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PREFACE

This is the book we wish we had as graduate students. As its name suggests, this book is
all about examples. Instead of listing a host of concepts all at once in an abstract setting,
we bring ideas along slowly and illustrate each new idea with explicit and instructive
examples. As one can see with the chapter titles, the focus of each chapter is on a
specific operator and not on a concept. The important topics are covered through concrete
operators and settings.

As for style, we take great pains not to talk down to or above our audience. For example,
we religiously eschew the dismissive words “obvious” and “trivial,” which have caused
untold hours of heartache and self-doubt for puzzled graduate students the world over.
Our prerequisites are minimal and we take time to highlight arguments and details that
are often brushed over in other sources.

In terms of prerequisites, we hope that the reader has had some exposure to Lebesgue’s
theory of integration. Familiarity with the Lebesgue integral and the three big conver-
gence theorems (Fatou’s lemma, the monotone convergence theorem, and the dominated
convergence theorem) is sufficient for our purposes. In addition, an undergraduate-level
course in complex analysis is needed for some of the chapters. We carefully develop
everything else. Moreover, we cover any needed background material as part of the
discussion. We do not burden the reader, who is anxious to get to operator theory, with a
large volume of preliminary material. Nor do we make them pause their reading to chase
down a concept or formula from an appendix.

By “operator theory,” we mean the study of bounded operators on Hilbert spaces.
We choose to work with Hilbert spaces, not only because of their beauty, ubiquity, and
great applicability, but also because they are the stepping stone to more specialized
investigations. Interested readers who wish to pursue further studies in some of the
topics covered here, but in the Banach-space setting, will be well equipped to do so once
Hilbert spaces and their operators are firmly understood. We are primarily concerned
with concrete properties of individual operators: norm, spectrum, compactness, invariant
subspaces, and so forth. Many of our examples are non-normal operators, and hence
lie outside the focus of many standard texts, in which various subclasses of normal
operators play a distinguished role. Although algebras of operators occasionally arise in
what follows, this is not a book on operator algebras (however, we must admit being
influenced by the title of [105]). Nor do we enter into the theory of unbounded operators
on Hilbert spaces.

The endnotes for each chapter are filled with historical details which allow the reader
to understand the development of each particular topic. We provide copious references
in case the reader wishes to consult the original sources or delve deeper into a particular
topic they find interesting.
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Each chapter comes equipped with dozens of problems. In total, this book contains over
600 problems. Some of them ease the reader into the subject. Others ask the student to
supply a proof of some technical detail. More complicated problems, which sometimes
explain material not covered in the text, are split into several parts to ensure that the
student is not left treading water. We provide hints for many of the problems and it is
our intention that the attentive student should be able to work through all of the exercises
without outside assistance.

The proofs and examples we present are instructive. We try not to hide behind slick
arguments that do not easily generalize. Neither do we hold back on the details. Although
everyone may learn something from this book, our primary audience consists of graduate
students and entry-level researchers.

Finally, this book is not meant to be a comprehensive treatise on operator theory. That
book would comprise many volumes. Our book is a selection of instructive operator-theory
vignettes that show a variety of topics that a student may see as they begin to attend
conferences or engage in independent research.

So, welcome to operator theory! It is an inspiring subject that has developed over the
past 100-plus years and continues to enjoy applications in mathematics, science, and
engineering. After reading this book, learning the history of the subject from the endnotes,
and working your way through the problems, we hope that you are inspired and excited
about the subject as much as we are.

We give special thanks to John B. Conway, Chris Donnay, Elena Kim, Tom Kriete, Artur
Nicolau, Ryan O’Dowd, Alan Sola, Dan Timotin, William Verreault, Brett Wick, and Jiahui
Yu for giving us useful feedback on the initial draft of this book.

Stephan Ramon Garcia was partially supported by National Science Foundation (US)
grants DMS-2054002 and DMS-1800123. Javad Mashreghi was partially supported by an
NSERC Discovery Grant.



NOTATION

N the set of positive integers
2PN the set of integers
e the set of rational numbers
R the set of real numbers
G et e the set of complex numbers
D e the open unit disk in C
8 the unit circle in C
A the closure of the set A
Clz] e the set of complex polynomials in the variable z
Clz,Z] vvoeieieii i the set of complex polynomials in the variables z and z
P e the set of complex polynomials in z of degree at most n
R e real n-dimensional Euclidean space
FH K e e e e Hilbert spaces
U, Y, e e e e, vector spaces
D ) /2 abstract vectors
O complex n-dimensional Euclidean space (p. 1)
Gk + e e e ee e et Kronecker delta function (p. 4)
0% the set of square summable infinite sequences (p. 8)
S T inner product (p. 8)
[ 7 inner product on the space #
7S PP norm on the space H
| PPN norm (p. 8)
T2[0,1] o vttt e Lebesgue space on [0, 1] (p. 10)
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R closed linear span (p. 19)
12 trace of a matrix A (p. 30)
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D Dirichlet space (p. 207)
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A BRIEF TOUR OF OPERATOR THEORY

Although examples drive this book, we first provide a whirlwind survey of the general
concepts of operator theory. We do not expect the student to master these topics now since
they are covered in future chapters.

A Hilbert space J( is a complex vector space endowed with an inner product (x,y)
that defines a norm ||x|| = \/(XT() with respect to which ¢ is (Cauchy) complete. The
inner product on a Hilbert space satisfies the Cauchy-Schwarz inequality |(x, y)| < ||Ix][lyll
for all x,y € J¢. Examples of Hilbert spaces include C" (complex Euclidean space), £2
(the space of square-summable complex sequences), and I?[0, 1] (the Lebesgue space of
square-integrable, complex-valued functions on [0, 1]).

Vectors X,y in a Hilbert space J( are orthogonal if (X,y) = 0. The dimension of a Hilbert
space J( is the cardinality of a maximal set of nonzero orthogonal vectors. This book is
almost exclusively concerned with Hilbert spaces of countable dimension. Every such
Hilbert space has an orthonormal basis (u,,)p;, a (possibly finite) maximal orthogonal set
such that (u,,,w,) = 8,,, for all m,n > 1. With respect to an orthonormal basis (u,,)n;,
each x € J enjoys a generalized Fourier expansion x = Z:ozl(x, u,)u, that satisfies
Parseval’s identity ||x? = Z:;l [(x,u,)|2.

A subspace (a norm-closed linear submanifold) of J¢ is itself a Hilbert space with the
operations inherited from F. If (w,)s>; is a (possibly finite) orthonormal basis for a
subspace M of # and x € F, then Pyyx = ZZO:l(x, w,,)W,, belongs to M and satisfies
|x — Pyx|| < |x—y]| for everyy € M. In short, Py;x is the unique closest vector to x in M.
Furthermore, Py, defines a linear transformation on  whose range is M. It is called the
orthogonal projection of J onto M and it satisfies By = Py and (Py;X,y) = (X, Bycy) for all
X,y € H.

Let A and X be Hilbert spaces. A linear transformation A : H — X is bounded if | A|| =
sup{||Ax||% : |x|l# = 1} is finite. Let B(F, K) denote the set of bounded linear operators
from J to K. We write B(F) for B(F(, (). The quantity ||A|| is the norm of A. Since B(JH()
is closed under addition and scalar multiplication, it is a vector space. Furthermore, since
lA+B| < ||A||+]B|| and ||cA|| = |c|||A| for all A, B € B(J() and c € C, it follows that B(F)
is a normed vector space. Endowed with this norm, B(¥) is complete and thus forms a
Banach space. Moreover, the composition AB belongs to B(¥) and ||AB|| < ||Al|||B| for all
A, B € B(H). Therefore, B(J() is a Banach algebra.

Foreach A € B(¥, X), thereisaunique A* € B(X, H) such that (AX,y)x = (X, A*Y)g¢
forallx € # and y € K. The operator A* is the adjoint of A; it is the analogue of the
conjugate transpose of a matrix. One can show that A — A* is conjugate linear, that A** =
A, |A| = |A*||, and ||A*A| = ||A||?. This additional structure upgrades B(J() from a Banach
algebra to a C*-algebra. One can exploit adjoints to obtain information about the kernel
and range of an operator.
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For most of the operators A € B(H) covered in this book, we give the matrix
representation [A] = [(Auj,ui>]§’3-=1 with respect to an orthonormal basis (u,)5%, for
J. This matrix representation [A] defines a bounded operator x — [A]x on the Hilbert
space #2 of square summable sequences that is structurally identical to A. Schur’s theorem
helps us determine which infinite matrices define bounded operators on ¢2. Many of
the operators covered in this book, such as the Cesaro operator, the Volterra operator,
weighted shifts, Toeplitz operators, and Hankel operators, have fascinating structured-
matrix representations.

An important class of operators is the compact operators. These are the A € B(J) such
that (Ax,)p=; has a convergent subsequence whenever (x,,)p; is @ bounded sequence in
J. Equivalently, an operator is compact if it takes each bounded set to one whose closure
is compact. Each finite-rank operator is compact and every compact operator is the norm
limit of finite-rank operators. The compact operators form a norm-closed, *-closed ideal
within B(¥).

Some operators have a particularly close relationship with their adjoint. For example,
the operator M on I?[0, 1] defined by (Mf)(x) = xf(x) satisfies M* = M. Such operators
are selfadjoint. If u is a positive finite compactly supported Borel measure on C, then the
operator N on I?(u) defined by (Nf)(z) = zf(z) satisfies (N*f)(z) = zf(z), and thus
N*N = NN*. Such operators are normal. The operator (Uf)(e?®) = e f(e®) on I3(T)
satisfies U*U = UU* = I. Such operators are unitary.

Unitary operators preserve the ambient structure of Hilbert spaces and can serve as a
vehicle to relate A € B(H) with B € B(X). We say that A is unitarily equivalent to B if
there is a unitary U € B(JH(, X) such that UAU* = B. Unitary equivalence is often used
to identify seemingly complicated operators with relatively simple ones.

An operator A € B(H) is invertible if there is a B € B(J() such that AB = BA =1,
where I is the identity operator on J(. If # is finite dimensional, then the conditions
“A is invertible”, “A is surjective”, and “A is injective” are equivalent. If 7 is infinite
dimensional, invertibility is a more delicate matter. The spectrum of A, denoted by c(A),
is the set of 1 € C such that A — AI is not invertible in B(K). If # is finite dimensional,
then a(A) is the set of eigenvalues of A. If # is infinite dimensional, it is possible for an
operator to have no eigenvalues. Nevertheless, o(A) is always a nonempty compact subset
of C. Unitarily equivalent operators have the same spectrum.

The spectrum plays an important role in the functional calculus of an operator. For
A € B(J() and a polynomial p(z) = ¢y + ¢,z + ¢32> + --- + ¢, 2", one can define the
operator p(A) = col + ¢;A + ¢4 + --- + ¢, A". The Riesz functional calculus says that
if f is analytic on an open neighborhood of g(A), one can define f(A) € B(H).IfAisa
normal operator, one can define f(A) for all Borel-measurable functions on o(A).

One of the great gems of operator theory is the spectral theorem for normal operators. It
says that any normal operator N is unitarily equivalent to a multiplication operator M, f =
@f on some I*(X, i) space. Under certain circumstances, X can be taken to be o(N) and
u has support on o(N). There is also the spectral multiplicity theorem which determines
when two normal operators are unitarily equivalent.

A subspace M of H is invariant for A € B(HK) if AM C M. For example, {0} and F
are invariant subspaces for any A € B(¥). The most famous open problem in operator
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theory, the invariant subspace problem, asks whether every A € B(H), where dim F > 2,
possesses an invariant subspace besides the two listed above. Most of the operators in this
book have an abundance of invariant subspaces that permit a concrete description.

There are several natural topologies on B(F). Most of the time, we can discuss these
concepts in terms of sequences and convergence instead of getting into bases and subbases
for the respective topologies. First and foremost, there is the norm topology, where A,, — A
if |4, — A|| — 0. Next comes the strong operator topology (SOT), where A,, — A (SOT) if
|A,x — Ax|| — 0 for each x € J(. There is also the weak operator topology (WOT), where
A, > A(WOT)if (4, — A)x,y) — 0 for each x,y € H. Norm convergence implies SOT
convergence and SOT convergence implies WOT convergence. The converses do not hold.
These topologies appear when determining the commutant of an operator. For A € B(¥),
the commutant {A}' is the set of all bounded operators that commute with A. One can see
that p(A) belongs to {A} (where p € C[z] is a polynomial) as does either the strong or
weak closure of {p(A) : p € C[z]}. For some operators, neither of these closures comprise
the entire commutant.

There is certainly much more to be said, many examples to work through, and numer-
ous connections to complex analysis that we have not yet touched upon (although
these form an important component of the book). However, we hope that the preceding
brief summary of the basic definitions has shed some light on the path forward. These
definitions will be introduced and discussed, in due course and in great depth, as we work
our way through twenty chapters full of instructive examples.






Hilbert Spaces

Key Concepts: Inner product, norm, inner product space, C", #2, L?[0, 1], Hilbert space, Cauchy-
Schwarz inequality, triangle inequality, orthogonal projection, orthonormal basis, Banach space.

Outline: This chapter explores the basics of Hilbert spaces by using C" (n-dimensional
Euclidean space), #2 (the space of square-summable complex sequences), and I?[0, 1] (the
space of square-integrable, complex-valued Lebesgue-measurable functions on [0, 1]) as
examples. In addition, this chapter covers the Cauchy-Schwarz and triangle inequalities,
orthonormal bases, and orthogonal projections. Since Banach spaces play a role in the
subsequent chapters, this chapter also covers a few Banach-space basics. Our approach
is pedagogical and not aimed at optimal efficiency. Some results are covered multiple
times, in increasing levels of generality, in order to illustrate alternate proofs or different
perspectives.

1.1 Euclidean Space

Let C", n-dimensional Euclidean space, denote the set of vectors a = (a, a,,..., a,), Where
each a; € C. With the operations of addition a+b = (a; +b;,a,+b,,...,a,+b,) and scalar
multiplication da = (1ay, Aa,,..., 1a,), along with the zero element 0 = (0,0,...,0), C" is
a vector space. It also comes equipped with an inner product and corresponding norm

n n 1
@by=Yab and [ = () lal)’,
i=1 i=1

respectively, where Z denotes the complex conjugate of z € C. In particular, {a, a) = |a]]%.
The inner product satisfies the following for a,b,c € C" and 1 € C.

(a) (a,a) > 0.

(b) (a,a) =0ifand onlyifa = 0.

(c) (a,b) = (b, a).
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(d) (a+b,c)=(a,c)+ (b,c).
(e) (1a,b) = Aa,b).
The properties above ensure that the inner product is linear in the first slot:
(Aa+ ub,c) = Xa,c) + u(b, c),
and conjugate linear in the second slot:
(a, b + uc) = A(a, b) + 1i(a, c).

The inner product on C" also satisfies the following fundamental inequality. Variants
and generalizations of this inequality in other settings, and with different proofs, appear
throughout this chapter.

Proposition 1.1.1 (Cauchy-Schwarz inequality). Ifa,b € C", then
[(a, b)| < [la][b]. (1.1.2)
Equality holds if and only if a and b are linearly dependent.

Proof If x;,y; € Rfor 1 <i < n, then

n n
Gy — 907 = 2 2L Gy — 2xi Y0 + X797

n
= 1 i=1j=1

n

i=1j

n n n n n n
aPIE DI RO DI EEIIEPIES
i=1 j=1 i=1 j=1 i=1 j=1
n n n 2
=) Zf) AT -
i= i=1 i=1

1

Since the left side is nonnegative, it follows that
n 2 n n
(> xm) < (Z x?)(Zy?). (1.1.3)
i=1 i=1 i=1

To obtain (1.1.2), apply (1.1.3) to x; = |a;| and y; = |b;| for 1 < i < n. Exercise 1.10.3
requests a proof of the second part of the proposition. [ |

An important consequence of the Cauchy-Schwarz inequality is the following inequal-
ity, so named because of the image in Figure 1.1.1.

Proposition 1.1.4 (Triangle inequality). Ifa,b € C", then |a + b|| < |a| + ||b||. Equality
holds if and only if a or b is a nonnegative multiple of the other.
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Figure 1.1.1 The triangle inequality.

Proof The Cauchy-Schwarz inequality yields

n n
> Re(a;by) = Re( Y a;b;) = Re(a, b) < [(a,b)| < Jaf[b].
i=1

i=1

Therefore,

n
la+bJ? = > la; + bif?
i=1

n

= > (la;* + 2Re(a;by) + |by?)
i=1

< llafl? + [b]* + 2fal| b

= (lla]l + [b])*.

Take square roots above and deduce the triangle inequality. Exercise 1.10.4 requests
a proof of the second part of the proposition. [ |

The norm on C" defines a metric d(a, b) = ||a — b|| with respect to which C" is Cauchy
complete. That is, every Cauchy sequence in C" converges (Exercise 1.10.7). The metric
notation d(a, b) is usually suppressed in favor of ||a — b|, which more clearly suggests its
translation invariance:

d(a,b)=[la-b| =[l(a-c)-(b-c)| =da-c,b-o).

The inner product on C" is the complex version of the dot product on R". Recall that
two vectors in R” are orthogonal if and only if their dot product is zero. This inspires the
following definition.

Definition 1.1.5. Vectors a,b € C" are orthogonal, written a L b, if (a,b) = 0.

The structure imparted upon C" by the inner product yields analogues of some familiar
results from Euclidean geometry (Figure 1.1.2).
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Y/C ””””””””””””””” X+y

0 ¥ X

Figure 1.1.2 The Pythagorean theorem: ||x||> + ||ly||®> = [x +y||* ifx L y.

Proposition 1.1.6 (Pythagorean theorem). Ifa,b € C" anda L b, then
la +bJ* = [|a]* + [b]*.
Proof By the properties of the inner product discussed earlier, observe that

l[a+b|>=(a+b,a+b)
= (a,a)+ (a,b) + (b,a) + (b,b)
= [a]* +0+0+ |b]?
= [lal* + [Ib]I%,

which completes the proof. [ |

Suppose that (a;)[~; € C" is a basis, in the sense of linear algebra, that is, a;, a,,...,a,
are linearly independent and span{a;, a,,...,a,} = C". The Gram-Schmidt process (see
Theorem 1.5.1 below) produces a basis (w;)iL; such that (u;, ;) = &, where

1 ifj=k
0 ifj#k,

Jk =

is the Kronecker delta function. In other words, the u; are pairwise orthogonal and have
unit length. Such a basis is an orthonormal basis.

Proposition 1.1.7. Let (w;)i-; be an orthonormal basis for C". Then the following hold for
eachx € C".

(a) X = Z(X, ui)ui.
i=1

(b) [x[2 =Y [tx, )2
i=1
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Proof (2) Since span{u;, u,,...,u,,} = C", for each x € C" there are scalars q; such that

n
X = Z a;u;.
i=1

For each fixed k, the orthonormality of (u;)L; ensures that
n
<Xs uk> = < Z a;u;, uk>
i=1

n

= Z a;(u;, uy)

i=1
n

= a8
pes

k-

Q

(b) From part (a),
%) = (D xuw, Y xupu;)
i=1 j=1

n

Z &, w)(x,u;Xay, u;)

i,j=1

n

D, (xu)x,u;)d;;

i,j=1
n

=[x ),
i=1

which completes the proof. [ |

A subspace of C" is a nonempty subset of C" that is closed under vector addition and
scalar multiplication. In C", such a set is also topologically closed and hence this does not
conflict with Definition 1.4.7 below of a subspace in the Hilbert-space setting. If M C C"
is a subspace of dimension k, then the Gram-Schmidt process (see Theorem 1.5.1 below)
provides an orthonormal basis (vi){-‘=1 for M.

Proposition 1.1.8. Let (vi)’i‘:1 be an orthonormal basis for a subspace M of C". For each
x € C", define

k
Pyx = Z(x, Vi)V;. (1.1.9)

i=1

Then the following hold.

(@) ||x = Byx|| < |lx — V| foreveryv € M.
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X — Byx)

Figure 1.1.3 The orthogonal projection onto the subspace M.

(b) (x— Pyx) L vforeveryv e M.

k
(C) Zi=1 |<X,Vi>|2 < ”X”2
(d) Pyx=xifandonlyifx € M.

Proof (a) For any ¢y, c,,..., ¢, € C, Exercise 1.10.10 yields

3 k k
=[x = > [ vl + D) 1= vy — ¢ (1.1.10)
i=1 i=1

k
HX - Z CiVj
i=1

This expression is minimized precisely when ¢; = (x,v;) forall1 < i < k.
(b)Forany1 <i<k,

k
(x =B vy = (x = Y% v)v,vi) (1.1.11)
Jj=1
k
=(X,V;) — < z<x,vj)vj,vi>
j=1

k
=(x,v;) — Z<X’Vj><vj’vi>
j=1

k
=X, v;) - Z<X’Vj>5ij
j=1
=(x,v;) —(X,v;) = 0. (1.1.12)

Thus, (x — Pyx) L v; forall1 < i < k. Since (vi)g‘:1 is a basis for M, the conjugate
linearity of the inner product in the second slot ensures that (x — Py;x) L v for every
veM.
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v,u
_ww,
el

Figure 1.1.4 The orthogonal projection of one vector onto another.
(c) Foreach 1 < i < k, set¢; = (x,v;) in (1.1.10) and obtain

k
0 < [x = Byex|l” = [IxI* = 3 [&x, vi)l®.
i=1

The desired result follows.

(d) If Pyyx = x, then x € M because Pyx is a linear combination of vy, v,,..., vy, each
of which belongs to M. If x € M, then (a) ensures that |x — Py x| < [|x — x| = 0.
Therefore, Pyyx = x. [ ]

The vector Pyx from (1.1.9) is the orthogonal projection of x onto M (Figure 1.1.3) and
is discussed again later in a more general setting. If M = span{u}, then the orthogonal
projection of v onto u is

= v, uz>u.
[[ull

This important relation is depicted in Figure 1.1.4.
The alert reader might notice that the definition of P,;x from Proposition 1.1.8 appears
to depend on the choice of orthonormal basis (vi)f:1 for M. It does not.

Corollary 1.1.13. Suppose that (ui)i-;l and (vi)if=1 are orthonormal bases for a subspace
M of C". Forx € C" define

k k
P= Z(X’ ui)“i and q= Z(X’vi>vi'
i=1

i=1
Thenp = q.
Proof Proposition 1.1.8b implies that x—p and x—q are orthogonal to every vector in M.
The linearity of the inner product in the first slot ensures thatp—q = (x—q)—(x—p)

is orthogonal to every vector in M. Since M is a subspace of C", it follows thatp—q €
M. Therefore, 0 = (p —q,p — q) = |p — q|*>, and hence p = q. [ |
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The following result is useful for determining if a subspace M is a proper subset of C".
Corollary 1.1.14. Let M be a subspace of C". The following are equivalent.
(a) M #C"
(b) Thereisay € C™"\{0} such thaty L v forallv e M.

Proof (a)= (b) Letx ¢ M and sety = X — Byx. Theny # 0 andy L vforallve M
(Proposition 1.1.8).

(b) = (a) Suppose y # 0 and is orthogonal to each v € M. Theny ¢ M since otherwise
Iyll* = (y.y) = 0. Thus, M # C". [ |

1.2 The Sequence Space £>

This next space, the sequence space #2, is infinite dimensional. It is of great importance
since it is a natural generalization of C" and because most of the other Hilbert spaces
considered in this book are, in a certain sense, heavily disguised versions of £2.

Definition 1.2.1. Let #2 be the set of all sequences a = (a,, )%, of complex numbers such
that Z:}:o |a,|? is finite.

The inner product and the corresponding norm on #2 are

@by=3Y ab, and Jal=(} laf)’, (1:22)
n=0

n=0

respectively, where a = (a,,)%, and b = (b,)%, belong to #2. Note that (a,a) = |a|.
To show that #? is a vector space, and that the proposed norm and inner product are
well defined, requires some work. The definition of #2 ensures that the infinite series that
defines ||a]| converges. However, we must justify why the infinite series that defines (a, b)
in (1.2.2) converges. For each N > 1, the Cauchy-Schwarz inequality (Proposition 1.1.1)
says that

N N 1 N 1
Z |anbn| <(Z |an|2>2(z |bn|2>2.
n=0 n=0 n=0

Let N - oo and conclude the first series in (1.2.2) converges absolutely, and hence
converges. Thus, (a, b) is well defined for all a, b € ¢2. This also establishes the following
version of Proposition 1.1.1 for £2.

Proposition 1.2.3 (Cauchy-Schwarz inequality). If a,b € #2 then [(a,b)| < |a||b].
Equality holds if and only if a and b are linearly dependent.

To show that ¢2 is a vector space with the addition and scalar multiplication operations
defined by

a+b=(ay+bg,a, +by,...) and ca = (cay,cay,...),
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one must verify that a+b belongs to £2. The proof of Proposition 1.1.4, applied to #2, yields
the desired result.

Proposition 1.2.4 (Triangle inequality). Ifa,b € ¢% thena+b € ¢?and |a + b|| <
l|la]l + [|bll. Equality holds if and only if a or b is a nonnegative multiple of the other.

We are now in a position to prove that £2 is (Cauchy) complete with respect to the norm
induced by the inner product.

Proposition 1.2.5. £2 is complete.

Proof Suppose that a®0,a®,a® .. is a Cauchy sequence in ¢2. Each a®™ is itself a
sequence of complex numbers:

a® = (@, a™, ", a{,...).
For fixed k,
™ — a”| < a™ —a®)|
@ @ ()

and hence a;’, a;”, a;”’,... is a Cauchy sequence in C. For each k, let

a = lim a(k")

n—oo

and define a = (ay, a;, a,,...), the prospective limit of the sequence ()% ;.
To prove this, let ¢ > 0. Since ()%, is a Cauchy sequence in ¢ there is an N such
that

(Z la(™ — a{™)2 ) < a™ —a®|| <¢ form,n>Nandk >0

Let n — oo and obtain
(Z la™ — q] ) <e. (1.2.6)

For all k, m, it follows from the triangle inequality on C¥ that

1 k

(i jail?)* < (i g™ —ailz)i +( 2 1a™P)” < e+ atm.
i=0 i=0

Thus, letting k — oo yields ||a]| < ¢ + ||a®|| for all m > N. In particular, this shows
that a € ¢2. By (1.2.6),

oo 1
[at™ — a|| = (Z lal™ — ai|2)2 <e forallm>N, (1.2.7)

and hence a(™ converges to a in the norm of £2. ]
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As with C" in Definition 1.1.5, a,b € #? are orthogonal, written a L b, if (a, b) = 0. The
standard basis vectors
e, =(1,0,0,...), e, =(0,1,0,...), e, =(0,0,1,0,...),... (1.2.8)

are orthonormal in #2; that is, (e, €,) = &,,,,. Moreover,

) o0
a=) (aeye, and [a]>= )] [a eyl
n=0 n=0

for every a € #2. These are the £2 analogues of the formulas from Proposition 1.1.7.

Due to convergence issues, concepts such as orthonormal bases, subspaces, and orthog-
onal projections are more subtle than in the Euclidean setting and are discussed in a more
unified context in Section 1.7.

1.3 The Lebesgue Space [0, 1]

The Lebesgue space I?[0, 1] is the set of Lebesgue-measurable, complex-valued functions
fon [0,1] such that

1
f [f(0)?dx < co.
0

As is traditional in the subject, we identify functions that are equal almost everywhere. A
student who needs a review of Lebesgue measure and integration should consult [317] or
[319].

Define the inner product and corresponding norm on I2[0, 1] by

1 1 1
o= [ feRtar  and A= ( [ IR )
0 0

Note that (f, f) = |[|f]|?>. As with ¢2, there are convergence issues to address in the
definition of the inner product. These are resolved with the following integral version of
the Cauchy-Schwarz inequality.

Proposition 1.3.1 (Cauchy-Schwarz inequality). If f, g € I*[0,1], then |(f,g)| < |flllgll-
Equality holds if and only if f and g are linearly dependent.

Proof Assume that neither f nor g is the zero function, since the inequality holds
otherwise. For a, b > 0, note that

ab < é(a2 +b?) (1.3.2)
since (a — b)? > 0. Apply this to

@) g
= M PE T
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and get

e _ 1 (f@P | [P
17 Tle <2( TiEENTTE )

Integrating both sides yields

1 [ 1(IAP | gl
il fo FCg)ldx < 5 (W * W) =t

which shows that fg is integrable, and thus the inner product is well defined.
Moreover, the Cauchy-Schwarz inequality follows. Exercise 1.10.5 requests a proof
of the second part of the proposition. [ |

Next we prove the triangle inequality for I2[0, 1], which shows that I?[0,1] is closed
under the operation of function addition. Since I*[0, 1] is also closed under scalar multi-
plication, it is a vector space.

Proposition 1.3.3 (Triangle inequality). If f,g € I?[0,1], then f + g € I?[0,1] and
If + gl < 1A+ ligl-

Equality holds if and only if f or g is a nonnegative multiple of the other.

Proof For f,g € I*[0,1] and x € [0,1],

1£(0) + g7 = |f(OP + 2Re (f(x)g(x)) + |g(x)2
< IR + 21 @)]g00)] + [g(x)2
<20f)1 + (g0,

by (1.3.2). Integrating the inequality above reveals that f + g € I*[0,1]. It is left to
prove the triangle inequality. For this, observe that

If+gl*=(+gf+g
=[£I+ 2Re(f, g) + lgl?
< IFIP +20F1lgl + gl (Cauchy-Schwarz)

= (If1 + l1gIh>.

Take square roots of both sides of the inequality above and obtain the triangle inequal-
ity. Exercise 1.10.6 requests a proof of the second statement of the proposition. |l

As with C" and ¢2, Proposition 1.3.3 shows that I?[0, 1] is a vector space with an inner
product. The next result asserts that I?[0, 1] is complete.

Proposition 1.3.4 (Riesz-Fischer). I2[0,1] is complete.

Proof We follow a proof from [319, Ch. 3]. Let (f;,)5%, be a Cauchy sequence in I*[0, 1].
Choose a subsequence (fy,,)i2; such that

1 .
||f”i+1 _fni | < 5 fori > 1.
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For each k > 1 define

k 0
k() = D 1o () = fo, ()] and - g(x) = 37 |y, () = for, (OI-
i=1 i=1

Observe that g,.(x) — g(x) for each x € [0,1]. The triangle inequality (Proposition
1.3.3) applied k — 1 times shows that

k k 1

lgell < Zl s = Fa I <, i <t
i= 1=

Since g, — g pointwise, Fatou’s lemma yields
llgll < lim inf g, || < 1.
k=0

In particular, g is finite almost everywhere and
o)
ﬁq + Ej(fhhﬂ _.ﬁy)
j=1

converges absolutely almost everywhere and defines a measurable function f. There-
fore,
k-1

i fo = Jim (o + 2 = 1) = 1

almost everywhere.

To complete the proof, it suffices to show that f € I?[0,1] and | f;, — f|| = 0. Lete > 0.
Since (f,,)nx; is a Cauchy sequence, there is an N > 1 such that || f;, — fi,|| < € for all
m,n > N. Fatou’s lemma implies that

If = fnll S Hminf | fo, — full <&
for all m > N. Therefore, f € 1?[0,1] and | f,,, — f] = O. [ |

For further work, it is important to know an explicit and convenient dense subset of
I?[0,1]. Let C[0, 1] denote the set of continuous, complex-valued functions on [0, 1]. The
extreme value theorem ensures that

Iflleo = Sup 1f o)l

<x<1

is finite for each f € C[0, 1]. In fact, this defines a norm on C[0, 1] with respect to which
C[0,1] is complete. A sequence (f,,)5>; converges in C[0, 1] with respect to this norm if
and only if it converges uniformly on [0, 1]. Also important is the inequality

IfIl € lIflee forall f e ClO0,1]. (1.3.5)
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Proposition 1.3.6. C[0, 1] is dense in I*[0,1].

Proof Let f € I?[0,1] and £ > 0. For each N > 0, let

f) i [fI <N,

Ity = {o if1f(0)| > N.

Observe that
1
[ 1= spax= [ ispax
0 IfI>N
Choose N large enough such that

If =Sl < 5 (13.7)

For this fixed N, Lusin’s theorem [319, Ch. 2] produces a closed set E C [0, 1] such that
fi|g is continuous and | [0, 1]\E| < €2/(16N?) (here |A| denotes the Lebesgue measure
of A C [0, 1]). The Tietze extension theorem [319, Ch. 20] producesa g € C[0, 1] such
that |g| < Non [0,1] and g = fy on E. Then,

1
I — gl = f fy — g2 dx
0

=/|fN—g|2dx+f Uy — g dx
E [0,1\E

- f Uy — g dx
[0,1\E

< — gl f 1dx (by (13.5))
[0,1\E
< g + vl f 1dx
[0,1\E
< 4N?|[0, 1\E|
2

<4N?2-E

S 4N 16N2

_e

=<
Thus,

&
Ifn =8l <5 (1.3.8)

Finally,

If =8 < If = full + v =l
<S -+l el (by (1.3.7))
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<-+-=e (by (1.3.8))

N ™

£
2
Hence, C[0, 1] is dense in I?[0, 1]. [ ]

Finding an orthonormal basis (to be formally defined in a moment) for I?[0, 1] is harder
than with C" and ¢2. In particular, I?[0, 1] does not come prelabeled with a distinguished
orthonormal basis. We rectify this with the following proposition.

Theorem 1.3.9. For each n € Z, let f,(x) = e*™"*. The following hold for every f €
I*[0,1].

(@) (f)%_ is an orthonormal sequence in I2[0, 1].

—0asN — oo.

N
® |- X Gt
n=—N

(S

© IfIP= 2 Kl
Proof (a) For m # n,

1
e27TimXeZ7rinx dx

<fmvfn> =

1
e2ﬂimxe—2ﬂinx dx

1
eZﬂi(m—n)x dx

Il
S— — S—

1 ) x=1
— e27rl(m—n)x
27i(m — n) x=0

=0.

Moreover,
1 1

<fn’fn>=/ ez’”(”‘”)dx=[ ldx=1.
0 0

(b) Let f € I*[0,1] and ¢ > 0. Proposition 1.3.6 provides a g € C[0, 1] such that ||f — g|| <
€/2. The Stone-Weierstrass theorem [320, Ch. 5] asserts that the span of {f,, : n € Z}
is dense in C[0, 1] and hence there is an

N

h= Z Cnfn

n=—N

such that ||g — h||, < €/2. The analogue of (1.4.12) below implies that

N N
lr= X Gt <|r= 2 et
n=—N n=—N
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Thus,

- S ¢t dos| <1 i
n=—N

< Nf =gl +llg =Rl
£

<5 +l8 -l (by (1.3.5))
& &
< = - =
<5 + 5 =& (1.3.10)

For any M > N, apply (1.4.12) again to see that

M M
lr= X s <|r= 3 e
n=—M n=—M

where ¢, = (f, f,) when —N < n < N and ¢, = O when N < |n| < M. From (1.3.10)
it follows that this last quantity is at most ¢.
(c) Observe that (b) yields

f= z s fad s
n=—co
where the convergence is in I2[0,1]. If h, — h and k,, — k in I?[0,1], an exercise
with the Cauchy-Schwarz inequality (see Exercise 1.10.25) implies that
(hy, k) = (h,k). (1.3.11)

Use the orthonormality of (f;,)sx_ ., the linearity of the inner product in the first slot,
the conjugate linearity in the second slot, and (1.3.11), to compute

IFIP = F.f)
(X Lot D3 Fofdhm)

n=-—00 m=—oo

2 L FXE FdFs )

m,n=—o0o

2 XS f)Smn

m,n=—oo

(s

2 KPR

n=-—oo

which completes the proof. [ |

Remark 1.3.12. The upper and lower limits in (b) may tend to co independently. We use
N and —N for convenience. In (c), absolute convergence ensures that any interpretation
of the sum yields the same result.
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1.4 Abstract Hilbert Spaces

The norms and inner products on C", ¢2, and I?[0, 1] generalize to other settings. The
general framework of Hilbert spaces is one of the most fruitful concepts in modern
mathematics. It begins with the following notion.

Definition 1.4.1. Let J be a complex vector space. Then ® : H X H — C is an inner
product if, for all x,y,z € 7 and ¢ € C, the following hold.

(a) ®(x,x) > 0.

(b) ®(x,x) =0ifand onlyifx = 0.

(c) P(x+Yy,z) = D(x,2) + D(y, z).

(d) 2(cx,y) = c@(x,y).

(e) ®(x.y) = By, X).
A vector space endowed with an inner product is an inner-product space.

If @ is an inner product, it is customary to use the notation
xy) = 2xy).

This inner product determines a norm
1
]l = (x,x)z.

Here are several properties of inner product spaces that generalize those enjoyed by C",
#2, and I%[0,1].

Proposition 1.4.2. Let X,y belong to an inner product space.

(a) Cauchy-Schwarz inequality: |(x,y)| < x|yl Equality holds if and only ifx and'y are
linearly dependent.

(b) Triangle inequality: |x + y|| < |x|| + |lyl. Equality holds if and only if x ory is a
nonnegative multiple of the other.

Proof (2) The inequality holds if x = 0 ory = 0. Without loss of generality, assume y # 0.

Then
0< (x— (X,y)#, X — (x,y>#>
. mﬁz’ X)) _ & ﬁ?fll); y), & y><|T; ﬁ;)(y, y)
S O L
- e - (EE, (1.4.3)

Iyll?
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which proves that [(X,y)| < [X]/[lyll. From (1.4.3) it follows that |(x,y)| = ||x]|[ly]| if
and only if

y
X—(Xy)7=5 =0,
Yy
in other words, if and only if x is a multiple of y.

(b) Use (a) and obtain

[x+yl* = x+y,x+y)
= [x]I* + 2Re(x, y) + [lyl?
< X[ + 20|yl + Iyl?
= (Ix[* + Iyl»)>.

Take square roots of both sides and obtain the triangle inequality. Equality holds if
and only if Re(x,y) = ||x||ly]| and this is equivalent to

& y) = [x[llyll (1.4.4)

If one of x or y is a nonnegative multiple of the other, then (1.4.4) holds. Conversely, if
(1.4.4) holds, then the condition for equality in the Cauchy-Schwarz inequality says
that x or y is a multiple of each other. Condition (1.4.4) ensures that the constant
involved is nonnegative. [ |

The notion of orthogonality in C", £2, and I?[0, 1] generalizes to inner product spaces.
Definition 1.4.5. Vectors X,y in an inner product space are orthogonal, written x Ly, if
x,y)=0.

Proposition 1.4.6 (Pythagorean theorem). Ifx and y are orthogonal vectors in an inner
product space, then |x + y|*> = |x||> + |yl

Proof The proof is identical to that of Proposition 1.1.6. [ |

The spaces C", #2, and I?[0, 1] are complete. For a general inner product space, one
needs to impose this condition as an axiom since not every inner product space is complete
(Exercise 1.10.13).

Definition 1.4.7. A Hilbert space is a complete inner product space. More specifically, a
Hilbert space is an inner product space that is (Cauchy) complete with respect to the norm
%]l = v/(x,x) induced by the inner product.

Examples of Hilbert spaces include C", ¢2, and I*[0, 1]. With £2, the sequence (e,,)%,
is an orthonormal set and every a € £2 can be written uniquely as

[se]
a= Z(a, e,e,,
n=0
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in which
o0

lal® = 3} lanl.

n=0

In Theorem 1.3.9, we saw something similar for I?[0, 1]: every f € I*[0,1] can be written

f= Z (f, fu)fn Where fn(x)=927rinx’

n=-—00
the series converges in norm (see Theorem 1.3.9), and

[eo)

2= 20 Kf ol

n=-—oco
Thus, the following definition is a natural one.

Definition 1.4.8. An orthonormal sequence (X, ),~; in a Hilbert space J is an orthonor-
mal basis if every x € J{ can be written as

X = i(x,xn)xn.

n=1

The sum above converges in the norm of ¢, in the sense that

=0.

N
lim Hx— X, X, )X,
Jm = Yexxx,

Some of our orthonormal bases are indexed by Z (Theorem 1.3.9) while others are
indexed by N or N U {0} (see (1.2.8)). We state most of our results under the assumption
that the orthonormal sets considered are infinite. The reader is advised that most of these
results apply equally well in the finite-dimensional setting.

For an orthonormal sequence in # (not necessarily an orthonormal basis) there is the
following result.

Theorem 1.4.9. Let (X,)n; be an orthonormal sequence in a Hilbert space F.

(a) Bessel’s inequality: For every x € I,
o0
2 X)) < JxP. (1.4.10)
n=1

(b) Parseval’s theorem: If (x,,)5%, is an orthonormal basis for 7(, then

%] = D7 Kx,x,)[2 (1.4.11)
n=1

foreveryx € H.



ABSTRACT HILBERT SPACES | 19

Proof (a) For any ¢y, ¢,,..., ¢ € C, Exercise 1.10.10 yields
k 5 k k
=2 emi| = Ix2 = 3 lxx) 2 + 3 16 x0) = i (14.12)
i=1 i=1 i=1

Letc; = (x,x;) forall 1 < i < N and obtain
k 2 k
HX -2 Xi>Xi|| = [x]? = D] 1%, %)) (1.4.13)
i=1 i=1

Thus, Zle |(x,%;)|? < ||x||? for all k > 1. Let k — oo to obtain Bessel’s inequality.
(b) By the definition of an orthonormal basis, the left side of (1.4.13) goes to zero as
k — o0. This yields Parseval’s theorem. [ |

To develop a useful criterion for determining whether an orthonormal sequence is an
orthonormal basis, we need the next definition.

Definition 1.4.14. If S is a subset of a Hilbert space 7, its closed span \/ 8 is the closure
of the set of all finite linear combinations of elements of S.

Proposition 1.4.15. For an orthonormal sequence (X,)p=, in a Hilbert space I, the
following are equivalent.

(a) (%) is an orthonormal basis.
®) \/{x, : n>1} =5

Proof (2)= (b) This follows from Definition 1.4.8.
(b) = (a) Given ¢ > 0 and x € 7, the hypothesis provides a linear combination
25:1 ¢, X, such that

<eE.

Hx - Z:l CnXp

For any m > N, use (1.4.12) to see that

s

m
Hx - Z(x, X)X,
n=1

m
< Hx - Z Xy
n=1

where ¢y = -+ = ¢, = 0. Therefore,

<e§g,

Hx - i (X, Xy )X,

n=1

and hence
(o]
X = Z(X, X)X
n=1

We conclude that (x,,)5>; is an orthonormal basis for #(. [ |
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Does every Hilbert space have an orthonormal basis? Is an orthonormal basis for a
Hilbert space necessarily countable? We address these questions in the next two sections
and in Exercises 1.10.37, 1.10.38, and 1.10.39.

1.5 The Gram-Schmidt Process

The Gram-Schmidt process takes a linearly independent list of vectors in a Hilbert space
and returns an orthonormal list with the same span. In fact, something more is true: for
each k > 1, the span of the first k vectors in each list is the same. We state the result below
for infinite lists, although the proof works just as well for finite lists.

Theorem 1.5.1 (Gram-Schmidt). Let (v;){2, be a linearly independent sequence of vectors
in a Hilbert space J{. Then there is an orthonormal sequence of vectors (u;)2, such that

span{vy, v,,..., Vi} = spanfuy, u,,...,u,} forallk > 1. (1.5.2)
In particular, \/{v,, : n 21} =\/{u, : n > 1}.

Proof Proceed by induction on k. For k = 1, define

u —Vl
1 =
vl

a unit vector with span{v,} = span{u,}. For the induction hypothesis, suppose that
given k — 1 linearly independent vectors vy, V,,..., Vx_;, there exists orthonormal
vectors u;, U,,..., U_; such that

span{vl,vz,...,vj} = span{ul,uz,...,uj} foralll1 < j<k-1. (1.5.3)
Since vy, vy,..., Vi are linearly independent,
Vi & span{vy, v,,...,Vi_;} = span{uy, u,,..., ux_; },

and hence
k-1

X =Vic— ), (Vo u)u; # 0.
in1

Define u;, = x;/ ||x,|| and observe that foreach1 < j < k-1,
k-1
(wj,xg) = <uj,vk - <Vk,ui>uz>
i=1

k-1
= <uj,vk> - <u], Z <vk,ui)ui>
i=1

k-1

= <uj’vk> - Z <Vk,ui><uj,ui>

i=1
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k-1
= (uj,vy) — Z (a;, vi) 6
i=1

), Vie) = (W;, Vi)
0.

Because uy, is a linear combination of vy, v,,..., vy, the induction hypothesis (1.5.3)
ensures that

span{u;, u,,..., Uy} C span{vy, v,,..., Vi }. (1.5.4)

Since uy, u,..., uy are orthonormal, they are linearly independent (Exercise 1.10.21)
and hence (1.5.4) is an equality since the subspaces involved are both k-dimensional.

The proof of Theorem 1.5.1 suggests the following algorithm, which works well for
theoretical purposes, even though it is subject to numerical instability in some real-world
applications. First set

u At
1= 5
(v
Then for k > 2, let
w = kT~ (Vieu) gy — - — (v, W) Uy
k —_ .
[Vie = Vi, up) g — -+ — (v, wge_g) wge_q ||

Observe that if (v,,)5r, is already orthonormal, then the Gram-Schmidt process returns
the original list (Exercise 1.10.34).

Example 1.5.5. The monomials (x")$, are a linearly independent sequence in I?[0, 1].
Indeed, a finite linear combination of these monomials that equals the zero function is a
polynomial with infinitely many roots and hence must be the zero polynomial. However,
(xX")%_, is not orthonormal since, for example, |x|| = 1/4/3 and (x,x?) = 1/4. The Gram-
Schmidt process, when applied to these monomials, returns the orthogonal polynomials

() =1, w(x)=vV3@x—1), uy(x)=56x2—6x+1), ...

Moreover, (1.5.2) ensures that the degree of each u,,(x) is n.

1.6 Orthonormal Bases and Total Orthonormal Sets

Each of the Hilbert spaces C", #2, and I?[0, 1] has an orthonormal basis. Does every Hilbert
space have an orthonormal basis? We begin with a standard definition that applies equally
well to any metric space.

Definition 1.6.1. A Hilbert space is separable if it contains a countable dense set.

Theorem 1.6.2. For a Hilbert space J, the following are equivalent.

(a) H is separable.
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(b) H has a countable orthonormal basis.

Proof (2) = (b) Since J( is separable it has a countable dense set (x,,)2;. Refine this
sequence as follows. Ifx;. € span{x,, X,,..., Xx_; }, omit x; from the sequence and rela-
bel it (x,,)5;. Proceeding in this manner results in a countable linearly independent
sequence (X,,)ne; (possibly finite). Now apply the Gram-Schmidt process (Theorem
1.5.1) to the resulting list to obtain a (countable) orthonormal sequence (u,,)5>; such
that

Viw in213=\/fx, :n>1}

Since (x,,)52, is dense in 7, it follows that \/{x,, : n > 1} = % and hence, \/{u, :
n > 1} = K. By Proposition 1.4.15, H has a countable orthonormal basis.
(b) = (a) If 7 has an orthonormal basis (u,,)5;, then

N
{ Z(an +ibyu, : a,,b, €Q, N> 0}

n=1

is countable and dense in F (here Q denotes the rational numbers). |
The Hilbert spaces C", #2, and I?[0,1] are separable since each has a countable
orthonormal basis. For the most part, the Hilbert spaces considered in this book are
separable. For an example of a nonseparable Hilbert space, see Exercise 1.10.37. Some
authors define a separable Hilbert space as one with a countable orthonormal basis,
as opposed to a countable dense subset. The previous theorem proves that these two

definitions are equivalent.

For general Hilbert spaces, including the nonseparable ones, there is the following
definition.

Definition 1.6.3. A set of vectors {X, : a € I'}in a Hilbert space ¥ is a total orthonormal
set if it satisfies the following conditions.

(@) (Xq,%xg) =dqp foralla,B €T.
b) V{xy : a €T} =7

Itisimportant to note here that the index set I' can be of any cardinality. The following is
a version of Theorem 1.6.2 for general (possibly nonseparable) Hilbert spaces. The reader
is invited to work through the proof in Exercise 1.10.38.

Proposition 1.6.4. Every Hilbert space has a total orthonormal set.

1.7 Orthogonal Projections

Proposition 1.1.8 covered orthogonal projections onto subspaces of C". For Hilbert spaces,
the same sort of results hold, but the definitions and the reasoning are more delicate.

Definition 1.7.1. A subset M of a Hilbert space J is a subspace if the following hold.

(a) M # @.



ORTHOGONAL PROJECTIONS | 23

(b) M is closed under addition and scalar multiplication.
(c) M is norm closed in F(.

A “subspace” in this context is closed under the vector-space operations and is topolog-
ically closed with respect to the norm of . A subspace of a Hilbert space is itself a Hilbert
space when endowed with the inherited inner product from the larger space. Exercise
1.10.36 proves the following.

Proposition 1.7.2. A subspace of a separable Hilbert space is also separable and thus has
a countable orthonormal basis.

Below is a generalization of Proposition 1.1.8. The reader is reminded that unless stated
otherwise, our Hilbert spaces are separable and infinite dimensional. The adjustments
needed in the finite-dimensional case are minor, and the non-separable case rarely
concerns us.

Proposition 1.7.3. If M is a subspace of separable Hilbert space J and x € F, then there
is a unique vector Pyrx € J such that the following hold.

(a) Byxe M.
) |Ix—Byx|| < |[x— V| forallve M.
(c) x=Pyx) Lvforallve M.
(d) Pyx =xifandonlyifx € M.
(e) If (vy)nx; is any orthonormal basis for M, then
Pyx = Z;<x, V)V
iz

In particular, Pyx is independent of the choice of orthonormal basis (V,, ).

Proof (a) The Gram-Schmidt process provides a countable orthonormal basis (v,,)52,
for M. Bessel’s inequality (1.4.10) says that

o
Pyx = Z(X, Vi)V;

i=1

is well defined. It belongs to M since it belongs to \/{v; : i > 1} and M is closed.
(b) Since (v,,)5%; is an orthonormal basis for M, each v € M is of the form

o0
v= Z(V, V)V
i=1

For each N > 1, Exercise 1.10.10 yields

N
< Hx — Z(v, vivi|.

N
HX - Z(Xy Vi)V
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Let N - oo and obtain ||x — Byx|| < [x — V|-
(c) This proof is essentially identical to the proof of Proposition 1.1.8b.
(d) If x = By¢X, then (a) ensures that x € M. If x € M, then (a) implies that Byyx € M,

and hence x — Pyyx € M. Then (c) yields ||x — Byx||? = (X — PyX,X — Pyyx) = 0.

Therefore, x = Pyx.
(e) This proof is essentially identical to the proof of Corollary 1.1.13. [ |

The proof of Corollary 1.1.14 carries over directly to prove the following.

Corollary 1.7.4. For a subspace M of a Hilbert space J¢, the following are equivalent.

(a) M # 7.
(b) Thereisay € F\{0} such thaty L v forallv e M.

Below are some fundamental properties of the mapping x — P,x. The proof below is
for separable Hilbert spaces (the only type that we regularly consider in this book). The
modifications necessary to treat the non-separable case are mostly typographical.

Proposition 1.7.5. Let M be a subspace of a Hilbert space H.
(a) The mapping X — Py X is linear on 7.
(®) (Byx,y) = (X, Byry) forallx,y € K.
(©) By(Byx) = Byex forallx € J.

Proof In what follows, we frequently pass an infinite series through an inner product.
This is justified by Exercise 1.10.25:

X,>x and y, oy = (XY > &Y (1.7.6)

(a) Let (v,,)sx; be an orthonormal basis for M. By Proposition 1.7.3,

Pyx = Z(x, v;)v; forallx € K.
i=1
Foranyx,y € M and c € C,

o0

Br(x+cy) = Z(X + ey, vi)v;

i=1

= (Vi) + ey, vi)v;
i=1

i=

X, Vi)v; + ¢ Z(y, Vi)V;

i i=1

I Ngk:

= PyX + cPyy.
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(b) Use the properties of the inner product from Definition 1.4.1, along with (1.7.6), and

obtain
(e8]
(Bex.y) = ( L viviy)
i=1
= Z<X V1><Vny>
i=1
= Z<X V1><Y7 vi)
i=1
= D%y, vi)vi)
i=1
= <X’ Z(y, Vi >Vi>
i=1
= <X’ PMy>
(c) From (b) observe that
Pye(Pyex) = ) (ByeX, vi)v,
i=1
[se]
= > (% Beviv;
i=1
= Z(x, V)V (since Pyv; =v;)
= PMx,
which completes the proof. [ |

1.8 Banach Spaces

Closely related to Hilbert spaces are Banach spaces: complete normed vector spaces.
Although general Banach spaces are not the main focus of this book, they do play a critical
role. As with Hilbert spaces, we start off with some representative examples of Banach
spaces before defining them formally.

Example 1.8.1. For1 < p < o0, let

L) © 1
e =la=(aniio: Y lagl’ < oo} and Jall, =( lanl)’.
n=0 n=0
A generalization of the Cauchy-Schwarz inequality, known as Hélder’s inequality [319],

says that if q satisfies

+-=1,

SR
|-
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(q is the conjugate exponent to p), then

o0
Z |Zywy| < |zllpllwll; forallz € €P and w € £4.
n=0

From here, one can show that ¢P is a vector space (with similar addition and scalar
multiplication operations as with ¢2) such that [|a + b||, < [a, + [b]), for all a,b € P
and ||ca|, = |c||al|, for all ¢ € C. Furthermore, ¢? is complete.

Example 1.8.2. Let ¢* denote the set of all bounded sequences a = (a,)5>, endowed
with the norm

lallco = sup [ap|.
nz

One can show that €% is a complete normed vector space.

Example 1.8.3. For 1 < p < o0, let IP[0, 1] be the set of Lebesgue-measurable, complex-
valued functions f on [0, 1] such that

1 1
1= ([ 1 as)? <o

The corresponding version of Holder’s inequality,
1
/ [r(x)k(x)| dx < ||hllpllklly forall h € IP[0,1] and k € L1[0, 1], (1.8.4)
0

implies that IP[0,1] is a vector space (with similar operations of function addition and
scalar multiplication as with I*[0, 1]) such that || f +g|l, < [ fll,+ gl and lcfll, = [cllfll,
for all ¢ € C. One can show that the IP[0, 1] spaces are complete normed vector spaces.

Example 1.8.5. Let L*[0, 1] denote the space of Lebesgue-measurable, complex-valued
functions f on [0, 1] with bounded essential supremum

Iflle =sup{a>0: |[{x €[0,1] : |f(x)| > a}| > O}. (1.8.6)

In the above, |A| denotes the Lebesgue measure of a set A C [0, 1]. Note that L*[0,1] C
IP[0,1] for all p > 1 and (see [319, Ch. 3])

lim [fl, = |flee forall f € L2[0,1].
p—o

Example 1.8.7. From Section 1.3 recall the space C[0, 1] of complex-valued continuous
functions f on [0, 1] with norm

1flleo = [max [f O

One can show that C[0,1] is a complete normed vector space (see Definition 1.8.8).
Note that C[0,1] € L*[0,1] and the essential supremum norm from (1.8.6) equals the
supremum norm above.
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All of the vector spaces defined above are examples of Banach spaces.

Definition 1.8.8. Let V be a complex vector space. Suppose that the function ® : V —
[0, 00) satisfies the following for allu,v € V and ¢ € C.

(a) ®(v) =0ifand onlyifv =0.
(b) ®(u +v) < d(u) + d(v).
(©) @(cu) = [c|@(u).

Then V is a normed vector space with norm ®. If V is also (Cauchy) complete with respect
to the norm @, then V is a Banach space.

One traditionally writes the norm as ||v|| = ®(v) for v € V. Every Hilbert space is a Banach
space, but the converse is false.

Theorem 1.8.9 (Jordan-von Neumann [206]). Let V be a Banach space with norm | - |.
The following are equivalent.

(a) Visa Hilbert space, meaning there exists an inner product (-, -) on V such that (v,v) =
[Vl forallv € V.

®) a+v|?+u-v|?=2(u|?+|v|?) forallu,v € V.

The identity in (b) is the parallelogram identity. There is an alternate characterization
of Hilbert spaces due to Fréchet [133]. Exercises 1.10.26, 1.10.27,1.10.28, and 1.10.29 yield
the following.

Corollary 1.8.10. The Banach spaces ¢P and IP[0,1] for p # 2, as well as C[0, 1], are not
Hilbert spaces.

Below is a useful criterion for determining if a normed vector space is a Banach space.

Theorem 1.8.11. Let V be a normed vector space with norm || - ||. The following are
equivalent.

(a) Visa Banach space.

(b) Every absolutely convergent series in V converges, that is, for every (X,)hw, in V such
that 220:1 [X,]l < oo, the series Z:ozl X, convergesin V.

Proof (a)= (b) Let (x,)%%, be such that Z;o:l %, || converges. For each m,n > N,

m n (s
| Z -2 x| <
k=1 k=1 k=N

Since limp_, o Z;oz ~ Xkl = 0, the sequence (ZZ=1 X; ), of partial sums is Cauchy.
Since V is complete, Z:;l X, converges.

(b) = (a) Let (x,,)92; be a Cauchy sequence. It suffices to show that a subsequence of
the Cauchy sequence (x,),=; converges since this would imply the convergence of
(Xp)nr; to the same limit.
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Use the fact that (x,,);Z; is Cauchy to pick a subsequence (x,, )=, such that

1
%0y, — Xn, Il < 7 forallk > 1

Ifyy = Xp,,, — Xp,, then

(o)

o0
X Iyl = Zuxnkﬂ X || < Zi<oo

By hypothesis, 2120:1 yx converges. However,

4
Z Xp . — Xn,) = Xp,,, —X,, forallé>1

”M‘“

Therefore, the subsequence (x,, );2; converges. [ |

1.9 Notes

In 1906, Hilbert examined the unit ball {a € ¢ : ||a|| < 1} of #? as part of his investigation
of quadratic forms in infinitely many variables &, &,, &, ... thatsatisfy £+ & +&2+-- < 1
[196] (see also [197]). It was F. Riesz [303] who referred to the space of square-summable
sequences as l'espace hilbertien, while the symbol ¢, (some authors prefer subscripts and
others superscripts to describe these spaces) first appeared in Banach’s famous book [33].

In 1907, Riesz [298] also established the following important relationship between ¢2
and I?[0, 1]. Let (¢,)%, be an orthonormal sequence in I2[0, 1]. If (a,))%2, is a sequence
of real numbers, then there is an f € I?[0, 1] such that

1
ap = f fX)p,(x)dx foralln > 1
o

if and only if Z:’:l |a,|? is finite. Also in 1907, Fischer [130] proved the completeness of
I?[0, 1] (Proposition 1.3.4). In 1908, Schmidt [332] explored the geometric properties of £2,
including orthogonality. It is important to emphasize that although this chapter presented
£ first (for pedagogical purposes), I?[0, 1] was actually studied first. The axiomatic version
of what is now known as a Hilbert space came from von Neumann in 1930 [369].

The Cauchy-Schwarz inequality plays an important role in Hilbert-space theory and
was first developed for individual cases. For Euclidean space C", the result goes back
to Cauchy in 1821, while the I? version was discovered by Buniakowsky in 1859 [73]
and Schwarz in 1885 [335]. The ¢2 version is due to Schmidt in 1908 [332]. Finally, von
Neumann [369] proved the Cauchy-Schwarz inequality for general Hilbert spaces in 1930.

Schmidt [332] contributed to the concepts of orthogonal projections and orthonormal-
ization. He also extended Bessel’s inequality from an earlier trigonometric version that
appeared in an 1828 paper of Bessel [49].

Pietsch’s book [270] is a thorough source for the history of functional analysis.
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1.10 Exercises

Exercise 1.10.1. Ifx,y belong to an inner product space V, prove that
Ix +ylI? = [x]* + 2Re(x, y) + [lyl*.

Exercise 1.10.2. If x,y belong to an inner product space V, prove that x 1 y if and only
if |x + wy|| > ||x|| forallw € C.

Remark: This criterion is used to develop a notion of “orthogonality” (Birkhoff-James
orthogonality) in a Banach space [82].

Exercise 1.10.3. For a,b € C", prove that [(a,b)| = |a]||b|| if and only if a and b are
linearly dependent. Only use the proof of Proposition 1.1.1.

Exercise 1.10.4. For a,b € C", prove that |a + b|| = ||a]| + ||b]| if and only ifaorbisa
nonnegative multiple of the other. Only use the proof of Proposition 1.1.4.

Exercise 1.10.5. For f,g € I?[0,1], prove that

1 1 1 1 1
[ reoeoax = ([ 1reorax)’( [ lecopa)

if and only if f and g are linearly dependent. Only use the proof of Proposition 1.3.1.

Exercise 1.10.6. For f,g € I?[0,1], prove that ||f + g|| = ||f]| + |lg]| if and only if f or g is
a nonnegative multiple of the other. Only use the proof of Proposition 1.3.3.

Exercise 1.10.7. Prove that C" is complete.

Exercise 1.10.8. Ifa;,b; > O forall 1 < i < n, prove that

a d a _ (ap+a,+-+a,)?
R g .
bl bz bn bl +b2 + A + bn

Exercise 1.10.9. For f € C[0, 1], prove that

1
/ tf(t) dt
0

For what f does equality hold?

1

1 2
< % ( f If(t)lzdt)
0

Exercise 1.10.10. Let M C C" be a k-dimensional subspace with orthonormal basis

(v; ):c:1

(a) For any cy, ¢y,...,¢ € C and x € C", prove that

I chl|| I - Z|<xvl>|2+2|<xv,>—cl|.
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(b) Prove that

2

k 2 k
Hx—Z(x,vi>vi|| < HX—ZCiV,- for all ¢y, ¢y,...,cx € C.
i=1 i=1
k . L
(c) Prove that )},_ (x,V;)v; is the closest point in M to x.

Exercise 1.10.11. This problem concerns the difference in the Pythagorean theorem for
the settings R" and C".

(a) For a,b € R", prove that |a + b||> = ||a| + ||b||? if and only ifa L b.

b) Proposition 1.1.6 shows thatifa,b € C" and a L b, then ||a + b||?> = |a|? + |b|]>. In
p
C", prove that the converse is not true.

Exercise 1.10.12. Let

M:{XE€2(N): ix—n"=0} and N={xe€2(N):§
n=1

Xn
T 0}.
(a) Which of M and V is closed in ¢2?
(b) Which of M and 2V is dense in £2?
Exercise 1.10.13.

(a) Prove that C[0, 1] is an inner product space when endowed with the inner product
1 —
(f.g) = / f(x)g(x) dx.
0

(b) Prove that C[0,1] is not complete with respect to the norm | f|| = +/(f, f) and is
therefore not a Hilbert space.

Exercise 1.10.14. Let M, denote the set of n X n complex matrices. The trace of A =
[aij] € My, is tr(A) = aj; + ay + -+ + auy,. Prove that (A, B) = tr(B*A) defines an inner
product on M,,.

Exercise 1.10.15. Let W be the set of absolutely continuous functions f on [0, 1] such
that f’ € I*[0,1]. Define an inner product on W by

1

(F9)= [ (FO0R00 + £/ 0F 09
0

Prove that W is a Hilbert space.

Remark: A reader needing a review of the notion of absolute continuity and the Lebesgue
differentiation theorem should consult [317, Ch. 5]. The space W is a special example of
a class of spaces called Sobolev spaces which are important in differential equations. This
problem continues in Exercise 10.7.34.
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Exercise 1.10.16. Let V be an inner product space.
(a) Prove that
Ix +ylI? + [Ix = ylI* = 2(Ix|* + lly|*) forallx,y € V.
This is the parallelogram identity.
(b) Interpret this result geometrically.

Exercise 1.10.17. For an inner product space V prove that
1 . . . .
xy) = Z(x+ylI* = Ix—yl* —ilx - iy|* + illx + iy|*) forallx,y € V.

This is the polarization identity.

27ik/n

Exercise 1.10.18. Let V be an inner product space and, forn > 3,letw = e , Where

gcd(k, n) = 1. Prove the following generalized polarization identity:
1& . )
xy) ==Y wlx+wly|? forallx,ye V.
n
Exercise 1.10.19. Let V be an inner product space. Prove the following integral version
of the polarization identity:

2 do
x,y) = f e¥)x + ey|2=—= forallx,y € V.
o 27

Exercise 1.10.20. Let x,y, z be vectors in an inner product space V.
(a) Prove the Apollonius identity:
=2l + Iy — 2P = 2 -yl + 2z - 22X
(b) Interpret this result geometrically.
Exercise 1.10.21. Let 7 be a separable Hilbert space.
(a) Prove that every orthonormal set in J is linearly independent.
(b) Prove that every orthonormal basis for 7 has the same cardinality.

Exercise 1.10.22. Let (u,)p>; be an orthonormal sequence in a separable Hilbert space
H. For x € J(, prove that the following are equivalent.

(s8]

@) [xI? = 3 Kxup).

n=1

(b) x= i(x, u,)u,.

n=1



32 | HILBERT SPACES

Exercise 1.10.23. Let (u,)s%; be an orthonormal sequence in a separable Hilbert space
J. Prove that the following are equivalent.

(a) (u,)y2; is an orthonormal basis.

o0
(b) Forallx € 7, x| = > |(x,u,)|>
n=1

o0
(c) Forallx € &, where € is a set whose span is dense in ¢, [|x[? = > [(x, u,)|%.
n=1
Exercise 1.10.24. Let (u,)>; be an orthonormal sequence in a Hilbert space 7.

(2) Prove that 3" (e, u,)y, u,)| < [x]lly] for all x,y € 9.

n=1

(b) Prove that Z(x, u,Xu,,y) = (x,y) for all x,y € 7. if and only if (u,)3>, is an
n=1
orthonormal basis.

Exercise 1.10.25. Let (x,,)5>; and (y, )=, be sequences in a Hilbert space 7. If x, — x
andy, — Yy, prove that (x,,,y,,) = (X, y).

Exercise 1.10.26. Consider the vector space C" endowed with the norm

Xl = max |x;| forx = (xy,x3,....x,) € C".
1Lign

Is this norm derived from an inner product? That is, does there exist an inner product (-, -)
on C" such that ||[x||%, = (x,x) for all x € C"?

Exercise 1.10.27. Answer Exercise 1.10.26 when C” is endowed with the norm |x|; =

Sy Xl

Exercise 1.10.28. Is C[0,1] with the norm ||f|l,, = maXye[o,1] |f(X)| an inner product
space? That is, does there exist an inner product {-,-) on C[0,1] such that | f|2, = {f, f)
for all f € C[0,1]?

Exercise 1.10.29. Answer Exercise 1.10.28 when C[0, 1] is endowed with the norm

1
Iflh = f FCOldx.
0

Exercise 1.10.30. A subset & of a Hilbert space J is convex if for any x,y € &, the line
segment {tx + (1 — t)y : 0 < ¢t < 1} is contained in €.

(a) Prove that a subspace of J is convex.
(b) Prove that the closed unit ball {x €  : |x|| < 1}is convex.

(c) Prove that the intersection of two convex sets is convex.
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Exercise 1.10.31. If € is a nonempty closed convex subset of a Hilbert space J(, use the
following steps to prove that £ has a unique element of smallest norm.

(a) Letd = infyeg |x]|. For u, v € &, use the parallelogram identity to prove that
= vi* < 2(uf]? + |Iv]*) — 482
(b) Suppose that (v,)p>; is a sequence in € such that |v,| — &. Prove that (v,)5>; isa
Cauchy sequence and thus v,, tends to a limit v.
(c) Prove that v is the unique element of € of smallest norm.

Exercise 1.10.32. If £ is a nonempty closed convex subset of a Hilbert space J, prove
that for any x € 7, there is a unique y € € such that

dist(x, €) := inflx —z|| = |x —y].

Exercise 1.10.33. Let & C ¢ consist of finitely supported sequences (that is, only a finite
number of terms in the sequence are nonzero) x = (x,,)3, € £ such that Z;ozo x, =1

(a) Prove that & is nonempty and convex.

(b) Prove that 0 € £~ (the closure of £), but 0 ¢ £. Consequently, the hypothesis that &
is closed is important in Exercise 1.10.32.

Exercise 1.10.34. If (v,,)52; is an orthonormal sequence in a Hilbert space J(, prove that
the Gram-Schmidt process returns (v,,)o>;.

1
Exercise 1.10.35. Compute inf / |3 — a— bt — ct?? dt.

a,b,ceC o
Exercise 1.10.36. Show that a subspace M of a separable Hilbert space H is also
separable. Use the following steps.

(a) Let {x;,X,,...} be a countable dense set in # and let (7,);=; be an enumeration of
the positive rational numbers. If B(x,r) = {y € H : |y — x| < r}, prove that W =
{(m,n) : By, 1) NM # B} #+ @.

(b) For each (m,n) € W, lety,,, € B(Xy,,) N M andletA = {y,, : (m,n) € W}
Prove that A is a countable and dense in M.

Exercise 1.10.37. The Hilbert spaces routinely considered in this book are separable.
However, there are non-separable Hilbert spaces that arise in the study of almost periodic
functions [48, 56]. For complex-valued, Lebesgue-measurable functions f and g on R,
define

R
(e =Jim 5 [ seostoax
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whenever the limit exists. Similarly, define

R
17 = Jim 5 [ 1copax
whenever the limit exists, and let Q = {f : ||f]] < o0}
(a) Prove that each Zle cpetn* where ¢, € C and 1,, € R, belongs to Q.
(b) Prove that ||f| = 0 is possible without f being zero almost everywhere.

(c) Let N ={f € Q : | f|l = 0} and define an inner product on the cosets f + N, g+ N
of the quotient space Q/N by (f + N, g + N) = (f, g). Prove that Q/WV is a Hilbert
space.

(d) Compute the inner product (sin(sx) + NV, sin(tx) + N) for s,t € R and deduce that
Q/N is a non-separable Hilbert space.

Exercise 1.10.38. Show thatevery Hilbert space  has a total orthonormal set (Definition
1.6.3) using the following steps. The reader should review the terminology and statement
of Zorn’s lemma from set theory.

(a) Let Q denote the set of all orthonormal subsets of  and order the elements of Q by
set inclusion. Prove that Q # @ and that every chain in Q has an upper bound.

(b) Zorn’s lemma says that Q has a maximal element w € Q. Prove that the closed span
of the elements of w is equal to F.

Exercise 1.10.39. This exercise proves a version of Parseval’s theorem for total orthonor-
mal sets {X, : a € I'} in potentially non-separable Hilbert spaces.

(a) For any x € , show that (x,X,) # 0 for at most countably many a € I'.

(b) Foreachx € J¢,letT, = {a €T : (x,X,) # 0}. Prove that |x|? = Z (%, X ).
aeT,

Exercise 1.10.40. Consider the function

»(@) =1{-1 lfl<

0 otherw1se.
Prove that
i) = 222" —k) fort €[0,1],n>0,and0 <k < 2" -1,

along with the constant function 1, form an orthonormal basis for I?[0, 1] (Figure 1.10.1).

Remark: These functions form the Haar basis [165] for I?[0, 1], which is an example of a
wavelet system [84].
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Figure 1.10.1 Graphs of a few of the Haar basis elements.

Exercise 1.10.41. The Rademacher functions are defined as follows. Let , = 1 and r,,(¢t) =
sgn(sin(2"xt)) for n > 1, where

1 ifx>0,
sgn(x) =4 0 ifx=0,
-1 ifx<o,

denotes the signum function (see Figure 1.10.2).
1
(a) Prove thatf |r,(D)?dt =1foralln > 0.
0

(b) Prove the following fascinating orthogonality property: for any distinct nonnegative
integers ny, n,,..., ny, where k > 2,

1
/ By (O, (8) -+ 1, (D) dt = 0.
0

Remark: See [26] and [279] for more on this.

Exercise 1.10.42. Prove that the Rademacher family (r,)5%, from Exercise 1.10.41 is not
complete in I?[0, 1], meaning their span is not dense in I*[0, 1].



36 | HILBERT SPACES

0.2 0.4 06 0.8 1.0 [ 0.2 0.4 06 0.8 1.0

05

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

—05F

100 —_— —_— —_— —

r(1) 1 (t)
Figure 1.10.2 Graphs of the first few Rademacher functions.

Exercise 1.10.43. Let p(x) = V1 — x2 and let I?(p) be the set of Lebesgue-measurable
functions on [—1, 1] such that

1
IFI7 = | 1fGPp(x)dx < co.

-1
With the norm | - || and corresponding inner product, I*(p) is a Hilbert space.

(a) Consider the Taylor series expansion (in the variable t) of

1 o0
— n
1—2xt+12 Z un()t
n=0

and prove that each u,(x) is a polynomial of degree n. These polynomials are the
Chebyshev polynomials of the second kind.
(b) Compute ugy, uy, Uy, Uz, Uy.

sin((n + 1)6)

- foralln > 1.
sin 6

(c) Prove that u,(cos6) =

1

(d) Use a trigonometric substitution to show that / Uy (U, (x)p(x) dx = gémn.
-1

(e) Prove that \/{u, : n > 0} contains every polynomial.
(f) Conclude that (v 2/7 u,), is an orthonormal basis for I?(p).

Remark: These polynomials play an important role in Chapter 15.
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Exercise 1.10.44. Let w(x) = exp(—x?/2) and let I?(w) be the set of Lebesgue-measurable
functions on R such that

|mP=f FOOPw(x) dx < oo

With this norm || f|| and corresponding inner product, I*(w) is a Hilbert space.

(a) Consider the Taylor series expansion (in the variable ¢) of

5 me—

n=0

and prove that each H,(x) is a polynomial of degree n. These are the Hermite
polynomials.

(b) Compute Hy, Hy, H,, H3, Hy.

n x2

x2
(c) Prove that H,(x) = (=1)"e> o

e

o0
(d) Use integration by parts to prove that f H,,(x)H,(x)w(x)dx = \27n!s,,,.

(e) Prove that \/{H,, : n > 0} contains every polynomial.
(f) Conclude that (¢, H,)5%,, where
NS S
2zv/n!
is an orthonormal basis for I*(w).

Remark: These polynomials play an important role in Chapter 11.

Exercise 1.10.45. Let (f,,)°2, be an orthonormal sequence in I*[a, b]. Prove that (f;,)52,
is an orthonormal basis if and only if

/ Ja(B)dt
11Ya

Remark: This is a result of Vitali [366].

2

=x—a forallx € [a,b].

Exercise 1.10.46. Let (f,,)%, be an orthonormal sequence in I?[a, b]. Prove that (f},)3,
is an orthonormal basis if and only if

/ Ja() dt

Remark: This is a result from [104].

_b-of

nla
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Exercise 1.10.47. Prove that \/{e!"™* : n € Z} # [*[—a,a] ifa > 7.

Exercise 1.10.48. Let 7 be a Hilbert space. The Gram determinant of x,X,,...,X, € H

is

X, X)) (X,X5) o (X, Xp)
G(x1,Xy,...,X,) .= det <X2’:X1> <X2’.X2> <X2’_X"> .
<Xn’Xl> <Xn’X2> <Xn’xn>

(a) Prove that G(x;,Xj,...,X;,,) = 0.
(b) Prove that x4, X,,...,X,, are linearly dependent if and only if G(x;, X,,...,X,) = 0.
(c) Prove that the Cauchy-Schwarz inequality is equivalent to G(X;,x,) > 0. Therefore,
G(x;,Xy,...,X,) =2 0 forx;,x,,...,x, € K
is a generalization of the Cauchy-Schwarz inequality.

(d) LetM = span{x;,X,,...,X,} and let x € #. Prove that

1
G(x,xl,xz,...,xn))2

dist(x, M) = ylélyfc I =il = ( G(X1, X500, Xp)

Exercise 1.10.49. Recall Exercise 1.10.48 for the definition and properties of the Gram
determinant. Let 7 be a Hilbert space, let x;,X,,...,X,, € K be linearly independent, and

let ¢y, cy,...,c, € C.

(a) Prove that the moment problem: find an x € J for with (x,x;) = ¢;, forall1 < i< n,
has a unique solution with minimal norm.

(b) Prove that the solution to (a) is

0 [ c Cp
X XLX)  XLXy) o (XLXp)
=——————det|x, &X,X;) (X3,X3) - (X,X,)]-
G(X1,Xp,0+5 Xp) 2 > 2 »on
X, XpX1) XppXp) o (X, Xp)

Exercise 1.10.50. Let f € I?[0, %]. Extend f to [—7, 7] as follows. First extend it to [0, 7]
such that f is even with respect to the line x = 7/2, that is, f(x) = f(7r — x) for x € [0, ].
Then extend it to [—7, 7] such that f is an odd function, that is, f(x) = —f(—x) for x €

[—7, 7].
(a) Expand f with respect to the orthogonal basis {1, cos nx,sinnx : n > 1} on [—7, 7].

(b) Use part (a) to prove that {sin((2n — 1)x) : n > 1}is an orthogonal basis in I?[0, 77/2].
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(c) Prove that {sin((n — é)x) : n > 1}is an orthogonal basis in I?[0, 7].
(d) Deduce that {1, cos(nx), sin((n — %)x) Tn> 1} is an orthogonal basis in I*[—7, 7].

Remark: The system (d) plays a major role in the proof of Kadec’s i—Theorem [208]: if
(Anez € Rand sup, ., |4, —n| < i, then (e!n*)%2 _  is a Riesz basis for I*[—7, 7].
Exercise 1.10.51. Prove that the Hilbert cube
1
8={ze€2(N) : |zn|<r—l,n>1}

is a compact subset of £2(N).

Exercise 1.10.52. There are several modes of convergence that frequently arise in Hilbert-
space theory. We say that x,, — 0 in norm if |x,|| — 0 and weakly if (x,,,y) — 0 for every
y e XK.

(a) Prove that if x,, — 0 in norm, then x,, - 0 weakly.

(b) If (x,)5%, is an orthonormal sequence in J(, prove that x,, — 0 weakly but not in
norm.

(c) Prove that a weakly convergent sequence is bounded.
(d) Ifx, — xweakly and |x,| — |x||, prove that |x,, — x|| = 0.
(e) If|x,ll €1, |ly.ll < 1foralln > 1, and (x,,y,) — 1, prove that |x,, — y,| — O.

Remark: One can endow # with a topology that makes it a topological vector space such
that a sequence converges with respect to this topology precisely when it converges weakly.
See [94] for the details.

Exercise 1.10.53. Let (x,,);2; be a sequence in a Hilbert space J. Prove that (x,,);>; is
weakly convergent if and only if sup, ., |[x,[ < oo and lim,,_, o (X, X,,) exists for each
m 2> 1.

1.11 Hints for the Exercises

Hint for Ex. 1.10.7: Simplify the proof of Proposition 1.2.5.
Hint for Ex. 1.10.11: Use Exercise 1.10.1.
Hint for Ex. 1.10.12: Consult Corollary 1.7.4.
Hint for Ex. 1.10.14: Prove that tr(B*A) = 3", a;;by;.
Hint for Ex. 1.10.15: Recall that if f is absolutely continuous, then f’ exists almost
everywhere and f(x) = f(0) + fox f(®Hdt.
Hint for Ex. 1.10.19: Expand ||x + ¢y].
(o]

Hint for Ex. 1.10.22: Lety = x — Z (x,u,)u,, and use orthogonality.

n=1
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Hint for Ex. 1.10.23: Use Exercise 1.10.22.
Hint for Ex. 1.10.24: Use the Cauchy-Schwarz and Bessel inequalities, along with
Exercise 1.10.22.
Hint for Ex. 1.10.26: Use Theorem 1.8.9.
Hint for Ex. 1.10.31: Show that (v,,)p>; is a Cauchy sequence.
Hint for Ex. 1.10.32: Use a translation.
Hint for Ex. 1.10.33: Consider x,, = (i, % % 0,0,0,...).
Hint for Ex. 1.10.35: Orthonormalize 1, ¢, t? in I*[0,1].
Hint for Ex. 1.10.38: If M is the closed span of w and M # J, then M+ # {0}. Ifxis a
nonzero element of M, use x to contradict the maximality of .
Hint for Ex. 1.10.39: For each n > 1, consider the a € T such that |(x,x.)| > % Now use
Bessel’s inequality.
Hint for Ex. 1.10.42: Consider f(x) = cos(27x) and Corollary 1.7.4.
Hint for Ex. 1.10.45: Use Exercise 1.10.23 and note that
x_ b -
[ 5= [ OF @ dt = G
a a
Hint for Ex. 1.10.46: Use Exercise 1.10.45 and Bessel’s inequality.
Hint for Ex. 1.10.49: Show that if x is a solution of minimal norm, then it is unique and
belongs to span{x;, X,,..., X, }. Show directly that the vector defined in the exercise satisfies
the required conditions.
Hint for Ex. 1.10.51: Suppose (z,)s; is a bounded sequence in the Hilbert cube. Use a
diagonalization argument to show (z,)5~; has a convergent subsequence.
Hint for Ex. 1.10.52: The proof of (c) requires the principle of uniform boundedness
(Theorem 2.2.3).



Diagonal Operators

Key Concepts: Bounded linear transformation, operator norm, B(JF), closed graph theorem, Hahn-
Banach theorem, uniform boundedness principle, kernel and range of an operator, invertible opera-
tor, spectrum, point spectrum, approximate point spectrum, compact operator, compact selfadjoint
operator, spectral theorem.

Outline: For a bounded sequence of complex numbers A = (1,,)5—,. the linear transfor-
mation D, : #? — ¢? is defined formally by

[so] o
DA< Z anen> = Z AnQne,,
n=0 n=0

where (e,,)%%, is the standard orthonormal basis for #2. The matrix representation of Dy
with respect to this basis is the infinite diagonal matrix diag(1y, 4;,4,,...). Consequently,
D, is called a diagonal operator. This chapter explores the properties of D, (norm,
eigenvalues, spectrum, compactness) and extends these concepts to general Hilbert-space
operators.

2.1 Diagonal Operators

Diagonal matrices play an important representational role in linear algebra as part of the
spectral theorem for normal matrices. When generalizing diagonal matrices to #2, the
matrix diag(4g, A1, 45,...) acts formally on (a, )32, € €2 by

o 0 0 0 -7[ao Aodq
0 4 0 0 || Aay
0 0 A 0 --fla Aa,
0 0 0 A -|]as /13a3
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However, it is not immediately clear that the right side belongs to 2. For a sequence A =
(1,)%2, of complex numbers and an a = (a,)%, € ¢2, define the sequence Dya by

Dpa= (Anan)rozo=0-

This first proposition characterizes when D, maps #? to itself. Recall from the previous
chapter that the #2 norm of a sequence a = (a,,)5, is

©o 1
lall = (X laal?)".
n=0
Proposition 2.1.1. Dpa € ¢2 forall a € ¢? if and only if A is bounded. Moreover,

sup ||[Dpal| = sup |4,]. (2.1.2)

lall=1 nz0

Proof (=): We prove the contrapositive. If A is not bounded, then there is a subse-
quence (1, )rZ, such that |4, | > k for all k > 1. The sequence a = (a,,,)j=o defined
by

— ifm=ny,
0 otherwise,

satisfies

o

()
Z|am|2 Z|ank|2 Yo <Xg<e
ny k=1

and hence belongs to £2. However, (Dpa),,, the mth element of the sequence Dy a, is

1 ifm=ny,
(Dpad)m =
A 0 otherwise.

Since there are an infinite number of 1s in this sequence, |[Dpal| = oo. Therefore,
Dpa & 62
(«<=):If A is bounded, then Dja € ¢2 for all a € ¢2 since

[c) o)

2
Dpal|? = 1@, < (sup |42 a,|? = (sup|d,|) llaf?.
IPralP = 3 11na (n>13| al )nZzo| al (n>r0>| al) llal
1t follows that
sup IDaa|l < sup |A,]- (2.1.3)
llall= nz0

It remains to prove (2.1.2). Since |4,,| = ||Dpey |, it follows that

sup |1,| = sup [Dpey || < sup [[Daal,
n=0 nz0

lall=1

which verifies one direction of (2.1.2). The reverse inequality is (2.1.3). [ ]
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If A is bounded, the proposition above ensures that
Dy : 6% — ¢%, where Dpa=(1,a,)%,
is well defined and satisfies

IDAall < (sup |/1n|)||a|| foralla € ¢2.
n=0

Moreover, D, is a linear transformation because
Dp(a+cb)=Dpa+cD\b foralla,be ¢?andceC.
Since D, satisfies

[[Daa — Dpb|| = ||Dp(a —b)| < (sup |/1n|)||a —b| foralla,b e ¢2,

nz0

it is a continuous linear transformation from €2 to itself.

(2.1.4)

The operator D, is called a diagonal operator since the matrix representation of D with

respect to the standard orthonormal basis (e,,)S, for £2 is the diagonal matrix
diag(dg, A1, A25-..).
The previous discussion suggests an important definition.
Definition 2.1.5. Let T be a linear transformation on a Hilbert space F.
(a) T is bounded if there is a constant ¢ > 0 such that

ITx|| < c|x|| forallx € .

(b) The set of all bounded linear transformations on # is denoted by B(F).

(c) The operator norm of T is

ITIl := sup [ITx].
Ixl=1

Example 2.1.7. If A = (1,)5%, is bounded, (2.1.2) says that

IDall = sup |4y
n=0

(2.1.6)

The following lemma shows that || T| is the smallest admissible constant c in (2.1.6).

Furthermore, | Tx|| < || T|||x|| for all x € ¥.
Lemma 2.1.8. IfT € B(K), then

IT|| = inf{c > 0 : ||Tx| < c||x|| forallx € F}.

(2.1.9)
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Proof Let ¢ denote the infimum in (2.1.9). If | Tx|| < ¢||x| for all x € 7, then

[Tl = sup [ITx]l < ¢ sup [x]| =c.

[xl=1 Ixl=
Thus, |T|| < €. Given any ¢ > 0, there is a unit vector x, € J such that

C—e<|Tx] < sup ITx]| = T].
x||=1

Since this holds for every € > 0, it follows that ¢ < ||T. [ |

The inequality in (2.1.4) shows that for the diagonal operator D, boundedness implies
continuity. The converse is true and moreover, this phenomenon occurs with all bounded
operators.

Lemma 2.1.10. For a linear transformation T on a Hilbert space J, the following are
equivalent.

(a) T is bounded.
(b) T is continuous on H.
(c) T is continuous at 0.
Proof (2)= (b) If x, — X, then the linearity of T and (2.1.6) ensure that
ITx, — Tx|| = IT(x, — ¥l < I Tl|x,, —x]| - O.

Thus, T is continuous.

(b) = (¢) If T is continuous on J(, then it is continuous at 0.

(c)= (a) Suppose that T is continuous at 0. Since a linear transformation maps 0 to 0,
thereisa § > O such that |Tx|| = | Tx — T0| < 1forall |x|| = |x —0|| < 6. Forx # 0,

ITx| = H L Il H

||x|| = )l < 30

Thus, T is bounded. |

For A,B € B(HK) and ¢ € C, the operations of addition, scalar multiplication, and
composition in B(H) are defined by

(A+B)x =Ax+ Bx, (cA)x=cAx, and (AB)x=A(Bx) forx € X,
respectively. There zero operator 0 and the identity operator I on J are defined by
0x=0 and Ix=x forxe X, (2.1.11)

respectively. Exercise 2.8.12 verifies the following facts which prove that B(¥) is a normed
algebra.
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Proposition 2.1.12. B(XK) satisfies the following.

(a) B(¥) is a complex vector space with the operations of addition A + B and scalar
multiplication cA defined above. Moreover, |A + B| < ||All + ||B|| and ||cA| = [c|||A]l.

(b) IfA,B € B(H), then AB € B(¥() and |AB| < | A|l|IB-
(©) Al =0ifandonlyifA =0.
For an integer n > 0, define
A’=T and A" =AAA--A (ntimes).
The definition of the norm implies that ||I|| = 1 and the previous proposition ensures that
1A < J|JA|® forallm > 0. (2.1.13)

The previous proposition also confirms that B(¥) is a normed vector space. The next
proposition shows that it is a Banach space (see Definition 1.8.8).

Proposition 2.1.14. B(¥) is a Banach space.

Proof Proposition 2.1.12 shows that B(J() is a vector space with norm || - |. It suffices to
show that B(H) is complete. Let (4,,)5%; be a Cauchy sequence in B(¥(). Then for
eachx € H,

4p% = AmX|| < [|An = Am[lIx] = 0.

Therefore, (A,Xx)5%; is a Cauchy sequence in F . Since J is complete, A, X converges
to some Ax € K. Then for x,y € H and c € C,

Alx+cy) = lim An(x +cy)
= lim (A,x + cA,y)
n—»oo
= lim A,x+c lim A,y
n—-oo n—-oo

= AX + cAy.

Thus, x — Ax is a linear transformation on J, which we denote by A.
It remains to show that A is bounded and that ||A,, — A|| — 0. Since (4,,)5; is Cauchy,
it is a bounded sequence in B(H(). Therefore,

M =sup ||A,| < .

nx1
Thus, foranyn > 1and x € K,

[Ax]| = [Ax — Apx + Apx|
< A% = Apx|| + [[Anx]
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|Ax — Apx|| + [|Aq 1]

<

< 1Ax = Apx| + Mx].

Since ||[Ax — A, x| — 0, it follows that ||Ax|| < M|x|| for all x € H. Therefore, A is
bounded and ||A| < M.

Given € > 0,choose N such that ||A,,,—A,| < e/2forallm,n > N. Since |4, x—AXx| - 0
for every x € Jt, there is an m(x) > N such that ||4,,)x — Ax|| < §||x||. Then for any
n>Nandx € 7,

[Anx — Ax|| = [|A,x — Am(x)x + Am(x)x — Ax||
< [ApX — Ao X[l + [Amex — AX||
€
S NAn = Ameo X + 5 x|

€ €
< =[x = x| = ¢||x||-
< 3l + 3 lxi] = elix]

Thus,
lA, — Al = sup |A,x—Ax||<e foralln>N
[xl=1
and hence A,, — A in the operator norm. [ |

Another important detail is the continuity of multiplication.
Proposition 2.1.15. IfA, - A € B(¥)and B, — B € B(¥), then A,B, — AB.
Proof Since B, — B, there is an M > 0 such that ||B,| < M for all n. Then,
”Aan _AB” < "Aan _ABn +ABn _AB”
= (A, — A)B, + A(B, — B)|
< [lAn — AlllB, |l + IAllIB, — BIl (by Prop. 2.1.12)
< MJ|A, — Al + [|All|B, — B|| = 0.
Thus, A,,B,, — AB. [ |

One can consider operators between different Hilbert spaces in the same manner. Let
X and X be Hilbert spaces. A linear transformation T : H — X is bounded if

Tl = sup [Txlx (2.1.16)
[xllgc=1
is finite. The set of bounded linear operators from H to X is denoted by B(H,X). If H =
X, this is just B(F). Although B(F, X) is not an algebra (unless H = X), it is a Banach
space with respect to the operator norm defined in (2.1.16).
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2.2 Banach-Space Interlude

This section covers several important Banach-space theorems that appear throughout
this book. A good reference for these is [94]. The notion of boundedness of a linear
transformation makes sense in any normed vector space. Indeed, the definitions of the
previous section make no use of the inner-product structure on a Hilbert space, only
the norm. Consequently, we may speak of bounded linear operators between Banach
spaces (throughout this book, a “bounded operator” is understood to be linear). The set of
bounded operators on a Banach space V is denoted by B(V). The set of bounded operators
from a Banach space V to a Banach space W is denoted by B(V, W).

Theorem 2.2.1 (Open mapping theorem). Let V be a Banach space and T € B(V) be
surjective. Then T(U) is open whenever U C V is open.

It is often cumbersome to show that a linear transformation is bounded via Definition
2.1.5. The next result provides another method.

Theorem 2.2.2 (Closed graph theorem). Let T be a linear transformation from a Banach
space V to a Banach space W. Then the following are equivalent.

(@) T e B(v,wW).
M) Ifx, > xinVand Tx, »yinW, theny = Tx.

The theorem above is called the closed graph theorem since it says that T is bounded if
and only if its graph {(x, Tx) : x € V}is closed in the Banach space V @ W = {(v,w) :
v € V,w € W}with norm ||(w, V)|ypgw = [[ully + [V]w-

Theorem 2.2.3 (Principle of uniform boundedness). Let V, W be Banach spaces and % C
BV,W). If sup{||Tx|lw : T € F} < oo foreachx € V, thensup{|T| : T € F} < 0.

The previous theorem says something remarkable: a pointwise bounded set of linear
operators is uniformly bounded.

Definition 2.2.4. The dual space of a Banach space V is V* := B(V,C). An element
¢ € V* is a bounded linear functional and

lpll = sup |p(x)|.
[Ix|=1

In the course of our discussion of the adjoint of a Hilbert-space operator in Chapter 3,
Theorem 3.1.3 characterizes the dual space of a Hilbert space.

Two versions of the Hahn-Banach theorem play important roles in functional analysis.
The first says that a linear functional on a subspace of a Banach space can be extended to
the whole space without increasing its norm. As with Hilbert spaces in Definition 1.7.1, a
subspace of a Banach space V is a nonempty, norm-closed, vector subspace of V.

Theorem 2.2.5 (Hahn-Banach extension theorem). Let M be a subspace of a Banach
space V and let ¢ € M*. Then there is a p € V* such that P|5r = ¢ and ||| = ||@].
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The second version of the Hahn-Banach theorem is often used to determine if a subset
of a Banach space has a dense linear span.

Theorem 2.2.6 (Hahn-Banach separation theorem). Let M be a subspace of a Banach
space V. If x € V\M, then there exists a ¢ € V* such that ¢|5r = 0 and p(x) = 1.

2.3 Inverse of an Operator

This section covers the invertibility properties of Hilbert-space operators.

Definition 2.3.1. For A € B(K), the kernel of A iskerA := {x € H : Ax = 0} and the
range of AisranA := {Ax : x € H(}.

Observe that ker A is a subspace of J, in particular, it is (topologically) closed (Exercise
2.8.2). Although ran A is a vector space, it may not be closed (Exercise 2.8.3).

Recall that M, denotes the set of n X n matrices with complex entries. The symbol I
denotes the n X n identity matrix. See [141] for a review of linear algebra.

Proposition 2.3.2. For A € M, the following are equivalent.
(a) There exists a B € M, such that BA = 1.

(b) There exists a B € M,, such that AB = 1.

(c) kerA = {0}

(d) ranA = C".

A matrix A that satisfies any of the equivalent conditions above is invertible and its
inverse, denoted by AL, is the unique n x n matrix such that AA~! = A~!A = [. For
bounded operators on infinite-dimensional Hilbert spaces, invertibility is more subtle.

Example 2.3.3. Consider the forward and backward shift operators S, T on #2 defined by
S(ao,al,az,a3,...) = (0,a0,a1,a2,...) and T(ao,al,az,a3,...) = (al,az,a3,a4,...),

respectively. These operators are discussed in great detail in Chapter 5 where it is shown
that

TS=1 but ST #1I.
Furthermore,
kerS ={0} but ranS # ¢2,
while

ker T = span{ey} # {0} but ranT = ¢2.
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Example 2.3.3 shows that left invertibility and right invertibility are not equivalent.
Therefore, the definition of invertibility for Hilbert-space operators insists upon both
conditions. Below, we let I denote the identity operator on a Hilbert space # from (2.1.11).

Definition 2.3.4. A € B(¥() is invertible if there is a B € B(H() such that AB = BA = 1.
The operator B is the inverse of A and is denoted by AL

Exercise 2.8.4 shows that if an inverse of A € B(¥() exists, it is unique. Therefore, one
speaks of “the” inverse of an operator. The next result provides a condition for invertibility
that is often easier to check than the definition itself, where one is required to explicitly
produce the inverse.

Lemma 2.3.5. For A € B(¥), the following are equivalent.
(a) Aisinvertible.
(b) kerA ={0}andranA = 7.

(c) ranA is dense in J and Hiﬁlfl lAx| > o.
X||=

Proof (a) = (b) Suppose that A € B(¥) is invertible. Then ran A = J since
AAly)=(AA )y =y forally € 7.
Ifx € ker A, then Ax = 0 from which it follows that
0=A10=A"Ux) =AM A)x=Ix=x.

Therefore, ker A = {0}.

(b) = (a) Since kerA = {0} and ranA = I, there is a linear transformation A~!
on J such that AA™! = A71A = I. The next step is to show that A™! € B(J().
Since A is surjective, the open mapping theorem (Theorem 2.2.1) implies that A(U)
isopen whenever U C X is open. Thus, the topological characterization of continuity
ensures that A~! is a continuous linear transformation. By Lemma 2.1.10, continuity
and boundedness are equivalent for linear transformations on Hilbert spaces. There-
fore, A~! € B(J().

(a) = (c) Suppose that A € B(¥() is invertible. Then ran A = #(, which is dense in (.
If

inf |Ax| =0,
[IxlI=1
then there is a sequence (x,,)5%; of unit vectors such that |Ax,,|| — 0. Then

1 =[x, = [A7'Ax,|| < A7HlAX, ]| — O,

which is a contradiction.
(c)= (b) The condition

§ = inf |Ax] > 0
Ixl=1
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implies that ker A = {0}. If (4x,,)5%, is a Cauchy sequence, then
A%, — AXp|| = |AXpm — Xp)|| 2 8l|Xpm — X, forallm,n > 1.

Thus, (x,,)52; is a Cauchy sequence in J and hence converges to some x € J. Since
Aisbounded, it is continuous (Lemma 2.1.10) and hence Ax,, — Ax. Therefore, ran A
is closed. By hypothesis, ran A is dense in 7 and thus ran A = (. [ |

A proof of the following corollary is requested in Exercise 2.8.5.
Corollary 2.3.6. Let A,B € B(H).
(a) IfA and B are invertible, then so is AB and (AB)™! = B71A71,
(b) IfA is invertible, then so is A™! and (A71)7! = A.
An A € B(¥) such that
")i‘ﬁl:f1 lAx|| > 0 (2.3.7)

is bounded below. Thus, Lemma 2.3.5 says that A € B(¥) is invertible if and only if it is
bounded below and has dense range. See Exercises 2.8.37 and 2.8.38 for characterizations
of left and right invertibility.

Corollary 2.3.8. IfA € B(¥() is invertible, then |A7|| > ||A|| 7%
Proof Apply Proposition 2.1.12 to AA™! = I and deduce that
1= ||| = lAA7Y] < JAlIAT,
which completes the proof. [ ]

Proposition 2.3.9. IfA € B(J() and | — A| < 1, then A is invertible and

1

S — (2.3.10)
1-|I-A]

la=t) <
Proof Since ||[I — A| < 1and ||[I —A)"| < |I — A|", by (2.1.13), the series
(e8] (oo}
2T =A< Y - Al
n=0 n=0

converges. Proposition 2.1.14 and Theorem 1.8.11 ensure that Z:’:O(I —A)" converges
in B(J() to some B. The continuity of multiplication (Proposition 2.1.15) implies that

N
AB = (I—(I—A))(I\lli_r)réo nZ::O(I—A)")

N N
- 1i _ n_ _ n+1
= lim nzzo(l A= 0=4)

n=0
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= lim [I-(I-ANH]| =1,

N-oo

since [|[(I — A)N*!|| - 0 as N — oo. Similarly, BA = I, so A is invertible and A~! = B.
Moreover,

o0
1
AT =Bl < X IT-A]" = ———,

which completes the proof. [ |
Exercise 2.8.5 shows that the invertible elements of B(¥) form a group.

Proposition 2.3.11. Let G denote the group of invertible operators in B(J(). Then G is an
open set in B(H) and inversion is continuous on G.

Proof IfA € Gande > 0, let

20412 2147 )
If Be B(H)and |A — B|| < 6, then

II-A7'B| = |[A"MA-B)| < A7 A - Bl < A8 <

N =

Proposition 2.3.9 ensures that A7'B is invertible. Thus, by Corollary 2.3.6, B =
A(A™!B) is invertible as well and hence G is open. Furthermore, (2.3.10) implies that

1

AB)Y g —————— <2,

which gives

1B~ = [B~'AA™Y|

< [B7Af1A7Y
<@ 1B 1A (by Corollary 2.3.6)
<2pAa7.

Therefore,

A~ = B~ = |A~ (A - B)B7Y||
< [A7HIIA = BJIBY|
<20A47YP|A - B
<2472

<&

Thus, inversion is continuous on G. ||
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2.4 Spectrum of an Operator
A complex number A is an eigenvalue of A € M, if there is a nonzero x € C" such that
Ax = x, that is, if ker(A — AI) # {0}. Proposition 2.3.2 implies the following.
Corollary 2.4.1. For A € M,, and 1 € C, the following are equivalent.
(a) Aisan eigenvalue of A.
(b) A — Al is not invertible.

Every n X n matrix has an eigenvalue (Exercise 2.8.6). In fact, it has at most a finite
number of them. The situation is different in the infinite-dimensional setting. First let us
formally state the definition of an eigenvalue for Hilbert-space operators.

Definition 2.4.2. A complex number A is an eigenvalue of A € B(¥() if ker(A —AI) # {0}.
The multiplicity of A as an eigenvalue of A is dim ker(A — AI).

Example 2.4.3. For a diagonal operator Dy, note that Dye, = A,e, foralln > 0, and
hence every element of A is an eigenvalue of D,. In particular, D, may have infinitely
many distinct eigenvalues, or eigenvalues of infinite multiplicity.

Example 2.4.4. Recall the forward and backward shifts S and T from Example 2.3.3. It
turns out that S has no eigenvalues (Proposition 5.1.4), whereas each point in the open
unitdisk D = {z € C : |z| < 1} is an eigenvalue of T (Proposition 5.2.4).

For A € M, the matrix A — AI is not invertible if and only if 4 is an eigenvalue of A. In
the infinite-dimensional setting, A — AI may fail to be invertible for several reasons.

Definition 2.4.5. Let A € B(H).

(a) The spectrum of A, denoted by o(A), is the set of A € C such that A — AI does not have
an inverse in B(H).

(b) The point spectrum of A, denoted by g,,(A), is the set of 1 € C such that A — A1 is not
injective.
(c) The approximate point spectrum of A, denoted by g,,(A), is the set of 1 € C such that

inf [((4 — ADx| = 0.
Ixl=1

In particular, observe that g,(A) is the set of eigenvalues of A. The next proposition gives
a series of containments for the sets introduced in the previous definition.

Proposition 2.4.6. For A € B(J(), we have 0,(A) C 0qp(A) C a(A).

Proof If 1 € o,(A), there is a unit vector x € H such that (A — ADx = 0 and hence
A € 0gp(A). Thus, 0,(A) C 0gp(A). Lemma 2.3.5¢ implies that if 1 € gg,(A4), then
A — Al is not invertible. Thus, g,p(A4) C o(A). [ ]
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For a diagonal operator Dy, the next theorem describes 0,(Dy ), 04,5(Dy), and (D).
Theorem 2.4.7. For a bounded sequence A = (1,,)mq in C, the following hold.
(@) p(Dp) = A,
(b) 04p(Dp) = a(Dp) = A~, where A~ denotes the closure of A.

Proof (a) Since Dpe,, = A,e, for all n > 0, it follows that A C 0,(D,). On the other
hand, if 1 ¢ A and

o
X= ) ase, €2
n=0

then
©
(Dp —ADx = Z A, — Daye,
n=0

and hence
[s5)
I(Dx = ADX|? = 37 |4 — Al*|an|*
n=0

This implies that ||(Dy — ADx|| = 0 if and only if a,, = 0 for all n > 0. In other words,
x = 0. Therefore, 0,(D;) = A.
(b)IfA & A~, thereissome § > Osuch that|1—A1,,| > é foralln > 0. Thus, the sequence

A= </1,,1—/1):o=o

is bounded and (D — AI)~! = Dj. Therefore, 0ap(Dp) € a(Dy) © A~ by Proposition
2.4.6. On the other hand, if 4 € A~, (a) provides a subsequence 4,, € A = 0,(Dy)
such that 4, — 4. Then

(DA — /‘u)enk [ = ll(Da — /lnkl)enk + (Ank - A)enk ”
=0+ (A, — Dey, |l
= [(An, — Ve, |
=4y, — A >0
and hence 1 € ggp(Dy) C o(Dy). [ |

Example 2.4.8. Computations from Chapter 5 confirm that the operators S and T from
Example 2.3.3 satisfy o(S) = D7, 0,(S) = @, and g,,(S) = T; while o(T) = D7, 0,(T) = D,
and g,,(T) = D™

Here are a few important facts about the spectrum of an operator.
Theorem 2.4.9. Let A € B(H).

(@) o(A) C{z : |z| < ||AlI}-
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(b) o(A) is compact.
(©) o(4) # 2.

Proof (a)If|z| > |A|, then zI —A = z(I—z71A). Since ||z7!A| < |z|7! 4]l < 1, it follows
that |[I—(I—z7'A)|| = |z~'A| < 1. Proposition 2.3.9 ensures that I —z~'4, and hence
A — zI, is invertible. Thus, z ¢ o(A).
(b) The function f : C — B(H) defined by f(z) = A — zI is continuous since

If@) = fwl=lA-z)—-(A—wl)| =|z—w| forallz,w e C.

Since G, the group of invertible elements of B(¥(), is open (Proposition 2.3.11), it
follows that G¢ = B(J)\G is closed. Thus, the inverse image f~1(G¢) = o(A)is closed,
and hence compact by (a).

(c) Suppose toward a contradiction that o(A) = @. Let ¢ € B(HK)* and consider the
function g : C — C defined by

g(2) = p((A-zD™).
Fix z, € C and note that

A-zD'—A—-z,D ' =(A—-zD I - (A —zD)A —z,])7!]
= (A= 2D (A - 2o]) — (A — ZD)(A — z])"!
= (A —z)7Y(zl — zoI)(A — zo]) !
=(z—z)A—z)"1(A - z,])7L. (2.4.10)

Inversion is continuous on G (Proposition 2.3.11) and ¢ is linear and continuous.

Thus,
- A—zI)1) — o((A — zoI)~!
i 82 —8G0) _ - P((A—2D7) — (A~ 20D ")
zZ—2Z zZ—2Zy z—Z, Z—2
_ -l (A -1
_ qo(lim (A—=2zI) (A — zoD) )
Z—2Z, Z—2Zy
=o( lim (A —zI)™HA - zo))™) (by (2.4.10))

= GD((A - ZOI)_Z)’

so g is differentiable at z,. Since z, € C is arbitrary, g is an entire function.
For |z| > |A],

8(2)| = |e((4 - zD)7Y)|
=lp(z7'd - z71A))|
= |z Yp( — z71A) 7))
< Iz Mgl = z72A) 71|
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(e8]
<l gl X zmar
n=0

[*)
<217l D llz7"A

n=0

(s8]
<zl Mgl 35 Izl Al

n=0
el
S Ay
el
EEZ

which tends to zero as z — 0. In particular, g is bounded on the region {|z| > 2 || A|}.
Since g is continuous on |z| < 2||A|, it is bounded there as well. Thus, g is a bounded
entire function. Liouville’s Theorem [92, p. 77] ensures that g is constant. Moreover,
this constant must be zero by the limiting argument above.

Putting this all together implies that (A=) = g(0) = 0 for all ¢ € B(¥()*. The
Hahn-Banach separation theorem (Theorem 2.2.6) yields A~ = 0, a contradiction.
Therefore, o(A) # @. [ |

Definition 2.4.11. The resolvent set of A € B(H) is C\o(A).

Theorem 2.4.9 ensures that for each A € B(F), the resolvent set is nonempty and that
the operator-valued function z — (zI — A)~! is analytic on C\c(A). This function is called
the resolvent of A.

2.5 Compact Diagonal Operators

The most tractable Hilbert-space operators are the compact operators. The following
result, concerning the diagonal operators D,, motivates the definition of a compact
operator (Definition 2.5.3).

Theorem 2.5.1. Let A = (1,)5%, be bounded. Then the following are equivalent.
(a) For every bounded sequence (a,)%; in €2, (Dpa,), has a convergent subsequence.
() 1, = 0.

Proof (a) = (b) The proof proceeds by contraposition. If 1,, does not approach zero,
there is a subsequence (4,, )=, and a § > 0 such that |4, | > & for all k > 1. The
corresponding subsequence of standard basis vectors (e,, )z=, is bounded but

"Denk - Deng Il = “/lnkenk - Angengn = |/1nk|2 + Mnglz 2 \/55 > 0.

Thus, (Dey, );~, has no convergent subsequence.
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(b)= (a) Let D = Dp and Dy = D, where
AN = (/10,2,1, /12,...,11\[, 0, O, 0,)
Suppose that 4, — 0. Then (2.1.2) implies that

|ID—Dy|= sup |1,/ >0 asN — c.

n=N+1
Fix N and a bounded sequence (a,)%2, in £2. Observe that Dya,, is contained in the

(N+1)-dimensional subspace span{e; : 0 < j < N}of 2. For N = 0, the Heine-Borel
theorem says that (Dya,, )=, has a convergent subsequence

Doam . Doaoz, Doao3,. vey

where ag, = a,, for some m that depends on D, and k. Since (D;agy)z~, is bounded,
there is a subsequence

a, a1, A93;5..-

of the sequence ay such that D, a;; converges. Since (D,a;; )2, is bounded, there is
a subsequence

az1, A3, A35...

of the sequence a;; such that D,a,; converges. Continue in this manner to n =
3,4,5,... to create (a, )y, such that (D,a,;)p>, is a convergent sequence.

It suffices to show that (Da,,,,,)sm=; is @ Cauchy sequence and hence is convergent. For
any N, observe that

[Daym — Dag|| < [Dayum — Dnammll + [DNamm — Dnagll
+ |IDnakk — Dagy||
< D = Dy llllammll + IDN@mm — Dnakkl
+[ID — Dyl llakkll- (2.5.2)

Since (a,)5%, is bounded, so is the subsequence (a,,,,)m-; and thus there is some
¢ > 0 such that ||a,,;,|| < cfor all m. Given ¢ > 0, choose N large enough so that
ID — Dyl < €/(3c). Since (Dya,m)m=; is a Cauchy sequence, there is an M such
that | Dnyay,m — Dnagkll < €/3 for all m, k > M. Apply these estimates to (2.5.2) and
deduce that

3 €

3
"Damm _Dakk" < 3c ctx+ =

c=c.
3 3¢

Thus, (Da,,,,,)%-; is a Cauchy sequence in #2 and hence converges. [ |
This inspires the following definition for Hilbert-space operators.

Definition 2.5.3. T € B(¥) is compact if, for every bounded sequence (X, )p=; in F,
(Tx,,)pe has a convergent subsequence.
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In the previous definition, the requirement that T is bounded is superfluous (Exercise
2.8.18). The ideas in the proof of Theorem 2.5.1 can be used to prove the following (see
Exercises 2.8.19, 2.8.22, and 2.8.23).

Proposition 2.5.4. Any finite-rank operator is compact.
Proposition 2.5.5. The product of a compact operator and a bounded operator is compact.

Proposition 2.5.6. If (A,)n, is a sequence of compact operators and A, — A in norm,
then A is compact.

Other properties of compact operators are mentioned throughout this book. In fact,
certain compact operators (the selfadjoint ones — see the next section) can be described
with diagonal operators. Chapter 8 covers cyclic vectors and invariant subspaces for
diagonal operators.

2.6 Compact Selfadjoint Operators

The spectrum and norm of a diagonal operator are readily computable. Moreover, there is a
practical criterion for compactness. It is for these reasons diagonal operators are often used
as models for various types of operators. For example, it is sometimes the case that A €
B(F) has an orthonormal basis (x,,)5~; of eigenvectors corresponding to the sequence of
eigenvalues A = (1,,)5%,; of A. Since A is bounded, so is A. Furthermore, since (X,,)5e; is
an orthonormal basis for (, every x € J is of the form

[so]
X = Z (X, Xy )Xy,
n=1
and hence
(e8]
Ax = Z (X, X)X, (2.6.1)
n=1

The (i, j) entry of the matrix representation of A with respect to this basis is

0 ifi#j,
(Ax},%x;) = . J
A ifi=j,

and thus the matrix representation of A is diag(1,, 4,, 43,...). Furthermore, A is compact
ifand only if 4,, — 0 (Theorem 2.5.1).
It is common to use the notation u ® v for the rank-one operator defined on # by

®v)() =x,vyu forx e H. (2.6.2)

With this notation, one writes (2.6.1) as

A= Z An(Xp, ® Xp).

n=1
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Only certain operators are “diagonalizable” in the sense above. Compact selfadjoint
operators enjoy this property. This is explored below and in greater detail in Chapter 8.

Definition 2.6.3. A € B(X¥) is selfadjoint if (Ax,y) = (x,Ay) for all x,y € ¥ .

The adjoint of an operator is discussed in greater detail in Chapter 3. A diagonal
operator D, with A = (4,);%, is selfadjoint if and only if 1,, € R for all n > 0 (Exercise
2.8.26). Moreover, 0,(Dy) = A (Theorem 2.4.7). This is true for compact selfadjoint
operators.

Lemma 2.6.4. Let A € B(H) be selfadjoint.
() gp(A) C R
(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) If A is compact and A € cp(A\[0}, then dimker(A — AI) < oo, that is, A has finite
multiplicity.

Proof (a)Let1 e 0p(A) and x be a unit eigenvector for 4. Then
A = (Ax,X) = (A%, X) = (X, AX) = (X, AX) = .

Thus, 0,(4) C R.
(b) Suppose 4, u € 0,(A) and 4 # u. If Ax = Ax and Ay = uy, where X,y # 0, then
P

0 = (4x,y) — (Ax,y)
= (Ax,y) — (x,Ay)
= (Ax,y) — (X, 1y)
= Kxy) — wx,y)
= (4 - u)x,y) (by (2))

Since 1 — u # 0, it follows that (x,y) = 0.
(c) See Exercise 2.8.25. [ |

Lemma 2.6.5. Let A € B(H).

(a) IfAisselfadjoint, then ||A| or — ||A| belong to o,p(A).

(b) IfAis selfadjoint and compact, then ||A| or — ||Al| belong to o,(A).
Proof Exercise 2.8.29 shows that

Al = lsup (A, x)]. (2.6.6)

x[|=1

Let (x,)52; be a sequence of unit vectors such that [(Ax,,x,)| — [A|. Since A is
selfadjoint, it follows that (Ax,,,X,,) = (X,,, AX,) = (AX,, X,) and thus is real. Passing
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to a subsequence if necessary, we may assume that (Ax,,,x,,) — ||A] or (Ax,,X,) —
—||Al. Without loss of generality, assume that (Ax,,x,) — |A|. Then

0 < [|(A — AN,
= [lAx,, — Al %,
= (AXy, AXy) — AIAXy, Xp) — AN, AXp) + |AIP (%5 X2
= lA%, 1> - 2/|A AR, X,) + ][I
< AP = 21 AIAR,, X0) + [A]? [%,]12
= 2[A|? - 2/l AIKAX,. X,),

which tends to zero as n — oo. Therefore, |A| € g,,(A). This proves (a). Exercise
2.8.27 ensures that when A is also compact, then ||A|| € o,(A), which proves (b). W

Theorem 2.6.7 (Spectral theorem for compact selfadjoint operators). Let A € B(F)bea
compact selfadjoint operator on a separable, infinite-dimensional Hilbert space. There exists
a real sequence (1,)5x, tending to zero and an orthonormal basis (X,,)5, for J such that

o0
Ax = ) A (%,X,)X, forallx € K. (2.6.8)

n=1

With respect to the orthonormal basis (X, )y, the operator A has the matrix representation
Dy on €2(N), where A = (1,)%;.

The proof of this theorem requires the following concept. For a subset Y of 7, define
Yt ={xe I : (x,y)=0forally € #}.

This set is the orthogonal complement of Y and is formally defined and discussed in
Definition 3.1.1.

Proof We assume that A is injective; see Exercise 3.6.41 for the general case. Suppose
that A € B(XK) is compact and selfadjoint with ker A = {0}. This proof constructs
the x,, inductively. Lemma 2.6.5 says that A has an nonzero eigenvalue 4; = |A|
or 1; = —||A||. Let x; be a corresponding unit eigenvector to 4,. Since span{x; } is A-
invariant and A is selfadjoint, 7, = (span{x, })* is also A-invariant. Indeed, ifx € 7(,,
that is, (x,x;) = 0, then

(A%, %)) = (X, A%;) = (X, ;%;) = 4, (X, X;) = 0

and hence Ax € ¥,.

Let A, = Alg, denote the restriction of A to Jt,. Then A, is compact and selfadjoint
(and injective). Lemma 2.6.5 yields a nonzero eigenvalue 4, = ||A,|| or 4, = — ||A;|
and corresponding unit eigenvector x, € J(,. Continue this process to obtain a
sequence (4, )n=; of nonzero real numbers and corresponding orthonormal eigenvec-
tors (x,,)5 such that the restriction A, = A|g. 0f A to H,, = (span{xy,Xy,..., Xp_1 )*
satisfies ||A, || = |-
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We claim that that 4, — 0. If 4,, does not approach zero, there is a subsequence 4,, of
distinct terms (note the use of Lemma 2.6.4c) and a § > 0 such that |4, | > & for all
k. The corresponding subsequence of unit eigenvectors x,, , which are orthogonal by
Lemma 2.6.4b, is bounded, but

"Axnk _Axng = ||/1nkxnk - /lngxng = I}Lnkl2 + |/1n€|2 2 \/55

Thus, (A%, )=, has no convergent subsequence. This contradicts the assumption
that A is compact.

Next we verify (2.6.8) and that (x,,)5>; is an orthonormal basis for #. For each x € 7,
apply the Pythagorean theorem (Proposition 1.4.6) to

n—-1 n-1
X = (x— Z <x,xi)xi) + Z (X, X;) X,
i=1 i=1

wherey,, the first summand above, belongs to (,, and the second summand belongs
to #, and obtain

n-1
2 2
Il = llyall” + 25 1 %) 2.
i=1

Consequently, ||y,|| < ||| for alln > 1. For each n > 1,

n—-1
[ax =3 4 x| = IAyall = 145yal < IAnl Iyl < nl 1]
i=1

Since this tends to zero as n — oo, (2.6.8) follows.
Finally notice that \/{x,, : n > 1} = J since ifx 1 x,, for all n, then (2.6.8) shows that
x € ker A = {0}. |

See [339] for the proof of the following important theorem of Riesz which says that
the nonzero elements of the spectrum of a compact operator are eigenvalues. Note that
Exercise 2.8.28 ensures that 0 belongs to the spectrum of any compact operator on an
infinite-dimensional Hilbert space. It need not be an eigenvalue, however, although it does
belong to the approximate point spectrum. See Chapter 7 for an example of a nonzero
compact operator with no eigenvalues and whose spectrum is {0}.

Theorem 2.6.9 (Riesz). Suppose A € B(I() is compact. If 1 € a(A)\{0}, then 1 € g,(A).

A wide variety of compact operators are discussed in this book. This includes compact
Hankel operators, compact composition operators, and the Volterra operator.

2.7 Notes

The integral operators

b
) [ KGoy)f ) dy 2.7.1)



NOTES | 61

and the matrix operators x — Ax were some of the first operators to be studied.

Schmidt, Toeplitz, and Hellinger [191] examined linear transformations as matrices
(finite or infinite). In fact, according to Friedrichs, around 1920 Schmidt advised von
Neumann “Nein! Nein! Sagen Sie nicht Operator, sagen Sie Matrix!” (“No! No! Don’t say
operator, say matrix!”) [270]. By 1913, Riesz [303] stressed the importance of substitutions
linéaires (linear substitutions) on ¢2. He defined the borne de la substitution (bound of the
substitution) for the matrix operator Ax = X’ as the smallest constant M, such that

M

(o]
2 < ME Y |xl
n=1

n=1

along with the facts (not formally stated but used implicitly) that
MAB SMAMB and MA+B <MA +MB

(Proposition 2.1.12). Hildebrandt in 1931 [198] and Stone in 1932 [353] used the terms
“linear limited” to denote linear transformations on Hilbert and Banach spaces and the
term “modulus” to describe ||A]|.

The series

T+A+ A2+ A+ =(I—A)" (27.2)

for ||A|| < 1, known as a Neumann series, was investigated in 1877 by C. Neumann [2438].
In the study of potential theory, he looked at operators A whose special properties imply
that x + Ax + A?x + A3x + --- converges for all x. Riesz [303] observed the convergence
of the Neumann series and the identity (2.7.2). In 1918, Riesz [304] showed that an
operator divides the complex plane into two parts: its spectrum and its resolvent set (the
complement of the spectrum). The terms “spectrum” and “resolvent” go back to Hilbert
[196]. Riesz also observed that the mapping z — A(I — zA)™! montrent le caractéres
d’'une fonction holomorphe en z (“shows the behavior of a holomorphic function in z”)
which, as seen in the proof of Theorem 2.4.9, plays an important role in showing that the
spectrum is a nonempty compact subset of C. He also showed that the nonzero elements
of the spectrum of a compact operator consist only of eigenvalues (Theorem 2.6.9). This
important observation is used in Chapter 18.

In the past, finite-rank operators were sometimes called “degenerate” operators [200].
They are all of the form

n
T=Zui®vi.

i=1
This tensor notation appeared in work of Schauder [330]. Finite-rank integral operators
of the form (2.7.1) with kernels

K(x,y) = ) gi(0)hi(y)
i=1

were studied by Goursat [159] and Schmidt [331].
For a Hilbert-space operator A, the following properties are equivalent.
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(a) A is “completely continuous” in the following sense: if (x, )52, is a sequence such
that (x,,,y) = (x,y) for all y, then Ax,, - Ax in norm.

(b) A isthe norm limit of finite-rank operators.
(c) A iscompact (Definition 2.5.3).

These equivalences were studied by Hilbert [196] and Riesz [303] in the £2 setting, Schmidt
[331] for integral operators, and Hildebrandt [198] in the abstract setting.

Diagonal operators also appear in a result of Weyl, von Neumann, and Berg [105]
which says that any normal operator N (Chapter 8) on a separable Hilbert space can be
decomposed as N = D + K, where D is a diagonal operator and K is compact.

2.8 Exercises

n

Exercise 2.8.1. Let A = (—
n+1
DAl

Exercise 2.8.2. Let A € B(J(). Prove that ker A is a (closed) subspace of 7.

):O:O. Prove there is no x € ¢2\{0} such that |Dyx| =

Exercise 2.8.3. If 7( is an infinite-dimensional Hilbert space, find an A € B(¥) whose
range is not closed.

Exercise 2.8.4. Prove that an inverse of A € B(K), if it exists, is unique.

Exercise 2.8.5. Show that the set G of invertible elements of B(H) forms a group. That is,
G is closed under multiplication and inversion, contains the identity, and its multiplication
is associative.

Exercise 2.8.6. Use the steps below to prove that every A € M, has an eigenvalue.
(a) Prove that I VA A%, AP are linearly dependent.
(b) Prove there is a nonzero polynomial p such that p(A) = 0.

(c) Factor p into linear factors and use this to show that A — AI is not invertible for some
ALeC.

Exercise 2.8.7. What are necessary and sufficient conditions for a diagonal operator to
be invertible in B(£2)?

Exercise 2.8.8. What are necessary and sufficient conditions for a diagonal operator D,
on ¢2 to be an isometry, that is, | Dox| = |x| for all x € £#2?

Exercise 2.8.9. If T € B(¥) is an isometry, prove that ran T is closed.

Exercise 2.8.10.

(a) If D, is a diagonal operator on #2 with distinct eigenvalues, describe the operators
A € B(¢?) such that AD, = D,A.

(b) What happens in (a) if the eigenvalues of D, are not distinct?



EXERCISES | 63

Exercise 2.8.11. Show that every diagonal operator D, on #2 has a square root, meaning
there exists an A € B(¢2) such that A> = D,. Does a square root of a diagonal operator
need to be another diagonal operator?

Exercise 2.8.12. LetA,B € B(H)andc € C.

(a) Prove that A+ B € B(¥) and |A + B|| < |A|l + ||B-
(b) Prove that cA € B(¥) and ||cA| = |c|||A]l-

(c) Prove that AB € B(¥() and |AB| < ||A|||B]-
Remark: This shows that B(¥() is a normed algebra.

Exercise 2.8.13. von Neumann’s inequality says thatif p(z) = ag +a,z+a,z% + -+ + a,z"
and T € B(JH() with | T|| < 1, then p(T) = apl + a; T + a,T? + --- + a, T" satisfies

Ip(D)|l < sup |p(2)|.

|z|<1

Prove von Neumann’s inequality if T is a diagonal operator.
Remark: See [144, p. 213] for a proof of von Neumann'’s inequality for a general bounded
operator.

Exercise 2.8.14. Prove that in Proposition 2.3.9, the assumption |I — A|| < 1 can be

1
replaced with limsup ||(I — A)"*||» < 1.

n—oo
Exercise 2.8.15. Let A € B(¥) be invertible. Prove that any B € B(¥) such that |A —

B|| < ||A]| is also invertible.

Exercise 2.8.16. Let A € B(J() be a compact operator. Assume thatx, —» xandy, -y
weakly in F. Prove that (Ax,,,y,,) = (AX,y)as m,n — oco.

Exercise 2.8.17. Let T be a linear transformation on a Hilbert space whose range is finite
dimensional. Prove that T is bounded.

Exercise 2.8.18. Let T be a linear transformation on a Hilbert space 7 such that for every
bounded sequence (x,,);>; in #, (Tx,);=; has a convergent subsequence. Prove that T is
bounded.

Exercise 2.8.19. Prove that any finite-rank operator is compact.

Exercise 2.8.20. Prove that an orthogonal projection is compact if and only if its range is
finite dimensional.

Exercise 2.8.21. Let # be an infinite-dimensional Hilbert space and let K be a compact
subset of C. Find a T € B(¥) such that o(T) = K.

Exercise 2.8.22. Prove that if (4,)5, is a sequence of compact operators in B(F) and
|A, —A|| — 0, then A is compact.



64 | DIAGONAL OPERATORS

Exercise 2.8.23. Prove that the product of a compact operator and a bounded operator is
compact.

Exercise 2.8.24. Prove that every compact operator A € B(J() is the limit of finite-rank
operators using the following steps.

(a) Choose an orthonormal basis (u,,)5%; of # and let By be the orthogonal projection
of # onto span{u;, u,,..., uy}. Prove that ByA is compact.

(b) Prove that |[ByA — A|| is a decreasing function of N.

(c) Prove that if |[ByA — A| does not tend to zero, then there are unit vectors x and a
constant ¢ > 0 such that | ByAxy — Axy| = c for all N.

(d) Use the compactness of A to derive a contradiction.

Exercise 2.8.25. Prove thatif A € B(¥()is compact, then ker(A—AI) is finite dimensional
for each 1 € C\{0}.

Exercise 2.8.26. Prove that D, satisfies (Dyx,y) = (x, Dpy) for all x,y € ¢? if and only if
ACR.

Exercise 2.8.27. If A € B(J() is compact and 1 € g,,(A)\[0}, prove that 1 € g,(A).

Exercise 2.8.28. Prove that if 7 is an infinite-dimensional Hilbert space and A € B(¥)
is compact, then 0 € o(A).

Exercise 2.8.29. If A € B(J() is selfadjoint, prove that |A| = sup [(4x,x)|.
[Ix|=1

Exercise 2.8.30. Mimic the proof of Lemma 2.6.5 to show that if A € B(¥) is selfadjoint
and compact with {(Ax,x) : ||x|| = 1} = [a, b], then a and b are eigenvalues of A.
Exercise 2.8.31. Let A € B(¥()and |A| < 1.

(@ If f(z) = 220:0 a,z" has radius of convergence 1 or greater, prove that f(A) = ayl +
@A + ayA? + a3 A3 + --- converges in operator norm.

(b) Prove that cos? A + sin® A = I.

Exercise 2.8.32. The Axiom of Choice ensures that every vector space V has a Hamel
basis, a linearly independent set {x,}4<r such that each v € V can be written uniquely as
a finite linear combination of Hamel-basis vectors. Assuming this result, prove that every
infinite-dimensional Hilbert space #( admits an unbounded linear functional.

Exercise 2.8.33. Use the Axiom of Choice to prove that notevery f : R — R that satisfies
f(x+y)= f(x)+ f(y) for all x,y € R is of the form f(x) = cx for some c € R.

Exercise 2.8.34. A sequence (x,)52, in a Hilbert space # is complete if \/{x,, : n > 1} =
F. Let (w,)p>, be an orthonormal basis for # and (x,,)n=; be a sequence in J such that

Ms

"un - Xn”2 <L

n=1

Prove that (x,,)5; is complete in F.
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Exercise 2.8.35. Let(x,)5%, be an orthonormal basis for a Hilbert space  and let (y,, )52,
be an orthonormal sequence in (. If

o0
Z % = ¥al® < oo,
n=1

prove that (y,,)p=; is an orthonormal basis.

Exercise 2.8.36. This exercise is a continuation of Exercise 2.8.34.
(a) Prove that (£2")%, is complete in I?[0,1].
(b) Is (£2")>, complete in I*[—1,1]?

Exercise 2.8.37. Let A € B(J(). Prove that the following are equivalent.
(a) Thereisa B € B(H) such that BA = 1.

(b) A isinjective and ran A is closed.
(c) inf ||Ax| > 0.
[xl=1

Remark: A is left invertible if it satisfies any of the conditions above.
Exercise 2.8.38. Let A € B(H). Prove that the following are equivalent.
(a) ThereisaB € B(J()such that AB =1.
(b) Aissurjective.
Remark: A is right invertible if it satisfies any of the conditions above.

Exercise 2.8.39. Recall that (e,)S%_.,, where e,(x) = ¢2™"*, is an orthonormal basis for
I?[0,1] (Theorem 1.3.9). Let A = (1,)%_., be a bounded sequence of complex numbers
and define Ty (e,) = A,e, foralln € Z.

(a) Prove that T, extends by linearity to a bounded operator on I?[0, 1] with norm || T, || =

SUP ez |Anl-

(b) Fora € R,define (7,¢e,)(x) = e,(x—a). Show that 7, extends by linearity to a bounded
operator on I?[0, 1] that commutes with T.

(c) Prove thatif T € B(I?[0,1]) satisfies Tz, = 7,T for all a € R, then T = T}, for some
bounded sequence A.

Remark: The operator T, above is a Fourier multiplier.

Exercise 2.8.40. For 1 < p < oo, let X, denote the vector space C[0, 1] equipped with the
norm

1 14
(/ |f(x)P dx) forl < p < oo,
0

max_|f(x)| for p = 0.
x€[0,1]

I£1p =

Define the inclusion map ipq : X, — Xy by ipq(f)=f. For what pairs (p, q) is i, bounded?
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Exercise 2.8.41. For A € B(¥), the numerical range of A is W(A) = {(Ax,x) : |x|| = 1}.
The Toeplitz-Hausdorff theorem [144, p. 222] says that W(A) is convex. If (1,,)pr, is a
sequence of positive real numbers such that 1, decreases to zero, prove that W(D,) =
(0,24] as follows.

(a) If (e,), is the standard basis for #2, prove that [(x,e,)| < 1 for all unit vectors
X € ¢?andn > 0.

(b) Prove that W(D,) = { Z Apay, 1 0<a, <1, Z a, = 1}.
n=0 n=0

Exercise 2.8.42. Let A be a compact selfadjoint operator. Describe W(A).

Exercise 2.8.43. For a Hilbert space { and y € J consider the linear transformation
¢y © J — C defined by ¢, (x) = (x,y). Prove that £, € B(J(,C) and ||¢y| = |ly|.

Exercise 2.8.44. Recall the Banach space ¢* from Example 1.8.2 and let ¢ C €* denote
the vector space of convergent sequences in ¢%, that is the a = (a,)p>, € ¢* such that
lim,,_, o, a, exists.

(a) Prove that c is a subspace of ¢*°. In particular, prove that c is topologically closed.

(b) Provethatthelinear transformation T : ¢ — Cdefined by T(a) = lim,,_, , a, belongs
to B(c, C).

(c) Find | T|.

(d) Find kerT.

2.9 Hints for the Exercises

Hint for Ex. 2.8.3: Let (u,,);2; be an orthonormal basis for  and consider the operator

o (e8]
a
— 0 2
T( nz_l anun) = n2—1 r:’u,,, where (a,,)5%, € ¢°.

Hint for Ex. 2.8.10: Any bounded diagonal operator commutes with D,. To show the
converse, if ADy = DpA, then Ap(Dp) = p(Dp)A for any polynomial p. Evaluate both
sides of the equation above at ey and choose an appropriate interpolating polynomial p
depending on N.

Hint for Ex. 2.8.11: For —1 < x < 1 consider the square of the matrix

|

Hint for Ex. 2.8.15: Consider I — A™1B.
Hint for Ex. 2.8.16: Use the polarization identity from Exercise 1.10.17.
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Hint for Ex. 2.8.21: Choose an appropriate diagonal operator.

Hint for Ex. 2.8.22: Use a diagonalization argument similar to the one in the proof
Theorem 2.5.1.

Hint for Ex. 2.8.27: Suppose that ||x,|| = 1 and ||(A — A)x,|| — 0. Show that there is a
y # 0 and a subsequence x,, — A7'y.

Hint for Ex. 2.8.28: Proceed by contradiction and assume that A is invertible.

Hint for Ex. 2.8.29: Start with (Ax,y) = i(A(x +y),xX+y)— i(A(x —vy),x —y)and use
the polarization identity from Exercise 1.10.17.

Hint for Ex. 2.8.32: Let (X, )41 be @ Hamel basis for # and define the functional’s action
on Hamel-basis vectors.

Hint for Ex. 2.8.34: Consider I — T, where

(o) (s8]
T:H - K, T(Z anun) = z a,(u, —x,).
n=1 n=1

Hint for Ex. 2.8.35: Construct a bounded invertible operator T € B(¥) such that Tx,, =
y, foralln > 1.

Hint for Ex. 2.8.39: Start with (Te,)(x) = Zm:—oo cm(n)e,, (x) and use the fact that
7, Te, = Tt,e, for all a to prove that c,,(n) = 0 for all m # n.

Hint for Ex. 2.8.40: Use Holder’s inequality.

(o]






Infinite Matrices

Key Concepts: Riesz representation theorem, adjoint of an operator, operators defined by infinite
matrices, Hilbert matrix, Cesaro matrix, Schur’s test, matrices defining compact operators, matrices
defining contractions.

Outline: This chapter concerns operators on ¢2 defined by infinite matrices (not neces-
sarily diagonal). When are such operators well defined? Bounded? Compact? Schur’s test
yields a tangible solution to some of these questions.

3.1 Adjoint of an Operator

Let A = [a;j]ij=) € My, the set of n X n matrices with complex entries. The adjoint A* is
its conjugate transpose A* = [aj;]}' ;=1 and it satisfies (Ax,y) = (x,A"y) for all x,y € C".
If  is a Hilbert space and A € B(H), we want to find an A* € B(H) such that

(Ax,y) = (x,A"y) forallx,y € .

The existence of such an A* is not immediately clear.
We begin with the following observation. For A € B(¥), the Cauchy-Schwarz
inequality and the definition of the operator norm say that

A%, y)| < Ax[lyll < [Allix]lly]  forallx,y € FC.

Thus, for each fixed y € 7, the linear functional x — (Ax,y) is bounded, meaning
it defines an element of B(H,C). Theorem 3.1.3 below describes the bounded linear
functionals on F. To develop this, we need to further explore the following concept first
seen in Chapter 2.

Definition 3.1.1. For a Hilbert space K and a nonempty subset ¥ C ¥, let
Yl={xeH : (x,y)=0forally € ¥}

denote the orthogonal complement of Y (see Figure 3.1.1).
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span Y

Y1
L')YZ

W

Figure 3.1.1 The orthogonal complement of ¥ = {y;,y,} is the subspace Y.

Here are a few facts about orthogonal complements (Exercise 3.6.6).

Proposition 3.1.2. Let Y be a nonempty subset of a Hilbert space J{.
(a) {0} =7t

(b) £+ ={o}.

(c) Y*isasubspace of I(.

@ HH =V

(e) Y has dense linear span in I if and only if Y+ = {0}.

(f) If M is a subspace of I¢, then M # I( if and only if M+ # {0}.

(g) If Py is the orthogonal projection onto M, then I — Py, is the orthogonal projection onto
M-
The next theorem identifies the dual space (recall Definition 2.2.4) H* = B(¥#,C) of a
Hilbert space J. It can be identified, in a conjugate-linear fashion, with J itself.

Theorem 3.1.3 (Riesz representation theorem). For a Hilbert space J, the following hold.

(a) Every bounded linear functional ¢ : J€ — C is of the form ¢y(x) = (x,y) for a unique
y € K.

(b) The mapy v ¢y is a conjugate-linear isometry from 3 onto JC*.

Proof (2) Since ¢ is bounded, ker ¢ is a subspace of #(. Without loss of generality we
may assume that ker ¢ # J(, since otherwise ¢ is the zero functional. In this case,
p(x) = (x,0) for all x € F and 0 is the only vector with this property (Proposition
3.1.2b).
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Since ker ¢ # J(, Proposition 3.1.2f implies that (ker ¢)* # {0} is a subspace of (. Let
yo € (ker p)* satisfy ¢p(y,) = 1. In particular, y, # 0. Then for all x € 7,

P(x — p(X)yo) = ¢(x) — p(X)p(yo) = 0.
Thus, x — p(X)y, € ker ¢ and
0= (x = p(X)¥o. Yo) = (X.Y0) = 9 o’
Rearrange the preceding to obtain
2() = llyoll ™ % yo) = (% lyol * yo) = (x.¥),

wherey = ||y0||_2 Yo- This proves existence. For uniqueness, suppose that ¢(x) =
(x,y') for all x € #. Then,

0=(xy)—(xy)=(&xy-y) foralxe .

Letx =y —y' and conclude that |ly — y’||2 = 0 (Proposition 3.1.2b). Thus,y = y'.
(b) For fixed y € J, the Cauchy-Schwarz inequality implies that

lpy®)| =[x, y)| < [x[llyl forallxe J¢
and hence,
eyl = "81"13 lpyX)| < [lyll-

Furthermore, assumingy # 0,

2y(y) = (qopy) = v

and thus [lgy|| = [ly||- Since the inner product is conjugate linear in the second slot,
the map y — @y is a conjugate linear isometry. Since every ¢ € J( is equal to ¢y, for
some unique y € J, this conjugate-linear isometry is surjective. [ |

Let A € B(H). For each 'y € ¥, the Riesz representation theorem provides a unique
vector, denoted A*y, such that

(Ax,y) = (x,A"y) forallx € K. (3.1.4)

The next proposition shows that x — A*x is a bounded linear transformation on 7. We
use A* to denote this map, which is uniquely determined by (3.1.4).

Proposition 3.1.5. Let A € B(H).
(a) x — A*xdefines a linear transformation on J.

(b) A" € B(H).
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(c) A = A

(@ A% = 1Al

(e) lA*Al = [|A]>
Proof (2) Ifx,y,z € J and ¢ € C, one sees from (3.1.4) that

(A*(x + cy), z) = (X + ¢y, Az)
= (x,Az) + (y, Az)
= (A*X,z) + c(A"y, z)
= (A*X + cA'y, z).

Thus, A*(x + cy) = A*x + cA*y and hence A* is a linear transformation on . Note
the use of the fact that if (u, z) = (v, z) for every z € J(, thenu = v.

(b) For ally € H, the Cauchy-Schwarz inequality and the definition of the operator
norm ensure that

A'y
A* — _,A*
131 = (g A°Y)
< sup [(x,A%y)
[IxllI=1

= sup [(Ax,y)|

[Ix[l=1

< [yl sup [|Ax]
Ixll=1

= [yllAl-

This shows that |A*| < ||A| and hence A* is bounded.

(c) From (3.1.4) and the previous parts of this proposition, it follows that A** = (A*)* is
the unique bounded linear operator on # such that (A**x,y) = (x,A*y) for all x,y.
However, A also satisfies this property, so A** = A.

(d) The proof of (b) shows that ||[A*|| < |lA||- Apply this to A* in place of A and use (c) to
conclude that ||A|| = |A**|| = |(A*)*|| < |A*|- Therefore, |JA|| = |A*|.

(e) Note that

lAI* = sup |Ax|?
Ixl=1

= sup (Ax, AX)
IxlI=1

= sup (A*Ax,Xx)

x[=1
< sup ||A*AX|| (by Cauchy-Schwarz)
xl=1
= |A*A|
< lATiAl (by Proposition 2.1.12)
= |lAJ1? (from (d)).

Thus, the previous inequalities must be equalities, and hence |A*A| = || A|?. [ |
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Exercise 3.6.5 establishes the following properties of the adjoint operation. In particular,
the adjoint operation is conjugate linear and reverses the order of operator multiplication.

Proposition 3.1.6. LetA,B € B(H)and A € C.
(a) o(A*) ={1 : 1 € o(A)}.

(b) (A + AB)* = A* + AB*.

(c) (AB)* = B*A*.

Another set of useful facts is how the kernel and range of an operator behave with
respect to orthogonal complements and adjoints.

Proposition 3.1.7. Let A € B(H).

(a) kerA = (ran A*)*.

(b) kerA* = (ranA)*.

(c) (kerA)* = (ranA*)".

(@) (kerA*)! = (ranA)".
Proof (a) Suppose that x € ker A. Then Ax = 0, and so

0=(0,y) = (Ax,y) = (x,A*y) forally € 7.
Thus, x € (ran A*)*. Conversely, if x € (ran A*)*, then
0= (x,A"y) =(4x,y) forally € K.

Thus, Ax = 0 and hence x € ker A.

(b) Apply (a) to A* and recall that A** = A.

(c) Since ran A* is a vector space (but not necessarily a subspace since it may not be
topologically closed), Proposition 3.1.2 and (a) imply that

(ker A)* = ((ran A*)1)*+ = (ranA4*)".
(d) Apply (a) to A* and recall that A** = A. [ |

The previous material can be generalized to linear transformations between two Hilbert
spaces H and XK. If A € B(H,X), then there is a unique A* € B(X, K) such that

(AX,Y)x = (X, A*y)g, forallx € H andy € X.

We mostly use the adjoint of an A € B(¥) but, from time to time, we need the adjoint of
A € B(H,X).
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3.2 Special Case of Schur’s Test

To discuss when an infinite matrix A = [a;;]{5-, induces a bounded operator x — Ax on
€2, we need the following indirect way to determine if a sequence x = (x,,)5%, belongs to
£2. Since ¢? is indexed starting with 0, we index the infinite matrices below starting with
(0,0). These choices reflect the fact that later in the book we frequently identify a sequence
a = (a,)n-o With a power series Z;o:o a,z".

Proposition 3.2.1. For a sequence X = (x,)neq, the following are equivalent.
(a) x € ¢2
o0
(b) Z XpYn converges for everyy € 2.
n=0
Furthermore, if there is an M > 0 such that for eachy = (y,)°, € €2, the series Z:’:O XnYn
converges and
(s
| > Xuy| < Myl (322)
n=0

thenx € ¢% with |x| < M.

Proof (a) = (b) The Cauchy-Schwarz inequality ensures that the series Z:;O XY
converges absolutely:

o oo 1 1
2 allyal < (3 12al?)* (D Iyal?)’
n=0 n=0 n=0
Therefore, Z:’:O X,y converges.
(b)= (a) For fixed x = (x,)%, and N > 1, define the linear functional Ty : ¢#* — C by
N
Tn() = Y Xpyn fory= )i, € €%
n=0

Theorem 3.1.3 shows that Ty, € B(¢2,C) and

N 1
1Tl = (3 Feal?)? (323)
n=0
The assumption in (b) says that limy_,, Ty (y) exists for each y € #2. Consequently,
the principle of uniform boundedness (Theorem 2.2.3) implies that

L = sup | Ty| < oo.
0

=z

Then (3.2.3) yields

N
D lxa? < I forallN > 0.
n=0
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Let N — oo and conclude that (3.2.2) holds and x € ¢2.
For the second part of the proposition, observe that (3.2.2) implies that || Ty|| < M for
all N > 0. Therefore,

N 1
x| = lim x,?)° = lim ||Ty]| < M
el = Jim (35 eaf?)" = Jim 1 7il <
which completes the proof. [ |

The main result of this section concerns the case where the infinite matrix A = [q; J]l Y=o
is selfadjoint, that is,

aij:a_ﬁ foralli, j >0

Proposition 3.2.4. Let A = [a;;]75=, be selfadjoint. If there is an M > 0 such that

me M foralli> (3.2.5)

then A defines a bounded operator x — Ax on ¢* and |A| < M.

Proof Letx € #2. For each i > 0, (3.2.5) ensures that the number

0
7= @iy
j=0

is well defined. For each w = (w,,)%2, € ¢2,

[so] (8o} (e8]
D lzw] = ‘ >, aijxjwi|
i=0 i=0 j=0
[s9)
< Q) layxuwyl

ij=0
) 1 L
=2 <|aij|2|xj|)(|aij|2|wi|)
ij=0
: 1
(Z |al}||xj )2( z |alj||wl )Z~ (3.2.6)
i,j=0 i,j=0

The selfadjointness of A and (3.2.5) imply
>3 laylwit = Y, ( D Jagjlwil? < MZ Jwil?
i=0 j=0 i=0 j=0

and

[SoIENe ] o o0 o
2 3 layll = 3 (D5 a2 < MY g2
i j j i=0 Jj=0

i=0 j=0 Jj=0
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Inserting the two estimates above into (3.2.6) yields

© o 1 0 1
> lzwl < (MY 1P)* (MY lwil?)?
i=0 j=0 i=0

= Mijx]|wi.

Proposition 3.2.1 implies that z = Ax € ¢ and ||Ax|| < M|x| for all x € ¢2. Thus, A
is a bounded operator on €2 and ||A|| < M. |

Example 3.2.7. Consider

01 0 0 O
1 01 0 O
01 0 1 0
T = ,
00 1 0 1

which is an example of a Toeplitz matrix (Chapter 16). Apply Proposition 3.2.4 with M = 2
to conclude that T defines a bounded operator on #2 and || T|| < 2. One can see that || T|| = 2
as follows. Let

1
—(1,1,...,1,0,0,0,...),
n

\/_

where there are n ones in the vector above. Then x,, is a unit vector and

X, =

1
Tx, = —(1,2,2,2,...,2,1,1,0,0,0,...),
n
where there are n — 3 2s in the vector above. Moreover,
. . 1
lim ||Tx,| = lim ?\/3 +4(n—-3)=2
n—oo n-o 4/n

and hence ||T|| = 2.

Example 3.2.8. In Proposition 3.2.4, the hypothesis that A is selfadjoint is necessary. For
example,

e

has entries that are summable along each row, but it does not define a bounded operator
on ¢2 since Ae, = (1,1, 1,...) does not belong to £2.
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3.3 Schur’s Test

Proposition 3.2.4 applies only to selfadjoint matrices. The next theorem of Schur is for
arbitrary infinite matrices.

Theorem 3.3.1 (Schur) Let A = [a;j]{5=o- Suppose there are positive numbers o and 8
and sequences (p;)i2, and (q;){2, of positive numbers such that

Zlaiﬂpi\aqj for j>0 and Z|aulqj Bp; for i =0. (3.3.2)
i=0 j=0

Then A defines a bounded operator on €2 and ||A|| < v/ af.
Proof Letx = (x;)2, and w = (w;)2, belong to ¢? and write
) ) \/E 1 \/EJ 1
Z |aijxjwi| = Z <—|aij|2 |xj|> <—|aij|2 |wi|)~
i,j=0 i,j=0 \/EJ \/E

The Cauchy-Schwarz inequality implies

o) 00 p 1 <5 q 1
> lagwil < (X EaylgPR)* (Y Llayl lwil?)*.
ij=0 =0 q i.j=o Pi
The assumptions in (3.3.2) say that
(e8] q o0 [se]
2 orlayl il —Z(Z |al,|) ﬁzw
i,j=0 i=0 j=0
and
e s | J|2 [+3) 5
> ol P —Z(Zmalﬂ) a2|x,|
i,j=0
Thus,

o)
2. lagxjwil < Vaplx|wl.

i,j=0

This shows that
(o]
Vi = Z aijX;
Jj=0

is a well-defined convergent series and thus the product y = Ax is well defined for
each x € ¢2. Proposition 3.2.1 ensures that y € ¢2 and ||Ax|| < +/aB|x|. In other
words, A is a bounded operator on #2 and ||A|| < /af. [ |
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Example 3.3.3. Consider

1 0 0 0 0
' 1 0 0 o0
2 2

C=leijlfSz0 = § § § 0 0
1111
4 4 4

This is the matrix representation of the Cesaro operator (Chapter 6). To apply Theorem
3.3.1, we follow an argument from [69] and let

Pn=0qn= forn > 0.

1
Vn+1

Then for j > 0,

(s [oo)
Z CijPi = Z CijPi
i=0 i=j

[
Ips
-|"r—A
_
-
—

dx
T E

/N
N‘\S

5 Sl

+
[
[\S]

%
~
+
-

VA
N
N

B

For j =0,

[*) [o8)
Zciopi =1+ Zciopi <1+2=3q, (sinceqy=1).
i=0 i=1

Furthermore,

L

> 1 1
]Z:;]Cijqj Z;)H_l -

~
+
[

1l N
‘H I‘H
=

SIE

IN
‘H
N
?‘
—_
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Apply Schur’s test with & = 3 and § = 2 to deduce that C defines a bounded operator on
2 and |C|| < VaB=+3-2= \/g ~ 2.49. Proposition 6.2.9 asserts that ||C| = 2.

Example 3.3.4. The infinite Hilbert matrix

- 1 1 1 -

1 = = =

2 3 4
11 1 1

2 3 4 s
H=|1 1 1 1
3 4 5 6

1 1 1 1

4 5 6 7

is an example of a Hankel matrix (Chapter 17). Here H = [h;;]{5_,, where

1
hy = ————.
Y+ 41

Apply Schur’s test with p; = q; = and a = 8 = 5. To see how this works, let

1
Vi+1

1
f(x)_(x+j+1)\/x+1'

The integral test says that

(o]

2 f) = f)+ Z f@

i=0 i=1
< f(0 d
f()+/0 fx)dx
1 tan_l(\/j)
_j+1Jr2 Vi
tan "W

1
<
Vi
1 4
< +
Jj+1 j+1
5

In a similar manner,

el 1 1 5
i T < :
j:ll+]+ Vitl Vi+1

Deduce from Theorem 3.3.1 that | H|| < 5. In fact, |H| = 7 (Chapter 17).

The following is a particular version of Schur’s test that is somewhat easier to apply.
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Corollary 3.3.5. LetA = [q; j]z‘}zo. Suppose there are positive constants a and (3 such that

(o] [eo)
Z|aij|<aforj>0 and Z|aij|<ﬁ for i>0.
i=0 j=0

Then A is a bounded operator on €2 and ||A|| < v ap.

Proof Apply Theorem 3.3.1 with q; = 1and p; = 1forall i, j. [ ]

(o5

Remark 3.3.6. A slight abuse of notation is standard. We identify a matrix A = [a;;]} S=0
with the linear operator it induces on £2 with respect to the standard basis. In this context,
the adjoint notation is suggestive: the conjugate transpose [a; 175, of the matrix A is the
matrix representation (with respect to the standard basis for ¢2) of the adjoint operator
A*. Thus, A* may refer to the adjoint of the operator A or to the conjugate transpose of the
matrix A without confusion.

3.4 Compactness and Contractions

A diagonal operator D, is compact if and only if its eigenvalues tend to zero (Theorem
2.5.1). Here is a useful compactness result for certain types of infinite matrices. This is
used in Proposition 18.1.3 to study compact composition operators.

Theorem 3.4.1. LetA = [aij]fj}zo. If

o0
M= Z |aij| < oo,
i,j=0

then A is a compact operator on £2.

Proof Corollary 3.3.5 ensures that A is bounded. Let € > 0 and pick N such that

N
D lagl>M—e.
i,j=0
Now define
Qoo Qo1 Gop Qo3 - Goy O 0 0 ]
Qp an Qi a3 agy O 0 0
Ay QA QA Ay = ay 0 0 0
Az Q33 Az azs - azy 0 0 0
: : : : i 0 0 0
Ay =

ano an1 anz ansz - ayy O 0 O
0 0 0 0 e 0 0 0 O

0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
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Since ran Ay C span{eg, e1,..., €y}, it follows that Ay has finite rank and is therefore
compact (Proposition 2.5.4). Corollary 3.3.5 says that A — Ay is a bounded operator
on £2. Moreover,

oo N
IA=Anl < D) layl = D) lajl <M —(M—¢) =c.
1,j=0 1,j=0
Thus, A is the norm limit of the finite-rank operators Ay and hence is compact
(Proposition 2.5.6). [ |

Definition 3.4.2. T € B(¥ ) is a contraction if | Tx| < |x|| for all x € F.

If T is nonzero, then cT is a contraction for |c| < ||T||~!. We have considered operators

on ¢2 given by infinite matrices A = [a; j]f,‘}zo, where Ax =y = (3;){2, satisfies

o0
V= z a;jx; fori> 0.
j=0

From time to time, starting with the next lemma, we consider operators on £2(Z) given by

infinite matrices A = [a;;]j=_o, Where Ax =y = (y; satisfies

00
==
(e8]
V= Z a;jx; forieZ.
j==eo
Lemma 3.4.3. Let A = [a;;]7 be such that for each fixed iy, jo € Z, the submatrix

i,j=—o0
Aligs jo) = [aijliziy,j»j, IS @ contraction on €% Then [a;;] is a contraction on ¢%(Z).

)
i,j=—c0

Proof The matrix A(ig, jo) is a contraction and hence A(iy, jo)ej, the jth column of
A(ip, jo), has norm at most 1. Observe that

Alio, jo)* = [@jiliziy,jzjo

(Remark 3.3.6) is also a contraction (Proposition 3.1.5) and thus [|A(iy, jo)*e;| < 1.
In other words,

o0
D layl? <1 foralli, j, € Z.
J=Jo
Let j, » —oo and deduce that

o0
> lalP <1 foriez (3.4.4)

j=—

Given x = (x;)32 € ¢%(2), (3.4.4) ensures that for each fixed i € Z,

j=—c0

oo [*) [oo)

1 1
> el < (X layP)? (Y P)* <kl < o

j==co JE j==co
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Hence,
o0
vi= 2 aij%
Jj==o0

is well defined and finite. If y = (3,,)52 _ o, then formally y = Ax. To finish the proof,
it suffices to show that y € ¢%(Z) and |ly|| < ||x]|.
For each iy, j, € Z, the assumption that A(iy, j) is a contraction implies that

o0 o0 2
2 S x| = 1AGo, jo)xI < I

i=ip Jj=jo

The inequality above holds uniformly with respect to iy and j,. Note that

(e8] (e8] o0 2
Z lyil* = 211_1}1100| Z aijxj‘

i=iy i=io J=Jo
[se] [s] 2
< liminf Z ) Z q; jxj( (Fatou’s lemma)
TR = j=o
< x>

Now let iy — —oo to get

o0
2
Yoy = 3, il < IxP

1=—00

which completes the proof. [ |

3.5 Notes

The idea of the adjoint of an operator goes back to F. Riesz [300] who used the term
Transponierte for what we now call the adjoint of a linear transformation on an IP space.
He also showed that an operator and its adjoint have the same norm. Adjoints of operators
on abstract Banach spaces were explored by Banach [32], Schauder [330], and Hildebrandt
[198].

In 1910, Hellinger and Toeplitz [191] explored the boundedness of matrix operators
on #2. Schur’s test for the boundedness of matrix operators appeared in his 1911 paper
[333]. See [94, 169] for modern treatments of Schur’s test. Other aspects of compactness
for operators on ¢ were studied by Hilbert [196] and Riesz [303].

With regards to the Hilbert matrix H from Example 3.3.4 (which will be explored further
in Chapter 17), Hilbert showed that ||H|| < 27 and Schur proved that ||[H|| = 7. There is a
generalization H; of the Hilbert matrix whose (i, j) entry is

1
m ford e R\{..., -3,-2, —1,0}.
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Results from [199, 204, 237, 333] show that

mwescmd  ifAd <
|Hall =

s

ifA>

NI—=N| -

3.6 Exercises

Exercise 3.6.1. If A, B € B(¥) and (Ax,y) = (Bx,y) for all X,y € J, prove that A = B.

Exercise 3.6.2. Prove thatif A, B € B(J() and the matrix representations of A and B with
respect to an orthonormal basis (u,,)5>; are the same, then A = B.

Exercise 3.6.3. Let x,y belong to a Hilbert space J.
(a) Prove that [x ® yl = [Ix][lyll-
(b) Provethat x®y)* =y ®x.

Exercise 3.6.4. Let (u,);2, be an orthonormal basis for a Hilbert space . For eachx,y €
H,write down the matrix representation of x®y with respect to (u,,)5r; in terms of (x, u,,)
and <Ya un)-

Exercise 3.6.5. For A,B € B(}) and A € C, prove the following.

(@) o(A*) ={1: 1 € 5(A)}.

(b) (A + AB)* = A* + AB*.

(c) (AB)* = B*A*.
Exercise 3.6.6. Let Y be a nonempty subset of a Hilbert space J. Prove the following.
(@ {0}t = 7.

(b) H+ ={o}.

(c) Y+ isasubspace of .

@ FH*=Vy.

(e) Y has dense linear span in J¢ if and only if ¥+ = {0}.

Exercise 3.6.7. If Y and Z are nonempty subsets of a Hilbert space , prove thatif ¥ C 2,
then 2+ C Y+

Exercise 3.6.8. Let T € B(J() and suppose there exist m,M > 0 such that m|x|?> <
(T*Tx,x) < M|x|? and m|x|> < (TT*x,x) < M|x|? for all x € J. Prove that T is
invertible.
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Exercise 3.6.9. The next two problems give an alternate criterion for compactness of an
operator. Use the following steps to prove that if A € B(J() is compact, then A has the
following property: if x,, — 0 weakly, then Ax,, — 0 in norm. This latter property is called
complete continuity.

(a) If A is compact and x,, — 0 weakly, prove that there is a subsequence (x,, )z, and a
y € J( such that |Ax,, —y| — 0.

(b) Prove that Ax,, — 0 weakly and hencey = 0.
(c) Prove that |Ax,| — 0.
Remark: See Exercise 1.10.52 for a review of weak convergence in a Hilbert space.

Exercise 3.6.10. This is a continuation of Exercise 3.6.9. Use the following steps to prove
that if A € B(¥) is completely continuous, then A is compact.

(a) Prove the following theorem of Banach [94]: If (x,,)5>; is a bounded sequence in
a Hilbert space J{ then there is an x € J and a subsequence (X, );2, such that
X,, — X weakly.

(b) Prove that A is compact.

Remark: Banach’s theorem mentioned in (a) says that the closed unit ball {x € H : |x|| <

1} is weakly sequentially compact.

Exercise 3.6.11. Follow these steps to show that if A € B(J() is compact, then so is A*.

(a) If (x,)3%, is a bounded sequence, prove that (AA*x, )5, has a convergence subse-
quence (AA*X,, )2 ;.

(b) Prove that [|A*x,, —A*X,,[? < |AA*X,, — AA*X,, | - sup X, — X, -

3

(c) Prove that A* is compact.
Exercise 3.6.12. For A € B(¥), prove that A is compact if and only if A*A is compact.
Exercise 3.6.13. Let A € B(H).

(a) Prove that A is an isometry if and only if A*A = I.

(b) Isthe adjoint of an isometry necessarily an isometry?

Exercise 3.6.14. For a sequence (b,)5, of complex numbers, consider the terraced
matrix

- O O © O

If b, = (n+ 1)73, show that T is a compact operator on £2.
Remark: See [289] for more on this.
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Exercise 3.6.15. The following matrix is an example of a Toeplitz matrix (see Chapter
16).

(a) If|a| < 1and |B| < 1, prove that

1 a o & o

B 1 a o &

B2 B 1 a o
BB B 1«
BB 1

gt B

defines a bounded operator on £2.
(b) Obtain an upper bound for its norm.
Exercise 3.6.16. Let T = [t;;]%_, € B(¢?).

(a) If T is an upper triangular matrix, prove that every diagonal entry ¢; is an eigenvalue
of T.

(b) Isthis still true if T is lower triangular?

Exercise 3.6.17. Let H be the Hilbert matrix from Example 3.3.4. Use the following steps
from [237] to show that ker H = {0}.

(a) Suppose (g,)%, € ¢2. Prove that g(z) = Z:lo g,z" defines an analytic function on
D. These types of analytic functions are discussed in greater detail in Chapter 5.

1
(b) Prove that if (g,,)pe belongs to ker H, then / lg_(? dt =0forallz € D.
0

o
(c) IfG(z2) = Z ng—_l’lz"“, prove that G is continuous on [0, 1].
n=0

1 1
(d) Use (b) to prove that/ gHt"dt = G(1) — nf GHOt"1dt =0 foralln > 0.
0 0
(e) Use the Weierstrass approximation theorem and (d) to prove that (g, )n, is the zero
sequence.

Exercise 3.6.18. This is a continuation of Exercise 3.6.17. Prove that H is not surjective
as follows. Prove that if b = (b,)3, € ¢? and Hb = e, then Hu = 0, where u =
(O, bO, bl, bz,.'.).

Exercise 3.6.19. Prove that the exponential Hilbert matrix E = [e;;]—, defined by e;;
2~-(+j+1) isbounded on ¢2 and ||E| = 5
Remark: See [169] for more on this.
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Exercise 3.6.20. If V = [y; j];>3=0 is defined by

1 .
vjj = —— fori,j >0,

1+ J+ >
prove that V is bounded on £2.

Exercise 3.6.21. For asequence of complex numbers (¢t )5, consider the corresponding
weighted shift operator on ¢2, defined by the matrix

0 0 0O O
@ 0 0 0
W=|0 a 0 0
0 0 a O
(a) Prove that We,, = a,e,,; foralln > 0.
(b) Prove that W is abounded operator on £2 ifand only if («,,)3> is a bounded sequence.
Furthermore, prove that |W| = sup |a;,|.
0

nz

Remark: This discussion of weighted shift operators continues in Exercises 3.6.22 and
3.6.23. See [342] for more on weighted shift operators and connections to complex function
theory.

Exercise 3.6.22. Consider the weighted shift from Exercise 3.6.21.
(a) For & € T, prove that W is unitarily equivalent to EW.
(b) What does this say about a(W)?

Remark: This discussion continues in Exercise 8.10.38.

Exercise 3.6.23. If W is a weighted shift operator, prove that the self commutator WW * —
W*W is a diagonal operator.

Exercise 3.6.24. Let

(a) Prove that W is a compact operator on 2.

(b) Prove that o(W) = {0}.
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Exercise 3.6.25. Let
0O 0 O O
0O 0 1 0
and Z:;O |a,| < 0. Prove that

a, Qg 0 0

as a a1 Qo

is bounded on ¢2 and AS = SA.

Remark: The matrix S from this exercise and the matrix W from Exercise 3.6.24 have the
following curious properties which distinguish them from finite matrices. Both S and W
are lower triangular with zeros along the main diagonal. However, o(S) = D~ (Proposition
5.1.4) and o(W) = {0}.

Exercise 3.6.26. Let

v O O O O
e O O O o=
e O O = O
O - = O O
== -o O O

(a) Prove that A defines a bounded operator on £2.
(b) Compute |A]-
(c) Prove that g,(A) ={1+2z : |z| <1}

Exercise 3.6.27. Suppose K(x,y) > 0 is measurable on R? and that there are measurable
functions p(x), q(x) > 0 and constants «, 8 > 0 such that

/ K(x.y)q0)dy < ap(x) and f K(x,y)p(x) dx < Bq().
Prove that
(TF)x) = f Ko )fG)dy

is bounded on I?(R) and || T|| < /B
Remark: This is the integral version of Schur’s test.
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X
Exercise 3.6.28. Prove that the Volterra operator (V f)(x) = f f(t)dt is bounded on
0

I?[0,1] and ||V < 1.
Remark: See Chapter 7 for more about the Volterra operator. In particular, ||V = 2,
Ve

Exercise 3.6.29. Prove that the operator A : I?(0, 0c0) — I*(0, 00) defined by

i)
AfNHKX) = A mdy

is bounded.
Remark: This operator appears in Exercise 17.10.22 in connection with Hankel operators.

(e8]
Exercise 3.6.30. Suppose b = (b,)%_, and 2 |b,| < oo. Define the convolution

n=-—oo
operator Xy, : €%(Z) — ¢%(Z) by
Xpa = ( Z ambn_m)n_ for a=(a,)2 -
m=—oo =-c

(a) Prove that X; is bounded.
(b) Find the matrix representation of X} with respect to the basis (e, )5 _, for £2(Z).

Exercise 3.6.31. An important class of operators is the Hilbert-Schmidt operators. A
closely related class of operators, the trace-class operators, is covered in Exercise 14.11.30.

(a) If (u,)p; is an orthonormal basis for # and A € B(H), prove that the (possibly
infinite) quantity Z;o:l ||Au,,||? is independent of the choice of orthonormal basis

(Wp)pZs-

(b) A € B(¥) is a Hilbert-Schmidt operator if

00 1
Ml == (D] lAug|?)?
n=1

is finite for some, and hence all, orthonormal bases for . Prove that if [q; j]‘i’f}:l is
the matrix representation of A with respect to an orthonormal basis (u,,)5%,, then A
is Hilbert-Schmidt if and only if

o
Z |aij|2 < 0.
L,j=1
In this case, the above equals ||A||%{S.

(c) Prove that |A| < ||Allgs-

(d) Prove that every Hilbert-Schmidt operator is compact.
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Exercise 3.6.32. Suppose A, T € B(H) and T is Hilbert-Schmidt. Prove the following.
@ ITllas = IT*|as-
®) IAT s < IANIT | gs-
(© ITAlgs < ITlaslAll-
(d) The Hilbert-Schmidt operators form a two-sided ideal in B(¥().
Exercise 3.6.33. A Jacobi matrix is an infinite matrix of the form

a by 0 0 0

¢ @ b 0 0
J=|0 ¢ a by, 0 -,

0 0 ¢ az bs

in which a,,, b,,c, € C. Prove that J is a compact operator on ¢ if and only if a, — 0,
b, — 0,and ¢, — 0.

Exercise 3.6.34. Extend Exercise 3.6.33 to infinite matrices A = [a;;]{5-, such that a;; =
0if i — j| > r.

Exercise 3.6.35. Suppose that

O N

and D=

95

Il
Lo o R o
Lo R oo
R o oo
Lo O o o
o o
o O sIm

Prove that A = SD is compact and o(A) = {0}.

Exercise 3.6.36. Let (B,); be a sequence of orthogonal projections in B(H) such that
Bx — xforeachx € #(.If A € B(J() and A,, = B,AE, is a contraction for each n, prove
that A is a contraction.

Exercise 3.6.37. Prove that if A € B(¥), there is a sequence (4,)5; in B(K), each of
finite rank, such that A,x — Ax for each x € ¥ . In other words, A,, — A in the strong
operator topology (Exercise 4.5.23).

Exercise 3.6.38. For a sequence (a, ), of complex numbers,

Qo | 1 | Gz | Q3
aQ 4 | a | a3
A=]| a, a, a,| as

a; az az a3

is an L-shaped matrix. Notice that the (m, n) entry of A is amaxim,n}-
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1
(a) Prove that if A is a bounded operator on #2, then a,, = O(n™2).

(b) Let asn = 27" and g; = 0 otherwise. Show that A is bounded on £2. Conclude that

1
the condition O(n™ 2) is best possible.

Remark: These matrices appear in the study of the Cesaro operator (Chapter 6). See [61, 62]
for more on L-shaped matrices.

Exercise 3.6.39. Let (a,)5, satisfy Z;ozo la,| < oo and let

Prove that A is a bounded operator on #2.

Exercise 3.6.40. Suppose that A = [a;;];jez has only a finite number of nonzero
diagonals. By this we mean there are m, n € Z such that

a;j=0 fori—j>nori—j<-m

(a) Prove thatA is a bounded operator on ¢2(Z) if and only if {a;; : i, j € Z}is abounded
set.

(b) Prove that
n n
lal< >, ( sup |ai,i—k|)= Y ldelieos
k=—m \i=max{0,k} k=—m

where d;, represents the kth diagonal of A and |dy|| is the supremum norm of a
sequence as defined in Example 1.8.2.

Remark: These matrices are often called banded matrices

Exercise 3.6.41. This exercise completes the proof of Theorem 2.6.7 (the spectral theorem
for compact selfadjoint operators) in the case where ker A # {0}. Suppose A is a compact,
selfadjoint operator on an infinite-dimensional separable Hilbert space F .

(a) Prove that (; = ker A and J¢, = (ker A)* are invariant subspaces for A.
(b) Prove that A, = A|g;, € B(J{(;) is selfadjoint and injective.

(c) Use Theorem 2.6.7 to prove that if dim #, = oo, there is a sequence (4,)5%,; of
nonzero real numbers with 1,, — 0 and an orthonormal basis (x,)5%, for #(, such
that A, = Z:o:l (X, ® X,,).

(d) Prove that there is an orthonormal basis (z,, )52, for # and a sequence (8, )p=; of real
numbers with 3, — 0 such that A = 2:10:1 Bn(z, ® z,).
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3.7 Hints for the Exercises

Hint for Ex. 3.6.12. Consult Exercises 3.6.9 and 3.6.10.

Hint for Ex. 3.6.13. For part (a), observe that A is an isometry if and only if (A*Ax, x) =
x,X) for all x € #(. Now consult Exercise 2.8.29.

Hint for Ex. 3.6.17: For (a), use term-by-term integration.

Hint for Ex. 3.6.19: If x, is the first column of E, prove that E = 2x5 ® X,. Now use
Exercise 3.6.3.

Hint for Ex. 3.6.24: Use Theorem 2.6.9. For (a), consult Exercise 3.6.12.

Hint for Ex. 3.6.31: For (a), note that Au, = Z,o;l(Aun, uy)u, and use Parseval’s
theorem. For (d), consider the operators

N

ANX = Z(uj,AuJ»}(uj,x}uj.
j=1

Hint for Ex. 3.6.33: Let D, = diag(a,, a,, ... ). Similarly define Dy, and D,.. Consider D, +
SD, + Dy S*, where

95)

Il
e =
S =]
S I ==
c o o o o

For the other direction, consider (Je,, e,,), (Je,, €,,1), (Je,,e,_;), and Exercise 3.6.9.
Hint for Ex. 3.6.37: Consider the matrix representation of A with respect to an orthonor-
mal basis (u,,)5%, for F.

Hint for Ex. 3.6.38: For (a), use the fact that each column of A belongs to #2.

Hint for Ex. 3.6.41: For (d), suppose K = dimker A and choose an orthonormal basis
(w,)K_, for ker A.






Two Multiplication Operators

Key Concepts: Multiplication operator, invariant subspace, Fourier series, Hardy space.

Outline: This chapter concerns the multiplication operators M, : I?[0,1] — I?[0,1],
defined by (M, f)(x) = xf(x), and M : I*(T) — I*(T), defined by (M¢g)(¢) = £g(£). We
discuss their spectra and invariant subspaces. This requires the introduction of Fourier
series and the Hardy space H>.

4.1 M, onI?*[0,1]

From Chapter 1, recall the Lebesgue space I*[0, 1] which is a Hilbert space with inner
product
1

(f.g) = f FOORG) dx
0

and corresponding norm || f|| = v/{f, f). In this section, we study the norm, spectrum, and
invariant subspaces of the operator M, : I?[0,1] — I?[0, 1] defined by

(M f)(x) = xf(x). (4.1.1)
This is a particular example of a multiplication operator (see Chapter 8).
Proposition 4.1.2. The operator M,, is bounded on I*[0,1] and |M,| = 1.

Proof For g € I*[0, 1], the estimate
1 1
gl = [ ixgeopx < ( sup 1) [ o = ep
0 x€e[0,1] 0
shows that

IMyll = sup [[Mygl < 1.
lgl=1
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1
Forn > 1,let g,(x) = 2n +1)2x". Then ||g,|| = 1 and

1
1

M 2 _ 2 1 n+12 —

[Mygnl* = (2n + )/OIX |“dx T3
Thus,

1 =sup [Mygp| < sup [Mg| = [My] <1
nz1 lgl=1

and hence |M,| = 1. [ |

The following result determines the spectrum and point spectrum of M. As is standard
in Lebesgue theory, we indulge in a slight abuse of language and identify functions that
are equal almost everywhere (a.e.).

Proposition 4.1.3.
(@) op(My) =@
(b) o(My) = [0,1].

Proof (a) Suppose 1 € C and f € I?[0, 1] satisfies (M, — AI)f = O a.e. Then (x—2)f =0
a.e. and hence f = 0 a.e. Thus, 0,(M,) = @
(b) For a fixed 4 ¢ [0, 1], the quantity

c; = sup ‘
osx1 ! X — 4

is finite. For any f € I?[0,1],

1 1
[ =2t sorax < [ 1seorax = i,
0 0
and hence the operator

(TLf)(x) = —f (x)

is bounded on I*[0, 1]. Moreover,
T,(M,—ADf=f and (M,—ADTyf =f forall f € I?[0,1].

Therefore, M, — AI is invertible and hence o(M,) C [0, 1]. For the reverse contain-
ment, suppose A € [0, 1]. If M, — AI is invertible, then, given any g € I?[0,1], there
is an f € I?[0,1] such that (M, — AI)f = g. Apply this to the constant function
g = 1 and obtain f(x) = (x — A)~, which is not in I?[0,1] since 1 € [0,1]. This
contradiction shows that [0, 1] C o(M,) and hence o(M,) = [0, 1]. [ |

Proposition 1.3.6 says that C[0, 1] is dense in I?[0, 1]. The following refinement plays
an important role in this chapter.
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Proposition 4.1.4. If f € I?[0,1], there is a sequence (p,), of polynomials such that
|pn — fll = 0. Consequently, if g € I*[0,1] and

1

/ g(x)p(x)dx = 0

(0]

for all polynomials p, then g = 0 a.e.

Proof Let f € I*[0,1] and ¢ > 0. Proposition 1.3.6 furnishes a function g € C[0, 1] such
that ||f — g|| < /2. The Weierstrass approximation theorem provides a polynomial p
such that ||g — p|le < €/2. Therefore,

€ €
If =pl<If =gl +lg=pI<If-gl+lg =Pl <5 +5=¢
The second statement of the theorem follows from Corollary 1.7.4. [ |

The next result from measure theory [319, Thm. 3.12] is important for what follows.

Proposition 4.1.5. If f, — f in I?[0,1], then there is a subsequence (f,, )f>, such that
Jo = fae

For a Lebesgue-measurable set E C [0, 1], consider
Zp={f €1?[0,1] : flp =0ae.}
We use this definition and the previous proposition to prove the following.

Proposition 4.1.6. Zp is an M,-invariant subspace for each measurable subset E C [0, 1].

Proof First, observe that Zp is a vector subspace of I?[0,1] since it is closed under
addition and scalar multiplication. Second, Proposition 4.1.5 implies that if ()52,
is a sequence in Zj that converges to f in the norm of I?[0,1], then f|z = 0 a.e.
Consequently, Z is norm closed and is therefore a subspace of I?[0,1]. Finally, if
f € Zg, then M, f has the same zeros as f almost everywhere, and hence M,,Zr C
ZE. [ ]

Are the invariant subspaces Zp, described in the previous proposition, all of the
invariant subspaces for M, ? The answer is yes.

Theorem 4.1.7 (Wiener [376]). Let 2 C I?[0,1] be an invariant subspace for M,.. Then
there is a measurable set E C [0,1] such that Z = 2.

Proof We follow a proof from Helson [192]. Let 2 be an invariant subspace for M, and let
q be the orthogonal projection of the constant function 1 onto Z. This is the unique
q € Z such that 1 — q is orthogonal to Z; that is, (1 — q,h) = O forevery h € Z
(Proposition 1.7.3).
Since M%Z = x"Z C Z foralln > 0 and 1 — q is orthogonal to Z,

1

0=(pq,1—q)= f pq(1 —q)dx forall p € C[x].
0
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By Proposition 4.1.4, g(1 — q) = 0 a.e. and hence q = |g|? a.e. Therefore, q assumes
only the values 0 and 1, which implies that ¢ = y for some measurable F C [0, 1].
The claim is that Z = yzI?[0,1] and hence Z = Zj, where E = [0, 1]\F.
To prove this, first note that
\/{x"}(F : n >0} = ypI*0,1].

For the C inclusion, observe that yzI?[0, 1] is closed. Since x" yr € yrI?*[0,1] for all
n > 0, it follows that \/{x"xp : n > 0} C xrI?*[0,1]. For the D inclusion, pick any
xrf € xrI?[0,1] and use Proposition 4.1.4 to find a sequence of polynomials p, such
that p,, — f in I?[0,1]. Then, ypp, — xrf in I*[0,1] and hence yzf € \/{x"xF :
n > 0}.

Since yr € Z and Z is M, -invariant,

\/{x")(F i n >0} = ypI?[0,1] C 2.

To show equality, suppose there is an f € Z such that f L yzI?[0,1]. In particular,

1
0=(f,)(Fp)=/ foxrdx forall p € C[x]
0

and hence, fyr = 0 (Proposition 4.1.4). Since 1 — yr = 1 — q is orthogonal to Z, it
follows that

1
0={(1—-yp.pf) = / (1= xp)pfdx forall p € C[x].
0

Proposition 4.1.4, implies that (1— )(F)f = Oa.e. Conjugation shows that (1—yg)f =0
a.e. In summary, both fyr and fyp. are zero and thus f = 0 a.e. Therefore, =
xrI?[0,1] (Corollary 1.7.4). |

A simpler, but more sophisticated, proof of Theorem 4.1.7 is in Chapter 8. Although

longer, the proof above is direct and uses only Lebesgue integration and Hilbert-space
geometry.

4.2 Fourier Analysis

Let m denote normalized Lebesgue measure on the unit circle T and consider the Lebesgue
space I*(T) of measurable f : T — C such that

ﬁmwm

is finite. When endowed with the inner product

m@=fﬁw1
T
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and corresponding norm ||f| = 4/{f, f), it turns out that I*(T) is a Hilbert space. Indeed,
Proposition 1.3.4 can be adapted to prove the completeness of I*(T).
If £ = ¢!, then (") _, is an orthonormal set in I*(T). To see this, compute

27
<§j,§k>=/ eijte—iktﬂzf
o 2

Since \/{¢" : n € Z} = I?(T) (Theorem 1.3.9), (§™)5 _, is an orthonormal basis for I*(T)
(Proposition 1.4.15). Thus, each f € I?*(T) is of the form

27 dt
eiU—k)fE =8 forall jke€Z

f= D (f.&men, (4.2.1)

n=-—00

in which the series above converges in I?(T) norm. Furthermore, Parseval’s theorem
(Theorem 1.4.9b) yields

o

IFI2 =D I(f6m2. (4.2.2)

n=-—o0o

The series in (4.2.1) is the Fourier series of f and the complex numbers

fn) = (f.6m) = / FEOE dm(E) forn ez,
T

are the Fourier coefficients of f. In general, norm convergence of a series of functions in
I2(T) does not imply pointwise convergence almost everywhere, only that some subse-
quence of the partial sums converges almost everywhere (Proposition 4.1.5). However,
a deep theorem of Carleson [76] says that the Fourier series of an f € I*(T) converges
pointwise almost everywhere to f.

Fourier series provide a natural orthogonal decomposition of I?(T). First write the
Fourier expansion of f € I*(T) as

0 -1
f=> fme+ > fnen
n=0 n=—oo
If
0 -1
g=, fm& and h= Y fnin,
n=0

n=-—oo
theng 1 h, f = g + h, and g belongs to
HX(T) :={f € IX(T) : f(n) =0forall n < 0}. (4.2.3)

Moreover,

|
-

>
I

FE = Fenmer e e

=—00 n=1
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and hence h € £H2(T). This says that
(T) = HA(T) @ §H2(T). (4.2.4)

In (4.2.4) the notation @ denotes the orthogonal direct sum, meaning that each f € I2(T)
can be written as f = g + h, where g € H%, h € £H2(T), and g L h. The space H%(T)
is the Hardy space and appears again in Chapter 5. We use the following definition and
proposition to make a connection between H?(T) and the sequence space £2.

Definition 4.2.5. Let J(, X be Hilbert spaces. Then T € B(J(, X) is unitary if T* = T~1.
For T € B(¥(,X), the statement T* = T~! means that T*T = I, and TT* = Ix.
Proposition 4.2.6. For T € B(J(,X), the following are equivalent.

(a) T is unitary.

(b) T is surjective and isometric.

Proof (2)= (b) If T is unitary, it is invertible and hence surjective. Since T is unitary, it
follows that T*Tx = x for all x € F. Therefore,

|3 = (T*Tx,X)gc = (Tx, Tx)gc = | Tx[|5

and hence T is an isometry.
(b) = (a) The polarization identity

1 ; . ; .
xy) = (x+yl? = Ix = ylI* - ilx — iyl + ilx + iy]*)

from Exercise 1.10.17, and the fact that |TX|x = |x|g for all x € H, shows
that (Tx, Ty)x = (X,¥)g for all x,y € H. The definition of the adjoint yields
(T*TX,y)9c = (X,¥)gc and hence T*T = I4 (Exercise 3.6.1). Since T is isometric,
it is injective. Since T is surjective, we conclude that T is bijective, and hence has an
inverse T~ € B(X, #) (Lemma 2.3.5). Thus, T* = T~L. [ ]

The following proposition permits the identification of £2(Z) and I*(T) in a natural
and explicit manner. Along the same lines, we can also identify £2 and H%(T). A proof is
requested in Exercise 4.5.11.

Proposition 4.2.7.

(a) The linear transformation

(an)}?lo=—co'_) Z angn

n=-—o0o

is a unitary operator from €2(Z) onto I*(T).
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(b) The linear transformation
[s<]
(@n)io = 2 ant"
n=0

is a unitary operator from €2 onto H*(T).
The following definition is used many times in this book.

Definition 4.2.8. A € B(X) is unitarily equivalent to B € B(X) if there is a unitary
operator U € B(¥(,X) such that A = U*BU,

Exercise 4.5.17 shows that unitarily equivalent operators have the same norm, eigen-
values, and spectrum.

4.3 M; on I*(T)

This section focuses on the multiplication operator My € B (I?(T)) defined by (M £8)(§) =
£g(&). Chapter 8, which concerns more general multiplication operators, builds upon the
material below. Observe that

Mgl = / (Eg(©)Pdm(E) = f g(©OPdm(E) forall g € I2(T)
T T

and so My is bounded on I*(T).
Proposition 4.3.1.

(a) Mg = ME
(b) M is unitary.

Proof (a) For f, g € I3(T),
0sf9) = [ @@ dm = [ FOFe(E) dm@) = (f M)
T T

Hence M zf = ME’ the operator of multiplication by E

(b) Observe that 55 = 1on T, and hence MgMg‘ = MgMg = ME{ = M; = I. Therefore,

M is unitary. [ |
An adaptation of the proof of Proposition 4.1.3 (see Exercise 4.5.15) yields the following.
Proposition 4.3.2.
(@) o(Mg) =T.

®) 0p(Me) = @.



100 | TWO MULTIPLICATION OPERATORS

The invariant subspaces for M are more complicated than those for M, on I?[0,1].
There are two types of subspaces 8 C I?(T) such that M8 C 8; those for which M¢S = §
and those for which M8 C 8. We address the first type with a theorem of Wiener [376].

Theorem 4.3.3 (Wiener). If 8§ C I*(T) is a subspace such that M8 = 8, then there is a
measurable set E C T such that § = {g € I*(T) : glp =0 a.e.}.

Proof Suppose M8 = 8. Since M;M; = Iand My = Mg (Proposition 4.3.1), it follows

that MES = 8. In other words, p(§, E)S C 8 for any polynomial p in £ and E The set

of such polynomials p(&, E) is dense in I?(T) (Weierstrass approximation theorem -
see Theorem 8.1.2). Consequently, an adaptation of the proof of Theorem 4.1.7 shows
that § has the desired form. [ |

Definition 4.3.4. For A € B(¥(), a subspace M of K such that AM C M and A*M C M
is a reducing subspace for A.

Theorem 4.3.3 characterizes the reducing subspaces of M. There are other invariant
subspaces for M that are not the zero-based ones described in Theorem 4.3.3.

Example 4.3.5. The subspace 8 = H(T), where H(T) is the Hardy space from (4.2.3),
satisfies My H*(T) ¢ H*(T).

Example 4.3.6. Let q be a Lebesgue-measurable unimodular function on T, that is, q is
measurable with |q| = 1a.e.on T. Note that g € I*(T). Then ||qf|| = || f|| forall f € H*(T),
and hence § = qH*(T) is a proper subspace of I?(T) such that M¢S ¢ .

The next result characterizes the nonreducing subspaces of M.

Theorem 4.3.7 (Helson [192]). IfS C I*(T) is a subspace such that M8 C 8, then there
is a Lebesgue-measurable unimodular function q on T such that 8 = qH?*(T).

Proof Since M8 is a proper subspace of 8, there is a unit vector g € § that is orthogonal
to M¢S. In particular, ¢ 1L M ?q for all n > 1. Write this orthogonality in integral form

0= (@M = [ la@FE dm®) forn>1
T

Take complex conjugates and obtain
[1a@rsam@ =0 orn e 210l
T

The equation above says that the Fourier coefficients of |q|? are all zero, except for
the zeroth one, and hence |q| is constant (see (4.2.1)). Furthermore, since q is a unit
vector, the constant is 1. Consequently, q is a unimodular function on T.

It suffices to show that § = gH?(T). Observe that (£"q)%_., is an orthonormal
sequence in I?(T) such that 7 = \/{{"q : n € Z} satisfies M5 = 7. Theorem 4.3.3
ensures that ¥ = {f € I*(T) : f|g = 0a.e.} for some measurable E C T. However,



NOTES | 101

q is unimodular and hence F = I?(T). Consequently, (") _, is an orthonormal
basis for I?(T). Also notice that

qH?*(T) = \/{énq :n>0}C8 and qEH(T) = V{q§” 1 n <0}
Moreover,
IX(T) = F = qH%(T) @ qEH(T).

Recall that q is orthogonal to M8 and thus orthogonal to §"§ for all n > 1. This
implies g&" is orthogonal to S for all n < —1. Thus,

(qH*(D)* = gEHA(T) € 8+,
and hence (see Exercise 3.6.7 and Proposition 3.1.2d)
8 =(8H* C (qH* (M) = qH*(T).
It follows that § = gH?(T). [ ]

Complex analysis permits a more detailed study of the subspaces gH?(T) (Chapter 5).
The key observation is that H?(T) can be identified with a space of analytic functions on
the open unit disk. Other aspects of multiplication operators, such as cyclic vectors and
commutants, are explored in Chapters 5 and 8.

4.4 Notes

From Theorem 1.3.9, the Fourier series of an f € I*(T) converges in norm, meaning that

i 3 Fos s -0

On the other hand, pointwise convergence,
N ~
f&)=1lim > fmén,
N-oo ne"N

is a tricky issue. If f is continuously differentiable on T, the Fourier series converges
uniformly to f [380, Ch. 2]. For continuous functions, this need not be the case. Indeed,
in 1873, de Bois-Reymond [117] exhibited a continuous function whose Fourier series
diverges at a point. A striking theorem of Kahane and Katznelson [209] says that given any
closed set E C T of Lebesgue measure zero, there is a continuous function whose Fourier
series diverges precisely on E. Even more dramatic is a result of Kolmogorov [219] which
produces an I (T) function whose Fourier series diverges everywhere. A thorough account
of this is Zygmund’s book [380]. On the positive side, a celebrated theorem of Carleson [76]
says that the Fourier series of an f € I?(T) converges to f almost everywhere.
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Hilbert considered bounded linear functionals on #2 [196]. F. Riesz [299] and Fréchet
[132] independently proved what is known as the Riesz representation theorem (Theorem
3.1.3): every bounded linear functional on I*[a, b] is of the form

b
fo f FOg() dx

for some unique g € I*[a, b]. Lowig [231] studied versions of this theorem for nonsepara-
ble Hilbert spaces and Riesz [306] studied versions for abstract Hilbert spaces.

There are other representation theorems that describe the dual spaces (the set of
bounded linear functionals) of certain Banach spaces. For example, Riesz [302] proved
that every bounded linear functional on C[0, 1] is of the form

foolde

for some function F of bounded variation on [0, 1]. One can reformulate this using the
more modern language of measure theory on [0, 1].

Wiener’s theorem (Theorems 4.1.7 and 4.3.3) was originally stated in terms of shifts
of the Fourier transform [376, Ch. 2]. The proof presented here is due to Srinivasan and
follows the presentation in Helson’s book [192].

Helson’s theorem (Theorem 4.3.7) generalizes to I*(u) spaces, where u is a finite
positive Borel measure on T. Write 4 = wdm + u,, where w € L}(T) and y, is singular
with respect to m. Suppose 8 is an M¢-invariant subspace of A(w).IfM ¢S = 8, then there
is a Borel set E C T such that § = ygpI*(u). If M8 ¢ 8, then there is a Borel set E C T
and a function q such that |q|?>w = 1 m-almost everywhere and 8§ = qH*(T) @ ygI*(u).
Exercise 4.5.4 requests a description of the M, -invariant subspaces of I?(1) when u is a
measure on [0, 1]. See [253] for a thorough exposition.

The commutant of My, the set of operators A € B(I?*[0, 1]) such that AM, = M,A, is
described in Corollary 8.3.3 (similarly for the commutant of My).

There is an interesting version of M,, € B(I?[0, 1]) on the Hilbert space W of absolutely
continuous functions on [0, 1] whose derivative belongs to I?[0, 1] (see Exercise 1.10.15).
In this case W is not only a Hilbert space-but also an algebra of continuous functions.
Furthermore, the M, -invariant subspaces of W are the ideals of W and are of the form
{f € W : f|g = 0}, where E is a closed subset of [0, 1] [326].

The multiplication operator M,, plays an important role in the study of Bishop operators
in Chapter 13.

4.5 Exercises

Exercise 4.5.1. For A € B(¥) and a subspace M of F, prove that AM C M if and only
it A* vt € Mt
Exercise 4.5.2. Let M; and M, be subspaces of a Hilbert space F.

(a) Prove that (M, + M)t = M{ N M5

(b) Prove that (M, N M)t = (M{ + M)~
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Exercise 4.5.3. Let M be a subspace of a Hilbert space # and let x € 7.

(a) Prove that

dist(x, M) = sup |(x,y)|.
yeM+
Iyl=1

(b) Prove that the supremum above is attained.

Exercise 4.5.4. Let u be a finite positive Borel measure on [0, 1]. Describe the invariant
subspaces of M, on I?(u).
Remark: See Chapter 8 for more on this.

Exercise 4.5.5. This exercise highlights a difference between the two multiplication
operators considered in this chapter.

(a) Prove that M, is unitarily equivalent to M2 on I2[0,1].
(b) Prove that M is not unitarily equivalent to M, g on IZ(T).

Exercise 4.5.6. This exercise highlights another difference between the two multiplica-
tion operators considered in this chapter.

(a) Prove that M2 in I?[0, 1] has the same invariant subspaces as M,.

(b) Find an Mg—invariant subspace of I*(T) that is not M-invariant.

Exercise 4.5.7. Suppose f € I?[0,1] and 1/f € I*[0,1]. Prove that
\/Mif 2 n>0)=12[0,1].

Exercise 4.5.8. For M,. on I*[—1,1], prove there is no f € I*[—1,1] such that \/{M", f :
n > 0} = I*[-1,1].

Exercise 4.5.9. Prove thatif A € B(¥) is an isometry, then ran A is closed.

Exercise 4.5.10. Let dA = rdr d6 be area measure on D~ and z = rei®.

(a) Prove that the invariant subspaces for M, f = zf on I?>(dA) are not all of the form
xgI?(dA) for some measurable set E C D™.

(b) Prove that a subspace 8 C I?(dA) is invariant for both M, and M5 if and only if
M = ygI?(dA) for some measurable set E C D™.

Remark: This topic is explored further in Chapter 8.

Exercise 4.5.11. Show that the linear transformation (a,)5-, — Z:;O a,&" is a unitary
operator from #2 onto H?(T).
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Exercise 4.5.12. The Fourier coefficients of an f € I}(T) are
~ —n
foi = [ 1@F am@) fornez.
T
Using the following steps, prove the Riemann-Lebesgue lemma: for f € LXT),
lim|n|_,oo f(l’l) =0.
(a) Prove the Riemann-Lebesgue lemma for f € I*(T).
(b) Prove that I?(T) is dense in L'(T).
(c) Use this to prove the Riemann-Lebesgue lemma for L}(T).

Exercise 4.5.13. Exercise 1.10.37 introduced the class Q of measurable functions f on R
such that
R

1
112 = lim = f |F(Odx < co.
R->o0 2R _R

0 ifa#pB,

a) If1 € R and e;(x) = ¢**, prove that {e,, eg) =
(a) (%) p (exsep) {1 ifa=p.

(b) If f = Ty cns, Prove that (£, e3,) = ¢ and IfI = )L, leal®
Remark: As one can see, this is a version of Fourier series for Q.
Exercise 4.5.14. Show that (H%(T))* = ]\m
Exercise 4.5.15. For M on I*(T), prove the following.

(@) o(Mg) =T.

(b) op(Ms) = @.

Exercise 4.5.16. For A € B(¥) and a subspace M C ¥, let P denote the orthogonal
projection of H onto M.

(a) Prove that M is an invariant subspace for A if and only if PAP = AP.

(b) Prove that M is a reducing subspace for A if and only if PA = AP.

Exercise 4.5.17. Suppose A € B(H) is unitarily equivalent to B € B(X). Prove the
following.

(@) Al = [IB]l.

(b) o(A) = o(B).

(©) gp(A) = g,(B).

() Ggp(A) = Gp(B).

Remark: Recall the parts of the spectrum from Definition 2.4.5.
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) -1 1 2

Figure 4.5.1 The “bump” function .

Exercise 4.5.18. Show that M; on I*(T) is unitarily equivalent to ME‘

Exercise 4.5.19. Let T be a bounded operator on a separable Hilbert space H.

(a) Prove that T is unitary if and only if there are orthonormal bases (x,,)pe; and (¥,,)ne;
o0

for A suchthat T = ) x, ®y,.

n=1

(b) For the unitary operator T = M; on I*(T), compute the decomposition of T as
described in (a).

(c) For any orthonormal basis (x,)5; for H and any sequence ()52, of unimodular

o]

constants, prove that T = Z &,.(x,, ® x,,) is unitary.

n=1
(d) Can every unitary T € B(H) be written as in (c)?

Exercise 4.5.20. The discussion of the invariant subspaces for M, on I?[0, 1] examined
orthogonal projections of the form f — ygf. This exercise develops a version of this
orthogonal projection that involves C* functions.

(a) Lete > 0and let 3 be a positive, even, C*® function on R whose support lies in [—¢, €]

and which satisfies
« /e
/ P(x)dx = >

Thus, ¥ is a C* bump function centered at the origin (see Figure 4.5.1). Define

6(x) = f W(t)dt

and prove that 6(x) + 6(—x) = g forall x € R.

(b) Let s(x) = sin(6(x)) and c(x) = cos(6(x)), where 6 is the function introduced in (a).
Note that s and ¢ depend on . Prove that s and ¢ are C* functions such that

s(=x) = c(x),
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1.0 10
08 \Q
h 06

04

0.2

-1.0 -0.5 05 1.0
s(x) c(x)

Figure 4.5.2 The functions s(x) and c(x).

$2(x) +s*(=x) =1, and
A(x) +c(-x) =1,
for all x € R (Figure 4.5.2).

(c) Letw beareal-valued C* function such that w?(x)+w?(—x) = 1forall x € R. Define
the operators P and Q on I*(R) by

(P)x) = @?(x)f (x) + w(x)ew(=x) (=)

and

QNG = (X)) f(x) — w(x)(—x)f(—x).

Construct P and Q using the function w = s introduced in (b) and prove that P and
Q are orthogonal projections on I*(R).

(d) Prove that P and Q are smooth versions of the orthogonal projection f = x(¢,c0)f> in
the following sense.

(i) ifess-supf C (—oo0,—¢], then Pf = Qf = 0.
(i) ifess-supf C [e, ), then Pf = Qf = f.

(e) Construct P and Q using the function w = c introduced in (b) and prove that both
P and Q are smooth versions of the orthogonal projection f = x_,0)f, in the
following sense.

(i) ifess-supf C (—oo0,—¢], then Pf = Qf = f.
(i) ifess-supf C [e, ), then Pf = Qf = 0.

Exercise 4.5.21. This is a complex version of Exercise 4.5.20.
(a) Letwbe a C* complex-valued function such that

[w(X)]> + |o(—x)]? =1 forx € R.
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Define the operators P and Q on I*(R) by

(P)(x) = w(x)(@(x)f(x) + w(=x) f(—x))
and

Q) = w(x)(@(x)f(x) = w(—x)f(=x))

Prove that P and Q are orthogonal projections on I*(R).

(b) Let [a,b] C R. Apply the construction in the previous problem to give a smooth

version of the projection f +— x4 p1f-
Exercise 4.5.22. Prove thatif A,, - A in the norm of B(¥(), then A}, -» A* in norm.

Exercise 4.5.23. A sequence (A,)p; in B(H) converges to A € B(J) in the strong
operator topology (SOT) if ||A,x — Ax|| — 0 for each x € 7.

(a) Prove thatif A, — 0in norm, then A,, — 0 (SOT).

(b) Define A on ¢2 by

o o o o
R I
N -l =
O R oo

Prove that A" — 0 (SOT) but A*"-40 (SOT).
(c) IfA, - 0(SOT), does A, — 0 in norm?

Remark: One can endow B(J() with a topology that makes it a topological vector space
such that a sequence (A,),~; converges to A with respect to this topology precisely when
lA,x — Ax|| — 0 for all x € F. See [94] for details.

Exercise 4.5.24. A sequence (A4,)5; in B(H) converges to A € B(H) in the weak
operator topology (WOT) if (4,,x,y) — (Ax,y) for each x,y € (.

(a) Prove thatif A,, = 0in norm, then A4,, - 0 (WOT).
(b) Prove thatif A, — 0 (WOT), then A}, — 0 (WOT).
(c) LetA, =M g| H2(1)- Prove that A, — 0 (WOT), but not (SOT) or in norm.

Remark: One can endow B(H) with a topology that makes it a topological vector space
such that a sequence (A4,);~; converges to A with respect to this topology precisely when
(A x,y) — (Ax,y) for every X,y € H. See [94] for details.
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4.6 Hints for the Exercises

Hint for Ex. 4.5.3: Consider the orthogonal projection onto M.

Hint for Ex. 4.5.4: Examine the proof of Theorem 4.1.7.

Hint for Ex. 4.5.5: For (b), prove that if U is unitary and UM = MU, then U§" =
£2°(U1) for all n € Z. Now consider the subspace M = \/{£%* : k € Z}.

Hint for Ex. 4.5.8: Given f € I*[-1,1], find a g € I?[-1,1] such that (M, f,g) = 0 for
alln > 0.

Hint for Ex. 4.5.10: For (a), consider M = \/{z" : n > 0}.

Hint for Ex. 4.5.18: Consider the operator U on I*(T) defined by (Uf)(§) = f (E).

Hint for Ex. 4.5.20: For (a), use the fact that

f¢(r)dt+/ ¢(t)dt=7—2r.

For (d), note that s(x) = 0 for x < —gand s(x) = 1for x > «.

Hint for Ex. 4.5.21: For (b), choose ¢ > 0 and ¢’ > 0 such that e + ¢’ < b — a. Construct
B according to the recipe in (d) with s = s, (either with + or with —) and translate it by
a. Similarly, construct B, according to the recipe in (e) with ¢ = ¢/ (again either with + or
with —) and translate it by b. Then consider the orthogonal projection P = BB = BF,.
Hint for Ex. 4.5.24: For (c), see Exercise 4.5.12.



The Unilateral Shift

Key Concepts: Shift operator (norm, adjoint, spectral properties, invariant subspaces, commutant,

cyclic vectors), Hardy space, inner function, multipliers of the Hardy space.

Outline: The unilateral shift operator S on ¢2, defined by Se,, = e,,; for n > 0, is of
supreme importance in operator theory. Despite its simple appearance in the setting of
£2, this operator is best understood with complex analysis. For example, the lattice of S-
invariant subspaces is described by the foundational work of Riesz, Smirnov, and Beurling
on inner functions.

5.1 The Shift on ¢2

Definition 5.1.1. The shift operator is the linear transformation S : #> — ¢2 defined by
S(ao, as, a2,...) = (0, agp, aq, az,...).

To distinguish the shift operator S from the bilateral shift M on I*(T) discussed in
Chapter 4, some authors use the term unilateral shift for emphasis. The unilateral shift is
an example of a weighted shift on £2, as seen in Exercise 3.6.21.

Observe that S is an isometry on €2 since ||Sa|| = ||a|| for all a € ¢2. In particular,

ISl = sup [|Sa] =1 (5.1.2)
lal=1

and thus S is a bounded operator on ¢? with norm one. With respect to the standard
orthonormal basis (e,,)$, for 2 from (1.2.8), it follows from Exercise 5.9.1 that S has
the matrix representation

(5.1.3)

o o R o
O Rk oo
= o oo
o o o o

By this we mean that the (i, j) entry of the matrix above is (Se;, e;).
Theorem 2.4.9a says that o(S) C D~. Here is a more precise description of the spectrum.
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Proposition 5.1.4.
(a) o(S)=D".
() 0,(S) = 2.
(©) gp(S) =T.

Proof (2) The containment o(S) C D~ follows from Theorem 2.4.9a. Let 1 € D~ and
suppose that (S — Al)a = e, for some a = (a,)2, € #2. Then

(=ag,ay — Aay, a; — 2ay, a, — Aas,...) = (1,0,0,...).

Comparing entries yields —1ay = 1. Moreover, induction provides

a, = foralln > 0.

T+l
However, the sequence

1 1 1 )

(ag, @y, a3,...) = (— TR B

does not belong to #2 since |A| < 1. This shows that S — AI is not invertible and hence
o(S)=D".
(b) Suppose A € C and a € ¢2 satisfies (S — AI)a = 0. Then
(0, 0, O, 0,...) = (S - AI)(ao, a;, az,...)
= (01 ap, Ay, a27"') - (AaOJ laly/laz’“')
= (_ﬂ,ao, apg — /1a1, a, — /‘laz,...).
Compare entries and use induction to deduce that a; = 0 for every j > 0. Thus,a = 0

and hence 2 is not an eigenvalue of S. This proves that 0,(S) = @.
(c) Fix £ € T and define the sequence of unit vectors

1 - =2 —n-1
X, = T(L &E ..., 6 ,0,0,...) forn>1.
n
Then
1 —n-1
(S—§&Dx, = T(—S,O, 0,..,0,& ,0,0,...),
n
and hence

IS =80l =/ 2 0

Thus, T C 0,5(S). Since gq,(S) € D~ (Proposition 2.4.6), it suffices to show that
0ap(S) ND = @. For A € D and a unit vector x € £2, observe that

IS — ADx]| > [lIsx]| — [A[lIx]| = @ = [AD]x]| = 1 |2| > 0.

Therefore, infjy—; (S — ADx|| > 0, and hence 4 & g,p(S). [ |
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5.2 Adjoint of the Shift

The adjoint of S is the unique S* € B(¢?) that satisfies (Sa,b) = (a, S*b) for all a,b € ¢2.
The following proposition indicates why S* is often called the backward shift.

Proposition 5.2.1. Forb = (b,)2, € ¢2,
S*(bg, by, by, bs,...) = (b, by, bs,...).
Proof The linear transformation B on ¢ defined by
B(bg, by, by, bs,...) = (b, by, bs,...)

is bounded on ¢2 since
o0 o0
|Bb|* = Z |bnl? < Z Ibnl?* = [Ib]|*. (5.2.2)
n=1 n=0

Since

(Sa,b) = ((0, ay, a, ay,...), (bg, by, by, bs,...))
= agby + arb, + ayb; + -
= ((ag, a1, ay, as,...), (by, by, bs,...))
= (a, Bb)

for all a,b € ¢2, the uniqueness of the adjoint ensures that S* = B. [ |

The matrix representation of S* with respect to the standard basis (e, )5, for £2 is

(5.2.3)

o o o o
R I I
o o R o
B =)

As expected, it is the conjugate transpose of the matrix representation (5.1.3) of S. Compare
the following description of the parts of the spectrum of S* to that of S (Proposition 5.1.4).

Proposition 5.2.4.
(a) o(S*)=D".
(b) 0,(S*) =D.

(©) Gap(S™) =D~
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Proof (a) Note that o(S*) = o(S) = D- = D~ (Exercise 3.6.5).
(b) For A € D, the sequence
a; =(LALE2 5. (5.2.5)

belongs to #2 since ||a; | = (1 — |1|2)~Y2. Moreover,
Stay = (L, 2, 8,..) = A(1L,A,22,...) = a,

and hence D C 0,(S*). Since 0,(S*) C D7, it suffices to show that no § € T belongs
to 0,(S*). Suppose toward a contradiction that £ € T and thata = (a,);2, € £2\{0}
with S*a = £a. In other words,

(a1, a3, a3, 4,...) = (§a, £ay, §a3, §as,..).

Equating coefficients and solving a recurrence yields a; = £¥a, for all k > 0. Since
¢ €T, it follows that a ¢ ¢ unless a, = 0. Therefore, £ & ,(S*).

(c) Since D = 0,,(S™) C 0qp(S*) C 0(S*) = D~ (Proposition 2.4.6), it suffices to show
that T C 0,,(S*). Given £ € T, choose a sequence (4,,)5; in D such that 4, — &. Let

denote the normalized eigenvectors for S* from (5.2.5) and observe that

I(S™ = &Day, [l = I(5* = )z, + (An — Oy, |
=0+, —Hay, |
= |4 — &llay, |
=1, — €l =0

Thus, & € g,,(S*). |

5.3 The Hardy Space

To gain a deeper understanding of the unilateral shift and its adjoint, one must view
them as linear transformations on a certain Hilbert space of analytic functions on D. We
begin with the following proposition which shows that S is unitarily equivalent to the
multiplication operator M |g2(ry from Chapter 4. Recall that H*(T) = {f € [*(T) : fn) =
0 for all n < 0}.

Proposition 5.3.1. The operator U : ¢ — H?(T) defined by

(S

U((ap, ay,ay,...)) = Z a,&"

n=0

is unitary. Moreover, U*M¢|p2(myU = S.



THE HARDY SPACE | 113

Proof The fact that U is unitary comes from Proposition 4.2.7. For the second part,
observe that for each n > 0,

UM Ue, = U*M" = U*E"! = e, = Se,,.
The identity above extends linearly to all of £2. [ |

Below is a diagram that illustrates Proposition 5.3.1:

S

22— 2

H(T) —= HA(T)

As is traditional in this subject, we identify S with M¢|p2(ry and use the less cumber-
some symbol S for both operators. Theorem 4.3.7 describes the S-invariant subspaces.

Theorem 5.3.2. Ifq € H*(T) and|q| = 1 almost everywhere, then qH*(T) is an S-invariant
subspace of H*(T). Furthermore, every nonzero S-invariant subspace is of this form.

Proof We first show that gH?(T) € H%(T). For f € H(T), note that qf € I*(T) (since
q is bounded). If (p,); is a sequence of polynomials that converges to f in I*(T),
then qp,, € H(T) (since q € HX(T)) and qp, — qf in [*(T). Since H2(T) is closed,
we confirm that qf € H(T). This also shows that qH?(T) is closed and S-invariant.

Let M be a nonzero S-invariant subspace of H%(T). We claim that SM ¢ M. If
otherwise, then induction confirms that S"M = M for n > 0. Consequently, each
f € M is of the form f = £ f, for some f, € H?(T). Thus, for every k > 0, the first
k Fourier coefficients of f are zero, which implies that f is the zero function. Since
M # {0}, it follows that SM C M. Helson’s theorem (Theorem 4.3.7) implies that

M = qH*(T). Since M C H%(T) it follows that g = q - 1 € H*(T). [}

The functions ¢ € H(T) with |q| = 1 everywhere are inner functions. Their exact
description is specified after H?(T) is identified with a space of analytic functions on D.

Definition 5.3.3. The Hardy space H? is the set of power series
[se]
f@) =), a,z", wherea = (a,)i, € ¢2.
n=0

As it stands now, the Hardy space is a set of formal power series. The minimal disk of
convergence of an f € H? is addressed by the following.

Proposition 5.3.4. Every

f(2) = i a,z" € H?

n=0

has a radius of convergence at least 1 and thus defines an analytic function on D.
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Proof For each 1 € D, the Cauchy-Schwarz inequality implies that

i lan 14" < ( i |an|2)%( i |/1|2n)%
n=0 n=0 =0
1
= lal(5 —1|,1|2)2' (5.3.5)

Therefore, the power series converges absolutely at every point in D and so its radius
of convergence is at least 1. Now use the fact that a power series defines an analytic
function on the interior of its disk of convergence [9, p. 38]. [ ]

Define an inner product on H? by

(f-8) =, anby,
n=0

where (a,)nzo and (b, )n-, are the sequence of Taylor coefficients of f and g, respectively.
Using the fact that ¢2 is complete (Proposition 1.2.5) and that the bijective map

a— 2 a,z" (5.3.6)

from ¢2 to H? is an isometry, it follows that H? is complete and hence is a Hilbert space.
Furthermore, for f € H?, the inequality (5.3.5) can be rephrased as

F| < If|———  for 4 € D. (5.3.7)

V1-—|2)?
This yields the following.

Proposition 5.3.8. If f, — f in H? norm, then f,, — f uniformly on compact subsets of D.

Proof Let0 < r < 1. For |4| < r, (5.3.7) implies that

L < f——.

Vi-ip i

Thus, f,, — f uniformly on |z| < 7. [ ]

[fa(D) = fFDI < 1 fu = £

The identification (5.3.6) of £? and H? provides an important connection between
Fourier analysis and complex analysis.

Proposition 5.3.9. If

fz)= Z anz"

n=0

is an analytic function on D, then

2 dG 0
sup f e = 3 a2
o 27 =

o<r<1
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Proof Forafixedo<r<1,
2 2
. do A——=dO
i6y|2 — i0 C)
fo fre®)Ps fo fre) ey
2T o 0
k ,iké £ ,—it0
aire agrie —
fo (Z (Z )%

2
— ; do
k+¢ i(k—6)6
Ay apr /O‘ e o

I
M

I
o~
Il
S

axaprtt sy,

=~

1]
T8

(=}

|ag|2r?k.

I
M

=~
Il
o

The series above increases with r and hence

2 21
1042 46 1642 46
i0y[2 — 1i i0y]2
sup fo [f(re)|"5 - = lim /0 [fre™)1 52

o<r<1

(e8]
= lim z ra,|?.
r—1-
n=0

If Z:;O |a,|? = oo, Fatou’s lemma shows that

(s8]

lim >’ r?"a,|* = c.
r—>1-
n=0

If Z:’:O |a,|? < co, the dominated convergence theorem implies that

o o0
lim ) r*a,|* = 2
lim Y ran? = 3 lal
n=0 n=0
which completes the proof. [ |

Recall normalized Lebesgue measure m on T from Chapter 4.

Corollary 5.3.10. An analytic function f on D belongs to H? if and only if

sup f FGOR dm(®) < oo.
T

0<r<1
If f € H?, then the supremum above equals | f||*.

Corollary 5.3.11. The set of bounded analytic functions on D is dense in H?. In particular,
the polynomials are dense in H>.
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Proof 1f f is a bounded analytic function on D, then
If> = sup /If(r§)|2dm(§) <sup|f(2)f? < o
o<r<1J71 zeD

and hence f € H2. For any g(z) = Y. ., b,z" € HZ the Nth Taylor polynomial

gn(2) = ZIJ:O b,z" satisfies ||g — gn > = Z:::NH |by|> = 0as N - oo. Thus, the
polynomials, and hence the bounded analytic functions, are dense in H2. [ |

The next result, whose proof would draw us too far afield, permits the identification of
H? and H%(T) via boundary values [202].

Proposition 5.3.12. If

f(z) = i a,z" € H?,

n=0

then for almost every £ € T,
£ = lim )

exists and defines a function in H*(T). Furthermore, f(n) = a,, forn > 0 and

/|f|2dm = > lanl*
T n=0

A version of the Cauchy integral formula recovers the values of f € H? in D from its
boundary values on T.

Proposition 5.3.13. If f € H%(T), then the analytic function on D defined by

f@= f© ——dm(§) (5.3.14)
T1-— §z
belongs to H?. Furthermore,
f2) = Z Flmyz".
n=0
Proof FixzeD.Foré €T,
1-— §z nz::o

and the series above converges uniformly in &. Thus, the following exchange of sum
and integral is justified:

T amee) = | FO( X E'a)dme@)
n=0

wrl—gz
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I
M

o fT FEE dm(@)

3
Il
=}

1]
Mg
=
S
Nt
N
,=

N
I
=}

which completes the proof. [ |

The previous two propositions yield the following (Exercises 5.9.6 and 5.9.7).
Corollary 5.3.15. For fixed 1 € D, the function

k;(z) = 1_ , Wherez € D,
1-1z
satisfies the following.
(a) k; € H2
1
(®) [lkall =

Vi-mE
©) (f.k3) = f(d) forall f € H>.

The function k; is the reproducing kernel for H2. Reproducing kernels for other Hilbert
spaces of analytic functions appear in Chapters 9 and 10. One can show directly that
Proposition 5.3.13 implies that for each 1 € D, the corresponding evaluation functional
f + f(2)is bounded on H?. Item (c) is an expression of the Riesz representation theorem
in this setting.

There is a natural unitary operator

(o] (s
2, anz" = 2 and”
n=0 n=0

from H?, the space of analytic functions with square-summable power series coefficients,
and H2(T), the subspace of I?(T) whose negatively indexed Fourier coefficients vanish. It
is traditional in Hardy-space theory to dispense with the difference in notation between
H? and H?(T), and to use H? for both spaces.

5.4 Bounded Analytic Functions

What makes the characterization of the S-invariant subspaces of H? from Theorem 5.3.2
more interesting is the fact that a complete description of inner functions is available. We
refer the reader to [202] for the details of the discussion below.

Definition 5.4.1. Let H* denote the set of bounded analytic functions on D. For f € H*,
define

Iflleo = sup|f(2)].
zeD
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One can show that H® is a normed linear space (Definition 1.8.8). A normal family
argument (Exercise 5.9.5) verifies the following.

Proposition 5.4.2. H® is a Banach space.
As with H?, there are results concerning the boundary values of H® functions. For
g € L*(T), the essential supremum of g is
ess-supy |g| =sup{a >0 : m{€ €T : |g()| > a}) > 0}.
Theorem 5.4.3 (Fatou-Smirnov).
(@) If f € H®, then
f§) = lim f(r5)

exists for almost every & € T. Furthermore, this boundary function is an essentially
bounded function on T and

ess-supy [ f] = [lfllco-

(b) If f € H*(T) is an essentially bounded function on T, then its Cauchy integral

f@= [ LE amee

T1-¢z

defines an H* function whose radial boundary values coincide with f almost every-
whereon T.

So far, an inner function is a ¢ € H(T) such that |q] = 1 almost everywhere. The
theorem above proves the following.

Corollary 5.4.4. Ifq € H*(T) is inner, then
~ [ am)
Tl1-¢z

defines an H® function whose radial boundary values equal those of q almost everywhere.
If g € H*® and q has unimodular boundary values, then this boundary function is an inner
function.

Example 5.4.5. For fixed a € D, consider the Mobius transformation

a-—z
B(Z)Zl—az'
Forany £ € T,
_|a=¢&]| 1—a§ _ 1—ga _
BOI= Tz “ﬂ-ag “1—a§ -t

and hence the maximum modulus theorem implies that B(D) C D. Thus, B belongs to H?
(Corollary 5.3.11) and is an inner function. A calculation reveals that B(B(z)) = z for all
z € D, so the range of B contains D. Thus, B(D) = D, which implies that B is also a disk
automorphism.
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Example 5.4.6. Building on the previous example, any finite product

n
B(z) = y2N [ 2=, (5.4.7)
where (a;)IL, is a finite sequence in D\{0} (repetitions allowed), y € T, and N € N U {0},
is an inner function. These are the finite Blaschke products [144].

For an infinite number of zeros, there are convergence issues that can be resolved with
the following theorem [202, Ch. 5].

Theorem 5.4.8 (Blaschke). Suppose that (a;);2; is a sequence of points in D\{0}, repetitions
allowed, such that Zizl(l —|a;]) < 0. Then

B(z) = H Ia; |

converges for every z € D and defines an inner function.

l—az

Example 5.4.9. A nonconstant inner function need not have zeros in D. For example,
consider

fl2)= exp(— itz)

z
Forz € D,
_ +z\ 1—|z?
/@] = exp(~Re =) =exp( - 7—5) < 1.
and therefore f € H? (Corollary 5.3.11). For every £ = el € T\{1},
1 1

lim +ré = 1+¢ =icot(t/2)

r~1-1—-rf 1-¢
so |f(§)] = 1. Thus, f is an inner function without zeros on D. This particular inner

function is important in Chapter 20.
The example above can be generalized to the following [202, Ch. 5].

Theorem 5.4.10. Let i be a positive finite Borel measure on T that is singular with respect
to m. Then

f@=ew(- [ Fiae)

is an inner function without zeros in D.

The reader needing a review of singular measures should consult [317]. An inner
function of this form is a singular inner function. The classification of inner functions is a
combination of the two theorems above [202, Ch. 5].
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Theorem 5.4.11. Every inner function is of the form B(z)S,(z) with

o —
ai

B(z) =

Q

and

5,2 =exp( - [ F2au),
T

wherey € T, N > 0, (a;)2, is a sequence in D\{0} such that Zl 1A —la;]) < oo, and uisa
finite positive Borel measure on T that is singular with respect to m.

Unimodular functions on T arose in Chapter 4 in the study of the Mg-invariant
subspaces of I*(T). The quotient of two inner functions is unimodular on T. However,
there are unimodular functions that are not the quotient of two inner functions (Exercise
5.9.25).

Theorems 5.3.2 and 5.4.11 yield a fundamental theorem of Beurling that concretely
describes the invariant subspaces of S on H>.

Theorem 5.4.12 (Beurling [53]). Let M be a nonzero S-invariant subspace of H>.

(a) Thereis an inner function q, uniquely determined up to a unimodular constant factor,
such that M n (SM)* = span{q}.

(b) M = qH>.

(c) The smallest S-invariant subspace containing q is M = qH?.

5.5 Multipliers of H?

An analytic function ¢ : D — C is a multiplier of H? if pH? C H?. Note that the set of
multipliers of H? forms an algebra in the sense that this set is closed under addition, scalar
multiplication, and multiplication.

Proposition 5.5.1. If ¢ is a multiplier of H?, then the operator M, : H* — H? defined by
M:pf =of
is bounded.

Proof Suppose f, — f and M, f, — gin H?. Then Proposition 5.3.8 implies that f, —
f and ¢f, — g pointwise in D, and hence M, f = g. The closed graph theorem
(Theorem 2.2.2) ensures that M, is bounded. [ |

Before proceeding to the description of the multiplier algebra of H?, we need the
following result from harmonic analysis [202, p. 34].
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Theorem 5.5.2 (Fatou). If f € L'(T) and

1-[Af
T €= A]

2(HA) = f&dm(§) fordeD, (5.5.3)

then, for almost every ¢ € T,
lim 2(H(0) = O

The function Z(f) is the Poisson integral of f and it is harmonic on D (see Chapter
12). If f is continuous on T, then Z(f) is the solution to the Dirichlet problem (given a
continuous function ¢ on T, find a @ that is continuous on D~ and harmonic on D such
that ®| = ¢).

Proposition 5.5.4. H® is the multiplier algebra of H2. Moreover, if p € H®, then Mol =
l9llo-

Proof 1f p € H*® and f € H?, Corollary 5.3.10 implies that

lofI? = sup f ) F(rE)Pdm(E)

0<r<1

<lol% sup [ FGORAm(E)

o<r<1J7

= llellZIf 1%

Thus, ¢ is a multiplier of H? and Mol < Pl oo -
For A € D, define the normalized reproducing kernel k; = k,/| k||, where k, is defined
in Corollary 5.3.15. The Cauchy-Schwarz inequality implies that

(Mg &z, Ka)| < 1My KalllKall < Mgl 1l I Eall = M-

Therefore,

2
Il > 0 T Tl = || F=o@dm®)| = 120

Now let A = r&, where £ € T and r € (0,1), and use Theorem 5.5.2 to see that
Ml > |p(&)| for almost every & € T. Theorem 5.4.3 yields the desired lower bound
My = ll¢lle and hence establishes equality.

For the converse, let ¢ be a multiplier of H2. Proposition 5.5.1 says that M,, is abounded
operator. For 4, w € D,

(MK )W) = (Misky, k) = (ka, Myky)
= (pku, kz) = 9(Dkyy() = Pk (w). (5.5.5)

Thus, (D) = {p(4) : 1 € D} C 0,(M}) C o(M3). Since o(M;;) is compact (Theorem
2.4.9b), (D) is a bounded set and hence ¢ belongs to H*. [ |
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5.6 Commutant of the Shift

For many of the operators A € B(H) considered in this book, we will explore the set of
operators B € B(J() that commute with A.

Definition 5.6.1. For A € B(¥(), the commutant, written {A} , is the set of all B € B(H)
such that AB = BA.

For the shift operator S, the commutant can be identified in a natural way with H*, the
multiplier algebra of H2.

Corollary 5.6.2. {S} ={M,, : ¢ € H*}.
Proof Forp € H® and f € H?,
(SMyf)(2) = z(2)f(z) = p(2)(zf(2)) = (M,Sf)(2),

and hence M,, € {S}'. Now suppose that A € B(H?) and AS = SA. Then AS" = S"A
for any n > 0 and thus AM,, = M,A for any p € C[z]. Apply this to the constant
function 1 and deduce that Ap = pAl. Given f € H?, Corollary 5.3.11 provides a
sequence (p,,)%; of polynomials such that p,, — f in H? norm. By Proposition 5.3.8,
p, — f pointwise in D. Therefore, Af = fA1l and hence Al is a multiplier of H2.
Proposition 5.5.4 implies that A1 € H*® and A = My;. [ |

An alternate, in fact the original, proof of this is in [68].

5.7 Cyclic Vectors

An important class of vectors x € J( associated with an A € B(K) are those whose orbit
{A"x : n > 0} has dense linear span in .

Definition 5.7.1. For an A € B(XK), a vector X € I is a cyclic vector for A if
\/{A”x 1n>0}=%H.

A complete description of the cyclic vectors for S is known (the outer functions - see
the endnotes for this chapter) but a detailed discussion of this would take us too far off
course. In this section we cover a few examples of cyclic vectors for S.

Example 5.7.2. If f(1) = 0 for some 1 € D, then Proposition 5.3.8 ensures that every
function in \/{z"f : n > 0} vanishes at 1. Thus, the constant function 1 is notin \/{S"f :
n > 0} and hence f is not a cyclic vector for S.

The following lemma is useful in the next few examples.

Lemma 5.7.3. If M is an S-invariant subspace of H? containing the constant function 1,
then M = H>.
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Proof If 1 € M, then the S-invariance of M implies that M contains every polynomial.
Since M is closed and the polynomials are dense in H? (Corollary 5.3.11), it follows
that M = H2. [ ]

Example 5.7.4. If f € H? and

igng If(2)=6>0, (5.7.5)

then f is a cyclic vector for S. First notice that 1/f € H?. Corollary 5.3.11 provides a
sequence of polynomials such that p, — 1/f in the norm of H2. By Proposition 5.3.12,

2

1
—=| dm — 0,
Jis
and hence
1 17
—12dm=/— ~ 1 dm
,A"lpnf | T|f|2 pn f
1f 17
<= | |lpn—=| dmn—-o0.
\52 . n f

Since the constant function 1 belongs to \/{S"f : n > 0}, Lemma 5.7.3 shows this
subspace must be H2. Therefore, f is a cyclic vector for S.

Example 5.7.6. The condition (5.7.5) is sufficient, but not necessary for the cyclicity of f.
Consider the case when f(z) = 1—z, for which the infimum in (5.7.5) is zero. Nevertheless,
f(z) =1 — zis a cyclic vector for S. To see why, define

n-—1 .
n— .
@ =Y, = J2i fornz1, (5.7.7)

Jj=0

and perform a calculation to obtain
1 n
1-(1- =-> 7.
( z)pn(2) n & z

Thus,

n-a-ap@P=|t 5[ = Ln=t
Pn - ne "2 T n

- 0.

Thus, 1 belongs to \/{S"f : n > 0}. By Lemma 5.7.3, f is a cyclic vector. The papers
[38, 336] find approximating polynomials p,, for (5.7.7) when f(z) = (1 — z)* fork € N
and k > 2. See Exercise 5.9.22 for another proof.
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5.8 Notes

This chapter introduced the Hardy space H2. More generally, the Hardy spaces HP for
0 < p < o have a long and storied history. The study began with Hardy’s 1914 paper
[174] which proved that for f = Z:’:O a,z" analyticon D and p > 0,

My(f.r) = f FGEPdm(E)
T

isanincreasing function of 0 < r < 1. For p = 2, this follows from the identity (Proposition
5.3.9)

f FGE)Rdm = Z a2

Furthermore, he proved that log M,(f,r) is a convex function of logr. Standard results
from the theory of Poisson integrals show that if ¢ € L(T) and @(n) = 0 for all n < 0,
then there is an analytic function f on D such that

sup M;(f,r) <
o<r<1
and whose radial boundary values are equal to ¢ almost everywhere. In 1916, the Riesz
brothers [307] proved the converse of this. F. Riesz coined the term H, as well as “Hardy
space” to describe what we call HP [305]. The Hardy spaces HP are well understood and
texts such as [118, 149, 202, 220, 239] contain all of the details from various perspectives.
Beurling’s landmark 1948 paper [53] connected operator theory with complex function
theory. In this paper he studied the T € B(H) which satisfy the following four properties.

(a) The eigenvectors of T have dense linear span in F.
(b) |ITx| < |Ix|| and [|[T"x|| — O for every x € ¥ .

(©) |IT*x| = ||| for all x € F.

(d) Atleast one eigenvalue of T is simple.

These four properties show the existence of an orthonormal basis (u,, )5, for H satisfying
Tuy =0, Tu, = u,_; foralln > 1, and T*u,, = u,,, for all n > 0. Furthermore, every
eigenvalue 1 lies in D, is simple, and its corresponding eigenvector ¢, is of the form

o
Py = Z ua,,.
n=0
Since (u,,);2 is an orthonormal basis for J, every x € J( is of the form

(s8]

X = Z(x, u,)u,.

n=0
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Beurling defined F,(1) = (¢;,x) for 1 € D and observed that
(s8]
E() = Y %)
n=0

and F, € H?. This gives rise to the unitary operator U : J — H? defined as the linear
extension of Uu,, = z". Via U, the operator T corresponds to
A
fr =,

the backward shift on H?, while T* corresponds to f ~ zf, the forward shift S. We
encounter constructions like this again in Chapters 6 and 9, where an abstract operator
is revealed to be unitarily equivalent to the concrete operator of multiplication by z on a
Hilbert space of analytic functions.

Beurling coined the terms “inner” and “outer” and showed that the cyclic vectors for
S are precisely the outer functions and that the nonzero S-invariant subspaces are uH?2,
where u is inner. He also discussed the lattice of invariant subspaces for S and showed,
for two inner functions u,, u,, that u;/u, € H? if and only if u; H> C u,H?. It is known
that u; H? N u, H? = vH?, where v is the “least common multiple” of u; and u,, and that
u H? \/ u,H? = wH?, where w is the “greatest common divisor” of u; and u,.

Helson’s theorem (Theorem 4.3.7) described the invariant subspaces for the bilateral
shift Mg on I*(T). The cyclic vectors for M are those functions f € I*(T) such that |f| > 0
almost everywhere and log | f| & L!(m). See [202, Ch. 4] for the details.

The backward shift S* on H? is an influential operator that we discuss in Chapter 20 in
terms of model spaces. The cyclic vectors and invariant subspaces for S* are known, but
too technical to describe in this early chapter. Several good sources for this are [143, 250,
251, 252].

There are other invariant-subspace results for M, on spaces related to the Hardy space.
Korenblum [221] considered the space H?, the space of analytic functions f on D such
that f’ € H?. The inner product on H? is {f,g) = (f,&)m2 + {f’, & ). This space is an
algebra of continuous functions on D~ and the M,-invariant subspaces of H? are closed
ideals. These ideals can be described using inner functions, as in Beurling’s theorem, but
they also depend on possible zeros on T.

There are also shifts of higher multiplicity. Let

HH = {f = (i, foore o) * [ € H?}

and endow this space with the norm |f]? = Z;lzl I j}||2. Define the shift operator S on
this space by

SIF = (Sfi, S foreeer Sfy).

The invariant subspaces of S are completely characterized. The inner functions from
Beurling’s theorem are replaced by matrix-valued analogues of inner functions [202,
Ch.7].
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There are Hardy spaces H2(Q) of general domains Q C C. Chapter 11 concerns the
Hardy space of the upper half plane. For a bounded domain €, the operator M, f = zf
is bounded on H2(Q) and has an associated lattice of invariant subspaces. The invariant
subspaces were described by Hitt [201] when Q is an annulus; Aleman and Richter [15]
when Q is a multiply connected domain; Aleman and Olin [14] when Q is a crescent
domain; and Aleman, Feldman, and Ross [11] when Q is a slit domain. The invariant
subspaces can be complicated and are not always described by inner functions.

5.9 Exercises

Exercise 5.9.1. Prove that with respect to the standard orthonormal basis (e, )22, for €2,
the unilateral shift S has the matrix representation

0 0 0 O

Exercise 5.9.2. Verify that the unilateral shift S on #? satisfies the following identities.
(a) S*S=1
(b) SS*=T—-e;®e,.

Exercise 5.9.3. For any A € B(J(), prove that g,,(A) is closed.

Exercise 5.9.4. For any A € B(J{(), prove that 0,(4)~ C g,p(A).

Exercise 5.9.5. Prove that H® is a Banach space.

Exercise 5.9.6. Consider the following functions in I?(T):

16 = %_5 fora € C\T.

Evaluate (fa,fﬁ% I fell, and ||focf6||-

Exercise 5.9.7. For each A € D, prove the following.

@) ki(z) = 1 belongs to H.
1-A1z

(b) {f.kz) = f(A) forall f € H.
Exercise 5.9.8. Prove that \/{k; : 1 € D} = H2.
Exercise 5.9.9. Prove that the inequality in (5.3.7) can be improved to say that if g € H?,

1
then |g(l)| = O(TW

)for/le D.
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Exercise 5.9.10. Let A € D.

(a) Consider the operator A : H*> — H? defined by A; = k3 ® k;. Prove that the matrix
representation of A; with respect to the orthonormal basis ("), is

n=0
1 A 22
A2 B
LR SR A

PR AR L

(b) Prove that A2 = (1 — 2?)7'4,.
Exercise 5.9.11. Let (1,))s>; be a sequence in D such that
(1= 1|Apq1) £c1—|A,]) foralln>1

for some constant 0 < ¢ < 1. If

V1-14P

fulz) = ——=" forzeD,
1—24,2

prove that (f,,)n; satisfies
(o5}
DS SOP ISP forall f € H.
n=1

Exercise 5.9.12. For any f(z) = E;‘;O az/ € H* and n > 1, define A, : H?> - C by
Ap(f) = ay.

(a) Prove that A, is a bounded linear functional on H2.

(b) The Riesz representation theorem (Theorem 3.1.3) provides a function k,, € H? such
that A,(f) = (f, k,) for all f € H2. Use the Cauchy integral formula to find k,,.

(c) Compute || A]|.

Exercise 5.9.13. The self commutator of A € B(H) is A*A — AA*. Compute the self
commutator of S.

Exercise 5.9.14. Prove that the backward shift operator S* on H? satisfies

f@ - 10
z

(S*f)z) = for all f € H?.

Exercise 5.9.15. For each A € C\D~, prove that

1

1
((S* =AD" f)(z) = ZI_—AAZ’I forall f € H2.
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Exercise 5.9.16. For each A € D, prove that the difference-quotient operator

(@) = LA

is bounded on H?.

Exercise 5.9.17. Let a;, a,,...,a, € D be distinct and

B(z) = [ =—=L.

i1 1—a;z
Prove that (BH?)* is an S*-invariant subspace of H? and

(BHZ)l=\/{ ! :1<i<n}.

1-a;z

Exercise 5.9.18. Let A = S*|2)., where (BH?)! is the S*-invariant subspace from
Exercise 5.9.17.

(a) Compute o(A).
(b) Compute |A]|.

Exercise 5.9.19. Prove that the nth power of the unilateral shift on H?, that is, (S" f)(z) =
z"f(z) for f € H?, is unitarily equivalent to the shift of multiplicity n, defined by

SMWf = (Sf,Sf.... Sfy) forf=(f, foror fr) € (HAW,

Exercise 5.9.20. For two nonzero S-invariant subspaces M, M, of H?, prove that S| M,
is unitarily equivalent to S|y,

Exercise 5.9.21. For a € D, recall from Example 5.4.5 the function

a—z
uqy(z) = T,

Prove that M,, (multiplication by u, on H 2) is unitarily equivalent to S.

Exercise 5.9.22. Example 5.7.6 reveals that f(z) = 1 — z is a cyclic vector for the shift on
H?. Here is another proof.

(a) Provethat f L (1 — z)z" if and only if f(n) = f(n +1).
(b) Use this to prove that if f is orthogonal to \/{(1 — z)z" : n > 0}, then f = 0.

Exercise 5.9.23. Let p be a polynomial whose roots lie in |z| > 1. Prove that pH? is dense
in H2. When is pH? = H??

Exercise 5.9.24. If A € M, has n distinct eigenvalues, prove that A is a cyclic operator
on C" in the sense that there is an x € C" such that \/{A"x : n > 0} = C".
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Exercise 5.9.25. This problem requires knowledge of the Smirnov class N* of functions
f = @/¢, where ¢, € H* and 7 is an outer function. The unfamiliar reader should
consult [118, Ch. 2]. One important fact needed here is that if f € N*\{0}, then

£© = lim f(r%)

exists and is nonzero for almost every & € T. The goal here is to produce a bounded
measurable function f on T such that |f| = 1 almost everywhere on T, but which is not
the quotient of two inner functions.

(a) For a measurable set E C T with m(E) > 0, define N*(E) = {f|g : f € N*}. Prove
that if f, g are inner functions and f/g € N*(E), then f/g is an inner function.

(b) Define hon T by

1 ifog<oé<m,

h(e®) =
-1 ifr<6<2m
Prove there are no inner functions f, g such that h = f/g almost everywhere on T.

Exercise 5.9.26. Let K be a compact operator on H2. Show that KS® — 0 in operator
norm as follows.

(a) Given ¢ > 0, prove that there is a finite-rank operator T on H? such that |KS"| <
ITS™|| + «.

(b) Since T has finite rank, there are f;,g; € H> for1 < i < Nsuchthat T = 2511 fi®si-
Prove that TS" = Zf\il fi ® (S*"gy).

(c) Prove that ||S*"g|| > 0asn — co.

Exercise 5.9.27. Use these steps from [169] to see that igf”S — K| =1, where the

infimum is taken over the compact operators on H>.

(a) Prove that ilrgf”S —-K| <1

(b) IfK is compact, prove that 1 € o((S — K)*(S — K)).

(c) Prove that ||(S—K)*(S—K)| > 1.
Exercise 5.9.28. This problem explores the commutant of S? on H>.
(a) Prove that every f € H? has an orthogonal decomposition

f(z) = g(z%) + zh(z?), where g,h € H2.
(b) For ¢,1 € H®, prove that A, : H* — H? defined by

Ay y(8(2%) + zh(2%)) = 9(2)8(2*) + Y(2)h(z?)

is bounded on H? and commutes with S2.
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(c) Prove that any A € B(H?) that commutes with S? is of the form A = A, ;.
y P

(d) Prove that f(z) ~ f(—z)is a bounded operator on H? that commutes with S?, but is
not of the form M, on H? for some ¢ € H*.

(e) How is the operator f(z) — f(—z) realized as A, 3?

Exercise 5.9.29. If U € B(H?) is unitary and S is the unilateral shift, follow these steps
from [169] to see that |S — U| = 2.

(a) Provethat||S—U| < 2.

(b) Prove that ||S—U| = |[U*S —1I|.
(c) Prove that —1 € a(U*S).

(d) Prove that |U*S —1I| > 2.

Exercise 5.9.30. Follow this idea from [246] to prove that the unilateral shift S is
irreducible: there is no subspace M of 2 with M # {0} and M # ¢? such that M and
M+ are invariant for S (equivalently, SM C M and S*M C M by Exercise 4.5.1).

(a) Suppose M # {0} with SM C M and S*M C M. Letx = (x,,)peo € M and let n be
the smallest index such that x,, # 0. Define y = §"*1(S*("+1x) and prove that

X, ifk>n,

Vo ifk<n

(b) Prove thatx—y = (0,0,0,...,0, x,,0,0,...), in which x,, occurs in the nth position.
(c) Use the above to prove that M = ¢#2.

Exercise 5.9.31. Here is another proof that the unilateral shift S on H? is irreducible.
Suppose M is a subspace of H? such that SM C M and S*M C M. If P is the orthogonal
projection of H? onto M, recall from Exercise 4.5.16 that SP = PS. Consult Corollary 5.6.2
and use the fact that P satisfies P? = P to deduce that P = I or P = 0.

Exercise 5.9.32. Prove that S? has proper nonzero reducing subspaces M. That is, find a
proper nonzero subspace M of H? such that S2M C M and S*2M C M.

Exercise 5.9.33. Follow this idea from [168] to prove that there is no bounded operator
on H? whose square is the unilateral shift.

(a) Prove that it suffices to show there is no B € B(H?) such that B> = S*.

(b) Suppose toward a contradiction that B> = S*. Prove that ker B = ker S* and ker B is
the subspace of constant functions.

(c) Prove that the constant functions belong to ran B.
(d) Let f € H? be such that Bf = 1. Prove that 1 and f are linearly independent.

(e) Obtain a contradiction and conclude that no such B exists.
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Exercise 5.9.34. Here is another proof that the unilateral shift S does not have a square
root.

(a) Prove thatif A € B(H?)and A?> = S, then A € {S}'.
(b) Corollary 5.6.2 says that A = M, for some ¢ € H*. Derive a contradiction from this.
Exercise 5.9.35.

(a) Prove that the bilateral shift (M f)(&) = &f(£) on I*(T) has a square root. In other
words, find a T € B(I*(T)) such that T? = M.

(b) Prove that there are infinitely many square roots of M.

(c) For one of the square roots produced in (b), find the matrix representation of T with
respect to the orthonormal basis (") _, for I?(T).

Exercise 5.9.36. The numerical range of A € B(¥K) is W(A) = {(Ax,x) : x| = 1}.
We explore the numerical range of several operators in this book such as the Cesaro and
Volterra operators. Prove that W(S*) = D as follows.

(a) Prove that W(S*) C D~.
(b) Prove that D C W(S*).

(c) If € € W(S*) N T, then there is an x € #2 with (S*x,x) = £. Prove that S*x = Ax for
some A € T, which contradicts Proposition 5.2.4.

(d) Prove that W(S*) = D.

Exercise 5.9.37. Here is a useful function-theoretic result with a geometric proof [192].
Proposition 5.3.12 says that every f € H?\{0} has finite radial limits almost everywhere
on T. Use the following steps to show that the radial-limit function for f cannot be zero
on any set of positive measure.

(a) If f € H?\{0}, divide by a suitable power of £ to assume, without loss of generality,
that f has the Fourier series f(£) = ag + a;£ + a,£% + --- with a, # 0. Prove that

O +b1§ + b8+ +b,8") 1 b € Cn > 1},
and its closure XX is convex and that the leading coefficient of any element of XX is a.

(b) From Exercise 1.10.31, there is a unique g € X such that ||g|| < ||k| for all h € X. For
all1 € Cand n > 1, prove that

llg +A8"gl* = llgl*( + |14*) + 2Re/1[ 8(©O)IP§"dm(8).
T

(c) Use (b) to prove that |§|\2(n) =0foralln < -1.
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(d) Prove that |§|\2(n) =0foralln > 1.
(e) Prove that |g| is a nonzero constant function on T.

(f) Use a contradiction argument to show that f € H?\{0} cannot have radial limits
equal to zero on a set of positive measure.

5.10 Hints for the Exercises

Hint for Ex. 5.9.3: Mimic the proof of Proposition 5.2.4.

Hint for Ex. 5.9.5: Use a normal-family argument to argue completeness.

Hint for Ex. 5.9.6: Consider the |a| < 1 and || > 1 cases separately (similarly for ).
Hint for Ex. 5.9.7: For £ € T, write k;(§) = E;O:O(éi)n.

Hint for Ex. 5.9.8: Suppose f € H? annihilates k; for all 1 € D.

Hint for Ex. 5.9.9: The result is true for a polynomial. Approximate g € H? with a suitable
polynomial and use the estimate from (5.3.7).

Hint for Ex. 5.9.11: Use Schur’s test (Theorem 3.3.1) to show that the Gram matrix
[(f, ﬁ)];’;zl is a bounded operator on £2(N).

Hint for Ex. 5.9.17: Show that

(LSO gy

forall f € (BH?)* and k > 0.

Hint for Ex. 5.9.21: Recall that u,(u,(z)) = z and show that (Ug)(z) = g(u,(2))uy(z)
defines a unitary operator on H?.

Hint for Ex. 5.9.26: Consult Exercise 3.6.3.

Hint for Ex. 5.9.28: For (c), use Exercise 5.9.19 and consult the proof of Corollary 5.6.2.
Hint for Ex. 5.9.33: For (c), prove that ker S* C ran B.

Hint for Ex. 5.9.36: For (b), consider the vectors from (5.2.5).

Hint for Ex. 5.9.37: For (f) use the fact that g is the limit of sequence of functions of the
form f(&)(1 + Z;.lzl b; &J). Now use Proposition 4.1.5.



The Cesaro Operator

Key Concepts: Cesaro summation, properties of the Cesaro operator (matrix representation, norm,
adjoint, spectrum, numerical range), hyponormal operator, subnormal operator, subnormality of the
Cesaro operator, operators related to the Cesaro operator.

Outline: The Cesaro operator on #2, which originates in summability theory, opens the
door to subnormal operators. This connection appears when the Cesaro operator is viewed
as a multiplication operator on a Hilbert space of analytic functions.

6.1 Cesaro Summability

Let Z;T:o a, be an infinite series of complex numbers. For n > 0, let s, = Zr.l

a.
j=0"17
denote the corresponding sequence of partial sums. The series converges to L € C, written
Z:;o a, = L,ifs, — L.If no such L exists, the series diverges. To deal with divergent

series, Cesaro proposed the following method of summation. The nth Cesaro mean is

1

o, = ——
" n+1l

n
Z 5 forn > 0,
Jj=0

the average of the first n + 1 partial sums. Then Z:’:O ay, is Cesaro summable to L if

lim o, = L.
n—>oo

For example, the Grandi series1 —1+1—-1+1—1+1—1+ --- diverges since

_ 1 neven,
" |o nodd.

However,
n/2+1
n+1
o, =

1 n odd
2

neven,
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which converges to 1/2. Thus, the Grandi series is Cesaro summable to 1/2 even though it
diverges in the usual sense. Exercise 6.7.1 shows that if a series converges in the traditional
sense, then it converges in the Cesaro sense to the same value. An excellent survey of
summability methods for infinite series is Hardy’s classic text [178]. Cesaro summability
connects to the problem of pointwise convergence of Fourier series [352, 380].

6.2 The Cesaro Operator

Although Cesaro summability was studied by others (see [178] for a survey), the initial
paper on the Cesaro operator by Brown, Halmos, and Shields appeared in 1965 [69]. We
largely follow their presentation. For a = (a,)5, € ¢2, define the sequence Ca whose
nth term is

(Ca)(n) = HLH S a. 6.2.1)
Jj=0

In other words,

_ a0+a1 a0+a1+a2
C((ags a1, ) = (g, 2, RZIZ2),
The Cesaro operator is the linear transformation a — Ca, also denoted by C, from #? to

the vector space of complex sequences. In fact, C maps #2 to itself.
Proposition 6.2.2. The Cesaro operator is bounded on £2.
This proposition is a consequence of the following.

Lemma 6.2.3 (Hardy [175]). Ifb, > Oforalln > 1, then

N N
bl + b2 + i + b 2 2
(A <160 forallN> 1.
n=1 n=1
Proof Although there are more general modern proofs of this result (see [69] and

Example 3.3.3), Hardy’s original argument is the most direct. Define
By=0 and B,=b;+by+---+b, forn>1,

and
1 1 1

b = —
"=ty Ty T

forn > 1.

Observe that

SN

o0
1 dx 1 1
®"<F+/n BoLlile (62.4)
For each N > 1, it follows that

N

N
> (B—,,’])2 = 3 BA(®p — Opp1)
n=1

n=1
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N
= > (B2 — B:_))®, — BR Oy (summation by parts)
n=1
N
< z (Brzz - B%—l)(bn

<2

<4 byt (by (6.2.4))
n=1
N % N Bn %

oS ) (3 ()

Rearrange the terms above and square the result to obtain
N N
B, \2
% (&) <1620,
n=1 n=1
which completes the proof. [ |

As we will see in a moment, the constant 16 on the right side of Hardy’s inequality can
be improved. In fact, Hardy mentions this in his paper [175].
For the standard basis (e,,)3, for 2, obverse that

1 1 1

Ceo = leo +-e, +-e,+-€e3+---,
2 3 4
1 1 1

Cel = Oeo + Eel + gez + 133 + -,

1 1
Ce, = 0ey + Oe; + €2 + 28 + -,

Thus, with respect to this basis, the Cesaro operator has the matrix representation

1 0 0 0 0

T' 1o 0 o0

2 2

§ § i 0 0

CR (6.2.5)

4 4 4 4

r 1 1 11

5 5 5 5 5




136 | THE CESARO OPERATOR

Consequently, the matrix representation of C* is

L L 1 1 ]
2 3 4 5
o Y 1 11
2 3 4 5
o o L 11
[C*] = 3 4 5
o 0o o 1
4 s
000 0 =
5
and hence
[s4]
(C*a)(n) = forn>0
A matrix computation (see Exercise 6.7.2) shows that
0O 0 0 O
0oL o0 o
>,
[-Ou-cyl=|o 0 = 0 ,
o0 o0 2
4

which is a diagonal operator on #2. By Proposition 3.1.5 and Example 2.1.7,

II=CJ?> = -0){ -0yl =1.

(6.2.6)

(6.2.7)

(6.2.8)

Thus, [C]|=|I-T = C)| < Il + I — C|| =1+ 1 = 2. In fact, equality holds above.

Proposition 6.2.9. ||C| = 2.

Proof First observe that |[C*|| = ||C|| < 2 (Proposition 3.1.5d). For each a > %

£? sequence

1 [so]
% = (G317 co
Then

2

( ; o 1)“"’1) (by (6.2.6))

®© 2
([

2

WV
DM ﬁMS ||M8

IC*aq |

0

(s 7)

m=0

define the



SPECTRAL PROPERTIES | 137

1 i 1

a2 L (m+ 1)
1

= ;Ilaallz-

Thus, ||C*ag|| = a~!||a,| forall & > é and hence ||C*|| > a~!. Letting a — é gives us
[C*|| = 2. Another application of Proposition 3.1.5d shows that ||C|| = 2. [ |

6.3 Spectral Properties

We now use the results from the previous section to determine the spectrum of the Cesaro
operator.

Theorem 6.3.1. The following hold for the Cesdro operator C on £2.
(@) 0,(C) = 2.

) op(C*)={z : |z-1] <1}

© oC)={z:|z—-1| <1}

Proof (a) Suppose a = (a,)52, € ¢*\{0} and Ca = Aa. Then q, = (Ca)(0) = day. If
n =1, then

ag + aq _

==

Consequently, a; = 24a; — da,. Induction confirms that

(Ca)(1) = Aa;.

a, = A((n+1a, —na,_;) forn>1. (6.3.2)

Now suppose m > 0 is the smallest integer such that a,, # 0. Then (6.3.2) yields

1

m+1
and hence 0 < 1 < 1. Solve for a,, in (6.3.2) and deduce

An n

=—q, 1= —a,_; forn>zm+1,
An—-0-2) "' n-m ! z

an
which implies that |a,| > |a,_;| for all n > m + 1. This contradicts the fact that
a € ¢£2\{0}. Therefore, 0,(C) = @. See Exercise 6.7.3 for another proof of this.
(b) The first step is to prove 0,(C*) 2 {z : |z —1| < 1}. An analysis similar to (a) shows
that for 1 # 0,

1

* j— — _——
C*a=Jla < a,,+1_<1 T D

)an forn > 0.
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Solving the recursion yields
2 1
a, = a Jl=|1 (1 - j—/1) forn > 1. (6.3.3)

Now suppose that |1 — 1| < 1, or equivalently,

1
2Re/—1 =1+¢ forsomee > 0.

An estimate in [69] (see Exercise 6.7.6) shows that

@l = ()
and hence a € ¢2. Therefore,
{z 1 z=1] <1} C g,(C"). (6.3.4)
The next step is to show the reverse containment. By (6.2.8) and Theorem 2.4.9,

cI-C)C{z:|z| <1}
and hence

oC)C{z:|z—-1] <1} (6.3.5)
Since g,(C*) € o(C*) = m, it follows that

{z:lz=1<1} Co(C*) C{z:|z-1 <1}

It suffices to show that no 4 satisfying |1 — 4| = 1 lies in g,(C*).
By (6.2.7), |[(I — C)(I — C*)a| < || for a € #2\{0}, and hence
I = CHal? = (U - C*)a,(I - C*)a)
={(I-C)I - C*)a,a)
< T =0T - CHal|al
< |aJ?. (6.3.6)

Suppose 4 € 0,(C*) and [l — 4| = 1. Then 1 — 4 € 0,(I — C*) and thus there is a
corresponding unit eigenvector b. But then, by (6.3.6),

1=[1-4=|I-C"b| <|b|] =1,

which is a contradiction. This completes the proof of (b).
(c) Use the containments (6.3.4) and (6.3.5). H

Lemma 6.4.14 (below) computes eigenvectors for C*.
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6.4 Other Properties of the Cesaro Operator

An operator A € B(H) is normal if A*A = AA*. In particular, A*A — AA* = 0 for any
normal operator A. We say that A € B(¥) is hyponormal if

((A*A — AA")x,x) > 0 forallx € A, (6.4.1)

or equivalently, if | Ax|| > |[A*x|| forallx € #.For T € B(J(), we use the notation T > 0to
denote the condition (Tx,x) > 0 for all x € . Hyponormal operators are one of several
types of operators (subnormal, seminormal, posinormal) that are generalizations of the
well-understood class of normal operators. We will formally study normal operators in
Chapter 8 and subnormal operators in Chapter 19.

Theorem 6.4.2. The Cesaro operator C is hyponormal.

Proof Exercise 6.7.7 shows that with respect to the standard basis (e,)S%, for €2, the
matrix representation of C*C — CC* is the “L-shaped” matrix

d—Po|on—Pi|a—Ba|az—Ps
a—Pf =Bt —Br|az—ps |

T=| ta=F =B tm—F|az—Bs | |, (6.4.3)
a3—Ps a3—PBs az—Pz az—f5 |

where

o0
1
= —_— d = . 6.4.4
%n ;n(j+1)2 and - §, n+1 (644)
‘We must prove that T > 0. Let
T, = B,(C*C — CC*)B,,

where B, is the orthogonal projection of #2 onto span{e i+ 0< j < nlSince Bx — x
as n — oo, the Cauchy-Schwarz inequality implies that (T, x,x) — (Tx,x) for all
x € ¢2. Thus, it suffices to show that T,, > 0 for all n. We must verify that the finite
L-shaped matrices

Zy Z1 Zy Z3 - Zy
Zy Zy 2, 23 - Zp
Zy Zy Zp Z3 - Zp

, (6.4.5)
Z3 23 Z3 Zz3 't Zp
Zn Zn Zn Zp t Zp

where z, = oy — f, are positive semidefinite. By Sylvester’s criterion for positive
definiteness [141, Thm. 16.4.3], this can be done by showing that the determinant
of each matrix (6.4.5) is positive. Subtract the second column from the first, then
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subtract the third column from the second, and continue this way through the
columns. The determinant of (6.4.5) is unchanged but the resulting matrix is upper

triangular:
Zy— 21 * * * *
0 Z1— 2y * * *
0 0 Zy — Z3 * *
*

0 0 0 23— 24
0 0 0 0 e Zy

In the above, * denotes an entry whose exact value does not concern us. Thus, we

just need to check that

(2o — 21(21 — 22)(2, — 23) - (Zp_1 — 2)2y > 0. (6.4.6)

To do this, recall the definitions of «,, and $3,, from (6.4.4) and observe that for k =
0,1,2,..,n—1,

Ze — Z1 = (@ — i) — (@xs1 — Br+1)
&1 1 e 1 1
-E gy (2 g )

1 1
ST v Dk+2)

0

and

=3 S L _
n— - - - -
j:n(1+1)2 n+1 L, (x+1)2 n+1

This verifies (6.4.6). |

See Exercise 6.7.19 for another proof of the hyponormality of C.

An S € B(H) is subnormal if there is a Hilbert space X 2 J and a normal operator
N € B(X) such that N C H and N|4 = S. Equivalently, a subnormal operator is the
restriction of a normal operator to one of its invariant subspaces. Note that every normal
operator is subnormal. One example of a subnormal operator is M, on H?(u), where y is
a finite positive compactly supported Borel measure on C, and H?(u) is the closure of the
polynomials in I?(u). Furthermore, a subnormal operator is hyponormal (Exercise 19.6.9)
but not vice versa [95, p. 47]. The next result is one of the gems in the study of the Cesaro
operator.

Theorem 6.4.7 (Kriete-Trutt [223]). The Cesaro operator is subnormal.

The next few results set up an outline of the proof. Recall that a = (a,)2, € £2is
identified with f(z) = Zn oz € H 2 (Proposition 4.2.7). Consequently, one can view
the Cesaro operator as an operator on H? defined by

f(é’)

C - =
(Cf)(2) | 1-¢

~—2-d¢ forzeD. (6.4.8)
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Since f(£)(1 — &€)7! is analytic on the simply connected domain D, the value of the
antiderivative above is independent of the path from 0 to z. A calculation with power
series (see Exercise 6.7.8) shows that if f(z) = Z =0 a]zf then

o 1 n "
€h@ =3 (57 % a))2". (64.9)

In other words, the nth Taylor coefficient of Cf is the nth term of the Cesaro sequence
from (6.2.1) corresponding to (a, )n=o-
Here is an adjoint formula for C, related to the one in (6.2.6).

Proposition 6.4.10. Let f € H? and let

yi
F(l):/ fw)dw ford €D,
0

denote the antiderivative of f that vanishes at A = 0. Then F extends continuously to D™,
and hence F(1) is well defined. Moreover,

(e =TOTD / Fw) dw.

Proof If f(z) = Zn _oanz" € H?, then

& a
FQ) =), —2-a"*! forall1 € D.
=n +1

The Cauchy-Schwarz inequality shows that the series above converges absolutely and
uniformly on D~ and thus F extends continuously to D~. Therefore,

[s9)

— n
F) = Z_: n+1
n=0
is well defined.
Recall from Chapter 5 that

ki(2) 7'
2\Z) = — = z,

1-1z n=0

the reproducing kernel for H?, satisfies k; € H? and (f,k;) = f(1) forall A € D and
f € H?. Thus,

(C* ) =(C* f, k) = (f Cky).

—n
Identify k; with the €2 sequence (1 ), and use (6.2.5) to deduce that

— - =2 - =2 3
(Ck,l)(z)=1+1;/1z+1+/13+/1 ZZ+1+/1+4/1 +2 B+
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. Zn+1
n
=3 )k
Therefore,
(C*NHA) = ([, Cky)
0 1 __n+1
<Zanz Y ()
o 1 _/1n+1
=nZ::0ann+1( 1-1 )
1 a
- 1—/1(2 n+1 Z n+nl’1n+l>
_ F()— F()
1 1
=T ( )d s
T /1//1. fw)dw
which completes the proof. [ |

By Theorem 6.3.1, 0,(C*) = {z : |z — 1] < 1}. We now compute the corresponding
eigenvectors for C*. Observe that 1—z is nonzero on D, and hence a branch of the logarithm
of 1 -z exists on D and can be chosen so thatlog 1 = 0. For each w € D, define the analytic
function ¢,, on D by

Pu(2) = (1 —z)w/0-w)
and observe that ¢,,(0) = 1.

Remark 6.4.11. Note that as w runs through D, the exponent w/(1 — w) in the formula for
@, runs over the right half plane {z : Rez > —%}. This simple observation is used below.

Lemma 6.4.12. ¢, € H? forallw € D.

Proof From the definition of powers of complex numbers, observe that

Pul2) = exp (7= log1 — 2)).

Also notice that
w
_wlog(l—z)z(Re )(10g|1—z|+larg(1—z))

—Re(1 )10g|1—z|—1m(1w

1

)arg(l —Zz)+ i%,

where x denotes a real number whose exact value is unimportant. It follows that

[Pu(2)] = exp( Re (= log - 2)))

= |1 — z|ReW/1-w) exp ( - Im(1

ivw) arg(1 — z)).

Since arg(1 — z) is bounded on D, it follows that ¢,, € H? by Remark 6.4.11. [ |
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Lemma 6.4.13. \/{p,, : w € D} = H2
Proof For n > 0, observe that
pn(2)=010-2)",
n+1

so \V/{p, : w € D} contains the polynomials (Exercise 6.7.9). Now use the density of
the polynomials in H2. [

Lemma 6.4.14. (I — C*)p,, = we,, forallw € D.
Proof Proposition 6.4.10 implies that

(I = CPw)(2) = pu(2) — (CHow)(2)

1
—pu@- ([ putar)

= (1= 2)¥/0-0) - L (1= P01 (1 — )
= (1 —z)W/0-w) _ (1 — Z)w/(-w)(q _ )
= w(1 — z)w/-w)
= wpu(2),
which completes the proof. [ |
Here is a sketch of the proof of Theorem 6.4.7.

Proof Let 7 denote the space of analytic functions on D of the form

F(z) ={f,pz)> for f € H>.

Lemma 6.4.13 implies that F(z) = 0 for all z € D if and only if f = 0. Define a norm
on J¢ by |F|l5¢ = || flg2- By the definition of 7¢, the operator U : H?> — J( given by

(Uf)(z) =(f,pz) is unitary.
If

P,(2) = ﬁ(z—%)---(z— n;l) forn > 1, (6.4.15)

then (¥,)5%; is an orthonormal basis for #. This follows from the fact that (z")52,

is an orthonormal basis for H? and hence, since U is unitary, 3, = Uz" is an
orthonormal basis for F. Since

)do
2’

27
¥n(2) = € p)uz = / ei"o(1 — ~i0)7/1-2
0

one can use an integral formula from [125, p. 12] to obtain (6.4.15).
Observe that the function K;(z) defined by

K;(2) = (o3> pzhmz = (Ugpp)(2)
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is analytic in z € D and coanalytic in A € D. Moreover, for F = Uf € #{ and 1 € D,

(F,Kgc =(US, Upplac = (fropm = (UNHA) = FQD).

Thus, K is a reproducing kernel Hilbert space. One can show [125, p. 12] that

Kl(z)=r(%+lfz+1)/r(

[~

+ 1)r(1 z — + 1), (6.4.16)

1-2

where
I'(z) :=/ xZ le~*dx
o

is the Gamma function. Note that I'(z) is an analytic function initially defined on
{z : Rez > 0} that extends to a meromorphic function on C with simple poles at
{...,—3,=2,—1,0}[351, Ch. 6].

The unitary operator U above satisfies

UI - CO)f)2) =U - C)f pz)m2

= ([, = CHez)me

= <f ) E¢E>H2

=zf. e

=z(Uf)(2)
for all f € H?. Thus, UI — C) = M,U on . In particular, this shows that M,
(multiplication by z) is a bounded operator on F.

Since M, is bounded on ¢ and ¢); = (z — 1)~! € J( by (6.4.15), the polynomials

are contained in J. It can be shown that the polynomials are actually dense in J.

The heart of the Kriete-Trutt paper [223] is the construction of a finite positive Borel
measure y on D~ such that

o2 = f \pldy forall p € C[z].
X

This measure y is supported on the sequence of circles

il

— } forn > 0;

Yo = {z : ‘z - 3
(see Figure 6.4.1). Furthermore, u(y,) = 27"! and Hly, is mutually absolutely
continuous with respect to arc length measure on ¥,.

Let H?(u) denote the closure of the polynomials in I?*(u). For p € C|z], define Qp = p
and extend Q unitarily to all of  using the density of the polynomials in # and

in H?(u). The composition QU : H? — H?(u) defines a unitary operator that
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Figure 6.4.1 The circles (from left to right) ¥, 11, %2, V35 ¥4 ¥5-

intertwines I — C and M, (multiplication by z) on H?(u). This is summarized in the
following commutative diagram:

I-C

H? H?

U U*
H T H

Q Q=

H?(u) VA H(u).
Since M, on H?(u) has a normal extension to I?(u), M, on H?(u) is subnormal. It

follows (using the fact that an operator unitarily equivalent to a subnormal operator
is subnormal; see Proposition 19.1.7) that I — C, and hence C, is subnormal. [ ]

As a reminder, we study subnormal operators more thoroughly in Chapter 19.

6.5 Other Versions of the Cesaro Operator

For f € I?[0, 1], define

« f)(x):% / f(tydt forx e[0,1], (6.5.1)
0
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and for h € I?(0, o), define

t

f h(s)ds fort € (0, c0).
0

S

(Cooh)(t) =

Both C; and C,, define linear transformations. The operator C; is the finite continuous
Cesaro operator and Cy, is the infinite continuous Cesaro operator.

Proposition 6.5.2. The operators C; and C,, are bounded on I*[0,1] and I?*(0, o),
respectively.

The proof uses a continuous version of Hardy’s inequality (Exercise 6.7.5). One can
also use an integral version of Schur’s theorem (see [69] and the endnotes of Chapter 3).
Although these two operators initially seem mysterious, they are, up to unitary equiva-
lence, well-known operators [69]. Recall the unilateral shift Sf = zf on H? (Chapter 5)
and the bilateral shift Mg = £g on I*(T) (Chapter 4).

Theorem 6.5.3. [ — Cy is unitarily equivalent to the unilateral shift and I — C% is unitarily
equivalent to the bilateral shift.

Proof We only outline the proof of the first statement. Let Q = I — C; and
fa(x)=x% forRea > —%.

Exercise 6.7.12 ensures that
a

Q' fa = OC_-l-lfa-

Changing parameters, define § = a + % and gg = fg_} for Re 8 > 0. Then,
2

e

N | =

Q*gs = ¢(B)gg, Wwhere ¢(B) =

e

+

N | =

For f € I?[0,1], define

1
7® = f FOga@ dt.
0

The change of variables t = e for u > 0 yields
_ [o8)
f@ = [ stetetne s au
0

Since I2(0, ) = {f(e™%/2)e~%/2 : f € I?[0,1]}, it follows that {f : f € I?[0,1]}is
the set of Laplace transforms of functions in I*(0, o). By the Paley-Wiener theorem
(11.8.2), this set is precisely H*(Rez > 0), the Hardy space of the right half plane.
Furthermore,

Qf(B) = (Qf. gp)r2101] = {f+ Q*8a)1(01] = P(B)F(B).
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Since the operator f — fis unitary, Q is unitarily equivalent to multiplication by ¢
on H?(Rez > 0). The change of variables w = ¢(z) (which maps {Rez > 0} to D),
shows that Q is unitarily equivalent to multiplication by z on H?(D). [ |

Corollary 6.5.4. I — C,, is unitarily equivalent to the bilateral shift.

Proof By Exercise 4.5.18, M is unitarily equivalent to Mg. Now apply Theorem 6.5.3.

Recall that the Cesaro operator acts on H? by

(Cf)(z)=§f {(Tg)gdé' for z € D.
0

This suggests a generalization of C defined as

€ =1 [ fOF@d forzeD,
0

where g is an analytic function on D. Pommerenke [272] proved that C, is bounded on H 2
if and only if g is of bounded mean oscillation. Results of Aleman and Cima [10] extend
the boundedness of Cg to other Banach spaces of analytic functions on D.

6.6 Notes

Cesaro summation initially appears in an 1890 paper of Cesaro [78]. The boundedness of
the three Cesaro operators mentioned in this chapter have been known since the 1950s.
Indeed, Hardy, Littlewood, and Pélya discuss this in their book [179, Ch. IX]. Brown,
Halmos, and Shields [69] were the first to explore the spectrum and norm of the Cesaro
operator.

Kriete and Trutt [224] proved that I — C is unitarily equivalent to M, on H2(u). They
also showed that the invariant subspace structure of M, on H?(u) is complicated. Since
C has the same invariant subspaces as I — C, this complexity carries over to C. This same
paper also identifies the commutant (recall Definition 5.6.1) of M, with H*, in the sense
that {M,} = {M,, : ¢ € H*}. Since C and I — C have the same commutant, one can use
the unitary operator QU : H? — H?(u), defined in the proof of Theorem 6.4.7 to show
that {C} = {(QU)*M,(QU) : ¢ € H™}. Although this description of {C} is specific,
it is hidden behind several unitary operators. Shields and Wallen [343] proved that {C}'
is the closure of {p(C) : p € C|z]} in the weak operator topology. In fact, Shields and
Wallen start with the fact that I — C is unitarily equivalent to M, on the Hilbert space H
of analytic functions that appears in the proof of Theorem 6.4.7. They go on to show that
the commutant of M, is identified with H®, in that A € {M,} if and only if A = M, for
some ¢ € H*®.

Versions of the Cesaro operator were explored on many function spaces beyond those
discussed in this chapter [249, 268]. These operators often enjoy some of the properties
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they do in the H? setting. For example, Hardy’s inequality can be extended to ¢P [179,
p- 239] to show that the Cesaro matrix defines a bounded operator on ¢P with

Clerco = 525 for1<p<eo.
Furthermore, (6.2.8) shows that |[I—C||y2—¢2 = 1. For the Cesaro operator on ¢, the paper
[348] resolves a question posed in [41] and shows that

if1<p<2,

-1

= Clleoser = )

mp®  if2<p<oo,
where mp, = min{ptP~! + (1 )P =P : 0<t < é}.

Kriete and Trutt [223] showed that the Cesaro operator is related to M, on a space
J of analytic functions and went on in [224] to explore the mysterious properties of
J. In particular, the zero sets and the M,-invariant subspaces of J are particularly
complicated and are far from being understood. Cowen [99] gave an alternate proof of
the subnormality of the Cesaro operator using composition operators. Related Cesaro
operators with associated spaces of analytic functions are found in [212, 291].

A result from [97], using the fact that the Cesaro operator is subnormal, shows that a
branch of \/E is analytic on o(C) and \/E is a bounded operator on #2. In other words, the
Cesaro operator has a square root. One can also obtain the same result using the theory of
accretive operators [211]. See Exercise 6.7.25 for more on this.

Hyponormal operators were originally studied by Halmos in 1950 [166] and developed
into a cohesive theory by Clancey [86]. The term “hyponormal” first appeared in a 1961
book by Berberian [42]. See [238] for a good survey of this material.

6.7 Exercises

Exercise 6.7.1. Ifaseries of complex numbers converges to L, prove it is Cesaro summable
to L.

Exercise 6.7.2. Prove that
I-ou-o*=o o § 0

Exercise 6.7.3. Use the definition of C from (6.4.8) to show that g,(C) = @.

Exercise 6.7.4. For each integer n > 1, prove that z"~! ¢ ran(n~'I — C).
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Exercise 6.7.5. If f is a nonnegative measurable function on [0, o), prove that

fom (J—lc /Oxf(t)dt)zdx < 4[0 F(0)? dx.

Remark: This proves that the operator C, mentioned in this chapter is bounded.

Exercise 6.7.6. Prove that if 2Re % =1 + ¢ for some € > 0 and

1

Apy1 = (1 - m)an for all n >0,

then |a,|? = O(1/n'*%).

Exercise 6.7.7. Prove that with respect to the standard basis (e,)S, for £2, the matrix
representation of C*C — CC* is

oo — o %—m‘%—@ az — B
a—p a—pi|a—F | a—F
W= Q=P =B |a—PH| |,
a3 =Pz a3—PBs az—Pz az—fs

where

o0
1 1
— ___ d = f > 0.
o ,~=Zn(j+1)2 and P =5y forn>

Exercise 6.7.8. Prove that if f(z) = Z;lo ajzj € H?, then the Cesaro operator C from
(6.4.8) can be written as

o 1 n "
€h@ =3 (57 by ES

Exercise 6.7.9. Prove that the linear span of {(1—z)" : n > 0} contains every polynomial.
Remark: This detail is important in the proof of Lemma 6.4.13.

Exercise 6.7.10. Prove that C is not compact.

Exercise 6.7.11. Follow these steps from [268] to compute the resolvent of the Cesaro
operator C.

(a) Prove that for A € C\{0} and h € H?, a solution f to (AI — C)f = h satisfies the
differential equation

, 1 1 _1d
f (z)+(; -~ =G5 _Z))f(z) = - -(2h(2)) forallz € D.
1 1
(b) Prove that when multiplied by z'7i(1 —z)7, this differential equation becomes

1

LT -2i5@) = 5 -2 @),
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(c) Prove that

flz)= @ + %z%_l(l - z)‘i f w‘§(1 - w)i—lh(w) dw.
0

Exercise 6.7.12. Find a formula for the adjoint of the operator

@ne=5 [ rod
0

on I?[0, 1] from (6.5.1).
Exercise 6.7.13. Consider the following generalization of the Cesaro operator on 2

explored in [288]. For p € R and n > 0, define

(Cpx)(n) = CESYD

Zn: xj forx = (x,)5%, € €%

Jj=0

and note that C; is the standard Cesaro operator C.

(a) Compute the matrix representation of C,, with respect to the standard basis for £2.
(b) Prove that C, is bounded on £2if p > 1.

(c) Prove that C, does not map ¢ to £%if p < é

Exercise 6.7.14. This is a continuation of Exercise 6.7.13.

(a) Fora > 0,let

o oR|~ o
ol o o
B0 o o

Prove that C, = Dp_,C;.
(b) Prove that C, is compact for p > 1.

(c) Prove thatfor p > 1, the operator C,, has Hilbert-Schmidt (see Exercise 3.6.31) norm
(o]

||Cp||§{S = {(2p — 1), where {(z) = 3}, _, n~7 is the Riemann zeta function.
(d) Prove that C,, is not a bounded operator on £2if0< p< 1.

Remark: Cp is not hyponormal when p > 1 (and thus not subnormal).
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Exercise 6.7.15. Here is another interesting class of operators from [285] that are related
to the Cesaro operator. For 0 < || < 1, define A, : ¢2 — ¢% by

Lo i
(Ax)(n) e J;) x; forn 0.

Notice that A; is the Cesaro operator C.
(a) Prove that A, is bounded and |4, < 2.

(b) Compute the matrix representation of A; with respect to the standard basis (e;,)n=g
for £2.

(c) Prove that A, is unitarily equivalent to A ).
Exercise 6.7.16. This is a continuation of Exercise 6.7.15.

(a) Identify #2 with H? in the usual way. If 0 < 4 < 1, prove that A; is represented on
H? by
1 (")

RALYAPTS

WwhH@=; | 1=
0

(b) Prove that

z
" _ 1
N =15 [ 1o
(c) f0 < 1 < 1and n > 1 is an integer, prove that 1/n is an eigenvalue of A; with
corresponding eigenvector f,(z) = z"71(1 — 1z)™".

(d) If0 < A < 1and n > 1is an integer, prove that each 1/n is an eigenvalue of A} with
corresponding eigenvector f,(z) = (z — )" L.

Remark: The operators A, for 0 < 1 < 1 are compact but not hyponormal.
Exercise 6.7.17. Prove that the Cesaro operator C is not bounded below on #2, that is,
inf ||Cx|| = 0.
Ixl=1
Exercise 6.7.18. This is a continuation of Exercise 6.7.17 and follows [234]. Prove that if
Xo =Xy =X 2 2 0and x = (x,)%, € ¢2, then
2
T
ICx|* > gIIXIIZ-

Use the following steps.

(a) Use an integral estimate to prove that
(o) n
1 1
=1

k=n+1
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(b) Prove that

2 0 n 00 00 n—1
lexi? ==Y (X e+ 2 (2 Y &) T v
n=1 k=1 n=1  k=n+1 Jj=0

(c) Use the fact that x; is a positive decreasing sequence to obtain the estimate.

Remark: The paper [40] proves the following ¢P version of this result: if 1 < p < oo and
Xo = X; =X 2 - = 0withx = (x,)%%, € €P, then ||Cx[5o_ 0 > ¢(p)IIX||Ds. Where ¢(z)
is the Riemann zeta function.

Exercise 6.7.19. Here is a proof from [290] that C is hyponormal.

(a) Prove that CC* = C*DC, where

% 0 0 0
0 2 0 o
3 3
D=lo o = o
4 4
o 0o o0 2
5

(b) Prove that C*C — CC* > 0.

Remark: A € B(H) is posinormal if AA* = A*PA for some positive operator P.
This concept is discussed further in Exercise 19.6.26. Note that the Cesaro operator is
posinormal.

Exercise 6.7.20. Let S denote the unilateral shift on £2.
(a) ProvethatC = (C — S*)C*.
(b) Prove that C is contained in the left ideal generated by C*.

Exercise 6.7.21. Continuing with the notation from Exercises 6.7.19 and 6.7.20, show
that C*C = CPC*, where P = (C* — S)(C — S*), and hence that C* is also posinormal.

Exercise 6.7.22. Let S € B(¢?) denote the unilateral shift and C the Cesaro matrix. Prove
that S*CS — C is a Hilbert-Schmidt operator.
Exercise 6.7.23. For the Cesaro operator C, follow this idea from [287] to prove that the
numerical range (see Exercise 2.8.41) W(C) of Cis{z : |z — 1| < 1} as follows.

(a) Prove that A € W(C) if and only if1e w(C*).

(b) Prove that the eigenvalues of C* belong to W(C*).

(c) Forany A € B(¥), prove that if |A|| € W(A), then | A| is an eigenvalue of A.

(d) Show that W(C) does not contain any z such that [z — 1| = 1.

(e) Prove that W(C) does not contain any z such that [z — 1| > 1.
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Exercise 6.7.24. Let V denote the vector space of all complex sequences a = (a,)5%,.
The Cesaro operator C is a linear transformation on V.

(a) For each m > 0, prove that

0 foro<n<m,
cam — La(m), where afqm) =\ /m+k )
m+ 1 (") ifn=m+ik>o0.
m

(b) Prove that { m > 0} is the set of all eigenvalues of C on V.

L
m+1

(c) Prove that each eigenspace is one dimensional.
Remark: See [228] for more on this result.

Exercise 6.7.25. This result of Hausdorff [185] continues the discussion in Exercise 6.7.24
of the Cesaro operator on the space of all sequences.

(a) Consider the matrix

1 0 0 0 0 -]
1 -1 0 o0 0
1 =2 1 0 0
W =
1 -3 3 -1 0
1 -4 6 -4 1

Notice how the rows of W consist of alternating binomial coefficients. Prove that
wi=1

(b) For a € R, define

1 0 0
o+ o
2a 1
H,=w|o o X o w.
3&
o 0 o0 =

(c) Provethat Hy,g = HyHg foralla, 8 € R.
(d) Prove that H, is the Cesaro matrix C.
(e) Prove that (H,;,)* =C.

Remark: See [203] for more on this.

Exercise 6.7.26. Use the fact that I — C is unitarily equivalent to M, on a certain H2(u)
space on D to prove that the Cesaro operator has a bounded square root.
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Exercise 6.7.27. This exercise makes a connection between the Cesaro operator C on ¢2
and composition operators on the Hardy space H2.

(a) For 0 < a < 1, use Schur’s test (Theorem 3.3.1) to prove that

2 3

1 a a a
0 I-a) 22(1-—a) 3¢?(1—a)
Ag=|0 0 1-aP? 3al-a)? |

0 0 0 1—-a)?

that is
({)aj‘i(l —a)l forj>i,

(A =
o for j < i,

defines a bounded operator on #2.
(b) Prove that A, commutes with C*.

(c) Prove that A, is the matrix representation of the composition operator f(z) — f(a+
(1 — a)z) on H? with respect to the orthonormal basis (z")$2,,.

Remark: See [108, 343] for more on the commutant of C. Composition operators are
explored in Chapter 18.

6.8 Hints for the Exercises

Hint for Ex. 6.7.4: If (il — C) f = z"71, then f satisfies a certain first-order linear
differential equation.

Hint for Ex. 6.7.6: Use (6.3.3) and the estimate 1 + x < e* for x > 0.

Hint for Ex. 6.7.10: Use Theorem 2.6.9 and the spectral properties of C.

Hint for Ex. 6.7.14: For (d), observe that C; = D;_,C,, and consult Exercise 6.7.10.

Hint for Ex. 6.7.15: For (a), verify that |4, (x,) %l < IC(1x, )0 || for each (x,), € #2.
For (c), conjugate A; with a suitable diagonal operator to obtain A,

Hint for Ex. 6.7.22: Consult Exercise 3.6.31.

Hint for Ex. 6.7.23: For (d), recall that |C — I|| = 1. For (e), use the convexity of W(C).
Hint for Ex. 6.7.26: The Taylor coefficients of y/1 — z form an ¢! sequence.



The Volterra Operator

Key Concepts: Properties of the Volterra operator (adjoint, norm, spectrum, invariant subspaces,
commutant), nilpotent operator, quasinilpotent operator, complex symmetric operator.

Outline: This chapter covers the Volterra operator
X
s [ sy
0

on I?[0, 1]. This operator is compact and quasinilpotent with no eigenvalues. The Volterra
operator makes deep connections with function theory, in particular with the compression
of the shift operator to a model space.

7.1 Basic Facts

Recall from Chapter 1 that the norm and inner product on I?[0, 1] are
1 1 1 _
171 = ( f f()Pdx)* and (f,g) = f Fe0g0e) dx,
0 0
respectively. For f € I2[0,1], define

VHx) =f ft)dt forx e [0,1]. (7.1.1)
0

For 0 < x < y < 1, the Cauchy-Schwarz inequality implies that
y
W -wowi=| [ o
P
y
< [ 1w
X
1

- f Ay O] dt

0
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1ol 1
<([ goa) ([ 1rwpa)

=[x =3Il (7.1.2)

1

and hence VI?[0,1] is contained in C[0,1] C I?[0,1]. Thus, (7.1.1) defines a linear
transformation V : I?[0,1] — I*[0,1].

Proposition 7.1.3. V is bounded on I?[0,1].

Proof For f € I*[0,1], set x = 0 in (7.1.2) to see that

(VAW <yIfI? forally €[0,1].

Integrate both sides and obtain

1

1
IVFI? < IIfIIZ/ ydy = Ellfllz-
0
Therefore, V is a bounded operator on I?[0,1] and

IVl = sup [Vf] <

1
S —,
1f1=1 V2
which completes the proof. [ |

The linear transformation V is the Volterra operator. The previous proposition yields
the estimate |V < 1/\/5. We compute the exact value of | V| in Proposition 7.2.1 below.
For the next result, recall the discussion of compact operators from Chapter 2.

Proposition 7.1.4. The Volterra operator is compact.

Proof To prove that V is compact, it suffices to show that (Vf,,)5; has a convergent
subsequence for every bounded sequence (f,,)%,; in I?[0,1]. By (7.1.2), (V£)%,
is a uniformly bounded and equicontinuous sequence of continuous functions on
[0,1]. The Arzela-Ascoli theorem [94, p. 179] provides a subsequence (V fy, )z=;
that converges uniformly to a continuous function. Since uniform convergence
implies I*[0, 1] convergence (see (1.3.5)), (V f, )32, converges in I*[0,1]. Thus, V is
compact. |

One can also prove the compactness of the Volterra operator with Exercise 3.6.12 and
Proposition 7.2.1 (below).

Proposition 7.1.5. The adjoint of the Volterra operator is

1
(V*f)(x):/ f(ydt forx el0,1].
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Proof For f,g € I?, let
u(x) = / f)dt and v(x)= / @dt.
0 0

Then du = f(x)dx and dv = @dx. The integration by parts formula yields

(f,veg)=({f.g

= fo 1( fo ’ f(t)dt)@dx
= (foxf(t)dt><f0x@dt) —fol(fox@dt)f(x)dx
x=0
([ o [ 590} [ (50
1 1
= fo f(x)< /x @dt)dx
[l

which verifies the desired adjoint formula. [ |

x=1

g(t) dt) dx,

7.2 Norm, Spectrum, and Resolvent

Proposition 7.1.3 yields the estimate ||V < 1/\/5. The next proposition gives the exact
value of ||V].

Proposition 7.2.1. The Volterra operator V satisfies the following properties.

(a) V*V is a compact operator with eigenvalues

and corresponding unit eigenvectors

! ﬂx).

fu() = V2 cos (Zn ha

) V= 2.

Proof (a) Since V is compact (Proposition 7.1.4), and the space of compact operators is
closed under adjoints (Exercise 3.6.11) and products (Proposition 2.5.5), it follows
that V*V is compact.
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If A > 0and V*Vf = Af for some f € I?[0,1]\{0}, then Proposition 7.1.5 says that

1 at
/ f f(s)dsdt = Af(x) forall x € [0,1]. (7.2.2)
x JO

Differentiate the previous equation twice and obtain —f(x) = 1f”(x). The solutions
of this differential equation are of the form

f(x) = ael®* + pe~iwx, (7.2.3)

where a,b € C and w? = 1/A. Set x = 1in (7.2.2) and deduce that f(1) = 0.
Differentiating both sides of (7.2.2) shows that

X
- [ sods=as .
0
Evaluate the previous equation at x = 0 and obtain f'(0) = 0. The conditions
fW) =0, f(0)=0, and f(x)= ael“* + be~i®x,

say that

for some integer n > 0 and that f is of the form

fx) = ccos(2n2+ 17rx)

for some constant c. Thus, since 1 = 1/w?, the eigenvalues of V*V are

Lo 4
"= Cn+ )22

and the corresponding (unit) eigenvectors f;, are

fu(x) = \/5 cos ( 2n2+ ! 7rx). (7.2.4)

(b) The eigenvectors (f;,)52, form an orthonormal basis for I?[0, 1] (Exercise 7.7.2) and
the matrix representation of V*V with respect to this basis is the diagonal matrix

o 0 0 0O
0 4 0 0
0 0 A O
0 0 0 1A

Proposition 2.1.1 reveals that

4
V*V| =supd, =sup —————— = —.
I I n;g n n;)’ n+1)272 =2
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Finally, Proposition 3.1.5e yields

4 2
VI =VIVVI =4/ = = =,
which completes the proof. [ |

One can also write V*V using the tensor notation from (2.6.2):

. et 8 2n+1 2n+1
sznzz;)(2n+1)27fzcos( 3 nx)@cos( 3 nx).

The next proposition summarizes the spectral properties of V.
Proposition 7.2.5. The Volterra operator V satisfies the following.
(a) o(V) = {0}
®) o,(V) = 2.
(©) ggp(V) = {0}

Proof (2) By induction (Exercise 7.7.3),

x (x — t)n—l
V) (x) = ft)——=——dt foralln>1. (7.2.6)
o (n—1)
Exercise 7.7.4 ensures that
1
V< ek (7.2.7)

Thus, for any z € C,
o
I—-zV)t=> v,
n=0
where the series above converges in the operator norm (Proposition 2.3.9). Since
1 1 371
W) 1l=Z(1=-=
(zI-V) Z(I 2 V) forall z # 0,

it follows that o(V) C {0}. Thus, (V') = {0} since the spectrum of a bounded operator
is nonempty (Theorem 2.4.9c). See Exercise 8.10.8 for another proof of (a).

(b) The proof of this is requested in Exercise 7.7.5.

(c) Note that g,,(V) € o(V) = {0} (Proposition 2.4.6). To show that 0 € g,(V), we
proceed as follows. Observe that

h,(x) = e¥i"*  wheren € Z,

is an orthonormal basis for I?[0, 1] (Theorem 1.3.9) and, for n > 1,

(e2i7mx _ 1) B 1

(Vhn)(x) = 2min T 2min

(hp(x) = ho(x)).
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By orthogonality (Proposition 1.4.6), |k, — ho|*> = [|h,]1> + |ho|> = 2 and hence

11
4m2n2 77 2m2n2”

Thus, [|[Vh,| = 0asn — 00,500 € ggp(V). [ |

IVhA|? = —hol? =

1
prerlly

Recall the definition of a Hilbert-Schmidt operator from Exercise 3.6.31.

Proposition 7.2.8. The Volterra operator is a Hilbert—Schmidt operator with Hilbert—
Schmidt norm 1/\/5.

Proof From Proposition 7.2.1, the eigenvalues and corresponding unit eigenvectors of
V*V are
4

1= n+1
" 2n+1)2r2

and f,(x) = \/Ecos (2

nx) forn > 0.

Moreover, (f;,)%, is an orthonormal basis for I?[0, 1]. The Hilbert-Schmidt norm of
V satisfies

o0
IViZs = 2 VA2
n=0

DV V)

n=0

2V Vs fo)

n=0

(e8]

2 n

n=0

[Se]

Ay_1
2 (2n+1)?

n=0

Thus, |[V]|gs = 1/4/2. [ |

The fact that every Hilbert-Schmidt operator is compact (Exercise 3.6.31) yields another
proof that the Volterra operator is compact.

Below we produce an explicit formula for the resolvent (zI—V)~! for z # 0. Since o(V) =
{0}, it follows that (zI — V)~! is a bounded operator. From (7.2.7), the series Zf;o zZ"yn
converges in operator norm.

Proposition 7.2.9. Forz # 0 and f € I1?[0,1],

(T = V)7 ) = 2 (£ + f e (Z2)r0)dy).
0
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Proof Forz # 0and f € I?[0,1],

(I-zV)if = i 2"V f =f+z§: Z-lyng,
n=1

n=0

Thus,

© X -1
(=2 D) = fo +2 3 2! f SV rydy by (7.2.6)
n=1 b (n=1)!

X [ ® —_ )1
— @z [ (Z %)f(y)dy
| |

n=1
- ) +z f ) 1(y) dy.
0

Now replace z with 1/z and then multiply by 1/z. [ |

7.3 Other Properties of the Volterra Operator
Each T € B(H) has a Cartesian decomposition T = Re T + i Im T, where
ReT = %(T +7%) and ImT= %(T — 7% (73.1)

are selfadjoint operators. Apply this to the Volterra operator V to see that

1
V+VHf = / fOdt =1 @1f, (7.3.2)
0

and hence Re V is a rank-one operator, namely 1/2 times the orthogonal projection of
I2[0, 1] onto the subspace of constant functions. Furthermore (Exercise 7.7.7),

1
(Im V f)(x) = % / sgn(t — x)f(¢) dt.
0

Definition 7.3.3. T € B(X¥) is nilpotent if T" = 0 for some n > 0 and quasinilpotent if
o(T) = {0}

A nilpotent operator is quasinilpotent, but the converse does not hold. From Theorem

8.4.4 below, it follows that T is quasinilpotent if and only if || T"| " — 0.

Proposition 7.3.4. The Volterra operator is quasinilpotent but not nilpotent.

Proof Proposition 7.2.5 implies that V is quasinilpotent. Any nilpotent operator has zero
as an eigenvalue (Exercise 7.7.9) which, for the Volterra operator, is not the case
(Proposition 7.2.5b). [ |

Definition 7.3.5. T € B(H)is complexsymmetricif there is a conjugation C (a conjugate-
linear, isometric, involution) on # such that T = CT*C.
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Exercise 7.7.15 yields the following.

Proposition 7.3.6. If (Cf)(x) = f(1 — x), then C is a conjugation on I?[0,1] and V =
CV*C. Thus, V is a complex symmetric operator.

We can take advantage of the complex-symmetric nature of V' to obtain an elegant
matrix representation of V [146]. Consider the functions

. 1
w,(x) = 073 fornez
Exercise 7.7.19 shows that (w,,)$X_, is a C-real orthonormal basis for I?[0, 1], in that it is
an orthonormal basis and Cw,, = w, for all n € Z. Furthermore (Exercise 7.7.19), with
respect to the basis (w, )5 _., the Volterra operator has the matrix representation

L 0 o = 0 0 0
61 671
o = o0 —-- o 0 0
4 4
o o = = 0 0 0
27 2
wvi=| .. L _+ L x| _L L _if |, (7.3.7)
671 47 2 2 27 41 671
0 0 —-- —-— 0
27 27
o o o0 — 0 —— 0
4 4
0 0 0 —— 0 0o —-—
671 671

where the box denotes the (0, 0) entry. The matrix above is self-transpose since the matrix
representation of any complex symmetric operator with respect to a C-real orthonormal
basis is self transpose (Exercise 7.7.18).

Aresult from [148] gives the singular value decomposition of any compact C-symmetric
operator T as

(e8]
T = Z 0,(Ce, ® e,),
n=0
where o, are the eigenvalues of | T| (the singular values of T) and e,, are certain eigenvec-
tors of |T| = (T*T)V2. See Chapter 14 for a formal presentation of the operator |T|. For
the Volterra operator V, this becomes

[oo)

2 2n+1 2n+1
V= i ®
r;) e %)n‘ sm( > nx) cos( >

7TX),

and thus

V) = f

0

1(% 2 sin(zn;lnx)cos<2n2+17Ty))f(y)dy.

1
n=0 (l’l + E)T[
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Observe that

(e8]

2

1
n=0 (l’l + E)T[

1n(2n2+ 17TX>COS(2n+ lﬂy)

is a double Fourier expansion of the kernel k(x,y) = yxa(x,y), where A is the triangle
{(x,y) : 0 <y < x,0< x < 1}. Therefore,

1
V) = f k(e )f () dy.
0

7.4 Invariant Subspaces

With any operator, one is always interested in a description of its invariant subspaces. The
Volterra operator is no different. From Proposition 4.1.5, it follows that

2 = Xa1L?[0,1], where a € [0,1],

the set of functions in I2[0, 1] which vanish almost everywhere on [0, a], is a subspace of
I%[0,1]. Another way to see that 7, is closed is to observe that the operator f ~ Xa,11/S is
the orthogonal projection of I2[0,1] onto ;. One can also see that V%, C 7, and hence
F, is an invariant subspace for V. The Gelfand problem, posed in 1938 by I. Gelfand [150],
asks whether these are all of the V-invariant subspaces of I?[0,1]. This was resolved in
1949 by Agmon [8].

Theorem 7.4.1 (Agmon). Foreach a € [0,1], ¥, is an invariant subspace for V. Moreover,
every invariant subspace for V is equal to ¥, for some a € [0,1].

Proof The proof we outline here is due to Sarason [323]. Further details of the discus-
sion below are covered in Chapter 20 once we know more about compressed shift
operators. Let

0(z) = exp(%) forz € D.

By Theorem 5.4.10, © is an inner function and ®H? is an invariant subspace for
the shift operator (Sf)(z) = zf(z) on H2. By Exercise 4.5.1, (H?)* is an invariant
subspace for S*. Let

T= PS|(®HZ)L,
where P is the orthogonal projection of I?(T) onto (@H?)*. This is the compression

of the shift S to (BH?)*. By results in Chapter 20 the operators %(T +Dand (I+V)!

are unitarily equivalent via a unitary operator W : I?[0, 1] onto (H?)*. Also observe
that T and %(T + I) have the same invariant subspaces.

We claim that V and (I + V)~! also have the same invariant subspaces. This follows

1
from the fact that (V) = {0} and so ||[V"*||» — 0 (via the spectral radius formula - see
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Theorem 8.4.4) and thus the series

o

PGS

n=0
converges in operator norm to (I + V)~! (Exercise 7.7.20). By the spectral mapping
theorem (Lemma 8.4.1), we have o((I+V)~! —I) = {0} and thus, again by the spectral
radius formula,

I+ V)™ =D — 0.

This shows that
2 (=DMA+ vyt =D
n=1

converges in operator norm to V (Exercise 7.7.20). Since V and (I + V)~! can be
approximated in operator norm by polynomials in the other, they have the same
invariant subspaces. An invariant subspace of V' corresponds (via the unitary operator
W) to a T-invariant subspace X of (OH2)'. By [143, p. 193], X = (@H?)* n ®*H? for
some a € [0,1]. A final computation shows that (@H?)* n @*H? corresponds to
Xa, 210, 1]. [ |

There are no interesting reducing subspaces for V.
Corollary 7.4.2. If ¥ is invariant for V and V*, then & = 1?[0,1] or F = {0}

Proof By Exercise 4.5.1, F is invariant for both V and V* if and only if ¥ and F+
are invariant for V. From Theorem 7.4.1, ¥ = )([a,l]LZ[O, 1]. One can show that
a1 210, 1D = x{0,41L*[0,1] which, by Theorem 7.4.1 again, is V-invariant only
when a = 0 or a = 1. In other words, ¥ = I*[0,1] or F = {0}. [ |

7.5 Commutant

The commutant {V} = {T € B(I?[0,1]) : TV = VT}of the Volterra operator is difficult to
understand completely. Certainly p(V) € {V}' for all p € C[z]. Furthermore, the strong
operator closure of {p(V) : p € C[z]} is contained in {V}. The following shows that
this is precisely the commutant. In the above, recall from Exercise 4.5.23 that a sequence
A, € B(J() converges to A € B(K) in the strong operator topology (SOT) if A, x — Ax for
eachx € #(.

Theorem 7.5.1 (J. Erdos [126]). The commutant of V is the strong operator closure of
{p(V) : p e Clz]}.

Proof We follow the original proof from [126]. Let ¥ denote the strong operator closure
of {p(V) : p € C[z]}. Observe that ¥ C {V}.
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To prove the reverse containment, we need a few details. For f, g € I?[0, 1], define

(Tf)(x) = f o(x — D) dr.
0

This is the convolution of f and g. The Cauchy-Schwarz inequality shows that T is
a bounded operator on I?[0, 1] with

IT,ll < llgll forallg € I*[0,1]. (7.5.2)
A short integral substitution reveals that

(Tgf)(x) = (Trg)(x) (7.5.3)
and
Tpl=Vf forall f € I*[0,1], (7.5.4)

where 1 denotes the function whose value is identically 1.

It follows from (7.2.6) that if p € C[x], then T, is a polynomial in V with zero
constant term. Furthermore, for g € I?[0, 1], Proposition 4.1.4 provides a sequence
of polynomials (p,, )&, such that p,, — g in I?[0, 1]. Now observe that (7.5.2) implies
that T, — T, in operator norm (and hence strongly) and thus

T, e v forallge I*[0,1]. (7.5.5)

Now suppose that A € {V}'. Then A commutes with p(V) forall p € C[x]. Since Ty € ¥
for any f € I?[0, 1], it follows that A commutes with Ty. Therefore,

AVf = ATl (by (7.5.4))
= TyAl (A commutes with T)
=Taf (by (7.5.3)).
Consequently,
VA=AV =Ty € V. (7.5.6)

To prove that A € ¥, it suffices to show that given ¢ > 0 and fi, ..., f, € I?[0,1],
there is a polynomial p such that p(0) = 0 and

[(A—p("M)fill <e foralll < j<n.

Fork > 1, let

n n n
(Vk)(n) — @ Vk : @LZ[O, ]] — @LZ[O,I]
j=1 j=1 Jj=1
be defined by

(Vk)(n)(glv 825015 gn) = (nglv ngzv"’ ngn)~
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See Chapter 14 for a more formal treatment of direct sums of Hilbert spaces and
operators. Let f = (fi, f,..., f,,) and

M= \/{(vk)<">f Sk > 1)

It is sufficient to show that A™f € 7, where

n n n
AW =Pa: @] - Proil
j=1 j=1 j=1

is defined by

A(gy, 8avevvs 8n) = (Ag1, AGase-s Agn)-

Suppose toward a contradiction that A”™f & .. Then there exists an m € .# such
that g = A™f — m is orthogonal to .. By (7.5.6) AV € ¥, and hence

VoWAMWf e 7 forallk > 1.

Thus,
(VEYMAMg € ¢ and ((V¥)'g,g)=0 forallk > 1.
Leth; = V("Wg — Ag, where 1 > 0. Then

(VWhy, hy) = (vID(VWg — Ag), Vg — 2g)
= ((V?)mg,vng) — (VMg Ving).

Since V, and hence V("™ is injective (Proposition 7.2.5), deduce that Re(V(”)h,l, h;) <
0 for sufficiently large A > 0. However, (7.3.2) says that ReV = é(l ® 1),

which is a positive operator. Thus, Re V("™ is also a positive operator, and hence
Re(V(")h,l, h;) > 0, which is a contradiction. |

In another sense, when looking for a function-theoretic understanding of the commu-
tant, the situation becomes more involved. By our discussion of the invariant subspaces
of V, it follows that {V} = W*{T} W. As part of an interpolation result of Sarason [324]
(see also [143]), {T} = {PMg|on2): : & € H*}, where P is the orthogonal projection of
H? onto (@H?)*. Notice how each element of {T}' is a compression of the multiplication
operator M, on H? to (©H?)*. The following theorem summarizes this discussion.

Theorem 7.5.7 (Sarason [324]). {V} = {W*(PMg|on2):)W : g € H*}

Even though the Sarason result implies Theorem 7.5.1, we included an independent
proof of Theorem 7.5.1 since it relied on elegant elementary techniques, while Sarason’s
theorem relies on some deep operator-interpolation results.
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7.6 Notes

The Volterra operator was initially studied by Volterra [367, 368] and generalized in
various directions by Gohberg and Krein [154]. In particular, the Volterra operator belongs
to a general class of integral operators

f) o f k(. y)f ) dy
X

and these were some of the first operators studied. A well-done and readable introductory
treatment of the Volterra operator on the space of continuous functions on [0,1] is
Shapiro’s text [340]. A source for general integral operators on I? spaces is the text of
Halmos and Sunder [172].

The initial papers on complex symmetric operators are due to Garcia and Putinar [147,
148]. These two authors, along with Prodan [146], studied various connections of complex
symmetric operators to mathematical physics.

Our presentation of o(V) = {0} (Proposition 7.2.5) used the fact that

1
lim [V = 0.
n—o00

Kershaw [213] refined this decay result to

. 1
Jim = 5.

The Gelfand problem asks for a description of the invariant subspaces for the Volterra
operator. Although posed by I. Gelfand [150] and solved by Agmon [8], there are various
related problems explored by Sakhnovich [322], Brodskii [65] (the cyclic vectors for V),
Donoghue [113] (solution of the Gelfand problem for IP[0, 1]), Kalisch [210], and, as we
discussed in this chapter, Sarason [323].

Aleman and Korenblum examined a class of Volterra operators

Vf)2) = f fw)dw forae D,

on the Hardy space H? and classified their invariant subspaces [12]. The book of Gohberg
and Krein [154] explores many other types of Volterra operators.
One can also study operators of the form

(THx) = xf() + / oy
(0]

on I?[0,1]. In other words, T = M, + V is multiplication by x plus the Volterra operator.
Sarason [326] characterized the T-invariant subspaces by relating them to the ideals of
the Sobolev space of absolutely continuous functions on [0, 1] whose derivative belongs to
I2[0,1]. Ong [256, 257] studied the invariant subspaces of the operator

f»—»xf(x)+nf f)dt,
0
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where n > 1 is an integer. Cuckovi¢ and Paudyal [103] studied the analytic version of
M, + V, namely the operator on H? defined by

F@) - 2f(2) + / Fw)dw.

0

7.7 Exercises

Exercise 7.7.1. Prove that f € ranV if and only if f is absolutely continuous on [0, 1],
f' € I?[0,1],and f(0) =0

Exercise 7.7.2. Prove that the functions

Ja(x) = \/ECOS(ZH 1

form an orthonormal basis for I?[0, 1].

7z'x) forn>0

Exercise 7.7.3. Forn > 1and f € I?[0, 1], prove that

t)l’l 1

V" HE) = [ O

1
(n=1)"

Exercise 7.7.5. Prove directly that the Volterra operator V has no eigenvalues.

Exercise 7.7.4. For n > 1, prove that |[V"| <

Exercise 7.7.6. Prove that the Volterra operator is not similar to a weighted shift on 2. In
other words, show there is no invertible operator T : I*[0,1] — ¢#2 such that TVT ! = W
for some weighted shift W (see Exercise 3.6.21).

Remark: See [168] for more on operators similar to a weighted shift.

Exercise 7.7.7.

(a) Prove that

1
ImVf)(x) = 211 f sgn(t — x)f(¢)dt for f € I?[0,1].
0
(b) Compute o(Im V).

Exercise 7.7.8. Prove that |Re V| = % and [ Im V| = =
Remark: See [214] for more on this.

Exercise 7.7.9.
(a) Prove that 0 is an eigenvalue of every nilpotent operator.

(b) Prove that 0 is the only eigenvalue of a nilpotent operator.



EXERCISES | 169

Exercise 7.7.10. If T € B(¥)is nilpotent, prove that I — T is invertible and find a formula
for its inverse as a polynomial function of T.

Exercise 7.7.11. Let T be a linear transformation on a finite-dimensional vector space V
such that for each v € V, there is an integer m(v) > 1 such that T"™(v) = 0. Prove that
T is nilpotent.

Exercise 7.7.12. Prove that the bounded operator A : I?(0,0) — I?(0, o) defined by
(Af)(x) = f(x + 1) is quasinilpotent but not nilpotent.

Exercise 7.7.13. Prove that the operator A € B(¢?) defined by

_ Qy a; a as
A(ao, a;, a,, (13,...) = (0, 2—1, ﬁ, 5, 2—4,)
is quasinilpotent but not nilpotent.

Exercise 7.7.14. Prove that the operator T : H? — H? defined by (Tf)(z) = zf(z/2) is
compact and quasinilpotent. This exercise continues in Exercise 18.8.35.
Remark: This operator was explored in [113].

Exercise 7.7.15. Define (Cf)(x) = f(1 — x) for f € I2.

(a) Prove that C(af + bg) =aCf + BCg forall f,g € I?[0,1] and a,b € C.
(b) ProvethatC?=1.

(c) Prove that |Cf]|| = ||f| for every f € I?[0,1].

(d) ProvethatV = CV*C.

Exercise 7.7.16. Prove that

. (2n+1
Z v 1)27{2 8. ®g, Wwhere g,(x)= sm( > nx).
Exercise 7.7.17. Let f € I?[0,1].

1
(a) Prove that (VV*f)(x) = / min(x, y)f(y) dy.

0

1
(b) Prove that (V*Vf)(x) = / (1 — max(x, y))f(y) dy.
0

Exercise 7.7.18. Suppose T € B(H) and C is a conjugation on J such that T = CT*C.
If (u,)pe; is a C-real orthonormal basis, that is, Cu,, = wu, for all n > 1, show that
[(Tu;, ui)]ﬁ'}:p the matrix representation of T with respect to this basis, is self-transpose.

Exercise 7.7.19. Let (Cf)(x) = f(1 — x) on I?[0,1] and

Znin(x—l)

wy(x)=e¢ 2’ forn € Z.

Prove the following.
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(@) (w,)%_ is an orthonormal basis for I?[0, 1].
(b) Cw, =w, foralln € Z

(c) With respect to the basis (w,,)5%_ ., the matrix representation of V is

i 0 o L o 0 0
67 6
o - o0 —-- o 0 0
v 4 4
0 L L 0 0 0
2 2
[V]= i1 i 1 _+ -t
61 41 27 2 27 4 671
0 0 —-—— -+ o 0
27 27
0 0 0o - 0o —-—- o0
47 47
0 0 0 —— 0 0 —-—
671 671

Remark: The box denotes the (0, 0) entry.
Exercise 7.7.20.
(a) Prove that the series Zf;o(—l)” V™ converges in operator norm to (V + )7,
(b) Prove that the series fo:l(—l)"((v + I)~! — )" converges in operator norm to V.

Exercise 7.7.21. The endnotes of this chapter mentioned how Sarason characterized the
invariant subspaces of M, + V on I?[0,1], where M, f = xf on I*[0, 1], by relating this
problem to the ideals of W, the algebra of absolutely continuous functions on [0, 1] whose
derivative belongs to I*[0,1] [326]. Follow the steps in these next three problems to see
how this works.

(a) Exercise 1.10.15 asserts that W is a Hilbert space with norm
1 1
U = [ 1seorax [ 1P a.
0 0
1
Prove there exists a ¢ > 0 such that |f(x) — f(¥)| < c|x — y|2||f| for all x,y € [0,1]
andall f e W.
(b) Prove that there exists a k > 0 such that | fg|| < k|| f|llg|l for all f,g e W.

(c) Prove that (M f)(x) = xf(x) is a bounded linear operator on W.

(d) Prove thata subspace K of W is M-invariant if and only if X is a (topologically closed)
ideal of W.
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Exercise 7.7.22. This exercise continues Exercise 7.7.21.

P
(a) Define Q : I?[0,1] —» W by (Qf)(x) = f(0) + / f(t)dt. Prove that Q is bounded,
0
invertible, and satisfies M, + V = Q"1MQ.

(b) Show that the invariant subspaces of M,, + V on I*[0, 1] are in bijective and order-
preserving correspondence with the closed ideals of W.

Exercise 7.7.23. This is a continuation of Exercise 7.7.22. The closed ideals of W are of
the form W(E) = {f € W : f|g = 0}, where E is a closed subset of [0, 1]. Assuming this
fact, describe the invariant subspaces for M, + V on I?[0, 1].

Exercise 7.7.24. Define k : [0,1] X [0,1] — R by

Q-9 ifs>t,
Q-ts ifs<t.

k(s,t) = I

1

(a) Prove that A : I?[0,1] — I*[0,1] defined by (Af)(s) = / k(s, t)f(t) dt, is compact.
0

(b) Compute the eigenvalues and eigenvectors of A.

Exercise 7.7.25. Prove that the operator A : I?[0,1] — I?[0, 1] defined by

anpw=1 [ o
0

is bounded but not compact.

Exercise 7.7.26. Prove that the Volterra operator V has a square root (first discovered in
[280]) as follows.

(a) Prove that

whHe = = [ L9 g

Vado x—t

defines a bounded linear operator on I?[0,1].

(b) Provethat W2 =1V,
Remark: A result from [324] shows that +W are the only two (bounded) square roots of V.
Exercise 7.7.27. Prove that the operator W defined in Exercise 7.7.26 is compact.

Exercise 7.7.28. Give an example of an A € B(J() that is not compact, but such that A2
is compact.

Exercise 7.7.29. Show that {V} is the closure of {p(V) : p € C[z]} in the weak operator
topology.
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0.1 0.2 0.3 0.4 ofs

Figure 7.7.1 The numerical range of the Volterra operator is the region inside the curve.

Exercise 7.7.30. This problem discusses W(V) = {Vf,f) : |fll = 1}, the numerical
range of the Volterra operator V.

(a) For | f|| =1, prove that 0 < Re(Vf, f) < - and thus W(V) C{z : 0 < Rez £ %}.

!
2
(b) Prove thatifz € W(V), thenz € W(V).

(c) For each 8 € [0,27], define fy(x) = €'%* and prove that
(Vo fo) = =550 =1 + 7).

(d) Prove that W(V) contains the region bounded by the curves

1—cos6  .6—sinb
6 % +i 2

See Figure 7.7.1.

Remark: A more technical discussion shows that W (V') is equal to the set in (d) [215]. The
numerical ranges of other operators are computed in [107, Ch. 9].

7.8 Hints for the Exercises

Hint for Ex. 7.7.4: Consult Proposition 7.1.3.

Hint for Ex. 7.7.5: Differentiate both sides of Vf = Af and consider the resulting
boundary value problem.

Hint for Ex. 7.7.6: Look at ker V* and ker W*.

Hint for Ex. 7.7.16: Use the conjugation C from Exercise 7.7.15 and the formula for V*V
proved in this chapter.
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Hint for Ex. 7.7.21: For (a), note that f(x) = f(0) + fox f'@)dt.

Hint for Ex. 7.7.25: Consult Theorem 6.5.3.

Hint for Ex. 7.7.26: Use the integral version of Schur’s test from Exercise 3.6.27.

Hint for Ex. 7.7.29: Use Theorem 7.5.1 and the fact that {V'}" is closed in the weak operator

topology.






Multiplication Operators

Key Concepts: Multiplication operator, normal operator, spectral theorem, continuous functional
calculus, cyclic vector, *-cyclic vector, Bram’s theorem, commutant of a normal operator, Fuglede-
Putnam theorem.

Outline: We discuss multiplication operators M, f = ¢f on I*(u), where u is a finite
positive Borel measure on a compact set in C and ¢ is a u-essentially bounded function.
These operators represent normal operators on Hilbert spaces via the spectral theorem.

8.1 Multipliers of Lebesgue Spaces

Let (X, A, u) be a measure space, where X C C is compact, A is the collection of all Borel
subsets of X, and u is a finite positive Borel measure on X. By this we mean that u(X) < oo
and u(E) > 0 for every Borel subset E C X. The space I?(u) : = I[*(X, A, i) is the set of all
complex-valued u-measurable functions f on X such that the integral

f F@Pdu(z)

is finite. Use a similar version of the proof of Proposition 1.3.1 to define an inner product
and corresponding norm on I?*(u) by

to= [1e@ue  wd 1=( [Irerwe)’

respectively. Note that | f|| = 0 if and only if f = 0 u-almost everywhere and so, as
was done with I?[0,1] and I*(T) in Chapter 4, we equate functions that are equal u-
almost everywhere. The inner-product spaces I*(u) are complete hence they are Hilbert
spaces [319, Thm. 3.11]. A suitable modification of the proof of the Riesz-Fischer theorem
(Proposition 1.3.4) also verifies this.

Let supp(u) denote the support of u (the complement of the union of all open sets with
zero u-measure). The space L®(u) of u-essentially bounded functions on X is the set of
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all complex-valued u-measurable functions f on X such that

Ifllc =supfa>0:u{fz X :|f(2)| > a}) > 0}

is finite. The quantity | f| is the u-essential supremum of f. Since u is a finite measure,
it follows that L®(u) C L*(u).

Remark 8.1.1. Since the definition of the u-essential supremum depends on the measure
. one might argue that we should write || ||, to denote this dependence. We find this
notation cumbersome and opt for the simpler || f] . The dependence on u will always be
clear from context.

Let C(X) denote the set of complex-valued continuous functions on X endowed with
the supremum norm

[flloc = sup |f(2)].
zeX
The analogue of Proposition 1.3.6 says that C(X) is a dense subset of I?(u) (see also [319,
Ch. 3]). To discuss another dense set in I?(1), we need the following theorem.

Theorem 8.1.2 (Weierstrass approximation theorem). For a compact set X C C the
following hold.

(a) Clz,z], the set of polynomials in the complex variables z and z, is dense in C(X).
(b) IfX C R, then C|x], the set of polynomials in the real variable x, is dense in C(X).

These two forms of the Weierstrass approximation theorem yield useful dense subsets
of I2(w).

Corollary 8.1.3. Let u be a finite positive Borel measure with compact support X C C.
(a) Cl[z,z] is dense in I*(u).
(b) If X C R, then C[x] is dense in I?(u).
Remark 8.1.4. Some examples of I?(u) spaces explored in this chapter are the following:
(a) I?[0,1] = I?(1), where A is Lebesgue measure on [0, 1],
(b) I*(T) = I?(m), where m is normalized Lebesgue measure on T,
(c) I?(dA), where dA is planar Lebesgue measure on D, and
(d) I*(o), where o is the discrete measure
o0
do = Z Cn03,-
n=1

Here (c,,)p; is a sequence of positive numbers with 2:;1 cp < o0, (A2, isa
bounded sequence of complex numbers, and &, is the Dirac measure defined on all
subsets E of C by

1 ifd, €E,

5, (E) =
wE=1, ifa, ¢E.
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This next proposition identifies the multiplier algebra of I?(u).

Proposition 8.1.5. If ¢ is a u-measurable function, then pI?(u) C I*(w) if and only if
¢ € L*(w.

Proof If ¢ € L*(u), then

lefI? =/I¢’f|2dl«l < IIGDII?m/IfI2 dp = llolS 12

Thus, eI*(u) C I*(u) and hence the multiplication operator My, : I*(u) — I*(u)
defined by

M(pf =of
is well defined and bounded with
M|l < [1#]lco- (8.1.6)

Conversely, suppose that I?(u) C I?(u). Then M, » defines a linear transformation from
I?(u) to itself. If || f,, — f|| — O and ||¢f, — g|| — O, there is a subsequence (e Dzt
such that fp,, — f and ¢f, — g u-almost everywhere (Proposition 4.1.5). Thus,
g = ¢f and hence the graph of M,, is closed. The closed graph theorem (Theorem
2.2.2) ensures that M,, is bounded on I*(u). Let y denote the characteristic function
of X. Since u(X) < oo, it follows that y € I?(u) and for alln > 1,

/IGOIZ"d# = Mg xI* < IMBIPIXIP < Mg |IP"u(X).
Thus,

1
Il = ( f lpl2du) ™ < IM ().
Let n — oo and observe that ||¢||z2n¢y) = |¢lle [319, Ch. 3] and hence
llleo < IMoll- (8.1.7)
Therefore, ¢ € L®(u). [ |
Equations (8.1.6) and (8.1.7) yield the following.
Corollary 8.1.8. Ifp € L*(w), then [My|l = ¢l -

A direct consequence of Corollary 8.1.8 is that the symbol ¢ for a multiplication operator
M, is (essentially) unique.

Corollary 8.1.9. For ¢, € L™ (u), the following are equivalent.
(a) M¢ = M¢,

(b) @ = ¥ u-almost everywhere.
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The set of multiplication operators {M,, : ¢ € L®(u)} on I*(u) is a commutative
algebra. In particular,

MMy = Mgy = MyM,, for all p,7 € L®(w). (8.1.10)
The description of the spectrum of M,, requires the following definition.

Definition 8.1.11. The essential range of a u-measurable ¢ : X — C is
Ry = ﬂ {e(E)™ : E is u-measurable and u(E¢) = 0}.

Note that %, depends on u but we suppress the u since it is clear from context. One also
sees that %, is closed and that %, C ¢(X)~. Exercise 8.10.1 shows that w € %, if and
only if

ule™ '@z 1 |z—w| <r}P)>0 forallr > 0.

Moreover, ||¢|l, = max{|w| : w € Z,}. This definition enables us to discuss the parts of
the spectrum of M,,.

Proposition 8.1.12. Let ¢ € L®(u).

(@) o(My) = %,

(b) op(Mp) ={A € C : u({z : (2) =1} > 0}.
(©) Gap(My) = .

Proof (a) Notice that 1 ¢ o(M,,) if and only if AI — M, is an invertible operator on I*(u).
If f,g € I*(w) and (AI — M,)f = g, then f = (1 — ¢)~' g u-almost everywhere. Thus,
A & o(M,) if and only if M(;_g)-1 is a bounded operator on I*(u). By Proposition
8.1.5, this is true if and only if there exists an € > 0 such that |p — 4| > € u-almost
everywhere. This last statement holds precisely when 1 ¢ Z,,.

(b) Observe that AI — M, is injective if and only if the conditions f € I*(u) and (1 —
@)f = 0 u-almost everywhere imply that f = 0 u-almost everywhere. This holds if
and only if 1 — ¢ # 0 u-almost everywhere. Thus, AI — M, is injective if and only if
u{z : @(z) = 4} = 0.

(c) See Exercise 8.10.2. ]

Recall that A € B(H) is normal if AA* = A*A and selfadjoint if A = A*. Every selfad-
joint operator is normal, although the converse is false. The importance of multiplication
operators stems from the fact that they serve as models for certain normal operators. We
begin with the following results.

Proposition 8.1.13. Mg = M; for every ¢ € L®(u).
Proof For f,g € I*(u),
5.0 = [ ofdu= [ fogdu= (1. M50

Thus, by the definition of the adjoint, Mg = M. |



CYCLIC VECTORS | 179

Proposition 8.1.14. M, on I*(u) is normal for every @ € L (). Moreover, M, is selfadjoint
if and only if ¢ is real valued u-almost everywhere.

Proof From Proposition 8.1.13 and (8.1.10),
MgMy, — MuMg = MgMy, — MpMg = Mgz = Mgz = 0.

Thus, M, is normal. Next, observe that M; = M, if and only if Mz = My, which is
true if and only if ¢ = @ u-almost everywhere (Corollary 8.1.9). [ |

8.2 Cyclic Vectors

We begin our discussion with the following definition.

Definition 8.2.1. An operator A € B(¥) is cyclic if there exists an x € J such that
\/{A"x tnz0}=H.

Such a vector x is a cyclic vector for A.

Exercise 13.9.5 shows that if A has a cyclic vector, it has a set of cyclic vectors whose
linear span is dense.

A thorough discussion of the cyclicity of multiplication operators requires the Riesz
representation theorem for bounded linear functionals on C(X). If y is a finite complex
Borel measure with supp(u) C X, then the linear functional A, : C(X) — C defined by

Af) = fX fdu

is well defined on C(X). Furthermore,

N = | [ e < [ 151l < 1flelelCO) - foralt f & €0
X X

In the above, the total variation of u is defined by
|ul(X) = sup Y [u(A,)l,
n=1

where the supremum is taken over all countable Borel partitions X = | J{4,, : n > 1} of
X. It follows that A, is a bounded linear functional on C(X). Furthermore,

1ALl = sup [Au(FI = [u](X)
Ifleo=1

and such A, comprise all of the bounded linear functionals on C(X) [94, p. 78].

Theorem 8.2.2 (Riesz representation theorem). If A is a bounded linear functional on
C(X), then there is a unique finite complex Borel measure u on X such that A = A,,.
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Corollary 8.2.3. If u is a finite complex Borel measure on X, the following are equivalent.
(a) /fd/.t =0 forall f € C(X).

(b) u=0.

The next result characterizes the cyclic vectors of a certain multiplication operator.
Proposition 8.2.4. Suppose u is a finite positive Borel measure with compact support in R.
(a) M, is a cyclic operator on I?*(u).
(b) f € I*(u) is a cyclic vector for M, if and only if | f| > 0 u-almost everywhere.

Proof Observe that f € I?(w) is cyclic if and only if {pf : p € C[x]}is dense in I?*(w).
This holds if and only if the conditions g € I?(u) and {pf,g) = 0 for all p € C[x]
imply g = 0 u-almost everywhere. Suppose that | f| > 0 u-almost everywhere and

/pfgdu =0 forall p € C[x]. (8.2.5)

The Weierstrass approximation theorem implies that (8.2.5) also holds for any p €
C(X). By Corollary 8.2.3, dv = fgdu is the zero measure, in other words fg = 0 u-
almost everywhere. Since | f| > 0 u-almost everywhere, it follows that g = 0 u-almost
everywhere.

Conversely, if f = 0 on a u-measurable set A with u(4) > 0, then g = y4 € [*(u)\{0}
and fg = 0 u-almost everywhere. Therefore,

(ofog) = f pfEdu=0 forall pe Clxl,

and hence f is not cyclic for M,.. [ |

If supp(u) ¢ R, then Proposition 8.2.4 requires significant modification, since C[z] may
not be dense in I?(u). For example, if m is Lebesgue measure on T, then the closure of C[z]
in I?(m) is the Hardy space H? and not I?(m) (see Example 8.2.9 below).

Definition 8.2.6. M, on I?(u) is *-cyclic if there is an f € I?(u) such that
\/MEMES - ik > 0} = ().
The function f is a *-cyclic vector for M.

The normality of M, ensures that Mgsz = M§M£ for any integers j, k > 0 (Proposition
8.1.14).

Proposition 8.2.7. Suppose u is a finite positive Borel measure with compact support in C.
(a) M, on I?(u) is *-cyclic.
(b) f € I?(u) is a x-cyclic vector if and only if | f| > 0 u-almost everywhere.

Proof Follow the proof of Proposition 8.2.4 and use the density of C[z,Zz] in I*(u)
(Theorem 8.1.3a). |
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When is M, cyclic? The following theorem, whose proof is in [337, 378], answers this
question.

Theorem 8.2.8. For ¢ € I?(u), the following are equivalent.
(a) My, is cyclic.
(b) ¢ is injective on a set of full measure.

We encountered an example of this result in Exercise 4.5.8.
If supp(u) C R, the cyclic and *-cyclic vectors for M, are the same (since M, = M3). If
supp(u) ¢ R, they can be different.

Example 8.2.9. The constant function 1 on T is a *-cyclic vector for M on I?(T) since
\/{MéMgl ikz0h=\/{E" : nezy =11
(Theorem 1.3.9). However,
\/{Mg1 tnz0p=\/{g" n>0}=H2

which is a proper subspace of I?(T). Thus, 1 is a *-cyclic vector for M ¢ but not a cyclic
vector for M.

Example 8.2.10. Continuing with Example 8.2.9, observe that Theorem 8.2.8 guarantees
that M, on I*(T) is cyclic. However, the cyclic vectors for My are not so obvious. For f €
I3(T), Szegd’s formula [202, p. 49] says that

inf [T|Ef—pf|2dm=exp(/‘vlog|f|dm>.

pecC(§]

Select an f € I?(T)\{0} such that log |f] is not integrable; for example
1

Consequently,

& e \/IMf n>0h

Repeated applications of Szegd’s formula yield

_k
Ere\/IMif n>0) forallk>o0.
This means that

Mg nzo0p=\/tgmf : mez.
Given any g € C(T), the Weierstrass approximation theorem (Theorem 8.1.2) produces a
sequence (p, (&, &), of polynomials in & and & such that ||p,, — g| ., — 0. It follows that

Ipnf — &f1l < llpn — gl llf Il = 0. Since |f| > 0, the set {gf : g € C(T)} is dense in L*(T).
Thus, f is cyclic.
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We summarize Proposition 8.2.7 and Example 8.2.10 as follows.
Proposition 8.2.11. For f € I*(T), the following are equivalent.
(@) fisacyclicvector for M.
(b) |f| > 0 m-almost everywhere and log | f| & L}(T).

One can show that M, on I?(dA), where dA is area measure on D, does not have the
constant function 1 as a cyclic vector (Exercise 8.10.19). In fact, examples like these lead
the reader to wonder if M, on I?*(u) has any cyclic vectors. A surprising theorem of Bram
puts this issue to rest.

Theorem 8.2.12 (Bram [63]). If M,, on I?(u) is *-cyclic, then it is cyclic.

Here are some of the ingredients used to prove Bram’s theorem. The hypothesis that
M, is %-cyclic allows the use of a version of the spectral theorem for normal operators (see
Theorem 19.2.3) to prove that M, is unitarily equivalent to M, on I*(v), where v is a finite
positive Borel measure with compact support in C. Bram’s rather elaborate construction
(see also [95, p. 232]) produces a finite positive Borel measure v; on C such that

() v<y andy, <,

(b) H(n) = *(n),

_ dVl .
©) Pp=4/ o s bounded.

For any f € I*(v), it follows from the definition of 3 that f/i € I*(1;) and thus there is a
sequence of polynomials (p,)5%; such that

/

[ 1wt = seas = [ 1w = 5 fram = [

¥

Dn — i‘ dv, - 0.
Then

2
pn—é‘ dv, - 0.

Thus, ¢ is a cyclic vector for M, on I?(v). Since M, on I?(v) is unitarily equivalent to M,
on I*(u), Exercise 8.10.30 shows that M, has a cyclic vector.

Example 8.2.13. Exercise 8.10.19 shows that the constant function 1 is not a cyclic vector
for M, on I>(dA). However, it is a *-cyclic vector. Thus, Bram’s theorem implies that M,
has a cyclic vector.
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8.3 Commutant

What is the commutant {M,} = {A € B(I*(n)) : AM,, = M,A} of M,? The following
theorem aids the analysis.

Theorem 8.3.1 (Fuglede [136]). Ifp € L®(u) and A € B(I*(w)) with AM, = MyA, then
AMg = MzA.

Proof We follow a wonderful proof by Rosenblum [309]. The proof uses operator-valued

analytic functions (see Exercise 8.10.22). The hypotheses imply that AMY = MEA for

all k > 0. Using operator-valued power series, it follows that
Ay = Mo A forall A € C.
Define the operator-valued entire function by
FQ) = M pe M7,
Since A = e=Mo Ae'M5 and M, commutes with Mg, one concludes that
F(A) = elME( My 4 pAM, ) oM — AMg=AM, 4 AMp—AMg
Exercise 8.10.23 shows that the operators

U=eMrMs and v = Mo WM5

are unitary, and hence

[FDI = |UAV||
< UMNANIV (by Proposition 2.1.12b)
= |A|l (U and V are isometric).

(8.3.2)

This means that F is a bounded entire operator-valued function, so, via a similar
argument used to prove that the spectrum of an operator is nonempty (Theorem
2.4.9), F(1) = F(0) = A for all A € C. Take derivatives of F (using (8.3.2)) and set

A = 0 to obtain AMg = MGA.

Putman [276] generalized Fuglede’s theorem as follows. If T, M, N € B(¥) with M, N

Corollary 8.3.3. {M,} ={M,, : ¢ € L*(u)}.

normaland MT = TN, then M*T = TN* (Exercise 8.10.24). Fuglede’s theorem also yields
a characterization of the commutant of M, on I*(w).

Proof The D containment follows from (8.1.10). For the reverse containment, suppose

that A € B(I?(u)) and AM, = M,A. We need to produce a ¢ € L*(u) such that A =
M,,. Fuglede’s theorem (Theorem 8.3.1) implies that AMz = MzA. These two facts say

that AMp(z,E) = Mp

z5Aforall p € C[z,z]. Apply thisto y € I*(u), the characteristic
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function of supp(u), and conclude that Apy = pAy for all p € C[z,z]. The density of
C[z,z] in I?(u) (Corollary 8.1.3) says that given f € I*(u), there is a sequence (p,),
in C[z, z] such that p, — f in [>(x) norm. Passing to a subsequence and relabeling,
we may assume that p,, — f pointwise u-almost everywhere. Consequently, Af =
fAy for all f € I*(u), and hence Ay € L*(u) (Proposition 8.1.5). Furthermore,
A = My,. |

8.4 Spectral Radius

For p(z) = Z::O cz¥ € Clz] and T € B(¥), define
n
p(T) = Z e Tk,
k=0

By convention, T° = I, the identity operator on J(. The following important lemma says
that this polynomial functional calculus respects the spectrum.

Lemma 8.4.1 (Polynomial spectral mapping theorem). IfA € B(J() and p € C|z], then
a(p(A)) = p(a(A)) = {p(2) : 1 € o(A)}.

Proof Without loss of generality, suppose p is nonconstant.
(2) If A € a(A), the polynomial p(z) — p(4) vanishes at z = A and hence p(z) — p(1) =
(z = Dq(z) for some q € C|z]. Since 1 € a(A), it follows that the operator p(A) —
p(D)I = (A — AI)q(A) is not invertible. Thus, p(1) € o(p(A)) and hence p(c(A)) C
a(p(A)).
(©) Let & € a(p(A)) and let A4, 4,,..., 4,, be the zeros of p(z) — &, repeated according to
multiplicity. Then

p(2)—E=cz=A)(z—24y) - (z—4,), (8.4.2)
where ¢ # 0. If 41, 45,..., 4, & 0(A), then
p(A) — &I = c(A — L, I)(A — A1) -+ (A — A,])

is a product of invertible operators and hence invertible. This is impossible since £ €
o(p(A)). Therefore, 1; € o(A) for some 1 £ i < n, and hence & = p(4;) by (8.4.2).
Consequently, o(p(A)) C p(c(A)). [ |

Definition 8.4.3. The spectral radius of A € B(K) is

r(A) = sup |A].
Aec(A)

Since o(A) is a compact subset of C the supremum above is attained. Moreover,
Theorem 2.4.9 yields r(A) < |lA|l. Equality is attained for a diagonal operator, although
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other examples exist. Strict inequality occurs for
0 1

A= ,
0 0

for which r(4) = 0 and ||A|| = 1. The next result of Beurling [51] and Gelfand [151] is
known as the spectral radius formula.

Theorem 8.4.4 (Beurling-Gelfand). IfA € B(H), then
1
r(A) = lim ||A"|~ .
n—oo

The proof of this theorem requires some preliminaries. For A € B(¥), observe that
A = \/{A* : k > 0}is a Banach space and an algebra. Recall that .4* denotes the dual
space of A, the set of bounded linear functionals ¢ on A (Definition 2.2.4). With respect
to the norm

lell = sup |e(a),
aeA,
lall=1
A* isitself a Banach space and one can consider A** = (A*)*, the space of bounded linear
functionals on .A*, that is, the space of all ¢ : A* — C with finite norm
€]l = sup [€(p)].
pEA*
lpl=1

For a € A, one has @ € A** defined by d(¢) = ¢(a). The Hahn-Banach extension
theorem (Theorem 2.2.5) implies that the map a — @ is a linear isometry from A into
A**. We are now ready for the proof of Theorem 8.4.4.

Proof Lemma 8.4.1 ensures that 1 € o(A) implies that 2* € o(4"), so |1*| < [|A"
(Theorem 2.4.9). For A € o(A), it follows that

1
14| < liminf[|A™||» ,
n—oo
and hence
1
r(A) < liminf||A"||~ .
n—oo
To conclude the proof, it suffices to show that

1
limsup [|[A"||» < r(A). (8.4.5)

n—>oo
For ¢ € A*, consider

f(@) = o((zI —A)™), (8.4.6)
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which is analytic on C\c(A). For |z| > ||A||, consider the series development
p((zI = A)™) = p(z71 (T - z71A) ™)
=g(z1 Y (z1ay)
n=0
=271 ) pz7"A")
n=0

=z71 ) z7p(AN). (8.4.7)

n=0

This series agrees with f on |z| > ||A]|. Since f, as defined in (8.4.6), is analytic on
|z| > r(A), the series in (8.4.7) converges for all |z| > r(A).

For each fixed |z| > r(A), the convergence of (8.4.7) implies that the evaluation
functionals

Z-nAn(p) = p(z "A") forn >0,

which belong to A**, satisfy

sup |z-"A(p)| < oo forall p € A*.

n=0

Since a — @ isalinear isometry from A to A**, the principle of uniform boundedness
(Theorem 2.2.3) provides constants C(z) > 0 such that

lzmar , = |

< C(z) foralln > 0.
A**

1 1 1
This yields |A"|» < |z|C(z)n, so limsup,_,  [A"|» < |z|. Since this holds for all
|z| > r(A), the desired inequality (8.4.5) follows. [ |

8.5 Selfadjoint and Positive Operators

Recall that A € B(H) is selfadjoint if A = A*. Since real numbers are characterized by the
condition z = Z, one often thinks of selfadjoint operators as the operator analogues of real
numbers. We explore this connection further, along with positive operators, the analogues
of nonnegative numbers. We begin with a few facts about selfadjoint operators.

Theorem 8.5.1. Let A € B(() be selfadjoint.
(@) o(4) CR.

(b) o(A) = ggp(A).

(©) Al = r(A).

(d) Eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
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Proof (2) Let A = a +if3, in which a, 8 € R and 8 # 0. Then, A — AI = B —ifI, in which
B = A — ol is selfadjoint. Thus,

ItA = ADx|* = |IBx — ix|’
= (Bx — iffx, Bx — iffx)
= (Bx, Bx) — i (x, Bx) + i (Bx, X) + |B? (X, X)
= B + iB((Bx, %) — (Bx, %)) + |8 |x]
= A — aDx|* + 817 [x]

2
> 181 I,

and hence A — AI is bounded below. In particular, ker(A — AI) = {0} if Im A1 # 0. From
Proposition 3.1.7 observe that

(ran(A — AI))~ = (ker(A — AD)*)* = (ker(A — AD)* = {0} = .

Then A — AI is bounded below and has dense range, so it is invertible (Lemma 2.3.5).
Therefore, 5(A) N {z : Imz # 0} = & and hence o(A4) C R.

(b) It suffices to prove that o(A) C gg,(A); the reverse inclusion always holds (Proposi-
tion 2.4.6). Suppose that o € g(A) (note that « € R by (a)). Lemma 2.3.5 implies that
A — ol is not bounded below or A — oI does not have dense range. If A — af is not
bounded below, then a € g,,(A) by definition. If A — af does not have dense range,
then

H # (ran(A — al))~ = (ker(A — al)*)* = (ker(A — al))*,

and thus ker(A — aI) # {0}. In other words, & € 0,(4) C ggp(A).
(c) Observe that ||A%]| = |A*A| = ||A||2 (recall Proposition 3.1.5). Similarly,

At = 1A24%) = (A" A% = |47 = (JAIP)? = |A]I* (8.5.2)

Induction confirms that
ok 2k
14271 = |IAll forallk > 0, (8.5.3)
and the spectral radius formula yields
1 1
r(4) = lim [4"]» = lim 4% = lim [A] = A].
n— oo k= k=
(d) Suppose that Ax = Ax and Ay = uy, in which X,y # 0 and 1 # u are real. Then,

AXy) = (Ax,y) = (AX,y) = (X, Ay) = (X, 1uy) = 1L (X, V),

and hence (x,y) = 0 because 1 # . [ |

Definition 8.5.4. Let A € B(K).
(a) Ais positive, denoted A > 0, if (Ax,x) > 0 for allx € K.

(b) A is strictly positive, denoted A > 0, if (Ax, x) > 0 for all x € F\{0}.
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In linear algebra, the corresponding terms for matrices are positive semidefinite and
positive definite, respectively. It is usually assumed, as part of the definition of positivity,
that A = A*. Theorem 8.5.8 (below) shows this assumption is unnecessary in a complex
inner product space. The set of positive operators on J( is closed under nonnegative linear
combinations. That is, if A, B > 0 and «, 8 > 0, then aA + 3B > 0 (Exercise 8.10.13).

Example 8.5.5. A diagonal operator D, on #2 is positive if and only if A C [0, c0).

Proposition 8.5.6. IfA,B € B(¥)and A > 0, then B*AB > 0. In particular, T*T > 0 for
any T € B(¥H).

Proof See Exercise 8.10.14. [ ]
The next lemma is a uniqueness result that employs a polarization-type identity.
Lemma 8.5.7. IfA € B(K) is selfadjoint and (Ax,x) = 0 forallx € F, then A = 0.

Proof Suppose that A = A* and (Ax,x) = 0 for all x € . Then

0=(AX+y),x+y) —(AX-y).x—Yy)
= (A%, X) + (4%, y) + (Ay, X) + (Ay, y))
— ((Ax,x) — (AX,y) — (Ay, X) + (Ay.y))
=2((Ax,y) + (Ay, X))
= 4Re (AX,y)
forallx,y € H. Lety = Ax and conclude that ||Ax||2 =0forallx € H. [ |

The following selfadjointness criterion only holds for complex Hilbert spaces. Recall
that each T € B(¥) has a Cartesian decomposition

T=A+IiB,
in which A, B € B(¥() are selfadjoint; see (7.3.1).
Theorem 8.5.8. IfT € B(H)and(Tx,x) € R forallx € ¥, then T = T*.
Proof If (Tx,x) € R for all x € J(, then

(T — T*)x%,x) = (Tx,X) — (T*X,X)
=(Tx,x) — (X, TX)
= (Tx,%) — (Tx.%)
= 2iIm (TX, x)
=0.

Thus, A = %(T — T*) is selfadjoint and satisfies (Ax,x) = 0 for all x € H. The
preceding lemma ensures that A = 0 and hence T = T*. [ |
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Lemma 8.5.9. IfA,B € B(J() are positiveand A+ B =0, then A =B = 0.
Proof Forallx € ¥,
0 < max{({Ax,x), (BX,X)} < (AX,X) + (BX,X) = (A + B)x,x) = 0.
Lemma 8.5.7 ensures that A = B = 0. [ ]

Theorem 8.5.10. Let A € B(H). The following are equivalent.

(a) Ais positive.

(b) Aisselfadjoint and o(A) C [0, o).

(c) A = B*BforsomeB € B(¥).

Proof (a)= (b) If A > 0, then Theorem 8.5.8 ensures that A = A*, so 6(A) = Tgp(A)
(Theorem 8.5.1). If 1 € o(A), then there exists a sequence of unit vectors (x,)5-;
such that (A — AI)x,, — 0. Since the x,, are unit vectors we see that

[{(A = A)xp, X)) | < (AL = A)XpllIXpll = (A = A)xp|| > 0 asn — oco.
Thus,
A= A%l = 2 (%00 X0) = (A%, X,)
= ((AI — A)x,, Xp,) + (AXy, Xp,)
2 <(/1[ _A)Xn’xn> +0 (Since <AXn» Xn> 2 0)
= (AT = A)%p, X,) — .
Therefore, 1 > 0.

(b) = (c) This follows from Theorem 8.6.4 below.
(c)= (a) If A = B*B, then (Ax,x) = (B*BxX,X) = (BX, BX) = ||Bx||2 > 0. [ |

Example 8.5.11. Notice that the Volterra operator V is not a positive operator yet (V) =
{0} C [0, o0) (Proposition 7.2.5). Thus, the selfadjointness hypothesis in statement (b) of
Theorem 8.5.10 is crucial.

8.6 Continuous Functional Calculus

Our presentation follows [284]. Lemma 8.4.1 implies that p(c(A)) = o(p(A)) for all p €
C[z] and A € B(¥). For selfadjoint operators, this can be pushed much further. For p €
Clz], let
p(2) = p(2).
k

In other words, if p(z) = ag+a;z+a,z2+-+-+ayz¥, then p(z) = ag+a;z+a,2%+---+a;z*.
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Lemma 8.6.1. IfA € B(X) is selfadjoint and p € C[z], then
p(A) = sup |p(A)].
Aeo(A)
Proof If p(z) = 3, _, cxz¥ and A = A*, then
n % n
P = ()] eedk) = At = pla)
k=0 k=0

and
n ) n n .
FApA) = (Y 54)( 3 ) = D Goed™t = (F)a)
Jj=0 k=0 Jj,k=0
in which (pp)(A) is selfadjoint. Consequently,

||p(A)||2 = |p(A)* p(A)| (by Proposition 3.1.5)
= [[p(A)p(A)]
= [(Pp)AI
= r((pp)(A)) (by Theorem 8.5.1)

= sup |4
Aea(pp(A))

= sup [(Pp)(D)| (by Lemma 8.4.1)
1ea(a)

n
= sup ) >, o

+k|
A€o(A) " j k=0

n R—
= sup ) Z chk/lfxlk‘ (since o(A) C R)
A€a(A) " j k=0

= sup |p(D)P,
Aec(A)

which completes the proof. [ |

The next theorem extends the polynomial spectral mapping theorem (Lemma 8.4.1) to
a much larger class of functions.

Theorem 8.6.2 (Continuous functional calculus). Let A € B(JH) be selfadjoint and let
X = 0(A). There is a unique map ® : C(X) - B(¥) satisfying the following.

(a) @ isa x-homomorphism, in the sense that for all f,g € C(X), the following hold.
(i) ®islinear.
(i) ©(fg) = 2(f)P(Q)-
(iii) ®(1) =1L

(iv) @(f) = D(f)*.
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(b) @ is an isometry.

(c) ®(z) = A, where z denotes the identity function on X.
For f € C(X), define f(A) = ®(f).

(d) Iff >0, then f(A) > 0.

(&) o(f(A) = f(a(A)).

® 1fA@I= sup [fDI.
Aeo(A)

Proof Since o(A) C R, the Weierstrass approximation theorem (Theorem 8.1.2) ensures
that C[z] is dense in C(X). If ®,®" : C(X) — B(HK) are linear maps that satisfy (a),
(b), and (c), then ® and @' agree on the polynomials and hence on C(X) by continuity.
This takes care of uniqueness. We now prove existence.
Recall the notation

lglleo = sup|g(z)| for g € C(X).
zeX

For p € CJz], define ®(p) = p(A) and note that ®(pq) = ®(p)@(q) for all p, q € C|[z].
Lemma 8.6.1 implies that

12()l550) = 1PWllzgs, = I1Plleo- (86.3)

The next step is to extend ® to a map @ : C(X) — B(H() that satisfies (a), (b), (c).
To do this, suppose (p,,)nr; is a sequence of polynomials such that p,, — f in C(X).
Then (p,)5%; is a Cauchy sequence in C(X). Thus, (@(p,))nr; is a Cauchy sequence
in B(¥) by (8.6.3). By the completeness of B(H) (Proposition 2.1.14), ®(p,,) » T
for some T € B(J(). Suppose that (q,)sr; is another sequence of polynomials that
converges in C(X) to f, so that ®(q,,) - T’ for some T’ € B(H).Foralln > 1,

IT =TIl < IT = @(pu)ll + [2(pr) = P(gn)ll + [®(qn) = T' -

Then

limsup(||T — @(p,)ll + [®(py) — P(gn)ll + |2(qn) — T'ID)

n—-oo
= lim [T = &(p,)| + lim sup [|®(p,) — (q,)| + lim [[(q,) — T"|

n—oo

=0+Ilimsup|p, — qulle + 0

n—-oo

< limsup([pp = flleo + 1f = qnllo)

n—-oo

=0.

It follows that T = T', and therefore ®(f) = T.
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Now we need to verify (a), (b), and (c). Let (p, ), and (g, )=, be sequences in C[z]
such that p, — f and q,, —» g in C(X). Then, p,q,, — fg in C(X), so the continuity
of ® implies that

2(fg) = lim &(pqyn) = lim &(p,)®(qn) = P()P(Q)-

This verifies (a). The proofs of (b) and (c) are requested in Exercise 8.10.16.
If f > 0, then f = g? for some real valued g € C(X). Then

f(A) = o(f) = B(g*) = D(P(g) = V(Z)P(g) = D(g)* P(g) > 0,
which verifies (d). The proofs of (e) and (f) are requested in Exercise 8.10.17. [ ]

A nonnegative real number has a unique nonnegative square root. The analogue of this
is true for positive operators.

Theorem 8.6.4. IfA € B(J()and A > 0, then there exists a unique B > Osuch that A = B,

Proof If A > 0, then f(z) = 4/z is continuous on o(A) since o(A) C [0, o) (Theorem
8.5.10). The previous theorem ensures that B = f(A) > 0 and

B? = f(A)f(A) = 2(/)2(f) = O(f?) = ®(2) = A.

This verifies the existence of a nonnegative square root.

For the uniqueness, observe that if C > 0 and C? = A, then CA = C3 = AC,so C
commutes with A. It follows that p(A)C = Cp(A) for every p € C[z]. Since o(A) is a
compact subset of [0, ), the Weierstrass approximation theorem yields a sequence
(pn)%%, in C[z] that converges uniformly to 4/z on o(A). Hence,

ICB — BC|| = [ICf(A) — f(AC]
=[ICf(A) = Cpn(A) + pa(A)C — f(AC||
< ICIHI = p)A@I + 1I(pr — HANIC
=2[CIIf = Pallco = O.

Thus, C commutes with B and hence

(B—C)*B(B—C)+(B—C)"C(B-C)
=(B-C)BB-C)+C(B-0)]
=B-C)B+C)(B-C)
=(B*-CH(B-0)
=(A-A)B-C)=0.

Since (B — C)*B(B - C) > 0 and (B — C)*C(B — C) > 0 (Proposition 8.5.6), Lemma
8.5.9 ensures that they are both zero. Consequently,

0=B-C)'BB-C)—(B-C)"C(B—-C)
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=(B-0)[BB-C)—-CB-0)]
= (B—C)(B?— BC — CB + C?)
=(B-C)?, (since BC = CB)

so |[B—C|* = ||((B—C)*|| = 0since B— C is selfadjoint (see (8.5.2)). Thus,B=C. W

8.7 The Spectral Theorem

The following theorem says that every cyclic selfadjoint operator is unitarily equivalent to
a multiplication operator. It is one of the main ways in which measure theory connects
with the study of Hilbert-space operators.

Theorem 8.7.1. Let A € B(JH) be selfadjoint and let x be a cyclic vector for A. Then thereisa
finite positive Borel measure i, with supp(uy) = o(A) and a unitary U : I — I*(c(A), ty)
that satisfy the following.

(2) (UAU*f)(2) = zf(2) for all f € I*(a(A), ).
(b) Ux s the constant function 1 on a(A).
(c) 1isa cyclic vector for M, on I?(a(A), uy).

Proof For f € C(c(A)), the continuous functional calculus (Theorem 8.6.2) ensures that
f(A) is well defined and || f(A)| = ||f|l- Moreover, f(A) > 0 whenever f > 0. Thus,

o(f) = (f(A)x,x)

is well defined on C(c(A)) and

(O < IFCNIXN < 11 lloo IX]-

In other words, ¢ is a bounded linear functional on C(a(A)). If f > 0, then f(A) > 0
and hence ¢(f) > 0, that is, ¢ is a positive linear functional. The Riesz representation
theorem for positive bounded linear functionals on C(c(A)) [319, p. 42] provides a
unique finite positive Borel measure y, on o(A) such that

o) = f fduy forall f € Co(A)).

We claim that the map

fAx - f, (8.7.2)

defined initially for f € C(o(A)), extends to a unitary operator from F onto
I*(o(A), duy). First note that the image of x under this map is the constant function
1in I*(c(A), uy). Next recall the map ®(f) = f(A) from Theorem 8.6.2. Since

If X = (@(f)x, B(f)x)
= (D(f)*D(f)x, %)
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= (e(Ho()x.x)
= (@(1f1x.x)
= (IfPx.x)

= / If1? dptx
o(A)

2
= 1f1z200a), 1) *

it follows that the map from (8.7.2) is well defined and isometric on C(o(A)). Since x
is a cyclic vector for A, it follows that {f(A)x : f € C(c(A))}~ = H,s0(8.7.2) extends
to an isometry U : J€ — I?(c(A), 4y). Note that

C(0(A)) C ran U C I2(o(A), y).

The range of an isometry is closed (Exercise 4.5.9) and C(c(A)) is dense in I*(c(A), uy)
(Proposition 1.3.6). Therefore, ranU = I?(c(A), ), and hence U is a unitary
operator from ¢ onto I*(c(A), tiy).

If f € C(c(A)), use the fact that ®(z) = A to conclude that

UAU* f = UA(f(A)x) = Ul(zf)A)X] = zf = M, f,

the operator of multiplication by z on I?(c(A),uy). Since C(o(A4)) is dense in
I*(c(A), uy), it follows that UAU* = M, which completes the proof. [ |

Below is a commutative diagram that illustrates the spectral theorem.

I

I

LZ (/"x) Tz> LZ (/"x)

Not every selfadjoint operator is cyclic; consider the identity operator on a Hilbert space
of dimension two or more. In the general setting, the cyclic subspace generated by a given
x € Hand A € B(H)is

[x] = \/{X,AX,AZX,...}.
This is a closed subspace of  which is A-invariant since A is bounded and
Alx]=A (\/{X,AX,AZX,...}) = \/{Ax,Azx,A3x,...} C [x].

The next lemma follows from the definition of selfadjointness and the definition of a cyclic
subspace (Exercise 8.10.32).

Lemma 8.7.3. Let A € B(¥() be selfadjoint and x € F. Then the restriction of A to [X] is
a cyclic selfadjoint operator with cyclic vector x.
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Zorn’s lemma and Theorem 8.7.1 provide us with the following theorem. See Chapter
14 for a formal treatment of direct sums of Hilbert spaces and operators.

Theorem 8.7.4. Let A € B(H) be a selfadjoint operator on a separable Hilbert space J(.
Then there is an orthogonal decomposition

N
3 = P

n=1
in which N € N U {co}, such that the following hold.
(a) Each ¥, is A-invariant.
(b) Thereisanx, € J{, which is cyclic for Ay, , thatis, 7(,, = {p(A)x, : p € C[x]}".

(c) There exist finite positive Borel measures u,, on R with supp(u,) C o(A) and a unitary
operator

N
U - @R pn)
n=1
such that (UAU*f),, = zf,, where we write f € EB]::l (R, u,) as f = (]ﬁ)ﬁ-"zl.
Moreover,

Ux, = (0,0,...,0,1,0,..),
in which Ux,, has the constant function 1 in the nth component.

The issue of uniqueness is subtle and handled with multiplicity theory [24, 94], which
is beyond the scope of this book. The previous theorem permits most proofs concerning
selfadjoint operators to start with the phrase “without loss of generality, suppose that A =
M, on I*(X, ), where u is a finite positive Borel measure on a compact X C R.”

There is a more general spectral theorem for normal operators (see Theorem 19.2.3).
In that theorem, one replaces “cyclic vector” with “s-cyclic vector,” meaning that one
considers orbits under nonnegative powers of the normal operator N and its adjoint N*
simultaneously. The spectrum o(N) of a normal operator N is a compact subset of C; hence
one considers compactly supported, finite, positive, Borel measures on C.

8.8 Revisiting Diagonal Operators

For a bounded sequence A = (4,)5%, of complex numbers, recall from Chapter 2 the
diagonal operator D, acting on €2 by

Dpe, =1,e, forn>0.

Note that Dxe, = Een, and hence D, commutes with its adjoint, that is, D, is a normal
operator. Here is a spectral theorem for D, .
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Theorem 8.8.1. Suppose A = (1,)5%, is a bounded sequence of distinct complex numbers.
If u is the discrete measure on C defined by

o0

then Dy, is unitarily equivalent to M, on I?(u).

Proof Define U : ¢% — I*(u) by

Uc = Z(n + e,y where ¢ = (¢,)p0

n=0

and note that

Uiz = 3 leal?(n + 12u(iA,))

so U is isometric. If f € I[?(u), then

f= i fA)xa, and i F@nl? < o0
Z n) {2} ~ (n+ 1)
n=0 n=0
If
f(4n)
Cn Py forn > 0,

thenc = (¢,)52, € ¢?and Uc = f.Thus, U is isometric and surjective, hence unitary.
Finally,

UDpe, = U(A,e,) = 1,Ue, = A,(n + 1))({/1,,} =M,Uey.
Thus, D, is unitarily equivalent to M, on I?(u). [ |

If (wy,)nro is any positive summable sequence, then

S
M= Z wnaxl,,
n=0

is also a measure such that D, is unitarily equivalent to M, on I*(u). The theorem above
has some important consequences.
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Corollary 8.8.2. If A is a bounded sequence of distinct complex numbers, then D, is cyclic.

Proof Theorem 8.8.1 says that D, is unitarily equivalent to M, on I?(u). Note that D, is
cyclicif and only if M, is cyclic (Exercise 8.10.30). By Proposition 8.2.7, M,, is %-cyclic.
Now apply Bram’s theorem (Theorem 8.2.12) to see that M, is cyclic. [ |

One can also prove the corollary above by using Theorem 8.2.8. Here are a few examples
of invariant subspaces for diagonal operators.

Example 8.8.3. For any bounded sequence A and E C N, consider
% ={a=(a,)2, €¢:a,=0forneE}.

One can show that ¢ is a Dy-invariant subspace. Note that £, = ¢* and €5, = {0}. Also
note that ¢% is invariant for D} and hence is a reducing subspace for D,.

Is every invariant subspace for D, of this form? In general, the answer is no.
Example 8.8.4. Suppose A = (1,1, 1,,43,...), where (1,,))>, is a bounded sequence. Then
M ={(c,—¢,0,0,..) : c € C}

is an invariant subspace for D, that is not of the form ¢ for any E C Nj,.

One might think that the invariant subspaces for D, that are not of the form ¢ arise
from repetitions in the sequence A. In fact, one can create a bounded sequence A of distinct
complex numbers for which there exists an invariant subspace of D, that is not of the form
¢% (see Exercise 8.10.36). Here is a positive result about reducing subspaces.

Theorem 8.8.5. Suppose A is a bounded sequence of distinct complex numbers. Then every
reducing subspace for Dy is of the form €% for some E C N,

Proof 1f

(o]
Uc = Z (n+ Depxin,y
n=0
is the unitary operator from Theorem 8.8.1 and M is a reducing subspace for D4, then
F = UM is reducing for M, on I*(u). If P is the orthogonal projection of I?(x) onto
F, then Exercise 4.5.16 says that PM, = M,P. Corollary 8.3.3, which describes the
commutant of M, says that P = M, for some ¢ € L*(u).

Since P is an orthogonal projection, it is selfadjoint and idempotent. Thus, Mg, =
M, and hence ¢ is real valued (Proposition 8.1.14). Now use the fact that M, is
idempotent to see that M. = Mé = M. Corollary 8.1.9 now yields @* = ¢. Since
u is discrete, u-almost everywhere (normally needed in the statements above) means
everywhere. Since ¢?> = ¢ and ¢ is real valued, it follows that ¢ = y; for some
W C A.Thus, F = PI?(u) = ywI?(u) = {f € I?() : flwe = 0}. The formula for U
ensures thatif E={n : 1, € W¢}, then M = U~'F = ¢3. [}
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Corollary 8.8.6. If A is a bounded sequence of distinct real numbers, then every invariant
subspace of Dy, is of the form €% for some E C Ny,

The proof of Theorem 8.8.5 yields the following more general result.

Corollary 8.8.7. If i is a finite positive Borel measure with compact support in C, then each
reducing subspace for M, on I*(w) is of the form yy I*(w) for some W C C. If supp(u) C R,
then every invariant subspace for M, is of the form yy,I?*(u) for some W C R.

Note that the previous corollary generalizes Theorem 4.3.3.

What is special about the invariant subspaces £%4? Observe that when n ¢ E, then e, €
¢% and e,, is an eigenvector for D,. Furthermore, ¢4 = \/{e, : n & E}. In other words, £%
is an invariant subspace consisting of the closed linear span of the eigenvectors contained
in it. Such invariant subspaces have the spectral synthesis property. In Exercise 8.10.36, we
give an example of a cyclic diagonal operator that has invariant subspaces without the
spectral synthesis property.

8.9 Notes

The spectral theorem for selfadjoint operators was developed by Hilbert [196], Riesz [301],
and Hellinger [190].

There are other versions of the spectral theorem that correspond to the familiar one
for selfadjoint matrices. For a selfadjoint n X n matrix A, list the distinct eigenvalues
A4, 5,...,44 and orthogonal projections R, B,..., P; onto the corresponding eigenspaces
ker(A — A1), for 1 < j < d. Then

d
A= 48
Jj=1
Here
d
D B=I and BB =0fori#j. (8.9.1)

Jj=1

There is a version of this formula for general selfadjoint operators:

A= f Adp,
a(A)

where P, is a certain family of orthogonal projections known by Hilbert as Zerlegung
der Einheit (a resolution of the identity) that enjoy a continuous analogue of (8.9.1).
An excellent source for the spectral theorem for normal operators is Conway’s book [94,
Ch.9].

There is a version of the spectral theorem for unbounded selfadjoint operators that
arises in mathematical physics and the study of Schrédinger and Sturm-Liouville oper-
ators [283].
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The multiplicity theory for normal operators, due to Hahn and Hellinger, determines
when two normal operators are unitarily equivalent [1, 24, 222]. For a Borel measure v with
compact support in C, consider the space I?(v, #2) of f : C — €2, thatis, f(1) = (f,(1))%;
such that each component function f;, is Borel measurable and

171 = ([ 1@z )’ < o

The corresponding inner product is

m9=fmugwﬂww.

Let €j2 denote the set of sequences a = (ay )y~ such thatay = 0fork > jandletn : C -
N U {oo} be a Borel function, the multiplicity function. Now consider the subspace 2 of all
f € I*(v, €2) such that f(1) € €fl(/1) v-almost everywhere. The operator M = M (v, n) on

2 defined by (M f)(1) = Af(4) is bounded. Furthermore, (M* f)(1) = 2 f(A4) and thus M
is normal. The Hahn-Hellinger theorem says that if N € B(J() is normal, then there is
a measure v and a multiplicity function n such that N is unitarily equivalent to M on 2.
Furthermore, M (v, ny) is unitarily equivalent to M(v,, n,) if and only if »; and v, have the
same sets of measure zero and n; = n, 1;-almost everywhere (or v,-almost everywhere).
The papers [1, 222] give a recipe for computing v and n for certain multiplication operators
M,, on I*(u). If the multiplicity function n is identically equal to 1, then 2 = I*(v) and
(Mf)(A) = Af(4) becomes what was presented in this chapter.

The spectral theorem can also be stated in terms of multiplication operators. If N is
a normal operator, there is a measure space (X, A,u) and a ¢ € L*(u) such that N is
unitarily equivalent to M, on I2(w). In this generality, X is a compact Hausdorff space
(not necessarily a subset of C). If N is cyclic, then X can be taken to be a subset of C and
o(z) = z.

A description of the commutant of M, on I?(m), where m is Lebesgue measure on T, is
given in [68].

8.10 Exercises

Exercise 8.10.1. Let ¢ € L*(u), where u is a finite positive Borel measure on a compact
set X C C. Recall the definition of %, from 8.1.11.

(a) Prove that w € %, if and only if u(¢~'({z : |z — w| < r})) > 0 forall r > 0.
(b) Prove that Z, C p(X)~.

(c) If ¢ is continuous on X, prove that %, = ¢(X).

(d) Tty € L*(u) and 3 = p u-almost everywhere, then %, = Z,,.

(©) lglle = max{jw| : w € Zy}.
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Exercise 8.10.2. For ¢ € L*(u), prove that o,,(M,,) = %, using the following steps. Let
M = M, and let A € a(M)\c,(M).

(a) Use the normality of M to prove that (M — ADf]|| = |[(M* — zI)fH for all f € I2(w).
(b) Prove that M — AI is injective.
(c) Prove that M — AI has dense range.

(d) Prove that M — Al is an invertible linear transformation from I?(u) onto its range but
its inverse does not extend to a bounded operator on I?(u).

(e) Prove there exists a sequence (g, )5 in ran(M —AI) such that their pre-images under
M — AI have unbounded norm.

(f) Use Proposition 8.1.12 and the above to prove that g,,(M) = o(M).
Exercise 8.10.3. For ¢ € L®(u)and ¢ > 0,let X, = {z : |p(2)| > ¢}.

(a) Prove that M, is compact on I*(w) if and only if )(«:\XWLZ (w) is finite dimensional for
every € > 0.

(b) Suppose u is a measure which has no atoms, in other words, u({A}) = 0 for each
A € C. If M, is compact, prove that ¢ is zero u-almost everywhere.

Exercise 8.10.4. Let ¢ € L®(u). Prove there is a sequence of invertible multiplication
operators on I?(u) that converge to M.

Exercise 8.10.5. Let u and v be finite positive Borel measures having compact support in
R. Let A denote M, on I?(1) and let B denote M, on I[?(v). Show that A and B are unitarily
equivalent if and only if u and v have the same sets of measure zero.

Exercise 8.10.6. Prove that the operator A on I2[0,1] @ I?[0,1] defined by A(f,g) =
(M, f, M,g) has no cyclic vectors.

Exercise 8.10.7. Let I and J be intervals in R and suppose ¢ : I — J is differentiable
and bijective with differentiable inverse. Show that (U f)(x) = f(p(x))|¢’(x)|"/? defines a
unitary operator from I?(I) onto I?(J) such that UM, = M, U, where M, is multiplication
by @ on I?(J).

Exercise 8.10.8. Let V denote the Volterra operator from Chapter 7. Use Theorem 8.4.4
to prove that o(V) = {0}.
Remark: See Proposition 7.2.5 for another proof.

Exercise 8.10.9. Prove that A € B(¥() is normal if and only if |Ax|| = ||A*x]|| for all
x e XH.

Exercise 8.10.10. Prove thatif A € B() is unitary, then o(A) C T. Is the converse true?

Exercise 8.10.11. If N € B(¥() is normal, prove thatker N = ker N* and ran N = ran N*.
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Exercise 8.10.12. Let A € B(H) be normal.

(a) Prove that A is selfadjoint if and only if o(4) C R.

(b) Prove that A is an orthogonal projection if and only if o(A4) C {0, 1}.

(c) Prove that A is unitary if and only if 0(4) C T.
Exercise 8.10.13. Prove thatif A,B € B(#),A,B > 0,and a,f3 > 0, then aA + B > 0.
Exercise 8.10.14. Prove thatif A,B € B(H)and A > 0, then B*AB > 0.

Exercise 8.10.15. Find a real inner product space € and an A € B(H)\{0} such that
(Ax,x) = 0 for all x € (.

Exercise 8.10.16. Verify statements (b) and (c) of Theorem 8.6.2.
Exercise 8.10.17. Verify statements (e) and (f) of Theorem 8.6.2.

Exercise 8.10.18. Give an example of a finite positive Borel measure ¢ with supp(u) ¢ R
such that C[z] is dense in I*(w).

Exercise 8.10.19. Prove that the constant function 1 is not a cyclic vector for M, on
I*(dA), where dA is area measure on D.

Exercise 8.10.20. Revisit the convolution operator X;, on £2(Z) from Exercise 3.6.30.
(a) Prove that X}, is a normal operator.

(b) Prove that X,, is unitarily equivalent to a multiplication operator My on an L2(w)
space. Identify the measure ¢ and the symbol .

Exercise 8.10.21. Aswe have seen in this chapter, the cyclic and *-cyclic vectors for M, on
I2(w) are not necessarily the same. Similarly, the invariant and reducing subspaces are not
necessarily the same. However, in certain circumstances, they are. Lavrentiev [95] proved
that if K C C is compact, C\K is connected, and the interior of K is empty, then given any
continuous function f on K and an € > 0, there is a polynomial p such that

rznealglf(Z) -p(@)| <e.

(a) Prove thatif the measure u is supported on a compact set K with the properties above,
then the cyclic and -cyclic vectors for M, on I?(u) are the same.

(b) Similarly, prove that the invariant and reducing subspaces for M, on I?(u) are the
same.

Exercise 8.10.22. Certain proofs in this chapter (Theorem 8.3.1 for example) used
the concept of an operator-valued analytic function. The purpose of this exercise is to
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complement that discussion. Let 7 be a Banach space and let Q be an open subset of
C. A function f : Q — Vis analytic on Q if

f(2) = f(z0)
z

f'(z0) = lim -

zZ-2Z,
exists for every z, € Q, and weakly analytic on Q if

i PUE) = 9/ (z0)

z-2g zZ—2Zy
exists for every z, € Q and every ¢ € V*.
(a) Prove that f is analytic if and only if f is weakly analytic.

(b) Prove that if f is analytic on Q and K C Q is compact, then sup || f(2)|| < .
zek

(c) Ifzy € Q, f is analytic on Q, and y is a positively oriented simple closed continuous
piecewise C? curve that contains z, in its interior, then

o) = 3 P L
1
where the integral above is defined as the norm limit of its Riemann sums.
Exercise 8.10.23. Let A, B € B(H).
(a) If AB = BA, prove that eA+B = ¢4¢B,
(b) If A is selfadjoint, prove that ™ is unitary.
(c) If A is normal, prove that eA~4" is unitary.

(d) Prove that e?4 is an operator-valued entire function.

Exercise 8.10.24. Let T,M,N € B(J() be such that M and N are normal and MT = TN.
Prove that M*T = TN*.
Remark: See also Theorem 14.2.10.

Exercise 8.10.25. If A, B € B(¥) are normal and AB = BA, prove that AB is also normal.

Exercise 8.10.26. If A € B(¥) is normal, prove that A* = f(A) for some continuous
function f.

1
Exercise 8.10.27. Suppose A € B(K) is a contraction. Prove that (I — AA*)2A = A(I —
1
A*A)2 as follows.

1 1
(a) LetS = (I —AA")2 and T = (I — A*A)2. Prove that S?A = AT?.

(b) Prove that p(S?)A = Ap(T?) for all p € C[z].
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(c) Prove that f(S*)A = Af(T?) for every f € C[0,1].
(d) Choose an appropriate f to prove the desired identity.

1 1
Remark: The identity (I — AA*)2A = A(I — A*A)2 appears in the proof of Lemma 14.7.3,
which concerns the Julia operator.

Exercise 8.10.28. A,B € B(¥() are similar if there an invertible S € B(¥) such that
AS = SB. Use the steps below to show that if A and B are normal operators that are
similar, then they are unitarily equivalent.

(a) Prove that (SS*)A(SS*)™! = A.

1
(b) Write S* = UP, where U is unitary and P = (SS*)2 (Theorem 14.9.15). Prove that
PAP™1 = A.

(c) Prove that B = S*A(S*)™! = UPAP'U*.
(d) Prove that A is unitarily equivalent to B.

Exercise 8.10.29. The proof of Bram’s theorem (Theorem 8.2.12) says that M, on I?(u) is
cyclic with a bounded cyclic vector f.

(a) Prove that |f| > 0 u-almost everywhere.

(b) Consider the set &7 of products fg, where g € L*®(u) and |g] > 0 u-almost
everywhere. Prove that every fg € & is cyclic for M,,.

(c) Prove that &2 is dense in I?(u).
Remark: See [129] for more on this.

Exercise 8.10.30. Suppose A € B(H) is unitarily equivalent to B € B(X). Prove that A
is cyclic if and only if B is cyclic.

Exercise 8.10.31. Prove the Hellinger-Toeplitz theorem: if A is a linear transformation on
a Hilbert space ¢ such that (Ax,y) = (x, Ay) for all X,y € J, then A is bounded.

Exercise 8.10.32. Let A € B(J) be selfadjoint and x € F. Prove that the restriction of A
to [x], the A-invariant subspace generated by x, is a cyclic selfadjoint operator with cyclic
vector X.

Exercise 8.10.33. Let N € B(J() be normal.
(a) Prove that |[(N*N)¥| = |[N¥|? for all k > 0.
(b) Use this to prove that (V) = ||N||, where r(A) denotes the spectral radius of A.

Exercise 8.10.34. If N € B(¥() is normal and 1 ¢ o(N), prove that

1

1@ =N = Freay:
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Exercise 8.10.35. The multiplicity function for a diagonal operator D, is my(1) =
dim ker(D, — AI). Prove that two diagonal operators are unitarily equivalent if and only if
their multiplicity functions are the same.

Exercise 8.10.36. This problem shows that if the eigenvalues of D, are not all real, the
invariant subspaces for a diagonal operator D, can be complicated. Use the steps below to
prove there is a sequence A of distinct complex numbers such that not every D -invariant
subspace is of the form €% = {(a,)%, € ¢? : a, = Ofor all n € E} for some E C N,. This
construction comes from [371].

(a) Aresult from [71] says there exists a sequence A = (4,,)5%, of distinct points in D and
an absolutely summable sequence (w, )%, of nonzero complex numbers such that

o0
_ W  _
ﬂ@_Zb_lﬂ_01mmueD

Assume this result and prove there are a,b € #2 such that ajg ;= w forall j > 0.
[so] o0
(b) For z € D, prove that f(z) = zN( > wnAI,‘{).
N=0 n=0
(c) Use (a) and (b) to prove that (DY a,b) = 0 for all N > 0.

(d) Prove thate, ¢ \/{Dﬁ’a : N >0}foralln > 0.

(e) Prove that the invariant subspace \/{Dﬁ] a : N > 0} is not of the form ¢% for any
E CN,.

Remark: Constructions like the one in (a) date back to Borel [57, 58].

Exercise 8.10.37. Perform the decomposition in Theorem 8.7.4 for a diagonal operator
D,, where repetitions in A are allowed.

Exercise 8.10.38. Recall the weighted shift W on ¢2 defined by We,, = a,e,,; from
Exercise 3.6.21. If «,, — 0, prove that (W) = {0}.

Exercise 8.10.39. The notation A2 refers to the unique positive square root of a positive
A € B(H) (Theorem 8.6.4). This exercise illustrates that “the square root of an operator”
does not make sense in general. We have already seen this phenomenon in Exercise 5.9.33.

0 1
A= .
0 0

Prove that there does not exist any 2 X 2 matrix B such that B> = A.

(a) Let
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(b) Let

A= 1 0 ,
0 -1

which is selfadjoint but not positive. Prove that there are precisely four 2 X 2 matrices
B, none of which are positive, such that B> = A.

(c) Prove that there are infinitely many 2 X 2 matrices B such that B> = 0

Exercise 8.10.40. Prove that A € M, is a square root of the identity matrixI € M, ifand
only if A = PDP~1, where P € M, is invertible and D € M, is diagonal with eigenvalues
contained in {—1, 1}.

Exercise 8.10.41. Prove that if A € B(K) is selfadjoint, then there isa B € B(¥K) (not
necessarily selfadjoint) such that B2 = A.

8.11 Hints for the Exercises

Hint for Ex. 8.10.9: Consider the selfadjoint operator S = AA* — A*A.
Hint for Ex. 8.10.25: Write C = AB. Then

CC* = (AB)(AB)* = (AB)(BA)* = (AB)(A*B*) = A(BA*)B*.

Hint for Ex. 8.10.28: For (a), use Fuglede’s theorem.

Hint for Ex. 8.10.31: For ||x| < 1, consider the bounded linear functional A,(y) = (4x,y)
and consult the uniform boundedness principle.

Hint for Ex. 8.10.33: For (a), look at (8.5.3) and note that N*N is selfadjoint.

Hint for Ex. 8.10.34: Use Exercise 8.10.33.






The Dirichlet Shift

Key Concepts: Properties of the Dirichlet shift: norm, adjoint, spectrum, 2-isometry, commutant,
invariant subspaces, cyclic vectors.

Outline: This chapter explores the operator-theoretic aspects of the shift operator
(M,f)(z) = zf(z) on the Dirichlet space. In particular, we examine the 2-isometry
property and discuss the invariant subspaces, cyclic vectors, and commutant of the
Dirichlet shift.

9.1 The Dirichlet Space

For an analytic function f on D, the Dirichlet integral of f is
1 )
p() = 1 [ I @PdAG) 0.1
D

where dA is planar Lebesgue area measure. The Dirichlet integral has an appealing
geometric interpretation: it is 1/z times the area of f(D), counting multiplicity (see
Exercises 9.9.3 and 9.9.4). Polar coordinates provide the following useful formula for the
Dirichlet integral (see Exercise 9.9.1).

Proposition 9.1.2. If f(z) = Z:;O a,z" is analytic on D, then
o
D(f) = D) nla,. (9.1.3)
n=1

See Exercise 9.9.10 for another formula for D(f). Observe that D(f) = 0 if and only if f
is a constant function.

Definition 9.1.4. The Dirichlet space D is the set of analytic f on D with D(f) < .
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The Cauchy-Schwarz inequality shows that D is a vector space under function addition
and scalar multiplication. Since

> Janl < . nlan? = D(f), (9.1.5)
n=1 n=1

it follows that 2 is contained in the Hardy space H? (Definition 5.3.3) with proper
inclusion (Exercise 9.9.5). The norm on 2 is defined by

11 = ( X e+ DlanP)’. (9.1.6)
n=0

The n + 1 above ensures that | f|| = 0 if and only if f = 0. Notice that | f||* = || f||? + D(f)
(recall the Hardy space norm from Proposition 5.3.9) and that the corresponding inner
product is

(f-8) =D, (n+1)ayby, (9.1.7)
n=0

where f(z) = Z;o:o a,z" and g(z) = Z:;O b,,z" belong to D. In fact, the following results
imply that D, equipped with the inner product (9.1.7), is a reproducing kernel Hilbert
space. We first establish completeness. The following lemma is used below, and again in
the next chapter, to show a given inner-product space is a Hilbert space.

Lemma 9.1.8. Suppose V and W are normed vector spaces and that the linear transforma-
tion U : V — W isisometric and surjective. If W is complete, then so is V.

Proof Suppose (v,,)$2, is a Cauchy sequence in V. If w,, = Uv,,, the isometric assump-
tion implies that (w,,)5; is a Cauchy sequence in W. The completeness of W implies

that w,, converges to some w € W. Since U is surjective, w = Uv for some
v € V. Observe that U~ is also isometric and hence v,, = U™lw, - U™lw = v.
Consequently, V is complete. [ |

Corollary 9.1.9. The Dirichlet space is a Hilbert space.

Proof The discussion above shows that D is an inner-product space so it suffices to show
that D is complete. The map Y, - a,z" — (Vn+1 an):::o from D to £ is isometric
and surjective. Since ¢ is complete (Proposition 1.2.5), the previous lemma implies
that D is complete. [ |

Exercise 9.9.2 provides the following useful orthonormal basis for D.

Proposition 9.1.10. The sequence

(m)n=o

is an orthonormal basis for D. In particular, the polynomials are dense in D.
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Next we find the reproducing kernel for D (Exercise 9.9.7).

Proposition 9.1.11. Let

1
— log — if 1,z € D\{0},
ky(z)=1 Az <1—/12)
1 if A or z is zero.

Forall A € Dand f € D, the following hold.

(a) k; € Dand

1

ot = | A e TR AP0
1

ifA=o.
) fD) ={f k.
© 1fFI < 1f Mk

Although the emphasis of this chapter is on the shift operator on the Dirichlet space,
the Dirichlet space itself is a fascinating class of analytic functions that is not as well
understood as the closely related Hardy space (Chapter 5). For example, the Blaschke
condition (Theorem 5.4.8) completely describes the zeros of Hardy space functions. For
the Dirichlet space, however, the zero sets are more subtle and are not completely
characterized. It is also the case that the radial limits of functions in the Dirichlet space
exist more often than for typical functions in the Hardy space.

9.2 The Dirichlet Shift

The shift on the Hardy space was explored in Chapter 5. This section explores the shift
f — zf on the Dirichlet space.

Proposition 9.2.1. If f € D, then zf € D. Furthermore, the operator M, : D — D
defined by

M, f)(z) = zf(2)
is bounded and |M,|| = V2.

Proof For f(z) =Y, a,z" € D,

M f11? = Z(n + Dlap* = Z (n+2)la,|*.

Since
n+2
n+1

<2 foralln >0
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it follows that [M,f]> < 2 Y. (n + Dla,|* = 2| f|. This estimate shows that

M1 = sup IM:f1] < V2.

To obtain equality above, observe that ||1]| = 1 and |z| = \/5 From here it follows
that M| > M, 1] = |lz]| = V2, and hence [ M, ]| = V2. |

The operator M, is the Dirichlet shift. Since

n+2
M, fn = n_+1f”+1 foralln > 0,

where
Zl’l
Vn+1

is the orthonormal basis from Proposition 9.1.10, the matrix representation of the Dirichlet
shift with respect to (f,,)peo is

fn(2) =

0 0 0 0
\/? 0 0 0
1
0 % 0 0 (9.2.2)
0 0 \/? 0
3

Compare this to the matrix representation (5.1.3) of the shift on the Hardy space. In
particular, the Dirichlet shift is a weighted shift in the sense of Exercise 3.6.21. This next
proposition shows that the Dirichlet shift is expansive.

Proposition 9.2.3. ||M,f|| > | f| forall f € D.

Proof For f(z) = Zf:o a,z" € D,

oo <)
IM_fI? = 3 (n+2lanl* > 3 (n+ Dlan* = | fI%,
n=0 n=0

which completes the proof. |

The adjoint of M, on D is more complicated than the adjoint of the unilateral shift on
H? (Exercise 5.9.14).

Proposition 9.2.4. Ifg(z) = E:;O b,z" € D, then

n+2

(Mzg)(z) = Z o

n=0

b1z (9.2.5)
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Proof For f(z) = Z::’:O a,z" € D, use the inner product in (9.1.7) to deduce
(f,Mz8) = Mf,g)

= 2 (n+1)ay 1 b,
n=1

= Z (n+2)a,bpi
n=0

=0+ Dan( 52 by
= (.,

where

[so]
n+2
h(z)= ), n__l_lbn+lzn

n=0

The definition of the Dirichlet norm from (9.1.6) shows that h € D. This verifies the
adjoint formula in (9.2.5). [ |

Although the spectrum of the Dirichlet shift is the same as the spectrum of the unilateral
shift on H?, the proof is more complicated.

Proposition 9.2.6. For the Dirichlet shift M, the following hold.
(@) o(M;)=D".
(b) 0,(M,) = @.
(©) ggp(M) =T.

Proof (a) A generalization of Proposition 9.2.1 (see Exercise 9.9.12) yields

[ME| =Vk+1 fork>o0. 9.2.7)

The spectral radius formula (Theorem 8.4.4) says that

1 1
sup |A] = lim [M¥|x = lim(k+1)x* =1
Aeo(M;) k—co k—oo

and hence o(M,) C D~. For the reverse inclusion, let A € D and observe that
WU-M)DC{feD: f(A)=0}&D.

Thus, AI—M, is not invertible and hence D C o(M,). Since the spectrum of a bounded
operator is compact (Theorem 2.4.9b), the observations above imply that o(M,) =
D~.

®) I (A —M,)f = 0, then (z —A4)f(z) = 0forall z € D and, since f is an analytic
function, f = 0. Thus, 0,(M;) = @.
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(c)For &£ € T and n > 2, define

—n—-1

gn(z) = Ci(l +EZ + gzzz 4+ e+ %’ Zn_l),

where

n(n + 1));

1
ca=(1+2+3++n): =( -

Note that each g,, is a unit vector in D and
%’ —n
(M, — &g = —=(1—§ 2.
n

Thus,

1 : 1
IV, — EDgall = (2422 = (L=5) (14 2)2 0

and hence £ € g,,(M,). It follows that T C 0,,(M,).If A € D and f € D, then

(M = ADS| 2 M f1| = AL
2

£ = 1A (Proposition 9.2.3)
=@ = ADISII-
Consequently, infy 7, [|[(M; —ADf|| > 14| > 0 and hence 1 & 0,,(M,). Therefore,
Uap(Mz) =T. .

Proposition 9.2.8. For the adjoint M of the Dirichlet shift, the following hold.
(a) o(Mz)=D".

(b) o,(M3) =D.

(©) ggp(Mz) =D".

Proof (a) c(M3) = D~ follows from o(M,) = D~ (Proposition 3.1.6).

(b) To compute the eigenvalues of My, proceed as in (5.5.5) and use the reproducing
kernels k;(z) from Proposition 9.1.11 to show that Mjk; = Zk,l. Thus, D C ,(M3).
Since D C 0,(M3) C o(M3) = D7, it suffices to show that no § € T is an eigenvalue
for M;. To the contrary, suppose that g(z) = Z:ozo b,z" € D\{0} and ¢ € T with
Mjg = £g. Then (9.2.5) says that

) -
Z ——bpz" =€ Z b,z".
n=0 n+l n=0

Compare the coefficients of z" to obtain the recurrence

n+1

_—T- >
n+2bn foralln > 0,

by = 5



THE DIRICHLET SHIFT IS A 2-ISOMETRY | 213

which implies

gl’l
n+1
In light of (9.1.3), g cannot belong to D unless b, = 0, thatis, g = 0. Thus,no £ € T

is an eigenvalue of M.
(c) Mimic the proof in Proposition 5.2.4. [ |

= by foralln>1

9.3 The Dirichlet Shift is a 2-isometry

Recall from Exercise 3.6.13 that A € B() is an isometry if and only if A*A—1T = 0. Unlike
the unilateral shift on the Hardy space, the Dirichlet shift M, is not an isometry. Indeed,
1]l = 1 but |M,1]| = ||Iz| = \/3 In fact, Proposition 9.2.3 says that M, is expansive. An
operator A € B(H) is a 2-isometry if

AA2 —24*A+1=0,
or equivalently,
[A%x|? — 2||Ax||> + |x|> =0 forallx € .

These types of operators and their generalizations are studied in [5, 6, 7]. The next result
says that the Dirichlet shift is a 2-isometry. A generalization of the Dirichlet shift is used
to model certain 2-isometries (see [293] and the discussion below).

Proposition 9.3.1. The Dirichlet shift is a 2-isometry.

Proof Forany f(z) =Y, a,z" € D,

o0
IMEFI? = > (n+ k +Dla,* forallk >0
n=0

Therefore,

IMZFI? + £ = Z @2n+4)a,* = 2|M, fI,
n=0

and hence M, is a 2-isometry. [ |

Every 2-isometry A € B(J() is expansive in the sense that ||Ax| > |[x| for everyx € F
(Exercise 9.9.19). Proposition 9.2.3 verifies this directly for the Dirichlet shift. Without
getting too far into the details, we briefly introduce a class of spaces related to 2 such that
the shift M, on these spaces model a wide class of 2-isometries. Given a finite positive
Borel measure u on T, the function

|z?
./.K 5 du(§) forz €D,
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is the Poisson integral of u on D (see Chapter 12). Observe that B, > 0 and E, is harmonic
on D (Theorem 12.1.6). Use B, as a weight to define the harmonically weighted Dirichlet
integral

D=1 [ r@PRE@AD. ©32)

The corresponding harmonically weighted Dirichlet space D,, is the space of analytic
functions f on D such that D,(f) < co. One defines a norm on D,, via

115, == 1f I + Du(f)-

If 4 is normalized Lebesgue measure mon T, then B (z) = 1 for all z € D (Exercise 12.5.2)
and hence the space D, is the classical Dirichlet space D.

Although harder to prove, M, on D, is a well-defined bounded operator and a 2-
isometry. Since a nonzero analytic function cannot have a zero of infinite order,

(\MzD, = {o}. (9.3.3)

n=0

An operator T € B(J() which satisfies the analogue of (9.3.3), namely

() 7 = {0},

nz0

is analytic. The polynomials are dense in D, [293, Cor. 3.8] and hence

\/ M1 :n >0t =D,

Therefore, M, is a cyclic operator (recall Definition 8.2.1) with cyclic vector 1. To sum-
marize, M, on D,, is a cyclic analytic 2-isometry. The following theorem says that, up to
unitary equivalence, these are all of the analytic cyclic 2-isometries.

Theorem 9.3.4 (Richter [293]). Any cyclic analytic 2-isometry on a Hilbert space is
unitarily equivalent to M, on D, for some finite positive Borel measure won T.

Notice the pattern continued by this theorem. Beurling represented a certain operator as
the shift on the Hardy space (Chapter 5); Kriete and Trutt represented the Cesaro operator
as M, on a space of analytic functions (Theorem 6.4.7); and Richter represented certain
2-isometries as M, on a Dirichlet-type space.

9.4 Multipliers and Commutant

An analytic function ¢ on D such that 9D C D is a multiplier of D. Proposition 5.5.4
says that the multipliers of H? are H®, the set of bounded analytic functions on D. For
the Dirichlet space, the multipliers are more complicated. The proof of the next result is
similar to that of Proposition 5.5.1.
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Proposition 9.4.1. If ¢ is a multiplier of D, then ¢ belongs to H® and the corresponding
multiplication operator M, on D is bounded.

Since the constant functions belong to D, the multipliers of D are a subset of D, and
indeed, a proper subset of D (Exercise 9.9.18). Although every multiplier of D belongs to
H®, the converse is not true [121, Thm. 5.1.6]. The multipliers of D remain mysterious
and lack a simple satisfactory description. However, if one is looking for specific examples
of multipliers, Exercise 9.9.17 shows that if 9" € H®, then ¢ is a multiplier of D.

Essentially the same proof that was used for the shift on the Hardy space (Corollary
5.6.2) describes the commutant of the Dirichlet shift.

Proposition 9.4.2. For A € B(D), the following are equivalent.
(a) AM, = M,A.

(b) A = M, where ¢ is a multiplier of D.

9.5 Invariant Subspaces

Beurling’s theorem (Theorem 5.4.12) says that if M is a nonzero S-invariant subspace of
H?,then Mn(SM)* is one dimensional and is spanned by an inner function. Furthermore,
[M N (SM)*], the S-invariant subspace generated by M N (SM)*, equals M. Richter and
Sundberg proved a version of Beurling’s theorem for the Dirichlet space.

Theorem 9.5.1 (Richter-Sundberg [295, 296]). Suppose M is a nonzero M,-invariant
subspace of D. Then M N (M,M)" is one dimensional and is the span of a multiplier of
D. Furthermore, [M N (M,M)*] = M.

A more precise description of M comes from the next theorem.

Theorem 9.5.2 (Richter—Sundberg [295, 296]). Let M be an M,-invariant subspace of D.
Then M N (M,M)* is spanned by a multiplier ¢ of D and M = ¢D,,, where dv = |p|*dm.

9.6 Cyclic Vectors

The cyclic vectors for M, on D (recall Definition 5.7.1) are somewhat mysterious and,
although there is a conjecture as to what they might be (see [70, 121, 315] and the end
notes for this chapter), the problem of characterizing the cyclic vectors remains open. Let
us prove a few results about the cyclic vectors for M, on D.

Proposition 9.6.1. If f € D is cyclic for M, then f is cyclic for the unilateral shift S on H>.

Proof If f € D is cyclic for M,, then there is a sequence of polynomials (p,,)$>; such
that p,,f — 1in the norm of D. By (9.1.5), |p.f — 1l» = |pnf — lllg2 and it follows
that p,f — 1in H2. Thus, 1 belongs to W, the closed linear span in H? of {S"f :
n 2 0}. Due to the S-invariance of W, it follows that every polynomial belongs to W.
Consequently, f is cyclic for S on H2. [ |
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Below is a specific example of a cyclic vector for the Dirichlet shift.

Example 9.6.2. f(z) = 1 — z is a cyclic vector for M, on D. We follow a proof from [37]
(see also [38]). Exercise 9.9.21 gives an alternate proof. For n > 1, let

n

1 "y
=Y = and p,(z)= (1 - —) zk-1,
oy &=\ 5,

k=1
Then,
n
(1= 2)pa(2) = 1—Z)Z<1__>
k=1 hn
n n
I’lk) ( hk)k
= zZ 1-—]z
é( hy kgl hn
n n+1
_S (o e e M1 ke
-2 (=) -2 05
n h
=(1-2)+ ( )Zk_l_<1__n)n
)2 z
n
1 1 k1
=1 khZ
Therefore,
n 1 1 - 1 1
1-(1- 2 = k—1+1 = LT h
== 2p @ = |3 et Z< )k2h2 Ak
Note that
n
1
_Z::E = logn.

Hence, (1 —z)p,(z) — 1in D. This shows that f(z) = 1 —z is a cyclic vector for M, on D.

Although the proof that the reader is encouraged to explore in Exercise 9.9.21 might
seem easier, we included the proof above since it explicitly computes polynomials p,, such
that [|[(1 — z)p, — 1| = O.

9.7 The Bilateral Dirichlet Shift

For f € I*(T) with Fourier expantion f = > f(n)£", define

n=-—oo

1l = ( 3 (il + V1fm) )"

n=—oo
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The space {f € I?(T) : ||flly < oo} is the harmonic Dirichlet space (not to be confused
with the harmonically weighted Dirichlet space D, mentioned earlier). There is also a
shift operator (M;g)(§) = £g(£) defined on & that is bounded and invertible, although not
unitary like M¢ on I*(T). Using logarithmic capacity, one can describe the M¢-invariant
subspaces M C & such that Me:M = M as the set of functions which vanish (quasi-
everywhere) on some subset E C T (see [294] and the endnotes of this chapter). This is
the analogue of Wiener’s theorem (Theorem 4.3.3) for £. The invariant subspaces M such
that MM C M do not yield as simple a description as they did for I2(T) (Theorem 4.3.7).
In fact, they can be very complicated [314].

9.8 Notes

The Dirichlet integral gets its name from the Dirichlet problem: one is given a smooth
function f : T —» R and asked to find a harmonic u : D — R that is continuous on D~
such that u|y = f. Here harmonic means that 82u + 5)2,14 = 0. We explore this problem in
Chapter 12. One approach to solving this problem is via the Dirichlet principle: minimize

the Dirichlet integral
2 2
f<|6xv| +|oy0[ ) dA
D

over all smooth functions v on D~ with v|y = f. In a series of lectures, Dirichlet showed
three things. First, any v that is harmonic on D with v|y = f minimizes the Dirichlet
integral. Second, any u with u|y = f that minimizes the Dirichlet integral is harmonic.
Third, there is only one function with the prescribed boundary values that minimizes
the Dirichlet integral. The paper [158] contains an excellent historical survey, along with
extensions of the Dirichlet problem and principle to more general planar domains.

Good sources on the Dirichlet space are [22, 121, 315]. Much of our presentation on the
Dirichlet space focuses on the Dirichlet shift and not on the function-theoretic properties
of D. The two are closely related and one cannot understand the operator theory without
knowledge of the function theory of the ambient space.

In his doctoral thesis [50], Beurling explored the properties of analytic functions with
finite Dirichlet integral. An important paper of Beurling from 1940 [52] shows that if
f € D, then lim,_, - f(rf) exists for every £ € T, except possibly for a set of logarithmic
capacity zero. Authors sometimes use the term quasi-everywhere to mean “everywhere
except possibly for a set of logarithmic capacity zero.” The notion of logarithmic capacity
used in Beurling’s paper was originally developed by de la Vallée Poussin [365] who
defined the capacity c(E) of a closed set E C T as ¢(E) = e~V where

. 2
V(E) = inf f f log 2 du(&) du(),
koJrJT |§ - §|
in which the infimum is taken over all probability measures u on E. If ¢(E) = 0, then
m(E) = 0. However, the Cantor set (in the circle) has Lebesgue measure zero but positive
logarithmic capacity. Thus, radial limits of generic functions in the Dirichlet space exist at
“more” points than functions in the Hardy space.
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This chapter discussed the M,-invariant subspaces of 2. With a notion of logarithmic
capacity, one can show that if E C T is of positive capacity, then

Dy = {f €D : lir{1 f(r&) = 0 for quasi-every § € E}
r—1-

is an invariant subspace. If u is an inner function, then uH? N Dy is also an invariant
subspace (which might be the zero subspace). This leads to the question, are all of the
invariant subspaces of the form uH? N Dg? Brown and Shields explored the cyclic vectors
for M, [70]. The Brown-Shields conjecture asserts that the cyclic vectors for the Dirichlet
shift are the outer functions in the Dirichlet space whose radial limits are nonzero quasi-
everywhere. Some partial results are found in [122, 163, 189].

If M, and M, are invariant subspaces for the unilateral shift S on H?, then S| », 1s
unitarily equivalent to S|y, (Exercise 5.9.20). Richter [292] explored this property in the
Dirichlet space. The problem was fully resolved by Guo and Zhao in [164] where they
proved, for invariant subspaces M, M, of D, that M, |»¢, is unitarily equivalent to M, |5,
if and only if M; = M,. To do this, they showed that if ¢ € M; N (M, M;)* and U :
M, — M, is unitary with UM,|ar, = M,|ac,U, then ¢ = Up € M, n (M, M,)*. Using
various properties of the local Dirichlet integral and some results from a paper of Richter
and Sundberg [297], they proved that ¢ = ci for some constant c. Since ¢ generates M,
and 3 generates M, (Theorem 9.5.1), it follows that M; = M,.

Fields medalist J. Douglas [114] derived the important formula

FO -1 [

el ] 1P

which is used to explore properties of functions in the Dirichlet space (Exercise 9.9.10).

The Dirichlet shift is a 2-isometry (Proposition 9.3.1) and 2-isometries connect to a wide
class of operators that are inspired by the spectral theorem for selfadjoint operators. Helton
[193] explored the n-symmetric operators. These are the T € B(J() such that

n
Z(—l)k(Z)T*(”‘k)Tk =0.
k=0

A 1-symmetric operator is selfadjoint and the spectral theorem represents it as M, on an
I*(u) space, where y is a finite positive Borel measure on o(T) € R (Theorem 8.7.1). For
other n, these operators are represented by M, on a space of functions on R with inner
product

dm($)dm(§é) forall f € D,

N —
(fror= 2, | fPWduy,
i,j=0
where y;; are compactly supported finite positive Borel measures on R and N depends
on n. Agler [4], and Agler and Stankus [5, 6, 7], extended these results to the n-isometric
operators:

Z( 1)k< )T*ka =0.

k=0
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If n = 1 this condition becomes I — T*T = 0, that is, T is isometric. When n = 2, this
condition becomes I — 2T*T + T*2T? = 0, that is T is a 2-isometry. There is a version
of the representation theorem for certain 2-isometric operators (Theorem 9.3.4) for n-
isometric operators that involves M on the completion of the set of analytic polynomials
with respect to the inner product

U@=fmﬁﬁ@w«x
T

where L is a certain positive differential operator of order n — 1.

9.9 Exercises

Exercise 9.9.1. For an analytic function f(z) = Z:;O a,z" on D, prove that
(8]
D(f) = ), nlanl*.
n=1

n

(s3]
Exercise 9.9.2. Prove that ( ) is an orthonormal basis for D.
n=0

n+1

Exercise 9.9.3.

(a) Prove that the Dirichlet integral of an injective analytic function f on D is 1/7 times
the area of f(D).

(b) What happens if f is analytic but not injective?

Exercise 9.9.4. If p : D — Dand f : D — C are analytic, prove that

DY ep) =2 [ 1fwingw)daw

»(D)
where n,(w) is the cardinality of {z : ¢(z) = w}.
Exercise 9.9.5. Prove that the inclusion 2 C H? is proper in two ways.
(a) Use power series.
(b) Use the Dirichlet integral.

Exercise 9.9.6. The containment D C H? follows from (9.1.5). Consider the inclusion
operator i : D — H? defined by i(f) = f for f € D.

(a) Prove that i is bounded, has dense range in HZ, but is not surjective.
(b) Find i* and prove that it is injective.

(c) Banach’s closed range theorem [320] says that T € B(H) has closed range if and only
if T* has closed range. Assuming this fact, is i* surjective?

(d) Doesi* have dense range?
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Exercise 9.9.7. Prove that the function

ky(z) = 7 log( ), where 4,z € D,

1-1z

is the reproducing kernel for D as follows.

(a) Prove that k; € D for every A € D.

(b) Prove that f(1) = (f,k,) foreveryl € Dand f € D.
Exercise 9.9.8. This is a continuation of Exercises 9.9.2 and 9.9.7.

(a) Ife,(z) = z”/\/n_+1, prove that k;(z) = Zn —o0 en(/l)en(z) forall z,A € D.

(b) Prove that the formula for k;(z) above is independent of the choice of orthonormal
basis (e, )p=q for D.

Exercise 9.9.9. Prove that
m9=ggfﬂ@mywmm@ forall f.g € D.
T
Exercise 9.9.10. Prove Douglas’ [114] formula

¢ [irves [ [|1=4]

as follows (see [121] for more).

dm($)dm(€) forall f € D

(a) Prove thatforn > 0,

ff d@wma=£m£m

(b) Use Parseval’s theorem to prove that

f(et(s+t)) f(e”) dt ds
-1 272w’

27 <3
. . dt ~ ,
[ 1o - giep st = 3 e - 1P
0 n=0
(c) Prove that

) 2
e —1| ds
els —1| 2m

/Zn
0

(d) Combine the above to obtain Douglas’ formula.
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Remark: There is a corresponding formula for the harmonically weighted Dirichlet inte-

gral (9.3.2):
= |
TJT

Exercise 9.9.11. For an analytic function f on D, prove that f € D ifand onlyifzf € D.

FO-fof

= dm($)du(8).

See [295] for details.

Exercise 9.9.12. For the Dirichlet shift M,, prove that |[M¥|| = Vk + 1 forall k > 0.
Exercise 9.9.13. Prove that the range of the Dirichlet shift M, is closed.

Exercise 9.9.14. Prove that the self commutator M; M, — M, M} of the Dirichlet shift M,
is compact.

Exercise 9.9.15. For a function f(z) = ZT;O a;z* € D and n > 0, consider the linear

n
transformation S,, : D — D defined by (S, f)(z) = Z aizk.
k=0

(a) ProvethatS, € B(D)and ||S,||=1foralln > 0.
(b) For each polynomial p prove that S,,p = p for all n > deg p.

(c) For each fixed f € D, prove that ||S,.f — f|| = 0as n — oo. In other words, S,, — I
in the strong operator topology.

(d) Does S,, — I in operator norm?
Exercise 9.9.16. For a function f(z) = Z;:;O axz¥ € D and 0 < r < 1, consider the

linear transformation A, : D — D defined by (A, f)(z) = Z aprkzk.
k=0

(a) ProvethatA, € B(D)and |A,|| =1forallo<r < 1.
(b) For each polynomial p, prove that |A,p— p| > Oasr — 1~.

(c) Foreach f € D, prove that |A,f — f|| > 0asr — 1. In other words, A, — I in the
strong operator topology.

(d) Does A, — I in operator norm?

Exercise 9.9.17. If ¢’ € H*®, prove that ¢ is a multiplier of D.

o0

Exercise 9.9.18. Let f(z) = Z

n=2

Zn
n(log n)3/4

(a) Provethat f € D.

(b) Prove that f2 & D.
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(c) Conclude that D is not an algebra.
(d) Prove that the set of multipliers of D is a proper subset of D.

Exercise 9.9.19. Prove thatevery 2-isometry T € B(¥ ) satisfies |Tx| > ||x| forallx € H
as follows.

(a) Use the definition of a 2-isometry to prove that
[T*x|? — | T*'x|? = | Tx|? — |x||* forallk > 1.
(b) Prove that | T"x]|?> — ||x||> = n(| Tx|? — |x]|?) for all n > 1.

1
(c) Deduce that |Tx|? > ||x||> — E”XHZ foralln > 1.

Exercise 9.9.20. Prove that if p is a polynomial whose zeros lie outside D, then p is a
cyclic vector for the Dirichlet shift.

Exercise 9.9.21. Example 9.6.2 showed that f(z) = 1—z isa cyclic vector for the Dirichlet
shift. Here is an alternate proof of this fact.

(a) Ifg L z"(1 — z) for all n, prove that (n + 1)g(n) —(n+ 2)g(n+ 1) = 0foralln > 0.
(b) Conclude that g = 0.
Remark: See [70] for further examples of cyclic vectors.

Exercise 9.9.22. Here is an operator on D that is related to the Cesaro operator from
Chapter 6. Define

z 1
(Af)2) = % / F(s)ds— f f(s)ds forf € D.
1 0
(a) Prove that both integrals in the definition of Af converge for all f € D.

(b) Consider Dy, = {f € D : f(0) = 0} and use the norm | f|> = % / |f/|*dA on Dy to
D
prove that (z" /ﬁ);’l"zl is an orthonormal basis for D,,.

(c) Find the matrix representation of A on D, with respect to the basis above and use
this representation to prove that A is bounded on D,,.

Remark: See [286] for various properties of this operator.

Exercise 9.9.23. This is a continuation of Exercise 9.9.22. Use Exercise 9.9.8 to find a
formula for the reproducing kernel k;(z) for D,. In other words, find a function k;(z)
such that k; € D, for all A and such that f(1) = (f,k;) for all f € Dy and 1 € D. The
inner product on D, is the one that comes from the norm given in Exercise 9.9.22.
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9.10 Hints for the Exercises

Hint for Ex. 9.9.1: Use polar coordinates and Parseval’s theorem.

Hint for Ex. 9.9.3: For (a), consider the Jacobian of f.

Hint for Ex. 9.9.6: For (b), use the formula for inner products based on Taylor coefficients.
Hint for Ex. 9.9.7: Consider

%log(ﬁ)=1+%+u§+---.

Hint for Ex. 9.9.13: Consult Proposition 9.2.3.
Hint for Ex. 9.9.17: If ¢’ is bounded, show that ¢ is also bounded.
Hint for Ex. 9.9.22: For (c), use Schur’s test.
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The Bergman Shift

Key Concepts: Bergman space, Bergman shift (spectrum, adjoint, commutant), invariant subspace,
invariant subspace of finite codimension, wandering subspace, index of an invariant subspace.

Outline: The study of the shift (M, f)(z) = zf(z) on the Bergman space A? (the space of
analytic functions on D that are square integrable with respect to area measure) starts
out like that of the Hardy and Dirichlet shifts. Many of the same properties hold (the
point spectrum is empty, the spectrum is the closed unit disk, the point spectrum of the
adjoint is the open unit disk). However, the invariant-subspace structure is dramatically
different. With the Hardy and Dirichlet shifts, dim(M n (M,M)') = 1 for every nonzero
invariant subspace M. For the Bergman shift, any dimension is possible. Nevertheless, M
is generated by M N (M, M)! as with the Hardy and Dirichlet shifts.

10.1 The Bergman Space

The Bergman space A? is the set of analytic functions f on D such that

I71= (7 [ i7paa) (10.11)

is finite. In the above, dA is two-dimensional planar Lebesgue measure and the 1/7 is a
normalizing factor that ensures ||1|| = 1. A computation with polar coordinates (Exercise

10.7.1) shows that if f(z) = Z:;O a,z", then
o lanl?
2 n
If17 =2 ntl (10.1.2)
n=0
Since
§ < z |a,|? (10.1.3)
=X nil »
n=0 n+l n=0

it follows that H> C A?; the containment is strict (Exercise 10.7.4).
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Since A?> C I?(dA), and because analyticity is preserved under function addition and
scalar multiplication, A? is a vector space. In light of (10.1.1), one can define an inner
product on A% by

¢o=7 [ rada

For f(z) = Z:ozo a,z" and g(z) = Z;ozo b,z" in A%, this inner product can be written as

o)

(f-8) =2,

n=0

anbn

——y (10.1.4)

Like its cousins, the Hardy and Dirichlet spaces, the Bergman space is a reproducing
kernel Hilbert space. We first prove completeness and then discuss the reproducing kernel.

Proposition 10.1.5. A? is a Hilbert space.

Proof Since A? is an inner-product space, it suffices to check that A2 is complete. First
observe that the map

) . a, .
2 an" e (=)
n=0 n+1/n=0
is an isometric and surjective linear transformation from A? onto #2. Since #? is

complete, Lemma 9.1.8 implies that A2 is also complete. [ |

The following result (Exercise 10.7.3) completes the verification that A2 is a reproducing
kernel Hilbert space.

Proposition 10.1.6. Let
ky(z) = —— ford,zeD. (10.1.7)
1 —1z)?
For f € A2 and A € D, the following hold.

(a) k; € A% and ||k = m
®) F() = (f.ky).
© If@) < ||f||1_+1|2.

The Bergman space A2 has a convenient orthonormal basis (Exercise 10.7.2) that can
be used to derive the formula for the reproducing kernel (Exercise 10.7.33).

Proposition 10.1.8. The sequence (\'n+ 12", is an orthonormal basis for A%. In
particular, the polynomials are dense in A2.
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The Bergman space is a rich class of functions with many mysterious properties that
distinguish it from the Hardy and Dirichlet spaces. For example, functions in the Hardy
or Dirichlet spaces have radial boundary values almost everywhere on T. Bergman-space
functions need not possess radial boundary values at all (see Exercises 10.7.7 and 10.7.8).
In addition, the zero sets of A? functions may never be completely understood. Since the
focus of this book is operator theory, we restrict our study to the Bergman shift. For further
function-theoretic properties of A%, consult [120, 187].

10.2 The Bergman Shift

Since
A1 = % [ lef@raa < 2 (supiaP) [ IfPaa= 7 [ 15raa = isiP
T D T zeD D T D
for all f € A%, the Bergman shift M, : A> — A? defined by

M, f)(2) = zf(2)
is bounded on A% and

M| = sup M, f| <1 (10.2.1)

s
Ifl=1
The next result establishes equality in (10.2.1).

Proposition 10.2.2. |M,| = 1.
Proof We have just seen in (10.2.1) that | M,|| < 1. The functions
@) =vn+12z"

are unit vectors in A? (Proposition 10.1.8) and

n+1
IM, full> = (n+ D)|2")* = wi 0l asn-
Therefore,
M| = sup [Mfull =1,
n=0
and hence |M,| = 1. u

Since (f;,)%, is an orthonormal basis for A% and

n+1

M, fn = l’l_+2 Jas1s
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the matrix representation of M, with respect to this basis is

0 0 0 0
- 0 0 0

0\/?00
3

0 0 - 0

Compare this matrix representation with those for the shifts on the Hardy space (5.1.3)
and the Dirichlet space (9.2.2). In particular, the Bergman shift is a weighted shift, in the
sense of Exercise 3.6.21.

The shift on the Hardy space is an isometry, that is, |M, f|| = | f|| for all f € H?, and
the Dirichlet shift is expansive, that is, |[M, f|| = | f|| for all f € D. For the Bergman shift,
(10.2.1) shows that M, is a contraction.

Corollary 10.2.3. |M,f| < |fll forall f € A%

The spectral properties of the Bergman shift are similar to those of the Hardy and
Dirichlet shifts. We begin our discussion with a lemma that is used several times in this
chapter. For fixed 4 € D, define the difference quotient

f@) - f)
iy

2
e for f € A°.

(Qf)=z) =
The numerator of Q, f has a zero of order at least 1 at z = A, so Q, f is analytic on D.

Lemma 10.24. I[f1 € D and f € A2 then Quf € A% Furthermore, the linear
transformation f ~ Q, f is a bounded operator on A.

Proof Let f € A*> and 1 € D. Fixr > 0 such that B,(1) = {z : |z — 4| < r}~ C D. Since
f € A? is analytic on D, the function Q, f is bounded on B,(1). Then

/ 1Quf2dA = f 1QufI2dA + f Q1 PdA. (102.5)
D B (4)

D\B,(4)
The first term on the right side is bounded above by

wr? sup (@GP

z€B,(4
and the second term on the right side is bounded above by

2 if@-rrda.

D\B,(1)
The triangle inequality, along with the fact that the constants belong to A%, show
that both integrals on the right side of (10.2.5) are finite. Thus, Q;f € A2. The

boundedness of the linear transformation f ~ Q;f on A? follows from the closed
graph theorem (Theorem 2.2.2). [ ]
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Proposition 10.2.6. The Bergman shift M, satisfies the following.
(a) G(Mz) =D".
(b) Up(Mz) =0

© Uap(Mz) =T

Proof (a) For || > 1,
sup —— L
b lZ—A AT

SO
1 \Lf(z)\sz < _|f|? forall f € 42
T Jylz—=2 S (A= 1)2 ’

It follows that the operator f ~ (z — 2)7'f is bounded on A? and is the inverse of
M, — AL Consequently, o(M,) C D~.For 1 € D, (M, —ADA?> C{f € A% : f(A) =
which is a proper subset of A%, and hence M, — Al is not invertible. This proves that
D C o(M,). Since the spectrum of an operator is closed (Theorem 2.4.9), we conclude
that D~ C o(M,), so equality follows.

(b)IfA € Cand f € A% with (M, — AI)f = 0, then (z — 1)f(z) = 0 for all z € D and
hence f = 0. Thus, 0,(M,) = @

(c) Let &€ € T and for each n > 0, define

—_ -2 _n
fu(2) = Cl(1+§z+§' zz+...+§ Z"_l),
n
where

1
—(1+1+1+ +l)E
B 23 n)
One can check that each f;, is a unit vector in A? that satisfies
—n-1

M, — EDf, = —é(g )

Consequently,

n+2
I, = EDfull = ) =25
Since ¢, — oo, it follows that ||(M, — &I) fn|| — 0. Thus, § € g,,(M,) which implies
that T C g,,(M,). For each 1 € D, Lemma 10.2.4 implies that Q; € B(4%). In other
words,

LI D) - gy < e

HfII 1|
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Therefore,
11l = llRa(z — DIl < Qallliz = DIl = lalllMz — ADSI,
and hence
sup 01 = A0S > o> °
Consequently, 1 & d,,(M,) and hence ,p(M;) = T. ]

We begin our study of the adjoint of M, with the following formula.
Proposition 10.2.7. Ifg(z) = Z:):o b,z" € A2, then

Mze)(2) = ),

n=0

n+1

ISR

Proof If f = Z;T:o a,z" € A%, use (10.1.4) to see that

an—lbn
n+1

<sz’g> = Z

n=1
o0

_ z nbp
= ont 2

o1 n+1
= ’;)n—_'_lan(n—_l_zbnﬂ)

={f,h),
where
= n+1
I’l(Z) = Z n—+2bn+lz”.
n=0
It follows from (10.1.2) that & € A? and hence h = M} g. [ ]

Recall that k(z) = (1 — Zz)‘2 is the reproducing kernel for A% (Proposition 10.1.6).
Notice that

(Miky)(z) = (Miky, k) = (ky, zk,) = Ak,(1) = Ak;(z) forall A € D.
Mimicking the proof of Proposition 5.2.4 leads to the next result.
Proposition 10.2.8. The adjoint M of the Bergman shift satisfies the following.
(a) o(M3)=D".
(b) o,(M3) =D.

(¢) ogp(Mz)=D".
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10.3 Invariant Subspaces

The invariant subspaces for the Bergman shift are extremely complicated and a complete
description of them is a long-standing open problem. We begin with a description of the
more tractable invariant subspaces.

If q is a polynomial, g4? is invariant under M,, as is its closure (qA?)~. It may turn out
that (qA?)~ = A?. For example, this happens if all the roots of q lie in {z : |z| > 1} or if
they all lie in T (see Lemma 10.3.3 below). If all the roots of g lie in D, we will show that
gA? is closed and the quotient space

A[qA* = {f +qA® : f € A%}
has dimension equal to the number of roots of q (counting multiplicity).
Definition 10.3.1. The codimension of an M,-invariant subspace M of A? is dim(A%/M).
The following is the main theorem of this section.

Theorem 10.3.2 (Axler-Bourdon [29]). For an M,-invariant subspace M of A%, the
following are equivalent.

(a) M has finite codimension d.
(b) There exists a polynomial q of degree d, with all of its zeros in D, such that M = gA>.

The proof needs a technical lemma. For £ € T, Example 5.7.6 shows that (z — £)H? is
dense in H2. The same holds for A%.

Lemma 10.3.3. (z — £)A? is dense in A% forany £ € T.

Proof Example 5.7.6 provides a sequence (p,,)S%, of polynomials such that (z—¢)p,, — 1
in H2 norm. Then (10.1.3) implies that ||(z — &)p, — 1|42 < |(z = E)p, — 1|2 = O.
Thus, 1 € ((z — £)4%)~. The M,-invariance of ((z — £)A%)~, along with the density of
the polynomials in A% (Proposition 10.1.8), shows that ((z — £)42)~ = A2. [ ]

‘We are now ready for the proof of Theorem 10.3.2.

Proof We follow [29]. First suppose that the roots of g are distinct points wy, w,,..., Wy
in D. If g has roots of higher multiplicity, we can apply the argument below with the
appropriate number of derivatives (Exercise 10.7.13). We first show that

qA’ ={f € A* : f(w) =0, 1<j<d}.

The C containment follows by inspection. For the D containment, use the difference
quotient operator Q,, from Lemma 10.2.4 to see that if f € A? and f (wj) = 0 for
1< j <d, then Qy, Qy, Qu, -+ Qu, f € A% Since

le sz Qw3 def = 2f
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for some nonzero constant ¢, the D containment follows.
To study dim(A?/qA%), take any h € A% and observe that g = Qy, Q, - Qu,h € A%
Direct computation shows that

cq
where c is a nonzero constant and q; is a polynomial of degree less than d = deggq.
Therefore, h 4 gA? = q; + gA%, which means that the cosets z/ +gA? for0 < j < d—1
span A2/qA?. Since deg q = d, these cosets are linearly independent and hence

dim(A%/qA%) = d. (10.3.4)

We now show that every M, -invariant subspace M of codimension d is equal to gA? for
some d degree polynomial g whose zeros lie in D. Define T € B(A%/M) by

T(f + M) =M, f + M.
To see that T is well defined, suppose f; + M = f, + M. Then f; — f, € M and
T(h+M)=zA+M=zfr, +z(fi — L)+ M =zf, + M = T(f, + M).

Note the use of the M, -invariance of M and the fact that f; — f, € M.
For any polynomial p, the M,-invariance of M implies that

p(T)(f + M) = pf + M. (10.3.5)

Since dim(A?/M) = d < oo, the cosets z/ + M for 0 < j < d are linearly dependent.
Thus, there is a polynomial p, (not identically zero) such that

d
po(z) = Z cjzj eEM.
Jj=0
Then (10.3.5) implies that po(T)(f + M) = pof + M = M for all polynomials f.
Consequently, po(T) = 0 on A%/M. Factor p, as p, = qh, where q is a polynomial
whose roots are in D and h is a polynomial whose roots are in C\D. If |w| > 1,
Proposition 10.2.6a implies that (z — w)A? = A%, Lemma 10.3.3 ensures that (z — £)A?
is dense in A? for every £ € T. It follows that hA? is dense in A% and hence gA? C
(poA?)™ € M. Use (10.3.4) to obtain

dim(A%/M) < dim(A2?/qA?) = degq < deg py < d = dim(A%/M).
Therefore, dim(A%/M) = dim(A?/qA?) and hence M = gA? since gA> C M. [ ]

Many of the M,-invariant subspaces of A> demonstrate wild behavior. As a measure of
this, consider the index ind M := dim(M/zM). Exercise 10.7.18 shows that

dim(M/zM) = dim(M n (zM)*1).
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In the Hardy and Dirichlet space, the index of every nonzero M, -invariant subspace is one.
Here are some examples of invariant subspaces with index one in the Bergman space. We
investigate invariant subspaces of higher index in the next section.

Example 10.3.6. Suppose f € A*\{0} and [f] = \/{z""f : n > 0}. Then the index of [f]
is 1. Indeed, without loss of generality, suppose that f(0) = 1. First we show that Cf +
z[ f] s closed. Indeed, suppose (c,,)i; is a sequence of complex numbers and (g,,)5>; isa
sequence in [ f] such that (¢, f +zg,)5he; is a Cauchy sequence. Since the linear functional
A on A? defined by A(h) = h(0) is continuous, this says that (c, )52, is a Cauchy sequence.
It follows that (zg,)s>; is a Cauchy sequence. Lemma 10.2.4 says that Qg is a bounded
operator on A2 and thus g, = Q,(zg,) forms a Cauchy sequence. This shows that Cf +z[ f]
is closed.
Next we show that

[f1=Cf +z[f].

The D containment follows from the fact that [f] is an invariant subspace. For the C
containment, let g € [f] and let (p,,)p>; be a sequence of polynomials such that p,f — g
innorm. Since f(0) = 1, and since norm convergence in A? implies pointwise convergence
(Proposition 10.1.6), it follows that p,(0) — g(0). Define the polynomial

_ Pn(z) — pu(0)
qn(z) = -z
and observe that
Pnf = Pn(0)f +2q, f € Cf + z[f].

Thus, g € Cf + z[f] from which it follows that [f] = Cf + z[f]. Moreover, for any
a € C, the coset af + z[f] is zero precisely when a = 0. Thus, the linear transformation
af + z[f] — ais a vector-space isomorphism between

f1/z1f1 = (Cf + z[fD/z[f]
and the one-dimensional space C. Therefore dim([ f]/z[f]) = 1.
Example 10.3.7. Suppose (z;)32, is an infinite sequence of distinct points in D\{0} and
M={f €A : f(z)=0forall j >1}.

Suppose further that M # {0}, in other words, there is an f € A?\{0} such that f (z)=0
forall j > 1. Then M is an M, -invariant subspace of A> with index 1. To see this, note that
M is M, -invariant and closed (Proposition 10.1.6). We claim that

ZM ={f € A : f(0)=0, f(z)=0forall j > 1}

The C containment follows by definition. For the other containment, let f € A% with
f(0) = 0 and f(z;) = 0forall j > 1. Recall the difference quotient operator Q, from
Lemma 10.2.4 and observe that Q,f € A* and (Qyf)(z;) = 0 for all j > 1. In other words,
flz = Qyf € M and hence f € zM.
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Thus, the coset f + zM is zero precisely when f(0) = 0, and hence the linear
transformation f + zM — f(0) is a vector-space isomorphism between M/zM and C.
Therefore, dim(M/zM) = 1.

10.4 Invariant Subspaces of Higher Index

Recall that in the Hardy and Dirichlet spaces, a nonzero shift-invariant subspace has index
one. The main theorem of this section is the following.

Theorem 10.4.1 (Hedenmalm [186]). There are M, -invariant subspaces of A*> with index
two.

The existence of such invariant subspaces was shown in [19], but the proof was
nonconstructive. The example of Hedenmalm, which we present here, is concrete. The
proof depends upon several technical results about sampling and interpolation sequences
that are beyond the scope of this book. We use the presentation from [187], which has a
Banach-space flavor to it and applies to the AP version of the Bergman spaces as well.

The general idea is to take two zero-based invariant subspaces

JA) ={f €A% flp, =0} forj=12 (10.4.2)

where the A; are sequences in D, and then consider their algebraic sum J(A;) + J(A,).
As we show below, one can choose sequences A; and A, such that J(A;) and J(A,) are
nonzero and J(A;) + J(A,) is closed. We know from Example 10.3.7 that each J(A;) has
index one. It turns out that J;(A;) + J(A;) has index two. This is explained with the
following lemmas.

Lemma 10.4.3. Let M be a nonzero invariant subspace of A> such that M has index one.
Then there is a nonzero bounded linear functional 1 : M — C such that ker A = zM.

Proof For the moment, assume that 0 is not a common zero of M. In other words, there
isa g € M such that g(0) # 0. Now define 1 : M — C by A(f) = f(0). Proposition
10.1.6 ensures that 1 is bounded on 42. Thus, 4 is bounded on M and nonzero since
Ag) # 0.

We now show that A(h) = 0 ifand only if 1 € zM. The definition of A says that 1(zM) =
0. For the other direction, since M/zM is one dimensional and g(0) # 0, it follows
that M/zM = Cg+ zM and that a coset ag + zM is the zero coset if and only if a = 0.
If h € M and A(h) = 0, then h + zM = ag + zM for some constant a. Consequently,
0 = h(0) = ag(0), which implies a = 0. Thus, h € zM. This shows that A vanishes
precisely on zM.

Suppose f(0) = 0 for all f € M. Let m be the largest integer such that z™ divides every
f € M. Then repeat the argument above with the functional A(f) = f("™(0). [

Lemma 10.4.4. Suppose that M, and M, are M,-invariant subspaces with index one and
such that there is a constant ¢ > 0 with

1A+ £l = cfil + 141D forall f; € My and f, € M,. (10.4.5)

Then M = M, + M, is an invariant subspace of A> with index two.
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Proof We first prove that M = M, + M, is closed. Let (g,)52; be a sequence in M, and
(hp)ee, be asequence in M, such that (g, +h,)e; is a Cauchy sequence in M, +M,.
The inequality in (10.4.5) shows that (g, )sz; and (h,)5%, are Cauchy sequences in
M, and M, respectively. Since each M; is complete, g, — g € M, and h, — h €
M,. Thus, g, + h, - g+ h € M, + M, and hence M; + M, is closed. Since each
M is M, -invariant, their sum is also M -invariant.
‘We now prove that M has index two. Lemma 10.4.3 provides nonzero linear functionals
4; © M; — C whose kernels are precisely zM; for j = 1,2. Now define the linear
transformation

A M =M +M, - C, Afi + f) = (h(h) L(h).

By (10.4.5),if fi, g, € M, and f,,g, € M, aresuch that fi + f, = g, +g,,then f; = g;
and f, = g,. Thus, 4 is well defined.

Each 4; is surjective with kernel zMj;. Therefore, 1 is surjective with kernel z. By the
vector-space isomorphism theorem, the linear transformation

[A] : M/zM — C%,  [Al(fi + fo +2M0) = A(fy + fo),
is an isomorphism between M/zM and C2. In particular, dim(M/zM) = 2. [ |

The details of the next lemma are beyond the scope of this book and are contained in
[186] and [187, p. 177]. For a sequence A C D, recall the definition of J(A) from (10.4.2).

Lemma 10.4.6. There are disjoint sequences B, and B, in D satisfying the following.

(a) 0 ¢ B, and 0 ¢ B,.

(b) J(By) # {0} for j =1,2.

(¢) The sequence B = B; U B, = (z;)3Z, has the following property: there are K, K, > 0

such that

KIfI? < Z 1-1zPIf I < KIfI? forall f € A (10.4.7)

For convenience, write (10.4.7) as

1% < Z(l—l iDIf(z)I? forall f € A%

Jj=1

Sequences (z 2, satisfying (10.4.7) are sampling sequences and they essentially permit us
to discretize the Bergman space norm. The fact that the union of two zero sequences in
the Bergman space can be a sampling sequence is one of the remarkable features of the
Bergman space. This does not occur in the Hardy and Dirichlet spaces where the union of
two zero sets is another zero set.

With all this in place, we are ready to prove Theorem 10.4.1.
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Proof 1t suffices to produce the index-1 invariant subspaces M; and M, with the
properties in Lemma 10.4.4. Let A; and A, be disjoint zero sequences for A> whose

union is a sampling sequence (z;)2, for A? (Lemma 10.4.6). Each z; belongs to either

A, or A,, but not both. If f; € J(A;) and f, € J(A,) then,

1i(Z) + £z = 1A + ()P

since at least one of f;(z;) or f;(z) is zero. Hence,
(oo}
Ifi + £IP = 20 = 1zP2fz) + L)
=

= > A -1zPPIAEE + 251 = |Z2PIf(E)P
Jj=1 Jj=1
= IAI? + 1412

which completes the proof. [ |

One can extend this to index n € N with some modifications [187, p. 177]. With a
different technique, one can create infinite-index invariant subspaces [188]. Despite the
fact that the index of M can be any positive integer (or infinity), the wandering subspace
M n (M,M)* generates M, as in the Hardy and Dirichlet spaces.

Theorem 10.4.8 (Aleman-Richter-Sundberg [17]). If M is an M,-invariant subspace of
A2, then M is the smallest invariant subspace of A% containing M N (zM)*.

This wandering subspace property holds for other spaces beyond the Hardy, Dirichlet,
and Bergman spaces [344].

10.5 Multipliers and Commutant

Proposition 5.5.4 shows that the multiplier algebra of H? is H®. The same is true for the
Bergman space.

Proposition 10.5.1. The multiplier algebra of A% is H®. Moreover, if ¢ € H®, the operator
My f = ¢f is bounded on A% and Mol = l#]leo-

Proof Forany ¢ € H® and f € A2,

1 1
IMg fI? = llfII* = ;/ lpI?|f1?dA < IIfPIIio—[ IfIPdA = llliS I1F12.
D

T Jp
Thus, ¢f € A?> whenever f € A2, that is, ¢ is a multiplier of A%. Moreover,

IMpll = sup [of]l < [lleo-
Ifl1=1
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If ¢ is a multiplier of A2, then the argument used to prove Proposition 5.5.1 shows that
@ is a bounded function and the operator M, is bounded on A?. We have already seen
that [M,| < [|¢]le- For the reverse inequality, we have

1
;/ lp**dA = [MG1]* < IMZIPI1)* < M| foralln > 1.
D
Thus,

1
1 5 m
(;kaol "dA)?" < M| foralln > 1.
Let n — oo and conclude that ¢l < [Mo- m

Corollary 5.6.2 identifies the commutant of the shift on the Hardy space. The same proof
applies to the Bergman space.

Proposition 10.5.2. For T € B(A?), the following are equivalent.
(a) M,T = TM,,.

(b) T = M, for some p € H®.

10.6 Notes

Bergman was the first to study square-integrable harmonic functions with respect to area
measure in his 1922 paper [45] (see also [46]). Bochner [55] also looked at the reproducing
kernel for A%. There are also AP versions of the Bergman space (same definition but with 2
replaced by p) where one shows how the zero-set and invariant-subspace structure depend
on p [120, 187]. Compare this with the Hardy spaces HP where the zero sets and the
invariant subspaces are the same for each 1 < p < oo.

The boundary behavior of Bergman-space functions can be wild in the sense that there
are functions in A? which have radial limits almost nowhere (see Exercises 10.7.7 and
10.7.8). This is a dramatic change from the Hardy-space setting where radial limits exist
almost everywhere (Proposition 5.3.12) and with the Dirichlet space where the radial
limits exist quasi-everywhere (see the endnotes for Chapter 9).

Despite the best efforts of excellent mathematicians over the years, our understanding
of the Bergman space is relatively thin in comparison with what is known for the Hardy
space. For example, the “zero-based” invariant subspaces J(B) discussed in this chapter are
not fully understood. A complete description of zero sequences for the Bergman space is
not known, although there are many partial results. There is also no complete description
of the cyclic vectors for the Bergman shift.

The complexity of the invariant subspaces for the Bergman shift, and the possibility
that they may never be completely described, can be measured in many ways. Unlike
the nonzero invariant subspaces for the shifts on the Hardy and Dirichlet spaces, which
always have index one, in the Bergman space this index can be any positive integer (or
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even infinity). As another measure, the invariant subspaces of the Bergman space have the
property that M, |, is unitarily equivalent to M, |»¢, if and only if M; = M, [292]. The
lack of radial limits, noted earlier, has something to do with the complexity of the invariant
subspaces. For example, a result of Aleman, Richter, and Ross says that if f,g € A% and f/g
has a finite non-tangential limit on a set of positive measure on T, the invariant subspace
generated by f and g has index one [16]. This implies that functions in higher index
invariant subspaces generally have wild boundary behavior.

The most salient results that display the complexity of the invariant subspaces of the
Bergman space are those of Apostol, Bercovici, Foias, and Pearcy [19]. They observed that
the dimension of M N (M,M)* could be any n > 1. Theorem 10.4.1 provided a specific
example of this for n = 2. They also proved that the collection of invariant subspaces is
so vast that it contains an isomorphic copy of the lattice of invariant subspaces for any
bounded operator on a separable Hilbert space.

10.7 Exercises

Exercise 10.7.1. For any f(z) = Zn —o @nZz" analytic on D, prove that

/|f|2dA Z |an|

where dA = dx dy is area measure.
Exercise 10.7.2. Prove that (v'n + 12z")$, is an orthonormal basis for A%.

Exercise 10.7.3. Prove that

kz) = —— fordzeD,
-1z

is the reproducing kernel for A? as follows.

(a) Prove that k; € A? for every 1 € D.

(b) Prove that(f,k;) = f(1) for every 1 € D and f € A42.
Exercise 10.7.4. Prove by example that the containment H? C A? is strict.

Exercise 10.7.5. Another approach to the completeness of A> uses Montel’s theorem [92,
p- 153]. This theorem states that if a sequence (f;,)ne; of analytic functions on D is locally
bounded, that is, for any compact K C D there is a cg > 0 such that |f,(z)| < ck for all
z € K and n > 1, then there is a subsequence (f,, );~, that converges uniformly on each
compact subset K C D to an analytic function f on D.

(a) Prove that each Cauchy sequence (f,,)5%, in A? is locally bounded.

(b) Since I*(D, dA) is complete, f,, — f for some f € [*(D, dA). Apply Montel’s theorem
to argue that f is analytic.
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Exercise 10.7.6. For 1 < p < oo, let A? denote the space of analytic functions f on D

such that
1
o= ( [ 1Paa)? <o
D

Prove that AP is a Banach space.
Exercise 10.7.7. A result of Littlewood [118, p. 228] says that if (a,,)5%, is a sequence of
complex numbers such that hm |a,,| n =1and Z |a,|* = oo, there is a sequence (£,)%,

n=0
with g, = £1 for each n, such that

@)= z €nanz"
is analytic on D and has radial limits almost nowhere. Use this result to produce an f € A2

with radial limits almost nowhere.

Exercise 10.7.8. This is an extension of Exercise 10.7.7 and concerns the function
[s]
f(z)= Z z2".
n=1

(a) Show that f € A2.
(b) Show that f has a radius of convergence 1.
Remark: A result of Zygmund [380, Ch. 5] says that f has radial limits almost nowhere.

Exercise 10.7.9. Define the inclusion operator i : H?> — A% by i(f) = f; (10.1.3) ensures
it is well defined.

(a) Prove thati is bounded, has dense range, but is not surjective.
(b) Compute i*.

(c) Prove thati* has dense range.

(d) Prove that the range of i* is not closed.
Exercise 10.7.10. Repeat the steps in Exercise 5.9.12 for 42.
Exercise 10.7.11. Foreachn > 0, let f,(z) = z"

(a) Prove that f, — 0 weakly in H>.

(b) Prove that f,, — 0 weakly in A2

(c) Prove that f,, does not converge weakly in D.
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Exercise 10.7.12. Since the Bergman space A is a closed subspace of I?(dA), there is an
orthogonal projection P of I?(dA) onto A? (Proposition 1.7.3).

(a) Prove that (Pf)(A) = (f,k;)forall f € I*(dA), where k,(z) is the reproducing kernel
for A% from (10.1.7).

m—-—n+1

n zZm " ifm > n,
(b) Provethatform,n>0,P(z z™)=4 m+1
0

ifm<n.

Exercise 10.7.13. For distinct 4, 1,,..., Ay in D and positive integers ny, n,,..., ny, con-
sider the polynomial

N
9@ =[GE-)".
j=1
Prove that A2 = {f € A2 : f®)(4)=0, 0<k<n -1, 1<j<NL
Exercise 10.7.14. Prove a version of Theorem 10.3.2 for the Hardy space.

Exercise 10.7.15. Prove the following adjoint formula for the Bergman shift M,:

M3 =2 (ef@) - [ fwdw) forf e
0

Exercise 10.7.16. For the Bergman shift M, let T = M;M, — M, M. Prove the following
formulas.

@) (Tf)(z) = z‘Z/ (z — w)f(w) dw for all f € A%.
0

1
(b) Tz" = mz” forall n > 0.

(c) T is compact and has norm 1.

Exercise 10.7.17. For the Bergman shift M,, prove that (M3 M,)™! = 2I — M, M}.
Remark: See [153] for more on this.

Exercise 10.7.18. For an M,-invariant subspace M of A%, prove that
dim(M/zM) = dim(M N (zM)L).

Exercise 10.7.19. Recall the index of an invariant subspace M of A2, denoted by ind M,
is dim(M/zM). If M and NV are M, -invariant subspaces of A2, prove that ind(M \/ N) <
ind M + ind V.

Exercise 10.7.20. One can define Bergman spaces for domains other than D [30, 95, 170].
Let G be a bounded domain in C. By this we mean that G is a nonempty bounded open
connected subset of C. Let A%(G) be the set of analytic functions f on G such that

171 = ([ 17Paa)’ <o
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One can show that A%(G) is a vector space and that (f,g) = / fgdA defines an inner
G
product on A%(G). Prove the following facts about 4%(G).
(a) Suppose that 1 € G and B(4,r)™ = {z : |z— 1| < r} C G. For a function g that is
analytic on a neighborhood of B(4,r)~, prove that

27
g) = if gl +te®)do forallo <t <r.
27 o

(b) Use this to prove that g(1) = iz / gdA.
e JBar

(c) Now argue that |f(1)| < C;||f| for all f € A*(G), where C; > 0 depends only on A.

(d) Prove that A%(G) is a Hilbert space.

(e) Prove that for each 1 € G, there is a k; € A%(G) such that f(1) = (f,k;) for every
f € A%(G).

Exercise 10.7.21. This is a continuation of Exercise 10.7.20. Define the linear transfor-
mation M, on A%(G) by M, f = zf.

(a) Prove that M, is bounded on A%(G).
(b) Compute o(M,), 0,(M,), and g,,(M,).
(c) Show that G C o,(M3).
Exercise 10.7.22. Consider A%(G), the Bergman space of the annulus
G={z: §<|Z|<1}.
(a) Prove that there is a constant ¢ > 0 such that |p(0)| < c||p|| for all polynomials p.
(b) Prove that the polynomials are not dense in A%(G).

Exercise 10.7.23. If G, and G, aredomainsinCand ¢ : G; — G, isanalytic and bijective,
prove that U : A%(G,) — A*(G,) defined by Uf = (f o )¢’ is unitary.

Exercise 10.7.24. Suppose that G is an unbounded domain in C. Can M, be bounded on
AX(G)?

Exercise 10.7.25. An invariant subspace M for T € B(H() is hyperinvariant if AM C M
for every A € B(H) with AT = TA.

a) Prove that i = on iscussed in Chapter 4), then eve perinvariant

(a) P hat if A = Mg I(T) (di d in Ch ), th ry hyperi i
subspace M is of the form M = {f € I*(T) : f|g = 0 almost everywhere} for some
measurable E C T.
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(b) Prove that if S is the unilateral shift on H?, then a subspace M is S-invariant if and
only if M is hyperinvariant.

Exercise 10.7.26. Use the following steps to prove thata subspace M C A? is M,-invariant
if and only if M is hyperinvariant.

(a) Prove that M C A? is hyperinvariant if and only if pM C M for every ¢ € H™.

(b) One can prove that if p € H*®, then there is a sequence of polynomials (¢, )n; such
that ¢,(1) — ¢(2) for each 1 € D and sup,,,, |[¢pllee < oo [202, Ch. 3]. Use this to
prove that (M, f,g) — (M, f, g) forevery f,g € A2,

(c) Prove thatif zM C M, then oM C M for every ¢ € H®.

d IfG = {% < |z| < 1}. Prove there is an M,-invariant subspace of A%(G) that is not
hyperinvariant.

Exercise 10.7.27. For each 1,z € D, let k ;(z) = ky(2)/||k;| denote the normalized
reproducing kernel for A2.

(a) If|A| - 17, prove that k ; — 0 weakly in A2,

(b) If T € B(A?) is compact, prove that the Berezin transform [187] T (1) = (Tk 3,k 7)
tends to zero as || = 1.

Remark: See [44] for one of the first papers on this transform.

Exercise 10.7.28. This is a continuation of Exercise 10.7.27. For any T € B(A?) prove the
following facts about the Berezin transform T.

(@) |T(z)| < ||T| for all z € D.

b) T =T.
(c) Themap T +~ T is linear and injective.
Exercise 10.7.29. This is a continuation of Exercise 10.7.27.

(a) For f,g € A, prove that

e = %f(z) forall z € D.

(b) For ¢ € H*®, prove that I\Z;,(z) = ¢(z) forall z € D.

Exercise 10.7.30. This is a continuation of Exercise 10.7.27. For f € A2, consider

(TH)2) = f(=2).

(a) Prove that T is a unitary operator on A2.
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a—-1aP?
(L+1AP)2

(c) Use this to prove that the converse of (b) in Exercise 10.7.27 is not always true.

(b) Prove that T(1) = forall A € D.

Remark: Exercise 16.9.33 explores this further.
Exercise 10.7.31.
(a) Prove that the Bergman shift M, is irreducible.
(b) Prove that M2 is reducible.

Exercise 10.7.32. The Hardy, Dirichlet, and Bergman spaces are examples of reproducing
kernel Hilbert spaces. Let 7 be a Hilbert space of functions on a set X such that for each
X € X, the evaluation functional 1,(f) = f(x) is bounded.

(a) Prove there is a k(x,y) on X X X — C such that k(x,-) € X for each x € X and
f(x) = (f, k(x,-)) for every f € F. This function is the reproducing kernel for F.

(b) Prove that k(x,y) = (k(x,-), k(y, -)) for every x,y € X.
(c) Prove that k(x,y) = k(y,x) forall x,y € X.

(d) Prove that for distinct x;,x,,...,X, € X, the matrix [k(x;, Xj)]1«i,j<n IS positive
semidefinite.

(e) If #( is separable with orthonormal basis (f,,)ne;, prove that
k(x,y) = Y. fu(x)fu(y) forallx,y € X.
n=1

Remark: See [264] for more on reproducing kernel Hilbert spaces.

Exercise 10.7.33. Use Exercise 10.7.32, along with the orthonormal basis for A% from
Proposition 10.1.8, to derive the formula for k;(z) in Exercise 10.7.3.

Exercise 10.7.34. This is a continuation of Exercise 10.7.32. Consider the Sobolev space
W of absolutely continuous functions f on [0, 1] such that f(0) = f(1) = 0O and [’ €

1
I2[0,1] (see Exercise 1.10.15). Define an inner product on W by (f, g) = / f'(Hg'(t)dt.
0

(a) For each x € [0,1], prove that 1,,(f) = f(x) is bounded on W.
(b) Prove that
Q-yx ifx<y,
Ky =1 2 TESY
Q1-xy ify<x,

is the reproducing kernel for W.
2mwinx _

2nn

(d) Verify the formula k(x,y) = )] FOf0).
n#0

(c) Prove that (f;,)nez\o}, Where fr(x) = , is an orthonormal basis for W.
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10.8 Hints for the Exercises

Hint for Ex. 10.7.1: Use polar coordinates.

1
Hint for Ex. 10.7.3: Use TP =14 2w+ 3w?+4w? + .- forw € D.

Hint for Ex. 10.7.6: Make use of the formula

Fon
F) = f D

for f € AP to prove

1< epa [ 111 as)

Now use Exercise 10.7.5.

Hint for Ex. 10.7.9: For (b), use inner products and Taylor series. For (d), use Exercise
9.9.6.

Hint for Ex. 10.7.13: Examine the proof of Theorem 10.3.2.

Hint for Ex. 10.7.17: First prove that M, is injective with closed range.

Hint for Ex. 10.7.20: For (d), consider the following: If (f,)5%; is a Cauchy sequence in
A%(G), then f, — f for some f € I*(G,dA). Use (c) and Montel’s theorem (Exercise
10.7.5) to show that f is analytic.

Hint for Ex. 10.7.23: Use Jacobians.

Hint for Ex. 10.7.25: For (b), consult Theorem 5.4.12 and Theorem 5.6.2.

Hint for Ex. 10.7.31: For (b), use Exercise 5.9.31.
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The Fourier Transform

Key Concepts: Fourier transform, convolution, Fourier inversion formula, unitary operator,
Plancherel’s theorem, spectral properties of the Fourier transform, Hermite functions, Hardy space
of the upper half-plane, Paley-Wiener theorem.

Outline: We study the Fourier transform .% : I*(R) — I*(R) defined by

(F)x) = v% / : FOedt, (11.0.1)

show that it is a unitary operator, and compute its spectral decomposition. Along the way,
we discuss the Hardy space of the upper half-plane, where the Fourier transform plays a
crucial role. Our concern is with the Fourier transform as an operator itself, as opposed to
its interactions with other operators or its applications. In particular, a discussion of the
Fourier transform’s connection to differential operators would require a long digression
on unbounded operators, which would draw us too far afield.

11.1 The Fourier Transform on L'(R)

Recall that I!(R) is the Banach space of Lebesgue-measurable functions on R such that

Il := / F(0)ldx < oo,

We use | f]l, without any subscript, to denote the I?(R) norm. The proofs in this chapter
require some useful dense subsets of IP(R).

Proposition 11.1.1. Foreach 1 < p < oo, the following sets are dense in I[P(R).
(a) C.(R), the set of continuous complex-valued functions on R with compact support.

(b) The set of step functions

fl) = Z Ci X[y, b;1(%)s
i=1

wheren €N, ¢; € C, and [q;, b;] are closed intervals with disjoint interiors.
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We first define the Fourier transform on L'(R) and then extend it to I?(R) by a density
argument. The discussion of the Fourier transform on both spaces requires some useful
harmonic-analysis tools.

Proposition 11.1.2. For f € L}(R), the Fourier transform

(Z ) = \/% f e

converges absolutely for all x € R and defines a continuous function on R.

Proof For f € [}(R) and x € R,

f (e dt = f oy

[s9)

so the integral that defines (.% f)(x) converges absolutely for all x € R. Thus, (.7 f)(x)
is well defined for every x. For each fixed x, let (x,, )5, be a sequence in R such that
X, — x. Then

ICF F)Cen) = (F )] < [f(Olle™nt — e~ dt.

1 o0
Y 27 [w
Since f € INR) and |e™™*nf — ¢7™*!| < 2foralln > 1andt € R, the dominated

convergence theorem implies that (% f)(x,) = (% f)(x). Thus, .Z f is continuous
on R. |

Corollary 11.1.3. For f € I}(R) and x € R, |(Z )X < |If |-

The next result says that ZI!(R) C Cy(R), the set of continuous functions g on R that
vanish at +oco0, meaning that

g€ C(R) and | llim gx)=0.
X[— o0
Proposition 11.1.4 (Riemann-Lebesgue lemma). If f € I}(R), then
‘ l‘im (Zf)x)=0.
X|— 00
Proof First observe that

b : (—iax —ibx
L/ eTitxdt = —Lu -0 as|x| = co.
Var Jo Var x
The linearity of the integral ensures that the same holds for step functions. For any
f € I}(R) and ¢ > 0, let g be a step function such that ||f — g|l; < &/2 (Proposition
11.1.1). Now choose T > 0 such that |(#g)(x)| < e/2for all |x| > T. Then for |x| > T,
Corollary 11.1.3 implies

I(Z 0] < I(F Hx) = (FX)] + [(F g)(x)]

(F Xap)x) =
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3 g 3
< - - - - =
<lf-gh+5<5+5=¢

which proves the result. |

See Exercise 4.5.12 for the statement and proof of the I!(T) version of the Riemann-
Lebesgue lemma.

11.2 Convolution and Young’s Inequality

The convolution of f,g € I}(R) is defined formally by

(fxg(t) = / f(gt —1)dr. (11.2.1)

The convergence of this integral comes from the following.

Proposition 11.2.2 (Young’s inequality [377]). If f,g € LN(R), then (f * g)(t) is defined
Jor almost every t € Rand ||f + glly < Il /lgll-

Proof Fubini’s theorem implies

[:( /_: |f(T)g(t—T)|dr>dt=/;: If(f)l([: |g(t—r)|dt)df
=(f_: If(f)ldf)(/_: |g(t)|dt>

= [flllgl < co.

Thus, the integral in (11.2.1) that defines f % g converges almost everywhere and
hence (f * g)(t) is well defined for almost all t € R. Moreover, f * g € I[}(R) and

IS gl < 11l - [

The previous proposition says that L'(R) is closed under convolution. What about the
other Lebesgue spaces? The answer comes from another inequality of Young. Since it
requires no extra effort, we prove the inequality for IP(R) when 1 < p < oo. Recall that

o= ( [ T fop ax)?

is the norm on the Banach space IP(R). Proving an extension of Young’s inequality
requires the continuity of translations.

Lemma11.2.3. Let1 < p < oo, f € P(R), andy € R. If f,(x) = f(x — y), then

ilg(l) Ify = fllp = 0.
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Proof 1f the support of f € C.(R) is contained in [-M, M], then

1
If = Hllp < @M +2)7|fy — flloo  forall[y] < 1.

Since f, — f uniformly, it follows that || f;, — f|, = 0asy — 0. Therefore, the desired
result holds for f € C.(R). For f € IP(R) and € > 0, use the fact that C.(R) is dense
in IP(R) (Proposition 11.1.1) to choose g € C.(R) such that || f — g||, < &/3. For this
fixed g, let & > 0 be such that ||g — g, |, < €/3 whenever |y| < . Then
€ € €
If _f;)“p <If—glp +1lg—gyllp + gy _fy"p < 3 + 3 + 3= &
which completes the proof. |

Lemma 11.2.4 (Young’s inequality [377]). The following hold for f € IP(R), with1 < p <
o0, and g € L}(R).

(@) (f = g)(t) is well defined for almost every t € R.
(d) f*xgeP(R)
© If =gllp < Iflplgl:-

Proof The case p = 1 is Proposition 11.2.2. Holder’s inequality (1.8.4) handles the case
p = oo and shows that (f % g)(¢) is well defined for every ¢t € R. For the rest of the
proof, assume that 1 < p < oo and let q be the conjugate exponent of p. By Holder’s
inequality,

f FCOR( )] dx = f (FCllgt — )17 )lglt — )] dx

< ( f GO gt —x)|dx)P ( f 18— )| dx)q

= (/ IfCIP1g(t — x)| dX)p Il (11.2.5)

Hence,

[ ([ 1eoste - wian) a

(o0}

<telf [ ([ veorge-viax)a oyarzs)

(o)

E (o] o0
< gl / |f(x)|P (f lg(t — x)| dt) dx (Fubini’s theorem)

(o)

P
= lghi 1£151gllx
= Iflplglf-
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Therefore,

(/_m (f_oo |f(X)g(t—x)|dx)pdt)p < N flIpllglh:-

The inequality above ensures that (f * g)(¢) is well defined for almost every t € R.
Furthermore, f x g € IP(R) and || f * gl, < [Iflplgll:- [ |

Our final version of Young’s inequality is the following.

Lemma 11.2.6 (Young’s inequality [377]). Let 1 < p < oo and let q be its conjugate
exponent. The following hold for f € IP(R) and g € L1(R).

(a) (f = g)(t) is well defined forallt € R.

(b) f = gisabounded and uniformly continuous function on R.

© If 8l < I fllplgllg-

Proof Suppose that 1 < p < co. Holder’s inequality implies that

1

f |f<x>g<t—x>|dx<( f If(x)lde)p ( f |g(t—x)|qu)q,

and hence

o0
/ [f()gt =) dx < ||flplglly forallt € R.
—o0

Thus, [ g is well defined on R and | f * gl < [Ifllplgllg- Next we verify that f + g
is uniformly continuous on R. Toward this end, let ¢ > 0 and § > 0 be such that
lgs — &tllq < &/(1 + | fllp) whenever |s — ¢| < § (Lemma 11.2.3). Then,

I(f =+ &)(®) = (f * &)(s)] < f IFCOl1g(t — x) — g(s = x)| dx < [If lIpllg: — &sllq < &

The proof above, subject to some minor changes, alsoworksforp =landp = . W

11.3 Convolution and the Fourier Transform

The Fourier transform behaves well with respect to convolution. Recall from Proposition
11.2.2 that f * g € I}(R) for f, g € I}(R) and thus .% f, g, and .Z (f * g) are well-defined
continuous functions on R.

Proposition 11.3.1. If f, g € IN(R), then Z(f * g) = \2n(F [)(F g).

Proof For t € R, Fubini’s theorem yields

(F(f D)) = \/% f_ _Urgedr
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- \/% f ) ( f " foge—9 ds) et
- = f £ ( f oz — )i dr) ds
& Fr{ o

(o) e

=V27(Z HO(F Q1)
which completes the proof. [ |

In a similar manner, there is also the following multiplication formula.

Proposition 11.3.2 (Multiplication formula). If f,g € L}(R), then

/ (ZF)Og(o) di = f FOF0)dt.

Proof Fubini’s theorem implies

f (ZF)Dg(t) di = / (L f f(x)e-"xdx)g(t)dr

f (\/Ez[ g(t)e‘”xdt)f(x)dx
- f (FODf() dx,

which completes the proof. [ |

11.4 The Poisson Kernel

The Poisson kernel appears in Chapter 12 in the study of harmonic functions. Here we use
the Poisson kernel as an approximation tool. The following material sets up the Fourier
inversion formula that appears in the next section.

The Poisson kernel for the upper half-plane C, :={z € C : Imz > 0O} is

_ y
B(x) = x2 T2 forx e Rand y > 0. (11.4.1)

One can verify that

o
f B(x)dx=1 forally > 0. (11.4.2)
—0o0
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For xy + iy, € C,, the Fourier transform of

I %
T (xg — X2 + 5

Fx) =
is
(F)@) = \/% f et ds

B, (xo — x)e~ ¥ dx

=L

1:;’0 (x)e—it(xo—x) dx

=L

e—ixot

Vorr Jowo

e—ixot

Vor Jow

and hence the last two equations show that

B, (x)e!™* dx

B, (x)e"* dx,

e—iXot ©

Vorr Jooo

For R > y,, let T denote the positively oriented curve created by the interval [—R, R] and
the semicircle {Re® : 0 < 6 < 7}; see Figure 11.4.1. Then,

(FH) = B, (x)ell dx.

R

e—ixot ¥ .
(FH) = lim / — 20 2 ellthx dx
V2 R J_gp (X2 +y5)

—ixot
£ limf N —ellilv du,
\2r Roe Jp, m(w? + yp)

The integrand

N Yo _ elltlw
(w2 + yg5)

1
has one pole inside I'y, namely iy,, with residue %e—y(ﬂt |, Therefore,

(FL)E) = ——eixot=olt]
2

This next identity follows from Proposition 11.3.2 and Exercise 11.10.3.

Corollary 11.4.3. Letu € I}(R). Then forallz = x + iy € C,,

f_w B(x —tu(t)dt = \/% /_oo eV Fu)(p)e™t dt.
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Y

Figure 11.4.1 The contour I’z.

The left side of the equation above is the Poisson integral of u. It can be also be written
as (B, = u)(x).

Lemma 11.4.4. If f € L*(R) is continuous at x = 0, then

Jim [ B = fo)

Proof Since f is continuous at t = 0, given ¢ > 0, thereisa § > 0such that | f(t)— f(0)| <
e forall || < &. By (11.4.2),

‘ / Py(t)f(r)dt—f(m(=‘ / BO(©) - FO))dt

oo
<[ poiso-sona.
—o0
The integral on the right equals

/ B(0If () — f(0)|dt + f B,(0|f(®) — f(0)| dt. (11.4.5)
[t]<s [t]>68
For the first integral in (11.4.5), use (11.4.2) to observe that

| mowo-sour<e [ Rodr<e

|t]<8

|t|<d

For the second integral in (11.4.5), we have

1 y _ 1/7 _1(6
/u ,BOVO - Ol <2l fi gt = Afle (5~ (5))

zs 1292
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which tends to zero as y — 0%. Put this all together and obtain

lim sup | [ " RO - )] <
y—=0+ —00

which completes the proof. [ |

Lemma 11.4.6. For1 < p < wand f € IP(R),

li P, - =0.
Jim B, f = {1,

Proof From (11.4.2) it follows that

(Py*f)(X)—f(X)=/ BO(f(x—1)— f(r)dt
and hence
I(Py*f)(X)—f(X)ISf BOIf(x—1) = f(»)dt.

Jensen’s inequality [319, p. 63] applied to the probability measure B,(t)dt (recall
(11.4.2)) and the convex function w —~ wP on [0, o) yields

(s

(B, * f)(x) = fF)IP < f BOIf(x—6) - fOP dt.

—00

Integrate both sides and use Fubini’s theorem to get

1B f — fIB < / BN — fIBdt.

Lemma 11.2.3 implies that the function ¢t — ||f; — f ||§ is bounded and continuous at
t = 0. An application of Lemma 11.4.4 finishes the proof. [ |

11.5 The Fourier Inversion Formula

In this section, we invert the Fourier transform.

Theorem 11.5.1 (Inversion formula). Suppose that f and .Z f belong to I}(R). Then for
almost everyt € R,

) = V%r f :(%‘)(f)e"" d.

Proof Let

1Ty :
E)(x)_”[oo (x—t)2+y2f(t)dt forx +iy € C,.
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Proposition 11.2.2 says that F, € L'(R) and Lemma 11.4.6 says that |F, — fl; — 0
as y — 0%. By [319, p. 70], a convergent sequence in I!(R) has a subsequence that
converges almost everywhere. Consequently, there is a sequence (y,)5%; of positive
real numbers such that y, — 0 and

r}l_}n;lo E, (x) = f(x) (11.5.2)
for almost all x € R. On the other hand, Corollary 11.4.3 implies that

o0
Fy(x) = L‘/‘ eV Zf)(e* dt  forx € Rand y > 0.
V 27T J—o

The assumption .Z f € I[}(R) and the dominated convergence theorem imply that

1 (% ;
lim F,(x) = — F(e*t dt  forall x € R. 11.5.3
Jim R =2 [ o (153)
Combine (11.5.2) and (11.5.3) to deduce the desired inversion formula. [ ]

Rewrite the inversion formula as
1 [ i
f0=—= [ Fpwerar
V 27 J—o

and observe that
f@t)=(F(Z[f))(—t) foralmostallt € R, (11.5.4)

provided that f and .% f belong to L}(R).

Theorem 11.5.1 and the uniqueness theorem imply that the Fourier transform maps
IL}(R) to Cy(R) injectively. The following result is an important step in extending the
definition of the Fourier transform to I?*(R).

Corollary 11.5.5. Let f € L}(R) be continuous at x = 0 and Z f > 0. Then Z f € [}(R)
and

) = V%t f :(S?f)(f)ei” dr

foralmost all t € R. Furthermore,

_1 [
0= f (FPEdr

Proof Fory > 0and x € R, Corollary 11.4.3 says that

%/_m ﬁf@dt = \/%r [m eVI(F f)(0)e™! dt. (11.5.6)
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Ifx =0andy > 0, then

-/ ﬁf@dt:ﬁ | e poa

The monotone convergence theorem ensures that

im L [ ez e di = (Z)0)dt.

1 ©
y—-0+ \/E —oo \/E —/:oo

By the approximation properties of the Poisson kernel (Lemma 11.4.4),

£0) = lim = / Y ().

yoOo+ T 12 +y2

Thus,

£(0) = \/%r f :c@f)(t) d,

which also shows that .#f € I}(R) (since we are assuming that .# f > 0). Since
Z f € I}(R), the inversion formula (Theorem 11.5.1) applies and ensures that

£ = v% / : ( )D)el™ de

for almost all t € R. |

11.6 The Fourier-Plancherel Transform

Corollary 11.5.5 is the main ingredient needed to establish that the Fourier transform maps
I[}R) N I?(R) into I2(R). This is the first step in extending the definition of the Fourier
transform to I?(R).

Theorem 11.6.1 (Plancherel). If f € I}(R) N I?(R), then .Z f € I*(R) and |.Z f| = | fI.

Proof Let g(x) = f(—x) and define h = f * g. By Young’s inequality (Lemma 11.2.6),
h € I}(R) n C(R) and, by Proposition 11.3.1,

Fh=\2rn(Ff)(Fg) =\2n|Ff? > 0. (11.6.2)

Note the use of Fg = ﬂff above. Corollary 11.5.5 ensures that #h € L}(R), which
is equivalent to .Z f € I*(R). Moreover,

1 o0
h(0) = — Fh dt.
©) m[_m( or
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Let us look closely at both sides of the identity above. First observe that (11.6.2) yields

\/% f_:(‘%xt)dt - [o (FDOF de = |17 I

o0

Moreover,

h(0) = f f(Hg0—1)dt = f fOf®dt = |fI2,
which shows that |.Z f|| = ||f]I- [ ]

Let f € I*(R) and choose a sequence (f,); in I}(R) N I?(R) such that || f,, — f| — 0.
Then (f,,)%, is a Cauchy sequence in I?(R) and, by Theorem 11.6.1,

”yfn - ?fm” = "ﬁ(fn _fm)” = ”fn _fm"-

Thus, (Z f,,)%2, is a Cauchy sequence in I2(R). Since I?(R) is complete, .7 f,, converges
in I?(R). If (g,)S, is another sequence in I!(R) N I*(R) approximating f in I?(R), then
Z g, also converges in I?(R). However, Theorem 11.6.1 implies

17 fo = F &nll = 17 (fu — 8l = Ifn = &ull < Ifa = fI + 180 = fI = O,
and hence
lim #g, = lim Zf,,
n—co n—co
where convergence is in the I*(R) norm. Therefore, the limit of .% f, is independent of

the choice of f, € I}(R) N [*(R) as long as f, — f in I?(R). This enables us to make the
following definition.

Definition 11.6.3. The Fourier-Plancherel transform of f € I?(R) is

Ff=lim Zf,

n—-oo

where (f,,)%2, is any sequence in I}(R) N I*(R) such that ||f, — f|| — 0. One standard
choice of approximating sequence is

_[r@ it <n,
f”(t)_{o if t| > n.
Therefore,
FD0=lin = | fwedr (11.64)

Here the limit is taken in I*(R), and (11.6.4) is referred to as a limit in the mean. Some
textbooks write

(ZHt) =1Lim. \/% /_w f(D)e 7 dr.
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The main result of this section is the next theorem.
Theorem 11.6.5. The Fourier-Plancherel transform 7 : I?(R) — I*(R) is unitary.

Proof Let f € I*(R) and let (f,,)52, be a sequence in L}(R) N I?(R) such that f, — f in
I*(R). Theorem 11.6.1 implies that

7 fl = lim L fol| = lim [Ify]l = [I£], (11.6.6)
n—-oo n—->oo

and hence .# is isometric. We next show that .# is surjective. An important step
involves the identity

f FO(F) ) dt = f (ZF)Dgt)dt forall f,g € Z(R). (11.6.7)

(e8]

To verify this identity, observe that
lim |.7 f, = Zfll = lim || Fg, - Fgl =0,

where (g,)%; is any sequence in I}(R) n I?(R) such that g, — g in I*(R). The
Cauchy-Schwarz inequality yields

|8n(F fo = F Pl + 1(&n — OF flh

lgnZ fo — &7 fll1 <
< lgnlll# fu = Z f1 + lign — &l £1s

I
I
and hence
lim ||g,-7 fp — g7 fll1 = 0.
n—oo
In a similar way
lim |1f,. 7 g, — [ Fgly = 0.

Since f, and g, belong to L}(R), Proposition 11.3.2 implies that

| soxzoma=tm [ po@soo

lim f (7 F)(Dgn() dt

[ (7 Do) dr,

(8]

which verifies (11.6.7). We are now in a position to show that the Fourier-Plancherel
transform .7 is surjective. Assume that g € (ran.%)*, that is

/ (Z)(Dgt)dt =0 forall f € IA(R).
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Then (11.6.7) yields

/ FOERO) di =0,

which implies .#g = 0 and hence g = 0 by (11.6.6). In other words, the Fourier-
Plancherel transform .7 is surjective. [ |

Corollary 11.6.8. (f,g) =(F f, Zg) forall f,g € I*(R).

Proof Use the polarization identity (Exercise 1.10.17) on (11.6.6). [ ]

11.7 Eigenvalues and Hermite Functions

Let U : I*(R) — I*(R) be defined by (Uf)(x) = f(—x), and note that U is unitary,
U* = U, and hence U? = I. One can check that U.Z is unitary (the product of two
unitary operators is unitary) and that U# = Z U. Moreover, U.#2 = I holds on C.(R) by
(11.5.4), which is a dense subset of I?(R). Therefore, U.#? = I holds on I?(R) and hence
F* = UZ. Also note that #+ = U*? = . The identity .#* = I permits us to compute the
spectrum of the Fourier-Plancherel transform.

Theorem 11.7.1. o(F) = 0,(F) = {1, £i}.

Proof Since * = I, one can verify directly (Exercise 11.10.15) that
1
(F —zD 1 = ﬁ(ﬁ3 +2zF2 4+ 22F +23I) forallz & {+1,+i}

and hence o(.%) C {#1, %i}. To prove the reverse containment, we need to discuss the
Hermite functions (h,,)5%,. We follow [263]. The exponential generating function for
the Hermite functions is

=2 2 > t"
e 2 T o D hy(x)= forx,t €R. (11.7.2)
= n!

The first few are
xZ
ho(x)=¢ 72,
2
hi(x)=e 72 2x,

x2

hy(x) = 6_7(4)62 -2),
XZ
hs(x) = e_7(8x3 —12x),

x2

hy(x) = 9_7(16x4 — 48x% 4+ 12x).
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Since
e—§+2xt—tz — —@ etz,
it follows that
(ﬁe‘§+2u“‘z)(x) - e‘z(}‘e—@)(x).
Use

u2

(FeHw=e7 and (F F(x) = e™X(F f)(x)
(see Exercises 11.10.1 and 11.10.2) to deduce that

t2 - 2? 2 ,—2it 2/2 t2 —2it - (—(—it)z—Zixt—ﬁ)
e (Fe Tz )x)=elleT N Fe W) (x) =€ e %2 = 2.

The above is the generating function (11.7.2) for the Hermite functions at —it. Thus,
[so] tn (s o] tn
2, )G = F( 2 hala) )0
n= n=

2
—% out—g?
= (Fe TP

_ e(—(—it)z—Zixt—é)

5 (="
—Zghn(X) T

The identities above are justified since, for fixed ¢, the series in (11.7.2) converges in
I*(R). Compare the corresponding power-series coefficients in the variable ¢ to get

Fhy, = (=i)"hy,. (11.7.3)
Thus, 0(F) = 0,(#) = {£1, £i}. This also yields a set of eigenvectors for .%. [ |

The Hermite functions (h,)S%, form an orthogonal basis for I*(R) (Exercise 11.10.12)

and ||k, | =4/ 2"n!\/;. Thus, with respect to the orthonormal basis

hy, o

(W)n=o’
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the Fourier-Plancherel transform has the matrix representation

[ 1 0 0 0 0 0 0 0
0 —i 0 0 0 0 0 0
0 0o -1 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 1 0 0 0 -1. (11.7.4)
0 0 0 0 0 —i 0 0
0 0 0 0 0 0o -1 0
0 0 0 0 0 0 0 i

11.8 The Hardy Space of the Upper Half-Plane

In this section we develop the Hardy space of the upper half-plane C, . As with the Hardy
space of D (Chapter 5), we only outline the main ideas and refer the reader to [149] for the
details. For f € I*(R), define

F(z) = \/%r f_ i F(Deitdt,

(whenever this integral exists) where z = x + iy is a complex variable. This definition can
be interpreted, formally at least, as the inverse Fourier transform evaluated at z. For y > 0,
7t = ¥~y which diverges as t — —oo and converges to zero as t — oo. Thus, if the
support of f is contained in [0, o0), Morera’s theorem confirms that

F(z) = ﬁ fo F(Dei#dt

is analytic on C, . Plancherel’s formula (Theorem 11.6.5) yields

f e+ iy)dx = f e f()Pdt < [ FOPdL,
—00 0

0

and hence

sup/ |F(x + iy)[*dx < oo. (11.8.1)
y>0J-co

The upper half-plane analogue of Proposition 5.3.12 says that
1 [ .
lim F(x +iy) = F(x) = — f f(e™dt
y=0* v 27 Jo

for almost every x € R and

f IF(o2dx = / FOPdL.

0
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The class of analytic functions F on C, which satisfy (11.8.1) is the Hardy space of the
upper half-plane and is denoted by H2(C,,). Note that

1 ® iz .
HZ(C+)={E/0 f®e?tde - f € I12(0, oo)} (11.8.2)

and
H%(R) :={g € I?!(R) : (Fg)(x) = 0 for almost every x < 0}

is the set of corresponding boundary functions. The description above of H*(C,) in
(11.8.2) is the Paley-Wiener theorem.
The map

1 1 x—i
N0 = = (5)

defines a unitary operator from I?(T) onto I?(R) and a unitary operator from H(T) onto
H?(R) (Exercise 11.10.7). It can be used to prove (Exercise 11.10.11) a version of the
Cauchy integral formula from Proposition 5.3.13, namely

g(z) = L] % dt forall g € H(C,).
-0

11.9 Notes

A rudimentary version of the Fourier inversion formula (Theorem 11.5.1) was discovered
by Fourier in 1822 [131] in the less familiar form

F0) = %T/

The term “Fourier transform” was used in 1924 by Titchmarsh [361, 362] who stated the
inversion formula in more familiar terms as Fourier cosine transforms

b 0
da f(a)/ dp cos(px — pa).

fx) = 7—21_/ cos(xu) duf cos(xt)f(t)dt.
0 0

In other words

fx) = \/g / cos(xu)F(u)du and F(x)= \/g / cos(xu) f(u) du.
0 0

In 1910, Plancherel [271] proved that || f|| = ||.Z f|| for all f € I*(R). All of this work was
made precise over the years in treatments by several others and finally given a modern
presentation by Wiener in 1930 [375, 376].

The eigenvalues and eigenvectors of the Fourier transform can be found in Titchmarsh’s
book [362], but they have a long history dating back to Gauss and Sylvester in a different
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form. In 1867, Sylvester, as part of his efforts to generalize the quaternions, explored the
N X N discrete Fourier transform matrix

1 kN —
F=—[wy E‘Yk:lo’
VN

where wy = e*"/N. This matrix is unitary and appears in many places in applied
mathematics. As with the Fourier transform on I*(R), there is the identity F* = I, so
the eigenvalues of F are contained in {£1, +i} for N < 4 and equal to this set for N > 4.
In 1972, McClellan and Parks [240] worked out the multiplicities for the eigenvalues of F.
In 1982, Dickenson and Steiglitz [111] (see also [156]) showed this is equivalent to Gauss’
evaluation of the quadratic Gauss sum. One can also compute the eigenvectors for F by
various means [240], although they seem to lack a convenient closed-form expression.
The Paley-Wiener theorem was developed by Paley and Wiener in 1934 [258] (see also
[319, Ch. 19]) and appears in two main forms. The first says that if f € H?(C,.), then

f2) = f o(Dei dt
0

for some g € I*(0, ). The other statement deals with entire functions and says that if f
is entire with

If(2)] < CeAl?l forallz € C

and f|r € I?(R), then there exists a function g € I*(—A, A) such that

A

f2) = f g(t)el* dt.
_A

11.10 Exercises

x2

2
Exercise 11.10.1. Prove that (%e 2 )(x)=e 2.

Exercise 11.10.2. Prove that (F f,)(x) = e~V (Z f)(x), where H(x) = f(x +iy) and
f € Z(R).

. ) 1,
Exercise 11.10.3. Letz = x + iy € C, and let f(t) = —=e™**~Il, Prove that
27

1
(FNH) = ;m~

Exercise 11.10.4. Letz = x +iy € C, and let f(¢t) = ;lsgn(t)ei’“‘y“'. Prove that
\2m

1 x—t
T (x—t)2+y?

(Z ) =



Exercise 11.10.5. Letz = x + iy € C, and let

1 .
——e#t  ift >0,
f®O =1 vz
0 ift <0.
1

Prove that (.7 f)(t) =

27'[1 t—

Exercise 11.10.6. Letz = x + iy € C, and let

0 ift >0,
t) = —
JO=1 Lz i <o,
\ 27
1 1
Prove that (Z f)(¢t) = T

Exercise 11.10.7.

(a) Prove that

UNE = =——f(33) forxer,

\/E(x+i) xX+i

is a unitary operator from I*(T) onto I*(R).

(b) Prove that

(Urg)§) =

(c) Prove that UH%(T) = H*(R).
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Exercise 11.10.8. Thisis a continuation of Exercise 11.10.7. Let M be a subspace of I?(R).

Prove the following are equivalent.
(a) e*M C Mforalld >0
b)) w,U*M C U*M forall t > 0, where

w;(§) = exp(— t%) for & € T\{1}.

(¢) MU*M C U*M.

Remark: See [253] for more.

Exercise 11.10.9. Use Exercise 11.10.8 to prove that if XN C Mforall A > 0, then M =
xs*(R) for some Lebesgue measurable set E C R or M = wH?(R) for some measurable

unimodular function w on R.
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Exercise 11.10.10.

(a) Prove that the functions

1 (x—i"
ﬁm ifn > 0,
Ja(x) = N1
L(x-H) ifn < -1,

NACE
form an orthonormal basis for I?(R).

(b) Prove that ()2, is an orthonormal basis for H2(R).

Exercise 11.10.11.

(a) Prove the following Cauchy integral formula for H*(C,):

_1 (T aw 2
g(Z)— 2—7”‘/;00 t—_Zdt forallgEH (C_,_) and z € C+.

1
N

(b) Use (a) to obtain the estimate |g(x + iy)| < llg|l for all x + iy € C,..

Exercise 11.10.12. Prove that the normalized Hermite functions (h,,/|h,|)r from
(11.7.2) form an orthonormal basis for I(R).

Exercise 11.10.13. Consider N : I?(R) — I?(R) defined by (Nf)(¢£) = f(t + 1).
(a) Prove that N is bounded and normal.
(b) Determine o(N).

(c) Prove that N is unitarily equivalent to a multiplication operator My, on some I*(w)
space and identify ¢ and u.

Exercise 11.10.14. For ¢ € L'(R), consider the convolution operator X, : I*(R) — L*(R)
defined by X, = f * ¢.

(a) Prove that X,, is bounded on I2(R).
(b) Compute || X,].

(c) Compute Xg.

(d) Prove that X, is normal.

(e) Determine o(X,).

(f) Prove that X,, is unitarily equivalent to a multiplication operator My, on some I*(u)
space and identify ¢ and u.
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Exercise 11.10.15. For the Fourier transform .% on I*(R), prove that
1
(F —zD ' = ﬁ(93 +272+ 227 4+ 231) forallz ¢ {+1, +i}.

Exercise 11.10.16. For an integer N > 1, let wy = e¥™/N_ Prove that the discrete Fourier

1 .
\/_N [wik 152, is unitary and satisfies iy = I.

Exercise 11.10.17. This is a continuation of Exercise 11.10.16.

transform matrix Fy =

(a) Prove that the set A of N X N matrices A such that FyAFy is diagonal is an N-
dimensional commutative complex algebra of normal matrices.

(b) Find an orthonormal basis for A with respect to the Hilbert-Schmidt norm on My.

Exercise 11.10.18. These next several exercises follow [119] and develop a Paley-Wiener
theorem for the Bergman space of the upper half-plane. They also relate the Bergman shift
from Chapter 10 to a Volterra-type operator.

(a) Define anormon.? = Lz((O, ), cic_x) by
(o [TUPR
Ifll = (= /0 dx)”

P
Prove that the linear transformation (T f)(x) = e™* / e! f(t)dt is bounded on .Z.
0

et ift>0,

(b) Prove that Tf = h * f, where h(¢t) =
0 ift<o.

Exercise 11.10.19. Let A%(C, ) denote the Bergman space of analytic functions F on C,.
with norm

®©  p00 1
IFllaxe,) = / f |F(x +iy) dxdy)®.
0 —00

(a) Recall from Chapter 10 that A2 is the Bergman space on D with norm

1
lee = ( [ e+ P drdy)”.
D

2 z—1
Prove that G(2) = 53 g(Z—_H) belongs to A%(C,,) and |iglla = Gllaxcc,)-

(b) Prove that the bounded operator g — G from (a) is surjective and therefore unitary.
(c) Forn > 0, define

Gy(2) = ﬁ(i—:)"

Prove that (G,)%%, is an orthogonal basis for A2(C..).
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(d) Prove that the shift operator M, on A? is unitarily equivalent to the multiplication

operator (MF)(z) = ; I i F(z) on A%(C,).

Exercise 11.10.20. Continue with the notation from Exercises 11.10.18 and 11.10.19.

(a) For f € %, define F(z) =/ f(t)el? dt. Prove that F € A*(C,) and ||f]e =
0

1Fllazcc,)-

o0

~ 1 .
(b) Define G,(t) = - / e Xt G, (t) dt (a slightly different form of the Fourier trans-
—o0

form) and prove that

cpte”tL,(2t) ift >0,

G.(H) =
n(®) {o ift <0,

where ¢, € C and L,, is a polynomial of degree n.
Remark: L, is the Laguerre polynomial of degree n.

(c) Use this to prove that the operator f +— F is surjective. This yields a Paley-
Wiener theorem for the Bergman space: every F € A%*(C,) can be written as

o0
F(z) = / f(t)ei*? dt for some f € Z.
0
Exercise 11.10.21. Continue with the notation from Exercises 11.10.18 and 11.10.20.
(a) Prove that MG, = G, and that MG,(t) = G,(t) — 2(TG,)(t).
(b) Prove that M on A%(C,,) is unitarily equivalent to I — 2T on .&.

(c) Prove that M, on A? is unitarily equivalent to I — 2T on .#. Then conclude that the
M, -invariant subspaces of A? are in bijective and order-preserving correspondence
with the T-invariant subspaces of .Z.

(d) For a > 0, the subspace of functions in .# that vanish almost everywhere on [0, a] is
T-invariant. Prove that the corresponding M,-invariant subspace of A? is

exp(—aitj)Az.

Exercise 11.10.22. The formula %h, = (-—i)"h, from (11.7.3), where h,, is the nth
Hermite function, can be used to define a square root of the Fourier transform.

(a) Let Qh, = e "+ h,, and prove that Q extends to a unitary operator on I?(R).
(b) Prove that Q?> = 7.
(c) Prove that there are infinitely many unitary square roots of .%.

(d) Are there any non-unitary square roots of .#?
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Remark: A formula of Mehler [242] (see also [125]) shows that
@Ne =/ e / 5 ),

Exercise 11.10.23. Letu = &, + 6_; + &; + 6_; and define the Hilbert space

) ={(DE, : fi € 2, X IAIP < oo}.

i=1

These types of infinite direct sums are discussed in Chapter 14. Define M : I?(u) — I*(u)
by Mf)(§) = §f(©).

(a) Prove that M is unitary.
(b) Prove that M(® on (I2(11))(*) defined by M(f)® 21 = (Mf;)2; is unitary.

(c) Use the matrix representation of the Fourier transform in (11.7.4) to prove that the
Fourier transform is unitarily equivalent to M(®),

11.11 Hints for the Exercises

Hint for Ex. 11.10.1: Complete the square in the integral and notice that it is a Gaussian
integral (or integrate over a well-chosen contour)

Hint for Ex. 11.10.7: Prove that ¢(z) = T is a conformal map from C, onto D.
Hint for Ex. 11.10.8: Consult Exercise 11.10.7. For the proof that (b) implies (c), consider

the function ¢,(§) = % and show that |1,(§)| < 1 for all £ € T\{1} and that
Pi(©) =€ +o(1)ast - 0.
Hint for Ex. 11.10.10: Consult Exercise 11.10.7.

Hint for Ex. 11.10.11: For (a), start with Proposition 5.3.13 and use Exercise 11.10.7.
Hint for Ex. 11.10.12: To show completeness, suppose that f € I*(R) is orthogonal to
h,, for every n > 0. Now use the fact that the Hermite polynomials are dense in a certain
weighted I? space (see Exercise 1.10.44).

Hint for Ex. 11.10.19: For (c), consult Proposition 10.1.8 and use (a).

Hint for Ex. 11.10.20: For (b), make use of the identities

A—u)yk2= Z (J -;; _I:_-; 1) and f the~tdt = jl.

j=o

Hint for Ex. 11.10.21: For (b), use the Fourier transform.
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The Hilbert Transform

Key Concepts: Harmonic conjugate, Poisson integral, Fatou’s theorem, Hilbert transform on the
circle, partial isometry, Hilbert transform on the real line, spectral properties of Hilbert transforms.

Outline: This chapter concerns two versions of the Hilbert transform. The first version is
A . I2(R) —» I?(R) defined by

(AN = PV %dt,

and the second is 2 : I?(T) — I?*(T) defined by

s

(2/)(€®) = 2= PV /_ cor (&) s,
where PV denotes the principal value of an integral. Although these operators are defined
on the Hilbert spaces I>(R) and I?(T), respectively, they also act on various Banach spaces
of functions. This chapter emphasizes the Hilbert-space properties of these operators. In
particular, we study the boundedness, norm, adjoint, and spectral properties of Hilbert
transforms and how these properties relate to harmonic conjugation and Riemann-
Hilbert problems.

12.1 The Poisson Integral on the Circle

If Q is a simply connected planar region and u : Q — R, then u is harmonic if its second-
order partial derivatives are continuous and satisfy the Laplace equation

dju+3du=0 (12.1.1)

on Q. The Cauchy-Riemann equations imply that u = Re f is harmonicwhen f : Q - C
is analytic. Since Q is simply connected, any harmonic function u on Q is the real part of
an analytic function on Q. That is, there exists a harmonic function v : Q — R such that
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u + iv is analytic on Q [92, p. 252]. The function v is a harmonic conjugate of u and it is
unique up to an additive constant.

The first type of harmonic functions explored in this chapter are defined on the unit
disk D and are of the form

®ee®) = [ BE-nfens (1212

In the above, f € I?(T) and

B(1) = Re(122),

T, z=rel!, 0<r<1, 6¢€[-n,n], (12.1.3)

denotes the Poisson kernel of the unit disk. Since

1+2z

Z B>
1—-2z

is analytic on D, it follows that

z»—»Re(iti)

is harmonic. Differentiating under the integral sign reveals that (Pf)(re'®) is harmonic on
D. A power series calculation (Exercise 12.5.1) shows that the Poisson kernel B.(¢) satisfies
- 1-r2 1-r2

Pf) = In| gint _ = . 12.1.4
D= 3 rie 1—2rcost+r2 |1 —relt|2 ( )

n=-—oo

The right side of (12.1.4) shows that B.(t) > 0 on D. Moreover,

T
/ P,(t);—; =1 forallO<r<1; (12.1.5)

/e

see Exercise 12.5.2. The graph of E.(¢) peaks sharply at the origin asr — 1~ (Figure 12.1.1).
This suggests that (Pf)(rel®) — f(e®) as r — 1-, which was confirmed in 1906 by Fatou.

Theorem 12.1.6 (Fatou [127]). If f € I*(T), then

ehe®) = [ Beo- o

-7

is a harmonic function on D such that
lim (PF)(re®) = f(e©)
r—1-

for almost every 6 € [—m, 7).
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-3 -2 - 2

Figure 12.1.1 The graphs of B.(6) on [—7, 7] for » = 0.5,0.7,0.8. The area under each curve is
27, but the graphs peak higherasr — 1~.

Proof The discussion above proves that Pf is harmonic. The next step is to prove that
lim (Pf )(re'®) = f(e*)
r—1-

when f is continuous at e, We refer the reader to [202, p. 34] for a proof in the general
case. Given ¢ > 0, let Is = (6 — &, 0 + &) be an open interval containing 6 such that
|f(e*) — f(e®)| < eforall t € I5. Observe that

[ Be-orens - s

_ U B©O - 0(f(e") ~ f() 2L

(by (12.1.5))

< [ Be-oiren - s

Ve

- [ ne-nisen - s 5t

Is

. e dt
; B(6 = DIf(el) - f(e®) L
[—71’,71]\15 f f 2
. A dt
<e+ B - lf(e") - f(e®) L.
: f[_m\lﬁ @)~ fet)

From (12.1.4), there is a ¢ > 0 such that

1—r?

EC 1—2rcos(6—t)+

2 <c(l-r) forte[-ma\[sand0<r < 1.

This ensures that ensures the last integral above tends to zero as r — 1. The result
now follows. [ ]
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One says that Pf is the harmonic extension of f to D. Moreover, if f,g € I*(T) and
Pf = Pgon D, then f = g almost everywhere on T [202, Ch. 3]. We now relate the
harmonic extension of f to

o0

Z f(n)ems’ where f(n) - [” f(eit)e—int;j_:r’

n=-—oo

the Fourier series of f.
Term-by-term integration in (12.1.2), permissible by uniform convergence, yields

(Pf)(re'®)

| ne-orenss (by (121.2)

/4

(2 rl"\einee—int)f(eit)%tt (by (12.1.4))
z r|n|ein6< _nf(eit)e—intj_:r>

n=-—0o0o

> Fyrinleine, (12.1.7)

n=-—00

Fatou’s theorem (Theorem 12.1.6) says that (Pf)(rel®) — f(ei®) pointwise almost
everywhere. This next result shows convergence in the I*(T) norm.

Proposition 12.1.8. If f € I*(T), then
lim " I(Pf)(re®) — f(ei@)lz—de =0
r—1- _r 2 ’

Proof Using (12.1.7) and Parseval’s theorem,

" dé <
| 1@ - jeops = 3 fpa -
-7 T o
which tends to zero as r — 1~ by the dominated convergence theorem. [ ]

12.2 The Hilbert Transform on the Circle

The previous section suggests a way to find the harmonic conjugate of a function of the
form Pf, where f € I*(T) is real valued. Define the conjugate Poisson kernel

1+2z
Q.(t) = Im( = Z), (12.2.1)
where z = rel! with0 < r < 1and —7 < t < 7. The reader can verify that (Exercise 12.5.3)
2rsin(t) > .
= —— 7 = - nfgint 12.2.2
Q1) 1—2rcos(t) +r2 Z isgn(mjrite ( )

n=-—00
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Figure 12.2.1 The graphs of Q,(6) on [—7, 7] for r = 0.5,0.7,0.8. The graphs gravitate towards
the imaginary axis as r increases.

In the above,

1 ifn>0,
sgn(n) =1-1 ifn <0,
0 ifn=0.

See Figure 12.2.1 for the graph of Q,(t) for several values of r. From (12.2.1), the function
Qf defined by

@Nre®) = 5= [ Q@ -nfedr

is harmonic on D and

o0

Qf)re®) = =i 3 fn)sgn(mrinleine. (12.2.3)

n=—oo
Moreover,

_—
et +z
it _

el —z

ehE +i0NE) = 5= [ SEE s

is analytic on D. The integral on the right side of the previous line is the Herglotz integral
of f.If f is sufficiently smooth, which causes f(n) to decay quickly, the limit in (12.2.3) as
r — 1~ exists for all & € [—7, 7]. For general f € I?(T), there is the following.

Theorem 12.2.4. For f € I*(T), the function 2f defined by

(1)) := lim (Qf)(re'®)
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exists for almost every 6 and defines an I?(T) function with Fourier series

—i i F(n) sgn(n)ein®. (12.2.5)

n=-—o0o

We now focus on the operator-theoretic properties of f — 2f, called the Hilbert
transform on the circle. Below, we use the notation 1 to denote the constant function and
I*(T) © span{1} for (span{1})*.

Proposition 12.2.6. 2 is a bounded operator on [*(T) which satisfies the following.
(a) ker 2 = span{1}.

(b) ran .2 = I*(T) © span{1}.
(©) Z|r2(T)ospanf1} is an isometry.

Proof From (12.2.5) and Parseval’s theorem,

12f12= > IfmP=IfI? - I1fOP <IfI> forall f € X(T).  (12.2.7)

nez\{o}

Thus, .2 is bounded on I*(T).
(@ If | 2f] = 0, (12.2.5) shows that

o=IfIZ-1fOPr= > [fw?

nez\{0}

This implies that f(n) =0foralln # 0, hence f = f(O) is constant. This proves that
ker 2 C span{1}. To see that span{1} C ker 2, simply reverse the argument above.
(b) By (12.2.5), ran 2 C I*(T) © span{1}. If g € I*(T) © span{1} with Fourier series

g= ), &mere,

nez\{0}
let
f=i Z g (n) sgn(n)e"®.
n=—oo
Then f € [*(T) and 2f = g.
(c) By (12.2.7), 2 is isometric on I*(T) © span{1}. [ ]

Operators that are isometric on the orthogonal complement of their kernels are called
partial isometries and are explored further in Chapter 14.
If r = 1in (12.2.2), then

Q-1 = cot(%)
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and the integral in the formula
T

(21)(el®) = f cot(%) f(e“);i—:r (12.2.8)

-7

becomes problematic due to the singularity at t = 6. For general f € I?(T), the integral in
(12.2.8) must be understood as a principal-value integral

PV ﬂcot<h) £ 3L = lim cot(t) Flety &t (12.2.9)
. 2 271 >0+ 0—t[>e 2 27" -

This principal-value integral equals 2 f almost everywhere [149, Ch. 3]. Thus, (12.2.9) is
another formula for the Hilbert transform. One can also compute the adjoint of the Hilbert
transform 2.

Proposition 12.2.10. 2% = —-2.

Proof For f,g € I*(T), Parseval’s theorem yields

(2f,9)= Y, —isgn(mf(mg(m) = Y, Flmisgn(n)g(n) = (f,—2g).
This shows that 2% = -2, [ |

We end this section with the observation that the Fourier-series formula (12.2.5) shows
that, with respect to the orthonormal basis (e©)% _ . of I2(T), the matrix representation
of 2 is the diagonal matrix

0 0 0 —i 0
0 0 0 0 —i

The box denotes the (0, 0) entry. The matrix above illustrates the identity 2* = —2, as
well as the following.

Corollary 12.2.11. o(2) = 0,(2) = {~i,0, i}.
Proof Apply Theorem 2.4.7. [ ]
These two results imply that 2 is a normal operator with the following eigenspaces:

ker(2) = span{1},
ker(2 —il) = \/{eine i n <0},
ker(2 +il) = \ /{e"® : n > 0}.
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Finally, observe that 2 is a rank-one perturbation of any of the unitary operators 2 +
a(1 ® 1), for a € T. These unitary operators have the matrix representations

i 0 0 0 0
0 i 0 0 0
o0 0 [a] 0o 0
o 0 0 —i 0
o 0 0 0 i

12.3 The Hilbert Transform on the Real Line

We now consider the harmonic conjugation problem for harmonic functions of the form

9@ = [ 2w
—00
In the above, g € I?(R) is real valued and

B(t) = Re(ii L), wheret € Randz=x+iyeC,, (12.3.1)

Tt—2z

is the Poisson kernel of the upper-half plane. A computation (Exercise 12.5.5) reveals that

1 Yy
2O = s GThrye

A similar argument as in the previous section shows that Ug is harmonic on C, . Moreover,
there is the corresponding version of Fatou’s theorem (Theorem 12.1.6; see also Lemma
11.4.4).

Theorem 12.3.2. For g € I*(R),
g(x) = lim (Ug)(x +iy)

for almost every x € R.

As shown in Lemma 11.4.6,
[s4]

lim [(Uf)(x +iy) — f(x)|*dx = 0.

y=0* J_

Consider the conjugate Poisson kernel

Q, () = Im (% - _1 Z), (12.3.3)
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where t € Rand z = x + iy € C,. A computation (Exercise 12.5.6) reveals that

1 x—t

By (12.3.3) the function

(Vg)z) = f (gl dt

is harmonic on C, and by (12.3.1)

(Ug)(Z)+i(Vg)(z)=% f % it

is analytic on C, . The right side of the previous equation is the Cauchy integral of g. When
g is real valued, Vg is a harmonic conjugate of Ug. The next theorem is the analogue of
Theorem 12.2.4.

Theorem 12.3.4. Forg € I*(R),
(Hg)(x) 1= ylirgl+(Vg)(x +1iy)

exists for almost every x € R.

The function .##°g defined above is the Hilbert transform of g. As in the circle case (see
(12.2.9)), the Hilbert transform can be written as a principal-value integral in the sense
that for almost every x € R,

(H)(x) = L PV / &0 4 im SO
T —o0 xX—t e—>0+ ‘x_t|>gx—t

In the circle case, the corresponding Hilbert transform 2 is a rank-one perturbation of
a unitary operator. For the Hilbert transform on R, something different occurs.

Theorem 12.3.5. The Hilbert transform 5% is a unitary operator on [*(R).
Proof The first step is to prove that
(FH)(s) = —isgn(s)(Fg)s) forallseR, (12.3.6)

where

(Zh)(s) = \/% /_ ety

is the Fourier transform of h € I?(R) (Chapter 11). To avoid getting sidetracked by
technical details, we proceed formally. The precise details are found in [161, Ch. 4].
Observe that

(7)) = (1 [ 8 Darya

1 [oo]
— e
V 2 »[w T 0
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1 ® 1 ® —ixs
=E/_w5(f_mg(x—t)e dx)dt
- f %e‘i“(ﬁ’g)(s) dt

- (F)) / %e‘i“dt
= —i(F g)(s) sgn(s).

The last formula is understood in the distributional sense [161]. This verifies (12.3.6).

Plancherel’s theorem and (12.3.6) reveal that the Hilbert transform is isometric on
I2(R). To complete the proof that .7# is unitary, it suffices to show that .7# is surjective.
This is done by proving that .#? = —I. Indeed, define W : I*(R) — I?(R) by
(Wf)(s) = —isgn(s)f(s). Then (12.3.6) shows that

FHTF =W, (12.3.7)
and hence
H?P=F WFFWF =F WP = F Y (-NF =-L
Since ¢ is isometric and surjective, it is unitary. [ |
Corollary 12.3.8. 7% = —J.
What is the spectrum of the Hilbert transform on R?
Corollary 12.3.9. o(J¢) = 0,(H) = {—i,i}.

Proof By (12.3.7), 2 is unitarily equivalent to the multiplication operator (W f)(s) =
—isgn(s)f(s) on [2(R). Notice that W is a multiplication operator whose symbol is a
step function with essential range equal to {—i, i}. Therefore, o(W) = 0,(W) = {—i, i}
(Proposition 8.1.12) and hence o(J#) = 0,(J) = {—i, i} since unitary equivalence
preserves spectra. [ |

The following matrix representation provides the full spectral decomposition of 77. To
see this, observe that the Cayley transform

z—1

c(z)=z+i

is a conformal map from C, onto D that maps the real line onto T\{1}. A change of variables
(Exercise 11.10.7) shows that

1 1
(Uf)(X)=—ﬂ tAGCI)

\/_x
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defines a unitary operator from I*(T) onto I?(R). Since (§")$, is an orthonormal
sequence in I?(T),

1 (x=)"
\/— (x + )+t

is an orthonormal sequence in I?(R). A computation (Exercise 12.5.18) shows that

o 1 (x=)" ; 1 (x=)"
\/E(X+i)”+l \/_(x+l)"+1

U

forn>0

Similarly,
1 (x+l)" !
v G

is an orthonormal sequence in I?(R) and

%( 1 (x+im 1)_. 1 (x+?t

Vz G- )R G0

UE )=

forn>1

Therefore,

ker(%+i1)=\/{\/i7_r% : nZO}

and
. 1 (x+p"!
ker(%—zl):\/{ .n;l}.
Jr e=in

Since all of these eigenvectors together form an orthonormal basis for I?(R) (they are
images of an orthonormal basis under a unitary operator), the matrix representation of
A is the diagonal matrix

0 i 0 0 0

o o [=i] o o

0 0 0 —i 0
0 0 0 0 =i

The box denotes the (0, 0) entry. Notice how this is a rank-one unitary perturbation of the
matrix representation of 2.



280 | THE HILBERT TRANSFORM

12.4 Notes

A two-volume treatment of Hilbert transforms is [216, 217]. The identity #? = —I
sometimes appears in terms of Hilbert transform pairs, in the sense that if

_ 1 “f®
then
f(x)=—71—rPVf f(—t)dt.

Hilbert [195] understood these pairs as

u(o) = %PV/ dv

alog(ZsinP;a‘)ds

/4
-7

and

v(o) = —% Pan%log(ZSin|s;G‘)ds.
-

Hardy [176, 177] understood these pairs as

1d (7 x
0= 2q [ roei-Fla

and

fo=-19 7 om0 - Xar
T omdx _wg & e

The mapping properties of the Hilbert transform were first investigated by Privalov
[275], who proved that the Hilbert transform preserves certain Lipschitz classes, and by
M. Riesz, [308] who proved that the Hilbert transform preserves the IP(R) classes for
1 < p < oo. Further work of Pichorides [269] computed the norm of the Hilbert transform
2 on IP(T) as tan(rr/2p) for 1 < p < 2 and cot(rr/2p) for 2 < p < . The classes I (R)
and L*(R) are not preserved by the Hilbert transform [149] (Exercise 12.5.4). There is a
large body of work on certain operators related to the Hilbert transform called Calderén-
Zygmund operators [350]. This family of operators has mapping properties analogous to
those of the Hilbert transform.

The Hilbert transform was considered by Hilbert in 1905 to study a boundary-value
problem Riemann considered as part of his doctoral thesis. In a version of this problem,
one is given an f : R — R and asked to find analytic functions F, and F_ on the upper
and lower half planes, respectively, such that F, (x) — F_(x) = f(x) on R. As it turns out,
(2 f)(x) = —i(F.(x) + E_(x)). See [259] for a survey of Riemann-Hilbert problems.
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12.5 Exercises

Exercise 12.5.1. LetO<r<land -7 <t < 7.

(a) Prove that the Poisson kernel from (12.1.3) satisfies

1-r? 1+ reit 1-12
B(t)= ——— = =Re .): — .
HD 1—2rcost +r2 (1—re” |1 — reit]2

(9]

(b) ProvethatB(t) = Y, rlnlen,

n=-—0o

w
Exercise 12.5.2. Prove that/ P,(t);i—; =1forallo<r<1.
T

Exercise 12.5.3. LetO<r<landlet—-7 <t < m.

(a) Prove that the conjugate Poisson kernel from (12.2.1) satisfies

1+re 2rsint
&= Im(1 - reif) T 1-2rcost+r2’
(s
(b) Provethat Q.(t) = >, —isgn(n)rlle.
n=—oo
o0
t
Exercise 12.5.4. Let h(t) = z cos(n )_
=, nlogn

(a) Prove that h € I?[—m, 7.
(b) Prove that h is continuous on [—7, 7]\{0}.

(c) Prove that lirré h(t) = +c0.
t—

(d) Prove that (2h)(t) = — Z iullégg and defines a continuous function on [—7, 7].

n=2

Exercise 12.5.5. Fort € Rand z = x + iy € C,, prove that

1 1y 1
R (Et—z)_ T(x—1t)2+y2

Exercise 12.5.6. Fort € Rand z = x + iy € C,, prove that

Im(i 1 )_l x—t
int—z) mw(x—1t)2+y
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<

Figure 12.5.1 The contour for Exercise 12.5.8.

Exercise 12.5.7. An important aspect of the Hilbert transform is the principal-value
integral. For example, the integral

Fodt

t—x

a

is undefined for all x € («, 8). However, for each x € (a, 8), prove that

8
PV _dt_ = lim _dt_ = log
- t—XxX &0 ‘x_t|>£[—x

X — OC

B -

Exercise 12.5.8. Let f = p/q, where p and q are polynomials with degq > 2 + deg p and
the roots of q lie in the lower half plane. Do the computations below from [216].

(a) Pickxy € R,e > 0,and R > 0. Consider the contour C in Figure 12.5.1. Write

[ [T [ ],

and prove that as R — oo and ¢ — 0 the sum of the first and third integrals on the
right side tend to

RGO

mx—xo

PV

(b) Prove that the fourth integral tends to zero as R — oo.

(c) Prove that the second integral tends to —iz f(x,) as e — 0*.
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(d) Prove that the integral on the left side equals zero.

[ [

(e) Combine the steps above to obtain f(x,) = — PV
in X = Xg

(f) Let f = u+ iv, where u = Re f and v = Im f, and deduce that

u(xy) = —;{ PVf xv(x)

Remark: Compare this pair with the formulas of Hilbert and Hardy mentioned in the
endnotes for this chapter.

dx and v(xy) = —PV./ xu(x) d

o 0

Exercise 12.5.9. Here is the circle version of Exercise 12.5.8. Let f € I?[—x, ] have the
Fourier series

flo= Z (a,, cosnx + b, sin nx)

n=1
and corresponding conjugate series

g(x) = Y. (~ay sinnx + by, cos nx).

n=1

Show that the Hilbert-transform pair becomes

g(x):—PVf_:f(t)cot(xT_t)% and f(x)=PV/_Zg(t)°°t< 2 )g:r

Exercise 12.5.10. Leta > 0 and

f6) = =2
For x € R, prove that (7 f)(x) = ﬁ.
Exercise 12.5.11. Leta > 0 and

f6) = =2
For x € R, prove that (7 f)(x) = Waxz

Exercise 12.5.12. Leta > 0 and f(x) = sin(ax).
(a) For x € R, prove that (57 f)(x) = — cos(ax).
(b) What is the Hilbert transform of cos(ax)?

Remark: Technically, sin(ax) does not belong to I*(R), but one can take its Hilbert
transform as a principal-value integral.
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Exercise 12.5.13. For a > 0, evaluate .77 f for

e~ ifx >0,
J&x) = ,
0 ifx <0.
Exercise 12.5.14. Evaluate 7 f for
1 if|x| <1,
fx) = .
0 if]x| > 1.

Exercise 12.5.15. If

gx) = %’PV/ %dt,

prove that g(x) = % / f@ log)l — )—;‘ dt.
—00
Exercise 12.5.16.
(a) Prove thatif f € I?(T) is real valued, then (2f, f) = 0.
(b) Prove thatif f € I*(R) is real valued, then (7 f, f) = 0.

Exercise 12.5.17. Let f € I?(R).

(a) If f is even, prove that (7 f)(x) = z?x PV/(; x{(—t)tz dt.

(b) If f is odd, prove that (A f)(x) = %Pvf tf () dt.
0

x2 —t2
Exercise 12.5.18. Verify the identities

1 (x=D"\_ .1 (x—=i)"
%ﬂ(ﬁm>__l\/—;m forn > 0,

and

A\n—1 n—1
%(L(x+l) )_.L(x+z) forn> 1.

NEACED T AN CEhT

Exercise 12.5.19. Recall convolution of f, g € I?(R) from (11.2.1). Prove that #7(f xg) =
(H[f)xg=fx(AHg).

Exercise 12.5.20. For the operators H, = %(I + i) and H_ = é(I — i), prove the
following.

(a) H, and H_ are idempotent.

(b) HY =H_.
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(¢) H.H, =H,H_ =0.
(d) kerH_ =ranH, = H%(R).
(e) ranH_ = ker H, = H2(R).

Exercise 12.5.21. Let A = \/—IE(I + ). Prove that A2 = J7. Thus, A is a square root of
the Hilbert transform 57 on I?(R).

Exercise 12.5.22. Let A = %(I +2—1@®1). Prove that A> = 2. Thus, A is a square
root of the Hilbert transform .2 on I*(T).

Exercise 12.5.23. For a € R and p > 0, define the translation operator T, on I*(R) by
(Tof)(x) = f(x — a) and the dilation operator D, on I2(R) by Do f)(x) = f(px). Prove
that for any a, 8 € C, the operator al + 8.7 commutes with D,, for all o > 0 and T, for all
aeR.

Remark: The converse is true but more difficult to prove [216].

Exercise 12.5.24. Let f, g € [*(R) such that .% f vanishes on |¢| > a and .% g vanishes on
|t| < a. Prove Bedrosian’s Hilbert transform product theorem [36]: J7(fg) = f.7g.
Remark: See [216] for more on this.

Exercise 12.5.25. Contrary to some of the other commutative diagrams mentioned in this
book, the following diagram

IX(T) —2— IX(T)

IA(R) IA(R)

does not quite hold. In the above, U is from Exercise 11.10.7. Prove that 2&" = U* 7 UE"
holds for all n # 0 but does not hold when n = 0.

Exercise 12.5.26. Suppose [ and (T, f)(x) = (x — a)f(x) belong to [*(R) for some a € C.
(a) Prove that (T, f) = T, f — % f f)dt.

(b) Use (a) to prove the following formula of Akhiezer [2
- (L) f 10y,

Exercise 12.5.27. Show that the set
{(f +2lo) - f € C®(R), fis compactly supported in (0, co)}

is dense in I?[0, 1] as follows.
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(a) Prove that if g € I?[0,1] is orthogonal to every such (f + 7 f)|jo1] above, then
g—#g=00n/(0,).

(b) Prove that 7#g = gon R.

(c) Proveg=0.

Exercise 12.5.28. The discrete Hilbert transform H : ¢*(Z) — ¢*(Z) is defined by

HX)p = > nx_mm forx = (x,)%2 o € €%(2).

mez
m#n

Show that H is bounded on #%(Z) using the following steps.
(a) Forn € Z, define I,, = [n — 41_1’ n+ 41_1] For x = (x,))% _o, € ¢2(Z), define

f=2 3 xuu,().

n=—oo
Prove that f € I*(R) and | f|| = |x.

(b) For afixed m € Z and x € I,,,, prove that

> o [ 52 = @A D0 = 2t 1, )0
I

ngm . -t 2

(c) Use the identity

Xn 1 .
n;m n—m n#m(n —m (A 1, )(X) + (”f)(ln)(x))xn,

valid for x € I,,,, to prove that

1 1
(0ml < ¥ el [ |52 = e+ 3 prallro i, o
n#m I, h—m X n#m
1 2
- <
(d) Forx € I, and y € I,,,, prove that =y n—m‘\ —me

(e) Prove that

(El < ¥ 2 4 A £ + bl 2 1, )L
n#m

(f) Integrate each term over I,,,, square, sum over m, and use the fact that .5 is unitary
on I*(R) to prove that H is bounded on ¢%(Z).

(g) Find the matrix representation of H with respect to the basis (e, )3 _, for £2(2).

Remark: See [241] for more on this.
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Exercise 12.5.29. Another version of the discrete Hilbert transform is the operator Hp, :
£%(Z) — ¢*(Z) defined by
Z xm(l - ( 1)” ™)

meZ
m#n

(Hpx), = forx = (x,)5 o € €%(2).

Use the identities

A-CED? o _
,;Z k= )2 Z (zk+1)2 =
k#j
and
(1= (=DHA = (=™ _
Z Gpem 0
Jj£Em

to prove that
() |Hpx| = |x| for all x € £2(2).
(b) HY = -1

(c) Find the matrix representation of this operator with respect to the standard basis
(€)oo for £2(2).

Remark: See [216] for more on this.

12.6 Hints for the Exercises

. . 14+u .
Hint for Ex. 12.5.1: Write - for |u| < 1 as a power series.

. . 1
Hint for Ex. 12.5.10: Consider F(z) = — S € H*(C,).
Hint for Ex. 12.5.11: Exercise 12.5.10 and 72 = —
Hint for Ex. 12.5.24: Use inverse Fourier transforms and the relationship between the
Hilbert transform and the Fourier transform.
Hint for Ex. 12.5.27: For (b), recall that the Hilbert transform is unitary on I*(R).






13

Bishop Operators

Key Concepts: The invariant subspace problem, reducing subspace, universal operator, Caradus’
theorem, Bishop operator (norm, spectrum, invariant subspace, reducing subspace).

Outline: This chapter covers Bishop operators (T, f)(x) = xf({x + a}) on I*[0,1]. In the
above, @ € [0,1) and {t} denotes the fractional part of ¢ € R. Interest in these operators
comes from attempts to provide counterexamples to the invariant subspace problem. We
begin with a short survey on the invariant subspace problem and universal operators.

13.1 The Invariant Subspace Problem

At various points in this book, we describe all of the invariant subspaces for particular
operators, such as certain multiplication operators, the Volterra operator, the unilateral
shift on H?, and so forth. This suggests a natural question: does every bounded operator
on a Hilbert space have an invariant subspace? We should be careful to phrase this problem
precisely.

First of all, {0} and J are invariant for any A € B(¥). Consequently, we restrict our
attention to proper nonzero subspaces; note that dim # > 2 is necessary for the problem
to be interesting. If # is finite dimensional and dim # > 2, then A has an eigenvalue and
hence the span of a single eigenvector is a proper nonzero A-invariant subspace. Thus,
the finite-dimensional case is settled in the affirmative. At the other extreme, if F is
nonseparable (see Exercise 1.10.37 for an example), then for any nonzero x € F and
any nonzero A € B(JF(), the cyclic subspace \/{A"x : n > 0} is a proper nonzero invariant
subspace.

The previous discussion brings us to the most famous open problem in operator theory.
The invariant subspace problem asks whether every bounded operator on a separable
Hilbert space of dimension at least two has a proper nonzero invariant subspace. Many
operators (for example compact operators and operators that commute with a nonzero
compact operator) have invariant subspaces. The text [80] surveys the latest developments
on the invariant subspace problem. For reference, let us formally state several important
definitions.
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Definition 13.1.1. Let M be a subspace of complex Hilbert space 7 and let A € B(¥).
(a) M is invariant for A if AM C M.
(b) M is hyperinvariant for A if M is invariant for every T € B(H) such that AT = TA.
(c) M is reducing for A if AM C M and A*M C M.

(d) M is irreducible for A if it is invariant, M # J(, but M contains no nonzero reducing
subspace.

The following theorem allows us to focus on the reducing and irreducible subspaces
separately [356, p. 8].

Theorem 13.1.2. Every invariant subspace for a bounded Hilbert space operator can be
written as an orthogonal direct sum of a reducing subspace and an irreducible subspace.

E. Bishop suggested that for irrational & € [0, 1), the transformation x — {x + a} on
I2[0,1] is sufficiently “ergodic” so that the operator T, has no proper nonzero invariant
subspaces. Davie [106] showed this is not always the case. However, not all irrational « are
included in Davie’s paper and it remains an intriguing open problem whether all Bishop
operators have proper nonzero invariant subspaces. Our survey of Bishop operators begins
in Section 13.4.

13.2 Lomonosov’s Theorem

In an unpublished work, von Neumann proved that every compact operator on a complex
Hilbert space of dimension at least two has a proper nonzero invariant subspace. Aron-
szajn and Smith generalized the result to Banach-space operators.

Theorem 13.2.1 (von Neumann, Aronszajn-Smith [23]). If I is a complex Hilbert space
withdim H > 2and A € B(¥) is compact, then A has a proper nonzero invariant subspace.

In 1973, Lomonosov proved a sweeping generalization of this result [230]. Not only
is his result much stronger but its proof is simpler than that of Aronszajn and Smith.
Traditionally, “Lomonosov’s theorem” refers to Corollary 13.2.4 below. It is a consequence
of Theorem 13.2.2, which is a hyperinvariant-subspace version of the result. The proof
below is from A. J. Michaels’ exposition of Hilden’s proof [243] (see also [280]). Michaels
claims that “the ideas are all Lomonosov’s and Hilden’s. Even the exposition of the proof
is derivative; it is largely based on Wallen’s 1973 Wabash conference lecture.”

Theorem 13.2.2. Every nonzero compact operator on a complex Hilbert space has a proper
nongzero hyperinvariant subspace.

Proof Let K € B(J) be a nonzero compact operator. Riesz’s theorem (Theorem 2.6.9)
says that o(K) is the union of {0} and a (possibly empty) discrete set of points that
accumulate only at 0. Moreover, every nonzero element of o(K) is an eigenvalue of
finite multiplicity. There are two possibilities: o(K) # {0} or o(K) = {0}.
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If o(K) # {0}, then K has a nonzero eigenvalue 1. Consequently, M = ker(K — AI), the
eigenspace for 4, is K-invariant; it is nonzero by definition. Since K is compact, K # AI
and hence M # K. If A € B(H) and AK = KA, then for each x € M, it follows that
K(Ax) = A(Kx) = A(Ax) = A(Ax), and hence Ax € M. In other words, M is an
invariant subspace for A. Thus, M is a proper nonzero hyperinvariant subspace for
K.

Suppose that o(K) = {0}. Then the spectral radius formula (Theorem 8.4.4) ensures that

1 1
lim [[(aK)"||» = lim |a| [K"*]|» =0 foralla € C. (13.2.3)
n—oo n—>oo

Since K # 0, assume that | K|| = 1. Indeed, multiply by 1/||K|| which does not change
the invariant-subspace structure for K. Then there is an x, € 7 such that |Kx,| =
1 + 6 for some 6 > 0. In particular, this implies that ||x,|| > 1 since ||K]| = 1. Let

B={xeH:|x—x%xy] <1}
and observe that 0 ¢ B and 0 ¢ (KB)~ since forx € B,
[Kx]| > [IK%o]l — [K(x —%0)[| > & > 0.

Foreachv € 7, let
M, = {Av : A € B(¥), AK = KA}

Each M, is a vector space that is invariant under any operator that commutes with K
(hence invariant under K itself) since A(Av) = A*>v and A’K = KA?. Since each My
is a hyperinvariant subspace for K, it suffices to prove that there is a v € J such that
My is proper and nonzero. If v # 0, then M, # {0} since v = Iv and IK = KI. For
v € F\{0}, it may be that M, = F . It turns out that this cannot occur for all v # 0.

Suppose toward a contradiction that M, is dense in H for all v € F\{0}. Then for each
v # 0, there is an A € B(¥) such that AK = KA and ||JAv — x,|| < 1. Let

UA) ={v : |Av — x| < 1},

and observe that

U u@) =0\
AEB(H)
AK=KA

Since K is compact, (K$8)~ is a compact subset of F\{0}. Each U(A) is open, so there
are A, A,,..., A, € B(H) that commute with K such that

n
k8| Juw@.
i=1

Since Kx, € KB (since x, € 8), there is an i; € {1,2,...,n} such that Kx, € U(A;).
In other words, A4; Kx, € B, and hence KA; Kx, € KB. In a similar way, there is
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an i € {1,2,...,n} such that KA; Kx, € U(A;,), and hence A;,KA; Kx, € B. This
process can be continued indefinitely to produce iy, i,,..., such that

A; KA; K--A;KA; Kxo € B

Im-1
for each m > 1. Let ¢ = max{||4;|| : 1 < i < m} and recall that each A; commutes
with K. Therefore,
(cA4;, )(c'A;, ) (c7TA; (K)o € B.

Im-1

Since (13.2.3) ensures that ||(cK)"™|| — 0 and each ||c‘1Aij | <1,itfollows that 0 € B
because B is closed. This contradicts the fact that 0 ¢ %, so there exists a v # 0 such
that M, # 7. This yields a hyperinvariant subspace for K. [ |

Corollary 13.2.4 (Lomonosov [230]). IfA € B(H) commutes with a nongero compact
operator K, then A has a proper nonzero invariant subspace.

Proof If A € B(J() commutes with a nonzero compact operator K, then Theorem 13.2.2
ensures that K has a proper nonzero hyperinvariant subspace M. Since A commutes
with K, the definition of hyperinvariance ensures that M is A-invariant. [ |

13.3 Universal Operators

One approach to the invariant subspace problem is to study the invariant subspaces of
a special type of operator which boasts a sufficiently complicated lattice of invariant
subspaces. Recall that A € B(H) and B € B(X) are similar if there is an invertible
S € B(J(, %) such that ST'BS = A. This is represented by the following commutative
diagram:

I I
s 51
x x

B

Note that similarity preserves invariant subspaces: if M C J is an invariant subspace
for A, then SM C X is an invariant subspace for B.

Definition 13.3.1. U € B(¥) is universal for J¢ if for any nonzero A € B(K), there is
an invariant subspace M for U and a nonzero constant A such that A is similar to AU]| ;.

Notice that U|,; and AU|,, have the same invariant subspaces. Thus, the collection of
invariant subspaces of U|,, is in bijective and order-preserving correspondence with the
collection of invariant subspaces of A. The invariant subspaces of a universal operator are
so plentiful that they can model the invariant subspace structure of any operator on ¥ .
Although the existence of universal operators seems impossible, in 1960 Rota produced
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an example of one [316]. Since this early example, they have been shown to exist in
abundance. One method for producing them is due to Caradus.

Theorem 13.3.2 (Caradus [75]). If H is an infinite-dimensional separable Hilbert space
and U € B(HK) satisfies

(a) dimkerU = oo and
(b) ranU = KA,
then U is universal for J(.

Proof Let X = ker U and consider the orthogonal decomposition & = X @ K. Since
ranU = J(, it follows that U = Ulg. : XK' — 7 is a bijection. Consequently,
vV = U~ is a bijection from # to X such that

UV=I and ranV =X".
Since dim X = oo, there is a unitary W : ' — X. By construction,
UwW =0, kerW ={0}, and ranW =X.

Suppose that T € B(H) and let 1 # 0 satisfy |1 |T|| ||V]l < 1, so that the series defining

Q=) "V'WT"

n=0
converges in operator norm (apply Theorem 1.8.11 to the Banach space B(¥()). Then
Q = W + AVOQT, (13.3.3)

and hence
UQ = AQT (13.3.4)

since UV =T and UW = 0.

If we can show that M = ranQ is closed and Q : H — M is injective, then the
bounded inverse theorem will ensure that Q is invertible. In light of (13.3.4), this will
show that AT is similar to the restriction of U to M. From (13.3.4) it follows that M
is U-invariant.

If Qx = 0, we know that Wx + AVQTx = 0. Now use the fact that ran W L ranV to
conclude that Wx = 0. But ker W = {0}, which implies that x = 0 and hence Q is
injective.

To show that Q has closed range, suppose that Qx,, — y. From (13.3.3), it follows that
Wx, + AVQTx, — y. Since ran W = X and ran V = X!, one sees that Wx,, — Py
(the orthogonal projection of y onto X). From here recall that W : # — X is unitary
and so x,, > X = W*PByy. The boundedness of Q implies that Qx,, - Qx, and hence
M = ran Q is closed. [ ]
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Example 13.3.5. Caradus’ theorem produces many universal operators beyond Rota’s
initial example of the backward shift of infinite multiplicity (see Chapter 14 for a formal
treatment of infinite direct sums of Hilbert spaces). Specifically, we mean the operator U
on the Hilbert space

HY = {0 : § € HAIDZI = X 16l < oo}
j=0

defined by

Ulfo, fis for 3oe-) = (15 o> fooee)- (13.3.6)

Observe that ker U = {(f,0,0,...) : f € H?}, which is infinite dimensional, and ran U =
(H?)()_ Thus, the conditions of Caradus’ theorem are satisfied and hence U is universal.
Of course, Rota did not have the luxury of Caradus’ theorem and so his proof was more
complicated.

Example 13.3.7. For each a > 0, the operator U, : I*(R,) — I*(R,) defined by
Uaf)x) = flx+a)

is universal since Uj, is similar to the backward shift of infinite multiplicity discussed above
(Exercise 13.9.9). One can also see this by applying Caradus’ theorem.

Later chapters of this book contain examples of universal operators among the trans-
lation, Toeplitz, and composition operators. Two good surveys of universal operators are
[101] and [80, Ch. 8].

13.4 Properties of Bishop Operators

A Bishop operator (T, f)(x) = xf({x + a}) on I?[0, 1] can be written as
T = My Ug,
where M,, : I?[0,1] — I*[0,1], defined by
M f)(x) = xf(x),

is the multiplication operator covered earlier in Chapter 4, and U,, : I?[0,1] — I*[0,1] is
defined by

Unf = f(ug)s

where u,(x) = {x + a}, is a composition operator. One can check that u, is a (Lebesgue)
measure-preserving transformation of [0, 1) to itself and hence the composition operator
U, is unitary. Note that

u&j(x) = uj,(x) forallx €[0,1],
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u1/4(x) u‘l’ﬁ(x)
08 -/ 0.8
06+ 06

0zr 0z

C\IZ 0‘4 E‘ﬁ EIS IIC\ 0‘2 C\I-l EIE E‘S IIO
U3, (%) U7y (%)

Figure 13.4.1 The graphs of u;J/ () for j=1,2,3,4.

where u&j denotes the function u, composed with itself j times. If p,q € N are relatively
prime, p < g, and a = p/q, then ug!(x) = x for x € [0, 1]; see Figures 13.4.1 and 13.4.2.
Furthermore, q is the smallest positive integer for which this holds.

If E =[0,1/q), then the sets

u;j(E) for0<j<q-1,

are pairwise disjoint and
q-1
U« @ =0,1). (13.4.1)
j=0

These facts translate into operator identities. For example,
UZf = fou,, foralln € Zand f € I?[0,1],
and, since Uy, is unitary,
Ui = Uy (13.4.2)

If p,q € N are relatively prime, p < q, and & = p/q, then U7 = L.
The iterates of T, are important in what follows. Starting with

Tof = MyUyf = My(f o ug),
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Figure 13.4.2 Graphs of ugf L0 forj=1,2,3,4.

we have
Ta%f = To (M f(ug)) = xug(X)f(ug o ug),

and hence (TZf)(x) = x{x + a}f({x + 2a}). In general,

(TZ )(X) = gan(x)f({x + na}), (13.4.3)
where

8an(X) = x{x + al{x + 2a}---{x + (n — Dal.
When a = p/q as above, observe that
(T2 )(xX) = gaq()f(x). (13.4.4)

In other words, T is the multiplication operator with symbol 8a,q- Let us now compute
the norm of a Bishop operator.

Proposition 13.4.5. ||T,| = 1 forevery a € [0,1).

Proof Proposition 4.1.2 says that | M, | = 1. The operator U, is unitary, and hence | Uy | =
1. From Proposition 2.1.12,

I Toll = 1My Ugll < My Upll = 1
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Figure 13.5.1 The graphs of g/, »(x) (left) and g,/3 3(x) (right).

and hence ||T,|| < 1. The functions h,,(x) = y/2n + 1 x" are unit vectors in I?[0, 1],
and, since U, is unitary (see (13.4.2)), the f,, = U_h,, are also unit vectors. Moreover,
since U,U_, = I, it follows that

\2n + lh
\V2n+3 s

Tofo = MyUyfy = My UpU_ghy = Myhy, = \2n + 1x"*! =

Thus,
2 1
1Tl = Y2252 1 asn - o,
V2n +
and hence
12 || Tell = sup{| To f1l = IIfIl =1} > Jim [T full = 1.
Consequently, || T, || = 1. [ |

13.5 Rational Case: Spectrum

We begin our discussion of the spectral properties of the Bishop operators with the
following. If p, q € N are relatively prime, let « = p/q and define

Zaq(0) = xx + s}{x + 25}{x+ 35} cfx+(q- 1)5},

These functions are piecewise continuous with only a finite number of zeros; see Figure
13.5.1.

Proposition 13.5.1. o,(T,) = @ for any rational a.

Proof Suppose a = p/q, with p, q relatively prime, and suppose that T, f = Af for some
A€ Cand f € I2[0,1]. Then T, f = 29f. On the other hand, (13.4.4) yields T, f =
8a,qf- Together, these say that (g, 4 — 47)f = 0 almost everywhere on [0, 1]. Since
the equation g, ,(x) = A7 has only a finite number of solutions, f is zero almost
everywhere and hence 0,(T;,) = @. [ |
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We need a new technique to characterize the eigenvalues of T if « is irrational, which
we take up later in this chapter. We now present a spectral result from the 1965 doctoral
thesis of Parrott.

Theorem 13.5.2 (Parrott [260]). Ifa = p/q, where p,q € N are relatively prime and p < g,
then o(T,) ={A € C : 1 € g 4([0,1])}.

The proof of this theorem requires the following symmetry lemma.

Lemma 13.5.3. Let a = p/q where p and q are relatively prime. If € € T and £ = 1, then
T, is similar to £T,.

Proof From (13.4.1), the sets ug (E) where E = [0,1/q) and 0 < j < q — 1, are pairwise
disjoint and

Uu (E) =[0,1).

Define g : [0,1] = T by g(x) = &/ on ug J(E) = uj,(E) and notice that g o u, = &g.
Proposition 8.1.12 implies that M, (multiplication by g on I*[0,1]) is invertible with
inverse M, . Moreover, for each f € I2[0,1],

MG T, M, f = My TyM, f
= My/gM, UM, f
= My /gM8(uq) f (uy)
= Ml/ng(gg)f(ua)
= §xf(uq)
={§T.f.
Thus, T is similar to £T,. [ |

We are now ready to prove Theorem 13.5.2.

Proof Equation (13.4.4) yields
TI=M, |, (13.5.4)

8a,q

while Proposition 8.1.12 implies that
o(My,,) = 8aq([0,1]). (13.5.5)
By the spectral mapping theorem,
o(T) = {49 : 1 € o(T,)} (13.5.6)
and

0(§Te) = §o(Ty). (13.5.7)
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Figure 13.5.2 The spectrum of T,3.

Equation (13.5.6), along with (13.5.4) and (13.5.5), show that at least one qth root of
every number in gq ([0, 1]) belongs to o(T,,). Equation (13.5.7) shows that every gth
root belongs to o(T,). [ |

Here are a few examples of o(Tp/q)-
Example 13.5.8. If§ = %, then g;/,,(x) = x{x + %} From Figure 13.5.1, one can see that
1
g1/22([0,1]) = [0, 5]- Thus,

o(Tix) ={Ae C: 2 egpa(0.1) = [0.5]}=[ - 5. 5]

Example 13.5.9. If § = g, then g,/35(x) = x{x + g}{x + g} The graph of g,/5 3(x) (see
Figure 13.5.1) says that g,/3 3([0,1]) = [0, g] Thus,

o(Ty3) = {/1 ec:Pelo, é]}

consists of three equally spaced line segments from the origin; see Figure 13.5.2.

13.6 Rational Case: Invariant Subspaces

The Bishop operator T, has plenty of invariant subspacesifa € QN[0, 1). In order to make
this more readable, let us focus on the representative case Tj/,. Consult [80, Ch. 5] for a
survey of what happens for general « = p/q. Here the function u;/, plays an important
role (see Figure 13.6.1).

Example 13.6.1. Let

E=o.}ul2 2ull]
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0.2 04 0.6 0.8 1.0

Figure 13.6.1 Plot of u;,(x).

Figure 13.6.2 The set A rotated by 1/2 (mod 1) to form A’. The set A U A’ is invariant under
rotation by 1/2 (mod 1).

and note that u;,E = E and u,,,E® = E°. Thus, if f vanishes almost everywhere on E¢
(see Figure 13.6.1), then (Ty,f)(x) = xf({x + é}) also vanishes for almost every x € E°.

Thus, yzI*[0,1] is a Ty /,-invariant subspace.

One can extend the example above to include invariant subspaces of the form yzI?[0,1],
where F is a measurable subset of [0, 1] such that u,,,F = F. Such sets can be created by
taking any measurable subset A C [0,1] and shifting it by 1/2 (mod 1) to form the set
A'.Then F = AU A’ is invariant modulo a shift by 1/2 (mod 1). It often helps to equate
[0,1] with a circle (see Figure 13.6.2), where rotation modulo one is easier to visualize.
The subspaces yrI1?[0, 1], for which u,,F = F, are not only invariant for T,,,, but they are
also reducing.

Theorem 13.6.2 (Parrott [260]). IfF C [0, 1] is measurable and u,/,F = F, then ypI*[0,1]
reduces Ty ,.

Proof 1f f El)(FLZ[O, 1], then f = 0 almost everywhere on F€. But then (T;,, f)(x)
xf({x + ;}) is zero on F° since u,,,F¢ = F¢. Also observe that (yzI*[0,1])* =
xre[?[0,1]. Now apply the previous argument, using the fact that u;,,F¢ = F¢, to
show that yzI?[0,1] is also Ty/,-invariant. [ ]
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The converse of Theorem 13.6.2 requires the following fact.

Proposition 13.6.3. If M C I?[0,1] is reducing for Ty, then M is reducing for both M,
and Uy,.

Proof Compute Ty, T}, as follows:
Tl/ZTf;z =M, U, 1*/2Mx = M,IM, = MJZC

Thus, |T}),| = My (see Definition 14.9.1). As a consequence of the spectral theorem
for selfadjoint operators (Theorem 8.7.1), there is a sequence of polynomials (p,, ),
such that p,(Ty,Tyj,) — |Ty),] = M, in operator norm. Thus, if M reduces Ty/,, then
M is invariant for each of the operators p, (T, T;j,), so M is invariant for M,. Since
M, is selfadjoint, M is reducing for M, .

We now show that Uy, M C M. Suppose f € M and Uy,f = h+ k with h € M and
k € M*. Then Ty, f € M and Tyjpf = M Uyjnf = Mch + M, k. We already proved
that M is reducing for M,, so Myh € M and M,k € M*. Thus, M,k = 0 almost
everywhere, which makes k = 0 almost everywhere. It follows that Uy, f = h € M,
and hence M is an invariant subspace for Uy,.

We finish by showing that Uy), M C M. We first argue that M, M is dense in M. This
follows because M, I?[0,1] is dense in I?[0, 1] and both M and M+ are invariant for
M,.. To complete the proof that M is invariant for U),, let f € M and choose a
sequence (f,)5x; of functions in M such that xf, — f in I*[0,1]. Then T}, f, € M
and T}, fp, = UMy fr = Up),(xfy). It follows that Uy, (xf,) € M and Up),(xf,) —
Uy, f- Hence, Uy), f € M. [ |

The converse of Theorem 13.6.2 yields the reducing subspaces for Tj,.

Theorem 13.6.4 (Parrott [260]). IfM C I?[0,1] is a reducing subspace for T ,, then there
is a measurable subset F C [0, 1] such that u,;,F = F and M = ypI*[0,1].

Proof By Proposition 13.6.3, M is reducing for both M,, and U, ;,. By Theorem 4.1.7, M =
xrI?[0,1] for some measurable subset F C [0,1]. Since yrI?*[0,1] is reducing for
Uy,, it follows that f € ypI?*[0,1] if and only if Uy, f € xI?[0,1]. This says that f
vanishes almost everywhere on F¢ if and only if Uy, f vanishes almost everywhere
on F°. Applying this to f = yp, it must be the case that u;/,F¢ = F¢, and hence
ul/zF =F. .

Parrott also characterized the irreducible invariant subspaces for T/,. However, we do
not go into the details here.

Theorem 13.6.5 (Parrott [260]). Suppose w € L*[0,1], w o uy;, = w, and M is the set of
f € I*[0,1] such that Ty, f = wo f and w=({0}) C f~1({0}) almost everywhere. Then M is
an irreducible invariant subspace for Ty,, and every irreducible invariant subspace for T,
is of this form.



302 | BISHOP OPERATORS

Combining this theorem with Theorem 13.6.2 yields all of the invariant subspaces of
Ty, The text [80, Ch. 5] gives an equivalent description of the invariant subspaces for Ty,
and also those for T},/4, in which p,q € N.

13.7 Irrational Case

Although the details of this go beyond the scope of this book, we mention some of the
properties of T, when a € Q° n [0,1]. The main difference between the rational and
irrational case comes from the fact that unlike the Uj /, case, where there were plenty of sets
E such thatu,,,E = E and plenty of functions w such that wou;,, = w, when a isirrational
there are essentially no such E or w. Thus, there are no obvious candidates for invariant
subspaces or obvious elements of the spectrum. Unlike the case when « is rational, where
the spectrum depends on a (Theorem 13.5.2), the spectrum of T, for irrational a does not
depend on « and it is much richer.

Theorem 13.7.1 (Parrott [260]). o(T,) = {z € C : |z| < e~} for all irrational a € [0,1].

Proposition 13.5.1 showed that 0,(T,) = @ when « is rational. A more involved proof
using results from number theory shows that the same holds when « is irrational.

Theorem 13.7.2 (Davie [106]). 0,(T,) = @ for all irrational o € [0,1].

As mentioned earlier, there are no obvious examples of proper nonzero invariant sub-
spaces for T, when « is irrational. The reason Bishop suggested studying these operators
was to explore the possibility that they have no nonzero proper invariant subspaces. It
turns out that many of them do.

Theorem 13.7.3 (Davie [106]). For almost every a € [0,1], the operator T, has proper
nongzero invariant subspaces.

We do not get into the details here but the class of possible exceptional « is a small set
that Davie describes exactly. It is also the case that “invariant subspace” can be replaced
with “hyperinvariant subspace” in Davie’s theorem.

13.8 Notes

Many operators on Hilbert spaces have proper nonzero invariant subspaces (such as
normal operators, compact operators, operators commuting with compact operators).
This is all summarized in a recent survey [80]. Another good text concerning invariant
subspaces is [280]. Although the invariant subspace problem for Hilbert spaces is still
open, the invariant subspace problem for certain Banach spaces was resolved in the
negative by Enflo [124]. Read provided a bounded operator on ¢! with no proper nontrivial
invariant subspaces [281, 282].

The invariant subspace problem is connected to the invariant subspaces of the Bergman
shift M. As discussed in Chapter 10, the M,-invariant subspaces of A% are complicated.
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A remarkable result from [19] says that if it is true that for all M,-invariant subspaces M
and V of A% with M C N and dim(N/M) > 1 there exists an invariant subspace £ such
that M ¢ £ ¢ X, then the invariant subspace problem is true. This remarkable result
says that if we can understand the structure of one operator, the Bergman shift, then we
can solve the invariant subspace problem. Of course, as we have seen in Chapter 10, this
one operator has a particularly complicated collection of invariant subspaces.

Various properties of Bishop-type operators f(x) = @(x)(f o T)(x), where ¢ € L*[0,1]
and T is a measure-preserving transformation on [0, 1], have been studied in [ 54, 236, 260].
In particular, [260] contains a description of the numerical ranges of these operators. More
detailed properties of the classical (and generalized) Bishop operators are covered in [81].

13.9 Exercises

Exercise 13.9.1. Prove that every selfadjoint operator on a complex Hilbert space  with
dim # > 2 has a proper nonzero invariant subspace.

Exercise 13.9.2. Prove that if A € B(%) and p(A) = 0 for some nonzero polynomial,
then A has a proper nonzero invariant subspace.

Exercise 13.9.3. This is an extension of Exercise 13.9.2. An operator T € 3B(XK)
is polynomially compact if p(T) is compact for some polynomial p. Use Lomonosov’s
theorem (Corollary 13.2.4) to prove that every polynomially compact operator on a Hilbert
space of dimension at least two has a proper nonzero invariant subspace.

Remark: This result was first proved by Bernstein and Robinson in 1966 with nonstandard
analysis [47]. Halmos produced a standard proof [167].

Exercise 13.9.4. Let A € B(H) and let M C H be a linear manifold (not necessarily
topologically closed). Prove that if AM C M, then M~ is an invariant subspace of A.

Exercise 13.9.5. This exercise from [280] shows the prevalence of cyclic vectors. Recall
that x, € J is a cyclic vector for A € B(¥) if \/{A"x, : n > 0} = F. Define

1 n
=I-=—/—A fi >0
X, ( STAT ) xo forn>

and prove the following.
(a) x, is a cyclic vector for A for every n > 0.
b) Vi{x, :n=0}=%xH.
Thus, if A has a cyclic vector, it has a set of cyclic vectors with dense linear span.

Exercise 13.9.6. Prove the following result from [329] (see also [168]). If T is a linear
transformation on an infinite-dimensional vector space V, then there is a linear manifold
(closed under vector addition and scalar multiplication) M such that {0} ¢ M ¢ V and
M C M.
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(a) Letx € V\{0} and consider 8 = {x, Tx, T2x,...}. If 8 is linearly dependent, explain
why the proof is complete.

(b) If B is linearly independent, every vector in the span of 8 can be written uniquely
as Z;ozo a,T"x, in which only finitely many coefficients are nonzero. Consider the
linear functional

[Se] (s
cp( Z anT"x) = Z a,
n=0 n=0
and prove that ker ¢ is a T-invariant linear manifold.

(c) Prove that {0} C kerp C V.

Remark: The point of this exercise is that nonzero proper invariant subspaces always exist
if the requirement that they be topologically closed is dropped.

Exercise 13.9.7. Suppose A is a linear transformation on a vector space V such that AM C
M for every linear manifold M in V. Prove that A = AI, where 1 € C.

Exercise 13.9.8. For the invariant subspace problem, one needs J to be a Hilbert space
and not just an inner product space. Consider the inner product space C[x] of polynomials
in the real variable x endowed with the I?[0, 1] inner product. The operator M, f = xf
is bounded on C[x]. Use the following steps to prove that there are no proper nonzero
topologically closed subspaces M which are invariant for M.

(a) Suppose M C C[x]is closed and M,-invariant. Prove that M = {f € C[x] : f|g = 0}
for some finite set E.

(b) IfE # @, prove that M is not closed in C[x].
Remark: See [280] for related examples.

Exercise 13.9.9. Define W on I*(0, c0) by (Wg)(x) = g(x + 1). Use the following steps to
prove that W is similar to the backward shift of infinite multiplicity B on (H 2)() defined

in (13.3.6) by B(fy, fi» foree) = (fis fos foers).

(a) For g € I*(0,0) and n > 0, define g, = X(n,n+1]8- Prove that Wg, = 0 and Wg, =
gn_1forn>1.

(b) If (uj);?‘;o is an orthonormal basis for I?[0,1] and n > 0, prove that ((x + n))j-‘;o is
an orthonormal basis for I?[n,n + 1].

(c) Use (b) to construct an invertible operator V : I?(0,00) — (H?)(*®) such that
VWVl =B.

Exercise 13.9.10. If « = p/q, where p,q € N are relatively prime, consider the unitary

portion (U, f)(x) = f({x + a}) of a Bishop operator.

(a) Use the ideas of the proof of Theorem 13.5.2 to prove that o(U,) = 0,(U,) = {§ €
T:81=1}L

(b) For each § € 0,(Uy), find an orthogonal basis for ker(Uy — &1).
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Exercise 13.9.11. If « is irrational, consider the unitary portion (U, f)(x) = f({x + a}) of
a Bishop operator. Prove that o(U,) = T.

Exercise 13.9.12. For the unitary portion (U, f)(x) = f({x + a}) of a Bishop operator,
prove that U, is cyclic if and only if « is irrational.

Exercise 13.9.13. Compute o(T}s).

Exercise 13.9.14. In his doctoral thesis [260], Parrott proved a more general version
of Theorem 13.5.2. If ¢ € L*[0,1] and a € [0,1), define the Bishop-type operator
(To, )(x) = p(x)f({x + a}). Use the techniques of the proof of Theorem 13.5.2 to prove
thatifa = p/q € [0,1), where p,q € N are relatively prime, then o(T,, ;) = {1 €C : 171 €
Py}, where P(x) = p(x)p({x + aPp({x + 2a}) --- ({x + (q — 1)a}) and %, is the essential
range of ¢ (Definition 8.1.11).

Exercise 13.9.15. Use the notation from Exercise 13.9.14 to compute o(Ty» 1/,,) forn > 1.

Exercise 13.9.16. For each «, show that the self commutator T;T, — T,T; of the
Bishop operator T, is the multiplication operator M, on I2[0, 1] for some piecewise-linear
function ¢ on [0, 1].

Exercise 13.9.17. This exercise outlines a proof that the constant function 1 on [0,1] is a
cyclic vector for the Bishop operator (Ty/,/)(x) = xf({x + %})
(a) For f € I?[0,1], find two i-periodic functions f;, f; € I?[0,1] such that f(x) =
() + x fo(x).

(b) Let w(x) = x{x + 1/2}; see Figure 13.9.1. Prove that {po w : p € C[x]}is dense in
17[0,1/2].

(c) Prove that (le/'gl)(x) = w(x)" and (lefz”'ll)(x) = xw(x)" foralln > 0.
(d) Prove that \/{Tszl : k> 0} 2 {p(w) + xq(w) : p,q € C[x]}.

(e) Use the previous parts to prove that \/{Tlljzl 1k >0} =17[0,1].

Remark: See [80, Ch. 5] for more on the cyclic vectors for Tp/q

Exercise 13.9.18. Prove thatif f = yg, where E is a Lebesgue-measurable subset of [0, 1]
such that {x € [0,1] : x € E or {x + 1/2} € E} has measure one, then f is a cyclic vector
for Ty 5.

Remark: See [80, Ch. 5] for more.

Exercise 13.9.19. Is the constant function 1 on [0, 1] a cyclic vector for T;/3?

Exercise 13.9.20. For ¢ € L*(T), consider the Bishop-type operator B, on I*(T) defined

by (Bof)(&) = ¢(§)f (E) for f € I*(T). Compute the matrix representation of B, with
respect to the orthonormal basis (§")52_ ., for I2(T).

Exercise 13.9.21. This is a continuation of Exercise 13.9.20. Show that o(B,) = {§ € T :

§ € Zywipm@)}-
Remark: See [260] for more on these generalizations of Bishop-type operators.
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Figure 13.9.1 The function w(x) = x{x + 1/2}.

13.10 Hints for the Exercises

Hint for Ex. 13.9.1: Consult Theorem 8.7.1.

Hint for Ex. 13.9.7: The assumption says that for each x € V, there is a A(x) € C such
that Ax = A(X)x.

Hint for Ex. 13.9.8: For (a), use Theorem 4.1.7.

Hint for Ex. 13.9.10: Consider the orthonormal basis (e?7¥)% _ .

Hint for Ex. 13.9.17: For (b), use the Stone-Weierstrass theorem.
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Operator Matrices

Key Concepts: Direct sum of Hilbert spaces, block operator, invariant subspace, reducing subspace,

spectrum of a block matrix, idempotent operator, Parrott’s theorem, Douglas’ factorization theorem,

polar decomposition.

Outline: This chapter concerns operators represented by matrices of operators. We
examine the norm, spectrum, and invariant subspaces of such operators in terms of their

entries.

14.1 Direct Sums of Hilbert Spaces

For Hilbert spaces H; and J(,, form F; @ J(,, the direct sum, as follows. First, consider
the set of all ordered pairs (x,,X,), where x; € #(; and x, € J,. For convenience, we use

column-vector notation:

H® I, = { [2] © X, € Ky, X, € }(2}.

Then make #(; @ J(, into a vector space with the operations of addition

X tY2

-
X2 Y2
X Ax
A = .
MR
Finally, endow F; @ J, with the inner product

([ o]y = s e

X +Y1]

and scalar multiplication

(14.1.1)
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The corresponding norm satisfies

]

Since #, and J(, are complete, one can show that 7(; @ J(, is also complete, and hence
a Hilbert space (Exercise 14.11.1).

This notation is compatible with the orthogonal decomposition notation for a subspace
M of #(. Indeed, recall from Definition 3.1.1 that

2
2 2
= [xall7e, + %215, -

Mt ={xe€ I :(xy)=0forally € M}

is the orthogonal complement of M. Then 7 = M @ M and every x € J{ can be written
uniquely as X = X; +X,, where x; € M and x, € M. Furthermore, |[x]? = |x;|? + [|%]1%,
and hence we can equate M @ M~ with the set of column vectors

{[Xl] 1x, EM, x, € M
X3

and regard the orthogonal decomposition of M and M+ as the direct sum of the Hilbert
spaces M and M+*. Thus, the use of the same notation @ in two seemingly different
contexts is justified. Some authors use the phrase external direct sum for H, @ F, and
internal direct sum for M @ M+, although we make no such distinction here.

One can consider the direct sum of a finite number of Hilbert spaces in a similar way.
For example, if 7( is a Hilbert space and n € N, define

FM = {(x1,X5,05 %) ¢ Xq,X5,..., X, € HY.

When endowed with the norm
n 1
Il = (X Ixil2)®
i=1

and its corresponding inner product, # ™ is a Hilbert space.
One can extend the construction above and define #((®). As expected, there are some
convergence issues to address. For a Hilbert space J(, consider

() 2= {(xi);';l DX € Y x| < oo} (14.1.2)

i=1

with corresponding norm

ol = (3 )
i=1

One can modify the proof of Proposition 1.2.5 (the completeness of £2) to prove that F((®)
is a Hilbert space (Exercise 14.11.2).
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14.2 Block Operators

Let T € B(H)and let M be a subspace of 7. The present goal is to represent T in a manner
that isolates how T interacts with the components of the orthogonal decomposition

H=MM*. (14.2.1)

To do this, let P denote the orthogonal projection onto M. Then P is selfadjoint and
idempotent, and I — P is the orthogonal projection onto M* (Proposition 3.1.2). A
computation using the identity P + (I — P) = I confirms that

T=A+B+C+D, (14.2.2)
where
A=PTP, B=PT(I-P), C=(—P)TP, and D =(I—P)T(I—P).
Since
ranP =kerl —P) =M and ran(I-—P)=kerP =M, (14.2.3)

we restrict the domain and codomains of A, B, C, and D, initially defined on ¥, and regard
these operators as maps between M and M+ as follows:

A = PTPe BWM),
B = PT(I-P)e BML,M),
(14.2.4)
C = (I-P)TP e B(M, ML),
D = (I-P)TUI-P)e BM™Y).
This information is compactly represented in the block-operator notation
[ prp PT(I-P)
T= (I-P)TP (I—P)T(I—P)]’ (14.2.5)
which is more conveniently displayed as
A B
T = . 14.2.
s wao

An expression of the form (14.2.6) implicitly comes equipped with an orthogonal decom-
position of the underlying Hilbert space, with respect to which A, B, C, and D are defined
asin (14.2.4). Two block operators of the form (14.2.6), with respect to the same orthogonal
decomposition of the underlying Hilbert space, are equal if and only if their corresponding
entries are equal.

We equate x; + X, € M @ M+, where x; € M and x, € M+, with the column vector

]
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and use (14.2.2) to see that T acts as matrix multiplication

¢ 5]

This dissection of the operator T with respect to the decomposition (14.2.1) respects the
adjoint and operator composition. Since T was arbitrary, replace T with T* in (14.2.5) and
deduce

AXx; + Bx,
Cx; + Dx,

= [ pT*P PT*(I — P)
~|t-pT*P (I-P)T*(I-P)
[ (prP)* [(I — P)TP]* ]
~|[PTU-P)* [I-P)TUI - P)]*
(4% C*
= B D*] . (14.2.7)

Consequently, the block-operator representation of T* with respect to the orthogonal
decomposition (14.2.1) is the formal adjoint of the 2 X 2 block-operator matrix (14.2.6):

A B _[a ¢
c D| |B* D*|
Block-operator representations are also compatible with operator composition. Suppose
that S, T € B(H) and observe that

ST = (14.2.8)

PSTP PST(I - P)
(I-P)STP (I-P)ST(I - P)

by (14.2.5). This is also what one obtains by formally multiplying the block-operator
representations of S and T and using the idempotence of P:

ST =

PSP PS(I—P) H PTP PTI - P) ] (14.2.9)

(I-P)SP (I-P)SI-P)||U-P)TP (I-P)TUI-P)

We suppress the details here, although the reader is invited to carry them out (Exercise
14.11.3).

Back in Theorem 8.3.1, we presented an efficient proof of Fuglede’s theorem. Here is a
generalization, due to Putnam, whose proof uses block-operator techniques.

Theorem 14.2.10 (Fuglede-Putnam). Let T,M,N € B(H). If M,N are normaland MT =
TN, then M*T = TN*.

Proof Consider the block operators on # @ J( defined by

, _[o o , [N 0
T—[T 0] and N—[O M]'
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Note that N’ is normal and T’ commutes with N’'. By Fuglede’s theorem (Theorem
8.3.1), T'(N')* = (N')*T", that is,

o of[nv* o] [N* o][0o o
T o|]J]o M| |0 M*[[T o]

Matrix multiplication yields

o ol [o o
TN* of [M*T o]
and hence TN* = M*T. [ |
More generally, we may consider n X n block-operator decompositions. Let B, B,..., B, €
B(H) be orthogonal projections onto proper nonzero subspaces Ky, Hj,...,H, C H,

respectively. If B + B + --- + B, = I, then H, H,,..., }{,, are pairwise orthogonal (Exercise
14.11.4). For T € B(XK), write

Tll TIZ Tln
T = T?l T_” T%" , (14.2.11)
Tnl Tn2 Tnn

in which T;; = RTP is regarded as an element of B(J(j, J(;) by restricting the domain and
codomain of BTE to J{; and J{;, respectively. One can verify that operator composition
and the adjoint respect such decompositions as in the 2 X 2 case (Exercise 14.11.5).

14.3 Invariant Subspaces

If we apply (14.2.5) to the orthogonal projection P of # onto a proper nonzero subspace
M of H, then (14.2.3) ensures that

I 0 0 0
p=| and I—-P=|M ) (14.3.1)
0 Oy 0 Iy

We henceforth suppress the subscripts on zero and identity operators since the spaces
upon which they operate can be deduced from context. Observe that the selfadjointness
and idempotence of P and I — P, along with the identities P(I — P) = (I — P)P = 0 and
P + (I — P) = I, are reflected in the block-operator representations (14.3.1).

Now suppose that TM C M; that is, M is T-invariant. Then

C=(I-P)TP=0 (14.3.2)

since ran P = M = ker(I — P), and hence T has the block-operator representation

A B
T=[0 D], (14.3.3)
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in which A = T|y; and D = T|y.. Conversely, if T € B(J() is represented by a block-
operator of this form, then M is T-invariant. Since (I — P)TP = 0 if and only if PTP = TP,
we obtain the following result.

Theorem 14.3.4. For a proper nonzero subspace M of F, the following are equivalent.

(a) M is T-invariant.
A B| . o, L
b)) T= o D with respect to the decomposition H = M @ M.

(c) PTP = TP, in which P is the orthogonal projection onto M.

Now suppose that M is invariant for both T and T*; that is, suppose that M is a reducing
subspace. In addition to (14.3.2), we also have B = PT(I—P) = Osince ran(I—P) = M+ =
ker P. Therefore, the block-operator representation of T is block diagonal:

A
T - [ 0] ’
0 D
which we write as T = A @ D. In particular, T commutes with P (and with I — P), which

can be seen from the block-operator representation of P given in (14.3.1). One can also
deduce this algebraically as follows:

TP = PTP (M is T-invariant)
= (PT*P)* (P = P¥)
= (T*P)* (M is T*-invariant)
=PT (P = P*).

We record this in the following theorem.

Theorem 14.3.5. For a proper nonzero subspace M of H, the following are equivalent.
(a) M is a reducing subspace for T.
(b) T = A @ D with respect to the decomposition 7 = M @ M~ .

(c) PT = TP, in which P is the orthogonal projection onto M.

14.4 Inverses and Spectra

Inverses are another domain in which block operators can be manipulated like matrices,
so long as one remembers that the entries need not commute. However, there are a few
unexpected surprises.

If H = J, @ F(, is an orthogonal decomposition, consider a 2 X 2 block operator

A B
[0 D], (14.4.1)
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in which A € B(H;) and D € B(¥,) are invertible and B € B(H,, H;). To avoid
trivialities, we assume that #; and J, are both proper and nonzero. A computation
(Exercise 14.11.6) confirms that

A B [a! —a-lpp-
A il 1442

Hence, a block upper-triangular operator matrix is invertible if the blocks on its diagonal
are invertible (the same holds true for lower-triangular block operators). Surprisingly, the
converse is false [169, Pr. 71].

Example 14.4.3. A 2 X 2 upper-triangular block operator may be invertible while both of
the blocks on the diagonal are not invertible. For example, let S denote the unilateral shift
on #% (Chapter 5). Then neither S nor S*, the forward and backward shifts, respectively, are
invertible (Proposition 5.1.4 and Proposition 5.2.4). Nevertheless, a computation (Exercise
14.11.7) confirms that

(14.4.4)

S I-SSs*
0 S*

* 0
is invertible with inverse .
] [I —-Ss* S ]
In particular, the operators above are block triangular and unitary. In contrast, if the spaces
involved are finite dimensional, this cannot occur unless the matrix is block diagonal with
unitary operators on the diagonal (Exercise 14.11.8).

Suppose that (14.4.1) is invertible. In light of the previous example, we cannot conclude
that A or D is invertible. However, if one of them is invertible, then so is the other (Exercise
14.11.12). We use this observation in the second part of the following theorem.

Theorem 14.4.5. If

then

0(A)Ao(B) C o(T) C o(A) U a(B). (14.4.6)
Here A denotes the symmetric difference of two sets. In particular, if c(A) N o(B) = @, then
o(T) = o(A) U o(B).

Proof If A € o(A) A o(B), then exactly one of A — AI and B — Al is invertible. Therefore,

T_/UZ[A—/U X ]

0 B-AI

is not invertible (Exercise 14.11.12), and hence A € o(T).
If A & 0(A) U o(B), then A — Al and B — AI are invertible and hence T — AI is invertible
by (14.4.2). Thus, 4 & o(T). [ |
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Example 14.4.7. The 2 X 2 block operator T from Example 14.4.3 is unitary, and hence
o(T) C T. However, the spectra of its diagonal blocks are o(S) = o(S*) = D~ (Proposition
5.1.4), and hence both containments in (14.4.6) can be strict. On the other hand, if the
spaces that A and B operate on are finite dimensional, then o(T) = o(A) U o(B) (Exercise
14.11.13).

Block-operator techniques can sometimes reveal things that are unexpected. Although
AB and BA are generally unequal, their spectra are closely related. See Exercise 14.11.18
for an extension of the next result.

Theorem 14.4.8. IfA,B € B(¥), then c(AB) U {0} = o(BA) U {0}.

Proof Let A # 0 and observe that

I o|l[aB—Aa1 A | _[-4 A I 0
B I 0 Al o BA-M||B I

Let
AB—-AI A -l A
S‘[ 0 —/11] and T‘[o BA—/II]'
Since
AB — Al is invertible < S is invertible (by (14.4.2))
< T isinvertible (S and T are similar)
< BA — Al is invertible (by Exercise 14.11.12),
it follows that 0(AB) and o(BA) have the same nonzero elements. [ |

Example 14.4.9. The restriction 4 # 0 is essential in the previous proof. If S denotes the
unilateral shift on #2, then o(S*S) = {1} and o(SS*) = {0,1} since S*S = I and SS* =
I — e, ® e, is the orthogonal projection onto {e,}* = \/{e, : n > 1}.

14.5 Idempotents

Recall that A € B(¥) is idempotent if A> = A. Examples of idempotents include
orthogonal projections and the 2 X 2 matrices

R [

From the first matrix above, one sees that an idempotent operator need not be selfadjoint.

N =N | =
[SHC SR

Theorem 14.5.1. IfA € B(J() is idempotent and A & {0, 1}, then o(A) = g,(A) = {0, 1}.
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Proof Suppose that A & {0,1} and let

1 1
B=r—A-3(-A).

Then

(A—ADB = (A —2I) <ﬁA - %(I —A))

L oY o
= (= 2A) - (A=A =20+ 24)

A
m(l —-D+(I-A)

=1

Since B is a polynomial in A, it follows that B(A — AI) = I, and hence A — AI has an
inverse in B(¥(). Thus, A ¢ o(A), and hence o(A) C {0, 1}.

Since I — A # 0, there is an x such thaty = (I — A)x # 0. Then Ay = A(l — A)x = 0,
$0 0 € 0,(A). Similarly, A # 0, and hence there is an x € J{ such thaty = Ax # 0.
Then, (A —I)y = (A — )Ax = A’x — Ax = 0 and so Ay = y. Thus, 1 € o,(A). This
shows that {0, 1} C g,(A) C o(A). [ |

If A € B(¥) is idempotent, the previous theorem ensures that Ay = y if and only if
y € ranA. In other words, ran A is the eigenspace of A corresponding to the eigenvalue
1. Indeed, the condition Ay = y ensures that y € ran A. On the other hand, ify € ran A,
theny = Ax for some x € 7 and hence y = Ax = A?x = A(4x) = Ay.

Proposition 14.5.2. If A is idempotent, then ran A is closed.
Proof Let (y,)i>; be a sequence in ran A such thaty, — y. Then

y = lim y, = lim Ay, = Ay
n—oo

n—oo

and hencey € ran A. [ |

Since I = A + (I — A), it follows that x = Ax + (I — A)x. Observe that AX € ran A
and (I — A)x € kerA since AI — A)x = (A — A)x = 0x = 0. Thus, if A € B(I() is
idempotent, then ¢ = ker A+ran A, in which the subspaces involved are closed, although
not necessarily orthogonal, and ker A N ranA = {0}. Recall that we only use the symbol
@ to signify an orthogonal direct sum. Since A fixes each element of its range, we deduce
the following result.

Proposition 14.5.3. IfA € B(K) is idempotent, then

A=lo 4

with respect to the direct sum J = ran A @ (ran A)‘. Moreover, any block operator of the
form above is idempotent.
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Exercise 14.11.14 yields the following theorem.
Theorem 14.5.4. For A € B(H), the following are equivalent.
(a) A is an orthogonal projection.
(b) A=A*anda(A) C{0,1}.

(c) Aisselfadjoint and idempotent.

14.6 The Douglas Factorization Theorem

Let A,B € B(J). When is ranA C ran B? Note that this question concerns operator
ranges, which are vector spaces but need not be topologically closed (and hence not
subspaces). A corollary to the following theorem of Douglas provides the answer.

Theorem 14.6.1 (Douglas [115]). Let Ky, X,, and J be Hilbert spaces. For A € B(X,, ¥)
and B € B(X,, I), the following are equivalent.

(a) Thereis a contraction C € B(K,,XK,) such that A = BC.
(b) AA* < BB*.

Proof (2)= (b) Suppose that C is a contraction and A = BC. Since I — CC* > 0 (Exercise
14.11.20), it follows that BB* — AA* = BB* — BCC*B* = B(I — CC*)B* > 0. Thus,
AA* < BB*.

(b) = (a) Assume that AA* < BB*. Then

|[A*x|| < ||B*x|| forallx € ¥, (14.6.2)
and hence we can define a linear transformation
D : ranB* - ranA*, D(B*x)=A*x.

Note that the vector spaces ran B* and ran A* are not necessarily topologically closed.
By (14.6.2), D is well defined and |D(B*x)| < ||B*x|| for all x € F. Therefore, we
can extend D to a contraction from (ran B*)~ into X;. Finally, let Dz = 0 for z €
(ran B*)* so that D extends by linearity to a bounded operator on all of &,. Then D
is a contraction that satisfies DB* = A*. Take adjoints to obtain A = BD*, and thus
C = D* is the desired contraction. [ ]

The construction above yields the following two sets of equalities:
ker C = ker D* = (ranD)* = (ranA*)! = ker A (14.6.3)

and

(ranC)~ = (ran D*)~ = (ker D)! = (ranB*)~ = (ker B)*. (14.6.4)
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Corollary 14.6.5. LetA : 5 — X, and B : € — X, be contractions. Then

A Ax
I:B:lz:}(—)x]@gC2, X'—)I:Bx:|

1
is a contraction if and only if there is a contraction C : J — K, such that A = C(I—B*B)z.

.

is a contraction if and only if T*T < I. Since T* = [A* B*], the inequality T*T < I
is equivalent to T*T = A*A + B*B < I. Write this as A*A < I — B*B, and then apply
Douglas’ factorization theorem (Theorem 14.6.1). [ |

Proof From Exercise 14.11.20,

Theorem 14.6.1 is often used as the following range-inclusion theorem.
Corollary 14.6.6. For A, B € B(¥), the following are equivalent.
(a) ranA C ranB.
(b) AA* < ABB* for some A > 0.
(c) There exists a C € B(H) such that A = BC.

Proof (a)= (c) If x € 7, then Ax € ran A C ran B. Since J = ker B @ (ker B)*, there
is a unique z € (ker B)* such that Bz = Ax. Define a linear transformation on ¢ by
Cx = z. Use the closed graph theorem (Theorem 2.2.2) to show that C is bounded
as follows. Suppose Cx,, = z, where (X,,)p~; is a sequence in J and (z,)3%, is a
sequence in (ker B)* such that x,, — x and z,, — z. Then Ax,, - Ax and Bz, — Bz.
The assumption Bz, = Ax,, implies Bz = Ax. Moreover, since (ker B)* is closed, it
follows that z € (ker B)*. Thus, the uniqueness of z ensures that Cx = z, so C is
bounded. Finally, observe that Ax = Bz = BCx for all x, and hence A = BC.

(c)= (a) This follows from AH = BCH C BH.
(b) = (c) This is a minor alteration of the proof of Theorem 14.6.1.
(¢)= (b) If A = BC, then

AA* = BCC*B* = ||C||*BB* — B(|C|]*I — CC*)B* < |C||*BB*,

which completes the proof. |

14.7 The Julia Operator of a Contraction

In this section, we examine M&bius transformations of operators, following the presen-
tation [134, Ch. 7]. This material is needed in our treatment of Parrott’s theorem which
plays a crucial role in our analysis of Hankel operators (see Chapter 17).
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Suppose that

o[t )

is a unitary operator on H = H; @ H,. Let P denote the orthogonal projection of H onto
J, and observe that

ICI =T - PUP|| < ||U]| = 1.
The operator-valued function
fu(X)=B—-AX(I+CX)"'D
is well defined on
2(U) ={X € B(H,, ;) : I + CX is invertible in B(F(,)}.

By Proposition 2.3.9, notice that Z(U) contains every X € B(¥,, ;) such that | X|| < 1
and that f; maps 2(U) into B(¥H,, H;).

Proposition 14.7.1. IfX € 2(U) and E = (I + CX)™1D, then
I - fuX)* fuX) = E*(I - X*X)E.
Proof Since U*U = 1, it follows that

1 o] [4a* c*|[A B|_ [A*A+C*C A*B+C*D
o I| |[B* D*||c D| |B*A+D*C B*B+D*D|’

Comparing entries in the matrices above yields the operator identities

A*A+C*C =1,
A*B+ C*D =0,
B*A+ D*C =0,
B*B+D*D =1,
from which we deduce the desired identity. [ |

Corollary 14.7.2. IfX € 2(U) is a contraction, then so is f;(X).
Proof Exercise 14.11.20 says that I — X*X > 0 and Proposition 14.7.1 implies that
I - fuX)* fu(X) 2 0.
Exercise 14.11.20 implies that f;;(X) is a contraction. [ |
Let B : #(, — H; be a contraction. The corresponding Julia operator on H; @ F, is

1
(I - BB*): B

J(B) = 1 |-
—B* (I-B*B):
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Lemma 14.7.3 (Julia [207]). J(B) is a unitary operator on H; @ J(,.
Proof We need to check that J(B)J(B)* = J(B)*J(B) = I. Observe that J(B)*J(B) equals
I (I— BB*)iB — B(I — B*B):
B*(I— BB*)s — (I — B*B)3 B* I '
Moreover (Exercise 8.10.27),
(I-BB*):B=B(I—B*B): and B*(I—BB"): = (I— BB)3B".
Thus, J(B)*J(B) = I. The proof that J(B)J(B)* = I is similar. [ |
Since J(B) is a unitary operator on #; @ H,, Corollary 14.7.2 gives the following result.

Corollary 14.7.4. Let B,X € B(JF(,, H(,) be contractions such that I — B*X is invertible in
B(H,). Then

fr)(X) = B— (I - BB*): X(I — B*X)"\(I — B*B): (14.7.5)

is a contraction in B(F 5, F(;).

14.8 Parrott’s Theorem

This next result of Parrott plays an important role in our presentation of Hankel operators
(Chapter 17). If

A B
cC D

] . }[1@}[2 —).7[:;@:]{4
is a contraction, then the restrictions

[g]:ﬂfz—»}Q@}Q and [C D|: 3%, - I,

are contractions as well. In the light of the conditions above, suppose that B, C, D are given
such that

B

D

are contractions. Is there an A € B(¥(;, }3) such that

€ B, H; ®H,) and [C D] e B, @ I, Hy)

A B
[C D] c 3(7{1 @ FH,, H3 @7{4)

is a contraction? The affirmative answer is known as Parrott’s theorem.
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Theorem 14.8.1 (Parrott [261]). Let

K

be contractions. Then there is an A € B(J(,, H3) such that

€ B(I, H3 ®H,) and [C D] € B, @ 3z, Hy)

€ B(H, @ Hy, H3 @ Hy)

A B
C D

is a contraction.

Proof Corollary 14.6.5 provides contractions E € B(H(,, }(3) and F € B(¥;, H,) such
that
1 1
B=E(I-D*D): and C = (- DD*):F.
Define

Xz[o E] and Y=[0 O].
F 0 0 -D

A computation shows that

I—-F*F 0
I-X*X = 14.8.2
[ o I- EE] (14.82)
and
I 0
I-Y*Y = . 14.8.3
[0 I- D*D] (14.8.3)

Since E, F, and D are contractions, the operators on the diagonals in (14.8.2) and
(14.8.3) are positive and hence X and Y are contractions. Moreover,

* E I
—yix=1-1% °© 0 = of.
0 -D F 0 D*F 1
Therefore, I — Y*X is invertible and
-1 I 0
I-Y*X = .
(-vx)y=| g |

Use Corollary 14.7.4 to define the contraction f(X) € B(J, @ F,, H5 @ H,), that is
fX) = fiv)(X). To explicitly calculate f(X), observe that

1 I 0
I-YY*):2 = 1
0 (I-DD*):>

and
1
(I-YY*)? Y

J(Y) = 1
—Y* (I-Y*Y)2
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I 0 0 0
| o a-pp: o D
0 0 1 0
o D 0 (I-D*D):

Thus, calculating according to (14.7.5) by using the above J(Y),

fX=Yy-U- YY*)% X(I-Y*X)"1(I- Y*Y)%

_[0 0]_[1 0 1Ho EH I 0”1 0 1]
~]10 -D 0 (I-DD*:||F O0]|-D*F Iflo (I-D*D):

_[-ED*F -B
| -c  -D|’
Thus, A = ED*F solves Parrott’s problem. [ |

14.9 Polar Decomposition

If z is a nonzero complex number, then z can be written in polar form as z = u|z|, where
ueTand|z| = \/5 Furthermore, this representation is unique. There is an analogue of
this factorization for Hilbert space operators. For A € B(¥), note that A*A is a positive
operator, and hence it has a unique positive square root (Theorem 8.6.4).

Definition 14.9.1. For A € B(¥(), the modulus of A is |A| = \ A*A.

Example 14.9.2. For a diagonal operator D, with eigenvalues A = (4,,)5L0, recall from
Chapter 2 that D} = Dz, where A = (An)sr,- Therefore,

Al O 0 0
0 4 0 0
Dal=] 0 0 &4 O

0 0 0 |

More generally, consider a compact selfadjoint operator A € ZB(J(). By the spectral
theorem for compact selfadjoint operators (Theorem 2.6.7), A = Z:;O An(%, ®%,,), where
(An)5X, is the sequence of eigenvalues of A, which are real and tend to zero, and (X)),
is the corresponding sequence of orthonormal eigenvectors. Then

Al = D 1Anl (X ® X). (14.9.3)

n=0
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Example 14.9.4. For the unilateral shift S on #2, one sees that $*S = I, and hence |S| = I.
Since SS* =1—e;, ® ey,

0 0 O

|S*| = 01 0

0 0 1

o O o O
—
o
o

Example 14.9.5. For a multiplication operator M, on I*(u) (see Chapter 8), Mg = Mg so
IMp| = Mig).

Example 14.9.6. From Chapter 7, the Volterra operator

V) = f oL
0

on I?[0, 1] has an orthonormal basis of eigenvectors for V*V

2n+1
2

fu(x) = ﬁcos(

nx) forn > 0,

with corresponding eigenvalues

4

/‘Ln=m forn>0

(Proposition 7.2.1). Moreover, V*V is compact and V*V = Z;ozo An(fy ® fn). Thus, as in
(14.9.3),

V= Z VAn(fn ® f)-
n=0
Example 14.9.7. The Bishop operator

(Taf)(x) = xf({x + a})

on I?[0,1] (see Chapter 13) factors as T,, = M, Uy, where (M, f)(x) = xf(x) and U, f =
f({x + a}) is unitary. Then |T;| = M,.. Moreover, by Exercise 14.11.26, | T, | = U_,M, U,.

A complex number is invertible if and only if it is nonzero. For an operator, there are
issues with its kernel that need to be taken into account.

Definition 14.9.8. A € B(J() is a partial isometry if | Ax| = |x| for all x € (ker A)*. The
initial space of A is (ker A)* and the final space of A is ran A.

A partial isometry has closed range since it is isometric on (ker A)*. Indeed, if 7 =
kerA @ (ker A)*, then ||Ax|| = lARyer ay: Xl = [[Rera):X|l. This says that if (Ax,);2,
is a Cauchy sequence in ran A, then (Ryera).X,)n=1 is @ Cauchy sequence in (ker A)*.
Since (ker A)* is closed, there is an x € Z¢ such that Riera):Xn — Ryera):X. Then
AXp, = ARker 4): Xy, = ARyer )X = Ax which shows that ran A is closed.
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Example 14.9.9. A unitary operator is a partial isometry with initial and final space equal
to J. In particular, a partial isometry is invertible if and only if it is unitary.

Example 14.9.10. An isometry A € B(¥) is a partial isometry with initial space # and
final space ran A. In particular, the unilateral shift S on 2 is a partial isometry with initial
space ¢2 and final space {e,}* = \/{e, : n > 1}.

Example 14.9.11. The backward shift S* on ¢? is a partial isometry with initial space
\/{e,, : n > 1} and final space ¢2.

Example 14.9.12. If A = (4,)p%, with |4;| € {0,1}, then D, is a partial isometry with
initial space and final space \/{e, : 4, # 0}

Example 14.9.13. If ¢ € L®(w) and |¢p(z)| € {0,1} u-almost everywhere, then M, is
a partial isometry on I?() with initial space and final space @I*(u) = ygI?(u), where
E ={pl =1}

Proposition 14.9.14. For A € B(H), the following are equivalent.
(a) Aisa partial isometry.

(b) A* is a partial isometry.

(c) A =AA*A.

(d) A* = A*AA*.

(e) A*A s an orthogonal projection.

(f) AA* is an orthogonal projection.

Moreover, if A is a partial isometry, then A* A is the orthogonal projection of H onto (ker A)*
and AA* is the orthogonal projection of J onto ran A.

Proof (a) = (c) For a selfadjoint operator B € B(J(), (2.6.6) says that (Bx,x) = 0 for all
x € J if and only if B = 0. Apply this to B = (I — A*A)|(kera): to see that if A is
isometric on (ker A)*, then A*A = I on (ker A)*. Thus, A = AA*A on .

(©)= (e) If AA*A = A, then (A*A)? = A*A. Since A*A is selfadjoint and idempotent, it
is an orthogonal projection (Theorem 14.5.4).

(c)= (a) Since ker A*A = ker A (Exercise 14.11.22), it follows that A*A is the orthogonal
projection onto (ker A)*. Indeed, if y € ker A, then (A*Ax,y) = (Ax, Ay) = 0 for all
X € K. Thus, A*AH = (ker A)*. If x € (ker A)', then A*Ax = x, and hence

[Ax|?> = (Ax, AX) = (A*AX,X) = (x,X) = ||x]°.

Thus, A is a partial isometry.

(e) = (c) If A*A is an orthogonal projection, then, as we have seen earlier, it is the
orthogonal projection onto (ker A)*. For x € kerA, we have Ax = 0 = AA*Ax.
If x € (kerA)', then x = A*Ax, and hence Ax = A(A*Ax) = (AA*A)x. Thus,
A = AA*A.
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(c) © (d) Take the adjoint of one of the equations to obtain the other.
(b) & (d) Replace A with A* in the proof of (a) < (c)
(d) & (f) Replace A with A* in the proof of (c) < (e) [ ]

With the notions of the analogues of the “modulus” and “argument” of an operator in
hand, we are now ready to prove the polar decomposition theorem.

Theorem 14.9.15 (Polar Decomposition). If A € B(H), then there is a partial isometry
U € B(J() with initial space (ker A)* and final space (ranA)~ such that A = UJA|.
Furthermore, this decomposition is unique in the sense that if A = WQ, where Q > 0 and W
is a partial isometry with ker W = ker Q, then W = U and Q = |A|.

Proof For any x € 7,

lAx|]? = (Ax, Ax)

= (A*AX,X)

= (|APx, x) (definition of |A])

= (lAlx, |Alx) (|A] is selfadjoint)

= [[|AJx [ (14.9.16)

Since A*A = |A||A|, the Douglas factorization theorem (Theorem 14.6.1) produces a
C € B(¥() such that A* = |A|C. By (14.6.3) and (14.6.4),

ker C = kerA* and (ranC)~ = (ker |A])*. (14.9.17)

Taking adjoints yields A = C*|A| with

ker C* = (ran C)* (Proposition 3.1.7)
= ker |A| (by (14.9.17))
=kerA (by (14.9.16))

and, in a similar way,
(ran C*)~ = (ker C)* = (ker A*)* = (ranA)~.

Furthermore, A = C*|A| together with (14.9.16), implies that |C*|A|x| = ||Ax| =
[lA]x|| and hence C* is a partial isometry on

(ran|A|)~ = (ker |A|)* = (ker A)* = (ker C*)*.

Also note that ran C* is closed and ran C* = (ran C*)~ = (ranA)~. Letting U = C*
proves the existence of the polar decomposition.

If A = WQ, then A"A = QW*WQ. Proposition 14.9.14 implies that W*W is the
orthogonal projection onto (ker W)* = (ker Q)* = (ran Q)~. Thus, A*A = Q2. By the
uniqueness of the positive square root (Theorem 8.6.4), Q = |A|. Since U|A|x = Ax =
W|Alx for all x € J(, one sees that W and U agree on ran |A|. Therefore, W = U.
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Example 14.9.18. If A = (1,)5, is a bounded sequence, the polar decomposition of the
diagonal operator D, is

Uy 0 0 0 [l O 0 0

0w 0 0 —[lO0 4 0 o0
Da=[0 0 u 0 [0 0 | o -,

0 0 0 uy [0 0 0 |A

where
el ehif 2, # 0,

uj =

Example 14.9.19. If ¢ € L%(u), then the polar decomposition of M, on I*(u) is
M,iwee Mo, Where we interpret (as above with a diagonal operator) el218% to be zero when
@ is zero.

Example 14.9.20. For the Volterra operator V, work with the representation of V' with
respect to the orthonormal basis (f;,)5%, from Example 14.9.6 to see that

Vi, 0 0 0 0
0 V4 o o 0
0 0 A, o0 0
Vi= 2

0 0 0 VA3 0

0 0 0 0 A

To obtain the partial isometric factor U, observe that V f, = U|V|f,, = /1, U, and hence
1 2 1
Ufp=—=Vf, = \/Esin( nt 7rx>.
V2, 2

The (m, n) entry of the matrix with respect to the orthonormal basis (f,, )¢ is

1 —
(o f) = / (U L)) d.
0

Thus,
- 2 2 2 2 :

2 2 = = = <
3 3 5 5
2 2 2 2
-2 Z 2 z Z Z
3 5 3 7
2 2 2 2
e ) Z 2 Z z
1 3 5 7 3
2 2 2 2
U==|-2 = 2 = 2 =
T| 3 5 7 9

2 2 2 2
S -2z 2 2 2

5 3 7 9
2 2 2 2 2
_z s =z e ) =
5 7 3 9 11
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14.10 Notes

Corollary 14.6.6 says a bit more. Namely, ran A C ran B if and only if there is a C such that
A = BC. Moreover, C is the unique operator that satisfies the following:

(@) |C||> = inf{A > 0 : AA* < ABB*},
(b) kerA = ker C, and
(¢c) (ranC)~ C (ranB*)~.

This theorem plays an important role in defining de Branges-Rovnyak spaces, which are
used as model spaces for certain contractions [134, 135].

The Julia lemma (Lemma 14.7.3) relates a contraction to a unitary operator on a larger
space. This result was significantly extended by Sz.-Nagy [355] in a result known as the
Sz.-Nagy dilation theorem. This result says that if B is a contraction on a Hilbert space
J, there is a Hilbert space X containing  and a unitary operator U on X such that
B UM g =B"foralln > 1.

Partial isometries on finite-dimensional spaces, often called partial isometric matrices,
are well studied and much is known about them. In fact, they have a complete description:
A € M, with rank r is a partial isometric matrix ifand only if A = U(I, @©0,,_,)V for some
unitary matrices U,V € M,,. Furthermore, A is a partial isometric matrix if and only if
A = WP, where P € M, is an orthogonal projection and W € M, is unitary. There is also
a unitary invariant for partial isometric matrices and a beautiful theory of the numerical
range of a partial isometric matrix. See [145] for a survey of all of this.

14.11 Exercises

Exercise 14.11.1. If H; and J(, are Hilbert spaces, prove that the inner product space
H, ® H, defined in (14.1.1) is complete, and hence a Hilbert space.

Exercise 14.11.2. If J( is a Hilbert space, prove that #(®), as defined in (14.1.2), is a
Hilbert space.

Exercise 14.11.3. Expand the right side of (14.2.9) and prove that it yields the right side
of (14.2.8).

Exercise 14.11.4. Suppose that B, B,,..., B. € B(J¥) are orthogonal projections such that
R +B + -+ B =1I.Prove that BP = 0if i # j and conclude that the ranges of B, B,..., K.
are pairwise orthogonal.

Exercise 14.11.5. Prove that n X n block-operator notation (14.2.11) respects adjoints and
operator composition.

Exercise 14.11.6. Prove the formula (14.4.2) for the inverse of a 2x 2 block operator whose
diagonal blocks are invertible.

Exercise 14.11.7. Prove (14.4.4) and explain how it relates to Lemma 14.7.3.
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Exercise 14.11.8. Let /{ = H; @ H, @ --- & J(,, in which F;, H,,..., J(, are finite
dimensional. Prove that if T = [T;;]{};o; € B(¥() is an upper-triangular block operator
that is unitary, then T is block diagonal.

Remark: Example 14.4.3 shows that this can fail if the spaces involved are infinite
dimensional.

Exercise 14.11.9. Let

T = 4 B .
C D
Prove that || T|| > max{||A], |BIl, [CI|, [D|}.
Exercise 14.11.10. Let
A B
T =
Prove that
||A|| 2]
1T < [
el i
Exercise 14.11.11. Let
T = A 0
0 0
Prove that ||T| = || A||.
Exercise 14.11.12. Suppose that
A B
T =

is invertible. Prove that A is invertible if and only if D is invertible.
Remark: Example 14.4.3 shows that in the infinite-dimensional setting T may be invertible
while neither A nor D is invertible.

Exercise 14.11.13. Prove that if A and B are operators on finite-dimensional Hilbert
spaces, then o(T) = o(A) U o(B) holds in Theorem 14.4.5.

Exercise 14.11.14. Prove that for A € B(J(), the following are equivalent.

(a) A isan orthogonal projection.

(b) A=A*and o(A) C {0,1}.

(c) Ais selfadjoint and idempotent.
Exercise 14.11.15. Prove that if A € B(¥) is idempotent and ||Ax|| < ||x|| for all x €
then A is an orthogonal projection.
Exercise 14.11.16. Let A, B € B(¥) be idempotent.

(a) Prove that A + B is idempotent if and only if AB = BA = 0.

(b) Prove that A — B is idempotent if and only if AB = BA = B.
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Exercise 14.11.17. Let A, B € B(¥) be idempotent and AB = BA.

(a) Prove that C = AB is idempotent.

(b) Prove that ker C = ker A + ker B.

(c) Prove thatranC = ranA NnranB.
Exercise 14.11.18. If A € B(J(,X) and B € B(X, K), prove that

o(AB) U {0} = o(BA) U {0}.
Exercise 14.11.19. Let dim # > 2. Prove that
{IT|l : T € B(¥() is idempotent} = {0} U [1, o).

Exercise 14.11.20. Prove that A € B(X¥) is a contraction if and only if A*A < I.

Exercise 14.11.21. Prove that if A € B(J() is a contraction, then there is a Hilbert space
X containing # and a unitary operator U on X such that P-Ul|4, = A.

Exercise 14.11.22. For A € B(¥(), prove that ker A = ker A*A.
Exercise 14.11.23. Let A € B(J() be a contraction.

(a) Prove that the operator

T
0 0
on H @ H is a partial isometry.
(b) Identify the initial and final spaces of M(A).
(c) Prove thatif A is unitarily equivalent to B, then M(A) is unitarily equivalent to M(B).
Remark: See [171] for more on this.

Exercise 14.11.24. Find the polar decomposition of the backward shift S*.

Exercise 14.11.25. For A € B(¥), let A = UylA| and A* = Uy:|A*| be the polar
decompositions of A and A*. Prove the following.

(a) |A| = UjA.
(b) A= |A*|U,.
(C) UAx = UA*'

Exercise 14.11.26. Let T, = M, U, be the Bishop operator from Example 14.9.7.
(a) Prove that |T,| = Ui M, U,.

(b) What is the polar decomposition of T, ?
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Exercise 14.11.27. Use the polar decomposition to prove that if A € B(F) and ker A =
ker A* = {0}, then A*A is unitarily equivalent to AA*.

Exercise 14.11.28. For the Volterra operator V from Chapter 7, compute the polar
decomposition of VV*.

Exercise 14.11.29. Let P be a positive invertible operator with ||P|| < 1.
1
(a) Prove that P+ i(I — P?)? is unitary.
(b) Prove that P is the average of two unitary operators.

(c) Prove that each invertible contraction can be written as the average of two unitary
operators.

Exercise 14.11.30.

(a) If T € B(¥H), prove that Z (|T|x,,Xy,) is independent of the choice of orthonormal
n=1
basis (%), for .

%

(b) T € B(H) is a trace-class operator if |T|, := Z (|T|x,,%,) is finite. Prove that the
set of trace-class operators is a normed vector s%zalce with respect to || - [|;.

(c) When is a diagonal operator a trace-class operator?

(d) Prove that |T|| < |T|-

(e) Recall the Hilbert-Schmidt operators from Exercise 3.6.31. Prove that T is a trace-
1

class operator if and only if | T|2 is a Hilbert-Schmidt operator.

Exercise 14.11.31. Show that every trace-class operator is compact but not every compact
operator is trace-class.
Exercise 14.11.32. This is a continuation of Exercise 14.11.30. Let A € B(K) and let
T € B(H) be a trace-class operator. Prove the following.

@ Tl = 1T ler-

®) ATl < [T lAll-

© ITAlly < ITllNA]-

(d) The trace-class operators form a two-sided ideal of compact operators in B(F).
Exercise 14.11.33. Let A, X,Y be n X n matrices. Prove that

[XAX™ + YAY™|| < |A] [ XX* + YY™|.

Remark: Direct verification of this inequality is feasible. However, to appreciate the
advantage of considering matrices of operators, try to derive the inequality above from
the inequality |ZBZ*|| < ||Z|| |BIIIZ*|| = |BI IZ||> = ||B|||IZZ*|, with appropriate choices
of Band Z.
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Exercise 14.11.34. Let  be an infinite-dimensional Hilbert space and let T € B(¥).
(a) If T is compact, normal, and T? = 0, prove that T = 0.

(b) Let A € B(¥) be a noncompact operator and define T € B(H @ K) by

=2

Verify that T2 = 0.

Exercise 14.11.35. Let Tj, T,..., T, belong to B(J() such that ;T; = 0 for i # j. Prove

n

that a(i Ti) c U o(Ty).

i=1 i=1

Exercise 14.11.36. This is a continuation of Exercise 14.11.35. Let Ty, Tr,..., T,, belong to

B(J() such that T;T; = 0 for i # j. Prove that o( Z Ti)\{o} = ( U U(T))\{O}.
i=1

i=1

14.12 Hints for the Exercises

Hint for Ex. 14.11.3: P and I — P are idempotent.
Hint for Ex. 14.11.4: Show that BPR is a positive operator and use the equation B = RIR.
Hint for Ex. 14.11.7: I — SS* is an orthogonal projection.
Hint for Ex. 14.11.12: Write a potential inverse of T as a 2 X 2 block operator and examine
its entries.
Hint for Ex. 14.11.14: If A is an idempotent, make use of the formula

A=A = 1I+ ! ———A forallA#0,1.

A1 AA-1)

Hint for Ex. 14.11.15: Start with the direct-sum decomposition /€ = ker P + ran P and
show that ker P C (ran P)*. Use the fact that v 1 w if and only if |[w| < [lcv + w]| for all
ceC.
Hint for Ex. 14.11.18: Mimic the proof of Theorem 14.4.8.
Hint for Ex. 14.11.19: Consider 2 X 2 matrices.
Hint for Ex. 14.11.21: Consider the Julia operator for —B* and an operator permutation
matrix.
Hint for Ex. 14.11.28: Use Exercise 7.7.16. )
Hint for Ex. 14.11.29: For (c), suppose that (T*T)2 =
Hint for Ex. 14.11.30: For (a), prove that for any two orthonormal bases (u,)px; and
(V)px, for F,

ZnTunuZ ZMT*vnuZ ZZ|<Tun,vm>|

n=1m=1

Hint for Ex. 14.11.31: Consult Exercise 14.11.30 and Theorem 2.5.1.
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Hint for Ex. 14.11.32: For (a), consult Exercise 14.11.25. For (b), use the polar decompo-
sition and the spectral theorem for positive compact operators.
Hint for Ex. 14.11.33: Consider

A 0 XY
B_[O A] and Z_[O 0}.

Hint for Ex. 14.11.34: For part (a), consider the spectral theorem.






15

Constructions with the Shift Operator

Key Concepts: von Neumann-Wold decomposition of an isometry, spectral representation of S +S*,
properties of S @ S*, tensor product of operators, properties of S ® S*.

Outline: This chapter explores three operators created from the unilateral shift S and
its adjoint S*: the sum S + S*, the direct sum S @ S*, and the tensor product S ® S*.
We give Hilbert’s spectral representation of the selfadjoint operator S + S*. The operator
S@ S* on H? @ H? is complex symmetric. We examine its invariant subspaces and spectral
properties. The operator S ® S* on H?> @ H? is also complex symmetric. We discuss its
reducing subspaces and spectral properties.

15.1 The von Neumann-Wold Decomposition

When studying an invariant subspace M of the unilateral shift S on H2, Beurling examined
the wandering subspace M N (SM)*. Wandering subspaces play an important role in
studying isometries on general Hilbert spaces . We follow the presentation from [253].

Theorem 15.1.1 (von Neumann-Wold Decomposition). Let T € B(H) be an isometry
and W = (TH)* .

(@ T"™"W L T"W forallm,n > Owithm # n.

) W, = ﬂn;O T"H, then TW,, = Wy, and T|yy_ is unitary.

Wy upon which the restriction of T is unitary.

() IfW, = EBn>0 T"W, then TW, C W, and there is no nonzero invariant subspace of

(d) H = WO @ Woo.
Proof (a) Since T is an isometry, T*T = I. Iterate this identity and obtain

T*MTn = T"=™m foralln >m > 0. (15.1.2)
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Then for anyx,y € Wandn > m > 0,
(T, T™y) = (T*™T"x,y) = (T""x,y),

which equals zero since T""x € T¥ andy € W = (TF()*.

(b) Let x € W,,. The definition of W, ensures that for each n > 0, there is an x,, € H
such that x = T"x,,. Thus, Tx = T"*'X,, 50 TX € [ 5, T"J = W,,. It follows that
TW,, C W,. The next step is to verify the reverse inclusion. The identity x = T"x,
says that T"x,, = T"**x,,, for all k,n > 0. Now use (15.1.2) and conclude x,, =
T*x,,x for all k > 0, and hence x,, € W,,. Therefore, x = T"x,, s0 X € TW,,. This
implies W,, C TW,, and hence, TW,, = W,,. Since T maps W,, isometrically onto
Weo» it follows that T|yy_ is unitary.

(c) Observe that

o

Wy=fx= 3 "%, xa €W, 3 [T, = Z a2 < oo},

n=0 n=0

It follows that TW, C W, and ﬂf;o T"W, = {0}. If W}, C W), is an invariant subspace
for T such that T|wg is unitary, then

(o]

ﬂ c (1" = {o}.

n=0

(d) Iy, € W, andy, € W, then for each n > 1 there exists a z, € W such that
Y& = T"z,. Moreover, there are x,, € W such thaty, = ano T"x,. Thus,

(e8] o0 (o]
Voo ¥0) = (Yoor 2 T"Xn) = D (Voo ™) = D3 (T™ 12,1, T"Xz) = 0
n=0 n=0 n=0

since T""W L T"W for all m # n. So far, we know that W, L W, and W, ®@W,, C K.
To show the reverse inclusion, suppose that x € Wj;. Then

(o]
x 1 @ "W,
n=0

hence x L T"W for alln > 0. Since W = (TH)*!, it follows from Exercise 15.6.1 that
x L T"F N (T™H)* forall n > 0, s0 X € W,,. A similar argument shows that if
X € Wi, thenx € W), [ |

Example 15.1.3. Let S denote the unilateral shift on H2. As discussed in Chapter 5, S is
an isometry. Moreover, H2 = \/{z" : n > 0} and hence
(SH®)* ={f € H? : {f,Sz") = 0 forall n > 0}
={feH?:(f,z")=0foralln>1}
={feH?: f(n)=0foralln > 1}
= span{1},
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where 1 denotes the constant function. Thus, W = (SH?)* = span{1}. One also notes that

W, = ﬁ S"H? = {0},

n=0

since any f € W,, is an analytic function on D with a zero of infinite order at z = 0, and
hence is identically equal to zero. Finally, recall the definition of an infinite direct sum of
Hilbert spaces from (14.1.2) to see that

Wp = span{1} @ Sspan{1} @ S?span{1} @ ---
= span{1} @ span{z} @ span{z?} @ ---
= H2.

Example 15.1.4. Suppose that q is an inner function and J = qH?, one of the so-called
Beurling subspaces of H? discussed in Chapter 5. Since J{ is an invariant subspace of S, it
follows that T = S|4 € B(H) is an isometry. Observe that

W =qH?© TqH? ={qf : f € H?,{qf,z"q) =0 foralln > 1}.

The fact that q is inner implies gq = 1 almost everywhere on T and hence

(@f qz") = f AEFEQEdm(E) = f FEOF dm(®) = fln).
T T

Thus, W ={qf : f € Hz,f(n) = 0 for all n > 1} = span{q}. For the same reason as in
Example 15.1.3, W,, = (,_, T"qH? = {0}. Finally,
W, = span{q} @ span{Tq} & span{T*q} & span{T°q} & -
= span{q} @ z span{q} @ z* span{q} @ z* span{q} & -
= qH>.
Example 15.1.5. Consider the isometry T = S? on H?. Following the approach of
Example 15.1.3, we deduce that
W = H?© TH?
={f e H?:(f,S?z") =0 foralln > 0}
={feH?:(f,z")=0foralln > 2}
={feH?: f(n)=0foralln > 2}
= span{l, z}.
Observe that W,, = {0} and

W, = span{l, z} @ span{z?, z3} @ span{z*,z°} @ --- = H>.
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Example 15.1.6. Define T € B(H?) by
(TF)(2) = f(0) + z(f — F(O)).
Since f(0) L z(f — f(0)), it follows that

ITSI? = |FO)P + |lz(f — FO))?
=P +If - FO)I?

(s o]
= O+ X Ifm)]?
n=1
= IIfII%.
Thus, T is an isometry. Observe that W,, = ﬂ;ozo T"H? = span{l} and that T|y, is
unitary. Moreover,
L
W = (TH?)* = (\/{1,22,23,24,...}) = span{z},

o
n=1

T"W = span{z"*}, and W, = @, _, span{z"}. Finally, W, & W,, = H>.

Example 15.1.7. For ¢ € T, define Ty € B(H?) by

(TNE) = 322((2) + f(=2) + 5(1&2) = f(=¢2).

Since Tyz?" = z?"*2 and T;z*"*! = {#"*122"* for n > 0, it follows that Ty is an isometry.
Moreover,

o0
Wy = [ T7H? = /{22 - n >0},
n=0

the subspace of odd functions in H?. Observe that T¢|w,, is unitary, since it is the
composition operator g(z) — g({z) on the subspace of odd functions in H2. One can also
see that

W = (TH»)" = (\/{z” n> 1})L = span{1}

and W, = @f::o span{z?"}, the subspace of even functions in HZ2. This yields the
orthogonal decomposition Wy, & W,, = H?.

Definition 15.1.8. An isometry T is pure if W, = {0}.

The following corollary of the von Neumann-Wold theorem shows that for pure
isometries, every T-invariant subspace has the wandering subspace property.

Corollary 15.1.9. If T € B(X) is a pure isometry, then any T-invariant subspace M
satisfies

M= \/{T"x X EMN(TM)*}

The corollary above is reminiscent of Beurling’s theorem (Theorem 5.4.12) and it says
that any invariant subspace M of T is generated by its wandering subspace M N (TM)*.
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15.2 The Sum of S and S*

For historical reasons, we consider
T= %(S +5%)

instead of S + S*. From (5.1.3) and (5.2.3), the matrix representation of T with respect to
the orthonormal basis (z")$, for H? is the selfadjoint Toeplitz matrix

o Yo 0 o

1 2 1

>0 2 0 0

0 i 0 % 0

oo X o !
2 1 2

o 00 Lo

2

This is the Toeplitz operator with symbol cos 6. Toeplitz operators appear in Chapter 16.
Proposition 15.2.1. |T|| = 1.

Proof Since ||S|| = ||S*|| = 1 (by (5.1.2)), it follows that ||S + S*|| < 2 and hence | T|| < 1
To prove the reverse inequality, consider the unit vector

1 n
fn(2) = — Z z!
=
in H2. Then

. 1 ol
(S+S*)fn_— Z*1 4 ZIl= —(1+z+2 z/) + 2" + z"FL),
AR (REPE L) )

= nia
and so
IS+ 896l = L2+ 24 22124 r) = 2EHZD
Thus,
IS+ S| = ‘SLE (S + S)fI > Jim (S + S*)full = 2
and hence | T| = 1. |

An exercise (Exercise 15.6.3) shows that T is cyclic. Thus, the spectral theorem for
selfadjoint operators (Theorem 8.7.1) ensures that T is unitarily equivalent to M, on I*(u)
for some finite positive compactly supported Borel measure on R. A 1912 result of Hilbert
explicitly computes this measure and diagonalizes T [197]. We follow the treatment from
[313, Ch. 3].
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Theorem 15.2.2. For the operator T = %(S + S*), the following hold.
(@) o(T) =[-1,1].
(®) 0,(T) =2

(c) Let p(x) = V1—x2 for —1 < x < 1, and let I?*(p) denote the space [*(o(x) dx). Then
the operator V : I*(p) — H? defined by

V=2 = \/>‘/ 5)(;)_’_ P e(x)dx forz €D,

VATV = M,, (15.2.3)
where (M, f)(x) = xf(x) on I?(p).

is unitary and

One can visualize this theorem with the following commutative diagram:

(o) —2+ 12(p)

H? H?

Proof We first show that V is a unitary operator from I?(p) onto H2. Use the identity

o0

— L S uwr, (15.2.4)
1-2xA+41 n=0

1

where u,,(x) is the nth Chebyshev polynomial of the second kind [357]. The first few
of these polynomials are

up(x) =1, u(x) =2x, uy(x)=4x>—1, us(x)=8x>—4x,
and they satisfy the recurrence
Uy (%) = 2xu,(x) —u,_1(x) forallm>1
An induction argument with this recurrence implies that
degu, =n foralln > 0. (15.2.5)

It is also known that

sin((n + 1)6)

u,(cos6) = P

s
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Figure 15.2.1 The graphs of sin((n + 1)x)/sinx forn = 1,2,3,4,5.

which yields
u,(x)| <n+1 forallx e [-1,1]

(see Figure 15.2.1). For fixed 4 € D, the series (15.2.4) converges uniformly for x €
[—1,1]. The polynomials u,, are eigenfunctions for a certain selfadjoint differential
operator and they satisfy the orthogonality conditions

1 0 ifn#m,
(Uns U 12(p) = / Uy, (), (X)p(x) dx = . (15.2.6)
-1 E ifn =m.

By (15.2.5), the linear span of {u,(x) : n > 1} contains every polynomial, so it is

dense in I?(p), and hence
2 (e
( V 7_Tun)n=()

is an orthonormal basis for I?(p). For f € I?(p), use Parseval’s theorem (Theorem
1.4.9) to see that

1
T T
3 [ reorecods = Sirk,

= Z |<f’ un)LZ(p)lz

n=0

[ 1 2
= Z FX)u,(x)p(x)dx| . (15.2.7)
n=01v-1
Now consider the functions
h()= ———— foraeD
1-2xA+4

from (15.2.4). Each of these rational functions has a pole at x, = w(z), where

w(z) = %(z + %)
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Figure 15.2.2 Images of w(rT) for r = 0.1,0.2,0.3,...,0.9.

For each r € [—1,1], the quadratic formula shows that w(z) = r has no solution
z € D (see Figure 15.2.2). Therefore, w(D) N [-1,1] = @&, and hence h; € I*(p) for

each fixed 1 € D.
Define

VHz) = \/g(f, hy)r2e) for f € I*(p) and z € D.

From the expansion (15.2.4),

V@ =2 f g)(:ZC)_,_ZzP(X)dx—\[ e f(x)un(X)P(x)dx.

Thus, the nth Taylor-series coefficient of V f is

1
V2 [ e
-1

and hence, by (15.2.7) and the definition of the norm in H?, we have

2 f f Fonmprds|

[*)

2
T £

IV £l

T
z f 1fCPpCOd

= ”f”%z(p)-
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Thus, V maps I*(p) to H? isometrically.
To show that V is surjective, observe that for each n > 0,

[ 1
(Vu,)(z) = \/g 27" | un(um(x)p(x) dx
m=0 -1
27

_ \/; o (by (15.2.6))

so the range of V contains every (analytic) polynomial and is therefore dense in H>.
Since V is an isometry, its range is closed (Exercise 2.8.9). Therefore, VI?(p) = H2.
Recall that

ky(z) = for A,z € D,

1-Az
is the reproducing kernel for H2. That is, k; € H? and g(1) = (g, k) for all g € H?
and A € D. Furthermore (Exercise 5.9.8),

\/ik; : A€ D} = H2, (15.2.8)

For fixed A,z € D,

0 1
(Vhy)(z) = \/g 22" | m(u(0)p(x) dx
n=0 -1
(e [ m 1
= \E Z_:OZ” Z_:O/_l /_1 U, (30U, (2)p(x) dx
2T o n
- \/; PP
- \/E 1
21— /_12
= \/gkl(Z)

The next step is to verify that
VTV = M,. (15.2.9)

Since \/{k; : 2 € D} = H?, V is unitary, and hy = , / gV*k,l, it follows that

\/ih : 1€ D} = (o).
To prove (15.2.9), it suffices to verify that

(V*TVh)(x) = xhy(x) foralld € D.
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Observe that
Sky=——+ =k, and S'k; =7k,
A A

This yields
1 /=«
(V*TVh)(x) = 34 / 5 V(S + k) (x)
1 [mf,. 1.1, =
=3 5(V(—7+7kl+/1k/1))(x)
-1 [2 (v (- Zko+ =k +7k2) ) ()
2 2 2
SN2 / (- 2hot = h,1+/1h,1)(x)
A
1 1
= z(— I 1+ (I +A)h1>(x)
- =2 _
= 1hﬂ(x)(— la-aa+H+1 +/1)
2 1 2
1
= zh/l(x) 2x
= x hy(x).
This proves (c). Parts (a) and (b) follow from (c) and Proposition 8.1.12. H

The previous theorem and Corollary 8.8.7 yield the following.

Corollary 15.2.10. The invariant subspaces of T are V ygI?(p), where E is a Lebesgue-
measurable subset of [—1,1].

15.3 The Direct Sum of S and S*

The operator S @ S*, the direct sum of S and S*, is defined on

H2€BH2={[£] :f,geHZ}

by
SesHfeg=Sfosg

This can be written in matrix form as
S 0
0o S*[

S offff_1S8F]_ "
< 2][1)-[E]-seswen

in the sense that
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Proposition 15.3.1. S @ S* satisfies the following.
(@) IS S*|| =1.

(b) o(S®S*)=D".

(©) o,(S®S*)=D.

@ ESesy =S"sS.

Proof (a) For any f @ g € H?> @ H?, use the facts that ||Sf| = | f|| and ||S*g|| < ||g|| for
all f,g € H? to conclude that

IS @ S*)(f @ QI* = ISf ® S*gl> = ISfI* + IS*gl* < IfI* + lIgl* = Ilf & glI*.

Thus, ||S @ S*|| < 1. Equality follows since [[(S® S*)(1 D 0)|| = |z 0| = 1.
(b) For any 1 € D,

(S®SHO0D k) =0 Ak = 20D ky)
and hence
D Co,(S®S*)Ca(SdS™).

Thus, D™ C a(S & S*). Since ||S & S*|| = 1, it follows that o(S @ S*) C D~ (Theorem
2.4.9) and thus o(S @ S*) = D~

(c) Inlight of (b), it remains to show that o,(S® S*)NT = @.If§ € Tand (SO S*)(f
2) =&(f @ g), then Sf = &f and S*g = &g, which only hold when f and g are zero
(Propositions 5.1.4 and 5.2.4).

(d) This follows from the matrix form of S @ S* and (14.2.7). [ |

The operator S@S* is a complex symmetric operator. To see this, define the conjugation
J:H?> - H?by

M=) = @)
and observe that
[e5) (s3]
J( Z anz") = Z a,z".
n=0 n=0
The above map J is isometric, involutive, and conjugate linear. Furthermore,
JS=SJ and JS*=S*J. (15.3.2)

Exercise 15.6.8 shows that the mapping C on H? @ H? defined by

0 J
c=[J 0] (15.3.3)

is a conjugation.
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Proposition 15.3.4. If T =S @ S*, thenT = CT*C.

Proof Using the block-matrix representations for C and T and (15.3.2), it follows that
wn 0 T][s* o]f0 J
cre= 7 o]lo Ss|[T o

o us]fo s
I FAREO | PG

N PRV
N A
s o
o s
s o
I
= T,
which proves the result. |

Beurling’s theorem (Theorem 5.4.12) says that the invariant subspaces for S are {0} or
uH?, where u is an inner function. Thus, the invariant subspaces for S* are either H? itself
or of the form (uH?)*. The subspaces uH? @ (vH?)*, where u and v are inner functions,
along with {0} @ (vH?)* , uH? @ {0}, and uH? @ H?, are invariant for S @ S* and comprise
the splitting invariant subspaces. As it turns out, there are many other invariant subspaces.
The following example is from [74].

Example 15.3.5. For A € D, consider the S@ S*-invariant subspace generated by k;, @k,
that is,

V{S@ s @k : n >0}

For any polynomial p, we have p(S @ S*)(kl ® k,l) =pk,® p(/_l)k,l. Suppose that (p,,)5%,
is a sequence of polynomials such that

pa(S® S*)ky D k) > fDg

in H*> @ H?. Thus, p,k; — f and pn(Dk; — gin H? norm. Since p,k; — f, it follows
that p,, > (1 — Az)f in norm. Proposition 5.3.8 yields

pn(z) = (1= 22)f(z) forallz € D,
_ 2 _ - —2
and, in particular, p,(1) - (1 — 1 )f(4). In other words, g = f(1)(1 — 1 )k;. Thus,

Vi{ses )yt ek nzolc{fefma- Zz)kl : f e H?).



THE TENSOR PRODUCT OF S AND S* | 345

If f € H* and 1 € D, then (1 — Az)f € H? and there are polynomials p,, such that
pn = (1 — Az)f in norm. The discussion above implies that

Pu(S Sk ® k) > £ & FAN1 - T ks,
and hence
\/ {(s @S (ky @ ky) i n > o} ={f®f@a- T, : fe H2).

This subspace is contained in H? @ (uH?)*, where

z—A

— >

1-A7z

u(z) =

but the containment is proper. Indeed, 1 @ k; € H? @ (uH?)*. However,

1®k, ¢ {f@f@)@-f)kl . feH?).

The complete description of the S @ S*-invariant subspaces is contained in a paper of
Timotin [360] and requires a diversion into dilation theory, which would take us far afield.
Timotin’s paper also contains the following.

Theorem 15.3.6. The only nonzero reducing subspaces of S@® S* are H? ®{0} and {0} H>.

15.4 The Tensor Product of S and S*

Although there is a general and abstract approach to tensor products of Hilbert spaces
and operators (see the end notes for the references), we take a more heuristic and explicit
approach. Recall that the tensor product of vectors x and y in a Hilbert space J is identified
with the rank-one operator

XQy: H->H, xQ®yz=(zyx forzeXH.
The operator x ® y is a simple tensor.

Proposition 15.4.1. |x®y| = x|yl
Proof By the Cauchy-Schwarz inequality,

Ix @ Yzl = Kz, y)x|| = [z, lIx]| < llzlllyllIx]-

Equality is attained for z = y/|ly]. |

Consider the vector space H © H of all finite linear combinations of simple tensors,
that is, expressions of the form

n

Y, G0x;®y)), wheren €N, € C,andx;,y; € 5.

j=1
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We define an inner product on # @ J first on simple tensors x ® y and z @ w by

XQY,z QW) = (X,Z)y,W).

Extend this to H © H by
n n n _
<Z aj(xj ® YJ)’ Z bk(zk ®Wk)> = Z ajbk(x,zk)(yj,wk} (1542)
j=1 k=1 k=1

and verify it satisfies the required properties of an inner product (Definition 1.4.1). The
corresponding norm satisfies

N , N
"Zaj(xj@yj')H = Z @@ (X, Xk XY j> Yio)- (15.4.3)
=1 k=1

This makes H ® H an inner product space.

Definition 15.4.4. The tensor product 7€ @ J( is the completion of F O H with respect
to the norm (15.4.3).

Proposition 15.4.5. If (u,);%, is an orthonormal basis for J(, then (0, ® u,);; .-, is an
orthonormal basis for 7 @ J(.

Proof The definition of the inner product on 4 ®  from (15.4.2) implies that the
sequence (u,, ® u,)y; ,-; is orthonormal. Let

M:\/{um®un m,n =1}

in the norm of H @ H. The next step is to show that M = H @ H.
Let ¢;,, € C for m,n > 1. Then for each N € N, the definition (15.4.3) implies that

N N N N
|| Z Cmn(@m @ Wy)|| = z CrnnCo Wy Uy MU, Uy ) = Z |Cmn|2-
m,n=1 m,n=1 m,n=1
m',n’'=1
Consequently,
(e8] [Se]
Z Cmn(Uy, ® u,) € M if and only if Z lemnl? < .
m,n=1 m,n=1

Ifx,y € #, then
o o0
X = Z a,u,, and y= Z b,u,
m=1 n=1
where Z:zl |a,|* and Z:;l |b,|? are finite. Since

oo

3% lanbal = ( 3 lanP)( 2 1haP) < oo

m,n=1 m=1 n=1
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it follows that

Z ama(um ®u,) € M.

m,n=1

Foranyz €
x®y)(2) = (z,y)x

= (3 Btz
n=1

(3 inte o) T annn)

m=1

[s0)

Y. ambp(z,up)uy,

m,n=1

o

(Y amba(un @uy)@.

m,n=1

Therefore,

o0

XQy= Z ama(um®un) EM,

m,n=1

and hence M contains {x ® y : X,y € '}, a set whose closed linear span is H ® F.
This proves that M' = J ® J and thus (u,, ® u,);; ,-; is an orthonormal basis for
HQ IH. |

For A, B € B(¥(), define the tensor product
AQB:HQH - H QK
first on simple tensors x @ y by
(AQ®B)(xQ®Yy) = (Ax) ® (By),

and extend the tensor product by linearity to 7 ® 7.
Let us focus on the tensor product S ® S* on H> ® H?. The orthonormal basis (z")%,
for H? is a natural one to choose, so

H>*QH? = { D (@M ®zZY) 1 Y lemnl? < oo}.
m,n=0 m,n=0
Moreover,
o0 o0
S®S) Y cn(@"®2M) = D) (52" ® 5*2").
m,n=0 m,n=0
Note that

(SZm ® S*zn) — Zm+1 ® Zn—I’

unless n = 0, for which S*1 = 0 and the tensor above is zero.
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Proposition 15.4.6. S ® S* satisfies the following.
(@) IS®S*|l=1.
(b) o(S® S*)=D".

© S®S)"=S*"Q®S.

Proof (a) Observe that

o8]

s X ememe)f =]

m,n=0

Ms

2
cmn(zm+1 ® Zn—l)"

33
Il
= o

1]
s
o
3
S
N

3 3
Ly

cmn|2

N
Ms

S 3
I}
S o

2
Cn(Z™ @ ZM)|| .

Il
Ms

S 3
I
o

Il
(=)

Thus, [|S®S*|| < 1. Equality follows from [(S®S*)(1®z)| = ||z®1]| = 1 (Proposition
15.4.1).

(b) Since |S®S*|| = 1, one concludes that o(S®S*) C D™.If A € D, then (S*—AI)k; = 0
s0 1 ® k; belongs to the kernel of S ® S* — Z(I ® I). Thus, D™ C o(S ® S*).

(c) It suffices to prove

(S®5)(2" @ 2").2/ ® z°) = (2" ® 2", (5* ® S)(2' ® 2°).
The left side equals
(zM @ 21, 20 @ ZK) = (zm*1, Z0) + (2", ZK) = Sm+1,j + On1,ks
while the right side equals
(zM @z, 27t @ K1) = (2™, 2/ 1) + (2" @ 21 = 6 j_1 + Spa-
Since 8y = Opqj,n+j» the result follows. [ |

Another perspective furthers our understanding of S ® S*. The tensor-product space
H? ® H? is understood as

oo

Z cmn(2™ @ 2"),

m,n=0
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where

(8]

D lemnl? < oo, (15.4.7)
m,n=0
and (15.4.7) is the square of the norm on H? ® H?2. Associate the tensor z' ® z" with the
two-variable monomial z™w" and consider the Hardy space H*(D?) of the bidisk D? =
{(z,w) : z,w € D}, where

[oo) oo
H(D?) = {fGw)= Y, emz™w" | Bpen = 2 loml <o} (1548)
m,n=0 m,n=0
There is the natural unitary operator
o o0
U:HQH - HX(DY), U( Y, cun(@"@wh)= Y cppzw.
m,n=0 m,n=0

Theorem 15.4.9. U(S ® S*)U* = T, where
fz,w) - f(z, 0))

w

(Tf)(zw) = 2(
Proof Verify this identity on zw" and extend by linearity. [ |
This setting reveals additional structure. Fix N > 0 and consider
R = \[lZFwNF o<k <N},
the set of homogeneous polynomials of degree N together with the zero polynomial. Then

Zk+1pN=k=1 ifo < k < N -1,

T(kaN—k) =
0 if k = N,

so J is a reducing subspace for T (Exercise 15.6.28). Furthermore, with respect to the
inner product on H2(D?) from (15.4.8), the spaces A and A, are orthogonal for N # M,
and

HY(D?) = P .
N=0

N
For 3,_, axz“wN =k € R, note that

N-1

N
T( Z akzkwN—k> — Z apzk wN=k-1,
k=0 k=0
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In other words, T sends (ay,a;, a,,...,ay) to (0,ay, a;, ay,...,ay_1). From the matrix
identity

00 0 « 1 oflay an_;

it follows that T|p, = Jy.1(0)*, where Jy(0) is the N X N nilpotent Jordan block. Since
Jn(0)* is unitarily equivalent to Jy(0) (Exercise 15.6.18), we obtain the following.

[so)
Theorem 15.4.10. S ® 5* = P J(0).
N=1
The conjugation C,, on C" given by C,,(21, 23, Z3,---» Zn) = (Zp» Zn—1> Zn—2----» 21 ) Satisfies
J,(0) = C,J,(0)*C,. Hence, each J,(0) is unitarily equivalent to a complex symmetric
matrix (Exercise 15.6.18). Combine this theorem with Exercise 15.6.19 to obtain the
following.

Corollary 15.4.11. S ® S* is a complex symmetric operator.

If M reduces T, then, with respect to the orthogonal decomposition # = M @ M+, we
may write T as
T;
r=| 7.

Moreover, M reduces T if and only if PT = TP, where P is the orthogonal projection of
onto M (Theorem 14.3.5). This yields a correspondence between reducing subspaces for
T and the orthogonal projections that commute with 7.

Let us characterize the reducing subspaces for T = S ® S*. Since T is unitarily
equivalent to

7 =P w0,
N=1

it suffices to describe the reducing subspaces of J. To this end, we identify the orthogonal
projections P on

o0
¥ =Py
N=1
that commute with J. Write

J() 0 0o .- R, B, B;

0 HO) 0 - and p=|Pr B2 B

J=
0 0 KO - By B, B
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in which each Py isa j X k matrix and B, = Bj‘j since P = P*. The equation PJ = JP yields
matrix equations of the form

Bty = JpBy, form,n > 1.
A computation confirms that each B,,,, is of the form

ifm=n,

=[ ] itm > n,

Tn] ifm<n,

in which T, and T,, are arbitrary upper-triangular Toeplitz matrices of size m X m and
n X n, respectively [155]. For example, the upper-left 10 X 10 principal submatrix of P is

[ pnu| O piz| O 0O p| O 0 0 prio |
Pa1 | P22 P3| O Dpas pas | O 0 D D210
0 0 D22 0 0 D25 0 0 0 D29
Da1 | Pa2 Pa3 | Pss DPas  Dae 0 DPso  Pag  Pa,210
0 O pag2| O pss pas| O 0 DPsg  Dao (15.4.12)
0 0 0 0 0 pss| O 0 0 pso |’ o
P71 | P2 P73 | Pss P75 P76 | Peo Pss P19 D710
0 O pn| O pgs pPris| O Do Pgg  Pro

0 0 0 0 0 Dss 0 0 DPog Pso
| O 0 0 0 0 0 0 0 0 Doo |

Since the selfadjointness of P ensures that B,,,, = B, a glance at (15.4.12) confirms that
B, = 0 whenever m # n. Consequently,

o0
P=P R
n=1

Since P is an orthogonal projection, it is selfadjoint and idempotent. Thus, each E,,, is
selfadjoint and idempotent, that is, each B, is an orthogonal projection.
The orthogonal projections P that commute with J are precisely those of the form

(o]
P =P Sulun,
n=1

in which each §,, € {0, 1}. This means the reducing subspaces for J are those of the form
V(U=)
neA

in which A C N U {0}. We assume that above is {0} if A = @. Pull this back to S ® S* and
conclude the following.
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Theorem 15.4.13. The reducing subspaces for S @ S* are precisely

\/(HLEJA{e,@ek J+le=n)).

in which A C NuU{0}.

15.5 Notes

The von Neumann-Wold decomposition implies that for a pure isometry T, every invari-
ant subspace M is generated by its corresponding wandering subspace M N (TM)*. The
wandering subspace property holds for the Hardy, Dirichlet, and Bergman shifts, despite
the fact that the latter two are not isometric. For other non-isometries, this wandering
subspace property was explored, with both positive and negative results, in [79, 137, 138].

This chapter covered the operators S @ S* and S ® S*. The operator S @ S is unitarily
equivalent to S? (Exercise 15.6.9) while S ® S is unitarily equivalent to a shift operator on
the infinite direct sum (H2)(®) (Exercise 15.6.21).

Theorem 15.2.2 gave the spectral representation of the selfadjoint Toeplitz operator
T..so and showed that its spectral measure is absolutely continuous with respect to
Lebesgue measure on R. For n > 1, the spectral measure for T, ,¢ is also absolutely
continuous [277]. See [312] for the spectral representation of other selfadjoint Toeplitz
operators.

More on tensor products of Hilbert spaces and operators is in the classic text [112]. Our
analysis for S ® S* comes from [142]. We discussed the reducing subspaces of S® S*. The
invariant subspaces are not yet fully described.

This chapter made a connection with H2(D?), the Hardy space of the bidisk. There is a
well-developed theory for this space that parallels that of H? [318].

15.6 Exercises

Exercise 15.6.1. If T € B(J() is an isometry, prove that T(J N(TF)Y) = TH N (T2JC)*.

Exercise 15.6.2. If q is an inner function, find the von Neumann-Wold decomposition of
M, (multiplication by q) on H2.

Exercise 15.6.3. Prove that the constant function f = 1 is a cyclic vector for S + S*.
Exercise 15.6.4. Prove that any nonzero polynomial is a cyclic vector for S + S*.

Exercise 15.6.5. Use the following steps to describe the commutant of S+S*. First observe
that S + S* is a cyclic selfadjoint operator (Exercise 15.6.3). The continuous functional
calculus from Chapter 8 ensures that ¢(S + S*) is a well-defined bounded operator on H?
for any ¢ € C[-1,1].

(a) Prove that ¢(S + S*) € {S + S*}.
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(b) Prove that ¢(S + S*) is unitarily equivalent to M, on I*(p), where p(x) = V1 — x2.
(c) Prove that the commutant of M, on I?(p) is My . ¢ e L*[-1,1]}

(d) Argue via unitary equivalence that (S + S*) is well defined for all p € L*[-1,1]
and that {S + S*} = {{(S + S*) : ¥ € L*[-1,1]}.

Exercise 15.6.6. This exercise continues Exercise 15.6.5. Prove that the invariant sub-
spaces of S + S* are {yg(S + S*)f : f € H?}, where E is a Lebesgue-measurable subset of
[-1,1].

Exercise 15.6.7. For A, B € B(J¥), prove the following.

(a) (A® B)* = A* @ B*.

(b) 6,(A® B) = 6,(4) U 3, (B).
Exercise 15.6.8. Prove that that the map C in (15.3.3) is a conjugation on H? @ H2.
Exercise 15.6.9. Prove that S? on H? is unitarily equivalent to S @ S on H? & H>.
Exercise 15.6.10. Describe the commutant of S @ S.
Exercise 15.6.11. Let M C H? @ H? be an invariant subspace for T =S @ S.

(a) Prove there is a subspace N of H> @ H? such that M = N @ TN @ T?N @ ---.

(b) For z € D, define F(z) € B(JV, C?) by evaluating each element of V" at z. Prove that
F is a C2-valued analytic function on D.

(c) Prove that M = F{ £

e},
Remark: The Beurling-Lax theorem yields more about F [202, p. 115].

Exercise 15.6.12. Forn € N U {0}, T € B(K) is a shift of multiplicity n if there is a
subspace J{; of ¢ with dim #{; = n and pairwise orthogonal subspaces J¢; with j > 1
such that 7€ = ¢, @ J(, @ 33 @ --- and T maps J(; isometrically onto F(;,;.

(a) Foreach n € N U {oo}, give an example of a shift of multiplicity n.

(b) Prove that two such shifts are unitarily equivalent if and only if their multiplicities
are the same.

Exercise 15.6.13. Here is a bilateral version of S + S* on H? from [25, p. 56]. Define
T : IX(T) > [A(T) by T = Mg + M.

(a) What is the matrix representation of T with respect to the basis (§™)5_,?

(b) Determine o(T), 0,(T), and g, (T).
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(c) Define W : I?[-2,2] — I*[-2,2] by (Wf)(x) = xf(x), and prove that T is not
unitarily equivalent to W.

(d) Prove that T is unitarily equivalent to W @ W.
Exercise 15.6.14. For any x and y in a Hilbert space , prove that X ® y)* =y ® x.

Exercise 15.6.15. Supposey;,y,,...,¥y are linearly independent vectors in a Hilbert space
H and, for some x1,X,,...,X, € H, we have Z’;:] Xj ® y; = 0. Prove that x; = 0 for all
1<j<n

Exercise 15.6.16. Suppose A, B € B(H). Prove that |A ® B|| = ||A]|||B||-
Exercise 15.6.17. Suppose A, B, C,D € B(H). Prove that (A® B)(C®D) = (AC) ® (BD).

Exercise 15.6.18. Prove that the n X n Jordan block

A1 0 - O
o4 1 - 0
o0 0 4 1
00 0 0 2

is unitarily equivalent to its adjoint.

Exercise 15.6.19. Prove that the direct sum of complex symmetric operators is complex
symmetric.

Exercise 15.6.20. This exercise demonstrates that the converse of Exercise 15.6.19 is false.
(a) Prove that the operator A € B(C?) induced by the matrix
0 1 O
0 0 2
0 0 O
is a not a complex symmetric operator

(b) LetJ be a conjugation on C3 and define

- 1]

Prove that T = A @ (JA*J) is C-symmetric, but its direct summand A is not.

Exercise 15.6.21. Prove that S ® S is unitarily equivalent to the infinite matrix operator
defined on (H2)(*®) (see (14.1.2)) by

O 0 0 0 O
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Exercise 15.6.22. Prove that S ® S is an isometry and compute its von Neumann-Wold
decomposition.

Exercise 15.6.23. Prove that S ® S* is unitarily equivalent to the infinite matrix operator
defined on (H2)(*) by

0 0 0 0
S* 0 0 0
0o S* 0 0
0 0o S* 0
0 0 0o S*

- O O O O O

Exercise 15.6.24. Prove that S ® S* is a partial isometry. Recall Definition 14.9.8.

Exercise 15.6.25. Let

[0 % 00 0 -]

é 0 é 0 0

o 1 o Lo

T = 22
0o 0 = o I

2 1 2

o0 0 L o
T

If (u, )y, is the sequence of Chebyshev polynomials from (15.2.4), prove that T = U|T|
is the polar decomposition of T, where

T (o]
| = [3 f 121 ()1t VT — 32 dx]
T -7 m,n=0
and
(o]

Ve
U= [% / e 8y (), (V1 — x2 dx] .
- m,n=0

T

Exercise 15.6.26. Find the polar decomposition of S @ S*.
Exercise 15.6.27. Find the polar decomposition of S ® S*.

Exercise 15.6.28. If
f(wiz) _f(wao))

w

(T)w.2) = 2(
on H%(D?), prove that

f(w,Z) _f(OsZ)>

zZ

(T* f)w,2) = w(

Exercise 15.6.29. Prove that S ® S* has an uncountable collection of distinct reducing
subspaces M, for « € R such that M, C Mp if and only if a < §.
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Exercise 15.6.30. Foreach A € D, prove that \/{(S®S*)"(z®k,) : n > 0}isan invariant
subspace for S ® S* that is not reducing.

Exercise 15.6.31. Prove that S+ S* has a square root, meaning there is a B € B(H?) such
that B2 = S + S*.

Exercise 15.6.32. Prove that S @ S* does not have a square root, meaning there is no
B € B(H? @ H?) such that B> = S @ S*.
Remark: See [96] for more on roots and logarithms of operators.

Exercise 15.6.33. Let A = UJ|A| and B = V|B| be the polar decompositions of A,B €
B(F0).

(a) Prove that U ® V is a partial isometry.
(b) Prove that |A| ® |B| is positive.

(c) Is (U ® V)(JA| ® |B|) the polar decomposition of A ® B?

15.7 Hints for the Exercises

Hint for Ex. 15.6.1: Use T*T = I.
Hint for Ex. 15.6.4: Examine the proof of Theorem 15.2.2.

o0 o o
Hint for Ex. 15.6.9: Consider W( Z anz”) = ( Z ay,z", Z a2n+lz").
n=0 n=0 n=0

Hint for Ex. 15.6.10: See Exercise 5.9.28.

Hint for Ex. 15.6.15: Consider the adjoint of the expression.

Hint for Ex. 15.6.23: Consult Theorem 15.4.9.

Hint for Ex. 15.6.29: Let ¢ : N U {0} — Q be a bijection. For each & € R, consider
{x e NU{0} : ¢p(x) < a}. Then use Theorem 15.4.13.

Hint for Ex. 15.6.32: Mimic the ideas in Exercise 5.9.33.
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Toeplitz Operators

Key Concepts: Toeplitz matrix, Toeplitz operator, Riesz projection, Brown-Halmos characterization
of Toeplitz operators, spectral properties, universal Toeplitz operators.

Outline: This chapter surveys Toeplitz operators T,, : H* — H? defined by

T(pf = R.(of),

where ¢ € L®(T) and P, is the orthogonal projection of I?(T) onto H?. We examine the
matrix representations of these operators, their spectral properties, and a characterization
of them related to the unilateral shift.

16.1 Toeplitz Matrices

We discussed diagonal operators on #2 in Chapter 2 and more general matrix operators on
£? in Chapter 3. This chapter covers the operators on #2 induced by matrices of the form

Ay a_q a_, a_s a_y,
a; ap a_q a_, a_s

a, a; Qo a_q a_,

T(a) = , (16.1.1)

as a, a; Ay a_q
a, as a, a; [o%)

where a = (a,)5>_o is a doubly infinite sequence of complex numbers. These Toeplitz
matrices are constant on each diagonal. Does a Toeplitz matrix define a bounded operator
on ¢%? To answer this, recall from Chapter 5 the Hilbert space I*(T) of Lebesgue-
measurable functions on the circle with norm and inner product

1= [1ram)’. 0= [ rEam, (16,12
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respectively, along with the Hardy space H? = {f € I*(T) : f(n) =0 for all n < 0}. In the
above, m is normalized Lebesgue measure on T and

fn) = ff(§)§ndm(§) fornez
T

is the nth Fourier coefficient of f.

Theorem 16.1.3 (Hartman-Wintner [182], Toeplitz [364]). For a Toeplitz matrix T(a), the
following are equivalent.

(a) T(a) defines a bounded operator on €2,
(b) Thereisa ¢ € L™(T) such that a,, = (n) foralln € Z.

Under these circumstances, | T(a)|| = [|1¢]lco-

Proof We follow [59]. Proposition 8.1.5 says that the multiplication operator M, f = ¢ f
is bounded if and only if ¢ € L*(T). Furthermore, M| = ||¢|lc- With respect to the
orthonormal basis (§")5%_, for I?(T), the matrix representation of M, is

ay a_; a_,|a.z a_4 as
a; Qy Ay |a, a3 a_y
M@=|_"_% & G |d, 6, 03
az; a, a; | ap a_; a_,

a, as a, a; Qo a_q
as a, as a, a; Qo

where a,, = @(n). This comes from the fact that (M,£", &™) = (@, §™™") = §(m —
n), and hence the entries are constant along each diagonal. Notice how the Toeplitz
matrix T(a) from (16.1.1) is the lower-right corner of M(a).

(b)= (a) From the discussion in the previous paragraph, M(a) is a bounded operator on
€%(2). For each n > 0, let B, denote the orthogonal projection of #%(Z) onto \/{ey :
k > —n}, where (e)2 _, is the standard orthonormal basis for £%(Z). In other words,
forx = (x))2_,, € €%(2),

B (%) = (..,0,0, X_p, X_(p—1)> X_(n=2)s-++)-

For ¢ € L*(T),

IT@) = IRM@)]e2ng) | < M@ = [|#]]oos (16.1.4)

and hence T(a) is a bounded operator on £2.
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(a)= (b) If T(a) is bounded, then for each n > 0, we identify T(a) with the lower-right
corner of B,M(a)E,. Indeed, note that T(a) is naturally defined on \/{e,, : m > 0}
while the lower right corner of B,M(a)E, is naturally defined on

\/{em tm > —nl

One can see this with the matrix:

ag a_q a_, a_j3 a_gu a_s

ay | ag a_; a_, a_z a_y
Ma@=| = ®@| @& @G a, a, a;
a; | aa a ag a_; a_,
as | a3 a a ay a_
as | ag a3 a; a; ag

Since T'(a) and B,M(a)B, have the same matrix representation, we can identify them.
For each x € £2(Z), observe that B,x — x and hence B,M(a)B,x — M(a)x. Thus, for
any unit vector x € £2(2),

IM(a)x]| = lim [E,M(a)bx|
= lim inf | B,M(a)B,x||
n—o00
< liminf||B,M(a)B, | |x||
n—oo
= || T(a)|
and hence

IM(a)]| = |Sup IM(a)x]| < IT(a)]- (16.1.5)

[x[=1

This shows that M(a) is bounded and hence, by the discussion at the beginning of the
proof, ¢ € L®(T). Furthermore, (16.1.4) and (16.1.5) yield | T(a)|| = ¢l - [ |

The many fascinating properties of T'(a) are difficult to deduce in the matrix setting.

The next section develops an equivalent function-theoretic viewpoint via Fourier series
that permits us to study the deeper properties of Toeplitz matrices.

16.2 The Riesz Projection

Since H? is a subspace of I*(T), there is an orthogonal projection from I*(T) onto H?.

Definition 16.2.1. The Riesz projection is the operator P, : [*(T) — I?(T) defined by

(Y o)=Y foen
n=-—co n=0
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Proposition 16.2.2. P, is an orthogonal projection whose range is H>.

Proof Notice from Parseval’s formula that

(3 Fooen) = X Fooer
n=—oo n=0

and thus P, is a bounded operator on I?(T). By definition, ran P, = H?. To prove that
P, is an orthogonal projection, it suffices to prove that it is selfadjoint and idempotent
(Theorem 14.5.4). For each n € Z,

()

=S R S fme

n=0 n=—oo

& ifn>o,

P.(R.E")) =
3+ (B.EM) o ifn<o,

which equals P,(¢"). Thus, P? = P, on I?(T). A case by case analysis shows that

<P+fs g> = <f’ P+g> (16~2~3)

for f = £" and g = &™ with m,n € Z. Linearity of the inner product in the first
position and conjugate linearity in the second ensure that (16.2.3) holds for all f,g €
I*(T). Therefore, P} = P,. |

The next proposition, which arises when studying Hankel operators (Chapter 17), is
interesting in its own right.

Proposition 16.2.4. For f € I*(T), the following are equivalent.
(a) f e H

(b) Bf=f.

© 1B = IfIl

Proof (2)=> (b) = (c) These follow from the definitions.
(c)=>(a)Since f = P.f+(I—PR.)f and P.f L (I — P,)f, it follows from Proposition
1.4.6 (Pythagorean theorem) that

IFI? = IR A7 + 1T = BOFI? = 117 + 1T = BOFIP,
so(I—P.)f =0, and hence f € H?. [ ]

With the representation of H? as a space of analytic functions on D (Chapter 5), one can
realize the Riesz projection as an integral operator.

Proposition 16.2.5. If f € I*(T), then

(RJ)(Z):/%dm(%’) forallz € D.
T1-¢&z
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Proof Leté € Tand z € D. Since |£z| < 1, the series

_ Y G

1—§Z n=0

converges absolutely and uniformly in £ for fixed z. Thus,
! (’5; an®) = [ & Z &2 )am)

T1—¢&z
=2 f FEOF dm()

~

()

M8|

n

which is the Taylor expansion of the Riesz projection of f (Definition 16.2.1). [ |

16.3 Toeplitz Operators

One gains more traction studying Toeplitz matrices when recasting Theorem 16.1.3 as a
result about operators on the Hardy space H2.

Theorem 16.3.1 (Brown-Halmos [68]). For ¢ € L, the operator T, : H? - H? defined
T,f = P.(pf) is bounded and | T, | = ]

Proof For any f € H?, use the fact that P, is an orthogonal projection (and hence a
contraction) to see that | T, f|| = |IP; (cpf)|| lefll. Furthermore,

lef I = f (o Pdm < gl f \fl2dm = oIS I
T T
This yields the upper bound

ITell = Sup 1T 1l < l19lloo-

For the lower bound, recall from Corollary 5.3.15 that for any 4 € D, the reproducing
kernel k;(z) = (1 — Az)~! for H? satisfies
=127

Define the normalized reproducing kernel k3 = ky/|lk;| and use the Cauchy-
Schwarz inequality to obtain

(Tpk 2.k 1) < ITpk 2 MK 2l < I Tl 1K Al 1K All = [T -
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The selfadjointness of P, ensures that

IT,ll > KTpk 1.k 2|
= [(P.(pk ).k )]
= [pk P k)l
= [(pk 1.k )]
| f1=1a
- ‘ fT L) dm)

=Z(@)()l,

where Z(p) is the Poisson integral of ¢ defined by (5.5.3). Finally, let A = r&, where
¢ € Tand r € (0,1), and use Fatou’s theorem (Theorem 5.5.2) to see that |p(§)| <
| T, || for almost every £ € T. This implies the desired lower bound [|ple, < [T, W

Definition 16.3.2. For ¢ € L®(T), the operator T,,f = P.(¢f) on H 2 is a Toeplitz operator
with symbol ¢.

The previous result implies that the symbol of a Toeplitz operator is unique.
Corollary 16.3.3. T, = Ty if and only if ¢ = ¢ almost everywhere on T.

Proof If ¢ = i almost everywhere, then T,,f = P.(¢f) = P.(¥f) = Tpf forall f € H2.
Thus, T, = Ty. Conversely, if T,, = Ty, then T,_y = T, — T, = 0. Theorem 16.3.1
ensures that ||p — ¥|| = 0 and thus ¢ = 9 almost everywhere. [ |

Toeplitz operators T, and Toeplitz matrices T(a) from (16.1.1), where a = (a,)pL_ is
the sequence of Fourier coefficients of ¢, are closely related.

Proposition 16.3.4. For ¢ € L*(T), the matrix representation of T, with respect to the
orthonormal basis (€M), for H? is T(a), wherea = (a,)%_o, and a, = @(n) foralln € Z.

Proof With respect to the standard orthonormal basis (£)%, for H2, the (m, n) entry of
the matrix representation of T, is

(T8",8™) = (R (pE™), §™)

=(p§", P.&™) (P, is selfadjoint)

= <¢§n’§m> (P+§m = ’g’m form > 0)

=(p, &M M) (integral inner product - (16.1.2))

= @(m — n). (16.3.5)

This shows that the matrix representation of T, is T(a). H
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16.4 Selfadjoint and Compact Toeplitz Operators

The adjoint of a Toeplitz operator is the Toeplitz operator corresponding to the complex
conjugate of its symbol. As a consequence of the next proposition, a Toeplitz operator is
selfadjoint if and only if its symbol is a real-valued function in L*(T).

Proposition 16.4.1. T; = T5 for any ¢ € L*(T).
Proof Forany f,g € H?,

(T,f.8) = (B(®f). 8

={(pf,B.8) (P, is selfadjoint)
={(of.8) (P,g = g since g € H?)
=(f. 98 (integral inner product - (16.1.2))
=(P.f,9g) (P.f = f since f € H?)
=(f,P.(98)) (P, is selfadjoint)
={f, T58),
which proves the result. [ |

Example 16.4.2. From (5.1.3), observe that T, = S (the forward shift) and Ty = S* (the
backward shift). Thus,

is selfadjoint. It was shown in Example 3.2.7 that this matrix operator on #2 has norm 2.
One can also confirm this by observing that

and using Theorem 16.3.1. Also recall the spectral decomposition of
1
Teoso = ETE+Z
(originally due to Hilbert) in Theorem 15.2.2.
There are no interesting compact Toeplitz operators.
Theorem 16.4.3 (Brown-Halmos [68]). For ¢ € L*(T), the following are equivalent.
(a) @ = 0almost everywhere on T.

(b) Ty, is compact.
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Proof (a)= (b) Observe that T, = 0 is compact.
(b)= (a) Since z" — 0 weakly in H? (Exercise 4.5.12) and T, o is compact, it follows that
[T,z" || — 0 (Exercise 3.6.9). On the other hand,

IT,2"1? = HP+(,§ sz = | k_i_ Al 2=k_2°i COR

which tends to ||¢||> as n — co (Parseval’s theorem). Thus, ||¢| = 0 and hence ¢ = 0
almost everywhere. [ |

Every operator with finite-dimensional range is compact (Exercise 2.8.19). This yields
information about the range of a Toeplitz operator.

Corollary 16.4.4. ran T, is infinite dimensional for every ¢ € L®(T)\{0}.

16.5 The Brown-Halmos Characterization

When is A € B(H?) a Toeplitz operator? The following theorem is an operator-theoretic
characterization that involves the unilateral shift S from Chapter 5.

Theorem 16.5.1 (Brown-Halmos [68]). For A € B(H?), the following are equivalent.
(a) Aisa Toeplitz operator.

(b) S*AS = A.

Proof (a)= (b) If A = T, for some ¢ € L*(T), then

<S*T<ps§nv gm) = <T(pS§n’S§m>
— <T¢§n+1’ §m+1>

=@(m+1)—(n+1)) (by (16.3.5))
=@(m—n)
=(Tp€", &M). (by (16.3.5))

Thus, the operators S*T,S and T, have the same matrix representations with respect
to the orthonormal basis (£*)%, for H? and are therefore equal (Exercise 3.6.2).
(b)= (a) Suppose that S*AS = A. Induction ensures that S*KAS¥ = A for all k > 0. For
all m,n > 0, deduce that
<A§", gm) — (S*kASkgn, gm) — (ASk§",5k§m> — <A§n+k’ §m+k>.
Consequently, the matrix representation of A with respect to (§")52, is a Toeplitz
matrix since the entries are constant along each diagonal. Toeplitz’s theorem (Theo-
rem 16.1.3) yields a ¢ € L®(T) such that A has the same matrix representation as T,.
Thus, A = T, (Exercise 3.6.2). [ ]
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16.6 Analytic and Co-analytic Symbols

We have seen a special class of Toeplitz operators in Corollary 5.6.2 when we described
the commutant of the unilateral shift S.

Definition 16.6.1. A Toeplitz operator T, is analyticif o € H* and co-analyticifp € H*.

Proposition 16.6.2. If T, is an analytic Toeplitz operator with nonconstant symbol ¢, the
following hold.

(@) T,f = of forall f € H>.

(b) 0p(T,) = @.

(© o(T,) = ¢(D)".

(d) The matrix representation of T, with respect to the basis (§" )5, is lower triangular.

Proof (a) Since ¢ € H®, it follows that f € H? for all f € H? and hence T,,f =

P(of) =of.

(b)If A € Cand (T, — A)f = 0, then (a) ensures that (p — 4)f = 0. Since ¢ — 1 and f
are analytic, and ¢ is nonconstant, f is the zero function. Thus, o,(T,) = @.

(c) From (5.5.5), it follows that Tk = quﬂ forall A € D.Since T; = Tz and o(Ty) =
TT:p), one deduces that m C 0p(Tp) € o(Tp) = TT:;,). Since the spectrum of T,
is compact, it follows that (D)~ C o(Ty,). If 1 & ¢(D)~, then (¢ — A)~! € H®. Thus
Tp—n)-1 is a bounded operator and is equal to (T, — AI )~!. Therefore, o(T,) = (D).

(d) The entries above the main diagonal of the matrix representation of T, with respect
to the basis (§")p2, are

. _j—k
(T, gk, &) = / oOF  dm(E) = —k) =0 forallj <k,
T

since ¢ € H®. [ |

Observe that Corollary 5.6.2 (the description of the commutant of the shift on H2) can
be stated in the following equivalent form.

Corollary 16.6.3. For ¢ € L®, the following are equivalent.
(a) p € H*™.
(b) T,S = ST,
Proposition 16.6.4. If ¢ € H*\{0}, then ran T is dense.
Proof Proposition 16.6.2 ensures that ker T, = {0}. Proposition 3.1.7 implies that
(ran T5)~ = (ker Tg)l = (ker T,)* = {0}* = H?,

which proves the result. [ |
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Recall from Theorem 5.4.12 that the proper invariant subspaces for the backward shift
on H? are precisely those subspaces of the form (pH?)*, in which ¢ is an inner function.

Proposition 16.6.5. If ¢ is inner, then ker T; = (pH>)".

Proof Forall h € H?,

fe @) = (f.ph) =0
(pfiy=0
(of.Ph)=0
(P.(pf),h)=0
(Tef ) =0
T5f =0
fEekerTs

I A

which proves the result. [ |

16.7 Universal Toeplitz Operators

Recall the definition of a universal operator (Definition 13.3.1) and Caradus’ criterion
(Theorem 13.3.2) for universality. Here is a universal Toeplitz operator on H>.

Proposition 16.7.1. If ¢ is inner and not a finite Blaschke product, then T is a universal
operator on H>.

Proof We use Caradus’ theorem (Theorem 13.3.2) and verify that ran Iz = H? and
dimker Tz = co. Forany g € H?, use the fact that pp = 1 almost everywhere on
T to see that T5(¢g) = P,(¢ pg) = P.(g) = g Henceran T = H2.

Proposition 16.6.5 implies that ker T; = (pH?)*. It remains to argue that (pH>)" is
infinite dimensional. One can verify that T;"¢ € (pH?)* for all n > 1 (Exercise
16.9.12). We claim that {T;"¢ : n > 1} is a set of linearly independent vectors. Fix n
and suppose there are constants c;, ¢, ..., ¢, such that

n .
26T e =0,
=1

Then ¢ € ker Ty, where p(z) = ¢,z + C;2° + -+ + ¢,2". We leave it to the reader
(Exercise 16.9.14) to prove that ker T; consists only of certain rational functions in
H?. Since ¢ is not a rational function, ¢ = 0forall 1 £ j < n. Therefore, {TZ* J P
1 < j < n}is a linearly independent set of vectors. Since this is true for all n > 1, it
follows that ker T; = (pH 2)+ is infinite dimensional. [ |
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16.8 Notes

The literature on Toeplitz operators is vast and well documented in [60]. A recent and
detailed historical survey is [254]. Some of the early work on multiplication operators on
I3(T), although in terms of matrix multiplication operators, was done by Toeplitz in 1910-
11[363, 364]. Hartman and Wintner in 1950 [181] were early adopters of the term “Toeplitz
matrix” for the infinite Toeplitz matrix. They also discussed some of the first results on
the spectrum of these operators. Furthermore, they proved that a nonzero multiplication
operator on I?(T) is not compact and that nonzero Toeplitz operators are not compact. The
proof of Theorem 16.1.3 appears in an appendix of a paper of Hartman and Wintner [182]
but was proved decades earlier for selfadjoint Toeplitz matrices by Toeplitz [363, 364]. A
proof also appears in [68]. The commutant of S in terms of analytic Toeplitz operators
(Corollary 16.6.3) appears in [68].

We explored the spectrum of T, for ¢ € H® (Proposition 16.6.2). For general ¢ €
L®(T), the spectrum of T, satisfies Z, C o(T,,) C co(%,,), where Z,, is the essential range
of ¢ (Definition 8.1.11) and co(%,,) is the closed convex hull of Z,,. If ¢ is real valued, then
o(Ty,) = [essinfg, esssup ¢]. If ¢ € C(T), then o(T,) = #(p) U{A € C : wind(p, 1) # 0},
where wind(g, 4) is the winding number of the curve 6 — ©(e®) with respect to 1. The
book [116] surveys all of the results above. The reader is encouraged to work through the
exercises for this chapter to learn more about the spectrum of a Toeplitz operator.

The kernels of Toeplitz operators have undergone intense study. Coburn [88] proved
thatif @ € L*(T)\{0} then either ker T;, = {0} or ker T; = {0}. If p € H*, then ker T, = {0}
andker Ty = (uH 2)L, where u is the inner factor of ¢. For general ¢ € L*(T), these kernels
were described by Sarason [328] in his characterization of nearly-invariant subspaces of
H? [327]. See [139] for a function-theoretic parametrization of the kernel of a Toeplitz
operator. The paper [183] is an informative survey of kernels of Toeplitz operators and
their connection to many areas of analysis.

The invertibility of a Toeplitz operator has many characterizations [109, 373]. There are
also criteria for a Toeplitz operator to be surjective [184].

Brown and Douglas determined when a Toeplitz operator is a partial isometry [67]. A
Toeplitz operator T, is an isometry if and only if ¢ is an inner function (Exercise 16.9.7).
Furthermore, T; is a partial isometry when ¢ is inner (Exercise 16.9.8). The main result
in [67] is that the partially isometric Toeplitz operators are of the form T, or T; where ¢
is inner. The primary tool used to prove this result makes a connection to Exercise 5.9.25,
which asks when a unimodular function q on T can be written as the quotient of two
inner functions. If A > 0 and ¢, 1 are inner functions, then lTasz is norm attaining
(Exercise 16.9.17). Moreover, any norm-attaining Toeplitz operator is of this form. It
follows (Exercise 16.9.17) that q can be written as the quotient of two inner functions
if and only if T;, is norm attaining.

Describing the invariant subspaces for Toeplitz operators is a complicated undertaking.
We know a full characterization of them for T, and T; since these are the forward
and backward shifts on H?. For other Toeplitz operators, it is not clear that proper
nonzero invariant subspaces exist. On the other hand, certain Toeplitz operators are
universal (Proposition 16.7.1) and thus yield an incredibly complicated invariant-subspace
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structure. For T,, where p € H®, we know that uH’ 2 {san invariant subspace for any inner
function u. A paper of Peller [265] gives some geometric criteria guaranteeing the existence
of invariant subspaces of Toeplitz operators with certain piecewise-continuous symbols.

An important structural result is one of Coburn [89, 90] which starts with the fact that
the semicommutator T, T, — Ty is compact for every ¢, € C(T). He uses this to show
that if X is the closed ideal of compact operators on H?, then the mapping ¢ — T, + X
is an isometric *-isomorphism between C(T) and the commutative subalgebra {T;, + X :
@ € C(T)} of B(H?)/X.

For ¢ € L®(R), define a Toeplitz operator on H*(R) by T, f = P(¢f), where P denotes
the orthogonal projection from I?(R) onto H?(R). Many analogues of standard results for
Toeplitz operators on H? hold, but some are slightly different. For example, the Brown-
Halmos characterization from Theorem 16.5.1 needs to be replaced by the following: if
A € B(H?*(R)), then A is a Toeplitz operator if and only if A = T,-iz: ATy for all 1 > 0
(see [251, p. 273] and Exercise 16.9.28).

One can also explore Toeplitz operators on other function spaces such as the Bergman
space A* (see Chapter 10). Indeed, for ¢ € L®(dA), define T, on A* by T, f = Pi(¢f),
where By, denotes the orthogonal projection of I?(dA) onto A2. A good place to get started
in this area is the book [379] (see also Exercises 16.9.31, 16.9.32, and 16.9.33).

16.9 Exercises

Exercise 16.9.1. Find the matrix representation of the Riesz projection P, on I*(T) with
respect to the orthonormal basis (§™)2_ .

Exercise 16.9.2. Prove the following variation of Proposition 16.2.4 for P. = I — P,. For
f € H?, the following conditions are equivalent: (a) f € H3; (b) P_f = f; () |P_f]| = | f]-

Exercise 16.9.3. Consider the multiplication operator M, on I*(T) whose matrix repre-
sentation with respect to the orthonormal basis (§")5 _, is

0O 1 2|1 0 O
0O 0 1(2 1 0
0 0 01 2 1
0 0 0]0 1

0 0 0|0 O 1

(a) Compute ¢.
(b) Compute || M.

(c) Compute o(M,,).
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Exercise 16.9.4. For each o, 8 € D, consider the Toeplitz matrix

1 a o & ot

B 1 a a &
B2 B 1 a &
BB B 1 o«
B2 B 1

gt g

(a) Compute the symbol of the corresponding Toeplitz operator.

(b) Compute the norm of this operator.

Exercise 16.9.5. For y € C\Z, consider the Cauchy-Laurent matrix L associated with y
as the doubly infinite matrix whose entries are

1 .
ij_j—T—i—}/ fOI'J,kEZ.

(a) Prove that L is the matrix (with respect to the standard basis) that corresponds to the
multiplication operator M, on I*(T), where

i0 T iny iy
ey = ——eMe WY for—mr <6 <.
Py (e®) = o = <

(b) Compute the norm and spectrum of L.
Exercise 16.9.6. For a Toeplitz operator T, on H?, prove the following.
(a) T, 20 if and only if ¢ > 0 almost everywhere.
(b) T, is selfadjoint if and only if ¢ is real valued almost everywhere.
(¢) T, is an orthogonal projection if and only if T, =0 or T, = I.
(d) T, is normal if and only if ¢ = ai) + b, where a,b € C and 3 € L*(T) is real valued.
Remark: See [68] for more on algebraic properties of Toeplitz operators.
Exercise 16.9.7. Let ¢ € L*(T).
(a) Prove that T, is an isometry if and only if ¢ is an inner function.
(b) Prove that T, is unitary if and only if ¢ is a constant function of modulus one.

Exercise 16.9.8. If ¢ is inner, prove that T; is a partial isometry.
Remark: Brown and Douglas proved that the only Toeplitz operators (other than the zero
operator) that are partial isometries are T, and T, where ¢ is an inner function [67].

Exercise 16.9.9. Give an example of a partially isometric Toeplitz operator that is not an
isometry.
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Exercise 16.9.10. Suppose T € B(H?) satisfies T(uH?) C uH? for every inner function
u. Prove that T is an analytic Toeplitz operator.

Exercise 16.9.11. If 9 € H* and T, is cyclic, prove that ¢ is injective.
Exercise 16.9.12. For any inner function ¢, prove that T;"¢ € (pH?)! foralln > 1.

Exercise 16.9.13. Consider the Toeplitz matrix

[0 1 1 1 1 l
2 3 4
-1 0o 1 1 1
2 3
12 o 1 i
T = 2 2
S !
3 2
S S S T
4 3 2

(a) Prove that ||T|| = 7.
(b) Prove that the associated lower-triangular Toeplitz matrix

[ 0 0 0 0 0 -]
-1 0 0 0 0

L1 0 o0 o
2
L0 0 o
32
S S S P
4 3

does not define a bounded operator on £2.

Exercise 16.9.14. This exercise computes ker T, where p is a polynomial.
(a) Prove thatif q is a polynomial with no zeros in D, then ker T = {0}.

(b) Letdy,A,,...,4, be the zeros of p in D with corresponding multiplicities m;, m,,..., m,
and let B be the finite Blaschke product

N =\ A
wo- (2T (2" (22)
1-14z 1-24,z 1—-2A,z

(c) Prove that ker T4 = H? n (BH?)*.

(d) Use the Cauchy integral formula to prove that

HZQ(BHZ)J-=\/{ﬁ:1<j<n,1<k<mj}.
~ %z

(e) Write T,, = TgT,,p and prove that ker Ty = ker Ty.
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Exercise 16.9.15. If p € H® or ) € H®, prove that T Ty = Ty

Remark: A result from [68] says that for ¢,3 € L, T, Ty is a Toeplitz operator if and only
ifp e H> or 1 € H®. Moreover, if either occurs, T, Ty = Tyy.

Exercise 16.9.16. For an inner function ¢ and f € H®, prove that ran TW =ran T7~

Exercise 16.9.17. If ¢, are inner and 4 > 0, prove that T = AT Ty, is a norm-attaining
Toeplitz operator. In other words, T is a Toeplitz operator and there isan f € H? such that

ITSI = T

Exercise 16.9.18. Suppose that both f and 1/f belong to L*(T). Prove that Ty is invertible
if and only if Ty 7 is invertible.

Remark: This exercises needs a detail concerning outer functions [149, p. 64]: if g € L*(T)
and log |g| € L*(T), there is an G € H* such that |G(&)| = |g(£)| for almost every £ € T.

Exercise 16.9.19. For ¢,3 € L*(T), prove that T,,Ty, = Oifand only ¢ = Oor¢ = 0
almost everywhere.

Remark: This problem requires the following result of Riesz [118, p. 17] (see also Exercise
5.9.37):if f € H® is zero on a subset of T of positive measure, then f = 0. Although
significantly harder to prove, the zero-product result for two Toeplitz operators can be
generalized to the following statement: T, T, -+ T,,. = 0 if and only if at least one of the
@; is zero [18].

Exercise 16.9.20. Recall from (6.4.1) that A € B(¥) is hyponormal if A*A — AA* > 0.
(a) Prove that T,, 3/, is hyponormal.

(b) Prove that if A € B(J() is hyponormal, then A + 1A* is hyponormal if and only if
1] < 1.

Exercise 16.9.21. Prove that if (¢,);2, is a sequence in L*(T) such that T, — T (WOT)
(recall the weak operator topology from Exercise 4.5.24), then T is a Toeplitz operator.

Exercise 16.9.22. Let ¢ € H*\{0}.
(a) If M is a nonzero invariant subspace for T,, show that dim M = co.

(b) If A € B(H?) is compact and AT, = T,A, prove that o(4) = {0}.

Exercise 16.9.23. Let ¢ € L°(T).

(a) Prove that o(M,,) C o(T,,).

(b) Give an example of a ¢ such that o(M,,) € o(T,).
Exercise 16.9.24. Let ¢ € L°(T).

(a) Prove that T, is quasinilpotent if and only if ¢ = 0.
(b) Prove that if o(T,) is a singleton, then ¢ is constant.

Exercise 16.9.25. If ¢ € L*(T) is nonconstant, prove that o(T,) is not a set consisting of
two points. Use the following steps from [68].
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(a) Prove thatif T, is selfadjoint, then o,(T,) = @.
(b) Prove that if o(T,) C R, then T, is selfadjoint.
(¢) If o(Ty) lies on a line, prove that aTyy, + I is selfadjoint for some o, 8 € C.
(d) Ifo(Ty) = {a, b}, use (a) - (c) to obtain a contradiction.
Remark: The spectrum of a Toeplitz operator is connected [374].
Exercise 16.9.26. Consider the numerical range W(T,,) of a Toeplitz operator.
(a) For A € B(H), prove that c(A) C W(A)~.
(b) Prove that W(T,) € W(My,).
(c) Prove that o(M,,) € W(T,)~.
(d) Prove that the convex hull of the essential range Z%,, is contained in W(T,,)~.
Remark: One actually has equality in (d) [68].

Exercise 16.9.27. Let

1 (x=0" .
ﬁ—(x n i)”+1 ifn>0,
FPO=1 0 g e
ifn < -1.

Jr =D

Recall from Exercise 11.10.10 that (f,)S>_., is an orthonormal basis for I?(R) and that

(fi)2, is an orthonormal basis for H2(R).

(a) Find an integral representation for P, the orthogonal projection from I?(R) onto

H?(R), with respect to the orthonormal basis (f;,)% _ .

(b) For the Toeplitz operator Ty, f = P(®f) on H>(C,), defined in the endnotes of this
chapter, compute the matrix representation of Ty with respect to the basis (f;,)reo-

Exercise 16.9.28. If A € B(H?(C,)), prove that A is a Toeplitz operator on H2(C,) if and

only if A = T,z AT, forall4A > 0.

Exercise 16.9.29. For A > 0, define

1+z>

¢a(2)=EXp(—/11_Z .

Prove that A € B(H?) is a Toeplitz operator if and only if A = T, AT, forall 1 > 0.
Remark: See [245] for more on this.
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Exercise 16.9.30. For a Toeplitz operator T, consider

Tyl 2= inf T, + K],

where X is the space of compact operators on H2. The quantity || T, | is the essential norm
of T, and it measures the distance from T, to the compact operators. The goal of this
problem is to prove that | To[l. = [|¢llco-

(a) Prove that | T, e < [|9llco-

(b) For each n > 1, prove that B, = S"S*" is the orthogonal projection of H? onto z"H?.
(c) For A € B(H?), prove that |S"AS*"|| = ||A| for all n > 0.

(d) Prove that | T, + K| > ||T, + S*"KS"| foralln > 1and K € X.

(e) Use Exercise 5.9.26 to prove that | T, + K|| > ||T, || and hence || T, [l = [|¢]lco-
Remark: We encounter the essential norm for Hankel operators in Exercise 17.10.13.

Exercise 16.9.31. Theorem 16.4.3 says there are no nonzero compact Toeplitz operators
on HZ2. For the Bergman space, the situation is different. These next two problems explore
this phenomenon. Let C(D~) denote the space of all complex-valued continuous functions
@ on D™, endowed with the norm [|¢||o, = sup,cp- |¢(2)]. Recall from Exercise 10.7.12 the
properties of the Bergman projection Pj..

(a) If ¢ € C(D7), prove that the Toeplitz operator T, f = Psz(¢f) on the Bergman space
A is bounded and || T, || < [|@]lco-

(b) For N > 1, find the matrix representation of TEN with respect to the orthonormal
basis (V' n + 122, for A> (Proposition 10.1.8).

Exercise 16.9.32. This is a continuation of Exercise 16.9.31. If p € C(D~) and ¢|y = 0,
prove that T, is a compact operator on A? as follows.
(a) Given e > 0, prove there exists a ) € C(D~) whose support K is a compact subset of

D and such that sup |p(z) — 9(2)| < e.

zeD-

(b) Prove that if a sequence (f,)%, in A? converges weakly to zero, then f,(1) — 0 for
each 1 € D.

(c) Use Exercise 10.7.20 and the principle of uniform boundedness (Theorem 2.2.3) to
prove that f,, — 0 uniformly on K.

(d) Prove thereisa C > 0such that | T f,|| < Csup, g |fu(2)| foralln > 1.
(e) Prove that Ty is compact.
(f) Prove that T, is compact.

Remark: See [30] for a generalization of this result to Bergman spaces of general domains.
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Exercise 16.9.33. Recall the Berezin transform T(z) of a bounded operator T on A% from
Exercise 10.7.27.

(a) If o € C(D7), prove that T; € C(D7)and T;(é’) =& forall§ €T.

(b) Use (a) to prove a converse to Exercise 16.9.32, namely, if ¢ € C(D7) and T, is
compact, then ¢|y = 0.

Remark: See [31, 91] for more on this.

16.10 Hints for the Exercises

Hint for Ex. 16.9.4: Write the matrix as an infinite linear combination of S” and S*".
Hint for Ex. 16.9.8: Consult Proposition 14.9.14.

Hint for Ex. 16.9.10: Theorem 14.3.4 implies that T,.TT,» = TT,» foralln > 0.

Hint for Ex. 16.9.16: Consult Corollary 14.6.6.

Hint for Ex. 16.9.18: Exercise 16.9.15 says that Ty T, = Ty, if either f € H>org € H™.
Let & be the outer function with |h| = |f|~Y/2 almost everywhere on T. What is LT Ty?
Hint for Ex. 16.9.19: Consult Exercise 16.9.15.

Hint for Ex. 16.9.21: Consult Theorem 16.5.1.

Hint for Ex. 16.9.22. For (a), observe that a linear transformation on a finite-dimensional
vector space has a eigenvalue. For (b), observe that dim(A — AI) < oo for all 1 # 0. Also
consult Theorem 2.6.9.

Hint for Ex. 16.9.23: Consider o,,(M,) from Proposition 8.1.12.

Hint for Ex. 16.9.24: For (a), consult Exercise 16.9.23.

Hint for Ex. 16.9.26: For (a) show that if 0 € o(A), then 0 € W(A)~. Consult Lemma
2.3.5.

Hint for Ex. 16.9.28: Use the Brown-Halmos characterization (Theorem 16.5.1) along
with Exercise 11.10.7.

Hint for Ex. 16.9.29: Use the fact that ¢, is inner, the identity 75 T, T,,, = T, (Exercise
16.9.15), and Exercise 16.9.28.

Hint for Ex. 16.9.30: For (d), start with || T, + K|| > ||B,(T, + K)B, |- Also consult Exercise
16.9.15.
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Hankel Operators

Key Concepts: Hilbert matrix, Hankel operator, Nehari’s theorem, Hilbert’s inequality, Carathéodory-
Fejér problem, Nevanlinna-Pick problem.

Outline: In this chapter we survey Hankel operators Hy, : H* — PT% which are defined by

Hyf = (I - P)ef),

where H? is the Hardy space, H3 = zH? (the subspace of functions in H? vanishing
at zero), P, is the Riesz projection from I? onto H2, and ¢ € L®(T). These operators
generalize the Hilbert matrix and connect to several problems in function theory such
as the Nehari, Carathéodory-Fejér, and Nevanlinna-Pick problems.

17.1 The Hilbert Matrix

In 1894, Hilbert examined the following polynomial approximation problem [194]. Given
a closed interval [a, 8] and an € > 0, can one find a nonzero polynomial p with integer
coefficients such that

B
/ |p(x)]> dx < €?
a

If p(x) = ¢;x" 1 + ¢, x"* 2 + --- + ¢,,, then the integral above can be expressed as a positive
quadratic form

n
D ajcice (17.1.1)
k=1

ﬁ .
ajsz x2n=i—kdy,
[e4

where
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The analysis of Hilbert’s problem involves

a1 A A1n
a1 Q4 - Qop
det| : 1
An1 An2 Ann
which can be expressed as
B 1 1 1 1 -
2 3 4 n
1 1 1 1 1
2 3 4 5 n+1
. 1 1 1 1 1
B—a\" p 3 4 5 6 n+2
T 2" det 1 1 1 1 1 . (1712)
4 5 6 7 n+3
1 1 1 1 1
-n n+l1 n+2 n+3 2n—1-

Hilbert found that the determinant in (17.1.2) equals

(1n—12n—2 (n— 2)2(1’! - 1)1)4
12n-122n-2 ... (2n — 2)2(2n — 1)1

If 8 — a < 4, then the quantity in (17.1.2) tends to zero as n — oo. Thus,

B
[ oo ax
a
can be as small as desired.
The n X n Hilbert matrix in (17.1.2) has many other fascinating properties [83]. From
here, one is inspired to consider the infinite Hilbert matrix

- 1 1 1 B

1 - = =

2 3 4
1 1 1 1
2 3 4 5

H=|! 1 1 1 (17.1.3)

3 4 5 6
1 1 1 1
4 5 6 7

Notice that the entries of H are constant on the reverse diagonals, that s, a ik only depends
on j + k. The matrix H is an example of a Hankel matrix, the focus of this chapter. An
inequality of Hilbert [196] (see (17.5.3) below), later improved by Schur [333] (Example
3.3.4), implies that H defines a bounded linear operator on £ with norm 7. Further work
of Magnus [237] shows that o(H) = [0, 7] and 0,(H) = @.

Although we do not get too far into the details, let us mention some connections the
Hilbert matrix H makes with the integral and multiplication operators studied earlier in
this book. We survey some results from [310, 311, 354].
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Theorem 17.1.4 (Rosenblum). The Hilbert matrix H on € is unitarily equivalent to the
integral operator

_ [ O -
wpw= [ ey

on I?((0, o), e *dx).

Proof We outline the proof from [354]. The sequence of Laguerre polynomials (L, (x))5,
form an orthonormal basis for I2((0, o), e=*dx) [160] in the sense that

(s8]
(L, L) = / Ly, (X)Ly(x)e*dx = 6,,, forallm,n > 0. (17.1.5)
0

These polynomials are created by applying the Gram-Schmidt process to the mono-
mials 1, x, x,... An explicit formula for L, (x) is

n Nk
1= 3 (1) G

k=0
and the Laplace transform of L,, satisfies
(oo}
/ e L, (t)dt = (x—1)"x""1 forx > 0.
0

From here one can see that for any m, n > 0,

(Lo KLy) = f L O)EL)(eYdy

/ / Ly (P)Ly(x) —XVdxd
x+y Y
fo [ O @eaxay
=f / (f e“(“”dt)Lm(y)Ln(x)e‘x‘ydxdy
o Jo 0
=/ (/ e‘(“'l)"Ln(x)dx)(/ e‘(“'l)yLm(y)dy)dt
0 0

0

&Y
= / (L + 1)TMT2 de
0

1
/ um*tn dy
0

1
m+n+1’

This shows that the matrix representation of K with respect to the Laguerre basis for
I*((0, ), e~*dx) is the Hilbert matrix H. Thus, K is unitarily equivalent to H. [ |
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A deeper analysis from [311], using a certain second-order differential operator, gives
the spectral representation of the Hilbert matrix H. We provide a sketch of the proof.

Theorem 17.1.6 (Rosenblum). The Hilbert matrix H on €2 is unitarity equivalent to the
multiplication operator Mz cosh(zx) 01 I2((0, 00), dx).

Proof As noted in (17.1.5), the sequence of Laguerre polynomials (L,)S, forms
an orthonormal basis for I?((0, ), e *dx). Integral substitution shows that the
map (Qf)(x) = e~x/2 f(x) defines a unitary operator from I?((0, c0), e *dx) onto
I*((0, c0), dx). Thus,

QL, =e 2L, (x) forn>o0,

is an orthonormal basis for I?>((0, o), dx).
Lebedev [226, 227] proved that if K, (z) is defined by

(s8]
K,(2) = / e~Zosht coshvtdt forRez > 0
0

(the modified Bessel function of the third kind), then the operator

1 ® V2tsinh 7t x
UH) = \/—;/0. TKiT(E)f(x) dx

is a unitary operator from I2((0, o), dx) to itself. Thus,
w,(x) =UQL, forn >0,

is an orthonormal basis for I?((0, o), dx). Rosenblum proved that if

T
h(t) = ——,
@© cosh
then
1
<thm’ wn>L2((0,oo),dx) = m for m,n =0,

which are the entries of the Hilbert matrix. In summary, the linear transformation
W : €2 - I*((0, ), dx) defined by

W(@n)nz0) = D @ty
n=0

is unitary with WHW* = Mj,. |

From here (see Figure 17.1.1), note that |H| = 7, o(H) = [0, 7], and 0,(H) = @. We
noted this before in our discussion of multiplication operators in Chapter 8. In addition,
one also sees that H > 0 and that H is a cyclic operator (Theorem 8.2.8).
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0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 17.1.1 The graph of 7/ cosh mx.

17.2 Doubly Infinite Hankel Matrices

From our survey of Toeplitz operators in Chapter 16, recall that a doubly infinite sequence

a= (..., a_sz,a_p, a_l,, a, ap, a3,...)

of complex numbers (the boxed entry denotes the Oth position) gives rise to the doubly
infinite Toeplitz matrix

ay a_; a_, a_3 a_4 a.s
a; aq a_; a_, Qa_3 Qa4
M@=| =~ % 9 G a1 042 43 | (17.2.1)
az a, a ay a_; Qa_,
a, a3 a, a; Qy a_;
as a, a3 a a Qg

This defines a bounded operator on ¢2(Z) if and only if a = (®(n))3%_, for some ¢ €
L®(T) (Theorem 16.1.3). By identifying £2(Z) with I?(T) via Parseval’s theorem, one can
view M(a) as the multiplication operator M, on I(T) with

[M(@)[| = [Mp]l = lI¢llco-

Now consider the “flip” operator F : I?(T) — I?(T) defined by

(F1)(E) = £(©),
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and observe that the matrix representation of F with respect to the orthonormal basis
(M _, for IX(T) is

00 0 01
00 0 10
F= 0 0 0 0
01 0 00
10 0 00

The boxed entry denotes the (0, 0) position.
Proposition 17.2.2. The flip operator F is a selfadjoint unitary operator with
o(F) = g,(F) = {-1,1}

Proof For any f € I*(T), observe that F}“ (n) = f(—n), and hence Parseval’s theorem
implies that |[Ff|| = ||f|. One can also see that F> = I, which implies that F is
surjective. Since F is isometric and surjective, it is unitary. For any f, g € I?(T),

27 y _ide

o= [ e s
=27 i —_idt
- [ e

27 ) —dt
= [ e g
=(f.Fg),

which says that F is selfadjoint.

Since F is selfadjoint, its spectrum is real (Theorem 8.5.1). Since F is unitary, its
spectrum is contained in T (Exercise 8.10.10). Thus, o(F) C {-1,1}. Now observe
that

Fl=1 and F(g_.g) = —(5_3),

2i 2i
hence o(F) = 0,(F) = {-1,1}. |
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Consider the doubly infinite Hankel matrix

a, a; oy A %
eay a, o Qg A
H@=|.. a a A, o,
e ay Ao a_q a_, oa_3
ayg A a_,p a3 Ud_4

and observe that the entries are constant on the reverse diagonals.

Proposition 17.2.3. For a doubly infinite Hankel matrix H(a) corresponding to a =
(@) _ o, the following are equivalent.

(a) H(a) defines a bounded operator on ¢*(Z).
(b) Thereisa ¢ € L™(T) such that a,, = p(n) foralln € Z.
Furthermore, |H(a)|| = ||¢|lco-

Proof Use FH(a) = M(a) and the discussion following (17.2.1). [ |

17.3 Hankel Operators

Recall from Proposition 5.3.12 that the Hardy space H? can be realized as H*> = {f €
IX(T) : f(n) = 0 forall n < 0}. Form the spaces

Hi=tH? and HZ={f e X(T): f € £H?}

and observe that H3 = (H?)*. Let P, denote the orthogonal projection of I?(T) onto H?
(Definition 16.2.1) and note that

P :=I-P,
is the orthogonal projection of I?(T) onto PTS.
Definition 17.3.1. For ¢ € L*(T), the Hankel operator with symbol ¢ is
H, : H* - H}, H,f =P (¢f).
For f € H?, observe that |[H, f|| = [E-(¢f)]| < l¢fIl < ll#lle 1l and hence
[Hpll < ¢l co- (17.3.2)

The norm of a Hankel operator is often smaller than ||¢||,, and this fact connects Hankel
operators to various approximation problems. We discuss this momentarily. We first
compute the adjoint of a Hankel operator.
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Proposition 17.3.3. For ¢ € L*(T), the adjoint H;; : I—TS - H?isH,f = B.(pf).
Proof Ifge H?and f € Eg, then

(Hyg, ) = (E-(98), f) = (p& P f) = (98, f) = (P& @) = (& B (@),
which proves the result. [ |

The reader should exercise caution here. With Toeplitz operators, T,; = T5. For Hankel
operators, H$ and Hg are not the same since they have different domains.
To obtain a matrix representation for H,, equip H 2 with the orthonormal basis (£")%,

and PT(Z) with the orthonormal basis (§~™)5_;. Then

(Hp&", §7™) = (P (p€"),§~™)
= (p&", P.(§7™))
= (" &)
={p,§7™")
= o(—m —n). (17.3.4)

Thus, the entry in position (m, n) of the matrix representation of H,, with respect to the
two bases above is §(—m — n), where m > 1 and n > 0. In other words, H,, is represented
by the infinite Hankel matrix

a_q a_, QA3 QaA_4 0U_j5

aA_, A3 QA_4 0O_5 Q_g

a_ a_4 A_g a_ a_q
3 6 , (17.3.5)

aA_y4 QA5 g QA_7 O_g

A_s A_g QA_7 U_g Ud_g

where a,, = @(n).

17.4 The Norm of a Hankel Operator

From Proposition 17.2.3, the norm of the doubly infinite Hankel matrix H(a) is ||¢| - As
one can see from (17.3.5), “half” of the Fourier coefficients of ¢ are missing from the matrix
representation of the Hankel operator. Thus, computing the norm of H, is more difficult
than the same problem for Toeplitz operators (Theorem 16.3.1). From (17.3.2), we see that
[Hyll < [1#]loo- An important feature of Hankel operators is that the symbol ¢ defining H,,
is not unique. This fact is made clear in the following proposition.

Proposition 17.4.1. For ¢ € L®(T), the following are equivalent.
(a) H, =0.

(b) ¢ € H™.
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Proof (a)= (b) If H,f = 0 for all f € H?, then the constant function 1 belongs to H?
and Hy1 = P (¢) = 0. Thus, 9 € H*®.
(b)= (a)If € H®, then fo € H* for all f € H?. Thus, H,(f) = P-(fp) = 0. [

The previous proposition shows that
H,=H,_, forally€ H® andg € L*, (17.4.2)

which implies that |[Hy|| = [Hy—yll < ¢ — 7l for alln € H*. Take the infimum with
respect to 7 and obtain

IHy || < dist(p, H*) = inf{llp — 7]l : 7 € H*}. (17.4.3)

Nehari proved that (17.4.3) is an equality. The reader might want to review Lemma 3.4.3
and Parrott’s theorem (Theorem 14.8.1) before proceeding to the proof below.

Theorem 17.4.4 (Nehari [247]). Suppose that (a,)sr, is a sequence of complex numbers
such that the Hankel matrix

a; a; Qaz

%) as g

A= (17.4.5)

asz ay Qas
defines a bounded operator on ¢2. Then the following hold.
(a) There exists a ¢ € L™ (T) such that §(—n) = a,, foralln > 1.
(b) Forany such ¢, ||A| = dist(g, H®) < ||l co-
(c) Thereisah € L® such that P(—n) = a,, foralln > 1 and |A| = dist(p, H®) = [|[¢)]|co-

Proof Without loss of generality, assume that ||A|| = 1. Add one column to the left of the
matrix A as follows:

A, Oy Qa3 Qu

a |ay az ay as
a, |as as as ag
as; |ag as ag ag
a, |as ag a; ag

, (17.4.6)

in which the entry «j is unspecified. Write this matrix as

24} B
c D|’
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where
a
a
B=layaqyazay-], C=|as],

a, az g Qs

a; ag as O

and D=|a, as ag oy
a7

Ao ag

Observe that the conditions of Parrott’s theorem (Theorem 14.8.1) are fulfilled since
A is assumed to be a contraction and hence [C D] and [B D]T are also contractions.

Hence there is an o € C such that the

matrix (17.4.6) defines a contraction on ¢2.

Repeat the same process with the matrix (17.4.6) and obtain an a_; € C such that

ag o o
a; a, az
a, a3 0y
a; Qg Qs
a; a5 O

a, Oz Oy i
a; ag Qs
a, a5 ag
as Qe QA7
Qe A7 Qg
a7 g Qg

is a contraction on #2. By induction, we obtain a sequence (a,)%_., such that the

Hankel matrix

[ Ang+1 Ang+2
Ano+1  Ang+2 Ang43
an0+2 an0+3 an0+4
Ang+3  Ang+a Apgas
Ano+4  Ang+s  Ang46
Ang+s  Xng+6 Xng+7

is a contraction on ¢ for each n, € Z.
infinite Hankel matrix

a, o
a
H(a) = a o
a o
a, a_;

with the boxed a in the (0, 0) position. T

an0+3 an0+4 c‘no+5
Ang+a  Ang+s  Xng+e
Ang+s  Ang+6  Ang+7
Ang+6  Fng+7  Ang+8
an0+7 an0+8 O‘n0+9
Ang+8  Ang+9  Ang+10

Continue this process and form the doubly

az o Xo

a Qo G
a_;
a_; a_p a_3
a_, O_3 O_4

he discussion above and Lemma 3.4.3 shows

that H(a) is a contraction on #2(Z). Proposition 17.2.3 provides a ¢ € L*(T) such that

43(") =0_n

This proves (a).

foralln € Z. (17.4.7)
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Moreover, H(a) is the matrix representation of the multiplication operator M, on IX(T)
(via FH(a) = M,,) with respect to the standard basis (§");%_,. Furthermore,

Pl = IMg |l <1 = [IA]. (17.4.8)

Consider the unitary operators U : ¢#2 — H? defined by

[so] (e8]
U( > akek) = > @tk
k=0 k=0
andV : €2 > PT(Z) defined by
V( Z akek) = Z ak%.
k=0 k=0

We have shown that thereisa ¢ € L*(T) such that (a) holds. Since only the negatively
indexed Fourier coefficients of ¢, that is $(—n) for n > 1, appear in the matrix
representation of Hy, in (17.3.5), the choice of ¢ is not unique. However, for any such
@, the matrix representations of H, and A show that

A=V*H,U.
From (17.4.3), it follows that
ANl = [|Hy|l < dist(p, H®). (17.4.9)
This proves (b).
If ¢, and @, are two such representing symbols for A, then H, = H,,, and hence
@1 — ¢, € H® (Proposition 17.4.1). This implies that
dist(p;, H*) = dist(p,, H®). (17.4.10)

Therefore, neither ||H || nor dist(¢, H*) depend on the symbols ¢ for which A = H,,.
By (17.4.8) the symbol ¢ obtained in (17.4.7) therefore satisfies ||A| = dist(¢, H®) =
¢lleo- The relation (17.4.10) shows that ||A|| = dist(e, H*) holds for all symbols ¢
that give rise to the same Hankel operator. This proves (c). [ |

Corollary 17.4.11. For ¢ € L®(T), |Hy|l = dist(p, H*). Moreover, there is ann € H*®
such that [Hy|| = ¢ = 7l co-

Proof From (17.3.2) it follows that H, is a bounded operator. The equality |Hy|| =
dist(p, H*®) is from Theorem 17.4.4b. By Theorem 17.4.4c, there is an ¢p € L®(T)
such that H, = Hy and ||.H.¢|| = dist(¥, H*) = |[|| - Since H, = Hy, it follows that
7 =¢ — 3 € H* (Proposition 17.4.1). Thus, |He| = [|Hy|l = ¥l = llp = 7llco- M
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17.5 Hilbert’s Inequality
The inequality ||Hy|| < [¢llo implies that

KHof, @) < llellllfllllgl forall f € H*and g € PT%- (17.5.1)
Now observe that if f € H* and g € HZ,
(Hof,8) = (E(¢), &)
=(¢f,P.g) (since P* =P)
=(¢f, 8 (P_g:gsincegel—?%).

From here it follows that (17.5.1) is equivalent to

[*) [*)

> #-m—mfmg=m)| < lple( 2 1FmP)* (3 18-m)P)’.
n=0 n=0 m=1
m=1

Since the Hilbert spaces H?, H3, and ¢2 are isometrically isomorphic, the previous
inequality is equivalent to

2 Bl=i—j+Dxy
i,j=1

for all (x)2,, )2, € ¢2(N).
In the special case

) 1 o 1
<ol X 1P)* (X m)? (17.52)
i=1 Jj=1

)= —i(r—t) for0<t<2m,

one can check that

A L oitnzo,

pmy =y "
0 ifn=0.

Hence, the matrix corresponding to the Hankel operator H,, is

uy

Il
e W N = -
e Bl WI =N =
DR I e N N
PR N R N e

the Hilbert matrix (17.1.3). Since ||¢| = 7, the inequality (17.5.2) becomes
[e5) 1 00 1
y = 2z
‘ Z l+;’ \E(ZIinZ)Z(ZijIZ)Z (17.5.3)
i=1 j=1

forall (x;))2,, )2, € ¢2(N). Thatis, H defines a bounded operator on £2(N) and its norm
is at most 7. This is not easy to verify directly.
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17.6 The Nehari Problem

The Nehari Problem is the following: for a given ¢ € L*®(T), find an n € H*®(T) such
that ||¢ — 7|l is minimal. In this section we show that a solution exists and is unique.
From a theoretical point of view, the answer to Nehari’s problem is implicitly contained in
Corollary 17.4.11. This result even provides a formula for the distance between ¢ and H*,
that is, dist(p, H*) = ||Hy||. In its proof, we outlined a procedure to construct ann € H®
such that dist(¢, H®) = ||¢ — 7|l The construction of # ultimately uses Theorem 17.4.4,
which requires us to inductively obtain the parameters «, when creating the Hankel
matrix (17.4.5). Although this construction works in theory, it is not practical. Thus, we
seek another method.

Definition 17.6.1. A maximizing vector for T € B(H,,J(,) is an x € H;\{0} such that

1T, = 1T ll5¢, ¢, 11Xl 7,

Not every operator has a maximizing vector (Exercise 17.10.12). An operator with a
maximizing vector enjoys special properties. Below is such an example. A theorem of Riesz
[118, p. 17] (see also Exercise 5.9.37) says that if f € H*\{0}, then {£ € T : f(£) = 0} has
measure zero. This detail allows us to state the following theorem.

Theorem 17.6.2. For ¢ € L*(T), suppose that the Hankel operator Hy, has a maximizing
vector f € H?\{0}. Then
H,f

=5 (17.6.3)

is defined almost everywhere on T and satisfies the following.
(a) 9| is constant almost everywhere on T.
(b) H, = Hy and dist(p, H*) = dist(), H®) = [|[]|o-
(©) Ifw € L*(T) is such that H, = H,, and dist(w, H*) = |o|, then o = ¥ almost
everywhere.

Proof The existence of a symbol of minimal norm is guaranteed (even without the extra
assumption of having a maximizing vector) by Corollary 17.4.11. To establish the
uniqueness of this symbol, suppose that a maximizing vector f exists for H,, and let
w € L®(T) be such that H, = H,, and ||[Hy|| = ||H || = dist(w, H®) = [|@| . Then
for any g € H?,

[Hypgll = 1Hugll = IP-(w@)ll < logll < lwllellgl = IHylllgl-
In particular, the specific choice g = f (the maximizing vector for H,) yields
IP-(wf)Il = llofll = lleoll o L.£1-

Exercise 16.9.2 implies that wf € I—T(Z, and hence H,,f = P_(wf) = wf. Since f(§) # 0
for almost every £ € T, one can divide by f to obtain w = . The identity |lwf] =
lolls |l f]| ensures that |w| is constant on T. [ |
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Example 17.6.4. There are symbols ¢ € L*(T) for which the Nehari problem has several
solutions. Theorem 17.6.2 implies that the corresponding H,, does not have a maximizing
vector. On the other hand, if f; and f, are maximizing vectors of H,, the formula (17.6.3)
for 1 shows that

Hyfi  Hyf,

h L2

almost everywhere on T.
In some elementary cases, we can guess a maximizing vector and solve Nehari’s
problem. For example, if

o) =

then

Thus, for each f € H?,

P2 @) =@ - (1~ eI D@ (1 o) &
=Tf() - (1~ &) Quf (2) ~ (1 = faP) %
where
(Qufe) = L=

which one can check is a bounded operator on H? (Exercise 5.9.16). Moreover, the Fourier-
series representation

e —n
g(&)— —— =Y a"vlf forfeT,
n=1
shows that g € IT(% and
1
lgll = —- (17.6.5)

VI-laP

We conclude that
Hyf = -1~ |af) flg = —(1 = la*)[. ka)g.
where k,(z) = (1 — az)~!. This can be written using tensor notation as
Hy = —(1—[a?) g ® ke,

which yields |[Hy | = (1 — le®)lgllllk«|l = 1 (Exercise 3.6.3). Set f = k,, in the above to get
Hyky = —g. Hence,

IHpkall = gl = llkqll
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In other words, k. is a maximizing vector for H,. Theorem 17.6.2 says that the best
approximation ) € H* to ¢ is
H,k
= - _(P i = —g = _ =
b=9 . Pt PO

It follows that dist(p, H®) = ||¢|le = 1 and [l¢ — 9l > 1 for every n € H®\{0}.

17.7 The Carathéodory-Fejér Problem

In the Carathéodory-Fejér problem, a polynomial p(z) = ag + o3z + -+ + a,2z" is given
and the goal is to determine complex numbers a,,,1, @4 2,...such that

©
Olka € H*®
k=0

and

hee

is minimized. One can always satisfy the first condition. The second condition is more
troublesome. Write

(e8]

> axzk = p(z) + 2 f(2),
k=0

and see that the coefficients o for k > n+1 are the Taylor coefficients of a typical f € H*.
Thus, we should compute

inf ||p+ 2" fllco-
s Ip flleo
Since z**! is unimodularon T, ||p + z"*! f|le = Pz~ + fllc»> and hence

inf ||p+ 2" fl|le = dist(pz™""1, H®).
feH»

Corollary 17.4.11 provides a g € H*® such that

n+1 — 3 n+1 —
Ip+2""gll —fggm [P+ 2" flloo = [Hpz-n-1].-

ButonT,z " p(z) =,z + o1 272 + -+ + ap z7 " is a trigonometric polynomial,
and thus H},,-»-1 has finite rank (Exercise 17.10.8). Therefore,

inf n+1
st lp+ 27 lleo
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equals the norm of the infinite Hankel matrix

[ o, a1 Ay, - Ay ap ay |0 0 0 0 0 0 -]
Ap—1 Ap—2 an-_3 e ay o) 0 0 0 0 0 0 0

Ap—2 Ap-3 Ap—a o Ao 0 0 0O 0 0O 0 0 O
a, 4] o .. 0 0 0[O0 O O O O O
a, [¢ ) 0 .. 0 0 0[O0 O O O O O
o 0 0 e 0 0 0[O0 O O O O O

0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O

which has the same norm as the finite Hankel matrix (Exercise 14.11.11)

[ oy apr A 0 A o A
Ap-1 Apz QApz = o &g O
Ap-p Ap-3 QAp-g - & 0 O

@ o a - 0 0 0
aq oo 0 oo 0 0 0
| % 0 0 0 0 (V

17.8 The Nevanlinna-Pick Problem

Suppose that z,, z,,..., z, are distinct points in D and wy, w,,..., w, € C. There are many
f € H® such that

fzr) =w, foralll <k<n. (17.8.1)

For example, the Lagrange interpolation theorem provides a unique polynomial p of
degree at most n — 1 which satisfies (17.8.1). The Nevanlinna—Pick problem asks for an
interpolating function f such that |||, is minimal.

On one hand, if f satisfies (17.8.1) and p is the interpolating polynomial described
above, then f — p € H* and, moreover, (f — p)(zx) = 0 forall 1 < k < n. Hence,
f — p = Bh, where B is the finite Blaschke product whose zeros are the distinct points
Z1,2,...,Zp, and b € H. On the other hand, f = p + Bh satisfies (17.8.1) for any
h € H®. Thus, the solutions to (17.8.1) are parameterized by f = p + Bh, where p is the
Lagrange interpolating polynomial, B is the finite Blaschke product with zeros z,, z,,..., z,,
and h € H®. To solve the Nevanlinna-Pick problem, we must compute

inf Bhl|-
Jnf llp+ Bhlle
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Since B is unimodular on T, ||p + Bh|| = ||pB + h||s and hence
inf |p + Bh|s, = dist(pB, H®).
heH®

This problem reduces to Nehari’s problem from the previous section. In the discussion
above, p can be chosen to be any solution of the interpolation problem and the rest of the
analysis is the same.

17.9 Notes

The Hilbert matrix H from (17.1.3) continues to be an active area of study. We already
know that H acts on #2 with operator norm equal to 7. Hardy showed that for 1 < p < o,
the Hilbert matrix defines a bounded operator a — Ha on the sequence space P (see
Example 1.8.1) and

T
Hl|ppsop = ———.
” ”€p P Sll’l(ﬂ/p)

We know that |H||s2— .2 = 7 from the discussion at the beginning of this chapter. Working
with power series, one can define the Hilbert matrix H as an operator on various spaces
of analytic functions as follows. For f(z) = Z:’zo a;z*, define

(Hf)(z) = ZO( kZO e )

In other words, the Taylor coefficients of (H f)(z) are the entries of the column vector Ha.
For the Hardy spaces HP, where 1 < p < oo, the operator f — Hf is bounded and

V4
|Hllge>pr = m

For the Bergman spaces AP, where 1 < p < oo, the operator f — Hf is bounded for
2 < p< o0,and

IHllap>ar = for4 < p < .

T
sin(27/p)
When 2 < p < 4, the exact value of the norm of H on AP is unknown. The key to proving
many of these results is to represent the function Hf above as an integral (see Exercise
17.10.2). The book [205] contains the proofs of the results above and further references.
The spectral properties of the Hilbert matrix for these spaces are studied in [13, 64, 345].

Peller’s book [267] is a comprehensive and authoritative text on Hankel operators. Two
other good sources are Partington [262] and Power [274].

In his 1861 doctoral dissertation [173], Hankel explored finite Hankel matrices. In 1881,
Kronecker [225] studied finite-rank Hankel operators (see Exercise 17.10.8). The use of
the terms “Toeplitz operator” and “Hankel operator” originated in a paper of Hartman
and Wintner [181], where they discussed the boundedness and compactness properties of
certain types of Hankel operators. These results were extended in 1958 by Hartman [180],
who showed that a Hankel operator is compact if and only if it can be represented (in the
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sense of Theorem 17.4.4) by a continuous symbol. A Hankel operator can belong to various
other classes of operators [267].
One can realize the boundedness and compactness of a Hankel matrix

a; ay a3
a, a3 oy

17.9.1

in a function theoretic way. A function ¢ € I}(T) is of bounded mean oscillation if

ICT

sup$f1|f—ﬁ|dm<oo.

In the above, I is an arc of T and

1
= oy [ 1m

is the mean of f on I. The space of functions with bounded mean oscillation is denoted
by BMO. One can show that L*(T) C BMO. However, the reverse containment is not true
since log |p| € BMO whenever p is a trigonometric polynomial with p # 0. A ¢ € L}(T)
is of vanishing mean oscillation (VMO) if

. 1
all)r(r)l+ |§F£xm [|f—fl|dm =0.
Note that C(T) C VMO. A classical theorem of Riesz says thatif 1 < p < oo, then the Riesz
projection satisfies P.IP(T) C IP(T) (in fact P, IP(T) = HP, the IP version of the Hardy
space). This no longer holds if p = o0. Here one has P, L*(T) C BMO and P,C(T) C VMO.
The Hankel matrix from (17.9.1) is bounded on #2 if and only if ¢ = Z)?:o o £ belongs
to BMO and compact if and only if p € VMO.

One may also consider Hankel operators on the Bergman space [21, 27, 232]. This first
requires the orthogonal decomposition

I}(dA) = A @ (A%)*.
For an appropriately chosen symbol ¢ on D, define H,, : A? > (AL by
Hyf = (I —P)of),

where P is the orthogonal projection of I?(dA) onto A2.
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17.10 Exercises

X
Exercise 17.10.1. For each (x,,)%%, € ¢2(N), prove that lim Z -0
m—oco = m+n

Exercise 17.10.2. Consider the infinite Hilbert matrix H from (17.1.3). It follows from
(17.5.3) that H defines a bounded operator on #2. Since #2 is unitarily isomorphic to the

Hardy space H? via a = (a,)3, — a(z) = Z;o:() a,z" (Proposition 5.3.1), one can think

of H as acting on H?. Use the following steps to express H as an integral operator.

(a) For a polynomial f, define

1
(bf)(z):f %dt for z € D.
0

Prove that H and § agree on the polynomials, meaning if
n
a = (ay,ay,-.-,a,,0,0,...) and a(z)= z a;z’,
j=0

then Ha equals $a in the sense that Ha is the sequence of Taylor coefficients of $Ha.

(b) An inequality of Fejér and Riesz [118, p. 46] says that

1
[ ireorax <3 [ ir@ran foraf e,
-1 T

Use this to prove that for f € H?, the integral § converges for all z € D and defines
an analytic function on D. Thus, § provides an integral representation of the Hilbert-
matrix operator.

Remark: This integral representation allows the Hilbert matrix to be defined on various
other spaces of analytic functions [13, 110, 205]. See also Exercise 18.8.14.

Exercise 17.10.3. Consider the Hilbert matrix H as an operator on £2.
(a) Prove that H is not a finite-rank operator.
(b) Prove that H is not compact.

Exercise 17.10.4.
2

(a) For f € C[0,1], prove that z

n=0

1
<r f FORdr.

0

1
f ) dt
0

(b) Show that the constant 7 is best possible.
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Exercise 17.10.5. If H is the Hilbert matrix from Exercise 17.10.2, C is the Cesaro matrix
C from (6.2.5), and B = [bj]{%—o, Where

- k+1
KT G+k+D(+k+2)

for j,k >0,

prove that H = BC.
Remark: See [40] for more on this.

Exercise 17.10.6. Here is another way to prove the boundedness of the Hilbert matrix
H = [hji]$%=o on £2 [40] (see also [83]).

(a) Let L be the matrix

11
1 - -
2 3
11 1
L=|2 2 3
11 1
3 3 3
In other words,
1

Lj=——
Y max{i, j1+1

Prove that L = CC*, where C is the Cesaro matrix.
(b) Prove that |H| < |IL]|.
(c) Prove that H is bounded on ¢2 and |H|| < 4.
Remark: L is a special type of “L-shaped matrix” (see Chapter 6).

Exercise 17.10.7. Let S € B(¢?) be the unilateral shift and H be the Hilbert matrix. Prove
that S*HS — H is a Hilbert-Schmidt operator.

Exercise 17.10.8. This exercise proves a result of Kronecker from 1881 [225]. Let

Qo a; a, as ay
a, a, as a, as
a a a a a
H( a) — 2 3 4 5 6
as; a4 4s Qg a7
as s Qg a7 GAg

denote the Hankel matrix corresponding to a = (a,)5,. The goal is to show that if H(a)
has finite rank, then f(z) = Zw a,z" is a rational function. Use this approach from
[266].

n=0
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(a) For a power series f(z) = Z:’:O a,z", let S and B denote the formal forward and

backward shift operators S(ay + a1z + a,z% + ) = apz + ;2% + a,z> + - and
B(ag + a1z + a,22 + ---) = a; + a,z + a3z* + -+, respectively. Prove that
k-1
SnBkf=snkf—snk > azl foro<k<n
i=o

(b) Ifrank H(a) = n,look at the first n+1 rows of H(a) and prove that there are constants
Cg»C15--+» Cp» DOt all zero, such that ¢y f + ¢;Bf + c,B2f + -+ + ¢, B"f = 0.

(c) Prove that ZZ:O c;S" ¥ f = p, where p is a polynomial of degree at most n — 1.
(d) Letq(z) = Z;‘:O ¢,—;z/ and prove that qf = p.

Remark: The converse of this result is true. See [266] for the details.

Exercise 17.10.9. For ¢ € L*(T), prove that the following conditions are equivalent.
(a) The Hankel operator H,, has finite rank.

(b) (I - PR, )g is arational function.
(c) There exists a finite Blaschke product B such that Bp € H®.

Exercise 17.10.10. Prove the following version of the Brown-Halmos theorem (Theorem

16.5.1) for Hankel operators. Suppose that A € B(H?, IT(Z)), S is the unilateral shift on H?,
and Mg is the bilateral shift on I*(T). Prove that A is a Hankel operator if and only if
P_M¢A = AS.

Exercise 17.10.11. Leta = (a,)3%, be a sequence of complex numbers. If Z;o:l nla,|? <
o0, prove that the Hankel matrix H(a) in Exercise 17.10.8 is compact on #2.

Exercise 17.10.12. Prove that the diagonal operator diag(%, %’ %,...) does not have a
maximizing vector (Definition 17.6.1).

Exercise 17.10.13. Let ¢ € L*(T). Nehari’s theorem (Theorem 17.4.4) says that ||H,| =
dist(p, H*®). Use the following argument from [28] to outline a proof that

[Hylle = dist(p, H* + C(T)),

where H® + C(T) = {f + g : f € H®,g € C(T)} and |Hy|, = infgegx |H, — K] is
the essential norm of Hy,. In the infimum above, X denotes the set of compact operators

K : H? — H3.Thus, [[Hy | is the distance from H,, to K. We examined the essential norm
of a Toeplitz operator in Exercise 16.9.30.

(a) For each K € X, prove that |[H,S"|| < ||[(H, — K)S™|| + [|[KS"| foralln > 1.

(b) Use Exercise 5.9.26 to prove that lim sup ||Hp,S™|| < [[Hyle-
n—oo
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(c) Using the matrix representation of H,S", prove that [|[H,S"|| = [|Hy|.
(d) Prove that [H,S"|| > |Hyll, foralln > 1.
(e) Prove that lim [[HyS"| = ||l
(f) Use Nehari’s theorem to prove that
IHpS™ | = |Honyll = dist(z"p, H®) = dist(p,Z H™).

(g) Conclude that

—n

|Hylle = lim |H,S"| = lim dist(p,z H*) = dist(p, H* + C(T)).
n—-oo n—oo

(h) Finally, conclude that H,, is compact if and only if p € H® + C(T).
Remark: The original proof of this is from [3].

Exercise 17.10.14. Let 9 € H*® and let p = £ "¢ for n > 0. Prove that the matrix
representation of Hy has a finite number of nonzero entries.

Exercise 17.10.15. Suppose H is a Hankel operator whose matrix representation has a
finite number of nonzero entries. Prove there is a finite Blaschke product and an n > 0
such that H = Hg-np.

Exercise 17.10.16. Show that a compact Hankel operator is the operator-norm limit of a
sequence of finite-rank Hankel operators.

Exercise 17.10.17. The next three exercises discuss an operator on H' 2 that is related to a
Hankel operator. Define J : I*(T) — I*(T) by (Jf)(§) = £f(&) and prove the following.

(@ J?=1.

(®) J(f8)(§) = EUETLIE).
(c) JRJ=1-P,.

(d) JH? = H2.
Remark: See [254] for more on this.

Exercise 17.10.18. This is a continuation of Exercise 17.10.17. Let ¢ € L*(T) and define
T, : H> - H? by I, = JH,,. Prove the following.

(@) [Tl = [IHg|.

(b) I, =0ifand only if p € H*.

Exercise 17.10.19. This is a continuation of Exercise 17.10.18.

(a) For ¢, € L*(T), prove that I, T, + Tzy, Ly = Ly, Where Tz, and Ty are Toeplitz
operators.
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(b) Prove that [,,I;, = 0 ifand only if I;, = 0 or [, = 0.
(c) For ¢ € L*(T), prove that S*T, = T, S.
(d) IfA € B(H?) satisfies S*A = AS, prove that A = [, for some ¢ € L*(T).

Exercise 17.10.20. Using the ideas from Exercise 17.10.17, one can define Hankel
operators on H?(C,) as follows [273]. Let P denote the orthogonal projection of I2(R)
onto H?(R) and let F be the unitary operator (Ff)(x) = f(—x) (this plays the role of J
from Exercise 17.10.17 for I*(R)). For ¢ € L*(R), define #(,, : H*(R) - H*(R) by

H,f = PEM,f.
(a) Prove that J(,, is bounded on H 2(R).
(b) Prove that #, = 0 if and only if p € H*(R) = H*(R) N L*(R).

(c) Exercise 11.10.7 shows that

a@w=%l (2

x+ig x+i

defines a unitary operator from I?(T) onto I*(R) and a unitary operator from H?(T)
onto H2(R). Prove that U*FU = J.

(d) For such J{,, prove there is a 3 € L™ such that J(, and T, are unitarily equivalent.

Exercise 17.10.21. Write the Hankel matrix

—
O Wil
o
o
O v =

| ™o
I
O ul= O wl-
eN= O B
O NI= O wnie
O NI

e =
RN

as a [, operator from Exercise 17.10.17.
Remark: See [273] for more on this matrix.

Exercise 17.10.22. The Hankel matrix H, from Exercise 17.10.21 (regarded as an operator
in H?) is unitarily equivalent to the integral operator A : I*(R,) — I?(R,) defined by

anw="1 [ Ma

which can be regarded as the continuous version of Hy. Follow these steps from [273] to
see why.
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(a) Define the operator A; : L'[-1,1] — I*[-1,1] by

1
g =2 [ E2gy
-1

and prove that A is unitarily equivalent to A, via the unitary operator U : I[*[-1,1] —
I?(R,) defined by

Freli)

(Ug)(s) = s+1°\1+s

(b) Prove that the restriction map R : H?> — I?*[-1,1] defined by Rh = h|j_y ] is
bounded and has dense range.

(c) Prove that RHy = A;R.

(d) Prove that Hy and A, are unitarily equivalent.

(e) Conclude that Hy and A are unitarily equivalent.

Exercise 17.10.23. Thisisa continuation of Exercise 17.10.22. It determines the spectrum
of Hy.

(a) Prove that A is unitarily equivalent to the operator A, : I?(R) — I?(R) defined by

L)) = L f _JO__g

7 ) . cosh(x—1t)""

(b) Observe that A, is a convolution operator. Use properties of the Fourier transform to
prove that A, is unitarily equivalent to M, on I2(R), where

w00 = cosh(gx).
(c) Prove that o(M,) = [0, 1].

Exercise 17.10.24. If H is the Hilbert matrix from Exercise 17.10.2, prove that H> =
Targz—m> — Tazrg z—n» Where T, is the matrix representation of the corresponding Toeplitz
operator with respect to the basis (z")p%,.

Remark: From here one can fashion another proof that o(H) = [0, 7] [273].

Exercise 17.10.25.
(a) With respect to the decomposition I*(T) = H?> & H2, prove that
p p p
¥
M, = [ Ty H¢] ,
Hy Sy
where Sy =PMy,P..

(b) Prove that T,y = T, Ty + H%Hzp and H;Tp = T¢H% + H%S¢.
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Exercise 17.10.26. If ¢ € L*(T) and 3 € C(T), prove that Ty, — T, T, is compact.

Exercise 17.10.27. There is a notion of asymptotic Toeplitz operators from [34]. Recall
from Theorem 16.5.1 that every Toeplitz operator T, satisfies S*T,S = T,. Then T €
B(H?) is an asymptotic Toeplitz operator if S*TS™ converges in the strong operator
topology as n — oo, that is, there is an operator T,, € B(H?) such that

|S*"TS"f — Ty f]l = 0 forall f € H2.
(a) Show that every Toeplitz operator is an asymptotic Toeplitz operator.
(b) Show that every compact operator on H? is an asymptotic Toeplitz operator.

(c) Show that I, from Exercise 17.10.18 is an asymptotic Toeplitz operator for every ¢ €
L=>(T).

(d) Forall p,7 € L*®(T), prove that I;,T;; is an asymptotic Toeplitz operator.
(e) Forall , € L*(T), prove that T, T, is an asymptotic Toeplitz operator.

Remark: See [128] for more on this where one considers when (S**TS™)5>, converges in
the norm or weak operator topologies.

Exercise 17.10.28. This is a continuation of Exercise 17.10.27. Suppose D, is a diagonal
operator on €2, where A = (1), and S € B(¢?) is the unilateral shift. Prove that
S*"DAS™ — 0 in the strong operator topology if and only if (1,,)5%, converges.

17.11 Hints for the Exercises

Hint for Ex. 17.10.4: The Gram matrix [(¢/, t')]55_, is the Hilbert matrix [1/(i+j+1)]
Hint for Ex. 17.10.7: Consult Exercise 3.6.31.

Hint for Ex. 17.10.11: Consult Theorem 3.4.1.

Hint for Ex. 17.10.20: For (d), consider the operator U.

Hint for Ex. 17.10.22: For (b), the boundedness comes from the Fejér-Riesz inequality
(see Exercise 17.10.2). For part (d), consult Exercise 8.10.28.

Hint for Ex. 17.10.23: For (a), consider an appropriate substitution. For (c), consult
Exercise 8.10.1 and Proposition 8.1.12.

Hint for Ex. 17.10.26: Consult Exercise 17.10.25.

©
i,j=0°"
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Composition Operators

Key Concepts: Composition operator on the Hardy space, Littlewood subordination principle, norm
of a composition operator, compact composition operator, adjoint and spectrum of a composition
operator, universal composition operator.

Outline: This chapter explores composition operators C,,f = f o ¢ on the Hardy space
H?, where the symbol ¢ is an analytic map from the open unit disk D to itself. We cover
representative results concerning the boundedness, compactness, and spectral properties
of composition operators.

18.1 A Motivating Example

Before heading into the subject of composition operators on H?, let us work through some
examples that provide a baseline for the types of results to expect. This allows us to connect
with the infinite matrices material covered in Chapter 3. If || < 1and f(z) = 3o
belongs to H2, thatis || f|2 = Y |a,|? < oo, then

n
n=0 InZ

IFBDI? = ] lanlPIBP" < IfI%
n=0

Thus, the composition operator f(z) = f(Bz), denoted by Cg,, is bounded on H 2, In fact,
it is a contraction. Furthermore, its matrix representation with respect to the standard
orthonormal basis (zk),;”:0 for H? is the diagonal operator

0 0 B2 o
0o 0o o p

Proposition 2.1.1, Theorem 2.4.7, along with Theorem 2.5.1 yield the following result; see
Figure 18.1.1.
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1.0

Figure 18.1.1 The spectrum of the composition operator Cg,, where § = e™127/5 (left) and
Cpz, where § = ge‘u”/S (right).

Proposition 18.1.1. Let |f| < 1.

(a) The composition operator (Cg, f)(2) = f(B2) is bounded on H* and ||Cg,|| = 1.
(b) 0,(Cpz) = {1,6,%...}.

(©) o(Cgy) = {L,B. B2}

(d) Cg; is compact if and only if |B] < 1.

Now consider the composition operator

(Carpzf)2) = fla+ Bz)

on H2, where |a| + |8 < 1 (this guarantees that z — o+ 8z maps D to another disk whose
closure lies in D: see Figure 18.1.2). With respect to the basis (zk),‘?’zo, this operator has the
matrix representation

2 3

1 a « a
0 B 2aB8 3a%B
0 0 p* 3ap?
0 0 O B3
The (j, k) entry of this matrix is
0 ifj>k,

= - 18.1.2
ke (I;)ak‘fﬁf if j <k, (1512

(see Exercise 18.8.7).
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Figure 18.1.2 The images of the maps z — % + iz (left) and z — —i — éz on D (right).

Proposition 18.1.3. Let a, § satisfy |a| + |f| =r < 1and B # 0.

(@) Cuypzon H? is compact. In particular, Cogz is bounded.
(b) Gp(cot+ﬁz) = {1’ ﬁ’ 62""}'
(© 0(Carpz) = {1, 8. 8%..} U {0}

Proof (a) Since |a| + || = r < 1, the aji from (18.1.2) satisfy

Y o k ) Y
k P 1
PREDIDY ( ~)'°"""'ﬁ" = Dl +1B) = Y = 1= <o
Jj.k=0 k=0 j=0 J k=0 k=0

Apply Theorem 3.4.1 and deduce that Cq,g, is compact. In particular, Cg,g, is
bounded (Exercise 2.8.18).
(b) If

a \n
gn(2) = (Z - m) foralln > 0,

then Cyy 5,85 = B"g, and thus 0,(Ceyp,) 2 {1,5, 6%,...}. Let us now show equality.
A calculation verifies that if p(z) = a + 8z, then

a
1-8

belongs to D and satisfies ¢(zy) = zy. If A # 0 is an eigenvalue of C,, then for some
f € H2\{0}, we have (f o ¢)(z) = Af(z) for all z € D. Evaluating this at z = z,
yields f(zq) = 4f(zq), which implies that f(z,) = 0. Since f # 0, there is an analytic
function g on D and a positive integer m such that g(z,) # 0 and

Zy =

f(2) = (z — 29)"g(2).
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Use the eigenvalue equation f o ¢ = Af to obtain

Az — 2)"g(2) = (9(2) — 20)"8(¢(2)),

which can be written as

P(z) — zg\™
18(2) = (550) 8o

Let z — z, in the expression above and use the fact that ¢(z,) = z, to obtain 1g(z,) =
@' (z9)™g(zy). Since g(zy) # 0, it follows that 1 = ¢'(z,)™. Since ¢'(z,) = S, one
concludes that {1, 8, 82,...} 2 0,(Cy4g,)- Note that 0 not an eigenvalue since fop = 0
implies that f = 0.

(c) From part (a), Cq, g, is compact. Thus, Riesz’s theorem (Theorem 2.6.9) implies that
o'(Coc+ﬁz) = O'p(cor+ﬁz) u {0}. |

The discussion of the spectrum of Cy, g, when |a| + |3| = 1 is more complicated and is
found in a paper of Deddens [108].

18.2 Composition Operators on H>

If the composition operator f + f o ¢ is bounded on H?, then f o ¢ is analytic on D for
all f € H?. Apply this to f(z) = z and conclude that the symbol ¢ is an analytic function
from D to itself. Such maps are analytic self maps of D. For a given analytic self map g, it
is not immediately clear that f o ¢ belongs to H> whenever f € H?. As a consequence of a
more general function-theory result, the Littlewood subordination theorem [229], it does.
In the language of composition operators, a proof is given below.

Theorem 18.2.1. Ifp : D — D is analytic, then the composition operator C,f = fo s
bounded on H? and

1+ |¢,(0)|)i
—lp)) -

Proof This proof is from [143, Ch.6]. We first prove this when ¢(0) = 0. Let f =
>, an2" € H? and let S* denote the backward shift

z

1< G|l < (

S*f)z) = (18.2.2)

the adjoint of the unilateral shift S (recall Exercise 5.9.14). Then (S**f)(z) =
Z:J:o a4 12" for every k > 0. This implies that

($**f)(0) = a  fork > 0. (18.2.3)
The formula in (18.2.2) can be rewritten as

f(2) = f(0) +z(S*f)(z) forz e D.
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Since ¢ maps D into itself, replace z with ¢(z) in the preceding identity to obtain
flp(2) = f(0) + o(2)(S* ) (@(2))-
This identity can be written as
Cyf = f(0) + T,C,S* f, (18.2.4)

where T, is an analytic Toeplitz operator (Chapter 16). One may question the validity
of this identity since we do not yet know if C, maps H? into itself. To take this into
account, we initially apply (18.2.4) to polynomials f, in which case the right-hand
side of (18.2.4) is well defined.

The assumption that ¢(0) = 0, along with (18.2.4), implies that (T,,C,S* f)(0) = 0, and
thus T,C,,S* f is orthogonal to the constant functions. Hence by (18.2.4),

ICo 1 = 1f O] + I T,CpS* fII?
<IfOP + T 17 1Co8* f112
< IO + IC,S* fI%.

Note the use of the fact that || T, || < 1 since ||¢[l, < 1 (Theorem 16.3.1). Replace f
with $*k f in the previous estimate and use (18.2.3) to see that

[CpS*  fI1? < |ag|? + [ICpS*®*+D f|I2 - for k > 0. (18.2.5)

Sum both sides for 0 < k < n = deg f and see that

n 2 n n 2
2 [coss] < L lant + 35 [eos 0]
k=0 k=0 k=0

A telescoping-series argument, along with the fact that $***1) f = 0, yields

n
ICofIP < D lakl? = IIf I (18.2.6)
k=0

Hence, ||Cy, f| < ||f|| when f is a polynomial.
To establish [|C,, f]| < [|f| for f € H?, let f = 3, axz* € H? and define

n
fu= Z apz® forn>o.
k=0

The sequence of Taylor polynomials (f,,)5%, converges uniformly on compact subsets
of D to f (Proposition 5.3.8). For a fixed r € [0, 1), observe that

f|(fn o @)(r§)Pdm(&) < llfu o @l < Ifull* < IFI2.
T

Note the use of (18.2.6) and Parseval’s theorem (Theorem 1.4.9) in the above.
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Since ¢ maps rT to a compact subset of D, let n — oo in the previous inequality and
obtain

f I(F 0 @)rE)Rdm(E) < I
T

The estimate above holds uniformly in r € [0, 1). Thus, f o ¢ € H? (Corollary 5.3.10)
and [|f o ¢|| < [|If]- In other words, ||Cy || < 1. Since Cy,1 = 1, it follows that [|Cy || = 1.
Our next step is to estimate the norm of C; , where w € D and

7,(2) = % forz € D,

is an automorphism of D such that (7, o 7,)(z) = z foreveryz € D. Use C; 1 = 1
and deduce that ||C; || > 1. To obtain the upper bound, fix any f € H 2 and use the
change of variables

es =1,(et) o et =1, and dt = Bl i
w w e——
[1 — weis|?

to obtain

27
ol = [ IR 5

|w]?> ds

27 1
— £15)|2 — L
| e s

2
1—|w? : ds
< isy|2 222
e fo e S
1+ |w

= 1.

1= |w|

Consequently,

1+ |w|)1
2

L<lice ) < (T

So far we have shown that if $(0) = 0, then ||Co|| = 1 and ||C; || satisfies the estimate
above. Now let ¢ be an analytic self map of the disk. Since C;,1 = 1, we have the lower
bound ||C,|| > 1. To obtain the upper bound, let w = (0) and ¢ = 7, o . Then ¢ is
an analytic self map with $(0) = 0. Thus, ||Cy| = 1.

The identity § = 7, 0p isequivalent to ¢ = 7,09 and the latter implies that C, = CyC; .
Hence, by our previous estimates

1
1+|w|)5
1—|wl

(o)

which completes the proof. [ |

1C,1 < IC, 11C 1l < (

A result from the doctoral thesis of H. J. Schwartz provides an improvement of the lower
bound in Theorem 18.2.1.
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Proposition 18.2.7 (Schwartz [334]). For any analyticy : D - D,

1

(=) <ICl

Proof The Cauchy integral formula implies that

(C,f)(0) = f (f o @)(&) dm(&)
T

and hence, by the Cauchy-Schwarz inequality,

(o0 < ( [ 1, Pam)’( [ 1-am)*.

Thus, [(C, f)(0)] < [ICo f1l < IIC, NI f1I- Apply this inequality to the function

1
f(Z) =
1—¢(0)z
and obtain
1
1 1 2
——— = [(C, ))O)| L Col| ——5 ) -
Note the use of Corollary 5.3.15 above. The desired result now follows. [ |

We encourage the reader to work through Exercise 18.8.28 for an improvement of
the proposition above. The next result of Nordgren, from one of the earliest papers on
composition operators, computes ||Cy|| when ¢ is an inner function. Theorem 18.2.1
proves part of the next corollary. However, in order to introduce the reader to a clever
integration technique that relies on the fact that ¢ is an inner function, we include the
original proof of Nordgren.

Corollary 18.2.8 (Nordgren [255]). If ¢ is an inner function, then

_(1+1pO)\;
I%1 = (= i)

Proof Since ¢ is an inner function, it has unimodular radial boundary values almost
everywhere on T. Thus, the measure m o ¢~ on T is well defined. For any n > 0,
the Cauchy integral formula yields

f End(m o 1) = f o) dm(E) = p(O)".
T T

Furthermore, if
1-|27

G foré e TandA €D

B =
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is the Poisson kernel, then
[ §"By0y(§) dm(§) = p(0)* foralln > 0.
=

This last equality follows from the fact that z" is harmonic on D and the Poisson
integral above yields its value at ¢(0) (Theorem 12.1.6). Thus,

/%’"d(m o ¢—1) = fg"P¢(0)(§') dm(%') foralln > 0.
T T

Taking complex conjugates of both sides of the previous equation shows that the
above holds for all n € Z. Hence d(m o ¢~') = B, dm. Since B, is bounded
on T, use the density of the trigonometric polynomials in I} (T) to conclude that

[e©domoo™ = [s@ho@an® Pralgerm.  as29)
T T
To compute the norm of |Cy |, let f € H 2 and observe that
ICof1P = [ 1f opPdm
T
= [ irpdomeg
T
= f |f1*By(0) dm. (18.2.10)
T

Note the use of (18.2.9) in the last equality.
For fixed 1 € D, the Poisson kernel £ — P;(&) achieves its maximum when £ = 1/|4].

Moreover,
1+
B = 1T
Combine this with (18.2.10) to see that
1
1+ |p(0)]\°
Col S| ———= . 18.2.11

For the lower bound, consider the family of unit vectors

VTP

fi(§)= ———— forleD,
1-21&

in H2. Since |f;(&)|?> = Bi(£), use (18.2.10) to obtain

ICI1* > IC full> = /&(E)P;a(o)(%’)dM(%’) = By0)(D.
T
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If (0) = 0, then the above shows that [|Co|| > 1 since Ry = 1. Combine this with
(18.2.11) to conclude that ||C,|| = 1. Otherwise, let A — ¢(0)/|¢(0)| radially to see
that B,)(4) approaches

1+ |20l
E, 0)/|p(0)]) = ———=-
Thus,
1
1+ |¢(0)|)2
Coll 2| ———==1 .
IColl = (1 ~ 1000
Combine this with (18.2.11) to obtain the desired identity, [ |

Corollary 18.2.8 says that |C,|| = 1 whenever ¢(0) = 0. The next corollary says more.
Corollary 18.2.12. If ¢ is inner and ¢(0) = 0, then C, is an isometry.

Proof The computation (18.2.10) yields
IC,fII* = f |f1*By0) dm.
T

If (0) = 0, then B,y = B = 1,50 |Cp f| = || fI*. |

18.3 Compact Composition Operators

The literature on compact composition operators is large and we do not attempt to cover it
all here. Instead, we give a few illustrative results which demonstrate the general principle
that C, is compact when ¢(D) is small in a certain sense. Recall from Definition 2.5.3
that T € B(H) is compact if (Tx,)5>; has a convergent subsequence for every bounded
sequence (X,)5%;. From Chapter 2 there are several equivalent characterizations of when
T € B(¥) is compact.

(a) (Tx,)px; has a convergent subsequence for every bounded sequence (X, )52, .
(b) T is the norm limit of finite-rank operators.
(c) Ifx, — xweakly, then Tx,, - Tx in norm.

Here is our first result that relates the “smallness” of (D) to compactness.

Proposition 18.3.1. Ifp : D — D is analytic and

sup p(2)] < 1,

zeD

then C,, is compact.
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Proof We follow the proof from [339]. For each n > 0, define T,, : H> — H? by
" ~ .
Tof = ), f()e!.
Jj=0
Notice that T, = C,B,, where B, : H*> — span{z/ : 0 < j < n}, defined by

BN =Y fhe,

=0

is the orthogonal projection of H? onto the finite-dimensional subspace span{z/ :
0 < j < n}.SinceranT,, C span{p/ : 0 < j < n}, it follows that T, has finite rank
and is therefore bounded (Exercise 2.8.17). Let o = supf|p(z)| : z € D} < 1.

For any f € H?,

ICo=Tfl = 3 Frel|
j=n+1
RO
Jj=n+1
O™
Jj=n+1
= > Il
Jj=n+1
<( X Fory( Y )
j=n+1 j=n+1
<l > e

Jj=n+1

Therefore,

(e
a2n+2

||C¢—Tn||<< Z O(zj)é =(1_—|a|2);—>0 asn — oo.

j=n+1

The above says that C, is the norm limit of the finite-rank operators T,, and is
therefore compact (Exercise 2.8.22). |

Example 18.3.2. Proposition 18.1.3 shows that Cy, g, is compact if |a| + [3| < 1. The
previous proposition provides another proof of this. Notice how the image of « + Sz is a
disk whose closure is contained in D; see Figure 18.3.1.

2
Example 18.3.3. One can check that ¢(z) = i(% - z) maps D onto a domain whose
closure is contained in D. Thus, C,, is compact; see Figure 18.3.1.
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Figure 18.3.1 (D) where ¢(z) = §(1 — 2) (left); p(D) where ¢(z) = i(% — z)? (right).

Example 18.3.4. For |B| < 1, Proposition 18.3.1 ensures that Cg,. is compact. This also
follows from the matrix representation of Cg,. with respect to (z");24:

R i e R R R R e
O O 0 0™ o o

=l oNeNeNo)
PO OO0 O O o O
T -NelNeoNeNeol=Nel
PO OO0 O O oo

oo ®o oo o

D
Y

From here, one can see that the sum of the absolute values of the matrix entries is finite
and hence Cg,. is compact (Theorem 3.4.1).

Exercise 18.8.6 improves Proposition 18.3.1 to the following.

Corollary 18.3.5. Ifp : D — D is analytic and

dm(f)
fv - 1p@pr =%

then C, is compact.

In his doctoral thesis [334], Schwartz explored a converse to Proposition 18.3.1. Recall
thatif ¢ : D — D is analytic, then it is bounded and has radial limits almost everywhere
on T (Theorem 5.4.3).

Proposition 18.3.6 (Schwartz [334]). If C, is compact, then |p(§)| < 1 for almost every
EeT.

Proof Suppose toward a contradiction that there is a measurable set E C T such that
m(E) = § > 0and |p(§)| = 1 for ¢ € E. Since (g, ") = §(n) — 0 for every g € H?,
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Figure 18.3.2 ¢(D) (shaded) where f(z) = %(1 + z).

it follows that f,,(z) = z" converges weakly to zero in H2. If C, is compact, then
Cy fu = 0 in the norm of I*(T) (Exercise 3.6.9). However,

ICofull2 = I o I = "] = f Ipldm > f Igl?dm = f dm> 6,
T E E

which does not approach zero as n — oo. Thus, |¢(§)| < 1foralmosteveryé € T. W

The previous proposition can be used to show that certain composition operators are
not compact.

Corollary 18.3.7. If ¢ is inner, then C,, is not compact.

Proposition 18.3.6 is not a complete characterization of compactness for composition
operators on H?; see Figure 18.3.2 and the next proposition.

Proposition 18.3.8 (Schwartz [334]). If

1+z
5

p(z) =
then @ maps D into itself and |p(§)| < 1 for all § € T\{1}, but C,, is not compact.

Proof Forz € D,

142z 1+ |z|
— <

92 = | :

Thus, ¢ is an analytic self map of D. One can also see that

'S 1.

p(eit) = % + %ei‘ fort € [0, 27],
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is a parameterization of the circle with center % and radius %, which lies in D except
for t = 0. We claim that C,, is not compact.
Let
1 1 1

Vi 1-z0-1)

where k; is the reproducing kernel for H2. For any g € H?, Exercise 5.9.9 yields

fn(z) =

k1 l(z) forn > 2,

lgI = O(\/%w) (18.3.9)
Thus,
(g,fn>=ig<1_%)= 1—(1—%)-g(1—%>—>0 asn — oo.

NG

This shows that f, — 0 weakly in H2. However,

2/n 1

Cobtd® = 247 T
n+1
Since
1 1
Hl — azH == P forall |a| <1,
a calculation shows that ||Cy f,| = 1 for all n > 1. Thus, C,, is not compact since
Jn = O weakly, but |Cy, f,|| = 1 foralln > 1. [ |

There are other types of compactness results. We mention a few here whose proofs are
found in [339].

Theorem 18.3.10. Each of the following imply that C,, is compact.
(a) @(D) is the interior of a polygon inscribed in T.
(b) o isinjective and

lim L=le@l _
lzl-1- 1 —|z|

(c) @ isinjective and has no radial limits of modulus one.

Notice how each of the conditions above indicate that C,, is compact when ¢(D) is a
“small” subset of D. We end this section with a result from [334].

Theorem 18.3.11. If C, is compact, then

1+ [p(O)]\2
ICll < (1 = |qo(0)|) :
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Recall that if ¢ is inner, then

(14 g0\
||C¢||—<1_|¢(0)|> :

Proposition 18.3.6 showed that C,, is not compact when g is inner. The previous theorem
gives another reason for this.

18.4 Spectrum of a Composition Operator

There is no general formula for the spectrum of a composition operator, so any analysis
must be done on a case-by-case basis. Since C,1 = 1 for any composition operator, it
follows that

1€ 0,(C,). (18.4.1)

We have seen particular examples of the next result in Proposition 18.1.1 and Proposi-
tion 18.1.3.

Theorem 18.4.2 (Schwartz [334]). Suppose that p(D) C rD for some0 < r < 1. Then there
is a unique point z, € D such that

0,(Cp) ={9'(z)" : n21}U{1} and o(C,) = g,(C,) U{0}.

We outline the proof of this theorem, which relies on the following result of Koenigs
[218] (see also [339, p. 93]).

Theorem 18.4.3 (Koenigs). Suppose ¢ : D — D is analytic and ¢(z,) = zy for some
zy € D. Then the following hold.

(a) Suppose ¢'(zy) = 0. Then f o ¢ = Af for some nonzgero analytic function f on D if and
onlyifd=1.

(b) Suppose @'(zy) # 0. Then f o = Af for some nonzero analytic function f on D if and
only if L = ¢'(z¢)™ for some m > 1.

We are now ready for a sketch of the proof of Theorem 18.4.2.

Proof From (18.4.1), it follows that 1 € 0p(Cyp)- Since (D) C rD for some 0 < r < 1,
it follows that (D)~ is a compact subset of D. Proposition 18.3.1 asserts that C,, is
compact. Exercise 2.8.28 ensures that 0 € cr(Cq,). Since C,, is compact, the nonzero
elements of its spectrum are the eigenvalues of C,, (Theorem 2.6.9).

We now proceed to compute these nonzero eigenvalues. Brouwer’s fixed point theorem
[320, p. 143] says that if g is a continuous map from a closed disk to itself, then there
is a point wy in the closed disk such that g(wy) = wy. Apply this to the continuous
function ¢, which maps |z| < r to itself, to produce a z, € D such that p(zy) = z,.
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Theorem 18.4.3 implies that if f(¢(z)) = 1f(z) for some A # 1 and f € H?\{0}, there
is a positive integer m such that 1 = ¢'(z¢)™ and ¢'(zy) # 0. Thus,

a(Cy) €{0,1}U{gp'(z9)" : m > 1}.

On the other hand, if 2 = ¢’(0)™ # 0 for some positive integer m, Theorem 18.4.3
says there is a nonzero analytic function f such that f(p(z)) = Af(z). To show that

this f belongs to H?, use the fact that p(D) C rD and obtain
fle2)) _ 1 1

= —su op)(z)| £ & su w)|.

7| = TSI e @)@ < gy sup | (W)

zeD w|<r

sup |f(2)| = sup|
zeD zeD

Since f is continuous on the compact set [w| < r, the last supremum is finite. We
conclude that f is a bounded analytic function on D, and therefore f € H2. Thus,
A =¢'(0)™ € o(C,) for every m > 1 and hence o(C,) = {0,1} U {¢'(z0)" : m > 1},
which completes the proof. [ ]

It is possible that o(C,,) = {0, 1} when C,, is compact. Just take ¢(z) = fz? (see Example
18.3.4) with || < 1. Then C, is compact, z, = 0 is the unique fixed point in D, and
¢'(0)=0.

Nordgren [255] computed the spectrum of C, when ¢ is a disk automorphism

o(z) = £ 22

— foré e Tanda €D,
1—az

and showed that o(C,,) is either the closure of {{" : n € Z} (where ¢ is some unimodular
constant), the unit circle, or an annulus. The choice depends on the parameters a and £.

18.5 Adjoint of a Composition Operator

In this section, we mention a few facts about the adjoint of a composition operator. We
start with the following general result.

Proposition 18.5.1. Ifp : D — D is analytic and k;(z) = (1 — Az)7}, then Coka = kony-
Proof For each w € D,
(Cok)(w) = (Cykas ky)

= <k}u C:pkw>

= (k. ky o 9)

= <kw ° (P’ kl)

= ky(e(2))

= koy(w),

which completes the proof. [ |
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This theorem has a converse [77].

Proposition 18.5.2. Suppose A € B(H?) and A* maps each kernel function k; to another
kernel function. Then A is a composition operator.

Proof Since A* maps kernel functions to kernel functions, there is a functiong : D —» D
such that A*k; = kgy) for each 4 € D. It follows that

ANQ) =(Af k) = (f, Aka) = (f ko)) = f(p(2)) forall f € H.
Applying this to f(z) = z shows that ¢ is an analytic self mapof Dand A =C,. W
There is the following integral formula for Cg.

Corollary 18.5.3. Ifp : D — D is analytic, then

(CeN(=z) = A %dwz@) forall f € H2.

Proof For f € H?,

(@ = (Cif k) = 1. Cok) = [ L),
T1-9()z
which completes the proof. [ |
For a linear fractional transformation
az+b
o(z) = > 1d (18.5.4)

that maps D into itself, there is a fascinating formula for the adjoint of C, that involves
Toeplitz operators.

Theorem 18.5.5 (C. Cowen [100]). Suppose that

az+b
cz+d

p(z) =
maps D into itself and is normalized so that ad — bc = 1.

(a) The function

o(z) = a_z — C_
—bz+d
maps D into itself.
(b) The functions
8= —1— and h(z)=cz+d
—bz+d

belong to H®.

(©) Cj = T;C, Ty
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Proof We follow Cowen’s original proof.
(a) Let D, = {|z] > 1} U {oo} denote the open extended exterior disk. Since ¢ maps D

into itself, y(z) = ¢(z) also maps D into itself. Basic facts about linear fractional maps
implies that the inverse function y~! maps D, into itself. A calculation shows that

1
&= 1

and that o maps D into itself.

(b) Since his alinear function it is bounded on D. For suitable constants ¢, § with a # 0,
o = ag + . From (a), o is bounded. Thus, g € H®.

(c) It suffices to show that

Cykar = T,C; Tk, foralld € D. (18.5.6)

To verify this, observe that

1
(Coka)(z) = ——=——
1—2Aa(2)
3 1
Ty g8
—bz+d
3 —bz +d
—bz+d—2az + ¢
_ —bz+d
(d +A¢) — (b + Aa)z
11 1
h(A) 83) 1- o)z
k z
_ L bo@ (18.5.7)
ny 8@
Thus,
T,Co Tk = TyCoh(A)ky (by (5.5.5))
— 1 ke
= ) Ty(—22) (by (18.5.7))
h() 8
= ko)
= Cgky (by Proposition 18.5.1).

This verifies (18.5.6) and completes the proof. [ |
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Example 18.5.8. Let ¢(z) = (1 + z)/2. Then ¢ is of the form (18.5.4) witha = b = \/%,
¢ =0,and d = /2. The functions o, g,and h are

—z

V2

o(z) = g(z) = and h(z) = \/E

Va- 2, Va- 2,
2 2

See Exercise 18.8.16 for another approach to computing the adjoint of a composition

operator.

18.6 Universal Operators and Composition Operators

Recall the definition of a universal operator (Definition 13.3.1). There are several results
concerning universal operators obtained from adjoints of composition operators. Here is
an example from [80, Ch. 8] (see also [101]).

Proposition 18.6.1. C3; is universal for H.

Proof To show C, is universal, we use Theorem 13.3.2 and verify that ker CJ, is infinite
dimensional and ran Cj, = H2. Corollary 18.2.12 ensures that C,» is an isometry, so
C3,C,2 = I (Exercise 3.6.13). Thus, C}, is surjective.

For each n > 1, choose n distinct 14, 4,,...,4,, in D\{0} and let

gi(z) = k,lj(z) - k_,lj(z) fori<j<n

We claim that g;, g,,...,g, are linearly independent. Suppose there are constants
C1,Cys..., Cp SUCh that

n

z cj(k,lj (z) — k_/lj(z)) =0 forallz € D.
j=1

For any polynomial p, use the reproducing property of k,(z) to see that

n n

(p. X ks, — ki) = D, G(p(A) = p(=4).

j=1 j=1

For each 1 < i < n, use Lagrange interpolation to select a polynomial p; such that
pi(4;) = 1but p;(=4;) = —1 and p;(+4;) = 0 when j # i. The identity above yields
¢; =0forall1 <i< n.Thus, g;,85,..., 8y are linearly independent.
Proposition 18.5.1 implies that
1 1

C*Zgjz _ :O,

? 1-(42z  1-(—4)z

and hence ker C}; is infinite dimensional. |
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One can see the universality of C}, from its matrix representation

[1 0 0 0 0 0 0 O O O -]

(18.6.2)

(which one can obtain from the matrix representation of C,. and then taking adjoints).
Notice that the column space of (18.6.2) contains e,, for every n > 0, and hence ran Cj
contains z" for every n > 0. The columns of the matrix in (18.6.2) also show that z2ktl
ker C}, for every k > 0, so ker C}; is infinite dimensional. Caradus’ theorem implies that
Cy, is universal.

See Exercise 18.8.10 for another proof of the universality of C},. The proposition above
can be extended to the following (Exercise 18.8.11).

Theorem 18.6.3. If ¢ is inner, but not an automorphism of D, and ¢(0) = 0, then Cj is
universal for H?.

18.7 Notes

As noted in the beginning of this chapter, we only covered a small fraction of a large
literature on this subject. We refer the reader to the surveys [102, 278, 339] for much more.

The boundedness of C, on H 2 can also be obtained from a 1925 subordination result of
Littlewood [229]. A consequence of the Littlewood subordination theorem (see below) says
that if f is analytic on D and ¢ is an analytic self map on D such that ¢(0) = 0, then

f FUro)Pdm(E) < f FCEPdm(E)
T T

forall0 <r <land1 < p < o.If f and F are analytic on D and f(z) = F(w(z)), where
w is analytic on D with |w(z)| < |z| on D, then f is subordinate to F. Littlewood’s principle
is that

f FGEPdm(E) < [ FOPdm(E)
T T

forall0 <r <1land1 < p < oo. Note that the Schwarz lemma [9, p. 135] says that if ¢ is
an analytic self map of D with ¢(0) = 0, then |¢(2)| < |z| on D.

Ryff in 1966 [321] and Nordgren in 1968 [255] used this result to prove, amongst other
things, that composition operators on HP for 1 < p < oo are bounded. Ryff obtained the
norm estimate

1
L+ [pO)]?
st < ()
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Nordgren’s paper seems to be the first to coin the term “composition operator” for C,.

We mentioned a few results about compactness of composition operators in this
chapter. The issue was basically settled by J. Shapiro in his 1987 paper [338] in terms of
the Nevanlinna counting function

Nyw)= ), log|z|;
zegT(wh

see Exercise 18.8.27. The result is that Cy, is compact if and only if

Although not covered in this chapter, one can also consider when a composition operator
belongs to one of the Schatten classes [233, 341].

There is a considerable amount of work on the spectra of various types of composition
operators on H? in [77, 98, 100, 108, 255, 334]. For compact composition operators, there
is the following extension of Theorem 18.4.2 from [77]. If C,, is compact, there is a unique
point z, € D such that ¢(z,) = zo and |¢'(zg)| < 1. If ¢'(zp) = 0, then o(C,) = {0, 1}. If
¢'(zo) # 0, then o(C,) contains the eigenvalues {¢’(z9)™ : m > 0}.

For various classes of symbols, composition operators are defined and bounded on
other Hilbert spaces of analytic functions such as the Bergman and Dirichlet spaces (see
Exercises 18.8.18, 18.8.19, and 18.8.20). From there one can study concepts such as norm
estimates, compactness, and spectral properties, as surveyed here for H2. We also point
out some work on composition operators on spaces of Dirichlet series [35, 157, 278].

18.8 Exercises

Exercise 18.8.1. Prove that T € B(H?) is a composition operator if and only if T(z") =
(T(z))" foralln > 0.

Exercise 18.8.2. Prove that T € B(H?) is a composition operator if and only if T(fg) =
(Tf)(Tg) forall f,g € C|z].

Exercise 18.8.3. Let ¢ be an analytic self map of D and define the linear transformation
Cof = f o @ from the space of analytic functions on D to itself. Prove that C,, is invertible
if and only if ¢ is invertible.

Exercise 18.8.4. If ¢ is an analytic self map of D, 1 € H*, and T, is the analytic Toeplitz
operator, prove that C,, Ty, = T,Cy, if and only if g o ¢ = 3.

Exercise 18.8.5. If ¢ is an analytic self map of D such that ||¢|,, < 1, prove that C, is a
Hilbert-Schmidt operator (recall Exercise 3.6.31).

Exercise 18.8.6. If ¢ : D — D is analytic and

1
/T TSR e < e

prove that C,, is compact.
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Exercise 18.8.7. Consider composition operators of the type Cy, g, where |a| + [B] < 1.
Show that the matrix representation of C g, with respect to the standard basis (z");%
for H? is

2 3

1 a «a a

0 B 2B 3a%B

0 0 B 3ap?
0 0 B3

- O

Remark: These types of composition operators were explored by Deddens in [108].

Exercise 18.8.8. If |a| < 1 and

a—2z
?(z) = ——,
az

1-—
prove that C,, is invertible on H.

Exercise 18.8.9. One can discuss composition operators on I?(u), where (X, .4, u) is a
measure space [346, 347]. Let ¢ : X — X be a u-measurable function.

(a) Prove that Cy,f = f o ¢ is a bounded composition operator on I*(w) if and only if
there is a constant M such that u(¢p~1(4)) < Mu(A) for every A € A.

(b) Prove that if p is measure preserving, that is to say, u(A) = u(¢~1(A)) forevery A € A,
then C, is an isometry.

Exercise 18.8.10.

(a) Prove that C,. is unitarily equivalent to the shift U on (H?)(®) (recall the definition
from (14.1.2)) defined by U(fy, fi, fos farres) = (0, fos fis fos foveos)-

(b) Use (a) to prove that C%, is universal for H2.

Exercise 18.8.11. If ¢ is inner, but not an automorphism of D, and ¢(0) = 0, prove that
C; is universal for H2.

Exercise 18.8.12. Suppose ¢ is an analytic self map of D such that ¢(0) = 0. Prove that
z"H? is an invariant subspace for Co foreachn > 0.

Exercise 18.8.13. For || < 1, write the polar decomposition of Cg, in terms of two
composition operators.

Exercise 18.8.14. Thisisa continuation of Exercise 17.10.2. Recall that the Hilbert matrix
operator on H? can be written as

1

1
6n@= [ pod:

(a) Prove that for each t € [0,1], p;(z) = is an analytic self map of D.

t
(t-1z+1
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(b) For a fixed z € D, describe the curve t — ¢,(2).

(c) Foreacht € (0,1], prove that w;(z) =
D.

1
T—Dz+1 is a bounded analytic function on

(d) Prove that the weighted composition operator T, = M,, C,, is bounded on H?.

1
(e) For f € H?, prove that ($f)(z) = f (T,f)(z)dt forallz € D.
0

Remark: One can estimate the norm of 7; and show that the Hilbert transform is bounded
on the HP spaces when 1 < p < 0. See [110] for further details.

Exercise 18.8.15. This is a continuation of Exercise 6.7.11. Recall from Exercise 6.7.11
that for the Cesaro operator C on H?, the resolvent is

(A = C)1h)(z) = @ +ﬁz* (1—z)‘i[ w (1 — w)i h(w) dw.
0

(a) Define
z
qD(Z) = : forz e |D,

and consider the family of functions ¢,(z) = ¢~!(e~!¢(z)) for t > 0. Prove that each
@, is an analytic self map of D.

(b) Foreach z € D, prove that ¢,;(z) — 0ast — oo.

(c) Let the path of integration be y(t) = ¢;(z) in the formula

(C)@) = —/ J@
0

and prove that

(CF)a) = f (8.2 dt,
0

where S; is the weighted composition operator

0@ = 22, ).

(d) Use a similar computation to prove that

(A = C)Lh)(z) = @ o / ei(S,h)(z) dt.

Remark: See [268] for more on this in other settings.
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Exercise 18.8.16. Another way to compute the adjoint of a composition operator involves
Aleksandrov-Clark measures. A theorem of Herglotz [118] says that if f is analytic on D
and Re f > 0, then there is a positive finite Borel measure x on T such that

1@ = [ £ du(e) +1m f00)
T

(a) Assuming Herglotz’s theorem, prove that if ¢ is an analytic self map of D and ¢(0) =
0, then for each o € T there is a unique probability measure u, on T such that

E+z _a+e(2)
ﬁg—zdua(g)_—a—¢(2) forall z € D.

The measures {u, : a € T} form the family of Aleksandrov-Clark measures for ¢.

(b) Manipulate the expression in (a) and prove that

/ ! —du, (&) = + forall A € D.
T1-AE 1—apd)

(c¢) For functions in H? that are continuous on T, define

(Apf)@) = / FEdua(®) forallaeT.
T

Prove that Ak, = Cgky.
(d) Prove that A, extends to a bounded operator on H 2 that is the adjoint of Co-
Remark: See [143] for more on this important topic.
Exercise 18.8.17. Let us compute the adjoint for C,. using Exercise 18.8.16.

(a) Prove that for each a« € T, the Aleksandrov-Clark measure for ¢(z) = z2 is
1 1
Mo = 55\/5 + 55_\/5.

(b) Prove that (C2ok;)(@) = Zka(V/a) + s ka(—y/a).
(c) Let f € H? be continuous on T. Prove that (CJ5 f)(«) = % f (\/E) + é f (—\/E),

Remark: Aleksandrov proved that

(e = [ @ ditl®)
T
is defined for m-almost every o € T and so
CLN@ = 3 f @) + 5 f(—Va)

makes sense for all f € H2. This can be used to compute the essential norm of a
composition operator [85].
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Exercise 18.8.18.

(a) Prove that if ¢ is an analytic self map of D, then the composition operator C,, is
bounded on the Bergman space A2.

(b) Compute the matrix representation of C,> on A? with respect to the orthonormal basis

Wn+12"2,.

Exercise 18.8.19. Let Q; and Q, be domains in the complex plane and let ¢ : Q; — Q,
be a conformal mapping.

(a) For each analytic map f : Q, — C, prove that
[ 1weor@rase = [ irwpdaw,
(9N Q,
where dA is two-dimensional area measure.

(b) If f is analytic on D and

p(z) = €® 1a—_aczz’ where 0 € Rand a € D,

prove that D(f o ¢) = D(f), in which D(f) is the Dirichlet integral from (9.1.1).

Remark: A result in [20] ensures that the Dirichlet space D is the unique function space
on D for which the composition operators Cy,, where ¢ is an automorphism of D, act
isometrically. However, many function spaces, for example the Hardy space and the
Bergman space, are not isometrically invariant under C,,.

Exercise 18.8.20. For any analytic self map ¢ of the disk, the composition operator C,,
is bounded on H?. Exercise 18.8.19 showed that C, is bounded on D when ¢ is a disk
automorphism. Produce a specific example of an analytic self map ¢ such that C,D ¢ D.
Remark: The papers [123, 235] give various conditions that ensure a self map yields a
bounded composition operator on the Dirichlet space.

V1—]142
Afoer.

Exercise 18.8.21. Consider the normalized reproducing kernel k (z) =
1-2z

(a) Prove thatk ; — 0 weakly in H2.

~ [ 1-112
(b) For an analytic self map ¢ of D, prove that [|Cgk ;|| = 11—TJ(/1)|2

(c) Ifliminf 1- A

——— > 0, prove that C,, is not compact.
-1 1 —[e(2)] P ¢ P

Exercise 18.8.22. Show that if ¢ is an analytic self map of D that is also a linear fractional
transformation, then ker Cg = {0}.
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Exercise 18.8.23. Let ¢ be an analytic self map of D and ¢(z) = ¢(z%) for d > 2. Prove
the following.

(a) kerCj 2 VizF : k ¢ dN}.
(b) Ifker Cy = {0}, then ker Cy; = V{zF : k & dNL
Remark: See [244] for other results along these lines.

Exercise 18.8.24. Use matrix representations to prove the formula CY,, =T 1 C_= .

2 2-z 2-z

Exercise 18.8.25. Prove the adjoint formula

c* -z ZTLC 22 +Tic 22 T* e
2 -

-5 2-z z22_2 2-z2 725 4/ 3

by using the following procedure from [162]. Let

1—2z

t1(2) = 3

. 6@=5, and o2 =Va0).

(a) Foreach A € D, prove that

_1 = 2_ 1_ for all z € D.
1—/1€1(Z) 2—1 1—€2(A)Z
(b) Use
1 Az "
ki(z) = ———+ ——— and (Cz/)A) =(f. ko)

1—-12z2 1-42z2

to prove that

(@) = <f, L >+A<f, “fz >
1-7 6 1-7 6,

(c) Use (a) to prove

. 2 1 24 4
(CoHAD) = 5 P <f’ 1 _m2> tiow <f' 1- €2(/12)z>.

(d) Use the fact that {f, ph) = (P.(@f), h) for all f, h € H? to prove the desired identity.

*
3[/1-z°
2

Exercise 18.8.26. Use Exercise 18.8.25 to derive a formula for C

Exercise 18.8.27.

1

(a) For f € H?, prove that ||f||*> = |f(0)|* + %/ |f'(2))* log I dA(z).
D
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(b) Ifp : D - D is analytic, define

1
N = D, logm for 1 € p(D)\{¢(0)}.
zep~1({A})

Prove that [|C,, f||* = | f(¢(0))]* + %/ |f'(2)|*Ny(z) dA(z) for all f € H?.
D
Remark: The formula in (a) is the Littlewood-Paley formula and the function N, in (b) is
the Nevanlinna counting function.

Exercise 18.8.28. This exercise provides an improvement of Proposition 18.2.7 for the
norm of a composition operator C, on H2.

(a) Use Proposition 18.5.1 to prove that

1 %<c—1 * forallleD
(1_|¢@>|z) <l ¢”(1—|A|2) orall1 € D.

(b) Prove that ||C,| > sup(l_—wz)2 .

¢ 1eb \ 1 — |p(D)[?
Exercise 18.8.29. Thereader encountered Brouwer’s fixed-point theorem when exploring
the eigenvalues of a composition operator. The next three problems explore other types of
fixed-point theorems. Let V be a Banach space. Then T € B(V) is a strict contraction if
there is a ¢ € [0,1) such that | Tv|| < c|v|| for all v € V. Prove that a strict contraction
T € B(V) has a fixed point; that is,av € V such that Tv = v.

Exercise 18.8.30. This exercise continues Exercise 18.8.29. Give an example of a strict
contraction on a normed linear space that does not have a fixed point (and thus complete-
ness is important).

Exercise 18.8.31. Give an example of an isometry T € B(¥) that does not have a fixed
point (and thus having a strict contraction is important).

Exercise 18.8.32. To explore the eigenvalues of compact composition operators, we used
Riesz’s theorem (Theorem 2.6.9). The next several problems explore a version of this result.
Let T € B(H) be compact. Prove that the equation y + Ty = x has a unique solution for
every x € J or the solution space of y + Ty = 0 is nonzero and finite dimensional.
Remark: This result is known as the Fredholm alternative.

Exercise 18.8.33. This exercise continues Exercise 18.8.32. Let T € B(¥) be compact.
Prove that the equations y + Ty = x and y + T*y = X’ have solutions for every x,x’ € ¥,
or the solution spaces of y + Ty = 0y + T*y = 0 have the same dimension.

Exercise 18.8.34. Let T € B(J) be compact. Prove thaty + Ty = x has a solution if and
only if x is orthogonal to{y € #( : y + T*y = 0}.
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Exercise 18.8.35. This exercise is a continuation of Exercise 7.7.14, which considered the
weighted composition operator T on H? defined by (Tf)(z) = zf(z/2). Use the following
argument from [113] to characterize the invariant subspaces for T.

(a) Foreach k > 0 show that My, the subspace of H? consisting of functions which have
a zero of at least k at 0, is an invariant subspace for T.

(b) To prove that {M}, : k > 1} are all of the T-invariant subspaces, prove that it suffices
to show that if f € H? and f(0) # 0, then \/{T"f : n > 0} = H%.

(c) To show that if f € H? with f(0) # 0, then \/{T"f : n > 0} = H?, proceed as
follows. Let f € H? with f(0) = 1 and write f = 1 + g, where g € M;. Define

h, =\22"="Trf forn >0
and prove that the mapping W(z") = h,, extends by linearity to a bounded operator
on H2
(d) Prove that if W is invertible in B(H?), then \/{T"f : n > 0} = H>.
(e) Prove that ||(W —I)z"| < ||g||/2" for all n > 0.
(f) Prove that W — I is compact.
(g) Prove that ker W = {0}.

(h) Prove that W is invertible in B(H?).

18.9 Hints for the Exercises

Hint for Ex. 18.8.1: Prove that the symbol for the composition operator is ¢ = Tz. Now
use the fact that z"* — 0 weakly in H? to show that ¢ is a self map of D.
Hint for Ex. 18.8.6: Mimic the proof of Proposition 18.3.1 and use

1 (e8]
——dm= ||? dm.
/T 1-|of? HZ::O T

Hint for Ex. 18.8.10: For (a), consult the von Neumann-Wold decomposition (Theorem
15.1.1). For (b), consider Rota’s example from Chapter 13.

Hint for Ex. 18.8.11: Mimic the proof of Proposition 18.6.1.

Hint for Ex. 18.8.21: Consult (18.3.9).

Hint for Ex. 18.8.22: Consult Theorem 18.5.5 and argue that |k| is bounded above and
below on D.

Hint for Ex. 18.8.23: Prove that Cy = C,4C,,.

Hint for Ex. 18.8.35: For (f), show that W — I is completely continuous. For (g), suppose
f= Z:;o a,z" € ker T. Use a contradiction argument supplied by the fact that aghy +

Z:;l ayh, = 0.
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Subnormal Operators

Key Concepts: Subnormal operator, normal extension, hyponormal operator, subnormal weighted
shift, representation of a cyclic subnormal operator, Brown’s theorem on invariant subspaces.

Outline: A subnormal operator is the restriction of a normal operator to an invariant
subspace. This chapter surveys a variety of subnormal operators, a representation theorem
that is the analogue of the spectral theorem for normal operators, and a proof of the
existence of invariant subspaces for subnormal operators.

19.1 Basics of Subnormal Operators

Since the spectral theorem for normal operators (Theorem 19.2.3) answers many questions
about normal operators, it is natural to investigate relatives of the normal operators for
which an analogous theory can be developed.

An operator S € B(H) is subnormal if it satisfies the following three conditions.

(a) H is a subspace of a Hilbert space X.
(b) There is a normal operator N € B(X) such that N C K.
(¢) Nlgc =S.

In short, a subnormal operator is a normal operator restricted to one of its invariant
subspaces. The operator N above is a normal extension of S. Although a normal extension
is never unique (Exercise 19.6.6), there is a minimal normal extension that is unique up
to unitary equivalence (Proposition 19.2.7).

Example 19.1.1. The use of the letter S to denote a subnormal operator might appear to
invite confusion with the unilateral shift on H? from Chapter 5. However, these notational
concerns are largely unwarranted since the unilateral shift is a fundamental example of a
subnormal operator. Indeed, the unilateral shift S on H? is subnormal since the bilateral
shift M¢ on I3(T) is normal (in fact unitary by Proposition 4.3.1), H? is an M ¢-invariant
subspace of I?(T),and S = M ¢lp2- Observe that S is not a normal operator (Exercise 5.9.2).
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Example 19.1.2. The Bergman shift (M f)(z) = zf(z) from Chapter 10 is subnormal since
M, on I*(dA) is normal (Proposition 8.1.14), the Bergman space A? is an M,-invariant
subspace of I>(dA), and M = M, | 4.. Notice that the Bergman shift is not a normal operator
(Exercise 10.7.16).

Example 19.1.3. For ¢ € H, the Toeplitz operator T, on H? from Chapter 16 is
subnormal. Let ¢ also denote the almost everywhere defined radial boundary function
(Theorem 5.4.3) p(§) = lim, ;- ¢(r§) and observe that the multiplication operator M, on
I*(T) is normal (Proposition 8.1.14), H? is an M,,-invariant subspace (Proposition 5.5.4),
and T, = M|y (Proposition 16.6.2). In particular, we obtain the subnormality of the
unilateral shift S as the special case ¢(z) = z (Example 19.1.1).

Example 19.1.4. Any isometry A € B(J() is subnormal since the operator

A I-AA*
N:

defined on X = J¢ @ J{ is normal (in fact unitary by Exercise 19.6.1) and N|gg = A.
Observe that

A I-AA*
N =

is also normal (Exercise 19.6.2) and N'|s gy = A. Thus, a normal extension of a
subnormal operator is not unique. See Exercise 19.6.6 for other examples.

If S € B(¥) is subnormal and N € B(X) is a normal extension of S on X 2 #, then
S X
N =
with respect to the orthogonal decomposition X = ¢ @ F(* (Theorem 14.3.4).

Example 19.1.5. The backward shift operator S* on H? is not subnormal. Suppose,
toward a contradiction, that S* has a normal extension

st X
N= :

Then, with % denoting an entry whose value is not of interest, we see that

0 0
0 0

] = NN* — N*N

_[sts—sst+xx* %
- * *

(by Exercise 5.9.2)

_[1—-ss*+XXx* x
- * *
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(by Exercise 5.9.2).

_[rer+xxr
- * *

It follows that 1 ®1+XX™ is the zero operator, which it is not since 1®1 is positive definite

and XX* is positive semidefinite.

Remark 19.1.6. Since the unilateral shift S is subnormal and S* is not, it follows that
subnormality is not preserved under the adjoint operation.

The next proposition shows that subnormality is preserved under unitary equivalence.

Proposition 19.1.7. An operator that is unitarily equivalent to a subnormal operator is
subnormal.

Proof Let A € B(¥(;) be subnormal with normal extension Ny, € B(X;), where F; C
X:.Suppose U : J(, — J, is unitary and UAU* = B € B(J(,). The Hilbert space
XK, = JC, ® (K, © Hy) contains J(,. Consider the unitary operator

U 0
V=[0 I] P Ky =0 @ (K © Fy) = K, = T @ (K © Iy).

A calculation shows that VN, V* is a normal operator on X,. Furthermore, ifx € 7(,,

another calculation reveals that
B
v X = | X
0 0

Thus, VN, V*|4;, = B. Consequently, B has a normal extension and is therefore
subnormal. [ ]

Example 19.1.8. The Cesaro operator
1 (7 1®
en=3 [ L

on H? is subnormal. This is unexpected since there is no obvious normal extension. As
shown in Theorem 6.4.7, this operator is unitarily equivalent to I — M, on a certain H?(u)
space, which is subnormal (see below). Now use Proposition 19.1.7.

19.2 Cyclic Subnormal Operators

Suppose u is a finite positive compactly supported Borel measure on C. The set of
polynomials C[z] is contained in I*(u).

Definition 19.2.1. For y as above, let H?(u) denote the closure of C[z] in L*(u).

Example 19.2.2. If m is Lebesgue measure on T, then H?(m) is the Hardy space H?. If
dA is Lebesgue measure on D, then H?(dA) is the Bergman space A2.
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Define N, : I*(u) — I*(u) by

(NuS)(2) = 2f(2)

and recall from Chapter 8 that N, is a bounded x-cyclic (Definition 8.2.6) normal operator
with adjoint (Nj; f)(z) = zf(z). Bram’s theorem (Theorem 8.2.12) says that N, is cyclic,
meaning there is some f € I?(u) such that \/{N§f : k > 0} = I*(u).

Theorem 8.7.1 is the spectral theorem for cyclic selfadjoint operators. Here is the
corresponding theorem for normal operators [94, Ch. IX]. Readers interested in the proof
can consult [94]. The standard proof involves the representation theory of commutative
C*-algebras and would draw us too far afield since our aim here is to present results based
on concrete examples.

Theorem 19.2.3 (Spectral theorem for normal operators). Let N € B(J() be a *-cyclic
normal operator with x-cyclic vector x. Then there is a finite positive compactly supported
Borel measure u on C and a unitary operator U : H — I?(u) such that Ux = 1 and
N = U*N,U.

Below is a commutative diagram that illustrates the spectral theorem.

I I

L) —— LW
Now define S,, : H*(u) — H*(u) by
(Spf)(z) =zf(2) (19.2.4)
and observe that
N,H*(u) C H*(u) and S, = Ny|paw-

In other words, S, is a subnormal operator and N, is a normal extension of S,,. Also notice
that S, is a cyclic operator with cyclic vector 1. The proof of Proposition 8.1.5 yields the
following.

Proposition 19.2.5. ||S,|| = sup{|z| : z € suppu}.

We now discuss a model operator for a cyclic subnormal operator. But first, we need to
address another issue: the lack of uniqueness of a normal extension (see Example 19.1.4
and Exercises 19.6.3 and 19.6.6).

Definition 19.2.6. A normal extension N € B(X) of a subnormal operator S € B(¥H) is
a minimal normal extension if & has no proper subspace that reduces N and contains F.
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Proposition 19.2.7. Let S € B(J() be subnormal with a normal extension N € B(X),
where H£ C K. Then N is a minimal normal extension of S if and only if

% =\/IN“/h: j>0,he 7}

Proof Let X' = \/{N*jh : j = 0,h € H}and note that X' D H and X' reduces
N. This means that N|4 defines a normal operator that extends S. Any reducing
subspace that contains J also contains N*/7( for all j > 0, and hence X" is the
smallest reducing subspace of X that contains ¥ . [ |

We say that N|g4 is the minimal normal extension of S. A technical detail says that if
N and N’ are two minimal normal extensions of S, then N is unitarily equivalent to N’
[95, p. 39]. Thus, it makes sense to use the term “the” (up to unitary equivalence) minimal
normal extension of S.

Here is the main representation theorem for subnormal operators. It mirrors the
spectral theorem for cyclic normal operators.

Theorem 19.2.8. Let S € B(H) be cyclic and subnormal. Then there is a finite positive
compactly supported Borel measure p on C such that S is unitarily equivalent to S, on H2(u).

Proof Letxbe acyclic vector for S and let N € B(X), where 7 C X, denote the minimal
normal extension of S. Proposition 19.2.7 and the fact that \/{S"x : n > 0} = H yield

K =\/INx:j>0xeqt=\/INVs* : jk>0}=\/IN"N<x: jk >0},

Thus, x is a x-cyclic vector for N. The spectral theorem for *-cyclic normal operators
(Theorem 19.2.3) produces a finite positive compactly supported Borel measure v on
C and a unitary U : & — I?(v) such that UNU* = N,,.
For any p € C[z],
Ip(S)x[*> = (p(S)x, p(S)x)g¢

= (p(N)x, p(N)X) 5

= (Up(N)X, Up(N)X)12(+)

= <Mp Ux, MpUX>L2(v)

- [ toPruxra.

Now define du = |Ux|?dv and observe that

()] = f Ipl2du.

The set {p(S)x : p € C|z]}is dense in K since x is a cyclic vector. Thus, the linear
transformation V : H?(u) — J¢, initially defined on C[z] by

Vp = p(S)x, (19.2.9)
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is isometric with dense range and thus extends to a unitary operator. For p € C[z],
we have VS, p = V(zp) = Sp(S)x = SV p. Since C|z] is dense in H?(u), this extends
to all of H*(u). Thus, S = VS, V*. [ ]

Remark 19.2.10. From the spectral-radius formula, we also have that o(S,,) C |IS,[D~.
Proposition 19.2.5 says that the support of ¢ is contained in ||S,[D~.

From (19.2.9), notice that V* maps the cyclic vector x to the constant function 1. This
becomes important in Theorem 19.3.4. Below is a commutative diagram that illustrates
Theorem 19.2.8.

H

H

H*(W) . H*(W)

19.3 Subnormal Weighted Shifts

Suppose that 7 is a Hilbert space with orthonormal basis (u,,)5%,. If (o, )5 iS a sequence
of positive numbers, recall from Exercise 3.6.21 the corresponding weighted shift

Au, = a,u,,; forn=0. (19.3.1)

This definition extends by linearity to a bounded operator on # if and only if the weight
sequence (o, ) is a bounded sequence. The matrix representation of A with respect to

(uy)nzo is

0 0 0 0

aG 0 0 0

0 a 0 0 (19.3.2)
0

and ||A[| = sup,5, ap.
We have already seen three examples of weighted shifts:

(a) The unilateral shift on H? (Chapter 5): a,, = 1 and u,, = z".
(b) The Dirichlet shift (Chapter 9): a;,, = 4/ :—i andu, = z"/\/n+ 1.

(c) The Bergman shift (Chapter 10): a, = 4/ :—: andu, =yn+1z".

For B € R, there are also the Dirichlet-type spaces

o0

Dg={f@) =Y apz" : Ifl}y = X lanP(n+ 1 < oo},
n=0

n=0
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Note that Dy = H?, D, = D, and D_, = A%. There is a natural orthonormal basis

Zn

@ _
un () = G

forn > 0,

for Dg, along with a corresponding weighted shift Ag : Dg — Dy defined by
® _ (n+2\F2 (5
Agw = (=)l (19.3.3)

For f = 0 and 8 = —1, the corresponding weighted shifts are subnormal because they are
M, on the Hardy space (Example 19.1.1) and Bergman space (Example 19.1.2), respec-
tively. What about the subnormality of other weighted shifts? The following theorem
provides the answer. We remind the reader (see (19.2.4)) that S, denotes the operator
Suf = zf on H*(u), the closure of the polynomials in L*(x).

Theorem 19.3.4 (Gellar-Wallen [152]). Let A be a weighted shift from (19.3.1) with
corresponding positive weight sequence (a,, ). Then the following are equivalent.

(a) Aissubnormal.

(b) There is a finite positive Borel measure u on [0, |A||] whose support contains ||A|| such
that

lAll
(agayaty - ap_1)? = f x> du(x) foralln > 1. (19.3.5)
0

(c) There is a finite positive Borel measure u on |0, ||A||] with ||A| in its support such that A
is unitarily equivalent to S, on H2(v), where

1
dv = ﬁde du(r) (19.3.6)
is a measure on the disk |A||D™.

Proof We follow the proof from [95, Ch. 2]. Recall that [|A|| = sup,,, &

(a) = (b) Since A is cyclic with cyclic vector u,, Theorem 19.2.8, along with Remark
19.2.10, provides a unitary U :  — H?(o) such that Uu, = 1 and UAU* = S, on
H?(o) for some measure o on the disk ||A|D~. Thus, UA™u, = S?Uu, = z".

Let

=1 and p =aqxa,--a,; forn>1. (19.3.7)

Then

Auy = apuy = puy,

20 _ _
A*uy = pAu; = pou, = puy,

Aluy = A(Yn—lun—l) = Tn-1% Uy = YuUp.
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Therefore, z" = UA™1, = y,Uu, and hence Uu, = z"y;!. Since U is isometric, it

follows that ||[Uw,|| = 1 and consequently,

1
= f |Z|2"d0 = ||Ul.ln||2 =1.
W

%f=fIZIZ"dG-

This yields

Define a measure u on [0, |A||] by u(B) = o({|z| € B}) for any Borel set B C [0, ||A]|].

Then

Al
7 = f Prdu(r).
0
Proposition 19.2.5 implies that

Al =1ISoll = sup |z= sup r.
ZEsupp o resupp 1

Thus, ||A| belongs to the support of u.

(b) = (c) Let u and v be the measures from (19.3.5) and (19.3.6), respectively, and

consider the space H?(v). The condition in (19.3.5) implies

n|2 1 Al 2” i6|2n Al 2n 2
2" = 5 rePrddu() = | du(r) = 72
0 0 0

Furthermore,

1 Al p27 )
<Z",Zm> — E / f rn+me19(n—m)d9 d,u(r)
0 0

Al
= Smn f " du(r).
0

= 5mn}'r%~

Thus, (z"y; 1), is an orthonormal basis for H2(v). Now define the unitary operator

V . J — H*(v) by

n

z
Vu, = —,
" n
and note that
ZYl
VAV*}/— = VAu, (by (19.3.3))
n
=Va,u,, (by (19.3.1))
Zn+1
=a, (by (19.3.3))
Yn+1
n n
= zz— = S,,Z—.
Yn n

Thus, A = V*S,V.

(19.3.8)
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(c) = (a) Since S,, is subnormal and A is unitarily equivalent to it, Proposition 19.1.7

ensures that A is subnormal. [ ]
Below is a commutative diagram that illustrates Theorem 19.3.4.

H

H

H?(v) = H?(v)

The next corollary demonstrates a notable difference between the Dirichlet shift, and
the Hardy and Bergman shifts.

Corollary 19.3.9. The Dirichlet shift is not subnormal.

Proof Suppose toward a contradiction that the Dirichlet shift is subnormal. From our
earlier discussion, the Dirichlet shift M, is a weighted shift with weight sequence

n+2
n+1

a, =

and ||M, | = \/5 Furthermore, $,, = Vn + 1 as defined in (19.3.7). Thus, there is a
positive finite Borel measure u on [0, V2] with /2 € supp ¢ such that

V2
n+1l= f r?du(r).
0

‘We show this is impossible. For 1 < a < \/5 observe that

V2 V2
n+1= f rdu(r) > / Prdu(r) > @ u([a,V2)).
0 a

Thus,

w(la, \/5]) < na-:nl foralln>1land1 < a<+/2.

Let n — oo to conclude that u([a, \/E]) = 0forall 1 < a < /2. This contradicts the
fact that \/2 € supp . |

For 8 > 0, a similar proof shows that M, on Dy is not subnormal. One can also give an
alternate proof using hyponormality (Exercise 19.6.11). When 8 < 0 and

_ (n+2)ﬁ/2

= , 19.3.10
n n+1 (19.3.10)

the corresponding weighted shift A g from (19.3.3) (equivalently M, on D) is hyponormal.
A nontrivial result from [39] shows that more is true.
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Theorem 19.3.11. M, on Dy is subnormal for all § < 0.

A good starting point to learn more about various aspects of weighted shifts, including
their corresponding function space realizations, is [342].

19.4 Invariant Subspaces

Subnormal operators have proper nonzero invariant subspaces. Although we do not
go into fine detail, we highlight the powerful function theory involved. An important
ingredient is the identification of the cyclic subnormal operators with S, on H?(u)
(Theorem 19.2.8). The original proof of the next theorem is due to Brown [72], but the
simplification presented below is due to Thomson [358].

Theorem 19.4.1 (Brown). If K is a Hilbert space with dimH > 2 and S € B(K) is
subnormal, then S has a proper nonzero invariant subspace.

Proof If S is not cyclic, then \/{S"x : n > 0} is a proper nonzero S-invariant subspace
for any x € F\{0}. So let us assume that S is cyclic. Theorem 19.2.8 says that S
is unitarily equivalent to S;, on H 2(u). Thus, it suffices to prove that S,, has proper
nonzero invariant subspaces.

The proof splits into two cases:

H*(u)=I*(u) and H*() G (W)

If H*(u) = I?(u), then, since dimI?*(u) > 2, there exists a Borel set A such that
u(A) > 0 and u(C\A) > 0. The subspace y,[*(u) is a proper nonzero S,-invariant
subspace.

The second case is trickier and requires the following technical lemma from [95].
Assuming that H*(u) ¢ I*(u), thereis a 1 € C with u(fA}) = 0, an f € H?*(u),
and a g € I*(u) such that

p(d) = fpfgdu for all p € C[z]. (19.4.2)
Assuming (19.4.2), define

M ={qf : q € Clz], q(4) = 0}.

Notice that M is an S,-invariant subspace.

To finish the proof, we need to verify that {0} € M € H?(u). Apply (19.4.2) to the
constant polynomial p = 1 to see that (f,g) = 1. Apply (19.4.2) again for any
polynomial p such that p(1) = 0 to conclude that g L M. Thus, f € H?(u)\M.
Since f # 0 u-almost everywhere and u({A}) = 0, the function (z — 1)f belongs to
M\{0}. Therefore, M # {0}. [ |
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19.5 Notes

Let us mention a few other gems from the theory of subnormal operators. See [95] for all
the details along with a wealth of other results that we do not have room to cover here.

Proving that an S € 3B(¥) is subnormal by identifying a normal extension can
be difficult as was seen by the Cesaro operator. There are a variety of tests one can
perform that often prove subnormality. For example, Bram [63] proved that S € B(¥)
is subnormal if and only if

n
D (Six, Skx;) > 0 for every Xo, Xy,..., X, € I(.
Jik=0

The ambient space H2(u), the closure of the polynomials in I?(u), is worthy of study.
A celebrated result of Thomson [359] decomposes the support A of a finite positive Borel
measure u into disjoint Borel sets A; for j > 0 such that

H2(u) = I2(ula,) ® H*(ula,) ® H*(ulp,) @ - (19.5.1)

This result has important applications to the structure of subnormal operators [95]. More
importantly, this description resolves a long-standing conjecture of Brennan [95, Ch. VIII]
which says that either H*(u) = I*(u) or thereisa 1 € suppu and a C > 0 such that
[PV < Clpllz2(y for all p € C[z]. Permitting a slight abuse of language, such a point 4
is called a bounded point evaluation.

Sarason [325] described the space H®(u), the weak-* closure of the polynomials in
L™ (w). This space is important since it reveals further structure theorems for subnormal
operators.

Another gem is a version of von Neumann’s inequality for subnormal operators. If T €
B(H) is a contraction, von Neumann [370] (see also [144]) proved that

()|l < sup [p(z)| forall p € Clz].
zeD

For any T € B(X) and rational function f whose poles are in C\c(T), one can define
f(T) via the Riesz functional calculus. If S is a subnormal operator and K is a compact set
containing o(S), then || f(S)|| < sup,cg |f(2)|. This functional calculus also yields various
spectral-mapping theorems for subnormal operators.

There is a version of Corollary 8.3.3 which describes the commutant of S, as

S =M, : ¢ € H* () N L2 (w)},

where M, f = ¢f on H*(w).

Example 19.1.3 shows that any analytic Toeplitz operator T, on the Hardy space H?is
subnormal with normal extension M. Is this the minimal normal extension? As long as ¢
isnonconstant, the answer is yes. The minimal normal extension for a subnormal operator
is also a well-studied topic. One of many results is: if N is the minimal normal extension
of a subnormal operator S, then ¢(N) is the minimal normal extension of ¢(S) for a rich
class of functions ¢ [95].
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19.6 Exercises

Exercise 19.6.1. If A € B(J() is an isometry, prove that

A T-—AA*
U=

is a unitary operator on J @ J(.

Exercise 19.6.2. If A € B(¥) is an isometry, prove that

A I—-AA*
N =

is a normal operator on H @ .

Exercise 19.6.3.
(a) Let S denote the unilateral shift on #2. Prove that

N(..., a_p, a_l,, a, az,...) = (..., a_sz,a_p, , ap, aq, az,...)

and

N'(...,a_,, a_l,, a, ay,...) = (ooy —a_3, —a_y, , ag, ay, az,...)

on ¢#%(Z) are both normal extensions of S. The box denotes the Oth position.
(b) Relate these extensions to those considered in Example 19.1.4.

Exercise 19.6.4. Let A € B(J() and suppose that A and A* are subnormal. Prove that A
is normal.

Exercise 19.6.5. If T € B(¥ ) is normal and M is a T-invariant subspace of  such that
T|a¢ is normal, prove that M is reducing for T'|y;.

Exercise 19.6.6.

(a) IfS € B(HK) is subnormal and N € B(¥) is normal, prove that S® N € B(H @ K)
is subnormal.

(b) What does this say about the uniqueness of a normal extension of S?

Exercise 19.6.7. Letdu = dA| (2 <jzl<1} denote planar Lebesgue measure on the annulus
2

1
= 1}
{z:5<lz2l <1}

(a) Prove that the restriction of a function in the Bergman space A? (of the disk) to the
annulus belongs to H2(w).

(b) Prove that each function in H?(u) has an extension to D that belongs to 42.
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(c) Let ||f]l42 denote the Bergman-space norm. Prove that there exists ¢;,c, > 0 such
that

allflZ < [ IfPAA < ollf I forall f € A%

{3<lzl<1}

Exercise 19.6.8. Letdu = dA|{1<‘Z|<1}.
2

(a) Prove that R%(u), the closure of the set of rational functions whose poles lie in C\{% <

|z| < 1}, is the space of analytic functions f on {é < |z| < 1} such that

/ |f[2dA < 0.
(5 <lzl<1}

(b) Prove that H?(u) € R?(1) G I?(w).
(c) Prove that M, on R?(w) is not cyclic.

Exercise 19.6.9. Recall from (6.4.1) that A € B(K) is hyponormal if A*A — AA* > 0.
Prove that any subnormal operator is hyponormal.

Exercise 19.6.10. Let S denote the unilateral shift on H2. Prove that T = (S + 25%)? is
not subnormal.

Exercise 19.6.11. Let (c,)5%, be a bounded sequence of positive numbers and W be the
weighted shift on ¢2 defined by We, = a,e,,; (see Exercise 3.6.21).

(a) Prove that W is hyponormal if and only if o, < a;, 1 foralln > 0.
(b) Use this to prove that the Dirichlet shift is not subnormal.

Exercise 19.6.12. For afinite-dimensional Hilbert space J, prove that every hyponormal
operator is normal using the following steps.

(a) Suppose that H = C", A € M,,, and A*A — AA* > 0. Prove that tr(A*A — AA*) = 0.
(b) Usethe spectral theorem and the fact that A*A—AA* > 0to show that A*A—AA* = 0.

Exercise 19.6.13. Prove that if S € B(¥() is subnormal and compact, then S is normal.
Follow this argument from [372].

(a) For a positive A € B(J(), prove that |[{Ax,y)|? < (Ax,x){(Ay,y) for all x,y € 7.

(b) If S is subnormal, then A = S*S — SS* is positive (Exercise 19.6.9). Prove that
ker(S*S — SS*) = {x : ||Sx|| = ||S*x]||}.

(c) Prove that S = A + iB, where A and B are compact and selfadjoint.

(d) Prove that ||(A + iADx|| = ||(A — iADx]| forallx € H and 1 € R.
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(e) Letx be an eigenvector of B. Prove that ||Sx|| = [|S*x]|.
(f) Prove that ker(S*S — SS*) contains each eigenspace of B.
(g) Prove that ker(S*S — SS*) = .

Remark: This exercise shows that every subnormal operator on a finite-dimensional
Hilbert space is normal and thus subnormal operators only differ from normal operators
in the infinite-dimensional setting.

Exercise 19.6.14. Let S € B(H ) be subnormal and define A = S*S — SS*. Prove that
ker A is an invariant subspace for S.
Remark: See [349] for more on this.

Exercise 19.6.15. Exercise 6.7.10 showed that the Cesaro operator is not compact. Use
Exercise 19.6.13 and Theorem 6.4.2 to supply another proof.

Exercise 19.6.16. Let f,g € H*. Prove that the Toeplitz operator T,z is hyponormal if
and only if T; Ty — Tijik 2Ty — T, Ty

Exercise 19.6.17. Suppose that T is a hyponormal contraction and M = ker(I — TT*).
Prove the following.

(a) M is an invariant subspace for T*T.
(b) M is an invariant subspace for T.
(c) T|x¢ is isometric.

Remark: See [43] for more on this.

Exercise 19.6.18. Anoperator S € B(¥() is quasinormal if S(S*S) = (S*S)S. Let S = U|S|
be a polar decomposition of S (Theorem 14.9.15). Prove that S is quasinormal if and only
if U|S| = |S|U.

Remark: See [66] for more on quasinormal operators.

Exercise19.6.19. Let ¢ be an analytic self map of D. Prove that if the composition operator
C,onH 2 (see Chapter 18) is quasinormal, then ¢(0) = 0.
Remark: See [87] for more on quasinormal composition operators.

Exercise 19.6.20. This is a continuation of Exercise 19.6.18. Suppose that S = U|S| is
quasinormal and ker S = {0}.

(a) Prove that U is an isometry.

(b) Prove that E = UU™ is an orthogonal projection. What is ran E?

w=[o S sl

Prove that N is a normal extension of S, and thus S is subnormal.

(c) Let
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Exercise 19.6.21. The next several problems explore the dual of a subnormal operator
[93]. Let S € B(H ) be subnormal with minimal normal extension N € B(X) and £ C X.
With respect to the decomposition X = F @ F(*, write N as

N=SX.
o T*

Then T € B(J¢1) is the dual of S. Prove that T is subnormal by identifying a normal
extension.

Exercise 19.6.22. Let S denote the unilateral shift on H2. Prove that its dual T, as defined
in Exercise 19.6.21, is given by (Tf)(¢) = £f(¢) on H3.

Exercise 19.6.23. Let S and T be as in Exercise 19.6.22. Use the following steps to prove
that S is unitarily equivalent to T. Such subnormal operators are self dual.

(a) Define W € B(I*(T)) by (Wf)(£) = Ef(g) and prove that W is selfadjoint, W2 =1,
and WM W = Mz on I2(T).

(b) Prove that WH? = Fg.

(¢c) IfU = W|gp, prove that U is unitary and USU™! = T.

Exercise 19.6.24. Let 9 € H* and let T, f = ¢ be the corresponding analytic Toeplitz
operator on H2. Identify the dual of T,, as defined in Exercise 19.6.21.

Exercise 19.6.25. Consider S = M, on the Bergman space A2.
(a) Prove that if g € C§°(D) (the smooth functions with compact support in D) and
3, = i(ax —id)), then / fé,gdA =0forall f € A2,
D
(b) Prove that 8,C$°(D) C (A?)*. A technical detail called Weyl’s lemma [95, p. 172] says
that (4%)* is the I?(dA) closure of 3,C (D).
(c) Prove that the dual (as defined in Exercise 19.6.21) of the Bergman shift is multipli-
cation by Z on (4%)*.
Exercise 19.6.26. A € B(J() is posinormal if AA* = A*PA for some positive operator P
called an interrupter.
(a) Prove that the unilateral shift S on #2 is posinormal but §* is not.
(b) Prove that every unilateral weighted shift W is posinormal.

(c) If Aisnormal, prove that ||Ax|| = |A*x]| for all x € .
1
(d) If A is posinormal with interrupter P, prove that |[A*x|| < ||Pz||||Ax]|| for all x € F.

1
(e) Prove that |P2A] = ||A]|-

Remark: Exercise 6.7.19 examined these operators in relation to the Cesaro operator [290].
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Exercise 19.6.27. This is a continuation of Exercise 19.6.26. Use Corollary 14.6.6 to prove
that the following are equivalent.

(a) Ais posinormal.

(b) ranA C ran A*.

(c) AA* < 2A*A for some A > 0.

(d) Thereisa T € B(H)such that A = A*T.

Exercise 19.6.28. This is a continuation of Exercise 19.6.26. Use Exercise 19.6.27 to prove
the following.

(a) Every hyponormal operator is posinormal.

(b) Aisaposinormal operator if and only if A* belongs to the left ideal in B(¥() generated
by A.

(c) Every invertible operator is posinormal.

Exercise 19.6.29. For ¢ € H™, the analytic Toeplitz operator T, on H 2 js subnormal (and
hence hyponormal). By Exercise 19.6.28, T, is posinormal, and hence thereisa T € B(H?)
such that T, = T3 T. Prove that one can choose T to be a Toeplitz operator.

19.7 Hints for the Exercises

Hint for Ex. 19.6.7: For (c), use the closed graph theorem.
Hint for Ex. 19.6.9: Write a normal extension of S as

S X

N= [0 T]
and use the identity N*N — NN* = 0.
Hint for Ex. 19.6.13: For (e), observe that Sx = (A + iB)x = (A + iAD)x. For (g), consult
Theorem 2.6.7.
Hint for Ex. 19.6.14: Consult Exercise 19.6.13 and use the fact that if N is a normal
extension of S, then ||Sx|| = ||S*x]| if and only if [N*x| = ||S*X]|.
Hint for Ex. 19.6.19: Apply the condition for quasinormality to k, = 1 and consult
Proposition 18.5.1.
Hint for Ex. 19.6.21: Write the matrix of N* with respect to the decomposition #(+ @ (.
Hint for Ex. 19.6.25: For (a), prove and use the following version of Green’s theorem: for

h sufficiently smooth on D™,
—Zi/ 0,hdA = §6th.
D T

Hint for Ex. 19.6.26: For (a), examine the upper-left corner of S*S and SPS* for any
positive operator P. For (b), create the interrupter P with a diagonal matrix.
Hint for Ex. 19.6.29: Consult Exercise 16.9.15.
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The Compressed Shift

Key Concepts: Model space, compressed shift, conjugation, complex symmetric operator, the
Volterra operator, matrix representation of a compressed shift, commutant of a compressed shift.

Outline: This chapter examines compressions of the unilateral shift S on H? to model
spaces H2N(uH?)', where u is an inner function. These compressed shift operators provide
concrete, function-theoretic models for certain Hilbert-space contractions. As a guiding
example, this chapter focuses on the compressed shift on the model space corresponding
to an atomic inner function.

20.1 Model Spaces
Recall (Chapter 5) that an inner function u is a bounded analytic function on D such that
u(®) = lim u(rf)
r—1-

satisfies [u(&)| = 1 for almost every & € T. The limit above exists for almost every & € T by
Fatou’s theorem (Theorem 5.4.3). By Theorem 5.4.11, every inner function takes the form
B(z)S,(z) with

o —
B(z):yzNHa—f ai—_z

S(z) = exp /
v €

where y € T, N > 0, q; € D\{0} with Zl 1(1 —a;]) < oo, and u is a finite positive Borel
measure on T that is singular with respect to Lebesgue measure m. Beurling’s theorem
(Theorem 5.4.12) says that all nonzero S-invariant subspaces of H? are of the form uH?
where u is inner.

and
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Definition 20.1.1. The model space X, corresponding to a nonconstant inner function u
is the subspace of H? defined by

X, = wH?)*r ={f € H?> : (f,uh) = 0 forall h € H*}.

Since S(uH?) C uH?, it follows that S*%,, C X, (Exercise 4.5.1). We invite the reader
to work out examples of X, for various inner functions u (see Exercises 20.8.18 and
20.8.19) such as finite Blaschke products. The following proposition provides a useful way
of describing X, in terms of boundary functions on T.

Proposition 20.1.2. For an inner function u and f € H?, the following are equivalent.
(@) f e Xy
(b) There exists a g € H? such that f(£) = g(&)&u(§) for almost every £ € T.

Inotherwords, X,, = H?NuzH?2, where the right side is regarded, via radial boundary values,
as a set of functions on T.

Proof By means of radial boundary values, the inner product on H? can be written as an
I*(T) inner product

(f.g) = / FE@ dm(E) for f.g € HP.
T

For each f € H?,

fex, < (f,uhy=0 forallh € H?
< (uf,h) =0 forallh € H?
= uf € (H)' =zH2. (by (4.2.4))

Since uu = 1 almost everywhere on T, it follows that f € H? belongs to (uH?)" if and
only if f € uzH2 (that is, f = gzu for some g in H2). [ |

Proposition 20.1.6 below asserts that the function g in the statement of the previous
proposition also belongs to JC,.

Model spaces are reproducing kernel Hilbert spaces. This stems from the fact that any
subspace of a reproducing kernel Hilbert space is a reproducing kernel Hilbert space
(Exercise 20.8.3). For a model space, there is a precise formula for the reproducing kernel.
For an inner function u, define

1— u(Du(z)
1-— Iz

ky(z) = for A,z € D. (20.1.3)

Proposition 20.1.4. For A € D and f € X, the following hold.

(a) kA (S ﬂCu.
®) (f. ko) = F2).
© lp = 200

1—a -
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Proof For the proof below, let

c1(2) = —— (20.1.5)
1-Az
denote the reproducing kernel for H2.
(a) Observe that
ka = (1 - ulDuey
and thus k; € H® C H?. Moreover, for any h € H?,
(uh, (1 — u(u)c;) = w(Ah(A) — u(d) (uh, uc;)
= u(D)h) — u(d){(h,c;) (sinceuu = la.e.onT)
= u(Dh(2) — u(A)h(1)
=0.
Therefore, k; € (uH?)* = X,,.
M If f € X, and 4 € D, it follows that
J) ={f,c2)
= (f,en) —u)(f,ucy) (since (f,uc) = 0)
= (f,(1 - u@wey)
= <f? k/1>
(c)For A € D,
Ilkall® = Cka, ka)
= k() (by (b))
_ 1-u@)P?
1= p
which completes the proof. [ |

There is a natural conjugation on the model space that serves as an important tool
for studying the compressed shift. In what follows, we regard the model space X, as a
subspace of I?(T).

Proposition 20.1.6. For an inner function u, the mapping C : X, — X, defined by Cf =
uzf, is well defined, conjugate linear, isometric, and involutive.

Proof Since uu = 1 almost everywhere on T, it follows that C is conjugate linear,
isometric, and involutive on I*(T) (Exercise 20.8.4). It suffices to prove that C maps
%, onto X,. For f € K,,, Proposition 20.1.2 produces a g € H? such that f = uzg on
T. Then

Cf = uzf = uzuzg = g € H
By definition, Cf € uzH? and thus Cf € H? nuzH? = X,,. [ |
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20.2 From a Model Space to 1[0, 1]

Let

0(z) = exp - i s i ) (202.1)

Observe that © is analytic on C\{1} and

|0(2)| = exp(— Re(it;)) = exp(— |11__|§:2) <1 forallz €D.

Thus, ® € H®. Since |©(e®)| = 1 for all 8 € (0, 27), it follows that © is an inner function.
When 6 = 0, the expression for ©(1) is undefined. However,

1+r
lim |O(r)| = i — =0.
Jim 100 = Jim exp( - 775
There is an essential singularity at z = 1 so the Casorati-Weierstrass theorem [9] suggests
that the limit along other paths in D approaching z = 1 need not be zero (Exercise 20.8.1).
An important part of our analysis of the model space Kg, where © is the function
(20.2.1), is the following unitary operator of Sarason. For ¢t € [0, 1],

0(z)! =exp(—t1+z>

1—-2z
is an inner function. To understand the proof of Sarason’s result, the reader might want to

review the Hardy space of the upper half-plane (Chapter 11).

Theorem 20.2.2 (Sarason [323]). Foreach g € I?[0,1], the function

.ol
(We)(z) = % f 2(H)0(z) dt, (20.2.3)

0
defined for all z € D, belongs to K. Furthermore, g — Wg is a unitary operator from

I2[0,1] onto Xg.

Proof Exercise 11.10.7 ensures that

Nfmwi  1+E
A = —— 20.2.4
@nN®=1-¢/(72%) (20.24)
is a unitary operator from I?(R) onto I*(T). Furthermore, AH?(C,) = H%(D). Regard
I*(0, o0) as a subspace of I*(R) via the identification I*(0, 00) = x(0,c0)[2(R). For the
Fourier transform .# and its adjoint .#* (Chapter 11), define

B = 7*|12(0.00) (20.2.5)

and observe that B is an isometry from I?(0, oo) onto H?(C,, ) (recall the Paley-Wiener
theorem (11.8.2)). Thus, the composition U = AB is a unitary operator from I?(0, o)
onto H?(D).



THE COMPRESSED SHIFT | 449

The next step is to argue that U maps I*[0,1] = x{,11L*(0, o0) onto K. Suppose that f
belongs to x[1,00)[*(0, o). By the Paley-Wiener theorem again, #* f € H*(C,) and

(F*f)2) = V% /1 Foeitde

1 /‘” ;
=— f(t 4+ 1)eltt+Dzgy
V2 Jo
= eizf f(t +1)eit2d.
0

Thus, .F* X[1,0)[*(0, 00) = €ZH?(C,.), and hence

U)([l,oo)Lz(Os oo) = AB)([I,oo)LZ(Oa 00)
= A#H(C,))

1+ )HZ(D)

z
-z
From here, observe that

UI?[0,1] = U(I(0, ) © X[1,00)L*(0, 0))
= UI*(0,0) © U(X[1,00)[*(0, 0))
= H? © OH?
=Ke.

Finally, for g € I?[0,1],

(Ug)(2) = (ABg)(z)

1
1 .
=Al— / el?tg(t) dt
(\/27z 0 )
1
1 o1 L1+ 2z
= ; Zﬁl T3 /0 exp (ltll — Z)g(t)dt
1
_ Vai ,
=1—7 /(; O(z)'g(t)dt,
which is the formula (20.2.3) for Wg. [ |

20.3 The Compressed Shift

For an inner function u, the model space X, can be regarded as a subspace of I*(T). Let
B, denote the orthogonal projection from I?(T) onto X, and recall the Riesz projection P,
from I?(T) onto H? (Definition 16.2.1). The next result furnishes two formulas for B,.
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Proposition 20.3.1. Let u be an inner function and let k; be the reproducing kernel for X,,.
(@) (B.)A) =(f,k;)forevery A € Dand f € I*(T).
(0) B.f = f — uB,(uf) for every f € H2.

Proof (a) Since k; € X, it follows that B,k; = k;, and hence for any f € I*(T),

(frka) = (f - Bkz)
=(B.f, k) (B, is selfadjoint)
= (B.N(A) (by Proposition 20.1.4b).

(b) From (20.1.5), recall that ¢;(z) = (1 — Az)~L. For f € H? and A € D, it follows from
(a) that

BN =({f, k)
= (f,(1 = u@u)cy)
= (f,cp) — u(A)Xf,ucy)
=(f,ca) —u)uf,cz)
=(f,c1) —u() (uf, P.cy) (Pcp=cp)
= (f,cz) —u(d) (P.(uf), cz) (P, is selfadjoint)
= f(D) — u(D)P (uf)(A),

which completes the proof. [ |
Recall the unilateral shift operator S from Chapter 5.

Definition 20.3.2. For an inner function u, the corresponding compressed shift operator
is S, : Ky — Ky, where S, = B,S|x,.

The following proposition shows that the adjoint of the compressed shift is the back-
ward shift S* restricted to X,,.

Proposition 20.3.3. S;;f = S*f forall f € X,,.
Proof For f,g € X,
(Suf:8) =(f.5.8 = (f-R.Sg) = (B.f,Sg) = (f,58) = (5" [, 8)
Thus, S f = S*f forall f € X,,. [ |

Proposition 20.3.4. Let C denote the conjugation from Proposition 20.1.6. Then S, =
Cs;.C.

Proof 1f f,g € X, then,

(CSuCf,8) = (Cg SuCf)
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=(Cg,S*Cf) (by Proposition 20.3.3)
=(5Cg.Cf)

= (sugg,utf)

=(&&7)

=(¢f.8)

=(Sf.8

=(Sf,B.g) (R,g = gsince g € X))
=(RSf.8)

= (Suf>8)>

which proves the desired identity. [ |

20.4 A Connection to the Volterra Operator

Recall the Volterra operator

(Ve)(x) = / g(t)dt
0

on I?[0,1] from Chapter 7. Since o(V) = {0} (Proposition 7.2.5), it follows that I + V/
is invertible and hence (I — V)(I + V)7! is a well-defined bounded operator on I?[0,1].
A fascinating result of Sarason relates this with the compressed shift Sg via the unitary
operator W : I?[0,1] —» K¢ from Theorem 20.2.2.

Theorem 20.4.1 (Sarason [323]). W*SgW = (I - V)T + V)L

Proof We follow a presentation from [280, Ch. 4]. From (20.2.4)

an® = 22 (15)

is a unitary operator from I?(R) onto I?(T) and maps H2(C, ) onto H?(D). Invert the
formula for A to obtain

x—1i

1 g(
ﬁ(x+i) x+i

Ag)(x) = ) for all g € I2(T).

From (20.2.5), the operator B = .7 *|12(g,«) is @ unitary operator from I*(0, o) onto
H?(C,). Thus, U = AB is a unitary operator from I?(0, co) onto H?(D).
Let

$(x) = 0 ifx <0,

e ifx>0,
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and define the convolution operator (Chapter 11) X : I?(0, c0) — I*(0, ) by

X)) = f SO0 (x — 1) dt.

0

In other words,

Xg=g=*1. (20.4.2)
For each w € C,, observe that
1 (7. 1 1
B = — o=l dt = — . —. 20.4.3
(BYw) \/E/oe = e (2043)
Then for any f € H*(D),
UXU* f = ABXB*A*f
= AB((B*A*f) x 9) (by (20.4.2))
=27 A((BB*A* f)By) (by Proposition 11.3.1)
= (s _ll,w) (by (20.4.3)).
Now observe that for each z € D,
Lo 1 Nmi, 14z 1
(A(A fl —iw)>(z) = 1 —Z(A f)(ll _Z>1 —i2 4z
1-z
- Vi (i)
o1 1
=A/7Ti - \/_7_-[ . llt_z lf(z)
1-2z
= =21

Thus, UXU* = l(I — S). Notice that W = Ul2[01] = B Ulp201) and U |, = W™,
From here it follows that

1

Proposition 7.2.9 yields

@ VY00 == [ @Xf0)dy for f € Plo.1)

o
This can be written as (I + V)71 f = (I — X)f for f € I?[0,1]. Combining this with
(20.4.4) yields

(T+V)1 = W*(%(I +So))W.
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Finally,
I-MT+V)t=QI-T+V)T+V)!
=20+WV)1 -1
=2W* %(I + Sg)W — W*IW
=W*I+ S —DW
= W*SgW,
which completes the proof. [ |

Corollary 20.4.5. o(Sg) = {1}.

Proof Proposition 7.2.5 says that o(V) = {0}. Since

1—2z
1+2z

w(z) =

is analytic in a neighborhood of 0, the spectral mapping theorem says that w(V) is a
bounded operator with o(w(V)) = w(a(V)) = {1}. [ |

There is a connection between the invariant subspaces for Sg and those for V. Indeed,
one can check that Wy, 11I2[0,1] = ©“H? n K¢ for each a € [0,1]. Agmon’s theorem
(Theorem 7.4.1) describes all of the invariant subspaces of V as W y[q11L[0,1]. This
connects with a description of the invariant subspaces of S as {8H*NXg : 0 < a < 1}

20.5 A Basis for the Model Space

We follow a presentation from [140] to produce a basis for g which respects the
natural conjugation C. This instructional computation makes use of the Volterra operator.
Proposition 7.1.5 says that

1
(V*e)(x) = / g(t)dt

and Exercise 7.7.15 says that the Volterra operator is complex symmetric with respect to
the conjugation (Jg)(x) = g(1 — x) on I?[0,1], that is, V = JV*J.

Lemma 20.5.1. The conjugation (Jg)(x) = g(1 — x) on I2[0,1] and the conjugation Cf =
fzO on K¢ are related by the unitary operator W from (20.2.3) via the identity C = WJW*.

Proof We prove the lemma by establishing that WJ = CW. For any g in I*[0, 1], the
integrands of the following integrals are all dominated by max{|g(¢)|, |g(1 —t)|} and it
follows that

. 1
awigia = 22 [ wgrecra
0
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. 1
el fo g - Dle()]dr

. 1
[ oete-sas
0

S
L2 [ sorewpas

= (Wg)(2)z6(2)
= (CWg)(2)

=2z0(z)

for almost every z € T. [ |

Suppose that  is a Hilbert space with a conjugation C. An orthonormal basis (x,)5>;
for H is C-real if Cx,, = x,, for all n > 1. It is known that every Hilbert space with a
conjugation has an orthonormal basis that is C-real (Exercise 20.8.26). The following is a
J-real basis for I?[0, 1].

Lemma 20.5.2. The vectors

27in(x—

1
e,(x)=¢e 2 fornez, (20.5.3)
form a J-real orthonormal basis of I?[0, 1].

Proof The following computation shows that each e, is fixed by J:

(Je )(x) — e27rin((1—x)—%) — e—i2ﬂn(%—x) — e27'rin(x—%) —e (x)
n n .
To see that (e, )%_, is an orthonormal basis for I?[0, 1], observe the identity

. 1
eZWlW(X—g) = ol@mnx—mn) (_1)n62ﬂinx.

Now use the fact that (e27"*)®__ _ is an orthonormal basis for I?[0,1] (Theorem
1.3.9) to complete the proof. [ |

Next we compute We,, € K. Write each basis vector e,, in the form
en(x) = e—27in/2 g2minx (20.5.4)

to see that it suffices to compute e~*/2Wel?* for real y. Once this is done, substitute y =
27tn to find the corresponding basis for Kg. This somewhat long computation is presented
through a series of lemmas.

The following lemma shows that the image of the basis (e,)5>_o in Kg is a family
of reproducing kernels corresponding to a sequence of points on the unit circle. Since ®
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is analytically continuable across any arc of the unit circle T not containing z = 1, the
reproducing kernel

1-0()0(z
k(z) = L0000
1-¢z

corresponding to any boundary point ¢ # 1in T is well defined and belongs to Kg.
Lemma 20.5.5. Ify is real, then

-9
Vai¢

where k¢ (z) is the reproducing kernel for K corresponding to the point { on T defined by

(We'r)(z) = k¢ (2),

iy

In particular, () = e~

Proof Fix y in R, use the definition of W, then observe that

(WeiVX)(z)=ﬁ mexp( Z+ )dt

z—1

\/Ei z+1
—z_lf expl o (ir + 227 )

\2i 1 _z+1
T z-1 iy + 22 <eXp[<l}/+z—1)]_1>

z-1

_ Vi ;
“hE-D+een DY

—\2i v
= —e
A-ip+Q+iy)z (1 ¢ ®(Z))
20 1 —
1-iy

Seeking to write (20.5.6) as a scalar multiple of a reproducing kernel, we wish to write
e~ = O(¢) for some ¢. Define

+i
y—i

<

¢ =

If follows that ¢ € T, ©(¢) = e, and

(20.5.7)

= 1+ly
—= 1—iy’
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Substitute these values into (20.5.6) and obtain

2 1-0(0)6()
1-iy l—zz

—2i

(We'r*)(z) =

S+l kg( z)
¢-1
—2i(¢ - 1)

=@—D+@+DQ@

-2 l(g k(@)

_a-9,
(@),
Tk o

(20.5.8)

where k¢(z) denotes the boundary kernel evaluated at the boundary point ¢. This

proves the desired formula.

Since W is a unitary operator, the image of We'* in K¢ is a unit vector. This suggests
that we could simplify the expression (20.5.8) further to examine the constant appearing

in front of k¢(z).

Lemma 20.5.9. Ify is real, then

(1 9 3

(We'r*)(z) = 2

ke(2),

where Tc;(z) is the normalized reproducing kernel for X corresponding to ¢.

Proof Since y # oo, we have ¢ # 1 and ||k¢|| can be explicitly computed in terms of ©. In

fact, if z approaches ¢ radially we have
||k§||2 = ‘17‘1_1;% (kzskz)

i L= 10@P
_z—>§' 1- |Z|2

1-10()| 1+[6()

l-»; 1—|z| 1+ |z
_ i 1210

z—¢ 1- |Z|
=10

A computation using the definition of ® shows that

_ A2
el = (g
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With this in mind, continue from (20.5.8) and find that

e 1=0 1=¢
(Wer)(2) = 57 v ke(2)
_a=-9 4+
= i 6@
This proves the desired formula. [ |

Although it is evident from the preceding lemma that We* is a unit vector in K¢, this
was not our primary objective. Indeed, recall that we wanted to show that for any real y,
the function e~"/2Weir* is fixed by the conjugation C. The apparently unwieldy constant

a=9
11— ¢Igi

(20.5.10)

in Lemma 20.5.9 addresses this issue.
The square of (20.5.10) equals

-1 -9y

_—a-¢9r 3
(1= -2

and hence the constant (20.5.10) is one of the square roots of E
‘We have shown that for any real y,

1
(Welr*)(z) = ¢ ke(2),
where ¢ satisfies ©(¢) = e~¥. To complete the evaluation of e~*/2Wel’!, we use (20.5.7)

to describe the value of the constant e~/ in terms of ©:

%21

e =3 51 = [O(Q)].

N

The choice of square root is unimportant. The next lemma summarizes our findings.

Lemma 20.5.11. Ify is real, then

e (WerD)(z) = [EO()]: Ke(2), (20.5.12)

where 7{;(2) is the normalized reproducing kernel for Kg corresponding to the point { € T.
Each function (20.5.12) is fixed by the conjugation C f = f_zG) on Kg.

Proof The first portion of the lemma is simply a summary of the previous computations.
If z € T\{1}, then

ke(2) _1-eQe@ _1-¢
() 1-¢z 1-0()6(2)
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_1-00@ 1-¢7
1-0(0)6(z) 1-{z

= 00)0@) - (®(§)®(z)—_1 ) . (gz __1>
1-0(9)0(2) 1-¢z

= {0($)z0(2),
since ©(z) is unimodular. This identity, along with a short calculation, shows that
—_ 1
[£0($)]2 k¢ (z) is fixed by C. -

Recall that the orthonormal basis (e,,)S% _, of I?[0, 1] defined by (20.5.3) is fixed by the
conjugation (Jf)(x) = f(1 — x) on I?[0,1]. In light of (20.5.12), the image of this basis in
XK e under the Sarason transform

. 1
(Wg)(z) = ﬁ f gO[6(2)]t dt
0

z—1

is

(Wew)(@) = [600)]: ke, (2) = (—1)'%,” Kz, (2),

where
_2nn+i
T 2mn—i

$n

The functions We,, are fixed by the conjugation Cf = f_z® on Kg, and hence the matrix
representation of the compressed shift on Kg with respect to the basis (We, )5 _., is
complex symmetric. Finally, the points ¢, are characterized by ©(¢,) = 1.

20.6 A Matrix Representation

In this section we compute the matrix representation of Sg with respect to the orthonor-
mal basis (v,,)5%_ o, Where
1

U = Wep = (—1)"G, " ke, (2),

from the previous section. Indeed, since W*SgW = (I — V)(I + V)~! and We,, = v, for
all n € 7, it follows that

<S®Una Um> = <W(I - V)(I + V)_IW*vn’ Um>
={(I - V)T + V) 'W*v,, W*v,,)
=( -+ V) e, ep)

for all m, n € Z. Thus, the matrix representation of Sg with respect to the basis (V)52 _
is the same as the representation of (I — V)(I + V)~! with respect to the basis (€,,)5% _,.
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Theorem 20.6.1. The matrix representation of (I — V)(I + V)™ with respect to the
orthonormal basis

27in(x—

1
e,(x)=e 2 forn ez,

2(e _ 1) [ (_1)m+n ]oo
e @mm —i)Qrn —i)Imn=—c

Proof 1t follows from Proposition 7.2.9 that

@+ V)'lf)(X)=f(X)—f e *f(y)dy for f € I2[0,1].
0

Thus,
@=V)+ VI = = [ @f)dy
0
_v _ Y=X f(y)d
(10 [ e=r0ay)

— f(0) - f & f(y) dy
0

-/ o+ i | i ot ay)a

- (- f (@ + 1)f() dy
0

+ fo ) ( / t e/t f(y)dy) dt.

0
An integral computation shows that

e—x—inm ((277.'1’}’1 + i)ex+2ir[mx _ Zi)

(A= V)T +V) o)) = =

Now observe that
(A =V)T + V) ep)(X)en(x)
equals

(_1)m+n ((27rm + i)ex+2iﬂmx _ Zi) e(—l—zirm)x

2mrm — i

Therefore,
<(I - V)(I + V)_lema en)

1
- f (A= V) + V) lep)(x)on(x) dx
0
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dx

2mm — i
2(e—1) (=1)m+n
e (Qmm-iQRrn-—i)’

/1 (—=1)m+n ((27‘[1’)’1 + l-)ex+2i7rmx _ 2i) e(—1-2imTn)x
0

which completes the proof. [ |

Observe that the matrix in Theorem 20.6.1 is symmetric in m and n, in other words, it is
self transpose. This is the case with the matrix representation of any complex symmetric
operator with respect to a C-real orthonormal basis (Exercise 20.8.27).

20.7 Notes

This chapter covered a small sliver of a large field of operator theory [134, 135, 143, 250].
Let us mention a few other important results from the literature.
For an inner function u, the spectrum of the compressed shift S,, is the set

T(u) = {/1 € D™ : liminflu(2)| = o}

and the point spectrum is Z(u) ND = {1 € D : u(d) = 0}. The set Z(u) is the spectrum of
u and has various roles in understanding functions in the model space X,. For example,
if y is an arc of T which does not intersect Z(u), then every function in X, has an analytic
continuation to an open neighborhood of y. Observe that 3(®) = {1} for the inner function
O from (20.2.1).

The invariant subspaces of S,, are vH? N X, where v is an inner function such that
u/v is also inner. Moreover, every invariant subspace is cyclic. Any compressed shift is
irreducible in the sense that if M is a subspace of X, with S,M C M and S;M C M,
then M = {0} or M = X,.

The description of the commutant {S,}' of S,, is one of the gems of operator theory and
is a consequence of the commutant lifting theorem [324]. For any ¢ € H®, the operator
@(S,,) is well defined and equals B, T, |« , Where T, is the analytic Toeplitz operator on H>
with symbol ¢. Furthermore, {S,,} = {¢(S,) : ¢ € H*}. See Exercise 20.8.23 for a proof
using Hankel operators.

One can show that S,, satisfies the following:

(@) [ISull < 1.
(b) rank(I — S,S%) = rank(I — S%S,) = 1.

(c) lim ||S;;f] =0forall f € X,,.
n—oo

What makes compressed shifts important is that any Hilbert space operator satisfying (a) -
(c)is unitarily equivalent to S,, for some inner function u, hence the use of the term “model
space” for XK, [143].
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There is a representation theorem for other types of contractions [134, 135] involving
the compression of the shift to a reproducing kernel Hilbert space with kernel

1— u(Du(z)

k4 (2) = 7
-z

Here u is a general analytic self map of D and the resulting space is a de Branges—Rovnyak
space.

20.8 Exercises

Exercise 20.8.1. Consider the circley ={z : |z — §| = é} and the inner function © from
(20.2.1). Show that

. 1
lim[0(2)] = 5.
z€y

Remark: This shows that although lim,_;- ©®(r) = 0, limits along other paths in D
terminating at £ = 1 can be nonzero.

Exercise 20.8.2. Ifu isinner, prove that the reproducing kernel k; (z) for K, (see (20.1.3))
has the following property: for distinct 4,, 1,,...,4,, € D and any ¢, c5,...,c, € C,

>0 agky, (&) > 0.

1si,jsn
Remark: This is equivalent to the positive semidefiniteness of the matrix [k, ()]} ;-

Exercise 20.8.3. Prove that any subspace of a reproducing kernel Hilbert space is a
reproducing kernel Hilbert space.

Exercise 20.8.4. Let u be inner and let C be the function (Cf)(§) = u(¢ )% on I*(T).
(a) Prove that C? =1.

(b) Prove that ||Cf]|| = ||f| for all f € I*(T).

(c) Prove that C(af + bg) = aCf + bCgforalla,b € Cand f,g € IZ(T).

Exercise 20.8.5. Ifuisinner and C is the conjugation on I?(T) from Exercise 20.8.4, prove
that C maps I*(T) © X, onto itself.
Remark: Proposition 20.1.6 shows that CX,, = X,.

Exercise 20.8.6. Prove that the compressed shift S, satisfies S;} = B,S"|, foralln > 0.

Exercise 20.8.7. von Neumann’s inequality [144, p. 213] says thatif p € C[z] and T €
B(F) is a contraction, then p(T) satisfies

Ip(T)|| < sup |p(z)|.
|zI<1

Prove von Neumann’s inequality for T = S,,.
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Exercise 20.8.8. If u is inner, prove the following.
(@ V{S*u :n>=1}=X%X,.
) V{S*"u : n 20} = X,,.

Exercise 20.8.9. If u is an inner function, prove that ky = 1 — u(0)u is a cyclic vector for
Sy, that is, \/{Sltko : n > 0} = X,,.

Exercise 20.8.10. If u is an inner function and u(0) = 0, prove the following.

(a) 1 e X,

®) S, =I-1®1.

. u_u

(c) S;Su=1—2®2.
Exercise 20.8.11. Let u be an inner function such that u(0) = 0.

(a) Prove that S,, is a partial isometry (Definition 14.9.8).

(b) Prove thatkerS, = span{g} and (ran S,))* = C.
Exercise 20.8.12. If u is an inner function and u(0) = 0, Exercise 20.8.11 ensures that S,

is a partial isometry. Prove that U =S, + 1 ® g is unitary.
Remark: U is an example of a Clark unitary operator [143, Ch. 11].

Exercise 20.8.13. Let u be an inner function and u(0) # 0.

(a) Prove that ker S;; = {0}.

(b) Prove that ker S,, = {0}.
Exercise 20.8.14. Recall the Hankel operator H, from Chapter 17. If u is inner, prove that

HZHy is the orthogonal projection of H? onto X,.

Exercise 20.8.15. For each n > 1 prove that the n X n matrix

satisfies the following.
@) Tl < 1.
(b) rank(I — T,,T,;) = rank(I — T,/ T,;)) = 1.

(©) ||IT¥x|| > 0ask — oo forallx € C".
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Remark: If T € B(H) is a contraction that satisfies (a) - (c), then T is unitarily equivalent
to S, on some model space %, [143, p. 195].

Exercise 20.8.16. For the matrix T,, in Exercise 20.8.15, find an inner function u and an
orthonormal basis for K, such that a matrix representation of S, is T;,.

Exercise 20.8.17. Find all the hyperinvariant subspaces for the compressed shift on the
model space K ,n.

Exercise 20.8.18. Let u be a finite Blaschke product

u =[] 22,

j=11—=2;z

whose zeros 1,, 4,,..., 4, are distinct points in D. Prove that

qu=\/{1_1/sz:1<j<n}.

Exercise 20.8.19. Letu be afinite Blaschke product whose zeros are 14, 4,,..., 4,,, repeated
according to multiplicity. Prove that

Ky =|——= plz) — 1pe Pu),
Q-142)AQ-2,2)-(1—2A,2)

where &2,,_; denotes the set of polynomials of degree at most n — 1.

Exercise 20.8.20. Letu be afinite Blaschke product whose zeros are 14, 4,,..., 4,,, repeated
according to multiplicity. Let

z—A
biy(z) = ———.
1-Az
Define
1—|44)2 Ny
vﬁz):% and vg(z)z( H ba,-)4 for2< ¢ <n.

1-4,z 1<i<6-1 1— A,z
(a) Prove that vy, v,,..., U, is an orthonormal basis for X,,.

(b) Prove that the matrix representation of S, with respect to the basis vy, vy,..., 1, is
lower triangular with 14, 4,,..., 4, along the main diagonal (in that order).

Remark: This basis is known as the Takenaka-Malmquist-Walsh basis [143, p. 120].

Exercise 20.8.21. Ifu is inner and u = S,,B, where B is an infinite Blaschke product and
S,, is a singular inner function, prove that X, is infinite dimensional.

Remark: A more delicate argument shows that X, is finite dimensional if and only if u is
a finite Blaschke product [143, p. 117].
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Exercise 20.8.22. Let u be inner and consider the compression of the analytic Toeplitz
operator T, on H 2 to %,,. This is the operator A, on X, defined by Ao, f = BT, f.

(a) Prove that{A, : p € H®} C {S,}'.
(b) Foru(z) = z", prove that X,, = 2,,_; (the set of polynomials of degree at most n—1).

(c) Find the matrix representation of A, with respect to the orthonormal basis
1,2,2%,..., 2" L

(d) Use this matrix representation to prove that {4, : ¢ € H*} = {S,}'.
Remark: The commutant lifting theorem [324] (see also [143]) says that {A,, : ¢ € H*} =

{S,} for any inner function u. We prove this in Exercise 20.8.23.

Exercise 20.8.23. This is a continuation of Exercise 20.8.22 and follows a presentation
from [266]. Suppose that u is inner and T € B(X,) commutes with S,,. Use the following
steps to produce a ¢ € H* such that T = A, and || T = [|¢| -

(@) ForT € B(X,)letT : H> - PT(Z)be defined by Tf = uTRB,f. Prove that TS, = S,,T
if and only if T is a Hankel operator.

(b) Suppose that T commutes with S,,. Prove that T = Hy for some ¢ € L® with ||[Hy| =
1%l

(c) Prove that Hy, = 0 and deduce that ¢ = 3ju € H®.
(d) ProvethatuTf = P_(upf)forall f € X,,.
(e) Prove that T = A, and ||T]| = [|¢]| -

Exercise 20.8.24. For an inner function u and ¢ € H®, deduce from Exercise 20.8.23
that A(P = MuHﬁ(p |5Cu .
Remark: See [250] for more on this.

Exercise 20.8.25. Let u be an inner function and let (vj);»; be an orthonormal basis for
the model space X, (which may be finite or infinite dimensional). Prove that (u"v;),»0,j>1
is an orthonormal basis for H2.

Exercise 20.8.26. Suppose that C is a conjugation on a complex Hilbert space (. Use the
following steps to prove that / has an orthonormal basis (u,,),,»; such that Cu,, = u,, for
all n.

(a) Prove that (x,y) = (Cy, Cx) for all x,y € K.

(b) Provethat X = (I—C)X is areal Hilbert space in the sense that it satisfies the axioms
of a Hilbert space except that the field of scalars is R and not C.

(c) Verify the identity 2x = (x + Cx) — i(ix + C(ix)) for all x € 7.
(d) If (u,),3; is an orthonormal basis for X, prove that Cu,, = u,, for all n.

Remark: Such a basis is a C-real basis.
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Exercise 20.8.27. Let T € B(¥) be a complex symmetric operator. That is, there exists a
conjugation C on K such that T = CT*C. Prove that the matrix representation of T with
respect to any C-real orthonormal basis of J is symmetric.

Exercise 20.8.28. Let u be an infinite Blaschke product and consider the analytic Toeplitz
operator T, on H>.

(a) Use the von Neumann-Wold decomposition (Theorem 15.1.1) to prove that T, is
unitarily equivalent to a block operator on EBj>1 T Ky

(b) Prove that this block operator is

S O O ~ O
S O ~N O O
O N O O O
c~N O O O O
O O O o o

where 0 is the zero operator on X, and I is the identity operator on X,,.

Exercise 20.8.29. Continuing with Exercise 20.8.28, prove that every operator in the
commutant of the operator above is of the form

S O O O

where A; € B(X,,) forall j > 0.

Exercise 20.8.30. Follow these steps to prove the Nevanlinna-Pick theorem: If
A1, A3,..., 4, are distinct points in D and w;, w,,...,w, are arbitrary points in D, then
there is an analytic self map f of D such that f(4;) = w; for all 1 < i < nifand only if the
matrix

_ [ 1 - ww; ]n
1—A;4; 1bi=t
is positive semidefinite.
(a) Let
u(z) = ﬁ 4 __Z
j=1 1=z

be the finite Blaschke product whose zeros are 4;, 4,,...,4,, and recall from Exercise
20.8.18 that X, = span{k;, : 1 < j < n}. Define the operator R : X, — X, on the
basis elements of X, by Rk, = ij/lj forall 1 < j < n. Prove that R € {S;;}'.
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(b) By Exercise 20.8.22 there isa ¢ € H® such that R = T|x, and |[R]| = [|¢|«- Use this
to prove that ij/lj = go(/lj)k,lj forall1 £ j < nand thus p(4;) = w.

(c) Prove that Q is positive semidefinite if and only if I — R*R > 0.

(d) ProvethatI —R*R > Oifand onlyif @[, < 1.

20.9 Hints for the Exercises

Hint for Ex. 20.8.2: Write <ij<n ciCjky,(4;) as the square of the norm of a function.
Hint for Ex. 20.8.3: If K(z, w) is the reproducing kernel for H and P, is the orthogonal
projection of H onto M, examine Py K(z, w).

Hint for Ex. 20.8.6: Work with adjoints and use the S*-invariance of %,,.

Hint for Ex. 20.8.7: Since p(T) = B, p(S)|x, and, without loss of generality,

sup [p(2)| =1,

|zI<1
it suffices to show that | p(S)f]| < || f| for all f € X,,.
Hint for Ex. 20.8.9: Let C be the conjugation from Proposition 20.1.6 and prove that Cky =
S*u. Then use Exercise 20.8.8.
Hint for Ex. 20.8.10: Prove (b) and then use the conjugation C to prove (c).
Hint for Ex. 20.8.13: Consult Proposition 20.3.3 for (a). Consult Proposition 20.3.4 for (b).
Hint for Ex. 20.8.23: For (a), recall that T is a Hankel operator if and only if P zT f = TSf
forall f € H? (Exercise 17.10.10) and that B, f = uP_uf forall f € X, (Proposition 20.3.1).
Hint for Ex. 20.8.25: Consider the Toeplitz operator T,, on H? and the von Neumann-
Wold decomposition (Theorem 15.1.1).
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