


Operator Theory by Example



Oxford Graduate Texts in Mathematics

Series Editors

R. Cohen S. K. Donaldson
T. J. Lyons M. J. Taylor



OXFORD GRADUATE TEXTS IN MATHEMATICS

1. Keith Hannabuss: An Introduction to Quantum Theory
2. Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis
3. James G. Oxley: Matroid Theory
4. N. J. Hitchin, G. B. Segal, and R. S. Ward: Integrable Systems: Twistors, Loop Groups, and Riemann 

Surfaces
5. Wulf Rossmann: Lie Groups: An Introduction Through Linear Groups
6. Qing. Liu: Algebraic Geometry and Arithmetic Curves
7. Martin R. Bridson and Simon M. Salamon (eds): Invitations to Geometry and Topology
8. Shmuel Kantorovitz: Introduction to Modern Analysis
9. Terry Lawson: Topology: A Geometric Approach

10. Meinolf Geck: An Introduction to Algebraic Geometry and Algebraic Groups
11. Alastair Fletcher and Vladimir Markovic: Quasiconformal Maps and Teichmüller Theory
12. Dominic Joyce: Riemannian Holonomy Groups and Calibrated Geometry
13. Fernando Villegas: Experimental Number Theory
14. Péter Medvegyev: Stochastic Integration Theory
15. Martin A. Guest: From Quantum Cohomology to Integrable Systems
16. Alan D. Rendall: Partial Differential Equations in General Relativity
17. Yves Félix, John Oprea, and Daniel Tanré: Algebraic Models in Geometry
18. Jie Xiong: Introduction to Stochastic Filtering Theory
19. Maciej Dunajski: Solitons, Instantons, and Twistors
20. Graham R. Allan: Introduction to Banach Spaces and Algebras
21. James Oxley: Matroid Theory, Second Edition
22. Simon Donaldson: Riemann Surfaces
23. Clifford Henry Taubes: Differential Geometry: Bundles, Connections, Metrics and Curvature
24. Gopinath Kallianpur and P. Sundar: Stochastic Analysis and Diffusion Processes
25. Selman Akbulut: 4-Manifolds
26. Fon-Che Liu: Real Analysis
27. Dusa McDuff and Dietmar Salamon: Introduction to Symplectic Topology, Third Edition
28. Chris Heunen, Jamie Vicary: Categories for Quantum Theory: An Introduction
29. Shmuel Kantorovitz, Ami Viselter: Introduction to Modern Analysis, Second Edition
30. Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross: Operator Theory by Example





Operator Theory
by Example

STEPHAN RAMON GARCIA
W. M. Keck Distinguished Service Professor and Chair

of the Department of Mathematics and Statistics, Pomona College

JAVAD MASHREGHI
Professor, Laval University

WILLIAM T. ROSS
Richardson Professor of Mathematics, University of Richmond



Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries

© Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross 2023

The moral rights of the authors have been asserted

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2022946604

ISBN 978–0–19–286386–7(hbk)
ISBN 978–0–19–286387–4(pbk)

DOI: 10.1093/oso/9780192863867.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials

contained in any third party website referenced in this work.



To our families:
Gizem, Reyhan, and Altay;

Shahzad, Dorsa, Parisa, and Golsa;
Fiona





CONTENTS

Preface xv
Notation xvii
Overview xxi

1 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Euclidean Space 1
1.2 The Sequence Space ℓ2 8
1.3 The Lebesgue Space 𝐿2[0, 1] 10
1.4 Abstract Hilbert Spaces 16
1.5 The Gram–Schmidt Process 20
1.6 Orthonormal Bases and Total Orthonormal Sets 21
1.7 Orthogonal Projections 22
1.8 Banach Spaces 25
1.9 Notes 28
1.10 Exercises 29
1.11 Hints for the Exercises 39

2 Diagonal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1 Diagonal Operators 41
2.2 Banach-Space Interlude 47
2.3 Inverse of an Operator 48
2.4 Spectrum of an Operator 52
2.5 Compact Diagonal Operators 55
2.6 Compact Selfadjoint Operators 57
2.7 Notes 60
2.8 Exercises 62
2.9 Hints for the Exercises 66

3 Infinite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 Adjoint of an Operator 69
3.2 Special Case of Schur’s Test 74
3.3 Schur’s Test 77
3.4 Compactness and Contractions 80
3.5 Notes 82
3.6 Exercises 83
3.7 Hints for the Exercises 91



| contents

4 TwoMultiplication Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1 𝑀𝑥 on 𝐿2[0, 1] 93
4.2 Fourier Analysis 96
4.3 𝑀𝜉 on 𝐿2(𝕋) 99
4.4 Notes 101
4.5 Exercises 102
4.6 Hints for the Exercises 108

5 The Unilateral Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1 The Shift on ℓ2 109
5.2 Adjoint of the Shift 111
5.3 The Hardy Space 112
5.4 Bounded Analytic Functions 117
5.5 Multipliers of 𝐻2 120
5.6 Commutant of the Shift 122
5.7 Cyclic Vectors 122
5.8 Notes 124
5.9 Exercises 126
5.10 Hints for the Exercises 132

6 The Cesàro Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1 Cesàro Summability 133
6.2 The Cesàro Operator 134
6.3 Spectral Properties 137
6.4 Other Properties of the Cesàro Operator 139
6.5 Other Versions of the Cesàro Operator 145
6.6 Notes 147
6.7 Exercises 148
6.8 Hints for the Exercises 154

7 The Volterra Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1 Basic Facts 155
7.2 Norm, Spectrum, and Resolvent 157
7.3 Other Properties of the Volterra Operator 161
7.4 Invariant Subspaces 163
7.5 Commutant 164
7.6 Notes 167
7.7 Exercises 168
7.8 Hints for the Exercises 172

8 Multiplication Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1 Multipliers of Lebesgue Spaces 175
8.2 Cyclic Vectors 179
8.3 Commutant 183
8.4 Spectral Radius 184
8.5 Selfadjoint and Positive Operators 186

x



contents |

8.6 Continuous Functional Calculus 189
8.7 The Spectral Theorem 193
8.8 Revisiting Diagonal Operators 195
8.9 Notes 198
8.10 Exercises 199
8.11 Hints for the Exercises 205

9 The Dirichlet Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.1 The Dirichlet Space 207
9.2 The Dirichlet Shift 209
9.3 The Dirichlet Shift is a 2-isometry 213
9.4 Multipliers and Commutant 214
9.5 Invariant Subspaces 215
9.6 Cyclic Vectors 215
9.7 The Bilateral Dirichlet Shift 216
9.8 Notes 217
9.9 Exercises 219
9.10 Hints for the Exercises 223

10 The Bergman Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.1 The Bergman Space 225
10.2 The Bergman Shift 227
10.3 Invariant Subspaces 231
10.4 Invariant Subspaces of Higher Index 234
10.5 Multipliers and Commutant 236
10.6 Notes 237
10.7 Exercises 238
10.8 Hints for the Exercises 244

11 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
11.1 The Fourier Transform on 𝐿1(ℝ) 245
11.2 Convolution and Young’s Inequality 247
11.3 Convolution and the Fourier Transform 249
11.4 The Poisson Kernel 250
11.5 The Fourier Inversion Formula 253
11.6 The Fourier–Plancherel Transform 255
11.7 Eigenvalues and Hermite Functions 258
11.8 The Hardy Space of the Upper Half-Plane 260
11.9 Notes 261
11.10Exercises 262
11.11Hints for the Exercises 267

12 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
12.1 The Poisson Integral on the Circle 269
12.2 The Hilbert Transform on the Circle 272
12.3 The Hilbert Transform on the Real Line 276

xi



| contents

12.4 Notes 280
12.5 Exercises 281
12.6 Hints for the Exercises 287

13 Bishop Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.1 The Invariant Subspace Problem 289
13.2 Lomonosov’s Theorem 290
13.3 Universal Operators 292
13.4 Properties of Bishop Operators 294
13.5 Rational Case: Spectrum 297
13.6 Rational Case: Invariant Subspaces 299
13.7 Irrational Case 302
13.8 Notes 302
13.9 Exercises 303
13.10Hints for the Exercises 306

14 Operator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.1 Direct Sums of Hilbert Spaces 307
14.2 Block Operators 309
14.3 Invariant Subspaces 311
14.4 Inverses and Spectra 312
14.5 Idempotents 314
14.6 The Douglas Factorization Theorem 316
14.7 The Julia Operator of a Contraction 317
14.8 Parrott’s Theorem 319
14.9 Polar Decomposition 321
14.10Notes 326
14.11Exercises 326
14.12Hints for the Exercises 330

15 Constructions with the Shift Operator . . . . . . . . . . . . . . . . . . . . . . . . 333
15.1 The von Neumann–Wold Decomposition 333
15.2 The Sum of 𝑆 and 𝑆∗ 337
15.3 The Direct Sum of 𝑆 and 𝑆∗ 342
15.4 The Tensor Product of 𝑆 and 𝑆∗ 345
15.5 Notes 352
15.6 Exercises 352
15.7 Hints for the Exercises 356

16 Toeplitz Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
16.1 Toeplitz Matrices 357
16.2 The Riesz Projection 359
16.3 Toeplitz Operators 361
16.4 Selfadjoint and Compact Toeplitz Operators 363
16.5 The Brown–Halmos Characterization 364
16.6 Analytic and Co-analytic Symbols 365

xii



contents | xiii

16.7 Universal Toeplitz Operators 366
16.8 Notes 367
16.9 Exercises 368
16.10Hints for the Exercises 374

17 Hankel Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
17.1 The Hilbert Matrix 375
17.2 Doubly Infinite Hankel Matrices 379
17.3 Hankel Operators 381
17.4 The Norm of a Hankel Operator 382
17.5 Hilbert’s Inequality 386
17.6 The Nehari Problem 387
17.7 The Carathéodory–Fejér Problem 389
17.8 The Nevanlinna–Pick Problem 390
17.9 Notes 391
17.10Exercises 393
17.11Hints for the Exercises 399

18 Composition Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
18.1 A Motivating Example 401
18.2 Composition Operators on 𝐻2 404
18.3 Compact Composition Operators 409
18.4 Spectrum of a Composition Operator 414
18.5 Adjoint of a Composition Operator 415
18.6 Universal Operators and Composition Operators 418
18.7 Notes 419
18.8 Exercises 420
18.9 Hints for the Exercises 427

19 Subnormal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
19.1 Basics of Subnormal Operators 429
19.2 Cyclic Subnormal Operators 431
19.3 Subnormal Weighted Shifts 434
19.4 Invariant Subspaces 438
19.5 Notes 439
19.6 Exercises 440
19.7 Hints for the Exercises 444

20 The Compressed Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
20.1 Model Spaces 445
20.2 From a Model Space to 𝐿2[0, 1] 448
20.3 The Compressed Shift 449
20.4 A Connection to the Volterra Operator 451
20.5 A Basis for the Model Space 453
20.6 A Matrix Representation 458
20.7 Notes 460



20.8 Exercises 461
20.9 Hints for the Exercises 466

References 467
Author Index 483
Subject Index 489

| contentsxiv



PREFACE

This is the book we wish we had as graduate students. As its name suggests, this book is
all about examples. Instead of listing a host of concepts all at once in an abstract setting,
we bring ideas along slowly and illustrate each new idea with explicit and instructive
examples. As one can see with the chapter titles, the focus of each chapter is on a
specific operator and not on a concept. The important topics are covered through concrete
operators and settings.
As for style, we take great pains not to talk down to or above our audience. For example,

we religiously eschew the dismissive words “obvious” and “trivial,” which have caused
untold hours of heartache and self-doubt for puzzled graduate students the world over.
Our prerequisites are minimal and we take time to highlight arguments and details that
are often brushed over in other sources.
In terms of prerequisites, we hope that the reader has had some exposure to Lebesgue’s

theory of integration. Familiarity with the Lebesgue integral and the three big conver-
gence theorems (Fatou’s lemma, the monotone convergence theorem, and the dominated
convergence theorem) is sufficient for our purposes. In addition, an undergraduate-level
course in complex analysis is needed for some of the chapters. We carefully develop
everything else. Moreover, we cover any needed background material as part of the
discussion. We do not burden the reader, who is anxious to get to operator theory, with a
large volume of preliminary material. Nor do we make them pause their reading to chase
down a concept or formula from an appendix.
By “operator theory,” we mean the study of bounded operators on Hilbert spaces.

We choose to work with Hilbert spaces, not only because of their beauty, ubiquity, and
great applicability, but also because they are the stepping stone to more specialized
investigations. Interested readers who wish to pursue further studies in some of the
topics covered here, but in the Banach-space setting, will be well equipped to do so once
Hilbert spaces and their operators are firmly understood. We are primarily concerned
with concrete properties of individual operators: norm, spectrum, compactness, invariant
subspaces, and so forth. Many of our examples are non-normal operators, and hence
lie outside the focus of many standard texts, in which various subclasses of normal
operators play a distinguished role. Although algebras of operators occasionally arise in
what follows, this is not a book on operator algebras (however, we must admit being
influenced by the title of [105]). Nor do we enter into the theory of unbounded operators
on Hilbert spaces.
The endnotes for each chapter are filled with historical details which allow the reader

to understand the development of each particular topic. We provide copious references
in case the reader wishes to consult the original sources or delve deeper into a particular
topic they find interesting.



xvi | preface

Each chapter comes equippedwith dozens of problems. In total, this book contains over
600 problems. Some of them ease the reader into the subject. Others ask the student to
supply a proof of some technical detail. More complicated problems, which sometimes
explain material not covered in the text, are split into several parts to ensure that the
student is not left treading water. We provide hints for many of the problems and it is
our intention that the attentive student should be able to work through all of the exercises
without outside assistance.
The proofs and examples we present are instructive. We try not to hide behind slick

arguments that do not easily generalize. Neither do we hold back on the details. Although
everyone may learn something from this book, our primary audience consists of graduate
students and entry-level researchers.
Finally, this book is not meant to be a comprehensive treatise on operator theory. That

bookwould comprisemany volumes.Our book is a selection of instructive operator-theory
vignettes that show a variety of topics that a student may see as they begin to attend
conferences or engage in independent research.
So, welcome to operator theory! It is an inspiring subject that has developed over the

past 100-plus years and continues to enjoy applications in mathematics, science, and
engineering. After reading this book, learning the history of the subject from the endnotes,
and working your way through the problems, we hope that you are inspired and excited
about the subject as much as we are.
We give special thanks to John B. Conway, Chris Donnay, Elena Kim, TomKriete, Artur

Nicolau, RyanO’Dowd,Alan Sola, DanTimotin,WilliamVerreault, BrettWick, and Jiahui
Yu for giving us useful feedback on the initial draft of this book.
Stephan Ramon Garcia was partially supported by National Science Foundation (US)

grants DMS-2054002 and DMS-1800123. Javad Mashreghi was partially supported by an
NSERC Discovery Grant.



NOTATION

• ℕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of positive integers

• ℤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of integers

• ℚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of rational numbers

• ℝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of real numbers

• ℂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of complex numbers

• 𝔻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the open unit disk in ℂ
• 𝕋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the unit circle in ℂ
• 𝐴− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the closure of the set 𝐴
• ℂ[𝑧] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of complex polynomials in the variable 𝑧
• ℂ[𝑧, 𝑧] . . . . . . . . . . . . . . . . . . . . . . . the set of complex polynomials in the variables 𝑧 and 𝑧
• P𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . the set of complex polynomials in 𝑧 of degree at most 𝑛
• ℝ𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real 𝑛-dimensional Euclidean space
• ℋ,𝒦 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hilbert spaces

• 𝒰,𝒱,𝒲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector spaces

• x, y, z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . abstract vectors

• ℂ𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complex 𝑛-dimensional Euclidean space (p. 1)
• 𝛿𝑗𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kronecker delta function (p. 4)

• ℓ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of square summable infinite sequences (p. 8)
• ⟨⋅, ⋅⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . inner product (p. 8)
• ⟨⋅, ⋅⟩ℋ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . inner product on the spaceℋ
• ‖ ⋅ ‖ℋ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .norm on the spaceℋ
• ‖ ⋅ ‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . norm (p. 8)

• 𝐿2[0, 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lebesgue space on [0, 1] (p. 10)
• 𝐶[0, 1] . . . . . . . . . . . . . . . the set of complex-valued continuous functions on [0, 1] (p. 12)
• ⋁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . closed linear span (p. 19)

• tr𝐴 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . trace of a matrix 𝐴 (p. 30)

• sgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signum function (p. 35)
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• diag(𝜆0, 𝜆1, 𝜆2,…) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . diagonal matrix (p. 41)
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A BRIEF TOUR OF OPERATOR THEORY

Although examples drive this book, we first provide a whirlwind survey of the general
concepts of operator theory.We do not expect the student tomaster these topics now since
they are covered in future chapters.
A Hilbert space ℋ is a complex vector space endowed with an inner product ⟨x, y⟩

that defines a norm ‖x‖ = √⟨x, x⟩ with respect to which ℋ is (Cauchy) complete. The
inner product on a Hilbert space satisfies the Cauchy–Schwarz inequality |⟨x, y⟩| ⩽ ‖x‖‖y‖
for all x, y ∈ ℋ. Examples of Hilbert spaces include ℂ𝑛 (complex Euclidean space), ℓ2
(the space of square-summable complex sequences), and 𝐿2[0, 1] (the Lebesgue space of
square-integrable, complex-valued functions on [0, 1]).
Vectors x, y in a Hilbert spaceℋ are orthogonal if ⟨x, y⟩ = 0. The dimension of a Hilbert

space ℋ is the cardinality of a maximal set of nonzero orthogonal vectors. This book is
almost exclusively concerned with Hilbert spaces of countable dimension. Every such
Hilbert space has an orthonormal basis (u𝑛)∞𝑛=1, a (possibly finite) maximal orthogonal set
such that ⟨u𝑚,u𝑛⟩ = 𝛿𝑚𝑛 for all𝑚, 𝑛 ⩾ 1. With respect to an orthonormal basis (u𝑛)∞𝑛=1,
each x ∈ ℋ enjoys a generalized Fourier expansion x = ∑∞

𝑛=1⟨x,u𝑛⟩u𝑛 that satisfies
Parseval’s identity ‖x‖2 = ∑∞

𝑛=1 |⟨x,u𝑛⟩|2.
A subspace (a norm-closed linear submanifold) ofℋ is itself a Hilbert space with the

operations inherited from ℋ. If (w𝑛)∞𝑛=1 is a (possibly finite) orthonormal basis for a
subspace ℳ of ℋ and x ∈ ℋ, then 𝑃ℳx = ∑∞

𝑛=1⟨x,w𝑛⟩w𝑛 belongs to ℳ and satisfies
‖x−𝑃ℳx‖ ⩽ ‖x− y‖ for every y ∈ ℳ. In short, 𝑃ℳx is the unique closest vector to x inℳ.
Furthermore, 𝑃ℳ defines a linear transformation onℋ whose range isℳ. It is called the
orthogonal projection ofℋ ontoℳ and it satisfies 𝑃2ℳ = 𝑃ℳ and ⟨𝑃ℳx, y⟩ = ⟨x, 𝑃ℳy⟩ for all
x, y ∈ ℋ.
Letℋ and𝒦 beHilbert spaces. A linear transformation𝐴 ∶ ℋ → 𝒦 is bounded if ‖𝐴‖ =

sup{‖𝐴x‖𝒦 ∶ ‖x‖ℋ = 1} is finite. Let ℬ(ℋ,𝒦) denote the set of bounded linear operators
fromℋ to𝒦. We writeℬ(ℋ) forℬ(ℋ,ℋ). The quantity ‖𝐴‖ is the norm of𝐴. Sinceℬ(ℋ)
is closed under addition and scalar multiplication, it is a vector space. Furthermore, since
‖𝐴+𝐵‖ ⩽ ‖𝐴‖+‖𝐵‖ and ‖𝑐𝐴‖ = |𝑐|‖𝐴‖ for all𝐴, 𝐵 ∈ ℬ(ℋ) and 𝑐 ∈ ℂ, it follows thatℬ(ℋ)
is a normed vector space. Endowed with this norm, ℬ(ℋ) is complete and thus forms a
Banach space. Moreover, the composition 𝐴𝐵 belongs toℬ(ℋ) and ‖𝐴𝐵‖ ⩽ ‖𝐴‖‖𝐵‖ for all
𝐴, 𝐵 ∈ ℬ(ℋ). Therefore, ℬ(ℋ) is a Banach algebra.
For each𝐴 ∈ ℬ(ℋ,𝒦), there is a unique𝐴∗ ∈ ℬ(𝒦,ℋ) such that ⟨𝐴x, y⟩𝒦 = ⟨x, 𝐴∗y⟩ℋ

for all x ∈ ℋ and y ∈ 𝒦. The operator 𝐴∗ is the adjoint of 𝐴; it is the analogue of the
conjugate transpose of a matrix. One can show that𝐴 ↦ 𝐴∗ is conjugate linear, that𝐴∗∗ =
𝐴, ‖𝐴‖ = ‖𝐴∗‖, and ‖𝐴∗𝐴‖ = ‖𝐴‖2. This additional structure upgradesℬ(ℋ) fromaBanach
algebra to a 𝐶∗-algebra. One can exploit adjoints to obtain information about the kernel
and range of an operator.
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For most of the operators 𝐴 ∈ ℬ(ℋ) covered in this book, we give the matrix
representation [𝐴] = [⟨𝐴u𝑗 ,u𝑖⟩]∞𝑖,𝑗=1 with respect to an orthonormal basis (u𝑛)∞𝑛=1 for
ℋ. This matrix representation [𝐴] defines a bounded operator x ↦ [𝐴]x on the Hilbert
space ℓ2 of square summable sequences that is structurally identical to𝐴. Schur’s theorem
helps us determine which infinite matrices define bounded operators on ℓ2. Many of
the operators covered in this book, such as the Cesàro operator, the Volterra operator,
weighted shifts, Toeplitz operators, and Hankel operators, have fascinating structured-
matrix representations.
An important class of operators is the compact operators. These are the 𝐴 ∈ ℬ(ℋ) such

that (𝐴x𝑛)∞𝑛=1 has a convergent subsequence whenever (x𝑛)∞𝑛=1 is a bounded sequence in
ℋ. Equivalently, an operator is compact if it takes each bounded set to one whose closure
is compact. Each finite-rank operator is compact and every compact operator is the norm
limit of finite-rank operators. The compact operators form a norm-closed, ∗-closed ideal
within ℬ(ℋ).
Some operators have a particularly close relationship with their adjoint. For example,

the operator𝑀 on 𝐿2[0, 1] defined by (𝑀𝑓)(𝑥) = 𝑥𝑓(𝑥) satisfies𝑀∗ = 𝑀. Such operators
are selfadjoint. If 𝜇 is a positive finite compactly supported Borel measure on ℂ, then the
operator 𝑁 on 𝐿2(𝜇) defined by (𝑁𝑓)(𝑧) = 𝑧𝑓(𝑧) satisfies (𝑁∗𝑓)(𝑧) = 𝑧𝑓(𝑧), and thus
𝑁∗𝑁 = 𝑁𝑁∗. Such operators are normal. The operator (𝑈𝑓)(𝑒𝑖𝜃) = 𝑒𝑖𝜃𝑓(𝑒𝑖𝜃) on 𝐿2(𝕋)
satisfies 𝑈∗𝑈 = 𝑈𝑈∗ = 𝐼. Such operators are unitary.
Unitary operators preserve the ambient structure of Hilbert spaces and can serve as a

vehicle to relate 𝐴 ∈ ℬ(ℋ) with 𝐵 ∈ ℬ(𝒦). We say that 𝐴 is unitarily equivalent to 𝐵 if
there is a unitary 𝑈 ∈ ℬ(ℋ,𝒦) such that 𝑈𝐴𝑈∗ = 𝐵. Unitary equivalence is often used
to identify seemingly complicated operators with relatively simple ones.
An operator 𝐴 ∈ ℬ(ℋ) is invertible if there is a 𝐵 ∈ ℬ(ℋ) such that 𝐴𝐵 = 𝐵𝐴 = 𝐼,

where 𝐼 is the identity operator on ℋ. If ℋ is finite dimensional, then the conditions
“𝐴 is invertible”, “𝐴 is surjective”, and “𝐴 is injective” are equivalent. If ℋ is infinite
dimensional, invertibility is a more delicate matter. The spectrum of 𝐴, denoted by 𝜎(𝐴),
is the set of 𝜆 ∈ ℂ such that 𝐴 − 𝜆𝐼 is not invertible in ℬ(ℋ). Ifℋ is finite dimensional,
then 𝜎(𝐴) is the set of eigenvalues of 𝐴. Ifℋ is infinite dimensional, it is possible for an
operator to have no eigenvalues. Nevertheless, 𝜎(𝐴) is always a nonempty compact subset
of ℂ. Unitarily equivalent operators have the same spectrum.
The spectrum plays an important role in the functional calculus of an operator. For

𝐴 ∈ ℬ(ℋ) and a polynomial 𝑝(𝑧) = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧2 + ⋯ + 𝑐𝑛𝑧𝑛, one can define the
operator 𝑝(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 + ⋯ + 𝑐𝑛𝐴𝑛. The Riesz functional calculus says that
if 𝑓 is analytic on an open neighborhood of 𝜎(𝐴), one can define 𝑓(𝐴) ∈ ℬ(ℋ). If 𝐴 is a
normal operator, one can define 𝑓(𝐴) for all Borel-measurable functions on 𝜎(𝐴).
One of the great gems of operator theory is the spectral theorem for normal operators. It

says that any normal operator𝑁 is unitarily equivalent to amultiplication operator𝑀𝜑𝑓 =
𝜑𝑓 on some 𝐿2(𝑋, 𝜇) space. Under certain circumstances, 𝑋 can be taken to be 𝜎(𝑁) and
𝜇 has support on 𝜎(𝑁). There is also the spectral multiplicity theorem which determines
when two normal operators are unitarily equivalent.
A subspaceℳ ofℋ is invariant for 𝐴 ∈ ℬ(ℋ) if 𝐴ℳ ⊆ ℳ. For example, {0} andℋ

are invariant subspaces for any 𝐴 ∈ ℬ(ℋ). The most famous open problem in operator
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theory, the invariant subspace problem, asks whether every 𝐴 ∈ ℬ(ℋ), where dimℋ ⩾ 2,
possesses an invariant subspace besides the two listed above. Most of the operators in this
book have an abundance of invariant subspaces that permit a concrete description.
There are several natural topologies on ℬ(ℋ). Most of the time, we can discuss these

concepts in terms of sequences and convergence instead of getting into bases and subbases
for the respective topologies. First and foremost, there is the norm topology, where𝐴𝑛 → 𝐴
if ‖𝐴𝑛 − 𝐴‖ → 0. Next comes the strong operator topology (SOT), where 𝐴𝑛 → 𝐴 (SOT) if
‖𝐴𝑛x − 𝐴x‖ → 0 for each x ∈ ℋ. There is also the weak operator topology (WOT), where
𝐴𝑛 → 𝐴 (WOT) if ⟨(𝐴𝑛 − 𝐴)x, y⟩ → 0 for each x, y ∈ ℋ. Norm convergence implies SOT
convergence and SOT convergence impliesWOT convergence. The converses do not hold.
These topologies appear when determining the commutant of an operator. For𝐴 ∈ ℬ(ℋ),
the commutant {𝐴}′ is the set of all bounded operators that commute with 𝐴. One can see
that 𝑝(𝐴) belongs to {𝐴}′ (where 𝑝 ∈ ℂ[𝑧] is a polynomial) as does either the strong or
weak closure of {𝑝(𝐴) ∶ 𝑝 ∈ ℂ[𝑧]}. For some operators, neither of these closures comprise
the entire commutant.
There is certainly much more to be said, many examples to work through, and numer-

ous connections to complex analysis that we have not yet touched upon (although
these form an important component of the book). However, we hope that the preceding
brief summary of the basic definitions has shed some light on the path forward. These
definitions will be introduced and discussed, in due course and in great depth, as we work
our way through twenty chapters full of instructive examples.
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Hilbert Spaces

Key Concepts: Inner product, norm, inner product space, ℂ𝑛, ℓ2, 𝐿2[0, 1], Hilbert space, Cauchy–
Schwarz inequality, triangle inequality, orthogonal projection, orthonormal basis, Banach space.

Outline: This chapter explores the basics of Hilbert spaces by using ℂ𝑛 (𝑛-dimensional
Euclidean space), ℓ2 (the space of square-summable complex sequences), and 𝐿2[0, 1] (the
space of square-integrable, complex-valued Lebesgue-measurable functions on [0, 1]) as
examples. In addition, this chapter covers the Cauchy–Schwarz and triangle inequalities,
orthonormal bases, and orthogonal projections. Since Banach spaces play a role in the
subsequent chapters, this chapter also covers a few Banach-space basics. Our approach
is pedagogical and not aimed at optimal efficiency. Some results are covered multiple
times, in increasing levels of generality, in order to illustrate alternate proofs or different
perspectives.

1.1 Euclidean Space
Let ℂ𝑛, 𝑛-dimensional Euclidean space, denote the set of vectors a = (𝑎1, 𝑎2,…, 𝑎𝑛), where
each 𝑎𝑖 ∈ ℂ. With the operations of addition a+b = (𝑎1+𝑏1, 𝑎2+𝑏2,…, 𝑎𝑛+𝑏𝑛) and scalar
multiplication 𝜆a = (𝜆𝑎1, 𝜆𝑎2,…, 𝜆𝑎𝑛), along with the zero element 0 = (0, 0,…, 0), ℂ𝑛 is
a vector space. It also comes equipped with an inner product and corresponding norm

⟨a,b⟩ =
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖 and ‖a‖ = (
𝑛
∑
𝑖=1

|𝑎𝑖|2)
1
2 ,

respectively, where 𝑧 denotes the complex conjugate of 𝑧 ∈ ℂ. In particular, ⟨a, a⟩ = ‖a‖2.
The inner product satisfies the following for a,b, c ∈ ℂ𝑛 and 𝜆 ∈ ℂ.

(a) ⟨a, a⟩ ⩾ 0.

(b) ⟨a, a⟩ = 0 if and only if a = 0.

(c) ⟨a,b⟩ = ⟨b, a⟩.
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(d) ⟨a + b, c⟩ = ⟨a, c⟩ + ⟨b, c⟩.

(e) ⟨𝜆a,b⟩ = 𝜆⟨a,b⟩.

The properties above ensure that the inner product is linear in the first slot:

⟨𝜆a + 𝜇b, c⟩ = 𝜆⟨a, c⟩ + 𝜇⟨b, c⟩,

and conjugate linear in the second slot:

⟨a, 𝜆b + 𝜇c⟩ = 𝜆⟨a,b⟩ + 𝜇⟨a, c⟩.

The inner product on ℂ𝑛 also satisfies the following fundamental inequality. Variants
and generalizations of this inequality in other settings, and with different proofs, appear
throughout this chapter.

Proposition 1.1.1 (Cauchy–Schwarz inequality). If a,b ∈ ℂ𝑛, then

|⟨a,b⟩| ⩽ ‖a‖‖b‖. (1.1.2)

Equality holds if and only if a and b are linearly dependent.

Proof If 𝑥𝑖, 𝑦𝑖 ∈ ℝ for 1 ⩽ 𝑖 ⩽ 𝑛, then
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)2 =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑥2𝑖 𝑦2𝑗 − 2𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 + 𝑥2𝑗 𝑦2𝑖 )

=
𝑛
∑
𝑖=1

𝑥2𝑖
𝑛
∑
𝑗=1

𝑦2𝑗 +
𝑛
∑
𝑖=1

𝑦2𝑖
𝑛
∑
𝑗=1

𝑥2𝑗 − 2
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖
𝑛
∑
𝑗=1

𝑥𝑗𝑦𝑗

= 2(
𝑛
∑
𝑖=1

𝑥2𝑖 )(
𝑛
∑
𝑖=1

𝑦2𝑖 ) − 2(
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖)
2
.

Since the left side is nonnegative, it follows that

(
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖)
2
⩽ (

𝑛
∑
𝑖=1

𝑥2𝑖 )(
𝑛
∑
𝑖=1

𝑦2𝑖 ). (1.1.3)

To obtain (1.1.2), apply (1.1.3) to 𝑥𝑖 = |𝑎𝑖| and 𝑦𝑖 = |𝑏𝑖| for 1 ⩽ 𝑖 ⩽ 𝑛. Exercise 1.10.3
requests a proof of the second part of the proposition. ■

An important consequence of the Cauchy–Schwarz inequality is the following inequal-
ity, so named because of the image in Figure 1.1.1.

Proposition 1.1.4 (Triangle inequality). If a,b ∈ ℂ𝑛, then ‖a + b‖ ⩽ ‖a‖ + ‖b‖. Equality
holds if and only if a or b is a nonnegative multiple of the other.
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0 a

b a + b

Figure 1.1.1 The triangle inequality.

Proof The Cauchy–Schwarz inequality yields
𝑛
∑
𝑖=1

Re(𝑎𝑖𝑏𝑖) = Re (
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖) = Re⟨a,b⟩ ⩽ |⟨a,b⟩| ⩽ ‖a‖‖b‖.

Therefore,

‖a + b‖2 =
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|2

=
𝑛
∑
𝑖=1

(|𝑎𝑖|2 + 2Re(𝑎𝑖𝑏𝑖) + |𝑏𝑖|2)

⩽ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖
= (‖a‖ + ‖b‖)2.

Take square roots above and deduce the triangle inequality. Exercise 1.10.4 requests
a proof of the second part of the proposition. ■

The norm on ℂ𝑛 defines a metric 𝑑(a,b) = ‖a− b‖ with respect to which ℂ𝑛 is Cauchy
complete. That is, every Cauchy sequence in ℂ𝑛 converges (Exercise 1.10.7). The metric
notation 𝑑(a,b) is usually suppressed in favor of ‖a − b‖, which more clearly suggests its
translation invariance:

𝑑(a,b) = ‖a − b‖ = ‖(a − c) − (b − c)‖ = 𝑑(a − c,b − c).

The inner product on ℂ𝑛 is the complex version of the dot product on ℝ𝑛. Recall that
two vectors in ℝ𝑛 are orthogonal if and only if their dot product is zero. This inspires the
following definition.

Definition 1.1.5. Vectors a,b ∈ ℂ𝑛 are orthogonal, written a ⟂ b, if ⟨a,b⟩ = 0.

The structure imparted uponℂ𝑛 by the inner product yields analogues of some familiar
results from Euclidean geometry (Figure 1.1.2).
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0 x

y x + y

Figure 1.1.2 The Pythagorean theorem: ‖x‖2 + ‖y‖2 = ‖x + y‖2 if x ⟂ y.

Proposition 1.1.6 (Pythagorean theorem). If a,b ∈ ℂ𝑛 and a ⟂ b, then

‖a + b‖2 = ‖a‖2 + ‖b‖2.

Proof By the properties of the inner product discussed earlier, observe that

‖a + b‖2 = ⟨a + b, a + b⟩
= ⟨a, a⟩ + ⟨a,b⟩ + ⟨b, a⟩ + ⟨b,b⟩
= ‖a‖2 + 0 + 0 + ‖b‖2

= ‖a‖2 + ‖b‖2,

which completes the proof. ■

Suppose that (a𝑖)𝑛𝑖=1 ∈ ℂ𝑛 is a basis, in the sense of linear algebra, that is, a1, a2,…, a𝑛
are linearly independent and span{a1, a2,…, a𝑛} = ℂ𝑛. The Gram–Schmidt process (see
Theorem 1.5.1 below) produces a basis (u𝑖)𝑛𝑖=1 such that ⟨u𝑗 ,u𝑘⟩ = 𝛿𝑗𝑘, where

𝛿𝑗𝑘 = {1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘,

is the Kronecker delta function. In other words, the u𝑖 are pairwise orthogonal and have
unit length. Such a basis is an orthonormal basis.

Proposition 1.1.7. Let (u𝑖)𝑛𝑖=1 be an orthonormal basis for ℂ𝑛. Then the following hold for
each x ∈ ℂ𝑛.

(a) x =
𝑛
∑
𝑖=1
⟨x,u𝑖⟩u𝑖.

(b) ‖x‖2 =
𝑛
∑
𝑖=1

|⟨x,u𝑖⟩|2.
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Proof (a) Since span{u1,u2,…,u𝑛} = ℂ𝑛, for each x ∈ ℂ𝑛 there are scalars 𝑎𝑖 such that

x =
𝑛
∑
𝑖=1

𝑎𝑖u𝑖.

For each fixed 𝑘, the orthonormality of (u𝑖)𝑛𝑖=1 ensures that

⟨x,u𝑘⟩ = ⟨
𝑛
∑
𝑖=1

𝑎𝑖u𝑖,u𝑘⟩

=
𝑛
∑
𝑖=1

𝑎𝑖⟨u𝑖,u𝑘⟩

=
𝑛
∑
𝑖=1

𝑎𝑖𝛿𝑖𝑘

= 𝑎𝑘.

(b) From part (a),

⟨x, x⟩ = ⟨
𝑛
∑
𝑖=1
⟨x,u𝑖⟩u𝑖,

𝑛
∑
𝑗=1

⟨x,u𝑗⟩u𝑗⟩

=
𝑛
∑
𝑖,𝑗=1

⟨x,u𝑖⟩⟨x,u𝑗⟩⟨u𝑖,u𝑗⟩

=
𝑛
∑
𝑖,𝑗=1

⟨x,u𝑖⟩⟨x,u𝑗⟩𝛿𝑖𝑗

=
𝑛
∑
𝑖=1

|⟨x,u𝑖⟩|2,

which completes the proof. ■

A subspace of ℂ𝑛 is a nonempty subset of ℂ𝑛 that is closed under vector addition and
scalar multiplication. In ℂ𝑛, such a set is also topologically closed and hence this does not
conflict with Definition 1.4.7 below of a subspace in the Hilbert-space setting. Ifℳ ⊆ ℂ𝑛

is a subspace of dimension 𝑘, then the Gram–Schmidt process (see Theorem 1.5.1 below)
provides an orthonormal basis (v𝑖)𝑘𝑖=1 forℳ.

Proposition 1.1.8. Let (v𝑖)𝑘𝑖=1 be an orthonormal basis for a subspaceℳ of ℂ𝑛. For each
x ∈ ℂ𝑛, define

𝑃ℳx =
𝑘
∑
𝑖=1
⟨x, v𝑖⟩v𝑖. (1.1.9)

Then the following hold.

(a) ‖x − 𝑃ℳx‖ ⩽ ‖x − v‖ for every v ∈ ℳ.
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ℳ⟂

𝑃ℳx

x
x − 𝑃ℳx

ℳ 0

Figure 1.1.3 The orthogonal projection onto the subspaceℳ.

(b) (x − 𝑃ℳx) ⟂ v for every v ∈ ℳ.

(c) ∑𝑘
𝑖=1 |⟨x, v𝑖⟩|2 ⩽ ‖x‖2.

(d) 𝑃ℳx = x if and only if x ∈ ℳ.

Proof (a) For any 𝑐1, 𝑐2,…, 𝑐𝑘 ∈ ℂ, Exercise 1.10.10 yields

‖
‖x −

𝑘
∑
𝑖=1

𝑐𝑖v𝑖‖‖
2
= ‖x‖2 −

𝑘
∑
𝑖=1

|⟨x, v𝑖⟩|2 +
𝑘
∑
𝑖=1

|⟨x, v𝑖⟩ − 𝑐𝑖|2. (1.1.10)

This expression is minimized precisely when 𝑐𝑖 = ⟨x, v𝑖⟩ for all 1 ⩽ 𝑖 ⩽ 𝑘.
(b) For any 1 ⩽ 𝑖 ⩽ 𝑘,

⟨x − 𝑃ℳx, v𝑖⟩ = ⟨x −
𝑘
∑
𝑗=1

⟨x, v𝑗⟩v𝑗 , v𝑖⟩ (1.1.11)

= ⟨x, v𝑖⟩ − ⟨
𝑘
∑
𝑗=1

⟨x, v𝑗⟩v𝑗 , v𝑖⟩

= ⟨x, v𝑖⟩ −
𝑘
∑
𝑗=1

⟨x, v𝑗⟩⟨v𝑗 , v𝑖⟩

= ⟨x, v𝑖⟩ −
𝑘
∑
𝑗=1

⟨x, v𝑗⟩𝛿𝑖𝑗

= ⟨x, v𝑖⟩ − ⟨x, v𝑖⟩ = 0. (1.1.12)

Thus, (x − 𝑃ℳx) ⟂ v𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘. Since (v𝑖)𝑘𝑖=1 is a basis forℳ, the conjugate
linearity of the inner product in the second slot ensures that (x − 𝑃ℳx) ⟂ v for every
v ∈ ℳ.
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u

v − x

v

x = ⟨v,u⟩
‖u‖2 u

Figure 1.1.4 The orthogonal projection of one vector onto another.

(c) For each 1 ⩽ 𝑖 ⩽ 𝑘, set 𝑐𝑖 = ⟨x, v𝑖⟩ in (1.1.10) and obtain

0 ⩽ ‖x − 𝑃ℳx‖2 = ‖x‖2 −
𝑘
∑
𝑖=1

|⟨x, v𝑖⟩|2.

The desired result follows.
(d) If 𝑃ℳx = x, then x ∈ ℳ because 𝑃ℳx is a linear combination of v1, v2,…, v𝑘, each

of which belongs toℳ. If x ∈ ℳ, then (a) ensures that ‖x − 𝑃ℳx‖ ⩽ ‖x − x‖ = 0.
Therefore, 𝑃ℳx = x. ■

The vector 𝑃ℳx from (1.1.9) is the orthogonal projection of x ontoℳ (Figure 1.1.3) and
is discussed again later in a more general setting. Ifℳ = span{u}, then the orthogonal
projection of v onto u is

x = ⟨v,u⟩
‖u‖2 u.

This important relation is depicted in Figure 1.1.4.
The alert reader might notice that the definition of 𝑃ℳx from Proposition 1.1.8 appears

to depend on the choice of orthonormal basis (v𝑖)𝑘𝑖=1 forℳ. It does not.

Corollary 1.1.13. Suppose that (u𝑖)𝑘𝑖=1 and (v𝑖)𝑘𝑖=1 are orthonormal bases for a subspace
ℳ of ℂ𝑛. For x ∈ ℂ𝑛 define

p =
𝑘
∑
𝑖=1
⟨x,u𝑖⟩u𝑖 and q =

𝑘
∑
𝑖=1
⟨x, v𝑖⟩v𝑖.

Then p = q.

Proof Proposition 1.1.8b implies that x−p and x−q are orthogonal to every vector inℳ.
The linearity of the inner product in the first slot ensures that p−q = (x−q)−(x−p)
is orthogonal to every vector inℳ. Sinceℳ is a subspace ofℂ𝑛, it follows that p−q ∈
ℳ. Therefore, 0 = ⟨p − q,p − q⟩ = ‖p − q‖2, and hence p = q. ■
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The following result is useful for determining if a subspaceℳ is a proper subset of ℂ𝑛.

Corollary 1.1.14. Letℳ be a subspace of ℂ𝑛. The following are equivalent.

(a) ℳ ≠ ℂ𝑛.

(b) There is a y ∈ ℂ𝑛\{0} such that y ⟂ v for all v ∈ ℳ.

Proof (a) ⇒ (b) Let x ∉ ℳ and set y = x − 𝑃ℳx. Then y ≠ 0 and y ⟂ v for all v ∈ ℳ
(Proposition 1.1.8).

(b)⇒ (a) Suppose y ≠ 0 and is orthogonal to each v ∈ ℳ. Then y ∉ ℳ since otherwise
‖y‖2 = ⟨y, y⟩ = 0. Thus,ℳ ≠ ℂ𝑛. ■

1.2 The Sequence Space ℓ2

This next space, the sequence space ℓ2, is infinite dimensional. It is of great importance
since it is a natural generalization of ℂ𝑛 and because most of the other Hilbert spaces
considered in this book are, in a certain sense, heavily disguised versions of ℓ2.

Definition 1.2.1. Let ℓ2 be the set of all sequences a = (𝑎𝑛)∞𝑛=0 of complex numbers such
that∑∞

𝑛=0 |𝑎𝑛|2 is finite.

The inner product and the corresponding norm on ℓ2 are

⟨a,b⟩ =
∞
∑
𝑛=0

𝑎𝑛𝑏𝑛 and ‖a‖ = (
∞
∑
𝑛=0

|𝑎𝑛|2)
1
2 , (1.2.2)

respectively, where a = (𝑎𝑛)∞𝑛=0 and b = (𝑏𝑛)∞𝑛=0 belong to ℓ2. Note that ⟨a, a⟩ = ‖a‖2.
To show that ℓ2 is a vector space, and that the proposed norm and inner product are
well defined, requires some work. The definition of ℓ2 ensures that the infinite series that
defines ‖a‖ converges. However, we must justify why the infinite series that defines ⟨a,b⟩
in (1.2.2) converges. For each 𝑁 ⩾ 1, the Cauchy–Schwarz inequality (Proposition 1.1.1)
says that

𝑁
∑
𝑛=0

|𝑎𝑛𝑏𝑛| ⩽ (
𝑁
∑
𝑛=0

|𝑎𝑛|2)
1
2 (

𝑁
∑
𝑛=0

|𝑏𝑛|2)
1
2 .

Let 𝑁 → ∞ and conclude the first series in (1.2.2) converges absolutely, and hence
converges. Thus, ⟨a,b⟩ is well defined for all a,b ∈ ℓ2. This also establishes the following
version of Proposition 1.1.1 for ℓ2.

Proposition 1.2.3 (Cauchy–Schwarz inequality). If a,b ∈ ℓ2, then |⟨a,b⟩| ⩽ ‖a‖‖b‖.
Equality holds if and only if a and b are linearly dependent.

To show that ℓ2 is a vector space with the addition and scalar multiplication operations
defined by

a + b = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1,…) and 𝑐a = (𝑐𝑎0, 𝑐𝑎1,…),
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onemust verify that a+b belongs to ℓ2. The proof of Proposition 1.1.4, applied to ℓ2, yields
the desired result.

Proposition 1.2.4 (Triangle inequality). If a,b ∈ ℓ2, then a + b ∈ ℓ2 and ‖a + b‖ ⩽
‖a‖ + ‖b‖. Equality holds if and only if a or b is a nonnegative multiple of the other.

We are now in a position to prove that ℓ2 is (Cauchy) complete with respect to the norm
induced by the inner product.

Proposition 1.2.5. ℓ2 is complete.

Proof Suppose that a(1), a(2), a(3),… is a Cauchy sequence in ℓ2. Each a(𝑛) is itself a
sequence of complex numbers:

a(𝑛) = (𝑎(𝑛)0 , 𝑎(𝑛)1 , 𝑎(𝑛)2 , 𝑎(𝑛)3 ,…).

For fixed 𝑘,

|𝑎(𝑚)
𝑘 − 𝑎(𝑛)𝑘 | ⩽ ‖a(𝑚) − a(𝑛)‖

and hence 𝑎(1)𝑘 , 𝑎(2)𝑘 , 𝑎(3)𝑘 ,… is a Cauchy sequence in ℂ. For each 𝑘, let

𝑎𝑘 = lim
𝑛→∞

𝑎(𝑛)𝑘

and define a = (𝑎0, 𝑎1, 𝑎2,…), the prospective limit of the sequence (a(𝑛))∞𝑛=1.
To prove this, let 𝜀 > 0. Since (a(𝑛))∞𝑛=1 is a Cauchy sequence in ℓ2 there is an 𝑁 such
that

(
𝑘
∑
𝑖=0

|𝑎(𝑚)
𝑖 − 𝑎(𝑛)𝑖 |2)

1
2 ⩽ ‖a(𝑚) − a(𝑛)‖ < 𝜀 for𝑚, 𝑛 ⩾ 𝑁 and 𝑘 ⩾ 0.

Let 𝑛 → ∞ and obtain

(
𝑘
∑
𝑖=0

|𝑎(𝑚)
𝑖 − 𝑎𝑖|2)

1
2 ⩽ 𝜀. (1.2.6)

For all 𝑘,𝑚, it follows from the triangle inequality on ℂ𝑘 that

(
𝑘
∑
𝑖=0

|𝑎𝑖|2)
1
2 ⩽ (

𝑘
∑
𝑖=0

|𝑎(𝑚)
𝑖 − 𝑎𝑖|2)

1
2 + (

𝑘
∑
𝑖=0

|𝑎(𝑚)
𝑖 |2)

1
2 ⩽ 𝜀 + ‖a(𝑚)‖.

Thus, letting 𝑘 → ∞ yields ‖a‖ ⩽ 𝜀 + ‖a(𝑚)‖ for all 𝑚 ⩾ 𝑁. In particular, this shows
that a ∈ ℓ2. By (1.2.6),

‖a(𝑚) − a‖ = (
∞
∑
𝑖=0

|𝑎(𝑚)
𝑖 − 𝑎𝑖|2)

1
2 ⩽ 𝜀 for all𝑚 ⩾ 𝑁, (1.2.7)

and hence a(𝑛) converges to a in the norm of ℓ2. ■
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As withℂ𝑛 in Definition 1.1.5, a,b ∈ ℓ2 are orthogonal, written a ⟂ b, if ⟨a,b⟩ = 0. The
standard basis vectors

e0 = (1, 0, 0,…), e1 = (0, 1, 0,…), e2 = (0, 0, 1, 0,…),… (1.2.8)

are orthonormal in ℓ2; that is, ⟨e𝑚, e𝑛⟩ = 𝛿𝑚𝑛. Moreover,

a =
∞
∑
𝑛=0

⟨a, e𝑛⟩e𝑛 and ‖a‖2 =
∞
∑
𝑛=0

|⟨a, e𝑛⟩|2

for every a ∈ ℓ2. These are the ℓ2 analogues of the formulas from Proposition 1.1.7.
Due to convergence issues, concepts such as orthonormal bases, subspaces, and orthog-

onal projections are more subtle than in the Euclidean setting and are discussed in a more
unified context in Section 1.7.

1.3 The Lebesgue Space 𝐿2[0, 1]
The Lebesgue space 𝐿2[0, 1] is the set of Lebesgue-measurable, complex-valued functions
𝑓 on [0, 1] such that

∫
1

0
|𝑓(𝑥)|2𝑑𝑥 < ∞.

As is traditional in the subject, we identify functions that are equal almost everywhere. A
student who needs a review of Lebesgue measure and integration should consult [317] or
[319].
Define the inner product and corresponding norm on 𝐿2[0, 1] by

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 and ‖𝑓‖ = (∫

1

0
|𝑓(𝑥)|2 𝑑𝑥)

1
2 .

Note that ⟨𝑓, 𝑓⟩ = ‖𝑓‖2. As with ℓ2, there are convergence issues to address in the
definition of the inner product. These are resolved with the following integral version of
the Cauchy–Schwarz inequality.

Proposition 1.3.1 (Cauchy–Schwarz inequality). If 𝑓, 𝑔 ∈ 𝐿2[0, 1], then |⟨𝑓, 𝑔⟩| ⩽ ‖𝑓‖‖𝑔‖.
Equality holds if and only if 𝑓 and 𝑔 are linearly dependent.

Proof Assume that neither 𝑓 nor 𝑔 is the zero function, since the inequality holds
otherwise. For 𝑎, 𝑏 ⩾ 0, note that

𝑎𝑏 ⩽ 1
2
(𝑎2 + 𝑏2) (1.3.2)

since (𝑎 − 𝑏)2 ⩾ 0. Apply this to

𝑎 = |𝑓(𝑥)|
‖𝑓‖ and 𝑏 = |𝑔(𝑥)|

‖𝑔‖ ,
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and get

|𝑓(𝑥)𝑔(𝑥)|
‖𝑓‖‖𝑔‖ ⩽ 1

2 (
|𝑓(𝑥)|2
‖𝑓‖2 + |𝑔(𝑥)|2

‖𝑔‖2 ) .

Integrating both sides yields

1
‖𝑓‖‖𝑔‖ ∫

1

0
|𝑓(𝑥)𝑔(𝑥)|𝑑𝑥 ⩽ 1

2 (
‖𝑓‖2
‖𝑓‖2 +

‖𝑔‖2
‖𝑔‖2 ) = 1,

which shows that 𝑓𝑔 is integrable, and thus the inner product is well defined.
Moreover, the Cauchy–Schwarz inequality follows. Exercise 1.10.5 requests a proof
of the second part of the proposition. ■

Next we prove the triangle inequality for 𝐿2[0, 1], which shows that 𝐿2[0, 1] is closed
under the operation of function addition. Since 𝐿2[0, 1] is also closed under scalar multi-
plication, it is a vector space.

Proposition 1.3.3 (Triangle inequality). If 𝑓, 𝑔 ∈ 𝐿2[0, 1], then 𝑓 + 𝑔 ∈ 𝐿2[0, 1] and

‖𝑓 + 𝑔‖ ⩽ ‖𝑓‖ + ‖𝑔‖.

Equality holds if and only if 𝑓 or 𝑔 is a nonnegative multiple of the other.

Proof For 𝑓, 𝑔 ∈ 𝐿2[0, 1] and 𝑥 ∈ [0, 1],

|𝑓(𝑥) + 𝑔(𝑥)|2 = |𝑓(𝑥)|2 + 2Re (𝑓(𝑥)𝑔(𝑥)) + |𝑔(𝑥)|2

⩽ |𝑓(𝑥)|2 + 2|𝑓(𝑥)||𝑔(𝑥)| + |𝑔(𝑥)|2

⩽ 2(|𝑓(𝑥)|2 + |𝑔(𝑥)|2),

by (1.3.2). Integrating the inequality above reveals that 𝑓 + 𝑔 ∈ 𝐿2[0, 1]. It is left to
prove the triangle inequality. For this, observe that

‖𝑓 + 𝑔‖2 = ⟨𝑓 + 𝑔, 𝑓 + 𝑔⟩
= ‖𝑓‖2 + 2Re⟨𝑓, 𝑔⟩ + ‖𝑔‖2

⩽ ‖𝑓‖2 + 2‖𝑓‖‖𝑔‖ + ‖𝑔‖2 (Cauchy–Schwarz)
= (‖𝑓‖ + ‖𝑔‖)2.

Take square roots of both sides of the inequality above and obtain the triangle inequal-
ity. Exercise 1.10.6 requests a proof of the second statement of the proposition. ■

As with ℂ𝑛 and ℓ2, Proposition 1.3.3 shows that 𝐿2[0, 1] is a vector space with an inner
product. The next result asserts that 𝐿2[0, 1] is complete.

Proposition 1.3.4 (Riesz–Fischer). 𝐿2[0, 1] is complete.

Proof We follow a proof from [319, Ch. 3]. Let (𝑓𝑛)∞𝑛=1 be a Cauchy sequence in 𝐿2[0, 1].
Choose a subsequence (𝑓𝑛𝑖 )∞𝑖=1 such that

‖𝑓𝑛𝑖+1 − 𝑓𝑛𝑖‖ ⩽
1
2𝑖 for 𝑖 ⩾ 1.
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For each 𝑘 ⩾ 1 define

𝑔𝑘(𝑥) =
𝑘
∑
𝑖=1

|𝑓𝑛𝑖+1 (𝑥) − 𝑓𝑛𝑖 (𝑥)| and 𝑔(𝑥) =
∞
∑
𝑖=1

|𝑓𝑛𝑖+1 (𝑥) − 𝑓𝑛𝑖 (𝑥)|.

Observe that 𝑔𝑘(𝑥) → 𝑔(𝑥) for each 𝑥 ∈ [0, 1]. The triangle inequality (Proposition
1.3.3) applied 𝑘 − 1 times shows that

‖𝑔𝑘‖ ⩽
𝑘
∑
𝑖=1

‖𝑓𝑛𝑖+1 − 𝑓𝑛𝑖‖ ⩽
𝑘
∑
𝑖=1

1
2𝑖 < 1.

Since 𝑔𝑘 → 𝑔 pointwise, Fatou’s lemma yields

‖𝑔‖ ⩽ lim inf
𝑘→∞

‖𝑔𝑘‖ ⩽ 1.

In particular, 𝑔 is finite almost everywhere and

𝑓𝑛1 +
∞
∑
𝑗=1

(𝑓𝑛𝑗+1 − 𝑓𝑛𝑗 )

converges absolutely almost everywhere and defines ameasurable function 𝑓. There-
fore,

lim
𝑘→∞

𝑓𝑛𝑘 = lim
𝑘→∞

(𝑓𝑛1 +
𝑘−1
∑
𝑗=1

(𝑓𝑛𝑗+1 − 𝑓𝑛𝑗 )) = 𝑓

almost everywhere.
To complete the proof, it suffices to show that 𝑓 ∈ 𝐿2[0, 1] and ‖𝑓𝑛 − 𝑓‖ → 0. Let 𝜀 > 0.
Since (𝑓𝑛)∞𝑛=1 is a Cauchy sequence, there is an 𝑁 ⩾ 1 such that ‖𝑓𝑛 − 𝑓𝑚‖ ⩽ 𝜀 for all
𝑚, 𝑛 ⩾ 𝑁. Fatou’s lemma implies that

‖𝑓 − 𝑓𝑚‖ ⩽ lim inf
𝑖→∞

‖𝑓𝑛𝑖 − 𝑓𝑚‖ ⩽ 𝜀

for all𝑚 ⩾ 𝑁. Therefore, 𝑓 ∈ 𝐿2[0, 1] and ‖𝑓𝑚 − 𝑓‖ → 0. ■

For further work, it is important to know an explicit and convenient dense subset of
𝐿2[0, 1]. Let 𝐶[0, 1] denote the set of continuous, complex-valued functions on [0, 1]. The
extreme value theorem ensures that

‖𝑓‖∞ = sup
0⩽𝑥⩽1

|𝑓(𝑥)|

is finite for each 𝑓 ∈ 𝐶[0, 1]. In fact, this defines a norm on 𝐶[0, 1] with respect to which
𝐶[0, 1] is complete. A sequence (𝑓𝑛)∞𝑛=1 converges in 𝐶[0, 1] with respect to this norm if
and only if it converges uniformly on [0, 1]. Also important is the inequality

‖𝑓‖ ⩽ ‖𝑓‖∞ for all 𝑓 ∈ 𝐶[0, 1]. (1.3.5)
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Proposition 1.3.6. 𝐶[0, 1] is dense in 𝐿2[0, 1].

Proof Let 𝑓 ∈ 𝐿2[0, 1] and 𝜀 > 0. For each 𝑁 ⩾ 0, let

𝑓𝑁(𝑥) = {𝑓(𝑥) if |𝑓(𝑥)| ⩽ 𝑁,
0 if |𝑓(𝑥)| > 𝑁.

Observe that

∫
1

0
|𝑓 − 𝑓𝑁 |2𝑑𝑥 = ∫

|𝑓|>𝑁
|𝑓|2𝑑𝑥.

Choose 𝑁 large enough such that

‖𝑓 − 𝑓𝑁‖ ⩽
𝜀
2 . (1.3.7)

For this fixed𝑁, Lusin’s theorem [319, Ch. 2] produces a closed set𝐸 ⊆ [0, 1] such that
𝑓𝑁 |𝐸 is continuous and |[0, 1]\𝐸| ⩽ 𝜀2/(16𝑁2) (here |𝐴| denotes the Lebesguemeasure
of𝐴 ⊆ [0, 1]). The Tietze extension theorem [319, Ch. 20] produces a 𝑔 ∈ 𝐶[0, 1] such
that |𝑔| ⩽ 𝑁 on [0, 1] and 𝑔 = 𝑓𝑁 on 𝐸. Then,

‖𝑓𝑁 − 𝑔‖2 = ∫
1

0
|𝑓𝑁 − 𝑔|2 𝑑𝑥

= ∫
𝐸
|𝑓𝑁 − 𝑔|2 𝑑𝑥 +∫

[0,1]\𝐸
|𝑓𝑁 − 𝑔|2 𝑑𝑥

= ∫
[0,1]\𝐸

|𝑓𝑁 − 𝑔|2 𝑑𝑥

⩽ ‖𝑓𝑁 − 𝑔‖2∞∫
[0,1]\𝐸

1 𝑑𝑥 (by (1.3.5))

⩽ (‖𝑔‖∞ + ‖𝑓𝑁‖∞)2∫
[0,1]\𝐸

1 𝑑𝑥

⩽ 4𝑁2||[0, 1]\𝐸||

⩽ 4𝑁2 𝜀2
16𝑁2

= 𝜀2
4 .

Thus,

‖𝑓𝑁 − 𝑔‖ ⩽ 𝜀
2 . (1.3.8)

Finally,

‖𝑓 − 𝑔‖ ⩽ ‖𝑓 − 𝑓𝑁‖ + ‖𝑓𝑁 − 𝑔‖

⩽ 𝜀
2 + ‖𝑓𝑁 − 𝑔‖ (by (1.3.7))
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⩽ 𝜀
2 +

𝜀
2 = 𝜀. (by (1.3.8))

Hence, 𝐶[0, 1] is dense in 𝐿2[0, 1]. ■

Finding an orthonormal basis (to be formally defined in amoment) for 𝐿2[0, 1] is harder
than with ℂ𝑛 and ℓ2. In particular, 𝐿2[0, 1] does not come prelabeled with a distinguished
orthonormal basis. We rectify this with the following proposition.

Theorem 1.3.9. For each 𝑛 ∈ ℤ, let 𝑓𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥. The following hold for every 𝑓 ∈
𝐿2[0, 1].

(a) (𝑓𝑛)∞𝑛=−∞ is an orthonormal sequence in 𝐿2[0, 1].

(b) ‖‖𝑓 −
𝑁
∑

𝑛=−𝑁
⟨𝑓, 𝑓𝑛⟩𝑓𝑛‖‖ → 0 as 𝑁 → ∞.

(c) ‖𝑓‖2 =
∞
∑

𝑛=−∞
|⟨𝑓, 𝑓𝑛⟩|2.

Proof (a) For𝑚 ≠ 𝑛,

⟨𝑓𝑚, 𝑓𝑛⟩ = ∫
1

0
𝑒2𝜋𝑖𝑚𝑥𝑒2𝜋𝑖𝑛𝑥 𝑑𝑥

= ∫
1

0
𝑒2𝜋𝑖𝑚𝑥𝑒−2𝜋𝑖𝑛𝑥 𝑑𝑥

= ∫
1

0
𝑒2𝜋𝑖(𝑚−𝑛)𝑥 𝑑𝑥

= 1
2𝜋𝑖(𝑚 − 𝑛)𝑒

2𝜋𝑖(𝑚−𝑛)𝑥||
𝑥=1

𝑥=0

= 0.

Moreover,

⟨𝑓𝑛, 𝑓𝑛⟩ = ∫
1

0
𝑒2𝜋𝑖(𝑛−𝑛) 𝑑𝑥 = ∫

1

0
1 𝑑𝑥 = 1.

(b) Let 𝑓 ∈ 𝐿2[0, 1] and 𝜀 > 0. Proposition 1.3.6 provides a 𝑔 ∈ 𝐶[0, 1] such that ‖𝑓 − 𝑔‖ <
𝜀/2. The Stone–Weierstrass theorem [320, Ch. 5] asserts that the span of {𝑓𝑛 ∶ 𝑛 ∈ ℤ}
is dense in 𝐶[0, 1] and hence there is an

ℎ =
𝑁
∑

𝑛=−𝑁
𝑐𝑛𝑓𝑛

such that ‖𝑔 − ℎ‖∞ < 𝜀/2. The analogue of (1.4.12) below implies that

‖
‖𝑓 −

𝑁
∑

𝑛=−𝑁
⟨𝑓, 𝑓𝑛⟩𝑓𝑛‖‖ ⩽

‖
‖𝑓 −

𝑁
∑

𝑛=−𝑁
𝑐𝑛𝑓𝑛‖‖.
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Thus,

‖
‖𝑓 −

𝑁
∑

𝑛=−𝑁
⟨𝑓, 𝑓𝑛⟩𝑓𝑛‖‖ ⩽ ‖𝑓 − ℎ‖

⩽ ‖𝑓 − 𝑔‖ + ‖𝑔 − ℎ‖

⩽ 𝜀
2 + ‖𝑔 − ℎ‖∞ (by (1.3.5))

⩽ 𝜀
2 +

𝜀
2 = 𝜀. (1.3.10)

For any𝑀 ⩾ 𝑁, apply (1.4.12) again to see that

‖
‖𝑓 −

𝑀
∑

𝑛=−𝑀
⟨𝑓, 𝑓𝑛⟩𝑓𝑛‖‖ ⩽

‖
‖𝑓 −

𝑀
∑

𝑛=−𝑀
𝑐𝑛𝑓𝑛‖‖,

where 𝑐𝑛 = ⟨𝑓, 𝑓𝑛⟩ when −𝑁 ⩽ 𝑛 ⩽ 𝑁 and 𝑐𝑛 = 0 when 𝑁 < |𝑛| ⩽ 𝑀. From (1.3.10)
it follows that this last quantity is at most 𝜀.

(c) Observe that (b) yields

𝑓 =
∞
∑

𝑛=−∞
⟨𝑓, 𝑓𝑛⟩𝑓𝑛,

where the convergence is in 𝐿2[0, 1]. If ℎ𝑛 → ℎ and 𝑘𝑛 → 𝑘 in 𝐿2[0, 1], an exercise
with the Cauchy–Schwarz inequality (see Exercise 1.10.25) implies that

⟨ℎ𝑛, 𝑘𝑛⟩ → ⟨ℎ, 𝑘⟩. (1.3.11)

Use the orthonormality of (𝑓𝑛)∞𝑛=−∞, the linearity of the inner product in the first slot,
the conjugate linearity in the second slot, and (1.3.11), to compute

‖𝑓‖2 = ⟨𝑓, 𝑓⟩

= ⟨
∞
∑

𝑛=−∞
⟨𝑓, 𝑓𝑛⟩𝑓𝑛,

∞
∑

𝑚=−∞
⟨𝑓, 𝑓𝑚⟩𝑓𝑚⟩

=
∞
∑

𝑚,𝑛=−∞
⟨𝑓, 𝑓𝑛⟩⟨𝑓, 𝑓𝑚⟩⟨𝑓𝑛, 𝑓𝑚⟩

=
∞
∑

𝑚,𝑛=−∞
⟨𝑓, 𝑓𝑛⟩⟨𝑓, 𝑓𝑚⟩𝛿𝑚𝑛

=
∞
∑

𝑛=−∞
|⟨𝑓, 𝑓𝑛⟩|2,

which completes the proof. ■

Remark 1.3.12. The upper and lower limits in (b) may tend to∞ independently. We use
𝑁 and −𝑁 for convenience. In (c), absolute convergence ensures that any interpretation
of the sum yields the same result.
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1.4 Abstract Hilbert Spaces
The norms and inner products on ℂ𝑛, ℓ2, and 𝐿2[0, 1] generalize to other settings. The
general framework of Hilbert spaces is one of the most fruitful concepts in modern
mathematics. It begins with the following notion.

Definition 1.4.1. Letℋ be a complex vector space. Then Φ ∶ ℋ × ℋ → ℂ is an inner
product if, for all x, y, z ∈ ℋ and 𝑐 ∈ ℂ, the following hold.

(a) Φ(x, x) ⩾ 0.

(b) Φ(x, x) = 0 if and only if x = 0.

(c) Φ(x + y, z) = Φ(x, z) + Φ(y, z).

(d) Φ(𝑐x, y) = 𝑐Φ(x, y).

(e) Φ(x, y) = Φ(y, x).

A vector space endowed with an inner product is an inner-product space.

If Φ is an inner product, it is customary to use the notation

⟨x, y⟩ = Φ(x, y).

This inner product determines a norm

‖x‖ = ⟨x, x⟩
1
2 .

Here are several properties of inner product spaces that generalize those enjoyed by ℂ𝑛,
ℓ2, and 𝐿2[0, 1].

Proposition 1.4.2. Let x, y belong to an inner product space.

(a) Cauchy–Schwarz inequality: |⟨x, y⟩| ⩽ ‖x‖‖y‖. Equality holds if and only if x and y are
linearly dependent.

(b) Triangle inequality: ‖x + y‖ ⩽ ‖x‖ + ‖y‖. Equality holds if and only if x or y is a
nonnegative multiple of the other.

Proof (a) The inequality holds if x = 0 or y = 0. Without loss of generality, assume y ≠ 0.
Then

0 ⩽ ⟨x − ⟨x, y⟩ y
‖y‖2 , x − ⟨x, y⟩ y

‖y‖2 ⟩

= ⟨x, x⟩ − ⟨x, y⟩⟨y, x⟩
‖y‖2 − ⟨x, y⟩⟨x, y⟩

‖y‖2 + ⟨x, y⟩⟨x, y⟩⟨y, y⟩
‖y‖4

= ‖x‖2 − |⟨x, y⟩|2
‖y‖2 − |⟨x, y⟩|2

‖y‖2 + |⟨x, y⟩|2‖y‖2
‖y‖4

= ‖x‖2 − |⟨x, y⟩|2
‖y‖2 , (1.4.3)
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which proves that |⟨x, y⟩| ⩽ ‖x‖‖y‖. From (1.4.3) it follows that |⟨x, y⟩| = ‖x‖‖y‖ if
and only if

x − ⟨x, y⟩ y
‖y‖2 = 0,

in other words, if and only if x is a multiple of y.
(b) Use (a) and obtain

‖x + y‖2 = ⟨x + y, x + y⟩
= ‖x‖2 + 2Re⟨x, y⟩ + ‖y‖2

⩽ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖2 + ‖y‖2)2.

Take square roots of both sides and obtain the triangle inequality. Equality holds if
and only if Re⟨x, y⟩ = ‖x‖‖y‖ and this is equivalent to

⟨x, y⟩ = ‖x‖‖y‖. (1.4.4)

If one of x or y is a nonnegativemultiple of the other, then (1.4.4) holds. Conversely, if
(1.4.4) holds, then the condition for equality in the Cauchy–Schwarz inequality says
that x or y is a multiple of each other. Condition (1.4.4) ensures that the constant
involved is nonnegative. ■

The notion of orthogonality in ℂ𝑛, ℓ2, and 𝐿2[0, 1] generalizes to inner product spaces.

Definition 1.4.5. Vectors x, y in an inner product space are orthogonal, written x ⟂ y, if
⟨x, y⟩ = 0.

Proposition 1.4.6 (Pythagorean theorem). If x and y are orthogonal vectors in an inner
product space, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof The proof is identical to that of Proposition 1.1.6. ■

The spaces ℂ𝑛, ℓ2, and 𝐿2[0, 1] are complete. For a general inner product space, one
needs to impose this condition as an axiom since not every inner product space is complete
(Exercise 1.10.13).

Definition 1.4.7. A Hilbert space is a complete inner product space. More specifically, a
Hilbert space is an inner product space that is (Cauchy) complete with respect to the norm
‖x‖ = √⟨x, x⟩ induced by the inner product.

Examples of Hilbert spaces include ℂ𝑛, ℓ2, and 𝐿2[0, 1]. With ℓ2, the sequence (e𝑛)∞𝑛=0
is an orthonormal set and every a ∈ ℓ2 can be written uniquely as

a =
∞
∑
𝑛=0

⟨a, e𝑛⟩e𝑛,
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in which

‖a‖2 =
∞
∑
𝑛=0

|𝑎𝑛|2.

In Theorem 1.3.9, we saw something similar for 𝐿2[0, 1]: every 𝑓 ∈ 𝐿2[0, 1] can be written

𝑓 =
∞
∑

𝑛=−∞
⟨𝑓, 𝑓𝑛⟩𝑓𝑛 where 𝑓𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥,

the series converges in norm (see Theorem 1.3.9), and

‖𝑓‖2 =
∞
∑

𝑛=−∞
|⟨𝑓, 𝑓𝑛⟩|2.

Thus, the following definition is a natural one.

Definition 1.4.8. An orthonormal sequence (x𝑛)∞𝑛=1 in a Hilbert spaceℋ is an orthonor-
mal basis if every x ∈ ℋ can be written as

x =
∞
∑
𝑛=1

⟨x, x𝑛⟩x𝑛.

The sum above converges in the norm ofℋ, in the sense that

lim
𝑁→∞

‖
‖x −

𝑁
∑
𝑛=1

⟨x, x𝑛⟩x𝑛‖‖ = 0.

Some of our orthonormal bases are indexed by ℤ (Theorem 1.3.9) while others are
indexed by ℕ or ℕ ∪ {0} (see (1.2.8)). We state most of our results under the assumption
that the orthonormal sets considered are infinite. The reader is advised that most of these
results apply equally well in the finite-dimensional setting.
For an orthonormal sequence inℋ (not necessarily an orthonormal basis) there is the

following result.

Theorem 1.4.9. Let (x𝑛)∞𝑛=1 be an orthonormal sequence in a Hilbert spaceℋ.

(a) Bessel’s inequality: For every x ∈ ℋ,

∞
∑
𝑛=1

|⟨x, x𝑛⟩|2 ⩽ ‖x‖2. (1.4.10)

(b) Parseval’s theorem: If (x𝑛)∞𝑛=1 is an orthonormal basis forℋ, then

‖x‖2 =
∞
∑
𝑛=1

|⟨x, x𝑛⟩|2 (1.4.11)

for every x ∈ ℋ.
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Proof (a) For any 𝑐1, 𝑐2,…, 𝑐𝑘 ∈ ℂ, Exercise 1.10.10 yields

‖
‖x −

𝑘
∑
𝑖=1

𝑐𝑖x𝑖‖‖
2
= ‖x‖2 −

𝑘
∑
𝑖=1

|⟨x, x𝑖⟩|2 +
𝑘
∑
𝑖=1

|⟨x, x𝑖⟩ − 𝑐𝑖|2. (1.4.12)

Let 𝑐𝑖 = ⟨x, x𝑖⟩ for all 1 ⩽ 𝑖 ⩽ 𝑁 and obtain

‖
‖x −

𝑘
∑
𝑖=1
⟨x, x𝑖⟩x𝑖‖‖

2
= ‖x‖2 −

𝑘
∑
𝑖=1

|⟨x, x𝑖⟩|2. (1.4.13)

Thus,∑𝑘
𝑖=1 |⟨x, x𝑖⟩|2 ⩽ ‖x‖2 for all 𝑘 ⩾ 1. Let 𝑘 → ∞ to obtain Bessel’s inequality.

(b) By the definition of an orthonormal basis, the left side of (1.4.13) goes to zero as
𝑘 → ∞. This yields Parseval’s theorem. ■

To develop a useful criterion for determining whether an orthonormal sequence is an
orthonormal basis, we need the next definition.

Definition 1.4.14. If 𝒮 is a subset of a Hilbert spaceℋ, its closed span⋁𝒮 is the closure
of the set of all finite linear combinations of elements of 𝒮.

Proposition 1.4.15. For an orthonormal sequence (x𝑛)∞𝑛=1 in a Hilbert space ℋ, the
following are equivalent.

(a) (x𝑛)∞𝑛=1 is an orthonormal basis.

(b) ⋁{x𝑛 ∶ 𝑛 ⩾ 1} = ℋ.

Proof (a)⇒ (b) This follows from Definition 1.4.8.
(b) ⇒ (a) Given 𝜀 > 0 and x ∈ ℋ, the hypothesis provides a linear combination
∑𝑁

𝑛=1 𝑐𝑛x𝑛 such that

‖
‖x −

𝑁
∑
𝑛=1

𝑐𝑛x𝑛‖‖ < 𝜀.

For any𝑚 ⩾ 𝑁, use (1.4.12) to see that

‖
‖x −

𝑚
∑
𝑛=1

⟨x, x𝑛⟩x𝑛‖‖ ⩽
‖
‖x −

𝑚
∑
𝑛=1

𝑐𝑛x𝑛‖‖,

where 𝑐𝑁+1 = ⋯ = 𝑐𝑚 = 0. Therefore,

‖
‖x −

𝑚
∑
𝑛=1

⟨x, x𝑛⟩x𝑛‖‖ < 𝜀,

and hence

x =
∞
∑
𝑛=1

⟨x, x𝑛⟩x𝑛.

We conclude that (x𝑛)∞𝑛=1 is an orthonormal basis forℋ. ■
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Does every Hilbert space have an orthonormal basis? Is an orthonormal basis for a
Hilbert space necessarily countable? We address these questions in the next two sections
and in Exercises 1.10.37, 1.10.38, and 1.10.39.

1.5 The Gram–Schmidt Process
The Gram–Schmidt process takes a linearly independent list of vectors in a Hilbert space
and returns an orthonormal list with the same span. In fact, something more is true: for
each 𝑘 ⩾ 1, the span of the first 𝑘 vectors in each list is the same. We state the result below
for infinite lists, although the proof works just as well for finite lists.

Theorem 1.5.1 (Gram–Schmidt). Let (v𝑖)∞𝑖=1 be a linearly independent sequence of vectors
in a Hilbert spaceℋ. Then there is an orthonormal sequence of vectors (u𝑖)∞𝑖=1 such that

span{v1, v2,…, v𝑘} = span{u1,u2,…,u𝑘} for all 𝑘 ⩾ 1. (1.5.2)

In particular,⋁{v𝑛 ∶ 𝑛 ⩾ 1} = ⋁{u𝑛 ∶ 𝑛 ⩾ 1}.

Proof Proceed by induction on 𝑘. For 𝑘 = 1, define

u1 =
v1
‖v1‖

,

a unit vector with span{v1} = span{u1}. For the induction hypothesis, suppose that
given 𝑘 − 1 linearly independent vectors v1, v2,…, v𝑘−1, there exists orthonormal
vectors u1,u2,…,u𝑘−1 such that

span{v1, v2,…, v𝑗} = span{u1,u2,…,u𝑗} for all 1 ⩽ 𝑗 ⩽ 𝑘 − 1. (1.5.3)

Since v1, v2,…, v𝑘 are linearly independent,

v𝑘 ∉ span{v1, v2,…, v𝑘−1} = span{u1,u2,…,u𝑘−1},

and hence

x𝑘 = v𝑘 −
𝑘−1
∑
𝑖=1

⟨v𝑘,u𝑖⟩u𝑖 ≠ 0.

Define u𝑘 = x𝑘/ ‖x𝑘‖ and observe that for each 1 ⩽ 𝑗 ⩽ 𝑘 − 1,

⟨u𝑗 , x𝑘⟩ = ⟨u𝑗 , v𝑘 −
𝑘−1
∑
𝑖=1

⟨v𝑘,u𝑖⟩u𝑖⟩

= ⟨u𝑗 , v𝑘⟩ − ⟨u𝑗 ,
𝑘−1
∑
𝑖=1

⟨v𝑘,u𝑖⟩u𝑖⟩

= ⟨u𝑗 , v𝑘⟩ −
𝑘−1
∑
𝑖=1

⟨v𝑘,u𝑖⟩ ⟨u𝑗 ,u𝑖⟩
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= ⟨u𝑗 , v𝑘⟩ −
𝑘−1
∑
𝑖=1

⟨u𝑖, v𝑘⟩ 𝛿𝑖𝑗

= ⟨u𝑗 , v𝑘⟩ − ⟨u𝑗 , v𝑘⟩
= 0.

Because u𝑘 is a linear combination of v1, v2,…, v𝑘, the induction hypothesis (1.5.3)
ensures that

span{u1,u2,…,u𝑘} ⊆ span{v1, v2,…, v𝑘}. (1.5.4)

Since u1,u2,…,u𝑘 are orthonormal, they are linearly independent (Exercise 1.10.21)
and hence (1.5.4) is an equality since the subspaces involved are both 𝑘-dimensional.

■

The proof of Theorem 1.5.1 suggests the following algorithm, which works well for
theoretical purposes, even though it is subject to numerical instability in some real-world
applications. First set

u1 =
v1
‖v1‖

.

Then for 𝑘 ⩾ 2, let

u𝑘 =
v𝑘 − ⟨v𝑘,u1⟩u1 −⋯− ⟨v𝑘,u𝑘−1⟩u𝑘−1
‖v𝑘 − ⟨v𝑘,u1⟩u1 −⋯− ⟨v𝑘,u𝑘−1⟩u𝑘−1‖

.

Observe that if (v𝑛)∞𝑛=1 is already orthonormal, then the Gram–Schmidt process returns
the original list (Exercise 1.10.34).

Example 1.5.5. The monomials (𝑥𝑛)∞𝑛=0 are a linearly independent sequence in 𝐿2[0, 1].
Indeed, a finite linear combination of these monomials that equals the zero function is a
polynomial with infinitely many roots and hence must be the zero polynomial. However,
(𝑥𝑛)∞𝑛=0 is not orthonormal since, for example, ‖𝑥‖ = 1/√3 and ⟨𝑥, 𝑥2⟩ = 1/4. The Gram–
Schmidt process, when applied to these monomials, returns the orthogonal polynomials

𝑢0(𝑥) = 1, 𝑢1(𝑥) = √3(2𝑥 − 1), 𝑢2(𝑥) = √5(6𝑥2 − 6𝑥 + 1), ….

Moreover, (1.5.2) ensures that the degree of each 𝑢𝑛(𝑥) is 𝑛.

1.6 Orthonormal Bases and Total Orthonormal Sets
Each of theHilbert spacesℂ𝑛, ℓ2, and𝐿2[0, 1]has an orthonormal basis. Does everyHilbert
space have an orthonormal basis?We begin with a standard definition that applies equally
well to any metric space.

Definition 1.6.1. A Hilbert space is separable if it contains a countable dense set.

Theorem 1.6.2. For a Hilbert spaceℋ, the following are equivalent.

(a) ℋ is separable.
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(b) ℋ has a countable orthonormal basis.

Proof (a) ⇒ (b) Since ℋ is separable it has a countable dense set (x𝑛)∞𝑛=1. Refine this
sequence as follows. If x𝑘 ∈ span{x1, x2,…, x𝑘−1}, omit x𝑘 from the sequence and rela-
bel it (x𝑛)∞𝑛=1. Proceeding in this manner results in a countable linearly independent
sequence (x𝑛)∞𝑛=1 (possibly finite). Now apply the Gram–Schmidt process (Theorem
1.5.1) to the resulting list to obtain a (countable) orthonormal sequence (u𝑛)∞𝑛=1 such
that

⋁{u𝑛 ∶ 𝑛 ⩾ 1} =⋁{x𝑛 ∶ 𝑛 ⩾ 1}.

Since (x𝑛)∞𝑛=1 is dense inℋ, it follows that⋁{x𝑛 ∶ 𝑛 ⩾ 1} = ℋ and hence,⋁{u𝑛 ∶
𝑛 ⩾ 1} = ℋ. By Proposition 1.4.15,ℋ has a countable orthonormal basis.

(b)⇒ (a) Ifℋ has an orthonormal basis (u𝑛)∞𝑛=1, then

{
𝑁
∑
𝑛=1

(𝑎𝑛 + 𝑖𝑏𝑛)u𝑛 ∶ 𝑎𝑛, 𝑏𝑛 ∈ ℚ, 𝑁 ⩾ 0}

is countable and dense inℋ (here ℚ denotes the rational numbers). ■

The Hilbert spaces ℂ𝑛, ℓ2, and 𝐿2[0, 1] are separable since each has a countable
orthonormal basis. For the most part, the Hilbert spaces considered in this book are
separable. For an example of a nonseparable Hilbert space, see Exercise 1.10.37. Some
authors define a separable Hilbert space as one with a countable orthonormal basis,
as opposed to a countable dense subset. The previous theorem proves that these two
definitions are equivalent.
For general Hilbert spaces, including the nonseparable ones, there is the following

definition.

Definition 1.6.3. A set of vectors {x𝛼 ∶ 𝛼 ∈ Γ} in a Hilbert spaceℋ is a total orthonormal
set if it satisfies the following conditions.

(a) ⟨x𝛼, x𝛽⟩ = 𝛿𝛼𝛽 for all 𝛼, 𝛽 ∈ Γ.

(b) ⋁{x𝛼 ∶ 𝛼 ∈ Γ} = ℋ.

It is important to note here that the index set Γ can be of any cardinality. The following is
a version of Theorem 1.6.2 for general (possibly nonseparable) Hilbert spaces. The reader
is invited to work through the proof in Exercise 1.10.38.

Proposition 1.6.4. Every Hilbert space has a total orthonormal set.

1.7 Orthogonal Projections
Proposition 1.1.8 covered orthogonal projections onto subspaces ofℂ𝑛. For Hilbert spaces,
the same sort of results hold, but the definitions and the reasoning are more delicate.

Definition 1.7.1. A subsetℳ of a Hilbert spaceℋ is a subspace if the following hold.

(a) ℳ ≠ ∅.
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(b) ℳ is closed under addition and scalar multiplication.

(c) ℳ is norm closed inℋ.

A “subspace” in this context is closed under the vector-space operations and is topolog-
ically closed with respect to the norm ofℋ. A subspace of a Hilbert space is itself a Hilbert
space when endowed with the inherited inner product from the larger space. Exercise
1.10.36 proves the following.

Proposition 1.7.2. A subspace of a separable Hilbert space is also separable and thus has
a countable orthonormal basis.

Below is a generalization of Proposition 1.1.8. The reader is reminded that unless stated
otherwise, our Hilbert spaces are separable and infinite dimensional. The adjustments
needed in the finite-dimensional case are minor, and the non-separable case rarely
concerns us.

Proposition 1.7.3. Ifℳ is a subspace of separable Hilbert spaceℋ and x ∈ ℋ, then there
is a unique vector 𝑃ℳx ∈ ℋ such that the following hold.

(a) 𝑃ℳx ∈ ℳ.

(b) ‖x − 𝑃ℳx‖ ⩽ ‖x − v‖ for all v ∈ ℳ.

(c) (x − 𝑃ℳx) ⟂ v for all v ∈ ℳ.

(d) 𝑃ℳx = x if and only if x ∈ ℳ.

(e) If (v𝑛)∞𝑛=1 is any orthonormal basis forℳ, then

𝑃ℳx =
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖.

In particular, 𝑃ℳx is independent of the choice of orthonormal basis (v𝑛)∞𝑛=1.

Proof (a) The Gram–Schmidt process provides a countable orthonormal basis (v𝑛)∞𝑛=1
forℳ. Bessel’s inequality (1.4.10) says that

𝑃ℳx =
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖

is well defined. It belongs toℳ since it belongs to⋁{v𝑖 ∶ 𝑖 ⩾ 1} andℳ is closed.
(b) Since (v𝑛)∞𝑛=1 is an orthonormal basis forℳ, each v ∈ ℳ is of the form

v =
∞
∑
𝑖=1
⟨v, v𝑖⟩v𝑖.

For each 𝑁 ⩾ 1, Exercise 1.10.10 yields

‖
‖x −

𝑁
∑
𝑖=1
⟨x, v𝑖⟩v𝑖‖‖ ⩽

‖
‖x −

𝑁
∑
𝑖=1
⟨v, v𝑖⟩v𝑖‖‖.
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Let 𝑁 → ∞ and obtain ‖x − 𝑃ℳx‖ ⩽ ‖x − v‖.
(c) This proof is essentially identical to the proof of Proposition 1.1.8b.
(d) If x = 𝑃ℳx, then (a) ensures that x ∈ ℳ. If x ∈ ℳ, then (a) implies that 𝑃ℳx ∈ ℳ,
and hence x − 𝑃ℳx ∈ ℳ. Then (c) yields ‖x − 𝑃ℳx‖2 = ⟨x − 𝑃ℳx, x − 𝑃ℳx⟩ = 0.
Therefore, x = 𝑃ℳx.

(e) This proof is essentially identical to the proof of Corollary 1.1.13. ■

The proof of Corollary 1.1.14 carries over directly to prove the following.

Corollary 1.7.4. For a subspaceℳ of a Hilbert spaceℋ, the following are equivalent.

(a) ℳ ≠ ℋ.

(b) There is a y ∈ ℋ\{0} such that y ⟂ v for all v ∈ ℳ.

Below are some fundamental properties of the mapping x ↦ 𝑃ℳx. The proof below is
for separable Hilbert spaces (the only type that we regularly consider in this book). The
modifications necessary to treat the non-separable case are mostly typographical.

Proposition 1.7.5. Letℳ be a subspace of a Hilbert spaceℋ.

(a) The mapping x↦ 𝑃ℳx is linear onℋ.

(b) ⟨𝑃ℳx, y⟩ = ⟨x, 𝑃ℳy⟩ for all x, y ∈ ℋ.

(c) 𝑃ℳ(𝑃ℳx) = 𝑃ℳx for all x ∈ ℋ.

Proof In what follows, we frequently pass an infinite series through an inner product.
This is justified by Exercise 1.10.25:

x𝑛 → x and y𝑛 → y ⟹ ⟨x𝑛, y𝑛⟩ → ⟨x, y⟩. (1.7.6)

(a) Let (v𝑛)∞𝑛=1 be an orthonormal basis forℳ. By Proposition 1.7.3,

𝑃ℳx =
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖 for all x ∈ ℋ.

For any x, y ∈ ℳ and 𝑐 ∈ ℂ,

𝑃ℳ(x + 𝑐y) =
∞
∑
𝑖=1
⟨x + 𝑐y, v𝑖⟩v𝑖

=
∞
∑
𝑖=1

(⟨x, v𝑖⟩ + 𝑐⟨y, v𝑖⟩)v𝑖

=
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖 + 𝑐

∞
∑
𝑖=1
⟨y, v𝑖⟩v𝑖

= 𝑃ℳx + 𝑐𝑃ℳy.
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(b) Use the properties of the inner product fromDefinition 1.4.1, along with (1.7.6), and
obtain

⟨𝑃ℳx, y⟩ = ⟨
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖, y⟩

=
∞
∑
𝑖=1
⟨x, v𝑖⟩⟨v𝑖, y⟩

=
∞
∑
𝑖=1
⟨x, v𝑖⟩⟨y, v𝑖⟩

=
∞
∑
𝑖=1
⟨x, ⟨y, v𝑖⟩v𝑖⟩

= ⟨x,
∞
∑
𝑖=1
⟨y, v𝑖⟩v𝑖⟩

= ⟨x, 𝑃ℳy⟩.

(c) From (b) observe that

𝑃ℳ(𝑃ℳx) =
∞
∑
𝑖=1
⟨𝑃ℳx, v𝑖⟩v𝑖

=
∞
∑
𝑖=1
⟨x, 𝑃ℳv𝑖⟩v𝑖

=
∞
∑
𝑖=1
⟨x, v𝑖⟩v𝑖 (since 𝑃ℳv𝑖 = v𝑖)

= 𝑃ℳx,

which completes the proof. ■

1.8 Banach Spaces
Closely related to Hilbert spaces are Banach spaces: complete normed vector spaces.
Although general Banach spaces are not themain focus of this book, they do play a critical
role. As with Hilbert spaces, we start off with some representative examples of Banach
spaces before defining them formally.

Example 1.8.1. For 1 < 𝑝 < ∞, let

ℓ𝑝 = {a = (𝑎𝑛)∞𝑛=0 ∶
∞
∑
𝑛=0

|𝑎𝑛|𝑝 < ∞} and ‖a‖𝑝 = (
∞
∑
𝑛=0

|𝑎𝑛|𝑝)
1
𝑝 .

A generalization of the Cauchy–Schwarz inequality, known as Hölder’s inequality [319],
says that if 𝑞 satisfies

1
𝑝 + 1

𝑞 = 1,
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(𝑞 is the conjugate exponent to 𝑝), then
∞
∑
𝑛=0

|𝑧𝑛𝑤𝑛| ⩽ ‖z‖𝑝‖w‖𝑞 for all z ∈ ℓ𝑝 andw ∈ ℓ𝑞.

From here, one can show that ℓ𝑝 is a vector space (with similar addition and scalar
multiplication operations as with ℓ2) such that ‖a + b‖𝑝 ⩽ ‖a‖𝑝 + ‖b‖𝑝 for all a,b ∈ ℓ𝑝
and ‖𝑐a‖𝑝 = |𝑐|‖a‖𝑝 for all 𝑐 ∈ ℂ. Furthermore, ℓ𝑝 is complete.

Example 1.8.2. Let ℓ∞ denote the set of all bounded sequences a = (𝑎𝑛)∞𝑛=0 endowed
with the norm

‖a‖∞ = sup
𝑛⩾0

|𝑎𝑛|.

One can show that ℓ∞ is a complete normed vector space.

Example 1.8.3. For 1 < 𝑝 < ∞, let 𝐿𝑝[0, 1] be the set of Lebesgue-measurable, complex-
valued functions 𝑓 on [0, 1] such that

‖𝑓‖𝑝 = (∫
1

0
|𝑓(𝑥)|𝑝 𝑑𝑥)

1
𝑝 < ∞.

The corresponding version of Hölder’s inequality,

∫
1

0
|ℎ(𝑥)𝑘(𝑥)| 𝑑𝑥 ⩽ ‖ℎ‖𝑝‖𝑘‖𝑞 for all ℎ ∈ 𝐿𝑝[0, 1] and 𝑘 ∈ 𝐿𝑞[0, 1], (1.8.4)

implies that 𝐿𝑝[0, 1] is a vector space (with similar operations of function addition and
scalarmultiplication as with 𝐿2[0, 1]) such that ‖𝑓+𝑔‖𝑝 ⩽ ‖𝑓‖𝑝+‖𝑔‖𝑝 and ‖𝑐𝑓‖𝑝 = |𝑐|‖𝑓‖𝑝
for all 𝑐 ∈ ℂ. One can show that the 𝐿𝑝[0, 1] spaces are complete normed vector spaces.

Example 1.8.5. Let 𝐿∞[0, 1] denote the space of Lebesgue-measurable, complex-valued
functions 𝑓 on [0, 1] with bounded essential supremum

‖𝑓‖∞ = sup {𝑎 ⩾ 0 ∶ ||{𝑥 ∈ [0, 1] ∶ |𝑓(𝑥)| > 𝑎}|| > 0}. (1.8.6)

In the above, |𝐴| denotes the Lebesgue measure of a set 𝐴 ⊆ [0, 1]. Note that 𝐿∞[0, 1] ⊆
𝐿𝑝[0, 1] for all 𝑝 ⩾ 1 and (see [319, Ch. 3])

lim
𝑝→∞

‖𝑓‖𝑝 = ‖𝑓‖∞ for all 𝑓 ∈ 𝐿∞[0, 1].

Example 1.8.7. From Section 1.3 recall the space 𝐶[0, 1] of complex-valued continuous
functions 𝑓 on [0, 1] with norm

‖𝑓‖∞ = max
0⩽𝑥⩽1

|𝑓(𝑥)|.

One can show that 𝐶[0, 1] is a complete normed vector space (see Definition 1.8.8).
Note that 𝐶[0, 1] ⊆ 𝐿∞[0, 1] and the essential supremum norm from (1.8.6) equals the
supremum norm above.
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All of the vector spaces defined above are examples of Banach spaces.

Definition 1.8.8. Let 𝒱 be a complex vector space. Suppose that the function Φ ∶ 𝒱 →
[0,∞) satisfies the following for all u, v ∈ 𝒱 and 𝑐 ∈ ℂ.

(a) Φ(v) = 0 if and only if v = 0.

(b) Φ(u + v) ⩽ Φ(u) + Φ(v).

(c) Φ(𝑐u) = |𝑐|Φ(u).

Then 𝒱 is a normed vector spacewith norm Φ. If 𝒱 is also (Cauchy) complete with respect
to the norm Φ, then 𝒱 is a Banach space.

One traditionally writes the norm as ‖v‖ = Φ(v) for v ∈ 𝒱. EveryHilbert space is a Banach
space, but the converse is false.

Theorem 1.8.9 (Jordan–von Neumann [206]). Let 𝒱 be a Banach space with norm ‖ ⋅ ‖.
The following are equivalent.

(a) 𝒱 is a Hilbert space, meaning there exists an inner product ⟨⋅, ⋅⟩ on 𝒱 such that ⟨v, v⟩ =
‖v‖2 for all v ∈ 𝒱.

(b) ‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2) for all u, v ∈ 𝒱.

The identity in (b) is the parallelogram identity. There is an alternate characterization
of Hilbert spaces due to Fréchet [133]. Exercises 1.10.26, 1.10.27, 1.10.28, and 1.10.29 yield
the following.

Corollary 1.8.10. The Banach spaces ℓ𝑝 and 𝐿𝑝[0, 1] for 𝑝 ≠ 2, as well as 𝐶[0, 1], are not
Hilbert spaces.

Below is a useful criterion for determining if a normed vector space is a Banach space.

Theorem 1.8.11. Let 𝒱 be a normed vector space with norm ‖ ⋅ ‖. The following are
equivalent.

(a) 𝒱 is a Banach space.

(b) Every absolutely convergent series in 𝒱 converges, that is, for every (x𝑛)∞𝑛=1 in 𝒱 such
that∑∞

𝑛=1 ‖x𝑛‖ < ∞, the series∑∞
𝑛=1 x𝑛 converges in 𝒱.

Proof (a)⇒ (b) Let (x𝑛)∞𝑛=1 be such that∑
∞
𝑛=1 ‖x𝑛‖ converges. For each𝑚, 𝑛 ⩾ 𝑁,

‖
‖‖

𝑚
∑
𝑘=1

x𝑘 −
𝑛
∑
𝑘=1

x𝑘
‖
‖‖ ⩽

∞
∑
𝑘=𝑁

‖x𝑘‖.

Since lim𝑁→∞∑∞
𝑘=𝑁 ‖x𝑘‖ = 0, the sequence (∑𝑛

𝑘=1 x𝑘)∞𝑛=1 of partial sums is Cauchy.
Since 𝒱 is complete,∑∞

𝑛=1 x𝑛 converges.
(b) ⇒ (a) Let (x𝑛)∞𝑛=1 be a Cauchy sequence. It suffices to show that a subsequence of
the Cauchy sequence (x𝑛)∞𝑛=1 converges since this would imply the convergence of
(x𝑛)∞𝑛=1 to the same limit.
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Use the fact that (x𝑛)∞𝑛=1 is Cauchy to pick a subsequence (x𝑛𝑘 )∞𝑘=1 such that

‖x𝑛𝑘+1 − x𝑛𝑘‖ ⩽
1
2𝑘 for all 𝑘 ⩾ 1.

If y𝑘 = x𝑛𝑘+1 − x𝑛𝑘 , then

∞
∑
𝑘=1

‖y𝑘‖ =
∞
∑
𝑘=1

‖x𝑛𝑘+1 − x𝑛𝑘‖ ⩽
∞
∑
𝑘=1

1
2𝑘 < ∞.

By hypothesis,∑∞
𝑘=1 y𝑘 converges. However,

ℓ
∑
𝑘=1

y𝑘 =
ℓ
∑
𝑘=1

(x𝑛𝑘+1 − x𝑛𝑘 ) = x𝑛ℓ+1 − x𝑛1 for all ℓ ⩾ 1.

Therefore, the subsequence (x𝑛𝑘 )∞𝑘=1 converges. ■

1.9 Notes
In 1906, Hilbert examined the unit ball {a ∈ ℓ2 ∶ ‖a‖ ⩽ 1} of ℓ2 as part of his investigation
of quadratic forms in infinitelymany variables 𝜉1, 𝜉2, 𝜉3,… that satisfy 𝜉21+𝜉22+𝜉23+⋯ ⩽ 1
[196] (see also [197]). It was F. Riesz [303] who referred to the space of square-summable
sequences as l’espace hilbertien, while the symbol ℓ2 (some authors prefer subscripts and
others superscripts to describe these spaces) first appeared in Banach’s famous book [33].
In 1907, Riesz [298] also established the following important relationship between ℓ2

and 𝐿2[0, 1]. Let (𝜑𝑛)∞𝑛=1 be an orthonormal sequence in 𝐿2[0, 1]. If (𝑎𝑛)∞𝑛=1 is a sequence
of real numbers, then there is an 𝑓 ∈ 𝐿2[0, 1] such that

𝑎𝑛 = ∫
1

0
𝑓(𝑥)𝜑𝑛(𝑥) 𝑑𝑥 for all 𝑛 ⩾ 1

if and only if∑∞
𝑛=1 |𝑎𝑛|2 is finite. Also in 1907, Fischer [130] proved the completeness of

𝐿2[0, 1] (Proposition 1.3.4). In 1908, Schmidt [332] explored the geometric properties of ℓ2,
including orthogonality. It is important to emphasize that although this chapter presented
ℓ2 first (for pedagogical purposes),𝐿2[0, 1]was actually studied first. The axiomatic version
of what is now known as a Hilbert space came from von Neumann in 1930 [369].
The Cauchy–Schwarz inequality plays an important role in Hilbert-space theory and

was first developed for individual cases. For Euclidean space ℂ𝑛, the result goes back
to Cauchy in 1821, while the 𝐿2 version was discovered by Buniakowsky in 1859 [73]
and Schwarz in 1885 [335]. The ℓ2 version is due to Schmidt in 1908 [332]. Finally, von
Neumann [369] proved the Cauchy–Schwarz inequality for general Hilbert spaces in 1930.
Schmidt [332] contributed to the concepts of orthogonal projections and orthonormal-

ization. He also extended Bessel’s inequality from an earlier trigonometric version that
appeared in an 1828 paper of Bessel [49].
Pietsch’s book [270] is a thorough source for the history of functional analysis.
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1.10 Exercises
Exercise 1.10.1. If x, y belong to an inner product space 𝒱, prove that

‖x + y‖2 = ‖x‖2 + 2Re⟨x, y⟩ + ‖y‖2.

Exercise 1.10.2. If x, y belong to an inner product space 𝒱, prove that x ⟂ y if and only
if ‖x + 𝑤y‖ ⩾ ‖x‖ for all 𝑤 ∈ ℂ.
Remark: This criterion is used to develop a notion of “orthogonality” (Birkhoff–James
orthogonality) in a Banach space [82].

Exercise 1.10.3. For a,b ∈ ℂ𝑛, prove that |⟨a,b⟩| = ‖a‖‖b‖ if and only if a and b are
linearly dependent. Only use the proof of Proposition 1.1.1.

Exercise 1.10.4. For a,b ∈ ℂ𝑛, prove that ‖a + b‖ = ‖a‖ + ‖b‖ if and only if a or b is a
nonnegative multiple of the other. Only use the proof of Proposition 1.1.4.

Exercise 1.10.5. For 𝑓, 𝑔 ∈ 𝐿2[0, 1], prove that

||∫
1

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥|| = (∫

1

0
|𝑓(𝑥)|2 𝑑𝑥)

1
2 (∫

1

0
|𝑔(𝑥)|2 𝑑𝑥)

1
2

if and only if 𝑓 and 𝑔 are linearly dependent. Only use the proof of Proposition 1.3.1.

Exercise 1.10.6. For 𝑓, 𝑔 ∈ 𝐿2[0, 1], prove that ‖𝑓 + 𝑔‖ = ‖𝑓‖ + ‖𝑔‖ if and only if 𝑓 or 𝑔 is
a nonnegative multiple of the other. Only use the proof of Proposition 1.3.3.

Exercise 1.10.7. Prove that ℂ𝑛 is complete.

Exercise 1.10.8. If 𝑎𝑖, 𝑏𝑖 > 0 for all 1 ⩽ 𝑖 ⩽ 𝑛, prove that

𝑎21
𝑏1

+ 𝑎22
𝑏2

+⋯+ 𝑎2𝑛
𝑏𝑛

⩾ (𝑎1 + 𝑎2 +⋯+ 𝑎𝑛)2
𝑏1 + 𝑏2 +⋯+ 𝑏𝑛

.

Exercise 1.10.9. For 𝑓 ∈ 𝐶[0, 1], prove that

||||
∫

1

0
𝑡𝑓(𝑡) 𝑑𝑡

||||
⩽ 1
√2

(∫
1

0
|𝑓(𝑡)|2 𝑑𝑡)

1
2

.

For what 𝑓 does equality hold?

Exercise 1.10.10. Let ℳ ⊆ ℂ𝑛 be a 𝑘-dimensional subspace with orthonormal basis
(v𝑖)𝑘𝑖=1.

(a) For any 𝑐1, 𝑐2,…, 𝑐𝑘 ∈ ℂ and x ∈ ℂ𝑛, prove that

‖
‖x −

𝑘
∑
𝑖=1

𝑐𝑖v𝑖‖‖
2
= ‖x‖2 −

𝑘
∑
𝑖=1

|⟨x, v𝑖⟩|2 +
𝑘
∑
𝑖=1

|⟨x, v𝑖⟩ − 𝑐𝑖|2.
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(b) Prove that

‖
‖x −

𝑘
∑
𝑖=1

⟨x, v𝑖⟩ v𝑖‖‖
2
⩽ ‖
‖x −

𝑘
∑
𝑖=1

𝑐𝑖v𝑖‖‖
2

for all 𝑐1, 𝑐2,…, 𝑐𝑘 ∈ ℂ.

(c) Prove that∑𝑘
𝑖=1⟨x, v𝑖⟩v𝑖 is the closest point inℳ to x.

Exercise 1.10.11. This problem concerns the difference in the Pythagorean theorem for
the settings ℝ𝑛 and ℂ𝑛.

(a) For a,b ∈ ℝ𝑛, prove that ‖a + b‖2 = ‖a‖2 + ‖b‖2 if and only if a ⟂ b.

(b) Proposition 1.1.6 shows that if a,b ∈ ℂ𝑛 and a ⟂ b, then ‖a + b‖2 = ‖a‖2 + ‖b‖2. In
ℂ𝑛, prove that the converse is not true.

Exercise 1.10.12. Let

ℳ = {x ∈ ℓ2(ℕ) ∶
∞
∑
𝑛=1

𝑥𝑛
𝑛 = 0} and 𝒩 = {x ∈ ℓ2(ℕ) ∶

∞
∑
𝑛=1

𝑥𝑛
√𝑛

= 0}.

(a) Which ofℳ and𝒩 is closed in ℓ2?

(b) Which ofℳ and𝒩 is dense in ℓ2?

Exercise 1.10.13.

(a) Prove that 𝐶[0, 1] is an inner product space when endowed with the inner product

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥.

(b) Prove that 𝐶[0, 1] is not complete with respect to the norm ‖𝑓‖ = √⟨𝑓, 𝑓⟩ and is
therefore not a Hilbert space.

Exercise 1.10.14. Let ℳ𝑛 denote the set of 𝑛 × 𝑛 complex matrices. The trace of 𝐴 =
[𝑎𝑖𝑗] ∈ ℳ𝑛 is tr(𝐴) ∶= 𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛. Prove that ⟨𝐴, 𝐵⟩ = tr(𝐵∗𝐴) defines an inner
product onℳ𝑛.

Exercise 1.10.15. Let𝒲 be the set of absolutely continuous functions 𝑓 on [0, 1] such
that 𝑓′ ∈ 𝐿2[0, 1]. Define an inner product on𝒲 by

⟨𝑓, 𝑔⟩ = ∫
1

0
(𝑓(𝑥)𝑔(𝑥) + 𝑓′(𝑥)𝑔′(𝑥)) 𝑑𝑥.

Prove that𝒲 is a Hilbert space.
Remark: A reader needing a review of the notion of absolute continuity and the Lebesgue
differentiation theorem should consult [317, Ch. 5]. The space𝒲 is a special example of
a class of spaces called Sobolev spaces which are important in differential equations. This
problem continues in Exercise 10.7.34.
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Exercise 1.10.16. Let 𝒱 be an inner product space.

(a) Prove that

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈ 𝒱.

This is the parallelogram identity.

(b) Interpret this result geometrically.

Exercise 1.10.17. For an inner product space 𝒱 prove that

⟨x, y⟩ = 1
4
(‖x + y‖2 − ‖x − y‖2 − 𝑖‖x − 𝑖y‖2 + 𝑖‖x + 𝑖y‖2) for all x, y ∈ 𝒱.

This is the polarization identity.

Exercise 1.10.18. Let 𝒱 be an inner product space and, for 𝑛 ⩾ 3, let 𝜔 = 𝑒2𝜋𝑖𝑘/𝑛, where
gcd(𝑘, 𝑛) = 1. Prove the following generalized polarization identity:

⟨x, y⟩ = 1
𝑛

𝑛
∑
𝑗=1

𝜔𝑗‖x + 𝜔𝑗y‖2 for all x, y ∈ 𝒱.

Exercise 1.10.19. Let 𝒱 be an inner product space. Prove the following integral version
of the polarization identity:

⟨x, y⟩ = ∫
2𝜋

0
𝑒𝑖𝜃‖x + 𝑒𝑖𝜃y‖2 𝑑𝜃2𝜋 for all x, y ∈ 𝒱.

Exercise 1.10.20. Let x, y, z be vectors in an inner product space 𝒱.

(a) Prove the Apollonius identity:

‖x − z‖2 + ‖y − z‖2 = 1
2‖x − y‖2 + 2‖‖z −

x + y
2

‖
‖
2
.

(b) Interpret this result geometrically.

Exercise 1.10.21. Letℋ be a separable Hilbert space.

(a) Prove that every orthonormal set inℋ is linearly independent.

(b) Prove that every orthonormal basis forℋ has the same cardinality.

Exercise 1.10.22. Let (u𝑛)∞𝑛=1 be an orthonormal sequence in a separable Hilbert space
ℋ. For x ∈ ℋ, prove that the following are equivalent.

(a) ‖x‖2 =
∞
∑
𝑛=1

|⟨x,u𝑛⟩|2.

(b) x =
∞
∑
𝑛=1

⟨x,u𝑛⟩u𝑛.
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Exercise 1.10.23. Let (u𝑛)∞𝑛=1 be an orthonormal sequence in a separable Hilbert space
ℋ. Prove that the following are equivalent.

(a) (u𝑛)∞𝑛=1 is an orthonormal basis.

(b) For all x ∈ ℋ, ‖x‖2 =
∞
∑
𝑛=1

|⟨x,u𝑛⟩|2.

(c) For all x ∈ ℰ, where ℰ is a set whose span is dense inℋ, ‖x‖2 =
∞
∑
𝑛=1

|⟨x,u𝑛⟩|2.

Exercise 1.10.24. Let (u𝑛)∞𝑛=1 be an orthonormal sequence in a Hilbert spaceℋ.

(a) Prove that
∞
∑
𝑛=1

|⟨x,u𝑛⟩⟨y,u𝑛⟩| ⩽ ‖x‖‖y‖ for all x, y ∈ ℋ.

(b) Prove that
∞
∑
𝑛=1

⟨x,u𝑛⟩⟨u𝑛, y⟩ = ⟨x, y⟩ for all x, y ∈ ℋ. if and only if (u𝑛)∞𝑛=1 is an

orthonormal basis.

Exercise 1.10.25. Let (x𝑛)∞𝑛=1 and (y𝑛)∞𝑛=1 be sequences in a Hilbert spaceℋ. If x𝑛 → x
and y𝑛 → y, prove that ⟨x𝑛, y𝑛⟩ → ⟨x, y⟩.

Exercise 1.10.26. Consider the vector space ℂ𝑛 endowed with the norm

‖x‖∞ = max
1⩽𝑖⩽𝑛

|𝑥𝑖| for x = (𝑥1, 𝑥2,…, 𝑥𝑛) ∈ ℂ𝑛.

Is this norm derived from an inner product? That is, does there exist an inner product ⟨⋅, ⋅⟩
on ℂ𝑛 such that ‖x‖2∞ = ⟨x, x⟩ for all x ∈ ℂ𝑛?

Exercise 1.10.27. Answer Exercise 1.10.26 when ℂ𝑛 is endowed with the norm ‖x‖1 =
∑𝑛

𝑖=1 |𝑥𝑖|.

Exercise 1.10.28. Is 𝐶[0, 1] with the norm ‖𝑓‖∞ = max𝑥∈[0,1] |𝑓(𝑥)| an inner product
space? That is, does there exist an inner product ⟨⋅, ⋅⟩ on 𝐶[0, 1] such that ‖𝑓‖2∞ = ⟨𝑓, 𝑓⟩
for all 𝑓 ∈ 𝐶[0, 1]?

Exercise 1.10.29. Answer Exercise 1.10.28 when 𝐶[0, 1] is endowed with the norm

‖𝑓‖1 = ∫
1

0
|𝑓(𝑥)|𝑑𝑥.

Exercise 1.10.30. A subset ℰ of a Hilbert spaceℋ is convex if for any x, y ∈ ℰ, the line
segment {𝑡x + (1 − 𝑡)y ∶ 0 ⩽ 𝑡 ⩽ 1} is contained in ℰ.

(a) Prove that a subspace ofℋ is convex.

(b) Prove that the closed unit ball {x ∈ ℋ ∶ ‖x‖ ⩽ 1} is convex.

(c) Prove that the intersection of two convex sets is convex.
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Exercise 1.10.31. If ℰ is a nonempty closed convex subset of a Hilbert spaceℋ, use the
following steps to prove that ℰ has a unique element of smallest norm.

(a) Let 𝛿 = infx∈ℰ ‖x‖. For u, v ∈ ℰ, use the parallelogram identity to prove that

‖u − v‖2 ⩽ 2(‖u‖2 + ‖v‖2) − 4𝛿2.

(b) Suppose that (v𝑛)∞𝑛=1 is a sequence in ℰ such that ‖v𝑛‖ → 𝛿. Prove that (v𝑛)∞𝑛=1 is a
Cauchy sequence and thus v𝑛 tends to a limit v.

(c) Prove that v is the unique element of ℰ of smallest norm.

Exercise 1.10.32. If ℰ is a nonempty closed convex subset of a Hilbert space ℋ, prove
that for any x ∈ ℋ, there is a unique y ∈ ℰ such that

dist(x, ℰ) ∶= inf
z∈ℰ

‖x − z‖ = ‖x − y‖.

Exercise 1.10.33. Let ℰ ⊆ ℓ2 consist of finitely supported sequences (that is, only a finite
number of terms in the sequence are nonzero) x = (𝑥𝑛)∞𝑛=0 ∈ ℓ2 such that∑∞

𝑛=0 𝑥𝑛 = 1.

(a) Prove that ℰ is nonempty and convex.

(b) Prove that 0 ∈ ℰ− (the closure of ℰ), but 0 ∉ ℰ. Consequently, the hypothesis that ℰ
is closed is important in Exercise 1.10.32.

Exercise 1.10.34. If (v𝑛)∞𝑛=1 is an orthonormal sequence in a Hilbert spaceℋ, prove that
the Gram–Schmidt process returns (v𝑛)∞𝑛=1.

Exercise 1.10.35. Compute inf
𝑎,𝑏,𝑐∈ℂ

∫
1

0
|𝑡3 − 𝑎 − 𝑏𝑡 − 𝑐𝑡2|2 𝑑𝑡.

Exercise 1.10.36. Show that a subspace ℳ of a separable Hilbert space ℋ is also
separable. Use the following steps.

(a) Let {x1, x2,…} be a countable dense set in ℋ and let (𝑟𝑛)∞𝑛=1 be an enumeration of
the positive rational numbers. If 𝐵(x, 𝑟) = {y ∈ ℋ ∶ ‖y − x‖ < 𝑟}, prove that𝑊 =
{(𝑚, 𝑛) ∶ 𝐵(x𝑚, 𝑟𝑛) ∩ℳ ≠ ∅} ≠ ∅.

(b) For each (𝑚, 𝑛) ∈ 𝑊 , let y𝑚,𝑛 ∈ 𝐵(x𝑚, 𝑟𝑛) ∩ ℳ and let 𝐴 = {y𝑚,𝑛 ∶ (𝑚, 𝑛) ∈ 𝑊}.
Prove that 𝐴 is a countable and dense inℳ.

Exercise 1.10.37. The Hilbert spaces routinely considered in this book are separable.
However, there are non-separable Hilbert spaces that arise in the study of almost periodic
functions [48, 56]. For complex-valued, Lebesgue-measurable functions 𝑓 and 𝑔 on ℝ,
define

⟨𝑓, 𝑔⟩ = lim
𝑅→∞

1
2𝑅 ∫

𝑅

−𝑅
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥
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whenever the limit exists. Similarly, define

‖𝑓‖2 = lim
𝑅→∞

1
2𝑅 ∫

𝑅

−𝑅
|𝑓(𝑥)|2𝑑𝑥

whenever the limit exists, and let Ω = {𝑓 ∶ ‖𝑓‖ < ∞}.

(a) Prove that each∑𝑁
𝑛=1 𝑐𝑛𝑒𝑖𝜆𝑛𝑥, where 𝑐𝑛 ∈ ℂ and 𝜆𝑛 ∈ ℝ, belongs to Ω.

(b) Prove that ‖𝑓‖ = 0 is possible without 𝑓 being zero almost everywhere.

(c) Let𝒩 = {𝑓 ∈ Ω ∶ ‖𝑓‖ = 0} and define an inner product on the cosets 𝑓 +𝒩, 𝑔 +𝒩
of the quotient space Ω/𝒩 by ⟨𝑓 + 𝒩, 𝑔 + 𝒩⟩ = ⟨𝑓, 𝑔⟩. Prove that Ω/𝒩 is a Hilbert
space.

(d) Compute the inner product ⟨sin(𝑠𝑥) + 𝒩, sin(𝑡𝑥) + 𝒩⟩ for 𝑠, 𝑡 ∈ ℝ and deduce that
Ω/𝒩 is a non-separable Hilbert space.

Exercise 1.10.38. Show that everyHilbert spaceℋ has a total orthonormal set (Definition
1.6.3) using the following steps. The reader should review the terminology and statement
of Zorn’s lemma from set theory.

(a) LetΩ denote the set of all orthonormal subsets ofℋ and order the elements ofΩ by
set inclusion. Prove that Ω ≠ ∅ and that every chain in Ω has an upper bound.

(b) Zorn’s lemma says that Ω has a maximal element 𝜔 ∈ Ω. Prove that the closed span
of the elements of 𝜔 is equal toℋ.

Exercise 1.10.39. This exercise proves a version of Parseval’s theorem for total orthonor-
mal sets {x𝛼 ∶ 𝛼 ∈ Γ} in potentially non-separable Hilbert spaces.

(a) For any x ∈ ℋ, show that ⟨x, x𝛼⟩ ≠ 0 for at most countably many 𝛼 ∈ Γ.

(b) For each x ∈ ℋ, let Γ𝑥 = {𝛼 ∈ Γ ∶ ⟨x, x𝛼⟩ ≠ 0}. Prove that ‖x‖2 = ∑
𝛼∈Γx

|⟨x, x𝛼⟩|2.

Exercise 1.10.40. Consider the function

𝜓(𝑡) =
⎧⎪
⎨⎪
⎩

1 if 0 ⩽ 𝑡 < 1
2
,

−1 if 1
2
⩽ 𝑡 < 1,

0 otherwise.

Prove that

𝜓𝑛,𝑘(𝑡) = 2𝑛/2𝜓(2𝑛𝑡 − 𝑘) for 𝑡 ∈ [0, 1], 𝑛 ⩾ 0, and 0 ⩽ 𝑘 ⩽ 2𝑛 − 1,

along with the constant function 1, form an orthonormal basis for 𝐿2[0, 1] (Figure 1.10.1).

Remark: These functions form the Haar basis [165] for 𝐿2[0, 1], which is an example of a
wavelet system [84].
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𝜓0,0(𝑡) 𝜓2,1(𝑡)

𝜓2,2(𝑡) 𝜓2,3(𝑡)

Figure 1.10.1 Graphs of a few of the Haar basis elements.

Exercise 1.10.41. The Rademacher functions are defined as follows. Let 𝑟0 ≡ 1 and 𝑟𝑛(𝑡) =
sgn(sin(2𝑛𝜋𝑡)) for 𝑛 ⩾ 1, where

sgn(𝑥) =
⎧⎪
⎨⎪
⎩

1 if 𝑥 > 0,
0 if 𝑥 = 0,

−1 if 𝑥 < 0,

denotes the signum function (see Figure 1.10.2).

(a) Prove that∫
1

0
|𝑟𝑛(𝑡)|2 𝑑𝑡 = 1 for all 𝑛 ⩾ 0.

(b) Prove the following fascinating orthogonality property: for any distinct nonnegative
integers 𝑛1, 𝑛2,…, 𝑛𝑘, where 𝑘 ⩾ 2,

∫
1

0
𝑟𝑛1 (𝑡)𝑟𝑛2 (𝑡)⋯ 𝑟𝑛𝑘 (𝑡) 𝑑𝑡 = 0.

Remark: See [26] and [279] for more on this.

Exercise 1.10.42. Prove that the Rademacher family (𝑟𝑛)∞𝑛=0 from Exercise 1.10.41 is not
complete in 𝐿2[0, 1], meaning their span is not dense in 𝐿2[0, 1].
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𝑟1(𝑡) 𝑟2(𝑡)

𝑟3(𝑡) 𝑟4(𝑡)

Figure 1.10.2 Graphs of the first few Rademacher functions.

Exercise 1.10.43. Let 𝜌(𝑥) = √1 − 𝑥2 and let 𝐿2(𝜌) be the set of Lebesgue-measurable
functions on [−1, 1] such that

‖𝑓‖2 = ∫
1

−1
|𝑓(𝑥)|2𝜌(𝑥) 𝑑𝑥 < ∞.

With the norm ‖ ⋅ ‖ and corresponding inner product, 𝐿2(𝜌) is a Hilbert space.

(a) Consider the Taylor series expansion (in the variable 𝑡) of

1
1 − 2𝑥𝑡 + 𝑡2 =

∞
∑
𝑛=0

𝑢𝑛(𝑥)𝑡𝑛

and prove that each 𝑢𝑛(𝑥) is a polynomial of degree 𝑛. These polynomials are the
Chebyshev polynomials of the second kind.

(b) Compute 𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑢4.

(c) Prove that 𝑢𝑛(cos 𝜃) =
sin((𝑛 + 1)𝜃)

sin 𝜃 for all 𝑛 ⩾ 1.

(d) Use a trigonometric substitution to show that∫
1

−1
𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥 =

𝜋
2 𝛿𝑚𝑛.

(e) Prove that⋁{𝑢𝑛 ∶ 𝑛 ⩾ 0} contains every polynomial.

(f) Conclude that (√2/𝜋𝑢𝑛)∞𝑛=0 is an orthonormal basis for 𝐿2(𝜌).

Remark: These polynomials play an important role in Chapter 15.
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Exercise 1.10.44. Let𝑤(𝑥) = exp(−𝑥2/2) and let 𝐿2(𝑤) be the set of Lebesgue-measurable
functions on ℝ such that

‖𝑓‖2 = ∫
∞

−∞
|𝑓(𝑥)|2𝑤(𝑥) 𝑑𝑥 < ∞.

With this norm ‖𝑓‖ and corresponding inner product, 𝐿2(𝑤) is a Hilbert space.

(a) Consider the Taylor series expansion (in the variable 𝑡) of

𝑒𝑥𝑡−
𝑡2

2 =
∞
∑
𝑛=0

𝐻𝑛(𝑥)
𝑡𝑛
𝑛!

and prove that each 𝐻𝑛(𝑥) is a polynomial of degree 𝑛. These are the Hermite
polynomials.

(b) Compute 𝐻0, 𝐻1, 𝐻2, 𝐻3, 𝐻4.

(c) Prove that 𝐻𝑛(𝑥) = (−1)𝑛𝑒
𝑥2

2
𝑑𝑛
𝑑𝑥𝑛 𝑒

− 𝑥2

2 .

(d) Use integration by parts to prove that∫
∞

−∞
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑤(𝑥) 𝑑𝑥 = √2𝜋𝑛!𝛿𝑚𝑛.

(e) Prove that⋁{𝐻𝑛 ∶ 𝑛 ⩾ 0} contains every polynomial.

(f) Conclude that (𝑐𝑛𝐻𝑛)∞𝑛=0, where

𝑐𝑛 =
1

4√2𝜋√𝑛!
,

is an orthonormal basis for 𝐿2(𝑤).

Remark: These polynomials play an important role in Chapter 11.

Exercise 1.10.45. Let (𝑓𝑛)∞𝑛=1 be an orthonormal sequence in 𝐿2[𝑎, 𝑏]. Prove that (𝑓𝑛)∞𝑛=1
is an orthonormal basis if and only if

∞
∑
𝑛=1

|
|
|∫

𝑥

𝑎
𝑓𝑛(𝑡) 𝑑𝑡

|
|
|

2

= 𝑥 − 𝑎 for all 𝑥 ∈ [𝑎, 𝑏].

Remark: This is a result of Vitali [366].

Exercise 1.10.46. Let (𝑓𝑛)∞𝑛=1 be an orthonormal sequence in 𝐿2[𝑎, 𝑏]. Prove that (𝑓𝑛)∞𝑛=1
is an orthonormal basis if and only if

∞
∑
𝑛=1

∫
𝑏

𝑎

|
|
|∫

𝑥

𝑎
𝑓𝑛(𝑡) 𝑑𝑡

|
|
|

2

𝑑𝑥 = (𝑏 − 𝑎)2
2 .

Remark: This is a result from [104].
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Exercise 1.10.47. Prove that⋁{𝑒𝑖𝑛𝑥 ∶ 𝑛 ∈ ℤ} ≠ 𝐿2[−𝑎, 𝑎] if 𝑎 > 𝜋.

Exercise 1.10.48. Letℋ be a Hilbert space. The Gram determinant of x1, x2,…, x𝑛 ∈ ℋ
is

𝐺(x1, x2,…, x𝑛) ∶= det
⎡
⎢
⎢
⎢
⎣

⟨x1, x1⟩ ⟨x1, x2⟩ ⋯ ⟨x1, x𝑛⟩
⟨x2, x1⟩ ⟨x2, x2⟩ ⋯ ⟨x2, x𝑛⟩

⋮ ⋮ ⋱ ⋮
⟨x𝑛, x1⟩ ⟨x𝑛, x2⟩ ⋯ ⟨x𝑛, x𝑛⟩

⎤
⎥
⎥
⎥
⎦

.

(a) Prove that 𝐺(x1, x2,…, x𝑛) ⩾ 0.

(b) Prove that x1, x2,…, x𝑛 are linearly dependent if and only if 𝐺(x1, x2,…, x𝑛) = 0.

(c) Prove that the Cauchy–Schwarz inequality is equivalent to 𝐺(x1, x2) ⩾ 0. Therefore,

𝐺(x1, x2,…, x𝑛) ⩾ 0 for x1, x2,…, x𝑛 ∈ ℋ

is a generalization of the Cauchy–Schwarz inequality.

(d) Letℳ = span{x1, x2,…, x𝑛} and let x ∈ ℋ. Prove that

dist(x,ℳ) = inf
y∈ℳ

‖x − y‖ = (𝐺(x, x1, x2,…, x𝑛)𝐺(x1, x2,…, x𝑛)
)

1
2
.

Exercise 1.10.49. Recall Exercise 1.10.48 for the definition and properties of the Gram
determinant. Letℋ be a Hilbert space, let x1, x2,…, x𝑛 ∈ ℋ be linearly independent, and
let 𝑐1, 𝑐2,…, 𝑐𝑛 ∈ ℂ.

(a) Prove that themoment problem: find an x ∈ ℋ for with ⟨x, x𝑖⟩ = 𝑐𝑖, for all 1 ⩽ 𝑖 ⩽ 𝑛,
has a unique solution with minimal norm.

(b) Prove that the solution to (a) is

x = − 1
𝐺(x1, x2,…, x𝑛)

det

⎡⎢⎢⎢⎢⎢
⎣

0 𝑐1 𝑐2 ⋯ 𝑐𝑛
x1 ⟨x1, x1⟩ ⟨x1, x2⟩ ⋯ ⟨x1, x𝑛⟩
x2 ⟨x2, x1⟩ ⟨x2, x2⟩ ⋯ ⟨x2, x𝑛⟩
⋮ ⋮ ⋮ ⋱ ⋮
x𝑛 ⟨x𝑛, x1⟩ ⟨x𝑛, x2⟩ ⋯ ⟨x𝑛, x𝑛⟩

⎤⎥⎥⎥⎥⎥
⎦

.

Exercise 1.10.50. Let 𝑓 ∈ 𝐿2[0, 𝜋
2
]. Extend 𝑓 to [−𝜋, 𝜋] as follows. First extend it to [0, 𝜋]

such that 𝑓 is even with respect to the line 𝑥 = 𝜋/2, that is, 𝑓(𝑥) = 𝑓(𝜋−𝑥) for 𝑥 ∈ [0, 𝜋].
Then extend it to [−𝜋, 𝜋] such that 𝑓 is an odd function, that is, 𝑓(𝑥) = −𝑓(−𝑥) for 𝑥 ∈
[−𝜋, 𝜋].

(a) Expand 𝑓 with respect to the orthogonal basis {1, cos𝑛𝑥, sin𝑛𝑥 ∶ 𝑛 ⩾ 1} on [−𝜋, 𝜋].

(b) Use part (a) to prove that {sin((2𝑛 − 1)𝑥) ∶ 𝑛 ⩾ 1} is an orthogonal basis in 𝐿2[0, 𝜋/2].
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(c) Prove that { sin((𝑛 − 1
2
)𝑥) ∶ 𝑛 ⩾ 1} is an orthogonal basis in 𝐿2[0, 𝜋].

(d) Deduce that {1, cos(𝑛𝑥), sin((𝑛 − 1
2
)𝑥) ∶ 𝑛 ⩾ 1} is an orthogonal basis in 𝐿2[−𝜋, 𝜋].

Remark: The system (d) plays a major role in the proof of Kadec’s 1
4
-Theorem [208]: if

(𝜆𝑛)𝑛∈ℤ ⊆ ℝ and sup𝑛∈ℤ |𝜆𝑛 − 𝑛| < 1
4
, then (𝑒𝑖𝜆𝑛𝑥)∞𝑛=−∞ is a Riesz basis for 𝐿2[−𝜋, 𝜋].

Exercise 1.10.51. Prove that the Hilbert cube

ℰ = {z ∈ ℓ2(ℕ) ∶ |𝑧𝑛| ⩽
1
𝑛 , 𝑛 ⩾ 1}

is a compact subset of ℓ2(ℕ).

Exercise 1.10.52. There are severalmodes of convergence that frequently arise inHilbert-
space theory. We say that x𝑛 → 0 in norm if ‖x𝑛‖ → 0 and weakly if ⟨x𝑛, y⟩ → 0 for every
y ∈ ℋ.

(a) Prove that if x𝑛 → 0 in norm, then x𝑛 → 0 weakly.

(b) If (x𝑛)∞𝑛=1 is an orthonormal sequence in ℋ, prove that x𝑛 → 0 weakly but not in
norm.

(c) Prove that a weakly convergent sequence is bounded.

(d) If x𝑛 → x weakly and ‖x𝑛‖ → ‖x‖, prove that ‖x𝑛 − x‖ → 0.

(e) If ‖x𝑛‖ ⩽ 1, ‖y𝑛‖ ⩽ 1 for all 𝑛 ⩾ 1, and ⟨x𝑛, y𝑛⟩ → 1, prove that ‖x𝑛 − y𝑛‖ → 0.

Remark: One can endowℋ with a topology that makes it a topological vector space such
that a sequence convergeswith respect to this topology preciselywhen it convergesweakly.
See [94] for the details.

Exercise 1.10.53. Let (x𝑛)∞𝑛=1 be a sequence in a Hilbert spaceℋ. Prove that (x𝑛)∞𝑛=1 is
weakly convergent if and only if sup𝑛⩾1 ‖x𝑛‖ < ∞ and lim𝑛→∞⟨x𝑚, x𝑛⟩ exists for each
𝑚 ⩾ 1.

1.11 Hints for the Exercises
Hint for Ex. 1.10.7: Simplify the proof of Proposition 1.2.5.
Hint for Ex. 1.10.11: Use Exercise 1.10.1.
Hint for Ex. 1.10.12: Consult Corollary 1.7.4.
Hint for Ex. 1.10.14: Prove that tr(𝐵∗𝐴) = ∑𝑛

𝑖,𝑗=1 𝑎𝑖𝑗𝑏𝑖𝑗 .
Hint for Ex. 1.10.15: Recall that if 𝑓 is absolutely continuous, then 𝑓′ exists almost
everywhere and 𝑓(𝑥) = 𝑓(0) + ∫𝑥

0 𝑓′(𝑡)𝑑𝑡.
Hint for Ex. 1.10.19: Expand ‖x + 𝑒𝑖𝜃y‖2.

Hint for Ex. 1.10.22: Let y = x −
∞
∑
𝑛=1

⟨x,u𝑛⟩u𝑛 and use orthogonality.
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Hint for Ex. 1.10.23: Use Exercise 1.10.22.
Hint for Ex. 1.10.24: Use the Cauchy–Schwarz and Bessel inequalities, along with
Exercise 1.10.22.
Hint for Ex. 1.10.26: Use Theorem 1.8.9.
Hint for Ex. 1.10.31: Show that (v𝑛)∞𝑛=1 is a Cauchy sequence.
Hint for Ex. 1.10.32: Use a translation.
Hint for Ex. 1.10.33: Consider x𝑛 = ( 1

𝑛
, 1
𝑛
,…, 1

𝑛
, 0, 0, 0,…).

Hint for Ex. 1.10.35: Orthonormalize 1, 𝑡, 𝑡2 in 𝐿2[0, 1].
Hint for Ex. 1.10.38: Ifℳ is the closed span of 𝜔 andℳ ≠ ℋ, thenℳ⟂ ≠ {0}. If x is a
nonzero element ofℳ⟂, use x to contradict the maximality of 𝜔.
Hint for Ex. 1.10.39: For each 𝑛 ⩾ 1, consider the 𝛼 ∈ Γ such that |⟨x, x𝛼⟩| >

1
𝑛
. Now use

Bessel’s inequality.
Hint for Ex. 1.10.42: Consider 𝑓(𝑥) = cos(2𝜋𝑥) and Corollary 1.7.4.
Hint for Ex. 1.10.45: Use Exercise 1.10.23 and note that

∫
𝑥

𝑎
𝑓𝑛(𝑡) 𝑑𝑡 = ∫

𝑏

𝑎
𝜒[𝑎,𝑥](𝑡)𝑓𝑛(𝑡) 𝑑𝑡 = ⟨𝜒[𝑎,𝑥], 𝑓𝑛⟩.

Hint for Ex. 1.10.46: Use Exercise 1.10.45 and Bessel’s inequality.
Hint for Ex. 1.10.49: Show that if x is a solution of minimal norm, then it is unique and
belongs to span{x1, x2,…, x𝑛}. Show directly that the vector defined in the exercise satisfies
the required conditions.
Hint for Ex. 1.10.51: Suppose (z𝑛)∞𝑛=1 is a bounded sequence in the Hilbert cube. Use a
diagonalization argument to show (z𝑛)∞𝑛=1 has a convergent subsequence.
Hint for Ex. 1.10.52: The proof of (c) requires the principle of uniform boundedness
(Theorem 2.2.3).



2
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Diagonal Operators

KeyConcepts:Bounded linear transformation, operator norm,ℬ(ℋ), closed graph theorem,Hahn–
Banach theorem, uniform boundedness principle, kernel and range of an operator, invertible opera-
tor, spectrum, point spectrum, approximate point spectrum, compact operator, compact selfadjoint
operator, spectral theorem.

Outline: For a bounded sequence of complex numbers Λ = (𝜆𝑛)∞𝑛=0, the linear transfor-
mation 𝐷Λ ∶ ℓ2 → ℓ2 is defined formally by

𝐷Λ(
∞
∑
𝑛=0

𝑎𝑛e𝑛) =
∞
∑
𝑛=0

𝜆𝑛𝑎𝑛e𝑛,

where (e𝑛)∞𝑛=0 is the standard orthonormal basis for ℓ2. The matrix representation of 𝐷Λ
with respect to this basis is the infinite diagonal matrix diag(𝜆0, 𝜆1, 𝜆2,…). Consequently,
𝐷Λ is called a diagonal operator. This chapter explores the properties of 𝐷Λ (norm,
eigenvalues, spectrum, compactness) and extends these concepts to general Hilbert-space
operators.

2.1 Diagonal Operators
Diagonal matrices play an important representational role in linear algebra as part of the
spectral theorem for normal matrices. When generalizing diagonal matrices to ℓ2, the
matrix diag(𝜆0, 𝜆1, 𝜆2,…) acts formally on (𝑎𝑛)∞𝑛=0 ∈ ℓ2 by

⎡⎢⎢⎢⎢⎢
⎣

𝜆0 0 0 0 ⋯
0 𝜆1 0 0 ⋯
0 0 𝜆2 0 ⋯
0 0 0 𝜆3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

𝑎0
𝑎1
𝑎2
𝑎3
⋮

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝜆0𝑎0
𝜆1𝑎1
𝜆2𝑎2
𝜆3𝑎3
⋮

⎤⎥⎥⎥⎥⎥
⎦

.
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However, it is not immediately clear that the right side belongs to ℓ2. For a sequence Λ =
(𝜆𝑛)∞𝑛=0 of complex numbers and an a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2, define the sequence 𝐷Λa by

𝐷Λa = (𝜆𝑛𝑎𝑛)∞𝑛=0.

This first proposition characterizes when 𝐷Λ maps ℓ2 to itself. Recall from the previous
chapter that the ℓ2 norm of a sequence a = (𝑎𝑛)∞𝑛=0 is

‖a‖ = (
∞
∑
𝑛=0

|𝑎𝑛|2)
1
2 .

Proposition 2.1.1. 𝐷Λa ∈ ℓ2 for all a ∈ ℓ2 if and only if Λ is bounded. Moreover,

sup
‖a‖=1

‖𝐷Λa‖ = sup
𝑛⩾0

|𝜆𝑛|. (2.1.2)

Proof (⟹): We prove the contrapositive. If Λ is not bounded, then there is a subse-
quence (𝜆𝑛𝑘 )∞𝑘=1 such that |𝜆𝑛𝑘 | > 𝑘 for all 𝑘 ⩾ 1. The sequence a = (𝑎𝑚)∞𝑚=0 defined
by

𝑎𝑚 = {
1
𝜆𝑚

if𝑚 = 𝑛𝑘,

0 otherwise,

satisfies
∞
∑
𝑚=0

|𝑎𝑚|2 =
∞
∑
𝑘=1

|𝑎𝑛𝑘 |2 =
∞
∑
𝑘=1

1
𝜆2𝑛𝑘

⩽
∞
∑
𝑘=1

1
𝑘2 < ∞

and hence belongs to ℓ2. However, (𝐷Λa)𝑚, the𝑚th element of the sequence 𝐷Λa, is

(𝐷Λa)𝑚 = {1 if𝑚 = 𝑛𝑘,
0 otherwise.

Since there are an infinite number of 1s in this sequence, ‖𝐷Λa‖ = ∞. Therefore,
𝐷Λa ∉ ℓ2.

(⟸): If Λ is bounded, then 𝐷Λa ∈ ℓ2 for all a ∈ ℓ2 since

‖𝐷Λa‖2 =
∞
∑
𝑛=0

|𝜆𝑛𝑎𝑛|2 ⩽ ( sup
𝑛⩾0

|𝜆𝑛|2)
∞
∑
𝑛=0

|𝑎𝑛|2 = ( sup
𝑛⩾0

|𝜆𝑛|)
2
‖a‖2.

It follows that

sup
‖a‖=1

‖𝐷Λa‖ ⩽ sup
𝑛⩾0

|𝜆𝑛|. (2.1.3)

It remains to prove (2.1.2). Since |𝜆𝑛| = ‖𝐷Λe𝑛‖, it follows that

sup
𝑛⩾0

|𝜆𝑛| = sup
𝑛⩾0

‖𝐷Λe𝑛‖ ⩽ sup
‖a‖=1

‖𝐷Λa‖,

which verifies one direction of (2.1.2). The reverse inequality is (2.1.3). ■
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If Λ is bounded, the proposition above ensures that

𝐷Λ ∶ ℓ2 → ℓ2, where 𝐷Λa = (𝜆𝑛𝑎𝑛)∞𝑛=0

is well defined and satisfies

‖𝐷Λa‖ ⩽ ( sup
𝑛⩾0

|𝜆𝑛|)‖a‖ for all a ∈ ℓ2.

Moreover, 𝐷Λ is a linear transformation because

𝐷Λ(a + 𝑐b) = 𝐷Λa + 𝑐𝐷Λb for all a,b ∈ ℓ2 and 𝑐 ∈ ℂ.

Since 𝐷Λ satisfies

‖𝐷Λa − 𝐷Λb‖ = ‖𝐷Λ(a − b)‖ ⩽ ( sup
𝑛⩾0

|𝜆𝑛|)‖a − b‖ for all a,b ∈ ℓ2, (2.1.4)

it is a continuous linear transformation from ℓ2 to itself.
The operator𝐷Λ is called a diagonal operator since thematrix representation of𝐷Λ with

respect to the standard orthonormal basis (e𝑛)∞𝑛=0 for ℓ2 is the diagonal matrix

diag(𝜆0, 𝜆1, 𝜆2,…).

The previous discussion suggests an important definition.

Definition 2.1.5. Let 𝑇 be a linear transformation on a Hilbert spaceℋ.

(a) 𝑇 is bounded if there is a constant 𝑐 > 0 such that

‖𝑇x‖ ⩽ 𝑐‖x‖ for all x ∈ ℋ. (2.1.6)

(b) The set of all bounded linear transformations onℋ is denoted by ℬ(ℋ).

(c) The operator norm of 𝑇 is

‖𝑇‖ ∶= sup
‖x‖=1

‖𝑇x‖.

Example 2.1.7. If Λ = (𝜆𝑛)∞𝑛=0 is bounded, (2.1.2) says that

‖𝐷Λ‖ = sup
𝑛⩾0

|𝜆𝑛|.

The following lemma shows that ‖𝑇‖ is the smallest admissible constant 𝑐 in (2.1.6).
Furthermore, ‖𝑇x‖ ⩽ ‖𝑇‖‖x‖ for all x ∈ ℋ.

Lemma 2.1.8. If 𝑇 ∈ ℬ(ℋ), then

‖𝑇‖ = inf{𝑐 > 0 ∶ ‖𝑇x‖ ⩽ 𝑐‖x‖ for all x ∈ ℋ}. (2.1.9)
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Proof Let ̃𝑐 denote the infimum in (2.1.9). If ‖𝑇x‖ ⩽ 𝑐‖x‖ for all x ∈ ℋ, then

‖𝑇‖ = sup
‖x‖=1

‖𝑇x‖ ⩽ 𝑐 sup
‖x‖=1

‖x‖ = 𝑐.

Thus, ‖𝑇‖ ⩽ ̃𝑐. Given any 𝜀 > 0, there is a unit vector x𝜀 ∈ ℋ such that

̃𝑐 − 𝜀 < ‖𝑇x𝜀‖ ⩽ sup
‖x‖=1

‖𝑇x‖ = ‖𝑇‖.

Since this holds for every 𝜀 > 0, it follows that ̃𝑐 ⩽ ‖𝑇‖. ■

The inequality in (2.1.4) shows that for the diagonal operator 𝐷Λ, boundedness implies
continuity. The converse is true and moreover, this phenomenon occurs with all bounded
operators.

Lemma 2.1.10. For a linear transformation 𝑇 on a Hilbert space ℋ, the following are
equivalent.

(a) 𝑇 is bounded.

(b) 𝑇 is continuous onℋ.

(c) 𝑇 is continuous at 0.

Proof (a)⇒ (b) If x𝑛 → x, then the linearity of 𝑇 and (2.1.6) ensure that

‖𝑇x𝑛 − 𝑇x‖ = ‖𝑇(x𝑛 − x)‖ ⩽ ‖𝑇‖‖x𝑛 − x‖ → 0.

Thus, 𝑇 is continuous.
(b)⇒ (c) If 𝑇 is continuous onℋ, then it is continuous at 0.
(c)⇒ (a) Suppose that 𝑇 is continuous at 0. Since a linear transformation maps 0 to 0,
there is a 𝛿 > 0 such that ‖𝑇x‖ = ‖𝑇x− 𝑇0‖ ⩽ 1 for all ‖x‖ = ‖x− 0‖ ⩽ 𝛿. For x ≠ 0,

‖𝑇x‖ = ‖
‖
‖x‖
𝛿 𝑇( 𝛿x‖x‖ )

‖
‖ =

‖x‖
𝛿
‖
‖𝑇(

𝛿x
‖x‖ )

‖
‖ ⩽

1
𝛿 ‖x‖.

Thus, 𝑇 is bounded. ■

For 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝑐 ∈ ℂ, the operations of addition, scalar multiplication, and
composition in ℬ(ℋ) are defined by

(𝐴 + 𝐵)x = 𝐴x + 𝐵x, (𝑐𝐴)x = 𝑐𝐴x, and (𝐴𝐵)x = 𝐴(𝐵x) for x ∈ ℋ,

respectively. There zero operator 0 and the identity operator 𝐼 onℋ are defined by

0x = 0 and 𝐼x = x for x ∈ ℋ, (2.1.11)

respectively. Exercise 2.8.12 verifies the following factswhich prove thatℬ(ℋ) is a normed
algebra.
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Proposition 2.1.12. ℬ(ℋ) satisfies the following.

(a) ℬ(ℋ) is a complex vector space with the operations of addition 𝐴 + 𝐵 and scalar
multiplication 𝑐𝐴 defined above. Moreover, ‖𝐴 + 𝐵‖ ⩽ ‖𝐴‖ + ‖𝐵‖ and ‖𝑐𝐴‖ = |𝑐|‖𝐴‖.

(b) If 𝐴, 𝐵 ∈ ℬ(ℋ), then 𝐴𝐵 ∈ ℬ(ℋ) and ‖𝐴𝐵‖ ⩽ ‖𝐴‖‖𝐵‖.

(c) ‖𝐴‖ = 0 if and only if 𝐴 = 0.

For an integer 𝑛 ⩾ 0, define

𝐴0 = 𝐼 and 𝐴𝑛 = 𝐴𝐴𝐴⋯𝐴 (𝑛 times).

The definition of the norm implies that ‖𝐼‖ = 1 and the previous proposition ensures that

‖𝐴𝑛‖ ⩽ ‖𝐴‖𝑛 for all 𝑛 ⩾ 0. (2.1.13)

The previous proposition also confirms that ℬ(ℋ) is a normed vector space. The next
proposition shows that it is a Banach space (see Definition 1.8.8).

Proposition 2.1.14. ℬ(ℋ) is a Banach space.

Proof Proposition 2.1.12 shows thatℬ(ℋ) is a vector space with norm ‖ ⋅ ‖. It suffices to
show that ℬ(ℋ) is complete. Let (𝐴𝑛)∞𝑛=1 be a Cauchy sequence in ℬ(ℋ). Then for
each x ∈ ℋ,

‖𝐴𝑛x − 𝐴𝑚x‖ ⩽ ‖𝐴𝑛 − 𝐴𝑚‖‖x‖ → 0.

Therefore, (𝐴𝑛x)∞𝑛=1 is a Cauchy sequence inℋ. Sinceℋ is complete, 𝐴𝑛x converges
to some 𝐴x ∈ ℋ. Then for x, y ∈ ℋ and 𝑐 ∈ ℂ,

𝐴(x + 𝑐y) = lim
𝑛→∞

𝐴𝑛(x + 𝑐y)

= lim
𝑛→∞

(𝐴𝑛x + 𝑐𝐴𝑛y)

= lim
𝑛→∞

𝐴𝑛x + 𝑐 lim
𝑛→∞

𝐴𝑛y

= 𝐴x + 𝑐𝐴y.

Thus, x↦ 𝐴x is a linear transformation onℋ, which we denote by 𝐴.
It remains to show that 𝐴 is bounded and that ‖𝐴𝑛 − 𝐴‖ → 0. Since (𝐴𝑛)∞𝑛=1 is Cauchy,
it is a bounded sequence in ℬ(ℋ). Therefore,

𝑀 = sup
𝑛⩾1

‖𝐴𝑛‖ < ∞.

Thus, for any 𝑛 ⩾ 1 and x ∈ ℋ,

‖𝐴x‖ = ‖𝐴x − 𝐴𝑛x + 𝐴𝑛x‖
⩽ ‖𝐴x − 𝐴𝑛x‖ + ‖𝐴𝑛x‖
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⩽ ‖𝐴x − 𝐴𝑛x‖ + ‖𝐴𝑛‖‖x‖
⩽ ‖𝐴x − 𝐴𝑛x‖ + 𝑀‖x‖.

Since ‖𝐴x − 𝐴𝑛x‖ → 0, it follows that ‖𝐴x‖ ⩽ 𝑀‖x‖ for all x ∈ ℋ. Therefore, 𝐴 is
bounded and ‖𝐴‖ ⩽ 𝑀.

Given 𝜀 > 0, choose𝑁 such that ‖𝐴𝑚−𝐴𝑛‖ ⩽ 𝜀/2 for all𝑚, 𝑛 ⩾ 𝑁. Since ‖𝐴𝑛x−𝐴x‖ → 0
for every x ∈ ℋ, there is an𝑚(x) ⩾ 𝑁 such that ‖𝐴𝑚(x)x−𝐴x‖ ⩽

𝜀
2
‖x‖. Then for any

𝑛 ⩾ 𝑁 and x ∈ ℋ,

‖𝐴𝑛x − 𝐴x‖ = ‖𝐴𝑛x − 𝐴𝑚(x)x + 𝐴𝑚(x)x − 𝐴x‖
⩽ ‖𝐴𝑛x − 𝐴𝑚(x)x‖ + ‖𝐴𝑚(x)x − 𝐴x‖

⩽ ‖𝐴𝑛 − 𝐴𝑚(x)‖‖x‖ +
𝜀
2‖x‖

⩽ 𝜀
2‖x‖ +

𝜀
2‖x‖ = 𝜀‖x‖.

Thus,

‖𝐴𝑛 − 𝐴‖ = sup
‖x‖=1

‖𝐴𝑛x − 𝐴x‖ ⩽ 𝜀 for all 𝑛 ⩾ 𝑁

and hence 𝐴𝑛 → 𝐴 in the operator norm. ■

Another important detail is the continuity of multiplication.

Proposition 2.1.15. If 𝐴𝑛 → 𝐴 ∈ ℬ(ℋ) and 𝐵𝑛 → 𝐵 ∈ ℬ(ℋ), then 𝐴𝑛𝐵𝑛 → 𝐴𝐵.

Proof Since 𝐵𝑛 → 𝐵, there is an𝑀 > 0 such that ‖𝐵𝑛‖ ⩽ 𝑀 for all 𝑛. Then,

‖𝐴𝑛𝐵𝑛 − 𝐴𝐵‖ ⩽ ‖𝐴𝑛𝐵𝑛 − 𝐴𝐵𝑛 + 𝐴𝐵𝑛 − 𝐴𝐵‖
= ‖(𝐴𝑛 − 𝐴)𝐵𝑛 + 𝐴(𝐵𝑛 − 𝐵)‖
⩽ ‖𝐴𝑛 − 𝐴‖‖𝐵𝑛‖ + ‖𝐴‖‖𝐵𝑛 − 𝐵‖ (by Prop. 2.1.12)
⩽ 𝑀‖𝐴𝑛 − 𝐴‖ + ‖𝐴‖‖𝐵𝑛 − 𝐵‖ → 0.

Thus, 𝐴𝑛𝐵𝑛 → 𝐴𝐵. ■

One can consider operators between different Hilbert spaces in the same manner. Let
ℋ and𝒦 be Hilbert spaces. A linear transformation 𝑇 ∶ ℋ → 𝒦 is bounded if

‖𝑇‖ = sup
‖x‖ℋ=1

‖𝑇x‖𝒦 (2.1.16)

is finite. The set of bounded linear operators fromℋ to𝒦 is denoted by ℬ(ℋ,𝒦). Ifℋ =
𝒦, this is just ℬ(ℋ). Although ℬ(ℋ,𝒦) is not an algebra (unlessℋ = 𝒦), it is a Banach
space with respect to the operator norm defined in (2.1.16).
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2.2 Banach-Space Interlude
This section covers several important Banach-space theorems that appear throughout
this book. A good reference for these is [94]. The notion of boundedness of a linear
transformation makes sense in any normed vector space. Indeed, the definitions of the
previous section make no use of the inner-product structure on a Hilbert space, only
the norm. Consequently, we may speak of bounded linear operators between Banach
spaces (throughout this book, a “bounded operator” is understood to be linear). The set of
bounded operators on a Banach space𝒱 is denoted byℬ(𝒱). The set of bounded operators
from a Banach space 𝒱 to a Banach space𝒲 is denoted by ℬ(𝒱,𝒲).

Theorem 2.2.1 (Open mapping theorem). Let 𝒱 be a Banach space and 𝑇 ∈ ℬ(𝒱) be
surjective. Then 𝑇(𝒰) is open whenever𝒰 ⊆ 𝒱 is open.

It is often cumbersome to show that a linear transformation is bounded via Definition
2.1.5. The next result provides another method.

Theorem 2.2.2 (Closed graph theorem). Let 𝑇 be a linear transformation from a Banach
space 𝒱 to a Banach space𝒲. Then the following are equivalent.

(a) 𝑇 ∈ ℬ(𝒱,𝒲).

(b) If x𝑛 → x in 𝒱 and 𝑇x𝑛 → y in𝒲, then y = 𝑇x.

The theorem above is called the closed graph theorem since it says that 𝑇 is bounded if
and only if its graph {(x, 𝑇x) ∶ x ∈ 𝒱} is closed in the Banach space 𝒱 ⊕𝒲 = {(v,w) ∶
v ∈ 𝒱,w ∈ 𝒲} with norm ‖(u, v)‖𝒱⊕𝒲 = ‖u‖𝒱 + ‖v‖𝒲 .

Theorem 2.2.3 (Principle of uniform boundedness). Let𝒱,𝒲 be Banach spaces andF ⊆
ℬ(𝒱,𝒲). If sup{‖𝑇x‖𝒲 ∶ 𝑇 ∈ F } < ∞ for each x ∈ 𝒱, then sup{‖𝑇‖ ∶ 𝑇 ∈ F } < ∞.

The previous theorem says something remarkable: a pointwise bounded set of linear
operators is uniformly bounded.

Definition 2.2.4. The dual space of a Banach space 𝒱 is 𝒱∗ ∶= ℬ(𝒱,ℂ). An element
𝜑 ∈ 𝒱∗ is a bounded linear functional and

‖𝜑‖ = sup
‖x‖=1

|𝜑(x)|.

In the course of our discussion of the adjoint of a Hilbert-space operator in Chapter 3,
Theorem 3.1.3 characterizes the dual space of a Hilbert space.
Two versions of the Hahn–Banach theorem play important roles in functional analysis.

The first says that a linear functional on a subspace of a Banach space can be extended to
the whole space without increasing its norm. As with Hilbert spaces in Definition 1.7.1, a
subspace of a Banach space 𝒱 is a nonempty, norm-closed, vector subspace of 𝒱.

Theorem 2.2.5 (Hahn–Banach extension theorem). Let ℳ be a subspace of a Banach
space 𝒱 and let 𝜑 ∈ ℳ∗. Then there is a 𝜓 ∈ 𝒱∗ such that 𝜓|ℳ = 𝜑 and ‖𝜓‖ = ‖𝜑‖.
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The second version of the Hahn–Banach theorem is often used to determine if a subset
of a Banach space has a dense linear span.

Theorem 2.2.6 (Hahn–Banach separation theorem). Let ℳ be a subspace of a Banach
space 𝒱. If x ∈ 𝒱\ℳ, then there exists a 𝜑 ∈ 𝒱∗ such that 𝜑|ℳ = 0 and 𝜑(x) = 1.

2.3 Inverse of an Operator
This section covers the invertibility properties of Hilbert-space operators.

Definition 2.3.1. For 𝐴 ∈ ℬ(ℋ), the kernel of 𝐴 is ker𝐴 ∶= {x ∈ ℋ ∶ 𝐴x = 0} and the
range of 𝐴 is ran𝐴 ∶= {𝐴x ∶ x ∈ ℋ}.

Observe that ker𝐴 is a subspace ofℋ, in particular, it is (topologically) closed (Exercise
2.8.2). Although ran𝐴 is a vector space, it may not be closed (Exercise 2.8.3).
Recall thatℳ𝑛 denotes the set of 𝑛 × 𝑛 matrices with complex entries. The symbol 𝐼

denotes the 𝑛 × 𝑛 identity matrix. See [141] for a review of linear algebra.

Proposition 2.3.2. For 𝐴 ∈ ℳ𝑛, the following are equivalent.

(a) There exists a 𝐵 ∈ ℳ𝑛 such that 𝐵𝐴 = 𝐼.

(b) There exists a 𝐵 ∈ ℳ𝑛 such that 𝐴𝐵 = 𝐼.

(c) ker𝐴 = {0}.

(d) ran𝐴 = ℂ𝑛.

A matrix 𝐴 that satisfies any of the equivalent conditions above is invertible and its
inverse, denoted by 𝐴−1, is the unique 𝑛 × 𝑛 matrix such that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. For
bounded operators on infinite-dimensional Hilbert spaces, invertibility is more subtle.

Example 2.3.3. Consider the forward and backward shift operators 𝑆, 𝑇 on ℓ2 defined by

𝑆(𝑎0, 𝑎1, 𝑎2, 𝑎3,…) = (0, 𝑎0, 𝑎1, 𝑎2,…) and 𝑇(𝑎0, 𝑎1, 𝑎2, 𝑎3,…) = (𝑎1, 𝑎2, 𝑎3, 𝑎4,…),

respectively. These operators are discussed in great detail in Chapter 5 where it is shown
that

𝑇𝑆 = 𝐼 but 𝑆𝑇 ≠ 𝐼.

Furthermore,

ker 𝑆 = {0} but ran 𝑆 ≠ ℓ2,

while

ker𝑇 = span{e0} ≠ {0} but ran𝑇 = ℓ2.
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Example 2.3.3 shows that left invertibility and right invertibility are not equivalent.
Therefore, the definition of invertibility for Hilbert-space operators insists upon both
conditions. Below, we let 𝐼 denote the identity operator on aHilbert spaceℋ from (2.1.11).

Definition 2.3.4. 𝐴 ∈ ℬ(ℋ) is invertible if there is a 𝐵 ∈ ℬ(ℋ) such that 𝐴𝐵 = 𝐵𝐴 = 𝐼.
The operator 𝐵 is the inverse of 𝐴 and is denoted by 𝐴−1.

Exercise 2.8.4 shows that if an inverse of 𝐴 ∈ ℬ(ℋ) exists, it is unique. Therefore, one
speaks of “the” inverse of an operator. The next result provides a condition for invertibility
that is often easier to check than the definition itself, where one is required to explicitly
produce the inverse.

Lemma 2.3.5. For 𝐴 ∈ ℬ(ℋ), the following are equivalent.

(a) 𝐴 is invertible.

(b) ker𝐴 = {0} and ran𝐴 = ℋ.

(c) ran𝐴 is dense inℋ and inf
‖x‖=1

‖𝐴x‖ > 0.

Proof (a)⇒ (b) Suppose that 𝐴 ∈ ℬ(ℋ) is invertible. Then ran𝐴 = ℋ since

𝐴(𝐴−1y) = (𝐴𝐴−1)y = y for all y ∈ ℋ.

If x ∈ ker𝐴, then 𝐴x = 0 from which it follows that

0 = 𝐴−10 = 𝐴−1(𝐴x) = (𝐴−1𝐴)x = 𝐼x = x.

Therefore, ker𝐴 = {0}.
(b) ⇒ (a) Since ker𝐴 = {0} and ran𝐴 = ℋ, there is a linear transformation 𝐴−1
on ℋ such that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. The next step is to show that 𝐴−1 ∈ ℬ(ℋ).
Since 𝐴 is surjective, the open mapping theorem (Theorem 2.2.1) implies that 𝐴(𝒰)
is openwhenever𝒰 ⊆ ℋ is open. Thus, the topological characterization of continuity
ensures that 𝐴−1 is a continuous linear transformation. By Lemma 2.1.10, continuity
and boundedness are equivalent for linear transformations on Hilbert spaces. There-
fore, 𝐴−1 ∈ ℬ(ℋ).

(a)⇒ (c) Suppose that 𝐴 ∈ ℬ(ℋ) is invertible. Then ran𝐴 = ℋ, which is dense inℋ.
If

inf
‖x‖=1

‖𝐴x‖ = 0,

then there is a sequence (x𝑛)∞𝑛=1 of unit vectors such that ‖𝐴x𝑛‖ → 0. Then

1 = ‖x𝑛‖ = ‖𝐴−1𝐴x𝑛‖ ⩽ ‖𝐴−1‖‖𝐴x𝑛‖ → 0,

which is a contradiction.
(c)⇒ (b) The condition

𝛿 = inf
‖x‖=1

‖𝐴x‖ > 0
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implies that ker𝐴 = {0}. If (𝐴x𝑛)∞𝑛=1 is a Cauchy sequence, then

‖𝐴x𝑚 − 𝐴x𝑛‖ = ‖𝐴(x𝑚 − x𝑛)‖ ⩾ 𝛿‖x𝑚 − x𝑛‖ for all𝑚, 𝑛 ⩾ 1.

Thus, (x𝑛)∞𝑛=1 is a Cauchy sequence inℋ and hence converges to some x ∈ ℋ. Since
𝐴 is bounded, it is continuous (Lemma 2.1.10) and hence𝐴x𝑛 → 𝐴x. Therefore, ran𝐴
is closed. By hypothesis, ran𝐴 is dense inℋ and thus ran𝐴 = ℋ. ■

A proof of the following corollary is requested in Exercise 2.8.5.

Corollary 2.3.6. Let 𝐴, 𝐵 ∈ ℬ(ℋ).

(a) If 𝐴 and 𝐵 are invertible, then so is 𝐴𝐵 and (𝐴𝐵)−1 = 𝐵−1𝐴−1.

(b) If 𝐴 is invertible, then so is 𝐴−1 and (𝐴−1)−1 = 𝐴.

An 𝐴 ∈ ℬ(ℋ) such that

inf
‖x‖=1

‖𝐴x‖ > 0 (2.3.7)

is bounded below. Thus, Lemma 2.3.5 says that 𝐴 ∈ ℬ(ℋ) is invertible if and only if it is
bounded below and has dense range. See Exercises 2.8.37 and 2.8.38 for characterizations
of left and right invertibility.

Corollary 2.3.8. If 𝐴 ∈ ℬ(ℋ) is invertible, then ‖𝐴−1‖ ⩾ ‖𝐴‖−1.

Proof Apply Proposition 2.1.12 to 𝐴𝐴−1 = 𝐼 and deduce that

1 = ‖𝐼‖ = ‖𝐴𝐴−1‖ ⩽ ‖𝐴‖‖𝐴−1‖,

which completes the proof. ■

Proposition 2.3.9. If 𝐴 ∈ ℬ(ℋ) and ‖𝐼 − 𝐴‖ < 1, then 𝐴 is invertible and

‖𝐴−1‖ ⩽ 1
1 − ‖𝐼 − 𝐴‖ . (2.3.10)

Proof Since ‖𝐼 − 𝐴‖ < 1 and ‖(𝐼 − 𝐴)𝑛‖ ⩽ ‖𝐼 − 𝐴‖𝑛, by (2.1.13), the series
∞
∑
𝑛=0

‖(𝐼 − 𝐴)𝑛‖ ⩽
∞
∑
𝑛=0

‖𝐼 − 𝐴‖𝑛

converges. Proposition 2.1.14 andTheorem1.8.11 ensure that∑∞
𝑛=0(𝐼−𝐴)𝑛 converges

inℬ(ℋ) to some 𝐵. The continuity of multiplication (Proposition 2.1.15) implies that

𝐴𝐵 = (𝐼 − (𝐼 − 𝐴))( lim
𝑁→∞

𝑁
∑
𝑛=0

(𝐼 − 𝐴)𝑛)

= lim
𝑁→∞

[
𝑁
∑
𝑛=0

(𝐼 − 𝐴)𝑛 −
𝑁
∑
𝑛=0

(𝐼 − 𝐴)𝑛+1]
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= lim
𝑁→∞

[𝐼 − (𝐼 − 𝐴)𝑁+1] = 𝐼,

since ‖(𝐼 − 𝐴)𝑁+1‖ → 0 as 𝑁 → ∞. Similarly, 𝐵𝐴 = 𝐼, so 𝐴 is invertible and 𝐴−1 = 𝐵.
Moreover,

‖𝐴−1‖ = ‖𝐵‖ ⩽
∞
∑
𝑛=0

‖𝐼 − 𝐴‖𝑛 = 1
1 − ‖𝐼 − 𝐴‖ ,

which completes the proof. ■

Exercise 2.8.5 shows that the invertible elements of ℬ(ℋ) form a group.

Proposition 2.3.11. Let 𝒢 denote the group of invertible operators in ℬ(ℋ). Then 𝒢 is an
open set inℬ(ℋ) and inversion is continuous on 𝒢.

Proof If 𝐴 ∈ 𝒢 and 𝜀 > 0, let

𝛿 = min { 𝜀
2 ‖𝐴−1‖2

, 1
2 ‖𝐴−1‖} .

If 𝐵 ∈ ℬ(ℋ) and ‖𝐴 − 𝐵‖ < 𝛿, then

‖𝐼 − 𝐴−1𝐵‖ = ‖𝐴−1(𝐴 − 𝐵)‖ ⩽ ‖𝐴−1‖ ‖𝐴 − 𝐵‖ < ‖𝐴−1‖𝛿 ⩽ 1
2 .

Proposition 2.3.9 ensures that 𝐴−1𝐵 is invertible. Thus, by Corollary 2.3.6, 𝐵 =
𝐴(𝐴−1𝐵) is invertible as well and hence 𝒢 is open. Furthermore, (2.3.10) implies that

‖(𝐴−1𝐵)−1‖ ⩽ 1
1 − ‖𝐼 − 𝐴−1𝐵‖ < 2,

which gives

‖𝐵−1‖ = ‖𝐵−1𝐴𝐴−1‖
⩽ ‖𝐵−1𝐴‖‖𝐴−1‖
⩽ ‖(𝐴−1𝐵)−1‖‖𝐴−1‖ (by Corollary 2.3.6)
< 2‖𝐴−1‖.

Therefore,

‖𝐴−1 − 𝐵−1‖ = ‖𝐴−1(𝐴 − 𝐵)𝐵−1‖
⩽ ‖𝐴−1‖‖𝐴 − 𝐵‖‖𝐵−1‖
⩽ 2‖𝐴−1‖2‖𝐴 − 𝐵‖
< 2‖𝐴−1‖2𝛿
⩽ 𝜀.

Thus, inversion is continuous on 𝒢. ■
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2.4 Spectrum of an Operator
A complex number 𝜆 is an eigenvalue of 𝐴 ∈ ℳ𝑛 if there is a nonzero x ∈ ℂ𝑛 such that
𝐴x = 𝜆x, that is, if ker(𝐴 − 𝜆𝐼) ≠ {0}. Proposition 2.3.2 implies the following.

Corollary 2.4.1. For 𝐴 ∈ ℳ𝑛 and 𝜆 ∈ ℂ, the following are equivalent.

(a) 𝜆 is an eigenvalue of 𝐴.

(b) 𝐴 − 𝜆𝐼 is not invertible.

Every 𝑛 × 𝑛 matrix has an eigenvalue (Exercise 2.8.6). In fact, it has at most a finite
number of them. The situation is different in the infinite-dimensional setting. First let us
formally state the definition of an eigenvalue for Hilbert-space operators.

Definition 2.4.2. A complex number 𝜆 is an eigenvalue of𝐴 ∈ ℬ(ℋ) if ker(𝐴−𝜆𝐼) ≠ {0}.
Themultiplicity of 𝜆 as an eigenvalue of 𝐴 is dimker(𝐴 − 𝜆𝐼).

Example 2.4.3. For a diagonal operator 𝐷Λ, note that 𝐷Λe𝑛 = 𝜆𝑛e𝑛 for all 𝑛 ⩾ 0, and
hence every element of Λ is an eigenvalue of 𝐷Λ. In particular, 𝐷Λ may have infinitely
many distinct eigenvalues, or eigenvalues of infinite multiplicity.

Example 2.4.4. Recall the forward and backward shifts 𝑆 and 𝑇 from Example 2.3.3. It
turns out that 𝑆 has no eigenvalues (Proposition 5.1.4), whereas each point in the open
unit disk 𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1} is an eigenvalue of 𝑇 (Proposition 5.2.4).

For 𝐴 ∈ ℳ𝑛, the matrix 𝐴− 𝜆𝐼 is not invertible if and only if 𝜆 is an eigenvalue of 𝐴. In
the infinite-dimensional setting, 𝐴 − 𝜆𝐼 may fail to be invertible for several reasons.

Definition 2.4.5. Let 𝐴 ∈ ℬ(ℋ).

(a) The spectrum of𝐴, denoted by 𝜎(𝐴), is the set of 𝜆 ∈ ℂ such that𝐴−𝜆𝐼 does not have
an inverse in ℬ(ℋ).

(b) The point spectrum of 𝐴, denoted by 𝜎𝑝(𝐴), is the set of 𝜆 ∈ ℂ such that 𝐴− 𝜆𝐼 is not
injective.

(c) The approximate point spectrum of 𝐴, denoted by 𝜎𝑎𝑝(𝐴), is the set of 𝜆 ∈ ℂ such that

inf
‖x‖=1

‖(𝐴 − 𝜆𝐼)x‖ = 0.

In particular, observe that 𝜎𝑝(𝐴) is the set of eigenvalues of𝐴. The next proposition gives
a series of containments for the sets introduced in the previous definition.

Proposition 2.4.6. For 𝐴 ∈ ℬ(ℋ), we have 𝜎𝑝(𝐴) ⊆ 𝜎𝑎𝑝(𝐴) ⊆ 𝜎(𝐴).

Proof If 𝜆 ∈ 𝜎𝑝(𝐴), there is a unit vector x ∈ ℋ such that (𝐴 − 𝜆𝐼)x = 0 and hence
𝜆 ∈ 𝜎𝑎𝑝(𝐴). Thus, 𝜎𝑝(𝐴) ⊆ 𝜎𝑎𝑝(𝐴). Lemma 2.3.5c implies that if 𝜆 ∈ 𝜎𝑎𝑝(𝐴), then
𝐴 − 𝜆𝐼 is not invertible. Thus, 𝜎𝑎𝑝(𝐴) ⊆ 𝜎(𝐴). ■
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For a diagonal operator 𝐷Λ, the next theorem describes 𝜎𝑝(𝐷Λ), 𝜎𝑎𝑝(𝐷Λ), and 𝜎(𝐷Λ).

Theorem 2.4.7. For a bounded sequence Λ = (𝜆𝑛)∞𝑛=0 in ℂ, the following hold.

(a) 𝜎𝑝(𝐷Λ) = Λ.

(b) 𝜎𝑎𝑝(𝐷Λ) = 𝜎(𝐷Λ) = Λ−, where Λ− denotes the closure of Λ.

Proof (a) Since 𝐷Λe𝑛 = 𝜆𝑛e𝑛 for all 𝑛 ⩾ 0, it follows that Λ ⊆ 𝜎𝑝(𝐷Λ). On the other
hand, if 𝜆 ∉ Λ and

x =
∞
∑
𝑛=0

𝑎𝑛e𝑛 ∈ ℓ2,

then

(𝐷Λ − 𝜆𝐼)x =
∞
∑
𝑛=0

(𝜆𝑛 − 𝜆)𝑎𝑛e𝑛

and hence

‖(𝐷Λ − 𝜆𝐼)x‖2 =
∞
∑
𝑛=0

|𝜆𝑛 − 𝜆|2|𝑎𝑛|2.

This implies that ‖(𝐷Λ − 𝜆𝐼)x‖ = 0 if and only if 𝑎𝑛 = 0 for all 𝑛 ⩾ 0. In other words,
x = 0. Therefore, 𝜎𝑝(𝐷𝜆) = Λ.

(b) If 𝜆 ∉ Λ−, there is some 𝛿 > 0 such that |𝜆−𝜆𝑛| ⩾ 𝛿 for all 𝑛 ⩾ 0. Thus, the sequence

Λ̃ = ( 1
𝜆𝑛 − 𝜆)

∞

𝑛=0

is bounded and (𝐷Λ − 𝜆𝐼)−1 = 𝐷Λ̃. Therefore, 𝜎𝑎𝑝(𝐷Λ) ⊆ 𝜎(𝐷Λ) ⊆ Λ− by Proposition
2.4.6. On the other hand, if 𝜆 ∈ Λ−, (a) provides a subsequence 𝜆𝑛𝑘 ∈ Λ = 𝜎𝑝(𝐷Λ)
such that 𝜆𝑛𝑘 → 𝜆. Then

‖(𝐷Λ − 𝜆𝐼)e𝑛𝑘‖ = ‖(𝐷Λ − 𝜆𝑛𝑘 𝐼)e𝑛𝑘 + (𝜆𝑛𝑘 − 𝜆)e𝑛𝑘‖
= ‖0 + (𝜆𝑛𝑘 − 𝜆)e𝑛𝑘‖
= ‖(𝜆𝑛𝑘 − 𝜆)e𝑛𝑘‖
= |𝜆𝑛𝑘 − 𝜆| → 0

and hence 𝜆 ∈ 𝜎𝑎𝑝(𝐷Λ) ⊆ 𝜎(𝐷Λ). ■

Example 2.4.8. Computations from Chapter 5 confirm that the operators 𝑆 and 𝑇 from
Example 2.3.3 satisfy 𝜎(𝑆) = 𝔻−, 𝜎𝑝(𝑆) = ∅, and 𝜎𝑎𝑝(𝑆) = 𝕋; while 𝜎(𝑇) = 𝔻−, 𝜎𝑝(𝑇) = 𝔻,
and 𝜎𝑎𝑝(𝑇) = 𝔻−.

Here are a few important facts about the spectrum of an operator.

Theorem 2.4.9. Let 𝐴 ∈ ℬ(ℋ).

(a) 𝜎(𝐴) ⊆ {𝑧 ∶ |𝑧| ⩽ ‖𝐴‖}.
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(b) 𝜎(𝐴) is compact.

(c) 𝜎(𝐴) ≠ ∅.

Proof (a) If |𝑧| > ‖𝐴‖, then 𝑧𝐼−𝐴 = 𝑧(𝐼−𝑧−1𝐴). Since ‖𝑧−1𝐴‖ ⩽ |𝑧|−1 ‖𝐴‖ < 1, it follows
that ‖𝐼−(𝐼−𝑧−1𝐴)‖ = ‖𝑧−1𝐴‖ < 1. Proposition 2.3.9 ensures that 𝐼−𝑧−1𝐴, and hence
𝐴 − 𝑧𝐼, is invertible. Thus, 𝑧 ∉ 𝜎(𝐴).

(b) The function 𝑓 ∶ ℂ → ℬ(ℋ) defined by 𝑓(𝑧) = 𝐴 − 𝑧𝐼 is continuous since

‖𝑓(𝑧) − 𝑓(𝑤)‖ = ‖(𝐴 − 𝑧𝐼) − (𝐴 − 𝑤𝐼)‖ = |𝑧 − 𝑤| for all 𝑧, 𝑤 ∈ ℂ.

Since 𝒢, the group of invertible elements of ℬ(ℋ), is open (Proposition 2.3.11), it
follows that𝒢𝑐 = ℬ(ℋ)\𝒢 is closed. Thus, the inverse image𝑓−1(𝒢𝑐) = 𝜎(𝐴) is closed,
and hence compact by (a).

(c) Suppose toward a contradiction that 𝜎(𝐴) = ∅. Let 𝜑 ∈ ℬ(ℋ)∗ and consider the
function 𝑔 ∶ ℂ → ℂ defined by

𝑔(𝑧) = 𝜑((𝐴 − 𝑧𝐼)−1).

Fix 𝑧0 ∈ ℂ and note that

(𝐴 − 𝑧𝐼)−1 − (𝐴 − 𝑧0𝐼)−1 = (𝐴 − 𝑧𝐼)−1[𝐼 − (𝐴 − 𝑧𝐼)(𝐴 − 𝑧0𝐼)−1]
= (𝐴 − 𝑧𝐼)−1[(𝐴 − 𝑧0𝐼) − (𝐴 − 𝑧𝐼)](𝐴 − 𝑧0𝐼)−1

= (𝐴 − 𝑧𝐼)−1(𝑧𝐼 − 𝑧0𝐼)(𝐴 − 𝑧0𝐼)−1

= (𝑧 − 𝑧0)(𝐴 − 𝑧𝐼)−1(𝐴 − 𝑧0𝐼)−1. (2.4.10)

Inversion is continuous on 𝒢 (Proposition 2.3.11) and 𝜑 is linear and continuous.
Thus,

lim
𝑧→𝑧0

𝑔(𝑧) − 𝑔(𝑧0)
𝑧 − 𝑧0

= lim
𝑧→𝑧0

𝜑((𝐴 − 𝑧𝐼)−1) − 𝜑((𝐴 − 𝑧0𝐼)−1)
𝑧 − 𝑧0

= 𝜑( lim
𝑧→𝑧0

(𝐴 − 𝑧𝐼)−1 − (𝐴 − 𝑧0𝐼)−1
𝑧 − 𝑧0

)

= 𝜑( lim
𝑧→𝑧0

(𝐴 − 𝑧𝐼)−1(𝐴 − 𝑧0𝐼)−1) (by (2.4.10))

= 𝜑((𝐴 − 𝑧0𝐼)−2),

so 𝑔 is differentiable at 𝑧0. Since 𝑧0 ∈ ℂ is arbitrary, 𝑔 is an entire function.
For |𝑧| > ‖𝐴‖,

|𝑔(𝑧)| = ||𝜑((𝐴 − 𝑧𝐼)−1)||
= ||𝜑(𝑧−1(𝐼 − 𝑧−1𝐴)−1)||
= |𝑧|−1||𝜑((𝐼 − 𝑧−1𝐴)−1)||
⩽ |𝑧|−1‖𝜑‖‖(𝐼 − 𝑧−1𝐴)−1‖
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⩽ |𝑧|−1‖𝜑‖‖‖
∞
∑
𝑛=0

𝑧−𝑛𝐴𝑛‖‖

⩽ |𝑧|−1‖𝜑‖
∞
∑
𝑛=0

‖𝑧−𝑛𝐴𝑛‖

⩽ |𝑧|−1‖𝜑‖
∞
∑
𝑛=0

|𝑧|−𝑛‖𝐴‖𝑛

⩽ |𝑧|−1 ‖𝜑‖
1 − ‖𝑧−1𝐴‖

= ‖𝜑‖
|𝑧| − ‖𝐴‖ ,

which tends to zero as 𝑧 → ∞. In particular, 𝑔 is bounded on the region {|𝑧| > 2 ‖𝐴‖}.
Since 𝑔 is continuous on |𝑧| ⩽ 2 ‖𝐴‖, it is bounded there as well. Thus, 𝑔 is a bounded
entire function. Liouville’s Theorem [92, p. 77] ensures that 𝑔 is constant. Moreover,
this constant must be zero by the limiting argument above.

Putting this all together implies that 𝜑(𝐴−1) = 𝑔(0) = 0 for all 𝜑 ∈ ℬ(ℋ)∗. The
Hahn–Banach separation theorem (Theorem 2.2.6) yields 𝐴−1 = 0, a contradiction.
Therefore, 𝜎(𝐴) ≠ ∅. ■

Definition 2.4.11. The resolvent set of 𝐴 ∈ ℬ(ℋ) is ℂ\𝜎(𝐴).

Theorem 2.4.9 ensures that for each 𝐴 ∈ ℬ(ℋ), the resolvent set is nonempty and that
the operator-valued function 𝑧 ↦ (𝑧𝐼 −𝐴)−1 is analytic on ℂ\𝜎(𝐴). This function is called
the resolvent of 𝐴.

2.5 Compact Diagonal Operators
The most tractable Hilbert-space operators are the compact operators. The following
result, concerning the diagonal operators 𝐷Λ, motivates the definition of a compact
operator (Definition 2.5.3).

Theorem 2.5.1. Let Λ = (𝜆𝑛)∞𝑛=0 be bounded. Then the following are equivalent.

(a) For every bounded sequence (a𝑛)∞𝑛=1 in ℓ2, (𝐷Λa𝑛)∞𝑛=1 has a convergent subsequence.

(b) 𝜆𝑛 → 0.

Proof (a) ⇒ (b) The proof proceeds by contraposition. If 𝜆𝑛 does not approach zero,
there is a subsequence (𝜆𝑛𝑘 )∞𝑘=1 and a 𝛿 > 0 such that |𝜆𝑛𝑘 | ⩾ 𝛿 for all 𝑘 ⩾ 1. The
corresponding subsequence of standard basis vectors (e𝑛𝑘 )∞𝑘=1 is bounded but

‖𝐷e𝑛𝑘 − 𝐷e𝑛ℓ‖ = ‖𝜆𝑛𝑘e𝑛𝑘 − 𝜆𝑛ℓe𝑛ℓ‖ = √|𝜆𝑛𝑘 |2 + |𝜆𝑛ℓ |2 ⩾ √2𝛿 > 0.

Thus, (𝐷e𝑛𝑘 )∞𝑘=1 has no convergent subsequence.
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(b)⇒ (a) Let 𝐷 = 𝐷Λ and 𝐷𝑁 = 𝐷Λ𝑁 , where

Λ𝑁 = (𝜆0, 𝜆1, 𝜆2,…, 𝜆𝑁 , 0, 0, 0,…).

Suppose that 𝜆𝑛 → 0. Then (2.1.2) implies that

‖𝐷 − 𝐷𝑁‖ = sup
𝑛⩾𝑁+1

|𝜆𝑛| → 0 as 𝑁 → ∞.

Fix 𝑁 and a bounded sequence (a𝑛)∞𝑛=1 in ℓ2. Observe that 𝐷𝑁a𝑛 is contained in the
(𝑁+1)-dimensional subspace span{e𝑗 ∶ 0 ⩽ 𝑗 ⩽ 𝑁} of ℓ2. For𝑁 = 0, theHeine–Borel
theorem says that (𝐷0a𝑛)∞𝑛=1 has a convergent subsequence

𝐷0a01, 𝐷0a02, 𝐷0a03,…,

where a0𝑘 = a𝑚 for some𝑚 that depends on 𝐷0 and 𝑘. Since (𝐷1a0𝑘)∞𝑘=1 is bounded,
there is a subsequence

a11, a12, a13,…

of the sequence a0𝑘 such that 𝐷1a1𝑘 converges. Since (𝐷2a1𝑘)∞𝑘=1 is bounded, there is
a subsequence

a21, a22, a23,…

of the sequence a1𝑘 such that 𝐷2a2𝑘 converges. Continue in this manner to 𝑛 =
3, 4, 5,… to create (a𝑛𝑘)∞𝑘=1 such that (𝐷𝑛a𝑛𝑘)∞𝑘=1 is a convergent sequence.

It suffices to show that (𝐷a𝑚𝑚)∞𝑚=1 is a Cauchy sequence and hence is convergent. For
any 𝑁, observe that

‖𝐷a𝑚𝑚 − 𝐷a𝑘𝑘‖ ⩽ ‖𝐷a𝑚𝑚 − 𝐷𝑁a𝑚𝑚‖ + ‖𝐷𝑁a𝑚𝑚 − 𝐷𝑁a𝑘𝑘‖
+ ‖𝐷𝑁a𝑘𝑘 − 𝐷a𝑘𝑘‖

⩽ ‖𝐷 − 𝐷𝑁‖‖a𝑚𝑚‖ + ‖𝐷𝑁a𝑚𝑚 − 𝐷𝑁a𝑘𝑘‖
+ ‖𝐷 − 𝐷𝑁‖‖a𝑘𝑘‖. (2.5.2)

Since (a𝑛)∞𝑛=1 is bounded, so is the subsequence (a𝑚𝑚)∞𝑚=1 and thus there is some
𝑐 > 0 such that ‖a𝑚𝑚‖ ⩽ 𝑐 for all 𝑚. Given 𝜀 > 0, choose 𝑁 large enough so that
‖𝐷 − 𝐷𝑁‖ ⩽ 𝜀/(3𝑐). Since (𝐷𝑁a𝑚𝑚)∞𝑚=1 is a Cauchy sequence, there is an 𝑀 such
that ‖𝐷𝑁a𝑚𝑚 − 𝐷𝑁a𝑘𝑘‖ ⩽ 𝜀/3 for all 𝑚, 𝑘 ⩾ 𝑀. Apply these estimates to (2.5.2) and
deduce that

‖𝐷a𝑚𝑚 − 𝐷a𝑘𝑘‖ ⩽
𝜀
3𝑐 𝑐 +

𝜀
3 +

𝜀
3𝑐 𝑐 = 𝜀.

Thus, (𝐷a𝑚𝑚)∞𝑚=1 is a Cauchy sequence in ℓ2 and hence converges. ■

This inspires the following definition for Hilbert-space operators.

Definition 2.5.3. 𝑇 ∈ ℬ(ℋ) is compact if, for every bounded sequence (x𝑛)∞𝑛=1 in ℋ,
(𝑇x𝑛)∞𝑛=1 has a convergent subsequence.
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In the previous definition, the requirement that 𝑇 is bounded is superfluous (Exercise
2.8.18). The ideas in the proof of Theorem 2.5.1 can be used to prove the following (see
Exercises 2.8.19, 2.8.22, and 2.8.23).

Proposition 2.5.4. Any finite-rank operator is compact.

Proposition 2.5.5. The product of a compact operator and a bounded operator is compact.

Proposition 2.5.6. If (𝐴𝑛)∞𝑛=1 is a sequence of compact operators and 𝐴𝑛 → 𝐴 in norm,
then 𝐴 is compact.

Other properties of compact operators are mentioned throughout this book. In fact,
certain compact operators (the selfadjoint ones – see the next section) can be described
with diagonal operators. Chapter 8 covers cyclic vectors and invariant subspaces for
diagonal operators.

2.6 Compact Selfadjoint Operators
The spectrumandnormof a diagonal operator are readily computable.Moreover, there is a
practical criterion for compactness. It is for these reasons diagonal operators are often used
as models for various types of operators. For example, it is sometimes the case that 𝐴 ∈
ℬ(ℋ) has an orthonormal basis (x𝑛)∞𝑛=1 of eigenvectors corresponding to the sequence of
eigenvalues Λ = (𝜆𝑛)∞𝑛=1 of 𝐴. Since 𝐴 is bounded, so is Λ. Furthermore, since (x𝑛)∞𝑛=1 is
an orthonormal basis forℋ, every x ∈ ℋ is of the form

x =
∞
∑
𝑛=1

⟨x, x𝑛⟩x𝑛,

and hence

𝐴x =
∞
∑
𝑛=1

𝜆𝑛⟨x, x𝑛⟩x𝑛. (2.6.1)

The (𝑖, 𝑗) entry of the matrix representation of 𝐴 with respect to this basis is

⟨𝐴x𝑗 , x𝑖⟩ = {0 if 𝑖 ≠ 𝑗,
𝜆𝑖 if 𝑖 = 𝑗,

and thus the matrix representation of 𝐴 is diag(𝜆1, 𝜆2, 𝜆3,…). Furthermore, 𝐴 is compact
if and only if 𝜆𝑛 → 0 (Theorem 2.5.1).
It is common to use the notation u⊗ v for the rank-one operator defined onℋ by

(u⊗ v)(x) = ⟨x, v⟩u for x ∈ ℋ. (2.6.2)

With this notation, one writes (2.6.1) as

𝐴 =
∞
∑
𝑛=1

𝜆𝑛(x𝑛 ⊗ x𝑛).
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Only certain operators are “diagonalizable” in the sense above. Compact selfadjoint
operators enjoy this property. This is explored below and in greater detail in Chapter 8.

Definition 2.6.3. 𝐴 ∈ ℬ(ℋ) is selfadjoint if ⟨𝐴x, y⟩ = ⟨x, 𝐴y⟩ for all x, y ∈ ℋ.

The adjoint of an operator is discussed in greater detail in Chapter 3. A diagonal
operator 𝐷Λ with Λ = (𝜆𝑛)∞𝑛=0 is selfadjoint if and only if 𝜆𝑛 ∈ ℝ for all 𝑛 ⩾ 0 (Exercise
2.8.26). Moreover, 𝜎𝑝(𝐷Λ) = Λ (Theorem 2.4.7). This is true for compact selfadjoint
operators.

Lemma 2.6.4. Let 𝐴 ∈ ℬ(ℋ) be selfadjoint.

(a) 𝜎𝑝(𝐴) ⊆ ℝ.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) If 𝐴 is compact and 𝜆 ∈ 𝜎𝑝(𝐴)\{0}, then dimker(𝐴 − 𝜆𝐼) < ∞, that is, 𝜆 has finite
multiplicity.

Proof (a) Let 𝜆 ∈ 𝜎𝑝(𝐴) and x be a unit eigenvector for 𝜆. Then

𝜆 = ⟨𝜆x, x⟩ = ⟨𝐴x, x⟩ = ⟨x, 𝐴x⟩ = ⟨x, 𝜆x⟩ = 𝜆.

Thus, 𝜎𝑝(𝐴) ⊆ ℝ.
(b) Suppose 𝜆, 𝜇 ∈ 𝜎𝑝(𝐴) and 𝜆 ≠ 𝜇. If 𝐴x = 𝜆x and 𝐴y = 𝜇y, where x, y ≠ 0, then

0 = ⟨𝐴x, y⟩ − ⟨𝐴x, y⟩
= ⟨𝐴x, y⟩ − ⟨x, 𝐴y⟩
= ⟨𝜆x, y⟩ − ⟨x, 𝜇y⟩
= 𝜆⟨x, y⟩ − 𝜇⟨x, y⟩
= (𝜆 − 𝜇)⟨x, y⟩. (by (a))

Since 𝜆 − 𝜇 ≠ 0, it follows that ⟨x, y⟩ = 0.
(c) See Exercise 2.8.25. ■

Lemma 2.6.5. Let 𝐴 ∈ ℬ(ℋ).

(a) If 𝐴 is selfadjoint, then ‖𝐴‖ or −‖𝐴‖ belong to 𝜎𝑎𝑝(𝐴).

(b) If 𝐴 is selfadjoint and compact, then ‖𝐴‖ or −‖𝐴‖ belong to 𝜎𝑝(𝐴).

Proof Exercise 2.8.29 shows that

‖𝐴‖ = sup
‖x‖=1

|⟨𝐴x, x⟩|. (2.6.6)

Let (x𝑛)∞𝑛=1 be a sequence of unit vectors such that |⟨𝐴x𝑛, x𝑛⟩| → ‖𝐴‖. Since 𝐴 is
selfadjoint, it follows that ⟨𝐴x𝑛, x𝑛⟩ = ⟨x𝑛, 𝐴x𝑛⟩ = ⟨𝐴x𝑛, x𝑛⟩ and thus is real. Passing
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to a subsequence if necessary, we may assume that ⟨𝐴x𝑛, x𝑛⟩ → ‖𝐴‖ or ⟨𝐴x𝑛, x𝑛⟩ →
−‖𝐴‖. Without loss of generality, assume that ⟨𝐴x𝑛, x𝑛⟩ → ‖𝐴‖. Then

0 ⩽ ‖(𝐴 − ‖𝐴‖𝐼)x𝑛‖2

= ‖𝐴x𝑛 − ‖𝐴‖ x𝑛‖2

= ⟨𝐴x𝑛, 𝐴x𝑛⟩ − ‖𝐴‖⟨𝐴x𝑛, x𝑛⟩ − ‖𝐴‖⟨x𝑛, 𝐴x𝑛⟩ + ‖𝐴‖2⟨x𝑛, x𝑛⟩
= ‖𝐴x𝑛‖2 − 2‖𝐴‖⟨𝐴x𝑛, x𝑛⟩ + ‖𝐴‖2‖x𝑛‖2

⩽ ‖𝐴‖2‖x𝑛‖2 − 2‖𝐴‖⟨𝐴x𝑛, x𝑛⟩ + ‖𝐴‖2‖x𝑛‖2

= 2‖𝐴‖2 − 2‖𝐴‖⟨𝐴x𝑛, x𝑛⟩,

which tends to zero as 𝑛 → ∞. Therefore, ‖𝐴‖ ∈ 𝜎𝑎𝑝(𝐴). This proves (a). Exercise
2.8.27 ensures that when 𝐴 is also compact, then ‖𝐴‖ ∈ 𝜎𝑝(𝐴), which proves (b). ■

Theorem 2.6.7 (Spectral theorem for compact selfadjoint operators). Let 𝐴 ∈ ℬ(ℋ) be a
compact selfadjoint operator on a separable, infinite-dimensional Hilbert space. There exists
a real sequence (𝜆𝑛)∞𝑛=1 tending to zero and an orthonormal basis (x𝑛)∞𝑛=1 forℋ such that

𝐴x =
∞
∑
𝑛=1

𝜆𝑛 ⟨x, x𝑛⟩ x𝑛 for all x ∈ ℋ. (2.6.8)

With respect to the orthonormal basis (x𝑛)∞𝑛=1, the operator 𝐴 has the matrix representation
𝐷Λ on ℓ2(ℕ), where Λ = (𝜆𝑛)∞𝑛=1.

The proof of this theorem requires the following concept. For a subset 𝒴 ofℋ, define

𝒴⟂ = {x ∈ ℋ ∶ ⟨x, y⟩ = 0 for all y ∈ Y }.

This set is the orthogonal complement of 𝒴 and is formally defined and discussed in
Definition 3.1.1.

Proof We assume that 𝐴 is injective; see Exercise 3.6.41 for the general case. Suppose
that 𝐴 ∈ ℬ(ℋ) is compact and selfadjoint with ker𝐴 = {0}. This proof constructs
the x𝑛 inductively. Lemma 2.6.5 says that 𝐴 has an nonzero eigenvalue 𝜆1 = ‖𝐴‖
or 𝜆1 = −‖𝐴‖. Let x1 be a corresponding unit eigenvector to 𝜆1. Since span{x1} is 𝐴-
invariant and𝐴 is selfadjoint,ℋ2 = (span{x1})⟂ is also𝐴-invariant. Indeed, if x ∈ ℋ2,
that is, ⟨x, x1⟩ = 0, then

⟨𝐴x, x1⟩ = ⟨x, 𝐴x1⟩ = ⟨x, 𝜆1x1⟩ = 𝜆1⟨x, x1⟩ = 0

and hence 𝐴x ∈ ℋ2.
Let 𝐴2 = 𝐴|ℋ2 denote the restriction of 𝐴 to ℋ2. Then 𝐴2 is compact and selfadjoint
(and injective). Lemma 2.6.5 yields a nonzero eigenvalue 𝜆2 = ‖𝐴2‖ or 𝜆2 = −‖𝐴2‖
and corresponding unit eigenvector x2 ∈ ℋ2. Continue this process to obtain a
sequence (𝜆𝑛)∞𝑛=1 of nonzero real numbers and corresponding orthonormal eigenvec-
tors (x𝑛)∞𝑛=1 such that the restriction𝐴𝑛 = 𝐴|ℋ𝑛 of𝐴 toℋ𝑛 = (span{x1, x2,…, x𝑛−1})⟂
satisfies ‖𝐴𝑛‖ = |𝜆𝑛|.
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We claim that that 𝜆𝑛 → 0. If 𝜆𝑛 does not approach zero, there is a subsequence 𝜆𝑛𝑘 of
distinct terms (note the use of Lemma 2.6.4c) and a 𝛿 > 0 such that |𝜆𝑛𝑘 | ⩾ 𝛿 for all
𝑘. The corresponding subsequence of unit eigenvectors x𝑛𝑘 , which are orthogonal by
Lemma 2.6.4b, is bounded, but

‖𝐴x𝑛𝑘 − 𝐴x𝑛ℓ‖ = ‖𝜆𝑛𝑘x𝑛𝑘 − 𝜆𝑛ℓx𝑛ℓ‖ = √|𝜆𝑛𝑘 |2 + |𝜆𝑛ℓ |2 ⩾ √2𝛿.

Thus, (𝐴x𝑛𝑘 )∞𝑘=1 has no convergent subsequence. This contradicts the assumption
that 𝐴 is compact.

Next we verify (2.6.8) and that (x𝑛)∞𝑛=1 is an orthonormal basis forℋ. For each x ∈ ℋ,
apply the Pythagorean theorem (Proposition 1.4.6) to

x = (x −
𝑛−1
∑
𝑖=1

⟨x, x𝑖⟩ x𝑖) +
𝑛−1
∑
𝑖=1

⟨x, x𝑖⟩ x𝑖,

where y𝑛, the first summand above, belongs toℋ𝑛 and the second summand belongs
toℋ⟂

𝑛 , and obtain

‖x‖2 = ‖y𝑛‖
2 +

𝑛−1
∑
𝑖=1

|⟨x, x𝑖⟩|2.

Consequently, ‖y𝑛‖ ⩽ ‖x‖ for all 𝑛 ⩾ 1. For each 𝑛 ⩾ 1,

‖
‖𝐴x −

𝑛−1
∑
𝑖=1

𝜆𝑖 ⟨x, x𝑖⟩ x𝑖‖‖ = ‖𝐴y𝑛‖ = ‖𝐴𝑛y𝑛‖ ⩽ ‖𝐴𝑛‖ ‖y𝑛‖ ⩽ |𝜆𝑛| ‖x‖ .

Since this tends to zero as 𝑛 → ∞, (2.6.8) follows.
Finally notice that⋁{x𝑛 ∶ 𝑛 ⩾ 1} = ℋ since if x ⟂ x𝑛 for all 𝑛, then (2.6.8) shows that
x ∈ ker𝐴 = {0}. ■

See [339] for the proof of the following important theorem of Riesz which says that
the nonzero elements of the spectrum of a compact operator are eigenvalues. Note that
Exercise 2.8.28 ensures that 0 belongs to the spectrum of any compact operator on an
infinite-dimensionalHilbert space. It need not be an eigenvalue, however, although it does
belong to the approximate point spectrum. See Chapter 7 for an example of a nonzero
compact operator with no eigenvalues and whose spectrum is {0}.

Theorem 2.6.9 (Riesz). Suppose 𝐴 ∈ ℬ(ℋ) is compact. If 𝜆 ∈ 𝜎(𝐴)\{0}, then 𝜆 ∈ 𝜎𝑝(𝐴).

A wide variety of compact operators are discussed in this book. This includes compact
Hankel operators, compact composition operators, and the Volterra operator.

2.7 Notes
The integral operators

𝑓(𝑥) ↦ ∫
𝑏

𝑎
𝐾(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦 (2.7.1)
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and the matrix operators x↦ 𝐴x were some of the first operators to be studied.
Schmidt, Toeplitz, and Hellinger [191] examined linear transformations as matrices

(finite or infinite). In fact, according to Friedrichs, around 1920 Schmidt advised von
Neumann “Nein! Nein! Sagen Sie nicht Operator, sagen Sie Matrix!” (“No! No! Don’t say
operator, say matrix!”) [270]. By 1913, Riesz [303] stressed the importance of substitutions
linéaires (linear substitutions) on ℓ2. He defined the borne de la substitution (bound of the
substitution) for the matrix operator 𝐴x = x′ as the smallest constant𝑀𝐴 such that

∞
∑
𝑛=1

|𝑥′𝑘|2 ⩽ 𝑀2
𝐴

∞
∑
𝑛=1

|𝑥𝑘|2,

along with the facts (not formally stated but used implicitly) that

𝑀𝐴𝐵 ⩽ 𝑀𝐴𝑀𝐵 and 𝑀𝐴+𝐵 ⩽ 𝑀𝐴 +𝑀𝐵

(Proposition 2.1.12). Hildebrandt in 1931 [198] and Stone in 1932 [353] used the terms
“linear limited” to denote linear transformations on Hilbert and Banach spaces and the
term “modulus” to describe ‖𝐴‖.
The series

𝐼 + 𝐴 + 𝐴2 + 𝐴2 +⋯ = (𝐼 − 𝐴)−1 (2.7.2)

for ‖𝐴‖ < 1, known as a Neumann series, was investigated in 1877 by C. Neumann [248].
In the study of potential theory, he looked at operators 𝐴 whose special properties imply
that x + 𝐴x + 𝐴2x + 𝐴3x + ⋯ converges for all x. Riesz [303] observed the convergence
of the Neumann series and the identity (2.7.2). In 1918, Riesz [304] showed that an
operator divides the complex plane into two parts: its spectrum and its resolvent set (the
complement of the spectrum). The terms “spectrum” and “resolvent” go back to Hilbert
[196]. Riesz also observed that the mapping 𝑧 ↦ 𝐴(𝐼 − 𝑧𝐴)−1 montrent le caractéres
d’une fonction holomorphe en 𝑧 (“shows the behavior of a holomorphic function in 𝑧”)
which, as seen in the proof of Theorem 2.4.9, plays an important role in showing that the
spectrum is a nonempty compact subset of ℂ. He also showed that the nonzero elements
of the spectrum of a compact operator consist only of eigenvalues (Theorem 2.6.9). This
important observation is used in Chapter 18.
In the past, finite-rank operators were sometimes called “degenerate” operators [200].

They are all of the form

𝑇 =
𝑛
∑
𝑖=1

u𝑖 ⊗ v𝑖.

This tensor notation appeared in work of Schauder [330]. Finite-rank integral operators
of the form (2.7.1) with kernels

𝐾(𝑥, 𝑦) =
𝑛
∑
𝑖=1

𝑔𝑖(𝑥)ℎ𝑖(𝑦)

were studied by Goursat [159] and Schmidt [331].
For a Hilbert-space operator 𝐴, the following properties are equivalent.
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(a) 𝐴 is “completely continuous” in the following sense: if (x𝑛)∞𝑛=1 is a sequence such
that ⟨x𝑛, y⟩ → ⟨x, y⟩ for all y, then 𝐴x𝑛 → 𝐴x in norm.

(b) 𝐴 is the norm limit of finite-rank operators.

(c) 𝐴 is compact (Definition 2.5.3).

These equivalenceswere studied byHilbert [196] andRiesz [303] in the ℓ2 setting, Schmidt
[331] for integral operators, and Hildebrandt [198] in the abstract setting.
Diagonal operators also appear in a result of Weyl, von Neumann, and Berg [105]

which says that any normal operator 𝑁 (Chapter 8) on a separable Hilbert space can be
decomposed as 𝑁 = 𝐷 + 𝐾, where 𝐷 is a diagonal operator and 𝐾 is compact.

2.8 Exercises

Exercise 2.8.1. Let Λ = ( 𝑛
𝑛+1

)∞𝑛=0. Prove there is no x ∈ ℓ2\{0} such that ‖𝐷Λx‖ =
‖𝐷Λ‖‖x‖.

Exercise 2.8.2. Let 𝐴 ∈ ℬ(ℋ). Prove that ker𝐴 is a (closed) subspace ofℋ.

Exercise 2.8.3. Ifℋ is an infinite-dimensional Hilbert space, find an 𝐴 ∈ ℬ(ℋ) whose
range is not closed.

Exercise 2.8.4. Prove that an inverse of 𝐴 ∈ ℬ(ℋ), if it exists, is unique.

Exercise 2.8.5. Show that the set 𝒢 of invertible elements ofℬ(ℋ) forms a group. That is,
𝒢 is closed undermultiplication and inversion, contains the identity, and itsmultiplication
is associative.

Exercise 2.8.6. Use the steps below to prove that every 𝐴 ∈ ℳ𝑛 has an eigenvalue.

(a) Prove that 𝐼, 𝐴, 𝐴2,…, 𝐴𝑛2 are linearly dependent.

(b) Prove there is a nonzero polynomial 𝑝 such that 𝑝(𝐴) = 0.

(c) Factor 𝑝 into linear factors and use this to show that 𝐴−𝜆𝐼 is not invertible for some
𝜆 ∈ ℂ.

Exercise 2.8.7. What are necessary and sufficient conditions for a diagonal operator to
be invertible in ℬ(ℓ2)?

Exercise 2.8.8. What are necessary and sufficient conditions for a diagonal operator 𝐷Λ
on ℓ2 to be an isometry, that is, ‖𝐷Λx‖ = ‖x‖ for all x ∈ ℓ2?

Exercise 2.8.9. If 𝑇 ∈ ℬ(ℋ) is an isometry, prove that ran𝑇 is closed.

Exercise 2.8.10.

(a) If 𝐷Λ is a diagonal operator on ℓ2 with distinct eigenvalues, describe the operators
𝐴 ∈ ℬ(ℓ2) such that 𝐴𝐷Λ = 𝐷Λ𝐴.

(b) What happens in (a) if the eigenvalues of 𝐷Λ are not distinct?
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Exercise 2.8.11. Show that every diagonal operator 𝐷Λ on ℓ2 has a square root, meaning
there exists an 𝐴 ∈ ℬ(ℓ2) such that 𝐴2 = 𝐷Λ. Does a square root of a diagonal operator
need to be another diagonal operator?

Exercise 2.8.12. Let 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝑐 ∈ ℂ.

(a) Prove that 𝐴 + 𝐵 ∈ ℬ(ℋ) and ‖𝐴 + 𝐵‖ ⩽ ‖𝐴‖ + ‖𝐵‖.

(b) Prove that 𝑐𝐴 ∈ ℬ(ℋ) and ‖𝑐𝐴‖ = |𝑐|‖𝐴‖.

(c) Prove that 𝐴𝐵 ∈ ℬ(ℋ) and ‖𝐴𝐵‖ ⩽ ‖𝐴‖‖𝐵‖.

Remark: This shows that ℬ(ℋ) is a normed algebra.

Exercise 2.8.13. von Neumann’s inequality says that if 𝑝(𝑧) = 𝑎0+𝑎1𝑧+𝑎2𝑧2+⋯+𝑎𝑛𝑧𝑛
and 𝑇 ∈ ℬ(ℋ) with ‖𝑇‖ ⩽ 1, then 𝑝(𝑇) = 𝑎0𝐼 + 𝑎1𝑇 + 𝑎2𝑇2 +⋯+ 𝑎𝑛𝑇𝑛 satisfies

‖𝑝(𝑇)‖ ⩽ sup
|𝑧|⩽1

|𝑝(𝑧)|.

Prove von Neumann’s inequality if 𝑇 is a diagonal operator.
Remark: See [144, p. 213] for a proof of von Neumann’s inequality for a general bounded
operator.

Exercise 2.8.14. Prove that in Proposition 2.3.9, the assumption ‖𝐼 − 𝐴‖ < 1 can be
replaced with lim sup

𝑛→∞
‖(𝐼 − 𝐴)𝑛‖

1
𝑛 < 1.

Exercise 2.8.15. Let 𝐴 ∈ ℬ(ℋ) be invertible. Prove that any 𝐵 ∈ ℬ(ℋ) such that ‖𝐴 −
𝐵‖ < ‖𝐴‖ is also invertible.

Exercise 2.8.16. Let 𝐴 ∈ ℬ(ℋ) be a compact operator. Assume that x𝑛 → x and y𝑛 → y
weakly inℋ. Prove that ⟨𝐴x𝑛, y𝑚⟩ → ⟨𝐴x, y⟩ as𝑚, 𝑛 → ∞.

Exercise 2.8.17. Let 𝑇 be a linear transformation on a Hilbert space whose range is finite
dimensional. Prove that 𝑇 is bounded.

Exercise 2.8.18. Let 𝑇 be a linear transformation on aHilbert spaceℋ such that for every
bounded sequence (x𝑛)∞𝑛=1 inℋ, (𝑇x𝑛)∞𝑛=1 has a convergent subsequence. Prove that 𝑇 is
bounded.

Exercise 2.8.19. Prove that any finite-rank operator is compact.

Exercise 2.8.20. Prove that an orthogonal projection is compact if and only if its range is
finite dimensional.

Exercise 2.8.21. Letℋ be an infinite-dimensional Hilbert space and let 𝐾 be a compact
subset of ℂ. Find a 𝑇 ∈ ℬ(ℋ) such that 𝜎(𝑇) = 𝐾.

Exercise 2.8.22. Prove that if (𝐴𝑛)∞𝑛=0 is a sequence of compact operators in ℬ(ℋ) and
‖𝐴𝑛 − 𝐴‖ → 0, then 𝐴 is compact.
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Exercise 2.8.23. Prove that the product of a compact operator and a bounded operator is
compact.

Exercise 2.8.24. Prove that every compact operator 𝐴 ∈ ℬ(ℋ) is the limit of finite-rank
operators using the following steps.

(a) Choose an orthonormal basis (u𝑛)∞𝑛=1 ofℋ and let 𝑃𝑁 be the orthogonal projection
ofℋ onto span{u1,u2,…,u𝑁 }. Prove that 𝑃𝑁𝐴 is compact.

(b) Prove that ‖𝑃𝑁𝐴 − 𝐴‖ is a decreasing function of 𝑁.

(c) Prove that if ‖𝑃𝑁𝐴 − 𝐴‖ does not tend to zero, then there are unit vectors x𝑁 and a
constant 𝑐 > 0 such that ‖𝑃𝑁𝐴x𝑁 − 𝐴x𝑁‖ ⩾ 𝑐 for all 𝑁.

(d) Use the compactness of 𝐴 to derive a contradiction.

Exercise 2.8.25. Prove that if𝐴 ∈ ℬ(ℋ) is compact, then ker(𝐴−𝜆𝐼) is finite dimensional
for each 𝜆 ∈ ℂ\{0}.
Exercise 2.8.26. Prove that 𝐷Λ satisfies ⟨𝐷Λx, y⟩ = ⟨x, 𝐷Λy⟩ for all x, y ∈ ℓ2 if and only if
Λ ⊆ ℝ.
Exercise 2.8.27. If 𝐴 ∈ ℬ(ℋ) is compact and 𝜆 ∈ 𝜎𝑎𝑝(𝐴)\{0}, prove that 𝜆 ∈ 𝜎𝑝(𝐴).
Exercise 2.8.28. Prove that ifℋ is an infinite-dimensional Hilbert space and 𝐴 ∈ ℬ(ℋ)
is compact, then 0 ∈ 𝜎(𝐴).
Exercise 2.8.29. If 𝐴 ∈ ℬ(ℋ) is selfadjoint, prove that ‖𝐴‖ = sup

‖x‖=1
|⟨𝐴x, x⟩|.

Exercise 2.8.30. Mimic the proof of Lemma 2.6.5 to show that if 𝐴 ∈ ℬ(ℋ) is selfadjoint
and compact with {⟨𝐴x, x⟩ ∶ ‖x‖ = 1} = [𝑎, 𝑏], then 𝑎 and 𝑏 are eigenvalues of 𝐴.
Exercise 2.8.31. Let 𝐴 ∈ ℬ(ℋ) and ‖𝐴‖ < 1.
(a) If 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 has radius of convergence 1 or greater, prove that 𝑓(𝐴) = 𝑎0𝐼 +
𝑎1𝐴 + 𝑎2𝐴2 + 𝑎3𝐴3 +⋯ converges in operator norm.

(b) Prove that cos2 𝐴 + sin2 𝐴 = 𝐼.
Exercise 2.8.32. The Axiom of Choice ensures that every vector space 𝒱 has a Hamel
basis, a linearly independent set {x𝛼}𝛼∈𝐼 such that each v ∈ 𝒱 can be written uniquely as
a finite linear combination of Hamel-basis vectors. Assuming this result, prove that every
infinite-dimensional Hilbert spaceℋ admits an unbounded linear functional.

Exercise 2.8.33. Use the Axiom of Choice to prove that not every 𝑓 ∶ ℝ → ℝ that satisfies
𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ ℝ is of the form 𝑓(𝑥) = 𝑐𝑥 for some 𝑐 ∈ ℝ.
Exercise 2.8.34. A sequence (x𝑛)∞𝑛=1 in a Hilbert spaceℋ is complete if⋁{x𝑛 ∶ 𝑛 ⩾ 1} =
ℋ. Let (u𝑛)∞𝑛=1 be an orthonormal basis forℋ and (x𝑛)∞𝑛=1 be a sequence inℋ such that

∞
∑
𝑛=1

‖u𝑛 − x𝑛‖2 < 1.

Prove that (x𝑛)∞𝑛=1 is complete inℋ.



exercises | 65

Exercise 2.8.35. Let (x𝑛)∞𝑛=1 be an orthonormal basis for aHilbert spaceℋ and let (y𝑛)∞𝑛=1
be an orthonormal sequence inℋ. If

∞
∑
𝑛=1

‖x𝑛 − y𝑛‖2 < ∞,

prove that (y𝑛)∞𝑛=1 is an orthonormal basis.
Exercise 2.8.36. This exercise is a continuation of Exercise 2.8.34.

(a) Prove that (𝑡2𝑛)∞𝑛=0 is complete in 𝐿2[0, 1].

(b) Is (𝑡2𝑛)∞𝑛=0 complete in 𝐿2[−1, 1]?
Exercise 2.8.37. Let 𝐴 ∈ ℬ(ℋ). Prove that the following are equivalent.
(a) There is a 𝐵 ∈ ℬ(ℋ) such that 𝐵𝐴 = 𝐼.

(b) 𝐴 is injective and ran𝐴 is closed.

(c) inf
‖x‖=1

‖𝐴x‖ > 0.

Remark: 𝐴 is left invertible if it satisfies any of the conditions above.

Exercise 2.8.38. Let 𝐴 ∈ ℬ(ℋ). Prove that the following are equivalent.
(a) There is a 𝐵 ∈ ℬ(ℋ) such that 𝐴𝐵 = 𝐼.

(b) 𝐴 is surjective.

Remark: 𝐴 is right invertible if it satisfies any of the conditions above.

Exercise 2.8.39. Recall that (𝑒𝑛)∞𝑛=−∞, where 𝑒𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥, is an orthonormal basis for
𝐿2[0, 1] (Theorem 1.3.9). Let Λ = (𝜆𝑛)∞𝑛=−∞ be a bounded sequence of complex numbers
and define 𝑇Λ(𝑒𝑛) = 𝜆𝑛𝑒𝑛 for all 𝑛 ∈ ℤ.
(a) Prove that𝑇Λ extends by linearity to a bounded operator on 𝐿2[0, 1]with norm ‖𝑇Λ‖ =

sup𝑛∈ℤ |𝜆𝑛|.

(b) For𝑎 ∈ ℝ, define (𝜏𝑎𝑒𝑛)(𝑥) = 𝑒𝑛(𝑥−𝑎). Show that 𝜏𝑎 extends by linearity to a bounded
operator on 𝐿2[0, 1] that commutes with 𝑇Λ.

(c) Prove that if 𝑇 ∈ ℬ(𝐿2[0, 1]) satisfies 𝑇𝜏𝑎 = 𝜏𝑎𝑇 for all 𝑎 ∈ ℝ, then 𝑇 = 𝑇Λ for some
bounded sequence Λ.

Remark: The operator 𝑇Λ above is a Fourier multiplier.
Exercise 2.8.40. For 1 ⩽ 𝑝 ⩽ ∞, let 𝑋𝑝 denote the vector space 𝐶[0, 1] equipped with the
norm

‖𝑓‖𝑝 =
⎧⎪
⎨⎪
⎩

(∫
1

0
|𝑓(𝑥)|𝑝 𝑑𝑥)

1
𝑝

for 1 ⩽ 𝑝 < ∞,

max
𝑥∈[0,1]

|𝑓(𝑥)| for 𝑝 = ∞.

Define the inclusionmap 𝑖𝑝𝑞 ∶ 𝑋𝑝 → 𝑋𝑞 by 𝑖𝑝𝑞(𝑓)=𝑓. For what pairs (𝑝, 𝑞) is 𝑖𝑝𝑞 bounded?
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Exercise 2.8.41. For 𝐴 ∈ ℬ(ℋ), the numerical range of 𝐴 is𝑊(𝐴) = {⟨𝐴x, x⟩ ∶ ‖x‖ = 1}.
The Toeplitz–Hausdorff theorem [144, p. 222] says that 𝑊(𝐴) is convex. If (𝜆𝑛)∞𝑛=0 is a
sequence of positive real numbers such that 𝜆𝑛 decreases to zero, prove that 𝑊(𝐷Λ) =
(0, 𝜆0] as follows.

(a) If (e𝑛)∞𝑛=0 is the standard basis for ℓ2, prove that |⟨x, e𝑛⟩| ⩽ 1 for all unit vectors
x ∈ ℓ2 and 𝑛 ⩾ 0.

(b) Prove that𝑊(𝐷Λ) = {
∞
∑
𝑛=0

𝜆𝑛𝑎𝑛 ∶ 0 ⩽ 𝑎𝑛 ⩽ 1,
∞
∑
𝑛=0

𝑎𝑛 = 1}.

Exercise 2.8.42. Let 𝐴 be a compact selfadjoint operator. Describe𝑊(𝐴).

Exercise 2.8.43. For a Hilbert space ℋ and y ∈ ℋ consider the linear transformation
ℓy ∶ ℋ → ℂ defined by ℓy(x) = ⟨x, y⟩. Prove that ℓy ∈ ℬ(ℋ,ℂ) and ‖ℓy‖ = ‖y‖.

Exercise 2.8.44. Recall the Banach space ℓ∞ from Example 1.8.2 and let 𝑐 ⊆ ℓ∞ denote
the vector space of convergent sequences in ℓ∞, that is the a = (𝑎𝑛)∞𝑛=0 ∈ ℓ∞ such that
lim𝑛→∞ 𝑎𝑛 exists.

(a) Prove that 𝑐 is a subspace of ℓ∞. In particular, prove that 𝑐 is topologically closed.

(b) Prove that the linear transformation𝑇 ∶ 𝑐 → ℂdefined by𝑇(a) = lim𝑛→∞ 𝑎𝑛 belongs
to ℬ(𝑐, ℂ).

(c) Find ‖𝑇‖.

(d) Find ker𝑇.

2.9 Hints for the Exercises
Hint for Ex. 2.8.3: Let (u𝑛)∞𝑛=1 be an orthonormal basis forℋ and consider the operator

𝑇(
∞
∑
𝑛=1

𝑎𝑛u𝑛) =
∞
∑
𝑛=1

𝑎𝑛
𝑛 u𝑛, where (𝑎𝑛)∞𝑛=1 ∈ ℓ2.

Hint for Ex. 2.8.10: Any bounded diagonal operator commutes with 𝐷Λ. To show the
converse, if 𝐴𝐷Λ = 𝐷Λ𝐴, then 𝐴𝑝(𝐷Λ) = 𝑝(𝐷Λ)𝐴 for any polynomial 𝑝. Evaluate both
sides of the equation above at e𝑁 and choose an appropriate interpolating polynomial 𝑝
depending on 𝑁.
Hint for Ex. 2.8.11: For −1 ⩽ 𝑥 ⩽ 1 consider the square of the matrix

[ 𝑥 √1 − 𝑥2
√1 − 𝑥2 −𝑥

] .

Hint for Ex. 2.8.15: Consider 𝐼 − 𝐴−1𝐵.
Hint for Ex. 2.8.16: Use the polarization identity from Exercise 1.10.17.
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Hint for Ex. 2.8.21: Choose an appropriate diagonal operator.
Hint for Ex. 2.8.22: Use a diagonalization argument similar to the one in the proof
Theorem 2.5.1.
Hint for Ex. 2.8.27: Suppose that ‖x𝑛‖ = 1 and ‖(𝐴 − 𝜆𝐼)x𝑛‖ → 0. Show that there is a
y ≠ 0 and a subsequence x𝑛𝑘 → 𝜆−1y.
Hint for Ex. 2.8.28: Proceed by contradiction and assume that 𝐴 is invertible.
Hint for Ex. 2.8.29: Start with ⟨𝐴x, y⟩ = 1

4
⟨𝐴(x + y), x + y⟩ − 1

4
⟨𝐴(x − y), x − y⟩ and use

the polarization identity from Exercise 1.10.17.
Hint for Ex. 2.8.32: Let (x𝛼)𝛼∈𝐼 be a Hamel basis forℋ and define the functional’s action
on Hamel-basis vectors.
Hint for Ex. 2.8.34: Consider 𝐼 − 𝑇, where

𝑇 ∶ ℋ → ℋ, 𝑇(
∞
∑
𝑛=1

𝑎𝑛u𝑛) =
∞
∑
𝑛=1

𝑎𝑛(u𝑛 − x𝑛).

Hint for Ex. 2.8.35: Construct a bounded invertible operator 𝑇 ∈ ℬ(ℋ) such that 𝑇x𝑛 =
y𝑛 for all 𝑛 ⩾ 1.
Hint for Ex. 2.8.39: Start with (𝑇𝑒𝑛)(𝑥) = ∑∞

𝑚=−∞ 𝑐𝑚(𝑛)𝑒𝑚(𝑥) and use the fact that
𝜏𝑎𝑇𝑒𝑛 = 𝑇𝜏𝑎𝑒𝑛 for all 𝑎 to prove that 𝑐𝑚(𝑛) = 0 for all𝑚 ≠ 𝑛.
Hint for Ex. 2.8.40: Use Hölder’s inequality.
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Infinite Matrices

Key Concepts: Riesz representation theorem, adjoint of an operator, operators defined by infinite
matrices, Hilbert matrix, Cesàro matrix, Schur’s test, matrices defining compact operators, matrices
defining contractions.

Outline: This chapter concerns operators on ℓ2 defined by infinite matrices (not neces-
sarily diagonal). When are such operators well defined? Bounded? Compact? Schur’s test
yields a tangible solution to some of these questions.

3.1 Adjoint of an Operator
Let 𝐴 = [𝑎𝑖𝑗]𝑛𝑖,𝑗=1 ∈ ℳ𝑛, the set of 𝑛 × 𝑛matrices with complex entries. The adjoint 𝐴∗ is
its conjugate transpose 𝐴∗ = [𝑎𝑗𝑖]𝑛𝑖,𝑗=1 and it satisfies ⟨𝐴x, y⟩ = ⟨x, 𝐴∗y⟩ for all x, y ∈ ℂ𝑛.
Ifℋ is a Hilbert space and 𝐴 ∈ ℬ(ℋ), we want to find an 𝐴∗ ∈ ℬ(ℋ) such that

⟨𝐴x, y⟩ = ⟨x, 𝐴∗y⟩ for all x, y ∈ ℋ.

The existence of such an 𝐴∗ is not immediately clear.
We begin with the following observation. For 𝐴 ∈ ℬ(ℋ), the Cauchy–Schwarz

inequality and the definition of the operator norm say that

|⟨𝐴x, y⟩| ⩽ ‖𝐴x‖‖y‖ ⩽ ‖𝐴‖‖x‖‖y‖ for all x, y ∈ ℋ.

Thus, for each fixed y ∈ ℋ, the linear functional x ↦ ⟨𝐴x, y⟩ is bounded, meaning
it defines an element of ℬ(ℋ,ℂ). Theorem 3.1.3 below describes the bounded linear
functionals onℋ. To develop this, we need to further explore the following concept first
seen in Chapter 2.

Definition 3.1.1. For a Hilbert spaceℋ and a nonempty subset 𝒴 ⊆ ℋ, let

𝒴⟂ = {x ∈ ℋ ∶ ⟨x, y⟩ = 0 for all y ∈ 𝒴}

denote the orthogonal complement of 𝒴 (see Figure 3.1.1).
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y2
y1

𝒴⟂

span𝒴

0

Figure 3.1.1 The orthogonal complement of 𝒴 = {y1, y2} is the subspace 𝒴⟂.

Here are a few facts about orthogonal complements (Exercise 3.6.6).

Proposition 3.1.2. Let 𝒴 be a nonempty subset of a Hilbert spaceℋ.

(a) {0}⟂ = ℋ.

(b) ℋ⟂ = {0}.

(c) 𝒴⟂ is a subspace ofℋ.

(d) (𝒴⟂)⟂ = ⋁𝒴.

(e) 𝒴 has dense linear span inℋ if and only if 𝒴⟂ = {0}.

(f) Ifℳ is a subspace ofℋ, thenℳ ≠ ℋ if and only ifℳ⟂ ≠ {0}.

(g) If 𝑃ℳ is the orthogonal projection ontoℳ, then 𝐼 − 𝑃ℳ is the orthogonal projection onto
ℳ⟂.

The next theorem identifies the dual space (recall Definition 2.2.4)ℋ∗ = ℬ(ℋ,ℂ) of a
Hilbert spaceℋ. It can be identified, in a conjugate-linear fashion, withℋ itself.

Theorem 3.1.3 (Riesz representation theorem). For a Hilbert spaceℋ, the following hold.

(a) Every bounded linear functional 𝜑 ∶ ℋ → ℂ is of the form 𝜑y(x) = ⟨x, y⟩ for a unique
y ∈ ℋ.

(b) The map y↦ 𝜑y is a conjugate-linear isometry fromℋ ontoℋ∗.

Proof (a) Since 𝜑 is bounded, ker𝜑 is a subspace of ℋ. Without loss of generality we
may assume that ker𝜑 ≠ ℋ, since otherwise 𝜑 is the zero functional. In this case,
𝜑(x) = ⟨x, 0⟩ for all x ∈ ℋ and 0 is the only vector with this property (Proposition
3.1.2b).
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Since ker𝜑 ≠ ℋ, Proposition 3.1.2f implies that (ker𝜑)⟂ ≠ {0} is a subspace ofℋ. Let
y0 ∈ (ker𝜑)⟂ satisfy 𝜑(y0) = 1. In particular, y0 ≠ 0. Then for all x ∈ ℋ,

𝜑(x − 𝜑(x)y0) = 𝜑(x) − 𝜑(x)𝜑(y0) = 0.

Thus, x − 𝜑(x)y0 ∈ ker𝜑 and

0 = ⟨x − 𝜑(x)y0, y0⟩ = ⟨x, y0⟩ − 𝜑(x) ‖y0‖
2 .

Rearrange the preceding to obtain

𝜑(x) = ‖y0‖
−2 ⟨x, y0⟩ = ⟨x, ‖y0‖

−2 y0⟩ = ⟨x, y⟩ ,

where y = ‖y0‖
−2 y0. This proves existence. For uniqueness, suppose that 𝜑(x) =

⟨x, y′⟩ for all x ∈ ℋ. Then,

0 = ⟨x, y⟩ − ⟨x, y′⟩ = ⟨x, y − y′⟩ for all x ∈ ℋ.

Let x = y − y′ and conclude that ‖y − y′‖2 = 0 (Proposition 3.1.2b). Thus, y = y′.
(b) For fixed y ∈ ℋ, the Cauchy–Schwarz inequality implies that

|𝜑y(x)| = |⟨x, y⟩| ⩽ ‖x‖‖y‖ for all x ∈ ℋ

and hence,

‖𝜑y‖ = sup
‖x‖=1

|𝜑y(x)| ⩽ ‖y‖.

Furthermore, assuming y ≠ 0,

𝜑y(
y
‖y‖ ) = ⟨ y

‖y‖ , y⟩ = ‖y‖

and thus ‖𝜑y‖ = ‖y‖. Since the inner product is conjugate linear in the second slot,
the map y ↦ 𝜑y is a conjugate linear isometry. Since every 𝜑 ∈ ℋ is equal to 𝜑y for
some unique y ∈ ℋ, this conjugate-linear isometry is surjective. ■

Let 𝐴 ∈ ℬ(ℋ). For each y ∈ ℋ, the Riesz representation theorem provides a unique
vector, denoted 𝐴∗y, such that

⟨𝐴x, y⟩ = ⟨x, 𝐴∗y⟩ for all x ∈ ℋ. (3.1.4)

The next proposition shows that x ↦ 𝐴∗x is a bounded linear transformation onℋ. We
use 𝐴∗ to denote this map, which is uniquely determined by (3.1.4).

Proposition 3.1.5. Let 𝐴 ∈ ℬ(ℋ).

(a) x↦ 𝐴∗x defines a linear transformation onℋ.

(b) 𝐴∗ ∈ ℬ(ℋ).
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(c) 𝐴∗∗ = 𝐴.

(d) ‖𝐴∗‖ = ‖𝐴‖.

(e) ‖𝐴∗𝐴‖ = ‖𝐴‖2.

Proof (a) If x, y, z ∈ ℋ and 𝑐 ∈ ℂ, one sees from (3.1.4) that

⟨𝐴∗(x + 𝑐y), z⟩ = ⟨x + 𝑐y, 𝐴z⟩
= ⟨x, 𝐴z⟩ + 𝑐⟨y, 𝐴z⟩
= ⟨𝐴∗x, z⟩ + 𝑐⟨𝐴∗y, z⟩
= ⟨𝐴∗x + 𝑐𝐴∗y, z⟩.

Thus, 𝐴∗(x + 𝑐y) = 𝐴∗x + 𝑐𝐴∗y and hence 𝐴∗ is a linear transformation onℋ. Note
the use of the fact that if ⟨u, z⟩ = ⟨v, z⟩ for every z ∈ ℋ, then u = v.

(b) For all y ∈ ℋ, the Cauchy–Schwarz inequality and the definition of the operator
norm ensure that

‖𝐴∗y‖ = ⟨ 𝐴∗y
‖𝐴∗y‖ , 𝐴

∗y⟩

⩽ sup
‖x‖=1

|⟨x, 𝐴∗y⟩|

= sup
‖x‖=1

|⟨𝐴x, y⟩|

⩽ ‖y‖ sup
‖x‖=1

‖𝐴x‖

= ‖y‖‖𝐴‖.

This shows that ‖𝐴∗‖ ⩽ ‖𝐴‖ and hence 𝐴∗ is bounded.
(c) From (3.1.4) and the previous parts of this proposition, it follows that 𝐴∗∗ = (𝐴∗)∗ is
the unique bounded linear operator onℋ such that ⟨𝐴∗∗x, y⟩ = ⟨x, 𝐴∗y⟩ for all x, y.
However, 𝐴 also satisfies this property, so 𝐴∗∗ = 𝐴.

(d) The proof of (b) shows that ‖𝐴∗‖ ⩽ ‖𝐴‖. Apply this to 𝐴∗ in place of 𝐴 and use (c) to
conclude that ‖𝐴‖ = ‖𝐴∗∗‖ = ‖(𝐴∗)∗‖ ⩽ ‖𝐴∗‖. Therefore, ‖𝐴‖ = ‖𝐴∗‖.

(e) Note that

‖𝐴‖2 = sup
‖x‖=1

‖𝐴x‖2

= sup
‖x‖=1

⟨𝐴x, 𝐴x⟩

= sup
‖x‖=1

⟨𝐴∗𝐴x, x⟩

⩽ sup
‖x‖=1

‖𝐴∗𝐴x‖ (by Cauchy–Schwarz)

= ‖𝐴∗𝐴‖
⩽ ‖𝐴∗‖‖𝐴‖ (by Proposition 2.1.12)
= ‖𝐴‖2 (from (d)).

Thus, the previous inequalities must be equalities, and hence ‖𝐴∗𝐴‖ = ‖𝐴‖2. ■
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Exercise 3.6.5 establishes the following properties of the adjoint operation. In particular,
the adjoint operation is conjugate linear and reverses the order of operator multiplication.

Proposition 3.1.6. Let 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝜆 ∈ ℂ.

(a) 𝜎(𝐴∗) = {𝜆 ∶ 𝜆 ∈ 𝜎(𝐴)}.

(b) (𝐴 + 𝜆𝐵)∗ = 𝐴∗ + 𝜆𝐵∗.

(c) (𝐴𝐵)∗ = 𝐵∗𝐴∗.

Another set of useful facts is how the kernel and range of an operator behave with
respect to orthogonal complements and adjoints.

Proposition 3.1.7. Let 𝐴 ∈ ℬ(ℋ).

(a) ker𝐴 = (ran𝐴∗)⟂.

(b) ker𝐴∗ = (ran𝐴)⟂.

(c) (ker𝐴)⟂ = (ran𝐴∗)−.

(d) (ker𝐴∗)⟂ = (ran𝐴)−.

Proof (a) Suppose that x ∈ ker𝐴. Then 𝐴x = 0, and so

0 = ⟨0, y⟩ = ⟨𝐴x, y⟩ = ⟨x, 𝐴∗y⟩ for all y ∈ ℋ.

Thus, x ∈ (ran𝐴∗)⟂. Conversely, if x ∈ (ran𝐴∗)⟂, then

0 = ⟨x, 𝐴∗y⟩ = ⟨𝐴x, y⟩ for all y ∈ ℋ.

Thus, 𝐴x = 0 and hence x ∈ ker𝐴.
(b) Apply (a) to 𝐴∗ and recall that 𝐴∗∗ = 𝐴.
(c) Since ran𝐴∗ is a vector space (but not necessarily a subspace since it may not be
topologically closed), Proposition 3.1.2 and (a) imply that

(ker𝐴)⟂ = ((ran𝐴∗)⟂)⟂ = (ran𝐴∗)−.

(d) Apply (a) to 𝐴∗ and recall that 𝐴∗∗ = 𝐴. ■

The previousmaterial can be generalized to linear transformations between twoHilbert
spacesℋ and𝒦. If 𝐴 ∈ ℬ(ℋ,𝒦), then there is a unique 𝐴∗ ∈ ℬ(𝒦,ℋ) such that

⟨𝐴x, y⟩𝒦 = ⟨x, 𝐴∗y⟩ℋ for all x ∈ ℋ and y ∈ 𝒦.

We mostly use the adjoint of an 𝐴 ∈ ℬ(ℋ) but, from time to time, we need the adjoint of
𝐴 ∈ ℬ(ℋ,𝒦).



74 | infinite matrices

3.2 Special Case of Schur’s Test
To discuss when an infinite matrix 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0 induces a bounded operator x ↦ 𝐴x on
ℓ2, we need the following indirect way to determine if a sequence x = (𝑥𝑛)∞𝑛=0 belongs to
ℓ2. Since ℓ2 is indexed starting with 0, we index the infinite matrices below starting with
(0, 0). These choices reflect the fact that later in the bookwe frequently identify a sequence
a = (𝑎𝑛)∞𝑛=0 with a power series∑

∞
𝑛=0 𝑎𝑛𝑧𝑛.

Proposition 3.2.1. For a sequence x = (𝑥𝑛)∞𝑛=0, the following are equivalent.

(a) x ∈ ℓ2.

(b)
∞
∑
𝑛=0

𝑥𝑛𝑦𝑛 converges for every y ∈ ℓ2.

Furthermore, if there is an𝑀 > 0 such that for each y = (𝑦𝑛)∞𝑛=0 ∈ ℓ2, the series∑∞
𝑛=0 𝑥𝑛𝑦𝑛

converges and

||
∞
∑
𝑛=0

𝑥𝑛𝑦𝑛|| ⩽ 𝑀‖y‖, (3.2.2)

then x ∈ ℓ2 with ‖x‖ ⩽ 𝑀.

Proof (a) ⇒ (b) The Cauchy–Schwarz inequality ensures that the series ∑∞
𝑛=0 𝑥𝑛𝑦𝑛

converges absolutely:
∞
∑
𝑛=0

|𝑥𝑛||𝑦𝑛| ⩽ (
∞
∑
𝑛=0

|𝑥𝑛|2)
1
2 (

∞
∑
𝑛=0

|𝑦𝑛|2)
1
2 .

Therefore,∑∞
𝑛=0 𝑥𝑛𝑦𝑛 converges.

(b)⇒ (a) For fixed x = (𝑥𝑛)∞𝑛=0 and𝑁 ⩾ 1, define the linear functional 𝑇𝑁 ∶ ℓ2 → ℂ by

𝑇𝑁(y) =
𝑁
∑
𝑛=0

𝑥𝑛𝑦𝑛 for y = (𝑦𝑛)∞𝑛=0 ∈ ℓ2.

Theorem 3.1.3 shows that 𝑇𝑁 ∈ ℬ(ℓ2, ℂ) and

‖𝑇𝑁‖ = (
𝑁
∑
𝑛=0

|𝑥𝑛|2)
1
2 . (3.2.3)

The assumption in (b) says that lim𝑁→∞ 𝑇𝑁(y) exists for each y ∈ ℓ2. Consequently,
the principle of uniform boundedness (Theorem 2.2.3) implies that

𝐿 = sup
𝑁⩾0

‖𝑇𝑁‖ < ∞.

Then (3.2.3) yields
𝑁
∑
𝑛=0

|𝑥𝑛|2 ⩽ 𝐿2 for all 𝑁 ⩾ 0.
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Let 𝑁 → ∞ and conclude that (3.2.2) holds and x ∈ ℓ2.
For the second part of the proposition, observe that (3.2.2) implies that ‖𝑇𝑁‖ ⩽ 𝑀 for
all 𝑁 ⩾ 0. Therefore,

‖x‖ = lim
𝑁→∞

(
𝑁
∑
𝑛=0

|𝑥𝑛|2)
1
2 = lim

𝑁→∞
‖𝑇𝑁‖ ⩽ 𝑀,

which completes the proof. ■

Themain result of this section concerns the casewhere the infinitematrix𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0
is selfadjoint, that is,

𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 𝑖, 𝑗 ⩾ 0.

Proposition 3.2.4. Let 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0 be selfadjoint. If there is an𝑀 > 0 such that

∞
∑
𝑗=0

|𝑎𝑖𝑗 | ⩽ 𝑀 for all 𝑖 ⩾ 0, (3.2.5)

then 𝐴 defines a bounded operator x↦ 𝐴x on ℓ2 and ‖𝐴‖ ⩽ 𝑀.

Proof Let x ∈ ℓ2. For each 𝑖 ⩾ 0, (3.2.5) ensures that the number

𝑧𝑖 =
∞
∑
𝑗=0

𝑎𝑖𝑗𝑥𝑗

is well defined. For eachw = (𝑤𝑛)∞𝑛=0 ∈ ℓ2,
∞
∑
𝑖=0

|𝑧𝑖𝑤𝑖| =
∞
∑
𝑖=0

||
∞
∑
𝑗=0

𝑎𝑖𝑗𝑥𝑗𝑤𝑖||

⩽
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗𝑥𝑗𝑤𝑖|

=
∞
∑
𝑖,𝑗=0

(|𝑎𝑖𝑗 |
1
2 |𝑥𝑗 |) (|𝑎𝑖𝑗 |

1
2 |𝑤𝑖|)

⩽ (
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | |𝑥𝑗 |2)
1
2 (

∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | |𝑤𝑖|2)
1
2 . (3.2.6)

The selfadjointness of 𝐴 and (3.2.5) imply
∞
∑
𝑖=0

∞
∑
𝑗=0

|𝑎𝑖𝑗 | |𝑤𝑖|2 =
∞
∑
𝑖=0

(
∞
∑
𝑗=0

|𝑎𝑖𝑗 |)|𝑤𝑖|2 ⩽ 𝑀
∞
∑
𝑖=0

|𝑤𝑖|2

and
∞
∑
𝑖=0

∞
∑
𝑗=0

|𝑎𝑖𝑗 | |𝑥𝑗 |2 =
∞
∑
𝑗=0

(
∞
∑
𝑖=0

|𝑎𝑖𝑗 |)|𝑥𝑗 |2 ⩽ 𝑀
∞
∑
𝑗=0

|𝑥𝑗 |2.
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Inserting the two estimates above into (3.2.6) yields

∞
∑
𝑖=0

|𝑧𝑖𝑤𝑖| ⩽ (𝑀
∞
∑
𝑗=0

|𝑥𝑗 |2)
1
2 (𝑀

∞
∑
𝑖=0

|𝑤𝑖|2)
1
2

= 𝑀‖x‖‖w‖.

Proposition 3.2.1 implies that z = 𝐴x ∈ ℓ2 and ‖𝐴x‖ ⩽ 𝑀‖x‖ for all x ∈ ℓ2. Thus, 𝐴
is a bounded operator on ℓ2 and ‖𝐴‖ ⩽ 𝑀. ■

Example 3.2.7. Consider

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 ⋯
1 0 1 0 0 ⋯
0 1 0 1 0 ⋯
0 0 1 0 1 ⋯
0 0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which is an example of a Toeplitzmatrix (Chapter 16). Apply Proposition 3.2.4 with𝑀 = 2
to conclude that𝑇 defines a bounded operator on ℓ2 and ‖𝑇‖ ⩽ 2. One can see that ‖𝑇‖ = 2
as follows. Let

x𝑛 =
1
√𝑛

(1, 1,…, 1, 0, 0, 0,…),

where there are 𝑛 ones in the vector above. Then x𝑛 is a unit vector and

𝑇x𝑛 =
1
√𝑛

(1, 2, 2, 2,…, 2, 1, 1, 0, 0, 0,…),

where there are 𝑛 − 3 2s in the vector above. Moreover,

lim
𝑛→∞

‖𝑇x𝑛‖ = lim
𝑛→∞

1
√𝑛

√3 + 4(𝑛 − 3) = 2

and hence ‖𝑇‖ = 2.

Example 3.2.8. In Proposition 3.2.4, the hypothesis that 𝐴 is selfadjoint is necessary. For
example,

𝐴 =

⎡⎢⎢⎢⎢⎢
⎣

1 0 0 0 ⋯
1 0 0 0 ⋯
1 0 0 0 ⋯
1 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

has entries that are summable along each row, but it does not define a bounded operator
on ℓ2 since 𝐴e0 = (1, 1, 1,…) does not belong to ℓ2.
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3.3 Schur’s Test
Proposition 3.2.4 applies only to selfadjoint matrices. The next theorem of Schur is for
arbitrary infinite matrices.

Theorem 3.3.1 (Schur). Let 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0. Suppose there are positive numbers 𝛼 and 𝛽
and sequences (𝑝𝑖)∞𝑖=0 and (𝑞𝑖)∞𝑖=0 of positive numbers such that

∞
∑
𝑖=0

|𝑎𝑖𝑗 |𝑝𝑖 ⩽ 𝛼𝑞𝑗 for 𝑗 ⩾ 0 and
∞
∑
𝑗=0

|𝑎𝑖𝑗 |𝑞𝑗 ⩽ 𝛽𝑝𝑖 for 𝑖 ⩾ 0. (3.3.2)

Then 𝐴 defines a bounded operator on ℓ2 and ‖𝐴‖ ⩽ √𝛼𝛽.

Proof Let x = (𝑥𝑖)∞𝑖=0 andw = (𝑤𝑖)∞𝑖=0 belong to ℓ2 and write
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗𝑥𝑗𝑤𝑖| =
∞
∑
𝑖,𝑗=0

(√
𝑝𝑖

√𝑞𝑗
|𝑎𝑖𝑗 |

1
2 |𝑥𝑗 |) (

√𝑞𝑗
√𝑝𝑖

|𝑎𝑖𝑗 |
1
2 |𝑤𝑖|) .

The Cauchy–Schwarz inequality implies

∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗𝑥𝑗𝑤𝑖| ⩽ (
∞
∑
𝑖,𝑗=0

𝑝𝑖
𝑞𝑗
|𝑎𝑖𝑗 | |𝑥𝑗 |2)

1
2 (

∞
∑
𝑖,𝑗=0

𝑞𝑗
𝑝𝑖
|𝑎𝑖𝑗 | |𝑤𝑖|2)

1
2 .

The assumptions in (3.3.2) say that

∞
∑
𝑖,𝑗=0

𝑞𝑗
𝑝𝑖
|𝑎𝑖𝑗 | |𝑤𝑖|2 =

∞
∑
𝑖=0

(
∞
∑
𝑗=0

𝑞𝑗 |𝑎𝑖𝑗 |)
|𝑤𝑖|2
𝑝𝑖

⩽ 𝛽
∞
∑
𝑖=0

|𝑤𝑖|2

and
∞
∑
𝑖,𝑗=0

𝑝𝑖
𝑞𝑗
|𝑎𝑖𝑗 | |𝑥𝑗 |2 =

∞
∑
𝑗=0

(
∞
∑
𝑖=0

𝑝𝑖|𝑎𝑖𝑗 |)
|𝑥𝑗 |2
𝑞𝑗

⩽ 𝛼
∞
∑
𝑗=0

|𝑥𝑗 |2.

Thus,
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗𝑥𝑗𝑤𝑖| ⩽ √𝛼𝛽‖x‖‖w‖.

This shows that

𝑦𝑖 =
∞
∑
𝑗=0

𝑎𝑖𝑗𝑥𝑗

is a well-defined convergent series and thus the product y = 𝐴x is well defined for
each x ∈ ℓ2. Proposition 3.2.1 ensures that y ∈ ℓ2 and ‖𝐴x‖ ⩽ √𝛼𝛽‖x‖. In other
words, 𝐴 is a bounded operator on ℓ2 and ‖𝐴‖ ⩽ √𝛼𝛽. ■
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Example 3.3.3. Consider

𝐶 = [𝑐𝑖𝑗]∞𝑖,𝑗=0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 ⋯
1
2

1
2

0 0 0 ⋯
1
3

1
3

1
3

0 0 ⋯
1
4

1
4

1
4

1
4

0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This is the matrix representation of the Cesàro operator (Chapter 6). To apply Theorem
3.3.1, we follow an argument from [69] and let

𝑝𝑛 = 𝑞𝑛 =
1

√𝑛 + 1
for 𝑛 ⩾ 0.

Then for 𝑗 > 0,
∞
∑
𝑖=0

𝑐𝑖𝑗𝑝𝑖 =
∞
∑
𝑖=𝑗

𝑐𝑖𝑗𝑝𝑖

=
∞
∑
𝑖=𝑗

1
𝑖 + 1

1
√𝑖 + 1

⩽ ∫
∞

𝑗−1

𝑑𝑥
(𝑥 + 1)3/2

= 2
√𝑗

= √𝑗 + 1
√𝑗

2
√𝑗 + 1

⩽ 2√2 𝑞𝑗 .

For 𝑗 = 0,
∞
∑
𝑖=0

𝑐𝑖0𝑝𝑖 = 1 +
∞
∑
𝑖=1

𝑐𝑖0𝑝𝑖 ⩽ 1 + 2 = 3𝑞0 (since 𝑞0 = 1).

Furthermore,

∞
∑
𝑗=0

𝑐𝑖𝑗𝑞𝑗 =
𝑖
∑
𝑗=0

1
𝑖 + 1

1
√𝑗 + 1

⩽ 1
𝑖 + 1 ∫

𝑖

0

𝑑𝑥
√𝑥

= 1
𝑖 + 12√𝑖

⩽ 1
𝑖 + 12√𝑖 + 1

= 2𝑝𝑖.
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Apply Schur’s test with 𝛼 = 3 and 𝛽 = 2 to deduce that 𝐶 defines a bounded operator on
ℓ2 and ‖𝐶‖ ⩽ √𝛼𝛽 = √3 ⋅ 2 = √6 ≈ 2.49. Proposition 6.2.9 asserts that ‖𝐶‖ = 2.

Example 3.3.4. The infinite Hilbert matrix

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

1
4

⋯
1
2

1
3

1
4

1
5

⋯
1
3

1
4

1
5

1
6

⋯
1
4

1
5

1
6

1
7

⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is an example of a Hankel matrix (Chapter 17). Here 𝐻 = [ℎ𝑖𝑗]∞𝑖,𝑗=0, where

ℎ𝑖𝑗 =
1

𝑖 + 𝑗 + 1 .

Apply Schur’s test with 𝑝𝑖 = 𝑞𝑖 =
1

√𝑖 + 1
and 𝛼 = 𝛽 = 5. To see how this works, let

𝑓(𝑥) = 1
(𝑥 + 𝑗 + 1)√𝑥 + 1

.

The integral test says that

∞
∑
𝑖=0

𝑓(𝑖) = 𝑓(0) +
∞
∑
𝑖=1

𝑓(𝑖)

⩽ 𝑓(0) +∫
∞

0
𝑓(𝑥) 𝑑𝑥

= 1
𝑗 + 1 + 2 tan

−1(√𝑗)
√𝑗

⩽ 1
√𝑗 + 1

+ 2 tan
−1(√𝑗)
√𝑗

⩽ 1
√𝑗 + 1

+ 4
√𝑗 + 1

= 5
√𝑗 + 1

.

In a similar manner,
∞
∑
𝑗=1

1
𝑖 + 𝑗 + 1

1
√𝑗 + 1

⩽ 5
√𝑖 + 1

.

Deduce from Theorem 3.3.1 that ‖𝐻‖ ⩽ 5. In fact, ‖𝐻‖ = 𝜋 (Chapter 17).

The following is a particular version of Schur’s test that is somewhat easier to apply.
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Corollary 3.3.5. Let 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0. Suppose there are positive constants 𝛼 and 𝛽 such that

∞
∑
𝑖=0

|𝑎𝑖𝑗 | ⩽ 𝛼 for 𝑗 ⩾ 0 and
∞
∑
𝑗=0

|𝑎𝑖𝑗 | ⩽ 𝛽 for 𝑖 ⩾ 0.

Then 𝐴 is a bounded operator on ℓ2 and ‖𝐴‖ ⩽ √𝛼𝛽.

Proof Apply Theorem 3.3.1 with 𝑞𝑗 = 1 and 𝑝𝑖 = 1 for all 𝑖, 𝑗. ■

Remark 3.3.6. A slight abuse of notation is standard. We identify a matrix 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0
with the linear operator it induces on ℓ2 with respect to the standard basis. In this context,
the adjoint notation is suggestive: the conjugate transpose [𝑎𝑗𝑖]∞𝑖,𝑗=0 of the matrix 𝐴 is the
matrix representation (with respect to the standard basis for ℓ2) of the adjoint operator
𝐴∗. Thus, 𝐴∗ may refer to the adjoint of the operator 𝐴 or to the conjugate transpose of the
matrix 𝐴 without confusion.

3.4 Compactness and Contractions
A diagonal operator 𝐷Λ is compact if and only if its eigenvalues tend to zero (Theorem
2.5.1). Here is a useful compactness result for certain types of infinite matrices. This is
used in Proposition 18.1.3 to study compact composition operators.

Theorem 3.4.1. Let 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0. If

𝑀 =
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | < ∞,

then 𝐴 is a compact operator on ℓ2.

Proof Corollary 3.3.5 ensures that 𝐴 is bounded. Let 𝜀 > 0 and pick 𝑁 such that

𝑁
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | > 𝑀 − 𝜀.

Now define

𝐴𝑁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎00 𝑎01 𝑎02 𝑎03 ⋯ 𝑎0𝑁 0 0 0 ⋯
𝑎10 𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑁 0 0 0 ⋯
𝑎20 𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑁 0 0 0 ⋯
𝑎30 𝑎31 𝑎32 𝑎33 ⋯ 𝑎3𝑁 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯
𝑎𝑁0 𝑎𝑁1 𝑎𝑁2 𝑎𝑁3 ⋯ 𝑎𝑁𝑁 0 0 0 ⋯
0 0 0 0 ⋯ 0 0 0 0 ⋯
0 0 0 0 ⋯ 0 0 0 0 ⋯
0 0 0 0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Since ran𝐴𝑁 ⊆ span{e0, e1,…, e𝑁 }, it follows that 𝐴𝑁 has finite rank and is therefore
compact (Proposition 2.5.4). Corollary 3.3.5 says that 𝐴 − 𝐴𝑁 is a bounded operator
on ℓ2. Moreover,

‖𝐴 − 𝐴𝑁‖ ⩽
∞
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | −
𝑁
∑
𝑖,𝑗=0

|𝑎𝑖𝑗 | < 𝑀 − (𝑀 − 𝜀) = 𝜀.

Thus, 𝐴 is the norm limit of the finite-rank operators 𝐴𝑁 and hence is compact
(Proposition 2.5.6). ■

Definition 3.4.2. 𝑇 ∈ ℬ(ℋ) is a contraction if ‖𝑇x‖ ⩽ ‖x‖ for all x ∈ ℋ.

If 𝑇 is nonzero, then 𝑐𝑇 is a contraction for |𝑐| ⩽ ‖𝑇‖−1. We have considered operators
on ℓ2 given by infinite matrices 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0, where 𝐴x = y = (𝑦𝑖)∞𝑖=0 satisfies

𝑦𝑖 =
∞
∑
𝑗=0

𝑎𝑖𝑗𝑥𝑗 for 𝑖 ⩾ 0.

From time to time, starting with the next lemma, we consider operators on ℓ2(ℤ) given by
infinite matrices 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=−∞, where 𝐴x = y = (𝑦𝑖)∞𝑖=−∞ satisfies

𝑦𝑖 =
∞
∑

𝑗=−∞
𝑎𝑖𝑗𝑥𝑗 for 𝑖 ∈ ℤ.

Lemma 3.4.3. Let 𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=−∞ be such that for each fixed 𝑖0, 𝑗0 ∈ ℤ, the submatrix
𝐴(𝑖0, 𝑗0) = [𝑎𝑖𝑗]𝑖⩾𝑖0,𝑗⩾𝑗0 is a contraction on ℓ2. Then [𝑎𝑖𝑗]∞𝑖,𝑗=−∞ is a contraction on ℓ2(ℤ).

Proof The matrix 𝐴(𝑖0, 𝑗0) is a contraction and hence 𝐴(𝑖0, 𝑗0)e𝑗 , the 𝑗th column of
𝐴(𝑖0, 𝑗0), has norm at most 1. Observe that

𝐴(𝑖0, 𝑗0)∗ = [𝑎𝑗𝑖]𝑖⩾𝑖0,𝑗⩾𝑗0

(Remark 3.3.6) is also a contraction (Proposition 3.1.5) and thus ‖𝐴(𝑖0, 𝑗0)∗e𝑗‖ ⩽ 1.
In other words,

∞
∑
𝑗=𝑗0

|𝑎𝑖𝑗 |2 ⩽ 1 for all 𝑖, 𝑗0 ∈ ℤ.

Let 𝑗0 → −∞ and deduce that

∞
∑

𝑗=−∞
|𝑎𝑖𝑗 |2 ⩽ 1 for 𝑖 ∈ ℤ. (3.4.4)

Given x = (𝑥𝑗)∞𝑗=−∞ ∈ ℓ2(ℤ), (3.4.4) ensures that for each fixed 𝑖 ∈ ℤ,

∞
∑

𝑗=−∞
|𝑎𝑖𝑗𝑥𝑗 | ⩽ (

∞
∑

𝑗=−∞
|𝑎𝑖𝑗 |2)

1
2 (

∞
∑

𝑗=−∞
|𝑥𝑗 |2)

1
2 ⩽ ‖x‖ < ∞.
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Hence,

𝑦𝑖 =
∞
∑

𝑗=−∞
𝑎𝑖𝑗 𝑥𝑗

is well defined and finite. If y = (𝑦𝑛)∞𝑛=−∞, then formally y = 𝐴x. To finish the proof,
it suffices to show that y ∈ ℓ2(ℤ) and ‖y‖ ⩽ ‖x‖.

For each 𝑖0, 𝑗0 ∈ ℤ, the assumption that 𝐴(𝑖0, 𝑗0) is a contraction implies that
∞
∑
𝑖=𝑖0

||
∞
∑
𝑗=𝑗0

𝑎𝑖𝑗 𝑥𝑗 ||
2
= ‖𝐴(𝑖0, 𝑗0)x‖2 ⩽ ‖x‖2.

The inequality above holds uniformly with respect to 𝑖0 and 𝑗0. Note that
∞
∑
𝑖=𝑖0

|𝑦𝑖|2 =
∞
∑
𝑖=𝑖0

lim
𝑗0→−∞

||
∞
∑
𝑗=𝑗0

𝑎𝑖𝑗𝑥𝑗 ||
2

⩽ lim inf
𝑗0→−∞

∞
∑
𝑖=𝑖0

||
∞
∑
𝑗=𝑗0

𝑎𝑖𝑗𝑥𝑗 ||
2

(Fatou’s lemma)

⩽ ‖x‖2.

Now let 𝑖0 → −∞ to get

‖y‖2ℓ2(ℤ) =
∞
∑

𝑖=−∞
|𝑦𝑖|

2 ⩽ ‖x‖2

which completes the proof. ■

3.5 Notes
The idea of the adjoint of an operator goes back to F. Riesz [300] who used the term
Transponierte for what we now call the adjoint of a linear transformation on an 𝐿𝑝 space.
He also showed that an operator and its adjoint have the same norm. Adjoints of operators
on abstract Banach spaceswere explored by Banach [32], Schauder [330], andHildebrandt
[198].
In 1910, Hellinger and Toeplitz [191] explored the boundedness of matrix operators

on ℓ2. Schur’s test for the boundedness of matrix operators appeared in his 1911 paper
[333]. See [94, 169] for modern treatments of Schur’s test. Other aspects of compactness
for operators on ℓ2 were studied by Hilbert [196] and Riesz [303].
With regards to theHilbertmatrix𝐻 fromExample 3.3.4 (whichwill be explored further

in Chapter 17), Hilbert showed that ‖𝐻‖ ⩽ 2𝜋 and Schur proved that ‖𝐻‖ = 𝜋. There is a
generalization 𝐻𝜆 of the Hilbert matrix whose (𝑖, 𝑗) entry is

1
𝑖 + 𝑗 + 𝜆 for 𝜆 ∈ ℝ\{…,−3,−2, −1, 0}.
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Results from [199, 204, 237, 333] show that

‖𝐻𝜆‖ = {
𝜋 csc𝜋𝜆 if 𝜆 < 1

2
,

𝜋 if 𝜆 ⩾ 1
2
.

3.6 Exercises
Exercise 3.6.1. If 𝐴, 𝐵 ∈ ℬ(ℋ) and ⟨𝐴x, y⟩ = ⟨𝐵x, y⟩ for all x, y ∈ ℋ, prove that 𝐴 = 𝐵.

Exercise 3.6.2. Prove that if𝐴, 𝐵 ∈ ℬ(ℋ) and thematrix representations of𝐴 and 𝐵 with
respect to an orthonormal basis (u𝑛)∞𝑛=1 are the same, then 𝐴 = 𝐵.

Exercise 3.6.3. Let x, y belong to a Hilbert spaceℋ.

(a) Prove that ‖x⊗ y‖ = ‖x‖‖y‖.

(b) Prove that (x⊗ y)∗ = y⊗ x.

Exercise 3.6.4. Let (u𝑛)∞𝑛=1 be an orthonormal basis for aHilbert spaceℋ. For each x, y ∈
ℋ, write down thematrix representation of x⊗ywith respect to (u𝑛)∞𝑛=1 in terms of ⟨x,u𝑛⟩
and ⟨y,u𝑛⟩.

Exercise 3.6.5. For 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝜆 ∈ ℂ, prove the following.

(a) 𝜎(𝐴∗) = {𝜆 ∶ 𝜆 ∈ 𝜎(𝐴)}.

(b) (𝐴 + 𝜆𝐵)∗ = 𝐴∗ + 𝜆𝐵∗.

(c) (𝐴𝐵)∗ = 𝐵∗𝐴∗.

Exercise 3.6.6. Let 𝒴 be a nonempty subset of a Hilbert spaceℋ. Prove the following.

(a) {0}⟂ = ℋ.

(b) ℋ⟂ = {0}.

(c) 𝒴⟂ is a subspace ofℋ.

(d) (𝒴⟂)⟂ = ⋁𝒴.

(e) 𝒴 has dense linear span inℋ if and only if 𝒴⟂ = {0}.

Exercise 3.6.7. If𝒴 and𝒵 are nonempty subsets of aHilbert spaceℋ, prove that if𝒴 ⊆ 𝒵,
then 𝒵⟂ ⊆ 𝒴⟂.

Exercise 3.6.8. Let 𝑇 ∈ ℬ(ℋ) and suppose there exist 𝑚,𝑀 > 0 such that 𝑚‖x‖2 ⩽
⟨𝑇∗𝑇x, x⟩ ⩽ 𝑀‖x‖2 and 𝑚‖x‖2 ⩽ ⟨𝑇𝑇∗x, x⟩ ⩽ 𝑀‖x‖2 for all x ∈ ℋ. Prove that 𝑇 is
invertible.
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Exercise 3.6.9. The next two problems give an alternate criterion for compactness of an
operator. Use the following steps to prove that if 𝐴 ∈ ℬ(ℋ) is compact, then 𝐴 has the
following property: if x𝑛 → 0weakly, then 𝐴x𝑛 → 0 in norm. This latter property is called
complete continuity.

(a) If 𝐴 is compact and x𝑛 → 0 weakly, prove that there is a subsequence (x𝑛𝑘 )∞𝑘=1 and a
y ∈ ℋ such that ‖𝐴x𝑛𝑘 − y‖ → 0.

(b) Prove that 𝐴x𝑛 → 0 weakly and hence y = 0.

(c) Prove that ‖𝐴x𝑛‖ → 0.

Remark: See Exercise 1.10.52 for a review of weak convergence in a Hilbert space.

Exercise 3.6.10. This is a continuation of Exercise 3.6.9. Use the following steps to prove
that if 𝐴 ∈ ℬ(ℋ) is completely continuous, then 𝐴 is compact.

(a) Prove the following theorem of Banach [94]: If (x𝑛)∞𝑛=1 is a bounded sequence in
a Hilbert space ℋ then there is an x ∈ ℋ and a subsequence (x𝑛𝑘 )∞𝑘=1 such that
x𝑛𝑘 → x weakly.

(b) Prove that 𝐴 is compact.

Remark: Banach’s theoremmentioned in (a) says that the closed unit ball {x ∈ ℋ ∶ ‖x‖ ⩽
1} is weakly sequentially compact.

Exercise 3.6.11. Follow these steps to show that if 𝐴 ∈ ℬ(ℋ) is compact, then so is 𝐴∗.

(a) If (x𝑛)∞𝑛=1 is a bounded sequence, prove that (𝐴𝐴∗x𝑛)∞𝑛=1 has a convergence subse-
quence (𝐴𝐴∗x𝑛𝑘 )∞𝑘=1.

(b) Prove that ‖𝐴∗x𝑛𝑘 − 𝐴∗x𝑛ℓ‖2 ⩽ ‖𝐴𝐴∗x𝑛𝑘 − 𝐴𝐴∗x𝑛ℓ‖ ⋅ sup𝑘,ℓ
‖x𝑛𝑘 − x𝑛ℓ‖.

(c) Prove that 𝐴∗ is compact.

Exercise 3.6.12. For 𝐴 ∈ ℬ(ℋ), prove that 𝐴 is compact if and only if 𝐴∗𝐴 is compact.

Exercise 3.6.13. Let 𝐴 ∈ ℬ(ℋ).

(a) Prove that 𝐴 is an isometry if and only if 𝐴∗𝐴 = 𝐼.

(b) Is the adjoint of an isometry necessarily an isometry?

Exercise 3.6.14. For a sequence (𝑏𝑛)∞𝑛=0 of complex numbers, consider the terraced
matrix

𝑇 =

⎡⎢⎢⎢⎢⎢
⎣

𝑏0 0 0 0 0 ⋯
𝑏1 𝑏1 0 0 0 ⋯
𝑏2 𝑏2 𝑏2 0 0 ⋯
𝑏3 𝑏3 𝑏3 𝑏3 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

If 𝑏𝑛 = (𝑛 + 1)−3, show that 𝑇 is a compact operator on ℓ2.
Remark: See [289] for more on this.
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Exercise 3.6.15. The following matrix is an example of a Toeplitz matrix (see Chapter
16).

(a) If |𝛼| < 1 and |𝛽| < 1, prove that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝛼 𝛼2 𝛼3 𝛼4 ⋯
𝛽 1 𝛼 𝛼2 𝛼3 ⋯
𝛽2 𝛽 1 𝛼 𝛼2 ⋯
𝛽3 𝛽2 𝛽 1 𝛼 ⋯
𝛽4 𝛽3 𝛽2 𝛽 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

defines a bounded operator on ℓ2.

(b) Obtain an upper bound for its norm.

Exercise 3.6.16. Let 𝑇 = [𝑡𝑖𝑗]∞𝑖,𝑗=0 ∈ ℬ(ℓ2).

(a) If 𝑇 is an upper triangular matrix, prove that every diagonal entry 𝑡𝑖𝑖 is an eigenvalue
of 𝑇.

(b) Is this still true if 𝑇 is lower triangular?

Exercise 3.6.17. Let𝐻 be the Hilbert matrix from Example 3.3.4. Use the following steps
from [237] to show that ker𝐻 = {0}.

(a) Suppose (𝑔𝑛)∞𝑛=0 ∈ ℓ2. Prove that 𝑔(𝑧) = ∑∞
𝑛=0 𝑔𝑛𝑧𝑛 defines an analytic function on

𝔻. These types of analytic functions are discussed in greater detail in Chapter 5.

(b) Prove that if (𝑔𝑛)∞𝑛=0 belongs to ker𝐻, then∫
1

0

𝑔(𝑡)
1 − 𝑡𝑧 𝑑𝑡 = 0 for all 𝑧 ∈ 𝔻.

(c) If 𝐺(𝑧) =
∞
∑
𝑛=0

𝑔𝑛
𝑛 + 1𝑧

𝑛+1, prove that 𝐺 is continuous on [0, 1].

(d) Use (b) to prove that∫
1

0
𝑔(𝑡)𝑡𝑛𝑑𝑡 = 𝐺(1) − 𝑛∫

1

0
𝐺(𝑡)𝑡𝑛−1𝑑𝑡 = 0 for all 𝑛 ⩾ 0.

(e) Use the Weierstrass approximation theorem and (d) to prove that (𝑔𝑛)∞𝑛=0 is the zero
sequence.

Exercise 3.6.18. This is a continuation of Exercise 3.6.17. Prove that 𝐻 is not surjective
as follows. Prove that if b = (𝑏𝑛)∞𝑛=0 ∈ ℓ2 and 𝐻b = e0, then 𝐻u = 0, where u =
(0, 𝑏0, 𝑏1, 𝑏2,…).

Exercise 3.6.19. Prove that the exponential Hilbert matrix 𝐸 = [𝑒𝑖𝑗]∞𝑖,𝑗=0, defined by 𝑒𝑖𝑗 =
2−(𝑖+𝑗+1), is bounded on ℓ2 and ‖𝐸‖ = 2

3
.

Remark: See [169] for more on this.
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Exercise 3.6.20. If 𝑉 = [𝑣𝑖𝑗]∞𝑖,𝑗=0 is defined by

𝑣𝑖𝑗 =
1

𝑖 + 𝑗 + 1
2

for 𝑖, 𝑗 ⩾ 0,

prove that 𝑉 is bounded on ℓ2.

Exercise 3.6.21. For a sequence of complex numbers (𝛼𝑛)∞𝑛=0, consider the corresponding
weighted shift operator on ℓ2, defined by the matrix

𝑊 =

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
𝛼0 0 0 0 ⋯
0 𝛼1 0 0 ⋯
0 0 𝛼2 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

(a) Prove that𝑊e𝑛 = 𝛼𝑛e𝑛+1 for all 𝑛 ⩾ 0.

(b) Prove that𝑊 is a bounded operator on ℓ2 if and only if (𝛼𝑛)∞𝑛=0 is a bounded sequence.
Furthermore, prove that ‖𝑊‖ = sup

𝑛⩾0
|𝛼𝑛|.

Remark: This discussion of weighted shift operators continues in Exercises 3.6.22 and
3.6.23. See [342] formore onweighted shift operators and connections to complex function
theory.

Exercise 3.6.22. Consider the weighted shift from Exercise 3.6.21.

(a) For 𝜉 ∈ 𝕋, prove that𝑊 is unitarily equivalent to 𝜉𝑊 .

(b) What does this say about 𝜎(𝑊)?

Remark: This discussion continues in Exercise 8.10.38.

Exercise 3.6.23. If𝑊 is a weighted shift operator, prove that the self commutator𝑊𝑊 ∗−
𝑊 ∗𝑊 is a diagonal operator.

Exercise 3.6.24. Let

𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1

2
0 0 ⋯

0 0 1
3

0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Prove that𝑊 is a compact operator on ℓ2.

(b) Prove that 𝜎(𝑊) = {0}.
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Exercise 3.6.25. Let

𝑆 =

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

and∑∞
𝑛=0 |𝑎𝑛| < ∞. Prove that

𝐴 =

⎡⎢⎢⎢⎢⎢
⎣

𝑎0 0 0 0 ⋯
𝑎1 𝑎0 0 0 ⋯
𝑎2 𝑎1 𝑎0 0 ⋯
𝑎3 𝑎2 𝑎1 𝑎0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

is bounded on ℓ2 and 𝐴𝑆 = 𝑆𝐴.
Remark: The matrix 𝑆 from this exercise and the matrix𝑊 from Exercise 3.6.24 have the
following curious properties which distinguish them from finite matrices. Both 𝑆 and𝑊
are lower triangularwith zeros along themain diagonal. However,𝜎(𝑆) = 𝔻− (Proposition
5.1.4) and 𝜎(𝑊) = {0}.

Exercise 3.6.26. Let

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 ⋯
0 1 1 0 0 ⋯
0 0 1 1 0 ⋯
0 0 0 1 1 ⋯
0 0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Prove that 𝐴 defines a bounded operator on ℓ2.

(b) Compute ‖𝐴‖.

(c) Prove that 𝜎𝑝(𝐴) = {1 + 𝑧 ∶ |𝑧| < 1}.

Exercise 3.6.27. Suppose 𝐾(𝑥, 𝑦) ⩾ 0 is measurable onℝ2 and that there are measurable
functions 𝑝(𝑥), 𝑞(𝑥) > 0 and constants 𝛼, 𝛽 > 0 such that

∫𝐾(𝑥, 𝑦)𝑞(𝑦) 𝑑𝑦 ⩽ 𝛼𝑝(𝑥) and ∫𝐾(𝑥, 𝑦)𝑝(𝑥) 𝑑𝑥 ⩽ 𝛽𝑞(𝑦).

Prove that

(𝑇𝑓)(𝑥) = ∫𝐾(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

is bounded on 𝐿2(ℝ) and ‖𝑇‖ ⩽ √𝛼𝛽.
Remark: This is the integral version of Schur’s test.
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Exercise 3.6.28. Prove that the Volterra operator (𝑉𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡) 𝑑𝑡 is bounded on

𝐿2[0, 1] and ‖𝑉‖ ⩽ 1.
Remark: See Chapter 7 for more about the Volterra operator. In particular, ‖𝑉‖ = 2

𝜋
.

Exercise 3.6.29. Prove that the operator 𝐴 ∶ 𝐿2(0,∞) → 𝐿2(0,∞) defined by

(𝐴𝑓)(𝑥) = ∫
∞

0

𝑓(𝑦)
𝑥 + 𝑦 𝑑𝑦

is bounded.
Remark: This operator appears in Exercise 17.10.22 in connection with Hankel operators.

Exercise 3.6.30. Suppose b = (𝑏𝑛)∞𝑛=−∞ and
∞
∑

𝑛=−∞
|𝑏𝑛| < ∞. Define the convolution

operator 𝑋b ∶ ℓ2(ℤ) → ℓ2(ℤ) by

𝑋ba = (
∞
∑

𝑚=−∞
𝑎𝑚𝑏𝑛−𝑚)

∞

𝑛=−∞
for a = (𝑎𝑛)∞𝑛=−∞.

(a) Prove that 𝑋b is bounded.

(b) Find the matrix representation of 𝑋b with respect to the basis (e𝑛)∞𝑛=−∞ for ℓ2(ℤ).

Exercise 3.6.31. An important class of operators is the Hilbert–Schmidt operators. A
closely related class of operators, the trace-class operators, is covered in Exercise 14.11.30.

(a) If (u𝑛)∞𝑛=1 is an orthonormal basis for ℋ and 𝐴 ∈ ℬ(ℋ), prove that the (possibly
infinite) quantity ∑∞

𝑛=1 ‖𝐴u𝑛‖2 is independent of the choice of orthonormal basis
(u𝑛)∞𝑛=1.

(b) 𝐴 ∈ ℬ(ℋ) is a Hilbert–Schmidt operator if

‖𝐴‖𝐻𝑆 ∶= (
∞
∑
𝑛=1

‖𝐴u𝑛‖2)
1
2

is finite for some, and hence all, orthonormal bases forℋ. Prove that if [𝑎𝑖𝑗]∞𝑖,𝑗=1 is
the matrix representation of 𝐴 with respect to an orthonormal basis (u𝑛)∞𝑛=1, then 𝐴
is Hilbert–Schmidt if and only if

∞
∑
𝑖,𝑗=1

|𝑎𝑖𝑗 |2 < ∞.

In this case, the above equals ‖𝐴‖2𝐻𝑆 .

(c) Prove that ‖𝐴‖ ⩽ ‖𝐴‖𝐻𝑆 .

(d) Prove that every Hilbert–Schmidt operator is compact.



exercises | 89

Exercise 3.6.32. Suppose 𝐴, 𝑇 ∈ ℬ(ℋ) and 𝑇 is Hilbert–Schmidt. Prove the following.

(a) ‖𝑇‖𝐻𝑆 = ‖𝑇∗‖𝐻𝑆 .

(b) ‖𝐴𝑇‖𝐻𝑆 ⩽ ‖𝐴‖‖𝑇‖𝐻𝑆 .

(c) ‖𝑇𝐴‖𝐻𝑆 ⩽ ‖𝑇‖𝐻𝑆‖𝐴‖.

(d) The Hilbert–Schmidt operators form a two-sided ideal in ℬ(ℋ).

Exercise 3.6.33. A Jacobi matrix is an infinite matrix of the form

𝐽 =

⎡⎢⎢⎢⎢⎢
⎣

𝑎0 𝑏0 0 0 0 ⋯
𝑐0 𝑎1 𝑏1 0 0 ⋯
0 𝑐1 𝑎2 𝑏2 0 ⋯
0 0 𝑐2 𝑎3 𝑏3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

,

in which 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 ∈ ℂ. Prove that 𝐽 is a compact operator on ℓ2 if and only if 𝑎𝑛 → 0,
𝑏𝑛 → 0, and 𝑐𝑛 → 0.

Exercise 3.6.34. Extend Exercise 3.6.33 to infinite matrices𝐴 = [𝑎𝑖𝑗]∞𝑖,𝑗=0 such that 𝑎𝑖𝑗 =
0 if |𝑖 − 𝑗| > 𝑟.

Exercise 3.6.35. Suppose that

𝑆 =

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

and 𝐷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

0 0 0 ⋯
0 1

4
0 0 ⋯

0 0 1
8

0 ⋯
0 0 0 1

16
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Prove that 𝐴 = 𝑆𝐷 is compact and 𝜎(𝐴) = {0}.

Exercise 3.6.36. Let (𝑃𝑛)∞𝑛=1 be a sequence of orthogonal projections in ℬ(ℋ) such that
𝑃𝑛x → x for each x ∈ ℋ. If 𝐴 ∈ ℬ(ℋ) and 𝐴𝑛 = 𝑃𝑛𝐴𝑃𝑛 is a contraction for each 𝑛, prove
that 𝐴 is a contraction.

Exercise 3.6.37. Prove that if 𝐴 ∈ ℬ(ℋ), there is a sequence (𝐴𝑛)∞𝑛=1 in ℬ(ℋ), each of
finite rank, such that 𝐴𝑛x → 𝐴x for each x ∈ ℋ. In other words, 𝐴𝑛 → 𝐴 in the strong
operator topology (Exercise 4.5.23).

Exercise 3.6.38. For a sequence (𝑎𝑛)∞𝑛=0 of complex numbers,

𝐴 =

⎡⎢⎢⎢⎢⎢
⎣

𝑎0 𝑎1 𝑎2 𝑎3 ⋯
𝑎1 𝑎1 𝑎2 𝑎3 ⋯
𝑎2 𝑎2 𝑎2 𝑎3 ⋯
𝑎3 𝑎3 𝑎3 𝑎3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

is an L-shapedmatrix. Notice that the (𝑚, 𝑛) entry of 𝐴 is 𝑎max{𝑚,𝑛}.
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(a) Prove that if 𝐴 is a bounded operator on ℓ2, then 𝑎𝑛 = 𝑂(𝑛−
1
2 ).

(b) Let 𝑎4𝑛 = 2−𝑛 and 𝑎𝑗 = 0 otherwise. Show that 𝐴 is bounded on ℓ2. Conclude that
the condition 𝑂(𝑛−

1
2 ) is best possible.

Remark:Thesematrices appear in the study of theCesàro operator (Chapter 6). See [61, 62]
for more on 𝐿-shaped matrices.

Exercise 3.6.39. Let (𝑎𝑛)∞𝑛=0 satisfy∑
∞
𝑛=0 |𝑎𝑛| < ∞ and let

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎0 𝑎1 𝑎2 ⋯
𝑎1 𝑎2 𝑎3 ⋯
𝑎2 𝑎3 𝑎4 ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

.

Prove that 𝐴 is a bounded operator on ℓ2.

Exercise 3.6.40. Suppose that 𝐴 = [𝑎𝑖𝑗]𝑖,𝑗∈ℤ has only a finite number of nonzero
diagonals. By this we mean there are𝑚, 𝑛 ∈ ℤ such that

𝑎𝑖𝑗 = 0 for 𝑖 − 𝑗 > 𝑛 or 𝑖 − 𝑗 < −𝑚.

(a) Prove that𝐴 is a bounded operator on ℓ2(ℤ) if and only if {𝑎𝑖𝑗 ∶ 𝑖, 𝑗 ∈ ℤ} is a bounded
set.

(b) Prove that

‖𝐴‖ ⩽
𝑛
∑

𝑘=−𝑚
( sup
𝑖⩾max{0,𝑘}

|𝑎𝑖,𝑖−𝑘|) =
𝑛
∑

𝑘=−𝑚
‖d𝑘‖∞,

where d𝑘 represents the 𝑘th diagonal of 𝐴 and ‖d𝑘‖∞ is the supremum norm of a
sequence as defined in Example 1.8.2.

Remark: These matrices are often called banded matrices

Exercise 3.6.41. This exercise completes the proof of Theorem2.6.7 (the spectral theorem
for compact selfadjoint operators) in the case where ker𝐴 ≠ {0}. Suppose 𝐴 is a compact,
selfadjoint operator on an infinite-dimensional separable Hilbert spaceℋ.

(a) Prove thatℋ1 = ker𝐴 andℋ2 = (ker𝐴)⟂ are invariant subspaces for 𝐴.

(b) Prove that 𝐴2 = 𝐴|ℋ2 ∈ ℬ(ℋ2) is selfadjoint and injective.

(c) Use Theorem 2.6.7 to prove that if dimℋ2 = ∞, there is a sequence (𝜆𝑛)∞𝑛=1 of
nonzero real numbers with 𝜆𝑛 → 0 and an orthonormal basis (x𝑛)∞𝑛=1 forℋ2 such
that 𝐴2 = ∑∞

𝑛=1 𝜆𝑛(x𝑛 ⊗ x𝑛).

(d) Prove that there is an orthonormal basis (z𝑛)∞𝑛=1 forℋ and a sequence (𝛽𝑛)∞𝑛=1 of real
numbers with 𝛽𝑛 → 0 such that 𝐴 = ∑∞

𝑛=1 𝛽𝑛(z𝑛 ⊗ z𝑛).
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3.7 Hints for the Exercises
Hint for Ex. 3.6.12. Consult Exercises 3.6.9 and 3.6.10.
Hint for Ex. 3.6.13. For part (a), observe that 𝐴 is an isometry if and only if ⟨𝐴∗𝐴x, x⟩ =
x, x⟩ for all x ∈ ℋ. Now consult Exercise 2.8.29.
Hint for Ex. 3.6.17: For (a), use term-by-term integration.
Hint for Ex. 3.6.19: If x0 is the first column of 𝐸, prove that 𝐸 = 2x0 ⊗ x0. Now use
Exercise 3.6.3.
Hint for Ex. 3.6.24: Use Theorem 2.6.9. For (a), consult Exercise 3.6.12.
Hint for Ex. 3.6.31: For (a), note that 𝐴u𝑛 = ∑∞

𝑘=1⟨𝐴u𝑛,u𝑘⟩u𝑘 and use Parseval’s
theorem. For (d), consider the operators

𝐴𝑁x =
𝑁
∑
𝑗=1

⟨u𝑗 , 𝐴u𝑗⟩⟨u𝑗 , x⟩u𝑗 .

Hint for Ex. 3.6.33: Let 𝐷a = diag(𝑎1, 𝑎2,… ). Similarly define 𝐷b and 𝐷c. Consider 𝐷a +
𝑆𝐷c + 𝐷b𝑆∗, where

𝑆 =

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

For the other direction, consider ⟨𝐽e𝑛, e𝑛⟩, ⟨𝐽e𝑛, e𝑛+1⟩, ⟨𝐽e𝑛, e𝑛−1⟩, and Exercise 3.6.9.
Hint for Ex. 3.6.37: Consider the matrix representation of 𝐴with respect to an orthonor-
mal basis (u𝑛)∞𝑛=1 forℋ.
Hint for Ex. 3.6.38: For (a), use the fact that each column of 𝐴 belongs to ℓ2.
Hint for Ex. 3.6.41: For (d), suppose 𝐾 = dimker𝐴 and choose an orthonormal basis
(w𝑛)𝐾𝑛=1 for ker𝐴.
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Two Multiplication Operators

Key Concepts:Multiplication operator, invariant subspace, Fourier series, Hardy space.

Outline: This chapter concerns the multiplication operators 𝑀𝑥 ∶ 𝐿2[0, 1] → 𝐿2[0, 1],
defined by (𝑀𝑥𝑓)(𝑥) = 𝑥𝑓(𝑥), and𝑀𝜉 ∶ 𝐿2(𝕋) → 𝐿2(𝕋), defined by (𝑀𝜉𝑔)(𝜉) = 𝜉𝑔(𝜉).We
discuss their spectra and invariant subspaces. This requires the introduction of Fourier
series and the Hardy space 𝐻2.

4.1 𝑀𝑥 on 𝐿2[0, 1]
From Chapter 1, recall the Lebesgue space 𝐿2[0, 1] which is a Hilbert space with inner
product

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

and corresponding norm ‖𝑓‖ = √⟨𝑓, 𝑓⟩. In this section, we study the norm, spectrum, and
invariant subspaces of the operator𝑀𝑥 ∶ 𝐿2[0, 1] → 𝐿2[0, 1] defined by

(𝑀𝑥𝑓)(𝑥) = 𝑥𝑓(𝑥). (4.1.1)

This is a particular example of a multiplication operator (see Chapter 8).

Proposition 4.1.2. The operator𝑀𝑥 is bounded on 𝐿2[0, 1] and ‖𝑀𝑥‖ = 1.

Proof For 𝑔 ∈ 𝐿2[0, 1], the estimate

‖𝑀𝑥𝑔‖2 = ∫
1

0
|𝑥𝑔(𝑥)|2𝑑𝑥 ⩽ ( sup

𝑥∈[0,1]
|𝑥2|)∫

1

0
|𝑔(𝑥)|2𝑑𝑥 = ‖𝑔‖2

shows that

‖𝑀𝑥‖ = sup
‖𝑔‖=1

‖𝑀𝑥𝑔‖ ⩽ 1.
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For 𝑛 ⩾ 1, let 𝑔𝑛(𝑥) = (2𝑛 + 1)
1
2 𝑥𝑛. Then ‖𝑔𝑛‖ = 1 and

‖𝑀𝑥𝑔𝑛‖2 = (2𝑛 + 1)∫
1

0
|𝑥𝑛+1|2𝑑𝑥 = (2𝑛 + 1) ⋅ 1

2𝑛 + 3 → 1 as 𝑛 → ∞.

Thus,

1 = sup
𝑛⩾1

‖𝑀𝑥𝑔𝑛‖ ⩽ sup
‖𝑔‖=1

‖𝑀𝑥𝑔‖ = ‖𝑀𝑥‖ ⩽ 1

and hence ‖𝑀𝑥‖ = 1. ■

The following result determines the spectrum and point spectrum of𝑀𝑥. As is standard
in Lebesgue theory, we indulge in a slight abuse of language and identify functions that
are equal almost everywhere (a.e.).

Proposition 4.1.3.

(a) 𝜎𝑝(𝑀𝑥) = ∅.

(b) 𝜎(𝑀𝑥) = [0, 1].

Proof (a) Suppose 𝜆 ∈ ℂ and 𝑓 ∈ 𝐿2[0, 1] satisfies (𝑀𝑥−𝜆𝐼)𝑓 = 0 a.e. Then (𝑥−𝜆)𝑓 = 0
a.e. and hence 𝑓 = 0 a.e. Thus, 𝜎𝑝(𝑀𝑥) = ∅.

(b) For a fixed 𝜆 ∉ [0, 1], the quantity

𝑐𝜆 = sup
0⩽𝑥⩽1

||
1

𝑥 − 𝜆
||

is finite. For any 𝑓 ∈ 𝐿2[0, 1],

∫
1

0
|(𝑥 − 𝜆)−1𝑓(𝑥)|2𝑑𝑥 ⩽ 𝑐2𝜆∫

1

0
|𝑓(𝑥)|2 𝑑𝑥 = 𝑐2𝜆‖𝑓‖2,

and hence the operator

(𝑇𝜆𝑓)(𝑥) =
1

𝑥 − 𝜆𝑓(𝑥)

is bounded on 𝐿2[0, 1]. Moreover,

𝑇𝜆 (𝑀𝑥 − 𝜆𝐼)𝑓 = 𝑓 and (𝑀𝑥 − 𝜆𝐼)𝑇𝜆𝑓 = 𝑓 for all 𝑓 ∈ 𝐿2[0, 1].

Therefore, 𝑀𝑥 − 𝜆𝐼 is invertible and hence 𝜎(𝑀𝑥) ⊆ [0, 1]. For the reverse contain-
ment, suppose 𝜆 ∈ [0, 1]. If𝑀𝑥 − 𝜆𝐼 is invertible, then, given any 𝑔 ∈ 𝐿2[0, 1], there
is an 𝑓 ∈ 𝐿2[0, 1] such that (𝑀𝑥 − 𝜆𝐼)𝑓 = 𝑔. Apply this to the constant function
𝑔 ≡ 1 and obtain 𝑓(𝑥) = (𝑥 − 𝜆)−1, which is not in 𝐿2[0, 1] since 𝜆 ∈ [0, 1]. This
contradiction shows that [0, 1] ⊆ 𝜎(𝑀𝑥) and hence 𝜎(𝑀𝑥) = [0, 1]. ■

Proposition 1.3.6 says that 𝐶[0, 1] is dense in 𝐿2[0, 1]. The following refinement plays
an important role in this chapter.
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Proposition 4.1.4. If 𝑓 ∈ 𝐿2[0, 1], there is a sequence (𝑝𝑛)∞𝑛=1 of polynomials such that
‖𝑝𝑛 − 𝑓‖ → 0. Consequently, if 𝑔 ∈ 𝐿2[0, 1] and

∫
1

0
𝑔(𝑥)𝑝(𝑥) 𝑑𝑥 = 0

for all polynomials 𝑝, then 𝑔 = 0 a.e.

Proof Let 𝑓 ∈ 𝐿2[0, 1] and 𝜀 > 0. Proposition 1.3.6 furnishes a function 𝑔 ∈ 𝐶[0, 1] such
that ‖𝑓 − 𝑔‖ < 𝜀/2. The Weierstrass approximation theorem provides a polynomial 𝑝
such that ‖𝑔 − 𝑝‖∞ < 𝜀/2. Therefore,

‖𝑓 − 𝑝‖ ⩽ ‖𝑓 − 𝑔‖ + ‖𝑔 − 𝑝‖ ⩽ ‖𝑓 − 𝑔‖ + ‖𝑔 − 𝑝‖∞ ⩽ 𝜀
2 +

𝜀
2 = 𝜀.

The second statement of the theorem follows from Corollary 1.7.4. ■

The next result from measure theory [319, Thm. 3.12] is important for what follows.

Proposition 4.1.5. If 𝑓𝑛 → 𝑓 in 𝐿2[0, 1], then there is a subsequence (𝑓𝑛𝑘 )∞𝑘=1 such that
𝑓𝑛𝑘 → 𝑓 a.e.

For a Lebesgue-measurable set 𝐸 ⊆ [0, 1], consider

𝒵𝐸 = {𝑓 ∈ 𝐿2[0, 1] ∶ 𝑓|𝐸 = 0 a.e.}.

We use this definition and the previous proposition to prove the following.

Proposition 4.1.6. 𝒵𝐸 is an𝑀𝑥-invariant subspace for each measurable subset 𝐸 ⊆ [0, 1].

Proof First, observe that 𝒵𝐸 is a vector subspace of 𝐿2[0, 1] since it is closed under
addition and scalar multiplication. Second, Proposition 4.1.5 implies that if (𝑓𝑛)∞𝑛=1
is a sequence in 𝒵𝐸 that converges to 𝑓 in the norm of 𝐿2[0, 1], then 𝑓|𝐸 = 0 a.e.
Consequently, 𝒵𝐸 is norm closed and is therefore a subspace of 𝐿2[0, 1]. Finally, if
𝑓 ∈ 𝒵𝐸 , then 𝑀𝑥𝑓 has the same zeros as 𝑓 almost everywhere, and hence 𝑀𝑥𝒵𝐸 ⊆
𝒵𝐸 . ■

Are the invariant subspaces 𝒵𝐸 , described in the previous proposition, all of the
invariant subspaces for𝑀𝑥? The answer is yes.

Theorem 4.1.7 (Wiener [376]). Let 𝒵 ⊆ 𝐿2[0, 1] be an invariant subspace for 𝑀𝑥. Then
there is a measurable set 𝐸 ⊆ [0, 1] such that 𝒵 = 𝒵𝐸 .

Proof We follow a proof fromHelson [192]. Let𝒵 be an invariant subspace for𝑀𝑥 and let
𝑞 be the orthogonal projection of the constant function 1 onto 𝒵. This is the unique
𝑞 ∈ 𝒵 such that 1 − 𝑞 is orthogonal to 𝒵; that is, ⟨1 − 𝑞, ℎ⟩ = 0 for every ℎ ∈ 𝒵
(Proposition 1.7.3).

Since𝑀𝑛
𝑥𝒵 = 𝑥𝑛𝒵 ⊆ 𝒵 for all 𝑛 ⩾ 0 and 1 − 𝑞 is orthogonal to 𝒵,

0 = ⟨𝑝𝑞, 1 − 𝑞⟩ = ∫
1

0
𝑝𝑞(1 − 𝑞) 𝑑𝑥 for all 𝑝 ∈ ℂ[𝑥].
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By Proposition 4.1.4, 𝑞(1 − 𝑞) = 0 a.e. and hence 𝑞 = |𝑞|2 a.e. Therefore, 𝑞 assumes
only the values 0 and 1, which implies that 𝑞 = 𝜒𝐹 for some measurable 𝐹 ⊆ [0, 1].
The claim is that 𝒵 = 𝜒𝐹𝐿2[0, 1] and hence 𝒵 = 𝒵𝐸 , where 𝐸 = [0, 1]\𝐹.

To prove this, first note that

⋁{𝑥𝑛𝜒𝐹 ∶ 𝑛 ⩾ 0} = 𝜒𝐹𝐿2[0, 1].

For the ⊆ inclusion, observe that 𝜒𝐹𝐿2[0, 1] is closed. Since 𝑥𝑛𝜒𝐹 ∈ 𝜒𝐹𝐿2[0, 1] for all
𝑛 ⩾ 0, it follows that⋁{𝑥𝑛𝜒𝐹 ∶ 𝑛 ⩾ 0} ⊆ 𝜒𝐹𝐿2[0, 1]. For the ⊇ inclusion, pick any
𝜒𝐹𝑓 ∈ 𝜒𝐹𝐿2[0, 1] and use Proposition 4.1.4 to find a sequence of polynomials 𝑝𝑛 such
that 𝑝𝑛 → 𝑓 in 𝐿2[0, 1]. Then, 𝜒𝐹𝑝𝑛 → 𝜒𝐹𝑓 in 𝐿2[0, 1] and hence 𝜒𝐹𝑓 ∈ ⋁{𝑥𝑛𝜒𝐹 ∶
𝑛 ⩾ 0}.

Since 𝜒𝐹 ∈ 𝒵 and 𝒵 is𝑀𝑥-invariant,

⋁{𝑥𝑛𝜒𝐹 ∶ 𝑛 ⩾ 0} = 𝜒𝐹𝐿2[0, 1] ⊆ 𝒵.

To show equality, suppose there is an 𝑓 ∈ 𝒵 such that 𝑓 ⟂ 𝜒𝐹𝐿2[0, 1]. In particular,

0 = ⟨𝑓, 𝜒𝐹𝑝⟩ = ∫
1

0
𝑓𝑝𝜒𝐹 𝑑𝑥 for all 𝑝 ∈ ℂ[𝑥]

and hence, 𝑓𝜒𝐹 = 0 (Proposition 4.1.4). Since 1 − 𝜒𝐹 = 1 − 𝑞 is orthogonal to 𝒵, it
follows that

0 = ⟨1 − 𝜒𝐹 , 𝑝𝑓⟩ = ∫
1

0
(1 − 𝜒𝐹)𝑝𝑓𝑑𝑥 for all 𝑝 ∈ ℂ[𝑥].

Proposition 4.1.4, implies that (1−𝜒𝐹)𝑓 = 0 a.e. Conjugation shows that (1−𝜒𝐹)𝑓 = 0
a.e. In summary, both 𝑓𝜒𝐹 and 𝑓𝜒𝐹𝑐 are zero and thus 𝑓 = 0 a.e. Therefore, 𝒵 =
𝜒𝐹𝐿2[0, 1] (Corollary 1.7.4). ■

A simpler, but more sophisticated, proof of Theorem 4.1.7 is in Chapter 8. Although
longer, the proof above is direct and uses only Lebesgue integration and Hilbert-space
geometry.

4.2 Fourier Analysis
Let𝑚 denote normalized Lebesguemeasure on the unit circle𝕋 and consider the Lebesgue
space 𝐿2(𝕋) of measurable 𝑓 ∶ 𝕋 → ℂ such that

∫
𝕋
|𝑓|2𝑑𝑚

is finite. When endowed with the inner product

⟨𝑓, 𝑔⟩ = ∫
𝕋
𝑓𝑔 𝑑𝑚
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and corresponding norm ‖𝑓‖ = √⟨𝑓, 𝑓⟩, it turns out that 𝐿2(𝕋) is a Hilbert space. Indeed,
Proposition 1.3.4 can be adapted to prove the completeness of 𝐿2(𝕋).
If 𝜉 = 𝑒𝑖𝑡, then (𝜉𝑛)∞𝑛=−∞ is an orthonormal set in 𝐿2(𝕋). To see this, compute

⟨𝜉𝑗 , 𝜉𝑘⟩ = ∫
2𝜋

0
𝑒𝑖𝑗𝑡𝑒−𝑖𝑘𝑡 𝑑𝑡2𝜋 = ∫

2𝜋

0
𝑒𝑖(𝑗−𝑘)𝑡 𝑑𝑡2𝜋 = 𝛿𝑗𝑘 for all 𝑗, 𝑘 ∈ ℤ.

Since⋁{𝜉𝑛 ∶ 𝑛 ∈ ℤ} = 𝐿2(𝕋) (Theorem 1.3.9), (𝜉𝑛)∞𝑛=−∞ is an orthonormal basis for 𝐿2(𝕋)
(Proposition 1.4.15). Thus, each 𝑓 ∈ 𝐿2(𝕋) is of the form

𝑓 =
∞
∑

𝑛=−∞
⟨𝑓, 𝜉𝑛⟩𝜉𝑛, (4.2.1)

in which the series above converges in 𝐿2(𝕋) norm. Furthermore, Parseval’s theorem
(Theorem 1.4.9b) yields

‖𝑓‖2 =
∞
∑

𝑛=−∞
|⟨𝑓, 𝜉𝑛⟩|2. (4.2.2)

The series in (4.2.1) is the Fourier series of 𝑓 and the complex numbers

𝑓(𝑛) ∶= ⟨𝑓, 𝜉𝑛⟩ = ∫
𝕋
𝑓(𝜉)𝜉𝑛 𝑑𝑚(𝜉) for 𝑛 ∈ ℤ,

are the Fourier coefficients of 𝑓. In general, norm convergence of a series of functions in
𝐿2(𝕋) does not imply pointwise convergence almost everywhere, only that some subse-
quence of the partial sums converges almost everywhere (Proposition 4.1.5). However,
a deep theorem of Carleson [76] says that the Fourier series of an 𝑓 ∈ 𝐿2(𝕋) converges
pointwise almost everywhere to 𝑓.
Fourier series provide a natural orthogonal decomposition of 𝐿2(𝕋). First write the

Fourier expansion of 𝑓 ∈ 𝐿2(𝕋) as

𝑓 =
∞
∑
𝑛=0

𝑓(𝑛)𝜉𝑛 +
−1
∑

𝑛=−∞
𝑓(𝑛)𝜉𝑛.

If

𝑔 =
∞
∑
𝑛=0

𝑓(𝑛)𝜉𝑛 and ℎ =
−1
∑

𝑛=−∞
𝑓(𝑛)𝜉𝑛,

then 𝑔 ⟂ ℎ, 𝑓 = 𝑔 + ℎ, and 𝑔 belongs to

𝐻2(𝕋) ∶= {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓(𝑛) = 0 for all 𝑛 < 0}. (4.2.3)

Moreover,

ℎ =
−1
∑

𝑛=−∞
𝑓(𝑛)𝜉

𝑛
=

∞
∑
𝑛=1

𝑓(−𝑛)𝜉𝑛 ∈ 𝜉𝐻2(𝕋)
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and hence ℎ ∈ 𝜉𝐻2(𝕋). This says that

𝐿2(𝕋) = 𝐻2(𝕋) ⊕ 𝜉𝐻2(𝕋). (4.2.4)

In (4.2.4) the notation⊕ denotes the orthogonal direct sum, meaning that each 𝑓 ∈ 𝐿2(𝕋)
can be written as 𝑓 = 𝑔 + ℎ, where 𝑔 ∈ 𝐻2, ℎ ∈ 𝜉𝐻2(𝕋), and 𝑔 ⟂ ℎ. The space 𝐻2(𝕋)
is the Hardy space and appears again in Chapter 5. We use the following definition and
proposition to make a connection between 𝐻2(𝕋) and the sequence space ℓ2.

Definition 4.2.5. Letℋ,𝒦 be Hilbert spaces. Then 𝑇 ∈ ℬ(ℋ,𝒦) is unitary if 𝑇∗ = 𝑇−1.

For 𝑇 ∈ ℬ(ℋ,𝒦), the statement 𝑇∗ = 𝑇−1 means that 𝑇∗𝑇 = 𝐼ℋ and 𝑇𝑇∗ = 𝐼𝒦 .

Proposition 4.2.6. For 𝑇 ∈ ℬ(ℋ,𝒦), the following are equivalent.

(a) 𝑇 is unitary.

(b) 𝑇 is surjective and isometric.

Proof (a)⇒ (b) If 𝑇 is unitary, it is invertible and hence surjective. Since 𝑇 is unitary, it
follows that 𝑇∗𝑇x = x for all x ∈ ℋ. Therefore,

‖x‖2ℋ = ⟨𝑇∗𝑇x, x⟩ℋ = ⟨𝑇x, 𝑇x⟩𝒦 = ‖𝑇x‖2𝒦

and hence 𝑇 is an isometry.
(b)⇒ (a) The polarization identity

⟨x, y⟩ = 1
4
(‖x + y‖2 − ‖x − y‖2 − 𝑖‖x − 𝑖y‖2 + 𝑖‖x + 𝑖y‖2)

from Exercise 1.10.17, and the fact that ‖𝑇x‖𝒦 = ‖x‖ℋ for all x ∈ ℋ, shows
that ⟨𝑇x, 𝑇y⟩𝒦 = ⟨x, y⟩ℋ for all x, y ∈ ℋ. The definition of the adjoint yields
⟨𝑇∗𝑇x, y⟩ℋ = ⟨x, y⟩ℋ and hence 𝑇∗𝑇 = 𝐼ℋ (Exercise 3.6.1). Since 𝑇 is isometric,
it is injective. Since 𝑇 is surjective, we conclude that 𝑇 is bijective, and hence has an
inverse 𝑇−1 ∈ ℬ(𝒦,ℋ) (Lemma 2.3.5). Thus, 𝑇∗ = 𝑇−1. ■

The following proposition permits the identification of ℓ2(ℤ) and 𝐿2(𝕋) in a natural
and explicit manner. Along the same lines, we can also identify ℓ2 and 𝐻2(𝕋). A proof is
requested in Exercise 4.5.11.

Proposition 4.2.7.

(a) The linear transformation

(𝑎𝑛)∞𝑛=−∞ ↦
∞
∑

𝑛=−∞
𝑎𝑛𝜉𝑛

is a unitary operator from ℓ2(ℤ) onto 𝐿2(𝕋).
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(b) The linear transformation

(𝑎𝑛)∞𝑛=0 ↦
∞
∑
𝑛=0

𝑎𝑛𝜉𝑛

is a unitary operator from ℓ2 onto𝐻2(𝕋).

The following definition is used many times in this book.

Definition 4.2.8. 𝐴 ∈ ℬ(ℋ) is unitarily equivalent to 𝐵 ∈ ℬ(𝒦) if there is a unitary
operator 𝑈 ∈ ℬ(ℋ,𝒦) such that 𝐴 = 𝑈∗𝐵𝑈 ,

Exercise 4.5.17 shows that unitarily equivalent operators have the same norm, eigen-
values, and spectrum.

4.3 𝑀𝜉 on 𝐿2(𝕋)

This section focuses on the multiplication operator𝑀𝜉 ∈ ℬ(𝐿2(𝕋)) defined by (𝑀𝜉𝑔)(𝜉) =
𝜉𝑔(𝜉). Chapter 8, which concerns more general multiplication operators, builds upon the
material below. Observe that

‖𝑀𝜉𝑔‖2 = ∫
𝕋
|𝜉𝑔(𝜉)|2𝑑𝑚(𝜉) = ∫

𝕋
|𝑔(𝜉)|2𝑑𝑚(𝜉) for all 𝑔 ∈ 𝐿2(𝕋)

and so𝑀𝜉 is bounded on 𝐿2(𝕋).

Proposition 4.3.1.

(a) 𝑀∗
𝜉 = 𝑀𝜉 .

(b) 𝑀𝜉 is unitary.

Proof (a) For 𝑓, 𝑔 ∈ 𝐿2(𝕋),

⟨𝑀𝜉𝑓, 𝑔⟩ = ∫
𝕋
𝜉𝑓(𝜉)𝑔(𝜉) 𝑑𝑚(𝜉) = ∫

𝕋
𝑓(𝜉)𝜉𝑔(𝜉) 𝑑𝑚(𝜉) = ⟨𝑓,𝑀𝜉𝑔⟩.

Hence𝑀∗
𝜉 = 𝑀𝜉, the operator of multiplication by 𝜉.

(b) Observe that 𝜉𝜉 = 1 on 𝕋, and hence𝑀𝜉𝑀∗
𝜉 = 𝑀∗

𝜉𝑀𝜉 = 𝑀𝜉𝜉 = 𝑀1 = 𝐼. Therefore,
𝑀𝜉 is unitary. ■

An adaptation of the proof of Proposition 4.1.3 (see Exercise 4.5.15) yields the following.

Proposition 4.3.2.

(a) 𝜎(𝑀𝜉) = 𝕋.

(b) 𝜎𝑝(𝑀𝜉) = ∅.
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The invariant subspaces for 𝑀𝜉 are more complicated than those for 𝑀𝑥 on 𝐿2[0, 1].
There are two types of subspaces 𝒮 ⊆ 𝐿2(𝕋) such that𝑀𝜉𝒮 ⊆ 𝒮; those for which𝑀𝜉𝒮 = 𝒮
and those for which𝑀𝜉𝒮 ⊊ 𝒮. We address the first type with a theorem of Wiener [376].

Theorem 4.3.3 (Wiener). If 𝒮 ⊆ 𝐿2(𝕋) is a subspace such that 𝑀𝜉𝒮 = 𝒮, then there is a
measurable set 𝐸 ⊆ 𝕋 such that 𝒮 = {𝑔 ∈ 𝐿2(𝕋) ∶ 𝑔|𝐸 = 0 a.e.}.

Proof Suppose 𝑀𝜉𝒮 = 𝒮. Since 𝑀∗
𝜉𝑀𝜉 = 𝐼 and 𝑀∗

𝜉 = 𝑀𝜉 (Proposition 4.3.1), it follows

that𝑀𝜉𝒮 = 𝒮 . In other words, 𝑝(𝜉, 𝜉)𝒮 ⊆ 𝒮 for any polynomial 𝑝 in 𝜉 and 𝜉. The set
of such polynomials 𝑝(𝜉, 𝜉) is dense in 𝐿2(𝕋) (Weierstrass approximation theorem –
see Theorem 8.1.2). Consequently, an adaptation of the proof of Theorem 4.1.7 shows
that 𝒮 has the desired form. ■

Definition 4.3.4. For 𝐴 ∈ ℬ(ℋ), a subspaceℳ ofℋ such that 𝐴ℳ ⊆ ℳ and 𝐴∗ℳ ⊆ℳ
is a reducing subspace for 𝐴.

Theorem 4.3.3 characterizes the reducing subspaces of 𝑀𝜉. There are other invariant
subspaces for𝑀𝜉 that are not the zero-based ones described in Theorem 4.3.3.

Example 4.3.5. The subspace 𝒮 = 𝐻2(𝕋), where 𝐻2(𝕋) is the Hardy space from (4.2.3),
satisfies𝑀𝜉𝐻2(𝕋) ⊊ 𝐻2(𝕋).

Example 4.3.6. Let 𝑞 be a Lebesgue-measurable unimodular function on 𝕋, that is, 𝑞 is
measurablewith |𝑞| = 1 a.e. on𝕋. Note that 𝑞 ∈ 𝐿∞(𝕋). Then ‖𝑞𝑓‖ = ‖𝑓‖ for all𝑓 ∈ 𝐻2(𝕋),
and hence 𝒮 = 𝑞𝐻2(𝕋) is a proper subspace of 𝐿2(𝕋) such that𝑀𝜉𝒮 ⊊ 𝒮.

The next result characterizes the nonreducing subspaces of𝑀𝜉.

Theorem 4.3.7 (Helson [192]). If 𝒮 ⊆ 𝐿2(𝕋) is a subspace such that𝑀𝜉𝒮 ⊊ 𝒮, then there
is a Lebesgue-measurable unimodular function 𝑞 on 𝕋 such that 𝒮 = 𝑞𝐻2(𝕋).

Proof Since𝑀𝜉𝒮 is a proper subspace of 𝒮, there is a unit vector 𝑞 ∈ 𝒮 that is orthogonal
to𝑀𝜉𝒮. In particular, 𝑞 ⟂ 𝑀𝑛

𝜉 𝑞 for all 𝑛 ⩾ 1. Write this orthogonality in integral form

0 = ⟨𝑞,𝑀𝑛
𝜉 𝑞⟩ = ∫

𝕋
|𝑞(𝜉)|2𝜉

𝑛
𝑑𝑚(𝜉) for 𝑛 ⩾ 1.

Take complex conjugates and obtain

∫
𝕋
|𝑞(𝜉)|2𝜉𝑛𝑑𝑚(𝜉) = 0 for 𝑛 ∈ ℤ\{0}.

The equation above says that the Fourier coefficients of |𝑞|2 are all zero, except for
the zeroth one, and hence |𝑞| is constant (see (4.2.1)). Furthermore, since 𝑞 is a unit
vector, the constant is 1. Consequently, 𝑞 is a unimodular function on 𝕋.

It suffices to show that 𝒮 = 𝑞𝐻2(𝕋). Observe that (𝜉𝑛𝑞)∞𝑛=−∞ is an orthonormal
sequence in 𝐿2(𝕋) such that ℱ = ⋁{𝜉𝑛𝑞 ∶ 𝑛 ∈ ℤ} satisfies𝑀𝜉ℱ = ℱ. Theorem 4.3.3
ensures that ℱ = {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓|𝐸 = 0 a.e.} for some measurable 𝐸 ⊆ 𝕋. However,
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𝑞 is unimodular and hence ℱ = 𝐿2(𝕋). Consequently, (𝜉𝑛𝑞)∞𝑛=−∞ is an orthonormal
basis for 𝐿2(𝕋). Also notice that

𝑞𝐻2(𝕋) =⋁{𝜉𝑛𝑞 ∶ 𝑛 ⩾ 0} ⊆ 𝒮 and 𝑞𝜉𝐻2(𝕋) =⋁{𝑞𝜉𝑛 ∶ 𝑛 < 0}.

Moreover,

𝐿2(𝕋) = ℱ = 𝑞𝐻2(𝕋) ⊕ 𝑞𝜉𝐻2(𝕋).

Recall that 𝑞 is orthogonal to 𝑀𝜉𝒮 and thus orthogonal to 𝜉𝑛𝒮 for all 𝑛 ⩾ 1. This
implies 𝑞𝜉𝑛 is orthogonal to 𝒮 for all 𝑛 ⩽ −1. Thus,

(𝑞𝐻2(𝕋))⟂ = 𝑞𝜉𝐻2(𝕋) ⊆ 𝒮⟂,

and hence (see Exercise 3.6.7 and Proposition 3.1.2d)

𝒮 = (𝒮⟂)⟂ ⊆ ((𝑞𝐻2(𝕋))⟂)⟂ = 𝑞𝐻2(𝕋).

It follows that 𝒮 = 𝑞𝐻2(𝕋). ■

Complex analysis permits a more detailed study of the subspaces 𝑞𝐻2(𝕋) (Chapter 5).
The key observation is that 𝐻2(𝕋) can be identified with a space of analytic functions on
the open unit disk. Other aspects of multiplication operators, such as cyclic vectors and
commutants, are explored in Chapters 5 and 8.

4.4 Notes
From Theorem 1.3.9, the Fourier series of an 𝑓 ∈ 𝐿2(𝕋) converges in norm, meaning that

lim
𝑁→∞

‖
‖

𝑁
∑

𝑛=−𝑁
𝑓(𝑛)𝜉𝑛 − 𝑓‖‖ = 0.

On the other hand, pointwise convergence,

𝑓(𝜉) = lim
𝑁→∞

𝑁
∑

𝑛=−𝑁
𝑓(𝑛)𝜉𝑛,

is a tricky issue. If 𝑓 is continuously differentiable on 𝕋, the Fourier series converges
uniformly to 𝑓 [380, Ch. 2]. For continuous functions, this need not be the case. Indeed,
in 1873, de Bois-Reymond [117] exhibited a continuous function whose Fourier series
diverges at a point. A striking theorem of Kahane andKatznelson [209] says that given any
closed set 𝐸 ⊆ 𝕋 of Lebesgue measure zero, there is a continuous function whose Fourier
series diverges precisely on 𝐸. Even more dramatic is a result of Kolmogorov [219] which
produces an𝐿1(𝕋) functionwhose Fourier series diverges everywhere. A thorough account
of this is Zygmund’s book [380]. On the positive side, a celebrated theoremof Carleson [76]
says that the Fourier series of an 𝑓 ∈ 𝐿2(𝕋) converges to 𝑓 almost everywhere.
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Hilbert considered bounded linear functionals on ℓ2 [196]. F. Riesz [299] and Fréchet
[132] independently provedwhat is known as the Riesz representation theorem (Theorem
3.1.3): every bounded linear functional on 𝐿2[𝑎, 𝑏] is of the form

𝑓 ↦ ∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

for some unique 𝑔 ∈ 𝐿2[𝑎, 𝑏]. Löwig [231] studied versions of this theorem for nonsepara-
ble Hilbert spaces and Riesz [306] studied versions for abstract Hilbert spaces.
There are other representation theorems that describe the dual spaces (the set of

bounded linear functionals) of certain Banach spaces. For example, Riesz [302] proved
that every bounded linear functional on 𝐶[0, 1] is of the form

𝑓 ↦ ∫
1

0
𝑓 𝑑𝐹

for some function 𝐹 of bounded variation on [0, 1]. One can reformulate this using the
more modern language of measure theory on [0, 1].
Wiener’s theorem (Theorems 4.1.7 and 4.3.3) was originally stated in terms of shifts

of the Fourier transform [376, Ch. 2]. The proof presented here is due to Srinivasan and
follows the presentation in Helson’s book [192].
Helson’s theorem (Theorem 4.3.7) generalizes to 𝐿2(𝜇) spaces, where 𝜇 is a finite

positive Borel measure on 𝕋. Write 𝜇 = 𝑤𝑑𝑚 + 𝜇𝑠, where 𝑤 ∈ 𝐿1(𝕋) and 𝜇𝑠 is singular
with respect to𝑚. Suppose 𝒮 is an𝑀𝜉-invariant subspace of 𝐿2(𝜇). If𝑀𝜉𝒮 = 𝒮, then there
is a Borel set 𝐸 ⊆ 𝕋 such that 𝒮 = 𝜒𝐸𝐿2(𝜇). If 𝑀𝜉𝒮 ⊊ 𝒮, then there is a Borel set 𝐸 ⊆ 𝕋
and a function 𝑞 such that |𝑞|2𝑤 = 1 𝑚-almost everywhere and 𝒮 = 𝑞𝐻2(𝕋) ⊕ 𝜒𝐸𝐿2(𝜇𝑠).
Exercise 4.5.4 requests a description of the 𝑀𝑥-invariant subspaces of 𝐿2(𝜇) when 𝜇 is a
measure on [0, 1]. See [253] for a thorough exposition.
The commutant of 𝑀𝑥, the set of operators 𝐴 ∈ ℬ(𝐿2[0, 1]) such that 𝐴𝑀𝑥 = 𝑀𝑥𝐴, is

described in Corollary 8.3.3 (similarly for the commutant of𝑀𝜉).
There is an interesting version of𝑀𝑥 ∈ ℬ(𝐿2[0, 1]) on theHilbert space𝒲 of absolutely

continuous functions on [0, 1] whose derivative belongs to 𝐿2[0, 1] (see Exercise 1.10.15).
In this case 𝒲 is not only a Hilbert space-but also an algebra of continuous functions.
Furthermore, the 𝑀𝑥-invariant subspaces of𝒲 are the ideals of𝒲 and are of the form
{𝑓 ∈ 𝑊 ∶ 𝑓|𝐸 = 0}, where 𝐸 is a closed subset of [0, 1] [326].
Themultiplication operator𝑀𝑥 plays an important role in the study of Bishop operators

in Chapter 13.

4.5 Exercises
Exercise 4.5.1. For 𝐴 ∈ ℬ(ℋ) and a subspaceℳ ofℋ, prove that 𝐴ℳ ⊆ ℳ if and only
if 𝐴∗ℳ⟂ ⊆ ℳ⟂.

Exercise 4.5.2. Letℳ1 andℳ2 be subspaces of a Hilbert spaceℋ.

(a) Prove that (ℳ1 +ℳ2)⟂ = ℳ⟂
1 ∩ℳ⟂

2 .

(b) Prove that (ℳ1 ∩ℳ2)⟂ = (ℳ⟂
1 +ℳ⟂

2 )−.
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Exercise 4.5.3. Letℳ be a subspace of a Hilbert spaceℋ and let x ∈ ℋ.

(a) Prove that

dist(x,ℳ) = sup
y∈ℳ⟂

‖y‖=1

|⟨x, y⟩|.

(b) Prove that the supremum above is attained.

Exercise 4.5.4. Let 𝜇 be a finite positive Borel measure on [0, 1]. Describe the invariant
subspaces of𝑀𝑥 on 𝐿2(𝜇).
Remark: See Chapter 8 for more on this.

Exercise 4.5.5. This exercise highlights a difference between the two multiplication
operators considered in this chapter.

(a) Prove that𝑀𝑥 is unitarily equivalent to𝑀2
𝑥 on 𝐿2[0, 1].

(b) Prove that𝑀𝜉 is not unitarily equivalent to𝑀2
𝜉 on 𝐿2(𝕋).

Exercise 4.5.6. This exercise highlights another difference between the two multiplica-
tion operators considered in this chapter.

(a) Prove that𝑀2
𝑥 in 𝐿2[0, 1] has the same invariant subspaces as𝑀𝑥.

(b) Find an𝑀2
𝜉-invariant subspace of 𝐿2(𝕋) that is not𝑀𝜉-invariant.

Exercise 4.5.7. Suppose 𝑓 ∈ 𝐿2[0, 1] and 1/𝑓 ∈ 𝐿2[0, 1]. Prove that

⋁{𝑀𝑛
𝑥𝑓 ∶ 𝑛 ⩾ 0} = 𝐿2[0, 1].

Exercise 4.5.8. For𝑀𝑥2 on 𝐿2[−1, 1], prove there is no 𝑓 ∈ 𝐿2[−1, 1] such that⋁{𝑀𝑛
𝑥2𝑓 ∶

𝑛 ⩾ 0} = 𝐿2[−1, 1].

Exercise 4.5.9. Prove that if 𝐴 ∈ ℬ(ℋ) is an isometry, then ran𝐴 is closed.

Exercise 4.5.10. Let 𝑑𝐴 = 𝑟 𝑑𝑟 𝑑𝜃 be area measure on 𝔻− and 𝑧 = 𝑟𝑒𝑖𝜃.

(a) Prove that the invariant subspaces for 𝑀𝑧𝑓 = 𝑧𝑓 on 𝐿2(𝑑𝐴) are not all of the form
𝜒𝐸𝐿2(𝑑𝐴) for some measurable set 𝐸 ⊆ 𝔻−.

(b) Prove that a subspace 𝒮 ⊆ 𝐿2(𝑑𝐴) is invariant for both 𝑀𝑧 and 𝑀𝑧 if and only if
ℳ = 𝜒𝐸𝐿2(𝑑𝐴) for some measurable set 𝐸 ⊆ 𝔻−.

Remark: This topic is explored further in Chapter 8.

Exercise 4.5.11. Show that the linear transformation (𝑎𝑛)∞𝑛=0 ↦ ∑∞
𝑛=0 𝑎𝑛𝜉𝑛 is a unitary

operator from ℓ2 onto 𝐻2(𝕋).
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Exercise 4.5.12. The Fourier coefficients of an 𝑓 ∈ 𝐿1(𝕋) are

𝑓(𝑛) = ∫
𝕋
𝑓(𝜉)𝜉

𝑛
𝑑𝑚(𝜉) for 𝑛 ∈ ℤ.

Using the following steps, prove the Riemann–Lebesgue lemma: for 𝑓 ∈ 𝐿1(𝕋),
lim|𝑛|→∞ 𝑓(𝑛) = 0.

(a) Prove the Riemann–Lebesgue lemma for 𝑓 ∈ 𝐿2(𝕋).

(b) Prove that 𝐿2(𝕋) is dense in 𝐿1(𝕋).

(c) Use this to prove the Riemann–Lebesgue lemma for 𝐿1(𝕋).

Exercise 4.5.13. Exercise 1.10.37 introduced the classΩ of measurable functions 𝑓 on ℝ
such that

‖𝑓‖2 = lim
𝑅→∞

1
2𝑅 ∫

𝑅

−𝑅
|𝑓(𝑥)|2𝑑𝑥 < ∞.

(a) If 𝜆 ∈ ℝ and 𝑒𝜆(𝑥) = 𝑒𝑖𝜆𝑥, prove that ⟨𝑒𝛼, 𝑒𝛽⟩ = {0 if 𝛼 ≠ 𝛽,
1 if 𝛼 = 𝛽.

(b) If 𝑓 = ∑𝑁
𝑛=0 𝑐𝑛𝑒𝜆𝑛 , prove that ⟨𝑓, 𝑒𝜆𝑛 ⟩ = 𝑐𝑛 and ‖𝑓‖2 = ∑𝑁

𝑛=0 |𝑐𝑛|2.

Remark: As one can see, this is a version of Fourier series for Ω.

Exercise 4.5.14. Show that (𝐻2(𝕋))⟂ = 𝑀𝜉𝐻2(𝕋).

Exercise 4.5.15. For𝑀𝜉 on 𝐿2(𝕋), prove the following.

(a) 𝜎(𝑀𝜉) = 𝕋.

(b) 𝜎𝑝(𝑀𝜉) = ∅.

Exercise 4.5.16. For 𝐴 ∈ ℬ(ℋ) and a subspace ℳ ⊆ ℋ, let 𝑃 denote the orthogonal
projection ofℋ ontoℳ.

(a) Prove thatℳ is an invariant subspace for 𝐴 if and only if 𝑃𝐴𝑃 = 𝐴𝑃.

(b) Prove thatℳ is a reducing subspace for 𝐴 if and only if 𝑃𝐴 = 𝐴𝑃.

Exercise 4.5.17. Suppose 𝐴 ∈ ℬ(ℋ) is unitarily equivalent to 𝐵 ∈ ℬ(𝒦). Prove the
following.

(a) ‖𝐴‖ = ‖𝐵‖.

(b) 𝜎(𝐴) = 𝜎(𝐵).

(c) 𝜎𝑝(𝐴) = 𝜎𝑝(𝐵).

(d) 𝜎𝑎𝑝(𝐴) = 𝜎𝑎𝑝(𝐵).

Remark: Recall the parts of the spectrum from Definition 2.4.5.
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Figure 4.5.1 The “bump” function 𝜓.

Exercise 4.5.18. Show that𝑀𝜉 on 𝐿2(𝕋) is unitarily equivalent to𝑀𝜉.

Exercise 4.5.19. Let 𝑇 be a bounded operator on a separable Hilbert spaceℋ.

(a) Prove that 𝑇 is unitary if and only if there are orthonormal bases (x𝑛)∞𝑛=1 and (y𝑛)∞𝑛=1
forℋ such that 𝑇 =

∞
∑
𝑛=1

x𝑛 ⊗ y𝑛.

(b) For the unitary operator 𝑇 = 𝑀𝜉 on 𝐿2(𝕋), compute the decomposition of 𝑇 as
described in (a).

(c) For any orthonormal basis (x𝑛)∞𝑛=1 for ℋ and any sequence (𝜉𝑛)∞𝑛=1 of unimodular

constants, prove that 𝑇 =
∞
∑
𝑛=1

𝜉𝑛(x𝑛 ⊗ x𝑛) is unitary.

(d) Can every unitary 𝑇 ∈ ℬ(ℋ) be written as in (c)?

Exercise 4.5.20. The discussion of the invariant subspaces for 𝑀𝑥 on 𝐿2[0, 1] examined
orthogonal projections of the form 𝑓 ↦ 𝜒𝐸𝑓. This exercise develops a version of this
orthogonal projection that involves 𝐶∞ functions.

(a) Let 𝜀 > 0 and let 𝜓 be a positive, even, 𝐶∞ function onℝwhose support lies in [−𝜀, 𝜀]
and which satisfies

∫
∞

−∞
𝜓(𝑥) 𝑑𝑥 = 𝜋

2 .

Thus, 𝜓 is a 𝐶∞ bump function centered at the origin (see Figure 4.5.1). Define

𝜃(𝑥) = ∫
𝑥

−∞
𝜓(𝑡) 𝑑𝑡

and prove that 𝜃(𝑥) + 𝜃(−𝑥) = 𝜋
2
for all 𝑥 ∈ ℝ.

(b) Let 𝑠(𝑥) = sin(𝜃(𝑥)) and 𝑐(𝑥) = cos(𝜃(𝑥)), where 𝜃 is the function introduced in (a).
Note that 𝑠 and 𝑐 depend on 𝜀. Prove that 𝑠 and 𝑐 are 𝐶∞ functions such that

𝑠(−𝑥) = 𝑐(𝑥),
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𝑠(𝑥) 𝑐(𝑥)

Figure 4.5.2 The functions 𝑠(𝑥) and 𝑐(𝑥).

𝑠2(𝑥) + 𝑠2(−𝑥) = 1, and
𝑐2(𝑥) + 𝑐2(−𝑥) = 1,

for all 𝑥 ∈ ℝ (Figure 4.5.2).

(c) Let𝜔 be a real-valued𝐶∞ function such that𝜔2(𝑥)+𝜔2(−𝑥) = 1 for all 𝑥 ∈ ℝ. Define
the operators 𝑃 and 𝑄 on 𝐿2(ℝ) by

(𝑃𝑓)(𝑥) = 𝜔2(𝑥)𝑓(𝑥) + 𝜔(𝑥)𝜔(−𝑥)𝑓(−𝑥)

and

(𝑄𝑓)(𝑥) = 𝜔2(𝑥)𝑓(𝑥) − 𝜔(𝑥)𝜔(−𝑥)𝑓(−𝑥).

Construct 𝑃 and 𝑄 using the function 𝜔 = 𝑠 introduced in (b) and prove that 𝑃 and
𝑄 are orthogonal projections on 𝐿2(ℝ).

(d) Prove that 𝑃 and 𝑄 are smooth versions of the orthogonal projection 𝑓 ↦ 𝜒(0,∞)𝑓, in
the following sense.

(i) if ess-sup𝑓 ⊆ (−∞,−𝜀], then 𝑃𝑓 = 𝑄𝑓 = 0.
(ii) if ess-sup𝑓 ⊆ [𝜀,∞), then 𝑃𝑓 = 𝑄𝑓 = 𝑓.

(e) Construct 𝑃 and 𝑄 using the function 𝜔 = 𝑐 introduced in (b) and prove that both
𝑃 and 𝑄 are smooth versions of the orthogonal projection 𝑓 ↦ 𝜒(−∞,0)𝑓, in the
following sense.

(i) if ess-sup𝑓 ⊆ (−∞,−𝜀], then 𝑃𝑓 = 𝑄𝑓 = 𝑓.
(ii) if ess-sup𝑓 ⊆ [𝜀,∞), then 𝑃𝑓 = 𝑄𝑓 = 0.

Exercise 4.5.21. This is a complex version of Exercise 4.5.20.

(a) Let 𝜔 be a 𝐶∞ complex-valued function such that

|𝜔(𝑥)|2 + |𝜔(−𝑥)|2 = 1 for 𝑥 ∈ ℝ.
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Define the operators 𝑃 and 𝑄 on 𝐿2(ℝ) by

(𝑃𝑓)(𝑥) = 𝜔(𝑥)(𝜔(𝑥)𝑓(𝑥) + 𝜔(−𝑥)𝑓(−𝑥))

and

(𝑄𝑓)(𝑥) = 𝜔(𝑥)(𝜔(𝑥)𝑓(𝑥) − 𝜔(−𝑥)𝑓(−𝑥))

Prove that 𝑃 and 𝑄 are orthogonal projections on 𝐿2(ℝ).

(b) Let [𝑎, 𝑏] ⊆ ℝ. Apply the construction in the previous problem to give a smooth
version of the projection 𝑓 ↦ 𝜒[𝑎,𝑏]𝑓.

Exercise 4.5.22. Prove that if 𝐴𝑛 → 𝐴 in the norm of ℬ(ℋ), then 𝐴∗𝑛 → 𝐴∗ in norm.

Exercise 4.5.23. A sequence (𝐴𝑛)∞𝑛=1 in ℬ(ℋ) converges to 𝐴 ∈ ℬ(ℋ) in the strong
operator topology (SOT) if ‖𝐴𝑛x − 𝐴x‖ → 0 for each x ∈ ℋ.

(a) Prove that if 𝐴𝑛 → 0 in norm, then 𝐴𝑛 → 0 (SOT).

(b) Define 𝐴 on ℓ2 by

𝐴 =

⎡⎢⎢⎢⎢⎢
⎣

0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Prove that 𝐴𝑛 → 0 (SOT) but 𝐴∗𝑛↛0 (SOT).

(c) If 𝐴𝑛 → 0 (SOT), does 𝐴𝑛 → 0 in norm?

Remark: One can endow ℬ(ℋ) with a topology that makes it a topological vector space
such that a sequence (𝐴𝑛)∞𝑛=1 converges to 𝐴 with respect to this topology precisely when
‖𝐴𝑛x − 𝐴x‖ → 0 for all x ∈ ℋ. See [94] for details.

Exercise 4.5.24. A sequence (𝐴𝑛)∞𝑛=1 in ℬ(ℋ) converges to 𝐴 ∈ ℬ(ℋ) in the weak
operator topology (WOT) if ⟨𝐴𝑛x, y⟩ → ⟨𝐴x, y⟩ for each x, y ∈ ℋ.

(a) Prove that if 𝐴𝑛 → 0 in norm, then 𝐴𝑛 → 0 (WOT).

(b) Prove that if 𝐴𝑛 → 0 (WOT), then 𝐴∗𝑛 → 0 (WOT).

(c) Let 𝐴𝑛 = 𝑀𝑛
𝜉 |𝐻2(𝕋). Prove that 𝐴𝑛 → 0 (WOT), but not (SOT) or in norm.

Remark: One can endow ℬ(ℋ) with a topology that makes it a topological vector space
such that a sequence (𝐴𝑛)∞𝑛=1 converges to 𝐴 with respect to this topology precisely when
⟨𝐴𝑛x, y⟩ → ⟨𝐴x, y⟩ for every x, y ∈ ℋ. See [94] for details.
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4.6 Hints for the Exercises
Hint for Ex. 4.5.3: Consider the orthogonal projection ontoℳ.
Hint for Ex. 4.5.4: Examine the proof of Theorem 4.1.7.
Hint for Ex. 4.5.5: For (b), prove that if 𝑈 is unitary and 𝑈𝑀𝜉 = 𝑀𝜉2𝑈 , then 𝑈𝜉𝑛 =
𝜉2𝑛(𝑈1) for all 𝑛 ∈ ℤ. Now consider the subspaceℳ = ⋁{𝜉2𝑘 ∶ 𝑘 ∈ ℤ}.
Hint for Ex. 4.5.8: Given 𝑓 ∈ 𝐿2[−1, 1], find a 𝑔 ∈ 𝐿2[−1, 1] such that ⟨𝑀𝑛

𝑥2𝑓, 𝑔⟩ = 0 for
all 𝑛 ⩾ 0.
Hint for Ex. 4.5.10: For (a), considerℳ = ⋁{𝑧𝑛 ∶ 𝑛 ⩾ 0}.
Hint for Ex. 4.5.18: Consider the operator 𝑈 on 𝐿2(𝕋) defined by (𝑈𝑓)(𝜉) = 𝑓(𝜉).
Hint for Ex. 4.5.20: For (a), use the fact that

∫
𝑥

−∞
𝜓(𝑡) 𝑑𝑡 +∫

∞

𝑥
𝜓(𝑡) 𝑑𝑡 = 𝜋

2 .

For (d), note that 𝑠(𝑥) = 0 for 𝑥 ⩽ −𝜀 and 𝑠(𝑥) = 1 for 𝑥 ⩾ 𝜀.
Hint for Ex. 4.5.21: For (b), choose 𝜀 > 0 and 𝜀′ > 0 such that 𝜀 + 𝜀′ < 𝑏 − 𝑎. Construct
𝑃1 according to the recipe in (d) with 𝑠 = 𝑠𝜀 (either with + or with −) and translate it by
𝑎. Similarly, construct 𝑃2 according to the recipe in (e) with 𝑐 = 𝑐𝜀′ (again either with + or
with −) and translate it by 𝑏. Then consider the orthogonal projection 𝑃 = 𝑃1𝑃2 = 𝑃2𝑃1.
Hint for Ex. 4.5.24: For (c), see Exercise 4.5.12.
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The Unilateral Shift

Key Concepts: Shift operator (norm, adjoint, spectral properties, invariant subspaces, commutant,
cyclic vectors), Hardy space, inner function, multipliers of the Hardy space.

Outline: The unilateral shift operator 𝑆 on ℓ2, defined by 𝑆e𝑛 = e𝑛+1 for 𝑛 ⩾ 0, is of
supreme importance in operator theory. Despite its simple appearance in the setting of
ℓ2, this operator is best understood with complex analysis. For example, the lattice of 𝑆-
invariant subspaces is described by the foundational work of Riesz, Smirnov, and Beurling
on inner functions.

5.1 The Shift on ℓ2

Definition 5.1.1. The shift operator is the linear transformation 𝑆 ∶ ℓ2 → ℓ2 defined by

𝑆(𝑎0, 𝑎1, 𝑎2,…) = (0, 𝑎0, 𝑎1, 𝑎2,…).

To distinguish the shift operator 𝑆 from the bilateral shift 𝑀𝜉 on 𝐿2(𝕋) discussed in
Chapter 4, some authors use the term unilateral shift for emphasis. The unilateral shift is
an example of a weighted shift on ℓ2, as seen in Exercise 3.6.21.
Observe that 𝑆 is an isometry on ℓ2 since ‖𝑆a‖ = ‖a‖ for all a ∈ ℓ2. In particular,

‖𝑆‖ = sup
‖a‖=1

‖𝑆a‖ = 1 (5.1.2)

and thus 𝑆 is a bounded operator on ℓ2 with norm one. With respect to the standard
orthonormal basis (e𝑛)∞𝑛=0 for ℓ2 from (1.2.8), it follows from Exercise 5.9.1 that 𝑆 has
the matrix representation

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

. (5.1.3)

By this we mean that the (𝑖, 𝑗) entry of the matrix above is ⟨𝑆e𝑗 , e𝑖⟩.
Theorem 2.4.9a says that 𝜎(𝑆) ⊆ 𝔻−. Here is amore precise description of the spectrum.
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Proposition 5.1.4.

(a) 𝜎(𝑆) = 𝔻−.

(b) 𝜎𝑝(𝑆) = ∅.

(c) 𝜎𝑎𝑝(𝑆) = 𝕋.

Proof (a) The containment 𝜎(𝑆) ⊆ 𝔻− follows from Theorem 2.4.9a. Let 𝜆 ∈ 𝔻− and
suppose that (𝑆 − 𝜆𝐼)a = e0 for some a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2. Then

(−𝜆𝑎0, 𝑎0 − 𝜆𝑎1, 𝑎1 − 𝜆𝑎2, 𝑎2 − 𝜆𝑎3,…) = (1, 0, 0,…).

Comparing entries yields −𝜆𝑎0 = 1. Moreover, induction provides

𝑎𝑛 = − 1
𝜆𝑛+1 for all 𝑛 ⩾ 0.

However, the sequence

(𝑎0, 𝑎1, 𝑎2,…) = ( − 1
𝜆 ,−

1
𝜆2 , −

1
𝜆3 ,…)

does not belong to ℓ2 since |𝜆| ⩽ 1. This shows that 𝑆 −𝜆𝐼 is not invertible and hence
𝜎(𝑆) = 𝔻−.

(b) Suppose 𝜆 ∈ ℂ and a ∈ ℓ2 satisfies (𝑆 − 𝜆𝐼)a = 0. Then

(0, 0, 0, 0,…) = (𝑆 − 𝜆𝐼)(𝑎0, 𝑎1, 𝑎2,…)
= (0, 𝑎0, 𝑎1, 𝑎2,…) − (𝜆𝑎0, 𝜆𝑎1, 𝜆𝑎2,…)
= (−𝜆𝑎0, 𝑎0 − 𝜆𝑎1, 𝑎1 − 𝜆𝑎2,…).

Compare entries and use induction to deduce that 𝑎𝑗 = 0 for every 𝑗 ⩾ 0. Thus, a = 0
and hence 𝜆 is not an eigenvalue of 𝑆. This proves that 𝜎𝑝(𝑆) = ∅.

(c) Fix 𝜉 ∈ 𝕋 and define the sequence of unit vectors

x𝑛 =
1
√𝑛

(1, 𝜉, 𝜉
2
,…, 𝜉

𝑛−1
, 0, 0,…) for 𝑛 ⩾ 1.

Then

(𝑆 − 𝜉𝐼)x𝑛 =
1
√𝑛

(−𝜉, 0, 0,…, 0, 𝜉
𝑛−1

, 0, 0,…),

and hence

‖(𝑆 − 𝜉𝐼)x𝑛‖ = √
2
𝑛 → 0.

Thus, 𝕋 ⊆ 𝜎𝑎𝑝(𝑆). Since 𝜎𝑎𝑝(𝑆) ⊆ 𝔻− (Proposition 2.4.6), it suffices to show that
𝜎𝑎𝑝(𝑆) ∩ 𝔻 = ∅. For 𝜆 ∈ 𝔻 and a unit vector x ∈ ℓ2, observe that

‖(𝑆 − 𝜆𝐼)x‖ ⩾ ||‖𝑆x‖ − |𝜆|‖x‖|| = (1 − |𝜆|)‖x‖ = 1 − |𝜆| > 0.

Therefore, inf‖x‖=1 ‖(𝑆 − 𝜆𝐼)x‖ > 0, and hence 𝜆 ∉ 𝜎𝑎𝑝(𝑆). ■
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5.2 Adjoint of the Shift
The adjoint of 𝑆 is the unique 𝑆∗ ∈ ℬ(ℓ2) that satisfies ⟨𝑆a,b⟩ = ⟨a, 𝑆∗b⟩ for all a,b ∈ ℓ2.
The following proposition indicates why 𝑆∗ is often called the backward shift.

Proposition 5.2.1. For b = (𝑏𝑛)∞𝑛=0 ∈ ℓ2,

𝑆∗(𝑏0, 𝑏1, 𝑏2, 𝑏3,…) = (𝑏1, 𝑏2, 𝑏3,…).

Proof The linear transformation 𝐵 on ℓ2 defined by

𝐵(𝑏0, 𝑏1, 𝑏2, 𝑏3,…) = (𝑏1, 𝑏2, 𝑏3,…)

is bounded on ℓ2 since

‖𝐵b‖2 =
∞
∑
𝑛=1

|𝑏𝑛|2 ⩽
∞
∑
𝑛=0

|𝑏𝑛|2 = ‖b‖2. (5.2.2)

Since

⟨𝑆a,b⟩ = ⟨(0, 𝑎0, 𝑎1, 𝑎2,…), (𝑏0, 𝑏1, 𝑏2, 𝑏2,…)⟩
= 𝑎0𝑏1 + 𝑎1𝑏2 + 𝑎2𝑏3 +⋯
= ⟨(𝑎0, 𝑎1, 𝑎2, 𝑎3,…), (𝑏1, 𝑏2, 𝑏3,…)⟩
= ⟨a, 𝐵b⟩

for all a,b ∈ ℓ2, the uniqueness of the adjoint ensures that 𝑆∗ = 𝐵. ■

The matrix representation of 𝑆∗ with respect to the standard basis (e𝑛)∞𝑛=0 for ℓ2 is

⎡⎢⎢⎢⎢⎢
⎣

0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

. (5.2.3)

As expected, it is the conjugate transpose of thematrix representation (5.1.3) of 𝑆. Compare
the following description of the parts of the spectrum of 𝑆∗ to that of 𝑆 (Proposition 5.1.4).

Proposition 5.2.4.

(a) 𝜎(𝑆∗) = 𝔻−.

(b) 𝜎𝑝(𝑆∗) = 𝔻.

(c) 𝜎𝑎𝑝(𝑆∗) = 𝔻−.



112 | the unilateral shift

Proof (a) Note that 𝜎(𝑆∗) = 𝜎(𝑆) = 𝔻− = 𝔻− (Exercise 3.6.5).
(b) For 𝜆 ∈ 𝔻, the sequence

a𝜆 = (1, 𝜆, 𝜆2, 𝜆3,…) (5.2.5)

belongs to ℓ2 since ‖a𝜆‖ = (1 − |𝜆|2)−1/2. Moreover,

𝑆∗a𝜆 = (𝜆, 𝜆2, 𝜆3,…) = 𝜆(1, 𝜆, 𝜆2,…) = 𝜆a𝜆

and hence 𝔻 ⊆ 𝜎𝑝(𝑆∗). Since 𝜎𝑝(𝑆∗) ⊆ 𝔻−, it suffices to show that no 𝜉 ∈ 𝕋 belongs
to 𝜎𝑝(𝑆∗). Suppose toward a contradiction that 𝜉 ∈ 𝕋 and that a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2\{0}
with 𝑆∗a = 𝜉a. In other words,

(𝑎1, 𝑎2, 𝑎3, 𝑎4,…) = (𝜉𝑎0, 𝜉𝑎1, 𝜉𝑎2, 𝜉𝑎3,…).

Equating coefficients and solving a recurrence yields 𝑎𝑘 = 𝜉𝑘𝑎0 for all 𝑘 ⩾ 0. Since
𝜉 ∈ 𝕋, it follows that a ∉ ℓ2 unless 𝑎0 = 0. Therefore, 𝜉 ∉ 𝜎𝑝(𝑆∗).

(c) Since 𝔻 = 𝜎𝑝(𝑆∗) ⊆ 𝜎𝑎𝑝(𝑆∗) ⊆ 𝜎(𝑆∗) = 𝔻− (Proposition 2.4.6), it suffices to show
that 𝕋 ⊆ 𝜎𝑎𝑝(𝑆∗). Given 𝜉 ∈ 𝕋, choose a sequence (𝜆𝑛)∞𝑛=1 in 𝔻 such that 𝜆𝑛 → 𝜉. Let

ã𝜆𝑛 = a𝜆𝑛√1 − |𝜆𝑛|2

denote the normalized eigenvectors for 𝑆∗ from (5.2.5) and observe that

‖(𝑆∗ − 𝜉𝐼) ã𝜆𝑛‖ = ‖(𝑆∗ − 𝜆𝑛) ã𝜆𝑛 + (𝜆𝑛 − 𝜉) ã𝜆𝑛‖
= ‖0 + (𝜆𝑛 − 𝜉) ã𝜆𝑛‖
= |𝜆𝑛 − 𝜉|‖ ã𝜆𝑛‖
= |𝜆𝑛 − 𝜉| → 0.

Thus, 𝜉 ∈ 𝜎𝑎𝑝(𝑆∗). ■

5.3 The Hardy Space
To gain a deeper understanding of the unilateral shift and its adjoint, one must view
them as linear transformations on a certain Hilbert space of analytic functions on 𝔻. We
begin with the following proposition which shows that 𝑆 is unitarily equivalent to the
multiplication operator𝑀𝜉|𝐻2(𝕋) fromChapter 4. Recall that𝐻2(𝕋) = {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓(𝑛) =
0 for all 𝑛 < 0}.

Proposition 5.3.1. The operator 𝑈 ∶ ℓ2 → 𝐻2(𝕋) defined by

𝑈((𝑎0, 𝑎1, 𝑎2,…)) =
∞
∑
𝑛=0

𝑎𝑛𝜉𝑛

is unitary. Moreover, 𝑈∗𝑀𝜉|𝐻2(𝕋)𝑈 = 𝑆.
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Proof The fact that 𝑈 is unitary comes from Proposition 4.2.7. For the second part,
observe that for each 𝑛 ⩾ 0,

𝑈∗𝑀𝜉𝑈e𝑛 = 𝑈∗𝑀𝜉𝜉𝑛 = 𝑈∗𝜉𝑛+1 = e𝑛+1 = 𝑆e𝑛.

The identity above extends linearly to all of ℓ2. ■

Below is a diagram that illustrates Proposition 5.3.1:

ℓ2 𝑆 - ℓ2

𝐻2(𝕋)

𝑈

?

𝑀𝜉
- 𝐻2(𝕋)

𝑈∗

6

As is traditional in this subject, we identify 𝑆 with 𝑀𝜉|𝐻2(𝕋) and use the less cumber-
some symbol 𝑆 for both operators. Theorem 4.3.7 describes the 𝑆-invariant subspaces.

Theorem5.3.2. If 𝑞 ∈ 𝐻2(𝕋) and |𝑞| = 1 almost everywhere, then 𝑞𝐻2(𝕋) is an 𝑆-invariant
subspace of𝐻2(𝕋). Furthermore, every nonzero 𝑆-invariant subspace is of this form.

Proof We first show that 𝑞𝐻2(𝕋) ⊆ 𝐻2(𝕋). For 𝑓 ∈ 𝐻2(𝕋), note that 𝑞𝑓 ∈ 𝐿2(𝕋) (since
𝑞 is bounded). If (𝑝𝑛)∞𝑛=1 is a sequence of polynomials that converges to 𝑓 in 𝐿2(𝕋),
then 𝑞𝑝𝑛 ∈ 𝐻2(𝕋) (since 𝑞 ∈ 𝐻2(𝕋)) and 𝑞𝑝𝑛 → 𝑞𝑓 in 𝐿2(𝕋). Since 𝐻2(𝕋) is closed,
we confirm that 𝑞𝑓 ∈ 𝐻2(𝕋). This also shows that 𝑞𝐻2(𝕋) is closed and 𝑆-invariant.

Let ℳ be a nonzero 𝑆-invariant subspace of 𝐻2(𝕋). We claim that 𝑆ℳ ⊊ ℳ. If
otherwise, then induction confirms that 𝑆𝑛ℳ = ℳ for 𝑛 ⩾ 0. Consequently, each
𝑓 ∈ ℳ is of the form 𝑓 = 𝜉𝑛𝑓𝑛 for some 𝑓𝑛 ∈ 𝐻2(𝕋). Thus, for every 𝑘 ⩾ 0, the first
𝑘 Fourier coefficients of 𝑓 are zero, which implies that 𝑓 is the zero function. Since
ℳ ≠ {0}, it follows that 𝑆ℳ ⊊ ℳ. Helson’s theorem (Theorem 4.3.7) implies that
ℳ = 𝑞𝐻2(𝕋). Sinceℳ ⊆ 𝐻2(𝕋) it follows that 𝑞 = 𝑞 ⋅ 1 ∈ 𝐻2(𝕋). ■

The functions 𝑞 ∈ 𝐻2(𝕋) with |𝑞| = 1 everywhere are inner functions. Their exact
description is specified after 𝐻2(𝕋) is identified with a space of analytic functions on 𝔻.

Definition 5.3.3. The Hardy space 𝐻2 is the set of power series

𝑓(𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛, where a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2.

As it stands now, the Hardy space is a set of formal power series. The minimal disk of
convergence of an 𝑓 ∈ 𝐻2 is addressed by the following.

Proposition 5.3.4. Every

𝑓(𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 ∈ 𝐻2

has a radius of convergence at least 1 and thus defines an analytic function on 𝔻.
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Proof For each 𝜆 ∈ 𝔻, the Cauchy–Schwarz inequality implies that
∞
∑
𝑛=0

|𝑎𝑛||𝜆|𝑛 ⩽ (
∞
∑
𝑛=0

|𝑎𝑛|2)
1
2 (

∞
∑
𝑛=0

|𝜆|2𝑛)
1
2

= ‖a‖( 1
1 − |𝜆|2 )

1
2 . (5.3.5)

Therefore, the power series converges absolutely at every point in 𝔻 and so its radius
of convergence is at least 1. Now use the fact that a power series defines an analytic
function on the interior of its disk of convergence [9, p. 38]. ■

Define an inner product on 𝐻2 by

⟨𝑓, 𝑔⟩ =
∞
∑
𝑛=0

𝑎𝑛𝑏𝑛,

where (𝑎𝑛)∞𝑛=0 and (𝑏𝑛)∞𝑛=0 are the sequence of Taylor coefficients of 𝑓 and 𝑔, respectively.
Using the fact that ℓ2 is complete (Proposition 1.2.5) and that the bijective map

a↦
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 (5.3.6)

from ℓ2 to 𝐻2 is an isometry, it follows that 𝐻2 is complete and hence is a Hilbert space.
Furthermore, for 𝑓 ∈ 𝐻2, the inequality (5.3.5) can be rephrased as

|𝑓(𝜆)| ⩽ ‖𝑓‖ 1
√1 − |𝜆|2

for 𝜆 ∈ 𝔻. (5.3.7)

This yields the following.

Proposition 5.3.8. If 𝑓𝑛 → 𝑓 in𝐻2 norm, then 𝑓𝑛 → 𝑓 uniformly on compact subsets of𝔻.

Proof Let 0 < 𝑟 < 1. For |𝜆| ⩽ 𝑟, (5.3.7) implies that

|𝑓𝑛(𝜆) − 𝑓(𝜆)| ⩽ ‖𝑓𝑛 − 𝑓‖ 1
√1 − |𝜆|2

⩽ ‖𝑓𝑛 − 𝑓‖ 1
√1 − 𝑟2

.

Thus, 𝑓𝑛 → 𝑓 uniformly on |𝑧| ⩽ 𝑟. ■

The identification (5.3.6) of ℓ2 and 𝐻2 provides an important connection between
Fourier analysis and complex analysis.

Proposition 5.3.9. If

𝑓(𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛

is an analytic function on 𝔻, then

sup
0<𝑟<1

∫
2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2 𝑑𝜃2𝜋 =

∞
∑
𝑛=0

|𝑎𝑛|2.
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Proof For a fixed 0 < 𝑟 < 1,

∫
2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2 𝑑𝜃2𝜋 = ∫

2𝜋

0
𝑓(𝑟𝑒𝑖𝜃)𝑓(𝑟𝑒𝑖𝜃) 𝑑𝜃2𝜋

= ∫
2𝜋

0
(

∞
∑
𝑘=0

𝑎𝑘𝑟𝑘𝑒𝑖𝑘𝜃)(
∞
∑
ℓ=0

𝑎ℓ𝑟ℓ𝑒−𝑖ℓ𝜃)
𝑑𝜃
2𝜋

=
∞
∑

𝑘,ℓ=0
𝑎𝑘𝑎ℓ𝑟𝑘+ℓ∫

2𝜋

0
𝑒𝑖(𝑘−ℓ)𝜃 𝑑𝜃2𝜋

=
∞
∑

𝑘,ℓ=0
𝑎𝑘𝑎ℓ𝑟𝑘+ℓ𝛿𝑘ℓ

=
∞
∑
𝑘=0

|𝑎𝑘|2𝑟2𝑘.

The series above increases with 𝑟 and hence

sup
0<𝑟<1

∫
2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2 𝑑𝜃2𝜋 = lim

𝑟→1−
∫

2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2 𝑑𝜃2𝜋

= lim
𝑟→1−

∞
∑
𝑛=0

𝑟2𝑛|𝑎𝑛|2.

If∑∞
𝑛=0 |𝑎𝑛|2 = ∞, Fatou’s lemma shows that

lim
𝑟→1−

∞
∑
𝑛=0

𝑟2𝑛|𝑎𝑛|2 = ∞.

If∑∞
𝑛=0 |𝑎𝑛|2 < ∞, the dominated convergence theorem implies that

lim
𝑟→1−

∞
∑
𝑛=0

𝑟2𝑛|𝑎𝑛|2 =
∞
∑
𝑛=0

|𝑎𝑛|2,

which completes the proof. ■

Recall normalized Lebesgue measure𝑚 on 𝕋 from Chapter 4.

Corollary 5.3.10. An analytic function 𝑓 on 𝔻 belongs to𝐻2 if and only if

sup
0<𝑟<1

∫
𝕋
|𝑓(𝑟𝜉)|2 𝑑𝑚(𝜉) < ∞.

If 𝑓 ∈ 𝐻2, then the supremum above equals ‖𝑓‖2.

Corollary 5.3.11. The set of bounded analytic functions on 𝔻 is dense in𝐻2. In particular,
the polynomials are dense in𝐻2.
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Proof If 𝑓 is a bounded analytic function on 𝔻, then

‖𝑓‖2 = sup
0<𝑟<1

∫
𝕋
|𝑓(𝑟𝜉)|2𝑑𝑚(𝜉) ⩽ sup

𝑧∈𝔻
|𝑓(𝑧)|2 < ∞

and hence 𝑓 ∈ 𝐻2. For any 𝑔(𝑧) = ∑∞
𝑛=0 𝑏𝑛𝑧𝑛 ∈ 𝐻2, the 𝑁th Taylor polynomial

𝑔𝑁(𝑧) = ∑𝑁
𝑛=0 𝑏𝑛𝑧𝑛 satisfies ‖𝑔 − 𝑔𝑁‖2 = ∑∞

𝑛=𝑁+1 |𝑏𝑛|2 → 0 as 𝑁 → ∞. Thus, the
polynomials, and hence the bounded analytic functions, are dense in 𝐻2. ■

The next result, whose proof would draw us too far afield, permits the identification of
𝐻2 and 𝐻2(𝕋) via boundary values [202].

Proposition 5.3.12. If

𝑓(𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 ∈ 𝐻2,

then for almost every 𝜉 ∈ 𝕋,

𝑓(𝜉) ∶= lim
𝑟→1−

𝑓(𝑟𝜉)

exists and defines a function in𝐻2(𝕋). Furthermore, 𝑓(𝑛) = 𝑎𝑛 for 𝑛 ⩾ 0 and

∫
𝕋
|𝑓|2𝑑𝑚 =

∞
∑
𝑛=0

|𝑎𝑛|2.

A version of the Cauchy integral formula recovers the values of 𝑓 ∈ 𝐻2 in 𝔻 from its
boundary values on 𝕋.

Proposition 5.3.13. If 𝑓 ∈ 𝐻2(𝕋), then the analytic function on 𝔻 defined by

𝑓(𝑧) = ∫
𝕋

𝑓(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉) (5.3.14)

belongs to𝐻2. Furthermore,

𝑓(𝑧) =
∞
∑
𝑛=0

𝑓(𝑛)𝑧𝑛.

Proof Fix 𝑧 ∈ 𝔻. For 𝜉 ∈ 𝕋,

1
1 − 𝜉𝑧

=
∞
∑
𝑛=0

𝜉
𝑛
𝑧𝑛

and the series above converges uniformly in 𝜉. Thus, the following exchange of sum
and integral is justified:

∫
𝕋

𝑓(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉) = ∫
𝕋
𝑓(𝜉)(

∞
∑
𝑛=0

𝜉
𝑛
𝑧𝑛) 𝑑𝑚(𝜉)
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=
∞
∑
𝑛=0

𝑧𝑛∫
𝕋
𝑓(𝜉)𝜉

𝑛
𝑑𝑚(𝜉)

=
∞
∑
𝑛=0

𝑓(𝑛)𝑧𝑛,

which completes the proof. ■

The previous two propositions yield the following (Exercises 5.9.6 and 5.9.7).

Corollary 5.3.15. For fixed 𝜆 ∈ 𝔻, the function

𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
, where 𝑧 ∈ 𝔻,

satisfies the following.

(a) 𝑘𝜆 ∈ 𝐻2.

(b) ‖𝑘𝜆‖ =
1

√1 − |𝜆|2
.

(c) ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆) for all 𝑓 ∈ 𝐻2.

The function 𝑘𝜆 is the reproducing kernel for𝐻2. Reproducing kernels for other Hilbert
spaces of analytic functions appear in Chapters 9 and 10. One can show directly that
Proposition 5.3.13 implies that for each 𝜆 ∈ 𝔻, the corresponding evaluation functional
𝑓 ↦ 𝑓(𝜆) is bounded on𝐻2. Item (c) is an expression of the Riesz representation theorem
in this setting.
There is a natural unitary operator

∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 ↦
∞
∑
𝑛=0

𝑎𝑛𝜉𝑛

from𝐻2, the space of analytic functions with square-summable power series coefficients,
and 𝐻2(𝕋), the subspace of 𝐿2(𝕋) whose negatively indexed Fourier coefficients vanish. It
is traditional in Hardy-space theory to dispense with the difference in notation between
𝐻2 and 𝐻2(𝕋), and to use 𝐻2 for both spaces.

5.4 Bounded Analytic Functions
What makes the characterization of the 𝑆-invariant subspaces of 𝐻2 from Theorem 5.3.2
more interesting is the fact that a complete description of inner functions is available. We
refer the reader to [202] for the details of the discussion below.

Definition 5.4.1. Let𝐻∞ denote the set of bounded analytic functions on𝔻. For 𝑓 ∈ 𝐻∞,
define

‖𝑓‖∞ = sup
𝑧∈𝔻

|𝑓(𝑧)|.
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One can show that 𝐻∞ is a normed linear space (Definition 1.8.8). A normal family
argument (Exercise 5.9.5) verifies the following.

Proposition 5.4.2. 𝐻∞ is a Banach space.

As with 𝐻2, there are results concerning the boundary values of 𝐻∞ functions. For
𝑔 ∈ 𝐿∞(𝕋), the essential supremum of 𝑔 is

ess-sup𝕋 |𝑔| = sup {𝑎 ⩾ 0 ∶ 𝑚({𝜉 ∈ 𝕋 ∶ |𝑔(𝜉)| > 𝑎}) > 0}.

Theorem 5.4.3 (Fatou–Smirnov).

(a) If 𝑓 ∈ 𝐻∞, then

𝑓(𝜉) = lim
𝑟→1−

𝑓(𝑟𝜉)

exists for almost every 𝜉 ∈ 𝕋. Furthermore, this boundary function is an essentially
bounded function on 𝕋 and

ess-sup𝕋 |𝑓| = ‖𝑓‖∞.

(b) If 𝑓 ∈ 𝐻2(𝕋) is an essentially bounded function on 𝕋, then its Cauchy integral

𝑓(𝑧) = ∫
𝕋

𝑓(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉)

defines an 𝐻∞ function whose radial boundary values coincide with 𝑓 almost every-
where on 𝕋.

So far, an inner function is a 𝑞 ∈ 𝐻2(𝕋) such that |𝑞| = 1 almost everywhere. The
theorem above proves the following.

Corollary 5.4.4. If 𝑞 ∈ 𝐻2(𝕋) is inner, then

𝑧 ↦ ∫
𝕋

𝑞(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉)

defines an 𝐻∞ function whose radial boundary values equal those of 𝑞 almost everywhere.
If 𝑞 ∈ 𝐻∞ and 𝑞 has unimodular boundary values, then this boundary function is an inner
function.

Example 5.4.5. For fixed 𝑎 ∈ 𝔻, consider the Möbius transformation

𝐵(𝑧) = 𝑎 − 𝑧
1 − 𝑎𝑧 .

For any 𝜉 ∈ 𝕋,

|𝐵(𝜉)| =
|
|
|
𝑎 − 𝜉
1 − 𝑎𝜉

|
|
|
=
|
|
|
𝜉 1 − 𝑎𝜉
1 − 𝑎𝜉

|
|
|
=
|
|
|
1 − 𝜉𝑎
1 − 𝑎𝜉

|
|
|
= 1,

and hence the maximummodulus theorem implies that 𝐵(𝔻) ⊆ 𝔻. Thus, 𝐵 belongs to𝐻2

(Corollary 5.3.11) and is an inner function. A calculation reveals that 𝐵(𝐵(𝑧)) = 𝑧 for all
𝑧 ∈ 𝔻, so the range of 𝐵 contains 𝔻. Thus, 𝐵(𝔻) = 𝔻, which implies that 𝐵 is also a disk
automorphism.
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Example 5.4.6. Building on the previous example, any finite product

𝐵(𝑧) = 𝛾𝑧𝑁
𝑛
∏
𝑖=1

𝑧 − 𝑎𝑖
1 − 𝑎𝑖𝑧

, (5.4.7)

where (𝑎𝑖)𝑛𝑖=1 is a finite sequence in 𝔻\{0} (repetitions allowed), 𝛾 ∈ 𝕋, and 𝑁 ∈ ℕ ∪ {0},
is an inner function. These are the finite Blaschke products [144].

For an infinite number of zeros, there are convergence issues that can be resolved with
the following theorem [202, Ch. 5].

Theorem 5.4.8 (Blaschke). Suppose that (𝑎𝑖)∞𝑖=1 is a sequence of points in𝔻\{0}, repetitions
allowed, such that∑∞

𝑖=1(1 − |𝑎𝑖|) < ∞. Then

𝐵(𝑧) =
∞
∏
𝑖=1

𝑎𝑖
|𝑎𝑖|

𝑎𝑖 − 𝑧
1 − 𝑎𝑖𝑧

converges for every 𝑧 ∈ 𝔻 and defines an inner function.

Example 5.4.9. A nonconstant inner function need not have zeros in 𝔻. For example,
consider

𝑓(𝑧) = exp ( − 1 + 𝑧
1 − 𝑧).

For 𝑧 ∈ 𝔻,

|𝑓(𝑧)| = exp ( − Re 1 + 𝑧
1 − 𝑧) = exp ( − 1 − |𝑧|2

|1 − 𝑧|2 ) < 1,

and therefore 𝑓 ∈ 𝐻2 (Corollary 5.3.11). For every 𝜉 = 𝑒𝑖𝑡 ∈ 𝕋\{1},

lim
𝑟→1−

1 + 𝑟𝜉
1 − 𝑟𝜉 = 1 + 𝜉

1 − 𝜉 = 𝑖 cot(𝑡/2)

so |𝑓(𝜉)| = 1. Thus, 𝑓 is an inner function without zeros on 𝔻. This particular inner
function is important in Chapter 20.

The example above can be generalized to the following [202, Ch. 5].

Theorem 5.4.10. Let 𝜇 be a positive finite Borel measure on 𝕋 that is singular with respect
to𝑚. Then

𝑓(𝑧) = exp ( −∫
𝕋

𝜉 + 𝑧
𝜉 − 𝑧𝑑𝜇(𝜉))

is an inner function without zeros in 𝔻.

The reader needing a review of singular measures should consult [317]. An inner
function of this form is a singular inner function. The classification of inner functions is a
combination of the two theorems above [202, Ch. 5].
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Theorem 5.4.11. Every inner function is of the form 𝐵(𝑧)𝑆𝜇(𝑧) with

𝐵(𝑧) = 𝛾𝑧𝑁
∞
∏
𝑖=1

𝑎𝑖
|𝑎𝑖|

𝑎𝑖 − 𝑧
1 − 𝑎𝑖𝑧

and

𝑆𝜇(𝑧) = exp ( −∫
𝕋

𝜉 + 𝑧
𝜉 − 𝑧𝑑𝜇(𝜉)),

where 𝛾 ∈ 𝕋, 𝑁 ⩾ 0, (𝑎𝑖)∞𝑖=1 is a sequence in 𝔻\{0} such that∑
∞
𝑖=1(1 − |𝑎𝑖|) < ∞, and 𝜇 is a

finite positive Borel measure on 𝕋 that is singular with respect to𝑚.

Unimodular functions on 𝕋 arose in Chapter 4 in the study of the 𝑀𝜉-invariant
subspaces of 𝐿2(𝕋). The quotient of two inner functions is unimodular on 𝕋. However,
there are unimodular functions that are not the quotient of two inner functions (Exercise
5.9.25).
Theorems 5.3.2 and 5.4.11 yield a fundamental theorem of Beurling that concretely

describes the invariant subspaces of 𝑆 on 𝐻2.

Theorem 5.4.12 (Beurling [53]). Letℳ be a nonzero 𝑆-invariant subspace of𝐻2.

(a) There is an inner function 𝑞, uniquely determined up to a unimodular constant factor,
such thatℳ ∩ (𝑆ℳ)⟂ = span{𝑞}.

(b) ℳ = 𝑞𝐻2.

(c) The smallest 𝑆-invariant subspace containing 𝑞 isℳ = 𝑞𝐻2.

5.5 Multipliers of 𝐻2

An analytic function 𝜑 ∶ 𝔻 → ℂ is a multiplier of 𝐻2 if 𝜑𝐻2 ⊆ 𝐻2. Note that the set of
multipliers of𝐻2 forms an algebra in the sense that this set is closed under addition, scalar
multiplication, and multiplication.

Proposition 5.5.1. If 𝜑 is a multiplier of𝐻2, then the operator𝑀𝜑 ∶ 𝐻2 → 𝐻2 defined by

𝑀𝜑𝑓 = 𝜑𝑓

is bounded.

Proof Suppose 𝑓𝑛 → 𝑓 and 𝑀𝜑𝑓𝑛 → 𝑔 in 𝐻2. Then Proposition 5.3.8 implies that 𝑓𝑛 →
𝑓 and 𝜑𝑓𝑛 → 𝑔 pointwise in 𝔻, and hence 𝑀𝜑𝑓 = 𝑔. The closed graph theorem
(Theorem 2.2.2) ensures that𝑀𝜑 is bounded. ■

Before proceeding to the description of the multiplier algebra of 𝐻2, we need the
following result from harmonic analysis [202, p. 34].
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Theorem 5.5.2 (Fatou). If 𝑓 ∈ 𝐿1(𝕋) and

P(𝑓)(𝜆) = ∫
𝕋

1 − |𝜆|2
|𝜉 − 𝜆|2 𝑓(𝜉) 𝑑𝑚(𝜉) for 𝜆 ∈ 𝔻, (5.5.3)

then, for almost every 𝜁 ∈ 𝕋,

lim
𝑟→1−

P(𝑓)(𝑟𝜁) = 𝑓(𝜁).

The function P(𝑓) is the Poisson integral of 𝑓 and it is harmonic on 𝔻 (see Chapter
12). If 𝑓 is continuous on 𝕋, then P(𝑓) is the solution to the Dirichlet problem (given a
continuous function 𝜑 on 𝕋, find a Φ that is continuous on 𝔻− and harmonic on 𝔻 such
that Φ|𝕋 = 𝜑).

Proposition 5.5.4. 𝐻∞ is the multiplier algebra of𝐻2. Moreover, if 𝜑 ∈ 𝐻∞, then ‖𝑀𝜑‖ =
‖𝜑‖∞.

Proof If 𝜑 ∈ 𝐻∞ and 𝑓 ∈ 𝐻2, Corollary 5.3.10 implies that

‖𝜑𝑓‖2 = sup
0<𝑟<1

∫
𝕋
|𝜑(𝑟𝜉)𝑓(𝑟𝜉)|2𝑑𝑚(𝜉)

⩽ ‖𝜑‖2∞ sup
0<𝑟<1

∫
𝕋
|𝑓(𝑟𝜉)|2𝑑𝑚(𝜉)

= ‖𝜑‖2∞‖𝑓‖2.

Thus, 𝜑 is a multiplier of 𝐻2 and ‖𝑀𝜑‖ ⩽ ‖𝜑‖∞.
For 𝜆 ∈ 𝔻, define the normalized reproducing kernel 𝑘̃𝜆 = 𝑘𝜆/‖𝑘𝜆‖, where 𝑘𝜆 is defined
in Corollary 5.3.15. The Cauchy–Schwarz inequality implies that

||⟨𝑀𝜑 𝑘̃𝜆, 𝑘̃𝜆⟩|| ⩽ ‖𝑀𝜑 𝑘̃𝜆‖‖ 𝑘̃𝜆‖ ⩽ ‖𝑀𝜑‖ ‖ 𝑘̃𝜆‖ ‖ 𝑘̃𝜆‖ = ‖𝑀𝜑‖.

Therefore,

‖𝑀𝜑‖ ⩾ |⟨𝜑 𝑘̃𝜆, 𝑘̃𝜆⟩| =
|||∫𝕋

1 − |𝜆|2
|𝜁 − 𝜆|2 𝜑(𝜁) 𝑑𝑚(𝜁)

||| = |P(𝜑)(𝜆)|.

Now let 𝜆 = 𝑟𝜉, where 𝜉 ∈ 𝕋 and 𝑟 ∈ (0, 1), and use Theorem 5.5.2 to see that
‖𝑀𝜑‖ ⩾ |𝜑(𝜉)| for almost every 𝜉 ∈ 𝕋. Theorem 5.4.3 yields the desired lower bound
‖𝑀𝜑‖ ⩾ ‖𝜑‖∞, and hence establishes equality.

For the converse, let 𝜑 be amultiplier of𝐻2. Proposition 5.5.1 says that𝑀𝜑 is a bounded
operator. For 𝜆,𝑤 ∈ 𝔻,

(𝑀∗
𝜑𝑘𝜆)(𝑤) = ⟨𝑀∗

𝜑𝑘𝜆, 𝑘𝑤⟩ = ⟨𝑘𝜆,𝑀𝜑𝑘𝑤⟩

= ⟨𝜑𝑘𝑤, 𝑘𝜆⟩ = 𝜑(𝜆)𝑘𝑤(𝜆) = 𝜑(𝜆)𝑘𝜆(𝑤). (5.5.5)

Thus, 𝜑(𝔻) = {𝜑(𝜆) ∶ 𝜆 ∈ 𝔻} ⊆ 𝜎𝑝(𝑀∗
𝜑) ⊆ 𝜎(𝑀∗

𝜑). Since 𝜎(𝑀∗
𝜑) is compact (Theorem

2.4.9b), 𝜑(𝔻) is a bounded set and hence 𝜑 belongs to 𝐻∞. ■
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5.6 Commutant of the Shift
For many of the operators 𝐴 ∈ ℬ(ℋ) considered in this book, we will explore the set of
operators 𝐵 ∈ ℬ(ℋ) that commute with 𝐴.

Definition 5.6.1. For 𝐴 ∈ ℬ(ℋ), the commutant, written {𝐴}′, is the set of all 𝐵 ∈ ℬ(ℋ)
such that 𝐴𝐵 = 𝐵𝐴.

For the shift operator 𝑆, the commutant can be identified in a natural way with𝐻∞, the
multiplier algebra of 𝐻2.

Corollary 5.6.2. {𝑆}′ = {𝑀𝜑 ∶ 𝜑 ∈ 𝐻∞}.

Proof For 𝜑 ∈ 𝐻∞ and 𝑓 ∈ 𝐻2,

(𝑆𝑀𝜑𝑓)(𝑧) = 𝑧𝜑(𝑧)𝑓(𝑧) = 𝜑(𝑧)(𝑧𝑓(𝑧)) = (𝑀𝜑𝑆𝑓)(𝑧),

and hence𝑀𝜑 ∈ {𝑆}′. Now suppose that 𝐴 ∈ ℬ(𝐻2) and 𝐴𝑆 = 𝑆𝐴. Then 𝐴𝑆𝑛 = 𝑆𝑛𝐴
for any 𝑛 ⩾ 0 and thus 𝐴𝑀𝑝 = 𝑀𝑝𝐴 for any 𝑝 ∈ ℂ[𝑧]. Apply this to the constant
function 1 and deduce that 𝐴𝑝 = 𝑝𝐴1. Given 𝑓 ∈ 𝐻2, Corollary 5.3.11 provides a
sequence (𝑝𝑛)∞𝑛=1 of polynomials such that 𝑝𝑛 → 𝑓 in𝐻2 norm. By Proposition 5.3.8,
𝑝𝑛 → 𝑓 pointwise in 𝔻. Therefore, 𝐴𝑓 = 𝑓𝐴1 and hence 𝐴1 is a multiplier of 𝐻2.
Proposition 5.5.4 implies that 𝐴1 ∈ 𝐻∞ and 𝐴 = 𝑀𝐴1. ■

An alternate, in fact the original, proof of this is in [68].

5.7 Cyclic Vectors
An important class of vectors x ∈ ℋ associated with an 𝐴 ∈ ℬ(ℋ) are those whose orbit
{𝐴𝑛x ∶ 𝑛 ⩾ 0} has dense linear span inℋ.

Definition 5.7.1. For an 𝐴 ∈ ℬ(ℋ), a vector x ∈ ℋ is a cyclic vector for 𝐴 if

⋁{𝐴𝑛x ∶ 𝑛 ⩾ 0} = ℋ.

A complete description of the cyclic vectors for 𝑆 is known (the outer functions – see
the endnotes for this chapter) but a detailed discussion of this would take us too far off
course. In this section we cover a few examples of cyclic vectors for 𝑆.

Example 5.7.2. If 𝑓(𝜆) = 0 for some 𝜆 ∈ 𝔻, then Proposition 5.3.8 ensures that every
function in⋁{𝑧𝑛𝑓 ∶ 𝑛 ⩾ 0} vanishes at 𝜆. Thus, the constant function 1 is not in⋁{𝑆𝑛𝑓 ∶
𝑛 ⩾ 0} and hence 𝑓 is not a cyclic vector for 𝑆.

The following lemma is useful in the next few examples.

Lemma 5.7.3. Ifℳ is an 𝑆-invariant subspace of 𝐻2 containing the constant function 1,
thenℳ = 𝐻2.
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Proof If 1 ∈ ℳ, then the 𝑆-invariance ofℳ implies thatℳ contains every polynomial.
Sinceℳ is closed and the polynomials are dense in 𝐻2 (Corollary 5.3.11), it follows
thatℳ = 𝐻2. ■

Example 5.7.4. If 𝑓 ∈ 𝐻2 and

inf
𝑧∈𝔻

|𝑓(𝑧)| = 𝛿 > 0, (5.7.5)

then 𝑓 is a cyclic vector for 𝑆. First notice that 1/𝑓 ∈ 𝐻2. Corollary 5.3.11 provides a
sequence of polynomials such that 𝑝𝑛 → 1/𝑓 in the norm of 𝐻2. By Proposition 5.3.12,

∫
𝕋

|||𝑝𝑛 −
1
𝑓
|||
2
𝑑𝑚 → 0,

and hence

∫
𝕋
|𝑝𝑛𝑓 − 1|2𝑑𝑚 = ∫

𝕋

1
|𝑓|2

|||𝑝𝑛 −
1
𝑓
|||
2
𝑑𝑚

⩽ 1
𝛿2 ∫𝕋

|||𝑝𝑛 −
1
𝑓
|||
2
𝑑𝑚 → 0.

Since the constant function 1 belongs to ⋁{𝑆𝑛𝑓 ∶ 𝑛 ⩾ 0}, Lemma 5.7.3 shows this
subspace must be 𝐻2. Therefore, 𝑓 is a cyclic vector for 𝑆.

Example 5.7.6. The condition (5.7.5) is sufficient, but not necessary for the cyclicity of 𝑓.
Consider the casewhen𝑓(𝑧) = 1−𝑧, forwhich the infimum in (5.7.5) is zero.Nevertheless,
𝑓(𝑧) = 1 − 𝑧 is a cyclic vector for 𝑆. To see why, define

𝑝𝑛(𝑧) =
𝑛−1
∑
𝑗=0

𝑛 − 𝑗
𝑛 𝑧𝑗 for 𝑛 ⩾ 1, (5.7.7)

and perform a calculation to obtain

1 − (1 − 𝑧)𝑝𝑛(𝑧) =
1
𝑛

𝑛
∑
𝑗=1

𝑧𝑗 .

Thus,

‖1 − (1 − 𝑧)𝑝𝑛(𝑧)‖2 = ‖
‖
1
𝑛

𝑛
∑
𝑗=1

𝑧𝑗‖‖
2
= 1
𝑛2 𝑛 =

1
𝑛 → 0.

Thus, 1 belongs to ⋁{𝑆𝑛𝑓 ∶ 𝑛 ⩾ 0}. By Lemma 5.7.3, 𝑓 is a cyclic vector. The papers
[38, 336] find approximating polynomials 𝑝𝑛 for (5.7.7) when 𝑓(𝑧) = (1 − 𝑧)𝑘 for 𝑘 ∈ ℕ
and 𝑘 ⩾ 2. See Exercise 5.9.22 for another proof.
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5.8 Notes
This chapter introduced the Hardy space 𝐻2. More generally, the Hardy spaces 𝐻𝑝 for
0 < 𝑝 ⩽ ∞ have a long and storied history. The study began with Hardy’s 1914 paper
[174] which proved that for 𝑓 = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 analytic on 𝔻 and 𝑝 > 0,

𝑀𝑝(𝑓, 𝑟) = ∫
𝕋
|𝑓(𝑟𝜉)|𝑝𝑑𝑚(𝜉)

is an increasing function of 0 ⩽ 𝑟 < 1. For𝑝 = 2, this follows from the identity (Proposition
5.3.9)

∫
𝕋
|𝑓(𝑟𝜉)|2𝑑𝑚 =

∞
∑
𝑛=0

𝑟2𝑛|𝑎𝑛|2.

Furthermore, he proved that log𝑀𝑝(𝑓, 𝑟) is a convex function of log 𝑟. Standard results
from the theory of Poisson integrals show that if 𝜑 ∈ 𝐿1(𝕋) and 𝜑(𝑛) = 0 for all 𝑛 < 0,
then there is an analytic function 𝑓 on 𝔻 such that

sup
0<𝑟<1

𝑀1(𝑓, 𝑟) < ∞

and whose radial boundary values are equal to 𝜑 almost everywhere. In 1916, the Riesz
brothers [307] proved the converse of this. F. Riesz coined the term 𝐻𝑝 as well as “Hardy
space” to describe what we call 𝐻𝑝 [305]. The Hardy spaces 𝐻𝑝 are well understood and
texts such as [118, 149, 202, 220, 239] contain all of the details from various perspectives.
Beurling’s landmark 1948 paper [53] connected operator theory with complex function

theory. In this paper he studied the 𝑇 ∈ ℬ(ℋ)which satisfy the following four properties.

(a) The eigenvectors of 𝑇 have dense linear span inℋ.

(b) ‖𝑇x‖ ⩽ ‖x‖ and ‖𝑇𝑛x‖ → 0 for every x ∈ ℋ.

(c) ‖𝑇∗x‖ = ‖x‖ for all x ∈ ℋ.

(d) At least one eigenvalue of 𝑇 is simple.

These four properties show the existence of an orthonormal basis (u𝑛)∞𝑛=0 forℋ satisfying
𝑇u0 = 0, 𝑇u𝑛 = u𝑛−1 for all 𝑛 ⩾ 1, and 𝑇∗u𝑛 = u𝑛+1 for all 𝑛 ⩾ 0. Furthermore, every
eigenvalue 𝜆 lies in 𝔻, is simple, and its corresponding eigenvector 𝜑𝜆 is of the form

𝜑𝜆 =
∞
∑
𝑛=0

𝜆𝑛u𝑛.

Since (u𝑛)∞𝑛=0 is an orthonormal basis forℋ, every x ∈ ℋ is of the form

x =
∞
∑
𝑛=0

⟨x,u𝑛⟩u𝑛.
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Beurling defined 𝐹x(𝜆) = ⟨𝜑𝜆, x⟩ for 𝜆 ∈ 𝔻 and observed that

𝐹x(𝜆) =
∞
∑
𝑛=0

𝜆𝑛⟨u𝑛, x⟩

and 𝐹x ∈ 𝐻2. This gives rise to the unitary operator 𝑈 ∶ ℋ → 𝐻2 defined as the linear
extension of 𝑈u𝑛 = 𝑧𝑛. Via 𝑈 , the operator 𝑇 corresponds to

𝑓 ↦ 𝑓 − 𝑓(0)
𝑧 ,

the backward shift on 𝐻2, while 𝑇∗ corresponds to 𝑓 ↦ 𝑧𝑓, the forward shift 𝑆. We
encounter constructions like this again in Chapters 6 and 9, where an abstract operator
is revealed to be unitarily equivalent to the concrete operator of multiplication by 𝑧 on a
Hilbert space of analytic functions.
Beurling coined the terms “inner” and “outer” and showed that the cyclic vectors for

𝑆 are precisely the outer functions and that the nonzero 𝑆-invariant subspaces are 𝑢𝐻2,
where 𝑢 is inner. He also discussed the lattice of invariant subspaces for 𝑆 and showed,
for two inner functions 𝑢1, 𝑢2, that 𝑢1/𝑢2 ∈ 𝐻2 if and only if 𝑢1𝐻2 ⊆ 𝑢2𝐻2. It is known
that 𝑢1𝐻2 ∩ 𝑢2𝐻2 = 𝑣𝐻2, where 𝑣 is the “least common multiple” of 𝑢1 and 𝑢2, and that
𝑢1𝐻2⋁𝑢2𝐻2 = 𝑤𝐻2, where 𝑤 is the “greatest common divisor” of 𝑢1 and 𝑢2.
Helson’s theorem (Theorem 4.3.7) described the invariant subspaces for the bilateral

shift𝑀𝜉 on 𝐿2(𝕋). The cyclic vectors for𝑀𝜉 are those functions 𝑓 ∈ 𝐿2(𝕋) such that |𝑓| > 0
almost everywhere and log |𝑓| ∉ 𝐿1(𝑚). See [202, Ch. 4] for the details.
The backward shift 𝑆∗ on𝐻2 is an influential operator that we discuss in Chapter 20 in

terms of model spaces. The cyclic vectors and invariant subspaces for 𝑆∗ are known, but
too technical to describe in this early chapter. Several good sources for this are [143, 250,
251, 252].
There are other invariant-subspace results for𝑀𝑧 on spaces related to the Hardy space.

Korenblum [221] considered the space 𝐻2
1 , the space of analytic functions 𝑓 on 𝔻 such

that 𝑓′ ∈ 𝐻2. The inner product on 𝐻2
1 is ⟨𝑓, 𝑔⟩ = ⟨𝑓, 𝑔⟩𝐻2 + ⟨𝑓′, 𝑔′⟩𝐻2 . This space is an

algebra of continuous functions on 𝔻− and the 𝑀𝑧-invariant subspaces of 𝐻2
1 are closed

ideals. These ideals can be described using inner functions, as in Beurling’s theorem, but
they also depend on possible zeros on 𝕋.
There are also shifts of higher multiplicity. Let

(𝐻2)(𝑛) = {f = (𝑓1, 𝑓2,…, 𝑓𝑛) ∶ 𝑓𝑗 ∈ 𝐻2}

and endow this space with the norm ‖f‖2 = ∑𝑛
𝑗=1 ‖𝑓𝑗‖2. Define the shift operator 𝑆(𝑛) on

this space by

𝑆(𝑛)f = (𝑆𝑓1, 𝑆𝑓2,…, 𝑆𝑓𝑛).

The invariant subspaces of 𝑆(𝑛) are completely characterized. The inner functions from
Beurling’s theorem are replaced by matrix-valued analogues of inner functions [202,
Ch. 7].



126 | the unilateral shift

There are Hardy spaces 𝐻2(Ω) of general domains Ω ⊆ ℂ. Chapter 11 concerns the
Hardy space of the upper half plane. For a bounded domain Ω, the operator 𝑀𝑧𝑓 = 𝑧𝑓
is bounded on 𝐻2(Ω) and has an associated lattice of invariant subspaces. The invariant
subspaces were described by Hitt [201] when Ω is an annulus; Aleman and Richter [15]
when Ω is a multiply connected domain; Aleman and Olin [14] when Ω is a crescent
domain; and Aleman, Feldman, and Ross [11] when Ω is a slit domain. The invariant
subspaces can be complicated and are not always described by inner functions.

5.9 Exercises
Exercise 5.9.1. Prove that with respect to the standard orthonormal basis (e𝑛)∞𝑛=0 for ℓ2,
the unilateral shift 𝑆 has the matrix representation

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Exercise 5.9.2. Verify that the unilateral shift 𝑆 on ℓ2 satisfies the following identities.

(a) 𝑆∗𝑆 = 𝐼.

(b) 𝑆𝑆∗ = 𝐼 − e0 ⊗ e0.

Exercise 5.9.3. For any 𝐴 ∈ ℬ(ℋ), prove that 𝜎𝑎𝑝(𝐴) is closed.

Exercise 5.9.4. For any 𝐴 ∈ ℬ(ℋ), prove that 𝜎𝑝(𝐴)− ⊆ 𝜎𝑎𝑝(𝐴).

Exercise 5.9.5. Prove that 𝐻∞ is a Banach space.

Exercise 5.9.6. Consider the following functions in 𝐿2(𝕋):

𝑓𝛼(𝜉) =
1

𝛼 − 𝜉 for 𝛼 ∈ ℂ\𝕋.

Evaluate ⟨𝑓𝛼, 𝑓𝛽⟩, ‖𝑓𝛼‖, and ‖𝑓𝛼𝑓𝛽‖.

Exercise 5.9.7. For each 𝜆 ∈ 𝔻, prove the following.

(a) 𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
belongs to 𝐻2.

(b) ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆) for all 𝑓 ∈ 𝐻2.

Exercise 5.9.8. Prove that⋁{𝑘𝜆 ∶ 𝜆 ∈ 𝔻} = 𝐻2.

Exercise 5.9.9. Prove that the inequality in (5.3.7) can be improved to say that if 𝑔 ∈ 𝐻2,

then |𝑔(𝜆)| = 𝑜( 1
√1 − |𝜆|2

) for 𝜆 ∈ 𝔻.



exercises | 127

Exercise 5.9.10. Let 𝜆 ∈ 𝔻.

(a) Consider the operator 𝐴𝜆 ∶ 𝐻2 → 𝐻2 defined by 𝐴𝜆 = 𝑘𝜆⊗𝑘𝜆. Prove that the matrix
representation of 𝐴𝜆 with respect to the orthonormal basis (𝑧𝑛)∞𝑛=0 is

⎡⎢⎢⎢⎢⎢
⎣

1 𝜆 𝜆2 𝜆3 ⋯
𝜆 𝜆2 𝜆3 𝜆4 ⋯
𝜆2 𝜆3 𝜆4 𝜆5 ⋯
𝜆3 𝜆4 𝜆5 𝜆6 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

(b) Prove that 𝐴2𝜆 = (1 − 𝜆2)−1𝐴𝜆.

Exercise 5.9.11. Let (𝜆𝑛)∞𝑛=1 be a sequence in 𝔻 such that

(1 − |𝜆𝑛+1|) ⩽ 𝑐(1 − |𝜆𝑛|) for all 𝑛 ⩾ 1

for some constant 0 < 𝑐 < 1. If

𝑓𝑛(𝑧) =
√1 − |𝜆𝑛|2

1 − 𝜆𝑛𝑧
for 𝑧 ∈ 𝔻,

prove that (𝑓𝑛)∞𝑛=1 satisfies
∞
∑
𝑛=1

|⟨𝑓, 𝑓𝑛⟩|2 ⩽ ‖𝑓‖2 for all 𝑓 ∈ 𝐻2.

Exercise 5.9.12. For any 𝑓(𝑧) = ∑∞
𝑗=0 𝑎𝑗𝑧𝑗 ∈ 𝐻2 and 𝑛 ⩾ 1, define Λ𝑛 ∶ 𝐻2 → ℂ by

Λ𝑛(𝑓) = 𝑎𝑛.

(a) Prove that Λ𝑛 is a bounded linear functional on 𝐻2.

(b) The Riesz representation theorem (Theorem 3.1.3) provides a function 𝑘𝑛 ∈ 𝐻2 such
that Λ𝑛(𝑓) = ⟨𝑓, 𝑘𝑛⟩ for all 𝑓 ∈ 𝐻2. Use the Cauchy integral formula to find 𝑘𝑛.

(c) Compute ‖Λ𝑛‖.

Exercise 5.9.13. The self commutator of 𝐴 ∈ ℬ(ℋ) is 𝐴∗𝐴 − 𝐴𝐴∗. Compute the self
commutator of 𝑆.

Exercise 5.9.14. Prove that the backward shift operator 𝑆∗ on 𝐻2 satisfies

(𝑆∗𝑓)(𝑧) = 𝑓(𝑧) − 𝑓(0)
𝑧 for all 𝑓 ∈ 𝐻2.

Exercise 5.9.15. For each 𝜆 ∈ ℂ\𝔻−, prove that

((𝑆∗ − 𝜆𝐼)−1𝑓)(𝑧) =
𝑧𝑓 − 1

𝜆
𝑓( 1

𝜆
)

1 − 𝜆𝑧 for all 𝑓 ∈ 𝐻2.
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Exercise 5.9.16. For each 𝜆 ∈ 𝔻, prove that the difference-quotient operator

(𝑄𝜆𝑓)(𝑧) =
𝑓(𝑧) − 𝑓(𝜆)

𝑧 − 𝜆

is bounded on 𝐻2.

Exercise 5.9.17. Let 𝑎1, 𝑎2,…, 𝑎𝑛 ∈ 𝔻 be distinct and

𝐵(𝑧) =
𝑛
∏
𝑖=1

𝑧 − 𝑎𝑖
1 − 𝑎𝑖𝑧

.

Prove that (𝐵𝐻2)⟂ is an 𝑆∗-invariant subspace of 𝐻2 and

(𝐵𝐻2)⟂ =⋁{ 1
1 − 𝑎𝑖𝑧

∶ 1 ⩽ 𝑖 ⩽ 𝑛}.

Exercise 5.9.18. Let 𝐴 = 𝑆∗|(𝐵𝐻2)⟂ , where (𝐵𝐻2)⟂ is the 𝑆∗-invariant subspace from
Exercise 5.9.17.

(a) Compute 𝜎(𝐴).

(b) Compute ‖𝐴‖.

Exercise 5.9.19. Prove that the 𝑛th power of the unilateral shift on𝐻2, that is, (𝑆𝑛𝑓)(𝑧) =
𝑧𝑛𝑓(𝑧) for 𝑓 ∈ 𝐻2, is unitarily equivalent to the shift of multiplicity 𝑛, defined by

𝑆(𝑛)f = (𝑆𝑓1, 𝑆𝑓2,…, 𝑆𝑓𝑛) for f = (𝑓1, 𝑓2,…, 𝑓𝑛) ∈ (𝐻2)(𝑛).

Exercise 5.9.20. For two nonzero 𝑆-invariant subspacesℳ1,ℳ2 of 𝐻2, prove that 𝑆|ℳ1

is unitarily equivalent to 𝑆|ℳ2 .

Exercise 5.9.21. For 𝑎 ∈ 𝔻, recall from Example 5.4.5 the function

𝑢𝑎(𝑧) =
𝑎 − 𝑧
1 − 𝑎𝑧 .

Prove that𝑀ᵆ𝑎 (multiplication by 𝑢𝑎 on 𝐻2) is unitarily equivalent to 𝑆.

Exercise 5.9.22. Example 5.7.6 reveals that 𝑓(𝑧) = 1 − 𝑧 is a cyclic vector for the shift on
𝐻2. Here is another proof.

(a) Prove that 𝑓 ⟂ (1 − 𝑧)𝑧𝑛 if and only if 𝑓(𝑛) = 𝑓(𝑛 + 1).

(b) Use this to prove that if 𝑓 is orthogonal to⋁{(1 − 𝑧)𝑧𝑛 ∶ 𝑛 ⩾ 0}, then 𝑓 ≡ 0.

Exercise 5.9.23. Let 𝑝 be a polynomial whose roots lie in |𝑧| ⩾ 1. Prove that 𝑝𝐻2 is dense
in 𝐻2. When is 𝑝𝐻2 = 𝐻2?

Exercise 5.9.24. If 𝐴 ∈ ℳ𝑛 has 𝑛 distinct eigenvalues, prove that 𝐴 is a cyclic operator
on ℂ𝑛 in the sense that there is an x ∈ ℂ𝑛 such that⋁{𝐴𝑛x ∶ 𝑛 ⩾ 0} = ℂ𝑛.
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Exercise 5.9.25. This problem requires knowledge of the Smirnov class 𝑁+ of functions
𝑓 = 𝜑/𝜓, where 𝜑, 𝜓 ∈ 𝐻∞ and 𝜓 is an outer function. The unfamiliar reader should
consult [118, Ch. 2]. One important fact needed here is that if 𝑓 ∈ 𝑁+\{0}, then

𝑓(𝜉) = lim
𝑟→1−

𝑓(𝑟𝜉)

exists and is nonzero for almost every 𝜉 ∈ 𝕋. The goal here is to produce a bounded
measurable function 𝑓 on 𝕋 such that |𝑓| = 1 almost everywhere on 𝕋, but which is not
the quotient of two inner functions.

(a) For a measurable set 𝐸 ⊆ 𝕋 with 𝑚(𝐸) > 0, define 𝑁+(𝐸) = {𝑓|𝐸 ∶ 𝑓 ∈ 𝑁+}. Prove
that if 𝑓, 𝑔 are inner functions and 𝑓/𝑔 ∈ 𝑁+(𝐸), then 𝑓/𝑔 is an inner function.

(b) Define ℎ on 𝕋 by

ℎ(𝑒𝑖𝜃) = { 1 if 0 ⩽ 𝜃 ⩽ 𝜋,
−1 if 𝜋 < 𝜃 < 2𝜋.

Prove there are no inner functions 𝑓, 𝑔 such that ℎ = 𝑓/𝑔 almost everywhere on 𝕋.

Exercise 5.9.26. Let 𝐾 be a compact operator on 𝐻2. Show that 𝐾𝑆𝑛 → 0 in operator
norm as follows.

(a) Given 𝜀 > 0, prove that there is a finite-rank operator 𝑇 on 𝐻2 such that ‖𝐾𝑆𝑛‖ ⩽
‖𝑇𝑆𝑛‖ + 𝜀.

(b) Since 𝑇 has finite rank, there are 𝑓𝑖, 𝑔𝑖 ∈ 𝐻2 for 1 ⩽ 𝑖 ⩽ 𝑁 such that 𝑇 = ∑𝑁
𝑖=1 𝑓𝑖⊗𝑔𝑖.

Prove that 𝑇𝑆𝑛 = ∑𝑁
𝑖=1 𝑓𝑖 ⊗ (𝑆∗𝑛𝑔𝑖).

(c) Prove that ‖𝑆∗𝑛𝑔‖ → 0 as 𝑛 → ∞.

Exercise 5.9.27. Use these steps from [169] to see that inf
𝐾
‖𝑆 − 𝐾‖ = 1, where the

infimum is taken over the compact operators on 𝐻2.

(a) Prove that inf
𝐾
‖𝑆 − 𝐾‖ ⩽ 1.

(b) If 𝐾 is compact, prove that 1 ∈ 𝜎((𝑆 − 𝐾)∗(𝑆 − 𝐾)).

(c) Prove that ‖(𝑆 − 𝐾)∗(𝑆 − 𝐾)‖ ⩾ 1.

Exercise 5.9.28. This problem explores the commutant of 𝑆2 on 𝐻2.

(a) Prove that every 𝑓 ∈ 𝐻2 has an orthogonal decomposition

𝑓(𝑧) = 𝑔(𝑧2) + 𝑧ℎ(𝑧2), where 𝑔, ℎ ∈ 𝐻2.

(b) For 𝜑, 𝜓 ∈ 𝐻∞, prove that 𝐴𝜑,𝜓 ∶ 𝐻2 → 𝐻2 defined by

𝐴𝜑,𝜓(𝑔(𝑧2) + 𝑧ℎ(𝑧2)) = 𝜑(𝑧)𝑔(𝑧2) + 𝜓(𝑧)ℎ(𝑧2)

is bounded on 𝐻2 and commutes with 𝑆2.
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(c) Prove that any 𝐴 ∈ ℬ(𝐻2) that commutes with 𝑆2 is of the form 𝐴 = 𝐴𝜑,𝜓.

(d) Prove that 𝑓(𝑧) ↦ 𝑓(−𝑧) is a bounded operator on 𝐻2 that commutes with 𝑆2, but is
not of the form𝑀𝜑 on 𝐻2 for some 𝜑 ∈ 𝐻∞.

(e) How is the operator 𝑓(𝑧) ↦ 𝑓(−𝑧) realized as 𝐴𝜑,𝜓?

Exercise 5.9.29. If 𝑈 ∈ ℬ(𝐻2) is unitary and 𝑆 is the unilateral shift, follow these steps
from [169] to see that ‖𝑆 − 𝑈‖ = 2.

(a) Prove that ‖𝑆 − 𝑈‖ ⩽ 2.

(b) Prove that ‖𝑆 − 𝑈‖ = ‖𝑈∗𝑆 − 𝐼‖.

(c) Prove that −1 ∈ 𝜎(𝑈∗𝑆).

(d) Prove that ‖𝑈∗𝑆 − 𝐼‖ ⩾ 2.

Exercise 5.9.30. Follow this idea from [246] to prove that the unilateral shift 𝑆 is
irreducible: there is no subspace ℳ of ℓ2 with ℳ ≠ {0} and ℳ ≠ ℓ2 such that ℳ and
ℳ⟂ are invariant for 𝑆 (equivalently, 𝑆ℳ ⊆ ℳ and 𝑆∗ℳ ⊆ℳ by Exercise 4.5.1).

(a) Supposeℳ ≠ {0} with 𝑆ℳ ⊆ ℳ and 𝑆∗ℳ ⊆ ℳ. Let x = (𝑥𝑛)∞𝑛=0 ∈ ℳ and let 𝑛 be
the smallest index such that 𝑥𝑛 ≠ 0. Define y = 𝑆𝑛+1(𝑆∗(𝑛+1)x) and prove that

𝑦𝑘 = {𝑥𝑘 if 𝑘 > 𝑛,
0 if 𝑘 ⩽ 𝑛.

(b) Prove that x − y = (0, 0, 0,…, 0, 𝑥𝑛, 0, 0,…), in which 𝑥𝑛 occurs in the 𝑛th position.

(c) Use the above to prove thatℳ = ℓ2.

Exercise 5.9.31. Here is another proof that the unilateral shift 𝑆 on 𝐻2 is irreducible.
Supposeℳ is a subspace of 𝐻2 such that 𝑆ℳ ⊆ ℳ and 𝑆∗ℳ ⊆ℳ. If 𝑃 is the orthogonal
projection of𝐻2 ontoℳ, recall from Exercise 4.5.16 that 𝑆𝑃 = 𝑃𝑆. Consult Corollary 5.6.2
and use the fact that 𝑃 satisfies 𝑃2 = 𝑃 to deduce that 𝑃 = 𝐼 or 𝑃 = 0.

Exercise 5.9.32. Prove that 𝑆2 has proper nonzero reducing subspacesℳ. That is, find a
proper nonzero subspaceℳ of 𝐻2 such that 𝑆2ℳ ⊆ℳ and 𝑆∗2ℳ ⊆ℳ.

Exercise 5.9.33. Follow this idea from [168] to prove that there is no bounded operator
on 𝐻2 whose square is the unilateral shift.

(a) Prove that it suffices to show there is no 𝐵 ∈ ℬ(𝐻2) such that 𝐵2 = 𝑆∗.

(b) Suppose toward a contradiction that 𝐵2 = 𝑆∗. Prove that ker𝐵 = ker 𝑆∗ and ker𝐵 is
the subspace of constant functions.

(c) Prove that the constant functions belong to ran𝐵.

(d) Let 𝑓 ∈ 𝐻2 be such that 𝐵𝑓 = 1. Prove that 1 and 𝑓 are linearly independent.

(e) Obtain a contradiction and conclude that no such 𝐵 exists.
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Exercise 5.9.34. Here is another proof that the unilateral shift 𝑆 does not have a square
root.

(a) Prove that if 𝐴 ∈ ℬ(𝐻2) and 𝐴2 = 𝑆, then 𝐴 ∈ {𝑆}′.

(b) Corollary 5.6.2 says that 𝐴 = 𝑀𝜑 for some 𝜑 ∈ 𝐻∞. Derive a contradiction from this.

Exercise 5.9.35.

(a) Prove that the bilateral shift (𝑀𝜉𝑓)(𝜉) = 𝜉𝑓(𝜉) on 𝐿2(𝕋) has a square root. In other
words, find a 𝑇 ∈ ℬ(𝐿2(𝕋)) such that 𝑇2 = 𝑀𝜉.

(b) Prove that there are infinitely many square roots of𝑀𝜉.

(c) For one of the square roots produced in (b), find the matrix representation of 𝑇 with
respect to the orthonormal basis (𝜉𝑛)∞𝑛=−∞ for 𝐿2(𝕋).

Exercise 5.9.36. The numerical range of 𝐴 ∈ ℬ(ℋ) is 𝑊(𝐴) = {⟨𝐴x, x⟩ ∶ ‖x‖ = 1}.
We explore the numerical range of several operators in this book such as the Cesàro and
Volterra operators. Prove that𝑊(𝑆∗) = 𝔻 as follows.

(a) Prove that𝑊(𝑆∗) ⊆ 𝔻−.

(b) Prove that 𝔻 ⊆ 𝑊(𝑆∗).

(c) If 𝜉 ∈ 𝑊(𝑆∗) ∩ 𝕋, then there is an x ∈ ℓ2 with ⟨𝑆∗x, x⟩ = 𝜉. Prove that 𝑆∗x = 𝜆x for
some 𝜆 ∈ 𝕋, which contradicts Proposition 5.2.4.

(d) Prove that𝑊(𝑆∗) = 𝔻.

Exercise 5.9.37. Here is a useful function-theoretic result with a geometric proof [192].
Proposition 5.3.12 says that every 𝑓 ∈ 𝐻2\{0} has finite radial limits almost everywhere
on 𝕋. Use the following steps to show that the radial-limit function for 𝑓 cannot be zero
on any set of positive measure.

(a) If 𝑓 ∈ 𝐻2\{0}, divide by a suitable power of 𝜉 to assume, without loss of generality,
that 𝑓 has the Fourier series 𝑓(𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉2 +⋯ with 𝑎0 ≠ 0. Prove that

{𝑓(𝜉)(1 + 𝑏1𝜉 + 𝑏2𝜉2 +⋯+ 𝑏𝑛𝜉𝑛) ∶ 𝑏𝑗 ∈ ℂ, 𝑛 ⩾ 1},

and its closure𝒳 is convex and that the leading coefficient of any element of𝒳 is 𝑎0.

(b) From Exercise 1.10.31, there is a unique 𝑔 ∈ 𝒳 such that ‖𝑔‖ ⩽ ‖ℎ‖ for all ℎ ∈ 𝒳. For
all 𝜆 ∈ ℂ and 𝑛 ⩾ 1, prove that

‖𝑔 + 𝜆𝜉𝑛𝑔‖2 = ‖𝑔‖2(1 + |𝜆|2) + 2Re 𝜆∫
𝕋
|𝑔(𝜉)|2𝜉𝑛𝑑𝑚(𝜉).

(c) Use (b) to prove that ˆ|𝑔|2(𝑛) = 0 for all 𝑛 ⩽ −1.
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(d) Prove that ˆ|𝑔|2(𝑛) = 0 for all 𝑛 ⩾ 1.

(e) Prove that |𝑔| is a nonzero constant function on 𝕋.

(f) Use a contradiction argument to show that 𝑓 ∈ 𝐻2\{0} cannot have radial limits
equal to zero on a set of positive measure.

5.10 Hints for the Exercises
Hint for Ex. 5.9.3: Mimic the proof of Proposition 5.2.4.
Hint for Ex. 5.9.5: Use a normal-family argument to argue completeness.
Hint for Ex. 5.9.6: Consider the |𝛼| < 1 and |𝛼| > 1 cases separately (similarly for 𝛽).
Hint for Ex. 5.9.7: For 𝜉 ∈ 𝕋, write 𝑘𝜆(𝜉) = ∑∞

𝑛=0(𝜉𝜆)𝑛.
Hint for Ex. 5.9.8: Suppose 𝑓 ∈ 𝐻2 annihilates 𝑘𝜆 for all 𝜆 ∈ 𝔻.
Hint for Ex. 5.9.9: The result is true for a polynomial. Approximate 𝑔 ∈ 𝐻2 with a suitable
polynomial and use the estimate from (5.3.7).
Hint for Ex. 5.9.11: Use Schur’s test (Theorem 3.3.1) to show that the Gram matrix
[⟨𝑓𝑗 , 𝑓𝑖⟩]∞𝑖,𝑗=1 is a bounded operator on ℓ2(ℕ).
Hint for Ex. 5.9.17: Show that

⟨𝑓(𝑧) − 𝑓(0)
𝑧 , 𝑧𝑘𝐵(𝑧)⟩ = 0

for all 𝑓 ∈ (𝐵𝐻2)⟂ and 𝑘 ⩾ 0.
Hint for Ex. 5.9.21: Recall that 𝑢𝑎(𝑢𝑎(𝑧)) = 𝑧 and show that (𝑈𝑔)(𝑧) = 𝑔(𝑢𝑎(𝑧))𝑢′𝑎(𝑧)
defines a unitary operator on 𝐻2.
Hint for Ex. 5.9.26: Consult Exercise 3.6.3.
Hint for Ex. 5.9.28: For (c), use Exercise 5.9.19 and consult the proof of Corollary 5.6.2.
Hint for Ex. 5.9.33: For (c), prove that ker 𝑆∗ ⊆ ran𝐵.
Hint for Ex. 5.9.36: For (b), consider the vectors from (5.2.5).
Hint for Ex. 5.9.37: For (f) use the fact that 𝑔 is the limit of sequence of functions of the
form 𝑓(𝜉)(1 +∑𝑛

𝑗=1 𝑏𝑗𝜉𝑗). Now use Proposition 4.1.5.
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The Cesàro Operator

Key Concepts: Cesàro summation, properties of the Cesàro operator (matrix representation, norm,
adjoint, spectrum, numerical range), hyponormal operator, subnormal operator, subnormality of the
Cesàro operator, operators related to the Cesàro operator.

Outline: The Cesàro operator on ℓ2, which originates in summability theory, opens the
door to subnormal operators. This connection appears when the Cesàro operator is viewed
as a multiplication operator on a Hilbert space of analytic functions.

6.1 Cesàro Summability
Let ∑∞

𝑛=0 𝑎𝑛 be an infinite series of complex numbers. For 𝑛 ⩾ 0, let 𝑠𝑛 = ∑𝑛
𝑗=0 𝑎𝑗

denote the corresponding sequence of partial sums. The series converges to 𝐿 ∈ ℂ, written
∑∞

𝑛=0 𝑎𝑛 = 𝐿, if 𝑠𝑛 → 𝐿. If no such 𝐿 exists, the series diverges. To deal with divergent
series, Cesàro proposed the following method of summation. The 𝑛th Cesàro mean is

𝜎𝑛 =
1

𝑛 + 1
𝑛
∑
𝑗=0

𝑠𝑗 for 𝑛 ⩾ 0,

the average of the first 𝑛 + 1 partial sums. Then∑∞
𝑛=0 𝑎𝑛 is Cesàro summable to 𝐿 if

lim
𝑛→∞

𝜎𝑛 = 𝐿.

For example, the Grandi series 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 +⋯ diverges since

𝑠𝑛 = {1 𝑛 even,
0 𝑛 odd.

However,

𝜎𝑛 = {
𝑛/2+1
𝑛+1

𝑛 even,
1
2

𝑛 odd
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which converges to 1/2. Thus, the Grandi series is Cesàro summable to 1/2 even though it
diverges in the usual sense. Exercise 6.7.1 shows that if a series converges in the traditional
sense, then it converges in the Cesàro sense to the same value. An excellent survey of
summability methods for infinite series is Hardy’s classic text [178]. Cesàro summability
connects to the problem of pointwise convergence of Fourier series [352, 380].

6.2 The Cesàro Operator
Although Cesàro summability was studied by others (see [178] for a survey), the initial
paper on the Cesàro operator by Brown, Halmos, and Shields appeared in 1965 [69]. We
largely follow their presentation. For a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2, define the sequence 𝐶a whose
𝑛th term is

(𝐶a)(𝑛) = 1
𝑛 + 1

𝑛
∑
𝑗=0

𝑎𝑗 . (6.2.1)

In other words,

𝐶((𝑎0, 𝑎1, 𝑎2,…)) = (𝑎0,
𝑎0 + 𝑎1

2 , 𝑎0 + 𝑎1 + 𝑎2
3 ,…).

The Cesàro operator is the linear transformation a ↦ 𝐶a, also denoted by 𝐶, from ℓ2 to
the vector space of complex sequences. In fact, 𝐶 maps ℓ2 to itself.

Proposition 6.2.2. The Cesàro operator is bounded on ℓ2.

This proposition is a consequence of the following.

Lemma 6.2.3 (Hardy [175]). If 𝑏𝑛 ⩾ 0 for all 𝑛 ⩾ 1, then
𝑁
∑
𝑛=1

(𝑏1 + 𝑏2 +⋯+ 𝑏𝑛
𝑛 )

2
⩽ 16

𝑁
∑
𝑛=1

𝑏2𝑛 for all 𝑁 ⩾ 1.

Proof Although there are more general modern proofs of this result (see [69] and
Example 3.3.3), Hardy’s original argument is the most direct. Define

𝐵0 = 0 and 𝐵𝑛 = 𝑏1 + 𝑏2 +⋯+ 𝑏𝑛 for 𝑛 ⩾ 1,

and

Φ𝑛 =
1
𝑛2 +

1
(𝑛 + 1)2 +

1
(𝑛 + 2)2 +⋯ for 𝑛 ⩾ 1.

Observe that

Φ𝑛 <
1
𝑛2 +∫

∞

𝑛

𝑑𝑥
𝑥2 = 1

𝑛2 +
1
𝑛 ⩽ 2

𝑛 . (6.2.4)

For each 𝑁 ⩾ 1, it follows that
𝑁
∑
𝑛=1

(𝐵𝑛𝑛 )
2
=

𝑁
∑
𝑛=1

𝐵2𝑛(Φ𝑛 − Φ𝑛+1)



the cesàro operator | 135

=
𝑁
∑
𝑛=1

(𝐵2𝑛 − 𝐵2𝑛−1)Φ𝑛 − 𝐵2𝑁Φ𝑁+1 (summation by parts)

⩽
𝑁
∑
𝑛=1

(𝐵2𝑛 − 𝐵2𝑛−1)Φ𝑛

⩽ 2
𝑁
∑
𝑛=1

𝑏𝑛𝐵𝑛Φ𝑛.

⩽ 4
𝑁
∑
𝑛=1

𝑏𝑛
𝐵𝑛
𝑛 (by (6.2.4))

⩽ 4(
𝑁
∑
𝑛=1

𝑏2𝑛)
1
2 (

𝑁
∑
𝑛=1

(𝐵𝑛𝑛 )
2
)
1
2 .

Rearrange the terms above and square the result to obtain

𝑁
∑
𝑛=1

(𝐵𝑛𝑛 )
2
⩽ 16

𝑁
∑
𝑛=1

𝑏2𝑛,

which completes the proof. ■

As we will see in a moment, the constant 16 on the right side of Hardy’s inequality can
be improved. In fact, Hardy mentions this in his paper [175].
For the standard basis (e𝑛)∞𝑛=0 for ℓ2, obverse that

𝐶e0 = 1e0 +
1
2
e1 +

1
3
e2 +

1
4
e3 +⋯ ,

𝐶e1 = 0e0 +
1
2
e1 +

1
3
e2 +

1
4
e3 +⋯ ,

𝐶e2 = 0e0 + 0e1 +
1
3
e2 +

1
4
e3 +⋯ ,

⋮

Thus, with respect to this basis, the Cesàro operator has the matrix representation

[𝐶] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 ⋯
1
2

1
2

0 0 0 ⋯
1
3

1
3

1
3

0 0 ⋯
1
4

1
4

1
4

1
4

0 ⋯
1
5

1
5

1
5

1
5

1
5

⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.2.5)
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Consequently, the matrix representation of 𝐶∗ is

[𝐶∗] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

1
4

1
5

⋯

0 1
2

1
3

1
4

1
5

⋯

0 0 1
3

1
4

1
5

⋯

0 0 0 1
4

1
5

⋯

0 0 0 0 1
5

⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and hence

(𝐶∗a)(𝑛) =
∞
∑
𝑗=𝑛

𝑎𝑗
𝑗 + 1 for 𝑛 ⩾ 0. (6.2.6)

A matrix computation (see Exercise 6.7.2) shows that

[(𝐼 − 𝐶)(𝐼 − 𝐶)∗] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯
0 1

2
0 0 ⋯

0 0 2
3

0 ⋯
0 0 0 3

4
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.2.7)

which is a diagonal operator on ℓ2. By Proposition 3.1.5 and Example 2.1.7,

‖𝐼 − 𝐶‖2 = ‖(𝐼 − 𝐶)(𝐼 − 𝐶)∗‖ = 1. (6.2.8)

Thus, ‖𝐶‖ = ‖𝐼 − (𝐼 − 𝐶)‖ ⩽ ‖𝐼‖ + ‖𝐼 − 𝐶‖ = 1 + 1 = 2. In fact, equality holds above.

Proposition 6.2.9. ‖𝐶‖ = 2.

Proof First observe that ‖𝐶∗‖ = ‖𝐶‖ ⩽ 2 (Proposition 3.1.5d). For each 𝛼 > 1
2
, define the

ℓ2 sequence

a𝛼 = ( 1
(𝑛 + 1)𝛼 )

∞

𝑛=0
.

Then

‖𝐶∗a𝛼‖2 =
∞
∑
𝑚=0

(
∞
∑
𝑛=𝑚

1
(𝑛 + 1)𝛼+1 )

2
(by (6.2.6))

⩾
∞
∑
𝑚=0

(∫
∞

𝑚+1

𝑑𝑥
𝑥𝛼+1 )

2

=
∞
∑
𝑚=0

( 1
𝛼(𝑚 + 1)𝛼 )

2
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= 1
𝛼2

∞
∑
𝑚=0

1
(𝑚 + 1)2𝛼

= 1
𝛼2 ‖a𝛼‖

2.

Thus, ‖𝐶∗a𝛼‖ ⩾ 𝛼−1‖a𝛼‖ for all 𝛼 >
1
2
and hence ‖𝐶∗‖ ⩾ 𝛼−1. Letting 𝛼 → 1

2
gives us

‖𝐶∗‖ ⩾ 2. Another application of Proposition 3.1.5d shows that ‖𝐶‖ = 2. ■

6.3 Spectral Properties
We now use the results from the previous section to determine the spectrum of the Cesàro
operator.

Theorem 6.3.1. The following hold for the Cesàro operator 𝐶 on ℓ2.

(a) 𝜎𝑝(𝐶) = ∅.

(b) 𝜎𝑝(𝐶∗) = {𝑧 ∶ |𝑧 − 1| < 1}.

(c) 𝜎(𝐶) = {𝑧 ∶ |𝑧 − 1| ⩽ 1}.

Proof (a) Suppose a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2\{0} and 𝐶a = 𝜆a. Then 𝑎0 = (𝐶a)(0) = 𝜆𝑎0. If
𝑛 = 1, then

𝑎0 + 𝑎1
2 = (𝐶a)(1) = 𝜆𝑎1.

Consequently, 𝑎1 = 2𝜆𝑎1 − 𝜆𝑎0. Induction confirms that

𝑎𝑛 = 𝜆((𝑛 + 1)𝑎𝑛 − 𝑛𝑎𝑛−1) for 𝑛 ⩾ 1. (6.3.2)

Now suppose𝑚 ⩾ 0 is the smallest integer such that 𝑎𝑚 ≠ 0. Then (6.3.2) yields

𝜆 = 1
𝑚 + 1

and hence 0 < 𝜆 ⩽ 1. Solve for 𝑎𝑛 in (6.3.2) and deduce

𝑎𝑛 =
𝜆𝑛

𝜆𝑛 − (1 − 𝜆)𝑎𝑛−1 =
𝑛

𝑛 −𝑚𝑎𝑛−1 for 𝑛 ⩾ 𝑚 + 1,

which implies that |𝑎𝑛| ⩾ |𝑎𝑛−1| for all 𝑛 ⩾ 𝑚 + 1. This contradicts the fact that
a ∈ ℓ2\{0}. Therefore, 𝜎𝑝(𝐶) = ∅. See Exercise 6.7.3 for another proof of this.

(b) The first step is to prove 𝜎𝑝(𝐶∗) ⊇ {𝑧 ∶ |𝑧 − 1| < 1}. An analysis similar to (a) shows
that for 𝜆 ≠ 0,

𝐶∗a = 𝜆a ⟺ 𝑎𝑛+1 = (1 − 1
𝜆(𝑛 + 1) )𝑎𝑛 for 𝑛 ⩾ 0.
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Solving the recursion yields

𝑎𝑛 = 𝑎0
𝑛
∏
𝑗=1

(1 − 1
𝑗𝜆) for 𝑛 ⩾ 1. (6.3.3)

Now suppose that |𝜆 − 1| < 1, or equivalently,

2Re 1𝜆 = 1 + 𝜀 for some 𝜀 > 0.

An estimate in [69] (see Exercise 6.7.6) shows that

|𝑎𝑛|2 = 𝑂( 1
𝑛1+𝜀 )

and hence a ∈ ℓ2. Therefore,

{𝑧 ∶ |𝑧 − 1| < 1} ⊆ 𝜎𝑝(𝐶∗). (6.3.4)

The next step is to show the reverse containment. By (6.2.8) and Theorem 2.4.9,

𝜎(𝐼 − 𝐶) ⊆ {𝑧 ∶ |𝑧| ⩽ 1}

and hence

𝜎(𝐶) ⊆ {𝑧 ∶ |𝑧 − 1| ⩽ 1}. (6.3.5)

Since 𝜎𝑝(𝐶∗) ⊆ 𝜎(𝐶∗) = 𝜎(𝐶), it follows that

{𝑧 ∶ |𝑧 − 1| < 1} ⊆ 𝜎𝑝(𝐶∗) ⊆ {𝑧 ∶ |𝑧 − 1| ⩽ 1}.

It suffices to show that no 𝜆 satisfying |1 − 𝜆| = 1 lies in 𝜎𝑝(𝐶∗).
By (6.2.7), ‖(𝐼 − 𝐶)(𝐼 − 𝐶∗)a‖ < ‖a‖ for a ∈ ℓ2\{0}, and hence

‖(𝐼 − 𝐶∗)a‖2 = ⟨(𝐼 − 𝐶∗)a, (𝐼 − 𝐶∗)a⟩
= ⟨(𝐼 − 𝐶)(𝐼 − 𝐶∗)a, a⟩
⩽ ‖(𝐼 − 𝐶)(𝐼 − 𝐶∗)a‖‖a‖
< ‖a‖2. (6.3.6)

Suppose 𝜆 ∈ 𝜎𝑝(𝐶∗) and |1 − 𝜆| = 1. Then 1 − 𝜆 ∈ 𝜎𝑝(𝐼 − 𝐶∗) and thus there is a
corresponding unit eigenvector b. But then, by (6.3.6),

1 = |1 − 𝜆| = ‖(𝐼 − 𝐶∗)b‖ < ‖b‖ = 1,

which is a contradiction. This completes the proof of (b).
(c) Use the containments (6.3.4) and (6.3.5). ■

Lemma 6.4.14 (below) computes eigenvectors for 𝐶∗.
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6.4 Other Properties of the Cesàro Operator
An operator 𝐴 ∈ ℬ(ℋ) is normal if 𝐴∗𝐴 = 𝐴𝐴∗. In particular, 𝐴∗𝐴 − 𝐴𝐴∗ = 0 for any
normal operator 𝐴. We say that 𝐴 ∈ ℬ(ℋ) is hyponormal if

⟨(𝐴∗𝐴 − 𝐴𝐴∗)x, x⟩ ⩾ 0 for all x ∈ ℋ, (6.4.1)

or equivalently, if ‖𝐴x‖ ⩾ ‖𝐴∗x‖ for all x ∈ ℋ. For𝑇 ∈ ℬ(ℋ), we use the notation𝑇 ⩾ 0 to
denote the condition ⟨𝑇x, x⟩ ⩾ 0 for all x ∈ ℋ. Hyponormal operators are one of several
types of operators (subnormal, seminormal, posinormal) that are generalizations of the
well-understood class of normal operators. We will formally study normal operators in
Chapter 8 and subnormal operators in Chapter 19.

Theorem 6.4.2. The Cesàro operator 𝐶 is hyponormal.

Proof Exercise 6.7.7 shows that with respect to the standard basis (e𝑛)∞𝑛=0 for ℓ2, the
matrix representation of 𝐶∗𝐶 − 𝐶𝐶∗ is the “𝐿-shaped” matrix

𝑇 =

⎡⎢⎢⎢⎢⎢
⎣

𝛼0 − 𝛽0 𝛼1 − 𝛽1 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼1 − 𝛽1 𝛼1 − 𝛽1 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼2 − 𝛽2 𝛼2 − 𝛽2 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼3 − 𝛽3 𝛼3 − 𝛽3 𝛼3 − 𝛽3 𝛼3 − 𝛽3 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

, (6.4.3)

where

𝛼𝑛 =
∞
∑
𝑗=𝑛

1
(𝑗 + 1)2 and 𝛽𝑛 =

1
𝑛 + 1 . (6.4.4)

We must prove that 𝑇 ⩾ 0. Let

𝑇𝑛 = 𝑃𝑛(𝐶∗𝐶 − 𝐶𝐶∗)𝑃𝑛,

where 𝑃𝑛 is the orthogonal projection of ℓ2 onto span{e𝑗 ∶ 0 ⩽ 𝑗 ⩽ 𝑛}. Since 𝑃𝑛x→ x
as 𝑛 → ∞, the Cauchy–Schwarz inequality implies that ⟨𝑇𝑛x, x⟩ → ⟨𝑇x, x⟩ for all
x ∈ ℓ2. Thus, it suffices to show that 𝑇𝑛 ⩾ 0 for all 𝑛. We must verify that the finite
𝐿-shaped matrices

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑧0 𝑧1 𝑧2 𝑧3 ⋯ 𝑧𝑛
𝑧1 𝑧1 𝑧2 𝑧3 ⋯ 𝑧𝑛
𝑧2 𝑧2 𝑧2 𝑧3 ⋯ 𝑧𝑛
𝑧3 𝑧3 𝑧3 𝑧3 ⋯ 𝑧𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑧𝑛 𝑧𝑛 𝑧𝑛 𝑧𝑛 ⋯ 𝑧𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.4.5)

where 𝑧𝑘 = 𝛼𝑘 − 𝛽𝑘, are positive semidefinite. By Sylvester’s criterion for positive
definiteness [141, Thm. 16.4.3], this can be done by showing that the determinant
of each matrix (6.4.5) is positive. Subtract the second column from the first, then
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subtract the third column from the second, and continue this way through the
columns. The determinant of (6.4.5) is unchanged but the resulting matrix is upper
triangular:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑧0 − 𝑧1 ⋆ ⋆ ⋆ ⋯ ⋆
0 𝑧1 − 𝑧2 ⋆ ⋆ ⋯ ⋆
0 0 𝑧2 − 𝑧3 ⋆ ⋯ ⋆
0 0 0 𝑧3 − 𝑧4 ⋯ ⋆
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 𝑧𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the above, ⋆ denotes an entry whose exact value does not concern us. Thus, we
just need to check that

(𝑧0 − 𝑧1)(𝑧1 − 𝑧2)(𝑧2 − 𝑧3)⋯ (𝑧𝑛−1 − 𝑧𝑛)𝑧𝑛 > 0. (6.4.6)

To do this, recall the definitions of 𝛼𝑛 and 𝛽𝑛 from (6.4.4) and observe that for 𝑘 =
0, 1, 2,…, 𝑛 − 1,

𝑧𝑘 − 𝑧𝑘+1 = (𝛼𝑘 − 𝛽𝑘) − (𝛼𝑘+1 − 𝛽𝑘+1)

= (
∞
∑
𝑗=𝑘

1
(𝑗 + 1)2 −

1
𝑘 + 1) − (

∞
∑

𝑗=𝑘+1

1
(𝑗 + 1)2 −

1
𝑘 + 2)

= 1
(𝑘 + 1)2 −

1
(𝑘 + 1)(𝑘 + 2) > 0

and

𝑧𝑛 =
∞
∑
𝑗=𝑛

1
(𝑗 + 1)2 −

1
𝑛 + 1 > ∫

∞

𝑛

𝑑𝑥
(𝑥 + 1)2 −

1
𝑛 + 1 = 0.

This verifies (6.4.6). ■

See Exercise 6.7.19 for another proof of the hyponormality of 𝐶.
An 𝑆 ∈ ℬ(ℋ) is subnormal if there is a Hilbert space 𝒦 ⊇ ℋ and a normal operator

𝑁 ∈ ℬ(𝒦) such that 𝑁ℋ ⊆ ℋ and 𝑁|ℋ = 𝑆. Equivalently, a subnormal operator is the
restriction of a normal operator to one of its invariant subspaces. Note that every normal
operator is subnormal. One example of a subnormal operator is𝑀𝑧 on 𝐻2(𝜇), where 𝜇 is
a finite positive compactly supported Borel measure on ℂ, and 𝐻2(𝜇) is the closure of the
polynomials in 𝐿2(𝜇). Furthermore, a subnormal operator is hyponormal (Exercise 19.6.9)
but not vice versa [95, p. 47]. The next result is one of the gems in the study of the Cesàro
operator.

Theorem 6.4.7 (Kriete–Trutt [223]). The Cesàro operator is subnormal.
The next few results set up an outline of the proof. Recall that a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2 is

identified with 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝐻2 (Proposition 4.2.7). Consequently, one can view

the Cesàro operator as an operator on 𝐻2 defined by

(𝐶𝑓)(𝑧) = 1
𝑧 ∫

𝑧

0

𝑓(𝜉)
1 − 𝜉𝑑𝜉 for 𝑧 ∈ 𝔻. (6.4.8)
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Since 𝑓(𝜉)(1 − 𝜉)−1 is analytic on the simply connected domain 𝔻, the value of the
antiderivative above is independent of the path from 0 to 𝑧. A calculation with power
series (see Exercise 6.7.8) shows that if 𝑓(𝑧) = ∑∞

𝑗=0 𝑎𝑗𝑧𝑗 , then

(𝐶𝑓)(𝑧) =
∞
∑
𝑛=0

( 1
𝑛 + 1

𝑛
∑
𝑗=0

𝑎𝑗)𝑧𝑛. (6.4.9)

In other words, the 𝑛th Taylor coefficient of 𝐶𝑓 is the 𝑛th term of the Cesàro sequence
from (6.2.1) corresponding to (𝑎𝑛)∞𝑛=0.
Here is an adjoint formula for 𝐶, related to the one in (6.2.6).

Proposition 6.4.10. Let 𝑓 ∈ 𝐻2 and let

𝐹(𝜆) = ∫
𝜆

0
𝑓(𝑤) 𝑑𝑤 for 𝜆 ∈ 𝔻,

denote the antiderivative of 𝑓 that vanishes at 𝜆 = 0. Then 𝐹 extends continuously to 𝔻−,
and hence 𝐹(1) is well defined. Moreover,

(𝐶∗𝑓)(𝜆) = 𝐹(1) − 𝐹(𝜆)
1 − 𝜆 = 1

1 − 𝜆 ∫
1

𝜆
𝑓(𝑤) 𝑑𝑤.

Proof If 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝐻2, then

𝐹(𝜆) =
∞
∑
𝑛=0

𝑎𝑛
𝑛 + 1𝜆

𝑛+1 for all 𝜆 ∈ 𝔻.

TheCauchy–Schwarz inequality shows that the series above converges absolutely and
uniformly on 𝔻− and thus 𝐹 extends continuously to 𝔻−. Therefore,

𝐹(1) =
∞
∑
𝑛=0

𝑎𝑛
𝑛 + 1

is well defined.
Recall from Chapter 5 that

𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
=

∞
∑
𝑛=0

𝜆
𝑛
𝑧𝑛,

the reproducing kernel for 𝐻2, satisfies 𝑘𝜆 ∈ 𝐻2 and ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆) for all 𝜆 ∈ 𝔻 and
𝑓 ∈ 𝐻2. Thus,

(𝐶∗𝑓)(𝜆) = ⟨𝐶∗𝑓, 𝑘𝜆⟩ = ⟨𝑓, 𝐶𝑘𝜆⟩.

Identify 𝑘𝜆 with the ℓ2 sequence (𝜆
𝑛
)∞𝑛=0 and use (6.2.5) to deduce that

(𝐶𝑘𝜆)(𝑧) = 1 + 1 + 𝜆
2 𝑧 + 1 + 𝜆 + 𝜆

2

3 𝑧2 + 1 + 𝜆 + 𝜆
2
+ 𝜆

3

4 𝑧3 +⋯
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=
∞
∑
𝑛=0

1
𝑛 + 1(

1 − 𝜆
𝑛+1

1 − 𝜆
)𝑧𝑛.

Therefore,

(𝐶∗𝑓)(𝜆) = ⟨𝑓, 𝐶𝑘𝜆⟩

= ⟨
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛,
∞
∑
𝑛=0

1
𝑛 + 1(

1 − 𝜆
𝑛+1

1 − 𝜆
)𝑧𝑛⟩

=
∞
∑
𝑛=0

𝑎𝑛
1

𝑛 + 1(
1 − 𝜆𝑛+1
1 − 𝜆 )

= 1
1 − 𝜆(

∞
∑
𝑛=0

𝑎𝑛
𝑛 + 1 −

∞
∑
𝑛=0

𝑎𝑛
𝑛 + 1𝜆

𝑛+1)

= 𝐹(1) − 𝐹(𝜆)
1 − 𝜆

= 1
1 − 𝜆 ∫

1

𝜆
𝑓(𝑤) 𝑑𝑤,

which completes the proof. ■

By Theorem 6.3.1, 𝜎𝑝(𝐶∗) = {𝑧 ∶ |𝑧 − 1| < 1}. We now compute the corresponding
eigenvectors for𝐶∗. Observe that 1−𝑧 is nonzero on𝔻, andhence a branchof the logarithm
of 1−𝑧 exists on𝔻 and can be chosen so that log 1 = 0. For each𝑤 ∈ 𝔻, define the analytic
function 𝜑𝑤 on 𝔻 by

𝜑𝑤(𝑧) = (1 − 𝑧)𝑤/(1−𝑤)

and observe that 𝜑𝑤(0) = 1.
Remark 6.4.11. Note that as𝑤 runs through𝔻, the exponent𝑤/(1−𝑤) in the formula for
𝜑𝑤 runs over the right half plane {𝑧 ∶ Re 𝑧 > − 1

2
}. This simple observation is used below.

Lemma 6.4.12. 𝜑𝑤 ∈ 𝐻2 for all 𝑤 ∈ 𝔻.

Proof From the definition of powers of complex numbers, observe that

𝜑𝑤(𝑧) = exp ( 𝑤
1 − 𝑤 log(1 − 𝑧)).

Also notice that
𝑤

1 − 𝑤 log(1 − 𝑧) = (Re 𝑤
1 − 𝑤 + 𝑖 Im 𝑤

1 − 𝑤)( log |1 − 𝑧| + 𝑖 arg(1 − 𝑧))

= Re ( 𝑤
1 − 𝑤) log |1 − 𝑧| − Im ( 𝑤

1 − 𝑤) arg(1 − 𝑧) + 𝑖⋆,

where ⋆ denotes a real number whose exact value is unimportant. It follows that

|𝜑𝑤(𝑧)| = exp (Re ( 𝑤
1 − 𝑤 log(1 − 𝑧)))

= |1 − 𝑧|Re(𝑤/1−𝑤) exp ( − Im ( 𝑤
1 − 𝑤) arg(1 − 𝑧)).

Since arg(1 − 𝑧) is bounded on 𝔻, it follows that 𝜑𝑤 ∈ 𝐻2 by Remark 6.4.11. ■
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Lemma 6.4.13. ⋁{𝜑𝑤 ∶ 𝑤 ∈ 𝔻} = 𝐻2.

Proof For 𝑛 ⩾ 0, observe that

𝜑 𝑛
𝑛+1

(𝑧) = (1 − 𝑧)𝑛,

so⋁{𝜑𝑤 ∶ 𝑤 ∈ 𝔻} contains the polynomials (Exercise 6.7.9). Now use the density of
the polynomials in 𝐻2. ■

Lemma 6.4.14. (𝐼 − 𝐶∗)𝜑𝑤 = 𝑤𝜑𝑤 for all 𝑤 ∈ 𝔻.

Proof Proposition 6.4.10 implies that

((𝐼 − 𝐶∗)𝜑𝑤)(𝑧) = 𝜑𝑤(𝑧) − (𝐶∗𝜑𝑤)(𝑧)

= 𝜑𝑤(𝑧) −
1

1 − 𝑧(∫
1

𝑧
𝜑𝑤(𝑡) 𝑑𝑡)

= (1 − 𝑧)𝑤/(1−𝑤) − 1
1 − 𝑧 (1 − 𝑧)𝑤/(1−𝑤)+1 (1 − 𝑤)

= (1 − 𝑧)𝑤/(1−𝑤) − (1 − 𝑧)𝑤/(1−𝑤)(1 − 𝑤)
= 𝑤(1 − 𝑧)𝑤/(1−𝑤)

= 𝑤𝜑𝑤(𝑧),

which completes the proof. ■

Here is a sketch of the proof of Theorem 6.4.7.

Proof Letℋ denote the space of analytic functions on 𝔻 of the form

𝐹(𝑧) = ⟨𝑓, 𝜑𝑧⟩𝐻2 for 𝑓 ∈ 𝐻2.

Lemma 6.4.13 implies that 𝐹(𝑧) = 0 for all 𝑧 ∈ 𝔻 if and only if 𝑓 ≡ 0. Define a norm
onℋ by ‖𝐹‖ℋ = ‖𝑓‖𝐻2 . By the definition ofℋ, the operator 𝑈 ∶ 𝐻2 → ℋ given by
(𝑈𝑓)(𝑧) = ⟨𝑓, 𝜑𝑧⟩ is unitary.

If

𝜓𝑛(𝑧) =
1

(𝑧 − 1)𝑛 (𝑧 −
1
2)⋯(𝑧 − 𝑛 − 1

𝑛 ) for 𝑛 ⩾ 1, (6.4.15)

then (𝜓𝑛)∞𝑛=1 is an orthonormal basis forℋ. This follows from the fact that (𝑧𝑛)∞𝑛=0
is an orthonormal basis for 𝐻2 and hence, since 𝑈 is unitary, 𝜓𝑛 = 𝑈𝑧𝑛 is an
orthonormal basis forℋ. Since

𝜓𝑛(𝑧) = ⟨𝜉𝑛, 𝜑𝑧⟩𝐻2 = ∫
2𝜋

0
𝑒𝑖𝑛𝜃(1 − 𝑒−𝑖𝜃)𝑧/(1−𝑧) 𝑑𝜃2𝜋 ,

one can use an integral formula from [125, p. 12] to obtain (6.4.15).
Observe that the function 𝐾𝜆(𝑧) defined by

𝐾𝜆(𝑧) = ⟨𝜑𝜆, 𝜑𝑧⟩𝐻2 = (𝑈𝜑𝜆)(𝑧)
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is analytic in 𝑧 ∈ 𝔻 and coanalytic in 𝜆 ∈ 𝔻. Moreover, for 𝐹 = 𝑈𝑓 ∈ ℋ and 𝜆 ∈ 𝔻,

⟨𝐹, 𝐾𝜆⟩ℋ = ⟨𝑈𝑓,𝑈𝜑𝜆⟩ℋ = ⟨𝑓, 𝜑𝜆⟩𝐻2 = (𝑈𝑓)(𝜆) = 𝐹(𝜆).

Thus,ℋ is a reproducing kernel Hilbert space. One can show [125, p. 12] that

𝐾𝜆(𝑧) = Γ( 𝜆
1 − 𝜆

+ 𝑧
1 − 𝑧 + 1)/Γ(

𝜆
1 − 𝜆

+ 1)Γ( 𝑧
1 − 𝑧 + 1), (6.4.16)

where

Γ(𝑧) ∶= ∫
∞

0
𝑥𝑧−1𝑒−𝑥𝑑𝑥

is the Gamma function. Note that Γ(𝑧) is an analytic function initially defined on
{𝑧 ∶ Re 𝑧 > 0} that extends to a meromorphic function on ℂ with simple poles at
{…,−3, −2, −1, 0} [351, Ch. 6].

The unitary operator 𝑈 above satisfies

(𝑈(𝐼 − 𝐶)𝑓)(𝑧) =⟨(𝐼 − 𝐶)𝑓, 𝜑𝑧⟩𝐻2

= ⟨𝑓, (𝐼 − 𝐶∗)𝜑𝑧⟩𝐻2

= ⟨𝑓, 𝑧𝜑𝑧⟩𝐻2

= 𝑧⟨𝑓, 𝜑𝑧⟩𝐻2

= 𝑧(𝑈𝑓)(𝑧)

for all 𝑓 ∈ 𝐻2. Thus, 𝑈(𝐼 − 𝐶) = 𝑀𝑧𝑈 on ℋ. In particular, this shows that 𝑀𝑧
(multiplication by 𝑧) is a bounded operator onℋ.

Since 𝑀𝑧 is bounded on ℋ and 𝜓1 = (𝑧 − 1)−1 ∈ ℋ by (6.4.15), the polynomials
are contained in ℋ. It can be shown that the polynomials are actually dense in ℋ.
The heart of the Kriete–Trutt paper [223] is the construction of a finite positive Borel
measure 𝜇 on 𝔻− such that

‖𝑝‖2ℋ = ∫
𝔻−

|𝑝|2𝑑𝜇 for all 𝑝 ∈ ℂ[𝑧].

This measure 𝜇 is supported on the sequence of circles

𝛾𝑛 = {𝑧 ∶ ||𝑧 −
𝑛

𝑛 + 1
|| =

1
𝑛 + 1} for 𝑛 ⩾ 0;

(see Figure 6.4.1). Furthermore, 𝜇(𝛾𝑛) = 2−𝑛−1 and 𝜇|𝛾𝑛 is mutually absolutely
continuous with respect to arc length measure on 𝛾𝑛.

Let 𝐻2(𝜇) denote the closure of the polynomials in 𝐿2(𝜇). For 𝑝 ∈ ℂ[𝑧], define 𝑄𝑝 = 𝑝
and extend 𝑄 unitarily to all of ℋ using the density of the polynomials in ℋ and
in 𝐻2(𝜇). The composition 𝑄𝑈 ∶ 𝐻2 → 𝐻2(𝜇) defines a unitary operator that
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Figure 6.4.1 The circles (from left to right) 𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5.

intertwines 𝐼 − 𝐶 and𝑀𝑧 (multiplication by 𝑧) on 𝐻2(𝜇). This is summarized in the
following commutative diagram:

𝐻2 𝐼−𝐶- 𝐻2

ℋ

𝑈

?
𝑀𝑧

- ℋ

𝑈∗

6

𝐻2(𝜇)

𝑄

?

𝑀𝑧
- 𝐻2(𝜇).

𝑄∗

6

Since 𝑀𝑧 on 𝐻2(𝜇) has a normal extension to 𝐿2(𝜇), 𝑀𝑧 on 𝐻2(𝜇) is subnormal. It
follows (using the fact that an operator unitarily equivalent to a subnormal operator
is subnormal; see Proposition 19.1.7) that 𝐼 − 𝐶, and hence 𝐶, is subnormal. ■

As a reminder, we study subnormal operators more thoroughly in Chapter 19.

6.5 Other Versions of the Cesàro Operator
For 𝑓 ∈ 𝐿2[0, 1], define

(𝐶1𝑓)(𝑥) =
1
𝑥 ∫

𝑥

0
𝑓(𝑡) 𝑑𝑡 for 𝑥 ∈ [0, 1], (6.5.1)
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and for ℎ ∈ 𝐿2(0,∞), define

(𝐶∞ℎ)(𝑡) =
1
𝑡 ∫

𝑡

0
ℎ(𝑠) 𝑑𝑠 for 𝑡 ∈ (0,∞).

Both 𝐶1 and 𝐶∞ define linear transformations. The operator 𝐶1 is the finite continuous
Cesáro operator and 𝐶∞ is the infinite continuous Cesàro operator.

Proposition 6.5.2. The operators 𝐶1 and 𝐶∞ are bounded on 𝐿2[0, 1] and 𝐿2(0,∞),
respectively.

The proof uses a continuous version of Hardy’s inequality (Exercise 6.7.5). One can
also use an integral version of Schur’s theorem (see [69] and the endnotes of Chapter 3).
Although these two operators initially seem mysterious, they are, up to unitary equiva-
lence, well-known operators [69]. Recall the unilateral shift 𝑆𝑓 = 𝑧𝑓 on 𝐻2 (Chapter 5)
and the bilateral shift𝑀𝜉𝑔 = 𝜉𝑔 on 𝐿2(𝕋) (Chapter 4).

Theorem 6.5.3. 𝐼 −𝐶∗
1 is unitarily equivalent to the unilateral shift and 𝐼 −𝐶∗

∞ is unitarily
equivalent to the bilateral shift.

Proof We only outline the proof of the first statement. Let 𝑄 = 𝐼 − 𝐶∗
1 and

𝑓𝛼(𝑥) = 𝑥𝛼 for Re𝛼 > − 1
2
.

Exercise 6.7.12 ensures that

𝑄∗𝑓𝛼 =
𝛼

𝛼 + 1𝑓𝛼.

Changing parameters, define 𝛽 = 𝛼 + 1
2
and 𝑔𝛽 = 𝑓𝛽− 1

2
for Re 𝛽 > 0. Then,

𝑄∗𝑔𝛽 = 𝜑(𝛽)𝑔𝛽 , where 𝜑(𝛽) =
𝛽 − 1

2
𝛽 + 1

2

.

For 𝑓 ∈ 𝐿2[0, 1], define

𝑓(𝛽) = ∫
1

0
𝑓(𝑡)𝑔𝛽(𝑡) 𝑑𝑡.

The change of variables 𝑡 = 𝑒−ᵆ for 𝑢 ⩾ 0 yields

𝑓(𝛽) = ∫
∞

0
𝑓(𝑒−ᵆ)𝑒−ᵆ/2𝑒−ᵆ𝛽 𝑑𝑢.

Since 𝐿2(0,∞) = {𝑓(𝑒−ᵆ/2)𝑒−ᵆ/2 ∶ 𝑓 ∈ 𝐿2[0, 1]}, it follows that {𝑓 ∶ 𝑓 ∈ 𝐿2[0, 1]} is
the set of Laplace transforms of functions in 𝐿2(0,∞). By the Paley–Wiener theorem
(11.8.2), this set is precisely 𝐻2(Re 𝑧 > 0), the Hardy space of the right half plane.
Furthermore,

𝑄𝑓(𝛽) = ⟨𝑄𝑓, 𝑔𝛽⟩𝐿2[0,1] = ⟨𝑓, 𝑄∗𝑔𝛽⟩𝐿2[0,1] = 𝜑(𝛽)𝑓(𝛽).
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Since the operator 𝑓 ↦ 𝑓 is unitary, 𝑄 is unitarily equivalent to multiplication by 𝜑
on 𝐻2(Re 𝑧 > 0). The change of variables 𝑤 = 𝜑(𝑧) (which maps {Re 𝑧 > 0} to 𝔻),
shows that 𝑄 is unitarily equivalent to multiplication by 𝑧 on 𝐻2(𝔻). ■

Corollary 6.5.4. 𝐼 − 𝐶∞ is unitarily equivalent to the bilateral shift.

Proof ByExercise 4.5.18,𝑀𝜉 is unitarily equivalent to𝑀𝜉. Nowapply Theorem6.5.3. ■

Recall that the Cesàro operator acts on 𝐻2 by

(𝐶𝑓)(𝑧) = 1
𝑧 ∫

𝑧

0

𝑓(𝜉)
1 − 𝜉 𝑑𝜉 for 𝑧 ∈ 𝔻.

This suggests a generalization of 𝐶 defined as

(𝐶𝑔𝑓)(𝑧) =
1
𝑧 ∫

𝑧

0
𝑓(𝜉)𝑔′(𝜉) 𝑑𝜉 for 𝑧 ∈ 𝔻,

where 𝑔 is an analytic function on𝔻. Pommerenke [272] proved that 𝐶𝑔 is bounded on𝐻2

if and only if 𝑔 is of bounded mean oscillation. Results of Aleman and Cima [10] extend
the boundedness of 𝐶𝑔 to other Banach spaces of analytic functions on 𝔻.

6.6 Notes
Cesàro summation initially appears in an 1890 paper of Cesàro [78]. The boundedness of
the three Cesàro operators mentioned in this chapter have been known since the 1950s.
Indeed, Hardy, Littlewood, and Pólya discuss this in their book [179, Ch. IX]. Brown,
Halmos, and Shields [69] were the first to explore the spectrum and norm of the Cesàro
operator.
Kriete and Trutt [224] proved that 𝐼 − 𝐶 is unitarily equivalent to 𝑀𝑧 on 𝐻2(𝜇). They

also showed that the invariant subspace structure of 𝑀𝑧 on 𝐻2(𝜇) is complicated. Since
𝐶 has the same invariant subspaces as 𝐼 − 𝐶, this complexity carries over to 𝐶. This same
paper also identifies the commutant (recall Definition 5.6.1) of𝑀𝑧 with 𝐻∞, in the sense
that {𝑀𝑧}′ = {𝑀𝜑 ∶ 𝜑 ∈ 𝐻∞}. Since 𝐶 and 𝐼 − 𝐶 have the same commutant, one can use
the unitary operator 𝑄𝑈 ∶ 𝐻2 → 𝐻2(𝜇), defined in the proof of Theorem 6.4.7 to show
that {𝐶}′ = {(𝑄𝑈)∗𝑀𝜑(𝑄𝑈) ∶ 𝜑 ∈ 𝐻∞}. Although this description of {𝐶}′ is specific,
it is hidden behind several unitary operators. Shields and Wallen [343] proved that {𝐶}′
is the closure of {𝑝(𝐶) ∶ 𝑝 ∈ ℂ[𝑧]} in the weak operator topology. In fact, Shields and
Wallen start with the fact that 𝐼 − 𝐶 is unitarily equivalent to𝑀𝑧 on the Hilbert spaceℋ
of analytic functions that appears in the proof of Theorem 6.4.7. They go on to show that
the commutant of𝑀𝑧 is identified with 𝐻∞, in that 𝐴 ∈ {𝑀𝑧}′ if and only if 𝐴 = 𝑀𝜑 for
some 𝜑 ∈ 𝐻∞.
Versions of the Cesàro operator were explored on many function spaces beyond those

discussed in this chapter [249, 268]. These operators often enjoy some of the properties
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they do in the 𝐻2 setting. For example, Hardy’s inequality can be extended to ℓ𝑝 [179,
p. 239] to show that the Cesàro matrix defines a bounded operator on ℓ𝑝 with

‖𝐶‖ℓ𝑝→ℓ𝑝 =
𝑝

𝑝 − 1 for 1 < 𝑝 < ∞.

Furthermore, (6.2.8) shows that ‖𝐼−𝐶‖ℓ2→ℓ2 = 1. For the Cesàro operator on ℓ𝑝, the paper
[348] resolves a question posed in [41] and shows that

‖𝐼 − 𝐶‖ℓ𝑝→ℓ𝑝 =
⎧⎪
⎨⎪
⎩

1
𝑝 − 1 if 1 < 𝑝 ⩽ 2,

𝑚
− 1

𝑝
𝑝 if 2 < 𝑝 < ∞,

where𝑚𝑝 = min{𝑝𝑡𝑝−1 + (1 − 𝑡)𝑝 − 𝑡𝑝 ∶ 0 ⩽ 𝑡 ⩽ 1
2
}.

Kriete and Trutt [223] showed that the Cesàro operator is related to 𝑀𝑧 on a space
ℋ of analytic functions and went on in [224] to explore the mysterious properties of
ℋ. In particular, the zero sets and the 𝑀𝑧-invariant subspaces of ℋ are particularly
complicated and are far from being understood. Cowen [99] gave an alternate proof of
the subnormality of the Cesàro operator using composition operators. Related Cesàro
operators with associated spaces of analytic functions are found in [212, 291].
A result from [97], using the fact that the Cesàro operator is subnormal, shows that a

branch of√𝑧 is analytic on 𝜎(𝐶) and√𝐶 is a bounded operator on ℓ2. In other words, the
Cesàro operator has a square root. One can also obtain the same result using the theory of
accretive operators [211]. See Exercise 6.7.25 for more on this.
Hyponormal operators were originally studied by Halmos in 1950 [166] and developed

into a cohesive theory by Clancey [86]. The term “hyponormal” first appeared in a 1961
book by Berberian [42]. See [238] for a good survey of this material.

6.7 Exercises
Exercise 6.7.1. If a series of complex numbers converges to𝐿, prove it is Cesàro summable
to 𝐿.

Exercise 6.7.2. Prove that

(𝐼 − 𝐶)(𝐼 − 𝐶)∗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯
0 1

2
0 0 ⋯

0 0 2
3

0 ⋯
0 0 0 3

4
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Exercise 6.7.3. Use the definition of 𝐶 from (6.4.8) to show that 𝜎𝑝(𝐶) = ∅.

Exercise 6.7.4. For each integer 𝑛 ⩾ 1, prove that 𝑧𝑛−1 ∉ ran(𝑛−1𝐼 − 𝐶).
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Exercise 6.7.5. If 𝑓 is a nonnegative measurable function on [0,∞), prove that

∫
∞

0
( 1𝑥 ∫

𝑥

0
𝑓(𝑡) 𝑑𝑡)

2
𝑑𝑥 ⩽ 4∫

∞

0
𝑓(𝑥)2 𝑑𝑥.

Remark: This proves that the operator 𝐶∞ mentioned in this chapter is bounded.

Exercise 6.7.6. Prove that if 2Re 1
𝜆
= 1 + 𝜀 for some 𝜀 > 0 and

𝑎𝑛+1 = (1 − 1
𝜆(𝑛 + 1) )𝑎𝑛 for all 𝑛 ⩾ 0,

then |𝑎𝑛|2 = 𝑂(1/𝑛1+𝜀).

Exercise 6.7.7. Prove that with respect to the standard basis (e𝑛)∞𝑛=0 for ℓ2, the matrix
representation of 𝐶∗𝐶 − 𝐶𝐶∗ is

⎡⎢⎢⎢⎢⎢
⎣

𝛼0 − 𝛽0 𝛼1 − 𝛽1 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼1 − 𝛽1 𝛼1 − 𝛽1 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼2 − 𝛽2 𝛼2 − 𝛽2 𝛼2 − 𝛽2 𝛼3 − 𝛽3 ⋯
𝛼3 − 𝛽3 𝛼3 − 𝛽3 𝛼3 − 𝛽3 𝛼3 − 𝛽3 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

,

where

𝛼𝑛 =
∞
∑
𝑗=𝑛

1
(𝑗 + 1)2 and 𝛽𝑛 =

1
𝑛 + 1 for 𝑛 ⩾ 0.

Exercise 6.7.8. Prove that if 𝑓(𝑧) = ∑∞
𝑗=0 𝑎𝑗𝑧𝑗 ∈ 𝐻2, then the Cesàro operator 𝐶 from

(6.4.8) can be written as

(𝐶𝑓)(𝑧) =
∞
∑
𝑛=0

( 1
𝑛 + 1

𝑛
∑
𝑗=0

𝑎𝑗)𝑧𝑛.

Exercise 6.7.9. Prove that the linear span of {(1−𝑧)𝑛 ∶ 𝑛 ⩾ 0} contains every polynomial.
Remark: This detail is important in the proof of Lemma 6.4.13.

Exercise 6.7.10. Prove that 𝐶 is not compact.

Exercise 6.7.11. Follow these steps from [268] to compute the resolvent of the Cesàro
operator 𝐶.

(a) Prove that for 𝜆 ∈ ℂ\{0} and ℎ ∈ 𝐻2, a solution 𝑓 to (𝜆𝐼 − 𝐶)𝑓 = ℎ satisfies the
differential equation

𝑓′(𝑧) + (1𝑧 −
1

𝜆𝑧(1 − 𝑧) )𝑓(𝑧) =
1
𝜆𝑧

𝑑
𝑑𝑧 (𝑧ℎ(𝑧)) for all 𝑧 ∈ 𝔻.

(b) Prove that when multiplied by 𝑧1−
1
𝜆 (1 − 𝑧)

1
𝜆 , this differential equation becomes

𝑑
𝑑𝑧 (𝑧

1− 1
𝜆 (1 − 𝑧)

1
𝜆 𝑓(𝑧)) = 𝑧−

1
𝜆

𝜆 (1 − 𝑧)
1
𝜆
𝑑
𝑑𝑧 (𝑧ℎ(𝑧)).
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(c) Prove that

𝑓(𝑧) = ℎ(𝑧)
𝜆 + 1

𝜆2 𝑧
1
𝜆
−1(1 − 𝑧)−

1
𝜆 ∫

𝑧

0
𝑤− 1

𝜆 (1 − 𝑤)
1
𝜆
−1ℎ(𝑤) 𝑑𝑤.

Exercise 6.7.12. Find a formula for the adjoint of the operator

(𝐶1𝑓)(𝑥) =
1
𝑥 ∫

𝑥

0
𝑓(𝑡) 𝑑𝑡

on 𝐿2[0, 1] from (6.5.1).

Exercise 6.7.13. Consider the following generalization of the Cesàro operator on ℓ2
explored in [288]. For 𝑝 ∈ ℝ and 𝑛 ⩾ 0, define

(𝐶𝑝x)(𝑛) =
1

(𝑛 + 1)𝑝
𝑛
∑
𝑗=0

𝑥𝑗 for x = (𝑥𝑛)∞𝑛=0 ∈ ℓ2,

and note that 𝐶1 is the standard Cesàro operator 𝐶.

(a) Compute the matrix representation of 𝐶𝑝 with respect to the standard basis for ℓ2.

(b) Prove that 𝐶𝑝 is bounded on ℓ2 if 𝑝 > 1.

(c) Prove that 𝐶𝑝 does not map ℓ2 to ℓ2 if 𝑝 <
1
2
.

Exercise 6.7.14. This is a continuation of Exercise 6.7.13.

(a) For 𝑎 > 0, let

𝐷𝑎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1𝛼

0 0 0 ⋯
0 1

2𝛼
0 0 ⋯

0 0 1
3𝛼

0 ⋯
0 0 0 1

4𝛼
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Prove that 𝐶𝑝 = 𝐷𝑝−1𝐶1.

(b) Prove that 𝐶𝑝 is compact for 𝑝 > 1.

(c) Prove that for 𝑝 > 1, the operator 𝐶𝑝 has Hilbert–Schmidt (see Exercise 3.6.31) norm
‖𝐶𝑝‖2𝐻𝑆 = 𝜁(2𝑝 − 1), where 𝜁(𝑧) = ∑∞

𝑛=1 𝑛−𝑧 is the Riemann zeta function.

(d) Prove that 𝐶𝑝 is not a bounded operator on ℓ2 if 0 < 𝑝 < 1.

Remark: 𝐶𝑝 is not hyponormal when 𝑝 > 1 (and thus not subnormal).
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Exercise 6.7.15. Here is another interesting class of operators from [285] that are related
to the Cesàro operator. For 0 < |𝜆| ⩽ 1, define 𝐴𝜆 ∶ ℓ2 → ℓ2 by

(𝐴𝜆x)(𝑛) =
1

𝑛 + 1
𝑛
∑
𝑗=0

𝜆
𝑛−𝑗

𝑥𝑗 for 𝑛 ⩾ 0.

Notice that 𝐴1 is the Cesàro operator 𝐶.

(a) Prove that 𝐴𝜆 is bounded and ‖𝐴𝜆‖ ⩽ 2.

(b) Compute the matrix representation of 𝐴𝜆 with respect to the standard basis (e𝑛)∞𝑛=0
for ℓ2.

(c) Prove that 𝐴𝜆 is unitarily equivalent to 𝐴|𝜆|.

Exercise 6.7.16. This is a continuation of Exercise 6.7.15.

(a) Identify ℓ2 with 𝐻2 in the usual way. If 0 < 𝜆 < 1, prove that 𝐴𝜆 is represented on
𝐻2 by

(𝐴𝜆𝑓)(𝑧) =
1
𝑧 ∫

𝑧

0

𝑓(𝜉)
1 − 𝜆𝜉 𝑑𝜉.

(b) Prove that

(𝐴∗𝜆𝑓)(𝑧) =
1

𝑧 − 𝜆 ∫
𝑧

𝜆
𝑓(𝜉) 𝑑𝜉.

(c) If 0 < 𝜆 < 1 and 𝑛 ⩾ 1 is an integer, prove that 1/𝑛 is an eigenvalue of 𝐴𝜆 with
corresponding eigenvector 𝑓𝑛(𝑧) = 𝑧𝑛−1(1 − 𝜆𝑧)−𝑛.

(d) If 0 < 𝜆 < 1 and 𝑛 ⩾ 1 is an integer, prove that each 1/𝑛 is an eigenvalue of 𝐴∗𝜆 with
corresponding eigenvector 𝑓𝑛(𝑧) = (𝑧 − 𝜆)𝑛−1.

Remark: The operators 𝐴𝜆 for 0 < 𝜆 < 1 are compact but not hyponormal.

Exercise 6.7.17. Prove that the Cesàro operator 𝐶 is not bounded below on ℓ2, that is,
inf
‖x‖=1

‖𝐶x‖ = 0.

Exercise 6.7.18. This is a continuation of Exercise 6.7.17 and follows [234]. Prove that if
𝑥0 ⩾ 𝑥1 ⩾ 𝑥2 ⩾ ⋯ ⩾ 0 and x = (𝑥𝑛)∞𝑛=0 ∈ ℓ2, then

‖𝐶x‖2 ⩾ 𝜋2
6 ‖x‖2.

Use the following steps.

(a) Use an integral estimate to prove that

2𝑛
∞
∑

𝑘=𝑛+1

1
𝑘2 >

𝑛
∑
𝑘=1

1
𝑘2 .
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(b) Prove that

‖𝐶x‖2 = 𝜋2
6 ‖x‖2 −

∞
∑
𝑛=1

(
𝑛
∑
𝑘=1

1
𝑘2 )𝑥

2
𝑛 +

∞
∑
𝑛=1

(2
∞
∑

𝑘=𝑛+1

1
𝑘2 )

𝑛−1
∑
𝑗=0

𝑥𝑗𝑥𝑛.

(c) Use the fact that 𝑥𝑘 is a positive decreasing sequence to obtain the estimate.

Remark: The paper [40] proves the following ℓ𝑝 version of this result: if 1 < 𝑝 < ∞ and
𝑥0 ⩾ 𝑥1 ⩾ 𝑥2 ⩾ ⋯ ⩾ 0 with x = (𝑥𝑛)∞𝑛=0 ∈ ℓ𝑝, then ‖𝐶x‖𝑝ℓ𝑝→ℓ𝑝 ⩾ 𝜁(𝑝)‖x‖𝑝ℓ𝑝 . where 𝜁(𝑧)
is the Riemann zeta function.

Exercise 6.7.19. Here is a proof from [290] that 𝐶 is hyponormal.

(a) Prove that 𝐶𝐶∗ = 𝐶∗𝐷𝐶, where

𝐷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

0 0 0 ⋯
0 2

3
0 0 ⋯

0 0 3
4

0 ⋯
0 0 0 4

5
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(b) Prove that 𝐶∗𝐶 − 𝐶𝐶∗ ⩾ 0.

Remark: 𝐴 ∈ ℬ(ℋ) is posinormal if 𝐴𝐴∗ = 𝐴∗𝑃𝐴 for some positive operator 𝑃.
This concept is discussed further in Exercise 19.6.26. Note that the Cesàro operator is
posinormal.

Exercise 6.7.20. Let 𝑆 denote the unilateral shift on ℓ2.

(a) Prove that 𝐶 = (𝐶 − 𝑆∗)𝐶∗.

(b) Prove that 𝐶 is contained in the left ideal generated by 𝐶∗.

Exercise 6.7.21. Continuing with the notation from Exercises 6.7.19 and 6.7.20, show
that 𝐶∗𝐶 = 𝐶𝑃𝐶∗, where 𝑃 = (𝐶∗ − 𝑆)(𝐶 − 𝑆∗), and hence that 𝐶∗ is also posinormal.

Exercise 6.7.22. Let 𝑆 ∈ ℬ(ℓ2) denote the unilateral shift and𝐶 the Cesàromatrix. Prove
that 𝑆∗𝐶𝑆 − 𝐶 is a Hilbert–Schmidt operator.

Exercise 6.7.23. For the Cesàro operator 𝐶, follow this idea from [287] to prove that the
numerical range (see Exercise 2.8.41)𝑊(𝐶) of 𝐶 is {𝑧 ∶ |𝑧 − 1| < 1} as follows.

(a) Prove that 𝜆 ∈ 𝑊(𝐶) if and only if 𝜆 ∈ 𝑊(𝐶∗).

(b) Prove that the eigenvalues of 𝐶∗ belong to𝑊(𝐶∗).

(c) For any 𝐴 ∈ ℬ(ℋ), prove that if ‖𝐴‖ ∈ 𝑊(𝐴), then ‖𝐴‖ is an eigenvalue of 𝐴.

(d) Show that𝑊(𝐶) does not contain any 𝑧 such that |𝑧 − 1| = 1.

(e) Prove that𝑊(𝐶) does not contain any 𝑧 such that |𝑧 − 1| > 1.

.
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Exercise 6.7.24. Let 𝒱 denote the vector space of all complex sequences a = (𝑎𝑛)∞𝑛=0.
The Cesàro operator 𝐶 is a linear transformation on 𝒱.

(a) For each𝑚 ⩾ 0, prove that

𝐶a(𝑚) = 1
𝑚 + 1a

(𝑚), where a(𝑚)
𝑛 = {

0 for 0 ⩽ 𝑛 < 𝑚,
(𝑚+𝑘

𝑚
) if 𝑛 = 𝑚 + 𝑘, 𝑘 ⩾ 0.

(b) Prove that { 1
𝑚+1

∶ 𝑚 ⩾ 0} is the set of all eigenvalues of 𝐶 on 𝒱.

(c) Prove that each eigenspace is one dimensional.

Remark: See [228] for more on this result.

Exercise 6.7.25. This result ofHausdorff [185] continues the discussion in Exercise 6.7.24
of the Cesàro operator on the space of all sequences.

(a) Consider the matrix

𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 ⋯
1 −1 0 0 0 ⋯
1 −2 1 0 0 ⋯
1 −3 3 −1 0 ⋯
1 −4 6 −4 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice how the rows of 𝑊 consist of alternating binomial coefficients. Prove that
𝑊 2 = 𝐼.

(b) For 𝛼 ∈ ℝ, define

𝐻𝛼 = 𝑊

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 ⋯
0 1

2𝛼
0 0 ⋯

0 0 1
3𝛼

0 ⋯
0 0 0 1

4𝛼
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑊.

(c) Prove that 𝐻𝛼+𝛽 = 𝐻𝛼𝐻𝛽 for all 𝛼, 𝛽 ∈ ℝ.

(d) Prove that 𝐻1 is the Cesàro matrix 𝐶.

(e) Prove that (𝐻1/2)2 = 𝐶.

Remark: See [203] for more on this.

Exercise 6.7.26. Use the fact that 𝐼 − 𝐶 is unitarily equivalent to𝑀𝑧 on a certain 𝐻2(𝜇)
space on 𝔻 to prove that the Cesàro operator has a bounded square root.
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Exercise 6.7.27. This exercise makes a connection between the Cesàro operator 𝐶 on ℓ2
and composition operators on the Hardy space 𝐻2.

(a) For 0 < 𝛼 < 1, use Schur’s test (Theorem 3.3.1) to prove that

𝐴𝛼 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝛼 𝛼2 𝛼3 ⋯
0 (1 − 𝛼) 2𝛼(1 − 𝛼) 3𝛼2(1 − 𝛼) ⋯
0 0 (1 − 𝛼)2 3𝛼(1 − 𝛼)2 ⋯
0 0 0 (1 − 𝛼)3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

that is

(𝐴𝛼)𝑖,𝑗 = {
(𝑗
𝑖
)𝛼𝑗−𝑖(1 − 𝛼)𝑖 for 𝑗 ⩾ 𝑖,

0 for 𝑗 < 𝑖,

defines a bounded operator on ℓ2.

(b) Prove that 𝐴𝛼 commutes with 𝐶∗.

(c) Prove that 𝐴𝛼 is the matrix representation of the composition operator 𝑓(𝑧) ↦ 𝑓(𝛼+
(1 − 𝛼)𝑧) on 𝐻2 with respect to the orthonormal basis (𝑧𝑛)∞𝑛=0.

Remark: See [108, 343] for more on the commutant of 𝐶. Composition operators are
explored in Chapter 18.

6.8 Hints for the Exercises

Hint for Ex. 6.7.4: If ( 1
𝑛
𝐼 − 𝐶)𝑓 = 𝑧𝑛−1, then 𝑓 satisfies a certain first-order linear

differential equation.
Hint for Ex. 6.7.6: Use (6.3.3) and the estimate 1 + 𝑥 ⩽ 𝑒𝑥 for 𝑥 ⩾ 0.
Hint for Ex. 6.7.10: Use Theorem 2.6.9 and the spectral properties of 𝐶.
Hint for Ex. 6.7.14: For (d), observe that 𝐶1 = 𝐷1−𝑝𝐶𝑝 and consult Exercise 6.7.10.
Hint forEx. 6.7.15: For (a), verify that ‖𝐴𝜆(𝑥𝑛)∞𝑛=0‖ ⩽ ‖𝐶(|𝑥𝑛|)∞𝑛=0‖ for each (𝑥𝑛)∞𝑛=0 ∈ ℓ2.
For (c), conjugate 𝐴𝜆 with a suitable diagonal operator to obtain 𝐴|𝜆|.
Hint for Ex. 6.7.22: Consult Exercise 3.6.31.
Hint for Ex. 6.7.23: For (d), recall that ‖𝐶 − 𝐼‖ = 1. For (e), use the convexity of𝑊(𝐶).
Hint for Ex. 6.7.26: The Taylor coefficients of√1 − 𝑧 form an ℓ1 sequence.



7
. . . . . . .

The Volterra Operator

Key Concepts: Properties of the Volterra operator (adjoint, norm, spectrum, invariant subspaces,
commutant), nilpotent operator, quasinilpotent operator, complex symmetric operator.

Outline: This chapter covers the Volterra operator

𝑓(𝑥) ↦ ∫
𝑥

0
𝑓(𝑡) 𝑑𝑡

on 𝐿2[0, 1]. This operator is compact and quasinilpotent with no eigenvalues. The Volterra
operatormakes deep connectionswith function theory, in particularwith the compression
of the shift operator to a model space.

7.1 Basic Facts
Recall from Chapter 1 that the norm and inner product on 𝐿2[0, 1] are

‖𝑓‖ = (∫
1

0
|𝑓(𝑥)|2𝑑𝑥)

1
2 and ⟨𝑓, 𝑔⟩ = ∫

1

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥,

respectively. For 𝑓 ∈ 𝐿2[0, 1], define

(𝑉𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡) 𝑑𝑡 for 𝑥 ∈ [0, 1]. (7.1.1)

For 0 ⩽ 𝑥 ⩽ 𝑦 ⩽ 1, the Cauchy–Schwarz inequality implies that

|(𝑉𝑓)(𝑥) − (𝑉𝑓)(𝑦)| = ||∫
𝑦

𝑥
𝑓(𝑡) 𝑑𝑡||

⩽ ∫
𝑦

𝑥
|𝑓(𝑡)| 𝑑𝑡

= ∫
1

0
𝜒[𝑥,𝑦](𝑡)|𝑓(𝑡)| 𝑑𝑡
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⩽ (∫
1

0
𝜒2[𝑥,𝑦](𝑡) 𝑑𝑡)

1
2 (∫

1

0
|𝑓(𝑡)|2 𝑑𝑡)

1
2

= |𝑥 − 𝑦|
1
2 ‖𝑓‖ (7.1.2)

and hence 𝑉𝐿2[0, 1] is contained in 𝐶[0, 1] ⊆ 𝐿2[0, 1]. Thus, (7.1.1) defines a linear
transformation 𝑉 ∶ 𝐿2[0, 1] → 𝐿2[0, 1].

Proposition 7.1.3. 𝑉 is bounded on 𝐿2[0, 1].

Proof For 𝑓 ∈ 𝐿2[0, 1], set 𝑥 = 0 in (7.1.2) to see that

|(𝑉𝑓)(𝑦)|2 ⩽ 𝑦‖𝑓‖2 for all 𝑦 ∈ [0, 1].

Integrate both sides and obtain

‖𝑉𝑓‖2 ⩽ ‖𝑓‖2∫
1

0
𝑦 𝑑𝑦 = 1

2‖𝑓‖
2.

Therefore, 𝑉 is a bounded operator on 𝐿2[0, 1] and

‖𝑉‖ = sup
‖𝑓‖=1

‖𝑉𝑓‖ ⩽ 1
√2

,

which completes the proof. ■

The linear transformation 𝑉 is the Volterra operator. The previous proposition yields
the estimate ‖𝑉‖ ⩽ 1/√2. We compute the exact value of ‖𝑉‖ in Proposition 7.2.1 below.
For the next result, recall the discussion of compact operators from Chapter 2.

Proposition 7.1.4. The Volterra operator is compact.

Proof To prove that 𝑉 is compact, it suffices to show that (𝑉𝑓𝑛)∞𝑛=1 has a convergent
subsequence for every bounded sequence (𝑓𝑛)∞𝑛=1 in 𝐿2[0, 1]. By (7.1.2), (𝑉𝑓𝑛)∞𝑛=1
is a uniformly bounded and equicontinuous sequence of continuous functions on
[0, 1]. The Arzelà–Ascoli theorem [94, p. 179] provides a subsequence (𝑉𝑓𝑛𝑘 )∞𝑘=1
that converges uniformly to a continuous function. Since uniform convergence
implies 𝐿2[0, 1] convergence (see (1.3.5)), (𝑉𝑓𝑛𝑘 )∞𝑘=1 converges in 𝐿2[0, 1]. Thus, 𝑉 is
compact. ■

One can also prove the compactness of the Volterra operator with Exercise 3.6.12 and
Proposition 7.2.1 (below).

Proposition 7.1.5. The adjoint of the Volterra operator is

(𝑉∗𝑓)(𝑥) = ∫
1

𝑥
𝑓(𝑡) 𝑑𝑡 for 𝑥 ∈ [0, 1].
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Proof For 𝑓, 𝑔 ∈ 𝐿2, let

𝑢(𝑥) = ∫
𝑥

0
𝑓(𝑡) 𝑑𝑡 and 𝑣(𝑥) = ∫

𝑥

0
𝑔(𝑡) 𝑑𝑡.

Then 𝑑𝑢 = 𝑓(𝑥) 𝑑𝑥 and 𝑑𝑣 = 𝑔(𝑥) 𝑑𝑥. The integration by parts formula yields

⟨𝑓, 𝑉∗𝑔⟩ = ⟨𝑉𝑓, 𝑔⟩

= ∫
1

0
(∫

𝑥

0
𝑓(𝑡)𝑑𝑡)𝑔(𝑥) 𝑑𝑥

= (∫
𝑥

0
𝑓(𝑡) 𝑑𝑡)(∫

𝑥

0
𝑔(𝑡) 𝑑𝑡)

|
|
|

𝑥=1

𝑥=0
−∫

1

0
(∫

𝑥

0
𝑔(𝑡) 𝑑𝑡)𝑓(𝑥) 𝑑𝑥

= (∫
1

0
𝑓(𝑥) 𝑑𝑥)(∫

1

0
𝑔(𝑡) 𝑑𝑡) −∫

1

0
(∫

𝑥

0
𝑔(𝑡) 𝑑𝑡)𝑓(𝑥) 𝑑𝑥

= ∫
1

0
𝑓(𝑥)(∫

1

𝑥
𝑔(𝑡) 𝑑𝑡) 𝑑𝑥

= ∫
1

0
𝑓(𝑥)(∫

1

𝑥
𝑔(𝑡) 𝑑𝑡) 𝑑𝑥,

which verifies the desired adjoint formula. ■

7.2 Norm, Spectrum, and Resolvent

Proposition 7.1.3 yields the estimate ‖𝑉‖ ⩽ 1/√2. The next proposition gives the exact
value of ‖𝑉‖.

Proposition 7.2.1. The Volterra operator 𝑉 satisfies the following properties.

(a) 𝑉∗𝑉 is a compact operator with eigenvalues

𝜆𝑛 =
4

(2𝑛 + 1)2𝜋2 for 𝑛 ⩾ 0,

and corresponding unit eigenvectors

𝑓𝑛(𝑥) = √2 cos (2𝑛 + 1
2 𝜋𝑥).

(b) ‖𝑉‖ = 2
𝜋 .

Proof (a) Since 𝑉 is compact (Proposition 7.1.4), and the space of compact operators is
closed under adjoints (Exercise 3.6.11) and products (Proposition 2.5.5), it follows
that 𝑉∗𝑉 is compact.
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If 𝜆 > 0 and 𝑉∗𝑉𝑓 = 𝜆𝑓 for some 𝑓 ∈ 𝐿2[0, 1]\{0}, then Proposition 7.1.5 says that

∫
1

𝑥
∫

𝑡

0
𝑓(𝑠) 𝑑𝑠 𝑑𝑡 = 𝜆𝑓(𝑥) for all 𝑥 ∈ [0, 1]. (7.2.2)

Differentiate the previous equation twice and obtain −𝑓(𝑥) = 𝜆𝑓″(𝑥). The solutions
of this differential equation are of the form

𝑓(𝑥) = 𝑎𝑒𝑖𝜔𝑥 + 𝑏𝑒−𝑖𝜔𝑥, (7.2.3)

where 𝑎, 𝑏 ∈ ℂ and 𝜔2 = 1/𝜆. Set 𝑥 = 1 in (7.2.2) and deduce that 𝑓(1) = 0.
Differentiating both sides of (7.2.2) shows that

−∫
𝑥

0
𝑓(𝑠)𝑑𝑠 = 𝜆𝑓′(𝑥).

Evaluate the previous equation at 𝑥 = 0 and obtain 𝑓′(0) = 0. The conditions

𝑓(1) = 0, 𝑓′(0) = 0, and 𝑓(𝑥) = 𝑎𝑒𝑖𝜔𝑥 + 𝑏𝑒−𝑖𝜔𝑥,

say that

𝜔 = 2𝑛 + 1
2 𝜋

for some integer 𝑛 ⩾ 0 and that 𝑓 is of the form

𝑓(𝑥) = 𝑐 cos (2𝑛 + 1
2 𝜋𝑥)

for some constant 𝑐. Thus, since 𝜆 = 1/𝜔2, the eigenvalues of 𝑉∗𝑉 are

𝜆𝑛 =
4

(2𝑛 + 1)2𝜋2 ,

and the corresponding (unit) eigenvectors 𝑓𝑛 are

𝑓𝑛(𝑥) = √2 cos (2𝑛 + 1
2 𝜋𝑥). (7.2.4)

(b) The eigenvectors (𝑓𝑛)∞𝑛=0 form an orthonormal basis for 𝐿2[0, 1] (Exercise 7.7.2) and
the matrix representation of 𝑉∗𝑉 with respect to this basis is the diagonal matrix

⎡⎢⎢⎢⎢⎢
⎣

𝜆0 0 0 0 ⋯
0 𝜆1 0 0 ⋯
0 0 𝜆2 0 ⋯
0 0 0 𝜆3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Proposition 2.1.1 reveals that

‖𝑉∗𝑉‖ = sup
𝑛⩾0

𝜆𝑛 = sup
𝑛⩾0

4
(2𝑛 + 1)2𝜋2 =

4
𝜋2 .
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Finally, Proposition 3.1.5e yields

‖𝑉‖ = √‖𝑉∗𝑉‖ = √
4
𝜋2 =

2
𝜋 ,

which completes the proof. ■

One can also write 𝑉∗𝑉 using the tensor notation from (2.6.2):

𝑉∗𝑉 =
∞
∑
𝑛=0

8
(2𝑛 + 1)2𝜋2 cos (

2𝑛 + 1
2 𝜋𝑥) ⊗ cos (2𝑛 + 1

2 𝜋𝑥).

The next proposition summarizes the spectral properties of 𝑉 .

Proposition 7.2.5. The Volterra operator 𝑉 satisfies the following.

(a) 𝜎(𝑉) = {0}.

(b) 𝜎𝑝(𝑉) = ∅.

(c) 𝜎𝑎𝑝(𝑉) = {0}.

Proof (a) By induction (Exercise 7.7.3),

(𝑉𝑛𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡) (𝑥 − 𝑡)𝑛−1

(𝑛 − 1)! 𝑑𝑡 for all 𝑛 ⩾ 1. (7.2.6)

Exercise 7.7.4 ensures that

‖𝑉𝑛‖ ⩽ 1
(𝑛 − 1)! . (7.2.7)

Thus, for any 𝑧 ∈ ℂ,

(𝐼 − 𝑧𝑉)−1 =
∞
∑
𝑛=0

𝑧𝑛𝑉𝑛,

where the series above converges in the operator norm (Proposition 2.3.9). Since

(𝑧𝐼 − 𝑉)−1 = 1
𝑧(𝐼 −

1
𝑧𝑉)

−1
for all 𝑧 ≠ 0,

it follows that 𝜎(𝑉) ⊆ {0}. Thus, 𝜎(𝑉) = {0} since the spectrum of a bounded operator
is nonempty (Theorem 2.4.9c). See Exercise 8.10.8 for another proof of (a).

(b) The proof of this is requested in Exercise 7.7.5.
(c) Note that 𝜎𝑎𝑝(𝑉) ⊆ 𝜎(𝑉) = {0} (Proposition 2.4.6). To show that 0 ∈ 𝜎𝑎𝑝(𝑉), we
proceed as follows. Observe that

ℎ𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥, where 𝑛 ∈ ℤ,

is an orthonormal basis for 𝐿2[0, 1] (Theorem 1.3.9) and, for 𝑛 ⩾ 1,

(𝑉ℎ𝑛)(𝑥) =
(𝑒2𝑖𝜋𝑛𝑥 − 1)

2𝜋𝑖𝑛 = 1
2𝜋𝑖𝑛 (ℎ𝑛(𝑥) − ℎ0(𝑥)).
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By orthogonality (Proposition 1.4.6), ‖ℎ𝑛 − ℎ0‖2 = ‖ℎ𝑛‖2 + ‖ℎ0‖2 = 2 and hence

‖𝑉ℎ𝑛‖2 =
1

4𝜋2𝑛2 ‖ℎ𝑛 − ℎ0‖2 =
1

4𝜋2𝑛2 ⋅ 2 =
1

2𝜋2𝑛2 .

Thus, ‖𝑉ℎ𝑛‖ → 0 as 𝑛 → ∞, so 0 ∈ 𝜎𝑎𝑝(𝑉). ■

Recall the definition of a Hilbert–Schmidt operator from Exercise 3.6.31.

Proposition 7.2.8. The Volterra operator is a Hilbert–Schmidt operator with Hilbert–
Schmidt norm 1/√2.

Proof From Proposition 7.2.1, the eigenvalues and corresponding unit eigenvectors of
𝑉∗𝑉 are

𝜆𝑛 =
4

(2𝑛 + 1)2𝜋2 and 𝑓𝑛(𝑥) = √2 cos (2𝑛 + 1
2 𝜋𝑥) for 𝑛 ⩾ 0.

Moreover, (𝑓𝑛)∞𝑛=0 is an orthonormal basis for 𝐿2[0, 1]. The Hilbert–Schmidt norm of
𝑉 satisfies

‖𝑉‖2𝐻𝑆 =
∞
∑
𝑛=0

‖𝑉𝑓𝑛‖2

=
∞
∑
𝑛=0

⟨𝑉𝑓𝑛, 𝑉𝑓𝑛⟩

=
∞
∑
𝑛=0

⟨𝑉∗𝑉𝑓𝑛, 𝑓𝑛⟩

=
∞
∑
𝑛=0

𝜆𝑛

= 4
𝜋2

∞
∑
𝑛=0

1
(2𝑛 + 1)2

= 4
𝜋2 ⋅

𝜋2
8

= 1
2 .

Thus, ‖𝑉‖𝐻𝑆 = 1/√2. ■

The fact that everyHilbert–Schmidt operator is compact (Exercise 3.6.31) yields another
proof that the Volterra operator is compact.
Belowweproduce an explicit formula for the resolvent (𝑧𝐼−𝑉)−1 for 𝑧 ≠ 0. Since𝜎(𝑉) =

{0}, it follows that (𝑧𝐼 − 𝑉)−1 is a bounded operator. From (7.2.7), the series ∑∞
𝑛=0 𝑧𝑛𝑉𝑛

converges in operator norm.

Proposition 7.2.9. For 𝑧 ≠ 0 and 𝑓 ∈ 𝐿2[0, 1],

((𝑧𝐼 − 𝑉)−1𝑓)(𝑥) = 1
𝑧 (𝑓(𝑥) +

1
𝑧 ∫

𝑥

0
exp (𝑥 − 𝑦

𝑧 )𝑓(𝑦) 𝑑𝑦).
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Proof For 𝑧 ≠ 0 and 𝑓 ∈ 𝐿2[0, 1],

(𝐼 − 𝑧𝑉)−1𝑓 =
∞
∑
𝑛=0

𝑧𝑛𝑉𝑛𝑓 = 𝑓 + 𝑧
∞
∑
𝑛=1

𝑧𝑛−1𝑉𝑛𝑓.

Thus,

((𝐼 − 𝑧𝑉)−1𝑓)(𝑥) = 𝑓(𝑥) + 𝑧
∞
∑
𝑛=1

𝑧𝑛−1∫
𝑥

0

(𝑥 − 𝑦)𝑛−1
(𝑛 − 1)! 𝑓(𝑦) 𝑑𝑦 (by (7.2.6))

= 𝑓(𝑥) + 𝑧∫
𝑥

0
(

∞
∑
𝑛=1

(𝑧(𝑥 − 𝑦))𝑛−1
(𝑛 − 1)! ) 𝑓(𝑦) 𝑑𝑦

= 𝑓(𝑥) + 𝑧∫
𝑥

0
𝑒𝑧(𝑥−𝑦)𝑓(𝑦) 𝑑𝑦.

Now replace 𝑧 with 1/𝑧 and then multiply by 1/𝑧. ■

7.3 Other Properties of the Volterra Operator
Each 𝑇 ∈ ℬ(ℋ) has a Cartesian decomposition 𝑇 = Re𝑇 + 𝑖 Im𝑇, where

Re𝑇 = 1
2(𝑇 + 𝑇∗) and Im𝑇 = 1

2𝑖 (𝑇 − 𝑇∗) (7.3.1)

are selfadjoint operators. Apply this to the Volterra operator 𝑉 to see that

(𝑉 + 𝑉∗)𝑓 = ∫
1

0
𝑓(𝑡) 𝑑𝑡 = (1 ⊗ 1)𝑓, (7.3.2)

and hence Re𝑉 is a rank-one operator, namely 1/2 times the orthogonal projection of
𝐿2[0, 1] onto the subspace of constant functions. Furthermore (Exercise 7.7.7),

(Im𝑉𝑓)(𝑥) = 1
2𝑖 ∫

1

0
sgn(𝑡 − 𝑥)𝑓(𝑡) 𝑑𝑡.

Definition 7.3.3. 𝑇 ∈ ℬ(ℋ) is nilpotent if 𝑇𝑛 = 0 for some 𝑛 ⩾ 0 and quasinilpotent if
𝜎(𝑇) = {0}.

A nilpotent operator is quasinilpotent, but the converse does not hold. From Theorem
8.4.4 below, it follows that 𝑇 is quasinilpotent if and only if ‖𝑇𝑛‖1/𝑛 → 0.

Proposition 7.3.4. The Volterra operator is quasinilpotent but not nilpotent.

Proof Proposition 7.2.5 implies that 𝑉 is quasinilpotent. Any nilpotent operator has zero
as an eigenvalue (Exercise 7.7.9) which, for the Volterra operator, is not the case
(Proposition 7.2.5b). ■

Definition 7.3.5. 𝑇 ∈ ℬ(ℋ) is complex symmetric if there is a conjugation𝐶 (a conjugate-
linear, isometric, involution) onℋ such that 𝑇 = 𝐶𝑇∗𝐶.
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Exercise 7.7.15 yields the following.

Proposition 7.3.6. If (𝐶𝑓)(𝑥) = 𝑓(1 − 𝑥), then 𝐶 is a conjugation on 𝐿2[0, 1] and 𝑉 =
𝐶𝑉∗𝐶. Thus, 𝑉 is a complex symmetric operator.

We can take advantage of the complex-symmetric nature of 𝑉 to obtain an elegant
matrix representation of 𝑉 [146]. Consider the functions

𝑤𝑛(𝑥) = 𝑒2𝜋𝑖𝑛(𝑥−
1
2
) for 𝑛 ∈ ℤ.

Exercise 7.7.19 shows that (𝑤𝑛)∞𝑛=−∞ is a 𝐶-real orthonormal basis for 𝐿2[0, 1], in that it is
an orthonormal basis and 𝐶𝑤𝑛 = 𝑤𝑛 for all 𝑛 ∈ ℤ. Furthermore (Exercise 7.7.19), with
respect to the basis (𝑤𝑛)∞𝑛=−∞, the Volterra operator has the matrix representation

[𝑉] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑖
6𝜋

0 0 𝑖
6𝜋

0 0 0 ⋯

⋯ 0 𝑖
4𝜋

0 − 𝑖
4𝜋

0 0 0 ⋯

⋯ 0 0 𝑖
2𝜋

𝑖
2𝜋

0 0 0 ⋯

⋯ 𝑖
6𝜋

− 𝑖
4𝜋

𝑖
2𝜋

1
2

− 𝑖
2𝜋

𝑖
4𝜋

− 𝑖
6𝜋

⋯

⋯ 0 0 0 − 𝑖
2𝜋

− 𝑖
2𝜋

0 0 ⋯

⋯ 0 0 0 𝑖
4𝜋

0 − 𝑖
4𝜋

0 ⋯

⋯ 0 0 0 − 𝑖
6𝜋

0 0 − 𝑖
6𝜋

⋯

. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.3.7)

where the box denotes the (0, 0) entry. The matrix above is self-transpose since the matrix
representation of any complex symmetric operator with respect to a 𝐶-real orthonormal
basis is self transpose (Exercise 7.7.18).
A result from [148] gives the singular value decomposition of any compact𝐶-symmetric

operator 𝑇 as

𝑇 =
∞
∑
𝑛=0

𝜎𝑛(𝐶𝑒𝑛 ⊗ 𝑒𝑛),

where 𝜎𝑛 are the eigenvalues of |𝑇| (the singular values of 𝑇) and 𝑒𝑛 are certain eigenvec-
tors of |𝑇| = (𝑇∗𝑇)1/2. See Chapter 14 for a formal presentation of the operator |𝑇|. For
the Volterra operator 𝑉 , this becomes

𝑉 =
∞
∑
𝑛=0

2
(𝑛 + 1

2
)𝜋

sin (2𝑛 + 1
2 𝜋𝑥) ⊗ cos (2𝑛 + 1

2 𝜋𝑥),

and thus

(𝑉𝑓)(𝑥) = ∫
1

0
(

∞
∑
𝑛=0

2
(𝑛 + 1

2
)𝜋

sin (2𝑛 + 1
2 𝜋𝑥) cos (2𝑛 + 1

2 𝜋𝑦))𝑓(𝑦) 𝑑𝑦.
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Observe that
∞
∑
𝑛=0

2
(𝑛 + 1

2
)𝜋

sin (2𝑛 + 1
2 𝜋𝑥) cos (2𝑛 + 1

2 𝜋𝑦)

is a double Fourier expansion of the kernel 𝑘(𝑥, 𝑦) = 𝜒∆(𝑥, 𝑦), where Δ is the triangle
{(𝑥, 𝑦) ∶ 0 ⩽ 𝑦 ⩽ 𝑥, 0 ⩽ 𝑥 ⩽ 1}. Therefore,

(𝑉𝑓)(𝑥) = ∫
1

0
𝑘(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦.

7.4 Invariant Subspaces
With any operator, one is always interested in a description of its invariant subspaces. The
Volterra operator is no different. From Proposition 4.1.5, it follows that

ℱ𝑎 = 𝜒[𝑎,1]𝐿2[0, 1], where 𝑎 ∈ [0, 1],

the set of functions in 𝐿2[0, 1] which vanish almost everywhere on [0, 𝑎], is a subspace of
𝐿2[0, 1]. Another way to see that ℱ𝑎 is closed is to observe that the operator 𝑓 ↦ 𝜒[𝑎,1]𝑓 is
the orthogonal projection of 𝐿2[0, 1] onto ℱ𝑎. One can also see that 𝑉ℱ𝑎 ⊆ ℱ𝑎, and hence
ℱ𝑎 is an invariant subspace for 𝑉 . The Gelfand problem, posed in 1938 by I. Gelfand [150],
asks whether these are all of the 𝑉 -invariant subspaces of 𝐿2[0, 1]. This was resolved in
1949 by Agmon [8].

Theorem 7.4.1 (Agmon). For each 𝑎 ∈ [0, 1],ℱ𝑎 is an invariant subspace for 𝑉 . Moreover,
every invariant subspace for 𝑉 is equal to ℱ𝑎 for some 𝑎 ∈ [0, 1].

Proof The proof we outline here is due to Sarason [323]. Further details of the discus-
sion below are covered in Chapter 20 once we know more about compressed shift
operators. Let

Θ(𝑧) = exp (𝑧 + 1
𝑧 − 1) for 𝑧 ∈ 𝔻.

By Theorem 5.4.10, Θ is an inner function and Θ𝐻2 is an invariant subspace for
the shift operator (𝑆𝑓)(𝑧) = 𝑧𝑓(𝑧) on 𝐻2. By Exercise 4.5.1, (Θ𝐻2)⟂ is an invariant
subspace for 𝑆∗. Let

𝑇 = 𝑃𝑆|(Θ𝐻2)⟂ ,

where 𝑃 is the orthogonal projection of 𝐿2(𝕋) onto (Θ𝐻2)⟂. This is the compression
of the shift 𝑆 to (Θ𝐻2)⟂. By results in Chapter 20 the operators 1

2
(𝑇 + 𝐼) and (𝐼 +𝑉)−1

are unitarily equivalent via a unitary operator𝑊 ∶ 𝐿2[0, 1] onto (Θ𝐻2)⟂. Also observe
that 𝑇 and 1

2
(𝑇 + 𝐼) have the same invariant subspaces.

We claim that 𝑉 and (𝐼 + 𝑉)−1 also have the same invariant subspaces. This follows
from the fact that 𝜎(𝑉) = {0} and so ‖𝑉𝑛‖

1
𝑛 → 0 (via the spectral radius formula – see
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Theorem 8.4.4) and thus the series
∞
∑
𝑛=0

(−1)𝑛𝑉𝑛

converges in operator norm to (𝐼 + 𝑉)−1 (Exercise 7.7.20). By the spectral mapping
theorem (Lemma 8.4.1), we have 𝜎((𝐼+𝑉)−1−𝐼) = {0} and thus, again by the spectral
radius formula,

‖((𝐼 + 𝑉)−1 − 𝐼)𝑛‖
1
𝑛 → 0.

This shows that
∞
∑
𝑛=1

(−1)𝑛((𝐼 + 𝑉)−1 − 𝐼)𝑛

converges in operator norm to 𝑉 (Exercise 7.7.20). Since 𝑉 and (𝐼 + 𝑉)−1 can be
approximated in operator norm by polynomials in the other, they have the same
invariant subspaces. An invariant subspace of𝑉 corresponds (via the unitary operator
𝑊) to a 𝑇-invariant subspace𝒦 of (Θ𝐻2)⟂. By [143, p. 193],𝒦 = (Θ𝐻2)⟂ ∩Θ𝑎𝐻2 for
some 𝑎 ∈ [0, 1]. A final computation shows that (Θ𝐻2)⟂ ∩ Θ𝑎𝐻2 corresponds to
𝜒[𝑎,1]𝐿2[0, 1]. ■

There are no interesting reducing subspaces for 𝑉 .

Corollary 7.4.2. If ℱ is invariant for 𝑉 and 𝑉∗, then ℱ = 𝐿2[0, 1] or ℱ = {0}.

Proof By Exercise 4.5.1, ℱ is invariant for both 𝑉 and 𝑉∗ if and only if ℱ and ℱ⟂

are invariant for 𝑉 . From Theorem 7.4.1, ℱ = 𝜒[𝑎,1]𝐿2[0, 1]. One can show that
(𝜒[𝑎,1]𝐿2[0, 1])⟂ = 𝜒[0,𝑎]𝐿2[0, 1] which, by Theorem 7.4.1 again, is 𝑉 -invariant only
when 𝑎 = 0 or 𝑎 = 1. In other words, ℱ = 𝐿2[0, 1] or ℱ = {0}. ■

7.5 Commutant
The commutant {𝑉}′ = {𝑇 ∈ ℬ(𝐿2[0, 1]) ∶ 𝑇𝑉 = 𝑉𝑇} of theVolterra operator is difficult to
understand completely. Certainly 𝑝(𝑉) ∈ {𝑉}′ for all 𝑝 ∈ ℂ[𝑧]. Furthermore, the strong
operator closure of {𝑝(𝑉) ∶ 𝑝 ∈ ℂ[𝑧]} is contained in {𝑉}′. The following shows that
this is precisely the commutant. In the above, recall from Exercise 4.5.23 that a sequence
𝐴𝑛 ∈ ℬ(ℋ) converges to 𝐴 ∈ ℬ(ℋ) in the strong operator topology (SOT) if 𝐴𝑛x→ 𝐴x for
each x ∈ ℋ.

Theorem 7.5.1 (J. Erdos [126]). The commutant of 𝑉 is the strong operator closure of
{𝑝(𝑉) ∶ 𝑝 ∈ ℂ[𝑧]}.

Proof We follow the original proof from [126]. Let V denote the strong operator closure
of {𝑝(𝑉) ∶ 𝑝 ∈ ℂ[𝑧]}. Observe that V ⊆ {𝑉}′.
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To prove the reverse containment, we need a few details. For 𝑓, 𝑔 ∈ 𝐿2[0, 1], define

(𝑇𝑔𝑓)(𝑥) = ∫
𝑥

0
𝑔(𝑥 − 𝑡)𝑓(𝑡) 𝑑𝑡.

This is the convolution of 𝑓 and 𝑔. The Cauchy–Schwarz inequality shows that 𝑇𝑔 is
a bounded operator on 𝐿2[0, 1] with

‖𝑇𝑔‖ ⩽ ‖𝑔‖ for all 𝑔 ∈ 𝐿2[0, 1]. (7.5.2)

A short integral substitution reveals that

(𝑇𝑔𝑓)(𝑥) = (𝑇𝑓𝑔)(𝑥) (7.5.3)

and

𝑇𝑓1 = 𝑉𝑓 for all 𝑓 ∈ 𝐿2[0, 1], (7.5.4)

where 1 denotes the function whose value is identically 1.
It follows from (7.2.6) that if 𝑝 ∈ ℂ[𝑥], then 𝑇𝑝 is a polynomial in 𝑉 with zero
constant term. Furthermore, for 𝑔 ∈ 𝐿2[0, 1], Proposition 4.1.4 provides a sequence
of polynomials (𝑝𝑛)∞𝑛=1 such that 𝑝𝑛 → 𝑔 in 𝐿2[0, 1]. Now observe that (7.5.2) implies
that 𝑇𝑝𝑛 → 𝑇𝑔 in operator norm (and hence strongly) and thus

𝑇𝑔 ∈ V for all 𝑔 ∈ 𝐿2[0, 1]. (7.5.5)

Now suppose that𝐴 ∈ {𝑉}′. Then𝐴 commuteswith𝑝(𝑉) for all𝑝 ∈ ℂ[𝑥]. Since𝑇𝑓 ∈ V

for any 𝑓 ∈ 𝐿2[0, 1], it follows that 𝐴 commutes with 𝑇𝑓. Therefore,

𝐴𝑉𝑓 = 𝐴𝑇𝑓1 (by (7.5.4))
= 𝑇𝑓𝐴1 (𝐴 commutes with 𝑇𝑓)
= 𝑇𝐴1𝑓 (by (7.5.3)).

Consequently,

𝑉𝐴 = 𝐴𝑉 = 𝑇𝐴1 ∈ V . (7.5.6)

To prove that 𝐴 ∈ V , it suffices to show that given 𝜀 > 0 and 𝑓1, 𝑓2,…, 𝑓𝑛 ∈ 𝐿2[0, 1],
there is a polynomial 𝑝 such that 𝑝(0) = 0 and

‖(𝐴 − 𝑝(𝑉))𝑓𝑗‖ < 𝜀 for all 1 ⩽ 𝑗 ⩽ 𝑛.

For 𝑘 ⩾ 1, let

(𝑉𝑘)(𝑛) =
𝑛

⨁
𝑗=1

𝑉𝑘 ∶
𝑛

⨁
𝑗=1

𝐿2[0, 1] →
𝑛

⨁
𝑗=1

𝐿2[0, 1]

be defined by

(𝑉𝑘)(𝑛)(𝑔1, 𝑔2,…, 𝑔𝑛) = (𝑉𝑘𝑔1, 𝑉𝑘𝑔2,…, 𝑉𝑘𝑔𝑛).
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See Chapter 14 for a more formal treatment of direct sums of Hilbert spaces and
operators. Let f = (𝑓1, 𝑓2,…, 𝑓𝑛) and

M =⋁{(𝑉𝑘)(𝑛)f ∶ 𝑘 ⩾ 1}.

It is sufficient to show that 𝐴(𝑛)f ∈ M , where

𝐴(𝑛) =
𝑛

⨁
𝑗=1

𝐴 ∶
𝑛

⨁
𝑗=1

𝐿2[0, 1] →
𝑛

⨁
𝑗=1

𝐿2[0, 1]

is defined by

𝐴(𝑛)(𝑔1, 𝑔2,…, 𝑔𝑛) = (𝐴𝑔1, 𝐴𝑔2,…, 𝐴𝑔𝑛).

Suppose toward a contradiction that 𝐴(𝑛)f ∉ M . Then there exists anm ∈ M such
that g = 𝐴(𝑛)f −m is orthogonal to M . By (7.5.6) 𝐴𝑉 ∈ V , and hence

(𝑉𝑘)(𝑛)𝐴(𝑛)f ∈ M for all 𝑘 ⩾ 1.

Thus,

(𝑉𝑘)(𝑛)𝐴(𝑛)g ∈ M and ⟨(𝑉𝑘)𝑛g, g⟩ = 0 for all 𝑘 ⩾ 1.

Let h𝜆 = 𝑉 (𝑛)g − 𝜆g, where 𝜆 > 0. Then

⟨𝑉 (𝑛)h𝜆,h𝜆⟩ = ⟨𝑉 (𝑛)(𝑉 (𝑛)g − 𝜆g), 𝑉 (𝑛)g − 𝜆g⟩
= ⟨(𝑉2)(𝑛)g, 𝑉 (𝑛)g⟩ − 𝜆⟨𝑉 (𝑛)g, 𝑉 (𝑛)g⟩.

Since𝑉 , and hence𝑉 (𝑛), is injective (Proposition 7.2.5), deduce that Re⟨𝑉 (𝑛)h𝜆,h𝜆⟩ <
0 for sufficiently large 𝜆 > 0. However, (7.3.2) says that Re𝑉 = 1

2
(1 ⊗ 1),

which is a positive operator. Thus, Re𝑉 (𝑛) is also a positive operator, and hence
Re⟨𝑉 (𝑛)h𝜆,h𝜆⟩ ⩾ 0, which is a contradiction. ■

In another sense, when looking for a function-theoretic understanding of the commu-
tant, the situation becomes more involved. By our discussion of the invariant subspaces
of 𝑉 , it follows that {𝑉}′ = 𝑊 ∗{𝑇}′𝑊. As part of an interpolation result of Sarason [324]
(see also [143]), {𝑇}′ = {𝑃𝑀𝑔|(Θ𝐻2)⟂ ∶ 𝑔 ∈ 𝐻∞}, where 𝑃 is the orthogonal projection of
𝐻2 onto (Θ𝐻2)⟂. Notice how each element of {𝑇}′ is a compression of the multiplication
operator𝑀𝑔 on 𝐻2 to (Θ𝐻2)⟂. The following theorem summarizes this discussion.

Theorem 7.5.7 (Sarason [324]). {𝑉}′ = {𝑊 ∗(𝑃𝑀𝑔|(Θ𝐻2)⟂ )𝑊 ∶ 𝑔 ∈ 𝐻∞}.

Even though the Sarason result implies Theorem 7.5.1, we included an independent
proof of Theorem 7.5.1 since it relied on elegant elementary techniques, while Sarason’s
theorem relies on some deep operator-interpolation results.
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7.6 Notes
The Volterra operator was initially studied by Volterra [367, 368] and generalized in
various directions byGohberg andKreĭn [154]. In particular, the Volterra operator belongs
to a general class of integral operators

𝑓(𝑥) ↦ ∫
𝑋
𝑘(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

and these were some of the first operators studied. A well-done and readable introductory
treatment of the Volterra operator on the space of continuous functions on [0, 1] is
Shapiro’s text [340]. A source for general integral operators on 𝐿2 spaces is the text of
Halmos and Sunder [172].
The initial papers on complex symmetric operators are due to Garcia and Putinar [147,

148]. These two authors, along with Prodan [146], studied various connections of complex
symmetric operators to mathematical physics.
Our presentation of 𝜎(𝑉) = {0} (Proposition 7.2.5) used the fact that

lim
𝑛→∞

‖𝑉𝑛‖
1
𝑛 = 0.

Kershaw [213] refined this decay result to

lim
𝑛→∞

𝑛!‖𝑉𝑛‖ = 1
2 .

The Gelfand problem asks for a description of the invariant subspaces for the Volterra
operator. Although posed by I. Gelfand [150] and solved by Agmon [8], there are various
related problems explored by Sakhnovich [322], Brodskiĭ [65] (the cyclic vectors for 𝑉),
Donoghue [113] (solution of the Gelfand problem for 𝐿𝑝[0, 1]), Kalisch [210], and, as we
discussed in this chapter, Sarason [323].
Aleman and Korenblum examined a class of Volterra operators

(𝑉𝑎𝑓)(𝑧) = ∫
𝑧

𝑎
𝑓(𝑤) 𝑑𝑤 for 𝑎 ∈ 𝔻−,

on the Hardy space𝐻2 and classified their invariant subspaces [12]. The book of Gohberg
and Kreĭn [154] explores many other types of Volterra operators.
One can also study operators of the form

(𝑇𝑓)(𝑥) = 𝑥𝑓(𝑥) +∫
𝑥

0
𝑓(𝑡) 𝑑𝑡

on 𝐿2[0, 1]. In other words, 𝑇 = 𝑀𝑥 + 𝑉 is multiplication by 𝑥 plus the Volterra operator.
Sarason [326] characterized the 𝑇-invariant subspaces by relating them to the ideals of
the Sobolev space of absolutely continuous functions on [0, 1]whose derivative belongs to
𝐿2[0, 1]. Ong [256, 257] studied the invariant subspaces of the operator

𝑓 ↦ 𝑥𝑓(𝑥) + 𝑛∫
𝑥

0
𝑓(𝑡) 𝑑𝑡,
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where 𝑛 ⩾ 1 is an integer. Čučković and Paudyal [103] studied the analytic version of
𝑀𝑥 + 𝑉 , namely the operator on 𝐻2 defined by

𝑓(𝑧) ↦ 𝑧𝑓(𝑧) +∫
𝑧

0
𝑓(𝑤) 𝑑𝑤.

7.7 Exercises
Exercise 7.7.1. Prove that 𝑓 ∈ ran𝑉 if and only if 𝑓 is absolutely continuous on [0, 1],
𝑓′ ∈ 𝐿2[0, 1], and 𝑓(0) = 0.

Exercise 7.7.2. Prove that the functions

𝑓𝑛(𝑥) = √2 cos (2𝑛 + 1
2 𝜋𝑥) for 𝑛 ⩾ 0

form an orthonormal basis for 𝐿2[0, 1].

Exercise 7.7.3. For 𝑛 ⩾ 1 and 𝑓 ∈ 𝐿2[0, 1], prove that

(𝑉𝑛𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡) (𝑥 − 𝑡)𝑛−1

(𝑛 − 1)! 𝑑𝑡.

Exercise 7.7.4. For 𝑛 ⩾ 1, prove that ‖𝑉𝑛‖ ⩽ 1
(𝑛 − 1)! .

Exercise 7.7.5. Prove directly that the Volterra operator 𝑉 has no eigenvalues.

Exercise 7.7.6. Prove that the Volterra operator is not similar to a weighted shift on ℓ2. In
other words, show there is no invertible operator 𝑇 ∶ 𝐿2[0, 1] → ℓ2 such that 𝑇𝑉𝑇−1 = 𝑊
for some weighted shift𝑊 (see Exercise 3.6.21).
Remark: See [168] for more on operators similar to a weighted shift.

Exercise 7.7.7.

(a) Prove that

(Im𝑉𝑓)(𝑥) = 1
2𝑖 ∫

1

0
sgn(𝑡 − 𝑥)𝑓(𝑡) 𝑑𝑡 for 𝑓 ∈ 𝐿2[0, 1].

(b) Compute 𝜎(Im𝑉).

Exercise 7.7.8. Prove that ‖Re𝑉‖ = 1
2
and ‖ Im𝑉‖ = 1

𝜋
.

Remark: See [214] for more on this.

Exercise 7.7.9.

(a) Prove that 0 is an eigenvalue of every nilpotent operator.

(b) Prove that 0 is the only eigenvalue of a nilpotent operator.
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Exercise 7.7.10. If 𝑇 ∈ ℬ(ℋ) is nilpotent, prove that 𝐼−𝑇 is invertible and find a formula
for its inverse as a polynomial function of 𝑇.

Exercise 7.7.11. Let 𝑇 be a linear transformation on a finite-dimensional vector space 𝒱
such that for each v ∈ 𝒱, there is an integer𝑚(v) ⩾ 1 such that 𝑇𝑚(v)(v) = 0. Prove that
𝑇 is nilpotent.

Exercise 7.7.12. Prove that the bounded operator 𝐴 ∶ 𝐿2(0,∞) → 𝐿2(0,∞) defined by
(𝐴𝑓)(𝑥) = 𝑓(𝑥 + 1) is quasinilpotent but not nilpotent.

Exercise 7.7.13. Prove that the operator 𝐴 ∈ ℬ(ℓ2) defined by

𝐴(𝑎0, 𝑎1, 𝑎2, 𝑎3,…) = (0, 𝑎021 ,
𝑎1
22 ,

𝑎2
23 ,

𝑎3
24 ,…)

is quasinilpotent but not nilpotent.

Exercise 7.7.14. Prove that the operator 𝑇 ∶ 𝐻2 → 𝐻2 defined by (𝑇𝑓)(𝑧) = 𝑧𝑓(𝑧/2) is
compact and quasinilpotent. This exercise continues in Exercise 18.8.35.
Remark: This operator was explored in [113].

Exercise 7.7.15. Define (𝐶𝑓)(𝑥) = 𝑓(1 − 𝑥) for 𝑓 ∈ 𝐿2.

(a) Prove that 𝐶(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐶𝑓 + 𝑏𝐶𝑔 for all 𝑓, 𝑔 ∈ 𝐿2[0, 1] and 𝑎, 𝑏 ∈ ℂ.

(b) Prove that 𝐶2 = 𝐼.

(c) Prove that ‖𝐶𝑓‖ = ‖𝑓‖ for every 𝑓 ∈ 𝐿2[0, 1].

(d) Prove that 𝑉 = 𝐶𝑉∗𝐶.

Exercise 7.7.16. Prove that

𝑉𝑉∗ =
∞
∑
𝑛=0

4
(2𝑛 + 1)2𝜋2 𝑔𝑛 ⊗ 𝑔𝑛, where 𝑔𝑛(𝑥) = sin (2𝑛 + 1

2 𝜋𝑥).

Exercise 7.7.17. Let 𝑓 ∈ 𝐿2[0, 1].

(a) Prove that (𝑉𝑉∗𝑓)(𝑥) = ∫
1

0
min(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦.

(b) Prove that (𝑉∗𝑉𝑓)(𝑥) = ∫
1

0
(1 −max(𝑥, 𝑦))𝑓(𝑦) 𝑑𝑦.

Exercise 7.7.18. Suppose 𝑇 ∈ ℬ(ℋ) and 𝐶 is a conjugation onℋ such that 𝑇 = 𝐶𝑇∗𝐶.
If (u𝑛)∞𝑛=1 is a 𝐶-real orthonormal basis, that is, 𝐶u𝑛 = u𝑛 for all 𝑛 ⩾ 1, show that
[⟨𝑇u𝑗 ,u𝑖⟩]∞𝑖,𝑗=1, the matrix representation of 𝑇 with respect to this basis, is self-transpose.

Exercise 7.7.19. Let (𝐶𝑓)(𝑥) = 𝑓(1 − 𝑥) on 𝐿2[0, 1] and

𝑤𝑛(𝑥) = 𝑒2𝜋𝑖𝑛(𝑥−
1
2
) for 𝑛 ∈ ℤ.

Prove the following.
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(a) (𝑤𝑛)∞𝑛=−∞ is an orthonormal basis for 𝐿2[0, 1].

(b) 𝐶𝑤𝑛 = 𝑤𝑛 for all 𝑛 ∈ ℤ.

(c) With respect to the basis (𝑤𝑛)∞𝑛=−∞, the matrix representation of 𝑉 is

[𝑉] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑖
6𝜋

0 0 𝑖
6𝜋

0 0 0 ⋯

⋯ 0 𝑖
4𝜋

0 − 𝑖
4𝜋

0 0 0 ⋯

⋯ 0 0 𝑖
2𝜋

𝑖
2𝜋

0 0 0 ⋯

⋯ 𝑖
6𝜋

− 𝑖
4𝜋

𝑖
2𝜋

1
2

− 𝑖
2𝜋

𝑖
4𝜋

− 𝑖
6𝜋

⋯

⋯ 0 0 0 − 𝑖
2𝜋

− 𝑖
2𝜋

0 0 ⋯

⋯ 0 0 0 𝑖
4𝜋

0 − 𝑖
4𝜋

0 ⋯

⋯ 0 0 0 − 𝑖
6𝜋

0 0 − 𝑖
6𝜋

⋯

. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark: The box denotes the (0, 0) entry.

Exercise 7.7.20.

(a) Prove that the series∑∞
𝑛=0(−1)𝑛𝑉𝑛 converges in operator norm to (𝑉 + 𝐼)−1.

(b) Prove that the series∑∞
𝑛=1(−1)𝑛((𝑉 + 𝐼)−1 − 𝐼)𝑛 converges in operator norm to 𝑉 .

Exercise 7.7.21. The endnotes of this chapter mentioned how Sarason characterized the
invariant subspaces of 𝑀𝑥 + 𝑉 on 𝐿2[0, 1], where 𝑀𝑥𝑓 = 𝑥𝑓 on 𝐿2[0, 1], by relating this
problem to the ideals of𝒲, the algebra of absolutely continuous functions on [0, 1]whose
derivative belongs to 𝐿2[0, 1] [326]. Follow the steps in these next three problems to see
how this works.

(a) Exercise 1.10.15 asserts that𝒲 is a Hilbert space with norm

‖𝑓‖2 = ∫
1

0
|𝑓(𝑥)|2 𝑑𝑥 +∫

1

0
|𝑓′(𝑥)|2 𝑑𝑥.

Prove there exists a 𝑐 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| ⩽ 𝑐|𝑥 − 𝑦|
1
2 ‖𝑓‖ for all 𝑥, 𝑦 ∈ [0, 1]

and all 𝑓 ∈ 𝒲.

(b) Prove that there exists a 𝑘 > 0 such that ‖𝑓𝑔‖ ⩽ 𝑘‖𝑓‖‖𝑔‖ for all 𝑓, 𝑔 ∈ 𝒲.

(c) Prove that (𝑀𝑓)(𝑥) = 𝑥𝑓(𝑥) is a bounded linear operator on𝒲.

(d) Prove that a subspace𝒦 of𝒲 is𝑀-invariant if and only if𝒦 is a (topologically closed)
ideal of𝒲.
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Exercise 7.7.22. This exercise continues Exercise 7.7.21.

(a) Define 𝑄 ∶ 𝐿2[0, 1] → 𝒲 by (𝑄𝑓)(𝑥) = 𝑓(0) +∫
𝑥

0
𝑓(𝑡) 𝑑𝑡. Prove that 𝑄 is bounded,

invertible, and satisfies𝑀𝑥 + 𝑉 = 𝑄−1𝑀𝑄.

(b) Show that the invariant subspaces of 𝑀𝑥 + 𝑉 on 𝐿2[0, 1] are in bijective and order-
preserving correspondence with the closed ideals of𝒲.

Exercise 7.7.23. This is a continuation of Exercise 7.7.22. The closed ideals of𝒲 are of
the form𝒲(𝐸) = {𝑓 ∈ 𝒲 ∶ 𝑓|𝐸 = 0}, where 𝐸 is a closed subset of [0, 1]. Assuming this
fact, describe the invariant subspaces for𝑀𝑥 + 𝑉 on 𝐿2[0, 1].

Exercise 7.7.24. Define 𝑘 ∶ [0, 1] × [0, 1] → ℝ by

𝑘(𝑠, 𝑡) = {(1 − 𝑠)𝑡 if 𝑠 ⩾ 𝑡,
(1 − 𝑡)𝑠 if 𝑠 < 𝑡.

(a) Prove that 𝐴 ∶ 𝐿2[0, 1] → 𝐿2[0, 1] defined by (𝐴𝑓)(𝑠) = ∫
1

0
𝑘(𝑠, 𝑡)𝑓(𝑡) 𝑑𝑡, is compact.

(b) Compute the eigenvalues and eigenvectors of 𝐴.

Exercise 7.7.25. Prove that the operator 𝐴 ∶ 𝐿2[0, 1] → 𝐿2[0, 1] defined by

(𝐴𝑓)(𝑥) = 1
𝑥 ∫

𝑥

0
𝑓(𝑡) 𝑑𝑡

is bounded but not compact.

Exercise 7.7.26. Prove that the Volterra operator 𝑉 has a square root (first discovered in
[280]) as follows.

(a) Prove that

(𝑊𝑓)(𝑥) = 1
√𝜋

∫
𝑥

0

𝑓(𝑡)
√𝑥 − 𝑡

𝑑𝑡

defines a bounded linear operator on 𝐿2[0, 1].

(b) Prove that𝑊 2 = 𝑉 .

Remark:A result from [324] shows that±𝑊 are the only two (bounded) square roots of 𝑉 .

Exercise 7.7.27. Prove that the operator𝑊 defined in Exercise 7.7.26 is compact.

Exercise 7.7.28. Give an example of an 𝐴 ∈ ℬ(ℋ) that is not compact, but such that 𝐴2
is compact.

Exercise 7.7.29. Show that {𝑉}′ is the closure of {𝑝(𝑉) ∶ 𝑝 ∈ ℂ[𝑧]} in the weak operator
topology.
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Figure 7.7.1 The numerical range of the Volterra operator is the region inside the curve.

Exercise 7.7.30. This problem discusses 𝑊(𝑉) = {⟨𝑉𝑓, 𝑓⟩ ∶ ‖𝑓‖ = 1}, the numerical
range of the Volterra operator 𝑉 .

(a) For ‖𝑓‖ = 1, prove that 0 ⩽ Re⟨𝑉𝑓, 𝑓⟩ ⩽ 1
2
and thus𝑊(𝑉) ⊆ {𝑧 ∶ 0 ⩽ Re 𝑧 ⩽ 1

2
}.

(b) Prove that if 𝑧 ∈ 𝑊(𝑉), then 𝑧 ∈ 𝑊(𝑉).

(c) For each 𝜃 ∈ [0, 2𝜋], define 𝑓𝜃(𝑥) = 𝑒𝑖𝜃𝑥 and prove that

⟨𝑉𝑓𝜃, 𝑓𝜃⟩ = − 1
𝜃2 (𝑖𝜃 − 1 + 𝑒−𝑖𝜃).

(d) Prove that𝑊(𝑉) contains the region bounded by the curves

𝜃 ↦ 1 − cos 𝜃
𝜃2 ± 𝑖 𝜃 − sin 𝜃

𝜃2 .

See Figure 7.7.1.

Remark:Amore technical discussion shows that𝑊(𝑉) is equal to the set in (d) [215]. The
numerical ranges of other operators are computed in [107, Ch. 9].

7.8 Hints for the Exercises
Hint for Ex. 7.7.4: Consult Proposition 7.1.3.
Hint for Ex. 7.7.5: Differentiate both sides of 𝑉𝑓 = 𝜆𝑓 and consider the resulting
boundary value problem.
Hint for Ex. 7.7.6: Look at ker𝑉∗ and ker𝑊 ∗.
Hint for Ex. 7.7.16: Use the conjugation 𝐶 from Exercise 7.7.15 and the formula for 𝑉∗𝑉
proved in this chapter.



hints for the exercises | 173

Hint for Ex. 7.7.21: For (a), note that 𝑓(𝑥) = 𝑓(0) + ∫𝑥
0 𝑓′(𝑡) 𝑑𝑡.

Hint for Ex. 7.7.25: Consult Theorem 6.5.3.
Hint for Ex. 7.7.26: Use the integral version of Schur’s test from Exercise 3.6.27.
Hint for Ex. 7.7.29: Use Theorem7.5.1 and the fact that {𝑉}′ is closed in theweak operator
topology.





8
. . . . . . .

Multiplication Operators

Key Concepts: Multiplication operator, normal operator, spectral theorem, continuous functional
calculus, cyclic vector, ∗-cyclic vector, Bram’s theorem, commutant of a normal operator, Fuglede–
Putnam theorem.

Outline: We discuss multiplication operators 𝑀𝜑𝑓 = 𝜑𝑓 on 𝐿2(𝜇), where 𝜇 is a finite
positive Borel measure on a compact set in ℂ and 𝜑 is a 𝜇-essentially bounded function.
These operators represent normal operators on Hilbert spaces via the spectral theorem.

8.1 Multipliers of Lebesgue Spaces
Let (𝑋,𝒜, 𝜇) be a measure space, where 𝑋 ⊆ ℂ is compact, 𝒜 is the collection of all Borel
subsets of 𝑋 , and 𝜇 is a finite positive Borel measure on 𝑋 . By this wemean that 𝜇(𝑋) < ∞
and 𝜇(𝐸) ⩾ 0 for every Borel subset 𝐸 ⊆ 𝑋 . The space 𝐿2(𝜇) ∶= 𝐿2(𝑋,𝒜, 𝜇) is the set of all
complex-valued 𝜇-measurable functions 𝑓 on 𝑋 such that the integral

∫|𝑓(𝑧)|2𝑑𝜇(𝑧)

is finite. Use a similar version of the proof of Proposition 1.3.1 to define an inner product
and corresponding norm on 𝐿2(𝜇) by

⟨𝑓, 𝑔⟩ = ∫𝑓(𝑧)𝑔(𝑧) 𝑑𝜇(𝑧) and ‖𝑓‖ = (∫ |𝑓(𝑧)|2 𝑑𝜇(𝑧))
1
2 ,

respectively. Note that ‖𝑓‖ = 0 if and only if 𝑓 = 0 𝜇-almost everywhere and so, as
was done with 𝐿2[0, 1] and 𝐿2(𝕋) in Chapter 4, we equate functions that are equal 𝜇-
almost everywhere. The inner-product spaces 𝐿2(𝜇) are complete hence they are Hilbert
spaces [319, Thm. 3.11]. A suitablemodification of the proof of the Riesz–Fischer theorem
(Proposition 1.3.4) also verifies this.
Let supp(𝜇) denote the support of 𝜇 (the complement of the union of all open sets with

zero 𝜇-measure). The space 𝐿∞(𝜇) of 𝜇-essentially bounded functions on 𝑋 is the set of
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all complex-valued 𝜇-measurable functions 𝑓 on 𝑋 such that

‖𝑓‖∞ = sup {𝑎 ⩾ 0 ∶ 𝜇({𝑧 ∈ 𝑋 ∶ |𝑓(𝑧)| > 𝑎}) > 0}

is finite. The quantity ‖𝑓‖∞ is the 𝜇-essential supremum of 𝑓. Since 𝜇 is a finite measure,
it follows that 𝐿∞(𝜇) ⊆ 𝐿2(𝜇).
Remark 8.1.1. Since the definition of the 𝜇-essential supremum depends on the measure
𝜇, one might argue that we should write ‖𝑓‖∞,𝜇 to denote this dependence. We find this
notation cumbersome and opt for the simpler ‖𝑓‖∞. The dependence on 𝜇 will always be
clear from context.
Let 𝐶(𝑋) denote the set of complex-valued continuous functions on 𝑋 endowed with

the supremum norm

‖𝑓‖∞ = sup
𝑧∈𝑋

|𝑓(𝑧)|.

The analogue of Proposition 1.3.6 says that 𝐶(𝑋) is a dense subset of 𝐿2(𝜇) (see also [319,
Ch. 3]). To discuss another dense set in 𝐿2(𝜇), we need the following theorem.
Theorem 8.1.2 (Weierstrass approximation theorem). For a compact set 𝑋 ⊆ ℂ the
following hold.

(a) ℂ[𝑧, 𝑧], the set of polynomials in the complex variables 𝑧 and 𝑧, is dense in 𝐶(𝑋).

(b) If 𝑋 ⊆ ℝ, then ℂ[𝑥], the set of polynomials in the real variable 𝑥, is dense in 𝐶(𝑋).
These two forms of the Weierstrass approximation theorem yield useful dense subsets

of 𝐿2(𝜇).
Corollary 8.1.3. Let 𝜇 be a finite positive Borel measure with compact support 𝑋 ⊆ ℂ.
(a) ℂ[𝑧, 𝑧] is dense in 𝐿2(𝜇).

(b) If 𝑋 ⊆ ℝ, then ℂ[𝑥] is dense in 𝐿2(𝜇).
Remark 8.1.4. Some examples of 𝐿2(𝜇) spaces explored in this chapter are the following:
(a) 𝐿2[0, 1] = 𝐿2(𝜆), where 𝜆 is Lebesgue measure on [0, 1],

(b) 𝐿2(𝕋) = 𝐿2(𝑚), where𝑚 is normalized Lebesgue measure on 𝕋,

(c) 𝐿2(𝑑𝐴), where 𝑑𝐴 is planar Lebesgue measure on 𝔻, and

(d) 𝐿2(𝜎), where 𝜎 is the discrete measure

𝑑𝜎 =
∞
∑
𝑛=1

𝑐𝑛𝛿𝜆𝑛 .

Here (𝑐𝑛)∞𝑛=1 is a sequence of positive numbers with ∑∞
𝑛=1 𝑐𝑛 < ∞, (𝜆𝑛)∞𝑛=1 is a

bounded sequence of complex numbers, and 𝛿𝜆𝑛 is the Dirac measure defined on all
subsets 𝐸 of ℂ by

𝛿𝜆𝑛 (𝐸) = {1 if 𝜆𝑛 ∈ 𝐸,
0 if 𝜆𝑛 ∉ 𝐸.
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This next proposition identifies the multiplier algebra of 𝐿2(𝜇).

Proposition 8.1.5. If 𝜑 is a 𝜇-measurable function, then 𝜑𝐿2(𝜇) ⊆ 𝐿2(𝜇) if and only if
𝜑 ∈ 𝐿∞(𝜇).

Proof If 𝜑 ∈ 𝐿∞(𝜇), then

‖𝜑𝑓‖2 = ∫|𝜑𝑓|2 𝑑𝜇 ⩽ ‖𝜑‖2∞∫|𝑓|2 𝑑𝜇 = ‖𝜑‖2∞‖𝑓‖2.

Thus, 𝜑𝐿2(𝜇) ⊆ 𝐿2(𝜇) and hence the multiplication operator 𝑀𝜑 ∶ 𝐿2(𝜇) → 𝐿2(𝜇)
defined by

𝑀𝜑𝑓 = 𝜑𝑓

is well defined and bounded with

‖𝑀𝜑‖ ⩽ ‖𝜑‖∞. (8.1.6)

Conversely, suppose that𝜑𝐿2(𝜇) ⊆ 𝐿2(𝜇). Then𝑀𝜑 defines a linear transformation from
𝐿2(𝜇) to itself. If ‖𝑓𝑛 − 𝑓‖ → 0 and ‖𝜑𝑓𝑛 − 𝑔‖ → 0, there is a subsequence (𝑓𝑛𝑘 )∞𝑘=1
such that 𝑓𝑛𝑘 → 𝑓 and 𝜑𝑓𝑛𝑘 → 𝑔 𝜇-almost everywhere (Proposition 4.1.5). Thus,
𝑔 = 𝜑𝑓 and hence the graph of 𝑀𝜑 is closed. The closed graph theorem (Theorem
2.2.2) ensures that𝑀𝜑 is bounded on 𝐿2(𝜇). Let 𝜒 denote the characteristic function
of 𝑋 . Since 𝜇(𝑋) < ∞, it follows that 𝜒 ∈ 𝐿2(𝜇) and for all 𝑛 ⩾ 1,

∫|𝜑|2𝑛𝑑𝜇 = ‖𝑀𝑛
𝜑𝜒‖2 ⩽ ‖𝑀𝑛

𝜑‖2‖𝜒‖2 ⩽ ‖𝑀𝜑‖2𝑛𝜇(𝑋).

Thus,

‖𝜑‖𝐿2𝑛(𝜇) = (∫ |𝜑|2𝑛𝑑𝜇)
1
2𝑛 ⩽ ‖𝑀𝜑‖𝜇(𝑋)

1
2𝑛 .

Let 𝑛 → ∞ and observe that ‖𝜑‖𝐿2𝑛(𝜇) → ‖𝜑‖∞ [319, Ch. 3] and hence

‖𝜑‖∞ ⩽ ‖𝑀𝜑‖. (8.1.7)

Therefore, 𝜑 ∈ 𝐿∞(𝜇). ■

Equations (8.1.6) and (8.1.7) yield the following.

Corollary 8.1.8. If 𝜑 ∈ 𝐿∞(𝜇), then ‖𝑀𝜑‖ = ‖𝜑‖∞.

Adirect consequence ofCorollary 8.1.8 is that the symbol𝜑 for amultiplication operator
𝑀𝜑 is (essentially) unique.

Corollary 8.1.9. For 𝜑, 𝜓 ∈ 𝐿∞(𝜇), the following are equivalent.

(a) 𝑀𝜑 = 𝑀𝜓,

(b) 𝜑 = 𝜓 𝜇-almost everywhere.
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The set of multiplication operators {𝑀𝜑 ∶ 𝜑 ∈ 𝐿∞(𝜇)} on 𝐿2(𝜇) is a commutative
algebra. In particular,

𝑀𝜑𝑀𝜓 = 𝑀𝜑𝜓 = 𝑀𝜓𝑀𝜑 for all 𝜑, 𝜓 ∈ 𝐿∞(𝜇). (8.1.10)

The description of the spectrum of𝑀𝜑 requires the following definition.

Definition 8.1.11. The essential range of a 𝜇-measurable 𝜑 ∶ 𝑋 → ℂ is

R𝜑 ∶=⋂{𝜑(𝐸)− ∶ 𝐸 is 𝜇-measurable and 𝜇(𝐸𝑐) = 0}.

Note that R𝜑 depends on 𝜇 but we suppress the 𝜇 since it is clear from context. One also
sees that R𝜑 is closed and that R𝜑 ⊆ 𝜑(𝑋)−. Exercise 8.10.1 shows that 𝑤 ∈ R𝜑 if and
only if

𝜇(𝜑−1({𝑧 ∶ |𝑧 − 𝑤| < 𝑟})) > 0 for all 𝑟 > 0.
Moreover, ‖𝜑‖∞ = max{|𝑤| ∶ 𝑤 ∈ R𝜑}. This definition enables us to discuss the parts of
the spectrum of𝑀𝜑.

Proposition 8.1.12. Let 𝜑 ∈ 𝐿∞(𝜇).

(a) 𝜎(𝑀𝜑) = R𝜑.

(b) 𝜎𝑝(𝑀𝜑) = {𝜆 ∈ ℂ ∶ 𝜇({𝑧 ∶ 𝜑(𝑧) = 𝜆}) > 0}.

(c) 𝜎𝑎𝑝(𝑀𝜑) = R𝜑.

Proof (a) Notice that 𝜆 ∉ 𝜎(𝑀𝜑) if and only if 𝜆𝐼 −𝑀𝜑 is an invertible operator on 𝐿2(𝜇).
If 𝑓, 𝑔 ∈ 𝐿2(𝜇) and (𝜆𝐼 −𝑀𝜑)𝑓 = 𝑔, then 𝑓 = (𝜆 − 𝜑)−1𝑔 𝜇-almost everywhere. Thus,
𝜆 ∉ 𝜎(𝑀𝜑) if and only if 𝑀(𝜆−𝜑)−1 is a bounded operator on 𝐿2(𝜇). By Proposition
8.1.5, this is true if and only if there exists an 𝜀 > 0 such that |𝜑 − 𝜆| ⩾ 𝜀 𝜇-almost
everywhere. This last statement holds precisely when 𝜆 ∉ R𝜑.

(b) Observe that 𝜆𝐼 − 𝑀𝜑 is injective if and only if the conditions 𝑓 ∈ 𝐿2(𝜇) and (𝜆 −
𝜑)𝑓 = 0 𝜇-almost everywhere imply that 𝑓 = 0 𝜇-almost everywhere. This holds if
and only if 𝜆 − 𝜑 ≠ 0 𝜇-almost everywhere. Thus, 𝜆𝐼 − 𝑀𝜑 is injective if and only if
𝜇({𝑧 ∶ 𝜑(𝑧) = 𝜆}) = 0.

(c) See Exercise 8.10.2. ■

Recall that 𝐴 ∈ ℬ(ℋ) is normal if 𝐴𝐴∗ = 𝐴∗𝐴 and selfadjoint if 𝐴 = 𝐴∗. Every selfad-
joint operator is normal, although the converse is false. The importance of multiplication
operators stems from the fact that they serve as models for certain normal operators. We
begin with the following results.

Proposition 8.1.13. 𝑀∗
𝜑 = 𝑀𝜑 for every 𝜑 ∈ 𝐿∞(𝜇).

Proof For 𝑓, 𝑔 ∈ 𝐿2(𝜇),

⟨𝑀𝜑𝑓, 𝑔⟩ = ∫𝜑𝑓𝑔𝑑𝜇 = ∫𝑓𝜑𝑔𝑑𝜇 = ⟨𝑓,𝑀𝜑𝑔⟩.

Thus, by the definition of the adjoint,𝑀∗
𝜑 = 𝑀𝜑. ■
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Proposition 8.1.14. 𝑀𝜑 on𝐿2(𝜇) is normal for every𝜑 ∈ 𝐿∞(𝜇).Moreover,𝑀𝜑 is selfadjoint
if and only if 𝜑 is real valued 𝜇-almost everywhere.

Proof From Proposition 8.1.13 and (8.1.10),

𝑀∗
𝜑𝑀𝜑 −𝑀𝜑𝑀∗

𝜑 = 𝑀𝜑𝑀𝜑 −𝑀𝜑𝑀𝜑 = 𝑀|𝜑|2 −𝑀|𝜑|2 = 0.

Thus, 𝑀𝜑 is normal. Next, observe that 𝑀∗
𝜑 = 𝑀𝜑 if and only if 𝑀𝜑 = 𝑀𝜑, which is

true if and only if 𝜑 = 𝜑 𝜇-almost everywhere (Corollary 8.1.9). ■

8.2 Cyclic Vectors
We begin our discussion with the following definition.

Definition 8.2.1. An operator 𝐴 ∈ ℬ(ℋ) is cyclic if there exists an x ∈ ℋ such that

⋁{𝐴𝑛x ∶ 𝑛 ⩾ 0} = ℋ.

Such a vector x is a cyclic vector for 𝐴.

Exercise 13.9.5 shows that if 𝐴 has a cyclic vector, it has a set of cyclic vectors whose
linear span is dense.
A thorough discussion of the cyclicity of multiplication operators requires the Riesz

representation theorem for bounded linear functionals on 𝐶(𝑋). If 𝜇 is a finite complex
Borel measure with supp(𝜇) ⊆ 𝑋 , then the linear functional Λ𝜇 ∶ 𝐶(𝑋) → ℂ defined by

Λ𝜇(𝑓) = ∫
𝑋
𝑓𝑑𝜇

is well defined on 𝐶(𝑋). Furthermore,

|Λ𝜇(𝑓)| = ||∫
𝑋
𝑓𝑑𝜇|| ⩽ ∫

𝑋
|𝑓| 𝑑|𝜇| ⩽ ‖𝑓‖∞|𝜇|(𝑋) for all 𝑓 ∈ 𝐶(𝑋).

In the above, the total variation of 𝜇 is defined by

|𝜇|(𝑋) = sup
∞
∑
𝑛=1

|𝜇(𝐴𝑛)|,

where the supremum is taken over all countable Borel partitions 𝑋 = ⋃{𝐴𝑛 ∶ 𝑛 ⩾ 1} of
𝑋 . It follows that Λ𝜇 is a bounded linear functional on 𝐶(𝑋). Furthermore,

‖Λ𝜇‖ = sup
‖𝑓‖∞=1

|Λ𝜇(𝑓)| = |𝜇|(𝑋)

and such Λ𝜇 comprise all of the bounded linear functionals on 𝐶(𝑋) [94, p. 78].

Theorem 8.2.2 (Riesz representation theorem). If Λ is a bounded linear functional on
𝐶(𝑋), then there is a unique finite complex Borel measure 𝜇 on 𝑋 such that Λ = Λ𝜇.
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Corollary 8.2.3. If 𝜇 is a finite complex Borel measure on 𝑋 , the following are equivalent.

(a) ∫𝑓𝑑𝜇 = 0 for all 𝑓 ∈ 𝐶(𝑋).

(b) 𝜇 = 0.

The next result characterizes the cyclic vectors of a certain multiplication operator.

Proposition 8.2.4. Suppose 𝜇 is a finite positive Borel measure with compact support inℝ.

(a) 𝑀𝑥 is a cyclic operator on 𝐿2(𝜇).

(b) 𝑓 ∈ 𝐿2(𝜇) is a cyclic vector for𝑀𝑥 if and only if |𝑓| > 0 𝜇-almost everywhere.

Proof Observe that 𝑓 ∈ 𝐿2(𝜇) is cyclic if and only if {𝑝𝑓 ∶ 𝑝 ∈ ℂ[𝑥]} is dense in 𝐿2(𝜇).
This holds if and only if the conditions 𝑔 ∈ 𝐿2(𝜇) and ⟨𝑝𝑓, 𝑔⟩ = 0 for all 𝑝 ∈ ℂ[𝑥]
imply 𝑔 = 0 𝜇-almost everywhere. Suppose that |𝑓| > 0 𝜇-almost everywhere and

∫𝑝𝑓𝑔𝑑𝜇 = 0 for all 𝑝 ∈ ℂ[𝑥]. (8.2.5)

The Weierstrass approximation theorem implies that (8.2.5) also holds for any 𝑝 ∈
𝐶(𝑋). By Corollary 8.2.3, 𝑑𝜈 = 𝑓𝑔𝑑𝜇 is the zero measure, in other words 𝑓𝑔 = 0 𝜇-
almost everywhere. Since |𝑓| > 0 𝜇-almost everywhere, it follows that 𝑔 = 0 𝜇-almost
everywhere.

Conversely, if 𝑓 = 0 on a 𝜇-measurable set 𝐴 with 𝜇(𝐴) > 0, then 𝑔 = 𝜒𝐴 ∈ 𝐿2(𝜇)\{0}
and 𝑓𝑔 = 0 𝜇-almost everywhere. Therefore,

⟨𝑝𝑓, 𝑔⟩ = ∫𝑝𝑓𝑔𝑑𝜇 = 0 for all 𝑝 ∈ ℂ[𝑥],

and hence 𝑓 is not cyclic for𝑀𝑥. ■

If supp(𝜇) ⊄ ℝ, then Proposition 8.2.4 requires significantmodification, sinceℂ[𝑧]may
not be dense in 𝐿2(𝜇). For example, if𝑚 is Lebesguemeasure on 𝕋, then the closure ofℂ[𝑧]
in 𝐿2(𝑚) is the Hardy space 𝐻2 and not 𝐿2(𝑚) (see Example 8.2.9 below).

Definition 8.2.6. 𝑀𝑧 on 𝐿2(𝜇) is ∗-cyclic if there is an 𝑓 ∈ 𝐿2(𝜇) such that

⋁{𝑀𝑗
𝑧𝑀𝑘

𝑧𝑓 ∶ 𝑗, 𝑘 ⩾ 0} = 𝐿2(𝜇).

The function 𝑓 is a ∗-cyclic vector for𝑀𝑧.

The normality of𝑀𝑧 ensures that𝑀𝑗
𝑧𝑀𝑘

𝑧 = 𝑀𝑘
𝑧𝑀

𝑗
𝑧 for any integers 𝑗, 𝑘 ⩾ 0 (Proposition

8.1.14).

Proposition 8.2.7. Suppose 𝜇 is a finite positive Borel measure with compact support in ℂ.

(a) 𝑀𝑧 on 𝐿2(𝜇) is ∗-cyclic.

(b) 𝑓 ∈ 𝐿2(𝜇) is a ∗-cyclic vector if and only if |𝑓| > 0 𝜇-almost everywhere.

Proof Follow the proof of Proposition 8.2.4 and use the density of ℂ[𝑧, 𝑧] in 𝐿2(𝜇)
(Theorem 8.1.3a). ■
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When is 𝑀𝜑 cyclic? The following theorem, whose proof is in [337, 378], answers this
question.

Theorem 8.2.8. For 𝜑 ∈ 𝐿2(𝜇), the following are equivalent.

(a) 𝑀𝜑 is cyclic.

(b) 𝜑 is injective on a set of full measure.

We encountered an example of this result in Exercise 4.5.8.
If supp(𝜇) ⊆ ℝ, the cyclic and ∗-cyclic vectors for𝑀𝑧 are the same (since𝑀𝑧 = 𝑀∗

𝑧 ). If
supp(𝜇) ⊄ ℝ, they can be different.

Example 8.2.9. The constant function 1 on 𝕋 is a ∗-cyclic vector for𝑀𝜉 on 𝐿2(𝕋) since

⋁{𝑀𝑗
𝜉𝑀𝑘

𝜉
1 ∶ 𝑗, 𝑘 ⩾ 0} =⋁{𝜉𝑛 ∶ 𝑛 ∈ ℤ} = 𝐿2(𝕋)

(Theorem 1.3.9). However,

⋁{𝑀𝑛
𝜉 1 ∶ 𝑛 ⩾ 0} =⋁{𝜉𝑛 ∶ 𝑛 ⩾ 0} = 𝐻2,

which is a proper subspace of 𝐿2(𝕋). Thus, 1 is a ∗-cyclic vector for 𝑀𝜉 but not a cyclic
vector for𝑀𝜉.

Example 8.2.10. Continuing with Example 8.2.9, observe that Theorem 8.2.8 guarantees
that𝑀𝜉 on 𝐿2(𝕋) is cyclic. However, the cyclic vectors for𝑀𝜉 are not so obvious. For 𝑓 ∈
𝐿2(𝕋), Szegő’s formula [202, p. 49] says that

inf
𝑝∈ℂ[𝜉]

∫
𝕋
|𝜉𝑓 − 𝑝𝑓|2𝑑𝑚 = exp (∫

𝕋
log |𝑓|𝑑𝑚).

Select an 𝑓 ∈ 𝐿2(𝕋)\{0} such that log |𝑓| is not integrable; for example

𝑓(𝜉) = exp ( − 1
|𝜉 − 1| ) for 𝜉 ∈ 𝕋\{1}.

Consequently,

𝜉𝑓 ∈⋁{𝑀𝑛
𝜉𝑓 ∶ 𝑛 ⩾ 0}.

Repeated applications of Szegő’s formula yield

𝜉
𝑘
𝑓 ∈⋁{𝑀𝑛

𝜉𝑓 ∶ 𝑛 ⩾ 0} for all 𝑘 ⩾ 0.

This means that

⋁{𝑀𝑛
𝜉𝑓 ∶ 𝑛 ⩾ 0} =⋁{𝜉𝑚𝑓 ∶ 𝑚 ∈ ℤ}.

Given any 𝑔 ∈ 𝐶(𝕋), the Weierstrass approximation theorem (Theorem 8.1.2) produces a
sequence (𝑝𝑛(𝜉, 𝜉))∞𝑛=1 of polynomials in 𝜉 and 𝜉 such that ‖𝑝𝑛 − 𝑔‖∞ → 0. It follows that
‖𝑝𝑛𝑓 − 𝑔𝑓‖ ⩽ ‖𝑝𝑛 − 𝑔‖∞‖𝑓‖ → 0. Since |𝑓| > 0, the set {𝑔𝑓 ∶ 𝑔 ∈ 𝐶(𝕋)} is dense in 𝐿2(𝕋).
Thus, 𝑓 is cyclic.
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We summarize Proposition 8.2.7 and Example 8.2.10 as follows.

Proposition 8.2.11. For 𝑓 ∈ 𝐿2(𝕋), the following are equivalent.

(a) 𝑓 is a cyclic vector for𝑀𝜉 .

(b) |𝑓| > 0 𝑚-almost everywhere and log |𝑓| ∉ 𝐿1(𝕋).

One can show that 𝑀𝑧 on 𝐿2(𝑑𝐴), where 𝑑𝐴 is area measure on 𝔻, does not have the
constant function 1 as a cyclic vector (Exercise 8.10.19). In fact, examples like these lead
the reader to wonder if𝑀𝑧 on 𝐿2(𝜇) has any cyclic vectors. A surprising theorem of Bram
puts this issue to rest.

Theorem 8.2.12 (Bram [63]). If𝑀𝜑 on 𝐿2(𝜇) is ∗-cyclic, then it is cyclic.

Here are some of the ingredients used to prove Bram’s theorem. The hypothesis that
𝑀𝜑 is ∗-cyclic allows the use of a version of the spectral theorem for normal operators (see
Theorem 19.2.3) to prove that𝑀𝜑 is unitarily equivalent to𝑀𝑧 on 𝐿2(𝜈), where 𝜈 is a finite
positive Borel measure with compact support in ℂ. Bram’s rather elaborate construction
(see also [95, p. 232]) produces a finite positive Borel measure 𝜈1 on ℂ such that

(a) 𝜈 ≪ 𝜈1 and 𝜈1 ≪ 𝜈,

(b) 𝐻2(𝜈1) = 𝐿2(𝜈1),

(c) 𝜓 = √
𝑑𝜈1
𝑑𝜈 is bounded.

For any 𝑓 ∈ 𝐿2(𝜈), it follows from the definition of 𝜓 that 𝑓/𝜓 ∈ 𝐿2(𝜈1) and thus there is a
sequence of polynomials (𝑝𝑛)∞𝑛=1 such that

∫
|
|
|
𝑝𝑛 −

𝑓
𝜓
|
|
|

2

𝑑𝜈1 → 0.

Then

∫|𝑝𝑛𝜓 − 𝑓|2𝑑𝜈 = ∫ |𝑝𝑛𝜓 − 𝑓|2 1𝜓2 𝑑𝜈1 = ∫
|
|
|
𝑝𝑛 −

𝑓
𝜓
|
|
|

2

𝑑𝜈1 → 0.

Thus, 𝜓 is a cyclic vector for𝑀𝑧 on 𝐿2(𝜈). Since𝑀𝑧 on 𝐿2(𝜈) is unitarily equivalent to𝑀𝜑
on 𝐿2(𝜇), Exercise 8.10.30 shows that𝑀𝜑 has a cyclic vector.

Example 8.2.13. Exercise 8.10.19 shows that the constant function 1 is not a cyclic vector
for𝑀𝑧 on 𝐿2(𝑑𝐴). However, it is a ∗-cyclic vector. Thus, Bram’s theorem implies that𝑀𝑧
has a cyclic vector.
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8.3 Commutant
What is the commutant {𝑀𝜑}′ = {𝐴 ∈ ℬ(𝐿2(𝜇)) ∶ 𝐴𝑀𝜑 = 𝑀𝜑𝐴} of 𝑀𝜑? The following
theorem aids the analysis.

Theorem 8.3.1 (Fuglede [136]). If 𝜑 ∈ 𝐿∞(𝜇) and 𝐴 ∈ ℬ(𝐿2(𝜇)) with 𝐴𝑀𝜑 = 𝑀𝜑𝐴, then
𝐴𝑀𝜑 = 𝑀𝜑𝐴.

Proof We follow a wonderful proof by Rosenblum [309]. The proof uses operator-valued
analytic functions (see Exercise 8.10.22). The hypotheses imply that 𝐴𝑀𝑘

𝜑 = 𝑀𝑘
𝜑𝐴 for

all 𝑘 ⩾ 0. Using operator-valued power series, it follows that

𝐴𝑒𝜆𝑀𝜑 = 𝑒𝜆𝑀𝜑𝐴 for all 𝜆 ∈ ℂ.

Define the operator-valued entire function by

𝐹(𝜆) = 𝑒𝜆𝑀𝜑𝐴𝑒−𝜆𝑀𝜑 . (8.3.2)

Since 𝐴 = 𝑒−𝜆𝑀𝜑𝐴𝑒𝜆𝑀𝜑 and𝑀𝜑 commutes with𝑀𝜑, one concludes that

𝐹(𝜆) = 𝑒𝜆𝑀𝜑(𝑒−𝜆𝑀𝜑𝐴𝑒𝜆𝑀𝜑)𝑒−𝜆𝑀𝜑 = 𝑒𝜆𝑀𝜑−𝜆𝑀𝜑𝐴𝑒𝜆𝑀𝜑−𝜆𝑀𝜑 .

Exercise 8.10.23 shows that the operators

𝑈 = 𝑒𝜆𝑀𝜑−𝜆𝑀𝜑 and 𝑉 = 𝑒𝜆𝑀𝜑−𝜆𝑀𝜑

are unitary, and hence

‖𝐹(𝜆)‖ = ‖𝑈𝐴𝑉‖
⩽ ‖𝑈‖‖𝐴‖‖𝑉‖ (by Proposition 2.1.12b)
= ‖𝐴‖ (𝑈 and 𝑉 are isometric).

This means that 𝐹 is a bounded entire operator-valued function, so, via a similar
argument used to prove that the spectrum of an operator is nonempty (Theorem
2.4.9), 𝐹(𝜆) = 𝐹(0) = 𝐴 for all 𝜆 ∈ ℂ. Take derivatives of 𝐹 (using (8.3.2)) and set
𝜆 = 0 to obtain 𝐴𝑀𝜑 = 𝑀𝜑𝐴. ■

Putman [276] generalized Fuglede’s theorem as follows. If 𝑇,𝑀,𝑁 ∈ ℬ(ℋ) with𝑀,𝑁
normal and𝑀𝑇 = 𝑇𝑁, then𝑀∗𝑇 = 𝑇𝑁∗ (Exercise 8.10.24). Fuglede’s theorem also yields
a characterization of the commutant of𝑀𝑧 on 𝐿2(𝜇).

Corollary 8.3.3. {𝑀𝑧}′ = {𝑀𝜑 ∶ 𝜑 ∈ 𝐿∞(𝜇)}.

Proof The ⊇ containment follows from (8.1.10). For the reverse containment, suppose
that 𝐴 ∈ ℬ(𝐿2(𝜇)) and 𝐴𝑀𝑧 = 𝑀𝑧𝐴. We need to produce a 𝜑 ∈ 𝐿∞(𝜇) such that 𝐴 =
𝑀𝜑. Fuglede’s theorem (Theorem 8.3.1) implies that𝐴𝑀𝑧 = 𝑀𝑧𝐴. These two facts say
that𝐴𝑀𝑝(𝑧,𝑧) = 𝑀𝑝(𝑧,𝑧)𝐴 for all𝑝 ∈ ℂ[𝑧, 𝑧]. Apply this to𝜒 ∈ 𝐿2(𝜇), the characteristic
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function of supp(𝜇), and conclude that𝐴𝑝𝜒 = 𝑝𝐴𝜒 for all 𝑝 ∈ ℂ[𝑧, 𝑧]. The density of
ℂ[𝑧, 𝑧] in 𝐿2(𝜇) (Corollary 8.1.3) says that given 𝑓 ∈ 𝐿2(𝜇), there is a sequence (𝑝𝑛)∞𝑛=1
in ℂ[𝑧, 𝑧] such that 𝑝𝑛 → 𝑓 in 𝐿2(𝜇) norm. Passing to a subsequence and relabeling,
we may assume that 𝑝𝑛 → 𝑓 pointwise 𝜇-almost everywhere. Consequently, 𝐴𝑓 =
𝑓𝐴𝜒 for all 𝑓 ∈ 𝐿2(𝜇), and hence 𝐴𝜒 ∈ 𝐿∞(𝜇) (Proposition 8.1.5). Furthermore,
𝐴 = 𝑀𝐴𝜒. ■

8.4 Spectral Radius
For 𝑝(𝑧) = ∑𝑛

𝑘=0 𝑐𝑘𝑧𝑘 ∈ ℂ[𝑧] and 𝑇 ∈ ℬ(ℋ), define

𝑝(𝑇) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘.

By convention, 𝑇0 = 𝐼, the identity operator onℋ. The following important lemma says
that this polynomial functional calculus respects the spectrum.

Lemma 8.4.1 (Polynomial spectral mapping theorem). If 𝐴 ∈ ℬ(ℋ) and 𝑝 ∈ ℂ[𝑧], then
𝜎(𝑝(𝐴)) = 𝑝(𝜎(𝐴)) = {𝑝(𝜆) ∶ 𝜆 ∈ 𝜎(𝐴)}.

Proof Without loss of generality, suppose 𝑝 is nonconstant.
(⊇) If 𝜆 ∈ 𝜎(𝐴), the polynomial 𝑝(𝑧) − 𝑝(𝜆) vanishes at 𝑧 = 𝜆 and hence 𝑝(𝑧) − 𝑝(𝜆) =
(𝑧 − 𝜆)𝑞(𝑧) for some 𝑞 ∈ ℂ[𝑧]. Since 𝜆 ∈ 𝜎(𝐴), it follows that the operator 𝑝(𝐴) −
𝑝(𝜆)𝐼 = (𝐴 − 𝜆𝐼)𝑞(𝐴) is not invertible. Thus, 𝑝(𝜆) ∈ 𝜎(𝑝(𝐴)) and hence 𝑝(𝜎(𝐴)) ⊆
𝜎(𝑝(𝐴)).

(⊆) Let 𝜉 ∈ 𝜎(𝑝(𝐴)) and let 𝜆1, 𝜆2,…, 𝜆𝑛 be the zeros of 𝑝(𝑧) − 𝜉, repeated according to
multiplicity. Then

𝑝(𝑧) − 𝜉 = 𝑐(𝑧 − 𝜆1)(𝑧 − 𝜆2)⋯ (𝑧 − 𝜆𝑛), (8.4.2)

where 𝑐 ≠ 0. If 𝜆1, 𝜆2,…, 𝜆𝑛 ∉ 𝜎(𝐴), then

𝑝(𝐴) − 𝜉𝐼 = 𝑐(𝐴 − 𝜆1𝐼)(𝐴 − 𝜆2𝐼)⋯ (𝐴 − 𝜆𝑛𝐼)

is a product of invertible operators and hence invertible. This is impossible since 𝜉 ∈
𝜎(𝑝(𝐴)). Therefore, 𝜆𝑖 ∈ 𝜎(𝐴) for some 1 ⩽ 𝑖 ⩽ 𝑛, and hence 𝜉 = 𝑝(𝜆𝑖) by (8.4.2).
Consequently, 𝜎(𝑝(𝐴)) ⊆ 𝑝(𝜎(𝐴)). ■

Definition 8.4.3. The spectral radius of 𝐴 ∈ ℬ(ℋ) is

𝑟(𝐴) = sup
𝜆∈𝜍(𝐴)

|𝜆|.

Since 𝜎(𝐴) is a compact subset of ℂ the supremum above is attained. Moreover,
Theorem 2.4.9 yields 𝑟(𝐴) ⩽ ‖𝐴‖ . Equality is attained for a diagonal operator, although
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other examples exist. Strict inequality occurs for

𝐴 = [0 1
0 0] ,

for which 𝑟(𝐴) = 0 and ‖𝐴‖ = 1. The next result of Beurling [51] and Gelfand [151] is
known as the spectral radius formula.

Theorem 8.4.4 (Beurling–Gelfand). If 𝐴 ∈ ℬ(ℋ), then

𝑟(𝐴) = lim
𝑛→∞

‖𝐴𝑛‖
1
𝑛 .

The proof of this theorem requires some preliminaries. For 𝐴 ∈ ℬ(ℋ), observe that
𝒜 = ⋁{𝐴𝑘 ∶ 𝑘 ⩾ 0} is a Banach space and an algebra. Recall that 𝒜∗ denotes the dual
space of 𝒜, the set of bounded linear functionals 𝜑 on 𝒜 (Definition 2.2.4). With respect
to the norm

‖𝜑‖ = sup
𝑎∈𝒜,
‖𝑎‖=1

|𝜑(𝑎)|,

𝒜∗ is itself a Banach space and one can consider𝒜∗∗ = (𝒜∗)∗, the space of bounded linear
functionals on 𝒜∗, that is, the space of all ℓ ∶ 𝒜∗ → ℂ with finite norm

‖ℓ‖ = sup
𝜑∈𝒜∗

‖𝜑‖=1

|ℓ(𝜑)|.

For 𝑎 ∈ 𝒜, one has 𝑎 ∈ 𝒜∗∗ defined by 𝑎 (𝜑) = 𝜑(𝑎). The Hahn–Banach extension
theorem (Theorem 2.2.5) implies that the map 𝑎 ↦ 𝑎 is a linear isometry from 𝒜 into
𝒜∗∗. We are now ready for the proof of Theorem 8.4.4.

Proof Lemma 8.4.1 ensures that 𝜆 ∈ 𝜎(𝐴) implies that 𝜆𝑛 ∈ 𝜎(𝐴𝑛), so |𝜆𝑛| ⩽ ‖𝐴𝑛‖
(Theorem 2.4.9). For 𝜆 ∈ 𝜎(𝐴), it follows that

|𝜆| ⩽ lim inf
𝑛→∞

‖𝐴𝑛‖
1
𝑛 ,

and hence

𝑟(𝐴) ⩽ lim inf
𝑛→∞

‖𝐴𝑛‖
1
𝑛 .

To conclude the proof, it suffices to show that

lim sup
𝑛→∞

‖𝐴𝑛‖
1
𝑛 ⩽ 𝑟(𝐴). (8.4.5)

For 𝜑 ∈ 𝒜∗, consider

𝑓(𝑧) = 𝜑((𝑧𝐼 − 𝐴)−1), (8.4.6)
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which is analytic on ℂ\𝜎(𝐴). For |𝑧| > ‖𝐴‖, consider the series development

𝜑((𝑧𝐼 − 𝐴)−1) = 𝜑(𝑧−1(𝐼 − 𝑧−1𝐴)−1)

= 𝜑(𝑧−1
∞
∑
𝑛=0

(𝑧−1𝐴)𝑛)

= 𝑧−1
∞
∑
𝑛=0

𝜑(𝑧−𝑛𝐴𝑛)

= 𝑧−1
∞
∑
𝑛=0

𝑧−𝑛𝜑(𝐴𝑛). (8.4.7)

This series agrees with 𝑓 on |𝑧| > ‖𝐴‖. Since 𝑓, as defined in (8.4.6), is analytic on
|𝑧| > 𝑟(𝐴), the series in (8.4.7) converges for all |𝑧| > 𝑟(𝐴).

For each fixed |𝑧| > 𝑟(𝐴), the convergence of (8.4.7) implies that the evaluation
functionals

𝑧−𝑛𝐴𝑛(𝜑) = 𝜑(𝑧−𝑛𝐴𝑛) for 𝑛 ⩾ 0,

which belong to 𝒜∗∗, satisfy

sup
𝑛⩾0

|𝑧−𝑛𝐴𝑛(𝜑)| < ∞ for all 𝜑 ∈ 𝒜∗.

Since 𝑎 ↦ 𝑎 is a linear isometry from𝒜 to𝒜∗∗, the principle of uniformboundedness
(Theorem 2.2.3) provides constants 𝐶(𝑧) > 0 such that

‖𝑧−𝑛𝐴𝑛‖𝒜 = ‖
‖𝑧−𝑛𝐴𝑛

‖
‖𝒜∗∗

⩽ 𝐶(𝑧) for all 𝑛 ⩾ 0.

This yields ‖𝐴𝑛‖
1
𝑛 ⩽ |𝑧|𝐶(𝑧)

1
𝑛 , so lim sup𝑛→∞ ‖𝐴𝑛‖

1
𝑛 ⩽ |𝑧|. Since this holds for all

|𝑧| > 𝑟(𝐴), the desired inequality (8.4.5) follows. ■

8.5 Selfadjoint and Positive Operators
Recall that𝐴 ∈ ℬ(ℋ) is selfadjoint if𝐴 = 𝐴∗. Since real numbers are characterized by the
condition 𝑧 = 𝑧, one often thinks of selfadjoint operators as the operator analogues of real
numbers.We explore this connection further, along with positive operators, the analogues
of nonnegative numbers. We begin with a few facts about selfadjoint operators.

Theorem 8.5.1. Let 𝐴 ∈ ℬ(ℋ) be selfadjoint.

(a) 𝜎(𝐴) ⊆ ℝ.

(b) 𝜎(𝐴) = 𝜎𝑎𝑝(𝐴).

(c) ‖𝐴‖ = 𝑟(𝐴).

(d) Eigenvectors of 𝐴 corresponding to distinct eigenvalues are orthogonal.
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Proof (a) Let 𝜆 = 𝛼+ 𝑖𝛽, in which 𝛼, 𝛽 ∈ ℝ and 𝛽 ≠ 0. Then, 𝐴− 𝜆𝐼 = 𝐵 − 𝑖𝛽𝐼, in which
𝐵 = 𝐴 − 𝛼𝐼 is selfadjoint. Thus,

‖(𝐴 − 𝜆𝐼)x‖2 = ‖𝐵x − 𝑖𝛽x‖2

= ⟨𝐵x − 𝑖𝛽x, 𝐵x − 𝑖𝛽x⟩
= ⟨𝐵x, 𝐵x⟩ − 𝑖𝛽 ⟨x, 𝐵x⟩ + 𝑖𝛽 ⟨𝐵x, x⟩ + |𝛽|2 ⟨x, x⟩
= ‖𝐵x‖2 + 𝑖𝛽( ⟨𝐵x, x⟩ − ⟨𝐵x, x⟩ ) + |𝛽|2 ‖x‖2

= ‖(𝐴 − 𝛼𝐼)x‖2 + |𝛽|2 ‖x‖2

⩾ |𝛽|2 ‖x‖2 ,

and hence 𝐴−𝜆𝐼 is bounded below. In particular, ker(𝐴−𝜆𝐼) = {0} if Im 𝜆 ≠ 0. From
Proposition 3.1.7 observe that

(ran(𝐴 − 𝜆𝐼))− = (ker(𝐴 − 𝜆𝐼)∗)⟂ = (ker(𝐴 − 𝜆𝐼))⟂ = {0}⟂ = ℋ.

Then 𝐴−𝜆𝐼 is bounded below and has dense range, so it is invertible (Lemma 2.3.5).
Therefore, 𝜎(𝐴) ∩ {𝑧 ∶ Im 𝑧 ≠ 0} = ∅ and hence 𝜎(𝐴) ⊆ ℝ.

(b) It suffices to prove that 𝜎(𝐴) ⊆ 𝜎𝑎𝑝(𝐴); the reverse inclusion always holds (Proposi-
tion 2.4.6). Suppose that 𝛼 ∈ 𝜎(𝐴) (note that 𝛼 ∈ ℝ by (a)). Lemma 2.3.5 implies that
𝐴 − 𝛼𝐼 is not bounded below or 𝐴 − 𝛼𝐼 does not have dense range. If 𝐴 − 𝛼𝐼 is not
bounded below, then 𝛼 ∈ 𝜎𝑎𝑝(𝐴) by definition. If 𝐴 − 𝛼𝐼 does not have dense range,
then

ℋ ≠ (ran(𝐴 − 𝛼𝐼))− = (ker(𝐴 − 𝛼𝐼)∗)⟂ = (ker(𝐴 − 𝛼𝐼))⟂,

and thus ker(𝐴 − 𝛼𝐼) ≠ {0}. In other words, 𝛼 ∈ 𝜎𝑝(𝐴) ⊆ 𝜎𝑎𝑝(𝐴).
(c) Observe that ‖𝐴2‖ = ‖𝐴∗𝐴‖ = ‖𝐴‖2 (recall Proposition 3.1.5). Similarly,

‖𝐴4‖ = ‖𝐴2𝐴2‖ = ‖(𝐴2)∗𝐴2‖ = ‖𝐴2‖2 = (‖𝐴‖2)2 = ‖𝐴‖4. (8.5.2)

Induction confirms that

‖𝐴2𝑘‖ = ‖𝐴‖2
𝑘

for all 𝑘 ⩾ 0, (8.5.3)

and the spectral radius formula yields

𝑟(𝐴) = lim
𝑛→∞

‖𝐴𝑛‖
1
𝑛 = lim

𝑘→∞
‖𝐴2𝑘‖

1
2𝑘 = lim

𝑘→∞
‖𝐴‖ = ‖𝐴‖ .

(d) Suppose that 𝐴x = 𝜆x and 𝐴y = 𝜇y, in which x, y ≠ 0 and 𝜆 ≠ 𝜇 are real. Then,

𝜆 ⟨x, y⟩ = ⟨𝜆x, y⟩ = ⟨𝐴x, y⟩ = ⟨x, 𝐴y⟩ = ⟨x, 𝜇y⟩ = 𝜇 ⟨x, y⟩ ,

and hence ⟨x, y⟩ = 0 because 𝜆 ≠ 𝜇. ■

Definition 8.5.4. Let 𝐴 ∈ ℬ(ℋ).

(a) 𝐴 is positive, denoted 𝐴 ⩾ 0, if ⟨𝐴x, x⟩ ⩾ 0 for all x ∈ ℋ.

(b) 𝐴 is strictly positive, denoted 𝐴 > 0, if ⟨𝐴x, x⟩ > 0 for all x ∈ ℋ\{0}.
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In linear algebra, the corresponding terms for matrices are positive semidefinite and
positive definite, respectively. It is usually assumed, as part of the definition of positivity,
that 𝐴 = 𝐴∗. Theorem 8.5.8 (below) shows this assumption is unnecessary in a complex
inner product space. The set of positive operators onℋ is closed under nonnegative linear
combinations. That is, if 𝐴, 𝐵 ⩾ 0 and 𝛼, 𝛽 ⩾ 0, then 𝛼𝐴 + 𝛽𝐵 ⩾ 0 (Exercise 8.10.13).

Example 8.5.5. A diagonal operator 𝐷Λ on ℓ2 is positive if and only if Λ ⊆ [0,∞).

Proposition 8.5.6. If 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝐴 ⩾ 0, then 𝐵∗𝐴𝐵 ⩾ 0. In particular, 𝑇∗𝑇 ⩾ 0 for
any 𝑇 ∈ ℬ(ℋ).

Proof See Exercise 8.10.14. ■

The next lemma is a uniqueness result that employs a polarization-type identity.

Lemma 8.5.7. If 𝐴 ∈ ℬ(ℋ) is selfadjoint and ⟨𝐴x, x⟩ = 0 for all x ∈ ℋ, then 𝐴 = 0.

Proof Suppose that 𝐴 = 𝐴∗ and ⟨𝐴x, x⟩ = 0 for all x ∈ ℋ. Then

0 = ⟨𝐴(x + y), x + y⟩ − ⟨𝐴(x − y), x − y⟩
= (⟨𝐴x, x⟩ + ⟨𝐴x, y⟩ + ⟨𝐴y, x⟩ + ⟨𝐴y, y⟩)

− (⟨𝐴x, x⟩ − ⟨𝐴x, y⟩ − ⟨𝐴y, x⟩ + ⟨𝐴y, y⟩)
= 2 (⟨𝐴x, y⟩ + ⟨𝐴y, x⟩)
= 4Re ⟨𝐴x, y⟩

for all x, y ∈ ℋ. Let y = 𝐴x and conclude that ‖𝐴x‖2 = 0 for all x ∈ ℋ. ■

The following selfadjointness criterion only holds for complex Hilbert spaces. Recall
that each 𝑇 ∈ ℬ(ℋ) has a Cartesian decomposition

𝑇 = 𝐴 + 𝑖𝐵,

in which 𝐴, 𝐵 ∈ ℬ(ℋ) are selfadjoint; see (7.3.1).

Theorem 8.5.8. If 𝑇 ∈ ℬ(ℋ) and ⟨𝑇x, x⟩ ∈ ℝ for all x ∈ ℋ, then 𝑇 = 𝑇∗.

Proof If ⟨𝑇x, x⟩ ∈ ℝ for all x ∈ ℋ, then

⟨(𝑇 − 𝑇∗)x, x⟩ = ⟨𝑇x, x⟩ − ⟨𝑇∗x, x⟩
= ⟨𝑇x, x⟩ − ⟨x, 𝑇x⟩
= ⟨𝑇x, x⟩ − ⟨𝑇x, x⟩
= 2𝑖 Im ⟨𝑇x, x⟩
= 0.

Thus, 𝐴 = 1
2𝑖
(𝑇 − 𝑇∗) is selfadjoint and satisfies ⟨𝐴x, x⟩ = 0 for all x ∈ ℋ. The

preceding lemma ensures that 𝐴 = 0 and hence 𝑇 = 𝑇∗. ■



continuous functional calculus | 189

Lemma 8.5.9. If 𝐴, 𝐵 ∈ ℬ(ℋ) are positive and 𝐴 + 𝐵 = 0, then 𝐴 = 𝐵 = 0.

Proof For all x ∈ ℋ,

0 ⩽ max{⟨𝐴x, x⟩ , ⟨𝐵x, x⟩} ⩽ ⟨𝐴x, x⟩ + ⟨𝐵x, x⟩ = ⟨(𝐴 + 𝐵)x, x⟩ = 0.

Lemma 8.5.7 ensures that 𝐴 = 𝐵 = 0. ■

Theorem 8.5.10. Let 𝐴 ∈ ℬ(ℋ). The following are equivalent.

(a) 𝐴 is positive.

(b) 𝐴 is selfadjoint and 𝜎(𝐴) ⊆ [0,∞).

(c) 𝐴 = 𝐵∗𝐵 for some 𝐵 ∈ ℬ(ℋ).

Proof (a) ⇒ (b) If 𝐴 ⩾ 0, then Theorem 8.5.8 ensures that 𝐴 = 𝐴∗, so 𝜎(𝐴) = 𝜎𝑎𝑝(𝐴)
(Theorem 8.5.1). If 𝜆 ∈ 𝜎(𝐴), then there exists a sequence of unit vectors (x𝑛)∞𝑛=1
such that (𝐴 − 𝜆𝐼)x𝑛 → 0. Since the x𝑛 are unit vectors we see that

| ⟨(𝜆𝐼 − 𝐴)x𝑛, x𝑛⟩ | ⩽ ‖(𝜆𝐼 − 𝐴)x𝑛‖‖x𝑛‖ = ‖(𝜆𝐼 − 𝐴)x𝑛‖ → 0 as 𝑛 → ∞.

Thus,

𝜆 = 𝜆 ‖x𝑛‖
2 = 𝜆 ⟨x𝑛, x𝑛⟩ = ⟨𝜆x𝑛, x𝑛⟩

= ⟨(𝜆𝐼 − 𝐴)x𝑛, x𝑛⟩ + ⟨𝐴x𝑛, x𝑛⟩
⩾ ⟨(𝜆𝐼 − 𝐴)x𝑛, x𝑛⟩ + 0 (since ⟨𝐴x𝑛, x𝑛⟩ ⩾ 0)
= ⟨(𝜆𝐼 − 𝐴)x𝑛, x𝑛⟩ → 0.

Therefore, 𝜆 ⩾ 0.
(b)⇒ (c) This follows from Theorem 8.6.4 below.
(c)⇒ (a) If 𝐴 = 𝐵∗𝐵, then ⟨𝐴x, x⟩ = ⟨𝐵∗𝐵x, x⟩ = ⟨𝐵x, 𝐵x⟩ = ‖𝐵x‖2 ⩾ 0. ■

Example 8.5.11. Notice that the Volterra operator 𝑉 is not a positive operator yet 𝜎(𝑉) =
{0} ⊆ [0,∞) (Proposition 7.2.5). Thus, the selfadjointness hypothesis in statement (b) of
Theorem 8.5.10 is crucial.

8.6 Continuous Functional Calculus
Our presentation follows [284]. Lemma 8.4.1 implies that 𝑝(𝜎(𝐴)) = 𝜎(𝑝(𝐴)) for all 𝑝 ∈
ℂ[𝑧] and 𝐴 ∈ ℬ(ℋ). For selfadjoint operators, this can be pushed much further. For 𝑝 ∈
ℂ[𝑧], let

𝑝(𝑧) = 𝑝(𝑧).

In otherwords, if𝑝(𝑧) = 𝑎0+𝑎1𝑧+𝑎2𝑧2+⋯+𝑎𝑘𝑧𝑘, then𝑝(𝑧) = 𝑎0+𝑎1𝑧+𝑎2𝑧2+⋯+𝑎𝑘𝑧𝑘.
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Lemma 8.6.1. If 𝐴 ∈ ℬ(ℋ) is selfadjoint and 𝑝 ∈ ℂ[𝑧], then

‖𝑝(𝐴)‖ = sup
𝜆∈𝜍(𝐴)

|𝑝(𝜆)|.

Proof If 𝑝(𝑧) = ∑𝑛
𝑘=0 𝑐𝑘𝑧𝑘 and 𝐴 = 𝐴∗, then

𝑝(𝐴)∗ = (
𝑛
∑
𝑘=0

𝑐𝑘𝐴𝑘)
∗
=

𝑛
∑
𝑘=0

𝑐𝑘𝐴𝑘 = 𝑝(𝐴)

and

𝑝(𝐴)𝑝(𝐴) = (
𝑛
∑
𝑗=0

𝑐𝑗𝐴𝑗)(
𝑛
∑
𝑘=0

𝑐𝑘𝐴𝑘) =
𝑛
∑
𝑗,𝑘=0

𝑐𝑗𝑐𝑘𝐴𝑗+𝑘 = (𝑝𝑝)(𝐴),

in which (𝑝𝑝)(𝐴) is selfadjoint. Consequently,

‖𝑝(𝐴)‖2 = ‖𝑝(𝐴)∗𝑝(𝐴)‖ (by Proposition 3.1.5)
= ‖𝑝(𝐴)𝑝(𝐴)‖
= ‖(𝑝𝑝)(𝐴)‖
= 𝑟((𝑝𝑝)(𝐴)) (by Theorem 8.5.1)
= sup

𝜆∈𝜍(𝑝𝑝(𝐴))
|𝜆|

= sup
𝜆∈𝜍(𝐴)

|(𝑝𝑝)(𝜆)| (by Lemma 8.4.1)

= sup
𝜆∈𝜍(𝐴)

||
𝑛
∑
𝑗,𝑘=0

𝑐𝑗𝑐𝑘𝜆𝑗+𝑘||

= sup
𝜆∈𝜍(𝐴)

||
𝑛
∑
𝑗,𝑘=0

𝑐𝑗𝑐𝑘𝜆𝑗𝜆𝑘|| (since 𝜎(𝐴) ⊆ ℝ)

= sup
𝜆∈𝜍(𝐴)

|𝑝(𝜆)|2,

which completes the proof. ■

The next theorem extends the polynomial spectral mapping theorem (Lemma 8.4.1) to
a much larger class of functions.

Theorem 8.6.2 (Continuous functional calculus). Let 𝐴 ∈ ℬ(ℋ) be selfadjoint and let
𝑋 = 𝜎(𝐴). There is a unique map Φ ∶ 𝐶(𝑋) → ℬ(ℋ) satisfying the following.

(a) Φ is a ∗-homomorphism, in the sense that for all 𝑓, 𝑔 ∈ 𝐶(𝑋), the following hold.

(i) Φ is linear.

(ii) Φ(𝑓𝑔) = Φ(𝑓)Φ(𝑔).

(iii) Φ(1) = 𝐼.

(iv) Φ(𝑓) = Φ(𝑓)∗.
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(b) Φ is an isometry.

(c) Φ(𝑧) = 𝐴, where 𝑧 denotes the identity function on 𝑋 .

For 𝑓 ∈ 𝐶(𝑋), define 𝑓(𝐴) = Φ(𝑓).

(d) If 𝑓 ⩾ 0, then 𝑓(𝐴) ⩾ 0.

(e) 𝜎(𝑓(𝐴)) = 𝑓(𝜎(𝐴)).

(f) ‖𝑓(𝐴)‖ = sup
𝜆∈𝜍(𝐴)

|𝑓(𝜆)|.

Proof Since 𝜎(𝐴) ⊆ ℝ, the Weierstrass approximation theorem (Theorem 8.1.2) ensures
that ℂ[𝑧] is dense in 𝐶(𝑋). If Φ,Φ′ ∶ 𝐶(𝑋) → ℬ(ℋ) are linear maps that satisfy (a),
(b), and (c), thenΦ andΦ′ agree on the polynomials and hence on𝐶(𝑋) by continuity.
This takes care of uniqueness. We now prove existence.

Recall the notation

‖𝑔‖∞ = sup
𝑧∈𝑋

|𝑔(𝑧)| for 𝑔 ∈ 𝐶(𝑋).

For 𝑝 ∈ ℂ[𝑧], defineΦ(𝑝) = 𝑝(𝐴) and note thatΦ(𝑝𝑞) = Φ(𝑝)Φ(𝑞) for all 𝑝, 𝑞 ∈ ℂ[𝑧].
Lemma 8.6.1 implies that

‖Φ(𝑝)‖ℬ(ℋ) = ‖𝑝(𝐴)‖ℬ(ℋ) = ‖𝑝‖∞. (8.6.3)

The next step is to extend Φ to a map Φ ∶ 𝐶(𝑋) → ℬ(ℋ) that satisfies (a), (b), (c).
To do this, suppose (𝑝𝑛)∞𝑛=1 is a sequence of polynomials such that 𝑝𝑛 → 𝑓 in 𝐶(𝑋).
Then (𝑝𝑛)∞𝑛=1 is a Cauchy sequence in 𝐶(𝑋). Thus, (Φ(𝑝𝑛))∞𝑛=1 is a Cauchy sequence
in ℬ(ℋ) by (8.6.3). By the completeness of ℬ(ℋ) (Proposition 2.1.14), Φ(𝑝𝑛) → 𝑇
for some 𝑇 ∈ ℬ(ℋ). Suppose that (𝑞𝑛)∞𝑛=1 is another sequence of polynomials that
converges in 𝐶(𝑋) to 𝑓, so that Φ(𝑞𝑛) → 𝑇 ′ for some 𝑇 ′ ∈ ℬ(ℋ). For all 𝑛 ⩾ 1,

‖𝑇 − 𝑇 ′‖ ⩽ ‖𝑇 − Φ(𝑝𝑛)‖ + ‖Φ(𝑝𝑛) − Φ(𝑞𝑛)‖ + ‖Φ(𝑞𝑛) − 𝑇 ′‖ .

Then

lim sup
𝑛→∞

(‖𝑇 − Φ(𝑝𝑛)‖ + ‖Φ(𝑝𝑛) − Φ(𝑞𝑛)‖ + ‖Φ(𝑞𝑛) − 𝑇 ′‖)

= lim
𝑛→∞

‖𝑇 − Φ(𝑝𝑛)‖ + lim sup
𝑛→∞

‖Φ(𝑝𝑛) − Φ(𝑞𝑛)‖ + lim
𝑛→∞

‖Φ(𝑞𝑛) − 𝑇 ′‖

= 0 + lim sup
𝑛→∞

‖𝑝𝑛 − 𝑞𝑛‖∞ + 0

⩽ lim sup
𝑛→∞

(‖𝑝𝑛 − 𝑓‖∞ + ‖𝑓 − 𝑞𝑛‖∞)

= 0.

It follows that 𝑇 = 𝑇 ′, and therefore Φ(𝑓) = 𝑇.
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Now we need to verify (a), (b), and (c). Let (𝑝𝑛)∞𝑛=1 and (𝑞𝑛)∞𝑛=1 be sequences in ℂ[𝑧]
such that 𝑝𝑛 → 𝑓 and 𝑞𝑛 → 𝑔 in 𝐶(𝑋). Then, 𝑝𝑛𝑞𝑛 → 𝑓𝑔 in 𝐶(𝑋), so the continuity
of Φ implies that

Φ(𝑓𝑔) = lim
𝑛→∞

Φ(𝑝𝑛𝑞𝑛) = lim
𝑛→∞

Φ(𝑝𝑛)Φ(𝑞𝑛) = Φ(𝑓)Φ(𝑔).

This verifies (a). The proofs of (b) and (c) are requested in Exercise 8.10.16.
If 𝑓 ⩾ 0, then 𝑓 = 𝑔2 for some real valued 𝑔 ∈ 𝐶(𝑋). Then

𝑓(𝐴) = Φ(𝑓) = Φ(𝑔2) = Φ(𝑔)Φ(𝑔) = Φ(𝑔)Φ(𝑔) = Φ(𝑔)∗Φ(𝑔) ⩾ 0,

which verifies (d). The proofs of (e) and (f) are requested in Exercise 8.10.17. ■

A nonnegative real number has a unique nonnegative square root. The analogue of this
is true for positive operators.

Theorem8.6.4. If𝐴 ∈ ℬ(ℋ) and𝐴 ⩾ 0, then there exists a unique𝐵 ⩾ 0 such that𝐴 = 𝐵2.

Proof If 𝐴 ⩾ 0, then 𝑓(𝑧) = √𝑧 is continuous on 𝜎(𝐴) since 𝜎(𝐴) ⊆ [0,∞) (Theorem
8.5.10). The previous theorem ensures that 𝐵 = 𝑓(𝐴) ⩾ 0 and

𝐵2 = 𝑓(𝐴)𝑓(𝐴) = Φ(𝑓)Φ(𝑓) = Φ(𝑓2) = Φ(𝑧) = 𝐴.

This verifies the existence of a nonnegative square root.
For the uniqueness, observe that if 𝐶 ⩾ 0 and 𝐶2 = 𝐴, then 𝐶𝐴 = 𝐶3 = 𝐴𝐶, so 𝐶
commutes with 𝐴. It follows that 𝑝(𝐴)𝐶 = 𝐶𝑝(𝐴) for every 𝑝 ∈ ℂ[𝑧]. Since 𝜎(𝐴) is a
compact subset of [0,∞), the Weierstrass approximation theorem yields a sequence
(𝑝𝑛)∞𝑛=1 in ℂ[𝑧] that converges uniformly to√𝑧 on 𝜎(𝐴). Hence,

‖𝐶𝐵 − 𝐵𝐶‖ = ‖𝐶𝑓(𝐴) − 𝑓(𝐴)𝐶‖
= ‖𝐶𝑓(𝐴) − 𝐶𝑝𝑛(𝐴) + 𝑝𝑛(𝐴)𝐶 − 𝑓(𝐴)𝐶‖
⩽ ‖𝐶‖ ‖(𝑓 − 𝑝𝑛)(𝐴)‖ + ‖(𝑝𝑛 − 𝑓)(𝐴)‖ ‖𝐶‖
= 2 ‖𝐶‖ ‖𝑓 − 𝑝𝑛‖∞ → 0.

Thus, 𝐶 commutes with 𝐵 and hence

(𝐵 − 𝐶)∗𝐵(𝐵 − 𝐶) + (𝐵 − 𝐶)∗𝐶(𝐵 − 𝐶)
= (𝐵 − 𝐶)[𝐵(𝐵 − 𝐶) + 𝐶(𝐵 − 𝐶)]
= (𝐵 − 𝐶)(𝐵 + 𝐶)(𝐵 − 𝐶)
= (𝐵2 − 𝐶2)(𝐵 − 𝐶)
= (𝐴 − 𝐴)(𝐵 − 𝐶) = 0.

Since (𝐵 − 𝐶)∗𝐵(𝐵 − 𝐶) ⩾ 0 and (𝐵 − 𝐶)∗𝐶(𝐵 − 𝐶) ⩾ 0 (Proposition 8.5.6), Lemma
8.5.9 ensures that they are both zero. Consequently,

0 = (𝐵 − 𝐶)∗𝐵(𝐵 − 𝐶) − (𝐵 − 𝐶)∗𝐶(𝐵 − 𝐶)
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= (𝐵 − 𝐶)[𝐵(𝐵 − 𝐶) − 𝐶(𝐵 − 𝐶)]
= (𝐵 − 𝐶)(𝐵2 − 𝐵𝐶 − 𝐶𝐵 + 𝐶2)
= (𝐵 − 𝐶)3, (since 𝐵𝐶 = 𝐶𝐵)

so ‖𝐵−𝐶‖4 = ‖(𝐵−𝐶)4‖ = 0 since 𝐵−𝐶 is selfadjoint (see (8.5.2)). Thus, 𝐵 = 𝐶. ■

8.7 The Spectral Theorem
The following theorem says that every cyclic selfadjoint operator is unitarily equivalent to
a multiplication operator. It is one of the main ways in which measure theory connects
with the study of Hilbert-space operators.

Theorem8.7.1. Let𝐴 ∈ ℬ(ℋ) be selfadjoint and letx be a cyclic vector for𝐴. Then there is a
finite positive Borel measure 𝜇x with supp(𝜇x) = 𝜎(𝐴) and a unitary𝑈 ∶ ℋ → 𝐿2(𝜎(𝐴), 𝜇x)
that satisfy the following.

(a) (𝑈𝐴𝑈∗𝑓)(𝑧) = 𝑧𝑓(𝑧) for all 𝑓 ∈ 𝐿2(𝜎(𝐴), 𝜇x).

(b) 𝑈x is the constant function 1 on 𝜎(𝐴).

(c) 1 is a cyclic vector for𝑀𝑧 on 𝐿2(𝜎(𝐴), 𝜇x).

Proof For 𝑓 ∈ 𝐶(𝜎(𝐴)), the continuous functional calculus (Theorem 8.6.2) ensures that
𝑓(𝐴) is well defined and ‖𝑓(𝐴)‖ = ‖𝑓‖∞. Moreover, 𝑓(𝐴) ⩾ 0 whenever 𝑓 ⩾ 0. Thus,

𝜑(𝑓) = ⟨𝑓(𝐴)x, x⟩

is well defined on 𝐶(𝜎(𝐴)) and

|𝜑(𝑓)| ⩽ ‖𝑓(𝐴)‖‖x‖ ⩽ ‖𝑓‖∞‖x‖.

In other words, 𝜑 is a bounded linear functional on 𝐶(𝜎(𝐴)). If 𝑓 ⩾ 0, then 𝑓(𝐴) ⩾ 0
and hence 𝜑(𝑓) ⩾ 0, that is, 𝜑 is a positive linear functional. The Riesz representation
theorem for positive bounded linear functionals on 𝐶(𝜎(𝐴)) [319, p. 42] provides a
unique finite positive Borel measure 𝜇x on 𝜎(𝐴) such that

𝜑(𝑓) = ∫𝑓𝑑𝜇x for all 𝑓 ∈ 𝐶(𝜎(𝐴)).

We claim that the map

𝑓(𝐴)x↦ 𝑓, (8.7.2)

defined initially for 𝑓 ∈ 𝐶(𝜎(𝐴)), extends to a unitary operator from ℋ onto
𝐿2(𝜎(𝐴), 𝑑𝜇x). First note that the image of x under this map is the constant function
1 in 𝐿2(𝜎(𝐴), 𝜇x). Next recall the map Φ(𝑓) = 𝑓(𝐴) from Theorem 8.6.2. Since

‖𝑓(𝐴)x‖2 = ⟨Φ(𝑓)x, Φ(𝑓)x⟩
= ⟨Φ(𝑓)∗Φ(𝑓)x, x⟩
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= ⟨Φ(𝑓)Φ(𝑓)x, x⟩

= ⟨Φ(|𝑓|2)x, x⟩
= ⟨|𝑓|2(𝐴)x, x⟩

= ∫
𝜍(𝐴)

|𝑓|2 𝑑𝜇x

= ‖𝑓‖2𝐿2(𝜍(𝐴), 𝜇x) ,

it follows that the map from (8.7.2) is well defined and isometric on 𝐶(𝜎(𝐴)). Since x
is a cyclic vector for𝐴, it follows that {𝑓(𝐴)x ∶ 𝑓 ∈ 𝐶(𝜎(𝐴))}− = ℋ, so (8.7.2) extends
to an isometry 𝑈 ∶ ℋ → 𝐿2(𝜎(𝐴), 𝜇x). Note that

𝐶(𝜎(𝐴)) ⊆ ran𝑈 ⊆ 𝐿2(𝜎(𝐴), 𝜇x).

The range of an isometry is closed (Exercise 4.5.9) and𝐶(𝜎(𝐴)) is dense in𝐿2(𝜎(𝐴), 𝜇x)
(Proposition 1.3.6). Therefore, ran𝑈 = 𝐿2(𝜎(𝐴), 𝜇x), and hence 𝑈 is a unitary
operator fromℋ onto 𝐿2(𝜎(𝐴), 𝜇x).

If 𝑓 ∈ 𝐶(𝜎(𝐴)), use the fact that Φ(𝑧) = 𝐴 to conclude that

𝑈𝐴𝑈∗𝑓 = 𝑈𝐴(𝑓(𝐴)x) = 𝑈[(𝑧𝑓)(𝐴)x] = 𝑧𝑓 = 𝑀𝑧𝑓,

the operator of multiplication by 𝑧 on 𝐿2(𝜎(𝐴), 𝜇x). Since 𝐶(𝜎(𝐴)) is dense in
𝐿2(𝜎(𝐴), 𝜇x), it follows that 𝑈𝐴𝑈∗ = 𝑀𝑧, which completes the proof. ■

Below is a commutative diagram that illustrates the spectral theorem.

ℋ 𝐴 - ℋ

𝐿2(𝜇x)

𝑈

?

𝑀𝑧
- 𝐿2(𝜇x)

𝑈∗

6

Not every selfadjoint operator is cyclic; consider the identity operator on aHilbert space
of dimension two or more. In the general setting, the cyclic subspace generated by a given
x ∈ ℋ and 𝐴 ∈ ℬ(ℋ) is

[x] = ⋁{x, 𝐴x, 𝐴2x,…}.

This is a closed subspace ofℋ which is 𝐴-invariant since 𝐴 is bounded and

𝐴[x] = 𝐴 (⋁{x, 𝐴x, 𝐴2x,…}) =⋁{𝐴x, 𝐴2x, 𝐴3x,…} ⊆ [x].

The next lemma follows from the definition of selfadjointness and the definition of a cyclic
subspace (Exercise 8.10.32).

Lemma 8.7.3. Let 𝐴 ∈ ℬ(ℋ) be selfadjoint and x ∈ ℋ. Then the restriction of 𝐴 to [x] is
a cyclic selfadjoint operator with cyclic vector x.
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Zorn’s lemma and Theorem 8.7.1 provide us with the following theorem. See Chapter
14 for a formal treatment of direct sums of Hilbert spaces and operators.

Theorem 8.7.4. Let 𝐴 ∈ ℬ(ℋ) be a selfadjoint operator on a separable Hilbert spaceℋ.
Then there is an orthogonal decomposition

ℋ =
𝑁

⨁
𝑛=1

ℋ𝑛,

in which 𝑁 ∈ ℕ ∪ {∞}, such that the following hold.

(a) Eachℋ𝑛 is 𝐴-invariant.

(b) There is an x𝑛 ∈ ℋ𝑛 which is cyclic for 𝐴|ℋ𝑛 , that is,ℋ𝑛 = {𝑝(𝐴)x𝑛 ∶ 𝑝 ∈ ℂ[𝑥]}−.

(c) There exist finite positive Borel measures 𝜇𝑛 on ℝ with supp(𝜇𝑛) ⊆ 𝜎(𝐴) and a unitary
operator

𝑈 ∶ ℋ →
𝑁

⨁
𝑛=1

𝐿2(ℝ, 𝜇𝑛)

such that (𝑈𝐴𝑈∗𝑓)𝑛 = 𝑧𝑓𝑛, where we write 𝑓 ∈ ⨁𝑁
𝑛=1 𝐿2(ℝ, 𝜇𝑛) as 𝑓 = (𝑓𝑗)𝑁𝑗=1.

Moreover,

𝑈x𝑛 = (0, 0,…, 0, 1, 0,…),

in which 𝑈x𝑛 has the constant function 1 in the 𝑛th component.

The issue of uniqueness is subtle and handled with multiplicity theory [24, 94], which
is beyond the scope of this book. The previous theorem permits most proofs concerning
selfadjoint operators to start with the phrase “without loss of generality, suppose that 𝐴 =
𝑀𝑧 on 𝐿2(𝑋, 𝜇), where 𝜇 is a finite positive Borel measure on a compact 𝑋 ⊆ ℝ.”
There is a more general spectral theorem for normal operators (see Theorem 19.2.3).

In that theorem, one replaces “cyclic vector” with “∗-cyclic vector,” meaning that one
considers orbits under nonnegative powers of the normal operator 𝑁 and its adjoint 𝑁∗

simultaneously. The spectrum 𝜎(𝑁) of a normal operator𝑁 is a compact subset ofℂ; hence
one considers compactly supported, finite, positive, Borel measures on ℂ.

8.8 Revisiting Diagonal Operators
For a bounded sequence Λ = (𝜆𝑛)∞𝑛=0 of complex numbers, recall from Chapter 2 the
diagonal operator 𝐷Λ acting on ℓ2 by

𝐷Λe𝑛 = 𝜆𝑛e𝑛 for 𝑛 ⩾ 0.

Note that 𝐷∗
Λe𝑛 = 𝜆𝑛e𝑛, and hence 𝐷Λ commutes with its adjoint, that is, 𝐷Λ is a normal

operator. Here is a spectral theorem for 𝐷Λ.
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Theorem 8.8.1. Suppose Λ = (𝜆𝑛)∞𝑛=0 is a bounded sequence of distinct complex numbers.
If 𝜇 is the discrete measure on ℂ defined by

𝜇 =
∞
∑
𝑛=0

1
(𝑛 + 1)2 𝛿𝜆𝑛 ,

then 𝐷Λ is unitarily equivalent to𝑀𝑧 on 𝐿2(𝜇).

Proof Define 𝑈 ∶ ℓ2 → 𝐿2(𝜇) by

𝑈c =
∞
∑
𝑛=0

(𝑛 + 1)𝑐𝑛𝜒{𝜆𝑛}, where c = (𝑐𝑛)∞𝑛=0,

and note that

‖𝑈c‖2𝐿2(𝜇) =
∞
∑
𝑛=0

|𝑐𝑛|2(𝑛 + 1)2𝜇({𝜆𝑛})

=
∞
∑
𝑛=0

|𝑐𝑛|2(𝑛 + 1)2 1
(𝑛 + 1)2

=
∞
∑
𝑛=0

|𝑐𝑛|2

= ‖c‖2ℓ2 ,

so 𝑈 is isometric. If 𝑓 ∈ 𝐿2(𝜇), then

𝑓 =
∞
∑
𝑛=0

𝑓(𝜆𝑛)𝜒{𝜆𝑛} and
∞
∑
𝑛=0

|𝑓(𝜆𝑛)|2
(𝑛 + 1)2 < ∞.

If

𝑐𝑛 =
𝑓(𝜆𝑛)
𝑛 + 1 for 𝑛 ⩾ 0,

then c = (𝑐𝑛)∞𝑛=0 ∈ ℓ2 and𝑈c = 𝑓. Thus,𝑈 is isometric and surjective, hence unitary.
Finally,

𝑈𝐷Λe𝑛 = 𝑈(𝜆𝑛e𝑛) = 𝜆𝑛𝑈e𝑛 = 𝜆𝑛(𝑛 + 1)𝜒{𝜆𝑛} = 𝑀𝑧𝑈e𝑛.

Thus, 𝐷Λ is unitarily equivalent to𝑀𝑧 on 𝐿2(𝜇). ■

If (𝑤𝑛)∞𝑛=0 is any positive summable sequence, then

𝜇 =
∞
∑
𝑛=0

𝑤𝑛𝛿𝜆𝑛

is also a measure such that 𝐷Λ is unitarily equivalent to𝑀𝑧 on 𝐿2(𝜇). The theorem above
has some important consequences.
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Corollary 8.8.2. If Λ is a bounded sequence of distinct complex numbers, then 𝐷Λ is cyclic.

Proof Theorem 8.8.1 says that 𝐷Λ is unitarily equivalent to𝑀𝑧 on 𝐿2(𝜇). Note that 𝐷Λ is
cyclic if and only if𝑀𝑧 is cyclic (Exercise 8.10.30). By Proposition 8.2.7,𝑀𝑧 is ∗-cyclic.
Now apply Bram’s theorem (Theorem 8.2.12) to see that𝑀𝑧 is cyclic. ■

One can also prove the corollary above by using Theorem 8.2.8. Here are a few examples
of invariant subspaces for diagonal operators.

Example 8.8.3. For any bounded sequence Λ and 𝐸 ⊆ ℕ0, consider

ℓ2𝐸 = {a = (𝑎𝑛)∞𝑛=0 ∈ ℓ2 ∶ 𝑎𝑛 = 0 for 𝑛 ∈ 𝐸}.

One can show that ℓ2𝐸 is a 𝐷Λ-invariant subspace. Note that ℓ2∅ = ℓ2 and ℓ2ℕ0
= {0}. Also

note that ℓ2𝐸 is invariant for 𝐷∗
Λ and hence is a reducing subspace for 𝐷Λ.

Is every invariant subspace for 𝐷Λ of this form? In general, the answer is no.

Example 8.8.4. SupposeΛ = (1, 1, 𝜆2, 𝜆3,…), where (𝜆𝑛)∞𝑛=2 is a bounded sequence. Then

ℳ = {(𝑐, −𝑐, 0, 0,…) ∶ 𝑐 ∈ ℂ}

is an invariant subspace for 𝐷Λ that is not of the form ℓ2𝐸 for any 𝐸 ⊆ ℕ0.

One might think that the invariant subspaces for 𝐷Λ that are not of the form ℓ2𝐸 arise
from repetitions in the sequenceΛ. In fact, one can create a bounded sequenceΛ of distinct
complex numbers for which there exists an invariant subspace of𝐷Λ that is not of the form
ℓ2𝐸 (see Exercise 8.10.36). Here is a positive result about reducing subspaces.

Theorem 8.8.5. SupposeΛ is a bounded sequence of distinct complex numbers. Then every
reducing subspace for 𝐷Λ is of the form ℓ2𝐸 for some 𝐸 ⊆ ℕ0.

Proof If

𝑈c =
∞
∑
𝑛=0

(𝑛 + 1)𝑐𝑛𝜒{𝜆𝑛}

is the unitary operator fromTheorem 8.8.1 andℳ is a reducing subspace for𝐷Λ, then
ℱ = 𝑈ℳ is reducing for𝑀𝑧 on 𝐿2(𝜇). If 𝑃 is the orthogonal projection of 𝐿2(𝜇) onto
ℱ, then Exercise 4.5.16 says that 𝑃𝑀𝑧 = 𝑀𝑧𝑃. Corollary 8.3.3, which describes the
commutant of𝑀𝑧, says that 𝑃 = 𝑀𝜑 for some 𝜑 ∈ 𝐿∞(𝜇).

Since 𝑃 is an orthogonal projection, it is selfadjoint and idempotent. Thus, 𝑀∗
𝜑 =

𝑀𝜑 and hence 𝜑 is real valued (Proposition 8.1.14). Now use the fact that 𝑀𝜑 is
idempotent to see that 𝑀𝜑2 = 𝑀2

𝜑 = 𝑀𝜑. Corollary 8.1.9 now yields 𝜑2 = 𝜑. Since
𝜇 is discrete, 𝜇-almost everywhere (normally needed in the statements above) means
everywhere. Since 𝜑2 = 𝜑 and 𝜑 is real valued, it follows that 𝜑 = 𝜒𝑊 for some
𝑊 ⊆ Λ. Thus, ℱ = 𝑃𝐿2(𝜇) = 𝜒𝑊𝐿2(𝜇) = {𝑓 ∈ 𝐿2(𝜇) ∶ 𝑓|𝑊𝑐 = 0}. The formula for 𝑈
ensures that if 𝐸 = {𝑛 ∶ 𝜆𝑛 ∈ 𝑊 𝑐}, thenℳ = 𝑈−1ℱ = ℓ2𝐸 . ■
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Corollary 8.8.6. If Λ is a bounded sequence of distinct real numbers, then every invariant
subspace of 𝐷Λ is of the form ℓ2𝐸 for some 𝐸 ⊆ ℕ0.

The proof of Theorem 8.8.5 yields the following more general result.

Corollary 8.8.7. If 𝜇 is a finite positive Borel measure with compact support inℂ, then each
reducing subspace for𝑀𝑧 on 𝐿2(𝜇) is of the form 𝜒𝑊𝐿2(𝜇) for some𝑊 ⊆ ℂ. If supp(𝜇) ⊆ ℝ,
then every invariant subspace for𝑀𝑧 is of the form 𝜒𝑊𝐿2(𝜇) for some𝑊 ⊆ ℝ.

Note that the previous corollary generalizes Theorem 4.3.3.
What is special about the invariant subspaces ℓ2𝐸? Observe that when 𝑛 ∉ 𝐸, then e𝑛 ∈

ℓ2𝐸 and e𝑛 is an eigenvector for𝐷Λ. Furthermore, ℓ2𝐸 = ⋁{e𝑛 ∶ 𝑛 ∉ 𝐸}. In other words, ℓ2𝐸
is an invariant subspace consisting of the closed linear span of the eigenvectors contained
in it. Such invariant subspaces have the spectral synthesis property. In Exercise 8.10.36, we
give an example of a cyclic diagonal operator that has invariant subspaces without the
spectral synthesis property.

8.9 Notes
The spectral theorem for selfadjoint operators was developed byHilbert [196], Riesz [301],
and Hellinger [190].
There are other versions of the spectral theorem that correspond to the familiar one

for selfadjoint matrices. For a selfadjoint 𝑛 × 𝑛 matrix 𝐴, list the distinct eigenvalues
𝜆1, 𝜆2,…, 𝜆𝑑 and orthogonal projections 𝑃1, 𝑃2,…, 𝑃𝑑 onto the corresponding eigenspaces
ker(𝐴 − 𝜆𝑗𝐼), for 1 ⩽ 𝑗 ⩽ 𝑑. Then

𝐴 =
𝑑
∑
𝑗=1

𝜆𝑗𝑃𝑗 .

Here
𝑑
∑
𝑗=1

𝑃𝑗 = 𝐼 and 𝑃𝑖𝑃𝑗 = 0 for 𝑖 ≠ 𝑗. (8.9.1)

There is a version of this formula for general selfadjoint operators:

𝐴 = ∫
𝜍(𝐴)

𝜆 𝑑𝑃𝜆,

where 𝑃𝜆 is a certain family of orthogonal projections known by Hilbert as Zerlegung
der Einheit (a resolution of the identity) that enjoy a continuous analogue of (8.9.1).
An excellent source for the spectral theorem for normal operators is Conway’s book [94,
Ch. 9].
There is a version of the spectral theorem for unbounded selfadjoint operators that

arises in mathematical physics and the study of Schrödinger and Sturm–Liouville oper-
ators [283].
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The multiplicity theory for normal operators, due to Hahn and Hellinger, determines
when twonormal operators are unitarily equivalent [1, 24, 222]. For aBorelmeasure 𝜈with
compact support inℂ, consider the space 𝐿2(𝜈, ℓ2) of𝑓 ∶ ℂ → ℓ2, that is,𝑓(𝜆) = (𝑓𝑛(𝜆))∞𝑛=1
such that each component function 𝑓𝑛 is Borel measurable and

‖𝑓‖ = (∫‖𝑓(𝜆)‖2ℓ2 𝑑𝜈(𝜆))
1
2 < ∞.

The corresponding inner product is

⟨𝑓, 𝑔⟩ = ∫⟨𝑓(𝜆), 𝑔(𝜆)⟩ℓ2 𝑑𝜈(𝜆).

Let ℓ2𝑗 denote the set of sequences a = (𝑎𝑘)∞𝑘=0 such that 𝑎𝑘 = 0 for 𝑘 > 𝑗 and let 𝑛 ∶ ℂ →
ℕ∪ {∞} be a Borel function, themultiplicity function. Now consider the subspaceD of all
𝑓 ∈ 𝐿2(𝜈, ℓ2) such that 𝑓(𝜆) ∈ ℓ2𝑛(𝜆) 𝜈-almost everywhere. The operator 𝑀 = 𝑀(𝜈, 𝑛) on
D defined by (𝑀𝑓)(𝜆) = 𝜆𝑓(𝜆) is bounded. Furthermore, (𝑀∗𝑓)(𝜆) = 𝜆𝑓(𝜆) and thus 𝑀
is normal. The Hahn–Hellinger theorem says that if 𝑁 ∈ ℬ(ℋ) is normal, then there is
a measure 𝜈 and a multiplicity function 𝑛 such that 𝑁 is unitarily equivalent to 𝑀 on D .
Furthermore,𝑀(𝜈1, 𝑛1) is unitarily equivalent to𝑀(𝜈2, 𝑛2) if and only if 𝜈1 and 𝜈2 have the
same sets of measure zero and 𝑛1 = 𝑛2 𝜈1-almost everywhere (or 𝜈2-almost everywhere).
The papers [1, 222] give a recipe for computing 𝜈 and 𝑛 for certainmultiplication operators
𝑀𝜑 on 𝐿2(𝜇). If the multiplicity function 𝑛 is identically equal to 1, then D = 𝐿2(𝜈) and
(𝑀𝑓)(𝜆) = 𝜆𝑓(𝜆) becomes what was presented in this chapter.
The spectral theorem can also be stated in terms of multiplication operators. If 𝑁 is

a normal operator, there is a measure space (𝑋,𝒜, 𝜇) and a 𝜑 ∈ 𝐿∞(𝜇) such that 𝑁 is
unitarily equivalent to 𝑀𝜑 on 𝐿2(𝜇). In this generality, 𝑋 is a compact Hausdorff space
(not necessarily a subset of ℂ). If 𝑁 is cyclic, then 𝑋 can be taken to be a subset of ℂ and
𝜑(𝑧) = 𝑧.
A description of the commutant of𝑀𝑧 on 𝐿2(𝑚), where𝑚 is Lebesgue measure on 𝕋, is

given in [68].

8.10 Exercises
Exercise 8.10.1. Let 𝜑 ∈ 𝐿∞(𝜇), where 𝜇 is a finite positive Borel measure on a compact
set 𝑋 ⊆ ℂ. Recall the definition of R𝜑 from 8.1.11.

(a) Prove that 𝑤 ∈ R𝜑 if and only if 𝜇(𝜑−1({𝑧 ∶ |𝑧 − 𝑤| < 𝑟})) > 0 for all 𝑟 > 0.

(b) Prove that R𝜑 ⊆ 𝜑(𝑋)−.

(c) If 𝜑 is continuous on 𝑋 , prove that R𝜑 = 𝜑(𝑋).

(d) If 𝜓 ∈ 𝐿∞(𝜇) and 𝜓 = 𝜑 𝜇-almost everywhere, then R𝜓 = R𝜑.

(e) ‖𝜑‖∞ = max{|𝑤| ∶ 𝑤 ∈ R𝜑}.
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Exercise 8.10.2. For 𝜑 ∈ 𝐿∞(𝜇), prove that 𝜎𝑎𝑝(𝑀𝜑) = R𝜑 using the following steps. Let
𝑀 = 𝑀𝜑 and let 𝜆 ∈ 𝜎(𝑀)\𝜎𝑝(𝑀).

(a) Use the normality of𝑀 to prove that ‖(𝑀 − 𝜆𝐼)𝑓‖ = ‖(𝑀∗ − 𝜆𝐼)𝑓‖ for all 𝑓 ∈ 𝐿2(𝜇).

(b) Prove that𝑀 − 𝜆𝐼 is injective.

(c) Prove that𝑀 − 𝜆𝐼 has dense range.

(d) Prove that𝑀−𝜆𝐼 is an invertible linear transformation from 𝐿2(𝜇) onto its range but
its inverse does not extend to a bounded operator on 𝐿2(𝜇).

(e) Prove there exists a sequence (𝑔𝑛)∞𝑛=1 in ran(𝑀−𝜆𝐼) such that their pre-images under
𝑀 − 𝜆𝐼 have unbounded norm.

(f) Use Proposition 8.1.12 and the above to prove that 𝜎𝑎𝑝(𝑀) = 𝜎(𝑀).

Exercise 8.10.3. For 𝜑 ∈ 𝐿∞(𝜇) and 𝜀 > 0, let 𝑋𝜑,𝜀 = {𝑧 ∶ |𝜑(𝑧)| > 𝜀}.

(a) Prove that𝑀𝜑 is compact on 𝐿2(𝜇) if and only if 𝜒ℂ\𝑋𝜑,𝜀𝐿2(𝜇) is finite dimensional for
every 𝜀 > 0.

(b) Suppose 𝜇 is a measure which has no atoms, in other words, 𝜇({𝜆}) = 0 for each
𝜆 ∈ ℂ. If𝑀𝜑 is compact, prove that 𝜑 is zero 𝜇-almost everywhere.

Exercise 8.10.4. Let 𝜑 ∈ 𝐿∞(𝜇). Prove there is a sequence of invertible multiplication
operators on 𝐿2(𝜇) that converge to𝑀𝜑.

Exercise 8.10.5. Let 𝜇 and 𝜈 be finite positive Borel measures having compact support in
ℝ. Let𝐴 denote𝑀𝑥 on 𝐿2(𝜇) and let 𝐵 denote𝑀𝑥 on 𝐿2(𝜈). Show that𝐴 and 𝐵 are unitarily
equivalent if and only if 𝜇 and 𝜈 have the same sets of measure zero.

Exercise 8.10.6. Prove that the operator 𝐴 on 𝐿2[0, 1] ⊕ 𝐿2[0, 1] defined by 𝐴(𝑓, 𝑔) =
(𝑀𝑥𝑓,𝑀𝑥𝑔) has no cyclic vectors.

Exercise 8.10.7. Let 𝐼 and 𝐽 be intervals in ℝ and suppose 𝜑 ∶ 𝐼 → 𝐽 is differentiable
and bijective with differentiable inverse. Show that (𝑈𝑓)(𝑥) = 𝑓(𝜑(𝑥))|𝜑′(𝑥)|1/2 defines a
unitary operator from 𝐿2(𝐼) onto 𝐿2(𝐽) such that𝑈𝑀𝑥 = 𝑀𝜑𝑈 , where𝑀𝜑 is multiplication
by 𝜑 on 𝐿2(𝐽).

Exercise 8.10.8. Let 𝑉 denote the Volterra operator from Chapter 7. Use Theorem 8.4.4
to prove that 𝜎(𝑉) = {0}.
Remark: See Proposition 7.2.5 for another proof.

Exercise 8.10.9. Prove that 𝐴 ∈ ℬ(ℋ) is normal if and only if ‖𝐴x‖ = ‖𝐴∗x‖ for all
x ∈ ℋ.

Exercise 8.10.10. Prove that if 𝐴 ∈ ℬ(ℋ) is unitary, then 𝜎(𝐴) ⊆ 𝕋. Is the converse true?

Exercise 8.10.11. If𝑁 ∈ ℬ(ℋ) is normal, prove that ker𝑁 = ker𝑁∗ and ran𝑁 = ran𝑁∗.
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Exercise 8.10.12. Let 𝐴 ∈ ℬ(ℋ) be normal.

(a) Prove that 𝐴 is selfadjoint if and only if 𝜎(𝐴) ⊆ ℝ.

(b) Prove that 𝐴 is an orthogonal projection if and only if 𝜎(𝐴) ⊆ {0, 1}.

(c) Prove that 𝐴 is unitary if and only if 𝜎(𝐴) ⊆ 𝕋.

Exercise 8.10.13. Prove that if 𝐴, 𝐵 ∈ ℬ(ℋ), 𝐴, 𝐵 ⩾ 0, and 𝛼, 𝛽 ⩾ 0, then 𝛼𝐴 + 𝛽𝐵 ⩾ 0.

Exercise 8.10.14. Prove that if 𝐴, 𝐵 ∈ ℬ(ℋ) and 𝐴 ⩾ 0, then 𝐵∗𝐴𝐵 ⩾ 0.

Exercise 8.10.15. Find a real inner product space ℋ and an 𝐴 ∈ ℬ(ℋ)\{0} such that
⟨𝐴x, x⟩ = 0 for all x ∈ ℋ.

Exercise 8.10.16. Verify statements (b) and (c) of Theorem 8.6.2.

Exercise 8.10.17. Verify statements (e) and (f) of Theorem 8.6.2.

Exercise 8.10.18. Give an example of a finite positive Borel measure 𝜇with supp(𝜇) ⊄ ℝ
such that ℂ[𝑧] is dense in 𝐿2(𝜇).

Exercise 8.10.19. Prove that the constant function 1 is not a cyclic vector for 𝑀𝑧 on
𝐿2(𝑑𝐴), where 𝑑𝐴 is area measure on 𝔻.

Exercise 8.10.20. Revisit the convolution operator 𝑋b on ℓ2(ℤ) from Exercise 3.6.30.

(a) Prove that 𝑋b is a normal operator.

(b) Prove that 𝑋b is unitarily equivalent to a multiplication operator 𝑀𝜓 on an 𝐿2(𝜇)
space. Identify the measure 𝜇 and the symbol 𝜓.

Exercise 8.10.21. Aswehave seen in this chapter, the cyclic and ∗-cyclic vectors for𝑀𝑧 on
𝐿2(𝜇) are not necessarily the same. Similarly, the invariant and reducing subspaces are not
necessarily the same. However, in certain circumstances, they are. Lavrentiev [95] proved
that if 𝐾 ⊆ ℂ is compact, ℂ\𝐾 is connected, and the interior of 𝐾 is empty, then given any
continuous function 𝑓 on 𝐾 and an 𝜀 > 0, there is a polynomial 𝑝 such that

max
𝑧∈𝐾

|𝑓(𝑧) − 𝑝(𝑧)| < 𝜀.

(a) Prove that if themeasure𝜇 is supported on a compact set𝐾 with the properties above,
then the cyclic and ∗-cyclic vectors for𝑀𝑧 on 𝐿2(𝜇) are the same.

(b) Similarly, prove that the invariant and reducing subspaces for 𝑀𝑧 on 𝐿2(𝜇) are the
same.

Exercise 8.10.22. Certain proofs in this chapter (Theorem 8.3.1 for example) used
the concept of an operator-valued analytic function. The purpose of this exercise is to
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complement that discussion. Let 𝒱 be a Banach space and let Ω be an open subset of
ℂ. A function 𝑓 ∶ Ω → 𝒱 is analytic on Ω if

𝑓′(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

exists for every 𝑧0 ∈ Ω, and weakly analytic on Ω if

lim
𝑧→𝑧0

𝜑(𝑓(𝑧)) − 𝜑(𝑓(𝑧0))
𝑧 − 𝑧0

exists for every 𝑧0 ∈ Ω and every 𝜑 ∈ 𝒱∗.

(a) Prove that 𝑓 is analytic if and only if 𝑓 is weakly analytic.

(b) Prove that if 𝑓 is analytic on Ω and 𝐾 ⊆ Ω is compact, then sup
𝑧∈𝐾

‖𝑓(𝑧)‖ < ∞.

(c) If 𝑧0 ∈ Ω, 𝑓 is analytic on Ω, and 𝛾 is a positively oriented simple closed continuous
piecewise 𝐶2 curve that contains 𝑧0 in its interior, then

𝑓(𝑧0) =
1
2𝜋𝑖 ∮𝛾

𝑓(𝑧)
𝑧 − 𝑧0

𝑑𝑧,

where the integral above is defined as the norm limit of its Riemann sums.

Exercise 8.10.23. Let 𝐴, 𝐵 ∈ ℬ(ℋ).

(a) If 𝐴𝐵 = 𝐵𝐴, prove that 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵 .

(b) If 𝐴 is selfadjoint, prove that 𝑒𝑖𝐴 is unitary.

(c) If 𝐴 is normal, prove that 𝑒𝐴−𝐴∗ is unitary.

(d) Prove that 𝑒𝑧𝐴 is an operator-valued entire function.

Exercise 8.10.24. Let 𝑇,𝑀,𝑁 ∈ 𝐵(ℋ) be such that𝑀 and 𝑁 are normal and𝑀𝑇 = 𝑇𝑁.
Prove that𝑀∗𝑇 = 𝑇𝑁∗.
Remark: See also Theorem 14.2.10.

Exercise 8.10.25. If𝐴, 𝐵 ∈ ℬ(ℋ) are normal and𝐴𝐵 = 𝐵𝐴, prove that𝐴𝐵 is also normal.

Exercise 8.10.26. If 𝐴 ∈ ℬ(ℋ) is normal, prove that 𝐴∗ = 𝑓(𝐴) for some continuous
function 𝑓.

Exercise 8.10.27. Suppose 𝐴 ∈ ℬ(ℋ) is a contraction. Prove that (𝐼 − 𝐴𝐴∗)
1
2𝐴 = 𝐴(𝐼 −

𝐴∗𝐴)
1
2 as follows.

(a) Let 𝑆 = (𝐼 − 𝐴𝐴∗)
1
2 and 𝑇 = (𝐼 − 𝐴∗𝐴)

1
2 . Prove that 𝑆2𝐴 = 𝐴𝑇2.

(b) Prove that 𝑝(𝑆2)𝐴 = 𝐴𝑝(𝑇2) for all 𝑝 ∈ ℂ[𝑧].
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(c) Prove that 𝑓(𝑆2)𝐴 = 𝐴𝑓(𝑇2) for every 𝑓 ∈ 𝐶[0, 1].

(d) Choose an appropriate 𝑓 to prove the desired identity.

Remark: The identity (𝐼 − 𝐴𝐴∗)
1
2𝐴 = 𝐴(𝐼 − 𝐴∗𝐴)

1
2 appears in the proof of Lemma 14.7.3,

which concerns the Julia operator.

Exercise 8.10.28. 𝐴, 𝐵 ∈ ℬ(ℋ) are similar if there an invertible 𝑆 ∈ ℬ(ℋ) such that
𝐴𝑆 = 𝑆𝐵. Use the steps below to show that if 𝐴 and 𝐵 are normal operators that are
similar, then they are unitarily equivalent.

(a) Prove that (𝑆𝑆∗)𝐴(𝑆𝑆∗)−1 = 𝐴.

(b) Write 𝑆∗ = 𝑈𝑃, where 𝑈 is unitary and 𝑃 = (𝑆𝑆∗)
1
2 (Theorem 14.9.15). Prove that

𝑃𝐴𝑃−1 = 𝐴.

(c) Prove that 𝐵 = 𝑆∗𝐴(𝑆∗)−1 = 𝑈𝑃𝐴𝑃−1𝑈∗.

(d) Prove that 𝐴 is unitarily equivalent to 𝐵.

Exercise 8.10.29. The proof of Bram’s theorem (Theorem 8.2.12) says that𝑀𝑧 on 𝐿2(𝜇) is
cyclic with a bounded cyclic vector 𝑓.

(a) Prove that |𝑓| > 0 𝜇-almost everywhere.

(b) Consider the set P of products 𝑓𝑔, where 𝑔 ∈ 𝐿∞(𝜇) and |𝑔| > 0 𝜇-almost
everywhere. Prove that every 𝑓𝑔 ∈ P is cyclic for𝑀𝑧.

(c) Prove that P is dense in 𝐿2(𝜇).

Remark: See [129] for more on this.

Exercise 8.10.30. Suppose 𝐴 ∈ ℬ(ℋ) is unitarily equivalent to 𝐵 ∈ ℬ(𝒦). Prove that 𝐴
is cyclic if and only if 𝐵 is cyclic.

Exercise 8.10.31. Prove theHellinger–Toeplitz theorem: if 𝐴 is a linear transformation on
a Hilbert spaceℋ such that ⟨𝐴x, y⟩ = ⟨x, 𝐴y⟩ for all x, y ∈ ℋ, then 𝐴 is bounded.

Exercise 8.10.32. Let 𝐴 ∈ ℬ(ℋ) be selfadjoint and x ∈ ℋ. Prove that the restriction of 𝐴
to [x], the 𝐴-invariant subspace generated by x, is a cyclic selfadjoint operator with cyclic
vector x.

Exercise 8.10.33. Let 𝑁 ∈ ℬ(ℋ) be normal.

(a) Prove that ‖(𝑁∗𝑁)𝑘‖ = ‖𝑁𝑘‖2 for all 𝑘 ⩾ 0.

(b) Use this to prove that 𝑟(𝑁) = ‖𝑁‖, where 𝑟(𝐴) denotes the spectral radius of 𝐴.

Exercise 8.10.34. If 𝑁 ∈ ℬ(ℋ) is normal and 𝜆 ∉ 𝜎(𝑁), prove that

‖(𝜆𝐼 − 𝑁)−1‖ = 1
dist(𝜆, 𝜎(𝑁)) .
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Exercise 8.10.35. The multiplicity function for a diagonal operator 𝐷Λ is 𝑚Λ(𝜆) =
dimker(𝐷Λ −𝜆𝐼). Prove that two diagonal operators are unitarily equivalent if and only if
their multiplicity functions are the same.

Exercise 8.10.36. This problem shows that if the eigenvalues of 𝐷Λ are not all real, the
invariant subspaces for a diagonal operator𝐷Λ can be complicated. Use the steps below to
prove there is a sequenceΛ of distinct complex numbers such that not every 𝐷Λ-invariant
subspace is of the form ℓ2𝐸 = {(𝑎𝑛)∞𝑛=0 ∈ ℓ2 ∶ 𝑎𝑛 = 0 for all 𝑛 ∈ 𝐸} for some 𝐸 ⊆ ℕ0. This
construction comes from [371].

(a) A result from [71] says there exists a sequenceΛ = (𝜆𝑛)∞𝑛=0 of distinct points in𝔻 and
an absolutely summable sequence (𝑤𝑛)∞𝑛=0 of nonzero complex numbers such that

𝑓(𝑧) =
∞
∑
𝑛=0

𝑤𝑛
1 − 𝜆𝑛𝑧

= 0 for all 𝑧 ∈ 𝔻.

Assume this result and prove there are a,b ∈ ℓ2 such that 𝑎𝑗𝑏𝑗 = 𝑤𝑗 for all 𝑗 ⩾ 0.

(b) For 𝑧 ∈ 𝔻, prove that 𝑓(𝑧) =
∞
∑
𝑁=0

𝑧𝑁(
∞
∑
𝑛=0

𝑤𝑛𝜆𝑁𝑛 ).

(c) Use (a) and (b) to prove that ⟨𝐷𝑁
Λ a,b⟩ = 0 for all 𝑁 ⩾ 0.

(d) Prove that e𝑛 ∉⋁{𝐷𝑁
Λ a ∶ 𝑁 ⩾ 0} for all 𝑛 ⩾ 0.

(e) Prove that the invariant subspace ⋁{𝐷𝑁
Λ a ∶ 𝑁 ⩾ 0} is not of the form ℓ2𝐸 for any

𝐸 ⊆ ℕ0.

Remark: Constructions like the one in (a) date back to Borel [57, 58].

Exercise 8.10.37. Perform the decomposition in Theorem 8.7.4 for a diagonal operator
𝐷Λ, where repetitions in Λ are allowed.

Exercise 8.10.38. Recall the weighted shift 𝑊 on ℓ2 defined by 𝑊e𝑛 = 𝛼𝑛e𝑛+1 from
Exercise 3.6.21. If 𝛼𝑛 → 0, prove that 𝜎(𝑊) = {0}.

Exercise 8.10.39. The notation 𝐴1/2 refers to the unique positive square root of a positive
𝐴 ∈ ℬ(ℋ) (Theorem 8.6.4). This exercise illustrates that “the square root of an operator”
does notmake sense in general.We have already seen this phenomenon in Exercise 5.9.33.

(a) Let

𝐴 = [0 1
0 0] .

Prove that there does not exist any 2 × 2matrix 𝐵 such that 𝐵2 = 𝐴.
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(b) Let

𝐴 = [1 0
0 −1] ,

which is selfadjoint but not positive. Prove that there are precisely four 2×2matrices
𝐵, none of which are positive, such that 𝐵2 = 𝐴.

(c) Prove that there are infinitely many 2 × 2matrices 𝐵 such that 𝐵2 = 0

Exercise 8.10.40. Prove that𝐴 ∈ ℳ𝑛 is a square root of the identity matrix 𝐼 ∈ ℳ𝑛 if and
only if 𝐴 = 𝑃𝐷𝑃−1, where 𝑃 ∈ ℳ𝑛 is invertible and 𝐷 ∈ ℳ𝑛 is diagonal with eigenvalues
contained in {−1, 1}.

Exercise 8.10.41. Prove that if 𝐴 ∈ ℬ(ℋ) is selfadjoint, then there is a 𝐵 ∈ ℬ(ℋ) (not
necessarily selfadjoint) such that 𝐵2 = 𝐴.

8.11 Hints for the Exercises
Hint for Ex. 8.10.9: Consider the selfadjoint operator 𝑆 = 𝐴𝐴∗ − 𝐴∗𝐴.
Hint for Ex. 8.10.25: Write 𝐶 = 𝐴𝐵. Then

𝐶𝐶∗ = (𝐴𝐵)(𝐴𝐵)∗ = (𝐴𝐵)(𝐵𝐴)∗ = (𝐴𝐵)(𝐴∗𝐵∗) = 𝐴(𝐵𝐴∗)𝐵∗.

Hint for Ex. 8.10.28: For (a), use Fuglede’s theorem.
Hint for Ex. 8.10.31: For ‖x‖ ⩽ 1, consider the bounded linear functionalΛx(y) = ⟨𝐴x, y⟩
and consult the uniform boundedness principle.
Hint for Ex. 8.10.33: For (a), look at (8.5.3) and note that 𝑁∗𝑁 is selfadjoint.
Hint for Ex. 8.10.34: Use Exercise 8.10.33.
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The Dirichlet Shift

Key Concepts: Properties of the Dirichlet shift: norm, adjoint, spectrum, 2-isometry, commutant,
invariant subspaces, cyclic vectors.

Outline: This chapter explores the operator-theoretic aspects of the shift operator
(𝑀𝑧𝑓)(𝑧) = 𝑧𝑓(𝑧) on the Dirichlet space. In particular, we examine the 2-isometry
property and discuss the invariant subspaces, cyclic vectors, and commutant of the
Dirichlet shift.

9.1 The Dirichlet Space
For an analytic function 𝑓 on 𝔻, the Dirichlet integral of 𝑓 is

𝐷(𝑓) ∶= 1
𝜋 ∫

𝔻
|𝑓′(𝑧)|2 𝑑𝐴(𝑧), (9.1.1)

where 𝑑𝐴 is planar Lebesgue area measure. The Dirichlet integral has an appealing
geometric interpretation: it is 1/𝜋 times the area of 𝑓(𝔻), counting multiplicity (see
Exercises 9.9.3 and 9.9.4). Polar coordinates provide the following useful formula for the
Dirichlet integral (see Exercise 9.9.1).

Proposition 9.1.2. If 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 is analytic on 𝔻, then

𝐷(𝑓) =
∞
∑
𝑛=1

𝑛|𝑎𝑛|2. (9.1.3)

See Exercise 9.9.10 for another formula for 𝐷(𝑓). Observe that 𝐷(𝑓) = 0 if and only if 𝑓
is a constant function.

Definition 9.1.4. The Dirichlet space𝒟 is the set of analytic 𝑓 on 𝔻 with 𝐷(𝑓) < ∞.
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The Cauchy–Schwarz inequality shows that𝒟 is a vector space under function addition
and scalar multiplication. Since

∞
∑
𝑛=1

|𝑎𝑛|2 ⩽
∞
∑
𝑛=1

𝑛|𝑎𝑛|2 = 𝐷(𝑓), (9.1.5)

it follows that 𝒟 is contained in the Hardy space 𝐻2 (Definition 5.3.3) with proper
inclusion (Exercise 9.9.5). The norm on𝒟 is defined by

‖𝑓‖ = (
∞
∑
𝑛=0

(𝑛 + 1)|𝑎𝑛|2)
1
2 . (9.1.6)

The 𝑛+1 above ensures that ‖𝑓‖ = 0 if and only if 𝑓 ≡ 0. Notice that ‖𝑓‖2 = ‖𝑓‖2𝐻2 +𝐷(𝑓)
(recall the Hardy space norm from Proposition 5.3.9) and that the corresponding inner
product is

⟨𝑓, 𝑔⟩ =
∞
∑
𝑛=0

(𝑛 + 1)𝑎𝑛𝑏𝑛, (9.1.7)

where 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 and 𝑔(𝑧) = ∑∞

𝑛=0 𝑏𝑛𝑧𝑛 belong to𝒟. In fact, the following results
imply that 𝒟, equipped with the inner product (9.1.7), is a reproducing kernel Hilbert
space. We first establish completeness. The following lemma is used below, and again in
the next chapter, to show a given inner-product space is a Hilbert space.

Lemma 9.1.8. Suppose𝒱 and𝒲 are normed vector spaces and that the linear transforma-
tion 𝑈 ∶ 𝒱 → 𝒲 is isometric and surjective. If𝒲 is complete, then so is 𝒱.

Proof Suppose (v𝑛)∞𝑛=1 is a Cauchy sequence in 𝒱. Ifw𝑛 = 𝑈v𝑛, the isometric assump-
tion implies that (w𝑛)∞𝑛=1 is a Cauchy sequence in𝒲. The completeness of𝒲 implies
that w𝑛 converges to some w ∈ 𝒲. Since 𝑈 is surjective, w = 𝑈v for some
v ∈ 𝒱. Observe that 𝑈−1 is also isometric and hence v𝑛 = 𝑈−1w𝑛 → 𝑈−1w = v.
Consequently, 𝒱 is complete. ■

Corollary 9.1.9. The Dirichlet space is a Hilbert space.

Proof The discussion above shows that𝒟 is an inner-product space so it suffices to show
that𝒟 is complete. The map∑∞

𝑛=0 𝑎𝑛𝑧𝑛 ↦ (√𝑛 + 1𝑎𝑛)
∞
𝑛=0 from𝒟 to ℓ2 is isometric

and surjective. Since ℓ2 is complete (Proposition 1.2.5), the previous lemma implies
that𝒟 is complete. ■

Exercise 9.9.2 provides the following useful orthonormal basis for𝒟.

Proposition 9.1.10. The sequence

( 𝑧𝑛

√𝑛 + 1
)
∞

𝑛=0

is an orthonormal basis for𝒟. In particular, the polynomials are dense in𝒟.
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Next we find the reproducing kernel for𝒟 (Exercise 9.9.7).

Proposition 9.1.11. Let

𝑘𝜆(𝑧) = {
1
𝜆𝑧

log ( 1
1 − 𝜆𝑧

) if 𝜆, 𝑧 ∈ 𝔻\{0},

1 if 𝜆 or 𝑧 is zero.

For all 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝒟, the following hold.

(a) 𝑘𝜆 ∈ 𝒟 and

‖𝑘𝜆‖2 = {
1
|𝜆|2 log

1
1 − |𝜆|2 if 𝜆 ∈ 𝔻\{0},

1 if 𝜆 = 0.

(b) 𝑓(𝜆) = ⟨𝑓, 𝑘𝜆⟩.

(c) |𝑓(𝜆)| ⩽ ‖𝑓‖‖𝑘𝜆‖.

Although the emphasis of this chapter is on the shift operator on the Dirichlet space,
the Dirichlet space itself is a fascinating class of analytic functions that is not as well
understood as the closely related Hardy space (Chapter 5). For example, the Blaschke
condition (Theorem 5.4.8) completely describes the zeros of Hardy space functions. For
the Dirichlet space, however, the zero sets are more subtle and are not completely
characterized. It is also the case that the radial limits of functions in the Dirichlet space
exist more often than for typical functions in the Hardy space.

9.2 The Dirichlet Shift
The shift on the Hardy space was explored in Chapter 5. This section explores the shift
𝑓 ↦ 𝑧𝑓 on the Dirichlet space.

Proposition 9.2.1. If 𝑓 ∈ 𝒟, then 𝑧𝑓 ∈ 𝒟. Furthermore, the operator 𝑀𝑧 ∶ 𝒟 → 𝒟
defined by

(𝑀𝑧𝑓)(𝑧) = 𝑧𝑓(𝑧)

is bounded and ‖𝑀𝑧‖ = √2.

Proof For 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝒟,

‖𝑀𝑧𝑓‖2 =
∞
∑
𝑛=1

(𝑛 + 1)|𝑎𝑛−1|2 =
∞
∑
𝑛=0

(𝑛 + 2)|𝑎𝑛|2.

Since
𝑛 + 2
𝑛 + 1 ⩽ 2 for all 𝑛 ⩾ 0,
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it follows that ‖𝑀𝑧𝑓‖2 ⩽ 2∑∞
𝑛=0(𝑛 + 1)|𝑎𝑛|2 = 2‖𝑓‖2. This estimate shows that

‖𝑀𝑧‖ = sup
‖𝑓‖=1

‖𝑀𝑧𝑓‖ ⩽ √2.

To obtain equality above, observe that ‖1‖ = 1 and ‖𝑧‖ = √2. From here it follows
that ‖𝑀𝑧‖ ⩾ ‖𝑀𝑧1‖ = ‖𝑧‖ = √2, and hence ‖𝑀𝑧‖ = √2. ■

The operator𝑀𝑧 is the Dirichlet shift. Since

𝑀𝑧𝑓𝑛 =√
𝑛 + 2
𝑛 + 1𝑓𝑛+1 for all 𝑛 ⩾ 0,

where

𝑓𝑛(𝑧) =
𝑧𝑛

√𝑛 + 1
is the orthonormal basis fromProposition 9.1.10, thematrix representation of theDirichlet
shift with respect to (𝑓𝑛)∞𝑛=0 is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯

√
2
1

0 0 0 ⋯

0 √
3
2

0 0 ⋯

0 0 √
4
3

0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.2.2)

Compare this to the matrix representation (5.1.3) of the shift on the Hardy space. In
particular, the Dirichlet shift is a weighted shift in the sense of Exercise 3.6.21. This next
proposition shows that the Dirichlet shift is expansive.

Proposition 9.2.3. ‖𝑀𝑧𝑓‖ ⩾ ‖𝑓‖ for all 𝑓 ∈ 𝒟.

Proof For 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝒟,

‖𝑀𝑧𝑓‖2 =
∞
∑
𝑛=0

(𝑛 + 2)|𝑎𝑛|2 ⩾
∞
∑
𝑛=0

(𝑛 + 1)|𝑎𝑛|2 = ‖𝑓‖2,

which completes the proof. ■

The adjoint of𝑀𝑧 on𝒟 is more complicated than the adjoint of the unilateral shift on
𝐻2 (Exercise 5.9.14).

Proposition 9.2.4. If 𝑔(𝑧) = ∑∞
𝑛=0 𝑏𝑛𝑧𝑛 ∈ 𝒟, then

(𝑀∗
𝑧𝑔)(𝑧) =

∞
∑
𝑛=0

𝑛 + 2
𝑛 + 1𝑏𝑛+1𝑧

𝑛. (9.2.5)
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Proof For 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝒟, use the inner product in (9.1.7) to deduce

⟨𝑓,𝑀∗
𝑧𝑔⟩ = ⟨𝑀𝑧𝑓, 𝑔⟩

=
∞
∑
𝑛=1

(𝑛 + 1)𝑎𝑛−1 𝑏𝑛

=
∞
∑
𝑛=0

(𝑛 + 2)𝑎𝑛𝑏𝑛+1

=
∞
∑
𝑛=0

(𝑛 + 1)𝑎𝑛(
𝑛 + 2
𝑛 + 1𝑏𝑛+1)

= ⟨𝑓, ℎ⟩,

where

ℎ(𝑧) =
∞
∑
𝑛=0

𝑛 + 2
𝑛 + 1𝑏𝑛+1𝑧

𝑛.

The definition of the Dirichlet norm from (9.1.6) shows that ℎ ∈ 𝒟. This verifies the
adjoint formula in (9.2.5). ■

Although the spectrumof theDirichlet shift is the same as the spectrumof the unilateral
shift on 𝐻2, the proof is more complicated.

Proposition 9.2.6. For the Dirichlet shift𝑀𝑧, the following hold.

(a) 𝜎(𝑀𝑧) = 𝔻−.

(b) 𝜎𝑝(𝑀𝑧) = ∅.

(c) 𝜎𝑎𝑝(𝑀𝑧) = 𝕋.

Proof (a) A generalization of Proposition 9.2.1 (see Exercise 9.9.12) yields

‖𝑀𝑘
𝑧‖ = √𝑘 + 1 for 𝑘 ⩾ 0. (9.2.7)

The spectral radius formula (Theorem 8.4.4) says that

sup
𝜆∈𝜍(𝑀𝑧)

|𝜆| = lim
𝑘→∞

‖𝑀𝑘
𝑧‖

1
𝑘 = lim

𝑘→∞
(𝑘 + 1)

1
2𝑘 = 1

and hence 𝜎(𝑀𝑧) ⊆ 𝔻−. For the reverse inclusion, let 𝜆 ∈ 𝔻 and observe that

(𝜆𝐼 − 𝑀𝑧)𝒟 ⊆ {𝑓 ∈ 𝒟 ∶ 𝑓(𝜆) = 0} ⊊ 𝒟.

Thus, 𝜆𝐼−𝑀𝑧 is not invertible and hence𝔻 ⊆ 𝜎(𝑀𝑧). Since the spectrumof a bounded
operator is compact (Theorem 2.4.9b), the observations above imply that 𝜎(𝑀𝑧) =
𝔻−.

(b) If (𝜆𝐼 − 𝑀𝑧)𝑓 = 0, then (𝑧 − 𝜆)𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻 and, since 𝑓 is an analytic
function, 𝑓 ≡ 0. Thus, 𝜎𝑝(𝑀𝑧) = ∅.
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(c) For 𝜉 ∈ 𝕋 and 𝑛 ⩾ 2, define

𝑔𝑛(𝑧) =
1
𝑐𝑛
(1 + 𝜉𝑧 + 𝜉

2
𝑧2 +⋯+ 𝜉

𝑛−1
𝑧𝑛−1),

where

𝑐𝑛 = (1 + 2 + 3 +⋯+ 𝑛)
1
2 = (𝑛(𝑛 + 1)

2 )
1
2 .

Note that each 𝑔𝑛 is a unit vector in𝒟 and

(𝑀𝑧 − 𝜉𝐼)𝑔𝑛 = − 𝜉
𝑐𝑛
(1 − 𝜉

𝑛
𝑧𝑛).

Thus,

‖(𝑀𝑧 − 𝜉𝐼)𝑔𝑛‖ =
1
𝑐𝑛
(𝑛 + 2)1/2 = ( 2

𝑛(𝑛 + 1) )
1
2 (𝑛 + 2)

1
2 → 0,

and hence 𝜉 ∈ 𝜎𝑎𝑝(𝑀𝑧). It follows that 𝕋 ⊆ 𝜎𝑎𝑝(𝑀𝑧). If 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝒟, then

‖(𝑀𝑧 − 𝜆𝐼)𝑓‖ ⩾ ‖𝑀𝑧𝑓‖ − |𝜆|‖𝑓‖
⩾ ‖𝑓‖ − |𝜆|‖𝑓‖ (Proposition 9.2.3)
= (1 − |𝜆|)‖𝑓‖.

Consequently, inf‖𝑓‖=1 ‖(𝑀𝑧−𝜆𝐼)𝑓‖ ⩾ 1−|𝜆| > 0 and hence 𝜆 ∉ 𝜎𝑎𝑝(𝑀𝑧). Therefore,
𝜎𝑎𝑝(𝑀𝑧) = 𝕋. ■

Proposition 9.2.8. For the adjoint𝑀∗
𝑧 of the Dirichlet shift, the following hold.

(a) 𝜎(𝑀∗
𝑧) = 𝔻−.

(b) 𝜎𝑝(𝑀∗
𝑧) = 𝔻.

(c) 𝜎𝑎𝑝(𝑀∗
𝑧) = 𝔻−.

Proof (a) 𝜎(𝑀∗
𝑧) = 𝔻− follows from 𝜎(𝑀𝑧) = 𝔻− (Proposition 3.1.6).

(b) To compute the eigenvalues of 𝑀∗
𝑧 , proceed as in (5.5.5) and use the reproducing

kernels 𝑘𝜆(𝑧) from Proposition 9.1.11 to show that𝑀∗
𝑧𝑘𝜆 = 𝜆𝑘𝜆. Thus, 𝔻 ⊆ 𝜎𝑝(𝑀∗

𝑧).
Since 𝔻 ⊆ 𝜎𝑝(𝑀∗

𝑧) ⊆ 𝜎(𝑀∗
𝑧) = 𝔻−, it suffices to show that no 𝜉 ∈ 𝕋 is an eigenvalue

for 𝑀∗
𝑧 . To the contrary, suppose that 𝑔(𝑧) = ∑∞

𝑛=0 𝑏𝑛𝑧𝑛 ∈ 𝒟\{0} and 𝜉 ∈ 𝕋 with
𝑀∗

𝑧𝑔 = 𝜉𝑔. Then (9.2.5) says that
∞
∑
𝑛=0

𝑛 + 2
𝑛 + 1𝑏𝑛+1𝑧

𝑛 = 𝜉
∞
∑
𝑛=0

𝑏𝑛𝑧𝑛.

Compare the coefficients of 𝑧𝑛 to obtain the recurrence

𝑏𝑛+1 = 𝜉𝑛 + 1
𝑛 + 2𝑏𝑛 for all 𝑛 ⩾ 0,
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which implies

𝑏𝑛 =
𝜉𝑛
𝑛 + 1𝑏0 for all 𝑛 ⩾ 1.

In light of (9.1.3), 𝑔 cannot belong to𝒟 unless 𝑏0 = 0, that is, 𝑔 ≡ 0. Thus, no 𝜉 ∈ 𝕋
is an eigenvalue of𝑀∗

𝑧 .
(c) Mimic the proof in Proposition 5.2.4. ■

9.3 The Dirichlet Shift is a 2-isometry
Recall fromExercise 3.6.13 that𝐴 ∈ ℬ(ℋ) is an isometry if and only if𝐴∗𝐴−𝐼 = 0. Unlike
the unilateral shift on the Hardy space, the Dirichlet shift𝑀𝑧 is not an isometry. Indeed,
‖1‖ = 1 but ‖𝑀𝑧1‖ = ‖𝑧‖ = √2. In fact, Proposition 9.2.3 says that 𝑀𝑧 is expansive. An
operator 𝐴 ∈ ℬ(ℋ) is a 2-isometry if

𝐴∗2𝐴2 − 2𝐴∗𝐴 + 𝐼 = 0,

or equivalently,

‖𝐴2x‖2 − 2‖𝐴x‖2 + ‖x‖2 = 0 for all x ∈ ℋ.

These types of operators and their generalizations are studied in [5, 6, 7]. The next result
says that the Dirichlet shift is a 2-isometry. A generalization of the Dirichlet shift is used
to model certain 2-isometries (see [293] and the discussion below).

Proposition 9.3.1. The Dirichlet shift is a 2-isometry.

Proof For any 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝒟,

‖𝑀𝑘
𝑧𝑓‖2 =

∞
∑
𝑛=0

(𝑛 + 𝑘 + 1)|𝑎𝑛|2 for all 𝑘 ⩾ 0.

Therefore,

‖𝑀2
𝑧𝑓‖2 + ‖𝑓‖2 =

∞
∑
𝑛=0

(2𝑛 + 4)|𝑎𝑛|2 = 2‖𝑀𝑧𝑓‖2,

and hence𝑀𝑧 is a 2-isometry. ■

Every 2-isometry 𝐴 ∈ ℬ(ℋ) is expansive in the sense that ‖𝐴x‖ ⩾ ‖x‖ for every x ∈ ℋ
(Exercise 9.9.19). Proposition 9.2.3 verifies this directly for the Dirichlet shift. Without
getting too far into the details, we briefly introduce a class of spaces related to𝒟 such that
the shift 𝑀𝑧 on these spaces model a wide class of 2-isometries. Given a finite positive
Borel measure 𝜇 on 𝕋, the function

𝑃𝜇(𝑧) ∶= ∫
𝕋

1 − |𝑧|2
|𝜁 − 𝑧|2 𝑑𝜇(𝜁) for 𝑧 ∈ 𝔻,
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is the Poisson integral of 𝜇 on 𝔻 (see Chapter 12). Observe that 𝑃𝜇 ⩾ 0 and 𝑃𝜇 is harmonic
on 𝔻 (Theorem 12.1.6). Use 𝑃𝜇 as a weight to define the harmonically weighted Dirichlet
integral

𝐷𝜇(𝑓) ∶=
1
𝜋 ∫

𝔻
|𝑓′(𝑧)|2𝑃𝜇(𝑧) 𝑑𝐴(𝑧). (9.3.2)

The corresponding harmonically weighted Dirichlet space 𝒟𝜇 is the space of analytic
functions 𝑓 on 𝔻 such that 𝐷𝜇(𝑓) < ∞. One defines a norm on𝒟𝜇 via

‖𝑓‖2𝒟𝜇
∶= ‖𝑓‖2𝐻2 + 𝐷𝜇(𝑓).

If 𝜇 is normalized Lebesgue measure𝑚 on 𝕋, then 𝑃𝜇(𝑧) = 1 for all 𝑧 ∈ 𝔻 (Exercise 12.5.2)
and hence the space𝒟𝜇 is the classical Dirichlet space𝒟.
Although harder to prove, 𝑀𝑧 on 𝒟𝜇 is a well-defined bounded operator and a 2-

isometry. Since a nonzero analytic function cannot have a zero of infinite order,

⋂
𝑛⩾0

𝑀𝑛
𝑧𝒟𝜇 = {0}. (9.3.3)

An operator 𝑇 ∈ 𝐵(ℋ) which satisfies the analogue of (9.3.3), namely

⋂
𝑛⩾0

𝑇𝑛ℋ = {0},

is analytic. The polynomials are dense in𝒟𝜇 [293, Cor. 3.8] and hence

⋁{𝑀𝑛
𝑧 1 ∶ 𝑛 ⩾ 0} = 𝒟𝜇.

Therefore, 𝑀𝑧 is a cyclic operator (recall Definition 8.2.1) with cyclic vector 1. To sum-
marize, 𝑀𝑧 on 𝒟𝜇 is a cyclic analytic 2-isometry. The following theorem says that, up to
unitary equivalence, these are all of the analytic cyclic 2-isometries.

Theorem 9.3.4 (Richter [293]). Any cyclic analytic 2-isometry on a Hilbert space is
unitarily equivalent to𝑀𝑧 on𝒟𝜇 for some finite positive Borel measure 𝜇 on 𝕋.

Notice the pattern continued by this theorem. Beurling represented a certain operator as
the shift on the Hardy space (Chapter 5); Kriete and Trutt represented the Cesàro operator
as 𝑀𝑧 on a space of analytic functions (Theorem 6.4.7); and Richter represented certain
2-isometries as𝑀𝑧 on a Dirichlet-type space.

9.4 Multipliers and Commutant
An analytic function 𝜑 on 𝔻 such that 𝜑𝒟 ⊆ 𝒟 is a multiplier of 𝒟. Proposition 5.5.4
says that the multipliers of 𝐻2 are 𝐻∞, the set of bounded analytic functions on 𝔻. For
the Dirichlet space, the multipliers are more complicated. The proof of the next result is
similar to that of Proposition 5.5.1.
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Proposition 9.4.1. If 𝜑 is a multiplier of 𝒟, then 𝜑 belongs to 𝐻∞ and the corresponding
multiplication operator𝑀𝜑 on𝒟 is bounded.

Since the constant functions belong to 𝒟, the multipliers of 𝒟 are a subset of 𝒟, and
indeed, a proper subset of𝒟 (Exercise 9.9.18). Although every multiplier of𝒟 belongs to
𝐻∞, the converse is not true [121, Thm. 5.1.6]. The multipliers of 𝒟 remain mysterious
and lack a simple satisfactory description. However, if one is looking for specific examples
of multipliers, Exercise 9.9.17 shows that if 𝜑′ ∈ 𝐻∞, then 𝜑 is a multiplier of𝒟.
Essentially the same proof that was used for the shift on the Hardy space (Corollary

5.6.2) describes the commutant of the Dirichlet shift.

Proposition 9.4.2. For 𝐴 ∈ ℬ(𝒟), the following are equivalent.

(a) 𝐴𝑀𝑧 = 𝑀𝑧𝐴.

(b) 𝐴 = 𝑀𝜑, where 𝜑 is a multiplier of𝒟.

9.5 Invariant Subspaces
Beurling’s theorem (Theorem 5.4.12) says that ifℳ is a nonzero 𝑆-invariant subspace of
𝐻2, thenℳ∩(𝑆ℳ)⟂ is one dimensional and is spanned by an inner function. Furthermore,
[ℳ ∩ (𝑆ℳ)⟂], the 𝑆-invariant subspace generated byℳ∩ (𝑆ℳ)⟂, equalsℳ. Richter and
Sundberg proved a version of Beurling’s theorem for the Dirichlet space.

Theorem 9.5.1 (Richter–Sundberg [295, 296]). Suppose ℳ is a nonzero 𝑀𝑧-invariant
subspace of 𝒟. Then ℳ ∩ (𝑀𝑧ℳ)⟂ is one dimensional and is the span of a multiplier of
𝒟. Furthermore, [ℳ ∩ (𝑀𝑧ℳ)⟂] = ℳ.

Amore precise description ofℳ comes from the next theorem.

Theorem 9.5.2 (Richter–Sundberg [295, 296]). Letℳ be an𝑀𝑧-invariant subspace of𝒟.
Thenℳ ∩ (𝑀𝑧ℳ)⟂ is spanned by a multiplier 𝜑 of𝒟 andℳ = 𝜑𝒟𝜈, where 𝑑𝜈 = |𝜑|2𝑑𝑚.

9.6 Cyclic Vectors
The cyclic vectors for 𝑀𝑧 on 𝒟 (recall Definition 5.7.1) are somewhat mysterious and,
although there is a conjecture as to what they might be (see [70, 121, 315] and the end
notes for this chapter), the problem of characterizing the cyclic vectors remains open. Let
us prove a few results about the cyclic vectors for𝑀𝑧 on𝒟.

Proposition 9.6.1. If 𝑓 ∈ 𝒟 is cyclic for𝑀𝑧, then 𝑓 is cyclic for the unilateral shift 𝑆 on𝐻2.

Proof If 𝑓 ∈ 𝒟 is cyclic for 𝑀𝑧, then there is a sequence of polynomials (𝑝𝑛)∞𝑛=1 such
that 𝑝𝑛𝑓 → 1 in the norm of𝒟. By (9.1.5), ‖𝑝𝑛𝑓 − 1‖𝒟 ⩾ ‖𝑝𝑛𝑓 − 1‖𝐻2 and it follows
that 𝑝𝑛𝑓 → 1 in 𝐻2. Thus, 1 belongs to𝒲, the closed linear span in 𝐻2 of {𝑆𝑛𝑓 ∶
𝑛 ⩾ 0}. Due to the 𝑆-invariance of𝒲, it follows that every polynomial belongs to𝒲.
Consequently, 𝑓 is cyclic for 𝑆 on 𝐻2. ■
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Below is a specific example of a cyclic vector for the Dirichlet shift.

Example 9.6.2. 𝑓(𝑧) = 1 − 𝑧 is a cyclic vector for𝑀𝑧 on𝒟. We follow a proof from [37]
(see also [38]). Exercise 9.9.21 gives an alternate proof. For 𝑛 ⩾ 1, let

ℎ𝑛 =
𝑛
∑
𝑘=1

1
𝑘 and 𝑝𝑛(𝑧) =

𝑛
∑
𝑘=1

(1 − ℎ𝑘
ℎ𝑛

) 𝑧𝑘−1.

Then,

(1 − 𝑧)𝑝𝑛(𝑧) = (1 − 𝑧)
𝑛
∑
𝑘=1

(1 − ℎ𝑘
ℎ𝑛

) 𝑧𝑘−1

=
𝑛
∑
𝑘=1

(1 − ℎ𝑘
ℎ𝑛

) 𝑧𝑘−1 −
𝑛
∑
𝑘=1

(1 − ℎ𝑘
ℎ𝑛

) 𝑧𝑘

=
𝑛
∑
𝑘=1

(1 − ℎ𝑘
ℎ𝑛

) 𝑧𝑘−1 −
𝑛+1
∑
𝑘=2

(1 − ℎ𝑘−1
ℎ𝑛

) 𝑧𝑘−1

= (1 − ℎ1
ℎ𝑛

) +
𝑛
∑
𝑘=2

(ℎ𝑘−1ℎ𝑛
− ℎ𝑘
ℎ𝑛

) 𝑧𝑘−1 − (1 − ℎ𝑛
ℎ𝑛

) 𝑧𝑛

= 1 −
𝑛
∑
𝑘=1

1
𝑘ℎ𝑛

𝑧𝑘−1.

Therefore,

‖1 − (1 − 𝑧)𝑝𝑛(𝑧)‖2 =
‖
‖‖‖

𝑛
∑
𝑘=1

1
𝑘ℎ𝑛

𝑧𝑘−1
‖
‖‖‖

2

=
𝑛
∑
𝑘=1

(𝑘 − 1 + 1) 1
𝑘2ℎ2𝑛

= 1
ℎ2𝑛

𝑛
∑
𝑘=1

1
𝑘 = 1

ℎ𝑛
.

Note that

ℎ𝑛 =
𝑛
∑
𝑘=1

1
𝑘 > ∫

𝑛

1

𝑑𝑥
𝑥 = log𝑛.

Hence, (1−𝑧)𝑝𝑛(𝑧) → 1 in𝒟. This shows that 𝑓(𝑧) = 1−𝑧 is a cyclic vector for𝑀𝑧 on𝒟.

Although the proof that the reader is encouraged to explore in Exercise 9.9.21 might
seem easier, we included the proof above since it explicitly computes polynomials 𝑝𝑛 such
that ‖(1 − 𝑧)𝑝𝑛 − 1‖ → 0.

9.7 The Bilateral Dirichlet Shift
For 𝑓 ∈ 𝐿2(𝕋) with Fourier expantion 𝑓 = ∑∞

𝑛=−∞ 𝑓(𝑛)𝜉𝑛, define

‖𝑓‖D = (
∞
∑

𝑛=−∞
(|𝑛| + 1)|𝑓(𝑛)|2)

1
2 .
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The space {𝑓 ∈ 𝐿2(𝕋) ∶ ‖𝑓‖D < ∞} is the harmonic Dirichlet space (not to be confused
with the harmonically weighted Dirichlet space 𝒟𝜇 mentioned earlier). There is also a
shift operator (𝑀𝜉𝑔)(𝜉) = 𝜉𝑔(𝜉) defined onD that is bounded and invertible, although not
unitary like 𝑀𝜉 on 𝐿2(𝕋). Using logarithmic capacity, one can describe the 𝑀𝜉-invariant
subspaces ℳ ⊆ D such that 𝑀𝜉ℳ = ℳ as the set of functions which vanish (quasi-
everywhere) on some subset 𝐸 ⊆ 𝕋 (see [294] and the endnotes of this chapter). This is
the analogue ofWiener’s theorem (Theorem 4.3.3) forD . The invariant subspacesℳ such
that𝑀𝜉ℳ ⊊ℳ do not yield as simple a description as they did for 𝐿2(𝕋) (Theorem 4.3.7).
In fact, they can be very complicated [314].

9.8 Notes
The Dirichlet integral gets its name from the Dirichlet problem: one is given a smooth
function 𝑓 ∶ 𝕋 → ℝ and asked to find a harmonic 𝑢 ∶ 𝔻 → ℝ that is continuous on 𝔻−

such that 𝑢|𝕋 = 𝑓. Here harmonic means that 𝜕2𝑥𝑢 + 𝜕2𝑦𝑢 = 0.We explore this problem in
Chapter 12. One approach to solving this problem is via the Dirichlet principle: minimize
the Dirichlet integral

∫
𝔻
(||𝜕𝑥𝑣||

2 + ||𝜕𝑦𝑣||
2) 𝑑𝐴

over all smooth functions 𝑣 on 𝔻− with 𝑣|𝕋 = 𝑓. In a series of lectures, Dirichlet showed
three things. First, any 𝑣 that is harmonic on 𝔻 with 𝑣|𝕋 = 𝑓 minimizes the Dirichlet
integral. Second, any 𝑢 with 𝑢|𝕋 = 𝑓 that minimizes the Dirichlet integral is harmonic.
Third, there is only one function with the prescribed boundary values that minimizes
the Dirichlet integral. The paper [158] contains an excellent historical survey, along with
extensions of the Dirichlet problem and principle to more general planar domains.
Good sources on the Dirichlet space are [22, 121, 315]. Much of our presentation on the

Dirichlet space focuses on the Dirichlet shift and not on the function-theoretic properties
of𝒟. The two are closely related and one cannot understand the operator theory without
knowledge of the function theory of the ambient space.
In his doctoral thesis [50], Beurling explored the properties of analytic functions with

finite Dirichlet integral. An important paper of Beurling from 1940 [52] shows that if
𝑓 ∈ 𝒟, then lim𝑟→1− 𝑓(𝑟𝜉) exists for every 𝜉 ∈ 𝕋, except possibly for a set of logarithmic
capacity zero. Authors sometimes use the term quasi-everywhere to mean “everywhere
except possibly for a set of logarithmic capacity zero.” The notion of logarithmic capacity
used in Beurling’s paper was originally developed by de la Vallée Poussin [365] who
defined the capacity 𝑐(𝐸) of a closed set 𝐸 ⊆ 𝕋 as 𝑐(𝐸) = 𝑒−𝑉(𝐸), where

𝑉(𝐸) = inf
𝜇
∫
𝕋
∫
𝕋
log 2

|𝜉 − 𝜁| 𝑑𝜇(𝜉) 𝑑𝜇(𝜁),

in which the infimum is taken over all probability measures 𝜇 on 𝐸. If 𝑐(𝐸) = 0, then
𝑚(𝐸) = 0. However, the Cantor set (in the circle) has Lebesgue measure zero but positive
logarithmic capacity. Thus, radial limits of generic functions in the Dirichlet space exist at
“more” points than functions in the Hardy space.
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This chapter discussed the𝑀𝑧-invariant subspaces of 𝒟. With a notion of logarithmic
capacity, one can show that if 𝐸 ⊆ 𝕋 is of positive capacity, then

𝒟𝐸 = {𝑓 ∈ 𝒟 ∶ lim
𝑟→1−

𝑓(𝑟𝜉) = 0 for quasi-every 𝜉 ∈ 𝐸}

is an invariant subspace. If 𝑢 is an inner function, then 𝑢𝐻2 ∩ 𝒟𝐸 is also an invariant
subspace (which might be the zero subspace). This leads to the question, are all of the
invariant subspaces of the form 𝑢𝐻2 ∩𝒟𝐸? Brown and Shields explored the cyclic vectors
for𝑀𝑧 [70]. The Brown–Shields conjecture asserts that the cyclic vectors for the Dirichlet
shift are the outer functions in the Dirichlet space whose radial limits are nonzero quasi-
everywhere. Some partial results are found in [122, 163, 189].
If ℳ1 and ℳ2 are invariant subspaces for the unilateral shift 𝑆 on 𝐻2, then 𝑆|ℳ1 is

unitarily equivalent to 𝑆|ℳ2 (Exercise 5.9.20). Richter [292] explored this property in the
Dirichlet space. The problem was fully resolved by Guo and Zhao in [164] where they
proved, for invariant subspacesℳ1,ℳ2 of𝒟, that𝑀𝑧|ℳ1 is unitarily equivalent to𝑀𝑧|ℳ2

if and only if ℳ1 = ℳ2. To do this, they showed that if 𝜑 ∈ ℳ1 ∩ (𝑀𝑧ℳ1)⟂ and 𝑈 ∶
ℳ1 → ℳ2 is unitary with 𝑈𝑀𝑧|ℳ1 = 𝑀𝑧|ℳ2𝑈 , then 𝜓 = 𝑈𝜑 ∈ ℳ2 ∩ (𝑀𝑧ℳ2)⟂. Using
various properties of the local Dirichlet integral and some results from a paper of Richter
and Sundberg [297], they proved that 𝜑 = 𝑐𝜓 for some constant 𝑐. Since 𝜑 generatesℳ1
and 𝜓 generatesℳ2 (Theorem 9.5.1), it follows thatℳ1 = ℳ2.
Fields medalist J. Douglas [114] derived the important formula

1
𝜋 ∫

𝔻
|𝑓′|2𝑑𝐴 = ∫

𝕋
∫
𝕋

|
|
|
𝑓(𝜁) − 𝑓(𝜉)

𝜁 − 𝜉
|
|
|

2

𝑑𝑚(𝜁)𝑑𝑚(𝜉) for all 𝑓 ∈ 𝒟,

which is used to explore properties of functions in the Dirichlet space (Exercise 9.9.10).
TheDirichlet shift is a 2-isometry (Proposition 9.3.1) and 2-isometries connect to awide

class of operators that are inspired by the spectral theorem for selfadjoint operators.Helton
[193] explored the 𝑛-symmetric operators. These are the 𝑇 ∈ ℬ(ℋ) such that

𝑛
∑
𝑘=0

(−1)𝑘(𝑛𝑘)𝑇
∗(𝑛−𝑘)𝑇𝑘 = 0.

A 1-symmetric operator is selfadjoint and the spectral theorem represents it as𝑀𝑥 on an
𝐿2(𝜇) space, where 𝜇 is a finite positive Borel measure on 𝜎(𝑇) ⊆ ℝ (Theorem 8.7.1). For
other 𝑛, these operators are represented by 𝑀𝑥 on a space of functions on ℝ with inner
product

⟨𝑓, 𝑔⟩ =
𝑁
∑
𝑖,𝑗=0

∫𝑓(𝑖)𝑔(𝑗)𝑑𝜇𝑖𝑗 ,

where 𝜇𝑖𝑗 are compactly supported finite positive Borel measures on ℝ and 𝑁 depends
on 𝑛. Agler [4], and Agler and Stankus [5, 6, 7], extended these results to the 𝑛-isometric
operators:

𝑛
∑
𝑘=0

(−1)𝑘(𝑛𝑘)𝑇
∗𝑘𝑇𝑘 = 0.
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If 𝑛 = 1 this condition becomes 𝐼 − 𝑇∗𝑇 = 0, that is, 𝑇 is isometric. When 𝑛 = 2, this
condition becomes 𝐼 − 2𝑇∗𝑇 + 𝑇∗2𝑇2 = 0, that is 𝑇 is a 2-isometry. There is a version
of the representation theorem for certain 2-isometric operators (Theorem 9.3.4) for 𝑛-
isometric operators that involves𝑀𝜉 on the completion of the set of analytic polynomials
with respect to the inner product

⟨𝑓, 𝑔⟩ = ∫
𝕋
𝐿(𝑓(𝜉))𝑔(𝜉) 𝑑𝑚(𝜉),

where 𝐿 is a certain positive differential operator of order 𝑛 − 1.

9.9 Exercises
Exercise 9.9.1. For an analytic function 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 on 𝔻, prove that

𝐷(𝑓) =
∞
∑
𝑛=1

𝑛|𝑎𝑛|2.

Exercise 9.9.2. Prove that ( 𝑧𝑛

√𝑛 + 1
)
∞

𝑛=0
is an orthonormal basis for𝒟.

Exercise 9.9.3.

(a) Prove that the Dirichlet integral of an injective analytic function 𝑓 on 𝔻 is 1/𝜋 times
the area of 𝑓(𝔻).

(b) What happens if 𝑓 is analytic but not injective?

Exercise 9.9.4. If 𝜑 ∶ 𝔻 → 𝔻 and 𝑓 ∶ 𝔻 → ℂ are analytic, prove that

𝐷(𝑓 ∘ 𝜑) = 1
𝜋 ∫

𝜑(𝔻)
|𝑓′(𝑤)|2𝑛𝜑(𝑤) 𝑑𝐴(𝑤),

where 𝑛𝜑(𝑤) is the cardinality of {𝑧 ∶ 𝜑(𝑧) = 𝑤}.

Exercise 9.9.5. Prove that the inclusion𝒟 ⊆ 𝐻2 is proper in two ways.

(a) Use power series.

(b) Use the Dirichlet integral.

Exercise 9.9.6. The containment 𝒟 ⊆ 𝐻2 follows from (9.1.5). Consider the inclusion
operator 𝑖 ∶ 𝒟 → 𝐻2 defined by 𝑖(𝑓) = 𝑓 for 𝑓 ∈ 𝒟.

(a) Prove that 𝑖 is bounded, has dense range in 𝐻2, but is not surjective.

(b) Find 𝑖∗ and prove that it is injective.

(c) Banach’s closed range theorem [320] says that 𝑇 ∈ ℬ(ℋ) has closed range if and only
if 𝑇∗ has closed range. Assuming this fact, is 𝑖∗ surjective?

(d) Does 𝑖∗ have dense range?
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Exercise 9.9.7. Prove that the function

𝑘𝜆(𝑧) =
1
𝜆𝑧

log ( 1
1 − 𝜆𝑧

), where 𝜆, 𝑧 ∈ 𝔻,

is the reproducing kernel for𝒟 as follows.

(a) Prove that 𝑘𝜆 ∈ 𝒟 for every 𝜆 ∈ 𝔻.

(b) Prove that 𝑓(𝜆) = ⟨𝑓, 𝑘𝜆⟩ for every 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝒟.

Exercise 9.9.8. This is a continuation of Exercises 9.9.2 and 9.9.7.

(a) If 𝑒𝑛(𝑧) = 𝑧𝑛/√𝑛 + 1, prove that 𝑘𝜆(𝑧) = ∑∞
𝑛=0 𝑒𝑛(𝜆)𝑒𝑛(𝑧) for all 𝑧, 𝜆 ∈ 𝔻.

(b) Prove that the formula for 𝑘𝜆(𝑧) above is independent of the choice of orthonormal
basis (𝑒𝑛)∞𝑛=0 for𝒟.

Exercise 9.9.9. Prove that

⟨𝑓, 𝑔⟩ = lim
𝑟→1−

∫
𝕋
𝑓(𝑟𝜉)(𝑧𝑔)′(𝑟𝜉) 𝑑𝑚(𝜉) for all 𝑓, 𝑔 ∈ 𝒟.

Exercise 9.9.10. Prove Douglas’ [114] formula

1
𝜋 ∫

𝔻
|𝑓′|2𝑑𝐴 = ∫

𝕋
∫
𝕋

|
|
|
𝑓(𝜁) − 𝑓(𝜉)

𝜁 − 𝜉
|
|
|

2

𝑑𝑚(𝜁)𝑑𝑚(𝜉) for all 𝑓 ∈ 𝒟

as follows (see [121] for more).

(a) Prove that for 𝑛 ⩾ 0,

∫
𝕋
∫
𝕋

|
|
|
𝑓(𝜁) − 𝑓(𝜉)

𝜁 − 𝜉
|
|
|

2

𝑑𝑚(𝜁)𝑑𝑚(𝜉) = ∫
2𝜋

0
∫

2𝜋

0

|
|
|
𝑓(𝑒𝑖(𝑠+𝑡)) − 𝑓(𝑒𝑖𝑡)

𝑒𝑖𝑠 − 1
|
|
|

2
𝑑𝑡
2𝜋

𝑑𝑠
2𝜋 .

(b) Use Parseval’s theorem to prove that

∫
2𝜋

0
|𝑓(𝑒𝑖(𝑠+𝑡)) − 𝑓(𝑒𝑖𝑡)|2 𝑑𝑡2𝜋 =

∞
∑
𝑛=0

|𝑓(𝑛)|2|𝑒𝑖𝑛𝑠 − 1|2.

(c) Prove that

∫
2𝜋

0

|
|
|
𝑒𝑖𝑛𝑠 − 1
𝑒𝑖𝑠 − 1

|
|
|

2
𝑑𝑠
2𝜋 = 𝑛.

(d) Combine the above to obtain Douglas’ formula.
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Remark: There is a corresponding formula for the harmonically weighted Dirichlet inte-
gral (9.3.2):

𝐷𝜇(𝑓) = ∫
𝕋
∫
𝕋

|
|
|
𝑓(𝜁) − 𝑓(𝜉)

𝜁 − 𝜉
|
|
|

2

𝑑𝑚(𝜁)𝑑𝜇(𝜉).

See [295] for details.

Exercise 9.9.11. For an analytic function 𝑓 on𝔻, prove that 𝑓 ∈ 𝒟 if and only if 𝑧𝑓 ∈ 𝒟.

Exercise 9.9.12. For the Dirichlet shift𝑀𝑧, prove that ‖𝑀𝑘
𝑧‖ = √𝑘 + 1 for all 𝑘 ⩾ 0.

Exercise 9.9.13. Prove that the range of the Dirichlet shift𝑀𝑧 is closed.

Exercise 9.9.14. Prove that the self commutator𝑀∗
𝑧𝑀𝑧 −𝑀𝑧𝑀∗

𝑧 of the Dirichlet shift𝑀𝑧
is compact.

Exercise 9.9.15. For a function 𝑓(𝑧) = ∑∞
𝑘=0 𝑎𝑘𝑧𝑘 ∈ 𝒟 and 𝑛 ⩾ 0, consider the linear

transformation 𝑆𝑛 ∶ 𝒟 → 𝒟 defined by (𝑆𝑛𝑓)(𝑧) =
𝑛
∑
𝑘=0

𝑎𝑘𝑧𝑘.

(a) Prove that 𝑆𝑛 ∈ ℬ(𝒟) and ‖𝑆𝑛‖ = 1 for all 𝑛 ⩾ 0.

(b) For each polynomial 𝑝 prove that 𝑆𝑛𝑝 = 𝑝 for all 𝑛 ⩾ deg𝑝.

(c) For each fixed 𝑓 ∈ 𝒟, prove that ‖𝑆𝑛𝑓 − 𝑓‖ → 0 as 𝑛 → ∞. In other words, 𝑆𝑛 → 𝐼
in the strong operator topology.

(d) Does 𝑆𝑛 → 𝐼 in operator norm?

Exercise 9.9.16. For a function 𝑓(𝑧) = ∑∞
𝑘=0 𝑎𝑘𝑧𝑘 ∈ 𝒟 and 0 < 𝑟 < 1, consider the

linear transformation 𝐴𝑟 ∶ 𝒟 → 𝒟 defined by (𝐴𝑟𝑓)(𝑧) =
∞
∑
𝑘=0

𝑎𝑘𝑟𝑘𝑧𝑘.

(a) Prove that 𝐴𝑟 ∈ ℬ(𝒟) and ‖𝐴𝑟‖ = 1 for all 0 < 𝑟 < 1.

(b) For each polynomial 𝑝, prove that ‖𝐴𝑟𝑝 − 𝑝‖ → 0 as 𝑟 → 1−.

(c) For each 𝑓 ∈ 𝒟, prove that ‖𝐴𝑟𝑓 − 𝑓‖ → 0 as 𝑟 → 1−. In other words, 𝐴𝑟 → 𝐼 in the
strong operator topology.

(d) Does 𝐴𝑟 → 𝐼 in operator norm?

Exercise 9.9.17. If 𝜑′ ∈ 𝐻∞, prove that 𝜑 is a multiplier of𝒟.

Exercise 9.9.18. Let 𝑓(𝑧) =
∞
∑
𝑛=2

𝑧𝑛
𝑛(log𝑛)3/4 .

(a) Prove that 𝑓 ∈ 𝒟.

(b) Prove that 𝑓2 ∉ 𝒟.
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(c) Conclude that𝒟 is not an algebra.

(d) Prove that the set of multipliers of𝒟 is a proper subset of𝒟.

Exercise 9.9.19. Prove that every 2-isometry𝑇 ∈ ℬ(ℋ) satisfies ‖𝑇x‖ ⩾ ‖x‖ for all x ∈ ℋ
as follows.

(a) Use the definition of a 2-isometry to prove that

‖𝑇𝑘x‖2 − ‖𝑇𝑘−1x‖2 = ‖𝑇x‖2 − ‖x‖2 for all 𝑘 ⩾ 1.

(b) Prove that ‖𝑇𝑛x‖2 − ‖x‖2 = 𝑛(‖𝑇x‖2 − ‖x‖2) for all 𝑛 ⩾ 1.

(c) Deduce that ‖𝑇x‖2 ⩾ ‖x‖2 − 1
𝑛‖x‖

2 for all 𝑛 ⩾ 1.

Exercise 9.9.20. Prove that if 𝑝 is a polynomial whose zeros lie outside 𝔻, then 𝑝 is a
cyclic vector for the Dirichlet shift.

Exercise 9.9.21. Example 9.6.2 showed that 𝑓(𝑧) = 1−𝑧 is a cyclic vector for theDirichlet
shift. Here is an alternate proof of this fact.

(a) If 𝑔 ⟂ 𝑧𝑛(1 − 𝑧) for all 𝑛, prove that (𝑛 + 1)𝑔 (𝑛) − (𝑛 + 2)𝑔 (𝑛 + 1) = 0 for all 𝑛 ⩾ 0.

(b) Conclude that 𝑔 ≡ 0.

Remark: See [70] for further examples of cyclic vectors.

Exercise 9.9.22. Here is an operator on 𝒟 that is related to the Cesàro operator from
Chapter 6. Define

(𝐴𝑓)(𝑧) = 1
𝑧 − 1 ∫

𝑧

1
𝑓(𝑠) 𝑑𝑠 −∫

1

0
𝑓(𝑠) 𝑑𝑠 for 𝑓 ∈ 𝒟.

(a) Prove that both integrals in the definition of 𝐴𝑓 converge for all 𝑓 ∈ 𝒟.

(b) Consider𝒟0 = {𝑓 ∈ 𝒟 ∶ 𝑓(0) = 0} and use the norm ‖𝑓‖2 = 1
𝜋 ∫

𝔻
|𝑓′|2𝑑𝐴 on𝒟0 to

prove that (𝑧𝑛/√𝑛)∞𝑛=1 is an orthonormal basis for𝒟0.

(c) Find the matrix representation of 𝐴 on 𝒟0 with respect to the basis above and use
this representation to prove that 𝐴 is bounded on𝒟0.

Remark: See [286] for various properties of this operator.

Exercise 9.9.23. This is a continuation of Exercise 9.9.22. Use Exercise 9.9.8 to find a
formula for the reproducing kernel 𝑘𝜆(𝑧) for 𝒟0. In other words, find a function 𝑘𝜆(𝑧)
such that 𝑘𝜆 ∈ 𝒟0 for all 𝜆 and such that 𝑓(𝜆) = ⟨𝑓, 𝑘𝜆⟩ for all 𝑓 ∈ 𝒟0 and 𝜆 ∈ 𝔻. The
inner product on𝒟0 is the one that comes from the norm given in Exercise 9.9.22.
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9.10 Hints for the Exercises
Hint for Ex. 9.9.1: Use polar coordinates and Parseval’s theorem.
Hint for Ex. 9.9.3: For (a), consider the Jacobian of 𝑓.
Hint for Ex. 9.9.6: For (b), use the formula for inner products based on Taylor coefficients.
Hint for Ex. 9.9.7: Consider

1
𝑤 log ( 1

1 − 𝑤) = 1 + 𝑤
2 + 𝑤2

3 +⋯ .

Hint for Ex. 9.9.13: Consult Proposition 9.2.3.
Hint for Ex. 9.9.17: If 𝜑′ is bounded, show that 𝜑 is also bounded.
Hint for Ex. 9.9.22: For (c), use Schur’s test.
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The Bergman Shift

Key Concepts: Bergman space, Bergman shift (spectrum, adjoint, commutant), invariant subspace,
invariant subspace of finite codimension, wandering subspace, index of an invariant subspace.

Outline: The study of the shift (𝑀𝑧𝑓)(𝑧) = 𝑧𝑓(𝑧) on the Bergman space 𝐴2 (the space of
analytic functions on 𝔻 that are square integrable with respect to area measure) starts
out like that of the Hardy and Dirichlet shifts. Many of the same properties hold (the
point spectrum is empty, the spectrum is the closed unit disk, the point spectrum of the
adjoint is the open unit disk). However, the invariant-subspace structure is dramatically
different. With the Hardy and Dirichlet shifts, dim(ℳ ∩ (𝑀𝑧ℳ)⟂) = 1 for every nonzero
invariant subspaceℳ. For the Bergman shift, any dimension is possible. Nevertheless,ℳ
is generated byℳ ∩ (𝑀𝑧ℳ)⟂ as with the Hardy and Dirichlet shifts.

10.1 The Bergman Space
The Bergman space 𝐴2 is the set of analytic functions 𝑓 on 𝔻 such that

‖𝑓‖ = ( 1𝜋 ∫
𝔻
|𝑓|2𝑑𝐴)

1
2 (10.1.1)

is finite. In the above, 𝑑𝐴 is two-dimensional planar Lebesgue measure and the 1/𝜋 is a
normalizing factor that ensures ‖1‖ = 1. A computation with polar coordinates (Exercise
10.7.1) shows that if 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛, then

‖𝑓‖2 =
∞
∑
𝑛=0

|𝑎𝑛|2
𝑛 + 1 . (10.1.2)

Since
∞
∑
𝑛=0

|𝑎𝑛|2
𝑛 + 1 ⩽

∞
∑
𝑛=0

|𝑎𝑛|2, (10.1.3)

it follows that 𝐻2 ⊆ 𝐴2; the containment is strict (Exercise 10.7.4).
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Since 𝐴2 ⊆ 𝐿2(𝑑𝐴), and because analyticity is preserved under function addition and
scalar multiplication, 𝐴2 is a vector space. In light of (10.1.1), one can define an inner
product on 𝐴2 by

⟨𝑓, 𝑔⟩ = 1
𝜋 ∫

𝔻
𝑓𝑔 𝑑𝐴.

For 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 and 𝑔(𝑧) = ∑∞

𝑛=0 𝑏𝑛𝑧𝑛 in 𝐴2, this inner product can be written as

⟨𝑓, 𝑔⟩ =
∞
∑
𝑛=0

𝑎𝑛𝑏𝑛
𝑛 + 1 . (10.1.4)

Like its cousins, the Hardy and Dirichlet spaces, the Bergman space is a reproducing
kernelHilbert space.We first prove completeness and then discuss the reproducing kernel.

Proposition 10.1.5. 𝐴2 is a Hilbert space.

Proof Since 𝐴2 is an inner-product space, it suffices to check that 𝐴2 is complete. First
observe that the map

∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 ↦ ( 𝑎𝑛
√𝑛 + 1

)
∞

𝑛=0

is an isometric and surjective linear transformation from 𝐴2 onto ℓ2. Since ℓ2 is
complete, Lemma 9.1.8 implies that 𝐴2 is also complete. ■

The following result (Exercise 10.7.3) completes the verification that𝐴2 is a reproducing
kernel Hilbert space.

Proposition 10.1.6. Let

𝑘𝜆(𝑧) =
1

(1 − 𝜆𝑧)2
for 𝜆, 𝑧 ∈ 𝔻. (10.1.7)

For 𝑓 ∈ 𝐴2 and 𝜆 ∈ 𝔻, the following hold.

(a) 𝑘𝜆 ∈ 𝐴2 and ‖𝑘𝜆‖2 =
1

(1 − |𝜆|2)2 .

(b) 𝑓(𝜆) = ⟨𝑓, 𝑘𝜆⟩.

(c) |𝑓(𝜆)| ⩽ ‖𝑓‖ 1
1 − |𝜆|2 .

The Bergman space 𝐴2 has a convenient orthonormal basis (Exercise 10.7.2) that can
be used to derive the formula for the reproducing kernel (Exercise 10.7.33).

Proposition 10.1.8. The sequence (√𝑛 + 1 𝑧𝑛)∞𝑛=0 is an orthonormal basis for 𝐴2. In
particular, the polynomials are dense in 𝐴2.
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The Bergman space is a rich class of functions with many mysterious properties that
distinguish it from the Hardy and Dirichlet spaces. For example, functions in the Hardy
or Dirichlet spaces have radial boundary values almost everywhere on 𝕋. Bergman-space
functions need not possess radial boundary values at all (see Exercises 10.7.7 and 10.7.8).
In addition, the zero sets of 𝐴2 functions may never be completely understood. Since the
focus of this book is operator theory, we restrict our study to the Bergman shift. For further
function-theoretic properties of 𝐴2, consult [120, 187].

10.2 The Bergman Shift
Since

‖𝑀𝑧𝑓‖2 =
1
𝜋 ∫

𝔻
|𝑧𝑓(𝑧)|2𝑑𝐴 ⩽ 1

𝜋( sup𝑧∈𝔻
|𝑧|2)∫

𝔻
|𝑓|2𝑑𝐴 = 1

𝜋 ∫
𝔻
|𝑓|2𝑑𝐴 = ‖𝑓‖2,

for all 𝑓 ∈ 𝐴2, the Bergman shift𝑀𝑧 ∶ 𝐴2 → 𝐴2 defined by

(𝑀𝑧𝑓)(𝑧) = 𝑧𝑓(𝑧)

is bounded on 𝐴2 and

‖𝑀𝑧‖ = sup
‖𝑓‖=1

‖𝑀𝑧𝑓‖ ⩽ 1. (10.2.1)

The next result establishes equality in (10.2.1).

Proposition 10.2.2. ‖𝑀𝑧‖ = 1.

Proof We have just seen in (10.2.1) that ‖𝑀𝑧‖ ⩽ 1. The functions

𝑓𝑛(𝑧) = √𝑛 + 1 𝑧𝑛

are unit vectors in 𝐴2 (Proposition 10.1.8) and

‖𝑀𝑧𝑓𝑛‖2 = (𝑛 + 1)‖𝑧𝑛+1‖2 = 𝑛 + 1
𝑛 + 2 → 1 as 𝑛 → ∞.

Therefore,

‖𝑀𝑧‖ ⩾ sup
𝑛⩾0

‖𝑀𝑧𝑓𝑛‖ = 1,

and hence ‖𝑀𝑧‖ = 1. ■

Since (𝑓𝑛)∞𝑛=0 is an orthonormal basis for 𝐴2 and

𝑀𝑧𝑓𝑛 =√
𝑛 + 1
𝑛 + 2 𝑓𝑛+1,
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the matrix representation of𝑀𝑧 with respect to this basis is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯

√
1
2

0 0 0 ⋯

0 √
2
3

0 0 ⋯

0 0 √
3
4

0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Compare this matrix representation with those for the shifts on the Hardy space (5.1.3)
and the Dirichlet space (9.2.2). In particular, the Bergman shift is a weighted shift, in the
sense of Exercise 3.6.21.
The shift on the Hardy space is an isometry, that is, ‖𝑀𝑧𝑓‖ = ‖𝑓‖ for all 𝑓 ∈ 𝐻2, and

the Dirichlet shift is expansive, that is, ‖𝑀𝑧𝑓‖ ⩾ ‖𝑓‖ for all 𝑓 ∈ 𝒟. For the Bergman shift,
(10.2.1) shows that𝑀𝑧 is a contraction.

Corollary 10.2.3. ‖𝑀𝑧𝑓‖ ⩽ ‖𝑓‖ for all 𝑓 ∈ 𝐴2.

The spectral properties of the Bergman shift are similar to those of the Hardy and
Dirichlet shifts. We begin our discussion with a lemma that is used several times in this
chapter. For fixed 𝜆 ∈ 𝔻, define the difference quotient

(𝑄𝜆𝑓)(𝑧) =
𝑓(𝑧) − 𝑓(𝜆)

𝑧 − 𝜆 for 𝑓 ∈ 𝐴2.

The numerator of 𝑄𝜆𝑓 has a zero of order at least 1 at 𝑧 = 𝜆, so 𝑄𝜆𝑓 is analytic on 𝔻.

Lemma 10.2.4. If 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝐴2, then 𝑄𝜆𝑓 ∈ 𝐴2. Furthermore, the linear
transformation 𝑓 ↦ 𝑄𝜆𝑓 is a bounded operator on 𝐴2.

Proof Let 𝑓 ∈ 𝐴2 and 𝜆 ∈ 𝔻. Fix 𝑟 > 0 such that 𝐵𝑟(𝜆) = {𝑧 ∶ |𝑧 − 𝜆| < 𝑟}− ⊆ 𝔻. Since
𝑓 ∈ 𝐴2 is analytic on 𝔻, the function 𝑄𝜆𝑓 is bounded on 𝐵𝑟(𝜆). Then

∫
𝔻
|𝑄𝜆𝑓|2𝑑𝐴 = ∫

𝐵𝑟(𝜆)
|𝑄𝜆𝑓|2𝑑𝐴 +∫

𝔻\𝐵𝑟(𝜆)
|𝑄𝜆𝑓|2𝑑𝐴. (10.2.5)

The first term on the right side is bounded above by

𝜋𝑟2 sup
𝑧∈𝐵𝑟(𝜆)−

|(𝑄𝜆𝑓)(𝑧)|2

and the second term on the right side is bounded above by

1
𝑟2 ∫𝔻\𝐵𝑟(𝜆)

|𝑓(𝑧) − 𝑓(𝜆)|2𝑑𝐴.

The triangle inequality, along with the fact that the constants belong to 𝐴2, show
that both integrals on the right side of (10.2.5) are finite. Thus, 𝑄𝜆𝑓 ∈ 𝐴2. The
boundedness of the linear transformation 𝑓 ↦ 𝑄𝜆𝑓 on 𝐴2 follows from the closed
graph theorem (Theorem 2.2.2). ■



the bergman shift | 229

Proposition 10.2.6. The Bergman shift𝑀𝑧 satisfies the following.

(a) 𝜎(𝑀𝑧) = 𝔻−.

(b) 𝜎𝑝(𝑀𝑧) = ∅.

(c) 𝜎𝑎𝑝(𝑀𝑧) = 𝕋.

Proof (a) For |𝜆| > 1,

sup
𝑧∈𝔻

1
|𝑧 − 𝜆| =

1
|𝜆| − 1 ,

so
1
𝜋 ∫

𝔻

||
1

𝑧 − 𝜆𝑓(𝑧)
||
2
𝑑𝐴 ⩽ 1

(|𝜆| − 1)2 ‖𝑓‖
2 for all 𝑓 ∈ 𝐴2.

It follows that the operator 𝑓 ↦ (𝑧 − 𝜆)−1𝑓 is bounded on 𝐴2 and is the inverse of
𝑀𝑧 − 𝜆𝐼. Consequently, 𝜎(𝑀𝑧) ⊆ 𝔻−. For 𝜆 ∈ 𝔻, (𝑀𝑧 − 𝜆𝐼)𝐴2 ⊆ {𝑓 ∈ 𝐴2 ∶ 𝑓(𝜆) = 0},
which is a proper subset of 𝐴2, and hence𝑀𝑧 − 𝜆𝐼 is not invertible. This proves that
𝔻 ⊆ 𝜎(𝑀𝑧). Since the spectrum of an operator is closed (Theorem 2.4.9), we conclude
that 𝔻− ⊆ 𝜎(𝑀𝑧), so equality follows.

(b) If 𝜆 ∈ ℂ and 𝑓 ∈ 𝐴2 with (𝑀𝑧 − 𝜆𝐼)𝑓 ≡ 0, then (𝑧 − 𝜆)𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻 and
hence 𝑓 ≡ 0. Thus, 𝜎𝑝(𝑀𝑧) = ∅.

(c) Let 𝜉 ∈ 𝕋 and for each 𝑛 ⩾ 0, define

𝑓𝑛(𝑧) =
1
𝑐𝑛
(1 + 𝜉𝑧 + 𝜉

2
𝑧2 +⋯+ 𝜉

𝑛−1
𝑧𝑛−1),

where

𝑐𝑛 = (1 + 1
2 +

1
3 +⋯+ 1

𝑛)
1
2 .

One can check that each 𝑓𝑛 is a unit vector in 𝐴2 that satisfies

(𝑀𝑧 − 𝜉𝐼)𝑓𝑛 = − 1
𝑐𝑛
(𝜉 − 𝜉

𝑛−1
𝑧𝑛).

Consequently,

‖(𝑀𝑧 − 𝜉𝐼)𝑓𝑛‖ =
1
𝑐𝑛√

𝑛+ 2
𝑛 + 1 .

Since 𝑐𝑛 → ∞, it follows that ‖(𝑀𝑧 − 𝜉𝐼)𝑓𝑛‖ → 0. Thus, 𝜉 ∈ 𝜎𝑎𝑝(𝑀𝑧) which implies
that 𝕋 ⊆ 𝜎𝑎𝑝(𝑀𝑧). For each 𝜆 ∈ 𝔻, Lemma 10.2.4 implies that 𝑄𝜆 ∈ ℬ(𝐴2). In other
words,

sup
‖𝑓‖=1

‖
‖
𝑓 − 𝑓(𝜆)
𝑧 − 𝜆

‖
‖ = ‖𝑄𝜆‖ < ∞.
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Therefore,

‖𝑓‖ = ‖𝑄𝜆(𝑧 − 𝜆)𝑓‖ ⩽ ‖𝑄𝜆‖‖(𝑧 − 𝜆)𝑓‖ = ‖𝑄𝜆‖‖(𝑀𝑧 − 𝜆𝐼)𝑓‖,

and hence

sup
‖𝑓‖=1

‖(𝑀𝑧 − 𝜆𝐼)𝑓‖ ⩾ 1
‖𝑄𝜆‖

> 0.

Consequently, 𝜆 ∉ 𝜎𝑎𝑝(𝑀𝑧) and hence 𝜎𝑎𝑝(𝑀𝑧) = 𝕋. ■

We begin our study of the adjoint of𝑀𝑧 with the following formula.

Proposition 10.2.7. If 𝑔(𝑧) = ∑∞
𝑛=0 𝑏𝑛𝑧𝑛 ∈ 𝐴2, then

(𝑀∗
𝑧𝑔)(𝑧) =

∞
∑
𝑛=0

𝑛 + 1
𝑛 + 2𝑏𝑛+1𝑧

𝑛.

Proof If 𝑓 = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝐴2, use (10.1.4) to see that

⟨𝑀𝑧𝑓, 𝑔⟩ =
∞
∑
𝑛=1

𝑎𝑛−1𝑏𝑛
𝑛 + 1

=
∞
∑
𝑛=0

𝑎𝑛𝑏𝑛+1
𝑛 + 2

=
∞
∑
𝑛=0

1
𝑛 + 1𝑎𝑛(

𝑛 + 1
𝑛 + 2𝑏𝑛+1)

= ⟨𝑓, ℎ⟩,

where

ℎ(𝑧) =
∞
∑
𝑛=0

𝑛 + 1
𝑛 + 2𝑏𝑛+1𝑧

𝑛.

It follows from (10.1.2) that ℎ ∈ 𝐴2 and hence ℎ = 𝑀∗
𝑧𝑔. ■

Recall that 𝑘𝜆(𝑧) = (1 − 𝜆𝑧)−2 is the reproducing kernel for 𝐴2 (Proposition 10.1.6).
Notice that

(𝑀∗
𝑧𝑘𝜆)(𝑧) = ⟨𝑀∗

𝑧𝑘𝜆, 𝑘𝑧⟩ = ⟨𝑘𝜆, 𝑧𝑘𝑧⟩ = 𝜆𝑘𝑧(𝜆) = 𝜆𝑘𝜆(𝑧) for all 𝜆 ∈ 𝔻.

Mimicking the proof of Proposition 5.2.4 leads to the next result.

Proposition 10.2.8. The adjoint𝑀∗
𝑧 of the Bergman shift satisfies the following.

(a) 𝜎(𝑀∗
𝑧) = 𝔻−.

(b) 𝜎𝑝(𝑀∗
𝑧) = 𝔻.

(c) 𝜎𝑎𝑝(𝑀∗
𝑧) = 𝔻−.
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10.3 Invariant Subspaces
The invariant subspaces for the Bergman shift are extremely complicated and a complete
description of them is a long-standing open problem. We begin with a description of the
more tractable invariant subspaces.
If 𝑞 is a polynomial, 𝑞𝐴2 is invariant under𝑀𝑧, as is its closure (𝑞𝐴2)−. It may turn out

that (𝑞𝐴2)− = 𝐴2. For example, this happens if all the roots of 𝑞 lie in {𝑧 ∶ |𝑧| > 1} or if
they all lie in 𝕋 (see Lemma 10.3.3 below). If all the roots of 𝑞 lie in 𝔻, we will show that
𝑞𝐴2 is closed and the quotient space

𝐴2/𝑞𝐴2 = {𝑓 + 𝑞𝐴2 ∶ 𝑓 ∈ 𝐴2}

has dimension equal to the number of roots of 𝑞 (counting multiplicity).

Definition 10.3.1. The codimension of an𝑀𝑧-invariant subspaceℳ of 𝐴2 is dim(𝐴2/ℳ).

The following is the main theorem of this section.

Theorem 10.3.2 (Axler–Bourdon [29]). For an 𝑀𝑧-invariant subspace ℳ of 𝐴2, the
following are equivalent.

(a) ℳ has finite codimension 𝑑.

(b) There exists a polynomial 𝑞 of degree 𝑑, with all of its zeros in 𝔻, such thatℳ = 𝑞𝐴2.

The proof needs a technical lemma. For 𝜉 ∈ 𝕋, Example 5.7.6 shows that (𝑧 − 𝜉)𝐻2 is
dense in 𝐻2. The same holds for 𝐴2.

Lemma 10.3.3. (𝑧 − 𝜉)𝐴2 is dense in 𝐴2 for any 𝜉 ∈ 𝕋.

Proof Example 5.7.6 provides a sequence (𝑝𝑛)∞𝑛=1 of polynomials such that (𝑧−𝜉)𝑝𝑛 → 1
in 𝐻2 norm. Then (10.1.3) implies that ‖(𝑧 − 𝜉)𝑝𝑛 − 1‖𝐴2 ⩽ ‖(𝑧 − 𝜉)𝑝𝑛 − 1‖𝐻2 → 0.
Thus, 1 ∈ ((𝑧 − 𝜉)𝐴2)−. The𝑀𝑧-invariance of ((𝑧 − 𝜉)𝐴2)−, along with the density of
the polynomials in 𝐴2 (Proposition 10.1.8), shows that ((𝑧 − 𝜉)𝐴2)− = 𝐴2. ■

We are now ready for the proof of Theorem 10.3.2.

Proof We follow [29]. First suppose that the roots of 𝑞 are distinct points 𝑤1, 𝑤2,…,𝑤𝑑
in 𝔻. If 𝑞 has roots of higher multiplicity, we can apply the argument below with the
appropriate number of derivatives (Exercise 10.7.13). We first show that

𝑞𝐴2 = {𝑓 ∈ 𝐴2 ∶ 𝑓(𝑤𝑗) = 0, 1 ⩽ 𝑗 ⩽ 𝑑}.

The ⊆ containment follows by inspection. For the ⊇ containment, use the difference
quotient operator 𝑄𝑤 from Lemma 10.2.4 to see that if 𝑓 ∈ 𝐴2 and 𝑓(𝑤𝑗) = 0 for
1 ⩽ 𝑗 ⩽ 𝑑, then 𝑄𝑤1 𝑄𝑤2 𝑄𝑤3 ⋯𝑄𝑤𝑑𝑓 ∈ 𝐴2. Since

𝑄𝑤1 𝑄𝑤2 𝑄𝑤3 ⋯𝑄𝑤𝑑𝑓 =
𝑐
𝑞𝑓
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for some nonzero constant 𝑐, the ⊇ containment follows.
To study dim(𝐴2/𝑞𝐴2), take any ℎ ∈ 𝐴2 and observe that 𝑔 = 𝑄𝑤1 𝑄𝑤2 ⋯𝑄𝑤𝑑ℎ ∈ 𝐴2.
Direct computation shows that

𝑔 = ℎ − 𝑞1
𝑐𝑞 ,

where 𝑐 is a nonzero constant and 𝑞1 is a polynomial of degree less than 𝑑 = deg 𝑞.
Therefore, ℎ+𝑞𝐴2 = 𝑞1+𝑞𝐴2, whichmeans that the cosets 𝑧𝑗+𝑞𝐴2 for 0 ⩽ 𝑗 ⩽ 𝑑−1
span 𝐴2/𝑞𝐴2. Since deg 𝑞 = 𝑑, these cosets are linearly independent and hence

dim(𝐴2/𝑞𝐴2) = 𝑑. (10.3.4)

We now show that every𝑀𝑧-invariant subspaceℳ of codimension 𝑑 is equal to 𝑞𝐴2 for
some 𝑑 degree polynomial 𝑞 whose zeros lie in 𝔻. Define 𝑇 ∈ ℬ(𝐴2/ℳ) by

𝑇(𝑓 +ℳ) = 𝑀𝑧𝑓 +ℳ.

To see that 𝑇 is well defined, suppose 𝑓1 +ℳ = 𝑓2 +ℳ. Then 𝑓1 − 𝑓2 ∈ ℳ and

𝑇(𝑓1 +ℳ) = 𝑧𝑓1 +ℳ = 𝑧𝑓2 + 𝑧(𝑓1 − 𝑓2) +ℳ = 𝑧𝑓2 +ℳ = 𝑇(𝑓2 +ℳ).

Note the use of the𝑀𝑧-invariance ofℳ and the fact that 𝑓1 − 𝑓2 ∈ ℳ.
For any polynomial 𝑝, the𝑀𝑧-invariance ofℳ implies that

𝑝(𝑇)(𝑓 +ℳ) = 𝑝𝑓 +ℳ. (10.3.5)

Since dim(𝐴2/ℳ) = 𝑑 < ∞, the cosets 𝑧𝑗 +ℳ for 0 ⩽ 𝑗 ⩽ 𝑑 are linearly dependent.
Thus, there is a polynomial 𝑝0 (not identically zero) such that

𝑝0(𝑧) =
𝑑
∑
𝑗=0

𝑐𝑗𝑧𝑗 ∈ ℳ.

Then (10.3.5) implies that 𝑝0(𝑇)(𝑓 + ℳ) = 𝑝0𝑓 + ℳ = ℳ for all polynomials 𝑓.
Consequently, 𝑝0(𝑇) = 0 on 𝐴2/ℳ. Factor 𝑝0 as 𝑝0 = 𝑞ℎ, where 𝑞 is a polynomial
whose roots are in 𝔻 and ℎ is a polynomial whose roots are in ℂ\𝔻. If |𝑤| > 1,
Proposition 10.2.6a implies that (𝑧−𝑤)𝐴2 = 𝐴2. Lemma 10.3.3 ensures that (𝑧−𝜉)𝐴2
is dense in 𝐴2 for every 𝜉 ∈ 𝕋. It follows that ℎ𝐴2 is dense in 𝐴2 and hence 𝑞𝐴2 ⊆
(𝑝0𝐴2)− ⊆ ℳ. Use (10.3.4) to obtain

dim(𝐴2/ℳ) ⩽ dim(𝐴2/𝑞𝐴2) = deg 𝑞 ⩽ deg𝑝0 ⩽ 𝑑 = dim(𝐴2/ℳ).

Therefore, dim(𝐴2/ℳ) = dim(𝐴2/𝑞𝐴2) and henceℳ = 𝑞𝐴2 since 𝑞𝐴2 ⊆ ℳ. ■

Many of the𝑀𝑧-invariant subspaces of 𝐴2 demonstrate wild behavior. As a measure of
this, consider the index indℳ ∶= dim(ℳ/𝑧ℳ). Exercise 10.7.18 shows that

dim(ℳ/𝑧ℳ) = dim(ℳ ∩ (𝑧ℳ)⟂).



invariant subspaces | 233

In theHardy andDirichlet space, the index of every nonzero𝑀𝑧-invariant subspace is one.
Here are some examples of invariant subspaces with index one in the Bergman space. We
investigate invariant subspaces of higher index in the next section.

Example 10.3.6. Suppose 𝑓 ∈ 𝐴2\{0} and [𝑓] = ⋁{𝑧𝑛𝑓 ∶ 𝑛 ⩾ 0}. Then the index of [𝑓]
is 1. Indeed, without loss of generality, suppose that 𝑓(0) = 1. First we show that ℂ𝑓 +
𝑧[𝑓] is closed. Indeed, suppose (𝑐𝑛)∞𝑛=1 is a sequence of complex numbers and (𝑔𝑛)∞𝑛=1 is a
sequence in [𝑓] such that (𝑐𝑛𝑓+𝑧𝑔𝑛)∞𝑛=1 is a Cauchy sequence. Since the linear functional
𝜆 on 𝐴2 defined by 𝜆(ℎ) = ℎ(0) is continuous, this says that (𝑐𝑛)∞𝑛=1 is a Cauchy sequence.
It follows that (𝑧𝑔𝑛)∞𝑛=1 is a Cauchy sequence. Lemma 10.2.4 says that 𝑄0 is a bounded
operator on𝐴2 and thus 𝑔𝑛 = 𝑄0(𝑧𝑔𝑛) forms aCauchy sequence. This shows thatℂ𝑓+𝑧[𝑓]
is closed.
Next we show that

[𝑓] = ℂ𝑓 + 𝑧[𝑓].

The ⊇ containment follows from the fact that [𝑓] is an invariant subspace. For the ⊆
containment, let 𝑔 ∈ [𝑓] and let (𝑝𝑛)∞𝑛=1 be a sequence of polynomials such that 𝑝𝑛𝑓 → 𝑔
in norm. Since𝑓(0) = 1, and since norm convergence in𝐴2 implies pointwise convergence
(Proposition 10.1.6), it follows that 𝑝𝑛(0) → 𝑔(0). Define the polynomial

𝑞𝑛(𝑧) =
𝑝𝑛(𝑧) − 𝑝𝑛(0)

𝑧
and observe that

𝑝𝑛𝑓 = 𝑝𝑛(0)𝑓 + 𝑧𝑞𝑛𝑓 ∈ ℂ𝑓 + 𝑧[𝑓].

Thus, 𝑔 ∈ ℂ𝑓 + 𝑧[𝑓] from which it follows that [𝑓] = ℂ𝑓 + 𝑧[𝑓]. Moreover, for any
𝑎 ∈ ℂ, the coset 𝑎𝑓 + 𝑧[𝑓] is zero precisely when 𝑎 = 0. Thus, the linear transformation
𝑎𝑓 + 𝑧[𝑓] ↦ 𝑎 is a vector-space isomorphism between

[𝑓]/𝑧[𝑓] = (ℂ𝑓 + 𝑧[𝑓])/𝑧[𝑓]

and the one-dimensional space ℂ. Therefore dim([𝑓]/𝑧[𝑓]) = 1.

Example 10.3.7. Suppose (𝑧𝑗)∞𝑗=1 is an infinite sequence of distinct points in 𝔻\{0} and

ℳ = {𝑓 ∈ 𝐴2 ∶ 𝑓(𝑧𝑗) = 0 for all 𝑗 ⩾ 1}.

Suppose further thatℳ ≠ {0}, in other words, there is an 𝑓 ∈ 𝐴2\{0} such that 𝑓(𝑧𝑗) = 0
for all 𝑗 ⩾ 1. Thenℳ is an𝑀𝑧-invariant subspace of 𝐴2 with index 1. To see this, note that
ℳ is𝑀𝑧-invariant and closed (Proposition 10.1.6). We claim that

𝑧ℳ = {𝑓 ∈ 𝐴2 ∶ 𝑓(0) = 0, 𝑓(𝑧𝑗) = 0 for all 𝑗 ⩾ 1}.

The ⊆ containment follows by definition. For the other containment, let 𝑓 ∈ 𝐴2 with
𝑓(0) = 0 and 𝑓(𝑧𝑗) = 0 for all 𝑗 ⩾ 1. Recall the difference quotient operator 𝑄0 from
Lemma 10.2.4 and observe that 𝑄0𝑓 ∈ 𝐴2 and (𝑄0𝑓)(𝑧𝑗) = 0 for all 𝑗 ⩾ 1. In other words,
𝑓/𝑧 = 𝑄0𝑓 ∈ ℳ and hence 𝑓 ∈ 𝑧ℳ.
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Thus, the coset 𝑓 + 𝑧ℳ is zero precisely when 𝑓(0) = 0, and hence the linear
transformation 𝑓 + 𝑧ℳ ↦ 𝑓(0) is a vector-space isomorphism between ℳ/𝑧ℳ and ℂ.
Therefore, dim(ℳ/𝑧ℳ) = 1.

10.4 Invariant Subspaces of Higher Index
Recall that in theHardy andDirichlet spaces, a nonzero shift-invariant subspace has index
one. The main theorem of this section is the following.

Theorem 10.4.1 (Hedenmalm [186]). There are𝑀𝑧-invariant subspaces of 𝐴2 with index
two.

The existence of such invariant subspaces was shown in [19], but the proof was
nonconstructive. The example of Hedenmalm, which we present here, is concrete. The
proof depends upon several technical results about sampling and interpolation sequences
that are beyond the scope of this book. We use the presentation from [187], which has a
Banach-space flavor to it and applies to the 𝐴𝑝 version of the Bergman spaces as well.
The general idea is to take two zero-based invariant subspaces

𝐽(Λ𝑗) = {𝑓 ∈ 𝐴2 ∶ 𝑓|Λ𝑗 = 0} for 𝑗 = 1, 2, (10.4.2)

where the Λ𝑗 are sequences in 𝔻, and then consider their algebraic sum 𝐽(Λ1) + 𝐽(Λ2).
As we show below, one can choose sequences Λ1 and Λ2 such that 𝐽(Λ1) and 𝐽(Λ2) are
nonzero and 𝐽(Λ1) + 𝐽(Λ2) is closed. We know from Example 10.3.7 that each 𝐽(Λ𝑗) has
index one. It turns out that 𝐽1(Λ1) + 𝐽(Λ2) has index two. This is explained with the
following lemmas.

Lemma 10.4.3. Letℳ be a nonzero invariant subspace of 𝐴2 such thatℳ has index one.
Then there is a nonzero bounded linear functional 𝜆 ∶ ℳ → ℂ such that ker 𝜆 = 𝑧ℳ.

Proof For the moment, assume that 0 is not a common zero ofℳ. In other words, there
is a 𝑔 ∈ ℳ such that 𝑔(0) ≠ 0. Now define 𝜆 ∶ ℳ → ℂ by 𝜆(𝑓) = 𝑓(0). Proposition
10.1.6 ensures that 𝜆 is bounded on 𝐴2. Thus, 𝜆 is bounded onℳ and nonzero since
𝜆(𝑔) ≠ 0.

We now show that 𝜆(ℎ) = 0 if and only if ℎ ∈ 𝑧ℳ. The definition of 𝜆 says that 𝜆(𝑧ℳ) =
0. For the other direction, sinceℳ/𝑧ℳ is one dimensional and 𝑔(0) ≠ 0, it follows
thatℳ/𝑧ℳ = ℂ𝑔+𝑧ℳ and that a coset 𝑎𝑔+𝑧ℳ is the zero coset if and only if 𝑎 = 0.
If ℎ ∈ ℳ and 𝜆(ℎ) = 0, then ℎ + 𝑧ℳ = 𝑎𝑔+ 𝑧ℳ for some constant 𝑎. Consequently,
0 = ℎ(0) = 𝑎𝑔(0), which implies 𝑎 = 0. Thus, ℎ ∈ 𝑧ℳ. This shows that 𝜆 vanishes
precisely on 𝑧ℳ.

Suppose 𝑓(0) = 0 for all 𝑓 ∈ ℳ. Let𝑚 be the largest integer such that 𝑧𝑚 divides every
𝑓 ∈ ℳ. Then repeat the argument above with the functional 𝜆(𝑓) = 𝑓(𝑚)(0). ■

Lemma 10.4.4. Suppose thatℳ1 andℳ2 are𝑀𝑧-invariant subspaces with index one and
such that there is a constant 𝑐 > 0 with

‖𝑓1 + 𝑓2‖ ⩾ 𝑐(‖𝑓1‖ + ‖𝑓2‖) for all 𝑓1 ∈ ℳ1 and 𝑓2 ∈ ℳ2. (10.4.5)

Thenℳ =ℳ1 +ℳ2 is an invariant subspace of 𝐴2 with index two.
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Proof We first prove thatℳ =ℳ1 +ℳ2 is closed. Let (𝑔𝑛)∞𝑛=1 be a sequence inℳ1 and
(ℎ𝑛)∞𝑛=1 be a sequence inℳ2 such that (𝑔𝑛+ℎ𝑛)∞𝑛=1 is a Cauchy sequence inℳ1+ℳ2.
The inequality in (10.4.5) shows that (𝑔𝑛)∞𝑛=1 and (ℎ𝑛)∞𝑛=1 are Cauchy sequences in
ℳ1 andℳ2, respectively. Since eachℳ𝑗 is complete, 𝑔𝑛 → 𝑔 ∈ ℳ1 and ℎ𝑛 → ℎ ∈
ℳ2. Thus, 𝑔𝑛 + ℎ𝑛 → 𝑔 + ℎ ∈ ℳ1 +ℳ2 and henceℳ1 +ℳ2 is closed. Since each
ℳ𝑗 is𝑀𝑧-invariant, their sum is also𝑀𝑧-invariant.

We now prove thatℳ has index two. Lemma 10.4.3 provides nonzero linear functionals
𝜆𝑗 ∶ ℳ𝑗 → ℂ whose kernels are precisely 𝑧ℳ𝑗 for 𝑗 = 1, 2. Now define the linear
transformation

𝜆 ∶ ℳ = ℳ1 +ℳ2 → ℂ2, 𝜆(𝑓1 + 𝑓2) = (𝜆1(𝑓1), 𝜆2(𝑓2)).

By (10.4.5), if 𝑓1, 𝑔1 ∈ ℳ1 and 𝑓2, 𝑔2 ∈ ℳ2 are such that 𝑓1+𝑓2 = 𝑔1+𝑔2, then 𝑓1 = 𝑔1
and 𝑓2 = 𝑔2. Thus, 𝜆 is well defined.

Each 𝜆𝑗 is surjective with kernel 𝑧ℳ𝑗 . Therefore, 𝜆 is surjective with kernel 𝑧ℳ. By the
vector-space isomorphism theorem, the linear transformation

[𝜆] ∶ ℳ/𝑧ℳ → ℂ2, [𝜆](𝑓1 + 𝑓2 + 𝑧ℳ) = 𝜆(𝑓1 + 𝑓2),

is an isomorphism betweenℳ/𝑧ℳ and ℂ2. In particular, dim(ℳ/𝑧ℳ) = 2. ■

The details of the next lemma are beyond the scope of this book and are contained in
[186] and [187, p. 177]. For a sequence Λ ⊆ 𝔻, recall the definition of 𝐽(Λ) from (10.4.2).

Lemma 10.4.6. There are disjoint sequences 𝐵1 and 𝐵2 in 𝔻 satisfying the following.

(a) 0 ∉ 𝐵1 and 0 ∉ 𝐵2.

(b) 𝐽(𝐵𝑗) ≠ {0} for 𝑗 = 1, 2.

(c) The sequence 𝐵 = 𝐵1 ∪ 𝐵2 = (𝑧𝑗)∞𝑗=1 has the following property: there are 𝐾1, 𝐾2 > 0
such that

𝐾1‖𝑓‖2 ⩽
∞
∑
𝑗=1

(1 − |𝑧𝑗 |2)|𝑓(𝑧𝑗)|2 ⩽ 𝐾2‖𝑓‖2 for all 𝑓 ∈ 𝐴2. (10.4.7)

For convenience, write (10.4.7) as

‖𝑓‖2 ≍
∞
∑
𝑗=1

(1 − |𝑧𝑗 |2)|𝑓(𝑧𝑗)|2 for all 𝑓 ∈ 𝐴2.

Sequences (𝑧𝑗)∞𝑗=1 satisfying (10.4.7) are sampling sequences and they essentially permit us
to discretize the Bergman space norm. The fact that the union of two zero sequences in
the Bergman space can be a sampling sequence is one of the remarkable features of the
Bergman space. This does not occur in the Hardy and Dirichlet spaces where the union of
two zero sets is another zero set.
With all this in place, we are ready to prove Theorem 10.4.1.
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Proof It suffices to produce the index-1 invariant subspaces ℳ1 and ℳ2 with the
properties in Lemma 10.4.4. Let Λ1 and Λ2 be disjoint zero sequences for 𝐴2 whose
union is a sampling sequence (𝑧𝑗)∞𝑗=1 for𝐴2 (Lemma 10.4.6). Each 𝑧𝑗 belongs to either
Λ1 or Λ2, but not both. If 𝑓1 ∈ 𝐽(Λ1) and 𝑓2 ∈ 𝐽(Λ2) then,

|𝑓1(𝑧𝑗) + 𝑓2(𝑧𝑗)|2 = |𝑓1(𝑧𝑗)|2 + |𝑓2(𝑧𝑗)|2

since at least one of 𝑓1(𝑧𝑗) or 𝑓2(𝑧𝑗) is zero. Hence,

‖𝑓1 + 𝑓2‖2 ≍
∞
∑
𝑗=1

(1 − |𝑧𝑗 |2)2|𝑓1(𝑧𝑗) + 𝑓2(𝑧𝑗)|2

=
∞
∑
𝑗=1

(1 − |𝑧𝑗 |2)2|𝑓1(𝑧𝑗)|2 +
∞
∑
𝑗=1

(1 − |𝑧𝑗 |2)2|𝑓2(𝑧𝑗)|2

≍ ‖𝑓1‖2 + ‖𝑓2‖2,

which completes the proof. ■

One can extend this to index 𝑛 ∈ ℕ with some modifications [187, p. 177]. With a
different technique, one can create infinite-index invariant subspaces [188]. Despite the
fact that the index ofℳ can be any positive integer (or infinity), the wandering subspace
ℳ ∩ (𝑀𝑧ℳ)⟂ generatesℳ, as in the Hardy and Dirichlet spaces.

Theorem 10.4.8 (Aleman–Richter–Sundberg [17]). Ifℳ is an𝑀𝑧-invariant subspace of
𝐴2, thenℳ is the smallest invariant subspace of 𝐴2 containingℳ ∩ (𝑧ℳ)⟂.

This wandering subspace property holds for other spaces beyond the Hardy, Dirichlet,
and Bergman spaces [344].

10.5 Multipliers and Commutant
Proposition 5.5.4 shows that the multiplier algebra of 𝐻2 is 𝐻∞. The same is true for the
Bergman space.

Proposition 10.5.1. The multiplier algebra of 𝐴2 is𝐻∞. Moreover, if 𝜑 ∈ 𝐻∞, the operator
𝑀𝜑𝑓 = 𝜑𝑓 is bounded on 𝐴2 and ‖𝑀𝜑‖ = ‖𝜑‖∞.

Proof For any 𝜑 ∈ 𝐻∞ and 𝑓 ∈ 𝐴2,

‖𝑀𝜑𝑓‖2 = ‖𝜑𝑓‖2 = 1
𝜋 ∫

𝔻
|𝜑|2|𝑓|2𝑑𝐴 ⩽ ‖𝜑‖2∞

1
𝜋 ∫

𝔻
|𝑓|2𝑑𝐴 = ‖𝜑‖2∞‖𝑓‖2.

Thus, 𝜑𝑓 ∈ 𝐴2 whenever 𝑓 ∈ 𝐴2, that is, 𝜑 is a multiplier of 𝐴2. Moreover,

‖𝑀𝜑‖ = sup
‖𝑓‖=1

‖𝜑𝑓‖ ⩽ ‖𝜑‖∞.
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If 𝜑 is a multiplier of 𝐴2, then the argument used to prove Proposition 5.5.1 shows that
𝜑 is a bounded function and the operator𝑀𝜑 is bounded on𝐴2. We have already seen
that ‖𝑀𝜑‖ ⩽ ‖𝜑‖∞. For the reverse inequality, we have

1
𝜋 ∫

𝔻
|𝜑|2𝑛𝑑𝐴 = ‖𝑀𝑛

𝜑1‖2 ⩽ ‖𝑀𝑛
𝜑‖2‖1‖2 ⩽ ‖𝑀𝜑‖2𝑛 for all 𝑛 ⩾ 1.

Thus,

( 1𝜋 ∫
𝔻
|𝜑|2𝑛𝑑𝐴)

1
2𝑛 ⩽ ‖𝑀𝜑‖ for all 𝑛 ⩾ 1.

Let 𝑛 → ∞ and conclude that ‖𝜑‖∞ ⩽ ‖𝑀𝜑‖. ■

Corollary 5.6.2 identifies the commutant of the shift on theHardy space. The sameproof
applies to the Bergman space.

Proposition 10.5.2. For 𝑇 ∈ ℬ(𝐴2), the following are equivalent.

(a) 𝑀𝑧𝑇 = 𝑇𝑀𝑧.

(b) 𝑇 = 𝑀𝜑 for some 𝜑 ∈ 𝐻∞.

10.6 Notes
Bergman was the first to study square-integrable harmonic functions with respect to area
measure in his 1922 paper [45] (see also [46]). Bochner [55] also looked at the reproducing
kernel for 𝐴2. There are also 𝐴𝑝 versions of the Bergman space (same definition but with 2
replaced by𝑝) where one shows how the zero-set and invariant-subspace structure depend
on 𝑝 [120, 187]. Compare this with the Hardy spaces 𝐻𝑝 where the zero sets and the
invariant subspaces are the same for each 1 < 𝑝 < ∞.
The boundary behavior of Bergman-space functions can be wild in the sense that there

are functions in 𝐴2 which have radial limits almost nowhere (see Exercises 10.7.7 and
10.7.8). This is a dramatic change from the Hardy-space setting where radial limits exist
almost everywhere (Proposition 5.3.12) and with the Dirichlet space where the radial
limits exist quasi-everywhere (see the endnotes for Chapter 9).
Despite the best efforts of excellent mathematicians over the years, our understanding

of the Bergman space is relatively thin in comparison with what is known for the Hardy
space. For example, the “zero-based” invariant subspaces 𝐽(𝐵) discussed in this chapter are
not fully understood. A complete description of zero sequences for the Bergman space is
not known, although there are many partial results. There is also no complete description
of the cyclic vectors for the Bergman shift.
The complexity of the invariant subspaces for the Bergman shift, and the possibility

that they may never be completely described, can be measured in many ways. Unlike
the nonzero invariant subspaces for the shifts on the Hardy and Dirichlet spaces, which
always have index one, in the Bergman space this index can be any positive integer (or
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even infinity). As anothermeasure, the invariant subspaces of the Bergman space have the
property that 𝑀𝑧|ℳ1 is unitarily equivalent to 𝑀𝑧|ℳ2 if and only ifℳ1 = ℳ2 [292]. The
lack of radial limits, noted earlier, has something to dowith the complexity of the invariant
subspaces. For example, a result of Aleman, Richter, andRoss says that if𝑓, 𝑔 ∈ 𝐴2 and𝑓/𝑔
has a finite non-tangential limit on a set of positive measure on 𝕋, the invariant subspace
generated by 𝑓 and 𝑔 has index one [16]. This implies that functions in higher index
invariant subspaces generally have wild boundary behavior.
The most salient results that display the complexity of the invariant subspaces of the

Bergman space are those of Apostol, Bercovici, Foiaş, and Pearcy [19]. They observed that
the dimension ofℳ ∩ (𝑀𝑧ℳ)⟂ could be any 𝑛 ⩾ 1. Theorem 10.4.1 provided a specific
example of this for 𝑛 = 2. They also proved that the collection of invariant subspaces is
so vast that it contains an isomorphic copy of the lattice of invariant subspaces for any
bounded operator on a separable Hilbert space.

10.7 Exercises
Exercise 10.7.1. For any 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 analytic on 𝔻, prove that

1
𝜋 ∫

𝔻
|𝑓|2 𝑑𝐴 =

∞
∑
𝑛=0

|𝑎𝑛|2
𝑛 + 1 ,

where 𝑑𝐴 = 𝑑𝑥 𝑑𝑦 is area measure.

Exercise 10.7.2. Prove that (√𝑛 + 1 𝑧𝑛)∞𝑛=0 is an orthonormal basis for 𝐴2.

Exercise 10.7.3. Prove that

𝑘𝜆(𝑧) =
1

(1 − 𝜆𝑧)2
for 𝜆, 𝑧 ∈ 𝔻,

is the reproducing kernel for 𝐴2 as follows.

(a) Prove that 𝑘𝜆 ∈ 𝐴2 for every 𝜆 ∈ 𝔻.

(b) Prove that ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆) for every 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝐴2.

Exercise 10.7.4. Prove by example that the containment 𝐻2 ⊆ 𝐴2 is strict.

Exercise 10.7.5. Another approach to the completeness of 𝐴2 usesMontel’s theorem [92,
p. 153]. This theorem states that if a sequence (𝑓𝑛)∞𝑛=1 of analytic functions on 𝔻 is locally
bounded, that is, for any compact 𝐾 ⊆ 𝔻 there is a 𝑐𝐾 > 0 such that |𝑓𝑛(𝑧)| ⩽ 𝑐𝐾 for all
𝑧 ∈ 𝐾 and 𝑛 ⩾ 1, then there is a subsequence (𝑓𝑛𝑘 )∞𝑘=1 that converges uniformly on each
compact subset 𝐾 ⊆ 𝔻 to an analytic function 𝑓 on 𝔻.

(a) Prove that each Cauchy sequence (𝑓𝑛)∞𝑛=1 in 𝐴2 is locally bounded.

(b) Since 𝐿2(𝔻, 𝑑𝐴) is complete, 𝑓𝑛 → 𝑓 for some 𝑓 ∈ 𝐿2(𝔻, 𝑑𝐴). ApplyMontel’s theorem
to argue that 𝑓 is analytic.
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Exercise 10.7.6. For 1 < 𝑝 < ∞, let 𝐴𝑝 denote the space of analytic functions 𝑓 on 𝔻
such that

‖𝑓‖𝑝 = (∫
𝔻
|𝑓|𝑝𝑑𝐴)

1
𝑝 < ∞.

Prove that 𝐴𝑝 is a Banach space.

Exercise 10.7.7. A result of Littlewood [118, p. 228] says that if (𝑎𝑛)∞𝑛=0 is a sequence of

complex numbers such that lim
𝑛→∞

|𝑎𝑛|
1
𝑛 = 1 and

∞
∑
𝑛=0

|𝑎𝑛|2 = ∞, there is a sequence (𝜀𝑛)∞𝑛=0,

with 𝜀𝑛 = ±1 for each 𝑛, such that

𝑓(𝑧) =
∞
∑
𝑛=0

𝜀𝑛𝑎𝑛𝑧𝑛

is analytic on𝔻 and has radial limits almost nowhere. Use this result to produce an 𝑓 ∈ 𝐴2
with radial limits almost nowhere.

Exercise 10.7.8. This is an extension of Exercise 10.7.7 and concerns the function

𝑓(𝑧) =
∞
∑
𝑛=1

𝑧2𝑛 .

(a) Show that 𝑓 ∈ 𝐴2.

(b) Show that 𝑓 has a radius of convergence 1.

Remark: A result of Zygmund [380, Ch. 5] says that 𝑓 has radial limits almost nowhere.

Exercise 10.7.9. Define the inclusion operator 𝑖 ∶ 𝐻2 → 𝐴2 by 𝑖(𝑓) = 𝑓; (10.1.3) ensures
it is well defined.

(a) Prove that 𝑖 is bounded, has dense range, but is not surjective.

(b) Compute 𝑖∗.

(c) Prove that 𝑖∗ has dense range.

(d) Prove that the range of 𝑖∗ is not closed.

Exercise 10.7.10. Repeat the steps in Exercise 5.9.12 for 𝐴2.

Exercise 10.7.11. For each 𝑛 ⩾ 0, let 𝑓𝑛(𝑧) = 𝑧𝑛.

(a) Prove that 𝑓𝑛 → 0 weakly in 𝐻2.

(b) Prove that 𝑓𝑛 → 0 weakly in 𝐴2.

(c) Prove that 𝑓𝑛 does not converge weakly in𝒟.
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Exercise 10.7.12. Since the Bergman space 𝐴2 is a closed subspace of 𝐿2(𝑑𝐴), there is an
orthogonal projection 𝑃 of 𝐿2(𝑑𝐴) onto 𝐴2 (Proposition 1.7.3).

(a) Prove that (𝑃𝑓)(𝜆) = ⟨𝑓, 𝑘𝜆⟩ for all 𝑓 ∈ 𝐿2(𝑑𝐴), where 𝑘𝜆(𝑧) is the reproducing kernel
for 𝐴2 from (10.1.7).

(b) Prove that for𝑚, 𝑛 ⩾ 0, 𝑃(𝑧𝑛𝑧𝑚) = {
𝑚 − 𝑛 + 1
𝑚 + 1 𝑧𝑚−𝑛 if𝑚 ⩾ 𝑛,

0 if𝑚 < 𝑛.

Exercise 10.7.13. For distinct 𝜆1, 𝜆2,…, 𝜆𝑁 in 𝔻 and positive integers 𝑛1, 𝑛2,…, 𝑛𝑁 , con-
sider the polynomial

𝑞(𝑧) =
𝑁
∏
𝑗=1

(𝑧 − 𝜆𝑗)𝑛𝑗 .

Prove that 𝑞𝐴2 = {𝑓 ∈ 𝐴2 ∶ 𝑓(𝑘)(𝜆𝑗) = 0, 0 ⩽ 𝑘 ⩽ 𝑛𝑗 − 1, 1 ⩽ 𝑗 ⩽ 𝑁}.

Exercise 10.7.14. Prove a version of Theorem 10.3.2 for the Hardy space.

Exercise 10.7.15. Prove the following adjoint formula for the Bergman shift𝑀𝑧:

(𝑀∗
𝑧𝑓)(𝑧) = 𝑧−2(𝑧𝑓(𝑧) −∫

𝑧

0
𝑓(𝑤) 𝑑𝑤) for 𝑓 ∈ 𝐴2.

Exercise 10.7.16. For the Bergman shift𝑀𝑧, let 𝑇 = 𝑀∗
𝑧𝑀𝑧−𝑀𝑧𝑀∗

𝑧 . Prove the following
formulas.

(a) (𝑇𝑓)(𝑧) = 𝑧−2∫
𝑧

0
(𝑧 − 𝑤)𝑓(𝑤) 𝑑𝑤 for all 𝑓 ∈ 𝐴2.

(b) 𝑇𝑧𝑛 = 1
(𝑛 + 1)(𝑛 + 2)𝑧

𝑛 for all 𝑛 ⩾ 0.

(c) 𝑇 is compact and has norm 1.

Exercise 10.7.17. For the Bergman shift𝑀𝑧, prove that (𝑀∗
𝑧𝑀𝑧)−1 = 2𝐼 − 𝑀𝑧𝑀∗

𝑧 .
Remark: See [153] for more on this.

Exercise 10.7.18. For an𝑀𝑧-invariant subspaceℳ of 𝐴2, prove that

dim(ℳ/𝑧ℳ) = dim(ℳ ∩ (𝑧ℳ)⟂).

Exercise 10.7.19. Recall the index of an invariant subspaceℳ of 𝐴2, denoted by indℳ,
is dim(ℳ/𝑧ℳ). Ifℳ and𝒩 are𝑀𝑧-invariant subspaces of 𝐴2, prove that ind(ℳ⋁𝒩) ⩽
indℳ+ ind𝒩.

Exercise 10.7.20. One can define Bergman spaces for domains other than𝔻 [30, 95, 170].
Let 𝐺 be a bounded domain in ℂ. By this we mean that 𝐺 is a nonempty bounded open
connected subset of ℂ. Let 𝐴2(𝐺) be the set of analytic functions 𝑓 on 𝐺 such that

‖𝑓‖ = (∫
𝐺
|𝑓|2𝑑𝐴)

1
2 < ∞.
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One can show that 𝐴2(𝐺) is a vector space and that ⟨𝑓, 𝑔⟩ = ∫
𝐺
𝑓𝑔 𝑑𝐴 defines an inner

product on 𝐴2(𝐺). Prove the following facts about 𝐴2(𝐺).

(a) Suppose that 𝜆 ∈ 𝐺 and 𝐵(𝜆, 𝑟)− = {𝑧 ∶ |𝑧 − 𝜆| ⩽ 𝑟} ⊆ 𝐺. For a function 𝑔 that is
analytic on a neighborhood of 𝐵(𝜆, 𝑟)−, prove that

𝑔(𝜆) = 1
2𝜋 ∫

2𝜋

0
𝑔(𝜆 + 𝑡𝑒𝑖𝜃) 𝑑𝜃 for all 0 < 𝑡 < 𝑟.

(b) Use this to prove that 𝑔(𝜆) = 1
𝜋𝑟2 ∫𝐵(𝜆,𝑟)

𝑔 𝑑𝐴.

(c) Now argue that |𝑓(𝜆)| ⩽ 𝐶𝜆‖𝑓‖ for all 𝑓 ∈ 𝐴2(𝐺), where 𝐶𝜆 > 0 depends only on 𝜆.

(d) Prove that 𝐴2(𝐺) is a Hilbert space.

(e) Prove that for each 𝜆 ∈ 𝐺, there is a 𝑘𝜆 ∈ 𝐴2(𝐺) such that 𝑓(𝜆) = ⟨𝑓, 𝑘𝜆⟩ for every
𝑓 ∈ 𝐴2(𝐺).

Exercise 10.7.21. This is a continuation of Exercise 10.7.20. Define the linear transfor-
mation𝑀𝑧 on 𝐴2(𝐺) by𝑀𝑧𝑓 = 𝑧𝑓.

(a) Prove that𝑀𝑧 is bounded on 𝐴2(𝐺).

(b) Compute 𝜎(𝑀𝑧), 𝜎𝑝(𝑀𝑧), and 𝜎𝑎𝑝(𝑀𝑧).

(c) Show that 𝐺 ⊆ 𝜎𝑝(𝑀∗
𝑧).

Exercise 10.7.22. Consider 𝐴2(𝐺), the Bergman space of the annulus

𝐺 = {𝑧 ∶ 1
2
< |𝑧| < 1}.

(a) Prove that there is a constant 𝑐 > 0 such that |𝑝(0)| ⩽ 𝑐‖𝑝‖ for all polynomials 𝑝.

(b) Prove that the polynomials are not dense in 𝐴2(𝐺).

Exercise 10.7.23. If𝐺1 and𝐺2 are domains inℂ and𝜑 ∶ 𝐺1 → 𝐺2 is analytic and bijective,
prove that 𝑈 ∶ 𝐴2(𝐺2) → 𝐴2(𝐺1) defined by 𝑈𝑓 = (𝑓 ∘ 𝜑)𝜑′ is unitary.

Exercise 10.7.24. Suppose that 𝐺 is an unbounded domain in ℂ. Can𝑀𝑧 be bounded on
𝐴2(𝐺)?

Exercise 10.7.25. An invariant subspaceℳ for 𝑇 ∈ ℬ(ℋ) is hyperinvariant if 𝐴ℳ ⊆ ℳ
for every 𝐴 ∈ ℬ(ℋ) with 𝐴𝑇 = 𝑇𝐴.

(a) Prove that if 𝐴 = 𝑀𝜉 on 𝐿2(𝕋) (discussed in Chapter 4), then every hyperinvariant
subspaceℳ is of the formℳ = {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓|𝐸 = 0 almost everywhere} for some
measurable 𝐸 ⊆ 𝕋.
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(b) Prove that if 𝑆 is the unilateral shift on 𝐻2, then a subspaceℳ is 𝑆-invariant if and
only ifℳ is hyperinvariant.

Exercise 10.7.26. Use the following steps to prove that a subspaceℳ ⊆ 𝐴2 is𝑀𝑧-invariant
if and only ifℳ is hyperinvariant.

(a) Prove thatℳ ⊆ 𝐴2 is hyperinvariant if and only if 𝜑ℳ ⊆ ℳ for every 𝜑 ∈ 𝐻∞.

(b) One can prove that if 𝜑 ∈ 𝐻∞, then there is a sequence of polynomials (𝜑𝑛)∞𝑛=1 such
that 𝜑𝑛(𝜆) → 𝜑(𝜆) for each 𝜆 ∈ 𝔻 and sup𝑛⩾1 ‖𝜑𝑛‖∞ < ∞ [202, Ch. 3]. Use this to
prove that ⟨𝑀𝜑𝑛𝑓, 𝑔⟩ → ⟨𝑀𝜑𝑓, 𝑔⟩ for every 𝑓, 𝑔 ∈ 𝐴2.

(c) Prove that if 𝑧ℳ ⊆ ℳ, then 𝜑ℳ ⊆ ℳ for every 𝜑 ∈ 𝐻∞.

(d) If 𝐺 = { 1
2
< |𝑧| < 1}. Prove there is an 𝑀𝑧-invariant subspace of 𝐴2(𝐺) that is not

hyperinvariant.

Exercise 10.7.27. For each 𝜆, 𝑧 ∈ 𝔻, let 𝑘 𝜆(𝑧) = 𝑘𝜆(𝑧)/‖𝑘𝜆‖ denote the normalized
reproducing kernel for 𝐴2.

(a) If |𝜆| → 1−, prove that 𝑘 𝜆 → 0 weakly in 𝐴2.

(b) If 𝑇 ∈ ℬ(𝐴2) is compact, prove that the Berezin transform [187] 𝑇 (𝜆) = ⟨𝑇𝑘 𝜆, 𝑘 𝜆⟩
tends to zero as |𝜆| → 1−.

Remark: See [44] for one of the first papers on this transform.

Exercise 10.7.28. This is a continuation of Exercise 10.7.27. For any 𝑇 ∈ ℬ(𝐴2) prove the
following facts about the Berezin transform 𝑇.

(a) |𝑇(𝑧)| ⩽ ‖𝑇‖ for all 𝑧 ∈ 𝔻.

(b) 𝑇∗ = 𝑇.

(c) The map 𝑇 ↦ 𝑇 is linear and injective.

Exercise 10.7.29. This is a continuation of Exercise 10.7.27.

(a) For 𝑓, 𝑔 ∈ 𝐴2, prove that

𝑓 ⊗ 𝑔(𝑧) = 𝑔(𝑧)
‖𝑘𝜆‖2

𝑓(𝑧) for all 𝑧 ∈ 𝔻.

(b) For 𝜑 ∈ 𝐻∞, prove that𝑀𝜑(𝑧) = 𝜑(𝑧) for all 𝑧 ∈ 𝔻.

Exercise 10.7.30. This is a continuation of Exercise 10.7.27. For 𝑓 ∈ 𝐴2, consider
(𝑇𝑓)(𝑧) = 𝑓(−𝑧).

(a) Prove that 𝑇 is a unitary operator on 𝐴2.
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(b) Prove that 𝑇(𝜆) = (1 − |𝜆|2)2
(1 + |𝜆|2)2 for all 𝜆 ∈ 𝔻.

(c) Use this to prove that the converse of (b) in Exercise 10.7.27 is not always true.

Remark: Exercise 16.9.33 explores this further.

Exercise 10.7.31.
(a) Prove that the Bergman shift𝑀𝑧 is irreducible.

(b) Prove that𝑀2
𝑧 is reducible.

Exercise 10.7.32. TheHardy, Dirichlet, and Bergman spaces are examples of reproducing
kernel Hilbert spaces. Letℋ be a Hilbert space of functions on a set 𝑋 such that for each
𝑥 ∈ 𝑋 , the evaluation functional 𝜆𝑥(𝑓) = 𝑓(𝑥) is bounded.
(a) Prove there is a 𝑘(𝑥, 𝑦) on 𝑋 × 𝑋 → ℂ such that 𝑘(𝑥, ⋅) ∈ ℋ for each 𝑥 ∈ 𝑋 and

𝑓(𝑥) = ⟨𝑓, 𝑘(𝑥, ⋅)⟩ for every 𝑓 ∈ ℋ. This function is the reproducing kernel forℋ.

(b) Prove that 𝑘(𝑥, 𝑦) = ⟨𝑘(𝑥, ⋅), 𝑘(𝑦, ⋅)⟩ for every 𝑥, 𝑦 ∈ 𝑋 .

(c) Prove that 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 .

(d) Prove that for distinct 𝑥1, 𝑥2,…, 𝑥𝑛 ∈ 𝑋 , the matrix [𝑘(𝑥𝑖, 𝑥𝑗)]1⩽𝑖,𝑗⩽𝑛 is positive
semidefinite.

(e) Ifℋ is separable with orthonormal basis (𝑓𝑛)∞𝑛=1, prove that

𝑘(𝑥, 𝑦) =
∞
∑
𝑛=1

𝑓𝑛(𝑥)𝑓𝑛(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Remark: See [264] for more on reproducing kernel Hilbert spaces.

Exercise 10.7.33. Use Exercise 10.7.32, along with the orthonormal basis for 𝐴2 from
Proposition 10.1.8, to derive the formula for 𝑘𝜆(𝑧) in Exercise 10.7.3.
Exercise 10.7.34. This is a continuation of Exercise 10.7.32. Consider the Sobolev space
𝒲 of absolutely continuous functions 𝑓 on [0, 1] such that 𝑓(0) = 𝑓(1) = 0 and 𝑓′ ∈

𝐿2[0, 1] (see Exercise 1.10.15). Define an inner product on𝒲 by ⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓′(𝑡)𝑔′(𝑡) 𝑑𝑡.

(a) For each 𝑥 ∈ [0, 1], prove that 𝜆𝑥(𝑓) = 𝑓(𝑥) is bounded on𝒲.

(b) Prove that

𝑘(𝑥, 𝑦) = {(1 − 𝑦)𝑥 if 𝑥 ⩽ 𝑦,
(1 − 𝑥)𝑦 if 𝑦 ⩽ 𝑥,

is the reproducing kernel for𝒲.

(c) Prove that (𝑓𝑛)𝑛∈ℤ\{0}, where 𝑓𝑛(𝑥) =
𝑒2𝜋𝑖𝑛𝑥 − 1

2𝜋𝑛 , is an orthonormal basis for𝒲.

(d) Verify the formula 𝑘(𝑥, 𝑦) = ∑
𝑛≠0

𝑓𝑛(𝑥)𝑓𝑛(𝑦).
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10.8 Hints for the Exercises
Hint for Ex. 10.7.1: Use polar coordinates.
Hint for Ex. 10.7.3: Use 1

(1 − 𝑤)2 = 1 + 2𝑤 + 3𝑤2 + 4𝑤3 +⋯ for 𝑤 ∈ 𝔻.
Hint for Ex. 10.7.6: Make use of the formula

𝑓(𝜆) = 1
𝜋 ∫

𝔻

𝑓(𝑧)
(1 − 𝜆𝑧)2 𝑑𝐴

for 𝑓 ∈ 𝐴𝑝 to prove

|𝑓(𝜆)| ⩽ 𝑐𝑝,𝜆(∫
𝔻
|𝑓|𝑝 𝑑𝐴)

1
𝑝 .

Now use Exercise 10.7.5.
Hint for Ex. 10.7.9: For (b), use inner products and Taylor series. For (d), use Exercise
9.9.6.
Hint for Ex. 10.7.13: Examine the proof of Theorem 10.3.2.
Hint for Ex. 10.7.17: First prove that𝑀𝑧 is injective with closed range.
Hint for Ex. 10.7.20: For (d), consider the following: If (𝑓𝑛)∞𝑛=1 is a Cauchy sequence in
𝐴2(𝐺), then 𝑓𝑛 → 𝑓 for some 𝑓 ∈ 𝐿2(𝐺, 𝑑𝐴). Use (c) and Montel’s theorem (Exercise
10.7.5) to show that 𝑓 is analytic.
Hint for Ex. 10.7.23: Use Jacobians.
Hint for Ex. 10.7.25: For (b), consult Theorem 5.4.12 and Theorem 5.6.2.
Hint for Ex. 10.7.31: For (b), use Exercise 5.9.31.
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The Fourier Transform

Key Concepts: Fourier transform, convolution, Fourier inversion formula, unitary operator,
Plancherel’s theorem, spectral properties of the Fourier transform, Hermite functions, Hardy space
of the upper half-plane, Paley–Wiener theorem.

Outline:We study the Fourier transformF ∶ 𝐿2(ℝ) → 𝐿2(ℝ) defined by

(F𝑓)(𝑥) = 1
√2𝜋

∫
∞

−∞
𝑓(𝑡)𝑒−𝑖𝑥𝑡𝑑𝑡, (11.0.1)

show that it is a unitary operator, and compute its spectral decomposition. Along the way,
we discuss the Hardy space of the upper half-plane, where the Fourier transform plays a
crucial role. Our concern is with the Fourier transform as an operator itself, as opposed to
its interactions with other operators or its applications. In particular, a discussion of the
Fourier transform’s connection to differential operators would require a long digression
on unbounded operators, which would draw us too far afield.

11.1 The Fourier Transform on 𝐿1(ℝ)
Recall that 𝐿1(ℝ) is the Banach space of Lebesgue-measurable functions on ℝ such that

‖𝑓‖1 ∶= ∫
∞

−∞
|𝑓(𝑥)|𝑑𝑥 < ∞.

We use ‖𝑓‖, without any subscript, to denote the 𝐿2(ℝ) norm. The proofs in this chapter
require some useful dense subsets of 𝐿𝑝(ℝ).

Proposition 11.1.1. For each 1 ⩽ 𝑝 < ∞, the following sets are dense in 𝐿𝑝(ℝ).

(a) 𝐶𝑐(ℝ), the set of continuous complex-valued functions on ℝ with compact support.

(b) The set of step functions

𝑓(𝑥) =
𝑛
∑
𝑖=1

𝑐𝑖𝜒[𝑎𝑖 ,𝑏𝑖](𝑥),

where 𝑛 ∈ ℕ, 𝑐𝑗 ∈ ℂ, and [𝑎𝑗 , 𝑏𝑗] are closed intervals with disjoint interiors.
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We first define the Fourier transform on 𝐿1(ℝ) and then extend it to 𝐿2(ℝ) by a density
argument. The discussion of the Fourier transform on both spaces requires some useful
harmonic-analysis tools.

Proposition 11.1.2. For 𝑓 ∈ 𝐿1(ℝ), the Fourier transform

(F𝑓)(𝑥) = 1
√2𝜋

∫
∞

−∞
𝑓(𝑡)𝑒−𝑖𝑥𝑡𝑑𝑡

converges absolutely for all 𝑥 ∈ ℝ and defines a continuous function on ℝ.

Proof For 𝑓 ∈ 𝐿1(ℝ) and 𝑥 ∈ ℝ,

∫
∞

−∞
|𝑓(𝑡)𝑒−𝑖𝑥𝑡|𝑑𝑡 = ∫

∞

−∞
|𝑓(𝑡)|𝑑𝑡 = ‖𝑓‖1,

so the integral that defines (F𝑓)(𝑥) converges absolutely for all𝑥 ∈ ℝ. Thus, (F𝑓)(𝑥)
is well defined for every 𝑥. For each fixed 𝑥, let (𝑥𝑛)∞𝑛=1 be a sequence in ℝ such that
𝑥𝑛 → 𝑥. Then

|(F𝑓)(𝑥𝑛) − (F𝑓)(𝑥)| ⩽ 1
√2𝜋

∫
∞

−∞
|𝑓(𝑡)||𝑒−𝑖𝑥𝑛𝑡 − 𝑒−𝑖𝑥𝑡| 𝑑𝑡.

Since 𝑓 ∈ 𝐿1(ℝ) and |𝑒−𝑖𝑥𝑛𝑡 − 𝑒−𝑖𝑥𝑡| ⩽ 2 for all 𝑛 ⩾ 1 and 𝑡 ∈ ℝ, the dominated
convergence theorem implies that (F𝑓)(𝑥𝑛) → (F𝑓)(𝑥). Thus, F𝑓 is continuous
on ℝ. ■

Corollary 11.1.3. For 𝑓 ∈ 𝐿1(ℝ) and 𝑥 ∈ ℝ, |(F𝑓)(𝑥)| ⩽ ‖𝑓‖1.

The next result says that F𝐿1(ℝ) ⊆ 𝐶0(ℝ), the set of continuous functions 𝑔 on ℝ that
vanish at ±∞, meaning that

𝑔 ∈ 𝐶(ℝ) and lim
|𝑥|→∞

𝑔(𝑥) = 0.

Proposition 11.1.4 (Riemann–Lebesgue lemma). If 𝑓 ∈ 𝐿1(ℝ), then

lim
|𝑥|→∞

(F𝑓)(𝑥) = 0.

Proof First observe that

(F𝜒[𝑎,𝑏])(𝑥) =
1

√2𝜋
∫

𝑏

𝑎
𝑒−𝑖𝑡𝑥𝑑𝑡 = − 1

√2𝜋
𝑖 (𝑒−𝑖𝑎𝑥 − 𝑒−𝑖𝑏𝑥)

𝑥 → 0 as |𝑥| → ∞.

The linearity of the integral ensures that the same holds for step functions. For any
𝑓 ∈ 𝐿1(ℝ) and 𝜀 > 0, let 𝑔 be a step function such that ‖𝑓 − 𝑔‖1 < 𝜀/2 (Proposition
11.1.1). Now choose 𝑇 > 0 such that |(F𝑔)(𝑥)| < 𝜀/2 for all |𝑥| > 𝑇. Then for |𝑥| > 𝑇,
Corollary 11.1.3 implies

|(F𝑓)(𝑥)| ⩽ |(F𝑓)(𝑥) − (F𝑔)(𝑥)| + |(F𝑔)(𝑥)|
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⩽ ‖𝑓 − 𝑔‖1 +
𝜀
2 <

𝜀
2 +

𝜀
2 = 𝜀,

which proves the result. ■

See Exercise 4.5.12 for the statement and proof of the 𝐿1(𝕋) version of the Riemann–
Lebesgue lemma.

11.2 Convolution and Young’s Inequality
The convolution of 𝑓, 𝑔 ∈ 𝐿1(ℝ) is defined formally by

(𝑓 ∗ 𝑔)(𝑡) = ∫
∞

−∞
𝑓(𝜏)𝑔(𝑡 − 𝜏) 𝑑𝜏. (11.2.1)

The convergence of this integral comes from the following.

Proposition 11.2.2 (Young’s inequality [377]). If 𝑓, 𝑔 ∈ 𝐿1(ℝ), then (𝑓 ∗ 𝑔)(𝑡) is defined
for almost every 𝑡 ∈ ℝ and ‖𝑓 ∗ 𝑔‖1 ⩽ ‖𝑓‖1‖𝑔‖1.

Proof Fubini’s theorem implies

∫
∞

−∞
( ∫

∞

−∞
|𝑓(𝜏)𝑔(𝑡 − 𝜏)| 𝑑𝜏 ) 𝑑𝑡 = ∫

∞

−∞
|𝑓(𝜏)| ( ∫

∞

−∞
|𝑔(𝑡 − 𝜏)| 𝑑𝑡 ) 𝑑𝜏

= ( ∫
∞

−∞
|𝑓(𝜏)| 𝑑𝜏 ) ( ∫

∞

−∞
|𝑔(𝑡)| 𝑑𝑡 )

= ‖𝑓‖1‖𝑔‖1 < ∞.

Thus, the integral in (11.2.1) that defines 𝑓 ∗ 𝑔 converges almost everywhere and
hence (𝑓 ∗ 𝑔)(𝑡) is well defined for almost all 𝑡 ∈ ℝ. Moreover, 𝑓 ∗ 𝑔 ∈ 𝐿1(ℝ) and
‖𝑓 ∗ 𝑔‖1 ⩽ ‖𝑓‖1‖𝑔‖1. ■

The previous proposition says that 𝐿1(ℝ) is closed under convolution. What about the
other Lebesgue spaces? The answer comes from another inequality of Young. Since it
requires no extra effort, we prove the inequality for 𝐿𝑝(ℝ) when 1 ⩽ 𝑝 < ∞. Recall that

‖𝑓‖𝑝 = (∫
∞

−∞
|𝑓(𝑥)|𝑝 𝑑𝑥)

1
𝑝

is the norm on the Banach space 𝐿𝑝(ℝ). Proving an extension of Young’s inequality
requires the continuity of translations.

Lemma 11.2.3. Let 1 ⩽ 𝑝 < ∞, 𝑓 ∈ 𝐿𝑝(ℝ), and 𝑦 ∈ ℝ. If 𝑓𝑦(𝑥) = 𝑓(𝑥 − 𝑦), then

lim
𝑦→0

‖𝑓𝑦 − 𝑓‖𝑝 = 0.
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Proof If the support of 𝑓 ∈ 𝐶𝑐(ℝ) is contained in [−𝑀,𝑀], then

‖𝑓 − 𝑓𝑦‖𝑝 ⩽ (2𝑀 + 2)
1
𝑝 ‖𝑓𝑦 − 𝑓‖∞ for all |𝑦| ⩽ 1.

Since 𝑓𝑦 → 𝑓 uniformly, it follows that ‖𝑓𝑦−𝑓‖𝑝 → 0 as 𝑦 → 0. Therefore, the desired
result holds for 𝑓 ∈ 𝐶𝑐(ℝ). For 𝑓 ∈ 𝐿𝑝(ℝ) and 𝜀 > 0, use the fact that 𝐶𝑐(ℝ) is dense
in 𝐿𝑝(ℝ) (Proposition 11.1.1) to choose 𝑔 ∈ 𝐶𝑐(ℝ) such that ‖𝑓 − 𝑔‖𝑝 < 𝜀/3. For this
fixed 𝑔, let 𝛿 > 0 be such that ‖𝑔 − 𝑔𝑦‖𝑝 < 𝜀/3 whenever |𝑦| < 𝛿. Then

‖𝑓 − 𝑓𝑦‖𝑝 ⩽ ‖𝑓 − 𝑔‖𝑝 + ‖𝑔 − 𝑔𝑦‖𝑝 + ‖𝑔𝑦 − 𝑓𝑦‖𝑝 ⩽
𝜀
3 +

𝜀
3 +

𝜀
3 = 𝜀,

which completes the proof. ■

Lemma 11.2.4 (Young’s inequality [377]). The following hold for 𝑓 ∈ 𝐿𝑝(ℝ), with 1 ⩽ 𝑝 ⩽
∞, and 𝑔 ∈ 𝐿1(ℝ).

(a) (𝑓 ∗ 𝑔)(𝑡) is well defined for almost every 𝑡 ∈ ℝ.

(b) 𝑓 ∗ 𝑔 ∈ 𝐿𝑝(ℝ).

(c) ‖𝑓 ∗ 𝑔‖𝑝 ⩽ ‖𝑓‖𝑝‖𝑔‖1.

Proof The case 𝑝 = 1 is Proposition 11.2.2. Hölder’s inequality (1.8.4) handles the case
𝑝 = ∞ and shows that (𝑓 ∗ 𝑔)(𝑡) is well defined for every 𝑡 ∈ ℝ. For the rest of the
proof, assume that 1 < 𝑝 < ∞ and let 𝑞 be the conjugate exponent of 𝑝. By Hölder’s
inequality,

∫
∞

−∞
|𝑓(𝑥)𝑔(𝑡 − 𝑥)| 𝑑𝑥 = ∫

∞

−∞
(|𝑓(𝑥)||𝑔(𝑡 − 𝑥)|

1
𝑝 )|𝑔(𝑡 − 𝑥)|

1
𝑞 𝑑𝑥

⩽ (∫
∞

−∞
|𝑓(𝑥)|𝑝 |𝑔(𝑡 − 𝑥)| 𝑑𝑥)

1
𝑝

(∫
∞

−∞
|𝑔(𝑡 − 𝑥)| 𝑑𝑥)

1
𝑞

= (∫
∞

−∞
|𝑓(𝑥)|𝑝|𝑔(𝑡 − 𝑥)| 𝑑𝑥)

1
𝑝

‖𝑔‖
1
𝑞
1 . (11.2.5)

Hence,

∫
∞

−∞
(∫

∞

−∞
|𝑓(𝑥)𝑔(𝑡 − 𝑥)|𝑑𝑥)

𝑝
𝑑𝑡

⩽ ‖𝑔‖
𝑝
𝑞
1 ∫

∞

−∞
(∫

∞

−∞
|𝑓(𝑥)|𝑝|𝑔(𝑡 − 𝑥)| 𝑑𝑥) 𝑑𝑡 (by (11.2.5))

⩽ ‖𝑔‖
𝑝
𝑞
1 ∫

∞

−∞
|𝑓(𝑥)|𝑝 (∫

∞

−∞
|𝑔(𝑡 − 𝑥)| 𝑑𝑡) 𝑑𝑥 (Fubini’s theorem)

= ‖𝑔‖
𝑝
𝑞
1 ‖𝑓‖

𝑝
𝑝‖𝑔‖1

= ‖𝑓‖𝑝𝑝‖𝑔‖𝑝1 .
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Therefore,

(∫
∞

−∞
(∫

∞

−∞
|𝑓(𝑥)𝑔(𝑡 − 𝑥)| 𝑑𝑥)

𝑝
𝑑𝑡)

1
𝑝

⩽ ‖𝑓‖𝑝‖𝑔‖1.

The inequality above ensures that (𝑓 ∗ 𝑔)(𝑡) is well defined for almost every 𝑡 ∈ ℝ.
Furthermore, 𝑓 ∗ 𝑔 ∈ 𝐿𝑝(ℝ) and ‖𝑓 ∗ 𝑔‖𝑝 ⩽ ‖𝑓‖𝑝‖𝑔‖1. ■

Our final version of Young’s inequality is the following.

Lemma 11.2.6 (Young’s inequality [377]). Let 1 ⩽ 𝑝 ⩽ ∞ and let 𝑞 be its conjugate
exponent. The following hold for 𝑓 ∈ 𝐿𝑝(ℝ) and 𝑔 ∈ 𝐿𝑞(ℝ).

(a) (𝑓 ∗ 𝑔)(𝑡) is well defined for all 𝑡 ∈ ℝ.

(b) 𝑓 ∗ 𝑔 is a bounded and uniformly continuous function on ℝ.

(c) ‖𝑓 ∗ 𝑔‖∞ ⩽ ‖𝑓‖𝑝‖𝑔‖𝑞.

Proof Suppose that 1 < 𝑝 < ∞. Hölder’s inequality implies that

∫
∞

−∞
|𝑓(𝑥)𝑔(𝑡 − 𝑥)| 𝑑𝑥 ⩽ (∫

∞

−∞
|𝑓(𝑥)|𝑝 𝑑𝑥)

1
𝑝

(∫
∞

−∞
|𝑔(𝑡 − 𝑥)|𝑞 𝑑𝑥)

1
𝑞

,

and hence

∫
∞

−∞
|𝑓(𝑥)𝑔(𝑡 − 𝑥)| 𝑑𝑥 ⩽ ‖𝑓‖𝑝‖𝑔‖𝑞 for all 𝑡 ∈ ℝ.

Thus, 𝑓 ∗ 𝑔 is well defined on ℝ and ‖𝑓 ∗ 𝑔‖∞ ⩽ ‖𝑓‖𝑝‖𝑔‖𝑞. Next we verify that 𝑓 ∗ 𝑔
is uniformly continuous on ℝ. Toward this end, let 𝜀 > 0 and 𝛿 > 0 be such that
‖𝑔𝑠 − 𝑔𝑡‖𝑞 ⩽ 𝜀/(1 + ‖𝑓‖𝑝) whenever |𝑠 − 𝑡| < 𝛿 (Lemma 11.2.3). Then,

|(𝑓 ∗ 𝑔)(𝑡) − (𝑓 ∗ 𝑔)(𝑠)| ⩽ ∫
∞

−∞
|𝑓(𝑥)| |𝑔(𝑡 − 𝑥) − 𝑔(𝑠 − 𝑥)| 𝑑𝑥 ⩽ ‖𝑓‖𝑝‖𝑔𝑡 − 𝑔𝑠‖𝑞 ⩽ 𝜀.

Theproof above, subject to someminor changes, alsoworks for𝑝 = 1 and𝑝 = ∞. ■

11.3 Convolution and the Fourier Transform
The Fourier transform behaves well with respect to convolution. Recall from Proposition
11.2.2 that 𝑓∗𝑔 ∈ 𝐿1(ℝ) for 𝑓, 𝑔 ∈ 𝐿1(ℝ) and thusF𝑓,F𝑔, andF (𝑓 ∗𝑔) are well-defined
continuous functions on ℝ.

Proposition 11.3.1. If 𝑓, 𝑔 ∈ 𝐿1(ℝ), thenF (𝑓 ∗ 𝑔) = √2𝜋(F𝑓)(F𝑔).

Proof For 𝑡 ∈ ℝ, Fubini’s theorem yields

(F (𝑓 ∗ 𝑔))(𝑡) = 1
√2𝜋

∫
∞

−∞
(𝑓 ∗ 𝑔)(𝜏) 𝑒−𝑖𝑡𝜏 𝑑𝜏
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= 1
√2𝜋

∫
∞

−∞
(∫

∞

−∞
𝑓(𝑠)𝑔(𝜏 − 𝑠) 𝑑𝑠) 𝑒−𝑖𝑡𝜏𝑑𝜏

= 1
√2𝜋

∫
∞

−∞
𝑓(𝑠) (∫

∞

−∞
𝑔(𝜏 − 𝑠)𝑒−𝑖𝑡𝜏 𝑑𝜏) 𝑑𝑠

= 1
√2𝜋

∫
∞

−∞
𝑓(𝑠) (∫

∞

−∞
𝑔(𝜏)𝑒−𝑖𝑡(𝜏+𝑠) 𝑑𝜏) 𝑑𝑠

= 1
√2𝜋

(∫
∞

−∞
𝑓(𝑠)𝑒−𝑖𝑡𝑠 𝑑𝑠) (∫

∞

−∞
𝑔(𝜏)𝑒−𝑖𝑡𝜏𝑑𝜏)

= √2𝜋(F𝑓)(𝑡)(F𝑔)(𝑡),

which completes the proof. ■

In a similar manner, there is also the following multiplication formula.

Proposition 11.3.2 (Multiplication formula). If 𝑓, 𝑔 ∈ 𝐿1(ℝ), then

∫
∞

−∞
(F𝑓)(𝑡)𝑔(𝑡) 𝑑𝑡 = ∫

∞

−∞
𝑓(𝑡)(F𝑔)(𝑡) 𝑑𝑡.

Proof Fubini’s theorem implies

∫
∞

−∞
(F𝑓)(𝑡)𝑔(𝑡) 𝑑𝑡 = ∫

∞

−∞
( 1
√2𝜋

∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥) 𝑔(𝑡) 𝑑𝑡

= ∫
∞

−∞
( 1
√2𝜋

∫
∞

−∞
𝑔(𝑡)𝑒−𝑖𝑡𝑥 𝑑𝑡) 𝑓(𝑥) 𝑑𝑥

= ∫
∞

−∞
(F𝑔)(𝑥)𝑓(𝑥) 𝑑𝑥,

which completes the proof. ■

11.4 The Poisson Kernel
The Poisson kernel appears in Chapter 12 in the study of harmonic functions. Here we use
the Poisson kernel as an approximation tool. The following material sets up the Fourier
inversion formula that appears in the next section.
The Poisson kernel for the upper half-plane ℂ+ ∶= {𝑧 ∈ ℂ ∶ Im 𝑧 > 0} is

𝑃𝑦(𝑥) =
1
𝜋

𝑦
𝑥2 + 𝑦2 for 𝑥 ∈ ℝ and 𝑦 > 0. (11.4.1)

One can verify that

∫
∞

−∞
𝑃𝑦(𝑥) 𝑑𝑥 = 1 for all 𝑦 > 0. (11.4.2)
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For 𝑥0 + 𝑖𝑦0 ∈ ℂ+, the Fourier transform of

𝑓(𝑥) = 1
𝜋

𝑦0
(𝑥0 − 𝑥)2 + 𝑦20

is

(F𝑓)(𝑡) = 1
√2𝜋

∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥

= 1
√2𝜋

∫
∞

−∞
𝑃𝑦0 (𝑥0 − 𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥

= 1
√2𝜋

∫
∞

−∞
𝑃𝑦0 (𝑥)𝑒−𝑖𝑡(𝑥0−𝑥) 𝑑𝑥

= 𝑒−𝑖𝑥0𝑡

√2𝜋
∫

∞

−∞
𝑃𝑦0 (𝑥)𝑒𝑖𝑡𝑥 𝑑𝑥

= 𝑒−𝑖𝑥0𝑡

√2𝜋
∫

∞

−∞
𝑃𝑦0 (𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥,

and hence the last two equations show that

(F𝑓)(𝑡) = 𝑒−𝑖𝑥0𝑡

√2𝜋
∫

∞

−∞
𝑃𝑦0 (𝑥)𝑒𝑖|𝑡|𝑥 𝑑𝑥.

For 𝑅 > 𝑦0, let Γ𝑅 denote the positively oriented curve created by the interval [−𝑅, 𝑅] and
the semicircle {𝑅𝑒𝑖𝜃 ∶ 0 ⩽ 𝜃 ⩽ 𝜋}; see Figure 11.4.1. Then,

(F𝑓)(𝑡) = 𝑒−𝑖𝑥0𝑡

√2𝜋
lim
𝑅→∞

∫
𝑅

−𝑅

𝑦0
𝜋(𝑥2 + 𝑦20)

𝑒𝑖|𝑡|𝑥 𝑑𝑥

= 𝑒−𝑖𝑥0𝑡

√2𝜋
lim
𝑅→∞

∫
Γ𝑅

𝑦0
𝜋(𝑤2 + 𝑦20)

𝑒𝑖|𝑡|𝑤 𝑑𝑤.

The integrand

𝑤 ↦ 𝑦0
𝜋(𝑤2 + 𝑦20)

𝑒𝑖|𝑡|𝑤

has one pole inside Γ𝑅, namely 𝑖𝑦0, with residue
1
2𝜋𝑖 𝑒

−𝑦0|𝑡|. Therefore,

(F𝑓)(𝑡) = 1
√2𝜋

𝑒−𝑖𝑥0𝑡−𝑦0|𝑡|.

This next identity follows from Proposition 11.3.2 and Exercise 11.10.3.

Corollary 11.4.3. Let 𝑢 ∈ 𝐿1(ℝ). Then for all 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+,

∫
∞

−∞
𝑃𝑦(𝑥 − 𝑡)𝑢(𝑡) 𝑑𝑡 = 1

√2𝜋
∫

∞

−∞
𝑒−𝑦|𝑡|(F𝑢)(𝑡)𝑒𝑖𝑥𝑡 𝑑𝑡.
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Γ𝑅

0

𝑖𝑦0𝑅

Figure 11.4.1 The contour Γ𝑅 .

The left side of the equation above is the Poisson integral of 𝑢. It can be also be written
as (𝑃𝑦 ∗ 𝑢)(𝑥).

Lemma 11.4.4. If 𝑓 ∈ 𝐿∞(ℝ) is continuous at 𝑥 = 0, then

lim
𝑦→0+

∫
∞

−∞
𝑃𝑦(𝑡)𝑓(𝑡) 𝑑𝑡 = 𝑓(0).

Proof Since 𝑓 is continuous at 𝑡 = 0, given 𝜀 > 0, there is a 𝛿 > 0 such that |𝑓(𝑡)−𝑓(0)| <
𝜀 for all |𝑡| < 𝛿. By (11.4.2),

|
|
|
∫

∞

−∞
𝑃𝑦(𝑡)𝑓(𝑡) 𝑑𝑡 − 𝑓(0)

|
|
|
=
|
|
|
∫

∞

−∞
𝑃𝑦(𝑡)(𝑓(𝑡) − 𝑓(0)) 𝑑𝑡

|
|
|
⩽ ∫

∞

−∞
𝑃𝑦(𝑡)|𝑓(𝑡) − 𝑓(0)| 𝑑𝑡.

The integral on the right equals

∫
|𝑡|<𝛿

𝑃𝑦(𝑡)|𝑓(𝑡) − 𝑓(0)| 𝑑𝑡 +∫
|𝑡|⩾𝛿

𝑃𝑦(𝑡)|𝑓(𝑡) − 𝑓(0)| 𝑑𝑡. (11.4.5)

For the first integral in (11.4.5), use (11.4.2) to observe that

∫
|𝑡|<𝛿

𝑃𝑦(𝑡)|𝑓(𝑡) − 𝑓(0)| 𝑑𝑡 ⩽ 𝜀∫
|𝑡|<𝛿

𝑃𝑦(𝑡) 𝑑𝑡 ⩽ 𝜀.

For the second integral in (11.4.5), we have

∫
|𝑡|⩾𝛿

𝑃𝑦(𝑡)|𝑓(𝑡) − 𝑓(0)| 𝑑𝑡 ⩽ 2‖𝑓‖∞
1
𝜋 ∫

|𝑡|⩾𝛿

𝑦
𝑡2 + 𝑦2 𝑑𝑡 = 4‖𝑓‖∞

1
𝜋(

𝜋
2 − tan−1 (𝛿𝑦 )),
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which tends to zero as 𝑦 → 0+. Put this all together and obtain

lim sup
𝑦→0+

||∫
∞

−∞
𝑃𝑦(𝑡)𝑓(𝑡)𝑑𝑡 − 𝑓(0)|| ⩽ 𝜀,

which completes the proof. ■

Lemma 11.4.6. For 1 ⩽ 𝑝 < ∞ and 𝑓 ∈ 𝐿𝑝(ℝ),

lim
𝑦→0+

‖𝑃𝑦 ∗ 𝑓 − 𝑓‖𝑝 = 0.

Proof From (11.4.2) it follows that

(𝑃𝑦 ∗ 𝑓)(𝑥) − 𝑓(𝑥) = ∫
∞

−∞
𝑃𝑦(𝑡)(𝑓(𝑥 − 𝑡) − 𝑓(𝑡)) 𝑑𝑡

and hence

|(𝑃𝑦 ∗ 𝑓)(𝑥) − 𝑓(𝑥)| ⩽ ∫
∞

−∞
𝑃𝑦(𝑡)|𝑓(𝑥 − 𝑡) − 𝑓(𝑡)| 𝑑𝑡.

Jensen’s inequality [319, p. 63] applied to the probability measure 𝑃𝑦(𝑡) 𝑑𝑡 (recall
(11.4.2)) and the convex function 𝑤 ↦ 𝑤𝑝 on [0,∞) yields

|(𝑃𝑦 ∗ 𝑓)(𝑥) − 𝑓(𝑥)|𝑝 ⩽ ∫
∞

−∞
𝑃𝑦(𝑡)|𝑓(𝑥 − 𝑡) − 𝑓(𝑡)|𝑝 𝑑𝑡.

Integrate both sides and use Fubini’s theorem to get

‖𝑃𝑦 ∗ 𝑓 − 𝑓‖𝑝𝑝 ⩽ ∫
∞

−∞
𝑃𝑦(𝑡)‖𝑓𝑡 − 𝑓‖𝑝𝑝 𝑑𝑡.

Lemma 11.2.3 implies that the function 𝑡 ↦ ‖𝑓𝑡 − 𝑓‖𝑝𝑝 is bounded and continuous at
𝑡 = 0. An application of Lemma 11.4.4 finishes the proof. ■

11.5 The Fourier Inversion Formula
In this section, we invert the Fourier transform.

Theorem 11.5.1 (Inversion formula). Suppose that 𝑓 and F𝑓 belong to 𝐿1(ℝ). Then for
almost every 𝑡 ∈ ℝ,

𝑓(𝑡) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝜏)𝑒𝑖𝑡𝜏 𝑑𝜏.

Proof Let

𝐹𝑦(𝑥) =
1
𝜋 ∫

∞

−∞

𝑦
(𝑥 − 𝑡)2 + 𝑦2 𝑓(𝑡) 𝑑𝑡 for 𝑥 + 𝑖𝑦 ∈ ℂ+.
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Proposition 11.2.2 says that 𝐹𝑦 ∈ 𝐿1(ℝ) and Lemma 11.4.6 says that ‖𝐹𝑦 − 𝑓‖1 → 0
as 𝑦 → 0+. By [319, p. 70], a convergent sequence in 𝐿1(ℝ) has a subsequence that
converges almost everywhere. Consequently, there is a sequence (𝑦𝑛)∞𝑛=1 of positive
real numbers such that 𝑦𝑛 → 0 and

lim
𝑛→∞

𝐹𝑦𝑛 (𝑥) = 𝑓(𝑥) (11.5.2)

for almost all 𝑥 ∈ ℝ. On the other hand, Corollary 11.4.3 implies that

𝐹𝑦(𝑥) =
1

√2𝜋
∫

∞

−∞
𝑒−𝑦|𝑡|(F𝑓)(𝑡)𝑒𝑖𝑥𝑡 𝑑𝑡 for 𝑥 ∈ ℝ and 𝑦 > 0.

The assumption F𝑓 ∈ 𝐿1(ℝ) and the dominated convergence theorem imply that

lim
𝑦→0+

𝐹𝑦(𝑥) =
1

√2𝜋
∫

∞

−∞
(F𝑓)(𝑡)𝑒𝑖𝑥𝑡 𝑑𝑡 for all 𝑥 ∈ ℝ. (11.5.3)

Combine (11.5.2) and (11.5.3) to deduce the desired inversion formula. ■

Rewrite the inversion formula as

𝑓(𝑡) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝜏)𝑒−𝑖(−𝑡)𝜏 𝑑𝜏

and observe that

𝑓(𝑡) = (F (F𝑓))(−𝑡) for almost all 𝑡 ∈ ℝ, (11.5.4)

provided that 𝑓 and F𝑓 belong to 𝐿1(ℝ).
Theorem 11.5.1 and the uniqueness theorem imply that the Fourier transform maps

𝐿1(ℝ) to 𝐶0(ℝ) injectively. The following result is an important step in extending the
definition of the Fourier transform to 𝐿2(ℝ).

Corollary 11.5.5. Let 𝑓 ∈ 𝐿1(ℝ) be continuous at 𝑥 = 0 and F𝑓 ⩾ 0. Then F𝑓 ∈ 𝐿1(ℝ)
and

𝑓(𝑡) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝜏)𝑒𝑖𝑡𝜏 𝑑𝜏

for almost all 𝑡 ∈ ℝ. Furthermore,

𝑓(0) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝜏) 𝑑𝜏.

Proof For 𝑦 > 0 and 𝑥 ∈ ℝ, Corollary 11.4.3 says that

1
𝜋 ∫

∞

−∞

𝑦
(𝑥 − 𝑡)2 + 𝑦2 𝑓(𝑡) 𝑑𝑡 =

1
√2𝜋

∫
∞

−∞
𝑒−𝑦|𝑡|(F𝑓)(𝑡)𝑒𝑖𝑥𝑡 𝑑𝑡. (11.5.6)
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If 𝑥 = 0 and 𝑦 > 0, then

1
𝜋 ∫

∞

−∞

𝑦
𝑡2 + 𝑦2 𝑓(𝑡) 𝑑𝑡 =

1
√2𝜋

∫
∞

−∞
𝑒−𝑦|𝑡|(F𝑓)(𝑡) 𝑑𝑡.

The monotone convergence theorem ensures that

lim
𝑦→0+

1
√2𝜋

∫
∞

−∞
𝑒−𝑦|𝑡|(F𝑓)(𝑡) 𝑑𝑡 = 1

√2𝜋
∫

∞

−∞
(F𝑓)(𝑡) 𝑑𝑡.

By the approximation properties of the Poisson kernel (Lemma 11.4.4),

𝑓(0) = lim
𝑦→0+

1
𝜋 ∫

∞

−∞

𝑦
𝑡2 + 𝑦2 𝑓(𝑡) 𝑑𝑡.

Thus,

𝑓(0) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝑡) 𝑑𝑡,

which also shows that F𝑓 ∈ 𝐿1(ℝ) (since we are assuming that F𝑓 ⩾ 0). Since
F𝑓 ∈ 𝐿1(ℝ), the inversion formula (Theorem 11.5.1) applies and ensures that

𝑓(𝑡) = 1
√2𝜋

∫
∞

−∞
(F𝑓)(𝜏)𝑒𝑖𝑡𝜏 𝑑𝜏

for almost all 𝑡 ∈ ℝ. ■

11.6 The Fourier–Plancherel Transform
Corollary 11.5.5 is themain ingredient needed to establish that the Fourier transformmaps
𝐿1(ℝ) ∩ 𝐿2(ℝ) into 𝐿2(ℝ). This is the first step in extending the definition of the Fourier
transform to 𝐿2(ℝ).

Theorem 11.6.1 (Plancherel). If 𝑓 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ), thenF𝑓 ∈ 𝐿2(ℝ) and ‖F𝑓‖ = ‖𝑓‖.

Proof Let 𝑔(𝑥) = 𝑓(−𝑥) and define ℎ = 𝑓 ∗ 𝑔. By Young’s inequality (Lemma 11.2.6),
ℎ ∈ 𝐿1(ℝ) ∩ 𝐶(ℝ) and, by Proposition 11.3.1,

Fℎ = √2𝜋(F𝑓) (F𝑔) = √2𝜋|F𝑓|2 ⩾ 0. (11.6.2)

Note the use of F𝑔 = F𝑓 above. Corollary 11.5.5 ensures that Fℎ ∈ 𝐿1(ℝ), which
is equivalent to F𝑓 ∈ 𝐿2(ℝ). Moreover,

ℎ(0) = 1
√2𝜋

∫
∞

−∞
(Fℎ)(𝑡) 𝑑𝑡.
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Let us look closely at both sides of the identity above. First observe that (11.6.2) yields

1
√2𝜋

∫
∞

−∞
(Fℎ)(𝑡) 𝑑𝑡 = ∫

∞

−∞
|(F𝑓)(𝑡)|2 𝑑𝑡 = ‖F𝑓‖2.

Moreover,

ℎ(0) = ∫
∞

−∞
𝑓(𝑡)𝑔(0 − 𝑡) 𝑑𝑡 = ∫

∞

−∞
𝑓(𝑡)𝑓(𝑡) 𝑑𝑡 = ‖𝑓‖2,

which shows that ‖F𝑓‖ = ‖𝑓‖. ■

Let 𝑓 ∈ 𝐿2(ℝ) and choose a sequence (𝑓𝑛)∞𝑛=1 in 𝐿1(ℝ) ∩ 𝐿2(ℝ) such that ‖𝑓𝑛 − 𝑓‖ → 0.
Then (𝑓𝑛)∞𝑛=1 is a Cauchy sequence in 𝐿2(ℝ) and, by Theorem 11.6.1,

‖F𝑓𝑛 −F𝑓𝑚‖ = ‖F (𝑓𝑛 − 𝑓𝑚)‖ = ‖𝑓𝑛 − 𝑓𝑚‖.

Thus, (F𝑓𝑛)∞𝑛=1 is a Cauchy sequence in 𝐿2(ℝ). Since 𝐿2(ℝ) is complete, F𝑓𝑛 converges
in 𝐿2(ℝ). If (𝑔𝑛)∞𝑛=1 is another sequence in 𝐿1(ℝ) ∩ 𝐿2(ℝ) approximating 𝑓 in 𝐿2(ℝ), then
F𝑔𝑛 also converges in 𝐿2(ℝ). However, Theorem 11.6.1 implies

‖F𝑓𝑛 −F𝑔𝑛‖ = ‖F (𝑓𝑛 − 𝑔𝑛)‖ = ‖𝑓𝑛 − 𝑔𝑛‖ ⩽ ‖𝑓𝑛 − 𝑓‖ + ‖𝑔𝑛 − 𝑓‖ → 0,

and hence

lim
𝑛→∞

F𝑔𝑛 = lim
𝑛→∞

F𝑓𝑛,

where convergence is in the 𝐿2(ℝ) norm. Therefore, the limit of F𝑓𝑛 is independent of
the choice of 𝑓𝑛 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ) as long as 𝑓𝑛 → 𝑓 in 𝐿2(ℝ). This enables us to make the
following definition.

Definition 11.6.3. The Fourier–Plancherel transform of 𝑓 ∈ 𝐿2(ℝ) is

F𝑓 = lim
𝑛→∞

F𝑓𝑛,

where (𝑓𝑛)∞𝑛=1 is any sequence in 𝐿1(ℝ) ∩ 𝐿2(ℝ) such that ‖𝑓𝑛 − 𝑓‖ → 0. One standard
choice of approximating sequence is

𝑓𝑛(𝑡) = {𝑓(𝑡) if |𝑡| ⩽ 𝑛,
0 if |𝑡| > 𝑛.

Therefore,

(F𝑓)(𝑡) = lim
𝑛→∞

1
√2𝜋

∫
𝑛

−𝑛
𝑓(𝜏)𝑒−𝑖𝑡𝜏 𝑑𝜏. (11.6.4)

Here the limit is taken in 𝐿2(ℝ), and (11.6.4) is referred to as a limit in the mean. Some
textbooks write

(F𝑓)(𝑡) = l. i.m.
1

√2𝜋
∫

∞

−∞
𝑓(𝜏)𝑒−𝑖𝑡𝜏 𝑑𝜏.
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The main result of this section is the next theorem.

Theorem 11.6.5. The Fourier–Plancherel transformF ∶ 𝐿2(ℝ) → 𝐿2(ℝ) is unitary.

Proof Let 𝑓 ∈ 𝐿2(ℝ) and let (𝑓𝑛)∞𝑛=1 be a sequence in 𝐿1(ℝ) ∩ 𝐿2(ℝ) such that 𝑓𝑛 → 𝑓 in
𝐿2(ℝ). Theorem 11.6.1 implies that

‖F𝑓‖ = lim
𝑛→∞

‖F𝑓𝑛‖ = lim
𝑛→∞

‖𝑓𝑛‖ = ‖𝑓‖, (11.6.6)

and hence F is isometric. We next show that F is surjective. An important step
involves the identity

∫
∞

−∞
𝑓(𝑡)(F𝑔)(𝑡) 𝑑𝑡 = ∫

∞

−∞
(F𝑓)(𝑡)𝑔(𝑡) 𝑑𝑡 for all 𝑓, 𝑔 ∈ 𝐿2(ℝ). (11.6.7)

To verify this identity, observe that

lim
𝑛→∞

‖F𝑓𝑛 −F𝑓‖ = lim
𝑛→∞

‖F𝑔𝑛 −F𝑔‖ = 0,

where (𝑔𝑛)∞𝑛=1 is any sequence in 𝐿1(ℝ) ∩ 𝐿2(ℝ) such that 𝑔𝑛 → 𝑔 in 𝐿2(ℝ). The
Cauchy–Schwarz inequality yields

‖𝑔𝑛F𝑓𝑛 − 𝑔F𝑓‖1 ⩽ ‖𝑔𝑛(F𝑓𝑛 −F𝑓)‖1 + ‖(𝑔𝑛 − 𝑔)F𝑓‖1
⩽ ‖𝑔𝑛‖‖F𝑓𝑛 −F𝑓‖ + ‖𝑔𝑛 − 𝑔‖‖F𝑓‖,

and hence

lim
𝑛→∞

‖𝑔𝑛F𝑓𝑛 − 𝑔F𝑓‖1 = 0.

In a similar way

lim
𝑛→∞

‖𝑓𝑛F𝑔𝑛 − 𝑓F𝑔‖1 = 0.

Since 𝑓𝑛 and 𝑔𝑛 belong to 𝐿1(ℝ), Proposition 11.3.2 implies that

∫
∞

−∞
𝑓(𝑡)(F𝑔)(𝑡) 𝑑𝑡 = lim

𝑛→∞
∫

∞

−∞
𝑓𝑛(𝑡)(F𝑔𝑛)(𝑡) 𝑑𝑡

= lim
𝑛→∞

∫
∞

−∞
(F𝑓𝑛)(𝑡)𝑔𝑛(𝑡) 𝑑𝑡

= ∫
∞

−∞
(F𝑓)(𝑡)𝑔(𝑡) 𝑑𝑡,

which verifies (11.6.7). We are now in a position to show that the Fourier–Plancherel
transform F is surjective. Assume that 𝑔 ∈ (ranF )⟂, that is

∫
∞

−∞
(F𝑓)(𝑡)𝑔(𝑡) 𝑑𝑡 = 0 for all 𝑓 ∈ 𝐿2(ℝ).
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Then (11.6.7) yields

∫
∞

−∞
𝑓(𝑡)(F𝑔)(𝑡) 𝑑𝑡 = 0,

which implies F𝑔 = 0 and hence 𝑔 = 0 by (11.6.6). In other words, the Fourier–
Plancherel transform F is surjective. ■

Corollary 11.6.8. ⟨𝑓, 𝑔⟩ = ⟨F𝑓,F𝑔⟩ for all 𝑓, 𝑔 ∈ 𝐿2(ℝ).

Proof Use the polarization identity (Exercise 1.10.17) on (11.6.6). ■

11.7 Eigenvalues and Hermite Functions
Let 𝑈 ∶ 𝐿2(ℝ) → 𝐿2(ℝ) be defined by (𝑈𝑓)(𝑥) = 𝑓(−𝑥), and note that 𝑈 is unitary,
𝑈∗ = 𝑈 , and hence 𝑈2 = 𝐼. One can check that 𝑈F is unitary (the product of two
unitary operators is unitary) and that 𝑈F = F𝑈 . Moreover, 𝑈F 2 = 𝐼 holds on 𝐶𝑐(ℝ) by
(11.5.4), which is a dense subset of 𝐿2(ℝ). Therefore, 𝑈F 2 = 𝐼 holds on 𝐿2(ℝ) and hence
F ∗ = 𝑈F . Also note thatF 4 = 𝑈∗2 = 𝐼. The identityF 4 = 𝐼 permits us to compute the
spectrum of the Fourier–Plancherel transform.

Theorem 11.7.1. 𝜎(F ) = 𝜎𝑝(F ) = {±1, ±𝑖}.

Proof Since F 4 = 𝐼, one can verify directly (Exercise 11.10.15) that

(F − 𝑧𝐼)−1 = 1
1 − 𝑧4 (F

3 + 𝑧F 2 + 𝑧2F + 𝑧3𝐼) for all 𝑧 ∉ {±1,±𝑖}

and hence 𝜎(F ) ⊆ {±1, ±𝑖}. To prove the reverse containment, we need to discuss the
Hermite functions (ℎ𝑛)∞𝑛=0. We follow [263]. The exponential generating function for
the Hermite functions is

𝑒
−𝑥2

2
+2𝑥𝑡−𝑡2 =

∞
∑
𝑛=0

ℎ𝑛(𝑥)
𝑡𝑛
𝑛! for 𝑥, 𝑡 ∈ ℝ. (11.7.2)

The first few are

ℎ0(𝑥) = 𝑒−
𝑥2

2 ,

ℎ1(𝑥) = 𝑒−
𝑥2

2 2𝑥,

ℎ2(𝑥) = 𝑒−
𝑥2

2 (4𝑥2 − 2),

ℎ3(𝑥) = 𝑒−
𝑥2

2 (8𝑥3 − 12𝑥),

ℎ4(𝑥) = 𝑒−
𝑥2

2 (16𝑥4 − 48𝑥2 + 12𝑥).
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Since

𝑒−
𝑥2

2
+2𝑥𝑡−𝑡2 = 𝑒−

(𝑥−2𝑡)2

2 𝑒𝑡2 ,

it follows that

(F 𝑒−
𝑢2

2
+2ᵆ𝑡−𝑡2 )(𝑥) = 𝑒𝑡2(F 𝑒−

(𝑢−2𝑡)2

2 )(𝑥).

Use

(F 𝑒−
𝑠2

2 )(𝑢) = 𝑒−
𝑢2

2 and (F𝑓𝑦)(𝑥) = 𝑒−𝑖𝑦𝑥(F𝑓)(𝑥)

(see Exercises 11.10.1 and 11.10.2) to deduce that

𝑒𝑡2(F 𝑒−
(𝑢−2𝑡)2

2 )(𝑥) = 𝑒𝑡2𝑒−2𝑖𝑡𝑥(F 𝑒−ᵆ2/2)(𝑥) = 𝑒𝑡2 𝑒−2𝑖𝑡𝑥𝑒−
𝑥2

2 = 𝑒(−(−𝑖𝑡)
2−2𝑖𝑥𝑡− 𝑥2

2
).

The above is the generating function (11.7.2) for the Hermite functions at −𝑖𝑡. Thus,
∞
∑
𝑛=0

F (ℎ𝑛(𝑢))(𝑥)
𝑡𝑛
𝑛! = F (

∞
∑
𝑛=0

ℎ𝑛(𝑢)
𝑡𝑛
𝑛! )(𝑥)

= (F 𝑒−
𝑢2

2
+2ᵆ𝑡−𝑡2 )(𝑥)

= 𝑒(−(−𝑖𝑡)
2−2𝑖𝑥𝑡− 𝑥2

2
)

=
∞
∑
𝑛=0

ℎ𝑛(𝑥)
(−𝑖𝑡)𝑛
𝑛! .

The identities above are justified since, for fixed 𝑡, the series in (11.7.2) converges in
𝐿2(ℝ). Compare the corresponding power-series coefficients in the variable 𝑡 to get

Fℎ𝑛 = (−𝑖)𝑛ℎ𝑛. (11.7.3)

Thus, 𝜎(F ) = 𝜎𝑝(F ) = {±1, ±𝑖}. This also yields a set of eigenvectors for F . ■

The Hermite functions (ℎ𝑛)∞𝑛=0 form an orthogonal basis for 𝐿2(ℝ) (Exercise 11.10.12)
and ‖ℎ𝑛‖ = √2𝑛𝑛!√𝜋. Thus, with respect to the orthonormal basis

( ℎ𝑛

√2𝑛𝑛!√𝜋
)
∞

𝑛=0
,
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the Fourier–Plancherel transform has the matrix representation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 ⋯
0 −𝑖 0 0 0 0 0 0 ⋯
0 0 −1 0 0 0 0 0 ⋯
0 0 0 𝑖 0 0 0 0 ⋯
0 0 0 0 1 0 0 0 ⋯
0 0 0 0 0 −𝑖 0 0 ⋯
0 0 0 0 0 0 −1 0 ⋯
0 0 0 0 0 0 0 𝑖 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11.7.4)

11.8 The Hardy Space of the Upper Half-Plane
In this section we develop the Hardy space of the upper half-plane ℂ+. As with the Hardy
space of𝔻 (Chapter 5), we only outline the main ideas and refer the reader to [149] for the
details. For 𝑓 ∈ 𝐿2(ℝ), define

𝐹(𝑧) = 1
√2𝜋

∫
∞

−∞
𝑓(𝑡)𝑒𝑖𝑧𝑡𝑑𝑡,

(whenever this integral exists) where 𝑧 = 𝑥+ 𝑖𝑦 is a complex variable. This definition can
be interpreted, formally at least, as the inverse Fourier transform evaluated at 𝑧. For 𝑦 > 0,
𝑒𝑖𝑧𝑡 = 𝑒𝑖𝑡𝑥−𝑡𝑦 , which diverges as 𝑡 → −∞ and converges to zero as 𝑡 → ∞. Thus, if the
support of 𝑓 is contained in [0,∞), Morera’s theorem confirms that

𝐹(𝑧) = 1
√2𝜋

∫
∞

0
𝑓(𝑡)𝑒𝑖𝑧𝑡𝑑𝑡

is analytic on ℂ+. Plancherel’s formula (Theorem 11.6.5) yields

∫
∞

−∞
|𝐹(𝑥 + 𝑖𝑦)|2𝑑𝑥 = ∫

∞

0
𝑒−2𝑦𝑡|𝑓(𝑡)|2𝑑𝑡 ⩽ ∫

∞

0
|𝑓(𝑡)|2𝑑𝑡,

and hence

sup
𝑦>0

∫
∞

−∞
|𝐹(𝑥 + 𝑖𝑦)|2𝑑𝑥 < ∞. (11.8.1)

The upper half-plane analogue of Proposition 5.3.12 says that

lim
𝑦→0+

𝐹(𝑥 + 𝑖𝑦) = 𝐹(𝑥) = 1
√2𝜋

∫
∞

0
𝑓(𝑡)𝑒𝑖𝑥𝑡𝑑𝑡

for almost every 𝑥 ∈ ℝ and

∫
∞

−∞
|𝐹(𝑥)|2𝑑𝑥 = ∫

∞

0
|𝑓(𝑡)|2𝑑𝑡.
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The class of analytic functions 𝐹 on ℂ+ which satisfy (11.8.1) is the Hardy space of the
upper half-plane and is denoted by 𝐻2(ℂ+). Note that

𝐻2(ℂ+) = { 1
√2𝜋

∫
∞

0
𝑓(𝑡)𝑒𝑖𝑧𝑡𝑑𝑡 ∶ 𝑓 ∈ 𝐿2(0,∞)} (11.8.2)

and

𝐻2(ℝ) ∶= {𝑔 ∈ 𝐿2(ℝ) ∶ (F𝑔)(𝑥) = 0 for almost every 𝑥 < 0}

is the set of corresponding boundary functions. The description above of 𝐻2(ℂ+) in
(11.8.2) is the Paley–Wiener theorem.
The map

(𝑈𝑓)(𝑥) = 1
√𝜋

1
𝑥 + 𝑖𝑓(

𝑥 − 𝑖
𝑥 + 𝑖 )

defines a unitary operator from 𝐿2(𝕋) onto 𝐿2(ℝ) and a unitary operator from 𝐻2(𝕋) onto
𝐻2(ℝ) (Exercise 11.10.7). It can be used to prove (Exercise 11.10.11) a version of the
Cauchy integral formula from Proposition 5.3.13, namely

𝑔(𝑧) = 1
2𝜋𝑖 ∫

∞

−∞

𝑔(𝑡)
𝑡 − 𝑧 𝑑𝑡 for all 𝑔 ∈ 𝐻2(ℂ+).

11.9 Notes
A rudimentary version of the Fourier inversion formula (Theorem 11.5.1) was discovered
by Fourier in 1822 [131] in the less familiar form

𝑓(𝑥) = 1
2𝜋 ∫

𝑏

𝑎
𝑑𝛼𝑓(𝛼)∫

∞

−∞
𝑑𝑝 cos(𝑝𝑥 − 𝑝𝛼).

The term “Fourier transform” was used in 1924 by Titchmarsh [361, 362] who stated the
inversion formula in more familiar terms as Fourier cosine transforms

𝑓(𝑥) = 2
𝜋 ∫

∞

0
cos(𝑥𝑢) 𝑑𝑢∫

∞

0
cos(𝑥𝑡)𝑓(𝑡) 𝑑𝑡.

In other words

𝑓(𝑥) = √
2
𝜋 ∫

∞

0
cos(𝑥𝑢)𝐹(𝑢) 𝑑𝑢 and 𝐹(𝑥) = √

2
𝜋 ∫

∞

0
cos(𝑥𝑢)𝑓(𝑢) 𝑑𝑢.

In 1910, Plancherel [271] proved that ‖𝑓‖ = ‖F𝑓‖ for all 𝑓 ∈ 𝐿2(ℝ). All of this work was
made precise over the years in treatments by several others and finally given a modern
presentation by Wiener in 1930 [375, 376].
The eigenvalues and eigenvectors of the Fourier transform can be found in Titchmarsh’s

book [362], but they have a long history dating back to Gauss and Sylvester in a different
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form. In 1867, Sylvester, as part of his efforts to generalize the quaternions, explored the
𝑁 × 𝑁 discrete Fourier transform matrix

𝐹 = 1
√𝑁

[𝜔𝑗𝑘𝑁 ]𝑁−1
𝑗,𝑘=0,

where 𝜔𝑁 = 𝑒2𝜋𝑖/𝑁 . This matrix is unitary and appears in many places in applied
mathematics. As with the Fourier transform on 𝐿2(ℝ), there is the identity 𝐹4 = 𝐼, so
the eigenvalues of 𝐹 are contained in {±1, ±𝑖} for 𝑁 < 4 and equal to this set for 𝑁 ⩾ 4.
In 1972, McClellan and Parks [240] worked out the multiplicities for the eigenvalues of 𝐹.
In 1982, Dickenson and Steiglitz [111] (see also [156]) showed this is equivalent to Gauss’
evaluation of the quadratic Gauss sum. One can also compute the eigenvectors for 𝐹 by
various means [240], although they seem to lack a convenient closed-form expression.
The Paley–Wiener theorem was developed by Paley and Wiener in 1934 [258] (see also

[319, Ch. 19]) and appears in two main forms. The first says that if 𝑓 ∈ 𝐻2(ℂ+), then

𝑓(𝑧) = ∫
∞

0
𝑔(𝑡)𝑒𝑖𝑡𝑧 𝑑𝑡

for some 𝑔 ∈ 𝐿2(0,∞). The other statement deals with entire functions and says that if 𝑓
is entire with

|𝑓(𝑧)| ⩽ 𝐶𝑒𝐴|𝑧| for all 𝑧 ∈ ℂ

and 𝑓|ℝ ∈ 𝐿2(ℝ), then there exists a function 𝑔 ∈ 𝐿2(−𝐴,𝐴) such that

𝑓(𝑧) = ∫
𝐴

−𝐴
𝑔(𝑡)𝑒𝑖𝑡𝑧 𝑑𝑡.

11.10 Exercises

Exercise 11.10.1. Prove that (F 𝑒−
𝑡2

2 )(𝑥) = 𝑒−
𝑥2

2 .

Exercise 11.10.2. Prove that (F𝑓𝑦)(𝑥) = 𝑒−𝑖𝑦𝑥(F𝑓)(𝑥), where 𝑓𝑦(𝑥) = 𝑓(𝑥 + 𝑖𝑦) and
𝑓 ∈ 𝐿2(ℝ).

Exercise 11.10.3. Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+ and let 𝑓(𝑡) =
1

√2𝜋
𝑒𝑖𝑥𝑡−𝑦|𝑡|. Prove that

(F𝑓)(𝑡) = 1
𝜋

𝑦
(𝑥 − 𝑡)2 + 𝑦2 .

Exercise 11.10.4. Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+ and let 𝑓(𝑡) =
−𝑖
√2𝜋

sgn(𝑡)𝑒𝑖𝑥𝑡−𝑦|𝑡|. Prove that

(F𝑓)(𝑡) = 1
𝜋

𝑥 − 𝑡
(𝑥 − 𝑡)2 + 𝑦2 .
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Exercise 11.10.5. Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+ and let

𝑓(𝑡) = {
1

√2𝜋
𝑒𝑖𝑧𝑡 if 𝑡 > 0,

0 if 𝑡 < 0.

Prove that (F𝑓)(𝑡) = 1
2𝜋𝑖

1
𝑡 − 𝑧 .

Exercise 11.10.6. Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+ and let

𝑓(𝑡) =
⎧
⎨
⎩

0 if 𝑡 > 0,
1

√2𝜋
𝑒𝑖𝑧𝑡 if 𝑡 < 0.

Prove that (F𝑓)(𝑡) = − 1
2𝜋𝑖

1
𝑡 − 𝑧 .

Exercise 11.10.7.

(a) Prove that

(𝑈𝑓)(𝑥) = 1
√𝜋(𝑥 + 𝑖)

𝑓(𝑥 − 𝑖
𝑥 + 𝑖 ) for 𝑥 ∈ ℝ,

is a unitary operator from 𝐿2(𝕋) onto 𝐿2(ℝ).

(b) Prove that

(𝑈∗𝑔)(𝜉) = 2√𝜋𝑖
1 − 𝜉 𝑔(𝑖

1 + 𝜉
1 − 𝜉 ) for 𝜉 ∈ 𝕋.

(c) Prove that 𝑈𝐻2(𝕋) = 𝐻2(ℝ).

Exercise 11.10.8. This is a continuation of Exercise 11.10.7. Letℳ be a subspace of 𝐿2(ℝ).
Prove the following are equivalent.

(a) 𝑒𝑖𝜆𝑥ℳ ⊆ℳ for all 𝜆 ⩾ 0.

(b) 𝑤𝑡𝑈∗ℳ ⊆ 𝑈∗ℳ for all 𝑡 ⩾ 0, where

𝑤𝑡(𝜉) = exp ( − 𝑡 1 + 𝜉
1 − 𝜉 ) for 𝜉 ∈ 𝕋\{1}.

(c) 𝑀𝜉𝑈∗ℳ ⊆ 𝑈∗ℳ.

Remark: See [253] for more.

Exercise 11.10.9. Use Exercise 11.10.8 to prove that if 𝑒𝑖𝜆𝑥ℳ ⊆ℳ for all 𝜆 ⩾ 0, thenℳ =
𝜒𝐸𝐿2(ℝ) for some Lebesgue measurable set 𝐸 ⊆ ℝ orℳ = 𝑤𝐻2(ℝ) for some measurable
unimodular function 𝑤 on ℝ.
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Exercise 11.10.10.

(a) Prove that the functions

𝑓𝑛(𝑥) =
⎧⎪
⎨⎪
⎩

1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 if 𝑛 ⩾ 0,

1
√𝜋

(𝑥 + 𝑖)−𝑛−1
(𝑥 − 𝑖)−𝑛 if 𝑛 ⩽ −1,

form an orthonormal basis for 𝐿2(ℝ).

(b) Prove that (𝑓𝑛)∞𝑛=0 is an orthonormal basis for 𝐻2(ℝ).

Exercise 11.10.11.

(a) Prove the following Cauchy integral formula for 𝐻2(ℂ+):

𝑔(𝑧) = 1
2𝜋𝑖 ∫

∞

−∞

𝑔(𝑡)
𝑡 − 𝑧 𝑑𝑡 for all 𝑔 ∈ 𝐻2(ℂ+) and 𝑧 ∈ ℂ+.

(b) Use (a) to obtain the estimate |𝑔(𝑥 + 𝑖𝑦)| ⩽ 1
2√𝜋𝑦

‖𝑔‖ for all 𝑥 + 𝑖𝑦 ∈ ℂ+.

Exercise 11.10.12. Prove that the normalized Hermite functions (ℎ𝑛/‖ℎ𝑛‖)∞𝑛=0 from
(11.7.2) form an orthonormal basis for 𝐿2(ℝ).

Exercise 11.10.13. Consider 𝑁 ∶ 𝐿2(ℝ) → 𝐿2(ℝ) defined by (𝑁𝑓)(𝑡) = 𝑓(𝑡 + 1).

(a) Prove that 𝑁 is bounded and normal.

(b) Determine 𝜎(𝑁).

(c) Prove that 𝑁 is unitarily equivalent to a multiplication operator 𝑀𝜓 on some 𝐿2(𝜇)
space and identify 𝜓 and 𝜇.

Exercise 11.10.14. For𝜑 ∈ 𝐿1(ℝ), consider the convolution operator𝑋𝜑 ∶ 𝐿2(ℝ) → 𝐿2(ℝ)
defined by 𝑋𝜑 = 𝑓 ∗ 𝜑.

(a) Prove that 𝑋𝜑 is bounded on 𝐿2(ℝ).

(b) Compute ‖𝑋𝜑‖.

(c) Compute 𝑋∗
𝜑.

(d) Prove that 𝑋𝜑 is normal.

(e) Determine 𝜎(𝑋𝜑).

(f) Prove that 𝑋𝜑 is unitarily equivalent to a multiplication operator𝑀𝜓 on some 𝐿2(𝜇)
space and identify 𝜓 and 𝜇.
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Exercise 11.10.15. For the Fourier transformF on 𝐿2(ℝ), prove that

(F − 𝑧𝐼)−1 = 1
1 − 𝑧4 (F

3 + 𝑧F 2 + 𝑧2F + 𝑧3𝐼) for all 𝑧 ∉ {±1,±𝑖}.

Exercise 11.10.16. For an integer 𝑁 ⩾ 1, let 𝜔𝑁 = 𝑒2𝜋𝑖/𝑁 . Prove that the discrete Fourier
transformmatrix 𝐹𝑁 = 1

√𝑁
[𝜔𝑗𝑘𝑁 ]𝑁−1

𝑗,𝑘=0 is unitary and satisfies 𝐹4𝑁 = 𝐼.

Exercise 11.10.17. This is a continuation of Exercise 11.10.16.

(a) Prove that the set 𝒜 of 𝑁 × 𝑁 matrices 𝐴 such that 𝐹𝑁𝐴𝐹∗𝑁 is diagonal is an 𝑁-
dimensional commutative complex algebra of normal matrices.

(b) Find an orthonormal basis for 𝒜 with respect to the Hilbert–Schmidt norm onℳ𝑁 .

Exercise 11.10.18. These next several exercises follow [119] and develop a Paley–Wiener
theorem for the Bergman space of the upper half-plane. They also relate the Bergman shift
from Chapter 10 to a Volterra-type operator.

(a) Define a norm on L = 𝐿2((0,∞), 𝑑𝑥𝑥 ) by

‖𝑓‖L = (𝜋∫
∞

0

|𝑓(𝑥)|2
𝑥 𝑑𝑥)

1
2 .

Prove that the linear transformation (𝑇𝑓)(𝑥) = 𝑒−𝑥∫
𝑥

0
𝑒𝑡𝑓(𝑡) 𝑑𝑡 is bounded on L .

(b) Prove that 𝑇𝑓 = ℎ ∗ 𝑓, where ℎ(𝑡) = {𝑒
−𝑡 if 𝑡 > 0,
0 if 𝑡 < 0.

Exercise 11.10.19. Let 𝐴2(ℂ+) denote the Bergman space of analytic functions 𝐹 on ℂ+
with norm

‖𝐹‖𝐴2(ℂ+) = (∫
∞

0
∫

∞

−∞
|𝐹(𝑥 + 𝑖𝑦)|2 𝑑𝑥 𝑑𝑦)

1
2 .

(a) Recall from Chapter 10 that 𝐴2 is the Bergman space on 𝔻 with norm

‖𝑔‖𝐴2 = (∫
𝔻
|𝑔(𝑥 + 𝑖𝑦)|2 𝑑𝑥 𝑑𝑦)

1
2 .

Prove that 𝐺(𝑧) = 2
(𝑧 + 𝑖)2 𝑔(

𝑧 − 𝑖
𝑧 + 𝑖 ) belongs to 𝐴

2(ℂ+) and ‖𝑔‖𝐴2 = ‖𝐺‖𝐴2(ℂ+).

(b) Prove that the bounded operator 𝑔 ↦ 𝐺 from (a) is surjective and therefore unitary.

(c) For 𝑛 ⩾ 0, define

𝐺𝑛(𝑧) =
2

(𝑧 + 𝑖)2 (
𝑧 − 𝑖
𝑧 + 𝑖 )

𝑛
.

Prove that (𝐺𝑛)∞𝑛=0 is an orthogonal basis for 𝐴2(ℂ+).
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(d) Prove that the shift operator 𝑀𝑧 on 𝐴2 is unitarily equivalent to the multiplication
operator (𝑀𝐹)(𝑧) = 𝑧 − 𝑖

𝑧 + 𝑖 𝐹(𝑧) on 𝐴
2(ℂ+).

Exercise 11.10.20. Continue with the notation from Exercises 11.10.18 and 11.10.19.

(a) For 𝑓 ∈ L , define 𝐹(𝑧) = ∫
∞

0
𝑓(𝑡)𝑒𝑖𝑡𝑧 𝑑𝑡. Prove that 𝐹 ∈ 𝐴2(ℂ+) and ‖𝑓‖L =

‖𝐹‖𝐴2(ℂ+).

(b) Define 𝐺𝑛(𝑡) =
1
2𝜋 ∫

∞

−∞
𝑒−𝑖𝑥𝑡𝐺𝑛(𝑡) 𝑑𝑡 (a slightly different form of the Fourier trans-

form) and prove that

𝐺𝑛(𝑡) = {𝑐𝑛𝑡𝑒
−𝑡𝐿𝑛(2𝑡) if 𝑡 ⩾ 0,

0 if 𝑡 < 0,

where 𝑐𝑛 ∈ ℂ and 𝐿𝑛 is a polynomial of degree 𝑛.
Remark: 𝐿𝑛 is the Laguerre polynomial of degree 𝑛.

(c) Use this to prove that the operator 𝑓 ↦ 𝐹 is surjective. This yields a Paley–
Wiener theorem for the Bergman space: every 𝐹 ∈ 𝐴2(ℂ+) can be written as

𝐹(𝑧) = ∫
∞

0
𝑓(𝑡)𝑒𝑖𝑡𝑧 𝑑𝑡 for some 𝑓 ∈ L .

Exercise 11.10.21. Continue with the notation from Exercises 11.10.18 and 11.10.20.

(a) Prove that𝑀𝐺𝑛 = 𝐺𝑛+1 and that𝑀𝐺𝑛(𝑡) = 𝐺𝑛(𝑡) − 2(𝑇𝐺𝑛)(𝑡).

(b) Prove that𝑀 on 𝐴2(ℂ+) is unitarily equivalent to 𝐼 − 2𝑇 on L .

(c) Prove that𝑀𝑧 on 𝐴2 is unitarily equivalent to 𝐼 − 2𝑇 on L . Then conclude that the
𝑀𝑧-invariant subspaces of 𝐴2 are in bijective and order-preserving correspondence
with the 𝑇-invariant subspaces of L .

(d) For 𝑎 > 0, the subspace of functions inL that vanish almost everywhere on [0, 𝑎] is
𝑇-invariant. Prove that the corresponding𝑀𝑧-invariant subspace of 𝐴2 is

exp ( − 𝑎1 + 𝑧
1 − 𝑧)𝐴

2.

Exercise 11.10.22. The formula Fℎ𝑛 = (−𝑖)𝑛ℎ𝑛 from (11.7.3), where ℎ𝑛 is the 𝑛th
Hermite function, can be used to define a square root of the Fourier transform.

(a) Let 𝑄ℎ𝑛 = 𝑒−
𝑖𝑛𝜋
4 ℎ𝑛 and prove that 𝑄 extends to a unitary operator on 𝐿2(ℝ).

(b) Prove that 𝑄2 = F .

(c) Prove that there are infinitely many unitary square roots of F .

(d) Are there any non-unitary square roots of F ?
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Remark: A formula of Mehler [242] (see also [125]) shows that

(𝑄𝑓)(𝑥) = √
1 − 𝑖
2𝜋 𝑒𝑖

𝑥2

2 ∫
∞

−∞
𝑒−𝑖(√2𝑥𝑡−

𝑡2

2
)𝑓(𝑡) 𝑑𝑡.

Exercise 11.10.23. Let 𝜇 = 𝛿1 + 𝛿−1 + 𝛿𝑖 + 𝛿−𝑖 and define the Hilbert space

(𝐿2(𝜇))(∞) = {(𝑓𝑖)∞𝑖=1 ∶ 𝑓𝑖 ∈ 𝐿2(𝜇),
∞
∑
𝑖=1

‖𝑓𝑖‖2 < ∞}.

These types of infinite direct sums are discussed in Chapter 14. Define𝑀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇)
by (𝑀𝑓)(𝜉) = 𝜉𝑓(𝜉).

(a) Prove that𝑀 is unitary.

(b) Prove that𝑀(∞) on (𝐿2(𝜇))(∞) defined by𝑀(∞)(𝑓𝑖)∞𝑖=1 = (𝑀𝑓𝑖)∞𝑖=1 is unitary.

(c) Use the matrix representation of the Fourier transform in (11.7.4) to prove that the
Fourier transform is unitarily equivalent to𝑀(∞).

11.11 Hints for the Exercises
Hint for Ex. 11.10.1: Complete the square in the integral and notice that it is a Gaussian
integral (or integrate over a well-chosen contour).
Hint for Ex. 11.10.7: Prove that 𝜑(𝑧) = 𝑧 − 𝑖

𝑧 + 𝑖 is a conformal map from ℂ+ onto 𝔻.
Hint for Ex. 11.10.8: Consult Exercise 11.10.7. For the proof that (b) implies (c), consider
the function 𝜓𝑡(𝜉) =

𝑤𝑡(𝜉) − 1 + 𝑡
𝑤𝑡(𝜉) − 1 − 𝑡 and show that |𝜓𝑡(𝜉)| ⩽ 1 for all 𝜉 ∈ 𝕋\{1} and that

𝜓𝑡(𝜉) = 𝜉 + 𝑜(1) as 𝑡 → 0.
Hint for Ex. 11.10.10: Consult Exercise 11.10.7.
Hint for Ex. 11.10.11: For (a), start with Proposition 5.3.13 and use Exercise 11.10.7.
Hint for Ex. 11.10.12: To show completeness, suppose that 𝑓 ∈ 𝐿2(ℝ) is orthogonal to
ℎ𝑛 for every 𝑛 ⩾ 0. Now use the fact that the Hermite polynomials are dense in a certain
weighted 𝐿2 space (see Exercise 1.10.44).
Hint for Ex. 11.10.19: For (c), consult Proposition 10.1.8 and use (a).
Hint for Ex. 11.10.20: For (b), make use of the identities

(1 − 𝑢)−𝑘−2 =
∞
∑
𝑗=0

(𝑗 + 𝑘 + 1
𝑘 + 1 )𝑢𝑗 and ∫

∞

−∞
𝑡𝑗𝑒−𝑡 𝑑𝑡 = 𝑗!.

Hint for Ex. 11.10.21: For (b), use the Fourier transform.
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The Hilbert Transform

Key Concepts: Harmonic conjugate, Poisson integral, Fatou’s theorem, Hilbert transform on the
circle, partial isometry, Hilbert transform on the real line, spectral properties of Hilbert transforms.

Outline: This chapter concerns two versions of the Hilbert transform. The first version is
H ∶ 𝐿2(ℝ) → 𝐿2(ℝ) defined by

(H 𝑓)(𝑥) = 1
𝜋 PV∫

∞

−∞

𝑓(𝑡)
𝑥 − 𝑡𝑑𝑡,

and the second is Q ∶ 𝐿2(𝕋) → 𝐿2(𝕋) defined by

(Q𝑓)(𝑒𝑖𝜃) = 1
2𝜋 PV∫

𝜋

−𝜋
cot (𝜃 − 𝑡

2 )𝑓(𝑒𝑖𝑡)𝑑𝑡,

where PV denotes the principal value of an integral. Although these operators are defined
on the Hilbert spaces 𝐿2(ℝ) and 𝐿2(𝕋), respectively, they also act on various Banach spaces
of functions. This chapter emphasizes the Hilbert-space properties of these operators. In
particular, we study the boundedness, norm, adjoint, and spectral properties of Hilbert
transforms and how these properties relate to harmonic conjugation and Riemann–
Hilbert problems.

12.1 The Poisson Integral on the Circle
IfΩ is a simply connected planar region and 𝑢 ∶ Ω → ℝ, then 𝑢 is harmonic if its second-
order partial derivatives are continuous and satisfy the Laplace equation

𝜕2𝑥𝑢 + 𝜕2𝑦𝑢 = 0 (12.1.1)

onΩ. The Cauchy–Riemann equations imply that 𝑢 = Re𝑓 is harmonic when 𝑓 ∶ Ω → ℂ
is analytic. Since Ω is simply connected, any harmonic function 𝑢 on Ω is the real part of
an analytic function on Ω. That is, there exists a harmonic function 𝑣 ∶ Ω → ℝ such that
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𝑢 + 𝑖𝑣 is analytic on Ω [92, p. 252]. The function 𝑣 is a harmonic conjugate of 𝑢 and it is
unique up to an additive constant.
The first type of harmonic functions explored in this chapter are defined on the unit

disk 𝔻 and are of the form

(𝑃𝑓)(𝑟𝑒𝑖𝜃) = ∫
𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 . (12.1.2)

In the above, 𝑓 ∈ 𝐿2(𝕋) and

𝑃𝑟(𝑡) = Re (1 + 𝑧
1 − 𝑧), 𝑧 = 𝑟𝑒𝑖𝑡, 0 ⩽ 𝑟 < 1, 𝜃 ∈ [−𝜋, 𝜋], (12.1.3)

denotes the Poisson kernel of the unit disk. Since

𝑧 ↦ 1 + 𝑧
1 − 𝑧

is analytic on 𝔻, it follows that

𝑧 ↦ Re (1 + 𝑧
1 − 𝑧)

is harmonic. Differentiating under the integral sign reveals that (𝑃𝑓)(𝑟𝑒𝑖𝜃) is harmonic on
𝔻. A power series calculation (Exercise 12.5.1) shows that the Poisson kernel 𝑃𝑟(𝑡) satisfies

𝑃𝑟(𝑡) =
∞
∑

𝑛=−∞
𝑟|𝑛|𝑒𝑖𝑛𝑡 = 1 − 𝑟2

1 − 2𝑟 cos 𝑡 + 𝑟2 =
1 − 𝑟2

|1 − 𝑟𝑒𝑖𝑡|2 . (12.1.4)

The right side of (12.1.4) shows that 𝑃𝑟(𝑡) > 0 on 𝔻. Moreover,

∫
𝜋

−𝜋
𝑃𝑟(𝑡)

𝑑𝑡
2𝜋 = 1 for all 0 ⩽ 𝑟 < 1; (12.1.5)

see Exercise 12.5.2. The graph of 𝑃𝑟(𝑡) peaks sharply at the origin as 𝑟 → 1− (Figure 12.1.1).
This suggests that (𝑃𝑓)(𝑟𝑒𝑖𝜃) → 𝑓(𝑒𝑖𝜃) as 𝑟 → 1−, which was confirmed in 1906 by Fatou.

Theorem 12.1.6 (Fatou [127]). If 𝑓 ∈ 𝐿2(𝕋), then

(𝑃𝑓)(𝑟𝑒𝑖𝜃) = ∫
𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋

is a harmonic function on 𝔻 such that

lim
𝑟→1−

(𝑃𝑓)(𝑟𝑒𝑖𝜃) = 𝑓(𝑒𝑖𝜃)

for almost every 𝜃 ∈ [−𝜋, 𝜋].
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Figure 12.1.1 The graphs of 𝑃𝑟(𝜃) on [−𝜋, 𝜋] for 𝑟 = 0.5, 0.7, 0.8. The area under each curve is
2𝜋, but the graphs peak higher as 𝑟 → 1−.

Proof The discussion above proves that 𝑃𝑓 is harmonic. The next step is to prove that

lim
𝑟→1−

(𝑃𝑓)(𝑟𝑒𝑖𝜃) = 𝑓(𝑒𝑖𝜃)

when𝑓 is continuous at 𝑒𝑖𝜃.We refer the reader to [202, p. 34] for a proof in the general
case. Given 𝜀 > 0, let 𝐼𝛿 = (𝜃 − 𝛿, 𝜃 + 𝛿) be an open interval containing 𝜃 such that
|𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)| < 𝜀 for all 𝑡 ∈ 𝐼𝛿. Observe that

|
|
|
∫

𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 − 𝑓(𝑒𝑖𝜃)

|
|
|

=
|
|
|∫

𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)(𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)) 𝑑𝑡2𝜋

|
|
| (by (12.1.5))

⩽ ∫
𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)|𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)| 𝑑𝑡2𝜋

= ∫
𝐼𝛿
𝑃𝑟(𝜃 − 𝑡)|𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)| 𝑑𝑡2𝜋

+∫
[−𝜋,𝜋]\𝐼𝛿

𝑃𝑟(𝜃 − 𝑡)|𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)| 𝑑𝑡2𝜋

⩽ 𝜀 +∫
[−𝜋,𝜋]\𝐼𝛿

𝑃𝑟(𝜃 − 𝑡)|𝑓(𝑒𝑖𝑡) − 𝑓(𝑒𝑖𝜃)| 𝑑𝑡2𝜋 .

From (12.1.4), there is a 𝑐 > 0 such that

𝑃𝑟(𝜃 − 𝑡) = 1 − 𝑟2
1 − 2𝑟 cos(𝜃 − 𝑡) + 𝑟2 ⩽ 𝑐(1 − 𝑟) for 𝑡 ∈ [−𝜋, 𝜋]\𝐼𝛿 and 0 ⩽ 𝑟 < 1.

This ensures that ensures the last integral above tends to zero as 𝑟 → 1−. The result
now follows. ■
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One says that 𝑃𝑓 is the harmonic extension of 𝑓 to 𝔻. Moreover, if 𝑓, 𝑔 ∈ 𝐿2(𝕋) and
𝑃𝑓 = 𝑃𝑔 on 𝔻, then 𝑓 = 𝑔 almost everywhere on 𝕋 [202, Ch. 3]. We now relate the
harmonic extension of 𝑓 to

∞
∑

𝑛=−∞
𝑓(𝑛)𝑒𝑖𝑛𝜃, where 𝑓(𝑛) = ∫

𝜋

−𝜋
𝑓(𝑒𝑖𝑡)𝑒−𝑖𝑛𝑡 𝑑𝑡2𝜋 ,

the Fourier series of 𝑓.
Term-by-term integration in (12.1.2), permissible by uniform convergence, yields

(𝑃𝑓)(𝑟𝑒𝑖𝜃) = ∫
𝜋

−𝜋
𝑃𝑟(𝜃 − 𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 (by (12.1.2))

= ∫
𝜋

−𝜋
(

∞
∑

𝑛=−∞
𝑟|𝑛|𝑒𝑖𝑛𝜃𝑒−𝑖𝑛𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 (by (12.1.4))

=
∞
∑

𝑛=−∞
𝑟|𝑛|𝑒𝑖𝑛𝜃(∫

𝜋

−𝜋
𝑓(𝑒𝑖𝑡)𝑒−𝑖𝑛𝑡 𝑑𝑡2𝜋)

=
∞
∑

𝑛=−∞
𝑓(𝑛)𝑟|𝑛|𝑒𝑖𝑛𝜃. (12.1.7)

Fatou’s theorem (Theorem 12.1.6) says that (𝑃𝑓)(𝑟𝑒𝑖𝜃) → 𝑓(𝑒𝑖𝜃) pointwise almost
everywhere. This next result shows convergence in the 𝐿2(𝕋) norm.

Proposition 12.1.8. If 𝑓 ∈ 𝐿2(𝕋), then

lim
𝑟→1−

∫
𝜋

−𝜋
|(𝑃𝑓)(𝑟𝑒𝑖𝜃) − 𝑓(𝑒𝑖𝜃)|2 𝑑𝜃2𝜋 = 0.

Proof Using (12.1.7) and Parseval’s theorem,

∫
𝜋

−𝜋
|(𝑃𝑓)(𝑟𝑒𝑖𝜃) − 𝑓(𝑒𝑖𝜃)|2 𝑑𝜃2𝜋 =

∞
∑

𝑛=−∞
|𝑓(𝑛)|2(1 − 𝑟|𝑛|)2,

which tends to zero as 𝑟 → 1− by the dominated convergence theorem. ■

12.2 The Hilbert Transform on the Circle
The previous section suggests a way to find the harmonic conjugate of a function of the
form 𝑃𝑓, where 𝑓 ∈ 𝐿2(𝕋) is real valued. Define the conjugate Poisson kernel

𝑄𝑟(𝑡) = Im (1 + 𝑧
1 − 𝑧), (12.2.1)

where 𝑧 = 𝑟𝑒𝑖𝑡 with 0 ⩽ 𝑟 < 1 and−𝜋 ⩽ 𝑡 ⩽ 𝜋. The reader can verify that (Exercise 12.5.3)

𝑄𝑟(𝑡) =
2𝑟 sin(𝑡)

1 − 2𝑟 cos(𝑡) + 𝑟2 =
∞
∑

𝑛=−∞
−𝑖 sgn(𝑛)𝑟|𝑛|𝑒𝑖𝑛𝑡. (12.2.2)
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Figure 12.2.1 The graphs of𝑄𝑟(𝜃) on [−𝜋, 𝜋] for 𝑟 = 0.5, 0.7, 0.8. The graphs gravitate towards
the imaginary axis as 𝑟 increases.

In the above,

sgn(𝑛) =
⎧⎪
⎨⎪
⎩

1 if 𝑛 > 0,
−1 if 𝑛 < 0,
0 if 𝑛 = 0.

See Figure 12.2.1 for the graph of 𝑄𝑟(𝑡) for several values of 𝑟. From (12.2.1), the function
𝑄𝑓 defined by

(𝑄𝑓)(𝑟𝑒𝑖𝜃) = 1
2𝜋 ∫

𝜋

−𝜋
𝑄𝑟(𝜃 − 𝑡)𝑓(𝑒𝑖𝑡) 𝑑𝑡

is harmonic on 𝔻 and

(𝑄𝑓)(𝑟𝑒𝑖𝜃) = −𝑖
∞
∑

𝑛=−∞
𝑓(𝑛) sgn(𝑛)𝑟|𝑛|𝑒𝑖𝑛𝜃. (12.2.3)

Moreover,

(𝑃𝑓)(𝑧) + 𝑖(𝑄𝑓)(𝑧) = 1
2𝜋 ∫

𝜋

−𝜋

𝑒𝑖𝑡 + 𝑧
𝑒𝑖𝑡 − 𝑧𝑓(𝑒

𝑖𝑡) 𝑑𝑡

is analytic on 𝔻. The integral on the right side of the previous line is the Herglotz integral
of 𝑓. If 𝑓 is sufficiently smooth, which causes 𝑓(𝑛) to decay quickly, the limit in (12.2.3) as
𝑟 → 1− exists for all 𝜃 ∈ [−𝜋, 𝜋]. For general 𝑓 ∈ 𝐿2(𝕋), there is the following.

Theorem 12.2.4. For 𝑓 ∈ 𝐿2(𝕋), the functionQ𝑓 defined by

(Q𝑓)(𝑒𝑖𝜃) ∶= lim
𝑟→1−

(𝑄𝑓)(𝑟𝑒𝑖𝜃)
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exists for almost every 𝜃 and defines an 𝐿2(𝕋) function with Fourier series

− 𝑖
∞
∑

𝑛=−∞
𝑓(𝑛) sgn(𝑛)𝑒𝑖𝑛𝜃. (12.2.5)

We now focus on the operator-theoretic properties of 𝑓 ↦ Q𝑓, called the Hilbert
transform on the circle. Below, we use the notation 1 to denote the constant function and
𝐿2(𝕋) ⊖ span{1} for (span{1})⟂.

Proposition 12.2.6. Q is a bounded operator on 𝐿2(𝕋) which satisfies the following.

(a) kerQ = span{1}.

(b) ranQ = 𝐿2(𝕋) ⊖ span{1}.

(c) Q|𝐿2(𝕋)⊖span{1} is an isometry.

Proof From (12.2.5) and Parseval’s theorem,

‖Q𝑓‖2 = ∑
𝑛∈ℤ\{0}

|𝑓(𝑛)|2 = ‖𝑓‖2 − |𝑓(0)|2 ⩽ ‖𝑓‖2 for all 𝑓 ∈ 𝐿2(𝕋). (12.2.7)

Thus, Q is bounded on 𝐿2(𝕋).
(a) If ‖Q𝑓‖ = 0, (12.2.5) shows that

0 = ‖𝑓‖2 − |𝑓(0)|2 = ∑
𝑛∈ℤ\{0}

|𝑓(𝑛)|2.

This implies that 𝑓(𝑛) = 0 for all 𝑛 ≠ 0, hence 𝑓 = 𝑓(0) is constant. This proves that
kerQ ⊆ span{1}. To see that span{1} ⊆ kerQ, simply reverse the argument above.

(b) By (12.2.5), ranQ ⊆ 𝐿2(𝕋) ⊖ span{1}. If 𝑔 ∈ 𝐿2(𝕋) ⊖ span{1} with Fourier series

𝑔 = ∑
𝑛∈ℤ\{0}

𝑔 (𝑛)𝑒𝑖𝑛𝜃,

let

𝑓 = 𝑖
∞
∑

𝑛=−∞
𝑔 (𝑛) sgn(𝑛)𝑒𝑖𝑛𝜃.

Then 𝑓 ∈ 𝐿2(𝕋) and Q𝑓 = 𝑔.
(c) By (12.2.7), Q is isometric on 𝐿2(𝕋) ⊖ span{1}. ■

Operators that are isometric on the orthogonal complement of their kernels are called
partial isometries and are explored further in Chapter 14.
If 𝑟 = 1 in (12.2.2), then

𝑄1(𝜃 − 𝑡) = cot (𝜃 − 𝑡
2 )
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and the integral in the formula

(Q𝑓)(𝑒𝑖𝜃) = ∫
𝜋

−𝜋
cot (𝜃 − 𝑡

2 )𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 (12.2.8)

becomes problematic due to the singularity at 𝑡 = 𝜃. For general 𝑓 ∈ 𝐿2(𝕋), the integral in
(12.2.8) must be understood as a principal-value integral

PV∫
𝜋

−𝜋
cot (𝜃 − 𝑡

2 )𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 = lim
𝜀→0+

∫
|𝜃−𝑡|>𝜀

cot (𝜃 − 𝑡
2 )𝑓(𝑒𝑖𝑡) 𝑑𝑡2𝜋 . (12.2.9)

This principal-value integral equals Q𝑓 almost everywhere [149, Ch. 3]. Thus, (12.2.9) is
another formula for theHilbert transform.One can also compute the adjoint of theHilbert
transformQ.

Proposition 12.2.10. Q∗ = −Q.

Proof For 𝑓, 𝑔 ∈ 𝐿2(𝕋), Parseval’s theorem yields

⟨Q𝑓, 𝑔⟩ =
∞
∑

𝑛=−∞
−𝑖 sgn(𝑛)𝑓(𝑛) ̂𝑔(𝑛) =

∞
∑

𝑛=−∞
𝑓(𝑛)𝑖 sgn(𝑛) ̂𝑔(𝑛) = ⟨𝑓, −Q𝑔⟩.

This shows that Q∗ = −Q. ■

We end this section with the observation that the Fourier-series formula (12.2.5) shows
that, with respect to the orthonormal basis (𝑒𝑖𝑛𝜃)∞𝑛=−∞ of 𝐿2(𝕋), the matrix representation
of Q is the diagonal matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑖 0 0 0 0 ⋯
⋯ 0 𝑖 0 0 0 ⋯
⋯ 0 0 0 0 0 ⋯
⋯ 0 0 0 −𝑖 0 ⋯
⋯ 0 0 0 0 −𝑖 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The box denotes the (0, 0) entry. The matrix above illustrates the identity Q∗ = −Q, as
well as the following.

Corollary 12.2.11. 𝜎(Q) = 𝜎𝑝(Q) = {−𝑖, 0, 𝑖}.

Proof Apply Theorem 2.4.7. ■

These two results imply that Q is a normal operator with the following eigenspaces:

ker(Q) = span{1},
ker(Q − 𝑖𝐼) = ⋁{𝑒𝑖𝑛𝜃 ∶ 𝑛 < 0},

ker(Q + 𝑖𝐼) = ⋁{𝑒𝑖𝑛𝜃 ∶ 𝑛 > 0}.
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Finally, observe that Q is a rank-one perturbation of any of the unitary operators Q +
𝛼(1 ⊗ 1), for 𝛼 ∈ 𝕋. These unitary operators have the matrix representations

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑖 0 0 0 0 ⋯
⋯ 0 𝑖 0 0 0 ⋯
⋯ 0 0 𝛼 0 0 ⋯
⋯ 0 0 0 −𝑖 0 ⋯
⋯ 0 0 0 0 −𝑖 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

12.3 The Hilbert Transform on the Real Line
We now consider the harmonic conjugation problem for harmonic functions of the form

(𝑈𝑔)(𝑧) = ∫
∞

−∞
𝒫𝑧(𝑡)𝑔(𝑡) 𝑑𝑡.

In the above, 𝑔 ∈ 𝐿2(ℝ) is real valued and

𝒫𝑧(𝑡) = Re ( 1𝑖𝜋
1

𝑡 − 𝑧), where 𝑡 ∈ ℝ and 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+, (12.3.1)

is the Poisson kernel of the upper-half plane. A computation (Exercise 12.5.5) reveals that

𝒫𝑧(𝑡) =
1
𝜋

𝑦
(𝑥 − 𝑡)2 + 𝑦2 .

A similar argument as in the previous section shows that𝑈𝑔 is harmonic onℂ+.Moreover,
there is the corresponding version of Fatou’s theorem (Theorem 12.1.6; see also Lemma
11.4.4).

Theorem 12.3.2. For 𝑔 ∈ 𝐿2(ℝ),

𝑔(𝑥) = lim
𝑦→0+

(𝑈𝑔)(𝑥 + 𝑖𝑦)

for almost every 𝑥 ∈ ℝ.

As shown in Lemma 11.4.6,

lim
𝑦→0+

∫
∞

−∞
|(𝑈𝑓)(𝑥 + 𝑖𝑦) − 𝑓(𝑥)|2𝑑𝑥 = 0.

Consider the conjugate Poisson kernel

𝒬𝑧(𝑡) = Im ( 1𝑖𝜋
1

𝑡 − 𝑧), (12.3.3)
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where 𝑡 ∈ ℝ and 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+. A computation (Exercise 12.5.6) reveals that

𝒬𝑧(𝑡) =
1
𝜋

𝑥 − 𝑡
(𝑥 − 𝑡)2 + 𝑦2 .

By (12.3.3) the function

(𝑉𝑔)(𝑧) = ∫
∞

−∞
𝒬𝑧(𝑡)𝑔(𝑡) 𝑑𝑡

is harmonic on ℂ+ and by (12.3.1)

(𝑈𝑔)(𝑧) + 𝑖(𝑉𝑔)(𝑧) = 1
𝑖𝜋 ∫

∞

−∞

𝑔(𝑡)
𝑡 − 𝑧 𝑑𝑡

is analytic onℂ+. The right side of the previous equation is theCauchy integral of 𝑔. When
𝑔 is real valued, 𝑉𝑔 is a harmonic conjugate of 𝑈𝑔. The next theorem is the analogue of
Theorem 12.2.4.

Theorem 12.3.4. For 𝑔 ∈ 𝐿2(ℝ),

(H 𝑔)(𝑥) ∶= lim
𝑦→0+

(𝑉𝑔)(𝑥 + 𝑖𝑦)

exists for almost every 𝑥 ∈ ℝ.

The function H 𝑔 defined above is the Hilbert transform of 𝑔. As in the circle case (see
(12.2.9)), the Hilbert transform can be written as a principal-value integral in the sense
that for almost every 𝑥 ∈ ℝ,

(H 𝑔)(𝑥) = 1
𝜋 PV∫

∞

−∞

𝑔(𝑡)
𝑥 − 𝑡 𝑑𝑡 = lim

𝜀→0+
∫
|𝑥−𝑡|>𝜀

𝑔(𝑡)
𝑥 − 𝑡 𝑑𝑡.

In the circle case, the corresponding Hilbert transformQ is a rank-one perturbation of
a unitary operator. For the Hilbert transform on ℝ, something different occurs.

Theorem 12.3.5. The Hilbert transformH is a unitary operator on 𝐿2(ℝ).

Proof The first step is to prove that

(FH 𝑔)(𝑠) = −𝑖 sgn(𝑠)(F𝑔)(𝑠) for all 𝑠 ∈ ℝ, (12.3.6)

where

(Fℎ)(𝑠) = 1
√2𝜋

∫
∞

−∞
ℎ(𝑥)𝑒−𝑖𝑥𝑠𝑑𝑥

is the Fourier transform of ℎ ∈ 𝐿2(ℝ) (Chapter 11). To avoid getting sidetracked by
technical details, we proceed formally. The precise details are found in [161, Ch. 4].
Observe that

(FH 𝑔)(𝑠) = 1
√2𝜋

∫
∞

−∞
𝑒−𝑖𝑥𝑠( 1𝜋 ∫

∞

−∞

𝑔(𝑥 − 𝑡)
𝑡 𝑑𝑡)𝑑𝑥
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= 1
√2𝜋

∫
∞

−∞

1
𝜋𝑡 (∫

∞

−∞
𝑔(𝑥 − 𝑡)𝑒−𝑖𝑥𝑠𝑑𝑥) 𝑑𝑡

= ∫
∞

−∞

1
𝜋𝑡 𝑒

−𝑖𝑠𝑡(F𝑔)(𝑠) 𝑑𝑡

= (F𝑔)(𝑠)∫
∞

−∞

1
𝜋𝑡 𝑒

−𝑖𝑠𝑡𝑑𝑡

= −𝑖(F𝑔)(𝑠) sgn(𝑠).

The last formula is understood in the distributional sense [161]. This verifies (12.3.6).
Plancherel’s theorem and (12.3.6) reveal that the Hilbert transform is isometric on
𝐿2(ℝ). To complete the proof thatH is unitary, it suffices to show thatH is surjective.
This is done by proving that H 2 = −𝐼. Indeed, define 𝑊 ∶ 𝐿2(ℝ) → 𝐿2(ℝ) by
(𝑊𝑓)(𝑠) = −𝑖 sgn(𝑠)𝑓(𝑠). Then (12.3.6) shows that

FH F−1 = 𝑊, (12.3.7)

and hence

H 2 = F−1𝑊FF−1𝑊F = F−1𝑊 2F = F−1(−𝐼)F = −𝐼.

Since H is isometric and surjective, it is unitary. ■

Corollary 12.3.8. H ∗ = −H .

What is the spectrum of the Hilbert transform on ℝ?

Corollary 12.3.9. 𝜎(H ) = 𝜎𝑝(H ) = {−𝑖, 𝑖}.

Proof By (12.3.7), H is unitarily equivalent to the multiplication operator (𝑊𝑓)(𝑠) =
−𝑖 sgn(𝑠)𝑓(𝑠) on 𝐿2(ℝ). Notice that𝑊 is a multiplication operator whose symbol is a
step function with essential range equal to {−𝑖, 𝑖}. Therefore, 𝜎(𝑊) = 𝜎𝑝(𝑊) = {−𝑖, 𝑖}
(Proposition 8.1.12) and hence 𝜎(H ) = 𝜎𝑝(H ) = {−𝑖, 𝑖} since unitary equivalence
preserves spectra. ■

The following matrix representation provides the full spectral decomposition ofH . To
see this, observe that the Cayley transform

𝑐(𝑧) = 𝑧 − 𝑖
𝑧 + 𝑖

is a conformalmap fromℂ+ onto𝔻 thatmaps the real line onto𝕋\{1}. A change of variables
(Exercise 11.10.7) shows that

(𝑈𝑓)(𝑥) = 1
√𝜋

1
𝑥 + 𝑖𝑓(𝑐(𝑥))
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defines a unitary operator from 𝐿2(𝕋) onto 𝐿2(ℝ). Since (𝜉𝑛)∞𝑛=0 is an orthonormal
sequence in 𝐿2(𝕋),

𝑈(𝜉𝑛) = 1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 for 𝑛 ⩾ 0

is an orthonormal sequence in 𝐿2(ℝ). A computation (Exercise 12.5.18) shows that

H ( 1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 ) = −𝑖 1

√𝜋
(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 .

Similarly,

𝑈(𝜉
𝑛
) = 1

√𝜋
(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 for 𝑛 ⩾ 1

is an orthonormal sequence in 𝐿2(ℝ) and

H ( 1
√𝜋

(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 ) = 𝑖 1

√𝜋
(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 .

Therefore,

ker(H + 𝑖𝐼) = ⋁{ 1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 ∶ 𝑛 ⩾ 0}

and

ker(H − 𝑖𝐼) = ⋁{ 1
√𝜋

(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 ∶ 𝑛 ⩾ 1} .

Since all of these eigenvectors together form an orthonormal basis for 𝐿2(ℝ) (they are
images of an orthonormal basis under a unitary operator), the matrix representation of
H is the diagonal matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑖 0 0 0 0 ⋯
⋯ 0 𝑖 0 0 0 ⋯
⋯ 0 0 −𝑖 0 0 ⋯
⋯ 0 0 0 −𝑖 0 ⋯
⋯ 0 0 0 0 −𝑖 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The box denotes the (0, 0) entry. Notice how this is a rank-one unitary perturbation of the
matrix representation of Q.
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12.4 Notes
A two-volume treatment of Hilbert transforms is [216, 217]. The identity H 2 = −𝐼
sometimes appears in terms of Hilbert transform pairs, in the sense that if

𝑔(𝑥) = 1
𝜋 PV∫

∞

−∞

𝑓(𝑡)
𝑥 − 𝑡 𝑑𝑡,

then

𝑓(𝑥) = − 1
𝜋 PV∫

∞

−∞

𝑔(𝑡)
𝑥 − 𝑡 𝑑𝑡.

Hilbert [195] understood these pairs as

𝑢(𝜎) = 1
𝜋 PV∫

𝜋

−𝜋

𝑑𝑣
𝑑𝑠 log (2 sin

||
𝑠 − 𝜎
2

||) 𝑑𝑠

and

𝑣(𝜎) = − 1
𝜋 PV∫

𝜋

−𝜋

𝑑𝑢
𝑑𝑠 log (2 sin

||
𝑠 − 𝜎
2

||) 𝑑𝑠.

Hardy [176, 177] understood these pairs as

𝑔(𝑥) = 1
𝜋
𝑑
𝑑𝑥 ∫

∞

−∞
𝑓(𝑡) log ||1 −

𝑥
𝑡
|| 𝑑𝑡

and

𝑓(𝑥) = − 1
𝜋
𝑑
𝑑𝑥 ∫

∞

−∞
𝑔(𝑡) log ||1 −

𝑥
𝑡
|| 𝑑𝑡.

The mapping properties of the Hilbert transform were first investigated by Privalov
[275], who proved that the Hilbert transform preserves certain Lipschitz classes, and by
M. Riesz, [308] who proved that the Hilbert transform preserves the 𝐿𝑝(ℝ) classes for
1 < 𝑝 < ∞. Further work of Pichorides [269] computed the norm of the Hilbert transform
Q on 𝐿𝑝(𝕋) as tan(𝜋/2𝑝) for 1 < 𝑝 ⩽ 2 and cot(𝜋/2𝑝) for 2 < 𝑝 < ∞. The classes 𝐿1(ℝ)
and 𝐿∞(ℝ) are not preserved by the Hilbert transform [149] (Exercise 12.5.4). There is a
large body of work on certain operators related to the Hilbert transform called Calderón–
Zygmund operators [350]. This family of operators has mapping properties analogous to
those of the Hilbert transform.
The Hilbert transform was considered by Hilbert in 1905 to study a boundary-value

problem Riemann considered as part of his doctoral thesis. In a version of this problem,
one is given an 𝑓 ∶ ℝ → ℝ and asked to find analytic functions 𝐹+ and 𝐹− on the upper
and lower half planes, respectively, such that 𝐹+(𝑥) − 𝐹−(𝑥) = 𝑓(𝑥) on ℝ. As it turns out,
(H 𝑓)(𝑥) = −𝑖(𝐹+(𝑥) + 𝐹−(𝑥)). See [259] for a survey of Riemann–Hilbert problems.
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12.5 Exercises
Exercise 12.5.1. Let 0 ⩽ 𝑟 < 1 and −𝜋 ⩽ 𝑡 ⩽ 𝜋.

(a) Prove that the Poisson kernel from (12.1.3) satisfies

𝑃𝑟(𝑡) =
1 − 𝑟2

1 − 2𝑟 cos 𝑡 + 𝑟2 = Re (1 + 𝑟𝑒𝑖𝑡
1 − 𝑟𝑒𝑖𝑡 ) =

1 − 𝑟2
|1 − 𝑟𝑒𝑖𝑡|2 .

(b) Prove that 𝑃𝑟(𝑡) =
∞
∑

𝑛=−∞
𝑟|𝑛|𝑒𝑖𝑛𝑡.

Exercise 12.5.2. Prove that∫
𝜋

−𝜋
𝑃𝑟(𝑡)

𝑑𝑡
2𝜋 = 1 for all 0 ⩽ 𝑟 < 1.

Exercise 12.5.3. Let 0 ⩽ 𝑟 < 1 and let −𝜋 ⩽ 𝑡 ⩽ 𝜋.

(a) Prove that the conjugate Poisson kernel from (12.2.1) satisfies

𝑄𝑟(𝑡) = Im (1 + 𝑟𝑒𝑖𝑡
1 − 𝑟𝑒𝑖𝑡 ) =

2𝑟 sin 𝑡
1 − 2𝑟 cos 𝑡 + 𝑟2 .

(b) Prove that 𝑄𝑟(𝑡) =
∞
∑

𝑛=−∞
−𝑖 sgn(𝑛)𝑟|𝑛|𝑒𝑖𝑛𝑡.

Exercise 12.5.4. Let ℎ(𝑡) =
∞
∑
𝑛=2

cos(𝑛𝑡)
𝑛 log𝑛 .

(a) Prove that ℎ ∈ 𝐿2[−𝜋, 𝜋].

(b) Prove that ℎ is continuous on [−𝜋, 𝜋]\{0}.

(c) Prove that lim
𝑡→0

ℎ(𝑡) = +∞.

(d) Prove that (Qℎ)(𝑡) = −
∞
∑
𝑛=2

sin(𝑛𝑡)
𝑛 log𝑛 and defines a continuous function on [−𝜋, 𝜋].

Exercise 12.5.5. For 𝑡 ∈ ℝ and 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+, prove that

Re ( 1𝑖𝜋
1

𝑡 − 𝑧) =
1
𝜋

𝑦
(𝑥 − 𝑡)2 + 𝑦2 .

Exercise 12.5.6. For 𝑡 ∈ ℝ and 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ+, prove that

Im ( 1𝑖𝜋
1

𝑡 − 𝑧) =
1
𝜋

𝑥 − 𝑡
(𝑥 − 𝑡)2 + 𝑦2 .
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𝑦

𝑥

𝐶𝑅

𝐶𝜀

𝑥0

𝑅

𝜀

Figure 12.5.1 The contour for Exercise 12.5.8.

Exercise 12.5.7. An important aspect of the Hilbert transform is the principal-value
integral. For example, the integral

∫
𝛽

𝛼

𝑑𝑡
𝑡 − 𝑥

is undefined for all 𝑥 ∈ (𝛼, 𝛽). However, for each 𝑥 ∈ (𝛼, 𝛽), prove that

PV∫
𝛽

𝛼

𝑑𝑡
𝑡 − 𝑥 = lim

𝜀→0
∫
|𝑥−𝑡|>𝜀

𝑑𝑡
𝑡 − 𝑥 = log

|
|
|
𝑥 − 𝛼
𝛽 − 𝑥

|
|
|
.

Exercise 12.5.8. Let 𝑓 = 𝑝/𝑞, where 𝑝 and 𝑞 are polynomials with deg 𝑞 ⩾ 2+ deg𝑝 and
the roots of 𝑞 lie in the lower half plane. Do the computations below from [216].

(a) Pick 𝑥0 ∈ ℝ, 𝜀 > 0, and 𝑅 > 0. Consider the contour 𝐶 in Figure 12.5.1. Write

∫
𝐶

𝑓(𝑧)
𝑧 − 𝑥0

𝑑𝑧 = ∫
𝑥0−𝜀

−𝑅
+∫

𝐶𝜀

+∫
𝑅

𝑥0+𝜀
+∫

𝐶𝑅

and prove that as 𝑅 → ∞ and 𝜀 → 0 the sum of the first and third integrals on the
right side tend to

PV∫
∞

−∞

𝑓(𝑥)
𝑥 − 𝑥0

𝑑𝑥.

(b) Prove that the fourth integral tends to zero as 𝑅 → ∞.

(c) Prove that the second integral tends to −𝑖𝜋𝑓(𝑥0) as 𝜀 → 0+.
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(d) Prove that the integral on the left side equals zero.

(e) Combine the steps above to obtain 𝑓(𝑥0) =
1
𝑖𝜋 PV∫

∞

−∞

𝑓(𝑥)
𝑥 − 𝑥0

𝑑𝑥.

(f) Let 𝑓 = 𝑢 + 𝑖𝑣, where 𝑢 = Re𝑓 and 𝑣 = Im𝑓, and deduce that

𝑢(𝑥0) = − 1
𝜋 PV∫

∞

−∞

𝑣(𝑥)
𝑥 − 𝑥0

𝑑𝑥 and 𝑣(𝑥0) =
1
𝜋 PV∫

∞

−∞

𝑢(𝑥)
𝑥 − 𝑥0

𝑑𝑥.

Remark: Compare this pair with the formulas of Hilbert and Hardy mentioned in the
endnotes for this chapter.

Exercise 12.5.9. Here is the circle version of Exercise 12.5.8. Let 𝑓 ∈ 𝐿2[−𝜋, 𝜋] have the
Fourier series

𝑓(𝑥) =
∞
∑
𝑛=1

(𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥)

and corresponding conjugate series

𝑔(𝑥) =
∞
∑
𝑛=1

(−𝑎𝑛 sin𝑛𝑥 + 𝑏𝑛 cos𝑛𝑥).

Show that the Hilbert-transform pair becomes

𝑔(𝑥) = −PV∫
𝜋

−𝜋
𝑓(𝑡) cot (𝑥 − 𝑡

2 ) 𝑑𝑡2𝜋 and 𝑓(𝑥) = PV∫
𝜋

−𝜋
𝑔(𝑡) cot (𝑥 − 𝑡

2 ) 𝑑𝑡2𝜋 .

Exercise 12.5.10. Let 𝑎 > 0 and

𝑓(𝑥) = 𝑎
𝑎2 + 𝑥2 .

For 𝑥 ∈ ℝ, prove that (H 𝑓)(𝑥) = 𝑥
𝑎2 + 𝑥2 .

Exercise 12.5.11. Let 𝑎 > 0 and

𝑓(𝑥) = 𝑥
𝑎2 + 𝑥2 .

For 𝑥 ∈ ℝ, prove that (H 𝑓)(𝑥) = −𝑎
𝑎2 + 𝑥2 .

Exercise 12.5.12. Let 𝑎 > 0 and 𝑓(𝑥) = sin(𝑎𝑥).

(a) For 𝑥 ∈ ℝ, prove that (H 𝑓)(𝑥) = − cos(𝑎𝑥).

(b) What is the Hilbert transform of cos(𝑎𝑥)?

Remark: Technically, sin(𝑎𝑥) does not belong to 𝐿2(ℝ), but one can take its Hilbert
transform as a principal-value integral.
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Exercise 12.5.13. For 𝑎 > 0, evaluateH 𝑓 for

𝑓(𝑥) = {𝑒
−𝑎𝑥 if 𝑥 ⩾ 0,
0 if 𝑥 < 0.

Exercise 12.5.14. EvaluateH 𝑓 for

𝑓(𝑥) = {1 if |𝑥| ⩽ 1,
0 if |𝑥| > 1.

Exercise 12.5.15. If

𝑔(𝑥) = 1
𝜋 PV∫

∞

−∞

𝑓(𝑡)
𝑥 − 𝑡 𝑑𝑡,

prove that 𝑔(𝑥) = 1
𝜋 ∫

∞

−∞
𝑓′(𝑡) log ||1 −

𝑥
𝑡
|| 𝑑𝑡.

Exercise 12.5.16.

(a) Prove that if 𝑓 ∈ 𝐿2(𝕋) is real valued, then ⟨Q𝑓, 𝑓⟩ = 0.

(b) Prove that if 𝑓 ∈ 𝐿2(ℝ) is real valued, then ⟨H 𝑓, 𝑓⟩ = 0.

Exercise 12.5.17. Let 𝑓 ∈ 𝐿2(ℝ).

(a) If 𝑓 is even, prove that (H 𝑓)(𝑥) = 2𝑥
𝜋 PV∫

∞

0

𝑓(𝑡)
𝑥2 − 𝑡2 𝑑𝑡.

(b) If 𝑓 is odd, prove that (H 𝑓)(𝑥) = 2
𝜋 PV∫

∞

0

𝑡𝑓(𝑡)
𝑥2 − 𝑡2 𝑑𝑡.

Exercise 12.5.18. Verify the identities

H ( 1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 ) = −𝑖 1

√𝜋
(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 for 𝑛 ⩾ 0,

and

H ( 1
√𝜋

(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 ) = 𝑖 1

√𝜋
(𝑥 + 𝑖)𝑛−1
(𝑥 − 𝑖)𝑛 for 𝑛 ⩾ 1.

Exercise 12.5.19. Recall convolution of 𝑓, 𝑔 ∈ 𝐿2(ℝ) from (11.2.1). Prove thatH (𝑓∗𝑔) =
(H 𝑓) ∗ 𝑔 = 𝑓 ∗ (H 𝑔).

Exercise 12.5.20. For the operators 𝐻+ = 1
2
(𝐼 + 𝑖H ) and 𝐻− = 1

2
(𝐼 − 𝑖H ), prove the

following.

(a) 𝐻+ and 𝐻− are idempotent.

(b) 𝐻∗
+ = 𝐻−.
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(c) 𝐻−𝐻+ = 𝐻+𝐻− = 0.

(d) ker𝐻− = ran𝐻+ = 𝐻2(ℝ).

(e) ran𝐻− = ker𝐻+ = 𝐻2(ℝ).

Exercise 12.5.21. Let 𝐴 = 1
√2
(𝐼 +H ). Prove that 𝐴2 = H . Thus, 𝐴 is a square root of

the Hilbert transformH on 𝐿2(ℝ).

Exercise 12.5.22. Let 𝐴 = 1
√2
(𝐼 +Q − 1 ⊗ 1). Prove that 𝐴2 = Q. Thus, 𝐴 is a square

root of the Hilbert transformQ on 𝐿2(𝕋).

Exercise 12.5.23. For 𝑎 ∈ ℝ and 𝜌 > 0, define the translation operator 𝑇𝑎 on 𝐿2(ℝ) by
(𝑇𝑎𝑓)(𝑥) = 𝑓(𝑥 − 𝑎) and the dilation operator 𝐷𝜌 on 𝐿2(ℝ) by (𝐷𝜌𝑓)(𝑥) = 𝑓(𝜌𝑥). Prove
that for any 𝛼, 𝛽 ∈ ℂ, the operator 𝛼𝐼 +𝛽H commutes with 𝐷𝜌 for all 𝜌 > 0 and 𝑇𝑎 for all
𝑎 ∈ ℝ.
Remark: The converse is true but more difficult to prove [216].

Exercise 12.5.24. Let 𝑓, 𝑔 ∈ 𝐿2(ℝ) such thatF𝑓 vanishes on |𝑡| > 𝑎 andF𝑔 vanishes on
|𝑡| < 𝑎. Prove Bedrosian’s Hilbert transform product theorem [36]: H (𝑓𝑔) = 𝑓H 𝑔.
Remark: See [216] for more on this.

Exercise 12.5.25. Contrary to some of the other commutative diagramsmentioned in this
book, the following diagram

𝐿2(𝕋) Q- 𝐿2(𝕋)

𝐿2(ℝ)

𝑈

?

H
- 𝐿2(ℝ)

𝑈∗

6

does not quite hold. In the above,𝑈 is from Exercise 11.10.7. Prove thatQ𝜉𝑛 = 𝑈∗H 𝑈𝜉𝑛
holds for all 𝑛 ≠ 0 but does not hold when 𝑛 = 0.

Exercise 12.5.26. Suppose 𝑓 and (𝑇𝑎𝑓)(𝑥) = (𝑥−𝑎)𝑓(𝑥) belong to 𝐿2(ℝ) for some 𝑎 ∈ ℂ.

(a) Prove that H (𝑇𝑎𝑓) = 𝑇𝑎H 𝑓 − 1
𝜋 ∫

∞

−∞
𝑓(𝑡) 𝑑𝑡.

(b) Use (a) to prove the following formula of Akhiezer [2]:

(𝑥 − 𝑖)H ( 𝑓(𝑡)𝑡 − 𝑖 ) = H 𝑓 + 1
𝜋 ∫

∞

−∞

𝑓(𝑡)
𝑡 − 𝑖 𝑑𝑡.

Exercise 12.5.27. Show that the set

{(𝑓 +H 𝑓)|[0,1] ∶ 𝑓 ∈ 𝐶∞(ℝ), 𝑓 is compactly supported in (0,∞)}

is dense in 𝐿2[0, 1] as follows.
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(a) Prove that if 𝑔 ∈ 𝐿2[0, 1] is orthogonal to every such (𝑓 + H 𝑓)|[0,1] above, then
𝑔 −H 𝑔 = 0 on (0,∞).

(b) Prove that H 𝑔 = 𝑔 on ℝ.

(c) Prove 𝑔 = 0.

Exercise 12.5.28. The discrete Hilbert transform 𝐻 ∶ ℓ2(ℤ) → ℓ2(ℤ) is defined by

(𝐻x)𝑛 = ∑
𝑚∈ℤ
𝑚≠𝑛

𝑥𝑚
𝑛 − 𝑚 for x = (𝑥𝑛)∞𝑛=−∞ ∈ ℓ2(ℤ).

Show that 𝐻 is bounded on ℓ2(ℤ) using the following steps.

(a) For 𝑛 ∈ ℤ, define 𝐼𝑛 = [𝑛 − 1
4
, 𝑛 + 1

4
]. For x = (𝑥𝑛)∞𝑛=−∞ ∈ ℓ2(ℤ), define

𝑓(𝑥) = 2
∞
∑

𝑛=−∞
𝑥𝑛𝜒𝐼𝑛 (𝑥).

Prove that 𝑓 ∈ 𝐿2(ℝ) and ‖𝑓‖ = ‖x‖.

(b) For a fixed𝑚 ∈ ℤ and 𝑥 ∈ 𝐼𝑚, prove that

∑
𝑛≠𝑚

𝑥𝑛∫
𝐼𝑛

𝑑𝑡
𝑥 − 𝑡 =

1
2 (𝜋H 𝑓)(𝑥) − 𝑥𝑚(𝜋H 𝜒𝐼𝑚 )(𝑥).

(c) Use the identity

∑
𝑛≠𝑚

𝑥𝑛
𝑛 − 𝑚 = ∑

𝑛≠𝑚
( 1
𝑛 − 𝑚 − (𝜋H 𝜒𝐼𝑛 )(𝑥) + (𝜋H 𝜒𝐼𝑛 )(𝑥))𝑥𝑛,

valid for 𝑥 ∈ 𝐼𝑚, to prove that

|(𝐻x)𝑚| ⩽ ∑
𝑛≠𝑚

|𝑥𝑛|∫
𝐼𝑛

|
|
|

1
𝑛 − 𝑚 − 1

𝑥 − 𝑡
|
|
|
𝑑𝑡 + ∑

𝑛≠𝑚
|𝑥𝑛|||(𝜋H 𝜒𝐼𝑛 )(𝑥)||.

(d) For 𝑥 ∈ 𝐼𝑛 and 𝑦 ∈ 𝐼𝑚, prove that
|
|
|

1
𝑥 − 𝑦 −

1
𝑛 − 𝑚

|
|
|
⩽ 2
(𝑛 − 𝑚)2 .

(e) Prove that

|(𝐻x)𝑚| ⩽ ∑
𝑛≠𝑚

|𝑥𝑛|
(𝑛 − 𝑚)2 +

1
2 |(𝜋H 𝑓)(𝑥)| + |𝑥𝑛|||(𝜋H 𝜒𝐼𝑚 )(𝑥)||.

(f) Integrate each term over 𝐼𝑚, square, sum over𝑚, and use the fact that H is unitary
on 𝐿2(ℝ) to prove that 𝐻 is bounded on ℓ2(ℤ).

(g) Find the matrix representation of 𝐻 with respect to the basis (e𝑛)∞𝑛=−∞ for ℓ2(ℤ).

Remark: See [241] for more on this.
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Exercise 12.5.29. Another version of the discrete Hilbert transform is the operator𝐻𝐷 ∶
ℓ2(ℤ) → ℓ2(ℤ) defined by

(𝐻𝐷x)𝑛 =
1
𝜋 ∑

𝑚∈ℤ
𝑚≠𝑛

𝑥𝑚(1 − (−1)𝑛−𝑚)
𝑛 − 𝑚 for x = (𝑥𝑛)∞𝑛=−∞ ∈ ℓ2(ℤ).

Use the identities

∑
𝑘∈ℤ
𝑘≠𝑗

(1 − (−1)𝑘−𝑗)2
(𝑘 − 𝑗)2 = 8

∞
∑
𝑘=0

1
(2𝑘 + 1)2 = 𝜋2

and

∑
𝑘∈ℤ
𝑗≠𝑚

(1 − (−1)𝑘−𝑗)(1 − (−1)𝑘−𝑚)
(𝑘 − 𝑗)(𝑘 − 𝑚) = 0

to prove that

(a) ‖𝐻𝐷x‖ = ‖x‖ for all x ∈ ℓ2(ℤ).

(b) 𝐻2
𝐷 = −𝐼.

(c) Find the matrix representation of this operator with respect to the standard basis
(e𝑛)∞𝑛=−∞ for ℓ2(ℤ).

Remark: See [216] for more on this.

12.6 Hints for the Exercises

Hint for Ex. 12.5.1: Write 1 + 𝑢
1 − 𝑢 for |𝑢| < 1 as a power series.

Hint for Ex. 12.5.10: Consider 𝐹(𝑧) = 1
𝑎 − 𝑖𝑧 ∈ 𝐻2(ℂ+).

Hint for Ex. 12.5.11: Exercise 12.5.10 and H 2 = −𝐼.
Hint for Ex. 12.5.24: Use inverse Fourier transforms and the relationship between the
Hilbert transform and the Fourier transform.
Hint for Ex. 12.5.27: For (b), recall that the Hilbert transform is unitary on 𝐿2(ℝ).
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Bishop Operators

Key Concepts: The invariant subspace problem, reducing subspace, universal operator, Caradus’
theorem, Bishop operator (norm, spectrum, invariant subspace, reducing subspace).

Outline: This chapter covers Bishop operators (𝑇𝛼𝑓)(𝑥) = 𝑥𝑓({𝑥 + 𝛼}) on 𝐿2[0, 1]. In the
above, 𝛼 ∈ [0, 1) and {𝑡} denotes the fractional part of 𝑡 ∈ ℝ. Interest in these operators
comes from attempts to provide counterexamples to the invariant subspace problem. We
begin with a short survey on the invariant subspace problem and universal operators.

13.1 The Invariant Subspace Problem
At various points in this book, we describe all of the invariant subspaces for particular
operators, such as certain multiplication operators, the Volterra operator, the unilateral
shift on 𝐻2, and so forth. This suggests a natural question: does every bounded operator
on aHilbert space have an invariant subspace?We should be careful to phrase this problem
precisely.
First of all, {0} and ℋ are invariant for any 𝐴 ∈ ℬ(ℋ). Consequently, we restrict our

attention to proper nonzero subspaces; note that dimℋ ⩾ 2 is necessary for the problem
to be interesting. Ifℋ is finite dimensional and dimℋ ⩾ 2, then 𝐴 has an eigenvalue and
hence the span of a single eigenvector is a proper nonzero 𝐴-invariant subspace. Thus,
the finite-dimensional case is settled in the affirmative. At the other extreme, if ℋ is
nonseparable (see Exercise 1.10.37 for an example), then for any nonzero x ∈ ℋ and
any nonzero𝐴 ∈ ℬ(ℋ), the cyclic subspace⋁{𝐴𝑛x ∶ 𝑛 ⩾ 0} is a proper nonzero invariant
subspace.
The previous discussion brings us to the most famous open problem in operator theory.

The invariant subspace problem asks whether every bounded operator on a separable
Hilbert space of dimension at least two has a proper nonzero invariant subspace. Many
operators (for example compact operators and operators that commute with a nonzero
compact operator) have invariant subspaces. The text [80] surveys the latest developments
on the invariant subspace problem. For reference, let us formally state several important
definitions.
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Definition 13.1.1. Letℳ be a subspace of complex Hilbert spaceℋ and let 𝐴 ∈ ℬ(ℋ).

(a) ℳ is invariant for 𝐴 if 𝐴ℳ ⊆ ℳ.

(b) ℳ is hyperinvariant for 𝐴 ifℳ is invariant for every 𝑇 ∈ ℬ(ℋ) such that 𝐴𝑇 = 𝑇𝐴.

(c) ℳ is reducing for 𝐴 if 𝐴ℳ ⊆ ℳ and 𝐴∗ℳ ⊆ℳ.

(d) ℳ is irreducible for 𝐴 if it is invariant,ℳ ≠ ℋ, butℳ contains no nonzero reducing
subspace.

The following theorem allows us to focus on the reducing and irreducible subspaces
separately [356, p. 8].

Theorem 13.1.2. Every invariant subspace for a bounded Hilbert space operator can be
written as an orthogonal direct sum of a reducing subspace and an irreducible subspace.

E. Bishop suggested that for irrational 𝛼 ∈ [0, 1), the transformation 𝑥 ↦ {𝑥 + 𝛼} on
𝐿2[0, 1] is sufficiently “ergodic” so that the operator 𝑇𝛼 has no proper nonzero invariant
subspaces. Davie [106] showed this is not always the case. However, not all irrational 𝛼 are
included in Davie’s paper and it remains an intriguing open problem whether all Bishop
operators have proper nonzero invariant subspaces. Our survey of Bishop operators begins
in Section 13.4.

13.2 Lomonosov’s Theorem
In an unpublished work, von Neumann proved that every compact operator on a complex
Hilbert space of dimension at least two has a proper nonzero invariant subspace. Aron-
szajn and Smith generalized the result to Banach-space operators.

Theorem 13.2.1 (von Neumann, Aronszajn–Smith [23]). Ifℋ is a complex Hilbert space
with dimℋ ⩾ 2 and𝐴 ∈ ℬ(ℋ) is compact, then𝐴 has a proper nonzero invariant subspace.

In 1973, Lomonosov proved a sweeping generalization of this result [230]. Not only
is his result much stronger but its proof is simpler than that of Aronszajn and Smith.
Traditionally, “Lomonosov’s theorem” refers to Corollary 13.2.4 below. It is a consequence
of Theorem 13.2.2, which is a hyperinvariant-subspace version of the result. The proof
below is from A. J. Michaels’ exposition of Hilden’s proof [243] (see also [280]). Michaels
claims that “the ideas are all Lomonosov’s and Hilden’s. Even the exposition of the proof
is derivative; it is largely based on Wallen’s 1973 Wabash conference lecture.”

Theorem 13.2.2. Every nonzero compact operator on a complex Hilbert space has a proper
nonzero hyperinvariant subspace.

Proof Let 𝐾 ∈ ℬ(ℋ) be a nonzero compact operator. Riesz’s theorem (Theorem 2.6.9)
says that 𝜎(𝐾) is the union of {0} and a (possibly empty) discrete set of points that
accumulate only at 0. Moreover, every nonzero element of 𝜎(𝐾) is an eigenvalue of
finite multiplicity. There are two possibilities: 𝜎(𝐾) ≠ {0} or 𝜎(𝐾) = {0}.
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If 𝜎(𝐾) ≠ {0}, then 𝐾 has a nonzero eigenvalue 𝜆. Consequently,ℳ = ker(𝐾 − 𝜆𝐼), the
eigenspace for 𝜆, is𝐾-invariant; it is nonzero by definition. Since𝐾 is compact,𝐾 ≠ 𝜆𝐼
and henceℳ ≠ ℋ. If 𝐴 ∈ ℬ(ℋ) and 𝐴𝐾 = 𝐾𝐴, then for each x ∈ ℳ, it follows that
𝐾(𝐴x) = 𝐴(𝐾x) = 𝐴(𝜆x) = 𝜆(𝐴x), and hence 𝐴x ∈ ℳ. In other words, ℳ is an
invariant subspace for 𝐴. Thus,ℳ is a proper nonzero hyperinvariant subspace for
𝐾.

Suppose that 𝜎(𝐾) = {0}. Then the spectral radius formula (Theorem 8.4.4) ensures that

lim
𝑛→∞

‖(𝛼𝐾)𝑛‖
1
𝑛 = lim

𝑛→∞
|𝛼| ‖𝐾𝑛‖

1
𝑛 = 0 for all 𝛼 ∈ ℂ. (13.2.3)

Since 𝐾 ≠ 0, assume that ‖𝐾‖ = 1. Indeed, multiply by 1/‖𝐾‖which does not change
the invariant-subspace structure for 𝐾. Then there is an x0 ∈ ℋ such that ‖𝐾x0‖ =
1 + 𝛿 for some 𝛿 > 0. In particular, this implies that ‖x0‖ > 1 since ‖𝐾‖ = 1. Let

𝔅 = {x ∈ ℋ ∶ ‖x − x0‖ ⩽ 1}

and observe that 0 ∉ 𝔅 and 0 ∉ (𝐾𝔅)− since for x ∈ 𝔅,

‖𝐾x‖ ⩾ ‖𝐾x0‖ − ‖𝐾(x − x0)‖ > 𝛿 > 0.

For each v ∈ ℋ, let

ℳv = {𝐴v ∶ 𝐴 ∈ ℬ(ℋ), 𝐴𝐾 = 𝐾𝐴}.

Eachℳv is a vector space that is invariant under any operator that commutes with 𝐾
(hence invariant under 𝐾 itself) since 𝐴(𝐴v) = 𝐴2v and 𝐴2𝐾 = 𝐾𝐴2. Since eachℳ−

v
is a hyperinvariant subspace for 𝐾, it suffices to prove that there is a v ∈ ℋ such that
ℳ−

v is proper and nonzero. If v ≠ 0, thenℳv ≠ {0} since v = 𝐼v and 𝐼𝐾 = 𝐾𝐼. For
v ∈ ℋ\{0}, it may be thatℳ−

v = ℋ. It turns out that this cannot occur for all v ≠ 0.
Suppose toward a contradiction thatℳv is dense inℋ for all v ∈ ℋ\{0}. Then for each
v ≠ 0, there is an 𝐴 ∈ ℬ(ℋ) such that 𝐴𝐾 = 𝐾𝐴 and ‖𝐴v − x0‖ < 1. Let

𝒰(𝐴) = {v ∶ ‖𝐴v − x0‖ < 1},

and observe that

⋃
𝐴∈ℬ(ℋ)
𝐴𝐾=𝐾𝐴

𝒰(𝐴) = ℋ\{0}.

Since 𝐾 is compact, (𝐾𝔅)− is a compact subset ofℋ\{0}. Each𝒰(𝐴) is open, so there
are 𝐴1, 𝐴2,…, 𝐴𝑛 ∈ ℬ(ℋ) that commute with 𝐾 such that

𝐾𝔅 ⊆
𝑛

⋃
𝑖=1

𝒰(𝐴𝑖).

Since 𝐾x0 ∈ 𝐾𝔅 (since x0 ∈ 𝔅), there is an 𝑖1 ∈ {1, 2,…, 𝑛} such that 𝐾x0 ∈ 𝒰(𝐴𝑖1 ).
In other words, 𝐴𝑖1𝐾x0 ∈ 𝔅, and hence 𝐾𝐴𝑖1𝐾x0 ∈ 𝐾𝔅. In a similar way, there is
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an 𝑖2 ∈ {1, 2,…, 𝑛} such that 𝐾𝐴𝑖1𝐾x0 ∈ 𝒰(𝐴𝑖2 ), and hence 𝐴𝑖2𝐾𝐴𝑖1𝐾x0 ∈ ℬ. This
process can be continued indefinitely to produce 𝑖1, 𝑖2,…, such that

𝐴𝑖𝑚𝐾𝐴𝑖𝑚−1𝐾⋯𝐴𝑖1𝐾𝐴𝑖1𝐾x0 ∈ 𝔅

for each 𝑚 ⩾ 1. Let 𝑐 = max{‖𝐴𝑖‖ ∶ 1 ⩽ 𝑖 ⩽ 𝑚} and recall that each 𝐴𝑖 commutes
with 𝐾. Therefore,

(𝑐−1𝐴𝑖𝑚 )(𝑐−1𝐴𝑖𝑚−1 )⋯ (𝑐−1𝐴𝑖1 )(𝑐𝐾)𝑚x0 ∈ 𝔅.

Since (13.2.3) ensures that ‖(𝑐𝐾)𝑚‖ → 0 and each ‖𝑐−1𝐴𝑖𝑗 ‖ ⩽ 1, it follows that 0 ∈ 𝔅
because 𝔅 is closed. This contradicts the fact that 0 ∉ 𝔅, so there exists a v ≠ 0 such
thatℳ−

v ≠ ℋ. This yields a hyperinvariant subspace for 𝐾. ■

Corollary 13.2.4 (Lomonosov [230]). If 𝐴 ∈ ℬ(ℋ) commutes with a nonzero compact
operator 𝐾, then 𝐴 has a proper nonzero invariant subspace.

Proof If 𝐴 ∈ ℬ(ℋ) commutes with a nonzero compact operator 𝐾, then Theorem 13.2.2
ensures that 𝐾 has a proper nonzero hyperinvariant subspaceℳ. Since 𝐴 commutes
with 𝐾, the definition of hyperinvariance ensures thatℳ is 𝐴-invariant. ■

13.3 Universal Operators
One approach to the invariant subspace problem is to study the invariant subspaces of
a special type of operator which boasts a sufficiently complicated lattice of invariant
subspaces. Recall that 𝐴 ∈ ℬ(ℋ) and 𝐵 ∈ ℬ(𝒦) are similar if there is an invertible
𝑆 ∈ ℬ(ℋ,𝒦) such that 𝑆−1𝐵𝑆 = 𝐴. This is represented by the following commutative
diagram:

ℋ 𝐴 - ℋ

𝒦

𝑆

?

𝐵
- 𝒦

𝑆−1

6

Note that similarity preserves invariant subspaces: ifℳ ⊆ ℋ is an invariant subspace
for 𝐴, then 𝑆ℳ ⊆ 𝒦 is an invariant subspace for 𝐵.

Definition 13.3.1. 𝑈 ∈ ℬ(ℋ) is universal forℋ if for any nonzero 𝐴 ∈ ℬ(ℋ), there is
an invariant subspaceℳ for 𝑈 and a nonzero constant 𝜆 such that 𝐴 is similar to 𝜆𝑈|ℳ .

Notice that 𝑈|ℳ and 𝜆𝑈|ℳ have the same invariant subspaces. Thus, the collection of
invariant subspaces of 𝑈|ℳ is in bijective and order-preserving correspondence with the
collection of invariant subspaces of 𝐴. The invariant subspaces of a universal operator are
so plentiful that they can model the invariant subspace structure of any operator on ℋ.
Although the existence of universal operators seems impossible, in 1960 Rota produced
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an example of one [316]. Since this early example, they have been shown to exist in
abundance. One method for producing them is due to Caradus.

Theorem 13.3.2 (Caradus [75]). If ℋ is an infinite-dimensional separable Hilbert space
and 𝑈 ∈ ℬ(ℋ) satisfies

(a) dimker𝑈 = ∞ and

(b) ran𝑈 = ℋ,

then 𝑈 is universal forℋ.

Proof Let 𝒦 = ker𝑈 and consider the orthogonal decompositionℋ = 𝒦 ⊕𝒦⟂. Since
ran𝑈 = ℋ, it follows that 𝑈 = 𝑈|𝒦⟂ ∶ 𝒦⟂ → ℋ is a bijection. Consequently,
𝑉 = 𝑈−1 is a bijection fromℋ to𝒦⟂ such that

𝑈𝑉 = 𝐼 and ran𝑉 = 𝒦⟂.

Since dim𝒦 = ∞, there is a unitary𝑊 ∶ ℋ → 𝒦. By construction,

𝑈𝑊 = 0, ker𝑊 = {0}, and ran𝑊 = 𝒦.

Suppose that 𝑇 ∈ ℬ(ℋ) and let 𝜆 ≠ 0 satisfy |𝜆| ‖𝑇‖ ‖𝑉‖ < 1, so that the series defining

𝑄 =
∞
∑
𝑛=0

𝜆𝑛𝑉𝑛𝑊𝑇𝑛

converges in operator norm (apply Theorem 1.8.11 to the Banach spaceℬ(ℋ)). Then

𝑄 = 𝑊 + 𝜆𝑉𝑄𝑇, (13.3.3)

and hence

𝑈𝑄 = 𝜆𝑄𝑇 (13.3.4)

since 𝑈𝑉 = 𝐼 and 𝑈𝑊 = 0.
If we can show that ℳ = ran𝑄 is closed and 𝑄 ∶ ℋ → ℳ is injective, then the
bounded inverse theoremwill ensure that𝑄 is invertible. In light of (13.3.4), this will
show that 𝜆𝑇 is similar to the restriction of 𝑈 toℳ. From (13.3.4) it follows thatℳ
is 𝑈-invariant.

If 𝑄x = 0, we know that 𝑊x + 𝜆𝑉𝑄𝑇x = 0. Now use the fact that ran𝑊 ⟂ ran𝑉 to
conclude that 𝑊x = 0. But ker𝑊 = {0}, which implies that x = 0 and hence 𝑄 is
injective.

To show that 𝑄 has closed range, suppose that 𝑄x𝑛 → y. From (13.3.3), it follows that
𝑊x𝑛 + 𝜆𝑉𝑄𝑇x𝑛 → y. Since ran𝑊 = 𝒦 and ran𝑉 = 𝒦⟂, one sees that𝑊x𝑛 → 𝑃𝒦y
(the orthogonal projection of y onto𝒦). From here recall that𝑊 ∶ ℋ → 𝒦 is unitary
and so x𝑛 → x = 𝑊 ∗𝑃𝒦y. The boundedness of 𝑄 implies that 𝑄x𝑛 → 𝑄x, and hence
ℳ = ran𝑄 is closed. ■
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Example 13.3.5. Caradus’ theorem produces many universal operators beyond Rota’s
initial example of the backward shift of infinite multiplicity (see Chapter 14 for a formal
treatment of infinite direct sums of Hilbert spaces). Specifically, we mean the operator 𝑈
on the Hilbert space

(𝐻2)(∞) = {(𝑓𝑗)∞𝑗=0 ∶ 𝑓𝑗 ∈ 𝐻2, ‖(𝑓𝑗)∞𝑗=0‖2 =
∞
∑
𝑗=0

‖𝑓𝑗‖2𝐻2 < ∞}

defined by

𝑈(𝑓0, 𝑓1, 𝑓2, 𝑓3,…) = (𝑓1, 𝑓2, 𝑓3,…). (13.3.6)

Observe that ker𝑈 = {(𝑓, 0, 0,…) ∶ 𝑓 ∈ 𝐻2}, which is infinite dimensional, and ran𝑈 =
(𝐻2)(∞). Thus, the conditions of Caradus’ theorem are satisfied and hence 𝑈 is universal.
Of course, Rota did not have the luxury of Caradus’ theorem and so his proof was more
complicated.

Example 13.3.7. For each 𝑎 > 0, the operator 𝑈𝑎 ∶ 𝐿2(ℝ+) → 𝐿2(ℝ+) defined by

(𝑈𝑎𝑓)(𝑥) = 𝑓(𝑥 + 𝑎)

is universal since𝑈𝑎 is similar to the backward shift of infinitemultiplicity discussed above
(Exercise 13.9.9). One can also see this by applying Caradus’ theorem.

Later chapters of this book contain examples of universal operators among the trans-
lation, Toeplitz, and composition operators. Two good surveys of universal operators are
[101] and [80, Ch. 8].

13.4 Properties of Bishop Operators
A Bishop operator (𝑇𝛼𝑓)(𝑥) = 𝑥𝑓({𝑥 + 𝛼}) on 𝐿2[0, 1] can be written as

𝑇𝛼 = 𝑀𝑥𝑈𝛼,

where𝑀𝑥 ∶ 𝐿2[0, 1] → 𝐿2[0, 1], defined by

(𝑀𝑥𝑓)(𝑥) = 𝑥𝑓(𝑥),

is the multiplication operator covered earlier in Chapter 4, and 𝑈𝛼 ∶ 𝐿2[0, 1] → 𝐿2[0, 1] is
defined by

𝑈𝛼𝑓 = 𝑓(𝑢𝛼),

where 𝑢𝛼(𝑥) = {𝑥 + 𝛼}, is a composition operator. One can check that 𝑢𝛼 is a (Lebesgue)
measure-preserving transformation of [0, 1) to itself and hence the composition operator
𝑈𝛼 is unitary. Note that

𝑢∘𝑗𝛼 (𝑥) = 𝑢𝑗𝛼(𝑥) for all 𝑥 ∈ [0, 1],
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𝑢1/4(𝑥) 𝑢∘21/4(𝑥)

𝑢∘31/4(𝑥) 𝑢∘41/4(𝑥)

Figure 13.4.1 The graphs of 𝑢∘𝑗1/4(𝑥) for 𝑗 = 1, 2, 3, 4.

where 𝑢∘𝑗𝛼 denotes the function 𝑢𝛼 composed with itself 𝑗 times. If 𝑝, 𝑞 ∈ ℕ are relatively
prime, 𝑝 < 𝑞, and 𝛼 = 𝑝/𝑞, then 𝑢∘𝑞𝛼 (𝑥) = 𝑥 for 𝑥 ∈ [0, 1]; see Figures 13.4.1 and 13.4.2.
Furthermore, 𝑞 is the smallest positive integer for which this holds.
If 𝐸 = [0, 1/𝑞), then the sets

𝑢∘𝑗𝛼 (𝐸) for 0 ⩽ 𝑗 ⩽ 𝑞 − 1,

are pairwise disjoint and
𝑞−1

⋃
𝑗=0

𝑢∘𝑗𝛼 (𝐸) = [0, 1). (13.4.1)

These facts translate into operator identities. For example,

𝑈𝑛
𝛼 𝑓 = 𝑓 ∘ 𝑢𝑛𝛼 for all 𝑛 ∈ ℤ and 𝑓 ∈ 𝐿2[0, 1],

and, since 𝑈𝛼 is unitary,

𝑈∗
𝛼 = 𝑈−𝛼. (13.4.2)

If 𝑝, 𝑞 ∈ ℕ are relatively prime, 𝑝 < 𝑞, and 𝛼 = 𝑝/𝑞, then 𝑈𝑞
𝛼 = 𝐼.

The iterates of 𝑇𝛼 are important in what follows. Starting with

𝑇𝛼𝑓 = 𝑀𝑥𝑈𝛼𝑓 = 𝑀𝑥(𝑓 ∘ 𝑢𝛼),
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𝑢3/4(𝑥) 𝑢∘23/4(𝑥)

𝑢∘33/4(𝑥) 𝑢∘43/4(𝑥)

Figure 13.4.2 Graphs of 𝑢∘𝑗3/4(𝑥) for 𝑗 = 1, 2, 3, 4.

we have

𝑇2
𝛼𝑓 = 𝑇𝛼(𝑀𝑥𝑓(𝑢𝛼)) = 𝑥𝑢𝛼(𝑥)𝑓(𝑢𝛼 ∘ 𝑢𝛼),

and hence (𝑇2
𝛼𝑓)(𝑥) = 𝑥{𝑥 + 𝛼}𝑓({𝑥 + 2𝛼}). In general,

(𝑇𝑛
𝛼 𝑓)(𝑥) = 𝑔𝛼,𝑛(𝑥)𝑓({𝑥 + 𝑛𝛼}), (13.4.3)

where

𝑔𝛼,𝑛(𝑥) = 𝑥{𝑥 + 𝛼}{𝑥 + 2𝛼}⋯ {𝑥 + (𝑛 − 1)𝛼}.

When 𝛼 = 𝑝/𝑞 as above, observe that

(𝑇𝑞
𝛼 𝑓)(𝑥) = 𝑔𝛼,𝑞(𝑥)𝑓(𝑥). (13.4.4)

In other words, 𝑇𝑞
𝛼 is the multiplication operator with symbol 𝑔𝛼,𝑞. Let us now compute

the norm of a Bishop operator.

Proposition 13.4.5. ‖𝑇𝛼‖ = 1 for every 𝛼 ∈ [0, 1).

Proof Proposition 4.1.2 says that ‖𝑀𝑥‖ = 1. The operator𝑈𝛼 is unitary, and hence ‖𝑈𝛼‖ =
1. From Proposition 2.1.12,

‖𝑇𝛼‖ = ‖𝑀𝑥𝑈𝛼‖ ⩽ ‖𝑀𝑥‖‖𝑈𝛼‖ = 1
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Figure 13.5.1 The graphs of 𝑔1/2,2(𝑥) (left) and 𝑔2/3,3(𝑥) (right).

and hence ‖𝑇𝛼‖ ⩽ 1. The functions ℎ𝑛(𝑥) = √2𝑛 + 1𝑥𝑛 are unit vectors in 𝐿2[0, 1],
and, since𝑈𝛼 is unitary (see (13.4.2)), the 𝑓𝑛 = 𝑈−𝛼ℎ𝑛 are also unit vectors. Moreover,
since 𝑈𝛼𝑈−𝛼 = 𝐼, it follows that

𝑇𝛼𝑓𝑛 = 𝑀𝑥𝑈𝛼𝑓𝑛 = 𝑀𝑥𝑈𝛼𝑈−𝛼ℎ𝑛 = 𝑀𝑥ℎ𝑛 = √2𝑛 + 1𝑥𝑛+1 = √2𝑛 + 1
√2𝑛 + 3

ℎ𝑛+1.

Thus,

‖𝑇𝛼𝑓𝑛‖ =
√2𝑛 + 1
√2𝑛 + 3

→ 1 as 𝑛 → ∞,

and hence

1 ⩾ ‖𝑇𝛼‖ = sup{‖𝑇𝛼𝑓‖ ∶ ‖𝑓‖ = 1} ⩾ lim
𝑛→∞

‖𝑇𝛼𝑓𝑛‖ = 1.

Consequently, ‖𝑇𝛼‖ = 1. ■

13.5 Rational Case: Spectrum
We begin our discussion of the spectral properties of the Bishop operators with the
following. If 𝑝, 𝑞 ∈ ℕ are relatively prime, let 𝛼 = 𝑝/𝑞 and define

𝑔𝛼,𝑞(𝑥) = 𝑥{𝑥 + 𝑝
𝑞
}{𝑥 + 2 𝑝

𝑞
}{𝑥 + 3 𝑝

𝑞
}⋯ {𝑥 + (𝑞 − 1) 𝑝

𝑞
}.

These functions are piecewise continuous with only a finite number of zeros; see Figure
13.5.1.

Proposition 13.5.1. 𝜎𝑝(𝑇𝛼) = ∅ for any rational 𝛼.

Proof Suppose 𝛼 = 𝑝/𝑞, with 𝑝, 𝑞 relatively prime, and suppose that 𝑇𝛼𝑓 = 𝜆𝑓 for some
𝜆 ∈ ℂ and 𝑓 ∈ 𝐿2[0, 1]. Then 𝑇𝑞

𝛼 𝑓 = 𝜆𝑞𝑓. On the other hand, (13.4.4) yields 𝑇𝑞
𝛼 𝑓 =

𝑔𝛼,𝑞𝑓. Together, these say that (𝑔𝛼,𝑞 − 𝜆𝑞)𝑓 = 0 almost everywhere on [0, 1]. Since
the equation 𝑔𝛼,𝑞(𝑥) = 𝜆𝑞 has only a finite number of solutions, 𝑓 is zero almost
everywhere and hence 𝜎𝑝(𝑇𝛼) = ∅. ■



298 | bishop operators

We need a new technique to characterize the eigenvalues of 𝑇𝛼 if 𝛼 is irrational, which
we take up later in this chapter. We now present a spectral result from the 1965 doctoral
thesis of Parrott.

Theorem 13.5.2 (Parrott [260]). If 𝛼 = 𝑝/𝑞, where 𝑝, 𝑞 ∈ ℕ are relatively prime and 𝑝 < 𝑞,
then 𝜎(𝑇𝛼) = {𝜆 ∈ ℂ ∶ 𝜆𝑞 ∈ 𝑔𝛼,𝑞([0, 1])}.

The proof of this theorem requires the following symmetry lemma.

Lemma 13.5.3. Let 𝛼 = 𝑝/𝑞 where 𝑝 and 𝑞 are relatively prime. If 𝜉 ∈ 𝕋 and 𝜉𝑞 = 1, then
𝑇𝛼 is similar to 𝜉𝑇𝛼.

Proof From (13.4.1), the sets 𝑢∘𝑗𝛼 (𝐸), where 𝐸 = [0, 1/𝑞) and 0 ⩽ 𝑗 ⩽ 𝑞 − 1, are pairwise
disjoint and

𝑞−1

⋃
𝑗=0

𝑢∘𝑗𝛼 (𝐸) = [0, 1).

Define 𝑔 ∶ [0, 1] → 𝕋 by 𝑔(𝑥) = 𝜉𝑗 on 𝑢∘𝑗𝛼 (𝐸) = 𝑢𝑗𝛼(𝐸) and notice that 𝑔 ∘ 𝑢𝛼 = 𝜉𝑔.
Proposition 8.1.12 implies that𝑀𝑔 (multiplication by 𝑔 on 𝐿2[0, 1]) is invertible with
inverse𝑀1/𝑔. Moreover, for each 𝑓 ∈ 𝐿2[0, 1],

𝑀−1
𝑔 𝑇𝛼𝑀𝑔𝑓 = 𝑀1/𝑔𝑇𝛼𝑀𝑔𝑓

= 𝑀1/𝑔𝑀𝑥𝑈𝛼𝑀𝑔𝑓
= 𝑀1/𝑔𝑀𝑥𝑔(𝑢𝛼)𝑓(𝑢𝛼)
= 𝑀1/𝑔𝑀𝑥(𝜉𝑔)𝑓(𝑢𝛼)
= 𝜉𝑥𝑓(𝑢𝛼)
= 𝜉𝑇𝛼𝑓.

Thus, 𝑇𝛼 is similar to 𝜉𝑇𝛼. ■

We are now ready to prove Theorem 13.5.2.

Proof Equation (13.4.4) yields
𝑇𝑞
𝛼 = 𝑀𝑔𝛼,𝑞 , (13.5.4)

while Proposition 8.1.12 implies that

𝜎(𝑀𝑔𝛼,𝑞 ) = 𝑔𝛼,𝑞([0, 1]). (13.5.5)

By the spectral mapping theorem,

𝜎(𝑇𝑞
𝛼 ) = {𝜆𝑞 ∶ 𝜆 ∈ 𝜎(𝑇𝛼)} (13.5.6)

and

𝜎(𝜉𝑇𝛼) = 𝜉𝜎(𝑇𝛼). (13.5.7)
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Figure 13.5.2 The spectrum of 𝑇2/3.

Equation (13.5.6), along with (13.5.4) and (13.5.5), show that at least one 𝑞th root of
every number in 𝑔𝛼,𝑞([0, 1]) belongs to 𝜎(𝑇𝛼). Equation (13.5.7) shows that every 𝑞th
root belongs to 𝜎(𝑇𝛼). ■

Here are a few examples of 𝜎(𝑇𝑝/𝑞).

Example 13.5.8. If 𝑝
𝑞
= 1

2
, then 𝑔1/2,2(𝑥) = 𝑥{𝑥+ 1

2
}. From Figure 13.5.1, one can see that

𝑔1/2,2([0, 1]) = [0, 1
2
]. Thus,

𝜎(𝑇1/2) = {𝜆 ∈ ℂ ∶ 𝜆2 ∈ 𝑔1/2,2([0, 1]) = [0, 1
2
]} = [ − 1

√2
, 1
√2
].

Example 13.5.9. If 𝑝
𝑞
= 2

3
, then 𝑔2/3,3(𝑥) = 𝑥{𝑥 + 2

3
}{𝑥 + 4

3
}. The graph of 𝑔2/3,3(𝑥) (see

Figure 13.5.1) says that 𝑔2/3,3([0, 1]) = [0, 2
9
]. Thus,

𝜎(𝑇2/3) = {𝜆 ∈ ℂ ∶ 𝜆3 ∈ [0, 2
9
]}

consists of three equally spaced line segments from the origin; see Figure 13.5.2.

13.6 Rational Case: Invariant Subspaces
The Bishop operator𝑇𝛼 has plenty of invariant subspaces if 𝛼 ∈ ℚ∩[0, 1). In order tomake
this more readable, let us focus on the representative case 𝑇1/2. Consult [80, Ch. 5] for a
survey of what happens for general 𝛼 = 𝑝/𝑞. Here the function 𝑢1/2 plays an important
role (see Figure 13.6.1).

Example 13.6.1. Let

𝐸 = [0, 1
8
] ∪ [ 3

8
, 5
8
] ∪ [ 7

8
, 1]



300 | bishop operators

Figure 13.6.1 Plot of 𝑢1/2(𝑥).

𝐴

𝐴′

Figure 13.6.2 The set 𝐴 rotated by 1/2 (mod 1) to form 𝐴′. The set 𝐴 ∪ 𝐴′ is invariant under
rotation by 1/2 (mod 1).

and note that 𝑢1/2𝐸 = 𝐸 and 𝑢1/2𝐸𝑐 = 𝐸𝑐. Thus, if 𝑓 vanishes almost everywhere on 𝐸𝑐
(see Figure 13.6.1), then (𝑇1/2𝑓)(𝑥) = 𝑥𝑓({𝑥 + 1

2
}) also vanishes for almost every 𝑥 ∈ 𝐸𝑐.

Thus, 𝜒𝐸𝐿2[0, 1] is a 𝑇1/2-invariant subspace.

One can extend the example above to include invariant subspaces of the form𝜒𝐹𝐿2[0, 1],
where 𝐹 is a measurable subset of [0, 1] such that 𝑢1/2𝐹 = 𝐹. Such sets can be created by
taking any measurable subset 𝐴 ⊆ [0, 1] and shifting it by 1/2 (mod 1) to form the set
𝐴′. Then 𝐹 = 𝐴 ∪ 𝐴′ is invariant modulo a shift by 1/2 (mod 1). It often helps to equate
[0, 1] with a circle (see Figure 13.6.2), where rotation modulo one is easier to visualize.
The subspaces 𝜒𝐹𝐿2[0, 1], for which 𝑢1/2𝐹 = 𝐹, are not only invariant for 𝑇1/2, but they are
also reducing.

Theorem 13.6.2 (Parrott [260]). If 𝐹 ⊆ [0, 1] is measurable and 𝑢1/2𝐹 = 𝐹, then𝜒𝐹𝐿2[0, 1]
reduces 𝑇1/2.

Proof If 𝑓 ∈ 𝜒𝐹𝐿2[0, 1], then 𝑓 = 0 almost everywhere on 𝐹𝑐. But then (𝑇1/2𝑓)(𝑥) =
𝑥𝑓({𝑥 + 1

2
}) is zero on 𝐹𝑐 since 𝑢1/2𝐹𝑐 = 𝐹𝑐. Also observe that (𝜒𝐹𝐿2[0, 1])⟂ =

𝜒𝐹𝑐𝐿2[0, 1]. Now apply the previous argument, using the fact that 𝑢1/2𝐹𝑐 = 𝐹𝑐, to
show that 𝜒𝐹𝑐𝐿2[0, 1] is also 𝑇1/2-invariant. ■
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The converse of Theorem 13.6.2 requires the following fact.

Proposition 13.6.3. Ifℳ ⊆ 𝐿2[0, 1] is reducing for 𝑇1/2, thenℳ is reducing for both 𝑀𝑥
and 𝑈1/2.

Proof Compute 𝑇1/2𝑇∗
1/2 as follows:

𝑇1/2𝑇∗
1/2 = 𝑀𝑥𝑈1/2𝑈∗

1/2𝑀𝑥 = 𝑀𝑥𝐼𝑀𝑥 = 𝑀2
𝑥.

Thus, |𝑇∗
1/2| = 𝑀𝑥 (see Definition 14.9.1). As a consequence of the spectral theorem

for selfadjoint operators (Theorem 8.7.1), there is a sequence of polynomials (𝑝𝑛)∞𝑛=1
such that 𝑝𝑛(𝑇1/2𝑇∗

1/2) → |𝑇∗
1/2| = 𝑀𝑥 in operator norm. Thus, ifℳ reduces 𝑇1/2, then

ℳ is invariant for each of the operators 𝑝𝑛(𝑇1/2𝑇∗
1/2), soℳ is invariant for𝑀𝑥. Since

𝑀𝑥 is selfadjoint,ℳ is reducing for𝑀𝑥.
We now show that 𝑈1/2ℳ ⊆ ℳ. Suppose 𝑓 ∈ ℳ and 𝑈1/2𝑓 = ℎ + 𝑘 with ℎ ∈ ℳ and
𝑘 ∈ ℳ⟂. Then 𝑇1/2𝑓 ∈ ℳ and 𝑇1/2𝑓 = 𝑀𝑥𝑈1/2𝑓 = 𝑀𝑥ℎ + 𝑀𝑥𝑘.We already proved
thatℳ is reducing for 𝑀𝑥, so 𝑀𝑥ℎ ∈ ℳ and 𝑀𝑥𝑘 ∈ ℳ⟂. Thus, 𝑀𝑥𝑘 = 0 almost
everywhere, which makes 𝑘 = 0 almost everywhere. It follows that 𝑈1/2𝑓 = ℎ ∈ ℳ,
and henceℳ is an invariant subspace for 𝑈1/2.

We finish by showing that 𝑈∗
1/2ℳ ⊆ ℳ. We first argue that 𝑀𝑥ℳ is dense inℳ. This

follows because𝑀𝑥𝐿2[0, 1] is dense in 𝐿2[0, 1] and bothℳ andℳ⟂ are invariant for
𝑀𝑥. To complete the proof that ℳ is invariant for 𝑈∗

1/2, let 𝑓 ∈ ℳ and choose a
sequence (𝑓𝑛)∞𝑛=1 of functions inℳ such that 𝑥𝑓𝑛 → 𝑓 in 𝐿2[0, 1]. Then 𝑇∗

1/2𝑓𝑛 ∈ ℳ
and 𝑇∗

1/2𝑓𝑛 = 𝑈∗
1/2𝑀𝑥𝑓𝑛 = 𝑈∗

1/2(𝑥𝑓𝑛). It follows that 𝑈∗
1/2(𝑥𝑓𝑛) ∈ ℳ and 𝑈∗

1/2(𝑥𝑓𝑛) →
𝑈∗
1/2𝑓. Hence, 𝑈∗

1/2𝑓 ∈ ℳ. ■

The converse of Theorem 13.6.2 yields the reducing subspaces for 𝑇1/2.

Theorem 13.6.4 (Parrott [260]). Ifℳ ⊆ 𝐿2[0, 1] is a reducing subspace for 𝑇1/2, then there
is a measurable subset 𝐹 ⊆ [0, 1] such that 𝑢1/2𝐹 = 𝐹 andℳ = 𝜒𝐹𝐿2[0, 1].

Proof By Proposition 13.6.3,ℳ is reducing for both𝑀𝑥 and𝑈1/2. By Theorem 4.1.7,ℳ =
𝜒𝐹𝐿2[0, 1] for some measurable subset 𝐹 ⊆ [0, 1]. Since 𝜒𝐹𝐿2[0, 1] is reducing for
𝑈1/2, it follows that 𝑓 ∈ 𝜒𝐹𝐿2[0, 1] if and only if 𝑈1/2𝑓 ∈ 𝜒𝐹𝐿2[0, 1]. This says that 𝑓
vanishes almost everywhere on 𝐹𝑐 if and only if 𝑈1/2𝑓 vanishes almost everywhere
on 𝐹𝑐. Applying this to 𝑓 = 𝜒𝐹 , it must be the case that 𝑢1/2𝐹𝑐 = 𝐹𝑐, and hence
𝑢1/2𝐹 = 𝐹. ■

Parrott also characterized the irreducible invariant subspaces for 𝑇1/2. However, we do
not go into the details here.

Theorem 13.6.5 (Parrott [260]). Suppose 𝑤 ∈ 𝐿∞[0, 1], 𝑤 ∘ 𝑢1/2 = 𝑤, andℳ is the set of
𝑓 ∈ 𝐿2[0, 1] such that 𝑇1/2𝑓 = 𝑤 ∘𝑓 and𝑤−1({0}) ⊆ 𝑓−1({0}) almost everywhere. Thenℳ is
an irreducible invariant subspace for 𝑇1/2 and every irreducible invariant subspace for 𝑇1/2
is of this form.
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Combining this theorem with Theorem 13.6.2 yields all of the invariant subspaces of
𝑇1/2. The text [80, Ch. 5] gives an equivalent description of the invariant subspaces for 𝑇1/2
and also those for 𝑇𝑝/𝑞, in which 𝑝, 𝑞 ∈ ℕ.

13.7 Irrational Case
Although the details of this go beyond the scope of this book, we mention some of the
properties of 𝑇𝛼 when 𝛼 ∈ ℚ𝑐 ∩ [0, 1]. The main difference between the rational and
irrational case comes from the fact that unlike the𝑈1/2 case,where therewere plenty of sets
𝐸 such that 𝑢1/2𝐸 = 𝐸 and plenty of functions𝑤 such that𝑤∘𝑢1/2 = 𝑤, when𝛼 is irrational
there are essentially no such 𝐸 or 𝑤. Thus, there are no obvious candidates for invariant
subspaces or obvious elements of the spectrum. Unlike the case when 𝛼 is rational, where
the spectrum depends on 𝛼 (Theorem 13.5.2), the spectrum of 𝑇𝛼 for irrational 𝛼 does not
depend on 𝛼 and it is much richer.

Theorem 13.7.1 (Parrott [260]). 𝜎(𝑇𝛼) = {𝑧 ∈ ℂ ∶ |𝑧| ⩽ 𝑒−1} for all irrational 𝛼 ∈ [0, 1].

Proposition 13.5.1 showed that 𝜎𝑝(𝑇𝛼) = ∅ when 𝛼 is rational. A more involved proof
using results from number theory shows that the same holds when 𝛼 is irrational.

Theorem 13.7.2 (Davie [106]). 𝜎𝑝(𝑇𝛼) = ∅ for all irrational 𝛼 ∈ [0, 1].

As mentioned earlier, there are no obvious examples of proper nonzero invariant sub-
spaces for 𝑇𝛼 when 𝛼 is irrational. The reason Bishop suggested studying these operators
was to explore the possibility that they have no nonzero proper invariant subspaces. It
turns out that many of them do.

Theorem 13.7.3 (Davie [106]). For almost every 𝛼 ∈ [0, 1], the operator 𝑇𝛼 has proper
nonzero invariant subspaces.

We do not get into the details here but the class of possible exceptional 𝛼 is a small set
that Davie describes exactly. It is also the case that “invariant subspace” can be replaced
with “hyperinvariant subspace” in Davie’s theorem.

13.8 Notes
Many operators on Hilbert spaces have proper nonzero invariant subspaces (such as
normal operators, compact operators, operators commuting with compact operators).
This is all summarized in a recent survey [80]. Another good text concerning invariant
subspaces is [280]. Although the invariant subspace problem for Hilbert spaces is still
open, the invariant subspace problem for certain Banach spaces was resolved in the
negative by Enflo [124]. Read provided a bounded operator on ℓ1 with no proper nontrivial
invariant subspaces [281, 282].
The invariant subspace problem is connected to the invariant subspaces of the Bergman

shift 𝑀𝑧. As discussed in Chapter 10, the 𝑀𝑧-invariant subspaces of 𝐴2 are complicated.
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A remarkable result from [19] says that if it is true that for all𝑀𝑧-invariant subspacesℳ
and𝒩 of 𝐴2 withℳ ⊆ 𝒩 and dim(𝒩/ℳ) > 1 there exists an invariant subspace ℒ such
thatℳ ⊊ ℒ ⊊ 𝒩, then the invariant subspace problem is true. This remarkable result
says that if we can understand the structure of one operator, the Bergman shift, then we
can solve the invariant subspace problem. Of course, as we have seen in Chapter 10, this
one operator has a particularly complicated collection of invariant subspaces.
Various properties of Bishop-type operators 𝑓(𝑥) ↦ 𝜑(𝑥)(𝑓 ∘ 𝑇)(𝑥), where 𝜑 ∈ 𝐿∞[0, 1]

and𝑇 is ameasure-preserving transformation on [0, 1], have been studied in [54, 236, 260].
In particular, [260] contains a description of the numerical ranges of these operators.More
detailed properties of the classical (and generalized) Bishop operators are covered in [81].

13.9 Exercises
Exercise 13.9.1. Prove that every selfadjoint operator on a complex Hilbert spaceℋ with
dimℋ ⩾ 2 has a proper nonzero invariant subspace.

Exercise 13.9.2. Prove that if 𝐴 ∈ ℬ(ℋ) and 𝑝(𝐴) = 0 for some nonzero polynomial,
then 𝐴 has a proper nonzero invariant subspace.

Exercise 13.9.3. This is an extension of Exercise 13.9.2. An operator 𝑇 ∈ ℬ(ℋ)
is polynomially compact if 𝑝(𝑇) is compact for some polynomial 𝑝. Use Lomonosov’s
theorem (Corollary 13.2.4) to prove that every polynomially compact operator on aHilbert
space of dimension at least two has a proper nonzero invariant subspace.
Remark: This result was first proved by Bernstein and Robinson in 1966 with nonstandard
analysis [47]. Halmos produced a standard proof [167].

Exercise 13.9.4. Let 𝐴 ∈ ℬ(ℋ) and let ℳ ⊆ ℋ be a linear manifold (not necessarily
topologically closed). Prove that if 𝐴ℳ ⊆ ℳ, thenℳ− is an invariant subspace of 𝐴.

Exercise 13.9.5. This exercise from [280] shows the prevalence of cyclic vectors. Recall
that x0 ∈ ℋ is a cyclic vector for 𝐴 ∈ ℬ(ℋ) if⋁{𝐴𝑛x0 ∶ 𝑛 ⩾ 0} = ℋ. Define

x𝑛 = (𝐼 − 1
2‖𝐴‖𝐴)

𝑛
x0 for 𝑛 ⩾ 0

and prove the following.

(a) x𝑛 is a cyclic vector for 𝐴 for every 𝑛 ⩾ 0.

(b) ⋁{x𝑛 ∶ 𝑛 ⩾ 0} = ℋ.

Thus, if 𝐴 has a cyclic vector, it has a set of cyclic vectors with dense linear span.

Exercise 13.9.6. Prove the following result from [329] (see also [168]). If 𝑇 is a linear
transformation on an infinite-dimensional vector space 𝒱, then there is a linear manifold
(closed under vector addition and scalar multiplication)ℳ such that {0} ⊊ ℳ ⊊ 𝒱 and
𝑇ℳ ⊆ ℳ.
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(a) Let x ∈ 𝒱\{0} and consider 𝛽 = {x, 𝑇x, 𝑇2x,…}. If 𝛽 is linearly dependent, explain
why the proof is complete.

(b) If 𝛽 is linearly independent, every vector in the span of 𝛽 can be written uniquely
as∑∞

𝑛=0 𝑎𝑛𝑇𝑛x, in which only finitely many coefficients are nonzero. Consider the
linear functional

𝜑(
∞
∑
𝑛=0

𝑎𝑛𝑇𝑛x) =
∞
∑
𝑛=0

𝑎𝑛

and prove that ker𝜑 is a 𝑇-invariant linear manifold.

(c) Prove that {0} ⊊ ker𝜑 ⊊ 𝒱.

Remark: The point of this exercise is that nonzero proper invariant subspaces always exist
if the requirement that they be topologically closed is dropped.

Exercise 13.9.7. Suppose𝐴 is a linear transformation on a vector space𝒱 such that𝐴ℳ ⊆
ℳ for every linear manifoldℳ in 𝒱. Prove that 𝐴 = 𝜆𝐼, where 𝜆 ∈ ℂ.

Exercise 13.9.8. For the invariant subspace problem, one needsℋ to be a Hilbert space
and not just an inner product space. Consider the inner product spaceℂ[𝑥] of polynomials
in the real variable 𝑥 endowed with the 𝐿2[0, 1] inner product. The operator 𝑀𝑥𝑓 = 𝑥𝑓
is bounded on ℂ[𝑥]. Use the following steps to prove that there are no proper nonzero
topologically closed subspacesℳ which are invariant for𝑀𝑥.

(a) Supposeℳ ⊆ ℂ[𝑥] is closed and𝑀𝑥-invariant. Prove thatℳ = {𝑓 ∈ ℂ[𝑥] ∶ 𝑓|𝐸 = 0}
for some finite set 𝐸.

(b) If 𝐸 ≠ ∅, prove thatℳ is not closed in ℂ[𝑥].

Remark: See [280] for related examples.

Exercise 13.9.9. Define𝑊 on 𝐿2(0,∞) by (𝑊𝑔)(𝑥) = 𝑔(𝑥 + 1). Use the following steps to
prove that𝑊 is similar to the backward shift of infinite multiplicity 𝐵 on (𝐻2)(∞) defined
in (13.3.6) by 𝐵(𝑓0, 𝑓1, 𝑓2,…) = (𝑓1, 𝑓2, 𝑓3,…).

(a) For 𝑔 ∈ 𝐿2(0,∞) and 𝑛 ⩾ 0, define 𝑔𝑛 = 𝜒[𝑛,𝑛+1]𝑔. Prove that𝑊𝑔0 = 0 and𝑊𝑔𝑛 =
𝑔𝑛−1 for 𝑛 ⩾ 1.

(b) If (𝑢𝑗)∞𝑗=0 is an orthonormal basis for 𝐿2[0, 1] and 𝑛 ⩾ 0, prove that (𝑢𝑗(𝑥 + 𝑛))∞𝑗=0 is
an orthonormal basis for 𝐿2[𝑛, 𝑛 + 1].

(c) Use (b) to construct an invertible operator 𝑉 ∶ 𝐿2(0,∞) → (𝐻2)(∞) such that
𝑉𝑊𝑉−1 = 𝐵.

Exercise 13.9.10. If 𝛼 = 𝑝/𝑞, where 𝑝, 𝑞 ∈ ℕ are relatively prime, consider the unitary
portion (𝑈𝛼𝑓)(𝑥) = 𝑓({𝑥 + 𝛼}) of a Bishop operator.

(a) Use the ideas of the proof of Theorem 13.5.2 to prove that 𝜎(𝑈𝛼) = 𝜎𝑝(𝑈𝛼) = {𝜉 ∈
𝕋 ∶ 𝜉𝑞 = 1}.

(b) For each 𝜉 ∈ 𝜎𝑝(𝑈𝛼), find an orthogonal basis for ker(𝑈𝛼 − 𝜉𝐼).



exercises | 305

Exercise 13.9.11. If 𝛼 is irrational, consider the unitary portion (𝑈𝛼𝑓)(𝑥) = 𝑓({𝑥 + 𝛼}) of
a Bishop operator. Prove that 𝜎(𝑈𝛼) = 𝕋.
Exercise 13.9.12. For the unitary portion (𝑈𝛼𝑓)(𝑥) = 𝑓({𝑥 + 𝛼}) of a Bishop operator,
prove that 𝑈𝛼 is cyclic if and only if 𝛼 is irrational.
Exercise 13.9.13. Compute 𝜎(𝑇4/5).
Exercise 13.9.14. In his doctoral thesis [260], Parrott proved a more general version
of Theorem 13.5.2. If 𝜑 ∈ 𝐿∞[0, 1] and 𝛼 ∈ [0, 1), define the Bishop-type operator
(𝑇𝜑,𝛼𝑓)(𝑥) = 𝜑(𝑥)𝑓({𝑥 + 𝛼}). Use the techniques of the proof of Theorem 13.5.2 to prove
that if 𝛼 = 𝑝/𝑞 ∈ [0, 1), where 𝑝, 𝑞 ∈ ℕ are relatively prime, then 𝜎(𝑇𝜑,𝛼) = {𝜆 ∈ ℂ ∶ 𝜆𝑞 ∈
R𝜓}, where 𝜓(𝑥) = 𝜑(𝑥)𝜑({𝑥 + 𝛼})𝜑({𝑥 + 2𝛼})⋯𝜑({𝑥 + (𝑞 − 1)𝛼}) andR𝜓 is the essential
range of 𝜓 (Definition 8.1.11).
Exercise 13.9.15. Use the notation from Exercise 13.9.14 to compute 𝜎(𝑇𝑥𝑛,1/𝑛) for 𝑛 ⩾ 1.
Exercise 13.9.16. For each 𝛼, show that the self commutator 𝑇∗

𝛼𝑇𝛼 − 𝑇𝛼𝑇∗
𝛼 of the

Bishop operator 𝑇𝛼 is the multiplication operator𝑀𝜑 on 𝐿2[0, 1] for some piecewise-linear
function 𝜑 on [0, 1].
Exercise 13.9.17. This exercise outlines a proof that the constant function 1 on [0, 1] is a
cyclic vector for the Bishop operator (𝑇1/2𝑓)(𝑥) = 𝑥𝑓({𝑥 + 1

2
}).

(a) For 𝑓 ∈ 𝐿2[0, 1], find two 1
2
-periodic functions 𝑓1, 𝑓2 ∈ 𝐿2[0, 1] such that 𝑓(𝑥) =

𝑓1(𝑥) + 𝑥𝑓2(𝑥).

(b) Let 𝑤(𝑥) = 𝑥{𝑥 + 1/2}; see Figure 13.9.1. Prove that {𝑝 ∘ 𝑤 ∶ 𝑝 ∈ ℂ[𝑥]} is dense in
𝐿2[0, 1/2].

(c) Prove that (𝑇2𝑛
1/21)(𝑥) = 𝑤(𝑥)𝑛 and (𝑇2𝑛+1

1/2 1)(𝑥) = 𝑥𝑤(𝑥)𝑛 for all 𝑛 ⩾ 0.

(d) Prove that⋁{𝑇𝑘
1/21 ∶ 𝑘 ⩾ 0} ⊇ {𝑝(𝑤) + 𝑥𝑞(𝑤) ∶ 𝑝, 𝑞 ∈ ℂ[𝑥]}.

(e) Use the previous parts to prove that⋁{𝑇𝑘
1/21 ∶ 𝑘 ⩾ 0} = 𝐿2[0, 1].

Remark: See [80, Ch. 5] for more on the cyclic vectors for 𝑇𝑝/𝑞.

Exercise 13.9.18. Prove that if 𝑓 = 𝜒𝐸 , where 𝐸 is a Lebesgue-measurable subset of [0, 1]
such that {𝑥 ∈ [0, 1] ∶ 𝑥 ∈ 𝐸 or {𝑥 + 1/2} ∈ 𝐸} has measure one, then 𝑓 is a cyclic vector
for 𝑇1/2.
Remark: See [80, Ch. 5] for more.

Exercise 13.9.19. Is the constant function 1 on [0, 1] a cyclic vector for 𝑇1/3?
Exercise 13.9.20. For 𝜑 ∈ 𝐿∞(𝕋), consider the Bishop-type operator 𝐵𝜑 on 𝐿2(𝕋) defined
by (𝐵𝜑𝑓)(𝜉) = 𝜑(𝜉)𝑓(𝜉) for 𝑓 ∈ 𝐿2(𝕋). Compute the matrix representation of 𝐵𝜑 with
respect to the orthonormal basis (𝜉𝑛)∞𝑛=−∞ for 𝐿2(𝕋).
Exercise 13.9.21. This is a continuation of Exercise 13.9.20. Show that 𝜎(𝐵𝜑) = {𝜉 ∈ 𝕋 ∶
𝜉2 ∈ R𝜑(𝑤)𝜑(𝑤)}.
Remark: See [260] for more on these generalizations of Bishop-type operators.
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Figure 13.9.1 The function 𝑤(𝑥) = 𝑥{𝑥 + 1/2}.

13.10 Hints for the Exercises
Hint for Ex. 13.9.1: Consult Theorem 8.7.1.
Hint for Ex. 13.9.7: The assumption says that for each x ∈ 𝒱, there is a 𝜆(x) ∈ ℂ such
that 𝐴x = 𝜆(x)x.
Hint for Ex. 13.9.8: For (a), use Theorem 4.1.7.
Hint for Ex. 13.9.10: Consider the orthonormal basis (𝑒2𝜋𝑖𝑛𝑥)∞𝑛=−∞.
Hint for Ex. 13.9.17: For (b), use the Stone–Weierstrass theorem.
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Operator Matrices

Key Concepts: Direct sum of Hilbert spaces, block operator, invariant subspace, reducing subspace,
spectrum of a block matrix, idempotent operator, Parrott’s theorem, Douglas’ factorization theorem,
polar decomposition.

Outline: This chapter concerns operators represented by matrices of operators. We
examine the norm, spectrum, and invariant subspaces of such operators in terms of their
entries.

14.1 Direct Sums of Hilbert Spaces
For Hilbert spacesℋ1 andℋ2, formℋ1 ⊕ℋ2, the direct sum, as follows. First, consider
the set of all ordered pairs (x1, x2), where x1 ∈ ℋ1 and x2 ∈ ℋ2. For convenience, we use
column-vector notation:

ℋ1 ⊕ℋ2 = { [x1x2
] ∶ x1 ∈ ℋ1, x2 ∈ ℋ2}.

Then makeℋ1 ⊕ℋ2 into a vector space with the operations of addition

[x1x2
] + [y1y2

] = [x1 + y1
x2 + y2

]

and scalar multiplication

𝜆 [x1x2
] = [𝜆x1𝜆x2

] .

Finally, endowℋ1 ⊕ℋ2 with the inner product

⟨[x1x2
] , [y1y2

]⟩ ∶= ⟨x1, y1⟩ℋ1 + ⟨x2, y2⟩ℋ2 . (14.1.1)
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The corresponding norm satisfies

‖
‖‖[
x1
x2
]
‖
‖‖

2

= ‖x1‖2ℋ1
+ ‖x2‖2ℋ2

.

Sinceℋ1 andℋ2 are complete, one can show thatℋ1 ⊕ℋ2 is also complete, and hence
a Hilbert space (Exercise 14.11.1).
This notation is compatible with the orthogonal decomposition notation for a subspace

ℳ ofℋ. Indeed, recall from Definition 3.1.1 that

ℳ⟂ = {x ∈ ℋ ∶ ⟨x, y⟩ = 0 for all y ∈ ℳ}

is the orthogonal complement ofℳ. Thenℋ =ℳ⊕ℳ⟂ and every x ∈ ℋ can be written
uniquely as x = x1+x2, where x1 ∈ ℳ and x2 ∈ ℳ⟂. Furthermore, ‖x‖2 = ‖x1‖2+‖x2‖2,
and hence we can equateℳ⊕ℳ⟂ with the set of column vectors

{ [x1x2
] ∶ x1 ∈ ℳ, x2 ∈ ℳ⟂}

and regard the orthogonal decomposition ofℳ andℳ⟂ as the direct sum of the Hilbert
spaces ℳ and ℳ⟂. Thus, the use of the same notation ⊕ in two seemingly different
contexts is justified. Some authors use the phrase external direct sum for ℋ1 ⊕ ℋ2 and
internal direct sum forℳ⊕ℳ⟂, although we make no such distinction here.
One can consider the direct sum of a finite number of Hilbert spaces in a similar way.

For example, ifℋ is a Hilbert space and 𝑛 ∈ ℕ, define

ℋ(𝑛) = {(x1, x2,…, x𝑛) ∶ x1, x2,…, x𝑛 ∈ ℋ}.

When endowed with the norm

‖(x𝑖)𝑛𝑖=1‖ = (
𝑛
∑
𝑖=1

‖x𝑖‖2)
1
2

and its corresponding inner product,ℋ(𝑛) is a Hilbert space.
One can extend the construction above and defineℋ(∞). As expected, there are some

convergence issues to address. For a Hilbert spaceℋ, consider

ℋ(∞) ∶= {(x𝑖)∞𝑖=1 ∶ x𝑖 ∈ ℋ,
∞
∑
𝑖=1

‖x𝑖‖2 < ∞} (14.1.2)

with corresponding norm

‖(x𝑖)∞𝑖=1‖ = (
∞
∑
𝑖=1

‖x𝑖‖2)
1
2 .

One canmodify the proof of Proposition 1.2.5 (the completeness of ℓ2) to prove thatℋ(∞)

is a Hilbert space (Exercise 14.11.2).
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14.2 Block Operators
Let𝑇 ∈ ℬ(ℋ) and letℳ be a subspace ofℋ. The present goal is to represent𝑇 in amanner
that isolates how 𝑇 interacts with the components of the orthogonal decomposition

ℋ =ℳ⊕ℳ⟂. (14.2.1)

To do this, let 𝑃 denote the orthogonal projection onto ℳ. Then 𝑃 is selfadjoint and
idempotent, and 𝐼 − 𝑃 is the orthogonal projection onto ℳ⟂ (Proposition 3.1.2). A
computation using the identity 𝑃 + (𝐼 − 𝑃) = 𝐼 confirms that

𝑇 = 𝐴 + 𝐵 + 𝐶 + 𝐷, (14.2.2)

where

𝐴 = 𝑃𝑇𝑃, 𝐵 = 𝑃𝑇(𝐼 − 𝑃), 𝐶 = (𝐼 − 𝑃)𝑇𝑃, and 𝐷 = (𝐼 − 𝑃)𝑇(𝐼 − 𝑃).

Since

ran𝑃 = ker(𝐼 − 𝑃) = ℳ and ran(𝐼 − 𝑃) = ker𝑃 = ℳ⟂, (14.2.3)

we restrict the domain and codomains of𝐴, 𝐵,𝐶, and𝐷, initially defined onℋ, and regard
these operators as maps betweenℳ andℳ⟂ as follows:

𝐴 = 𝑃𝑇𝑃 ∈ ℬ(ℳ),
𝐵 = 𝑃𝑇(𝐼 − 𝑃) ∈ ℬ(ℳ⟂,ℳ),
𝐶 = (𝐼 − 𝑃)𝑇𝑃 ∈ ℬ(ℳ,ℳ⟂),
𝐷 = (𝐼 − 𝑃)𝑇(𝐼 − 𝑃) ∈ ℬ(ℳ⟂).

⎫⎪⎪
⎬⎪⎪
⎭

(14.2.4)

This information is compactly represented in the block-operator notation

𝑇 = [ 𝑃𝑇𝑃 𝑃𝑇(𝐼 − 𝑃)
(𝐼 − 𝑃)𝑇𝑃 (𝐼 − 𝑃)𝑇(𝐼 − 𝑃)] , (14.2.5)

which is more conveniently displayed as

𝑇 = [𝐴 𝐵
𝐶 𝐷] . (14.2.6)

An expression of the form (14.2.6) implicitly comes equipped with an orthogonal decom-
position of the underlying Hilbert space, with respect to which 𝐴, 𝐵, 𝐶, and 𝐷 are defined
as in (14.2.4). Two block operators of the form (14.2.6), with respect to the same orthogonal
decomposition of the underlyingHilbert space, are equal if and only if their corresponding
entries are equal.
We equate x1 + x2 ∈ ℳ ⊕ℳ⟂, where x1 ∈ ℳ and x2 ∈ ℳ⟂, with the column vector

[x1x2
]



310 | operator matrices

and use (14.2.2) to see that 𝑇 acts as matrix multiplication

[𝐴 𝐵
𝐶 𝐷] [

x1
x2
] = [𝐴x1 + 𝐵x2

𝐶x1 + 𝐷x2
] .

This dissection of the operator 𝑇 with respect to the decomposition (14.2.1) respects the
adjoint and operator composition. Since 𝑇 was arbitrary, replace 𝑇 with 𝑇∗ in (14.2.5) and
deduce

𝑇∗ = [ 𝑃𝑇∗𝑃 𝑃𝑇∗(𝐼 − 𝑃)
(𝐼 − 𝑃)𝑇∗𝑃 (𝐼 − 𝑃)𝑇∗(𝐼 − 𝑃)]

= [ (𝑃𝑇𝑃)∗ [(𝐼 − 𝑃)𝑇𝑃]∗
[𝑃𝑇(𝐼 − 𝑃)]∗ [(𝐼 − 𝑃)𝑇(𝐼 − 𝑃)]∗]

= [𝐴
∗ 𝐶∗

𝐵∗ 𝐷∗] . (14.2.7)

Consequently, the block-operator representation of 𝑇∗ with respect to the orthogonal
decomposition (14.2.1) is the formal adjoint of the 2 × 2 block-operator matrix (14.2.6):

[𝐴 𝐵
𝐶 𝐷]

∗

= [𝐴
∗ 𝐶∗

𝐵∗ 𝐷∗] .

Block-operator representations are also compatiblewith operator composition. Suppose
that 𝑆, 𝑇 ∈ ℬ(ℋ) and observe that

𝑆𝑇 = [ 𝑃𝑆𝑇𝑃 𝑃𝑆𝑇(𝐼 − 𝑃)
(𝐼 − 𝑃)𝑆𝑇𝑃 (𝐼 − 𝑃)𝑆𝑇(𝐼 − 𝑃)] (14.2.8)

by (14.2.5). This is also what one obtains by formally multiplying the block-operator
representations of 𝑆 and 𝑇 and using the idempotence of 𝑃:

𝑆𝑇 = [ 𝑃𝑆𝑃 𝑃𝑆(𝐼 − 𝑃)
(𝐼 − 𝑃)𝑆𝑃 (𝐼 − 𝑃)𝑆(𝐼 − 𝑃)] [

𝑃𝑇𝑃 𝑃𝑇(𝐼 − 𝑃)
(𝐼 − 𝑃)𝑇𝑃 (𝐼 − 𝑃)𝑇(𝐼 − 𝑃)] . (14.2.9)

We suppress the details here, although the reader is invited to carry them out (Exercise
14.11.3).
Back in Theorem 8.3.1, we presented an efficient proof of Fuglede’s theorem. Here is a

generalization, due to Putnam, whose proof uses block-operator techniques.

Theorem 14.2.10 (Fuglede–Putnam). Let 𝑇,𝑀,𝑁 ∈ 𝐵(ℋ). If𝑀,𝑁 are normal and𝑀𝑇 =
𝑇𝑁, then𝑀∗𝑇 = 𝑇𝑁∗.

Proof Consider the block operators onℋ⊕ℋ defined by

𝑇 ′ = [0 0
𝑇 0] and 𝑁′ = [𝑁 0

0 𝑀] .
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Note that 𝑁′ is normal and 𝑇 ′ commutes with 𝑁′. By Fuglede’s theorem (Theorem
8.3.1), 𝑇 ′(𝑁′)∗ = (𝑁′)∗𝑇 ′, that is,

[0 0
𝑇 0] [

𝑁∗ 0
0 𝑀∗] = [𝑁

∗ 0
0 𝑀∗] [

0 0
𝑇 0] .

Matrix multiplication yields

[ 0 0
𝑇𝑁∗ 0] = [ 0 0

𝑀∗𝑇 0] ,

and hence 𝑇𝑁∗ = 𝑀∗𝑇. ■

More generally, wemay consider 𝑛×𝑛 block-operator decompositions. Let 𝑃1, 𝑃2,…, 𝑃𝑛 ∈
ℬ(ℋ) be orthogonal projections onto proper nonzero subspaces ℋ1,ℋ2,…,ℋ𝑛 ⊆ ℋ,
respectively. If 𝑃1+𝑃2+⋯+𝑃𝑛 = 𝐼, thenℋ1,ℋ2,…,ℋ𝑛 are pairwise orthogonal (Exercise
14.11.4). For 𝑇 ∈ ℬ(ℋ), write

𝑇 =
⎡
⎢
⎢
⎢
⎣

𝑇11 𝑇12 ⋯ 𝑇1𝑛
𝑇21 𝑇22 ⋯ 𝑇2𝑛
⋮ ⋮ ⋱ ⋮
𝑇𝑛1 𝑇𝑛2 ⋯ 𝑇𝑛𝑛

⎤
⎥
⎥
⎥
⎦

, (14.2.11)

in which 𝑇𝑖𝑗 = 𝑃𝑖𝑇𝑃𝑗 is regarded as an element ofℬ(ℋ𝑗 ,ℋ𝑖) by restricting the domain and
codomain of 𝑃𝑖𝑇𝑃𝑗 to ℋ𝑗 and ℋ𝑖, respectively. One can verify that operator composition
and the adjoint respect such decompositions as in the 2 × 2 case (Exercise 14.11.5).

14.3 Invariant Subspaces
If we apply (14.2.5) to the orthogonal projection 𝑃 ofℋ onto a proper nonzero subspace
ℳ ofℋ, then (14.2.3) ensures that

𝑃 = [𝐼ℳ 0
0 0ℳ⟂

] and 𝐼ℋ − 𝑃 = [0ℳ 0
0 𝐼ℳ⟂

] . (14.3.1)

We henceforth suppress the subscripts on zero and identity operators since the spaces
upon which they operate can be deduced from context. Observe that the selfadjointness
and idempotence of 𝑃 and 𝐼 − 𝑃, along with the identities 𝑃(𝐼 − 𝑃) = (𝐼 − 𝑃)𝑃 = 0 and
𝑃 + (𝐼 − 𝑃) = 𝐼, are reflected in the block-operator representations (14.3.1).
Now suppose that 𝑇ℳ ⊆ ℳ; that is,ℳ is 𝑇-invariant. Then

𝐶 = (𝐼 − 𝑃)𝑇𝑃 = 0 (14.3.2)

since ran𝑃 = ℳ = ker(𝐼 − 𝑃), and hence 𝑇 has the block-operator representation

𝑇 = [𝐴 𝐵
0 𝐷] , (14.3.3)
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in which 𝐴 = 𝑇|ℳ and 𝐷 = 𝑇|ℳ⟂ . Conversely, if 𝑇 ∈ ℬ(ℋ) is represented by a block-
operator of this form, thenℳ is 𝑇-invariant. Since (𝐼 −𝑃)𝑇𝑃 = 0 if and only if 𝑃𝑇𝑃 = 𝑇𝑃,
we obtain the following result.

Theorem 14.3.4. For a proper nonzero subspaceℳ ofℋ, the following are equivalent.

(a) ℳ is 𝑇-invariant.

(b) 𝑇 = [𝐴 𝐵
0 𝐷] with respect to the decompositionℋ =ℳ⊕ℳ⟂.

(c) 𝑃𝑇𝑃 = 𝑇𝑃, in which 𝑃 is the orthogonal projection ontoℳ.

Now suppose thatℳ is invariant for both𝑇 and𝑇∗; that is, suppose thatℳ is a reducing
subspace. In addition to (14.3.2), we also have 𝐵 = 𝑃𝑇(𝐼−𝑃) = 0 since ran(𝐼−𝑃) = ℳ⟂ =
ker𝑃. Therefore, the block-operator representation of 𝑇 is block diagonal:

𝑇 = [𝐴 0
0 𝐷] ,

which we write as 𝑇 = 𝐴⊕ 𝐷. In particular, 𝑇 commutes with 𝑃 (and with 𝐼 − 𝑃), which
can be seen from the block-operator representation of 𝑃 given in (14.3.1). One can also
deduce this algebraically as follows:

𝑇𝑃 = 𝑃𝑇𝑃 (ℳ is 𝑇-invariant)
= (𝑃𝑇∗𝑃)∗ (𝑃 = 𝑃∗)
= (𝑇∗𝑃)∗ (ℳ is 𝑇∗-invariant)
= 𝑃𝑇 (𝑃 = 𝑃∗).

We record this in the following theorem.

Theorem 14.3.5. For a proper nonzero subspaceℳ ofℋ, the following are equivalent.

(a) ℳ is a reducing subspace for 𝑇.

(b) 𝑇 = 𝐴⊕ 𝐷 with respect to the decompositionℋ =ℳ⊕ℳ⟂.

(c) 𝑃𝑇 = 𝑇𝑃, in which 𝑃 is the orthogonal projection ontoℳ.

14.4 Inverses and Spectra
Inverses are another domain in which block operators can be manipulated like matrices,
so long as one remembers that the entries need not commute. However, there are a few
unexpected surprises.
Ifℋ = ℋ1 ⊕ℋ2 is an orthogonal decomposition, consider a 2 × 2 block operator

[𝐴 𝐵
0 𝐷] , (14.4.1)
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in which 𝐴 ∈ ℬ(ℋ1) and 𝐷 ∈ ℬ(ℋ2) are invertible and 𝐵 ∈ ℬ(ℋ2,ℋ1). To avoid
trivialities, we assume that ℋ1 and ℋ2 are both proper and nonzero. A computation
(Exercise 14.11.6) confirms that

[𝐴 𝐵
0 𝐷]

−1

= [𝐴
−1 −𝐴−1𝐵𝐷−1

0 𝐷−1 ] . (14.4.2)

Hence, a block upper-triangular operator matrix is invertible if the blocks on its diagonal
are invertible (the same holds true for lower-triangular block operators). Surprisingly, the
converse is false [169, Pr. 71].

Example 14.4.3. A 2×2 upper-triangular block operator may be invertible while both of
the blocks on the diagonal are not invertible. For example, let 𝑆 denote the unilateral shift
on ℓ2 (Chapter 5). Thenneither 𝑆 nor 𝑆∗, the forward and backward shifts, respectively, are
invertible (Proposition 5.1.4 and Proposition 5.2.4). Nevertheless, a computation (Exercise
14.11.7) confirms that

[𝑆 𝐼 − 𝑆𝑆∗
0 𝑆∗ ] is invertible with inverse [ 𝑆∗ 0

𝐼 − 𝑆𝑆∗ 𝑆] . (14.4.4)

In particular, the operators above are block triangular and unitary. In contrast, if the spaces
involved are finite dimensional, this cannot occur unless thematrix is block diagonal with
unitary operators on the diagonal (Exercise 14.11.8).

Suppose that (14.4.1) is invertible. In light of the previous example, we cannot conclude
that𝐴 or𝐷 is invertible. However, if one of them is invertible, then so is the other (Exercise
14.11.12). We use this observation in the second part of the following theorem.

Theorem 14.4.5. If

𝑇 = [𝐴 𝑋
0 𝐵] ,

then

𝜎(𝐴)Δ𝜎(𝐵) ⊆ 𝜎(𝑇) ⊆ 𝜎(𝐴) ∪ 𝜎(𝐵). (14.4.6)

Here Δ denotes the symmetric difference of two sets. In particular, if 𝜎(𝐴) ∩ 𝜎(𝐵) = ∅, then
𝜎(𝑇) = 𝜎(𝐴) ∪ 𝜎(𝐵).

Proof If 𝜆 ∈ 𝜎(𝐴)Δ𝜎(𝐵), then exactly one of 𝐴 − 𝜆𝐼 and 𝐵 − 𝜆𝐼 is invertible. Therefore,

𝑇 − 𝜆𝐼 = [𝐴 − 𝜆𝐼 𝑋
0 𝐵 − 𝜆𝐼]

is not invertible (Exercise 14.11.12), and hence 𝜆 ∈ 𝜎(𝑇).
If 𝜆 ∉ 𝜎(𝐴) ∪ 𝜎(𝐵), then 𝐴− 𝜆𝐼 and 𝐵 − 𝜆𝐼 are invertible and hence 𝑇 − 𝜆𝐼 is invertible
by (14.4.2). Thus, 𝜆 ∉ 𝜎(𝑇). ■
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Example 14.4.7. The 2 × 2 block operator 𝑇 from Example 14.4.3 is unitary, and hence
𝜎(𝑇) ⊆ 𝕋. However, the spectra of its diagonal blocks are 𝜎(𝑆) = 𝜎(𝑆∗) = 𝔻− (Proposition
5.1.4), and hence both containments in (14.4.6) can be strict. On the other hand, if the
spaces that 𝐴 and 𝐵 operate on are finite dimensional, then 𝜎(𝑇) = 𝜎(𝐴) ∪ 𝜎(𝐵) (Exercise
14.11.13).

Block-operator techniques can sometimes reveal things that are unexpected. Although
𝐴𝐵 and 𝐵𝐴 are generally unequal, their spectra are closely related. See Exercise 14.11.18
for an extension of the next result.

Theorem 14.4.8. If 𝐴, 𝐵 ∈ ℬ(ℋ), then 𝜎(𝐴𝐵) ∪ {0} = 𝜎(𝐵𝐴) ∪ {0}.

Proof Let 𝜆 ≠ 0 and observe that

[𝐼 0
𝐵 𝐼] [

𝐴𝐵 − 𝜆𝐼 𝐴
0 −𝜆𝐼] = [−𝜆𝐼 𝐴

0 𝐵𝐴 − 𝜆𝐼] [
𝐼 0
𝐵 𝐼] .

Let

𝑆 = [𝐴𝐵 − 𝜆𝐼 𝐴
0 −𝜆𝐼] and 𝑇 = [−𝜆𝐼 𝐴

0 𝐵𝐴 − 𝜆𝐼] .

Since

𝐴𝐵 − 𝜆𝐼 is invertible ⟺ 𝑆 is invertible (by (14.4.2))
⟺ 𝑇 is invertible (𝑆 and 𝑇 are similar)
⟺ 𝐵𝐴 − 𝜆𝐼 is invertible (by Exercise 14.11.12),

it follows that 𝜎(𝐴𝐵) and 𝜎(𝐵𝐴) have the same nonzero elements. ■

Example 14.4.9. The restriction 𝜆 ≠ 0 is essential in the previous proof. If 𝑆 denotes the
unilateral shift on ℓ2, then 𝜎(𝑆∗𝑆) = {1} and 𝜎(𝑆𝑆∗) = {0, 1} since 𝑆∗𝑆 = 𝐼 and 𝑆𝑆∗ =
𝐼 − e0 ⊗ e0 is the orthogonal projection onto {e0}⟂ = ⋁{e𝑛 ∶ 𝑛 ⩾ 1}.

14.5 Idempotents
Recall that 𝐴 ∈ ℬ(ℋ) is idempotent if 𝐴2 = 𝐴. Examples of idempotents include
orthogonal projections and the 2 × 2matrices

[1 1
0 0] and [

1
2

1
2

1
2

1
2

] .

From the first matrix above, one sees that an idempotent operator need not be selfadjoint.

Theorem 14.5.1. If 𝐴 ∈ ℬ(ℋ) is idempotent and 𝐴 ∉ {0, 𝐼}, then 𝜎(𝐴) = 𝜎𝑝(𝐴) = {0, 1}.
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Proof Suppose that 𝜆 ∉ {0, 1} and let

𝐵 = 1
1 − 𝜆𝐴 −

1
𝜆(𝐼 − 𝐴).

Then

(𝐴 − 𝜆𝐼)𝐵 = (𝐴 − 𝜆𝐼) ( 1
1 − 𝜆𝐴 −

1
𝜆(𝐼 − 𝐴))

= 1
1 − 𝜆(𝐴

2 − 𝜆𝐴) − 1
𝜆(𝐴 − 𝐴2 − 𝜆𝐼 + 𝜆𝐴)

= 𝐴
1 − 𝜆(1 − 𝜆) + (𝐼 − 𝐴)

= 𝐼.

Since 𝐵 is a polynomial in 𝐴, it follows that 𝐵(𝐴 − 𝜆𝐼) = 𝐼, and hence 𝐴 − 𝜆𝐼 has an
inverse in ℬ(ℋ). Thus, 𝜆 ∉ 𝜎(𝐴), and hence 𝜎(𝐴) ⊆ {0, 1}.

Since 𝐼 − 𝐴 ≠ 0, there is an x such that y = (𝐼 − 𝐴)x ≠ 0. Then 𝐴y = 𝐴(𝐼 − 𝐴)x = 0,
so 0 ∈ 𝜎𝑝(𝐴). Similarly, 𝐴 ≠ 0, and hence there is an x ∈ ℋ such that y = 𝐴x ≠ 0.
Then, (𝐴 − 𝐼)y = (𝐴 − 𝐼)𝐴x = 𝐴2x − 𝐴x = 0 and so 𝐴y = y. Thus, 1 ∈ 𝜎𝑝(𝐴). This
shows that {0, 1} ⊆ 𝜎𝑝(𝐴) ⊆ 𝜎(𝐴). ■

If 𝐴 ∈ ℬ(ℋ) is idempotent, the previous theorem ensures that 𝐴y = y if and only if
y ∈ ran𝐴. In other words, ran𝐴 is the eigenspace of 𝐴 corresponding to the eigenvalue
1. Indeed, the condition 𝐴y = y ensures that y ∈ ran𝐴. On the other hand, if y ∈ ran𝐴,
then y = 𝐴x for some x ∈ ℋ and hence y = 𝐴x = 𝐴2x = 𝐴(𝐴x) = 𝐴y.

Proposition 14.5.2. If 𝐴 is idempotent, then ran𝐴 is closed.

Proof Let (y𝑛)∞𝑛=1 be a sequence in ran𝐴 such that y𝑛 → y. Then

y = lim
𝑛→∞

y𝑛 = lim
𝑛→∞

𝐴y𝑛 = 𝐴y

and hence y ∈ ran𝐴. ■

Since 𝐼 = 𝐴 + (𝐼 − 𝐴), it follows that x = 𝐴x + (𝐼 − 𝐴)x. Observe that 𝐴x ∈ ran𝐴
and (𝐼 − 𝐴)x ∈ ker𝐴 since 𝐴(𝐼 − 𝐴)x = (𝐴 − 𝐴2)x = 0x = 0. Thus, if 𝐴 ∈ ℬ(ℋ) is
idempotent, thenℋ = ker𝐴+ran𝐴, in which the subspaces involved are closed, although
not necessarily orthogonal, and ker𝐴 ∩ ran𝐴 = {0}. Recall that we only use the symbol
⊕ to signify an orthogonal direct sum. Since 𝐴 fixes each element of its range, we deduce
the following result.

Proposition 14.5.3. If 𝐴 ∈ ℬ(ℋ) is idempotent, then

𝐴 = [𝐼 𝐵
0 0]

with respect to the direct sumℋ = ran𝐴 ⊕ (ran𝐴)⟂. Moreover, any block operator of the
form above is idempotent.
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Exercise 14.11.14 yields the following theorem.

Theorem 14.5.4. For 𝐴 ∈ ℬ(ℋ), the following are equivalent.

(a) 𝐴 is an orthogonal projection.

(b) 𝐴 = 𝐴∗ and 𝜎(𝐴) ⊆ {0, 1}.

(c) 𝐴 is selfadjoint and idempotent.

14.6 The Douglas Factorization Theorem
Let 𝐴, 𝐵 ∈ ℬ(ℋ). When is ran𝐴 ⊆ ran𝐵? Note that this question concerns operator
ranges, which are vector spaces but need not be topologically closed (and hence not
subspaces). A corollary to the following theorem of Douglas provides the answer.

Theorem 14.6.1 (Douglas [115]). Let𝒦1, 𝒦2, andℋ be Hilbert spaces. For𝐴 ∈ ℬ(𝒦1,ℋ)
and 𝐵 ∈ ℬ(𝒦2,ℋ), the following are equivalent.

(a) There is a contraction 𝐶 ∈ ℬ(𝒦1, 𝒦2) such that 𝐴 = 𝐵𝐶.

(b) 𝐴𝐴∗ ⩽ 𝐵𝐵∗.

Proof (a)⇒ (b) Suppose that 𝐶 is a contraction and𝐴 = 𝐵𝐶. Since 𝐼 −𝐶𝐶∗ ⩾ 0 (Exercise
14.11.20), it follows that 𝐵𝐵∗ − 𝐴𝐴∗ = 𝐵𝐵∗ − 𝐵𝐶𝐶∗𝐵∗ = 𝐵(𝐼 − 𝐶𝐶∗)𝐵∗ ⩾ 0. Thus,
𝐴𝐴∗ ⩽ 𝐵𝐵∗.

(b)⇒ (a) Assume that 𝐴𝐴∗ ⩽ 𝐵𝐵∗. Then

‖𝐴∗x‖ ⩽ ‖𝐵∗x‖ for all x ∈ ℋ, (14.6.2)

and hence we can define a linear transformation

𝐷 ∶ ran𝐵∗ → ran𝐴∗, 𝐷(𝐵∗x) = 𝐴∗x.

Note that the vector spaces ran𝐵∗ and ran𝐴∗ are not necessarily topologically closed.
By (14.6.2), 𝐷 is well defined and ‖𝐷(𝐵∗x)‖ ⩽ ‖𝐵∗x‖ for all x ∈ ℋ. Therefore, we
can extend 𝐷 to a contraction from (ran𝐵∗)− into 𝒦1. Finally, let 𝐷z = 0 for z ∈
(ran𝐵∗)⟂ so that 𝐷 extends by linearity to a bounded operator on all of 𝒦2. Then 𝐷
is a contraction that satisfies 𝐷𝐵∗ = 𝐴∗. Take adjoints to obtain 𝐴 = 𝐵𝐷∗, and thus
𝐶 = 𝐷∗ is the desired contraction. ■

The construction above yields the following two sets of equalities:

ker𝐶 = ker𝐷∗ = (ran𝐷)⟂ = (ran𝐴∗)⟂ = ker𝐴 (14.6.3)

and

(ran𝐶)− = (ran𝐷∗)− = (ker𝐷)⟂ = (ran𝐵∗)− = (ker𝐵)⟂. (14.6.4)



the julia operator of a contraction | 317

Corollary 14.6.5. Let 𝐴 ∶ ℋ → 𝒦1 and 𝐵 ∶ ℋ → 𝒦2 be contractions. Then

[𝐴𝐵] ∶ ℋ → 𝒦1 ⊕𝒦2, x↦ [𝐴x𝐵x]

is a contraction if and only if there is a contraction𝐶 ∶ ℋ → 𝒦1 such that𝐴 = 𝐶(𝐼−𝐵∗𝐵)
1
2 .

Proof From Exercise 14.11.20,

𝑇 = [𝐴𝐵]

is a contraction if and only if 𝑇∗𝑇 ⩽ 𝐼. Since 𝑇∗ = [𝐴∗ 𝐵∗], the inequality 𝑇∗𝑇 ⩽ 𝐼
is equivalent to 𝑇∗𝑇 = 𝐴∗𝐴 + 𝐵∗𝐵 ⩽ 𝐼.Write this as 𝐴∗𝐴 ⩽ 𝐼 − 𝐵∗𝐵, and then apply
Douglas’ factorization theorem (Theorem 14.6.1). ■

Theorem 14.6.1 is often used as the following range-inclusion theorem.

Corollary 14.6.6. For 𝐴, 𝐵 ∈ ℬ(ℋ), the following are equivalent.

(a) ran𝐴 ⊆ ran𝐵.

(b) 𝐴𝐴∗ ⩽ 𝜆𝐵𝐵∗ for some 𝜆 > 0.

(c) There exists a 𝐶 ∈ ℬ(ℋ) such that 𝐴 = 𝐵𝐶.

Proof (a)⇒ (c) If x ∈ ℋ, then 𝐴x ∈ ran𝐴 ⊆ ran𝐵. Sinceℋ = ker𝐵 ⊕ (ker𝐵)⟂, there
is a unique z ∈ (ker𝐵)⟂ such that 𝐵z = 𝐴x. Define a linear transformation onℋ by
𝐶x = z. Use the closed graph theorem (Theorem 2.2.2) to show that 𝐶 is bounded
as follows. Suppose 𝐶x𝑛 = z𝑛 where (x𝑛)∞𝑛=1 is a sequence in ℋ and (z𝑛)∞𝑛=1 is a
sequence in (ker𝐵)⟂ such that x𝑛 → x and z𝑛 → z. Then 𝐴x𝑛 → 𝐴x and 𝐵z𝑛 → 𝐵z.
The assumption 𝐵z𝑛 = 𝐴x𝑛 implies 𝐵z = 𝐴x. Moreover, since (ker𝐵)⟂ is closed, it
follows that z ∈ (ker𝐵)⟂. Thus, the uniqueness of z ensures that 𝐶x = z, so 𝐶 is
bounded. Finally, observe that 𝐴x = 𝐵z = 𝐵𝐶x for all x, and hence 𝐴 = 𝐵𝐶.

(c)⇒ (a) This follows from 𝐴ℋ = 𝐵𝐶ℋ ⊆ 𝐵ℋ.
(b)⇒ (c) This is a minor alteration of the proof of Theorem 14.6.1.
(c)⇒ (b) If 𝐴 = 𝐵𝐶, then

𝐴𝐴∗ = 𝐵𝐶𝐶∗𝐵∗ = ‖𝐶‖2𝐵𝐵∗ − 𝐵(‖𝐶‖2𝐼 − 𝐶𝐶∗)𝐵∗ ⩽ ‖𝐶‖2𝐵𝐵∗,

which completes the proof. ■

14.7 The Julia Operator of a Contraction
In this section, we examine Möbius transformations of operators, following the presen-
tation [134, Ch. 7]. This material is needed in our treatment of Parrott’s theorem which
plays a crucial role in our analysis of Hankel operators (see Chapter 17).
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Suppose that

𝑈 = [𝐴 𝐵
𝐶 𝐷]

is a unitary operator onℋ = ℋ1⊕ℋ2. Let 𝑃 denote the orthogonal projection ofℋ onto
ℋ1 and observe that

‖𝐶‖ = ‖(𝐼 − 𝑃)𝑈𝑃‖ ⩽ ‖𝑈‖ = 1.

The operator-valued function

𝑓𝑈 (𝑋) = 𝐵 − 𝐴𝑋(𝐼 + 𝐶𝑋)−1𝐷

is well defined on

D(𝑈) = {𝑋 ∈ ℬ(ℋ2,ℋ1) ∶ 𝐼 + 𝐶𝑋 is invertible in ℬ(ℋ2)}.

By Proposition 2.3.9, notice that D(𝑈) contains every 𝑋 ∈ ℬ(ℋ2,ℋ1) such that ‖𝑋‖ < 1
and that 𝑓𝑈 maps D(𝑈) into ℬ(ℋ2,ℋ1).

Proposition 14.7.1. If 𝑋 ∈ D(𝑈) and 𝐸 = (𝐼 + 𝐶𝑋)−1𝐷, then

𝐼 − 𝑓𝑈 (𝑋)∗𝑓𝑈 (𝑋) = 𝐸∗(𝐼 − 𝑋∗𝑋)𝐸.

Proof Since 𝑈∗𝑈 = 𝐼, it follows that

[𝐼 0
0 𝐼] = [𝐴

∗ 𝐶∗

𝐵∗ 𝐷∗] [
𝐴 𝐵
𝐶 𝐷] = [𝐴

∗𝐴 + 𝐶∗𝐶 𝐴∗𝐵 + 𝐶∗𝐷
𝐵∗𝐴 + 𝐷∗𝐶 𝐵∗𝐵 + 𝐷∗𝐷] .

Comparing entries in the matrices above yields the operator identities

𝐴∗𝐴 + 𝐶∗𝐶 = 𝐼,
𝐴∗𝐵 + 𝐶∗𝐷 = 0,
𝐵∗𝐴 + 𝐷∗𝐶 = 0,
𝐵∗𝐵 + 𝐷∗𝐷 = 𝐼,

from which we deduce the desired identity. ■

Corollary 14.7.2. If 𝑋 ∈ D(𝑈) is a contraction, then so is 𝑓𝑈 (𝑋).

Proof Exercise 14.11.20 says that 𝐼 − 𝑋∗𝑋 ⩾ 0 and Proposition 14.7.1 implies that

𝐼 − 𝑓𝑈 (𝑋)∗𝑓𝑈 (𝑋) ⩾ 0.

Exercise 14.11.20 implies that 𝑓𝑈 (𝑋) is a contraction. ■

Let 𝐵 ∶ ℋ2 →ℋ1 be a contraction. The corresponding Julia operator onℋ1 ⊕ℋ2 is

𝐽(𝐵) = [(𝐼 − 𝐵𝐵∗)
1
2 𝐵

−𝐵∗ (𝐼 − 𝐵∗𝐵)
1
2
] .
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Lemma 14.7.3 (Julia [207]). 𝐽(𝐵) is a unitary operator onℋ1 ⊕ℋ2.

Proof We need to check that 𝐽(𝐵)𝐽(𝐵)∗ = 𝐽(𝐵)∗𝐽(𝐵) = 𝐼. Observe that 𝐽(𝐵)∗𝐽(𝐵) equals

[ 𝐼 (𝐼 − 𝐵𝐵∗)
1
2 𝐵 − 𝐵(𝐼 − 𝐵∗𝐵)

1
2

𝐵∗(𝐼 − 𝐵𝐵∗)
1
2 − (𝐼 − 𝐵∗𝐵)

1
2 𝐵∗ 𝐼

] .

Moreover (Exercise 8.10.27),

(𝐼 − 𝐵𝐵∗)
1
2 𝐵 = 𝐵(𝐼 − 𝐵∗𝐵)

1
2 and 𝐵∗(𝐼 − 𝐵𝐵∗)

1
2 = (𝐼 − 𝐵∗𝐵)

1
2 𝐵∗.

Thus, 𝐽(𝐵)∗𝐽(𝐵) = 𝐼. The proof that 𝐽(𝐵)𝐽(𝐵)∗ = 𝐼 is similar. ■

Since 𝐽(𝐵) is a unitary operator onℋ1⊕ℋ2, Corollary 14.7.2 gives the following result.

Corollary 14.7.4. Let 𝐵, 𝑋 ∈ ℬ(ℋ2,ℋ1) be contractions such that 𝐼 − 𝐵∗𝑋 is invertible in
ℬ(ℋ2). Then

𝑓𝐽(𝐵)(𝑋) = 𝐵 − (𝐼 − 𝐵𝐵∗)
1
2𝑋(𝐼 − 𝐵∗𝑋)−1(𝐼 − 𝐵∗𝐵)

1
2 (14.7.5)

is a contraction inℬ(ℋ2,ℋ1).

14.8 Parrott’s Theorem
This next result of Parrott plays an important role in our presentation of Hankel operators
(Chapter 17). If

[𝐴 𝐵
𝐶 𝐷] ∶ ℋ1 ⊕ℋ2 →ℋ3 ⊕ℋ4

is a contraction, then the restrictions

[𝐵𝐷] ∶ ℋ2 →ℋ3 ⊕ℋ4 and [𝐶 𝐷] ∶ ℋ1 ⊕ℋ2 →ℋ4

are contractions as well. In the light of the conditions above, suppose that 𝐵, 𝐶, 𝐷 are given
such that

[𝐵𝐷] ∈ ℬ(ℋ2,ℋ3 ⊕ℋ4) and [𝐶 𝐷] ∈ ℬ(ℋ1 ⊕ℋ2,ℋ4)

are contractions. Is there an 𝐴 ∈ ℬ(ℋ1,ℋ3) such that

[𝐴 𝐵
𝐶 𝐷] ∈ ℬ(ℋ1 ⊕ℋ2,ℋ3 ⊕ℋ4)

is a contraction? The affirmative answer is known as Parrott’s theorem.
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Theorem 14.8.1 (Parrott [261]). Let

[𝐵𝐷] ∈ ℬ(ℋ2,ℋ3 ⊕ℋ4) and [𝐶 𝐷] ∈ ℬ(ℋ1 ⊕ℋ2,ℋ4)

be contractions. Then there is an 𝐴 ∈ ℬ(ℋ1,ℋ3) such that

[𝐴 𝐵
𝐶 𝐷] ∈ ℬ(ℋ1 ⊕ℋ2,ℋ3 ⊕ℋ4)

is a contraction.

Proof Corollary 14.6.5 provides contractions 𝐸 ∈ ℬ(ℋ2,ℋ3) and 𝐹 ∈ ℬ(ℋ1,ℋ4) such
that

𝐵 = 𝐸(𝐼 − 𝐷∗𝐷)
1
2 and 𝐶 = (𝐼 − 𝐷𝐷∗)

1
2 𝐹.

Define

𝑋 = [0 𝐸
𝐹 0] and 𝑌 = [0 0

0 −𝐷] .

A computation shows that

𝐼 − 𝑋∗𝑋 = [𝐼 − 𝐹∗𝐹 0
0 𝐼 − 𝐸∗𝐸] (14.8.2)

and

𝐼 − 𝑌∗𝑌 = [𝐼 0
0 𝐼 − 𝐷∗𝐷] . (14.8.3)

Since 𝐸, 𝐹, and 𝐷 are contractions, the operators on the diagonals in (14.8.2) and
(14.8.3) are positive and hence 𝑋 and 𝑌 are contractions. Moreover,

𝐼 − 𝑌∗𝑋 = 𝐼 − [0 0
0 −𝐷]

∗

[0 𝐸
𝐹 0] = [ 𝐼 0

𝐷∗𝐹 𝐼] .

Therefore, 𝐼 − 𝑌∗𝑋 is invertible and

( 𝐼 − 𝑌∗𝑋 )−1 = [ 𝐼 0
−𝐷∗𝐹 𝐼] .

Use Corollary 14.7.4 to define the contraction 𝑓(𝑋) ∈ ℬ(ℋ1⊕ℋ2,ℋ3⊕ℋ4), that is
𝑓(𝑋) = 𝑓𝐽(𝑌)(𝑋). To explicitly calculate 𝑓(𝑋), observe that

(𝐼 − 𝑌𝑌∗)
1
2 = [

𝐼 0
0 (𝐼 − 𝐷𝐷∗)

1
2
]

and

𝐽(𝑌) = [(𝐼 − 𝑌𝑌∗)
1
2 𝑌

−𝑌∗ (𝐼 − 𝑌∗𝑌)
1
2
]
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=
⎡
⎢
⎢
⎢
⎢
⎣

𝐼 0 0 0
0 (𝐼 − 𝐷𝐷∗)

1
2 0 −𝐷

0 0 𝐼 0
0 𝐷∗ 0 (𝐼 − 𝐷∗𝐷)

1
2

⎤
⎥
⎥
⎥
⎥
⎦

.

Thus, calculating according to (14.7.5) by using the above 𝐽(𝑌),

𝑓(𝑋) = 𝑌 − (𝐼 − 𝑌𝑌∗)
1
2 𝑋 (𝐼 − 𝑌∗𝑋)−1 (𝐼 − 𝑌∗𝑌)

1
2

= [0 0
0 −𝐷] − [

𝐼 0
0 (𝐼 − 𝐷𝐷∗)

1
2
] [0 𝐸
𝐹 0] [

𝐼 0
−𝐷∗𝐹 𝐼] [

𝐼 0
0 (𝐼 − 𝐷∗𝐷)

1
2
]

= [−𝐸𝐷
∗𝐹 −𝐵

−𝐶 −𝐷] .

Thus, 𝐴 = 𝐸𝐷∗𝐹 solves Parrott’s problem. ■

14.9 Polar Decomposition
If 𝑧 is a nonzero complex number, then 𝑧 can be written in polar form as 𝑧 = 𝑢|𝑧|, where
𝑢 ∈ 𝕋 and |𝑧| = √𝑧𝑧. Furthermore, this representation is unique. There is an analogue of
this factorization for Hilbert space operators. For 𝐴 ∈ ℬ(ℋ), note that 𝐴∗𝐴 is a positive
operator, and hence it has a unique positive square root (Theorem 8.6.4).

Definition 14.9.1. For 𝐴 ∈ ℬ(ℋ), themodulus of 𝐴 is |𝐴| = √𝐴∗𝐴.

Example 14.9.2. For a diagonal operator 𝐷Λ with eigenvalues Λ = (𝜆𝑛)∞𝑛=0, recall from
Chapter 2 that 𝐷∗

Λ = 𝐷Λ, where Λ = (𝜆𝑛)∞𝑛=0. Therefore,

|𝐷Λ| =

⎡⎢⎢⎢⎢⎢
⎣

|𝜆0| 0 0 0 ⋯
0 |𝜆1| 0 0 ⋯
0 0 |𝜆2| 0 ⋯
0 0 0 |𝜆3| ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

More generally, consider a compact selfadjoint operator 𝐴 ∈ ℬ(ℋ). By the spectral
theorem for compact selfadjoint operators (Theorem 2.6.7), 𝐴 = ∑∞

𝑛=0 𝜆𝑛(x𝑛⊗x𝑛),where
(𝜆𝑛)∞𝑛=0 is the sequence of eigenvalues of 𝐴, which are real and tend to zero, and (x𝑛)∞𝑛=0
is the corresponding sequence of orthonormal eigenvectors. Then

|𝐴| =
∞
∑
𝑛=0

|𝜆𝑛|(x𝑛 ⊗ x𝑛). (14.9.3)
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Example 14.9.4. For the unilateral shift 𝑆 on ℓ2, one sees that 𝑆∗𝑆 = 𝐼, and hence |𝑆| = 𝐼.
Since 𝑆𝑆∗ = 𝐼 − e0 ⊗ e0,

|𝑆∗| =

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
0 1 0 0 ⋯
0 0 1 0 ⋯
0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Example 14.9.5. For a multiplication operator𝑀𝜑 on 𝐿2(𝜇) (see Chapter 8),𝑀∗
𝜑 = 𝑀𝜑 so

|𝑀𝜑| = 𝑀|𝜑|.

Example 14.9.6. From Chapter 7, the Volterra operator

(𝑉𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡) 𝑑𝑡

on 𝐿2[0, 1] has an orthonormal basis of eigenvectors for 𝑉∗𝑉

𝑓𝑛(𝑥) = √2 cos (2𝑛 + 1
2 𝜋𝑥) for 𝑛 ⩾ 0,

with corresponding eigenvalues

𝜆𝑛 =
4

(2𝑛 + 1)2𝜋2 for 𝑛 ⩾ 0

(Proposition 7.2.1). Moreover, 𝑉∗𝑉 is compact and 𝑉∗𝑉 = ∑∞
𝑛=0 𝜆𝑛(𝑓𝑛 ⊗ 𝑓𝑛). Thus, as in

(14.9.3),

|𝑉| =
∞
∑
𝑛=0

√𝜆𝑛(𝑓𝑛 ⊗ 𝑓𝑛).

Example 14.9.7. The Bishop operator

(𝑇𝛼𝑓)(𝑥) = 𝑥𝑓({𝑥 + 𝛼})

on 𝐿2[0, 1] (see Chapter 13) factors as 𝑇𝛼 = 𝑀𝑥𝑈𝛼, where (𝑀𝑥𝑓)(𝑥) = 𝑥𝑓(𝑥) and 𝑈𝛼𝑓 =
𝑓({𝑥 + 𝛼}) is unitary. Then |𝑇∗

𝛼 | = 𝑀𝑥.Moreover, by Exercise 14.11.26, |𝑇𝛼| = 𝑈−𝛼𝑀𝑥𝑈𝛼.

A complex number is invertible if and only if it is nonzero. For an operator, there are
issues with its kernel that need to be taken into account.

Definition 14.9.8. 𝐴 ∈ ℬ(ℋ) is a partial isometry if ‖𝐴x‖ = ‖x‖ for all x ∈ (ker𝐴)⟂. The
initial space of 𝐴 is (ker𝐴)⟂ and the final space of 𝐴 is ran𝐴.

A partial isometry has closed range since it is isometric on (ker𝐴)⟂. Indeed, if ℋ =
ker𝐴 ⊕ (ker𝐴)⟂, then ‖𝐴x‖ = ‖𝐴𝑃(ker𝐴)⟂x‖ = ‖𝑃(ker𝐴)⟂x‖. This says that if (𝐴x𝑛)∞𝑛=1
is a Cauchy sequence in ran𝐴, then (𝑃(ker𝐴)⟂x𝑛)∞𝑛=1 is a Cauchy sequence in (ker𝐴)⟂.
Since (ker𝐴)⟂ is closed, there is an x ∈ ℋ such that 𝑃(ker𝐴)⟂x𝑛 → 𝑃(ker𝐴)⟂x. Then
𝐴x𝑛 = 𝐴𝑃(ker𝐴)⟂x𝑛 → 𝐴𝑃(ker𝐴)⟂x = 𝐴x which shows that ran𝐴 is closed.
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Example 14.9.9. Aunitary operator is a partial isometry with initial and final space equal
toℋ. In particular, a partial isometry is invertible if and only if it is unitary.

Example 14.9.10. An isometry 𝐴 ∈ ℬ(ℋ) is a partial isometry with initial spaceℋ and
final space ran𝐴. In particular, the unilateral shift 𝑆 on ℓ2 is a partial isometry with initial
space ℓ2 and final space {e0}⟂ = ⋁{e𝑛 ∶ 𝑛 ⩾ 1}.

Example 14.9.11. The backward shift 𝑆∗ on ℓ2 is a partial isometry with initial space
⋁{e𝑛 ∶ 𝑛 ⩾ 1} and final space ℓ2.

Example 14.9.12. If Λ = (𝜆𝑛)∞𝑛=0 with |𝜆𝑗 | ∈ {0, 1}, then 𝐷Λ is a partial isometry with
initial space and final space⋁{e𝑛 ∶ 𝜆𝑛 ≠ 0}.

Example 14.9.13. If 𝜑 ∈ 𝐿∞(𝜇) and |𝜑(𝑧)| ∈ {0, 1} 𝜇-almost everywhere, then 𝑀𝜑 is
a partial isometry on 𝐿2(𝜇) with initial space and final space 𝜑𝐿2(𝜇) = 𝜒𝐸𝐿2(𝜇), where
𝐸 = {|𝜑| = 1}.

Proposition 14.9.14. For 𝐴 ∈ ℬ(ℋ), the following are equivalent.

(a) 𝐴 is a partial isometry.

(b) 𝐴∗ is a partial isometry.

(c) 𝐴 = 𝐴𝐴∗𝐴.

(d) 𝐴∗ = 𝐴∗𝐴𝐴∗.

(e) 𝐴∗𝐴 is an orthogonal projection.

(f) 𝐴𝐴∗ is an orthogonal projection.

Moreover, if𝐴 is a partial isometry, then𝐴∗𝐴 is the orthogonal projection ofℋ onto (ker𝐴)⟂
and 𝐴𝐴∗ is the orthogonal projection ofℋ onto ran𝐴.

Proof (a)⇒ (c) For a selfadjoint operator 𝐵 ∈ ℬ(ℋ), (2.6.6) says that ⟨𝐵x, x⟩ = 0 for all
x ∈ ℋ if and only if 𝐵 = 0. Apply this to 𝐵 = (𝐼 − 𝐴∗𝐴)|(ker𝐴)⟂ to see that if 𝐴 is
isometric on (ker𝐴)⟂, then 𝐴∗𝐴 = 𝐼 on (ker𝐴)⟂. Thus, 𝐴 = 𝐴𝐴∗𝐴 onℋ.

(c)⇒ (e) If 𝐴𝐴∗𝐴 = 𝐴, then (𝐴∗𝐴)2 = 𝐴∗𝐴. Since 𝐴∗𝐴 is selfadjoint and idempotent, it
is an orthogonal projection (Theorem 14.5.4).

(c)⇒ (a) Since ker𝐴∗𝐴 = ker𝐴 (Exercise 14.11.22), it follows that𝐴∗𝐴 is the orthogonal
projection onto (ker𝐴)⟂. Indeed, if y ∈ ker𝐴, then ⟨𝐴∗𝐴x, y⟩ = ⟨𝐴x, 𝐴y⟩ = 0 for all
x ∈ ℋ. Thus, 𝐴∗𝐴ℋ = (ker𝐴)⟂. If x ∈ (ker𝐴)⟂, then 𝐴∗𝐴x = x, and hence

‖𝐴x‖2 = ⟨𝐴x, 𝐴x⟩ = ⟨𝐴∗𝐴x, x⟩ = ⟨x, x⟩ = ‖x‖2.

Thus, 𝐴 is a partial isometry.
(e) ⇒ (c) If 𝐴∗𝐴 is an orthogonal projection, then, as we have seen earlier, it is the
orthogonal projection onto (ker𝐴)⟂. For x ∈ ker𝐴, we have 𝐴x = 0 = 𝐴𝐴∗𝐴x.
If x ∈ (ker𝐴)⟂, then x = 𝐴∗𝐴x, and hence 𝐴x = 𝐴(𝐴∗𝐴x) = (𝐴𝐴∗𝐴)x. Thus,
𝐴 = 𝐴𝐴∗𝐴.
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(c)⇔ (d) Take the adjoint of one of the equations to obtain the other.
(b)⇔ (d) Replace 𝐴 with 𝐴∗ in the proof of (a)⇔ (c)
(d)⇔ (f) Replace 𝐴 with 𝐴∗ in the proof of (c)⇔ (e) ■

With the notions of the analogues of the “modulus” and “argument” of an operator in
hand, we are now ready to prove the polar decomposition theorem.

Theorem 14.9.15 (Polar Decomposition). If 𝐴 ∈ ℬ(ℋ), then there is a partial isometry
𝑈 ∈ ℬ(ℋ) with initial space (ker𝐴)⟂ and final space (ran𝐴)− such that 𝐴 = 𝑈|𝐴|.
Furthermore, this decomposition is unique in the sense that if𝐴 = 𝑊𝑄, where𝑄 ⩾ 0 and𝑊
is a partial isometry with ker𝑊 = ker𝑄, then𝑊 = 𝑈 and 𝑄 = |𝐴|.

Proof For any x ∈ ℋ,

‖𝐴x‖2 = ⟨𝐴x, 𝐴x⟩
= ⟨𝐴∗𝐴x, x⟩
= ⟨|𝐴|2x, x⟩ (definition of |𝐴|)
= ⟨|𝐴|x, |𝐴|x⟩ (|𝐴| is selfadjoint)
= ‖ |𝐴|x ‖2. (14.9.16)

Since 𝐴∗𝐴 = |𝐴||𝐴|, the Douglas factorization theorem (Theorem 14.6.1) produces a
𝐶 ∈ ℬ(ℋ) such that 𝐴∗ = |𝐴|𝐶. By (14.6.3) and (14.6.4),

ker𝐶 = ker𝐴∗ and (ran𝐶)− = (ker |𝐴|)⟂. (14.9.17)

Taking adjoints yields 𝐴 = 𝐶∗|𝐴| with

ker𝐶∗ = (ran𝐶)⟂ (Proposition 3.1.7)
= ker |𝐴| (by (14.9.17))
= ker𝐴 (by (14.9.16))

and, in a similar way,

(ran𝐶∗)− = (ker𝐶)⟂ = (ker𝐴∗)⟂ = (ran𝐴)−.

Furthermore, 𝐴 = 𝐶∗|𝐴| together with (14.9.16), implies that ‖𝐶∗|𝐴|x‖ = ‖𝐴x‖ =
‖|𝐴|x‖ and hence 𝐶∗ is a partial isometry on

(ran |𝐴|)− = (ker |𝐴|)⟂ = (ker𝐴)⟂ = (ker𝐶∗)⟂.

Also note that ran𝐶∗ is closed and ran𝐶∗ = (ran𝐶∗)− = (ran𝐴)−. Letting 𝑈 = 𝐶∗

proves the existence of the polar decomposition.
If 𝐴 = 𝑊𝑄, then 𝐴∗𝐴 = 𝑄𝑊 ∗𝑊𝑄. Proposition 14.9.14 implies that 𝑊 ∗𝑊 is the
orthogonal projection onto (ker𝑊)⟂ = (ker𝑄)⟂ = (ran𝑄)−. Thus,𝐴∗𝐴 = 𝑄2. By the
uniqueness of the positive square root (Theorem 8.6.4),𝑄 = |𝐴|. Since𝑈|𝐴|x = 𝐴x =
𝑊|𝐴|x for all x ∈ ℋ, one sees that𝑊 and𝑈 agree on ran |𝐴|. Therefore,𝑊 = 𝑈 . ■
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Example 14.9.18. If Λ = (𝜆𝑛)∞𝑛=0 is a bounded sequence, the polar decomposition of the
diagonal operator 𝐷Λ is

𝐷Λ =

⎡⎢⎢⎢⎢⎢
⎣

𝑢0 0 0 0 ⋯
0 𝑢1 0 0 ⋯
0 0 𝑢2 0 ⋯
0 0 0 𝑢3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

|𝜆0| 0 0 0 ⋯
0 |𝜆1| 0 0 ⋯
0 0 |𝜆2| 0 ⋯
0 0 0 |𝜆3| ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

,

where

𝑢𝑗 = {𝑒
𝑖 arg𝜆𝑗 if 𝜆𝑗 ≠ 0,
0 if 𝜆𝑗 = 0.

Example 14.9.19. If 𝜑 ∈ 𝐿∞(𝜇), then the polar decomposition of 𝑀𝜑 on 𝐿2(𝜇) is
𝑀𝑒𝑖 arg𝜑𝑀|𝜑|, where we interpret (as above with a diagonal operator) 𝑒𝑖 arg𝜑 to be zero when
𝜑 is zero.

Example 14.9.20. For the Volterra operator 𝑉 , work with the representation of 𝑉 with
respect to the orthonormal basis (𝑓𝑛)∞𝑛=0 from Example 14.9.6 to see that

|𝑉| =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√𝜆0 0 0 0 0 ⋯
0 √𝜆1 0 0 0 ⋯
0 0 √𝜆2 0 0 ⋯
0 0 0 √𝜆3 0 ⋯
0 0 0 0 √𝜆4 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To obtain the partial isometric factor𝑈 , observe that 𝑉𝑓𝑛 = 𝑈|𝑉|𝑓𝑛 = √𝜆𝑛𝑈𝑓𝑛 and hence

𝑈𝑓𝑛 =
1

√𝜆𝑛
𝑉𝑓𝑛 = √2 sin (2𝑛 + 1

2 𝜋𝑥).

The (𝑚, 𝑛) entry of the matrix with respect to the orthonormal basis (𝑓𝑛)∞𝑛=0 is

⟨𝑈𝑓𝑛, 𝑓𝑚⟩ = ∫
1

0
(𝑈𝑓𝑛)(𝑥)𝑓𝑚(𝑥) 𝑑𝑥.

Thus,

𝑈 = 1
𝜋

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 2
3

2
3

2
5

2
5

⋯
−2 2

3
2 2

5
2
3

2
7

⋯
2
3

−2 2
5

2 2
7

2
3

⋯
− 2

3
2
5

−2 2
7

2 2
9

⋯
2
5

− 2
3

2
7

−2 2
9

2 ⋯
− 2

5
2
7

− 2
3

2
9

−2 2
11

⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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14.10 Notes
Corollary 14.6.6 says a bit more. Namely, ran𝐴 ⊆ ran𝐵 if and only if there is a 𝐶 such that
𝐴 = 𝐵𝐶. Moreover, 𝐶 is the unique operator that satisfies the following:

(a) ‖𝐶‖2 = inf{𝜆 > 0 ∶ 𝐴𝐴∗ ⩽ 𝜆𝐵𝐵∗},

(b) ker𝐴 = ker𝐶, and

(c) (ran𝐶)− ⊆ (ran𝐵∗)−.

This theorem plays an important role in defining de Branges–Rovnyak spaces, which are
used as model spaces for certain contractions [134, 135].
The Julia lemma (Lemma 14.7.3) relates a contraction to a unitary operator on a larger

space. This result was significantly extended by Sz.-Nagy [355] in a result known as the
Sz.-Nagy dilation theorem. This result says that if 𝐵 is a contraction on a Hilbert space
ℋ, there is a Hilbert space 𝒦 containing ℋ and a unitary operator 𝑈 on 𝒦 such that
𝑃ℋ𝑈𝑛|ℋ = 𝐵𝑛 for all 𝑛 ⩾ 1.
Partial isometries on finite-dimensional spaces, often called partial isometric matrices,

are well studied andmuch is known about them. In fact, they have a complete description:
𝐴 ∈ ℳ𝑛 with rank 𝑟 is a partial isometric matrix if and only if𝐴 = 𝑈(𝐼𝑟⊕0𝑛−𝑟)𝑉 for some
unitary matrices 𝑈,𝑉 ∈ 𝑀𝑛. Furthermore, 𝐴 is a partial isometric matrix if and only if
𝐴 = 𝑊𝑃, where 𝑃 ∈ ℳ𝑛 is an orthogonal projection and𝑊 ∈ℳ𝑛 is unitary. There is also
a unitary invariant for partial isometric matrices and a beautiful theory of the numerical
range of a partial isometric matrix. See [145] for a survey of all of this.

14.11 Exercises
Exercise 14.11.1. If ℋ1 and ℋ2 are Hilbert spaces, prove that the inner product space
ℋ1 ⊕ℋ2 defined in (14.1.1) is complete, and hence a Hilbert space.

Exercise 14.11.2. If ℋ is a Hilbert space, prove that ℋ(∞), as defined in (14.1.2), is a
Hilbert space.

Exercise 14.11.3. Expand the right side of (14.2.9) and prove that it yields the right side
of (14.2.8).

Exercise 14.11.4. Suppose that 𝑃1, 𝑃2,…, 𝑃𝑟 ∈ ℬ(ℋ) are orthogonal projections such that
𝑃1 + 𝑃2 +⋯+ 𝑃𝑟 = 𝐼. Prove that 𝑃𝑖𝑃𝑗 = 0 if 𝑖 ≠ 𝑗 and conclude that the ranges of 𝑃1, 𝑃2,…, 𝑃𝑟
are pairwise orthogonal.

Exercise 14.11.5. Prove that 𝑛×𝑛 block-operator notation (14.2.11) respects adjoints and
operator composition.

Exercise 14.11.6. Prove the formula (14.4.2) for the inverse of a 2×2 block operatorwhose
diagonal blocks are invertible.

Exercise 14.11.7. Prove (14.4.4) and explain how it relates to Lemma 14.7.3.
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Exercise 14.11.8. Let ℋ = ℋ1 ⊕ ℋ2 ⊕ ⋯ ⊕ ℋ𝑛, in which ℋ1,ℋ2,…,ℋ𝑛 are finite
dimensional. Prove that if 𝑇 = [𝑇𝑖𝑗]𝑛𝑖,𝑗=1 ∈ ℬ(ℋ) is an upper-triangular block operator
that is unitary, then 𝑇 is block diagonal.
Remark: Example 14.4.3 shows that this can fail if the spaces involved are infinite
dimensional.

Exercise 14.11.9. Let

𝑇 = [𝐴 𝐵
𝐶 𝐷] .

Prove that ‖𝑇‖ ⩾ max{‖𝐴‖, ‖𝐵‖, ‖𝐶‖, ‖𝐷‖}.

Exercise 14.11.10. Let

𝑇 = [𝐴 𝐵
𝐶 𝐷] .

Prove that

‖𝑇‖ ⩽ ‖
‖‖[
‖𝐴‖ ‖𝐵‖
‖𝐶‖ ‖𝐷‖]

‖
‖‖ .

Exercise 14.11.11. Let

𝑇 = [𝐴 0
0 0] .

Prove that ‖𝑇‖ = ‖𝐴‖.

Exercise 14.11.12. Suppose that

𝑇 = [𝐴 𝐵
0 𝐷]

is invertible. Prove that 𝐴 is invertible if and only if 𝐷 is invertible.
Remark:Example 14.4.3 shows that in the infinite-dimensional setting𝑇may be invertible
while neither 𝐴 nor 𝐷 is invertible.

Exercise 14.11.13. Prove that if 𝐴 and 𝐵 are operators on finite-dimensional Hilbert
spaces, then 𝜎(𝑇) = 𝜎(𝐴) ∪ 𝜎(𝐵) holds in Theorem 14.4.5.

Exercise 14.11.14. Prove that for 𝐴 ∈ ℬ(ℋ), the following are equivalent.

(a) 𝐴 is an orthogonal projection.

(b) 𝐴 = 𝐴∗ and 𝜎(𝐴) ⊆ {0, 1}.

(c) 𝐴 is selfadjoint and idempotent.

Exercise 14.11.15. Prove that if 𝐴 ∈ ℬ(ℋ) is idempotent and ‖𝐴x‖ ⩽ ‖x‖ for all x ∈ ℋ,
then 𝐴 is an orthogonal projection.

Exercise 14.11.16. Let 𝐴, 𝐵 ∈ ℬ(ℋ) be idempotent.

(a) Prove that 𝐴 + 𝐵 is idempotent if and only if 𝐴𝐵 = 𝐵𝐴 = 0.

(b) Prove that 𝐴 − 𝐵 is idempotent if and only if 𝐴𝐵 = 𝐵𝐴 = 𝐵.
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Exercise 14.11.17. Let 𝐴, 𝐵 ∈ ℬ(ℋ) be idempotent and 𝐴𝐵 = 𝐵𝐴.

(a) Prove that 𝐶 = 𝐴𝐵 is idempotent.

(b) Prove that ker𝐶 = ker𝐴 + ker𝐵.

(c) Prove that ran𝐶 = ran𝐴 ∩ ran𝐵.

Exercise 14.11.18. If 𝐴 ∈ ℬ(ℋ,𝒦) and 𝐵 ∈ ℬ(𝒦,ℋ), prove that

𝜎(𝐴𝐵) ∪ {0} = 𝜎(𝐵𝐴) ∪ {0}.

Exercise 14.11.19. Let dimℋ ⩾ 2. Prove that

{‖𝑇‖ ∶ 𝑇 ∈ ℬ(ℋ) is idempotent} = {0} ∪ [1,∞).

Exercise 14.11.20. Prove that 𝐴 ∈ ℬ(ℋ) is a contraction if and only if 𝐴∗𝐴 ⩽ 𝐼.

Exercise 14.11.21. Prove that if 𝐴 ∈ ℬ(ℋ) is a contraction, then there is a Hilbert space
𝒦 containingℋ and a unitary operator 𝑈 on𝒦 such that 𝑃ℋ𝑈|ℋ = 𝐴.

Exercise 14.11.22. For 𝐴 ∈ ℬ(ℋ), prove that ker𝐴 = ker𝐴∗𝐴.

Exercise 14.11.23. Let 𝐴 ∈ ℬ(ℋ) be a contraction.

(a) Prove that the operator

𝑀(𝐴) = [𝐴 (𝐼 − 𝐴𝐴∗)
1
2

0 0
]

onℋ⊕ℋ is a partial isometry.

(b) Identify the initial and final spaces of𝑀(𝐴).

(c) Prove that if 𝐴 is unitarily equivalent to 𝐵, then𝑀(𝐴) is unitarily equivalent to𝑀(𝐵).

Remark: See [171] for more on this.

Exercise 14.11.24. Find the polar decomposition of the backward shift 𝑆∗.

Exercise 14.11.25. For 𝐴 ∈ ℬ(ℋ), let 𝐴 = 𝑈𝐴|𝐴| and 𝐴∗ = 𝑈𝐴∗ |𝐴∗| be the polar
decompositions of 𝐴 and 𝐴∗. Prove the following.

(a) |𝐴| = 𝑈 ∗
𝐴𝐴.

(b) 𝐴 = |𝐴∗|𝑈𝐴.

(c) 𝑈𝐴∗ = 𝑈 ∗
𝐴 .

Exercise 14.11.26. Let 𝑇𝛼 = 𝑀𝑥𝑈𝛼 be the Bishop operator from Example 14.9.7.

(a) Prove that |𝑇𝛼| = 𝑈∗
𝛼𝑀𝑥𝑈𝛼.

(b) What is the polar decomposition of 𝑇𝛼?
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Exercise 14.11.27. Use the polar decomposition to prove that if 𝐴 ∈ ℬ(ℋ) and ker𝐴 =
ker𝐴∗ = {0}, then 𝐴∗𝐴 is unitarily equivalent to 𝐴𝐴∗.

Exercise 14.11.28. For the Volterra operator 𝑉 from Chapter 7, compute the polar
decomposition of 𝑉𝑉∗.

Exercise 14.11.29. Let 𝑃 be a positive invertible operator with ‖𝑃‖ ⩽ 1.

(a) Prove that 𝑃 ± 𝑖(𝐼 − 𝑃2)
1
2 is unitary.

(b) Prove that 𝑃 is the average of two unitary operators.

(c) Prove that each invertible contraction can be written as the average of two unitary
operators.

Exercise 14.11.30.

(a) If 𝑇 ∈ ℬ(ℋ), prove that
∞
∑
𝑛=1

⟨|𝑇|x𝑛, x𝑛⟩ is independent of the choice of orthonormal

basis (x𝑛)∞𝑛=1 forℋ.

(b) 𝑇 ∈ ℬ(ℋ) is a trace-class operator if ‖𝑇‖tr ∶=
∞
∑
𝑛=1

⟨|𝑇|x𝑛, x𝑛⟩ is finite. Prove that the

set of trace-class operators is a normed vector space with respect to ‖ ⋅ ‖tr.

(c) When is a diagonal operator a trace-class operator?

(d) Prove that ‖𝑇‖ ⩽ ‖𝑇‖tr.

(e) Recall the Hilbert–Schmidt operators from Exercise 3.6.31. Prove that 𝑇 is a trace-
class operator if and only if |𝑇|

1
2 is a Hilbert–Schmidt operator.

Exercise 14.11.31. Show that every trace-class operator is compact but not every compact
operator is trace-class.

Exercise 14.11.32. This is a continuation of Exercise 14.11.30. Let 𝐴 ∈ ℬ(ℋ) and let
𝑇 ∈ ℬ(ℋ) be a trace-class operator. Prove the following.

(a) ‖𝑇‖tr = ‖𝑇∗‖tr.

(b) ‖𝐴𝑇‖tr ⩽ ‖𝑇‖tr‖𝐴‖.

(c) ‖𝑇𝐴‖tr ⩽ ‖𝑇‖tr‖𝐴‖.

(d) The trace-class operators form a two-sided ideal of compact operators in ℬ(ℋ).

Exercise 14.11.33. Let 𝐴, 𝑋, 𝑌 be 𝑛 × 𝑛matrices. Prove that

‖𝑋𝐴𝑋∗ + 𝑌𝐴𝑌∗‖ ⩽ ‖𝐴‖ ‖𝑋𝑋∗ + 𝑌𝑌∗‖.

Remark: Direct verification of this inequality is feasible. However, to appreciate the
advantage of considering matrices of operators, try to derive the inequality above from
the inequality ‖𝑍𝐵𝑍∗‖ ⩽ ‖𝑍‖ ‖𝐵‖‖𝑍∗‖ = ‖𝐵‖ ‖𝑍‖2 = ‖𝐵‖ ‖𝑍𝑍∗‖, with appropriate choices
of 𝐵 and 𝑍.
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Exercise 14.11.34. Letℋ be an infinite-dimensional Hilbert space and let 𝑇 ∈ ℬ(ℋ).

(a) If 𝑇 is compact, normal, and 𝑇2 = 0, prove that 𝑇 = 0.

(b) Let 𝐴 ∈ ℬ(ℋ) be a noncompact operator and define 𝑇 ∈ ℬ(ℋ ⊕ℋ) by

𝑇 = [0 𝐴
0 0] .

Verify that 𝑇2 = 0.

Exercise 14.11.35. Let 𝑇1, 𝑇2,…, 𝑇𝑛 belong to ℬ(ℋ) such that 𝑇𝑖𝑇𝑗 = 0 for 𝑖 ≠ 𝑗. Prove

that 𝜎(
𝑛
∑
𝑖=1

𝑇𝑖) ⊆
𝑛

⋃
𝑖=1

𝜎(𝑇𝑖).

Exercise 14.11.36. This is a continuation of Exercise 14.11.35. Let 𝑇1, 𝑇2,…, 𝑇𝑛 belong to

𝐵(ℋ) such that 𝑇𝑖𝑇𝑗 = 0 for 𝑖 ≠ 𝑗. Prove that 𝜎(
𝑛
∑
𝑖=1

𝑇𝑖)\{0} = (
𝑛

⋃
𝑖=1

𝜎(𝑇𝑖))\{0}.

14.12 Hints for the Exercises
Hint for Ex. 14.11.3: 𝑃 and 𝐼 − 𝑃 are idempotent.
Hint for Ex. 14.11.4: Show that 𝑃𝑖𝑃𝑗𝑃𝑖 is a positive operator and use the equation 𝑃𝑖 = 𝑃𝑖𝐼𝑃𝑖.
Hint for Ex. 14.11.7: 𝐼 − 𝑆𝑆∗ is an orthogonal projection.
Hint for Ex. 14.11.12: Write a potential inverse of 𝑇 as a 2×2 block operator and examine
its entries.
Hint for Ex. 14.11.14: If 𝐴 is an idempotent, make use of the formula

(𝜆𝐼 − 𝐴)−1 = 1
𝜆𝐼 +

1
𝜆(𝜆 − 1)𝐴 for all 𝜆 ≠ 0, 1.

Hint for Ex. 14.11.15: Start with the direct-sum decompositionℋ = ker𝑃 + ran𝑃 and
show that ker𝑃 ⊆ (ran𝑃)⟂. Use the fact that v ⟂ w if and only if ‖w‖ ⩽ ‖𝑐v +w‖ for all
𝑐 ∈ ℂ.
Hint for Ex. 14.11.18: Mimic the proof of Theorem 14.4.8.
Hint for Ex. 14.11.19: Consider 2 × 2matrices.
Hint for Ex. 14.11.21: Consider the Julia operator for −𝐵∗ and an operator permutation
matrix.
Hint for Ex. 14.11.28: Use Exercise 7.7.16.
Hint for Ex. 14.11.29: For (c), suppose that (𝑇∗𝑇)

1
2 = 𝑃.

Hint for Ex. 14.11.30: For (a), prove that for any two orthonormal bases (u𝑛)∞𝑛=1 and
(v𝑛)∞𝑛=1 forℋ,

∞
∑
𝑛=1

‖𝑇u𝑛‖2 =
∞
∑
𝑛=1

‖𝑇∗v𝑛‖2 =
∞
∑
𝑛=1

∞
∑
𝑚=1

|⟨𝑇u𝑛, v𝑚⟩|2.

Hint for Ex. 14.11.31: Consult Exercise 14.11.30 and Theorem 2.5.1.



hints for the exercises | 331

Hint for Ex. 14.11.32: For (a), consult Exercise 14.11.25. For (b), use the polar decompo-
sition and the spectral theorem for positive compact operators.
Hint for Ex. 14.11.33: Consider

𝐵 = [𝐴 0
0 𝐴] and 𝑍 = [𝑋 𝑌

0 0] .

Hint for Ex. 14.11.34: For part (a), consider the spectral theorem.





15
. . . . . . .

Constructions with the Shift Operator

KeyConcepts: vonNeumann–Wold decomposition of an isometry, spectral representation of 𝑆+𝑆∗,
properties of 𝑆 ⊕ 𝑆∗, tensor product of operators, properties of 𝑆 ⊗ 𝑆∗.

Outline: This chapter explores three operators created from the unilateral shift 𝑆 and
its adjoint 𝑆∗: the sum 𝑆 + 𝑆∗, the direct sum 𝑆 ⊕ 𝑆∗, and the tensor product 𝑆 ⊗ 𝑆∗.
We give Hilbert’s spectral representation of the selfadjoint operator 𝑆 + 𝑆∗. The operator
𝑆⊕𝑆∗ on𝐻2⊕𝐻2 is complex symmetric. We examine its invariant subspaces and spectral
properties. The operator 𝑆 ⊗ 𝑆∗ on 𝐻2 ⊗ 𝐻2 is also complex symmetric. We discuss its
reducing subspaces and spectral properties.

15.1 The von Neumann–Wold Decomposition
When studying an invariant subspaceℳ of the unilateral shift 𝑆 on𝐻2, Beurling examined
the wandering subspace ℳ ∩ (𝑆ℳ)⟂. Wandering subspaces play an important role in
studying isometries on general Hilbert spacesℋ. We follow the presentation from [253].

Theorem 15.1.1 (von Neumann–Wold Decomposition). Let 𝑇 ∈ ℬ(ℋ) be an isometry
and𝒲 = (𝑇ℋ)⟂.

(a) 𝑇𝑚𝒲 ⟂ 𝑇𝑛𝒲 for all𝑚, 𝑛 ⩾ 0 with𝑚 ≠ 𝑛.

(b) If𝒲∞ = ⋂𝑛⩾0 𝑇𝑛ℋ, then 𝑇𝒲∞ = 𝒲∞ and 𝑇|𝒲∞ is unitary.

(c) If𝒲0 = ⨁𝑛⩾0 𝑇𝑛𝒲, then 𝑇𝒲0 ⊆ 𝒲0 and there is no nonzero invariant subspace of
𝒲0 upon which the restriction of 𝑇 is unitary.

(d) ℋ = 𝒲0 ⊕𝒲∞.

Proof (a) Since 𝑇 is an isometry, 𝑇∗𝑇 = 𝐼. Iterate this identity and obtain

𝑇∗𝑚𝑇𝑛 = 𝑇𝑛−𝑚 for all 𝑛 ⩾ 𝑚 ⩾ 0. (15.1.2)



334 | constructions with the shift operator

Then for any x, y ∈ 𝒲 and 𝑛 > 𝑚 ⩾ 0,

⟨𝑇𝑛x, 𝑇𝑚y⟩ = ⟨𝑇∗𝑚𝑇𝑛x, y⟩ = ⟨𝑇𝑛−𝑚x, y⟩,

which equals zero since 𝑇𝑛−𝑚x ∈ 𝑇ℋ and y ∈ 𝒲 = (𝑇ℋ)⟂.
(b) Let x ∈ 𝒲∞. The definition of𝒲∞ ensures that for each 𝑛 ⩾ 0, there is an x𝑛 ∈ ℋ
such that x = 𝑇𝑛x𝑛. Thus, 𝑇x = 𝑇𝑛+1x𝑛, so 𝑇x ∈ ⋂𝑛⩾0 𝑇𝑛ℋ = 𝒲∞. It follows that
𝑇𝒲∞ ⊆ 𝒲∞. The next step is to verify the reverse inclusion. The identity x = 𝑇𝑛x𝑛
says that 𝑇𝑛x𝑛 = 𝑇𝑛+𝑘x𝑛+𝑘 for all 𝑘, 𝑛 ⩾ 0. Now use (15.1.2) and conclude x𝑛 =
𝑇𝑘x𝑛+𝑘 for all 𝑘 ⩾ 0, and hence x𝑛 ∈ 𝒲∞. Therefore, x = 𝑇𝑛x𝑛, so x ∈ 𝑇𝒲∞. This
implies𝒲∞ ⊆ 𝑇𝒲∞ and hence, 𝑇𝒲∞ = 𝒲∞. Since 𝑇 maps𝒲∞ isometrically onto
𝒲∞, it follows that 𝑇|𝒲∞ is unitary.

(c) Observe that

𝒲0 = {x =
∞
∑
𝑛=0

𝑇𝑛x𝑛 ∶ x𝑛 ∈ 𝒲,
∞
∑
𝑛=0

‖𝑇𝑛x𝑛‖2 =
∞
∑
𝑛=0

‖x𝑛‖2 < ∞}.

It follows that𝑇𝒲0 ⊆ 𝒲0 and⋂
∞
𝑛=0 𝑇𝑛𝒲0 = {0}. If𝒲 ′

0 ⊆ 𝒲0 is an invariant subspace
for 𝑇 such that 𝑇|𝒲′

0
is unitary, then

𝒲 ′
0 =

∞

⋂
𝑛=0

𝑇𝑛𝒲 ′
0 ⊆

∞

⋂
𝑛=0

𝑇𝑛𝒲0 = {0}.

(d) If y∞ ∈ 𝒲∞ and y0 ∈ 𝒲0, then for each 𝑛 ⩾ 1 there exists a z𝑛 ∈ 𝒲 such that
y∞ = 𝑇𝑛z𝑛.Moreover, there are x𝑛 ∈ 𝒲 such that y0 = ∑∞

𝑛=0 𝑇𝑛x𝑛. Thus,

⟨y∞, y0⟩ = ⟨y∞,
∞
∑
𝑛=0

𝑇𝑛x𝑛⟩ =
∞
∑
𝑛=0

⟨y∞, 𝑇𝑛x𝑛⟩ =
∞
∑
𝑛=0

⟨𝑇𝑛+1z𝑛+1, 𝑇𝑛x𝑛⟩ = 0

since𝑇𝑚𝒲 ⟂ 𝑇𝑛𝒲 for all𝑚 ≠ 𝑛. So far, we know that𝒲0 ⟂ 𝒲∞ and𝒲0⊕𝒲∞ ⊆ ℋ.
To show the reverse inclusion, suppose that x ∈ 𝒲⟂

0 . Then

x ⟂
∞

⨁
𝑛=0

𝑇𝑛𝒲,

hence x ⟂ 𝑇𝑛𝒲 for all 𝑛 ⩾ 0. Since𝒲 = (𝑇ℋ)⟂, it follows from Exercise 15.6.1 that
x ⟂ 𝑇𝑛ℋ ∩ (𝑇𝑛+1ℋ)⟂ for all 𝑛 ⩾ 0, so x ∈ 𝒲∞. A similar argument shows that if
x ∈ 𝒲⟂

∞, then x ∈ 𝒲0. ■

Example 15.1.3. Let 𝑆 denote the unilateral shift on 𝐻2. As discussed in Chapter 5, 𝑆 is
an isometry. Moreover, 𝐻2 = ⋁{𝑧𝑛 ∶ 𝑛 ⩾ 0} and hence

(𝑆𝐻2)⟂ = {𝑓 ∈ 𝐻2 ∶ ⟨𝑓, 𝑆𝑧𝑛⟩ = 0 for all 𝑛 ⩾ 0}
= {𝑓 ∈ 𝐻2 ∶ ⟨𝑓, 𝑧𝑛⟩ = 0 for all 𝑛 ⩾ 1}
= {𝑓 ∈ 𝐻2 ∶ 𝑓(𝑛) = 0 for all 𝑛 ⩾ 1}
= span{1},
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where 1 denotes the constant function. Thus,𝒲 = (𝑆𝐻2)⟂ = span{1}.One also notes that

𝒲∞ =
∞

⋂
𝑛=0

𝑆𝑛𝐻2 = {0},

since any 𝑓 ∈ 𝒲∞ is an analytic function on 𝔻 with a zero of infinite order at 𝑧 = 0, and
hence is identically equal to zero. Finally, recall the definition of an infinite direct sum of
Hilbert spaces from (14.1.2) to see that

𝒲0 = span{1} ⊕ 𝑆 span{1} ⊕ 𝑆2 span{1} ⊕⋯
= span{1} ⊕ span{𝑧} ⊕ span{𝑧2} ⊕⋯
= 𝐻2.

Example 15.1.4. Suppose that 𝑞 is an inner function andℋ = 𝑞𝐻2, one of the so-called
Beurling subspaces of𝐻2 discussed in Chapter 5. Sinceℋ is an invariant subspace of 𝑆, it
follows that 𝑇 = 𝑆|ℋ ∈ ℬ(ℋ) is an isometry. Observe that

𝒲 = 𝑞𝐻2 ⊖ 𝑇𝑞𝐻2 = {𝑞𝑓 ∶ 𝑓 ∈ 𝐻2, ⟨𝑞𝑓, 𝑧𝑛𝑞⟩ = 0 for all 𝑛 ⩾ 1}.

The fact that 𝑞 is inner implies 𝑞𝑞 = 1 almost everywhere on 𝕋 and hence

⟨𝑞𝑓, 𝑞𝑧𝑛⟩ = ∫
𝕋
𝑞(𝜉)𝑓(𝜉)𝑞(𝜉)𝜉𝑛𝑑𝑚(𝜉) = ∫

𝕋
𝑓(𝜉)𝜉

𝑛
𝑑𝑚(𝜉) = 𝑓(𝑛).

Thus,𝒲 = {𝑞𝑓 ∶ 𝑓 ∈ 𝐻2, 𝑓(𝑛) = 0 for all 𝑛 ⩾ 1} = span{𝑞}. For the same reason as in
Example 15.1.3,𝒲∞ = ⋂∞

𝑛=0 𝑇𝑛𝑞𝐻2 = {0}. Finally,

𝒲0 = span{𝑞} ⊕ span{𝑇𝑞} ⊕ span{𝑇2𝑞} ⊕ span{𝑇3𝑞} ⊕⋯
= span{𝑞} ⊕ 𝑧 span{𝑞} ⊕ 𝑧2 span{𝑞} ⊕ 𝑧3 span{𝑞} ⊕⋯
= 𝑞𝐻2.

Example 15.1.5. Consider the isometry 𝑇 = 𝑆2 on 𝐻2. Following the approach of
Example 15.1.3, we deduce that

𝒲 = 𝐻2 ⊖ 𝑇𝐻2

= {𝑓 ∈ 𝐻2 ∶ ⟨𝑓, 𝑆2𝑧𝑛⟩ = 0 for all 𝑛 ⩾ 0}
= {𝑓 ∈ 𝐻2 ∶ ⟨𝑓, 𝑧𝑛⟩ = 0 for all 𝑛 ⩾ 2}
= {𝑓 ∈ 𝐻2 ∶ 𝑓(𝑛) = 0 for all 𝑛 ⩾ 2}
= span{1, 𝑧}.

Observe that𝒲∞ = {0} and

𝒲0 = span{1, 𝑧} ⊕ span{𝑧2, 𝑧3} ⊕ span{𝑧4, 𝑧5} ⊕⋯ = 𝐻2.
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Example 15.1.6. Define 𝑇 ∈ ℬ(𝐻2) by

(𝑇𝑓)(𝑧) = 𝑓(0) + 𝑧(𝑓 − 𝑓(0)).

Since 𝑓(0) ⟂ 𝑧(𝑓 − 𝑓(0)), it follows that

‖𝑇𝑓‖2 = |𝑓(0)|2 + ‖𝑧(𝑓 − 𝑓(0))‖2

= |𝑓(0)|2 + ‖𝑓 − 𝑓(0)‖2

= |𝑓(0)|2 +
∞
∑
𝑛=1

|𝑓(𝑛)|2

= ‖𝑓‖2.

Thus, 𝑇 is an isometry. Observe that 𝒲∞ = ⋂∞
𝑛=0 𝑇𝑛𝐻2 = span{1} and that 𝑇|𝒲0 is

unitary. Moreover,

𝒲 = (𝑇𝐻2)⟂ = (⋁{1, 𝑧2, 𝑧3, 𝑧4,…})
⟂
= span{𝑧},

𝑇𝑛𝒲 = span{𝑧𝑛+1}, and𝒲0 =⨁∞
𝑛=1 span{𝑧𝑛}. Finally,𝒲0 ⊕𝒲∞ = 𝐻2.

Example 15.1.7. For 𝜁 ∈ 𝕋, define 𝑇𝜁 ∈ ℬ(𝐻2) by

(𝑇𝜁𝑓)(𝑧) =
1
2𝑧

2(𝑓(𝑧) + 𝑓(−𝑧)) + 1
2 (𝑓(𝜁𝑧) − 𝑓(−𝜁𝑧)).

Since 𝑇𝜁𝑧2𝑛 = 𝑧2𝑛+2 and 𝑇𝜁𝑧2𝑛+1 = 𝜁2𝑛+1𝑧2𝑛+1 for 𝑛 ⩾ 0, it follows that 𝑇𝜁 is an isometry.
Moreover,

𝒲∞ =
∞

⋂
𝑛=0

𝑇𝑛
𝜁 𝐻2 =⋁{𝑧2𝑛+1 ∶ 𝑛 ⩾ 0},

the subspace of odd functions in 𝐻2. Observe that 𝑇𝜁|𝒲∞ is unitary, since it is the
composition operator 𝑔(𝑧) ↦ 𝑔(𝜁𝑧) on the subspace of odd functions in 𝐻2. One can also
see that

𝒲 = (𝑇𝜁𝐻2)⟂ = (⋁{𝑧𝑛 ∶ 𝑛 ⩾ 1})⟂ = span{1}

and 𝒲0 = ⨁∞
𝑛=0 span{𝑧2𝑛}, the subspace of even functions in 𝐻2. This yields the

orthogonal decomposition𝒲0 ⊕𝒲∞ = 𝐻2.

Definition 15.1.8. An isometry 𝑇 is pure if𝒲∞ = {0}.

The following corollary of the von Neumann–Wold theorem shows that for pure
isometries, every 𝑇-invariant subspace has the wandering subspace property.

Corollary 15.1.9. If 𝑇 ∈ ℬ(ℋ) is a pure isometry, then any 𝑇-invariant subspace ℳ
satisfies

ℳ =⋁{𝑇𝑛x ∶ x ∈ ℳ ∩ (𝑇ℳ)⟂}.

The corollary above is reminiscent of Beurling’s theorem (Theorem 5.4.12) and it says
that any invariant subspaceℳ of 𝑇 is generated by its wandering subspaceℳ ∩ (𝑇ℳ)⟂.
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15.2 The Sum of 𝑆 and 𝑆∗

For historical reasons, we consider

𝑇 = 1
2
(𝑆 + 𝑆∗)

instead of 𝑆 + 𝑆∗. From (5.1.3) and (5.2.3), the matrix representation of 𝑇 with respect to
the orthonormal basis (𝑧𝑛)∞𝑛=0 for 𝐻2 is the selfadjoint Toeplitz matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2

0 0 0 ⋯
1
2

0 1
2

0 0 ⋯
0 1

2
0 1

2
0 ⋯

0 0 1
2

0 1
2

⋯
0 0 0 1

2
0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This is the Toeplitz operator with symbol cos 𝜃. Toeplitz operators appear in Chapter 16.

Proposition 15.2.1. ‖𝑇‖ = 1.

Proof Since ‖𝑆‖ = ‖𝑆∗‖ = 1 (by (5.1.2)), it follows that ‖𝑆 + 𝑆∗‖ ⩽ 2 and hence ‖𝑇‖ ⩽ 1.
To prove the reverse inequality, consider the unit vector

𝑓𝑛(𝑧) =
1
√𝑛

𝑛
∑
𝑗=1

𝑧𝑗

in 𝐻2. Then

(𝑆 + 𝑆∗)𝑓𝑛 =
1
√𝑛

𝑛
∑
𝑗=1

𝑧𝑗+1 + 1
√𝑛

𝑛
∑
𝑗=1

𝑧𝑗−1 = 1
√𝑛

(1 + 𝑧 + 2(
𝑛−1
∑
𝑗=2

𝑧𝑗) + 𝑧𝑛 + 𝑧𝑛+1),

and so

‖(𝑆 + 𝑆∗)𝑓𝑛‖2 =
1
𝑛(1

2 + 12 + 22(𝑛 − 2) + 12 + 12) = 4 + 4(𝑛 − 2)
𝑛 → 4.

Thus,

‖𝑆 + 𝑆∗‖ = sup
‖𝑓‖=1

‖(𝑆 + 𝑆∗)𝑓‖ ⩾ lim
𝑛→∞

‖(𝑆 + 𝑆∗)𝑓𝑛‖ = 2

and hence ‖𝑇‖ = 1. ■

An exercise (Exercise 15.6.3) shows that 𝑇 is cyclic. Thus, the spectral theorem for
selfadjoint operators (Theorem 8.7.1) ensures that 𝑇 is unitarily equivalent to𝑀𝑥 on 𝐿2(𝜇)
for some finite positive compactly supported Borel measure onℝ. A 1912 result of Hilbert
explicitly computes this measure and diagonalizes 𝑇 [197]. We follow the treatment from
[313, Ch. 3].
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Theorem 15.2.2. For the operator 𝑇 = 1
2
(𝑆 + 𝑆∗), the following hold.

(a) 𝜎(𝑇) = [−1, 1].

(b) 𝜎𝑝(𝑇) = ∅.

(c) Let 𝜌(𝑥) = √1 − 𝑥2 for −1 ⩽ 𝑥 ⩽ 1, and let 𝐿2(𝜌) denote the space 𝐿2(𝜌(𝑥) 𝑑𝑥). Then
the operator 𝑉 ∶ 𝐿2(𝜌) → 𝐻2 defined by

(𝑉𝑓)(𝑧) = √
2
𝜋 ∫

1

−1

𝑓(𝑥)
1 − 2𝑥𝑧 + 𝑧2 𝜌(𝑥) 𝑑𝑥 for 𝑧 ∈ 𝔻,

is unitary and

𝑉∗𝑇𝑉 = 𝑀𝑥, (15.2.3)

where (𝑀𝑥𝑓)(𝑥) = 𝑥𝑓(𝑥) on 𝐿2(𝜌).

One can visualize this theorem with the following commutative diagram:

𝐿2(𝜌) 𝑀𝑥- 𝐿2(𝜌)

𝐻2

𝑉

?

𝑇
- 𝐻2

𝑉∗

6

Proof We first show that 𝑉 is a unitary operator from 𝐿2(𝜌) onto 𝐻2. Use the identity

1

1 − 2𝑥𝜆 + 𝜆
2 =

∞
∑
𝑛=0

𝑢𝑛(𝑥)𝜆
𝑛
, (15.2.4)

where 𝑢𝑛(𝑥) is the 𝑛th Chebyshev polynomial of the second kind [357]. The first few
of these polynomials are

𝑢0(𝑥) = 1, 𝑢1(𝑥) = 2𝑥, 𝑢2(𝑥) = 4𝑥2 − 1, 𝑢3(𝑥) = 8𝑥3 − 4𝑥,

and they satisfy the recurrence

𝑢𝑛+1(𝑥) = 2𝑥𝑢𝑛(𝑥) − 𝑢𝑛−1(𝑥) for all 𝑛 ⩾ 1.

An induction argument with this recurrence implies that

deg𝑢𝑛 = 𝑛 for all 𝑛 ⩾ 0. (15.2.5)

It is also known that

𝑢𝑛(cos 𝜃) =
sin((𝑛 + 1)𝜃)

sin 𝜃 ,
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Figure 15.2.1 The graphs of sin((𝑛 + 1)𝑥)/ sin𝑥 for 𝑛 = 1, 2, 3, 4, 5.

which yields

|𝑢𝑛(𝑥)| ⩽ 𝑛 + 1 for all 𝑥 ∈ [−1, 1]
(see Figure 15.2.1). For fixed 𝜆 ∈ 𝔻, the series (15.2.4) converges uniformly for 𝑥 ∈
[−1, 1]. The polynomials 𝑢𝑛 are eigenfunctions for a certain selfadjoint differential
operator and they satisfy the orthogonality conditions

⟨𝑢𝑛, 𝑢𝑚⟩𝐿2(𝜌) = ∫
1

−1
𝑢𝑛(𝑥)𝑢𝑚(𝑥)𝜌(𝑥) 𝑑𝑥 = {

0 if 𝑛 ≠ 𝑚,
𝜋
2 if 𝑛 = 𝑚.

(15.2.6)

By (15.2.5), the linear span of {𝑢𝑛(𝑥) ∶ 𝑛 ⩾ 1} contains every polynomial, so it is
dense in 𝐿2(𝜌), and hence

(√
2
𝜋𝑢𝑛)

∞

𝑛=0

is an orthonormal basis for 𝐿2(𝜌). For 𝑓 ∈ 𝐿2(𝜌), use Parseval’s theorem (Theorem
1.4.9) to see that

𝜋
2 ∫

1

−1
|𝑓(𝑥)|2𝜌(𝑥) 𝑑𝑥 = 𝜋

2 ‖𝑓‖
2
𝐿2(𝜌)

=
∞
∑
𝑛=0

|⟨𝑓, 𝑢𝑛⟩𝐿2(𝜌)|2

=
∞
∑
𝑛=0

|
|
|
∫

1

−1
𝑓(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥

|
|
|

2

. (15.2.7)

Now consider the functions

ℎ𝜆(𝑥) =
1

1 − 2𝑥𝜆 + 𝜆
2 for 𝜆 ∈ 𝔻

from (15.2.4). Each of these rational functions has a pole at 𝑥0 = 𝑤(𝜆), where

𝑤(𝑧) = 1
2(𝑧 +

1
𝑧 ).
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Figure 15.2.2 Images of 𝑤(𝑟𝕋) for 𝑟 = 0.1, 0.2, 0.3,…, 0.9.

For each 𝑟 ∈ [−1, 1], the quadratic formula shows that 𝑤(𝑧) = 𝑟 has no solution
𝑧 ∈ 𝔻 (see Figure 15.2.2). Therefore, 𝑤(𝔻) ∩ [−1, 1] = ∅, and hence ℎ𝜆 ∈ 𝐿2(𝜌) for
each fixed 𝜆 ∈ 𝔻.

Define

(𝑉𝑓)(𝑧) = √
2
𝜋⟨𝑓, ℎ𝑧⟩𝐿2(𝜌) for 𝑓 ∈ 𝐿2(𝜌) and 𝑧 ∈ 𝔻.

From the expansion (15.2.4),

(𝑉𝑓)(𝑧) = √
2
𝜋 ∫

1

−1

𝑓(𝑥)
1 − 2𝑥𝑧 + 𝑧2 𝜌(𝑥) 𝑑𝑥 = √

2
𝜋

∞
∑
𝑛=0

𝑧𝑛∫
1

−1
𝑓(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥.

Thus, the 𝑛th Taylor-series coefficient of 𝑉𝑓 is

√
2
𝜋 ∫

1

−1
𝑓(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥,

and hence, by (15.2.7) and the definition of the norm in 𝐻2, we have

‖𝑉𝑓‖2𝐻2 =
∞
∑
𝑛=0

|
|
|√

2
𝜋 ∫

1

−1
𝑓(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥

|
|
|

2

= 2
𝜋

∞
∑
𝑛=0

|
|
|
∫

1

−1
𝑓(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥

|
|
|

2

= 2
𝜋 ⋅ 𝜋2 ∫

1

−1
|𝑓(𝑥)|2𝜌(𝑥) 𝑑𝑥

= ‖𝑓‖2𝐿2(𝜌).



the sum of 𝑆 and 𝑆∗ | 341

Thus, 𝑉 maps 𝐿2(𝜌) to 𝐻2 isometrically.
To show that 𝑉 is surjective, observe that for each 𝑛 ⩾ 0,

(𝑉𝑢𝑛)(𝑧) = √
2
𝜋

∞
∑
𝑚=0

𝑧𝑚∫
1

−1
𝑢𝑛(𝑥)𝑢𝑚(𝑥)𝜌(𝑥) 𝑑𝑥

= √
2
𝜋
𝜋
2 𝑧

𝑛 (by (15.2.6))

=√
𝜋
2 𝑧

𝑛,

so the range of 𝑉 contains every (analytic) polynomial and is therefore dense in 𝐻2.
Since 𝑉 is an isometry, its range is closed (Exercise 2.8.9). Therefore, 𝑉𝐿2(𝜌) = 𝐻2.

Recall that

𝑘𝜆(𝑧) =
1

1 − 𝜆𝑧
for 𝜆, 𝑧 ∈ 𝔻,

is the reproducing kernel for𝐻2. That is, 𝑘𝜆 ∈ 𝐻2 and 𝑔(𝜆) = ⟨𝑔, 𝑘𝜆⟩𝐻2 for all 𝑔 ∈ 𝐻2

and 𝜆 ∈ 𝔻. Furthermore (Exercise 5.9.8),

⋁{𝑘𝜆 ∶ 𝜆 ∈ 𝔻} = 𝐻2. (15.2.8)

For fixed 𝜆, 𝑧 ∈ 𝔻,

(𝑉ℎ𝜆)(𝑧) = √
2
𝜋

∞
∑
𝑛=0

𝑧𝑛∫
1

−1
ℎ𝜆(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥

= √
2
𝜋

∞
∑
𝑛=0

𝑧𝑛
∞
∑
𝑚=0

𝜆
𝑚
∫

1

−1
𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝜌(𝑥) 𝑑𝑥

= √
2
𝜋
𝜋
2

∞
∑
𝑛=0

𝜆
𝑛
𝑧𝑛

=√
𝜋
2

1
1 − 𝜆𝑧

= √
𝜋
2 𝑘𝜆(𝑧).

The next step is to verify that

𝑉∗𝑇𝑉 = 𝑀𝑥. (15.2.9)

Since⋁{𝑘𝜆 ∶ 𝜆 ∈ 𝔻} = 𝐻2, 𝑉 is unitary, and ℎ𝜆 = √
𝜋
2
𝑉∗𝑘𝜆, it follows that

⋁{ℎ𝜆 ∶ 𝜆 ∈ 𝔻} = 𝐿2(𝜌).

To prove (15.2.9), it suffices to verify that

(𝑉∗𝑇𝑉ℎ𝜆)(𝑥) = 𝑥ℎ𝜆(𝑥) for all 𝜆 ∈ 𝔻.
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Observe that

𝑆𝑘𝜆 = − 1
𝜆

+ 1
𝜆
𝑘𝜆 and 𝑆∗𝑘𝜆 = 𝜆𝑘𝜆.

This yields

(𝑉∗𝑇𝑉ℎ𝜆)(𝑥) =
1
2√

𝜋
2 (𝑉

∗(𝑆 + 𝑆∗)𝑘𝜆)(𝑥)

= 1
2√

𝜋
2 (𝑉

∗( − 1
𝜆
+ 1

𝜆
𝑘𝜆 + 𝜆𝑘𝜆)) (𝑥)

= 1
2√

𝜋
2 (𝑉

∗( − 1
𝜆
𝑘0 +

1
𝜆
𝑘𝜆 + 𝜆𝑘𝜆)) (𝑥)

= 1
2√

𝜋
2√

2
𝜋( −

1
𝜆
ℎ0 +

1
𝜆
ℎ𝜆 + 𝜆ℎ𝜆)(𝑥)

= 1
2( −

1
𝜆
⋅ 1 + ( 1

𝜆
+ 𝜆)ℎ𝜆)(𝑥)

= 1
2ℎ𝜆(𝑥)( −

1
𝜆
(1 − 2𝑥𝜆 + 𝜆

2
) + 1

𝜆
+ 𝜆)

= 1
2ℎ𝜆(𝑥) 2𝑥

= 𝑥 ℎ𝜆(𝑥).

This proves (c). Parts (a) and (b) follow from (c) and Proposition 8.1.12. ■

The previous theorem and Corollary 8.8.7 yield the following.

Corollary 15.2.10. The invariant subspaces of 𝑇 are 𝑉𝜒𝐸𝐿2(𝜌), where 𝐸 is a Lebesgue-
measurable subset of [−1, 1].

15.3 The Direct Sum of 𝑆 and 𝑆∗

The operator 𝑆 ⊕ 𝑆∗, the direct sum of 𝑆 and 𝑆∗, is defined on

𝐻2 ⊕𝐻2 = { [𝑓𝑔] ∶ 𝑓, 𝑔 ∈ 𝐻2}

by

(𝑆 ⊕ 𝑆∗)(𝑓 ⊕ 𝑔) = 𝑆𝑓 ⊕ 𝑆∗𝑔.
This can be written in matrix form as

[𝑆 0
0 𝑆∗] ,

in the sense that

[𝑆 0
0 𝑆∗] [

𝑓
𝑔] = [ 𝑆𝑓𝑆∗𝑔] = (𝑆 ⊕ 𝑆∗)(𝑓 ⊕ 𝑔).
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Proposition 15.3.1. 𝑆 ⊕ 𝑆∗ satisfies the following.

(a) ‖𝑆 ⊕ 𝑆∗‖ = 1.

(b) 𝜎(𝑆 ⊕ 𝑆∗) = 𝔻−.

(c) 𝜎𝑝(𝑆 ⊕ 𝑆∗) = 𝔻.

(d) (𝑆 ⊕ 𝑆∗)∗ = 𝑆∗ ⊕ 𝑆.

Proof (a) For any 𝑓 ⊕ 𝑔 ∈ 𝐻2 ⊕ 𝐻2, use the facts that ‖𝑆𝑓‖ = ‖𝑓‖ and ‖𝑆∗𝑔‖ ⩽ ‖𝑔‖ for
all 𝑓, 𝑔 ∈ 𝐻2 to conclude that

‖(𝑆 ⊕ 𝑆∗)(𝑓 ⊕ 𝑔)‖2 = ‖𝑆𝑓 ⊕ 𝑆∗𝑔‖2 = ‖𝑆𝑓‖2 + ‖𝑆∗𝑔‖2 ⩽ ‖𝑓‖2 + ‖𝑔‖2 = ‖𝑓 ⊕ 𝑔‖2.

Thus, ‖𝑆 ⊕ 𝑆∗‖ ⩽ 1. Equality follows since ‖(𝑆 ⊕ 𝑆∗)(1 ⊕ 0)‖ = ‖𝑧 ⊕ 0‖ = 1.
(b) For any 𝜆 ∈ 𝔻,

(𝑆 ⊕ 𝑆∗)(0 ⊕ 𝑘𝜆) = 0 ⊕ 𝜆𝑘𝜆 = 𝜆(0 ⊕ 𝑘𝜆)

and hence

𝔻 ⊆ 𝜎𝑝(𝑆 ⊕ 𝑆∗) ⊆ 𝜎(𝑆 ⊕ 𝑆∗).

Thus, 𝔻− ⊆ 𝜎(𝑆 ⊕ 𝑆∗). Since ‖𝑆 ⊕ 𝑆∗‖ = 1, it follows that 𝜎(𝑆 ⊕ 𝑆∗) ⊆ 𝔻− (Theorem
2.4.9) and thus 𝜎(𝑆 ⊕ 𝑆∗) = 𝔻−.

(c) In light of (b), it remains to show that 𝜎𝑝(𝑆⊕𝑆∗)∩𝕋 = ∅. If 𝜉 ∈ 𝕋 and (𝑆⊕𝑆∗)(𝑓⊕
𝑔) = 𝜉(𝑓 ⊕ 𝑔), then 𝑆𝑓 = 𝜉𝑓 and 𝑆∗𝑔 = 𝜉𝑔, which only hold when 𝑓 and 𝑔 are zero
(Propositions 5.1.4 and 5.2.4).

(d) This follows from the matrix form of 𝑆 ⊕ 𝑆∗ and (14.2.7). ■

The operator 𝑆⊕𝑆∗ is a complex symmetric operator. To see this, define the conjugation
𝐽 ∶ 𝐻2 → 𝐻2 by

(𝐽𝑓)(𝑧) = 𝑓(𝑧)

and observe that

𝐽(
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛.

The above map 𝐽 is isometric, involutive, and conjugate linear. Furthermore,

𝐽𝑆 = 𝑆𝐽 and 𝐽𝑆∗ = 𝑆∗𝐽. (15.3.2)

Exercise 15.6.8 shows that the mapping 𝐶 on 𝐻2 ⊕𝐻2 defined by

𝐶 = [0 𝐽
𝐽 0] (15.3.3)

is a conjugation.
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Proposition 15.3.4. If 𝑇 = 𝑆 ⊕ 𝑆∗, then 𝑇 = 𝐶𝑇∗𝐶.

Proof Using the block-matrix representations for 𝐶 and 𝑇 and (15.3.2), it follows that

𝐶𝑇∗𝐶 = [0 𝐽
𝐽 0] [

𝑆∗ 0
0 𝑆] [

0 𝐽
𝐽 0]

= [ 0 𝐽𝑆
𝐽𝑆∗ 0 ] [

0 𝐽
𝐽 0]

= [𝐽𝑆𝐽 0
0 𝐽𝑆∗𝐽]

= [𝐽
2𝑆 0
0 𝐽2𝑆∗]

= [𝑆 0
0 𝑆∗]

= 𝑇,

which proves the result. ■

Beurling’s theorem (Theorem 5.4.12) says that the invariant subspaces for 𝑆 are {0} or
𝑢𝐻2, where 𝑢 is an inner function. Thus, the invariant subspaces for 𝑆∗ are either𝐻2 itself
or of the form (𝑢𝐻2)⟂. The subspaces 𝑢𝐻2 ⊕ (𝑣𝐻2)⟂, where 𝑢 and 𝑣 are inner functions,
along with {0}⊕ (𝑣𝐻2)⟂ , 𝑢𝐻2⊕{0}, and 𝑢𝐻2⊕𝐻2, are invariant for 𝑆⊕𝑆∗ and comprise
the splitting invariant subspaces. As it turns out, there aremany other invariant subspaces.
The following example is from [74].

Example 15.3.5. For 𝜆 ∈ 𝔻, consider the 𝑆⊕𝑆∗-invariant subspace generated by 𝑘𝜆⊕𝑘𝜆,
that is,

⋁{(𝑆 ⊕ 𝑆∗)𝑛(𝑘𝜆 ⊕ 𝑘𝜆) ∶ 𝑛 ⩾ 0}.

For any polynomial 𝑝, we have 𝑝(𝑆⊕𝑆∗)(𝑘𝜆⊕𝑘𝜆) = 𝑝 𝑘𝜆⊕𝑝(𝜆)𝑘𝜆. Suppose that (𝑝𝑛)∞𝑛=1
is a sequence of polynomials such that

𝑝𝑛(𝑆 ⊕ 𝑆∗)(𝑘𝜆 ⊕ 𝑘𝜆) → 𝑓 ⊕ 𝑔

in 𝐻2 ⊕ 𝐻2. Thus, 𝑝𝑛𝑘𝜆 → 𝑓 and 𝑝𝑛(𝜆)𝑘𝜆 → 𝑔 in 𝐻2 norm. Since 𝑝𝑛𝑘𝜆 → 𝑓, it follows
that 𝑝𝑛 → (1 − 𝜆𝑧)𝑓 in norm. Proposition 5.3.8 yields

𝑝𝑛(𝑧) → (1 − 𝜆𝑧)𝑓(𝑧) for all 𝑧 ∈ 𝔻,

and, in particular, 𝑝𝑛(𝜆) → (1 − 𝜆
2
)𝑓(𝜆). In other words, 𝑔 = 𝑓(𝜆)(1 − 𝜆

2
)𝑘𝜆. Thus,

⋁{(𝑆 ⊕ 𝑆∗)𝑛(𝑘𝜆 ⊕ 𝑘𝜆) ∶ 𝑛 ⩾ 0} ⊆ {𝑓 ⊕ 𝑓(𝜆)(1 − 𝜆
2
)𝑘𝜆 ∶ 𝑓 ∈ 𝐻2}.
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If 𝑓 ∈ 𝐻2 and 𝜆 ∈ 𝔻, then (1 − 𝜆𝑧)𝑓 ∈ 𝐻2 and there are polynomials 𝑝𝑛 such that
𝑝𝑛 → (1 − 𝜆𝑧)𝑓 in norm. The discussion above implies that

𝑝𝑛(𝑆 ⊕ 𝑆∗)(𝑘𝜆 ⊕ 𝑘𝜆) → 𝑓 ⊕ 𝑓(𝜆)(1 − 𝜆
2
)𝑘𝜆,

and hence

⋁{(𝑆 ⊕ 𝑆∗)𝑛(𝑘𝜆 ⊕ 𝑘𝜆) ∶ 𝑛 ⩾ 0} = {𝑓 ⊕ 𝑓(𝜆)(1 − 𝜆
2
)𝑘𝜆 ∶ 𝑓 ∈ 𝐻2}.

This subspace is contained in 𝐻2 ⊕ (𝑢𝐻2)⟂, where

𝑢(𝑧) = 𝑧 − 𝜆
1 − 𝜆𝑧

,

but the containment is proper. Indeed, 1 ⊕ 𝑘𝜆 ∈ 𝐻2 ⊕ (𝑢𝐻2)⟂. However,

1 ⊕ 𝑘𝜆 ∉ {𝑓 ⊕ 𝑓(𝜆)(1 − 𝜆
2
)𝑘𝜆 ∶ 𝑓 ∈ 𝐻2}.

The complete description of the 𝑆 ⊕ 𝑆∗-invariant subspaces is contained in a paper of
Timotin [360] and requires a diversion into dilation theory, whichwould take us far afield.
Timotin’s paper also contains the following.

Theorem 15.3.6. The only nonzero reducing subspaces of 𝑆⊕𝑆∗ are𝐻2⊕{0} and {0}⊕𝐻2.

15.4 The Tensor Product of 𝑆 and 𝑆∗

Although there is a general and abstract approach to tensor products of Hilbert spaces
and operators (see the end notes for the references), we take a more heuristic and explicit
approach. Recall that the tensor product of vectorsx andy in aHilbert spaceℋ is identified
with the rank-one operator

x⊗ y ∶ ℋ → ℋ, (x⊗ y)z = ⟨z, y⟩x for z ∈ ℋ.

The operator x⊗ y is a simple tensor.

Proposition 15.4.1. ‖x⊗ y‖ = ‖x‖‖y‖.

Proof By the Cauchy–Schwarz inequality,

‖(x⊗ y)z‖ = ‖⟨z, y⟩x‖ = |⟨z, y⟩|‖x‖ ⩽ ‖z‖‖y‖‖x‖.

Equality is attained for z = y/‖y‖. ■

Consider the vector space ℋ ⊙ℋ of all finite linear combinations of simple tensors,
that is, expressions of the form

𝑛
∑
𝑗=1

𝑐𝑗(x𝑗 ⊗ y𝑗), where 𝑛 ∈ ℕ, 𝑐𝑗 ∈ ℂ, and x𝑗 , y𝑗 ∈ ℋ.
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We define an inner product onℋ⊙ℋ first on simple tensors x⊗ y and z⊗w by

⟨x⊗ y, z⊗w⟩ = ⟨x, z⟩⟨y,w⟩.

Extend this toℋ⊙ℋ by

⟨
𝑛
∑
𝑗=1

𝑎𝑗(x𝑗 ⊗ y𝑗),
𝑛
∑
𝑘=1

𝑏𝑘(z𝑘 ⊗w𝑘)⟩ =
𝑛
∑
𝑗,𝑘=1

𝑎𝑗𝑏𝑘⟨x𝑗 , z𝑘⟩⟨y𝑗 ,w𝑘⟩ (15.4.2)

and verify it satisfies the required properties of an inner product (Definition 1.4.1). The
corresponding norm satisfies

‖
‖

𝑁
∑
𝑗=1

𝑎𝑗(x𝑗 ⊗ y𝑗)‖‖
2
=

𝑁
∑
𝑗,𝑘=1

𝑎𝑗𝑎𝑘⟨x𝑗 , x𝑘⟩⟨y𝑗 , y𝑘⟩. (15.4.3)

This makesℋ⊙ℋ an inner product space.

Definition 15.4.4. The tensor productℋ⊗ℋ is the completion ofℋ⊙ℋ with respect
to the norm (15.4.3).

Proposition 15.4.5. If (u𝑛)∞𝑛=1 is an orthonormal basis forℋ, then (u𝑚 ⊗ u𝑛)∞𝑚,𝑛=1 is an
orthonormal basis forℋ⊗ℋ.

Proof The definition of the inner product on ℋ ⊗ ℋ from (15.4.2) implies that the
sequence (u𝑚 ⊗ u𝑛)∞𝑚,𝑛=1 is orthonormal. Let

ℳ =⋁{u𝑚 ⊗ u𝑛 ∶ 𝑚, 𝑛 ⩾ 1}

in the norm ofℋ⊗ℋ. The next step is to show thatℳ = ℋ⊗ℋ.
Let 𝑐𝑚𝑛 ∈ ℂ for𝑚, 𝑛 ⩾ 1. Then for each 𝑁 ∈ ℕ, the definition (15.4.3) implies that

‖
‖

𝑁
∑

𝑚,𝑛=1
𝑐𝑚𝑛(u𝑚 ⊗ u𝑛)‖‖

2
=

𝑁
∑

𝑚,𝑛=1
𝑚′,𝑛′=1

𝑐𝑚𝑛𝑐𝑚′𝑛′ ⟨u𝑚,u𝑚′ ⟩⟨u𝑛,u𝑛′ ⟩ =
𝑁
∑

𝑚,𝑛=1
|𝑐𝑚𝑛|2.

Consequently,
∞
∑

𝑚,𝑛=1
𝑐𝑚𝑛(u𝑚 ⊗ u𝑛) ∈ ℳ if and only if

∞
∑

𝑚,𝑛=1
|𝑐𝑚𝑛|2 < ∞.

If x, y ∈ ℋ, then

x =
∞
∑
𝑚=1

𝑎𝑚u𝑚 and y =
∞
∑
𝑛=1

𝑏𝑛u𝑛

where∑∞
𝑚=1 |𝑎𝑚|2 and∑

∞
𝑛=1 |𝑏𝑛|2 are finite. Since

∞
∑

𝑚,𝑛=1
|𝑎𝑚𝑏𝑛|2 = (

∞
∑
𝑚=1

|𝑎𝑚|2)(
∞
∑
𝑛=1

|𝑏𝑛|2) < ∞,



the tensor product of 𝑆 and 𝑆∗ | 347

it follows that
∞
∑

𝑚,𝑛=1
𝑎𝑚𝑏𝑛(u𝑚 ⊗ u𝑛) ∈ ℳ.

For any z ∈ ℋ,

(x⊗ y)(z) = ⟨z, y⟩x

= (
∞
∑
𝑛=1

𝑏𝑛⟨z,u𝑛⟩)x

= (
∞
∑
𝑛=1

𝑏𝑛⟨z,u𝑛⟩)(
∞
∑
𝑚=1

𝑎𝑚u𝑚)

=
∞
∑

𝑚,𝑛=1
𝑎𝑚𝑏𝑛⟨z,u𝑛⟩u𝑚

= (
∞
∑

𝑚,𝑛=1
𝑎𝑚𝑏𝑛(u𝑚 ⊗ u𝑛))(z).

Therefore,

x⊗ y =
∞
∑

𝑚,𝑛=1
𝑎𝑚𝑏𝑛(u𝑚 ⊗ u𝑛) ∈ ℳ,

and henceℳ contains {x⊗ y ∶ x, y ∈ ℋ}, a set whose closed linear span isℋ⊗ℋ.
This proves thatℳ = ℋ ⊗ℋ and thus (u𝑚 ⊗ u𝑛)∞𝑚,𝑛=1 is an orthonormal basis for
ℋ⊗ℋ. ■

For 𝐴, 𝐵 ∈ ℬ(ℋ), define the tensor product

𝐴⊗ 𝐵 ∶ ℋ ⊗ℋ →ℋ⊗ℋ

first on simple tensors x⊗ y by

(𝐴 ⊗ 𝐵)(x⊗ y) = (𝐴x) ⊗ (𝐵y),

and extend the tensor product by linearity toℋ⊗ℋ.
Let us focus on the tensor product 𝑆 ⊗ 𝑆∗ on 𝐻2 ⊗𝐻2. The orthonormal basis (𝑧𝑛)∞𝑛=0

for 𝐻2 is a natural one to choose, so

𝐻2 ⊗𝐻2 = {
∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑧𝑚 ⊗ 𝑧𝑛) ∶

∞
∑

𝑚,𝑛=0
|𝑐𝑚𝑛|2 < ∞}.

Moreover,

(𝑆 ⊗ 𝑆∗)(
∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑧𝑚 ⊗ 𝑧𝑛)) =

∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑆𝑧𝑚 ⊗ 𝑆∗𝑧𝑛).

Note that

(𝑆𝑧𝑚 ⊗ 𝑆∗𝑧𝑛) = 𝑧𝑚+1 ⊗ 𝑧𝑛−1,

unless 𝑛 = 0, for which 𝑆∗1 = 0 and the tensor above is zero.
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Proposition 15.4.6. 𝑆 ⊗ 𝑆∗ satisfies the following.

(a) ‖𝑆 ⊗ 𝑆∗‖ = 1.

(b) 𝜎(𝑆 ⊗ 𝑆∗) = 𝔻−.

(c) (𝑆 ⊗ 𝑆∗)∗ = 𝑆∗ ⊗ 𝑆.

Proof (a) Observe that

‖
‖(𝑆 ⊗ 𝑆∗)(

∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑧𝑚 ⊗ 𝑧𝑛))‖‖

2
= ‖
‖

∞
∑
𝑚=0
𝑛=1

𝑐𝑚𝑛(𝑧𝑚+1 ⊗ 𝑧𝑛−1)‖‖
2

=
∞
∑
𝑚=0
𝑛=1

|𝑐𝑚𝑛|2

⩽
∞
∑
𝑚=0
𝑛=0

|𝑐𝑚𝑛|2

= ‖
‖

∞
∑
𝑚=0
𝑛=0

𝑐𝑚𝑛(𝑧𝑚 ⊗ 𝑧𝑛)‖‖
2
.

Thus, ‖𝑆⊗𝑆∗‖ ⩽ 1. Equality follows from ‖(𝑆⊗𝑆∗)(1⊗𝑧)‖ = ‖𝑧⊗1‖ = 1 (Proposition
15.4.1).

(b) Since ‖𝑆⊗𝑆∗‖ = 1, one concludes that𝜎(𝑆⊗𝑆∗) ⊆ 𝔻−. If 𝜆 ∈ 𝔻, then (𝑆∗−𝜆𝐼)𝑘𝜆 = 0
so 1 ⊗ 𝑘𝜆 belongs to the kernel of 𝑆 ⊗ 𝑆∗ − 𝜆(𝐼 ⊗ 𝐼). Thus, 𝔻− ⊆ 𝜎(𝑆 ⊗ 𝑆∗).

(c) It suffices to prove

⟨(𝑆 ⊗ 𝑆∗)(𝑧𝑚 ⊗ 𝑧𝑛), 𝑧𝑗 ⊗ 𝑧𝑘⟩ = ⟨𝑧𝑚 ⊗ 𝑧𝑛, (𝑆∗ ⊗ 𝑆)(𝑧𝑗 ⊗ 𝑧𝑘)⟩.

The left side equals

⟨𝑧𝑚+1 ⊗ 𝑧𝑛−1, 𝑧𝑗 ⊗ 𝑧𝑘⟩ = ⟨𝑧𝑚+1, 𝑧𝑗⟩ + ⟨𝑧𝑛−1, 𝑧𝑘⟩ = 𝛿𝑚+1,𝑗 + 𝛿𝑛−1,𝑘,

while the right side equals

⟨𝑧𝑚 ⊗ 𝑧𝑛, 𝑧𝑗−1 ⊗ 𝑧𝑘+1⟩ = ⟨𝑧𝑚, 𝑧𝑗−1⟩ + ⟨𝑧𝑛 ⊗ 𝑧𝑘+1⟩ = 𝛿𝑚,𝑗−1 + 𝛿𝑛,𝑘+1.

Since 𝛿𝑚,𝑛 = 𝛿𝑚+𝑗,𝑛+𝑗 , the result follows. ■

Another perspective furthers our understanding of 𝑆 ⊗ 𝑆∗. The tensor-product space
𝐻2 ⊗𝐻2 is understood as

∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑧𝑚 ⊗ 𝑧𝑛),
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where
∞
∑

𝑚,𝑛=0
|𝑐𝑚𝑛|2 < ∞, (15.4.7)

and (15.4.7) is the square of the norm on 𝐻2 ⊗𝐻2. Associate the tensor 𝑧𝑚 ⊗𝑧𝑛 with the
two-variable monomial 𝑧𝑚𝑤𝑛 and consider the Hardy space 𝐻2(𝔻2) of the bidisk 𝔻2 =
{(𝑧, 𝑤) ∶ 𝑧, 𝑤 ∈ 𝔻}, where

𝐻2(𝔻2) ∶= {𝑓(𝑧, 𝑤) =
∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛𝑧𝑚𝑤𝑛 ∶ ‖𝑓‖2𝐻2(𝔻2) =

∞
∑

𝑚,𝑛=0
|𝑐𝑚𝑛|2 < ∞}. (15.4.8)

There is the natural unitary operator

𝑈 ∶ 𝐻2 ⊗𝐻2 → 𝐻2(𝔻2), 𝑈(
∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛(𝑧𝑚 ⊗𝑤𝑛)) =

∞
∑

𝑚,𝑛=0
𝑐𝑚𝑛𝑧𝑚𝑤𝑛.

Theorem 15.4.9. 𝑈(𝑆 ⊗ 𝑆∗)𝑈∗ = 𝑇, where

(𝑇𝑓)(𝑧, 𝑤) = 𝑧(𝑓(𝑧, 𝑤) − 𝑓(𝑧, 0)
𝑤 ).

Proof Verify this identity on 𝑧𝑚𝑤𝑛 and extend by linearity. ■

This setting reveals additional structure. Fix 𝑁 ⩾ 0 and consider

𝒫𝑁 =⋁{𝑧𝑘𝑤𝑁−𝑘 ∶ 0 ⩽ 𝑘 ⩽ 𝑁},

the set of homogeneous polynomials of degree𝑁 together with the zero polynomial. Then

𝑇(𝑧𝑘𝑤𝑁−𝑘) = {𝑧
𝑘+1𝑤𝑁−𝑘−1 if 0 ⩽ 𝑘 ⩽ 𝑁 − 1,
0 if 𝑘 = 𝑁,

so 𝒫𝑁 is a reducing subspace for 𝑇 (Exercise 15.6.28). Furthermore, with respect to the
inner product on 𝐻2(𝔻2) from (15.4.8), the spaces 𝒫𝑁 and 𝒫𝑀 are orthogonal for 𝑁 ≠ 𝑀,
and

𝐻2(𝔻2) =
∞

⨁
𝑁=0

𝒫𝑁 .

For∑𝑁
𝑘=0 𝑎𝑘𝑧𝑘𝑤𝑁−𝑘 ∈ 𝒫𝑁 , note that

𝑇(
𝑁
∑
𝑘=0

𝑎𝑘𝑧𝑘𝑤𝑁−𝑘) =
𝑁−1
∑
𝑘=0

𝑎𝑘𝑧𝑘+1𝑤𝑁−𝑘−1.
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In other words, 𝑇 sends (𝑎0, 𝑎1, 𝑎2,…, 𝑎𝑁) to (0, 𝑎0, 𝑎1, 𝑎2,…, 𝑎𝑁−1). From the matrix
identity

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 ⋯ 0
1 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 ⋱ ⋱ 0
0 0 0 ⋯ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0
𝑎1
𝑎2
𝑎3
⋮
𝑎𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝑎0
𝑎1
𝑎2
⋮

𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

it follows that 𝑇|𝒫𝑁 ≅ 𝐽𝑁+1(0)∗, where 𝐽𝑁(0) is the 𝑁 × 𝑁 nilpotent Jordan block. Since
𝐽𝑁(0)∗ is unitarily equivalent to 𝐽𝑁(0) (Exercise 15.6.18), we obtain the following.

Theorem 15.4.10. 𝑆 ⊗ 𝑆∗ ≅
∞

⨁
𝑁=1

𝐽𝑁(0).

The conjugation𝐶𝑛 onℂ𝑛 given by𝐶𝑛(𝑧1, 𝑧2, 𝑧3,…, 𝑧𝑛) = (𝑧𝑛, 𝑧𝑛−1, 𝑧𝑛−2,…, 𝑧1) satisfies
𝐽𝑛(0) = 𝐶𝑛𝐽𝑛(0)∗𝐶𝑛. Hence, each 𝐽𝑛(0) is unitarily equivalent to a complex symmetric
matrix (Exercise 15.6.18). Combine this theorem with Exercise 15.6.19 to obtain the
following.

Corollary 15.4.11. 𝑆 ⊗ 𝑆∗ is a complex symmetric operator.

Ifℳ reduces 𝑇, then, with respect to the orthogonal decompositionℋ =ℳ⊕ℳ⟂, we
may write 𝑇 as

𝑇 = [𝑇1 0
0 𝑇2

] .

Moreover,ℳ reduces 𝑇 if and only if 𝑃𝑇 = 𝑇𝑃, where 𝑃 is the orthogonal projection ofℋ
ontoℳ (Theorem 14.3.5). This yields a correspondence between reducing subspaces for
𝑇 and the orthogonal projections that commute with 𝑇.
Let us characterize the reducing subspaces for 𝑇 = 𝑆 ⊗ 𝑆∗. Since 𝑇 is unitarily

equivalent to

𝐽 =
∞

⨁
𝑁=1

𝐽𝑁(0),

it suffices to describe the reducing subspaces of 𝐽. To this end, we identify the orthogonal
projections 𝑃 on

ℋ =
∞

⨁
𝑁=1

ℂ𝑁

that commute with 𝐽. Write

𝐽 =
⎡
⎢
⎢
⎢
⎣

𝐽1(0) 0 0 ⋯
0 𝐽2(0) 0 ⋯
0 0 𝐽3(0) ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

and 𝑃 =
⎡
⎢
⎢
⎢
⎣

𝑃11 𝑃12 𝑃13 ⋯
𝑃21 𝑃22 𝑃23 ⋯
𝑃31 𝑃32 𝑃33 ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

,
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in which each 𝑃𝑗𝑘 is a 𝑗×𝑘matrix and 𝑃𝑗𝑘 = 𝑃∗𝑘𝑗 since 𝑃 = 𝑃∗. The equation 𝑃𝐽 = 𝐽𝑃 yields
matrix equations of the form

𝑃𝑚𝑛𝐽𝑛 = 𝐽𝑚𝑃𝑚𝑛 for𝑚, 𝑛 ⩾ 1.

A computation confirms that each 𝑃𝑚𝑛 is of the form

𝑃𝑚𝑛 =

⎧⎪⎪
⎨⎪⎪
⎩

𝑇𝑛 if𝑚 = 𝑛,

[𝑇𝑛
0
] if𝑚 > 𝑛,

[0 𝑇𝑚] if𝑚 < 𝑛,

in which 𝑇𝑚 and 𝑇𝑛 are arbitrary upper-triangular Toeplitz matrices of size 𝑚 × 𝑚 and
𝑛 × 𝑛, respectively [155]. For example, the upper-left 10 × 10 principal submatrix of 𝑃 is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑝11 0 𝑝13 0 0 𝑝16 0 0 0 𝑝1,10
𝑝21 𝑝22 𝑝23 0 𝑝25 𝑝26 0 0 𝑝29 𝑝2,10
0 0 𝑝22 0 0 𝑝25 0 0 0 𝑝29
𝑝41 𝑝42 𝑝43 𝑝55 𝑝45 𝑝46 0 𝑝59 𝑝49 𝑝4,10
0 0 𝑝42 0 𝑝55 𝑝45 0 0 𝑝59 𝑝49
0 0 0 0 0 𝑝55 0 0 0 𝑝59
𝑝71 𝑝72 𝑝73 𝑝85 𝑝75 𝑝76 𝑝99 𝑝89 𝑝79 𝑝7,10
0 0 𝑝72 0 𝑝85 𝑝75 0 𝑝99 𝑝89 𝑝79
0 0 0 0 0 𝑝85 0 0 𝑝99 𝑝89
0 0 0 0 0 0 0 0 0 𝑝99

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15.4.12)

Since the selfadjointness of 𝑃 ensures that 𝑃𝑚𝑛 = 𝑃∗𝑛𝑚, a glance at (15.4.12) confirms that
𝑃𝑚𝑛 = 0 whenever𝑚 ≠ 𝑛. Consequently,

𝑃 =
∞

⨁
𝑛=1

𝑃𝑛𝑛.

Since 𝑃 is an orthogonal projection, it is selfadjoint and idempotent. Thus, each 𝑃𝑛𝑛 is
selfadjoint and idempotent, that is, each 𝑃𝑛𝑛 is an orthogonal projection.
The orthogonal projections 𝑃 that commute with 𝐽 are precisely those of the form

𝑃 =
∞

⨁
𝑛=1

𝛿𝑛𝐼𝑛𝑛,

in which each 𝛿𝑛 ∈ {0, 1}. This means the reducing subspaces for 𝐽 are those of the form

⋁(⋃
𝑛∈𝐴

𝒫𝑛),

in which 𝐴 ⊆ ℕ ∪ {0}. We assume that above is {0} if 𝐴 = ∅. Pull this back to 𝑆 ⊗ 𝑆∗ and
conclude the following.
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Theorem 15.4.13. The reducing subspaces for 𝑆 ⊗ 𝑆∗ are precisely

⋁(⋃
𝑛∈𝐴

{e𝑗 ⊗ e𝑘 ∶ 𝑗 + 𝑘 = 𝑛}),

in which 𝐴 ⊆ ℕ ∪ {0}.

15.5 Notes
The von Neumann–Wold decomposition implies that for a pure isometry 𝑇, every invari-
ant subspaceℳ is generated by its corresponding wandering subspaceℳ ∩ (𝑇ℳ)⟂. The
wandering subspace property holds for the Hardy, Dirichlet, and Bergman shifts, despite
the fact that the latter two are not isometric. For other non-isometries, this wandering
subspace property was explored, with both positive and negative results, in [79, 137, 138].
This chapter covered the operators 𝑆 ⊕ 𝑆∗ and 𝑆 ⊗ 𝑆∗. The operator 𝑆 ⊕ 𝑆 is unitarily

equivalent to 𝑆2 (Exercise 15.6.9) while 𝑆 ⊗ 𝑆 is unitarily equivalent to a shift operator on
the infinite direct sum (𝐻2)(∞) (Exercise 15.6.21).
Theorem 15.2.2 gave the spectral representation of the selfadjoint Toeplitz operator

𝑇cos𝜃 and showed that its spectral measure is absolutely continuous with respect to
Lebesgue measure on ℝ. For 𝑛 ⩾ 1, the spectral measure for 𝑇cos𝑛𝜃 is also absolutely
continuous [277]. See [312] for the spectral representation of other selfadjoint Toeplitz
operators.
More on tensor products of Hilbert spaces and operators is in the classic text [112]. Our

analysis for 𝑆⊗𝑆∗ comes from [142]. We discussed the reducing subspaces of 𝑆⊗𝑆∗. The
invariant subspaces are not yet fully described.
This chapter made a connection with 𝐻2(𝔻2), the Hardy space of the bidisk. There is a

well-developed theory for this space that parallels that of 𝐻2 [318].

15.6 Exercises
Exercise 15.6.1. If 𝑇 ∈ ℬ(ℋ) is an isometry, prove that 𝑇(ℋ∩(𝑇ℋ)⟂) = 𝑇ℋ∩(𝑇2ℋ)⟂.

Exercise 15.6.2. If 𝑞 is an inner function, find the von Neumann–Wold decomposition of
𝑀𝑞 (multiplication by 𝑞) on 𝐻2.

Exercise 15.6.3. Prove that the constant function 𝑓 ≡ 1 is a cyclic vector for 𝑆 + 𝑆∗.

Exercise 15.6.4. Prove that any nonzero polynomial is a cyclic vector for 𝑆 + 𝑆∗.

Exercise 15.6.5. Use the following steps to describe the commutant of 𝑆+𝑆∗. First observe
that 𝑆 + 𝑆∗ is a cyclic selfadjoint operator (Exercise 15.6.3). The continuous functional
calculus from Chapter 8 ensures that 𝜑(𝑆 + 𝑆∗) is a well-defined bounded operator on𝐻2

for any 𝜑 ∈ 𝐶[−1, 1].

(a) Prove that 𝜑(𝑆 + 𝑆∗) ∈ {𝑆 + 𝑆∗}′.
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(b) Prove that 𝜑(𝑆 + 𝑆∗) is unitarily equivalent to𝑀𝜑 on 𝐿2(𝜌), where 𝜌(𝑥) = √1 − 𝑥2.

(c) Prove that the commutant of𝑀𝑥 on 𝐿2(𝜌) is {𝑀𝜓 ∶ 𝜓 ∈ 𝐿∞[−1, 1]}.

(d) Argue via unitary equivalence that 𝜓(𝑆 + 𝑆∗) is well defined for all 𝜓 ∈ 𝐿∞[−1, 1]
and that {𝑆 + 𝑆∗}′ = {𝜓(𝑆 + 𝑆∗) ∶ 𝜓 ∈ 𝐿∞[−1, 1]}.

Exercise 15.6.6. This exercise continues Exercise 15.6.5. Prove that the invariant sub-
spaces of 𝑆 + 𝑆∗ are {𝜒𝐸(𝑆 + 𝑆∗)𝑓 ∶ 𝑓 ∈ 𝐻2}, where 𝐸 is a Lebesgue-measurable subset of
[−1, 1].

Exercise 15.6.7. For 𝐴, 𝐵 ∈ ℬ(ℋ), prove the following.

(a) (𝐴 ⊕ 𝐵)∗ = 𝐴∗ ⊕ 𝐵∗.

(b) 𝜎𝑝(𝐴 ⊕ 𝐵) = 𝜎𝑝(𝐴) ∪ 𝜎𝑝(𝐵).

Exercise 15.6.8. Prove that that the map 𝐶 in (15.3.3) is a conjugation on 𝐻2 ⊕𝐻2.

Exercise 15.6.9. Prove that 𝑆2 on 𝐻2 is unitarily equivalent to 𝑆 ⊕ 𝑆 on 𝐻2 ⊕𝐻2.

Exercise 15.6.10. Describe the commutant of 𝑆 ⊕ 𝑆.

Exercise 15.6.11. Letℳ ⊆ 𝐻2 ⊕𝐻2 be an invariant subspace for 𝑇 = 𝑆 ⊕ 𝑆.

(a) Prove there is a subspace𝒩 of 𝐻2 ⊕𝐻2 such thatℳ = 𝒩 ⊕𝑇𝒩 ⊕ 𝑇2𝒩 ⊕⋯.

(b) For 𝑧 ∈ 𝔻, define 𝐹(𝑧) ∈ ℬ(𝒩,ℂ2) by evaluating each element of𝒩 at 𝑧. Prove that
𝐹 is a ℂ2-valued analytic function on 𝔻.

(c) Prove thatℳ = 𝐹{ [𝑓𝑔] ∈ 𝒩}.

Remark: The Beurling–Lax theorem yields more about 𝐹 [202, p. 115].

Exercise 15.6.12. For 𝑛 ∈ ℕ ∪ {∞}, 𝑇 ∈ ℬ(ℋ) is a shift of multiplicity 𝑛 if there is a
subspace ℋ1 of ℋ with dimℋ1 = 𝑛 and pairwise orthogonal subspaces ℋ𝑗 with 𝑗 ⩾ 1
such thatℋ = ℋ1 ⊕ℋ2 ⊕ℋ3 ⊕⋯ and 𝑇 mapsℋ𝑗 isometrically ontoℋ𝑗+1.

(a) For each 𝑛 ∈ ℕ ∪ {∞}, give an example of a shift of multiplicity 𝑛.

(b) Prove that two such shifts are unitarily equivalent if and only if their multiplicities
are the same.

Exercise 15.6.13. Here is a bilateral version of 𝑆 + 𝑆∗ on 𝐻2 from [25, p. 56]. Define
𝑇 ∶ 𝐿2(𝕋) → 𝐿2(𝕋) by 𝑇 = 𝑀𝜉 +𝑀∗

𝜉 .

(a) What is the matrix representation of 𝑇 with respect to the basis (𝜉𝑛)∞𝑛=−∞?

(b) Determine 𝜎(𝑇), 𝜎𝑝(𝑇), and 𝜎𝑎𝑝(𝑇).
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(c) Define 𝑊 ∶ 𝐿2[−2, 2] → 𝐿2[−2, 2] by (𝑊𝑓)(𝑥) = 𝑥𝑓(𝑥), and prove that 𝑇 is not
unitarily equivalent to𝑊 .

(d) Prove that 𝑇 is unitarily equivalent to𝑊 ⊕𝑊 .

Exercise 15.6.14. For any x and y in a Hilbert spaceℋ, prove that (x⊗ y)∗ = y⊗ x.

Exercise 15.6.15. Suppose y1, y2,…, y𝑛 are linearly independent vectors in aHilbert space
ℋ and, for some x1, x2,…, x𝑛 ∈ ℋ, we have∑𝑛

𝑗=1 x𝑗 ⊗ y𝑗 = 0. Prove that x𝑗 = 0 for all
1 ⩽ 𝑗 ⩽ 𝑛.
Exercise 15.6.16. Suppose 𝐴, 𝐵 ∈ ℬ(ℋ). Prove that ‖𝐴 ⊗ 𝐵‖ = ‖𝐴‖‖𝐵‖.
Exercise 15.6.17. Suppose𝐴, 𝐵, 𝐶, 𝐷 ∈ ℬ(ℋ). Prove that (𝐴⊗𝐵)(𝐶⊗𝐷) = (𝐴𝐶)⊗(𝐵𝐷).
Exercise 15.6.18. Prove that the 𝑛 × 𝑛 Jordan block

⎡⎢⎢⎢⎢⎢
⎣

𝜆 1 0 ⋯ 0
0 𝜆 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 𝜆 1
0 0 0 0 𝜆

⎤⎥⎥⎥⎥⎥
⎦

is unitarily equivalent to its adjoint.

Exercise 15.6.19. Prove that the direct sum of complex symmetric operators is complex
symmetric.

Exercise 15.6.20. This exercise demonstrates that the converse of Exercise 15.6.19 is false.

(a) Prove that the operator 𝐴 ∈ ℬ(ℂ3) induced by the matrix

[
0 1 0
0 0 2
0 0 0

]

is a not a complex symmetric operator

(b) Let 𝐽 be a conjugation on ℂ3 and define

𝐶 = [0 𝐽
𝐽 0] .

Prove that 𝑇 = 𝐴⊕ (𝐽𝐴∗𝐽) is 𝐶-symmetric, but its direct summand 𝐴 is not.

Exercise 15.6.21. Prove that 𝑆 ⊗ 𝑆 is unitarily equivalent to the infinite matrix operator
defined on (𝐻2)(∞) (see (14.1.2)) by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋯
𝑆 0 0 0 0 ⋯
0 𝑆 0 0 0 ⋯
0 0 𝑆 0 0 ⋯
0 0 0 𝑆 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Exercise 15.6.22. Prove that 𝑆 ⊗ 𝑆 is an isometry and compute its von Neumann–Wold
decomposition.

Exercise 15.6.23. Prove that 𝑆⊗𝑆∗ is unitarily equivalent to the infinite matrix operator
defined on (𝐻2)(∞) by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋯
𝑆∗ 0 0 0 0 ⋯
0 𝑆∗ 0 0 0 ⋯
0 0 𝑆∗ 0 0 ⋯
0 0 0 𝑆∗ 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Exercise 15.6.24. Prove that 𝑆 ⊗ 𝑆∗ is a partial isometry. Recall Definition 14.9.8.

Exercise 15.6.25. Let

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2

0 0 0 ⋯
1
2

0 1
2

0 0 ⋯
0 1

2
0 1

2
0 ⋯

0 0 1
2

0 1
2

⋯
0 0 0 1

2
0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If (𝑢𝑛)∞𝑛=0 is the sequence of Chebyshev polynomials from (15.2.4), prove that 𝑇 = 𝑈|𝑇|
is the polar decomposition of 𝑇, where

|𝑇| = [ 2𝜋 ∫
𝜋

−𝜋
|𝑥|𝑢𝑛(𝑥)𝑢𝑚(𝑥)√1 − 𝑥2 𝑑𝑥]

∞

𝑚,𝑛=0

and

𝑈 = [ 2𝜋 ∫
𝜋

−𝜋
𝑒𝑖 arg(𝑥)𝑢𝑛(𝑥)𝑢𝑚(𝑥)√1 − 𝑥2 𝑑𝑥]

∞

𝑚,𝑛=0
.

Exercise 15.6.26. Find the polar decomposition of 𝑆 ⊕ 𝑆∗.

Exercise 15.6.27. Find the polar decomposition of 𝑆 ⊗ 𝑆∗.

Exercise 15.6.28. If

(𝑇𝑓)(𝑤, 𝑧) = 𝑧 (𝑓(𝑤, 𝑧) − 𝑓(𝑤, 0)
𝑤 )

on 𝐻2(𝔻2), prove that

(𝑇∗𝑓)(𝑤, 𝑧) = 𝑤 (𝑓(𝑤, 𝑧) − 𝑓(0, 𝑧)
𝑧 ) .

Exercise 15.6.29. Prove that 𝑆 ⊗ 𝑆∗ has an uncountable collection of distinct reducing
subspacesℳ𝛼 for 𝛼 ∈ ℝ such thatℳ𝛼 ⊆ ℳ𝛽 if and only if 𝛼 ⩽ 𝛽.
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Exercise 15.6.30. For each 𝜆 ∈ 𝔻, prove that⋁{(𝑆⊗𝑆∗)𝑛(𝑧⊗𝑘𝜆) ∶ 𝑛 ⩾ 0} is an invariant
subspace for 𝑆 ⊗ 𝑆∗ that is not reducing.

Exercise 15.6.31. Prove that 𝑆+𝑆∗ has a square root, meaning there is a 𝐵 ∈ ℬ(𝐻2) such
that 𝐵2 = 𝑆 + 𝑆∗.

Exercise 15.6.32. Prove that 𝑆 ⊕ 𝑆∗ does not have a square root, meaning there is no
𝐵 ∈ ℬ(𝐻2 ⊕𝐻2) such that 𝐵2 = 𝑆 ⊕ 𝑆∗.
Remark: See [96] for more on roots and logarithms of operators.

Exercise 15.6.33. Let 𝐴 = 𝑈|𝐴| and 𝐵 = 𝑉|𝐵| be the polar decompositions of 𝐴, 𝐵 ∈
ℬ(ℋ).

(a) Prove that 𝑈 ⊗ 𝑉 is a partial isometry.

(b) Prove that |𝐴| ⊗ |𝐵| is positive.

(c) Is (𝑈 ⊗ 𝑉)(|𝐴| ⊗ |𝐵|) the polar decomposition of 𝐴⊗ 𝐵?

15.7 Hints for the Exercises
Hint for Ex. 15.6.1: Use 𝑇∗𝑇 = 𝐼.
Hint for Ex. 15.6.4: Examine the proof of Theorem 15.2.2.

Hint for Ex. 15.6.9: Consider𝑊(
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛) = (
∞
∑
𝑛=0

𝑎2𝑛𝑧𝑛,
∞
∑
𝑛=0

𝑎2𝑛+1𝑧𝑛).

Hint for Ex. 15.6.10: See Exercise 5.9.28.
Hint for Ex. 15.6.15: Consider the adjoint of the expression.
Hint for Ex. 15.6.23: Consult Theorem 15.4.9.
Hint for Ex. 15.6.29: Let 𝜑 ∶ ℕ ∪ {0} → ℚ be a bijection. For each 𝛼 ∈ ℝ, consider
{𝑥 ∈ ℕ ∪ {0} ∶ 𝜑(𝑥) < 𝛼}. Then use Theorem 15.4.13.
Hint for Ex. 15.6.32: Mimic the ideas in Exercise 5.9.33.
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Toeplitz Operators

Key Concepts: Toeplitz matrix, Toeplitz operator, Riesz projection, Brown–Halmos characterization
of Toeplitz operators, spectral properties, universal Toeplitz operators.

Outline: This chapter surveys Toeplitz operators 𝑇𝜑 ∶ 𝐻2 → 𝐻2 defined by

𝑇𝜑𝑓 = 𝑃+(𝜑𝑓),

where 𝜑 ∈ 𝐿∞(𝕋) and 𝑃+ is the orthogonal projection of 𝐿2(𝕋) onto 𝐻2. We examine the
matrix representations of these operators, their spectral properties, and a characterization
of them related to the unilateral shift.

16.1 Toeplitz Matrices
We discussed diagonal operators on ℓ2 in Chapter 2 andmore general matrix operators on
ℓ2 in Chapter 3. This chapter covers the operators on ℓ2 induced by matrices of the form

𝑇(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 ⋯
𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 ⋯
𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 ⋯
𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 ⋯
𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16.1.1)

where a = (𝑎𝑛)∞𝑛=−∞ is a doubly infinite sequence of complex numbers. These Toeplitz
matrices are constant on each diagonal. Does a Toeplitz matrix define a bounded operator
on ℓ2? To answer this, recall from Chapter 5 the Hilbert space 𝐿2(𝕋) of Lebesgue-
measurable functions on the circle with norm and inner product

‖𝑓‖ = (∫
𝕋
|𝑓|2𝑑𝑚)

1
2 , ⟨𝑓, 𝑔⟩ = ∫

𝕋
𝑓𝑔 𝑑𝑚, (16.1.2)
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respectively, along with the Hardy space𝐻2 = {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓(𝑛) = 0 for all 𝑛 < 0}. In the
above,𝑚 is normalized Lebesgue measure on 𝕋 and

𝑓(𝑛) = ∫
𝕋
𝑓(𝜉)𝜉

𝑛
𝑑𝑚(𝜉) for 𝑛 ∈ ℤ

is the 𝑛th Fourier coefficient of 𝑓.

Theorem 16.1.3 (Hartman–Wintner [182], Toeplitz [364]). For a Toeplitz matrix 𝑇(a), the
following are equivalent.

(a) 𝑇(a) defines a bounded operator on ℓ2.

(b) There is a 𝜑 ∈ 𝐿∞(𝕋) such that 𝑎𝑛 = 𝜑(𝑛) for all 𝑛 ∈ ℤ.

Under these circumstances, ‖𝑇(a)‖ = ‖𝜑‖∞.

Proof We follow [59]. Proposition 8.1.5 says that the multiplication operator𝑀𝜑𝑓 = 𝜑𝑓
is bounded if and only if 𝜑 ∈ 𝐿∞(𝕋). Furthermore, ‖𝑀𝜑‖ = ‖𝜑‖∞. With respect to the
orthonormal basis (𝜉𝑛)∞𝑛=−∞ for 𝐿2(𝕋), the matrix representation of𝑀𝜑 is

𝑀(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 𝑎−5 ⋯
⋯ 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 ⋯
⋯ 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 ⋯
⋯ 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 ⋯
⋯ 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 ⋯
⋯ 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝑎𝑛 = 𝜑(𝑛). This comes from the fact that ⟨𝑀𝜑𝜉𝑛, 𝜉𝑚⟩ = ⟨𝜑, 𝜉𝑚−𝑛⟩ = 𝜑(𝑚 −
𝑛), and hence the entries are constant along each diagonal. Notice how the Toeplitz
matrix 𝑇(a) from (16.1.1) is the lower-right corner of𝑀(a).

(b)⇒ (a) From the discussion in the previous paragraph,𝑀(a) is a bounded operator on
ℓ2(ℤ). For each 𝑛 ⩾ 0, let 𝑃𝑛 denote the orthogonal projection of ℓ2(ℤ) onto⋁{e𝑘 ∶
𝑘 ⩾ −𝑛}, where (e𝑘)∞𝑘=−∞ is the standard orthonormal basis for ℓ2(ℤ). In otherwords,
for x = (𝑥𝑖)∞𝑖=−∞ ∈ ℓ2(ℤ),

𝑃𝑛(x) = (…, 0, 0, 𝑥−𝑛, 𝑥−(𝑛−1), 𝑥−(𝑛−2),…).

For 𝜑 ∈ 𝐿∞(𝕋),

‖𝑇(a)‖ = ‖𝑃0𝑀(a)|ℓ2(ℕ0)‖ ⩽ ‖𝑀(a)‖ = ‖𝜑‖∞, (16.1.4)

and hence 𝑇(a) is a bounded operator on ℓ2.
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(a)⇒ (b) If 𝑇(a) is bounded, then for each 𝑛 ⩾ 0, we identify 𝑇(a) with the lower-right
corner of 𝑃𝑛𝑀(a)𝑃𝑛. Indeed, note that 𝑇(a) is naturally defined on ⋁{e𝑚 ∶ 𝑚 ⩾ 0}
while the lower right corner of 𝑃𝑛𝑀(a)𝑃𝑛 is naturally defined on

⋁{e𝑚 ∶ 𝑚 ⩾ −𝑛}.

One can see this with the matrix:

𝑀(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 𝑎−5 ⋯
⋯ 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 ⋯
⋯ 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 ⋯
⋯ 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 ⋯
⋯ 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 ⋯
⋯ 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since 𝑇(a) and 𝑃𝑛𝑀(a)𝑃𝑛 have the same matrix representation, we can identify them.
For each x ∈ ℓ2(ℤ), observe that 𝑃𝑛x → x and hence 𝑃𝑛𝑀(a)𝑃𝑛x → 𝑀(a)x. Thus, for
any unit vector x ∈ ℓ2(ℤ),

‖𝑀(a)x‖ = lim
𝑛→∞

‖𝑃𝑛𝑀(a)𝑃𝑛x‖

= lim inf
𝑛→∞

‖𝑃𝑛𝑀(a)𝑃𝑛x‖

⩽ lim inf
𝑛→∞

‖𝑃𝑛𝑀(a)𝑃𝑛‖‖x‖

= ‖𝑇(a)‖

and hence

‖𝑀(a)‖ = sup
‖x‖=1

‖𝑀(a)x‖ ⩽ ‖𝑇(a)‖. (16.1.5)

This shows that𝑀(a) is bounded and hence, by the discussion at the beginning of the
proof, 𝜑 ∈ 𝐿∞(𝕋). Furthermore, (16.1.4) and (16.1.5) yield ‖𝑇(a)‖ = ‖𝜑‖∞. ■

The many fascinating properties of 𝑇(a) are difficult to deduce in the matrix setting.
The next section develops an equivalent function-theoretic viewpoint via Fourier series
that permits us to study the deeper properties of Toeplitz matrices.

16.2 The Riesz Projection
Since 𝐻2 is a subspace of 𝐿2(𝕋), there is an orthogonal projection from 𝐿2(𝕋) onto 𝐻2.

Definition 16.2.1. The Riesz projection is the operator 𝑃+ ∶ 𝐿2(𝕋) → 𝐿2(𝕋) defined by

𝑃+(
∞
∑

𝑛=−∞
𝑓(𝑛)𝜉𝑛) =

∞
∑
𝑛=0

𝑓(𝑛)𝜉𝑛.
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Proposition 16.2.2. 𝑃+ is an orthogonal projection whose range is𝐻2.

Proof Notice from Parseval’s formula that

‖
‖𝑃+(

∞
∑

𝑛=−∞
𝑓(𝑛)𝜉𝑛)‖‖

2
= ‖
‖

∞
∑
𝑛=0

𝑓(𝑛)𝜉𝑛‖‖
2
=

∞
∑
𝑛=0

|𝑓(𝑛)|2 ⩽
∞
∑

𝑛=−∞
|𝑓(𝑛)|2

and thus 𝑃+ is a bounded operator on 𝐿2(𝕋). By definition, ran𝑃+ = 𝐻2. To prove that
𝑃+ is an orthogonal projection, it suffices to prove that it is selfadjoint and idempotent
(Theorem 14.5.4). For each 𝑛 ∈ ℤ,

𝑃+(𝑃+𝜉𝑛)) = {𝜉
𝑛 if 𝑛 ⩾ 0,
0 if 𝑛 < 0,

which equals 𝑃+(𝜉𝑛). Thus, 𝑃2+ = 𝑃+ on 𝐿2(𝕋). A case by case analysis shows that

⟨𝑃+𝑓, 𝑔⟩ = ⟨𝑓, 𝑃+𝑔⟩ (16.2.3)

for 𝑓 = 𝜉𝑛 and 𝑔 = 𝜉𝑚 with 𝑚, 𝑛 ∈ ℤ. Linearity of the inner product in the first
position and conjugate linearity in the second ensure that (16.2.3) holds for all 𝑓, 𝑔 ∈
𝐿2(𝕋). Therefore, 𝑃∗+ = 𝑃+. ■

The next proposition, which arises when studying Hankel operators (Chapter 17), is
interesting in its own right.

Proposition 16.2.4. For 𝑓 ∈ 𝐿2(𝕋), the following are equivalent.

(a) 𝑓 ∈ 𝐻2.

(b) 𝑃+𝑓 = 𝑓.

(c) ‖𝑃+𝑓‖ = ‖𝑓‖.

Proof (a)⇒ (b)⇒ (c) These follow from the definitions.
(c) ⇒ (a) Since 𝑓 = 𝑃+𝑓 + (𝐼 − 𝑃+)𝑓 and 𝑃+𝑓 ⟂ (𝐼 − 𝑃+)𝑓, it follows from Proposition
1.4.6 (Pythagorean theorem) that

‖𝑓‖2 = ‖𝑃+𝑓‖2 + ‖(𝐼 − 𝑃+)𝑓‖2 = ‖𝑓‖2 + ‖(𝐼 − 𝑃+)𝑓‖2,

so (𝐼 − 𝑃+)𝑓 = 0, and hence 𝑓 ∈ 𝐻2. ■

With the representation of𝐻2 as a space of analytic functions on𝔻 (Chapter 5), one can
realize the Riesz projection as an integral operator.

Proposition 16.2.5. If 𝑓 ∈ 𝐿2(𝕋), then

(𝑃+𝑓)(𝑧) = ∫
𝕋

𝑓(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉) for all 𝑧 ∈ 𝔻.
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Proof Let 𝜉 ∈ 𝕋 and 𝑧 ∈ 𝔻. Since |𝜉𝑧| < 1, the series

1
1 − 𝜉𝑧

=
∞
∑
𝑛=0

(𝜉𝑧)𝑛

converges absolutely and uniformly in 𝜉 for fixed 𝑧. Thus,

∫
𝕋

𝑓(𝜉)
1 − 𝜉𝑧

𝑑𝑚(𝜉) = ∫
𝕋
𝑓(𝜉)(

∞
∑
𝑛=0

(𝜉𝑧)𝑛)𝑑𝑚(𝜉)

=
∞
∑
𝑛=0

𝑧𝑛∫
𝕋
𝑓(𝜉)𝜉

𝑛
𝑑𝑚(𝜉)

=
∞
∑
𝑛=0

𝑓(𝑛)𝑧𝑛,

which is the Taylor expansion of the Riesz projection of 𝑓 (Definition 16.2.1). ■

16.3 Toeplitz Operators
One gains more traction studying Toeplitz matrices when recasting Theorem 16.1.3 as a
result about operators on the Hardy space 𝐻2.

Theorem 16.3.1 (Brown–Halmos [68]). For 𝜑 ∈ 𝐿∞, the operator 𝑇𝜑 ∶ 𝐻2 → 𝐻2 defined
by 𝑇𝜑𝑓 = 𝑃+(𝜑𝑓) is bounded and ‖𝑇𝜑‖ = ‖𝜑‖∞.

Proof For any 𝑓 ∈ 𝐻2, use the fact that 𝑃+ is an orthogonal projection (and hence a
contraction) to see that ‖𝑇𝜑𝑓‖ = ‖𝑃+(𝜑𝑓)‖ ⩽ ‖𝜑𝑓‖. Furthermore,

‖𝜑𝑓‖2 = ∫
𝕋
|𝜑𝑓|2𝑑𝑚 ⩽ ‖𝜑‖2∞∫

𝕋
|𝑓|2𝑑𝑚 = ‖𝜑‖2∞‖𝑓‖2.

This yields the upper bound

‖𝑇𝜑‖ = sup
‖𝑓‖=1

‖𝑇𝜑𝑓‖ ⩽ ‖𝜑‖∞.

For the lower bound, recall from Corollary 5.3.15 that for any 𝜆 ∈ 𝔻, the reproducing
kernel 𝑘𝜆(𝑧) = (1 − 𝜆𝑧)−1 for 𝐻2 satisfies

‖𝑘𝜆‖ =
1

√1 − |𝜆|2
.

Define the normalized reproducing kernel 𝑘 𝜆 = 𝑘𝜆/‖𝑘𝜆‖ and use the Cauchy–
Schwarz inequality to obtain

||⟨𝑇𝜑𝑘 𝜆, 𝑘 𝜆⟩|| ⩽ ‖𝑇𝜑𝑘 𝜆‖‖𝑘 𝜆‖ ⩽ ‖𝑇𝜑‖ ‖𝑘 𝜆‖ ‖𝑘 𝜆‖ = ‖𝑇𝜑‖.
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The selfadjointness of 𝑃+ ensures that

‖𝑇𝜑‖ ⩾ |⟨𝑇𝜑𝑘 𝜆, 𝑘 𝜆⟩|
= |⟨𝑃+(𝜑 𝑘 𝜆), 𝑘 𝜆⟩|
= |⟨𝜑 𝑘 𝜆, 𝑃+ 𝑘 𝜆⟩|
= |⟨𝜑 𝑘 𝜆, 𝑘 𝜆⟩|

=
|
|
|
∫
𝕋

1 − |𝜆|2
|𝜁 − 𝜆|2 𝜑(𝜁) 𝑑𝑚(𝜁)

|
|
|

= |P(𝜑)(𝜆)|,

where P(𝜑) is the Poisson integral of 𝜑 defined by (5.5.3). Finally, let 𝜆 = 𝑟𝜉, where
𝜉 ∈ 𝕋 and 𝑟 ∈ (0, 1), and use Fatou’s theorem (Theorem 5.5.2) to see that |𝜑(𝜉)| ⩽
‖𝑇𝜑‖ for almost every 𝜉 ∈ 𝕋. This implies the desired lower bound ‖𝜑‖∞ ⩽ ‖𝑇𝜑‖. ■

Definition 16.3.2. For 𝜑 ∈ 𝐿∞(𝕋), the operator 𝑇𝜑𝑓 = 𝑃+(𝜑𝑓) on𝐻2 is a Toeplitz operator
with symbol 𝜑.

The previous result implies that the symbol of a Toeplitz operator is unique.

Corollary 16.3.3. 𝑇𝜑 = 𝑇𝜓 if and only if 𝜑 = 𝜓 almost everywhere on 𝕋.

Proof If 𝜑 = 𝜓 almost everywhere, then 𝑇𝜑𝑓 = 𝑃+(𝜑𝑓) = 𝑃+(𝜓𝑓) = 𝑇𝜓𝑓 for all 𝑓 ∈ 𝐻2.
Thus, 𝑇𝜑 = 𝑇𝜓. Conversely, if 𝑇𝜑 = 𝑇𝜓, then 𝑇𝜑−𝜓 = 𝑇𝜑 − 𝑇𝜓 = 0. Theorem 16.3.1
ensures that ‖𝜑 − 𝜓‖∞ = 0 and thus 𝜑 = 𝜓 almost everywhere. ■

Toeplitz operators 𝑇𝜑 and Toeplitz matrices 𝑇(a) from (16.1.1), where a = (𝑎𝑛)∞𝑛=−∞ is
the sequence of Fourier coefficients of 𝜑, are closely related.

Proposition 16.3.4. For 𝜑 ∈ 𝐿∞(𝕋), the matrix representation of 𝑇𝜑 with respect to the
orthonormal basis (𝜉𝑛)∞𝑛=0 for𝐻2 is 𝑇(a), where a = (𝑎𝑛)∞𝑛=−∞ and 𝑎𝑛 = 𝜑(𝑛) for all 𝑛 ∈ ℤ.

Proof With respect to the standard orthonormal basis (𝜉𝑛)∞𝑛=0 for𝐻2, the (𝑚, 𝑛) entry of
the matrix representation of 𝑇𝜑 is

⟨𝑇𝜑𝜉𝑛, 𝜉𝑚⟩ = ⟨𝑃+(𝜑𝜉𝑛), 𝜉𝑚⟩
= ⟨𝜑𝜉𝑛, 𝑃+𝜉𝑚⟩ (𝑃+ is selfadjoint)
= ⟨𝜑𝜉𝑛, 𝜉𝑚⟩ (𝑃+𝜉𝑚 = 𝜉𝑚 for𝑚 ⩾ 0)
= ⟨𝜑, 𝜉𝑚−𝑛⟩ (integral inner product - (16.1.2))
= 𝜑(𝑚 − 𝑛). (16.3.5)

This shows that the matrix representation of 𝑇𝜑 is 𝑇(a). ■
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16.4 Selfadjoint and Compact Toeplitz Operators
The adjoint of a Toeplitz operator is the Toeplitz operator corresponding to the complex
conjugate of its symbol. As a consequence of the next proposition, a Toeplitz operator is
selfadjoint if and only if its symbol is a real-valued function in 𝐿∞(𝕋).

Proposition 16.4.1. 𝑇∗
𝜑 = 𝑇𝜑 for any 𝜑 ∈ 𝐿∞(𝕋).

Proof For any 𝑓, 𝑔 ∈ 𝐻2,

⟨𝑇𝜑𝑓, 𝑔⟩ = ⟨𝑃+(𝜑𝑓), 𝑔⟩
= ⟨𝜑𝑓, 𝑃+𝑔⟩ (𝑃+ is selfadjoint)
= ⟨𝜑𝑓, 𝑔⟩ (𝑃+𝑔 = 𝑔 since 𝑔 ∈ 𝐻2)
= ⟨𝑓, 𝜑𝑔⟩ (integral inner product - (16.1.2))
= ⟨𝑃+𝑓, 𝜑𝑔⟩ (𝑃+𝑓 = 𝑓 since 𝑓 ∈ 𝐻2)
= ⟨𝑓, 𝑃+(𝜑𝑔)⟩ (𝑃+ is selfadjoint)
= ⟨𝑓, 𝑇𝜑𝑔⟩,

which proves the result. ■

Example 16.4.2. From (5.1.3), observe that 𝑇𝑧 = 𝑆 (the forward shift) and 𝑇𝑧 = 𝑆∗ (the
backward shift). Thus,

𝑇𝑧+𝑧 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 ⋯
1 0 1 0 0 ⋯
0 1 0 1 0 ⋯
0 0 1 0 1 ⋯
0 0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is selfadjoint. It was shown in Example 3.2.7 that this matrix operator on ℓ2 has norm 2.
One can also confirm this by observing that

sup
|𝑧|=1

|𝑧 + 𝑧| = 2

and using Theorem 16.3.1. Also recall the spectral decomposition of

𝑇cos𝜃 =
1
2
𝑇𝑧+𝑧

(originally due to Hilbert) in Theorem 15.2.2.

There are no interesting compact Toeplitz operators.

Theorem 16.4.3 (Brown–Halmos [68]). For 𝜑 ∈ 𝐿∞(𝕋), the following are equivalent.

(a) 𝜑 = 0 almost everywhere on 𝕋.

(b) 𝑇𝜑 is compact.
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Proof (a)⇒ (b) Observe that 𝑇0 = 0 is compact.
(b)⇒ (a) Since 𝑧𝑛 → 0weakly in𝐻2 (Exercise 4.5.12) and 𝑇𝜑 is compact, it follows that
‖𝑇𝜑𝑧𝑛‖ → 0 (Exercise 3.6.9). On the other hand,

‖𝑇𝜑𝑧𝑛‖2 = ‖
‖𝑃+(

∞
∑

𝑘=−∞
𝜑(𝑘)𝜁𝑘+𝑛)‖‖

2
= ‖
‖

∞
∑

𝑘=−𝑛
𝜑(𝑘)𝜁𝑘+𝑛‖‖

2
=

∞
∑

𝑘=−𝑛
|𝜑(𝑘)|2,

which tends to ‖𝜑‖2 as 𝑛 → ∞ (Parseval’s theorem). Thus, ‖𝜑‖ = 0 and hence 𝜑 = 0
almost everywhere. ■

Every operator with finite-dimensional range is compact (Exercise 2.8.19). This yields
information about the range of a Toeplitz operator.

Corollary 16.4.4. ran𝑇𝜑 is infinite dimensional for every 𝜑 ∈ 𝐿∞(𝕋)\{0}.

16.5 The Brown–Halmos Characterization
When is 𝐴 ∈ ℬ(𝐻2) a Toeplitz operator? The following theorem is an operator-theoretic
characterization that involves the unilateral shift 𝑆 from Chapter 5.

Theorem 16.5.1 (Brown–Halmos [68]). For 𝐴 ∈ ℬ(𝐻2), the following are equivalent.

(a) 𝐴 is a Toeplitz operator.

(b) 𝑆∗𝐴𝑆 = 𝐴.

Proof (a)⇒ (b) If 𝐴 = 𝑇𝜑 for some 𝜑 ∈ 𝐿∞(𝕋), then

⟨𝑆∗𝑇𝜑𝑆𝜉𝑛, 𝜉𝑚⟩ = ⟨𝑇𝜑𝑆𝜉𝑛, 𝑆𝜉𝑚⟩
= ⟨𝑇𝜑𝜉𝑛+1, 𝜉𝑚+1⟩
= 𝜑((𝑚 + 1) − (𝑛 + 1)) (by (16.3.5))
= 𝜑(𝑚 − 𝑛)
= ⟨𝑇𝜑𝜉𝑛, 𝜉𝑚⟩. (by (16.3.5))

Thus, the operators 𝑆∗𝑇𝜑𝑆 and 𝑇𝜑 have the same matrix representations with respect
to the orthonormal basis (𝜉𝑛)∞𝑛=0 for 𝐻2 and are therefore equal (Exercise 3.6.2).

(b)⇒ (a) Suppose that 𝑆∗𝐴𝑆 = 𝐴. Induction ensures that 𝑆∗𝑘𝐴𝑆𝑘 = 𝐴 for all 𝑘 ⩾ 0. For
all𝑚, 𝑛 ⩾ 0, deduce that

⟨𝐴𝜉𝑛, 𝜉𝑚⟩ = ⟨𝑆∗𝑘𝐴𝑆𝑘𝜉𝑛, 𝜉𝑚⟩ = ⟨𝐴𝑆𝑘𝜉𝑛, 𝑆𝑘𝜉𝑚⟩ = ⟨𝐴𝜉𝑛+𝑘, 𝜉𝑚+𝑘⟩.

Consequently, the matrix representation of 𝐴 with respect to (𝜉𝑛)∞𝑛=0 is a Toeplitz
matrix since the entries are constant along each diagonal. Toeplitz’s theorem (Theo-
rem 16.1.3) yields a 𝜑 ∈ 𝐿∞(𝕋) such that 𝐴 has the same matrix representation as 𝑇𝜑.
Thus, 𝐴 = 𝑇𝜑 (Exercise 3.6.2). ■
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16.6 Analytic and Co-analytic Symbols
We have seen a special class of Toeplitz operators in Corollary 5.6.2 when we described
the commutant of the unilateral shift 𝑆.

Definition 16.6.1. AToeplitz operator𝑇𝜑 is analytic if𝜑 ∈ 𝐻∞ and co-analytic if𝜑 ∈ 𝐻∞.

Proposition 16.6.2. If 𝑇𝜑 is an analytic Toeplitz operator with nonconstant symbol 𝜑, the
following hold.

(a) 𝑇𝜑𝑓 = 𝜑𝑓 for all 𝑓 ∈ 𝐻2.

(b) 𝜎𝑝(𝑇𝜑) = ∅.

(c) 𝜎(𝑇𝜑) = 𝜑(𝔻)−.

(d) The matrix representation of 𝑇𝜑 with respect to the basis (𝜉𝑛)∞𝑛=0 is lower triangular.

Proof (a) Since 𝜑 ∈ 𝐻∞, it follows that 𝜑𝑓 ∈ 𝐻2 for all 𝑓 ∈ 𝐻2 and hence 𝑇𝜑𝑓 =
𝑃+(𝜑𝑓) = 𝜑𝑓.

(b) If 𝜆 ∈ ℂ and (𝑇𝜑 − 𝜆𝐼)𝑓 = 0, then (a) ensures that (𝜑 − 𝜆)𝑓 = 0. Since 𝜑 − 𝜆 and 𝑓
are analytic, and 𝜑 is nonconstant, 𝑓 is the zero function. Thus, 𝜎𝑝(𝑇𝜑) = ∅.

(c) From (5.5.5), it follows that 𝑇𝜑𝑘𝜆 = 𝜑(𝜆)𝑘𝜆 for all 𝜆 ∈ 𝔻. Since 𝑇∗
𝜑 = 𝑇𝜑 and 𝜎(𝑇∗

𝜑 ) =
𝜎(𝑇𝜑), one deduces that 𝜑(𝔻) ⊆ 𝜎𝑝(𝑇𝜑) ⊆ 𝜎(𝑇𝜑) = 𝜎(𝑇𝜑). Since the spectrum of 𝑇𝜑
is compact, it follows that 𝜑(𝔻)− ⊆ 𝜎(𝑇𝜑). If 𝜆 ∉ 𝜑(𝔻)−, then (𝜑 − 𝜆)−1 ∈ 𝐻∞. Thus
𝑇(𝜑−𝜆)−1 is a bounded operator and is equal to (𝑇𝜑−𝜆𝐼)−1. Therefore, 𝜎(𝑇𝜑) = 𝜑(𝔻)−.

(d) The entries above the main diagonal of the matrix representation of 𝑇𝜑 with respect
to the basis (𝜉𝑛)∞𝑛=0 are

⟨𝑇𝜑𝜉𝑘, 𝜉𝑗⟩ = ∫
𝕋
𝜑(𝜉)𝜉

𝑗−𝑘
𝑑𝑚(𝜉) = 𝜑(𝑗 − 𝑘) = 0 for all 𝑗 < 𝑘,

since 𝜑 ∈ 𝐻∞. ■

Observe that Corollary 5.6.2 (the description of the commutant of the shift on 𝐻2) can
be stated in the following equivalent form.

Corollary 16.6.3. For 𝜑 ∈ 𝐿∞, the following are equivalent.

(a) 𝜑 ∈ 𝐻∞.

(b) 𝑇𝜑𝑆 = 𝑆𝑇𝜑.

Proposition 16.6.4. If 𝜑 ∈ 𝐻∞\{0}, then ran𝑇𝜑 is dense.

Proof Proposition 16.6.2 ensures that ker𝑇𝜑 = {0}. Proposition 3.1.7 implies that

(ran𝑇𝜑)− = (ker𝑇∗
𝜑 )⟂ = (ker𝑇𝜑)⟂ = {0}⟂ = 𝐻2,

which proves the result. ■
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Recall from Theorem 5.4.12 that the proper invariant subspaces for the backward shift
on 𝐻2 are precisely those subspaces of the form (𝜑𝐻2)⟂, in which 𝜑 is an inner function.

Proposition 16.6.5. If 𝜑 is inner, then ker𝑇𝜑 = (𝜑𝐻2)⟂.

Proof For all ℎ ∈ 𝐻2,

𝑓 ∈ (𝜑𝐻2)⟂ ⟺ ⟨𝑓,𝜑ℎ⟩ = 0
⟺ ⟨𝜑𝑓, ℎ⟩ = 0
⟺ ⟨𝜑𝑓, 𝑃+ℎ⟩ = 0
⟺ ⟨𝑃+(𝜑𝑓), ℎ⟩ = 0
⟺ ⟨𝑇𝜑𝑓, ℎ⟩ = 0
⟺ 𝑇𝜑𝑓 = 0
⟺ 𝑓 ∈ ker𝑇𝜑,

which proves the result. ■

16.7 Universal Toeplitz Operators
Recall the definition of a universal operator (Definition 13.3.1) and Caradus’ criterion
(Theorem 13.3.2) for universality. Here is a universal Toeplitz operator on 𝐻2.

Proposition 16.7.1. If 𝜑 is inner and not a finite Blaschke product, then 𝑇𝜑 is a universal
operator on𝐻2.

Proof We use Caradus’ theorem (Theorem 13.3.2) and verify that ran𝑇𝜑 = 𝐻2 and
dimker𝑇𝜑 = ∞. For any 𝑔 ∈ 𝐻2, use the fact that 𝜑𝜑 = 1 almost everywhere on
𝕋 to see that 𝑇𝜑(𝜑𝑔) = 𝑃+(𝜑 𝜑𝑔) = 𝑃+(𝑔) = 𝑔. Hence ran𝑇𝜑 = 𝐻2.

Proposition 16.6.5 implies that ker𝑇𝜑 = (𝜑𝐻2)⟂. It remains to argue that (𝜑𝐻2)⟂ is
infinite dimensional. One can verify that 𝑇∗𝑛

𝑧 𝜑 ∈ (𝜑𝐻2)⟂ for all 𝑛 ⩾ 1 (Exercise
16.9.12). We claim that {𝑇∗𝑛

𝑧 𝜑 ∶ 𝑛 ⩾ 1} is a set of linearly independent vectors. Fix 𝑛
and suppose there are constants 𝑐1, 𝑐2,…, 𝑐𝑛 such that

𝑛
∑
𝑗=1

𝑐𝑗𝑇∗𝑗
𝑧 𝜑 = 0.

Then 𝜑 ∈ ker𝑇𝑝, where 𝑝(𝑧) = 𝑐1𝑧 + 𝑐2𝑧2 + ⋯ + 𝑐𝑛𝑧𝑛. We leave it to the reader
(Exercise 16.9.14) to prove that ker𝑇𝑝 consists only of certain rational functions in
𝐻2. Since 𝜑 is not a rational function, 𝑐𝑗 = 0 for all 1 ⩽ 𝑗 ⩽ 𝑛. Therefore, {𝑇∗𝑗

𝑧 𝜑 ∶
1 ⩽ 𝑗 ⩽ 𝑛} is a linearly independent set of vectors. Since this is true for all 𝑛 ⩾ 1, it
follows that ker𝑇𝜑 = (𝜑𝐻2)⟂ is infinite dimensional. ■
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16.8 Notes
The literature on Toeplitz operators is vast and well documented in [60]. A recent and
detailed historical survey is [254]. Some of the early work on multiplication operators on
𝐿2(𝕋), although in terms of matrix multiplication operators, was done by Toeplitz in 1910-
11 [363, 364].Hartman andWintner in 1950 [181]were early adopters of the term“Toeplitz
matrix” for the infinite Toeplitz matrix. They also discussed some of the first results on
the spectrum of these operators. Furthermore, they proved that a nonzero multiplication
operator on 𝐿2(𝕋) is not compact and that nonzero Toeplitz operators are not compact. The
proof of Theorem 16.1.3 appears in an appendix of a paper of Hartman andWintner [182]
but was proved decades earlier for selfadjoint Toeplitz matrices by Toeplitz [363, 364]. A
proof also appears in [68]. The commutant of 𝑆 in terms of analytic Toeplitz operators
(Corollary 16.6.3) appears in [68].
We explored the spectrum of 𝑇𝜑 for 𝜑 ∈ 𝐻∞ (Proposition 16.6.2). For general 𝜑 ∈

𝐿∞(𝕋), the spectrum of 𝑇𝜑 satisfiesR𝜑 ⊆ 𝜎(𝑇𝜑) ⊆ co(R𝜑),whereR𝜑 is the essential range
of 𝜑 (Definition 8.1.11) and co(R𝜑) is the closed convex hull ofR𝜑. If 𝜑 is real valued, then
𝜎(𝑇𝜑) = [essinf𝜑, esssup𝜑]. If 𝜑 ∈ 𝐶(𝕋), then 𝜎(𝑇𝜑) = R(𝜑) ∪ {𝜆 ∈ ℂ ∶ wind(𝜑, 𝜆) ≠ 0},
where wind(𝜑, 𝜆) is the winding number of the curve 𝜃 ↦ 𝜑(𝑒𝑖𝜃) with respect to 𝜆. The
book [116] surveys all of the results above. The reader is encouraged to work through the
exercises for this chapter to learn more about the spectrum of a Toeplitz operator.
The kernels of Toeplitz operators have undergone intense study. Coburn [88] proved

that if 𝜑 ∈ 𝐿∞(𝕋)\{0} then either ker𝑇𝜑 = {0} or ker𝑇𝜑 = {0}. If 𝜑 ∈ 𝐻∞, then ker𝑇𝜑 = {0}
and ker𝑇𝜑 = (𝑢𝐻2)⟂, where𝑢 is the inner factor of𝜑. For general𝜑 ∈ 𝐿∞(𝕋), these kernels
were described by Sarason [328] in his characterization of nearly-invariant subspaces of
𝐻2 [327]. See [139] for a function-theoretic parametrization of the kernel of a Toeplitz
operator. The paper [183] is an informative survey of kernels of Toeplitz operators and
their connection to many areas of analysis.
The invertibility of a Toeplitz operator has many characterizations [109, 373]. There are

also criteria for a Toeplitz operator to be surjective [184].
Brown and Douglas determined when a Toeplitz operator is a partial isometry [67]. A

Toeplitz operator 𝑇𝜑 is an isometry if and only if 𝜑 is an inner function (Exercise 16.9.7).
Furthermore, 𝑇𝜑 is a partial isometry when 𝜑 is inner (Exercise 16.9.8). The main result
in [67] is that the partially isometric Toeplitz operators are of the form 𝑇𝜑 or 𝑇𝜑 where 𝜑
is inner. The primary tool used to prove this result makes a connection to Exercise 5.9.25,
which asks when a unimodular function 𝑞 on 𝕋 can be written as the quotient of two
inner functions. If 𝜆 > 0 and 𝜑, 𝜓 are inner functions, then 𝜆𝑇𝜑𝑇𝜓 is norm attaining
(Exercise 16.9.17). Moreover, any norm-attaining Toeplitz operator is of this form. It
follows (Exercise 16.9.17) that 𝑞 can be written as the quotient of two inner functions
if and only if 𝑇𝑞 is norm attaining.
Describing the invariant subspaces for Toeplitz operators is a complicated undertaking.

We know a full characterization of them for 𝑇𝑧 and 𝑇𝑧 since these are the forward
and backward shifts on 𝐻2. For other Toeplitz operators, it is not clear that proper
nonzero invariant subspaces exist. On the other hand, certain Toeplitz operators are
universal (Proposition 16.7.1) and thus yield an incredibly complicated invariant-subspace
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structure. For𝑇𝜑, where 𝜑 ∈ 𝐻∞, we know that 𝑢𝐻2 is an invariant subspace for any inner
function𝑢. A paper of Peller [265] gives some geometric criteria guaranteeing the existence
of invariant subspaces of Toeplitz operators with certain piecewise-continuous symbols.
An important structural result is one of Coburn [89, 90] which starts with the fact that

the semicommutator 𝑇𝜑𝑇𝜓 − 𝑇𝜑𝜓 is compact for every 𝜑, 𝜓 ∈ 𝐶(𝕋). He uses this to show
that if 𝒦 is the closed ideal of compact operators on 𝐻2, then the mapping 𝜑 ↦ 𝑇𝜑 + 𝒦
is an isometric ∗-isomorphism between 𝐶(𝕋) and the commutative subalgebra {𝑇𝜑 +𝒦 ∶
𝜑 ∈ 𝐶(𝕋)} of ℬ(𝐻2)/𝒦.
For 𝜑 ∈ 𝐿∞(ℝ), define a Toeplitz operator on 𝐻2(ℝ) by 𝑇𝜑𝑓 = 𝑃(𝜑𝑓), where 𝑃 denotes

the orthogonal projection from 𝐿2(ℝ) onto𝐻2(ℝ). Many analogues of standard results for
Toeplitz operators on 𝐻2 hold, but some are slightly different. For example, the Brown–
Halmos characterization from Theorem 16.5.1 needs to be replaced by the following: if
𝐴 ∈ ℬ(𝐻2(ℝ)), then 𝐴 is a Toeplitz operator if and only if 𝐴 = 𝑇𝑒−𝑖𝜆𝑡𝐴𝑇𝑒𝑖𝜆𝑡 for all 𝜆 > 0
(see [251, p. 273] and Exercise 16.9.28).
One can also explore Toeplitz operators on other function spaces such as the Bergman

space 𝐴2 (see Chapter 10). Indeed, for 𝜑 ∈ 𝐿∞(𝑑𝐴), define 𝑇𝜑 on 𝐴2 by 𝑇𝜑𝑓 = 𝑃𝐴2 (𝜑𝑓),
where 𝑃𝐴2 denotes the orthogonal projection of 𝐿2(𝑑𝐴) onto 𝐴2. A good place to get started
in this area is the book [379] (see also Exercises 16.9.31, 16.9.32, and 16.9.33).

16.9 Exercises
Exercise 16.9.1. Find the matrix representation of the Riesz projection 𝑃+ on 𝐿2(𝕋) with
respect to the orthonormal basis (𝜉𝑛)∞𝑛=−∞.

Exercise 16.9.2. Prove the following variation of Proposition 16.2.4 for 𝑃− = 𝐼 − 𝑃+. For
𝑓 ∈ 𝐻2, the following conditions are equivalent: (a) 𝑓 ∈ 𝐻2

0; (b) 𝑃−𝑓 = 𝑓; (c) ‖𝑃−𝑓‖ = ‖𝑓‖.

Exercise 16.9.3. Consider the multiplication operator𝑀𝜑 on 𝐿2(𝕋) whose matrix repre-
sentation with respect to the orthonormal basis (𝜉𝑛)∞𝑛=−∞ is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 1 2 1 0 0 0 ⋯
⋯ 0 1 2 1 0 0 ⋯
⋯ 0 0 1 2 1 0 ⋯
⋯ 0 0 0 1 2 1 ⋯
⋯ 0 0 0 0 1 2 ⋯
⋯ 0 0 0 0 0 1 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Compute 𝜑.

(b) Compute ‖𝑀𝜑‖.

(c) Compute 𝜎(𝑀𝜑).
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Exercise 16.9.4. For each 𝛼, 𝛽 ∈ 𝔻, consider the Toeplitz matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝛼 𝛼2 𝛼3 𝛼4 ⋯
𝛽 1 𝛼 𝛼2 𝛼3 ⋯
𝛽2 𝛽 1 𝛼 𝛼2 ⋯
𝛽3 𝛽2 𝛽 1 𝛼 ⋯
𝛽4 𝛽3 𝛽2 𝛽 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Compute the symbol of the corresponding Toeplitz operator.

(b) Compute the norm of this operator.

Exercise 16.9.5. For 𝛾 ∈ ℂ\ℤ, consider the Cauchy–Laurent matrix 𝐿 associated with 𝛾
as the doubly infinite matrix whose entries are

𝐿𝑗𝑘 =
1

𝑗 − 𝑘 + 𝛾 for 𝑗, 𝑘 ∈ ℤ.

(a) Prove that 𝐿 is the matrix (with respect to the standard basis) that corresponds to the
multiplication operator𝑀𝜑𝛾 on 𝐿2(𝕋), where

𝜑𝛾(𝑒𝑖𝜃) =
𝜋

sin𝜋𝛾𝑒
𝑖𝜋𝛾𝑒−𝑖𝛾𝜃 for −𝜋 ⩽ 𝜃 < 𝜋.

(b) Compute the norm and spectrum of 𝐿.

Exercise 16.9.6. For a Toeplitz operator 𝑇𝜑 on 𝐻2, prove the following.

(a) 𝑇𝜑 ⩾ 0 if and only if 𝜑 ⩾ 0 almost everywhere.

(b) 𝑇𝜑 is selfadjoint if and only if 𝜑 is real valued almost everywhere.

(c) 𝑇𝜑 is an orthogonal projection if and only if 𝑇𝜑 = 0 or 𝑇𝜑 = 𝐼.

(d) 𝑇𝜑 is normal if and only if 𝜑 = 𝑎𝜓 + 𝑏, where 𝑎, 𝑏 ∈ ℂ and 𝜓 ∈ 𝐿∞(𝕋) is real valued.

Remark: See [68] for more on algebraic properties of Toeplitz operators.

Exercise 16.9.7. Let 𝜑 ∈ 𝐿∞(𝕋).

(a) Prove that 𝑇𝜑 is an isometry if and only if 𝜑 is an inner function.

(b) Prove that 𝑇𝜑 is unitary if and only if 𝜑 is a constant function of modulus one.

Exercise 16.9.8. If 𝜑 is inner, prove that 𝑇𝜑 is a partial isometry.
Remark: Brown and Douglas proved that the only Toeplitz operators (other than the zero
operator) that are partial isometries are 𝑇𝜑 and 𝑇∗

𝜑 , where 𝜑 is an inner function [67].

Exercise 16.9.9. Give an example of a partially isometric Toeplitz operator that is not an
isometry.
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Exercise 16.9.10. Suppose 𝑇 ∈ ℬ(𝐻2) satisfies 𝑇(𝑢𝐻2) ⊆ 𝑢𝐻2 for every inner function
𝑢. Prove that 𝑇 is an analytic Toeplitz operator.

Exercise 16.9.11. If 𝜑 ∈ 𝐻∞ and 𝑇𝜑 is cyclic, prove that 𝜑 is injective.

Exercise 16.9.12. For any inner function 𝜑, prove that 𝑇∗𝑛
𝑧 𝜑 ∈ (𝜑𝐻2)⟂ for all 𝑛 ⩾ 1.

Exercise 16.9.13. Consider the Toeplitz matrix

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1
2

1
3

1
4

⋯
−1 0 1 1

2
1
3

⋯

− 1
2

−1 0 1 1
2

⋯

− 1
3

− 1
2

−1 0 1 ⋯

− 1
4

− 1
3

− 1
2

−1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Prove that ‖𝑇‖ = 𝜋.

(b) Prove that the associated lower-triangular Toeplitz matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋯
−1 0 0 0 0 ⋯

− 1
2

−1 0 0 0 ⋯

− 1
3

− 1
2

−1 0 0 ⋯

− 1
4

− 1
3

− 1
2

−1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

does not define a bounded operator on ℓ2.

Exercise 16.9.14. This exercise computes ker𝑇∗
𝑝 , where 𝑝 is a polynomial.

(a) Prove that if 𝑞 is a polynomial with no zeros in 𝔻, then ker𝑇∗
𝑞 = {0}.

(b) Let 𝜆1, 𝜆2,…, 𝜆𝑛 be the zeros of𝑝 in𝔻with correspondingmultiplicities𝑚1, 𝑚2,…,𝑚𝑛
and let 𝐵 be the finite Blaschke product

𝐵(𝑧) = ( 𝑧 − 𝜆1
1 − 𝜆1𝑧

)
𝑚1

( 𝑧 − 𝜆2
1 − 𝜆2𝑧

)
𝑚2

⋯ ( 𝑧 − 𝜆𝑛
1 − 𝜆𝑛𝑧

)
𝑚𝑛

.

(c) Prove that ker𝑇 ∗
𝐵 = 𝐻2 ∩ (𝐵𝐻2)⟂.

(d) Use the Cauchy integral formula to prove that

𝐻2 ∩ (𝐵𝐻2)⟂ =⋁{ 1
(1 − 𝜆𝑗𝑧)𝑘

∶ 1 ⩽ 𝑗 ⩽ 𝑛, 1 ⩽ 𝑘 ⩽ 𝑚𝑗}.

(e) Write 𝑇𝑝 = 𝑇𝐵𝑇𝑝/𝐵 and prove that ker𝑇∗
𝑝 = ker𝑇 ∗

𝐵 .
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Exercise 16.9.15. If 𝜑 ∈ 𝐻∞ or 𝜓 ∈ 𝐻∞, prove that 𝑇𝜑𝑇𝜓 = 𝑇𝜑𝜓.
Remark: A result from [68] says that for 𝜑, 𝜓 ∈ 𝐿∞, 𝑇𝜑𝑇𝜓 is a Toeplitz operator if and only
if 𝜑 ∈ 𝐻∞ or 𝜓 ∈ 𝐻∞. Moreover, if either occurs, 𝑇𝜑𝑇𝜓 = 𝑇𝜑𝜓.

Exercise 16.9.16. For an inner function 𝜑 and 𝑓 ∈ 𝐻∞, prove that ran𝑇𝜑𝑓 = ran𝑇𝑓.

Exercise 16.9.17. If 𝜑, 𝜓 are inner and 𝜆 > 0, prove that 𝑇 = 𝜆𝑇∗
𝜑𝑇𝜓 is a norm-attaining

Toeplitz operator. In other words, 𝑇 is a Toeplitz operator and there is an 𝑓 ∈ 𝐻2 such that
‖𝑇𝑓‖ = ‖𝑇‖.

Exercise 16.9.18. Suppose that both 𝑓 and 1/𝑓 belong to 𝐿∞(𝕋). Prove that𝑇𝑓 is invertible
if and only if 𝑇𝑓/|𝑓| is invertible.
Remark: This exercises needs a detail concerning outer functions [149, p. 64]: if 𝑔 ∈ 𝐿∞(𝕋)
and log |𝑔| ∈ 𝐿∞(𝕋), there is an 𝐺 ∈ 𝐻∞ such that |𝐺(𝜉)| = |𝑔(𝜉)| for almost every 𝜉 ∈ 𝕋.

Exercise 16.9.19. For 𝜑, 𝜓 ∈ 𝐿∞(𝕋), prove that 𝑇𝜑𝑇𝜓 = 0 if and only 𝜑 = 0 or 𝜓 = 0
almost everywhere.
Remark: This problem requires the following result of Riesz [118, p. 17] (see also Exercise
5.9.37): if 𝑓 ∈ 𝐻∞ is zero on a subset of 𝕋 of positive measure, then 𝑓 ≡ 0. Although
significantly harder to prove, the zero-product result for two Toeplitz operators can be
generalized to the following statement: 𝑇𝜑1𝑇𝜑2 ⋯𝑇𝜑𝑛 = 0 if and only if at least one of the
𝜑𝑗 is zero [18].

Exercise 16.9.20. Recall from (6.4.1) that 𝐴 ∈ ℬ(ℋ) is hyponormal if 𝐴∗𝐴 − 𝐴𝐴∗ ⩾ 0.

(a) Prove that 𝑇𝑧+𝑧/2 is hyponormal.

(b) Prove that if 𝐴 ∈ ℬ(ℋ) is hyponormal, then 𝐴 + 𝜆𝐴∗ is hyponormal if and only if
|𝜆| ⩽ 1.

Exercise 16.9.21. Prove that if (𝜑𝑛)∞𝑛=1 is a sequence in 𝐿∞(𝕋) such that 𝑇𝜑𝑛 → 𝑇 (WOT)
(recall the weak operator topology from Exercise 4.5.24), then 𝑇 is a Toeplitz operator.

Exercise 16.9.22. Let 𝜑 ∈ 𝐻∞\{0}.

(a) Ifℳ is a nonzero invariant subspace for 𝑇𝜑, show that dimℳ = ∞.

(b) If 𝐴 ∈ ℬ(𝐻2) is compact and 𝐴𝑇𝜑 = 𝑇𝜑𝐴, prove that 𝜎(𝐴) = {0}.

Exercise 16.9.23. Let 𝜑 ∈ 𝐿∞(𝕋).

(a) Prove that 𝜎(𝑀𝜑) ⊆ 𝜎(𝑇𝜑).

(b) Give an example of a 𝜑 such that 𝜎(𝑀𝜑) ⊊ 𝜎(𝑇𝜑).

Exercise 16.9.24. Let 𝜑 ∈ 𝐿∞(𝕋).

(a) Prove that 𝑇𝜑 is quasinilpotent if and only if 𝜑 = 0.

(b) Prove that if 𝜎(𝑇𝜑) is a singleton, then 𝜑 is constant.

Exercise 16.9.25. If 𝜑 ∈ 𝐿∞(𝕋) is nonconstant, prove that 𝜎(𝑇𝜑) is not a set consisting of
two points. Use the following steps from [68].
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(a) Prove that if 𝑇𝜑 is selfadjoint, then 𝜎𝑝(𝑇𝜑) = ∅.

(b) Prove that if 𝜎(𝑇𝜑) ⊆ ℝ, then 𝑇𝜑 is selfadjoint.

(c) If 𝜎(𝑇𝜓) lies on a line, prove that 𝛼𝑇𝜓 + 𝛽𝐼 is selfadjoint for some 𝛼, 𝛽 ∈ ℂ.

(d) If 𝜎(𝑇𝜓) = {𝑎, 𝑏}, use (a) - (c) to obtain a contradiction.

Remark: The spectrum of a Toeplitz operator is connected [374].

Exercise 16.9.26. Consider the numerical range𝑊(𝑇𝜑) of a Toeplitz operator.

(a) For 𝐴 ∈ ℬ(ℋ), prove that 𝜎(𝐴) ⊆ 𝑊(𝐴)−.

(b) Prove that𝑊(𝑇𝜑) ⊆ 𝑊(𝑀𝜑).

(c) Prove that 𝜎(𝑀𝜑) ⊆ 𝑊(𝑇𝜑)−.

(d) Prove that the convex hull of the essential range R𝜑 is contained in𝑊(𝑇𝜑)−.

Remark: One actually has equality in (d) [68].

Exercise 16.9.27. Let

𝑓𝑛(𝑥) =
⎧⎪
⎨⎪
⎩

1
√𝜋

(𝑥 − 𝑖)𝑛
(𝑥 + 𝑖)𝑛+1 if 𝑛 ⩾ 0,

1
√𝜋

(𝑥 + 𝑖)−𝑛−1
(𝑥 − 𝑖)−𝑛 if 𝑛 ⩽ −1.

Recall from Exercise 11.10.10 that (𝑓𝑛)∞𝑛=−∞ is an orthonormal basis for 𝐿2(ℝ) and that
(𝑓𝑛)∞𝑛=0 is an orthonormal basis for 𝐻2(ℝ).

(a) Find an integral representation for 𝑃, the orthogonal projection from 𝐿2(ℝ) onto
𝐻2(ℝ), with respect to the orthonormal basis (𝑓𝑛)∞𝑛=−∞.

(b) For the Toeplitz operator 𝑇Φ𝑓 = 𝑃(Φ𝑓) on 𝐻2(ℂ+), defined in the endnotes of this
chapter, compute the matrix representation of 𝑇Φ with respect to the basis (𝑓𝑛)∞𝑛=0.

Exercise 16.9.28. If 𝐴 ∈ ℬ(𝐻2(ℂ+)), prove that 𝐴 is a Toeplitz operator on𝐻2(ℂ+) if and
only if 𝐴 = 𝑇𝑒−𝑖𝜆𝑡𝐴𝑇𝑒𝑖𝜆𝑡 for all 𝜆 > 0.

Exercise 16.9.29. For 𝜆 > 0, define

𝜑𝜆(𝑧) = exp ( − 𝜆1 + 𝑧
1 − 𝑧).

Prove that 𝐴 ∈ ℬ(𝐻2) is a Toeplitz operator if and only if 𝐴 = 𝑇∗
𝜑𝜆𝐴𝑇𝜑𝜆 for all 𝜆 > 0.

Remark: See [245] for more on this.
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Exercise 16.9.30. For a Toeplitz operator 𝑇𝜑, consider

‖𝑇𝜑‖𝑒 ∶= inf
𝐾∈𝒦

‖𝑇𝜑 + 𝐾‖,

where𝒦 is the space of compact operators on𝐻2. The quantity ‖𝑇𝜑‖𝑒 is the essential norm
of 𝑇𝜑 and it measures the distance from 𝑇𝜑 to the compact operators. The goal of this
problem is to prove that ‖𝑇𝜑‖𝑒 = ‖𝜑‖∞.

(a) Prove that ‖𝑇𝜑‖𝑒 ⩽ ‖𝜑‖∞.

(b) For each 𝑛 ⩾ 1, prove that 𝑃𝑛 = 𝑆𝑛𝑆∗𝑛 is the orthogonal projection of 𝐻2 onto 𝑧𝑛𝐻2.

(c) For 𝐴 ∈ ℬ(𝐻2), prove that ‖𝑆𝑛𝐴𝑆∗𝑛‖ = ‖𝐴‖ for all 𝑛 ⩾ 0.

(d) Prove that ‖𝑇𝜑 + 𝐾‖ ⩾ ‖𝑇𝜑 + 𝑆∗𝑛𝐾𝑆𝑛‖ for all 𝑛 ⩾ 1 and 𝐾 ∈ 𝒦.

(e) Use Exercise 5.9.26 to prove that ‖𝑇𝜑 + 𝐾‖ ⩾ ‖𝑇𝜑‖ and hence ‖𝑇𝜑‖𝑒 = ‖𝜑‖∞.

Remark:We encounter the essential norm for Hankel operators in Exercise 17.10.13.

Exercise 16.9.31. Theorem 16.4.3 says there are no nonzero compact Toeplitz operators
on𝐻2. For the Bergman space, the situation is different. These next two problems explore
this phenomenon. Let𝐶(𝔻−) denote the space of all complex-valued continuous functions
𝜑 on𝔻−, endowedwith the norm ‖𝜑‖∞ = sup𝑧∈𝔻− |𝜑(𝑧)|.Recall from Exercise 10.7.12 the
properties of the Bergman projection 𝑃𝐴2 .

(a) If 𝜑 ∈ 𝐶(𝔻−), prove that the Toeplitz operator 𝑇𝜑𝑓 = 𝑃𝐴2 (𝜑𝑓) on the Bergman space
𝐴2 is bounded and ‖𝑇𝜑‖ ⩽ ‖𝜑‖∞.

(b) For 𝑁 ⩾ 1, find the matrix representation of 𝑇𝑧𝑁 with respect to the orthonormal
basis (√𝑛 + 1 𝑧𝑛)∞𝑛=0 for 𝐴2 (Proposition 10.1.8).

Exercise 16.9.32. This is a continuation of Exercise 16.9.31. If 𝜑 ∈ 𝐶(𝔻−) and 𝜑|𝕋 = 0,
prove that 𝑇𝜑 is a compact operator on 𝐴2 as follows.

(a) Given 𝜀 > 0, prove there exists a 𝜓 ∈ 𝐶(𝔻−) whose support 𝐾 is a compact subset of
𝔻 and such that sup

𝑧∈𝔻−
|𝜑(𝑧) − 𝜓(𝑧)| < 𝜀.

(b) Prove that if a sequence (𝑓𝑛)∞𝑛=1 in 𝐴2 converges weakly to zero, then 𝑓𝑛(𝜆) → 0 for
each 𝜆 ∈ 𝔻.

(c) Use Exercise 10.7.20 and the principle of uniform boundedness (Theorem 2.2.3) to
prove that 𝑓𝑛 → 0 uniformly on 𝐾.

(d) Prove there is a 𝐶 > 0 such that ‖𝑇𝜓𝑓𝑛‖ ⩽ 𝐶 sup𝑧∈𝐾 |𝑓𝑛(𝑧)| for all 𝑛 ⩾ 1.

(e) Prove that 𝑇𝜓 is compact.

(f) Prove that 𝑇𝜑 is compact.

Remark: See [30] for a generalization of this result to Bergman spaces of general domains.
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Exercise 16.9.33. Recall the Berezin transform 𝑇(𝑧) of a bounded operator 𝑇 on 𝐴2 from
Exercise 10.7.27.

(a) If 𝜑 ∈ 𝐶(𝔻−), prove that 𝑇𝜑 ∈ 𝐶(𝔻−) and 𝑇𝜑(𝜉) = 𝜑(𝜉) for all 𝜉 ∈ 𝕋.

(b) Use (a) to prove a converse to Exercise 16.9.32, namely, if 𝜑 ∈ 𝐶(𝔻−) and 𝑇𝜑 is
compact, then 𝜑|𝕋 = 0.

Remark: See [31, 91] for more on this.

16.10 Hints for the Exercises
Hint for Ex. 16.9.4: Write the matrix as an infinite linear combination of 𝑆𝑛 and 𝑆∗𝑛.
Hint for Ex. 16.9.8: Consult Proposition 14.9.14.
Hint for Ex. 16.9.10: Theorem 14.3.4 implies that 𝑇𝑧𝑛𝑇𝑇𝑧𝑛 = 𝑇𝑇𝑧𝑛 for all 𝑛 ⩾ 0.
Hint for Ex. 16.9.16: Consult Corollary 14.6.6.
Hint for Ex. 16.9.18: Exercise 16.9.15 says that 𝑇𝑓𝑇𝑔 = 𝑇𝑓𝑔 if either 𝑓 ∈ 𝐻∞ or 𝑔 ∈ 𝐻∞.
Let ℎ be the outer function with |ℎ| = |𝑓|−1/2 almost everywhere on 𝕋. What is 𝑇ℎ𝑇𝑓𝑇ℎ?
Hint for Ex. 16.9.19: Consult Exercise 16.9.15.
Hint for Ex. 16.9.21: Consult Theorem 16.5.1.
Hint for Ex. 16.9.22. For (a), observe that a linear transformation on a finite-dimensional
vector space has a eigenvalue. For (b), observe that dim(𝐴 − 𝜆𝐼) < ∞ for all 𝜆 ≠ 0. Also
consult Theorem 2.6.9.
Hint for Ex. 16.9.23: Consider 𝜎𝑎𝑝(𝑀𝜑) from Proposition 8.1.12.
Hint for Ex. 16.9.24: For (a), consult Exercise 16.9.23.
Hint for Ex. 16.9.26: For (a) show that if 0 ∈ 𝜎(𝐴), then 0 ∈ 𝑊(𝐴)−. Consult Lemma
2.3.5.
Hint for Ex. 16.9.28: Use the Brown–Halmos characterization (Theorem 16.5.1) along
with Exercise 11.10.7.
Hint for Ex. 16.9.29: Use the fact that 𝜑𝜆 is inner, the identity 𝑇∗

𝜑𝜆𝑇𝜑𝑇𝜑𝜆 = 𝑇𝜑 (Exercise
16.9.15), and Exercise 16.9.28.
Hint for Ex. 16.9.30: For (d), start with ‖𝑇𝜑 +𝐾‖ ⩾ ‖𝑃𝑛(𝑇𝜑 +𝐾)𝑃𝑛‖. Also consult Exercise
16.9.15.
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. . . . . . .

Hankel Operators

KeyConcepts:Hilbertmatrix,Hankel operator,Nehari’s theorem,Hilbert’s inequality, Carathéodory–
Fejér problem, Nevanlinna–Pick problem.

Outline: In this chapter we surveyHankel operators𝐻𝜑 ∶ 𝐻2 → 𝐻2
0 which are defined by

𝐻𝜑𝑓 = (𝐼 − 𝑃+)(𝜑𝑓),

where 𝐻2 is the Hardy space, 𝐻2
0 = 𝑧𝐻2 (the subspace of functions in 𝐻2 vanishing

at zero), 𝑃+ is the Riesz projection from 𝐿2 onto 𝐻2, and 𝜑 ∈ 𝐿∞(𝕋). These operators
generalize the Hilbert matrix and connect to several problems in function theory such
as the Nehari, Carathéodory–Fejér, and Nevanlinna–Pick problems.

17.1 The Hilbert Matrix
In 1894, Hilbert examined the following polynomial approximation problem [194]. Given
a closed interval [𝛼, 𝛽] and an 𝜀 > 0, can one find a nonzero polynomial 𝑝 with integer
coefficients such that

∫
𝛽

𝛼
|𝑝(𝑥)|2 𝑑𝑥 < 𝜀?

If 𝑝(𝑥) = 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 +⋯+𝑐𝑛, then the integral above can be expressed as a positive
quadratic form

𝑛
∑
𝑗,𝑘=1

𝑎𝑗𝑘𝑐𝑗𝑐𝑘, (17.1.1)

where

𝑎𝑗𝑘 = ∫
𝛽

𝛼
𝑥2𝑛−𝑗−𝑘𝑑𝑥.
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The analysis of Hilbert’s problem involves

det
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

⎤
⎥
⎥
⎥
⎦

,

which can be expressed as

(𝛽 − 𝛼
2 )

𝑛2
2𝑛2 det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

1
4

⋯ 1
𝑛

1
2

1
3

1
4

1
5

⋯ 1
𝑛+1

1
3

1
4

1
5

1
6

⋯ 1
𝑛+2

1
4

1
5

1
6

1
7

⋯ 1
𝑛+3

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1
𝑛

1
𝑛+1

1
𝑛+2

1
𝑛+3

⋯ 1
2𝑛−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17.1.2)

Hilbert found that the determinant in (17.1.2) equals

(1𝑛−12𝑛−2⋯(𝑛 − 2)2(𝑛 − 1)1)4

12𝑛−122𝑛−2⋯(2𝑛 − 2)2(2𝑛 − 1)1 .

If 𝛽 − 𝛼 < 4, then the quantity in (17.1.2) tends to zero as 𝑛 → ∞. Thus,

∫
𝛽

𝛼
|𝑝(𝑥)|2 𝑑𝑥

can be as small as desired.
The 𝑛 × 𝑛 Hilbert matrix in (17.1.2) has many other fascinating properties [83]. From

here, one is inspired to consider the infinite Hilbert matrix

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

1
4

⋯
1
2

1
3

1
4

1
5

⋯
1
3

1
4

1
5

1
6

⋯
1
4

1
5

1
6

1
7

⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17.1.3)

Notice that the entries of𝐻 are constant on the reverse diagonals, that is, 𝑎𝑗𝑘 only depends
on 𝑗 + 𝑘. The matrix 𝐻 is an example of a Hankel matrix, the focus of this chapter. An
inequality of Hilbert [196] (see (17.5.3) below), later improved by Schur [333] (Example
3.3.4), implies that𝐻 defines a bounded linear operator on ℓ2 with norm 𝜋. Further work
of Magnus [237] shows that 𝜎(𝐻) = [0, 𝜋] and 𝜎𝑝(𝐻) = ∅.
Although we do not get too far into the details, let us mention some connections the

Hilbert matrix 𝐻 makes with the integral and multiplication operators studied earlier in
this book. We survey some results from [310, 311, 354].
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Theorem 17.1.4 (Rosenblum). The Hilbert matrix 𝐻 on ℓ2 is unitarily equivalent to the
integral operator

(𝐾𝑓)(𝑥) = ∫
∞

0

𝑓(𝑦)
𝑥 + 𝑦 𝑒

−𝑦𝑑𝑦

on 𝐿2((0,∞), 𝑒−𝑥𝑑𝑥).

Proof Weoutline the proof from [354]. The sequence of Laguerre polynomials (𝐿𝑛(𝑥))∞𝑛=0
form an orthonormal basis for 𝐿2((0,∞), 𝑒−𝑥𝑑𝑥) [160] in the sense that

⟨𝐿𝑚, 𝐿𝑛⟩ = ∫
∞

0
𝐿𝑚(𝑥)𝐿𝑛(𝑥)𝑒−𝑥 𝑑𝑥 = 𝛿𝑚,𝑛 for all𝑚, 𝑛 ⩾ 0. (17.1.5)

These polynomials are created by applying the Gram–Schmidt process to the mono-
mials 1, 𝑥, 𝑥2,…. An explicit formula for 𝐿𝑛(𝑥) is

𝐿𝑛(𝑥) =
𝑛
∑
𝑘=0

(𝑛𝑘)
(−1)𝑘
𝑘! 𝑥𝑘

and the Laplace transform of 𝐿𝑛 satisfies

∫
∞

0
𝑒−𝑥𝑡𝐿𝑛(𝑡) 𝑑𝑡 = (𝑥 − 1)𝑛𝑥−𝑛−1 for 𝑥 > 0.

From here one can see that for any𝑚, 𝑛 ⩾ 0,

⟨𝐿𝑚, 𝐾𝐿𝑛⟩ = ∫
∞

0
𝐿𝑚(𝑦)(𝐾𝐿𝑛)(𝑦)𝑒−𝑦𝑑𝑦

= ∫
∞

0
∫

∞

0

𝐿𝑚(𝑦)𝐿𝑛(𝑥)
𝑥 + 𝑦 𝑒−𝑥−𝑦𝑑𝑥 𝑑𝑦

= ∫
∞

0
∫

∞

0

1
𝑥 + 𝑦𝐿𝑚(𝑦)𝐿𝑛(𝑥)𝑒

−𝑥−𝑦𝑑𝑥 𝑑𝑦

= ∫
∞

0
∫

∞

0
(∫

∞

0
𝑒−𝑡(𝑥+𝑦)𝑑𝑡)𝐿𝑚(𝑦)𝐿𝑛(𝑥)𝑒−𝑥−𝑦𝑑𝑥 𝑑𝑦

= ∫
∞

0
(∫

∞

0
𝑒−(𝑡+1)𝑥𝐿𝑛(𝑥) 𝑑𝑥)(∫

∞

0
𝑒−(𝑡+1)𝑦𝐿𝑚(𝑦) 𝑑𝑦) 𝑑𝑡

= ∫
∞

0
𝑡𝑚+𝑛(𝑡 + 1)−𝑚−𝑛−2 𝑑𝑡

= ∫
1

0
𝑢𝑚+𝑛 𝑑𝑢

= 1
𝑚 + 𝑛 + 1 .

This shows that the matrix representation of 𝐾 with respect to the Laguerre basis for
𝐿2((0,∞), 𝑒−𝑥𝑑𝑥) is the Hilbert matrix 𝐻. Thus, 𝐾 is unitarily equivalent to 𝐻. ■
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A deeper analysis from [311], using a certain second-order differential operator, gives
the spectral representation of the Hilbert matrix 𝐻. We provide a sketch of the proof.

Theorem 17.1.6 (Rosenblum). The Hilbert matrix 𝐻 on ℓ2 is unitarity equivalent to the
multiplication operator𝑀𝜋/ cosh(𝜋𝑥) on 𝐿2((0,∞), 𝑑𝑥).

Proof As noted in (17.1.5), the sequence of Laguerre polynomials (𝐿𝑛)∞𝑛=0 forms
an orthonormal basis for 𝐿2((0,∞), 𝑒−𝑥𝑑𝑥). Integral substitution shows that the
map (𝑄𝑓)(𝑥) = 𝑒−𝑥/2𝑓(𝑥) defines a unitary operator from 𝐿2((0,∞), 𝑒−𝑥𝑑𝑥) onto
𝐿2((0,∞), 𝑑𝑥). Thus,

𝑄𝐿𝑛 = 𝑒−𝑥/2𝐿𝑛(𝑥) for 𝑛 ⩾ 0,

is an orthonormal basis for 𝐿2((0,∞), 𝑑𝑥).
Lebedev [226, 227] proved that if 𝐾𝜈(𝑧) is defined by

𝐾𝜈(𝑧) = ∫
∞

0
𝑒−𝑧 cosh 𝑡 cosh 𝜈𝑡 𝑑𝑡 for Re 𝑧 > 0

(the modified Bessel function of the third kind), then the operator

(𝑈𝑓)(𝜏) = 1
√𝜋

∫
∞

0

√2𝜏 sinh𝜋𝜏
√𝑥

𝐾𝑖𝜏(
𝑥
2 )𝑓(𝑥) 𝑑𝑥

is a unitary operator from 𝐿2((0,∞), 𝑑𝑥) to itself. Thus,

𝑤𝑛(𝑥) = 𝑈𝑄𝐿𝑛 for 𝑛 ⩾ 0,

is an orthonormal basis for 𝐿2((0,∞), 𝑑𝑥). Rosenblum proved that if

ℎ(𝜏) = 𝜋
cosh𝜋𝜏 ,

then

⟨𝑀ℎ𝑤𝑚, 𝑤𝑛⟩𝐿2((0,∞),𝑑𝑥) =
1

𝑛 +𝑚 + 1 for𝑚, 𝑛 ⩾ 0,

which are the entries of the Hilbert matrix. In summary, the linear transformation
𝑊 ∶ ℓ2 → 𝐿2((0,∞), 𝑑𝑥) defined by

𝑊((𝑎𝑛)𝑛⩾0) =
∞
∑
𝑛=0

𝑎𝑛𝑤𝑛

is unitary with𝑊𝐻𝑊 ∗ = 𝑀ℎ. ■

From here (see Figure 17.1.1), note that ‖𝐻‖ = 𝜋, 𝜎(𝐻) = [0, 𝜋], and 𝜎𝑝(𝐻) = ∅. We
noted this before in our discussion of multiplication operators in Chapter 8. In addition,
one also sees that 𝐻 ⩾ 0 and that 𝐻 is a cyclic operator (Theorem 8.2.8).
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Figure 17.1.1 The graph of 𝜋/ cosh𝜋𝑥.

17.2 Doubly Infinite Hankel Matrices
From our survey of Toeplitz operators in Chapter 16, recall that a doubly infinite sequence

a = (…, 𝑎−3, 𝑎−2, 𝑎−1, 𝑎0 , 𝑎1, 𝑎2, 𝑎3,…)

of complex numbers (the boxed entry denotes the 0th position) gives rise to the doubly
infinite Toeplitz matrix

𝑀(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 𝑎−5 ⋯
⋯ 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 𝑎−4 ⋯
⋯ 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 𝑎−3 ⋯
⋯ 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 𝑎−2 ⋯
⋯ 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 𝑎−1 ⋯
⋯ 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17.2.1)

This defines a bounded operator on ℓ2(ℤ) if and only if a = (𝜑(𝑛))∞𝑛=−∞ for some 𝜑 ∈
𝐿∞(𝕋) (Theorem 16.1.3). By identifying ℓ2(ℤ) with 𝐿2(𝕋) via Parseval’s theorem, one can
view𝑀(a) as the multiplication operator𝑀𝜑 on 𝐿2(𝕋) with

‖𝑀(a)‖ = ‖𝑀𝜑‖ = ‖𝜑‖∞.

Now consider the “flip” operator 𝐹 ∶ 𝐿2(𝕋) → 𝐿2(𝕋) defined by

(𝐹𝑓)(𝜉) = 𝑓(𝜉),
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and observe that the matrix representation of 𝐹 with respect to the orthonormal basis
(𝜉𝑛)∞𝑛=−∞ for 𝐿2(𝕋) is

𝐹 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 0 0 0 0 1 ⋯
⋯ 0 0 0 1 0 ⋯
⋯ 0 0 1 0 0 ⋯
⋯ 0 1 0 0 0 ⋯
⋯ 1 0 0 0 0 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The boxed entry denotes the (0, 0) position.

Proposition 17.2.2. The flip operator 𝐹 is a selfadjoint unitary operator with

𝜎(𝐹) = 𝜎𝑝(𝐹) = {−1, 1}.

Proof For any 𝑓 ∈ 𝐿2(𝕋), observe that 𝐹𝑓(𝑛) = 𝑓(−𝑛), and hence Parseval’s theorem
implies that ‖𝐹𝑓‖ = ‖𝑓‖. One can also see that 𝐹2 = 𝐼, which implies that 𝐹 is
surjective. Since 𝐹 is isometric and surjective, it is unitary. For any 𝑓, 𝑔 ∈ 𝐿2(𝕋),

⟨𝐹𝑓, 𝑔⟩ = ∫
2𝜋

0
𝑓(𝑒−𝑖𝜃)𝑔(𝑒𝑖𝜃) 𝑑𝜃2𝜋

= −∫
−2𝜋

0
𝑓(𝑒𝑖𝑡)𝑔(𝑒−𝑖𝑡) 𝑑𝑡2𝜋

= ∫
2𝜋

0
𝑓(𝑒𝑖𝑡)𝑔(𝑒−𝑖𝑡) 𝑑𝑡2𝜋

= ⟨𝑓, 𝐹𝑔⟩,

which says that 𝐹 is selfadjoint.
Since 𝐹 is selfadjoint, its spectrum is real (Theorem 8.5.1). Since 𝐹 is unitary, its
spectrum is contained in 𝕋 (Exercise 8.10.10). Thus, 𝜎(𝐹) ⊆ {−1, 1}. Now observe
that

𝐹1 = 1 and 𝐹(𝜉 − 𝜉
2𝑖 ) = −(𝜉 − 𝜉

2𝑖 ),

hence 𝜎(𝐹) = 𝜎𝑝(𝐹) = {−1, 1}. ■
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Consider the doubly infinite Hankel matrix

𝐻(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝛼4 𝛼3 𝛼2 𝛼1 𝛼0 ⋯
⋯ 𝛼3 𝛼2 𝛼1 𝛼0 𝛼−1 ⋯
⋯ 𝛼2 𝛼1 𝛼0 𝛼−1 𝛼−2 ⋯
⋯ 𝛼1 𝛼0 𝛼−1 𝛼−2 𝛼−3 ⋯
⋯ 𝛼0 𝛼−1 𝛼−2 𝛼−3 𝛼−4 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and observe that the entries are constant on the reverse diagonals.

Proposition 17.2.3. For a doubly infinite Hankel matrix 𝐻(a) corresponding to a =
(𝑎𝑛)∞𝑛=−∞, the following are equivalent.

(a) 𝐻(a) defines a bounded operator on ℓ2(ℤ).

(b) There is a 𝜑 ∈ 𝐿∞(𝕋) such that 𝑎𝑛 = 𝜑(𝑛) for all 𝑛 ∈ ℤ.

Furthermore, ‖𝐻(a)‖ = ‖𝜑‖∞.

Proof Use 𝐹𝐻(a) = 𝑀(a) and the discussion following (17.2.1). ■

17.3 Hankel Operators
Recall from Proposition 5.3.12 that the Hardy space 𝐻2 can be realized as 𝐻2 = {𝑓 ∈
𝐿2(𝕋) ∶ 𝑓(𝑛) = 0 for all 𝑛 < 0} . Form the spaces

𝐻2
0 = 𝜉𝐻2 and 𝐻2

0 = {𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓 ∈ 𝜉𝐻2}

and observe that 𝐻2
0 = (𝐻2)⟂. Let 𝑃+ denote the orthogonal projection of 𝐿2(𝕋) onto 𝐻2

(Definition 16.2.1) and note that

𝑃− ∶= 𝐼 − 𝑃+

is the orthogonal projection of 𝐿2(𝕋) onto 𝐻2
0.

Definition 17.3.1. For 𝜑 ∈ 𝐿∞(𝕋), the Hankel operator with symbol 𝜑 is

𝐻𝜑 ∶ 𝐻2 → 𝐻2
0, 𝐻𝜑𝑓 = 𝑃−(𝜑𝑓).

For 𝑓 ∈ 𝐻2, observe that ‖𝐻𝜑𝑓‖ = ‖𝑃−(𝜑𝑓)‖ ⩽ ‖𝜑𝑓‖ ⩽ ‖𝜑‖∞‖𝑓‖ and hence

‖𝐻𝜑‖ ⩽ ‖𝜑‖∞. (17.3.2)

The norm of a Hankel operator is often smaller than ‖𝜑‖∞ and this fact connects Hankel
operators to various approximation problems. We discuss this momentarily. We first
compute the adjoint of a Hankel operator.
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Proposition 17.3.3. For 𝜑 ∈ 𝐿∞(𝕋), the adjoint𝐻∗
𝜑 ∶ 𝐻2

0 → 𝐻2 is𝐻∗
𝜑𝑓 = 𝑃+(𝜑𝑓).

Proof If 𝑔 ∈ 𝐻2 and 𝑓 ∈ 𝐻2
0, then

⟨𝐻𝜑𝑔, 𝑓⟩ = ⟨𝑃−(𝜑𝑔), 𝑓⟩ = ⟨𝜑𝑔, 𝑃−𝑓⟩ = ⟨𝜑𝑔, 𝑓⟩ = ⟨𝑃+𝑔, 𝜑𝑓⟩ = ⟨𝑔, 𝑃+(𝜑𝑓)⟩,

which proves the result. ■

The reader should exercise caution here. With Toeplitz operators, 𝑇∗
𝜑 = 𝑇𝜑. For Hankel

operators, 𝐻∗
𝜑 and 𝐻𝜑 are not the same since they have different domains.

To obtain a matrix representation for𝐻𝜑, equip𝐻2 with the orthonormal basis (𝜉𝑛)∞𝑛=0
and 𝐻2

0 with the orthonormal basis (𝜉−𝑚)∞𝑚=1. Then

⟨𝐻𝜑𝜉𝑛, 𝜉−𝑚⟩ = ⟨𝑃−(𝜑𝜉𝑛), 𝜉−𝑚⟩
= ⟨𝜑𝜉𝑛, 𝑃−(𝜉−𝑚)⟩
= ⟨𝜑𝜉𝑛, 𝜉−𝑚⟩
= ⟨𝜑, 𝜉−𝑚−𝑛⟩
= 𝜑(−𝑚 − 𝑛). (17.3.4)

Thus, the entry in position (𝑚, 𝑛) of the matrix representation of 𝐻𝜑 with respect to the
two bases above is 𝜑(−𝑚− 𝑛), where𝑚 ⩾ 1 and 𝑛 ⩾ 0. In other words, 𝐻𝜑 is represented
by the infinite Hankel matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼−1 𝛼−2 𝛼−3 𝛼−4 𝛼−5 ⋯
𝛼−2 𝛼−3 𝛼−4 𝛼−5 𝛼−6 ⋯
𝛼−3 𝛼−4 𝛼−5 𝛼−6 𝛼−7 ⋯
𝛼−4 𝛼−5 𝛼−6 𝛼−7 𝛼−8 ⋯
𝛼−5 𝛼−6 𝛼−7 𝛼−8 𝛼−9 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17.3.5)

where 𝛼𝑛 = 𝜑(𝑛).

17.4 The Norm of a Hankel Operator
From Proposition 17.2.3, the norm of the doubly infinite Hankel matrix 𝐻(a) is ‖𝜑‖∞. As
one can see from (17.3.5), “half” of the Fourier coefficients of𝜑 aremissing from thematrix
representation of the Hankel operator. Thus, computing the norm of 𝐻𝜑 is more difficult
than the same problem for Toeplitz operators (Theorem 16.3.1). From (17.3.2), we see that
‖𝐻𝜑‖ ⩽ ‖𝜑‖∞. An important feature of Hankel operators is that the symbol 𝜑 defining𝐻𝜑
is not unique. This fact is made clear in the following proposition.

Proposition 17.4.1. For 𝜑 ∈ 𝐿∞(𝕋), the following are equivalent.

(a) 𝐻𝜑 = 0.

(b) 𝜑 ∈ 𝐻∞.
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Proof (a) ⇒ (b) If 𝐻𝜑𝑓 = 0 for all 𝑓 ∈ 𝐻2, then the constant function 1 belongs to 𝐻2

and 𝐻𝜑1 = 𝑃−(𝜑) = 0. Thus, 𝜑 ∈ 𝐻∞.
(b)⇒ (a) If 𝜑 ∈ 𝐻∞, then 𝑓𝜑 ∈ 𝐻2 for all 𝑓 ∈ 𝐻2. Thus, 𝐻𝜑(𝑓) = 𝑃−(𝑓𝜑) = 0. ■

The previous proposition shows that

𝐻𝜑 = 𝐻𝜑−𝜂 for all 𝜂 ∈ 𝐻∞ and 𝜑 ∈ 𝐿∞, (17.4.2)

which implies that ‖𝐻𝜑‖ = ‖𝐻𝜑−𝜂‖ ⩽ ‖𝜑 − 𝜂‖∞ for all 𝜂 ∈ 𝐻∞. Take the infimum with
respect to 𝜂 and obtain

‖𝐻𝜑‖ ⩽ dist(𝜑,𝐻∞) = inf{‖𝜑 − 𝜂‖∞ ∶ 𝜂 ∈ 𝐻∞}. (17.4.3)

Nehari proved that (17.4.3) is an equality. The reader might want to review Lemma 3.4.3
and Parrott’s theorem (Theorem 14.8.1) before proceeding to the proof below.

Theorem 17.4.4 (Nehari [247]). Suppose that (𝛼𝑛)∞𝑛=1 is a sequence of complex numbers
such that the Hankel matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝛼1 𝛼2 𝛼3 ⋯
𝛼2 𝛼3 𝛼4 ⋯
𝛼3 𝛼4 𝛼5 ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

(17.4.5)

defines a bounded operator on ℓ2. Then the following hold.

(a) There exists a 𝜑 ∈ 𝐿∞(𝕋) such that 𝜑(−𝑛) = 𝛼𝑛 for all 𝑛 ⩾ 1.

(b) For any such 𝜑, ‖𝐴‖ = dist(𝜑,𝐻∞) ⩽ ‖𝜑‖∞.

(c) There is a 𝜓 ∈ 𝐿∞ such that 𝜓(−𝑛) = 𝛼𝑛 for all 𝑛 ⩾ 1 and ‖𝐴‖ = dist(𝜓,𝐻∞) = ‖𝜓‖∞.

Proof Without loss of generality, assume that ‖𝐴‖ = 1. Add one column to the left of the
matrix 𝐴 as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 ⋯
𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 ⋯
𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 ⋯
𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 ⋯
𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17.4.6)

in which the entry 𝛼0 is unspecified. Write this matrix as

[𝛼0 𝐵
𝐶 𝐷] ,
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where

𝐵 = [𝛼1 𝛼2 𝛼3 𝛼4⋯], 𝐶 =

⎡⎢⎢⎢⎢⎢
⎣

𝛼1
𝛼2
𝛼3
𝛼4
⋮

⎤⎥⎥⎥⎥⎥
⎦

, and 𝐷 =

⎡⎢⎢⎢⎢⎢
⎣

𝛼2 𝛼3 𝛼4 𝛼5 ⋯
𝛼3 𝛼4 𝛼5 𝛼6 ⋯
𝛼4 𝛼5 𝛼6 𝛼7 ⋯
𝛼5 𝛼6 𝛼7 𝛼8 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Observe that the conditions of Parrott’s theorem (Theorem 14.8.1) are fulfilled since
𝐴 is assumed to be a contraction and hence [𝐶 𝐷] and [𝐵 𝐷]𝑇 are also contractions.
Hence there is an 𝛼0 ∈ ℂ such that the matrix (17.4.6) defines a contraction on ℓ2.
Repeat the same process with the matrix (17.4.6) and obtain an 𝛼−1 ∈ ℂ such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼−1 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 ⋯
𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 ⋯
𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 ⋯
𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 ⋯
𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 ⋯
𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a contraction on ℓ2. By induction, we obtain a sequence (𝛼𝑛)∞𝑛=−∞ such that the
Hankel matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼𝑛0 𝛼𝑛0+1 𝛼𝑛0+2 𝛼𝑛0+3 𝛼𝑛0+4 𝛼𝑛0+5 ⋯
𝛼𝑛0+1 𝛼𝑛0+2 𝛼𝑛0+3 𝛼𝑛0+4 𝛼𝑛0+5 𝛼𝑛0+6 ⋯
𝛼𝑛0+2 𝛼𝑛0+3 𝛼𝑛0+4 𝛼𝑛0+5 𝛼𝑛0+6 𝛼𝑛0+7 ⋯
𝛼𝑛0+3 𝛼𝑛0+4 𝛼𝑛0+5 𝛼𝑛0+6 𝛼𝑛0+7 𝛼𝑛0+8 ⋯
𝛼𝑛0+4 𝛼𝑛0+5 𝛼𝑛0+6 𝛼𝑛0+7 𝛼𝑛0+8 𝛼𝑛0+9 ⋯
𝛼𝑛0+5 𝛼𝑛0+6 𝛼𝑛0+7 𝛼𝑛0+8 𝛼𝑛0+9 𝛼𝑛0+10 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a contraction on ℓ2 for each 𝑛0 ∈ ℤ. Continue this process and form the doubly
infinite Hankel matrix

𝐻(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ . .
.

⋯ 𝛼4 𝛼3 𝛼2 𝛼1 𝛼0 ⋯
⋯ 𝛼3 𝛼2 𝛼1 𝛼0 𝛼−1 ⋯
⋯ 𝛼2 𝛼1 𝛼0 𝛼−1 𝛼−2 ⋯
⋯ 𝛼1 𝛼0 𝛼−1 𝛼−2 𝛼−3 ⋯
⋯ 𝛼0 𝛼−1 𝛼−2 𝛼−3 𝛼−4 ⋯
. .
. ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with the boxed𝛼0 in the (0, 0) position. The discussion above and Lemma 3.4.3 shows
that𝐻(a) is a contraction on ℓ2(ℤ). Proposition 17.2.3 provides a 𝜑 ∈ 𝐿∞(𝕋) such that

𝜑(𝑛) = 𝛼−𝑛 for all 𝑛 ∈ ℤ. (17.4.7)

This proves (a).
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Moreover,𝐻(a) is the matrix representation of the multiplication operator𝑀𝜑 on 𝐿2(𝕋)
(via 𝐹𝐻(a) = 𝑀𝜑) with respect to the standard basis (𝜉𝑛)∞𝑛=−∞. Furthermore,

‖𝜑‖∞ = ‖𝑀𝜑‖ ⩽ 1 = ‖𝐴‖. (17.4.8)

Consider the unitary operators 𝑈 ∶ ℓ2 → 𝐻2 defined by

𝑈(
∞
∑
𝑘=0

𝑎𝑘e𝑘) =
∞
∑
𝑘=0

𝑎𝑘𝜉𝑘,

and 𝑉 ∶ ℓ2 → 𝐻2
0 defined by

𝑉(
∞
∑
𝑘=0

𝑎𝑘e𝑘) =
∞
∑
𝑘=0

𝑎𝑘𝜉𝑘+1.

Wehave shown that there is a𝜑 ∈ 𝐿∞(𝕋) such that (𝑎)holds. Since only the negatively
indexed Fourier coefficients of 𝜑, that is 𝜑(−𝑛) for 𝑛 ⩾ 1, appear in the matrix
representation of𝐻𝜑 in (17.3.5), the choice of 𝜑 is not unique. However, for any such
𝜑, the matrix representations of 𝐻𝜑 and 𝐴 show that

𝐴 = 𝑉∗𝐻𝜑𝑈.

From (17.4.3), it follows that

‖𝐴‖ = ‖𝐻𝜑‖ ⩽ dist(𝜑,𝐻∞). (17.4.9)

This proves (b).
If 𝜑1 and 𝜑2 are two such representing symbols for 𝐴, then 𝐻𝜑1 = 𝐻𝜑2 , and hence
𝜑1 − 𝜑2 ∈ 𝐻∞ (Proposition 17.4.1). This implies that

dist(𝜑1, 𝐻∞) = dist(𝜑2, 𝐻∞). (17.4.10)

Therefore, neither ‖𝐻𝜑‖ nor dist(𝜑,𝐻∞) depend on the symbols 𝜑 for which 𝐴 = 𝐻𝜑.
By (17.4.8) the symbol 𝜑 obtained in (17.4.7) therefore satisfies ‖𝐴‖ = dist(𝜑,𝐻∞) =
‖𝜑‖∞. The relation (17.4.10) shows that ‖𝐴‖ = dist(𝜑,𝐻∞) holds for all symbols 𝜑
that give rise to the same Hankel operator. This proves (c). ■

Corollary 17.4.11. For 𝜑 ∈ 𝐿∞(𝕋), ‖𝐻𝜑‖ = dist(𝜑,𝐻∞). Moreover, there is an 𝜂 ∈ 𝐻∞

such that ‖𝐻𝜑‖ = ‖𝜑 − 𝜂‖∞.

Proof From (17.3.2) it follows that 𝐻𝜑 is a bounded operator. The equality ‖𝐻𝜑‖ =
dist(𝜑,𝐻∞) is from Theorem 17.4.4b. By Theorem 17.4.4c, there is an 𝜓 ∈ 𝐿∞(𝕋)
such that 𝐻𝜑 = 𝐻𝜓 and ‖𝐻𝜓‖ = dist(𝜓,𝐻∞) = ‖𝜓‖∞. Since 𝐻𝜑 = 𝐻𝜓, it follows that
𝜂 = 𝜑 − 𝜓 ∈ 𝐻∞ (Proposition 17.4.1). Thus, ‖𝐻𝜑‖ = ‖𝐻𝜓‖ = ‖𝜓‖∞ = ‖𝜑 − 𝜂‖∞. ■
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17.5 Hilbert’s Inequality
The inequality ‖𝐻𝜑‖ ⩽ ‖𝜑‖∞ implies that

|⟨𝐻𝜑𝑓, 𝑔⟩| ⩽ ‖𝜑‖∞‖𝑓‖‖𝑔‖ for all 𝑓 ∈ 𝐻2 and 𝑔 ∈ 𝐻2
0. (17.5.1)

Now observe that if 𝑓 ∈ 𝐻2 and 𝑔 ∈ 𝐻2
0,

⟨𝐻𝜑𝑓, 𝑔⟩ = ⟨𝑃−(𝜑𝑓), 𝑔⟩
= ⟨𝜑𝑓, 𝑃−𝑔⟩ (since 𝑃∗− = 𝑃−)

= ⟨𝜑𝑓, 𝑔⟩ (𝑃−𝑔 = 𝑔 since 𝑔 ∈ 𝐻2
0).

From here it follows that (17.5.1) is equivalent to
|
|
|
|
|

∞
∑
𝑛=0
𝑚=1

𝜑(−𝑚 − 𝑛)𝑓(𝑛)𝑔 (−𝑚)
|
|
|
|
|
⩽ ‖𝜑‖∞(

∞
∑
𝑛=0

|𝑓(𝑛)|2)
1
2 (

∞
∑
𝑚=1

|𝑔 (−𝑚)|2)
1
2 .

Since the Hilbert spaces 𝐻2, 𝐻2
0, and ℓ2 are isometrically isomorphic, the previous

inequality is equivalent to

|
|
|

∞
∑
𝑖,𝑗=1

𝜑(−𝑖 − 𝑗 + 1)𝑥𝑖𝑦𝑗
|
|
|
⩽ ‖𝜑‖∞(

∞
∑
𝑖=1

|𝑥𝑖|2)
1
2 (

∞
∑
𝑗=1

|𝑦𝑗 |2)
1
2 (17.5.2)

for all (𝑥𝑖)∞𝑖=1, (𝑦𝑖)∞𝑖=1 ∈ ℓ2(ℕ).
In the special case

𝜑(𝑒𝑖𝑡) = −𝑖(𝜋 − 𝑡) for 0 < 𝑡 < 2𝜋,
one can check that

𝜑(𝑛) = {
−1𝑛 if 𝑛 ≠ 0,

0 if 𝑛 = 0.
Hence, the matrix corresponding to the Hankel operator 𝐻𝜑 is

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

1
4

⋯
1
2

1
3

1
4

1
5

⋯
1
3

1
4

1
5

1
6

⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

the Hilbert matrix (17.1.3). Since ‖𝜑‖∞ = 𝜋, the inequality (17.5.2) becomes

|
|
|

∞
∑
𝑖,𝑗=1

𝑥𝑖𝑦𝑗
𝑖 + 𝑗 − 1

|
|
|
⩽ 𝜋(

∞
∑
𝑖=1

|𝑥𝑖|2)
1
2 (

∞
∑
𝑗=1

|𝑦𝑗 |2)
1
2 (17.5.3)

for all (𝑥𝑖)∞𝑖=1, (𝑦𝑖)∞𝑖=1 ∈ ℓ2(ℕ). That is,𝐻 defines a bounded operator on ℓ2(ℕ) and its norm
is at most 𝜋. This is not easy to verify directly.
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17.6 The Nehari Problem
The Nehari Problem is the following: for a given 𝜑 ∈ 𝐿∞(𝕋), find an 𝜂 ∈ 𝐻∞(𝕋) such
that ‖𝜑 − 𝜂‖∞ is minimal. In this section we show that a solution exists and is unique.
From a theoretical point of view, the answer to Nehari’s problem is implicitly contained in
Corollary 17.4.11. This result even provides a formula for the distance between 𝜑 and𝐻∞,
that is, dist(𝜑,𝐻∞) = ‖𝐻𝜑‖. In its proof, we outlined a procedure to construct an 𝜂 ∈ 𝐻∞

such that dist(𝜑,𝐻∞) = ‖𝜑 − 𝜂‖∞. The construction of 𝜂 ultimately uses Theorem 17.4.4,
which requires us to inductively obtain the parameters 𝛼𝑛 when creating the Hankel
matrix (17.4.5). Although this construction works in theory, it is not practical. Thus, we
seek another method.

Definition 17.6.1. Amaximizing vector for 𝑇 ∈ ℬ(ℋ1,ℋ2) is an x ∈ ℋ1\{0} such that

‖𝑇x‖ℋ2 = ‖𝑇‖ℋ1→ℋ2‖x‖ℋ1 .

Not every operator has a maximizing vector (Exercise 17.10.12). An operator with a
maximizing vector enjoys special properties. Below is such an example. A theoremofRiesz
[118, p. 17] (see also Exercise 5.9.37) says that if 𝑓 ∈ 𝐻2\{0}, then {𝜉 ∈ 𝕋 ∶ 𝑓(𝜉) = 0} has
measure zero. This detail allows us to state the following theorem.

Theorem 17.6.2. For 𝜑 ∈ 𝐿∞(𝕋), suppose that the Hankel operator 𝐻𝜑 has a maximizing
vector 𝑓 ∈ 𝐻2\{0}. Then

𝜓 =
𝐻𝜑𝑓
𝑓 (17.6.3)

is defined almost everywhere on 𝕋 and satisfies the following.
(a) |𝜓| is constant almost everywhere on 𝕋.

(b) 𝐻𝜑 = 𝐻𝜓 and dist(𝜑,𝐻∞) = dist(𝜓,𝐻∞) = ‖𝜓‖∞.

(c) If 𝜔 ∈ 𝐿∞(𝕋) is such that 𝐻𝜑 = 𝐻𝜔 and dist(𝜔,𝐻∞) = ‖𝜔‖∞, then 𝜔 = 𝜓 almost
everywhere.

Proof The existence of a symbol of minimal norm is guaranteed (even without the extra
assumption of having a maximizing vector) by Corollary 17.4.11. To establish the
uniqueness of this symbol, suppose that a maximizing vector 𝑓 exists for 𝐻𝜑 and let
𝜔 ∈ 𝐿∞(𝕋) be such that 𝐻𝜑 = 𝐻𝜔 and ‖𝐻𝜑‖ = ‖𝐻𝜔‖ = dist(𝜔,𝐻∞) = ‖𝜔‖∞. Then
for any 𝑔 ∈ 𝐻2,

‖𝐻𝜑𝑔‖ = ‖𝐻𝜔𝑔‖ = ‖𝑃−(𝜔𝑔)‖ ⩽ ‖𝜔𝑔‖ ⩽ ‖𝜔‖∞‖𝑔‖ = ‖𝐻𝜑‖‖𝑔‖.

In particular, the specific choice 𝑔 = 𝑓 (the maximizing vector for 𝐻𝜑) yields

‖𝑃−(𝜔𝑓)‖ = ‖𝜔𝑓‖ = ‖𝜔‖∞‖𝑓‖.

Exercise 16.9.2 implies that 𝜔𝑓 ∈ 𝐻2
0 and hence𝐻𝜑𝑓 = 𝑃−(𝜔𝑓) = 𝜔𝑓. Since 𝑓(𝜉) ≠ 0

for almost every 𝜉 ∈ 𝕋, one can divide by 𝑓 to obtain 𝜔 = 𝜓. The identity ‖𝜔𝑓‖ =
‖𝜔‖∞‖𝑓‖ ensures that |𝜔| is constant on 𝕋. ■
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Example 17.6.4. There are symbols 𝜑 ∈ 𝐿∞(𝕋) for which the Nehari problem has several
solutions. Theorem 17.6.2 implies that the corresponding𝐻𝜑 does not have a maximizing
vector. On the other hand, if 𝑓1 and 𝑓2 are maximizing vectors of 𝐻𝜑, the formula (17.6.3)
for 𝜓 shows that

𝐻𝜑𝑓1
𝑓1

=
𝐻𝜑𝑓2
𝑓2

almost everywhere on 𝕋.
In some elementary cases, we can guess a maximizing vector and solve Nehari’s

problem. For example, if

𝜑(𝑧) = 1 − 𝛼 𝑧
𝛼 − 𝑧 for 𝛼 ∈ 𝔻 and 𝑧 ∈ 𝕋,

then

𝜑(𝑧) = 𝛼 + 1 − |𝛼|2
𝛼 − 𝑧 .

Thus, for each 𝑓 ∈ 𝐻2,

𝜑(𝑧) 𝑓(𝑧) = 𝛼𝑓(𝑧) − (1 − |𝛼|2)𝑓(𝑧) − 𝑓(𝛼)
𝑧 − 𝛼 − (1 − |𝛼|2) 𝑓(𝛼)𝑧 − 𝛼

= 𝛼𝑓(𝑧) − (1 − |𝛼|2) 𝑄𝛼𝑓(𝑧) − (1 − |𝛼|2) 𝑓(𝛼)𝑧 − 𝛼 ,

where

(𝑄𝛼𝑓)(𝑧) =
𝑓(𝑧) − 𝑓(𝛼)

𝑧 − 𝛼 ,

which one can check is a bounded operator on𝐻2 (Exercise 5.9.16).Moreover, the Fourier-
series representation

𝑔(𝜉) = 1
𝜉 − 𝛼 =

∞
∑
𝑛=1

𝛼𝑛−1𝜉
𝑛

for 𝜉 ∈ 𝕋,

shows that 𝑔 ∈ 𝐻2
0 and

‖𝑔‖ = 1
√1 − |𝛼|2

. (17.6.5)

We conclude that

𝐻𝜑𝑓 = −(1 − |𝛼|2) 𝑓(𝛼)𝑔 = −(1 − |𝛼|2)⟨𝑓, 𝑘𝛼⟩𝑔,

where 𝑘𝛼(𝑧) = (1 − 𝛼𝑧)−1. This can be written using tensor notation as

𝐻𝜑 = −(1 − |𝛼|2) 𝑔 ⊗ 𝑘𝛼,

which yields ‖𝐻𝜑‖ = (1 − |𝛼|2)‖𝑔‖‖𝑘𝛼‖ = 1 (Exercise 3.6.3). Set 𝑓 = 𝑘𝛼 in the above to get
𝐻𝜑𝑘𝛼 = −𝑔. Hence,

‖𝐻𝜑𝑘𝛼‖ = ‖𝑔‖ = ‖𝑘𝛼‖.
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In other words, 𝑘𝛼 is a maximizing vector for 𝐻𝜑. Theorem 17.6.2 says that the best
approximation 𝜓 ∈ 𝐻∞ to 𝜑 is

𝜓 = 𝜑 −
𝐻𝜑𝑘𝛼
𝑘𝛼

= 𝜑 + 𝑔
𝑘𝛼

= 𝜑 − 𝜑 = 0.

It follows that dist(𝜑,𝐻∞) = ‖𝜑‖∞ = 1 and ‖𝜑 − 𝜂‖∞ > 1 for every 𝜂 ∈ 𝐻∞\{0}.

17.7 The Carathéodory–Fejér Problem
In the Carathéodory–Fejér problem, a polynomial 𝑝(𝑧) = 𝛼0 + 𝛼1𝑧 + ⋯ + 𝛼𝑛𝑧𝑛 is given
and the goal is to determine complex numbers 𝛼𝑛+1, 𝛼𝑛+2,…such that

∞
∑
𝑘=0

𝛼𝑘𝑧𝑘 ∈ 𝐻∞

and

‖
‖

∞
∑
𝑘=0

𝛼𝑘𝑧𝑘‖‖∞

is minimized. One can always satisfy the first condition. The second condition is more
troublesome. Write

∞
∑
𝑘=0

𝛼𝑘𝑧𝑘 = 𝑝(𝑧) + 𝑧𝑛+1𝑓(𝑧),

and see that the coefficients 𝛼𝑘 for 𝑘 ⩾ 𝑛+1 are the Taylor coefficients of a typical 𝑓 ∈ 𝐻∞.
Thus, we should compute

inf
𝑓∈𝐻∞

‖𝑝 + 𝑧𝑛+1𝑓‖∞.

Since 𝑧𝑛+1 is unimodular on 𝕋, ‖𝑝 + 𝑧𝑛+1𝑓‖∞ = ‖𝑝𝑧−𝑛−1 + 𝑓‖∞, and hence

inf
𝑓∈𝐻∞

‖𝑝 + 𝑧𝑛+1𝑓‖∞ = dist(𝑝𝑧−𝑛−1, 𝐻∞).

Corollary 17.4.11 provides a 𝑔 ∈ 𝐻∞ such that

‖𝑝 + 𝑧𝑛+1𝑔‖∞ = inf
𝑓∈𝐻∞

‖𝑝 + 𝑧𝑛+1𝑓‖∞ = ‖𝐻𝑝𝑧−𝑛−1‖.

But on 𝕋, 𝑧−𝑛−1𝑝(𝑧) = 𝛼𝑛 𝑧−1 + 𝛼𝑛−1 𝑧−2 +⋯ + 𝛼0 𝑧−𝑛−1 is a trigonometric polynomial,
and thus 𝐻𝑝𝑧−𝑛−1 has finite rank (Exercise 17.10.8). Therefore,

inf
𝑓∈𝐻∞

‖𝑝 + 𝑧𝑛+1𝑓‖∞
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equals the norm of the infinite Hankel matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼𝑛 𝛼𝑛−1 𝛼𝑛−2 ⋯ 𝛼2 𝛼1 𝛼0 0 0 0 0 0 0 ⋯
𝛼𝑛−1 𝛼𝑛−2 𝛼𝑛−3 ⋯ 𝛼1 𝛼0 0 0 0 0 0 0 0 ⋯
𝛼𝑛−2 𝛼𝑛−3 𝛼𝑛−4 ⋯ 𝛼0 0 0 0 0 0 0 0 0 ⋯
⋮ ⋮ ⋮ . .

. ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
𝛼2 𝛼1 𝛼0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
𝛼1 𝛼0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
𝛼0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which has the same norm as the finite Hankel matrix (Exercise 14.11.11)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼𝑛 𝛼𝑛−1 𝛼𝑛−2 ⋯ 𝛼2 𝛼1 𝛼0
𝛼𝑛−1 𝛼𝑛−2 𝛼𝑛−3 ⋯ 𝛼1 𝛼0 0
𝛼𝑛−2 𝛼𝑛−3 𝛼𝑛−4 ⋯ 𝛼0 0 0

⋮ ⋮ ⋮ . .
. ⋮ ⋮ ⋮

𝛼2 𝛼1 𝛼0 ⋯ 0 0 0
𝛼1 𝛼0 0 ⋯ 0 0 0
𝛼0 0 0 ⋯ 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

17.8 The Nevanlinna–Pick Problem
Suppose that 𝑧1, 𝑧2,…, 𝑧𝑛 are distinct points in 𝔻 and 𝑤1, 𝑤2,…,𝑤𝑛 ∈ ℂ. There are many
𝑓 ∈ 𝐻∞ such that

𝑓(𝑧𝑘) = 𝑤𝑘 for all 1 ⩽ 𝑘 ⩽ 𝑛. (17.8.1)

For example, the Lagrange interpolation theorem provides a unique polynomial 𝑝 of
degree at most 𝑛 − 1 which satisfies (17.8.1). The Nevanlinna–Pick problem asks for an
interpolating function 𝑓 such that ‖𝑓‖∞ is minimal.
On one hand, if 𝑓 satisfies (17.8.1) and 𝑝 is the interpolating polynomial described

above, then 𝑓 − 𝑝 ∈ 𝐻∞ and, moreover, (𝑓 − 𝑝)(𝑧𝑘) = 0 for all 1 ⩽ 𝑘 ⩽ 𝑛. Hence,
𝑓 − 𝑝 = 𝐵ℎ, where 𝐵 is the finite Blaschke product whose zeros are the distinct points
𝑧1, 𝑧2,…, 𝑧𝑛, and ℎ ∈ 𝐻∞. On the other hand, 𝑓 = 𝑝 + 𝐵ℎ satisfies (17.8.1) for any
ℎ ∈ 𝐻∞. Thus, the solutions to (17.8.1) are parameterized by 𝑓 = 𝑝 + 𝐵ℎ, where 𝑝 is the
Lagrange interpolating polynomial,𝐵 is the finite Blaschke productwith zeros 𝑧1, 𝑧2,…, 𝑧𝑛,
and ℎ ∈ 𝐻∞. To solve the Nevanlinna–Pick problem, we must compute

inf
ℎ∈𝐻∞

‖𝑝 + 𝐵ℎ‖∞.
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Since 𝐵 is unimodular on 𝕋, ‖𝑝 + 𝐵ℎ‖∞ = ‖𝑝𝐵 + ℎ‖∞ and hence

inf
ℎ∈𝐻∞

‖𝑝 + 𝐵ℎ‖∞ = dist(𝑝𝐵,𝐻∞).

This problem reduces to Nehari’s problem from the previous section. In the discussion
above, 𝑝 can be chosen to be any solution of the interpolation problem and the rest of the
analysis is the same.

17.9 Notes
The Hilbert matrix 𝐻 from (17.1.3) continues to be an active area of study. We already
know that𝐻 acts on ℓ2 with operator norm equal to 𝜋. Hardy showed that for 1 < 𝑝 < ∞,
the Hilbert matrix defines a bounded operator a ↦ 𝐻a on the sequence space ℓ𝑝 (see
Example 1.8.1) and

‖𝐻‖ℓ𝑝→ℓ𝑝 =
𝜋

sin(𝜋/𝑝) .

We know that ‖𝐻‖ℓ2→ℓ2 = 𝜋 from the discussion at the beginning of this chapter. Working
with power series, one can define the Hilbert matrix 𝐻 as an operator on various spaces
of analytic functions as follows. For 𝑓(𝑧) = ∑∞

𝑘=0 𝑎𝑘𝑧𝑘, define

(𝐻𝑓)(𝑧) =
∞
∑
𝑛=0

(
∞
∑
𝑘=0

𝑎𝑘
𝑛 + 𝑘 + 1)𝑧

𝑛.

In other words, the Taylor coefficients of (𝐻𝑓)(𝑧) are the entries of the column vector𝐻a.
For the Hardy spaces 𝐻𝑝, where 1 < 𝑝 < ∞, the operator 𝑓 ↦ 𝐻𝑓 is bounded and

‖𝐻‖𝐻𝑝→𝐻𝑝 = 𝜋
sin(𝜋/𝑝) .

For the Bergman spaces 𝐴𝑝, where 1 < 𝑝 < ∞, the operator 𝑓 ↦ 𝐻𝑓 is bounded for
2 < 𝑝 < ∞, and

‖𝐻‖𝐴𝑝→𝐴𝑝 = 𝜋
sin(2𝜋/𝑝) for 4 ⩽ 𝑝 < ∞.

When 2 < 𝑝 < 4, the exact value of the norm of 𝐻 on 𝐴𝑝 is unknown. The key to proving
many of these results is to represent the function 𝐻𝑓 above as an integral (see Exercise
17.10.2). The book [205] contains the proofs of the results above and further references.
The spectral properties of the Hilbert matrix for these spaces are studied in [13, 64, 345].
Peller’s book [267] is a comprehensive and authoritative text on Hankel operators. Two

other good sources are Partington [262] and Power [274].
In his 1861 doctoral dissertation [173], Hankel explored finite Hankelmatrices. In 1881,

Kronecker [225] studied finite-rank Hankel operators (see Exercise 17.10.8). The use of
the terms “Toeplitz operator” and “Hankel operator” originated in a paper of Hartman
andWintner [181], where they discussed the boundedness and compactness properties of
certain types of Hankel operators. These results were extended in 1958 by Hartman [180],
who showed that a Hankel operator is compact if and only if it can be represented (in the
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sense of Theorem17.4.4) by a continuous symbol. AHankel operator can belong to various
other classes of operators [267].
One can realize the boundedness and compactness of a Hankel matrix

⎡
⎢
⎢
⎢
⎣

𝛼1 𝛼2 𝛼3 ⋯
𝛼2 𝛼3 𝛼4 ⋯
𝛼3 𝛼4 𝛼5 ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

(17.9.1)

in a function theoretic way. A function 𝜑 ∈ 𝐿1(𝕋) is of bounded mean oscillation if

sup
𝐼⊆𝕋

1
𝑚(𝐼) ∫𝐼

|𝑓 − 𝑓𝐼 | 𝑑𝑚 < ∞.

In the above, 𝐼 is an arc of 𝕋 and

𝑓𝐼 =
1

𝑚(𝐼) ∫𝐼
𝑓𝑑𝑚

is the mean of 𝑓 on 𝐼. The space of functions with bounded mean oscillation is denoted
by BMO. One can show that 𝐿∞(𝕋) ⊆ BMO. However, the reverse containment is not true
since log |𝑝| ∈ BMO whenever 𝑝 is a trigonometric polynomial with 𝑝 ≢ 0. A 𝜑 ∈ 𝐿1(𝕋)
is of vanishing mean oscillation (VMO) if

lim
𝑎→0+

sup
|𝐼|⩽𝑎

1
𝑚(𝐼) ∫𝐼

|𝑓 − 𝑓𝐼 | 𝑑𝑚 = 0.

Note that𝐶(𝕋) ⊆ VMO.A classical theorem of Riesz says that if 1 < 𝑝 < ∞, then the Riesz
projection satisfies 𝑃+𝐿𝑝(𝕋) ⊆ 𝐿𝑝(𝕋) (in fact 𝑃+𝐿𝑝(𝕋) = 𝐻𝑝, the 𝐿𝑝 version of the Hardy
space). This no longer holds if 𝑝 = ∞. Here one has 𝑃+𝐿∞(𝕋) ⊆ BMO and 𝑃+𝐶(𝕋) ⊆ VMO.
The Hankel matrix from (17.9.1) is bounded on ℓ2 if and only if 𝜑 = ∑∞

𝑘=0 𝛼𝑘𝜉𝑘 belongs
to BMO and compact if and only if 𝜑 ∈ VMO.
One may also consider Hankel operators on the Bergman space [21, 27, 232]. This first

requires the orthogonal decomposition

𝐿2(𝑑𝐴) = 𝐴2 ⊕ (𝐴2)⟂.

For an appropriately chosen symbol 𝜑 on 𝔻, define 𝐻𝜑 ∶ 𝐴2 → (𝐴2)⟂ by

𝐻𝜑𝑓 = (𝐼 − 𝑃)(𝜑𝑓),

where 𝑃 is the orthogonal projection of 𝐿2(𝑑𝐴) onto 𝐴2.
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17.10 Exercises

Exercise 17.10.1. For each (𝑥𝑛)∞𝑛=1 ∈ ℓ2(ℕ), prove that lim
𝑚→∞

∞
∑
𝑛=1

𝑥𝑛
𝑚+ 𝑛 = 0.

Exercise 17.10.2. Consider the infinite Hilbert matrix 𝐻 from (17.1.3). It follows from
(17.5.3) that 𝐻 defines a bounded operator on ℓ2. Since ℓ2 is unitarily isomorphic to the
Hardy space 𝐻2 via a = (𝑎𝑛)∞𝑛=0 ↦ 𝑎(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 (Proposition 5.3.1), one can think
of 𝐻 as acting on 𝐻2. Use the following steps to express 𝐻 as an integral operator.

(a) For a polynomial 𝑓, define

(ℌ𝑓)(𝑧) = ∫
1

0

𝑓(𝑡)
1 − 𝑡𝑧𝑑𝑡 for 𝑧 ∈ 𝔻.

Prove that 𝐻 and ℌ agree on the polynomials, meaning if

a = (𝑎0, 𝑎1,…, 𝑎𝑛, 0, 0,…) and 𝑎(𝑧) =
𝑛
∑
𝑗=0

𝑎𝑗𝑧𝑗 ,

then 𝐻a equals ℌ𝑎 in the sense that 𝐻a is the sequence of Taylor coefficients of ℌ𝑎.

(b) An inequality of Fejér and Riesz [118, p. 46] says that

∫
1

−1
|𝑓(𝑥)|2𝑑𝑥 ⩽ 1

2 ∫𝕋
|𝑓(𝜉)|2𝑑𝑚(𝜉) for all 𝑓 ∈ 𝐻2.

Use this to prove that for 𝑓 ∈ 𝐻2, the integralℌ𝑓 converges for all 𝑧 ∈ 𝔻 and defines
an analytic function on𝔻. Thus,ℌ provides an integral representation of the Hilbert-
matrix operator.

Remark: This integral representation allows the Hilbert matrix to be defined on various
other spaces of analytic functions [13, 110, 205]. See also Exercise 18.8.14.

Exercise 17.10.3. Consider the Hilbert matrix 𝐻 as an operator on ℓ2.

(a) Prove that 𝐻 is not a finite-rank operator.

(b) Prove that 𝐻 is not compact.

Exercise 17.10.4.

(a) For 𝑓 ∈ 𝐶[0, 1], prove that
∞
∑
𝑛=0

||||
∫

1

0
𝑡𝑛𝑓(𝑡) 𝑑𝑡

||||

2

⩽ 𝜋∫
1

0
|𝑓(𝑡)|2 𝑑𝑡.

(b) Show that the constant 𝜋 is best possible.
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Exercise 17.10.5. If𝐻 is the Hilbert matrix from Exercise 17.10.2, 𝐶 is the Cesàro matrix
𝐶 from (6.2.5), and 𝐵 = [𝑏𝑗𝑘]∞𝑗,𝑘=0, where

𝑏𝑗𝑘 =
𝑘 + 1

(𝑗 + 𝑘 + 1)(𝑗 + 𝑘 + 2) for 𝑗, 𝑘 ⩾ 0,

prove that 𝐻 = 𝐵𝐶.
Remark: See [40] for more on this.

Exercise 17.10.6. Here is another way to prove the boundedness of the Hilbert matrix
𝐻 = [ℎ𝑗𝑘]∞𝑗,𝑘=0 on ℓ2 [40] (see also [83]).

(a) Let 𝐿 be the matrix

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2

1
3

⋯
1
2

1
2

1
3

⋯
1
3

1
3

1
3

⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In other words,

𝐿𝑖𝑗 =
1

max{𝑖, 𝑗} + 1 .

Prove that 𝐿 = 𝐶𝐶∗, where 𝐶 is the Cesàro matrix.

(b) Prove that ‖𝐻‖ ⩽ ‖𝐿‖.

(c) Prove that 𝐻 is bounded on ℓ2 and ‖𝐻‖ ⩽ 4.

Remark: 𝐿 is a special type of “𝐿-shaped matrix” (see Chapter 6).

Exercise 17.10.7. Let 𝑆 ∈ ℬ(ℓ2) be the unilateral shift and𝐻 be the Hilbert matrix. Prove
that 𝑆∗𝐻𝑆 − 𝐻 is a Hilbert–Schmidt operator.

Exercise 17.10.8. This exercise proves a result of Kronecker from 1881 [225]. Let

𝐻(a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 ⋯
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 ⋯
𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 ⋯
𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 ⋯
𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

denote the Hankel matrix corresponding to a = (𝑎𝑛)∞𝑛=0. The goal is to show that if 𝐻(a)
has finite rank, then 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 is a rational function. Use this approach from
[266].
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(a) For a power series 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛, let 𝑆 and 𝐵 denote the formal forward and

backward shift operators 𝑆(𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯) = 𝑎0𝑧 + 𝑎1𝑧2 + 𝑎2𝑧3 + ⋯ and
𝐵(𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 +⋯) = 𝑎1 + 𝑎2𝑧 + 𝑎3𝑧2 +⋯, respectively. Prove that

𝑆𝑛𝐵𝑘𝑓 = 𝑆𝑛−𝑘𝑓 − 𝑆𝑛−𝑘
𝑘−1
∑
𝑗=0

𝑎𝑗𝑧𝑗 for 0 ⩽ 𝑘 ⩽ 𝑛.

(b) If rank𝐻(a) = 𝑛, look at the first 𝑛+1 rows of𝐻(a) and prove that there are constants
𝑐0, 𝑐1,…, 𝑐𝑛, not all zero, such that 𝑐0𝑓 + 𝑐1𝐵𝑓 + 𝑐2𝐵2𝑓 +⋯+ 𝑐𝑛𝐵𝑛𝑓 = 0.

(c) Prove that∑𝑛
𝑘=0 𝑐𝑘𝑆𝑛−𝑘𝑓 = 𝑝, where 𝑝 is a polynomial of degree at most 𝑛 − 1.

(d) Let 𝑞(𝑧) = ∑𝑛
𝑗=0 𝑐𝑛−𝑗𝑧𝑗 and prove that 𝑞𝑓 = 𝑝.

Remark: The converse of this result is true. See [266] for the details.

Exercise 17.10.9. For 𝜑 ∈ 𝐿∞(𝕋), prove that the following conditions are equivalent.

(a) The Hankel operator 𝐻𝜑 has finite rank.

(b) (𝐼 − 𝑃+)𝜑 is a rational function.

(c) There exists a finite Blaschke product 𝐵 such that 𝐵𝜑 ∈ 𝐻∞.

Exercise 17.10.10. Prove the following version of the Brown–Halmos theorem (Theorem
16.5.1) for Hankel operators. Suppose that 𝐴 ∈ ℬ(𝐻2, 𝐻2

0), 𝑆 is the unilateral shift on 𝐻2,
and 𝑀𝜉 is the bilateral shift on 𝐿2(𝕋). Prove that 𝐴 is a Hankel operator if and only if
𝑃−𝑀𝜉𝐴 = 𝐴𝑆.

Exercise 17.10.11. Let a = (𝑎𝑛)∞𝑛=0 be a sequence of complex numbers. If∑
∞
𝑛=1 𝑛|𝑎𝑛|2 <

∞, prove that the Hankel matrix 𝐻(a) in Exercise 17.10.8 is compact on ℓ2.

Exercise 17.10.12. Prove that the diagonal operator diag( 1
2
, 2
3
, 3
4
,…) does not have a

maximizing vector (Definition 17.6.1).

Exercise 17.10.13. Let 𝜑 ∈ 𝐿∞(𝕋). Nehari’s theorem (Theorem 17.4.4) says that ‖𝐻𝜑‖ =
dist(𝜑,𝐻∞). Use the following argument from [28] to outline a proof that

‖𝐻𝜑‖𝑒 = dist(𝜑,𝐻∞ + 𝐶(𝕋)),

where 𝐻∞ + 𝐶(𝕋) = {𝑓 + 𝑔 ∶ 𝑓 ∈ 𝐻∞, 𝑔 ∈ 𝐶(𝕋)} and ‖𝐻𝜑‖𝑒 = inf𝐾∈𝒦 ‖𝐻𝜑 − 𝐾‖ is
the essential norm of 𝐻𝜑. In the infimum above, 𝒦 denotes the set of compact operators
𝐾 ∶ 𝐻2 → 𝐻2

0. Thus, ‖𝐻𝜑‖𝑒 is the distance from𝐻𝜑 to𝒦. We examined the essential norm
of a Toeplitz operator in Exercise 16.9.30.

(a) For each 𝐾 ∈ 𝒦, prove that ‖𝐻𝜑𝑆𝑛‖ ⩽ ‖(𝐻𝜑 − 𝐾)𝑆𝑛‖ + ‖𝐾𝑆𝑛‖ for all 𝑛 ⩾ 1.

(b) Use Exercise 5.9.26 to prove that lim sup
𝑛→∞

‖𝐻𝜑𝑆𝑛‖ ⩽ ‖𝐻𝜑‖𝑒.
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(c) Using the matrix representation of 𝐻𝜑𝑆𝑛, prove that ‖𝐻𝜑𝑆𝑛‖ = ‖𝐻𝜑‖.

(d) Prove that ‖𝐻𝜑𝑆𝑛‖ ⩾ ‖𝐻𝜑‖𝑒 for all 𝑛 ⩾ 1.

(e) Prove that lim
𝑛→∞

‖𝐻𝜑𝑆𝑛‖ = ‖𝐻𝜑‖𝑒.

(f) Use Nehari’s theorem to prove that

‖𝐻𝜑𝑆𝑛‖ = ‖𝐻𝑧𝑛𝜑‖ = dist(𝑧𝑛𝜑,𝐻∞) = dist(𝜑, 𝑧𝑛𝐻∞).

(g) Conclude that

‖𝐻𝜑‖𝑒 = lim
𝑛→∞

‖𝐻𝜑𝑆𝑛‖ = lim
𝑛→∞

dist(𝜑, 𝑧𝑛𝐻∞) = dist(𝜑,𝐻∞ + 𝐶(𝕋)).

(h) Finally, conclude that 𝐻𝜑 is compact if and only if 𝜑 ∈ 𝐻∞ + 𝐶(𝕋).

Remark: The original proof of this is from [3].

Exercise 17.10.14. Let 𝜑 ∈ 𝐻∞ and let 𝜓 = 𝜉−𝑛𝜑 for 𝑛 ⩾ 0. Prove that the matrix
representation of 𝐻𝜓 has a finite number of nonzero entries.

Exercise 17.10.15. Suppose 𝐻 is a Hankel operator whose matrix representation has a
finite number of nonzero entries. Prove there is a finite Blaschke product and an 𝑛 ⩾ 0
such that 𝐻 = 𝐻𝜉−𝑛𝐵 .

Exercise 17.10.16. Show that a compact Hankel operator is the operator-norm limit of a
sequence of finite-rank Hankel operators.

Exercise 17.10.17. The next three exercises discuss an operator on𝐻2 that is related to a
Hankel operator. Define 𝐽 ∶ 𝐿2(𝕋) → 𝐿2(𝕋) by (𝐽𝑓)(𝜉) = 𝜉𝑓(𝜉) and prove the following.

(a) 𝐽2 = 𝐼.

(b) 𝐽(𝑓𝑔)(𝜉) = 𝜉(𝐽𝑓)(𝜉)(𝐽𝑔)(𝜉).

(c) 𝐽𝑃+𝐽 = 𝐼 − 𝑃+.

(d) 𝐽𝐻2 = 𝐻2
0.

Remark: See [254] for more on this.

Exercise 17.10.18. This is a continuation of Exercise 17.10.17. Let 𝜑 ∈ 𝐿∞(𝕋) and define
Γ𝜑 ∶ 𝐻2 → 𝐻2 by Γ𝜑 = 𝐽𝐻𝜑. Prove the following.

(a) ‖Γ𝜑‖ = ‖𝐻𝜑‖.

(b) Γ𝜑 = 0 if and only if 𝜑 ∈ 𝐻∞.

Exercise 17.10.19. This is a continuation of Exercise 17.10.18.

(a) For 𝜑, 𝜓 ∈ 𝐿∞(𝕋), prove that Γ𝜑𝑇𝜓 + 𝑇𝜉𝐽𝜑Γ𝜓 = Γ𝜑𝜓, where 𝑇𝜉𝐽𝜑 and 𝑇𝜓 are Toeplitz
operators.
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(b) Prove that Γ𝜑Γ𝜓 = 0 if and only if Γ𝜑 = 0 or Γ𝜓 = 0.

(c) For 𝜑 ∈ 𝐿∞(𝕋), prove that 𝑆∗Γ𝜑 = Γ𝜑𝑆.

(d) If 𝐴 ∈ ℬ(𝐻2) satisfies 𝑆∗𝐴 = 𝐴𝑆, prove that 𝐴 = Γ𝜑 for some 𝜑 ∈ 𝐿∞(𝕋).

Exercise 17.10.20. Using the ideas from Exercise 17.10.17, one can define Hankel
operators on 𝐻2(ℂ+) as follows [273]. Let 𝑃 denote the orthogonal projection of 𝐿2(ℝ)
onto 𝐻2(ℝ) and let 𝐹 be the unitary operator (𝐹𝑓)(𝑥) = 𝑓(−𝑥) (this plays the role of 𝐽
from Exercise 17.10.17 for 𝐿2(ℝ)). For 𝜑 ∈ 𝐿∞(ℝ), defineℋ𝜑 ∶ 𝐻2(ℝ) → 𝐻2(ℝ) by

ℋ𝜑𝑓 = 𝑃𝐹𝑀𝜑𝑓.

(a) Prove thatℋ𝜑 is bounded on 𝐻2(ℝ).

(b) Prove thatℋ𝜑 = 0 if and only if 𝜑 ∈ 𝐻∞(ℝ) = 𝐻2(ℝ) ∩ 𝐿∞(ℝ).

(c) Exercise 11.10.7 shows that

(𝑈𝑔)(𝑥) = 1
√𝜋

1
𝑥 + 𝑖 𝑔(

𝑥 − 𝑖
𝑥 + 𝑖 )

defines a unitary operator from 𝐿2(𝕋) onto 𝐿2(ℝ) and a unitary operator from 𝐻2(𝕋)
onto 𝐻2(ℝ). Prove that 𝑈∗𝐹𝑈 = 𝐽.

(d) For suchℋ𝜑, prove there is a 𝜓 ∈ 𝐿∞ such thatℋ𝜑 and Γ𝜓 are unitarily equivalent.

Exercise 17.10.21. Write the Hankel matrix

𝐻0 =
2
𝜋

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1
3

0 1
5

⋯
0 1

3
0 1

5
0 ⋯

1
3

0 1
5

0 1
7

⋯
0 1

5
0 1

7
0 ⋯

1
5

0 1
7

0 1
9

⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

as a Γ𝜑 operator from Exercise 17.10.17.
Remark: See [273] for more on this matrix.

Exercise 17.10.22. TheHankelmatrix𝐻0 fromExercise 17.10.21 (regarded as an operator
in 𝐻2) is unitarily equivalent to the integral operator 𝐴 ∶ 𝐿2(ℝ+) → 𝐿2(ℝ+) defined by

(𝐴𝑓)(𝑥) = 1
𝜋 ∫

∞

0

𝑓(𝑡)
𝑡 + 𝑥𝑑𝑡,

which can be regarded as the continuous version of 𝐻0. Follow these steps from [273] to
see why.
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(a) Define the operator 𝐴1 ∶ 𝐿1[−1, 1] → 𝐿2[−1, 1] by

(𝐴1𝑔)(𝑥) =
1
𝜋 ∫

1

−1

𝑔(𝑦)
1 − 𝑥𝑦𝑑𝑦

and prove that𝐴 is unitarily equivalent to𝐴1 via the unitary operator𝑈 ∶ 𝐿2[−1, 1] →
𝐿2(ℝ+) defined by

(𝑈𝑔)(𝑠) = √2
𝑠 + 1𝑔(

1 − 𝑠
1 + 𝑠).

(b) Prove that the restriction map 𝑅 ∶ 𝐻2 → 𝐿2[−1, 1] defined by 𝑅ℎ = ℎ|[−1,1] is
bounded and has dense range.

(c) Prove that 𝑅𝐻0 = 𝐴1𝑅.

(d) Prove that 𝐻0 and 𝐴1 are unitarily equivalent.

(e) Conclude that 𝐻0 and 𝐴 are unitarily equivalent.

Exercise 17.10.23. This is a continuation of Exercise 17.10.22. It determines the spectrum
of 𝐻0.

(a) Prove that 𝐴 is unitarily equivalent to the operator 𝐴2 ∶ 𝐿2(ℝ) → 𝐿2(ℝ) defined by

𝐴2𝑓)(𝑥) =
1
𝜋 ∫

∞

−∞

𝑓(𝑡)
cosh(𝑥 − 𝑡)𝑑𝑡.

(b) Observe that 𝐴2 is a convolution operator. Use properties of the Fourier transform to
prove that 𝐴2 is unitarily equivalent to𝑀𝜑 on 𝐿2(ℝ), where

𝜑(𝑥) = 1
cosh (𝜋

2
𝑥)
.

(c) Prove that 𝜎(𝑀𝜑) = [0, 1].

Exercise 17.10.24. If 𝐻 is the Hilbert matrix from Exercise 17.10.2, prove that 𝐻2 =
𝑇(arg𝑧−𝜋)2 − 𝑇2

arg𝑧−𝜋, where 𝑇𝜑 is the matrix representation of the corresponding Toeplitz
operator with respect to the basis (𝑧𝑛)∞𝑛=0.
Remark: From here one can fashion another proof that 𝜎(𝐻) = [0, 𝜋] [273].

Exercise 17.10.25.

(a) With respect to the decomposition 𝐿2(𝕋) = 𝐻2 ⊕𝐻2
0, prove that

𝑀𝜑 = [𝑇𝜑 𝐻∗
𝜑

𝐻𝜑 𝑆𝜑
] ,

where 𝑆𝜑 = 𝑃−𝑀𝜑𝑃−.

(b) Prove that 𝑇𝜑𝜓 = 𝑇𝜑𝑇𝜓 + 𝐻∗
𝜑𝐻𝜓 and 𝐻∗

𝜑𝜓 = 𝑇𝜑𝐻∗
𝜓 + 𝐻∗

𝜑𝑆𝜓.
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Exercise 17.10.26. If 𝜑 ∈ 𝐿∞(𝕋) and 𝜓 ∈ 𝐶(𝕋), prove that 𝑇𝜑𝜓 − 𝑇𝜑𝑇𝜓 is compact.

Exercise 17.10.27. There is a notion of asymptotic Toeplitz operators from [34]. Recall
from Theorem 16.5.1 that every Toeplitz operator 𝑇𝜑 satisfies 𝑆∗𝑇𝜑𝑆 = 𝑇𝜑. Then 𝑇 ∈
ℬ(𝐻2) is an asymptotic Toeplitz operator if 𝑆∗𝑛𝑇𝑆𝑛 converges in the strong operator
topology as 𝑛 → ∞, that is, there is an operator 𝑇∞ ∈ ℬ(𝐻2) such that

‖𝑆∗𝑛𝑇𝑆𝑛𝑓 − 𝑇∞𝑓‖ → 0 for all 𝑓 ∈ 𝐻2.

(a) Show that every Toeplitz operator is an asymptotic Toeplitz operator.

(b) Show that every compact operator on 𝐻2 is an asymptotic Toeplitz operator.

(c) Show that Γ𝜑 from Exercise 17.10.18 is an asymptotic Toeplitz operator for every 𝜑 ∈
𝐿∞(𝕋).

(d) For all 𝜑, 𝜓 ∈ 𝐿∞(𝕋), prove that Γ𝜑Γ𝜓 is an asymptotic Toeplitz operator.

(e) For all 𝜑, 𝜓 ∈ 𝐿∞(𝕋), prove that 𝑇𝜑𝑇𝜓 is an asymptotic Toeplitz operator.

Remark: See [128] for more on this where one considers when (𝑆∗𝑛𝑇𝑆𝑛)∞𝑛=0 converges in
the norm or weak operator topologies.

Exercise 17.10.28. This is a continuation of Exercise 17.10.27. Suppose 𝐷Λ is a diagonal
operator on ℓ2, where Λ = (𝜆𝑛)∞𝑛=0, and 𝑆 ∈ ℬ(ℓ2) is the unilateral shift. Prove that
𝑆∗𝑛𝐷Λ𝑆𝑛 → 0 in the strong operator topology if and only if (𝜆𝑛)∞𝑛=0 converges.

17.11 Hints for the Exercises
Hint for Ex. 17.10.4: TheGrammatrix [⟨𝑡𝑗 , 𝑡𝑖⟩]∞𝑖,𝑗=0 is theHilbertmatrix [1/(𝑖+𝑗+1)]∞𝑖,𝑗=0.
Hint for Ex. 17.10.7: Consult Exercise 3.6.31.
Hint for Ex. 17.10.11: Consult Theorem 3.4.1.
Hint for Ex. 17.10.20: For (d), consider the operator 𝑈 .
Hint for Ex. 17.10.22: For (b), the boundedness comes from the Fejér–Riesz inequality
(see Exercise 17.10.2). For part (d), consult Exercise 8.10.28.
Hint for Ex. 17.10.23: For (a), consider an appropriate substitution. For (c), consult
Exercise 8.10.1 and Proposition 8.1.12.
Hint for Ex. 17.10.26: Consult Exercise 17.10.25.
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Composition Operators

KeyConcepts:Composition operator on the Hardy space, Littlewood subordination principle, norm
of a composition operator, compact composition operator, adjoint and spectrum of a composition
operator, universal composition operator.

Outline: This chapter explores composition operators 𝐶𝜑𝑓 = 𝑓 ∘ 𝜑 on the Hardy space
𝐻2, where the symbol 𝜑 is an analytic map from the open unit disk 𝔻 to itself. We cover
representative results concerning the boundedness, compactness, and spectral properties
of composition operators.

18.1 AMotivating Example
Before heading into the subject of composition operators on𝐻2, let us work through some
examples that provide a baseline for the types of results to expect. This allows us to connect
with the infinite matrices material covered in Chapter 3. If |𝛽| ⩽ 1 and 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛
belongs to 𝐻2, that is ‖𝑓‖2 = ∑∞

𝑛=0 |𝑎𝑛|2 < ∞, then

‖𝑓(𝛽𝑧)‖2 =
∞
∑
𝑛=0

|𝑎𝑛|2|𝛽|2𝑛 ⩽ ‖𝑓‖2.

Thus, the composition operator 𝑓(𝑧) ↦ 𝑓(𝛽𝑧), denoted by 𝐶𝛽𝑧, is bounded on𝐻2. In fact,
it is a contraction. Furthermore, its matrix representation with respect to the standard
orthonormal basis (𝑧𝑘)∞𝑘=0 for 𝐻2 is the diagonal operator

⎡⎢⎢⎢⎢⎢
⎣

1 0 0 0 ⋯
0 𝛽 0 0 ⋯
0 0 𝛽2 0 ⋯
0 0 0 𝛽3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

.

Proposition 2.1.1, Theorem 2.4.7, along with Theorem 2.5.1 yield the following result; see
Figure 18.1.1.
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Figure 18.1.1 The spectrum of the composition operator 𝐶𝛽𝑧, where 𝛽 = 𝑒−𝑖2𝜋/5 (left) and
𝐶𝛽𝑧, where 𝛽 =

4
5
𝑒−𝑖2𝜋/5 (right).

Proposition 18.1.1. Let |𝛽| ⩽ 1.

(a) The composition operator (𝐶𝛽𝑧𝑓)(𝑧) = 𝑓(𝛽𝑧) is bounded on𝐻2 and ‖𝐶𝛽𝑧‖ = 1.

(b) 𝜎𝑝(𝐶𝛽𝑧) = {1, 𝛽, 𝛽2,…}.

(c) 𝜎(𝐶𝛽𝑧) = {1, 𝛽, 𝛽2,…}−.

(d) 𝐶𝛽𝑧 is compact if and only if |𝛽| < 1.

Now consider the composition operator

(𝐶𝛼+𝛽𝑧𝑓)(𝑧) = 𝑓(𝛼 + 𝛽𝑧)

on𝐻2, where |𝛼|+ |𝛽| < 1 (this guarantees that 𝑧 ↦ 𝛼+𝛽𝑧maps𝔻 to another disk whose
closure lies in𝔻: see Figure 18.1.2). With respect to the basis (𝑧𝑘)∞𝑘=0, this operator has the
matrix representation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝛼 𝛼2 𝛼3 ⋯
0 𝛽 2𝛼𝛽 3𝛼2𝛽 ⋯
0 0 𝛽2 3𝛼𝛽2 ⋯
0 0 0 𝛽3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The (𝑗, 𝑘) entry of this matrix is

𝑎𝑗𝑘 = {
0 if 𝑗 > 𝑘,
(𝑘𝑗)𝛼

𝑘−𝑗𝛽𝑗 if 𝑗 ⩽ 𝑘,
(18.1.2)

(see Exercise 18.8.7).
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Figure 18.1.2 The images of the maps 𝑧 ↦ 𝑖
2
+ 𝑖

4
𝑧 (left) and 𝑧 ↦ − 1

2
− 𝑖

3
𝑧 on 𝔻 (right).

Proposition 18.1.3. Let 𝛼, 𝛽 satisfy |𝛼| + |𝛽| = 𝑟 < 1 and 𝛽 ≠ 0.

(a) 𝐶𝛼+𝛽𝑧 on𝐻2 is compact. In particular, 𝐶𝛼+𝛽𝑧 is bounded.

(b) 𝜎𝑝(𝐶𝛼+𝛽𝑧) = {1, 𝛽, 𝛽2,…}.

(c) 𝜎(𝐶𝛼+𝛽𝑧) = {1, 𝛽, 𝛽2,…} ∪ {0}.

Proof (a) Since |𝛼| + |𝛽| = 𝑟 < 1, the 𝑎𝑗𝑘 from (18.1.2) satisfy

∞
∑
𝑗,𝑘=0

|𝑎𝑗𝑘| =
∞
∑
𝑘=0

𝑘
∑
𝑗=0

(𝑘𝑗)|𝛼|
𝑘−𝑗 |𝛽|𝑗 =

∞
∑
𝑘=0

(|𝛼| + |𝛽|)𝑘 =
∞
∑
𝑘=0

𝑟𝑘 = 1
1 − 𝑟 < ∞.

Apply Theorem 3.4.1 and deduce that 𝐶𝛼+𝛽𝑧 is compact. In particular, 𝐶𝛼+𝛽𝑧 is
bounded (Exercise 2.8.18).

(b) If

𝑔𝑛(𝑧) = (𝑧 − 𝛼
1 − 𝛽 )

𝑛
for all 𝑛 ⩾ 0,

then 𝐶𝛼+𝛽𝑧𝑔𝑛 = 𝛽𝑛𝑔𝑛 and thus 𝜎𝑝(𝐶𝛼+𝛽𝑧) ⊇ {1, 𝛽, 𝛽2,…}. Let us now show equality.
A calculation verifies that if 𝜑(𝑧) = 𝛼 + 𝛽𝑧, then

𝑧0 =
𝛼

1 − 𝛽

belongs to 𝔻 and satisfies 𝜑(𝑧0) = 𝑧0. If 𝜆 ≠ 0 is an eigenvalue of 𝐶𝜑, then for some
𝑓 ∈ 𝐻2\{0}, we have (𝑓 ∘ 𝜑)(𝑧) = 𝜆𝑓(𝑧) for all 𝑧 ∈ 𝔻. Evaluating this at 𝑧 = 𝑧0
yields 𝑓(𝑧0) = 𝜆𝑓(𝑧0), which implies that 𝑓(𝑧0) = 0. Since 𝑓 ≢ 0, there is an analytic
function 𝑔 on 𝔻 and a positive integer𝑚 such that 𝑔(𝑧0) ≠ 0 and

𝑓(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧).
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Use the eigenvalue equation 𝑓 ∘ 𝜑 = 𝜆𝑓 to obtain

𝜆(𝑧 − 𝑧0)𝑚𝑔(𝑧) = (𝜑(𝑧) − 𝑧0)𝑚𝑔(𝜑(𝑧)),

which can be written as

𝜆𝑔(𝑧) = (𝜑(𝑧) − 𝑧0
𝑧 − 𝑧0

)
𝑚
𝑔(𝜑(𝑧)).

Let 𝑧 → 𝑧0 in the expression above and use the fact that 𝜑(𝑧0) = 𝑧0 to obtain 𝜆𝑔(𝑧0) =
𝜑′(𝑧0)𝑚𝑔(𝑧0). Since 𝑔(𝑧0) ≠ 0, it follows that 𝜆 = 𝜑′(𝑧0)𝑚. Since 𝜑′(𝑧0) = 𝛽, one
concludes that {1, 𝛽, 𝛽2,…} ⊇ 𝜎𝑝(𝐶𝛼+𝛽𝑧). Note that 0 not an eigenvalue since 𝑓∘𝜑 ≡ 0
implies that 𝑓 ≡ 0.

(c) From part (a),𝐶𝛼+𝛽𝑧 is compact. Thus, Riesz’s theorem (Theorem 2.6.9) implies that
𝜎(𝐶𝛼+𝛽𝑧) = 𝜎𝑝(𝐶𝛼+𝛽𝑧) ∪ {0}. ■

The discussion of the spectrum of 𝐶𝛼+𝛽𝑧 when |𝛼| + |𝛽| = 1 is more complicated and is
found in a paper of Deddens [108].

18.2 Composition Operators on 𝐻2

If the composition operator 𝑓 ↦ 𝑓 ∘ 𝜑 is bounded on 𝐻2, then 𝑓 ∘ 𝜑 is analytic on 𝔻 for
all 𝑓 ∈ 𝐻2. Apply this to 𝑓(𝑧) = 𝑧 and conclude that the symbol 𝜑 is an analytic function
from 𝔻 to itself. Such maps are analytic self maps of 𝔻. For a given analytic self map 𝜑, it
is not immediately clear that 𝑓 ∘𝜑 belongs to𝐻2 whenever 𝑓 ∈ 𝐻2. As a consequence of a
more general function-theory result, the Littlewood subordination theorem [229], it does.
In the language of composition operators, a proof is given below.

Theorem 18.2.1. If 𝜑 ∶ 𝔻 → 𝔻 is analytic, then the composition operator 𝐶𝜑𝑓 = 𝑓 ∘ 𝜑 is
bounded on𝐻2 and

1 ⩽ ‖𝐶𝜑‖ ⩽ (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2
.

Proof This proof is from [143, Ch.6]. We first prove this when 𝜑(0) = 0. Let 𝑓 =
∑∞

𝑛=0 𝑎𝑛𝑧𝑛 ∈ 𝐻2 and let 𝑆∗ denote the backward shift

(𝑆∗𝑓)(𝑧) = 𝑓(𝑧) − 𝑓(0)
𝑧 , (18.2.2)

the adjoint of the unilateral shift 𝑆 (recall Exercise 5.9.14). Then (𝑆∗𝑘𝑓)(𝑧) =
∑∞

𝑛=0 𝑎𝑛+𝑘𝑧𝑛 for every 𝑘 ⩾ 0. This implies that

(𝑆∗𝑘𝑓)(0) = 𝑎𝑘 for 𝑘 ⩾ 0. (18.2.3)

The formula in (18.2.2) can be rewritten as

𝑓(𝑧) = 𝑓(0) + 𝑧(𝑆∗𝑓)(𝑧) for 𝑧 ∈ 𝔻.
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Since 𝜑maps 𝔻 into itself, replace 𝑧 with 𝜑(𝑧) in the preceding identity to obtain

𝑓(𝜑(𝑧)) = 𝑓(0) + 𝜑(𝑧)(𝑆∗𝑓)(𝜑(𝑧)).

This identity can be written as

𝐶𝜑𝑓 = 𝑓(0) + 𝑇𝜑𝐶𝜑𝑆∗𝑓, (18.2.4)

where 𝑇𝜑 is an analytic Toeplitz operator (Chapter 16). Onemay question the validity
of this identity since we do not yet know if 𝐶𝜑 maps 𝐻2 into itself. To take this into
account, we initially apply (18.2.4) to polynomials 𝑓, in which case the right-hand
side of (18.2.4) is well defined.

The assumption that 𝜑(0) = 0, along with (18.2.4), implies that (𝑇𝜑𝐶𝜑𝑆∗𝑓)(0) = 0, and
thus 𝑇𝜑𝐶𝜑𝑆∗𝑓 is orthogonal to the constant functions. Hence by (18.2.4),

‖𝐶𝜑𝑓‖2 = |𝑓(0)|2 + ‖𝑇𝜑𝐶𝜑𝑆∗𝑓‖2

⩽ |𝑓(0)|2 + ‖𝑇𝜑‖2‖𝐶𝜑𝑆∗𝑓‖2

⩽ |𝑓(0)|2 + ‖𝐶𝜑𝑆∗𝑓‖2.

Note the use of the fact that ‖𝑇𝜑‖ ⩽ 1 since ‖𝜑‖∞ ⩽ 1 (Theorem 16.3.1). Replace 𝑓
with 𝑆∗𝑘𝑓 in the previous estimate and use (18.2.3) to see that

‖𝐶𝜑𝑆∗𝑘𝑓‖2 ⩽ |𝑎𝑘|2 + ‖𝐶𝜑𝑆∗(𝑘+1)𝑓‖2 for 𝑘 ⩾ 0. (18.2.5)

Sum both sides for 0 ⩽ 𝑘 ⩽ 𝑛 = deg𝑓 and see that
𝑛
∑
𝑘=0

‖
‖𝐶𝜑𝑆∗𝑘𝑓

‖
‖
2
⩽

𝑛
∑
𝑘=0

|𝑎𝑘|2 +
𝑛
∑
𝑘=0

‖
‖𝐶𝜑𝑆∗(𝑘+1)𝑓

‖
‖
2
.

A telescoping-series argument, along with the fact that 𝑆∗(𝑛+1)𝑓 ≡ 0, yields

‖𝐶𝜑𝑓‖2 ⩽
𝑛
∑
𝑘=0

|𝑎𝑘|2 = ‖𝑓‖2. (18.2.6)

Hence, ‖𝐶𝜑𝑓‖ ⩽ ‖𝑓‖ when 𝑓 is a polynomial.
To establish ‖𝐶𝜑𝑓‖ ⩽ ‖𝑓‖ for 𝑓 ∈ 𝐻2, let 𝑓 = ∑∞

𝑘=0 𝑎𝑘𝑧𝑘 ∈ 𝐻2 and define

𝑓𝑛 =
𝑛
∑
𝑘=0

𝑎𝑘𝑧𝑘 for 𝑛 ⩾ 0.

The sequence of Taylor polynomials (𝑓𝑛)∞𝑛=0 converges uniformly on compact subsets
of 𝔻 to 𝑓 (Proposition 5.3.8). For a fixed 𝑟 ∈ [0, 1), observe that

∫
𝕋
|(𝑓𝑛 ∘ 𝜑)(𝑟𝜉)|2𝑑𝑚(𝜉) ⩽ ‖𝑓𝑛 ∘ 𝜑‖2 ⩽ ‖𝑓𝑛‖2 ⩽ ‖𝑓‖2.

Note the use of (18.2.6) and Parseval’s theorem (Theorem 1.4.9) in the above.
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Since 𝜑 maps 𝑟𝕋 to a compact subset of 𝔻, let 𝑛 → ∞ in the previous inequality and
obtain

∫
𝕋
|(𝑓 ∘ 𝜑)(𝑟𝜉)|2𝑑𝑚(𝜉) ⩽ ‖𝑓‖2.

The estimate above holds uniformly in 𝑟 ∈ [0, 1). Thus, 𝑓 ∘ 𝜑 ∈ 𝐻2 (Corollary 5.3.10)
and ‖𝑓 ∘ 𝜑‖ ⩽ ‖𝑓‖. In other words, ‖𝐶𝜑‖ ⩽ 1. Since 𝐶𝜑1 = 1, it follows that ‖𝐶𝜑‖ = 1.

Our next step is to estimate the norm of 𝐶𝜏𝑤 , where 𝑤 ∈ 𝔻 and

𝜏𝑤(𝑧) =
𝑤 − 𝑧
1 − 𝑤𝑧 for 𝑧 ∈ 𝔻,

is an automorphism of 𝔻 such that (𝜏𝑤 ∘ 𝜏𝑤)(𝑧) = 𝑧 for every 𝑧 ∈ 𝔻. Use 𝐶𝜏𝑤1 = 1
and deduce that ‖𝐶𝜏𝑤‖ ⩾ 1. To obtain the upper bound, fix any 𝑓 ∈ 𝐻2 and use the
change of variables

𝑒𝑖𝑠 = 𝜏𝑤(𝑒𝑖𝑡) ⇔ 𝑒𝑖𝑡 = 𝜏𝑤(𝑒𝑖𝑠) and 𝑑𝑡 = 1 − |𝑤|2
|1 − 𝑤𝑒𝑖𝑠|2 𝑑𝑠

to obtain

‖𝑓 ∘ 𝜏𝑤‖2 = ∫
2𝜋

0
|𝑓(𝜏𝑤(𝑒𝑖𝑡))|2

𝑑𝑡
2𝜋

= ∫
2𝜋

0
|𝑓(𝑒𝑖𝑠)|2 1 − |𝑤|2

|1 − 𝑤𝑒𝑖𝑠|2
𝑑𝑠
2𝜋

⩽ 1 − |𝑤|2
(1 − |𝑤|)2 ∫

2𝜋

0
|𝑓(𝑒𝑖𝑠)|2 𝑑𝑠2𝜋

= 1 + |𝑤|
1 − |𝑤| ‖𝑓‖

2.

Consequently,

1 ⩽ ‖𝐶𝜏𝑤‖ ⩽ (1 + |𝑤|
1 − |𝑤| )

1
2 .

So far we have shown that if 𝜑(0) = 0, then ‖𝐶𝜑‖ = 1 and ‖𝐶𝜏𝑤‖ satisfies the estimate
above. Now let 𝜑 be an analytic self map of the disk. Since𝐶𝜑1 = 1, we have the lower
bound ‖𝐶𝜑‖ ⩾ 1. To obtain the upper bound, let 𝑤 = 𝜑(0) and 𝜓 = 𝜏𝑤 ∘ 𝜑. Then 𝜓 is
an analytic self map with 𝜓(0) = 0. Thus, ‖𝐶𝜓‖ = 1.

The identity𝜓 = 𝜏𝑤∘𝜑 is equivalent to𝜑 = 𝜏𝑤∘𝜓 and the latter implies that𝐶𝜑 = 𝐶𝜓𝐶𝜏𝑤 .
Hence, by our previous estimates

‖𝐶𝜑‖ ⩽ ‖𝐶𝜏𝑤‖ ‖𝐶𝜓‖ ⩽ (1 + |𝑤|
1 − |𝑤|)

1
2
= (1 + |𝜑(0)|

1 − |𝜑(0)| )
1
2
,

which completes the proof. ■

A result from the doctoral thesis of H. J. Schwartz provides an improvement of the lower
bound in Theorem 18.2.1.
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Proposition 18.2.7 (Schwartz [334]). For any analytic 𝜑 ∶ 𝔻 → 𝔻,

( 1
1 − |𝜑(0)|2 )

1
2 ⩽ ‖𝐶𝜑‖.

Proof The Cauchy integral formula implies that

(𝐶𝜑𝑓)(0) = ∫
𝕋
(𝑓 ∘ 𝜑)(𝜉) 𝑑𝑚(𝜉)

and hence, by the Cauchy–Schwarz inequality,

|(𝐶𝜑𝑓)(0)| ⩽ (∫
𝕋
|𝐶𝜑𝑓|2𝑑𝑚)

1
2 (∫

𝕋
1 ⋅ 𝑑𝑚)

1
2 .

Thus, |(𝐶𝜑𝑓)(0)| ⩽ ‖𝐶𝜑𝑓‖ ⩽ ‖𝐶𝜑‖‖𝑓‖. Apply this inequality to the function

𝑓(𝑧) = 1
1 − 𝜑(0)𝑧

and obtain

1
1 − |𝜑(0)|2 = |(𝐶𝜑𝑓)(0)| ⩽ ‖𝐶𝜑‖(

1
1 − |𝜑(0)|2 )

1
2 .

Note the use of Corollary 5.3.15 above. The desired result now follows. ■

We encourage the reader to work through Exercise 18.8.28 for an improvement of
the proposition above. The next result of Nordgren, from one of the earliest papers on
composition operators, computes ‖𝐶𝜑‖ when 𝜑 is an inner function. Theorem 18.2.1
proves part of the next corollary. However, in order to introduce the reader to a clever
integration technique that relies on the fact that 𝜑 is an inner function, we include the
original proof of Nordgren.

Corollary 18.2.8 (Nordgren [255]). If 𝜑 is an inner function, then

‖𝐶𝜑‖ = (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2 .

Proof Since 𝜑 is an inner function, it has unimodular radial boundary values almost
everywhere on 𝕋. Thus, the measure 𝑚 ∘ 𝜑−1 on 𝕋 is well defined. For any 𝑛 ⩾ 0,
the Cauchy integral formula yields

∫
𝕋
𝜉𝑛𝑑(𝑚 ∘ 𝜑−1) = ∫

𝕋
𝜑(𝜉)𝑛 𝑑𝑚(𝜉) = 𝜑(0)𝑛.

Furthermore, if

𝑃𝜆(𝜉) =
1 − |𝜆|2
|𝜉 − 𝜆|2 for 𝜉 ∈ 𝕋 and 𝜆 ∈ 𝔻
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is the Poisson kernel, then

∫
𝕋
𝜉𝑛𝑃𝜑(0)(𝜉) 𝑑𝑚(𝜉) = 𝜑(0)𝑛 for all 𝑛 ⩾ 0.

This last equality follows from the fact that 𝑧𝑛 is harmonic on 𝔻 and the Poisson
integral above yields its value at 𝜑(0) (Theorem 12.1.6). Thus,

∫
𝕋
𝜉𝑛𝑑(𝑚 ∘ 𝜑−1) = ∫

𝕋
𝜉𝑛𝑃𝜑(0)(𝜉) 𝑑𝑚(𝜉) for all 𝑛 ⩾ 0.

Taking complex conjugates of both sides of the previous equation shows that the
above holds for all 𝑛 ∈ ℤ. Hence 𝑑(𝑚 ∘ 𝜑−1) = 𝑃𝜑(0) 𝑑𝑚. Since 𝑃𝜑(0) is bounded
on 𝕋, use the density of the trigonometric polynomials in 𝐿1(𝕋) to conclude that

∫
𝕋
𝑔(𝜉) 𝑑(𝑚 ∘ 𝜑−1) = ∫

𝕋
𝑔(𝜉)𝑃𝜑(0)(𝜉) 𝑑𝑚(𝜉) for all 𝑔 ∈ 𝐿1(𝕋). (18.2.9)

To compute the norm of ‖𝐶𝜑‖, let 𝑓 ∈ 𝐻2 and observe that

‖𝐶𝜑𝑓‖2 = ∫
𝕋
|𝑓 ∘ 𝜑|2𝑑𝑚

= ∫
𝕋
|𝑓|2𝑑(𝑚 ∘ 𝜑−1)

= ∫
𝕋
|𝑓|2𝑃𝜑(0) 𝑑𝑚. (18.2.10)

Note the use of (18.2.9) in the last equality.
For fixed 𝜆 ∈ 𝔻, the Poisson kernel 𝜉 ↦ 𝑃𝜆(𝜉) achieves its maximum when 𝜉 = 𝜆/|𝜆|.
Moreover,

𝑃𝜆(𝜆/|𝜆|) =
1 + |𝜆|
1 − |𝜆| .

Combine this with (18.2.10) to see that

‖𝐶𝜑‖ ⩽ (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2

. (18.2.11)

For the lower bound, consider the family of unit vectors

𝑓𝜆(𝜉) =
√1 − |𝜆|2

1 − 𝜆𝜉
for 𝜆 ∈ 𝔻,

in 𝐻2. Since |𝑓𝜆(𝜉)|2 = 𝑃𝜆(𝜉), use (18.2.10) to obtain

‖𝐶𝜑‖2 ⩾ ‖𝐶𝜑𝑓𝜆‖2 = ∫
𝕋
𝑃𝜆(𝜉)𝑃𝜑(0)(𝜉) 𝑑𝑚(𝜉) = 𝑃𝜑(0)(𝜆).
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If 𝜑(0) = 0, then the above shows that ‖𝐶𝜑‖ ⩾ 1 since 𝑃0 ≡ 1. Combine this with
(18.2.11) to conclude that ‖𝐶𝜑‖ = 1. Otherwise, let 𝜆 → 𝜑(0)/|𝜑(0)| radially to see
that 𝑃𝜑(0)(𝜆) approaches

𝑃𝜑(0)(𝜑(0)/|𝜑(0)|) =
1 + |𝜑(0)|
1 − |𝜑(0)| .

Thus,

‖𝐶𝜑‖ ⩾ (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2

.

Combine this with (18.2.11) to obtain the desired identity, ■

Corollary 18.2.8 says that ‖𝐶𝜑‖ = 1 whenever 𝜑(0) = 0. The next corollary says more.

Corollary 18.2.12. If 𝜑 is inner and 𝜑(0) = 0, then 𝐶𝜑 is an isometry.

Proof The computation (18.2.10) yields

‖𝐶𝜑𝑓‖2 = ∫
𝕋
|𝑓|2𝑃𝜑(0) 𝑑𝑚.

If 𝜑(0) = 0, then 𝑃𝜑(0) = 𝑃0 ≡ 1, so ‖𝐶𝜑𝑓‖ = ‖𝑓‖2. ■

18.3 Compact Composition Operators
The literature on compact composition operators is large and we do not attempt to cover it
all here. Instead, we give a few illustrative results which demonstrate the general principle
that 𝐶𝜑 is compact when 𝜑(𝔻) is small in a certain sense. Recall from Definition 2.5.3
that 𝑇 ∈ ℬ(ℋ) is compact if (𝑇x𝑛)∞𝑛=1 has a convergent subsequence for every bounded
sequence (x𝑛)∞𝑛=1. From Chapter 2 there are several equivalent characterizations of when
𝑇 ∈ ℬ(ℋ) is compact.

(a) (𝑇x𝑛)∞𝑛=1 has a convergent subsequence for every bounded sequence (x𝑛)∞𝑛=1.

(b) 𝑇 is the norm limit of finite-rank operators.

(c) If x𝑛 → x weakly, then 𝑇x𝑛 → 𝑇x in norm.

Here is our first result that relates the “smallness” of 𝜑(𝔻) to compactness.

Proposition 18.3.1. If 𝜑 ∶ 𝔻 → 𝔻 is analytic and

sup
𝑧∈𝔻

|𝜑(𝑧)| < 1,

then 𝐶𝜑 is compact.
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Proof We follow the proof from [339]. For each 𝑛 ⩾ 0, define 𝑇𝑛 ∶ 𝐻2 → 𝐻2 by

𝑇𝑛𝑓 =
𝑛
∑
𝑗=0

𝑓(𝑗)𝜑𝑗 .

Notice that 𝑇𝑛 = 𝐶𝜑𝑃𝑛, where 𝑃𝑛 ∶ 𝐻2 → span{𝑧𝑗 ∶ 0 ⩽ 𝑗 ⩽ 𝑛}, defined by

(𝑃𝑛𝑓)(𝑧) =
𝑛
∑
𝑗=0

𝑓(𝑗)𝑧𝑗 ,

is the orthogonal projection of 𝐻2 onto the finite-dimensional subspace span{𝑧𝑗 ∶
0 ⩽ 𝑗 ⩽ 𝑛}. Since ran𝑇𝑛 ⊆ span{𝜑𝑗 ∶ 0 ⩽ 𝑗 ⩽ 𝑛}, it follows that 𝑇𝑛 has finite rank
and is therefore bounded (Exercise 2.8.17). Let 𝛼 = sup{|𝜑(𝑧)| ∶ 𝑧 ∈ 𝔻} < 1.

For any 𝑓 ∈ 𝐻2,

‖(𝐶𝜑 − 𝑇𝑛)𝑓‖ = ‖
‖

∞
∑

𝑗=𝑛+1
𝑓(𝑗)𝜑𝑗‖‖

⩽
∞
∑

𝑗=𝑛+1
|𝑓(𝑗)|‖𝜑𝑗‖

⩽
∞
∑

𝑗=𝑛+1
|𝑓(𝑗)|‖𝜑𝑗‖∞

=
∞
∑

𝑗=𝑛+1
|𝑓(𝑗)|𝛼𝑗

⩽ (
∞
∑

𝑗=𝑛+1
|𝑓(𝑗)|2)

1
2 (

∞
∑

𝑗=𝑛+1
𝛼2𝑗)

1
2

⩽ ‖𝑓‖(
∞
∑

𝑗=𝑛+1
𝛼2𝑗)

1
2 .

Therefore,

‖𝐶𝜑 − 𝑇𝑛‖ ⩽ (
∞
∑

𝑗=𝑛+1
𝛼2𝑗)

1
2 = ( 𝛼2𝑛+2

1 − |𝛼|2 )
1
2 → 0 as 𝑛 → ∞.

The above says that 𝐶𝜑 is the norm limit of the finite-rank operators 𝑇𝑛 and is
therefore compact (Exercise 2.8.22). ■

Example 18.3.2. Proposition 18.1.3 shows that 𝐶𝛼+𝛽𝑧 is compact if |𝛼| + |𝛽| < 1. The
previous proposition provides another proof of this. Notice how the image of 𝛼 + 𝛽𝑧 is a
disk whose closure is contained in 𝔻; see Figure 18.3.1.

Example 18.3.3. One can check that 𝜑(𝑧) = 1
4
( 1
2
− 𝑧)2 maps 𝔻 onto a domain whose

closure is contained in 𝔻. Thus, 𝐶𝜑 is compact; see Figure 18.3.1.
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Figure 18.3.1 𝜑(𝔻) where 𝜑(𝑧) = 1
3
(1 − 𝑧) (left); 𝜑(𝔻) where 𝜑(𝑧) = 1

4
( 1
2
− 𝑧)2 (right).

Example 18.3.4. For |𝛽| < 1, Proposition 18.3.1 ensures that 𝐶𝛽𝑧2 is compact. This also
follows from the matrix representation of 𝐶𝛽𝑧2 with respect to (𝑧𝑛)∞𝑛=0:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 ⋯
0 0 0 0 0 0 0 ⋯
0 𝛽 0 0 0 0 0 ⋯
0 0 0 0 0 0 0 ⋯
0 0 𝛽2 0 0 0 0 ⋯
0 0 0 0 0 0 0 ⋯
0 0 0 𝛽3 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From here, one can see that the sum of the absolute values of the matrix entries is finite
and hence 𝐶𝛽𝑧2 is compact (Theorem 3.4.1).

Exercise 18.8.6 improves Proposition 18.3.1 to the following.

Corollary 18.3.5. If 𝜑 ∶ 𝔻 → 𝔻 is analytic and

∫
𝕋

𝑑𝑚(𝜉)
1 − |𝜑(𝜉)|2 < ∞,

then 𝐶𝜑 is compact.

In his doctoral thesis [334], Schwartz explored a converse to Proposition 18.3.1. Recall
that if 𝜑 ∶ 𝔻 → 𝔻 is analytic, then it is bounded and has radial limits almost everywhere
on 𝕋 (Theorem 5.4.3).

Proposition 18.3.6 (Schwartz [334]). If 𝐶𝜑 is compact, then |𝜑(𝜉)| < 1 for almost every
𝜉 ∈ 𝕋.

Proof Suppose toward a contradiction that there is a measurable set 𝐸 ⊆ 𝕋 such that
𝑚(𝐸) = 𝛿 > 0 and |𝜑(𝜉)| = 1 for 𝜉 ∈ 𝐸. Since ⟨𝑔, 𝜉𝑛⟩ = 𝑔 (𝑛) → 0 for every 𝑔 ∈ 𝐻2,
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Figure 18.3.2 𝜑(𝔻) (shaded) where 𝑓(𝑧) = 1
2
(1 + 𝑧).

it follows that 𝑓𝑛(𝑧) = 𝑧𝑛 converges weakly to zero in 𝐻2. If 𝐶𝜑 is compact, then
𝐶𝜑𝑓𝑛 → 0 in the norm of 𝐿2(𝕋) (Exercise 3.6.9). However,

‖𝐶𝜑𝑓𝑛‖2 = ‖𝑓𝑛 ∘ 𝜑‖2 = ‖𝜑𝑛‖2 = ∫
𝕋
|𝜑|2𝑛𝑑𝑚 ⩾ ∫

𝐸
|𝜑|2𝑛𝑑𝑚 = ∫

𝐸
𝑑𝑚 ⩾ 𝛿,

which does not approach zero as 𝑛 → ∞. Thus, |𝜑(𝜉)| < 1 for almost every 𝜉 ∈ 𝕋. ■

The previous proposition can be used to show that certain composition operators are
not compact.

Corollary 18.3.7. If 𝜑 is inner, then 𝐶𝜑 is not compact.

Proposition 18.3.6 is not a complete characterization of compactness for composition
operators on 𝐻2; see Figure 18.3.2 and the next proposition.

Proposition 18.3.8 (Schwartz [334]). If

𝜑(𝑧) = 1 + 𝑧
2 ,

then 𝜑maps 𝔻 into itself and |𝜑(𝜉)| < 1 for all 𝜉 ∈ 𝕋\{1}, but 𝐶𝜑 is not compact.

Proof For 𝑧 ∈ 𝔻,

|𝜑(𝑧)| = |||
1 + 𝑧
2

||| ⩽
1 + |𝑧|
2 < 1.

Thus, 𝜑 is an analytic self map of 𝔻. One can also see that

𝜑(𝑒𝑖𝑡) = 1
2
+ 1

2
𝑒𝑖𝑡 for 𝑡 ∈ [0, 2𝜋],
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is a parameterization of the circle with center 1
2
and radius 1

2
, which lies in 𝔻 except

for 𝑡 = 0. We claim that 𝐶𝜑 is not compact.
Let

𝑓𝑛(𝑧) =
1
√𝑛

⋅ 1
1 − 𝑧(1 − 1

𝑛
)
= 1

√𝑛
𝑘
1−

1
𝑛
(𝑧) for 𝑛 ⩾ 2,

where 𝑘𝜆 is the reproducing kernel for 𝐻2. For any 𝑔 ∈ 𝐻2, Exercise 5.9.9 yields

|𝑔(𝜆)| = 𝑜 ( 1
√1 − |𝜆|

) . (18.3.9)

Thus,

⟨𝑔, 𝑓𝑛⟩ =
1
√𝑛

𝑔(1 − 1
𝑛) = √1 − (1 − 1

𝑛) ⋅ 𝑔(1 −
1
𝑛) → 0 as 𝑛 → ∞.

This shows that 𝑓𝑛 → 0 weakly in 𝐻2. However,

(𝐶𝜑𝑓𝑛)(𝑧) =
2√𝑛
𝑛 + 1 ⋅

1
1 − (𝑛−1

𝑛+1
)𝑧
.

Since
‖
‖

1
1 − 𝑎𝑧

‖
‖ =

1
√1 − |𝑎|2

for all |𝑎| < 1,

a calculation shows that ‖𝐶𝜑𝑓𝑛‖ = 1 for all 𝑛 ⩾ 1. Thus, 𝐶𝜑 is not compact since
𝑓𝑛 → 0 weakly, but ‖𝐶𝜑𝑓𝑛‖ = 1 for all 𝑛 ⩾ 1. ■

There are other types of compactness results. We mention a few here whose proofs are
found in [339].

Theorem 18.3.10. Each of the following imply that 𝐶𝜑 is compact.

(a) 𝜑(𝔻) is the interior of a polygon inscribed in 𝕋.

(b) 𝜑 is injective and

lim
|𝑧|→1−

1 − |𝜑(𝑧)|
1 − |𝑧| = ∞.

(c) 𝜑 is injective and has no radial limits of modulus one.

Notice how each of the conditions above indicate that 𝐶𝜑 is compact when 𝜑(𝔻) is a
“small” subset of 𝔻. We end this section with a result from [334].

Theorem 18.3.11. If 𝐶𝜑 is compact, then

‖𝐶𝜑‖ < (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2
.
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Recall that if 𝜑 is inner, then

‖𝐶𝜑‖ = (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
2
.

Proposition 18.3.6 showed that 𝐶𝜑 is not compact when 𝜑 is inner. The previous theorem
gives another reason for this.

18.4 Spectrum of a Composition Operator
There is no general formula for the spectrum of a composition operator, so any analysis
must be done on a case-by-case basis. Since 𝐶𝜑1 = 1 for any composition operator, it
follows that

1 ∈ 𝜎𝑝(𝐶𝜑). (18.4.1)

We have seen particular examples of the next result in Proposition 18.1.1 and Proposi-
tion 18.1.3.

Theorem 18.4.2 (Schwartz [334]). Suppose that 𝜑(𝔻) ⊆ 𝑟𝔻 for some 0 < 𝑟 < 1. Then there
is a unique point 𝑧0 ∈ 𝔻 such that

𝜎𝑝(𝐶𝜑) = {𝜑′(𝑧0)𝑛 ∶ 𝑛 ⩾ 1} ∪ {1} and 𝜎(𝐶𝜑) = 𝜎𝑝(𝐶𝜑) ∪ {0}.

We outline the proof of this theorem, which relies on the following result of Koenigs
[218] (see also [339, p. 93]).

Theorem 18.4.3 (Koenigs). Suppose 𝜑 ∶ 𝔻 → 𝔻 is analytic and 𝜑(𝑧0) = 𝑧0 for some
𝑧0 ∈ 𝔻. Then the following hold.

(a) Suppose 𝜑′(𝑧0) = 0. Then 𝑓 ∘ 𝜑 = 𝜆𝑓 for some nonzero analytic function 𝑓 on𝔻 if and
only if 𝜆 = 1.

(b) Suppose 𝜑′(𝑧0) ≠ 0. Then 𝑓 ∘ 𝜑 = 𝜆𝑓 for some nonzero analytic function 𝑓 on𝔻 if and
only if 𝜆 = 𝜑′(𝑧0)𝑚 for some𝑚 ⩾ 1.

We are now ready for a sketch of the proof of Theorem 18.4.2.

Proof From (18.4.1), it follows that 1 ∈ 𝜎𝑝(𝐶𝜑). Since 𝜑(𝔻) ⊆ 𝑟𝔻 for some 0 < 𝑟 < 1,
it follows that 𝜑(𝔻)− is a compact subset of 𝔻. Proposition 18.3.1 asserts that 𝐶𝜑 is
compact. Exercise 2.8.28 ensures that 0 ∈ 𝜎(𝐶𝜑). Since 𝐶𝜑 is compact, the nonzero
elements of its spectrum are the eigenvalues of 𝐶𝜑 (Theorem 2.6.9).

We now proceed to compute these nonzero eigenvalues. Brouwer’s fixed point theorem
[320, p. 143] says that if 𝑔 is a continuous map from a closed disk to itself, then there
is a point 𝑤0 in the closed disk such that 𝑔(𝑤0) = 𝑤0. Apply this to the continuous
function 𝜑, which maps |𝑧| ⩽ 𝑟 to itself, to produce a 𝑧0 ∈ 𝔻 such that 𝜑(𝑧0) = 𝑧0.
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Theorem 18.4.3 implies that if 𝑓(𝜑(𝑧)) = 𝜆𝑓(𝑧) for some 𝜆 ≠ 1 and 𝑓 ∈ 𝐻2\{0}, there
is a positive integer𝑚 such that 𝜆 = 𝜑′(𝑧0)𝑚 and 𝜑′(𝑧0) ≠ 0. Thus,

𝜎(𝐶𝜑) ⊆ {0, 1} ∪ {𝜑′(𝑧0)𝑚 ∶ 𝑚 ⩾ 1}.

On the other hand, if 𝜆 = 𝜑′(0)𝑚 ≠ 0 for some positive integer 𝑚, Theorem 18.4.3
says there is a nonzero analytic function 𝑓 such that 𝑓(𝜑(𝑧)) = 𝜆𝑓(𝑧). To show that
this 𝑓 belongs to 𝐻2, use the fact that 𝜑(𝔻) ⊆ 𝑟𝔻 and obtain

sup
𝑧∈𝔻

|𝑓(𝑧)| = sup
𝑧∈𝔻

||
𝑓(𝜑(𝑧))

𝜆
|| =

1
|𝜆| sup𝑧∈𝔻

|(𝑓 ∘ 𝜑)(𝑧)| ⩽ 1
|𝜆| sup|𝑤|⩽𝑟

|𝑓(𝑤)|.

Since 𝑓 is continuous on the compact set |𝑤| ⩽ 𝑟, the last supremum is finite. We
conclude that 𝑓 is a bounded analytic function on 𝔻, and therefore 𝑓 ∈ 𝐻2. Thus,
𝜆 = 𝜑′(0)𝑚 ∈ 𝜎(𝐶𝜑) for every 𝑚 ⩾ 1 and hence 𝜎(𝐶𝜑) = {0, 1} ∪ {𝜑′(𝑧0)𝑚 ∶ 𝑚 ⩾ 1},
which completes the proof. ■

It is possible that 𝜎(𝐶𝜑) = {0, 1}when𝐶𝜑 is compact. Just take 𝜑(𝑧) = 𝛽𝑧2 (see Example
18.3.4) with |𝛽| < 1. Then 𝐶𝜑 is compact, 𝑧0 = 0 is the unique fixed point in 𝔻, and
𝜑′(0) = 0.
Nordgren [255] computed the spectrum of 𝐶𝜑 when 𝜑 is a disk automorphism

𝜑(𝑧) = 𝜉 𝑧 − 𝑎
1 − 𝑎𝑧 for 𝜉 ∈ 𝕋 and 𝑎 ∈ 𝔻,

and showed that 𝜎(𝐶𝜑) is either the closure of {𝜁𝑛 ∶ 𝑛 ∈ ℤ} (where 𝜁 is some unimodular
constant), the unit circle, or an annulus. The choice depends on the parameters 𝑎 and 𝜉.

18.5 Adjoint of a Composition Operator
In this section, we mention a few facts about the adjoint of a composition operator. We
start with the following general result.

Proposition 18.5.1. If 𝜑 ∶ 𝔻 → 𝔻 is analytic and 𝑘𝜆(𝑧) = (1 − 𝜆𝑧)−1, then 𝐶∗
𝜑𝑘𝜆 = 𝑘𝜑(𝜆).

Proof For each 𝑤 ∈ 𝔻,

(𝐶∗
𝜑𝑘𝜆)(𝑤) = ⟨𝐶∗

𝜑𝑘𝜆, 𝑘𝑤⟩
= ⟨𝑘𝜆, 𝐶𝜑𝑘𝑤⟩
= ⟨𝑘𝜆, 𝑘𝑤 ∘ 𝜑⟩

= ⟨𝑘𝑤 ∘ 𝜑, 𝑘𝜆⟩

= 𝑘𝑤(𝜑(𝜆))
= 𝑘𝜑(𝜆)(𝑤),

which completes the proof. ■
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This theorem has a converse [77].

Proposition 18.5.2. Suppose 𝐴 ∈ ℬ(𝐻2) and 𝐴∗ maps each kernel function 𝑘𝜆 to another
kernel function. Then 𝐴 is a composition operator.

Proof Since 𝐴∗ maps kernel functions to kernel functions, there is a function 𝜑 ∶ 𝔻 → 𝔻
such that 𝐴∗𝑘𝜆 = 𝑘𝜑(𝜆) for each 𝜆 ∈ 𝔻. It follows that

(𝐴𝑓)(𝜆) = ⟨𝐴𝑓, 𝑘𝜆⟩ = ⟨𝑓, 𝐴∗𝑘𝜆⟩ = ⟨𝑓, 𝑘𝜑(𝜆)⟩ = 𝑓(𝜑(𝜆)) for all 𝑓 ∈ 𝐻2.

Applying this to 𝑓(𝑧) = 𝑧 shows that 𝜑 is an analytic self map of 𝔻 and 𝐴 = 𝐶𝜑. ■

There is the following integral formula for 𝐶∗
𝜑.

Corollary 18.5.3. If 𝜑 ∶ 𝔻 → 𝔻 is analytic, then

(𝐶∗
𝜑𝑓)(𝑧) = ∫

𝕋

𝑓(𝜉)
1 − 𝜑(𝜉)𝑧

𝑑𝑚(𝜉) for all 𝑓 ∈ 𝐻2.

Proof For 𝑓 ∈ 𝐻2,

(𝐶∗
𝜑𝑓)(𝑧) = ⟨𝐶∗

𝜑𝑓, 𝑘𝑧⟩ = ⟨𝑓, 𝐶𝜑𝑘𝑧⟩ = ∫
𝕋

𝑓(𝜉)
1 − 𝜑(𝜉)𝑧

𝑑𝑚(𝜉),

which completes the proof. ■

For a linear fractional transformation

𝜑(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 (18.5.4)

that maps 𝔻 into itself, there is a fascinating formula for the adjoint of 𝐶𝜑 that involves
Toeplitz operators.

Theorem 18.5.5 (C. Cowen [100]). Suppose that

𝜑(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

maps 𝔻 into itself and is normalized so that 𝑎𝑑 − 𝑏𝑐 = 1.

(a) The function

𝜎(𝑧) = 𝑎𝑧 − 𝑐
−𝑏𝑧 + 𝑑

maps 𝔻 into itself.

(b) The functions

𝑔(𝑧) = 1
−𝑏𝑧 + 𝑑

and ℎ(𝑧) = 𝑐𝑧 + 𝑑

belong to𝐻∞.

(c) 𝐶∗
𝜑 = 𝑇𝑔𝐶𝜍𝑇∗

ℎ .
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Proof We follow Cowen’s original proof.
(a) Let 𝔻𝑒 = {|𝑧| > 1} ∪ {∞} denote the open extended exterior disk. Since 𝜑 maps 𝔻
into itself, 𝛾(𝑧) = 𝜑(𝑧) also maps𝔻 into itself. Basic facts about linear fractional maps
implies that the inverse function 𝛾−1 maps 𝔻𝑒 into itself. A calculation shows that

𝜎(𝑧) = 1
𝛾−1(1/𝑧)

and that 𝜎maps 𝔻 into itself.
(b) Since ℎ is a linear function it is bounded on𝔻. For suitable constants 𝛼, 𝛽with 𝛼 ≠ 0,
𝜎 = 𝛼𝑔 + 𝛽. From (a), 𝜎 is bounded. Thus, 𝑔 ∈ 𝐻∞.

(c) It suffices to show that

𝐶∗
𝜑𝑘𝜆 = 𝑇𝑔𝐶𝜍𝑇∗

ℎ 𝑘𝜆 for all 𝜆 ∈ 𝔻. (18.5.6)

To verify this, observe that

(𝐶𝜍𝑘𝜆)(𝑧) =
1

1 − 𝜆𝜎(𝑧)

= 1
1 − 𝜆 𝑎𝑧−𝑐

−𝑏𝑧+𝑑

= −𝑏𝑧 + 𝑑
−𝑏𝑧 + 𝑑 − 𝜆𝑎𝑧 + 𝜆𝑐

= −𝑏𝑧 + 𝑑
(𝑑 + 𝜆𝑐) − (𝑏 + 𝜆𝑎)𝑧

= 1
ℎ(𝜆)

1
𝑔(𝑧)

1
1 − 𝜑(𝜆)𝑧

= 1
ℎ(𝜆)

𝑘𝜑(𝜆)(𝑧)
𝑔(𝑧) . (18.5.7)

Thus,

𝑇𝑔𝐶𝜍𝑇∗
ℎ 𝑘𝜆 = 𝑇𝑔𝐶𝜍ℎ(𝜆)𝑘𝜆 (by (5.5.5))

= ℎ(𝜆)𝑇𝑔(
1

ℎ(𝜆)
𝑘𝜑(𝜆)
𝑔 ) (by (18.5.7))

= 𝑘𝜑(𝜆)
= 𝐶∗

𝜑𝑘𝜆 (by Proposition 18.5.1).

This verifies (18.5.6) and completes the proof. ■
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Example 18.5.8. Let 𝜑(𝑧) = (1 + 𝑧)/2. Then 𝜑 is of the form (18.5.4) with 𝑎 = 𝑏 = 1
√2
,

𝑐 = 0, and 𝑑 = √2. The functions 𝜎, 𝑔, and ℎ are

𝜎(𝑧) =
1
√2
𝑧

√2 − √2
2
𝑧
, 𝑔(𝑧) = 1

√2 − √2
2
𝑧
, and ℎ(𝑧) = √2.

See Exercise 18.8.16 for another approach to computing the adjoint of a composition
operator.

18.6 Universal Operators and Composition Operators
Recall the definition of a universal operator (Definition 13.3.1). There are several results
concerning universal operators obtained from adjoints of composition operators. Here is
an example from [80, Ch. 8] (see also [101]).

Proposition 18.6.1. 𝐶∗
𝑧2 is universal for𝐻2.

Proof To show 𝐶∗
𝑧2 is universal, we use Theorem 13.3.2 and verify that ker𝐶∗

𝑧2 is infinite
dimensional and ran𝐶∗

𝑧2 = 𝐻2. Corollary 18.2.12 ensures that 𝐶𝑧2 is an isometry, so
𝐶∗
𝑧2𝐶𝑧2 = 𝐼 (Exercise 3.6.13). Thus, 𝐶∗

𝑧2 is surjective.
For each 𝑛 ⩾ 1, choose 𝑛 distinct 𝜆1, 𝜆2,…, 𝜆𝑛 in 𝔻\{0} and let

𝑔𝑗(𝑧) = 𝑘𝜆𝑗 (𝑧) − 𝑘−𝜆𝑗 (𝑧) for 1 ⩽ 𝑗 ⩽ 𝑛.

We claim that 𝑔1, 𝑔2,…, 𝑔𝑛 are linearly independent. Suppose there are constants
𝑐1, 𝑐2,…, 𝑐𝑛 such that

𝑛
∑
𝑗=1

𝑐𝑗(𝑘𝜆𝑗 (𝑧) − 𝑘−𝜆𝑗 (𝑧)) = 0 for all 𝑧 ∈ 𝔻.

For any polynomial 𝑝, use the reproducing property of 𝑘𝜆(𝑧) to see that

⟨𝑝,
𝑛
∑
𝑗=1

𝑐𝑗(𝑘𝜆𝑗 − 𝑘−𝜆𝑗 )⟩ =
𝑛
∑
𝑗=1

𝑐𝑗(𝑝(𝜆𝑗) − 𝑝(−𝜆𝑗)).

For each 1 ⩽ 𝑖 ⩽ 𝑛, use Lagrange interpolation to select a polynomial 𝑝𝑖 such that
𝑝𝑖(𝜆𝑖) = 1 but 𝑝𝑖(−𝜆𝑖) = −1 and 𝑝𝑖(±𝜆𝑗) = 0 when 𝑗 ≠ 𝑖. The identity above yields
𝑐𝑖 = 0 for all 1 ⩽ 𝑖 ⩽ 𝑛. Thus, 𝑔1, 𝑔2,…, 𝑔𝑛 are linearly independent.

Proposition 18.5.1 implies that

𝐶∗
𝑧2𝑔𝑗 =

1
1 − (𝜆𝑗)2𝑧

− 1
1 − (−𝜆𝑗)2𝑧

= 0,

and hence ker𝐶∗
𝑧2 is infinite dimensional. ■
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One can see the universality of 𝐶∗
𝑧2 from its matrix representation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 ⋯
0 0 1 0 0 0 0 0 0 0 ⋯
0 0 0 0 1 0 0 0 0 0 ⋯
0 0 0 0 0 0 1 0 0 0 ⋯
0 0 0 0 0 0 0 0 1 0 ⋯
0 0 0 0 0 0 0 0 0 0 ⋯
0 0 0 0 0 0 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18.6.2)

(which one can obtain from the matrix representation of 𝐶𝑧2 and then taking adjoints).
Notice that the column space of (18.6.2) contains e𝑛 for every 𝑛 ⩾ 0, and hence ran𝐶∗

𝑧
contains 𝑧𝑛 for every 𝑛 ⩾ 0. The columns of the matrix in (18.6.2) also show that 𝑧2𝑘+1 ∈
ker𝐶∗

𝑧2 for every 𝑘 ⩾ 0, so ker𝐶∗
𝑧2 is infinite dimensional. Caradus’ theorem implies that

𝐶∗
𝑧2 is universal.
See Exercise 18.8.10 for another proof of the universality of 𝐶∗

𝑧2 . The proposition above
can be extended to the following (Exercise 18.8.11).

Theorem 18.6.3. If 𝜑 is inner, but not an automorphism of 𝔻, and 𝜑(0) = 0, then 𝐶∗
𝜑 is

universal for𝐻2.

18.7 Notes
As noted in the beginning of this chapter, we only covered a small fraction of a large
literature on this subject. We refer the reader to the surveys [102, 278, 339] for muchmore.
The boundedness of 𝐶𝜑 on𝐻2 can also be obtained from a 1925 subordination result of

Littlewood [229]. A consequence of the Littlewood subordination theorem (see below) says
that if 𝑓 is analytic on 𝔻 and 𝜑 is an analytic self map on 𝔻 such that 𝜑(0) = 0, then

∫
𝕋
|𝑓(𝜑(𝑟𝜉))|𝑝𝑑𝑚(𝜉) ⩽ ∫

𝕋
|𝑓(𝑟𝜉)|𝑝𝑑𝑚(𝜉)

for all 0 < 𝑟 < 1 and 1 ⩽ 𝑝 < ∞. If 𝑓 and 𝐹 are analytic on 𝔻 and 𝑓(𝑧) = 𝐹(𝑤(𝑧)), where
𝑤 is analytic on𝔻with |𝑤(𝑧)| ⩽ |𝑧| on𝔻, then 𝑓 is subordinate to 𝐹. Littlewood’s principle
is that

∫
𝕋
|𝐹(𝑟𝜉)|𝑝𝑑𝑚(𝜉) ⩽ ∫

𝕋
|𝑓(𝑟𝜉)|𝑝𝑑𝑚(𝜉)

for all 0 < 𝑟 < 1 and 1 ⩽ 𝑝 < ∞. Note that the Schwarz lemma [9, p. 135] says that if 𝜑 is
an analytic self map of 𝔻 with 𝜑(0) = 0, then |𝜑(𝑧)| ⩽ |𝑧| on 𝔻.
Ryff in 1966 [321] and Nordgren in 1968 [255] used this result to prove, amongst other

things, that composition operators on 𝐻𝑝 for 1 ⩽ 𝑝 < ∞ are bounded. Ryff obtained the
norm estimate

‖𝐶𝜑‖𝐻𝑝→𝐻𝑝 ⩽ (1 + |𝜑(0)|
1 − |𝜑(0)| )

1
𝑝
.
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Nordgren’s paper seems to be the first to coin the term “composition operator” for 𝐶𝜑.
We mentioned a few results about compactness of composition operators in this

chapter. The issue was basically settled by J. Shapiro in his 1987 paper [338] in terms of
the Nevanlinna counting function

𝑁𝜑(𝑤) = ∑
𝑧∈𝜑−1({𝑤})

log |𝑧|;

see Exercise 18.8.27. The result is that 𝐶𝜑 is compact if and only if

lim sup
|𝑤|→1−

𝑁𝜑(𝑤)
− log |𝑤| = 0.

Although not covered in this chapter, one can also consider when a composition operator
belongs to one of the Schatten classes [233, 341].
There is a considerable amount of work on the spectra of various types of composition

operators on 𝐻2 in [77, 98, 100, 108, 255, 334]. For compact composition operators, there
is the following extension of Theorem 18.4.2 from [77]. If 𝐶𝜑 is compact, there is a unique
point 𝑧0 ∈ 𝔻 such that 𝜑(𝑧0) = 𝑧0 and |𝜑′(𝑧0)| < 1. If 𝜑′(𝑧0) = 0, then 𝜎(𝐶𝜑) = {0, 1}. If
𝜑′(𝑧0) ≠ 0, then 𝜎(𝐶𝜑) contains the eigenvalues {𝜑′(𝑧0)𝑚 ∶ 𝑚 ⩾ 0}.
For various classes of symbols, composition operators are defined and bounded on

other Hilbert spaces of analytic functions such as the Bergman and Dirichlet spaces (see
Exercises 18.8.18, 18.8.19, and 18.8.20). From there one can study concepts such as norm
estimates, compactness, and spectral properties, as surveyed here for 𝐻2. We also point
out some work on composition operators on spaces of Dirichlet series [35, 157, 278].

18.8 Exercises
Exercise 18.8.1. Prove that 𝑇 ∈ ℬ(𝐻2) is a composition operator if and only if 𝑇(𝑧𝑛) =
(𝑇(𝑧))𝑛 for all 𝑛 ⩾ 0.

Exercise 18.8.2. Prove that 𝑇 ∈ ℬ(𝐻2) is a composition operator if and only if 𝑇(𝑓𝑔) =
(𝑇𝑓)(𝑇𝑔) for all 𝑓, 𝑔 ∈ ℂ[𝑧].

Exercise 18.8.3. Let 𝜑 be an analytic self map of 𝔻 and define the linear transformation
𝐶𝜑𝑓 = 𝑓 ∘ 𝜑 from the space of analytic functions on 𝔻 to itself. Prove that 𝐶𝜑 is invertible
if and only if 𝜑 is invertible.

Exercise 18.8.4. If 𝜑 is an analytic self map of𝔻, 𝜓 ∈ 𝐻∞, and 𝑇𝜓 is the analytic Toeplitz
operator, prove that 𝐶𝜑𝑇𝜓 = 𝑇𝜓𝐶𝜑 if and only if 𝜓 ∘ 𝜑 = 𝜓.

Exercise 18.8.5. If 𝜑 is an analytic self map of 𝔻 such that ‖𝜑‖∞ < 1, prove that 𝐶𝜑 is a
Hilbert–Schmidt operator (recall Exercise 3.6.31).

Exercise 18.8.6. If 𝜑 ∶ 𝔻 → 𝔻 is analytic and

∫
𝕋

1
1 − |𝜑(𝜉)|2 𝑑𝑚(𝜉) < ∞,

prove that 𝐶𝜑 is compact.
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Exercise 18.8.7. Consider composition operators of the type 𝐶𝛼+𝛽𝑧, where |𝛼| + |𝛽| < 1.
Show that the matrix representation of 𝐶𝛼+𝛽𝑧 with respect to the standard basis (𝑧𝑛)∞𝑛=0
for 𝐻2 is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝛼 𝛼2 𝛼3 ⋯
0 𝛽 2𝛼𝛽 3𝛼2𝛽 ⋯
0 0 𝛽2 3𝛼𝛽2 ⋯
0 0 0 𝛽3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark: These types of composition operators were explored by Deddens in [108].

Exercise 18.8.8. If |𝑎| < 1 and

𝜑(𝑧) = 𝑎 − 𝑧
1 − 𝑎𝑧 ,

prove that 𝐶𝜑 is invertible on 𝐻2.

Exercise 18.8.9. One can discuss composition operators on 𝐿2(𝜇), where (𝑋,𝒜, 𝜇) is a
measure space [346, 347]. Let 𝜑 ∶ 𝑋 → 𝑋 be a 𝜇-measurable function.

(a) Prove that 𝐶𝜑𝑓 = 𝑓 ∘ 𝜑 is a bounded composition operator on 𝐿2(𝜇) if and only if
there is a constant𝑀 such that 𝜇(𝜑−1(𝐴)) ⩽ 𝑀𝜇(𝐴) for every 𝐴 ∈ 𝒜.

(b) Prove that if𝜑 ismeasure preserving, that is to say,𝜇(𝐴) = 𝜇(𝜑−1(𝐴)) for every𝐴 ∈ 𝒜,
then 𝐶𝜑 is an isometry.

Exercise 18.8.10.

(a) Prove that 𝐶𝑧2 is unitarily equivalent to the shift 𝑈 on (𝐻2)(∞) (recall the definition
from (14.1.2)) defined by 𝑈(𝑓0, 𝑓1, 𝑓2, 𝑓3,…) = (0, 𝑓0, 𝑓1, 𝑓2, 𝑓3,…).

(b) Use (a) to prove that 𝐶∗
𝑧2 is universal for 𝐻2.

Exercise 18.8.11. If 𝜑 is inner, but not an automorphism of 𝔻, and 𝜑(0) = 0, prove that
𝐶∗
𝜑 is universal for 𝐻2.

Exercise 18.8.12. Suppose 𝜑 is an analytic self map of 𝔻 such that 𝜑(0) = 0. Prove that
𝑧𝑛𝐻2 is an invariant subspace for 𝐶𝜑 for each 𝑛 ⩾ 0.

Exercise 18.8.13. For |𝛽| ⩽ 1, write the polar decomposition of 𝐶𝛽𝑧 in terms of two
composition operators.

Exercise 18.8.14. This is a continuation of Exercise 17.10.2. Recall that theHilbertmatrix
operator on 𝐻2 can be written as

(ℌ𝑓)(𝑧) = ∫
1

0

1
1 − 𝑡𝑧𝑓(𝑡) 𝑑𝑡.

(a) Prove that for each 𝑡 ∈ [0, 1], 𝜑𝑡(𝑧) =
𝑡

(𝑡 − 1)𝑧 + 1 is an analytic self map of 𝔻.
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(b) For a fixed 𝑧 ∈ 𝔻, describe the curve 𝑡 ↦ 𝜑𝑡(𝑧).

(c) For each 𝑡 ∈ (0, 1], prove that𝑤𝑡(𝑧) =
1

(𝑡 − 1)𝑧 + 1 is a bounded analytic function on
𝔻.

(d) Prove that the weighted composition operator 𝑇𝑡 = 𝑀𝑤𝑡𝐶𝜑𝑡 is bounded on 𝐻2.

(e) For 𝑓 ∈ 𝐻2, prove that (ℌ𝑓)(𝑧) = ∫
1

0
(𝑇𝑡𝑓)(𝑧) 𝑑𝑡 for all 𝑧 ∈ 𝔻.

Remark:One can estimate the norm of 𝑇𝑡 and show that the Hilbert transform is bounded
on the 𝐻𝑝 spaces when 1 < 𝑝 < ∞. See [110] for further details.

Exercise 18.8.15. This is a continuation of Exercise 6.7.11. Recall from Exercise 6.7.11
that for the Cesàro operator 𝐶 on 𝐻2, the resolvent is

((𝜆𝐼 − 𝐶)−1ℎ)(𝑧) = ℎ(𝑧)
𝜆 + 1

𝜆2 𝑧
1
𝜆
−1(1 − 𝑧)−

1
𝜆 ∫

𝑧

0
𝑤− 1

𝜆 (1 − 𝑤)
1
𝜆
−1ℎ(𝑤) 𝑑𝑤.

(a) Define

𝜑(𝑧) = 𝑧
1 − 𝑧 for 𝑧 ∈ 𝔻,

and consider the family of functions 𝜑𝑡(𝑧) = 𝜑−1(𝑒−𝑡𝜑(𝑧)) for 𝑡 ⩾ 0. Prove that each
𝜑𝑡 is an analytic self map of 𝔻.

(b) For each 𝑧 ∈ 𝔻, prove that 𝜑𝑡(𝑧) → 0 as 𝑡 → ∞.

(c) Let the path of integration be 𝛾(𝑡) = 𝜑𝑡(𝑧) in the formula

(𝐶𝑓)(𝑧) = 1
𝑧 ∫

𝑧

0

𝑓(𝑤)
1 − 𝑤𝑑𝑤

and prove that

(𝐶𝑓)(𝑧) = ∫
∞

0
(𝑆𝑡𝑓)(𝑧) 𝑑𝑡,

where 𝑆𝑡 is the weighted composition operator

(𝑆𝑡𝑓)(𝑧) =
𝜑𝑡(𝑧)
𝑧 (𝐶𝜑𝑡𝑓)(𝑧).

(d) Use a similar computation to prove that

((𝜆𝐼 − 𝐶)−1ℎ)(𝑧) = ℎ(𝑧)
𝜆 + 1

𝜆2 ∫
∞

0
𝑒
𝑡
𝜆 (𝑆𝑡ℎ)(𝑧) 𝑑𝑡.

Remark: See [268] for more on this in other settings.
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Exercise 18.8.16. Another way to compute the adjoint of a composition operator involves
Aleksandrov–Clark measures. A theorem of Herglotz [118] says that if 𝑓 is analytic on 𝔻
and Re𝑓 > 0, then there is a positive finite Borel measure 𝜇 on 𝕋 such that

𝑓(𝑧) = ∫
𝕋

𝜉 + 𝑧
𝜉 − 𝑧𝑑𝜇(𝜉) + 𝑖 Im𝑓(0).

(a) Assuming Herglotz’s theorem, prove that if 𝜑 is an analytic self map of 𝔻 and 𝜑(0) =
0, then for each 𝛼 ∈ 𝕋 there is a unique probability measure 𝜇𝛼 on 𝕋 such that

∫
𝕋

𝜉 + 𝑧
𝜉 − 𝑧𝑑𝜇𝛼(𝜉) =

𝛼 + 𝜑(𝑧)
𝛼 − 𝜑(𝑧) for all 𝑧 ∈ 𝔻.

The measures {𝜇𝛼 ∶ 𝛼 ∈ 𝕋} form the family of Aleksandrov–Clark measures for 𝜑.

(b) Manipulate the expression in (a) and prove that

∫
𝕋

1
1 − 𝜆𝜉

𝑑𝜇𝛼(𝜉) =
1

1 − 𝛼𝜑(𝜆) for all 𝜆 ∈ 𝔻.

(c) For functions in 𝐻2 that are continuous on 𝕋, define

(𝐴𝜑𝑓)(𝛼) = ∫
𝕋
𝑓(𝜉)𝑑𝜇𝛼(𝜉) for all 𝛼 ∈ 𝕋.

Prove that 𝐴𝜑𝑘𝜆 = 𝐶∗
𝜑𝑘𝜆.

(d) Prove that 𝐴𝜑 extends to a bounded operator on 𝐻2 that is the adjoint of 𝐶𝜑.

Remark: See [143] for more on this important topic.

Exercise 18.8.17. Let us compute the adjoint for 𝐶𝑧2 using Exercise 18.8.16.

(a) Prove that for each 𝛼 ∈ 𝕋, the Aleksandrov–Clark measure for 𝜑(𝑧) = 𝑧2 is
𝜇𝛼 =

1
2
𝛿√𝛼 +

1
2
𝛿−√𝛼.

(b) Prove that (𝐶∗
𝑧2𝑘𝜆)(𝛼) =

1
2
𝑘𝜆(√𝛼) +

1
2
𝑘𝜆(−√𝛼).

(c) Let 𝑓 ∈ 𝐻2 be continuous on 𝕋. Prove that (𝐶∗
𝑧2𝑓)(𝛼) =

1
2
𝑓(√𝛼) + 1

2
𝑓(−√𝛼).

Remark: Aleksandrov proved that

(𝐴𝜑𝑓)(𝛼) = ∫
𝕋
𝑓(𝜉) 𝑑𝜇𝛼(𝜉)

is defined for𝑚-almost every 𝛼 ∈ 𝕋 and so

(𝐶∗
𝑧2𝑓)(𝛼) =

1
2
𝑓(√𝛼) + 1

2
𝑓(−√𝛼)

makes sense for all 𝑓 ∈ 𝐻2. This can be used to compute the essential norm of a
composition operator [85].
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Exercise 18.8.18.

(a) Prove that if 𝜑 is an analytic self map of 𝔻, then the composition operator 𝐶𝜑 is
bounded on the Bergman space 𝐴2.

(b) Compute thematrix representation of𝐶𝑧2 on𝐴2with respect to the orthonormal basis
(√𝑛 + 1 𝑧𝑛)∞𝑛=0.

Exercise 18.8.19. Let Ω1 and Ω2 be domains in the complex plane and let 𝜑 ∶ Ω1 → Ω2
be a conformal mapping.

(a) For each analytic map 𝑓 ∶ Ω2 → ℂ, prove that

∫
Ω1

|(𝑓 ∘ 𝜑)′(𝑧)|2 𝑑𝐴(𝑧) = ∫
Ω2

|𝑓′(𝑤)|2 𝑑𝐴(𝑤),

where 𝑑𝐴 is two-dimensional area measure.

(b) If 𝑓 is analytic on 𝔻 and

𝜑(𝑧) = 𝑒𝑖𝜃 𝛼 − 𝑧
1 − 𝛼̄𝑧 , where 𝜃 ∈ ℝ and 𝛼 ∈ 𝔻,

prove that 𝐷(𝑓 ∘ 𝜑) = 𝐷(𝑓), in which 𝐷(𝑓) is the Dirichlet integral from (9.1.1).

Remark: A result in [20] ensures that the Dirichlet space 𝒟 is the unique function space
on 𝔻 for which the composition operators 𝐶𝜑, where 𝜑 is an automorphism of 𝔻, act
isometrically. However, many function spaces, for example the Hardy space and the
Bergman space, are not isometrically invariant under 𝐶𝜑.

Exercise 18.8.20. For any analytic self map 𝜑 of the disk, the composition operator 𝐶𝜑
is bounded on 𝐻2. Exercise 18.8.19 showed that 𝐶𝜑 is bounded on 𝒟 when 𝜑 is a disk
automorphism. Produce a specific example of an analytic self map 𝜑 such that 𝐶𝜑𝒟 ⊄ 𝒟.
Remark: The papers [123, 235] give various conditions that ensure a self map yields a
bounded composition operator on the Dirichlet space.

Exercise 18.8.21. Consider the normalized reproducing kernel𝑘 𝜆(𝑧) =
√1 − |𝜆|2

1 − 𝜆𝑧
for𝐻2.

(a) Prove that 𝑘 𝜆 → 0 weakly in 𝐻2.

(b) For an analytic self map 𝜑 of 𝔻, prove that ‖𝐶∗
𝜑𝑘 𝜆‖ = √

1 − |𝜆|2
1 − |𝜑(𝜆)|2 .

(c) If lim inf
|𝜆|→1

1 − |𝜆|
1 − |𝜑(𝜆)| > 0, prove that 𝐶𝜑 is not compact.

Exercise 18.8.22. Show that if 𝜑 is an analytic self map of𝔻 that is also a linear fractional
transformation, then ker𝐶∗

𝜑 = {0}.
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Exercise 18.8.23. Let 𝜑 be an analytic self map of 𝔻 and 𝜓(𝑧) = 𝜑(𝑧𝑑) for 𝑑 ⩾ 2. Prove
the following.

(a) ker𝐶∗
𝜓 ⊇ ⋁{𝑧𝑘 ∶ 𝑘 ∉ 𝑑ℕ}.

(b) If ker𝐶∗
𝜓 = {0}, then ker𝐶∗

𝜑 = ⋁{𝑧𝑘 ∶ 𝑘 ∉ 𝑑ℕ}.

Remark: See [244] for other results along these lines.

Exercise 18.8.24. Use matrix representations to prove the formula 𝐶∗
1+𝑧
2
= 𝑇 1

2−𝑧
𝐶 𝑧

2−𝑧
.

Exercise 18.8.25. Prove the adjoint formula

𝐶∗
√

1−𝑧
2

= 𝑇 2
2−𝑧2

𝐶 𝑧2
𝑧2−2

+ 𝑇 2𝑧
2−𝑧2

𝐶 𝑧2
𝑧2−2

𝑇∗
√

1−𝑧
2

by using the following procedure from [162]. Let

ℓ1(𝑧) =
1 − 𝑧
2 , ℓ2(𝑧) =

𝑧
𝑧 − 2 , and 𝜑(𝑧) = √ℓ1(𝑧).

(a) For each 𝜆 ∈ 𝔻, prove that

1
1 − 𝜆ℓ1(𝑧)

= 2
2 − 𝜆

1
1 − ℓ2(𝜆)𝑧

for all 𝑧 ∈ 𝔻.

(b) Use

𝑘𝜆(𝑧) =
1

1 − 𝜆
2
𝑧2

+ 𝜆𝑧

1 − 𝜆
2
𝑧2

and (𝐶∗
𝜑𝑓)(𝜆) = ⟨𝑓, 𝑘𝜆 ∘ 𝜑⟩

to prove that

(𝐶∗
𝜑𝑓)(𝜆) = ⟨𝑓, 1

1 − 𝜆
2
ℓ1
⟩ + 𝜆⟨𝑓, 𝜑

1 − 𝜆
2
ℓ1
⟩.

(c) Use (a) to prove

(𝐶∗
𝜑𝑓)(𝜆) =

2
2 − 𝜆2 ⟨𝑓,

1
1 − ℓ2(𝜆2)𝑧

⟩ + 2𝜆
2 − 𝜆2 ⟨𝑓,

𝜑
1 − ℓ2(𝜆2)𝑧

⟩.

(d) Use the fact that ⟨𝑓, 𝜑ℎ⟩ = ⟨𝑃+(𝜑𝑓), ℎ⟩ for all 𝑓, ℎ ∈ 𝐻2 to prove the desired identity.

Exercise 18.8.26. Use Exercise 18.8.25 to derive a formula for 𝐶∗
3√

1−𝑧
2

.

Exercise 18.8.27.

(a) For 𝑓 ∈ 𝐻2, prove that ‖𝑓‖2 = |𝑓(0)|2 + 2
𝜋 ∫

𝔻
|𝑓′(𝑧)|2 log 1

|𝑧| 𝑑𝐴(𝑧).
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(b) If 𝜑 ∶ 𝔻 → 𝔻 is analytic, define

𝑁𝜑(𝜆) = ∑
𝑧∈𝜑−1({𝜆})

log 1
|𝑧| for 𝜆 ∈ 𝜑(𝔻)\{𝜑(0)}.

Prove that ‖𝐶𝜑𝑓‖2 = |𝑓(𝜑(0))|2 + 2
𝜋 ∫

𝔻
|𝑓′(𝑧)|2𝑁𝜑(𝑧) 𝑑𝐴(𝑧) for all 𝑓 ∈ 𝐻2.

Remark: The formula in (a) is the Littlewood–Paley formula and the function 𝑁𝜑 in (b) is
the Nevanlinna counting function.

Exercise 18.8.28. This exercise provides an improvement of Proposition 18.2.7 for the
norm of a composition operator 𝐶𝜑 on 𝐻2.

(a) Use Proposition 18.5.1 to prove that

( 1
1 − |𝜑(𝜆)|2 )

1
2 ⩽ ‖𝐶𝜑‖ (

1
1 − |𝜆|2 )

1
2

for all 𝜆 ∈ 𝔻.

(b) Prove that ‖𝐶𝜑‖ ⩾ sup
𝜆∈𝔻

( 1 − |𝜆|2
1 − |𝜑(𝜆)|2 )

1
2
.

Exercise 18.8.29. The reader encounteredBrouwer’s fixed-point theoremwhen exploring
the eigenvalues of a composition operator. The next three problems explore other types of
fixed-point theorems. Let 𝒱 be a Banach space. Then 𝑇 ∈ ℬ(𝒱) is a strict contraction if
there is a 𝑐 ∈ [0, 1) such that ‖𝑇v‖ ⩽ 𝑐‖v‖ for all v ∈ 𝒱. Prove that a strict contraction
𝑇 ∈ ℬ(𝒱) has a fixed point; that is, a v ∈ 𝒱 such that 𝑇v = v.

Exercise 18.8.30. This exercise continues Exercise 18.8.29. Give an example of a strict
contraction on a normed linear space that does not have a fixed point (and thus complete-
ness is important).

Exercise 18.8.31. Give an example of an isometry 𝑇 ∈ ℬ(ℋ) that does not have a fixed
point (and thus having a strict contraction is important).

Exercise 18.8.32. To explore the eigenvalues of compact composition operators, we used
Riesz’s theorem (Theorem2.6.9). The next several problems explore a version of this result.
Let 𝑇 ∈ ℬ(ℋ) be compact. Prove that the equation y + 𝑇y = x has a unique solution for
every x ∈ ℋ or the solution space of y + 𝑇y = 0 is nonzero and finite dimensional.
Remark: This result is known as the Fredholm alternative.

Exercise 18.8.33. This exercise continues Exercise 18.8.32. Let 𝑇 ∈ ℬ(ℋ) be compact.
Prove that the equations y+𝑇y = x and y+𝑇∗y = x′ have solutions for every x, x′ ∈ ℋ,
or the solution spaces of y + 𝑇y = 0 y + 𝑇∗y = 0 have the same dimension.

Exercise 18.8.34. Let 𝑇 ∈ ℬ(ℋ) be compact. Prove that y+𝑇y = x has a solution if and
only if x is orthogonal to {y ∈ ℋ ∶ y + 𝑇∗y = 0}.
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Exercise 18.8.35. This exercise is a continuation of Exercise 7.7.14, which considered the
weighted composition operator 𝑇 on 𝐻2 defined by (𝑇𝑓)(𝑧) = 𝑧𝑓(𝑧/2). Use the following
argument from [113] to characterize the invariant subspaces for 𝑇.

(a) For each 𝑘 ⩾ 0 show thatℳ𝑘, the subspace of𝐻2 consisting of functions which have
a zero of at least 𝑘 at 0, is an invariant subspace for 𝑇.

(b) To prove that {ℳ𝑘 ∶ 𝑘 ⩾ 1} are all of the 𝑇-invariant subspaces, prove that it suffices
to show that if 𝑓 ∈ 𝐻2 and 𝑓(0) ≠ 0, then⋁{𝑇𝑛𝑓 ∶ 𝑛 ⩾ 0} = 𝐻2.

(c) To show that if 𝑓 ∈ 𝐻2 with 𝑓(0) ≠ 0, then ⋁{𝑇𝑛𝑓 ∶ 𝑛 ⩾ 0} = 𝐻2, proceed as
follows. Let 𝑓 ∈ 𝐻2 with 𝑓(0) = 1 and write 𝑓 = 1 + 𝑔, where 𝑔 ∈ ℳ1. Define

ℎ𝑛 = √22(𝑛2−𝑛)𝑇𝑛𝑓 for 𝑛 ⩾ 0

and prove that the mapping𝑊(𝑧𝑛) = ℎ𝑛 extends by linearity to a bounded operator
on 𝐻2.

(d) Prove that if𝑊 is invertible in ℬ(𝐻2), then⋁{𝑇𝑛𝑓 ∶ 𝑛 ⩾ 0} = 𝐻2.

(e) Prove that ‖(𝑊 − 𝐼)𝑧𝑛‖ ⩽ ‖𝑔‖/2𝑛 for all 𝑛 ⩾ 0.

(f) Prove that𝑊 − 𝐼 is compact.

(g) Prove that ker𝑊 = {0}.

(h) Prove that𝑊 is invertible in ℬ(𝐻2).

18.9 Hints for the Exercises
Hint for Ex. 18.8.1: Prove that the symbol for the composition operator is 𝜑 = 𝑇𝑧. Now
use the fact that 𝑧𝑛 → 0 weakly in 𝐻2 to show that 𝜑 is a self map of 𝔻.
Hint for Ex. 18.8.6: Mimic the proof of Proposition 18.3.1 and use

∫
𝕋

1
1 − |𝜑|2 𝑑𝑚 =

∞
∑
𝑛=0

∫
𝕋
|𝜑|2𝑛𝑑𝑚.

Hint for Ex. 18.8.10: For (a), consult the von Neumann–Wold decomposition (Theorem
15.1.1). For (b), consider Rota’s example from Chapter 13.
Hint for Ex. 18.8.11: Mimic the proof of Proposition 18.6.1.
Hint for Ex. 18.8.21: Consult (18.3.9).
Hint for Ex. 18.8.22: Consult Theorem 18.5.5 and argue that |ℎ| is bounded above and
below on 𝔻.
Hint for Ex. 18.8.23: Prove that 𝐶𝜓 = 𝐶𝑧𝑑𝐶𝜑.
Hint for Ex. 18.8.35: For (f), show that𝑊 − 𝐼 is completely continuous. For (g), suppose
𝑓 = ∑∞

𝑛=0 𝑎𝑛𝑧𝑛 ∈ ker𝑇. Use a contradiction argument supplied by the fact that 𝑎0ℎ0 +
∑∞

𝑛=1 𝑎𝑛ℎ𝑛 = 0.
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. . . . . . .

Subnormal Operators

Key Concepts: Subnormal operator, normal extension, hyponormal operator, subnormal weighted
shift, representation of a cyclic subnormal operator, Brown’s theorem on invariant subspaces.

Outline: A subnormal operator is the restriction of a normal operator to an invariant
subspace. This chapter surveys a variety of subnormal operators, a representation theorem
that is the analogue of the spectral theorem for normal operators, and a proof of the
existence of invariant subspaces for subnormal operators.

19.1 Basics of Subnormal Operators
Since the spectral theorem for normal operators (Theorem19.2.3) answersmany questions
about normal operators, it is natural to investigate relatives of the normal operators for
which an analogous theory can be developed.
An operator 𝑆 ∈ ℬ(ℋ) is subnormal if it satisfies the following three conditions.

(a) ℋ is a subspace of a Hilbert space𝒦.

(b) There is a normal operator 𝑁 ∈ ℬ(𝒦) such that 𝑁ℋ ⊆ ℋ.

(c) 𝑁|ℋ = 𝑆.

In short, a subnormal operator is a normal operator restricted to one of its invariant
subspaces. The operator 𝑁 above is a normal extension of 𝑆. Although a normal extension
is never unique (Exercise 19.6.6), there is a minimal normal extension that is unique up
to unitary equivalence (Proposition 19.2.7).

Example 19.1.1. The use of the letter 𝑆 to denote a subnormal operator might appear to
invite confusionwith the unilateral shift on𝐻2 fromChapter 5. However, these notational
concerns are largely unwarranted since the unilateral shift is a fundamental example of a
subnormal operator. Indeed, the unilateral shift 𝑆 on 𝐻2 is subnormal since the bilateral
shift 𝑀𝜉 on 𝐿2(𝕋) is normal (in fact unitary by Proposition 4.3.1), 𝐻2 is an 𝑀𝜉-invariant
subspace of 𝐿2(𝕋), and 𝑆 = 𝑀𝜉|𝐻2 . Observe that 𝑆 is not a normal operator (Exercise 5.9.2).
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Example 19.1.2. TheBergman shift (𝑀𝑓)(𝑧) = 𝑧𝑓(𝑧) fromChapter 10 is subnormal since
𝑀𝑧 on 𝐿2(𝑑𝐴) is normal (Proposition 8.1.14), the Bergman space 𝐴2 is an 𝑀𝑧-invariant
subspace of𝐿2(𝑑𝐴), and𝑀 = 𝑀𝑧|𝐴2 . Notice that the Bergman shift is not a normal operator
(Exercise 10.7.16).

Example 19.1.3. For 𝜑 ∈ 𝐻∞, the Toeplitz operator 𝑇𝜑 on 𝐻2 from Chapter 16 is
subnormal. Let 𝜑 also denote the almost everywhere defined radial boundary function
(Theorem 5.4.3) 𝜑(𝜉) = lim𝑟→1− 𝜑(𝑟𝜉) and observe that the multiplication operator𝑀𝜑 on
𝐿2(𝕋) is normal (Proposition 8.1.14), 𝐻2 is an 𝑀𝜑-invariant subspace (Proposition 5.5.4),
and 𝑇𝜑 = 𝑀𝜑|𝐻2 (Proposition 16.6.2). In particular, we obtain the subnormality of the
unilateral shift 𝑆 as the special case 𝜑(𝑧) = 𝑧 (Example 19.1.1).

Example 19.1.4. Any isometry 𝐴 ∈ ℬ(ℋ) is subnormal since the operator

𝑁 = [𝐴 𝐼 − 𝐴𝐴∗
0 −𝐴∗ ]

defined on 𝒦 = ℋ ⊕ℋ is normal (in fact unitary by Exercise 19.6.1) and 𝑁|ℋ⊕{0} = 𝐴.
Observe that

𝑁′ = [𝐴 𝐼 − 𝐴𝐴∗
0 𝐴∗ ]

is also normal (Exercise 19.6.2) and 𝑁′|ℋ⊕{0} = 𝐴. Thus, a normal extension of a
subnormal operator is not unique. See Exercise 19.6.6 for other examples.

If 𝑆 ∈ ℬ(ℋ) is subnormal and 𝑁 ∈ ℬ(𝒦) is a normal extension of 𝑆 on𝒦 ⊇ ℋ, then

𝑁 = [𝑆 𝑋
0 𝑇]

with respect to the orthogonal decomposition𝒦 = ℋ ⊕ℋ⟂ (Theorem 14.3.4).

Example 19.1.5. The backward shift operator 𝑆∗ on 𝐻2 is not subnormal. Suppose,
toward a contradiction, that 𝑆∗ has a normal extension

𝑁 = [𝑆
∗ 𝑋
0 𝑇] .

Then, with ⋆ denoting an entry whose value is not of interest, we see that

[0 0
0 0] = 𝑁𝑁∗ − 𝑁∗𝑁

= [𝑆
∗𝑆 − 𝑆𝑆∗ + 𝑋𝑋∗ ⋆

⋆ ⋆]

= [𝐼 − 𝑆𝑆∗ + 𝑋𝑋∗ ⋆
⋆ ⋆] (by Exercise 5.9.2)
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= [1 ⊗ 1 + 𝑋𝑋∗ ⋆
⋆ ⋆] (by Exercise 5.9.2).

It follows that 1⊗1+𝑋𝑋∗ is the zero operator, which it is not since 1⊗1 is positive definite
and 𝑋𝑋∗ is positive semidefinite.

Remark 19.1.6. Since the unilateral shift 𝑆 is subnormal and 𝑆∗ is not, it follows that
subnormality is not preserved under the adjoint operation.

The next proposition shows that subnormality is preserved under unitary equivalence.

Proposition 19.1.7. An operator that is unitarily equivalent to a subnormal operator is
subnormal.

Proof Let 𝐴 ∈ ℬ(ℋ1) be subnormal with normal extension 𝑁𝐴 ∈ ℬ(𝒦1), whereℋ1 ⊆
𝒦1. Suppose 𝑈 ∶ ℋ1 → ℋ2 is unitary and 𝑈𝐴𝑈∗ = 𝐵 ∈ ℬ(ℋ2). The Hilbert space
𝒦2 = ℋ2 ⊕ (𝒦1 ⊖ℋ1) containsℋ2. Consider the unitary operator

𝑉 = [𝑈 0
0 𝐼] ∶ 𝒦1 = ℋ1 ⊕ (𝒦1 ⊖ℋ1) → 𝒦2 = ℋ2 ⊕ (𝒦1 ⊖ℋ1).

Acalculation shows that𝑉𝑁𝐴𝑉∗ is a normal operator on𝒦2. Furthermore, if x ∈ ℋ2,
another calculation reveals that

𝑉𝑁𝐴𝑉∗ [x0] = [𝐵x0 ] .

Thus, 𝑉𝑁𝐴𝑉∗|ℋ2 = 𝐵. Consequently, 𝐵 has a normal extension and is therefore
subnormal. ■

Example 19.1.8. The Cesàro operator

(𝐶𝑓) = 1
𝑧 ∫

𝑧

0

𝑓(𝜉)
1 − 𝜉𝑑𝜉

on 𝐻2 is subnormal. This is unexpected since there is no obvious normal extension. As
shown in Theorem 6.4.7, this operator is unitarily equivalent to 𝐼 −𝑀𝑧 on a certain𝐻2(𝜇)
space, which is subnormal (see below). Now use Proposition 19.1.7.

19.2 Cyclic Subnormal Operators
Suppose 𝜇 is a finite positive compactly supported Borel measure on ℂ. The set of
polynomials ℂ[𝑧] is contained in 𝐿2(𝜇).

Definition 19.2.1. For 𝜇 as above, let 𝐻2(𝜇) denote the closure of ℂ[𝑧] in 𝐿2(𝜇).

Example 19.2.2. If 𝑚 is Lebesgue measure on 𝕋, then 𝐻2(𝑚) is the Hardy space 𝐻2. If
𝑑𝐴 is Lebesgue measure on 𝔻, then 𝐻2(𝑑𝐴) is the Bergman space 𝐴2.
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Define 𝑁𝜇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) by

(𝑁𝜇𝑓)(𝑧) = 𝑧𝑓(𝑧)

and recall from Chapter 8 that𝑁𝜇 is a bounded ∗-cyclic (Definition 8.2.6) normal operator
with adjoint (𝑁∗

𝜇𝑓)(𝑧) = 𝑧𝑓(𝑧). Bram’s theorem (Theorem 8.2.12) says that 𝑁𝜇 is cyclic,
meaning there is some 𝑓 ∈ 𝐿2(𝜇) such that⋁{𝑁𝑘

𝜇𝑓 ∶ 𝑘 ⩾ 0} = 𝐿2(𝜇).
Theorem 8.7.1 is the spectral theorem for cyclic selfadjoint operators. Here is the

corresponding theorem for normal operators [94, Ch. IX]. Readers interested in the proof
can consult [94]. The standard proof involves the representation theory of commutative
𝐶∗-algebras and would draw us too far afield since our aim here is to present results based
on concrete examples.

Theorem 19.2.3 (Spectral theorem for normal operators). Let 𝑁 ∈ ℬ(ℋ) be a ∗-cyclic
normal operator with ∗-cyclic vector x. Then there is a finite positive compactly supported
Borel measure 𝜇 on ℂ and a unitary operator 𝑈 ∶ ℋ → 𝐿2(𝜇) such that 𝑈x = 1 and
𝑁 = 𝑈∗𝑁𝜇𝑈 .

Below is a commutative diagram that illustrates the spectral theorem.

ℋ 𝑁 - ℋ

𝐿2(𝜇)

𝑈

?

𝑁𝜇
- 𝐿2(𝜇)

𝑈∗

6

Now define 𝑆𝜇 ∶ 𝐻2(𝜇) → 𝐻2(𝜇) by

(𝑆𝜇𝑓)(𝑧) = 𝑧𝑓(𝑧) (19.2.4)

and observe that

𝑁𝜇𝐻2(𝜇) ⊆ 𝐻2(𝜇) and 𝑆𝜇 = 𝑁𝜇|𝐻2(𝜇).

In other words, 𝑆𝜇 is a subnormal operator and𝑁𝜇 is a normal extension of 𝑆𝜇. Also notice
that 𝑆𝜇 is a cyclic operator with cyclic vector 1. The proof of Proposition 8.1.5 yields the
following.

Proposition 19.2.5. ‖𝑆𝜇‖ = sup{|𝑧| ∶ 𝑧 ∈ supp𝜇}.

We now discuss a model operator for a cyclic subnormal operator. But first, we need to
address another issue: the lack of uniqueness of a normal extension (see Example 19.1.4
and Exercises 19.6.3 and 19.6.6).

Definition 19.2.6. A normal extension 𝑁 ∈ ℬ(𝒦) of a subnormal operator 𝑆 ∈ ℬ(ℋ) is
aminimal normal extension if𝒦 has no proper subspace that reduces 𝑁 and containsℋ.
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Proposition 19.2.7. Let 𝑆 ∈ ℬ(ℋ) be subnormal with a normal extension 𝑁 ∈ ℬ(𝒦),
whereℋ ⊆ 𝒦. Then 𝑁 is a minimal normal extension of 𝑆 if and only if

𝒦 =⋁{𝑁∗𝑗ℎ ∶ 𝑗 ⩾ 0, ℎ ∈ ℋ}.

Proof Let 𝒦′ = ⋁{𝑁∗𝑗ℎ ∶ 𝑗 ⩾ 0, ℎ ∈ ℋ} and note that 𝒦′ ⊇ ℋ and 𝒦′ reduces
𝑁. This means that 𝑁|𝒦′ defines a normal operator that extends 𝑆. Any reducing
subspace that contains ℋ also contains 𝑁∗𝑗ℋ for all 𝑗 ⩾ 0, and hence 𝒦′ is the
smallest reducing subspace of𝒦 that containsℋ. ■

We say that 𝑁|𝒦 is the minimal normal extension of 𝑆. A technical detail says that if
𝑁 and 𝑁′ are two minimal normal extensions of 𝑆, then 𝑁 is unitarily equivalent to 𝑁′

[95, p. 39]. Thus, it makes sense to use the term “the” (up to unitary equivalence) minimal
normal extension of 𝑆.
Here is the main representation theorem for subnormal operators. It mirrors the

spectral theorem for cyclic normal operators.

Theorem 19.2.8. Let 𝑆 ∈ ℬ(ℋ) be cyclic and subnormal. Then there is a finite positive
compactly supported Borelmeasure𝜇 onℂ such that 𝑆 is unitarily equivalent to 𝑆𝜇 on𝐻2(𝜇).

Proof Let x be a cyclic vector for 𝑆 and let𝑁 ∈ ℬ(𝒦), whereℋ ⊆ 𝒦, denote theminimal
normal extension of 𝑆. Proposition 19.2.7 and the fact that⋁{𝑆𝑛x ∶ 𝑛 ⩾ 0} = ℋ yield

𝒦 =⋁{𝑁∗𝑗x ∶ 𝑗 ⩾ 0, x ∈ ℋ} =⋁{𝑁∗𝑗𝑆𝑘x ∶ 𝑗, 𝑘 ⩾ 0} =⋁{𝑁∗𝑗𝑁𝑘x ∶ 𝑗, 𝑘 ⩾ 0}.

Thus, x is a ∗-cyclic vector for 𝑁. The spectral theorem for ∗-cyclic normal operators
(Theorem 19.2.3) produces a finite positive compactly supported Borel measure 𝜈 on
ℂ and a unitary 𝑈 ∶ 𝒦 → 𝐿2(𝜈) such that 𝑈𝑁𝑈∗ = 𝑁𝜈.

For any 𝑝 ∈ ℂ[𝑧],

‖𝑝(𝑆)x‖2 = ⟨𝑝(𝑆)x, 𝑝(𝑆)x⟩ℋ
= ⟨𝑝(𝑁)x, 𝑝(𝑁)x⟩𝒦
= ⟨𝑈𝑝(𝑁)x, 𝑈𝑝(𝑁)x⟩𝐿2(𝜈)
= ⟨𝑀𝑝𝑈x,𝑀𝑝𝑈x⟩𝐿2(𝜈)

= ∫|𝑝|2|𝑈x|2𝑑𝜈.

Now define 𝑑𝜇 = |𝑈x|2𝑑𝜈 and observe that

‖𝑝(𝑆)x‖2 = ∫|𝑝|2𝑑𝜇.

The set {𝑝(𝑆)x ∶ 𝑝 ∈ ℂ[𝑧]} is dense inℋ since x is a cyclic vector. Thus, the linear
transformation 𝑉 ∶ 𝐻2(𝜇) → ℋ, initially defined on ℂ[𝑧] by

𝑉𝑝 = 𝑝(𝑆)x, (19.2.9)
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is isometric with dense range and thus extends to a unitary operator. For 𝑝 ∈ ℂ[𝑧],
we have 𝑉𝑆𝜇𝑝 = 𝑉(𝑧𝑝) = 𝑆𝑝(𝑆)x = 𝑆𝑉𝑝. Since ℂ[𝑧] is dense in 𝐻2(𝜇), this extends
to all of 𝐻2(𝜇). Thus, 𝑆 = 𝑉𝑆𝜇𝑉∗. ■

Remark 19.2.10. From the spectral-radius formula, we also have that 𝜎(𝑆𝜇) ⊆ ‖𝑆𝜇‖𝔻−.
Proposition 19.2.5 says that the support of 𝜇 is contained in ‖𝑆𝜇‖𝔻−.
From (19.2.9), notice that 𝑉∗ maps the cyclic vector x to the constant function 1. This

becomes important in Theorem 19.3.4. Below is a commutative diagram that illustrates
Theorem 19.2.8.

ℋ 𝑆 - ℋ

𝐻2(𝜇)

𝑉∗

?

𝑆𝜇
- 𝐻2(𝜇)

𝑉

6

19.3 Subnormal Weighted Shifts
Suppose thatℋ is a Hilbert spacewith orthonormal basis (u𝑛)∞𝑛=0. If (𝛼𝑛)∞𝑛=0 is a sequence
of positive numbers, recall from Exercise 3.6.21 the corresponding weighted shift

𝐴u𝑛 = 𝛼𝑛u𝑛+1 for 𝑛 ⩾ 0. (19.3.1)

This definition extends by linearity to a bounded operator onℋ if and only if the weight
sequence (𝛼𝑛)∞𝑛=0 is a bounded sequence. The matrix representation of 𝐴 with respect to
(u𝑛)∞𝑛=0 is

⎡⎢⎢⎢⎢⎢
⎣

0 0 0 0 ⋯
𝛼0 0 0 0 ⋯
0 𝛼1 0 0 ⋯
0 0 𝛼2 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥
⎦

(19.3.2)

and ‖𝐴‖ = sup𝑛⩾0 𝛼𝑛.
We have already seen three examples of weighted shifts:

(a) The unilateral shift on 𝐻2 (Chapter 5): 𝛼𝑛 = 1 and u𝑛 = 𝑧𝑛.

(b) The Dirichlet shift (Chapter 9): 𝛼𝑛 = √
𝑛+2
𝑛+1

and u𝑛 = 𝑧𝑛/√𝑛 + 1.

(c) The Bergman shift (Chapter 10): 𝛼𝑛 = √
𝑛+1
𝑛+2

and u𝑛 = √𝑛 + 1 𝑧𝑛.

For 𝛽 ∈ ℝ, there are also the Dirichlet-type spaces

𝒟𝛽 = {𝑓(𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 ∶ ‖𝑓‖2𝛽 =
∞
∑
𝑛=0

|𝑎𝑛|2(𝑛 + 1)𝛽 < ∞}.
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Note that𝒟0 = 𝐻2,𝒟1 = 𝒟, and𝒟−1 = 𝐴2. There is a natural orthonormal basis

u(𝛽)𝑛 (𝑧) = 𝑧𝑛
(𝑛 + 1)𝛽/2 for 𝑛 ⩾ 0,

for𝒟𝛽 , along with a corresponding weighted shift 𝐴𝛽 ∶ 𝒟𝛽 → 𝒟𝛽 defined by

𝐴𝛽u
(𝛽)
𝑛 = (𝑛 + 2

𝑛 + 1)
𝛽/2
u(𝛽)𝑛+1. (19.3.3)

For 𝛽 = 0 and 𝛽 = −1, the corresponding weighted shifts are subnormal because they are
𝑀𝑧 on the Hardy space (Example 19.1.1) and Bergman space (Example 19.1.2), respec-
tively. What about the subnormality of other weighted shifts? The following theorem
provides the answer. We remind the reader (see (19.2.4)) that 𝑆𝜇 denotes the operator
𝑆𝜇𝑓 = 𝑧𝑓 on 𝐻2(𝜇), the closure of the polynomials in 𝐿2(𝜇).

Theorem 19.3.4 (Gellar–Wallen [152]). Let 𝐴 be a weighted shift from (19.3.1) with
corresponding positive weight sequence (𝛼𝑛)∞𝑛=0. Then the following are equivalent.

(a) 𝐴 is subnormal.

(b) There is a finite positive Borel measure 𝜇 on [0, ‖𝐴‖] whose support contains ‖𝐴‖ such
that

(𝛼0𝛼1𝛼2⋯𝛼𝑛−1)2 = ∫
‖𝐴‖

0
𝑥2𝑛 𝑑𝜇(𝑥) for all 𝑛 ⩾ 1. (19.3.5)

(c) There is a finite positive Borel measure 𝜇 on [0, ‖𝐴‖] with ‖𝐴‖ in its support such that 𝐴
is unitarily equivalent to 𝑆𝜈 on𝐻2(𝜈), where

𝑑𝜈 = 1
2𝜋𝑑𝜃 𝑑𝜇(𝑟) (19.3.6)

is a measure on the disk ‖𝐴‖𝔻−.

Proof We follow the proof from [95, Ch. 2]. Recall that ‖𝐴‖ = sup𝑛⩾0 𝛼𝑛.
(a) ⇒ (b) Since 𝐴 is cyclic with cyclic vector u0, Theorem 19.2.8, along with Remark
19.2.10, provides a unitary 𝑈 ∶ ℋ → 𝐻2(𝜎) such that 𝑈u0 = 1 and 𝑈𝐴𝑈∗ = 𝑆𝜍 on
𝐻2(𝜎) for some measure 𝜎 on the disk ‖𝐴‖𝔻−. Thus, 𝑈𝐴𝑛u0 = 𝑆𝑛𝜍𝑈u0 = 𝑧𝑛.

Let

𝛾0 = 1 and 𝛾𝑛 = 𝛼0𝛼1𝛼2⋯𝛼𝑛−1 for 𝑛 ⩾ 1. (19.3.7)

Then

𝐴u0 = 𝛼0u1 = 𝛾1u1,
𝐴2u0 = 𝛾1𝐴u1 = 𝛾1𝛼1u2 = 𝛾2u2,

⋮
𝐴𝑛u0 = 𝐴(𝛾𝑛−1u𝑛−1) = 𝛾𝑛−1𝛼𝑛u𝑛 = 𝛾𝑛u𝑛.
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Therefore, 𝑧𝑛 = 𝑈𝐴𝑛u0 = 𝛾𝑛𝑈u𝑛 and hence 𝑈u𝑛 = 𝑧𝑛𝛾−1𝑛 . Since 𝑈 is isometric, it
follows that ‖𝑈u𝑛‖ = 1 and consequently,

1
𝛾2𝑛

∫|𝑧|2𝑛𝑑𝜎 = ‖𝑈u𝑛‖2 = 1.

This yields

𝛾2𝑛 = ∫|𝑧|2𝑛𝑑𝜎.

Define a measure 𝜇 on [0, ‖𝐴‖] by 𝜇(𝐵) = 𝜎({|𝑧| ∈ 𝐵}) for any Borel set 𝐵 ⊆ [0, ‖𝐴‖].
Then

𝛾2𝑛 = ∫
‖𝐴‖

0
𝑟2𝑛𝑑𝜇(𝑟).

Proposition 19.2.5 implies that

‖𝐴‖ = ‖𝑆𝜍‖ = sup
𝑧∈supp𝜍

|𝑧| = sup
𝑟∈supp𝜇

𝑟.

Thus, ‖𝐴‖ belongs to the support of 𝜇.
(b) ⇒ (c) Let 𝜇 and 𝜈 be the measures from (19.3.5) and (19.3.6), respectively, and
consider the space 𝐻2(𝜈). The condition in (19.3.5) implies

‖𝑧𝑛‖2 = 1
2𝜋 ∫

‖𝐴‖

0
∫

2𝜋

0
|𝑟𝑒𝑖𝜃|2𝑛𝑑𝜃 𝑑𝜇(𝑟) = ∫

‖𝐴‖

0
𝑟2𝑛 𝑑𝜇(𝑟) = 𝛾2𝑛 .

Furthermore,

⟨𝑧𝑛, 𝑧𝑚⟩ = 1
2𝜋 ∫

‖𝐴‖

0
∫

2𝜋

0
𝑟𝑛+𝑚𝑒𝑖𝜃(𝑛−𝑚)𝑑𝜃 𝑑𝜇(𝑟)

= 𝛿𝑚𝑛∫
‖𝐴‖

0
𝑟2𝑛 𝑑𝜇(𝑟).

= 𝛿𝑚𝑛𝛾2𝑛 .

Thus, (𝑧𝑛𝛾−1𝑛 )∞𝑛=0 is an orthonormal basis for𝐻2(𝜈). Now define the unitary operator
𝑉 ∶ ℋ → 𝐻2(𝜈) by

𝑉u𝑛 =
𝑧𝑛
𝛾𝑛
, (19.3.8)

and note that

𝑉𝐴𝑉∗ 𝑧𝑛
𝛾𝑛

= 𝑉𝐴u𝑛 (by (19.3.8))

= 𝑉𝛼𝑛u𝑛+1 (by (19.3.1))

= 𝛼𝑛
𝑧𝑛+1
𝛾𝑛+1

(by (19.3.8))

= 𝑧𝑧
𝑛

𝛾𝑛
= 𝑆𝜈

𝑧𝑛
𝛾𝑛
.

Thus, 𝐴 = 𝑉∗𝑆𝜈𝑉 .
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(c) ⇒ (a) Since 𝑆𝜈 is subnormal and 𝐴 is unitarily equivalent to it, Proposition 19.1.7
ensures that 𝐴 is subnormal. ■

Below is a commutative diagram that illustrates Theorem 19.3.4.

ℋ 𝐴 - ℋ

𝐻2(𝜈)

𝑉

?

𝑆𝜈
- 𝐻2(𝜈)

𝑉∗

6

The next corollary demonstrates a notable difference between the Dirichlet shift, and
the Hardy and Bergman shifts.

Corollary 19.3.9. The Dirichlet shift is not subnormal.

Proof Suppose toward a contradiction that the Dirichlet shift is subnormal. From our
earlier discussion, the Dirichlet shift𝑀𝑧 is a weighted shift with weight sequence

𝛼𝑛 =√
𝑛 + 2
𝑛 + 1

and ‖𝑀𝑧‖ = √2. Furthermore, 𝛾𝑛 = √𝑛 + 1 as defined in (19.3.7). Thus, there is a
positive finite Borel measure 𝜇 on [0,√2] with√2 ∈ supp𝜇 such that

𝑛 + 1 = ∫
√2

0
𝑟2𝑛𝑑𝜇(𝑟).

We show this is impossible. For 1 < 𝑎 < √2, observe that

𝑛 + 1 = ∫
√2

0
𝑟2𝑛𝑑𝜇(𝑟) ⩾ ∫

√2

𝑎
𝑟2𝑛𝑑𝜇(𝑟) ⩾ 𝑎2𝑛𝜇([𝑎,√2]).

Thus,

𝜇([𝑎,√2]) ⩽ 𝑛 + 1
𝑎2𝑛 for all 𝑛 ⩾ 1 and 1 < 𝑎 < √2.

Let 𝑛 → ∞ to conclude that 𝜇([𝑎,√2]) = 0 for all 1 < 𝑎 < √2. This contradicts the
fact that√2 ∈ supp𝜇. ■

For 𝛽 > 0, a similar proof shows that𝑀𝑧 on𝒟𝛽 is not subnormal. One can also give an
alternate proof using hyponormality (Exercise 19.6.11). When 𝛽 < 0 and

𝛼𝑛 = (𝑛 + 2
𝑛 + 1)

𝛽/2
, (19.3.10)

the correspondingweighted shift𝐴𝛽 from (19.3.3) (equivalently𝑀𝑧 on𝒟𝛽) is hyponormal.
A nontrivial result from [39] shows that more is true.
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Theorem 19.3.11. 𝑀𝑧 on𝒟𝛽 is subnormal for all 𝛽 < 0.

A good starting point to learn more about various aspects of weighted shifts, including
their corresponding function space realizations, is [342].

19.4 Invariant Subspaces
Subnormal operators have proper nonzero invariant subspaces. Although we do not
go into fine detail, we highlight the powerful function theory involved. An important
ingredient is the identification of the cyclic subnormal operators with 𝑆𝜇 on 𝐻2(𝜇)
(Theorem 19.2.8). The original proof of the next theorem is due to Brown [72], but the
simplification presented below is due to Thomson [358].

Theorem 19.4.1 (Brown). If ℋ is a Hilbert space with dimℋ ⩾ 2 and 𝑆 ∈ ℬ(ℋ) is
subnormal, then 𝑆 has a proper nonzero invariant subspace.

Proof If 𝑆 is not cyclic, then⋁{𝑆𝑛x ∶ 𝑛 ⩾ 0} is a proper nonzero 𝑆-invariant subspace
for any x ∈ ℋ\{0}. So let us assume that 𝑆 is cyclic. Theorem 19.2.8 says that 𝑆
is unitarily equivalent to 𝑆𝜇 on 𝐻2(𝜇). Thus, it suffices to prove that 𝑆𝜇 has proper
nonzero invariant subspaces.

The proof splits into two cases:

𝐻2(𝜇) = 𝐿2(𝜇) and 𝐻2(𝜇) ⊊ 𝐿2(𝜇).

If 𝐻2(𝜇) = 𝐿2(𝜇), then, since dim𝐿2(𝜇) ⩾ 2, there exists a Borel set 𝐴 such that
𝜇(𝐴) > 0 and 𝜇(ℂ\𝐴) > 0. The subspace 𝜒𝐴𝐿2(𝜇) is a proper nonzero 𝑆𝜇-invariant
subspace.

The second case is trickier and requires the following technical lemma from [95].
Assuming that 𝐻2(𝜇) ⊊ 𝐿2(𝜇), there is a 𝜆 ∈ ℂ with 𝜇({𝜆}) = 0, an 𝑓 ∈ 𝐻2(𝜇),
and a 𝑔 ∈ 𝐿2(𝜇) such that

𝑝(𝜆) = ∫𝑝𝑓𝑔𝑑𝜇 for all 𝑝 ∈ ℂ[𝑧]. (19.4.2)

Assuming (19.4.2), define

ℳ = {𝑞𝑓 ∶ 𝑞 ∈ ℂ[𝑧], 𝑞(𝜆) = 0}−.

Notice thatℳ is an 𝑆𝜇-invariant subspace.
To finish the proof, we need to verify that {0} ⊊ ℳ ⊊ 𝐻2(𝜇). Apply (19.4.2) to the
constant polynomial 𝑝 ≡ 1 to see that ⟨𝑓, 𝑔⟩ = 1. Apply (19.4.2) again for any
polynomial 𝑝 such that 𝑝(𝜆) = 0 to conclude that 𝑔 ⟂ ℳ. Thus, 𝑓 ∈ 𝐻2(𝜇)\ℳ.
Since 𝑓 ≠ 0 𝜇-almost everywhere and 𝜇({𝜆}) = 0, the function (𝑧 − 𝜆)𝑓 belongs to
ℳ\{0}. Therefore,ℳ ≠ {0}. ■
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19.5 Notes
Let us mention a few other gems from the theory of subnormal operators. See [95] for all
the details along with a wealth of other results that we do not have room to cover here.
Proving that an 𝑆 ∈ ℬ(ℋ) is subnormal by identifying a normal extension can

be difficult as was seen by the Cesàro operator. There are a variety of tests one can
perform that often prove subnormality. For example, Bram [63] proved that 𝑆 ∈ ℬ(ℋ)
is subnormal if and only if

𝑛
∑
𝑗,𝑘=0

⟨𝑆𝑗x𝑘, 𝑆𝑘x𝑗⟩ ⩾ 0 for every x0, x1,…, x𝑛 ∈ ℋ.

The ambient space 𝐻2(𝜇), the closure of the polynomials in 𝐿2(𝜇), is worthy of study.
A celebrated result of Thomson [359] decomposes the support Δ of a finite positive Borel
measure 𝜇 into disjoint Borel sets Δ𝑗 for 𝑗 ⩾ 0 such that

𝐻2(𝜇) = 𝐿2(𝜇|∆0 ) ⊕ 𝐻2(𝜇|∆1 ) ⊕ 𝐻2(𝜇|∆2 ) ⊕⋯ . (19.5.1)

This result has important applications to the structure of subnormal operators [95]. More
importantly, this description resolves a long-standing conjecture of Brennan [95, Ch. VIII]
which says that either 𝐻2(𝜇) = 𝐿2(𝜇) or there is a 𝜆 ∈ supp𝜇 and a 𝐶 > 0 such that
|𝑝(𝜆)| ⩽ 𝐶‖𝑝‖𝐿2(𝜇) for all 𝑝 ∈ ℂ[𝑧]. Permitting a slight abuse of language, such a point 𝜆
is called a bounded point evaluation.
Sarason [325] described the space 𝐻∞(𝜇), the weak-∗ closure of the polynomials in

𝐿∞(𝜇). This space is important since it reveals further structure theorems for subnormal
operators.
Another gem is a version of von Neumann’s inequality for subnormal operators. If 𝑇 ∈

ℬ(ℋ) is a contraction, von Neumann [370] (see also [144]) proved that

‖𝑝(𝑇)‖ ⩽ sup
𝑧∈𝔻

|𝑝(𝑧)| for all 𝑝 ∈ ℂ[𝑧].

For any 𝑇 ∈ ℬ(ℋ) and rational function 𝑓 whose poles are in ℂ\𝜎(𝑇), one can define
𝑓(𝑇) via the Riesz functional calculus. If 𝑆 is a subnormal operator and 𝐾 is a compact set
containing 𝜎(𝑆), then ‖𝑓(𝑆)‖ ⩽ sup𝑧∈𝐾 |𝑓(𝑧)|. This functional calculus also yields various
spectral-mapping theorems for subnormal operators.
There is a version of Corollary 8.3.3 which describes the commutant of 𝑆𝜇 as

{𝑆𝜇}′ = {𝑀𝜑 ∶ 𝜑 ∈ 𝐻2(𝜇) ∩ 𝐿∞(𝜇)},

where𝑀𝜑𝑓 = 𝜑𝑓 on 𝐻2(𝜇).
Example 19.1.3 shows that any analytic Toeplitz operator 𝑇𝜑 on the Hardy space 𝐻2 is

subnormal with normal extension𝑀𝜑. Is this theminimal normal extension? As long as 𝜑
is nonconstant, the answer is yes. Theminimal normal extension for a subnormal operator
is also a well-studied topic. One of many results is: if 𝑁 is the minimal normal extension
of a subnormal operator 𝑆, then 𝜑(𝑁) is the minimal normal extension of 𝜑(𝑆) for a rich
class of functions 𝜑 [95].
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19.6 Exercises
Exercise 19.6.1. If 𝐴 ∈ ℬ(ℋ) is an isometry, prove that

𝑈 = [𝐴 𝐼 − 𝐴𝐴∗
0 −𝐴∗ ]

is a unitary operator onℋ⊕ℋ.

Exercise 19.6.2. If 𝐴 ∈ ℬ(ℋ) is an isometry, prove that

𝑁 = [𝐴 𝐼 − 𝐴𝐴∗
0 𝐴∗ ]

is a normal operator onℋ⊕ℋ.

Exercise 19.6.3.

(a) Let 𝑆 denote the unilateral shift on ℓ2. Prove that

𝑁(…, 𝑎−2, 𝑎−1, 𝑎0 , 𝑎1, 𝑎2,…) = (…, 𝑎−3, 𝑎−2, 𝑎−1 , 𝑎0, 𝑎1, 𝑎2,…)

and

𝑁′(…, 𝑎−2, 𝑎−1, 𝑎0 , 𝑎1, 𝑎2,…) = (…,−𝑎−3, −𝑎−2, 𝑎−1 , 𝑎0, 𝑎1, 𝑎2,…)

on ℓ2(ℤ) are both normal extensions of 𝑆. The box denotes the 0th position.

(b) Relate these extensions to those considered in Example 19.1.4.

Exercise 19.6.4. Let 𝐴 ∈ ℬ(ℋ) and suppose that 𝐴 and 𝐴∗ are subnormal. Prove that 𝐴
is normal.

Exercise 19.6.5. If 𝑇 ∈ ℬ(ℋ) is normal andℳ is a 𝑇-invariant subspace ofℋ such that
𝑇|ℳ is normal, prove thatℳ is reducing for 𝑇|ℳ .

Exercise 19.6.6.

(a) If 𝑆 ∈ ℬ(ℋ) is subnormal and 𝑁 ∈ ℬ(ℋ) is normal, prove that 𝑆 ⊕𝑁 ∈ ℬ(ℋ⊕ℋ)
is subnormal.

(b) What does this say about the uniqueness of a normal extension of 𝑆?

Exercise 19.6.7. Let 𝑑𝜇 = 𝑑𝐴|{ 1
2
<|𝑧|<1} denote planar Lebesgue measure on the annulus

{𝑧 ∶ 1
2 < |𝑧| < 1}.

(a) Prove that the restriction of a function in the Bergman space 𝐴2 (of the disk) to the
annulus belongs to 𝐻2(𝜇).

(b) Prove that each function in 𝐻2(𝜇) has an extension to 𝔻 that belongs to 𝐴2.
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(c) Let ‖𝑓‖𝐴2 denote the Bergman-space norm. Prove that there exists 𝑐1, 𝑐2 > 0 such
that

𝑐1‖𝑓‖2𝐴2 ⩽ ∫
{ 1
2
<|𝑧|<1}

|𝑓|2𝑑𝐴 ⩽ 𝑐2‖𝑓‖2𝐴2 for all 𝑓 ∈ 𝐴2.

Exercise 19.6.8. Let 𝑑𝜇 = 𝑑𝐴|{ 1
2
<|𝑧|<1}.

(a) Prove that 𝑅2(𝜇), the closure of the set of rational functions whose poles lie inℂ\{ 1
2
⩽

|𝑧| ⩽ 1}, is the space of analytic functions 𝑓 on { 1
2
< |𝑧| < 1} such that

∫
{ 1
2
<|𝑧|<1}

|𝑓|2𝑑𝐴 < ∞.

(b) Prove that 𝐻2(𝜇) ⊊ 𝑅2(𝜇) ⊊ 𝐿2(𝜇).

(c) Prove that𝑀𝑧 on 𝑅2(𝜇) is not cyclic.

Exercise 19.6.9. Recall from (6.4.1) that 𝐴 ∈ ℬ(ℋ) is hyponormal if 𝐴∗𝐴 − 𝐴𝐴∗ ⩾ 0.
Prove that any subnormal operator is hyponormal.

Exercise 19.6.10. Let 𝑆 denote the unilateral shift on 𝐻2. Prove that 𝑇 = (𝑆 + 2𝑆∗)2 is
not subnormal.

Exercise 19.6.11. Let (𝛼𝑛)∞𝑛=0 be a bounded sequence of positive numbers and𝑊 be the
weighted shift on ℓ2 defined by𝑊e𝑛 = 𝛼𝑛e𝑛+1 (see Exercise 3.6.21).

(a) Prove that𝑊 is hyponormal if and only if 𝛼𝑛 ⩽ 𝛼𝑛+1 for all 𝑛 ⩾ 0.

(b) Use this to prove that the Dirichlet shift is not subnormal.

Exercise 19.6.12. For a finite-dimensional Hilbert spaceℋ, prove that every hyponormal
operator is normal using the following steps.

(a) Suppose thatℋ = ℂ𝑛, 𝐴 ∈ ℳ𝑛, and 𝐴∗𝐴 − 𝐴𝐴∗ ⩾ 0. Prove that tr(𝐴∗𝐴 − 𝐴𝐴∗) = 0.

(b) Use the spectral theorem and the fact that𝐴∗𝐴−𝐴𝐴∗ ⩾ 0 to show that𝐴∗𝐴−𝐴𝐴∗ = 0.

Exercise 19.6.13. Prove that if 𝑆 ∈ ℬ(ℋ) is subnormal and compact, then 𝑆 is normal.
Follow this argument from [372].

(a) For a positive 𝐴 ∈ ℬ(ℋ), prove that |⟨𝐴x, y⟩|2 ⩽ ⟨𝐴x, x⟩⟨𝐴y, y⟩ for all x, y ∈ ℋ.

(b) If 𝑆 is subnormal, then 𝐴 = 𝑆∗𝑆 − 𝑆𝑆∗ is positive (Exercise 19.6.9). Prove that
ker(𝑆∗𝑆 − 𝑆𝑆∗) = {x ∶ ‖𝑆x‖ = ‖𝑆∗x‖}.

(c) Prove that 𝑆 = 𝐴 + 𝑖𝐵, where 𝐴 and 𝐵 are compact and selfadjoint.

(d) Prove that ‖(𝐴 + 𝑖𝜆𝐼)x‖ = ‖(𝐴 − 𝑖𝜆𝐼)x‖ for all x ∈ ℋ and 𝜆 ∈ ℝ.
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(e) Let x be an eigenvector of 𝐵. Prove that ‖𝑆x‖ = ‖𝑆∗x‖.

(f) Prove that ker(𝑆∗𝑆 − 𝑆𝑆∗) contains each eigenspace of 𝐵.

(g) Prove that ker(𝑆∗𝑆 − 𝑆𝑆∗) = ℋ.

Remark: This exercise shows that every subnormal operator on a finite-dimensional
Hilbert space is normal and thus subnormal operators only differ from normal operators
in the infinite-dimensional setting.

Exercise 19.6.14. Let 𝑆 ∈ ℬ(ℋ) be subnormal and define 𝐴 = 𝑆∗𝑆 − 𝑆𝑆∗. Prove that
ker𝐴 is an invariant subspace for 𝑆.
Remark: See [349] for more on this.

Exercise 19.6.15. Exercise 6.7.10 showed that the Cesàro operator is not compact. Use
Exercise 19.6.13 and Theorem 6.4.2 to supply another proof.

Exercise 19.6.16. Let 𝑓, 𝑔 ∈ 𝐻∞. Prove that the Toeplitz operator 𝑇𝑓+𝑔 is hyponormal if
and only if 𝑇∗

𝑓 𝑇𝑓 − 𝑇𝑓𝑇∗
𝑓 ⩾ 𝑇∗

𝑔 𝑇𝑔 − 𝑇𝑔𝑇∗
𝑔 .

Exercise 19.6.17. Suppose that 𝑇 is a hyponormal contraction andℳ = ker(𝐼 − 𝑇𝑇∗).
Prove the following.

(a) ℳ is an invariant subspace for 𝑇∗𝑇.

(b) ℳ is an invariant subspace for 𝑇.

(c) 𝑇|ℳ is isometric.

Remark: See [43] for more on this.

Exercise 19.6.18. Anoperator 𝑆 ∈ ℬ(ℋ) is quasinormal if 𝑆(𝑆∗𝑆) = (𝑆∗𝑆)𝑆. Let 𝑆 = 𝑈|𝑆|
be a polar decomposition of 𝑆 (Theorem 14.9.15). Prove that 𝑆 is quasinormal if and only
if 𝑈|𝑆| = |𝑆|𝑈 .
Remark: See [66] for more on quasinormal operators.

Exercise 19.6.19. Let𝜑 be an analytic selfmap of𝔻. Prove that if the composition operator
𝐶𝜑 on 𝐻2 (see Chapter 18) is quasinormal, then 𝜑(0) = 0.
Remark: See [87] for more on quasinormal composition operators.

Exercise 19.6.20. This is a continuation of Exercise 19.6.18. Suppose that 𝑆 = 𝑈|𝑆| is
quasinormal and ker 𝑆 = {0}.

(a) Prove that 𝑈 is an isometry.

(b) Prove that 𝐸 = 𝑈𝑈∗ is an orthogonal projection. What is ran𝐸?

(c) Let

𝑁 = [𝑈 𝐼 − 𝐸
0 𝑈∗ ] [|𝑆| 0

0 |𝑆|] .

Prove that 𝑁 is a normal extension of 𝑆, and thus 𝑆 is subnormal.
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Exercise 19.6.21. The next several problems explore the dual of a subnormal operator
[93]. Let 𝑆 ∈ ℬ(ℋ) be subnormal withminimal normal extension𝑁 ∈ ℬ(𝒦) andℋ ⊆ 𝒦.
With respect to the decomposition𝒦 = ℋ ⊕ℋ⟂, write 𝑁 as

𝑁 = [𝑆 𝑋
0 𝑇∗] .

Then 𝑇 ∈ ℬ(ℋ⟂) is the dual of 𝑆. Prove that 𝑇 is subnormal by identifying a normal
extension.

Exercise 19.6.22. Let 𝑆 denote the unilateral shift on𝐻2. Prove that its dual 𝑇, as defined
in Exercise 19.6.21, is given by (𝑇𝑓)(𝜉) = 𝜉𝑓(𝜉) on 𝐻2

0.

Exercise 19.6.23. Let 𝑆 and 𝑇 be as in Exercise 19.6.22. Use the following steps to prove
that 𝑆 is unitarily equivalent to 𝑇. Such subnormal operators are self dual.

(a) Define𝑊 ∈ ℬ(𝐿2(𝕋)) by (𝑊𝑓)(𝜉) = 𝜉𝑓(𝜉) and prove that𝑊 is selfadjoint,𝑊 2 = 𝐼,
and𝑊𝑀𝜉𝑊 = 𝑀𝜉 on 𝐿

2(𝕋).

(b) Prove that𝑊𝐻2 = 𝐻2
0.

(c) If 𝑈 = 𝑊|𝐻2 , prove that 𝑈 is unitary and 𝑈𝑆𝑈−1 = 𝑇.

Exercise 19.6.24. Let 𝜑 ∈ 𝐻∞ and let 𝑇𝜑𝑓 = 𝜑𝑓 be the corresponding analytic Toeplitz
operator on 𝐻2. Identify the dual of 𝑇𝜑, as defined in Exercise 19.6.21.

Exercise 19.6.25. Consider 𝑆 = 𝑀𝑧 on the Bergman space 𝐴2.

(a) Prove that if 𝑔 ∈ 𝐶∞
0 (𝔻) (the smooth functions with compact support in 𝔻) and

𝜕𝑧 =
1
2
(𝜕𝑥 − 𝑖𝜕𝑦), then∫

𝔻
𝑓 𝜕𝑧𝑔 𝑑𝐴 = 0 for all 𝑓 ∈ 𝐴2.

(b) Prove that 𝜕𝑧𝐶∞
0 (𝔻) ⊆ (𝐴2)⟂. A technical detail calledWeyl’s lemma [95, p. 172] says

that (𝐴2)⟂ is the 𝐿2(𝑑𝐴) closure of 𝜕𝑧𝐶∞
0 (𝔻).

(c) Prove that the dual (as defined in Exercise 19.6.21) of the Bergman shift is multipli-
cation by 𝑧 on (𝐴2)⟂.

Exercise 19.6.26. 𝐴 ∈ ℬ(ℋ) is posinormal if 𝐴𝐴∗ = 𝐴∗𝑃𝐴 for some positive operator 𝑃
called an interrupter.

(a) Prove that the unilateral shift 𝑆 on ℓ2 is posinormal but 𝑆∗ is not.

(b) Prove that every unilateral weighted shift𝑊 is posinormal.

(c) If 𝐴 is normal, prove that ‖𝐴x‖ = ‖𝐴∗x‖ for all x ∈ ℋ.

(d) If 𝐴 is posinormal with interrupter 𝑃, prove that ‖𝐴∗x‖ ⩽ ‖𝑃
1
2 ‖‖𝐴x‖ for all x ∈ ℋ.

(e) Prove that ‖𝑃
1
2𝐴‖ = ‖𝐴‖.

Remark: Exercise 6.7.19 examined these operators in relation to the Cesàro operator [290].
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Exercise 19.6.27. This is a continuation of Exercise 19.6.26. Use Corollary 14.6.6 to prove
that the following are equivalent.

(a) 𝐴 is posinormal.

(b) ran𝐴 ⊆ ran𝐴∗.

(c) 𝐴𝐴∗ ⩽ 𝜆2𝐴∗𝐴 for some 𝜆 > 0.

(d) There is a 𝑇 ∈ ℬ(ℋ) such that 𝐴 = 𝐴∗𝑇.

Exercise 19.6.28. This is a continuation of Exercise 19.6.26. Use Exercise 19.6.27 to prove
the following.

(a) Every hyponormal operator is posinormal.

(b) 𝐴 is a posinormal operator if and only if𝐴∗ belongs to the left ideal inℬ(ℋ) generated
by 𝐴.

(c) Every invertible operator is posinormal.

Exercise 19.6.29. For 𝜑 ∈ 𝐻∞, the analytic Toeplitz operator 𝑇𝜑 on𝐻2 is subnormal (and
hence hyponormal). By Exercise 19.6.28,𝑇𝜑 is posinormal, and hence there is a𝑇 ∈ ℬ(𝐻2)
such that 𝑇𝜑 = 𝑇∗

𝜑𝑇. Prove that one can choose 𝑇 to be a Toeplitz operator.

19.7 Hints for the Exercises
Hint for Ex. 19.6.7: For (c), use the closed graph theorem.
Hint for Ex. 19.6.9: Write a normal extension of 𝑆 as

𝑁 = [𝑆 𝑋
0 𝑇]

and use the identity 𝑁∗𝑁 − 𝑁𝑁∗ = 0.
Hint for Ex. 19.6.13: For (e), observe that 𝑆x = (𝐴 + 𝑖𝐵)x = (𝐴 + 𝑖𝜆𝐼)x. For (g), consult
Theorem 2.6.7.
Hint for Ex. 19.6.14: Consult Exercise 19.6.13 and use the fact that if 𝑁 is a normal
extension of 𝑆, then ‖𝑆x‖ = ‖𝑆∗x‖ if and only if ‖𝑁∗x‖ = ‖𝑆∗x‖.
Hint for Ex. 19.6.19: Apply the condition for quasinormality to 𝑘0 ≡ 1 and consult
Proposition 18.5.1.
Hint for Ex. 19.6.21: Write the matrix of 𝑁∗ with respect to the decompositionℋ⟂⊕ℋ.
Hint for Ex. 19.6.25: For (a), prove and use the following version of Green’s theorem: for
ℎ sufficiently smooth on 𝔻−,

−2𝑖∫
𝔻
𝜕𝑧ℎ 𝑑𝐴 = ∮

𝕋
ℎ 𝑑𝑧.

Hint for Ex. 19.6.26: For (a), examine the upper-left corner of 𝑆∗𝑆 and 𝑆𝑃𝑆∗ for any
positive operator 𝑃. For (b), create the interrupter 𝑃 with a diagonal matrix.
Hint for Ex. 19.6.29: Consult Exercise 16.9.15.
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The Compressed Shift

Key Concepts: Model space, compressed shift, conjugation, complex symmetric operator, the
Volterra operator, matrix representation of a compressed shift, commutant of a compressed shift.

Outline: This chapter examines compressions of the unilateral shift 𝑆 on 𝐻2 to model
spaces𝐻2∩(𝑢𝐻2)⟂, where𝑢 is an inner function. These compressed shift operators provide
concrete, function-theoretic models for certain Hilbert-space contractions. As a guiding
example, this chapter focuses on the compressed shift on the model space corresponding
to an atomic inner function.

20.1 Model Spaces
Recall (Chapter 5) that an inner function 𝑢 is a bounded analytic function on 𝔻 such that

𝑢(𝜉) = lim
𝑟→1−

𝑢(𝑟𝜉)

satisfies |𝑢(𝜉)| = 1 for almost every 𝜉 ∈ 𝕋. The limit above exists for almost every 𝜉 ∈ 𝕋 by
Fatou’s theorem (Theorem 5.4.3). By Theorem 5.4.11, every inner function takes the form
𝐵(𝑧)𝑆𝜇(𝑧) with

𝐵(𝑧) = 𝛾𝑧𝑁
∞
∏
𝑖=1

𝑎𝑖
|𝑎𝑖|

𝑎𝑖 − 𝑧
1 − 𝑎𝑖𝑧

and

𝑆𝜇(𝑧) = exp ( −∫
𝕋

𝜉 + 𝑧
𝜉 − 𝑧𝑑𝜇(𝜉)),

where 𝛾 ∈ 𝕋, 𝑁 ⩾ 0, 𝑎𝑖 ∈ 𝔻\{0} with∑∞
𝑖=1(1 − |𝑎𝑖|) < ∞, and 𝜇 is a finite positive Borel

measure on 𝕋 that is singular with respect to Lebesgue measure 𝑚. Beurling’s theorem
(Theorem 5.4.12) says that all nonzero 𝑆-invariant subspaces of 𝐻2 are of the form 𝑢𝐻2

where 𝑢 is inner.
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Definition 20.1.1. Themodel space𝒦ᵆ corresponding to a nonconstant inner function 𝑢
is the subspace of 𝐻2 defined by

𝒦ᵆ ∶= (𝑢𝐻2)⟂ = {𝑓 ∈ 𝐻2 ∶ ⟨𝑓, 𝑢ℎ⟩ = 0 for all ℎ ∈ 𝐻2}.

Since 𝑆(𝑢𝐻2) ⊆ 𝑢𝐻2, it follows that 𝑆∗𝒦ᵆ ⊆ 𝒦ᵆ (Exercise 4.5.1). We invite the reader
to work out examples of 𝒦ᵆ for various inner functions 𝑢 (see Exercises 20.8.18 and
20.8.19) such as finite Blaschke products. The following proposition provides a useful way
of describing𝒦ᵆ in terms of boundary functions on 𝕋.

Proposition 20.1.2. For an inner function 𝑢 and 𝑓 ∈ 𝐻2, the following are equivalent.

(a) 𝑓 ∈ 𝒦ᵆ.

(b) There exists a 𝑔 ∈ 𝐻2 such that 𝑓(𝜉) = 𝑔(𝜉)𝜉𝑢(𝜉) for almost every 𝜉 ∈ 𝕋.

In otherwords,𝒦ᵆ = 𝐻2∩𝑢𝑧𝐻2,where the right side is regarded, via radial boundary values,
as a set of functions on 𝕋.

Proof By means of radial boundary values, the inner product on𝐻2 can be written as an
𝐿2(𝕋) inner product

⟨𝑓, 𝑔⟩ = ∫
𝕋
𝑓(𝜉)𝑔(𝜉) 𝑑𝑚(𝜉) for 𝑓, 𝑔 ∈ 𝐻2.

For each 𝑓 ∈ 𝐻2,

𝑓 ∈ 𝒦ᵆ ⟺ ⟨𝑓, 𝑢ℎ⟩ = 0 for allℎ ∈ 𝐻2

⟺ ⟨𝑢𝑓, ℎ⟩ = 0 for allℎ ∈ 𝐻2

⟺ 𝑢𝑓 ∈ (𝐻2)⟂ = 𝑧𝐻2. (by (4.2.4))

Since 𝑢𝑢 = 1 almost everywhere on 𝕋, it follows that 𝑓 ∈ 𝐻2 belongs to (𝑢𝐻2)⟂ if and
only if 𝑓 ∈ 𝑢𝑧𝐻2 (that is, 𝑓 = 𝑔𝑧𝑢 for some 𝑔 in 𝐻2). ■

Proposition 20.1.6 below asserts that the function 𝑔 in the statement of the previous
proposition also belongs to𝒦ᵆ.
Model spaces are reproducing kernel Hilbert spaces. This stems from the fact that any

subspace of a reproducing kernel Hilbert space is a reproducing kernel Hilbert space
(Exercise 20.8.3). For a model space, there is a precise formula for the reproducing kernel.
For an inner function 𝑢, define

𝑘𝜆(𝑧) =
1 − 𝑢(𝜆)𝑢(𝑧)

1 − 𝜆𝑧
for 𝜆, 𝑧 ∈ 𝔻. (20.1.3)

Proposition 20.1.4. For 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝒦ᵆ, the following hold.

(a) 𝑘𝜆 ∈ 𝒦ᵆ.

(b) ⟨𝑓, 𝑘𝜆⟩ = 𝑓(𝜆).

(c) ‖𝑘𝜆‖2 =
1 − |𝑢(𝜆)|2
1 − |𝜆|2 .



model spaces | 447

Proof For the proof below, let

𝑐𝜆(𝑧) =
1

1 − 𝜆𝑧
(20.1.5)

denote the reproducing kernel for 𝐻2.
(a) Observe that

𝑘𝜆 = (1 − 𝑢(𝜆)𝑢)𝑐𝜆
and thus 𝑘𝜆 ∈ 𝐻∞ ⊆ 𝐻2. Moreover, for any ℎ ∈ 𝐻2,

⟨𝑢ℎ, (1 − 𝑢(𝜆)𝑢)𝑐𝜆⟩ = 𝑢(𝜆)ℎ(𝜆) − 𝑢(𝜆) ⟨𝑢ℎ, 𝑢𝑐𝜆⟩
= 𝑢(𝜆)ℎ(𝜆) − 𝑢(𝜆) ⟨ℎ, 𝑐𝜆⟩ (since 𝑢𝑢 = 1 a.e. on 𝕋)
= 𝑢(𝜆)ℎ(𝜆) − 𝑢(𝜆)ℎ(𝜆)
= 0.

Therefore, 𝑘𝜆 ∈ (𝑢𝐻2)⟂ = 𝒦ᵆ.
(b) If 𝑓 ∈ 𝒦ᵆ and 𝜆 ∈ 𝔻, it follows that

𝑓(𝜆) = ⟨𝑓, 𝑐𝜆⟩
= ⟨𝑓, 𝑐𝜆⟩ − 𝑢(𝜆) ⟨𝑓, 𝑢𝑐𝜆⟩ (since ⟨𝑓, 𝑢𝑐𝜆⟩ = 0)

= ⟨𝑓, (1 − 𝑢(𝜆)𝑢)𝑐𝜆⟩
= ⟨𝑓, 𝑘𝜆⟩.

(c) For 𝜆 ∈ 𝔻,

‖𝑘𝜆‖2 = ⟨𝑘𝜆, 𝑘𝜆⟩
= 𝑘𝜆(𝜆) (by (b))

= 1 − |𝑢(𝜆)|2
1 − |𝜆|2 ,

which completes the proof. ■

There is a natural conjugation on the model space that serves as an important tool
for studying the compressed shift. In what follows, we regard the model space 𝒦ᵆ as a
subspace of 𝐿2(𝕋).

Proposition 20.1.6. For an inner function 𝑢, the mapping 𝐶 ∶ 𝒦ᵆ → 𝒦ᵆ defined by 𝐶𝑓 =
𝑢𝑧𝑓, is well defined, conjugate linear, isometric, and involutive.

Proof Since 𝑢𝑢 = 1 almost everywhere on 𝕋, it follows that 𝐶 is conjugate linear,
isometric, and involutive on 𝐿2(𝕋) (Exercise 20.8.4). It suffices to prove that 𝐶 maps
𝒦ᵆ onto𝒦ᵆ. For 𝑓 ∈ 𝐾ᵆ, Proposition 20.1.2 produces a 𝑔 ∈ 𝐻2 such that 𝑓 = 𝑢𝑧𝑔 on
𝕋. Then

𝐶𝑓 = 𝑢𝑧𝑓 = 𝑢𝑧𝑢𝑧𝑔 = 𝑔 ∈ 𝐻2.
By definition, 𝐶𝑓 ∈ 𝑢𝑧𝐻2 and thus 𝐶𝑓 ∈ 𝐻2 ∩ 𝑢𝑧𝐻2 = 𝒦ᵆ. ■
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20.2 From aModel Space to 𝐿2[0, 1]
Let

Θ(𝑧) = exp ( − 1 + 𝑧
1 − 𝑧). (20.2.1)

Observe that Θ is analytic on ℂ\{1} and

|Θ(𝑧)| = exp ( − Re (1 + 𝑧
1 − 𝑧)) = exp ( − 1 − |𝑧|2

|1 − 𝑧|2 ) < 1 for all 𝑧 ∈ 𝔻.

Thus,Θ ∈ 𝐻∞. Since |Θ(𝑒𝑖𝜃)| = 1 for all 𝜃 ∈ (0, 2𝜋), it follows thatΘ is an inner function.
When 𝜃 = 0, the expression for Θ(1) is undefined. However,

lim
𝑟→1−

|Θ(𝑟)| = lim
𝑟→1−

exp ( − 1 + 𝑟
1 − 𝑟) = 0.

There is an essential singularity at 𝑧 = 1 so the Casorati–Weierstrass theorem [9] suggests
that the limit along other paths in𝔻 approaching 𝑧 = 1 need not be zero (Exercise 20.8.1).
An important part of our analysis of the model space 𝒦Θ, where Θ is the function

(20.2.1), is the following unitary operator of Sarason. For 𝑡 ∈ [0, 1],

Θ(𝑧)𝑡 = exp ( − 𝑡 1 + 𝑧
1 − 𝑧)

is an inner function. To understand the proof of Sarason’s result, the reader might want to
review the Hardy space of the upper half-plane (Chapter 11).

Theorem 20.2.2 (Sarason [323]). For each 𝑔 ∈ 𝐿2[0, 1], the function

(𝑊𝑔)(𝑧) = √2𝑖
𝑧 − 1 ∫

1

0
𝑔(𝑡)Θ(𝑧)𝑡𝑑𝑡, (20.2.3)

defined for all 𝑧 ∈ 𝔻, belongs to 𝒦Θ. Furthermore, 𝑔 ↦ 𝑊𝑔 is a unitary operator from
𝐿2[0, 1] onto𝒦Θ.

Proof Exercise 11.10.7 ensures that

(𝐴𝑓)(𝜉) = 2√𝜋𝑖
1 − 𝜉 𝑓(𝑖

1 + 𝜉
1 − 𝜉 ) (20.2.4)

is a unitary operator from 𝐿2(ℝ) onto 𝐿2(𝕋). Furthermore,𝐴𝐻2(ℂ+) = 𝐻2(𝔻). Regard
𝐿2(0,∞) as a subspace of 𝐿2(ℝ) via the identification 𝐿2(0,∞) = 𝜒(0,∞)𝐿2(ℝ). For the
Fourier transform F and its adjoint F ∗ (Chapter 11), define

𝐵 = F ∗|𝐿2(0,∞) (20.2.5)

and observe that 𝐵 is an isometry from 𝐿2(0,∞) onto𝐻2(ℂ+) (recall the Paley–Wiener
theorem (11.8.2)). Thus, the composition𝑈 = 𝐴𝐵 is a unitary operator from 𝐿2(0,∞)
onto 𝐻2(𝔻).
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The next step is to argue that 𝑈 maps 𝐿2[0, 1] = 𝜒[0,1]𝐿2(0,∞) onto𝒦Θ. Suppose that 𝑓
belongs to 𝜒[1,∞)𝐿2(0,∞). By the Paley–Wiener theorem again,F ∗𝑓 ∈ 𝐻2(ℂ+) and

(F ∗𝑓)(𝑧) = 1
√2𝜋

∫
∞

1
𝑓(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡

= 1
√2𝜋

∫
∞

0
𝑓(𝑡 + 1)𝑒𝑖(𝑡+1)𝑧𝑑𝑡

= 𝑒𝑖𝑧∫
∞

0
𝑓(𝑡 + 1)𝑒𝑖𝑡𝑧𝑑𝑡.

Thus, F ∗𝜒[1,∞)𝐿2(0,∞) = 𝑒𝑖𝑧𝐻2(ℂ+), and hence

𝑈𝜒[1,∞)𝐿2(0,∞) = 𝐴𝐵𝜒[1,∞)𝐿2(0,∞)
= 𝐴(𝑒𝑖𝑧𝐻2(ℂ+))

= exp ( − 1 + 𝑧
1 − 𝑧)𝐻

2(𝔻)

= Θ𝐻2(𝔻).

From here, observe that

𝑈𝐿2[0, 1] = 𝑈(𝐿2(0,∞) ⊖ 𝜒[1,∞)𝐿2(0,∞))
= 𝑈𝐿2(0,∞) ⊖ 𝑈(𝜒[1,∞)𝐿2(0,∞))
= 𝐻2 ⊖Θ𝐻2

= 𝒦Θ.

Finally, for 𝑔 ∈ 𝐿2[0, 1],

(𝑈𝑔)(𝑧) = (𝐴𝐵𝑔)(𝑧)

= 𝐴( 1
√2𝜋

∫
1

0
𝑒𝑖𝑧𝑡𝑔(𝑡) 𝑑𝑡)

= 1
√2𝜋

2√𝜋𝑖 1
1 − 𝑧 ∫

1

0
exp (𝑖𝑡𝑖 1 + 𝑧

1 − 𝑧)𝑔(𝑡) 𝑑𝑡

= √2𝑖
1 − 𝑧 ∫

1

0
Θ(𝑧)𝑡𝑔(𝑡) 𝑑𝑡,

which is the formula (20.2.3) for𝑊𝑔. ■

20.3 The Compressed Shift
For an inner function 𝑢, the model space 𝒦ᵆ can be regarded as a subspace of 𝐿2(𝕋). Let
𝑃 denote the orthogonal projection from 𝐿2(𝕋) onto𝒦ᵆ and recall the Riesz projection 𝑃+
from 𝐿2(𝕋) onto 𝐻2 (Definition 16.2.1). The next result furnishes two formulas for 𝑃 .
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Proposition 20.3.1. Let 𝑢 be an inner function and let 𝑘𝜆 be the reproducing kernel for𝒦ᵆ.

(a) (𝑃 𝑓)(𝜆) = ⟨𝑓, 𝑘𝜆⟩ for every 𝜆 ∈ 𝔻 and 𝑓 ∈ 𝐿2(𝕋).

(b) 𝑃 𝑓 = 𝑓 − 𝑢𝑃+(𝑢𝑓) for every 𝑓 ∈ 𝐻2.

Proof (a) Since 𝑘𝜆 ∈ 𝒦ᵆ, it follows that 𝑃 𝑘𝜆 = 𝑘𝜆, and hence for any 𝑓 ∈ 𝐿2(𝕋),

⟨𝑓, 𝑘𝜆⟩ = ⟨𝑓, 𝑃 𝑘𝜆⟩
= ⟨𝑃 𝑓, 𝑘𝜆⟩ (𝑃 is selfadjoint)
= (𝑃 𝑓)(𝜆) (by Proposition 20.1.4b).

(b) From (20.1.5), recall that 𝑐𝜆(𝑧) = (1 − 𝜆𝑧)−1. For 𝑓 ∈ 𝐻2 and 𝜆 ∈ 𝔻, it follows from
(a) that

(𝑃 𝑓)(𝜆) = ⟨𝑓, 𝑘𝜆⟩

= ⟨𝑓, (1 − 𝑢(𝜆)𝑢)𝑐𝜆⟩
= ⟨𝑓, 𝑐𝜆⟩ − 𝑢(𝜆)⟨𝑓, 𝑢𝑐𝜆⟩
= ⟨𝑓, 𝑐𝜆⟩ − 𝑢(𝜆)⟨𝑢𝑓, 𝑐𝜆⟩
= ⟨𝑓, 𝑐𝜆⟩ − 𝑢(𝜆) ⟨𝑢𝑓, 𝑃+𝑐𝜆⟩ (𝑃+𝑐𝜆 = 𝑐𝜆)
= ⟨𝑓, 𝑐𝜆⟩ − 𝑢(𝜆) ⟨𝑃+(𝑢𝑓), 𝑐𝜆⟩ (𝑃+ is selfadjoint)
= 𝑓(𝜆) − 𝑢(𝜆)𝑃+(𝑢𝑓)(𝜆),

which completes the proof. ■

Recall the unilateral shift operator 𝑆 from Chapter 5.

Definition 20.3.2. For an inner function 𝑢, the corresponding compressed shift operator
is 𝑆ᵆ ∶ 𝒦ᵆ → 𝒦ᵆ, where 𝑆ᵆ = 𝑃 𝑆|𝒦𝑢 .

The following proposition shows that the adjoint of the compressed shift is the back-
ward shift 𝑆∗ restricted to𝒦ᵆ.

Proposition 20.3.3. 𝑆∗ᵆ𝑓 = 𝑆∗𝑓 for all 𝑓 ∈ 𝒦ᵆ.

Proof For 𝑓, 𝑔 ∈ 𝒦ᵆ,

⟨𝑆∗ᵆ𝑓, 𝑔⟩ = ⟨𝑓, 𝑆ᵆ𝑔⟩ = ⟨𝑓, 𝑃 𝑆𝑔⟩ = ⟨𝑃 𝑓, 𝑆𝑔⟩ = ⟨𝑓, 𝑆𝑔⟩ = ⟨𝑆∗𝑓, 𝑔⟩.

Thus, 𝑆∗ᵆ𝑓 = 𝑆∗𝑓 for all 𝑓 ∈ 𝒦ᵆ. ■

Proposition 20.3.4. Let 𝐶 denote the conjugation from Proposition 20.1.6. Then 𝑆ᵆ =
𝐶𝑆∗ᵆ𝐶.

Proof If 𝑓, 𝑔 ∈ 𝒦ᵆ then,

⟨𝐶𝑆∗ᵆ𝐶𝑓, 𝑔⟩ = ⟨𝐶𝑔, 𝑆∗ᵆ𝐶𝑓⟩
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= ⟨𝐶𝑔, 𝑆∗𝐶𝑓⟩ (by Proposition 20.3.3)
= ⟨𝑆𝐶𝑔, 𝐶𝑓⟩

= ⟨𝜉𝑢𝜉𝑔, 𝑢𝜉𝑓⟩

= ⟨𝜉𝑔, 𝑓⟩

= ⟨𝜉𝑓, 𝑔⟩
= ⟨𝑆𝑓, 𝑔⟩
= ⟨𝑆𝑓, 𝑃 𝑔⟩ (𝑃 𝑔 = 𝑔 since 𝑔 ∈ 𝒦ᵆ)
= ⟨𝑃 𝑆𝑓, 𝑔⟩
= ⟨𝑆ᵆ𝑓, 𝑔⟩ ,

which proves the desired identity. ■

20.4 A Connection to the Volterra Operator
Recall the Volterra operator

(𝑉𝑔)(𝑥) = ∫
𝑥

0
𝑔(𝑡) 𝑑𝑡

on 𝐿2[0, 1] from Chapter 7. Since 𝜎(𝑉) = {0} (Proposition 7.2.5), it follows that 𝐼 + 𝑉
is invertible and hence (𝐼 − 𝑉)(𝐼 + 𝑉)−1 is a well-defined bounded operator on 𝐿2[0, 1].
A fascinating result of Sarason relates this with the compressed shift 𝑆Θ via the unitary
operator𝑊 ∶ 𝐿2[0, 1] → 𝒦Θ from Theorem 20.2.2.

Theorem 20.4.1 (Sarason [323]). 𝑊 ∗𝑆Θ𝑊 = (𝐼 − 𝑉)(𝐼 + 𝑉)−1.

Proof We follow a presentation from [280, Ch. 4]. From (20.2.4)

(𝐴𝑓)(𝜉) = 2√𝜋𝑖
1 − 𝜉 𝑓(𝑖

1 + 𝜉
1 − 𝜉 )

is a unitary operator from 𝐿2(ℝ) onto 𝐿2(𝕋) and maps 𝐻2(ℂ+) onto 𝐻2(𝔻). Invert the
formula for 𝐴 to obtain

(𝐴∗𝑔)(𝑥) = 1
√𝜋(𝑥 + 𝑖)

𝑔(𝑥 − 𝑖
𝑥 + 𝑖 ) for all 𝑔 ∈ 𝐿2(𝕋).

From (20.2.5), the operator 𝐵 = F ∗|𝐿2(0,∞) is a unitary operator from 𝐿2(0,∞) onto
𝐻2(ℂ+). Thus, 𝑈 = 𝐴𝐵 is a unitary operator from 𝐿2(0,∞) onto 𝐻2(𝔻).

Let

𝜓(𝑥) = {0 if 𝑥 < 0,
𝑒−𝑥 if 𝑥 ⩾ 0,
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and define the convolution operator (Chapter 11) 𝑋 ∶ 𝐿2(0,∞) → 𝐿2(0,∞) by

(𝑋𝑔)(𝑥) = ∫
∞

0
𝑔(𝑡)𝜓(𝑥 − 𝑡) 𝑑𝑡.

In other words,

𝑋𝑔 = 𝑔 ∗ 𝜓. (20.4.2)

For each 𝑤 ∈ ℂ+, observe that

(𝐵𝜓)(𝑤) = 1
√2𝜋

∫
∞

0
𝑒𝑖𝑤𝑡𝑒−𝑡 𝑑𝑡 = 1

√2𝜋
⋅ 1
1 − 𝑖𝑤 . (20.4.3)

Then for any 𝑓 ∈ 𝐻2(𝔻),

𝑈𝑋𝑈∗𝑓 = 𝐴𝐵𝑋𝐵∗𝐴∗𝑓
= 𝐴𝐵((𝐵∗𝐴∗𝑓) ∗ 𝜓) (by (20.4.2))

= √2𝜋𝐴((𝐵𝐵∗𝐴∗𝑓)𝐵𝜓) (by Proposition 11.3.1)

= 𝐴((𝐴∗𝑓) 1
1 − 𝑖𝑤) (by (20.4.3)).

Now observe that for each 𝑧 ∈ 𝔻,

(𝐴(𝐴∗𝑓 1
1 − 𝑖𝑤 ))(𝑧) =

2√𝜋𝑖
1 − 𝑧 (𝐴

∗𝑓)(𝑖 1 + 𝑧
1 − 𝑧)

1
1 − 𝑖2 1+𝑧

1−𝑧

= √𝜋𝑖(𝐴∗𝑓)(𝑖 1 + 𝑧
1 − 𝑧)

= √𝜋𝑖 ⋅ 1
√𝜋

⋅ 1
𝑖 1+𝑧
1−𝑧

+ 𝑖
𝑓(𝑧)

= 1 − 𝑧
2 𝑓(𝑧).

Thus, 𝑈𝑋𝑈∗ = 1
2
(𝐼 − 𝑆). Notice that𝑊 = 𝑈|𝐿2[0,1] = 𝑃Θ𝑈|𝐿2[0,1] and 𝑈∗|𝒦Θ = 𝑊 ∗.

From here it follows that

𝑊𝑋𝑊 ∗ = 𝑃Θ𝑈𝑋𝑈∗|𝒦Θ = 1
2(𝐼 − 𝑆Θ). (20.4.4)

Proposition 7.2.9 yields

((𝐼 + 𝑉)−1𝑓)(𝑥) = 𝑓(𝑥) −∫
𝑥

0
𝑒𝑦−𝑥𝑓(𝑦) 𝑑𝑦 for 𝑓 ∈ 𝐿2[0, 1].

This can be written as (𝐼 + 𝑉)−1𝑓 = (𝐼 − 𝑋)𝑓 for 𝑓 ∈ 𝐿2[0, 1]. Combining this with
(20.4.4) yields

(𝐼 + 𝑉)−1 = 𝑊 ∗(12 (𝐼 + 𝑆Θ))𝑊.
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Finally,

(𝐼 − 𝑉)(𝐼 + 𝑉)−1 = (2𝐼 − (𝐼 + 𝑉))(𝐼 + 𝑉)−1

= 2(𝐼 + 𝑉)−1 − 𝐼

= 2𝑊 ∗ 1
2 (𝐼 + 𝑆Θ)𝑊 −𝑊 ∗𝐼𝑊

= 𝑊 ∗(𝐼 + 𝑆Θ − 𝐼)𝑊
= 𝑊 ∗𝑆Θ𝑊,

which completes the proof. ■

Corollary 20.4.5. 𝜎(𝑆Θ) = {1}.

Proof Proposition 7.2.5 says that 𝜎(𝑉) = {0}. Since

𝑤(𝑧) = 1 − 𝑧
1 + 𝑧

is analytic in a neighborhood of 0, the spectral mapping theorem says that 𝑤(𝑉) is a
bounded operator with 𝜎(𝑤(𝑉)) = 𝑤(𝜎(𝑉)) = {1}. ■

There is a connection between the invariant subspaces for 𝑆Θ and those for 𝑉 . Indeed,
one can check that 𝑊𝜒[𝑎,1]𝐿2[0, 1] = Θ𝑎𝐻2 ∩ 𝒦Θ for each 𝑎 ∈ [0, 1]. Agmon’s theorem
(Theorem 7.4.1) describes all of the invariant subspaces of 𝑉 as 𝑊𝜒[𝑎,1]𝐿2[0, 1]. This
connects with a description of the invariant subspaces of 𝑆Θ as {Θ𝑎𝐻2 ∩𝒦Θ ∶ 0 ⩽ 𝑎 ⩽ 1}.

20.5 A Basis for the Model Space
We follow a presentation from [140] to produce a basis for 𝒦Θ which respects the
natural conjugation𝐶. This instructional computationmakes use of the Volterra operator.
Proposition 7.1.5 says that

(𝑉∗𝑔)(𝑥) = ∫
1

𝑥
𝑔(𝑡) 𝑑𝑡

and Exercise 7.7.15 says that the Volterra operator is complex symmetric with respect to
the conjugation (𝐽𝑔)(𝑥) = 𝑔(1 − 𝑥) on 𝐿2[0, 1], that is, 𝑉 = 𝐽𝑉∗𝐽.

Lemma 20.5.1. The conjugation (𝐽𝑔)(𝑥) = 𝑔(1 − 𝑥) on 𝐿2[0, 1] and the conjugation 𝐶𝑓 =
𝑓𝑧Θ on 𝐾Θ are related by the unitary operator𝑊 from (20.2.3) via the identity 𝐶 = 𝑊𝐽𝑊 ∗.

Proof We prove the lemma by establishing that 𝑊𝐽 = 𝐶𝑊 . For any 𝑔 in 𝐿2[0, 1], the
integrands of the following integrals are all dominated by max{|𝑔(𝑡)|, |𝑔(1− 𝑡)|} and it
follows that

(𝑊𝐽𝑔)(𝑧) = √2𝑖
𝑧 − 1 ∫

1

0
(𝐽𝑔)(𝑡)[Θ(𝑧)]𝑡𝑑𝑡
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= √2𝑖
𝑧 − 1 ∫

1

0
𝑔(1 − 𝑡)[Θ(𝑧)]𝑡𝑑𝑡

= √2𝑖
𝑧 − 1 ∫

1

0
𝑔(𝑠)[Θ(𝑧)]1−𝑠𝑑𝑠

= 𝑧Θ(𝑧) √2𝑖1 − 𝑧∫
1

0
𝑔(𝑠)[Θ(𝑧)]𝑠𝑑𝑠

= (𝑊𝑔)(𝑧)𝑧Θ(𝑧)
= (𝐶𝑊𝑔)(𝑧)

for almost every 𝑧 ∈ 𝕋. ■

Suppose thatℋ is a Hilbert space with a conjugation 𝐶. An orthonormal basis (x𝑛)∞𝑛=1
for ℋ is 𝐶-real if 𝐶x𝑛 = x𝑛 for all 𝑛 ⩾ 1. It is known that every Hilbert space with a
conjugation has an orthonormal basis that is 𝐶-real (Exercise 20.8.26). The following is a
𝐽-real basis for 𝐿2[0, 1].

Lemma 20.5.2. The vectors

𝑒𝑛(𝑥) = 𝑒2𝜋𝑖𝑛(𝑥−
1
2
) for 𝑛 ∈ ℤ, (20.5.3)

form a 𝐽-real orthonormal basis of 𝐿2[0, 1].

Proof The following computation shows that each 𝑒𝑛 is fixed by 𝐽:

(𝐽𝑒𝑛)(𝑥) = 𝑒2𝜋𝑖𝑛((1−𝑥)−
1
2
) = 𝑒−𝑖2𝜋𝑛(

1
2
−𝑥) = 𝑒2𝜋𝑖𝑛(𝑥−

1
2
) = 𝑒𝑛(𝑥).

To see that (𝑒𝑛)∞𝑛=−∞ is an orthonormal basis for 𝐿2[0, 1], observe the identity

𝑒2𝜋𝑖𝑛(𝑥−
1
2
) = 𝑒𝑖(2𝜋𝑛𝑥−𝜋𝑛) = (−1)𝑛𝑒2𝜋𝑖𝑛𝑥.

Now use the fact that (𝑒2𝜋𝑖𝑛𝑥)∞𝑛=−∞ is an orthonormal basis for 𝐿2[0, 1] (Theorem
1.3.9) to complete the proof. ■

Next we compute𝑊𝑒𝑛 ∈ 𝒦Θ. Write each basis vector 𝑒𝑛 in the form

𝑒𝑛(𝑥) = 𝑒−2𝜋𝑖𝑛/2𝑒2𝜋𝑖𝑛𝑥 (20.5.4)

to see that it suffices to compute 𝑒−𝑖𝛾/2𝑊𝑒𝑖𝛾𝑡 for real 𝛾. Once this is done, substitute 𝛾 =
2𝜋𝑛 to find the corresponding basis for𝒦Θ. This somewhat long computation is presented
through a series of lemmas.
The following lemma shows that the image of the basis (𝑒𝑛)∞𝑛=−∞ in 𝒦Θ is a family

of reproducing kernels corresponding to a sequence of points on the unit circle. Since Θ
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is analytically continuable across any arc of the unit circle 𝕋 not containing 𝑧 = 1, the
reproducing kernel

𝑘𝜁(𝑧) =
1 − Θ(𝜁)Θ(𝑧)

1 − 𝜁𝑧
corresponding to any boundary point 𝜁 ≠ 1 in 𝕋 is well defined and belongs to𝒦Θ.

Lemma 20.5.5. If 𝛾 is real, then

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = (1 − 𝜁)
√2𝑖𝜁

𝑘𝜁(𝑧),

where 𝑘𝜁(𝑧) is the reproducing kernel for𝒦Θ corresponding to the point 𝜁 on 𝕋 defined by

𝜁 = 𝛾 + 𝑖
𝛾 − 𝑖 .

In particular, Θ(𝜁) = 𝑒−𝑖𝛾.

Proof Fix 𝛾 in ℝ, use the definition of𝑊 , then observe that

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = √2𝑖
𝑧 − 1 ∫

1

0
𝑒𝑖𝛾𝑡 exp (𝑡 𝑧 + 1

𝑧 − 1) 𝑑𝑡

= √2𝑖
𝑧 − 1 ∫

1

0
exp [𝑡 (𝑖𝛾 + 𝑧 + 1

𝑧 − 1)] 𝑑𝑡

= √2𝑖
𝑧 − 1

1
𝑖𝛾 + 𝑧+1

𝑧−1

(exp [(𝑖𝛾 + 𝑧 + 1
𝑧 − 1)] − 1)

= √2𝑖
𝑖𝛾(𝑧 − 1) + (𝑧 + 1) (𝑒

𝑖𝛾Θ(𝑧) − 1)

= −√2𝑖
(1 − 𝑖𝛾) + (1 + 𝑖𝛾)𝑧 (1 − 𝑒−𝑖𝛾Θ(𝑧))

= −√2𝑖
1 − 𝑖𝛾

1
1 + 1+𝑖𝛾

1−𝑖𝛾
𝑧
(1 − 𝑒−𝑖𝛾Θ(𝑧)) . (20.5.6)

Seeking to write (20.5.6) as a scalarmultiple of a reproducing kernel, we wish to write
𝑒−𝑖𝛾 = Θ(𝜁) for some 𝜁. Define

𝜁 = 𝛾 + 𝑖
𝛾 − 𝑖 . (20.5.7)

If follows that 𝜁 ∈ 𝕋, Θ(𝜁) = 𝑒−𝑖𝛾, and

−𝜁 = 1 + 𝑖𝛾
1 − 𝑖𝛾 .
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Substitute these values into (20.5.6) and obtain

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = −√2𝑖
1 − 𝑖𝛾 ⋅

1 − Θ(𝜁)Θ(𝑧)
1 − 𝜁𝑧

= −√2𝑖
1 + 𝜁+1

𝜁−1

𝑘𝜁(𝑧)

= −√2𝑖(𝜁 − 1)
(𝜁 − 1) + (𝜁 + 1)𝑘𝜁(𝑧)

= −√2𝑖(𝜁 − 1)
2𝜁 𝑘𝜁(𝑧)

= (1 − 𝜁)
√2𝑖𝜁

𝑘𝜁(𝑧), (20.5.8)

where 𝑘𝜁(𝑧) denotes the boundary kernel evaluated at the boundary point 𝜁. This
proves the desired formula. ■

Since𝑊 is a unitary operator, the image of𝑊𝑒𝑖𝛾𝑥 in𝒦Θ is a unit vector. This suggests
that we could simplify the expression (20.5.8) further to examine the constant appearing
in front of 𝑘𝜁(𝑧).

Lemma 20.5.9. If 𝛾 is real, then

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = (1 − 𝜁)
|1 − 𝜁|𝜁𝑖 𝑘̃𝜁(𝑧),

where 𝑘̃𝜁(𝑧) is the normalized reproducing kernel for𝒦Θ corresponding to 𝜁.

Proof Since 𝛾 ≠ ∞, we have 𝜁 ≠ 1 and ‖𝑘𝜁‖ can be explicitly computed in terms of Θ. In
fact, if 𝑧 approaches 𝜁 radially we have

‖𝑘𝜁‖2 = lim
𝑧→𝜁

⟨𝑘𝑧, 𝑘𝑧⟩

= lim
𝑧→𝜁

1 − |Θ(𝑧)|2
1 − |𝑧|2

= lim
𝑧→𝜁

1 − |Θ(𝑧)|
1 − |𝑧| ⋅ 1 + |Θ(𝑧)|

1 + |𝑧|

= lim
𝑧→𝜁

1 − |Θ(𝑧)|
1 − |𝑧|

= |Θ′(𝜁)|.

A computation using the definition of Θ shows that

‖𝑘𝜁‖ =
√2

|1 − 𝜁| .
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With this in mind, continue from (20.5.8) and find that

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = (1 − 𝜁)
|1 − 𝜁|𝜁𝑖 ⋅

|1 − 𝜁|
√2

𝑘𝜁(𝑧)

= (1 − 𝜁)
|1 − 𝜁|𝜁𝑖 𝑘̃𝜁(𝑧).

This proves the desired formula. ■

Although it is evident from the preceding lemma that𝑊𝑒𝑖𝛾𝑥 is a unit vector in𝒦Θ, this
was not our primary objective. Indeed, recall that we wanted to show that for any real 𝛾,
the function 𝑒−𝑖𝛾/2𝑊𝑒𝑖𝛾𝑥 is fixed by the conjugation 𝐶. The apparently unwieldy constant

(1 − 𝜁)
|1 − 𝜁|𝜁𝑖 (20.5.10)

in Lemma 20.5.9 addresses this issue.
The square of (20.5.10) equals

−(1 − 𝜁)2

(1 − 𝜁)(1 − 𝜁)𝜁2
= 𝜁,

and hence the constant (20.5.10) is one of the square roots of 𝜁.
We have shown that for any real 𝛾,

(𝑊𝑒𝑖𝛾𝑥)(𝑧) = 𝜁
1
2 𝑘̃𝜁(𝑧),

where 𝜁 satisfies Θ(𝜁) = 𝑒−𝑖𝛾. To complete the evaluation of 𝑒−𝑖𝛾/2𝑊𝑒𝑖𝛾𝑡, we use (20.5.7)
to describe the value of the constant 𝑒−𝑖𝛾/2 in terms of Θ:

𝑒−𝑖𝛾/2 = 𝑒
1
2
𝜁+1
𝜁−1 = [Θ(𝜁)]

1
2 .

The choice of square root is unimportant. The next lemma summarizes our findings.

Lemma 20.5.11. If 𝛾 is real, then

𝑒−𝑖𝛾/2(𝑊𝑒𝑖𝛾𝑥)(𝑧) = [𝜁Θ(𝜁)]
1
2 𝑘̃𝜁(𝑧), (20.5.12)

where 𝑘̃𝜁(𝑧) is the normalized reproducing kernel for𝒦Θ corresponding to the point 𝜁 ∈ 𝕋.
Each function (20.5.12) is fixed by the conjugation 𝐶𝑓 = 𝑓𝑧Θ on𝒦Θ.

Proof The first portion of the lemma is simply a summary of the previous computations.
If 𝑧 ∈ 𝕋\{1}, then

𝑘̃𝜁(𝑧)

𝑘̃𝜁(𝑧)
= 1 − Θ(𝜁)Θ(𝑧)

1 − 𝜁𝑧
⋅ 1 − 𝜁𝑧
1 − Θ(𝜁)Θ(𝑧)
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= 1 − Θ(𝜁)Θ(𝑧)
1 − Θ(𝜁)Θ(𝑧)

⋅ 1 − 𝜁𝑧
1 − 𝜁𝑧

= Θ(𝜁)Θ(𝑧) ⋅ (Θ(𝜁)Θ(𝑧) − 1
1 − Θ(𝜁)Θ(𝑧)

) ⋅ 𝜁𝑧 (𝜁𝑧 − 1
1 − 𝜁𝑧

)

= 𝜁Θ(𝜁)𝑧Θ(𝑧),

since Θ(𝑧) is unimodular. This identity, along with a short calculation, shows that
[𝜁Θ(𝜁)]

1
2 𝑘̃𝜁(𝑧) is fixed by 𝐶. ■

Recall that the orthonormal basis (𝑒𝑛)∞𝑛=−∞ of 𝐿2[0, 1] defined by (20.5.3) is fixed by the
conjugation (𝐽𝑓)(𝑥) = 𝑓(1 − 𝑥) on 𝐿2[0, 1]. In light of (20.5.12), the image of this basis in
𝒦Θ under the Sarason transform

(𝑊𝑔)(𝑧) = √2𝑖
𝑧 − 1 ∫

1

0
𝑔(𝑡)[Θ(𝑧)]𝑡 𝑑𝑡

is

(𝑊𝑒𝑛)(𝑧) = [𝜁𝑛Θ(𝜁𝑛)]
1
2 𝑘̃𝜁𝑛 (𝑧) = (−1)𝑛𝜁𝑛

1
2 𝑘̃𝜁𝑛 (𝑧),

where

𝜁𝑛 =
2𝜋𝑛 + 𝑖
2𝜋𝑛 − 𝑖 ∈ 𝕋.

The functions𝑊𝑒𝑛 are fixed by the conjugation 𝐶𝑓 = 𝑓𝑧Θ on𝒦Θ, and hence the matrix
representation of the compressed shift on 𝒦Θ with respect to the basis (𝑊𝑒𝑛)∞𝑛=−∞ is
complex symmetric. Finally, the points 𝜁𝑛 are characterized by Θ(𝜁𝑛) = 1.

20.6 AMatrix Representation
In this section we compute the matrix representation of 𝑆Θ with respect to the orthonor-
mal basis (𝑣𝑛)∞𝑛=−∞, where

𝑣𝑛 = 𝑊𝑒𝑛 = (−1)𝑛𝜁𝑛
1
2 𝑘̃𝜁𝑛 (𝑧),

from the previous section. Indeed, since𝑊 ∗𝑆Θ𝑊 = (𝐼 − 𝑉)(𝐼 + 𝑉)−1 and𝑊𝑒𝑛 = 𝑣𝑛 for
all 𝑛 ∈ ℤ, it follows that

⟨𝑆Θ𝑣𝑛, 𝑣𝑚⟩ = ⟨𝑊(𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑊 ∗𝑣𝑛, 𝑣𝑚⟩
= ⟨(𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑊 ∗𝑣𝑛,𝑊 ∗𝑣𝑚⟩
= ⟨(𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑒𝑛, 𝑒𝑚⟩

for all𝑚, 𝑛 ∈ ℤ. Thus, the matrix representation of 𝑆Θ with respect to the basis (𝑣𝑛)∞𝑛=−∞
is the same as the representation of (𝐼 − 𝑉)(𝐼 + 𝑉)−1 with respect to the basis (𝑒𝑛)∞𝑛=−∞.
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Theorem 20.6.1. The matrix representation of (𝐼 − 𝑉)(𝐼 + 𝑉)−1 with respect to the
orthonormal basis

𝑒𝑛(𝑥) = 𝑒2𝜋𝑖𝑛(𝑥−
1
2
) for 𝑛 ∈ ℤ,

is
2(𝑒 − 1)

𝑒 [ (−1)𝑚+𝑛

(2𝜋𝑚 − 𝑖)(2𝜋𝑛 − 𝑖) ]
∞

𝑚,𝑛=−∞
.

Proof It follows from Proposition 7.2.9 that

((𝐼 + 𝑉)−1𝑓)(𝑥) = 𝑓(𝑥) −∫
𝑥

0
𝑒𝑦−𝑥𝑓(𝑦)𝑑𝑦 for 𝑓 ∈ 𝐿2[0, 1].

Thus,

((𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑓)(𝑥) = 𝑓(𝑥) −∫
𝑥

0
𝑒𝑦−𝑥𝑓(𝑦) 𝑑𝑦

− 𝑉(𝑓(𝑥) −∫
𝑥

0
𝑒𝑦−𝑥𝑓(𝑦) 𝑑𝑦)

= 𝑓(𝑥) −∫
𝑥

0
𝑒𝑦−𝑥𝑓(𝑦) 𝑑𝑦

−∫
𝑥

0
𝑓(𝑦)𝑑𝑦 +∫

𝑥

0
(∫

𝑡

0
𝑒𝑦−𝑡𝑓(𝑦) 𝑑𝑦) 𝑑𝑡

= 𝑓(𝑥) −∫
𝑥

0
(𝑒𝑦−𝑥 + 1)𝑓(𝑦) 𝑑𝑦

+∫
𝑥

0
(∫

𝑡

0
𝑒𝑦−𝑡𝑓(𝑦)𝑑𝑦) 𝑑𝑡.

An integral computation shows that

((𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑒𝑚)(𝑥) =
𝑒−𝑥−𝑖𝜋𝑚 ((2𝜋𝑚 + 𝑖)𝑒𝑥+2𝑖𝜋𝑚𝑥 − 2𝑖)

2𝜋𝑚 − 𝑖 .

Now observe that

((𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑒𝑚)(𝑥)𝑒𝑛(𝑥)

equals

(−1)𝑚+𝑛 ((2𝜋𝑚 + 𝑖)𝑒𝑥+2𝑖𝜋𝑚𝑥 − 2𝑖) 𝑒(−1−2𝑖𝜋𝑛)𝑥
2𝜋𝑚 − 𝑖 .

Therefore,

⟨(𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑒𝑚, 𝑒𝑛⟩

= ∫
1

0
((𝐼 − 𝑉)(𝐼 + 𝑉)−1𝑒𝑚)(𝑥)𝑒𝑛(𝑥) 𝑑𝑥
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= ∫
1

0

(−1)𝑚+𝑛 ((2𝜋𝑚 + 𝑖)𝑒𝑥+2𝑖𝜋𝑚𝑥 − 2𝑖) 𝑒(−1−2𝑖𝜋𝑛)𝑥
2𝜋𝑚 − 𝑖 𝑑𝑥

= 2(𝑒 − 1)
𝑒

(−1)𝑚+𝑛

(2𝜋𝑚 − 𝑖)(2𝜋𝑛 − 𝑖) ,

which completes the proof. ■

Observe that thematrix in Theorem 20.6.1 is symmetric in𝑚 and 𝑛, in other words, it is
self transpose. This is the case with the matrix representation of any complex symmetric
operator with respect to a 𝐶-real orthonormal basis (Exercise 20.8.27).

20.7 Notes
This chapter covered a small sliver of a large field of operator theory [134, 135, 143, 250].
Let us mention a few other important results from the literature.
For an inner function 𝑢, the spectrum of the compressed shift 𝑆ᵆ is the set

Σ(𝑢) = {𝜆 ∈ 𝔻− ∶ lim inf
𝑧→𝜆

|𝑢(𝑧)| = 0}

and the point spectrum is Σ(𝑢) ∩ 𝔻 = {𝜆 ∈ 𝔻 ∶ 𝑢(𝜆) = 0}. The set Σ(𝑢) is the spectrum of
𝑢 and has various roles in understanding functions in the model space𝒦ᵆ. For example,
if 𝛾 is an arc of 𝕋which does not intersect Σ(𝑢), then every function in𝒦ᵆ has an analytic
continuation to an open neighborhood of 𝛾. Observe that Σ(Θ) = {1} for the inner function
Θ from (20.2.1).
The invariant subspaces of 𝑆ᵆ are 𝑣𝐻2 ∩ 𝒦ᵆ, where 𝑣 is an inner function such that

𝑢/𝑣 is also inner. Moreover, every invariant subspace is cyclic. Any compressed shift is
irreducible in the sense that ifℳ is a subspace of 𝒦ᵆ with 𝑆ᵆℳ ⊆ ℳ and 𝑆∗ᵆℳ ⊆ ℳ,
thenℳ = {0} orℳ = 𝒦ᵆ.
The description of the commutant {𝑆ᵆ}′ of 𝑆ᵆ is one of the gems of operator theory and

is a consequence of the commutant lifting theorem [324]. For any 𝜑 ∈ 𝐻∞, the operator
𝜑(𝑆ᵆ) is well defined and equals 𝑃 𝑇𝜑|𝒦𝑢 , where 𝑇𝜑 is the analytic Toeplitz operator on𝐻2

with symbol 𝜑. Furthermore, {𝑆ᵆ}′ = {𝜑(𝑆ᵆ) ∶ 𝜑 ∈ 𝐻∞}. See Exercise 20.8.23 for a proof
using Hankel operators.
One can show that 𝑆ᵆ satisfies the following:

(a) ‖𝑆ᵆ‖ ⩽ 1.

(b) rank(𝐼 − 𝑆ᵆ𝑆∗ᵆ) = rank(𝐼 − 𝑆∗ᵆ𝑆ᵆ) = 1.

(c) lim
𝑛→∞

‖𝑆𝑛ᵆ𝑓‖ = 0 for all 𝑓 ∈ 𝒦ᵆ.

Whatmakes compressed shifts important is that any Hilbert space operator satisfying (a) -
(c) is unitarily equivalent to 𝑆ᵆ for some inner function 𝑢, hence the use of the term “model
space” for𝒦ᵆ [143].
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There is a representation theorem for other types of contractions [134, 135] involving
the compression of the shift to a reproducing kernel Hilbert space with kernel

𝑘ᵆ𝜆(𝑧) =
1 − 𝑢(𝜆)𝑢(𝑧)

1 − 𝜆𝑧
.

Here 𝑢 is a general analytic self map of 𝔻 and the resulting space is a de Branges–Rovnyak
space.

20.8 Exercises

Exercise 20.8.1. Consider the circle 𝛾 = {𝑧 ∶ |𝑧 − 1
2
| = 1

2
} and the inner functionΘ from

(20.2.1). Show that

lim
𝑧→1
𝑧∈𝛾

|Θ(𝑧)| = 1
𝑒 .

Remark: This shows that although lim𝑟→1− Θ(𝑟) = 0, limits along other paths in 𝔻
terminating at 𝜉 = 1 can be nonzero.

Exercise 20.8.2. If 𝑢 is inner, prove that the reproducing kernel 𝑘𝜆(𝑧) for𝒦ᵆ (see (20.1.3))
has the following property: for distinct 𝜆1, 𝜆2,…, 𝜆𝑛 ∈ 𝔻 and any 𝑐1, 𝑐2,…, 𝑐𝑛 ∈ ℂ,

∑
1⩽𝑖,𝑗⩽𝑛

𝑐𝑖𝑐𝑗𝑘𝜆𝑖 (𝜆𝑗) ⩾ 0.

Remark: This is equivalent to the positive semidefiniteness of the matrix [𝑘𝜆𝑖 (𝜆𝑗)]𝑛𝑖,𝑗=1.

Exercise 20.8.3. Prove that any subspace of a reproducing kernel Hilbert space is a
reproducing kernel Hilbert space.

Exercise 20.8.4. Let 𝑢 be inner and let 𝐶 be the function (𝐶𝑓)(𝜉) = 𝑢(𝜉)𝜉𝑓(𝜉) on 𝐿2(𝕋).

(a) Prove that 𝐶2 = 𝐼.

(b) Prove that ‖𝐶𝑓‖ = ‖𝑓‖ for all 𝑓 ∈ 𝐿2(𝕋).

(c) Prove that 𝐶(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐶𝑓 + 𝑏𝐶𝑔 for all 𝑎, 𝑏 ∈ ℂ and 𝑓, 𝑔 ∈ 𝐿2(𝕋).

Exercise 20.8.5. If 𝑢 is inner and𝐶 is the conjugation on 𝐿2(𝕋) fromExercise 20.8.4, prove
that 𝐶 maps 𝐿2(𝕋) ⊖𝒦ᵆ onto itself.
Remark: Proposition 20.1.6 shows that 𝐶𝒦ᵆ = 𝒦ᵆ.

Exercise 20.8.6. Prove that the compressed shift 𝑆ᵆ satisfies 𝑆𝑛ᵆ = 𝑃 𝑆𝑛|𝒦𝑢 for all 𝑛 ⩾ 0.

Exercise 20.8.7. von Neumann’s inequality [144, p. 213] says that if 𝑝 ∈ ℂ[𝑧] and 𝑇 ∈
ℬ(ℋ) is a contraction, then 𝑝(𝑇) satisfies

‖𝑝(𝑇)‖ ⩽ sup
|𝑧|⩽1

|𝑝(𝑧)|.

Prove von Neumann’s inequality for 𝑇 = 𝑆ᵆ.
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Exercise 20.8.8. If 𝑢 is inner, prove the following.

(a) ⋁{𝑆∗𝑛𝑢 ∶ 𝑛 ⩾ 1} = 𝒦ᵆ.

(b) ⋁{𝑆∗𝑛𝑢 ∶ 𝑛 ⩾ 0} = 𝒦𝑧ᵆ.

Exercise 20.8.9. If 𝑢 is an inner function, prove that 𝑘0 = 1 − 𝑢(0)𝑢 is a cyclic vector for
𝑆ᵆ, that is,⋁{𝑆𝑛ᵆ𝑘0 ∶ 𝑛 ⩾ 0} = 𝒦ᵆ.

Exercise 20.8.10. If 𝑢 is an inner function and 𝑢(0) = 0, prove the following.

(a) 1 ∈ 𝒦ᵆ.

(b) 𝑆ᵆ𝑆∗ᵆ = 𝐼 − 1 ⊗ 1.

(c) 𝑆∗ᵆ𝑆ᵆ = 𝐼 − 𝑢
𝑧 ⊗

𝑢
𝑧 .

Exercise 20.8.11. Let 𝑢 be an inner function such that 𝑢(0) = 0.

(a) Prove that 𝑆ᵆ is a partial isometry (Definition 14.9.8).

(b) Prove that ker 𝑆ᵆ = span {𝑢𝑧 } and (ran 𝑆ᵆ)
⟂ = ℂ.

Exercise 20.8.12. If 𝑢 is an inner function and 𝑢(0) = 0, Exercise 20.8.11 ensures that 𝑆ᵆ
is a partial isometry. Prove that 𝑈 = 𝑆ᵆ + 1 ⊗ 𝑢

𝑧 is unitary.
Remark: 𝑈 is an example of a Clark unitary operator [143, Ch. 11].

Exercise 20.8.13. Let 𝑢 be an inner function and 𝑢(0) ≠ 0.

(a) Prove that ker 𝑆∗ᵆ = {0}.

(b) Prove that ker 𝑆ᵆ = {0}.

Exercise 20.8.14. Recall theHankel operator𝐻𝜑 fromChapter 17. If 𝑢 is inner, prove that
𝐻∗
ᵆ𝐻ᵆ is the orthogonal projection of 𝐻2 onto𝒦ᵆ.

Exercise 20.8.15. For each 𝑛 ⩾ 1 prove that the 𝑛 × 𝑛matrix

𝑇𝑛 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋯ 0
1 0 0 0 0 ⋯ 0
0 1 0 0 0 ⋯ 0
0 0 1 0 0 ⋯ 0
0 0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0
0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

satisfies the following.

(a) ‖𝑇𝑛‖ ⩽ 1.

(b) rank(𝐼 − 𝑇𝑛𝑇∗
𝑛 ) = rank(𝐼 − 𝑇∗

𝑛 𝑇𝑛) = 1.

(c) ‖𝑇𝑘
𝑛 x‖ → 0 as 𝑘 → ∞ for all x ∈ ℂ𝑛.
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Remark: If 𝑇 ∈ ℬ(ℋ) is a contraction that satisfies (a) - (c), then 𝑇 is unitarily equivalent
to 𝑆ᵆ on some model space𝒦ᵆ [143, p. 195].

Exercise 20.8.16. For the matrix 𝑇𝑛 in Exercise 20.8.15, find an inner function 𝑢 and an
orthonormal basis for𝒦ᵆ such that a matrix representation of 𝑆ᵆ is 𝑇𝑛.

Exercise 20.8.17. Find all the hyperinvariant subspaces for the compressed shift on the
model space𝒦𝑧𝑛 .

Exercise 20.8.18. Let 𝑢 be a finite Blaschke product

𝑢(𝑧) =
𝑛
∏
𝑗=1

𝑧 − 𝜆𝑗
1 − 𝜆𝑗𝑧

,

whose zeros 𝜆1, 𝜆2,…, 𝜆𝑛 are distinct points in 𝔻. Prove that

𝒦ᵆ =⋁{ 1
1 − 𝜆𝑗𝑧

∶ 1 ⩽ 𝑗 ⩽ 𝑛}.

Exercise 20.8.19. Let𝑢 be a finite Blaschke productwhose zeros are 𝜆1, 𝜆2,…, 𝜆𝑛, repeated
according to multiplicity. Prove that

𝒦ᵆ = { 𝑝(𝑧)
(1 − 𝜆1𝑧)(1 − 𝜆2𝑧)⋯ (1 − 𝜆𝑛𝑧)

∶ 𝑝 ∈ P𝑛−1},

whereP𝑛−1 denotes the set of polynomials of degree at most 𝑛 − 1.

Exercise 20.8.20. Let𝑢 be a finite Blaschke productwhose zeros are 𝜆1, 𝜆2,…, 𝜆𝑛, repeated
according to multiplicity. Let

𝑏𝜆(𝑧) =
𝑧 − 𝜆
1 − 𝜆𝑧

.

Define

𝑣1(𝑧) =
√1 − |𝜆1|2

1 − 𝜆1𝑧
and 𝑣ℓ(𝑧) = ( ∏

1⩽𝑖⩽ℓ−1
𝑏𝜆𝑖)

√1 − |𝜆ℓ|2

1 − 𝜆ℓ𝑧
for 2 ⩽ ℓ ⩽ 𝑛.

(a) Prove that 𝑣1, 𝑣2,…, 𝑣𝑛 is an orthonormal basis for𝒦ᵆ.

(b) Prove that the matrix representation of 𝑆ᵆ with respect to the basis 𝑣1, 𝑣2,…, 𝑣𝑛 is
lower triangular with 𝜆1, 𝜆2,…, 𝜆𝑛 along the main diagonal (in that order).

Remark: This basis is known as the Takenaka–Malmquist–Walsh basis [143, p. 120].

Exercise 20.8.21. If 𝑢 is inner and 𝑢 = 𝑆𝜇𝐵, where 𝐵 is an infinite Blaschke product and
𝑆𝜇 is a singular inner function, prove that𝒦ᵆ is infinite dimensional.
Remark: A more delicate argument shows that𝒦ᵆ is finite dimensional if and only if 𝑢 is
a finite Blaschke product [143, p. 117].
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Exercise 20.8.22. Let 𝑢 be inner and consider the compression of the analytic Toeplitz
operator 𝑇𝜑 on 𝐻2 to𝒦ᵆ. This is the operator 𝐴𝜑 on𝒦ᵆ defined by 𝐴𝜑𝑓 = 𝑃 𝑇𝜑𝑓.

(a) Prove that {𝐴𝜑 ∶ 𝜑 ∈ 𝐻∞} ⊆ {𝑆ᵆ}′.

(b) For 𝑢(𝑧) = 𝑧𝑛, prove that𝒦ᵆ = P𝑛−1 (the set of polynomials of degree at most 𝑛−1).

(c) Find the matrix representation of 𝐴𝜑 with respect to the orthonormal basis
1, 𝑧, 𝑧2,…, 𝑧𝑛−1.

(d) Use this matrix representation to prove that {𝐴𝜑 ∶ 𝜑 ∈ 𝐻∞} = {𝑆ᵆ}′.

Remark: The commutant lifting theorem [324] (see also [143]) says that {𝐴𝜑 ∶ 𝜑 ∈ 𝐻∞} =
{𝑆ᵆ}′ for any inner function 𝑢. We prove this in Exercise 20.8.23.

Exercise 20.8.23. This is a continuation of Exercise 20.8.22 and follows a presentation
from [266]. Suppose that 𝑢 is inner and 𝑇 ∈ ℬ(𝒦ᵆ) commutes with 𝑆ᵆ. Use the following
steps to produce a 𝜑 ∈ 𝐻∞ such that 𝑇 = 𝐴𝜑 and ‖𝑇‖ = ‖𝜑‖∞.

(a) For 𝑇 ∈ ℬ(𝒦ᵆ) let 𝑇 ∶ 𝐻2 → 𝐻2
0 be defined by 𝑇𝑓 = 𝑢𝑇𝑃 𝑓. Prove that 𝑇𝑆ᵆ = 𝑆ᵆ𝑇

if and only if 𝑇 is a Hankel operator.

(b) Suppose that 𝑇 commutes with 𝑆ᵆ. Prove that 𝑇 = 𝐻𝜓 for some 𝜓 ∈ 𝐿∞ with ‖𝐻𝜓‖ =
‖𝜓‖∞.

(c) Prove that 𝐻𝜓ᵆ = 0 and deduce that 𝜑 = 𝜓𝑢 ∈ 𝐻∞.

(d) Prove that 𝑢𝑇𝑓 = 𝑃−(𝑢𝜑𝑓) for all 𝑓 ∈ 𝒦ᵆ.

(e) Prove that 𝑇 = 𝐴𝜑 and ‖𝑇‖ = ‖𝜑‖∞.

Exercise 20.8.24. For an inner function 𝑢 and 𝜑 ∈ 𝐻∞, deduce from Exercise 20.8.23
that 𝐴𝜑 = 𝑀ᵆ𝐻ᵆ𝜑|𝒦𝑢 .
Remark: See [250] for more on this.

Exercise 20.8.25. Let 𝑢 be an inner function and let (𝑣𝑗)𝑗⩾1 be an orthonormal basis for
themodel space𝒦ᵆ (whichmay be finite or infinite dimensional). Prove that (𝑢𝑛𝑣𝑗)𝑛⩾0,𝑗⩾1
is an orthonormal basis for 𝐻2.

Exercise 20.8.26. Suppose that 𝐶 is a conjugation on a complex Hilbert spaceℋ. Use the
following steps to prove thatℋ has an orthonormal basis (u𝑛)𝑛⩾1 such that 𝐶u𝑛 = u𝑛 for
all 𝑛.

(a) Prove that ⟨x, y⟩ = ⟨𝐶y, 𝐶x⟩ for all x, y ∈ ℋ.

(b) Prove that𝒦 = (𝐼−𝐶)ℋ is a real Hilbert space in the sense that it satisfies the axioms
of a Hilbert space except that the field of scalars is ℝ and not ℂ.

(c) Verify the identity 2x = (x + 𝐶x) − 𝑖(𝑖x + 𝐶(𝑖x)) for all x ∈ ℋ.

(d) If (u𝑛)𝑛⩾1 is an orthonormal basis for𝒦, prove that 𝐶u𝑛 = u𝑛 for all 𝑛.

Remark: Such a basis is a 𝐶-real basis.
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Exercise 20.8.27. Let 𝑇 ∈ ℬ(ℋ) be a complex symmetric operator. That is, there exists a
conjugation 𝐶 onℋ such that 𝑇 = 𝐶𝑇∗𝐶. Prove that the matrix representation of 𝑇 with
respect to any 𝐶-real orthonormal basis ofℋ is symmetric.

Exercise 20.8.28. Let 𝑢 be an infinite Blaschke product and consider the analytic Toeplitz
operator 𝑇 on 𝐻2.

(a) Use the von Neumann–Wold decomposition (Theorem 15.1.1) to prove that 𝑇 is
unitarily equivalent to a block operator on⨁𝑗⩾1 𝑇

𝑗
ᵆ𝒦ᵆ.

(b) Prove that this block operator is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋯
𝐼 0 0 0 0 ⋯
0 𝐼 0 0 0 ⋯
0 0 𝐼 0 0 ⋯
0 0 0 𝐼 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 0 is the zero operator on𝒦ᵆ and 𝐼 is the identity operator on𝒦ᵆ.

Exercise 20.8.29. Continuing with Exercise 20.8.28, prove that every operator in the
commutant of the operator above is of the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐴0 0 0 0 0 ⋯
𝐴1 𝐴0 0 0 0 ⋯
𝐴2 𝐴1 𝐴0 0 0 ⋯
𝐴3 𝐴2 𝐴1 𝐴0 0 ⋯
𝐴4 𝐴3 𝐴2 𝐴1 𝐴0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝐴𝑗 ∈ ℬ(𝒦ᵆ) for all 𝑗 ⩾ 0.

Exercise 20.8.30. Follow these steps to prove the Nevanlinna–Pick theorem: If
𝜆1, 𝜆2,…, 𝜆𝑛 are distinct points in 𝔻 and 𝑤1, 𝑤2,…,𝑤𝑛 are arbitrary points in 𝔻, then
there is an analytic self map 𝑓 of 𝔻 such that 𝑓(𝜆𝑗) = 𝑤𝑗 for all 1 ⩽ 𝑖 ⩽ 𝑛 if and only if the
matrix

𝑄 = [
1 − 𝑤𝑖𝑤𝑗
1 − 𝜆𝑖𝜆𝑗

]
𝑛

𝑖,𝑗=1

is positive semidefinite.

(a) Let

𝑢(𝑧) =
𝑛
∏
𝑗=1

𝜆𝑗 − 𝑧
1 − 𝜆𝑗𝑧

be the finite Blaschke product whose zeros are 𝜆1, 𝜆2,…, 𝜆𝑛 and recall from Exercise
20.8.18 that𝒦ᵆ = span {𝑘𝜆𝑗 ∶ 1 ⩽ 𝑗 ⩽ 𝑛}. Define the operator 𝑅 ∶ 𝒦ᵆ → 𝒦ᵆ on the
basis elements of𝒦ᵆ by 𝑅𝑘𝜆𝑗 = 𝑤𝑗𝑘𝜆𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛. Prove that 𝑅 ∈ {𝑆∗ᵆ}′.



466 | the compressed shift

(b) By Exercise 20.8.22 there is a 𝜑 ∈ 𝐻∞ such that 𝑅 = 𝑇𝜑|𝒦𝑢 and ‖𝑅‖ = ‖𝜑‖∞. Use this
to prove that 𝑤𝑗𝑘𝜆𝑗 = 𝜑(𝜆𝑗)𝑘𝜆𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛 and thus 𝜑(𝜆𝑗) = 𝑤𝑗 .

(c) Prove that 𝑄 is positive semidefinite if and only if 𝐼 − 𝑅∗𝑅 ⩾ 0.

(d) Prove that 𝐼 − 𝑅∗𝑅 ⩾ 0 if and only if ‖𝜑‖∞ ⩽ 1.

20.9 Hints for the Exercises
Hint for Ex. 20.8.2: Write∑1⩽𝑖,𝑗⩽𝑛 𝑐𝑖𝑐𝑗𝑘𝜆𝑖 (𝜆𝑗) as the square of the norm of a function.
Hint for Ex. 20.8.3: If 𝐾(𝑧, 𝑤) is the reproducing kernel forℋ and 𝑃ℳ is the orthogonal
projection ofℋ ontoℳ, examine 𝑃ℳ𝐾(𝑧, 𝑤).
Hint for Ex. 20.8.6: Work with adjoints and use the 𝑆∗-invariance of𝒦ᵆ.
Hint for Ex. 20.8.7: Since 𝑝(𝑇) = 𝑃 𝑝(𝑆)|𝒦𝑢 and, without loss of generality,

sup
|𝑧|⩽1

|𝑝(𝑧)| = 1,

it suffices to show that ‖𝑝(𝑆)𝑓‖ ⩽ ‖𝑓‖ for all 𝑓 ∈ 𝒦ᵆ.
Hint forEx. 20.8.9: Let𝐶 be the conjugation fromProposition 20.1.6 andprove that𝐶𝑘0 =
𝑆∗𝑢. Then use Exercise 20.8.8.
Hint for Ex. 20.8.10: Prove (b) and then use the conjugation 𝐶 to prove (c).
Hint for Ex. 20.8.13: Consult Proposition 20.3.3 for (a). Consult Proposition 20.3.4 for (b).
Hint for Ex. 20.8.23: For (a), recall that 𝑇 is a Hankel operator if and only if 𝑃−𝑧𝑇𝑓 = 𝑇𝑆𝑓
for all𝑓 ∈ 𝐻2 (Exercise 17.10.10) and that𝑃 𝑓 = 𝑢𝑃−𝑢𝑓 for all𝑓 ∈ 𝒦ᵆ (Proposition 20.3.1).
Hint for Ex. 20.8.25: Consider the Toeplitz operator 𝑇 on 𝐻2 and the von Neumann–
Wold decomposition (Theorem 15.1.1).
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