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Preface 

We describe in this book recent developments on fuzzy logic and neural networks, as 
well as their hybrid combinations, and their application in areas such as, intelligent 
control and robotics, pattern recognition, medical diagnosis, time series prediction 
and optimization of complex problems. There are papers with the main topics of 
type-1, type-2 and type-3 fuzzy systems, which basically consists of papers that 
propose new concepts and algorithms based on type-1, type-2 and type-3 fuzzy logic 
theory and their applications. There are also papers that present theory and practice 
of meta-heuristics in diverse areas of application. There are interesting papers on 
different applications of fuzzy logic, neural networks and hybrid intelligent systems 
in medical problems. In addition, we can find papers describing applications of fuzzy 
logic, neural networks and meta-heuristics in robotics problems. There are a total of 
14 papers forming the book in the above-mentioned topics. 

In conclusion, the edited book comprises papers on diverse aspects of fuzzy logic, 
neural networks and nature-inspired optimization meta-heuristics for designing and 
implementing hybrid intelligent systems and their application in areas , such as intelli-
gent control and robotics, pattern recognition, time series prediction and optimization 
of complex problems. We expect that the book will serve as reference for researchers 
and graduate students working in the theory and applications of the computational 
intelligence area. 

Tijuana, Mexico 
Tijuana, Mexico 
May 2022 

Oscar Castillo 
Patricia Melin
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About This Book 

This book covers recent developments on fuzzy logic, neural networks and opti-
mization algorithms, as well as their hybrid combinations. In addition, the above-
mentioned methods are applied to areas such as intelligent control and robotics, 
pattern recognition, medical diagnosis, time series prediction and optimization of 
complex problems. Nowadays, the main topic of the book is highly relevant, as most 
current intelligent systems and devices in use utilize some form of intelligent feature 
to enhance their performance. In addition, on the theoretical side, new and advanced 
models and algorithms of type-2 and type-3 fuzzy logic are presented, which will be 
of great interest to researchers in these areas. Also, new nature-inspired optimization 
algorithms and innovative neural models are put forward in the manuscript, that are 
very popular subjects, at this moment. There are contributions on theoretical aspects 
as well as applications, which make the book very appealing to a wide audience, 
ranging from researchers to professors and graduate students.
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On Decision Making Applications 
via Distance Measures 

Feride Tuğrul and Mehmet Çitil 

Abstract Intuitionistic fuzzy sets are an area that has attracted the attention of many 
researchers recently and is used in many application areas. Researchers have made 
use of intuitionistic fuzzy sets because of their usefulness in all applications involving 
decision making. In decision making problems including criteria and alternatives, 
intuitive fuzzy sets are evaluated with distance measures defined, and more sensitive 
results are obtained in application areas than many methods. 

Keywords Fuzzy logic · Intuitionistic fuzzy set · Decision making · Distance 
measure 

1 Introduction 

The notion of fuzzy logic was firstly defined by Zadeh in 1965 [1]. Then, Intuitionistic 
fuzzy sets (shortly IFS) were defined by Atanassov [2, 3]. Intuitionistic fuzzy sets 
form a generalization of the notion of fuzzy sets. The intuitionistic fuzzy set theory 
is useful in various areas, such as artificial intelligence, engineering, education, alge-
braic structures, topologic spaces, algebraic structures, control systems, agriculture 
areas, computer, economy and various engineering fields, real life situations [4–14]. 
Various applications of intuitionistic fuzzy set have been carried out through distance 
measures approach [15–20]. 

Education has many components and is an important issue for the continuity 
of societies. Each occupational group must complete the training process related 
to their field. The talents of an individual belonging to a profession and the field 
in which he/she specializes should be compatible with the needs of the society. 
Although the basis of success is human, the most important factor affecting success
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is education. Education has a wide range of applications in many fields such as fuzzy 
logic, intuitionistic fuzzy logic, decision making, multi-criteria decision making, 
intercriteria analysis [21–23]. 

Choosing the most accurate and rational system while performing selection, eval-
uation and ranking in education; it is very important to achieve our goal. We used 
the distance measure while determining the goals and enroll in the training. By 
expressing the exam scores in intuitionistic fuzzy clusters instead of just a single 
grade, we can observe the concepts of membership, non-membership and hesitancy 
together. Therefore, it will give the most accurate result to be expressed with the 
intuitionistic fuzzy sets given in education. Also, it is very useful to use the distance 
measure when listing the intuitionistic fuzzy alternatives [14]. For this paper; high 
schools in any province in Turkey have been researched. If it is desired to work with 
these methods in the field of education, data can be obtained from the desired country 
and the desired province. The data we used in our study were taken from Turkey. 
For these papers, Approximately 42,000 students have been researched according to 
official data from the Ministry of Education. 

In our studies, we preferred the field of education as the application areas of 
intuitionistic fuzzy logic. The methods we will use are useful methods that can be 
applied in all areas. Thanks to these methods, many goals such as selection, ranking, 
decision making, placement, and element selection can be achieved in the most 
accurate way. 

2 Preliminaries 

Definition 1 : [1] Let  X /= ∅. A fuzzy set A in X defined as: 

A = {⟨x, μA(x)⟩|x ∈ X }, 

where μA(x) : X → [0, 1] is the membership function of the fuzzy set A. 

Definition 2 : [2, 3] Let  X /= ∅. An intuitionistic fuzzy set A in X; 

A = {⟨x, μA(x), νA(x)⟩|x ∈ X } 

μA(x), νA(x), πA(x) : X → [0, 1] 

defined membership degree, nonmembership degree and hesitation degree of the 
element x ∈ X respectively. In which, 

μA(x) + νA(x) + πA(x) = 1
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Definition 3 : Let  X /= ∅. Intuitionistic fuzzy sets A, B, C ∈ X. The distance 
measure d between intuitionistic fuzzy sets A and B mapping d : X × X → [0, 1]; 
if d(A, B) sstisfies the following axioms: 

A1. 0 ≤ d(A, B) ≤ 1 
A2. d(A, B) if and only if A = B 
A3. d(A, B) = d(B, A) 
A4. If A ⊆ B ⊆ C then d(A, C) ≥ d(A, B) and d(A, C) ≥ d(B, C) 
Distance measure is a term that describes the difference between intuitionistic 

fuzzy sets and can be considered as a dual concept of similarity measure. 

Definition 4 : [24, 25] Let  A = {⟨x, μA(x), νA(x), πA(x)⟩|x ∈ X } and 
B = {x, μB (x), νB (x), πB (x)|x ∈ X } be two intuitionistic fuzzy sets in X = 

x1, x2, . . . ,  xn; i = 1, 2, . . . ,  n. Based on geometric interpretation of intuitionistic 
fuzzy set proposed the following four distance measures between A and B: 

The Hamming Distance: 

dH (A, B) = 
1 

2 

nΣ 

i=1 

(|μA(xi ) − μB (xi )| + |νA(xi ) − νB (xi )| + |πA(xi ) − πB (xi )|) 

The Euclidean Distance: 

dE (A, B) 

=
/
1 

2

Σ n 

i=1

[
(μA(xi ) − μB (xi ))

2 + (νA(xi ) − νB (xi ))
2 + (πA(xi ) − πB (xi ))

2
]

The Normalized Hamming Distance: 

dn−H (A, B) = 
1 

2n 

nΣ 

i=1 

(|μA(xi ) − μB (xi )| + |νA(xi ) − νB (xi )| + |πA(xi ) − πB (xi )|) 

The Normalized Euclidean Distance: 

dn−E (A, B) 

= 
/

1 

2n

Σ n 

i=1

[
(μA(xi ) − μB (xi ))

2 + (νA(xi ) − νB (xi ))
2 + (πA(xi ) − πB(xi ))

2
]

Definition 5 : [26] M is set of options and C is a set of criteria. 
M = {M1, M2, . . . ,  Mm}, C = {C1, C2, . . . ,  Cn} where each option Mi is 

expressed via intuitionistic fuzzy description, namely 

Mi = {(C1, μi1, νi1), (C2, μi2, νi2), . . . ,  (Cn, μin, νin)}, i = 1, 2, . . . ,  m. 

where μi j  indicates the degree to which option Mi satisfies criterion C j , νi j  indicates 
the degree to which option Mi does not satisfy criterion C j . Our goal is to point out
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the best option (to rank the considered options). The options should satisfy the criteria 
C j , Ck, . . . ,  Cp or criterion Cs , i.e.:

(
C j andCkand, . . . ,  and Cp

)
or Cs (1) 

Definition 6 : [13] 

Sim(Ci , A) = 
lI F  S(Ci , A) 
lI F  S(Ci , B) 

(2) 

where lI F  S(Ci , A) is a distance from Ci
(
μCi , νCi , πCi

)
to A(1, 0, 0), lI F  S(Ci , B) 

is a distance from Ci
(
μCi , νCi , πCi

)
to B(0, 1, 0). The distances lI F  S(Ci , A) and 

lI F  S(Ci , B) are calculated from: 

lI F  S(Ci , A) = 
1 

2 

nΣ 

i=1

(||1 − μCi

|| + ||0 − νCi

|| + ||0 − πCi

||) (3) 

lI F  S(Ci , B) = 
1 

2 

nΣ 

i=1

(||0 − μCi

|| + ||1 − νCi

|| + ||0 − πCi

||) (4) 

For, 0 ≤ Sim(Ci , A) ≤ ∞. 
The problem of finding an option Mi satisfying in the best way condition (1) can 

be solved by evaluating each option Mi 

E(Mi ) =Sim(A, Mi ) 
= min

{[
Sim

(
A, C j

)
, Sim(A, Ck), . . . . . . ,  Sim

(
A, Cp

)]
, Sim(A, Cs)

}

(5) 

Condition (5) means that for each Mi we look for the worst satisfied criterion Wi 

among C j , Ck, . . . ,  and Cp and next we look for the better criterion between Wi and 
Cs . The worst means the least similar and the least similar and the best means the 
most similar. 

The smallest value among E(Mi ), i = 1, 2, . . . ,  m in (5) points out the option 
which best satisfies condition in (1). 

3 An Application of Intuitionistic Fuzzy Logic 
with Distance Measure 

The objective of this application is to determine the relationship between students’ 
official tests and the pilot tests by means of distance measures in intuitionistic fuzzy 
sets [27]. The solution has been accepted by measuring the shortest distance between
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each student and each school by using distance measure. Owing to this application; 
distance measures have been compared. The sequence of validity and reliability of 
the distance measures has been determined. Also; this application has been carried 
out on students who studied in two different years. 

3.1 Comparison of Distance Measures with the Application 
of Intuitionistic Fuzzy Sets 

The official exam results of the students who were arbitrarily selected from one of 
those years have been investigated. Let H = {H1, H2, H3, H4, H5} be set of high 
schools. L ={Turkish, Mathematics, Science, Social, English, Religion} be set of 
lessons, 

S = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10} be set of students. 
High schools’ reference points have been calculated in one of those years for each 

lesson in L , in Table 1.
Students’ official test scores in one of those years academic year have been 

indicated in Table 2.
Shortest distance between each student (i.e. Table 2) and each high school (i.e. 

Table 1) has been calculated using Euclidean distance method, in Table 3.
Shortest distance between each student (i.e. Table 2) and each high school (i.e. 

Table 1) has been calculated using normalized Euclidean distance method, in Table 
4.

Shortest distance between each student (i.e. Table 2) and each high school (i.e. 
Table 1) has been calculated using hamming distance method, in Table 5.

Shortest distance between each student (i.e. Table 2) and each high school (i.e. 
Table 1) has been calculated using normalized hamming distance method, in Table 
6.

Distance between each student and each school has been calculated by four 
different distance measures. Comparison of distance measures is in the following 
table (Table 7).

If we want to interpret these tables, we can achieve the following results: 

• The results of all distance measurements are consistent with each other. 
• The most accurate distance measurement is the normalized measure of hamming. 

According to Table 7; the sequence of validity and reliability of the distance 
measures is this; 

dn−H < dn−E < dE < dH .
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Table 3 Values calculated using Euclidean distance 

E H1 H2 H3 H4 H5 

S1 0.0568 0.1107 0.2949 0.6491 0.9039 

S2 0.0757 0.0987 0.697 0.6729 0.8889 

S3 0.9633 0.8184 0.61004 0.4247 0.4119 

S4 0.7075 0.6225 0.4371 0.2585 0.3649 

S5 0.4002 0.2949 0.1704 0.4187 0.5935 

S6 0.5424 0.0775 0.2141 0.5296 0.7993 

S7 0.5507 0.0583 0.2142 0.6131 0.8261 

S8 0.6737 0.5254 0.3389 0.1012 0.3927 

S9 0.5839 0.4768 0.2972 0.1915 0.43001 

S10 0.8226 0.71707 0.6187 0.5204 0.53906

Table 4 Values calculated using normalized Euclidean distance 

n − E H1 H2 H3 H4 H5 

S1 0.0231 0.045 0.1204 0.2675 0.36903 

S2 0.0308 0.04279 0.27589 0.27471 0.365 

S3 0.43412 0.391 0.3375 0.20901 0.13595 

S4 0.29438 0.37369 0.17615 0.17789 0.14159 

S5 0.22332 0.1204 0.06946 0.17097 0.24231 

S6 0.27333 0.0333 0.0815 0.22134 0.33569 

S7 0.05085 0.03291 0.09209 0.2341 0.33903 

S8 0.27506 0.2168 0.13836 0.0415 0.16034 

S9 0.2383 0.1946 0.1213 0.07818 0.17555 

S10 0.33582 0.29274 0.25261 0.21248 0.2266

Table 5 Values calculated using Hamming distance 

H H1 H2 H3 H4 H5 

S1 0.0261 0.0458 0.1125 0.2675 0.3623 

S2 0.0257 0.0363 0.107 0.2658 0.365 

S3 0.434 0.4053 0.3375 0.1845 0.1315 

S4 0.2872 0.2418 0.1625 0.0941 0.1183 

S5 0.1465 0.1101 0.056 0.1576 0.2308 

S6 0.0692 0.0333 0.0701 0.2176 0.3184 

S7 0.0539 0.0163 0.08 0.2341 0.333 

S8 0.2519 0.2168 0.1375 0.0415 0.156 

S9 0.2539 0.2051 0.1258 0.0766 0.1513 

S10 0.3139 0.2701 0.206 0.1341 0.2266
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Table 6 Values calculated using normalized Hamming distance 

n − H H1 H2 H3 H4 H5 

S1 0.0043 0.0076 0.0187 0.0445 0.0603 

S2 0.0042 0.006 0.0178 0.0443 0.0608 

S3 0.0723 0.0675 0.0562 0.0307 0.0219 

S4 0.0478 0.0403 0.027 0.0156 0.0197 

S5 0.0244 0.0183 0.0093 0.0262 0.0384 

S6 0.0115 0.0055 0.0116 0.0362 0.053 

S7 0.0089 0.0027 0.0133 0.039 0.0555 

S8 0.0419 0.0361 0.0229 0.0069 0.026 

S9 0.0423 0.0341 0.0209 0.0127 0.0252 

S10 0.0523 0.045 0.0343 0.0223 0.0377

3.2 Determination of the High School Where the Students 
Will Enroll Using the Normalized Hamming Distance 
Measure 

This section was implemented using the normalized hamming distance measurement 
in the light of the above results. The exams that are applied at regular intervals in the 
educational institutions where students work outside of the school are determined 
and their results are investigated [27]. At the end of the year, the official exam 
results of the students were obtained from the institution. The results of the formal 
exam and the exams in the education institution other than the school have been 
compared and interpreted. Let H = {H1, H2, H3, H4, H5} be set of high schools. 
L ={Turkish, Mathematics, Science, Social, English, Religion} be set of lessons, 
S = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10} be set of students. 

High school base point has been calculated for each lesson in L , in Table 8.
Average of students’ who were randomly selected pilot tests score has been 

determined in Table 9.
Distance between each student (i.e. Table 9) and each high school (i.e. Table 8) 

has been calculated using normalized hamming distance method depending upon 
average of students’ pilot tests, in Table 10.

Table 10 depicts that the shortest distance between each student and each high 
school has given that the student will enroll in the high school depending upon 
average of students’ pilot tests. According to Table 10; the student S1 is to enroll 
in H2 high school, the student S2 is to enroll in H3 high school, the student S3 is 
to enroll in H3 high school, etc. Official test scores of the students in 2016–2017 
academic year has been determined in Table 11.

Distance between each student (i.e. Table 11) and each high school (i.e. Table 
8) has been calculated using normalized hamming distance method depending upon 
official test scores of the students’, in Table 12.
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Table 7 Comparison of distance measures values 

H1 H2 H3 H4 H5 

S1 dE 0.0568 0.1107 0.2949 0.6491 0.9039 

dH 0.0261 0.0458 0.1125 0.2675 0.3623 

dn−E 0.0231 0.045 0.1204 0.2675 0.36903 

dn−H 0.0043 0.0076 0.0187 0.0445 0.0603 

S2 dE 0.0757 0.0987 0.697 0.6729 0.8889 

dH 0.0257 0.0363 0.107 0.2658 0.365 

dn−E 0.0308 0.04279 0.27589 0.27471 0.365 

dn−H 0.0042 0.006 0.0178 0.0443 0.0608 

S3 dE 0.9633 0.8184 0.61004 0.4247 0.4119 

dH 0.434 0.4053 0.3375 0.1845 0.1315 

dn−E 0.43412 0.391 0.3375 0.20901 0.13595 

dn−H 0.0723 0.0675 0.0562 0.0307 0.0219 

S4 dE 0.7075 0.6225 0.4371 0.2585 0.3649 

dH 0.2872 0.2418 0.1625 0.0941 0.1183 

dn−E 0.29438 0.37369 0.17615 0.17789 0.14159 

dn−H 0.0478 0.0403 0.027 0.0156 0.0197 

S5 dE 0.4002 0.2949 0.1704 0.4187 0.5935 

dH 0.1465 0.1101 0.056 0.1576 0.2308 

dn−E 0.22332 0.1204 0.06946 0.17097 0.24231 

dn−H 0.0244 0.0183 0.0093 0.0262 0.0384 

S6 dE 0.5424 0.0775 0.2141 0.5296 0.7993 

dH 0.0692 0.0333 0.0701 0.2176 0.3184 

dn−E 0.27333 0.0333 0.0815 0.22134 0.33569 

dn−H 0.0115 0.0055 0.0116 0.0362 0.053 

S7 dE 0.5507 0.0583 0.2142 0.6131 0.8261 

dH 0.0539 0.0163 0.08 0.2341 0.333 

dn−E 0.05085 0.03291 0.09209 0.2341 0.33903 

dn−H 0.0089 0.0027 0.0133 0.039 0.0555 

S8 dE 0.6737 0.5254 0.3389 0.1012 0.3927 

dH 0.2519 0.2168 0.1375 0.0415 0.156 

dn−E 0.27506 0.2168 0.13836 0.0415 0.16034 

dn−H 0.0419 0.0361 0.0229 0.0069 0.026 

S9 dE 0.5839 0.4768 0.2972 0.1915 0.43001 

dH 0.2539 0.2051 0.1258 0.0766 0.1513 

dn−E 0.2383 0.1946 0.1213 0.07818 0.17555 

dn−H 0.0423 0.0341 0.0209 0.0127 0.0252

(continued)
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Table 7 (continued)

H1 H2 H3 H4 H5

S10 dE 0.8226 0.71707 0.6187 0.5204 0.53906 

dH 0.3139 0.2701 0.206 0.1341 0.2266 

dn−E 0.33582 0.29274 0.25261 0.21248 0.2266 

dn−H 0.0523 0.045 0.0343 0.0223 0.0377

Table 12 depicts that the shortest distance between each student and each high 
school has given that the student will enroll in the high school depending upon official 
test scores of the students’. According to Table 12; the student S1 is to enroll in H2 

high school, the student S2 is to enroll in H3 high school, etc. When Tables 10 and 12 
are researched, coherent results have been obtained. But the results of two students 
are different. According to the tables; it has been determined that two students (S4 
and S7) went to a different high school than expected. Comments on inconsistent 
results may include: 

• When school scores are too close together, even the slightest change in student 
scores can change the school. 

• Every student cannot be expected to be as comfortable in the real exam as in 
normal life. There can be many factors that affect the day of the exam (health, 
psychology, etc.). 

4 An Application of Intuitionistic Fuzzy Logic 
with Similarity Measure in Decision Making 

In this section, we have implemented an application of decision making in the success 
ranking of middle schools. For this application, similarity measures defined in intu-
itionistic fuzzy sets are used [28]. Each middle school point has been calculated 
depending on the average student examination score. 

The important thing in decision making is to determine the criteria. It is obvious 
that the criteria affecting school success are courses. While ranking the success of the 
schools, decisions were made according to these criteria. In this application, which is 
based on the basic courses, both the ranking was made and the most successful school 
was determined. For this application have been profited from similarity measures 
that proposed new solution by Szmidt and Kacprzyk [29]. The utility of this method; 
options have been compared to the positive-ideal solution and negative-ideal solution. 
The best considered option should be as close as possible to the positive-ideal solution 
and as far as possible to the negative-ideal solution. The best option taking into 
account only positive-ideal solution can be misleading. 

S = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10} be set of high schools. 
L = {L1, L2, L3, L4, L5, L6} be set of criteria. Set of criteria respectively are 

L ={Turkish, Mathematics, Science, Social, English, Religion}.



12 F. Tuğrul and M. Çitil

Ta
bl
e 
8 

H
ig
h 
sc
ho
ol
 b
as
e 
po
in
ts
 

T
ur
ki
sh

M
at
he
m
at
ic
s

Sc
ie
nc
e

So
ci
al

E
ng

lis
h

R
el
ig
io
n 

H
1

(0
.9
6,
0.
03
,0
.0
1)

(0
.9
5,
0.
04
,0
.0
1)

(0
.9
95
,0
.0
04
,0
.0
01
)

(0
.9
7,
0.
02
,0
.0
1)

(0
.9
5,
0.
03
,0
.0
2)

(0
.9
97
,0
.0
02
,0
.0
01
) 

H
2

(0
.9
2,
0.
06
,0
.0
2)

(0
.9
3,
0.
06
,0
.0
1)

(0
.9
3,
0.
05
,0
.0
2)

(0
.9
,0
.0
5,
0.
05
)

(0
.9
1,
0.
05
,0
.0
4)

(0
.9
8,
0.
01
,0
.0
1)
 

H
3

(0
.8
5,
0.
07
,0
.0
8)

(0
.8
2,
0.
12
,0
.0
6)

(0
.7
5,
0.
20
,0
.0
5)

(0
.8
5,
0.
12
,0
.0
3)

(0
.8
1,
0.
18
,0
.0
1)

(0
.9
,0
.0
5,
0.
05
) 

H
4

(0
.6
5,
0.
3,
0.
05
)

(0
.5
5,
0.
44
,0
.0
1)

(0
.6
5,
0.
3,
0.
05
)

(0
.8
1,
0.
17
,0
.0
2)

(0
.6
3,
0.
3,
0.
07
)

(0
.5
5,
0.
42
,0
.0
3)
 

H
5

(0
.5
,0
.4
5,
0.
05
)

(0
.3
,0
.6
5,
0.
05
)

(0
.6
3,
0.
33
,0
.0
4)

(0
.6
6,
0.
25
,0
.0
9)

(0
.6
5,
0.
32
,0
.0
3)

(0
.8
1,
0.
15
,0
.0
4)



On Decision Making Applications via Distance Measures 13

Ta
bl
e 
9 

A
ve
ra
ge
 o
f 
st
ud

en
ts
’ 
pi
lo
t t
es
ts
 

T
ur
ki
sh

M
at
he
m
at
ic
s

Sc
ie
nc
e

So
ci
al

E
ng

lis
h

R
el
ig
io
n 

S 1
(0
.9
,0
.0
5,
0.
05
)

(0
.9
2,
0.
07
,0
.0
1)

(0
.9
5,
0.
03
,0
.0
2)

(0
.8
7,
0.
1,
0.
03
)

(0
.9
5,
0.
05
,0
)

(0
.9
2,
0.
04
,0
.0
4)
 

S 2
(0
.8
6,
0.
1,
0.
04
)

(0
.8
3,
0.
15
,0
.0
2)

(0
.8
2,
0.
14
,0
.0
4)

(0
.8
9,
0.
1,
0.
01
)

(0
.6
8,
0.
25
,0
.0
7)

(0
.8
9,
0.
09
,0
.0
2)
 

S 3
(0
.8
2,
0.
1,
0.
08
)

(0
.7
7,
0.
15
,0
.0
8)

(0
.6
6,
0.
25
,0
.0
9)

(0
.7
7,
0.
2,
0.
03
)

(0
.6
3,
0.
3,
0.
07
)

(0
.9
,0
.0
5,
0.
05
) 

S 4
(0
.7
6,
0.
2,
0.
04
)

(0
.5
9,
0.
36
,0
.0
5)

(0
.5
1,
0.
45
,0
.0
4)

(0
.6
8,
0.
24
,0
.0
8)

(0
.5
4,
0.
4,
0.
06
)

(0
.8
9,
0.
09
,0
.0
2)
 

S 5
(0
.9
5,
0.
04
,0
.0
1)

(0
.9
,0
.0
5,
0.
05
)

(0
.9
2,
0.
03
,0
.0
5)

(0
.9
5,
0.
04
,0
.0
1)

(0
.8
7,
0.
1,
0.
03
)

(0
.9
5,
0.
05
,0
) 

S 6
(0
.3
6,
0.
55
,0
.0
9)

(0
.3
5,
0.
6,
0.
05
)

(0
.2
9,
0.
6,
0.
11
)

(0
.3
75
,0
.5
,0
.1
25
)

(0
.2
65
,0
.6
5,
0.
08
5)

(0
.4
,0
.5
,0
.1
) 

S 7
(0
.9
,0
.0
5,
0.
05
)

(0
.9
5,
0.
03
,0
.0
2)

(0
.9
,0
.0
6,
0.
04
)

(0
.9
5,
0.
01
,0
.0
4)

(0
.9
5,
0.
02
,0
.0
3)

(0
.9
5,
0.
05
,0
) 

S 8
(0
.9
5,
0.
04
,0
.0
1)

(1
,0
,0
)

(0
.9
,0
.0
5,
0.
05
)

(1
,0
,0
)

(1
,0
,0
)

(1
,0
,0
) 

S 9
(0
.7
,0
.2
,0
.1
)

(0
.8
,0
.1
5,
0.
05
)

(0
.9
,0
.0
5,
0.
05
)

(0
.9
5,
0.
03
,0
.0
2)

(0
.9
,0
.0
7,
0.
03
)

(0
.9
,0
.0
8,
0.
02
) 

S 1
0

(0
.6
,0
.3
,0
.1
)

(0
.8
,0
.1
8,
0.
02
)

(0
.4
,0
.3
5,
0.
25
)

(0
.9
,0
.0
7,
0.
03
)

(0
.5
,0
.4
2,
0.
08
)

(0
.8
,0
.1
1,
0.
09
)
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Table 10 Distance between students’ pilot tests and high school base points 

H1 H2 H3 H4 H5 

S1 0.0561 0.0358 0.0875 0.28 0.3258 

S2 0.136 0.10667 0.06833 0.19 0.24333 

S3 0.212 0.15667 0.0651 0.17166 0.195833 

S4 0.30033 0.24592 0.2 0.14167 0.14667 

S5 0.0471 0.0391 0.0958 0.2608 0.3333 

S6 0.63075 0.58833 0.49167 0.30667 0.29541 

S7 0.04216 0.03583 0.13 0.29 0.3333 

S8 0.03966 0.075 0.13667 0.335 0.385 

S9 0.112 0.08833 0.1075 0.2175 0.27833 

S10 0.30367 0.26333 0.18667 0.18333 0.235

The points of schools in 2014, 2015, 2016, 2017 years and the calculations of 
each school are given in Tables 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31 and 32.

The smallest value among E(Mi ) points out the option which best satisfies condi-
tion. According to the above calculations, each school’s from year to year ranking 
of school success is as follows: 

For S1 : 2016S1 , 2017S1 , 2014S1 , 2015S1 
For S2 : 2016S2 , 2015S2 , 2017S2 , 2014S2 
For S3 : 2015S3 , 2016S3 , 2017S3 , 2014S3 
For S4 : 2015S4 , 2016S4 , 2017S4 , 2014S4 
For S5 : 2017S5 , 2015S5 , 2016S5 , 2014S5 
For S6 : 2016S6 , 2015S6 , 2017S6 , 2014S6 
For S7 : 2015S7 , 2016S7 , 2017S7 , 2014S7 
For S8 : 2015S8 , 2016S8 , 2017S8 , 2014S8 
For S9 : 2015S9 , 2017S9 , 2016S9 , 2014S9 
For S10 : 2015S10 , 2017S10 , 2016S10 , 2014S10 
According to the above calculations, for each year ranking of school success is 

as follows: 
For 2014: S2,S4,S3,S5,S7,S6,S8,S9,S1,S10 
For 2015: S2,S4,S3,S5,S6,S7,S8,S10,S9,S1 
For 2016: S2,S4,S5,S6,S3,S8,S7,S1,S10,S9 
For 2017: S2,S5,S4,S3,S6,S7,S8,S9,S10,S1 
In this paper; each year ranking of school success and each school’s from year to 

year ranking of school success have been made separately. For each year ranking of 
school success has been varied. This situation has different causes: student change 
at school, teacher change at school, difficulty or simplicity of examination, socio-
economic status and psychology of students.
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Table 12 Distance between students’ official tests and high school base points 

H1 H2 H3 H4 H5 

S1 0.07367 0.06833 0.11 0.27166 0.36833 

S2 0.19466 0.18333 0.11166 0.22916 0.285 

S3 0.1205 0.16333 0.07166 0.22666 0.27 

S4 0.325 0.2891 0.2008 0.15 0.1441 

S5 0.10017 0.1 0.10916 0.21833 0.255 

S6 0.62142 0.58833 0.38 0.255 0.16167 

S7 0.067 0.07 0.10333 0.2833 0.31833 

S8 0.06133 0.07667 0.145 0.32667 0.385 

S9 0.15533 0.11833 0.14333 0.23667 0.2375 

S10 0.341 0.3 0.234 0.0375 0.1416

Table 13 The points of S1 middle school 

S1 2014 2015 2016 2017 

L1 (0.461,0.486,0.053) (0.535,0.419,0.046) (0.519,0.433,0.048) (0.41,0.531,0.059) 

L2 (0.311,0.621,0.068) (0.338,0.596,0.066) (0.317,0.615,0.068) (0.3,0.63,0.07) 

L3 (0.42,0.522,0.058) (0.484,0.465,0.051) (0.502,0.449,0.049) (0.54,0.414,0.046) 

L4 (0.448,0.497,0.055) (0.566,0.391,0.043) (0.512,0.44,0.048) (0.5,0.45,0.05) 

L5 (0.374,0.564,0.062) (0.349,0.586,0.065) (0.488,0.461,0.051) (0.38,0.558,0.062) 

L6 (0.509,0.442,0.049) (0.762,0.785,0.023) (0.685,0.284,0.031) (0.54,0.414,0.046) 

Table 14 Calculations for S1 

S1 2014 E(S1) = 0.879 
2015 E(S1) = 0.956 
2016 E(S1) = 0.439 
2017 E(S1) = 0.784 

Table 15 The points of S2 middle school 

S2 2014 2015 2016 2017 

L1 (0.979,0.019,0.002) (0.929,0.064,0.007) (0.93,0.063,0.007) (0.87,0.117,0.013) 

L2 (0.915,0.077,0.008) (0.871,0.119,0.01) (0.948,0.047,0.005) (0.89,0.099,0.011) 

L3 (0.908,0.083,0.009) (0.931,0.063,0.006) (0.941,0.054,0.005) (0.98,0.018,0.002) 

L4 (0.922,0.071,0.007) (0.907,0.084,0.009) (0.932,0.062,0.006) (0.95,0.045,0.005) 

L5 (0.895,0.095,0.01) (0.861,0.126,0.013) (0.938,0.056,0.006) (0.97,0.027,0.003) 

L6 (0.901,0.09,0.009) (0.971,0.027,0.002) (0.973,0.025,0.002) (0.95,0.045,0.005)
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Table 16 Calculations for S2 

S2 2014 E(S2) = 0.108 
2015 E(S2) = 0.029 
2016 E(S2) = 0.027 
2017 E(S2) = 0.052 

Table 17 The points of S3 middle school 

S3 2014 2015 2016 2017 

L1 (0.739,0.241,0.02) (0.72,0.252,0.028) (0.673,0.295,0.032) (0.752,0.223,0.02) 

L2 (0.509,0.442,0.049) (0.488,0.461,0.051) (0.489,0.46,0.051) (0.559,0.396,0.04) 

L3 (0.608,0.353,0.039) (0.628,0.665,0.037) (0.651,0.315,0.034) (0.65,0.315,0.035) 

L4 (0.653,0.313,0.034) (0.658,0.308,0.034) (0.646,0.319,0.035) (0.745,0.229,0.02) 

L5 (0.493,0.457,0.05) (0.482,0.467,0.051) (0.608,0.353,0.039) (0.636,0.327,0.03) 

L6 (0.732,0.242,0.026) (0.873,0.115,0.012) (0.818,0.164,0.018) (0.805,0.175,0.01) 

Table 18 Calculations for S3 

S3 2014 E(S3) = 0.353 
2015 E(S3) = 0.143 
2016 E(S3) = 0.217 
2017 E(S3) = 0.236 

Table 19 The points of S4 middle school 

S4 2014 2015 2016 2017 

L1 (0.788,0.191,0.021) (0.768,0.209,0.023) (0.736,0.238,0.026) (0.69,0.279,0.031) 

L2 (0.59,0.369,0.041) (0.546,0.409,0.045) (0.608,0.353,0.039) (0.67,0.297,0.033) 

L3 (0.682,0.287,0.031) (0.698,0.272,0.03) (0.711,0.261,0.028) (0.83,0.153,0.017) 

L4 (0.722,0.251,0.027) (0.728,0.245,0.027) (0.737,0.237,0.026) (0.77,0.207,0.023) 

L5 (0.544,0.411,0.045) (0.552,0.404,0.044) (0.688,0.281,0.031) (0.68,0.288,0.032) 

L6 (0.756,0.22,0.024) (0.881,0.108,0.011) (0.875,0.113,0.012) (0.82,0.162,0.018) 

Table 20 Calculations for S4 

S4 2014 E(S4) = 0.312 
2015 E(S4) = 0.133 
2016 E(S4) = 0.14 
2017 E(S4) = 0.214
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Table 21 The points of S5 middle school 

S5 2014 2015 2016 2017 

L1 (0.717,0.255,0.028) (0.711,0.261,0.028) (0.71,0.261,0.029) (0.81,0.171,0.019) 

L2 (0.47,0.477,0.053) (0.494,0.456,0.05) (0.522,0.431,0.047) (0.63,0.333,0.037) 

L3 (0.591,0.369,0.04) (0.615,0.347,0.038) (0.682,0.287,0.031) (0.74,0.234,0.026) 

L4 (0.623,0.34,0.037) (0.677,0.291,0.032) (0.682,0.287,0.031) (0.65,0.315,0.035) 

L5 (0.469,0.478,0.053) (0.502,0.449,0.049) (0.662,0.305,0.033) (0.79,0.189,0.021) 

L6 (0.728,0.245,0.027) (0.854,0.132,0.014) (0.85,0.135,0.015) (0.88,0.108,0.012) 

Table 22 Calculations for S5 

S5 2014 E(S5) = 0.36 
2015 E(S5) = 0.168 
2016 E(S5) = 0.173 
2017 E(S5) = 0.134 

Table 23 The points of S6 middle school 

S6 2014 2015 2016 2017 

L1 (0.603,0.358,0.039) (0.583,0.376,0.041) (0.603,0.358,0.039) (0.5,0.45,0.05) 

L2 (0.342,0.593,0.065) (0.328,0.605,0.067) (0.406,0.535,0.059) (0.4,0.54,0.06) 

L3 (0.482,0.467,0.051) (0.517,0.435,0.048) (0.528,0.425,0.047) (0.6,0.36,0.04) 

L4 (0.528,0.425,0.047) (0.566,0.391,0.043) (0.671,0.297,0.032) (0.55,0.405,0.045) 

L5 (0.464,0.483,0.053) (0.403,0.538,0.059) (0.553,0.403,0.044) (0.5,0.45,0.05) 

L6 (0.603,0.358,0.039) (0.739,0.235,0.026) (0.837,0.147,0.016) (0.71,0.261,0.029) 

Table 24 Calculations for S6 

S6 2014 E(S6) = 0.618 
2015 E(S6) = 0.341 
2016 E(S6) = 0.191 
2017 E(S6) = 0.392 

Table 25 The points of S7 middle school 

S7 2014 2015 2016 2017 

L1 (0.539,0.415,0.046) (0.55,0.405,0.045) (0.51,0.441,0.049) (0.49,0.459,0.051) 

L2 (0.36,0.576,0.064) (0.336,0.598,0.066) (0.367,0.57,0.063) (0.46,0.486,0.054) 

L3 (0.481,0.468,0.051) (0.487,0.462,0.051) (0.529,0.424,0.047) (0.65,0.315,0.035) 

L4 (0.464,0.483,0.053) (0.498,0.452,0.05) (0.493,0.457,0.05) (0.59,0.369,0.041) 

L5 (0.368,0.569,0.063) (0.365,0.572,0.063) (0.485,0.464,0.051) (0.45,0.495,0.055) 

L6 (0.609,0.352,0.039) (0.736,0.238,0.026) (0.707,0.264,0.029) (0.69,0.279,0.031)
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Table 26 Calculations for S7 

S7 2014 E(S7) = 0.603 
2015 E(S7) = 0.346 
2016 E(S7) = 0.398 
2017 E(S7) = 0.429 

Table 27 The points of S8 middle school 

S8 2014 2015 2016 2017 

L1 (0.56,0.396,0.044) (0.552,0.404,0.044) (0.521,0.432,0.047) (0.49,0.459,0.051) 

L2 (0.355,0.581,0.064) (0.314,0.618,0.068) (0.337,0.597,0.066) (0.45,0.505,0.055) 

L3 (0.479,0.469,0.052) (0.512,0.44,0.048) (0.52,0.432,0.048) (0.69,0.279,0.031) 

L4 (0.526,0.427,0.047) (0.503,0.448,0.049) (0.499,0.451,0.05) (0.52,0.432,0.048) 

L5 (0.368,0.569,0.063) (0.36,0.576,0.064) (0.409,0.532,0.059) (0.46,0.486,0.054) 

L6 (0.6,0.36,0.04) (0.714,0.258,0.028) (0.709,0.262,0.029) (0.66,0.306,0.034) 

Table 28 Calculations for S8 

S8 2014 E(S8) = 0.625 
2015 E(S8) = 0.385 
2016 E(S8) = 0.394 
2017 E(S8) = 0.489 

Table 29 The points of S9 middle school 

S9 2014 2015 2016 2017 

L1 (0.375,0.563,0.062) (0.524,0.429,0.047) (0.341,0.594,0.065) (0.41,0.531,0.059) 

L2 (0.278,0.65,0.072) (0.261,0.666,0.073) (0.25,0.675,0.075) (0.38,0.558,0.062) 

L3 (0.393,0.547,0.06) (0.432,0.512,0.056) (0.426,0.517,0.057) (0.5,0.45,0.05) 

L4 (0.403,0.538,0.059) (0.422,0.521,0.057) (0.343,0.592,0.065) (0.5,0.45,0.05) 

L5 (0.334,0.6,0.066) (0.323,0.61,0.067) (0.33,0.603,0.067) (0.32,0.612,0.068) 

L6 (0.518,0.434,0.048) (0.657,0.309,0.034) (0.528,0.425,0.047) (0.59,0.369,0.041) 

Table 30 Calculations for S9 

S9 2014 E(S9) = 0.851 
2015 E(S9) = 0.496 
2016 E(S9) = 0.82 
2017 E(S9) = 0.649
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Table 31 The points of S10 middle school 

S10 2014 2015 2016 2017 

L1 (0.427,0.516,0.057) (0.392,0.548,0.06) (0.297,0.633,0.07) (0.27,0.657,0.073) 

L2 (0.336,0.598,0.066) (0.21,0.711,0.079) (0.226,0.697,0.077) (0.25,0.675,0.075) 

L3 (0.413,0.529,0.058) (0.322,0.611,0.067) (0.415,0.527,0.058) (0.41,0.531,0.059) 

L4 (0.329,0.604,0.067) (0.309,0.622,0.069) (0.365,0.572,0.063) (0.5,0.45,0.05) 

L5 (0.313,0.619,0.068) (0.268,0.659,0.073) (0.287,0.642,0.071) (0.29,0.639,0.071) 

L6 (0.501,0.444,0.055) (0.663,0.304,0.033) (0.53,0.423,0.047) (0.549,0.39,0.061) 

Table 32 Calculations for S10 

S10 2014 E(S10) = 0.897 
2015 E(S10) = 0.484 
2016 E(S10) = 0.814 
2017 E(S10) = 0.739

5 Conclusion 

In all these studies, applications of decision making were made by using distance 
measures defined in heuristic fuzzy logic. By comparing the distance measurements, 
the most sensitive distance measurement was determined. As a result of the compar-
ison, the most sensitive distance measurement is the normalized hamming distance 
measure. The applications made are applications made in the field of decision making 
in education. Thanks to these methods that we have chosen and hope to develop, selec-
tion, placement, determination and decision-making in education will be made quite 
regular. The application areas of these methods are not only education but also many 
fields. There are and will continue to be applications in engineering, computers, agri-
culture, economy, medicine and many more. The methods we use in our work have 
application areas in many areas. We preferred to apply these methods in the field of 
education. Researchers who want to take actions such as sequencing, preferences, 
and decision-making can use these methods in other application areas. In many appli-
cation areas of intuitionistic fuzzy logic, with these methods will be reached the right 
goal. These are studies that shed light on many new application areas. 
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On Intuitionistic Fuzzy Abstract 
Algebras 

Gökhan Çuvalcıoğlu and Sinem Tarsuslu 

Abstract The concept of abstract algebra on intuitionistic fuzzy sets introduced and 
some basic theorems prove. Homomorphism between intuitionistic fuzzy abstract 
algebras defined, intuitionistic fuzzy function examined and then intuitionistic fuzzy 
congruence relations defined on intuitionistic fuzzy abstract algebra. First and third 
isomorphism theorems on intuitionistic abstract algebras introduced. 

Keywords Intuitionistic fuzzy sets · Intuitionistic fuzzy abstract algebra ·
Intuitionistic fuzzy function · Intuitionistic fuzzy isomorphism theorems 

1 Introduction 

Fuzzy set theory was introduced as an extension of crisp sets by Zadeh [1]. As 
a natural continuation of this study, the generalization of fuzzy set theory called 
intuitionistic fuzzy set theory was propounded by Atanassov [2]. Both fuzzy sets and 
intuitionistic fuzzy sets attract the attention of many researchers [3–9]. Intuitionistic 
fuzzy sets have various application areas; like intuitionistic fuzzy expert systems, 
intuitionistic fuzzy neural networks, intuitionistic fuzzy generalized nets etc. [10, 11]. 

Intuitionistic fuzzy group defined by Biswas as an generalized algebraic structure 
in 1989 [12]. Intuitionistic M-fuzzy groups was introduced by Zhan and Than [13]. 
The concept of intuitionistic fuzzy rings was propounded by Yan [14]. Intuitionistic 
L-fuzzy subgroups were studied in 2009 [15]. Intuitionistic fuzzy semigroups were 
examined by Melliani and his colleagues [16]. Later years, different intuitionistic 
fuzzy algebraic sturucters had studied by several authors. 

Abstract algebra (or algebra) is a set with finitary operations defined on it. By 
working on universal algbera, the common properties of algebraic structures can be
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examined. The generalization of universal algebra on fuzzy set theory was studied 
by Murali, in 1987 [17]. 

In this study, the fundamental concepts on intuitionistic fuzzy abstract algebras 
were introduced; these are intuitionistic fuzzy homomorphism, intuitionistic fuzzy 
congruence relation on intuitionistic fuzzy abstract algebra, isomorphisim theorems 
on intuitionistic fuzzy abstract algebras. 

2 Preliminaries 

Atanassov introduced the intuitionistic fuzzy set theory in 1983 [2] as an extension 
of fuzzy sets by enlarging the truth value set to the lattice [0, 1] × [0, 1] is defined 
as following. 

Definition 1 Let L = [0, 1] then L∗ = {(a1, a2) ∈ L2 : a1 + a2 ≤ 1} is a lattice 
with 

(a1, a2) ≤ (b1, b2) :⇔ a1 ≤ b1 and a2 ≥ b2. 

The operations ∧ and ∨ on (L∗, ≤) are defined as following; 
For (a1, b1), (a2, b2) ∈ L∗, (a1, b1) ∧ (a2, b2) = (min(a1, a2), max(b1, b2)). 

(a1, b1) ∨ (a2, b2) = (max(a1, a2), min(b1, b2)) 

For each J ⊆ L∗ 

sup J = (sup{a : (a, b ∈ L), ((a, b) ∈ J)}, inf{b : a, b ∈ L)((a, b) ∈ J)}) and 
inf J = (inf{a : (a, b ∈ L)((a, b) ∈ J)}, sup{b : (a, b ∈ L)((a, b) ∈ J)}). 

Definition 2 [2] Let a crisp set X be fixed. An intuitionistic fuzzy set (shortly IFS) 
in X is an object of the following form 

A = {< x, μA(x), νA(x), >: x ∈ X}, where functions μA(x), (μA : X → 
[0, 1]) and νA(x), (νA : X → [0, 1]) are called degree of membership and the 
degree of non- membership of x ∈ X to the set A, respectively, and 0 ≤ μA(x) + 
νA(x) ≤ 1, for all x ∈ X. 

πA(x) = 1 − μA(x) − νA(x) is the definition of hesitation degree of x ∈ X. 
Basic definitions are given as following. 

Definition 3 [2] Let a set X be fixed. An IFS A is contained in an IFS B (notation 
A�B) if and only if, for all x ∈ X : μA(x) ≤μB(x) and νA(x) ≥ νB(x). 

Clearly, A = B  if and only if A�B and B�A.
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Definition 4 [2] Let a set X be fixed, A ∈ IFS(X) and A = {< x, μA(x), νA(x) >: 
x ∈ X} then the complement of A defined as follow: 

Ac = {< x, νA(x), μA(x) >: x ∈ X} 

Definition 5 [2] Let a crisp set X be fixed and A, B ∈ IFS(X) is an intuitionistic 
fuzzy set on X. 

i. A�B = {< x, min(μA(x), μB(x)), max(νA(x), νB(x)) >: x ∈ X} 
ii. AB = {< x, max(μA(x), μB(x)), min(νA(x), νB(x)) >: x ∈ X} 
iii. �A = {< x, μA(x), 1 − μA(x) >: x ∈ X} 
iv. ♦A = {< x, 1 − νA(x), νA(x) >: x ∈ X} 

Level sets have important role on intuitionistic fuzzy set theory. This concept was 
defined by Atanassov and main properties were studied. 

Definition 6 [2] Let a set X be fixed and A ∈ IFS(X). The  (t, s)− cut and strong 
(t, s)− cut of A are crisp subsets A(t, s) and A⟨t, s⟩ of the X, respectively are given by 

A(t, s) = {x : x ∈ X such that μA(x) ≥ t, νA(x) ≤ s} 
A⟨t, s⟩ = {x : x ∈ X such that μA(x) >  t, νA(x) <  s} 

where t, s ∈ [0, 1] with t + s ≤ 1. 

Burille and Bustince were introduced the definitions of intuitionistic fuzzy relation 
and intuitionistic fuzzy equivalence relation. 

Definition 7 [18] An intuitionistic fuzzy relation (shortly IFR) is an intuitionistic 
fuzzy subset of X × Y that is, is an expression R given by 

R = {⟨(x, y), μR(x, y), νR(x, y)⟩ : x ∈ X, y ∈ Y} 

where μR : X × Y → [0, 1] νR : X× Y → [0, 1] with 0 ≤ μR(x, y) + νR(x, y) ≤ 1 
for any (x, y) ∈ X × Y. 

Definition 8 [19] Let X be a universal and R ∈ IFR(X). 

(1) For every x ∈ X, μR(x, x) = 1 and νR(x, x) = 0 then R is called an 
intuitionistic fuzzy reflexsive. 

(2) For every x, y ∈ X, μR(x, y) ≤ μR(y, x) and νR(x, y) ≥ νR(y, x) then R is 
called an intuitionistic fuzzy symmetric. 

(3) For every x, y, z ∈ X, 

μR(x, y) ∧ μR(y, z) ≤ μR(x, z) and νR(x, y) ∨ νR(y, z) ≥ νR(x, z)
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then R is called an intuitionistic fuzzy transitive. 
If an intuitionistic fuzzy relation satisfies the previous properties then it is called 

an intuitionistic fuzzy equivalence relation (IFE(X)). 

Theorem 1 [20] Let X be a non-empty set and R ∈ IFR(X). Then R ∈ IFR(X) if and 
only if R(r, s) is an equivalence relation on X for each r, s ∈ [0, 1] with r + s ≤ 1. 

Definition 9 [21] Let X be a non-empty set, R ∈ IFE(X) and a ∈ X. 

[a]R =
{
< x, μ[a]R (x), ν[a]R (x) >: x ∈ X

}

where μ[a]R (x) = μR(a, x), ν[a]R (x) = νR(a, x) is called an intuitionistic fuzzy 
equivalence class of a w.r.t R. 

Level sets of intuitionistic fuzzy equivalence relations were studied by different 
authors. Here, following definition will be used for equivalence classes. 

Definition 10 [22] Let  X be a non-empty set and R ∈ IFE(X). Let a ∈ X and 
r, s ∈ [0, 1] and r + s ≤ 1; 

1. r[a]R =
{
x ∈ X : μ[a]R (x) = μR(a, x) ≥ r

}

2. s[a]R =
{
x ∈ X : ν[a]R (x) = νR(a, x) ≤ s

}

3. s 
r [a]R =

{
x ∈ X : μ[a]R (x) = μR(a, x) ≥ r, ν[a]R (x) = νR(a, x) ≤ s

}

For each a ∈ X, s r [a]R denotes the crisp equivalence class containing a w.r.t R(r, s). 
The extension of functions on intuitionistic fuzzy sets is given as follow; 

Definition 11 [20] Let X and Y be two non-empty sets and f : X → Y be a 
mapping. Let A ∈ IFS(X) and B ∈ IFS(Y). Then f is extended to a mapping from 
IFS(X) to IFS(Y) as. 

f(A)(y) = (
μf(A)(y), νf(A)(y)

)

where μf(A)(y) =
{∨{

μA(x) : x ∈ f−1 (y)
}

0; otherwise 
and 

νf(A)(y) =
{∧{

νA(x) : x ∈ f−1 (y)
}

1; otherwise 

f(A) is called the image of A under the map f Also, the pre-image of B under f is 
denoted by f−1 (B) and defined as 

f−1 (B)(x) =(
μf−1(B)(x), νf−1(B)(x)

)
where μf−1(B)(x) = μB(f(x)) and
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νf−1(B)(x) = νB(f(x)). 

Abstract algebras have a comprehensive study area on crisp sets. Murali intro-
duced the concept of fuzzy abstract algebra using Zadeh’s extension principle 
[17, 23]. Fuzzy congruence relation was defined and some properties of fuzzy 
congruence relations were studied by same author [16]. Here, the generalization 
of abstract algebra to intuitionistic fuzzy abstract algebra is studied and theorems on 
intuitionistic fuzzy abstract algebras are proved. 

Let remember the definition of crisp abstract algebra. 

Definition 12 [24] An abstract algebra (or algebra) A is a pair [S, F] where S is a 
non-empty set and F is a specified set of operatians fα, each mapping a power Sn(α) 

of S into S for some appropriate nonnegative finite integer n(α). 

Unless otherwise stated, each operation fα assigns to every n(α)− ple(
x1, . . . ,  xn(α)

)
of elements of S, a value  fα

(
x1, . . . ,  xn(α)

)
in S, the result of 

performing the operation fα on the sequence x1, . . . ,  xn(α). If n(α) = 1, the operation 
fα is called unary; if n(α) = 2, it is called binary; if n(α) = 3, it is called ternary, 
etc. When n(α) = 0, the operation fα is called nullary; it selects a fixed element of 
S. 

A = [S,  F]  and B = [T, F,] are called similar algebras if F and F, are same for 
each α the types of fα and f,α. 

Definition 13 [24] Let A = [S,  F]  and B = [T, F,] be two similar algebras. A function 
ϕ : S → T is called a homomorphism of A into B if and only if for all fα ∈ F and 
xi ∈ S, i = 1, 2, . . .  , n(a), 

f,α
(
ϕ(x1), ϕ(x2), . . . ,  ϕ

(
xn(a)

)) = ϕ
(
fα

(
x1, x2, . . . ,  xn(a)

))
. 

A crisp congruence relation on an algebraic system A = [S, F] is an equivalence 
relation θ on A = [S, F] which has the substitution property for its operations. It 
means that, for all fα ∈ F and ai, bi ∈ S, i = 1, 2, . . .  , n(a), 

ai ≡ bi(θ) ⇒ fα
(
a1, a2, . . . ,  an(a)

) ≡ fα
(
b1, b2, . . . ,  bn(a)

)
(θ). 

3 Intuitionistic Fuzzy Abstract Algebras 

Algebraic structures extended on intuitionistic fuzzy sets by many author [25–30] 
and main theorems were studied. The concept of intuitionistic fuzzy abstract algebra 
defined as follows.
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Definition 14 Let S = [X,  F]  be an algebra where X is a non-empty set and F is a 
specified set of finite operations fα, each mapping a power Xn(α) of X into X, for some 
appropriate nonnegative finite integer n(α). For each fα, a corresponding operation 
ωα on IFS(X) as follows; 

ωfα : IFS(X) × IFS(X) × . . .  × IFS(X) → IFS(X), ωfα

(
A1, A2, . . . ,  An(α)

) = A 

such that 

A(x) =
{
sup

{
A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)}; fα
(
x1, x2, . . . ,  xn(α)

) = x 
θ = (0, 1); other wise 

Shortly, A = ωfα

(
A1, A2, . . . ,  An(α)

)
. 

LetΩ = {  ωfα : corresponding operation for each fα ∈ F} then L = [
(I × I)X , Ω

]

is called intuitionistic fuzzy abstract algebra (or intuitionistic fuzzy algebra). 
If n(α) = 0 then fα(x) = e that e is a fixed element of X. So, ωfα is defined as 

following: 

ωfα (A) = Ae, Ae(x) =
{
supx∈X A(x), x = e 

(0, 1), x /= e 

Definition 15 Let X be a non-empty set and A ∈ IFS(X). A is called an intuitionistic 
fuzzy subalgebra (IF− subalgebra) of L = [IFS(X), Ω] intuitionistic fuzzy algebra 
if and only if for nonnegative finite integer n(α), ωfα (A, A, . . . ,  A)�A, for every 
ωfα . 

Theorem 2 Let S = [X,  F]  be an algebra, fα ∈ F and A, A1, A2, . . . ,  An(α) be IF− 
subalgebras. 

ωfα

(
A1, A2, . . . ,  An(α)

)�A if and only if A
(
fα

(
x1, x2, . . . ,  xn(α)

)) ≥ 
min1≤i≤n(α) Ai(xi) is true for every

(
x1, x2, . . . ,  xn(α)

) ∈ Xn(α) . 

Proof 

(1) Let n(α) /= 0 and ωfα

(
A1, A2, . . . ,  An(α)

) ≤ A. 

ωfα

(
A1, A2, . . . ,  An(α)

)
(x) ≤ A(x), for all x ∈ X. 

So, supfα(x1, x2,..., xn(α))=x

(
A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)) ≤ A(x), for all
(
x1, . . . ,  xn(α)

) ∈ Xn(α) . 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)) ≥ωfα

(
A1, A2, . . . ,  An(α)

) (
fα

(
x1, x2, . . . ,  xn(α)

))
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≥A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)

= min1≤i≤n(α) Ai(xi) 

Conversely, let fα
(
x1, x2, . . . ,  xn(α)

) = x. It is clear that, since min1≤i≤n(α) for all 
fα

(
x1, x2, . . . ,  xn(α)

) = x then 

supx
(
min1≤i≤n(α) Ai(xi)

) ≤ A(x). 

That is, ωfα

(
A1, A2, . . . ,  An(α)

)
(x) ≤ A(x), for all fα

(
x1, x2, . . . ,  xn(α)

) = x. 
If for some x there exists no such n(a)− tuples then ωfα

(
A1, A2, . . . ,  An(α)

)
(x) = 

(0, 1) ≤ A(x). 

(2) If n(α) = 0 then fα(x) = e, e is a fixed element of X. 

ωfα (A1)(x) ≤ A(x) ⇔ A(e) ≥ ωfα (A1) = supx A1(x) 
⇔ A

(
ωfα (x)

) ≥ A1(x) for all x ∈ X. 

Example 1 A group S = [G,  F]  is an algebra where F = {., e} include one binary 
operation and one nullary operation respectively. Let L = [IFS(G), Ω] and A1, A2 ∈ 
IFS(G), x, x1, x2 ∈ G then with corresponding operations defined as follow; 

A1A2(x) =
(
μA1 μA2 (x), νA1 νA2 (x)

)

such that 

μA1 μA2 (x) = supx=x1x2

(
μA1 (x1) ∧ μA2 (x2)

)
, 

νA1 νA2 (x) = infx=x1x2

(
νA1 (x1) ∨ νA2 (x2)

)

L is intuitionistic fuzzy algebra. 

Example 2 Let G be a group. A ∈ IFS(G) intuitionistic fuzzy subgroup defined as 
follow: 

for all x, y ∈ G, 

A(xy) ≥A(x) ∧ A(y) 
A

(
x−1

) ≥A(x) 

that is, 

μA(xy) ≥μA(x) ∧ μA(y) and νA(xy) ≤ νA(x) ∨ νA(y)
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μA
(
x−1

) ≥μA(x) and νA
(
x−1

) ≤ νA(x). 

So, this is an intuitionistic fuzzy subalgebra. 

Proposition 1 Let S = [X,  F]  be an algebra and A is an IF− subalgebra of L = 
[IFS(X),Ω]. For any r, s ∈ [0, 1] with r + s ≤ 1, A(r, s) is a crisp subalgebra of S. 

Proof Let fα ∈ F. If x1, x2, . . . ,  xn(a) ∈ A(r, s) then A(xi) ≥ (r, s) for each 
i = 1, 2, . . .  , n(a)  Since A is an IF− subalgebra, 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)) ≥min1≤i≤n(α) A(xi) ≥ (r, s) 
⇒fα

(
x1, x2, . . . ,  xn(α)

) ∈ A(r, s) 

hence, A(r, s) is a crisp subalgebra of S. 

Theorem 3 et L = [IFS(X),Ω] be an IF− algebra. If {Ai} is a family of IF− 
subalgebras of L then 

A =
⋂

i∈Λ
Ai 

is a IF− subalgebra of L. 

Proof Let fα ∈ F and
(
x1, x2, . . . ,  xn(α)

) ∈ Sn(α) for the corresponding n(α). 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)) =
⋂

i∈Λ
Ai

(
fα

(
x1, x2, . . . ,  xn(α)

))

≥
⋂

i∈Λ

(
min1≤j≤n(α) Ai

(
xj

))

=min1≤j≤n(α)

(
infi∈Λ Ai

(
xj

))

= min1≤j≤n(α) A
(
xj

)

So, A is a IF− subalgebra of S. 

Proposition 2 Let S = [X,  F]  be an algebra. If A is an IF− subalgebra of L = 
[IFS(X), ω] then so are � A and ♦ A. 

Proof If A is an IF− subalgebra then ωfα (A, A, . . . ,  A)�A for all ωfα . So, 

sup fα(x1,x2,...,xn(α)) = x
(

min 
1 ≤ i ≤ n(α) 

μα(xi )

)
≤ μA(x)
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in  f  fα(x1,x2,...,xn(α)) = x
(

max 
1≤i≤n(α)

)
1 − μα(xi ) 

= 1 −
(
sup fα(x1,x2,...,xn(α))

)
= x

(
min1≤i≤n(α)

)
μA(x) 

≥ 1 − μA(x) 

and 

ω fα = (�A, �A, . . . , �A)(x) = 

⎡ 

⎣ 
sup fα

(
x1,x2,...,xn(α)

) = x
(
min1≤i≤n(α) μα (xi)

)

in  f  fα
(
x1,x2,...,xn(α)

) = x
(
max1≤i≤n(α) 1 − μα (xi)

)

⎤ 

⎦ ≤ �A 

♦ A can be proved similarly. 

Proposition 3 Let S = [X, F], T = [Y, F,] be two similar algebras and φ be a 
homomorphism of S into T. The exstention of φ from IF− algebra L = [IFS(X), Ω] 
to IF− algebra K = [

IFS(Y), Ω,] is a homomorphism of intuitionistic fuzzy algebras 
L to K. 

Proof Let Z = {φ(x) : x ∈ X}. It is clear that [Z, F,] is a subalgebra of T. 

Now, we can suppose that 

ωfα

(
A1, A2, . . . ,  An(α)

) = A where A1, A2, . . . ,  An(α), A ∈ IFS(X) 

and 

ωfα

(
φ(A1), φ(A2), . . . ,  φ

(
An(α)

)) = B, B ∈ IFS(Y). 

We will prove that φ(A)(y) = B(y) for all y ∈ Y. 

(I) If y /∈ Z then φ(A)(y) = θ = (0, 1). That is, if y = fα
(
y1, y2, . . . ,  yn(α)

)
then 

∃yi, i = 1, 2, . . . ,  n(a) such that yi /∈ Z. 

Let for some j with 1 ≤ j ≤ n(a), yj /∈ Z. So, φ(A)
(
yj

) = θ. Furthermore, 

φ(A1)
(
y1

) ∧ φ(A2)
(
y2

) ∧ . . .  ∧ φ
(
An(α)

)(
yn(α)

) = θ 

and 

B(y) =ωfα

(
φ(A1), φ(A2), . . . ,  φ(An(α))

)
(y) 

=
(

supy= fα(y1, y2,..., yn(α))

{
μφ(A1)

(
y1

) ∧ μφ(A2)

(
y2

)

∧ . . .  ∧ μφ(An(α) )

(
y
n(α)

)
}

, 

infy= fα(y1, y2,..., yn(α))

{
νφ(A1)

(
y1

) ∧ νφ(A2)

(
y2

)

∧ . . .  ∧ νφ(An(α) )

(
y

n(α)

)
}(
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=⊝. 

So, φ(A)(y) = B(y). 

(II) If y ∈ Z then φ(A)(y) = supy=φ(x) A(x) = (a1, a2). without losing generality, 
let (a1, a2) > θ. 

Given small enough ε, ε, > 0 such that
(
a1 − ε, a2 + ε,)< (a1, a2), there exsit 

x ∈ X with φ(x) = y and A(x) >
(
a1 − ε, a2 + ε,). 

So, 

ωfα

(
A1, A2, . . . ,  An(α)

)
(x) = A(x) >

(
a1 − ε, a2 + ε,). 

Therefore, x1, . . . ,  xn(α) ∈ X such that fα
(
x1, x2, . . . ,  xn(a)

) = x and 

A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)
>

(
a1 − ε, a2 + ε,). 

Because φ is a homomorphism, 

y =φ(x) = φ(fα
(
x1, x2, . . . ,  xn(a)

)
) 

=fα
(
φ(x1), φ(x2), . . . ,  φ(xn(a))

)
. 

Hence, 

B(y) =ωfα

(
φ(A1), φ(A2), . . . ,  φ(An(α))

)
(y) 

≥ φ(A1)(φ(x1)) ∧ φ(A2)(φ(x2)) ∧ . . .  ∧ φ(An(α))
(
φ(xn(a))

)

≥ A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)

>
(
a1 − ε, a2 + ε,)

Since ε, ε, are small enough, we obtain that B(y) ≥ (a1, a2) = φ(A)(y). 
Let y1, y2, . . . ,  yn(α) ∈ Y with y = fα

(
y1, y2, . . . ,  yn(α)

)
and B(y) = (c1, c2). 

Then, given small enough δ, δ, > 0 such that
(
c1 − δ, c2 + δ,) <(c1, c2). Now,

(
c1 − δ, c2 + δ,) < φ(A1)

(
y1

) ∧ φ(A2)
(
y2

) ∧ . . .  ∧ φ(An(α))
(
y
n(α)

)

If B(y) = 0 then φ(A)(y) ≥ B(y). 
Let 0 < B(y).

(
c1 − δ, c2 + δ,) < A1(x1) ∧ A2(x2) ∧ . . .  ∧ An(α)

(
xn(α)

)
. 

If we use φ(fα
(
x1, x2, . . . ,  xn(a)

)
) = fα

(
φ(x1), φ(x2), . . . ,  φ(xn(a))

)
and 

φ(A)(y) >
(
c1 − δ, c2 + δ,) then φ(A)(y) ≥ (c1, c2) since δ, δ, are small enough. 

Therefore, φ(A)(y) = B(y), for all y ∈ Z.



On Intuitionistic Fuzzy Abstract Algebras 33

Theorem 4 Let S = [X, F], T = [Y, F,] be two similar algebras and φ be a 
homomorphism of S into T. Then φ extends to a homomorphism between intuitionistic 
fuzzy algebras L = [IFS(X),Ω] and K = [

IFS(Y), Ω,]. If A is an intuitionistic 
fuzzy subalgebra of L then φ(A) is an intuitionistic fuzzy subalgebra of K. On 
the otherhand, if B is an intuitionistic fuzzy subalgebra of K then φ−1(B) is an 
intuitionistic fuzzy subalgebra of L. 

Proof Since A is an intuitionistic fuzzy subalgebra of L, 

ωfα (A, A, . . . ,  A)�A, for all fα ∈ F. 

Also we know that φ(ωfα (A, A, . . . ,  A)) ≤ φ(A). So we obtain that 

φ(ωfα (A, A, . . . ,  A)) =ωfα (φ(A), φ(A),  . . . ,  φ(A)) 
= supfα

(
x1, x2,..., xn(α)

)=x
(
φ(A)(x1) ∧ φ(A)(x2) ∧ . . .  ∧ φ(A)(xn(α))

)

≤ φ(A) 

and that is φ(A) is an intuitionistic fuzzy subalgebra of K. 
Here, fα ∈ F and for every n(α)− tuples

(
x1, x2, . . . ,  xn(α)

) ∈ Xn(α) , 

φ−1 (B)
(
fα

(
x1, x2, . . . ,  xn(a)

))

= B
(
φ
(
fα

(
x1, x2, . . . ,  xn(a)

)))

= B
(
fα

(
φ(x1), φ(x2), . . . , φ(xn(a))

))

≥ B(φ(x1)) ∧ B(φ(x2)) ∧  · · ·  ∧  B
(
φ(xn(a))

)

= φ−1 (B) (x1) ∧ φ−1 (B) (x2) · · ·  ∧  φ−1 (B)
(
xn(a)

)

⇒ ωfα

(
φ−1 (B), φ−1 (B), . . . ,  φ−1 (B)

)

≤ φ−1 (B). 

φ−1(B) is an intuitionistic fuzzy subalgebra of L. 

Definition 16 Let S = [X, F] and T = [Y, F] be two similar algebras. The intuition-
istic fuzzy function φ from S to T is called an intuitionistic fuzzy homomorphism if 
and only if for each fα ∈ F.


fα (φ, φ, . . . ,  φ)�φ 

That is, φ is an intuitionistic fuzzy algebra of S × T. If S = T then φ called an 
intuitionistic fuzzy endomorphism.
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3.1 Intuitionistic Fuzzy Congruence Relations on Abstract 
Algebras 

The definition of intuitionistic fuzzy congruence relation on abstract algebras is; 

Definition 17 Let S = [X, F] be an algebra and fα ∈ F. For any(
A1, A2, . . . ,  An(α)

) ∈ IFR(X)n(α) and for any x, y ∈ S, ωfα

(
A1, A2, . . . ,  An(α)

)
to 

be an element of IFR(X) defined by 

ωfα

(
A1, A2, . . . ,  An(α)

)
(x, y) = supx, y

(
min1≤i≤n(α) Ai

(
xi, yi

))

such that the supremum is taken over all representations of fα
(
x1, x2, . . . ,  xn(α)

) = x 
and fα

(
y1, y2, . . . ,  yn(α)

) = y. Therefore, [IFR(X), Ω] is an intuitionistic fuzzy 
algebra on intuitionistic fuzzy relations. 

Definition 18 Let S = [X, F] be an algebra. A ∈ IFE(X) is an intuitionistic fuzzy 
congruence relation on S if and only if, for each fα ∈ F, ωfα (A, A, . . . ,  A)�A. 

Proposition 4 Let A be an intuitionistic fuzzy congruence relation on S = [X, F] 
algebra then A((r s))(shortly ∼) is a crisp congruence relation on S for each (r s) ∈ 
[0, 1] with r + s ≤ 1. 

The properties of intuitionistic fuzzy congruence relation were examined in 
detailed and the following main results were obtained. 

Theorem 5 Let S = [X, F] be an algebra, fα ∈ F, and A1, A2, . . . ,  An(α), A be 
intuitionistic fuzzy relations on S. 

ωfα

(
A1, A2, . . . ,  An(α)

)�A ⇔A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))

≥ min1≤i≤n(α) Ai
(
xi, yi

)

for all pairs of n(α)− tuples
(
x1, x2, . . . ,  xn(α)

)
and

(
y1, y2, . . . ,  yn(α)

)
. 

The proof of this theorem can be seen easily from Theorem 1 and following 
Corollary is clear. 

Corollary 1 Let S = [X, F] be an algebra. An intuitionistic fuzzy equivalence 
relation A on S is an intuitionistic fuzzy congruence relation on S if and only if 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

)) ≥ min1≤i≤n(α) Ai
(
xi, yi

)

for all fα ∈ F, and for all n(α)− tuples
(
x1, x2, . . . ,  xn(α)

)
,
(
y1, y2, . . . ,  yn(α)

) ∈ 
Xn(α) .
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Example 3 Let consider the group G = {e, a, b} determined by following opera-
tion *. It is clear that G is an algebra given by a binary operation, a unary opera-
tion(inversion) and a constant operation(the neutral element) satisfying well known 
laws. 

R is an intuitionistic fuzzy congruence relation on G. That is, R is an intuitionistic 
fuzzy equivalence relation on G and for any x1, x2, y1, y2 ∈ G, 

R
(
x1 ∗ x2, y1 ∗ y2

) ≥ R
(
x1, y1

) ∧ R
(
x2, y2

)
and R

(
x−1 
1 , y−1 

1

) ≥ R
(
x1, y1

)

Proposition 5 Let S = [X, F] be an algebra with subalgebra {e} and A be an intu-
itionistic fuzzy congruence relation on S. Then Ae is an intuitionistic fuzzy subalgebra 
of S such that 

e = {x : A(x, e) = (1, 0), x ∈ X}. 

Proof Let fα ∈ F and
(
x1, x2, . . . ,  xn(α)

) ∈ Xn(α) . Then, 

Ae
(
fα

(
x1, x2, . . . ,  xn(α)

)) =A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, e

)

=A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα(e, e, . . . ,  e)

)

≥ min1≤i≤n(α) A(xi, e) 
= min1≤i≤n(α) Ae(xi) 

So,fα(Ae, Ae, . . . ,  Ae) ≤ Ae. 

Proposition 6 Let S = [X, F] be an algebra. If A is an intuitionistic fuzzy 
congruence relation on S then so are � A and ♦ A. 

Proof Let A be an intuitionistic fuzzy congruence relation. 

(i) For all a ∈ X, 

μA(a, a) = μA(a, a) = 1 and νA(a, a) = 1 − μA(a, a) = 0
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intuitionistic fuzzy reflexive property has been provided. 
(ii) Let a, b ∈ X, 

μA(a, b) = μA(a, b) = μA(b, a) = μA(b, a) and 
ν�A(a, b) = 1 − μA(a, b) = 1 − μA(b, a) = ν�A(b, a) 

intuitionistic fuzzy symmetric has been provided. 
(iii) Let a, b and A is an intuitionistic fuzzy congruence relation then 

supz∈X{μA(a, c) ∧ μA(c, b)} ≤ μA(a, b) ⇒ inf c∈X{1 − μA(a, c) ∨ 1 − μA(c, b)} 
≥ 1 − μA(a, b) 

is proved. 
(iv) For each ωfα , 

A(a, b) ≥ ωfα (A, A, . . . ,  A)(a, b) = supa, b
(
min1≤i≤n(α) A(ai, bi)

)
and 

sup 
a, b

(
min 

1 ≤ i ≤ n(α) 
μA(ai, bi)

)
≤ μA(a, b) 

⇒ in  f  
a, b

(
max 

1 ≤ i ≤ n(α) 
1 − μA(ai, bi)

)
≥ 1 − μA(a, b) 

⇒ ωfα (�A,�A, . . . ,�A) ≤ �A 

So, proof is completed. The operator ♦ A can be examined similarly. 
We obtained some results about intuitionistic fuzzy congruence relations under 

homomorphsim. 

Theorem 6 Let S = [X, F], T = [Y, F] be two similar algebras and φ be a 
homomorphism of S into T. If B is an intuitionistic fuzzy congruence relation on T 
then φ−1(B) is an intuitionistic fuzzy congruence relation on S. 

Proof 

(i) For all a ∈ X, 

φ−1 (B) (a, a) =B(φ(a), φ(a)) 
=(μB(φ(a), φ(a)), νB(φ(a), φ(a))) = (1, 0) 

φ−1(B) is intuitionistic fuzzy reflexsive. 

(ii) Let a, b ∈ X,
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φ−1 (B) (a, b) =B(φ(a), φ(b)) = (μB(φ(a), φ(b)), νB(φ(a), φ(b))) 
=(μB(φ(b), φ(a)), νB(φ(b), φ(a))) 
=B(φ(b), φ(a)) = φ−1 (B) (b, a) 

φ−1(B) is intuitionistic fuzzy symmetric. 

(iii) Let a, b  ∈ X,

(
φ−1 (B) ◦ φ−1 (B)

)
(a, b) = supc∈X

{
φ−1 (B) (a, c) ∧ φ−1 (B) (c, b)

}

= supc∈X{B(φ(a), φ(c)) ∧ B(φ(c), φ(b))} 

=
(
supc∈X{μB(φ(a), φ(c)) ∧ μB(φ(c), φ(b))}, 
infc∈X{νB(φ(a), φ(c)) ∨ νB(φ(c), φ(b))}

)

≤
(
supy∈Y{μB(φ(a), y) ∧ μB(y, φ(b))}, 
infy∈Y{νB(φ(a), y) ∨ νB(y, φ(b))}

)

=(B ◦ B) (φ(a), φ(b)) = φ−1 (B) (a, b) 

So, φ−1(B) is intuitionistic fuzzy equivalence relation. 

(iv) Let fα ∈ F and a, b ∈ X, 

ωfα

(
φ−1 (B), φ−1 (B), . . . ,  φ−1 (B)

)
(a, b) 

= sup 
a = fα

(
a1, a2, . . . ,  an(α)

)

b = fα
(
b1, b2, . . . ,  bn(α)

)

{
min1≤i≤n(α)

(
φ−1 (B)

)
(ai, bi)

}

= sup 
a = fα

(
a1, a2, . . . ,  an(α)

)

b = fα
(
b1, b2, . . . ,  bn(α)

)

{
min1≤i≤n(α) B(φ(ai), φ(bi))

}

= 

⎛ 

⎜⎜⎜⎜ 
⎝ 

sup 
a = fα

(
a1, a2, . . . ,  an(α)

)

b = fα
(
b1, b2, . . . ,  bn(α)

)

{
min1≤i≤n(α) μB(φ(ai), φ(bi))

}
, 

inf 
a = fα

(
a1, a2, . . . ,  an(α)

)

b = fα
(
b1, b2, . . . ,  bn(α)

)

{
max1≤i≤n(α) νB(φ(ai), φ(bi))

}

⎞ 

⎟⎟⎟⎟ 
⎠ 

≤ 

⎛ 

⎜⎜⎜⎜ 
⎝ 

sup 
φ(a) = fα

(
φ(a1), φ(a2), . . . ,  φ(an(α))

)

φ(b) = fα
(
φ(b1), φ(b2), . . . ,  φ(bn(α))

)

{
min1≤i≤n(α) μB(φ(ai), φ(bi))

}
, 

inf 
φ(a) = fα

(
φ(a1), φ(a2), . . . ,  φ(an(α))

)

φ(b) = fα
(
φ(b1), φ(b2), . . . , φ(bn(α))

)

{
max1≤i≤n(α) νB(φ(ai), φ(bi))

}

⎞ 

⎟⎟⎟⎟ 
⎠ 

= ωfα (B, B, . . . ,  B) (φ(a), φ(b))
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the substitution property has been provided. 

Theorem 7 Let S = [X, F], T = [Y, F] be two similar algebras and φ be a 
monomorphism of S into T. If A is an intuitionistic fuzzy congruence relation on S 
then φ(A) is an intuitionistic fuzzy congruence relation on T. 

Proof 

(i) For all b ∈ Y, φ(A) (b, b) = supa, c∈φ−1(b) A(a, c) = (1, 0) 

φ(A) is intuitionistic fuzzy reflexsive and the symmetric relation is clear. 

(ii) Let b1, b2 ∈ Y, 

(φ(A) ◦ φ(A)) (b1, b2) = supb3∈Y(φ(A) (b1, b3) ∧ φ(A) (b3, b2)) 

= supb3∈Y 

⎛ 

⎜⎜ 
⎝ 

⎛ 

⎜⎜ 
⎝sup 

a1 ∈ φ−1(b1) 
a3 ∈ φ−1(b3) 

A(a1, a3) 

⎞ 

⎟⎟ 
⎠ ∧ 

⎛ 

⎜⎜ 
⎝sup 

a2 ∈ φ−1(b2) 
a3 ∈ φ−1(b3) 

A(a3, a2) 

⎞ 

⎟⎟ 
⎠ 

⎞ 

⎟⎟ 
⎠ 

≤ supb3∈Y 

⎛ 

⎜⎜ 
⎝sup 

a1 ∈ φ−1(b1), a2 ∈ φ−1(b2) 
a3 ∈ φ−1(b3) 

A(a1, a3) ∧ A(a3, a2) 

⎞ 

⎟⎟ 
⎠ 

≤ sup 
a1 ∈ φ−1(b1) 
a2 ∈ φ−1(b2)

(
supa3∈X A(a1, a3) ∧ A(a3, a2)

)

= sup 
a1 ∈ φ−1(b1) 
a2 ∈ φ−1(b2) 

A(a1, a2) = φ(A) (b1, b2) 

So, φ(A) is intuitionistic fuzzy transitive. 

(iii) Let fα ∈ F and a,, b, ∈ Y,

�fα (φ(A), φ(A), . . . ,  φ(A))
(
a,, b,)

= sup 
a, = fα

(
a,
1, a,

2, . . . ,  a,
n(α)

)

b, = fα
(
b,
1, b,

2, . . . ,  b,
n(α)

)

(
min1≤i≤n(α) φ(A)

(
a,
i, b

,
i

))

= sup 
a, = fα

(
a,
1, a,

2, . . . ,  a,
n(α)

)

b, = fα
(
b,
1, b,

2, . . . ,  b,
n(α)

)

⎛ 

⎜⎜ 
⎝min1≤i≤n(α) 

⎛ 

⎜⎜ 
⎝sup 

ai ∈ φ−1
(
a,
i

)

bi ∈ φ−1
(
b,
i

)
A(ai, bi) 

⎞ 

⎟⎟ 
⎠ 

⎞ 

⎟⎟ 
⎠
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≤ sup 
a, = fα

(
φ(a1), φ(a2), . . . ,  φ

(
an(α)

))

b, = fα
(
φ(b1), φ(b2), . . . ,  φ

(
bn(α)

))

(
min1≤i≤n(α) A(ai, bi)

)

= sup 
a, = φ

(
fα

(
a1, a2, . . . ,  an(α)

))

b, = φ
(
fα

(
b1, b2, . . . ,  bn(α)

))

(
min1≤i≤n(α) A(ai, bi)

)

= �fα (A, A, . . . ,  A)
(
φ−1

(
a,), φ−1

(
b,)). 

≤ A
(
φ−1

(
a,), φ−1

(
b,))

Therefore φ(A) is an intuitionistic fuzzy congruence relation on T. 

Theorem 8 Let
{
Aj : j ∈ J

}
be a non-empty family of intuitionistic fuzzy congru-

ence relation on algebra S = [X, F]. Then 

A = infj∈J Aj = ∧ j∈J Aj 

is an intuitionistic fuzzy congruence relation on S. 

Proof 

(i) For all a ∈ X, 

A(a, a) = inf j∈J Aj(a, a) =
(
inf j∈J μAj (a, a), supj∈J νAj (a, a)

)
= (1, 0) 

(ii) Let a, b ∈ X, 

A(a, b) = inf j∈J Aj(a, b) =
(
inf j∈J μAj (a, b), supj∈J νAj (a, b)

)

=
(
inf j∈J μAj (b, a), supj∈J νAj (b, a)

)
= inf j∈J Aj(b, a) = A(b, a) 

(iii) Let a, b ∈ X, 

(A ◦ A) (a, b) = supc∈X(A(a, c) ∧ A(c, b)) = supc∈X
(
infj∈J Aj(a, c) ∧ infj∈J Aj(c, b)

)

= supc∈X
((

infj∈J μAj (a, c), supj∈J νAj (a, c)
)

∧
(
infj∈J μAj (c, b), supj∈J νAj (c, b)

))

= supc∈X
(
infj∈J μAj (a, c) ∧ infj∈J μAj (c, b), supj∈J νAj (a, c) ∨ supj∈J νAj (c, b)

)

=
(
supc∈X

(
infj∈J μAj (a, c) ∧ infj∈J μAj (c, b)

)
, infz∈X

(
supj∈J νAj (a, c) ∨ supj∈J νAj (c, b)

))

=
(
supc∈X

(
infj∈J

(
infk∈J μAj (a, c) ∧ μAk (c, b)

))
, infc∈X

(
supj∈J

(
supk∈J νAj (a, c) ∨ νAk (c, b)

)))
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≤
(
supc∈X

(
infj∈J

(
μAj (a, c) ∧ μAj (c, b)

))
, infc∈X

(
supj∈J

(
νAj (a, c) ∨ νAj (c, b)

)))

=
(
infj∈J μAj (a, b), supj∈J νAj (a, b)

)
= A(a, b) 

(iv) Let fα ∈ F and
(
a1, a2, . . . ,  an(α)

)
,
(
b1, b2, . . . ,  bn(α)

) ∈ Xn(α) . 

By corollary, 

A
(
fα

(
a1, a2, . . . ,  an(α)

)
, fα

(
b1, b2, . . . ,  bn(α)

))

= ∧j∈J Aj
(
fα

(
a1, a2, . . . ,  an(α)

)
, fα

(
b1, b2, . . . ,  bn(α)

))

= infj∈J
(
Aj

(
fα

(
a1, a2, . . . ,  an(α)

)
, fα

(
b1, b2, . . . ,  bn(α)

)))

≥ infj∈J
(
min1≤i≤n(α) Aj(ai, bi)

)

= min1≤i≤n(α)

(
infj∈J Aj(ai, bi)

) = min1≤i≤n(α) A(ai, bi) 

3.2 Isomorphism Theorems on Intuitionistic Fuzzy Universal 
Algebras 

3.2.1 Intuitionistic Fuzzy Functions 

Before introduce the definition of intuitionistic fuzzy function we need to prove 
following propositions. We will use 0 1[a]A = a presentation for A ∈ IFE(X) and 
define an intuitionistic fuzzy subset Aa : X → I × I as follows: 

Aa(z) = A(a, z) for all z ∈ X. 

Proposition 7 Aa : X → I × I defined as above is well-defined. 

Proof For all x ∈ X, 0 ≤ μAa (x) + νAa (x) ≤ 1. If  y ∈ a then A(a, y) = (1, 0). 

Aa(x) = A(y, x) ≤ (1, 0) and Aa(x) = A(a, x) ≤ (1, 0). 

So, A(a, x) = A(y, x). That is Aa is well defined. 

Proposition 8 For each fixed ((r s)) such that (r s) ∈ [  with r + s ≤ 1,{
(Aa)((r s)) : a ∈ X

}
the set of (r s)− cuts of A is a crisp partition of X. 

Proof 

(i) For all a ∈ X there is at least one (r s) ∈ [  with r + s ≤ 1 such that a ∈ (Aa)((r s)). 
So,

⋃
a∈X (Aa)((r s)) = X.
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(ii) Let a, b ∈ X and a ∈ a, Suppose that a /= b. If  z ∈ (Aa)((r s)) ∩
(
Ab

)
((r s)) then 

Aa(z) ≥((r s)) and Ab(z) ≥ ((r s)) ⇒ A(a, z) ≥ ((r s)) and A(b, z) ≥ ((r s)) 
⇒A(a, b) ≥ ((r s)) 

If x ∈ (Aa)((r s)) then A(a, x) ≥ ((r s)). It is clear by symmetry that A(x, a) ≥ 
((r s)). So, A(b, x) ≥ ((r s)) and x ∈ (

Ab

)
((r s)) . We obtain that (Aa)(r s) ⊆

(
Ab

)
(r s) . 

Similarly we can show that
(
Ab

)
(r, s) ⊆ (Aa)(r, s). 

Therefore (Aa)(r s) ∩
(
Ab

)
(r s) = ∅  or (Aa)(r s) =

(
Ab

)
(r s) . 

Definition 19 Let X and Y be non-empty sets and f be an intuitionistic fuzzy relation 
from X to Y. Each y ∈ Y determines an intuitionistic fuzzy subset of X as follows: 

Ay : X → I × I, Ay(x) = f(x, y) for all x ∈ X. 

The intuitionistic fuzzy relation is called an intuitionistic fuzzy function from X 
to Y if. 

1. For each x ∈ X, ∃! y ∈ Y such that f(x, y) = (1, 0), 
2. For each (r s) such that r s  ∈ [  with r + s ≤ 1 the set

{(
Ay

)
(r s) : y ∈ Y

}
is a 

crisp partition of X. 

If for each y ∈ Y, ∃x ∈ X such that f(x, y) = (1, 0) then f called onto function. 
If each pair x1, x2 ∈ X such that f(x1, y) = f(x2, y) = (1, 0)⇒x1 = x2 then f 

called one-to-one function. 
After this definition we can give the following concepts. 
Let f : X × Y → I × I be an intuitionistic fuzzy function then converse of f 

defined as
	

f : Y × X → I × I,
	

f(y, x) = f(x, y) for x ∈ X, y ∈ Y. 
Let A : X → I × I and B : Y → I × I be two intuitionistic fuzzy sets then 

image and preimage under f as follows: 

f(A) (y) = supx∈X(A(x) ∧ f(x, y)), y ∈ Y and 
f−1 (B) (x) = supx∈X(B(y) ∧ (y, x)), x ∈ X. 

Example 4 Let X = {a, b, c} and Y = {d, e} be universal sets then the intuitionistic 
fuzzy relation f defined as follows; 

f =
{

((a, d), 1, 0), ((a, e), 0.6, 0.3), ((b, d), 0.6, 0.3), 
((b, e), 1, 0), ((c, d), 1, 0), ((c, e), 0.6, 0.3)

}
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So, we can examine (Ad) and (Ae) for all (r s) such that r s  ∈ [  with r + s ≤ 1. 
If (r s) ≤ (0.6, 0.3) then (Ad)(r, s) = (Ae)(r, s) = X. For other situations of (r s), it is 
clear that (Ad)(r, s) = {a, c} and (Ae)(r, s) = {b}. As a result, for all ((r s)) such that 
(r s) ∈ [0, 1] with r + s ≤ 1,

{(
Ay

)
((r s)) : y ∈ Y

}
is a crisp partition of X. Hence, 

f is an intuitionistic fuzzy function from X to Y. 

Proposition 9 Let X and Y be non-empty sets and f : X × Y → I × I be an 
intuitionistic fuzzy function The composition of f : X → Y and

	

f : Y → X 
such that

	

f ◦ f(x1, x2) = supy(f(x1, y) ∧ (y, x2)), for all x1, x2 ∈ X 

is an intuitionistic fuzzy equivalence relation on X. 

Proof Let A be the relation
	

f◦f. For all x ∈ X, A(x, x) = (1, 0) so, A is intuitionistic 
fuzzy reflexive. From the definition A is intuitionistic fuzzy symmetric. Now, let for 
x1, x2 ∈ X, 

(α1, β1) = (A ◦ A) (x1, x2) > θ 

and let given small enough ε, ε, > 0 such that
(
α1 − ε, β1 + ε,)< (α1, β1). 

There exist z ∈ X such that A(x1, z) >
(
α1 − ε, β1 + ε,) and A(z, x2) >(

α1 − ε, β1 + ε,). 
Hence, there are y, w ∈ Y with 
f(x1, y)∧f(z, y) >

(
α1 − ε, β1 + ε,) and f(z, w)∧f(x2, w) >

(
α1 − ε, β1 + ε,). 

So, 

z ∈ (
Ay

)
⟨α1−ε, β1+ε,⟩ ∩ (Aw)⟨α1−ε, β1+ε,⟩ ⇒ (

Ay
)
⟨α1−ε, β1+ε,⟩ = (Aw)⟨α1−ε, β1+ε,⟩

⇒ x2 ∈ (Aw)⟨α1−ε, β1+ε,⟩and f(x2, y) >
(
α1 − ε, β1 + ε,). 

So, A(x1, x2) ≥ f(x1, y) ∧ f(x2, y) >
(
α1 − ε, β1 + ε,). Since ε, ε, are small 

enough, A(x1, x2) ≥ (α1, β1). 
The intuitionistic fuzzy equivalence relation A, as defined above, is called kernel 

of f. 

Theorem 9 Let X and Y be non-empty sets, f : X×Y → I× I be an intuitionistic 
fuzzy function and A be the kernel of f. Then there is a decomposition of f given 
by following diagram where X/A is the class of intuitionistic fuzzy subsets (Ax)x∈X, 
f(X) = {y ∈ Y : ∃x ∈ X with f(x, y) = (1, 0)} and ε is a natural mapping given 
by ε(x, Ax) = Ax(x). Also, f, and i are crisp mappings defined by f,(Ax) = y where 
x is the class given by x such that f(x, y) = (1, 0) and i is given by inclusion,
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Fig. 1 Decomposition 
Diagram of Functions with 
Natural Mapping 

i : ⊂→Y, i (y) = y and g(x) = y is given by f(x, y) = (1, 0) (Fig. 1). 

Proof It is enough to show that f, is well-defined. Let A
(
x, x,) = (1, 0) and y, y, ∈ 

T such that f(x, y) = f
(
x ,, y,) = (1, 0). 

A
(
x, x,) =(1, 0) ⇒ x = x,

⇒f(x, y) = f
(
x, y,) = (1, 0) 

⇒y = y,

Murali examined Isomorphism Theorems on fuzzy algebra[4] and our aim is 
extend these theorems to intuitionistic fuzzy algebra. 

Let S = [X, F] be an algebra and A be an intuitionistic fuzzy congruence relation 
on S. X/A is the class of intuitionistic fuzzy subsets (Ax)x∈X such that 0 1[x]A = x, 
x ∈ X. Now, for fα ∈ F let Ax1 , Ax2 , . . . ,  Axn(α) ∈ X/A then f,α on X/A is defined as 
follow; 

f,α
(
Ax1 , Ax2 , . . . ,  Axn(α)

) = Az, Az(t) = A(z, t) 

where fα
(
x1, x2, . . . ,  xn(α)

) = z, xi ∈ xi for each i = 1, 2, . . . ,  n(α). Suppose that 
yi ∈ xi for each i = 1, 2, . . . ,  n(α) Then xi ∼A(1, 0) yi. It is clear that, 

fα
(
x1, x2, . . . ,  xn(α)

) ∼A(1, 0) fα
(
y1, y2, . . . ,  yn(α)

) ⇒ z ∼A(1, 0) z
,

where fα
(
y1, y2, . . . ,  yn(α)

) = z,. So, 

z, ∈0 
1 [z]A and Az,(t) = A

(
z,, t

) = A(z, t) = Az(t). 

We obtain that, S/A =[X/A, F,] is an algebra similar to S = [X, F]. 
Theorem 10 Let ε be a mapping from S to S/A, ε(x) = Ax then ε is a homomorphism. 

Proof If z =0 
1

[
fα

(
x1, x2, . . . ,  xn(α)

)]
A then
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ε
(
fα

(
x1, x2, . . . ,  xn(α)

)) =Az = fα
(
Ax1 , Ax2 , ldots, Axn(α)

)

=fα
(
ε(x1), ε(x2), . . . ,  ε

(
xn(α)

))
. 

So, ε is a homomorphism. 

Proposition 10 Let S = [X, F], T = [Y, F] be two similar algebras and f is an 
intuitionistic fuzzy homomorphism from S to T. The kernel of f is an intuitionistic 
fuzzy congruence relation on S. 

Proof For any fα ∈ F and
(
x1, . . . ,  xn(α)

)
,
(
y1, . . . ,  yn(α)

) ∈ Xn(α) , we have to prove 
the substitution property. From definition, 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))

= 	

f ◦ f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))

= supz∈Y
(
f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, z

) ∧ (
z, fα

(
y1, y2, . . . ,  yn(α)

)))

= supz∈Y
(
f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, z

) ∧ f
(
fα

(
y1, y2, . . . ,  yn(α)

)
, z

))

and Ai
(
xi, yi

) = 	

f ◦ f
(
xi, yi

)= supz∈Y
(
f(xi, z) ∧ f

(
yi, z

))
. Let presume that 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))
≱min1 ≤ i ≤ n(α)A

(
xi, yi

)
.. 

There exist (β1, β2) such that β1, β2 ∈ [0, 1] with β1 + β2 ≤ 1, 

A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))
<(β1, β2) 
<A

(
xi, yi

)

that is 

supz ∈ Y
(
f(fα(x1, x2, . . . ,  xn(α)), z) ∧ f

(
fα

(
y1, y2, . . . ,  yn(α)

)
, z

))
< (β1, β2) 

and for each i = 1, 2 

supz∈Y
(
f(xi, z) ∧ f

(
yi, z

))
> (β1, β2). 

It is clear that, there exist a zi for each i = 1, 2, . . . ,  n such that f(xi, zi) > 
(β1, β2) and f

(
yi, zi

)
> (β1, β2). 

Let z = fα
(
z1, z2, . . . ,  zn(α)

)
. 

f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
z1, z2, . . . ,  zn(α)

)) ≥ min1≤i≤n(α) f(xi, zi) 
>(β1, β2) 

and
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f
(
fα

(
y1, y2, . . . ,  yn(α)

)
, fα

(
z1, z2, . . . ,  zn(α)

)) ≥ min1≤i≤n(α) f
(
yi, zi

)
. 

Hence,

(
f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, z

) ∧ f
(
fα

(
y1, y2, . . . ,  yn(α)

)
, z

))
> (β1, β2)and 

supz∈Y
(
f
(
fα

(
x1, x2, . . . ,  xn(α)

)
, z

) ∧ f
(
fα

(
y1, y2, . . . ,  yn(α)

)
, z

))
> (β1, β2). 

Theorem 11 (First Isomorphism Theorem) Let S = [X, F], T = [Y, F] be two 
similar algebras and f is an intuitionistic fuzzy homomorphism from S to T. If A is 
the kernel of f then there exist a decomposition of f defined by following diagram. 

Proof Thanks to previous proposition and Theorem 1 it is enough to prove f, is an 
isomorphism. f,(Ax) = y where x is the class given by x such that f(x, y) = (1, 0). 
From definition f, is bijective. Also (Fig. 2), 

f,
(
fα

(
Ax1 , Ax2 , . . . ,  Axn(α)

))

=fα
(
f,
(
Ax1

)
, f,

(
Ax2

)
, . . . ,  f,

(
Axn(α)

))

that is f, is homomorphism. 
Murali [17] proved that second isomorphism theorem could not extend to fuzzy 

algebras. Likewise we need a restriction of an intuitionistic fuzzy congruence relation 
to intuitionistic fuzzy subalgebra to introduced second isomorphism theorem on 
intuitionistic fuzzy algebra. But, we could not define a natural way for this restriction. 
So, we will deal on third isomorphism theorem. 

Let S = [X, F] be an algebras and A, B be two intuitionistic fuzzy congruence 
relations on S such that B ≤ A. Let C(A)(1, 0) and C(B)(1, 0) denotes the crisp (1, 0)− 
equivalence class of A and B, respectively. It is clear that C(B)(1, 0) is a refinement 
of C(A)(1, 0). We define a congruence relation on following set; 

S/B = {
Bx : x ∈ C(B)(1, 0), x ∈ X

}

Definition 20 Let S = [X, F] be an algebras and A, B be two congruence relations 
on S such that B ≤ A.

Fig. 2 Decomposition 
Diagram for Similar 
Algebras 
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A/B :S/B × S/B → I × I 
A/B

(
Bx, By

) =A(x, y) for x ∈ x, y ∈ y 

is called the quotient intuitionistic fuzzy congruence relation. 

Theorem 12 Let S = [X, F] be an algebras and A, B be two intuitionistic fuzzy 
congruence relations on S such that B ≤ A. The intuitionistic fuzzy quotient 
congruence relation A/B is an intuitionistic fuzzy congruence relation on S/B. 

Proof 

(i) If x, x, ∈ x and y, y, ∈ y then x, x, belong to the same (1, 0)− equivalence 
class of A and also y, y, belong to the same class. Since A(x, y) = A

(
x ,, y,)

then 

A/B
(
Bx, By

) = A(x, y) = A
(
x ,, y,). 

We obtain that A/B is well-defined. 

(ii) It is clear that A/B is reflexive and symmetric. 
(iii) Shortly A/B = ρ. Let x ∈ x, y ∈ y and z ∈ z, 

ρ ◦ ρ
(
Bx, By

) = supz∈C(B)(1, 0)

(
ρ(Bx, Bz) ∧ ρ

(
Bz, By

))

= supz∈C(B)(1, 0)
{A(x, z) ∧ A(z, y) : x ∈ x, y ∈ y, z ∈ z} 

≤ supz∈X(A(x, z) ∧ A(z, y)) 
=A ◦ A(x, y) ≤ A(x, y) = ρ

(
Bx, By

)

so, A/B transitive. 

(iv) Let fα ∈ F and
(
Bx1 , Bx2 , . . . ,  Bxn(α)

)
,
(
By1 , By2 , . . . ,  Byn(α)

) ∈ (S/B)n(α) . 
Suppose that there exists a (β1, β2) > θ with β1, β2 ∈ [0, 1] with β1+ such 
that 

ρ
(
fα

(
Bx1 , Bx2 , . . . ,  Bxn(α)

)
, fα

(
By1 , By2 , . . . ,  Byn(α)

))
< (β1, β2) 

and 

(β1, β2) < ρ
(
Bxi , Byi

)
for each i = 1, 2, . . . ,  n(α).
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From Theorem 2, fα
(
Bx1 , Bx2 , . . . ,  Bxn(α)

) = Bx and fα
(
By1 , By2 , . . . ,  Byn(α)

) = 
By such that x =0 

1 [x]B and y =0 
1

[
y
]
B with x = fα

(
x1, x2, . . . ,  xn(α)

)
, xi ∈ xi and 

y = fα
(
y1, y2, . . . ,  yn(α)

)
, yi ∈ yi for each i = 1, 2 Now, 

A(x, y) =A
(
fα

(
x1, x2, . . . ,  xn(α)

)
, fα

(
y1, y2, . . . ,  yn(α)

))

≥ min1≤i≤n(α) A
(
xi, yi

)

⇒A(x, y) > (β1, β2) 

Hence, ρ
(
fα

(
Bx1 , Bx2 , . . . ,  Bxn(α)

)
, fα

(
By1 , By2 , . . . ,  Byn(α)

))
> (β1, β2) 

This contradicted our acceptance. 

Corollary 2 (Third Isomorphism Theorem) Let S = [X, F] be an algebras and 
A, B be two intuitionistic fuzzy congruence relations on S such that B ≤ A. Then 

(S/B)/(A/B) ∼= S/A. 

Proof Let take into account that 0 1[Bx]A?B =
{
By ∈ S/B : A/B

(
Bx, By

) = (1, 0)
}
. 

By the definition of A/B,0 1 [Bx]A?B ∼= x as crisp set. Therefore, 

(A/B)0 
1[Bx]A?B 

∼= Ax 

as an intuitionistic fuzzy subsets. We obtain that (S/B)/(A/B) ∼= S/A. 

4 Conclusion 

In this study, we studied intuitionistic fuzzy algebraic properties on intuition-
istic fuzzy algebra. Thus, the comman properties of intuitionistic fuzzy algebraic 
structures like groups, rings were extended. 
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Generalization of Intuitionistic Fuzzy 
Submodules of a Module by Using 
Triangular Norms and Conorms 
and (T,S)-L Subrings 

Ümit Deniz 

Abstract This study consists of two parts. In first part; It is built on the definition of 
Intuitionistic Fuzzy Submodules of a Module. Many researchers have used the defini-
tion of Atanassov’s (Fuzzy Sets Syst 20:87–96, [1]) Intuitionistic fuzzy sets definition 
to move the definitions in classical algebra to intuitionistic fuzzy algebra. Davvaz 
et al. (Inf Sci 176:1447–1454, [2]) defined the Intuitionistic fuzzy submodules of 
a module. They used minimum and maximum operations to give that definition. 
In this study we replace minimum operation with triangular norms and maximum 
operation with triangular conorms for giving the definition of Intuitionistic (T, S)-
fuzzy submodule of a module. By using this definition, we move some definition 
and theorems in classical algebra to Intuitionistic fuzzy algebra. In the second part It 
is built on the definition of intuitionistic L-fuzzy rings and ideals. Many researchers 
have used the definition of Atanassov’s (Fuzzy Sets Syst 20:87–96, [1]) intuitionistic 
fuzzy sets to move the definitions in classical algebra to intuitionistic fuzzy algebra 
(Davvaz et al. in Inf Sci 176:1447–1454, [2]; Çuvalcıoğlu et al. in Notes Intuition-
istic Fuzzy Sets 20:9–16, [3]; Çuvalcıoğlu and Aykut in NIFS 20:57–61, [4]; Isaac 
and Pearly in Int J Math Sci Appl 1:1447–1454, [5]). When K. Atannassov gave the 
definition of intuitionistic fuzzy sets he used the closed interval [0, 1]. Then Meena 
and Thomas (Int Math Forum 6:2561–2572, [6]) replaced the closed interval [0, 1] 
with L-lattice. In that study they used ∧ ∧-infimum and ∨-supremum operations to 
give the intuitionistic L-fuzzy rings and intuitionistic L-fuzzy ideals. In this study we 
replace ∧-infimum with triangular norms and we replace ∨-supremum with trian-
gular conorms and give the definition of intuitionistic (T,S)-L fuzzy rings and ideals. 
By using this definitions, we move some definition and theorems in classical algebra 
to intuitionistic fuzzy algebra. 
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1 Introduction 

In 1965 Zadeh [7] introduced the notion of a fuzzy set as a method of representing 
uncertainly in real physical world. Since then this definition has been used to many 
mathematical branches. In 1971 Rosenfeld [8] applied the notion of fuzzy sets to 
algebra and introduced fuzzy subgroups of a group. Negoita and Ralesque [9] intro-
duced and examined the notion of a fuzzy submodule of a module. Wang [10] gave the  
definition of TL-submodules and TL-subspaces. As a generalization of a fuzzy set, 
the concept of an intuitionistic fuzzy set introduced by Atanassov [1, 11]. By using 
this definition Davvas [2] established the intuitionistic fuzzification of the concept 
of submodules of an R-module. Then Isaac and John [5] studied the notion of an 
intuitionistic fuzzy submodules and some related properties. 

The definition of intuitionistic fuzzy sets is using in set theory, group theory, topo-
logical space, knowledge engineering, neural network etc. Wang and Yu [12] gave the  
TL-subring and TL-ideal definitions. Meena and Thomas [6] gave the definition of 
intuitionistic L-fuzzy subrings. In that study they used ∧-infimum and ∨-supremum 
operations to give that definition. In this study we improve the definition to intu-
itionistic (T,S)-L fuzzy subrings. We use t-norm instead of ∧-infimum and we use 
conorm instead of ∨-supremum as operations. By using this definition, we give and 
prove some theorems similar to classic rings. 

Throughout this paper we denote by R a commutative ring with unity 1 and by M 
a unitary R-module. L always represents any given complete lattice with maximal 
element 1 and minimal element 0. 

2 Preliminaries 

Definition 2.1 [13] A triangular norm (t-norm, for short) is a function. 
T : [0, 1] × [0, 1] → [0, 1] satisfying the following properties: for all x, y, z ∈ 

[0, 1], 

(i) existence of neutral element 1: T (x, 1) = x, 
(ii) monotonicity: x ≤ y ⇒ T (x, z) ≤ T (y, z), 
(iii) commutativity; T (x, y) = T (y, x), 
(iv) associativity: T (x, T (y, z)) = T (T (x, y), z). 

Conditions (i) and (ii) imply that for any t-norm T (x, y) ≤ x and T (x, y) ≤ y 
hold, 

thus T (x, y) ≤ x ∧ y, for all x, y ∈ [0, 1]. 

Example 2.2 [14] 

(1) Standard intersection T-norm Tm(x, y) = min{x, y}. 
(2) Bounded sum T-norm Tb(x, y) = max{0, x + y − 1}. 
(3) Algebraic product T-norm Tp(x, y) = xy.



Generalization of Intuitionistic Fuzzy Submodules of a Module … 53

(4) Drastic T-norm 

TD(x, y) = 

⎧ 
⎨ 

⎩ 

y i  f  x  = 1, 
x i  f  y  = 1, 
0 other wise. 

(5) Nilpotent minimum T-norm 

TnM (x, y)
⎧
min{x, y} i f  x  + y > 1 

0 other wise. 

(6) Hamacher product T-norm 

THo(x, y) =
⎧

0 i f  x  = y = 0, 
xy  

x+y−xy otherwise. 

The drastic t-norm is the pointwise smallest t-norm and the minimum is the 
pointwise largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1]. 
Theorem 2.3 [13] Let T be a t-norm. Then. 

T(T(x, y), T(w, z)) = T(T(x, w), T(y, z)), 

for all x, y, w, z ∈ [0, 1]. 

Definition 2.4 [13] 

(i) A t-norm T on a lattice L is called ∨-distributive if 

T (x, y ∨ z) = T (x, y) ∨ T (x, z). 

(ii) A t-norm T on a complete lattice L is called infinitely ∨-distributive if 
T

(
a,

v
Qbτ

) = v
QT (a, bτ ) for any subset a, bτ ∈ L , τ  ∈ Q of L. 

Theorem 2.5 [14] Let L be a triangular norm on lattice L then. 

(i) T(x, 0) = T(0, x) = 0 for all x ∈ L, 
(ii) if a ≤ b and x ≤ y then T(a, x) ≤ T(b, y), 
(iii) if{ai|i ∈ I}, {bi|i ∈ I} ⊂ L then T

(Ʌ
i∈I ai ,

Ʌ
i∈I bi

) ≤ Ʌ
i∈I T (ai , bi ). 

Theorem 2.6 [15] Let L be a complete lattice. If T is an infinitely ∨-distributive 
t-norm then.

v

i∈I

v

j∈J 

T
(
ai , b j

) = T 

⎛ 

⎝
v

i∈I 
ai ,

v

j∈J 

b j 

⎞ 

⎠.
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Definition 2.7 [14] A t-conorm is a mapping S : [0, 1] × [0, 1] → [0, 1] satisfying. 
for all x, y, z ∈ [0, 1], 

(i) S(x, 0) = x, 
(ii) S(x, y) = S(y, x), 
(iii) S(x, S(y, z)) = S(S(x, y), z), 
(iv) S(x, y) ≤ S(x, z)whenever y ≤ z. 

Conditions (i) and (iv) imply that for any t-conorm x ≤ S(x, y)and y ≤ S(x, y). 
hold, thus x ∨ y ≤ S(x, y), for all x, y ∈ [0, 1]. 

Example 2.8 [14] The following are the four basic t-conorms, namely, the maximum 
SM, the probabilistic sum Sp, the Lukasiewicz t-conorm or (bounded sum) SL, and 
the drastic sum SD which are given by, respectively: 

(i) SM (x, y) = max(x, y), 
(ii) SP (x, y) = x + y − x .y, 
(iii) SL (x, y) = min(x + y, 1), 

(iv) SD(x, y) =
⎧
1 i f  (x, y) ∈ [0, 1]2 , 
max(x, y) other wise. 

Definition 2.9 [13] 

(i) A t-conorm S on a lattice L is called ∧-distributive if 

S(x, y ∧ z) = S(x, y) ∧ S(x, z). 

(ii) A t-conorm S on a complete lattice L is called infinitely ∧-distributive if 
S(a,

Ʌ
Qbτ ) = ∧Q S(a, bτ ) for any subset a, bτ ∈ L , τ  ∈ Q of L. 

Theorem 2.10 [14] Let S be a triangular conorm on lattice L then. 
if {ai|i ∈ I}, {bi|i ∈ I} ⊂ L then

v
i∈IS(ai, bi) ≤ S

(v
i∈Iai,

v
i∈Ibi

)
. 

Theorem 2.11 [15] Let L be a complete lattice. If S is an infinitely ∧-distributive 
t-conorm then.

Ʌ

i∈I

Ʌ

j∈J 

S
(
ai , b j

) = S 

⎛ 

⎝
Ʌ

i∈I 
ai ,

Ʌ

j∈J 

b j 

⎞ 

⎠. 

Definition 2.12 [7] Let X be a non-empty set. A fuzzy set μ of X is a function. 
μ : X → [0, 1]. 

Definition 2.13 [10] Let  μ, ϑ ∈ F(M, L) and M is a R-module. Define μ +T 

ϑ, −μ ∈ F(M, L) as follows: 

(μ +T ϑ)(x) =
v

{ T (μ(y), ϑ(z))|y, z ∈ M, y + z = x}



Generalization of Intuitionistic Fuzzy Submodules of a Module … 55

(−μ)(x) = μ(−x), 

where x is an arbitrary element in M. Then μ +T ϑ is called the T-sum of μ and 
ϑ and −μ the negative of μ. When T = ∧, μ +T ϑ is referred to as the sum of 
μ and ϑ and can be written as μ + ϑ . 

Clearly the operation +T of L-subsets of M satisfies the associative and commuta-
tive laws. Hence, we can consider μ1+T μ2+T · · ·+T μn where μi ∈ F(M, L), 1 ≤ 
i ≤ n and n ∈ N and abbreviate it as

∑ n(T ) 
i=1 μi . 

Definition 2.14 [10] Let  r ∈ R and  μ ∈ F(M, L) and M is a R-module. Define 
r μ ∈ F(M, L) as follows: 

(r μ)(x) =
v

{ μ(y)|y ∈ M, r y  = x} ∀x ∈ M. 

Then r μ is called the product of the scalar r and the L-subset μ, or simply the 
scalar product of r and μ. 

Definition 2.15 [10] Let M be a R-module. By a TL-submodule of M, we mean an 
L-subset μ of M which satisfies the following conditions. 

(M1)μ(θ ) = 1, 

(M2)μ(r x) ≥ μ(x)∀r ∈ R and x ∈ M, 

(M3)T μ(x + y) ≥ T (μ(x), μ(y))∀x, y ∈ M. 

When T = ∧, a TL-submodule of M is called an L-submodule of M. 
As usual when L = [0, 1], aT L-submodule and an L-submodule are referred 

to as a T-fuzzy module and a fuzzy submodule, respectively. The set of all TL-
submodules of M and the set of all L-submodules of M are denoted by T L(M) and 
L(M), respectively. 

Theorem 2.16 [10] Let μ ∈ F(M, L). Then μ ∈ T L(M) if and only if μ satisfies 
condition (M1) and the following condition: 

(M4)T μ(r x  + sy) ≥ T (μ(x), μ(y))∀r, s ∈ R and x, y ∈ M. 

Definition 2.17 [6] An intuitionistic fuzzy set (in short IFS) A of a non-empty set 
X is an object having the form. 

A = {<x, μA(x), νA(x)>|x ∈ X} 

where the functions μA: X → [0,1] and νA: X → [0,1] denote respectively the degree 
of membership (namely μA(x)) and the degree of non-membership (namely νA(x)) 
each of element x ∈ X to the set A, and 0 ≤ μA(x) + νA(x) ≤ 1 for all x ∈ X. 

For the sake of simplicity, we will denote the set of all IFS’s of X as IFS(X).
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Definition 2.18 [6] Let X be a non-empty set and A = (μA, νA), B  = (μB, νB) be  
IFS’s of X. Then for A and B some relations and operations can be defined as follows; 

(1) A ⊆ B iff for all x ∈ X, μA(x) ≤ μB (x)and νA(x) ≥ νB (x), 
(2) A = B iff for all x ∈ X, μA(x) = μB (x)and νA(x) = νB (x), 

(3) 

A ∪ B = {<x, (μA ∪ μB )(x), (νA ∩ νB )(x)>|x ∈ X} 
where (μA ∪ μB )(x) = μA(x) ∨ μB (x), 
(νA ∩ νB )(x) = νA(x) ∧ νB(x), 

(4) 

A ∩ B = {<x, (μA ∩ μB )(x), (νA ∪ νB )(x)>|x ∈ X} 
where (μA ∩ μB )(x) = μA(x) ∧ μB (x), 
(νA ∪ νB )(x) = νA(x) ∨ νB (x), 

(5) 

A + B = {<
x, μA+B (x), νA+B (x)

>|x ∈ R
}

where μA+B(x) = ∨{μA(y) ∧ μB (z)|y, z ∈ R, y + z = x} 
and νA+B (x) = ∧{νA(y) ∨ νB (z)|y, z ∈ R, y + z = x}, 

(6) AC = (νA, μA). 

Definition 2.19 [16] Let  Ai , i ∈ J be an arbitrary family of IFS’s in X, where. 
Ai = (μAi , νAi ) for each i ∈ J . Then 

(i)

◠

i∈J 

Ai =
(

μ

(
◠

i∈J 

Ai

)

, ν

(
◠

i∈J 

Ai

))

=
⎧(

x,
Ʌ

i∈J 

μAi (x),
v

i∈J 

νAi (x)

)

: x ∈ X

⎫

(ii)

⊔

i∈J 

Ai =
(

μ

(
⊔

i∈J 

Ai

)

, ν

(
⊔

i∈J 

Ai

))

=
⎧(

x,
v

i∈J 

μAi (x),
Ʌ

i∈J 

νAi (x)

)

: x ∈ X

⎫

Definition 2.20 [12] Let R be a ring and μ : R → L , ϑ  : R → L . Define μ +T 

ϑ, −μ, μ −T ϑ, μ.T ϑ ∈ F(R, L) as follows. 

(μ +T ϑ)(x) =
v

{T (μ(y), ϑ(z))|y, z ∈ R, y + z = x} 

(−μ)(x) = μ(−x) 

(μ −T ϑ)(x) =
v

{T (μ(y), ϑ(z))|y, z ∈ R, y − z = x} 

(μ.T ϑ)(x) =
v

{ T (μ(y), ϑ(z))|y, z ∈ R, y.z = x} 

where x is any element of R. μ+T ϑ, μ−T ϑ, μ.T ϑ are called the T-sum, T-difference, 
and T-product of μ and ϑ , respectively, and −μ is called the negative of μ.
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Definition 2.21 [12] Let R be a ring. We call μ : R → L L-subset of R TL-subring 
if it satisfies the following conditions. 

(R1) μ(0) = 1 

(R2) μ(−x) ≥ μ(x) ∀x ∈ R 

(R3) μ(x + y) ≥ T (μ(x), μ(y)) ∀x, y ∈ R 

(R4) μ(xy) ≥ T (μ(x), μ(y)) ∀x, y ∈ R 

In particular, a TL-subring is simply called an L-subring whenT = ∧. The  set of  
all TL-subrings of R and the set of all L-subrings of R are denoted by the symbols 
TL(R) and L(R), respectively. 

Definition 2.22 [12] Let  μ : R → L and μ satisfy conditions (R1), (R2) and (R3). 
Then μ is called a TL-left ideal of R if it also satisfies the condition. 

(R5)l μ(xy) ≥ μ(y) ∀x, y ∈ R; 

a TL-right ideal of R if it is also satisfying the condition 

(R5)r μ(xy) ≥ μ(x) ∀x, y ∈ R; 

and a TL-two sided ideal or TL-ideal of R if it is also satisfying the condition 

(R5)μ(xy) ≥ μ(x) ∨ μ(y) ∀x, y ∈ R. 

In particular, whenT = ∧, a TL-left ideal, TL-right ideal and TL-ideal of R are 
referred to as an L-left ideal, L-right ideal and L-ideal of R, respectively we denote 
by TLIl(R), TLIr(R) and TLI(R), respectively, the set of all TL-left ideals of R, the 
set of all TL-right ideals of R and the set of all TL-ideals of R. 

3 Intuitionistic (T,S)-Fuzzy Submodules 

In this section we denote by R a commutative ring with unit 1 and by M a unitary 
R-module. 

Definition 3.1 Let M be a module over a ring R and let T and S be respec-
tively a t-norm and a t-conorm on [0,1] and an intuitionistic fuzzy subset A = 
{<x, μA(x), νA(x)>|x ∈ X} of M is said to be an intuitionistic (T,S)-fuzzy submodule 
of M (ITSFSM) if for all x, y ∈ M and r ∈ R,
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(i) μA(0) = 1 and νA(0) = 0, 
(ii) μA(x + y) ≥ T(μA(x), μA(y)), 
(iii) μA(rx) ≥ μA(x), 
(iv) νA(x + y) ≤ S(νA(x), νA(y)), 
(v) νA(rx) ≤ νA(x). 

Definition 3.2 [5] Let  A = (μA, νA), B  = (μB, νB) be IFS’s of M. Then the (T, S)— 
intersection of A and B and the (T, S)—sum of A and B can be defined as follows 
respectively. 

(1) A ⊓ B = {<x, (μA ⊓ μB)(x), (νA ⊔ νB)(x)> | x ∈ X} where (μA ⊓ μB)(x) = 
T (μA(x),μB(x)), (νA ⊔ νB)(x) = S(νA(x), νB(x)) 

(2) A ⊕ B = {<x, (μA⊕B)(x), (νA⊕B)(x)> | x ∈ M} where (μA⊕B)(x) = ∨{T (μA(y), 
μB(z))| y,z ∈ M, y + z = x} and (νA⊕B)(x) = ∧{S(νA(y), νB(z))| y, z ∈ M, y + z 
= x}. 

Definition 3.3 [5] Let  A = (μA, νA) be IFS’s of M. Then. 
−A = (μ−A, ν−A), an IFS in M is defined as. 
−A = {(x, μ−A(x), ν−A(x)) : x ∈ M} where, 

μ−A(x) = μA(−x)and ν−A(x) = νA(−x), ∀x ∈ M. 

Definition 3.4 [5] For an IFS A = (μA, νA) in M and  for any  r ∈ R, we define the 
IFS rA = (μrA, νrA) in M as  rA = {(x, μrA(x), νrA(x)): x ∈ M} where for each x ∈ 
M, μrA(x) = ∨{μA(y): y ∈ M, x = ry} and νrA(x) = ∧{νA(y): y ∈ M, x = ry}. 

Proposition 3.5 [5] If A = (μA, νA) is an IFS in a R-module M, then 1.A = A and 
(−1).A = −  A. 

Proposition 3.6 [5] If A = (μA, νA), B  = (μB, νB) be IFS’s of M with A ⊆ B, then 
rA ⊆ rB for any r ∈ R. 

Proposition 3.7 [5] If A = (μA, νA) is an IFS in M, then r(sA) = (rs)A for any r, s 
∈ R. 

Theorem 3.8 Let A = (μA, νA), B = (μB, νB) be IFS’s of M and T be an infinitely 
∨-distributive t-norm and S be an infinitely ∧-distributive t-conorm then, 

r(A ⊕ B) = rA ⊕ rB for any r ∈ R. 

Proof We have r(A ⊕ B) = (μr(A ⊕ B), νr(A ⊕ B)) and rA ⊕ rB = (μrA ⊕ rB, νrA ⊕ 
rB). 

Now, 

μr(A⊕B)(x) = ∨{
μ(A⊕B)(y) : y ∈ M, x = ry

}

= ∨{∨{T(μA(z1), μB(z2)) : z1, z2 ∈ M, y = z1 + z2} : y ∈ M, x = ry} 
= ∨{T(μA(z1), μB(z2)) : z1, z2 ∈ M, x = rz1 + rz2}
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= ∨{T(∨{μA(z1) : z1 ∈ M, x1 = rz1}, 
∨{μB(z2) : z2 ∈ M, x2 = rz2}) : x1 + x2 = x} 

= ∨{T(μrA(x1), μrB(x2)) : x1, x2 ∈ M, x1 + x2 = x} 
= μrA+rB(x), ∀x ∈ M. 

Similarly we can show that νr(A+B)(x) = νrA+rB(x),∀x ∈ M. Hence r(A ⊕ B) = rA 
⊕ rB. 

Proposition 3.9 [5] If A = (μA, νA) is an IFS  in  M,  then. 
μrA(rx) ≥ μA(x) and νrA(rx) ≤ νA(x), ∀x ∈ M. 

Proposition 3.10 [5] Let A = (μA, νA),B = (μB, νB) be IFS’s of M then, 

(1) μB(rx) ≥ μA(x), ∀x ∈ M ⇔ μrA ⊆ μB, 
(2) νB(rx) ≤ νA(x), ∀x ∈ M ⇔ νrA ⊇ νB. 

Theorem 3.11 Let A = (μA, νA), B = (μB, νB) be IFS’s  of  M and  T be an infinitely  
∨-distributive t-norm and S be an infinitely ∧-distributive t-conorm then, 
(1) μrA⊕rB(rx + sy) ≥ T(μA(x), μB(y)), 
(2) νrA⊕rB(rx + sy) ≤ S(νA(x), νB(y)), ∀x, y ∈ M, r, s ∈ R. 

Proof 

(1) μrA⊕sB(rx + sy) = ∨{T(μrA(z1), μsB(z2)): z1, z2 ∈ M, z1 + z2 = rx + sy} ≥ 
T(μrA(rx), μsB(sy)) ≥ T(μA(x),μB(y)) ∀x, y ∈ M, r, s ∈ R. 

(2) Similarly we have, 

νrA⊕sB(rx + sy) = ∧{ S(νrA(z1), νsB(z2)): z1, z2 ∈ M, z1 + z2 = rx + sy}. 
≤ S(νrA(rx), νsB(sy)) ≤ S(νA(x), νB(y)) ∀x, y ∈ M, r, s ∈ R. 

Theorem 3.12 Let A = (μA, νA),B = (μB, νB) and C = (μC, νC) be IFS’s of M and T 
be an infinitely ∨-distributive t-norm and S be an infinitely ∧-distributive t-conorm 
then, ∀r,s ∈ R, 

(1) μC(rx + sy) ≥ T(μA(x), μB(y)) ∀x, y ∈ M ⇔ μrA⊕sB ⊆ μC, 
(2) νC(rx + sy) ≤ S(νA(x), νB(y)) ∀x, y ∈ M ⇔ νrA⊕sB ⊇ μC 

Proof 

(1) Suppose we have μC(rx + sy) ≥ T(μA(x),μB(y)) ∀x, y ∈ M. Then, 

μrA⊕sB(z) = ∨{T(μrA(z1), μsB(z2)) : z1, z2 ∈ M, z1 + z2 = z} 
= ∨{T(∨{μA(x) : x ∈ M, z1 = rx}, ∨{μB(y) : y ∈ M, z2 = sy}) 
z1, z2 ∈ M, z1 + z2 = z} 

= ∨{T(μA(x), μB(y)) : x, y ∈ M, rx + sy = z} 
≤ ∨{μC(rx + sy) : x, y ∈ M, rx + sy = z} 

≤ μC(z), ∀z ∈ M.
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Thus μrA⊕sB ⊆ μC. Now conversely suppose μrA⊕sB ⊆ μC. Then 
μC(rx + sy) ≥ μrA⊕sB(rx + sy) ≥ T(μA(x),μB(y)) by Theorem 3.11. 

(2) Similarly suppose 

νC(rx + sy) ≤ S(νA(x), νB(y)),∀x, y ∈ M. Then, 

νrA⊕sB(z) = ∧{S(νrA(z1), νsB(z2)) : z1, z2 ∈ M, z1 + z2 = z} 
= ∧{S(∧{νA(x), x ∈ M, z1 = rx}, ∧{νB(y) : y ∈ M, z2 = sy}) 
: z1, z2 ∈ M, z1 + z2 = z} 

= ∧{S(νA(x), νB(y)) : x, y ∈ M, rx + sy = z} 
≥ ∧{νC(rx + sy) : x, y ∈ M, rx + sy = z} 
≥ νC(z), ∀z ∈ M.Thus νrA⊕sB ⊇ νC. 

Now conversely suppose νrA⊕sB ⊇ νC. Then νC(rx + sy) ≤ νrA⊕sB(rx + sy) ≤ 
S(νA(x), νB(y)) ∀x, y ∈ M by Theorem 3.11. 

Proposition 3.13 [5] If Ai = (μAi, νAi),i ∈ J, is a collection of IFS’s on R-module 
M, then, 

r

(
⊔

i∈J 

Ai

)

=
⊔

i∈J 

r Ai ∀r ∈ R. 

Proposition 3.14 [5] Let r ∈ R and A = (μA, νA) be an IFS in M. Then, 

(1) μr A  ⊆ μA ⇔ μA(r x) ≥ μA(x), 
(2) νr A  ⊇ νA ⇔ νA(r x) ≤ νA(x)∀x ∈ M. 

Proposition 3.15 Let r, s ∈ R and A = (μA, νA) be an IFS in M. Then, 

(1) μr A⊕s A  ⊆ μA ⇔ μA(r x  + sy) ≥ T (μA(x), μA(y), 
(2) νr A⊕s A  ⊇ νA ⇔ νA(r x  + sy) ≤ S(νA(x), νA(y), ∀x, y ∈ M. 

Proof Proof follows from Theorem 3.11 and Proposition 3.10. 

Theorem 3.16 Let A = (μA, νA) and B = (μB, νB) be IFS’s of M and T be an infinitely 
∨-distributive t-norm and S be an infinitely ∧-distributive t-conorm. Then A is an 
ITSFSM of M if and only if A satisfies the following conditions. 

(1) μA(0) = 1, νA(0) = 0 

(2) 
μA(rx + sy) ≥ T(μA(x), μA(y))and 

νA(rx + sy) ≤ S(νA(x), νA(y))∀x, y ∈ M, r, s ∈ R. 

Proof Let A = (μA, νA) be an IFS in M. Then obviously μA(0) = 1 and νA(0) = 0. 
Now, 

μA(rx + sy) ≥ T(μA(rx), μA(sy)) ≥ T(μA(x), μA(y)) and
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μA(0) = 1 and νA(0) = 0. 

Now, νA(rx + sy) ≤ S(νA(rx), νA(sy)) ≤ S(νA(x), νA(y)) ∀x, y ∈ M, r, s ∈ R. 
Conversely suppose A satisfies the conditions (1) and (2). Then we have, μA(0) 

= 1 and νA(0) = 0, μA(x + y) = μA(1.x + 1.y) ≥ T(μA(x), μA(y)), 

νA(x + y) = νA(1.x + 1.y) ≤ S(νA(x), νA(y)), 

μA(rx) = μA(rx + r0) ≥ T(μA(x), μA(0)) = μA(x)and 

νA(rx) = νA(rx + r0) ≤ S(νA(x), νA(0)) = νA(x)∀x, y ∈ M, r ∈ R. 

Hence A = (μA, νA) is an ITSFSM of M. 

Theorem 3.17 If A = (μA, νA) and B = (μB, νB) be ITSFSM of M, then A ⊓ B is  
ITSFSM of M. 

Proof (μA ⊓ μB)(0) = T(μA(0), μB(0)) = 1 and (νA ⊔ νB)(0) = S(νA(0),νB(0)) = 
0. 

Now (μA ⊓ μB)(x + y) =T(μA(x + y), μB(x + y)) ≥ T(T(μA(x), μA(y)),T(μB(x), 
μB(y))). 

= T(T(μA(x), μB(x)),T(μA(y), μB(y))) = T((μA ⊓ μB)(x),(μA ⊓ μB)(y)). 
Similarly, we can show that. 
(νA ⊔ νB)(x + y) ≤ S((νA ⊔ νB)(x),(νA ⊔ νB)(y))∀x,y ∈ M. 
Further (μA ⊓ μB) (rx) = T(μA(rx), μB(rx)) ≥ T(μA(x), μB(x)) = (μA ⊓ μB)(x) 

∀x ∈ M, r ∈ R. 
Similarly we get (νA ⊔ νB)(rx) ≤ (νA ⊔ νB)(x) ∀x ∈ M, r ∈ R. 
Hence A ⊓ B is an ITSFSM of M. 

4 Intuitionistic (T, S)-L Fuzzy Subrings 

Definition 4.1 Let T and S be respectively a t-norm and a t-conorm on L and an 
intuitionistic L fuzzy subset A = {x, μA(x), νA(x)|x ∈ X } of  R is said to be an  
intuitionistic (T,S)-L fuzzy subring of R (ITSLFSR) if for all x, y ∈ R, 

(i) μA(0) = 1andνA(0) = 0, 
(ii) μA(x − y) ≥ T (μA(x), μA(y)), 
(iii) μA(xy) ≥ T (μA(x), μA(y)), 
(iv) νA(x − y) ≤ S(νA(x), νA(y)), 
(v) νA(xy) ≤ S(νA(x), νA(y)).



62 Ü. Deniz

Lemma 4.2 If A = {x, μA(x), νA(x)|x ∈ X } is an ITSLFSR then. 

μA(0) ≥ μA(x) and νA(0) ≤ νA(x) f or  all  x  ∈ R. 

Definition 4.3 Let T and S be respectively a t-norm and a t-conorm on L and an 
intuitionistic L fuzzy subset A = {x, μA(x), νA(x)|x ∈ X } of  R is said to be an  
intuitionistic (T,S)-L fuzzy ideal of R (ITSLFI) if for all x, y ∈ R, 

(i) μA(0) = 1 and νA(0) = 0, 
(ii) μA(x − y) ≥ T (μA(x), μA(y)), 
(iii) μA(xy) ≥ μA(x), 
(iv) νA(x − y) ≤ S(νA(x), νA(y)), 
(v) νA(xy) ≤ νA(x). 

Theorem 4.4 Every ITSLFI is an ITSLFSR. 

Proof Let A = {x, μA(x), νA(x)|x ∈ X } be an ITSLFI then we proof the conditions 
of ITSLFSR. 

The conditions (i), (ii) and (iv) of ITSLFSR are equivalent the conditions (i), (ii) 
and (iv) of ITSLFI. So we only proof the conditions (iii) and (v). 

(iii) μA(xy) ≥ μA(x), and because of R is a commutative ring, 
μA(xy) = μA(yx) ≥ μA(x). Hence μA(xy) ≥ T (μA(x), μA(y)). 
(v) νA(xy) ≤ νA(x) and because of R is a commutative ring, 
νA(xy) = νA(yx) ≤ νA(y). Hence νA(xy) ≤ S(νA(x), νA(y)). 

Theorem 4.5 Let A = {x, μA(x), νA(x)|x ∈ X } and B = 
{x, μB (x), νB (x)|x ∈ X } be two ITSLFI. Then A ∩ B is an ITSLFI of R. 

Proof Let’s proof the conditions of ITSLFI. 

(i) 
(μA ∩ μB )(0) = μA(0) ∧ μB(0) = 1 ∧ 1 = 1, 
(νA ∪ νB )(0) = νA(0) ∨ νB (0) = 0 ∨ 0 = 0. 

(ii) Let x, y ∈ R 

(μA ∩ μB )(x − y) = μA(x − y) ∧ μB (x − y) 
≥ T (μA(x), μA(y)) ∧ T (μB (x), μB (y)) 
≥ T (μA(x) ∧ μB (x), μA(y) ∧ μB (y)) 
= T ((μA ∩ μB)(x), (μA ∩ μB )(y)). 

(iii) Let x, y ∈ R 

(μA ∩ μB )(xy) = μA(xy) ∧ μB (xy) ≥ μA(x) ∧ μB (x) = (μA ∩ μB )(x)
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(iv) Let x, y ∈ R 

(νA ∪ νB )(x − y) = νA(x − y) ∨ νB (x − y) 
≤ S(νA(x), νA(y)) ∨ S(νB (x), νB (y)) 

≤ S(νA(x) ∨ νB (x), νA(y) ∨ νB (y)) = S((νA ∪ νB )(x), (νA ∪ νB )(y)). 

(v) Let x, y ∈ R 

(νA ∪ νB )(xy) = νA(xy) ∨ νB (xy) ≤ νA(x) ∨ νB (x) = (νA ∪ νB )(x). 

Theorem 4.6 Let A = {<x, μA(x), νA(x)|x ∈ X >} and. B = 
{x, μB (x), νB (x)|x ∈ X } be two ITSLFI. If T is an infinitely ∨-distributive t-
norm and S is an infinitely ∧- distributive conorm then A + B is an ITSLFI of 
R. 

Proof Lets proof the conditions of ITSLFI. 

(i) 

(for y = 0 and  z  = 0 μA(0) ∧ μB(0) = 1 ∧ 1 = 1 and  vA(0) ∨ vB(0) = 0 ∨ 0 = 0 then) 
(μA + μB)(0) = ∨{μA(y) ∧ μB(z)|y + z = 0 } = 1 
(nA + nB)(0) = ∧{nA(y) ∧ nB(z)|y + z = 0 } = 0 

(ii) 

(μA + μB)
(
x − x') = ∨{

μA(y) ∧ μB(z)
|
|y + z = x − x' }

≥ ∨{
μA

(
y' − y'') ∧ μB(z' − z'')

|
|y' − y'' + z' − z'' = x − x' }

≥ ∨{T (
μA

(
y'), μA

(
y'')) ∧ T

(
μB

(
z'

)
, μB

(
z''

))

≥ ∨{
T

(
μA

(
y')) ∧ μB

(
z'

)
, T

(
μA

(
y'') ∧ μB

(
z''

))}

= T
(∨{

μA(y') ∧ μB
(
z'

)|
|y' + z' = x

}
, 

∨{
μA(y'') ∧ μB

(
z''

)|
|y'' + z'' = x' })

= T
(
(μA + μB)(x), (μA + μB)

(
x')), 

(iii) 

(μA + μB)(xx') = ∨{
μA(y) ∧ μB(z)|y + z = xx'}

≥ ∨μA(y'x ') ∧ μB(z')
|
|y' + z' = x 

= (μA + μB)(x)
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(iv) 

(vA + vB)(x − x') = ∧{
μA(y) ∨ μB (z)

|
|y + z = x − x' }

≤ ∧{
vA(y' − y'') ∨ vB (z' − z'')

|
|y' − y'' + z' − z'' = x − x' }

≤ ∧{
S(vA(y'), vA(y'')) ∨ S(vB(z'), vB(z''))|(y' + z') 

−(y'' + z'') = x − x'}

≤ S
{∧{

vA(y') ∨ vB(z'))
|
|y' + z' = x

})
, 

∧ {
vA

(
y'') ∨ vB

(
z''

)|
|y'' + z'' = x' })

= S((vA + vB)(x), (vA + vB)(x')) 

(v) 

(vA + vB)(xx') = ∧{
μA(y) ∨ μB(z)

|
|y + z = xx' }

≤' ∧{
vA(y'x') ∨ vB(z'x')

|
|y'x' + z'x' = x − x' }

≤ ∧{
(vA(y') ∨ vB(z')

|
|y' + z' = x

} = (vA + vB)(x) 

Definition 4.7 [6] Let  f:  R  → S be a ring homomorphism. Let A = 
{x, μA(x), νA(x)|x ∈ X } and B = {x, μB (x), νB (x)|x ∈ X } be two ILFS. Then 
C = {y, f (μA)(y), f (νA)(y)|y ∈ S } is called intuitionistic image of A, where. 

f (μA)(y) =
⎧v{μA(x)|x ∈ R, f (x) = y } i f  f  −1(y) /= ∅, 

0 otherwise. 

f (νA)(y) =
⎧Ʌ{νA(x)|x ∈ R, f (x) = y } i f  f  −1(y) /= ∅, 

0 other wise. 

for all y ∈ S; 
and D = {

x, f −1(μB )(x), f −1(νB )(x)|x ∈ R
}
is called intuitionistic inverse 

image of B, where f −1(μB )(x) = μB ( f (x)) f −1(νB)(x) = νB ( f (x)) for all x ∈ R. 
Here f (μA) and f (νA) are called the image of μA and νA under f. Also f −1(μB ) 

and f −1(νB ) are called the inverse of μB and νB under f. 

Theorem 4.8 Let A = {x, μA(x), νA(x)|x ∈ X } be ban ITSLFI of R 
and B = {x, μB (x), νB (x)|x ∈ X } be an ITSLFI of S. If T is an 
infinitely ∨-distributive t-norm and S is an infinitely ∧-distributive conorm 
then C = {y, f (μA)(y), f (νA)(y)|y ∈ S } is and ITSLFI of S and D ={
x, f −1(μB )(x), f −1(νB )(x)|x ∈ R

}
is an ITSLFI of R. 

Proof First let proof for C the ITSLFI conditions. 

(i) Since f is a ring homomorphism f(0) = 0 then f −1(0) /= ∅;  
since μA(0) = 1 and vA(0) = 0 then;
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f (μA)(0) =
v

{μA(x)|x ∈ R, f (x) = 0 } = 1, 

f (νA)(0) =
Ʌ

{νA(x)|x ∈ R, f (x) = 0 } = 0. 

(ii) for f −1
(
y − y') = ∅  f −1(y) = ∅and f  −1

(
y') = ∅  because if both them don’t 

be an empty set then f (x) = y, f
(
x ') = y' ⇒ f (x) − f

(
x ') = y − y' ⇒ 

f
(
x − x ') = y − y' and there we obtain f −1

(
y − y') /= ∅. 

if one of them is empty and the other isn’t then we obtain. 
f (μA)

(
y − y') ≥ T

(
f (μA)(y), f (μA)

(
y')) ≥ 0 ≥ T (0, a) = 0 the 

inequality is satisfied. Now we consider that f −1
(
y − y') /= ∅. 

f (μA)
(
y − y') =

v{
μA(x)

|
| f (x) = y − y' }

≥
v{

μA
(
x ' − x '')|| f

(
x ' − x '') = y − y' }

=
v{

μA
(
x ' − x '')|| f

(
x ') − f

(
x '') = y − y' }

≥ T
(v{

μA
(
x ')|| f

(
x ') = y

}
,
v{

μA
(
x '')|| f

(
x '') = y' }

)

= T
(
f (μA)(y), f (μA)

(
y')). 

(iii) for f −1
(
yy') = ∅  f −1(y) = ∅and f  −1

(
y') = ∅  because if both them don’t be 

an empty set then f (x) = y, f
(
x ') = y' ⇒ f (x) f

(
x ') = yy' ⇒ f

(
xx ') = 

yy' and there we obtain f −1
(
yy') /= ∅. Now we consider that f −1

(
yy') /= ∅. 

f (μA)
(
yy') =

v{
μA(x)

|
| f (x) = yy' } ≥

v{
μA

(
x 'x '')|| f

(
x 'x '') = yy' }

=
v{

μA
(
x 'x '')|| f

(
x ') f

(
x '') = yy' } ≥

v{
μA

(
x ')|| f

(
x ') = y

} ≥ f (μA)(y). 

(iv) Likewise when f −1
(
y − y ') = ∅  the inequality is satisfied. Now we consider 

that f −1
(
yy') /= ∅. 

f (μA)
(
y − y') =

v{
μA(x)

|
| f (x) = y − y' }

≥
v{

μA
(
x ' − x '')|| f

(
x ' − x '') = y − y' }

=
v{

μA
(
x ' − x '')|| f

(
x ') − f

(
x '') = y − y' }

≥ T
(v{

μA
(
x ')|| f

(
x ') = y

}
,
v{

μA
(
x '')|| f

(
x '') = y' }

)

= T
(
f (μA)(y), f (μA)

(
y')). 

(v) Likewise when f −1
(
yy') = ∅  the inequality is satisfied. Now we consider that 

f −1
(
yy') /= ∅.
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f (νA)
(
yy') =

Ʌ{
νA(x)

|
| f (x) = yy' } ≤

Ʌ{
νA

(
x 'x '')|| f

(
x 'x '') = yy' }

=
Ʌ{

νA
(
x 'x '')|| f

(
x ') f

(
x '') = yy' } ≤

Ʌ{
νA

(
x ')|| f

(
x ') = y

}

= f (νA)(y) 

We show that intuitionistic fuzzy set C is an ITSLFI. Now let proof for D then 
ITSLFI conditions. 

(i) 

f −1 (μB )(0) = μB ( f (0)) = μB (0) = 1 
f −1 (νB )(0) = νB ( f (0)) = νB (0) = 0, 

(ii) 

f −1 (μB )
(
x − x ') = μB

(
f
(
x − x ')) = μB

(
f (x) − f

(
x '))

≥ T
(
μB ( f (x)), μB

(
f
(
x ')))

= T
(
f −1 (μB )(x), f −1 (μB )

(
x ')). 

(iii) 

f −1(μB )
(
xx ') = μB

(
f
(
xx ')) = μB

(
f (x) f

(
x ')) ≥ μB ( f (x)) = f −1(μB )(x) 

(iv) 

f −1 (νB )
(
x − x ') = νB

(
f
(
x − x ')) = νB

(
f (x) − f

(
x '))

≤ S
(
νB ( f (x)), νB

(
f
(
x ')))

= S
(
f −1 (νB )(x), f −1 (νB )

(
x ')). 

(v) 

f −1 (νB )
(
xx ') = νB

(
f
(
xx ')) = νB

(
f (x) f

(
x ')) ≤ νB ( f (x)) = f −1 (νB )(x). 
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Fuzzy Dynamic Parameter Adaptation 
in the Mayfly Algorithm: 
Implementation of Fuzzy Adaptation 
and Tests on Benchmark Functions 
and Neural Networks 

Enrique Lizarraga, Fevrier Valdez, Oscar Castillo, and Patricia Melin 

Abstract Inspired by the flight behavior and mating process of mayflies, the Mayfly 
algorithm combines the main advantages of swarm intelligence and evolutionary 
algorithms, resulting in better performance than the particle swarm algorithm. So, 
we proposed a modification of Mayfly algorithm by applying a fuzzy parameter 
adapter to be able to apply this to neural network problems. We were able to observe 
that the fuzzy adapter improves the speed of convergence of the mayfly algorithm and 
when applied to a neural network for the Mackey glass series, it manages to detect the 
optimal number of neurons of the hidden layer for the network architecture. However, 
when using the Mayfly algorithm to optimize the architecture of neural networks, 
the results do not improve much, so we can deduce that this metaheuristic method is 
not recommended (for the moment) for this type of optimization, due to the fact that 
the root mean square error did not get below 0.001 even using the modified Mayfly 
algorithm with the fuzzy adapter. 

Keywords Mayfly algorithm · Fuzzy logic · Dynamic parameter adaptation 

1 Introduction 

Optimization is a process of finding the best solution of a function (either its minimum 
or maximum value). A lot of real-world problems are represented as optimization 
problems, for the minimization of a single objective. 

Inspired by the flight behavior and mating process of mayflies, the proposed 
algorithm combines the main advantages of swarm intelligence and evolutionary 
algorithms. In this work to evaluate the performance of the algorithm, 10 benchmark 
functions were used [1] and also neural network optimization is considered. 

Ephemera is a species of insects whose young would live in the water for several 
years and when they mature, they will bark and fly through the air. However, these 
mature insects only have the purpose of reproducing since their life span is short [2].
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In fact, this offers a powerful hybrid algorithmic structure, based on the behavior 
of mayflies, for researchers trying to improve the performance of the particle swarm 
optimization (PSO) algorithm using techniques, such as crossover, since it has been 
shown that PSO needs some modifications to be improved [1]. 

Fuzzy logic is based on the fuzzy set theory proposed by Lotfi Zadeh, which 
helps us model human knowledge through the use of fuzzy if–then rules. Fuzzy 
logic provides a systematic computation for dealing with linguistic information and 
improves numerical computation through the use of linguistic labels stipulated by 
membership functions [3]. 

Solution search algorithms such as PSO, differential evolution (DE), genetic algo-
rithms (GAs), and firefly algorithm (FA) have proven to be efficient in terms of speed 
of convergence for optimization problems, so we expect that the Mayfly algorithm, 
being an improvement of the PSO algorithm, to work in an efficient manner. We also 
expect that it will be efficient when applied to neural network optimization problems. 

The structure of this work is as follows. In Sect. 2 we have the theoretical frame-
work, where we describe the background of the Mayfly algorithm (MA), as well as 
the variants that have emerged from it so far. Then we have Sect. 3, in this section 
the problem statement is shown as well as the main hypothesis. In Sect. 4 the devel-
opment of this research will be discussed, starting with the study of the impact of 
the parameters on the performance of the Mayfly algorithm. In Sect. 5 the design of 
the fuzzy adapter will be shown where we start with a fuzzy adapter with a single 
input and a single output. In Sect. 6 we find the creation of the neural network for 
the Mackey Glass time series. In Sect. 7 we have the statistical tests and the results 
obtained from the optimization of the neural network for the Mackey Glass series 
using Mayfly algorithm enhanced with fuzzy logic. Finally, we have the Conclusions 
Section, where we discuss if the Mayfly algorithm with fuzzy adaptation turned out 
to improve the performance in comparison with its original version and how efficient 
its application to the optimization of network architectures was. 

2 Theoretical Framework 

First of all, we start by mentioning that genetic algorithms are mainly used to solve 
problems in which classical algorithms would entail a large computational cost, and 
these algorithms are based on the genetic evolution of Darwin’s theory. Therefore, 
we start with a set of chromosomes, where each one represents a possible solution 
to the given problem, this chromosome is randomly generated with the dimensions 
that we consider appropriate for the specific problem that we seek to solve, as well 
as the population number that we will have. 

The mayfly is a species of insects in which the young would live in the water for 
several years and when they mature, they will bark and fly through the air. However, 
these mature insects only have the purpose of reproducing since their life span is 
short [1].
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By observing male and female mayflies moving in search of a mate, the MA algo-
rithm is based on this behavior. Built similarly to the PSO algorithm [4, 5], mayflies 
will also update their positions. However, they converge faster to the optimum, so 
the Mayfly algorithm, in some way, is an improvement of the PSO algorithm. 

xt+1 
i = xt i + vt+1 

i (1) 

vt+1 
i j  = vt 

i j  + dr (2)  

vt+1 
i j  = vt 

i j  + a1e−βr2 p
(
pbesti j  − xt i j

) + a2e−βr2 g
(
gbest j − xt i j

)
(3) 

Parameters a1 and a2 will be adjusted with fuzzy logic, and these parameters 
represent the constants of positive attraction that are used to scale the contribution 
of the cognitive and social components, respectively. 

Based on the mayfly literature by Konstantinos Zervoudakis, the recommended 
value for the parameter a1 is in the range of 1 to 2 and for the parameter a2 it is in 
the range of 1.5–2. 

Research has shown that not only would the best candidates or best historical 
trajectories work well in guiding people in swarms to find the best solution, but that 
the worst and worst historical trajectories would also work well in doing so. Such 
situations could be treated directly as pairs of oppositions and satisfy the ancient 
Chinese Yin-Yang philosophy which shows us that there would be a strong relation-
ship between the Yin and Yang sides, or good and evil, negative and positive, fire and 
water, dry and wet, then, the opposition-based learning (OBL) rule was proposed 
[6]. 

This algorithm is a variant of the Mayfly algorithm in which, like its predecessor, 
population is divided into two types, the male mayfly and the female mayfly, both of 
which will update their positions with their velocities vi(t) [6]. 

pi(t + 1) = pi(t) + vi(t) (4) 

opi(t + 1) = a + b − pi(t) (5) 

The improved mayfly optimization algorithm. 
This algorithm has been designed through the explained conception and modeling 

of three algorithms, the particle swarm optimization algorithm (PSO) [7–9], the 
firefly optimization algorithm (FOA) and the genetic algorithm (GA) that made it so 
efficient due to to the use of the three popular advantages of the methods. With the 
hybridization [10–14] of the algorithms, the exploitation of the PSO [15] algorithm 
is combined with the exploration features of the other algorithms to achieve greater 
efficiency in the modeling of mayflies, especially the reproduction model. This model 
helps the fittest mayflies [9, 16, 17] survive after hatching from the eggs regardless 
of their lifespan. We first look for the short-lived male with the lowest cost value in
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the population, then we select the number of seeds, followed by this the short-lived 
females attract the elite males to spawn new offspring using this as their growth ratio, 
updating their speed is given by the following form [18]. 

vt+1 
id = vt id + c1 e−ξ D2 

p gbestd − pt id + c2e−ξ D2 
g gbestd − pt id (6) 

Parameters c1 and c2 are the constants of positive attraction that represent 
the participation of the cognitive and social elements, respectively. In addition, p 
represents the position, v is the velocity, t represents the iteration. 

Algorithm NMO 
This is a negative ephemeral optimization algorithm. In which the male mayflies 
would update their speeds according to the worst candidates along with their worst 
trajectories. Contrary to the normal positive interpretation, in the NMO algorithm, 
male mayflies would flee their worst trajectories and global worst candidates, female 
mayflies have a duty to reproduce, thus they are all in a rush to mate. Their speeds 
would update according to their peers. That is, the speed of the i-th female mayfly 
would be guided to update according to her fitness value f [yi (t)] and her partner 
f [xi (t)], and the speed will be updated by the following equation well optimizing 
the unimodal or multimodal reference functions, even for the non-symmetric one. 
However, for unimodal reference functions, MO would perform better than NMO 
[19]. 

gvt 
i + a1e−βr2 m f

[
xt i − yt i

]
f
[(
xt i − yt i

)]
> f

[(
xt i

)]
(7) 

vt+1 
i =

⎧
gvt 

i + dr2 f
[
xt i

] ≤ f
[
xt hi

]

gvt 
i + a2e−βr2 p.

[
xhi − xt i

] + a3e−βr2 g
[
xg − xt i

]
f
[
xt i

]
> f

[
xt hi

] (8) 

The parameters a2 and a3 are constant, rp and rg represent the Cartesian distance 
between the current individual and the best historical trajectory, d represents the 
proportion of the wedding dance around the current position, r2 it is another random 
number in uniform distribution with interval of −1 and 1 and xhi represents the best 
historical trajectory. 

Balanced Mayfly algorithm (BMA) 
The algorithm has been designed by the explained conception and the modeling 
of three algorithms, Particle Swarm Optimization (PSO) algorithm, Firefly Algo-
rithm (FA), and Genetic Algorithm (GA) that made it so efficient due to the use 
of the advantages all three popular methods. With hybridizing of the algorithms, 
the exploitation of the PSO algorithm is combined with exploration features of the 
other algorithms for achieving higher efficiency in modeling the mayflies, especially 
the model of breeding. This modeling helps the fittest mayflies to survive after egg 
hatching without considering their lifespan.
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First we look for the ephemeral male with the lowest cost value in the population, 
then we select the number of seeds, followed by this the ephemeral females attract 
the elite males to generate a new offspring using this as the growth radius [18]. 

vt+1 
id  = vt 

id  + c1e−ξ D2 
p gbestd − pt id  + c2e−ξ D2 

g gbestd − pt id (9) 

The parameters xt ij and v
t 
ij represent the location and velocity of the i-th mayfly 

in dimension j, β is a coefficient to make the ephemeral visible to others, rp and rg 
represent the restricted Cartesian distance in the range, xi l and x

j 
g describe the mayfly 

with the optimal position for the mayfly, b1 and b2 represent the constants of positive 
attraction and social factors, respectively. 

This chaotic time series is widely used to evaluate the performance of a neural 
network, it was invented by mathematicians Michael Mackey and Leon Glass. It is 
a differential equation and with lags, however it has a chaotic behavior at τ = 17 
which will be used to evaluate our neural network and will be calculated with the 
following equation. 

dx(t) 
dt 

= 
0.2X(−t − τ) 
1 + X10 (t − τ) 

− 0.1x(t) (10) 

3 Proposed Method 

In this Section, we can see the flow diagram of the proposed method to improve the 
convergence of the mayfly algorithm in Fig. 1,

In the original method first we start/initialize the female population,/find the best 
global/evaluate solutions/we check the stop criteria, if its satisfied we find the solu-
tion, if not then update velocities and solutions of males and females, evaluate solu-
tions, Rank the mayflies/Mate the mayflies/evaluate offspring/separate offspring to 
mate and female randomly/replace worst solutions with the best new ones, update 
pbest and gbest and check the stop criteria again. In the proposed method after 
checking the stopping criteria, we will add fuzzy adaptation of the parameters that 
affect the algorithm performance the most. 

4 Study of the Impact of the Parameters 

We show in Fig. 2 a study of how the parameter values impact the behavior of the 
algorithm, in this case for the sphere benchmark function.

In Fig. 2 we can see how the benchmark function of the sphere behaves, where the 
a2 parameter stands out in the impact of the performance of the Mayfly algorithm.
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Fig. 1 Diagram of the proposed method
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Fig. 2 Impact of sphere benchmark function parameters

In Fig. 3 we analyze the impact of the Mayfly algorithm on the Rastrigin bench-
mark function, here we observe that a1 represents a greater impact when varying 
it.

In Fig. 4 we analyze the impact of the Mayfly algorithm on the Griewank 
benchmark function, where a1 and a2 represent a greater impact when varying them.
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Fig. 3 Impact of Rastrigin benchmark function parameters

Fig. 4 Impact of Griewank benchmark function parameters 

5 Fuzzy Adapter Design 

First, a fuzzy adapter was designed with parameter a2 because it was the param-
eter that was most relevant in the performance of the Mayfly algorithm, although 
parameter a1 was very close. 

5.1 Fuzzy Adapter with 1 Input and 1 Output 

The fuzzy rules for parameter adaptation are presented in Fig. 5.
In Fig. 5 we have the initial fuzzy rules in which we start with a2 with high values 

in the first iterations and as they progress a2 will decrease, in the first fuzzy rule the 
algorithm is just beginning, while in the last rule it is almost has finished, that makes
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Fig. 5 Fuzzy rules

the fuzzy rules adjust the value of the parameter a2 as the iterations go by, and thus 
get closer to its optimal values for said parameter. 

f(x; a, b, c) = 

0, x ≤ a 
x−a 
b−a , a ≤ x ≤ b 
c−x 

c − b 
0, 

, b ≤ x ≤ c 
c ≤ x 

(11) 

In Eq. 11 we have the triangular membership functions in which the values a, b 
and c will be given by the tables below. Table 1 shows the parameter values for the 
input membership functions. 

Table 2 shows the parameter values for the output membership functions. 
In Fig. 6 we have the initial fuzzy adapter which consisted of an input variable 

and an output variable, in the input variable we only take into account the iterations.
As we can note in Table 3 we have the abbreviation of the benchmark functions.
Table 4 shows a summary of the results for the 10 benchmark functions.

Table 1 Input membership 
functions in the initial fuzzy 
adapter 

Membership function a b c 

IMP (very small iteration) 0 0 0.25 

IP (small iteration) 0 0.25 0.5 

IM (medium iteration) 0.25 0.5 0.75 

IG (big iteration) 0.5 0.75 1 

IMG (very big iteration) 0.75 1 1 

Table 2 Output membership 
functions in the initial fuzzy 
adapter 

Membership function A B C 

A2MP (a2 very small) 0 0 0.25 

A2P (a2 small) 0 0.25 0.5 

A2M (a2 medium) 0.25 0.5 0.75 

A2G (a2 big) 0.5 0.75 1 

A2MG (a2 very big) 0.75 1 1 
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Fig. 6 Initial structure of the fuzzy adapter

Table 3 Representation of the benchmark functions 

Abbreviation Name of function 

F1 Sphere 

F2 Rastrigin 

F3 Ackley 

F4 Dejong1 

F5 Griewank 

F6 Schwefel 

F7 Styblinskitank 

F8 Wood 

F9 Hyper-ellipsoid 

F10 Powell

Table 4 Fuzzy adapter applied to a2 and a1 individually 

Benchmark function Beta parameter/50 dimensions 

Fuzzy adapter for a2 Fuzzy adapter for a1 

x S x S 

F1 2.1415 × 10–16 7.7240 × 10–17 8.3797 × 10–17 5.2048 × 10–17 

F2 2.2920 × 101 8.9131 × 100 2.2685 × 101 8.5655 × 100 

F3 3.0944 × 100 5.3400 × 10–2 3.1116 × 100 3.4500 × 10–2 

F4 1.9221 × 10–18 2.9649 × 10–18 8.2611 × 10–17 4.5886 × 10–17 

F5 1.600 × 10–3 3.6000 × 10–3 1.700 × 10–3 3.600 × 10–3 

F6 2.0755 × 104 4.0579 × 100 2.0754 × 104 2.8595 × 100 

F7 −1.7482 × 103 4.1381 × 101 −1.7465 × 103 4.5256 × 101 

F8 1.074 × 10–1 5.8840 × 10–1 4.6900 × 10−2 1.7930 × 10–1 

F9 6.5445 × 10–17 1.0540 × 10–16 2.5736 × 10−15 2.1093 × 10–15 

F10 5.1923 × 10–16 1.2900 × 10–15 9.2123 × 10–17 5.1465 × 10–17
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As we can note in Table 4, the results of both initial fuzzy adapters were compared, 
where it can be seen that there was not a considerable difference, however, it can be 
seen that using the parameter a2 better results are achieved. 

5.2 Fuzzy Adapter with 2 Inputs and 2 Outputs 

Noting that the results of the initial fuzzy system did not significantly improve the 
performance of the Mayfly algorithm, even when applying trapezoidal fuzzy rules, 
it was decided to make a fuzzy adapter with 2 inputs and 2 outputs. In this case, 
the parameters a1 and a2 were used together to improve their effectiveness, since 
individually no difference was achieved between one parameter and another. 

Figure 7 shows, in a general way, the design of the final fuzzy adapter, where we 
have 2 inputs and 2 outputs respectively to control the parameters a1 and a2 

f(x; a, b, c, d) = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0, si  (x < a)o(x > d) 
x−a 
b−a , sia ≤ x ≤ b 
1, 
d−x 
d−c 

, sib ≤ x ≤ c 
sic ≤ x ≤ d 

(12) 

Trapezoidal membership functions are shown in Eq. 12, in which the values a, b 
and c d will be given by the tables below. 

In Table 5 we can find the input membership functions for our final fuzzy adapter.
In Table 6 we can find the output membership functions for our final fuzzy adapter.
We can see that the Eq. 13 represents the diversity calculation. 

d = 
1 

ns 

nsΣ

i=1

/Σns 

j=1

(
xij(t) − Xj(t)

)2 
(13)

Fig. 7 Two inputs and two outputs fuzzy adapter 
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Table 5 Input membership functions in the 2-input, 2-output fuzzy adapter 

Membership functions a b c d 

IB (small iteration) 0 0 0.1 0.33 

IM (medium iteration) 0.25 0.42 0.58 0.75 

IA (big iteration) 0.67 0.9 1 1 

DB (small diversity) 0 0 0.1 0.33 

DM (medium diversity) 0.25 0.42 0.58 0.75 

DA (big diversity) 0.67 0.9 1 1

Table 6 Output membership functions in the 2-in, 2-out fuzzy adapter 

Membership functions a b c d 

A1B (a1 small) 1.094 1.241 1.78 1.427 

A1MB (a1 medium small) 1.278 1.399 1.485 1.611 

A1M (a1 medium) 1.475 1.578 1.659 1.779 

A1MA (a1 medium big) 1.648 1.763 1.844 1.982 

A1A (a1 big) 1.833 1.982 2.018 2.167 

A2B (a2 small) 0.42 0.58 0.62 0.7803 

A2MB (a2 medium small) 0.62 0.7803 0.8203 0.9797 

A2M (a2 medium) 0.85 0.9797 1.02 1.15 

A2MA (a2 medium big) 1.02 1.18 1.22 1.38 

A2A (a2 big) 1.22 1.38 1.42 1.58

6 Mackey Glass Neural Network Design 

To design the neural network we went through several steps, firstly, we obtained the 
training data for the Mackey Glass chaotic time series, this with the help of a data 
generator previously programmed in Matlab, as input parameters we used τ = 17, 
xo = 1.2 and generate a sample from 0 to 1200. 

As we can see in Fig. 8 we have the Mackey Glass chaotic series with a sample 
of 1200 data from which we take 800 to train our neural network, without any 
delay, therefore our network will only be able to predict a few steps ahead. of the 
unknown data, however the fundamental thing about this neural network is to extract 
the mean square error in order to determine how effective it is and determine how 
many neurons the hidden layer requires, said information will be sent to the original 
Mayfly algorithm and to which we have modified with the fuzzy adapter to verify 
how efficient the method is and in turn maximize the performance of the previously 
designed neural network.
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Fig. 8 Mackey Glass series 

7 Results 

In this section we will present the different results obtained in this investigation, 
first we will show the evaluations of the fuzzy adapters, after that we will have the 
statistical tests and neural network to predict the Mackey Glass time series. 

As we can see in Table 7 the results for the different fuzzy adapters and the original 
mayfly algorithm evaluated with benchmark functions are shown.

As we can see in Table 8 we have the results of the statistical tests applied in 
comparison with the author of Mayfly for 50 dimensions and maximum iterations of 
2000, as results we obtained 5 tests with significant evidence that the inclusion of the 
fuzzy adapter improves the performance of the Mayfly algorithm in the benchmark 
functions commonly used for this type of tests, of these tests the most notable was 
the one carried out with the Powell function since it is the only one that passes the 
statistical test with 95% confidence.

In Fig. 9 we can appreciate a comparison between the chaotic series of Mackey 
Glass and the results of our previously optimized neural network, in said optimization 
result we obtained that the adequate number of neurons in the hidden layer is 73, 
since with it the quadratic error mean is 0.0365.
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Table 7 Results of the fuzzy adapters 

Benchmark function 50 dimensions 

Fuzzy adapter initial Fuzzy adapter final Mayfly original 

F1 x 2.1415 × 10–16 8.3455 × 10–17 1.1777 × 10–7 

S 7.7240 × 10–17 5.1033 × 10–17 4.5203 × 10–7 

F2 x 1.7254 × 101 1.1270 × 101 1.1900 × 101 

S 5.5900 × 100 3.7928 × 100 3.8200 × 100 

F3 x 3.1267 × 100 3.1224 × 100 0.0000 × 100 

S 3.0100 × 10–2 2.9100 × 10–2 0.0000 × 100 

F4 x 1.1000 × 10–3 9.0247 × 10–4 4.1400 × 10–3 

S 4.0000 × 10–3 3.8000 × 10–3 1.2900 × 10–2 

F5 x 2.0754 × 104 2.0755 × 104 3.8800 × 100 

S 3.3438 × 100 2.9589 × 100 8.8300 × 10–1 

F6 x 1.8052 × 10–15 3.9987 × 10–127 5.2800 × 10–49 

S 5.7657 × 10–15 2.1902 × 10–122 1.6500 × 10–48 

F7 x 5.6907 × 101 5.52105 × 101 6.7703 × 101 

S 2.5495 × 101 2.3000 × 101 3.9877 × 101 

F8 x 3.6000 × 10–3 7.9186 × 10–4 3.3465 × 10–8 

S 3.0000 × 10–3 2.1000 × 10–3 1.6242 × 10–7 

F9 x 5.9987 × 101 6.8769 × 101 1.7130 × 10–1 

S 1.0816 × 102 1.3059 × 102 8.3733 × 10–2 

F10 x 2.7503 × 10–10 3.6940 × 10–15 7.3923 × 10–6 

S 3.8725 × 10–10 5.6091 × 10–15 2.5797 × 10–5

8 Conclusions 

The a2 parameter mainly affects the performance of the mayfly algorithm, it was 
observed that its performance increases in values close to 1, so is one of the parameters 
to which the fuzzy logic was applied. The parameter a1 increases the performance 
of the algorithm in values between 3 and 5, so it will be the other parameter to 
take into account when applying fuzzy logic. As for the parameter β, it produced 
the best results at a value of 1, however its variation affects the performance of the 
algorithm very little, so it is not taken into account for the application of fuzzy logic. 
The results improved when applying a fuzzy adapter with two input and two output 
parameters. Applying fuzzy adaptation to parameters a1 and a2 together significantly 
improves performance on mathematical functions compared to the original author of 
the Mayfly method. Better results were obtained with the trapezoidal functions when 
compared to the triangular ones. Using the Mayfly algorithm to optimize the neural 
network architecture works well, however, the results do not improve much, so we 
can conclude that this heuristic is not recommended for this type of optimization at 
the moment, because the mean square error does not was able to drop below 0.001
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Table 8 Hypothesis test results 

Benchmark 
function 

50 dimensions Results statistical test 

Fuzzy adapter Mayfly original 

x S x S Z S 

F1 8.3455 × 
10–17 

5.1033 × 
10–17 

1.1777 × 
10–7 

4.5203 × 
10–7 

−1.4270 Pass test 

F2 1.1270 × 
101 

3.7928 × 
100 

1.1900 × 
101 

3.8200 × 
100 

−0.6410 Does not 
pass 

F3 3.1224 × 
100 

2.9100 × 
10–2 

0.0000 × 
100 

0.0000 × 
100 

0 Does not 
pass 

F4 9.0247 × 
10–4 

3.8000 × 
10–3 

4.1400 × 
10–3 

1.2900 × 
10–2 

−1.3186 Pass test 

F5 2.0755 × 
104 

2.9589 × 
100 

3.8800 × 
100 

8.8300 × 
10–1 

0 Does not 
pass 

F6 3.9987 × 
10–127 

2.1902 × 
10–122 

5.2800 × 
10–49 

1.6500 × 
10–48 

−1.7527 Pass test 

F7 5.52105 × 
101 

2.3000 × 
101 

6.7703 × 
101 

3.9877 × 
101 

−1.4764 Pass test 

F8 7.9186 × 
10–4 

2.1000 × 
10–3 

3.3465 × 
10–8 

1.6242 × 
10–7 

2.0652 Does not 
pass 

F9 6.8769 × 
101 

1.3059 × 
102 

1.7130 × 
10–1 

8.3733 × 
10–2 

2.8771 Pass test 

F10 3.6940 × 
10–15 

5.6091 × 
10–15 

7.3923 × 
10–6 

2.5797 × 
10–5 

−1.5696 Pass test

Fig. 9 Optimized network forecast
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even using the modified Mayfly algorithm with the fuzzy adapter. Optimizing the 
architecture of a neural network has a high computational cost, however the cost is 
lower than if we did it with a classic search method, it is difficult for us to obtain an 
adequate number of neurons in the hidden layer since its complexity is different from 
the optimization of mathematical functions, which is what this method has mainly 
excelled at. As future work, the fuzzy adapter can be optimized by means of a GA 
to maximize the performance of the fuzzy Mayfly algorithm by finding the optimal 
values of the parameters in the membership functions. 
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Fuzzy Classifier Using the Particle 
Swarm Optimization Algorithm 
for the Diagnosis of Arterial 
Hypertension 

Martha Pulido and Patricia Melin 

Abstract The main objective of this article is the creation of a new fuzzy classifier, 
using the optimization algorithm by means of particles, to optimize the structures of 
the type-1 and type-2 fuzzy systems, (such as parameters and type of membership 
functions, type of system, and number of rules).Tests were carried out with 40 patients 
and the blood pressure readings of the patients were taken at a time interval for 24 h, 
and these were taken through an ambulatory blood pressure monitor (ABPM). In this 
work, good results for Classification and Diagnosis of Arterial Hypertension with 
the proposed model are shown. 

Keywords Particle swarm optimization · Hypertension · Classification ·
Diastolic · Systolic · Blood pressure 

1 Introduction 

Computing is being incorporated into all branches of knowledge, and medicine has 
been highly favored. One of the first uses was the processing of medical records, 
epidemiological data, statistical analysis; Subsequently, medical diagnosis and treat-
ment instruments have been added, be it laboratory, imaging, [7, 8, 14, 15, 35], There 
are also expert systems for medical sciences, we can talk about medical diagnosis 
packages. Several expert systems have been developed to diagnose diseases and 
recommend treatments [10, 12, 21, 24, 26]. 

Blood pressure increases with age. 66% of people > 65 years of age have high 
blood pressure, and 128/5.000. 90% of 55-year-olds with normal blood pressure are at 
risk of developing hypertension at some point in their lives, [27], Because high blood 
pressure becomes so common over the years, age-related increases in blood pressure 
may seem innocuous, but they actually increase the risk of associated diseases and 
death [23, 28–30]. Hypertension is probably the most prevalent disease in the world 
and affects approximately one-third of the population. It is the main cardiovascular
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risk factor. It is known as the “silent killer”, because in most cases it does not present 
symptoms, so it is possible to develop heart, brain, or kidney problems without being 
aware of having it [1, 2, 9, 32]. The main reason for the paper is the creation of ta 
fuzzy classifier for experts to know and verify the behavior of a patient’s arterial 
hypertension and from this give a diagnosis if the patient requires it. The blood 
pressure readings of the patients were taken at a time interval for 24 h, and these 
were taken through an ambulatory blood pressure monitor (ABPM) [4]. 

The fuzzy system consists of 64 rules, with 2 input variables each with 8 member-
ship functions, and these are called Systolic and Diastolic, also an output called clas-
sification which consists of 11 membership functions, and optimization of the fuzzy 
system with the particle swarm optimization algorithm as soon as parameters and 
type of membership functions, type of system, and a number of rules [13, 25, 26]. 

The Particle Swarm Optimization algorithm is an optimization/search technique. 
PSO is normally used in search spaces with many dimensions. The Particle Swarm 
optimization algorithm is inspired by the evolution in collective behavior, mainly 
tries to imitate the social behavior of various groups of animals such as flocks herds, 
etc. 

Let xi (t) denoted by the position of the particle i the search space at time step t; 
unless otherwise indicated, t denotes discrete time steps. The position of the particle 
is changed by the addition of a velocity, vi (t), for the current position, i.e. 

xi (t + 1) = xi (t) + vi (t + 1) (1) 

Con xi (0) ∼ U (Xmin, Xmax). 
For gbest PSO, the velocity of particle i is calculated as: 

vi j  (t + 1) = vi j  (t) + c1r1
[
yi j  (t) − xi j  (t)

]
, +c2r2(t)

[
ŷ j (t) − xi j  (t)

]
(2) 

where vi j  (t) Velocity of the particle i dimension j In passing time t, c1yc2 are 
positive acceleration constants that serve to dimension the contribution of cognitive 
and social capacities, capacitates cognitive y socials, y r1 j (t), y r2 j (t) ∼ U (0, 1) are 
random values in the range [0, 1], the sample of a uniform distribution. These values 
randomly introduce a stochastic element for the algorithm. [11, 22]. 

The best personal position yi j  is associated with particles best position the particle 
has visited since the first step. Taking into account the minimization problems, the 
best personal position in the next step of time t + 1 is calculated as the best position 
the particle has visited since the first step. Taking minimization problems, the best 
personal position in the next step of time t + 1 is calculated as: 

yi (t + 1 =
{

yi (t) i f  f  (xi (xi (t + 1)) ≥ f yi (t)) 
xi (t + 1) i f  f  (xi (xi (t + 1)) > f yi (t)) 

(3) 

where f : Rnx  → R is the objective function: 
The position of the global best, yi (t), in time step t , is defined as:
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ŷ(t)ε{yo(t), . . . ,  ys(t)} f (y(t)) = min{ f (yo(t)), . . .  f (ys(t)),} (4) 

The position of the global best can be selected from the particles of the current 
cloud, in which case: 

ŷ(t) = min{ f (xo(t)), . . .  f (xns(t)),} (5) 

The best overall PSO is summarized in the algorithm. In this algorithm, the 
notation S.xi is used to denote the position of particle i in the cloud S. 

The position of the glbest: 
The velocity is calculated as: 

vi j  (t + 1) = vi j  (t) + c1r1
[
yi j  (t) − xi j  (t)

]
, +c2r2(t)

[
ŷ j (t) − xi j  (t)

]
(6) 

where ŷ j is the best position, which is in the neighborhood of the particle i dimension 
j . The position of the best local particle ŷi , Example the best position found in the 
neighborhood Ni, is define as: 

ŷ(t + 1) ∈ {
N1| f

(
ŷi (t + 1)

) = min{ f (x)}, ∀x ∈ Ni
}

(7) 

With the neighborhood defined as: 

Ni = {yi − nNi (t), yi − nNi + 1(t), . . .  yi − 1(t), yi + 1(t), . . . ,  yi + nNi (t)} 
(8) 

For neighborhoods of nNi . The position of the best local is also known as the best-
positioned neighborhood. 

Fuzzy Sets and Membership Functions 

If X is a collection of objects denoted by x, then a fuzzy set A in X is defined as a 
set of ordered pairs [34]. 

A = {(x, μ_A(x)) ∈ x ∈ X} (9) 

where μA is the membership function for the fuzzy set A. The membership function 
maps each element of X to a membership degree of between 0 and 1 [31–33]. 

Type-2 Fuzzy Systems 

Type-2 fuzzy systems are an extension of type-1 fuzzy systems, the fuzzy rules are the 
same, the difference is that the membership functions are used to model uncertainty 
and inaccuracy in a better way, since they also have the ability to model complex 
nonlinear systems, achieving better performance [3, 16].
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Fig. 1 A type-2 fuzzy set represents a type-1 fuzzy set with an uncertain standard deviation 

As an example: Consider the case of a fuzzy set characterized by a Gaussian 
membership function with mean m and a standard deviation that can take values in 
[σ1, σ2], i.e., 

μ(x) = exp

{

−1/
2

[
x − m 

σ

]2
}

; σε[σ1, σ2] (10) 

Corresponding to each value of σ we will get a different membership curve (as 
shown in Fig. 1). So, the membership grade of any particular x(except x = m) can 
take any of a number of possible values depending upon the value of σ i.e., the 
membership grade is not a crisp number, it is a fuzzy set. Figure 1 shows the domain of 
the fuzzy set associated with x = 0.7; however, the membership function associated 
with this fuzzy set is not shown in the Fig. 1. 

Gaussian type-2 fuzzy set 

A Gaussian type-2 fuzzy set is one in which the membership grade of every domain 
point is a Gaussian type-1 set contained in [0, 1]. 

Interval type-2 fuzzy set 

An interval type-2 fuzzy set is one in which the membership grade of every domain 
point is a crisp set whose domain is some interval contained in [0, 1]. 

Footprint of uncertainty 

Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a 
bounded region that we call the “footprint of uncertainty” (FOU). Mathematically, 
it is the union of all primary membership functions [18–20]. 

Upper and lower membership functions 

An “upper membership function” and a “lower membership functions” are two type-
1 membership functions that are bounds for the FOU of a type-2 fuzzy set Ã. The
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upper membership function is associated with the upper bound of the FOU(Ã). The 
lower membership function is associated with the lower bound of the FOU(Ã). 

Operations of Type-2 Fuzzy Sets 

Union of type-2 fuzzy sets 

The union of Ã1 and Ã2 is another type-2 fuzzy set, just as the union of type-1 fuzzy 
sets A1 and A2 is another type-1 fuzzy set. More formally, we have the following 
expression:

Ã1 ∪ Ã2 =
∫

x∈X 
μ ̃A1∪Ã2 

(x)/x (11) 

Intersection of type-2 fuzzy sets 

The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersection of 
type-1 fuzzy sets A1 and Ã2 is another type-1 fuzzy set. More formally, we have the 
following expression:

Ã1 ∩ Ã2 =
∫

x∈X 
μ Ã1∩Ã2 

(x)/x (12)  

Complement of a type-2 fuzzy set 

The complement of a set is another type-2 fuzzy set, just as the complement of type-1 
fuzzy set A is another type-1 fuzzy set. More formally we have: 

Ã
′ =

∫

x 
μ ̃A′

1 
(x)/x (13) 

where the prime denotes complement in the above equation. In this equation, μ ̃A′1 
is the secondary membership function [5, 6, 17, 20]. 

Type-2 fuzzy rules 

Consider a type-2 FLS having r inputs x1 ∈ X1, …,  xr ∈ Xr and one output y ∈ Y . 
As in the type-1 case, we can assume that there are M rules; but, in the type-2 case 
the l th rule has the form: 

R1 : I F  x1 is  Ã
1 
1 and . . .  xp i s  Ã1 

P , T H  E  N  y  i s  Ŷ 1 1 = 1, .  .  .  M (14) 

The rules represent a type-2 rules relation between the input space X1x . . .  x Xr , 
and the space output set space Y, of the type-2 fuzzy system [30, 31].
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2 Proposed Type-1 and Type-2 Fuzzy Classifier 

In this section, we explain the creation of the type-1 and type-2 fuzzy system, as 
well as the particle for the type-1 and type-2 fuzzy system, rules and the objective 
function to optimize the structures of the fuzzy system type-1 and type-2. 

2.1 Blood Pressure 

The design of the new type-1 and type-2 fuzzy logic system for the classification 
of blood pressure consists of the two input variables of the fuzzy system have eight 
linguistic variables (Low, Optimal, Normal, High Normal, Grade 1, Grade 2, Grade 
2 and ISH)., (as shown in Figs. 2 and 3) The output variable called Classification 
has eleven linguistic variables (Hypotension Low, Optimal, Normal, High Normal, 
Grade 1, Grade 2, Grade 2 and ISH1, ISH2 and ISH3). 

Type-1 Memberships Functions: 

gaussian = e− 1 
2

(
x − c 
r

)2 

(15) 

x, c, r.
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Fig. 2 Membership functions for input type-1 fuzzy system
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Fig. 3 Membership functions for input type-2 fuzzy system

where c is of the center of the function and r, is the implication of the function. 

MF too high: 

MFT  oo  high  = e− 1 
2

(
x − 234 
25.2

)2 

(16) 

where c = 234 and r = 25.2. 

Gbell: 

bell(a, b, c) = 1 

1 + ∣∣ x−c 
a

∣∣2b 
(17) 

MF Veryhigh: 

M F V er y high = 1 

1 + ∣∣ x−169.9 
5.95

∣∣2(2.479) 

= 1 

1 + ∣∣ x−169.9 
5.95

∣∣4.96 
(18) 

where a = 5.9, b = 2.479 and c = 169.90
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Triangle: 

tr iangle(x; a, b, c) = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0, x ≤ a 
x−a 
x−b , a ≤ x ≤ b 
c−x 
c−b , b ≤ x ≤ c 
0, c ≤ x 

(19) 

0 is when there is no membership, in the corners of membership. 

tr iangle(x; a, b, c) = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0, x ≤ a 
x−a 
x−b , a ≤ x ≤ b 
c−x 
c−b , b ≤ x ≤ c 

0, c ≤ x 

MF high: 

MF  Hight(x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0, x ≤ 138 
x−138 
11 , 138 ≤ x ≤ 149 

162−x 
13 , 149 ≤ x ≤ 162 

0, 162 ≤ x 

where a = 138, b = 149 and c = 162 
The result of the denominators is the subtractions of the variables. 

Type-2 Memberships Functions: 

ũ(x) = [
μ(x), ũ(x)

] = gausstype2(x, [σ xm1, m2]) (20) 

where “igaussstype2” stands for the Gaussian generalized type-2 membership 
function with uncertain mean: 

mx = 
m1 + m2 

2 
(21) 

px = gaussmf(x, [σ xm1, m2]) = exp

[
1 

2

(
x − mx 

σ x

)2
]

(22) 

px = gaussmf(x, [σ x, mx])

ũ(x, μ) = gaussmf
(
μ,

[
σ x, px

])
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= exp

[
1 

2

(
x − px 

σ u

)2
]

(23) 

where= px = is of the center of the function and σ u is the implication of the function. 

MF too high: 

MFT  oohigh  = e− 1 
2

(
x − 234 
25.2

)2 

(24) 

where px = 234 and σ u = 25.2. 

2.2 Rules of Fuzzy Systems 

In this section the 64 possible rules of the fuzzy inference system are shown (Fig. 4).

2.3 Particle Swarm Optimization for the Fuzzy System 

The particle structure is composed of 390 parameters, of which 1–328 are real 
numbers and represent parameters of the inputs and outputs of the membership func-
tions used are Gaussian, generalized bell, triangular, and trapezoidal. The Parameters 
325–388 represent the number of rules of type-1 fuzzy systems (Fig. 5).

The PSO structure is composed of 720 parameters, of which 1–712 are real 
numbers and represent parameters of the inputs and outputs of the membership func-
tions used are Gaussian, generalized bell, triangular, and trapezoidal. The Parameters 
649–722, represent the number of rules of type-2 fuzzy systems (Fig. 6).

Objective Function: 

The main motivation for the optimize the structures of the fuzzy system type-1 and 
type-2, (as soon as parameters and type of membership functions, type of system, 
and a number of rules), to reduce the number of fuzzy rules and the classification 
error on the base patient data. 

Objective Function = epc +
(
npr

/
mpr

)
(25) 

epc is the classification error of the PSO. 

npr is the rules number obtained for PSO. 

mpr the maximum number of rules of the PSO.
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Fig 4. Fuzzy Rule base. 

1. If (Systolic is Low) and (Diastolic is Low) then (Levels is Hypotension) (1) 
2. If (Systolic is Low) and (Diastolic is Optimal) then (Levels is Optimal) (1) 
3. If (Systolic is Low) and (Diastolic is Normal) then (Levels is Normal) (1) 
4. If (Systolic is Low) and (Diastolic is Grade1) then (Levels is HighNormal) (1) 
5. If (Systolic is Low) and (Diastolic is Grade1) then (Levels is Grade1) (1) 
6. If (Systolic is Low) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
7. If (Systolic is Low) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
8. If (Systolic is Low) and (Diastolic is ISH) then (Levels is ISH1) (1) 
9. If (Systolic is Optimal) and (Diastolic is Low) then (Levels is Optimal) (1) 
10. If (Systolic is Optimal) and (Diastolic is Optimal) then (Levels is Optimal) (1) 
11. If (Systolic is Optimal) and (Diastolic is Normal) then (Levels is Normal) (1) 
12. If (Systolic is Optimal) and (Diastolic is HighNormal) then (Levels is HighNormal) (1) 
13. If (Systolic is Optimal) and (Diastolic is Grade1) then (Levels is Grade1) (1) 
14. If (Systolic is Optimal) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
15. If (Systolic is Optimal) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
16. If (Systolic is Optimal) and (Diastolic is ISH) then (Levels is ISH1) (1) 
17. If (Systolic is Normal) and (Diastolic is Low) then (Levels is Optimal) (1) 
18. If (Systolic is Normal) and (Diastolic is Optimal) then (Levels is Optimal) (1) 
19. If (Systolic is Normal) and (Diastolic is Normal) then (Levels is Normal) (1) 
20. If (Systolic is Normal) and (Diastolic is HighNormal) then (Levels is HighNormal) (1) 
21. If (Systolic is Normal) and (Diastolic is Grade1) then (Levels is Grade1) (1) 
22. If (Systolic is Normal) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
23. If (Systolic is Normal) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
24. If (Systolic is Normal) and (Diastolic is ISH) then (Levels is ISH1) (1) 
25. If (Systolic is HighNormal) and (Diastolic is Low) then (Levels is Optimal) (1) 
26. If (Systolic is HighNormal) and (Diastolic is Optimal) then (Levels is Optimal) (1) 
27. If (Systolic is HighNormal) and (Diastolic is Normal) then (Levels is Normal) (1) 
28. If (Systolic is HighNormal) and (Diastolic is HighNormal) then (Levels is HighNormal) (1) 
29. If (Systolic is HighNormal) and (Diastolic is Grade1) then (Levels is Grade1) (1) 
30. If (Systolic is HighNormal) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
31. If (Systolic is HighNormal) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
32. If (Systolic is HighNormal) and (Diastolic is ISH) then (Levels is ISH1) (1) 
33. If (Systolic is Grade1) and (Diastolic is Low) then (Levels is ISH1) (1) 
34. If (Systolic is Grade1) and (Diastolic is Optimal) then (Levels is ISH1) (1) 
35. If (Systolic is Grade1) and (Diastolic is Normal) then (Levels is ISH1) (1) 
36. If (Systolic is Grade1) and (Diastolic is HighNormal) then (Levels is ISH1) (1) 
37. If (Systolic is Grade1) and (Diastolic is Grade1) then (Levels is Grade1) (1) 
38. If (Systolic is Grade1) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
39. If (Systolic is Grade1) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
40. If (Systolic is Grade1) and (Diastolic is Grade3) then (Levels is ISH1) (1) 
41. If (Systolic is Grade2) and (Diastolic is Low) then (Levels is ISH2) (1) 
42. If (Systolic is Grade2) and (Diastolic is Optimal) then (Levels is ISH2) (1) 
43. If (Systolic is Grade2) and (Diastolic is Normal) then (Levels is ISH2) (1) 
44. If (Systolic is Grade2) and (Diastolic is HighNormal) then (Levels is ISH2) (1) 
45. If (Systolic is Grade2) and (Diastolic is Grade1) then (Levels is Grade2) (1) 
46. If (Systolic is Grade2) and (Diastolic is Grade2) then (Levels is Grade2) (1) 
47. If (Systolic is Grade2) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
48. If (Systolic is Grade2) and (Diastolic is ISH) then (Levels is ISH2) (1) 
49. If (Systolic is Grade3) and (Diastolic is Low) then (Levels is ISH3) (1) 
50. If (Systolic is Grade3) and (Diastolic is Optimal) then (Levels is ISH3) (1) 
51. If (Systolic is Grade3) and (Diastolic is Normal) then (Levels is ISH3) (1) 
52. If (Systolic is Grade3) and (Diastolic is HighNormal) then (Levels is ISH3) (1) 
53. If (Systolic is Grade3) and (Diastolic is Grade1) then (Levels is Grade3) (1) 
54. If (Systolic is Grade3) and (Diastolic is Grade2) then (Levels is Grade3) (1) 
55. If (Systolic is Grade3) and (Diastolic is Grade3) then (Levels is Grade3) (1) 
56. If (Systolic is Grade3) and (Diastolic is ISH) then (Levels is ISH3) (1) 
57. If (Systolic is ISH) and (Diastolic is Low) then (Levels is ISH1) (1) 
58. If (Systolic is ISH) and (Diastolic is Optimal) then (Levels is ISH2) (1) 
59. If (Systolic is ISH) and (Diastolic is Normal) then (Levels is ISH3) (1) 
60. If (Systolic is ISH) and (Diastolic is HighNormal) then (Levels is ISH3) (1) 
61. If (Systolic is ISH) and (Diastolic is Grade1) then (Levels is Grade3) (1) 
62. If (Systolic is ISH) and (Diastolic is Grade2) then (Levels is Grade3) (1) 
63. If (Systolic is ISH) and (Diastolic is Grade3) then (Levels is Grade3) (1) 

Fig. 4 Fuzzy rule base. Possible rules of the fuzzy system
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Fig. 5 PSO particle composition for the type 1 fuzzy system

3 Experimental Results 

This part explains the experimental results of optimization of the type-1 and Type-2 
classifiers. 

Table 1 Summarizes all the experiments results of classifier type-1 where MFT 
(Membership Function Type), FST (Type of the Fuzzy system), Rules Number, 
Classification Error, and Time. Table 1 are also shown the best classification error 
0.001045, where the best iteration was 8, in a time 01:17:15, with 22 fuzzy rules, the 
membership function type is Gaussian, and shows the results of the 30 Iterations.

Table 2 summarizes all the results of the experiments of classifier type-2 where 
MFT (Membership Function Type), FST (Type of the Fuzzy system), Rules Number, 
Classification Error, and Time. Table 2 are also shown best the classification error of 
0.001272, where the best iteration was 18, in a time 02:21:18, with 24 fuzzy rules, 
the membership function type is Gaussian, and shows the results of the 30 Iterations.

Table 3 summarizes all the results of the 40 patients and from which to carry out 
the experiments we have 45 samples of diastolic and systolic pressure and as a result, 
we obtain the arterial classification with the type-1 fuzzy system.
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Fig. 6 PSO particle composition for the type-2 fuzzy system

Table 4 summarizes all the results of the 40 patients and from which to carry out 
the experiments we have 45 samples of diastolic and systolic pressure and as a result 
we obtain the arterial classification with the type-2 fuzzy system.

4 Conclusion 

In this paper, a fuzzy classifier for systolic and diastolic hypertension was developed, 
with the type 1 fuzzy classifier optimization, with a classification error of 0.001045. 
We obtained with 22 rules, Mamdani fuzzy system with Gaussian-type membership 
functions. On the other hand, in the type-2 fuzzy classifier optimization, with a 
classification error of 0.001275, we obtained with 23 rules, Mamdani fuzzy system 
with Gaussian-type membership functions. Tests were carried out with 40 people 
and we obtained excellent results with the type-1 and type-2 fuzzy classifiers. Fuzzy 
systems and particle optimization algorithms are techniques that are effective and 
efficient in providing good classification solutions.
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Table 1 Type-1 classifier results 

Iterations FST TMF Rules number Time Classification error 

1 M Gau 62 01:03:13 0.00221 

2 M Gau 18 00:54:26 0.002339 

3 S Gau 22 01:15:34 0.0013887 

4 M Gau 16 01:20:02 0.001425 

5 M Tri 23 01:22:10 0.002714 

6 S Gau 25 01:15:15 0.0023593 

7 M Tri 33 01:15:15 0.002651 

8 M Gau 22 01:17:15 0.001045 

9 M Gau 22 01:51:22 0.002665 

10 M Gau 35 01:50:24 0.001975 

11 M Tri 38 01:14:12 0.002265 

12 S Tri 22 00:54:26 0.002339 

13 M Tri 34 01:15:34 0.0013887 

14 S Gau 64 01:20:02 0.001295 

15 S Gau 33 01:22:10 0.003214 

16 M Gbell 26 01:15:15 0.003596 

17 M Tri 28 01:15:15 0.002651 

18 S Gau 39 01:17:15 0.001124 

19 M Gau 27 01:51:22 0.002665 

20 M Gbell 31 01:52:52 0.001978 

21 M Tri 44 01:23:13 0.00222 

22 S Gau 47 00:54:26 0.002339 

23 M Gau 58 01:15:34 0.002388 

24 S Tri 21 01:20:02 0.001555 

25 M Gau 36 01:22:10 0.002714 

26 S Gau 22 01:15:15 0.002366 

27 M Gau 29 01:15:15 0.001261 

28 M Tri 30 01:17:15 0.001735 

29 M Tri 31 01:51:22 0.002133 

30 M Tri 21 01:49:54 0.001836
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Table 2 Result of the classification with type-2 

Iterations ST TMF Rules number Time Classification error 

1 M Gau 51 02:05:18 0.00346 

2 M Gau 63 02:46:27 0.00329 

3 S Gau 22 02:17:36 0.002387 

4 M Gau 16 01:20:02 0.002125 

5 M Tri 23 01:22:10 0.001896 

6 S Gau 25 01:15:15 0.002187 

7 M Tri 33 01:15:15 0.002651 

8 S Gau 44 01:17:15 0.001756 

9 M Gau 22 01:51:22 0.001366 

10 M Gau 36 01:49:54 0.002190 

11 M Tri 39 01:03:13 0.001887 

12 S Tri 22 00:54:26 0.002339 

13 M Tri 34 01:15:34 0.001638 

14 S Gau 64 01:20:02 0.002195 

15 S Gau 33 01:22:10 0.003214 

16 M Gbell 26 01:15:15 0.002387 

17 M Tri 28 01:15:15 0.002651 

18 M Gau 24 02:21:18 0.001272 

19 M Gau 27 01:51:22 0.002317 

20 M Gbell 33 01:49:54 0.001976 

21 M Tri 43 01:03:13 0.002123 

22 S Gau 47 00:54:26 0.001878 

23 M Gau 58 01:15:34 0.001977 

24 S Tri 22 01:20:02 0.001457 

25 M Gau 36 01:22:10 0.002156 

26 S Gau 22 01:15:15 0.001745 

27 M Gau 29 01:15:15 0.002261 

28 M Tri 30 01:17:15 0.001283 

29 M Tri 31 02:41:23 0.002178 

30 M Gau 27 02:29:57 0.002083
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Table 3 Results with type-1 fuzzy classifier for the arterial hypertension 

Persons Systolic Diastolic Systolic classification Diastolic classification Classification 

1 117 76 117 76 Optimal 

2 118 77 115 75 Optimal 

3 107 74 107 74 Optimal 

4 122 75 122 75 Normal 

5 114 66 115 61 Optimal 

6 141 81 141 81 High 

7 106 62 112 64 Optimal 

8 120 81 120 81 Normal 

9 107 61 112 58 Optimal 

10 130 74 129 73 Normal 

11 116 73 116 73 Optimal 

12 134 62 130 62 Normal 

13 135 82 136 81 Normal 

14 121 77 120 72 Optimal 

15 109 63 108 63 Optimal 

16 123 71 124 71 Normal 

17 125 77 126 76 Normal 

18 106 65 106 65 Optimal 

19 110 68 110 68 Optimal 

20 123 76 123 76 Normal 

21 115 72 112 71 Optimal 

22 112 71 111 70 Optimal 

23 122 76 122 73 Normal 

24 117 68 116 67 Optimal 

25 121 74 120 74 Optimal 

26 129 82 129 80 Normal 

27 121 63 120 61 Optimal 

28 112 72 112 73 Optimal 

29 123 82 121 82 Normal 

30 95 61 95 61 Optimal 

31 106 65 106 65 Optimal 

32 110 69 116 75 Optimal 

33 116 67 116 71 Normal 

34 130 86 130 86 Normal 

35 117 73 117 74 Optimal 

36 117 54 117 58 Optimal

(continued)
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Table 3 (continued)

Persons Systolic Diastolic Systolic classification Diastolic classification Classification

37 113 72 113 70 Optimal 

38 132 86 131 71 Normal 

39 128 81 128 81 Normal 

40 131 85 134 85 Normal

Table 4 Results with fuzzy classifier type-2 for the arterial hypertension 

Persons Systolic Diastolic Systolic classification Diastolic classification Classification 

1 117 76 117 76 Optimal 

2 118 77 115 75 Optimal 

3 107 74 107 74 Optimal 

4 122 75 122 75 Normal 

5 114 66 114 61 Optimal 

6 141 81 142 81 High 

7 106 62 112 64 Optimal 

8 120 81 120 81 Normal 

9 107 61 112 58 Optimal 

10 130 74 129 73 Normal 

11 116 73 116 73 Optimal 

12 134 62 130 77 Normal 

13 135 82 136 81 Normal 

14 121 77 120 72 Optimal 

15 109 63 108 63 Optimal 

16 123 71 124 70 Normal 

17 125 77 126 76 Normal 

18 106 65 106 65 Optimal 

19 110 68 112 68 Optimal 

20 123 76 123 76 Normal 

21 115 72 114 72 Optimal 

22 112 71 112 71 Optimal 

23 122 76 122 76 Normal 

24 117 68 116 68 Optimal 

25 121 74 121 74 Optimal 

26 129 82 130 82 Normal 

27 121 63 121 63 Optimal 

28 112 72 112 72 Optimal

(continued)
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Table 4 (continued)

Persons Systolic Diastolic Systolic classification Diastolic classification Classification

29 123 82 122 82 Normal 

30 95 61 95 61 Optimal 

31 106 65 109 77 Optimal 

32 110 69 115 75 Optimal 

33 116 67 127 69 Normal 

34 130 86 125 80 Normal 

35 117 73 119 78 Optimal 

36 117 54 117 61 Optimal 

37 113 72 108 70 Optimal 

38 132 86 123 80 Normal 

39 128 81 127 81 Normal 

40 131 85 133 84 Normal
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A Survey of Models and Solution 
Methods for the Internet Shopping 
Optimization Problem 

Miguel Ángel García Morales, Hector Joaquín Fraire Huacuja, 
Juan Frausto Solís, Laura Cruz Reyes, 
and Claudia Guadalupe Gómez Santillán 

Abstract The Internet shopping optimization problem (IShOP) is an NP-hard 
combinatorial problem, which minimizes the total cost of shopping a list of products 
available in a set of shops on the Internet, considering the product price plus the 
shipping costs. With the advent of electronic commerce and the incredible popu-
larity of Internet transactions, IShOP has become a problem of great relevance today 
in modern society with several variations of the practical problem application. This 
chapter reviews the different approaches applied to solve the problem. We review the 
used models, the solution methods, and the instances used to analyze the performance 
algorithms. Finally, we identify the main current and future research trends. 

Keywords Internet shopping optimization problem · Heuristic algorithms ·
Metaheuristic algorithms 

1 Introduction 

Electronic commerce has revolutionized modern society today due to the important 
advancement of information technologies [1]. 

Undoubtedly, the large number of transactions carried out every day are primarily 
due to online purchases; users mainly make purchases of products and services that 
find meager prices. The main advantage of suppliers when offering their products 
on the Internet is that they are available to a broader public, and they do not have 
to worry about associated expenses such as maintenance, rent, among others, better 
prices, and a more comprehensive range of products and services [2]. 

The Internet shopping optimization problem (IShOP) [3] assumes a customer 
wants to purchase a shopping list in a set of online stores with the least possible 
expense. This problem is an Optimization problem formally modeled in [4]. However, 
IShOP is known to be an NP-hard combinatorial problem [5]. Therefore, achieving 
optimal solutions can be time-consuming, specifically for massive instances.
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Currently, there are many variants of IShOP, and this chapter reviews the different 
approaches applied to solve the problem, the solution methods, and the instances used 
to compare the algorithms and identify current research trends and future search 
topics. 

2 Literature Review 

This section presents the works in the state-of-the-art related to the Internet Shop-
ping Optimization Problem. This section aims to diagnose the current situation and 
available knowledge regarding the solution to the problem. Furthermore, the works 
show a diversity of variants of the IShOP. Moreover, finally, an analysis is carried 
out to identify the problems or open areas of interest. 

2.1 Internet Shopping Optimization Problem with Shipping 
Costs 

Blazewicz et al. [4] formally define the IShOP problem for the first time. To define 
the problem consider that a customer needs to buy a set of n products N online, 
which he can  buy in a set of  m available stores M. The  set  Ni contains the products 
available in-store i, for each product j ∈ Ni are given cij, the cost of the product i in 
the store j and the shipping cost di from the store i. When a customer buys one or 
more products in a store, is add the shipping cost of this store i. Table 1, show the 
main parameters and variables used in the formal definition of the problem.

Formally, the IShOP problem consists in determining a partition of the products 
X = (X1, . . . ,  Xm), such that Xi ⊆ Ni and Um 

i=1 Xi = N , and that minimizes the 
following total cost objective function: 

F(X) = 
m∑

i=1 

⎛ 

⎝σ (|Xi |)di +
∑

j∈Xi 

ci j  

⎞ 

⎠ (1) 

where |Xi | is the Xi cardinality, and σ (Xi ) = 0 i f  i  = 0 and σ (Xi ) = 1 i f  i  > 0. 
Multiple items of the same type shopping are not supported; also it is assumed that 

all product is available in all stores. The instances used in the experiments consider 
five products and six stores. 

Authors formally prove that the IShOP is NP-Hard in the strong sense even when 
the prices of the products are equal to zero and the shipping costs are equal to 1. 
Also they propose two polynomial algorithms to exactly solve small instances, the 
algorithm SHOP-ENUM has a O(n2m) time complexity and PRODUCT-ENUM has 
a O(nmn) time complexity.
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Table 1 Variables and 
parameters 

Variable/parameter Explanation 

M Set of shops 

N Set of products 

m Number of shops, |M | 
n Number of products, |N | 
i Shop indicator 

j Product indicator 

Ni Multiset of products available from shop 
i 

di Delivery price of all products from shop i 

ci j Cost of product j in shop i 

xi j 0–1 Usage indicator for product j in 
shop i 

yi 0–1 Usage indicator for shop i 

T Cumulative value of all products bought 
in all shops 

Ti Cumulative value of all products bought 
from shop i 

fi (Ti ) Piecewise function for all products (Ti ) 
bought from shop i 

X = (X1, . . . ,  Xm ) Sequence of selections of products from 
shops 1, . . . ,  m 

F(X) Sum of product and delivery costs 

σ (X) 0–1 Indicator function for x = 0 and 
x > 0 

X∗ Optimal sequence of selections of 
products 

F∗ Optimal (minimum) total cost 

The asterisk represents the optimal value

Lopez Locés et al. [2] uses a matrix to represent the candidate solutions and three 
sets of instances (small, medium and large) containing three subsets each one. The 
following subsets 3n20m, 4n20m and 5n20m belong to the set of small instances, 
the medium instances includes the subsets 5n240m, 5n400m, 50n240m, and finally, 
the large instances the subsets 50n400m, 100n240m, 100n400m. They proposes 
the MinMin heuristic algorithm that goes through each store assigning a product 
and determines if it has the lowest total cost. Also they propose a metaheuristic 
cell processing algorithm which performs a simulation of multiple cell working in 
parallel. This work has the best results compared to the state-of-the-art algorithms. 
Multiple items of the same type shopping are not supported; also it is assumed that 
all product is available in all stores.
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Table 2 Probability of 
occurrence 

Occurrence (%)
[
ai j

] [
bi j

]

8 minimum minimum + 
re  f  −minimum 

4 

3 minimum + 
re  f  −minimum 

4 

minimum + 
re  f  −minimum 

2 

9 minimum + 
re  f  −minimum 

2 

minimum + 
re  f  −minimum 

1.25 

21 minimum + 
re  f  −minimum 

1.25 

re  f  

24 re  f re  f  +maximum−re  f  
4 

9 re  f  +maximum−re  f  
4 re  f  +maximum−re  f  

2 

10 re  f  +maximum−re  f  
2 re  f  +maximum−re  f  

1.25 

16 re  f  +maximum−re  f  
1.25 maximum 

The product prices are randomly generated as described below. Starting with an 
initial reference price (re  f  ) for a given product j : re  f  ∈ {2, 4, . . .  ,  100}, the price 
is randomly chosen with the probabilities of occurrence of 40% from 0 to 20, 16% 
from 22 to 30, 12% from 32 to 40, 16% from 42 to 60, and 16% from 62 to 100. 
The price for the product j from store i , is  pi j  ∈

[
ai j  , bi j

]
, where ai j  ≥ 0.75re  f  j , 

bi j  ≤ 1.36re  f  j and the intervals between
[
ai j  , bi j

]
are in Table 2 [6]. 

In this work authors propose an integer linear programming model (ILP) which 
can obtaining exact solutions in a reasonable time for the small instances subset. 
Table 1 show the main variables and parameters used in the ILP model. 

In the ILP model the binary variable xi j  indicates whether a product j is bought 
at the store i , the binary variable yi indicates if at least one product is purchased at 
the store i : 

min 
m∑

i=1 

n∑

j=1 

ci j  xi j  + 
m∑

i=1 

di yi (2) 

s.t. xi, j ∈ {0, 1}, ∀i ∈ M, ∀ j ∈ N , (3) 

yi ∈ {0, 1}, ∀i ∈ M, (4) 

m∑

i=1 

n∑

j=1 

xi j  = n, (5) 

m∑

i=1 

xi j  = 1, ∀ j ∈ N , (6)
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nyi − 
n∑

j=1 

xi j  ≥ 0, ∀i ∈ M. (7) 

The objective function is shown in (2), which is the total cost of purchasing a shop-
ping list from the selected shops, including delivery costs, subject to the following 
constraints. The constraint (5) ensures that the number of purchased products is equal 
to the number of products on the shopping list, while constraint (6) guarantees that 
only one product of each kind is selected; the constraint (7) ensures that the variable 
yi , takes the value of 1 when a product is purchased from shop i . 

Wojciechowski and Musial [7] evaluated the best price comparison websites, 
creates a realistic model considering the actual conditions of internet purchases as 
possible and analyses the relationship between competitiveness, advertising, prices, 
and price dispersion in online stores. This model focuses on purchasing books as the 
product in most significant demand at that time and with a wide variety in virtual 
stores. Specific formulas are used to randomly calculate product prices and divide the 
price ranges into intervals. They propose a heuristic called 2-way basket optimization 
(2WBO), which orders the list of products in descending order and searches for the 
store with the lowest cost for each product. In this work, multiple items of the same 
type of shopping are supported; also, they assumed that all products are available in 
all stores. The instances used in the experiments consider 3, 5, 8, and 10 products 
and 20 stores. 

López-Locés et al. [6] proposes two metaheuristics algorithms based on the 
trajectory: Tabu Search (TS) and Simulated Annealing (SA). The objective of these 
metaheuristics is to obtain an approximation of the optimal solution for the IShOP 
problem. For this, they created instances from actual conditions of online book stores 
such as Amazon, Barnes, and Noble. These instances are small (with ten instances, 
with 20 instances) and large (with 30 instances). In this work multiple items of the 
same type shopping are not supported; also it is assumed that all product is available 
in all stores. 

Verma et al. [8] propose a genetic algorithm (GA) to solve the IShOP, where a 
chromosome represents a solution and where each gene represents the index number 
of the store where they want to buy the product. The first generation of the solution is 
randomized; the fitness value is calculated by adding the costs of the products stored 
in the cost matrix of the stores and the products. The chromosome with the lowest 
total cost is the most suitable. The computational experiments consider instances 
created using the cost of 10 different products in 20 different virtual stores. They 
carry out an extension of the proposed work dedicated mainly to users who do not 
use smartphones. Multiple items of the same type shopping are not supported; also 
it is assumed that all product is available in all stores. 

Sayyaadi et al. [9] propose a discretization approach and the use of the water cycle 
algorithm (WCA) to solve instances of the IShOP problem with a size of 10n30m 
(10 products and 30 stores). In this work multiple items of the same type shopping 
are not supported; also it is assumed that all product is available in all stores.
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Huacuja et al. [10] propose a new metaheuristic algorithm based on the memetic 
algorithm methodology. The memetic algorithm uses a vector representation of the 
solutions and incorporate a mechanism that speeds up the calculation of the objective 
function. The computational experiments consider instances created randomly, three 
sets of instances (small, medium and large) containing three subsets each one. The 
following subsets 3n20m, 4n20m and 5n20m belong to the set of small instances, 
the medium instances includes the subsets 5n240m, 5n400m, 50n240m, and finally, 
the large instances the subsets 50n400m, 100n240m, 100n400m. Each subgroup 
contains 30 cases. In this work multiple items of the same type shopping are not 
supported; also it is assumed that all product is available in all stores. The compu-
tational experiments show that the memetic algorithm performance outperforms to 
the cell processing algorithm. 

2.2 Internet Shopping Optimization Problem with Shipping 
Costs and Discounts 

The notation used in the Eq. 8 is given in Table 3. Musial et al.  [11] for the first time 
approaches the IShOP with shipping costs and discounts and propose the following 
model: 

min 
m∑

i=1 

n∑

j=1 

f j
(
pi j  xi j

) + 
n∑

j=1 

d j y j , (8) 

s.t. 
n∑

j=1 

xi j  = 1, i = 1, . . . ,  m (9) 

0 ≤ xi j  ≤ y j , i = 1, . . . ,  m, j = 1, . . . ,  n, (10) 

xi j  ∈ {0, 1}, y j ∈ {0, 1}, i = 1, . . . ,  m, j = 1, . . . ,  n, (11)

where a customer wants to buy products from a given set M = {1, . . . ,  m} in a given  
set of Internet shops N = {1, . . . ,  n} at the minimum total final price. These are the 
following given parameters and decision variables: 

d j —delivery price of all products from shop j , 
y j —usage indicator for shop j , 
pi j  —standard price of product i in shop j , 
xi j  —usage indicator for product i in shop j , 
f j

(
Tj

)
—piecewise function (discounting) for final price of all products T bought 

in shop j . 
Błażewicz et al. [12] associate problem location facilities to IShOP with discounts 

and propose and develop simple heuristics to solve the IShOP with discounts. This
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Table 3 Variables and 
parameters 

Variable/parameter Explanation 

M Set of products 

N Set of shops 

m Number of products 

n Number of shops 

i Product indicator 

j Shop indicator 

M j Multiset of products available in shop j 

d j Delivery price of all products from shop 
j 

y j Usage indicator for shop j 

pi j Cost of product i in shop j 

xi j Usage indicator for product i in shop j 

T Cumulative value of all products bought 
in all shops 

Tj Cumulative value of all products bought 
from shop j 

f j
(
Tj

)
Piecewise function for all products 
bought in shop j 

X = (X1, . . . ,  Xn) Sequence of selections of products in 
shops 1, . . . ,  n 

F(X) Sum of product and delivery costs 

δ(X ) 0–1 Indicator function for x = 0 and 
x > 0 

X∗ Optimal sequence of selections of 
products 

F∗ Optimal (minimum) total cost 

The asterisk represents the optimal value

heuristics obtains better results than the book price comparison sites. In this work, 
multiple items of the same type of shopping they supported also assumed that all prod-
ucts are available in all stores. Ten instances used in the experiments are generated 
for each pair (n, m). 

Józefczyk and Ławrynowicz [13] consider the price-sensitive discounts of each 
product (ISOPwD), and propose two metaheuristic algorithms: tabu search (TS) and 
the simulated annealing (SA). Other possible discounts connected, for example, with 
bundles of products and (or) coupons, are not considered. The main contributions of 
this work are: First of all, a more overall version of IShOPwD they considered with an 
arbitrary number of purchased products, the possibility to buy an identical product in 
different stores when its quantity in the selected store is not enough and considering 
the particular parameters in the decision making processes such as product weight, 
amount and availability. In this work, multiple items of the same type shopping are
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supported; also, are assumed that all products are available in all stores. The instances 
used in the experiments consider 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 products, 
and 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550 stores, and ordered amount 
of product 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. 

Musial et al. [11] consider the additional shipping costs to the prices of the products 
for each store; in addition, the IShOP model is extended including discounts on the 
prices of the products, a comparison of several optimization algorithms are made 
(Greedy, Forecasting, Cellular, MinMin, B&B) to fix the IShOP issue with discounts. 
They assume that there are no differences between the quality of the goods the web 
stores sell besides their prices for the different products. They introduce a new set of 
heuristic approaches to solve the problem. The heuristic comprise a new lightweight 
metaheuristic based on a cellular optimization process, an extended greedy algorithm, 
and two state-of-the-art algorithms. The instances used in the experiments consider 
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 products and 20, 
40 stores. In this work, multiple items of the same type shopping do not supported 
them; also, is assumed that all product are available in all stores. 

Blazewicz et al. [14] consider the shipping costs and discounts sensitive to the 
price of each product and in each store to solve the IShOP problem, a compara-
tive evaluation is carried out between several algorithms (BB, PCS, PCS+, Greedy, 
Forecasting and a new implementation) to solve the IShOP problem with discounts 
and shipping costs. In this work, multiple items of the same type shopping do not 
support them; also, they assumed that all the products are available in all stores. The 
instances used in the experiments consider 2, 3, 4, 5, 6, 7 products and 20, 30, 40 
stores. 

Sadollah et al. [15] assign a maximum budget per client for the IShOP problem; in 
addition, discounts offered and the selection of multiple elements within the candi-
date solutions is added. In this work, the ISOP formulation is enhanced by consid-
ering several extra assumptions and constraints such as the maximum affordable 
budget, discounts offered by Internet shops, and permission for multiple-item selec-
tions. An ISOP experiment with 300 Internet shops and 400 products is investigated. 
Three metaheuristic optimization methods, including the genetic algorithm (GA), 
the harmony search (HS), and the water cycle algorithm (WCA) have been utilized 
to find the better optimal solutions; also, is assumed that all products are available 
in all stores. 

Orciuoli et al. [16] consider non-cumulative discount coupons in the IShOP solu-
tion, a new type of coupon that only applies to a single product, and a new way 
of collecting discount coupons will be incorporated. This work aimed at system-
atically comparing three bio-inspired optimization approaches, genetic algorithms, 
memetic ones, and ant colony optimization, to detect the best performer for solving 
the shopping plan problem in a blended shopping scenario. The instances used in 
the experiments consider 10, 15, 20 products and 10, 40, 80 number of items in the 
wish list, and 15, 30 percentage of products subject to a coupon, also it is assumed 
that all product are available in all stores. 

D’Aniello et al. [17] propose using a framework based on AmI to solve the IShOP 
problem, and mobile devices will be incorporated in scenarios with discount coupons
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to obtain candidate solutions. Moreover, the work defines a genetic algorithm to face 
the shopping plan problem with a heuristic approach. A genetic algorithm is used 
to solve various instances of the IShOP with discount coupons. The dataset for the 
evaluation has been generated randomly with the following characteristics: number 
of items in the wish list = 10, average number of product for each set of products = 
100 and variance = 10 (generated by using a Gaussian probability distribution), the 
probability to use a coupon for a single product = 0.5, the probability of generating 
a coupon for a single product = 0.5, also it is assumed that all product is available 
in all stores. 

D’Aniello et al. [18] use a framework to build scenarios that support the user 
to establish a purchasing plan to solve the IShOP problem, discount coupons they 
have taken into account, and a memetic algorithm is used to solve the problem. The 
algorithm uses a stochastic local search within the IShOP solution establishing a 
purchasing plan for each user. The dataset for the evaluation has been generated 
randomly with the following characteristics: number of items in the wish list = {10, 
15, 20}, the average number of product for each wish = {10, 40, 80}, and number 
of involved coupons = {15, 30}, the probability to generating a coupon for a single 
product = 0.5, also it is assumed that all product is available in all stores. 

Gaeta et al. [19] propose using a framework to solve the IShOP problem under 
an intelligent environment, which defines purchase plans that allow minimizing the 
total costs of purchases, taking into account discount coupons, also using a Genetic 
algorithm for solving the IShOP problem with discount coupons. The dataset for the 
evaluation has been generated randomly with the following characteristics: number 
of items in the wish list = 20, average number of products for each set of products = 
1000 and variance = 100 (generated by using a Gaussian probability distribution), the 
probability to use a coupon for a single product = 0.06, the probability of generating 
a coupon for a single product = 0.04, also it is assumed that all product are available 
in all stores. 

2.3 Internet Shopping Optimization Problem with a Budget 
(B-ISOP) 

The notation used in the Eq. 12 is given in Table 4. Marszaªkowski [20] for the first 
time formulates the Internet shopping optimization problem with budget as follows. 
The customer wishes to acquire a set M of m products, where for each product I the 
user assigns its perceived value vi . Said purchase is limited by a budget P . From  
the data collected in a Database we have the set N of n stores: for each store j, the 
standard delivery price is d j and for each product i available in store j , your cost 
in this store is p j . The objective is to maximize the amount of products that the 
customer can buy in the stores considering the budget limitation. This can be stated 
as follows:
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Table 4 Variables and 
parameters 

Variable/parameter Explanation 

M Set of products 

N Set of shops 

m Number of products 

n Number of shops 

i Product indicator 

j Shop indicator 

d j Delivery price of all products from shop j 

y j Indicator variable for shop j 

pi j Cost of product i in shop j 

xi j Indicator variable for product i in shop j 

vi User perceived value of product i 

P Budget, limit of total cost 

max 
m∑

i=1 

n∑

j=1 

xi j  vi (12) 

s.t. 
m∑

i=1 

n∑

j=1 

pi j  xi j  + 
n∑

j=1 

d j y j ≤ P, (13) 

where there are additional restrictions so that each product is chosen at least once 
and that if any product is selected from a store j, this shops delivery cost will paid. 
Finally, the indicators are binary. 

n∑

j=1 

xi j  ≤ 1, i = 1, . . . ,  m, 

0 ≤ xi j  ≤ y j , i = 1, . . . ,  m, j = 1, . . . ,  n, 
xi j  ∈ {0, 1}, y j ∈ {0, 1}, i = 1, . . . ,  m, j = 1, . . . ,  n. (14) 

Marszaªkowski [20], for the first time, B-ISOP is defined as a problem in which 
a customer wants to buy a list of products considering not exceeding an established 
budget. Additional restrictions limit the selection of a product only once and, if so, add 
the shipping cost from the store. Therefore, a mathematical formulation he carried 
out for the B-ISOP problem in the case of budget limitations, and he considered to 
maximizing the number of products that he can purchase with the established budget. 
The BKP problem he used to test the NP-Completes of this problem, however, for 
the particular case where the customer wants to maximize the number of products 
he receives, a new transformation of this problem to the MC problem is carried out. 
They include a relationship of the B-ISOP with other problems such as BKP, MCKP, 
WMC, BMC and GMC.
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2.4 Internet Shopping Optimization Problem with Price 
Sensitive Discounts 

Blazewicz et al. [17] conducted a study and optimization aspect to Internet shopping 
with price-sensitive discounts from customer perspective. Specifically, they consider 
a problem in which a customer would like to buy products of a given set N = 
{1, . . . ,  n} in a given set of Internet shops M = {1, . . . ,  m} at the final minimum 
price. The show parameters and decision variables are in Table 5. 

They denote the above problem as IShOPwD, where the abbreviation stands for 
Internet Shopping with price sensitive discounts. The mathematical formulation of 
the model is as follows: 

min 
m∑

i=1 

fi 

⎛ 

⎝di yi +
∑

j∈Ni 

pi j  xi j  

⎞ 

⎠ (15) 

s.t.
∑

i∈M j 

xi j  = 1, j = 1, . . . ,  n (16) 

0 ≤ xi j  ≤ yi , i = 1, . . . ,  m, j = 1, . . . ,  n (17) 

xi j  ∈ {0, 1}, yi ∈ {0, 1}, i = 1, . . . ,  m, j = 1, . . . ,  n (18) 

Blazewicz et al. [17] consider the IShOP study with price-sensitive discounts 
from the customer’s perspective. Two sub-problems are defined and both consider

Table 5 Variables and parameters 

Variable/parameter Explanation 

di Delivery price of all products from shop i to the customer 

pi j Standard price of product j in shop i , pi j  = p j if Standard prices of 
product j are the same in all shops 

Ni Subset of products of the set N in shop i (eligible products for shop 
i),Ni ⊆ N 

M j Subset of shops in which product j can be bought (eligible shops for 
product j), M j ⊆ M 

Si Subset of products selected by the customer in shop i (basket of shop i , 
decision variable), N = ∪m 

i=1Si and Si ∩ S j = ∅, i �= j , for a feasible 
solution 

Ti (Si ) = di + ∑
j∈Si 

pi j  Total delivery and standard price in shop I for a given set of products 
Si ⊆ Ni ; if there is no ambiguity, notation Si in Ti (Si ) can be omitted 

fi (T ) Discounting function for final price, a concave increasing differentiable 
or concave piecewise linear function of total delivery and standard price 
T in shop i at all points T > 0, fi (0) = 0 
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that all the stores have all the products and the opposite case where not all the stores 
sell them. They implemented a branch and bound algorithm to calculate the optimal 
solutions of the evaluated instances; for the experiments carried out, 50 small-size 
instances are used. 

Musial et al. [21] investigate an extended version of the IShOP, considering price-
sensitive discounts. A new set of heuristic approaches to solve the problem is intro-
duced. The heuristics are composed of a new lightweight metaheuristic based on 
a cellular optimization process, a new greedy algorithm, and two state-of-the-art 
ones. They have designed different heuristics to consider a different solution quality 
regarding computational time and results close to the optimum solution. The optimal 
solutions for small problem instances are solved using a branch and bound algorithm; 
they also assumed that all products are available in all stores. In computational exper-
iments assume that the number of stores is {20, 40} and the number of products is 
{2, 3, . . . ,  10, 15, . . .  ,  100}. 

2.5 Trusted Internet Shopping Optimization Problem 
(T-ISOP) 

Musial and López-Locés [22] propose for the first time a new, more sophisticate 
model where all the variables and symbols are described in Table 6, which reflects 
real shopping situations more accurately. Trusted Internet Shopping Optimization 
Problem (T-ISOP) is presented in the following way: 

min 
m∑

i=1 

n∑

j=1 

xi j  
pi j  

O Pay j 
v j + 

n∑

j=1 

y j d j 

s.t. (19) 

n∑

j=1 

xi j  = 1∀i ∈ M (20) 

m∑

i=1 

n∑

j=1 

xi j  = m (21) 

m ∗ y j − 
m∑

i=1 

xi j  ≥ 0∀ j ∈ N (22) 

xi j  ∈ {0, 1} ∀i ∈ M, ∀ j ∈ N (23) 

y j ∈ {0, 1} ∀ j ∈ N (24)
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Table 6 Variables and parameters 

Variable/parameter Explanation 

m Number of products to buy 

n Number of shops 

i Product indicator 

j Shop indicator 

d j Delivery price for all products from shop j 

y j Usage indicator for delivery price from shop j 

pi j Cost of product i in shop j 

xi j Usage indicator for product i in shop j 

O Pay  j Overpay trust function for shop j 

v j Trust veto factor for shop j 

O Pay j = (1, . . . ,  max OP)∀ j ∈ N (25) 

v j ∈ {1, ∞} ∀ j ∈ N (26) 

Musial and López-Locés [22] formulate a new model to solve the IShOP problem 
that includes trust and reputation for each of the stores to be evaluated; this model 
named Trusted Internet Shopping Optimization Problem (T-ISOP), a genetic algo-
rithm (GA) is used to solve the IShOP problem that includes trust and reputation 
of stores. In this work, multiple items of the same type shopping are not supported; 
also, they assume that all products are available in all stores. The instances used in 
the experiments consider two sets of 10 products and 20 stores, and 20 products and 
20 stores. 

Musial et al. [1] propose an expansion of the IShOP problem model considering 
discounts among other variables; the recommendations are used so that the user can 
make decisions in the selection of stores where each product should be purchased. 
A mapping of the IShOP problem is carried out to the Cloud Brokering type and a 
framework they also developed that allows optimizing the IShOP problem. 

2.6 Bi-objective Internet Shopping Optimization Problem 

The notation used in Eq. 27 is in Table 7. Chung [23], for the first time, formulated 
the bi-objective Internet shopping optimization problem. The model considers the 
purchase cost and delivery time limitation as targets at the same time. The bi-objective 
model is the following:
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Table 7 Variables and parameters 

Variable/parameter Explanation 

M Set of shops 

N Set of products 

n Number of products 

m Number of shops 

pi j Price of product i at shop j 

f j Delivery cost at shop j 

di j Expected delivery time of product i from shop j 

xi j Binary decision variable of product i is selected from shop j 

y j Binary decision variable of delivery cost at shop j 

Min
∑

i

∑

j 

pi j  xi j  +
∑

j 

f j y j (27) 

Min maxi, j
(
di j  xi j

)
(28) 

s.t.
∑

j 

xi j  = 1, ∀i = 1, . . . ,  n (29)

∑

i 

xi j  ≤ ny j , j = 1, . . . ,  m (30) 

xi j  = 0/1, y j = 0/1 (31) 

The objective function (27) means that you want to minimize the purchase cost, 
including price of products and delivery cost. The objective function (28) means that 
you want to minimize the delivery time of all products. Constraints (29) means that 
all products to buy must be selected from available shops and constraints (30) means 
that fixed delivery cost incurs whenever there is any product selection from shop. 
Constraints (31) means binary decision variables. 

Chung [23] proposes a bi-objective solution to the IShOP problem using the 
costs of the products plus the shipping cost and adds the restriction of the product 
availability time. To solve the problem, two heuristics are used to satisfy the two 
objective functions to obtain the Pareto optimal set.
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2.7 Research Open Issues 

In this section, the main research issues for each variant of IShOP are described. 

2.7.1 Internet Shopping Optimization Problem with Shipping Costs 

This variant of the IShOP problem is the most studied [2, 4, 6–10]. The litera-
ture available can find several solution methods like linear programming algorithm, 
heuristic algorithms, and various metaheuristics algorithms. This model considers 
that the customers buy only one product of each type, and the stores have all the 
products in the shopping list. Practically all the reviewed works in this overview 
make this consideration which is a limitation for real application. 

2.7.2 Internet Shopping Optimization Problem with Shipping Costs 
and Discounts 

Błażewicz et al. [12] propose the IShOP with discounts model and develop simple 
heuristics to solve the problem. The only work with this IShOP variant where multiple 
items of the same type shopping are supported, and they assumed that all product 
are available in all stores. Solution methods are reported only for the variant that 
considers that the customers buy only one product of each type and include: Simple 
heuristics, Tabu search algorithm, and simulated annealing. 

2.7.3 Internet Shopping Optimization Problem with a Budget (B-ISOP) 

Future work could focus first on algorithms for the problem described. Including 
at least: an analysis of the usability of the greedy approximation algorithm for a 
more general GMC problem, a proposal for heuristic and metaheuristic algorithms. 
Therefore an approach is also required that provides optimal solutions at least to 
evaluate an optimization gap of the other algorithms in small instances. The ILP 
model should be able to be developed in existing resolution software. Second, the 
presented model simplifies reality that could they expanded to capture more real-
world situations. Some other ideas such as price-sensitive discounts or dual-discount 
features have already are proposed above. 

The areas of possible application of the presented problem are not limited to 
optimizing purchases on the Internet. Similar problems can already are found, where 
the user wants to buy the best set of cloud resources. It could be helpful in the future 
in energy markets, where the user wants to buy electricity from different sources, 
valuing even clean energy more than dirty energy.
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2.7.4 Internet Shopping Optimization Problem with Sensitivity 
Discounts 

The direction of future studies could focus on optimizing purchases from a supplier 
perspective or from both points of view as customers and suppliers strive to maximize 
their profits. The latter case assumes that, at the same time, stores are trying to sell 
their supplies as soon as possible because the value of most products decreases during 
the heuristic algorithms and potential customers delay buying while waiting for some 
discounts. Finally, other versions of ISOPwD may require the use of metaheuristics 
that have not they applied so far, e.g., ant colony optimization or particle swarm 
optimization. 

2.7.5 Trusted Internet Shopping Optimization Problem (T-ISOP) 

Future work will involve a deep analysis of the trust factor and combine it with 
optimization of the problem from a more technical point of view. In addition, the 
intermediation problem in the cloud could enrich with the analysis of the trust factor. 
Said topic is vibrant and, based on the knowledge base, it lacks and suffers from 
adequate (or even absolute) influence from factors of trust and reputation in the 
market. A work future research idea is to prepare computational experiments based 
on actual data. A simple decision aid simulation tool could be another exciting 
research point. 

Moreover, it could be beneficial to use biology-inspired approaches, models, and 
computations to tackle the problem. Furthermore, both OPay and functions could are 
personalized to the user. This personalization process will are realized as a decision-
aided questioner tool. Allows to prepare experimental analysis dedicated to every 
single user accordingly to his detailed needs and requirements. 

2.7.6 Bi-objective Internet Shopping Optimization Problem 

Currently, Internet search engine recommends a product based on a single crite-
rion such as price or reputation. However, more advanced search engines or shop-
ping robots will recommend multiple products based on multiple criteria such as 
purchasing cost, delivery time, and various delivery options. Therefore, extending 
the model to consider other delivery options is one of the other research topics. 

3 Conclusions 

This chapter reviews the most recent and relevant works related to the different vari-
ants of the Internet Shopping Optimization Problem. First, are identified the charac-
teristics of the used model, the proposed solution methods, and the used instances
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for each variant. Once the works are analyzed, a series of open research areas are 
determined to give an overview to the researchers that want to work with the variants 
of the IShOP problem. 
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A Comparison Between MFCC and MSE 
Features for Text-Independent Speaker 
Recognition Using Machine Learning 
Algorithms 

Joseph Isaac Ramírez-Hernández, Alain Manzo-Martínez, 
Fernando Gaxiola, Luis C. González-Gurrola, Vania C. Álvarez-Oliva, 
and Roberto López-Santillán 

Abstract Speaker identification is the process through which a person can be identi-
fied by using the physical characteristics of his voice. In recent years, this identifica-
tion is done by using artificial intelligence algorithms along to feature extract methods 
from the speech signal such as the MFCCs (Mel Frequency Cepstral Coefficients). 
Text-independent speaker recognition consists of identifying a person by training 
and testing of the model with voice signals where one speaker will say different 
phrases. In the present research two types of audio features were extracted, on one 
hand the MFCC and on the other hand the MSE (Multiband Spectral Entropy). For 
the classification stage we use machine learning algorithms, such as k Nearest Neigh-
bors, Random Forest, Deep Neural Networks, and Decision Trees. Two important 
databases of the literature were used in our experiments, LibriSpeech and ELSDSR. 
Four different experiments were defined: speaker identification in a group of 20 
participants, speaker identification between men, speaker identification between 
women, and speaker identification by gender. Significant results were obtained 
when using the ELSDSR database, obtaining 93.99% precision in the experiment 
for speaker recognition by gender. 

Keywords Text-independent speaker identification · MFCC · Multiband spectral 
entropy 

1 Introduction 

A computational model is a mathematical model applied in computer science. 
Usually, this model does not has a well-defined analytical solution but is based on the 
idea of looking for parameters and favorable condition for the solution of a problem.
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An Automatic Speaker Recognition System (ASR) consists of a stage which studies 
the speech and then it can interpret the speaker identity based on its features. Speech 
signals contain useful information of the speaker like emotions, gender, and accent 
[1]. 

In general, speakers can be identified using two different methodologies: text-
dependent and text-independent. In the first hand, the text used for training and 
testing must be the same. In the second hand, the text used for training and testing is 
generally different. 

Speech signals generally can be considered as non-stationary time series. For 
this reason, an ASR system faces various challenges as the following: speakers with 
different language, human interaction is not limited to speech and it also uses corporal 
movements and gestures, the vocal tract varies according to gender, accent, emotions, 
and age. 

The importance of voice signal analysis is observed in the technological tools 
that work on these signals. ASR system has matured to the point of being robust 
and reliable. However, a general rule has not been found that solves the problem 
of identifying the speaker from the characteristics of his voice. Improving these 
voice recognition systems will allow this technology to be applied in automotive 
environments (autopilot systems, navigation systems, etc.) [2, 3], home automation 
(smart home, energy savings, etc.) [4, 5] and banking systems (data security, access 
to mobile applications, etc.) [6, 7]. 

Currently the ASR systems transform the message said by the speaker into text, 
this implies that the way the system recognizes is according to what the speaker 
says, namely, this is a text-dependent classification. Such is the case with Siri, Apple’s 
personal assistant, which was introduced in 2010 by the brand. This personal assistant 
is activated and works by recognizing the text mentioned by a speaker, this implies 
that if any person gives instructions to the device, it will carry out those actions [8]. 

On the other hand, text-independent speech recognition analyzes the properties of 
the voice beyond the text emitted by the speaker and even more so, regardless of what 
the speaker says. For this reason, the need arises to use qualities and characteristics 
of the voice signal that mutually contrast the speakers and thus define a pattern for 
each of them. 

1.1 Database Description 

This section describes the different databases used in this research work, in order 
to better understand the information that constitutes them for later use in the 
methodology and results obtained. 

ELSDSR 

The Database ELSDSR (English Language Speech Database for Speaker Recogni-
tion) is a set of speech signals recorded in Denmark Technic University (DTU). This



AComparisonBetweenMFCCandMSEFeatures for Text-Independent… 125

database contains samples from 30 Danish participants, 1 Icelander and 1 Canadian. 
All the samples were recorded at 16,000 Hz of sampling frequency [9]. 

LibriSpeech 

This database was proposed by Vassil Panayotov and it is based on LibriBox project, 
an audiobooks project. It contains more of 1000 h of speech signals. All data were 
recorded using 16,000 Hz of sampling frequency. For this work, a developer database 
is used, and it contains 40 participants divided in 20 women and 20 men [10]. 

1.2 Literature Reviewed 

Speaker recognition models can be divided in two phases: the feature extraction and a 
classification model. Feature extraction plays an important role, because it affects the 
performance of the classification model. For this research work, a search for previous 
work in the-state-of-art was carried out, all of them based on the text-independent 
methodology. 

Ittichaichareon et al. [11] use MFCCs as a feature extraction method and a support 
vector machine classifier on an own database obtaining 44% of precision. MFCCs are 
powerful features for speaker recognition since they use the spectrum of the speech 
signal and a filterbank to generate frequency sub-bands. 

Camarena et al. [12] use formants as a feature extraction method on speech signals 
with vocalized sound, namely, sub-bands, where there is speaker voice. The authors 
use two different datasets: a Spanish dataset and ELSDSR database obtaining a 
precision of 90% using a k-nearest neighbors (kNN) classifier. 

Luque Suárez et al. [13] use Multiband Spectral Entropy (MSE) as a feature extrac-
tion model. The authors use a kNN classifier using a ball tree proximity index. They 
obtain a 97% of precision on an uncontrolled environment and a 99% of precision on 
a controlled environment. MSE are a novel methodology for speaker recognition, it 
was proposed firstly for Misra et al. [14] and it’s based on the theory of information. 

Jahangir et al. [1] use MFCCT (Mel Frequency Cepstral Coefficients and Time-
Based Algorithms) as feature extraction model. They use three different datasets: 
LibriSpeech, VCTK and ELSDSR. As classifiers they use Support Vector Machine, 
Random Forest, k-nearest neighbors, decision tree J48 and a deep neural network. 
The more significant results are obtained in LibriSpeech, achieving an error of 0.06 
in men and 0.08 in women. 

In this work, it will be compared the efficiency of machine learning algorithms 
in the classification task using MFCC and MSE as feature extraction methodology. 
As a hypothesis, it is thought that multiband spectral entropy can generate better 
precision in speech recognition task. The first part of methodology is the same for 
MFCC and MSE, but in the last part there is a variation for MSE computing proposed. 
The machine learning algorithms that were used are random forest, decision trees, 
k-nearest neighbors and deep neural networks.
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2 Proposed Methodology and Feature Extraction 

This section will review the different techniques used for feature extraction of multi-
band spectral entropy (MSE) and MFCCs. In addition, there is a description of 
machine learning algorithms that were used during the work. 

2.1 Preprocessing 

Speech signals can be modeled as discrete functions sampled with a sampling 
frequency fs . The ELSDSR and LibriSpeech databases use a sampling rate of 16 kHz. 
All this speech signals have different length. This is not a problem in the feature 
extraction phase, but in the classification. 

Pre-emphasis: A pre-emphasis filter is a highpass type filter, which is used in speech 
recognition. It can enhance the hidden patters in the human voice. A pre-emphasis 
filter can enhance high frequencies of speech signals. The difference function of 
pre-emphasis filter is showed in Eq. 1. 

y[n] = x[n] − αx[n − 1] (1) 

where α is defined as an equalization number. This value is normally defined in a 
closed set [0.9, 1]. In this work, a value of 0.95 is used to filter all speech signals. 
Figure 1 shows a 3-secong-long speech signal, where red plot shows the filtered 
signal. As can be seen, the amplitude of the signal is modified reducing its magnitude. 

Framing: In the framing process, speech signals can be considered time series of N 
points. This process consists of generating a group of subseries (also called frames) 
of length n, which are overlapped in certain percentage. Framing results in a n × m 
matrix, where m is the total number of frames. Figure 2 shows the framing process 
in a speech signal of 1-second-long using frames of 250 ms and an overlapping of 
50% between frames.

Fig. 1 Filtered signal using a pre-emphasis filter 
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Fig. 2 Framing process of a 1-second-long speech signal using frames of 250 ms 

Vocalized sound: Vocalized sound is defined as parts of the signal where there is 
human voice (voiced sounds), namely where the vocal cords vibrate. Generally, a 
speech signal contains certain intervals where the participant does not emit a sound. 
These intervals can be found using an autocorrelation function. An autocorrelation 
function estimates the periodicity of a signal and with it the vocalized sound [15]. The 
Short-Time Autocorrelation Function (STAF) Rl (k) of  a frame  starting in a sample  
l of a signal x is defined as 

Rl[k] = 
n−1∑

m=0 

x[l + m]x[l + m + k] (2) 

where n is the frame length. The autocorrelation function generates a new discrete 
function. If the maximum value of this function is greater than 0.1 then the frame 
contains vocalized sound. The selection of this value was the result of empirical 
experiments using different values of threshold.
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Fig. 3 Audio signal obtained from the windowing process using a frame of 250 ms 

Windowing: The windowing process is used to convert every frame into a pseudo 
periodic function which facilitates the Fourier transform analysis. There are a lot 
of different window functions, but in this work the Hanning window is used. This 
window was proposed by Von Hann and it is defined as a cycle of a cosine function. 
The Hanning window is defined in Eq. 3 

H (k) = 0.5 − 0.5 cos
(

2πk 

n − 1

)
(3) 

where n is the frame length. Figure 3 shows the result of using the Hanning window 
on a frame. 

Fast Fourier Transform (FFT): The Fourier transform of a function is defined as 
a mapping to a new space of functions in terms of frequency. The discrete form of 
Fourier transform is defined in Eq. 4. 

X [k] = 
N−1∑

n=0 

x[n]e 
−2i πkn 

N (4) 

The fast Fourier transform (FFT) is an optimized form of the discrete Fourier 
transform. FFT is used in several physics and mathematics applications. 

Following the proposed methodology, the FFT was used in each frame. This 
results in a matrix called spectrogram of the signal. Figure 4 shows the spectrogram 
of a speech signal sampled at 16 kHz and frames of 25.6 ms.

Sub-bands generation: The crucial part of the methodology is create frequency sub-
bands using a Mel filter bank. A Mel filter bank is defined as an array of triangular 
bandpass overlapped filters. This filterbank uses a frequency scale named Mel scale, 
defined by Stevens, Volkman and Newman in 1937. 

In the experiments, 40 triangular filters were used, which were multiplied by each 
of the frames of the signal, thus obtaining each frequency sub-band.
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Fig. 4 Spectrogram of a 
speech signa using frames of 
25.6 ms

2.2 Mel Frequency Cepstral Coefficients 

MFCCs were proposed by David and Mermelstein in the eighties. These coeffi-
cients are used widely as a feature extraction method for a speech signal [16]. Each 
coefficient can be defined as a sum of energies of each sub-band. Symbolically we 
have, 

X ′[m] = log

(
N−1∑

k=0 

X [k]H [k, m]

)
(5) 

for m = 1, 2, …, M, where M is the number of filters. The Mel filter bank, H(k, m), 
is a set of triangular filters. This new result is a set of points in the frequency space. 
Usually, discrete cosine transform (DCT) is used to map this points to the temporal 
space. DCT is defined as 

c[l] = 
M∑

m=1 

X ′[m] cos

[
l 
π 
M

(
m − 

1 

2

)]
(6) 

for l = 1, 2, …, L, where c[l] is the  lth MFCC. After DCT certain coefficients can 
be used. In this work, 40 coefficients were used in our experiments. Each group of
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coefficients can be used as a 40-dimensional feature vector, assigning a label (target) 
to it. 

2.3 Multiband Spectral Entropy 

This methodology presents a novel feature extraction method for speech recognition. 
Unlike MFCCs the entropy can measure the information quantity contained in every 
sub-band. 

Shannon’s entropy is a real number that measures uncertainty of an informa-
tion source. This measure provides useful criteria to analyze and compare distinct 
probability distributions. Shannon’s entropy is defined as 

E = −  
n∑

i=1 

pi · log(pi ) (7) 

where pi is the occurrence probability of an event i with a probability distribution 
P . Spectral entropy was presented originally as an additional feature for speech 
recognition. Mirsa et al. [14] consider every point of sub-band as a distinct event 
with a probability defined as 

pk = X [k]
∑N 

i=1 X [k] 
(8) 

where X [k] is the energy of k-th component from spectrum and N is the total points 
in the spectrum. 

On the other hand, Camarena et al. [17] use a variation in the entropy computing. 
They use the real and imaginary part of FFT to calculate a covariance matrix � and 
then obtain the entropy as 

E = ln(2πe) + 
1 

2 
ln[det(�)] (9) 

where e is the Euler’s number and det(�) is the determinant of covariance matrix, 
i.e. σxx  σyy − σ2 

xy  where σxx  and σyy are the variances of the real and imaginary parts, 
respectively, and σxy  is the covariance between the real and imaginary parts. Figure 5 
shows an entropygram obtained from MSE method. As same as MFCCs this feature 
vectors can be used on classification assigning a label to every vector.



AComparisonBetweenMFCCandMSEFeatures for Text-Independent… 131

Fig. 5 Entropygram of a speech signal using frames of 25.6 ms 

2.4 Machine Learning Algorithms 

Machine learning is defined as the search for a general rule that allows explaining 
the behavior or distribution of certain data (called variables or characteristics) given 
a limited sample size. 

Machine learning can be studied from different perspectives: supervised learning 
and unsupervised learning. In supervised learning the characteristics have a target 
vector, which is commonly called a class vector. This class vector allows to identify 
each point of the set of characteristics in a different cluster. A cluster is an agglom-
eration of points with similar characteristics in a n-dimensional space. On the other 
hand, if the data do not have a class vector, the learning is of the unsupervised type. 

2.5 Decision Trees 

A decision tree is a classification algorithm that is based on the structure of a tree. 
The algorithm builds nodes (leaves) of the tree by performing different partitions of 
the input variables. The decision tree is made up of the following elements: a) A root 
node that has no input edges and has zero or more output edges. b) Internal nodes 
which have an entry edge and two or more exit edges. c) Leaves or terminal nodes 
that have exactly one input edge and no output edges. 

Figure 6 shows the basic structure of a decision tree. In this algorithm, each leaf 
node is assigned a class label. On the other hand, the internal nodes contain conditions 
that separate each vector of characteristics and methods to measure the efficiency of 
separation of classes such as entropy or Gini [18].

2.6 Random Forest 

The random forest is an assemblage algorithm, composed of a specified number of 
decision trees. The classification of this algorithm is based on the wisdom of the crowd 
ideology that basically considers that the opinion of a large group of participants is
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Fig. 6 Basic structure of a decision tree

the correct answer. The output of the algorithm is determined from the vote of each 
of the decision trees. 

The assembly is initialized with N decision trees, which are defined as Tree (X; 
qi) with i = 1, 2, 3, …, N. Each tree works as a base classifier, where qi is a sequence 
of random variables that are determined as follows: 

1. From the set X, training sets of the same size as X are selected and a decision 
tree is generated for each training set. The number of sets is usually selected as 
an odd number, this to avoid a tie in the vote of each tree. 

2. Each node of the decision tree is divided, and a subset of characteristics is 
extracted with the same probability. The generation of each decision tree is 
defined as follows: (a) The training set is given the number of samples, K, and 
the number of features m. (b) Then M characteristics of the set are randomly 
selected, with M < m. (c)  n samples are drawn from the given set, to form a new 
set of samples to train the expansion of the tree. (d) For the division of the node, 
the best characteristic is calculated, based on the set of M characteristics defined 
previously. (e) All decision trees are expanded. 

The random forest algorithm adjusts according to the number of characteristics 
and the number of levels in the decision tree. Therefore, the greater the depth of the 
tree (levels of nodes), the better the separation of data in space [18]. 

2.7 K-nearest Neighbors 

The k-nearest neighbors algorithm was first proposed by Cover and Hant in 1967. 
It is an algorithm that classifies feature vectors according to the spatial proximity 
of the vectors. It is an unsupervised and non-parametric algorithm, which basically 
estimates the value of the probability density function or directly the probability that 
a vector xi belongs to a class Cj for j = 1, 2, 3, …, m.
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For each vector in the test set the distance d(xi, xk) to each vector in the training 
set is calculated, forming a distance matrix D. This distance matrix is square and 
symmetric. The distance metric is usually the Euclidean distance, although different 
ones such as the Manhatan distance can be used [19]. 

2.8 Artificial Neural Networks 

An artificial neural network (ANN) is a mathematical model used for classification 
and regression. This model simulates the biological behavior of the human nervous 
system and its neurons. The artificial neural network uses a transfer function that 
transforms input variables and their weights into an output variable. Let xi be input 
variables and let wi be weights assigned to each variable, the output variable is 
calculated as 

y = f

(
n∑

i=1 

xi wi

)
(10) 

where f is the transfer function. Some frequently used transfer functions are: softmax, 
ReLu, tanh, and sigmoid. ANN can have hidden layers and various output units. 
Figure 7 shows the basic structure of a neural network. As can be seen, this algorithm 
emulates the connection between the dendrites and the axons in its analogous human 
neural net [20]. 

Fig. 7 Structural graph of a neural network model
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2.9 Preprocessing for Classification 

Regardless of the type of feature extraction method used, it is important to assign 
a label to each vector before starting the classification. In this work, 40-dimesional 
feature vectors are used for classification (MFCCs and MSE). To extract both MFCC 
and MSE features, the next procedure was implemented. (a) First, stereo signals 
are changed to monoaural by averaging both channels. (b) Frames of 30 ms are 
used to divide the monoaural signal (we use a sampling frequency of 16 kHz). 
(c) Consecutive frames have an overlap of 50%. (d) A Hann window function is 
applied to each frame. (e) The FFT is computed for each frame. (f) A bank of 40 
Mel filters is used to split the full band spectrum with fmin = 0 Hz,  fmax = 8 kHz.  
(g) Before computing FFT, we rule out unvoiced sounds from the speech signals 
by using the autocorrelation function. With the FFTs, we are ready to compute 
Mel Frequency Cepstral Coeffcients (Sect. 2.2), and the Multiband Spectral Entropy 
Signature (Sect. 2.3). 

Normalization: Is the process of reduce the magnitude of the audio dataset and can 
be based on statistical methods. In this work, min–max feature scaling was used. 
This normalization technique gets a new value using 

x∗ = x − min(X) 
max(X ) − min(X ) 

(11) 

where x represents the i-th coefficient of the feature vector and X is the feature value. 
This normalization converts the feature set to a closed set [0, 1]. After normalizing 
the data, stratification is used to separate the set into two different sets, a training set 
and a testing set. Stratification helps in cases where the data is unbalanced, such as 
in speech recognition. In addition, 80% of the data was used for training each of the 
models and 20% for testing. 

2.10 Setup for Machine Learning Algorithms 

In this work, 4 different machine learning algorithms were used: random forest, k-
nearest neighbors, ID3 decision tree and a deep neural network. The objective of 
using these algorithms is to test their operation given the nature of each one of them 
and how this can help in the task of speech recognition. Table 1 shows the parameters 
for every machine learning algorithm, they were varied using a grid search algorithm.

To measure the efficiency and performance of the above classifiers, it is necessary 
to use an evaluation metric that provides relevant information to evaluate and compare 
the algorithms with each other.
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Table 1 Parameters for every machine learning algorithm 

Machine learning algorithm Parameters 

k-nearest neighbors Neighbors, starting in a defined value 

Decision tree Criteria for a partition (gini or entropy) 
Strategy for splitting (best, random) 

Random forest Criteria for a partition (gini or entropy) 
Estimators (number of trees) 

Deep neural network Number of hidden layers, number of hidden neurons and 
activation functions

2.11 Defined Experiments 

The first of the experiments consists of determining whether a speaker is male or 
female, that is, the gender of the speaker. This experiment is of the binary type and 
can be considered the simplest of all. In the ELSDSR database there are 10 voice 
recordings of women and 12 for men, while in the LibriSpeech database there are 
20 recordings of men and 20 for women. 

The second and third experiment consists of identifying a man or a woman from 
the data sets of men and women respectively. For the ELSDSR database there are 12 
classes for men and 10 of women. In LibriSpeech there are 20 classes for men and 
20 classes for women. 

The last experiment is the most complicated since it consists of identifying 
a speaker from the total set of speakers. ELSDSR has a total of 22 classes and 
LibriSpeech a total of 40 classes. 

3 Results 

This section presents the results obtained by implementing the machine learning 
algorithms in the speech recognition problem. The results are presented according to 
each of the experiments carried out and defined in the methodology section. Tables 
are used to better understand the results obtained. 

3.1 Speaker Recognition 

The recognition of all speakers is the most complex task of this research work, since 
it contains a greater number of classes (labels) to be classified. There are 22 different 
classes in the ELSDSR database and 40 classes in the LibriSpeech database. 

The results of the decision tree, random forest, artificial neural network, and k-
nearest neighbors algorithms are evaluated using the accuracy metric. The results
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Table 2 Obtained results in the experiment of recognition of all speakers in the ELSDSR database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 66.07 64.68 65.17 34.71 

MSE 77.13 72.58 78.92 53.22 

Table 3 Obtained results in the experiment of recognition of all speakers in the LibriSpeech 
database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 59.69 64.62 67.52 34.86 

MSE 63.91 68.18 74.73 46.81 

obtained in each of the algorithms in this experiment are shown in Table 2. The  
best results in accuracy are shown in bold, noting that for MFCC feature the best 
performance was 66.07% by using a deep neural network classifier, on the other hand, 
the best performance for multiband spectral entropy was 78.92% by using a random 
forest classifier, above the Mel coefficients by more than 12 percentage points. 

There are 40 speakers in the LibriSpeech database, so for this experiment 40 
different classes (labels) will be obtained. Likewise, the evaluation metric to be used 
in this experiment was accuracy. The results obtained in this experiment are shown 
in Table 3 As can be seen, the best result was obtained in the random forest classifier 
by using spectral entropy, with 74.73% in accuracy, whereas MFCC obtained 67.52% 
with the same classifier. This represents 7 percentage points above Mel’s coefficients 
using random forest. Something important to mention is that it was expected that 
the accuracy results would decrease with respect to those obtained in ELSDSR. This 
may be due to the number of classes that are held. 

3.2 Speaker Recognition in Men 

The results of this experiment are based on the voice identification task in men. This 
experiment uses only 12 different classes in ELSDSR and 20 classes on LibriSpeech, 
for which the algorithms previously described were used. Table 4 shows the accuracy 
results for this experiment. With fewer classes than in the previous experiment, it 
would expect the ranking results to be higher. However, as can be seen, the results are 
lower than those found in the previous experiment. The best result was obtained with 
the random forest algorithm using multiband spectral entropy with a percentage of 
70.6%, whereas for MFCC was of 66.88%, 4 percentage points above the Mel coef-
ficients. Table 5 shows the results of the experiment in LibriSpeech using the metric 
accuracy. As can be seen, the best result is obtained when using the random forest
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Table 4 Obtained results in the speech recognition experiment in men in the ELSDSR database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 66.83 67.63 66.88 37.58 

MSE 68.65 61.97 70.6 41.53 

Table 5 Obtained results in the speech recognition experiment in men in the LibriSpeech database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 71.23 75.13 75.55 45.04 

MSE 75.15 76.33 82.15 58.33 

algorithm using multiband spectral entropy, with 82.15%, whereas that the couple 
MFCC and random forest algorithm achieved the 75.55%. When comparing both 
features using the same algorithm, a difference of 7 percentage points is observed. 
This result is higher than that obtained in the ELSDSR database in the same exper-
iment, this may be since there is a greater amount of information from each of the 
speakers. 

3.3 Speaker Recognition in Women 

The results of this experiment consist of recognizing female speakers. This experi-
ment uses a total of 10 different classes in ELSDSR and 20 for LibriSpeech, using 
the algorithms described above. Table 6 shows the accuracy results of this exper-
iment. It is observed that the classification was higher than that obtained in the 
two previous experiments, this may be since there were fewer classes, or else the 
algorithms measure the characteristics of the female voice in greater detail. The 
best result was obtained in the random forest algorithm using multiband spectral 
entropy, obtaining a 79.03%. The result was very closed compared to the artificial 
neural network. In respect to MFCC feature, a percentage of 75.11% is obtained by 
using deep neural network. Table 7 shows the results obtained in this experiment 
with LibriSpeech database. As can be seen, the best result was obtained using the 
random forest algorithm and multiband spectral entropy with 90.79%. Comparing 
this result with its analogue in the Mel coefficients, a difference of 2 percentage 
points is obtained since MFCC had an accuracy of 88.78% by using deep neural 
network classifier. Something important to mention is that this result is higher than 
the one obtained in the ELSDSR database. This is not necessarily good, as there may 
be a more contrasting pattern in the LibriSpeech database.
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Table 6 Obtained results in the speech recognition experiment in women in the ELSDSR database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 75.11 70.94 72.58 49.90 

MSE 78.32 72.58 79.03 53.06 

Table 7 Obtained results in the speech recognition experiment in women in the LibriSpeech 
database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 88.78 88.26 86.67 77.36 

MSE 87.42 86.62 90.79 82.49 

3.4 Genre Recognition 

The results of this experiment consist of the identification of the gender of the speaker, 
so there are only two different classes. Table 8 shows the results obtained using 
the implemented algorithms in ELSDSR. As can be seen, the results are superior 
to previous experiments. This is because the experiment is binary, that is, of two 
classes. The best result is obtained using the artificial neural network algorithm with 
multiband spectral entropy extraction (93.75% and 93.99% for MFCC and MSES 
respectively), although there is no significant difference to that obtained in the random 
forest. One of the points that could break this little difference is the computational 
cost of training the model, which could be analyzed in more detail. The results of 
this experiment applied in the LibriSpeech database are shown in Table 9. As can be 
seen, the best result was obtained using the random forest with multiband spectral 
entropy, obtaining 90.79% in accuracy. For the case of MFCC feature, a accuracy of 
88.78% by using deep neural network. This result is superior to its analogue in the 
Mel coefficients by 2 percentage points. This difference is greater than that observed 
in the ELSDSR database, where the difference in accuracy between the extractions 
was smaller. 

As in the ELSDSR database, the best results were obtained using multiband spec-
tral entropy. Also, the random forest algorithm is generally the best of the four 
numerically speaking. The results obtained in these experiments show that the algo-
rithms find a contrasting pattern that allows them to reach that precision. To choose

Table 8 Obtained results in the gender recognition experiment in the ELSDSR database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 93.75 91.86 91.14 84.92 

MSE 93.99 91.3 93.29 88.54
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Table 9 Obtained results in the gender recognition experiment in the LibriSpeech database 

Audio feature Deep neural 
network (%) 

k-nearest 
neighbors (%) 

Random forest (%) Decision tree (%) 

MFCC 88.78 88.26 86.67 77.36 

MSE 87.42 86.62 90.79 82.49

one of these algorithms, other factors such as computational time or computational 
cost would have to be considered. 

4 Conclusions 

In this research work, the extraction of features based on multiband spectral entropy 
shows superior results than the extraction of Mel coefficients. Each of the experiments 
carried out shows a higher precision for multiband spectral entropy, even in some 
cases 12% above the Mel coefficients. In this research, four classification algorithms 
were considered, which are: random forest, decision tree, k-nearest neighbors and a 
deep neural network. The most significant results are shown by the neural network and 
the random forest algorithm, this may be due to the operation and the mathematical 
foundation of each of these algorithms. 

On the other hand, when comparing the results obtained with related work or 
the state of the art, competitive results are shown in terms of accuracy. Jahanhir 
et al. [1] obtained MFCCT (temporal spectrum characteristics) and obtained 92.9% 
in their gender experiment applied in the ELSDSR database, while using multiband 
spectral entropy an accuracy of 93.99% was obtained. Likewise, in the male voice 
identification experiment in the ELSDSR database, the authors obtained 82% in 
accuracy, while the multiband spectral entropy obtained 70.6%. Also, in this same 
database, but in the voice identification experiment in women, the authors obtain an 
accuracy of 78%, while the spectral entropy shows an accuracy of 79.03%. Something 
important to mention is that for these last two experiments the authors use a double 
check. They first use a pre-trained model that indicates the gender of the speaker 
to later classify it according to the experiment of men or women. This has shown 
better results according to the-state-of-the-art. On the other hand, in the LibriSpeech 
database the authors show 94% in accuracy in men, which is above the 82.15% 
achieved by multiband spectral entropy. In turn, in the female experiment, the authors 
obtained 92%, which is also higher than the 79.03% obtained by multiband spectral 
entropy. Although the extractions of characteristics of both works are different, it is 
statistically comparable since the same databases are used.
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Forecasting Based on Fuzzy Logic 
of the Level of Epidemiological Risk 
for the Mexican State of Tamaulipas 

Paula Hernández-Hernández and Norberto Castillo-García 

Abstract Nowadays, in Mexico there exists a traffic light monitoring system to 
regulate the use of public space according to the risk level of infection with SARS– 
CoV–2. The monitoring system is applied to each state in Mexico and consists of four 
levels of risk encoded with four colors: green, yellow, orange and red. In this chapter 
we propose a Fuzzy Time Series Model to forecast the next color to be assigned 
to the Mexican state of Tamaulipas based on historical data from the monitoring 
system. We conducted a computational experiment to measure the accuracy of the 
model. The model accuracy was measured by the well–known Root Mean Square 
Error (RMSE) index. 

Keywords Fuzzy time series model · COVID 19 · SARS CoV-2 · Mexican 
traffic · Light monitoring system · Public health 

1 Introduction 

Mexico has implemented a traffic–light monitoring system to indicate the risk level of 
infection with the novel coronavirus SARS–CoV–2 [1]. A similar color–based moni-
toring system is also used in other geographic regions [2]. The Mexican monitoring 
system is based on four different levels of risk, namely, maximal, high, medium and 
low. Each risk level is represented by a specific color. More precisely, maximal risk is 
represented by red, high risk is represented by orange, medium risk is represented by 
yellow and low risk is represented by green. The risk level is determined by several 
indicators such as the hospital occupancy rate, the COVID–19 test positivity rate and 
the tendency of patients who require hospitalization, among many others [3]. The 
goal of the monitoring system is to regulate the use of public space in order to miti-
gate the virus dissemination. Since the risk level varies over time, the validity period 
of the monitoring system color is 15 days. According to the Mexican government
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Fig. 1 Colors assigned to the Mexican states by the traffic–light monitoring system valid from 
January 24, 2022 to February 6, 2022 [4] 

policies, the monitoring system is independently applied to each autonomous admin-
istrative division [4]. In Mexico there are 32 different autonomous divisions that are 
called states. Figure 1 depicts the Mexican map with the states colored according to 
traffic–light monitoring system valid from January 24, 2022 to February 6, 2022. 

In this chapter we propose a fuzzy time series model (FTSM) to forecast the 
color of the Mexican traffic–light monitoring system of COVID–19 for the state 
of Tamaulipas (see Fig. 1). As far as we know, this is the first time that the color 
assigned to Tamaulipas by the Mexican monitoring system is forecasted. Our FTSM 
is a first–order model that uses the well–known average–based partition method to 
divide the universe of discourse and the three principles proposed in [5] to perform the 
defuzzification process. Since the colors are qualitative values, we assign a number to 
each color in order for our FTSM to be able to process them. The time series consists 
of 43 observations collected from June 8, 2020 to January 24, 2022 [6]. We conducted 
a computational implementation to assess the accuracy of the model through the Root 
Mean Square Error index. The experimental results show that the accuracy of FTSM 
is about 6.73 units. This means that the predicted values fit relatively well to the real 
values. 

The remainder of this chapter is organized as follows. In Sect. 2 we briefly review 
the fundamental concepts of fuzzy time series models. In Sect. 3 we describe our 
proposed fuzzy time series model as well as the implementation. Finally, in Sect. 4 
we discuss the main conclusions and further work of this research. 

2 Fuzzy Time Series Definitions 

A time series Y (t) (for t = . . . ,  0, 1, 2, . . .) is a set of real numbers (a.k.a. observa-
tions) chronologically ordered which describes the behavior of a variable over time.
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Let U = {u1, u2, . . . ,  un} be the universe of discourse defined from the observations 
of the time series Y (t). A fuzzy set A of the universe of discourse U can be formally 
defined as follows [5]: 

A = f A(u1)/u1 + f A(u2)/u2 +  · · ·  +  f A(un)/un, 

where f A : U → [0, 1] is known as the membership function of A and its purpose is 
to associate an element of the universe of discourse U with a real number between 
zero and one. Thus, f A(ui ) indicates the level of membership of ui in fuzzy set A, 
where f A(ui ) ∈ [0, 1] and i = 1, 2, . . . ,  n. If  F(t) represents a collection of fuzzy 
sets f1, f2, . . .  defined on the universe of discourse U, then F(t) is called a fuzzy 
time series defined on Y (t) [7]. 

Now suppose that F(t) is exclusively caused by F(t − 1). This causal relationship 
between F(t) and F(t − 1) can be formally expressed as: 

F(t) = F(t − 1) ◦ R(t, t − 1), 

where R(t, t − 1) is known as the fuzzy logical relationship between F(t) and 
F(t − 1), and ◦ represents a mathematical operator. If F(t − 1) = Ai and F(t) = A j 
then the fuzzy logical relationship can be denoted by Ai → A j . In this notation, Ai 

is the left–hand side and A j is the right–hand side of the fuzzy logical relationship 
[7]. The previous fuzzy logical relationship can be interpreted as follows. If the value 
at time t − 1 is Ai then the value at time t is A j . Thus, Ai → A j is a fuzzy state-
ment in which Ai is the antecedent and A j is the consequent. Frequently, fuzzy time 
series models have several fuzzy logical relationships with the same antecedent and 
different consequent. For example: 

Ai → A j1, Ai → A j2, . . . ,  Ai → A jk . 

In the previous example, there are k fuzzy logical relationships with exactly the 
same antecedent: the fuzzy set Ai . In these cases, it is convenient to group the k 
relationships into one single fuzzy logical relationship group: 

Ai → A j1, A j2, . . . ,  A jk . 

In this group, the antecedent has only one fuzzy set (Ai ) and the consequent has k 
fuzzy sets (A j1, A j2, . . . ,  A jk). The grouping process is performed on all the fuzzy 
logical relationships with the same antecedent in order to obtain the fuzzy logical 
relationship groups.
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3 Proposed Forecasting Model 

As mentioned previously, the goal of our fuzzy time series model (FTSM) is to 
forecast the color of the Mexican traffic–light monitoring system for the state of 
Tamaulipas. Section 3.1 presents the first step of our FTSM, which consists in defining 
the universe of discourse. Then, in Sect. 3.2 we describe the method used to parti-
tion the universe of discourse. The fuzzification process is explained in Sect. 3.3. 
Section 3.4 describes how to compute the fuzzy logical relationships. Section 3.5 
explains the defuzzification process. Finally, in Sect. 3.6 we report the computational 
implementation and the model accuracy through the RMSE index. 

3.1 Universe of Discourse 

In order to define the universe of discourse, we collect the colors assigned to the state 
of Tamaulipas by the traffic–light monitoring system from June 8, 2020 to January 
24, 2022. This gives us a time series consisting of 43 observations. However, since 
the elements in the time series are not numeric, we assign a number to each color in 
order to be able to compute the data. Thus, we arbitrarily assign the number 10 to 
color green (low risk), the number 20 to color yellow (medium risk), the number 30 
to color orange (high risk) and the number 40 to color red (maximal risk). All the 
observations of the time series are shown in Table 1. This table has four sections and 
each section has two headings: the time (t) and the observation at time t (Y (t)). 

The universe of discourse is defined by the minimum (Dmin) and maximum (Dmax) 
values from the time series Y (t). Clearly, in this research Dmin = 10 (observed at 
t = 22) and Dmax = 40 (observed at t = 1). The domain of the universe of discourse

Table 1 Time series of the encoded colors assigned by the traffic–light monitoring system of 
COVID–19 for the state of Tamaulipas, Mexico 

t (Y (t)) t (Y (t)) t (Y (t)) t (Y (t)) 

1 40 12 20 23 10 34 30 

2 30 13 20 24 20 35 20 

3 40 14 30 25 20 36 10 

4 40 15 20 26 20 37 10 

5 40 16 20 27 20 38 10 

6 30 17 30 28 30 39 10 

7 20 18 30 29 30 40 10 

8 20 19 20 30 30 41 10 

9 20 20 20 31 30 42 30 

10 20 21 20 32 40 43 20 

11 20 22 10 33 30 – – 



Forecasting Based on Fuzzy Logic of the Level of Epidemiological Risk… 145

is computed as U = [Dmin − D1, Dmax + D2], where D1 and D2 are two positive 
numbers conveniently determined [5]. In this study we set D1 = D2 = 0. Therefore, 
the domain of the universe of discourse is U = [10, 40]. 

3.2 Partition of the Universe of Discourse 

The partition process consists in computing a collection of n sub–intervals u1, . . . ,  un 
from the universe of discourse U. In this research we use the well–known average– 
based partition method. This method is deterministic and computes equally–sized 
intervals. The first step is to compute the average of the absolute difference between 
of each pair of consecutive observations. For our time series this value is computed 
as follows: 

avg =
| |30 − 40| + |40 − 30| + |40 − 40| +  · · ·  +  |20 − 30| 

42

|
=

|
180 

42

|
= 4. 

Once the average has been determined, the next step is to compute the half of 
avg = 4, which is hal favg = 2. Since the value of hal favg has one digit, the partition 
length l is precisely hal favg , i.e., l = hal favg = 2. With this information, we proceed 
to compute the number of sub–intervals and the domain of each sub–interval as 
follows. The number of sub–intervals is: 

n =
|
Dmax − Dmin

l

|
=

|
40 − 10 

2

|
= 15. 

Now, the domain of each sub–interval can be computed by: 

ui = [Dmin + (i − 1) × l, Dmin + i × l] ∀i = 1, . . . ,  n. 

Thus, the n = 15 sub–intervals are: u1 = [10, 12], u2 = [12, 14], u3 = [14, 16], 
u4 = [16, 18], u5 = [18, 20], u6 = [20, 22], u7 = [22, 24], u8 = [24, 26], u9 = 
[26, 28], u10 = [28, 30], u11 = [30, 32], u12 = [32, 34], u13 = [34, 36], u14 = 
[36, 38], u15 = [38, 40]. Notice that each sub–interval ui has a length l = 2 and 
their lengths are all equal. 

3.3 Fuzzification 

The goal of the fuzzification process is to determine the fuzzy sets and their member-
ship functions that constitute the fuzzification model defined on the universe of 
discourse U. In this study we follow the approach proposed in [5] to construct the
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fuzzification model. This model exclusively uses triangular membership functions 
to cover the universe of discourse. 

Every triangular function can be fully described by three parameters: a < b < c. 
On the one hand, parameters a and c represent the points where the function reaches 
its lowest value: zero. On the other hand, parameter b is the point where the function 
reaches its largest value: one. Typically, this parameter is located in the middle of the 
function, i.e., b = (a + c)/2. Given a real number x and a triangular membership 
function T defined by parameters a, b and c, the fuzzified value of x can be computed 
by Eq. (1): 

T (x, a, b, c) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 x ≤ a 
x − a 
b − a 

a ≤ x ≤ b 
c − x 
c − b 

b ≤ x ≤ c 

0 x ≥ c 

(1) 

The fuzzification model followed in this research considers n + 1 fuzzy sets to 
cover the universe of discourse. Since there are n = 15 sub–intervals, there will be 
16 fuzzy sets A1, ..., A16 defined as follows: 

A1 = 
1 

u1 
+ 

0.5 

u2 
+ 

0 

u3 
+ 

0 

u4 
+ 

0 

u5 
+ 

0 

u6 
+ 

0 

u7 
+ 

0 

u8 
+ 

0 

u9 
+ 

0 

u10 

+ 
0 

u11 
+ 

0 

u12 
+ 

0 

u13 
+ 

0 

u14 
+ 

0 

u15 
+ 

0 

u16 

A2 = 
0.5 
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1 
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0.5 
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0 
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0 
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0 

u6 
+ 

0 

u7 
+ 

0 

u8 
+ 

0 

u9 
+ 

0 

u10 

+ 
0 

u11 
+ 

0 

u12 
+ 

0 

u13 
+ 

0 
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+ 

0 
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0 
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A3 = 
0 

u1 
+ 

0.5 
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1 
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0.5 
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0 
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0 
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0 
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0 
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0 
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+ 

0 
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A4 = 
0 

u1 
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1 
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A5 = 
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0.5 

u4 
+ 

1 

u5 
+ 
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A6 = 
0 
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0 
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0 
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1 
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A15 = 
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The graphical representation of the fuzzification model is depicted in Fig. 2. 
From Fig. 2 we can observe that the universe of discourse U is entirely covered 

by triangular membership functions that represent fuzzy sets A1, . . . ,  A16. Table 2 
shows the parameter values for each triangular membership function. In this table, 
TAi stands for the triangular membership function of fuzzy set Ai (∀i = 1, . . .  16). 
Table 2 has two sections and each one has four headings: the membership function, 
the value of parameter a, the value of parameter b and the value of parameter c. 

Fig. 2 Graphical representation of the fuzzification model defined on the universe of discourse U 

Table 2 Parameter values for the triangular membership functions associated to fuzzy sets 
A1, . . . ,  A16 

Membership function a b c Membership function a b c 

TA1 6 10 14 TA9 22 26 30 

TA2 8 12 16 TA10 24 28 32 

TA3 10 14 18 TA11 26 30 34 

TA4 12 16 20 TA12 28 32 36 

TA5 14 18 22 TA13 30 34 38 

TA6 16 20 24 TA14 32 36 40 

TA7 18 22 26 TA15 34 38 42 

TA8 20 24 28 TA16 36 40 44
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Once defined the fuzzification model, each element of the time series Y (t) must 
be fuzzified. Specifically, each observation in Y (t) must be mapped to the fuzzy set 
for which its membership value is maximal [7]. This is performed by computing 
the degree of membership of all the observations to each fuzzy set by applying 
Eq. (1) with their corresponding parameter values from Table 2. In order to illustrate 
this process, let us consider the first observation of the time series, Y (1) = 40. 
The membership levels of this observation for fuzzy sets A1, ..., A14 are zero. The 
membership level of x = 40 to A15 is: 

μA15 = T (x = 40, a = 34, b = 38, c = 42) = 
c − x 
c − b 

= 
42 − 40 
42 − 38 

= 
2 

4 
= 0.5. 

Similarly, the membership level of x = 40 to A16 is: 

μA15 = T (x = 40, a = 36, b = 40, c = 44) = 
x − a 
b − a 

= 
40 − 36 
40 − 36 

= 
4 

4 
= 1. 

Since μA1 , μA2 , . . . , μA14 = 0, μA15 = 0.5 and μA16 = 1, observation Y (1) = 40 
is associated to fuzzy set for which its membership level is the largest, that is, A16. 
As mentioned previously, this process must be performed on every observation of 
the time series. Given the particular nature of the time series, only four fuzzy sets are 
used. Specifically, value 10 (green) is mapped to A1, value 20 (yellow) is mapped to 
A6, value 30 (orange) is mapped to A11 and value 40 (red) is mapped to A16. Table 
3 shows the result of the fuzzification process. 

Table 3 Fuzzified values of the time series under study 

Crisp value Fuzzy set Crisp value Fuzzy set Crisp value Fuzzy set Crisp value Fuzzy set 

40 A16 20 A6 10 A1 30 A11 

30 A11 20 A6 20 A6 20 A6 

40 A16 30 A11 20 A6 10 A1 

40 A16 20 A6 20 A6 10 A1 

40 A16 20 A6 20 A6 10 A1 

30 A11 30 A11 30 A11 10 A1 

20 A6 30 A11 30 A11 10 A1 

20 A6 20 A6 30 A11 10 A1 

20 A6 20 A6 30 A11 30 A11 

20 A6 20 A6 40 A16 20 A6 

20 A6 10 A1 30 A11 – –
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3.4 Fuzzy Logical Relationships 

Once all the observations of the time series Y (t) have been fuzzified, the next step is 
to formulate the fuzzy logical relationships. This is achieved by iteratively comparing 
two consecutive fuzzified values Ai and A j and stablishing the fuzzy logical rela-
tionship Ai → A j . Thus, the fuzzy logical relationships for the fuzzified values of 
our time series (see Table 3) are reported in Table 4. 

Fuzzy logical relationship groups are obtained from the fuzzy logical relationships 
reported in Table 4 by grouping those with the same antecedent. Table 5 shows the 
fuzzy logical relationship groups for the time series under study. 

Table 4 Fuzzy logical relationships of the time series under study 

A16 → A11 A11 → A16 A16 → A16 A16 → A16 A16 → A11 

A11 → A6 A6 → A6 A6 → A6 A6 → A6 A6 → A6 

A6 → A6 A6 → A6 A6 → A11 A11 → A6 A6 → A6 

A6 → A11 A11 → A11 A11 → A6 A6 → A6 A6 → A6 

A6 → A1 A1 → A1 A1 → A6 A6 → A6 A6 → A6 

A6 → A6 A6 → A11 A11 → A11 A11 → A11 A11 → A11 

A11 → A16 A16 → A11 A11 → A11 A11 → A6 A6 → A1 

A1 → A1 A1 → A1 A1 → A1 A1 → A1 A1 → A1 

A1 → A11 A11 → A6 – – – 

Table 5 Fuzzy logical relationship groups for the time series under study 

Group 1: A1 → A1, A6, A1, A1, A1, A1, A1, A11 

Group 2: A2 → ∅  
Group 3: A3 → ∅  
Group 4: A4 → ∅  
Group 5: A5 → ∅  
Group 6: A6 → A6, A6, A6, A6, A6, A6, A11, A6, A11, A6, A6, A1, A6, A6, A6, A11, A1 

Group 7: A7 → ∅  
Group 8: A8 → ∅  
Group 9: A9 → ∅  
Group 10: A10 → ∅  
Group 11: A11 → A16, A6, A6, A11, A6, A11, A11, A11 A16, A11, A6, A6 

Group 12: A12 → ∅  
Group 13: A13 → ∅  
Group 14: A14 → ∅  
Group 15: A15 → ∅  
Group 16: A16 → A11, A16, A16, A11, A11
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3.5 Defuzzification 

The goal of the defuzzification process is to compute the forecasted output. In this 
research we follow the principles proposed by Chen to perform this process on 
the time series of the colors assigned to Tamaulipas by the Mexican traffic–light 
monitoring system. These principles state the following [5]: 

1. If the fuzzy logical relationship is Ai → A j then the output value is the middle 
point of A j . 

2. If the fuzzy logical relationship has more than one fuzzy set in the consequent, 
i.e., Ai → A j1, A j2, . . . ,  A jk , then the output value is computed as the average 
of the maximal values of the fuzzy sets involved. 

3. If the fuzzy logical relationship does not have any fuzzy set in the consequent, 
i.e., Ai → ∅, then the output value is the middle point of Ai . 

Frequently, the output value computed by the Chen principles does not correspond 
to any numerical code of color. For example, suppose that we want to forecast the 
next color given that the current color is orange. Since the numeric code of orange 
is 30, the fuzzy set associated with this observation is A11 (see Table 3). Moreover, 
from Table 5 we know that the fuzzy logical relationship of A11 has more than one 
fuzzy set in the consequent, and hence, the second principle must be applied. The 
output value is computed as follows: 

Y (t + 1) = 
40 + 20 + 20 + 30 + 20 + 30 + 30 + 30 + 40 + 30 + 20 + 20 

12
= 27.5 

As we can observe, the output value (forecast) is Y (t + 1) = 27.5, which does not 
correspond to any color code (10, 20, 30 or 40). In order to overcome this drawback, 
we propose to round the output to the nearest ten as follows: 

Ỹ (t + 1) =
|
Y (t + 1) 

10 
+ 0.5

|
× 10. 

Thus, Y (t + 1) = 27.5 is rounded to Ỹ (t + 1) = 27.5/10 + 0.5 × 10 = 30. 
Therefore, the forecasted color is orange. 

3.6 Computational Implementation and Model Accuracy 

The proposed fuzzy time series model (FTSM) was implemented in Java in order to 
measure its accuracy. The accuracy of our FTSM can be obtained by the Root Mean 
Square Error index (RMSE), which requires the actual values of the time series and 
the forecasted values computed by the FTSM. Figure 3 shows the original time series 
from the observed data (black line) and the forecasted time series by our FTSM (red 
line).
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Fig. 3 Original time series (black line) and time series forecasted by the FTSM (red line) 

As can be observed from Fig. 3, the forecasted time series fits relatively well to 
the real data. In order to quantitatively measure the performance of our proposed 
FTSM, we compute the RMSE index as follows: 

RM  SE  =

⎡|||∑ T 
t=1

[
Y (t) − Ŷ (t)

]2 
T 

, 

where Y (t) stands for the actual observation at time t , Ŷ (t) is the value forecasted 
by our FTSM at time t and T is the number of paired values, both observed and 
forecasted. The RMSE value computed for our FTSM is 6.73. This value is relatively 
low. Therefore, we conclude that the accuracy of the proposed FTSM is high. 

4 Conclusions 

In this chapter we propose a fuzzy time series model (FTSM) to forecast the color 
assigned to the Mexican state of Tamaulipas by traffic–light monitoring system of 
COVID–19. The proposed FTSM divides the universe of discourse by using the well– 
known average–based partition method. Furthermore, it uses the three principles of 
Chen along with a rounding process to forecast the next color of the monitoring 
system. 

We implement the FTSM in Java to quantitatively evaluate the accuracy. We use 
the RMSE index and the obtained value was 6.73, which is relatively low. According 
to the computational results, we conclude that the model proposed here can be used to 
forecast the color of the traffic–light monitoring system for Tamaulipas. The proposed
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fuzzy time series model can be easily applied to other states, the entire country or 
other geographical regions worldwide. 
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Bio-inspired Flower Pollination 
Algorithm for the Optimization 
of a Monolithic Neural Network 

Hector Carreon-Ortiz, Patricia Melin, and Fevrier Valdez 

Abstract The Flower Pollination Algorithm (FPA) is a metaheuristic that is inspired 
by nature and is based on the process of pollination of flowering plants and the 
constancy of flowers associated with pollinating agents that can be insects, water or 
the wind. This paper provides a study of the optimization of a multilayer monolithic 
neural network for pattern recognition with the ORL face dataset, comparisons are 
also made with other studies that used the ORL dataset and performed optimiza-
tion of the neural network with other metaheuristics such as PSO (Particle Swarm 
Optimization) and GA (Genetic Algorithms). 

Keywords Neural networks · Flower pollination algorithm · Optimization ·
Metaheuristic · Bio-inspired algorithm 

1 Introduction 

Nowadays many people seem to be worried about the future arrival of machines 
with artificial intelligence. Some people even propose to take measures to avoid it, 
including the prohibition of certain developments, something that has historically 
been shown not to work, since the advance in the research of intelligent computing 
cannot be avoided, such as the utilization of Artificial Neural Networks (ANNs) and 
Algorithms Inspired by Nature (Bioinspired Algorithms) [1]. 

ANNs have received considerable attention due to their powerful capacity in image 
processing, speech recognition, natural language processing, etc. The performance 
of ANN models depends to a large extent on the quantity and quality of the data, the 
calculation power and the efficiency of the algorithms [2]. 

In Evolutionary Computation (EC), stochastic optimization methods that have 
been developed to obtain almost optimal solutions in complex optimization problems 
are used, for which classical mathematical techniques usually fail.
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The methods of EC use as inspiration our scientific understanding of biological, 
natural or social systems, which at some level of abstraction can be represented as 
optimization processes. 

In their operation, the search agents imitate a group of biological or social entities 
that interact with each other on the basis of specialized operators that make up a 
certain biological or social behavior. 

These operators are applied to a population (or several subpopulations) of candi-
date solutions (individuals) that are evaluated with respect to their physical fitness. 
Thus, in the evolutionary process, individual positions are successively close to the 
optimal response of the system to be solved [3]. 

The Flower Pollination Algorithm (FPA) is a metaheuristic inspired by the polli-
nation of flowering plants, whose pollinating agents can be insects such as bees, but 
also wind and water [4]. 

The goal of this work is the optimization of a monolithic multilayer neural network 
using the metaheuristics represented by the Flower Pollination Algorithm, by opti-
mizing the parameters of the number of neurons in the hidden layers and the number 
of epochs. 

The motivation for this work is to obtain the maximum recognition of images 
from the ORL database and compare the performance with other works where the 
neural network is optimized with different metaheuristics. 

This paper is organized as follows: 
In Sect. 2 we described the Artificial Neural Networks (ANN) and its biological 

inspiration, perceptron architecture, Sect. 3 is about FPA Algorithm, its inspiration 
and structure, Sect. 4 is about Optimization Monolithic Neural Network using FPA, 
network architecture and its integration with the FPA, Sect. 5 is about the simu-
lation with the proposal method, description of ORL database used in this work, 
experiments with manual method and proposal method and statistical test between 
methods, and Sect. 6 is about conclusions. 

2 Artificial Neural Networks (ANNs) 

ANNs are traditional machine learning techniques that mimic the learning mech-
anism in biological organisms. The human nervous system contains cells, which 
are known as neurons. Neurons are connected to each other by the use of 
axons and dendrites, and the regions of connection between axons and dendrites 
are called synapses Fig. 1. The strength of synaptic connections continually 
changes in response to external stimuli; this change is how learning takes place 
in living organisms [5, 6].

This biological mechanism is simulated in artificial neural networks, which 
contain units of computation that are called neurons. Neurons are connected to each 
other through weights, which fulfill the same function as the strengths of synaptic 
connections in biological organisms. Each input to a neuron is scaled with a weight, 
which affects the function calculated in that unit and this is illustrated in Fig. 2. An
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Fig. 1 Structure of a neuron

Fig. 2 Structure of an 
artificial neuron 

artificial neural network calculates a function of the inputs by propagating the calcu-
lated values from the input neurons to the output neurons and using the weights as 
intermediate measures [7]. Learning occurs by changing the weights that connect the 
neurons. Just as external stimuli are necessary for learning in biological organisms, 
the external stimulus in artificial neural networks is facilitated by the training data 
that contain the input–output data pairs of the function to be learned [8, 9]. 

2.1 Multilayer Perceptron (MLP) 

The neuron (node) is the fundamental unit of a neural network. In the case of the 
MLP, it includes an input layer, an output layer and at least one hidden layer. 

The perceptron is a simple neuron model that takes input signals (patterns) coded 
as (real) input vectors x = (x1, x2, . . . ,  xn+1) through the associated (real) vector of 
synaptic weights w = (w1, w2, . . . , wn+1) [10]. 

The layers consist of a set of nodes; in the case of the hidden layer, its inputs 
come from units in the previous layer and send their outputs to the next layer [11]. 
The input and output layers indicate the information traffic during the training phase 
where the learning algorithm is carried out [12].
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The MLP usually learns by means of the backpropagation algorithm that in itself 
it is a gradient technique. Variants of the algorithm are also implemented to work on 
the problem of slow convergence (momentum). Once the training process is carried 
out, the weights of the network are frozen and can be used to calculate the output 
values for the new input samples. Next, a brief explanation of the backpropagation 
algorithm is provided [13, 14]. 

The learning of the network is a process in which the weights, w, are adapted 
through a continuous interaction (k) with the environment, in such a way that (1): 

wnj  (k + 1) = wnj  (k) + Δwnj  (k) (1) 

where w(k) is the previous value of the weighting vector and w(x + 1) is the updated 
value. The learning algorithm consists of a set of rules to solve the learning problem 
and determine the values wnj  (k). 

One of the most important algorithms is that of error correction. Consider the nth 
neuron in the iteration. 

Let yn be the response of this neuron; x(k) is the vector of environmental stimuli, 
and {x(k), dn(k)} is the training pair. Error signal Eq. (2): 

en(k) = dn(k) − yn(k) (2) 

The goal is to minimize the objective function that takes this error into account. 
After selecting the criteria, the problem of correction of errors in learning becomes 
one of optimization. Consider a function ε(w), which is a continuously differentiable 
function of a weight vector. The function ε(w) transforms the elements of w into real 
numbers. We need to find an optimal solution w* that satisfies the condition (3):

∈
(
w∗) ≤ ∈(w) (3) 

Then, it is necessary to solve an optimization problem without restrictions posed 
as: the minimization of the cost function e(w) with respect to the weight vector. The 
necessary condition for optimization is given by (4): 

∇∈
(
w∗) = 0 (4)  

where ∇ is the gradient operator. An important class of unrestricted optimization 
algorithms is based on the idea of iterative descent (gradient descent method and 
Newton method). Starting with an initial condition w(0), it generates a sequence 
w(1), w(2), …, in such a way that the cost function ε(w) decreases in each iteration 
of the algorithm. It is desirable that the algorithm eventually converge on the optimal 
solution (5) in such a way that:

∈(w(k + 1)) < ∈(w(k)) (5)
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In the gradient descent method, successive adjustments are applied to the weight 
vector, in the direction of gradient descent. For convenience, we will use the following 
notation (6): 

g = ∇  ∈  (w) (6) 

The gradient descent algorithm can be formally written as (7): 

w(k + 1) = w(k) − ηg(k) (7) 

where η is a positive constant called the learning rate, and g(k) is the gradient vector 
evaluated in w(k). 

Therefore, the correction applied to the weight vector can be written as (8):

Δw(k) = w(k + 1) − w(k) = −ng(k) (8) 

This method slowly converges to an optimal solution w*. However, the learning 
rate has a greater impact on this convergent behavior. When η is small, the trajectory 
of w(k) on the plane W is smooth. When η is large, the trajectory of w(k) on the plane 
W is oscillatory, and when η exceeds a certain critical value, the trajectory w(k) on  
the plane W becomes unstable. Therefore, the backward propagation algorithm is 
a technique for implementing the gradient descent method in a weight space for a 
multilayer network. The basic idea is to efficiently calculate the partial derivatives 
of an approximate function of the behavior of the neural network with respect to all 
the elements of the adjustable vector of parameters w for a given value of the input 
vector x [13]. 

3 Flower Pollination Algorithm (FPA) 

The FPA was developed by Xin She Yang in the year 2012 [15–17], inspired by 
the pollination of flowering plants, pollination of the flower involves the transfer of 
pollen between the flowers. This is basically done in two ways: 

1. Autopollination or local pollination, which is a biotic form and contributes 10% 
of the global pollination, where pollinators are not required. 

2. Cross-pollination or global pollination, which is an abiotic form and contributes 
90% of global pollination, where pollinators such as insects, birds, bats and other 
animals, wind and water are required [18, 19]. 

The FPA algorithm is governed by the following 4 rules: 

1. Cross pollination occurs from the pollen of a flower of different plants [20]. 
Pollinators obey the rules of a Levy Distribution [21, 22] (10) by jumping or 
flying distant passes, this is known as global pollination (9).
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xt+1 
i = xt i + γ L(λ)

(
g∗ − xt i

)
(9) 

L ∼ 
λ ⎡(λ) sin(πλ/2) 

π 
1 

s1+λ , (s ≫ s0 > 0) (10) 

2. Self-pollination occurs when pollen from the same flower or other flowers of the 
same plant, this is known as local pollination [20] (11). 

xt+1 
i = xt i + ∈

(
xt j − xt k

)
(11) 

3. The constancy of the flower is associated between flowers and pollinators; this 
improves the pollination process of the flowers. 

4. Global and local pollination are controlled by a probability between 0 and 1, 
known as the probability of change [16, 23–25]. 

4 Monolithic Neural Network Optimization with FPA 

Architecture of the Neural Network: A monolithic neural network Feed-Forward 
Backpropagation Network [26–30] of 3 hidden layers with 300 neurons each is being 
proposed, and according to the literature this is a good model for image recognition. 
Figure 3 show the architecture of a Monolithic Neural Network. 

Figure 4 refers to the flow diagram of the FPA Algorithm including the Neural 
Network, it is the method that was used for the dynamic optimization of the Neural

Input 

Hidden Layer 

Output 

Feed Fordward BackPropagation 

Fig. 3 Architecture of the monolithic neural network 
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Network, the parameters that were optimized were the neurons of the 3 hidden layers 
and the number of epochs [18]. 

Start 

Define FPA Parameters 

Initialize the population of flowers 

Evaluate the flower constancy 

Find the best solution g* 

Define switch probability p ∈ [0,1] 
Draw step vector L from 

Levy distribution 
Draw from ϵ a uniform 

distribution [0,1] 
Local PollinationGlobal Pollination 

Evaluate new flowers constancy 

rand < p 

newSol > oldSol 

No newSol ≤ oldSol 

DiscardUpdate 

Find the current best g* 

numGen ≤ maxGen 

Output the best solution 

Stop

 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Fig. 4 Flowchart of the proposal of the FPA-NN method
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Table 1 Characteristics of 
the ORL DB 

ORL data base 

No. persons 40 

No. images for person 10 

Total of images 400 

Image size 112 × 92 
Size of the vector by image 10,304 

5 Simulation 

In this section we summarize the simulation results with the proposed approach. 

5.1 ORL Database 

This is the Database of Data (BD) of faces that is being used for the realization of 
the experiments, this BD belongs to the AT&T laboratories of Cambridge, and it is 
formed by 400 images of the faces of 40 different people, 10 images for each person, 
the images were taken at different times, varying the lighting, the facial expres-
sions (eyes opened/closed, smiling/not smiling) and the facial details (glasses/without 
glasses). All images were taken on a dark and homogeneous background with people 
in a vertical position, (with tolerance for some lateral movements). Table 1 shows 
the basic characteristics of the ORL BD, such as the number of people, number of 
images per person, the total number of images that make up the BD, among others 
[31]. Figure 5 shows some examples of the ORL database images.

5.2 Method: Manual Adjustment of Parameters (MAN-NN) 

Table 2 shows the setting of the proposed Neural Network Architecture for the method 
of manual adjustment of parameters.

Table 3 shows the number of hidden layers, neurons per layer of the different 
Architectures of the Neural Networks that were used with the method of manual 
adjustment of parameters, each of these Architectures has an input layer and an 
output layer.

Table 4 refers to the best four experiments of more than 100 that were performed 
with the method of manual adjustment of parameters, the minimum and maximum 
value, as well as the Mean and Standard Deviation obtained from each of the 
Architectures are also shown of every one of them.
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Fig. 5 Sample of the faces of the ORL DB

Table 2 Neural network parameters used with the manual adjustment method 

Parameters 

Modules 1 

Hidden layers 2 

Neurons hidden layer 100–400 

Neurons output layer 40 

Transfer function tansig 

Training method trainscg 

Epochs 1000 

Meta error 1.00E−05 

Learning rate 0.05

Table 3 Parameters of the different architectures used in the experiments 

Neural network architecture 

Architecture Hidden layers Neurons per layer Epochs 

1 2 200 200 

2 2 300 350 

3 2 400 500 

4 2 270 250
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Table 4 Experimental results with the manual parameter adjustment method 

Exp/arch 1 2 3 4 

1 68.75 68.75 63.75 83.75 

2 78.75 82.50 77.50 65.00 

3 63.75 72.50 68.75 80.00 

4 81.25 76.25 87.50 67.50 

5 88.75 80.00 85.00 63.75 

6 71.25 60.00 71.25 81.25 

7 77.50 57.50 76.25 73.75 

8 71.25 81.25 72.50 63.75 

9 33.75 70.00 53.75 76.25 

10 73.75 70.00 71.25 71.25 

11 82.50 75.00 70.00 72.50 

12 32.50 81.25 68.75 83.75 

13 72.50 83.75 77.50 63.75 

14 78.75 67.50 66.25 62.50 

15 67.50 72.50 68.75 62.50 

16 85.00 72.50 70.00 83.75 

17 72.50 71.25 62.50 76.25 

18 82.50 85.00 68.75 77.50 

19 76.25 76.25 73.75 77.50 

20 77.50 76.25 52.50 65.00 

21 63.75 66.25 65.00 61.25 

22 73.75 76.25 71.25 73.75 

23 76.25 71.25 70.00 82.50 

24 77.50 68.75 76.25 52.50 

25 75.00 53.75 70.00 83.75 

26 72.50 68.75 68.75 70.00 

27 85.00 76.25 77.50 70.00 

28 68.75 71.25 85.00 76.25 

29 71.25 72.50 61.25 86.25 

30 80.00 73.75 73.75 80.00
Σ

2180.00 2178.75 2125.00 2187.50 

Minimum 32.50 53.75 52.50 52.50 

Maximum 88.75 85.00 87.50 86.25 

Mean 72.67 72.63 70.83 72.92 

σ 12.33 7.25 7.90 8.67
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Fig. 6 Average of the experiments of the method manual adjustment of parameters 

Figures 6, 7 and 8 show the graphical representation of the linear behavior of the 
Mean and Standard Deviation [32, 33] respectively of the 4 Architectures of the best 
Neural Networks obtained by the manual parameter adjustment method. 
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Fig. 7 Standard deviation of the experiments of the method manual adjustment of parameters 
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Fig. 8 Mean and standard deviation of the experiments of the method manual adjustment of 
parameters
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5.3 Neural Network Optimized with FPA (FPA-NN) 

Table 5 shows the number of hidden layers, neurons per layer of the different Archi-
tectures of the Neural Networks that were used with the FPA method, each of these 
Architectures has an input layer and an output layer. 

Table 6 shows the number of hidden layers, neurons per layer of the 13 different 
Architectures of the Neural Networks that were used with the FPA method, each of 
these Architectures has an input layer and an output layer. 

Table 5 Parameters of the neural network that were used with the FPA method 

Parameters 

Modules 1 

Hidden layers 3 

Neurons hidden layer 100–400 

Neurons output layer 40 

Transfer function tansig 

Training method trainscg 

Epochs 1000 

Meta error 1.00E−05 

Learning rate 0.05 

Table 6 Architectures of the neural networks that were used with the FPA method 

Neural network architecture 

Architecture Hidden layers Neurons per layer Epochs 

1 2 3 

1 3 361 362 361 800 

2 3 391 390 343 1000 

3 3 400 400 400 700 

4 3 390 350 361 711 

5 3 388 374 380 747 

6 3 388 304 311 721 

7 3 385 344 313 729 

8 3 399 342 334 1000 

9 3 369 322 342 714 

10 3 359 343 379 711 

11 3 400 306 329 733 

12 3 370 311 301 1000 

13 3 359 311 217 755
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Table 7 refers to the 13 best experiments of more than 1000 that were carried out 
with the FPA method, the minimum and maximum value, as well as the Mean and 
Standard Deviation obtained from each of the Architectures are also shown from 
each of the Architectures.

Figures 9, 10 and 11 show the graphical representation of the linear behavior 
of the Mean and Standard Deviation respectively of the 4 Architectures of the best 
Neural Networks obtained by the FPA method.

After performing the statistical tests among all the experiments of the methods 
of manual adjustment of parameters and FPA, Architecture 5 of the FPA method 
obtained the best result, Figs. 12 and 13 show the probability and the dispersion of 
the winning neural network.

5.4 Statistical Test Between Methods 

Statistical tests [34, 35] were performed among the best experiments performed with 
the FPA-NN, MAN-NN and SD + T1FIS methods [36–38]. 

SD + T1FIS is a diffuse edge detection method optimized for image recognition 
using a modular neural network [39] and the PSO algorithms [40–43] and GA [44], 
in addition to using the ORL database [36]. 

Table 8 shows the best experiments done with the different methods described 
above with which the statistical tests were performed, in the lower part we can find the 
summation, the maximum and minimum values, the mean and the standard deviation 
of each of the different methods.

Table 9 presents the results of the statistical tests between the different methods 
and the proposed FPA-NN method, the result is that there was significant evidence 
to accept that the FPA-NN method obtained better results (highlighted in bold) than 
the other methods.

Figure 14 is a linear representation of the face recognition of the ORL database 
that was obtained with the methods FPA-NN, MAN-NN and SD + T1FIS.

Figures 15 and 16 represent the linear graphs of the Mean and Standard Devia-
tion respectively of the methods FPA-NN, MAN-NN and SD + T1FIS, in the face 
recognition of the ORL database.

6 Conclusions 

We performed more than 100 experiments with the MAN-NN method and more than 
1000 experiments with the FPA-NN method. In addition, statistical tests were also 
performed among these methods and the two best experiments were obtained, that is, 
with the manual method and the FPA method, statistical tests were performed with
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Fig. 11 Mean and standard deviation of the experiments with the FPA method

these two best winning methods and the SD + T1FIS method, the method with the 
best result was FPA-NN. In all the experiments of the three different methods the 
ORL face database was used for training and neural network test was used 70 and 
30 percent of the database respectively. 

Although the SD + T1FIS method used a 3-module neural network architecture 
and the bio-inspired algorithms PSO and GA, and with the FPA-NN method, a 
multilayer monolithic neural network was used, as well as the bio-inspired FPA
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Table 8 Experiments of the 
different methods 

Exp/arch FPA-NN MAN-NN SD + T1FIS 
1 90.00 68.75 82.86 

2 87.50 82.50 83.93 

3 87.50 72.50 77.86 

4 83.75 76.25 85.36 

5 88.75 80.00 87.14 

6 88.75 60.00 81.07 

7 88.75 57.50 81.07 

8 92.50 81.25 86.79 

9 88.75 70.00 86.79 

10 91.25 70.00 82.86 

11 85.00 75.00 80.71 

12 87.50 81.25 73.93 

13 86.25 83.75 80.00 

14 88.75 67.50 83.21 

15 90.00 72.50 84.29 

16 87.50 72.50 85.00 

17 90.00 71.25 83.93 

18 87.50 85.00 88.57 

19 87.50 76.25 81.43 

20 87.50 76.25 87.50 

21 90.00 66.25 90.00 

22 88.75 76.25 80.00 

23 91.25 71.25 83.21 

24 90.00 68.75 75.00 

25 90.00 53.75 86.43 

26 90.00 68.75 77.50 

27 91.25 76.25 81.43 

28 92.50 71.25 77.50 

29 88.75 72.50 84.64 

30 87.50 73.75 86.43
Σ

2665.00 2178.75 2486.44 

Min 83.75 53.75 73.93 

Max 92.50 85.00 90.00 

Mean 88.83 72.63 82.88 

σ 1.99 7.25 3.96
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Table 9 Statistical test between the different methods 

MAN-NN SD + T1FIS 
Difference 16.208 5.952 

Z (observed value) 11.800 7.358 

Z (critical value) 1.645 1.645 

Valor-p (unilateral) 1.000 1.000 

Alfa 0.050 0.050 

Evidence Evidence
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Fig. 14 Line graph of the methods FPA-NN, MAN-NN and SD + T1FIS

algorithm, that is, a neural network with a more complex architecture (SD + T1FIS) 
versus a less complex (monolithic) neural network architecture, better results were 
obtained, which leads us to conclude that the number of experiments performed 
(1000) and the dynamic optimization of the neural network with the FPA algorithm 
were determinant to obtain better results than with the other methods.
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Rendezvous and Docking Control 
of Satellites Using Chaos Synchronization 
Method with Intuitionistic Fuzzy Sliding 
Mode Control 

Onur Silahtar, Fatih Kutlu, Özkan Atan, and Oscar Castillo 

Abstract In this study, two different controllers have been designed to perform the 
rendezvous and docking tasks of two nonidentical and noncooperative cubic satel-
lites. Firstly, the motion of cubic satellites was modeled with chaotic equations. 
After selecting suitable chaotic models, fuzzy sliding mode controller (FSMC) and 
a new intuitionistic fuzzy sliding mode controller (IFSMC), which are applied to 
synchronization systems under the same initial conditions, have been designed. It has 
been observed that both synchronizations reach stability by applying the controllers 
designed by considering the Lyapunov stability criteria. After a while, a short-term 
and random disturbance was applied to the synchronization systems and the response 
of both controllers was observed. The numerical results showed that the synchroniza-
tion system with both controllers was stable, robust, efficient, fast and chattering-free. 
However, synchronization system with IFSMC was found to be more robust, faster 
and more efficient than synchronization system with FSMC. 

Keywords Chaos synchronization · Fuzzy sliding mode control · Intuitionistic 
fuzzy sliding mode control · Rendezvous and docking control 

1 Introduction 

Researchers have recently focused on rendezvous and proximity operation due to 
increasing of space missions, such as refueling, the building of large space station 
[12, 30, 32, 33, 56]. In classical rendezvous and docking operation, knowledges of 
altitude, angular velocity and the mass of target are needed. However, in studies
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for approximation operation to unknown objects and meteorites, the satellite has 
been needing noncooperative target scenarios. In literature, there are various studies 
about noncooperative space target such as 6-DOF multi-constrained adaptive tracking 
controller [32], angels-only navigation control scheme [55], the pose estimation algo-
rithm of rectangular structure [53], image-based visual controller for non-cooperative 
rendezvous maneuvers [38], adaptive fuzzy control method for rendezvous and prox-
imity operation [43], nonlinear controller for tracking and rendezvous with a non-
cooperative target [14]. The aim of all these studies was to perform the rendezvous 
and docking operation with minimum energy. Also, in all these papers, dynamic 
behavior of the satellites was modeled by using complex dynamical models. 

In addition, according to above-mentioned studies, chaos was used for satellite 
dynamical model, such as chaos was analyzed in attitude dynamics of a flexible 
satellite [9], qualitative behavior of satellite systems was studied using equilibrium 
points, Poincaré section, bifurcation diagrams, Lyapunov exponents [20]. Moreover 
a sliding mode controller (SMC) was designed for synchronization of chaotic satellite 
systems [21], projective synchronization and stability analyzes of fractional-order 
satellite system were realized [50], chaos in spatial attitude dynamics of a satel-
lite in an elliptic orbit and its analytic and numerical solution method were studied 
[10]. Additionally it was aimed to analyze of time-delay synchronization of chaotic 
satellite systems [22]. These studies were focused on chaotic behaviors of altitude 
dynamic of satellite and chaos synchronization. However, identical chaos synchro-
nization and identical satellite were used in these studies. But in this study, unlike 
previous studies, it is focused on synchronization of non-identical chaotic satellite 
systems. 

Non-identical chaotic systems have different parameters and sensitivity to the 
initial condition, so synchronizations of the chaotic systems are quite complex. 
For these synchronization of non-identical chaotic systems, many novel control 
methods were designed [13, 26, 35, 37, 41, 44, 49], and some of the studies 
were to compare the performance of controllers [13, 26, 35]. There are effectual 
applications of synchronization and control of non-identical chaotic systems in the 
literature. In [44], a SMC was designed for synchronization of fractional-order 
chaotic systems with non-identical orders, unknown parameters and disturbances, 
and although simulation results were shown that system had high performance 
against disturbance and uncertain parameters, the system had chattering problem. 
A backstepping controller for synchronization of identical and nonidentical chaotic 
and hyperchaotic systems of different orders was investigated [13]. A controller for 
synchronization of fractional-order chaotic systems with non-identical dimensions 
and different orders was designed using generalized synchronization method [37]. In 
[41], multi-switching synchronization of non-identical chaotic systems was inves-
tigated. For phase synchronization among non-identical fractional-order complex 
chaotic systems, a nonlinear controller was designed [49]. SMC and projective 
synchronization method were used for synchronization of multiple non-identical 
coupled chaotic systems [35]. Hybrid chaotic synchronization between identical and 
non-identical fractional-order systems was investigated [26].
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In order to realize the synchronization of chaotic systems, the controller must have 
a high performance in control of the nonlinear systems. Among these models, SMC is 
considered a suitable method since it has robust performance against disturbance and 
parameter uncertainties [35, 44]. However, main obstacle in the performance of the 
SMC is chattering problem. Another control method, which has high performance in 
nonlinear systems is the fuzzy logic control method, and when this control method 
is combined with SMC, it is shown that it has the chattering free performance [11, 
23, 36, 46]. An adaptive fuzzy SMC for synchronization of uncertain fractional-
order chaotic systems with time delay was designed [46]. Also a fuzzy terminal 
SMC was designed for MIMO uncertain nonlinear systems [36]. In [23], an adaptive 
fuzzy SMC for chaos synchronization was designed. A fuzzy fractional order SMC 
was investigated for nonlinear systems [11]. With the definition of the intuitionistic 
fuzzy logic concept [5], which is a wider generalization of the fuzzy logic concept, 
intuitionistic fuzzy control (IFC) methods that are more applicable and functional to 
many systems in real world were developed. IFC method is seen as an easier and more 
effective way to design a controller for systems which involve uncertainties such as 
disturbance. This new generation control method was studied in many fields, mainly 
engineering and mathematics. Especially, in recent years, based on the concept of 
new generation fuzzy logic, new systems were designed and various controllers were 
produced [1, 2, 6, 7, 16–18, 31, 34]. Moreover, synchronization and applications of 
various chaotic systems were realized by using various control methods based on 
IFC [3, 4]. 

Cube satellites have high degree of uncertainty and dynamic behavior due to their 
nature, so the prediction and control of their behavior are quite complex. The main 
focus in this study is to determine how effective an IFC-based controller in cube 
satellite operations, where uncertainty is quite high. 

Motivated by the discussion in literature, in this paper it is aimed to use chaos 
control and synchronization method for rendezvous and proximity operation of the 
satellite systems. This study consists of a chaotic model of target and service satellite, 
chaotic synchronization model and chaos control model of rendezvous and docking 
operation. The reasons given below explain why this study is original among all the 
other known studies the literature: 

(1) Two cubic satellites were synchronized using an IFC-based controller. 
(2) The target satellite and the service satellite can be not described with the identical 

chaotic model, due to having generally different structures. Therefore, the target 
and service satellites were modelled using non-identical chaotic systems in this 
study. 

(3) In this study, FSMC and IFSMC were used for synchronization of the satellites, 
and the control methods were compared in terms of efficiency, settling time and 
robustness etc. 

The rest of the paper is organized as follows: Sect. 2 presents the analysis of 
the dynamics and behavior of satellites and chaotic models of satellites. In Sect. 3, 
mathematical expressions of FSMC and IFSMC methods to be designed are shown. 
Section 4 consists of the application of the designed controllers to chaotic systems that



180 O. Silahtar et al.

are not identical, and the analysis and comparison of the results. Finally, conclusions 
and potential future works are presented in Sect. 5. 

2 Dynamic Behavior of Satellites 

The motion of two satellites moving in different elliptical orbits can be consid-
ered, as shown in Fig. 1, for modeling of rendezvous and docking systems. In this 
system, the distances of the service satellite moving around the ground and the target 
satellite to the ground and the change of angular velocity between them are shown. 
Accordingly, the dynamic behavior and relative motions of satellites have nonlinear 
dynamic behaviors dependent on many parameters, and each satellite can be modeled 
chaotically with its own dynamic model. 

2.1 Chaos Dynamics of the Satellites 

The satellites have complex nonlinear dynamics [40], and the dynamics are written 
as 

M = I ω (1)

Fig. 1 Movement of two satellites in elliptical orbit [29] 
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where M, I, Ta, TG, Td , and ω are total momentum, inertia matrix, fly wheel torque, 
gravitational torque, disturbance and the angular velocity, respectively. The derivative 
of the total momentum is written as 

Ṁ = I ω̇ + ω × I ω = Ta + TG + Td (2) 

where Ta, TG, Td are, respectively, satellite control torque, gravitational torque, 
disturbance and × is symbolized cross product. According to the equations, angular 
velocities of the satellite dynamics are obtained as follows [29, 39, 40, 45, 54]: 

ω̇x = (Ix )−1 ωyωz
(
Iy − Iz

) + Tax + TGx  + Tdx  + ux 

ω̇y =
(
Iy

)−1 
ωx ωz(Iz − Ix ) + Tay + TGy + Tdy  + uy 

ω̇z = (Iz)−1 ωx ωzy
(
Ix − Iy

) + Taz + TGz + Tdz  + uz (3) 

All perturbing disturbance torques (Ta + TG + Td ) can be written as follows: 

ω̇x = (Ix )−1[(Iy − Iz
)
ωyωz + p1ωx + p2ωz

]
. 

ω̇y =
(
Iy

)−1[
(Iz − Ix )ωx ωz + p3ωy

]
. 

ω̇z = (Iz)−1
[(
Ix − Iy

)
ωx ωy + p4ωx + p5ωz

]
. (4) 

Using Eq. (4), we can construct master and slave chaotic systems that are not 
identical, as in Eqs. (5) and (6), to express the chaotic movement of target and 
service satellites, respectively. 

ω̇x1 = (Ix1)−1
[(
Iy1 − Iz1

)
ωy1ωz1 + p11ωx1 + p12ωz1

]
. 

ω̇y1 =
(
Iy1

)−1[
(Iz1 − Ix1)ωx1ωz1 + p13ωy1

]
. 

ω̇z1 = (Iz1)−1
[(
Ix1 − Iy1

)
ωx1ωy1 + p14ωx1 + p15ωz1

]
. (5) 

ω̇x2 = (Ix2)−1[(Iy2 − Iz2
)
ωy2ωz2 + p21ωx2 + p22ωz2

]
. 

ω̇y2 =
(
Iy2

)−1[
(Iz2 − Ix2)ωx2ωz2 + p23ωy2

]
. 

ω̇z2 = (Iz2)−1
[(
Ix2 − Iy2

)
ωx2ωy2 + p24ωx2 + p25ωz2

]
. (6) 

If the constraints and initial conditions are selected as follows, chaotic behaviors 
in Figs. 2 and 3 are obtained as follows:

[
ωx1(0) ωy1(0) ωz1(0)

]T = [
1 1 1

]T

[
ωx2(0) ωy2(0) ωz2(0)

]T = [
1.05 0.65 0.87

]T 
. (7)
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Fig. 2 Master system (target satellite) for angular velocities 

Fig. 3 Slave system (service 
satellite) for angular 
velocities 

I1 =
[
Ix1 Iy1 Iz1

]T = [
10 20 −5

]T 

I2 =
[
Ix2 Iy2 Iz2

]T = [
1 2  −1

]T 
(8) 

p1 =
[
p11 p12 p13 p14 p15

]T =
[

−30 40 12 −12 4.8
]T 

p2 =
[
p21 p22 p23 p24 p25

]T =
[

−1.2 1.22 2.45 −2.45 0.98
]T 

(9) 

2.2 Synchronization of Two Satellites 

Dynamic equations and relative motion of cube satellites have been discussed in many 
studies in the literature. In this study, for the first time, the motion of two satellites 
has been considered as two different chaotic systems and the angular velocities of 
the satellites were synchronized with synchronization control. Satellite dynamics are 
given for target and service satellites, respectively, as follows:
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ẇ1 = A1w1 + f1(w), w1 ∈ k3 (10) 

ẇ2 = A2w2 + f2(w) + Δ(w) + u, w2 ∈ k3 (11) 

where u is the control input, Δ(w) is parameter uncertainties and f1(w) and f2(w) 
are nonlinear functions. In order for the two satellites to move synchronously, the 
following condition must be satisfied. 

lim 
t→∞∥w2 − w1∥ = 0 (12)  

Synchronization errors of two satellites are defined as: 

e1 = ωx2 − ωx1 

e2 = ωy2 − ωy1 

e3 = ωz2 − ωz1 

(13) 

From Eq. (13), changing of synchronization errors is obtained as follows: 

ė1 = ω̇xs − ω̇xm = α1ωys ωzs − β1ωxs + δ1ωzs + ux − α2ωym ωzm + β2ωxm − δ2ωzm , 
ė2 = ω̇ys − ω̇ym = σ1ωxs ωzs + κ1ωys + uy − σ2ωxm ωzm − κ2ωym , 
ė3 = ω̇zs − ω̇zm = τ1ωxs ωys − υ1ωxs + ρ1ωzs + uz − τ2ωxm ωym + υ2ωxm − ρ2ωzm . 

(14) 

If it is assumed that the satellites are identical and the satellite parameters do not 
change: 

α = α1 = α2, β  = β1 = β2 δ = δ1 = δ2 
σ = σ1 = σ2, κ  = κ2 = κ2, 
τ = τ1 = τ2, υ  = υ1 = υ2 ρ = ρ1 = ρ2 

fx = ωyωz, fy = ωx ωz fz = ωx ωy 

As a result, the following change of errors equations is obtained as: 

ė1 = α
(
fxs − fxm

) − βe1 + δe3 + ux , 
ė2 = σ

(
fys − fym

) + κe2 + uy, 
ė3 = τ

(
fzs − fzm

) − υe1 + ρe3 + uz . 

Lemma 1 For the above-defined system, Lyapunov stability criteria is satisfied. 

Proof Let Lyapunov equation be chosen as follows;
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V (t) = 
3Σ

i=1 

1 

2 
e2 i (15) 

V̇ (t) = e1ė1 + e2ė2 + e3ė3 ≤ 0 (16) 

V̇ (t) = e1ė1 + e2ė2 + e3ė3 ≤ 0 
= e1

(
α
(
fxs − fxm

) − βe1 + δe3 + ux
) +  · · ·  

+ e2
(
σ
(
fys − fym

) + κe2 + uy
) + e3

(
τ
(
fzs − fzm

) − υe1 + ρe3 + uz
)

(17) 

If control inputs are selected as follows, Lyapunov stability condition is fulfilled. 

ux = e1(−αΔ fx − δe3) 
uy = e2

(−σΔ fy − κe2
)

uz = e3(−τΔ fz + υe1 − ρe3) 
(18) 

3 Design of Controllers 

In this section, sliding mode controller (SMC), fuzzy sliding mode controller (FSMC) 
and intuitionistic sliding mode controller (IFSMC) are designed, respectively. 

3.1 Design of SMC 

SMC is a robust control method often used in the control of nonlinear systems. The 
overall sliding surface [48], which is important for the sliding mode controller is 
generally defined as; 

s = Ce(t) (19) 

where C = [c1, c2, c3, c4...] is 1xn matrix. In classical SMC, control input is defined 
as: 

u = ueq + ur (20) 

where ueq is equivalent control input and ur is the reaching control input defined 
as ur = kcuc with switching gain kc and uc = sgn(s). However as stated in [51] 
the sign function causes chattering problem in the system. In order to eliminate this 
problem, fuzzy or intuitionistic fuzzy systems can be used instead of sign function.
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u = ueq + k f su f s (21) 

or 

u = ueq + ki f  sui f  s (22) 

where ueq =
[
ueq1, ueq2, ueq3, ueq4...

]T 
and k f s  or ki f  s  is normalization parameter 

of output variable and u f s  or ui f  s  is control output obtained from FSMC or IFSMC 
that is described, respectively, as follows: 

u f s  = FSMC(s, ṡ) = [FSMC(s1, ṡ1), ..., FSMC(s4, ṡ4)...] (23) 

or 

ui f  s  = I F  SMC(s, ṡ) = [I F  SMC(s1, ṡ1), ..., I F  SMC(s4, ṡ4)...] (24) 

In this study, a Lyapunov function [15] is selected as follows: 

V = 
1 

2 
s2 (25) 

In order to obtain ueq , the synchronization error is defined as: 

e = w2 − w1 (26) 

and the error dynamics is obtained from Eq. (10) and Eq. (11) as:  

ė = ẇ2 − ẇ1 = A2e + F(w1, w2) + u (27) 

where F(w1, w2) = f2(w) − f1(w) + (A2 − A1)w1 and Δ(w) = 0. Then control 
law is defined as follows [47]: 

u = −F(w1, w2) + K v (28) 

where K is constant gain vector. The error dynamics is obtained from Eqs. (27) and 
(28) as:  

ė = A2e + K v (29) 

Thus, linear time-variant control system with single input v has been designed. 
The following equation is obtained from Eqs. (19) and (29) as follows:  

ṡ = C ė(t) = C[A2e + K v] (30)
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For the synchronization system to be stable, the sliding surface must provide s = 0 
and ṡ = 0. Thus the equivalent control law is obtained from solution of Eq. (30) for  
“v” as follows: 

veq = −(CK  )−1 (CA2)e (31) 

where C is chosen to satisfy the condition that CK  is invertible matrix. The closed-
loop dynamics is obtained from Eqs. (29) and (31) as follows:  

ė = [
I − K (CK  )−1 C

]
A2e (32) 

The matrix
[
I − K (CK  )−1 C

]
A2 has been selected as to fulfil Hurwitz condition 

to obtain controllable system. Therefore, FSMC or IFSMC law is obtained as 

v = veq + k f v f s (33) 

or 

v = veq + k f vi f  s (34) 

3.2 Designing Fundamental Concepts of FSMC and IFSMC 

In this section, the fundamental concepts of fuzzy and intuitionistic fuzzy systems 
are presented, after that common and different structures of fuzzy and intuitionistic 
fuzzy controller are introduced. A fuzzy set in a non-empty set X given by; 

A = {(x, μA(x)) : x ∈ X} (35) 

where μA(x) : X → [0, 1] is the membership function of the fuzzy set A [52]. An 
intuitionistic fuzzy set in a non-empty set X given by a set of ordered triples 

A = {(x, μA(x), ηA(x)) : x ∈ X} (36) 

where μA(x) : X → I, and ηA(x) : X → I are functions defined such that 0 ≤ 
μ(x)+η(x) ≤ 1 for all x ∈ X , μ(x) and η(x) represent the degree of membership and 
degree of non-membership of x in A respectively. For each x ∈ X , the intuitionistic 
fuzzy index of x in A can be defined as follows: πA(x) = 1 − μA(x) − ηA(x). πA 

is called the degree of hesitation or indeterminacy [5]. 
Fuzzy and intuitionistic fuzzy sets are used to linguistically model the structure 

of the control system based on expert knowledge. These modellings consist of three 
principal parts called fuzzification, fuzzy inference and defuzzification. Although
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these three parts are the same in the main idea, particularly significant performance 
increases are observed in control applications due to differences in intuitionistic 
fuzzy sets. 

First of all, for both FSMC and IFSMC, 7 different triangular fuzzy sets (negative 
big (NB), negative medium (NM), negative small (NS), zero (ZE), positive small 
(PS), positive medium (PM) and positive big (PB)) for “s” and “ṡ” inputs are chosen 
as shown in Fig. 4. Additionally 7 different fuzzy sets (NB, NM, NS, PS, PM and 
PB) are chosen for “v f s” and “vi f  s” as outputs as shown in Fig. 5. 

After selecting input and output fuzzy sets, the common “if–then” rule base based 
on expert knowledge [24] required for FSMC and IFSMC are chosen as follows; 

R1 : I f  s  i s  P  B  and  ṡ i s  P  B, then
(
v f s/vi f  s

)
is  N  B  

R2 : I f  s  i s  P  M  and  ṡ i s  P  B, then
(
v f s/vi f  s

)
is  N  B  

... 
R48 : I f  s  i s  N  M  and  ṡ i s  N  B, then

(
v f s/vi f  s

)
is  P  B  

R49 : I f  s  i s  N  B  and  ṡ i s  N  B, then
(
v f s/vi f  s

)
is  P  B  

The rule base consisting of 49 rules can be shown as in Table 1.

Fig. 4 Fuzzy sets for inputs of FSMC and IFSMC 

Fig. 5 Fuzzy sets for outputs of FSMC and IFSMC 
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Table 1 Fuzzy sets for outputs of FSMC and IFSMC 

v f s  /vi f  s s 

PB PM PS ZERO NS NM NB 

ṡ PB NB NB NB NB NM NS ZERO 

PM NB NB NB NM NS ZERO PS 

PS NB NB NM NS ZERO PS PM 

ZERO NB NM NS ZERO PS PM PB 

NS NM NS ZERO PS PM PB PB 

NM NS ZERO PS PM PB PB PB 

NB ZERO PS PM PB PB PB PB 

3.2.1 Design of FSMC 

A FSMC consists of 3 parts called fuzzification, inference and defuzzification. Firstly, 
in fuzzification block, the crisp input values are converted into membership degrees 
by using the triangular functions in Fig. 4. The second part of the system is fuzzy 
inference process which is defined with an if–then rules base, which is based on the 
fuzzy modal operator, fuzzy implication and fuzzy aggregation function. Here, the 
fuzzy values are subjected to intersection, implication and aggregation, respectively, 
and the resulting fuzzy numbers are sent to the defuzzification block. In this study, 
intersection and implication methods are chosen as “min T-norm” (Lee., 2004). Let’s 
rewrite any rule base as follows. 

Rj: If  s is A j and ṡ is B j , , then (v f s ) is  C j where j = 1, 2, …, 49. 
Then intersection and implication process can be performed respectively for all 

rule base: 

α j = μA j∩Bj = min(μA j (s), μBj (ṡ)) (37) 

μimplied  = μC ′
j 
(v f s) = min(α j , μC j (v f s)) (38) 

The 49 fuzzy numbers obtained as a result of the implication process are 
aggregated [27] as follows. 

μC ′(v f s) = μC ′
1 
(v f s) ∪ μC ′

2 
(v f s)... ∪ μC ′

49 
(v f s) 

= max(μC ′
1 
(v f s), μC ′

2 
(v f s)...μC ′

49 
(v f s)) (39) 

Finally, defuzzification process was performed using the “center of area (COA)” 
defuzzification method [42] and the crisp v f s  is obtained as follows. 

v f s  =
{

μC ′(v f s)(v f s).dv f s{
(v f s).dv f s  

(40)
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3.2.2 Design of IFSMC 

As in FSMC design, although fuzzification, inference and defuzzification processes 
are performed respectively in IFSMC design, the used methods in some processes 
can differ. Firstly, intuitionistic fuzzy sets are chosen for inputs (s and ṡ) and outputs 
(v f s) as Figs.  4 and 5 and degrees of membership are obtained by performing i-
fuzzification. Then intuitionistic fuzzy pairs (IFP), which is defined in Eq. (36), are 
produced by obtaining degrees of non-membership of each element using “Sugeno 
Generator” [8] as shown.  

ηA(x) = 
1 − μA(x) 
1 + λμA(x) 

(41) 

where λ ∈ (−1, ∞) is Sugeno constant. 
In IFSMC, although the same rule base is defined in the inference part of the 

system as in the FSMC design, the inference process is performed by using ordered 
pairs, not just degrees of membership. In this study “Mamdani intersection and 
implication” methods are chosen as shown respectively [28]. Let’s rewrite any rule 
base as follows. 

Rj: If  s is A j and ṡ is B j , then (vi f  s ) is  C j where j = 1, 2, …, 49. 
Intersection for a rule base; 

(α j , β  j ) = (μA j∩Bj , ηA j∩Bj ) = min(μA j (s), μBj (ṡ)), max(ηA j (s), ηBj (ṡ))) (42) 

Implication for a rule base; 

RM j (s, ṡ, vi f  s) = (min{α j , μC j (vi f  s)}, max{β j , ηC j (vi f  s)}) = {Dμ j , Dη j } (43) 

After the implication process is performed for the all rule base, obtained fuzzy 
numbers are aggregated [19] separately as follows. 

μC ′(vi f  s) = max(Dμ1 , Dμ2 ...Dμ49 ) (44) 

ηC ′(vi f  s) = min(Dη1 , Dη2 ...Dη49 ) (45) 

Additionally, using the fuzzy numbers μC ′(vi f  s) and ηC ′(vi f  s), the fuzzy number 
πC ′(vi f  s) showing the indeterminacy is found as follows. 

πC ′(vi f  s) = 1 − μC ′(vi f  s) − ηC ′(vi f  s) (46) 

After the inference process is completed, the IFSMC controller design is 
completed by converting the intuitionistic fuzzy numbers obtained to the vi f  s  crisp 
output using a novel intuitionistic defuzzification method [25] as shown.
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vi f  s  =
{

vi f  s .((1 − πC ′(vi f  s))μC ′(vi f  s) + μC ′(vi f  s)(vi f  s)).dvi f  s{
((1 − πC ′(vi f  s))μC ′(vi f  s) + μC ′(vi f  s)(vi f  s)).dvi f  s  

(47) 

4 Numerical Simulation for Satellite Synchronization 

In this section, FSMC and IFSMCs have been designed separately and applied to the 
satellite synchronization system with the same initial conditions and system parame-
ters. The performance and efficiency of the satellite synchronization system have been 
compared with each other under the proposed FSMC and IFSMC methods in terms 
of steady state error, setting time, maximum overshoot, chattering and robustness. 

The parameters used for investigation of satellite system as in Eq. (7) with initial 
condition are given as follows:

[
ωx1(0) ωy1(0) ωz1(0)

]T = [
1 1 1

]T

[
ωx2(0) ωy2(0) ωz2(0)

]T = [
1.05 0.65 0.87

]T (48) 

The block diagram of the satellite synchronization system is shown as Fig. 6, 
and all the numerical results for proposed controllers have been simulated in 
Matlab/Simulink. In the simulation, 4th Runge–Kutta method is used with the step 
size of 0.00001 s. 

The detailed block diagrams of satellite synchronization systems are shown in 
Figs. 7 and 8.

4.1 Numerical Simulation Results for FSMC 

The designed FSMC block diagram is shown in Fig. 7, where k f = −30.

Fig. 6 Block diagram of satellite synchronization system 
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Fig. 7 Detailed block diagram of satellite synchronization system 

Fig. 8 a Fuzzy controller. b Intuitionistic fuzzy controller

As shown Fig. 9, it is observed that FSMC reaches a stable performance in about 
40th seconds for e1, e2, e3 and maximum overshoot is − 4.23 for e3, without noise 
at beginning. However, when a random noise signal with duration of 1 s, as shown 
Fig. 10, is applied to the system in the 50th seconds, it is seen that system reacts 
hardly and loses its stability for a short time. When the effect of the noise disappears, 
it is seen that the system is stable and the maximum steady state error is − 1.69 × 
10–4 for e3 at 90th seconds and chattering does not occur.

4.2 Numerical Simulation Results for IFSMC Method 

The designed IFSMC block diagram is given in Fig. 7 with k f = −30 and λ = 0.07. 
The main difference of this design according to FSMC is that the intuitionistic 
controller is added to the sliding mode controller instead of fuzzy controller. All 
system parameters and initial conditions are selected the same with FSMC for 
objective comparison.
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Fig. 9 e1, e2, e3 for FSMC 

Fig. 10 Noise signal

As shown Fig. 11, it is observed that IFSMC reaches stable performance about in 
34th seconds for e1, e2, e3 and maximum overshoot is − 3.56 for e3, without noise 
at beginning. However, when a random noise signal with duration of 1 s, as shown 
Fig. 10, is applied to the system in the 50th seconds, it is seen that system reacts 
softly and loses its stability for a short time. When the effect of the noise disappears, 
it is seen that the system is stable and the maximum steady state error is − 4.72 × 
10–5 for e3 at 85th seconds and chattering does not occur.
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Fig. 11 e1, e2, e3 for IFSMC 

4.3 Numerical Simulation Results According to k f 

The simulation results are shown in Sects. 4.1 and 4.2 according to the fixed k f 
constant. However, another issue to consider is how the simulation results change 
according to the change in the k f constant. These results are listed according to the 
some k f values as shown. 

Simulation results are compared with −60 ≤ k f ≤ −20. Because outside of this 
range, both FSMC and IFSMC designs are observed to be unstable. According to 
Table 2, as  k f approaches − 20, it is seen that for both FSMC and IFSMC designs, 
settling time and steady-state error decrease and maximum overshoot increases. 
However, it is observed that as k f approaches − 20, the steady-state error decreases 
for FSMC design and increases for IFSMC design. It is noticed that for all −60 ≤ 
k f ≤ −20 both designs reach steady state stability and no chattering occurs.

5 Conclusions and Future Works 

When the simulation results are examined, basic results are obtained as follows. 

1. At the same k f values, it has been observed that IFSMC gives better results 
than FSMC in terms of maximum overshoot, settling time, steady state error and 
response to noise. 

2. It was observed that the response to noise is hard (triangular) in FSMC and soft 
(parabolic) in IFSMC. 

3. It has been observed that the system with IFSMC is faster and more robust than 
FSMC.
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Table 2 Simulation results according to k f 

k f FSMC IFSMC 

Max. 
overshoot 
(for e3) 

Settling 
time 
(without 
noise) 
(s) 

State 
steady 
error at 
90th 
sec. (for 
e3) 

Max. response 
to noise for e1 
(amplitude) 

Max. 
overshoot 
(for e3) 

Settling 
time 
(without 
noise) 
(s) 

State 
steady 
error 
at 85th 
sec. 
(for 
e3) 

Max. response 
to noise for e3 
(amplitude) 

− 
60 

− 3.73 ~ 48 − 15.47 
× 10–4 

0.379 − 3.03 ~ 39 6.81 × 
10–5 

0.069 

− 
50 

− 3.85 ~ 44 − 2.58 
× 10–4 

0.250 − 3.19 ~ 36 5.43 × 
10–5 

0.070 

− 
30 

− 4.23 ~ 42 − 1.69 
× 10–4 

0.116 − 3.56 ~ 34 4.72 × 
10–5 

0.075 

− 
20 

− 4.67 ~ 41 − 1.10 
× 10–4 

0.094 − 3.94 ~ 33 3.39 × 
10–5 

0.081

It is thought that the main reason why IFSMC design gives better results compared 
to FSMC design is that system uncertainties are taken into account while designing 
IFSMC, unlike FSMC. This can be seen as the main reason for system acceleration, 
decrease of steady-state error and maximum overshoot. In addition, the smoother 
response of the design and the quicker damping of the distorting effect of the noise 
when noise is applied to the system can be seen as a great advantage. In this way, 
since soft switching is achieved, less wear of the switching elements is provided, 
especially in mechanical and electrical systems, and a more efficient control method 
is obtained in general. 

In this study, controllers were designed according to predetermined k f and Sugeno 
coefficients. In future studies, it is aimed to use adaptive parameters instead of fixed 
parameters such as k f and Sugeno coefficients in both FSMC and IFSMC designs 
in order to make the system work more efficiently. In addition, introducing novel 
AFSMC and AIFSMC designs by using adaptive fuzzy sets instead of fixed and 
triangular fuzzy sets during the fuzzification process is another goal. 
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Optimizing a Convolutional Neural 
Network with a Hierarchical Genetic 
Algorithm for Diabetic Retinopathy 
Detection 

Rodrigo Cordero-Martínez , Daniela Sánchez , and Patricia Melin 

Abstract One of the worse conditions caused by diabetes mellitus (DM) is diabetic 
retinopathy (DR) and it can be irreversible if it is not treated in time. The patient with 
this condition can be completely blind because DR does not have symptoms until 
advanced stages. Because of this, some authors have been searching for a solution 
to an early detection of DR. One of the most used technologies for the detection of 
DR is the neural networks called: Convolutional neural networks (CNN). But design 
a CNN model from beginning could be slow. Along this work, we proposed the 
design of a hierarchical genetic algorithm (HGA) to find the best hyperparameters 
for a CNN model for the detection of DR. Before designing the hierarchical genetic 
algorithm, we applied pre-processing to the APTOS 2019 database. Then we executed 
30 times the hierarchical genetic algorithm and achieved 0.9650 of accuracy mean 
and 0.007665 of standard deviation. The best CNN model got an accuracy of 0.9781 
for DR detection. 

Keywords Genetic algorithm · Diabetic retinopathy · Neural networks 

1 Introduction 

Diabetic retinopathy (DR) causes a progressive decrease in visual acuity and 
can lead to blindness [1]. This loss of vision decreases the quality of life of 
the patient and his relatives and generates high economic costs for the family 
and the country [2]. 

The probability that a person in the world in 2002 would go blind, because of DR, 
was only 0.75% [3]. But due to the growth in the number of patients with Diabetes 
Mellitus (DM), worldwide in 2013 there were 382 million people with approximately 
35% of these patients had some level of DR, and by the year 2035 it is calculated 
that there will be 592 million people diagnosed with DM, thus having more than 4 
million people blind because of DR [4].
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One of the most used technologies in recent years for the detection of DR is the 
use of neural networks [5]. Promising results have been obtained for the detection 
of DR using this technology. 

Our main objective for this work was the design of a hierarchical genetic algorithm, 
with the goal to increase the precision of a convolutional neural network that detects 
in photos of the retina if the patient has diabetic retinopathy. The chromosomes and 
their genes of the hierarchical genetic algorithm modify the hyperparameters of the 
layers of the convolutional neural network until the optimal results are found. 

In this work is implemented the use of convolutional neural networks for the detec-
tion of diabetic retinopathy and the network is optimized with the implementation of 
a hierarchical genetic algorithm. Works by other authors have already implemented 
this algorithm to optimize neural networks, but no work has focused on the detection 
or classification of diabetic retinopathy. 

In Sect. 2, are described the basic concepts to fully understand this work. In Sect. 3, 
are explained and described in detail the methods applied. In Sect. 4 the results 
obtained by the experiments are presented, and finally, in Sect. 5 the conclusions are 
presented. 

2 Basic Concepts 

To fully understand this work, it is important to have knowledge of the concepts 
presented below. 

2.1 Neural Networks 

The use of artificial intelligence in the medical area is a widely used resource, being 
neural networks a resource that is still used today for the detection of diseases, pattern 
recognition and prediction [6]. To create a neural network model that can be used to 
detect diseases or anomalies in photographs, it is best if the network has supervised 
learning [7]. This means that the images in the database need to be tagged for training, 
validation, and testing. 

For a neural network to learn as much as possible, it often involves skilled techni-
cians extracting important features from images. However, in recent years a kind of 
neural network has been used that performs this feature extraction without the need 
for an expert technician. These are called: convolutional neural networks (CNN) [8]. 

The CNNs have different layers connected that are in charge of extracting these 
characteristics from the images [9]. CNNs start with the input of the images and a 
convolutional layer with an activation function. The recommended activation func-
tion is the Rectified Linear Unit (better known as ReLU) but it is not the only one. 
The first convolutional layers are straightforward and detect lines and curves, but the 
more layers you use, the more complex the shapes it recognizes. Then a layer called
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Fig. 1 Graphic of how a CNN model works 

MaxPooling is used to minimize the size of the images, keeping the maximum values 
according to a kernel (2 pixels high and wide is the most used) that will be traversing 
the images. Finally, there are layers of fully connected neurons and an output layer 
that classifies the images. In this work, there are just 2 classifications: the patience 
has DR or does not. A graphic example of a CNN model can be seen in Fig. 1. 

2.2 Hierarchical Genetic Algorithms 

Evolution is a topic in biology that has been widely discussed for many years [10], and 
this process served as inspiration for the development of an optimization algorithm 
called the genetic algorithm (GA). Simple genetic algorithms are based on Darwin’s 
theory of evolution [11], in which he comments that a child will have characteristics 
of his parents and will improve over the generations. 

One of the extensions of simple genetic algorithms is hierarchical genetic algo-
rithms (HGA). The main difference is that in hierarchical genetic algorithms there 
are two types of genes: control and parametric [12]. They were developed to solve a 
particular class of hierarchical problems. It can be represented as a tree where genes 
in higher levels (control genes) are in charge of controlling genes in lower levels 
(parametric genes). 

3 Proposed Method 

For the development of this work, the pre-processing applied in the database and the 
properties of the genetic algorithm are explained below. 

3.1 Pre-processing Applied to APTOS 2019 

Apply a pre-processing to the database images is a very important step that help the 
CNN models to extract the important features. For this work, we used the APTOS
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Fig. 2 Images taken from APTOS 2019 after applying the pre-processing 

2019 database. This database has 3662 tagged images with five different stages of 
DR [13, 14]. There are 1805 images of healthy retinas and 1857 images that contain 
some level of DR. Database images have different sizes and lot of noise that can 
affect the learning of the CNN [15]. To solve this, we applied pre-processing to all 
images. 

First, we extracted the retina from the image. With this, we avoided the noise in 
the black zones. Then, we added black pixels at the top and bottom (or on the left and 
right edges) of the image and create an image completely square. With this shape, 
the images are not deformed while they are inserted in the CNN. Examples taken 
from database after apply pre-processing can be observed in Fig. 2. 

3.2 Genes of the Chromosomes 

As we mentioned before, the chromosomes used in hierarchical genetic algorithm 
have control genes and parametric genes. The data inside each gen has a different 
purpose. First, is necessary to about the genes for control to understand what 
parametric genes do. 

Control Genes. The first control gen has an integer value that decides how many 
convolutional layers will be used in the CNN model, with a minimum value of 3 
and a maximum of 6. The second gen also has an integer value and specify how 
many fully connected layers will be after the convolutional layers and before the 
classification layer. Finally, the third gen can have values of 10, 20, 30, 40, 50, 60, 
70, 80, 90 or 100, and represents the number of epochs. A graphic representation of 
the chromosome with control genes can be observed on Fig. 3.

Parametric genes for convolutional layers. As we mentioned before, the first gen of 
the control genes decides how many convolutional layers will have the CNN model. 
The first gen of the parametric genes, for convolutional layers, has an integer value 
of 1, 2 or 3. The value 1 means that the layer will be just a convolutional layer using 
ReLU activation function. Value 2 means all of value 1 and MaxPooling layer with a 
kernel with 2 × 2 size and stride of 2. Finally, if the value is 3 means the convolutional 
layer with ReLU activation function, MaxPooling layer as same as detailed before, 
and a Dropout probability.
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Fig. 3 Control genes

The second parametric gen has the size of the filter that uses the convolutional 
layer. The values can be one of the integers 3, 4 or 5. The third parametric gen has 
the number of filters for the convolution layer. The minimum and maximum number 
of filters depends on the number of the convolutional layer. If the convolutional layer 
is the number 1 or 2, the number of filters will be between 16 and 32, inclusive. If 
the number is 3 or 4, the number of filters will be between 64 and 128, inclusive. 

Finally, if the number is 5 or 6, the number of filters will be between 256 and 512, 
inclusive. The fourth and last parametric gen has the value used for the Dropout in 
case the value of the first gen is 3. Dropout values are integer and can be 10, 20, 30, 
40 or 50. Before entering the value in the CNN model, the Dropout value is divided 
by 100. A graphic representation of the parametric genes for convolutional layers 
can be observed in Fig. 4. 

Parametric genes for fully connected layers. As we mentioned before, the second 
gen of the control genes decides how many fully connected layers will have our 
model. The first gen of the parametric genes, for fully connected layers, has an integer 
value of 1 or 2. The value 1 means that it will adds a fully connected layer with its 
ReLU activation function. Value 2 means all of value 1 and a Dropout probability.

Fig. 4 Parametric genes for convolutional layers 
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Fig. 5 Parametric genes for fully connected layers 

The second parametric gen has how many neurons will have the fully connected 
layer. Depending on the position of the fully connected layer, the minimum and 
maximum number of neurons will be different. If the position is the number 1 or 
2, the number of neurons will be between 64 and 128, inclusive. If the number is 3 
or 4, the number of neurons will be between 128 and 256, inclusive. Finally, if the 
number is 5 or 6, the number of neurons will be between 256 and 512, inclusive. The 
third and last parametric gen has the value used for the Dropout in case the value of 
the first gen is 2. Dropout values are integer and can be 10, 20, 30, 40 or 50. Before 
entering the value in the CNN model, the Dropout value is divided by 100. A graphic 
representation of the parametric genes for fully connected layers can be observed in 
Fig. 5. 

4 Experimental Results 

One experiment was carried out using the hierarchical genetic algorithm using the 
chromosomes detailed before. The experiment was executed 30 times. All the execu-
tions used the same image pre-processing for the database, and it was distributed as 
follows: 72% of training images, 8% for validation and 20% for testing. For the 
CNN properties, each execute used the Adaptive Moment Estimation Optimizer, 
better known as Adam Optimizer, and in the last layer of the CNN the use of sigmoid 
activation function. 

For the hierarchical genetic algorithm properties, each execute begins with 10 
individuals for the population. Also 10 generations, 80% for selection probability, 
50% for crossover probability and 80% for mutation probability. The best children 
replace the worst fathers. The binary crossover was used for this experiment and for 
mutation, it was implemented by taking a random row of each parametric gen and 
changing its value in the same way as detailed in previous section. The fitness for 
each chromosome was the accuracy obtained for the CNN model using the testing 
images. In Table 1 can be seen the best fitness obtained for the hierarchical genetic 
algorithm in each run.
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Table 1 Results obtained by the hierarchical genetic algorithm 

Number of the 
execution 

Best fitness 
obtained 

Number of the 
execution 

Best fitness 
obtained 

Number of the 
execution 

Best fitness 
obtained 

1 0.9658 11 0.9713 21 0.9658 

2 0.9399 12 0.9563 22 0.9686 

3 0.9727 13 0.9590 23 0.9658 

4 0.9563 14 0.9693 24 0.9549 

5 0.9720 15 0.9618 25 0.9563 

6 0.9597 16 0.9699 26 0.9631 

7 0.9645 17 0.9713 27 0.9706 

8 0.9781 18 0.9727 28 0.9686 

9 0.9652 19 0.9631 29 0.9699 

10 0.9604 20 0.9631 30 0.9747 

As it can be seen in the execution #8, the best CNN model obtained by the 
hierarchical genetic algorithm achieved an accuracy of 0.9781 using 100 epochs. We 
achieved an accuracy mean of 0.9650. With the information of Table 1 we could also 
achieved a standard deviation of 0.007665. In Fig. 6 can be observed the layers and 
hyperparameters of the CNN model.

One of the works that has used APTOS 2019 [16] implemented a modification of 
InceptionV3, CNN that was presented in 2015 [17]. It is one of the most recent works 
for detection of DR and they got an accuracy of 0.9446 in their best experiment. 

5 Conclusions 

In this work, we designed a HGA for the creation of CNN models. Before that, we 
applied pre-processing to the APTOS 2019 database to help in the extraction of the 
features of DR. In the experiment we got a CNN model with good results for the 
detection of DR. Recent works preferred the use of existing CNN models, but we 
think that using algorithms for optimization could create better CNN models. 

As future work, we could use the hierarchical genetic algorithm for classification 
of DR and not just the detection. APTOS 2019 have 5 stages for classification of DR, 
so we can use the same pre-processed images for that work. Other thing is adding more 
hyperparameters to optimize, like changing the size of the kernel of the MaxPooling 
layer or replacing the ReLU activation function with other function. Our results 
improve the accuracy for the CNN models, but there is room for improvement, so we 
could change the pre-processing applied in the database in addition of the mentioned 
before.
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Fig. 6 CNN model with the best accuracy

Also, we could implement other optimization algorithm like Particle Swarm Opti-
mization to improve the accuracy of this work. There are many databases for DR 
that can been used with the hierarchical genetic algorithm explained in this work, 
but also it can be used to find a CNN model for any image database with just a few 
modifications (like the size and shape of the input images). 

One thing that could help the HGA, is an addition of different types of pre-
processing for the database. Some authors use more than one pre-processing 
searching which one improve their accuracies. Also, combining different database 
for DR could improve the training of the CNN models. APTOS 2019 is not the larger 
database for DR, so using two or more databases at same time could offer better 
results in less time with an appropriate CNN model. 

As future work we plan to consider the proposed model in other different appli-
cations, like in optimization problems [18, 19], time series prediction [20–22] and 
in medical problems [23–25].
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Interval Type-3 Fuzzy Systems: 
A Natural Evolution from Type-1 
and Type-2 Fuzzy Systems 

Oscar Castillo, Juan R. Castro, and Patricia Melin 

Abstract This article discusses the natural evolution that took place from type-
1 to type-2, and now recently is occurring from type-2 to type-3 fuzzy systems. 
Prof. Zadeh originally proposed the idea of type-1 fuzzy sets in 1965 and later 
of type-2 fuzzy in 1975. The goal was to model the uncertainty existing in the 
real world, and it is well known now that type-2 fuzzy models are better to handle 
the levels of uncertainty in the real-world, coming from noisy, dynamic, non-linear 
environments and systems. In addition, subjectivity that is handled by humans is also 
better represented by type-2 fuzzy sets. As a consequence, type-2 systems have been 
able to overcome type-1 fuzzy systems in many application areas, such as, intelligent 
control, pattern recognition, and diagnosis. More recently, we have witnessed the rise 
of the interval type-3 fuzzy sets and their utilization in control and identification of 
non-linear systems, showing better results than type-2 and type-1, so we expect that 
also this pattern will continue to other areas of application. In this article, the main 
differences among the concepts of type-3, type-2 and type-1 will be discussed and 
then an account of the existing applications of type-2 will be highlighted and finally, 
future areas of research will be outlined. 
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1 Introduction 

Within the field of artificial intelligence, it is well known that fuzzy systems can have 
successful utilization in a plethora of areas, such as: Intelligent control, recognition, 
and diagnosis. Originally, fuzzy sets (now called type-1) were proposed by Lotfi 
Zadeh in 1965. Later fuzzy logic and fuzzy systems were also proposed by Zadeh, 
and many applications follow, mainly in control [1]. Type-1 fuzzy systems evolved to 
type-2 fuzzy systems with the works by Mendel in 2001 [2]. Initially, interval type-2 
fuzzy systems were studied and applied to several problems [3]. These systems were 
applied to many problems in areas such as: robotics, intelligent control and others [4, 
5]. Simulation and experimental results show that interval type-2 outperform type-1 
fuzzy systems in situations with higher levels of noise, dynamic environments or 
highly nonlinear problems [6–8]. Later, general type-2 fuzzy systems were consid-
ered to manage higher levels of uncertainty, and good results have been achieved in 
several areas of application [9–11]. Recently, is becoming apparent that type-3 fuzzy 
systems could help solve even more complex problems. For this reason, in this paper 
we are putting forward the basic constructs of type-3 fuzzy systems by extending the 
ideas of type-2 fuzzy systems [12–14]. 

The contribution is the proposal of mathematical definitions of interval type-3 
fuzzy sets, which were obtained by using the extension principle on the type-2 fuzzy 
definitions. In addition, the proposal of a way to define interval type-3 fuzzy systems 
for the applications. A particular case of control is used to illustrate the proposed 
ideas, showing that interval type-3 is able to outperform type-2 and type-1 in control. 
We consider that these are is key contributions to fuzzy theory. 

The remaining of the article is: Sect. 2 is presenting the proposed definitions of 
interval type-3 fuzzy, in Sect. 3 we are presenting the proposed definition of the 
footprint of uncertainty in type-3, Sect. 4 describes interval type-3 fuzzy systems, 
Sect. 5 summarizes simulation results and in Sect. 6 we are presenting the conclusions 
that we have reached with the research done in this work. 

2 Interval Type-3 Fuzzy Sets 

Interval type-3 fuzzy can be viewed as an extension of type-2 models. We offer basic 
terminology of interval type-3 fuzzy sets to give an idea of the difference with respect 
to their type-2 counterparts. 

Definition 1 A type-3 fuzzy set (T3 FS) [15, 16], denoted by A(3), is represented 
by the plot of a trivariate function, called membership function (MF) of A(3), in  
the Cartesian product X × [0, 1] × [0, 1] in [0, 1], where X . is the universe of the 
primary variable of A(3), x. The MF of µA(3) is denoted by µA(3) (x, u, v) (or µA(3) to 
abbreviate) and it is called a type-3 membership function (T3 MF) of the T3 FS. In 
other words,
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µA(3) : X × [0, 1] × [0, 1]→[0, 1] 

A(3) = {(x, u(x), v(x, u), µA(3) (x, u, v))|x ∈ X, u ∈ U ⊆ [0, 1], v  ∈ V ⊆[0, 1]} 
(1) 

where U is the universe for the secondary variable u and V is the universe for tertiary 
variable v. A T3FS, A(3) can also be formulated in continuous notation as: 

A(3) =
∫

x∈X

∫

u∈[0,1]

∫

v∈[0,1] 
µA(3) (x, u, v)/(x, u, v) (2) 

A(3) =
∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 

⎡ 

⎣
∫

v∈[0,1] 
µA(3) (x, u, v)/v 

⎤ 

⎦/u 

⎤ 

⎦/x (3) 

where 
˝ 

is notation for the union over all the admissible x, u, v  values. 

Equation (3) is represented as a mapping of the T3 FS MFs with the following 
equations: 

A(3) =
∫

x∈X 
µA(3) 

x 
(u, v)/x 

µA(3) 
x 
(u, v) =

∫

u∈[0,1] 
µA(3) 

(x,u) 
(v)/u 

µA(3) 
(x,u) 

(v) =
∫

v∈[0,1] 
µA(3) (x, u, v)/v 

where µA(3) 
x 
(u, v) is the primary MF, µA(3) 

x 
(u, v) is the secondary function and 

µA(3) 
(x,u) 

(v) is the tertiary function of the T3 FS. 

If µA(3) (x, u, v) = 1, the T3 FS, A(3), is reduced to an interval type-3 fuzzy set 
(IT3 FS) with the notation A, defined by Eq. (4). 

A =
∫

x∈X 

⎡ 

⎢⎣
∫

u∈[0,1] 

⎡ 

⎢⎣
∫

v∈[µ 
A 
(x,u),µA(x,u) 

1/v 

⎤ 

⎥⎦/u 

⎤ 

⎥⎦/x (4) 

where
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µA(x,u)(v) =
∫

v∈[µ 
A 
(x,u),µA(x,u) 

1/v 

µA(x)(u, v) =
∫

u∈[0,1] 

⎡ 

⎢⎣
∫

v∈[µ 
A 
(x,u),µA(x,u) 

1/v 

⎤ 

⎥⎦/u 

A =
∫

x∈X 
µA(x) (u, v)/x 

Assuming that v ∈
[
µ 
A 
(x, u), µA(x, u)

]
and the lower and upper membership 

functions µ 
A 
(x, u), µA(x, u) are general type-2 membership functions (T2 MF) over 

the plane (x, u), Eq. (4) can be simplified as a bivariate isosurface simplifica with an 

interval type-3 membership function (IT3 MF), µ̃A(x, u) ∈
[
µ 
A 
(x, u), µA(x, u)

]
, 

defined by Eq. (5). 

A =
∫

x∈X

∫

u∈[0,1] 
µ̃A(x, u)/(x, u) (5) 

where the lower T2 MF µ 
A 
(x, u), is contained in the upper T2 MF µA(x, u), this  

is, µ 
A 
(x, u) ⊆ µA(x, u), then µ A (x, u) ≤ µA(x, u), and as a consequence, an IT3 

FS is represented by two T2 FSs, one inferior A with T2 MF µ 
A 
(x, u) and another 

superior A, with T2 MF µA(x, u) defined by Eqs. (6) and (7) (see Fig. 1) 

A =
∫

x∈X

∫

u∈[0,1] 
µ 
A 
(x, u)/(x, u) =

∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 
f 
x 
(u)/u 

⎤ 

⎦/x (6) 

A =
∫

x∈X

∫

u∈[0,1] 
µA(x, u)/(x, u) =

∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 
f x (u)/u 

⎤ 

⎦/x (7) 

where, the secondary MFs of A and A are T1 MFs of T1FS given by the Eqs. (8) 
and (9) 

µA(x)(u) =
∫

u∈Jx 

f 
x 
(u)/u (8) 

µA(x)(u) =
∫

u∈Jx 

f x (u)/u (9)
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Fig. 1 IT3 FS with IT3MF 
µ̃(x, u) where µ(x, u) is the 
LMF and µ(x, u) is the 
UMF. The embedded 
secondary T1 MFs in x ′ of A 
and A are f 

x ′ (u) and f x ′ (u) 
respectively 

3 Footprint of Uncertainty 

Another simple way to represent the IT3 MF from IT3 FS, A, is like a bivariate 
isosurface, µ̃A(x, u), because of the union of vertical-slices in x , where each vertical 
cut in x = x ′ is an embedded secondary interval type-2 membership function (IT2 

MF) [16, 17] f̃x ′(u), in other words, f̃x ′(u) ∈ 1/
[
µ 
A

(
x ′, u

)
, µA

(
x ′, u

)]
or f̃x ′(u) ∈[

f 
x ′(u), f x ′(u)

]
. As a consequence, Eq. (5) can be simplified to Eq. (10), (see Fig. 2). 

A =
∫

x∈X

∫

u∈[0,1] 
µ̃A(x, u)/(x, u) =

∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 
f̃x (u)/u 

⎤ 

⎦/x (10)

where µ̃A(x, u) ∈
[
µ 
A 
(x, u), µA(x, u)

]
. 

Equation (10) can be expressed as Eqs. (11) and (12) 

A =
∫

x∈X 
µA(x)(u)/x =

∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 
f̃x (u)/u 

⎤ 

⎦/x (11) 

where µA(x)(u) is an Interval type-2 fuzzy set (IT2 FS), as shown in Eq. (11).
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Fig. 2 IT3 FS, A, with IT3 
MF, µ̃A(x, u) and an 
embedded vertical cut, 
µA(x ′)(u) ∈[
f 
x ′ (u), f x ′ (u)

]
with the 

FOU in green color

µA(x)(u) =
∫

u∈Jx 

f̃x (u)/u =
∫

u∈[ f 
x 
(u), f x (u) 

1/u (12) 

Definition 2 An Interval type-3 fuzzy set (IT3 FS), represented by A, is an isosurface 
with a bivariate function, called MF of A (see Fig. 4) over the Cartesian product 
X × [0, 1] in [0, 1], where X is the universe for the primary variable of A, x. The  MF  
of A is denoted by µ̃A(x, u), (or  µ̃ Ã for simplicity) and it is called Interval type-3 
membership function MF (IT3 MF), in other words, 

A = {(x, u, µ̃A(x, u))|x ∈ X, u ∈ U ≡ [0, 1]} 

In which µ̃A(x, u) ⊆ [0, 1]. U is the universe for the secondary variable u, and in 
this work is assumed that U is [0, 1]. 

An IT3 FS, A can also be formulated in notation of fuzzy sets as in Eqs. (9) and 
(10). 

A =
∫

x∈X

∫

u∈[0,1] 
µ̃A(x, u)/(x, u) =

∫

x∈X 
µA(x)(u)/x =

∫

x∈X 

⎡ 

⎣
∫

u∈[0,1] 
f̃x (u)/u 

⎤ 

⎦/x 

where µA(x)(u) is an Interval type-2 fuzzy set (IT2 MF). 

µA(x)(u) =
∫

u∈[0,1] 
f̃x (u)/u =

∫

u∈[ f 
x 
(u), f x (u) 

1/u
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Fig. 3 Isosurface of the membership function of the IT3 FS 

Fig. 4 General structure of an interval type-3 fuzzy system 

and 
˜ 

denotes the union over all the admisible x and u. 
The 3D plot of the IT3MF is an isosurface with volume in between the layers of 

the Surface formed by all the secondary IT2MFs µA(x)(u) in green color in Fig. 3, 
which forms the domain of uncertainty (DOU) of IT3 FS. 

4 Interval Type-3 Fuzzy Systems 

Here we offer an overview of how interval type-3 fuzzy systems can be defined 
and applied in many possible areas. First, we can state that the general structure 
of an interval type-3 fuzzy system is similar to the structures of type-2 and type-1, 
consisting of fuzzifier, fuzzy rules, inference, type-reduction and defuzzifier. The
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Fig. 5 Hierarchical architecture using an interval type-3 fuzzy system to combine the outputs of 
simpler systems 

main difference with respect to type-2 and type-1 is that now interval type-3 fuzzy 
sets are used in the fuzzifier and also are the outputs of the inference and need to be 
type reduced. In Fig. 4 the structure of an interval type-3 fuzzy system is found. 

The structure of Fig. 5 can be used to build interval type-3 fuzzy systems for 
different applications, in a similar way as it is done in type-2 and type-1, just the 
difference would be that we need to now define the type-3 membership functions. 
Of course, this would in theory enable the fuzzy system to deal with the uncer-
tainty for the problem at hand. It is also possible that for more complex problems 
a modular structure could be used, meaning that the complete problem is divided 
into subproblems that simpler fuzzy systems can handle and then fuzzy systems (as 
aggregator) can combine the results to achieve a global result. If we assume that 
three fuzzy systems can solve the three subproblems (maybe using type-2 systems) 
then the aggregator could an interval type-3 system, as it is illustrated in Fig. 5. The  
main idea of using an interval type-3 system for combining the outputs of the type-2 
systems is to manage the uncertainty of the results produced by these systems. 

This is just shown as an illustration of the possible form of this fuzzy system. In 
general, we can say that there can be other possible architectures for the hierarchical 
idea. For example, we could have individual models of type-1 providing inputs to the 
type-3 aggregator, or the individual controllers could be neural networks or neuro-
fuzzy systems. It is even possible to have classical controllers combined with fuzzy 
controllers. At the end, the main idea is that the type-3 aggregator should handle 
the uncertainty coming out of the individual controllers. In particular, the interval 
type-3 fuzzy systems can have a structure like the one shown in Fig. 6, where we can 
find the three inputs and one outputs, showing interval type-3 Gaussian membership 
functions.

In the following section we show simulation results to illustrate the results of an 
interval type-3 system, as the one illustrated in Fig. 6, in a control application.
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Fig. 6 Example of an interval type-3 system

5 Simulation Results 

In this section we consider a control problem in which three individual fuzzy 
controllers are used to control simpler parts of the problem and then an interval type-
3 fuzzy controller is used to combine the outputs of the individual fuzzy controllers. 
The particular problem is the one of controlling the flight an airplane [18]. 

In this problem the total flight control is achieved by combination of three indi-
vidual controllers (longitudinal, lateral and direction control). For obtaining the longi-
tudinal part, a system with one input and one output was put forward, the output is 
the elevator action. In this case the linguistic values are push, pull or not move, and 
the stick depending on the movement are, then the action in the elevator is obtained. 
In lateral control, the outputs are the movements of the aileron because when they 
are moved the aircraft can change the direction in the z axis and the input is the 
stick of the pilot and when this is moved (right or left) the ailerons have a reaction 
and the linguistic values are: move right, move left, center. In direction control the 
output consists of the movements of the rudder and these determine if the aircraft 
changes the trajectory in the x axis, in the input the pedals are consider (left and 
right). The previously explained expert knowledge can be expressed as fuzzy rules 
in the following form, for more details please check the work in [18]: 

The fuzzy rules of longitudinal control are: 

If wheel is push then elevator is down 
If wheel is center then elevator is center 
If wheel is pull then elevator is up 

The fuzzy rules of lateral control are: 

If wheel is left then aileron is left_up_right_down 
If wheel is center then aileron is center 
If wheel is right then aileron is right_up_left_down
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The fuzzy rules for direction control are: 

If pedals is left then rudder is left 
If pedals is center then rudder is center 
If pedals is right then rudder is right 

The fuzzy rules (we only show 3 rules as illustration to offer an idea of the global 
controller) of the aggregator in Fig. 6 that combine the outputs of the three individual 
fuzzy controllers are as follows [18]. 

1. If (Elevator is low) and (rudder is medium) and (Aileron is low) then (Nelevator 
is low) (Nrudder is low) (Naileron is medium). 

2. If (Elevator is high) and (rudder is medium) and (Aileron is high) then (Nelevator 
is medium) (Nrudder is high) (Naileron is medium). 

3. If (Elevator is high) and (rudder is high) and (Aileron is low) then (Nelevator is 
high) (Nrudder is medium) (Naileron is medium). 

After obtaining the rules of the aggregator, the outputs of the individual controllers 
are combined with an aggregator using type-2 fuzzy and the results are summarized 
in Tables 1, 2 and 3 based on the work in [18]. When the type-2 fuzzy aggregator 
was applied in [18] the behavior was improved, but in this article we decided to also 
use an interval type-3 fuzzy aggregator (like in Fig. 6) to test if the performance 
could be improved even more for the behavior of the aircraft and this is also shown 
in Tables 1, 2 and 3. The means are from 15 simulations of airplane control for each 
case. It is important to highlight that this aggregator is an interval type-3 system to 
achieve the global control by managing the uncertainties in this problem in a better 
fashion. 

The simulation results presented in Tables 1, 2 and 3, show evidence that there 
exists a significant improvement when the interval type-3 system is used instead of 
type-2 in the aggregator for the proposed approach for global control combining the 
individual controllers. The main reason for the improvement is based on theoretical

Table 1 Comparison of 
results for the aileron 

Case Comparison of results 

Controller Mean Deviation 

1 Type-1 fuzzy aggregator [18] 0.4100 0.1070 

2 Type-2 fuzzy aggregator [18] 0.2049 0.0533 

3 Interval type-3 fuzzy aggregator 0.1511 0.0222 

Table 2 Comparison of 
results for the elevator 

Case Comparison of results 

Controller Mean Deviation 

1 Type-1 fuzzy aggregator [18] 0.4100 0.1020 

2 Type-2 fuzzy aggregator [18] 0.2053 0.0510 

3 Interval type-3 fuzzy aggregator 0.1522 0.0211
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Table 3 Comparison of 
results for the rudder 

Case Comparison of results 

Controller Mean Deviation 

1 Type-1 fuzzy aggregator [18] 0.4070 0.1310 

2 Type-2 fuzzy aggregator [18] 0.2037 0.0655 

3 Interval type-3 fuzzy aggregator 0.1507 0.0202

fact that type-3 should be able to handle in a better way the inherent uncertainty in 
controlling the nonlinear plant, in this case, the airplane. Of course, we also believe 
that type-3 fuzzy should be able to handle other types of uncertainty arising in other 
kinds of problems (different than control), such as in decision making, prediction, 
diagnosis, monitoring, just to mention a few. 

6 Conclusions 

In this article, the main differences among the concepts of type-3, type-2 and type-1 
fuzzy sets and systems are discussed and then an account of the existing applications 
of type-2 were highlighted and future areas of research were outlined. The basic theo-
retical constructs of interval type-3 were outlined, as well as ways to design and build 
interval type-3 fuzzy systems were put forward. The advantages of interval type-3 
fuzzy logic have been illustrated with a control application. The case of airplane flight 
control that was considered in previous works with type-1 and type-2 fuzzy control 
[18] has now been considered with interval type-3 fuzzy logic, and a comparison 
has been performed. The conclusion was that interval type-3 fuzzy control is able 
to outperform type-2 and type-1 in the control errors, and we believe this is due to 
the fact that type-3 is able to manage higher levels of uncertainty, which of course 
this problem has. In future work, we plan to consider working on constructing better 
algorithms for inference, type-reduction and defuzzification in type-3 fuzzy, as well 
other approaches for fuzzy operations. In addition, we plan to consider a more exten-
sive analysis of this problem, including performing optimization of the membership 
functions with a metaheuristic algorithm. In addition, we plan to apply interval type-3 
fuzzy logic in other control problems, as well as in other kinds of application prob-
lems to test the possible advantages of this kind of fuzzy systems. It is also possible 
to develop the theory of general type-3 fuzzy to extend the concepts and operations 
of interval type-3 and then consider possible applications and comparison of results. 
Finally, we have to say that we believe that interval type-3 could enhance the quality 
of the solutions in other areas, such as in time series prediction [19], fuzzy clustering 
[20] and diagnosis [21], by enhancing the management of the uncertainty in the 
corresponding areas, and we envision working on these application areas in the near 
future for the benefit of society and economy [22–27].
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A Comparative Study Between Bird 
Swarm Algorithm and Artificial Gorilla 
Troops Optimizer 

Ivette Miramontes and Patricia Melin 

Abstract Nowadays, bio-inspired algorithms are one of the most widely used 
existing soft computing techniques. Thanks to these methods we can help different 
problems in improving the results provided. Because new metaheuristics are being 
proposed more rapidly every day, it is in our interest to meet analysts with these 
methodologies in order to identify and apply them according to the problem we face. 
In this research, a new metaheuristic is analyzed, which is called Artificial Gorilla 
Troops Optimizer, and compare the results obtained with a well-known algorithm that 
we have used for different optimizations, this is known as Bird Swarm Algorithm. For 
the present analysis, 10 mathematical benchmak functions were used in order to study 
the results obtained. After the statistical study carried out, we were able to conclude 
that according to the dimensions handled, the Artificial Gorilla Troops Optimizer 
algorithm shows a significant improvement against the Bird Swarm Algorithm. 

Keywords Optimization · Benchmark functions · Bio-inspired algorithms · Bird 
Swarm Algorithm (BSA) · Artificial Gorilla Troops Optimizer (GTO) 

1 Introduction 

Today there are processes within the industry that allow a very small or null margin 
of error, due to the delicate nature of the products that are manufactured, which 
is why more and more different optimization methods are used that help to the 
improvement and accuracy of these processes. In the area of soft computing, there are 
metaheuristics or also known as bio-inspired algorithms, which take this inspiration 
of different aspects, such as genetic-based [1], nature-based [2], swarm intelligence
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[3], physic-based [4] and human-based [5] designing these mathematical models 
that help us to improve in different aspects. In the different studies carried out, it 
has been of interest to analyze bio-inspired algorithms, where the Flower Pollination 
Algorithm has been used for the optimization of neural networks, Chicken Swarm 
Optimization has been used for the optimization of fuzzy systems, among others 
[6–9]. 

Although it has well-known algorithms such as Genetic Algorithms [10] and 
Particle Swarm Optimization [11], which have been shown to provide excellent 
results when used in solving different optimization problems, it is in our interest to 
give way to new metaheuristics, this in order to see in what area they specialize and 
to know when or what problems can be solved in a better way to it. 

The main contribution of this research is to make a comparison of the results 
of a well-known algorithm such as the Bird Swarm Algorithm (BSA) and a new 
metaheuristic, in this case the Artificial Gorilla Troops Optimizer (GTO), to test its 
performance and analyze the results in order to determine if it can be used in the 
future and even make some modification in order to obtain better results. 

This paper has been organized as follows: the literature review is presented in 
Sect. 2, in Sect. 3 the mathematical benchmark functions are presented, the results 
are analyzed in Sect. 4 and, the conclusions for this work are presented in Sect. 5. 

2 Literature Review 

This section gives a brief description of the different methodologies to be used, as 
well as their application to solve different problems. 

2.1 Optimization 

Understanding the concept of optimization is of the utmost importance, since it 
clarifies what you want to achieve by performing it. Formally it can be said that 
optimization is the search for the best solution to a given problem, and these problems 
can be focused on different areas [12]. 

2.2 Bird Swarm Algorithm 

Bird Swarm Algorithm [13], is a methodology which imitates the behavior of birds 
within their habitat. This algorithm based on swarm intelligence was proposed by 
Meng in 2015, imitating the behavior and social interaction in the swarm. The 
behavior of the birds is imitated in different actions, which correspond to foraging
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and flight. This algorithm is based on 5 rules that generally cover how to search for 
food and escape from predators. 

2.3 Artificial Gorilla Troops Optimizer 

The Artificial Gorilla Troops Optimizer [14] is proposed by Abdollahzadeh in 2021, 
which uses five rules to imitate the behavior of gorillas within the swarm and thus 
be able to carry out exploration and exploitation. The behaviors used to carry out 
the exploration are the migration to an unknown place, that helps to increase the 
exploration, the movement of the gorillas in order to have a balance between explo-
ration and exploitation. The third behavior taken into account for the exploration 
phase is the movement of the gorillas towards known places, this in order to have 
the ability to search in different spaces within the environment. In exploitation, it 
is divided into two phases, which helps to significantly increase its search space in 
which significantly increases the search performance in exploitation. 

2.4 Optimization Problems Using BSA 

The BSA algorithm has been used in different areas in order to obtain better results 
in the problems being solved, among which are: 

Signal processing for wind speed prediction [15], for the detection of unmanned 
aerial vehicle objects [16], in the identification of polycyclic aromatic hydrocarbons 
[17], for the joint planning of substations and lines in urban distribution systems [18] 
and in obtaining a medical diagnosis of hypertension [19]. It should be noted that 
several of the works mentioned have applied improvements to the original method. 

2.5 Optimization Problems Using GTO 

The GTO algorithm is relatively new, but by no means unused. This has been proposed 
in applications such as: 

In the search for the positions and classification of renewable distributed gener-
ators (RDG) [20], for power system stabilizer unit adjustment [21], the effective 
extraction of the parameters of different photovoltaic models, in this work it is 
also proposed a better one to the original method [22], in the prediction of crit-
ical genes obtained from genomic data [23], in the optimal adjustment of power 
system stabilizer control parameters [14].
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3 Mathematical Benchmark Functions 

When experimenting with a new metaheuristic, it is common to use mathematical 
benchmark functions, this with the aim of studying results produced by said meta-
heuristics and analyzing their performance, an example of these experiments can be 
found in: Aquila Optimizer [24], Honey Badger Algorithm [25], Tunicate Swarm 
Algorithm [26], Coronavirus Herd Immunity Optimizer [5], Dingo Optimizer [27], 
among others. 

To carry out the corresponding experimentation of this work, 10 classical bench-
mark mathematical functions are used, which are divided into unimodal (F1–F7) and 
multimodal (F8–F10). 

Unimodal functions are those that, in their search space, have only one optimal 
value. This type of functions can be continuous or discontinuous, in addition to being 
functions of simple analysis. 

Multimodal functions are those that have numerous optima (either local or global). 
In general, these types of functions are difficult in the sense that a global optimal 
solution cannot be guaranteed in a finite number of steps. 

The mathematical representation of the functions used, as well as their range and 
minimum value, are listed as follows: 

• F1: Sphere 

f (x) = 
nx∑

i=1 

x2 i 

Being xi ∈ [−100, 100] and fmin(x∗) = 0.0 
• F2: Schwefel 2.22 

f (x) = 
n∑

i=1 

|xi | + 
n⊓

i=0 

xi 

Being xi ∈ [−10, 10] and fmin(x∗) = 0.0 
• F3: Schwefel 1.2 

f (x) = 
n∑

i=1 

⎛ 

⎝ 
i∑

j=1 

x j 

⎞ 

⎠ 
2 

Being xi ∈ [−100, 100] and fmin(x∗) = 0.0 
• F4: Schwefel 2.21 

f (x) = max{|xi |, 1 ≤ i ≤ n} 

Being xi ∈ [−100, 100] and fmin(x∗) = 0.0
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• F5: Rosenbrock 

f (x) = 
n∑

i=1

[
100

(
xi+1 − x2 i

)2 + (xi − 1)2
]

Being xi ∈ [−30, 30] and fmin(x∗) = 0.0 
• F6: Step 

f (x) = 
n∑

i=1

˪|xi |˩

Being xi ∈ [−100, 100] and fmin(x∗) = 0.0 
• F7: Quartic 

f (x) = 
n∑

i=1 

i x4 i + rand[0, 1) 

Being xi ∈ [−1.28, 1.28] and fmin(x∗) = 0.0 
• F8: Schwefel 

f (x) = −  
n∑

i=1

[
xi sin( 

√|xi |)
]

Being xi ∈ [−500, 500] and fmin(x∗) = −418.982887272433799n 
• F9: Rastrigin 

f (x) = 
n∑

i=1 

[x2 i − 10 cos(2π xi ) + 10] 

Being xi ∈ [−5.12, 5.12] and fmin(x∗) = 0.0 
• F:10 Ackley 

f (x) = −20e
(
−2× 

√
1 
n

∑n 
i=1 x

2 
i

)

− e[ 
1 
n

∑n 
i=1 cos(2π xi )] + 20 + e(1) 

Being xi ∈ [−32, 32] and fmin(x∗) = 0.0. 

In Fig. 1 the mathematical functions used are presented graphically.
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Fig. 1 Graphical representation of benchmark functions
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4 Results 

In this section, a comparison between the BSA and GTO algorithms is presented in 
order to analyze the performance of both methods. The experimentation is carried 
out using 10 mathematical functions, which implement 30 independent runs using a 
population of 30 individuals and 500 iterations, in addition, the number of dimensions 
is varied, using 30, 100, 500 and 1000 dimensions, respectively. 

The parameters used in the GTO algorithm are: 

• Beta: 3 
• W: 0.8 
• P: 0.03. 

The parameters used in the GTO algorithm are: 

• a1: 1 
• a2: 1 
• c1: 1.5 
• c2: 1.5 
• FQ: 3. 

It is worth mentioning that the parameters listed above were taken from the original 
methods. 

In Table 1, the results obtained from the different runs carried out with each of the 
mathematical functions are presented, and from which the best and worst values, the 
average of the 30 experiments and the standard deviation are listed. For this study, 
different dimensions are analyzed. It can be observed that with this algorithm 3 of 
the 10 functions reached their minimum value.

The results obtained from the experimentation carried out with the BSA algorithm 
are presented in Table 2. In a similar way to the previous experimentation, the best 
and worst value obtained are placed, in addition to the average of the 30 runs and 
the standard deviation. It can be analyzed that with this algorithm larger values were 
obtained and even only in one of the functions was the minimum value reached.

In order to clarify the comparison made, the results obtained are statistically 
analyzed, for this, the Z test is used. 

The parameters used are: 

Ho: µ1 ≤ µ2. 
Ha: µ1 >  µ2. 
Critical Value: −1.645. 
Alpha: 0.05. 
Confidence interval: 95%. 

Table 3 shows the results of the Z test, where it can be seen that in 5 of the 
10 mathematical functions there is significant evidence to conclude that the GTO 
method provides better results when tested with 30 dimensions.
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Table 1 Results obtained with GTO algorithms 

Function Dimensions GTO 

30 100 500 1000 

F1 Best 0.00E00 0.00E00 0.00E00 0.00E00 

Worst 0.00E00 0.00E00 0.00E00 0.00E00 

Average 0.00E00 0.00E00 0.00E00 0.00E00 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F2 Best 8.67E−207 1.21E−205 3.03E−200 5.53E−203 

Worst 6.71E−192 4.87E−190 3.43E−187 1.79E−187 

Average 2.44E−193 1.84E−191 1.14E−188 8.29E−189 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F3 Best 0.00E00 0.00E00 0.00E00 0.00E00 

Worst 0.00E00 0.00E00 0.00E00 0.00E00 

Average 0.00E00 0.00E00 0.00E00 0.00E00 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F4 Best 7.31E−208 4.32E−205 3.92E−206 7.13E−202 

Worst 6.75E−192 3.29E−188 4.06E−183 5.21E−188 

Average 2.57E−193 1.68E−189 1.35E−184 1.90E−189 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F5 Best 4.24E−06 3.01E−07 1.51E−05 3.20E−03 

Worst 2.45E+01 9.49E+01 1.26E+01 1.60E+01 

Average 1.58E+00 3.24E+00 1.69E+00 1.85E+00 

STD 6.02E+00 1.73E+01 2.58E+00 3.09E+00 

F6 Best 4.79E−10 2.06E−04 2.40E−04 3.08E−05 

Worst 1.04E−06 2.82E−02 2.30E+00 3.11E+00 

Average 1.48E−07 6.46E−03 3.87E−01 6.77E−01 

STD 2.38E−07 6.92E−03 5.11E−01 7.02E−01 

F7 Best 6.15E−06 1.53E−05 2.05E−05 6.62E−06 

Worst 3.35E−04 5.11E−04 2.57E−04 3.56E−04 

Average 7.55E−05 1.47E−04 1.01E−04 1.04E−04 

STD 7.09E−05 1.17E−04 7.58E−05 8.01E−05 

F8 Best −1.26E+04 −4.19E+04 −2.09E+05 −4.19E+05 

Worst −1.26E+04 −4.19E+04 −2.09E+05 −4.18E+05 

Average −1.26E+04 −4.19E+04 −2.09E+05 −4.19E+05 

STD 1.11E−04 1.67E+00 3.10E+01 2.45E+02 

F9 Best 0.00E00 0.00E00 0.00E00 0.00E00 

Worst 0.00E00 0.00E00 0.00E00 0.00E00 

Average 0.00E00 0.00E00 0.00E00 0.00E00

(continued)
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Table 1 (continued)

Function Dimensions GTO

30 100 500 1000

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F10 Best 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

Worst 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

Average 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

STD 0.00E00 0.00E00 0.00E00 0.00E00

The results of the Z test when experimenting with 100 dimensions are presented 
in Table 4, for this case 4 of the 10 mathematical functions used have significant 
evidence to conclude that the GTO method presents better results than BSA.

Analyzing the mathematical functions when tested with 500 and 1000 dimensions, 
the mathematical functions F5, F6 and F8 present significant evidence to determine 
that GTO provides better results than BSA. This results are presented in Tables 5 
and 6 respectively.

5 Conclusions and Future Work 

It is quite interesting and very helpful to carry out this type of comparison, since it 
broadens the panorama of the performance of the metaheuristics, as well as knowing 
which area they are more inclined towards in solving problems. In this case, a compar-
ison was made of a well-known algorithm in our work, such as the BSA, and a new 
proposal for a bio-inspired algorithm was taken, which is the Artificial Gorilla Troops 
Optimizer, which is based on the behavior of gorillas within their habitat. In the study 
carried out, changing the dimensions of each of the mathematical functions used is 
experimented with, in order to analyze the results obtained, when doing this, it was 
observed that in certain functions the results were very similar and we can say that 
the GTO was significantly better in half of the benchmark functions. 

As future work, it is intended to continue working with the GTO algorithm, 
performing a dynamic adjustment of parameters using fuzzy logic, with which we 
can make other comparisons and even try other optimization problems to analyze the 
performance of the method. We can also consider other optimization approaches, as 
in [28–30].
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Table 2 Results obtained with BSA algorithm 

Function Dimensions BSA 

30 100 500 1000 

F1 Best 1.17E−232 9.16E−232 3.57E−234 1.09E−235 

Worst 8.87E−211 5.10E−212 2.33E−203 1.11E−214 

Average 2.97E−212 1.72E−213 7.78E−205 4.22E−216 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F2 Best 1.67E−116 7.62E−117 3.36E−115 1.07E−16 

Worst 3.58E−108 7.62E−117 1.83E−103 1.47E−01 

Average 2.56E−109 2.13E−105 6.17E−105 5.93E−03 

STD 7.11E−109 1.17E−104 3.33E−104 2.70E−02 

F3 Best 4.49E−233 1.50E−231 2.76E−234 2.76E−240 

Worst 3.28E−214 9.72E−210 2.76E−234 2.55E−209 

Average 1.13E−215 6.43E−211 4.91E−210 8.61E−211 

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F4 Best 1.65E−115 1.37E−116 7.80E−119 6.52E−114 

Worst 3.12E−106 3.89E−108 1.41E−104 2.55E−105 

Average 1.66E−107 3.66E−109 5.49E−106 8.89E−107 

STD 5.95E−107 1.09E−108 2.60E−105 4.66E−106 

F5 Best 2.89E+01 9.88E+01 4.99E+02 9.99E+02 

Worst 2.90E+01 9.90E+01 4.99E+02 9.99E+02 

Average 2.89E+01 9.89E+01 4.99E+02 9.99E+02 

STD 2.59E−02 3.74E−02 3.81E−02 3.16E−02 

F6 Best 5.00E+00 2.09E+01 1.22E+02 2.46E+02 

Worst 7.08E+00 2.46E+01 1.25E+02 2.49E+02 

Average 6.15E+00 2.35E+01 1.24E+02 2.48E+02 

STD 5.16E−01 8.48E−01 4.90E−01 7.72E−01 

F7 Best 1.12E−05 9.54E−06 1.32E−05 6.94E−06 

Worst 9.50E−04 4.92E−04 6.95E−04 3.36E−04 

Average 1.92E−04 1.32E−04 1.37E−04 1.36E−04 

STD 1.84E−04 1.13E−04 1.37E−04 9.23E−05 

F8 Best −7.24E+03 −1.57E+04 −4.43E+04 −5.68E+04 

Worst −3.66E+03 −7.22E+03 −2.07E+04 −2.78E+04 

Average −5.83E+03 −1.19E+04 −2.77E+04 −3.83E+04 

STD 7.81E+02 2.07E+03 5.64E+03 7.43E+03 

F9 Best 0.00E00 0.00E00 0.00E00 0.00E00 

Worst 0.00E00 0.00E00 0.00E00 0.00E00 

Average 0.00E00 0.00E00 0.00E00 0.00E00

(continued)
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Table 2 (continued)

Function Dimensions BSA

30 100 500 1000

STD 0.00E00 0.00E00 0.00E00 0.00E00 

F10 Best 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

Worst 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

Average 8.88E−16 8.88E−16 8.88E−16 8.88E−16 

STD 0.00E00 0.00E00 0.00E00 0.00E00

Table 3 Results of Z-test using 30 dimensions 

Function GTO BSA Ztest Result 

Average StdDev Average StdDev 

F1 0.00E00 0.00E00 2.97E−212 0.00E00 0 NS 

F2 2.44E−193 0.00E00 2.56E−109 7.11E−109 −1.9721 S 

F3 0.00E00 0.00E00 1.13E−215 0.00E00 0 NS 

F4 2.57E−193 0.00E00 1.66E−107 5.95E−107 −1.5281 NS 

F5 1.58E+00 6.02E+00 2.89E+01 2.59E−02 −24.8565 S 

F6 1.48E−07 2.38E−07 6.15E+00 5.16E−01 −65.2809 S 

F7 7.55E−05 7.09E−05 1.92E−04 1.84E−04 −3.236 S 

F8 −1.26E+04 1.11E−04 −5.83E+03 7.81E+02 −47.4786 S 

F9 0.00E00 0.00E00 0.00E00 0.00E00 0 NS 

F10 8.88E−16 0.00E00 8.88E−16 0.00E00 0 NS

Table 4 Results of Z-test using 10 dimensions 

Function GTO BSA Ztest Result 

Average StdDev Average StdDev 

F1 0.00E00 0.00E00 1.72E−213 0.00E00 0 NS 

F2 1.84E−191 0.00E00 2.13E−105 1.17E−104 −0.9971 NS 

F3 0.00E+00 0.00E00 6.43E−211 0.00E+00 0 NS 

F4 1.68E−189 0.00E00 3.66E−109 1.09E−108 −1.8391 S 

F5 3.24E+00 3.24E+00 9.89E+01 3.74E−02 −161.7026 S 

F6 6.46E−03 6.92E−03 2.35E+01 8.48E−01 −151.7935 S 

F7 1.47E−04 1.17E−04 1.32E−04 1.13E−04 0.5051 NS 

F8 −4.19E+04 1.67E+00 −1.19E+04 2.07E+03 −79.3801 S 

F9 0.00E00 0.00E00 0.00E00 0.00E00 0 NS 

F10 8.88E−16 0.00E00 8.88E−16 0.00E00 0 NS
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Table 5 Results of Z-test using 500 dimensions 

Function GTO BSA Ztest Result 

Average StdDev Average StdDev 

F1 0.00E00 0.00E00 7.78E−205 0.00E00 0 NS 

F2 1.14E−188 0.00E00 6.17E−105 3.33E−104 −1.0148 NS 

F3 0.00E+00 0.00E00 4.91E−210 0.00E00 0 NS 

F4 1.35E−184 0.00E00 5.49E−106 2.60E−105 −1.1565 NS 

F5 1.69E+00 2.58E+00 4.99E+02 3.81E−02 −1.06E+03 S 

F6 3.87E−01 5.11E−01 1.24E+02 4.90E−01 −956.3352 S 

F7 1.01E−04 7.58E−05 1.37E−04 1.37E−04 −1.259 NS 

F8 −2.09E+05 3.10E+01 −2.77E+04 5.64E+03 −176.065 S 

F9 0.00E00 0.00E00 0.00E00 0.00E00 0 NS 

F10 8.88E−16 0.00E+00 8.88E−16 0.00E+00 0 NS 

Table 6 Results of Z-test using 1000 dimensions 

Function GTO BSA Ztest Result 

Average StdDev Average StdDev 

F1 0.00E00 0.00E00 4.22E−216 0.00E00 0 NS 

F2 8.29E−189 0.00E00 5.93E−03 2.70E−02 −1.203 NS 

F3 0.00E00 0.00E00 8.61E−211 0.00E00 0 NS 

F4 1.90E−189 0.00E00 8.89E−107 4.66E−106 −1.0449 NS 

F5 1.85E+00 3.09E+00 9.99E+02 3.16E−02 −1767.421 S 

F6 6.77E−01 7.02E−01 2.48E+02 7.72E−01 −1298.235 S 

F7 1.04E−04 8.01E−05 1.36E−04 9.23E−05 −1.434 NS 

F8 −4.19E+05 2.45E+02 −3.83E+04 7.43E+03 −280.491 S 

F9 0.00E00 0.00E00 0.00E00 0.00E00 0 NS 

F10 8.88E−16 0.00E00 8.88E−16 0.00E00 0 NS
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Particle Swarm Optimization 
of Convolutional Neural Networks 
for Diabetic Retinopathy Classification 

Patricia Melin, Daniela Sánchez, and Rodrigo Cordero-Martínez 

Abstract This work proposes convolutional neural networks (CNNs) and particle 
swarm optimization (PSO) for diabetic retinopathy classification. Particle swarm 
optimization seeks to minimize the classification error, designing the convolutional 
neural network using different preprocessing methods to compare results. The param-
eters optimized to design the CNN are the number of convolutional layers, filters 
with their filters size, pool size, algorithm for the learning process, number of fully 
connecter layers with their number of neurons, batch size, and finally the number of 
epochs. Among the preprocessing applied are: extraction of the retina and applying 
a histogram equalization to the red, green, and blue channels. The database used to 
test the proposed method is APTOS 2019, where the best result achieved is 96.59%, 
with an average of 95.33%. 

Keywords Diabetic retinopathy · Convolutional neural network · Particle swarm 
optimization · Classification 

1 Introduction 

In recent years, diabetes has become a public health disease. There are millions of 
people in the world who suffer from it. Some research has been carried out seeking 
its relationship with other conditions and how it can complicate them, as is the case 
for heart failure, hypertension, obesity, pancreatic cancer [1]. Type 2 diabetes is also 
related to retinopathy, nephropathy, and neuropathy [2]. The leading cause of blind-
ness and visual impairment worldwide is diabetic retinopathy. It is classification is 
into non-proliferative and proliferative. A patient with a non-proliferative stage has
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retinal hemorrhages and hard and soft exudates. If the severity increases, the prolif-
erative stage occurs with ischemic with neovascularization and traction elevation of 
the retina. Both stages are associated with diabetic macular edema, the most common 
cause of vision loss [3]. Nowadays, intelligence techniques have tried to detect or 
predict if a person has diabetes. In [4], novel diabetes classifying model based on 
Convolutional Long Short-term Memory (Conv-LSTM) is proposed using the Pima 
Indians Diabetes Database (PIDD). In [5], the author proposed a features extrac-
tion using stacked autoencoders and performing classification with a Deep Neural 
Network framework. A virtual doctor using artificial intelligence, which can interact 
with patients using speech recognition to predict type 2 diabetes mellitus, is proposed 
[6]. Concerning diabetic retinopathy (DR), different works have also been developed 
to perform its classification and association with other diseases. A study of the asso-
ciation of different degrees of damages of DR and hearing loss is presented in [7]. 
In [8], authors proposed the automatic DR detection using a deep learning hybrid 
on pre-trained Inception-ResNet-v2. In [9], a design of the Source-Free Transfer 
Learning (SFTL) method for diabetic retinopathy detection is proposed. The method 
consists of 2 modules; the first one is the target generation module, and the second one 
is a collaborative consistency module. Most of the proposed methods are based on 
pre-trained models. For this reason, in this work, the use of an optimization method 
that allows obtaining the optimal convolutional neural networks (CNNs) architec-
ture is proposed. In the literature, there are different optimization methods based on 
different approaches [10], such as probabilistic, music, mathematical, human [11] or  
swarm intelligence [12–14]. The main inspiration in the swarm intelligence is based 
on the nature of fish schools, bird flocks, ant colonies, and other animals with self-
organization capabilities [15–17]. A hybrid system is proposed in this work, where 
CNNs and particle swarm optimization are combined for diabetic retinopathy classi-
fication. The proposed PSO designs the convolutional neural networks architectures 
to perform binary and multiclass diabetic retinopathy classification. 

This work is structured as below: Sect. 2 contains the basic concepts applied to 
perform the method, in Sect. 3, the general description of the method is shown, 
Sect. 4 contains experiments results obtained with the proposed method. Finally, 
Conclusions and References are presented. 

2 Basic Concepts 

In this section, the intelligence techniques used in the proposed method are presented. 

2.1 Convolutional Neural Networks 

Artificial neural networks (ANNs) are widely known as intelligence techniques that 
simulate the learning process [18, 19]. An artificial neural network has 2 main
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attributes: its parallel distributed structure and its ability to learn what allows the 
generalized producing outputs to inputs not learned by the artificial neural networks 
[20, 21]. Convolutional neural networks (CNNs) are based on conventional neural 
networks [22]. This kind of neural network uses a convolution process, where inputs 
are multiplied using a filter (also known as kernel) with a size m × m, where m is an 
integer value, usually between 3 and 5 [23], producing an output map. The pooling 
layer allows reducing information. There are different pooling layers such as max, 
min, and average layers. Finally, the fully connected layers learn the information 
[24, 25]. 

2.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) was proposed in [26, 27], and it is based on swarm 
behavior, where a swarm is formed of particles, and each one has a certain number of 
dimensions. These dimensions represent parameters that allow a possible solution to 
a problem that moves stochastically in the search space [15, 28]. The next position 
of each particle is calculated by: 

xid  (t + 1) = xi (t) + vi (t + 1) (1) 

where xid(t) denotes the actual position of the particle i, dimension d, at time  t. 
A velocity vi(t + 1) is set to determine the next position. The original algorithm 
was improved using an inertia weight (w). With a big inertia weight value, a global 
exploration is allowed. Meanwhile, a small value allows a local exploration [29]. 

3 General Description of the Proposed Method 

The proposed method designs CNN architectures for diabetic retinopathy classifica-
tion. The proposed method can be applied to multiclass (healthy retina or with a stage 
of damage) or binary classification (healthy retina or not). The optimal parameters 
are found using particle swarm optimization. After each convolution layer follows a 
max-pooling layer to reduce image size. The proposed optimization also determines 
the pool size. The proposed method applied to multiclass classification is shown in 
Fig. 1.

3.1 Description of PSO 

The particle swarm optimization allows the designing of the CNN architectures: the 
number of convolutional layers, filters with their filters size, pool size, algorithm for
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Fig. 1 Proposed method for multiclass classification

the learning process, number of fully connecter, number of neurons, batch size, and 
the number of epochs. The configuration of the PSO parameters can be observed in 
Table 1. These values are based on a previous work where modular granular neural 
networks were optimized [30]. 

The accuracy equation used in this work is given by the expression: 

Accuracy = (T P  + T N  )/(T P  + FP  + T N  + FN  ) (2) 

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False 
Negative. The proposed optimization seeks to minimize the error of classification, 
and the objective function is given by: 

f = 1 − (T P  + T N  )/(T P  + FP  + T N  + FN  ) (3) 

The rectified linear activation function (ReLU) is used before the output layer. 
The values shown in Table 2 determined the search of the algorithm. For the batch 
size, the possible values are from 1 up to 4, which means 8, 16, 32, or 64. For the 
algorithm used to training phase, the possible values are from 1 up to 6, to select one 
of the six possible algorithms:

1. Adaptive Moment Estimation (Adam). 
2. Adamax based on Adam and the infinity norm. 
3. Nesterov-accelerated Adam (Nadam).

Table 1 Parameter values for 
the PSO 

Parameter Value 

Particles 10 

Maximum iterations 30 

Dimensions 13 

C1 1.5 

C2 2 

w 0.8 
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Table 2 Definition of the 
search space 

Parameter Value 

Minimum Maximum 

Convolutional layers (CL) 1 3 

Number of filters CL #1 8 16 

Number of filters CL #2 16 32 

Number of filters CL #3 32 64 

Size filter 3 5 

Pool size 
Max-pooling layer 1 

3 5 

Pool size 
Max-pooling layer 2 

3 5 

Pool size 
Max-pooling layer 3 

3 5 

Fully connected layers 1 3 

Neurons of the fully connected layers 10 300 

Epoch 5 10 

Batch size 1 4 

Learning algorithm 1 6 

4. Stochastic gradient descent method based on adaptive learning rate per dimension 
(Adadelta). 

5. Adaptative Gradient Algorithm (Adagrad). 
6. Stochastic gradient descent (SGD). 

Each particle has 17 dimensions with the information needed to design a CNN. 
The structure of the particle is shown in Fig. 2. In Fig.  3, the flowchart of the proposed 
method is shown.

3.2 Database 

The APTOS 2019 database [31] contains 5590 images with noise and different sizes, 
where only 3662 have a tag of its classification. These images are used to prove the 
proposed method (training and testing phase), with a size of 200 × 200 pixels. A 
sample of this database is shown in Fig. 4. The database contains 5 classes:

. Healthy Retina

. No Proliferative Mild Stage

. No Proliferative Moderate Stage

. No Proliferative Severe Stage

. Proliferative Stage.
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Fig. 2 Representation of a particle 

Fig. 3 Flowchart of the proposed method
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Fig. 4 Sample of APTOS 2019 database

Table 3 Images per class (APTOS 2019 database) 

Class 1 2 3 4 5 

Images 1805 370 999 193 295 

For both classifications: binary and multiclass, 72% of the images are for training, 
8% for validation, and 20% for testing. The number of images for each class is shown 
in Table 3. 

Pre-processing #1: This pre-processing has been used before in [8]. In this pre-
processing, the image has integer values in its pixels between 0 and 255. A new image 
is created using the original image; if a pixel value is less than 20, the new pixel value 
equals 0. On the contrary, it is equal to 1, generating a new binary image. This image 
allows detecting the position of the largest object to obtain the central pixel of the 
retina with its height and width. The original image is recut to delete unnecessary 
information or noise with this information. A sample of this pre-processing is shown 
in Fig. 5.

Pre-processing #2: This pre-processing is based on the first one to extract the retina 
image. After the red, green, and blue channels are extracted, histogram equalization 
is applied to each one to be joined to generate a single image finally. A sample of 
this pre-processing is shown in Fig. 6.

4 Experimental Results 

This section shows the results achieved using the two pre-processing previously 
described. For each pre-processing and type of classification (binary and multiclass), 
30 runs are performed.
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Fig. 5 Sample of pre-processing #1

Fig. 6 Sample of pre-processing #2

4.1 Pre-processing #1 

In this section, the results achieved using pre-processing #1 are shown.
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Table 4 Best architecture 
(pre-processing #1, binary) 

Parameters Values 

Convolutional layers 3 

Number of filters and size per layer 8 (5  × 5) 
16 (3 × 3) 
64 (3 × 3) 

Max-pooling filter size per layer 2 × 2 
4 × 4 
5 × 5 

Fully connected layers (neurons) 1 (300) 

Epoch 10 

Batch size 8 

Algorithm Nadam 

Error 0.0341 

Accuracy (%) 96.59 

Table 5 Results 
(pre-processing #1) 

Best 96.59% 

Average 95.33% 

Worst 94.68% 

4.1.1 Binary Classification 

In Table 4, the best architecture for the binary classification using pre-processing #1 
is shown. The best accuracy achieved is 96.59%, using 3 convolutional layers, with 
their respectively max-pooling layers and one fully connected layer. 

A summary of the results achieved with pre-processing # 1 for binary classification 
is shown in Table 5, where the best, average, and worst accuracy values are shown. 
The average of convergence is shown in Fig. 7.

4.1.2 Multiclass Classification 

Table 6 shows the best architecture for the multiclass classification using pre-
processing #1. The best accuracy achieved is 77.35%, also using 3 convolutional 
layers, with their respectively max-pooling layers, but this architecture uses 3 fully 
connected layers.

A summary of the results achieved with pre-processing #1 for multiclass classi-
fication is shown in Table 7. The average of convergence using pre-processing #1 is 
shown in Fig. 8.
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Fig. 7 Average of convergences (pre-processing #1, binary classification)

Table 6 Best architecture 
(pre-processing #1, 
multiclass) 

Parameters Values 

Convolutional layers 3 

Number of filters and size per layer 8 (4  × 4) 
22 (2 × 2) 
64 (4 × 4) 

Max-pooling filter size per layer 4 × 4 
3 × 3 
4 × 4 

Fully connected layers (neurons) 3 (276, 159, 179) 

Epoch 8 

Batch size 8 

Algorithm Adam 

Error 0.2265 

Accuracy (%) 77.35

Table 7 Results for 
multiclass 
classification (pre-processing 
#1) 

Best 77.35% 

Average 76.03% 

Worst 74.90%

4.2 Pre-processing #2 

In this section, the results achieved using pre-processing #2 are shown.
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Fig. 8 Average of convergences (pre-processing #1, multiclass classification)

4.2.1 Binary Classification 

In Table 8, the best architecture for the binary classification using pre-processing #2 
is shown. The best accuracy achieved is 95.36%, using 2 convolutional layers with 
their max-pooling layers and one fully connected layer. 

A summary of the results achieved with this pre-processing is shown in Table 9. 
The average of convergence is shown in Fig. 9. 

Table 8 Best architecture 
(pre-processing #2, binary) 

Parameters Values 

Convolutional layers 2 

Number of filters and size per layer 16 (3 × 3) 
31 (2 × 2) 

Max-pooling filter size per layer 4 × 4 
5 × 5 

Fully connected layers (neurons) 1 (288) 

Epoch 10 

Batch size 16 

Algorithm Adamax 

Error 0.0464 

Accuracy (%) 95.36 

Table 9 Results 
(pre-processing # 2) 

Best 95.36% 

Average 93.58% 

Worst 93.04%
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Fig. 9 Average of convergences (pre-processing #2, binary classification) 

4.2.2 Multiclass Classification 

Table 10 shows the best architecture for the multiclass classification using pre-
processing #2. The best accuracy achieved is 74.76%, also using 2 convolutional 
layers, with their respectively max-pooling layers and 3 fully connected layers. 

A summary of the results achieved with this pre-processing is shown in Table 11. 
The average of convergence is shown in Fig. 10. 

Table 10 Best architecture 
(pre-processing #2, 
multiclass) 

Parameters Values 

Convolutional layers 2 

Number of filters and size per layer 8 (2  × 2) 
32 (2 × 2) 

Max-pooling filter size per layer per layer 3 × 3 
4 × 2 

Fully connected layers (neurons) 3 (249, 300, 76) 

Epoch 6 

Batch size 16 

Algorithm Adam 

Error 0.2524 

Accuracy (%) 74.76 

Table 11 Summary of 
results (pre-processing #2) 

Best 74.76% 

Average 73.57% 

Worst 72.58%
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Fig. 10 Average of convergences (pre-processing #2, multiclass classification) 

Table 12 Comparison of 
results (binary classification) 

Best (%) Average (%) Worst (%) 

Pre-processing #1 96.59 95.33 94.68 

Pre-processing #2 95.36 93.58 93.04 

4.2.3 Summary of Results 

Table 12 shows a summary of results, where the results achieved for the binary 
classification can be observed. The values are better using the first pre-processing. 

A graphical comparison of the convergences for binary classification is shown in 
Fig. 11, where a better convergence for the first pre-processing is observed.

Table 13 shows a summary of results, where the results achieved for the multiclass 
classification can be observed. The values are better using the first pre-processing 
with a wider difference than in the binary classification.

A graphical comparison of the convergences for multiclass classification is shown 
in Fig. 12, where a better convergence for the first pre-processing is observed, even 
it can be observed that pre-processing #2 is stagnated in some iterations.

5 Conclusions 

The PSO is used to design the convolutional neural networks, where each particle 
contains information: the number of convolutional layers, filters with their filters 
size, pool size, algorithm for the learning process, number of fully connecter layers, 
number of neurons, batch size, and the number of epochs. The proposed method 
combines CNNs and PSO for retinopathy classification. The results show that the
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Fig. 11 Average of convergences (binary classification)

Table 13 Comparison of results (multiclass classification) 

Best (%) Average (%) Worst (%) 

Pre-processing #1 77.35 76.03 74.90 

Pre-processing #2 74.76 73.57 72.58

Fig. 12 Average of convergences (multiclass classification)

first pre-processing allowed for better results than the second one, for both kinds 
of classification: binary and multiclass. The proposed method achieved 96.59% of 
accuracy as the best results in the binary classification; meanwhile, for multiclass 
classification, 77.35% of accuracy. It does not mean that the second pre-processing
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is no good, perhaps the search space must be increased, and better results can be 
achieved. In future works, other pre-processing, and type of pooling layer will be 
implemented to compare results and increase the accuracy in the classification. 
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