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Abstract

Artificial intelligence is currently capable of imitating clinical reasoning in order 
to make a diagnosis, in particular that of breast cancer. This is possible, thanks to the 
exponential increase in medical images. Indeed, artificial intelligence systems are 
used to assist doctors and not replace them. Breast cancer is a cancerous tumor that 
can invade and destroy nearby tissue. Therefore, early and reliable detection of this 
disease is a great asset for the medical field. Some people use medical imaging tech-
niques to diagnose this disease. Given the drawbacks of these techniques, diagnostic 
errors of doctors related to fatigue or inexperience, this work consists of showing 
how artificial intelligence methods, in particular artificial neural networks (ANN), 
deep learning (DL), support vector machines (SVM), expert systems, fuzzy logic can 
be applied on breast imaging, with the aim of improving the detection of this global 
scourge. Finally, the proposed system is composed of two (2) essential steps: the 
tumor detection phase and the diagnostic phase allowing the latter to decide whether 
the tumor is benign or malignant.

Keywords: breast cancer, artificial intelligence, artificial neural network, deep learning, 
expert system, fuzzy logic, medical imaging, big data

1. Introduction

Breast cancer is a disease in which cells in breast tissue change and divide in an
uncontrolled manner, usually producing a lump or lump. Most breast cancers start in 
the lobules (mammary glands) or in the ducts that connect the lobules to the nipple. If 
not diagnosed early, it can lead to death. It can be divided into two (2) groups: normal 
and abnormal and it can also be divided into two (2) categories: benign (not danger-
ous) and cancerous (malignant). Benign tumors grow quite slowly and do not invade 
neighboring tissues or spread to different parts of the body [1]. The early and reliable 
detection of it focuses on reviewing data from past diagnoses and gathering valuable 
information from past data. Currently, the early detection and diagnosis of tumors 
using image processing techniques and artificial learning can be of great help in 
improving the accuracy of a breast cancer diagnosis. Secondly, medical imaging plays 
a major role in the clinical diagnosis of diseases, the evaluation of treatment and the 
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detection of abnormalities in different organs of the body such as [2, 3]. In addition, 
several researchers have focused intensively on the production and interpretation of 
medical images to identify the majority of diseases including breast cancer. These 
images thus facilitate the identification of the disease and help in the detection of a 
pathological lesion, in the clinical treatment of the patient. Artificial intelligence has 
played a major role in the medical field, such as the analysis of medical images. It is 
the most effective way to detect breast cancer, with regular use of different modalities 
such as MRI, mammography, computed tomography and radiographic ultrasound. 
The most frequently used images are mammography, ultrasound, MRI, histology and 
thermography [4]. Mammography can detect and diagnose breast cancer in women. 
Mammography images can be examined by professional radiologists to determine 
if there are any abnormalities in the breast. She may show breast changes for up to a 
year or two before the patient or the doctor sees the symptoms. The American Cancer 
Society (2019–2020) recommends a mammogram once a year for all women over 
40. Dense breast tissue during a mammogram may appear white or light gray. This 
may make it easier to view mammograms in younger women who appear to have 
thicker breasts. Therefore, it is ineffective in patients under 40 years of age, with 
dense breasts and less sensitive to small tumors. Most breast diseases look like signs 
of cancer and require tests to identify them, and often a biopsy [5]. Another method 
of breast cancer screening is ultrasound imaging which can be used to supplement 
mammography by determining the liquid or solid nature of a lesion, especially in 
women with large breasts [6]. Magnetic resonance imaging (MRI) is another tech-
nique for early detection of cancer cells, in addition to ultrasound and mammography 
techniques [7]. Despite rapid advances in medical research, the benchmark for cancer 
diagnosis remains histopathological diagnosis [8]. Another breast cancer imaging 
modality is thermography or thermal imaging of the breast which is a painless and 
non-invasive method that is often used to detect changes in the breast that may indi-
cate this global scourge [9]. Finally, the use of artificial intelligence makes it possible 
to identify candidate biomarkers for medical imaging [10].

2. Artificial intelligence and medical imaging

Artificial intelligence is at the crossroads of several fields. Among these fields we 
can cite computer science, mathematics, medicine, physics, philosophy, etc. Early 
detection plays a very important role in the diagnosis of cancer, especially the diag-
nosis of breast cancer. It can promote the chances of recovery from it, therefore it is 
able to improve the long-term survival rates of patients. Note that, medical imaging 
has long been used to perform early detection of breast cancer, its monitoring and 
post-treatment follow-up, nevertheless, the direct interpretation of a large number of 
medical images is a difficult task. and depends on the expertise of the radiologist. In 
fact, the interpretation of medical images still relies today on the eye of the radiolo-
gist or the doctor. Several imperfections mar this process. The human eye is fallible, 
fatigable, subject to many cognitive biases, and its performance depends on its experi-
ence. In addition, its relevance depends on the visibility (salience) of the images to 
be located. A large lesion, of which the contrast is high will be easily detected, this is 
not the case when the lesion is small and of low contrast and if it is located outside 
the nosological field questioned. To solve this problem, ordinary assisted diagnostic 
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systems were developed as early as the early 1980s. Initially, from the 1970s to the 
1990s, medical image analysis was performed from sequential treatments from the 
treatments of. low level (denoising, contrast enhancement, detection of edges and 
lines, segmentation of regions) up to pattern recognition through mathematical 
modeling. Then, to develop automatic analysis systems, the researchers drew inspira-
tion from the human brain to build expert systems, which use artificial intelligence 
techniques [11, 12].

AI applied to medicine aims to:

•  automate the detection of pathological images;

•  treat large cohorts of patients;

•  allow the detection of incidental lesions, not sought “a priori”;

•  make the interpretation of images more reliable;

•  identify patterns, allowing the classification of lesions;

•  establish standardized reports.

  Finally, “supervised” artificial intelligence requires a large amount of data allow-
ing the learning of AI methods. The French society of Radiology and the National 
Federation of Radiological Doctors have decided to create an “ecosystem” of 500 
million imaging files thus making a medical imaging database available to researchers
[13, 14]. 400 million would be truly exploitable for the development of AI algorithms.
This database should also be continuously updated. The potential French database has
many advantages and is recognized internationally [15].

3. Artificial intelligence and big data

  The exponential increase or the quantitative explosion of data has forced research-
ers in data science, then in medical science, to transform the way they see and analyze
the world. In medicine, this increase is caused by the number of medical images 
produced. Thus, for mammographic examinations, two (2) or four (4) mammograms
are performed per patient and this at the rate of one or two mammograms per breast.
Therefore, a woman can have at least two (2) medical images in this context. In this 
case, it is about understanding new ways to capture, search, share, store, analyze and 
present data whose order of magnitude grows exponentially. These large-scale data 
(Big Data) are generally analyzed using artificial intelligence methods. Note that
these two (2) concepts are increasingly applied in medical research [16]. There are 
several sources of medical “ big data “, we can cite clinical data from databases such
as health insurance, private mutuals or the pooling of cohort data, or even digital 
traces (keywords typed into an internet server); but also data from medical imaging 
(a single imaging test that may contain millions of pixels), or even biological data. So,
for better data exploitation, Big Data is analyzed by methods derived from AI and its 
sub-specialty, artificial learning (Machine Learning) [17, 18].

3



Artificial Neural Networks - Recent Advances, New Perspectives and Applications

4

4. Artificial intelligence and data mining

The ability to make good use of data, particularly that of medical imaging, is at 
the heart of the challenges of tomorrow’s medicine. We can cite the development of 
diagnostic aid tools, radiomics which consists in extracting quantitative data in order 
to identify potential imaging biomarkers, the development of in-silico models making 
it possible to accelerate medical research, formulation and validation of hypotheses 
from the retrospective use of several independent cohorts, patient screening to better 
target patients eligible for a clinical trial [19]. Indeed, data exists in abundance, 
nevertheless the exploitation of this “big data” is a very difficult task for doctors and 
other actors in their specific fields.

5. Artificial intelligence and cognitive psychology

It is certain that the observation, modeling, understanding of cognitive activity 
and intelligence are, as natural sciences, the responsibility of cognitive psychology, or 
more generally of cognitive ethology. According to Margaret Bogden artificial intel-
ligence is the art of simulating intelligence using a computer, this clearly falls under 
the science of the artificial. Insofar as it draws its inspiration from cognitive psychol-
ogy and cares about psychological realism, it can be an experimental counterpoint all 
the richer for cognitive psychology (or cognitive ethology) as experimentation using 
software does not pose the ethical problems posed by human or even animal experi-
mentation. Indeed, cognitive psychology and artificial intelligence present themselves 
as sister disciplines. AI will have two sides [20]:

•	predominantly psychological, it is above all concerned with the realism of 
simulations of the functioning of the human mind;

•	redominantly computer science, it seeks intelligent global behavior, human or 
not; In addition to purely practical reasons, we can also consider that the human 
mind probably does not have a monopoly on intelligence, and would benefit 
from being helped by other forms of intelligence.

6. Artificial intelligence in computer vision

Computer vision is an AI technology. There are interactions between artificial 
intelligence and computer vision, from the point of view of knowledge-based sys-
tems for the interpretation of images and scenes, and for the recognition of shapes, 
structures or objects in images. The general objective of these approaches is to add 
semantics to images, by associating visual information extracted from images on the 
one hand and knowledge or models on the other hand [21].

7. The use of artificial intelligence in clinical practice

The analysis of current medical imaging applications using artificial intelligence 
for current clinical use provides information on the directions of scientific research 
to be considered in this field. The first half of 2018 was marked by the arrival of three 
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(3) AI players in imagery. Their solutions have all been approved, for the first time, by 
the United States Food and Drug Administration (FDA). This is especially the applica-
tion Viz.ai (San Francisco, CA, USA) for acute stroke, using the deep learning (Deep 
Learning) for automatic detection of occlusion of cerebral vessels to the angio-CT and 
the immediate call of the interventional radiologist on call. This is also the case with the 
IDx-DR software capable of detecting diabetic retinopathy on the fundus without even 
the intervention of an ophthalmologist. This app can be used in theory by paramedics 
for early detection action. According to these authors, its reliability is high. It relates
to a clinical study (NCT02963441) of eye funds on 10 American centers with 900 
diabetic patients in whom, in 90\% of cases, the IDx-DR solution (Coralville, Iowa,
USA) allowed the correct diagnosis [22]. Finally, Osteodetect from the company Imagen
(New York, USA) is another tool which makes it possible to accelerate the detection
of wrist fractures on standard 2D digitized radiologies. This assisted detection uses 
artificial intelligence techniques to enable faster diagnosis based on an initial retrospec-
tive analysis of 1000 images per second at 24 centers. The device has been announced
by its developer to be dedicated above all to non-radiologist nursing staff (general 
practitioners, emergency physicians, resuscitators, etc.). The site emphasizes that it is a 
complementary tool and not a software to replace the expertise of radiologists. In [23],
these three (3) examples confirm the importance of AI methods in clinical practice.

8. Role of artificial intelligence in medical imaging

  The aim of artificial intelligence systems is not to replace radiologists but rather,
to provide them with convincing help. So, let the practicing doctors handle the use of 
artificial intelligence in their specialty [24]. The fields of application of AI techniques 
in medical imaging are numerous: the creation of examination protocols, improve-
ment of image quality and reduction of the irradiation dose, reduction of acquisition 
times in MRI, optimization of programming, presentation of images for interpreta-
tion, development of detection assistance tools, post-processing assistance, quanti-
fication tools, segmentation, image registration, analysis the quality of the images 
produced, realized production [25].

9. Some definitions

Here are some definitions of artificial intelligence (AI) techniques [26–29]:

•  Artificial Neural Networks (ANNs): These are AI techniques aimed at simulating
  the functioning of neural cells to mimic the functioning of the human brain.
  They are mainly used in the recognition of speech and images. These techniques
  can be simulated in software or with specialized electronic circuits.

•  Deep learning (DL): it is an extension of artificial learning integrating super-
  vised learning and self-learning functions based on complex and multidimen-
  sional data representation models. It is an evolution of the ANNs which have
  multiple layers and sub-layers of neurons.

•  The support vector machine (SVM): it is an algorithm which will classify data
  according to a linear threshold and whose objective is to solve the problems of
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classification or discrimination in two classes. Note that there is a modification of 
this algorithm which allows it to be used for the regression.

•	Expert systems: these are AI systems based on high-level knowledge modeling 
with predicate logics (if this then that, if the patient has her symptoms then the 
patient has breast cancer, etc.) and rule engines.

•	Fuzzy logic: it is an AI technique created by Lofti Zadeh in the 1960s and repre-
senting information not in binary form but in fuzzy form between 0 and 1. It is 
sometimes used in rules engines of expert systems.

10. The application of artificial neural networks

This artificial intelligence technique is used to detect breast cancer. In [30], breast 
cancer is detected using two electronic noses (EN) to analyze breath and urine 
samples. Exhaled breath samples were taken from 48 breast cancer patients and 
45 healthy patients who served as a control group while urine samples were taken 
from 37 breast cancer patients. Breast based on mammographic tests and 36 healthy 
patients. These two ENs made it possible to analyze exhaled respiration on the one 
hand, and on the other hand the authors used gas chromatography mass spectrometry 
(GC-MC) to analyze the substances present in the urine. The first EN used was the 
MK4 model. The second EN used was Cyranose 320. Indeed, the model obtained, 
that is to say the artificial neural network on the basis of the analysis carried out by 
the MK4 and Cyranose 320, made it possible to classify the patients suffering from 
dystrophy. ‘breast cancer with an accuracy, on average, of more than 95%.

In [31], the proposed method is based on the representation of images using dis-
crete Haar wavelets. Then, they are introduced into artificial neural networks. These 
digital images are obtained by biopsy from the Near East University Hospital. The 
images are classified using two classifiers including the Backward Propagation Neural 
Network (BPNN) and the Radial Basis Function Network (RBFN).

In [32], to help radiologists quickly detect breast cancer, these authors proposed a com-
putational model based on an artificial neural network. This is able to detect the presence 
or absence of an abnormality on a mammogram. In order to train or train their model, 
they used a database of digital mammograms generated by MIAS (Mammographic Image 
Analysis Society). Then, they used 60 images divided into 30 normal images and 30 
images including anomalies. This has been confirmed by expert radiologists. The artificial 
neural network model created in this study has the following advantages: simplicity of 
extracting the descriptive parameters of each mammogram, automatic and rapid detec-
tion of the presence or not of an anomaly on a mammogram, possibility of adapting the 
template to other images from different medical bases with different resolutions. Finally, 
they demonstrated the performance of the model obtained for the detection of breast 
cancer on a mammogram with a correct recognition rate of 91.66%.

11. The application of deep learning

Deep learning is another form of artificial neural networks. It is the most widely used 
artificial intelligence method when it comes to the classification of breast cancer on med-
ical images. In [5], in order to help medical experts quickly diagnose breast cancer, the 
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authors presented the Convolutional Neural Network Improvement Algorithm for Breast
Cancer Classification (CNNI-BCC). Indeed, the sensitivity of the convolutional neural 
network (CNN) to radiological images prompted the authors to improve CNN. To detect 
and categorize into malignant, benign, and normal, the CNNI-BCC method uses data 
extension by functionality (FWDA) algorithms, convolutional neural network-based 
classification (CNNBS), and lesion locator based on interactive detection (IDBLL).
This model can be incorporated on portable devices such as smartphones. The materials 
used in this work are digital mammography databases. These bases were prepared and 
supplied by MIAS. Then the experiments are applied to 21 mild cases, 17 malignant cases
and 183 normal cases. CNNI-BCC has achieved an accuracy of 90.50%.
  In [33], to alleviate the lack of early detection of breast cancer, the authors pro-
posed a cancer detection approach based on a convolutional neural network (CNNs).
This technique can simultaneously locate and classify the mass as benign or malignant
on a mammogram image. Then, to train or train, validate and test the method, datas-
ets were collected at various sites, in particular at St Gebriel Hospital, Grum Hospital,
Betezatha Hospital, Korean Hospital, Kadisco Hospital and at Pioneer Diagnostic.
Indeed, the mammogram images were collected with their document reports that 
show the results of screening and diagnosis of the patients. Overall, the proposed 
approach includes the following steps:

•  Data collection in different hospitals in Ethiopia,

•  Preprocessing mammographic images to improve data quality and prepare them
  appropriately for deep learning,

•  After the preprocessing, the noise on the images is eliminated by applying
  Gaussian filtering, median filtering and bilateral filtering,

•  And later images were enhanced using Adaptive Contrast Limited Histogram
  Equalization (CLAHE),

•  Finally, a morphological operation is performed to extract the breast region from
  the background and to remove part of the mammographic image such as arti-
  facts, labels, patient profiles and the like.

  Ultimately, the model was trained and evaluated via mammographic images and 
achieved an accuracy of 91.86%.
  In [34], in order to help radiologists more precisely diagnose breast cancer, this 
research proposes the development and validation of a new scheme called SD-CNN 
(Shallow-Deep Convolutional Neural). This method combines image processing and 
machine learning techniques to improve diagnosis using full field digital mammogra-
phy (FFDM) by leveraging information available from contrast enhanced digital mam-
mography (CEDM). The first hypothesis posed by the authors is that the application of
a deep CNN (Deep-CNN) to CEDM is able to take advantage of recombinant imaging 
to improve the classification of breast lesions. Second, with the aim of extending
the advantages of the CEDM imaging modality to the FFDM imaging modality, they 
hypothesized that a shallow CNN (Shallow-CNN) is capable of uncovering non-
mapping. Linear between the LE images that is to say the low energy (LE) and recom-
bined images. The objective of this study is to validate these two hypotheses using a 
single study procedure and two separate data sets, including a data set acquired from a
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tertiary medical center (Mayo Clinic Ari-zona) and a set public data file from INbreast. 
They first developed a CEDM Shallow-CNN to discover the relationships between LE 
images and recombinant images. This Shallow-CNN is then applied to FFDM to restore 
“virtual” recombined images. In collaboration with FFDM, a trained Deep-CNN is 
introduced for feature extraction, followed by classification models for diagnosis. The 
approach proposed by the authors had an accuracy of 90%.

In [35], manual segmentation is time consuming and does not take into account 
the appearance of anatomical structures. So to solve this problem the authors pro-
posed a method of auto-segmentation of the clinical target volume (CTV) called 
deeply dilated residual network (DD-ResNet). It performs automatic segmentation 
in order to plan the computed tomography or scanner. They used data from early-
stage breast cancer patients who only underwent breast-conserving therapy from 
January 2013 to December 2016 at the Radiation Oncology Department of the Cancer 
Hospital of the Chinese Academy of Medical Sciences. To evaluate their method, they 
performed a comparison between self-segmentation and manual segmentation. This 
comparison is based on images from different patients and also of different sizes. The 
results show that the self-segmented contours of the CTV were close to the manually 
segmented contours in shape, volume and location. The deep learning algorithm 
(DD-ResNet) proposed by the authors, could be used to improve consistency in 
bypassing and streamlining breast cancer radiotherapy processes.

12. The application of support vector machines

This method is also useful in the detection of breast cancer. In [36], the authors 
propose a wide-margin separation technique to perform the stain classification in the 
context of breast cancer detection. This method is called, the Support Vector Machine 
(SVM). In this study, they also dealt with character extraction using the Hough 
transform. The latter makes it possible to detect the characteristics of the mammo-
graphic image in order to provide the values to the classifier, that is to say SVM. The 
mammography images used are collected from the Mammography Image Analysis 
Database Company (MIAS). Among the 322 images of this company, 95 images were 
taken to carry out this work. Note that SVM has a success rate of 94%.

In [37], the use of machine learning algorithms such as Support Vector Machine 
(SVM), decision trees (C4.5), Naive Bayes (NB) and K nearest neighbors (K-NN for 
K-Nearest Neighbor in English) in medical sciences can classify and predict breast 
cancer. The authors compared the performance of these algorithms using Wisconsin 
breast cancer datasets from the UCI machine learning repository. They managed to 
prove that SVM has the highest accuracy (97.13%) and the lowest error rate (2%).

13. The application of expert systems

This technique is useful in the diagnosis of breast cancer. In [38], the need for a 
powerful diagnostic tool motivated the authors to create an expert system for breast 
cancer diagnosis called Ex-DBC to effectively diagnose breast cancer. To perform the 
diagnosis, the system uses fuzzy rules. In this study, the mammography mass dataset is 
provided by the UCI Machine Learning Repository. This dataset can be used to predict 
the severity (benign or malignant) of a mammographic mass lesion from the attributes 
of the Breast Imaging Recording And Data System (BI-RADS) and the patient’s age. It 
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Figure 1. 
Architecture of the proposed system (SI2AD for artificial intelligence system aided detection and Diagnosiss).

contains a BIRADS assessment, the patient’s age and the three BI-RADS attributes as 
well as the ground truth (the gravity field) for 516 benign masses and 445 malignant 
masses that were identified on mammographic images collected at the radiology 
institute of Erlangen-Nuremberg University between 2003 and 2006. Note that the 
expert system Ex-DBC has a powerful inference engine containing fuzzy rules that can
detect hidden relationships in the unrecognized case by the human expert. The goal
of the Ex-DBC is to minimize human error by capturing and interpreting points that 
may not be recognized by the radiologist. Ultimately, the expert system created in this 
study can make an important contribution to the prevention of unnecessary biopsy in 
the diagnosis of breast cancer and it can also be useful in training medical students.

14. The application of fuzzy logic

  This technique can detect and diagnose breast cancer. In [39], it is difficult to 
improve the image and remove noise at the s-ame time. This prompted the authors
to propose a new contrast enhancement algorithm based on fuzzy logic and fuzzy 
entropy. The principle of maximum fuzzy entropy is used to map the original image,
then the characteristics of the American image are taken into account. More precisely,
the edge and texture information is extracted to evaluate the characteristics of the 
lesions and the phenomenon of diffusion of the American images and the local 
information is used to define the enhancement criterion. The algorithm improves
the details and characteristics of lesions using local fuzzy information. The proposed 
method includes the following steps: image normalization, image fuzzification, edge 
information extraction, texture information extraction and contrast enhancement.
Indeed, the images of the American breasts used in this study were provided by
the Second Affiliated Hospital of Harbin Medical University (HMU). The database 
included a total of 86 images from 49 cases, and each unique lesion is in an image. Of 
the 49 cases, 14 were benign solid lesions (30 images) and 35 were malignant solid 
lesions (56 images). Finally, the proposed approach will be useful for the analysis of 
images of the breast of American women and computer-aided diagnostic systems.

15. Architecture of the proposed system

Figure 1  shows the architecture of our system.
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16. Description of the database used in this study

To carry out our comparative study between artificial intelligence techniques, we 
chose a breast cancer database extracted from the UCI repository https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnosi29. This database 
describes the characteristics of the cell nuclei present in the image. A few of the 
images can be found at http://www.cs.wisc.edu/~street/images/. Here is the informa-
tion about this breast cancer database:

•	Number of instances: 569

•	Number of attributes: 32 (ID, diagnosis, 30 real-valued input features)

•	Attribute information:

○○ ID number

○○ Diagnosis (M = malignant, B = benign) 3–32

Ten real-valued features are computed for each cell nucleus:

a.	radius (mean of distances from center to points on the perimeter).

b.	texture (standard deviation of gray-scale values).

c.	perimeter.

d.	area.

e.	smoothness (local variation in radius lengths).

f.	compactness (perimeter^2/area - 1.0).

g.	concavity (severity of concave portions of the contour).

h.	concave points (number of concave portions of the contour).

i.	symmetry.

j.	 fractal dimension (“coastline approximation” - 1)

•	 Class distribution: 357 benign, 212 malignant

17. Performance evaluation measure

	    Accuracy correct predictions True Positive True Negativeor
all predictions all predictions

+
= 	 (1)
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19. Discussion

This work put more emphasis on one of the most powerful algorithms in artificial 
intelligence. These are convolutional neural networks (CNN). This technique is part 
of deep learning algorithms. The choice of this method is based on its power, notably 
allowing the recognition of images by automatically attributing to each image provided 
as input, a label corresponding to its class of membership. Then, in Figure 1, there is 
the absence of the feature extraction step, this proves that we chose CNN over other AI 
methods, not by preference but rather on convincing arguments. We know that Artificial 
Neural Networks (ANNs) like Multilayer Perceptron only contain a classification part, 
so in systems that use ANNs and want to extract features, it is necessary before applying 
ANNs before perform a feature extraction step while the CNN contains the two parts: a 
convolutional part whose final objective is to extract the characteristics specific to each 
image and a classification part allowing to classify the image. Also, it is sure and certain 
and all data scientists will tell you that deep learning methods are data and computation-
ally intensive. However, today we see the exponential growth of data in all fields, in 
particular that of health, in particular with the exponential increase in the number of 
mammographic images produced. The use and improvement of this method is therefore 
possible thanks to this big data and the computing power. Here are the essential steps of 
our proposed system: a tumor detection phase and a diagnostic phase to classify the tumor 
(benign or malignant). In addition, the proper functioning of our system will be validated 
in collaboration with experts, in particular doctors, or by using a local database or others. 
This step is called the validation phase. Finally, our results obtained show that artificial 
neural networks are efficient, even if the database used in this study is very small.

20. Conclusion

Ultimately, artificial intelligence can play an important role in the early detection of 
diseases, especially breast cancer. Currently, we are witnessing an exponential increase 

Artificial Intelligence Methods Accuracy

ANN 0.97

Decision Tree Classifier 0.94

XGB 0.95

SVM 0.98

Kneighbors Classifier 0.94

Ramdom Forest Classifier 0.95

Gradient Boosting Classifier 0.96

Logistic Regression 0.97

18. Results

  In this section, we will present our comparative study. We compared artificial 
intelligence techniques: Logistic Regression, Gradient Boosting Classifier, Random 
Forest, XGB Classifier, Support Vector Machine, Decision tree, KNeighbors and ANN.
The choice of these techniques is based on their very frequent use in the literature.
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in large-scale data (or Big Data) in our hospitals. This is caused by the number of medi-
cal images produced, the vast majority by women. Thus, in this study, we have shown 
that it is possible to create robust artificial intelligence systems from medical imaging 
databases. These systems use machine learning methods in particular deep learning 
in image classification. In order to facilitate the detection and early diagnosis of breast 
cancer, we have proposed an aid system called SI2AD as future work.
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Chapter 2

Pre-Informing Methods for ANNs
Mustafa Turker

Abstract

In the recent past, when computers just entered our lives, we could not even 
imagine what today would be like. If we look at the future with the same perspective 
today, only one assumption can be made about where technology will go in the near 
future; Artificial intelligence applications will be an indispensable part of our lives. 
While today’s work is promising, there is still a long way to go. The structures that 
researchers define as artificial intelligence today are actually programmed programs 
with limits and are result-oriented. Real learning includes many complex features such 
as convergence, association, inference and prediction. It has been demonstrated with 
an application how to transfer the input layer connections in human neurons to the 
artificial learning network with the pre-informing method. When the results are 
compared, the learning load (weights) was reduced from 147 to 9 with the proposed 
pre-informing method, and the learning rate was increased between 15–30%
according to the activation function used.

Keywords: ANN, pre-informing, AHP, modified networks, interfered networks

1. Introduction

The learning mechanism makes human beings superior to all other creatures.
Despite the fact that today’s computers have much more processing power, the human
brain is still much more efficient than any computer or any artificially developed
intelligence.

Building a perfect learning network requires more than just cell structures and its
weights. The human brain has a very complex network, and each brain is unique for
itself. Today’s technology is not enough to explain all the details of how our brain
works. My observation of how our brain works starts from defining items. Every item
has a key cell in our brain. Defining process is done by visuals, smell, feeling, linguistic
name, hearing its sound. If these key cells match any of these information from body
inputs, thinking and learning continues, if there is no key cell defined before, new cell
is assigned for this item. Then, your brain wants to explore these item’s behavior. You
start to take this item in your hand and start the psychical observation. When the
psychical observation is satisfied, your brain starts to categorize it. After categoriza-
tion, your brain checks other items for same categorization and determines what other
information can be learned. Whenever you see someone has more knowledge from
you, then you want to speak about this newly learned item, or you want to do research
on it. This key cell started to develop itself with explored information. Each key cell

16



and its network can also connect to each other in any part, if there are logical connec-
tions that exist.

Today’s artificial intelligence studies are a little simple compared to reality. Math-
ematical modeling of learning in an artificial cell and solving the problem with an
optimization mechanism has resulted in success in most areas. However, this success
is due to the fast processing capacity of computers rather than the perfect modeling of
machine learning. In this case, researchers need to work on developing artificial neural
networks close to the real learning.

In this study, the pre-informing method and rules in artificial neural networks are
explained with an example in order to establish a more conscious and effective learn-
ing network instead of searching for relationships in random connections.

2. ANN structure

In the literature of ANN design, the first principles were introduced in the middle
of the 20th century [1, 2]. Over the following years, network structures such as
Perceptron, Artron, Adaline, Madaline, Back-Propagation, Hopfield Network,
Counter-Propagation Network, Lamstar were developed [3–10].

The complex behavior of our brain artificially imitated through layers is most
network configuration. Basically, an artificial neural network has 3 types of layer
group: input layer, hidden layers, output layer (See Figure 1). And all cells in these
layers connected each other with artificial weights [1, 2].

Input layer is the cluster of cells present the data that has influence on learning.
Each cell represents a parameter with a variable data value. These values are scaled

Figure 1.
Basic ANN structure.

2
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u ¼
Xm
n¼1

xi ∗wi � θ (1)

y ¼ f uð Þ (2)

In these equations,

• xi: Input value or previous cell output value for previous layer cells,

• wi: Weight value of the connection for previous layer cells,

Figure 2.
Artificial neuron structure.
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according  to  the  limits  of  the  activation  function  used  in  the  next  layers.  The  selection
of  input  parameters  requires  knowledge  and  experience  on  the  subject  to  be  created 
artificial  intelligence.  In  fact,  this  process  is  exactly  the  transfer  of  natural  neuron 
input  parameters  from  our  brain  to  paper.  However,  this  is  not  so  easy  because  a 
learning  activity  in  our  brain  is  connected  by  a  huge  number  of  networks  managed 
subconsciously.  To  explain  this  situation,  sometimes  our  minds  make  some  inferences
even  on  subjects  we  have  no  knowledge  of,  and  we  can  make  correct  predictions  about
this  subject.  In  some  cases,  we  feel  the  result  of  an  event  that  we  do  not  know,  but  we
cannot  explain  it.  In  fact,  the  best  example  of  this  is  falling  in  love.  No  one  can  tell  why
you  fall  in  love  with  a  person,  it  happens  and  then  you  look  for  the  reason.  This  is 
proof  that  the  subconscious  mind  plays  a  major  role  in  learning.  This  means  that  there
may  also  be  some  input  parameters  that  we  did  not  notice.  Therefore,  it  is  necessary  to
focus  on  this  layer  and  define  the  input  parameters.

  Hidden  layer(s)  is  the  layer  where  the  data  of  the  input  parameters  are  interpreted,
and  the  learning  capability  of  the  network  is  defined.  Each  cell  in  these  layers  transfers
the  data  from  the  input  layer  cells  or  previously  hidden  layer  cells  with  the  defined 
activation  function  and  sends  it  to  all  cells  in  the  next  layer.  Learning  of  nonlinear 
behavior  takes  place  in  this  layer.  Increasing  the  number  of  layers  and  cells  in  this 
group  does  not  always  work,  but  provides  memorization,  not  learning.  This  also 
increases  the  number  of  connections  and  thus  highly  increases  the  required  experi-
enced  data  to  determine  the  weight  values  of  these  connections.

  In  general,  the  basic  mechanism  of  an  artificial  neuron  consists  of  two  steps:
summation  and  activation  [1].  Summation  is  the  process  of  summing  the  intensities  of
incoming  connections.  Activation,  on  the  other  hand,  is  the  process  of  transforming
the  collected  signals  according  to  the  defined  function  (See  Figure  2).

  There  are  many  activation  functions.  The  purpose  of  these  functions  is  to  emulate
linear  or  non-linear  behavior.  The  sigmoid  function  is  one  of  the  most  commonly  used
activation  functions.

  Mathematically,  the  summation  and  activation  process  of  an  artificial  neuron  is 
expressed  as  below  (See  Eqs.  (1)  and  (2)).
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• θ: Bias value,

• u: Net collected output value of the cell,

• y: Activated output value of the cell.

In some cases, the learning network cannot find a logical connection between the
results and the inputs, so that this does not stop learning, a bias value can be used for
each cell. A high bias coefficient means that learning is low, and memorization is high.

The output layer is the last layer in the connection and receives inputs from the last
set in the hidden layer. In this layer, data is collected and as a result, output data is
exported in the planned method.

The learning process of the network established with the input, hidden and output
layers is actually an optimization problem. The connection values between the cells of
the network converge to reach the result depending on the optimization technique. A
training set consisting of a certain number of input and output data is used for this
purpose. If desired, a certain amount of data set is also tested to measure the consis-
tency of the network. When the learning is complete, the values of the weights are
fixed, and the network becomes serviceable. If desired, the mathematical equation of
the network can be derived by following the cells from back to forward.

3. Pre-informing of ANNs

Pre-information, unlike pre-training, is the processing of a certain information or
rule into the structure of the network. In reality, a person learns under some preju-
dices while learning something. These prejudices are a mechanism that allows us to
make predictions about the event that will occur, and they make these inferences by
utilizing similar events. With these prejudices, the number of training data required
for learning decreases by a considerable ratio. As a result, you have a clean and
efficient way of learning.

For example, for a child who goes out for the first time, his mother advises never to
talk to strangers, and he guesses that if the child talks to a stranger, the result may be
bad. In this case, the people to talk to are the input parameters, the possibility of
something bad happening as a result of the conversation is the output parameter. If
the mother did not give advice to her child, the child would talk to everyone and
eventually learn that talking to a stranger is bad and dangerous. As a result of the
mother’s suggestion, the weight of strangers among the input parameters (people to
talk to) increased before they even experienced it.

In order to transfer prejudices to artificial neural networks, some rules must be
followed:

1.The pre-Informed network structure consists of 3 layers; input layer, hidden
layer, output layer. The hidden layer consists of a single sublayer.

2. Input parameters should be grouped, if possible. For example, in a learning
network that predicts heart attack, personal characteristics are one group, bad
habits are another group, genetic diseases are another group. If there is no group,
it should be considered as 1 group. These inputs should be scaled according to the
activation function that will be used in the hidden layer.

4
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3.  The  information  to  be  processed  (pre-informing)  should  be  in  the  weights
  between  the  input  layer  and  the  hidden  layer.

4.  An  artificial  neuron  cell  is  placed  for  each  input  group  in  the  hidden  layer  to
  represent  each  group.  This  cell  consists  of  3  steps:  summation,  scaling,  activation.
  Two  or  more  different  activation  functions  can  be  used  in  cells  in  the  hidden
  layer.  In  this  case,  for  each  input  group,  same  number  of  representation  cells
  should  be  defined  in  the  hidden  layer.

5.  The  connections  of  cells  in  the  input  layer  to  the  representation  cells  of  other
  groups  other  than  their  own  are  considered  0.

6.  The  representation  cells  in  the  hidden  layer  are  directly  connected  to  the  output
  layer.

7.  Optimization  optimizes  the  weights  of  the  connections  between  the  hidden  layer
  cells  and  the  output  layer  cells.

8.  The  connection  values  of  the  input  layer  groups  to  the  representation  cells  in  the
  hidden  layer  are  determined  and  fixed  for  each  group  using  the  techniques
  in  the  literature.

  In  Figure  3,  a  total  of  23  input  parameters  belonging  to  3  input  groups,  these  three
groups  are  represented  by  two  separate  cells  with  hyperbolic  tangent  and  sigmoid 
activations,  and  a  hidden  layer  consisting  of  a  total  of  6  cells,  and  finally  an  output 
layer  are  described.

  After  the  network  structure  is  established,  the  next  step  is  pre-informing  the 
network.  This  stage  is  the  transfer  of  information  from  the  subconscious  to  network 
weights.  This  stage  should  be  done  for  each  group,  and  each  group  should  be  consid-
ered  separately.  The  best  method  of  this  process  is  using  AHP  (Analytic  Hierarchy 
Process)  evaluation  methods.  In  AHP  evaluation  methods,  each  parameter  is  com-
pared  with  the  other  using  verbal  expressions.  A  simple  superiority  scale  is  used  in  this
comparison.  This  means  you  can  prepare  a  questionnaire  and  get  the  superiority 
information  of  parameters  from  an  expert  mind.  After  some  calculations  you  will  have
the  weights.  These  weights  will  be  used  in  the  network  directly.  The  beauty  of  using 
this  technique  is  consistency  analysis  can  be  done.  In  the  end,  if  the  input  parameters
are  defined  correctly,  you  will  have  100%  academically  proofed  subconscious 
information  extraction.

  AHP  is  a  multi-criteria  decision  making  (MCDM)  method.  The  earliest  reference 
to  AHP  is  from  1972  [11].  Afterwards,  Saaty  [12],  fully  described  the  method  in  his 
article  published  in  the  Journal  of  Mathematical  Psychology.  AHP  makes  it  possible  to
divide  the  problem  into  a  hierarchy  of  sub-problems  that  can  be  more  easily  grasped 
and  evaluated  subjectively.  Subjective  evaluations  are  converted  into  numerical  values
and  each  alternative  is  processed  and  ranked  on  a  numerical  scale.  Schematic  AHP
hierarchy  is  given  in  Figure  4  below.

  At  the  top  of  the  hierarchy  is  the  goal/purpose,  while  at  the  bottom  there  are 
alternatives.  Between  these  two  parts  are  the  criteria  and  their  sub-criteria.  The
most  important  feature  that  makes  AHP  important  is  that  it  can  make  comparisons 
both  locally  and  globally  when  comparing  the  effect  of  sub-criteria  at  any  level  on 
alternatives.

5
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In next step, each aij value is normalized by dividing by the corresponding column
sum, and the weights shown in the table above are obtained with the corresponding
equation shown in the Table 3 above.

Network connections of input parameters using AHP are explained as shown
above. Next step is how to assign weights. Figure 6 shows how the AHP weights are
defined to the network.

In this way, a large number of connections are canceled and a fast, efficient and
less data-needing network is obtained.

4. Estimation of the severity of occupational accidents with using
pre-informed ANN

The pre-informed neural network method was used by Turker [13] to predict the
severity of occupational accidents in construction projects. In this study, it has been
estimated how the accidents will result if they happen instead of the possibility of
their occurrence. The scope of the study was made for the 4 most common accident
types in the world. These are falling from high, hit from a thrown/falling object,
structural collapse, electrical contact. In this study, 23 measures to be taken in occu-
pational accidents are discussed in 3 groups. These measures have been associated
with occupational accident severity in the artificial intelligence network (Table 4).

First of all, defined measures in occupational accidents, which are the input
parameters, were turned into a questionnaire by creating paired comparison questions
for comparison within their own groups. Occupational health and safety experts
working professionally in the sector were reached through a professional firm. The
questionnaires were administered online and recorded. Survey results were taken and
converted to weights with AHP matrices. Weights are shown in Tables 5–7.

C1 C2 C3 Cn

C1 a11 ¼ 1 a12 a13 a1n

C2 1=a12 a22 ¼ 1 a23 a2n

C3 1=a13 1=a23 a33 ¼ 1 a3n

Cn 1=a1n 1=a2n 1=a3n ann ¼ 1
P

a S1 ¼
Pn

i¼1ai1 S2 ¼
Pn

i¼1ai2 S3 ¼
Pn

i¼1ai3 Sn ¼ Pn
i¼1a

Table 2.
Pairwise comparison matrix of criteria.

K1 K2 K3 Kn wi

K1 a11=S1 a12=S2 a13=S3 a1n=Sn w1

K2 a21=S1 a22=S2 a23=S3 a2n=Sn w2

K3 a31=S1 a32=S2 a33=S3 a3n=Sn w3

Kn an1=S1 an2=S2 an3=S3 ann=Sn wn

P
a S1=S1 S2=S2 S3=S3 Sn=Sn wi ¼

Pn
j¼1

aij
Sj

� �h i
=n

Table 3.
Obtaining the weights of the normalized comparison values of the criteria.

8
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After obtaining the preliminary information weights, 3 different artificial intelli-
gence networks were created (Table 8). 140 historical accident data were collected on
selected accidents within a company. These data include the precautions taken at the
time of the accident and how the accident resulted. Accident results are divided
into 4 categories: near miss, minor injury, serious injury, death. For each accident,

Collective protection measures
(TKY)

Personal protective equipment
(KKD)

Control, training, inspection
(KEM)

(TKY-1) Constr. site curtain
system
(TKY-2) Colored excavation net
(TKY-3) Safety rope system
(TKY-4) Guardrail systems
(TKY-5) Facade cladding
(TKY-6) Safety Field Curtain
(TKY-7) First aid kit, fire
extinguisher
(TKY-8) Facade safety net
(TKY-9) Mobile electrical dist.
panel
(TKY-10) Warning and info signs

(KKD-1) Safety Helmet
(KKD-2) Protective Goggles
(KKD-3) Face Mask
(KKD-4) Face Shield
(KKD-5) Working Suit
(KKD-6) Reflector
(KKD-7) Parachute Safety Belt
(KKD-8) Working Shoes
(KKD-9) Protective Gloves

(KEM-1) OHS specialist
(KEM-2) Occupational Doctor
(KEM-3) Examination
(KEM-4) OHS trainings

Table 4.
Risk reduction measures in occupational accidents.

Figure 6.
Connections of two input groups to three different types of representation cells and implementation of AHP weights.

9

Pre-Informing  Methods  for  ANNs
DOI:  http://dx.doi.org/10.5772/ 106906

24



35 datasets were collected and a total of 120 datasets were used in training the network
and 20 datasets were used in testing the network.

Three alternative network structures were trained with the same data. As a result,
the pre-informed neural network provided a better learning rate of 5% in the training

Code Structural collapse Falling from high Object hit Contact w/ Electricity

TKY-1 0,000 0,000 0,000 0,000

TKY-2 0,000 0,000 0,000 0,000

TKY-3 0,555 0,398 0,109 0,000

TKY-4 0,000 0,185 0,109 0,000

TKY-5 0,000 0,102 0,000 0,000

TKY-6 0,252 0,099 0,109 0,107

TKY-7 0,097 0,039 0,406 0,120

TKY-8 0,000 0,126 0,000 0,000

TKY-9 0,000 0,000 0,000 0,411

TKY-10 0,097 0,052 0,269 0,361

Table 5.
AHP weights of collective protection measures group.

Code Structural collapse Falling from high Object hit Contact w/ electricity

KKD-1 0,195 0,243 0,225 0,076

KKD-2 0,095 0,050 0,080 0,098

KKD-3 0,044 0,044 0,035 0,039

KKD-4 0,072 0,050 0,091 0,100

KKD-5 0,071 0,093 0,106 0,179

KKD-6 0,039 0,044 0,050 0,058

KKD-7 0,337 0,388 0,252 0,086

KKD-8 0,081 0,045 0,087 0,142

KKD-9 0,066 0,045 0,074 0,222

Table 6.
AHP weights of personal protective equipment group.

Code Structural collapse Falling from high Object hit Contact w/ electricity

KEM-1 0,481 0,167 0,399 0,426

KEM-2 0,210 0,167 0,161 0,134

KEM-3 0,098 0,167 0,083 0,067

KEM-4 0,210 0,500 0,357 0,372

Table 7.
AHP weights of control, training, inspection group.
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5. Conclusions

In this study, how the learning ability of artificial neural networks should be 
increased with the pre-informing method is explained with rules and demonstrations. 
It is not possible to implement this method with the existing ready-made ANN soft-
ware on the market. Instead, ANN should be expressed mathematically, and pre-
informing method should be applied using programming languages such as MATLAB, 
Excel VBA, Python.

In this section, the application of this method has been demonstrated in an artifi-
cial neural network in which the precautions in occupational accidents are associated 
with the results of the accident and high performance has been achieved. With the 
application of the specified rules, this method can be used to solve many problems. In 
future studies, it can be investigated which other methods such as AHP can be used 
for the preliminary information phase.
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Chapter 3

Artificial Neural Network
Logic-Based Reverse Analysis
with Application to COVID-19
Surveillance Dataset
Hamza Abubakar and Muntari Idris

Abstract

The Boolean Satisfiability Problem (BSAT) is one of the crucial decision problems 
in the fields of computing science, operation research, and mathematical logic that is 
resolved by deciding whether or not a solution to a Boolean formula exists. When 
there is a Boolean variable allocation that induces the Boolean formula to yield TRUE, 
then the SAT instance is satisfiable. The main purpose of this chapter is to utilize the 
optimization capacity of the Lyapunov energy function of Hopfield neural network 
(HNN) for optimal representation of the Random Satistibaility for COVID-19 Sur-
veillance Data Set (CSDS) classification with the aim of extracting the relationship of 
dominant attributes that contribute to COVID-19 detections based on the COVID-19 
Surveillance Data Set (CSDS). The logical mining task was carried based on the data 
mining technique of the energy minimization technique of HNN. The computational 
simulations have been carried using the different number of clauses in validating the 
efficiency of the proposed model in the training of COVID-19 Surveillance Data Set 
(CSDS) for classification. The findings reveals the effectiveness and robustness of k 
satisfiability reverse analysis with Hopfield neural network in extracting the dominant 
attributes toward COVID-19 Surveillance Data Set (CSDS) logic.

Keywords: artificial neural network, Hopfield neural network, random satisfiability, 
reverse analysis, logic mining

1. Introduction

The COVID-19 pandemic is still having a significant impact on people’s health and
quality of life all around the world. Effectively identifying and isolating affected
people is the most crucial step in stopping COVID-19. Clinical medicine can identify
COVID-19 instances thanks to the discovery that patients with the infection exhibit
anomalies in CT imaging. Additionally, CT scans can be used to determine the severity
of an illness, which is useful for selecting the right course of action. Many deep
learning-based COVID-19 case identification techniques have recently been put out,
some of which have had good success. The biggest obstacle to increasing COVID-19’s
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classification accuracy is currently the small number of training instances and anno-
tations. Additionally, due to the poor contrast of CT scans, deep learning-based
classification systems struggle to comprehend ambiguous and imprecise information,
such as pixels near boundaries and pictures related to COVID-19 instances. We sug-
gest a belief function-based classification network to categorize COVID-19 cases using
semi-supervised learning to address the aforementioned issues, and we acknowledge
the research community’s open-source COVID-19 dataset [1–3].

Neural networks are used extensively in many fields of study originated in math-
ematical neurobiology. This can be because these networks are attempts to simulate
human brain capabilities. Neural networks have been utilized since the last decade as a
theoretically sound alternative to traditional statistical models. It is also effective in
classifying data into identifiable groups or characteristics. When used in a hybrid
framework with the many forms of predictive neural networks, the classification of
neural networks becomes very efficient. Machine-learning methods including artifi-
cial neural networks (ANN) have been used in recent times as tools for decision,
prediction, classification, and diagnosis [4–11]. It has been used in medical approaches
to digenesis, predict, and detect diseases using effects on development, such as fibro-
sis prediction, cirrhosis, and prediction of response therapy in patients with hepatitis
C [12–21].

Artificial neural network (ANN) models have been widely used in data mining for
a wide range of medical, science, engineering, and industry issues. Logic mining is one
of the key data mining fields. It has been shown that knowledge in a logical or
symbolic form can be represented [22]. Recent data mining studies have led to the
emergence of various types of artificial neural network models such as Hopfield
neural network (HNN), Radial Basis Neural Network, Convolution neural network,
and other machine learning tools that can foster logic mining through knowledge
extraction process [23, 24]. Consequently, data mining practitioners assimilate
multidisciplinary knowledge such as Artificial neural networks, mathematics,
artificial intelligence, machine learning, and statistics to create logic for data mining
techniques for finding underlying information based on the behavior of databases or
data sets. Therefore, data mining can be improved in the neural network to cater to
various problems. As for this work, the incorporation of Random k Satisfiability
(RANkSAT) propositional logic is utilized with the proposed to introduce a
comprehensive model to solve real-life applications. Artificial neural network (ANN)
possesses a comprehensive structure of training and testing stages thus, ANN has
emerged as one of the most efficient tools extend in finding patterns and extracting
information to solve real-life applications. Therefore, we presume that this research
contributes to amplifying the efforts to enhance the capability of fundamental ANN
with the inclusion of a recurrent type of network known as Hopfield neural network
(HNN). Propositional logic based on Random-k Satisfiability (RANkSAT) is consid-
ered a suitable approach to represent logical rules in neural network for optimal
classification of real-world problem. By considering only maximum of three literals
per clause, the logical complexity in learning the relationship between the variables in
real-life problem decreases.

In this work, Random k Satisfiability-based Reverse Analysis method
(RANkSATRA) has been proposed to obtain the logical COVID-19 Surveillance Data
Set (CSDS). The aforementioned studies, which offer a different perspective on
describing the real data in the form of logical representation, have demonstrated the
usefulness of diverse logic programming in HNN. In order to depict the behavior of
the COVI-19 data sets, we require a very well, intelligent logical rule. However, there
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is  no  effort  to  bridge  RANkSAT  logical  representation  in  Hopfield  neural  network  for
COVID-19  classification.  This  is  crucial  because  an  artificial  neural  network  algorithm
can  cater  variation  and  randomness  in  COVID-19  analysis  and  larger  searching  space.
Therefore,  the  contributions  of  this  research  are  presented  as  follows:  The  contribu-
tions  of  this  work  are  as  follows:  (a)  to  convert  the  COVID-19  surveillance  data  set 
(CSDS)  into  intelligent  systematic  form  based  on  RANkSAT  logical  clauses.  (b)  To 
propose  random  k  satisfiability  reverse  analysis  method  as  an  alternative  approach  in 
extracting  the  relationships  between  the  factors  or  attributes  that  contribute  to  the 
knowledge  extraction  based  on  COVID-19  surveillance  data  set  (CSDS)  obtained  from
a  UCI  machine  learning  repository.  (c)  To  assess  the  capability  and  accuracy  of  three 
variants  of  the  satisfiability  proposed  method  based  on  Random  k  satisfiability,
Random  maximum  k  satisfiability,  and  Horn  k  satisfiability  logical  representation  in 
completing  the  COVID-19  surveillance  data  set  (CSDS)  extraction  with  a  different 
number  of  clauses.  The  performance  evaluation  metrics  will  be  adopted  to  evaluate 
the  effectiveness  of  both  the  proposed  method  and  logical  representations  as  an 
alternative  data  extraction  method  to  the  COVID-19  data  set.  The  general  implemen-
tation  of  random  k  satisfiability  reverses  the  analysis  method  and  HNN  in  extracting 
logic  in  COVID-19  data.  The  construction  of  our  proposed  model,  would  exhibit  better
performance  in  the  training  stage  and  successfully  interprets  real-life  datasets  to 
detect  which  factors  are  more  prominent  than  others  that  contribute  to  the  optimiza-
tion  problems.  Our  findings  showed  that  the  proposed  model  executing  the  best 
performance  in  terms  of  attaining  small  errors  and  efficient  computational  time  com-
pared  to  other  existing  models.  This  study  has  been  organized  as  follows.  Material  and
method  including,  Random  k  Satisfiability  Logic,  Hopfield  Neural  Network  (HNN),
and  random  k  satisfiability-based  reverse  analysis  method  (RANkSATRA)  have  been 
described  in  Section  2.  In  Section  3  Implementation  procedure  for  classifying  the 
COVID-19  data  set  was  presented.  Section  4  reported  model  simulations  and 
experimental  setup,  and  section.  5  reported  performance  evaluation  metrics  Section  6
presented  the  result  and  discussion.  The  chapter  concludes  with  future  works 
presented  in  Final  Section.

2. Materials  and  methods

2.1  Random  k  satisfiability  logic

  Propositional  satisfiability  logic  can  perceive  as  a  logical  rule  that  consists  of 
clauses  that  contain  literals  or  variables.  Random  k  Satisfiability  (RANkSAT)  is  a  class
of  non-systematic  Boolean  logic  representation,  consists  of  a  random  number  of 
literals  (can  be  the  negated  literals)  per  clause.  Non-systematic  Boolean  Satisfiability 
logic  (RANkSAT)  has  been  proven  effective  to  represent  simulated  applications  [25].
There  is  no  study  that  utilizes  the  non-systematic  behavior  of  Random  k  Satisfiability
in  discrete  HNN  for  application  real  data  set  classification  problems.  The  formulation
of  RANkSAT  has  the  following  properties:

a. A  set  of  variablesfx1,  x2,  x3,  …  ,  xng,  in  a  clause  Ci  where  i  ¼  1,  2,  3,  …  ,  n  that 
consists  of  x  or¬x.

b. Randomly  select  2  variables  from  the  set  of  n  variables  with  a  0.5  probability  of
negating  each  variable  in  the  clause.

3
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c. Each xi in Ci is connected by a disjunction ∨ð Þ:

d. Each clause Ci is connected by a conjunction ∧ð Þ.

The Boolean values for each xi are bipolarxi ∈ �1, 1f g that exemplifies the notion of
FALSE and TRUE respectively. The general formulation FRAN3SAT is represented in
Eq. (1) as follows.

FRANkSAT ¼ ∧t
i¼0C

3ð Þ
i ∧n

i¼0C
2ð Þ
i ∧m

i¼0C
1ð Þ
i (1)

where t, n,m∈ 1, 2, ::k½ �, ∀t, n,m>0. The clause FRAN3SAT is defined as a random
3-SAT which consists of a clause C kð Þ

i described in Eq. (2). as follows.

C kð Þ
i ¼

τi ∨ αi ∨Ψið Þ, k ¼ 3

τi ∨ αið Þ, k ¼ 2

λi, k ¼ 1

8><
>:

(2)

where τi ∈ τi, ¬τi½ �, αi ∈ αi, ¬αi½ �, Ψi ∈ Ψi, ¬Ψi½ �, and λi ∈ λi, ¬λi½ � represent literals and
their negation respectively. In particular, the first and second-order clauses are

denoted as C 1ð Þ
i , C 2ð Þ

i , and C 3ð Þ
i , respectively. In this chapter, Fr is a Conjunctive Normal

Form (CNF) formula where the clauses are chosen uniformly, independently without

replacement among all 2r
mþ n
v

� �
nontrivial clauses of the length r. Note that, Ai

exists in the C kð Þ
i , if the C kð Þ

i contains either Gi or ¬Gi and the mapping of V Frð Þ !
�1, 1f g is called logical interpretation. The Boolean value for the mapping is expressed

as 1 (TRUE) and � 1 (FALSE). In theory, the example of RANkSAT formula for k≤ 3
is given as.

FRAN3SAT ¼ τ1 ∨ ¬τ2 ∨ τ3ð Þ∧ ¬α1 ∨ α2ð Þ∧¬λ1 (3)

According to Eq. (3), FRANkSAT comprises of Eq. (4)–(6) as follows.

C 3ð Þ
i ¼ τ1 ∨ ¬τ2 ∨ τ3ð Þ (4)

C 2ð Þ
2 ¼ ¬α1 ∨ α2ð Þ (5)

C 1ð Þ
1 ¼ ¬λ1 (6)

Therefore, the outcome of Eq. (3) is satisfied if.
Eqs. (4)–(6) are satisfied. i.e.,

C 3ð Þ
i ¼ C 2ð Þ

1 ¼ C 1ð Þ
2 ¼ 1 (7)

In this study, FRANkSAT will be embedded in the proposed model based on reverse
analysis technique for COVID-19 data classification. FRANkSAT will cater the modified
networks to unveil the true pattern or behavior of the real data sets involved. Note
that FRANkSAT is a symbolic form representation thus it is appropriate to be integrated
in these networks as HNN is a nonsymbolic platform.

4
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Si ¼
1 , if

P
j
TijSj >ω

�1 ,Otherwise

(
(8)

where Tij is the synaptic weight from unit j to i. Sj is the state of neuron j and ω is
the predefined threshold value. Barra et al. (2018) specified that ω ¼ 0 to certify the
network’s energy decreases. The connection in Hopfield net contains no connection
with itself as follows.

T 3ð Þ
ijk ¼ T 3ð Þ

kij ¼ T 3ð Þ
kji (9)

T 2ð Þ
ji ¼ T 2ð Þ

ij (10)

T 1ð Þ
i ¼ T 1ð Þ

j (11)

Tjj ¼ Tii ¼ 0 (12)

In resulting, HNN holds symmetrical features in terms of architecture. HNN
model has similar intricate details to the Isingmodel of magnetism [28]. As the neuron
state is termed in bipolar Si ∈ 1,�1f g representation, the spin points follow in the
direction of a magnetic field. This causes each neuron to flip until the equilibrium is
reached. Thus, it follows the dynamics Si ! sgn hi tð Þ½ �where hi is the local field of the
connection of the neurons. The sum of the field induced by each neuron is given as
follows.

hi ¼
XN

k

XN
j

TijkSjSk þ
XN
j

TijSj þ Ti (13)

The task of the local field is to evaluate the final state of neurons and generate all
the possible RAN-SAT-induced logic that was obtained from the final state of neurons.
One of the most prominent features of the HNN network is the fact that it always
converges to stable states (Hopfield, 1982). The Lyapunov energy function (LEF)
utilized in HNN for RANkSAT logic programming is presented as follows

HF ¼ … � 1
3

XN
i¼1

XN

j6¼k

XN

k¼1, i 6¼k

T 3ð Þ
ijk SiSjSk � 1

2

Xm

i¼1, i 6¼j

Xm
j¼1

T 2ð Þ
ij SiSj �

Xm

i¼1, i6¼j

T 1ð Þ
i Sj (14)

The energy function of the HNN model is especially critical since it will decide the
interoperability of the network. The value obtained from the equation will be verified
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2.2  Hopfield  neural  network  (HNN)

  Hopfield  type  of  neural  network  (HNN)  is  a  recurrent  neural  network  (RNN)  that
mimics  the  human  biological  brain  learning  structure.  The  architecture  of  HNN  model
consists  of  interconnected  neurons  and  a  powerful  feature  of  content  addressable 
memory  that  is  crucial  in  solving  various  optimization  and  combinatorial  tasks  [26].
The  system  consists  of  structured  N  neurons,  each  of  which  is  represented  by  an  Ising
variable.  The  neurons  in  discrete  HNN  are  utilized  in  bipolar  representation  whereby
Si  ∈  f1,  �1g,  which  strictly  considers  values  of  1  and  �  1  [27].  The  fundamental
overview  for  neuron  state  activation  in  HNN  is  shown  in  Eq.  (4)
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as global or otherwise. The network would generate the right response when the
induced neuron state reached global minimum energy. There are minimal works to
integrate HNN with RANkSAT as a single computational network.

2.3 Random k satisfiability reverse analysis (RANkSATRA)

The central emphasis of logic mining is to extract useful logical rules from the data
sets provided. One of the extraordinary fields of data mining is logic mining proposed
by [22]. It was shown that the information can be expressed in logical form. As a
logical rule, the reverse analysis approach (RA) was implemented to derive useful
knowledge from real-life data based on the horn clause [22]. In this study, Random k
Satisfiability enhanced reverse analysis method or abbreviated as (RANkSATRA) is
proposed to extract the optimum RANkSATRA logical rule to explain the behavior of
the COVID-19 data sets. In this context, RANkSATRA is a logic extraction method
that uses the HNN-RANkSAT model structure to extract from the data set the valu-
able logical rule (COVID-19 data set). Because of its non-systematic behavior, the
RANkSAT logical rule would be used to describe and chart the data sets due to
flexibility and convenience. In particular, the RANkSATRA approach can derive the
ideal logic representing the relationship between the actual data set attributes of the
COVID-19. Pursuing that, to be used in classification or estimation, the secret infor-
mation in the data set is retrieved.

In our hybrid HNN model, RANkSATRA is performed out to represent a data
classification framework in data mining. Inside the RANkSAT clauses, each of the
attributes can be translated into atoms. To construct the RANkSAT logical rule, seven
attributes from the data sets are then chosen by considering k≤ 3. Logic mining is a
method that extracts information from a data set using logic programming. In this
regard, this section will clarify how our HNN-RANkSATRA model implements the
logic mining technique called the random 3-satisfaction-based reverse analysis process
(RAN3SATRA) to obtain the relationship of COVID-19 data entries. By acquiring the
synaptic weight between 3 neurons, RAN3SATRA might be able to reveal the level of
their connectedness.

Consider n attributes of the COVID-19 data sets S1, S2, S3, … , Snð Þ, where
Si ∈ 1,�1½ �. All entries are represented in bipolar states. Since this chapter considers
FRAN3SAT, the arrangement of each Sm consists of Si, Sj, Sk where i 6¼ j 6¼ k. For Sm
those leads PRANkSATlearn ¼ 1, we assign

Sm ¼ Smax n sið Þ½ �
i ∨ S

max n sjð Þ½ �
j ∨ Smax n skð Þ½ �

k

� �
(15)

Si ¼
Si, Si ¼ 1

¬Si, Si ¼ �1

�
(16)

Based on the obtained Sm, we can formulate PRANkSATbest:

PRANkSATlearn ¼ ∨ k
m¼1Sm (17)

For example, we will choose G1 ¼ S1 ∨ ¬S2 ∨ ¬S3ð Þ if Smax n S1ð Þ½ �
1 ¼ S1, S

max n S2ð Þ½ �
2 ¼

¬S2, and Smax n S3ð Þ½ �
3 ¼ ¬S3. PRANkSATbest will be embedded into HNN. Henceforth, we

will obtain the states of Si that correspond to EFRAN3SATbest
! 0. By comparing Eq. (3)

6
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logic PB
i will be constructed according to logical rule given in Eq. (2). Finally, the

chosen induced logic obeys PB
i ¼ Ptest

i (Training data). Figure 1 demonstrates how
RANkSATRA has been implemented in the HNN model to classify COVID-19 sur-
veillance data set (CSDS). In this study, RANkSATRA, is used to determine the
relationship among the data set. In learning COVID-19 surveillance data set,
{detected, not detected} would be converted into bipolar representation {1,-1},
respectively. Each objective taken would be represented in terms of neurons in
RANkSATRA. Hence, there would be a total of seven neurons being considered in
this data set. Each neuron will be represented with entries COVID-19 surveillance
data set.

Figure 1.
Implementation of RANkSATRA for COVID-19 surveillance data set.

7
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with  Eq.  (14),  the  corresponding  Tijk  will  be  obtained.  During  the  testing  phase,  the
induced  states,  SBi  ,  will  be  obtained  by  obeying  Eq.  (13).  Subsequently,  the  induced
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2.4 RANkSATRA experimental setup

The simulation has been developed to explore the capacity of the Random
kSatisfiability reverse analysis (RANkSATRA) in Hopfield neural network for
COVID-19 surveillance data set classification. Sixty percent (60%) of the data points
in the databases were used for learning data collected, and four ty percent (40%) were
used for testing. Microsoft Visual C++ applications running on Windows 8.1, 64-bit,
4.40 GHz CPU, 4GB RAM, and 400 GB hard drive specifications were adopted. For
both learning and testing, the overall CPU time is 24 hr. If the model crosses the
recommended processor time threshold, the recommended algorithm structure
cannot train HNN-based RANkSATRA using real life. In terms of the logical rule that
will be embedded inside HNN, the existing work of Sathasivam and Abdullah [29]
that implemented HORNSAT in their proposed reverse analysis method.
RANMAXkSAT has been proposed [30] and RANkSAT has been proposed in [31].
Both of these proposed models were considered the only existing logic mining in the
literature.

2.5 Implementation of COVID-19 surveillance data set

In this chapter, COVID-19 surveillance data set was occupied in RANkSATRA,
HORNkSATRA, and RANMAXkSATRA for classification COVID-19 data set collected
from UCI machine learning repository. It contains information about the data set and
contains different purposes. The original data contains 7 instances with nine attributes
with two classes. The classes are detected and not detected. But, to find out more
relevant features from a COVID-19 data set, feature selection methods are applied to
the data set. In this experiment, our aim is to that utilize the same data set. The details
of COVID-19 are shown in Table 1.

3. Performance evaluation metrics

In this section, simulation experiments were performed to assess the performance of
the proposed logical rule model on a different number of clauses. The performance
evaluation indicators are deployed to analyze the effectiveness of our SATRA model in
extracting important logical rule for CSDS. The metrics used in this study measure the
performance of the training phase of HNN models. The metric solely indicates the
performance of the retrieved neuron state that contributes to the best CSDS classifica-
tion. During the learning phase, the performance of the RANkSAT representation that
governs the network will be evaluated based on the following fitness equation:

f k ¼
XNC

k¼1

Ck (18)

NC is the number of clauses for any given PB
k . According to Eq. (18) Ck is defined

as follows.

Ck ¼
1 True
0 False

�
(19)
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where f i and f max describe the fitness value observed during each of the execution
and the maximum fitness, respectively.

TRAINMING_ACCURACY ¼ PCorrect
induced

NPtest

� 100% (25)

The performance of the HNN on the proposed logical rule is presented in
Table 2.

4. Result and discussion

The performance of the simulated program with different complexities for
neurons in the HNN-RANkSATRA model will be evaluated with the existing models
HNN-HORNSAT [29] and RANMAXkSAT [34] in terms of root mean square error
(RMSE), mean absolute error (MAE), Bayesian information criterion (BIC), accuracy,
and CPU time. Figures 2 and 3 illustrate the root mean square error (RMSE) and
mean absolute error (MAE) of HNN models during the training process. This analysis
only considers 1≤NC≤ 10. The COVID-19 surveillance data set (CSDS) data have
successfully been embedded into the network and forming variants of learnable
Boolean k Satsifiability logic, RANkSAT with the existing HORNSAT and
RANMAXkSAT. A comparison has been made between the variants of satisfiability
logic for COVID-19 surveillance data set (CSDS) data classification. As seen in

Logical rule MAE RMSE ACCURACY

RANkSATRA 1.6140 0.466 96.1

RANMAXkSTARA 3.921 1.170 83.3

HORNkSATRA 2.145 0.845 88.5

Table 2.
Training error and accuracy for all HNN models.

Figure 2.
MAE evaluation of HNN models for COVID-19 classification.
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Figure 3.
RMSE evaluation of HNN models for COVID-19 classification.
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Figure  2,  HNN-RANkSATRA  with  NC  =  1  until  NC  =  10  has  the  best  performance  in 
terms  of  RMSE  compared  to  HNN-HORNkSATRA  and  RANMAXkSATRA.  This  is 
because  the  HNN-RANkSAT  utilizes  random  logical  inconsistencies  to  derive  the
optimum  synaptic  weight  for  HNN.  Optimal  synaptic  weight  is  a  building  block  for 
optimum  CSDS  classification.  The  RMSE  result  from  Figure  2  has  been  supported  by
the  value  of  MAE  in  Figure  3.

  The  investigation  of  a  model’s  performance  is  separated  into  two  parts.  The  first 
significant  part  is  to  examine  the  quality  of  the  solution  generated  by  different 
searching  techniques  by  employing  suitable  training  errors.  Secondly  is  to  analyze  the
robustness  and  efficiency  of  the  proposed  model  by  comparing  CT  and  Q  needed  to 
execute  the  models’  mechanism.  There  are  five  performance  evaluation  metrics 
involved  to  analyze  the  training  and  testing  stage  of  our  modified  models  as  presented
in  the  performance  evaluation  section.  Therefore,  this  research’s  main  contribution  is
to  portray  the  competency  of  HNN  in  SAT  in  outperforming  the  existing  models.

  In  Figure  2,  HNN-RANkSATRA  with  NC  =  2  has  the  best  performance  in  terms  of 
MAE.  It  can  be  observed  that  MAE  for  NC  =  2  is  equal  to  0.027  compared  with  NC  =  10
which  recorded  1.3515.  The  searching  process  of  HNN  for  HORNkSTRA  and 
RANMAXkSTRA  displayed  a  similar  error  trend  with  RANMAXkSTRA  has  the  highest
error  at  NC  =  8.  In  Figure  3,  HNN-RANkSATRA  has  the  best  performance  in  terms  of 
RMSE.  It  can  be  observed  at  NC  =  1,  the  RMSE  is  equal  to  0.0323  and  1.3995  was 
recorded  at  NC  =  10,  which  are  lower  than  HNN-HORNSAT  and  HNN-RANMAX-
kSTRA.  The  HNN-RANMAXkSTRA  recorded  the  highest  RMSE  with  0.832  at  NC  =  1 
and  10.4602  at  NC  =  10.  The  searching  process  of  HNN  for  RANkSTRA  and 
HORNkSATRA  displayed  a  similar  RMSE  trend  with  closed  merging.  As  the  number  of
neurons  increased,  the  learning  phase  of  HNN  models  was  convoluted  because  the 
network  required  to  find  the  consistent  interpretation  for  the  best  logic  for  optimal 
COVID-19  surveillance  data  set  (CSDS)  classification.  In  this  case,  the  learning  phase  of
HNN  for  both  RANMAXkSTRA  and  HornkSATRA  was  trapped  in  the  trial  and  error 
search  process,  which  resulted  in  high  RMSE  and  MAE  accumulations.  However,  the 
RMSE  and  MAE  recorded  by  HNN-HORNSAT  and  RANMAXkSTRA  were  to  some 
extent  higher  than  the  RANkSTRA.  At  NC  =  5,  the  value  of  MAE  and  RMSE  are 
approximately  57%  times  bigger  than  NC  =  10  because  for  the  network  to  converge  into
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full fitness (learning completed), more iterations are needed. Therefore, a similar trend
can be seen in the HNNmodel as the complexity increases. Thus, HNN model works
optimally in learning the variants of satisfiability logic entrenched to the network
before being stored into content addressable memory. The complete learning process
will ensure the network generates the best logic to represent the characteristic of the
HNN for optimal COVID-19 surveillance data set (CSDS) classification.

In contrast, the learning phase in HNN-HORNSAT and HNN- RANMAXkSTRA
were computationally expensive as more iterations were needed leading to higher
RMSE and MAE values compared to HNN-RANkSATRA. All in all, SATRA contrib-
utes to generating the best logic to represent the relationship between each instance
and the verdict of HNN for COVID-19 surveillance data set (CSDS) classification. The
MAE and RMSE results displayed in Figures 2 and 3 were supported by BIC in
Figure 4. The “best” model will be the one that neither under-fits nor over-fits.
Although the BIC will choose the best model from a set of models, it will not say
anything about the absolute quality of the model. However, the HNN-RANkSATRA is
the best choice for COVID-19 surveillance data set (CSDS) classification. In terms of
BIC, HNN-RANkSATRA outclasses other models. The accumulation of MSE tends to
penalize the values of BIC. The BIC for HNN-RANkSATRA is, therefore, the lowest
compared to the other two models.

Table 3 displays the CPU Time results for the HNNmodels, respectively. To assess
the robustness of the models in logic mining, CPU time is recorded for the learning
and retrieval phase of HNN. HNN less CPU time is required to complete one
execution of learning and testing for CSDS classification when the number of NC
deployed is less. As it stands, HNN-RANkSATRA model, when the complexity is
higher, models take a long time to finish the learning process. Overall, the HNN
continues to be proficient at reducing the k Satisfiability inconsistencies and
computing the global solution in a reasonable amount of time on the CPU. Because
there are more instances to handle during the learning and testing phase of HNN,
the CPU Time for HNN-RANMAXkSAT is consistently greater than HNN-
RANkSATRA and HNN-HORNSATRA. However, the CPU time recorded for the
existing methods was higher due to more iterations needed in generating the best logic
for the HNN.

Figure 4.
BIC evaluation of HNN models for COVID-19 classification.
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One of the limitations of Hopfield type of artificial neural network is that it
sometimes gets trapped at the local solution (premature convergence) instead of the
global one. Our Future direction is to incorporate novel metaheuristics algorithms
such as Election algorithm, genetics algorithm, dragonfly algorithm, etc. to enhance
the performance of Hopfield type of artificial network for better training and retrieval
process in preventing the Hopfield type of artificial network in settling in the local
solution for better searching and classification problems. We will further utilize other
variants of Boolean satisfiability such as k-SAT, Rondom Half-SAT, MAX-kSAT,
Random NAE-SAT, and XOR-SAT for better optimization problems. Various type of
data set, such as agriculture, financial, actuarial as well as environmental data set will
also be used in our future studies.
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Chapter 4

Industrial Fluids Components 
Health Management Using Deep 
Learning
Vidyadevi G. Biradar, H.C. Nagaraj, S.G. Mohan 
and Piyush Kumar Pareek

Abstract

The fatigue state of fluid components such as valves, metal surfaces in gas or oil 
carrying pipelines is important to monitor on regular basis and plan for repair work 
to avoid risks associated with them, this becomes more crucial when the pipelines 
are supplying hazard prone fluids. There exist methods for detection of corroded 
surfaces, scratches and fractures in pipelines, valves, and regulators etcetera. The 
conventional methods are based on sensors and chemical analysis methods. There are 
challenges with conventional methods pertaining to the desired metric of scalability 
and disadvantages of these methods is they are contact based and destructive meth-
ods. Therefore, to overcome these limitations of existing methods there is a need for 
development of non-contact and nondestructive methods. The recent advancements 
in Artificial Intelligence technology in every domain including health care monitor-
ing, agriculture sector, defense applications and civilian applications etc., have shown 
that deep learning methods can be explored in industrial applications to develop fault 
tolerant systems which help fluid components state of health monitoring through 
computer vision. In this chapter proposes various methods for analysis of health state 
of fluid components using deep convolutional neural networks and suggest the best 
models for these applications.

Keywords: deep learning, fluid component, convolutional neural network

1. Introduction

In oil and gas transportation industry metal pipelines are the major transport
means for transporting fluids such as crude oils, petrochemical products for long 
distance. Due to various environmental conditions and fatigue induced in pipelines 
as a result of fluid pressure over a period time of operation the health of pipelines 
will be deteriorated due to corrosion, dents, and damages and other reasons which 
leads to various types of pipelines defects [1]. Therefore, timely maintenance of 
pipelines plays vital role in avoidance of untoward incidents and economic loss 
etc. the early detection of pipeline defect helps in planning preventive mainte-
nance to mitigate corrosion progression, obstacle in flow etcetera and thus reduce 
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maintenance costs [2, 3]. The conventional methods such as crack detection using 
camera, magnetic field, acoustic methods, and thermal camera are very useful 
methods and demonstrate satisfactory performance [4], however, these are tedious 
and dependable on environmental conditions. Therefore, there is a need for auto-
matic techniques. Typical pipeline defects are caused due to metal loss, dents, stress 
induced cracks, gouge, and coating damage etc. The quick and reliable detection of 
leakages is very much essential to avoid hazards. It is required to ensure that these 
fluids are safely transported to the destination.

Identifying leaks at right time is essential to avoid serious problems. Methods 
used for leakage detection are, i) Distributed temperature monitoring approaches 
utilizing optical fibers to identify and localize leakages, ii) acoustic impact monitor-
ing method, iii) artificial neural network technique and, Leakage detection tech-
niques needs improvement to achieve greater precision in identification of defect 
location [3].

The objectives of books chapter are listed below.

1.	To understand the importance of fluid components health

2.	Deep learning models

3.	Pre-trained convolutional neural network models for fluid components health 
monitoring

4.	Transfer learning

5.	Conclusion and future scope.

The first objective of the chapter is discussed in introduction section, Section 2 
gives insight into deep learning methods for fluid component damage detection 
and design of convolutional neural networks, Section 4 gives guidelines for trans-
fer learning strategies and Section 5 presents conclusion.

This chapter provides insight into the alternate method for pipeline damage detec-
tion is deep learning paradigm. This chapter presents practical perspectives of 
convolutional neural network and provides guidance on transfer techniques to 
tune the pretrained model to solve the problem.

2. Deep learning models for pipeline damage detection

In industries defect detection is performed by an expert human expert to analyze 
the defect patterns [5], manual analysis by experts is tedious and time-consuming job, 
therefore, there is a need for automated technique. The automated techniques which 
utilize computer vision help to solve these challenges.

The identification and classification of pipe damages such as cracks with image 
analysis combined with neuro fuzzy algorithms are presented in [6], here the signifi-
cant features considered for characterization were features from Hough transforms, 
morphological operations, shape statistics, regression analysis and eigen vector 
analysis. The defects are classified using back propagation algorithm.

Artificial neural networks (ANNs) possess learning skills and capable of adapt-
ing themselves to alterations in the training phase. ANNs are interrelated groups of 
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neurons, neural networks are used in modeling complex connections between inputs 
and outputs, neural networks gave good results in detection of cracks in pipelines [3].
  Pipe cracks detection using computer vision helps to solve the issues of conven-
tional methods, however, with complex background content in the image makes 
problem solving a challenging job. A method based on computer vision is presented in
[7]. The methodology of detecting cracks apply image filtering for background sub-
traction using tuned adaptive thresholding technique and crack contour is extracted 
using morphological operator. To understand the depth of the crack 3D visualization 
is performed using successive images [8].
  Pipeline cracks are detected and classified using image processing techniques,
a method which converts RGB into gray scale image, apply Sobel operator to edge 
points extraction and through edge linking judge the artifacts are holes, cracks etc., is 
presented in [5].
  Deep learning models provide flexibility in the process of defect detection as the 
model adapts to the dataset in learning relevant features and therefore give higher 
success rate of defect identification and classification. The purpose of defect detection
depends on the application. In some cases, just detecting the presence of a defect is 
sufficient and others, classification and labelling are important [3, 9].
  Image processing and machine learning algorithms largely depend on the accuracy
of image feature extraction which is a challenging job and which intern depends on 
the image quality. Therefore, automatic feature extraction using data driven methods 
come for rescue. The convolutional neural networks are widely used for automatic 
feature extraction and classification. The deep learning models have shown highest 
success among the state-of-the-art approaches to solve computer vision problems
[10]. A deep convolutional neural network with configurations of convolutional 
layers, filters, batch normalization and pooling in different combination are experi-
mented for determining optimal hyperparameters of the model and encouraging 
results are obtained.

3. Convolutional neural networks

  The convolutional neural networks (CNN) consist of various types of layers with 
specific functionality. The convolutional layer convolves input image with various 
filters whose co-efficient are determined during the run of backpropagation algo-
rithm in number of iterations. The convolution operations are carried out using a set 
of filters to extract images features. The CNN may have any number of convolutional
layers as shown in the  Figure 1, in this, initial layers extract primitive level features 
from input image such as edges whereas later layers extract high levels features such
as shape features and contour etc. The pooling layers reduces feature dimension by 
extracting significant pixels and down sampling images, min, max, avg. pooling are 
the typical available options. The drop out layer dynamically changes the pool of 
neurons in the network to improve the generalization of the model to avoid overfit-
ting, fully connected layer classify the images based on the features extracted by the 
series of convolution layers [11]. To improve the speed of the model training and
avoid vanishing gradient problem activation layer are added to CNN network, differ-
ent types of activation functions such as Tanh, ReLu, Sigmoid and Softmax are used.
Among these the popular one is ReLu and its variants [12].
  An input layer, hidden layers, and output layer are different types of layers in
CNN. The design of the neural networks is the way human brain works. Input layers
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collect inputs, process them, and produces the result. CNN has many hidden layers 
which perform convolution operations to extract features from the input image. The 
features are classified by the fully connected layer. There are different types of CNN 
models, all types have convolutional and pooling layers.

Figure 2 depicts convolution operation, in this operation a filter or kernel is con-
volved with the input image. The next layer takes in the output generated by first layer 
and so on. Convolutions operation in image processing are applied to sharpen, blur 
images and edge detection etc. CNNs establish a connection pattern between neurons 
of adjacent layers with drop out technique.

The layer of CNN generates number of activation maps from the input image, 
and these are then fed to the subsequent layers, this process in shown in Figure 3. 
The primitive features such as horizontal and vertical edges are most of the times 
extracted in the earlier layers. The later layers extract high level features like objects, 
shape of the object and features which helps in making sense of features.

Pooling Layer – the dimension of feature map is reduced by pooling layers. 
This in turn reduces the number of parameters of the network and computation 
time.

Figure 1. 
Architectural components of CNN.

Figure 2. 
Convolution operation.
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The down sampling of image using max pooling operation is shown in the Figure 4 
it selects max pixel value from 2x2 image patch and uses this single value to represent 
feature in the image. In a similar manner, min pooling and average pooling works 
where in these choose min and average pixel values respectively.

4. Pretrained models for pipeline health detection

This section gives an insight into detailed methodology which is suitable for fluid 
components health detection using deep convolutional neural networks and covers 
image augmentation techniques.

The deep learning models automatically determining features are of interest for 
pipelines defect classification based on the knowledge acquired during training of 
huge dataset. To understand the behavior of the AI model, model interpretation tools 
such as Heat maps and Grad CAM tools are used. A U-Net architecture-based model 
is presented in [13], a method based on YOLOv5 model demonstrated in [14] which 
uses X-Ray images for detection of pipeline weld defects, the results indicated that 
YOLOv5 performs better than R-CNN interns of metrics such as speed of detection 
and classification accuracy.

Figure 3. 
Feature extraction in CNN.

Figure 4. 
Max pooling operation.
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The detection of cracks which are thin, irregular in shape and with complex 
texture background in the image makes crack detection task challenging. The deep 
learning models show improved performance in cracks detection in fluid compo-
nents, however, there are many bottlenecks for achieving the best performance. These 
include inadequate training data, imbalanced data and manually labeled data and 
absence of ground truth information. In addition to this, the computational require-
ments are very high as deep learning involve training periods [9].

The research work in [15], combines fuzzy digital twin (FDT) and support vector 
machine (SVM), with backstepping (BS) and good improvement in accuracy com-
pared other methods.

Deep learning tools aid in identification of pipeline damages at the earliest 
time. This paper utilizes convolutional neural networks for diagnosis of pipeline 
threats [3].

The CNN model deployed on AUV (autonomous underwater vehicle) is used for 
detection of underwater pipeline detection, the challenges addressed were distortion 
in the focus, contrast, and color. The scarcity of the balanced dataset is another issue 
as number of damaged pipeline sample were less compared to the total number of 
pipelines. The dataset is preprocessed through augmentation techniques such as flip, 
scale, shift etc. and generate pipeline sample images which fall in small subset. The 
issue of color distortion is eliminated by converting images into gray scale, back-
ground is eliminated using segmentation. The various models that are experimented 
for pipeline damage detection are custom architecture CNN, VGG and MobileNet, 
and among these models, MobileNet outperformed the other models [16].

5. Image augmentation

Additional images are generated from the original by slightly modifying it by add-
ing noise, cropping, changing the contrast and by rotating etc.

The image can be flipped vertically and horizontally, it can be rotated left and 
right by any angle, the size of the image can be changed, regions of interest can be 
cropped to generate additional sample images, image can be translated in left, right 
direction and various types of noises can be added [17].

6. Transfer learning

Transfer learning eliminates the dependency of deep learning models on huge 
dataset which are required for learning features. The process of transfer learning 
involves application of a pre-trained model for classification of specific domain image 
dataset. To customize pretrained model for specific dataset, minor changes to the 
original architecture can be done and fresh training of convolutional layers can be 
done. However, the model tuning process is based on trial-and-error method and the 
model hyperparameters are experimentally determined. A comprehensive survey on 
transfer learning techniques is given in [18]. A classical example of transfer learning 
in the context of solving classification of COVID-19 images is discussed in [19].

A typical CNN has two parts, they are convolution layers and classification layers. 
In transfer learning, the classifier is changed as per the new classification problem. 
There are different possible ways of finetuning the model, it requires training the 
model on a new dataset to learn problem specific features.
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  Hyperparameters of CNN include Learning rate, Momentum, Epochs, Batch size,
Filter size, Activation layers, Number of hidden layers, Filter coefficient initialization 
and Dropout which are very important to achieve the performance of the model. The 
setting optimal values for these hyperparameters is important to achieve desired level 
of model accuracy and avoid model overfitting [20, 21].

7. Guidelines for training of pre-trained model for repurposing

  Select suitable pretrained model for new problem, the options available are VGG,
InceptionV3, and ResNet5, DarkNet and YOLO etc., presented in [22], the guideline 
is, select pretrained model which has been trained on some medical images in case 
repurpose to classify another type of medical images. As it discussed in the previ-
ous sections in the technique of transfer learning, earlier layers of CNN are freezed 
and layer set of layers are unfreezed and retrained to learn knowledge from the new 
dataset. Now, decision must be made on how many layers to freeze and how many
to unfreeze and retrain. This depends upon the similarity and size of the present 
dataset with the dataset on which the model is pre-trained. The guideline is, i) if the 
size of the present dataset is large in size then reuse the architecture and retrain all
the layers of pretrained model, ii) if the dataset is similar to the dataset on which the 
model is pretrained and the present dataset is large, then just retrain the classifier 
layers, iii) the present dataset is small in size and different from the dataset used while
pretrained model, this is a difficult situation, here the dataset needs to be enlarged 
through augmentation and by generating synthetic images. The pre-trained model 
must be trained considering the fact that freshly training deeper layers require high 
end computational GPPs and time.

8. Conclusion

  In oil and gas industry timely metal pipelines damage detection plays important 
role for planning on maintenance planning which is essential in avoiding hazard and 
reducing economic loss. The pipelines are regularly inspected for damage detection,
the maintenance is carried out by conventional methods with human expert investi-
gations. These methods are time consuming and sometimes are subjective in nature.
Therefore, there is need for an automatic tool for pipelines damage detection. There 
exist several methods which are based on image processing, computer vision and 
machine learning. However, the correctness of these systems is largely dependent on 
the extraction of robust features techniques. The feature extraction step is the bottle-
neck for most of the classification algorithms. In recent years deep learning models 
have outperformed all other methods, these models automatically extract required 
features and makes classification task more accurate. The deep convolutional neural 
networks are very popular in solving classification problems. In this chapter convolu-
tional neural networks are investigated for pipelines damage detection and classifica-
tion. The contributions of this work include guidelines on design and implementation
of convolutional neural networks, and directions are given for carrying out transfer 
learning to repurpose pretrained models. This chapter provides brief discussion on 
various methods of pipeline damage detection using convolutional neural networks
by conducting survey of state-of-the-art-techniques. This chapter also provides 
insight into design and working of convolutional neural networks.
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Chapter 5

Determination of the Elastic
Constants of a Metal-Laminated
Composite Material Using Artificial
Neural Networks
Marta Eraña-Díaz and Mario Acosta-Flores

Abstract

This chapter explores the use of an artificial neural network (ANN) to obtain the 
elastic constants of the components of a metal laminated composite material (MLCM). 
The dataset for the training and validation of the ANN was obtained by applying an 
analytical model developed for the study of stresses in MLCM. The information used 
in the dataset corresponds to MLCM configurations and data generated with variants 
registered in the structural presentation of the inputs and outputs. The best configu-
ration found for the generation of the ANN models yielded an average relative error of 
less than 4% in relation to the results of the constants evaluated and published in a 
previous article. As shown in this research, it is important to have a clear definition of 
the problem as well as an effective selection and preparation of the characteristics of 
the training data during the constitutive modeling of composite materials and the 
correct application of the ANN.

Keywords: elastic constants of laminated composite materials, artificial neural 
networks, composite materials, constitutive model of composite materials,
training dataset

1. Introduction

Artificial neural networks (ANN) are an efficient artificial intelligence (AI) technique
applied in several areas such as bioinformatics [1] for classification, function approxima-
tion, and knowledge discovery, as well as for data visualization in medical diagnosis [2].

Various numerical models and experimental techniques have been applied in rela-
tion to ANN in the investigation and obtention of the mechanical properties of com-
posite materials, such as Young’s Modulus (E), Rigidity Modulus (G), Elastic Limit,
and Maximum Tensile Stress [3, 4]. In [5], the different elastics constants of the face-
centered cubic austenitic stainless steel are determined. In [6], elastic parameters of
an orthotropic material are obtained based on experimental data and using the finite
element method (FEM) applied to ANN. The method described in [7] combines the
FEM and deep neural networks to obtain constitutive relationships from indirect
observations. Acosta et al. [8] use a linear constitutive analytical model proposed in
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[9] for the analysis and obtention of elastic constants of laminated composite mate-
rials with metallic layers. The elastic constants of a laminate’s component are obtained
through an axial load experimental test.

In the constitutive modeling of composite materials, the ANN applications’state of
the art, [10] exposes the obstacles that have been encountered due to the difficulty of
having a large amount of constitutive experimental training data.

This research presents a method to obtain the elastic constants of one of the
components of a MLCM using ANN. The amount of data needed for training was
obtained using constitutive models of composite materials proposed by [8].

2. Artificial neural networks (ANN)

ANN are a model inspired by the functioning of the human brain and are made up
of connected node set (artificial neurons) that transmit signals to each other from an
input stage to generate an output, in order, to improve their learning process by
automatically modifying each other. There are several types of neural networks
[11, 12] including recurrent neural networks (RNN) and feed-forward neural net-
works. The latter is an artificial neural network where the connections between the
units do not form a cycle and where the information only moves forward.

This research used feed-forward ANN, made up of neurons grouped in layers
alongside an input layer, one or more hidden layers, and an output layer. Each
network neuron has a weight, a numerical value that modifies the received input. The
new modified values are output from the neurons, if the output of any individual
neuron is above the specified threshold value the neuron fires and sends data to the
next layer of the network, otherwise, the data does not go through. This operation can
be appreciated in Figure 1.

The Hj neuron has an assigned weight to each of its inputs (Eq. (1)); the assigned
weight by Hi to Hj is represented as wij. The threshold represents the neuron’s degree of
inhibition, and it is represented as ai(t). Eq. (2) is calculated with an activation function
f(t), which can be linear (Eq. (3)), tangential (Eq. (4)), or hyperbolic tan, (Eq. (5)).

Hj ¼
Xi

n¼1

wijai þ Bi (1)

ai tð Þ ¼ f i Hið Þ (2)

Figure 1.
Example of a feed-forward ANN configuration with i-inputs (X1… Xi) in the input layer, bias1 and j neurons in
hidden layer one (B1, H1, … , Hj), bias2 and k neurons in hidden layer two (B2, H1, … , Hk), and bias3 in the
output layer (B3, Y1, Y2) for the two outputs.

2
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f tð Þ ¼ t (3)

f tð Þ ¼ 1
1þ ⅇ�t (4)

f tð Þ ¼ ⅇt � ⅇ�t

ⅇt þ ⅇ�t (5)

Thus, each ANN neuron, except those in the input layer and the bias neurons,
processes all its inputs and provides its own activation as an output.

Once the ANN has been designed, the training process begins to ensure that the wij

given by each neuron is set correctly so that the entire network provides an acceptable
output.

During this process, the neural network is capable of storing knowledge from a
subset of data containing information on both the inputs and their corresponding
outputs, which are known as “desired outputs.” The network’s obtained outputs are
compared with the desired outputs, thus updating the synaptic weights (wij) so as to
reduce the margin of error in the network results. This procedure is repeated until the
network reaches a satisfactory performance. One of the used methods to train the
ANN is backpropagation [13, 14], where the wij update is done by gradient descent,
minimizing the mean squared error (MSE) (Eq. (6)).

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yPred,i � yact,i
� �2

vuut (6)

Overfitting, an ANN flaw [15–17], prevents it from obtaining acceptable outputs
from unobserved data, that is, those not used in training. Ying X [18] proposes the
following strategies to minimize the effects of overfitting: (1) stop training before
finding the optimal MSE; (2) exclude any noise in the training set; and (3) expand the
training data.

3. Methodology of determining the elastic constants of a metal laminated
composite material using artificial neural networks

Obtaining efficient and consistent results when calculating the elastic constants of
a MLCM using an ANN with a constitutive model of composite materials, requires a
clear and complete understanding of the analytical model presented in [8] for the
efficient preparation of the training data and the correct application of the ANN. The
methodology used in this work is as follows:

1.Physical description of the linear analytical model of the axial load of composite
laminated materials identifying the role of the implicit variables and parameters
present in the model.

2.Definition of the objectives to be solved and identification of the sufficient and
necessary parameters that will be used during the training phase. The
composition of the composite (position and dimension of the components), the
boundary conditions, the geometry, and the dimensions are defined on this
stage. The values of the strains are obtained through those parameters and
through applying the analytical models.

3
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3.With the application of ANN comes a description of their operation and
processes, as well as the characteristics of the training and test data that
correspond to the different selected laminated composite materials. The
quantitative value of the data in the dataset is delimited depending on the model,
the use of the ANN and the final application to obtain one of the MLCM
components’ elastic constants. The ANN were trained using the R software
“neuralnet.”

4.The process of applying neural networks to determine elastic constants is carried
out using the trained ANN and the data presented in [8].

5.Finally, the analysis of results is carried out by means of the percentages of the
relative error (RE) of each of the obtained configurations from the ANN in
relation to the data of [8].

4. Analytical model of linear of axial load of composite laminate materials

This study uses a linear analytical model of a composite laminated material made
up of layers of metallic material. It is assumed the laminate components are relatively
thin, homogeneous, with elastic and linear properties and that the union between
them, is perfect.

There is a global uniaxial stress problem, a homogeneous state of strain is consid-
ered throughout the laminate as well as in the layers, each point of the laminate
presents a state of plane stress.

At the local level, the problem is each layer is biaxial of stresses and the normal
stresses have a constant average distribution throughout the thickness of the layers.
The state of plane stress generated at the internal points of each of the layers (local
analysis) will be referred to as intralaminar state of stress while the stress components
of layer i in directions 1 and 2 will be called intralaminar stresses (σxi and σyi).

The linear analytical model allows the application of the superposition principle
(SP) considering the general problem as a set of individual problems. Therefore, for

Figure 2.
Representation of the stress state, global, and local models [8].
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σyM2 ¼ Q21M2εx2 þ Q22M2εy2 (10)

And considering the engineering constants:

Q 11M1 ¼ Q22M1 ¼
EM1

1� v2M1

� �

Q 12M1 ¼ Q21M1 ¼
vM1EM1

1� v2M1

� �

5
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each  load  condition,  the  state  of  global  stresses  (average  or  total)  σGx  and  σGy  are  the 
sum  of  the  states  of  individual  stresses  (local)  in  each  layer,  see  Figure  2.  The  analyt-
ical  model’s  global–local  equation  (Eq.  (7))  is  as  follows:

σGx  ¼  nIσxI  þ  nIIσxII  þ  nIIIσxIII  þ  …  þ  niσxi
σGy  ¼  nIσyI  þ  nIIσyII  þ  nIIIσyIII  þ  …  þ  niσyi  (7)

  σxi  and  σyi  represent  intralaminar  stresses  and  σGx  and  σGx  are  the  global  average  of
the  stresses  in  both  x  and  y  directions.  ni  represents  the  volumetric  fraction  of  material
layers,  nI  ¼  hi=h,  where

1  ¼  nI  þ  nII  þ  nIII  þ  …  þ  ni  (8)

  The  values  of  ni  are  the  volumetric  fractions  of  material  with  different  properties,
and  h  and  hi  are  both  the  total  thickness  and  the  thickness  of  the  layers  or  layers 
groups,  respectively.

4.1  Definition  of  the  experimental  and  illustrative  example  problem
  and  identification  of  parameters  to  consider

  The  application  of  the  ANN  technique  requires  a  data  set  that  helps  the  network  to
learn  certain  patterns  related  to  the  analyzed  problem.  The  variables  and  parameters 
that  will  be  considered  as  input  and  output  data  during  the  numerical  application  of 
the  ANN  must  be  those  necessary  and  sufficient  so  that  the  problem  is  representative.
If  some  key  parameters  are  not  considered  in  the  problem,  the  performed  study  will 
be  an  incomplete  and  poorly  formulated  problem,  implying  a  deficient  solution.

  In  a  mechanical  problem,  the  state  of  stress  is  a  function  of  the  position,  geometry,
boundary  conditions,  and  material.  For  the  discussed  problem  here,  the  applied 
stresses  at  their  σGx  and  σGy  boundaries  were  uniformly  distributed.  Considering  the
strain  state  was  homogeneous,  the  state  of  the  plane  stresses  at  a  point  was  indepen-
dent  of  the  position  within  each  component.

  For  the  analyzed  case  in  [8],  which  uses  a  laminated  composite  material
consisting  of  metallic  layers  of  two  different  materials  (isotropic,  homogeneous,  and 
elastic-linear),  Eqs.  (7)  and  (8),  globally  and  locally,  respectively,  are  as  follows:

σGx  ¼  n1σxM1  þ  n2σxM2

σGy  ¼  n1σyM1  þ  n2σyM2  (9)

  σxM1  ¼  Q  11M1εx1  þ  Q  12M1εy1
σyM1  ¼  Q  21M1εx1  þ  Q  22M1εy1
σxM2  ¼  Q  11M2εx2  þ  Q  12M2εy2
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Q 11M2 ¼ Q22M2 ¼
EM2

1� v2M2

� �

Q12M2 ¼ Q21M2 ¼
vM2EM2

1� v2M2

� � (11)

Eq. (10) can be represented as follows:

σxM1 ¼ EM1

1� ν2M1

� � εx1 þ νM1EM1

1� ν2M1

� � εy1

σyM1 ¼ νM1EM1

1� ν2M1

� � εx1 þ EM1

1� ν2M1

� � εy1

σxM2 ¼ EM2

1� ν2M2

� � εx2 þ νM2EM2

1� ν2M2

� � εy2

σyM2 ¼ νM2EM2

1� ν2M2

� � εx2 þ EM2

1� ν2M2

� � εy2 (12)

Here, Q11M1, Q12M1, Q22M1, Q11M2, Q12M2, and Q22M2 represent the material’s stiff-
ness constants. The engineering constants for each layer were Young’s moduli (EM1
and EM2) and Poisson’s ratios (νM1 and νM2). The deformation states were defined for
each layer through their longitudinal strains: εx1, εy1 and εx2, εy2.

5. Neural network training process

5.1 ANN arguments

As mentioned in Sections 2 and 3, the used software to train the ANNs was R [19]
and the used library was “neuralnet” [20], the used parameters are shown in Table 1.

Formula Description of the model

data Dataset of variables specified in formula

hidden Number of hidden layers and number of neurons

stepmax Maximum steps for the training

threshold Value for the error function as stopping criteria

rep Number of repetitions for the training

startweights Starting values for the weights

learningrate Lowest and highest limit for the learning rate

algorithm Name of type to calculate the ANN

err.fct Function that is used for error

act.fct Name of the activation function

linear.output Boolean value for output layer

constant.weights The weights that are exclude from training

Table 1.
Arguments for the neuralnet function.

6
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The used learning algorithm was resilient backpropagation [21, 22], which modifies the
updated values for each weight, wij according to the sign sequence behavior of
the partial derivative equations in each dimension of the weight space, this reduces the
number of steps compared to the original gradient descent backpropagation procedure.

The procedure to obtain a good ANN begins with the generation of the dataset
through a normalization process that allows scaling the data values to improve learning.
The process utilized scaling over the maximum value of the inputs as seen in Eq. (13).

xi ¼ xi
max x1, … , xnð Þ ∀ⅈ ∈ 1, … , nf g (13)

The best and final dataset built for this study consisted of 253 pieces of data, 76% of
which were used for training (data1), 14% for testing (data2), and the remaining 10%
for model validation (data3) (192, 36, 25). A final dataset (data4) was built for the
ANN application as indicated in Section 7.3 with results as published in [8].

The variants in the arguments for ANN generation in this study were 2 or 3 hidden
layers, with either the hyperbolic tangent (tanh) activation functions (Eq. (5)) or the
logistic function (Eq. (4)) The number of neurons in each hidden layer was chosen to
obtain the lowest RE in both the training dataset and the test dataset. All this is
depicted in Figure 3.

It should be noted that some variations in the structural presentation of the inputs
and outputs were made for the elaboration of the dataset, this was necessary since
high MSE values were obtained during the ANN training.

5.2 Generation of training data from the analytical model for the ANN

As seen in Eqs. (10) and (12), the necessary and sufficient variables that define the
plane stress models, based on the stiffness constants and the engineering constants, are:

Figure 3.
Procedure diagram for the ANN training process.
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a. the material’s volumetric fraction of the components in the laminate (ni).

b. the stress components of the global stress state (σGx and σGy).

c. the local stress state in each component (σxi and σyi).

d. the elastic constants of the known components (EM1, EM2, νM1, and νM2 or
Q11M1, Q12M1, Q11M2, and Q12M2Þ.

e. the strains state equal for all points of the laminate: εx1, εy1, εx2, and εy2.

As seen in Eqs. (10) and (12), the necessary and sufficient variables that define the
state of plane stress models based on the stiffness constants and engineering constants
are the material concentration of the components in the laminate (niÞ; the stress
components of the global state of stress σGx and σGy; the local states of stress in each
component (σxi and σyi); and the elastic constants of the known components (EM1,
EM2, νM1, and νM2 or Q11M1, Q12M1, Q21M1, and Q22M1Þ.

When the ANN objective is directly to determine the engineering elastic constants
of one of the components of the laminate, the input parameters are Eqs. (9) and (12):
n1, n2, σGx, σGy, εx1, εy1, εx2, εy2, EM1, νM1 and outputs EM2, νM2, the EvANN was
constructed. And a QANN was constructed for Eqs. (9) and (10): with input param-
eters n1, n2, σGx, σGy, εx1, εy1, εx2, εy2, Q11M1, and Q12M1. and outputs Q11M2 and Q12M2:

5.3 Specification of quantitative ranges of input data

As described in the methodology, the input data must establish:

a. The parameters that define the problem, identifying inputs and outputs.

b. The quantitative ranges in the boundary conditions, global stresses (σGx
and σGyÞ:

c. The quantitative ranges in the volumetric fractions of each of the components in
the laminate (n1 and n2).

d. The elastics constants (E and ν) of the MLCM component materials.

e. The global strains (εxM1, εyM1 and εxM2, εyM2) for a simple tension problem.
These dependent and necessary data for training were obtained from the
analytical model. Eqs. (10) and (12) were solved using MAPLE 2018 [23], for
strains, see Eqs. (14) and (15).

εx ¼ σGx Q11M1n1 þQ11M2n2ð Þ
Q2

11M1n
2
1 þ 2Q11M1Q11M2n1n2 þQ2

11M2n
2
2 � Q2

12M1n
2
1 � 2Q12M1Q12M2n1n2 �Q2

12M2n
2
2

εy ¼ � σGx Q12M1n1 þQ12M2n2ð Þ
Q2

11M1n
2
1 þ 2Q11M1Q11M2n1n2 þQ2

11M2n
2
2 �Q2

12M1n
2
1 � 2Q12M1Q12M2n1n2 �Q2

12M2n
2
2

(14)
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εx ¼ σGx EM1n1ν2M2 þ EM2n2ν2M1 � EM1n1 � EM2n2
� �

E2
M1n

2
1ν

2
M2 þ 2EM1EM2n1n2νM1νM2 þ E2

M2n
2
2ν

2
M1 � E2

M1n
2
1 � 2EM1EM2n1n2 � E2

M2n
2
2

εy ¼ � σGx EM1n1ν2M2 þ EM2n2ν2M1νM2 � EM1n1νM1 � EM2n2νM2
� �

E2
M1n

2
1ν

2
M2 þ 2EM1EM2n1n2νM1νM1 þ E2

M2n
2
2ν

2
M1 � E2

M1n
2
1 � 2EM1EM2n1n2 � E2

M2n
2
2

(15)

The maximum and minimum quantitative value of the boundary conditions in the
training data was established using the values found in [8] as a reference. Between 1
and 22 MPa for the global input stress. The components concentrations in the MLCM
were bounded for values between 0 and 1 for 2, 3, 4, 5, and 6 layers of two metallic
components assumed to have the same thickness. Tables B1–B4 in Appendix B show
various scenarios evaluated during the study.

The considered scenarios were:

a. Different MLCM configurations with different concentrations and different
components.

b. Different global stress values (σGx and σGy).

c. Two ANN targets for each configuration, one to obtain the elastic constants of
one of two MLCM components M1, and another to obtain the constants of M2.

The obtained training data from the model were adjusted so that there was not
much difference in the order of the values, the stress was given inMPa, the Q’s and E’s
in GPa and the strains in με.

An EvANN model to determine engineering constants and another to determine
stiffness coefficients, QANN model, were presented to contextualize the effect that
occurs when an ANN model is trained from simple knowledge or general knowledge,
their implications can be seen in Eqs. (14) and (15).

The nomenclature used in the analytical model and the ANN network formulas is
shown in Appendix A Table A1.

5.4 EvANN

As mentioned above, this ANN was trained using the engineering constants and
the R software. The settings for the “neuralnet” function are given in Table 2, where
the output variables are the second material constants.

Starting from the first dataset training was carried out obtaining a MSE of 1.186e
+09 and 4.391 for unnormalized and normalized data. Because of this, the dataset was
extended considering a larger number of MLCM configurations with variations in n
concentrations and global stress ranges, as well as, for the same mechanical problem,
was done an inverted request in the elastic constants of component M1, for one case,
and M2 for another.

Table 3 shows the configured EvANNs and specifies the activation function, the
number of hidden layers, the number of neurons in each layer, the MSE, the threshold
reached, and the number of steps performed. The dataset used can be found in
Appendix B.
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The third EvANN configuration and its graph is shown in Figure 4 along with the
relative error percentages in Figures 5 and 6, the RE was calculated with Eq. (16).

RE ¼ jReal Value� ANN Value
Real Value

j ∗ 100 (16)

A second ANN was generated for the same problem now defined in terms of Q11
and Q12.

Formula EM2 + vM2 � SGX + SGY + CON1 + CON2 + EX + EY + EM1 + vM1

data dataset (192 training, 36 test, 25 validation)

hidden c(a,b) or c(a,b,c) where a,b,c are the number of neurons

stepmax 1.00E+07

threshold 0.01

rep 1

startweights NULL

learningrate 0.0001

algorithm rprop (resilient backpropagation)

err.fct sse (sum of squared errors)

act.fct tanh (tangent hyperbolicus) or logistic (logistic function)

linear.output TRUE

const.weights TRUE

Table 2.
“Neuralnet” Argument functions for training EvANN.

ID Activation
function

Hidden
layers

Neurons per
layer

MSE ANN Reached
threshold

Steps

1 tanh 2 12,4 0.04742882 0.00801973 5612

2 logistic 2 12,4 0.01112887 0.009550541 15,577

3 tanh 2 12,6 0.02183281 0.009768165 30,691

4 logistic 2 12,6 0.03428463 0.009515263 7269

5 tanh 2 12,8 0.05968034 0.009165002 29,721

6 logistic 2 12,8 0.02881464 0.008727336 4276

7 tanh 2 14,8 0.04617885 0.008214281 37,203

8 logistic 2 14,8 0.03225161 0.009175114 4013

9 tanh 3 14,6,4 0.01818992 0.009329059 3394

10 tanh 3 12,8,4 0.01749427 0.009955628 5562

11 tanh 2 18,8 0.04391595 0.00908179 12,742

Table 3.
EvANN Configurations with different activation function, hidden layer, and number of neurons.
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Figure 4.
EvANN topology image. Input layers and (EM2) and (vM2) in output layers.

Figure 5.
% RE training EvANN Configuration 3.

Figure 6.
%RE, test dataset ANN Configuration 3.

11

Determination  of  the  Elastic  Constants  of  a  Metal-Laminated  Composite  Material  Using…
DOI:  http://dx.doi.org/10.5772/ 108601

66



5.5 QANN

A second model with stiffness coefficients was now developed with the results
being the coefficients of the second material, Q11M2 and Q12M2, Figure 7 and
Table 4. The settings for the “neuralnet” function are given in Table 4.

The generated configurations with their respective achieved values are shown in
Table 5.

The second QANN configuration and its graph is showed in Figure 7 with
the relative error percentages, Figures 8 and 9, RE which computes with
Eq. (16).

Figure 7.
QANN topology image. Input layers and Q11 Material 2 (Q11M2); Q12 Material 2 (Q12M2) in output layer
configuration 2.

Formula Q11M2 + Q12M2 � SGX + SGY + CON1 + CON2 + EX + EY + Q11M1 + Q12M1

data dataset (192 training, 36 test, 25 validation)

hidden c(a,b) or c(a,b,c) where a,b,c are the number of neurons

stepmax 1.00E+07

threshold 0.01

rep 1

startweights NULL

learningrate 0.0001

algorithm rprop (resilient backpropagation)

err.fct sse (sum of squared errors)

act.fct tanh (tangent hyperbolics) or logistic (logistic function)

linear.output TRUE

constant.weight TRUE

Table 4.
“Neuralnet” argument functions for training QANN.
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As can be seen in the tables, the maximum RE obtained are up to 58.5% for the
EM2 output and up to 7.5% for vM2.

When looking at QANN, the tables show the maximum RE obtained was up to
4.48% for Q11M2 production and up to 3.71% for Q12M2.

7. Results of application

In this section, the contrasting results of EvANN and QANN RE for data3 and
compute with the results published in the article [8], data4 are presented .

7.1 Validation process (Data3)

The training data was expanded and a configuration that is not close to the optimal
MSE value was selected to avoid overfitting. For the EvANN, this occurred with

Activation function Hidden layers Neurons MSE ANN Reached threshold Steps

EvANN tanh 2 12,6 2.18E-02 9.83E-03 3.07E+04

QANN tanh 2 12,8 2.03E-01 8.57E-03 5.50E+04

Table 6.
Configurations selected for EvANN and QANN.

Figure 10.
% RE validation dataset EvANN Model.

Figure 11.
% RE QANN validation dataset.
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7.2 Real case data (Data4)

The different MLCMs used in this stage (Figure 12) are (1) Aluminum-Brass-
Aluminum (A-B-A), (2) Brass-Aluminum-Brass (B-A-B) and Copper-Aluminum
(C-A) (Figure 3). The properties and volumetric fractions of the materials in the
MLCM are given in Tables 8 and 9.

7.3 Real case data compute in QANN and EvANN

Continuing with the real case, the contrasted RE of EvANN and QANN results are
presented as shown in Figure 13. The QANN model shows a better performance.

Table 10 shows the averages of the RE obtained for each of the outputs when
checking the application of the model obtained using QANN for the results in [8].

Configuration two, which has two hidden layers with 12 and 8 neurons in relation
to the tanh (hyperbolic tangential) activation function, was selected. The selection

MCLM Aluminum
volumetric
fractions, n

Brass volumetric
fractions, n

Aluminum
volumetric
fractions, n

Copper
volumetric
fractions, n

Aluminum-
brass-aluminum

0.671 0.329

Brass-
aluminum-brass

0.338 0.662

Aluminum-copper 0.516 0.484

Table 8.
Volumetric fractions of materials in the MLCMs.

Material Young’s Modulus (E), Gpa Poisson’s Ratio (υ)

Aluminum 67 0.345

Brass 101 0.313

Copper 109 0.33

Table 9.
Elastic constants of the MLCM components.

Figure 13.
Comparison of EvANN and QANN results based on engineering constants, EVM2, vM2.
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were different with variations of up to 30%, when these should be the same.
However, uncertainty risks are avoided by averaging the obtained values for
each output as shown in Table 13.

6.A further important point that showed an overview of simplicity in the training
setup was found when evaluating two cases: one in the training phase and the
other in the output data request. The first one required the engineering constants
while the latter required the stiffness constants. In the first case average RE of
12.54% E and 3.15 for υ were obtained; in the second case, the RE for E and υ
were 6.18% and 3.57%, respectively. From the above and observing (Eqs. (14)
and (15)), it is assumed that the analytical model in terms of Q’s is simpler than
the model in terms of engineering constants.

9. Conclusions

This chapter, using ANN, establishes a method to determine the engineering
constants of metallic laminated composite material layers, shows the importance of
adequately defining the problem to be solved, analyzing concepts, establishing scopes
and constraints, and selecting sufficient and necessary training parameters, based on
the obtained results. The importance of the following was identified by evaluating
several scenarios to generate the ANN dataset: (a) the qualitative ranges of the
parameters in the input data; recommending that the values of the application data
should be in the mean of the training data, (b) variations in the structure of the
dataset (different outputs for the same MLCM problem), and (c) simplicity in the
dataset; the ANN showed better results when stiffness constants were requested in the
output data; the analytical solution, is simpler in terms of stiffness constants than in
terms of engineering constants.

Several configurations with different activation functions, number of layers, and
number of neurons per layer were tested in the study, finding better results for this
problem with a medium MSE when compared with the lowest MSE trained. This
action may be due to the fact that there is no overfitting.

Based on this research, it is recommended to use the analytical model applied here
to generate an ANN dataset for the study of the constitutive modeling of composite
materials in plane stress problems.

Nomenclature

ANN Artificial neural network
MLCM Metal laminated composite material
MCL Metallic composite
E Young’s Modulus
G Rigidity Modulus
MSE Mean squared error
EvANN ANN that directly determine the engineering elastic constants of one of

the components of the laminate
QANN ANN to determine the stiffness coefficients of one of the components of

the laminate
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Chapter 6

Optical Soliton Neural Networks
Eugenio Fazio, Alessandro Bile and Hamed Tari

Abstract

The chapter describes the realization of photonic integrated circuits based on 
photorefractive solitonic waveguides. In particular, it has been shown that X-junctions 
formed by soliton waveguides can learn information by switching their state. X junc-
tions can perform both supervised and unsupervised learning. In doing so, complex 
networks of interconnected waveguides behave like a biological neural network, 
where information is stored as preferred trajectories within the network. In this way, 
it is possible to create “episodic” psycho-memories, able to memorize information bit-
by-bit, and subsequently use it to recognize unknown data. Using optical systems, it is 
also possible to create more advanced dense optical networks, capable of recognizing 
keywords within information packets (procedural psycho-memory) and possibly 
comparing them with the stored data (semantic psycho-memory). In this chapter, we 
shall describe how Solitonic Neural Networks work, showing the close parallel 
between biological and optical systems.

Keywords: Nonlinear optics, photorefractive soliton, solitonic waveguide, supervised 
learning, unsupervised learning, Machine Learning, biological neural network, 
Artificial Intelligence, optical psycho-memory, optical neural network, photonics

1. Introduction

Software artificial intelligence (AI) and the neuromorphic approach, both electronic
and optical, are born to reproduce the learning capacity of the biological neural system.
AI software has now proved to be fundamental in many fields, although with the limits
imposed by the tools used [1]. These represent the pretext for developing neuromorphic
hardware capable of overcoming these limitations [2]. Neuromorphic optics has shown
great versatility. However, current technologies reproduce only some aspects of neural
biology without grasping the overall view. Works such as [3] implement fundamental
units capable of reproducing excitability, or spiking properties, while others are focused
on synaptic connections [4]. An overview is missing. The biology of the brain [5]
teaches us that it is a system with local properties that can have global effects. In other
words, learning is a process that affects entire regions of the neural network and
manifests itself through a structural organization of the connections between neurons.
In this way, real neural maps are built, whose development includes learning and
memorization of information. Soliton neural networks (SNNs), exploiting the typical
plasticity of photorefractive materials, are dynamic entities capable of self-modifying to
process, learn and memorize information. Furthermore, they are able to do so selec-
tively at the information level, exactly as it happens in the human brain. By physically
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combining the processing and memory units, SNN networks functionally approach the
biological nervous system. Now learning and memorization are two events that occur at
the same time through modifications of the spatial geometries.

2. Photorefractive solitons and solitonic waveguiding

2.1 Spatial solitons

The possibility of a beam becoming self-confining and propagating without diffrac-
tion was first studied about 50 years ago by E.T. Chiao, E. Garmire, and C.T. Townes [6]
who in that year received the Nobel Prize for his studies on the maser and the laser. So
they interpreted the phenomenon: “We shall discuss here conditions under which an
electromagnetic beam can produce its dielectric waveguide and propagate without spreading.”
Eight years later, V. E. Zakharov and A. B. Shabat formulated the theory of solitons [7].

The first experimental verification of self-confined beams arrived 13 years later, in
1985, by A. Bartelemy et al. [8] exploiting the Kerr-type nonlinearity of a liquid CS2
cell and, 5 years later in 1990, within a glass planar waveguide [9].

It was immediately evident that the applicability of Kerr solitons was not simple: in
fact, the low values of the nonlinearity of the excitable Kerr type in the glass required
either very high intensity (GW/m2) or very long propagations (being cumulative),
and only planar geometries (Kerr solitons are stable only in 1D and not in 2D geome-
tries). Over the years, it has been clear that these nonlinearities could be exploited
only to realize temporal soliton behaviors (pulses without dispersion) in optical fibers
by adopting long propagations but not within the chips.

However, in those years, and in particular in 1992–1996, the very first theoretical
and experimental works on the formation of spatial solitons in photorefractive mate-
rials came out [10–21]. Only later on, at the beginning of the 2000s, bright solitons
have been observed in lithium niobate (LN) [22] the most widely used nonlinear
material for integrated devices. Since then, spatial solitons in LN have been largely
used as waveguides in devices.

However, the first use of solitons as waveguides started early: in 1991, De la Fuente
et al. [23] used Kerr solitons as waveguides. Almost 9 years later, E. Fazio et al
repeated the same experiment in a glass chip [24] and used spatial soliton interaction
for signal processing [25].

2.2 Theory of photorefractivity and solitons

A photorefractive crystal is typically a semiconductor that has a second-order
nonlinearity of the electro-optical type, that is, the possibility of varying its refractive
index as a function of an applied static electric field. Mathematically this can be
represented in terms of the nonlinear polarization intensity vector:

P
!

ωð Þ ¼ ε0 χ
$ 1ð Þ

∙ E
!

ωð Þ þ χ
$ 2ð Þ

: E
!

0ð ÞE! ωð Þ
h i

(1)

where E
!

ωð Þ represents the electric field associated with the light and E
!

0ð Þ the
static one. Putting in evidence the light field we obtain

P
!

ωð Þ ¼ ε0 χ
$ 1ð Þ þ χ

$ 2ð Þ
∙ E
!

0ð Þ
h i

∙ E
!

ωð Þ (2)
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ε
$ ¼ ε0 1þ χ

$ 1ð Þ þ χ
$ 2ð Þ

∙ E
!

0ð Þ
h i

(3)

for this reason, it is also called the “linear Pockels effect.” Typically, the refractive
index of crystals is described by an ellipsoid of the type:

x2

nx2
þ y2

ny2
þ z2

nz2
¼ (4)1

and, as a consequence, its variation is expressed by the variation of

1
n2

ðtermsÞ

Δ
1
n2i

� �
¼

X
j

rijEj 0ð Þ (5)

that corresponds to a decrease of the refractive index:

ni E 0ð Þ½ � ¼ ni,0 � 1
2

X
j

n3i0rijEj 0ð Þ (6)

where i represents one of the crystallographic directions (x,y,z) and ni0 describes
the linear refractive index along the i-th direction.

There are two critical points in the discussion that has followed so far:

1. the local electrostatic field must give a local distribution to induce an electro-
optical variation of the refractive index capable of self-confining the laser beam
and originating spatial solitons

2.the electro-optical effect decreases the refractive index of the material (see
Eq. (6)) while to self-confine the light a waveguide must have a higher refractive
index than the surrounding environment.

For these reasons, it is necessary to follow a small procedure, a kind of small trick,
to achieve a positive variation of the refractive index capable of self-confining the
light: this can be done by applying a bias field to the whole material that lowers its
index everywhere, and screening it in a small region where the light is, in order to
raise back its value. As a consequence, the bright photorefractive spatial solitons are
usually called screening solitons. Here is how this happens.

Let us consider a photorefractive medium as a semiconductor doped by a donor
medium. Donor states (ND) are usually localized energetically within the energy gap:
which means that light can induce electron transitions from the donor states to the
conduction bands. Consequently, two charge populations are generated so far: ionized
donors, that is holes (ND

+), which are physically localized, that is, are not free of
moving because are connected to the physical position of the dopant ions, and
electrons, which instead can go everywhere being in delocalized conduction states.

The donor rate equation is:

∂nþD
∂t

¼ σFnD � γnþd ne (7)
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  which  shows  that  the  electric  susceptibility,  and  consequently  the  dielectric  tensor,
gets  a  linear  dependence  from  the  static  field:
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where σ is the absorption cross-section, F the photon flux, and γ the relaxation
rate. The electron rate equation follows the donor one, with the inclusion of the
diffusion-conduction terms:

∂ne
∂t

¼ ∂nþD
∂t

� μ∇
!
∙ neE

! þ kBT
q

∇
!
ne

� �
(8)

where μ is the electron mobility, kB the Boltzmann constant, and T the temperature.
Electrons and holes constitute the local charge density ρ:

ρ ¼ q nþD � ne
� �

(9)

which generates, through Gauss’s theorem, a local electric field that screens the
applied bias:

ε∇
!
∙ E
!
SC ¼ ρ ! E

!
local ¼ E

!
bias þ E

!
SC (10)

Applying a bias field along the extraordinary ĉ the crystallographic direction of a
uniaxial photorefractive crystal, the refractive indices get the expressions

nx ¼ ny ¼ n0

nz ¼ ne � 1
2
n3e r33Ez�local

8<
: (11)

The nonlinear light propagation is then described by the nonlinearwave equation [13]:

∂

∂x
� i
2k

∂
2

∂y2
þ ∂

2

∂z2

� �� �
A x, y, zð Þ ¼ ik

n
δn Elocalð ÞA x, y, zð Þ (12)

where the field amplitude, in the case of a self-confined solitonic solution, should be
factorized into an amplitude, independent from x, and a propagative term as follows:

A x, y, zð Þ ¼ u y, zð Þei ωt�Γxð Þ (13)

as done for every kind of soliton, not only the photorefractive ones. Many groups
have tried to solve analytically Eq. (12) without real success. Semi-analytical solutions
are indeed reported in the literature showing that such complex problems can support
bright solitons. In order to observe the soliton formation, a numerical integration
(FDTD—Finite Difference in Time Domain) is performed of all Eqs. (6)–(11). Often, an
approximated equation is considered, taking into account the saturable behavior of
the nonlinear dielectric constant:

∂

∂x
� i
2k

∂
2

∂y2
þ ∂

2

∂z2

� �� �
A ¼ � ∈ NLEbias

1þ Aj j2
ASATj j2

A (14)

2.3 Experiments on photorefractive solitons

The experimental set-up for spatial solitons is shown in Figure 1 [22]. A laser beam
(soliton beam) is focused down to about 10–12 μm FWHM onto the input face of a
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sample. To generate suitable refractive index modulation, the sample must be biased
along its optical axis.

The value of the electric field to bias strongly depends on the crystal type and its
electro-optic coefficient: for example, using strontium barium niobate crystals (SBN)
which have a very high electro-optic coefficient, the electric field ranges from a few
hundred V/cm up to some kV/cm [26]; lithium niobate (LN) has a lower electro-optic
coefficient and requires several tens of kV/cm [22]; in materials with high optical
activity like Bi12SiO20 (BSO), the applied bias must be as high as 55 kV/cm or higher to
induce the light to reach a nonlinear polarization regime and to self-confine [27–29].
Chauvet et al. [30, 31] proposed an interesting innovative solution for the bias appli-
cation: induce an internal electric field by applying a thermal gradient and take
advantage of the pyroelectric effects that some crystals have, for example, LN. Indeed,
this is a major improvement in the technology, as it eliminates any conductive con-
tacts/plates, thus leaving the sample completely free and accessible from all sides for
further applications.

Background illumination can be provided also, to stabilize the solitonic beam
during propagation (i.e., prevent beam self-deflection [32–35]).

Finally, an optical imaging system is placed after the sample to monitor the output
face of the sample using a camera. The typical evolution of the soliton formation is
shown in Figure 2 where the light intensity at the output phase is shown.

A key feature of photorefractive solitons is the very low power required for their
writing. Photorefractive solitons require very low powers, of the order of microwatt in
continuous [36]. This means that they can be made both with coherent light from
continuous or pulsed lasers at the fundamental or second harmonic frequency
[37–40], even in the femtosecond regime [41, 42], and with incoherent light from
fluorescent bulbs [43] or even ion fluorescence [44].

E. Fazio et al. [22] have shown experimentally that the solitonic solution gives a
hyperbolic transverse profile which can be easily identified by plotting the transverse
intensity distribution in a semi-log scale (Figure 3). A laser beam has usually a
Gaussian profile that, in a semi-log plot, gets a negative parabolic shape. As soon as it
evolves into a soliton, the Gaussian profile rearranges into a hyperbolic one. This
transformation can be monitored in the semi-log graph, where the hyperbolic profile
gets a triangular shape (a linear rise and fall tuned together on the vertex).

Figure 1.
Experimental set-up for screening photorefractive solitons [22].
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2.4 Photorefractive soliton waveguiding

Among the possible applications of soliton beams, one of the most important is
their use as waveguides. Compared to traditional techniques, writing solitonic wave-
guides has many advantages in terms of construction costs, 3D geometries, propaga-
tion characteristics, and time durations.

Regarding costs, solitonic waveguides can be written with extremely low laser
powers and above all in continuous mode: therefore, practically at no cost, since they
can also be written by laser diodes for a few euros.

With regard to 3D geometries, a soliton guide can be written in any position within
a nonlinear substrate, allowing full exploitation of the entire available volume. This

Figure 2.
Experimental images of the soliton formation and stabilization [22].

Figure 3.
A Gaussian laser beam modifies into a hyperbolic secant beam when becomes spatial solitons [22].
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combination of the Greek words ``stigma” (outstanding sign) and ``ergon” (work),
signifying that some activities of agents are prompted by external traces, which
themselves are generated by the agent’s activities [48]. Stigmergy allowed Grassè to
explain how insects with fractional intelligence, without obvious communications,
can collaboratively engage in complex tasks, such as building a nest simply by follow-
ing very naive rules. In general, the paradigm of social insect societies is a distributed
system that, despite the lack of sophistication of their individuals, offers a highly
structured social organization. For instance, as a result of this organization, ant colo-
nies can carry out complex assignments that in some cases are beyond the capacities of
a single ant [49]. A study of their behavior indicates that in the heart of their
commotional random movements, there can be seen the trace of a series of behaviors
that are driven by repeated stimulus-response cycles [50]. For example, when
searching for food, ants initially explore the area surrounding their nest randomly and
while moving, they leave a chemical pheromone trail on the ground (Figure 4). Once
an ant finds a food source, it evaluates the quantity and the quality of the food and
carries some of it back to the nest [52].

During the return trip, the quantity of pheromone that an ant leaves on the ground
may depend on the quantity and quality of the food. The pheromone trails will guide
other ants to the food source and subsequently, the shortest path to the food source
will be reinforced as the result of a higher probability of feedback concerning the long
paths [51]. This environment-intermediated type of communication has captivated
researchers in many dissimilar fields. For example, it can be referred to all those
protocols for the optimization of multi-variable problems known as genetic algo-
rithms, which exploit the rules of genetics to solve mathematical problems with many
independent variables, or neural networks, mathematical systems that base the calcu-
lation on a “learning” database that the system has previously prepared. All these
typical problems that would require smart signal processing, are called “reinforcement
learning” [53]. This expression is commonly used in computer science to describe
those algorithms “of machine learning inspired by behaviorist psychology, which is

Figure 4.
Basic scheme of the search for food by the ants. The system is based on the two fundamental decision-making
principles of following a trace of pheromone and of changing track when a more marked one is met [51].
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connected  with  how  software  agents  ought  to  take  actions  in  an  environment  to 
amplify  some  impulse  of  cumulative  reward  [54].

3.2  Reinforcement  learning

  Reinforcement  learning  concerns  neural  networks  or  artificial  intelligence  proto-
cols  that  self-set  by  reinforcing  specific  information  identified  by  feedback  in  the 
system  in  order  to  solve  complex  problems.  This  procedure  is  indeed  inspired  by 
nature,  adopting  its  Stigmergy  in  order  to  transfer  information  in  decentralized  sys-
tems,  thus  realizing  distributed  cognitive  processes  through  many  small,  simple  elab-
orations  [55].  The  basic  idea  of  reinforcement  learning  is  to  consider  the  feedback 
derived  from  the  dynamic  interaction  of  the  learning  agent  with  the  surrounding 
environment.  Guiding  autonomous  agents  to  act  optimally  through  trial-and-error 
interaction  with  the  corresponding  environment  is  the  primary  goal  in  the  field  of 
artificial  intelligence  and  is  regarded  as  one  of  the  most  important  objectives  of 
reinforcement  learning  [56].  During  the  learning  process,  the  adaptive  system  tries 
some  actions  (i.e.,  output  values)  on  its  environment,  then,  it  is  reinforced  by  receiv-
ing  a  scalar  evaluation  (the  reward)  of  its  actions  feedback  [57].  As  a  result,  the 
reinforcement  learning  algorithms  selectively  retain  only  the  outputs  that  maximize 
the  received  reward  because  of  the  higher  repetition  rate  over  time  [53].

  Unfortunately,  software-based  protocols  need  solution  times  that  increase  expo-
nentially  with  the  size  of  the  problem;  after  many  years  of  research,  no  improved 
algorithm  has  been  found  to  solve  these  problems  within  a  polynomial  time  using  a 
deterministic  Turing  machine.  For  this  reason,  hardware  approaches  have  been  pro-
posed  in  the  past  [58,  59].  Among  all,  optical  solutions  to  supercomputing  seem  to  win
for  versatility  [60]  in  terms  of  increased  fan-in  and  fan-out,  energy  consumption,  and
recursive  preprocessing.  However,  the  proposed  optical  solutions  [61,  62]  neither 
reduce  the  complexity  of  the  problem  nor  offer  technologically  efficient  procedures 
without  exponentially  increasing  the  demand  for  physical  resources  [63].

  Very  recently,  an  alternative  approach  was  proposed  to  realize  photonic  hardware
able  to  perfectly  simulate  the  Stigmergy  processes  adopted  by  ants  searching  for  food.
This  alternative  approach  was  published  in  the  paper  by  M.  Alonzo  et  al.  entitled  “All-
Optical  Reinforcement  Learning  in  Solitonic  X-Junctions  [55].”  In  this  work,  the 
pheromone  trajectories  are  represented  by  paths  of  the  light  through  a  nonlinear 
photorefractive  material  and  the  trajectory  of  the  light  is  represented  as  the  modified 
refractive  index  of  the  host  material.  Such  modifications  behave  as  induced  wave-
guides,  that  is,  regions  that  confine  optical  information  which  can  travel  inside  them 
without  being  dispersed  (as  signals  in  optical  fibers).  The  refractive  contrast  between
the  induced  channel  and  the  surrounding  medium  depends  on  the  intensity  of  the 
writing  beam.  Consequently,  it  behaves  like  the  pheromone  quantity  in  the  ant’s  path:
it  can  be  strengthened  or  weakened  with  the  writing  light  intensity.  This  decision-
making  process  can  be  represented  by  a  nonlinear  modulation  of  the  crossing  point 
between  these  paths.  The  strengthening  of  one  path  in  an  X-crossing  point  would 
correspond  to  making  it  a  preferential  trajectory,  where  the  light  will  be  conveyed 
more  easily.  It  behaves  as  a  channel  of  water  whose  banks  have  been  made  deeper  and
therefore  more  capacious:  when  two  channels  meet,  more  water  will  flow  into  the 
deepest  channel  rather  than  inside  the  shallowest  one.  Such  addressable  behavior  has 
been  induced  into  a  nonlinear  optical  X-junction.  The  junction  has  been  realized  by 
injecting  two  absorbed  beams  that  cross  each  other  in  the  middle  of  the  host 
photorefractive  medium.  Each  beam  modulated  the  refractive  index  of  the  host
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medium according to its intensity. A signal beam (unable to modify the host medium)
is injected inside one channel and consequently reaches the X junction. It represents
the information that propagates inside the photonic structure. If the writing beams
have the same intensities, the junction is perfectly symmetrical, meaning that 50% of
the information beam emerges from one channel and 50% from the other one
(Figure 5). When the writing light is unbalanced or writing feedback is injected from
the output, the X-junction switches to an asymmetric behavior, for which 80% of the
information beam is now conveyed inside the strengthened channel and the
remaining 20% remains in the weaker one.

3.3 Photorefractive plasticity

In neuroscience, this phenomenon is the basis of the selective memorizing-
forgetting process that characterizes the memory of the events in the brain [64]:
information pieces that are no longer reinforced will gradually be lost concerning
recently reinforced ones. This capability arises owing to the considerable plasticity of
the individual building block of the nervous system which allows animals to adapt to
changing internal and external environments. During development, learning, and
ongoing behavior, individual neurons, synapses, and circuits form short-term and
long-term changes as a result of experience. This is the basis of the learning in a neural
network which governs neuroplasticity, that is the ability of a system to modify the
synaptic interconnection network according to its own needs, both to carry out “rea-
soning” and to recover unused areas (e.g., reusing regions that are inhibited due to
trauma or injury) [65]. Neuroplasticity occurs at all levels, from the behavior of a
single ionic channel to the morphology of neurons and large circuits and over

Figure 5.
Numerical simulation (top) and experimental results (below) of a stigmergic photonic x-junction [51].
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timescales  ranging  from  milliseconds  to  years  [66].  Each  level  of  the  elementary  unit 
is  connected  in  parallel  to  each  other,  which  performs  simple  operations  of  the  storage
and  processing  of  information  in  successive  cascading  levels.  Similar  to  the  perfor-
mance  of  the  ants  in  the  colony  the  information  processed  by  a  group  of  neurons  is 
sent  to  the  next  level  of  neurons  by  opening  and/or  closing  specific  synaptic  intercon-
nections.  In  this  way,  the  memory  and  subsequent  reasoning  consist  of  trajectories 
within  the  network,  the  mapping  of  which  represents  the  set  of  stored  information,
which  can  be  kept  over  time  or  deleted  as  needed.  This  is  the  way  of  “learning”  and 
“remembering”  a  biological  neural  network.  Any  further  information  will  follow  its 
path:  if  the  new  path  coincides  with  an  active  trajectory,  then  the  information  will  be
recognized,  otherwise,  the  signal  will  be  blocked,  sooner  or  later,  by  inactive  synaptic
interconnections  [67].

  In  this  way,  the  neural  network  simultaneously  remembers  and  processes,  in  a 
spatial  coexistence  where,  the  traditional  computers  cannot  do  this:  in  fact,  they  are 
based  on  the  Von  Neumann  architecture  which  provides  one  or  more  processors 
connected  to  various  external,  separate  peripherals,  including  memory.  Whenever  the
computer  needs  information,  it  must  access  the  memory  to  take  and  bring  data  back 
to  the  processor.  This  operation  requires  machine  time  and  costs,  in  terms  of  energy 
consumption.  Whereas,  the  neuromorphic  paradigm,  on  the  other  hand,  wants  to 
unify  the  two  areas  of  processing  and  memory,  as  happens  in  the  biological  field.
However,  overcoming  the  dichotomy  between  processing  and  memory  is  possible  by 
creating  neuromorphic  architectures.  By  exploiting  the  typical  functional  geometries 
of  the  nervous  system,  information  can  be  stored  and  processed  in  the  same  physical 
location,  unifying  memory  and  processor.  In  2011,  C.  David  Wright  introduced  the 
use  of  PCM  for  arithmetic  and  bio-inspired  calculation  [68],  and  provided  the  princi-
ple  experimental  proof  of  “processor”  based  on  PCM  for  the  first  time,  demonstrating
the  four  basic  operations  of  addition,  multiplication,  division  and  subtraction,  and 
storing  the  results  at  the  same  time.  In  the  same  year,  D.  Kuzum  reported  new 
nanoscale  electronic  synapses  based  on  PCM  for  optical  data  storage  and  non-volatile
storage  [69].  Continuous  resistance  transitions  in  PCM  [70]  and  saturable  absorber 
composite  materials  are  used  to  simulate  the  properties  of  biological  synapses  so  as  to
realize  synaptic  learning  rules  [71].  In  2017,  Alexander  N.  Tait  of  Princeton  University
published  a  paper  referred  to  neuromorphic  silicon  photonics,  introducing  the  world’s
first  integrated  photonic  neural  network  [72],  It  uses  a  neural  compiler  to  program  a 
silicon  photonic  neural  network  with  49  nodes,  each  node  operates  at  a  specific 
wavelength,  light  from  each  node  is  detected  and  summed  before  it  is  fed  into  the 
laser,  then  the  output  will  be  feedback  to  create  a  feedback  loop  with  nonlinear 
characteristics.  Tait  et  al.  simulated  traditional  neural  networks  demonstrated  how 
photonic  neural  networks  can  solve  differential  equations  and  found  that  photonic 
neural  networks  using  silicon  photonic  platforms  can  be  connected  to  ultrafast  infor-
mation  processing  environments  for  radio  control  and  scientific  computation.

  It  should  be  noted  that  most  of  the  platforms  that  have  been  introduced  as  photonic
or  electronic  neural  networks  are  fixed  structures  that  rigidly  perform  the  calculation 
without  the  capability  of  changing  the  interconnections  as  requested  [73].  This  last 
aspect  requires  the  use  of  modifiable  plastic  materials  and/or  devices,  that  is,  capable  of
assuming  different  behaviors  depending  on  the  information  to  be  stored.  In  these 
structures,  the  configuration  of  the  neurons  and  their  interconnections  are  written  and
predefined.  So,  they  are  only  capable  of  doing  certain  limited  functions,  whereas  the 
biological  neurons  can  dynamically  modify  the  interconnections  in  the  procedure  of 
training.  They  can  establish  new  interconnections  or  if  requires  they  can  diminish  or
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strengthen the weight of specific interconnections in synaptic points. Recently, inspired
by the biological brain, reinforcement learning methods based on the memory of past
experiences have been realized in photonic platforms via solitonic interconnections.
Thanks to the plasticity of photorefractive materials, the light beam itself is able to
locally vary the refractive index of the host material and create a channel within which
it can propagate without diffraction. This solitonic signal will change the refractive
index of the medium similar to the pheromone-mediated indirect communication.
Obviously, the repetition and intensity profile of the incoming signals will affect the
formation of the waveguide channel by exploiting the nonlinearity of the refractive
index. This channel can also be used by other beams that recognize it as a waveguide.
Also, these interconnections have a specific lifetime and their weight’s strength is
dependent on the extent of their exploitation. The interconnection’s existence and
strength is a self-driven process in which the signal itself can reconfigure its pathway by
its occurrence redundancy. Consequently, any interconnection which is not activated
for a long time will be diminished and taken out of the computation cycle, at the
expense of the highly exploited ones. Depending on the material used, this waveguide
will then cancel itself completely when the writing light is switched off (rapid dielectric
relaxation) or survive for a shorter or longer time (slow dielectric relaxation).

The solitonic guides are, therefore, completely plastic guides, which are induced
by a modification of the material and can be suitably shaped by other light passing
through them. Now there is no artificial neuroplastic hardware, that its networks be
able to reorganize themselves autonomously, although this is the only way to repro-
duce artificial systems similar to biological ones. An extremely promising way to
achieve them is represented by soliton optical neural networks, able to exploit the
plasticity of the refractive index to create circuits whose interconnections can be
activated or inhibited as required by the information to be stored or processed. In
2018, a collaboration between Sapienza and Nanyang Technological University in
Singapore demonstrated that X-junctions formed by soliton waveguides learn infor-
mation [55]. Recently, it has been shown that X-junctions can perform both super-
vised and unsupervised learning, behaving as if they were neurons that fully exploit
the plasticity of the substrate both to write the circuit and to post-modification based
on the evolution of the system [74]. By exploiting the X junctions as elementary units,
it is possible to create complex neural networks capable of storing information as
specific trajectories within the circuit network [75].

4. Solitonic X-junctions as photonic neurons: Supervised and
unsupervised learning

The solitonic neuron is a device capable of reproducing the fundamental charac-
teristics of the learning and memorization processes typical of biological neurons.
From a biological point of view, the neuron, a fundamental unit of the nervous
system, is a dynamic unit capable of self-assembling and self-modifying according to
the information that arrives. These structural changes are the mirror of the unfolding
of learning and memorization [76]. The capacity for self-organization is not local, that
is, it does not affect the individual units independently as if they were non-
communicating structures. Whenever a certain type of information presents itself at
the gates of the nervous system, through the different types of receptors of which it is
composed, an enlarged (global) mechanism is set in motion, influencing pathways
within the nerve mapping, affecting neurons through connections both in parallel and
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Figure 6.
(a) Fundamental scheme of a biological neuron. (b) the solitonic neuron X-junction structure. (c) Perfectly
balanced X-junction.
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in  series.  This  characteristic  interconnectedness  underlies  the  functional  complexity  of
the  nervous  system  and  at  the  same  time  represents  its  strength.  This  is  why  an  event,
at  a  precise  point  on  the  neural  map,  can  trigger  a  succession  of  changes  culminating 
in  a  complete  reorganization  of  entire  neural  regions.  One  of  the  properties  we  have 
already  talked  about  previously  but  that  needs  to  be  brought  to  attention  perhaps  with
greater  energy  is  the  concept  of  plasticity.  This  is  a  key  feature  for  various  reasons.  A 
good  approximation  of  the  concept  of  plasticity  can  be  defined  through  the  expression
“dynamic  self-organization”  [44].  It  is  typical  of  systems  that  do  not  remain  identical
to  themselves  neither  at  the  functional  nor  at  the  structural  level  [77].  More  precisely
plastic  hardware  overlaps  these  two  nuances:  function  becomes  synonymous  with 
structure.  This  is  one  of  the  fundamental  properties  of  biological  neural  tissue.  Con-
ceiving  the  implementation  of  an  artificial  hardware  neuron  that  works  on  the  bio-
logical  model,  there  are  therefore  some  characteristics  that  should  be  kept  in  mind.
First  of  all,  it  must  have  a  dynamic  structure  that  is  able  to  adapt  to  the  evolution  of 
the  environment  and  provide  a  response  to  it  in  a  nonlinear  way.  Furthermore,  it  is 
necessary  to  keep  the  chronology  of  the  information  processed  at  the  same  time  as  the
analysis  and  learning  operations.  A  schematic  of  the  functional  blocks  which  charac-
terize  the  “modus  conoscendi”  of  a  neuron  is  shown  in  Figure  6a.

  We  can  highlight  a  tripartite  structure:  the  neuron  receives  signals  through  the 
dendrites,  small  branches  acting  as  input  channels.  The  information  is  collected 
through  these  and  conducted  to  the  soma,  the  central  body  of  the  neuron  which  acts  as
a  real  microprocessor.  Here  the  signals  are  “read”  and  analyzed  through  weighing  and
comparison  operations  with  respect  to  a  threshold  value.  A  signal  above  the  threshold
is  highly  informative  so  it  must  be  stored  and  propagated  along  the  neural  mapping.
On  the  contrary,  a  sub-threshold  signal  is  judged  not  important  at  the  informational 
level  and,  therefore,  its  transmission  is  stopped  [78].  The  axon  is  a  long  channel  with 
the  task  of  carrying  the  signal  out  and  distributing  it  to  the  neurons  that  follow 
through  special  connections  called  synapses.  These  are  the  basis  of  the  communication
between  different  units  and  correspond  to  the  entities  that  allow  the  realization  of 
complex  neural  mapping.  The  soliton  photon  neuron,  which  the  research  group  of  the
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Smart and Neuro Photonics Lab has designed and built, has a functional geometry
very close to the one just described. A soliton neuron [55] is characterized by an X-
junction structure [79], as shown in Figure 6b obtained through the intersection of
self-written waveguides by two self-confining and non-diffracting laser beams. Using
the technology of spatial solitons obtained through the Pockels effect [13, 80], the
writing takes place through a local variation of the refractive index induced by the
incoherent laser light beams. All materials with a saturating nonlinear electro-optical
coefficient can be used. The input channels functionally represent the dendrites that
collect the input signals. The soliton soma coincides with the region in which the two
laser beams progressively approach until they overlap. It is in this region, which by
assonance with the ML models we call the solitonic node, that the nonlinear energy
transfer between the channels takes place which, as we will see shortly, allows the
learning process. The output channels, which allow a subsequent redistribution of the
propagated signal, replicate the functional action of the axon. In order for the soliton
soma to form and be active at a functional level, it is necessary that the laser beams
arrive at the input face of the crystal at an extremely small angle with respect to the
normal, between 0.8° and 1°. For different angles, the node is characterized by an area
that is too limited which determines a low coupling between the waveguides. The
soliton neuron can perform supervised and unsupervised learning tasks [55, 74]. From
a theoretical point of view, supervised learning is performed using a fundamental
truth, or in other words, there is prior knowledge of what the output values to learn
should be [81–83]. If the learning is unsupervised, on the contrary, there is no a priori
knowledge of the desired output, which is identified at the same time as learning
[84, 85]. The substantial difference lies in the way in which the already written
waveguide structure is modified. In the supervised case, indeed, it is necessary to
know the target and therefore to guide the learning. The X junction is modified using a
feedback system that locally alters the refractive index contrast, depending on the
information received, through successive cycles (Figure 7). This mechanism is fully

Figure 7.
The X-junction neuron switches from the balanced outputs (a) to the unbalanced behaviors, either due to feedback
on the alpha channel (b) or due to feedback on the beta channel (c). Learning dynamics of the solitonic junction:
starting from the initial neutral condition 50/50, the junction recognizes the input and switches accordingly.
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∇2Ai ¼ � ∈ NLEbias

1þ A1j j2þ A2j j2
ASATj j2

Ai (15)

where εNL is the nonlinear dielectric constant, Ebias is the electrostatic bias field
that allows the formation of photorefractive solitons and ASATj j2 the saturation inten-
sity. In this type of learning, only the A1 and A2 beams are able to excite the
nonlinearity underlying the index modification. The information signal is indeed
represented by a laser with a different wavelength, with respect to which the refrac-
tive index is not sensitive. The initial situation is represented by a perfectly balanced X
junction, as shown in Figure 7a1, which is characterized by a symmetrical structure
obtained by using two laser beams at the same power input. The injected signal,
having reached the solitonic node, “perceives” the same index and divides itself
perfectly 50% into the two output channels. By using different power ratios in the
writing phase, it is possible to build asymmetrical structures Figure 7a1 and 7b3. In
this case, the index will begin to differentiate already within the area of the soliton
soma and will result in an unequal division of the input information in the two out-
puts. However, the soliton neuron is also able to perform unsupervised learning tasks.
In this case, the refractive index of the crystal is also sensitive to the wavelength of the
signal, which, by propagating within the previously written structure, is able to
change it. The information becomes directly responsible for the asymmetrization of
the junction. For unsupervised learning, the Helmholtz equation becomes:

∇2Ai ¼ � ∈ NLEbias

1þ A1j j2þ A2j j2þη A3j j4 1�e�
t
γ

� �
ASATj j2

Ai (16)

where A3 represents the information signal and η an efficiency coefficient for the
nonlinear process that depends on the wavelength and the material used. These
structural variations can be the result of numerous successive propagation cycles or
single events characterized by much higher powers. This is another point of similarity
with the biological case. The biological signal, called spike, is propagated toward the
axon when the combination of input signals is above the threshold. This can occur as a
consequence of the accumulation of numerous inputs, spike trains, in a limited time
interval, or by virtue of a very intense signal.

In the solitonic case, learning is, therefore, identified with the process of changing
the refractive index and therefore has its own physical translation. What about mem-
ory? Many neuromorphic implementations, both in electronics and in optics, have
achieved remarkable results in the reproduction of a neural system, however, there is
always a great difficulty in defining a memory that is present at the same time as the
processing unit. The soliton X junction introduces a new paradigm in the field of
neuromorphic research, approaching the nature of biological neurons. The index mod-
ification is in general a semi-permanent property with times that depend on the partic-
ular material used. The input information is therefore saved in the particular
morphological structure obtained during the learning phase. In, the authors show the
possibility of building soliton neurons in bulk LiNbO3 crystals. This represents the first
supervised realization. The neuron is able to convey information, represented by a
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explained  in  [74],  where  a  numerical  code  FDTD  solving  the  nonlinear  equation
(Eq.  (1))  reported  below,  shows  the  morphological  evolution  of  the  neuron
(see  Figure  7),  index  of  learning  what  is  happening.
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signal with a different wavelength, traveling within the waveguides in the directions
declared by the local refractive index. Starting from these results and integrating them
with the technology of spatial solitons in thin films in lithium niobate [86], in [87] the
possibility of implementing soliton neurons in 8 μm films of lithium niobate is demon-
strated. This technology brings with it numerous new benefits. First of all, its extreme
compactness makes them a useful tool for integration into small devices. Furthermore,
the Lithium Niobate layers show focusing dynamics of two orders of magnitude faster
than the bulk counterparts. Finally, the films offer greater control over the propagation
of the beams within the crystal, ensuring considerable precision which results in greater
coupling and, ultimately, in a more performing soliton soma. By virtue of their plastic
behavior, soliton X-junction neurons can be interfaced in more complex structures, to
give rise to complex neural mappings capable of functionally replicating biological
neural tissue. This perspective represents the great innovation of the soliton
neuromorphic, which is not limited to reproducing a unity or a connection, as in
previous neuromorphic models, but is able to reach a higher and more complete level of
complexity, through the realization of a whole neural environment.

5. Bit-to-bit data storage and recognition

Solitonic neurons can be interconnected to form complex neural maps, and soliton
neural networks (SNNs) [75]. Their functioning is based on the movement of
photogenerated electrical charges that assume the same role played by neurotrans-
mitters in biological neural networks (BNN). Both regulate the intensity with which a
synaptic connection, solitonic or biological, is built, modified, or destroyed. Further-
more, the solitonic synapse, exactly as in the biological case, is the basis of the
memorization processes. The repetition of information results in synaptic strengthen-
ing, which is synonymous with information memorization [88]. Therefore, learning
and memorization are processes that occur through structural changes. In Figure 8,
the summary diagram of the functionality of the BNNs and SNNs.

Figure 8.
Functional diagrams on the left of a BNN network and on the right of an SNN network. Both are able to self-
modify their structure according to the information signals received to process and store them in precise neural
patterns [75].
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For an in-depth analysis of the SNN, we recommend reading [75].
An SNN network, at present, is able to perform an Episodic recognition. This term

derives from psychology studies that have made it possible to identify three ways of
working with memory, episodic, procedural, and semantic [89]. Memory is of an
episodic type if it records an event photographically, that is, it fails to decontextualize
the subjects present [90]. Let us consider the picture of a dog running in the moun-
tains. The dog subject is recognized only in that environment, mountains, and in that
position, running, if moved then it will be identified as different. Procedural memory,
on the other hand, identifies a mechanism and learns its rule. Finally, semantic mem-
ory contains these mechanisms within itself, thus reaching abstraction through the
analysis of details.

Figure 9.
Structure of a 4-bit SNN network. W is the weight of the junction point. In particular, W(1) is the weight relative
to the node of the first solitonic neuron in layer 1, W(2) is the weight relative to the node of the second solitonic
neuron in layer 2, and so on. The information inputs are represented by xi while yi the processed signals [75].
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  Recently,  an  SNN  has  been  studied  which  is  able  to  carry  out  a  4-bit  recognition.  It
is  formed  by  X-Junction  channels  written  with  equal  power  beams  in  order  to  create
50–50  junctions.  SNNs  are  divided  into  successive  layers  as  reported  in  Figure  9.

  The  first  layer  corresponds  to  the  input  face  and  is  characterized  by  a  number  N  of
channels  corresponding  to  the  number  of  information  (bits)  to  be  processed  and  to  the
number  of  incoming  laser  sources.  The  SNN  exploits  the  phenomenon  of  total  reflec-
tion  at  the  edge  in  correspondence  with  the  even  layers,  which  are  therefore  charac-
terized  by  N/2–2  neural  units.  While  the  odd  layers  are  characterized  by  N/2 
fundamental  units.
  This  network  is  able  to  learn  by  switching  the  propagating  signal  between  the  two
outputs  of  each  X-Junction.  By  appropriately  increasing  the  size  of  the  matrix  it  is 
possible  to  obtain  the  representation  of  any  SNN.  Each  channel,  therefore,  has  its  own
weight  which  is  modified  over  time  based  on  the  information  received  as  reported  in 
equation.
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The solitonic technology has allowed, until now, to successfully realize an episodic
memory able to save information through precise neural mapping. As information
flows into the SNN it modifies the refractive index of the network, determining
precise paths.

Learning the SNN takes place in two stages. The first phase, defined as Training,
consists in administering the information pattern to be learned to the network several
times. The network changes morphology accordingly. Then we try to understand how
profound the changes have been, or how much the information has been learned and
memorized. This phase is called validation. The network acts as a filter letting only the
saved information propagate.

Figure 10 was realized starting from the results proposed by [75]. It shows the
learning of 1-bit in four different cases corresponding to the four input channels. In
Figure 10a, the first line shows the network training with the four 1-digit in each
channel while the others are set to 0. The images below report the SNN recognizing
process: it uses the stored information to operate the comparison. Therefore, if digit 1

Figure 10.
In (a) training and validation processes of a 4-bit SNN are reported in 1-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].

Figure 11.
In (a) training and validation processes of a 4-bit SNN are reported in 2-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].
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of the new number corresponds to digit 1 of the training number, the output of the
network is high and the information is recognized. Otherwise, the output is low,
which means no recognition. Figures 11 and 12 report the learning cases of 2-digit and
3-digit, following the scheme already illustrated in Figure 10.

The SNN recognizes through a threshold process. If the output is higher than a
threshold, determined experimentally, then the recognition has occurred. This proce-
dure can be generalized to N bits according to the equation shown below.

Ioutputik ≥ θIinputik (18)

where θ is the pure number (�0.7).
Therefore, Optical Soliton Neural Networks are systems characterized by a struc-

tural dynamism, based on the plasticity of the refractive index, which can self-modify
to recognize previously learned or new signals. Learning and memorization occur at
the same time as physical evolutions.

6. Conclusions

Artificial intelligence is marking a profound innovation in everyday life. To over-
come the limitations of AI software, research has developed the neuromorphic
approach, which consists in reproducing the functional blocks of the human brain. A
first attempt was carried out by electronics, which however suffer from a structural
rigidity that does not match neural geometries. One of the fundamental qualities that
characterize them is in fact plasticity, that is to say, the ability to self-modify one’s
units to trap, learning, and memory, in its structure. The solitonic optical approach
that we have described in this chapter bases its effectiveness precisely on the concept
of plasticity and self-assembly. Compared to other optical technologies, which focus
on single neural properties (first of all excitability), soliton networks are able to
reproduce complex behavior by exploiting the local differences in refractive indices to
build specific trajectories for each information through the propagation of solitons.
SNNs are currently able to reproduce a specific type of psycho-memory, episodic

Figure 12.
In (a) training and validation processes of a 4-bit SNN are reported in 3-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].

19

Optical  Soliton  Neural  Networks
DOI:  http://dx.doi.org/10.5772/ 107927

102



Artificial Neural Networks - Recent Advances, New Perspectives and Applications

memory, in a particularly effective way, that is, with small powers (nW-μW) and 
with extremely low losses. SNNs capable of reproducing procedural and semantic 
memories are currently being studied. Once these objectives have been achieved, 
hardware that is functionally very close to biological neuronal dynamics will be avail-
able. In the biological neural system, the synaptic connections are created and deleted 
following the change in neurotransmitter density, in the soliton paradigm that we 
propose, the birth and modification of X-junction neurons depends on the density of 
photo-excited electric charges.
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Chapter 7

Application of Artificial Neural
Network in Solar Energy
Bin Du and Peter D. Lund

Abstract

Accurate prediction of system performance is very important for the optimal 
planning of solar energy systems. The latest research of artificial neural network
(ANN) technology for predicting the efficiency of solar thermal systems and the 
performance of photovoltaic system is reported here. Application of ANN to perfor-
mance assessment of solar collectors is briefly reviewed including novel all-glass 
straight-through evacuated tube collectors. An overview of the most recent work of 
ANN for combined photovoltaic/thermal panels (PV/T) and concentrating photovol-
taic collectors is also provided.

Keywords: artificial neural network, solar collector, performance prediction, thermal 
efficiency, photovoltaic/thermal, concentrating photovoltaics

1. Introduction

The increase of population and development of world industry requires the mas-
sive use of fossil fuel [1], resulting in environmental pollution and global warming.
Renewable energy is one of the effective technical methods to alleviate this phenom-
enon [2]. Solar Energy is the most rapidly developing and widely used renewable
energy technology. At present, there are many application forms, including solar
power generation [3], seawater desalination [4], heating [5], refrigeration [6], etc. For
the estimation for the efficiency of solar thermal systems, experimental study and
theoretical analytic simulation codes are often utilized [7, 8]. The traditional algo-
rithms usually employed are very complex, including the solution of complicated
different equations, which usually involves large resource and takes a great quantity
of time to give exact solutions [8]. Moreover, traditional analysis methods are often
based on simplified assumptions, as well as simplified models and solving nonlinear
partial differential equations, which reduce the prediction accuracy [9–11]. ANN is a
mathematical method that mimics the behavior of human brain. It has a strong ability
to learn and find nonlinear relationships between input and output in systems [12], so
it has the ability to realize information processing by adjusting the connection
between internal nodes [12]. Unlike complex laws and mathematical routines in
traditional analysis methods, ANN can learn key information patterns in
multidimensional information domain [8]. Therefore, ANN technology has obvious
advantages in speed, organization ability, fault tolerance and adaptability [8]. In
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recent years, ANN has gained more and more applications in the solar energy field,
such as solar radiation prediction [13–17], photovoltaic power generation [18–20],
solar drying [21], etc.

2. Background

The solar collector converts the solar radiation energy into heat and transfers it
to the heat transfer fluid [7]. Recently, the application of ANN technology in the
energy-engineering systems has attracted more and more attention. ANNs have
been utilized by many researchers for modeling and prediction of thermal perfor-
mance of various solar collectors. Delfani et al. [22] employed ANN to determine
the efficiency of direct absorption solar collector with nanofluid, and investigated
the influence of collector depth and length and other important parameters on its
working performance and Nusselt number. Maria et al. [23] built ANN models to
evaluate the efficiency of flat plate solar collectors with silver/water nanofluid, and
the results are in good agreement with the experimental data. Cuma [24] and
Kalogirou et al. [25] studied various methods to predict flat plate solar collectors
and solar water heater with cylindrical concentrator respectively and analyzed them
comparatively. It is evident that the ANN model greatly improved the prediction
accuracy.

Many ANN algorithms are employed to predict the solar heating system
performance. Kumar et al. [26] investigated a roughened solar air heater,
focusing on the comparison of three ANNs to evaluate its exegetic efficiency of
roughened solar air heater and obviously the Radial Basis Function (RBF) model has
the best performance. Abdellah et al. [27] compared the advantages and disadvantages
of traditional theoretical analysis (energy balance-based) method and ANN model
(data based modeling methods) in determining the performance of heat pipe solar
collector. According to the results, ANN was significantly superior to other traditional
theoretical methods. Kumar et al. [28] utilized ANN and multiple linear regression
model to evaluate heat transfer in a solar air heater with a rough absorber and
compared their performance according to a number of statistical criterias. Kumar
et al. [29] further contrasted ANN models with four training functions to estimate the
thermal performance of uniform flow porous bed solar air heater, and the results
showed that the prediction performance of the training function was better than the
other three. They also analyzed the advantages and disadvantages of three ANN
algorithms for thermal performance prediction of a solar air heater with unusual
physical structure [30]. Liu et al. [31] proposed an evacuated solar water heater which
has high collector efficiency by developing a technology based screening method.
Sadeghi et al. [32] studied the factors affecting the exergy and energy efficiency of
collectors and found that the usage of copper oxide/water nanofluid in a parabolic
concentrator improved the thermal efficiency. Diez et al. [33] employed various
methods to evaluate the outlet temperature of working medium, and concluded after
comparison that the generalized regression neural network has the best prediction
effect. ANN technology with above mentioned input to estimate the characteristics of
flat-plate collectors has also been presented. Comparison with conventional analytical
methods indicated the superiority of ANNmodels [34]. Budihardjo et al. [35] modeled
and analyzed heat transfer and fluid flow in single evacuated tubes. Morrison et al.
[36] investigated the influence of circular heat distribution on the performance of
such tubes.

2
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Figure 1.
(a) Overview of the all-glass straight-through evacuated tube (b) Cross-section view of the inlet of the collector
tube [51].
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3. Application  of  ANN  in  an  evacuated  tube  solar  collector

  At  present,  the  most  popular  evacuated  tube  solar  collector  (ETC)  in  the  market  is
Dewar-tube  [37,  38],  because  it  is  cheap  and  easy  to  manufacture  [38].  As  the  fluid 
flow  in  Dewar  tube  is  driven  by  buoyancy  [39–41],  salt  usually  deposit  at  the  bottom 
of  the  tube,  which  worsens  heat  transfer.  But  in  the  all-glass  straight-through  evacu-
ated  tube  solar  collector,  stronger  convection  promotes  heat  transfer,  reduces  heat 
losses  and  improves  water  quality  thus  eliminating  the  main  issue  of  salt  precipitation
and  weak  convective  heat  transfer  inherent  in  traditional  Dewar-tube  [37,  42].  Better
performance  and  high  efficiency  [36,  43–45]  decrease  the  cost  too.

3.1  Experimental  set-up

  The  structure  of  all-glass  straight-through  evacuated  tube  collector  is  shown  in 
Figure  1.  Both  ends  of  the  inner  (absorption  tube)  and  outer  tube  (cover  glass  tube)
are  fused  together.  The  space  between  the  inner  and  outer  tubes  is  vacuumed  with 
pressure  <0.013  Pa  to  reduce  convective  heat  loss.  The  selective  absorption  coating  is
coated  on  the  outer  surface  of  the  inner  tube.  Hence,  the  working  temperature  of  the
inner  tube  is  higher  than  that  of  the  outer  tube,  and  the  temperature  difference  leads 
to  thermal  stress.  For  the  safe  and  stable  operation  of  the  evacuated  tube,  the  outer 
tube  is  manufactured  of  glass  with  high  thermal  expansion  coefficient,  which  can 
withstand  the  thermal  stress.  The  detailed  structure  of  the  tube  is  illustrated  in
Table  1.

  The  heat  transfer  fluid  used  in  the  experiment  is  water,  which  flows  through  the 
all-glass  straight-through  evacuated  tube  solar  collector.  The  collector  inlet  and  outlet
temperatures  and  ambient  temperature  were  measured  by  thermocouples  and 
recorded  by  a  data  logger.  The  water  flow  rate  is  measured  by  the  rotameter  placed  at
the  inlet  of  the  tube,  as  illustrated  in  Figure  2.

  During  the  experiment,  water  flows  through  the  evacuated  tube  driven  by  a  pump,
and  the  flow  is  adjusted  and  stabilized  by  a  valve  connected  to  the  flow  meter.  The 
solar  radiation  intensity  is  surveyed  by  a  special  pyrometer.  The  experimental  site  is 
Nanjing,  China.  The  collected  actual  data  include  solar  radiation  intensity,  wind 
speed,  ambient  temperature,  inlet  and  outlet  water  temperature  and  water  flow  rate 
and.  The  experiment  was  implemented  from  10  a.m.  to  4  p.m.  every  day,  and  the  data
were  recorded  every  30  minutes  [30].
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3.2 Methodology

Most of the solar energy absorbed by the evacuated tube is transferred from the
tube inner wall of the tube to the working fluid flowing through the inner tube by
convection heat transfer. Another part of the energy is transmitted to the inner wall of
the outer glass tube through radiation and convection, and passes through the outer
glass tube through heat conduction. Heat is lost to the environment by convection and
to the sky by radiation from the outer surface of the outer glass tube.

Thermal efficiency is the most important criteria to evaluate the performance of
evacuated tube solar collector. Here, the thermal efficiency is defined as the ratio of
the heat obtained by the heat transfer fluid to the incident solar flux on the tube [30],
and is written as follows [22, 46–48].

Parameter Value

Length, L (m) 1.8

Absorber tube diameter, Dabs (m) 0.047

Outer glass tube diameter, Dgla (m) 0.058

Thickness of glass, ΔH (m) 0.003

Thermal conductivity of absorber, kabs (W=mK) 1.2

Specific heat of absorber, Cabs (J= kg � Kð Þ) 980

Absorptivity of selective coating, ξabs 0.96

Transmissivity of outer glass tube, τgla 0.96

Table 1.
Parameters of an all-glass straight through evacuated tube [11].

Figure 2.
Setup of the experimental system [12].
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ηth ¼ _mfCp Tfo � Tfið Þ
IAp

(1)

where IAp represents the solar radiation on the tube surface, Tfi and Tfo are the
inlet and outlet temperature of water, respectively, _mf means the mass flow rate of
heat transfer fluid, Cp is the specific heat of heat transfer fluid (J= kg �K� �

).

3.3 ANN modeling

The Multiple linear regression (MLR), Support vector regression (SVR), Back
Propagation neural network (BP) and Radial basis function (RBF) are employed here
for thermal efficiency prediction of the all-glass straight-through evacuated tube
collector. The following variables are used as input parameters of the models: water
flow rate mf , inlet water temperature Tfi, wind speed wa, ambient temperature Ta

and solar radiation intensity I. The thermal efficiency of the solar collector ηth is the
output lay. In this work, 70% of the total 158 experimental datasets are regarded as
training dataset and the other 30% is test sets. In ANN models, the optimum number
of neurons in hidden layer is evaluated by the equation which is recommended by
Ghritlahre et al. [7]:

Hn ¼ MþN
2

þ
ffiffiffiffiffiffi
Tn

p
# (2)

where Hn represents the number of hidden neurons, M and N are the input and
output neurons, Tn is the number of training data.

3.3.1 Data preparation

There is likely to be a large dimension and dimension units difference between the
measured data, which will seriously affect the prediction performance. Data normal-
ization is essential to eliminate the dimensional influence among the indices. Here, the
normalization is expressed as:

Ynorm ¼ Yi �mean
std

(3)

where mean represents the mean of the training samples, std. means the standard
deviation of the training samples. The normalized data is distributed in a reasonable
range, which is beneficial for further processing and analysis.

3.3.2 Performance evaluation criteria

Several criteria can be utilized to assess the accuracy of the proposed models. Their
definitions are as follows:

Coefficient of Determination:

R2 ¼ 1�
Pn

i¼1 XA,i �XP,ið Þ2Pn
i¼1X

2
P,i

(4)
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Root Mean Squared Error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

XA,i �XP,ið Þ2
s

# (5)

Mean Absolute Error:

MAE ¼ 1
n

Xn

i¼1

XA,i �XP,ið Þ (6)

where n represents the total number of data, XA,i is the actual efficiency of the
collector, and XP,i means the predicted efficiency value.

3.4 Results and discussion

After evaluation with Eq. (2), selecting 10–16 neurons in hidden layers to verify
with BP algorithm, and it is obvious that the model with 13 neurons is the best.

Table 2 illustrates the comparison of RBF, BP, MLR and SVR models in predicting
the thermal efficiency of all-glass straight-through evacuated tube.

It is evident that the accuracy of RBF is superior to the other methods followed by
the BP model, but obviously the SVR, BP and RBF can all successfully carry out the
prediction. Dealing with nonlinear problems is not the strength of MLR algorithm
[49]. For nonlinear problems, SVR finds a nonlinear mapping to map the input data to
the high-dimension feature space first, so that the separation status is greatly
improved. Then, to classify in such feature space, and after that return to the original
space, and then get the nonlinear classification of the original input space. However,
after all, SVR uses linear algorithm for nonlinear regression in high-dimensional
attribute space. Comparatively speaking, the major benefit of neural network method
is that it is good at solving complex nonlinear relationship among variables efficiently.
Thus, the deviation between the neural network model prediction values of the evac-
uated tube thermal efficiency and the actual data is the minimum.

The comparison between the actual data and the prediction results of the proposed
models is shown in Figure 3. It is evident that the results of RBF model are the closest
to the actual data among the four models investigated.

3.4.1 Sensitivity analysis

Sensitivity analysis refers to finding the sensitive factors that have a significant
impact on the output of the models from many uncertain factors, and analyzing and
calculating their impact and relative importance on the results. In short, sensitivity

Model MAE RMSE R2

MLR 0.0095 0.0121 0.6111

SVR 0.0056 0.0092 0.8447

BP 0.0053 0.0080 0.9059

RBF 0.0043 0.0066 0.9658

Table 2.
Accuracy of the models in performance prediction [11].
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analysis is to see which variable changes the conclusion is sensitive to [50]. Taking the
RBF model in this analysis as an example, the relative importance of every input
parameter to the output result is illustrated in Figure 4. Clearly, the solar radiation has
the largest impact on the efficiency prediction of the proposed evacuated tube,
followed by collector inlet temperature and water flow rate.

The efficiency value calculated by RBF model is illustrated in Figure 5. With the
enhancement of solar radiation and the increase of water flowrate, the convective heat
transfer in the tube is promoted, and the thermal performance of the evacuated tube
rises. Figure 5(b) shows the change of thermal efficiency of evacuated tube with
water flow rate and wind speed when the solar radiation intensity is 900 W=m2. It is
visible that the increase of wind speed promotes the heat dissipation from the surface
of the outer glass tube to the environment, resulting in a rise in the heat loss of the
evacuated tube and a decrease in its thermal efficiency.

3.5 Combining CFD and ANN techniques modeling

The dominant energy equations of the studied all-glass straight-through evacuated
tube solar collector, as well as necessary heat and mass transfer and other related

Figure 3.
(a) Comparison of experimental and MLR, SVR, BP and RBF predicted thermal efficiency. (b) Individual error
with MLR, SVR, BP and RBF models [11].

Figure 4.
(a) Relative importance of input variables based on solar radiation. (b) Relative importance (%) of the inlet
variables on the thermal efficiency of the evacuated tube [11].
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conditions required for theoretical analysis have been explained in detail in [51]. The
3-D model based on these equations and conditions of the proposed evacuated tube is
developed into the computational fluid dynamics (CFD) software ANSYS Fluent
[47, 52, 53] to carry out the heat transfer simulation.

Figure 6 shows the temperature distribution of the evacuated tube obtained by
numerical simulation of the tube model. In Figure 6, the inlet temperature is 298 K,
the mass flow rate is 25 kg=h, and the solar radiation intensity is 1000 W=m2.

The MLR, BP and convolutional neural network (CNN) [54, 55] models were
employed to determine the thermal characteristics of all-glass straight-through evac-
uated tube solar collector. A total of 243 experimental data sets were employed, of
which 70% were used for training and 30% were test datasets. Collector inlet water
temperature, wind speed, water flow rate, ambient temperature and solar radiation
intensity and the values calculated by the theoretical CFD models were used as input,
the collector outlet water temperature and the thermal efficiency of the tube were
regarded as output (see Figure 7). The output values with and without the theoretical
model + CFD were compared with experimental data.

The prediction accuracies of studied models are illustrated in Table 3. The mea-
surement criteria of CNN model with modeled value as one of the input parameters
(CFD-CNN) is the best. Comparing the data in Table 3, when the modeled value of
the collector outlet temperature is taken as one of the inputs, the prediction accuracies
of MLR, BP and CNN models are significantly enhanced (Figure 8).

Figure 5.
(a) Efficiency vs. water flow rate (wind speed 1.5 m/s). (b) Efficiency vs. water flow rate (solar intensity
900 W=m2) [11].

Figure 6.
(a) Temperature distribution alongside the tube. (b) Inlet and outlet temperature. Irradiance is
1000 W=m2 [51].
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of the most recent work on ANN for photovoltaic/thermal (PV/T) systems and con-
centrating PV(CPV) is presented.

Ammar et al. [56] investigated a PV/T based water pumping and heating system in
which the PV/T panel simultaneously delivers electrical power P and thermal power Q.
An ANN model was developed to determine the optimal power point (OPOP), which is
defined as the crossing point of the max(P � O) curves. The focus was to calculate the
optimal value of water flow with varying ambient temperature and solar radiation
conditions to ensure maximum electrical power and thermal power output. The pro-
posed neural network model regarded the solar radiation intensity and ambient tem-
perature as the input layer and the output is the corresponding optimal water flow rate.
The normal mean bias error (NMBE) was used to measure the accuracy of the ANN
when the ambient temperature was 5–35°C and the solar radiation varied from 350 to
950 W=m2, yielding a NMBE of �13.05%. The collected data was divided into cold and
hot season according to the weather, for which the OPOP was computed respectively.
The results show that during the hot season, with relatively stable weather conditions,
the accuracy of the estimated value of the neural network model is better. The ANN
algorithm provides a feasible control strategy for similar PV/T systems.

AI-Waeli et al. [57] studied a photovoltaic/thermal system using a special experi-
mental rig for ANN analysis., Three cooling strategies were employed to verify the
effectiveness of the design: PV/T with water-filled container and water as working
fluid, PV/T with PCM-filled container and water as working fluid, PV/T with con-
tainer filled with nanoparticles dispersed in Phase Change Material (PCM) and
nanofluid as working fluid, as well as the conventional PV panel as reference. The
nano-PCM and nanofluid using SiC nanoparticles yielded the best cooling effect
among these methods, and the maximum efficiency reached 13.3%, while the effi-
ciency of conventional PV was 8.1% only. Three ANN models, namely, MLP, SOFM
and SVM, were used to evaluate the performance of the investigated PV/T system
showing slight differences in the performance prediction.

Ahmadi et al. [58] developed ANN models such as multilayer perception (MLP),
RBF, least squares support vector machine (LSSVM) and adaptive neuro-fuzzy infer-
ence system (ANFIS) to model the efficiency of a PV/T plate which contains a full
circle tube as the fluid channel that is bonded to the absorber plate by special adhe-
sives. Solar heat, solar radiation, heat, flow rate, inlet temperature were regarded as
inputs, and the electrical efficiency as the output of these models. By comparing the
RMSE and correlation coefficient (R2), the LSSVM approach gave the best accuracy
with R2 = 0.9867. Using a sensitivity analysis, it was found that the inlet temperature
had the greatest impact on the efficiency of the proposed PV/T system.

ANNmodels were also used to predict the thermal efficiency of a PV/T system that
has a serpentine tube connected to the plate and using water as the cooling fluid [59].
MLP-ANN, ANFIS and LSSVMwere employed to specify the thermal efficiency of the
solar collector as output and inlet temperature, water flow rate and solar irradiance as
input layer. The ANN model provided that best prediction performance when using
the mean squared error (MSE) and determination coefficient (R2) for the comparison.
Also, here the inlet temperature proved to have the greatest impact on the thermal
efficiency of the PV/T panel.

Cao et al. [60] explored six AI models, including least-squares support vector
regression (LS-SVR), adaptive neuro-fuzzy inference systems (ANFIS), and four
ANN methods, i.e., multi-layer perceptron (MLP), cascade feedforward (CFF), radial
basis function (RBF) and generalized regression (GR) for evaluating the electrical
efficiency of a PV/T system cooled by the nanofluids. Through comprehensive

10

Artificial Neural Networks - Recent Advances, New Perspectives and Applications

119



Application  of  Artificial  Neural  Network  in  Solar  EnergyDOI:  http://dx.doi.org/10.5772/ 106977

comparison  of  statistical  indices  such  as  the  absolute  average  relative  deviation 
(AARD),  mean  square  error  (MSE)  and  coefficients  of  determination  (R2),  it  was
found  that  the  ANFIS  model  had  the  best  prediction  accuracy  for  the  electrical  effi-
ciency  of  studied  PV/T  system.  The  theoretical  analysis  also  showed  that  the  SiC  water
nanofluid  was  the  best  coolant  for  the  PV/T  system.

  In  [61],  three  ANN  methods,  including  the  radial-basis  function  artificial  neural 
network  (RBFANN),  were  employed  to  predict  the  performance  of  a  photovoltaic 
thermal  nanofluid  (PVT/N)  based  collector  system  which  is  equipped  with  a  copper 
sheet  and  tube  collector  and  zinc-oxide  (ZnO)/water  nanofluid  as  coolant.  Ten  days 
experimental  data  in  various  weather  conditions  were  used  for  training  and  to  test  of 
the  proposed  AI  approach.  Ambient  temperature,  incident  solar  radiation  and  fluid 
inlet  temperature  were  regarded  as  input  while  fluid  outlet  temperature  and  electrical
efficiency  were  set  as  the  output  layer.  The  ANFIS  was  more  accurate  for  predicting 
the  fluid  outlet  temperature,  but  the  RBFANN  was  superior  to  the  other  methods  to 
predict  the  electrical  efficiency  of  the  proposed  PVT/N  unit.

  Renno  et  al.  [62]  compared  the  prediction  performance  of  Random-Forest  (RF),  ANN
and  Linear  Regression  Model  (LRM)  approaches  to  predict  the  temperature  of  multi-
junction  solar  cells.  The  studied  cells  constituted  of  InGaP/GaAs/Ge  and  InGaP/InGaAs/
Ge  under  a  high  concentration  Fresnel  lens.  The  input  variables  were  the  local  hour,  global
radiation,  concentration  factor  and  the  environmental  temperature，and  the  cell  tempera-
ture  was  used  as  output.  The  RF  method  yielded  the  best  performance  with  the  lowest 
values  of  RMSE,  MAE  and  MAPE.  It  was  is  observed  that  the  cell  temperature  increased 
with  the  increasing  ambient  temperature,  solar  radiation,  and  concentration  ratio.

  In  [63],  the  power  output  of  a  V-trough  photovoltaic  system  was  predicted  with 
support  vector  machine  (SVM),  ANN,  kernel  and  nearest-neighbor  and  deep  learning
(DL)  methods.  Through  a  statistical  indices  comparison,  the  support  vector  machine 
gave  better  performance  prediction  accuracy,  although  all  the  presented  algorithms 
predicted  the  PV  module  power  output  satisfactorily.  Also,  the  ANN  model  was  not 
inferior  to  the  SVM  algorithm  in  evaluating  the  peak  data.  The  prediction  perfor-
mance  of  DL  and  ANN  were  also  compared  with  SVM.  The  results  showed  that  the 
predicted  PV  power  output  by  DL  was  higher  than  the  actual  data,  which  was  likely 
due  to  the  availability  of  data.

5.  Conclusions

  Application  of  artificial  neural  network  for  performance  prediction  of  solar  energy
collectors  has  briefly  been  introduced  here  including  comparison  to  traditional  analy-
sis  methods.

  Back  propagation  (BP),  radial  basis  function  (RBF),  support  vector  regression 
(SVR)  and  multiple  linear  regression  (MLR)  were  used  to  predict  the  performance  of
a  novel  all-glass  straight-through  evacuated  tube  solar  collector  employing  experi-
mental  datasets.  The  RBF  and  BP  outperformed  the  SVR  and  MLR  methods,  but  the 
accuracy  of  the  first  three  models  mentioned  above  were  well  within  acceptable  limits
(R2s  were  0.8447,  0.9059  and  0.9658,  respectively).  However,  the  MLR  algorithm  was
not  good  in  dealing  with  nonlinear  problems.  The  RBF  method  showed  the  best 
performance  with  the  lowest  RMSE  (0.0066)  and  the  lowest  MAE  (0.0043)  for  the 
solar  collector  efficiency  prediction.

  A  novel  approach  combining  mathematical  performance  simulation  (CFD)  and 
neural  networks  was  also  investigated  for  determining  the  performance  of  the  all-glass
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straight-through evacuated tube. The results show that regarding CFD modeled out-
put as the input of ANN significantly improved the evaluation accuracy of all pro-
posed models including MLR, BP and convolutional neural network (CNN). The CFD-
CNN model is superior to the other studied models with the highest R2 and the lowest 
RMSE, 0.9684 and 0.0044 (Table 3).

The research on applying ANN to photovoltaics was also reported with focus on 
the utilization of neural networks for output power prediction of photovoltaic/ther-
mal system (PV/T) and concentrating photovoltaics (CPV). The review demonstrated 
the usefulness of ANN also for the PV field.

Future work of ANN in solar energy could extend to other design parameters and 
meteorological data as input to the neural network model. Also, using new ANN 
approaches such as the recurrent neural network could be relevant. Future directions 
of interest include the combination of some metaheuristic methods such as gray wolf 
optimization (GWO), genetic algorithm (GA), particle swarm optimization (PSO) 
and ANN to optimize ANN structure and improve ANN performance. Extensions of 
ANN, e.g., extreme machine learning (EML), adaptive network-based fuzzy inference 
system can be used to improve prediction accuracy. Based on the work presented 
here, it is believed that the artificial neural network will increasingly be applied in the 
field of solar energy.
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Chapter 8

Modeling a Petrochemical Unit 
with Artificial Neural Networks 
(ANN)
Shafaati Akbar and Pourazad Hamidreza

Abstract

The purpose of this chapter is to model a petrochemical unit by neural networks 
to estimate the product flow rate of the plant by it. Multilayer perceptron and RBF 
neural networks have been used in this work, and finally, the outputs of both types 
of networks have been compared to choose the more accurate network. The same 
data have been used for training and modeling both networks. The data used for 
this modeling have been collected by measuring the flow rate of input materials and 
output products from the plant in ton per day. Table 1 shows the input materials and 
products.

Keywords: artificial neural networks, RBF, MLP, regression, petrochemical unit

1. Introduction

To model a petrochemical unit by the artificial neural network, the necessary
acquaintances with artificial neural networks should be made first, and we should 
answer the question of why we should use artificial neural networks instead of 
conventional methods.

The artificial neural network is a complex nonlinear computing system that is 
inspired by nature, and the main advantage of this network in performing calcula-
tions compared with other computing systems is because of its internal structure [1].

Neural networks are composed of a large number of neurons that have extensive 
connections with each other. These neurons have the ability to share information 
with each other. A neural network performs calculations by organizing neurons and 
communication between them and the information stored in them.

Using conventional modeling methods requires a lot of mathematical calculations 
and has many complications, especially when we are dealing with a nonlinear system. 
It takes a lot of time to do this, and if there is an error in the calculations, all the steps 
must be repeated, and the existing error must be identified and fixed. On the other 
hand, all the influencing parameters of the designed model should be considered, 
and a relationship should be defined for how it affects the system, and finding these 
relationships also has complications. Finding these relationships is important because 
it can have a great impact on the accuracy of the designed model’s output. Finally, all 
relevant equations must be solved, which is very time-consuming.
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There is no need to perform complex mathematical calculations in modeling 
with a neural network, and we can save time. Other advantages of neural networks 
compared with other methods include adaptability, nonlinearity, error tolerance, and 
flexibility against changing conditions.

To model with an artificial neural network, a dataset is needed to train the net-
work, and these data must be collected by experimental tests, industrial devices, etc.

For example, in the modeling of a petrochemical unit, the goal is to predict out-
puts according to the flow rate of input to the petrochemical unit, so to prepare basic 
data for training the network, it is necessary to flow rate of inputs and outputs, during 
different operations be measured and entered into the network as training data.

In this modeling, the entire petrochemical unit considered as a black box (Figure 1), 
and only the flow rates of input and output materials are considered as influencing param-
eters. This is because none of the processes that take place inside the petrochemical unit 
are involved in the model designed based on neural networks.

Here are several related works:
Tufaner et al. developed a three-layer artificial neural network (ANN) and 

nonlinear regression model to predict the performance of biogas production from 
the anaerobic hybrid reactor (AHR). In this study, experimental data were used to 
estimate the biogas production rate with models produced using both ANNs and non-
linear regression methods. Moreover, 10 related variables, such as reactor fill ratio, 
influent pH, effluent pH, influent alkalinity, effluent alkalinity, organic loading rate, 
effluent chemical oxygen demand, effluent total suspended solids, effluent suspended 
solids, and effluent volatile suspended solids, were selected as inputs of the model [2].

DS Pandey et al. developed a multilayer feed-forward neural network to predict 
the lower heating value of gas (LHV), lower heating value of gasification products 
including tars and entrained char (LHVp), and syngas yield during gasification of 
municipal solid waste (MSW) during gasification in a fluidized bed reactor. These 
artificial neural networks (ANNs) with different architectures are trained using 
the Levenberg-Marquardt (LM) back-propagation algorithm. Nine input and three 
output parameters are used to train and test various neural network architectures 
in both multiple-output and single-output prediction paradigms using the available 
experimental datasets [3].

M. EI-Sefy et al. developed a feed-forward back-propagation artificial neural 
network (ANN) model and trained to simulate the interaction between the reactor 
core and the primary and secondary coolant systems in a pressurized water reactor. 
A Nuclear Power Plant (NPP) is a complex dynamic system of systems with highly 
nonlinear behaviors. In order to control the plant operation under both normal and 
abnormal conditions, the different systems in NPPs (e.g., the reactor core compo-
nents, primary and secondary coolant systems) are usually monitored continuously, 
resulting in very large amounts of data. The transients used for model training 

Figure 1. 
Assumed structure for the petrochemical unit for modeling by artificial neural network.
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Figure 2. 
Schematic of an RBF neural network.

included perturbations in reactivity, steam valve coefficient, reactor core inlet tem-
perature, and steam generator inlet temperature. Uncertainties of the plant physical 
parameters and operating conditions were also incorporated in these transients [4].

1.1 Introduction to radial basis function networks (RBF)

  Radial basis neural networks  use the radial basis function instead of the logistic 
function as the activation function. The logistic function maps some arbitrary value 
to a 0–1 interval to answer a yes or no question (binary question) [5].
  These types of neural networks are suitable for “classification” and “decision-
making systems,” but they are not good in Continuous values. While the basic radial
basis function answers the question, how far are we from the goal? And this makes 
these neural networks suitable for function approximation and machine control
(for example, as an alternative to the PID controller) [5].
  Radial basis neural networks are special types of natural neural networks that are 
distance-based and measure the similarity between data based on distance.
  Unlike MLP networks, which have multiple consecutive layers, the RBF network 
consists of three fixed layers. An input layer, which is the input data entered into the 
network from there, the middle layer, which contains radial basis functions, and the 
output layer, which gives a linear combination of all middle layer outputs.
  Output layer uses a linear activation function or can be thought of without any 
activation function [6].

1.2 Introduction to multilayer perceptron networks (MLP)

  One of the most basic neural models available is the multilayer perceptron model,
which simulates the transfer function of the human brain. In this type of neural net-
work, most of the network behavior of the human brain and signal propagation have 
been considered in it, and hence, they are sometimes called feed-forward networks [1].
  Perceptron is a machine learning algorithm that is in the field of supervised learn-
ing. This algorithm is known as one of the first artificial neural network algorithms 
used in this field. Perceptron is considered a type of binary classification algorithm,
which means that this algorithm can decide whether a member belongs to a specific 
category or not [7].
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A multilayer perceptron neural network consists of at least three layers, which are 
the input layer, a hidden layer, and the output layer. In this type of artificial neural 
network, the outputs of the first (input) layer are used as the inputs of the next 
(hidden) layer. This continues until, after a certain number of layers, the outputs 
of the last hidden layer are used as the inputs of the output layer. All the layers that 
are placed between the input layer and the output layer are called “Hidden Layers” 
(Figures 2 and 3).

2. Modeling by radial basis function networks (RBF) neural network

The necessary dataset for training this network is by measuring the flow rate of 
input materials and products (outputs) that have been collected, which has been mea-
sured every day for a year. Table 1 shows the inputs and outputs of the petrochemical 
unit.

For testing the network, experimental data were given to the network and the 
networks outputs compared with the real outputs of petrochemical unit shown in the 
Figure 4.

The empty circles on the blue graph in Figure 4 indicate the measured amount 
of the products (experimental data or targets), and the empty circles on the orange 
graph also indicate the predicted parameters by the neural network. Some of these 
circles are almost coincident with each other, and some are slightly different from 
each other. In the best case, these points should overlap. The names of each of which 
are indicated by arrows.

To better understand the amount of difference and whether the network has 
provided an acceptable performance or not, we can use linear regression between the 
data estimated by the network and the measured parameters (experimental data). 
Figure 5 shows the regression between the experimental and predicted data used in 
Figure 4.

Figure 3. 
Schematic of an MLP neural network.
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As can be seen, the correlation coefficient between the estimated and experimen-
tal data is 0.987, which is acceptable for the petrochemical unit in non-essential and 
non-sensitive situations.

3. Modeling by multilayer perceptron (MLP) neural network

The multilayer perceptron network considered for this modeling consists of 
three layers. The first layer has 80, the second layer has 35, and the third layer has 13 
neurons.

Figure 4. 
Difference between RBF network’s outputs and experimental data(targets).

Inputs Outputs

SRG POLYETHYLENE

LPG HIPS

PBR GPPS

BENZENE EPS

ACRYLONITRILE ABS

BUTEN-1 TOLUENE

MINERAL OIL BD

GAS(Nm3/d) PENTANE

STEAM PROPYLENE

WATER(m3) C4 RAFFINATE

POWER C.F.O

STYRENE FUEL OIL

— C7-C9

Table 1. 
Inputs and outputs of the petrochemical unit.
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The activation functions considered for each of these layers are Relu for the first 
and second layers and purlin for the last layer, respectively.

The best performance of the network is achieved when it gives the value of the 
error between the network and the experimental data to the lowest possible value, 
and this is done by some functions, which are called performance functions. In this 

Figure 6. 
Difference between multilayer perceptron network’s outputs and experimental data(targets).

Figure 5. 
Regression between predicted data with RFB network and experimental data.
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modeling, the mean square error (MSE) performance function is used. For this 
modeling, the Levenberg Marquardt training algorithm is used [1, 8].

After the training process, the same data used for testing the RBF network in 
Figure 4 are used to test the MLP network, and the results are shown in Figure 6.

Like Figure 4, the blue graph represents the experimental data, and the orange 
graph represents the data estimated by the neural network. The empty circles on the 
blue graph in Figure 7 indicate the measured amount of the products (experimental 
data), and the empty circles on the orange graph also indicate the estimated parameters 
by the neural network.

As before, to better understand the amount of difference and whether the network 
has provided an acceptable performance or not, we can use linear regression between 
the data predicted by the network and the measured parameters (experimental data).

The correlation coefficient between experimental and estimated data by the 
network is equal to 0.995, which indicates the good performance of the network.

4. Conclusion

By comparing the correlation coefficient of the RBF neural network, which is 
equal to 0.987, and the correlation coefficient of the MLP neural network, which is 
equal to 0.995, it can be concluded that the MLP neural network can perform better 

Figure 7. 
Regression between predicted data with MLP network and experimental data.
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in estimating the amount of petrochemical unit products in different conditions. 
Due to the complex processes that are carried out inside the petrochemical unit, by 
which inputs are converted into products, a large number of experimental samples 
are needed for modeling by neural network and its training. In other words, we 
should take samples from everything that has a direct or indirect effect on the system 
under study (petrochemical unit) and changes the amount of products produced by 
the petrochemical unit. It means recording the amount of these changes and finally 
preparing the required dataset. It is obvious that one of the things that have a great 
effect on the amount of products produced from a petrochemical unit is the amount 
of input materials (feed). Therefore, the amount of changes in production products 
that occur due to changes in the amount of feed should be recorded. These changes 
were measured per ton per day. As it was said, complex processes take place inside the 
Petrochemical unit, such as chemical reactors, distillation towers, etc., each of which 
has an effect on the amount of production, but due to the limitation in measuring 
these factors, it was decided to measure only the amount of input feed and changes 
in the amount of produced products, and for this reason, we omitted the details and 
processes within the petrochemical unit. By doing this, the accuracy of the designed 
neural network was disrupted, and to solve this problem, it was decided to increase 
the number of samples collected from the amount of input materials (feed) and 
changes in the products produced, so that the neural network has more data for train-
ing. It took a year to collect this amount of data to complete the desired dataset.
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