


Chapter 1

Search Algorithm - Essence of 
Optimization
Dinesh G. Harkut

1. Introduction

Every time you hit the search button on Google, the search engine sifts through
thousands of searches, if not millions of web pages, to spit out the content we are 
seeking in a fraction of a second. It is an algorithm – a set of mathematical rules 
embedded in the software, which makes all this possible. In fact, every time we 
enlist for a unique identity social security/Aadhaar number, access an automated 
teller machine, book train or air tickets, or buy merchandise online, we are indi-
rectly expanding the scope and range of algorithms, a mathematical concept whose 
roots date back to 600 AD with the invention of the decimal system.

Algorithms are nothing but the logically group of instructions aimed at solv-
ing a problem or completing a task. Recipes are algorithms like math equations. 
Computer code is algorithmic. Algorithms are aimed at optimizing everything. 
Mathematical algorithms include fundamental methods from arithmetic and 
numerical analysis, which in turn manipulate the data through addition, multiplica-
tion of integers, polynomials, and matrices, and may be used for solving a large 
variety of mathematical problems which arise in many contexts: solution of simul-
taneous equations, data fitting and integration, and random number generation. 
Here, the main emphasis is on algorithmic aspects of the methods, rather than the 
mathematical basis.

Whenever we use a computer, laptop, phone, or a mileage calculator in a car, 
we are using algorithms, and we may call it programs, or software packages, or 
apps. They can make things easier, save lives, and surmount disorder. To discuss 
the effects of technology-enabled assistance in human lives, algorithms are a useful 
artifact to begin with. Algorithms have penetrated in every aspect of human life 
and provide a better standard against which to compare human cognition itself. 
It becomes the new arbiters of human decision-making in almost any area we 
can imagine like which movie to watch to which house to buy to self-driving cars. 
Biometrics refer to identifying human being by certain physical features like finger-
prints or iris scans. Biometrics-based social security identity card or Aadhaar card, 
in Indian context which evolved as the India’s universal identity card, in turn uses 
an algorithm to store and retrieve fingerprints and iris scans. Computer scientists 
have devised algorithms that can analyze a given thumbprint and match it against a 
database. Because of the overdependence of human beings on computer, indirectly 
only the algorithms determine whether one gets a job or one get into college or get 
an apartment; moreover, their work goes largely unnoticed. Algorithms are behind 
many routines works, but they are still significant decision-making tools in every-
one’s life.
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Deloitte Global predicted that, in time to come, more than 80% of the world’s 
largest software enterprise companies will have cognitive technologies, mediated 
by algorithms integrated into their products. Algorithms with the perseverance 
and ubiquity of insects shall automate the processes that are used to require human 
intervention and rational. These can now achieve basic processes of measuring, 
monitoring, seeing, or even counting. Our vehicle can guide us where to slow down. 
Our television sets can now advocate which movies to watch. A grocery can recom-
mend a healthy amalgamation of foods and vegetables for lunch/dinner. Alexa/Siri 
reminds us important events or anniversaries of dear ones. The overall impact of 
pervasive algorithms is very hard to calculate because the presence of algorithms 
in every walk of life, everyday processes, and transactions is now so great and is 
mostly hidden from public view.

Algorithms are making enormously significant pronouncements in our society 
in almost every walk of life, ranging from welfare benefits to medicine to trans-
portation to criminal justice and beyond. The ever-increasing assortment and 
investigation of data and the resulting application of this information can decrease 
poverty, cure diseases effectively, bring apt resolutions to mankind, places where 
need is utmost, and dispel epochs of prejudgment, illogical suppositions, vicious 
practice, and obliviousness of all kinds. Algorithms are now redefining how we 
think, what we know, and what we think. Algorithms are a black box and are 
invisible pieces of code that tell a computer how to accomplish a specific task. An 
algorithm directs the computer what to do in order to produce a certain desired 
outcome. Every time you do search on internet through any search engine like 
Google or look at your Facebook feeds or use GPS navigation in your car, you are 
directly or indirectly interacting with an algorithm. Individuals often demonstrate 
greater trust on assistance from algorithms compared to non-algorithmic assistance, 
displaying algorithmic obligation. Counting on algorithms for analytical tasks is 
typically beneficial. Even simple algorithms, such as weighting all variables equally, 
can outclass humanoid prediction. Algorithms have begun to intrude on tasks 
conventionally earmarked for human judgment and are progressively proficient of 
performing well in innovative and tough tasks. Moreover, at the same time, soci-
etal impact, through social media, personal networks, or online assessments and 
reviews, is one of the most compelling forces affecting individual decision-making.

In short, algorithms are the core entity of the internet, and they manage and 
run the internet and all online activities like financial transactions, crypto/stock 
trading, searching, customized browsing, data manipulation, etc. Email knows the 
destination address and thus knows where to go thanks to the underlying algo-
rithms. Moreover, smartphone mobile apps are nothing but algorithms. Computer 
and video games are algorithmic storytelling. Book or movie recommendation, 
online dating, leisure\travel web portals, and so on would not function properly and 
efficiently without algorithms. Artificial intelligence (AI) is nothing but algorithms. 
GPS mapping systems make use of algorithms to get entity from location X to 
location Y. Every single piece of the object people see on social media is brought 
to them by means of algorithms. Moreover, everything people do in everyday life 
and see on the web is an outcome of some algorithm or other. Every time we sort or 
arrange data in a worksheet, algorithms plays vital role, and almost every financial 
transaction is accomplished today by algorithms. Algorithms make every electronic 
gadget to respond to voice commands, organize and sort photos, recognize and 
identify faces, and build and drive automobile cars. Hacking, cyberattacks, and 
cryptographic code-breaking exploit algorithms to the next level. Algorithms are 
often sophisticated, elegant, and amazingly useful tools used to accomplish various 
categories of tasks. They are mostly hidden and invisible aids, enhancing and aug-
menting human lives in increasingly efficient ways. Algorithms will continue to face 
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the ever-increasing impact over the next few decades, influencing people’s work and
personal lives and the ways they interact with information, organizations like health
care service providers, not-for-profit/government institutions, banking/financial 
sector, retailers/traders, education, media corporates houses and entertainment 
industry, and each other. The hope is that algorithms will help people swiftly and 
impartially perform the tasks and get the desired products, information, and ser-
vices. The major apprehension is that algorithms can deliberately or unconsciously 
create discrimination and thus enable social engineering to create biased narrative 
and have other harmful societal impacts.
  The term algorithm which finds application in computer science is universally 
used to describe problem-solving methods that help for the implementation of 
computer programs. Mostly, algorithms involve complicated methods of manipu-
lating and organizing the data involved in the computation. Basically, they involved 
the manipulation of data based on some mathematical model and which typically 
find applications of: searching, sorting, string processing, geometric algorithms,
graph algorithms, genetic algorithms (GAs), neural network, etc.

2. Searching

  Searching is a method for finding certain things in given data/files which are
of vital importance. There are different categories of search methods: basic and 
advanced, like one using trees and digital key transformations, including balanced 
trees, hashing binary search trees, and digital search trees, and trying different 
methods appropriate for different types of files. These methods in turn are related
to each other and possess much resemblance with sorting methods.

3. Sorting

  Sorting is a method of rearranging files in the order that are covered in some 
depth due to their fundamental importance. A large variety of methods were devel-
oped, described, and compared. Algorithms including priority queues, selection,
merging, and several related problems are created. Some of these algorithms are 
used as the basis for other more complex algorithms.

4. String processing

  String processing algorithms include a range of methods for dealing with (long)
sequences of characters. String searching basically leads to pattern matching which 
in turn leads to parsing. File compression techniques and cryptology are also part of 
advanced string processing applications.

5. Geometric algorithms

  Geometric algorithms encompass an assortment of procedures for resolving 
problems by involving points and lines along with other simple geometric objects.
Moreover, it also finds application of ideas from several mathematical disciplines 
like algebra, combinatorics, topology, and differential geometry. During the
last two decades, most of the geometric applications like CAD/CAM, computer 
graphics, VLSI design, molecular biology, robotics, GIS, spatial databases, sensor
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networks, machine learning, and scientific computing become the motivation for 
computational geometry to evolve as a full-fledged discipline of theoretical com-
puter science. Some typical high-end applications of geometric algorithms includes: 
optimal airspace design, air traffic controller’s traffic balancing and automatic 
sectorization of airspace, wireless sensor networks design, analysis of 2D electro-
phoresis gels, prediction of resilience, and recovery of damage in neural networks.

6. Graph algorithms

Graphs algorithms are the natural way to understand connection between 
the linked data and thus reveal the relationships in data. Exploring and tracking 
these interlinking connections divulge new insights and influence and facilitate 
to analyze each data point as part of a bigger picture. Graph algorithms are useful 
in a variety of complex difficult structures and reveal difficult-to-find patterns 
ranging from finding bottlenecks, susceptibilities to detect communities, fraud 
rings, improving machine learning predictions to predict the spread of disease or 
ideas, and thus enable us to leverage relationship within data to devise intelligent 
solution to enhance the effectiveness of machine learning models. Graph algorithms 
types such as exact or approximated, static or dynamic, distributed or centralized, 
deterministic or randomized, and matching and network flow, minimal spanning 
tree, and shortest path are some of the general approaches developed for searching 
in the graph.

7. Genetic algorithms

A genetic algorithm (GA) is a search-based heuristic algorithm used for solving 
optimization problems in machine learning that is based on genetics and natural 
selection. GA is a subset of evolutionary algorithms which is based on behavior of 
chromosomes and their genetic structures which uses evolutionary generational 
cycle starting from initialization, fitness assignment, selection, reproduction, 
replacement, and termination, to yield high-quality solutions. GA makes use of 
various operations which enhance or replace the population to deliver a better-
quality suitable solution and get inspiration from evolution and natural selection. 
Through the process of natural selection, organisms regulate to augment their 
likelihoods for endurance in a given situation. Eventually, incompetent elements 
perish from the population, to be replaced by successful-solution descendants. 
Apart from the applications in multimodal optimization, DNA analysis, design of 
aircraft, and genetic algorithms are found to be efficient and cost-effective plan 
for tricky traveling salesman problem. It does not need derivative information and 
possess excellent parallel capabilities which refine and optimize the solution to the 
multiobjective problems, and discrete and continuous functions. The idea behind 
genetic algorithms is extremely alluring.

8. Neural networks

Neural networks are basically inspired by the biological nervous system or  
neural networks in the brain and basically parallel computing devices. It is one of 
the most emerging areas in data science which revolutionizes and eventually leads 
to tremendous growth of artificial intelligence, machine learning, and deep learn-
ing and basically designed to recognize patterns and extracting features that can 
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be fed to other relevant algorithms for further classifications and clustering. The 
elementary computational unit of a neural network is a neuron also called as node,
and each node or neuron is linked with certain weight. This weight is assigned as
per the relative importance of that particular neuron or node. Neural networks are 
simply weighted digraphs with neurons acting as vertices, and weights on edges 
denote the connection strength of the pair. Each node or neuron collects values or 
weights from other neurons and accordingly computes the output.
  Gradient Decent, Conjugate Gradient, Newton’s Method, and Quasi-Newton 
Method are some of the popular optimization algorithms which find applications in
context with neural network. Speed and memory footprint of all these algorithms 
may vary, but an ultimate objective is to accomplish various intricate computational
task faster than the traditional systems.
  In neural network, training of the neurons is accomplished by appropriately 
modifying connection strength in response to training data. Most apt application
of neural networks is forecasting and classification of applications, such as gene 
predication, optical character recognition, and stock market time series prediction.
  Having discussed about all these different types of algorithms, one thing which 
is most apparent that, irrespective of types of algorithms, searching lies at the
heart of all. Rather, it is the intrinsic part of all algorithms as it finds application 
one way or other, and it is one of the first things any algorithm designer should try 
in the quest for efficiency. Basically, sorting is directly based on searching, wherein
we use to compare, i.e., search for specific pattern of string for comparison, and 
then rearrange those strings based on desired sorting pattern of ascending or 
descending. Searching can be used to illustrate most algorithm design paradigms.
Data structure techniques, divide-and-conquer, randomization, and incremental 
construction all lead to popular sorting algorithms. Binary search and its variants 
are the essential divide-and-conquer algorithms. Depth-first and breadth-first 
search provide mechanisms to visit each edge and vertex of the given graph.
Strategy represents the pursuit for the big picture, the framework around which
we construct our path to the goal. Strategies are used to win the minor skirmishes 
we must fight along the way. They prove the basis of most simple and efficient 
graph algorithms. Simulated annealing is a simple and effective technique to effi-
ciently obtain good but not optimal solutions to combinatorial search problems.
Combinatorial search, improved with tree pruning techniques, can then be used to
find the more optimal solution of small optimization problems. Ingenious pruning
procedures can speed up combinatorial search to a remarkable extent. Proper trim-
ming will have a greater impact on search time than any other factor. Historically,
computers have spent more time searching and sorting than doing anything else all
put together. A quarter of all mainframe cycles are spent in searching and sorting 
data. Although it is unclear whether this remains true on smaller computers, but 
still searching and sorting remain the most ubiquitous combinatorial algorithm 
problem in practice.
  An important key to algorithm design is to use searching/sorting as a basic 
building block, because once a set of items is sorted, many other problems become 
easy. Consider the few of the applications like:

•  Closest pair  – In a given a set of  n  different numbers, suppose we are inter-
  ested in finding the pairs of numbers having minimum or no deviation or
  minimal difference between them. One way to find the desired pairs in quick-
  est possible way is to arrange these numbers in sorted order either in ascending
  or descending order. Once sorted, the closet pair of numbers shall spatially
  reside next to each other. Thus, merely a linear scan through the sorted list will
  complete the job.
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• Element uniqueness – In a given set of n items or list of numbers, suppose we 
are interested in finding the occurrence of any duplicates, the most efficient 
and appropriate algorithm is to sort these item lists followed by simple linear 
scan. By verifying and checking, indirectly searching all adjacent pairs, dupli-
cate item can be pointed out. This can be treated as one of the special cases of 
the closest-pair problem, wherein instead of finding minimal deviation, we are 
typically interested in finding the elements in the list with deviation or gap of 
difference of zero.

• Frequency distribution – In a given a set of n items, suppose we want to find 
the major number of times or count of appearance/occurrence of particular 
element, i.e., frequency of occurrence, arranged the given list in sorted order 
either in ascending or descending, scan the list from left to right and go on 
counting them, as all matching elements will be lumped together during sort-
ing. To find out how frequently an arbitrary selected element k occurs, one can 
start by looking up k using binary search in a sorted array of keys. By scanning 
the list from left of this point until the element is not k and then moving to the 
right, we can find this count c in linear time, where c is the number of occur-
rences of k. The number of instances of k can be found in time by using binary 
search to look for the positions of both and where it is arbitrarily small, and 
then by taking the difference of these positions.

• Selection – In a given list of numbers in array, suppose one is interested in 
finding the kth biggest or largest item, the desired kth largest can be found in fix 
constant time. If the numbers in the arrays are arranged and placed in proper 
sorted order, we simply need to look for the kth position in the array, as the 
median element appears in the (n/2)nd position in sorted order list.

• Convex hulls – In a given set of n points in two dimensions, suppose we want 
to find the polygon having smallest area such that it encompasses all the points. 
Here, the convex hull is which is just like a rubber band stretched over the 
points in the given plane and then released gives a nice representation of the 
shape of the points and is the most important building block for more sophis-
ticated geometric algorithms. Moreover, if the given points are arranged in 
sorted order in either of the coordinate, the points can be inserted either from 
left to right or bottom to top, respectively, into the hull. Consider the case that 
points are sorted on x coordinate, as the rightmost point is always lies on the 
edge, and it will be inserted into the hull. However, adding new rightmost point 
may cause others point to be deleted, and we can swiftly identify such points as 
they fall inside the polygon formed by adding these new points. Thus, points to 
be deleted are the neighbors of the preceding point we injected, so they will be 
easy to identy. The total time is linear after the sorting has been done. Although 
some of these issues can be solved in linear time using more sophisticated 
algorithms, sorting which is incidentally based on searching at core provides 
quick and easy solutions to all of these problems. It is a rare application whose 
time complexity is such that sorting proves to be the bottleneck, especially a 
bottleneck that could have otherwise been removed using clever algorithmics.

Thus, searching/sorting is the most thoroughly studied problem in computer 
science. Literally, loads of diverse algorithms are known, most of which have some 
advantages over all other algorithms in certain circumstances. Most of the stimulat-
ing concepts used in the design of algorithms appear in the context of searching/
sorting such as data structures, divide-and-conquer, and randomized algorithms.
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  Searching/sorting is a natural laboratory for studying basic algorithm design
paradigms, since many useful techniques lead to interesting searching/sorting 
algorithms. Searching/sorting thus becomes the basic building block around 
which many other algorithms are built. By understanding searching thor-
oughly and devising effective searching techniques, we can obtain an amazing 
amount of power to solve other problems and thus will become the essence for 
optimizations.
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Chapter 2

Search Algorithms on Logistic and 
Manufacturing Problems
Gladys Bonilla-Enriquez  
and Santiago-Omar Caballero-Morales

Abstract

The supply chain comprehensively considers problems with different levels of 
complexity. Nowadays, design of distribution networks and production scheduling 
are some of the most complex problems in logistics. It is widely known that large 
problems cannot be solved through exact methods. Also, specific optimization 
software is frequently needed. To overcome this situation, the development and 
application of search algorithms have been proposed to obtain approximate solu-
tions to large problems within reasonable time. In this context, the present chapter 
describes the development of Genetic Algorithms (an evolutionary search algo-
rithm) for vehicle routing, product selection, and production scheduling problems 
within the supply chain. These algorithms were evaluated by using well-known test 
instances. The advances of this work provide the general discussions associated to 
designing these search algorithms for logistics problems.

Keywords: vehicle routing problem, knapsack problem, flow-shop Scheduling, 
local-search Algorithms, genetic algorithms

1. Introduction

According to the Council of Supply Chain Management Professionals (CSCMP),
logistics is defined as the process of planning, implementing and controlling all 
operations and information flow for the efficient and effective transportation and 
storage of goods or services from a point of origin to a point of consumption. As 
presented in Figure 1, many operations are involved in a logistics network, and 
manufacturing is a crucial operation to transform inbound goods (e.g., raw materi-
als) into outbound goods (e.g., end products, sub-assemblies, work-in-process, etc.) 
throughout this network.

Due to the complexity of these operations, where many of them involve problems 
of NP-hard computational complexity, research and improvement efforts require the 
use of advanced of quantitative and qualitative strategies and tools. Among these, 
the use of Search Algorithms such as meta-heuristics has been proposed to solve to 
near-optimality large NP-hard problems within reasonable time [1].

As presented in Figure 1, transportation is needed for the efficient flow of 
goods throughout the supply chain (SC). Thus, the analysis and solution of routing 
problems are the first set of problems to be addressed in this chapter.

Then, manufacturing planning is needed to achieve the required quantities of 
sub-assemblies and end-products to supply the customers (or even other suppliers) 
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in time through the SC. Thus, production planning problems are the second set of 
problems to be addressed in this chapter. Note that both sets are mutually important 
and dependent for the appropriate performance of the SC.

While there are many search algorithms or meta-heuristic approaches to solve 
these problems, this chapter addresses the specific configuration settings to apply 
Genetic Algorithms (GA) to solve both sets of problems. As the solutions have dif-
ferent representations (i.e., permutations, binary chains, real numbers), having a 
common algorithmic base can lead to a better understanding for successful imple-
mentation for other problems and contexts.

GA are based on the principle of natural selection of “survival of the fittest” 
where individuals within a population compete between each other for vital 
resources (i.e., food, shelter, etc.) and/or to attract mates for reproduction. Due to 
this selection mechanism, it is expected that poorly performing individuals have 
less chance to survive in contrast to the most adapted or “fit” individuals which are 
more likely to reproduce, inheriting their good characteristics to their offspring to 
make them better and more adapted to their environment [2].

Figure 2 presents the general structure and main elements of a GA. This 
meta-heuristic is population-based. Thus, it works by continuously improving 
on a set of solutions by using reproduction operators which facilitate the search 
mechanisms for the solution space of the problem. This set, known as the popula-
tion, consists of N feasible solutions which are evaluated through a fitness func-
tion (i.e., the total distance equation, or objective function, to determine the total 
cost associated to each solution). Then, the solutions with the best fitness values 
become candidates for reproduction to (hopefully) inherit their best features to 
new solutions and improve the overall population in the next generation (itera-
tion). It is expected that after X generations the mean fitness of the population 
converges to a local optimum.

Within this context, the present chapter addresses the different representa-
tions of candidate solutions, fitness functions, and reproduction operators, for the 
application of GA to solve the following sets of problems:

• Routing Planning (Section X.2): Traveling Salesman Problem (TSP) and 
Capacitated Vehicle Routing Problem (CVRP).

Figure 1. 
General example of a logistics network.
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• Production and Selection of the Most Profitable Goods (Section X.3): 
Economic Lot Problem with Multiple Items and Knapsack Problem.

• Production Scheduling (Section X.4): Permutation Flow-Shop Scheduling 
Problem.

This chapter ends with a discussion of the results and the practical implications 
of the future work (Section X.5).

2. Genetic algorithm for route planning problems

2.1 Traveling salesman problem

The Traveling Salesman Problem (TSP) represents the scenario of a salesperson 
who must visit each place within a set of cities or towns. This must be performed 
with the following considerations: the salesperson starts and ends the whole journey 
at a single location (i.e., the main office) and must visit each place only once [3]. 
Although this is the basic understanding of the TSP, the main feature of finding a 
single route, or sequence of minimum distance or cost, is shared by other real-world 
applications such as vehicle routing [4], production planning [5], service time [6], 
and design of computer networks [7]. Figure 3 presents an overview of the TSP 
model with n = 12 cities.

Note that each single route that complies with the previous restrictions repre-
sents a candidate solution, and there are as much as n! candidate solutions if brute 
search were to be considered as solving method to find the optimal or best solution. 
Just for the example presented in Figure 3, there are up to 12! = 479′001,600 or 

Figure 2. 
General structure and main elements of a GA.
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479.00e+006 feasible solutions to visit all 12 cities. This number increases exponen-
tially as n increases linearly. Thus, if just a single city is added to the TSP problem, 
the number of feasible solutions can increase to 13! = 6.23e+009.

This leads to a problem with an infinite solution space if large sets of cities are 
considered. This classifies the TSP as an NP-hard problem, which is very difficult to 
solve within reasonable time, even with the most advanced computational systems. 
Thus, different meta-heuristics have been developed to provide fast near-to-
optimal solutions. Among these meta-heuristics the following can be mentioned 
[8]: Nearest Neighbor (NN), Simulated Annealing (SA), Tabu Search (TS), Genetic 
Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization 
(PSO) and Tree Physiology Optimization (TPO).

As presented in [8] GA and SA are among the most suitable heuristics, achiev-
ing error gaps from best known solutions within the 10% mark for small (n < 100), 
moderate (100 < n < 150) and large (150 < n < 450) TSP instances. However, within 
the context of TSP solutions, it is always recommended to test the solving methods 
with very large instances (i.e., n > 500) to corroborate their performance.

Thus, the developed GA considers TSP instances with n ≈ 1000. For this pur-
pose, the GA considers the structure presented in Figure 2 with the settings and 
reproduction operators presented in Table 1 and described in Figure 4.

Figure 3. 
Example of a feasible TSP solution with n = 12 cities.

Parameter Setting

Generations (Iterations) 1000

Fitness Function Symmetric Euclidean Distance of TSP Route

Population Size According to the size of the TSP

Selection Tournament

Reproduction Operators:

Crossover Partially-Matched Crossover (PMX)

Mutation Swap, Inversion

Table 1. 
GA settings for the TSP.
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Implementation of the GA was performed in MATLAB with an Intel Core 
i7–5500 CPU at 2.40 GHz and 8GB RAM. Testing was performed with a set of TSP 
instances from the TSPLIB95 database [9]. The details of these instances, including 
the GA’s population size N used for each case, are presented in Table 2. The results 
of the tests can be observed in Figure 5 and Figure 6.

As presented in Figure 5, the mean error gap through all instances begins to 
decrease as the selection and reproduction mechanisms of the GA start to operate 
on the initial and updated populations. By the 300th generation the mean error gap 
decreases under the 10% mark to finally reach an approximate of 7% by the 1000th 
generation. This corroborates the performance reported in [8].

Finally, Figure 6 presents the performance of the GA based on the size of the 
test instances (n). With the settings reported in Table 1, as n increases, the GA takes 
more time to converge to a local optimum which, in some cases, it is slightly over the 
10% mark. Also, the size of the population (N) must be increased to improve the 
search performance.

Based on these findings, particularly for the TSP with n ≈ 1000, the following 
recommendations can be made:

• Diversification of solutions depends of the size of the population (N) and the 
TSP (n). Because N is the only controllable parameter, it is important to find 
an appropriate balance between it and n because a large N can increase the 
computational memory load of the algorithm which is already affected by n.

• A larger number of generations should be considered for large TSP problems. 
This because convergence may get slower due to n, independently of the 
reproduction or selection operators, or the size of the population.

• Integration with other heuristics or meta-heuristics can improve on the initial 
population or some of the search operators, and thus, on the convergence of 
the GA through all generations. This process, called hybridization, has led to 
obtain very suitable results for large TSP instances [10].

As an example of hybridization, Figures 5 and 6 present the performance of 
the revised GA (hybrid-GA) with a much smaller N (= 50 for all instances) and a 
Greedy algorithm to improve four offspring (two by crossover, one by flip muta-
tion, one by swap mutation) which are included within the updated population. 
This increases the speed of the GA, reaching the 10% by the 100th generation, with 

Figure 4. 
Partially-matched crossover, and swap/inversion mutation operators for the TSP.
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a final mean error gap of 5% by the 1000th generation. Also, improvement of the 
large instances (n > 500) is observed, achieving error gaps under the 10% mark.

2.2 Capacitated vehicle routing problem

The Capacitated Vehicle Routing Problem (CVRP) represents an extension on 
the TSP. As shown in Figure 7, the CVRP determines a set of routes that start and 
end at a specific place or location (e.g., a distribution center). These routes must 
visit or serve a finite number of locations and meet their demand requirements. 
Each route must be served by a single vehicle (e.g., a salesperson) with finite capac-
ity, and only one vehicle can serve a location. Thus, the CVRP can be understood as 
a variant of the multiple-TSP with capacity restrictions [11].

As in the case of the TSP, the CVRP is a combinatorial problem of NP-hard 
complexity which cannot be solved within a reasonable polynomial time [12]. Due to 
this, the CVRP has been addressed by different meta-heuristics such as Tabu -Search 
(TS) [13, 14], GA [15], SA [16, 17], and Particle Swarm Optimization (PSO) [18].

N Size of the  
TSP (n)

Name of the 
Instance

N Size of the  
TSP (n)

Name of the 
Instance

200 51 eil51.tsp 200 198 d198.tsp

200 52 berlin52.tsp 300 200 kroA200.tsp

200 70 st70.tsp 300 200 kroB200.tsp

200 76 eil76.tsp 300 225 ts225.tsp

200 76 pr76.tsp 300 225 tsp225.tsp

200 99 rat99.tsp 300 226 pr226.tsp

200 100 kroA100.tsp 300 262 gil262.tsp

200 100 kroB100.tsp 300 264 pr264.tsp

200 100 kroC100.tsp 300 280 a280.tsp

200 100 kroD100.tsp 300 299 pr299.tsp

200 100 kroE100.tsp 300 318 lin318.tsp

200 100 rd100.tsp 500 400 rd400.tsp

200 105 lin105.tsp 500 417 fl417.tsp

200 107 pr107.tsp 500 439 pr439.tsp

200 124 pr124.tsp 500 442 pcb442.tsp

200 127 bier127.tsp 500 493 d493.tsp

200 130 ch130.tsp 500 574 u574.tsp

200 136 pr136.tsp 500 575 rat575.tsp

200 144 pr144.tsp 800 654 p654.tsp

200 150 ch150.tsp 800 657 d657.tsp

200 150 kroA150.tsp 800 724 u724.tsp

200 150 kroB150.tsp 1500 783 rat783.tsp

200 152 pr152.tsp 1500 1002 pr1002.tsp

200 159 u159.tsp 1500 1060 u1060.tsp

200 195 rat195.tsp 1500 1084 vm1084.tsp

Table 2. 
TSPLIB instances for GA testing.
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Figure 5. 
Mean error gap across all TSP test instances with (a) the GA, and (b) the revised hybrid-GA.

Figure 6. 
Error gap across all TSP test instances with (a) the GA, and (b) the revised hybrid-GA.

Figure 7. 
Example of a feasible CVRP solution with n = 12 cities and 3 routes.
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For this case, the GA presented in Figure 2 was modified to solve the CVRP.  
The GA and its configuration settings are presented in Figure 8 and Table 3 respec-
tively. Note that the reproduction operators remain the same as considered for the 
TSP. Testing was performed with a set of instances from the CVRPLIB database  
[19, 20]. Table 4 presents the details of the selected instances.

As presented in Figure 9, the mean error gap reaches the 10% mark by the 200th 
generation, with an approximate of 8.5% by the 1000th generation. In contrast to the 
patterns observed in Figure 6, in Figure 10 there is not a clear relationship between 
the size of the instance (n) and the error gap. Thus, there are large instances with very 
small error gaps (approximately 6%) and medium instances with large error gaps 
(over 10%). This however is expected because there are more tasks to be performed 
on the CVRP such as route segmenting and capacity restriction compliance. This 
leads to frequently consider GAs for small CVRP instances (n < 200) [15, 21].

Figure 8. 
Modified structure of the GA for the CVRP.

Parameter Setting

Generations (Iterations) 1000

Fitness Function Symmetric Euclidean Distance of CVRP Routes

Population Size N = 100

Selection Tournament

Reproduction Operators:

Crossover Partially-Matched Crossover (PMX)

Mutation Swap, Inversion

Table 3. 
GA settings for the CVRP.
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Size of the 
CVRP (n)

Number of 
CVRP Routes

Name of the 
Instance

Size of the 
CVRP (n)

Number of 
CVRP Routes

Name of the 
Instance

100 25 X-n101-k25 335 84 X-n336-k84

105 14 X-n106-k14 343 43 X-n344-k43

109 13 X-n110-k13 350 40 X-n351-k40

114 10 X-n115-k10 358 29 X-n359-k29

119 6 X-n120-k6 366 17 X-n367-k17

124 30 X-n125-k30 375 94 X-n376-k94

128 18 X-n129-k18 383 52 X-n384-k52

133 13 X-n134-k13 392 38 X-n393-k38

138 10 X-n139-k10 400 29 X-n401-k29

142 7 X-n143-k7 410 19 X-n411-k19

147 46 X-n148-k46 419 130 X-n420-k130

152 22 X-n153-k22 428 61 X-n429-k61

156 13 X-n157-k13 438 37 X-n439-k37

161 11 X-n162-k11 448 29 X-n449-k29

166 10 X-n167-k10 458 26 X-n459-k26

171 51 X-n172-k51 468 138 X-n469-k138

175 26 X-n176-k26 479 70 X-n480-k70

180 23 X-n181-k23 490 59 X-n491-k59

185 15 X-n186-k15 501 39 X-n502-k39

189 8 X-n190-k8 512 21 X-n513-k21

194 51 X-n195-k51 523 137 X-n524-k153

199 36 X-n200-k36 535 96 X-n536-k96

203 19 X-n204-k19 547 50 X-n548-k50

208 16 X-n209-k16 560 42 X-n561-k42

213 11 X-n214-k11 572 30 X-n573-k30

218 73 X-n219-k73 585 159 X-n586-k159

222 34 X-n223-k34 598 92 X-n599-k92

227 23 X-n228-k23 612 62 X-n613-k62

232 16 X-n233-k16 626 43 X-n627-k43

236 14 X-n237-k14 640 35 X-n641-k35

241 48 X-n242-k48 654 131 X-n655-k131

246 47 X-n247-k50 669 126 X-n670-k130

250 28 X-n251-k28 684 75 X-n685-k75

255 16 X-n256-k16 700 44 X-n701-k44

260 13 X-n261-k13 715 35 X-n716-k35

265 58 X-n266-k58 732 159 X-n733-k159

269 35 X-n270-k35 748 98 X-n749-k98

274 28 X-n275-k28 765 71 X-n766-k71

279 17 X-n280-k17 782 48 X-n783-k48

283 15 X-n284-k15 800 40 X-n801-k40

288 60 X-n289-k60 818 171 X-n819-k171

293 50 X-n294-k50 836 142 X-n837-k142

297 31 X-n298-k31 855 95 X-n856-k95

16



Search Algorithm - Essence of Optimization

10

Based on these findings, particularly for the CVRP with n ≈ 1000, the following 
recommendations can be made:

• Due to the size of the population and the additional tasks, faster processes 
are needed for diversification of solutions. In example, Tabu Search (TS) 

Size of the 
CVRP (n)

Number of 
CVRP Routes

Name of the 
Instance

Size of the 
CVRP (n)

Number of 
CVRP Routes

Name of the 
Instance

302 21 X-n303-k21 875 59 X-n876-k59

307 13 X-n308-k13 894 37 X-n895-k37

312 71 X-n313-k71 915 207 X-n916-k207

316 53 X-n317-k53 935 151 X-n936-k151

321 28 X-n322-k28 956 87 X-n957-k87

326 20 X-n327-k20 978 58 X-n979-k58

330 15 X-n331-k15 1000 43 X-n1001-k43

Table 4. 
CVRPLIB instances for GA testing.

Figure 9. 
Mean error gap across all CVRP test instances with the GA.

Figure 10. 
Error gap across all CVRP test instances with the GA.
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Under the assumption of independence, Qi can be optimally computed by using 
Eq. (3) for each item [22]. Thus, for the present case, the GA is only developed to 
verify its efficiency to solve the EOQ to optimality with a large N.

The GA follows the standard structure presented in Figure 2. As the solution 
consists of a set of Qi values, the restrictions associated to permutations (such as 
in the case of TSP/CVRP) are not present. Thus, a simpler crossover operator can 
be used.

Figure 12 presents an overview of the linear crossover operator used for the GA. 
On the other hand, Table 5 presents the configuration settings of the GA.

The average results for different randomly generated sets of N products are 
presented in Figure 13. As this is a simpler problem than both, the TSP and the 
CVRP, optimality can be reached within 100–200 generations. Note that it is always 
recommended to select an exact method if it is available and results can be obtained 
within very reasonable time.

Figure 11. 
Inventory management costs associated to the EOQ model.

Figure 12. 
Linear crossover operator for the multiple-item EOQ (α = 0.5).
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3.2 Knapsack problem

The Backpack or Knapsack Problem (KP) is a binary multicriteria problem  
of NP-hard computational complexity and it is frequently considered as a strat-
egy to select items to maximize profits without affecting capacity restrictions 
[23, 24].

The KP can be mathematically formulated as a vector of binary variables 𝑥𝑗 
where 𝑥𝑗= 1 if the item j is selected, and 𝑥𝑗= 0 otherwise. Then, if pj is a measure of 
importance (in this case, profit) for an item j, wj represents the size of said item, 
and cv is the size of the backpack, the problem refers to the selection of the quantity 
of all elements whose binary vectors xj satisfy the following restrictions [24]:

 
n

j j
j
w x cv

=

≤∑
1

 (5)

 { }0,1 , 1, ,jx j n∈ = …  (6)

Parameter Setting

Generations (Iterations) 2000

Fitness Function Total Inventory Management Cost (T)

Population Size N = 1000

Selection Tournament

Reproduction Operators:

Crossover Linear Crossover

Mutation Swap, Inversion

Table 5. 
GA settings for the multiple-item EOQ.

Figure 13. 
Mean error gap across all multiple-item EOQ with the GA.
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These must contribute to maximize the following objective function:

 
n

j j
j

T p x
=

=∑
1

 (7)

Figure 14. 
Uniform crossover operator for the KP.

Parameter Setting

Generations (Iterations) 100

Fitness Function Total Profit of Selected Goods (T)

Population Size N = 1000

Selection Tournament

Reproduction Operators:

Crossover Uniform Crossover

Mutation Swap, Inversion

Table 6. 
GA settings for the KP.

Figure 15. 
Mean objective function values across all KP instances with the GA.
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The KP also can be extended to consider more restrictions. In example, if cv 
is the volumetric capacity of the backpack, cz can be added to include its weight 
capacity. Thus, if wj represents the volume of the item j, zj can be used to represent 
its weight, leading to the following restriction:

 =

≤∑
1

n

j j
j

z x cz  (8)

Figure 14 presents an overview of the reproduction operator for the GA consid-
ered to solve a large KP instance. Note that, due to the binary nature of the decision 
variable, the crossover and mutation operators can be implemented faster. Then, 
the configuration settings of the GA are reviewed in Table 6.

Based on the instance reported in [24], six random test instances with N = 250 
items were generated. Figure 15 presents the mean results for these instances. Error 
gap assessment was performed with the optimization software Lingo. This led to an 
error gap of 4.0% which is consistent with the results reported in [24].

4. Genetic algorithm for production scheduling problems

This chapter ends with an application of GA for solving one of the most use-
ful models for manufacturing planning. This model, known as the Permutation 
Flow-Shop Scheduling Problem (PFSP), consists of finding the optimal sequence 
of N-jobs to be processed on M-machines [25]. The optimal sequence of jobs is the 
one that minimizes the make-span of the N-jobs through the M-machines, thus, 
minimizing the completion time of the last job on the last machine. Note that this 
sequencing implies two important restrictions: (a) no job can be started on the fol-
lowing machine until it is finished in the previous machine; and (b) a job cannot be 
started on a machine if it is busy processing another job. As consequence, this is one 
of the main strategies to reduce idle and waiting times within a workshop [26].

For illustration purposes, Figure 16 shows an example of a solution for a 5-jobs 
(a, b, c, d, e) and 3-machines (1, 2, 3) PFSP. Note that each job may take different 
processing times depending of the assigned machine, and the established sequence 
remains the same for all machines. Thus, the established sequence has a direct effect 
on the completion time or makespan.

Thus, the information (i.e., processing times) of a PFSP with N-jobs and 
M-machines is frequently presented as shown in Table 7. As in the case of the TSP/
CVRP models, the PFSP is also of NP-hard computational complexity, thus, meta-
heuristic methods are frequently considered to solve it within reasonable time.

Figure 16. 
Example of a 5-jobs, 3-machines PFSP.
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As it is a permutation-based problem, the structure and settings considered 
for the TSP GA (see Figure 2 and Table 1) were considered for the PFSP with 500 
generations. For testing purposes, the library and best results reported in [27] for 
30 randomly selected 20-jobs, 20-machines PFSP instances were considered. The 
results are presented in Figure 17.

As observed, the mean error gap reaches the 10% mark at the beginning of the 
GA, with a final mean error gap of 0.005% by the 500th generation. Thus, the GA 
can provide near-optimal results for the PFSP.

5. Conclusions and future work

In this chapter the basic elements of a GA were reviewed to describe its applica-
tion for different logistics and manufacturing problems. The routing problems, 
beyond the transportation context, can be applied on machine maintenance 
schemes or material changing services within production plants to minimize opera-
tional times. Also, they can be applied to improve the material flow through the 
warehouse, which is a main facility within the SC. Operations such as order-picking 
and bin-shelving can be optimized by modeling them as TSP instances [28].

On the other hand, the KP for selection of items is a problem shared with other 
contexts such as waste reduction in cutting processes, selection of investments and 
portfolios, decisions for capital budgeting and asset-backed securitization [29]. The 

Job Processing Times

P1 P2 P3 … PM

1 P11 P12 P13 … P1M

2 P21 P22 P23 … P2M

… … … … … …

N PN1 PN2 PN3 … PNM

Table 7. 
Data of the PFSP.

Figure 17. 
Mean error gap across 30 randomly selected 20 × 20 PFLP test instances with the GA.
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PFSP has been also extended on other fields such as in scheduling of quality control 
tasks on different machines [30].

Thus, the relevance of solving these combinatorial problems, particularly those of 
large scale, is very important due to their impact in other science and industrial fields.

Within the search algorithms, the GA can provide very suitable results for these 
problems. However, as presented in Sections X.2, X.3., and X.4, final performance 
depends of the type of problem. While the GA can achieve mean error gaps under 
the 10% mark for TSP/CVRP, for the PFSP the GA can achieve near optimal results 
under the 1% mark.

These results were supported by extensive experiments which were performed 
with well-known test databases or libraries. In practice, these experiments also pro-
vide important feedback to consider alternative meta-heuristics or develop hybrid 
approaches for improvement of performance.

This is because, as reviewed, a single meta-heuristic or search algorithm may 
not be enough to solve all problems if near-optimality is required. In this case, 
hybridization between different methods have improved on the search mechanisms 
of meta-heuristics, either deterministic or stochastic. Also, the integration with 
mathematical programming (which implies an exact solving method) has provided 
innovative proposals to solve NP-hard problems [31].

Future work is extensive on this field because:

• better solving methods are required due to the presence of increasingly com-
plex combinatorial problems;

• advanced mathematical modeling is required to reduce the complexity of
NP-hard problems and thus, make them more suitable to optimization through
meta-heuristics or exact methods such as Branch & Bound;

• automatic decision models require the use of Big Data Analysis which, to some
extend, depends of meta-heuristic methods.

Thus, as a concluding remark, it can be stated that any advance on these algo-
rithms can impact on different fields. Just to mention an important field within the 
current industry, meta-heuristics are playing an important role on the implementa-
tion of dynamic decision models within Industry/Manufacturing 4.0 systems. Within 
this context, recent works have reported the application and improvement of these 
search algorithms for cost-efficient deployment of computing systems in logistics 
centers [32], dynamic CVRP [33], and development of Digital-Twin platforms [34].
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Chapter 3

An Adaptive Task Scheduling in 
Fog Computing
Dinesh G. Harkut, Prachi Thakar and Lovely Mutneja

Abstract

Internet applications generate massive amount of data. For processing the 
data, it is transmitted to cloud. Time-sensitive applications require faster access. 
However, the limitation with the cloud is the connectivity with the end devices. Fog 
was developed by Cisco to overcome this limitation. Fog has better connectivity with 
the end devices, with some limitations. Fog works as intermediate layer between 
the end devices and the cloud. When providing the quality of service to end users, 
scheduling plays an important role. Scheduling a task based on the end users 
requirement is a tedious thing. In this paper, we proposed a cloud-fog task scheduling 
model, which provides quality of service to end devices with proper security.

Keywords: ANN, fuzzy logic, fog computing, IoT, QoS, K-means clustering

1. Introduction

Cloud computing is very popular in the technology world as it provides
numerous useful services to end users. Cloud computing is based heavily on 
virtualization technology. Cloud computing provides many features such as huge 
processing power, great storage provision, and pay-per-use model. Cloud comput-
ing has many desirable features such as flexibility, scalability, performance-cost 
efficiency, and ease of test, adopting and deploying new technologies [1].

In spite of all these services, there are some drawbacks of cloud computing that 
cannot be ignored. For examples, the cloud and users are physically far away from 
each other that induce intolerably delay, again there can be a shortage of resources 
for executing the tasks, many resources could remain idle even though tasks need to 
be processed, etc. [1].

Internet of Things (IoT) is an emerging technology. It requires latency-aware 
computation for real-time application processing. In IoT environments, devices 
connected to it generate a huge amount of data, which are generally referred to 
as big data. IoT devices generated data are generally processed in a cloud infra-
structure because of the on-demand services and scalability features of the cloud 
computing. However, processing IoT application requests on the cloud is not an effi-
cient solution for some IoT applications, especially time-sensitive ones. To address 
this issue, Fog computing, which is a middle layer between cloud and IoT devices, 
was proposed. In Fog computing environment, IoT devices are connected to Fog 
devices. These Fog devices are located in close proximity as compared to cloud to 
users and are responsible for intermediate computation and storage [2].

There are many challenges when we are working in fog computing environment. 
One of the challenges is task scheduling. Tasks are broadly classified into two 
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category, dependent task and independent task. While performing task scheduling 
in fog, the category of tasks plays a vital role.

Task scheduling depends on the many criteria based on user’s requirements. For 
example, healthcare-related task. In such type of task time is a vital factor. Delay 
in such type of task is not acceptable, so to manage such type of tasks, many task 
scheduling algorithms have been proposed. Task scheduling involves scheduling 
of resources, such as CPU, memory. Depending on the type of task, algorithm may 
varies. The basic idea behind task scheduling is to give the user QoS (Quality of 
Service).

2. Literature review on task scheduling in fog-cloud environment

Author in [3] have used Q learning algorithm in cloud computing for allocating 
the task to the virtual machine. In this paper, we have compared their algorithm 
with FIFO, greedy, random, mix algorithm. The proposed model is divided into 
three parts: tasks transmission, task allocation, and task execution.

Resource Management and task scheduling are very important tasks in cloud. 
The traditional scheduling algorithm has low resource utilization and more 
response. Rather than using single scheduling algorithm, multiple scheduling 
algorithms are used. The selection of one of the scheduling algorithm is done using 
machine learning classification. Six scheduling algorithms are considered here. 
FCFS, priority scheduling conservative migration supported backfilling, aggressive 
migration supported backfilling, and priority-based consolidation. Selection of 
particular algorithm based on environment and task is done using machine learning 
classification [4].

Two reinforcement schedulings were introduced for resource scheduling, online 
resource scheduling deepRM2 and offline resource scheduling DeepRM_off. Then 
the comparison of these two algorithms has done with the DeepRM and the heuris-
tic algorithm. Two resources are considered in this CPU and memory. Image is given 
as input for training process [5].

Three approaches for tasks scheduling are discussed and compared in this 
paper. PSO algorithm, genetic algorithm, modified PSO algorithm. Modified PSO 
algorithm is nothing but the old PSO with the merging of SJFP for generating initial 
population in order to minimize makespan. The result shows that the modified PSO 
outperforms the other two algorithms [6].

Author in [7] suggested a new technique to schedule the Jobs or tasks in Big Data 
cluster. The uniqueness of this proposed method is that it basically focuses on the 
resources utilization and the type of Scheduled job altogether. The clusters used for 
experimentation of the proposed method are homogeneous. The given algorithm 
assigns task to the data node based on the type of job and based on the data node 
resource load.

K-means clustering algorithm is used for grouping the virtual machine and task 
[8]. The categorization of virtual environment is done on the basis of available 
application in each machine. Four parameters are considered for task selection, task 
length, user priority, deadline, and cost. K-means clustering technique is used for 
virtual machine as well as for task.

To select a proper task scheduling algorithm for better performance in cloud 
computing is a critical task. Author in [9] suggested a Framework for the above 
problem. Author suggested that the decision of which task scheduling algorithm is 
suitable for a particular task should be taken by machine learning algorithm.

The Basic concept in [10] is distribution of task to different fog nodes. The 
proposed approach performance is compared with PSO and GA. The proposed 
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approach divides the complete task into two part reproduction behavior, food
source foraging behavior. The implementation of BLA is done in C ++. The
proposed algorithm outperforms in terms of CPU execution time, allocation of 
memory, and therefore, the cost function. The limitation of this approach was it 
does not give any solution on dynamic job scheduling, and again here they consider 
stationary fog servers.
  Author in [11] proposed test and selection technique to select the best algorithm 
for scheduling. The hyper-heuristic algorithm is divided into two phases, train-
ing phase and testing phase. The basic objective is to find out the best algorithm
for workflow scheduling. The author [11] considered four algorithms for the 
purpose of selection, genetic algorithm, particle Swarm Optimization, ant Colony 
Optimization, and annealing algorithm. FogSim is used for fog computing environ-
ment, and cloud SIM is used for cloud environment.
  Author in [12] suggested Ant colony algorithm for scheduling. The tasks are 
grouped according to two criteria, minimum cost and minimum end time service.
Also the prioritization of task is done based on the above two criteria. The ant 
Colony algorithm is used to select optimal virtual machine for executing the task.
  The main focus is on multi-resource fairness in task and to achieve ultralow
task latency for fog computing system. Author in [13] proposed fair TS online test 
scheduling model. Author uses DRL technique to gain experience and based on that 
the Fair TS model is developed. Researchers [13] claim that their model balances
the time and resources. The main challenge of this paper is to perform online task 
scheduling. The number of tasks is already fixed. For multi-resource fairness in fog 
computing system dominant resource fairness policies are adopted.
  Different fog node has different processing abilities, for example, strong
fog node with considerable resources can solve the complex problem easily. But
such type of scenario development is a problem in task scheduling. This problem
is addressed in this paper. A new task scheduling strategy is suggested in this
paper. Hybrid heuristic algorithm is proposed for tasks scheduling. The hybrid 
heuristic algorithm is combination of two algorithms, improved particle Swarm 
Optimization and improved ant Colony Optimization [14].
  Issues related to mobile crowd sensing task in fog computing are discussed. A 
deep reinforcement scheduling solution is provided to solve this problem. It is a self-
adaptive model. Three-layer hierarchical structure of fog computing is discussed.
To solve task scheduling problem in fog computing, a task scheduler is added in the 
cloud layer to decide the scheduling strategy for fog computing [15].
  Three-layered structure is introduced: terminal layer, which consists of mobile 
devices; fog layer, which consists of task scheduling cluster and resource integration 
model; core layer composed of cloud resource provider. Scheduling is done in the 
middle layer. A new scheduling method was introduced “I-FASC” to determine the 
characteristics of task and resources. An improved genetic algorithm is proposed, which
is an improvement over the firework algorithm, which introduced the explosion radius 
detection mechanism of Fireworks to avoid disappearance of optimal solution [16].
  The problem with delay-sensitive application such as smart health required to 
transfer large amount of data to cloud, so it reduces the performance. To resolve 
that, fog computing is introduced. But in fog, there should be some mechanism
to manage the task and resource as well as security. To achieve this, a cost-aware 
genetic-based task scheduling algorithm is proposed [17].
  Two characteristics of Intelligence are considered, device-driven and human-
driven in IOT-based computing scenario. For demonstration purposes, two cases are
considered. The first case machine learning algorithm is used to study the human 
behavior based on that scheduling is done that is identifying the priority of the
task whether the task is important or not, and if it is important in that case, give
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the resource to that task. In second case, an algorithm is designed for the end user 
device to select the offloading decision, that is, to identify whether to process the 
task or discard it to minimize energy consumption of fog node and to minimize the 
latency [18].

In the three-tier architecture, the end devices are at the lowest level, fog is the 
intermediate layer, and the top most layers consist of cloud. Intelligent virtual 
machine is created by using Bayesian method to classify task. The FBCS algorithm 
outperforms when compared with the FCFS and delay priority algorithm. Two algo-
rithms are designed: first for task classification and second for updating processing 
power of the device [19].

When we are talking about scheduling in cloud computing that basically means 
we are focusing on how to improve the use of resources and reduce the time to 
complete a job. The cost to do certain job depends on time and exchange of data. To 
reduce the cost of the user, decrease the volume of data sent to the cloud. This was 
the main idea behind the creation of fog. The IoT devices can connect to the cloud 
through fog nodes [20] .

The tasks are scheduled based on lower delay. In this paper, the problem related 
to task scheduling in fog computing is discussed. The dynamic scenario resulted 
from user mobility brings a dynamic computing demand at edge devices. The 
scheduling strategies should be designed based on the different application classes 
according to demand coming from the mobile user [21].

A metaheuristic algorithm based on a Harris Hawk Optimization based on a 
local search strategy for task scheduling in fog computing is proposed to improve 
the quality of service provided to the user in industrial IoT application [22].

For scheduling purpose, an optimized knapsack algorithm is proposed, which is 
based on symbiotic organism search algorithm [23].

An improved apriori algorithm “I-Apriori” is proposed based on apriori algo-
rithm. A novel task scheduling TSFC algorithm is proposed. The association rules 
are generated by the I-apriori algorithm. The TSFC algorithm is based on I-apriori 
algorithm [24].

Tasks scheduling problem is discussed to reduce the cost of Edge computing 
sys-tem. The focus of this paper is to minimize the cost while satisfying the delay 
requirement of the entire task. For that a two-star scheduling cost Optimization 
algorithm is proposed (TTSCO) [25].

The focus of this paper is on how to reduce the power consumption in edge 
computing while meeting the resource and delay constraints [26].

Task scheduling algorithm based on delay model is suggested. Others claim that 
the delay model based on little’s law is in accurate. So the authors suggest a delay 
model without using little’s law. Then a life Lyapunov function of delay is defined 
based on that a task scheduling algorithm is proposed to minimize the delay [27].

The focus [28] is to provide the quality of service to the user and to improve 
the performance of scheduling. An application-aware scheduling algorithm is 
proposed.

A scheduling algorithm for cloudlet for utilization of the available resources 
is suggested. The proposed algorithm is based on ant Colony Optimizations 
algorithm [29].

Quality of service was the main motive behind a grouped tasks scheduling  
algorithm. The GTS algorithm divides the task into categories. User task, task 
latency, task size, task type are the parameters used for categorizing a task. GST 
first chooses which category to be executed and then chooses the task with mini-
mum time to be executed in the category [30].

A new scheduling algorithm is proposed, FCAP. This new algorithm is 
combination of two algorithms: Fuzzy C-means clustering algorithm and PSO 
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particle Swarm Optimization algorithm. FCAP is used to cluster the resources.
The main idea behind this algorithm is to provide quality of service to the
users [31].

  A reinforcement learning agent is proposed that horizontally scales container’s 
instances based on the demand of user and available fog resources. FScalar is inte-
grated in kubernetes cluster architecture. Also the use of SARSA to build a scalar 
agent is proposed [32].
  Author in [2] studied the current trend of fog computing as well as the archi-
tecture of fog computing. Author also explained the limitation of such architecture 
and pointed out the deployment issue of services in fog. Efficiently placing a new 
service without affecting the running one is the biggest problem with the fog 
architecture.
  RSU (roadside unit) acts as an immobile fog node. The responsibility of RSU is 
request processing and decision-making for task scheduling. Author in [33] inves-
tigated the tasks scheduling and resource allocation from the viewpoint of service-
oriented architecture (SOA). Tasks scheduling is based on scheduling chain.

  A novel energy efficient fog computing Framework is proposed by the author. The
homogeneous fog network is considered for framework. The main focus of the paper 
is on Energy Efficiency for task scheduling. Author in [34] Suggested maximum 
energy-efficient task scheduling algorithm MEETS in homogeneous fog network.
  Parallel execution of tasks in heterogeneous fog network is suggested. New con-
cept PE processing efficiency is defined, which includes computing resources and 
communication capabilities. DATS algorithm is introduced to minimize the service 
delay in heterogeneous fog network. The two key components of DATS are PCRC 
(progressive computing resource competition) to obtain stable resource allocation 
result and second is STS (synchronize task scheduling) [35].
  An adaptive multi-objective Optimization testing task scheduling method for 
fog computing is proposed. The two objectives of these proposed algorithms are 
task scheduling and resource scheduling with minimum task execution time and 
resource cost [36].
  A new concept is introduced [37], “region”. Region is nothing but the collection 
of fog node. Basically the fog nodes are divided into region based on the require-
ment of the user. A task scheduling algorithm for region-based cloud (FBRC) is 
proposed [37].
  A best selection of fog device for offloading the task by considering the time and
energy consumption is a very serious challenge. To address this problem, a module 
placement method by classification and regression tree algorithm is proposed. The 
parameters for selecting the best fog node for the task are authenticity, integrity,
confidentiality, speed, cost, capacity, and availability. Model placement is based on 
Markov chain process [38].
  A tool kit that can automatically simulate the complex network topology and 
different type of computing resources as well as automatically execute user submit-
ted workflow application and compare the performance of different computation 
offloading and task scheduling strategy for workflow is suggested [39].
  A Ranking-based task scheduling algorithm using linguistic and fuzzy 
quantified in fog cloud network preposition is proposed. This algorithm is com-
pared with distance-based algorithm, price-based algorithm, and latency-based 
algorithm [40].
  Load balancing in cloud and fog is suggested in this paper. Cuckoo search by 
using levy walk distribution and flower pollination is proposed for load balancing.
The motto is to reduce the delay and to overcome the latency issue [41].
  The task is assigned with the priority depend on the deadline of the task.
Preemption of the task is not possible after assigning it to the particular fog node [42].
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Tasks are divided into subtask, and to manage the subtask is challenging 
issue. To handle this challenge, a generalized Nash equilibrium game called 
parallel scheduling of multiple tasks is developed. For scheduling the task, a 
distributed task scheduling algorithm was developed via Gauss Spidel-type 
method [43].

Non-orthogonal multiple accesses-based fog computing framework for indus-
trial IoT system is proposed. Here the task offloading is based on NOMA to the 
helper node to minimize the delay and energy consumption [44].

A container-based task scheduling algorithm for delay-sensitive and high-
concurrency characteristic of fog computing is proposed. The tasks execution is 
divided into two steps: first to determine whether to accept or reject; second if 
accepted, then where to forward the task on fog node or cloud. For resource real-
location, a reallocation mechanism is proposed [45].

Tasks with different deadlines are considered. The main objective is to minimize 
failure probability to meet the different delay deadline. Two queues are considered, 
low and high-priority queues. For scheduling in the queues, Lyapunov drift plus 
penalty function is used [46].

To handle the sensitivity of task delay, the laxity-based priority algorithm is 
suggested. This algorithm is used to decide the priority of the task based on the 
deadline. Again to minimize energy consumption, an Optimization algorithm based 
on ant Colony is proposed [47].

The proposed method is based on HH algorithm; it generally focuses on work-
flow scheduling. The proposed algorithm shows that it reduces the energy con-
sumption and execution time of the task [48].

Delay-sensitive task is considered. DMTO is proposed to identify the optimal 
subtask size and the TN transmission power [49].

Four criteria are considered in the proposed algorithm: energy dynamic, 
threshold, waiting time of the task, and communication delay. These criteria are 
divided into two groups, and based on that, two scheduling and load balancing 
procedures are performed [50].

Online task scheduling problem in fog computing is discussed. The 
main focus is to minimize the task slowdown. Deep reinforcement learning 
and pointer network architecture are combined to propose neural task 
scheduling [51].

Author in [1] basically focuses on how to reduce the cost. The proposed 
algorithm efficiently prioritizes the task according to their delay or tolerance level 
result in higher throughput, which leads to reduce in overall response time and 
cost (Table 1).

3. Motivation

As we already know that fog is a middle layer between cloud and user. The user’s 
requirement is always QoS. QoS depends on the parameters such as bandwidth, 
energy consumption, latency, throughput, and cost. So basically fog has to fulfill 
these requirements of users. Again Fog has limitation such as limited resources 
and capabilities, but it has an advantage of being nearer to the end devices, which 
makes it powerful in many aspects such as less latency, less power consumption, 
and proper utilization of bandwidth. Decision-making on task scheduling is a 
trending research area. How accurately you can predict the best algorithm on the 
basis of user’s requirement is a challenging issue in fog. Machine learning is making 
very much progress in this domain. This thing motivates us to use Machine learning 
algorithm for task scheduling in cloud.
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4. Proposed work

The Decision of selecting best algorithm based on the requirement is complex
work. For taking the decision on which task to schedule first is completely depen-
dent on the type of task. Again identifying the type of task is another challenge. The
first part in task scheduling is to identify the type of task, and then we can perform 
the actual task scheduling. Task scheduling in fog is mandatory because the end
user requires the Quality of Service. The parameters that are considered for QoS are
bandwidth, latency, robustness, time, cost, and energy consumption.
  Computational Intelligence (CI) is a sub-branch of AI. CI can be considered
as the study of adaptive mechanisms to enable or facilitate intelligent behavior
in complex and changing environments. Computational Intelligence techniques 
include fuzzy sets, ANN, Evolutionary computing, swarm intelligence, and arti-
ficial immune system. CI is a set of nature-inspired computational methodologies 
and approaches to address complex real-world problems. The powerful feature of
CI is its adaptive nature.

5. Conclusions

In this paper, we have reviewed different existing models and techniques for
task scheduling in cloud-fog environment. In first half of the paper, we discussed 
the limitations and advantages of fog. In second half of the paper, we reviewed the 
existing technique for task scheduling in fog. By analyzing the existing system,
we proposed a CI-based task scheduling model in fog, which will adapt to varying 
requirements of QoS dynamically.
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Chapter 4

An Immune Multiobjective
Optimization with Backtracking
Search Algorithm Inspired
Recombination
Hamed Ould Sidi, Rachid Ellaia, Emmanuel Pagnacco
and Ahmed Tchvagha Zeine

Abstract

We propose a novel hybrid multiobjective (MO) immune algorithm for tackling 
continuous MO problems. Similarly to the nondominated neighbor immune algo-
rithm (NNIA), it considers the characteristics of OM problems: based on the fitness 
values, the best individuals from the test population are selected and recombined to 
guide the rest of the individuals in the population to the Pareto front. But NNIA 
uses the simulated binary crossover (SBX), which uses the local search method. In 
our algorithm, the recombination is essentially inspired by the cross used in the 
backtracking search algorithm (BSA), but the adaptations are found in the immune 
algorithm. Thus, three variants are designed in this chapter, resulting in new 
recombination operators. They are evaluated through 10 benchmark tests. For the 
most advanced proposed variant, which is designed to have global search ability, 
results show that an improved convergence and a better diversity of the Pareto 
front are statistically achieved when compared with a basic immune algorithm 
having no recombination or to NNIA. Finally, the proposed new algorithm is dem-
onstrated to be successful in approximating the Pareto front of the complex 10 bar 
truss structure MO problem.

Keywords: multiobjective optimization, evolutionary algorithms, backtracking 
search, hybrid recombination, artificial immune systems, truss optimization

1. Introduction

Planty of the multiobjective (MO) optimization problems lie in the engineering
field. The objective functions are contradictory, the optimal solutions of these
problems are known by the Pareto front. To get the optimal solutions of these
problems, evolutionary algorithms (EAs) have been recognized to be very efficient
in solving MO optimization problems by finding a representative Pareto front in
one run. State-of-the-art algorithms are presented in [1–5]. These algorithms, which
are population-based, are able to simultaneously explore various regions of the
Pareto front.

In last past few years, immune systems have inspired new algorithms for
resolutions OM problems. The fundamental principles of the artificial immune
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system (AIS) algorithm are clonal selection, [6] mutation, and more recently,
recombination [7–15].

The nondominated neighbor-based immune optimization algorithm (NNIA) is
effective to deal with MO problems [9]. NNIA has proved that it is advantageous to
incorporate a crossover operator into the algorithm. To do this, it uses simulated
binary crossover (SBX). But SBX is a recombination operator, which performs
search near the recombination parent [16].

Backtracking Search Optimization Algorithm (BSA) is a new nature-inspired
algorithm proposed by [17]. BSA’s special mechanism to ensure a trial individual is
effective, ability to learn fast solving different numerical optimization problems
sequentially and quickly, with a clear structure. Since it was introduced, the BSA
has attracted many research studies, and it has been applied to various optimization
problems [18–20].

In this chapter, we develop a novel hybrid MO immune method to solve the
problems of continuous multiobjective optimization. The NNIA algorithm uses the
best individuals in the trial population to drive the search to Pareto front. But NNIA
uses SBX, which mainly has local search capability. In our proposal, the recombina-
tion is inspired by the cross used in the BSA algorithm, but adaptations are found to
fit the immune algorithm. Therefore, three variants are considered in the context of
this chapter, which gives rise to new recombination operators for immune
algorithm.

This chapter is organized as follows: In Section 2, we introduce the MO problem.
In Sections 3 and 4, NNIA algorithm and BSA recombination are presented, and we
propose new algorithms to solve the MO problem. The effectiveness of these algo-
rithms is investigated in Section 5 when confronting to various MO test problems.
In Section 6, the chosen algorithm is applied to solve the multiobjective topology
optimization of truss structures. A short summary is proposed to conclude this
paper.

2. Multiobjective optimization problem

The multiobjective optimization problem is formalized in this section.
Concepts related to the Pareto front are introduced, firstly from a theoretical point
of view and then when considering its approximation through a numerical
approach [21].

2.1 Pareto front

Let us consider the following multiobjective optimization (MO) problem:

min
x∈Ω

f xð Þ ¼ f 1 xð Þ,⋯, f m xð Þ� �T (1)

where m is the number of objective functions, x ¼ x1,⋯, xnð Þ∈Ω is the
nx-dimensional decision space where each decision variable xi is bounded by lower
and upper limits xli ≤ xi ≤ xui for i ¼ 1,⋯, nx.

Pareto-front-related concepts are [22]:

1.Pareto dominance: Suppose xa and xb are two different feasible solutions to the MO
problem. Then xa dominates xb if and only if

f i xað Þ≤ f i xbð ÞÞ∀i∈ 1,⋯,mf g (2)

2
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∃k∈ 1, … ,mf g f k xað Þ< f k xbð Þ (3)

1.Pareto-optimal solution: A solution x ∗ is said to be Pareto-optimal if there does
not exist another solution that dominates it.

2.Pareto-optimal set: The Pareto-optimal set is the set X ∗ of all Pareto-optimal
solutions.

3.Pareto-optimal front: The Pareto-optimal front is the set F ∗ of values or
outcomes of all the objective functions, which corresponds to the solutions:

F ∗ ¼ f x ∗ð Þ ¼ f 1 x ∗ð Þ, … , f m x ∗ð Þ� �T such that : x ∗ ∈X ∗
n o

(4)

2.2 Multiobjective solution

Otherwise, the following terms are cited in the reference [9]:

1.Antibody: An antibody refers to the coding of a decision variable x. In this
study, a real-valued representation is adopted, being x itself.

2.Crowding distance: The crowding distance (CD) is a measure for diversity
maintenance [1]. It reads:

CD bX� �
¼
Xm
j¼1

D j bX� �
fmax
j � fmin

j þ εD
(5)

where fmax
j and fmin

j are maximal and minimal values of the j-th objective
respectively, εD is a small number and:

D j bX� �
¼

∞ if bxk isaboundary point of bX
min f k bX� �

� f l bX� ���� ��� otherwise

8<: (6)

for k, l∈ 1,⋯, nxf g such that k 6¼ l 6¼ j.

3. Immune optimization algorithm and recombination operator

3.1 Nondominated neighbor immune optimization algorithm

Nondominated neighbor immune algorithm (NNIA), using the nondominated
neighbor-based selection and proportional cloning, pays more attention to the less-
crowded regions of the current trade-off front.

We denote by bX the dominant population, XA the active population and XC the
clone population at time t are stored by time-dependent variable matrices, Their
sizes are nX̂, nA, and nC respectively.

3
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The NNIA algorithm is presented in 1 where: = is the update operator. nD, nX̂max ,
nAmax , nC, and nit, the number of iterations.

Algorithm 1 Pseudo code of NNIA

Function bX ¼ NNIA nx,m, f xð Þ,xl,xu, nX̂max , nAmax , nC, nit
� �

1: Generate a uniform random initial population bX of size nC � nx in respect to xl
and xu;

2: bX≔Find_Non_Dominated bXjf xð Þ
� �

;

3: for t ¼ 0 : nit, do

4: XA ≔CD_Truncation bX, nAmax

� �
;

5: XC ≔Cloning XA, nCð Þ;
6: XC ≔Recombination XC,XA,xl,xuð Þ;
7: XC ≔Hypermutation XC,xl,xuð Þ;
8: bX≔Find_Non_Dominated bX;XC

h i
jf xð Þ

� �
;

9: bX≔CD_Truncation bX, nbXmax

� �
;

end for

3.2 Recombination and crossovers

3.2.1 NNIA recombination

For a recombination, operation of NNIA has been adopted in many MO EAs
[1, 4], an antibody of the cloning population and an antibody of the active popula-
tion are selected and modified as:

XCf gij ≔

1� β

2
XCf gij þ

1þ β

2
XAf gkj if a ¼ 1 & b ¼ 0

1þ β

2
XCf gij þ

1� β

2
XAf gkj if a ¼ 1 & b ¼ 1

XCf gij if a ¼ 0

8>>>><>>>>: ∣a � U 0, 1ð Þ, b � U 0, 1ð Þ

(7)

for i∈ 1, … , nCf g, j∈ 1, … , nxf g, and k a random integer uniformly chosen in
1, … , nAf g. Above, U is the uniform discrete distribution, and β is a sample from a

random distribution having the density:

p βð Þ ¼

0 if β<0
ηþ 1
2

βη if 0≤ β≤ 1

ηþ 1
2βηþ2 if β> 1

8>>>><>>>>:
where η is a real nonnegative distribution. Hence, four independent random

variables are involved in this recombination operation: a, b, k, and β. A boundary
control is performed by:

4
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XCf gij ≔
xli if XCf gij < xli
XCf gij if xli ≤ XCf gij ≤ xui

xui if XCf gij > xui

8><>:
3.2.2 Crossover operator of backtracking search optimization algorithm

Crossover strategy of BSA [17]. It consists in mixing two input populations XP
and XQ to form a new output population XR, of equal sizes: nX � nx. Then, BSA’
crossover reads:

XRf gij ≔
XPf gij if Tij ¼ 0

XQ
� �

ij if Tij ¼ 1

(
(8)

for i∈ 1, … , nXf g, j∈ 1, … , nxf g and where T is a boolean matrix of sizes: nX �
nx, which is formed by following the algorithm 2.

To control the amount of mixing between the two populations XP and XQ ,
we must define the parameter η such that 0< η≤ nx. Moreover, we perform a
random permutation on the lines of the XP population before applying the
relation (8).

Algorithm 2 Algorithm for the generation of the Tmatrix used in the BSA crossover

1: Initialize T≔0 and a≔U 0, 1ð Þ;
2: if a ¼ 0 then
3: for i ¼ 1 : nX do
4: u≔Permuting 1 : nxð Þ;
5: b≔U 0, ηð Þ;
6: for k ¼ 1 : b do
7: j ¼ uk;
8: Tij ¼ 1;
9: end for
10: end for
11: else
12: for i ¼ 1 : nX do
13: j≔U 0, nxð Þ;
14: Tij ¼ 1;
15: end for
16: end if

4. Recombination propositions for an hybrid algorithm

To get a more efficient immune algorithm, we will propose a hybridization
method, which consists of exchanging the crossover operator used for recombina-
tion in NNIA with a new recombination operator inspired by BSA [23].

To find this new algorithm, we have to use two ideas:

1.The first idea consists of expanding the active population in order to obtain an
extended active population, having its size equal to the clonal population size.
The simplest way to achieve this consists of duplicating the active population;

5
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2.The second idea consists of replacing the active population for the crossover by
the clonal population, leading finally to a crossover that uses only the clonal
population.

5. Experiments

In this section, we study the performance of the hybridization when solving
some well-known MO techniques including five ZDT problems [24] and five DTLZ
problems [25].

An optimization problem is typically written as:

min
x∈Ω

f xð Þ ¼ f 1 xð Þ,⋯, f m xð Þ� �T (9)

where m is the number of objective functions, x ¼ x1,⋯, xnð Þ∈Ω is the nx-
dimensional decision space where each decision variable xi is bounded by lower and
upper limits xli ≤ xi ≤ xui for i ¼ 1,⋯, nx.

5.1 Performance metrics

Approximate Pareto front solution of MO algorithms must achieve these two
goals:

1.Convergence toward the true Pareto front; and

2.Diversity of solutions: the Pareto front must be uniformly distributed and
spread over the entire feasible objective space to adequately capture the
trade-offs.

For benchmark test problems, the true Pareto front is known, allowing to exploit
performance metrics that used it.

We opted for two performance metrics for assessing algorithms efficiency. To
measure the extent of the convergence to the true set of Pareto-optimal solutions
and the spread of the Pareto front set, a normalized version of the inverted gener-
ational distance (IDG) metric proposed by [26] is adopted, while a normalized
version of the spacing metric introduced by [27] enables to measure the uniformity
of the obtained solutions.

5.1.1 Normalized inverted generational distance

The normalized inverted generational distance (NIGD) is based on a proposition
of [26]. For measuring of the distance between the true Pareto front F ∗ , which is
known at n ∗ discrete values—and stored in the matrix F X ∗ð Þ—and approximate

solutions of the Pareto-optimal front F bX� �
:

NIGD F X ∗ð Þ,F bX� �� �
¼ 1

n ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn ∗

j¼1
c2j

r
, (10)

for:

c j ¼ min
i∈ 1, … , nXf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
Fk X ∗

i

� �� Fk bX j

� �� �2r !
, j∈ 1, … , n ∗f g

6
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Fk xð Þ ¼ Fk xð Þ � min Fk X ∗ð Þð Þ
max Fk X ∗ð Þð Þ � min Fk X ∗ð Þð Þ : (11)

To obtain smaller values of this measure, the approximated set F bX� �
must be

very close to the Pareto front and cannot miss any part of the whole Pareto front at
the same time.

5.1.2 Normalized spacing measure

The spacing metric introduced by [27] is modified by taking normalized
objectives functions. This leads to the normalized NSP measure, defined by:

NSP F X̂
� �� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nX � 1

XnX
j¼1

d j � d
� �2r

(12)

for:

d j ¼ min
i∈ 1, … , nXf g

i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
Fk X̂i
� �� Fk X̂ j

� �� �2r !
, j∈ 1, … , nXf g

where d is the mean of d.

5.2 Empirical comparison

In this section, performance of five NNIA variants are evaluated. The five
variants are:

1.NNIA-X: the NNIA algorithm without crossover;

2.NNIA: the algorithm proposed by [9];

3.NNIA+X1: the hybridization of the NNIA algorithm with the BSA crossover by
using the first strategy proposed in the Section 4. Inputs of the BSA crossover
function are (1) the clonal population and (2) a random permutation of an
extended active population obtained by duplicating individuals;

4.NNIA+X2: the hybridization of the NNIA algorithm with the BSA crossover by
using the second strategy proposed in the Section 4. Inputs of the BSA
crossover function are (1) the clonal population and (2) a random permutation
of the clonal population;

5.NNIA+X3: the hybridization of the NNIA algorithm with the BSA crossover by
using the third strategy proposed in the Section 4. Inputs of the BSA crossover
function are (1) the clonal population and (2) a random permutation of an
extended active population obtained by duplicating individuals with a
proportion of random individuals.

7
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For NNIA, parameters proposed in Ref. [9] are set:

• maximum size of dominant population: nX̂max ¼ 100,

• maximum size of active population: nAmax ¼ 20, and

• size of clone population nC ¼ 100,

with the distribution index for SBX that is 15, the distribution index for polyno-
mial mutation that is 20 and the mutation probability of 1=nx and the number of
iterations stopped at 250. For NNIA+X3, the proportion of random individuals is
chosen to be equal to nA and their distribution is uniform.

Figures 1 and 2 show the statistic box plots for NIGD and NSP obtained for 1000
independent runs performed on each test problems ZDT and DTLZ that are chosen
by [9]1.

Figure 1.
NIGD obtained from 1000 independent runs of problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1,
DTLZ2, DTLZ3, DTLZ4, and DTL7.

1 From informations given in [25], it is believed that the problem denoted DTLZ6 in [9] is in fact the

DTLZ7 problem.

8
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each algorithm. Generally, we conclude that NNIA+X3 retains better population
diversity, and its convergence is faster than NNIA for these two and three objective
test problems.

6. Experiments on the 10 bar truss design problem

In this section, we address the multi-objective sizing optimization of
truss-like structures which is a continuous subject of researches in structural
design [28–30].

6.1 Problem formulation

In this study, we consider the 10 bar truss test, ketch in the Figure 3. Two
objective functions have to be minimized: the mass and the displacement; and one
objective function has to be maximized: the first flexible natural frequency of the
structure.

Denoting x∈Ω the vector of the topological and sizing optimization parameters,
such that 0≤ xi ≤ 1 for i∈ 1, … , nf g where n ¼ 10 is the number of elements, the
three individual objectives are:

1.The mass w of the structure

w xð Þ ¼
Xn
i¼1

ρAlixi,

where li is the length of the i-th element, ρ ¼ 2768 kg/m3 is the density of the
material and A ¼ 0:01419352 m2 is the element cross-section area.

2.The maximum displacement u of the structure

u xð Þ ¼ max u ∗ ¼ argmin
S

1
2
uTK xð Þu� uTF


 �
 �
,

where:

• F is the vector of loads

Figure 3.
Sketch of the 10 bar truss.
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• K is the stiffness matrix of the finite element (FE) model, having the Young’
modulus E ¼ 68:95 GPa.

The set S refers to the kinematic admissible space, i.e. the one that satisfies the
imposed boundary conditions given by the supports while carrying all the pre-
scribed loads, where P ¼ 448:2 kN.

3.The function (minimum flexible natural frequency f ) to maximize it

�f xð Þ ¼ �min
1
2π

ω ∗

 �

,

where : ω ∗ 2,u ∗� � ¼ argmin
u∈S

ω2 ¼ uTK xð Þu
uTM xð Þu


 �
, uk k 6¼ 0

where M is the mass matrix of the FE model2.
Moreover, this MO problem is subjected to constraints for the mechanical stress

σi for each element i:

σi xð Þj j≤ σ i∈ 1, … , nf g

where σ ¼ 172:4 MPa is the yield strength.
As designs with local rigid body modes or kinematic modes are not of interest,

constraints are added to the MO problem formulation:

σi xð Þj j
σ

> ε, i∈ 1, … , nf gsuch thatxi >0

where ε ¼ 0:001.
Since the optimal Pareto front is unknown for this problem, unnormalized

metric indicators are to assess for the MO algorithm performance. Thus, in practice,
we introduce an a priori scaling of the three objectives, by defining:

f 1 xð Þ ¼ w xð Þ
7, 000

, f 2 xð Þ ¼ u xð Þ � 0:016
20

, f 3 xð Þ ¼ 22, 500� 2πf xð Þð Þ2
5, 000

Moreover, in order to handle constraints of this MO problem, we use the penalty
method. This technique consists of replacing the constrained optimization problems
by an optimization problems without constraints, when introducing new objective
functions to be optimized:

ϕk xð Þ ¼ f k xð Þ þ rφ xð Þ (13)

where the penalty function chosen here is:

φ xð Þ ¼
Xn
i¼1

max 0,
σi xð Þj j
σ

� 1
� 
 �2

þ
Xn
i¼1

max 0, ε� σi xð Þj j
σ

� 
 �2

(14)

and where r is a positive penalty parameter. We have chosen here r ¼ 1010.

2 To obtain the best numerical efficiency for the FE analysis, the FE disassembly strategy proposed in

Ref. [31] is involved.
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Finally, the MO problem definition for the 10 bar truss of this work is:

min
x∈Ω

f 1 xð Þ þ rφ xð Þ, f 2 xð Þ þ rφ xð Þ, f 3 xð Þ þ rφ xð Þ� �
6.2 Numerical simulations for two objective functions

In this subsection, we will subdivide and transform the 10 bar MO problem from
the previous section into three MO subproblems. Objective functions are considered
two by two: w, uð Þ, w, fð Þ, and u, fð Þ To solve each of these 10 bar MO problems, we
use the NNIA algorithms and the NNIA+X3, keeping the parameters to those of the
previous subsection 5.2.

After 250 and 750 iterations, we obtain the two Figures 4 and 5 (respectively),
which show Pareto fronts of a typical execution, if the two algorithms start from the
same initial population. In these figures, we observe that the NNIA+X3 algorithm
shows better diversity for each subproblem, and that NNIA+X3 gives better con-
vergence for the subproblems w, fð Þ and u, fð Þ. Since each iteration of one of these
algorithms requires nc ¼ 100 evaluations of the mechanical problem, 25,000 func-
tion evaluations are performed when 250 iterations are performed, and 75,000
function evaluations are performed when 750 iterations are performed.

Figure 6 shows the evolution of two metric indicators along the number of
iterations for one typical run. Metric indicators chosen here are spacing and hyper-
volume of Pareto fronts. Spacing evolution is presented in log-log scale in the figure.
Each evaluation of the hyper-volume is achieved by using the same anti-utopia
point and utopia point for results consistency. Moreover, in order to compare the
three MO results on the same graph, a relative hyper-volume is plotted: the graph
corresponds to the hyper-volume obtained divided by its maximum value. These
graphs show a better diversity and convergence for NNIA+X3 compared with NNIA
when early number of iterations are considered.

Figure 4.
Pareto fronts of the 10 bar truss MO problem two by two: w, uð Þ (up-left), w, fð Þ (up-right), u, fð Þ (down),
after 250 iterations.
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Tendency observed in the previous figure is confirmed by statistical results of
Figure 7 and Figure 8. These figures show box plots statistic for spacing and
hyper-volume (respectively) when 300 runs stopped at 250 iterations are carried
out. For spacing, means and variance are clearly better for NNIA+X3.
Hyper-volume statistic results are also better for the NNIA+X3 when considering
the w, uð Þ and u, fð Þ subproblems, while they are almost identicals for the w, fð Þ
supbproblem, although the mean and variance are also better for the NNIA+X3.
From results for the hyper-volume of the w, fð Þ supbproblem, it is assessed that
this subproblem is the most difficult to solve since a wide spread is observed in
data for both algorithms.

Figure 6.
Metrics indicators of the 10 bar truss MO problem for the three objectives functions two by two: spacing (up)
and relative hyper-volume (down).

Figure 5.
Pareto fronts of the 10 bar truss MO problem, after 750 iterations for two by two: w, uð Þ (up-left), w, fð Þ (up-
right), u, fð Þ (down).
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6.3 Numerical simulation for three objective functions

Figure 9 shows different views of the Pareto front obtained for one typical run
when solving the three objectives 10 bar truss problem, using NNIA+X3 with the
following parameter values: size of active population 30, clonal scale 150 and 750
iterations. In this case, the size of the dominant population is not limited to any
number and all Pareto points found are kept. Figure 10 shows the evolution of the

Figure 7.
Statistics box plots of spacing for 300 runs of the two-by-two MO 10 bar subproblems: w, uð Þ (left), w, fð Þ
(middle), u, fð Þ (right).

Figure 8.
Statistics box plots of relative hyper-volume for 300 runs of the two-by-two MO 10 bar subproblems: w, uð Þ
(left), w, fð Þ (middle), u, fð Þ (right).

Figure 9.
Four different views of the Pareto front obtained for solving the three objective functions of the 10 bar truss
problem; Colorized surface of the down-right subfigure is added for a better visualization, and the color
corresponds to the frequency objective f .
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number of points in the dominant population for the Pareto front given in Figure 9.
It ends at 2216 Pareto points for this run.

Figure 11 shows box plot statistics when 300 runs are carried out with NNIA and
NNIA+X3. It is observed that the number of points for the Pareto front is higher for
NNIA+X3, with a better spacing. But the hyper-volume is better for NNIA.
Detailled analysis of results has revealed that bad results for hyper-volume are due
to a slow convergence to an extreme Pareto front point: the individual optima for
the frequency objective. For this problem, the individual minima found for the
frequency objective are most of the time better for NNIA than for NNIA+X3.
However, it is also found that individual minima of the three objectives are rarely
found in the Pareto front by both algorithms.

For better results, the idea is to handle the three individual minima found by a
mono-objective optimization into the random initial population of both NNIA and
NNIA+X3. This simple modification greatly improves performance results.
Figure 12 shows statistics box plots when 300 runs of MO problem are carried out
when the three individual optima are given in the initial population. In such a
situation and for each of the 300 runs done, NNIA+X3 appears to be superior to
NNIA for all performance aspects, including the computed hyper-volume.

Figure 10.
Evolution of results for a typical run of the MO 10 bar problem: Number of points for the Pareto front (left),
spacing (middle), and relative hyper-volume (right); Blue line with cross markers: NNIA; Red line with
squared markers: NNIA+X3.

Figure 11.
Statistics box plots for 300 runs of the three objectives 10 bar problem with NNIA and NNIA+X3 with random
initial population: Number of Pareto front points (left), spacing (middle), and relative hyper-volume (right).

Figure 12.
Statistics box plots for 300 runs of the three objectives 10 bar problem with NNIA and NNIA+X3 when
individual optima are handled in the initial population: Number of Pareto front points (left), spacing
(middle), and relative hyper-volume (right).
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7. Summary

This work is devoted to recombination for an NNIA algorithm. We propose 
three recombinations, inspired by the BSA algorithm crossing operator when 
adapting input populations.

In the first NNIA+X1 algorithm, the clonal population and an extended active 
population are concerned, when the extended active population is founded by 
duplicating individual antibodies.

In the second algorithm, NNIA+X2, recombination is achieved by using the 
clonal population and itself.

The NNIA+X3 algorithm uses the clonal population and an extended working 
population, which finds by duplicating individual antibodies and a proportion of 
random individuals. From this algorithm, a certain degree of mutation is carried 
out. The results obtained for the benchmark, ZDT, and DTLZ functions show that 
our proposed algorithm NNIA+X3 can accelerate the speed of convergence and 
maintain the desirable diversity, especially when solving problems with many local 
Pareto-optimal fronts. The experimental results of this algorithm to solve the prob-
lems of bi-objectives and three-objectives of optimization of 10 bar trellis structure 
indicate that the proposed NNIA+X3 surpasses the NNIA algorithm in terms of 
convergence rate and of course of quality of the solution.
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Abstract

Intelligent traffic control at signalized intersections in urban areas is vital for 
mitigating congestion and ensuring sustainable traffic operations. Poor traffic 
management at road intersections may lead to numerous issues such as increased 
fuel consumption, high emissions, low travel speeds, excessive delays, and vehicular 
stops. The methods employed for traffic signal control play a crucial role in evaluat-
ing the quality of traffic operations. Existing literature is abundant, with studies 
focusing on applying regression and probability-based methods for traffic light 
control. However, these methods have several shortcomings and can not be relied 
on for heterogeneous traffic conditions in complex urban networks. With rapid 
advances in communication and information technologies in recent years, various 
metaheuristics-based techniques have emerged on the horizon of signal control opti-
mization for real-time intelligent traffic management. This study critically reviews 
the latest advancements in swarm intelligence and evolutionary techniques applied 
to traffic control and optimization in urban networks. The surveyed literature is 
classified according to the nature of the metaheuristic used, considered optimization 
objectives, and signal control parameters. The pros and cons of each method are 
also highlighted. The study provides current challenges, prospects, and outlook for 
future research based on gaps identified through a comprehensive literature review.

Keywords: metaheuristics, intelligent traffic control, signal optimization, 
swarm intelligence, evolutionary computation, transport networks

1. Introduction

1.1 Traffic congestion: a challenging front

Recent decades have witnessed a rapid surge in population growth. Consequently, 
a high concentration of social and economic activities in urban metropolitans has 
led to the emergence of various transportation modes and services. Urban traffic 
congestion has become a daunting challenge in cities around the world. Excessive 
delay, low traveling speeds, increased travel costs, elevated drivers’ anxiety and frus-
trations, high fuel consumption, and vehicular emissions are the few consequences 
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of traffic congestion. It also poses a threat to a stable urban economy [1, 2]. Traffic 
demands fluctuate significantly during the day (TOD), especially during rush hours, 
which is one of the main causes of congestion buildup. Congestion may be recurrent, 
arising from routine cyclic fluctuations in traffic volumes, or it may be non-recurrent 
produced due to unforeseen events such as traffic incidents, unpredictable weather 
conditions. Existing transport infrastructure cannot withstand the ever-growing 
traffic demands, while the inappropriate allocation of temporal and spatial resources 
further exacerbates the problems [3, 4]. An effective solution to mitigate traffic 
congestion is to embed intelligent transportation system (ITS) technologies in exist-
ing transport infrastructure for efficient and sustainable operations. Researchers and 
practitioners have proposed various strategies such as signal control optimization 
and dynamic lane grouping to address the issue in recent years.

1.2 Traffic signal control (TSC)

Signalized intersections are a vital component of urban traffic networks and 
play a pivotal role in traffic control and management strategies. Over the years, they 
have been the primary focus of traffic improvement efforts since they are repre-
sentative of frequent and restrictive bottlenecks. Poor traffic management at urban 
intersections leads to traffic jams and unsustainable travel patterns network-wide. 
Alternatively, intelligent traffic control and better management at these critical 
locations could result in smooth, safe, cheap, and sustainable operations. Traffic 
Signal Control (TSC) is an integral part of ITS. TSC is an important operation that 
can tackle various urban traffic issues such as congestion, fuel consumption and 
exhaust emission, and inefficient resource utilization. TSC involves determining 
appropriate signal timings parameters to improve various traffic performance mea-
sures like average vehicle delay, travel time, maximizing throughput, and reducing 
queue lengths and vehicular emissions. One of the main objectives of traffic signal 
control is to facilitate the safe and efficient movement of people through a road 
network. Achieving this goal warrant establishment of an accommodation plan that 
ensures appropriate assignment of right-of-way (ROW) to different users.

1.3 Classical methods for TSC

Over the years, different strategies have been proposed to address the TSC 
problem. A fixed-time signal control scheme has been widely used for managing 
traffic lights in urban areas. This strategy requires the determination of optimum 
TOD breakpoints for establishing TOD intervals, which are subsequently used for 
obtaining the predefined green splits for each split (green times) using Webster’s 
formula or some other optimization tools [5]. However, the fixed-time signal 
control strategy is suitable for stable and nearly homogenous traffic patterns. 
Alternatively, studies have focused on actuated and traffic responsive TSC schemes 
for dynamic traffic control and management. In such traffic control schemes, 
signal cycle length and green splits are adjusted according to real-time traffic data 
collected from sensors installed on each approach. Though actuated TSC strategies 
overcome some limitations of the former methods, they do not work well under all 
traffic and adverse conditions. TSC problem was initially addressed using various 
probability and regression-based methods [6, 7]. However, for oversaturated and 
undersaturated traffic conditions, such methods do not provide reliable solutions. 
Few notable classic TSC strategies proposed during the last few decades include: 
SCOOT [8], SCAT [9], MAXBAND [10], CRONOS, PRODYN [11], TRANSYT [12], 
RHODES [13], OPAC [14], and FUZZY LOGIC [15]. Few other methods recently 
used for traffic light setting are ARRB [16], TRRL [8], and HCM [17]. In addition, 
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to signal control strategies, traffic light design could be isolated intersection based 
or coordinated. Isolated intersections signal schemes have limited benefits com-
pared to coordinated strategies that consider the network of intersections.

1.4 Limitations of classical TSC strategies

  The timing of traffic signals significantly influences the performance of the 
transportation system. Obtaining the optimal signal timing plan for a network in
its entirety is challenging due to the stochastic and non-linear characteristics of the 
traffic system. From a computational perspective, the signal control optimization 
problem under the influence of several constraints is a highly non-linear and non-
convex problem. To reduce the complexity of problem, studies have assumed partial
convexification for obtaining the optimal signal plans [18,  19]. It has been shown 
that traffic light optimization belongs to the family of NP-complete problems whose
complexity increases dramatically for real-world and more extensive transportation
networks with prolonged study periods. Classical optimization methods used in this
regard are not suitable for a variety of reasons. For example, they are sensitive to 
initial estimates of solution vector and require gradient computation of constraints 
and the objective functions. Further, the discrete nature of signal timing plan and 
phasing sequence limit the application of traditional optimization approaches.
Similarly, classical signal control optimization techniques are usually more suited
to isolated intersections. They are not scalable for large urban transport networks 
where the interdependence of traffic signals across multiple intersections may be 
explored. Hence, such methods do not consider the interdependencies and connec-
tivity of traffic signals vital for large-scale urban transport networks.

1.5 Metaheuristics for TSC: the new frontier

  Metaheuristics techniques, including and swarm intelligence and evolutionary 
algorithms, have emerged as appealing alternatives to classical optimization meth-
ods for addressing signal control problems. They can be easily adapted for solving 
signal optimization problems with mixed types of continuous and discrete variables
on large-scale transportation systems. Metaheuristics are based on approximate 
random methods and involve an iterative master process that can efficiently provide
high-quality, acceptable solutions with relatively low computational efforts [20]. No
prior information regarding the search space characteristics is required. In addition,
metaheuristics do not rely on gradient information of the objective functions and 
the associated constraints with reference to signal timing variables. Further, the 
process of finding the optimal solution is simple and straightforward. Entailing
less complexity than exact methods means that metaheuristics could be easily 
implemented to solve non-linear complex optimization problems. Furthermore, for 
many large-scale engineering problems that involve uncertainties (such as traffic 
flow), obtaining near-optimal solutions within a reasonable time is acceptable.
Owing to these benefits, several metaheuristics techniques have been successfully 
applied for solving TSC optimization problems. Metaheuristics aim at obtaining the
optimal values/ranges for various signal parameters that influence the performance 
of signalized intersections and include variables such as cycle length, green splits,
phase sequence, offsets, change interval, etc. These parameters of interest are also 
known as decision variables. Constraints conditions for signal optimization include 
lower and upper cycle length, green splits thresholds, etc.
  Metaheuristics have been widely applied to solve the TSC problems under a 
single objective framework known as mono-objective optimization. The single 
objective optimization can be classified into four main types: i) travel time
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minimization, ii) delay minimization, iii) throughput maximization, and iv) fuel 
consumption and exhaust emissions (CO, CO2, NOx, HCs) minimization. Mono-
objective optimization of traffic signals has some benefits; however, field traffic is 
highly complex, non-linear, and stochastic in nature, and quite often, the applica-
tion of multi-objective optimization becomes inevitable. In the process of finding 
the optimal signal control parameters, traffic engineers usually deal with multiple 
conflicting objectives. They are seldom interested in knowing the single-objective-
based best solution without considering the other objectives. It is quite possible 
that an indented improvement in one of the objectives may lead to the deterioration 
of others. Therefore, it is essential to obtain a reasonable trade-off among various 
clashing objectives while optimizing the signal timing parameters. To address this 
issue, researchers have proposed bi-objective or multi-objective metaheuristic 
frameworks which involve more than one objective function to be optimized con-
currently. Adoption of multi-criteria/objectives metaheuristics for signal optimiza-
tion is rational as well as more beneficial.

1.6 Study objectives

This study provides a comprehensive review of metaheuristics techniques 
applied to signal control optimization. The surveyed literature is categorized 
based on the types of metaheuristics used, i.e., evolutionary algorithms and swarm 
intelligence techniques. A total of over 15 metaheuristics optimization techniques 
in traffic signal control and optimization are presented. Literature is summarized 
based on classification of techniques, considered optimization objectives, decision 
variables, and constraints conditions. Finally, based on the identified literature 
gaps, major challenges and prospects for future research are also proposed.

1.7 Paper organization

The remainder of this work is organized as follows. Section 2 provides research 
methods and publication analysis of signal control optimization using meta-
heuristics. Section 3 reviews evolutionary algorithms’ metaheuristics for signal 
optimization. Section 4 provides a summary of swarm intelligence techniques in the 
context of the subject domain. Section 5 and 6 presents surveys of trajectory-based 
metaheuristics and few others for TSC optimization. Finally, Section 7 presents the 
review conclusions and outlines the current challenges and recommendations for 
future research.

2. Methodology

The relevant literature on TSC was searched (in May 2021) using a detailed 
systematic review (SR). SR is a formal and standard protocol for performing a 
review study. To ensure that findings were reached in a valid and reliable manner, 
the study adopted a three-staged approach, i.e., i) planning, ii) execution, and iii) 
analysis. The planning stage involved defining the research scope and aims, setting 
the inclusion and exclusion criteria, and developing the review protocols. The 
execution stage involved a systematic search using relevant search strings. The rel-
evant publications were meticulously selected by browsing through different elec-
tronic databases such as “Google Scholar,” Science Direct,” Wiley Online Library,” 
“Scopus,” “Web of Science,” and “IEEE Xplore.” To explore these databases, the 
following “Keywords” were used: “signalized intersections,” “traffic congestion,” 
“traffic signal control,” “traffic signal timing optimization,” “traffic control 
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Figure 1. 
Chronological distribution of indexed publications on traffic signal optimization using swarm intelligence and 
evolutionary computation techniques (period 2000–2021).

Figure 2. 
Percentage distribution of indexed publications on traffic signal optimization based on metaheuristic type.

through metaheuristics,” “intelligent traffic control,” “dynamic traffic manage-
ment,” “traffic simulation and optimization,” “multi-objective traffic control,” etc.
Titles, keywords, and abstracts of all the downloaded documents were reviewed
to determine the appropriate selection of articles for the current study. Additional 
appropriate publications were added to the list by looking at the references selected
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publications. Publications were searched irrespective of publication year and 
the number of citations to have the maximum number for initial consideration. 
Duplicate articles found in various databases were also identified and removed. 
Non-academic publications, such as magazine articles, company reports, newspa-
pers, presentations, and interview transcripts, were excluded. Finally, the analysis 
stage involved the classification, categorization, and summarization of the main 
theme of selected articles.

Figure 1 presents the chronological distributions of shortlisted publications in 
which metaheuristics are used for solving traffic signal control optimization. It may 
be observed from the publications reporting in Figure 1 that is there is a growing 
trend in the application of metaheuristics in the subject domain. Figure 2 shows the 
percentage distribution of published studies in the area of traffic control optimiza-
tion based on the type of metaheuristic applied. It may be observed from the Figure 
that the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant 
Colony Optimization (ACO) have been widely used for signal optimization.

3. Review of evolutionary algorithms (EAs) for TSC

This section reviews the previous studies in the literature that applied evolu-
tionary algorithms (EAs) for traffic signal control and optimization. EAs are the 
most widely used metaheuristics optimization techniques across diverse fields of 
science and engineering. EAs are population-based random search techniques and 
are inspired by Darwin’s theory of natural theory of evolution. The EAs contain a 
population of individuals, each symbolizing a search point in the feasible solution 
space exposed to a common learning process while proceeding among different 
generations. EAs begins with the initialization of random population, which are 
then subjected to selection, crossover, mutation through various generations so that 
offsprings generated evolve toward more favorable regions in the search space. At 
each generation, the fitness of the population is evaluated, and those with better 
fitness values are selected and recombined that have an increased probability of 
improved fitness. The program is iteratively repeated until it converges to the best 
(or near-optimal) solutions. The basic structure of EAs remains similar for all the 
algorithms under its family. Figure 3 presents the sample structure of EAs and 
their working principle. The following passages provide a brief explanation of 

Figure 3. 
General flow depicting the search mechanism of EAs.
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various EAs employed in the field of traffic signal optimization. Table 1 presents 
a summary of previous studies that have applied EAs for traffic signal control and 
optimization.

3.1 Genetic algorithm

Genetic algorithm is the most widely used method for traffic light optimization. 
John Holland initially proposed the GA metaheuristic in 1975 [39]. GA search mecha-
nism for finding the optimal solution of an objective function mimics the natural 
selection process of the evolutionary theory of nature, which supports the “survival 
of the fittest” concept. It is a population-based technique that involves the ranking of 
individual members of the population according to their fitness.

The search process of the optimal solution begins with the initialization of a 
random population of solutions. The offspring population is created by iteratively 
applying various genetic operators such as crossover, mutation, elitism, etc. until 
the stopping criteria are satisfied. In literature, many studies have demonstrated 
the robustness of GA for adaptive traffic signal control. For example, Foy et al. 
utilized GA for traffic light optimization, considering delay time minimization as 
the objective function [36]. The number of initial GA generations was varied over 
five GA traffic runs. The optimal fitness value was achieved for populations rang-
ing between the 20th to 30th generations with an average vehicle waiting time of 
around 40 seconds. GA was noted to yield rational signal timing plans reducing the 
timing delay significantly compared to the existing traffic control scheme. In their 
study, Rahbari et al., studied that traffic control at the signalized intersection with 
GA could reduce the congestion [40]. Yang and Luo adopted a hybrid GA simulated 
annealing (GA-SA) for signal control optimization at isolated signalized intersec-
tions considering delay as the objective function [41]. Empirical results showed that 
GA produced a rational signal timing plan compared to fixed control scenarios. A 
study conducted by Mingwei et al. proposed the application of multi-objective for 
intelligent traffic management at an isolated signalized intersection for a case study 
in China [42]. The considered optimization objectives included; average vehicle 
delay, vehicular stops, and fuel consumption. It was found that the optimized signal 
timing plan from GA significantly improved the considered traffic performance 
measures.

In another study, Turki et al. proposed a multi-objective NSGA-II to optimize 
various measures of effectiveness (such as delay, stops, fuel consumption, and 
emissions) at isolated signalized intersections in the city of Dhahran, Saudi Arabia 
[35]. Study results were compared with Synchro traffic simulation and optimiza-
tion tool, and the results for a typical intersection are shown in Figures 4 and 5. All 
the performance measures witnessed considerable improvement for the optimized 
signal timing plan obtained using an NSGA-II optimizer. Figure 4 (a–d) depicts 
the evolution of the four selected performance measures (delay, stops, fuel con-
sumption, and emissions) against the number of iterations for three random initial 
populations. It may be noted that all the algorithms converged to their respective 
objective functions at approximately 70 to 100 generations. Comparing the random 
initial populations, population size 30 for all cases yielded the best results.

Figure 5 shows the performance comparison of NSGA-II and Synchro signal 
control strategies for the selected measures of effectiveness (delay, stops, fuel 
consumption, and emissions). It may be noted from the Figure that the NSGA-II 
optimizer outperformed the Synchro results for all the performance measures.

Li et al. also investigated the applicability of NSGA-II for solving signal control 
optimization problems [34]. Average queue ratio and vehicle throughput were the 
objective functions. The algorithm’s results were validated on a microscopic traffic 
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simulation tool, VISSIM. Kwak et al. developed a GA traffic optimizer to evaluate 
the influence of traffic light setting on vehicle fuel consumption and emissions 
[32]. Model results were compared with TRANSIM, a microscopic traffic simula-
tor. It was observed that the proposed GA traffic optimizer could reduce exhaust 
emissions by approximately 20% and fuel consumption in the range of 8–20%. In 

Figure 4. 
Evolution of different performance measures against NSGA-II iterations; (a) delay evolution, (b) number of 
vehicle stops evolution, (c) fuel consumption evolution, (d) emission evolution. Reprinted with permission from 
Ref. [35] copyright (2021), MDPI.

Figure 5. 
Comparison of NSGA-II and synchro optimizers for various traffic performance measures. Reprinted with 
permission from Ref. [35] copyright (2021), MDPI.
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another study, Kou et al. employed multi-criteria GA for optimizing the signal tim-
ing plan of signalized junctions and compared the results with the highway capacity 
manual (HCM) method [28]. The study considered several optimization objectives 
such as stops, delays, and emissions. A reasonable trade-off established an optimal 
Pareto front among different conflicting objectives. Study results demonstrated 
the superior performance of the proposed GA traffic control scheme compared to 
the HCM method in terms of all the optimization objectives. Guo et al. developed 
a model for area-wide intersection traffic control in the central business district 
(CBD) area of Nanjing, China [43]. Capacity ratio, turning movement delay, and 
travel time was the three chosen objective functions. Computational experiments 
results showed significant mobility improvement compared to existing conditions. 
Study results were also validated in PARAMICS traffic simulation tool. In their 
study, Dezani et al. have shown that simultaneous optimization of traffic lights via 
GA and vehicle routes could significantly reduce the vehicle travel time compared 
to optimization considering only routes [44]. In another study, Tan et al. proposed 
a new Decentralized Genetic Algorithm (DGA) for signal timing optimization of 
traffic networks under oversaturated traffic conditions [45]. Average vehicle delay 
was used as the performance metric to evalauate the performance of proposed 
algorithm. Simulation results showed that DGA could effectively optimize the traf-
fic light setting and reduced the average network delay.

3.2 Differential evolution (DE)

Differential evolution is another population-based metaheuristic technique 
initially proposed by K.V. Pricein 1995 [46]. DE is characterized by its robustness, 
fast convergence to the objective function, and simplicity. Though the method has 
been successfully used for numerous applications across different disciplines, only 
a few studies have adopted DE for urban traffic control and management [25–29]. 
For example, in their recent study, Jamal et al. compared the performance of GA 
and DE for optimizing traffic lights at isolated signalized intersections in the city 
of Dhahran, Saudi Arabia [29]. Average delay time minimization was the objective 
function. The study concluded that both GA and DE could yield intelligent and 
rational signal timing plans, reducing the intersection average delay between 15 and 
35%. DE was noted to converge to objective function faster than DA over several 
simulation runs. Similarly, in another study, Liu et al. proposed bacterial foraging 
optimization-based DE algorithm for optimizing delay at signalized intersections 
[37]. To improve convergence precision, DE was utilized for updating the bacteria 
position during the chemotaxis process. The proposed scheme yielded very prom-
ising results, reducing the intersection delay by over 28% compared to only 5% 
obtained by GA optimization. In their study, Korkmaz et al. suggested three differ-
ent types of delay differential evolution-based delay estimation models (DEDEM), 
i.e., linear, quadratic, and exponential [47]. The researchers reported that all the 
proposed models effectively predicted the vehicle delay estimates in terms of rela-
tive errors between estimated and simulated values; however, quadratic DEDEM 
methods outperformed other models. Ceylan also approached the signal control 
optimization problem using the metaheuristic DE and Harmony-Search (HS) for 
network-wide traffic control and optimization [48]. Study results showed that DE 
algorithms yielded better results compared to HS.

In another research study, Yunrui et al. proposed multi-agent fuzzy logic control 
based on DE to optimize delay and queue length through a network of eleven inter-
sections in the urban traffic context [31]. DE was used to decide and optimize the 
parameters of the fuzzy systems because it is easy to understand and implement. 
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Empirical results revealed that the proposed method could substantially improve 
the network performance measures such as average vehicle delay, traffic through-
put, and queue length. In a recent study, Liu et al. have proposed an improved adap-
tive differential evolution (ADE)-based evolvable traffic signal control (EvoTSC)
scheme for global optimization of different traffic performance measures on large 
scale urban transportation networks [49]. The proposed TSC method was compared
with a conventional TSC scheme on two practical and three synthetic transporta-
tion networks with varying traffic flow demands and different physical scales.
Comparison results indicated that the DE-based EvoTSC method significantly 
outperformed its counterpart under all the considered scenarios. Zhang et al. also 
applied an online intelligent urban traffic signal control approach using multi-
objective DE for real-time traffic control and optimization [50]. Experimental 
results showed that the proposed approach provides a more robust configuration
of traffic signal phases and has relatively better real-time performance than the 
traditional traffic control scheme.

3.3 Genetic programming (GP)

  Genetic programming (GP) is another population-based metaheuristic tech-
nique that belongs to the family of evolutionary algorithms [51]. GP is an extension 
of GAs that allows for deep exploration of space on computer programs. GP starts 
with a population of random programs (candidate solutions) that are fit for apply-
ing evolutionary operators similar to genetic processes, thereby simulating the 
fundamental principles of Darwin’s evolution theory [52]. GP follows an iterative 
process to breed the solutions to problems using the probabilistic selection proce-
dure for the carryover of fittest solutions to the offerings by applying genetic opera-
tors such as crossover and mutation. In literature, not many studies have focused on
applications of GP for traffic analysis and management in urban transport net-
works. Montana and Czerwinski used a hybrid GA with strongly typed GP (STGP)
for intelligent control and optimization of evolving traffic signals on a small-scale 
transport network [53]. Numerical simulation results showed that the proposed 
hybrid STGP model could effectively improve network performance under varying 
traffic demands.
  A study conducted by González also proposed the application of GP for solving 
signal control problems [54]. This study considered four different traffic scenarios 
with properties and traffic conditions in a previous study [55]. Study results were 
also validated using the microscopic traffic simulator tool SUMO. Findings showed
that GP could provide competitive and robust results for all the tested scenarios.
However, the highway/network scenario had a more pronounced performance 
improvement (having an improvement of 10.34%) than the isolated intersection 
scenario (with an improvement of 4.24%). In another study, Ricalde and Banzhaf 
adopted an improved GP with epigenetic modifications for traffic light scheduling 
and optimization under dynamic traffic conditions [56]. Extensive simulation 
analysis revealed that the proposed model improved the network performance 
compared to standard GP and other previously used methods. This study, how-
ever, did not use any real-world data for validation purposes. In another study,
the authors used a similar GP approach with epigenetic modifications (EpiGP) to 
design and evolve traffic signals using real-time field traffic data [38]. Results indi-
cated significant improvement in network performance compared to conventional 
methods, including standard GP, static, and actuated traffic control techniques..
Over 12% improvement in average delay was reported under high-density traffic 
conditions.

75



Search Algorithm - Essence of Optimization

12

4. Review of swarm intelligence (SI) techniques for TSC

This section reviews the previous studies in the literature that applied swarm 
intelligence (SIs) techniques for traffic signal control and optimization. SI is 
another class metaheuristics that are increasingly used for various engineering and 
industrial applications. The search mechanisms of SI are believed to be inspired by 
human cognition representing the individual’s interaction in a social environment. 
For this reason, SI techniques are also sometimes called “behaviorally inspired 
algorithms.” In SI algorithms, each swarm member has a stochastic behavior due to 
their perception of the neighborhood and acts without supervision. By collective 
group intelligence, swarm utilizes their resources and environment effectively. The 
primary attribute of a swarm system is self-organization, which assists in evolving 
and obtaining the desired global level response by effective interactions at the local 
level. Just like EAs, SIs are population-based iterative procedures. After randomly 
initializing the population, individuals are evolved across different generations by 
mimicking the social behavior of animals or insects to reach the optimal solutions. 
However, SIs do not involve the use of evolutionary operators like crossover and 
mutation like EAs. Instead, a potential solution modifies itself based on its relation-
ship with the environment and other individuals in the population as it flies through 
the search space. The following passages provide a brief explanation of various 
swarm intelligence techniques employed for solving signal control optimization 
problems. Table 2 presents a summary of previous studies that have applied SIs for 
traffic signal control and optimization.

4.1 Particle swarm optimization (PSO)

Particle swarm optimization is a population-based swarm intelligence technique 
that was first introduced in 1995 by Eberhart and Kennedy. In the PSO algorithm, 
every potential solution is referred to as a particle representing a location in the 
problem space. The entire population of potential solutions (particles) is called the 
swarm. PSO search mechanism for global optima is inspired by birds in which each 
particle can update its velocity and position by using local and global best values. 
PSO is yet another widely used optimization algorithm for signal control problems. 
For example, Celtek applied PSO for real-time traffic control and management in 
the city of Kilis city in Turkey [77]. Algorithm performance was investigated in 
real-time using the SUMO traffic simulator. Social Learning-PSO was introduced as 
an optimizer for the traffic light. Empirical results obtained using the proposed PSO 
architecture resulted in travel time by 28%. The algorithms performed well both for 
undersaturated and oversaturated traffic conditions. Gokcxe and Isxık proposed a 
microscopic traffic simulator VISSIM-based PSO model for optimizing vehicle delay 
and traffic throughput using field data from28 signalized roundabout in Izmir, 
Turkey [64]. The simulation tool was used to evaluate the solutions obtained by 
PSO. Optimization of traffic signal head reduced the average delay time per vehicle 
by approximately 56% and increased the number of passing vehicles by 9.3%. In 
their study, Jia et al. employed multi-objective optimization of TSC using PSO [72]. 
The optimization objectives included average vehicle delay, traffic capacity, and 
vehicle exhaust emissions. The validity of the algorithm was examined by applying 
it to the real-time signal timing problem. The suggested algorithm provided com-
petitive performance for all the MOEs compared to other efficient algorithms such 
as NSGA-II, IPSO, and GADST.

Abushehab et al. compared PSO and GA techniques for signal control optimiza-
tion on a network of 13 traffic lights [78]. SUMO was used as a simulator tool for the 
network. Both the algorithms yielded systematic and rational signal timing plans; 
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however, some algorithm variants were found to be more efficient than the others.
In their study, Angraeni et al. proposed a modified PSO (MSPO) and fuzzy neural 
network (FNN) for optimizing signal cycle length at an isolated intersection [79].
Simulation results using PSO led to a reduction in MSE value from 6.3299 to 2.065,
while network performance was improved by 4.26%. The accuracy of the train-
ing process using MPSO was higher than FNN. Chuo et al. reported a significant 
decrease in vehicle queue length by using PSO as a traffic signal optimizer [73]. In 
another study, Garcıa-Nieto et al. applied PSO to optimize the cycle program of
126 traffic signals located in two large and heterogenous metropolitans of cities of 
Bahıa Blanca in Argentina and Malaga in Spain [80]. The Obtained solutions were 
validated using the traffic simulation package SUMO.
  In comparison to the existing pre-defined traffic control schemes, PSO achieved
significant quantitative improvement for both the objectives, i.e., overall journey 
time (74% improvement) and the number of vehicles reaching their destinations 
(31.66%) improvement). In another study, a researcher proposed an improved PSO
architecture by combining traditional PSO with GA for multi-objective traffic light 
optimization. The selected performance indexes included vehicular emissions,
vehicle delay, and queue length [40]. The authors reported that the improved PSO 
method has a quick response and higher self-organization ability which is beneficial
for improving the efficiency of traffic signal control.
  Olivera et al. investigated the applicability of PSO to reduce vehicular exhaust 
emissions (CO and NOx) and fuel consumption considering large-scale heteroge-
neous urban scenarios in the cities of Seville and Malaga in Spain [67]. Study results
showed that the proposed signal control strategy could significantly reduce the 
exhaust emission (CO by 3.3% and NOx by29.3%) compared and fuel consumption
(by 18.2%) compared to signals designed by human experts. In their study, Qian
et al. designed a simulation protocol for traffic different signal parameters such as 
cycle, green signal ratio, and phase difference using three Swarms Cooperative-PSO
algorithms [74]. The considered optimization objectives included average vehicle 
delay and average parking number per vehicle. Algorithm simulation results were 
validated using traffic simulator CORSIM. Lo and Tung compared the performance
of PSO and GA-based signal control along four intersections on an urban arterial 
and noted that the PSO algorithm outperformed GA both in terms of speed con-
vergence and accuracy of search [81]. A couple of other recent studies also dem-
onstrated the adequacy and robust performance of PSO for TSC and optimization 
[82,  83].

4.2 Ant colony optimization (ACO)

  Ant Colony optimization is a swarm intelligence method-based optimization 
technique that mimics the natural behavior of ants in finding the shortest path
from an origin to a food source [84]. In ACO, the path of every ant from origin
to destination is considered as a possible solution. ACO has been widely used for 
traffic signal optimization. In their study, Putha et al. used ACO for traffic signal 
coordination and optimization in the context of an oversaturated urban transport 
network [85]. The authors reported that ACO could provide reliable solutions of 
optimal signal timing plan compared to GA. Yu et al. also applied ACO for intel-
ligent traffic control at signalized intersections considering vehicle waiting time
as the optimization objective [86]. The authors reported that ACO outperformed 
the traditional traffic actuated scheme, predominantly during traffic flow periods.
He and Hou also proposed the application of a multi-objective ACO algorithm for 
the timing optimization of traffic signals [57]. Several parameters such as vehicle 
delay, number of stops, and traffic capacity performance indices were chosen as
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performance indexes. Numerical simulation results demonstrated that ACO is a 
simple and robust technique for signal control optimization problems. The pro-
posed ACO technique significantly improved the selected performance indicators 
compared to Webstar and GA algorithms.

In another study, ACO optimized the timing plan for traffic lights at isolated 
signalized intersections [61]. All the selected intersection measures of effective-
ness (MOEs), including vehicle delay, parking rate, and the number of stops, were 
improved by a fair margin. Sankar and Chandra proposed a multi-agent ACO for 
effective traffic management on a network level [69]. The authors concluded that 
the method could be pretty useful in reducing average vehicle delays and traffic 
congestion under varying traffic conditions. Haldenbilen et al. developed an ACO-
based TRANSYT (ACOTRANS) model for area traffic control (ATC) through a 
coordinated signalized intersection networks under different traffic demands [87]. 
A total of 23 links were considered for the analysis, and the network Disutility Index 
(DI) was chosen as the primary performance index. A comparative analysis of the 
network’s PI obtained using TRANSYT-7F with hill-climbing (HC) optimization 
and TRANSYT-7F with GA was also performed. Study results showed that the pro-
posed ACOTRANS improved the network’s PI by 13.9% and 11.7% compared to its 
counterparts TRANSYT-7F optimization with HC and GA. Li et al. compared ACO 
and Fuzzy Logic for optimizing traffic signal timing in a simulated environment 
[88]. Traffic capacity and vehicular delay were considered as the objective func-
tions and did not consider pedestrian traffic. The validity of proposed algorithms 
was tested using actual time-period and conventional algorithms. Jabbarpour et al. 
conducted a detailed review of the literature focused on applying ACO evolutionary 
algorithms for the optimization of vehicular traffic systems [89].

Rida et al. proposed ACO for real-time traffic light optimization problems at 
isolated signalized intersections [71]. Objective functions include minimizing the 
vehicle waiting time and increasing the traffic flow. The proposed model yielded 
robust performance compared to fixed time signal controller and other dynamic 
signal control strategies. Renfrew and Yu, in their studies, also reported that ACO 
demonstrated robust performance compared to actuated control in optimizing 
signal timing plan, particularly under high traffic demand [90, 91]. Srivastava and 
Sahana proposed a novel hybrid nested ACO model intending to reduce the vehicle 
waiting time at signalized intersections [92]. The proposed model was also com-
pared with the hybrid nested GA model. Results showed that nested hybrid models 
outperformed traditional ACO and GA-based traffic control.

4.3 Artificial bee colony (ABC)

The traditional algorithms used for training carry some drawbacks of getting 
stuck in computational complexity and local minima. The artificial bee colony 
(ABC) algorithm is a revolutionary approach developed by Karaboga et al. [93]. 
ABC has good exploration capabilities in finding optimal weights during the train-
ing process [94]. ABC algorithm operates on the principle of foraging behavior of 
honeybees in seeking quality food. Each cycle of the search comprising three steps: 
sending employed bees onto the food source to measure nectar amount; selecting 
food source by onlookers once the information is shared by employed bees, and 
sending the scouts for discovering new food source [95].

ABC algorithm is widely used in optimizing traffic-related problems by previ-
ous researchers [60, 68, 96]. Zhao et al. investigated a typical intersection as a case 
study at Lanzhou city [60]. The green time length of each phase of the signal cycle 
and signal cycle were considered as decision variables. Favorable convergence was 
achieved using different setting parameters of the algorithm. The effect of signal 
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cycle on control targets resulted that vehicle delays will increase with the signal 
cycle; however, the stops will decrease. In comparison to non-dominating sorting 
genetic algorithm and webster timing algorithm, ABC manifested better conver-
gence. In another study, Dell’Orco et al. developed TRANSYT-7F to investigate 
network performance index (PI) for optimizing signal timing [96]. Results revealed
that PI’s of the network in the case of ABC improved by 2.4 and 2.7% compared to 
genetic algorithm and hill-climbing method.

4.4 Cuckoo search (CS)

  Cuckoo search (CS) is a recently developed metaheuristic algorithm developed 
by Yang and Deb [97], inspired by the natural breed parasitism of the cuckoo spe-
cies. For understanding its working principle, consider that each bird lays one egg
at a time and dumps it in a random nest which represents a single solution. The nest 
with high-quality eggs will be moved to the next generation. The number of host 
nests is fixed, and the egg laid by the cuckoo is discovered by the host bird. In this 
situation, the host bird either gets rid of the egg or abandons the nest by developing
a new nest [98]. Few studies interpret CS as more efficient than PSO and GA [97].
  Araghi et al. employed neural networks (NN) and adaptive neuro-fuzzy infer-
ence system (ANFIS) to optimize the results of CS in the case of intelligent traffic 
control [63]. The results were compared to that of the fixed time controller. It was 
revealed that the CS-NN and SC-ANFIS showed 44% and 39% improved perfor-
mance against the fixed-time controller. Similarly, in another study, the authors 
evaluated the performance of ANFIS using CS for optimization of controlling 
traffic signals for an isolated intersection [70]. Improved performance of ANFIS-CS
was obtained against fixed-time controller.

4.5 Bat algorithm (BA)

  Bat algorithm (BA), initially developed by Xin-she yang in 2010, is inspired by 
the echolocation of microbats [99]. The working principle of BA encompasses three
basic steps: bats use echolocation to sense the distance bifurcating the food and 
barrier; bats randomly fly with variable loudness and wavelength.; bats automati-
cally adjust their wavelength and pulse depending upon the proximity of food/
prey [100].
  Srivastava, Sahana used BA to determine the wait time at a traffic signal for
the discrete microscopic model [66]. The study was based on 12 nodes and four 
intersections. The results were compared to GA. Relatively higher performance was 
obtained for BA algorithm as compared to GA. Jintamuttha et al. carried experi-
mental simulation for the green time of intersection for ten cycles per run [62]. The 
results of the experiment were optimized using BA. The average queue length and 
waiting time improved due to optimization.

4.6 Artificial immune system (AIS)/immune network algorithm (INA)

  The immune network algorithm (INA) or artificial immune system (AIS) is 
another useful optimization algorithm recently practiced for signal control optimi-
zation problems. As its name suggests, the working mechanism of this algorithm
is inspired by the biological immune system. Immune cells have receptors that can 
detect harmful pathogens and activate antibodies to fight them, leading to their 
elimination [101]. Louati et al. applied INA to optimize queue, delay, and traf-
fic throughput at signalized intersections under varying traffic demands [75]. It
was found that INA outperformed traditional fixed-time adaptive traffic control
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strategies and validated the study results through VISSIM, a microscopic traffic 
simulation platform. In another study, Trabelsi et al. evaluated the performance of 
AIS to detect and rationally control anomalous traffic conditions through a network 
of signalized intersections [58]. Simulation results proved the adequacy and robust-
ness of the proposed AIS-based signal control method.

Darmoul et al. employed multi-agent immune network (INAMAS) for optimal 
control and management of interrupted traffic flow at signalized intersections 
[102]. The proposed INAMAS models offered an intelligent mechanism that could 
explicitly capture the disturbance-related knowledge of traffic fluctuations. To 
demonstrate the efficacy of the proposed model, the authors compared its perfor-
mance against two widely used signal control strategies, namely fixed-time control 
and LQF-MWM (longest queue first –maximal weight matching) algorithm. The 
suggested INAMAS scheme provided a competitive performance in terms of chosen 
performance indicators, i.e., vehicle queue and waiting times under extreme traffic 
conditions involving high traffic volume and block approaches. Figure 6a plots the 
average vehicle delay for all the three signal control strategies under various traffic 
scenarios [102]. For scenario 1 (moderate traffic congestion), the INAMAS algo-
rithm produces approximately a 24% reduction in average delay values compared 
to the LQF-MWM strategy. For scenario 2 (high-density traffic), the proposed 
INAMAS optimizer decreased the average delay by nearly 32%. For scenario 3 
(extreme congestion), the corresponding improvement by the INAMAS algorithm 
is about 28%. Figure 6b depicts the relationship between the total network delay 
and simulation time (in minutes) for all three signal optimization strategies [102]. 
It is evident from the results in Figure 6b that during the first 5 minutes, all the 
controllers have comparable performance. At the end of simulation analysis (after 
5 hours), when the traffic density reaches 9600 vehicles per hour, the INAMAS 
controller achieved better performance compared to others, showing its superior 
capability to manage large and complex traffic networks.

Moalla et al., in their study, also demonstrated the robustness of AIS for control-
ling traffic at isolated signalized intersections [103]. However, the authors also 
emphasized that validation of the proposed AIS scheme is challenging and should 
be handled carefully. In another study, the author highlighted AIS-based traffic 
control’s significance for network-wide traffic management [104]. Comparative 
results with TRANSYT 7F showed the superior performance of AIS approach. 
Galvan-Correa et al. proposed a new metaheuristic known as the micro artificial 

Figure 6. 
(a) Comparison of average total delay per vehicle from various optimizers (b) cumulative network delay for 
scenario 1 for various optimizers Ref. [102].
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immune systems (MAIS) to optimize vehicular emission and traffic flow in the city 
of Mexico [105]. The performance of the suggested MAIS technique was compared 
with several other metaheuristics, including GA, DE, SA, PSO. Results showed
that MAIS achieved better results compared to most of the other metaheuristics.
In a recent study, Qiao et al. proposed a novel hybrid algorithm, known as the 
Immune-Fireworks algorithm (IM-FWA) for effective traffic management on 
large-scale urban transportation networks [106]. The proposed hybrid algorithm 
was developed based on fireworks and artificial immune algorithms. A hierarchi-
cal strategy was proposed in the framework to avoid possible offsets conflicts and 
reasonable configuration of intersection offsets. Simulation results showed that the 
proposed IM-FWA could successfully overcome the shortcomings of FWA and AIS 
algorithms by providing a better and more rational signal timing plan to effectively 
reduce traffic flow delays.

4.7 Firefly algorithm (FA)

  The characteristic behavior of fireflies is animated by Yang [107] into a nature-
inspired meta-heuristic swarm intelligent method called Bat Algorithm. In BA, all 
fireflies are assumed unisex, and attractiveness is proportional to their brightness,
which in turn depends on the distance. Thus, the brightness can be considered a
cost function, which is maximized in optimization.
  Kwiecień, Filipowicz [studied optimizing costs controlled by queue capacity,
maximal wait, and servers [76]. It was deduced that the use of FA could maximize 
the value of the objective function, and FA converges toward the optimal solution 
very quickly. Goudarzi et al. [108] investigated traffic flow volume by a probabilistic
neural network method called deep belief network (DBN). FA was used to optimize
the learning parameters of DBN. As a result, the proposed model predicted the 
traffic flow with higher accuracy compared to traditional models.

4.8 Gray wolf optimizer (GWO)

  Gray wolf optimizer (GWO) is a new metaheuristic technique recently proposed
by Mirjalili in 2014 [109]. GWO is inspired by the social hierarchy and hunting 
behavior of gray wolves. In GWO optimization, the wolves represent a solution set 
of candidate solutions. The hunting cycle in the GWO commences with the acquisi-
tion of a random population of candidate solutions (wolves) followed by identify-
ing optimal prey’s locations using a cyclic process. GWO has several advantages 
compared with evolutionary approaches, easy programming and implementation,
algorithm simplicity, no need for algorithm-specific parameters, and lower com-
putational complexity [110]. In recent years, GWO has been increasingly used
in diverse disciplines. However, studies on its applications in transportation and 
traffic engineering in general and traffic control and optimization in particular are 
very few.
  Teng et al. were the first to use a hybrid gray wolf and grasshopper algorithm 
(GWGHA) algorithm for timing optimization of traffic lights [111]. The obtained 
solutions were simulated in a microscopic traffic simulator package SUMO. The 
performance of the proposed GWGHA hybrid algorithm was compared with
other metaheuristics like GWO, GOA, PSO, and SPSO2011. Results indicated that 
the proposed hybrid algorithm provided better solutions than its counterparts 
because it utilizes the feature of GWO for accelerating the convergence speed while 
using GOA to diversify the population. In another recent study, Sabry and Kaittan 
proposed a novel hybrid algorithm consisting of gray wolf and fuzzy proportional-
integral (GW-FPI) for active vehicle queue management in an urban context [59].
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The proposed traffic controller was compared with PI through repeated MATLAB 
simulations. Study results indicated the stable and robust performance of the 
proposed hybrid controller for queue management in a dynamic transport network 
with varying traffic flow demands.

5. Review of trajectory-based metaheuristics for TSC

This section surveys the previous works that applied trajectory-based meta-
heuristics techniques) for traffic signal control and optimization. As the name 
suggests, these algorithms form search trajectories in solution space and iteratively 
improve the single solution in its neighborhood. Their exploration process starts 
from a random initial solution generated by another algorithm. At each stage, 
the current solution is replaced by a better offspring population. Trajector-based 
metaheuristics are mainly characterized by their internal memory sorting the state 
of search, candidate solution generator, and selection policy for candidate move-
ment through generations. Table 3 summarizes the previous works that applied 
trajectory-based search metaheuristics, hybrid metaheuristics, and others for traffic 
signal control and optimization.

5.1 Tabu search for signal control optimization

Tabu Search (TS) is a metaheuristic introduced by Fred Glover in 1986 to 
overcome the local search (LS) problem of existing methods [123]. TS allows the LS 
heuristic to diversify the search for solution space outside the local optima [124]. 
One of the important features of TS is its memory function, which can restrict few 
search directions for a more detailed LS, thereby making it easier to avoid local 
optimum solutions. By combining the greedy concept and randomization, the TS 
algorithm could provide an efficient solution to many optimization problems. In 
literature, only a few studies have focused on the application of Tabu search for 
signal control optimization. Hu and Chen proposed traffic signal control based on 
a novel greedy randomized tabu search (GRTS) algorithm considering travel time 
as the primary optimization objective [118]. GRTS results were compared with a 
GA-based traffic control scheme using data from a real city network to demonstrate 
the benefits of the proposed method. Numerical simulation results revealed that 
over 25% reduction in travel time might be achieved under medium to high traffic 
demands. In another study, Karoonsoontawong and Woller applied reactive tabu 
search (RTS) for simultaneous solutions of traffic signal optimization and dynamic 
user equilibrium problems on two transport networks in a simulated environment 
[119]. Three different variants of RTS were investigated based on deterministic 
or probabilistic neighborhood definitions. The performance of all the RTS vari-
ants was evaluated using three criteria such as solution quality, CPU time, and 
convergence speed. Simulation results showed that the RTS approach could provide 
promising results in terms of improving the overall network performance.

In a recent study, Hao et al. proposed a hybrid tabu search-artificial bee colony 
(TS-ABC) algorithm for robust optimization of signal control parameters in 
undersaturated traffic conditions at isolated signalized intersections [68]. This 
study considered two performance indexes such as average delay and mean-square 
error of average delay. The proposed signal control optimizer was validated using 
field data from an intersection in the city of Zhangye, China. Numerical simulation 
results compared with GA showed that the proposed TS-ABC is better in reducing 
the traffic delay under varying and heterogeneous traffic conditions. Chentoufi and 
Ellaia also proposed a hybrid particle swarm and tabu search (PSO-TS) for adaptive 
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traffic lights timing optimization on real-time isolated signalized intersections in 
the context of Moroccan cities [120]. The authors also highlighted the significance 
of integrating the proposed PSO-TS model and VISSIM to achieve optimum aver-
age delay estimates. Simulation results demonstrated the superior efficiency of the 
PSO-TS technique against the traditional static models under oversaturated traffic 
conditions.

5.2 Simulated annealing (SA)

Simulated Annealing (SA), developed by Kirkpatrick et al. is inspired by the 
statistical mechanics of annealing in solids [125]. For understanding, consider a 
change in temperature, which causes a change in energy and movement of particles 
in solids. There is a sequence of decreasing temperature in annealing until criteria 
are met [126].

Li, Schonfeld [112] reported traffic signal time optimization using metaheuris-
tic capabilities of SA with GA. It was concluded that SA-GA models outperform 
in optimization compared to individual SA and GA models. Similar results were 
reported by Song et al. in evaluating the optimized model for reducing traffic emis-
sions on arterial roads [113]. Oda et al. [114] employed SA to optimize traffic signal 
timing and reported its improved performance as compared to traditional models.

6. Other metaheuristics for TSC

This section reviews the previous works that applied some other metaheuristics 
for traffic signal control and optimization. These include the harmony search algo-
rithm, water cycle algorithm, and Jaya algorithm. Table 3 summarizes the previous 
works that applied trajectory-based search metaheuristics, hybrid metaheuristics, 
and others for traffic signal control and optimization.

6.1 Harmony search (HS)

The metaheuristic harmony search (HS) algorithm simulates the natural musical 
improvisation process where the musicians aim to achieve a near-perfect state of 
harmony [127]. In the HS algorithm, the candidate solution population is known as 
harmony memory (HM), where every single solution in solution space is referred 
to as “harmony,” which belongs to the “n”-dimensional vector. Though HS has been 
successfully used for numerous applications across diverse domains, its applications 
for signal control optimization are limited. In a recent study, Gao et al. applied to 
HS in addition to four others metaheuristics for traffic signal scheduling (TSS) 
problems [121]. Experiments were conducted on real-time data from signalized 
intersections in Singapore to examine the performance of proposed metaheuristics. 
The authors considered heterogeneous traffic conditions. Simulation results proved 
the adequacy of all algorithms; however, the hybrid algorithm (ABC-LS) outper-
formed other techniques in terms of solution quality.

In another study, Ceylan and Ceylan adopted a hybrid harmony search algorithm 
and TRANSYT hill-climbing algorithm (HSHC-TRANS) for solving stochastic equi-
librium network design (SEQND) in the context of optimal traffic signal setting 
problems [128]. The effectiveness of HSHC-TRANS was evaluated against HS and 
GA in terms of network performance index (PI). Results showed that the proposed 
hybrid model yielded about 11% in the network’s PI compared to the GA-based 
model. In another study, Gao et al. addressed the urban traffic signal schedul-
ing problem (TSSP) using a discrete harmony search (DHS) with an ensemble 
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of local search [115]. The primary objective was to minimize the network-wide 
total delay under a pre-defined finite horizon. Extensive simulation experiments 
were carried out using traffic data from a partial transport network in Singapore. 
Comparative analysis showed that the HS algorithm as a meta-heuristic achieved 
better performance compared to fixed-cycle traffic signal control (FCSC). Dellorco 
et al. also investigated the applicability of HS for signal control optimization on the 
two-junction network with the fixed flow on the links [116]. A comparative analysis 
of HS with GA and HC algorithms showed that HS resulted in a better network’s PI 
compared to its counterparts. Afterward, the validity of the proposed HS algorithm 
was assessed by applying it to a test network.

6.2 Jaya algorithm

The Jaya algorithm is a recently proposed metaheuristic initially introduced by 
R.V. Rao [129]. The word Jaya comes from Sanskrit, which means “victory.” In the 
Jaya algorithm, the search strategy always attempts to be victorious by reaching 
the optimal and best solution, and thus it is named “Jaya.” It is arguably one of 
the simplest and easy-to-implement metaheuristics. The main benefit of Jaya for 
optimization problems lies in the fact that this algorithm requires only common 
controlling parameters such as population size and the number of iterations and 
does not require any additional algorithm-specific constraints/parameters. While 
this algorithm has been successfully used for several scheduling and optimization 
problems in recent years, its applications in the domain of traffic scheduling and 
management are relatively scarce.

A recent study conducted by Gao et al. compared the performance of Jaya 
algorithms with other metaheuristics (like water cycle algorithm (WCO), genetic 
algorithm (GA), artificial bee colony, and harmony search (HS), and hybrid ABC-LS) 
for solving traffic light scheduling problem [121]. Simulation results showed all the 
algorithms achieved competitive results; however, the hybrid algorithm attained 
better accuracy and convergence. The proposed models were also tested on real-time 
traffic and phase data from a network of intersections in the Jurong area of Singapore. 
In another study, the authors proposed an improved Jaya algorithm for solving traffic 
light optimization problems in the context of large-scale urban transport networks 
[122]. The chosen performance index was to minimize the network-wide total traffic 
delay within a given time horizon. To enhance the search performance in the local 
search space, a neighborhood search operator was proposed. Experiments were 
carried out using traffic data for a case study from the Singapore transport network. 
Study results demonstrated the robustness and better performance of proposed 
improved Jaya algorithms against standard Jaya algorithm and exiting traffic light 
control scheme. In another follow-up study, Gao et al. studied large-scale urban traffic 
lights scheduling problems using three different metaheuristics, namely Jaya, WCO, 
and HS [117]. The objective function was to optimize the delay time of all vehicles 
network-wise under a fixed time horizon. This study also proposed a feature search 
operator (FSO) to improve the search performance of proposed metaheuristics. 
To examine the efficacy of proposed methods, experiments were carried out using 
real-time traffic data. It was concluded that metaheuristic-based traffic control could 
significantly improve the network performance compared to existing traffic control 
strategies. Numerical simulation results showed that in comparison to feature-based 
search (FBS), operator for all algorithms improved the total vehicle delay time by 
more than 26% in their worst case scenarios.

Figure 7a depicts the relationships between total network delay time (sec) 
and sampling intervals for a typical urban traffic network with 100 junctions 
from the west Jurong area in Singapore [117]. Minimum (min.), average (avg.) 
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and maximum (max.) total delay values each for 30 repeats and five sampling 
intervals (5, 10, 15, 20, and 30 sec) are reported. It is evident from the results that 
a sampling period of 15 seconds yielded the best results, which were then adopted 
for subsequent experiments. Figure 7b shows the relative percentage improvement 
in network performance (reduction in network delay) for standard Jaya algorithm 
with improved Jaya (iJaya), and Jaya with FBS operator (iJaya+FBS) for a sample 11 
cases of traffic network from the same study [117]. Compared to standard Jaya, the 
iJaya yielded the improvements in range for 0–6% for min., avg., and max. Results, 
while iJaya+FBS algorithm resulted in corresponding improvement values between 
9 and 11%. Figure 7c depicts the percentage improvement of IWCA and IWCA+FBS 
algorithms relative to standard WCA optimizer. The IWCA improved the standard 
WCA in terms of min., avg., and max. Results for 11 test cases in the range of 2–8%, 
while the corresponding improvement for IWCA+FBS algorithm is approximately 
20–24%. Figure 7d shows the network performance improvement of standard 
HS and HS + FBS algorithms for the same network of traffic junctions [117]. The 
improvement for HS + FBS algorithm compared to standard HS optimizer are 
between 2 and 12% for min., avg., and max. Results for the considered cases.

Figure 8 presents the graphical comparison among the three optimization 
algorithms (iJaya+FBS, IWCA+FBS, and HS + FBS) in terms of the average relative 
percentage deviation (ARPD) of the resulting network delay time values [117]. It is 
clear from the results that the IWCA+FBS algorithm with an average delay reduc-
tion of 28.54% outperformed the iJaya+FBS and HS + FBS having the correspond-
ing values of 28.22% and 27.84%, respectively. Further, all the algorithms yielded an 
improvement of at least 26% in the worst-case scenarios.

Figure 7. 
(a) Results comparison with different sampling times for network of 100 junctions, (b) the % improvement of 
iJaya and iJaya+FBS with standard Jaya, (c) the % improvement IWCA and IWCA+FBS with standard Jaya, 
(d) the % improvement HS + FBS and standard HS. Ref. [117].
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6.3 Water cycle algorithm (WCA)

The water cycle algorithm (WCA) is another recently proposed metaheuristic 
whose search mechanism is inspired by the natural water cycle process, where 
streams and rivers flow down the hill to reach the sea [130]. The surface run-off 
model is imitated in WCA for updating the current candidate solutions and the gen-
eration of new offspring. The effectiveness of WCA has been explored for various 
applications such as truss structures, constrained and unconstrained engineering 
design problems [130–133]. However, very few studies have used WCO for traffic 
control, management, and optimization.

A recent study by Gao et al. proposed the application WCO for traffic signal 
scheduling and optimization based on actual traffic data from a case study in 
Singapore [121]. WCO was compared with four other metaheuristics and a 
hybrid algorithm (ABC-LS), considering the network delay as the main optimi-
zation objective. Numerical simulation results proved the benefits of adopting 
metaheuristic-based traffic control strategies instead of existing fixed traffic light 
schemes. In another study, Gao et al. compared WCO with the Jaya algorithm and 
Harmony search using the field traffic data from the same transportation network. 
The performance metric minimized the network-wide total traffic delay within 
a given time horizon [117]. The study proposed a neighborhood search opera-
tor to enhance the search performance of all the algorithms in the local search 
space. Study results showed that WCA, with an average better improvement of 
in network-wide delay (28.54%), outperformed HS (28.22%) and Jaya algorithm 
(27.84%).

7. Conclusions, current challenges, and future research directions

Traffic control and management using metaheuristics have emerged as an effec-
tive solution to mitigate urban congestion. This study provided a comprehensive 
review of state-of-art research on traffic signal optimization using different meta-
heuristics approaches. The surveyed literature is categorized based on the nature 
of applied metaheuristics, i.e., swarm intelligence (SI) techniques, evolutionary 

Figure 8. 
ARPD improvements comparison for different optimizers. Reprinted with permission from Ref. [117] copyright 
(2021), Elsevier Ltd.
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algorithms, trajectory-based metaheuristics, and others. Although numerous 
metaheuristics have been employed for signal optimization, GA, PSO, ACO, and 
ABC algorithms have been widely explored. Various traffic signal parameters such 
as cycle length, green splits, offsets, and phasing sequence are considered decision 
variables to solve signal control optimization problems. Similarly, studies have 
considered several optimization objectives such as delay, number of stops, travel 
time, throughput, queue, fuel consumption, exhaust emissions to address the prob-
lem. Some studies have adopted single-objective optimization, while others have 
attempted to solve traffic signal control as a multi-objective optimization problem. 
However, little work has been done to understand the correlations between the 
conflicting objectives which is vital for traffic engineers and decision-makers to 
evaluate their relative importance. Based on the presented survey work, the follow-
ing passages present key challenges, research gaps, and future research directions in 
this area.

• The review has shown that most of the previous works have adopted a single 
metaheuristic method for TSC optimization. However, very few studies have 
investigated the applicability of hybrid or ensemble metaheuristics for solving 
TSC optimization problems. In general, hybrid techniques are more useful 
than traditional metaheuristics. Hence, the application of hybrid metaheuris-
tics for signal optimization could be a promising research direction.

• Traditional evolutionary algorithms and swarm intelligence optimizers could 
yield acceptable solutions. However, the performance of these optimiza-
tion techniques may be compared with recent state-of-the-art optimiza-
tion approaches such as Teaching Learning Based Optimization Algorithm 
(TLBOA), Gravitational Search Algorithms (GSA), Rock Hyraxes Swarm 
Optimization (RHSO), hyper-heuristics, which are not explored yet for traffic 
signal optimization problems.

• The literature review also noted that most previous studies were focused on 
single-objective optimization; however, traffic engineers often have to deal 
with multiple conflicting objectives to optimize the performance at the net-
work level. Alternatively, for multiobjective optimization, the vast majority 
of existing works introduce weights for different objectives and consequently 
tackle signal optimization as a signal objective optimization problem. To 
optimize different performance indicators along optimal paretofront, multiple 
objectives have to be properly optimized. Developing an optimizer for multi-
objective scenarios remains a challenging issue and is worth exploring in future 
studies.

• Objective functions based on energy consumption and exhaust emissions 
have become a topic of increasing interest in recent years. From the reviewed 
literature, it was concluded that various approximate fuel consumptions and 
emission models were used for signal control optimization. Application of such 
approximate models could lead to an un-realistic traffic light setting. Future 
studies should consider the calibration of fuel consumption and emission 
models for a given network.

• It was also evident from the presented literature that there is a shortage of 
research on statistical performance evaluation of proposed metaheuristics. 
Therefore, it would be interesting to explore the statistical analysis of such 
optimization strategies in terms of worst, average, and best results. Likewise, 
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statistical significance tests may be conducted to compare the performance 
among various metaheuristics in solving signal optimization problems.

• Lack of appropriate validation protocol is another important issue. Some stud-
ies have employed mere traffic simulation platforms to assess the validity of
applied metaheuristics, while others have used them for isolated intersection 
scenarios or small traffic networks. Network optimization has become popular
in recent years. For achieving desired improvements at the network level, the 
methods should be tested for large-scale complex transportation networks.

• The surveyed literature also indicated that most previous studies considered
only vehicular traffic and neglected the pedestrian traffic in solving the TSC
problem using metaheuristics. It is important to consider all forms of traffic
and driving systems to improve the overall efficiency of the transport system.

• The surveyed literature also revealed that many studies develop metaheuristic-
based traffic control considering specific traffic demand conditions, neglect-
ing the other potential scenarios. It is essential to consider all ranges of traffic
flow conditions (undersaturated, saturated, and oversaturated flow condi-
tions) and traffic disturbances in developing metaheuristic to address TSC
optimization problems.

• The accuracy and reliability of the signal timing plan obtained using meta-
heuristics are highly dependent on the accuracy of traffic flow prediction
models. In recent years, with rapid advances in computational power, big data 
technology has been successfully used for accurate traffic flow prediction.
Therefore, the application of metaheuristics coupled with big data technol-
ogy for traffic signal optimization appears to be another interesting research
direction.

Acknowledgements

The authors acknowledge the support of the King Fahd University of Petroleum 
and Minerals, KFUPM, Dhahran Saudi Arabia, and Qassim University, Burudah, 
Saudi Arabia, for Supporting this study.

91



29

Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects
DOI: http://dx.doi.org/10.5772/99395

[1] M. Zahid, Y. Chen, A. Jamal, and Q.
M. Memon, Short Term Traffic State
Prediction via Hyperparameter
Optimization Based Classifiers, vol. 20.
2020. doi: 10.3390/s20030685.

[2] M. Zahid, Y. Chen, and A. Jamal,
“Freeway Short-Term Travel Speed
Prediction Based on Data Collection 
Time-Horizons : A Fast Forest Quantile 
Regression Approach,” Sustainability,
vol. 12, no. 646, pp. 1-19, 2020, doi:
doi:10.3390/su12020646.

[3] M. Dotoli, M. P. Fanti, and C. Meloni,
“A signal timing plan formulation for
urban traffic control,” Control
engineering practice, vol. 14, no. 11, pp.
1297-1311, 2006.

[4] Cambridge Systematics, Ed., “Traffic 
Congestion and Reliability: Trends and
Advanced Strategies for Congestion 
Mitigation,” no. FHWA-HOP-05-064,
Sep. 2005, [Online]. Available: https://
rosap.ntl.bts.gov/view/dot/20656

[5] C. Shirke, N. Sabar, E. Chung, and A.
Bhaskar, “Metaheuristic approach for 
designing robust traffic signal timings 
to effectively serve varying traffic 
demand,” Journal of Intelligent 
Transportation Systems, pp. 1-17, 2021.

[6] C.-J. Lan, “New optimal cycle length 
formulation for pretimed signals at
isolated intersections,” Journal of
transportation engineering, vol. 130, no.
5, pp. 637-647, 2004.

[7] L. D. Han and J.-M. Li, “Short or
long—Which is better? Probabilistic
approach to cycle length optimization,”
Transportation Research Record, vol.
2035, no. 1, pp. 150-157, 2007.

[8] P. B. Hunt, D. I. Robertson, R. D.
Bretherton, and M. C. Royle, “The 
SCOOT on-line traffic signal
optimisation technique,” Traffic
Engineering & Control, vol. 23, no.
4, 1982.

[9] A. G. Sims and K. W. Dobinson, “The
Sydney coordinated adaptive traffic
(SCAT) system philosophy and
benefits,” IEEE Transactions on
vehicular technology, vol. 29, no. 2, pp.
130-137, 1980.

[10] L. John, M. D. Kelson, and N. H.
Gartner, “A Versatile Program for
Setting Signals on Arteries and
Triangular Networks,” Transp. Res. Rec.
J. Transp. Res. Board, vol. 795, pp.
40-46, 1981.

[11] J.-J. Henry, J. L. Farges, and J. Tuffal,
“The PRODYN real time traffic 
algorithm,” in Control in Transportation
Systems, Elsevier, 1984, pp. 305-310.

[12] D. I. Robertson,
“‘TANSYT’METHOD FOR AREA
TRAFFIC CONTROL,” Traffic
Engineering & Control, vol. 8, no.
8, 1969.

[13] S. Sen and K. L. Head, “Controlled
optimization of phases at an
intersection,” Transportation science,
vol. 31, no. 1, pp. 5-17, 1997.

[14] N. H. Gartner, OPAC: A demand-
responsive strategy for traffic signal
control. 1983.

[15] S. Chiu and S. Chand, “Adaptive
Traffic Signal Control Using Fuzzy
Logic,” in Proceedings. The First IEEE
Regional Conference on Aerospace 
Control Systems, 1993, pp. 122-126. doi:
10.1109/AEROCS.1993.720907.

[16] R. Akcelik, Traffic signals: capacity
and timing analysis. 1981.

[17] H. C. Manual, “HCM2010,”
Transportation Research Board, National
Research Council, Washington, DC, p.
1207, 2010.

[18] S. Göttlich, A. Potschka, and U.
Ziegler, “Partial outer convexification 

References

92

https://rosap.ntl.bts.gov/view/dot/20656
https://rosap.ntl.bts.gov/view/dot/20656


Search Algorithm - Essence of Optimization

30

for traffic light optimization in road 
networks,” SIAM Journal on Scientific 
Computing, vol. 39, no. 1, pp. B53–
B75, 2017.

[19] K. Aboudolas, M. Papageorgiou, and 
E. Kosmatopoulos, “Store-and-forward 
based methods for the signal control 
problem in large-scale congested urban 
road networks,” Transportation 
Research Part C: Emerging 
Technologies, vol. 17, no. 2, pp. 163-
174, 2009.

[20] S. Voß, “Meta-heuristics: The state of 
the art,” in Workshop on Local Search for 
Planning and Scheduling, 2000, pp. 1-23.

[21] J. Lee, B. Abdulhai, A. Shalaby, and 
E.-H. Chung, “Real-time optimization 
for adaptive traffic signal control using 
genetic algorithms,” Journal of 
Intelligent Transportation Systems, vol. 
9, no. 3, pp. 111-122, 2005.

[22] M. M. Abbas and A. Sharma, 
“Multiobjective plan selection 
optimization for traffic responsive 
control,” Journal of transportation 
engineering, vol. 132, no. 5, pp. 376-
384, 2006.

[23] L. Wu, Y. Wang, X. Yuan, and Z. 
Chen, “Multiobjective optimization of 
HEV fuel economy and emissions using 
the self-adaptive differential evolution 
algorithm,” IEEE Transactions on 
vehicular technology, vol. 60, no. 6, pp. 
2458-2470, 2011.

[24] Z. Guangwei, G. Albert, and L. D. 
Sherr, “Optimization of adaptive transit 
signal priority using parallel genetic 
algorithm,” Tsinghua Science and 
Technology, vol. 12, no. 2, pp. 131-
140, 2007.

[25] E. Doğan and A. P. Akgüngör, 
“Optimizing a fuzzy logic traffic signal 
controller via the differential evolution 
algorithm under different traffic 
scenarios,” Simulation, vol. 92, no. 11, 
pp. 1013-1023, 2016.

[26] Z. Cakici and Y. S. Murat, “A 
Differential Evolution Algorithm-Based 
Traffic Control Model for Signalized 
Intersections,” Advances in Civil 
Engineering, vol. 2019, 2019.

[27] S. Zhou, X. Yan, and C. Wu, 
“Optimization Model for Traffic Signal 
Control with Environmental 
Objectives,” in 2008 Fourth International 
Conference on Natural Computation, 
Jinan, Shandong, China, 2008, pp. 
530-534. doi: 10.1109/ICNC.2008.494.

[28] W. Kou, X. Chen, L. Yu, and H. 
Gong, “Multiobjective optimization 
model of intersection signal timing 
considering emissions based on field 
data: A case study of Beijing,” Journal of 
the Air and Waste Management 
Association, vol. 68, no. 8, pp. 836-848, 
2018, doi: 10.1080/10962247. 
2018.1454355.

[29] A. Jamal, M. T. Rahman, H. M. 
Al-Ahmadi, I. M. Ullah, and M. Zahid, 
“Intelligent Intersection Control for 
Delay Optimization: Using Meta-
Heuristic Search Algorithms,” 
Sustainability, vol. 12, no. 5, p. 
1896, 2020.

[30] Z. Zhou and M. Cai, “Intersection 
signal control multi-objective 
optimization based on genetic 
algorithm,” Journal of Traffic and 
Transportation Engineering (English 
Edition), vol. 1, no. 2, pp. 153-158, Apr. 
2014, doi: 10.1016/
S2095-7564(15)30100-8.

[31] Yunrui Bi, Dipti Srinivasan, Xiaobo 
Lu, Zhe Sun and W. Zeng, “Type-2 
fuzzy multi-intersection traffic signal 
control with differential evolution 
optimization,” Expert Systems with 
Applications, pp. 7338-7349., 2014, doi: 
DOI:https://doi.org/10.1016/j.

[32] J. Kwak, B. Park, and J. Lee, 
“Evaluating the impacts of urban 
corridor traffic signal optimization on 
vehicle emissions and fuel 

93

https://doi.org/10.1016/j


31

Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects
DOI: http://dx.doi.org/10.5772/99395

consumption,” Transportation Planning 
and Technology, vol. 35, no. 2, pp. 
145-160, Mar. 2012, doi:
10.1080/03081060.2011.651877.

[33] L. Adacher and A. Gemma, “A
robust algorithm to solve the signal
setting problem considering different 
traffic assignment approaches,”
International Journal of Applied
Mathematics and Computer Science,
vol. 27, no. 4, pp. 815-826, 2017.

[34] Y. Li, L. Yu, S. Tao, and K. Chen,
“Multi-Objective Optimization of
Traffic Signal Timing for Oversaturated
Intersection,” Mathematical Problems in
Engineering, vol. 2013, pp. 1-9, 2013,
doi: 10.1155/2013/182643.

[35] M. Al-Turki, A. Jamal, H. M.
Al-Ahmadi, M. A. Al-Sughaiyer, and M.
Zahid, “On the Potential Impacts of
Smart Traffic Control for Delay, Fuel
Energy Consumption, and Emissions:
An NSGA-II-Based Optimization Case
Study from Dhahran, Saudi Arabia,”
Sustainability, vol. 12, no. 18, p.
7394, 2020.

[36] M. D. Foy and R. F. Benekohal,
“Signal timing determination using
genetic algorithms,” Transportation 
Reserach Record, 1365, pp. 108-115, 1993.

[37] Q. Liu and J. Xu, “Traffic signal
timing optimization for isolated
intersections based on differential
evolution bacteria foraging algorithm,”
Procedia-Social and Behavioral
Sciences, vol. 43, pp. 210-215, 2012.

[38] E. Ricalde and W. Banzhaf,
“Evolving adaptive traffic signal
controllers for a real scenario using
genetic programming with an epigenetic 
mechanism,” in 2017 16th IEEE
International Conference on Machine
Learning and Applications (ICMLA),
2017, pp. 897-902.

[39] J. Holland, “Adaptation in natural
and artificial systems: an introductory

analysis with application to biology,” 
Control and artificial intelligence, 1975.

[40] L. Jian, “Multi-objective 
optimisation of traffic signal control
based on particle swarm optimisation,”
International Journal of Grid and Utility 
Computing, vol. 11, no. 4, pp. 547-
553, 2020.

[41] H. Yang and D. Luo, “Acyclic 
Real-Time Traffic Signal Control Based
on a Genetic Algorithm,” Cybernetics 
and Information Technologies, vol. 13,
no. 3, pp. 111-123, Sep. 2013, doi:
10.2478/cait-2013-0029.

[42] M. Liu, Y. Oeda, and T. Sumi,
“Multi-Objective Optimization of
Intersection Signal Time Based on
Genetic Algorithm,” Memoirs of the 
Faculty of Engineering, Kyushu 
University, vol. 78, no. 4, pp.
14-23, 2018.

[43] J. Guo, Y. Kong, Z. Li, W. Huang, J.
Cao, and Y. Wei, “A model and genetic 
algorithm for area-wide intersection
signal optimization under user
equilibrium traffic,” Mathematics and
Computers in Simulation, vol. 155, pp.
92-104, 2019.

[44] H. Dezani, N. Marranghello, and F.
Damiani, “Genetic algorithm-based 
traffic lights timing optimization and
routes definition using Petri net model
of urban traffic flow,” IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 11326-
11331, 2014.

[45] M. K. Tan, H. S. E. Chuo, R. K. Y.
Chin, K. B. Yeo, and K. T. K. Teo,
“Optimization of traffic network signal
timing using decentralized genetic
algorithm,” in 2017 IEEE 2nd
International Conference on Automatic
Control and Intelligent Systems
(I2CACIS), 2017, pp. 62-67.

[46] K. V. Price, “Differential evolution,”
in Handbook of optimization, Springer,
2013, pp. 187-214.

94



Search Algorithm - Essence of Optimization

32

[47] E. Korkmaz and A. P. AKGÜNGÖR,
“Delay estimation models for signalized
intersections using differential
evolution algorithm,” Journal of
Engineering Research, vol. 5, no. 3, 2017.

[48] H. Ceylan, “Optimal Design of
Signal Controlled Road Networks Using
Differential Evolution Optimization
Algorithm,” Mathematical Problems in 
Engineering, vol. 2013, p. 696374, 2013,
doi: 10.1155/2013/696374.

[49] W.-L. Liu, Y.-J. Gong, W.-N. Chen,
and J. Zhang, “EvoTSC: An evolutionary
computation-based traffic signal
controller for large-scale urban 
transportation networks,” Applied Soft
Computing, vol. 97, p. 106640, 2020.

[50] M. Zhang, S. Zhao, J. Lv, and Y.
Qian, “Multi-phase urban traffic signal
real-time control with multi-objective
discrete differential evolution,” in 2009
International Conference on Electronic
Computer Technology, 2009, pp. 296-300.

[51] W. Banzhaf, P. Nordin, R. E. Keller,
and F. D. Francone, Genetic
programming: an introduction, vol. 1.
Morgan Kaufmann Publishers San
Francisco, 1998.

[52] L. Vanneschi and R. Poli, “24
Genetic Programming–Introduction,
Applications, Theory and Open 
Issues,” 2012.

[53] D. J. Montana and S. Czerwinski,
“Evolving control laws for a network of
tra c signals,” Koza et al, vol. 1492.

[54] E. Ricalde, “A genetic programming
system with an epigenetic mechanism
for traffic signal control,” arXiv preprint
arXiv:1903.03854, 2019.

[55] L. Bieker, D. Krajzewicz, A. Morra,
C. Michelacci, and F. Cartolano, “Traffic
simulation for all: a real world traffic
scenario from the city of Bologna,” in
Modeling Mobility with Open Data,
Springer, 2015, pp. 47-60.

[56] E. Ricalde and W. Banzhaf, “A
genetic programming approach for the 
traffic signal control problem with
epigenetic modifications,” in European
Conference on Genetic Programming,
2016, pp. 133-148.

[57] J. He and Z. Hou, “Ant colony 
algorithm for traffic signal timing
optimization,” Advances in Engineering
Software, vol. 43, no. 1, pp. 14-18, Jan.
2012, doi: 10.1016/j.
advengsoft.2011.09.002.

[58] B. Trabelsi, S. Elkosantini, and S.
Darmoul, “Traffic Control at
Intersections Using Artificial Immune
System Approach,” 9th International
Conference of Modeling, Optimization
and Simulation - MOSIM’12, 2012.

[59] S. S. Sabry and N. M. Kaittan, “Grey
wolf optimizer based fuzzy-PI active
queue management design for network
congestion avoidance,” Indonesian
Journal of Electrical Engineering and
Computer Science, vol. 18, no. 1, pp.
199-208, 2020.

[60] H. Zhao, R. He, and J. Su, “Multi-
objective optimization of traffic signal
timing using non-dominated sorting
artificial bee colony algorithm for
unsaturated intersections,” Archives of
Transport, vol. 46, 2018.

[61] H. Min, “On Signal Timing
Optimization in Isolated Intersection
Based on the Improved Ant Colony 
Algorithm,” in International Symposium
on Parallel Architecture, Algorithm and
Programming, 2017, pp. 439-443.

[62] K. Jintamuttha, B. Watanapa, and
N. Charoenkitkarn, “Dynamic traffic 
light timing optimization model using
bat algorithm,” in 2016 2nd International
Conference on Control Science and Systems
Engineering (ICCSSE), 2016, pp.
181-185.

[63] S. Araghi, A. Khosravi, and D.
Creighton, “Intelligent cuckoo search 

95



33

Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects
DOI: http://dx.doi.org/10.5772/99395

optimized traffic signal controllers for 
multi-intersection network,” Expert 
Systems with Applications, vol. 42, no. 
9, pp. 4422-4431, 2015.

[64] M. A. Gökçe, E. Öner, and G. Işık,
“Traffic signal optimization with
Particle Swarm Optimization for
signalized roundabouts,”
SIMULATION, vol. 91, no. 5, pp.
456-466, May 2015, doi:
10.1177/0037549715581473.

[65] C. Dong, S. Huang, and X. Liu,
“Urban Area Traffic Signal Timing
Optimization Based on Sa-PSO,” in 2010
International Conference on Artificial
Intelligence and Computational
Intelligence, Sanya, China, Oct. 2010, pp.
80-84. doi: 10.1109/AICI.2010.257.

[66] S. Srivastava and S. K. Sahana,
“Application of bat algorithm for
transport network design problem,”
Applied Computational Intelligence and
soft computing, vol. 2019, 2019.

[67] A. C. Olivera, J. M. García-Nieto,
and E. Alba, “Reducing vehicle 
emissions and fuel consumption in the
city by using particle swarm
optimization,” Applied Intelligence, vol.
42, no. 3, pp. 389-405, 2015.

[68] W. Hao, C. Ma, B. Moghimi, Y. Fan,
and Z. Gao, “Robust optimization of
signal control parameters for
unsaturated intersection based on tabu
search-artificial bee colony algorithm,”
IEEE Access, vol. 6, pp. 32015-
32022, 2018.

[69] V. C. SS, “A Multi-agent Ant Colony
Optimization Algorithm for Effective
Vehicular Traffic Management,” in 
International Conference on Swarm
Intelligence, 2020, pp. 640-647.

[70] S. Araghi, A. Khosravi, and D.
Creighton, “Design of an optimal
ANFIS traffic signal controller by using
cuckoo search for an isolated
intersection,” in 2015 IEEE international

conference on systems, man, and 
cybernetics, 2015, pp. 2078-2083.

[71] N. Rida, M. Ouadoud, and A. Hasbi,
“Ant colony optimization for real time
traffic lights control on a single
intersection,” 2020.

[72] H. Jia, Y. Lin, Q. Luo, Y. Li, and H.
Miao, “Multi-objective optimization of
urban road intersection signal timing
based on particle swarm optimization
algorithm,” Advances in Mechanical
Engineering, vol. 11, no. 4, p.
168781401984249, Apr. 2019, doi:
10.1177/1687814019842498.

[73] H. S. E. Chuo, M. K. Tan, A. C. H.
Chong, R. K. Y. Chin, and K. T. K. Teo,
“Evolvable traffic signal control for
intersection congestion alleviation with 
enhanced particle swarm optimisation,”
in 2017 IEEE 2nd International
Conference on Automatic Control and
Intelligent Systems (I2CACIS), 2017,
pp. 92-97.

[74] Y. Qian, C. Wang, H. Wang, and Z.
Wang, “The optimization design of
urban traffic signal control based on
three swarms cooperative-particle 
swarm optimization,” in 2007 IEEE
International Conference on Automation
and Logistics, 2007, pp. 512-515.

[75] A. Louati, S. Darmoul, S.
Elkosantini, and L. ben Said, “An
artificial immune network to control
interrupted flow at a signalized
intersection,” Information Sciences, vol.
433, pp. 70-95, 2018.

[76] J. Kwiecień and B. Filipowicz,
“Firefly algorithm in optimization of
queueing systems,” Bulletin of the Polish
Academy of Sciences. Technical
Sciences, vol. 60, no. 2, pp. 363-
368, 2012.

[77] S. A. Çeltek, A. Durdu, and M. E.
M. Alı, “Real-time traffic signal control
with swarm optimization methods,”
Measurement, vol. 166, p. 108206, 2020.

96



Search Algorithm - Essence of Optimization

34

[78] R. K. Abushehab, B. K. Abdalhaq,
and B. Sartawi, “Genetic vs. particle
swarm optimization techniques for
traffic light signals timing,” in 2014 6th
International Conference on Computer
Science and Information Technology
(CSIT), 2014, pp. 27-35.

[79] N. Angraeni, M. A. Muslim, and A.
T. Putra, “Traffic control optimization
on isolated intersection using fuzzy
neural network and modified particle
swarm optimization,” in Journal of
Physics: Conference Series, 2019, vol. 1321,
no. 3, p. 032023.

[80] J. Garcia-Nieto, A. C. Olivera, and
E. Alba, “Optimal cycle program of
traffic lights with particle swarm
optimization,” IEEE Transactions on
Evolutionary Computation, vol. 17, no.
6, pp. 823-839, 2013.

[81] K.-R. Lo, Y. City, and T. County,
“TRAFFIC SIGNAL CONTROL BASED
ON PARTICLE SWARM
OPTIMIZATION,” p. 13.

[82] Y. Wei, Q. Shao, Y. Han, and B. Fan,
“Intersection signal control approach
based on pso and simulation,” in 2008
Second International Conference on
Genetic and Evolutionary Computing,
2008, pp. 277-280.

[83] I. G. P. S. Wijaya, K. Uchimura, and
G. Koutaki, “Traffic light signal
parameters optimization using particle
swarm optimization,” in 2015
International Seminar on Intelligent
Technology and Its Applications (ISITIA),
2015, pp. 11-16.

[84] M. Dorigo, M. Birattari, and T.
Stutzle, “Ant colony optimization,” IEEE
computational intelligence magazine,
vol. 1, no. 4, pp. 28-39, 2006.

[85] R. Putha, L. Quadrifoglio, and E.
Zechman, “Comparing Ant Colony 
Optimization and Genetic Algorithm 
Approaches for Solving Traffic Signal
Coordination under Oversaturation

Conditions,” Computer-Aided Civil and 
Infrastructure Engineering, vol. 27, no. 
1, pp. 14-28, 2012, doi: 
10.1111/j.1467-8667.2010.00715.x.

[86] H. Yu, R. Ma, and H. M. Zhang,
“Optimal traffic signal control under
dynamic user equilibrium and link
constraints in a general network,”
Transportation research part B:
methodological, vol. 110, pp. 302-
325, 2018.

[87] S. Haldenbilen, O. Baskan, and C.
Ozan, “An ant colony optimization
algorithm for area traffic control,” Ant
colony optimization–techniques and
applications, pp. 87-105, 2013.

[88] L. Li, Y. Ma, B. Wang, H. Dong, and Z.
Zhang, “Research on traffic signal timing
method based on ant colony algorithm 
and fuzzy control theory,” Proceedings of
Engineering and Technology Innovation,
vol. 11, p. 21, 2019.

[89] M. R. Jabbarpour, H. Malakooti, R.
M. Noor, N. B. Anuar, and N. Khamis,
“Ant colony optimisation for vehicle 
traffic systems: applications and
challenges,” International Journal of
Bio-Inspired Computation, vol. 6, no. 1,
pp. 32-56, 2014.

[90] D. Renfrew and X.-H. Yu, “Traffic
signal control with swarm intelligence,”
in 2009 Fifth International Conference on
Natural Computation, 2009, vol. 3,
pp. 79-83.

[91] D. Renfrew and X.-H. Yu, “Traffic
signal optimization using ant colony
algorithm,” in The 2012 International
Joint Conference on Neural Networks
(IJCNN), 2012, pp. 1-7.

[92] S. Srivastava and S. K. Sahana, “Nested
hybrid evolutionary model for traffic 
signal optimization,” Applied Intelligence,
vol. 46, no. 1, pp. 113-123, 2017.

[93] D. Karaboga, B. Akay, and C.
Ozturk, “Artificial bee colony (ABC)

97



35

Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects
DOI: http://dx.doi.org/10.5772/99395

optimization algorithm for training 
feed-forward neural networks,” in 
International conference on modeling 
decisions for artificial intelligence, 2007, 
pp. 318-329.

[94] D. Karaboga and B. Basturk, “On
the performance of artificial bee colony 
(ABC) algorithm,” Applied soft 
computing, vol. 8, no. 1, pp. 687-
697, 2008.

[95] D. Karaboga and B. Basturk, “A
powerful and efficient algorithm for
numerical function optimization:
artificial bee colony (ABC) algorithm,”
Journal of global optimization, vol. 39,
no. 3, pp. 459-471, 2007.

[96] M. Dell’Orco, Ö. Başkan, and M.
Marinelli, “Artificial bee colony-based
algorithm for optimising traffic signal
timings,” in Soft Computing in Industrial
Applications, Springer, 2014, pp.
327-337.

[97] X.-S. Yang and S. Deb, “Cuckoo 
search via Lévy flights,” in 2009 World
congress on nature & biologically inspired
computing (NaBIC), 2009, pp. 210-214.

[98] X.-S. Yang and S. Deb, “Cuckoo 
search: recent advances and applications,” 
Neural Computing and Applications, vol. 
24, no. 1, pp. 169-174, 2014.

[99] X.-S. Yang, “A new metaheuristic
bat-inspired algorithm,” in Nature
inspired cooperative strategies for
optimization (NICSO 2010), Springer,
2010, pp. 65-74.

[100] A. H. Gandomi, X.-S. Yang, A. H.
Alavi, and S. Talatahari, “Bat algorithm
for constrained optimization tasks,”
Neural Computing and Applications,
vol. 22, no. 6, pp. 1239-1255, 2013.

[101] L. N. De Castro and J. Timmis, “An 
artificial immune network for
multimodal function optimization,” in
Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat.

No. 02TH8600), 2002, vol. 1, pp. 
699-704.

[102] S. Darmoul, S. Elkosantini, A.
Louati, and L. B. Said, “Multi-agent
immune networks to control interrupted
flow at signalized intersections,”
Transportation Research Part C:
Emerging Technologies, vol. 82, pp.
290-313, 2017.

[103] D. Moalla, S. Elkosantini, and S.
Darmoul, “An artificial immune
network to control traffic at a single
intersectio,” in Proceedings of 2013
International Conference on Industrial
Engineering and Systems Management
(IESM), 2013, pp. 1-7.

[104] P. Negi, “Artificial immune
system based urban traffic control,”
PhD Thesis, Texas A&M
University, 2007.

[105] R. Galvan-Correa et al., “Micro 
Artificial Immune System for Traffic
Light Control,” Applied Sciences, vol. 10,
no. 21, p. 7933, 2020.

[106] Z. Qiao, L. Ke, G. Zhang, and X.
Wang, “Adaptive collaborative 
optimization of traffic network signal
timing based on immune-fireworks
algorithm and hierarchical strategy,”
Applied Intelligence, pp. 1-17, 2021.

[107] X.-S. Yang, Nature-inspired
metaheuristic algorithms. Luniver
press, 2010.

[108] S. Goudarzi, M. N. Kama, M. H.
Anisi, S. A. Soleymani, and F. Doctor,
“Self-organizing traffic flow prediction
with an optimized deep belief network
for internet of vehicles,” Sensors, vol. 18,
no. 10, p. 3459, 2018.

[109] S. Mirjalili, S. M. Mirjalili, and A.
Lewis, “Grey wolf optimizer,” Advances 
in engineering software, vol. 69, pp.
46-61, 2014.

[110] X. Zhang, Q. Lin, W. Mao, S. Liu,
Z. Dou, and G. Liu, “Hybrid Particle

98



Search Algorithm - Essence of Optimization

36

Swarm and Grey Wolf Optimizer and its 
application to clustering optimization,” 
Applied Soft Computing, vol. 101, p. 
107061, 2021.

[111] T.-C. Teng, M.-C. Chiang, and C.-S.
Yang, “A hybrid algorithm based on 
GWO and GOA for cycle traffic light
timing optimization,” in 2019 IEEE
International Conference on Systems, Man
and Cybernetics (SMC), 2019, pp.
774-779.

[112] Z. Li and P. Schonfeld, “Hybrid
simulated annealing and genetic
algorithm for optimizing arterial signal
timings under oversaturated traffic
conditions,” Journal of advanced
transportation, vol. 49, no. 1, pp.
153-170, 2015.

[113] Z.-R. Song, L.-L. Zang, and W.-X.
Zhu, “Study on minimum emission
control strategy on arterial road based
on improved simulated annealing
genetic algorithm,” Physica A: Statistical
Mechanics and its Applications, vol. 537,
p. 122691, 2020.

[114] T. Oda, T. Otokita, T. Tsugui, and Y.
Mashiyama, “Application of simulated
annealing to optimization of traffic
signal timings,” IFAC Proceedings 
Volumes, vol. 30, no. 8, pp. 733-
736, 1997.

[115] K. Gao, Y. Zhang, A. Sadollah, and
R. Su, “Optimizing urban traffic light
scheduling problem using harmony 
search with ensemble of local search,”
Applied Soft Computing, vol. 48, pp.
359-372, 2016.

[116] M. Dell’Orco, O. Baskan, and M.
Marinelli, “A Harmony Search
Algorithm approach for optimizing
traffic signal timings,” PROMET-
Traffic&Transportation, vol. 25, no. 4,
pp. 349-358, 2013.

[117] K. Gao, Y. Zhang, A. Sadollah, A.
Lentzakis, and R. Su, “Jaya, harmony
search and water cycle algorithms for

solving large-scale real-life urban traffic 
light scheduling problem,” Swarm and 
evolutionary computation, vol. 37, pp. 
58-72, 2017.

[118] T.-Y. Hu and L.-W. Chen, “Traffic
signal optimization with greedy
randomized tabu search algorithm,”
Journal of transportation engineering,
vol. 138, no. 8, pp. 1040-1050, 2012.

[119] A. Karoonsoontawong and S. T.
Waller, “Application of reactive tabu
search for combined dynamic user
equilibrium and traffic signal
optimization problem,” Transportation 
research record, vol. 2090, no. 1, pp.
29-41, 2009.

[120] M. A. Chentoufi and R. Ellaia, “A
Hybrid Particle Swarm Optimization
and Tabu Search algorithm for adaptive
traffic signal timing optimization,” in
2018 IEEE International Conference on
Technology Management, Operations and
Decisions (ICTMOD), 2018, pp. 25-30.

[121] K. Gao, Y. Zhang, R. Su, F. Yang, P.
N. Suganthan, and M. Zhou, “Solving
traffic signal scheduling problems in
heterogeneous traffic network by using
meta-heuristics,” IEEE Transactions on
Intelligent Transportation Systems, vol.
20, no. 9, pp. 3272-3282, 2018.

[122] K. Gao, Y. Zhang, A. Sadollah, and
R. Su, “Jaya algorithm for solving urban
traffic signal control problem,” in 2016
14th International Conference on Control,
Automation, Robotics and Vision
(ICARCV), 2016, pp. 1-6.

[123] P. R. Lowrie and L. PR, “The 
Sydney co-ordinated adaptive traffic
system: Principles, methodology,
algorithms,” 1982.

[124] F. Glover, “Tabu search and
adaptive memory programming—
advances, applications and challenges,”
in Interfaces in computer science and
operations research, Springer, 1997,
pp. 1-75.

99



Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects
DOI: http://dx.doi.org/10.5772/99395

[125] S. Kirkpatrick, C. D. Gelatt, and M.
P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598,
pp. 671-680, 1983.

[126] R. A. Rutenbar, “Simulated
annealing algorithms: An overview,”
IEEE Circuits and Devices magazine,
vol. 5, no. 1, pp. 19-26, 1989.

[127] Z. W. Geem, J. H. Kim, and G. V.
Loganathan, “A new heuristic
optimization algorithm: harmony
search,” simulation, vol. 76, no. 2, pp.
60-68, 2001.

[128] H. Ceylan and H. Ceylan, “A hybrid
harmony search and TRANSYT hill
climbing algorithm for signalized
stochastic equilibrium transportation
networks,” Transportation Research 
Part C: Emerging Technologies, vol. 25,
pp. 152-167, 2012.

[129] R. Rao, “Jaya: A simple and new 
optimization algorithm for solving
constrained and unconstrained
optimization problems,” International
Journal of Industrial Engineering
Computations, vol. 7, no. 1, pp.
19-34, 2016.

[130] H. Eskandar, A. Sadollah, A.
Bahreininejad, and M. Hamdi, “Water
cycle algorithm–A novel metaheuristic 
optimization method for solving
constrained engineering optimization
problems,” Computers & Structures,
vol. 110, pp. 151-166, 2012.

[131] A. Sadollah, H. Eskandar, A.
Bahreininejad, and J. H. Kim, “Water
cycle, mine blast and improved mine 
blast algorithms for discrete sizing
optimization of truss structures,”
Computers & Structures, vol. 149, pp.
1-16, 2015.

[132] A. Sadollah, H. Eskandar, A.
Bahreininejad, and J. H. Kim, “Water
cycle algorithm with evaporation rate 
for solving constrained and
unconstrained optimization problems,”

Applied Soft Computing, vol. 30, pp. 
58-71, 2015.

[133] Y. Zhang et al., “Application of an
enhanced BP neural network model
with water cycle algorithm on landslide 
prediction,” Stochastic Environmental
Research and Risk Assessment, pp.
1-19, 2020.

100



Chapter 6
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Reduction in OFDM Systems
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Algorithms
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Abstract

Optimization algorithms have been one of the most important research topics in 
Computational Intelligence Community. They are widely utilized mathematical 
functions that solve optimization problems in a variety of purposes via the maxi-
mization or minimization of a function. The swarm intelligence (SI) optimization 
algorithms are an active branch of Evolutionary Computation, they are increasingly 
becoming one of the hottest and most important paradigms, several algorithms 
were proposed for tackling optimization problems. The most respected and popular 
SI algorithms are Ant colony optimization (ACO) and particle swarm optimization 
(PSO). Fireworks Algorithm (FWA) is a novel swarm intelligence algorithm, which 
seems effective at finding a good enough solution of a complex optimization prob-
lem. In this chapter we proposed a comparison study to reduce the high PAPR
(Peak-to-Average Power Ratio) in OFDM systems based on the swarm intelligence 
algorithms like simulated annealing (SA), particle swarm optimization (PSO), fire-
works algorithm (FWA), and genetic algorithm (GA). It turns out from the results 
that some algorithms find a good enough solutions and clearly outperform the 
others candidates in both convergence speed and global solution accuracy.

Keywords: OFDM, PAPR, PTS, Swarm Intelligence, Fireworks Algorithm, GA, 
PSO

1. Introduction

In the last decade, Swarm Intelligence (SI) optimization algorithms attracted a
great deal of attention and become popular among researchers from different fields
and diverse domains working on optimization problems all over the world [1, 2].
The SI methods are increasingly becoming one of the most important research
topics of evolutionary computation (EC).

In the past several years, fruitful achievements have been made in the Compu-
tational Intelligence researches areas, such as evolutionary computation [3–5],
simulated annealing [6], artificial neural networks [7–9], tabu search [10], chaos
computation [11], fuzzy logic and systems [12]. All these methods inspired by
natural Behavior.
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In general, swarm intelligence algorithms (SI) can be divided into two main
categories, bio-inspired and non-bio-inspired. The first one includes particle swarm
optimization (PSO) [13], ant colony optimization (ACO) [14], artificial bee algo-
rithm (ABC) [15, 16], fish schooling search (FSS) [17], bacterial foraging optimiza-
tion (BFO) [18], firefly algorithm-II [19], bat algorithm [20] and so forth. The
second categories of non-bio-inspired algorithms includes fireworks algorithm
(FWA) [21], brain storm optimization (BSO) [22], magnetic optimization algo-
rithms [23] and water drops algorithm [24]. Each algorithm has some advantages in
solving many optimization problems but among all these algorithms, PSO, FWA
and GA [25, 26] are the most popular algorithms for searching optimal locations in a
D-dimensional space.

This chapter aims to present a comparison study to resolve an optimization
problem in orthogonal frequency division multiplexing (OFDM) system based on
the important evolutionary algorithm in the literature.

The multicarrier modulation techniques like OFDM [27–29] provides a viable
alternative to enhance the quality of service for data transmission over single carrier
systems, it has various advantages and now being used in a number of wireless
communication systems. However, the OFDM system still suffers from the high
envelope fluctuations of the transmitted signal called the peak-to-average power
ratio (PAPR). This main concern improves the complexity of nonlinear elements,
decreases the efficiency of high power amplifiers (HPA), and causes out-of-band
radiation with degradation of bit error rate (BER).

Partial transmit sequences (PTS) [30–32] is one of the most attractive technique
and a promising scheme due to its efficiency in PAPR reduction, but it requires an
exhaustive search to find the optimum phase factors, which causes high computa-
tional complexity increased with the number of phase and subblocks. In this paper
we will try to present many novel algorithms and their efficient improvements
combined with PTS scheme to reduce the PAPR and the computational complexity.

The rest of the chapter is organized as follows. In Section 2, OFDM system model
and the PAPR problem is formulated, and then the principles of PTS techniques are
introduced. In Section 3, we have introduced the paradigm of Swarm Intelligence
algorithms, and outlined the technical details of some popular SI algorithms like FWA,
PSO, and GA. We also discuss the characteristics, the framework of the FWA based
PTS and some simulation results under this Section. while Sections 4 and 5 are devoted
to the comparison study of computational complexity and conclusions successively.

2. Multicarrier modulation (OFDM) and PTS approach

2.1 PAPR in OFDM signal

Wireless communications systems have experienced explosive growth with the
demand for high data rate, theses digital systems require each channel to operate at a
specific frequency and with a specific bandwidth. OFDM systems are currently being
implemented in some of the newest and most advanced communications systems due
to its effectiveness in using the frequency spectrum. OFDM is a subset of frequency
division multiplexing in which a single channel utilizes multiple sub-carriers on
adjacent frequencies, this typical technique divides the effective spectrum channel to
a number of orthogonal sub-channels and with equal bandwidth, each sub-channel
handles independently with it’s own data using individual subcarrier and the OFDM
signal is the sum of all independent subcarriers. As a result, OFDM systems are able to
maximize spectral efficiency without causing adjacent channel interference. OFDM
signal generated by mapped the input data of binary sequences into complex data
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x n½ � ¼ 1ffiffiffiffi
N

p
XN�1

k¼0

Xke
j2πnk
LN , 0≤n≤LN� (1)1

where N is the number of subcarriers and Xk is the n
th complex symbol carried

and transmitted by the kth subcarrier.
In the time domain, the transmit signals in an OFDM system can have high peak

values since many subcarrier components are added via an inverse fast Fourier
transformation (IFFT) operation. Compared to single-carrier systems, OFDM sys-
tems are known to have a high peak-to-average power ratio (PAPR), which
decreases the signal-to-quantization noise ratio (SQNR) of the digital-analog con-
vertor (DAC) and analog-digital convertor (ADC) while degrading the efficiency of
the high power amplifier (HPA) in the transmitter.

The PAPR of a signal in discrete time is defined as the ratio between the maxi-
mum power and the average power of the complex OFDM signal, it can be
expressed by the following formula [29]:

PAPRfx½n�g ¼
max x n½ �j j2

n o
E x n½ �j j2
n o , 0≤n≤LN� (2)1

where x[n] is given by (Eq. (1)) and E {.} denotes the expected value (Average
power).

2.2 Partial transmit sequence (PTS)

When The PAPR reduction technique of Partial Transmit Sequence (PTS), was
proposed in the framework of the continuity of the “Selective Mapping” technique
[33]. It is based on the same principle as the SLM, with a multiple representation of
the signal. The basic idea of this method has been described and detailed by S.H
Muller and J.B Huber in [31, 34]. It consists in partitioning an input data block of N
subcarriers into V subblocks of the same size with N/V subcarriers per each
subblock. Each subcarrier allocated to the data transmitted in one sub-block will be
set to zero in all others.

Figure 1.
Block diagram of PTS technique.
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symbols  called  constellation,  by  a  modulator  (PSK,  QPSK,  QAM,  etc.).  Then,  after
serial  to  parallel  conversion,  N  mapped  symbols  X  =  [X0,  X1,...,XN�1]

T  are  fed  to  IDFT
block  to  formed  the  time  domain  OFDM  signal  x  =  [x0,x1,...,xN�1]

T.  In  the  discrete
time  domain  and  with  oversampled  factor  L  =  4  The  mathematical  expression  of  the 
complex  envelope  of  OFDM  signal  can  be  written  as
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Once the V sub-blocks have been formed, the PTS technique applies a phase
rotation optimization on each v sub block after IDFT to form the final signal at the
lowest PAPR Figure 1.

The principle of the PTS technique is illustrated in Figure 1, where the algorithm
is described as follows:

i. Firstly, after digital modulation, the symbols are subdivided into V
sub-blocks, of equal size, such that the original signal is X ¼PV

v¼1X
v

ii. A phase shift is applied to all data symbols in each independent disjoint
sub-blockXv and the new frequency OFDM symbol is written as:

X ¼
XV
v¼1

Xv:bv, bv ¼ ejφ
v
, v ¼ 1, 2, … , V: (3)

iii. Subsequently, IFFT is applied on each sub-block to determine the modified
OFDM symbol in the time domain.

x ¼ IFFT
XV
v¼1

bvXv

( )
¼
XV
v¼1

bv:IFFT Xvf g ¼
XV
v¼1

bvxv, (4)

where the phase vectorbv is chosen so that the PAPR can be minimized. It is
optimized as follows:

b1, … bV
� � ¼ arg min b1,… bV½ � max n¼0,1,… ,N�1

XV
v¼1

bvxv n½ �
�����

�����
 !

(5)

In the practical application of wireless communication systems using the PTS
approach, several drawbacks influence the performance of the PTS technique and

Figure 2.
PAPR reduction performance of PTS-OFDM when the number of sub-blocks varies.
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increase  its  complexity.  The  PAPR  performance  will  be  improved  as  the  number  of
subblocks  V  is  increased  (Figure  2).  However,  the  complexity  of  the  system  also
increased,  to  match  the  optimal  phase  weighting  sequence  for  each  input  data 
sequence,  WV  possible  combinations  should  be  checked  (W  number  of  phase  fac-
tors).  Moreover,  the  PTS  technique  requires  the  transmission  of  “Side  Information”
(SI)  so  that  the  receiver  can  identify  the  sequence  that  generated  the  lowest  PAPR.

  Figure  2  is  an  example  of  the  PAPR  for  an  OFDM  signal  with  64  subcarriers 
(802.11a),  using  a  QPSK  modulation  and  OFDM  with  PTS  technique.  From  the 
above  figure,  the  PTS  method  improves  the  PAPR  performance  as  the  number  of 
sub-blocks  increases.  Several  works  aiming  at  complexity  reduction,  and  several 
optimization  algorithms  have  also  been  proposed  to  minimize  the  computational 
complexity,  such  as  the  Genetic  Algorithm  (GA)  [25,  35],  Particle  Swarm  Optimi-
zation  (PSO)  [36],  simulating  annealing  (SA)  [37]  and  so  forth.  We  will  compare 
theses  algorithms  with  others  new  optimization  methods  in  the  next  sections.

3. Swarm  intelligence  algorithms

  Swarm  intelligence  algorithms  have  been  widely  used  in  many  domains  and 
attracted  the  attention  of  researchers  working  in  optimization  problems.  It  is  one  of
the  most  important  research  topics  in  Computational  Intelligence  Community.  The
most  of  swarm  intelligence  algorithms  have  been  inspired  by  some  intelligent 
behaviors  existing  in  nature  like  the  collective  behavior  of  a  group  of  social  insects 
(like  bees,  termites  and  wasps).

  The  most  respected  and  popular  SI  algorithms  are  particle  swarm  optimization 
(PSO),  which  is  inspired  by  the  social  behavior  of  bird  flocking  or  fish  schooling,
fireworks  algorithm  (FWA)  inspired  by  the  fireworks  explosion  in  the  night  sky,
and  ant  colony  optimization  (ACO)  which  simulates  the  foraging  behavior  of  ant 
colony.  Nowadays,  research  efforts  on  SI  are  mainly  devoted  to  algorithm  design,
problem  solving,  and  applications,  Hybrid  algorithms  and  variants  are  actively 
proposed.  The  ACO,  PSO,  and  the  genetic  algorithm  (GA)  are  the  most  representa-
tive  swarm  intelligence  algorithms  applied  to  solve  combinatorial  optimization 
problems  or  used  in  real-parameter  optimization.

3.1  Genetic  algorithm  (GA)

  The  genetic  algorithm  [25,  38],  is  an  optimization  algorithm  based  on  techniques
derived  from  genetics  and  natural  evolution:  crossovers,  mutations,  selection,  etc.
This  optimization  method  has  many  advantages  such  as  a  good  convergence,  small 
computing  time  and  high  robustness.  It  can  be  used  to  select  the  optimal  phase 
vector  to  reduce  the  PAPR  [35],  GA  decreases  the  computational  load  of  the  PTS 
technique  by  searching  a  small  piece  of  a  set  of  possibilities  instead  of  the  whole  set
as  in  the  classical  technique.  It  searches  for  the  extremum(s)  of  a  function  (PAPR
function)  defined  on  a  space  of  dimension  D,  for  example  [0  2π].  To  use  it,  we  must
have  some  basic  elements.

  The  natural  evolution  is  processed  through  three  main  steps  as  shown  in
Figure  3.  First,  a  population  with  n  chromosomes  is  generated  randomly.  Second,
this  population  is  exposed  to  some  evolution  mechanisms  like  crossover  and  muta-
tion  to  form  a  new  population  with  the  hope  of  being  better.  Finally,  some  parts
of  the  population  are  selected  according  to  their  fitness  values  (PAPR  function)
as  in  natural  selection  [38,  39].  The  algorithm  can  be  stopped  when  the  maximum 
number  of  generations  (max(Gen))  is  reached,  or  meets  a  convergence  requirement
(a  targeted  PAPR).  For  more  details,  the  reader  can  refer  to  [25].
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The PTS method is combined with a GA to decrease the computational com-
plexity. The basic configuration parameters of the genetic algorithm for the simu-
lations are summarized in Table 1. The system uses N = 64 subcarriers, with QPSK
modulation. The signal is oversampled with the factor L = 4 and the weighting

Figure 3.
Flow chart of genetic algorithm.

Parameter Value

Number of generations (G) 5

Population (P) 5

Crossover rate (CR) 1.0

Mutation rate (MR) 0.05

Table 1.
GA simulation parameters.
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system uses a set of phase factors W = {1, �1, j, �j} to facilitate signal recovery. For
all the results presented in this chapter, 104 OFDM symbols are generated, and the
simulations are based on the IEEE 802.11/a standard.

Figure 4 shows the CCDF curves of OFDM system without PAPR reduction, the
original PTS technique, and the GA-PTS technique. Although the PTS method has
better PAPR than the GA-Proposed technique, the computational load of the PTS
method is larger than GA-PTS.

3.2 Particle swarm optimization (PSO) based PTS

Particle swarm optimization (PSO) is a population-based global optimization
technique put forward originally by Kennedy and E berhart in 1995 [36, 40–42], it is
based on the research of bird and fish flock movement behavior. The PSO algorithm
is a computational method used to solve non-linear continues problems and opti-
mize many practical real life applications such as control reactive power, and Pho-
tovoltaic solar systems [43, 44], it has attracted the attention of researchers and a
number of versions of PSO have been continuously proposed [45, 46].

In the basic particle swarm optimization algorithm, the population is called
swarm and the individuals are called particles, so the PSO works by having a swarm
of particles moved in the search space (D-dimensional) according to simple formu-
lae until the optimal solution of the phase problem will be reached. During the
movement of the population, each particle is characterized by two parameters:
position and velocity. We used the PSO as an optimizer to reduce the PAPR by
solving the phase factor problem in (Eq. (5)), the PSO algorithm evaluates each
particle with the objective function of PAPR in (Eq. (2)).

Figure 4.
Comparison of the PAPR0 (dB) versus CCDF in OFDM systems for original PTS, and GA-PTS.
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During the optimization process; each solution is represented as a particle with a
position vector x, referred to as a moving velocity and a phase weighting factor
represented as v and b, respectively.

Thus for a K-dimensional optimization, the velocity and position of the ith particle
can be represented as Vi = (vi,1,vi,2, . . .,vi,K) and bi = (bi,1, bi,2,… , bi,K) respectively.
Basically, each particle has its own best position referred to as pbest, bPbi ¼
bi,1, bi,2, … , bi,Kð Þ corresponding to the individual best objective value obtained so far
at time t, and the global best (gbest) particle is denoted by bGb ¼ bg,1, bg,2, … , bg,K

� �
,

which represents the best particle found so far at time t in the entire swarm. So the
expression of the new velocity vi(t + 1) for particle i is updated by

vi tþ 1ð Þ ¼ bvi tð Þ þ c1r1 bPbi tð Þ � bi tð Þ
� 	

þ c2r2 bG tð Þ � bi tð Þ
� 	

(6)

where vi(t) is the old velocity of the particle i at time t, c1, c2 stand for acceler-
ation constants and r1, r2 are random numbers between 0 and 1.

Based on the updated velocities (Eq. (6)), new position for particle i is computed
according the following equation: bi tþ 1ð Þ ¼ bi tð Þ þ vi tþ 1ð Þ:

In Figure 5, some results of the CCDF of the PAPR are simulated for the
OFDM system with the same parameters used, in which the phase weight factor
b = {�1, �j} is used for PTS and GA-PTS, while the others algorithms like Standard
PSO and simulated annealing used a search space [0 2π].

As we can see that the CCDF of the PAPR is well improved and the PSO-based
PTS technique is capable of attaining a good PAPR performance, it is gradually
promoted upon increasing and changing the research space dimension.

3.3 Simulated annealing (SA) based PTS

Simulated Annealing (SA) is an effective and general form of optimization. Over
a number of years, the SA algorithm and its many extensions have been extensively

Figure 5.
CCDF of the PAPR with the PTS technique searched by SPSO, SA, and GA technique.
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employed  to  solve  a  wide  range  of  application  domains,  especially  in  combinatorial
optimization  problems  [6,  47–49].  It  is  useful  in  finding  global  optima  in  the  pres-
ence  of  large  numbers  of  local  optima.  This  characteristic  makes  the  algorithm 
generic  in  the  sense  that  it  can  be  used  to  solve  a  variety  of  optimization  problems 
without  the  need  to  change  the  basic  structure  of  the  computations.  Over  the  last 
few  years  a  number  of  variations  to  the  original  algorithm  have  been  proposed,
including  parallel  versions  to  speed  up  the  rate  of  computations  [50,  51].

  “Annealing”  refers  to  an  analogy  with  thermodynamics,  specifically  with  the 
way  that  metals  cool  and  anneal.  Simulated  annealing  uses  the  objective  function  of
an  optimization  problem  (PAPR  in  our  case)  instead  of  the  energy  of  a  material.  The
Simulated  Annealing  algorithm  is  a  stochastic  optimization  method  modeled  on  the
behavior  of  condensed  matter  at  low  temperatures.

  The  Implementation  of  SA  is  surprisingly  simple,  at  the  outset,  the  system  starts 
with  a  high  T  value,  then  annealing  scheme  is  applied  by  slowly  decreasing  T 
according  to  some  given  procedure.  The  algorithm  is  basically  hill-climbing  except 
instead  of  picking  the  best  move,  it  picks  a  random  move  at  each  T.  If  the  selected 
move  improves  the  solution  (cost  function  of  PAPR),  then  it  is  always  accepted.
Otherwise,  in  order  to  accept  the  states  that  do  not  improve  the  cost  function  (PAPR
function),  the  algorithm  makes  the  move  anyway  with  some  probability  less  than  1 
depending  on  the  PAPR  reduction  and  T.  This  process  randomizes  the  iterative 
improvement  phase  and  avoid  problems  caused  by  moves  that  do  not  improve  the 
solution  in  an  attempt  to  reduce  the  probability  of  falling  into  a  local  minimum.

  In  our  study  we  used  SA  based  PTS  algorithm  to  improve  the  search  of  phase 
factors  for  PAPR  reduction  in  OFDM  signals.  QPSK  modulation  is  employed  with
N  =  64  subcarriers.  The  phase  weighting  factors  W  =  [0,  2π)  have  been  used  as  in 
SPSO  and  104  random  OFDM  symbols  have  been  generated.  In  Figure  5  Numerous
computer  simulations  have  been  conducted  to  determine  that  the  SA-PTS  algorithm
can  improve  PAPR  performance  better  than  GA  and  with  a  small  difference  with
SPSO.  (4,421  dB  for  SPSO  and  4,948  dB  for  SA  at  CCDF  =  10�3).

3.4  Fireworks  algorithm  (FWA)

  Fireworks  algorithm  (FWA)  is  an  iterative  swarm  intelligence  algorithm 
inspired  by  fireworks  explosions  in  the  sky  at  night,  it  was  proposed  by  Y.  Tan  and
Y.  Zhu  in  2010  [21]  to  searches  for  optimal  solution  of  some  optimization  problems.
FWA  has  attracted  the  attention  of  researchers  and  a  number  of  versions  of  FWA 
have  been  continuously  proposed  [52–55].

  The  FWA  is  designed  and  implemented  by  simulating  the  explosion  process  of 
fireworks.  It’s  made  up  of  four  key  components,  firstly  explosive  operator  where 
two  explosion  processes  are  employed,  explosion  strength  and  explosion  amplitude,
secondly  mutation  operation,  where  the  Gaussian  mutation  is  the  most  widely  used,
thirdly  mapping  rule,  and  the  most  popular  mapping  rules  are  Mirror  mapping  rule
and  stochastic  mapping  rule,  lastly  as  for  selection  strategy,  there  are  distance-based
selection  and  stochastic  selection  for  keeping  diversity  of  sparks.

3.4.1  Fireworks  algorithm  based  PTS  (FWA-PTS)

  This  section  presents  the  basic  principle,  implementation  and  performance  of 
FWA,  aiming  to  develop  this  algorithm  in  a  systematic  and  comprehensive  way,
and  easily  integrate  it  into  an  OFDM  system  to  minimize  PAPR.  The  approach  is 
based  on  combining  the  PTS  with  the  FWA  to  find  the  optimal  phase  vectors  to 
reduce  the  PAPR  with  the  least  complexity  [56,  57].  The  objective  function  in  this 
case  is  to  minimize  the  PAPR  of  transmitted  OFDM  signals  as  follows:
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Minimize f Obj b, xð Þ ¼
XV
v¼1

bv:xv

Subject to bv ¼ ejφv

 �

, v ¼ 1, 2, … , V

8>><>>: (7)

where bv represent the complex phase factors and the bounds of the potential
space is defined by 0≤φv ≤ 2π .

Fireworks algorithm starts to run iteratively till the given termination conditions
are met. When the FWA algorithm is initiated, a set of Sparks will fill the local space
around the Firework, for a good optimization usually we started by five fireworks,
and when we search for a point bv satisfying f obj bvð Þ ¼ y, we can continuously
trigger Fireworks in the search space until a Spark checks the target or is close
enough to the point bv. Figure 6 is depicting a rough framework of the search
optimization algorithm of fireworks to find the best phase vector, the realization of
this method consists of four steps as follows:

1.Generate and select N locations for fireworks randomly in the feasible space
[0 2π].

Figure 6.
Flow chart of fireworks algorithm.
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Figure 7.
PAPR reduction with PTS based different searching algorithms.
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2.  Evaluate  or  calculate  the  fitness  value  of  each  firework  according  to  the  fitness
  function  (  f  objðbvÞ).  The  number  of  sparks  is  calculated  based  on  theory
formula  [21,  57]  where  the  fireworks  with  better  fitness  values  produce  more
sparks.

3.  The  position  of  sparks  is  controlled  by  The  explosion  amplitude  which  is
  determined  by  the  fitness  value  of  that  firework  [52,  57],  each  one  represents  a
solution  in  the  feasible  space  [0  2π].  In  general,  the  explosion  amplitude  for  the
firework  with  better  fitness  value  is  smaller  and  vice  versa.  Gaussian  mutation
is  used  to  keep  the  diversity  of  the  population  in  each  iteration.

4.  Calculate  the  best  fitness  value  using  objective  function.  If  the  terminal
  condition  is  met  (number  of  iteration  or  best  PAPR  value),  stop  the  algorithm.
  Otherwise,  continue  the  iteration  process.  Based  on  selection  strategy  the  best
  sparks  are  selected  to  form  a  new  population.

  In  this  section,  many  simulations  have  been  performed  based  on  IEEE  802.11a 
(Wireless  LAN)  to  verify  the  performance  of  PTS-OFDM  based  on  Fireworks  algo-
rithm.  FWA  is  used  to  find  the  optimal  combination  of  phase  factors  to  reduce  PAPR.
The  OFDM  system  was  simulated  with  64  subcarriers,  in  which  4  sub-blocks  are 
employed,  and  the  PTS,  selected  mapping  (SLM)  [58]  and  GA  used  W  =  4  {1,  �1,  j,  �j}

phase  weighting  factors  to  optimize  the  PAPR  of  the  modulated  OFDM  symbol,  while
others  algorithms  chose  randomly  the  four  phases  within  the  interval  W  =  [0,  2π].  For
the  FWA,  the  parameters  were  chosen  as  described  in  [52],  the  FWA  worked  quite 
well  at  the  setting:  m̂  ¼  5,  Â  ¼  40,  N  =  5,  m  =  50,  a  =  0.04  and  b  =  0.8  [57].

  In  Figure  7,  we  compare  the  performance  of  the  FWA-based  PTS  with  the  most
widely  used  algorithms  for  phase  optimization  such  as  SPSO,  GA,  and  SA,  in  terms
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of CCDF (Complementary Cumulative Density Function). From Figure 7, it can be
seen that the PTS-FWA scheme performs better than the other algorithms in terms
of PAPR reduction. For example, at 10�3 of the CCDF, the PAPR is 4 dB, 4.421 dB,
4.948 dB, 5.226 dB, 5.879 dB, 7.034 dB, and 10.66 dB for the FWA, SPSO, SA, PTS,
GA-PTS, SLM, and WLAN signals, respectively [57].

3.4.2 Improved versions of the fireworks algorithm

Fireworks Algorithm (FWA) is one of the best swarm intelligence algorithms,
recently, many improvement versions of FWA have been proposed and developed
based on several modifications. They were proposed to address some inherent
limitations of the original algorithm.

Enhanced fireworks algorithm (EFWA) is an improved version of the recently
developed Fireworks Algorithm (FWA) based on several modifications, it’s pro-
posed to tackle some limitations like the worse quality of the results when being
applied on shifted functions or the high computational cost per iteration. In order to
that, EFWA proposed five major improvements like a new minimal explosion
amplitude check, a new operator for explosion, a new mapping strategy, a new
operator for generating Gaussian sparks and for selecting the new population [53].

Dynamic fireworks algorithm (dynFWA) is an adaptive algorithm, it is an
improved version of the recently developed EFWA based on an adaptive dynamic
local search mechanism. DynFWA uses a dynamic explosion amplitude by increasing
or decreasing the amplitude to speed up convergence when the fitness of the best
firework could be improved (PAPR in our example) or to narrow the search area
when the function could not be improved. In addition, DynFWA proposed the
remove of Gaussian mutation operator to improve the computational efficiency [54].

Figure 8.
PAPR reduction performance by the improved versions of the fireworks algorithm FWA.
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Another new version called Adaptive fireworks algorithm (AFWA) is proposed
to improve FWA and EFWA in term of the explosion amplitude which is a key
factor influencing the performance of the algorithm. To improve the mechanism of
calculating the amplitude, AFWA used the distance between the best firework and a
certain selected individual as the explosion amplitude [55].

Figure 8 shows the simulation results for PAPR reduction ofWLAN signals using
the Fireworks algorithm based PTS technique and the recently improved versions of
FWA (EFWA, DynFWA, and AFWA), compared with the different optimization
approaches. From this figure, it is clear that FWA and all developed versions can
effectively reduce PAPR in theWLAN-OFDMsystem.However, their PAPR reduction
performance is different, in general, EFWA and dynFWA show a small improvement
over the conventional FWA. For CCDF ¼ 10�3 we have 3.942 dB and 3.979 dB for
EFWA and dynFWA, respectively while AFWA gives 4.283 dB and FWA 4 dB [57].

4. Computational complexity comparison

Beside the optimization accuracy, the convergence speed is an essential param-
eter for any optimization algorithm. To compare the convergence speed of SI
algorithms, we performed some simulations shown in Figure 9, which represent the
convergence curves of the FWA schemes in comparison with GA and SPSO.

The simulations are performed on a random OFDM symbol with 10 independent
generation cycles and 3000 iterations. From these results, we can conclude that the
four proposed FWA methods have a much faster convergence speed than SPSO and
GA. Table 2 shows that the fireworks algorithm and its improved versions can find
optimal solutions in less than 500 function evaluations.

In terms of computational cost, Figure 10 shows the time consumed by each
algorithm to reduce PAPR. As an experimental platform we used some calculation
software, run with a Win 7 operating system on an Intel (R) Core (TM) i5-2430M;
2.4 GHz; and 4 GB of RAM. As we see, the EFWA, dynFWA, and AFWA algorithms

Figure 9.
Convergence curves of the SI algorithms for an OFDM symbol.
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are close to each other in execution time, which is much shorter than the FWA and
SPSO runtimes.

From these results, we can conclude that EFWA and AFWA have the best
computational cost than FWA and dynFWA, while AFWA and dynFWA are very
promising compared to other algorithms because of their efficiencies and simplicities.

5. Conclusion

In this chapter, we tried to present the performance of some optimization
algorithms based PTS technique to reduce the PAPR of OFDM system with low
computational complexity. First of all, OFDM, PAPR problem, and PTS scheme
were presented to clarify the problem. Then a concise review on swarm intelligence
domain was investigated. In others sections, a brief introduction to GA, PSO, SA
and FWA is presented with primary focuses on the basic principal, algorithm study,
problem solving, and some applications. Theoretical analysis is also described with
completed reference citations of each algorithm. The SI algorithms were compared
in terms of CCDF, and simulation results show that, FWA had better performance
compared to GA, SA and SPSO. Some improved version of FWA, like EFWA,
dynFWA, AFWA were also briefly described, and the comparison show that the

Figure 10.
Time consumed by each algorithm.

Methods Function evaluations PAPR [dB]

Original — 10.66

SPSO 2000 4.055

GA 2000 4.447

FWA 500 2.839

EFWA 500 3.015

DynFWA 500 3.021

AFWA 500 2.9

Table 2.
Performance evaluation by the SI algorithms, on one symbol OFDM over 10 independent runs.
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