribed by Murray & Dermott (1999). A review of early work on computer
determination of the disturbing function is given by Henrard (1989).

4.4 Laplace coefficients

The Laplace coefficients b"(«) are defined by the generating function
(1—2acos¢+a2)_s =15 b'(a)cosme (4.105)

and the assumption
b, () = b7 (). (4.1006)

Equation (4.105) is equivalent to

1+’ -az-—az ) =(1-az) (1-az!)*= 3 > b ()™,
m=—oo
(4.107)
For our purposes « is always real and positive, m is an integer, and s =
%7 %, %, ..., although most of the results in this section do not require these
restrictions. It is easy to show that

b (o) = a® b (). (4.108)
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Now multiply equation (4.105) by z~* where k is an integer, set z =
exp(i¢), and integrate over ¢ from 0 to 27. Since fozw d¢ expli(m-k)¢] =
0if k # m and 27 if k = m, we have

i/% d¢ exp(-im¢p) 2 7 d¢ cosmao

(1-2acosgp+a2)s wJo (1-2acosp+a?)s
(4.109)

b (a) =

In terms of standard special functions

T'(s+|m|)

T e + |ml; Jm| + 1: o2 0<a<l
F(S)F(|m|+1)a (8,8 +|m|;lm| +1; ), <a<l,

(4.110)
and the Laplace coefficient with argument o > 1 is found from equation
(4.108). Here I'(2) is the gamma function (Appendix C.3), and F'(a, b; ¢; z)
is the hypergeometric function defined by the series

INE)) Z L(a+n)L(b+n) -,
T'(a)T'(b) o T(c+n)T'(n+1)

b (a) =

F(a,b;c;2) = (4.111)

which converges for |z| < 1; this function is also written as 5 Fy (a, b; ¢; z) in
some references. Thus

L(s+n)T(jm|+s+n) o,

b (o) = o™ , O<a<l.
< (@) Z ¢ T(lm|+ 1+ m)C(n+ 1) @s
(4.112)
The most important special cases are
0 4 4 2
b1/2(a) = 7K(O¢) = 7RF(O7 e 71)7
0 0
1 4 4o 9
byjp(a) = —[K(a) - BE(a)] = —Rp(0,1-0%1). (4.113)
O 3

Here K (-), E(-), Rr(-) and Rp(-) are elliptic integrals (Appendix C.4).
Any Laplace coefficient can be evaluated by numerical quadrature of
equation (4.109). A second approach is to use equation (4.110) to ex-
press the Laplace coefficient in terms of a hypergeometric function, since
many programming languages have procedures for evaluating hypergeo-
metric functions. A third approach, which was preferred when calculations
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were done by hand, is to use recursion relations as described in the next
subsection.

4.4.1 Recursion relations

In principle, all of the Laplace coefficients with half-integral values of s can
be found from the coefficients in equations (4.113) using a set of recursion
relations. To derive the first of these, differentiate equation (4.107) with
respect to z to obtain

as(l-272)

(1+a2-az-azt)s+!

=3 3 b (a)ymz" (4.114)
m=—o0o

Now multiply the result by z(1 + o — az — az™!):

_ -1 oo
as(z=2") =2 Y mbl ()| (1+a%) -z — a2
N (4.115)
We replace the denominator on the left side using equation (4.107) and in-
crement or decrement the dummy index m such that the variable z enters as
2™ in all terms:

(1+a?-az-az 1)s

(b7 (@) = b7 () ]2 (4.116)

m [es]

|I|M8 \I|M8

[mb:”(oz)(oz + ofl) -(m- 1)b:”71(04) -(m+ l)b;"H(oz)] zm

m=—00

Since the coefficient of 2™ must be the same on each side of the equation,

m+1 _ m m _m+3 m1
by (a)—im_sﬂ( )b (a) 8+13 ().  (4.117)

Similarly, we can solve for 57! («) to find

m 1 m-s+1
pmt = 7( f)bm -y (@). 4.118
;@ mis- 1\ 4 (@) m+s—-1"7° (@) )
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This result can also be derived from equation (4.117) by replacing m with
—m and using the symmetry relation (4.106). With these two equations we
can find the Laplace coefficients for all values of the superscript m at given
s from any two coefficients with adjacent values of m.

To derive a second recursion relation, replace the denominator in the left
side of equation (4.114) using equation (4.105) in the form

(1+a®—az-az )™ =1 % b7 (a)z™. (4.119)

Then increment or decrement the index m such that the variable z enters as

2™~1in all terms. The requirement that the equation is satisfied for each m

yields

asb™ M) — asb™ (o) = mb™ (). (4.120)
Now use (4.117) to replace b™%! by b™, and b77' (this derivation is not

valid for m = 0 but the formula below is still correct):
25a S m
byt (a) - —— (1+a®) b (@) = b (a). 4.121)
m - m-—s
Replacing m by 1 — m and using the symmetry relation (4.106) gives

S

m(““) s+1 (“)‘7 ") =0 a).  (4.122)
We can eliminate 677! (o) from (4.121) and (4.122) to obtain
s—mM1+a2)b"(a)+2(m+s-1)ab™
() < (L0 @) + 2 5= Do) o
s(1-a?)

If we replace m by —m and use the symmetry relation (4.106), we find

() = 2(s—-1- m)abm+1(a)+(s+m)(1+a2)bm(a)
s+1 (1 ag)g

(4.124)

Thus if we know the Laplace coefficients with a given subscript s, we can
compute the coefficients with subscript s + 1.

The recursion relations (4.117), (4. 118) (4.123) and (4.124) allow the
determination of b.*(«) for all m and s = 5 g, g, .. given the expressions
for bO/Q(a) and b1/2(a) in equation (4.113).
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4.4.2 Limiting cases

When the argument o <« 1, the Laplace coefficient can be approximated
using the first few terms of the Taylor series (4.112). Form >0

m, _ 2D(m+s)a™ s(m+s) s(s+1)(m+s)(m+s+1)
) = oD | e o+ 2(m + 1)(m + 2) '

s(s+1)(s+2)(m+s)(m+s+1)(m+s+2)
" 31(m+1)(m +2)(m +3) a®+0(a®)|, (4.125)

and this result can be extended to m < 0 using (4.106). The asymptotic
behavior as o — oo is found from (4.125) using equation (4.108).

The Laplace coefficients diverge as o — 1. Inspection of equation
(4.109) shows that the main contribution to this divergence occurs when
cos ¢ is nearly unity, thus when ¢ is nearly zero. In this case cos¢ =
1-1¢?+0(¢*), s0
2 T d¢cosmao

b;"(a):; o [(1-a)2+ap?]s’

(4.126)

The factor o multiplying ¢? can be replaced by unity and the integration
variable ¢ can be replaced by u = ¢/|1-«/|. The upper limit of the integration
is at u = /|1 — o], which approaches infinity as & — 1. Thus

2  ducos(m|l - alu)
b f 4127
+(a) a=1 7|1 — 2571 Jo (1+u2)s ( )
23/2—5 m s—1/2
S [Toal  Kep(mO=al), s>0,

where K, (-) is a modified Bessel function (eq. C.30). If m is fixed and
nonzero and o — 1 the Laplace coefficient is obtained from the limiting
form of the modified Bessel function, equation (C.31):

F(s—% 1
b (@) — 20 (s)|1 - a7 2 (4.128)
%{—7—10g[%|m(1—0¢)|]}7 5:%,
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where v = 0.577216--- is Euler’s constant.

To determine the behavior of the Laplace coefficients for large m, we
use the relation (C.15a), I'(z + a) /T'(z + b) — 2% as |z| - oo. For z = |m|,
a=s+n,b=1+n,equation (4.112) yields

b (@)

; o™t > Ma%’ 0<a<l. (4.129)
moe T2(s) ZT(n+1)

The binomial series for (1 — a?)~* is

e (Hrd-s) n
(1-a2) _,;)F(1—s—n)r(n+1)a2' (4.130)

Using the relation (C.14b), this expression can be rewritten as

(1-a?)= =L L6+ o 4.131)
[(s) sz T(n+1)
Thus equation (4.129) simplifies to
) |m| s—1
™ () o ™ jm| 0O<a<l, 4.132)

m—co ['(s)(1-a?)s’
showing that the Laplace coefficients decay as [m|*~! exp(|m|log ) when
|m| — oo. The behavior for « > 1 is found using equation (4.108).

4.4.3 Derivatives

Expansions of the disturbing function such as (4.98) and (4.99) are often ex-
pressed concisely using derivatives of the Laplace coefficients with respect
to the argument «. To find these we differentiate equation (4.107):

s(z+z271-2a) < dby'(a) .

4.133
(1+02-az-az1)stt =3 Z  da ( )

Using equation (4.119) and requiring that the coefficient of 2™ be the same
on both sides of the equation, we find

Do () = P Lt o) - 200 (0) <0 (@)]. @139
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We then use equation (4.120) to eliminate b;’}jl, (4.123) to eliminate b7},

and (4.124) with m — m — 1 to eliminate 7', We find

s+1

(s +m—1)ab™ (a) - [m+a?(m-25)]b7"(a)

Db (a) = : a(l-a?)

. (4.135)

Replacing m by —m and using the symmetry relation (4.106), we obtain a
formula involving ™ and b™*1,

[m+a?(m+2s8)]b™(a) - 2(m - 5+ 1)ab™ ()

Db (a) = a(l-a?)

. (4.136)

The analogs to the symmetry relations (4.106) and (4.108) are’

Db;™(a) = Db™(a), Db™(a™')=-a***Db"(a) - 250 2™ ().
(4.137)

4.5 The stability of the solar system

This is one of the oldest and most famous problems in theoretical physics
and one of the simplest to state. According to perturbation theory (§4.2),
each planet excites small oscillatory variations in the orbits of the other pla-
nets. Although the fractional variations in the orbits are small (typically less
than 1073-107%), the age of the system is large (105-10' orbital periods).
Over these vary large times, do the variations in the orbits remain strictly
oscillatory or do they gradually grow, leading eventually to the catastrophic
disruption of the solar system?

This question has fascinated physicists and mathematicians since the
time of Newton. Newton apparently believed that the perturbations did
grow, stating in his book Opticks in 1730 that the “irregularities” in the so-
lar system arising “from the mutual actions of comets® and planets upon one

7 The notation Db™(1/a) is somewhat ambiguous. More precisely, let f(x) =

db™ (z) /dx; then DV (1/a) = f(a™1).
Newton did not know that the masses of comets are many orders of magnitude smaller than
the masses of the planets.

8
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another” would gradually grow until the solar system “wants a reformation,”
that is, until God intervenes to restore order (e.g., Iliffe 2017). This theistic
view was mocked by Leibniz, Newton’s rival, who believed that the perfec-
tion of God required the perfection of the solar system, and complained in
1715 that “according to [Newton’s] doctrine, God Almighty wants to wind
up his watch from time to time . . . he had not, it seems, sufficient foresight
to make it a perpetual motion.”

4.5.1 Analytic results

The controversy between Newton and Leibniz was influenced by observa-
tions of Jupiter and Saturn dating back to Johannes Kepler in 1625, which
seemed to show that their semimajor axes were changing linearly in time.
Adding to the confusion, the development of perturbation theory during the
eighteenth century showed that terms linear in time are present in the secular
perturbations to the actions (see §5.1).

These issues were only resolved a half-century after Newton’s death,
when Joseph—Louis Lagrange (1736-1813) and Pierre-Simon Laplace
(1749-1827) showed that the secular perturbations are not linear in time but
oscillatory with long periods (see §5.2), and the amplitudes of the oscilla-
tions are small enough that they do not compromise the stability of the solar
system. Then in 1785, Laplace showed that the apparent drift in the semi-
major axes of Jupiter and Saturn arises because of a near-resonance between
the two planets: their mean motions are related by 2njupiter = SNSaturn.
This near-resonance, sometimes called the Great Inequality, leads to oscil-
lations in the mean motions with a period of about 900 years, as shown
in Figure 4.2, and this variation appeared nearly linear over the 150 years
between Kepler and Laplace. See Laskar (2013) and Wilson (1985) for his-
torical reviews.

These investigations led to three fundamental results. First, they showed
that Newton’s law of gravitation is universal, in the sense that it determines

9 The d’ Alembert property (4.92) implies that terms in the disturbing function with this fre-
quency are third degree in the eccentricities and inclinations of Jupiter and Saturn, which is
why they had escaped earlier researchers.
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Figure 4.2: Oscillations of the longitude of Jupiter and Saturn. The plot shows
1 = p—wt—¢po where ¢ is the longitude of Jupiter or Saturn, and ¢y and w are chosen
such that (¢)) = (1)) = 0. The time interval shown is from 0 CE to 2000 CE. The
longitudes have been smoothed to eliminate much larger short-period oscillations, by
convolving i with a Gaussian with standard deviation 10 yr. The slow oscillations
visible in the diagram, with a period of about 900 yr, are called the Great Inequality.

not just the forces between the planets and the Sun but also the forces be-
tween the planets. Second, they provided tools that allowed the motions of
solar-system bodies to be computed and predicted to any desired level of
accuracy over historical timescales (apart from the small corrections due to
general relativity described in Appendix J). Finally, they demonstrated that
the solar system was stable, at least according to perturbation theory car-
ried to first order in the planetary masses using a disturbing function that is
second degree in the inclinations and eccentricities.

The belief that the solar system is stable was buttressed by the demon-
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strations by Laplace in 1776 and by Siméon Denis Poisson in 1809 that
secular perturbations to the semimajor axes vanish at first and second or-
der in the masses. Of course, a belief is not a proof and these analyses
do not establish the stability of the solar system over timescales compara-
ble to its lifetime, nor do they allow the motions of solar-system bodies to
be computed over geological timescales of ~ 100 Myr. As Henri Poincaré
remarked in 1897, “Those who are interested in the progress of celestial
mechanics . . . must feel some astonishment at seeing how many times the
stability of the Solar System has been demonstrated. Lagrange established
it first, Poisson has demonstrated it again, other demonstrations came after-
ward, others will come again. Were the old demonstrations insufficient, or
are the new ones unnecessary?”’

Poincaré quantified the skepticism expressed in this quotation by show-
ing that Hamiltonian perturbation theory as derived in §4.2 is generally di-
vergent: as it is carried to higher and higher orders in the planetary masses,
the terms first become smaller and then begin to grow—this is the problem
of small divisors described in §4.2.1. Mathematically, these are asymptotic
series rather than convergent series. If the series are truncated at first or sec-
ond order, they can accurately predict the motion of the planets over long
times—certainly over the hundreds or thousands of years needed for most
purposes—but they cannot be used to establish rigorously whether the solar
system is stable forever, or even over timescales comparable to the lifetime
of the Sun.

Motion in the potential of a point mass like the Sun is integrable, that is,
there exist angle-action variables like the Delaunay variables (eq. 1.84) and
the Hamiltonian depends only on the actions, H = Hy(J). The trajecto-
ries of an integrable Hamiltonian system are restricted to an /N-dimensional
torus in a 2/N-dimensional phase space, and they are quasi-periodic—that
is, the Fourier transform of the trajectory r(t) is a line spectrum consisting
of integer combinations of N fundamental frequencies 2; = 9H/dJ; (in a
point-mass or Kepler potential the actions can be chosen such that two of
the three frequencies are zero). The fundamental question that determines
the stability of a non-integrable Hamiltonian system like the solar system is
whether or not a small perturbation to an integrable system leads to trajecto-
ries that are still permanently restricted to tori in phase space. This question
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is not addressed by the perturbation theory of §4.2, which always produces
trajectories that lie on tori. A fundamental insight into this question was pro-
vided by the Kolmogorov—Arnold—-Moser or KAM theorems, developed in
a series of papers in the 1950s and 1960s by Andrei Kolmogorov, Vladimir
Arnold and Jiirgen Moser. These theorems show that in Hamiltonian sys-
tems that are subjected to a sufficiently small perturbation some of the tori
survive, and that these occupy a nonzero volume of phase space. The orbits
whose tori are destroyed become chaotic. The chaotic and quasi-periodic
trajectories are mixed together in phase space, in the sense that any finite
phase-space neighborhood of any point, no matter how small, contains both
types of trajectory: both the chaotic and quasi-periodic orbits are said to be
dense in phase space.

It is difficult to apply the KAM theorems directly to the solar system,
for several reasons. First, the mathematical proofs require planetary masses,
eccentricities and inclinations that are far smaller than the actual values in
the solar system, although it is probably safe to assume that the theorems are
valid within a much larger parameter space than their current proofs require.
Second, because the quasi-periodic orbits are mixed with chaotic orbits, an
arbitrarily small external perturbation can convert one kind of trajectory to
the other. Finally, for systems with more than IV = 2 degrees of freedom,
like the solar system, the /N-dimensional tori do not divide up the phase
space; in other words the phase space occupied by chaotic orbits is not only
dense but also connected. Thus any chaotic trajectory can, and eventually
will, visit every neighborhood of the phase space, a phenomenon known as
Arnold diffusion. In principle, an arbitrarily small perturbation to any orbit
can cause it to eventually pass arbitrarily close to any point in phase space.

Although we know that Arnold diffusion exists, there is no reliable way
to calculate the rate of diffusion in any realistic model of a planetary sys-
tem. The only rigorous results are Nekhoroshev estimates, which state
that the chaotic orbits will remain close to their quasi-periodic neighbors
for a time that is an exponential function of the strength of the perturbation
(Yalinewich & Petrovich 2020).
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4.5.2 Numerical results

To investigate the stability of the actual solar system over the Sun’s life-
time,'® we must use numerical integrations. The first long integrations of
the solar system followed only Jupiter, Saturn, Uranus, Neptune, and Pluto,
since this subsystem is not expected to be strongly influenced by the inner
planets, which have much smaller masses. Early milestones were the outer
solar system integrations lasting 0.12 Myr (Cohen & Hubbard 1965), 1 Myr
(Cohen et al. 1973), 5 Myr (Kinoshita & Nakai 1984), 100 Myr (Roy et
al. 1988), 200 Myr (Applegate et al. 1986), 845 Myr (Sussman & Wisdom
1988), and 5.5 Gyr (Kinoshita & Nakai 1996). All eight planets and Pluto
were followed for 4400 yr by Newhall et al. (1983), 3 Myr by Quinn et
al. (1991), 100 Myr by Sussman & Wisdom (1992) and ~ 10 Gyr by Ito &
Tanikawa (2002). A careful comparison of integration methods is given by
Hayes (2008).

In a parallel line of investigation, Laskar (1986, 1989) used computer
algebra to develop secular perturbation theory to second order in the plane-
tary masses, using a disturbing function that was sixth degree in the eccen-
tricities and inclinations—for comparison recall that the Lagrange—Laplace
theory is only first order in the masses and second degree in the eccentric-
ities and inclinations. The resulting differential equations contained some
150000 polynomial terms; nevertheless they were straightforward to inte-
grate numerically and much faster than [NV-body integrations.

These integrations reveal that in most cases the solar system is stable
over timescales of a few Gyr. All of the planets survive, and mostly they re-
main in orbits very similar to their present ones. On 10°-year timescales, the
Lagrange—Laplace theory gives a reasonably good description of the varia-
tions of the eccentricities and inclinations (see Figure 5.1). However, inte-
grations over timescales of 100 Myr and longer reveal that all the planetary
orbits are chaotic, with a Liapunov time ¢, ~ 107 years. Thus, on timescales
>> t,, small changes in the orbits grow exponentially, as exp(t/ty,). This
means that small changes now in the orbits of the planets—for example

10 By “lifetime” we mean about 10 Gyr: the solar system was born 4.57 Gyr ago and the Sun
will survive in its present form for about 7.6 Gyr into the future (see Appendix A and Box
1.2).
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from the difference in the gravitational attraction of Jupiter on Earth caused
when you raise your coffee cup to drink—will be amplified by a factor of
~ exp(7.6 Gyr/t1,) ~ 103 before the death of the Sun.

The nature of the chaotic behavior is different in the inner and outer
solar system. In the outer solar system (Jupiter, Saturn, Uranus, Neptune),
the chaotic behavior is restricted to narrow regions in phase space associated
with high-order mean-motion resonances (see the discussion at the start of
Chapter 6). As a result, the exponential divergence is limited to the orbital
phase and the other elements (such as semimajor axis or eccentricity) remain
close to their initial values. In contrast, in the inner solar system (Mercury,
Venus, Earth, Mars) chaos arises from overlap of secular resonances and
directly affects the eccentricities and inclinations of the planets.

This difference is illustrated in Figure 4.3, which shows the mean eccen-
tricity of the planets over intervals of 10 Myr, long enough that the oscil-
lations in Lagrange—Laplace theory average to nearly zero. If Lagrange—
Laplace theory were correct—or more generally if the eccentricity oscilla-
tions were quasi-periodic with periods much less than 10 Myr—the curves
should be flat, and this is approximately correct for the outer planets, where
the chaos is due to high-order mean-motion resonances. For the inner pla-
nets, in contrast, the eccentricity undergoes a chaotic diffusion or random
walk, which is strongest for Mercury but still significant for Venus, Earth
and Mars.

Of course, this figure only shows one possible trajectory for the planets,
as the evolution is chaotic and therefore extremely sensitive to the initial
conditions. To illustrate this sensitivity, Figure 4.4 shows an expanded view
of the future evolution of Mercury’s eccentricity. There are five curves, each
resulting from a change in the initial position of Mercury of a few centime-
ters. After ~ 1 Gyr these tiny differences have grown to be comparable to
the size of Mercury’s orbit. The conclusion is that there is no practical way
to predict Mercury’s eccentricity over Gyr timescales.

Integrations of a large ensemble of solar systems with slightly different
initial conditions by Laskar & Gastineau (2009) show that there is about
a 1% probability that Mercury will experience some catastrophic event—a
collision with the Sun, Venus, or even Earth—some time in the next 5 Gyr.
Of course, long after such an event there would be no obvious sign that
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Figure 4.3: The mean eccentricity of each planet in successive intervals of 10 Myr,
over the next 5 Gyr. The behavior of the outer four planets is sufficiently regular that
the curves appear as straight horizontal lines, while the inner four planets exhibit
chaotic diffusion. Data from Brown & Rein (2020).
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Figure 4.4: The mean eccentricity of Mercury in successive intervals of 10 Myr,
over the next 5 Gyr. The plot shows five integrations starting from slightly different
initial conditions. Data from Brown & Rein (2020).

Mercury had ever been present. Thus it is plausible that the solar system
had more planets early in its history, and that one or more of these has been
lost.

We can conclude that the question “is the solar system stable?” does
not have a simple “yes” or “no” answer: in the future the solar system is
probably stable, at least up to the time when the Sun swallows the inner
planets about 7-8 Gyr from now; in the past it may well have been unstable
but we will never know for sure.
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4.6 The stability of planetary systems

The lessons learned from studying the stability of the solar system can be
applied to exoplanet systems. Obviously, we would be unlikely to find in na-
ture any system that was unstable on a timescale much less than its age, so
stability requirements can constrain otherwise unmeasurable properties of
exoplanets. For example, radial-velocity surveys measure only m sin I, the
product of the planetary mass and the sine of the orbital inclination (§1.6.1),
but if the system has more than one planet we may constrain the inclination
by requiring that the planetary masses are not so large that the system be-
comes unstable.

Stability requirements also raise a deeper question about the evolution
of exoplanet systems. There is strong indirect evidence that planets formed
soon after the formation of their host stars. Most planets with radii 2 2Rg
have substantial atmospheres—in fact gas giants such as Jupiter are mostly
composed of gas—and this gas must be acquired before the gaseous proto-
planetary disk is dispersed when the host star is a few Myr old. The for-
mation time for smaller planets may be longer, but studies of radioactive
isotope systems in the oldest Earth rocks and in meteorites suggest that the
formation of the Earth was largely complete when the solar system was only
1% of its current age (Dalrymple 2001).

These considerations prompt the simple question: did the solar system,
and by extension other planetary systems, look the same after 50—-100 Myr
as they do after 5-10 Gyr? In other words, do planetary systems generally
form in states that are stable over much longer timescales? Or do insta-
bilities lead to continued evolution of planetary systems, with the number
of planets slowly whittled down by collisions and ejections resulting from
instabilities that emerge over longer and longer timescales?

To address this question effectively, we would like to have theoretical
tools that allow us to determine whether a given planetary system is stable,
without having to integrate the planetary orbits for billions of years. When
developing these tools, we should bear in mind two discouraging lessons
from studies of the stability of the solar system. First, small changes in the
initial conditions or system parameters can lead to large changes in behavior.
Second, chaos does not necessarily imply instability: in the solar system the
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Liapunov time of ~ 107 yr is 500 times smaller than the age, and in some
planetary systems (such as Kepler-36) the Liapunov time for stable orbits
with initial conditions consistent with the observations can be as short as
~ 10yr, even though the orbits are stable for at least 107 yr (Deck et al.
2012).

The stability of two-planet systems is described in §3.5. A characteristic
feature of two-planet systems is that instability—if it occurs at all—occurs
quickly. In other words the instability boundary in a two-planet system is
sharp, dividing the phase space into stable trajectories that persist forever,
and unstable ones that evolve on a timescale of only a few orbital periods.
In contrast, instabilities in systems of three or more planets develop over
timescales that can vary by many orders of magnitude, depending on the
masses and initial orbits.

N-planet systems have a large number of free parameters—six orbital
elements and a mass for each of the N planets. We focus here on the rel-
atively simple case in which the planets all have the same mass and are
initially on circular, coplanar orbits with constant logarithmic spacing, that
is, the ratio of the semimajor axes of adjacent planets is fixed. The lifetime
of the system is defined to be the time elapsed until the first close encounter
between two planets, since these usually lead rapidly to ejection of a planet
or a collision between two planets.

We expect that systems with smaller planets can survive with smaller
separations between the orbits. To parametrize this dependence, we define
the characteristic radius associated with a pair of adjacent planets to be

L
My + Mp1 )l
b

4.138
. ( )

Ty = %(an +an+1)(

where a,, and m,, are the semimajor axes and masses of the two planets,
and M, is the mass of the host star.

Different values of the exponent 1 are relevant in different contexts. The
mutual Hill radius defined in (3.112) is iy = 37/3ry /3. A system of two
small planets on nearby circular, coplanar orbits is Hill stable if |as — a;| >
2 31/67"1/3 (eq. 3.135), and chaotic if az — a1| § 1.475/7 (eq. 3.140). For
systems of three or more planets, both numerical experiments and analytic
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models of the long-term dynamics suggest that the relevant characteristic
radius is defined by p = ;11 (Quillen 2011; Petit et al. 2020).
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Figure 4.5: The lifetimes of systems of five Earth-mass planets on initially circu-
lar, coplanar orbits around a solar-mass star. The initial semimajor axes have equal
logarithmic spacing. The horizontal axis is the initial separation in units of the char-
acteristic radius (4.138) with p = i and the vertical axis is the lifetime 7 in units of
the initial orbital period Py of the innermost planet. Integrations of surviving sys-
tems were terminated at 7 = 10'°P,. The straight line shows the fit (4.139). Data
from Obertas et al. (2017).

Figure 4.5 plots the lifetimes of ~ 2 x 10* systems of five equally spaced
Earth-mass planets. The orbits are followed for up to 10° Py, where P is
the initial orbital period of the innermost planet, and the lifetime 7 of each
system is plotted as a function of the semimajor axis difference in units of
the characteristic radius ry 4.

On average, the lifetime grows exponentially with separation; the fit
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shown in the figure is

A
1og10%0 __110+3.74129 (4.139)

T1/a

The scatter around the mean at a given separation is substantial, about 0.4
in log,, 7/ Py, measured as the distance between the median and the quar-
tiles. The scatter is also asymmetric, mostly because the lifetimes drop pe-
riodically by up to two orders of magnitude at the mean-motion resonances
between the planets, where small perturbations are amplified by the reso-
nance (see Chapter 6). At separations larger than about |Aa| = 27, /4, the
lifetimes grow substantially above the predictions of the fit (4.139), with
many systems surviving for at least 10'° orbits.

Most of these features are generic for systems of three or more planets
on nearly circular orbits. In particular, if the planetary masses and separa-
tions are fixed, the instability time is not a strong function of the number of
planets so long as N > 3.

It is likely that this behavior arises from the overlap of weak but numer-
ous resonances that contribute terms to the disturbing function that are either
O(m?) where m is the planet mass or O(e*) where e is the eccentricity and
k > 1 (Quillen 2011; Petit et al. 2020); however, our analytic understand-
ing of the origin of long-term instabilities in multi-planet systems is still
incomplete.

These considerations illuminate the answer to the question raised at the
beginning of this section: have long-term instabilities led to significant
evolution of planetary systems after their initial formation was complete?
Figure 4.6 shows the distribution of separations in units of the characteris-
tic radius for 543 pairs of adjacent planets discovered by the Kepler mis-
sion (Weiss et al. 2018). The density of separations shows a sharp rise at
|Aal/ry;4 =~ 2-3, not far from the separations required for stability over
the lifetime of a typical planetary system. This finding suggests that many
planets with smaller separations may have been lost due to dynamical insta-
bilities long after the original planet-formation process was complete.

There are several caveats to any argument of this kind. First, since Kep-
ler only measures radii, not masses, the masses have been determined using
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Figure 4.6: The distribution of separations between adjacent planets in units of the
characteristic radius, for a sample of 349 multi-planet systems discovered by Kepler.
Black dots mark the separations of adjacent planets in the solar system. Data from
Weiss et al. (2018).

an empirical relation between mass and radius (Weiss et al. 2018); however,
since the masses only enter the characteristic radius as mY/ 4. the results are
not very sensitive to errors in the mass. Second, we have few direct mea-
surements of the eccentricities of the Kepler planets, and eccentric orbits are
usually less stable than the circular ones used to construct Figure 4.5. And
finally, not all planets in a given system were discovered by Kepler, and ac-
counting for missing planets would squeeze the distribution toward smaller
separations. In particular, many of the planets with the largest separations,
|Aal/r14 2 10, are probably adjacent to undiscovered planets.



Chapter 5

Secular dynamics

5.1 Introduction

To introduce this chapter, let us imagine a test particle orbiting a mass M
with semimajor axis a and mean motion n = ( GM /a®)/2. The test particle
is perturbed by a distant, nearly stationary mass that exerts a small force per
unit mass of order e GM /a? with 0 < € < 1. This perturbing force induces
small periodic variations in the position and velocity of the test particle, with
a fractional amplitude of order € and frequency of order n.

In addition, the distant mass can produce changes in the orbit that are
much slower and larger than these periodic variations. For example, if the
orbit is circular and the perturber lies outside the orbital plane, it exerts
a steady torque that changes the direction of the angular momentum of the
test particle, just as the torque from the Earth’s gravity causes a spinning top
to precess. If the orbit is eccentric the perturber can exert a steady torque
even if it lies in the orbital plane, since the test particle spends most of its
time near apoapsis and the orientation of the line of apsides is fixed for a
Kepler orbit. The rate of change of the eccentricity or inclination is only of
order en, but the changes accumulate over a time of order (en)™!, at which
point the total change in the eccentricity or inclination has grown to be of
order unity.

261
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As indicated by these arguments, the effects of a perturber with frac-
tional strength € << 1 on the test-particle orbit can usefully be divided into
two broad classes: short-period perturbations, which have oscillation fre-
quencies of order n and fractional amplitudes of order ¢; and secular per-
turbations, which have oscillation frequencies of order en and amplitudes
of order unity.

To provide a concrete example, we now solve the equations of motion
for an abstract dynamical system that illustrates the distinction between
short-period and secular dynamics. The system has two degrees of free-
dom, with coordinates (¢, g2), momenta (p1,p2) and Hamiltonian

H(q1,q2,p1,p2) = Ho(q1,p1) + €H1(q1, 92,1, D2), (5.1

where € is a small positive number and

Ho(qu,p1) = 3p7 + 2ai,  Hi(qu,q2,p1,p2) = 395 + 505 + q1q2. (5.2)

The key features of this system are that (i) the unperturbed Hamiltonian
H describes a harmonic oscillator with unit frequency; (ii) the coordinate-
momentum pair (g2, p2) does not appear in the unperturbed Hamiltonian;
and (iii) the perturbation Hamiltonian H; contains a term q; ¢» that couples
the two coordinate-momentum pairs. The (¢1,p1) pair are called “fast”
variables since their frequency in the unperturbed system is w¢ = 1, and
(g2, p2) are called “slow” variables since their frequency in the unperturbed
system is wg = 0.
Hamilton’s equations are

P1=-q1—€q2, G1=p1, P2=-€(q1+q2), ¢2=e€p; (5.3)

or we can eliminate the momenta to obtain

1=~ —eqz, 2=~ (q1+ o) (5.4)
The solution to these equations of motion can be written

q1(t) = ag coswyt + be sinwgt + ag cos wst + b sin wgt,

q2(t) = frag coswrt + frbesinwet + fsas coswst + fibssinwst,  (5.5)
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where

2
W
fiz——, fi=—7—, (5.6)
and the constants ag, by, as, by are determined by the initial conditions. The
frequencies are

1 ) 1/2
2 1+¢€ + 1 262+463+e4)1/2]

=1+1i+0(),

1
2
Ws 12[1+e - 1 262+463+64)1/2]1/2
1
2

-1 —e +O(°). (5.7)

=€ — 3

The oscillations with frequency wy are short-period perturbations since wy
is close to unity, while those characterized by wg are secular perturbations
since wy is of order e.

To illustrate the behavior of the system, assume that the initial conditions
are q; = q2 = 1, p1 = p2 = 0 at time ¢ = 0. The unperturbed motion (e = 0)
corresponding to these initial conditions is g1 (t) = cost, ga(t) = 1. Ttis
straightforward to show that when e is nonzero,

q(t) = 1[(1+2e- €A + 1] coswyt — (1 +2e- €2)A - 1] coswst,
ga2(t) = %[(362 -1)A + 1] coswst - %[(362 -1)A-1]coswst,  (5.8)
where A = (1 - 2¢? + 4¢3 + €*)71/2. An expansion of the amplitudes of the
cosine terms in powers of € gives
q1(t) = [1+ e+ O(e*)] coswyt — [e + O(e*)] coswst,
g2 (t) = [€2 + O(®) ] coswit + [1 + O(e?)] cos wit. (5.9
These equations illustrate the rich, and occasionally confusing, behavior
of secular perturbations. The perturbations modify the fast frequency from 1

to 1+0O(€*) and modify the slow frequency from 0 to e+ O(e?). The ampli-
tude of the oscillations in the fast variable ¢; () are also modified by O(e).
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The effect on the slow variable ¢o(¢) is more dramatic: the perturbation
causes it to oscillate on the secular timescale w;! with approximately unit
amplitude. As the perturbation becomes smaller and smaller, the frequency
of this slow oscillation declines but its amplitude does not. In other words,
in this system an arbitrarily small perturbation can cause a large change in
the phase-space position, provided that we wait long enough.

Notice that a straightforward expansion of equations (5.7) and (5.9) in
powers of € gives

q1(t) = cost +e(cost —1) + %eg(t2 —tsint) + O(e*),
g2(t) =1+ €*(cost — 1 - 1£%) + O(%). (5.10)

This result is formally correct but seriously misleading, as it suggests
that the perturbations in both the slow and fast variables contain compo-
nents that grow as polynomials in time rather than oscillating slowly. The
problem is that the expansion (5.10) breaks down after a time ¢ ~ ¢~1; math-
ematically, the expansion is convergent, but not uniformly convergent. The
techniques for handling differential equations such as (5.4) that have dis-
parate timescales depending on the perturbation parameter are known as
“multiple-scale analysis” (Kevorkian & Cole 1996; Bender & Orszag 1999).

The most important of these techniques in celestial mechanics is orbit
averaging, an example of the averaging principle described in Appendix
D.9: since the changes in the slow variables occur on much longer time-
scales than the oscillation period of the fast variables, we time-average the
perturbing Hamiltonian H; over one period of the fast variables, assuming
that the trajectories of the fast variables are determined by the unperturbed
Hamiltonian H and that the slow variables are frozen in time. The resulting
orbit-averaged Hamiltonian is then used to describe the secular evolution
of the system.

For the Hamiltonian (5.2) the orbit average of H; is just

(Hy) = $p5 + 545 + (q1)q2- (5.11)

For the example described above, the unperturbed trajectory is ¢; () = cost,
$0 (¢q1) = 0 and the total Hamiltonian is

Ho+e(Hy) = 3p7 + 3q7 +e(3p3 + 343), (5.12)
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consisting of two uncoupled harmonic oscillators, one with frequency 1 and
one with frequency €. The solution satisfying the initial conditions ¢q; = g2 =
1,p; =pe2 =0attimet=0is

q1(t) = cost, ¢a(t) = coset. (5.13)

Comparing this result to equations (5.7), we find that the orbit-averaged ap-
proximation gives the correct fast and slow frequencies wy and wy to leading
order in e. Similarly, equations (5.9) show that the amplitudes of the fast
oscillations in g1 (t) and the slow oscillations in g2 (t) are correct to leading
order. Similar results hold in most applications: orbit-averaging correctly
finds the amplitude and frequency of the oscillations, both short-period and
secular, but only to leading order in the strength of the perturbation.

The application of orbit averaging to near-Kepler systems is simplest
using angle-action variables such as the Delaunay variables (eq. 1.84). The
Hamiltonian for a test particle orbiting a mass M and perturbed by a time-
independent Hamiltonian e is

(GM)?

H=
2A2

+eH, (0w, Q,A, L, L). (5.14)

We now orbit average H;. In the unperturbed system, the actions A, L and
L, are all fixed, as are the two angles w and ). Since the mean anomaly ¢
increases uniformly with time in the unperturbed system, the average of H;
over one unperturbed orbit is simply the average over ¢ with all the other
Delaunay variables fixed. Thus the orbit-averaged Hamiltonian becomes

(GM)?
272

2m
(H) = - +e(H)), where (Hj)= %fo dCH,. (5.15)
Since we have averaged over ¢, (H;) is independent of ¢; therefore (H) is
independent of £ as well, so dA/dt = —~O(H)/d¢ = 0. Since A = (GMa)'/?
we conclude that the semimajor axis is conserved in the orbit-averaged dy-
namical system. More precisely, just as in the example system with Hamil-
tonian (5.2), the semimajor axis undergoes both fast and slow oscillations
with fractional amplitude O(e€), while the slow variables—L and L or the
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eccentricity and inclination—undergo fast oscillations with amplitude O(¢)
and slow oscillations with amplitude O(1).

Physically, orbit-averaging the potential or force due to a particle of
mass m on a Kepler orbit corresponds to replacing the particle by an ec-
centric wire with the same shape as its orbit—essentially the wire is a long
time exposure of the orbit. If the orbit is eccentric, then the mass density
of the wire is nonuniform. In particular, if the orbital radius as a function
of azimuth is r(¢), then the density (mass per unit length) A(¢) of the wire
must satisfy Ard¢ = mdt/P, where dt is the time the orbit spends in the
azimuthal interval d¢. Then Kepler’s laws imply that

mr(¢)

2ra?(1 - e2)1/2’

M) = (5.16)

where a and e are the semimajor axis and eccentricity of the orbit. This
insight, and the equations describing the forces from the wire, are due to
Carl Friedrich Gauss (1777-1855). For a recent treatment see Touma et al.
(2009).

The most important application of these results is to multi-planet sys-
tems such as the solar system. Here the perturbation Hamiltonian represents
the gravitational interactions among the planets, and the small parameter e
can be thought of as the typical ratio of the masses of the planets to the
mass of the host star. Thus in multi-planet systems we expect that the fast
and slow oscillations of the planetary semimajor axes will be much smaller
than the oscillations in eccentricity and inclination.'

The oscillations of the semimajor axes can be larger if there is a near-
resonance between two or more planets. For example, Uranus and Neptune
are not far from a 2:1 resonance (PNeptune/Puranus — 2 = —0.0385), and
Jupiter and Saturn are not far from a 5:2 resonance (Psaturn /P]upiter - % =
—0.0167), and the effects of these near-resonances dominate the long-term
variations in the semimajor axes of these planets (Figure 4.2).

These arguments are consistent with numerical integrations of the orbits
of planets in the solar system. The root-mean-square fractional variations

' We have shown that the slow oscillations in the semimajor axes are no larger than O(e),

but according to a theorem of Poisson (1809) they are even smaller, O(€?).
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of the semimajor axes are S 4 x 107 for the giant planets Jupiter, Saturn,
Uranus and Neptune, and § 4 x 107 for the terrestrial planets Mercury,
Venus, Earth and Mars, while the variations in eccentricity and inclination
are much larger (see Figures 4.3 and 5.1).

5.2 Lagrange-Laplace theory

Lagrange—Laplace theory is an approximate description of the secular dy-
namics of a system of planets on nearly circular, nearly coplanar orbits.
The description is approximate because it uses orbit averaging and thus, as
described in the preceding section, the results are only accurate to lowest
order in the planetary masses. Moreover the secular Hamiltonian is trun-
cated by keeping only terms up to O(e?,I?) in the eccentricities and in-
clinations of the planets. Despite these drastic simplifications, Lagrange—
Laplace theory provided the most accurate description of the long-term be-
havior of the solar system for over a century. In particular it showed that
variations in the orbital elements that were polynomial functions of time
in less sophisticated analyses (cf. eq. 5.10) were actually oscillatory with
long periods, and hence did not threaten the long-term stability of the solar
system. Lagrange-Laplace theory has been superseded by more accurate
secular theories, but these are usually too complicated to be investigated
without the aid of computers. In the most important of these theories, due
to Laskar (1986, 1989), the differential equations are accurate to second or-
der in the planetary masses and contain polynomials of up to degree five
in the eccentricities and inclinations [corresponding to a Hamiltonian that
retains all terms up to O(e®, I°)], but these equations contain over 150 000
terms.

The disturbing function of a system of planets on nearly circular, nearly
coplanar orbits was derived in §4.3 as a series of terms involving cosines of
the form cos(k;\; —k;Aj+6;—0;). Here ), is the mean longitude of planet 7,
k; is an integer, and 6; is some combination of the longitude of periapsis o;
and the longitude of the node €2;. As we described in §5.1, to find the secular

2 The history of the development of this theory is described by Laskar (2013) and in greater
detail by Wilson (1985).
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behavior of this system to first order in the masses, we simply average the
disturbing function over the mean longitudes. This average vanishes unless
k; = k;j = 0, in which case the average is cos(§; —6;). From equations (4.98)
and (4.99) it is straightforward to show that the orbit-averaged value of the
inverse distance between bodies 1 and 2 is

1 1 e
( ) = —bo/2 + g[(e% + e%)(éa2D2 + %aD)b?m - %(112 + Ig)ozbéﬂ

Tn 2&2 !
+ %8182(2 -2aD - 042D2)b%/2 cos(wy — w2)
+ LI ab}, cos( - D). (5.17)

Here the argument of the Laplace coefficients is o = a1 /as and € is an or-
dering parameter, which from now on we set to unity. The orbit-averaged
contribution from the indirect potential (4.104) vanishes. The initial term
proportional to b(l) /2 depends only on the semimajor axes so the resulting
term in Hamilton’s equations does not affect the inclinations or eccentrici-
ties and can be dropped. Equation (5.17) can be simplified further using the
relations

(2aD +a?D*)bY )y = abyy,  (2-2aD - a’D?)byjy = —abs )y, (5.18)
so we have

1 1
<A—12> - a:{%abép(a)[ef +es— 17— I3 + 211 Iy cos(Q1 — Q)]
_ iabg/z(a)ewg cos(wy — @2)}. (5.19)

Since A2 is symmetric in the arguments 1 and 2, the right side must be a
symmetric function as well, and this can be checked using equation (4.108).

It is straightforward to generalize this result to a system of IV planets.
The potential that governs the motion of planet ¢ is the Lagrange-Laplace
disturbing function

42
ij

j=1
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__ Z O (1088 (i) 62 + €2 = I2 = T2 4 2T cos(S - )]
aj

i 4aubd/2(o¢ij)eielj cos(w; — wj)}, (5.20)
with a;; = a;/a;. The Lagrange-Laplace disturbing function is limited to
terms that are secular (no dependence on the mean longitudes) and quadratic
in the eccentricities or inclinations.

We may now analyze the dynamics of an N-planet system governed
by the Lagrange—Laplace disturbing function. In astrocentric coordinates
(eq. 4.6) the Hamiltonian for planet i is H; = Hk; + ®-V, where Hy ; =
-1 G*(mo+m;)?/A? is the Kepler Hamiltonian for planet i, mg is the mass
of the host star and A; = [ G(mg + m;)a;]"/? = n;a?, where n; is the mean
motion. Because the Lagrange—Laplace disturbing function is averaged over
the mean longitudes it is independent of them, so Hamilton’s equations give
dA;/dt = -0H;/O\; = 0. Thus the semimajor axes of the planets are con-
served. The evolution of the mean longitude \; is dominated by the Kepler
Hamiltonian and is not of interest here. We define dimensionless variables
(a simplification of egs. 1.71 in the limit / <« 1):

k'i = €; COs Wy, hl =€; sinwi, q; = Ii COSQZ', Pi = Iz SiHQi. (521)

Then the remaining Hamilton’s equations can be written (eq. 1.193):

dk; 1 0p* dh; 1 0pL-
dt A, oh;’ dt‘Aak’
LL ) LL
dg; 1 0%; 7 dp; _ 1 09, ' (5.22)
dt ~ A; op; dt ~ A; g

Apart from the constant factors of A;, these resemble Hamilton’s equations
if k; and g; are interpreted as coordinates and h; and p; as momenta. In
terms of these variables, equation (5.20) becomes

Gm;y

N

ot = - Z — [ O‘Wb?,/z(aij)(k? +hi+ kJQ + h? (5.23)
=1 O
i

_ql'2 _p? _q] p] +2¢;q; +2p1pj) azy 3/2(azg)(k kj +hih; )]



270 CHAPTER 5. SECULAR DYNAMICS

The terms k:JZ-, h?, q]2- and p? can be dropped since they do not involve k;, h;,
q; or p; and hence do not contribute to the equations of motion.
The equations of motion (5.22) become

dk;  d; 1 dh; i 1 X
ey —E:bi»h», — = k- 72:[, ks
at  ATA &Y Ta T A E T
dqi di 1 N dpi di 1 N
= Spi- > iy, =Tt Yaga, (524
T VL W S R L at AT &Y (>-24)
where

=(1- 52]) O‘Ubé/Q(O‘U) bij=(1- 513) 0‘21 3/2(0%1)
aj aj

N Gmy 1
s = —_— y y . '2
d; ;;:1 1o azka/Q(alk) (5.25)
ki

Here d;; is the Kronecker delta (Appendix C.1).
These can be simplified by introducing rescaled variables

K; = (m\) Pk, H; = (miA;)?h;
Qi = (miAi)1/2qi, P = (miAi)l/Qpia (5.26)

and rescaled matrices with components

1/2 1/2
m;'"a;; G(m;m;)
Ai,zziiz(l_gi,)iﬂai.bl (aj),
T mlPARAL T ag A PpLE
1/2 1/2
m;' i G(mqm;) 2
B;j = - =(1-4i;) ijbs 0 (is),
! mj,/2A§/2A}/2 g A PALE
Di; = b Ai - kZ T oibp(aik). (527)
ki

The rescaling has been chosen such that the matrices A and B are symmet-
ric in the indices ¢ and j; this claim can be checked using equation (4.108).
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The matrix D is automatically symmetric since it is diagonal. Then we can
write in vector notation

dK dH
o - (B-D)H, ¥ =-(B-D)K,

Q _ A\ P _

o = (A-D)P, o =(A-D)Q. (5.28)

Finally we introduce complex vectors Z, = K + iH, Z; = Q + iP. These
obey the equations

dZ.
dt

az; _,
dt

=-i(B-D)Z, (A-D)Z;. (5.29)
These equations show that the evolution of Z. and Z; is decoupled: in
the Lagrange—Laplace approximation, the evolution of the eccentricities and
longitudes of periapsis is independent of the evolution of the inclinations
and the longitudes of the nodes. The solutions of these equations are sums
of terms of the form R, exp(igt) or R;exp(ift), where

_(B_D)Re =gR., (A_D)RI = fRr. (5.30)

Thus g and f are eigenvalues of —(B — D) and (A — D) respectively, and
R. and R are the corresponding eigenvectors. The eigenvalues or secular
frequencies are given by the solutions of

det[(B-D)+gI]=0, det[-(A-D)+fI]=0, (5.31)

where “det” is shorthand for the determinant and I is the N x N unit matrix.
Since A, B, and D are all real, symmetric matrices and the eigenvalues
of such matrices are real, g and f must be real; thus the solutions of the
Lagrange—Laplace equations are all stable.

Let R, = [(m1A)Y2,..., (mnxAx)Y?]. Then it is straightforward
to show that (A - D)R, = 0. In other words, R, is an eigenvector of
A - D with eigenvalue 0, so one of the solutions for the evolution of the
inclinations and nodes has frequency f = 0. Physically, this solution arises
because the planetary system is neutrally stable to an overall tilt.
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Table 5.1: Lagrange—Laplace secular frequencies for the solar sys-

tem

Lagrange-Laplace Laskar et al. (2004b) Period
(arcsec yr1) (arcsec yr1) (yr)
g1 5.462 559 2318 x10°
g2 7.347 7.452  1.739 x 10°
g3 17.332 17.368  7.462 x 10*
ga 18.006 17916 7.234 x 10*
Js 3.733 4257 3.044x10°
g6 22.512 28.245 4.588 x 10*
g7 2.707 3.088 4.197 x 10°
Js 0.635 0.673 1.926 x 108
fi -5.201 -5.59  2.318 x 10°
fo -6.571 -7.05  1.838x10°
fs ~18.747 -18.850 6.875 x 10*
fa -17.637 -17.755  7.299 x 10*

Is 0 0 —
fs -25.989 -26.348  4.919 x 10*
fr -2.908 -2.993  4.331 x10°
fs -0.679 -0.692 1.874 x 10°

Lagrange-Laplace frequencies are determined from equations (5.31).
Laskar et al. (2004b) frequencies are determined from numerical inte-
gration of the equations of motion over tens of Myr. Periods are 27/|g;],
27 /|fs|, as derived from Laskar et al.
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If there are IV planets, then A, B and D are N x N matrices and there
are IV eigenvalues g, and N eigenvectors R that describe the evolution
of the eccentricities. The same number of eigenvalues and eigenvectors f,,
RY7 describe the inclinations. The general solution of the Lagrange—Laplace
equations of motion is thus

N : N .
Ze=K+iH= ) 0,e"'RY, Z;=Q+iP=) B,e/"'R}, (532

n=1 n=1

where «, and [3,, are constants. Given the initial conditions Z.(t = tg) =
Z.y, we can determine the constants v, as follows: evaluating the first of
equations (5.32) at ¢ = t( yields

N .
Zeo= )Y ane""R]. (5.33)

n=1

The eigenvectors of a real, symmetric matrix with distinct eigenvalues are
orthogonal, that is, R, - R = Zﬁl RI'RYZ. = 0if gi, # gn. Assuming all
the eigenvalues are distinct, as is usually the case, we can multiply (5.33)
by R to obtain
m
- %e*igmto. (5.34)
€ €
A similar derivation yields an expression for (3,,.

Geometrically, equations (5.32) can be interpreted as representing each
eccentricity vector and angular-momentum vector as the sum of N vectors
of fixed length, each rotating uniformly at a different frequency.

The secular frequencies for the solar system, as derived from equations
(5.31), are given in Table 5.1. Also shown are the best current estimates
for these frequencies, obtained from the power spectrum of the positions
of the planets over an interval of 20 Myr from the present (Laskar et al.
2004b).> The Lagrange-Laplace estimates are accurate to within 20% and
usually much better than this; the largest errors arise because of the 5:2

O

3 Over longer time intervals some of the secular frequencies vary substantially due to the
chaotic nature of the planetary orbits (§4.5.2); the largest variations, in g3, g4 and fa2, reach
0.2arcsec yr~ ! over 100 Myr.
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Figure 5.1: The history of the Earth’s eccentricity over the last Myr. The solid line
shows the result from a numerical integration of the orbits of the planets in the solar
system, and the dashed line shows the result from Lagrange—Laplace theory.

near-resonance between Jupiter and Saturn, which contributes to the secular
frequencies at second order in the planetary masses.

Figure 5.1 shows the behavior of the Earth’s eccentricity over the past
million years (studies of this kind are usually run backward, rather than for-
ward, because the past history of the Earth’s orbit is reflected in the geologi-
cal record). The figure compares the results from a numerical integration of
the orbits of the Earth and other planets, which has negligible uncertainties
over this timescale, and from Lagrange—Laplace theory. The latter theory is
reasonably accurate over the past 20 000 yr or so; beyond that time, it qual-
itatively reproduces the amplitude and period of the oscillations but is not
quantitatively accurate.
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An important special case is the motion of a test particle—a comet, as-
teroid, or even a very small planet—in the gravitational field of a set of NV
massive planets. If we denote the orbital elements of the test particle by
variables without subscripts, equations (5.24) and (5.25) become

%+ h== ibjhj, %—gk— Zbkj7
% -gp= ;Z_V:l a;py, (311; Z @595, (5-35)
where
a; = (i;r; anB/Z(a]) bj = (iaj O‘Jbs/z(%)a
)= kﬁl (Z’ZZ bl (). (5.36)

Here o = afa; and A = (Gmga)/2. By setting 2, = k +ih and z; = ¢ +ip
equations (5.35) can be simplified to

dze d i X
dZt —igze = — z:: (kj+ih;), %ngl = i;aj(qjﬂpj). (5.37)

The functions on the right side of equations (5.37) are linear combina-
tions of terms oscillating with the frequencies {g,,, f }. Thus we can write

dz.
dt

—igze = z vpednt, +1gzI = Z hn elfnt, (5.38)

n=1

d

where the complex constants v, and ., are determined by the initial condi-
tions for the massive planets. The solutions are

Zo(t) = veldt +1 Z —ng et 2 (t) = pe 9t - Z g+"f eifnt
(5.39)
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where the complex constants v and p are determined by the initial condi-
tions for the test particle. The eccentricity and inclination associated with
the natural precession frequencies g and —g are given by |v| and ||, and
these are sometimes called the free or proper eccentricity and free in-
clination. Similarly, the absolute values of the summations in equations
(5.39) are called the forced eccentricity and forced inclination. The forced
eccentricity and inclination diverge at secular resonances, where g = g,, or
g = —fy respectively; in the vicinity of these resonances, the Lagrange—
Laplace theory does not give an accurate description of the secular dynam-
ics. See §6.6 for a more complete description of secular resonance.

The free and forced eccentricity have a simple geometrical interpre-
tation. If we write z, = k + ih and treat £k and A as Cartesian coordi-
nates, then the vector from the origin to (k,h) has length e and makes
an angle w with the k-axis. This vector is the sum of two others: the
tip of the first has length equal to the proper eccentricity and rotates uni-
formly at angular speed g, while the second has time-varying coordinates
[-Im ¥, vy exp(ignt)/(9 - gn), Re L, vn exp(ignt)/(g - g»)] and repre-
sents the forced eccentricity. The interpretation of the proper and forced
inclinations is similar.

The free eccentricity and inclination are constant in time, apart from
short-period perturbations, and contain more information on the dynamical
history of a particle than the forced eccentricity and inclination, which are
determined by the semimajor axis of the particle and the orbits of the mas-
sive bodies in the system. Asteroids exhibit clustering in phase space and the
clustering is stronger when plotted using the proper eccentricity and incli-
nation rather than the total or osculating eccentricity and inclination (Figure
5.2). These clusters, or families, are probably the fragments from collisions
that have led to the breakup of, or large craters in, parent asteroids.

5.3 The Milankovich equations

We have shown in §5.1 how secular dynamics can be described by the
orbit-averaged Hamiltonian (H) (eq. 5.15) and how the semimajor axis is
conserved in this description. The evolution of the mean longitude A is
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Figure 5.2: The distribution of proper inclination versus proper eccentricity for
500000 asteroids. The clumps are asteroid families. For example the Vesta family,
consisting of fragments from a collision with Vesta, is centered at e = 0.10, I = 6.7°.
Data from https://newton.spacedys.com/astdys/index.php?pc=0.

dominated by the unperturbed mean motion and is not of interest in secular
theory. The behavior of the remaining four orbital elements e, I, w, (2 is
described by Lagrange’s equations (1.187). Unfortunately these equations
are complicated and lack any natural structure; moreover they are ill-defined
when the eccentricity e or inclination [ is zero, or when e = 1. These dis-
advantages can be remedied in a vector-based formalism for secular theory,
which we now derive.

The angular momentum per unit mass L = r x v = €;;,0,7;v;, where
€5 1s the permutation symbol (Appendix C.1); throughout this section the
summation convention described in Appendix B is in force. Since r and v
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form a canonical coordinate-momentum pair, their Poisson brackets are (eq.
D.31)

{Tiarj}:()? {Ui71)j}:0, {Tivvj}:_{vhrj}:(;’ija (540)

where J;; is the Kronecker delta (Appendix C.1). The Kepler Hamiltonian
for a test particle orbiting a mass M at the origin is (eqs. 1.80 and 1.85)

12 GM __GM __(GM)?

Hy(r,v) =35 T T . SAZ (5.41)

where a is the semimajor axis and A = (GM a)l/ 2 is a Delaunay variable
(eq. 1.84). It is straightforward to show that

{Hk, Li} =0, (5.42)

and then equation (D.38) implies that L is conserved on a Kepler orbit, a
result that we already derived (more simply) in equation (1.13). Since Hx
depends only on the phase-space variable a (or A), it follows that

{a,L;} =0 or {A,L;}=0. (5.43)

Using equations (5.40) and the identity (C.2), it is straightforward to
show that the Poisson brackets of the components of angular momentum
are

{LzaL]} zeijk:Lk- (544)
Since |L| = [GMa(1-e?)]"? = A(1-€?)'/2 (eq. 1.28), it proves useful to
define a dimensionless angular momentum
L

jEK:(l—GQ)l/QfJ, (5.45)

whose magnitude varies between 0 and 1. Using equations (D.32c) and
(D.32d), it is straightforward to show that equations (5.43) and (5.44) can
be rewritten as

. o 1 .
{aaji} = Oa {]ia]j} = Keijkjk~ (546)
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The eccentricity vector defined in Box 1.1 is

vx(rxv) 02 rv r
JYyx\rxv) Lo v _r 5.47
¢ e "T'em VoM r (547

In terms of the usual orbital elements (§1.3.2), the Cartesian components of
these vectors can be written

e =e(cosQcosw — cos I sinQsinw, sin 2 cosw + cos I cos N sinw,

sin I sinw),
j=(1-€e®)Y?(sinIsinQ, —sin T cosQ, cosT). (5.48)
Similarly to equation (5.42), we can show that
{Hx, e} =0, (5.49)

which confirms that the eccentricity vector is conserved on a Kepler orbit.
Since Hxk depends only on a (or A), it follows that

{a,e;} =0 or {A,e;}=0. (5.50)

It is straightforward, though tedious, to show that the Poisson brackets
of the components of the eccentricity vector are

1 .
{eiej} = €ignin. (5.51)

Similarly we can show that
. , 1
{jisejt ={ei,j;} = A CiskCh- (5.52)

The elegant relations (5.46), (5.51) and (5.52) arise because the symme-
try group of the Kepler problem is the group of rotations in 4-dimensional
space, SO(4).

The orbit-averaged Hamiltonian ( H) is a function of the size and shape
of the orbit, and possibly the time. These can be specified by the orbital
elements a, e, I, w, € (the mean longitude A does not appear because of
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the orbit averaging). Alternatively, we can specify the orbit by the semi-
major axis a and the two vectors j and e. Thus we can write the orbit-
averaged Hamiltonian as (H)(a, j, e, ). Note that these arguments contain
seven phase-space variables (a and the three components of each of the two
vectors), but only five are independent, because they are related by the con-
straints

je=0, j*+e?=1. (5.53)

The time evolution of j; under the influence of ( H) is given by equation
(D.38),

dj; .
—— ={j;, (H)}. .54
i) (554
Then from the chain rule
dji .. OH) . O(H) . | 9(H)
dt _{]zvjk} a]k +{]'Laek} aek +{]1,(l} Ja . (555)

Using the evaluations of the Poisson brackets in equations (5.46) and (5.52),
the result simplifies to
dj; 1 . O(H) 1 O(H)
— = T €ikmIm 5. t TC€kmbm —(5 - 5.56
At ACkmIm Ty T T CkmEm Ty (5-56)

This can be rewritten in vector notation as

G 1. 0 0
3 K(Jxa—j(H)+ex%(H)), (5.57)

where 0f/0j is the vector having components (0f/0j1,0f[0j2,0f]Dj3)
for any function f(j1, jo,j3). Similarly, the time evolution of the eccentri-
city vector is given by

de 1 0 .0
a—‘x( gy A x50

Equations (5.57) and (5.58) are the Milankovich equations.*

(H)) . (5.58)

4 Milutin Milankovich (1879-1958) was a Serbian applied mathematician. He is responsible
for the concept that long-term changes in Earth’s climate are quasi-periodic and driven
mainly by secular variations in the Earth’s orbit and the precession of its spin axis. These
Milankovich cycles have periods between 2 x 10% yr and 1 x 10° yr. The equations first
appear in Milankovich (1939).
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It is straightforward to show that the Milankovich equations conserve
j-eand j2 +e2. Thus if the constraints (5.53) are satisfied by the initial con-
ditions, they continue to be satisfied for all time. Because of this property
the formula for a given Hamiltonian in terms of j and e is not unique—for
example, (H) = j2 could also be written (H) = —e? or (H) = j? + e-j—but
the trajectories determined by the Milankovich equations are the same for
all of these.

A more compact form of these equations is obtained by defining new
variables

b,=j+e, b_zj-e, (5.59)
which imply that
j=i(bi+b), e=1(b.-b.). (5.60)

Using the constraints (5.53), it is straightforward to show that |lA)i|2 ==
e)-(j+e) = 1; thus b, and b_ are unit vectors that can be represented
by points on the unit sphere. In terms of these the Milankovich equations
become

db, 2. ) db. 2. )
= ———D4 — H 5 = -
dt A * 8b+( )

” AP~ alE)_(H). (5.61)
Despite the simplicity of these equations, we shall usually work with equa-
tions (5.57) and (5.58), since the vectors j and e have a direct physical in-
terpretation.

‘We have written the Milankovich equations for an orbit-averaged Hamil-
tonian, which is independent of the mean anomaly. A more general form
of these equations, valid for Hamiltonians that are not necessarily orbit-
averaged, is described by Allan & Ward (1963).

5.3.1 The Laplace surface

Most of the inner satellites orbiting the giant planets in the solar system
likely formed from a thin disk of gas and solid material surrounding the pla-
net. The orientation of this disk is determined by the shape of the gravita-
tional potential in which it orbits. If the disk were oriented in some arbitrary
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direction, the angular-momentum vector j of each fluid element in the disk
would precess at a different rate, depending on its semimajor axis, so the
disk would rapidly dissolve. Therefore the only possible orientations for
the disk are those for which the angular-momentum vectors do not precess.’

In the most common case, the disk orientation required for zero pre-
cession rate is determined by the competition between the torques from the
quadrupole potential of the planet’s equatorial bulge and the quadrupole po-
tential from the Sun. Consider a flattened planet with mass M,,, quadrupole
moment J5 and radius R,. Assume that the higher multipole moments J3,
J4, and so forth are negligible. Its non-Kepler potential is given by equation
(1.135),

_ GM, o R? GM,.Jo R>

H P(3cos’0-1) = P (222 -2 —9%); (5.62)

P 2r3
here the first expression is in spherical coordinates and the second in Carte-
sian coordinates, with the equators of both coordinate systems aligned with
the equator of the planet. Using equations (1.70), the potential can be rewrit-
ten as

2
) GM,J2R;
P 2r3

We orbit average using equations (1.66¢)—(1.66e) to obtain

[3sin® I'sin®(f +w) - 1]. (5.63)

GM,LR: (GM)*LRZ, .,
() = o ey (351 =2) = s — (L -3L%)
GM,JoR? 2 _ 342
_ pU2Mp ] 3]z (5.64)

4a3 j5 ’

where the dimensionless angular momentum j is defined in equation (5.45).
We can write this result in a coordinate-free form by defining a unit vector
Ny, that is normal to the planet’s equator, which so far we have assumed to

3 Strictly, they must precess at the same rate as the planet’s spin axis precesses due to the
torque from its host star (see §7.1), but this rate is usually slow enough that the spin axis
can be assumed to be fixed.
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be the z-axis:
_ GM,JaRy j% - 3(j - 1)
© 4a3 35 '

(Hp)

The Milankovich equation (5.58) is satisfied if e = 0; thus a circular orbit
will remain circular. Since we expect the orbits in a gas disk to be circular
anyway, we set € = 0 henceforth.® Then the Milankovich equation (5.57)
becomes

(5.65)

dj 3(GM,)'2LRE
dt 227/2 2(j-np)jx . (5.66)

The simplest solutions to this equation have jxfn, = 0 or j-f, = 0. In the
first of these, j is parallel or antiparallel to the planet’s spin axis so the disk
lies in the equatorial plane of the planet; in the second, j is perpendicular to
Ny, so the disk crosses the pole of the planet. In practice, equatorial disks
are favored over polar disks, in part because gas disks dissipate energy so
they tend to evolve toward a state of minimum energy at a given semimajor
axis; and equation (5.65) shows that the Hamiltonian is minimized at fixed
a and 7 when the disk is equatorial.

At large distances from the planet, the orientation of the disk is governed
by the tidal field from the host star. Consider a planet that orbits a host star
with mass M., on an orbit with semimajor axis a,, and eccentricity e,. In
coordinates centered on the planet the quadrupole tidal potential from the
star is given by equation (3.71):

GM.r? 3GM,(r-r,)?
H, = - ,
273 2r°

(5.67)

with r, the position of the star.

Let (X,¥,2z) be an orthogonal triad of unit vectors, with X pointing to
the periapsis of the orbit of a disk particle around the planet, z parallel to
its orbital angular momentum, and ¥ = z x X, with similar definitions for
(X4, ¥+,2+). The position of the disk particle is r = r(Xcos f + y sin f),
where f is the true anomaly, and similarly r, = 7, (X, cos f« + ¥. sin f,).

© The behavior of orbits with nonzero eccentricity is discussed in Problem 5.4.
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We now average H, over the orbit of the test particle. Using equations
(1.65¢)—(1.65f), we have

GM,a?
H,)=
(H.) 27’

[(1 + %62)7"3 -3(x- r*)z(% +2€%) - %(y r)%(1 - 62)] )

(5.68)
Now eliminate ¥ using the relation (¥ -1, )% =72 — (%-1,)? - (2-1.)? (eq.
B.6a), and replace x and z with the eccentricity and dimensionless angular-
momentum vectors using the relations e = ex, j = (1 — e?)'/?2:

GM,a?
H,) =
(H.) 47

[(6e* - 1)r7 —15(e-1.)* +3(j-1.)?]. (5.69)

We now carry out a similar average over the orbit of the host star around the
planet, using equations (1.66b)—(1.66e). We denote the second average by
double angle brackets:

GM.a® 2 2 2

H.) = ——————==|15(e-n,)" -6e”"+1-3(j-n.)"|, 5.70

where n, = z, is normal to the orbit of the host star. If we adopt a co-

ordinate system in which the host-star orbit is in the equatorial plane, the

Hamiltonian can be rewritten in terms of orbital elements or Delaunay vari-
ables using equations (5.48):

M,a?
(H.)= 83?16;)3/2(3 sin? I -2-3e?-3e?sin? I +15€? sin” I sin® w)
ay — €%
GM,a* [6L? 3L2 Lz r?\ .,
“Sa(i—eypn| ar TP e TR e e

5.71)
Using the Hamiltonian (5.70), the Milankovich equations read

dj 3GY2M,a’? . . .
at  aPas1 2)3/2[(J'n*)J><n* ~5(e-hexn.],  (572)
p L= 6
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de 3G M, a3?
dt 4N a3 (1 - e2)32

[(G-he)exh, —5(e-n,)jxh, +2jxe].

Once again we assume that the disk orbits are circular, e = 0, so the second
of these equations is automatically satisfied. The simplest solutions have
jxn, =0orj-n,. =0, so the disk lies either in the orbital plane or perpen-
dicular to the orbital plane, with the former configuration favored because
the energy (5.70) is smaller at fixed semimajor axis when j is parallel or
antiparallel to 1.

The obliquity of a planet is the angle between its spin angular momen-
tum and orbital angular momentum. The obliquities of planets in the solar
system range from less than a few degrees for Mercury and Jupiter to 98° for
Uranus and 177° for Venus (see Appendix A). If the obliquity of a planet is
nonzero, then the preferred orientation of the disk must transition from the
equatorial plane of the planet at small distances to the orbital plane of the
planet at large distances. To determine the shape of this transition, we add
the Milankovich equations (5.66) for the effects of the planetary quadrupole
and (5.72) for the effects of the tide from the host star and look for solutions
with zero precession. For circular disks the equation dj/d¢ = 0 is satisfied
if

SR M,
ab (J'nP)J X1p + 2Mpa§(1 —6%)3/2

G-h)jxn,=0.  (5.73)

We define the Laplace radius rp, by

M,

10 = oR2a%(1-e2)%? (5.74)

then

27 (- fip)j x By +a®(j - ) x e = 0. (5.75)
In the simplest solutions, fi,, N, and j all lie in a common plane. The
obliquity e is the angle between 1, and 1, ; by convention the obliquity lies
between 0 and 180°. Let ¢ be the angle between j and 1,, measured in the
same direction as the obliquity in the common plane. Then the constraint

(5.75) becomes
2r7 sin2¢ + a”sin2(¢ — ¢€) = 0. (5.76)
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Figure 5.3: The shape of the Laplace surface as a function of the obliquity €, ob-
tained by solving equation (5.76). The horizontal axis is a/rr,, where a is the semi-
major axis and the Laplace radius 71, is defined in equation (5.74). The vertical axis
is ¢, where ¢ = 0 when the surface coincides with the equatorial plane of the planet,
and ¢ = e when the surface coincides with the orbital plane of the planet. Solutions
for planets with obliquity > 90° can be obtained by the transformation € — 180° — ¢,
¢ — 180° — ¢.
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The surface mapped out by this constraint is the Laplace surface. When
a < rr, the constraint requires sin2¢ = 0, so ¢ = 0, %7‘(, or m. The energy
arguments following equation (5.66) favor the solutions ¢ = 0,7, in which
the Laplace surface coincides with the equatorial plane of the planet. Simi-
larly, for a > r, we must have sin 2(¢ —¢) = 0, and energy arguments favor
¢ = e or € + 7 so the Laplace surface lies in the plane of the orbit. The shape
at intermediate radii is shown in Figure 5.3. See Tremaine et al. (2009) for
a comprehensive description of the Laplace surface.

The shape of the Laplace surface motivates the division of satellites into
inner satellites, which have semimajor axes a $ 71, and orbit close to the
planet’s equator; and outer satellites with a > r1,, which orbit close to the
ecliptic. The Moon is an outer satellite but almost all of the major satellites
of the giant planets except for Saturn’s satellite lapetus are inner satellites.

Of course, the gas disks from which the satellites of the giant planets
formed disappeared long ago. Nevertheless, we still expect that the present
orbits of these satellites will lie close to the Laplace surface. Whether or not
this is true, the angular-momentum vector of a satellite will precess around
the direction defined by the normal to the Laplace surface at its semimajor
axis. This is why the JPL Solar System Dynamics database, https://ssd.jpl.
nasa.gov/, quotes the inclinations and nodes of many satellites relative to
the local Laplace surface.

5.3.2 Stellar flybys

The solar system, like most planetary systems, is far from the other stars
in the solar neighborhood: the nearest star, Proxima Centauri, is almost
10* times farther than the outermost planet, Neptune. Nevertheless, many
stars, perhaps including the Sun, were born in dense star clusters that later
dissolved, and/or migrated through the Galactic disk from locations closer to
the Galactic center with much higher stellar densities. Therefore we need to
examine the possible effects of encounters with a passing star on a planetary
system.

The velocities of stars in the solar neighborhood relative to the Sun
are sufficiently high (V' ~ 50km s™1) and their distances sufficiently large
that they pass us on straight-line orbits, unaffected by the Sun’s gravity. If
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the impact parameter or distance of closest approach to the Sun is b, then
the duration of an encounter, when the gravitational force from the star is
strongest, is roughly

b b 50kms”'

TEy S 94.8 yr 10°an v (5.77)
thus all but the closest encounters last much longer than a typical planetary
orbital period, so their effects can be studied using secular dynamics.

We first calculate the rate of stellar encounters with the Sun in its present
environment. Let f(v)dv be the number of stars per unit volume with
velocities in the range v to v + dv. The number of encounters with these
stars per unit time with impact parameter less than b is f(v)dv times the
volume of an annulus with radius b and length equal to the relative speed
|v — ve|. The total rate of encounters with impact parameter less than b is
then

R(b) = [dvf(v)wb2|v—v®|. (5.78)

To evaluate the integral we make two simplifying assumptions. First, we
assume that the velocity distribution is Maxwellian with dispersion ¢ in one
dimension,

2
f(v) = 7(%:2)3/2 exp(—;ﬂ), (5.79)

where n is the number of stars per unit volume. A more accurate repre-
sentation of the velocity distribution in the solar neighborhood is a triaxial
Gaussian distribution, equation (9.17), but this refinement is not needed for
the estimates we make here. The root-mean-square velocity of the stars
is approximately 50 km s™' (Dehnen & Binney 1998) so the dispersion in
one dimension can be taken to be o = (50km s™')/\/3 ~ 30km s, Sec-
ond, we assume that the Sun is at rest with respect to the mean velocity of
nearby stars. The actual value of the Sun’s velocity in this frame is only
18km s™* (Schénrich et al. 2010) compared to the root-mean-square velo-
city of 50km s™*, so this approximation is not too bad. Then

b*n v2
R(b) = 21723 f dv |v]exp (_W)
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1/2..1/232 o 2
_ 2P e s (0 o,
o3 0 P 202
036 ( b )2 n o
~ Gyr \1000au/ 0.10pc=330kms !’

(5.80)

We may conclude that the closest encounter the Sun has had in its lifetime
tss = 4.57 Gyr is b ~ 800 au, corresponding to R(b)tss = 1. Of course, there
are large uncertainties in this result, both because the closest encounter is
a random event’ and because the Sun’s environment at the time of its birth
was probably much denser than the present solar neighborhood.

We now examine the effect of an encounter on a planetary orbit. The
trajectory of the star relative to the Sun can be written r,(t) = b + Vi,
where V is the velocity of the star relative to the Sun, ¢ = 0 is the time of
closest approach and b is the impact parameter vector, the position of the
star at the periapsis or point of closest approach. This definition implies that
b is perpendicular to V and |b| = b, the impact parameter. We use Cartesian
coordinates in which the origin is at the Sun, the trajectory of the star is in
the z-y plane and the z-axis points to the periapsis of the passing star. In
these coordinates r, (t) = (b, Vt,0) and the quadrupole tidal field from the
star at position r = (x, y, z) is given by equation (3.71),

~ GM,r? ~ 3GM, (xzb+yVt)?
T oM A VYR T (B2 4 VER)AR

(5.81)

where M, is the mass of the passing star. We want to average over the
planetary orbit. The averaging can be written symbolically as

GM.(r?) ~ 3GM, ((x2)b2 + 2(zy)bVt + (y*)V2?)

H,)=
()= S vepyn 2(b% + V212)5/2

(5.82)
As usual with orbit averaging the Hamiltonian (H, ) is independent of the
mean longitude, so the semimajor axis of the planet is conserved during the
encounter.

7 A more precise statement is that the probability that the closest encounter has an impact
parameter greater than b is exp[—R(b)tss]-
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Since the changes Aj and Ae in the angular-momentum and eccentricity
vectors from a single encounter are expected to be small, we can solve the
Milankovich equations (5.57) and (5.58) by evaluating the right sides on the
original planetary orbit. In this case the only time-varying component of the
right sides is (H ), so we can write

. 1. 0 0 oo
Aj= X(ngj+ex%)/—mdt<H*>’

1 0 o
A:——( A 7)/ dt (H,). 5.83
CTTAN G T B —oo<> (5.83)
where A = (GMga)'/?. Since the term involving (xy) in equation (5.82)
is odd in ¢, its integral will vanish and it can be dropped from this analysis.
We also use the integrals

[°° dt B l /°° de¢ 4
—oo (b2 + V2¢2)3/2 B2V —oo (b2 + V2¢2)5/2 3tV

o dtt? 2
[oo (b2 + V2e2)512 ~ 3273 (-84
Then - GM
[ ar(iy = (%) - 2027 - 7). (5.85)

The average (r?) = a®(1 + 3¢?) by equation (1.65¢) and the averages (z?)

and (y?) are evaluated in equation (P.3). We find

°° GM.d®r, 5 4 P2 (s P25 X720 (32
Lo At (M) = 22362~ 1=5(e-B)*+ (5)*~ 3 (e V)*+1(5-V)?].
(5.86)
Here we have used the unit vector b pointing toward the point of closest
approach b (the z-axis) and the unit vector \Y% along the direction of the
velocity V (the y-axis).
Substituting this result into the Milankovich equations (5.83), we have
(Heggie & Rasio 1996)

Ar G20, ¢312

1/2 [_Q(JB)JXB—(JV)JXV
M2V
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+10(e-b)exb+5(e-V)e XV],
GY2 0,432

Ae = ~-2(j-b)exb-(j-V)exV
MPp2v [

-6jxe+10(e-b)jxb+5(e-V)jx V]. (5.87)

The right side of each equation contains a geometric factor in square
brackets that is of order unity, multiplied by a pre-factor that gives the typi-
cal magnitude of the changes. The geometric factor in the second equation
shows that a circular orbit (e = 0) remains circular (Ae = 0); physically,
this is because the torque exerted by any gravitational potential on any ax-
isymmetric mass distribution must be perpendicular to its symmetry axis.
The pre-factor is

1/2 3/2 3/2 2 -1
G'*M.a 6M*( a ) (IOOOau) 50km s . (5.88)

Mé/szv =6.66>10 My \5au b %

Thus the changes in the orbits of the solar-system planets due to passing
stars are negligible, even for an encounter with the smallest plausible impact
parameter predicted by equation (5.80). One immediate consequence of this
conclusion is that the direction of the ecliptic pole is fixed so long as the
stellar environment of the Sun is similar to the present one.

This result is based on three main approximations: that the duration of
the encounter is much larger than the orbital period of the planet (eq. 5.77),
that the stars pass the planetary system on straight-line orbits and that the
smallest impact parameter over the lifetime of the system is much larger
than the semimajor axis of the planet (eq. 5.80). In denser environments
such as star clusters, the conditions are quite different—in particular the star
density can be 10° times larger than in the solar neighborhood—so some or
all of these assumptions may fail and different tools are needed to determine
the fate of a planetary system (Spurzem et al. 2009).

8 An additional effect is precession of the ecliptic pole due to the tidal field of the Galaxy, but
this is also negligible. See Problem 9.6.
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5.4 ZLK oscillations

In some planetary systems a distant body such as a companion star can
excite large oscillations in the eccentricity and inclination of the planetary
orbits. A remarkable feature of these von Zeipel-Lidov-Kozai (ZLK) os-
cillations’ is that the amplitude of the oscillations is independent of the
mass of the perturber.

We borrow the analysis of equations (5.67)—(5.72), except that now we
are investigating a planet orbiting a host star in the tidal field of a companion
star, rather than a satellite orbiting a planet in the tidal field of its host star.
The planet is represented as a zero-mass test particle with semimajor axis
a, eccentricity vector e and dimensionless angular-momentum vector j; as
usual these are related by |e|? +|j|> = €2 +j2 = 1. The host star has mass M,
and belongs to a binary system in which the companion star has mass M.
The relative orbit of the two stars has semimajor axis a. and eccentricity e..
In this notation, the disturbing function (5.70) has the form

GM.a?

(Hquaa ) = m[w(e 0e)? - 6e? +1-3(j-he)?],  (5.89)

and the Milankovich equations (5.72) read

dj 3GY2 M a??
At apmPa3(1-e2)302
de 3GY2 M. a3?
At gN a3 (1 - e2)32

[(G-fe)j x fie — 5(e - fic)e x i |, (5.90)

[(G-he)exh.—5(e-he)jxhe+2jxel.

9 Named after three astronomers: Hugo von Zeipel (1873-1959) from Sweden, Mikhail Li-
dov (1926-1993) from Russia and Yoshihide Kozai (1928-2018) from Japan. The history of
ZLK oscillations is complicated (Ito & Ohtsuka 2020). They were discovered and investi-
gated in detail by von Zeipel (1910), but this paper was mostly forgotten. Lidov discovered
the phenomenon independently, probably in the course of investigating the trajectory of
Luna 3, the first spacecraft to image the far side of the Moon. He presented his results at
a conference in Moscow in 1961 (Lidov 1961) that was attended by Kozai, who extended
Lidov’s results substantially and disseminated them outside the Soviet Union (Kozai 1962).
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Let us assume that the planet is on a circular orbit, € = 0. Then the
second Milankovich equation is trivially satisfied and the first reads
di 3 G1/2 Mc 3/2 .
= (j-Ro)j x he. (5.91)
At 4, 2a3(1 - e2)3/2

It is straightforward to show from this equation that j - dj/dt = 0 so j2 =
1 - e? is conserved, confirming that a circular planet orbit remains circular.
Similarly n - dj/d¢ = 0, and since the binary orbit normal f is fixed, j - n
is conserved. Since the orbit is circular, j - . = cos I, where [ is the fixed
inclination of the planetary orbit relative to the binary-star orbit. Then equa-
tion (5.91) describes uniform precession of the angular-momentum vector j
around the orbital axis of the binary, at a constant rate

3G2 M, 32
= — 1/2 COS
AM,""a3(1 - e2)3/?

In.. (5.92)

Note that w, - i < 0, so the precession is retrograde in the frame in which
the positive z-axis is parallel to 1.

We now ask whether these precessing circular orbits are stable. We write
e = ee; and expand the Milankovich equations (5.90) to first order in e. The
first of these is unchanged at this order, so the angular-momentum vector
of the planet continues to precess uniformly at the rate w.. The second
equation becomes

ﬁ_ 3G1/2Mca3/2
At 4nPa3(1 - e2)3/2

[(Gfc)erxnc-5(erfc)jxhc+2jxe; |. (5.93)

To analyze the solutions of this equation it is helpful to transform to a frame
that rotates with the unperturbed precession of the angular-momentum vec-
tor, so the unperturbed solution is stationary. In this frame the rate of change
of the eccentricity vector is (eq. D.16) (de; /dt),o; = dey /dt—w. xe;. Thus
the linearized Milankovich equation is simplified to

d 121 4312
(ﬂ) 3G " Mea [2jxe1—5(e; - hie)j x ]
rot

dt Jrot  4Ma3(1 - e2)32
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= Ae;. (5.94)
In Cartesian coordinates with n. = z we have
0 =25, -3jy

3GY/2 M, a3/ ‘ :
-S| % 0 30 (5.95)
AM,"a3(1-e2)’? | —25, 25, 0

where j = (jz, jy, j-) is now a constant. We may assume that e; o< exp(At)
and find the solution of the resulting equation for A, which can be written
det(A - AI) = 0. We find that either A = 0 or

3GU2 N, a2
+ 172
2320 a3 (1 - 2)3/2

(3-5cos* 1)/, (5.96)

where cos] = j-n. = j, since the unperturbed planet orbit is circular.
The motion is unstable if any solution for A has a positive real part, which
occurs if [cosI| < (£)'/2. Thus stability requires either 0 < I < Izpx or
m—Iz1k < I <7, where Iz = cos_l(%)l/2 = 39.23° is the critical ZLK
angle. If these conditions are not satisfied the circular orbit is unstable and
the planet undergoes ZLK oscillations.'?

To explore the nature of ZLK oscillations it is more convenient to use
Delaunay variables (eq. 1.84). The orbit-averaged Hamiltonian arising from
the quadrupole tidal field of the companion star is given by equation (5.71).
The Hamiltonian is independent of the mean anomaly ¢ because it is orbit-
averaged. Therefore the conjugate momentum A and the semimajor axis
a are conserved, as usual in secular dynamics. Moreover the Hamiltonian
is independent of the longitude of the node 2. Therefore the conjugate

10 This analysis shows that ZLK oscillations arise in the quadrupole field from a distant com-
panion star, i.e., a mass that is exterior to the body whose orbit we are following. A
quadrupole field can also arise from mass interior to the body we are following, such as
a quadrupole moment of the host star. In this case there are no ZLK oscillations, because
the orbit-averaged Hamiltonian (5.64) is independent of the argument of periapsis w when
expressed in Delaunay variables, or independent of the direction of the eccentricity vector
when expressed in terms of e and j. This is an accidental property of the potential due to an
interior quadrupole moment. See Tremaine & Yavetz (2014) for more detail.
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momentum L, the z-component of angular momentum, is also conserved
(as we discuss below, this is an accidental but helpful property of the po-
tential due to an exterior quadrupole moment, which does not extend to
more general potentials). Since both L. = [ GMya(1 - e?)]*/? cos I and a
are conserved, we can write L, = ( GMya)'/? cos I, where I is an inte-
gral of motion equal to the inclination of the circular orbit with the given
z-component of angular momentum. Then the conservation of the Hamilto-
nian (5.71) implies that the ZLK function

2]
Czik(e,w) = 5(1 _os 0)62 sin? w — 2¢2 (5.97)

1-e2

is conserved along a trajectory. In words, the existence of the two con-
served momenta A and L. has reduced the dynamics from three degrees of
freedom to one degree of freedom, corresponding to two phase-space di-
mensions. Since the Hamiltonian is conserved, the trajectory in these two
dimensions must lie along contours of constant Hamiltonian, which coin-
cide with contours of constant ZLK function.!!

Not all values of e correspond to physical trajectories. In particular the
definition of Iy implies that cos? I = cos® Ip/(1 - €?), and since cos® I < 1
we must have e < sin Ij.

The contours of the ZLK function are shown in Figure 5.4. These are
plotted using (e,w) as polar coordinates, which is appropriate since w is ill-
defined when e = 0. There is an extremum of Czp i (e, w) at eccentricity e =
0, and the onset of ZLK oscillations corresponds to a change in the nature
of this extremum, from a maximum when |cos Iy| > cosIzrk = (%)1/2
to a saddle point when |cos Iy| < cosIzpk. In the former case a nearly
circular orbit remains nearly circular, while in the latter case an initially
circular orbit oscillates between eccentricity e = 0 and a maximum value
€max, Which is reached when w = +i7. The value of ey, is found by

2
. - 1 .
solving the equation Czrk (e, +57) = 0:

)1/2

emax = (1 - 5 cos® I (5.98)

1 The corresponding equations of motion can be solved in terms of elliptic integrals (Ki-
noshita & Nakai 2007) but we shall not use these solutions.
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lop =40°

Figure 5.4: Contours of the ZLK function Czrk (e,w) (eq. 5.97), with the eccen-
tricity e and argument of periapsis w plotted as polar coordinates. Shaded regions
have e > sin I and are unphysical. Plots are shown for four values of I, the inclina-
tion of a circular orbit. Prograde circular orbits are unstable for Iy > Izrx = 39.23°.
Heavy contours have Czrk (e,w) > 0. Compare Figure 9.5.

Thus epmax = 1 as Iy — :l:%ﬂ, showing that a planet on an initially circular,
nearly polar orbit executes ZLK oscillations that are so large that it may
collide with its host star.

For |cos Iy| > cos Iz, all orbits circulate in the sense that w rotates
between 0 and 27 and w is never zero. For | cos Iy| < cos Iz i, orbits with
Cz1x < 0 circulate but orbits with Cyx > 0 librate in the sense that w
oscillates around :t%ﬂ'. The boundary between the circulating and librating
orbits is a separatrix passing through the origin. In the presence of other
perturbations the separatrix becomes chaotic, so circular orbits are chaotic
whenever | cos Ip| < cos Iz k.

The trajectories in Figure 5.4 are independent of the strength of the tidal
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field from the companion star. Shrinking the tidal field leaves the ampli-
tude of the eccentricity oscillation the same but increases the period of the
oscillations.

The time dependence of the oscillations in e and w can be found using
the Hamiltonian (5.71) and Hamilton’s equations in Delaunay variables:

dw 3GM, 5cos? Iy sin® w 241/2 . 2

o 4na§(1—eg)3/2|: (1= c2)iF2 +(1-¢*)"*(2-5sin"w)

de 15GM, 2\1/2 cos?Ip\ .

T Tnad(1- 2y e(l-e“)""1- 12 |sinweosw, (5.99)

where 7 = (G M, /a®)'/? is the mean motion of the planet around its host.
There is a stable equilibrium state—a maximum of Cyrk(e,w)—at w =
+imand e = eg = [1 - (2)'/2|cos Ip[]"/2. The libration period around this
equilibrium is of order the square of the orbital period of the binary divided
by the orbital period of the planet (see Problem 5.6).

ZLK oscillations are important in a remarkable variety of astrophysical
contexts: the irregular satellites of the giant planets, the excitation of exo-
planet eccentricities by companion stars, high-eccentricity planetary migra-
tion (§5.4.2), the formation of close binary stars, blue-straggler stars, Type

Ia supernovae, black-hole mergers, comets (§9.4), and so forth.

5.4.1 Beyond the quadrupole approximation

The analysis so far assumes that that the only non-Kepler forces arise from
the quadrupole tidal field of the companion star. Any additional sources of
apsidal precession, even small ones, can dramatically alter the nature of the
ZLK oscillations.

Relativistic precession According to equation (J.15) of Appendix J the
orbit-averaged relativistic correction to the Kepler Hamiltonian is
3G?M? L 15 G*M}
c2a?(1 - e2)1/2 8c2a?

(H)gr = +0(c™). (5.100)
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We drop the second term on the right since it has no effect on the secular
dynamics, and drop all terms that are O(c™*). The relativistic Hamiltonian
becomes

3G2 M2

H),, =
( )g c2a2j

, (5.101)
where as usual j = (1 - 62)1/ 2. The addition of this Hamiltonian has no
effect on the Milankovich equation (5.57) for the evolution of the dimen-
sionless angular momentum j. The linearized Milankovich equation for the
evolution of the eccentricity vector e, equation (5.94), becomes

(%) = (A+Ay)en, (5.102)
rot

where we have assumed that j = |j| ~ 1, A is given by equation (5.95), and

3@3/2M§’/2 O —Jz Jy
gr = W ‘7? 0 —Jz |- (5.103)
—Jy Jz 0

Then e; o< exp(At) and equation (5.96) is modified to

3@1/2]\4C 3/2

S S (1+2€4) /* (3= deg 505> 1)'7%, (5.104)

23/2 M 263 (1 - €2)3/2
where

_ GMZad(1- )

Cer = c2a* M.
—0009871(M}1)2(M®)( de )3(12“1)4(1—8)3/2 (5.105)
- Mo/ \ M,/ \100au a c '

parametrizes the relative rates of apsidal precession from general relativity
and the tidal field from the companion star. The circular orbit is unstable,

and ZLK oscillations set in, when cos? [ < 2 — éegr. When €5, > % the

55
circular orbit is stable at all inclinations. Thus relativistic precession can
completely suppress ZLK oscillations, one of the few cases in which general

relativity plays an important role in celestial mechanics.
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Octopole potential The relatively simple characteristics of ZLK oscilla-
tions described so far arise because the z-component of angular momentum
is conserved, a property that reduces the dynamics to a single degree of
freedom. This conservation law arises because both the quadrupole tidal
potential described by the Hamiltonian in equation (5.71) and the relativis-
tic Hamiltonian (5.100) are independent of the longitude of the ascending
node (2. This property does not extend to more general tidal potentials. To
see this, we examine the next order in the multipole expansion of the tidal
potential in equation (3.68). This is the octopole potential, given by the
terms of order A~* in that equation:

3GM.r*(r-r.) ~ 5GM(r- r.)?

Hoct =
2r2 2r7

(5.106)

Following steps similar to those in equations (5.67)—(5.70), we can average
this potential over the orbits of both the planet and the companion star to
obtain (Brown 1936; Breiter & Vokrouhlicky 2015)

15GM,a?

(Hoct ) = 6da(1—c2)o

{e-ec[8e* - 1+5(j-j.)* - 35(e-jc)’]
+10(e-Je) (G- ec)(i-Jeo)}- (5.107)

The Hamiltonian can be converted to the usual orbital elements using equa-
tions (5.48). Notice that { H,e)) = 0 if the companion-star orbit is circular
(ec = 0); because of this feature, the influence of the octopole tidal potential
on ZLK oscillations is sometimes called the eccentric ZLK effect (Ford et
al. 2000; Naoz 2016; Shevchenko 2017).

Motion in the orbit-averaged quadrupole plus octopole Hamiltonian, the
sum of equations (5.89) and (5.107), conserves semimajor axis because the
Hamiltonians are independent of mean longitude as a result of the orbit-
averaging. However, the motion does not conserve the z-component of an-
gular momentum L,. As a result, the addition of even a weak octopole
component to the quadrupole Hamiltonian leads to much richer dynamical
behavior and enables the trajectory to explore a much wider volume of phase
space. In particular, in the quadrupole approximation a distant planet must
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be on a nearly polar orbit (L, ~ 0) if it is to make a close approach to its
host star as a result of ZLK oscillations, but once the octopole contribution
is included planets on a much wider range of orbits may eventually interact
with their hosts.

Nonlinear dynamics All of the analysis above is based on first-order per-
turbation theory. If the ratio of the mean motion of the companion to the
mean motion of the planet is m = n./n, then second-order perturbations
change the apsidal precession rate of the planet by a fraction that is O(m),
as in equation (3.79) for the case of nearly circular and coplanar orbits. The
strongest second-order perturbations arise from terms that were eliminated
when we averaged over the companion orbit having period P, = 27/n..
These are much more important than terms that are eliminated by averaging
over the planet orbit, with period 27/n <« P.. For this reason, calcula-
tions that include the strongest second-order perturbations are sometimes
said to use the single-averaging approximation as opposed to the double-
averaging approximation used elsewhere in this section.

The effects of these second-order perturbations can be incorporated by
adding a secular Hamiltonian proportional to the square of the strength
of the field from the companion, derived from the Poincaré—von Zeipel
method or Lie operator perturbation theory (eq. 4.85). Following Breiter
& Vokrouhlicky (2015) we have

9GM?2a"?

H = 1/2 9/2 . (
16M, " (My + Mc)Y2a™ (1 - €2)3

= (5-3e)? + 1]+ Bleo){(G-3)[1 - 2(5- €c) = (§-3c)? +4e?

Alec)(J 'jC)[24€2_15(e 'jC)2

~10(e-&.)? - 15(e-jo)*] - 20(e - &c) (- éc) (e -3e) } ). (5.108)
Here
2 _23\3/2 _ 2 4
Afe) =352 pley= M ze)T —drbectde 40
12 12¢2

The function B(e,) is defined as e, — 0 by its limit, B(e.) = 2eZ + O(eg).

In some systems the magnitude of the nonlinear Hamiltonian H5 can exceed
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the magnitude of the octopole Hamiltonian { H,¢ ). An approximate crite-
rion for this is that n./n 2 a/a. (Luo et al. 2016), which by Kepler’s law
is equivalent to 1 + M./ M}, 2 a./a. Thus the double-averaged octopole ap-
proximation is usually appropriate in hierarchical systems (a. > a) consist-
ing of a planet orbiting one member of a binary-star system with M. ~ My,
but not necessarily in systems consisting of a satellite orbiting a planet,
where Mj, is the planet mass and M. > M), is the mass of the host star.

In the Earth—-Moon—Sun system we have M. = Mg > My = Mg >
My, and as a first approximation we can assume that the Sun is on a cir-
cular orbit, e. = 0. In the frame with polar axis normal to the ecliptic, the
Hamiltonian (5.108) becomes

M. 3
H, :—9§4a®%(2562+12)+O(€4,I476212); (5.110)

here no = (GMg/a2)/? and n = (G Mg/a*)'/? are the mean motions of
the Sun and Moon around the Earth. Using the Lagrange equations (1.188),
we find that this Hamiltonian contributes to the apsidal and nodal precession

dw 995 3 dO2 3
a = ynm s E = Enm s (5111)

where m = ng/n. These are the second terms in the series (3.79).

5.4.2 High-eccentricity migration

As described in §3.6, hot Jupiters—giant planets with orbital periods less
than 10 days—Ilikely formed at much larger distances from their host stars
and migrated to their current orbits. One possibility is that they migrated
early in the history of their planetary system, within the first few Myr after
the formation of their host star, through gravitational torques exerted by the
gaseous protoplanetary disk from which they formed (§3.6). An alternative
hypothesis is that they migrated long after planet formation was complete,
through high-eccentricity migration.

Hot Jupiters formed by high-eccentricity migration begin their lives in
nearly circular orbits with orbital periods in the range 2 300 d where most
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giant planets are now found (Figure 3.15). High-eccentricity migration then
requires two steps. First, some process excites the planetary orbit to high
eccentricity e—close enough to e = 1 that the periapsis distance a(1 — e)
is only a few stellar radii. Second, tidal friction drains energy from the
planetary orbit until the planet settles on a circular orbit with a period of
only a few days (§8.5.1).

Planetary orbits can be excited to high eccentricities either by a close
encounter between two planets or through ZLK oscillations induced by a
distant companion, either a planet or a star, on an inclined orbit.

One important feature of high-eccentricity migration is that in the final
state the planet’s orbital angular-momentum vector is generally not aligned
with the host star’s spin angular momentum, even if the two vectors were
aligned when the planet was originally formed. This misalignment can
be probed observationally if the hot Jupiter transits the host star, by ac-
curate radial-velocity measurements of the host star during the transit (the
Rossiter-McLaughlin effect; see for example Winn & Fabrycky 2015).
These observations show that the spin and orbital angular momenta are
misaligned in about one-third of all systems containing hot Jupiters, often
by more than 90°—supporting, but not proving, the hypothesis that high-
eccentricity migration is responsible for many hot Jupiters.

The classic example of high-eccentricity migration is the system HD
80606. This is a solar-mass star hosting a single planet with mass 3.9 Jupiter
masses, orbital period 111.4d, and semimajor axis a = 0.45au. The planet
is detected through both radial-velocity variations and transits. The orbit
has a remarkably large eccentricity, e = 0.934. Its periapsis a(1 — €) is only
0.030 au = 6.4R, small enough that tidal friction from its interaction with
the host is sapping energy from the orbit. Thus the planet in HD 80606
likely will eventually settle on a circular orbit with a period of < 10 d—that
is, it will become a hot Jupiter (Wu & Murray 2003).

One difficulty with models of high-eccentricity migration is that they
only produce planets with orbital periods of a few days, whereas the obser-
vations show a relatively flat distribution of orbital periods out to ~ 100d
(Figure 3.15). Some other mechanism is needed to produce warm Jupiters
with periods between 10d and 100 d, and this mechanism must be roughly
as efficient as high-eccentricity migration—an unlikely coincidence.



Chapter 6

Resonances

Informally, a resonance occurs when two or more of the fundamental fre-
quencies governing the dynamics of one or more planets are in a simple
integer ratio. In mean-motion resonances, the frequencies are the mean
motions of the two planets. In spin-orbit resonances, one frequency is the
spin angular speed of the planet and the other is its mean motion (§7.2). In
secular resonances, the two frequencies are the secular frequencies govern-
ing the slow precession of the apsides and nodes (§6.6). There are other va-
rieties of resonance as well, for example between the precession frequency
of a planet’s spin angular momentum and one of the secular frequencies
(§7.1.2), or mean-motion resonances involving three or more bodies called
resonant chains.

A resonance is typically labeled by (p+¢) : p, where p and q are integers
and (p + q)/p is the ratio of the resonant frequencies. Thus, for example, in
a 2:1 mean-motion resonance the mean motion of the inner planet is twice
the mean motion of the outer planet. The co-orbital satellites described in
§3.2 may be said to be in a 1:1 mean-motion resonance. A satellite like the
Moon that is in synchronous rotation, with equal spin and orbital periods, is
in a 1:1 spin-orbit resonance.

There are two preliminary questions to address before embarking on a
study of resonant dynamics in planetary systems.

303
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First, since every real number can be approximated arbitrarily closely
by the ratio of two integers, is not every pair of planets in resonance? Tech-
nically, of course, the answer is “yes,” but the strength of most of these
resonances is very small. To see why, consider the typical case of two
planets on low-eccentricity, low-inclination orbits. Formally this means
that eq, ez, I, I5 are O(e), where € is a small parameter. The disturb-
ing function between these planets can be expanded in a Fourier series as
shown in equation (4.91), in which each term has the form Hj cos ®; where
J={J1, k1, m1, ja, k2, mao} is a vector of integers, Hj is a function of the ac-
tions of the two planets, and ®; = j; A\ +k1 01 +m1 Q) —jo o —katoa—mafla.
The terms that govern the dynamics of a (p + ¢) : p mean-motion resonance
are those in which ®; varies slowly when the mean motions 5\1 and )'\2 are in
the ratio (p+q)/p, which requires that (p+q)/q = j2/j1. Without loss of gen-
erality, we can assume that p+¢q and ¢ have no common factor, so this condi-
tion implies that j; = rp and js = r(p+¢q) where r is a nonzero integer. Then
equation (4.93) implies that k1 +m — ko —mo = rq. Since Y. |a;| > 3, a; for
any sequence {a; }, we must have |k1|+|ka|+|m1|+|ma| > |rg| and then equa-
tion (4.92) implies that the amplitude H}, k, m, jokam, (a1, €1, 11, a2, €2, I2)
associated with the resonance is O(e"). Since |r| > 1 the largest ampli-
tudes, corresponding to the strongest resonances, have |r| = 1 and these
are O(€l9). Therefore if the eccentricities and inclinations are small, res-
onances of the form (p + 1) : p are much stronger than those of the form
(p £ 2) : p, these are much stronger than (p + 3) : p resonances, and so on.
In practice this means that only a small set of resonances are likely to be
strong enough to have an important effect on the dynamics.

Second, if planets or satellites form independently and their masses are
small, should not the fraction that are in resonance be small, and if so then
why is the dynamics of resonances important? In fact, the fraction of solar-
system objects found in some kind of resonance is remarkably large. Nep-
tune and Pluto are in a 3:2 mean-motion resonance (§6.4); Mercury is in a
3:2 spin-orbit resonance (§7.2); Saturn’s satellites Mimas and Tethys are in
a 2:1 mean-motion resonance, as are its satellites Enceladus and Dione; Sat-
urn’s satellites Titan and Hyperion are in a 4:3 mean-motion resonance; and
Jupiter’s satellites Io, Europa and Ganymede are in a three-body resonant
chain (the Laplace resonance) in which their mean motions are related by
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Nlo — 3MEBuropa + 2NGanymede = 0. Members of the Hilda group of asteroids
are in a 3:2 resonance with Jupiter, and many trans-Neptunian objects are in
resonances with Neptune (§9.6). Most inner satellites and the Moon are in
synchronous rotation, corresponding to a 1:1 spin-orbit resonance. Saturn’s
satellites Janus and Epimetheus are in a 1:1 mean-motion resonance (§3.2),
and there are thousands of asteroids in 1:1 mean-motion resonances with
Jupiter (the Trojan asteroids, see §3.1.1).

The most likely explanation for the large number of resonant configura-
tions is that slow changes in the properties of the system have led to slow
changes in the mean motions, spins and other dynamical frequencies. These
changes can cause the ratios of mean motions or other frequencies to drift
through resonance. As we show later in this chapter, if the drift is slow
enough and the resonance is strong enough, the system can be trapped in
resonance and then will remain in resonance even as the planetary system
continues to evolve.

Mean-motion resonances are also found in exoplanetary systems. One
of the most exotic examples is Kepler-223, which contains four planets that
are found in two three-body resonant chains and one four-body chain, with
the mean motions satisfying1 ny —2n.+ng =0, n, — 3ng + 2n. = 0 and
3ny —4dn. — 3ng + 4ne = 0 (Mills et al. 2016). Another example is the
planetary system in TRAPPIST-1, a nearby (12 pc), low-mass (0.08 M) star
containing seven transiting planets with orbital periods ranging from 1.51d
to 18.77 d, named TRAPPIST-1b to TRAPPIST-1h. The planets are found
in a complex, interlocking set of five three-body mean-motion resonances
such as 2ny — 5n. + 3ng = 0 and n. — 3ng + 2n. = 0 (Luger et al. 2017).

A broader view of the occurrence of resonances in exoplanet systems is
provided by Figure 6.1, which plots the period ratios of all pairs of planets
in a given system. The figure shows two histograms, one for a sample of
130 multi-planet systems discovered by radial-velocity surveys, and one for
439 systems discovered by the Kepler transit survey. The plots show tanta-
lizing hints of a concentration of planets near the strongest resonances—in
particular there is a strong, narrow peak at the 3:2 resonance in the Kepler

! Typically planets in a given system are labeled b, c, d, and so forth, from the inside out.

Label “a” is reserved for the host star.
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Figure 6.1: Distribution of period ratios in multi-planet systems. The open his-
togram shows systems discovered by the Kepler mission and the filled histogram
shows systems discovered by radial-velocity surveys. A system with n planets con-
tributes %n(n — 1) data points, found by taking the ratio of the larger to the smaller
period for all possible pairs of planets. Some of the (p+ 1) : pand (p+2) : p
resonance locations are marked by dashed and dotted lines respectively. Data from
the NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/index.html.
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sample and peaks at the 3:2 and 2:1 resonances in the radial-velocity sam-
ple. In contrast, the Kepler sample exhibits a significant dip in the number
of planets near the 2:1 resonance.

6.1 The pendulum

The pendulum is the fundamental model for resonance, and we begin our
study of resonances with a review of its properties.
The pendulum Hamiltonian for a particle of mass m can be written
»?
H(q,p) = — —mw?*cosq. (6.1)
2m
For a simple pendulum of length L in a gravitational field g we have w? =
g/ L, but the pendulum Hamiltonian is more general than this specific sys-
tem. We assume that m > 0; if not, we simply replace g by ¢’ = g— 7 and m
by m' = -m.
Hamilton’s equations read
OH oH
q:—:ﬁ, p=-—=-—mw?sing, (6.2)
op m dq
and by eliminating p we have
j=-w?sing. (6.3)

The equilibrium solutions have p = 0 and ¢ = nm, where n is an integer. The
stability of the equilibria can be determined by writing ¢ = nm + q;, where
q1 < 1. Then equation (6.3) becomes G; = —w?(~1)"q; +O(q3); if we drop
the higher order terms, the solutions are the sum of terms oc exp(#iwt) if
n is even, and o< exp(zwt) if n is odd. Thus the equilibria with even n
are stable and those with odd n are unstable; the former are minima of the
Hamiltonian and the latter are saddle points (Figure 6.2).

The Hamiltonian is conserved along a trajectory, so if me is the constant
value of the Hamiltonian we can rewrite equations (6.1) and (6.2) as

p=mg = +m[2(e + w? cos q)]/2. (6.4)
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p/(mw)
o
|

Figure 6.2: Phase plane of the pendulum Hamiltonian (6.1). Librating regions with
H < mw? are shaded in gray, and circulating regions with H > mw? are unshaded.
The directions of motion are indicated by arrows.

From equation (6.1) the smallest possible value of the Hamiltonian is —mw?

so€ > —w? If —w? < € < w? then ¢ = 0 at ¢ = 2n7 % ¢max Where
Gmax = cos 1 (—€/w?), and motlon in the regions where cos ¢ < COS gmax 18
forbidden; for example, if n = 0 then ¢ oscillates between —¢uax and gmax-

In this case the pendulum is said to librate. The period of the oscillation is

dmax d gmax d 4

p- 2/ q_ f a - 2K(k), O<k<l,
Gmax |Q| ~Qmax [2(6 + w2 Ccos q)]1/2 w

(6.5)

2 The last equality is proved by changing the integration variable to ¢, where ¢ is defined by
equation (6.9), and then using the first of equations (C.16).
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where K (+) is an elliptic integral (Appendix C.4) and

oy 1/2
k:(€+w) . (6.6)

202

The argument £ is related to the amplitude gy,ax by k& = sin %qmax. In the
limit € - —w? (k — 0), the pendulum equation of motion becomes that of
a harmonic oscillator and P — 27 /w. In contrast as € - w? (k — 1), the
period approaches infinity.

The action for librating orbits is

1 2 Gmax
J:—jgdqp:—mf dq[2(e + w? cosq)]/?
2m T Jo

8
=R - (1-k)K(K)], 0<k<l, 6.7)
7r
where E(-) is also an elliptic integral. We choose the zero point of the
angle variable 6 that is conjugate to this action to be at ¢ = 0, p > 0. Then 6
increases from 0O to %77 as ¢ increases from 0 to ¢uax With p > 0, increases
from %w to gw as ¢ varies from quax t0 —@max With p < 0, and finally
increases to 27 as ¢ varies from —gyx to 0 with p > 0. An explicit formula
for the range O to %w is (Problem 6.1)

_mF(¢,k)
9‘7ﬁﬁﬁf‘ 0<k<l. (6.8)

Here 0 < ¢ < %W and ¢ is related to ¢ by
ksin ¢ = sin $¢; (6.9)

the function F'(¢, k) is an incomplete elliptic integral (eq. C.17). The rela-
tion between ¢ and 6 in other quadrants is easy to determine using symmetry
arguments.

If € > w? then equation (6.4) shows that ¢ can never vanish, and the
pendulum is said to circulate. In this case the period is defined as the time
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needed for ¢ to change by +27,

2m dq 2m dq 2 1
P:f 7=f - ZKKY, k>1. (610
o i Jo [2(e+w?cosq)]?  kw (k) >1. (6.10)

In the limit € — oo, the period approaches 7(2/¢)'/?, as expected since the
influence of the potential —w? cos ¢ becomes negligible so the trajectory has
constant velocity ¢ = +(2¢)'/2. As ¢ - w? the period approaches infinity.

The action for circulating orbits is found by treating the coordinate q as
an angle that varies between 0 and 27:

1 27 T
J=— dqp:@f dq[2(e+f.u2cosq)]1/2
21 Jo T Jo

_Amwk

Bk, k>1 (6.11)

The zero point of the conjugate angle € is chosen to correspond to ¢ = 0.
Then @ increases from 0 to 27 as ¢ increases from 0 to 27 when p > 0, or as
q decreases from O to —27 when p < 0. An explicit formula for the range 0
to w when p > 0 is (Problem 6.1)

_wF(5q,k™")

0 = Ry k> 1. (6.12)

The trajectory with € = w? has k = 1, separating librating from circulat-
ing trajectories, and is called the separatrix. The period of the separatrix
orbit is infinite. Notice that the action of the separatrix orbit is 8mw/m
according to equation (6.7) and 4mw/7 according to equation (6.11), a con-
sequence of the different geometry used to compute the action for librating
and circulating orbits. The trajectory of a particle on the separatrix is given
in Problem 6.2.

The width of the resonance is defined as the difference between the
largest and smallest momentum in librating orbits and is given by

W = Pmax ~ Pmin = dmw. (613)

3 The last equality is proved by changing the integration variable to ¢ = %q and using the
first of equations (C.16).
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6.1.1 The torqued pendulum

The simplest model for possible resonance trapping in Hamiltonian systems
is the torqued pendulum. Its equation of motion is

j=-w’sing + N(t), (6.14)

which describes a pendulum of length L in a gravitational field g = w?L
subjected to a torque m L2 N (t). For brevity let us call N (¢) the torque.
This equation of motion can be derived from the Hamiltonian

2

Hy(q,p,t) = ;; - mw? cosq—mN (t)q, (6.15)
m
or ’ )
Ho(q,p' 1) = [pgﬂ — mw? cosg, (6.16)
m

where m¢ =p=p’ +c¢(t) and ¢(t) = mN ().

N < w?

Figure 6.3: The potential
= D(q) (eq. 6.17) for a pen-
© dulum subjected to a con-
stant torque N > 0. The
lower curve shows ®(q)
for the case of a large
torque, N > w?, and the
upper curve shows the case
q N < w?

N> w?

If the torque is time-independent, the Hamiltonian of equation (6.15)
is also time-independent and describes motion of a particle in the potential
m®(q), where

®(q) = —w?cosq - Ngq. (6.17)
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This potential is plotted in Figure 6.3. Notice that there are equilibrium
points (d®/dq = 0) if and only if | N| < w?. Thus if the torque is sufficiently
large, |N| > w?, the pendulum can only circulate. In particular, if N > 0
and the initial motion is retrograde (¢ < 0), the pendulum will travel to
the left in Figure 6.3, climbing the potential and circulating more and more
slowly until eventually it reverses direction and starts traveling to the right,
circulating more and more rapidly in the prograde direction (g > 0).

If however |N| < w?, the pendulum can either circulate or librate. A
librating pendulum is restricted to one of the potential wells in Figure 6.3,
and the angle ¢ varies only over a limited range. In this case we say that
the pendulum is trapped in resonance. In this simple model an initially
circulating pendulum can never librate; we say that the pendulum can never
be captured in resonance. In general resonance capture requires that either
the torque or the characteristic frequency w of the pendulum varies with
time; the mechanics of resonance capture in this case are described in §6.3.

6.1.2 Resonances in Hamiltonian systems

The Hamiltonian for a nearly integrable system can be written (eq. 4.47)

H(6,3,t) = Hy(J) + €Y. Hn(J,t) cos[m- 6 — ¢ (t)]. (6.18)

Here Hy(J) is the integrable Hamiltonian (the Kepler Hamiltonian in the
case of planetary systems), @ and J are the corresponding angle-action vari-
ables, m is an integer n-tuple where n is the number of degrees of freedom,
and ¢y, is a phase. Note that H_,, = Hy, and ¢_y, = —m (see eq. 4.45),
so the terms with index +m are identical.

A resonance arises when the argument of one or more of the cosine
terms varies slowly with time. Since the evolution of the angles is dominated
by the unperturbed Hamiltonian, 0 ~ 0Hy(J)/03 = Q(J) so resonance
requires m - Q(J) — ¢y ~ 0. This condition can only be satisfied if ¢,
is approximately constant, so we write ¢y, = Pgm + Wmt Where wy, is a
constant. Then exact resonance occurs when

m-Q=wn. (6.19)
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In the simplest and most common case, a single term in the potential
dominates the resonant response, so we are interested in the dynamics gov-
erned by the Hamiltonian

H(0,J,t) = Ho(J) + eHmn(J) cos(m- 6 — ¢y — wt); (6.20)

here we have assumed for simplicity that the amplitude Hy,(J) is time-
independent and dropped the subscripts “m” on ¢y and w. To study this
Hamiltonian we perform a canonical transformation to new angle-action
variables. The new variables consist of one angle-action pair (s, Js) (“‘s”
for “slow”) in which we will isolate the effects of the resonance, and n — 1
angle-action pairs (s ;, Jr;), e = 1,...,n—1 (“f” for “fast”). We use the no-
tation ¢b; and Jy for the (n — 1)-dimensional vectors (¢¢ 1, ..., ¢rn-1) and
(J#1,. .-, Jt,n-1). The transformation is defined by a generating function
that depends on the old angles, the new actions, and time:

52(0, (]S,Jf,t) = Jq(m 0 - ¢0 - wt) + Jf101 + -+ Jf,n_lﬁn_l. (621)

Then from equations (D.63),

852 852
In = —= =myJs, s = =m-6 - - wi,
20, m 1) . m $o —w
0S5 0855 .
Ji: - i']S Jia izizei, :17...7 -1. 6.22
20, - +Jri, ¢, 9es i n (6.22)

The motivation for the terms “fast” and “slow” is that near the resonance,
¢s varies much more slowly than any of the other new angles.
The Hamiltonian in the new variables is
a5
Hies (s, &5, Js, J¢) = H(O,T,t) + aTQ = H(0,3,t) -wl, (6.23)
= Ho[J(J5,J5)] + €Hm [T (T, I¢)] cos o5 — ws.

Here we have written the relation (6.22) between the old and new actions as
J(Js, Ig).

The Hamiltonian H,.s is autonomous (time-independent) and is also in-
dependent of the fast angles ¢¢1, . . ., ¢ n—1. Thus both the Hamiltonian and
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the n — 1 fast actions are conserved, and the dynamics have been reduced
from those of a time-dependent Hamiltonian with n degrees of freedom to
an autonomous Hamiltonian with only one degree of freedom.

Since the perturbation is weak (e << 1) the variations in J; are expected
to be small, even near resonance. Therefore we write Js = Js yos + AJs,
where J; 15 is the slow action corresponding to exact resonance (eq. 6.19)
at the fixed values of the fast actions. We expand Hj in a Taylor series
around J; ;es, again at the fixed values of the fast actions. Equations (6.22)
show that (0.J;/0Js)3, = m; so

aHo) n 0Hy & (82H0) n 0?H,
= m; = miQZ—, = mim; )
( dJs /5, Zl aJ; Zl 992 )5, le 1000,
(6.24)
and the Taylor series becomes
n 8H
HolI (3, 30)] = HolI (s I)] + 3 mi 5 A,

u 82H .
+1 Z mim; aJ‘83l(AJS)2+O[(AJS)3]. (6.25)
j=1 7 N

We write the final term in the resonant Hamiltonian (6.23) as —w(Js yes +
AJy). Using the resonance condition (6.19), we find that the terms linear in
A J; cancel in the resonant Hamiltonian. The constant terms play no role in
the dynamics and can be dropped, so the resonant Hamiltonian simplifies to

0?H,
Hies =% AJ)? + eHn [T (g res + Ads, I
Jz:lmmjaJaJ( ) € [ ( s f)]COS¢

(6.26)
We can drop the dependence of the small term e H,,, on AJ; to obtain finally
Hies = a(AJg)? + Beos d, (6.27)

where o

n HO

= B Y pe— = eHp, 6.28
“ m;m EEYEYANE . (0.28)
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both evaluated at J(Js ves, J¢). This is the pendulum Hamiltonian of equa-
tion (6.1), apart from the changes in notation m™* — a and —mw? - 3.
In the pendulum Hamiltonian the inverse mass m ! is always positive and
—muw? is always negative. This is not so for o and 3, which can have either
sign. However, we can always change the signs of « and 3 by the transfor-
mations described in Box 6.1. There is therefore no loss in generality if we

assume that o > 0 and 8 < 0, as they are for the pendulum.

Box 6.1: Symmetry relations for resonant Hamiltonians

A general resonant Hamiltonian can be written in the form
H(I,$)=A(I)+B(I)cos ¢, @

where (I, ¢) is an angle-action pair for the unperturbed Hamiltonian A(I). The
Hamiltonians (6.27), (6.37) and (6.58) are all of this form.

Changes in the definition of the angle variable ¢ lead to modifications in the
Hamiltonian (a). If we let ¢ = ¢’ + m, then (I, ¢") satisfy Hamilton’s equations
for the Hamiltonian

H'(1,¢") = A(I) - B(I) cos ¢". (b)
Similarly, if we let ¢ = —¢"’, then (I, ¢"") satisfy Hamilton’s equations for the
Hamiltonian
H"(1,¢") = -A(I) - B(I) cos ¢". ©
Finally, if ¢ = w — ¢""/, then (I, ¢'"") satisfy Hamilton’s equations for the Hamil-
tonian
H(1,6") = ~A(I) + B(I) cos ", @

These arguments show that the pendulum Hamiltonian describes the
generic behavior of nearly integrable Hamiltonian systems at resonances.
In particular the width of the resonance, defined as in equation (6.13), is
obtained by replacing m by |a|™! and mw? by |3]:

1/2

)

w = Js,max - AJs,min =4 ‘é (629)
o

thus the width of the resonance in action space varies as the square root of
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the strength of the perturbation. The libration period for small amplitudes is
given by equation (6.5) in the limit & — 0,

2w

so the libration period varies as the inverse square root of the strength of
the perturbation. Weaker resonances are narrower and have larger libration
periods.

6.2 Resonance for circular orbits

The pendulum model of the preceding section describes resonances in a
wide variety of Hamiltonian systems, but not all of them. The most impor-
tant exception in celestial mechanics occurs for nearly circular orbits.

To discuss resonant dynamics in this case we shall assume that the mo-
tion is restricted to the equatorial plane, so there are only two degrees of
freedom. We use the angle-action variables defined in equation (1.88),

Ji=A=(GMa)? — Jy=A-L=(GMa)"*[1-(1-e*)"?],
91:/\:€+w, 92:—w, (6.31)

where as usual a, e, @ and A are the semimajor axis, eccentricity, longitude
of periapsis and mean longitude. We examine the behavior of a test particle*
subjected to perturbations from a planet of mass M, with orbital elements
ap, €p, Wp and A,,. To first order in the eccentricities e and ey, the disturbing
function is given by equations (4.98) and (4.104) as

Hi=e€ Y. {Amcosm(X-Xp)+ Bpecos[mA— (m+1)A, + @]

m=—00

+ Cppep cos[mA = (m + 1)\, + @]} (6.32)

Here A,,, B,, and C,, are functions of the semimajor axes, which we can
treat as constants since the variations in semimajor axes are small—even in

4 The case of a resonance between two bodies of comparable mass is discussed in Problem
6.8.
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resonance—if the planet mass is small. The terms proportional to A,, are
only in resonance if the mean motions n = Aand np = )\p are equal; this case
requires that the orbits nearly coincide and is better treated using the anal-
ysis of §3.2 for co-orbital satellites. The terms proportional to C,,, involve
the eccentricity e, of the perturbing planet and can be treated using the pen-
dulum Hamiltonian, as described in the preceding section. Thus from now
on, we focus on the terms proportional to B,,. For small eccentricity we
can write Jy = %( GMa)'/?¢?, so the factor B,,e can be rewritten without
additional loss of accuracy as (2J2)1/2Hm, where H,, = By, ( (GMa)’l/‘l.
Isolating the resonance belonging to a single m, we arrive at the Hamilto-
nian (cf. eq. 6.20)

H(6,J,t) = Hy(J) + €(2J2)? H,, cos(mby — 02 —wt — ¢y),  (6.33)

where w = (m + 1)n,, and ¢y is a constant.

We specialize to the case where Hj is the Kepler Hamiltonian, Hy =
-1(GM)?/J}. In the absence of the perturbation f; = n = OHy/9.J; =
(GM/a?)"/? and 6 = 0, so exact resonance occurs when 7 = (1+1/m)n,,.
For m > 0 this condition implies that the test particle orbits interior to the
perturbing planet, while for m < 0 the test particle is exterior to the planet.

We now follow the route from equation (6.20) to (6.27) to derive the
resonant Hamiltonian. We define the canonical transformation to fast and
slow angle-action variables as

So (01,02, Js, Jg, ) = Js(mby — 02 —wt — ¢g) + Jz01. (6.34)

Then from equations (D.63),

852 a52
Ji1 = = Js J; s = =mb; — 0y — wt — s
1= %0, mJs + Jg ) 0. mby — 02 —wt — ¢
852 a52
Jy=222 g S92y 6.35
2= 0, ot o5 0 (6.35)

The resonant Hamiltonian in the new variables is

05,
Hres:H 07J7t A,
( )+
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2

= -2((&% +e(=2J5) /2 H,y, cos s — ws. (6.36)
The Hamiltonian is independent of the fast angle ¢, so the fast action J; is
constant.

In the preceding section we assumed that the fractional variations in the
slow action J; were small, so the coefficient of cos ¢s could be set to a
constant. This assumption is no longer correct in the case we are examining
here, since the eccentricity and therefore J; o< e? is initially small but can
be excited by the resonance. Instead we can assume that the coefficient H,,
is constant.

We now expand the first term as a Taylor series around J = 0, using the
result (1 +2)™2 = 1-2x + 32? + O(2%). After dropping an unimportant
constant term, we have

Hies = ady + B2 +y(=2J)Y? cos o, (6.37)
where
B (GM)*m B 3(GM)%m? B
QZT_(U’ Bz—T, vy=eHy,. (6.38)

The factor « has a simple physical interpretation. If the eccentricity is small
then J; is small, so J; ~ J; = A = (GMa)'/2. Moreover w = (m + 1)n,,.
Then o = mn — (m + 1)n,, which parametrizes the distance of the test
particle away from exact resonance with the planet.
To study the behavior of orbits in this Hamiltonian, we first rescale it to
a standard form. To do this, we begin with Hamilton’s equations
d¢s _ 6Hres’ dJ:: _ _aHres ) (639)
dt 0Js dt 0o
Now let Js = cR, Hyes(Js, ¢s) = bH| (R, ¢s), t = toT, where b, ¢ and tg
are constants. Then R is a momentum conjugate to the coordinate ¢s and

H_. is a Hamiltonian relative to the rescaled time 7 if

dos _ %’ d7R — _%. (6.40)
dr OR dr a(bs
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Equations (6.39) and (6.40) can be satisfied simultaneously if and only if
to = C/b
‘We now set

. |’Y|4/3 ‘ v 2/3 1/3

- 24/3|8[1/3° 923

4
25| to:‘ﬁTz 6.41)

The rescaled Hamiltonian is
H,, = -Asgn(B)R+sgn(B)R> + 2sgn(y)(2R) P cos s, (6.42)

where
A 223y
= sgn(f) IZERE (6.43)
and sgn(x) is +1 (-1) if x is positive (negative). We can eliminate the
dependence of the Hamiltonian on the signs of 5 and 7 by defining a new
angle, following the arguments given in Box 6.1. Let

_ | sgn(B)os if By <0,
. { Sgn(ﬁ)¢s +7 if By >0. (6.44)

Then (r, R) is a canonical coordinate-momentum pair, with Hamiltonian
I'= -AR+ R?-2(2R)Y? cosr. (6.45)

This is the Henrard-Lemaitre Hamiltonian (Henrard & Lemaitre 1983),
sometimes called the second fundamental model for resonance—the first
one being the pendulum.

For some purposes it is more useful to write the Hamiltonian in terms
of a new canonical momentum x and conjugate coordinate y defined by the
generating function Sy (r, x) = %xz tanr. Then from equations (D.63),

oS 2
R:a—f: 2c3cc)s2r’ y=xtanr, (6.46)

and these equations yield

z=(2R)?cosr, y=(2R)"?sinr. (6.47)
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In these coordinates
[=-1A@"+y°) + 22+ %)% - 22. (6.48)

By rescaling the Hamiltonian to a standard form, we can make order-
of-magnitude estimates of the response of the orbit to the resonance. The
strength of the perturbing Hamiltonian is proportional to ~ and -y is of order
M,/ M, the ratio of the planet mass to the stellar mass. The scalings (6.41)
imply that the characteristic eccentricity excited by the resonance scales as
JH? o (U2 o A3 o (M,/M)'/3. The small exponent of % means that
even a small planet can excite a relatively large eccentricity at resonance.
The characteristic timescale ¢ for resonant orbits is given by nto oc 42/ oc
(M, /M),

The contours of the Hamiltonian I" are plotted in the Cartesian coordi-
nates (z,y) for several values of the parameter A in Figure 6.4. The plots
show that for A < 3 there is only one extremum of the Hamiltonian, repre-
senting an equilibrium solution. For A > 3 there are three extrema, of which
the leftmost is a saddle point and an unstable equilibrium, while the other
two are stable. Two separatrices emerge from the saddle point, and these
divide the phase space into three zones: an internal zone inside the smaller
separatrix, a resonance zone between the two separatrices, and an external
zone outside the larger separatrix.

As defined in the preceding section, an orbit is librating if it has a slow
angle ¢y that oscillates between fixed values, so bs periodically changes
sign, while circulating orbits have ¢ of fixed sign. In the Henrard—Lemaitre
Hamiltonian, it is not useful to distinguish librating orbits from circulating
ones. All of the panels of Figure 6.4 contain both librating and circulat-
ing orbits, depending on whether the two intersections of the corresponding
level curve of the Hamiltonian with the z-axis have the same or opposite
signs, but this distinction has no particular dynamical significance. The di-
vision into internal, external and resonant zones replaces the division into
librating and circulating zones.

Since y and x are a canonical coordinate-momentum pair, the area en-
closed by a contour of the Hamiltonian in Figure 6.4 is the same in all canon-
ical variables. Moreover the area is an adiabatic invariant (Appendix D.10),
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Figure 6.4: Contours of the Hamiltonian (6.48). The gray shading in plots with A >
3 marks the resonance zone, which surrounds the internal zone and is surrounded by
the external zone. The coordinates are x and y.

that is, the area enclosed by a trajectory is invariant under slow changes in
the parameters of the Hamiltonian. Figure 6.5 shows the areas of the inter-
nal and resonance zones as a function of the parameter A. This plot will be
used in §6.3 to describe evolution through resonance.

The behavior described in this section is governed by a resonant term in
the Hamiltonian proportional to e cos[mA — (m+ 1)\, + @] (eq. 6.32). The
characteristic feature of this term is that the strength of the perturbation is
proportional to the first power of the eccentricity or the square root of the
corresponding action. These are sometimes called eccentricity resonances.
There are also inclination resonances, in which the resonant Hamiltonian
is proportional to 12 cos[mA— (m+2)\, +29] (eq. 4.99). Here the strength
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Figure 6.5: The phase-space areas of the internal and resonance zones of the Hamil-
tonian (6.48). See Problem 6.4.

is proportional to the square of the inclination or the first power of the corre-
sponding action L—L . (eq. 1.88). Inclination resonances can be investigated
using methods similar to those used in this section (Borderies & Goldreich
1984).

More generally, any resonant Hamiltonian contains a cosine function
with argument mA — (m+ k) A, plus some combination of angles such as w
and ) that are stationary in the unperturbed Kepler orbit. Exact resonance
occurs when mn — (m + k)n, = 0, where n and n;, are the mean motions
of the test particle and the perturbing body. Resonances with k = 0, called
co-orbital resonances, are discussed in §3.2. Resonances with m = k = 0
are called secular resonances and all others are mean-motion resonances.
Such resonances are sometimes labeled by the ratio n/n, (e.g., a 2:1 res-
onance). Resonances with k/m > 0 have n > n,, so the test particle has
smaller semimajor axis than the perturber; these are interior resonances,
while resonances with n < n,, are exterior resonances.
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6.2.1 The resonance-overlap criterion for nearly circular orbits

The analysis so far in this section has been based on the assumption that
a single near-resonant term in the disturbing function (6.32) dominates the
dynamics. This assumption is valid if the width of the resonance is much
less than the distance in action space to adjacent resonances; if not, the
resonances overlap and the motion is likely to be chaotic (Appendix F.1).

For the Hamiltonian (6.33), exact resonance occurs when the mean mo-
tion is n = (1 + 1/m)n,, where n,, is the mean motion of the perturber and
m is the index characterizing the resonance. Thus as [m| — oo, the separa-
tion of the resonances in mean motion or semimajor axis becomes smaller.
Moreover the test particle and perturber become closer, so the strength of
the perturbations and thus the resonance width become larger. Therefore
resonance overlap is inevitable if |m] is large enough. We now make this
argument quantitative.

From equations (6.33) or (6.88) the strength of the resonance is para-
metrized by

G3/*M,

_ 1 1 m+1
= W[ia%_g +(m+1+aD)byj5 . (6.49)

Here M}, and a are the mass and semimajor axis of the perturber, M is
the mass of the central star, o = a/ap, and we have assumed that m # 0.
The term involving the Laplace coefficient b7}3" (o) comes from equation
(4.98) and the term involving the Kronecker delta d,,, o comes from the
indirect potential. As usual we assume that M,/M <« 1, which implies
that resonance overlap occurs only close to the planet, when [m| > 1. Thus
we can drop the contribution from the indirect potential and assume that
a =~ ap and a ~ 1. More precisely, the resonance condition n = (1+1/m)n,,
together with Kepler’s law implies

% or a:l—i. (6.50)
3m 3m

For |m| > 1, equations (4.127) and (C.34) imply that

a-ap=ay(1+1/m)™2 —a, ~ -

i3 () = = Kollm(1 - )],
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2
Db (@) = sgalm(1 - )] [Im(1- )], (65D)

where Ko(-) and K;(-) are modified Bessel functions, described in Ap-
pendix C.5. Equation (6.50) implies that at resonance the argument of the
Bessel functions is %, S0

_ 2.5195m G** M,

1+0(m™)], (6.52)
wag/4M1/4 [ ]

m

where the factor 2.5195 = 2K¢(3) + K1(3) (cf. eq. 3.131).

The resonance-overlap criterion is only approximate, so we parametrize
the resonance “width” to be used in this criterion as d R, where R is the
rescaled dimensionless momentum and d R is of order unity. Then the width
in terms of the slow action is §Js = |¢|0 R, where c is defined by equation
(6.41). The fast action Jy = J; — mJs (eq. 6.35) is conserved, so the width
in terms of .J; is 8.J; = [mc|dR. Since J; = (GMa)'/?, the width in terms
of semimajor axis is da = 2jmc|a*/26R/(GM)Y? = 2lmc|6R/(npayp).
The distance between resonances differing in index by Am <« m is ob-
tained by differentiating equation (6.50) to obtain Aa ~ 2a,Am/(3m?).
The distance between adjacent resonances corresponds to |[Am/| = 1, thus
|Aal = 2a,,/(3m?). Resonances overlap if da > |Aa or
npa?

P 6.53
3|c|0R (6.53)

[mf?

For small eccentricities and |m/| > 1, equations (6.38), (6.41) and (6.52)
imply that

2.51952/3 G223 01/

el = (37 )2/3[m|2/3 M1/ 5

in deriving this we have replaced J; by J; = (GMa)'/?, which is valid

so long as the eccentricity is sufficiently small. Combining this result with
(6.53), we find that resonance overlap occurs when

(6.54)

o 2/7
Im| > 0.910 (M) (6R)3I7, (6.55)
P
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or in terms of the semimajor axis difference, when

M,

la - ap| p 2 3/7
— <0.732 (ﬁ) (OR)~". (6.56)

ap

This result demonstrates that the width of the chaotic zone around a
planet of mass M, should scale as Mg/ " for nearly circular orbits. We have
not attempted to determine the appropriate value of the width § R since the
resonance-overlap criterion is approximate anyway, but it should be of order
unity. Analytic calculations of the width, supplemented by numerical orbit
integrations, imply that the boundary of the chaotic zone is (Wisdom 1980;
Gladman 1993; Deck et al. 2013; Morrison & Malhotra 2015)

2/7
la = a| sf(M")/ : 6.57)
ap M
where f ~ 1.2-1.5. The boundary is fuzzy because it contains a mixture of
chaotic and regular orbits. A more general discussion of the stability and
orbits in two-planet systems, including a heuristic derivation of equation
(6.57), is given in §3.5.

6.3 Resonance capture

A dynamical system that is described by angle-action variables is said to
be trapped in resonance if some linear combination of the angle variables
librates, or if the system is found in a resonance zone as described in the
preceding section. The system is said to be captured in resonance if the
combination of angle variables changes from circulation to libration, or if
the system enters the resonance zone. In the absence of dissipation, external
forces, or changes in the parameters of the dynamical system, permanent
capture in resonance can never occur: if there is a trajectory leading to cap-
ture, then there must also be a time-reversed trajectory leading to escape
from the resonance, and eventually the system will take this path to exit the
resonance.

Permanent capture can occur if the parameters of the system vary slowly
with time due to processes such as mass loss or tidal dissipation. To explore



326 CHAPTER 6. RESONANCES

e

————zone A
2 _——é

_/ L
1 _//\ separatrix 1 k_

l 04 zone B L

e

——neC—g———————

-3 :l

2n

S 3

Figure 6.6: The level surfaces of the Hamiltonian (6.58) near a separatrix. The
libration or resonance zone (zone B) is colored gray. The directions of motion of the
orbits are plotted on the assumption that the stable equilibrium is a minimum of the
Hamiltonian.

this process, we can investigate the behavior of trajectories governed by
such resonant Hamiltonians as (6.27) or (6.45) as their parameters are var-
ied. To do so, we follow Henrard (1982) and work with a more general
Hamiltonian,

H(I,$:\) = A(I,\) + B(I,\) cos ¢, (6.58)

where (I, ¢) is an angle-action pair in the unperturbed Hamiltonian A(I, \),
and \(7) represents some parameter of the system that varies slowly with
time 7. Hamilton’s equations of motion are

d¢ O0H OA OB dl OH .
E_W_E-FECOSCZ)’ E——%—Bsmé. (6.59)
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When ) is frozen there are equilibria at (1*, ¢*), where

0(A £ B)
oI

cos¢” = +1, =0. (6.60)

I*

The contours of the Hamiltonian that pass through the unstable equilibria
are the separatrices and the value of the Hamiltonian on the separatrices is
denoted by E* ().

To be definite, we shall assume that one of the two equilibria is stable
and the other is unstable, and that (i) the unstable equilibria are at ¢* = 0
and 27 and the stable equilibrium is at ¢* = 7; (ii) the stable equilibrium is
a minimum of the Hamiltonian. Conditions (i) and (ii) can always be satis-
fied by transformations of the angle variable as described in Box 6.1. The
overall geometry is sketched in Figure 6.6. Note that with these assump-
tions the orbits in the top half of the figure travel to the right, and those in
the bottom half travel to the left. The upper and lower separatrices have
actions I 2(¢, A). We shall say that the Hamiltonian governs the motion
of a “particle,” although of course the results are valid for any Hamiltonian
system.

The action for the Hamiltonian (6.58) is proportional to the area in phase
space enclosed by the trajectory at fixed A (eq. D.72),

HEN) =5 § do1(B,6:3), (6.61)

where I(FE, ¢;\) is obtained by solving E = H(I,¢;\) for the action [
in the unperturbed Hamiltonian. The actions for librating and circulating
orbits in the pendulum Hamiltonian are given by equations (6.7) and (6.11).
The action is an adiabatic invariant (Appendix D.10), which means that if
the parameter ) varies slowly compared to the orbital period then J(E, \) is
approximately conserved, and this requirement determines how the energy
FE changes with .

To understand resonance capture, we need to know what happens as an
orbit approaches one of the separatrices in Figure 6.6 as a result of slow
changes in the Hamiltonian. In particular, we would like to know whether
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an orbit that is initially circulating to the right (¢ > 0) evolves into a librat-
ing orbit (resonance capture) or an orbit circulating to the left (resonance
crossing).

Unfortunately the adiabatic invariant is not conserved near the separatri-
ces, for two reasons. The first (trivial) reason is that there is a discontinuity
in J(E, \) across the separatrix, because the geometry of librating and cir-
culating orbits is different. We already encountered this phenomenon in the
pendulum Hamiltonian, as discussed after equation (6.12). A second, more
fundamental problem is that the period of the separatrix orbit is infinite, so
the assumption that A changes slowly compared to the orbital period is not
valid.

Thus we need a more careful treatment of the dynamics near a separa-
trix. The following is a shortened heuristic version of the rigorous analysis
by Henrard (1982). We define the relative energy to be the difference be-
tween the energy of an orbit and the energy of a nearby separatrix,

K(I,¢:0) = H(L,¢;A) = E"(A). (6.62)
This expression can be rewritten as

K(I,¢;7) = H(I,¢; ) - H(I, ;A (6.63)

)|I:1112(¢,>\)’

depending on whether the orbit is close to the upper or lower separatrix in
Figure 6.6. The rate of change of the relative energy is
dK . 0 [0
— = A—H{,p;\) - A =—H(,p; A
dT a>\ ( ) ¢? ) I:a)\ ( ) ¢7 )]

_)\E [H(Iy¢§>\)]1=112(¢7)\) 511,2(@)\)7 (6.64)

I=I1,2($,)\)

where A = d\ /d7. The contributions from the first two terms cancel if the
orbit is sufficiently close to the separatrix. The final term can be simplified
by observing that ¢ = d¢/dt = H /I, so we can divide both sides of the
equation by qb to obtain

dK _ ;0

Y CEICRY (6.65)
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We can now compute the total change in the relative energy as an orbit
traverses the separatrix through an angle of 27 as®

. 27 a
AFE]5=7F\ dop —1 A 6.66
12=7F 0 ¢6)\ 1,2(¢7 )a ( )

where the — sign applies if the orbit travels from ¢ = 0 to ¢ = 27 on separa-
trix 1, and the + sign applies if it travels in the reverse direction on separatrix
2. The quantity AE 5 is sometimes called the energy balance.

Now look again at Figure 6.6, where the phase space is divided into two
circulating zones A and C and a librating or resonance zone B. By definition,
the relative energy K is zero on each separatrix, and since we have assumed
that the stable equilibrium is a minimum of the Hamiltonian we must have
K > 01in zones A and C and K < 0 in zone B. A particle in zone A that is
close to the separatrix circulates with d¢/dr > 0. At each orbit, as ¢ grows
from O to 27, it gains relative energy AF;. Similarly, a particle in zone C
circulates with d¢/dT < 0. At each orbit it gains relative energy AF;. A
particle in zone B near the separatrices alternately gains energy A E; when
it orbits near separatrix 1 and A Fs when it orbits near separatrix 2.

Consider a trajectory that starts in zone A, with K > 0. If AE; > 0, the
trajectory recedes from the separatrix as K increases by AFE; at each orbit,
so it never crosses the separatrix. Thus the only case of interest is AF; < 0.
In this case the trajectory approaches closer and closer to separatrix 1 until
eventually K becomes negative, and it transitions to separatrix 2. Now if
AF5 < 0 the trajectory continues to alternate between separatrix 1 and sep-
aratrix 2, losing energy on both, so it librates in zone B with smaller and
smaller amplitude until it approaches the stable minimum-energy equilib-
rium.

In contrast, if AE; <0, AE; >0 and AF; + AFE, > 0, then the energy
lost on the last passage near separatrix 1 will be more than regained on
the first passage near separatrix 2. Therefore at the end of this passage,
the trajectory has K > 0 and transitions directly from zone A to zone C,

3 Since the time required to traverse the separatrix is infinite, this statement is strictly true

only for orbits that are close to but not on the separatrix, in a sense defined precisely by
Henrard.
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gaining energy AF» at every orbit and receding from the separatrix. Thus
the particle has crossed the resonance without being captured.

Finally we consider the case where AFE; < 0, AEs; > 0 and AE; +
AFE, < 0. Since |AE;] is of order A and therefore small, we can assume
that the relative energy is uniformly distributed between 0 and |AE1| as the
particle begins its last passage along separatrix 1. At the end of this pas-
sage, the energy will be uniformly distributed between AFE; < 0 and 0. At
the end of the subsequent first passage along separatrix 2, the energy will
be uniformly distributed between AFE; + AFs < 0 and AF5 > 0. If this en-
ergy is negative the particle will continue to librate with smaller and smaller
amplitude, losing energy on separatrix 1 and gaining a smaller amount on
separatrix 2. However, if the energy after the first passage along separatrix
2 is positive, the particle will continue to circulate near separatrix 2, gaining
energy at each passage until it escapes into zone C. Thus the probability of
capture in the resonance zone B is

_ AEl + AEQ

NG (6.67)

PB

while the probability of crossing into zone C is po =1 - pp.

Similarly we can describe how a particle librating in zone B escapes
from resonance. The libration amplitude will grow if AF; + AFE; > 0,
until the particle eventually approaches the separatrix. Then if AE; > 0 and
AFEs < 0, the particle will escape from resonance into zone A. If AF; <0
and AF, > 0, the particle will escape from resonance into zone C. And if
AFE; > 0and AFEs > 0, the particle will escape into zone A with probability

AFE,

= — 6.68
AEl + AEQ ’ ( )

pa

and it will escape into zone C with probability pc =1 —p4.

This analysis provides a complete description of how particles are cap-
tured in and escape from resonance when the parameters of the governing
Hamiltonian vary slowly with time.
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6.3.1 Resonance capture in the pendulum Hamiltonian

Here we analyze resonance capture in the torqued pendulum (§6.1.1). We
write the governing Hamiltonian (6.16) as

H(I,p; M) = %a(/\)[l+c(/\)]2 + B(A) cos ¢. (6.69)

For simplicity we assume that & > 0 and 8 > 0; if necessary this can be
arranged using the transformations in Box 6.1. When ) is frozen there are
unstable equilibria at ¢* = 0, 27 and I* = —c¢(\). The energy at the unstable
equilibria is E* = (), and the separatrices are located at

Io(0, ) = —c(N) £ [28(V) /a(M)]Y2(1 - cos ¢) /2. (6.70)

The corresponding energy balances (6.66) are

2m

AF; 5 =F\ d¢311 2(, \). (6.71)
’ 0 o

Substituting from equation (6.70) and using the result \(Of/ON) = df /dT =
f for arbitrary functions f and the integral fo27T dep (1-cos¢)'/? = 2572 we
have

48 48126
(af)1/2 MY

AELQ = +27¢ - (672)

The system discussed in §6.1.1 provides a simple example of the appli-
cation of these results. From the Hamiltonian (6.16) we have o = m™' and
B = mw? (after setting ¢ = ¢ + 7 to ensure that 5 > 0). The mass m and
frequency w are constants, so & = 6 = 0. Thus AE; = -AFE5 = 27¢, so
AFE, + AE, = 0. This result implies that (i) the probability of capture for
an initially circulating orbit is zero according to equation (6.67); and (ii) a
librating orbit has no net gain of relative energy, so it does not escape from
resonance. We reached these conclusions already in §6.1.1, but the anal-
ysis here makes it easy to generalize the results to pendulums with slowly
varying mass or length.
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6.3.2 Resonance capture for nearly circular orbits

To understand resonance capture in this case, we investigate the Henrard—
Lemaitre Hamiltonian (6.45),

(R, 7 A) = ~A(t)R + R? - 2(2R)Y? cosrr, (6.73)

in which A(t) is slowly varying. The analysis below follows Henrard &
Lemaitre (1983).

First consider the case in which A(7) decreases with time from a large
positive value. Initially, any low-eccentricity trajectory should be in the
internal zone, since this is large when A is large and positive—in this limit
the equation for the inner separatrix is R = %A-FO(AU 1). As A shrinks, the
trajectory conserves its adiabatic invariant, which is equal to (27)~! times
the phase-space area enclosed by the trajectory. However, as A shrinks the
area of the internal zone decreases, becoming zero when A = 3 (see Figure
6.5). Thus the orbit crosses the separatrix before A = 3, at the point where
its initial area equals the area of the internal zone. When this occurs, the
orbit cannot enter the resonance zone, since the area of the resonance zone
is also decreasing as A shrinks (Figure 6.5). Therefore the orbit must jump
to the external zone; its enclosed area after the jump is given by the sum of
the areas of the internal and resonance zones, and this area is conserved as
A continues to decrease. Thus the orbit cannot be captured in resonance,
but its eccentricity is excited as it crosses the resonance. If the eccentricities
long before and long after resonance crossing are e; and ey, then efc Je? =
(A;+A;)/A;, where A; and A, are the areas in Figure 6.5 at the point where
the orbit transitions from the internal zone to the external zone.

Now suppose that A(7) increases with time. In the distant past, A
was negative and all trajectories were external. As A slowly increases, the
area enclosed by the trajectories is conserved. When A = 3, the resonance
zone suddenly appears and all trajectories with area less than A = 67 (see
Problem 6.4) or Ry < A/(27) = 3 enter the resonance zone. The remaining
trajectories stay in the external zone, but since the area of the internal plus
resonance zones grows without bound as A increases they must eventually
cross the separatrix at the outer edge of the resonance zone. When they
cross, they can be captured into the resonance or cross the resonance into the
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Figure 6.7: The probability of capture in the Hamiltonian (6.73) as a function of
the parameter A at resonance crossing (solid line) or the initial action Ry (dashed
line). Capture is certain if A < 3 or Rp < 3.

internal zone. The probability of capture can be computed using equations
(6.66) and (6.67), with separatrices 1 and 2 replaced by the outer and inner
separatrices that bound the resonance zone. The calculation can be done
either numerically (Henrard & Lemaitre 1983) or analytically (Borderies &
Goldreich 1984). Figure 6.7 shows the capture probability in two ways:
first as a function of the value of A at which resonance capture or crossing
occurs, and second as a function of Ry, the dimensionless action of the
orbit in the distant past. The two are related by adiabatic invariance, which
ensures that the phase-space area enclosed by the orbit remains constant
except when the orbit encounters a separatrix at resonance crossing. Thus
2w Ry, the area enclosed by the orbit in the distant past, must equal the sum
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of the areas of the internal and resonance zones at the time of resonance
crossing.

If the trajectory crosses the resonance into the internal zone, it will re-
main there since the phase-space area of the internal zone grows as A con-
tinues to grow (Figure 6.5). In the distant future, it will be found in an orbit
with dimensionless action Ry such that 27 Ry is the area of the internal zone
at the time of resonance crossing. In general R; < Ry—the final eccentri-
city is less than the initial eccentricity—because the phase-space area of the
trajectory jumps to a smaller value when it crosses the resonance.

If the trajectory is captured in the resonance zone it will remain there,
since the phase-space area of the resonance zone grows with A. As A in-
creases, the libration amplitude shrinks and the mean eccentricity and di-
mensionless action grow.

These arguments show that the direction of evolution—the sign of A—
plays a central role in resonance capture. If A <o, capture never occurs. If
A > 0, the orbit may or may not be captured, although capture is certain if
the initial eccentricity is small enough. If the orbit crosses the resonance, the
eccentricity jumps to a larger value when A < 0 and otherwise to a smaller
one.

From equation (6.43), A depends on the parameters «, (3, v defined in
equations (6.38). Of these, the fractional rate of change of « is largest since
it is nearly zero near resonance. Moreover (3 is always negative. Thus the
sign of Ais the opposite of the sign of ¢&. From equations (6.31), (6.35) and
(6.38), we have

oz:mn[l+m—m(1—e2)1/2]73—(m+1)np7 (6.74)

where 1, and n are the mean motions of the perturber and the test particle.
For small eccentricities,

axmn-(m+1)n,. (6.75)

For m > 0 resonance occurs when n > n, so the test particle orbits interior
to the perturber and & < 0 if » < 0 or 1, > 0, which means that the ratio
of semimajor axes n/np, is approaching unity from above. On the other
hand for m < —1 the test particle orbits exterior to the perturber, and & <
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0 if n/n, approaches unity from below. Slow changes of the semimajor
axes of the test particle and/or the perturber that cause n/n;, to approach
unity are called convergent migration, and when n/n,, recedes from unity
we have divergent migration. We conclude that resonance capture from a
low-eccentricity orbit requires convergent migration, and if the migration is
convergent then capture is certain if the eccentricity is small enough.

This analysis is based on the assumption that the evolution of the Hamil-
tonian is slow, but how slow is slow enough? In particular we have shown
that capture in resonance is certain if the initial eccentricity is zero, A> 0,
and the evolution of A(t) is slow enough. We may then ask, what is the
maximum value of A such that capture is certain from an initially circular
orbit? Since the Henrard—Lemaitre Hamiltonian (6.73) has no free param-
eters once A(t) is specified, we expect that this maximum is some number
f of order unity, that is, capture is certain if 0 < dA/d7 < f. Numeri-
cal integrations of Hamilton’s equations—best done using equations (6.47)
and (6.48)—show that f = 8.2567 (Friedland 2001; Quillen 2006). We can
express this result in physical units using equation (6.43) for A, equations
(6.38) for 3 and ~, equation (6.41) for ¢y, and equation (6.75) for a. A
zero-eccentricity orbit is always captured at resonance if

32/3|m|4/3f64/3|Hm|4/3
< .

ypE (6.76)

0< %[(m +1)n, —mn]

6.4 The Neptune—Pluto resonance

Pluto’s perihelion and aphelion distances, 29.65 au and 49.30 au, span the
semimajor axis of Neptune at 30.07 au. Therefore it is possible that Pluto
could collide with Neptune. In one of the first long-term numerical integra-
tions of the orbits of the planets, Cohen & Hubbard (1965) discovered that
such collisions are avoided because Pluto is locked into a 3:2 mean-motion
resonance with Neptune.

The geometry of the resonance is shown in Figure 6.8, which plots the
orbits of the outer planets and Pluto in a frame rotating with the mean mo-
tion of Neptune. The positions are projected onto the plane of the ecliptic,
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Figure 6.8: The orbits of Jupiter, Saturn, Uranus, Neptune and Pluto for 20 000 yr
into the future, in a frame rotating with the mean motion of Neptune. The orbits
have been projected onto the ecliptic plane. The Sun is at the origin.

represented by coordinates x and y, and the orientation of the z-axis is cho-
sen such that Neptune lies near = 30 au, y = 0. Over the 20 000 yr timespan
shown in the figure, the perihelion of Pluto 