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Fourier and Laplace Transforms

This book presents in a unified manner the fundamentals of both continuous and
discrete versions of the Fourier and Laplace transforms. These transforms play an
important role in the analysis of all kinds of physical phenomena. As a link between
the various applications of these transforms the authors use the theory of signals and
systems, as well as the theory of ordinary and partial differential equations.

The book is divided into four major parts: periodic functions and Fourier series,
non-periodic functions and the Fourier integral, switched-on signals and the Laplace
transform, and finally the discrete versions of these transforms, in particular the Dis-
crete Fourier Transform together with its fast implementation, and the z-transform.
Each part closes with a separate chapter on the applications of the specific transform
to signals, systems, and differential equations. The book includes a preliminary part
which develops the relevant concepts in signal and systems theory and also contains
a review of mathematical prerequisites.

This textbook is designed for self-study. It includes many worked examples, to-
gether with more than 450 exercises, and will be of great value to undergraduates
and graduate students in applied mathematics, electrical engineering, physics and
computer science.
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Preface

This book arose from the development of a course on Fourier and Laplace
transforms for the Open University of the Netherlands. Originally it was the
intention to get a suitable course by revising part of the book Analysis and
numerical analysis, part 3 in the series Mathematics for higher education
by R. van Asselt et al. (in Dutch). However, the revision turned out to be so
thorough that in fact a completely new book was created. We are grateful
that Educaboek was willing to publish the original Dutch edition of the book
besides the existing series.

In writing this book, the authors were led by a twofold objective:
- the ‘didactical structure’ should be such that the book is suitable for those
who want to learn this material through self-study or distance teaching,
without damaging its usefulness for classroom use;
- the material should be of interest to those who want to apply the Fourier
and Laplace transforms as well as to those who appreciate a mathematically
sound treatment of the theory.

We assume that the reader has a mathematical background comparable
to an undergraduate student in one of the technical sciences. In particular
we assume a basic understanding and skill in differential and integral cal-
culus. Some familiarity with complex numbers and series is also presumed,
although chapter 2 provides an opportunity to refresh this subject.

The material in this book is subdivided into parts. Each part consists of a
number of coherent chapters covering a specific part of the field of Fourier
and Laplace transforms. In each chapter we accurately state all the learning
objectives, so that the reader will know what we expect from him or her when
studying that particular chapter. Besides this, we start each chapter with an
introduction and we close each chapter with a summary and a selftest. The
selftest consists of a series of exercises that readers can use to test their own
knowledge and skills. For selected exercises, answers and extensive hints
will be available on the CUP website.

Sections contain such items as definitions, theorems, examples, and so on.
These are clearly marked in the left margin, often with a number attached to
them. In the remainder of the text we then refer to these numbered items.

ix



x Preface

For almost all theorems proofs are given following the heading Proof. The
end of a proof is indicated by a right-aligned black square: �. In some cases
it may be wise to skip the proof of a theorem in a first reading, in order not
to lose the main line of argument. The proof can be studied later on.

Examples are sometimes included in the running text, but often they are
presented separately. In the latter case they are again clearly marked in the
left margin (with possibly a number, if this is needed as a reference later on).
The end of an example is indicated by a right-aligned black triangle: �.

Mathematical formulas that are displayed on a separate line may or may
not be numbered. Only formulas referred to later on in the text have a number
(right-aligned and in brackets).

Some parts of the book have been marked with an asterisk: ∗. This con-
cerns elements such as sections, parts of sections, or exercises which are
considerably more difficult than the rest of the text. In those parts we go
deeper into the material or we present more detailed background material.
The book is written in such a way that these parts can be omitted.

The major part of this book has been written by Dr R.J. Beerends and
Dr H.G. ter Morsche. Smaller parts have been written by Drs J.C. van
den Berg and Ir E.M. van de Vrie. In writing this book we gratefully used
the comments made by Prof. Dr J. Boersma and the valuable remarks of
Ir G. Verkroost, Ir R. de Roo and Ir F.J. Oosterhof.

Finally we would like to thank Drs A.H.D.M. van Gijsel, E.D.S. van den
Heuvel, H.M. Welte and P.N. Truijen for their unremitting efforts to get this
book to the highest editorial level possible.



Introduction

Fourier and Laplace transforms are examples of mathematical operations which can
play an important role in the analysis of mathematical models for problems orig-
inating from a broad spectrum of fields. These transforms are certainly not new,
but the strong development of digital computers has given a new impulse to both
the applications and the theory. The first applications actually appeared in astron-
omy, prior to the publication in 1822 of the famous book Théorie analytique de la
chaleur by Joseph Fourier (1768 – 1830). In astronomy, sums of sine and cosine
functions were already used as a tool to describe periodic phenomena. However, in
Fourier’s time one came to the surprising conclusion that the Fourier theory could
also be applied to non-periodic phenomena, such as the important physical problem
of heat conduction. Fundamental for this was the discovery that an arbitrary func-
tion could be represented as a superposition of sine and cosine functions, hence, of
simple periodic functions. This also reflects the essential starting point of the vari-
ous Fourier and Laplace transforms: to represent functions or signals as a sum or an
integral of simple functions or signals. The information thus obtained turns out to
be of great importance for several applications. In electrical networks, for example,
the sinusoidal voltages or currents are important, since these can be used to describe
the operation of such a network in a convenient way. If one now knows how to
express the voltage of a voltage source in terms of these sinusoidal signals, then this
information often enables one to calculate the resulting currents and voltages in the
network.

Applications of Fourier and Laplace transforms occur, for example, in physical
problems, such as heat conduction, and when analyzing the transfer of signals in var-
ious systems. Some examples are electrical networks, communication systems, and
analogue and digital filters. Mechanical networks consisting of springs, masses and
dampers, for the production of shock absorbers for example, processes to analyze
chemical components, optical systems, and computer programs to process digitized
sounds or images, can all be considered as systems for which one can use Fourier
and Laplace transforms as well. The specific Fourier and Laplace transform being
used may differ from application to application. For electrical networks the Fourier
and Laplace transforms are applied to functions describing a current or voltage as
function of time. In heat conduction problems, transforms occur that are applied
to, for example, a temperature distribution as a function of position. In the mod-
ern theory of digital signal processing, discrete versions of the Fourier and Laplace
transforms are used to analyze and process a sequence of measurements or data,
originating for example from an audio signal or a digitized photo.

In this book the various transforms are all treated in detail. They are introduced
in a mathematically sound way, and many mutually related properties are derived,
so that the reader may experience not only the differences, but above all the great
coherence between the various transforms.

As a link between the various applications of the Fourier and Laplace transforms,
we use the theory of signals and systems as well as the theory of ordinary and partial
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2 Introduction

FIGURE 0.1
When digitizing a photo, information is lost. Conditions under which a good re-
construction can be obtained will be discussed in part 5. Copyright: Archives de
l’Académie des Sciences de Paris, Paris

differential equations. We do not assume that the reader is familiar with systems
theory. It is, however, an advantage to have some prior knowledge of some of the
elementary properties of linear differential equations.

Considering the importance of the applications, our first chapter deals with signals
and systems. It is also meant to incite interest in the theory of Fourier and Laplace
transforms. Besides this, part 1 also contains a chapter with mathematical prepara-
tions for the parts to follow. Readers with a limited mathematical background are
offered an opportunity here to supplement their knowledge.

In part 2 we meet our first transform, specifically meant for periodic functions
or signals. This is the theory of Fourier series. The central issue in this part is to
investigate the information on a periodic function that is contained in the so-called
Fourier coefficients, and especially if and how a periodic function can be described
by these Fourier coefficients. The final chapter of this part examines some of the ap-
plications of Fourier series in continuous-time systems and in solving ordinary and
partial differential equations. Differential equations often originate from a physical
problem, such as heat conduction, or from electrical networks.

Part 3 treats the Fourier integral as a transform that is applied to functions which
are no longer periodic. In order to construct a sound theory for the Fourier inte-
gral – keeping the applications in mind – we can no longer content ourselves with
the classical notion of a function. In this part we therefore pay special attention in
chapters 8 and 9 to distributions, among which is the well-known delta function.
Usually, a consistent treatment of the theory of distributions is only found in ad-
vanced textbooks on mathematics. This book shows that a satisfactory treatment is
also feasible for readers without a background in theoretical mathematics. In the
final chapter of this part, the use of the Fourier integral in systems theory and in
solving partial differential equations is explained in detail.

The Laplace transform is the subject of part 4. This transform is particularly rel-
evant when we are dealing with phenomena that are switched on. In the first chapter
an introduction is given to the theory of complex functions. It is then easier for the
reader to conceive of a Laplace transform as a function defined on the complex num-
bers. The treatment in part 4 proceeds more or less along the same lines as in parts 2
and 3, with a focus on the applications in systems theory and in solving differential
equations in the closing chapter.

In parts 2, 3 and 4, transforms were considered for functions defined on the
real numbers or on a part of these real numbers. Part 5 is dedicated to the dis-
crete transforms, which are intended for functions or signals defined on the integers.
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These functions or signals may arise by sampling a continuous-time signal, as in the
digitization of an audiosignal (or a photo, as in figure 0.1). In the first chapter of this
part, we discuss how this can be achieved without loss of information. This results
in the important sampling theorem. The second chapter in this part starts with the
treatment of the first discrete transform in this book, which is the so-called discrete
Fourier transform, abbreviated as DFT. The Fast Fourier Transform, abbreviated as
FFT, is the general term for several fast algorithms to calculate the DFT numerically.
In the third chapter of part 5 an FFT, based on the popular situation where the ‘length
of the DFT’ is a power of two, is treated extensively. In part 5 we also consider the
z-transform, which plays an important role in the analysis of discrete systems. The
final chapter is again dedicated to the applications. This time, the use of discrete
transforms in the study of discrete systems is explained.
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Applications and foundations
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CHAPTER 1

Signals and systems

I N T R O D U C T I O N

Fourier and Laplace transforms provide a technique to solve differential equations
which frequently occur when translating a physical problem into a mathematical
model. Examples are the vibrating string and the problem of heat conduction. These
will be discussed in chapters 5, 10 and 14.

Besides solving differential equations, Fourier and Laplace transforms are im-
portant tools in analyzing signals and the transfer of signals by systems. Hence,
the Fourier and Laplace transforms play a predominant role in the theory of signals
and systems. In the present chapter we will introduce those parts of the theory of
signals and systems that are crucial to the application of the Fourier and Laplace
transforms. In chapters 5, 10, 14 and 19 we will then show how the Fourier and
Laplace transforms are utilized.

Signals and systems are introduced in section 1.1 and then classified in sections
1.2 and 1.3, which means that on the basis of a number of properties they will
be divided into certain classes that are relevant to applications. The fundamental
signals are the sinusoidal signals (i.e. sine-shaped signals) and the time-harmonic
signals. Time-harmonic signals are complex-valued functions (the values of these
functions are complex numbers) which contain only one frequency. These constitute
the fundamental building blocks of the Fourier and Laplace transforms.

The most important properties of systems, treated in section 1.3, are linearity
and time-invariance. It is these two properties that turn Fourier and Laplace trans-
forms into an attractive tool. When a linear time-invariant system receives a time-
harmonic signal as input, the resulting signal is again a time-harmonic signal with
the same frequency. The way in which a linear time-invariant system transforms a
time-harmonic signal is expressed by the so-called frequency response, which will
also be considered in section 1.3.

The presentation of the theory of signals and systems, and of the Fourier and
Laplace transforms as well, turns out to be much more convenient and much simpler
if we allow the signals to have complex numbers as values, even though in practice
the values of signals will usually be real numbers. This chapter will therefore as-
sume that the reader has some familiarity with the complex numbers; if necessary
one can first consult part of chapter 2, where the complex numbers are treated in
more detail.

7



8 1 Signals and systems

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know what is meant by a signal and a system
- can distinguish between continuous-time, discrete-time, real, complex, periodic,

power, energy and causal signals
- know what a sinusoidal and a time-harmonic signal are
- are familiar with the terms amplitude, frequency and initial phase of a sinusoidal

and a time-harmonic signal
- know what is meant by the power- and energy-content of a signal and in particular

know what the power of a periodic signal is
- can distinguish between continuous-time, discrete-time, time-invariant, linear,

real, stable and causal systems
- know what is meant by the frequency response, amplitude response and phase

response for a linear time-invariant system
- know the significance of a sinusoidal signal for a real linear time-invariant system
- know the significance of causal signals for linear time-invariant causal systems.

1.1 Signals and systems

To clarify what will be meant by signals and systems in this book, we will first
consider an example.

In figure 1.1 a simple electric network is shown in which we have a series connec-
tion of a resistor R, a coil L and a voltage generator. The generator in the network

E(t)

R

L

+

_

i(t)

FIGURE 1.1
Electric network with resistor, coil and voltage generator.

supplies a voltage E(t) and as a consequence a current i(t) will flow in the network.
From the theory of electrical networks it follows that the current i(t) is determined
unambiguously by the voltage E(t), assuming that before we switch on the voltage
generator, the network is at rest and hence there is no current flowing through the coil
and resistor. We say that the current i(t) is uniquely determined by the voltage E(t).
Using the Kirchhoff voltage-law and the current–voltage relationship for the resis-
tor R and coil L, one can derive an equation from which the current i(t) can be
calculated explicitly as a function of time. Here we shall not be concerned with this
derivation and merely state the result:

i(t) = 1

L

∫ t

−∞
e−(t−τ)R/L E(τ ) dτ. (1.1)

This is an integral relationship of a type that we shall encounter quite frequently
in this book. The causal relation between E(t) and i(t) can be represented by the
diagram of figure 1.2. The way in which i(t) follows from E(t) is thus given by the
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E(t) i(t)
network

FIGURE 1.2
The relation between E(t) and i(t).

relation (1.1). Mathematically, this can be viewed as a mapping which assigns to a
function E(t) the function i(t). In systems theory this mapping is called a system.
The functions E(t) and i(t) are called the input and output respectively.

So a system is determined once the relationship is known between input and
corresponding output. It is of no importance how this relationship can be realized
physically (in our example by the electrical network). Often a system can even
be realized in several ways. To this end we consider the mechanical system in
figure 1.3, where a point-mass P with mass m is connected by an arm to a damper D.
The point-mass P is acted upon by a force F(t). As a result of the force the point P

v(t)
F(t) m

P

D

FIGURE 1.3
Mechanical system.

moves with velocity v(t). The movement causes a frictional force K in the damper
which is proportional to the velocity v(t), but in direction opposite to the direction
of v(t). Let k be the proportionality constant (the damping constant of the damper),
then K = −kv(t). Using Newton’s law one can derive an equation of motion for the
velocity v(t). Given F(t) one can then obtain from this equation a unique solution
for the velocity v(t), assuming that when the force F(t) starts acting, the mechanical
system is at rest. Again we shall not be concerned with the derivation and only state
the result:

v(t) = 1

m

∫ t

−∞
e−(t−τ)k/m F(τ ) dτ. (1.2)

Relation (1.2) defines, in the same way as relation (1.1), a system which assigns to
an input F(t) the output v(t). But when R = k and L = m then, apart from the
dimensions of the physical quantities involved, relations (1.1) and (1.2) are identical
and hence the systems are equal as well. The realizations however, are different!

This way of looking at systems has the advantage that the properties which can
be deduced from a system apply to all realizations. This will in particular be the
case for the applications of the Fourier and Laplace transforms.

It is now the right moment to introduce the concept of a signal. The previous
examples give rise to the following description of the notion of a signal.

A signal is a function.Signal

Thus, in the example of the electrical network, the voltage E(t) is a signal, which is
defined as a function of time. The preceding description of the concept of a signal
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is very general and has thus a broad application. It merely states that it is a function.
Even the domain, the set on which the function is defined, and the range, the set of
function-values, are not prescribed. For instance, the yearly energy consumption in
the Netherlands can be considered as a signal. See figure 1.4.

1500

energy consumption
(in 1015 joule)

'81 years

2000

2500

3000

'82 '83 '84 '85 '86 '87 '88 '89

FIGURE 1.4
Energy consumption in the Netherlands.

Now that we have introduced the notion of a signal, it will also be clear from the
foregoing what the concept of a system will mean in this book.

A system is a mapping L assigning to an input u a unique output y.System

It is customary to represent a system as a ‘black box’ with an input and an output
(see figure 1.5). The output y corresponding to the input u is uniquely determined
by u and is called the response of the system to the input u.Response

u y
L

FIGURE 1.5
System.

When y is the response of a system L to the input u, then, depending on the
context, we use either of the two notations

y = Lu,

u �→ y.

Our description of the concept of a system allows only one input and one output. In
general more inputs and outputs are possible. In this book we only consider systems
with one input and one output.

In the next section, signals will be classified on the basis of a number of
properties.



1.2 Classification of signals 11

1.2 Classification of signals

The values that a signal can attain will in general be real numbers. This has been the
case in all previous examples. Such signals are called real or real-valued signals.Real signal
However, in the treatment of Fourier and Laplace transforms it is a great advantage
to work with signals that have complex numbers as values. This means that we will
suppose that a signal f has the form

f = f1 + i f2,

where i is the imaginary unit for which i2 = −1, and f1 and f2 are two real-valued
signals. The signal f1 is called the real part of the complex signal f (notationComplex signal
Re f ) and f2 the imaginary part (notation Im f ). If necessary, one can first con-
sult chapter 2, where a review of the theory of complex numbers can be found.
In section 1.2.2 we will encounter an important example of a complex signal, the
so-called time-harmonic signal.

Note that two complex signals are equal if the real parts and the imaginary parts
of the complex signals agree. When for a signal f one has that f2 = Im f = 0,
then the signal is real. When f1 = Re f = 0 and f2 = Im f = 0, then the signal f
is equal to zero. This signal is called the null-signal.Null-signal

Usually, the signals occurring in practice are real. Hence, when dealing with
results obtained from the application of Fourier and Laplace transforms, it will be
important to consider specifically the consequences for real signals.

1.2.1 Continuous-time and discrete-time signals

In electrical networks and mechanical systems, the signals are a function of the time-
variable t , a real variable which may assume all real values. Such signals are called
continuous-time signals. However, it is not necessary that the adjective continuous-Continuous-time signal
time has any relation with time as a variable. It only expresses the fact that the
function is defined on R or a subinterval of R. Hence, a continuous-time signal is a
function defined on R or a subinterval of R. One should not confuse the concept of
a continuous-time signal with the concept of a continuous function as it is used in
mathematics.

In the example of the yearly energy consumption in the Netherlands, the signal
is not defined on R, but only defined for discrete moments of time. Such a signal
can be considered as a function defined on a part of Z, which is the set of integers.
In our example the value at n ∈ Z is the energy consumption in year n. A signal
defined on Z, or on a part of Z, will be called a discrete-time signal.Discrete-time signal

As a matter of fact we assume in this book, unless explicitly stated otherwise,
that continuous-time signals are defined on the whole of R and discrete-time signals
on the whole of Z. In theory, a signal can always be extended to, respectively, the
whole of R or the whole of Z.

We denote continuous-time signals by f (t), g(t), etc. and discrete-time signals
by f [n], g[n], etc., hence using square brackets surrounding the argument n.

The introduction of continuous-time and discrete-time signals that we have given
above excludes functions of more than one variable. In this book we thus confine
ourselves to signals depending on one variable only. As a consequence we also
confine ourselves to systems where the occurring signals depend on one variable
only.
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1.2.2 Periodic signals

An important class of signals consists of the periodic signals.

A continuous-time signal f (t) is called periodic with period T > 0 ifPeriodic continuous-
time signal

f (t + T ) = f (t) for t ∈ R.

A discrete-time signal f [n] is called periodic with period N ∈ N ifPeriodic discrete-
time signal

f [n + N ] = f [n] for n ∈ Z.

In the class of periodic signals the so-called sinusoidal signals play an importantSinusoidal signal
role. These are real signals which, in the continuous-time case, can be written as:

f (t) = A cos(ωt + φ0) for t ∈ R.

Here A is the amplitude, ω the (radial)frequency and φ0 the initial phase of theAmplitude
Frequency
Initial phase

signal. The period T equals T = 2π/ω.
In the discrete-time case the sinusoidal signals have the form:

f [n] = A cos(ωn + φ0) for n ∈ N.

Again A is the amplitude and φ0 the initial phase. The period N equals N = 2π/ω.
From this it follows that ω cannot be arbitrary since N is a natural number!

We now introduce an important complex periodic signal which we will repeatedly
come across in Fourier transforms. In order to do so, we will use Euler’s formula
for complex numbers, which is treated extensively in chapter 2, but will also be
introduced here in a nutshell.

A complex number z = x+iy with real part x and imaginary part y is represented
in the complex plane by a point with coordinates (x, y). Then the distance r =√

x2 + y2 to the origin is called the modulus |z| of z, while the angle φ of the radiusModulus
vector with the positive real axis is called the argument of z; notation φ = arg z. TheArgument
argument is thus determined up to an integral multiple of 2π . See figure 1.6. Using

x

yr

z

ϕ

FIGURE 1.6
Representation of a complex number in the complex plane.

polar coordinates in the complex plane, the complex number z can also be written as
z = r(cos φ + i sin φ). For the complex number z = cos φ + i sin φ Euler’s formulaEuler’s formula
gives the following representation as a complex exponential:

eiφ = cos φ + i sin φ.
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Hence, a complex number z with modulus r and argument φ can be written as

z = reiφ.

This formula has major advantages. One can compute with this complex exponential
as if it were a real exponential. The most important rule is the product formula.
When z1 = r1eiφ1 and z2 = r2eiφ2 , then one has, as expected,

z1z2 = r1r2ei(φ1+φ2).

This means that |z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2. The latter
relationship obviously only holds up to an integral multiple of 2π .

There are, however, also differences with the real exponential. For the real ex-
ponential it follows from ex = ey that x = y. This does not hold for complex
exponentials because ei(φ+2π) = eiφ for all real φ, since e2π i = 1.

In this chapter it is not our intention to go into the theory of complex numbers
any further. We will return to this in chapter 2. The preceding part of the theory
of complex numbers is only intended to allow the introduction of the following
complex periodic signal.

Let ω ∈ R and c be a complex constant. The complex signal f (t) is called a time-
harmonic continuous-time signal when it is given by

Time-harmonic
continuous-time signal

f (t) = ceiωt for t ∈ R.

If we write the complex number c as c = Aeiφ0 , where A is the modulus of c and
φ0 the argument, then the time-harmonic signal can also be written as follows:

f (t) = Aeiφ0 eiωt = Aei(ωt+φ0).

For a given value of t , one can represent f (t) in the complex plane by a point on
the circle having the origin as centre and A as radius. At time t = 0 the argument
is equal to φ0, the initial phase. In the complex plane the signal f (t) corresponds
to a circular movement with constant angular velocity |ω|. See figure 1.7. The
movement is in the clockwise direction if ω < 0 and counter-clockwise if ω > 0.
Note that the time-harmonic signal f (t) is periodic with period 2π/ | ω |. The real
number ω is called the frequency of the time-harmonic signal, A the amplitude andAmplitude, frequency and

initial phase of a
time-harmonic signal

φ0 the initial phase. Hence, the frequency can be negative and it then loses its
physical meaning. In the complex plane the sign of ω does indicate the direction of
the circular movement and then | ω | is the frequency.

Above we introduced a time-harmonic signal in the continuous-time case. Simi-
larly we define in the discrete-time case:

Let ω ∈ R and c be a complex constant. The discrete-time signal f [n] is called a
time-harmonic discrete-time signal when it is given by

Time-harmonic discrete-time
signal

f [n] = ceiωn for n ∈ Z.

In contrast to time-harmonic continuous-time signals, a time-harmonic discrete-time
signal will in general not be periodic. Only when | ω | = 2π/N for some positive
integer N will the time-harmonic discrete-time signal be periodic with period N .

A final remark we wish to make concerns the relationship between a time-
harmonic signal and a sinusoidal signal. We only consider the continuous-time
case; the discrete-time case follows from this by replacing t with the variable n.
From Euler’s formula it follows that

f (t) = Aei(ωt+φ0) = A(cos(ωt + φ0) + i sin(ωt + φ0)).
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ϕ0

ωt (t = 0)

A

FIGURE 1.7
Time-harmonic signal.

We conclude that a sinusoidal signal is the real part of a time-harmonic signal. A
sinusoidal signal can also be written as a combination of time-harmonic signals. For
this we use the complex conjugate z = x − iy of a complex number z = x + iy.
Then the complex conjugate of eiφ equals e−iφ . Since cos φ = (eiφ + e−iφ)/2,
one has (verify this):

A cos(ωt + φ0) = ceiωt + ce−iωt

2
with c = Aeiφ0 .

1.2.3 Power and energy signals

In electrical engineering it is customary to define the power of an element in an
electric network, through which a current i(t) flows and which has a drop in voltage
v(t), as the product i(t)v(t). The average power over the time-interval [t0, t1] then
equals

1

t1 − t0

∫ t1

t0
i(t)v(t) dt.

For a resistor of 1 ohm one has, ignoring the dimensions of the quantities involved,
that v(t) = i(t), so that in this case the average power equals

1

t1 − t0

∫ t1

t0
i2(t) dt.

In signal theory this expression is called the average power of the signal i(t) over the
time-interval [t0, t1]. The limiting-case, in which the average power is taken over
ever increasing time-intervals, leads to the definition of the power of a signal.
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The power P of a continuous-time signal f (t) is defined byPower (continuous-time)

P = lim
A→∞

1

2A

∫ A

−A
| f (t) |2 dt. (1.3)

If the power of a signal is finite, then the signal is called a power-signal. NoticePower-signal
(continuous-time) that in equation (1.3) we have not used f 2(t), but | f (t) |2. The reason is that the

power of a signal should not be negative, while for complex numbers the square
could indeed become negative, since i2 = −1, and could even result in a complex
value.

An example of a power-signal is a periodic signal. One can calculate the limit in
(1.3) explicitly for a periodic signal f (t) with period T . We formulate the result,
without proof, as follows.

Let f (t) be a periodic continuous-time signal with period T . Then f (t) is a power-
signal with power P equal to

Power of a periodic
continuous-time signal

P = 1

T

∫ T/2

−T/2
| f (t) |2 dt.

Besides the power-signals, one also has the so-called energy-signals. In the pre-
ceding example of the resistor of 1 ohm, the amount of energy absorbed by the
resistor during the time-interval [t0, t1] equals∫ t1

t0
i2(t) dt.

The definition of the energy-content of a signal concerns the time-interval −∞ to
∞. Hence, the energy-content of a continuous-time signal f (t) is defined by

Energy-content
(continuous-time)

E =
∫ ∞

−∞
| f (t) |2 dt.

A continuous-time signal with a finite energy-content is called an energy-signal.Energy-signal
(continuous-time)

For discrete-time signals one uses analogous concepts. Integrals turn into sums. We
will contend ourselves here with stating the definitions.

The power P of a discrete-time signal f [n] is defined by

Power (discrete-time)
P = lim

M→∞
1

2M

M∑
n=−M

| f [n] |2 .

If the power of a discrete-time signal is finite, then the signal is called a power-Power-signal (discrete-time)
signal. For a periodic discrete-time signal f [n] with period N one has, as for the
continuous-time case, that

Power of a periodic
discrete-time signal

P = 1

N

N−1∑
n=0

| f [n] |2.

The energy-content E of a discrete-time signal f [n] is defined by

Energy-content
(discrete-time)

E =
∞∑

n=−∞
| f [n] |2 .

If the energy-content of a signal is finite, then the signal is called an energy-signal.
Energy-signal (discrete-time)
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1.2.4 Causal signals

A final characteristic of a signal that we want to mention in this section has to do
with causality. In the next section the concept of causality is also introduced for
systems. In that context it will be easier to understand why the following definition
of a causal signal is used.

A continuous-time signal f (t), or a discrete-time signal f [n] respectively, is called
causal ifCausal

f (t) = 0 for t < 0,

f [n] = 0 for n < 0.

Periodic signals are thus not causal, with the exception of the null-signal. If a signal
has the property that f (t) = 0 for t < t0 and some t0, then we call t0 the switch-on
time of the signal f (t). Note that this definition does not fix the switch-on timeSwitch-on time
uniquely. If a signal has the property that f (t) = 0 for all t < 1, then besides t = 1
as switch-on time, one can also use t = 0. Similar definitions apply to discrete-time
signals. Notice that causal signals have switch-on time t = 0, or n = 0 in the
discrete case.

EXERCISES

Given are the two sinusoidal signals f1(t) = A1 cos(ωt + φ1) and f2(t) =1.1
A2 cos(ωt +φ2) with the same frequency ω. Show that the sum f1(t)+ f2(t) is also
a sinusoidal signal with frequency ω and determine its amplitude and initial phase.

Show that the sum of two time-harmonic signals f1(t) and f2(t) with the same fre-1.2
quency ω and with amplitudes A1 and A2 and initial phases φ1 and φ2 respectively
is again a time-harmonic signal with frequency ω and determine its amplitude and
initial phase.

Show that the sum of two discrete-time sinusoidal signals with the same frequency is1.3
again a discrete-time sinusoidal signal and determine its amplitude and initial phase.

Show that the sum of two discrete-time time-harmonic signals with the same fre-1.4
quency is again a discrete-time time-harmonic signal and determine its amplitude
and initial phase.

Calculate the power of the sinusoidal signal f (t) = A cos(ωt + φ0).1.5

Calculate the energy-content of the signal f (t) given by1.6

f (t) =
{

e−t for t > 0,
0 for t ≤ 0.

Calculate the power of the periodic discrete-time signal f [n] = cos(nπ/2).1.7

Calculate the energy-content of the causal discrete-time signal f [n] given by1.8

f [n] =
{

e−n for n ≥ 0,
0 for n < 0.

1.3 Classification of systems

Besides signals one can also classify systems. It is customary to do this on the basis
of the type of signals being processed by that system.
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1.3.1 Continuous-time and discrete-time systems

A continuous-time system is a system for which the input and output signals areContinuous-time system
continuous-time signals.
A discrete-time system is a system for which the input and output signals are discrete-Discrete-time system
time signals.
Discrete-time systems are of major importance in the modern field of digital signal
processing (e.g. Van den Enden and Verhoeckx (in Dutch), 1987 – see Literature at
the back of the book).

1.3.2 Linear time-invariant systems

We will now formulate two properties of systems that are crucial for the applica-
tion of Fourier and Laplace transforms. The first property concerns the linearity of
systems, while the second one concerns the time-invariance.

A system L is called linear if for each two inputs u and v and arbitrary complex aDEFINITION 1.1
Linear system and b one has

L(au + bv) = aLu + bLv . (1.4)

For continuous-time systems this property can be denoted as

au(t) + bv(t) �→ a(Lu)(t) + b(Lv)(t)

and for discrete-time systems as

au[n] + bv[n] �→ a(Lu)[n] + b(Lv)[n].

Note that in the preceding linear combination au + bv of the signals u and v , the
coefficients a and b may be complex. Since in general we assume that the signals
are complex, we will also allow complex numbers a and b in (1.4).

Let L be the continuous-time system described by equation (1.1). In order to showEXAMPLE 1.1
that the system is linear, we simply have to use the fact that integration is a linear
operation. The proof then proceeds as follows:

au(t) + bv(t) �→ 1

L

∫ t

−∞
e−(t−τ)R/L (au(τ ) + bv(τ )) dτ

= a

L

∫ t

−∞
e−(t−τ)R/L u(τ ) dτ + b

L

∫ t

−∞
e−(t−τ)R/L v(τ ) dτ

= a(Lu)(t) + b(Lv)(t).

�

For a discrete-time system L, the response y[n] to an input u[n] is given byEXAMPLE 1.2

y[n] = u[n] + 2u[n − 1] + u[n − 2]

4
for n ∈ Z.
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The output at time n is apparently a weighted average of the input u[n] at times n,
n − 1, n − 2. We verify the linearity of this system as follows:

au[n] + bv[n] �→
au[n] + bv[n] + 2au[n − 1] + 2bv[n − 1] + au[n − 2] + bv[n − 2]

4

= a(u[n] + 2u[n − 1] + u[n − 2])

4
+ b(v[n] + 2v[n − 1] + v[n − 2])

4

= a(Lu)[n] + b(Lv)[n].
�

The second property, the so-called time-invariance, has to do with the behaviour
of a system with respect to time-delays, or, more generally, shifts in the variable t
or n. When a system has the property that a time-shift in the input results in the
same time-shift in the output, then the system is called time-invariant. A precise
description is given in the following definition.

A continuous-time system is called time-invariant if for each input u(t) and eachDEFINITION 1.2
Time-invariant system t0 ∈ R one has:

if u(t) �→ y(t) then u(t − t0) �→ y(t − t0). (1.5)

A discrete-time system is called time-invariant if for each input u[n] and each n0 ∈ Z

one has:

if u[n] �→ y[n] then u[n − n0] �→ y[n − n0]. (1.6)

Once again we consider the continuous-time system described by (1.1). This is aEXAMPLE 1.3
time-invariant system, which can be verified as follows:

u(t − t0) �→ 1

L

∫ t

−∞
e−(t−τ)R/L u(τ − t0) dτ

= 1

L

∫ t−t0

−∞
e−(t−t0−ξ)R/L u(ξ) dξ = y(t − t0).

In this calculation a new integration variable ξ = τ − t0 was introduced. �

Again consider the discrete-time system given in example 1.2. This system is time-EXAMPLE 1.4
invariant as well. This immediately follows from condition (1.6):

u[n − n0] �→ u[n − n0] + 2u[n − 1 − n0] + u[n − 2 − n0]

4
= y[n − n0].

�

A system which is both linear and time-invariant is called a linear time-invariantLinear time-invariant system
system. It is precisely these linear time-invariant systems for which the Fourier
and Laplace transforms form a very attractive tool. These systems have the nice
property that the response to a time-harmonic signal, whenever this response exists,
is again a time-harmonic signal with the same frequency. However, the existence
of the response to a time-harmonic signal is not ensured. This has to do with the
eigenfrequencies and the stability of the system. We will discuss the role of stability
following our next theorem. Treatment of eigenfrequencies will be postponed until
chapter 5.

Let L be a linear time-invariant system and u a time-harmonic input with frequencyTHEOREM 1.1
ω ∈ R for which the response exists. Then the output y is also a time-harmonic
signal with the same frequency ω.
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Proof
We will only prove the case of a continuous-time system. The proof for a discrete-
time system can be given analogously. Let u(t) be a time-harmonic input with
frequency ω and let y(t) be the corresponding output. Hence, u(t) = ceiωt , where
c is a complex constant and ω ∈ R. The system is time-invariant and so one has for
each τ ∈ R:

ceiω(t−τ) �→ y(t − τ).

On the other hand one has that

u(t − τ) = ceiω(t−τ) = ce−iωτ eiωt = e−iωτ u(t).

Because of the linearity of the system, the response to u(t − τ) is then also equal to
e−iωτ y(t). We conclude that for each t ∈ R and τ ∈ R one has

y(t − τ) = e−iωτ y(t).

Substitution of t = 0, and then replacing −τ by t , leads to y(t) = y(0)eiωt , so y(t)
is again a time-harmonic signal with frequency ω. �

From the preceding proof it follows that the response y(t) to the input u(t) = eiωt

equals Ceiωt for some complex constant C , which can still depend on ω, meaning
that C is a function of ω. We call this function the frequency response of the system.Frequency response
Often one also uses the term system function or transfer function. For continuous-System function

Transfer function time systems the frequency response will be denoted by H(ω) and for discrete-time
systems by H(eiω). The reason for the different notation in the discrete case will
not be explained until chapter 19.

The frequency response of a linear time-invariant system is thus defined by the
following relations:

eiωt �→ H(ω)eiωt (1.7)

for a continuous-time system and

eiωn �→ H(eiω)eiωn (1.8)

for a discrete-time system. The frequency response H(ω) is complex and so can be
written in the form

H(ω) = | H(ω) | ei�(ω).

Here | H(ω) | and �(ω) are, respectively, the modulus and the argument of H(ω).Amplitude response
The function | H(ω) | is called the amplitude response and �(ω) the phase response.Phase response

Once more we consider the system described by (1.1), which originated from theEXAMPLE 1.5
RL-network of figure 1.1. The response y(t) to the input u(t) = eiωt equals

y(t) = 1

L

∫ t

−∞
e−(t−τ)R/L eiωτ dτ = 1

L

∫ ∞

0
e−ξ R/L eiω(t−ξ) dξ

=
(

1

L

∫ ∞

0
e−ξ R/L e−iωξ dξ

)
eiωt .
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This expression already shows that the response is again a time-harmonic signal
with the same frequency ω. The frequency response in this example equals

H(ω) = 1

L

∫ ∞

0
e−ξ R/L e−iωξ dξ .

In chapter 6 we will learn how to calculate this kind of integral. This is because we
are already dealing here with a Fourier transform. The result is:

H(ω) = 1

R + iωL
.

�

We consider the discrete-time system given in example 1.2, and calculate the re-EXAMPLE 1.6
sponse y[n] to the input u[n] = eiωn as follows:

y[n] = eiωn + 2eiω(n−1) + eiω(n−2)

4
= eiωn(1 + 2e−iω + e−2iω)

4
.

Again we see that the response is a time-harmonic signal. Apparently the frequency
response equals

H(eiω) = (1 + 2e−iω + e−2iω)

4
.

�

1.3.3 Stable systems

Prior to theorem 1.1 we observed that the response to a time-harmonic signal doesn’t
always exist. For so-called stable systems, however, the response exists for all fre-
quencies, and so the frequency response is defined for each ω. In order to describe
what will be meant by a stable system, we first give the definition of a bounded
signal.

A continuous-time signal f (t), or a discrete-time signal f [n] respectively, is called
bounded if there exists a positive constant K such thatBounded signal

| f (t) | ≤ K for t ∈ R (continuous-time),

| f [n] | ≤ K for n ∈ N (discrete-time).

The definition of a stable system is now as follows.

A system L is called stable if the response to each bounded signal is again bounded.DEFINITION 1.3
Stable system

A time-harmonic signal is an example of a bounded signal, since∣∣∣ ceiωt
∣∣∣ = | c |

∣∣∣ eiωt
∣∣∣ = | c | for t ∈ R.

Hence, for a stable system the response to the input ceiωt exists and this response is
bounded too.

1.3.4 Real systems

In our description of a system we assumed that the inputs and outputs are complex.
In principle it is then possible that a real input leads to a complex output. A system
is called real if the response to every real input is again real. Systems occurring inReal system
practice are mostly real.

If we apply a complex input u to a real linear system, so u = u1 + iu2 with u1
and u2 real signals, then, by the linearity property, the response y will equal y1 +iy2
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where y1 is the response to u1 and y2 the response to u2. Since the system is real,
the signals y1 and y2 are also real. For real linear systems one thus has the following
property.

The response to the real part of an input u is equal to the real part of the output y
and the response to the imaginary part of u is equal to the imaginary part of y.

One can use this property of real systems to calculate the response to a sinusoidal
signal in a clever way in the case when the frequency response is known. For the
continuous-time case this can be done as follows.

Let u(t) be the given sinusoidal input u(t) = A cos(ωt + φ0). Using Euler’s
formula we can consider the signal u(t) as the real part of the time-harmonic signal
ceiωt with c = Aeiφ0 . According to the definition of the frequency response, the
response to this signal equals cH(ω)eiωt . The system being real, this implies that
the response to the sinusoidal signal u(t) is equal to the real part of cH(ω)eiωt . In
order to calculate this real part, we write H(ω) in the form

H(ω) = | H(ω) | ei�(ω),

where | H(ω) | is the modulus of H(ω) and �(ω) the argument. For the response
y(t) to the input u(t) we then find that

y(t) = Re(Aeiφ0 | H(ω) | ei�(ω)eiωt ) = A | H(ω) | cos(ωt + φ0 + �(ω)).

For real systems and real signals one can thus benefit from working with complex
numbers. The response y(t) is again a sinusoidal signal with amplitude A | H(ω) |
and initial phase φ0 + �(ω). The amplitude is multiplied by the factor | H(ω) | and
one has a phase-shift �(ω). On the basis of these properties it is clear why | H(ω) |
is called the amplitude response and �(ω) the phase response of the system.

1.3.5 Causal systems

A system for which the response to an input at any given time t0 only depends on
the input at times prior to t0, hence, only on the ‘past’ of the input, is called a causal
system. A precise formulation is as follows.

A continuous-time system L is called causal if for each two inputs u(t) and v(t) andDEFINITION 1.4
Causal system for each t0 ∈ R one has:

if u(t) = v(t) for t < t0, then (Lu)(t) = (Lv)(t) for t < t0. (1.9)

A discrete-time system L is called causal if for each two inputs u[n] and v[n] and
for each n0 ∈ Z one has:

if u[n] = v[n] for n < n0, then (Lu)[n] = (Lv)[n] for n < n0. (1.10)

Systems occurring in practice are mostly causal. The notion of causality can be
simplified for linear time-invariant systems, since the following theorem holds for
linear time-invariant systems.

A linear time-invariant system L is causal if and only if the response to each causalTHEOREM 1.2
input is again causal.

Proof
Once again we confine ourselves to the case of continuous-time systems, since the
proof for discrete-time systems is almost exactly the same and there are only some
differences in notation.
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Assume that the system L is causal and let u(t) be a causal input. This means that
u(t) = 0 for t < 0, so u(t) equals the null-signal for t < 0. Since for linear systems
the response to the null-signal is again the null-signal, it follows from (1.9) that the
response y(t) to u(t) has to agree with the null-signal for t < 0, which means that
y(t) is causal.

Next assume that the response to each causal input is again a causal signal. Let
u(t) and v(t) be two inputs for which u(t) = v(t) for t < t0. Now introduce
w(t) = u(t + t0) − v(t + t0). Then the signal w(t), and so the response (Lw)(t) as
well, is causal. Since the system is linear and time-invariant, one has that (Lw)(t) =
(Lu)(t + t0) − (Lv)(t + t0). Hence, (Lu)(t + t0) = (Lv)(t + t0) for t < 0, that is,
(Lu)(t) = (Lv)(t) for t < t0. This finishes the proof. �

The linear time-invariant system described by (1.1) is causal. If we substitute aEXAMPLE 1.7
causal input u(t) in (1.1), then for t < 0 the integrand equals 0 on the interval of
integration (−∞, t], and so the integral also equals 0 for t < 0. �

The discrete-time system introduced in example 1.2 is causal. We have seen thatEXAMPLE 1.8
the system is linear and time-invariant. Substitution of a causal signal u[n] in the
relation

y[n] = u[n] + 2u[n − 1] + u[n − 2]

4

leads for n < 0 to the value y[n] = 0. So the response is causal and hence the
system is causal. �

1.3.6 Systems described by differential equations

For an important class of linear time-invariant continuous-time systems, the relation
between the input u(t) and the output y(t) is described by a differential equation of
the form

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a1

dy

dt
+ a0 y

= bn
dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b1

du

dt
+ b0u.

For example, in electrical networks one can derive these differential equations from
the so-called Kirchhoff laws. The differential equation above is called a linear differ-
ential equation with constant coefficients, and for these there exist general solution
methods. In this chapter we will not pursue these matters any further. In chapters 5,
10 and 14, systems described by differential equations will be treated in more detail.

1.3.7 Systems described by difference equations

For the linear time-invariant discrete-time case, the role of differential equations is
taken over by the so-called difference equations of the type

b0 y[n] + b1 y[n − 1] + · · · + bM y[n − M]

= a0u[n] + a1u[n − 1] + · · · + aN [n − N ].

This equation for the input u[n] and the output y[n] is called a linear difference
equation with constant coefficients. The systems described by difference equations
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are of major importance for the practical realization of systems. These will be dis-
cussed in detail in chapter 19.

EXERCISES

For a continuous-time system the response y(t) to an input u(t) is given by1.9

y(t) =
∫ t

t−1
u(τ ) dτ.

a Show that the system is real.
b Show that the system is stable.
c Show that the system is linear time-invariant.
d Calculate the response to the input u(t) = cos ωt .
e Calculate the response to the input u(t) = sin ωt .
f Calculate the amplitude response of the system.
g Calculate the frequency response of the system.

For a discrete-time system the response y[n] to an input u[n] is given by1.10

y[n] = u[n − 1] − 2u[n] + u[n + 1].

a Show that the system is linear time-invariant.
b Is the system causal? Justify your answer.
c Is the system stable? Justify your answer.
d Calculate the frequency response of the system.

Two linear time-invariant continuous-time systems L1 and L2 are given with, re-1.11
spectively, frequency response H1(ω) and H2(ω), amplitude response A1(ω) and
A2(ω) and phase response �1(ω) and �2(ω). The system L is a cascade connec-Cascade system
tion of L1 and L2 as drawn below.

u
L1

y
L2

FIGURE 1.8
Cascade connection of L1 and L2.

a Determine the frequency response of L.
b Determine the amplitude response of L.
c Determine the phase response of L.

For a linear time-invariant discrete-time system the frequency response is given by1.12
H(eiω) = (1 + i)e−2iω.
a Determine the amplitude response of the system.
b Determine the response to the input u[n] = 1 for all n.
c Determine the response to the input u[n] = cos ωn.
d Determine the response to the input u[n] = cos2 2ωn.

S U M M A R Y

An important field for the applications of the Fourier and Laplace transforms is
signal and systems theory. In this chapter we therefore introduced a number of
important concepts relating to signals and systems.



24 1 Signals and systems

Mathematically speaking, a system can be interpreted as a mapping which assigns
in a unique way an output y to an input u. What matters here is the relation between
input and output, not the physical realization of the system.

Mathematically, a signal is a function defined on R or Z. The function values are
allowed to be complex numbers.

In practice, various types of signal occur. Hence, the signals in this book were
subdivided into continuous-time signals, which are defined on R, and discrete-time
signals, which are defined on Z. An important class of signals is the periodic sig-
nals. Another subdivision is obtained by differentiating between energy- and power-
signals. Signals occurring in practice are mostly real-valued. These are called real
signals. An important real signal is the sinusoidal signal which, for a given fre-
quency ω, initial phase φ0 and amplitude A, can be written as f (t) = A cos(ωt+φ0)

in the continuous-time case and as f [n] = A cos(ωn+φ0) in the discrete-time case.
The sinusoidal signals are periodic in the continuous-time case. In general this is
not true in the discrete-time case. A sinusoidal signal can be considered as the real
part of a complex signal, the so-called time-harmonic signal ceiωt or ceiωn , with
frequency ω and complex constant c.

Time-harmonic signals play an important role, on the one hand in all of the
Fourier transforms, and on the other hand in systems that are both linear and time-
invariant. These are precisely the systems suitable for an analysis using Fourier and
Laplace transforms, because these linear time-invariant systems have the property
that time-harmonic input result in outputs which are again time-harmonic with the
same frequency. For a linear time-invariant system, the relation between a time-
harmonic input u and the response y can be expressed using the so-called frequency
response H(ω) or H(eiω) of the system:

eiωt �→ H(ω)eiωt (continuous-time system),

eiωn �→ H(eiω)eiωn (discrete-time system).

The modulus of the frequency response, H(ω) or H(eiω) respectively, is called
the amplitude response, while the argument of the frequency response is called the
phase response of the system. Of practical importance are furthermore the real, the
stable and the causal systems.

Real systems have the property that the response to a real input is again real. The
response of a sinusoidal signal is then a sinusoidal signal as well, with the same
frequency.

Stable systems have the property that bounded inputs result in outputs that are
also bounded. For these systems the frequency response is well-defined for each ω.

The response of a causal system at a specific time t depends only on the input at
earlier times, hence only on the ‘past’ of the input. For linear time-invariant systems
causality means that the response to a causal input is causal too. Here a signal is
called causal if it is switched on at time t0 ≥ 0.

S E L F T E S T

a Calculate the power of the signal f (t) = A cos ωt + B cos(ωt + φ0).1.13
b Calculate the energy-content of the signal f (t) given by

f (t) =



0 for t < 0,
sin(π t) for 0 ≤ t < 1,
0 for t ≥ 1.

Show that the power of the time-harmonic signal f (t) = ceiωt equals | c |2.1.14
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a Calculate the power of the signal f [n] = A cos(πn/4) + B sin(πn/2).1.15
b Calculate the energy-content of the signal f [n] given by

f [n] =
{

0 for n < 0,(
1
2

)n
for n ≥ 0.

For a linear time-invariant continuous-time system the frequency response is given1.16
by

H(ω) = eiω

ω2 + 1
.

a Calculate the amplitude and phase response of the system.
b The time-harmonic signal u(t) = iei t is applied to the system. Calculate the
response y(t) to u(t).

For a real linear time-invariant discrete-time system the amplitude response A(eiω)1.17
and phase response �(eiω) are given by A(eiω) = 1/(1 + ω2) and �(eiω) = ω

respectively. To the system the sinusoidal signal u[n] = sin 2n is applied.
a Is the signal u[n] periodic? Justify your answer.
b Show that the output is also a sinusoidal signal and determine the amplitude and
initial phase of this signal.

For a continuous-time system the relation between the input u(t) and the corre-1.18
sponding output y(t) is given by

y(t) = u(t − t0) +
∫ t

t−1
u(τ ) dτ.

a For which values of t0 is the system causal?
b Show that the system is stable.
c Is the system real? Justify your answer.
d Calculate the response to the sinusoidal signal u(t) = sin π t .

For a discrete-time system the relation between the input u[n] and the corresponding1.19
output y[n] is given by

y[n] = u[n − n0] +
n∑

l=n−2

u[l] .

a For which values of n0 ∈ Z is the system causal?
b Show that the system is stable.
c Is the system real? Justify your answer.
d Calculate the response to the input u[n] = cos πn.
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CHAPTER 2

Mathematical prerequisites

I N T R O D U C T I O N

In this chapter we present an overview of the necessary basic knowledge that will
be assumed as mathematical prerequisite in the chapters to follow. It is presupposed
that the reader already has previous knowledge of the subject matter in this chapter.
However, it is advisable to read this chapter thoroughly, and not only because one
may discover, and fill in, possible gaps in mathematical knowledge. This is because
in Fourier and Laplace transforms one uses the complex numbers quite extensively;
in general the functions that occur are complex-valued, sequences and series are se-
quences and series of complex numbers or of complex-valued functions, and power
series are in general complex power series. In introductory courses one usually re-
stricts the treatment of these subjects to real numbers and real functions. This will
not be the case in the present chapter. Complex numbers will play a prominent role.

In section 2.1 the principal properties of the complex numbers are discussed, as
well as the significance of the complex numbers for the zeros of polynomials. In
section 2.2 partial fraction expansions are treated, which is a technique to convert a
rational function into a sum of simple fractions. Section 2.3 contains a short treat-
ment of differential and integral calculus for complex-valued functions, that is, func-
tions which are defined on the real numbers, but whose function values may indeed
be complex numbers. One will find, however, that the differential and integral cal-
culus for complex-valued functions hardly differs from the calculus of real-valued
functions. In the same section we also introduce the class of piecewise continuous
functions, and the class of piecewise smooth functions, which are of importance
later on for the Fourier and Laplace transforms. In section 2.4 general convergence
properties, and other fundamental properties, of sequences and series of complex
numbers are considered. Again there will be some similarities with the theory of
sequences and series of real numbers. Fourier series are series of complex-valued
functions. Therefore some attention is paid to series of functions in section 2.4.3.
Finally, we treat the complex power series in section 2.5. These possess almost
identical properties to real power series.

27
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- can perform calculations with complex numbers, in cartesian as well as in polar

and exponential form
- know that by using complex numbers, a polynomial can be factorized entirely into

linear factors and that you are able to perform this factorization in simple cases
- know what is meant by the nth roots of unity
- know the technique of (complex) partial fraction expansions
- can apply differential and integral calculus to complex-valued functions
- know what is meant by a piecewise continuous and a piecewise smooth function
- can apply the theory of sequences and series to sequences and series with complex

terms
- are familiar with the concept of radius of convergence for complex power series

and can calculate the radius of convergence in simple situations
- know the properties of the sum of a power series.

2.1 Complex numbers, polynomials and rational functions

2.1.1 Elementary properties of complex numbers

The complex numbers are necessary in order to determine the solutions of all
quadratic equations. The equation x2 − 2x + 5 = 0 has no solution in the real
numbers. This is because by completing the square it follows that x2 − 2x + 5 =
(x − 1)2 + 4 > 0 for all real x . If we now introduce the imaginary unit i , which by
definition satisfies

i2 = −1,

and subsequently the complex number x = 1 + 2i , then (x − 1)2 + 4 = (2i)2 + 4 =
−4 + 4 = 0. Apparently the complex number x = 1 + 2i is a solution of the
given equation. Complex numbers are therefore defined as the numbers z that can
be written as

z = x + iy with x, y ∈ R. (2.1)

The collection of all these numbers is denoted by C. The real number x is called the
real part of z and denoted by x = Re z. The real number y is called the imaginaryReal part

Imaginary part part of z and denoted by y = Im z. Two complex numbers are equal if the real parts
and the imaginary parts are equal. For the complex number z one has that z = 0 if
Re z = 0 and Im z = 0. For the addition and multiplication of two complex numbers
z = x + iy and w = u + iv one has by definition that

z + w = (x + iy) + (u + iv) = (x + u) + i(y + v),

z · w = (x + iy)(u + iv) = (xu − yv) + i(xv + yu).

For subtraction and division one subsequently finds:

z − w = (x − u) + i(y − v),

z

w
= x + iy

u + iv
= x + iy

u + iv
· u − iv

u − iv
= xu + yv

u2 + v2
+ i

yu − xv

u2 + v2
for w �= 0.

We see that both sum and product as well as difference and quotient of two complex
numbers have been written in the form z = Re z + iIm z again. The set C is an
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extension of R, since a real number x can be written as x = x + 0 · i . The complex
conjugate of a complex number z is defined asComplex conjugate

z = x − iy.

Note that zz = x2 + y2 and z = z. One can easily check that the complex conjugate
has the following properties:

z + w = z + w, zw = zw,
( z

w

)
= z

w
if w �= 0.

Using the complex conjugate one can express the real and imaginary part of a com-
plex number as follows:

Re z = z + z

2
and Im z = z − z

2i
.

Since we need two real numbers x and y to describe a complex number z = x +
iy, one can assign to each complex number a point in the plane with rectangular
coordinates x and y, as shown in figure 2.1. The coordinates x and y are called
the cartesian coordinates. Figure 2.1 moreover shows the complex conjugate of z.Cartesian coordinates
The plane in figure 2.1 is called the complex plane and the axes the real axis and theComplex plane

Real axis imaginary axis. In this figure we see how the location of z can also be determined

Imaginary axis

x0 Re z

Im z

–y

y

ϕ

–ϕ

r

r

z = x + iy

z = x – iy

FIGURE 2.1
The complex number z and its complex conjugate z.

by using polar coordinates r and φ. Here r is the distance from z to the origin and φPolar coordinates
is the angle, expressed in radians, between the positive real axis and the vector from
the origin to z. Since x = r cos φ and y = r sin φ one has that

z = r(cos φ + i sin φ). (2.2)

Expressing z as in (2.1) is called the cartesian form of z, while expressing it asCartesian form
in (2.2) is called the polar form. As we shall see in a moment, multiplication ofPolar form
complex numbers is much more convenient in polar form than in cartesian form.
The number r , the distance from z to the origin, is called the modulus or absoluteModulus
value of z and is denoted by | z |. The complex numbers with | z | = 1 all have
distance 1 to the origin and so they form a circle with radius 1 and the origin as
centre. This circle is called the unit circle. The modulus is a generalization ofUnit circle
the absolute value for real numbers. For the modulus of z = x + iy one has (see
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figure 2.1) r2 = | z |2 = x2 + y2, hence r = | z | =
√

x2 + y2. When z is real, | z |
coincides with the well-known absolute value of a real number: | z | = | x | =

√
x2.

If z = x + iy and w = u + iv , then | z − w |2 = (x −u)2 + (y −v)2. In the complex
plane | z − w | is thus equal to the distance between the complex numbers z and w .
Using the definition of modulus it is easy to verify the following properties:

| z | = | z | , zz = | z |2 ,
1

z
= z

| z |2 if z �= 0. (2.3)

An important property of the modulus is the so-called triangle inequality.

For complex numbers z and w one hasTHEOREM 2.1
Triangle inequality

| z + w | ≤ | z | + | w | .
Proof
If z = x + iy, then | z |2 = x2 + y2 ≥ x2 = | x |2 = | Re z |2. Hence, | z | ≥ | Re z |.
In the same way one can show that | z | ≥ | Im z |. With these inequalities we can
prove the triangle inequality as follows:

| z + w |2 = (z + w)(z + w) = zz + (zw + zw) + ww

= zz + 2Re(zw) + ww ≤ | z |2 + 2 | zw | + | w |2
= | z |2 + 2 | z | | w | + | w |2 = (| z | + | w |)2 .

Hence, | z + w | ≤ | z | + | w |. �

The angle φ in the polar form of a complex number is called the argument of zArgument
and is denoted by φ = arg z. The argument of z is by no means uniquely determined
since φ + 2kπ (k an integer) is also an argument of z. If z is a positive number, then
arg z = 0 + 2kπ . If z is a negative number, then arg z = π + 2kπ . From figure 2.1
one immediately infers that the property

arg z = − arg z

holds up to an integer multiple of 2π . It will be agreed upon that all relations
involving arguments have to be read with the following clause: they hold up to an
integer multiple of 2π . In particular this also holds for the property in the following
theorem.

For complex numbers z and w one hasTHEOREM 2.2

arg(zw) = arg z + arg w .

Proof
If z = r(cos φ + i sin φ) and w = s(cos ψ + i sin ψ), then we find by a straightfor-
ward multiplication, and using the formulas cos(α + β) = cos α cos β − sin α sin β

and sin(α + β) = sin α cos β + cos α sin β, that

zw = rs(cos φ cos ψ − sin φ sin ψ + i(cos φ sin ψ + sin φ cos ψ))

= rs(cos(φ + ψ) + i sin(φ + ψ)).

One thus has that arg(zw) = φ + ψ = arg z + arg w . �

In the proof of theorem 2.2 we also see that | zw | = | rs | = | r | · | s | = | z | ·
| w |. Apparently a multiplication of complex numbers in polar form is simple: the
arguments have to be added and the moduli multiplied. Similarly one can show that
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division is easy as well, when using the polar form. We summarize the properties of
multiplication and division as follows:

arg(zw) = arg z + arg w, | zw | = | z | · | w | , (2.4)

arg
( z

w

)
= arg z − arg w,

∣∣∣ z

w

∣∣∣ = | z |
| w | for w �= 0. (2.5)

From (2.4) it follows that for all integer n, so also for negative n, one has the so-De Moivre’s formula
called De Moivre’s formula:

(cos φ + i sin φ)n = cos nφ + i sin nφ for φ ∈ R.

Since multiplication of complex numbers means adding arguments, it is quite natural
to use an exponential notation for the argument. For this we use Euler’s formula.

For each φ ∈ R the complex number eiφ is defined asDEFINITION 2.1
Euler’s formula

eiφ = cos φ + i sin φ.

For z = x + iy one defines ez by

ez = ex eiy = ex (cos y + i sin y). (2.6)

One can easily check that
∣∣∣ eiφ

∣∣∣ = 1 and arg(eiφ) = φ for all φ ∈ R. Hence eiφ

lies on the unit circle for each φ ∈ R. Furthermore we have

Re(ez) = ex cos y, Im(ez) = ex sin y,

arg(ez) = Im z,
∣∣ ez

∣∣ = ex = eRe z .

Since each complex number z can be written as z = r(cos φ + i sin φ) with r = | z |,
one can also write z in the so-called exponential formExponential form

z = reiφ = | z | eiφ.

Analogous to the proof of theorem 2.2 it now follows for φ, ψ ∈ R that

eiφeiψ = (cos φ + i sin φ)(cos ψ + i sin ψ)

= cos(φ + ψ) + i sin(φ + ψ) = ei(φ+ψ). (2.7)

The product of two complex numbers can now be written as

zw = | z | eiφ | w | eiψ = | z | | w | ei(φ+ψ).

We close this subsection with a list of frequently used properties involving the ex-
ponential form:∣∣∣ eiφ

∣∣∣ = 1 for φ ∈ R, (2.8)

cos φ = Re(eiφ), sin φ = Im(eiφ), (2.9)

eiφ = e−iφ, (2.10)

cos φ = eiφ + e−iφ

2
and sin φ = eiφ − e−iφ

2i
, (2.11)

e2π ik = 1 for k ∈ Z, (2.12)

ei(φ+2kπ) = eiφ for k ∈ Z, (2.13)(
eiφ

)k = eikφ for k ∈ Z. (2.14)
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2.1.2 Zeros of polynomials

We know that quadratic equations do not always admit real solutions. A quadratic
equation is an example of an equation of the more general type

anzn + an−1zn−1 + · · · + a1z + a0 = 0 (2.15)

in the unknown z, where we assume that the coefficients a0, a1,. . . , an may be
complex with an �= 0. In this subsection we will pay special attention to the solu-
tions or the roots of this equation. The left-hand side will be denoted by P(z), soRoot
P(z) = anzn + an−1zn−1 + · · · + a1z + a0, and is called a polynomial of degreePolynomial
n. Hence, solving equation (2.15) means determining the zeros of a polynomial.Zero
Using algebra, one can show that if z = a is a zero of P(z) (where a may also be
complex), then the polynomial P(z) can be written as P(z) = (z − a)Q1(z) for
some polynomial Q1(z). We then say that the linear factor z − a divides P(z). If
Q1(a) = 0 as well, then we can write P(z) as P(z) = (z − a)2 Q2(z). Of course,
we can continue in this way if Q2(a) = 0 as well. Ultimately, this leads to the
following statement.

If z = a is a zero of a polynomial P(z), then there exists a positive integer ν such
that

P(z) = (z − a)ν Q(z)

for some polynomial Q(z) with Q(a) �= 0. The number ν is called the multiplicityMultiplicity
of the zero a.

Let P(z) be the polynomial of degree four given byEXAMPLE 2.1

P(z) = z4 − 2z3 + 5z2 − 8z + 4.

Now z = 1 is a zero of P(z). This implies that we can divide by the factor z − 1,
which results in P(z) = (z − 1)(z3 − z2 + 4z − 4). However, z = 1 is also a zero
of z3 − z2 + 4z − 4. Again dividing by z − 1 results in P(z) = (z − 1)2(z2 + 4).
Since z = 1 is no longer a zero of z2 + 4, z = 1 is a zero of P(z) of multiplicity 2.
We also note that z = 2i and z = −2i are zeros of P(z). Factorizing z2 + 4 gives

P(z) = (z − 1)2(z − 2i)(z + 2i).

The polynomial has a zero z = 1 of multiplicity 2 and zeros z = 2i and z = −2i of
multiplicity 1. �

Zeros of multiplicity 1 are also called simple zeros. In the preceding example weSimple zero
saw that in the complex plane the polynomial P(z) is factorized entirely into linear
factors. This is a major advantage of the introduction of complex numbers. The fact
is that any arbitrary polynomial can be factorized entirely into linear factors. This
statement is based on the so-called fundamental theorem of algebra, which states
that (2.15) always has a solution in C. The treatment of the fundamental theorem of
algebra falls outside the scope of this book. We thus have the following important
property:

Let P(z) = anzn + an−1zn−1 + · · · + a1z + a0 be a polynomial of degree n. Then
P(z) can be written as

P(z) = an(z − z1)ν1 · · · (z − zk)νk . (2.16)

Here z1, . . . , zk are the distinct zeros of P(z) in C with their respective multi-
plicities.
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From (2.16) we can immediately conclude that the degree of P(z) equals the sum of
the multiplicities. If we count the number of zeros of a polynomial, with each zero
counted according to its multiplicity, then it follows that a polynomial of degree n
has precisely n zeros.

When in particular the coefficients of P(z) are real, then

P(z) = anzn + an−1zn−1 + · · · + a1z + a0 = P(z).

Hence, if P(a) = 0, then P(a) = 0 as well. Now if a is a non-real zero, that is if
a �= a, then

P(z) = (z − a)(z − a)Q(z) = (z2 − (a + a)z + aa)Q(z)

=
(

z2 − (2Re a)z + | a |2
)

Q(z).

Apparently the polynomial P(z) contains a quadratic factor with real coefficients
z2 − (2Re a)z +| a |2, which cannot be factorized any further into real linear factors.
As a consequence we have:

A polynomial with real coefficients can always be factorized into factors which are
linear or quadratic and having real coefficients. The zeros are real or they occur in
pairs of complex conjugates.

The polynomial z4 +4 is a polynomial with real coefficients. The complex zeros areEXAMPLE 2.2
(see exercise 2.6a): 1+ i , 1− i , −(1+ i), −(1− i). So z4 +4 = (z −1− i)(z −1+
i)(z + 1 + i)(z + 1 − i). Since (z − 1 − i)(z − 1 + i) = (z − 1)2 + 1 = z2 − 2z + 2
and (z + 1 + i)(z + 1 − i) = (z + 1)2 + 1 = z2 + 2z + 2, one has that

z4 + 4 = (z2 − 2z + 2)(z2 + 2z + 2).

This factorizes the polynomial z4 + 4 into two factors with real coefficients, which
can still be factorized into linear factors, but then these will no longer have real
coefficients. �

In the theory of the discrete Fourier transform, an important role is played by the
roots of the equation

zn = 1.

These roots are called the nth roots of unity. We know that the number of zeros ofnth roots of unity
zn − 1 is equal to n. First we determine the moduli of the zeros. From (2.4) follows
that

∣∣ zn
∣∣ = | z |n and since zn = 1, we obtain that | z | = 1. From this we conclude

that all solutions lie on the unit circle. The arguments of the solutions can be found
as follows:

n arg z = arg(zn) = arg 1 = 2kπ.

Dividing by n leads to arg z = 2kπ/n. For k = 0, 1, . . . , n − 1 this gives n distinct
solutions. The nth roots of unity are thus

zk = ei2kπ/n = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
for k = 0, 1, . . . , n − 1.

These solutions are drawn in figure 2.2 for the case n = 5. Note that the roots
display a symmetry with respect to the real axis. This is a consequence of the fact
that the polynomial zn − 1 has real coefficients and that thus the complex conjugate
of a zero is a zero as well.

The method described for solving the equation zn = 1 can be extended to equa-
tions of the type zn = a, where a is an arbitrary complex number. We will illustrate
this using the following example.
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0 Re z

Im z

1

z2

z1

z3

z4

z5

FIGURE 2.2
The solutions of z5 = 1.

We determine the roots of the equation z3 = 8i . First we note that | z |3 =
∣∣∣ z3

∣∣∣ =EXAMPLE 2.3

| 8i | = 8. From this it follows that | z | = 2, so the roots will lie on a circle with
radius 2. For the argument one has: 3 arg z = arg(z3) = arg(8i) = π/2 + 2kπ . So
arg z = π/6 + 2kπ/3 (k = 0, 1, 2). Hence, the roots are

zk = 2ei(π/6+2kπ/3) = 2
(

cos
(

1
6π + 2

3 kπ
)

+ i sin
(

1
6π + 2

3 kπ
))

,

for k = 0, 1, 2. See figure 2.3. �

0 Re z

Im z

2

z1
z2

z3

FIGURE 2.3
The solutions of z3 = 8i .

By completing the square one can reduce a quadratic equation to an equation of
the type z2 = a, which can subsequently be solved using the method above. To that
end we consider the following example.

Let the quadratic equation z2 + 2i z − 1 + i = 0 be given. Completing the squareEXAMPLE 2.4
leads to (z + i)2 + i = 0. Put w = z + i . Then w satisfies the equation w2 = −i .
Hence, |w2| = 1, implying that | w | = 1. For the argument one has: 2 arg w =



2.2 Partial fraction expansions 35

arg(w2) = arg(−i) = 3π/2 + 2kπ . From this it follows that arg w = 3π/4 + kπ

(k = 0, 1). We find the two roots w1 = cos(3π/4) + i sin(3π/4) = (−1 + i)/
√

2
and w2 = −w1 and subsequently the two roots z1 and z2 we were looking for:

z1 = w1 − i = −1

2

√
2 + i(

1

2

√
2 − 1),

z2 = w2 − i = 1

2

√
2 − i(

1

2

√
2 + 1).

�

EXERCISES

a Determine argument and modulus of z = −1 + i , z = 2i , z = −3 and z =2.1
−1 − i

√
3.

b Write z = 2 + 2i , z = −√
3 + i and z = −3i in exponential form.

Prove that for all complex z and w one has:2.2

| z ± w | ≥ | | z | − | w | | .
Prove the properties (2.8) up to (2.14).2.3

Let the complex numbers z1 = 4 − 4i and z2 = −2 + 2i
√

3 be given. Give the2.4
exponential form of z1/z2, z2

1z3
2 and z2

1/z3
2.

Draw in each of the following cases the set of complex numbers z in the complex2.5
plane satisfying:
a 0 < | z | < 3,
b | z | < 2,
c 4 < | z | < 5,
d | z − (1 + 2i) | < 3/2,
e Re z < 3,
f | Re z | < 2,
g Re z > 2 1

2 and | z − 2 | < 1.

Solve the following equations:2.6
a z4 + 4 = 0,
b z6 + 1 = i

√
3,

c 5z2 + 2z + 10 = 0.

Give a factorization of the polynomial z5 − z4 + z − 1 into linear factors only,2.7
and also into factors with real coefficients only and which cannot be factorized any
further into factors with real coefficients.

Determine the solutions z of the equation ez = 2i .2.8

2.2 Partial fraction expansions

The partial fraction expansion of rational functions is a technique which is used to
determine a primitive of a rational function. In the chapters on the Laplace transform
and the z-transform we shall see that the same technique can be used to determine
the inverse transform of a rational function. The technique will be explained in the
present section.

A rational function F(z) is a function which can be written in the following form:

F(z) = anzn + an−1zn−1 + · · · + a1z + a0

bm zm + bm−1zm−1 + · · · + b1z + b0
. (2.17)
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The numerator and denominator consist of polynomials in the complex variable z.
Denote the numerator by P(z) and the denominator by Q(z). We assume that bm �=
0 and an �= 0. The degree of the numerator is n and the degree of the denominator
is m. The zeros of Q(z) are called the poles of F(z). In section 2.1.2 we noted that,Pole
as a consequence of the fundamental theorem of algebra, in the complex plane each
polynomial can be factorized entirely into linear factors. The denominator Q(z) can
thus be written as

Q(z) = bm(z − z1)ν1(z − z2)ν2 · · · (z − zk)νk ,

where z1, z2, . . . , zk are the distinct zeros of Q(z). The point z j is then called a
pole of order ν j of F(z).Order of pole

Before starting with a partial fraction expansion, one should first check whether
or not the degree of the numerator is smaller than the degree of the denominator. If
this is not the case, then we first divide by the denominator, that is, we determine
polynomials D(z) and R(z) such that P(z) = D(z)Q(z) + R(z), where the degree
of R(z) is smaller than the degree of the denominator Q(z). As a consequence, F(z)
can be written as

F(z) = D(z) + R(z)

Q(z)
.

The rational function R(z)/Q(z) in the right-hand side now does have the property
that the degree of the numerator is smaller than the degree of the denominator. We
shall illustrate this using an example.

The rational function F(z) is given byEXAMPLE 2.5

F(z) = z4 + 1

z2 − 1
.

The degree of the numerator is greater than the degree of the denominator. We
therefore perform the following long division:

z2 − 1 / z4 + 1 \ z2 + 1
z4 − z2

z2 + 1
z2 − 1

2

From this it follows that z4 + 1 = (z2 + 1)(z2 − 1) + 2 and hence

F(z) = z2 + 1 + 2

z2 − 1
.

�

Henceforth we will assume that we are dealing with a rational function F(z) as
given by (2.17) but with the additional condition that n < m. The purpose of a
partial fraction expansion is then to write this rational function as a sum of fractions
with the numerators being (complex) constants and the denominators z − z1, z − z2,
. . . , z − zk . If the order ν j of a pole is greater than 1, then denominators (z − z j )

2,

(z − z j )
3, . . . , (z − z j )

ν j also occur. If the coefficients of Q(z) are real, then Q(z)
can be written as a product of linear and quadratic factors with real coefficients,
and F(z) can then be expanded into fractions with (powers of) linear and quadratic
denominators with real coefficients. For the quadratic denominators, the numerators
may be linear.
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The first step in the technique of the partial fraction expansion consists of a factor-
ization of the denominator Q(z). This means determining the zeros of Q(z) together
with their multiplicities. Next, the actual partial fraction expansion takes place. The
following two examples will show how partial fraction expansions are carried out in
the case where Q(z) is factorized entirely into linear factors.

Let the rational function be given byEXAMPLE 2.6

F(z) = z

(z − 1)2(z2 + 1)
.

The denominator Q(z) can be factorized into linear factors as follows: Q(z) =
(z − 1)2(z − i)(z + i). There is a zero z = 1 with multiplicity 2 and there are
simple zeros for z = ±i . A partial fraction expansion is aimed at writing F(z) in
the following form:

F(z) = A

z − 1
+ B

(z − 1)2
+ C

z − i
+ D

z + i
.

Here A, B, C and D are constants, still to be determined. Note that the zero of
multiplicity 2 has two fractions linked to it, while the simple zeros have only one.
The constants can be calculated as follows. Multiplying the expansion above by the
denominator Q(z) gives the identity

z = A(z − 1)(z2 + 1) + B(z2 + 1) + C(z − 1)2(z + i) + D(z − 1)2(z − i).(2.18)

Formally one should exclude the zeros of Q(z) in this identity, since these are the
poles of F(z). However, the right-hand and left-hand sides contain polynomials and
by a limit transition one can prove that for these values of z the identity remains
valid. Substituting the zeros z = 1, z = i and z = −i of Q(z) in (2.18) gives the
following results:

1 = 2B, i = 4C, −i = 4D.

We still lack one equation. To find it, we use yet another property of polynomials.
Namely, two polynomials in z are equal if and only if the coefficients of correspond-
ing powers are equal. Comparing the coefficients of z3 in both sides of equation
(2.18) establishes that

0 = A + C + D.

From the preceding equations it follows easily that A = 0, B = 1/2, C = i/4,
D = −i/4. Ultimately, the partial fraction expansion is as follows:

F(z) = 1/2

(z − 1)2
+ i/4

z − i
− i/4

z + i
= 1

2(z − 1)2
+ i

4(z − i)
− i

4(z + i)
.

�

Let the function F(z) be given byEXAMPLE 2.7

F(z) = z

z2 − 6i z − 8
.

We factorize the denominator Q(z) by first completing the square: Q(z) = (z −
3i)2 + 1 = (z − 3i − i)(z − 3i + i) = (z − 4i)(z − 2i). There are simple zeros at
z = 4i and at z = 2i . The rational function can then be expanded as follows:

F(z) = A

z − 4i
+ B

z − 2i
.
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The constants A and B can be found by first multiplying by the denominator and
then substituting its zeros. It then follows that A = 2 and B = −1. The partial
fraction expansion is as follows:

F(z) = 2

z − 4i
− 1

z − 2i
.

�

For some applications it is more convenient to obtain, starting from a rational
function with real coefficients in the numerator as well as in the denominator, a par-
tial fraction expansion where only fractions having real coefficients occur as well.
When all zeros of the denominator Q(z) are real, this is no problem; the partial frac-
tion expansion can then be performed as in the previous examples. If, however, Q(z)
has also non-real zeros, then linear factors will no longer suffice. In a real factoriza-
tion of Q(z), quadratic factors will then appear as well. In the following examples
we will show how in these circumstances one can determine a real expansion.

Let the function F(z) from example 2.6 be given:EXAMPLE 2.8

F(z) = z

(z − 1)2(z2 + 1)
.

The denominator contains a quadratic factor having no factorization into linear fac-
tors with real coefficients. With this factor we associate a fraction of the form

Az + B

z2 + 1

with real coefficients A and B. The partial fraction expansion now looks like this:

z

(z − 1)2(z2 + 1)
= A

z − 1
+ B

(z − 1)2
+ Cz + D

z2 + 1
.

Multiplying by the denominator of F(z) leads to the following identity:

z = A(z − 1)(z2 + 1) + B(z2 + 1) + (Cz + D)(z − 1)2.

Substitution of z = 1 gives B = 1/2. Next we equate coefficients of corresponding
powers of z. For the coefficient of z3, z2 and z it subsequently follows that

0 = A + C, 0 = −A + B − 2C + D, 1 = A + C − 2D.

The solution to this system of equations is A = 0, B = 1/2, C = 0, D = −1/2 and
so the real partial fraction expansion looks like this:

z

(z − 1)2(z2 + 1)
= 1/2

(z − 1)2
− 1/2

z2 + 1
= 1

2(z − 1)2
− 1

2(z2 + 1)
.

�

We finish with an example where a quadratic factor occurs twice in the denomi-
nator of F(z).

Let the function F(z) be given byEXAMPLE 2.9

F(z) = z2 + 3z + 3

(z2 + 2z + 4)2
.

The quadratic factor in the denominator cannot be factorized into linear factors with
real coefficients. Since the quadratic factor occurs twice, the partial fraction expan-
sion has the following form:

z2 + 3z + 3

(z2 + 2z + 4)2
= Az + B

z2 + 2z + 4
+ Cz + D

(z2 + 2z + 4)2
.
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Multiplying by the denominator of F(z) gives

z2 + 3z + 3 = (Az + B)(z2 + 2z + 4) + (Cz + D).

Equating the coefficients of z0, z1, z2 and z3 gives, respectively,

3 = 4B + D, 3 = 4A + 2B + C, 1 = 2A + B, 0 = A.

The solution to this system is A = 0, B = 1, C = 1, D = −1. The partial fraction
expansion is then as follows:

z2 + 3z + 3

(z2 + 2z + 4)2
= 1

z2 + 2z + 4
+ z − 1

(z2 + 2z + 4)2
.

�

EXERCISES

Determine the partial fraction expansion of F(z) given by2.9

F(z) = z

(z − 1/2)(z − 2)
.

Determine the partial fraction expansion, into fractions with linear denominators, of2.10
the function F(z) given by

F(z) = 1

z2 + 4z + 8
.

Determine the partial fraction expansion of the function F(z) given by2.11

a F(z) = z2

(z + 1)2(z + 3)
,

b F(z) = z2 + 1

(z + 1)3
.

Determine the partial fraction expansion, into fractions with denominators having2.12
real coefficients, of the function F(z) given by

F(z) = 2z2 − 5z + 11

z3 − 3z2 + 7z − 5
.

2.3 Complex-valued functions

In general, the functions in this book are prescriptions associating a complex number
with each real variable t from the domain. We call this a complex-valued function.Complex-valued function
An important example is the function f (t) = eiωt , where ω is a real constant. This
function is called a time-harmonic signal with frequency ω (see chapter 1). Note
that according to definition 2.1 one has that eiωt = cos ωt + i sin ωt .

A complex-valued function can be written as

f (t) = u(t) + iv(t),

where u and v are real-valued functions of the real argument t . Analogous to com-
plex numbers, we use the concepts real and imaginary part of f (t):

u(t) = Re f (t), v(t) = Im f (t).



40 2 Mathematical prerequisites
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FIGURE 2.4
Range of the functions eiπ t and eiπ t/t .

A complex-valued function can be represented as a graph by drawing its range in
the complex plane. This range is a curve in the complex plane having parametric
representation (u(t), v(t)). For the functions eiπ t and eiπ t/t (a part of) the range is
shown in figure 2.4.

For complex-valued functions the notion of a limit can simply be defined by
starting from limits of real-valued functions. We utilize the following definition.

Let L be a complex number and f (t) a complex-valued function with real part u(t)DEFINITION 2.2
Limit of a complex-valued
function

and imaginary part v(t). Then

lim
t→a

f (t) = L if and only if lim
t→a

u(t) = Re L and lim
t→a

v(t) = Im L .

A consequence of this definition is the following theorem.

Let L be a complex number and f (t) a complex-valued function. ThenTHEOREM 2.3
limt→a f (t) = L if and only if limt→a | f (t) − L | = 0.

Proof
We first prove that limt→a f (t) = L implies that limt→a | f (t) − L | = 0. If
limt→a f (t) = L , then by definition limt→a u(t) = Re L and limt→a v(t) = Im L
and hence

lim
t→a

| f (t) − L | = lim
t→a

√
(u(t) − Re L)2 + (v(t) − Im L)2 = √

0 + 0 = 0.

Next we prove that limt→a | f (t) − L | = 0 implies that limt→a f (t) = L . One
has that:

| u(t) − Re L | =
√

(u(t) − Re L)2 ≤
√

(u(t) − Re L)2 + (v(t) − Im L)2

= | f (t) − L | .
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From this it follows that if limt→a | f (t) − L | = 0, then limt→a u(t) = Re L .
Similarly one proves that limt→a v(t) = Im L . This completes the proof. �

We show that for each real ω one has: limt→∞ eiωt/t = 0. Since |eiωt/t | =EXAMPLE 2.10
1/t and limt→∞ 1/t = 0 we have limt→∞ |eiωt/t | = 0 and hence, according to
theorem 2.3, limt→∞ eiωt/t = 0. �

Concepts like continuity and differentiability of a function are defined using lim-Continuity

Differentiability its. For instance, a function is continuous at t = a if limt→a f (t) = f (a) and
differentiable at t = a if limt→a( f (t) − f (a))/(t − a) exists. One can show (this
is not very hard, but it will be omitted here) that for a complex-valued function
f (t) = u(t) + iv(t), the continuity of f (t) is equivalent to the continuity of both
the real part u(t) and the imaginary part v(t), and also that the differentiability of
f (t) is equivalent to the differentiability of u(t) and v(t). Moreover, one has for the
derivative at a point t that

f ′(t) = u′(t) + iv ′(t). (2.19)

Consequently, for the differentiation of complex-valued functions the same rules ap-
ply as for real-valued functions. Complex numbers may be considered as constants
here.

If f (t) = eat with a ∈ C, then f ′(t) = aeat . We can show this as follows: putEXAMPLE 2.11
a = x + iy and write f (t) as f (t) = ext eiyt = ext cos yt + iext sin yt . The real
and imaginary parts are differentiable everywhere with derivatives ext (x cos yt −
y sin yt) and ext (x sin yt + y cos yt) respectively. So

f ′(t) = xext (cos yt + i sin yt) + iyext (cos yt + i sin yt)

= (x + iy)ext eiyt = aeat .
�

With the chain rule we can differentiate a composition f (g(t)) of two functions.
The function f (t), however, is defined on (a part of) R. Hence, in the composition
g(t) should also be a real-valued function. The chain rule then has the usual formChain rule

d

dt
f (g(t)) = f ′(g(t))g′(t).

A consequence of this is:

d

dt
[ f (t)]n = n[ f (t)]n−1 f ′(t) for n = 1, 2, . . ..

Now that the concepts continuity and differentiability of complex-valued func-
tions have been introduced, we will proceed with the introduction of two classes
of functions that will play an important role in theorems on Fourier series, Fourier
integrals and Laplace transforms.

The first class consists of the so-called piecewise continuous functions. To start
with, we define in the usual manner the left-hand limit f (t−) and right-hand limitLeft-hand limit

Right-hand limit f (t+) of a function at the point t :

f (t−) = lim
h↓0

f (t − h) and f (t+) = lim
h↓0

f (t + h),

provided these limits exist.

A function f (t) is called piecewise continuous on the interval [a, b] if f (t) is con-DEFINITION 2.3
Piecewise continuous
function

tinuous at each point of (a, b), except possibly in a finite number of points t1, t2, . . . ,
tn . Moreover, f (a+), f (b−) and f (ti +), f (ti −) should exist for i = 1, . . . , n.
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A function f (t) is called piecewise continuous on R if f (t) is piecewise continuous
on each subinterval [a, b] of R.

One can show that a function f (t) which is piecewise continuous on an interval
[a, b] is also bounded on [a, b], that is to say: there exists a constant M > 0 such
that for all t in [a, b] one has | f (t) | ≤ M . Functions that possess a real or imaginary
part with a vertical asymptote in [a, b] are thus not piecewise continuous on [a, b].
Another example is the function f (t) = sin(1/t) for t �= 0 and f (0) = 0. This
function is continuous everywhere except at t = 0. Since f (0+) does not exist, this
function is not piecewise continuous on [0, 1] according to our definition.

Note that the function value f (t) at a point t of discontinuity doesn’t necessarily
have to equal f (t+) or f (t−).

A second class of functions to be introduced is the so-called piecewise smooth
functions. This property is linked to the derivative of the function. For a piecewise
continuous function, we will mean by f ′ the derivative of f at all points where it
exists.

A piecewise continuous function f (t) on the interval [a, b] is called piecewiseDEFINITION 2.4
Piecewise smooth function smooth if its derivative f ′(t) is piecewise continuous.

A function is called piecewise smooth on R if this function is piecewise smooth on
each subinterval [a, b] of R.

In figure 2.5 a graph is drawn of a real-valued piecewise smooth function.

0 tt1 t2 t3 t4

FIGURE 2.5
A piecewise smooth function.

There are now two possible ways of looking at the derivative in the neighbour-
hood of a point: on the one hand as the limits f ′(t+) and f ′(t−); on the other
hand by defining a left-hand derivative f ′−(t) and a right-hand derivative f ′+(t) asLeft-hand derivative

Right-hand derivative follows:

f ′−(t) = lim
h↑0

f (t + h) − f (t−)

h
, f ′+(t) = lim

h↓0

f (t + h) − f (t+)

h
, (2.20)

provided these limits exist. Note that in this definition of left-hand and right-hand
derivative one does not use the function value at t , since f (t) need not exist at the
point t . Often it is the case that f ′−(t) = f ′(t−) and f ′+(t) = f ′(t+). This holds
in particular for piecewise smooth functions, notably at the points of discontinuity
of f , as is proven in the next theorem.
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Let f (t) be a piecewise smooth function on the interval [a, b]. Then f ′+(a) =THEOREM 2.4
f ′(a+), f ′−(b) = f ′(b−) and for all a < t < b one has, moreover, that f ′−(t) =
f ′(t−) and f ′+(t) = f ′(t+).

Proof
We present the proof for right-hand limits. The proof for left-hand limits is anal-
ogous. So let t ∈ [a, b) be arbitrary. Using the mean value theorem from calcu-
lus we will show that the existence of f ′(t+) implies that f ′+(t) exists and that
f ′(t+) = f ′+(t). Since f and f ′ are both piecewise continuous, there exists an
h > 0 such that f and f ′ have no point of discontinuity on (t, t + h]. Possibly f
has a discontinuity at t . If we now redefine f at t as f (t+), then f is continuous on
[t, t + h]. Moreover, f is differentiable on (t, t + h). According to the mean value
theorem there then exists a ξ ∈ (t, t + h) such that

f (t + h) − f (t+)

h
= f ′(ξ).

Now let h ↓ 0, then ξ ↓ t . Since f ′(t+) = limξ↓t f ′(ξ) exists, it follows from
(2.20) that f ′+(t) exists and that f ′(t+) = f ′+(t). �

When a function is not piecewise smooth, the left- and right-hand derivatives
will not always be equal to the left- and right-hand limits of the derivative, as the
following example shows.

Let the function f (t) be given byEXAMPLE

f (t) =
{

t2 sin(1/t) for t �= 0,
0 for t = 0.

The left- and right-hand derivatives of f (t) at t = 0, calculated according to (2.20),
exist and are equal to 0. However, if we first calculate the derivative f ′(t), then

f ′(t) =
{

2t sin(1/t) − cos(1/t) for t �= 0,
0 for t = 0.

It then turns out that f ′(0+) and f ′(0−) do not exist, since cos(1/t) has no left- or
right-hand limit at t = 0. �

The theory of the Riemann integral and the improper Riemann integral for real-
valued functions can easily be extended to complex-valued functions as well. For
complex-valued functions the (improper) Riemann integral exists on an interval if
and only if both the (improper) Riemann integral of the real part u(t) and the imag-
inary part v(t) exist on that interval. Moreover, one has

Definite integral
∫ b

a
f (t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt. (2.21)

Here a = −∞ or b = ∞ is also allowed. We recall that the value of an integral
does not change by altering the value of the function at the possible jump discontinu-
ities. From (2.21) the following properties of definite integrals for complex-valued
functions immediately follow:

∫ b

a
f (t) dt =

∫ b

a
f (t) dt,

Re
∫ b

a
f (t) dt =

∫ b

a
Re f (t) dt and Im

∫ b

a
f (t) dt =

∫ b

a
Im f (t) dt.



44 2 Mathematical prerequisites

The fundamental theorem of calculus for complex-valued functions is no different
from the one for real-valued functions. Here we will formulate the fundamental
theorem for piecewise continuous functions, for which we state without proof that
they are Riemann integrable.

Let f (t) be a piecewise continuous function defined on the interval [a, b]. LetTHEOREM 2.5
F(x) = ∫ x

a f (t) dt. Then F is continuous and piecewise smooth on [a, b].

From the preceding theorem one can then derive that for continuous and piece-
wise smooth complex-valued functions, the rule for integration by parts can be ap-
plied in the same way as the rule for integration by parts of real-valued functions.

We calculate the integral
∫ π

0 te2i t dt by applying the rule for integration by parts.EXAMPLE 2.12

∫ π

0
te2i t dt = 1

2i

∫ π

0
t (e2i t )′ dt =

[
1

2i
te2i t

]π

0
− 1

2i

∫ π

0
e2i t (t)′ dt

= 1

2i
πe2π i − 1

2i

∫ π

0
e2i t dt = π

2i
+

[
1

4
e2i t

]π

0

= π

2i
+ 1

4
(e2π i − 1) = π

2i
.

�

The following inequality is often applied to estimate integrals:∣∣∣∣∣
∫ b

a
f (t) dt

∣∣∣∣∣ ≤
∫ b

a
| f (t) | dt for b ≥ a. (2.22)

For real-valued functions this is a well-known inequality. Here we omit the proof
for complex-valued functions. In fact one can consider this inequality as a general-
ization of the triangle inequality (theorem 2.1). A direct consequence of inequality
(2.22) is the following inequality. If | f (t) | ≤ M on the integration interval [a, b],
then∣∣∣∣∣
∫ b

a
f (t) dt

∣∣∣∣∣ ≤
∫ b

a
| f (t) | dt ≤

∫ b

a
M dt = M(b − a).

For all complex s with Re s �= 0 and real T > 0 one hasEXAMPLE 2.13 ∣∣∣∣∣
∫ T

0
e−st dt

∣∣∣∣∣ ≤
∫ T

0

∣∣ e−st ∣∣ dt =
∫ T

0
e−(Re s)t dt = 1 − e−(Re s)T

Re s
.

�

EXERCISES

Determine the derivative of the following functions:2.13

a f (t) = 1

1 + i t
,

b f (t) = e−i t2
.

Let a positive real number ω0 be given. Put T = 2π/ω0. Calculate
∫ T

0 t2eiω0t dt .2.14

Show that2.15 ∣∣∣∣∣
∫ 1

0

1

2 − eit
dt

∣∣∣∣∣ ≤ 1.
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2.4 Sequences and series

2.4.1 Basic properties

The concept of an infinite series plays a predominant role in chapters 3 to 5 and will
also return regularly later on. We will assume that the reader is already acquainted
with the theory of sequences and series, as far as the terms of the sequence or the
series consist of real numbers. In this section the theory is extended to complex
numbers. In general, the terms of a sequence

(an) with n = 0, 1, 2, . . .

will then be complex numbers, as is the case for the terms of a series

∞∑
n=0

an = a0 + a1 + · · · .

For limits of sequences of complex numbers we follow the same line as for limits of
complex-valued functions. Assuming that the concept of convergence of a sequence
of real numbers is known, we start with the following definition of convergence of
a sequence of complex numbers.

A sequence (an) of complex numbers with un = Re an and vn = Im an convergesDEFINITION 2.5
Convergence of sequences if both the sequence of real numbers (un) and the sequence of real numbers (vn)

converge. Moreover, the limit of the sequence (an) then equals

lim
n→∞ an = lim

n→∞ un + i lim
n→∞ vn .

Let the sequence (an) be given byEXAMPLE 2.14

an = n(ei/n − 1) with n = 0, 1, 2, . . ..

Since ei/n = cos(1/n) + i sin(1/n) one has un = Re an = n(cos(1/n) − 1)

and vn = Im an = n sin(1/n). Verify for yourself that limn→∞ un = 0 and
limn→∞ vn = 1. Hence, the sequence (an) converges and limn→∞ an = i . �

Our next theorem resembles theorem 2.3 and can also be proven in the same way.

A sequence (an) converges and has limit a if and only if limn→∞ | an − a | = 0.THEOREM 2.6

For complex z one hasEXAMPLE 2.15

lim
n→∞ zn = 0 if | z | < 1.

We know that for real r with −1 < r < 1 one has limn→∞ rn = 0. So if | z | < 1,
then limn→∞

∣∣ zn
∣∣ = limn→∞ | z |n = 0. Using theorem 2.6 with a = 0 we

conclude that limn→∞ zn = 0. �

In the complex plane | an − a | is the distance from an to a. Theorem 2.6 states
that for convergent sequences this distance tends to zero as n tends to infinity.

A sequence diverges, or is called divergent, if the sequence does not converge.Divergence of sequences
All kinds of properties that are valid for convergent sequences of real numbers are
valid for convergent sequences of complex numbers as well. We will formulate the
following properties, which we immediately recognize from convergent sequences
of real numbers:

Let (an) and (bn) be two convergent sequences such that limn→∞ an = a and
limn→∞ bn = b. Then
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a limn→∞(αan + βbn) = αa + βb for all α, β ∈ C,
b limn→∞ anbn = ab,
c limn→∞ an/bn = a/b if b �= 0.

Now that we know what a convergent sequence is, we can define convergence of
a series in the usual way. For this we use the partial sums sn of the sequence (an):Partial sum

sn =
n∑

k=0

ak = a0 + a1 + · · · + an .

A series
∑∞

n=0 an is called convergent if and only if the sequence of partial sumsDEFINITION 2.6
Convergence of a series (sn) converges.

When s = limn→∞ sn , we call s the sum of the series. For a convergent seriesSum of a series
the sum is also denoted by

∑∞
n=0 an , so s = ∑∞

n=0 an .

Consider the geometric series
∑∞

n=0 zn with ratio z ∈ C. The partial sum sn isEXAMPLE 2.16
Geometric series equal to sn = 1 + z + z2 + · · · + zn . Note that this is a polynomial of degree

n. When z = 1, then we see by direct substitution that sn = n + 1. Hence, the
geometric series diverges for z = 1, since limn→∞ sn = ∞. Multiplying sn by the
factor 1 − z gives

(1 − z)sn = 1 + z + z2 + · · · + zn − z(1 + z + z2 + · · · + zn) = 1 − zn+1.

For z �= 1 one thus has

sn = 1 − zn+1

1 − z
.

For | z | < 1 we have seen that limn→∞ zn = 0 (see example 2.15); so then the
series converges with sum equal to 1/(1 − z). We write

∞∑
n=0

zn = 1

1 − z
if | z | < 1.

Since for | z | ≥ 1 the sequence with terms zn does not tend to zero, the series
diverges for these values of z. �

Just as for sequences, the convergence of a series can be verified on the basis of
the real and imaginary parts of the terms. For sequences we used this as a definition.
For series we formulate it as a theorem.

Let (an) be a sequence of numbers and un = Re an and vn = Im an. Then the seriesTHEOREM 2.7 ∑∞
n=0 an converges if and only if both the series

∑∞
n=0 un and the series

∑∞
n=0 vn

converge.

Proof
Let (sn), (rn) and (tn) be the partial sums of the series with terms an , un and vn
respectively. Note that sn = rn + i tn . According to the definition of convergence of
a sequence, the sequence (sn) converges if and only if both the sequence (rn) and
the sequence (tn) converge. This is precisely the definition of convergence for the
series with terms an , un and vn . �

From the preceding theorem we also conclude that for a convergent series with
terms an = un + ivn one has

∞∑
n=0

an =
∞∑

n=0

un + i
∞∑

n=0

vn .
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For convergent series with complex terms, the same properties hold as for conver-
gent series with real terms. Here we formulate the linearity property, which is a
direct consequence of definition 2.6 and the linearity property for series with real
terms.

Let
∑∞

n=0 an and
∑∞

n=0 bn be convergent series with sum s and t respectively. ThenTHEOREM 2.8

∞∑
n=0

(αan + βbn) = αs + βt for all α, β ∈ C.

The next property formulates a necessary condition for a series to converge.

If the series
∑∞

n=0 an converges, then limn→∞ an = 0.THEOREM 2.9

Proof
If the series

∑∞
n=0 an converges and has sum s, then

lim
n→∞ an = lim

n→∞(sn − sn−1) = lim
n→∞ sn − lim

n→∞ sn−1 = s − s = 0.

�

As a consequence we have that limn→∞ an �= 0 excludes the convergence of
the series. The theorem only gives a necessary and not a sufficient condition for
convergence. To show this, we consider the harmonic series.

Series of the type
∑∞

n=1 1/n p , with p a real constant, are called harmonic series.EXAMPLE 2.17
Harmonic series From the theory of series with real terms it is known that for p > 1 the harmonic

series is convergent, while for p ≤ 1 the harmonic series is divergent. Hence, for
0 < p ≤ 1 we obtain a divergent series with terms that do tend to zero. �

2.4.2 Absolute convergence and convergence tests

For practical applications one usually needs a strong form of convergence of a se-
ries. Convergence itself is not enough, and usually one requires in addition the
convergence of the series of absolute values, or moduli, of the terms.

A series
∑∞

n=0 an is called absolutely convergent if the series
∑∞

n=0 | an | con-DEFINITION 2.7
Absolute convergence verges.

The series of the absolute values is a series with non-negative real terms. Con-
vergence of series with non-negative terms can be verified using the following test,
which is known as the comparison test.

When (an) and (bn) are sequences of real numbers with 0 ≤ an ≤ bn for n =THEOREM 2.10
Comparison test 0, 1, 2, . . ., and the series

∑∞
n=0 bn converges, then the series

∑∞
n=0 an converges

as well.

Proof
Let (sn) be the partial sums of the series with terms an . Then sn+1−sn = an+1 ≥ 0.
So sn+1 ≥ sn , which means that the sequence (sn) is a non-decreasing sequence. It
is known, and this is based on fundamental properties of the real numbers, that such
a sequence converges whenever it has a upper bound. This means that there should
be a constant c such that sn ≤ c for all n = 0, 1, 2, . . .. For the sequence (sn) this is
easy to show, since it follows from an ≤ bn that

sn = a0 + a1 + · · · + an ≤ b0 + b1 + · · · + bn

≤ b0 + b1 + · · · + bn + bn+1 + · · · .
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The sequence (sn) apparently has as upper bound the sum of the series with terms
bn . This sum exists since it is given that this series converges. This proves the
theorem. �

Absolutely convergent series with real terms are convergent. One can show this
as follows. Write an = bn − cn with bn = | an | and cn = | an | − an . It is
given that the series with terms bn converges. The terms cn satisfy the inequality
0 ≤ cn ≤ 2 | an |. According to the comparison test, the series with terms cn then
converges as well. Since an = bn − cn , the series with terms an thus converges. For
series with complex terms, the statement is a consequence of the next theorem.

Let (an) be a sequence of numbers and let un = Re an and vn = Im an. The seriesTHEOREM 2.11 ∑∞
n=0 an converges absolutely if and only if both the series

∑∞
n=0 un and

∑∞
n=0 vn

converge absolutely.

Proof
For the terms un and vn one has the inequalities | un | ≤ | an |, | vn | ≤ | an |. If
the series with the non-negative terms | an | converges, then we know from the com-
parison test that the series with, respectively, terms un and vn converge absolutely.
Conversely, if the series with, respectively, terms un and vn converge absolutely,
then the series with the non-negative terms | un | + | vn | also converges. It then

follows from the inequality | an | =
√

u2
n + v2

n ≤ | un | + | vn | and again the com-
parison test that the series with terms | an | converges. This means that the series
with terms an converges absolutely. �

An absolutely convergent series is convergent.THEOREM 2.12

Proof
Above we sketched the proof of this statement for series with real terms. For series
with, in general, complex terms, the statement follows from the preceding theorem.
Specifically, when the series with complex terms is absolutely convergent, then the
series consisting of the real and the imaginary parts also converge absolutely. These
are series of real numbers and therefore convergent. Next we can apply theorem 2.7,
resulting in the convergence of the series with the complex terms. �

Of course, introducing absolute convergence only makes sense when there are
convergent series which are not absolutely convergent. An example of this is the
series

∑∞
n=1(−1)n/n. This series converges and has sum − ln 2 (see (2.26) with

t = 1), while the series of the absolute values is the divergent harmonic series with
p = 1 (see example 2.17).

We now present some convergence tests already known for series with real terms,
but which remain valid for series with complex terms.

If | an | ≤ bn for n = 0, 1, . . . and
∑∞

n=0 bn converges, then
∑∞

n=0 an converges.THEOREM 2.13

Proof
According to the comparison test (theorem 2.10), the series with terms | an |
converges. The series with terms an is thus absolutely convergent and hence
convergent. �

Of course, in order to use the preceding theorem, one should first have available a
convergent series with non-negative terms. Suitable candidates are the harmonic se-
ries with p > 1 and the geometric series with a positive ratio r satisfying 0 < r < 1
(see example 2.16), and all linear combinations of these two as well.
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Consider the series
∑∞

n=1 einω/(n2 + n) where ω is a real constant. The seriesEXAMPLE 2.18
converges absolutely since∣∣∣∣∣ einω

n2 + n

∣∣∣∣∣ = 1

n2 + n
≤ 1

n2

and the harmonic series with terms 1/n2 converges. �

A geometric series has the property that the ratio an+1/an of two consecutive
terms is a constant. If, more generally, a sequence has terms with the property that

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = L

for some L , then one may conclude, as for geometric series, that the series is abso-
lutely convergent if L < 1 and divergent if L > 1. In the case L = 1, however, one
cannot draw any conclusion. We summarize this, without proof, in the next theorem.

Let (an) be a sequence of terms unequal to zero with limn→∞
∣∣ an+1/an

∣∣ = L forTHEOREM 2.14
D’Alembert’s ratio test some L. Then one has:

a if L < 1, then the series with terms an converges absolutely;
b if L > 1, then the series with terms an diverges.

Consider the series
∑∞

n=1 zn/n p . Here z is a complex number and p an arbitraryEXAMPLE 2.19
real constant. Put an = zn/n p , then

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ n pzn+1

(n + 1)pzn

∣∣∣∣∣ = lim
n→∞

(
n

n + 1

)p
| z | = | z | .

Hence, the series is absolutely convergent for | z | < 1 and divergent for | z | > 1.
If | z | = 1, then no conclusions can be drawn from the ratio test. For p > 1 and
| z | = 1 we are dealing with a convergent harmonic series and so the given series
converges absolutely. For p ≤ 1 we are dealing with a divergent harmonic series
and so the series of absolute values diverges. From this we may not conclude that
the series itself diverges. Take for example p = 1 and z = −1, then one obtains the
series with terms (−1)n/n, which is convergent. �

2.4.3 Series of functions

In the theory of Fourier series in part 2, and of the z-transform in chapter 18, we
will encounter series having terms an that still depend on a variable. The geometric
series in example 2.16 can again serve as an example. Other examples are

∞∑
n=0

zn

n!
= 1 + z + z2

2!
+ z3

3!
+ · · · + zn

n!
+ · · · for z ∈ C,

∞∑
n=1

cos nt

n2
= cos t + cos 2t

4
+ cos 3t

9
+ · · · + cos nt

n2
+ · · · for t ∈ R.

The first series is an example of a power series. The partial sums of this series are
polynomials in z, so functions defined on C. In section 2.5 we will study these more
closely. In this section we will confine ourselves to series of the second type, where
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the functions are defined on R or on a part of R. We will thus consider series of the
type

∞∑
n=0

fn(t).

Convergence of such a series depends, of course, on the value of t and then the
sum will in general depend on t as well. For the values of t for which the series
converges, the sum will be denoted by the function f (t). In this case we write

f (t) =
∞∑

n=0

fn(t)

and call this pointwise convergence. For each value of t one has a different seriesPointwise convergence
for which, in principle, one should verify the convergence. It turns out, however,
that in many cases it is possible to analyse the convergence for an entire interval.

Let fn(t) = tn . In example 2.16 it was already shown that
∑∞

n=0 tn converges forEXAMPLE 2.20
| t | < 1, with sum 1/(1 − t). This means that the series

∑∞
n=0 fn(t) converges

on the interval (−1, 1) and that f (t) = 1/(1 − t). Outside this interval, the series
diverges. �

One would like to derive properties of f (t) directly from the properties of the
functions fn(t), without knowing the function f (t) explicitly as a function of t .
One could wonder, for example, whether a series may be differentiated term-by-
term, so whether f ′(t) = ∑

f ′
n(t) if f (t) = ∑

fn(t). A simple example will show
that this is not always permitted.

Let, for example, fn(t) = sin(nt)/n2, then f ′
n(t) = cos(nt)/n. So for each n > 0EXAMPLE 2.21

the derivative exists for all t ∈ R. However, if we now look at
∑∞

n=1 f ′
n(t) at t = 0,

then this equals
∑∞

n=1 1/n, which is a divergent harmonic series, as we have seen
in example 2.17. Although all functions fn(t) are differentiable, f (t) is not. �

One should also be careful with integration. When, for instance, the functions
fn(t) are integrable, then one would like to conclude from this that f (t) is also
integrable and that∫

f (t) dt =
∫ ∑

fn(t) dt =
∑ (∫

fn(t) dt

)
.

This is not always the case, as our next example will show.

Let un(t) = nte−nt2
for n = 0, 1, 2, . . . and let fn(t) = un(t) − un−1(t) forEXAMPLE 2.22

n = 1, 2, 3, . . . and f0(t) = 0. Then one has for the partial sums sn(t):

sn(t) = f1(t) + · · · + fn(t)

= u1(t) − u0(t) + u2(t) − u1(t) + · · · + un(t) − un−1(t) = un(t).

The sequence of partial sums converges and has limit

f (t) = lim
n→∞ sn(t) = lim

n→∞ nte−nt2 = 0.

On the interval (0, 1) one thus has, on the one hand,∫ 1

0

∞∑
n=0

fn(t) dt =
∫ 1

0
f (t) dt = 0,
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while on the other hand

∞∑
n=0

∫ 1

0
fn(t) dt =

∞∑
n=1

∫ 1

0

(
un(t) − un−1(t)

)
dt

=
∞∑

n=1

[
− 1

2 e−nt2 + 1
2 e−(n−1)t2

]1

0
= 1

2 (e − 1)

∞∑
n=1

e−n = 1
2 .

These results are unequal, hence

∫ 1

0

∞∑
n=0

fn(t) dt �=
∞∑

n=0

∫ 1

0
fn(t) dt.

�
In order to define conditions such that properties like interchanging the order of

summation and integration are valid, one could for example introduce the notion
of uniform convergence. This is outside the scope of this book. We will therefore
always confine ourselves to pointwise convergence, and in the case when one of
the properties mentioned above is used, we will always state explicitly whether it is
allowed to do so.

EXERCISES

Use the comparison test to prove the convergence of:2.16

a
∞∑

n=0

1

n3 + i
,

b
∞∑

n=1

sin n

n2
,

c
∞∑

n=1

e−n(1+i)

n
.

Determine which of the following series converge. Justify each of your answers.2.17

a
∞∑

n=1

(−i)n

n!
,

b
∞∑

n=1

2n + 1

3n + n
,

c
∞∑

n=1

n

(1 + i)n .

Show that the following series of functions converges absolutely for all t :2.18
∞∑

n=0

e2int

2n4 + 1
.

2.5 Power series

As final subject of this chapter, we consider some properties of complex power
series. Power series were already introduced in section 2.4.3. These series have a
simple structure. Let us start with a definition.
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A power series in the complex variable z and with complex coefficients c0, c1, c2,DEFINITION 2.8
Power series . . . , is a series of the form

∞∑
n=0

cnzn = c0 + c1z + c2z2 + · · · + cnzn + · · · .

Apparently, a partial sum sn = c0 + c1z + c2z2 + · · · + cnzn is a polynomial
in z of degree at most n. The geometric series in example 2.16 is an example of
a power series. Other examples arise from so-called Taylor-series expansions of a
real-valued function f (t) at the real variable t = 0. Such a Taylor-series expansion
looks like this:

∞∑
n=0

f (n)(0)

n!
tn .

Here f (n)(0) is the value at t = 0 of the nth derivative. In this case we are dealing
with a real power series. For a large number of functions, the Taylor-series expan-
sion at t = 0 is explicitly known and in the case of convergence the sum of the
Taylor-series often represents the function itself. Well-known examples are:

et =
∞∑

n=0

tn

n!
= 1 + t + t2

2!
+ t3

3!
+ · · · for all t , (2.23)

sin t =
∞∑

n=0

(−1)n t2n+1

(2n + 1)!
= t − t3

3!
+ t5

5!
− · · · for all t , (2.24)

cos t =
∞∑

n=0

(−1)n t2n

(2n)!
= 1 − t2

2!
+ t4

4!
− · · · for all t , (2.25)

ln(1 + t) =
∞∑

n=1

(−1)n+1 tn

n
= t − t2

2
+ t3

3
− · · · for −1 < t ≤ 1. (2.26)

The series above are power series in the real variable t . If we replace the real vari-
able t by a complex variable z, then complex power series arise, for which we first
of all ask ourselves: for which complex z does the power series converge and, sub-
sequently, what is the sum of that power series? If, for example, we replace the
real variable t in (2.23) by the complex variable z, then one can wonder if the series
converges for all z as well, and if its sum is then still equal to the exponential func-
tion ez . The answer is affirmative, but the treatment of functions defined on C will
be postponed until chapter 11. In this section we will only go into the question for
which values of z a power series converges. We first present some examples.

Given is the power seriesEXAMPLE 2.23

∞∑
n=0

zn

n!
= 1 + z + z2

2!
+ z3

3!
+ · · · .

To investigate the values of z for which this series converges, we put an = zn/n!
and apply the ratio test:∣∣∣∣ an+1

an

∣∣∣∣ = n!

(n + 1)!
| z | = | z |

n + 1
.
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We see that limn→∞
∣∣ an+1/an

∣∣ = 0 < 1 for all z. The series thus converges for
all z. �

Given is the power seriesEXAMPLE 2.24

∞∑
n=1

(−1)n+1

n
zn = z − z2

2
+ z3

3
− z4

4
+ · · · .

To investigate the values of z for which this series converges, we put an =
(−1)n+1zn/n and apply the ratio test:∣∣∣∣ an+1

an

∣∣∣∣ = n

n + 1
| z | .

We see that limn→∞
∣∣ an+1/an

∣∣ = | z | and so the series converges absolutely for
| z | < 1 and diverges for | z | > 1. For | z | = 1 no conclusion can be drawn from
the ratio test. For z = 1 we know from (2.26) (substitute t = 1) that the series
converges and has sum ln 2, while for z = −1 we know that the series diverges. For
all other values of z on the unit circle one can show, with quite some effort, that the
series converges. �

Given is the power seriesEXAMPLE 2.25

∞∑
n=0

n!zn = 1 + z + 2!z2 + · · · .

To investigate the values of z for which this series converges, we put an = n!zn and
apply the ratio test:∣∣∣∣ an+1

an

∣∣∣∣ = (n + 1)!

n!
| z | = (n + 1) | z | .

We see that limn→∞
∣∣ an+1/an

∣∣ = ∞ for z �= 0 and so the series diverges for all
z �= 0 and it converges only for z = 0. �

Given is the power seriesEXAMPLE 2.26

∞∑
n=0

n22nzn = 2z + 16z2 + · · · .

To investigate the values of z for which this series converges, we put an = n22nzn

and apply the ratio test:∣∣∣∣ an+1

an

∣∣∣∣ =
(

n + 1

n

)2
| 2z | .

We see that limn→∞
∣∣ an+1/an

∣∣ = 2 | z | and so the series converges absolutely for

| z | < 1
2 and it diverges for | z | > 1

2 . If | z | = 1
2 , then | an | = n2 and this sequence

does not tend to zero. Hence, on the circle with radius 1
2 the series diverges. �

The previous examples suggest that for each power series there exists a number
R such that the power series converges absolutely for | z | < R and diverges for
| z | > R. This is indeed the case. The proof will be omitted. Usually one can find
this number R with the ratio test, as in the previous examples. Summarizing, we
now have the following.
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For a power series in z one of the following three statements is valid.
a The power series converges only for z = 0.
b There exists a number R > 0 such that the power series converges absolutely
for all z with | z | < R and diverges for | z | > R.
c The power series converges for all z.

The number R is called the radius of convergence. In case a we put R = 0 and inRadius of convergence
case c we put R = ∞. The radii of convergence of the power series in examples
2.23 up to 2.26 are, respectively, R = ∞, R = 1, R = 0, R = 1

2 .
If R is the radius of convergence of a power series, then this power series has a

sum f (z) for | z | < R. In the complex plane the points with | z | = R form a circle
of radius R and with the origin as centre, and this is sometimes called the circle ofCircle of convergence
convergence. For example, the geometric series in example 2.16 has sum 1/(1 − z)
for | z | < 1.

Continuity and differentiability of functions on C will be defined in chapter 11.
As far as the technique of differentiation is concerned, there is no difference in
differentiating with respect to a complex variable or a real variable. Hence, the
derivative of 1/(1− z) is equal to 1/(1− z)2. One can prove that the sum of a power
series is a differentiable function within the circle of convergence. Indeed, we have
the following theorem.

The power series
∑∞

n=0 cnzn and
∑∞

n=1 ncnzn−1 have the same radius of conver-THEOREM 2.15
gence R. Moreover, one has: if f (z) = ∑∞

n=0 cnzn for | z | < R, then f ′(z) =∑∞
n=1 ncnzn−1 for | z | < R.

We know that
∑∞

n=0 zn = 1/(1 − z) for | z | < 1. Applying theorem 2.15 givesEXAMPLE 2.27

∞∑
n=1

nzn−1 = 1

(1 − z)2
for | z | < 1.

We can apply this theorem repeatedly (say k times) to obtain the following result:

∞∑
n=k

n(n − 1) · · · (n − k + 1)zn−k = k!

(1 − z)k+1
.

Using binomial coefficients this can be written as

∞∑
n=k

(
n

k

)
zn−k =

∞∑
n=0

(
n + k

k

)
zn = 1

(1 − z)k+1
for | z | < 1.

�

EXERCISES

Determine the radius of convergence of the series
∞∑

n=0

2n

n2 + 1
z2n .2.19

Determine the values of z for which the following series converges, and, moreover,2.20
determine the sum for these values.

∞∑
n=0

1

1 − i
(z − i)n .

Show that the sum f (z) of
∑∞

n=0 z2n/n! satisfies f ′(z) = 2z f (z).2.21

For which values of z does the series
∑∞

n=1 2nz−n converge absolutely?2.22
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S U M M A R Y

Complex numbers play a fundamental role in the treatment of Fourier and Laplace
transforms. The functions that occur are mostly functions defined on (a part of) R

or on (a part of) the complex plane C, with function values being complex numbers.
Important examples are the time-harmonic functions eiωt with frequency ω and
defined on R, and rational functions defined on C.

Using complex numbers one can factorize polynomials entirely into linear fac-
tors. As a consequence, when allowing complex factors, the partial fraction expan-
sion of a rational function (for which the degree of the numerator is smaller than
the degree of the denominator) will consist of fractions with numerators being just
constants and denominators being polynomials of degree one or powers thereof, de-
pending on the multiplicity of the various zeros. If the rational function has real
coefficients, then one can also expand it as a sum of fractions with real coefficients
and having denominators which are (powers of) linear and/or quadratic polynomials.
The numerators associated with the quadratic denominators may then be linear.

The differential and integral calculus for complex-valued functions and for real-
valued functions are very similar. If a complex-valued function f (t) = u(t) + iv(t)
with t ∈ R has a certain property, like continuity or differentiability, then this means
that both the real part u(t) and the imaginary part v(t) have this property. The
derivative f ′(t) of a complex-valued function equals u′(t) + iv ′(t). As a result,
the existing rules for differentiation and integration of real-valued functions are also
valid for complex-valued functions. Classes of complex-valued functions that may
appear in theorems on Fourier and Laplace transforms are the class of piecewise
continuous functions and the class of piecewise smooth functions.

The theory of sequences and series of real numbers can easily be extended to a
theory of sequences and series of complex numbers. All kinds of properties, such
as convergence and absolute convergence of a series with terms an = un + ivn ,
can immediately be deduced from the same properties for the series with real terms
un and vn . Convergence tests, such as the ratio test, are the same for series with
complex terms and for series with real terms.

Just as real power series, complex power series have a radius of convergence R.
A power series in the complex variable z converges absolutely for | z | < R, that is
within a circle in the complex plane with radius R (the circle of convergence), and
diverges for | z | > R. Within the circle of convergence, the sum of a power series
can be differentiated an arbitrary number of times. The derivative can be determined
by differentiating the power series term-by-term.

S E L F T E S T

Determine the (complex) zeros and their multiplicities for the following polynomials2.23
P(z):
a P(z) = z3 − 1,
b P(z) = (z2 + i)2 + 1,
c P(z) = z5 + 8z3 + 16z.

Determine the partial fraction expansion of2.24

F(z) = z2 + z − 2

(z + 1)3
.
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Determine the partial fraction expansion, into fractions with real coefficients, of2.25

F(z) = z2 − 6z + 7

(z2 − 4z + 5)2
.

Calculate the integral
∫ 2π

0 eit cos t dt .2.26

Find out if the following series converge:2.27

a
∞∑

n=1

n

(
2 − i

3

)n
,

b
∞∑

n=1

n + in

n2
.

Given is the series of functions2.28
∞∑

n=1

2−n

n
eint sin t.

Show that this series converges absolutely for all t .

Show that if the power series
∑∞

n=0 cnzn has radius of convergence R, then the2.29

power series
∑∞

n=0 cnz2n has radius of convergence R1/2.

a Calculate the radius of convergence R of the power series2.30

∞∑
n=0

(1 + i)2n

n + 1
zn .

b Let f (z) be the sum of this power series. Calculate z f ′(z) + f (z).



Part 2
Fourier series

I N T R O D U C T I O N T O P A R T 2

The Fourier series that we will encounter in this part are a tool to analyse numerous
problems in mathematics, in the natural sciences and in engineering. For this it is
essential that periodic functions can be written as sums of infinitely many sine and
cosine functions of different frequencies. Such sums are called Fourier series.

In chapter 3 we will examine how, for a given periodic function, a Fourier series
can be obtained, and which properties it possesses. In chapter 4 the conditions will
be established under which the Fourier series give an exact representation of the
periodic functions. In the final chapter the theory of the Fourier series is used to
analyse the behaviour of systems, as defined in chapter 1, and to solve differential
equations. The description of the heat distribution in objects and of the vibrations
of strings are among the oldest applications from which the theory of Fourier series
has arisen. Together with the Fourier integrals for non-periodic functions from part
3, this theory as a whole is referred to as Fourier analysis.

Jean-Baptiste Joseph Fourier (1768 – 1830) was born in Auxerre, France, as the
son of a tailor. He was educated by Benedictine monks at a school where, after
finishing his studies, he became a mathematics teacher himself. In 1794 he went to
Paris, where he became mathematics teacher at the Ecole Normale. He declined a
professorial chair offered to him by the famous Ecole Polytechnique in order to join
Napoleon on his expedition to Egypt. In 1789 he was appointed governor of part of
Egypt. Ousted by the English, he left Egypt again in 1801 and became prefect of
Grenoble. Here he started with heat experiments and their mathematical analysis.

Fourier’s mathematical ideas were not entirely new, but were built on earlier work
by Bernoulli and Euler. Fourier was, however, the first to boldly state that any
function could be developed into a series of sine and cosine functions. At first, his
contemporaries refused to accept this, and publication of his work was held up for
several years by the members of the Paris Académie des Sciences. The problem was
that his ideas were considered to be insufficiently precise. And indeed, Fourier could
not prove that for an arbitrary function the series would always converge pointwise
to the function values. Dirichlet was one of the first to find proper conditions under
which a Fourier series would converge pointwise to a periodic function. For the
further development of Fourier analysis, additional fundamentally new results were
required, like set-theory and the Lebesgue integral, which was developed in the one
and a half centuries following Fourier.

Historically, Fourier’s work has contributed enormously to the development of
mathematics. Fourier set down his work in a book on the theory of heat, Théorie an-
alytique de la chaleur, published in 1822. The heat or diffusion equation occurring
here, as well as the wave equation for the vibrating string, can be solved, under the
most frequently occurring additional conditions, using Fourier series. The methods
that were used turned out to be much more widely applicable. Thereafter, applying
Fourier series would produce fruitful results in many different fields, even though
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the mathematical theory had not yet fully crystallized. By now, the Fourier theory
has become a very versatile mathematical tool. From the times of Fourier up to the
present day, research has been carried out in this field, both concrete and abstract,
and new applications are being developed.
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CHAPTER 3

Fourier series: definition
and properties

I N T R O D U C T I O N

Many phenomena in the applications of the natural and engineering sciences are pe-
riodic in nature. Examples are the vibrations of strings, springs and other objects,
rotating parts in machines, the movement of the planets around the sun, the tides of
the sea, the movement of a pendulum in a clock, the voltages and currents in elec-
trical networks, electromagnetic signals emitted by transmittters in satellites, light
signals transmitted through glassfibers, etc. Seemingly, all these systems operate in
complicated ways; the phenomena that can be observed often behave in an erratic
way. In many cases, however, they do show some kind of repetition. In order to
analyse these systems, one can make use of elementary periodic functions or signals
from mathematics, the sine and cosine functions. For many systems, the response
or behaviour can be completely calculated or measured, by exposing them to influ-
ences or inputs given by these elementary functions. When, moreover, these systems
are linear, then one can also calculate the response to a linear combination of such
influences, since this will result in the same linear combination of responses.

Hence, for the study of the aforementioned phenomena, two matters are of im-
portance.

On the one hand one should look at how systems behave under influences that
can be described by elementary mathematical functions. Such an analysis will in
general require specific knowledge of the system being studied. This may involve
knowledge about how forces, resistances, and inertias influence each other in me-
chanical systems, how fluids move under the influence of external forces, or how
voltages, currents and magnetic fields are mutually interrelated in electrical appli-
cations. In this book we will not go into these analyses, but the results, mostly
in terms of mathematical formulations, will often be chosen as a starting point for
further considerations.

On the other hand it is of importance to examine if and how an arbitrary periodic
function can be described as a linear combination of elementary sine and cosine
functions. This is the central theme of the theory of Fourier series: determine the
conditions under which periodic functions can be represented as linear combinations
of sine and cosine functions. In this chapter we study such linear combinations (also
with infinitely many functions). These combinations are called Fourier series and
the coefficients that occur are the Fourier coefficients. We will also determine the
Fourier series and the Fourier coefficients for a number of standard functions and
treat a number of properties of Fourier series.

In the next chapter we will examine the conditions under which a Fourier series
gives an exact representation of the original function.

60
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know what trigonometric polynomials and series are, and know how to determine

their coefficients
- know the definitions of the real and complex Fourier coefficients and Fourier series
- can determine the real and complex Fourier series for a given periodic function
- can calculate and interpret the spectrum of a periodic function
- can determine the Fourier series for some standard functions
- know and can apply the most important properties of Fourier series
- can develop a function on a given interval into a Fourier cosine or a Fourier sine

series.

3.1 Trigonometric polynomials and series

The central problem of the theory of Fourier series is, how arbitrary periodic func-
tions or signals might be written as a series of sine and cosine functions. The sine
and cosine functions are also called sinusoidal functions. (See section 1.2.2 for aSinusoidal function
description of periodic functions or signals and section 2.4.3 for a description of
series of functions.) In this section we will first look at the functions that can be
constructed if we start from the sine and cosine functions. Next we will examine
how, given such a function, one can recover the sinusoidal functions from which
it is build up. In the next section this will lead us to the definition of the Fourier
coefficients and the Fourier series for arbitrary periodic functions.

The period of periodic functions will always be denoted by T . We would like to
approximate arbitrary periodic functions with linear combinations of sine and cosine
functions. These sine and cosine functions must then have period T as well. One can
easily check that the functions sin(2π t/T ), cos(2π t/T ), sin(4π t/T ), cos(4π t/T ),
sin(6π t/T ), cos(6π t/T ) and so on all have period T . The constant function also
has period T . Jointly, these functions can be represented by sin(2πnt/T ) and
cos(2πnt/T ), where n ∈ N. Instead of 2π/T one often writes ω0, which means
that the functions can be denoted by sin nω0t and cos nω0t , where n ∈ N. All these
functions are periodic with period T . In this context, the constant ω0 is called the
fundamental frequency: sin ω0t and cos ω0t will complete exactly one cycle on anFundamental frequency
interval of length T , while all functions sin nω0t and cos nω0t with n > 1 will com-
plete several cycles. The frequencies of these functions are thus all integer multiples
of ω0. See figure 3.1, where the functions sin nω0t and cos nω0t are sketched for
n = 1, 2 and 3. Linear combinations, also called superpositions, of the functions

0

tT/2

1

–T/2

–1

0 t

1

–1

sin3ω0t
sin2ω0t
sinω0t

cosω0t
cos2ω0t
cos3ω0t

T/2–T/2

FIGURE 3.1
The sinusoidal functions sin nω0t and cos nω0t for n = 1, 2 and 3.
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sin nω0t and cos nω0t are again periodic with period T . If in such a combination we
include a finite number of terms, then the expression is called a trigonometric poly-Trigonometric polynomial
nomial. Besides the sinusoidal terms, a constant term may also occur here. Hence,
a trigonometric polynomial f (t) with period T can be written as

f (t) = A + a1 cos ω0t + b1 sin ω0t + a2 cos 2ω0t + b2 sin 2ω0t

+ · · · + an cos nω0t + bn sin nω0t with ω0 = 2π

T
.

In figure 3.2a some examples of trigonometric polynomials are shown with ω0 = 1
and so T = 2π . The polynomials shown are

f1(t) = 2 sin t,

f2(t) = 2(sin t − 1
2 sin 2t),

f3(t) = 2(sin t − 1
2 sin 2t + 1

3 sin 3t),

f4(t) = 2(sin t − 1
2 sin 2t + 1

3 sin 3t − 1
4 sin 4t).

0

t –π

π

–π

0

t

π

–π

–2π π 2π

f1
f4

f3f2

2ππ–2π –π

a b

FIGURE 3.2
Some trigonometric polynomials (a) and the sawtooth function (b).

In figure 3.2b the sawtooth function is drawn. It is defined as follows. On the
interval (−T/2, T/2) = (−π, π) one has f (t) = t , while elsewhere the function is
extended periodically, which means that it is defined by f (t + kT ) = f (t) for all
k ∈ Z. The function f (t) is then periodic with period T and is called the periodicPeriodic extension
extension of the function f (t) = t . The function values at the endpoints of the
interval (−T/2, T/2) are not of importance for the time being and are thus not
taken into account for the moment. Comparing the figures 3.2a and 3.2b suggests
that the sawtooth function, a periodic function not resembling a sinusoidal function
at all, can in this case be approximated by a linear combination of sine functions
only. The trigonometric polynomials f1, f2, f3 and f4 above, are partial sums of
the infinite series

∑∞
n=1(−1)n−1(2/n) sin nt . It turns out that as more terms are

being included in the partial sums, the approximations improve. When an infinite
number of terms is included, one no longer speaks of trigonometric polynomials,
but of trigonometric series. The most important aspect of such series is, of course,Trigonometric series
how well they can approximate an arbitrary periodic function. In the next chapter
it will be shown that for a piecewise smooth periodic function it is indeed possible
to find a trigonometric series whose sum converges at the points of continuity and is
equal to the function.

At this point it suffices to observe that in this way a large class of periodic func-
tions can be constructed, namely the trigonometric polynomials and series, all based
upon the functions sin nω0t and cos nω0t . All functions f which can be obtained
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as linear combinations or superpositions of the constant function and the sinusoidal
functions with period T can be represented as follows:

f (t) = A +
∞∑

n=1

(an cos nω0t + bn sin nω0t) with ω0 = 2π

T
. (3.1)

This, of course, only holds under the assumption that the right-hand side actually
exists, that is, converges for all t .

Let us now assume that a function from the previously described class is given,
but that the values of the coefficients are unknown. We thus assume that the right-
hand side of (3.1) exists for all t . It is then relatively easy to recover these coeffi-
cients. In doing so, we will use the trigonometric identities

sin α cos β = 1
2 (sin(α + β) + sin(α − β)) ,

cos α cos β = 1
2 (cos(α + β) + cos(α − β)) ,

sin α sin β = 1
2 (cos(α − β) − cos(α + β)) .

Using these formulas one can derive the following results for n, m ∈ N with n �= 0.∫ T/2

−T/2
cos nω0t dt =

[
sin nω0t

nω0

]T/2

−T/2
= 0,

∫ T/2

−T/2
sin nω0t dt =

[
−cos nω0t

nω0

]T/2

−T/2
= 0,

∫ T/2

−T/2
cos2 nω0t dt = 1

2

∫ T/2

−T/2
(1 + cos 2nω0t)dt

= 1

2

[
t + sin 2nω0t

2nω0

]T/2

−T/2
= T

2
,

∫ T/2

−T/2
sin2 nω0t dt = 1

2

∫ T/2

−T/2
(1 − cos 2nω0t)dt

= 1

2

[
t − sin 2nω0t

2nω0

]T/2

−T/2
= T

2
,

∫ T/2

−T/2
sin nω0t cos mω0t dt

= 1

2

∫ T/2

−T/2
(sin(n + m)ω0t + sin(n − m)ω0t) dt = 0.

For n, m ∈ N with n �= m one has, moreover, that∫ T/2

−T/2
cos nω0t cos mω0t dt

= 1

2

∫ T/2

−T/2
(cos(n + m)ω0t + cos(n − m)ω0t) dt = 0,

∫ T/2

−T/2
sin nω0t sin mω0t dt

= 1

2

∫ T/2

−T/2
(cos(n − m)ω0t − cos(n + m)ω0t) dt = 0.
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On the basis of the last three equations it is said that the functions from the set
{sin nω0t and cos nω0t with n ∈ N} are orthogonal: the integral of a product ofOrthogonal
two distinct functions over one period is equal to 0.

After this enumeration of results, we now return to (3.1) and try to determine
the unknown coefficients A, an and bn for a given f (t). To this end we multiply
the left-hand and right-hand side of (3.1) by cos mω0t and then integrate over the
interval (−T/2, T/2). It then follows that∫ T/2

−T/2
f (t) cos mω0t dt

=
∫ T/2

−T/2

(
A +

∞∑
n=1

(an cos nω0t + bn sin nω0t)

)
cos mω0t dt

= A
∫ T/2

−T/2
cos mω0t dt +

∞∑
n=1

an

∫ T/2

−T/2
cos nω0t cos mω0t dt

+
∞∑

n=1

bn

∫ T/2

−T/2
sin nω0t cos mω0t dt .

In this calculation we assume, for the sake of convenience, that the integral of the
series may be calculated by integrating each term in the series separately. We note
here that in general this has to be justified. If we now use the results stated above,
then all the terms will equal 0 except for the term with cos nω0t cos mω0t , where n
equals m. The integral in this term has value T/2, and so∫ T/2

−T/2
f (t) cos mω0t dt = am

T

2
,

or

am = 2

T

∫ T/2

−T/2
f (t) cos mω0t dt for m = 1, 2, . . .. (3.2)

This means that for a given f (t), it is possible to determine am using (3.2). In an
analogous way an expression can be found for bm . Multiplying (3.1) by sin mω0t
and again integrating over the interval (−T/2, T/2), one obtains an expression for
bm (also see exercise 3.2).

A direct integration of (3.1) over (−T/2, T/2) gives an expression for the con-
stant A:∫ T/2

−T/2
f (t) dt =

∫ T/2

−T/2

(
A +

∞∑
n=1

(an cos nω0t + bn sin nω0t)

)
dt

=
∫ T/2

−T/2
A dt = T A

and so

A = 1

T

∫ T/2

−T/2
f (t) dt.

The right-hand side of this equality is, up to a factor 2, equal to the right-hand side
of (3.2) for m = 0, because cos 0ω0t = 1. Hence, instead of A one usually takes
a0/2:

a0 = 2A = 2

T

∫ T/2

−T/2
f (t) dt.
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All coefficients in (3.1) can thus be determined if f (t) is a given trigonometric poly-
nomial or series. The calculations are summarized in the following two expressions,
from which the coefficients can be found for all functions in the class of trigonomet-
ric polynomials and series, in so far as these coefficients exist and interchanging the
order of summation and integration, mentioned above, is allowed:

an = 2

T

∫ T/2

−T/2
f (t) cos nω0t dt for n = 0, 1, 2, . . ., (3.3)

bn = 2

T

∫ T/2

−T/2
f (t) sin nω0t dt for n = 1, 2, . . .. (3.4)

In these equations, the interval of integration is (−T/2, T/2). This interval is pre-
cisely of length one period. To determine the coefficients an and bn , one can in
general integrate over any other arbitrary interval of length T . Sometimes the inter-
val (0, T ) is chosen (also see exercise 3.4).

EXERCISES

Verify that all functions sin nω0t and cos nω0t with n ∈ N and ω0 = 2π/T have3.1
period T .

Prove that if f (t) is a trigonometric polynomial with period T , then bn can indeed3.2
be found using (3.4).

In (3.3) and (3.4) the an and bn are defined for, respectively, n = 0, 1, 2, . . . and3.3
n = 1, 2, . . .. Why isn’t it very useful to include b0 in these expressions?

Verify that we obtain the same values for an if we integrate over the interval (0, T )3.4
in (3.3).

3.2 Definition of Fourier series

In the previous section we demonstrated how, starting from a collection of elemen-
tary periodic functions, one can construct new periodic functions by taking linear
combinations. The coefficients in this combination could be recovered using for-
mulas (3.3) and (3.4). These formulas can in principle be applied to any arbitrary
periodic function with period T , provided that the integrals exist. This is an impor-
tant step: the starting point is now an arbitrary periodic function. To it, we then
apply formulas (3.3) and (3.4), which were originally only intended for trigonomet-
ric polynomials and series. The coefficients an and bn thus defined are called the
Fourier coefficients. The series in (3.1), which is determined by these coefficients,
is called the Fourier series.

For functions that are piecewise smooth, the integrals in (3.3) and (3.4) exist.
One can even show that such a function is equal to the Fourier series in (3.1) at
the points of continuity. The proof of this is postponed until chapter 4. But at
present, we will give the formal definitions of the Fourier coefficients and the Fourier
series of a periodic function. In section 3.2.1 we define the Fourier series using
the trigonometric functions sin nω0t and cos nω0t , in accordance with (3.1). In
many cases it is easier to work with a Fourier series with functions einω0t (the time-
harmonic signals, as in section 1.2.2). This complex Fourier series is introduced in
section 3.2.2. Through Euler’s formula, these two expressions for the Fourier series
are immediately related to each other.
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3.2.1 Fourier series

If, for an arbitrary periodic function f , the coefficients an and bn , as defined by (3.3)
and (3.4), can be calculated, then these coefficients are called the Fourier coefficients
of the function f .

Let f (t) be a periodic function with period T and fundamental frequency ω0 =DEFINITION 3.1
Fourier coefficients 2π/T , then the Fourier coefficients an and bn of f (t), if they exist, are defined by

an = 2

T

∫ T/2

−T/2
f (t) cos nω0t dt for n = 0, 1, 2, . . ., (3.5)

bn = 2

T

∫ T/2

−T/2
f (t) sin nω0t dt for n = 1, 2, . . .. (3.6)

In definition 3.1 the integration is over the interval (−T/2, T/2). One can, how-
ever, integrate over any arbitrary interval of length T . The only thing that matters is
that the length of the interval of integration is exactly one period (also see exercise
3.4).

In fact, in definition 3.1 a mapping or transformation is defined from functions to
number sequences. This is also denoted as a transformation pair:

f (t) ↔ an, bn .

One should pronounce this as: ‘to the function f (t) belong the Fourier coefficients
an and bn’. This mapping is the Fourier transform for periodic functions. The func-Fourier transform
tion f (t) can be complex-valued. In that case, the coefficients an and bn will also
be complex. Using definition 3.1 one can now define the Fourier series associated
with a function f (t).

When an and bn are the Fourier coefficients of the periodic function f (t) withDEFINITION 3.2
Fourier series period T and fundamental frequency ω0 = 2π/T , then the Fourier series of f (t) is

defined by

a0

2
+

∞∑
n=1

(an cos nω0t + bn sin nω0t). (3.7)

We do emphasize here that for arbitrary periodic functions the Fourier series will
not necessarily converge for all t , and in case of convergence will not always equal
f (t). In chapter 4 it will be proven that for piecewise smooth functions the series
does equal f (t) at the points of continuity.

In section 3.1 it was suggested that the series
∑∞

n=1(−1)n−1(2/n) sin nt approxi-EXAMPLE 3.1
mates the sawtooth function f (t), given by f (t) = t for t ∈ (−π, π) and having
period 2π . We will now check that the Fourier coefficients of the sawtooth function
are indeed equal to the coefficients in this series. In the present situation we have
T = 2π , so ω0 = 2π/T = 1. The definition of Fourier coefficients can immedi-
ately be applied to the function f (t). Using integration by parts it follows for n ≥ 1
that

an = 2

T

∫ T/2

−T/2
f (t) cos nω0t dt = 1

π

∫ π

−π
t cos nt dt = 1

nπ

∫ π

−π
t (sin nt)′ dt

= 1

nπ
[t sin nt]π−π − 1

nπ

∫ π

−π
sin nt dt = 1

n2π
[cos nt]π−π = 0.
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For n = 0 we have

a0 = 2

T

∫ T/2

−T/2
f (t) dt = 1

π

∫ π

−π
t dt = 1

π

[
1

2
t2

]π

−π

= 0.

For the coefficients bn we have that

bn = 2

T

∫ T/2

−T/2
f (t) sin nω0t dt = 1

π

∫ π

−π
t sin nt dt = − 1

nπ

∫ π

−π
t (cos nt)′ dt

= − 1

nπ
[t cos nt]π−π + 1

nπ

∫ π

−π
cos nt dt

= − 1

nπ
(π cos nπ − (−π) cos(−nπ)) + 1

n2π
[sin nt]π−π

= − 2π

nπ
cos nπ = − 2

n
(−1)n = (−1)n−1 2

n
.

Here we used that cos nπ = (−1)n for n ∈ N. Hence, the Fourier coefficients an
are all equal to zero, while the coefficients bn are equal to 2(−1)n−1/n. The Fourier
series of the sawtooth function is thus indeed equal to

∑∞
n=1(−1)n−1(2/n) sin nt .

That the partial sums of the series are a good approximation of the sawtooth function
can be seen in figure 3.3, where

∑10
n=1(−1)n−1(2/n) sin nt is sketched. �

–π

0

t

π

–π

π

10

n=1
(–1)n–1 sin nt2

n∑

FIGURE 3.3
Partial sums of the Fourier series approximating the sawtooth function.

When the periodic function f is real, and thus the coefficients an and bn as well,
then the nth term in the Fourier series, an cos nω0t + bn sin nω0t , is called the nthnth harmonic
harmonic. Instead of the sum of a cosine and a sine of equal frequency, one can
also write it as a single cosine, in which case, however, a constant will occur in the
argument. One then has for an, bn ∈ R:

an cos nω0t + bn sin nω0t =
√

a2
n + b2

n cos(nω0t + φn)

where

tan φn = −bn

an
if an �= 0,

φn = −π

2
if an = 0.
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The factor
√

a2
n + b2

n is the amplitude of the nth harmonic, φn the initial phase.Amplitude

Initial phase Hence, the Fourier series can also be written as the sum of infinitely many harmon-
ics, written exclusively in cosines. The amplitude of the nth harmonic tells us its
weight in the Fourier series. From the initial phase one can deduce how far the nth
harmonic is shifted relative to cos nω0t .

Suppose that a function with period T = 2π has Fourier coefficients a1 = 1, a2 =EXAMPLE
1/2, b2 = 1/2 and that all other coefficients are 0. Since ω0 = 2π/T = 1, the
Fourier series is then

cos t + 1

2
cos 2t + 1

2
sin 2t.

The first harmonic is cos t , with amplitude 1 and initial phase 0. The amplitude of
the second harmonic is

√
(1/2)2 + (1/2)2 = √

1/2 = √
2/2, while its initial phase

follows from tan φ2 = −1, so φ2 = −π/4. For the second harmonic we thus have

1

2
cos 2t + 1

2
sin 2t = 1

2

√
2 cos

(
2t − π

4

)
.

�

3.2.2 Complex Fourier series

In many cases it is easier to work with another representation of the Fourier series.
One then doesn’t use the functions sin nω0t and cos nω0t , but instead the functions
einω0t . Euler’s formula gives the connection between these functions, making it
possible to derive one formulation of the Fourier series from the other. According
to (2.11) one has

cos nω0t = einω0t + e−inω0t

2
and sin nω0t = einω0t − e−inω0t

2i
.

If we substitute this into (3.7), it follows that

a0

2
+

∞∑
n=1

(an cos nω0t + bn sin nω0t)

= a0

2
+

∞∑
n=1

(
an

einω0t + e−inω0t

2
− ibn

einω0t − e−inω0t

2

)

= a0

2
+

∞∑
n=1

(
1

2
(an − ibn)einω0t + 1

2
(an + ibn)e−inω0t

)

= c0 +
∞∑

n=1

(
cneinω0t + c−ne−inω0t

)
=

∞∑
n=−∞

cneinω0t .

Here the coefficients cn are defined as follows:

c0 = a0

2
, cn = 1

2
(an − ibn), c−n = 1

2
(an + ibn) for n ∈ N. (3.8)

Instead of a Fourier series with coefficients an and bn and the functions cos nω0t
and sin nω0t with n ∈ N, one can thus also construct, for a periodic function f (t),
a series with (complex) coefficients cn and time-harmonic functions einω0t with
n ∈ Z. The coefficients cn are the complex Fourier coefficients. They can be
calculated from the coefficients an and bn using (3.8), but they can also be derived
directly from the function f (t). To this end, one should substitute for an and bn
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in (3.8) the definitions (3.5) and (3.6) (see also exercise 3.5). This leads to the
following definition for the complex Fourier coefficients.

Let f (t) be a periodic function with period T and fundamental frequency ω0 =DEFINITION 3.3
Complex Fourier coefficients 2π/T . Then the complex Fourier coefficients cn of f (t), whenever they exist, are

defined by

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt for n ∈ Z. (3.9)

The complex Fourier coefficients have the prefix ‘complex’ since they’ve been
determined using complex exponentials, namely, the time-harmonic signals. This
prefix has thus nothing to do with the coefficients being themselves complex or not.

Like the Fourier coefficients from definition 3.1, the complex Fourier coefficients
from definition 3.3 can also be calculated with an integral over an interval that differs
from (−T/2, T/2), as long as the interval has length T .

The mapping defined by (3.9) will also be denoted by the transformation pair

f (t) ↔ cn .

Using the complex Fourier coefficients thus defined, we can now introduce the com-
plex Fourier series associated with a periodic function f (t).

When cn are the complex Fourier coefficients of the periodic function f (t) withDEFINITION 3.4
Complex Fourier series period T and fundamental frequency ω0 = 2π/T , then the complex Fourier series

of f (t) is defined by

∞∑
n=−∞

cneinω0t . (3.10)

Hence, for periodic functions for which the complex Fourier coefficients exist, a
complex Fourier series exists as well. In chapter 4 it will be proven that for piece-
wise smooth functions the Fourier series converges to the function at the points of
continuity.

In (3.8) the complex Fourier coefficients were derived from the real ones. Con-
versely one can derive the coefficients an and bn from cn using

an = cn + c−n and bn = i(cn − c−n). (3.11)

Therefore, when determining the Fourier series one has a choice between the real
and the complex form. The coefficients can always be expressed in each other using
(3.8) and (3.11). From (3.5) and (3.6) it follows that for real periodic functions the
coefficients an and bn assume real values. From (3.8) it can then immediately be
deduced that cn and c−n are each other’s complex conjugates:

c−n = cn when f is real. (3.12)

Since for real functions cn and c−n are each other’s complex conjugates, we obtain
from (3.11) that

an = 2Re cn and bn = −2Im cn when f is real. (3.13)

In the next example we calculate for the sawtooth function, which we already en-
countered in section 3.1 and example 3.1, the complex Fourier coefficients in a
direct way. Moreover, we will verify that the coefficients an , bn and cn can indeed
be obtained from each other.
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On the interval (−π, π) the sawtooth function with period 2π is given by f (t) = t .EXAMPLE 3.2
One has T = 2π and ω0 = 1. The complex Fourier coefficients can be calculated
directly using definition 3.3. For n �= 0 it follows from integration by parts that

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt = 1

2π

∫ π

−π
te−int dt

= −1

2inπ

{[
te−int

]π

−π
−

∫ π

−π
e−int dt

}

= −1

2inπ

{
πe−inπ + πeinπ + 1

in
(e−inπ − einπ )

}

= −1

2inπ

{
2π cos nπ − 2

n
sin nπ

}
= −1

in
cos nπ = i

n
(−1)n .

For n = 0 one has

c0 = 1

T

∫ T/2

−T/2
f (t) dt = 1

2π

∫ π

−π
t dt = 0.

The complex Fourier series of the sawtooth function f (t) = t with period 2π is
thus equal to

∑∞
n=−∞,n �=0(i/n)(−1)neint . That these complex Fourier coefficients

coincide with the coefficients from example 3.1 can be verified with (3.13) (the
sawtooth function is real):

an = 2Re cn = 0 for n = 1, 2, 3, . . .,

bn = −2Im cn = −2
1

n
(−1)n for n = 1, 2, 3, . . .,

a0 = 2c0 = 0.

Comparing these coefficients with the ones from example 3.1 will show that they
are equal. �

EXERCISES

Use the definitions of an and bn to verify that for a periodic function f (t) with3.5
period T it follows from (3.8) that

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt for n ∈ Z.

Sketch the periodic function f (t) with period 2π given by f (t) = | t | for t ∈3.6
(−π, π) and determine its Fourier series.

Sketch the periodic function g(t) with period 2 and determine its complex Fourier3.7
series when g(t) is given for −1 < t < 1 by

g(t) =
{

0 for −1 < t < 0,
e−t for 0 ≤ t < 1.

Sketch the periodic function f (t) with period 4 and determine its Fourier series3.8
when f (t) is given for −2 < t < 2 by

f (t) =
{

2 for −2 < t < 0,
t for 0 ≤ t < 2.

Determine the complex Fourier series of the periodic complex-valued function g(t)3.9
given by g(t) = t2 + i t for t ∈ (−1, 1) and having period 2.
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3.3 The spectrum of periodic functions

The periodic functions, or periodic signals, that we have considered so far, both
the real and the complex ones, were all defined for t ∈ R. Here the variable t is
often interpreted as a time-variable. We say that these functions are defined in the
time domain. For these functions the Fourier coefficients cn (or an and bn) can beTime domain
determined. Through the Fourier series, each of these coefficients is associated with
a function of a specific frequency nω0. The values of the Fourier coefficients tell us
the weight of the function with frequency nω0 in the Fourier series. For piecewise
smooth functions we will establish in chapter 4 that the Fourier series is equal to the
function. This means that these functions are completely determined by their Fourier
coefficients. Since the coefficients cn (or an and bn) are associated with frequency
nω0, we then say that the function f (t) is described by the Fourier coefficients in
the frequency domain. As soon as the values cn are known, the original function inFrequency domain
the time domain is also fixed.

In daily life as well, we often interpret signals in terms of frequencies. Sound and
light are quantities that are expressed in terms of frequencies, and we observe these
as pitch and colour.

The sequence of Fourier coefficients cn with n ∈ Z, which thus describe a func-
tion in the frequency domain, is called the spectrum of the function. Since n assumesSpectrum
only integer values, the spectrum is called a discrete or a line spectrum. Often, notDiscrete spectrum

Line spectrum the spectrum itself is given, but instead the amplitude spectrum | cn | and the phase

Amplitude spectrum

Phase spectrum

spectrum arg(cn). Hence, the amplitude and phase spectrum are defined as soon as
the complex Fourier coefficients exist, also in the case when the function f (t) is
complex-valued. This definition of amplitude and phase is thus more general than
the one for the nth harmonic, which only existed in the case when f (t) was real.

Figure 3.4 shows the amplitude and phase spectrum of the sawtooth function, forEXAMPLE 3.3
which we deduced in example 3.2 that the complex Fourier coefficients cn are given
by cn = (−1)n(i/n) for n �= 0 and c0 = 0. The amplitude spectrum is thus given
by | cn | = 1/ | n | for n �= 0 and | c0 | = 0, while the phase spectrum is given by
arg(cn) = (−1)n(π/2) for n > 0 and by arg(cn) = (−1)n−1(π/2) for n < 0, and
is undefined for n = 0. �

n

1 |cn|

a

0 1 2 3–1–2–3 n

arg(cn)

b

0

π
2

–π
2

FIGURE 3.4
The amplitude spectrum (a) and phase spectrum (b) of the sawtooth function.

EXERCISES

Determine and sketch the amplitude and phase spectra of the functions from exer-3.10
cises 3.6 to 3.9.
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3.4 Fourier series for some standard functions

In the preceding sections the Fourier coefficients of the sawtooth function have been
determined. It will be convenient to know the Fourier series for some other standard
functions as well. Together with the properties, to be treated in the next section,
this will enable us to determine the Fourier series for quite a number of periodic
functions relatively easily. In this section we determine the Fourier series for a
number of functions. These standard functions and their Fourier coefficients are
also included in table 1 at the back of the book. The first two functions that will
be treated are even, that is, f (t) = f (−t). The third function will be odd, that is,Even function

Odd function f (t) = − f (−t).

3.4.1 The periodic block function

The periodic function pa,T (t) with period T > 0 and 0 ≤ a ≤ T and having value
1 for | t | ≤ a/2 ≤ T/2 and value 0 for a/2 < | t | ≤ T/2 is called the periodicPeriodic block function
block function. Its graph is sketched in figure 3.5. The complex Fourier coefficients

t

1

0

T 3T/2T/2–T/2–T–3T/2 –a/2 a/2

FIGURE 3.5
The periodic block function pa,T (t).

of the periodic block function can be calculated for n �= 0 using (3.9):

cn = 1

T

∫ T/2

−T/2
pa,T (t)e−inω0t dt = 1

T

∫ a/2

−a/2
e−inω0t dt = 1

T

[
e−inω0t

−inω0

]a/2

−a/2

= 2

T nω0

(
einω0a/2 − e−inω0a/2

2i

)
= 2

T

sin(nω0a/2)

nω0
.

For n = 0 it follows that

c0 = 1

T

∫ T/2

−T/2
pa,T (t) dt = 1

T

∫ a/2

−a/2
1 dt = a

T
.

For a given value of a, the Fourier coefficients for n �= 0 are thus equal to
2 sin(nω0a/2)/T nω0, which are precisely the values of 2 sin(ax/2)/T x evaluated
at x = nω0, where n runs through the integers. In figure 3.6 the function f (x) =
2 sin(ax/2)/T x is drawn; for x = 0 the function is defined by limx→0 f (x) =
a/T = c0. From this we can obtain the Fourier coefficients of the periodic block
function by evaluating the function values at nω0 for n ∈ Z. One thus has for the
periodic block function:

pa,T (t) ↔ 2

T

sin(nω0a/2)

nω0
. (3.14)

Here one should take the value limx→0 2 sin(ax/2)/T x for n = 0.
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–2π
a

x0

2π
a

4ω0–4ω0

a
T

2ω0–2ω0

2 sin(ax/2)
Tx

ω0 3ω0–ω0–3ω0

FIGURE 3.6
Evaluating the function values of 2 sin(ax/2)/T x at x = nω0 for n ∈ Z gives the
Fourier coefficients of the periodic block function.

When a = T/2, the Fourier coefficients of the periodic block function areEXAMPLE 3.4

cn = 1

nπ
sin(nπ/2) for n �= 0, c0 = 1

2
.

For even n (with the exception of 0) the Fourier coefficients are thus equal to 0 and
for odd n they are equal to (−1)(n−1)/2/nπ . The amplitude spectrum | cn | of this
periodic block function is drawn in figure 3.7. �

n0 2 4 6–2–4–6

1
2

FIGURE 3.7
Amplitude spectrum of the periodic block function for a = T/2.

The partial sums
∑m

n=−m cneinω0t of the Fourier series give a better approxima-
tion of the periodic block function as we increase the numbers of terms included. To
illustrate this, the periodic block function for a = T/2 is drawn in figure 3.8,
together with the partial sums of the Fourier series for m = 0, 1, 3, 5 and 7. To
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t0
T
2

–T
2

1

m = 1
m = 3
m = 5
m = 7

m = 0

FIGURE 3.8
The periodic block function for a = T/2 and approximations using the partial sums
of the Fourier series.

do so, the partial sums have been rewritten as follows:

m∑
n=−m

cneinω0t = c0 +
m∑

n=1

(cneinω0t + c−ne−inω0t )

= c0 +
m∑

n=1

2cn
einω0t + e−inω0t

2
= c0 +

m∑
n=1

2cn cos nω0t

= 1

2
+

m∑
n=1

n odd

2

nπ
(−1)(n−1)/2 cos nω0t.

Hence, the Fourier series of the periodic block function contains only cosine terms.

3.4.2 The periodic triangle function

The periodic triangle function qa,T (t) with period T is defined for 0 < a ≤ T/2.
On (−T/2, T/2) it is defined by:

qa,T (t) =
{

1 − | t |
a

for | t | ≤ a,

0 for a < | t | ≤ T/2.

The graph of the periodic triangle function is sketched in figure 3.9. For n �= 0
the complex Fourier coefficients of the periodic triangle function can be calculated
using (3.9):

cn = 1

T

∫ T/2

−T/2
qa,T (t)e−inω0t dt

= 1

T

∫ 0

−a
(1 + t

a
)e−inω0t dt + 1

T

∫ a

0
(1 − t

a
)e−inω0t dt

= 1

T

∫ a

0
(1 − t

a
)e−inω0t dt + 1

T

∫ a

0
(1 − t

a
)e−inω0t dt

= 2

T

∫ a

0
(1 − t

a
) cos nω0t dt.
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t

1

0 TT/2–T/2–T –a a

FIGURE 3.9
The periodic triangle function qa,T (t).

From integration by parts it then follows that

cn = 2

T

1

nω0

{[
(1 − t

a
) sin nω0t

]a

0
+ 1

a

∫ a

0
sin nω0t dt

}

= 2

T nω0

1

a

−1

nω0

[
cos nω0t

]a
0 = 2(1 − cos nω0a)

n2ω2
0aT

.

Because 1 − cos nω0a = 2 sin2(nω0a/2), we thus have

cn = 4 sin2(nω0a/2)

n2ω2
0aT

.

Since
∫ a
−a(1 − | t | /a) dt = a, it immediately follows that c0 = a/T . For a given

a, the Fourier coefficients for n �= 0 equal 4 sin2(nω0a/2)/n2ω2
0aT , which are

precisely the function values of 4 sin2(ax/2)/ax2T , evaluated at x = nω0, where
n runs through the integers. In figure 3.10 the function f (x) = 4 sin2(ax/2)/ax2T
is drawn. For x = 0 the function is defined by limx→0 f (x) = a/T = c0. By
evaluating the function values at nω0 for n ∈ Z, one can thus derive the Fourier
coefficients from this function. For the periodic triangle function we thus have

qa,T (t) ↔ 4 sin2(nω0a/2)

n2ω2
0aT

, (3.15)

where for n = 0 one has to take the value limx→0 4 sin2(ax/2)/ax2T .

3.4.3 The sawtooth function

We have already discussed the sawtooth function several times in this chapter. For
an arbitrary period T it is defined by f (t) = 2t/T on the interval (−T/2, T/2)

and extended periodically elsewhere. The ‘standard’ sawtooth function thus varies
between −1 and +1. Analogous to the previous examples one can derive that the
complex Fourier coefficients are equal to cn = i(−1)n/πn for n �= 0 and c0 = 0.

EXERCISES

In example 3.4 the Fourier coefficients of the periodic block function have been de-3.11
termined for a = T/2.
a Determine the Fourier coefficients for a = T/4 and sketch the amplitude
spectrum.
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2ω0–2ω0

–π
a

x0

π
a

4ω0–4ω0

a
T

ax 2T
4 sin2(ax/2)

ω0 3ω0–ω0–3ω0

FIGURE 3.10
Evaluating the function values of 4 sin2(ax/2)/ax2T at x = nω0 for n ∈ Z gives
the Fourier coefficients of the periodic triangle function.

b Now determine the Fourier coefficients for a = T . What do these Fourier coef-
ficients imply for the Fourier series?

Determine for a = T/2 the Fourier coefficients and the amplitude spectrum of the3.12
periodic triangle function from section 3.4.2.

Determine the Fourier coefficients of the sawtooth function given by f (t) = 2t/T3.13
on the interval (−T/2, T/2) and extended periodically elsewhere, and sketch the
amplitude and phase spectrum.

3.5 Properties of Fourier series

In the previous section Fourier series were determined for a number of standard
functions. In the same way one can, in principle, determine the Fourier series for
many more periodic functions. This, however, is quite cumbersome. By using a
number of properties of Fourier series one can determine in a relatively simple way
the Fourier series of a large number of periodic functions. These properties have
also been included in table 2 at the back of the book.

3.5.1 Linearity

Fourier coefficients of linear combinations of functions are equal to the same linear
combination of the Fourier coefficients of the individual functions. This property is
formulated in the following theorem.

When the complex Fourier coefficients of f (t) and g(t) are fn and gn respectively,THEOREM 3.1
Linearity of the Fourier
transform

then one has for a, b ∈ C:

a f (t) + bg(t) ↔ a fn + bgn .
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Proof
The proof of this theorem is a straightforward application of the linearity of integra-
tion. When cn denotes the Fourier coefficients of a f (t) + bg(t), then

cn = 1

T

∫ T/2

−T/2
(a f (t) + bg(t))e−inω0t dt

= a

T

∫ T/2

−T/2
f (t)e−inω0t dt + b

T

∫ T/2

−T/2
g(t)e−inω0t dt = a fn + bgn .

�

With the linearity property one can easily determine the Fourier coefficients of linearEXAMPLE 3.5
combinations of functions whose individual Fourier coefficients are already known.
Let f be the periodic function with period 6 as sketched in figure 3.11. The function

t

2

0 3–3

–1

f

FIGURE 3.11
Periodic function as a combination of periodic block functions.

f is then equal to 2g − 3h, where g and h are periodic block functions, as defined
in section 3.4.1, with period 6 and, respectively, a = 4 and a = 2. Using (3.14)
or table 1 and applying theorem 3.1, it then follows that the Fourier coefficients are
given by

cn = 4

6

sin(nω04/2)

nω0
− 6

6

sin(nω02/2)

nω0

= 2

3

sin(n2π/3)

n2π/6
− sin(nπ/3)

n2π/6
= 2 sin(2nπ/3) − 3 sin(nπ/3)

nπ
.

�

3.5.2 Conjugation

The Fourier coefficients of the complex conjugate of f can be derived from the
Fourier coefficients of the function itself. How this can be done is the subject of our
next theorem.

When the Fourier coefficients of f (t) are equal to cn, thenTHEOREM 3.2
Fourier coefficients of a
conjugate f (t) ↔ c−n .
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Proof

Since einω0t = e−inω0t , it follows by direct calculation of the Fourier coefficients
of f (t) that

1

T

∫ T/2

−T/2
f (t)e−inω0t dt = 1

T

∫ T/2

−T/2
f (t)einω0t dt

= 1

T

∫ T/2

−T/2
f (t)e−i(−n)ω0t dt = c−n .

�

This property has a special consequence when f (t) is real. This is because we
then have f (t) = f (t). The Fourier coefficients of f (t) and f (t), whenever these
exist at least, must then also be equal and hence cn = c−n . This result has been
derived before, see (3.12). Furthermore, one has for the moduli that | cn | = | c−n |
and since the moduli of complex conjugates are the same (see (2.3)), this in turn
equals | c−n |. For a real function it thus follows that | cn | = | c−n |, which means
that the amplitude spectrum is even. We also know that the arguments of complex
conjugates are each other’s opposite, and so arg(cn) = arg(c−n) = − arg(c−n).
Hence, the phase spectrum is odd.

The standard functions treated in section 3.4 are all real. One can easily check thatEXAMPLE
the amplitude spectra are indeed even. For the sawtooth function one can check
moreover that the phase spectrum is odd, while the phase spectra of the periodic
block and triangle functions are zero, and so odd as well. �

3.5.3 Shift in time

The standard functions treated in section 3.4 were all neatly ‘centred’ around t = 0.
From these one can, by a shift in time, obtain functions that are, of course, no longer
centred around t = 0. When the shift equals t0, then the new function will be given
by f (t − t0). The Fourier coefficients of the shifted function can immediately be
obtained from the Fourier coefficients of the original function.

When cn are the Fourier coefficients of f (t), thenTHEOREM 3.3
Shift in time

f (t − t0) ↔ e−inω0t0 cn .

Proof
The Fourier coefficients of f (t − t0) can be calculated using the definition. In
this calculation we introduce the new variable τ = t − t0 and we integrate over
(−T/2, T/2) instead of ((−T/2) + t0, (T/2) + t0), since this gives the same result:

1

T

∫ T/2

−T/2
f (t − t0)e−inω0t dt

= e−inω0t0 1

T

∫ (T/2)+t0

(−T/2)+t0
f (t − t0)e−inω0(t−t0) d(t − t0)

= e−inω0t0 1

T

∫ T/2

−T/2
f (τ )e−inω0τ dτ = e−inω0t0 · cn .

�

It follows immediately from theorem 3.3 that the amplitude spectra of f (t) and
f (t − t0) are the same: |e−inω0t0 cn | = | cn |. Hence, the amplitude spectrum of
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a function does not change when the function is shifted in time. For the phase
spectrum one has

arg
(

e−inω0t0 cn

)
= arg

(
e−inω0t0

)
+ arg(cn) = n arg

(
e−iω0t0

)
+ arg(cn).

The phase spectrum thus changes linearly with n, apart from the fact that the argu-
ment can always be reduced to a value in the interval [−π, π].

The periodic block function from example 3.4 is centred around t = 0. The FourierEXAMPLE
coefficients of the periodic function with f (t) = 1 for 0 ≤ t < T/2 and f (t) = 0
for −T/2 < t < 0, see figure 3.12, can easily be derived from this. For this periodic

t

1

0 TT/2–T/2–T

FIGURE 3.12
The shifted periodic block function.

block function one has t0 = T/4 and a = T/2, so the Fourier coefficients are equal
to

cn = e−inω0t0 1

nπ
sin(nπ/2) = e−inπ/2 1

nπ

einπ/2 − e−inπ/2

2i

= 1 − e−inπ

2inπ
= (−1)n − 1

2nπ
i.

Hence, for even n and n �= 0 one has cn = 0 and for odd n one has cn = −i/nπ .
Furthermore, c0 = 1/2. The amplitude spectrum is thus equal to that of the periodic
block function in example 3.4. �

3.5.4 Time reversal

The process of changing from the variable t to the variable −t is called time reversal.
In this case there is again a simple relationship between the Fourier coefficients of
the functions.

When cn are the Fourier coefficients of f (t), thenTHEOREM 3.4
Time reversal

f (−t) ↔ c−n .

Proof
A direct application of the definition and changing from the variable −t to τ gives
the proof:

1

T

∫ T/2

−T/2
f (−t)e−inω0t dt = 1

T

∫ −T/2

T/2
f (τ )e−inω0(−τ) d(−τ)

= 1

T

∫ T/2

−T/2
f (τ )e−i(−n)ω0τ dτ = c−n .

�
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A direct consequence of this theorem is that if f (t) is even, so f (t) = f (−t)
for all t , then cn = c−n . In this case the amplitude spectrum as well as the phase
spectrum are even. Furthermore, it follows from (3.8) that the coefficients bn of
the ordinary Fourier series are all 0. Thus, the Fourier series of an even function
contains only cosine terms. This result is easily understood: the sines are odd, while
the cosines are even. A series containing sine functions will never be even. When,
moreover, f (t) is real, then cn and c−n are each other’s complex conjugate (see
(3.12)) and in that case the coefficients will be real as well.

The periodic block function and the periodic triangle function from sections 3.4.1EXAMPLE
and 3.4.2 are even and real. The spectra are also even and real. �

When f (t) is odd, so f (t) = − f (−t), it follows that cn = −c−n and so the
spectrum is odd. Since c−n = cn for f (t) real, the Fourier coefficients are purely
imaginary. The spectrum of a real and odd function is thus odd and purely imagi-
nary. Moreover, in the case of an odd function it follows from (3.8) that the coeffi-
cients an are 0 and that the Fourier series consists of sine functions only.

The periodic sawtooth function is a real and odd function. The complex FourierEXAMPLE
coefficients are odd and purely imaginary, while the Fourier series contains only
sine functions. �

EXERCISES

The periodic function f with period 4 is given by f (t) = 1 + | t | for | t | ≤ 1 and3.14
f (t) = 0 for 1 < | t | < 2. Sketch the graph of the function and determine its
Fourier coefficients.

Determine the Fourier coefficients of the periodic function with period T defined by3.15
f (t) = t on the interval (0, T ).

Let the complex-valued function f (t) = u(t) + iv(t) be given, where u(t) and v(t)3.16
are real functions with Fourier coefficients un and vn .
a Determine the Fourier coefficients of f (t) and of f (t).
b Suppose that f (t) is even, but not real. Will the Fourier coefficients of f (t) be
even and real then?

The amplitude spectrum of a function does not change when a shift in time is3.17
applied. For which shifts does the phase spectrum remains unchanged as well?

In section 3.5.4 we derived that for even functions the ordinary Fourier series con-3.18
tains only cosine terms. Show that this also follows directly from (3.5) and (3.6).

3.6 Fourier cosine and Fourier sine series

In section 3.5.4 we showed that the ordinary Fourier series of an even periodic func-
tion contains only cosine terms and that the Fourier series of an odd periodic func-
tion contains only sine terms. For the standard functions we have seen that the pe-
riodic block function and the periodic triangle function, which are even, do indeed
contain cosine terms only and that the sawtooth function, which is odd, contains
sine terms only. Sometimes it is desirable to obtain for an arbitrary function on the
interval (0, T ) a Fourier series containing only sine terms or containing only cosine
terms. Such series are called Fourier sine series and Fourier cosine series. In orderFourier sine series

Fourier cosine series to find a Fourier cosine series for a function defined on the interval (0, T ), we extend
the function to an even function on the interval (−T, T ) by defining f (−t) = f (t)
for −T < t < 0 and subsequently extending the function periodically with period
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2T . The function thus created is now an even function and its ordinary Fourier series
will contain only cosine terms, while the function is equal to the original function
on the interval (0, T ).

In a similar way one can construct a Fourier sine series for a function by extending
the function defined on the interval (0, T ) to an odd function on the interval (−T, T )

and subsequently extending it periodically with period 2T . Such an odd function
will have an ordinary Fourier series containing only sine terms.

Determining a Fourier sine series or a Fourier cosine series in the way describedForced series development
above is sometimes called a forced series development.

Let the function f (t) be given by f (t) = t2 on the interval (0, 1). We wish to obtainEXAMPLE
a Fourier sine series for this function. We then first extend it to an odd function
on the interval (−1, 1) and subsequently extend it periodically with period 2. The
function and its odd and periodic extension are drawn in figure 3.13. The ordinary

1

0 1

1

1 2–1–2

–1

FIGURE 3.13
The function f (t) = t2 on the interval (0, 1) and its odd and periodic extension.

Fourier coefficients of the function thus created can be calculated using (3.5) and
(3.6). Since the function is odd, all coefficients an will equal 0. For bn we have

bn = 2

T

∫ T/2

−T/2
f (t) sin nω0t dt =

∫ 0

−1
(−t2) sin nπ t dt +

∫ 1

0
t2 sin nπ t dt

= 2
∫ 1

0
t2 sin nπ t dt.

Applying integration by parts twice, it follows that

bn = −2

nπ

{[
t2 cos nπ t

]1

0
− 2

nπ
[t sin nπ t]1

0 − 2

n2π2
[cos nπ t]1

0

}

= 2

nπ

(
2(cos nπ − 1)

n2π2
− cos nπ

)
= 2

nπ

(
2((−1)n − 1)

n2π2
− (−1)n

)
.

The Fourier sine series of f (t) = t2 on the interval (0, 1) is thus equal to

∞∑
n=1

2

nπ

(
2((−1)n − 1)

n2π2
− (−1)n

)
sin nπ t.

�

In this final example we will show that one can even obtain a Fourier cosine seriesEXAMPLE
for the sine function on the interval (0, π). To this end we first extend sin t to an
even function on the interval (−π, π) and then extend it periodically with period
2π ; see figure 3.14. The ordinary Fourier coefficients of the function thus created
can be calculated using (3.5) and (3.6). Since the function is even, all coefficients
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π–π–2π 2π

FIGURE 3.14
The even and periodic extension of the function f (t) = sin t on the interval (0, π).

bn will be 0. For an one has

an = 2

T

∫ T/2

−T/2
f (t) cos nω0t dt

= 1

π

(∫ 0

−π
(− sin t) cos nt dt +

∫ π

0
sin t cos nt dt

)

= 2

π

∫ π

0
sin t cos nt dt.

Applying the trigonometric formula sin t cos nt = (sin(1+n)t +sin(1−n)t)/2 then
gives for an with n �= 1:

an = 1

π

∫ π

0
(sin(1 + n)t + sin(1 − n)t) dt

= 1

π

[ −1

1 + n
cos(1 + n)t + −1

1 − n
cos(1 − n)t

]π

0

= 1

π

(
1 − (−1)n−1

1 + n
+ 1 − (−1)n−1

1 − n

)
= 2(1 − (−1)n−1)

π(1 − n2)
.

It is easy to check that a0 = 4/π and a1 = 0. The Fourier cosine series of the
function f (t) = sin t on the interval (0, π) is thus equal to

2

π
+

∞∑
n=2

2(1 − (−1)n−1)

π(1 − n2)
cos nt.

�

EXERCISES

Determine the Fourier sine series and the Fourier cosine series on (0, 4) for the3.19
function f (t) given for 0 < t < 4 by

f (t) =
{

t for 0 < t ≤ 2,
2 for 2 < t < 4.

Determine a Fourier sine series of cos t on the interval (0, π).3.20

Determine a Fourier sine series and a Fourier cosine series of the function f (t) =3.21
t (t − 4) on the interval (0, 4).

Determine a Fourier sine series of the function f (t) defined on the interval (0, T/2)3.22
by f (t) = 1/2 for 0 ≤ t < T/2.
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S U M M A R Y

Trigonometric polynomials and series are, respectively, finite and infinite linear
combinations of the functions cos nω0t and sin nω0t with n ∈ N. They are all
periodic with period T = 2π/ω0. When a trigonometric polynomial f (t) is given,
the coefficients in the linear combination can be calculated using the formulas

an = 2

T

∫ T/2

−T/2
f (t) cos nω0t dt for n = 0, 1, 2, . . .,

bn = 2

T

∫ T/2

−T/2
f (t) sin nω0t dt for n = 1, 2, . . ..

These formulas can be applied to any arbitrary periodic function, provided that the
integrals exist. The numbers an and bn are called the Fourier coefficients of the func-
tion f (t). Using these coefficients one can then form a Fourier series of the func-
tion f (t):

a0

2
+

∞∑
n=1

(an cos nω0t + bn sin nω0t).

Instead of a Fourier series with functions cos nω0t and sin nω0t one can also obtain
a complex Fourier series with the time-harmonic functions einω0t . The complex
Fourier coefficients can then be calculated using

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt for n ∈ Z,

while the complex Fourier series has the form

∞∑
n=−∞

cneinω0t .

These two Fourier series can immediately be converted into each other and, depend-
ing on the application, one may chose either one of these forms.

The sequence of Fourier coefficients (cn) is called the spectrum of the func-
tion. This is usually split into the amplitude spectrum | cn | and the phase spectrum
arg(cn).

For some standard functions the Fourier coefficients have been determined. More-
over, a number of properties were derived making it possible to find the Fourier
coefficients for far more functions and in a much simpler way than by a direct
calculation.

Even functions have Fourier series containing cosine terms only. Series like this
are called Fourier cosine series. Odd functions have Fourier sine series. When
desired, one can extend a function, given on a certain interval, in an even or an odd
way, so that they can be forced into a Fourier cosine or a Fourier sine series.

S E L F T E S T

The function f (t) is periodic with period 10 and is drawn on the interval (−5, 5) in3.23
figure 3.15. Determine the ordinary and complex Fourier coefficients of f .

Show that when for a real function f the complex Fourier coefficients are real, f3.24
has to be even, and when the complex Fourier coefficients are purely imaginary, f
has to be odd.
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–1 1 3–3–5 0

2

5 t

 f(t)

FIGURE 3.15
The periodic function f (t) from exercise 3.23.

Determine the Fourier series of the periodic function f (t) with period T , when for3.25
−T/2 < t < T/2 the function f (t) is given by

f (t) =
{

0 for −T/2 < t < 0,
sin ω0t for 0 < t < T/2.

Calculate and sketch the amplitude and phase spectrum of the periodic function3.26
f (t), when f (t) has period 2π and is given for −π < t < π by

f (t) =
{

0 for −π < t < 0,
t for 0 ≤ t < π .

Consider the function f (t) defined by:3.27

f (t) =




2b

a
t for 0 < t <

a

2
,

2b

a
(a − t) for

a

2
≤ t < a.

a Sketch the graph of f (t), of its odd and of its even periodic extension.
b Give a development of f (t) on (0, a) as a Fourier cosine series and also as a
Fourier sine series.
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CHAPTER 4

The fundamental theorem of Fourier
series

I N T R O D U C T I O N

Chapter 3 has been a first introduction to Fourier series. These series can be associ-
ated with periodic functions. We also noted in chapter 3 that if the function satisfies
certain conditions, the Fourier series converges to the periodic function. What these
specific conditions should be has not been analysed in chapter 3. The conditions that
will be imposed in this book imply that the function should be piecewise smooth. In
this chapter we will prove that a Fourier series of a piecewise smooth periodic func-
tion converges pointwise to the periodic function. We stress here that this condition
is sufficient: when it holds, the series is pointwise convergent. This condition does
not cover all cases of pointwise convergence and is thus not necessary for conver-
gence.

In the first section of this chapter we derive a number of properties of Fourier co-
efficients that will be useful in the second section, where we prove the fundamental
theorem. In the fundamental theorem we prove that for a piecewise smooth periodic
function the Fourier series converges to the function. In the third section we then
derive some further properties of Fourier series: product and convolution, Parseval’s
theorem (which has applications in the analysis of systems and signals), and inte-
gration and differentiation of Fourier series. We end this chapter with the treatment
of Gibbs’ phenomenon, which describes the convergence behaviour of the Fourier
series at a jump discontinuity. This is then also an appropriate occasion to introduce
the function Si(x), the sine integral. This function will re-appear in other chapters
as well.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- can formulate Bessel’s inequality and the Riemann–Lebesgue lemma
- can formulate and apply the fundamental theorem of Fourier series
- can calculate the sum of a number of special series using the fundamental theorem
- can determine the Fourier series of the product and the convolution of two periodic

functions
- can formulate and apply Parseval’s theorem
- can integrate and differentiate Fourier series
- know the definition of the sine integral and know its limit
- can explain Gibbs’ phenomenon∗.

4.1 Bessel’s inequality and Riemann–Lebesgue lemma

In chapter 3 we always assumed in the definition of the Fourier coefficients that
the integrals, necessary for the calculation of the coefficients, existed. As such,

86
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this is not a very important problem: if the integrals do not exist, then the Fourier
coefficients do not exist and a further Fourier analysis is then impossible. In this
chapter we confine ourselves to piecewise continuous periodic functions and for
these it is easy to verify that the Fourier coefficients exist; see section 2.3.

As soon as the Fourier coefficients of a periodic function exist, it is, however, by
no means obvious that the Fourier series converges to the function. In this chapter
we will present conditions under which convergence is assured.

In the present section we will first treat some properties of the Fourier coefficients
that will be needed later on. First we show that the sum of the squares of the Fourier
coefficients of a piecewise continuous function is finite. This is called Bessel’s
inequality. Next we show that the Fourier coefficients cn of a piecewise continuous
function tend to 0 as n → ±∞. This is called the Riemann–Lebesgue lemma and
is needed in the next section to prove the fundamental theorem of Fourier series.

When cn are the Fourier coefficients of a piecewise continuous periodic functionTHEOREM 4.1
Bessel’s inequality f (t) with period T , then

∞∑
n=−∞

| cn |2 ≤ 1

T

∫ T/2

−T/2
| f (t) |2 dt. (4.1)

Proof
In the proof we use the partial sums of the Fourier series of f (t) with Fourier coef-
ficients ck . We denote these by sn(t), so

sn(t) =
n∑

k=−n

ckeikω0t . (4.2)

For a fixed value of n with −n ≤ k ≤ n we now calculate

1

T

∫ T/2

−T/2
( f (t) − sn(t)) e−ikω0t dt

= 1

T

∫ T/2

−T/2
f (t)e−ikω0t dt − 1

T

n∑
l=−n

cl

∫ T/2

−T/2
ei(l−k)ω0t dt .

The first integral in the right-hand side is precisely the definition of the Fourier
coefficient ck . The integrals in the sum in the right-hand side are all equal to 0 for
l �= k. When l = k, the integrand is 1 and the integral T , so ultimately the sum
equals ck . We thus have

1

T

∫ T/2

−T/2
( f (t) − sn(t)) e−ikω0t dt = ck − ck = 0 for −n ≤ k ≤ n.

Using this result we calculate the following integral:∫ T/2

−T/2
( f (t) − sn(t)) sn(t) dt =

n∑
k=−n

ck

∫ T/2

−T/2
( f (t) − sn(t)) e−ikω0t dt = 0.

If we now multiply f (t)− sn(t) in the integral in the left-hand side not by sn(t), but
by f (t) − sn(t), it follows that∫ T/2

−T/2
( f (t) − sn(t)) ( f (t) − sn(t)) dt =

∫ T/2

−T/2
( f (t) − sn(t)) f (t) dt

=
∫ T/2

−T/2
f (t) f (t) dt −

∫ T/2

−T/2
sn(t) f (t) dt
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=
∫ T/2

−T/2
| f (t) |2 dt −

n∑
k=−n

ck

∫ T/2

−T/2
eikω0t f (t) dt

=
∫ T/2

−T/2
| f (t) |2 dt −

n∑
k=−n

ck

∫ T/2

−T/2
e−ikω0t f (t) dt

=
∫ T/2

−T/2
| f (t) |2 dt −

n∑
k=−n

ck T ck =
∫ T/2

−T/2
| f (t) |2 dt − T

n∑
k=−n

| ck |2 .

The first term in this series of equalities is greater than or equal to 0, since
( f (t) − sn(t)) ( f (t) − sn(t)) = | f (t) − sn(t) |2 ≥ 0. The last term must then
also be greater than or equal to 0, which means that

T
n∑

k=−n

| ck |2 ≤
∫ T/2

−T/2
| f (t) |2 dt.

This inequality holds for any n ∈ N, while the right-hand side is independent of n.
One thus has

∞∑
n=−∞

| cn |2 = lim
n→∞

n∑
k=−n

| ck |2 ≤ 1

T

∫ T/2

−T/2
| f (t) |2 dt.

�

If f (t) is a piecewise continuous function, then | f (t) |2 is one as well, and so
the right-hand side of inequality (4.1) is finite. In particular it then follows that the
series

∑∞
n=−∞ | cn |2 converges. Hence, we must have cn → 0 as n → ±∞. This

result is known as the Riemann–Lebesgue lemma.

If f (t) is a piecewise continuous periodic function with Fourier coefficients cn, thenTHEOREM 4.2
Riemann–Lebesgue lemma

lim
n→∞ cn = lim

n→−∞ cn = 0. (4.3)

Theorem 4.2 can be interpreted as follows. In order to calculate the coefficients
cn , the function f (t) is multiplied by e−inω0t and integrated over one period. For
increasing n, the frequency of the corresponding sine and cosine functions keeps
increasing. Now consider two consecutive intervals such that, for example, the sine
function is negative in the first interval and positive in the second. For increasing
n, and hence for ever smaller intervals, the value of f in the first and in the second
interval will differ less and less. Multiplied by first a negative and then a positive
sine function, the contributions to the integral will cancel each other better and better
for increasing n. In this way the coefficients will eventually converge to 0.

The periodic block function, introduced in section 3.4.1, is piecewise continuous.EXAMPLE
The Fourier coefficients, which have also been calculated there, are equal to
2 sin(nω0a/2)/T nω0. The numerator ranges for increasing n between −1 and 1,
while the denominator tends to infinity as n → ∞. For the Fourier coefficients we
thus have

lim
n→∞

2

T

sin(nω0a/2)

nω0
= 0.

The Fourier coefficients of the periodic block function thus tend to 0 as n → ∞.
Similarly one can check that the same is true for the Fourier coefficients of the
periodic triangle function and the sawtooth function from sections 3.4.2
and 3.4.3. �
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EXERCISES

a Check for the periodic block function and the periodic triangle function from4.1
section 3.4 whether or not they are piecewise smooth and whether or not the Fourier
coefficients cn exist.
b Show for the functions from part a that

∑∞
n=−∞ | cn |2 is convergent.

The ordinary Fourier coefficients of a piecewise continuous periodic function are an4.2
and bn (see definition 3.1).
a Prove that limn→∞ an = limn→∞ bn = 0. To do so, start from theorem 4.2.
b Now assume that limn→∞ an = limn→∞ bn = 0. Use this to prove that
limn→±∞ cn = 0.

Check that the Fourier coefficients cn of the periodic sawtooth function tend to 0 as4.3
n → ∞, in accordance with the Riemann–Lebesgue lemma.

4.2 The fundamental theorem

In chapter 3 we have noted more than once that at the points of continuity, the
Fourier series of a piecewise smooth periodic function is equal to that function. This
statement, formulated in the fundamental theorem of Fourier series, will be proven
in this section. This will involve pointwise convergence. Before we go into this, we
first introduce the so-called Dirichlet kernel. This is a function that will be needed
in the proof of the fundamental theorem. We will also deduce some properties of
the Dirichlet kernel.

The Dirichlet kernel Dn(x) is defined byDEFINITION 4.1
Dirichlet kernel

Dn(x) =
n∑

k=−n

e−ikω0x = einω0x + ei(n−1)ω0x + ei(n−2)ω0x + · · · + e−inω0x .

The Dirichlet kernel is a periodic function, which can be considered as a geo-
metric series with 2n + 1 terms, starting with einω0x and having ratio e−iω0x . In
example 2.16 the sum of a geometric series was determined. From this it follows
that for e−iω0x �= 1 one has that

Dn(x) = einω0x (1 − e−iω0(2n+1)x )

1 − e−iω0x
. (4.4)

Performing the multiplication in the numerator and multiplying numerator and de-
nominator by eiω0x/2, it follows upon using (2.11) that

Dn(x) = ei(n+1/2)ω0x − e−i(n+1/2)ω0x

eiω0x/2 − e−iω0x/2
= sin((n + 1/2)ω0x)

sin(ω0x/2)
. (4.5)

The above is valid for e−iω0x �= 1, that is to say, for ω0x �= k ·2π , or x �= k · T with
k ∈ Z. If, however, we do have x = k · T , then e−ikω0x = e−ik22π = 1. From the
definition of the Dirichlet kernel it then immediately follows that Dn(k ·T ) = 2n+1
for k ∈ Z. Furthermore, it is easy to see that the Dirichlet kernel is an even function.
In figure 4.1 the graph of the Dirichlet kernel is sketched for n = 6. When n
increases, the number of oscillations per period increases. The peaks at the points
x = kT continue to exist and increase in value.
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x

13

0 T–T

D6(x)

FIGURE 4.1
The Dirichlet kernel for n = 6.

The integral of Dn(x) over one period is independent of n. In fact, since∫ T/2
−T/2 e−ikω0x dx = 0 for k �= 0, it follows that

∫ T/2

−T/2
Dn(x) dx =

n∑
k=−n

∫ T/2

−T/2
e−ikω0x dx =

∫ T/2

−T/2
1 dx = T . (4.6)

Since Dn(x) is an even function, it moreover follows that

∫ T/2

0
Dn(x) dx = T

2
. (4.7)

We have now established enough properties of the Dirichlet kernel to enable us
to formulate and prove the fundamental theorem. According to the fundamental
theorem, the Fourier series converges to the function at each point of continuity of a
piecewise smooth periodic function. At a point where the function is discontinuous,
the Fourier series converges to the average of the left- and right-hand limits at that
point. Hence, both at the points of continuity and at the points of discontinuity the
series converges to ( f (t+) + f (t−))/2. The fundamental theorem now reads as
follows.

Let f (t) be a piecewise smooth periodic function on R with Fourier coefficients cn.THEOREM 4.3
Fundamental theorem of
Fourier series

Then one has for any t ∈ R:

∞∑
n=−∞

cneinω0t = 1

2
( f (t+) + f (t−)) .

Proof
For the proof of this theorem we start from the partial sums sn(t) of the Fourier series
as defined in (4.2). Replacing ck by the integral defining the Fourier coefficients we
obtain

sn(t) =
n∑

k=−n

ckeikω0t =
n∑

k=−n

(
1

T

∫ T/2

−T/2
f (u)e−ikω0u du

)
eikω0t

= 1

T

∫ T/2

−T/2
f (u)

n∑
k=−n

e−ikω0(u−t) du.
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Interchanging the order of integration and summation is allowed here, since the sum
contains a finite number of terms. Substitution of u − t = x then gives

sn(t) = 1

T

∫ T/2−t

−T/2−t
f (x + t)

n∑
k=−n

e−ikω0x dx

= 1

T

∫ T/2

−T/2
f (x + t)Dn(x) dx . (4.8)

We are allowed to change the integration interval in the last step, since the integrand
is periodic with period T . In the last step we also introduced the Dirichlet kernel.
If we take the limit n → ∞ in (4.8), then sn(t) will become the Fourier series of
f (t). Hence, if we can show that the final term in (4.8) converges to ( f (t+) +
f (t−))/2, then we’ve completed the proof. If we assume for the moment that f
is continuous at t , then it is plausible that this final term will indeed be equal to

f (t). For, according to (4.6) one has
∫ T/2
−T/2 Dn(x) dx = T . Moreover, Dn(0)

keeps increasing for increasing n, while for x �= 0 the oscillations of Dn(x) become
more frequent. Since eventually f (x + t) will vary less rapidly, the consecutive
oscillations of f (x + t)Dn(x) will cancel each other more and more, and hence
only the value of f (x + t) for x = 0, so f (t), will remain. To prove this, we will
now first of all split the integration interval (−T/2, T/2) in two parts and replace
the variable x by −x on (−T/2, 0). Since Dn(x) is even, it then follows that

sn(t) = 1

T

∫ 0

−T/2
f (t + x)Dn(x) dx + 1

T

∫ T/2

0
f (t + x)Dn(x) dx

= 1

T

∫ T/2

0
f (t − x)Dn(−x) dx + 1

T

∫ T/2

0
f (t + x)Dn(x) dx

= 1

T

∫ T/2

0
( f (t + x) + f (t − x)) Dn(x) dx .

We now subtract f (t+)+ f (t−) from the factor f (t +x)+ f (t −x) in the integrand.
In order not to change sn(t), we have to add this term as well, which will be done in
a separate integral. We then get:

sn(t) = 1

T

∫ T/2

0
( f (t + x) − f (t+) + f (t − x) − f (t−)) Dn(x) dx

+ 1

T

∫ T/2

0
( f (t+) + f (t−)) Dn(x) dx .

According to (4.7), the second term equals ( f (t+) + f (t−))/2. The first term will
be called In(t). If we can show that this term tends to 0 as n → ∞, then we have
finished the proof. To this end we use (4.5) to write In(t) as

In(t)

= 1

T

∫ T/2

0

f (t + x) − f (t+) + f (t − x) − f (t−)

x
· x sin((n + 1

2 )ω0x)

sin(ω0x/2)
dx

= 1

T

∫ T/2

0
Q(x) sin((n + 1

2 )ω0x) dx . (4.9)

Here Q(x) is given by

Q(x) = f (t + x) − f (t+) + f (t − x) − f (t−)

x
· x

sin(ω0x/2)
.
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For x = 0 the integrand of In(t) is not defined, since then the denominator of
Q(x) equals 0. However, since f (t) is a piecewise smooth function, the limits for
x → 0 of ( f (t + x) − f (t+))/x and ( f (t − x) − f (t−))/x , which occur in Q(x),
do exist according to theorem 2.4, and they equal f ′(t+) and f ′(t−) respectively.
Since the limit for x → 0 of x/ sin(ω0x/2) exists as well, it follows that Q(x) is a
piecewise continuous function. Furthermore, we note that Q(x) is odd. And since
sin((n + 1

2 )ω0x) is also odd, the integrand in (4.9) is an even function. We can
therefore extend the integration interval to [−T/2, T/2]. Using the trigonometric
identity sin(α + β) = sin α cos β + cos α sin β we then obtain:

In(t) = 1

2T

∫ T/2

−T/2
Q(x) sin((n + 1

2 )ω0x) dx

= 1

2T

∫ T/2

−T/2
Q(x)

(
sin(nω0x) cos(ω0x/2) + cos(nω0x) sin(ω0x/2)

)
dx

= 1

4
· 2

T

∫ T/2

−T/2
Q(x) cos(ω0x/2) sin(nω0x) dx

+ 1

4
· 2

T

∫ T/2

−T/2
Q(x) sin(ω0x/2) cos(nω0x) dx .

The two integrals in the final expression are precisely the formulas for the
ordinary Fourier coefficients of the function Q(x) cos(ω0x/2) and the function
Q(x) sin(ω0x/2); see definition 3.1. Since Q(x) is piecewise continuous, so are
the functions Q(x) cos(ω0x/2) and Q(x) sin(ω0x/2), and hence one can apply the
Riemann–Lebesgue lemma from theorem 4.2. We then see that indeed In(t) tends
to 0 as n → ∞. This completes the proof. �

Having established the fundamental theorem, it is now a proven fact that Fourier
series of piecewise smooth functions converge. At the points of continuity of the
function, the Fourier series converges to the function value and at the points of dis-
continuity to the average of the left- and right-hand limits ( f (t+) + f (t−))/2. For
example, the Fourier series of the periodic block function from section 3.4.1 will
converge to the function with graph given by figure 4.2. At the points of discontinu-
ity the function value is 1/2.

t

1

0

T 3T/2T/2–T/2–T–3T/2 –a/2 a/2

1
2

FIGURE 4.2
Limit of the Fourier series of the periodic block function.

From the fundamental theorem it immediately follows that if two periodic func-
tions have the same Fourier series, then these functions must be equal at all points
of continuity. Moreover, it follows from the definition of the Fourier coefficients
that the values of the functions at the points of discontinuity have no influence on
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the coefficients. This is precisely the reason why we didn’t pay any attention to the
values of functions at the points of discontinuity in chapter 3. In the end, the Fourier
series will always converge to the average of the left- and right-hand limit. Apart
from the points of discontinuity, functions with equal Fourier series are the same.
We formulate this result in the following uniqueness theorem.

Let f (t) and g(t) be piecewise smooth periodic functions with Fourier coefficientsTHEOREM 4.4
Uniqueness theorem fn and gn. If fn = gn for all n ∈ Z, then f (t) = g(t) at all points where f and g

are continuous.

From the fundamental theorem it follows that the Fourier series of a function con-
verges pointwise to the function at the points of continuity. Some general remarks
can be made about the rate of convergence. If we compare the Fourier coefficients of
the periodic block function and the periodic triangle function from sections 3.4.1 and
3.4.2, then we observe that the coefficients of the discontinuous block function de-
crease proportional to 1/n, while the coefficients of the continuous triangle function
decrease proportional to 1/n2. The feature that Fourier coefficients of continuous
functions decrease more rapidly compared to discontinuous functions is true in gen-
eral. If the derivative is continuous as well, then the Fourier coefficients decrease
even more rapidly. As higher derivatives are continuous as well, the Fourier coef-
ficients decrease ever more rapidly. Hence, the smoother the function, the smaller
the contribution of high frequency components in the Fourier series. We summarize
this in the following statements.

a If the function f (t) is piecewise continuous, then the Fourier coefficients tend
to zero (this is the Riemann–Lebesgue lemma).
b If f (t) is continuous and f ′(t) piecewise continuous, then the Fourier coeffi-
cients decrease as 1/n, so limn→±∞ ncn = 0.
c If f (t) and its derivatives up to the (k − 1)th order are continuous and f (k)(t)
is piecewise continuous, then the Fourier coefficients decrease as 1/nk , so
limn→±∞ nkcn = 0.

These statements will not be proven here (but see the remarks following theorem
4.10). From these statements it follows that in comparison to smooth functions, for
less smooth functions one needs more terms from the series in order to achieve the
same degree of accuracy. The statements also hold in the opposite direction: the
faster the Fourier coefficients decrease, the smoother the function. An example is
the following result, which will be used in chapter 7 and is stated without proof here.

Let a sequence of numbers cn be given for which
∑∞

n=−∞ | cn | < ∞. Then theTHEOREM 4.5

series
∑∞

n=−∞ cneinω0t converges to the continuous function f (t) having Fourier
coefficients cn.

For functions with discontinuities it is the case that – no matter how many terms
one includes – in a small neighbourhood left and right of a discontinuity, any ap-
proximation will ‘overshoot’ the function value on one side and ‘undershoot’ the
function value on the other side. It is even the case that the values of these overshoots
are a fixed percentage of the difference | f (t+) − f (t−) |. These overshoots do get
closer and closer to the point of discontinuity, as more terms are being included.
This curious phenomenon is called Gibbs’ phenomenon and will be discussed in
section 4.4.2.

An important side result of the fundamental theorem is the fact that sums can be
calculated for many of the series for which, up till now, we could only establish the
convergence using the tests from chapter 2. Below we present some examples of
such calculations.
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Consider the periodic triangle function qa,T for a = T/2, whose Fourier coeffi-EXAMPLE 4.1
cients have been calculated in section 3.4.2: cn = 2 sin2(nπ/2)/n2π2 for n �= 0
and c0 = 1/2. For even n and n �= 0 the Fourier coefficients are thus all zero. For
odd n they equal 2/n2π2. Since the periodic triangle function is a continuous piece-
wise smooth function, we may apply the fundamental theorem of Fourier series and
thus one has for all t :

qT/2,T (t) =
∞∑

n=−∞
cneinω0t = 1

2
+

∞∑
n=−∞

2

(2n − 1)2π2
ei(2n−1)ω0t .

In particular this equality holds for t = 0. The triangle function then has value 1,
while ei(2n−1)ω0t equals 1 as well. Hence,

1 = 1

2
+

∞∑
n=−∞

2

(2n − 1)2π2
= 1

2
+

∞∑
n=1

4

(2n − 1)2π2
.

Now take 1/2 to the other side of the equality-sign and multiply left and right by
π2/4, then

π2

8
=

∞∑
n=1

1

(2n − 1)2
= 1 + 1

9
+ 1

25
+ 1

49
+ · · · . (4.10)

�

The sawtooth function 2t/T , as defined in section 3.4.3, is a piecewise smooth func-EXAMPLE 4.2
tion having Fourier coefficients i(−1)n/πn for n �= 0 and c0 = 0. The fundamental
theorem is applicable and for −T/2 < t < T/2 one has

2t

T
=

∞∑
n=−∞

cneinω0t =
∞∑

n=1

(
cneinω0t + c−ne−inω0t

)

=
∞∑

n=1

(
(−1)n i

πn
einω0t + (−1)−n i

−πn
e−inω0t

)

=
∞∑

n=1

(−1)n i

πn
2i

(
einω0t − e−inω0t

2i

)
=

∞∑
n=1

(−1)n −2

πn
sin nω0t.

This equality holds in particular for t = T/4. For this value of t one has that
sin nω0t = sin(nπ/2). This equals 0 for even n, so

1

2
=

∞∑
n=1

(−1)2n−1 −2

π(2n − 1)
sin

(2n − 1)π

2
=

∞∑
n=1

2

π(2n − 1)
(−1)n−1.

If we multiply this by π/2, then we obtain

π

4
=

∞∑
n=1

(−1)n−1

2n − 1
= 1 − 1

3
+ 1

5
− 1

7
+ · · · . (4.11)

�

EXERCISES

Calculate the sum of the Fourier series of the sawtooth function at a point of discon-4.4
tinuity and use this to verify the fundamental theorem at that point.

Let f (t) be an odd piecewise smooth periodic function with period T . Show that4.5

∞∑
n=1

bn sin nω0t = 1
2 ( f (t+) + f (t−)).
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a Determine the Fourier series of the periodic function f (t) with period 2π de-4.6
fined for −π ≤ t < π by

f (t) =
{

0 for −π ≤ t < 0,
1 for 0 ≤ t < π .

b Verify that f (t) satisfies the conditions of the fundamental theorem. Then take
t = π/2 and use this to derive (4.11) again.

a Determine the Fourier series of the periodic function f (t) with period 2π de-4.7
fined for −π ≤ t < π by

f (t) =
{

0 for −π ≤ t < 0,
t for 0 ≤ t < π .

b To which value does the Fourier series converge at t = π according to the
fundamental theorem? Use this to derive (4.10) again.

Let f (t) be the periodic function with period 1 defined for −1/2 ≤ t < 1/2 by4.8
f (t) = t2.
a Verify that f is continuous and that f ′ is piecewise continuous. Determine the
Fourier coefficients and check that these decrease as 1/n2.
b Apply the fundamental theorem at t = 0 in order to derive that

∞∑
n=1

(−1)n+1

n2
= 1 − 1

4
+ 1

9
− 1

16
+ · · · = π2

12
.

c Show that

∞∑
n=1

1

n2
= 1 + 1

4
+ 1

9
+ 1

16
+ · · · = π2

6
.

Let f (t) be the periodic function with period 2 defined for −1 < t ≤ 1 by4.9

f (t) =
{

t2 + t for −1 < t ≤ 0,
−t2 + t for 0 < t ≤ 1.

a Verify that f and f ′ are continuous, while f ′′ is discontinuous.
b Determine the Fourier coefficients and check that these decrease as 1/n3.
c Show that

∞∑
n=0

(−1)n

(2n + 1)3
= 1 − 1

27
+ 1

125
− · · · = π3

32
.

4.3 Further properties of Fourier series

Now that we have proven, in the fundamental theorem of Fourier series, that for
piecewise smooth functions the Fourier series converges to the function, one can
derive some additional properties. These are properties of Fourier series with respect
to products and convolutions of functions, the Parseval identity, and the integration
and differentiation of Fourier series.
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4.3.1 Product and convolution

In this section we consider the relations that emerge when functions are multiplied,
or when Fourier coefficients are multiplied. First we consider how one can deter-
mine the Fourier coefficients of a function which is the product of two functions.

Let f (t) and g(t) be piecewise smooth periodic functions with Fourier coefficientsTHEOREM 4.6
Fourier series of a product of
functions

fn and gn. When h(t) = f (t)g(t), then h(t) has a convergent Fourier series with
Fourier coefficients hn given by

hn =
∞∑

k=−∞
fk · gn−k . (4.12)

Proof
Since f (t) and g(t) are piecewise smooth periodic functions, so is h(t) and thus it
has a convergent Fourier series. According to definition 3.3 one has for the coeffi-
cients hn :

hn = 1

T

∫ T/2

−T/2
f (t)g(t)e−inω0t dt.

Since f (t) is a piecewise smooth periodic function, one can, according to the funda-
mental theorem, replace f (t) by its Fourier series at all points of continuity. Since
we are integrating, the value at the points of discontinuity are of no importance.
Hence

hn = 1

T

∫ T/2

−T/2

∞∑
k=−∞

fkeikω0t g(t)e−inω0t dt.

Under the conditions of the theorem, one may interchange the order of integration
and summation. Using the definition of the (n − k)th Fourier coefficient of g(t) it
then follows that

hn =
∞∑

k=−∞
fk

1

T

∫ T/2

−T/2
g(t)e−i(n−k)ω0t dt =

∞∑
k=−∞

fk · gn−k .

�

Consider the periodic functions f , g and h with period 2 defined on the intervalEXAMPLE 4.3
(−1, 1) by f (t) = g(t) = t and h(t) = t2. In exercise 3.9 it was deduced that the
Fourier coefficients fn , gn and hn of these functions are given by

fn = gn =




i

nπ
(−1)n for n �= 0,

0 for n = 0,

hn =




2(−1)n

n2π2
for n �= 0,

1
3 for n = 0.

Since the functions are piecewise smooth and h(t) = f (t)g(t), one can also obtain
the coefficients of h(t) from fn and gn using theorem 4.6. We first calculate h0.

h0 =
∞∑

k=−∞
fk · g−k = 2

∞∑
k=1

i

kπ
(−1)k · i

−kπ
(−1)−k = 2

π2

∞∑
k=1

1

k2

= 2

π2

π2

6
= 1

3
.
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Here we used the result
∑∞

k=1 1/k2 = π2/6 from exercise 4.8c. We now calculate
hn .

hn =
∞∑

k=−∞
fk · gn−k =

∞∑
k=−∞

k �=0,k �=n

i

kπ
(−1)k i

(n − k)π
(−1)n−k

= −(−1)n

π2

∞∑
k=−∞

k �=0,k �=n

1

(n − k)k
.

This last sum is somewhat difficult to calculate. Using a partial fraction expansion
it follows that

∞∑
k=−∞

k �=0,k �=n

1

(n − k)k
= 1

n

∞∑
k=−∞

k �=0,k �=n

(
1

k
+ 1

n − k

)

= 1

n


− 1

n
+

∞∑
k=−∞

k �=0

1

k


 + 1

n


− 1

n
+

∞∑
k=−∞

k �=n

1

n − k


 .

Since the sums in the right-hand side always contain terms having opposite signs,
these terms will all cancel each other and so these sums are 0, implying that

∞∑
k=−∞

k �=0,k �=n

1

(n − k)k
= − 2

n2
.

For hn it now follows that

hn = −(−1)n

π2
· −2

n2
= 2(−1)n

n2π2
.

Hence, the expressions for h0 and hn , calculated using theorem 4.6, coincide with
the direct calculation of the Fourier coefficients in exercise 3.9. �

We have seen that the Fourier coefficients of the product of two functions can be
calculated using the Fourier coefficients of the individual functions. To do so, one
has to form a sum of products of the Fourier coefficients. Another nice relationship
arises if we examine what kind of functions emerge if we multiply the Fourier co-
efficients of two functions. The resulting function is called the convolution product.
This convolution product will play an important role in systems analysis.

The convolution product of two piecewise smooth periodic functions f and g, bothDEFINITION 4.2
Convolution of periodic
functions

with period T , is denoted by f ∗ g and is defined by

( f ∗ g)(t) = 1

T

∫ T/2

−T/2
f (t − τ)g(τ ) dτ.

When f and g are periodic with period T , then so is the convolution product.
Specifically, for all k ∈ Z one has

( f ∗ g)(t + kT ) = 1

T

∫ T/2

−T/2
f (t + kT − τ)g(τ ) dτ

= 1

T

∫ T/2

−T/2
f (t − τ)g(τ ) dτ = ( f ∗ g)(t).
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If we now multiply the Fourier coefficients of two functions, then the resulting num-
bers are the Fourier coefficients of the convolution product of the two functions.

Let f (t) and g(t) be piecewise smooth periodic functions with Fourier coefficientsTHEOREM 4.7
Fourier coefficients of a
convolution product

fn and gn. Then ( f ∗ g)(t) has a convergent Fourier series with Fourier coefficients
( f ∗ g)n satisfying

( f ∗ g)n = fn gn .

Proof
Since f and g are piecewise smooth periodic functions, it follows that the convolu-
tion product f ∗ g is also a piecewise smooth function. We state this without proof.
Hence, f ∗ g has a convergent Fourier series. For the Fourier coefficients in this
series one has

( f ∗ g)n = 1

T

∫ T/2

−T/2
( f ∗ g)(t)e−inω0t dt

= 1

T 2

∫ T/2

−T/2

(∫ T/2

−T/2
f (t − τ)g(τ ) dτ

)
e−inω0t dt.

Under the conditions of the theorem one may interchange the order of integration
and so

( f ∗ g)n = 1

T

∫ T/2

−T/2

(
1

T

∫ T/2

−T/2
f (t − τ)e−inω0(t−τ) dt

)
g(τ )e−inω0τ dτ.

The expression in parentheses in the right-hand side is the nth Fourier coefficient of
f , and by applying once again the definition of the Fourier coefficients for g, the
proof is completed:

( f ∗ g)n = fn
1

T

∫ T/2

−T/2
g(τ )e−inω0τ dτ = fn gn .

�

In this example we will see how the convolution of two periodic block functionsEXAMPLE 4.4
gives rise to a periodic triangle function, whereas the Fourier coefficients of the
triangle functions can be obtained by multiplying the Fourier coefficients of the two
block functions. In doing so, we verify theorem 4.7.

Consider the periodic block function f with period 2 and a = 1 from example
3.4. The function equals 1 for | t | ≤ 1

2 and 0 for 1
2 < | t | ≤ 1. Calculating the

convolution of f with f according to definition 4.2 gives

( f ∗ f )(t) = 1

2

∫ 1

−1
f (t − τ) f (τ ) dτ = 1

2

∫ 1/2

−1/2
f (t − τ) dτ.

One has that f (t − τ) = 1 for − 1
2 ≤ t − τ ≤ 1

2 , that is, for t − 1
2 ≤ τ ≤ t + 1

2 .
This means that the integral equals

( f ∗ f )(t) = 1

2

∫ 1/2

t−1/2
1 dτ = 1 − t

2
for 0 ≤ t < 1,

( f ∗ f )(t) = 1

2

∫ t+1/2

−1/2
1 dτ = 1 + t

2
for −1 ≤ t < 0.

Hence, up to a factor 1
2 , the convolution is precisely the periodic triangle function f

with period 2 and a = 2 from section 3.4.2. Furthermore, according to example 3.4
one has for the Fourier coefficients of the block function that cn = sin(nπ/2)/nπ
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for n �= 0 and c0 = 1
2 . The squares of these coefficients are sin2(nπ/2)/n2π2 for

n �= 0 and 1
4 for n = 0. Multiplied by 2 these are exactly the Fourier coefficients of

the periodic triangle function from section 3.4.2 for a = 1, ω0 = π and T = 2. �

4.3.2 Parseval’s identity

In this subsection we will show that for a large class of functions, Bessel’s inequality
from section 4.1 is in fact an equality. Somewhat more general is the following
Parseval identity, which has important applications in the analysis of signals and
systems.

Let f (t) and g(t) be piecewise smooth periodic functions with Fourier coefficientsTHEOREM 4.8
Parseval’s identity fn and gn. Then

1

T

∫ T/2

−T/2
f (t)g(t) dt =

∞∑
n=−∞

fn gn . (4.13)

Proof
According to theorem 4.6, the Fourier coefficients of the product h of two func-
tions f and g are given by hk = ∑∞

n=−∞ fn gk−n . In particular this holds for
the Fourier coefficient h0, for which, moreover, one has by definition that h0 =
(1/T )

∫ T/2
−T/2 f (t)g(t) dt . Combining these facts, it follows that

1

T

∫ T/2

−T/2
f (t)g(t) dt = h0 =

∞∑
n=−∞

fn g−n .

Instead of the function g we now take the conjugate function g. According to theo-
rem 3.2 the Fourier coefficients of g are g−n , proving (4.13). �

It is now just a small step to prove that the Bessel inequality is an equality for
piecewise smooth functions. In order to do so, we take g(t) in theorem 4.8 equal to
the function f (t). The Fourier coefficients of f (t) will be denoted by cn again. We
then obtain

1

T

∫ T/2

−T/2
| f (t) |2 dt = 1

T

∫ T/2

−T/2
f (t) f (t) dt =

∞∑
n=−∞

cncn

=
∞∑

n=−∞
| cn |2 . (4.14)

In section 1.2.3 the power P of a periodic time-continuous signal was defined as

(1/T )
∫ T/2
−T/2 | f (t) |2 dt . If f (t) is a piecewise smooth periodic function, then ac-

cording to (4.14) the power can also be calculated using the Fourier coefficients:

Power of piecewise smooth
periodic function P = 1

T

∫ T/2

−T/2
| f (t) |2 dt =

∞∑
n=−∞

| cn |2 .

4.3.3 Integration

Using Parseval’s identity from the previous subsection, one can derive a result con-
cerning the relationship between the Fourier coefficients of the integral of a periodic
function and the Fourier coefficients of the periodic function itself. We thus want
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to find an expression for the Fourier coefficients of
∫ t
−T/2 f (τ ) dτ . If this integral

is to be a periodic function in t again, one should have
∫ T/2
−T/2 f (τ ) dτ = 0, that is,

c0 = 0.

Let f (t) be a piecewise smooth periodic function with period T and Fourier coeffi-THEOREM 4.9
Integration of Fourier series cients cn for which c0 = 0. Then the function h(t) defined by h(t) = ∫ t

−T/2 f (τ ) dτ

is also periodic with period T and one has for all t ∈ R:

h(t) =
∞∑

n=−∞
hneinω0t , (4.15)

with

hn = cn

inω0
for n �= 0,

h0 = −
∞∑

n=−∞
n �=0

(−1)ncn

inω0
.

Proof
Since f (t) is a piecewise smooth periodic function with c0 = 0, the function h(t) =∫ t
−T/2 f (τ ) dτ is also a piecewise smooth periodic function and thus equal to its

Fourier series. In order to determine the Fourier coefficients of h(t), we introduce a
piecewise smooth function g(τ ) on the interval (−T/2, T/2) satisfying

g(τ ) =
{

1 for −T/2 < τ ≤ t ,
0 for t < τ ≤ T/2.

With the function g(τ ) thus defined it follows that

h(t) =
∫ t

−T/2
f (τ ) dτ =

∫ T/2

−T/2
f (τ )g(τ ) dτ.

Parseval’s identity may now be applied to the functions f (τ ) and g(τ ). If, moreover,
we substitute for gn the definition of the nth Fourier coefficient of g(τ ), then we
obtain

h(t) = T
∞∑

n=−∞
cn gn =

∞∑
n=−∞

cn

∫ T/2

−T/2
g(τ )e−inω0τ dτ

=
∞∑

n=−∞
cn

∫ t

−T/2
einω0τ dτ.

Since c0 = 0 it follows that

h(t) =
∞∑

n=−∞
n �=0

cn

∫ t

−T/2
einω0τ dτ

=
∞∑

n=−∞
n �=0

cn

inω0
einω0t −

∞∑
n=−∞

n �=0

cn(−1)n

inω0
.

This final expression is the Fourier series of the function h(t) having coefficients
hn = cn/ inω0 for n �= 0 and coefficient h0 equal to the second series. �

From theorem 4.9 we can conclude that if the Fourier series is known for a piece-
wise smooth periodic function and if c0 = 0, then instead of integrating the function
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one may integrate its Fourier series term-by-term. The resulting series converges to
the integral of the function.

Consider the periodic function f with period 2 for which f (t) = 1 for −1 ≤ t <EXAMPLE 4.5
0 and f (t) = −1 for 0 ≤ t < 1. One can easily check (see exercise 3.22, if
necessary) that the Fourier coefficients of this function are given by c0 = 0 and
cn = ((−1)n −1)/ inπ . Furthermore,

∫ t
−T/2 f (τ ) dτ is a periodic triangle function

with period 2 and a = 1. According to section 3.4.2 its Fourier coefficients are equal
to (1 − (−1)n)/n2π2, which indeed equals cn/ inπ . The zeroth Fourier coefficient
of this periodic triangle function equals 1/2. From (4.10) it immediately follows that
indeed

−
∞∑

n=−∞
n �=0

cn(−1)n

inπ
=

∞∑
n=−∞

n �=0

1 − (−1)n

n2π2
= 4

π2

∞∑
k=1

1

(2k − 1)2
= 1

2
.

�

4.3.4 Differentiation

In section 4.3.3 we have seen that the Fourier coefficients of the integral of a piece-
wise smooth periodic function with c0 = 0 can be derived quite easily from the
Fourier coefficients of the function itself. The function could in fact be integrated
term-by-term and the resulting series converged to the integral of the function. In
this section we investigate under which conditions the term-by-term derivative of the
Fourier series of a function converges to the derivative of the function itself. Term-
by-term differentiation leads less often to a convergent series. It is not hard to un-
derstand the reason for this. In section 4.3.3 we have seen that integrating a Fourier
series corresponds to a division of the nth term by a factor proportional to n, improv-
ing the rate of convergence of the series. However, differentiating a Fourier series
corresponds to a multiplication of the nth term by a factor proportional to n, and this
will diminish the rate of convergence.

Consider the sawtooth function f (t) = 2t/T for −T/2 < t < T/2 from sectionEXAMPLE 4.6
3.4.3. We have seen that the Fourier coefficients are equal to i(−1)n/nπ and so the
Fourier series is equal to

∑∞
n=−∞ i(−1)neinω0t/nπ . The sawtooth function has

discontinuities at t = ±T/2, ±3T/2, . . .. If we differentiate the Fourier series of
the sawtooth function term-by-term, then we find

∞∑
n=−∞

i(−1)ninω0einω0t/nπ =
∞∑

n=−∞
(−1)n+1ω0einω0t/π.

This series does not converge, since the terms in the series do not tend to 0 for
n → ∞. �

It turns out that continuity of the periodic function is an important condition for
the term-by-term differentiability. We formulate this in the following theorem.

Let f (t) be a piecewise smooth periodic continuous function with Fourier coeffi-THEOREM 4.10
Differentiation of Fourier
series

cients cn and for which f ′(t) is piecewise smooth as well. Then

1

2
( f ′(t+) + f ′(t−)) =

∞∑
n=−∞

inω0cneinω0t . (4.16)
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Proof
Since f ′(t) is piecewise smooth, f ′(t) has a convergent Fourier series. Let c′

n be
the Fourier coefficients of f ′(t), then

c′
n = 1

T

∫ T/2

−T/2
f ′(t)e−inω0t dt.

Since f is continuous, one can apply integration by parts. We then find:

c′
n = 1

T

[
f (t)e−inω0t

]T/2

−T/2
+ inω0

1

T

∫ T/2

−T/2
f (t)e−inω0t dt.

The first term in the right-hand side is 0 for all n, since f (t) is periodic, so
f (−T/2) = f (T/2), and e−inω0T/2 = einω0T/2. The second term is, by defini-
tion, up to a factor inω0, equal to cn and hence

c′
n = inω0cn .

If we now apply the fundamental theorem to the function f ′ it follows that

1

2
( f ′(t+) + f ′(t−)) =

∞∑
n=−∞

c′
neinω0t =

∞∑
n=−∞

inω0cneinω0t .

�

In order to derive the equality c′
n = inω0cn in the proof of theorem 4.10, we did

not use the assumption that f ′(t) was piecewise smooth. Hence, this equality also
holds when f ′(t) is piecewise continuous. If we now apply the Riemann–Lebesgue
lemma to the function f ′(t), it follows that limn→±∞ c′

n = limn→±∞ inω0cn = 0.
This proves statement b about the rate of convergence from section 4.2. By applying
this repeatedly, statement c follows (see also exercise 4.20).

EXERCISES

Equation (4.14) has been stated for complex Fourier coefficients. Give the equation4.10
if one uses the ordinary Fourier coefficients.

An application of Parseval’s identity can be found in electronics. Suppose that in4.11
an electric circuit the periodic voltage v(t) gives rise to a periodic current i(t), both
with period T and both piecewise smooth. Let vn and in be the Fourier coefficients
of v(t) and i(t) respectively. Show that for the average power P over one period
(see section 1.2.3) one has

P =
∞∑

n=−∞
vnin =

∞∑
n=−∞

vni−n .

Consider the periodic block function f (t) with period π and for some a ∈ R with4.12
0 < a < π , and the periodic block function g(t) with period π and some b ∈ R

with 0 < b < π (see section 3.4.1). Assume that a ≤ b.
a Use Parseval’s identity to show that

∞∑
n=1

sin na sin nb

n2
= a(π − b)

2
.

b Choose a = b = π/2 and derive (4.10) again.



4.3 Further properties of Fourier series 103

Consider the periodic triangle function from section 3.4.2 for a = T/2.4.13
a Use (4.14) to obtain that

∞∑
n=0

1

(2n + 1)4
= 1 + 1

34
+ 1

54
+ 1

74
+ · · · = π4

96
.

b Let S = ∑∞
n=1 1/n4. Split this into a sum over the even and a sum over the odd

positive integers and then show that S = π4/96 + S/16. Conclude that

∞∑
n=1

1

n4
= π4

90
.

Let f (t) be the periodic function with period 2 defined for −1 < t ≤ 1 by4.14

f (t) =
{

t2 + t for −1 < t ≤ 0,
−t2 + t for 0 < t ≤ 1.

a Use the results from exercise 4.9 to show that

∞∑
k=0

1

(2k + 1)6
= π6

960
.

b Use part a and the method of exercise 4.13b to show that

∞∑
k=1

1

k6
= π6

945
.

Let f (t) be a piecewise smooth periodic function with period T and Fourier series4.15 ∑∞
n=−∞ cneinω0t , where c0 = 0. Show that for −T/2 ≤ a ≤ b one has

∫ b

a
f (t) dt =

∞∑
n=−∞

n �=0

cn

inω0
(einω0b − einω0a).

Let f (t) be a piecewise smooth periodic function with period T and with Fourier4.16
coefficients an and bn , where a0 = 0. Show that for −T/2 ≤ a ≤ b one has

∫ b

a
f (t) dt =

∞∑
n=1

1

nω0
(an(sin nω0b − sin nω0a) − bn(cos nω0b − cos nω0a)) .

Consider the periodic function f (t) with period 2π defined for −π < t ≤ π by4.17

f (t) =
{ −1 for −π < t ≤ 0,

1 for 0 < t ≤ π .

a Determine the ordinary Fourier coefficients of f and give the Fourier series of
f .
b Integrate the series from part a over [−π, t] and determine the resulting constant
using (4.10).
c Show that the function represented by the series from part b is the periodic
function with period 2π given by g(t) = | t | − π for −π < t ≤ π .
d Use exercise 3.6 to determine in a direct way the ordinary Fourier series of the
function g from part c and use this to verify the result from part b.
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Consider the periodic function f (t) with period 2 from exercise 4.14. Use the inte-4.18
gration theorem to show that

g(t) = 4

π2

∞∑
n=−∞

1

(2n + 1)4
+ 4

π2

∞∑
n=−∞

1

(2n + 1)4
eπ int ,

where g(t) is the periodic function with period 2 given for −1 < t ≤ 1 by

g(t) = 1
3 | t |3 − 1

2 t2 + 1
6 .

Finally calculate the Fourier coefficient c0 of g(t) and check your answer using
exercise 4.13a.

Show that theorem 4.10 reads as follows, when formulated in terms of the ordi-4.19
nary Fourier coefficients. Let f (t) be a piecewise smooth periodic continuous func-
tion with ordinary Fourier coefficients an and bn and for which f ′(t) is piecewise
smooth. Then

1
2 ( f ′(t+) + f ′(t−)) =

∞∑
n=1

(nω0bn cos nω0t − nω0an sin nω0t).

Let f (t) be a periodic continuous function with piecewise smooth continuous deriva-4.20
tive f ′(t). Show that limn→±∞ n2cn = 0.

In the example prior to theorem 4.10 we saw that the Fourier series of the periodic4.21
sawtooth function f (t) with period T , given by f (t) = 2t/T for −T/2 < t ≤ T/2,
could not be differentiated term-by-term. However, now consider the even function
g(t) with period T given by f (t) = 2t/T for 0 ≤ t ≤ T/2.
a Determine the Fourier cosine series of the function g(t).
b Differentiate the series from part a term-by-term. Verify that the result is the
Fourier sine series of the function g′(t) and that this series converges to g′(t) for all
t �= nT/2 (n ∈ Z). How can this result be reconciled with theorem 4.10?

a Determine the Fourier series of the periodic function with period 2π defined for4.22
−π < t ≤ π by

f (t) =
{

0 for −π < t ≤ 0,
sin t for 0 < t ≤ π .

b Verify that we can differentiate f from part a by differentiating its Fourier se-
ries, except at t = nπ (n ∈ Z). Describe the function that is represented by the
differentiated series.

Formulate the convolution theorem (theorem 4.7) for the ordinary Fourier coeffi-4.23
cients.

Let f be the periodic block function with period 2 and a = 1, so f (t) = 1 for4.24
| t | ≤ 1

2 and f (t) = 0 for 1
2 < | t | ≤ 1. Let g be the periodic triangle function with

period 2 and a = 1
2 , so g(t) = 1 − 2 | t | for | t | ≤ 1

2 and g(t) = 0 for 1
2 < | t | ≤ 1.

a Show that f1 ∗ f2 is even when both f1 and f2 are even periodic functions with
period T .
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b Show that f ∗ g is the even periodic function with period 2 which for 0 ≤ t ≤ 1
is given by

( f ∗ g)(t) =



− 1
2 t2 + 1

4 for 0 ≤ t ≤ 1
2 ,

1
2 (t − 1)2 for 1

2 < t ≤ 1.

c Determine the Fourier series of ( f ∗g)(t) and verify that it converges to ( f ∗g)(t)
for all t ∈ R.
d Verify the constant in the Fourier series of ( f ∗ g)(t) by calculating the zeroth
Fourier coefficient in a direct way.

4.4 The sine integral and Gibbs’ phenomenon

The fundamental theorem of Fourier series was formulated for piecewise smooth
functions. According to this theorem, the series converges pointwise to the function.
Possible points of discontinuity were excluded here. At these points, the series con-
verges to the average value of the left- and right-hand limits of the function. Towards
the end of section 4.2 we already noted that in a small neighbourhood of a disconti-
nuity, the series will approximate the function much slower. This had already been
observed by Wilbraham in 1848, but his results fell into oblivion. In 1898 the physi-
cist Michaelson published an article in the magazine Nature, in which he doubted
the fact that ‘a real discontinuity (of a function f ) can replace a sum of continuous
curves’ (i.e., the terms in the partial sums sn(t)). This is because Michaelson had
constructed a machine which calculated the nth partial sum of the Fourier series of
a function up to n = 80. In a small neighbourhood of a discontinuity, the partial
sums sn(t) did not behave as he had expected: the sums continued to deviate and the
largest deviation, the so-called overshoot of sn(t) relative to f (t), did not decreaseOvershoot
with increasing n. In figure 4.3 this is illustrated by the graphs of the partial sums
approximating the periodic block function for different values of n. We see that the
overshoots get narrower with increasing n, but the magnitude remains the same. In

a b c

FIGURE 4.3
Partial sums of the periodic block function.

a letter to Nature from 1899, Gibbs explained this phenomenon and showed that
sn(t) will always have an overshoot of about 9% of the magnitude of the jump at the
discontinuity. We will investigate this so-called Gibbs’ phenomenon more closely
for the periodic block function. Before we do so, we first introduce the sine integral,
a function that will be needed to determine Gibbs’ phenomenon quantitatively. The
sine integral will be encountered in later chapters as well.
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4.4.1 The sine integral

The sine integral is a function which is used in several places. It is defined as follows.

The sine integral is the function Si(x) defined byDEFINITION 4.3
Sine integral

Si(x) =
∫ x

0

sin t

t
dt. (4.17)

Since | sin t/t | ≤ 1 for all t �= 0, the integrand is bounded and the integral well-
defined. Furthermore, we have Si(0) = 0. The sine integral cannot be determined
analytically, but there are tables containing function values. In particular one has

Si(π) =
∫ π

0

sin t

t
dt = 1.852 . . . .

The definition of Si(x) can also be used for negative values of x , from which it
follows that Si(x) is an odd function. Starting from the graph of sin t/t , the graph
of Si(x) can be sketched; see figure 4.4. Figure 4.4 seems to suggest that Si(x)

0 t2π–2π 0 x2π–2π

π
2

–π
2

1

a b

sin t
t

Si(x)

FIGURE 4.4
Graphs of the functions sin t/t (a) and Si(x) (b).

converges to π/2 for x → ∞. Although Si(x) cannot be calculated analytically,
one is able to determine its limit.

For the sine integral one hasTHEOREM 4.11

lim
x→∞ Si(x) =

∫ ∞

0

sin t

t
dt = π

2
.

Proof
In order to prove this, we introduce for p > 0 the function I (p) defined by

I (p) =
∫ ∞

0
e−pt sin t dt.

Using integration by parts twice we can derive that for p > 0 one has

I (p) =
∫ ∞

0
e−pt sin t dt =

[−e−pt

p
sin t

]∞

0
+

∫ ∞

0

e−pt

p
cos t dt

=
[−e−pt

p2
cos t

]∞

0
−

∫ ∞

0

e−pt

p2
sin t dt = 1

p2
− 1

p2
I (p).
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The first and last term are equal. If we solve for I (p), we obtain

I (p) = 1

1 + p2
.

Next we integrate I (p) over the interval (0, ∞) to obtain∫ ∞

0
I (p) dp =

∫ ∞

0

1

1 + p2
dp = [arctan p]∞0 = π

2
. (4.18)

On the other hand we find by interchanging the order of integration that∫ ∞

0
I (p) dp =

∫ ∞

0

(∫ ∞

0
e−pt sin t dp

)
dt =

∫ ∞

0

[
e−pt

−t

]p=∞

p=0
sin t dt

=
∫ ∞

0

sin t

t
dt. (4.19)

We state without proof that interchanging the order of integration is allowed. With
the equality of the right-hand sides of (4.18) and (4.19) the theorem is proved. �

4.4.2 Gibbs’ phenomenon∗

In this section we treat Gibbs’ phenomenon. It is a rather technical treatment, which
does not result in any specific new insight into Fourier series. This section may
therefore be omitted without any consequences for the study of the remainder of the
book.

We treat Gibbs’ phenomenon using the periodic block function. Since it will
result in much simpler formulas, we will not start from the periodic block function
as defined in section 3.4.1, but instead from the periodic function f (t) defined on
the interval (−T/2, T/2) by

f (t) =



1
2 for 0 < t < 1

2 T ,

− 1
2 for − 1

2 T < t < 0.

This odd function has a Fourier sine series whose coefficients have been calculated
in exercise 3.22. The partial sums sn(t) of the Fourier series are

sn(t) =
n∑

k=1

2

(2k − 1)π
sin((2k − 1)ω0t). (4.20)

The graph of the partial sum for n = 12 is drawn in figure 4.5. In it, Gibbs’ phe-
nomenon is clearly visible again: immediately next to a discontinuity of the function
f (t), the partial sum overshoots the values of f (t). We will now calculate the over-
shoot, that is, the magnitude of the maximum difference between the function and
the partial sums immediately next to the discontinuity. By determining the deriva-
tive of the partial sum, we can find out where the maximum difference occurs, and
subsequently calculate its value. Differentiating sn(t) gives

s′
n(t) =

n∑
k=1

2

π
ω0 cos((2k − 1)ω0t) =

n∑
k=1

4

T
cos((2k − 1)ω0t). (4.21)

In order to determine the zeros of the derivative, we rewrite the last sum. For this
we use the trigonometric identity sin α − sin β = 2 sin((α − β)/2) cos((α + β)/2).
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t0 T/2–T/2

1
2

–

1
2

s12(t)

−

FIGURE 4.5
Overshoot of the partial sums approximating the block function.

With α = 2kω0t and β = (2k − 2)ω0t it follows that

cos((2k − 1)ω0t) = sin 2kω0t − sin((2k − 2)ω0t)

2 sin ω0t
.

By substituting this into expression (4.21) for the derivative s′
n(t) it follows that

s′
n(t) = 2

T

sin 2nω0t

sin ω0t
,

since consecutive terms cancel each other. The derivative is 0 if 2nω0t = kπ for
k ∈ Z and k �= 0. We thus have extrema for sn(t) at t = kπ/2nω0. For k = 1 we
find the first extremum immediately to the right of t = 0, that is, for t = π/2nω0.
The value at the extremum can be found by substituting t = π/2nω0 in sn(t). This
gives

sn

(
π

2nω0

)
=

n∑
k=1

2

(2k − 1)π
sin

(
(2k − 1)ω0

π

2nω0

)

=
n∑

k=1

2

(2k − 1)π
sin((2k − 1)π/2n).

The last sum can be rewritten as an expression which is a Riemann sum with stepsize
π/n for the function sin x/x :

sn

(
π

2nω0

)
= 1

π

n∑
k=1

π

n
· sin((2k − 1)π/2n)

(2k − 1)π/2n
.

Taking the limit n → ∞, the sums in the right-hand side converge to the integral∫ π
0 (sin x/x)dx . Note that for large values of n the contribution of the nth term gets

smaller and smaller and will even tend to zero (since the series converges to the
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integral). The value of this integral was given in section 4.4.1 and hence

lim
n→∞ sn

(
π

2nω0

)
= lim

n→∞
1

π

n∑
k=1

π

n

sin((2k − 1)π/2n)

(2k − 1)π/2n

= 1

π

∫ π

0

sin x

x
dx = 1

π
1.852 . . . = 0.589 . . . .

This establishes the value at the first maximum next to the jump. Since the jump
has magnitude 1, the overshoot of the function value 0.5 is approximately 9 % of
the jump. Since the additional contribution for large values of n gets increasingly
smaller, this overshoot will remain almost constant with increasing n. Furthermore
we see that the value of t where the extremum is attained is getting closer and closer
to the point of discontinuity.

In this section we studied Gibbs’ phenomenon using the periodic block function.
However, the phenomenon occurs in a similar way for other piecewise smooth func-
tions having points of discontinuity. There is always an overshoot of the partial sums
immediately to the left and to the right of the points of discontinuity, with a value
approximately equal to 9 % of the magnitude of the jump. As more terms are being
included in the partial sums, the extrema are getting closer and closer to the point of
discontinuity.

EXERCISES

Use the definition to verify that the sine integral Si(x) is an odd function.4.25

The sine integral can be considered as an approximation of the function f (x) given4.26
by f (x) = π/2 for x > 0 and f (x) = −π/2 for x < 0.
a What is the smallest value of x > 0 for which Si(x) has a maximum?
b What is the value of Si(x) at the first maximum and what percentage of the jump
at x = 0 of the function f (x) does the overshoot amount to?

Consider the periodic function with period T given by f (t) = 2t/T − 1 for 0 <4.27∗
t ≤ T . Let sn(t) be the nth partial sum of the Fourier series of f .
a Show that f arises from the sawtooth function from section 3.4.3 by a shift over
T/2. Next determine sn(t).
b Show that

s′
n(t) = − 2

T
(Dn(t) − 1),

where Dn is the Dirichlet kernel from definition 4.1. Subsequently determine the
value of t for which sn(t) has its first extreme value immediately to the left of the
discontinuity at t = 0.
c Calculate the magnitude of the extremum from part b and show that the over-
shoot is again approximately equal to 9 % of the magnitude of the jump at t = 0.

S U M M A R Y

When a periodic function is piecewise continuous, its Fourier coefficients, as de-
fined in chapter 3, exist. According to Bessel’s inequality, the sum of the squares of
the moduli of the Fourier coefficients of a periodic piecewise continuous function
is finite. From this, the lemma of Riemann–Lebesgue follows, which states that the
Fourier coefficients tend to 0 for n → ±∞. The fundamental theorem of Fourier
series has been formulated for piecewise smooth periodic functions. For such func-
tions the Fourier series converges to the function at the points of continuity, and to
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the average of the left- and right-hand limit at the points of discontinuity. If f is a
piecewise smooth periodic function with period T , then one has, according to the
fundamental theorem,

∞∑
n=−∞

cneinω0t = 1
2 ( f (t+) + f (t−)) ,

where

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt and ω0 = 2π

T
.

As functions are smoother, meaning that higher derivatives do not contain discon-
tinuities, the convergence of the Fourier series to the function is faster. Using the
fundamental theorem, further properties of Fourier series were derived, such as se-
ries for products and convolutions, term-by-term differentiation and integration of
Fourier series, and Parseval’s identity

1

T

∫ T/2

−T/2
f (t)g(t) dt =

∞∑
n=−∞

fn gn,

where fn and gn are the Fourier coefficients of f and g.
While the Fourier series of a piecewise smooth function with discontinuities does

converge at each point of continuity to the function value, the series always has an
overshoot of about 9 % of the magnitude of the jump immediately next to a point
of discontinuity. This phenomenon is called Gibbs’ phenomenon. As more terms
are included in the partial sums, the overshoot shifts closer and closer to the point
of discontinuity. For the analysis of this phenomenon we defined the sine integral
Si(x), having as properties Si(π) = 1.852 . . . and limx→∞ Si(x) = π/2.

S E L F T E S T

Let f (t) be the odd periodic function with period 2π defined for 0 ≤ t < π by4.28

f (t) =



2

π
t for 0 ≤ t <

π

2
,

1 for
π

2
≤ t < π .

a For which values of t ∈ R does the Fourier series of f (t) converge? What is the
sum for those values of t for which there is convergence?
b Determine the Fourier series of f and verify the fundamental theorem of Fourier
series for t = 0 and t = π .
c Can one differentiate the function f by differentiating the Fourier series term-
by-term? If not, explain. If so, give the function that is represented by the differen-
tiated series.
d Can one integrate the function f over [−π, t] by integrating the Fourier series
term-by-term? If not, explain. If so, give the function that is represented by the
integrated series.

Let a ∈ R with 0 < a ≤ π/2. Use the periodic block function pa,π and the periodic4.29
triangle function qa,π to show that

∞∑
n=1

sin3 na

n3
= a2

8
(3π − 4a).
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Finally evaluate

∞∑
n=0

(−1)n

(2n + 1)3
.

Let f (t) be the periodic function f (t) = | sin t | with period 2π .4.30
a Find the Fourier series of f and verify that it converges to f (t) for all t ∈ R.
b Show that
∞∑

n=1

1

4n2 − 1
= 1

2
and

∞∑
n=1

(−1)n

4n2 − 1
= 1

2
− π

4
.

c Show that
∞∑

n=1

1

(4n2 − 1)2
= π2

16
− 1

2
.

Let f be the periodic sawtooth function with period 2 given by f (t) = t for −1 <4.31
t ≤ 1.
a Show that f1∗ f2 is an even function if both f1 and f2 are odd periodic functions
with period T .
b Show that f ∗ f is the even periodic function with period 2 which for 0 ≤ t ≤ 1
is given by ( f ∗ f )(t) = − 1

2 t2+t − 1
3 . (Hint: how can one express f for 1 < t ≤ 2?

Now split the integral in two parts.)
c Prove that for all t ∈ R we have

( f ∗ f )(t) = − 2

π2

∞∑
n=1

1

n2
cos nπ t.

d Show that for t = 0, the result from part c is equivalent to Parseval’s identity
(4.14) for the function f .
e Verify that term-by-term differentiation of ( f ∗ f )(t) is allowed for 0 < | t | ≤ 1
and describe for all t ∈ R the function that is represented by the differentiated series.
f Determine in a direct way the zeroth Fourier coefficient of ( f ∗ f )(t) and verify
the answer using the result from part c. Next, verify that term-by-term integration
over [−1, t] is allowed and describe for all t ∈ R the function that is represented by
the integrated series.
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CHAPTER 5

Applications of Fourier series

I N T R O D U C T I O N

Applications of Fourier series can be found in numerous places in the natural sci-
ences as well as in mathematics itself. In this chapter we confine ourselves to two
kinds of applications, to be treated in sections 5.1 and 5.2. Section 5.1 explains how
Fourier series can be used to determine the response of a linear time-invariant sys-
tem to a periodic input. In section 5.2 we discuss the applications of Fourier series
in solving partial differential equations, which often occur when physical processes,
such as heat conduction or a vibrating string, are described mathematically.

The frequency response, introduced in chapter 1 using the response to the peri-
odic time-harmonic signal eiωt with frequency ω, plays a central role in the cal-
culation of the response of a linear time-invariant system to an arbitrary periodic
signal. Specifically, a Fourier series shows how a periodic signal can be written as
a superposition of time-harmonic signals with frequencies being an integer multiple
of the fundamental frequency. By applying the so-called superposition rule for lin-
ear time-invariant systems, one can then easily find the Fourier series of the output.
This is because the sequence of Fourier coefficients, or the line spectrum, of the out-
put arises from the line spectrum of the input by a multiplication by the frequency
response at the integer multiples of the fundamental frequency.

For stable systems which can be described by ordinary differential equations,
which is almost any linear time-invariant system occurring in practice, we will see
that the frequency response can easily be derived from the differential equation.
The characteristic polynomial of the differential equation of a stable system has
no zeros on the imaginary axis, and hence there are no periodic eigenfunctions.
As a consequence, the response to a periodic signal is uniquely determined by the
differential equation. If there are zeros iω of the characteristic polynomial on the
imaginary axis, then a periodic input may lead to resonance. For the corresponding
frequencies ω, the frequency response is meaningless.

In the second and final section we treat applications of Fourier series in solv-
ing partial differential equations by separation of variables. This method is ex-
plained systematically in the case when the functions have one time-variable and
one position-variable. We limit ourselves to simple examples of initial and boundary
value problems, with the partial differential equation being either the one-
dimensional diffusion or heat equation, or the one-dimensional wave equation.

113
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- can express the line spectrum of the response of an LTC-system to a periodic input

in terms of the frequency response and the line spectrum of the input
- know what eigenfunctions and eigenfrequencies are for a system described by a

differential equation, and know the relevance of the zeros of the corresponding
characteristic polynomial

- know when the periodic response of an LTC-system to a periodic input is uniquely
determined by the differential equation, and know what causes resonance

- can determine the frequency response for stable LTC-systems described by a dif-
ferential equation

- can use separation of variables and Fourier series to determine in a systematic way
a formal solution of the one-dimensional heat equation and the one-dimensional
wave equation, under certain conditions.

5.1 Linear time-invariant systems with periodic input

In this section we will occupy ourselves with the determination of the response of
a linear time-invariant continuous-time system (LTC-system for short) to a periodicLTC-system
input. Calculating the response as a function of time or, put differently, determining
the response in the time domain, is often quite difficult. If, however, we have the
line spectrum of the input at our disposal, so if we know the sequence of Fourier
coefficients, then it will turn out that by using the frequency response of the LTC-
system it is easy to determine the line spectrum of the output. Apparently it is easy
to calculate the response in the frequency domain.

The frequency response of an LTC-system was introduced in chapter 1 by the
property

eiωt �→ H(ω)eiωt .

That is to say, the response to the time-harmonic signal eiωt of frequency ω is equal
to H(ω)eiωt . We assume that for periodic inputs u(t) one has that

u(t) =
∞∑

n=−∞
uneinω0t , (5.1)

where ω0 = 2π/T and un is the sequence of Fourier coefficients, or line spectrum,
of u(t). When u(t) is a piecewise smooth function, then we know from the fun-
damental theorem of Fourier series that (5.1) holds everywhere if we assume that
u(t) = (u(t+) + u(t−))/2 at the points of discontinuity of u(t). In the present
chapter this will always be tacitly assumed. One now has the following theorem.

Let y(t) be the response of a stable LTC-system to a piecewise smooth and periodicTHEOREM 5.1
input u(t) with period T , fundamental frequency ω0 and line spectrum un. Let H(ω)

be the frequency response of the system. Then y(t) is again periodic with period T
and the line spectrum yn of y(t) is given by

yn = H(nω0)un for n = 0, ±1, ±2, . . .. (5.2)

Proof
Let the line spectrum un of the input u(t) be given. Then (5.1) holds, which repre-
sents u(t) as a superposition of the time-harmonic signals einω0t with frequencies
nω0. If only a finite number of Fourier coefficients un are unequal to zero, then
u(t) is a finite linear combination of time-harmonic signals. Because of the linearity
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of the system, in calculating the response it is sufficient first to determine the re-
sponses to the time-harmonic signals and then to take the same linear combination
of the responses.

We now assume that for LTC-systems this property may be extended to infinite
linear combinations of time-harmonic signals, so to series such as Fourier series
from (5.1). We then say that for LTC-systems the superposition rule holds (also seeSuperposition rule
chapter 10). This means that first one can determine the response to a time-harmonic
signal with frequency nω0 using the frequency response. Because of the stability of
the LTC-system we know that H(ω) is defined for all values of ω (see section 1.3.3).
On the basis of the superposition rule one thus has that

y(t) =
∞∑

n=−∞
un H(nω0)einω0t .

We see that y(t) is periodic with period T and, moreover, that the line spectrum yn
of the response satisfies (5.2). �

For a stable LTC-system the frequency response is given byEXAMPLE 5.1

H(ω) = 1

−ω2 + 3iω + 2
.

Consider the periodic input u(t) with period 2π given on the interval (−π, π) by
u(t) = t . The line spectrum yn of the response y(t) satisfies (5.2). One has
H(nω0) = 1/(2 + 3niω0 − n2ω2

0). The line spectrum un of u(t) can be obtained
by a direct calculation of the Fourier coefficients. The result is: un = (−1)ni/n for
n �= 0, u0 = 0. Hence,

yn =




(−1)ni

n(2 + 3inω0 − n2ω2
0)

for n �= 0,

0 for n = 0.
�

Systems that can be realized in practice are often described by differential equa-
tions. Well-known examples are electrical networks and mechanical systems. We
will now examine how for such systems one can determine the frequency response.

5.1.1 Systems described by differential equations

In chapter 1 systems described by differential equations were briefly introduced. For
such systems the relation between an input u(t) and the corresponding output y(t) is
described by an ordinary differential equation with constant coefficients of the form

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a1

dy

dt
+ a0 y

= bn
dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b1

du

dt
+ b0u (5.3)

with n ≤ m. Here a0, a1, . . . , am and b0, b1, . . . , bn are constants with am �= 0 and
bn �= 0. The number m is called the order of the differential equation. An electricOrder of a differential

equation network with one source, a voltage generator or a current generator, and furthermore
consisting of resistors, capacitors and inductors, can be considered as a system. The
voltage of the voltage generator or the current from the current generator is then an
input, with the output being, for example, the voltage across a certain element in the
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network or the current through a specific branch. One can derive the corresponding
differential equation from Kirchhoff’s laws and the voltage–current relations for the
separate elements in the network. For a resistor of resistance R this is Ohm’s law:
v(t) = Ri(t), where i(t) is the current through the resistor and v(t) the voltage
across the resistor. For a capacitor with capacitance C and an inductor with self-
inductance L these relations are, respectively,

v(t) = 1

C

∫ t

−∞
i(τ ) dτ and v(t) = L

d

dt
i(t).

The theory of networks is not a subject of this book and thus we shall not occupy
ourselves with the derivation of the differential equations. Hence, for the networks
in the examples we will always state the differential equation explicitly. Readers
with knowledge of network theory can derive these for themselves; others should
consider the differential equation as being given and describing an LTC-system.

The same assumptions will be made with respect to mechanical systems. Here
the differential equations follow from Newton’s laws and the force–displacement
relations for the mechanical components such as masses, springs and dampers. If
we denote the force by F and the displacement by x , then one has for a spring with
spring constant k that F(t) = kx(t), for a damper with damping constant c that
F(t) = cdx/dt , and for a mass m that F(t) = md2x/dt2. In these formulas the
direction of the force and the displacement have not been taken into account.

The formulas for the mechanical systems are very similar to the formulas for the
electrical networks when we replace a voltage v(t) by a force F(t) and a charge
Q(t) = ∫ t

−∞ i(τ ) dτ by a displacement. The latter means that a current i(t) is
replaced by a velocity dx/dt . The formula for the spring is then comparable to the
formula for the capacitor, the formula for the damper with the one for the resistor
and the formula for the mass with the inductor. This is listed in the following table.

electric network mechanical system

v(t) = Q(t)/C (capacitor) F(t) = kx(t) (spring)

v(t) = Rd Q/dt (resistor) F(t) = cdx/dt (damper)

v(t) = Ld2 Q/dt2 (inductor) F(t) = md2x/dt2 (mass)

In chapter 1 we already noted that LTC-systems which are equal in a mathemat-
ical sense can physically be realized in different ways. Hence, mathematically a
mechanical network can be the same as an electric network.

For an LTC-system described by a differential equation, the frequency response
H(ω) can easily be obtained. To this end we introduce the polynomials

A(s) = amsm + am−1sm−1 + · · · + a1s + a0,

B(s) = bnsn + bn−1sn−1 + · · · + b1s + b0.

The polynomial A(s) is called the characteristic polynomial of differential equationCharacteristic polynomial
(5.3). The following theorem shows how one can obtain H(ω) for those values of ω

for which A(iω) �= 0.

Let an LTC-system be described by differential equation (5.3) and have characteris-THEOREM 5.2
tic polynomial A(s). Then one has for all ω with A(iω) �= 0:

H(ω) = B(iω)

A(iω)
. (5.4)
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Proof
In order to find the frequency response, we substitute the input u(t) = eiωt into
(5.3). The response y(t) is then of the form H(ω)eiωt . Since the derivative of eiωt

is iωeiωt , substitution into (5.3) leads to A(iω)H(ω)eiωt = B(iω)eiωt . From this
it follows that H(ω) = B(iω)/A(iω), which proves the theorem. �

It is natural to examine the problems that may arise if A(iω) = 0 for a certain
value of ω, in other words, if the characteristic polynomial has zeros on the imag-
inary axis. In order to do so, we will study in some more detail the solutions of
differential equations with constant coefficients.

When the input u(t) is known, the right-hand side of (5.3) is known and from the
theory of ordinary differential equations we then know that several other solutions
y(t) exist. In fact, when one solution y(t) of (5.3) is found, then all solutions can
be obtained by adding to y(t) an arbitrary solution x(t) of the differential equation

am
dm x

dtm + am−1
dm−1x

dtm−1
+ · · · + a1

dx

dt
+ a0 = 0. (5.5)

This differential equation is called the homogeneous differential equation corre-
sponding to equation (5.3) and a solution of equation (5.5) is called a homogeneousHomogeneous solution
solution or eigenfunction. These are thus the solutions with u(t) being the null-Eigenfunction
signal. Of course, the null-function x(t) = 0 for all t satisfies the homogeneous
differential equation. This homogeneous solution will be called the trivial homoge-
neous solution or trivial eigenfunction.

We will say that the general solution y(t) of (5.3) can be written as a particularParticular solution
solution added to the general homogeneous solution:

general solution = particular solution + general homogeneous solution.

The general homogeneous solution can easily be determined using the characteristic
equation. This equation arises by substituting x(t) = est into (5.5), where s is a
complex constant. From example 2.11 it follows that this is the result: (amsm +
am−1sm−1 + · · · + a1s + a0)est = 0. Since est �= 0 one has

Characteristic equation A(s) = amsm + am−1sm−1 + · · · + a1s + a0 = 0. (5.6)

To each zero s of the characteristic polynomial corresponds the homogeneous solu-
tion est . More generally, one can show that to a zero s with multiplicity k there also
correspond k distinct homogeneous solutions, namely

est , test , . . . , tk−1est .

Now the sum of the multiplicities of the distinct zeros of the characteristic polyno-
mial is equal to the degree m of the polynomial, which is the order of the differential
equation. So in this way there is a total of m distinct homogeneous solutions that
correspond to the zeros of the characteristic polynomial. We call these solutions
the fundamental homogeneous solutions, since it follows from the theory of ordi-Fundamental homogeneous

solution nary differential equations with constant coefficients that the general homogeneous
solution can be written as a linear combination of the homogeneous solutions corre-
sponding to the zeros of the characteristic polynomial.

To a zero iω on the imaginary axis corresponds the time-harmonic fundamental
solution eiωt of (5.5) with period T = 2π/ | ω | if ω �= 0 and an arbitrary period
if ω = 0. In this case the value ω is called an eigenfrequency. Note that a time-Eigenfrequency
harmonic fundamental solution with period T also has period 2T , 3T , etc. So when
there are zeros of the characteristic polynomial on the imaginary axis, then there
exist non-trivial periodic eigenfunctions. One can show that the converse is also
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true, that is: if a non-trivial periodic eigenfunction with period T exists, then the
characteristic polynomial has a zero lying on the imaginary axis and corresponding
to this a time-harmonic fundamental solution having period T as well.

Hence, when u(t) is a periodic input with period T and when, moreover, there
exist non-trivial eigenfunctions having this same period, then a periodic solution
of equation (5.3) with period T will certainly not be unique. Possibly, periodic
solutions of (5.3) will not even exist. We will illustrate this in the next example.

Given is the differential equationEXAMPLE 5.2

y′′ + 4y = u.

The characteristic equation is s2 + 4 = 0 and it has zeros 2i and −2i on the imagi-
nary axis. To these correspond the fundamental solutions e2i t and e−2i t . Hence, the
general homogeneous solution is x(t) = αe2i t +βe−2i t for arbitrary complex α and
β. So all eigenfunctions are periodic with period π . Now when u(t) = 4 cos 2t is a
periodic input with period π , then there is no periodic solution with period π . This
is because one can show by substitution that y(t) = t sin 2t is a particular solution
of the given differential equation for this u. Note that this solution is not bounded.
The general solution is thus

y(t) = t sin 2t + αe2i t + βe−2i t .

Since all homogeneous solutions are bounded, while the particular solution is not,
none of the solutions of the differential equation will be bounded, let alone periodic.
The periodic input u(t) gives rise to unbounded solutions here. This phenomenon is
called resonance.Resonance �

The preceding discussion has given us some insight into the problems that may
arise when the characteristic polynomial has zeros on the imaginary axis. When
eigenfunctions with period T occur, periodic inputs with period T can cause reso-
nance. In the case when there are no eigenfunctions with period T , the theory of
ordinary differential equations with constant coefficients states that for each periodic
u(t) in (5.3), having period T and an nth derivative which is piecewise continuous,
there exists a periodic solution y(t) with period T as well. This solution is then
uniquely determined, since there are no periodic homogeneous solutions with pe-
riod T . The solution y(t) can then be determined using the frequency response. We
will illustrate this in our next example.

Consider the differential equationEXAMPLE 5.3

y′′ + 3y′ + 2y = cos t.

Note that the right-hand side is periodic with period 2π . The corresponding homo-
geneous differential equation is

x ′′ + 3x ′ + 2x = 0.

The characteristic equation is s2 + 3s + 2 = 0 and has zeros s = −1 and s =
−2. There are thus no zeros on the imaginary axis and hence there are no periodic
eigenfunctions, let alone periodic eigenfunctions with period 2π . As a consequence,
there is exactly one periodic solution y(t) with period 2π . This can be determined as
follows. We consider the differential equation as an LTC-system with input u(t) =
cos t . Applying (5.4) gives the frequency response of the system:

H(ω) = 1

2 + 3iω − ω2
.
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Since u(t) = (eit + e−i t )/2, it is a linear combination of time-harmonic signals
whose response can be found using the frequency response calculated above: eit �→
H(1)eit and e−i t �→ H(−1)e−i t . Hence,

cos t �→ H(1)eit + H(−1)e−i t

2
= eit

2(1 + 3i)
+ e−i t

2(1 − 3i)

= 1

10
(cos t + 3 sin t).

�

In general we will consider stable systems. When a stable system is described
by a differential equation of type (5.3), then one can prove (see chapter 10) that the
real parts of the zeros of the characteristic polynomial are always negative. In other
words, the zeros lie in the left-half plane of the complex plane and hence, none of
the zeros lie on the imaginary axis. Then A(iω) �= 0 for all ω and on the basis
of theorem 5.2 H(ω) then exists for all ω. Using theorem 5.1 one can thus determine
the line spectrum of the response for any periodic input.

Systems like electrical networks and mechanical systems are described by differ-
ential equations of the form (5.3) with the coefficients a0, a1, . . . , am and b0, b1,
. . . , bn being real numbers. The response to a real input is then also real. In chap-
ter 1, section 1.3.4, we have called these systems real systems. A sinusoidal signal
A cos(ωt + φ0) with amplitude A and initial phase φ0, for which the frequency ω is
equal to an eigenfrequency of the system is then an eigenfunction. If the sinusoidal
signal is not an eigenfunction, then A(iω) �= 0 and so H(ω) exists. In section 1.3.4
we have seen that the response of a real system to the sinusoidal signal then equals

A | H(ω) | cos(ωt + φ0 + �(ω)).

The amplitude is distorted with the factor | H(ω) |, which is the amplitude response
of the system, and the phase is shifted over �(ω) = arg H(ω), which is the phase
response of the system. Now an arbitrary piecewise smooth, real and periodic input
can be written as a superposition of these sinusoidal signals:

u(t) =
∞∑

n=0

An cos(nω0t + φn).

On the basis of the superposition rule, the response y(t) of a stable LTC-system is
then equal to

y(t) =
∞∑

n=0

An | H(nω0) | cos(nω0t + φn + �(nω0)).

Depending on the various frequencies contained in the input, amplitude distortions
and phase shifts will occur.

If H(nω0) = 0 for certain values of n, then we will say that the frequency nω0
is blocked by, or will not pass, the system. Designing electrical networks with
frequency responses that meet specific demands, or, put differently, designing filters,Filter
is an important part of network theory. Examples are low-pass filters, blocking
almost all frequencies above a certain limit, high-pass filters, blocking almost all
frequencies below a certain limit, or more general, band-pass filters, through which
only frequencies in a specific band will pass.

We close this section with some examples.

In figure 5.1 an electrical network is drawn, which is considered as an LTC-systemEXAMPLE 5.4
with input the voltage across the voltage generator and output the voltage across the
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u(t)

R

C

+

_

i(t)

y(t)

FIGURE 5.1
An RC-network.

capacitor. The corresponding differential equation reads as follows:

RCy′(t) + y(t) = u(t).

The characteristic equation RCs+1 = 0 has one negative zero. The system is stable
and has frequency response

H(ω) = 1

iωRC + 1
.

Now let the sinusoidal input with frequency ω and initial phase φ0 be given by
u(t) = a cos(ωt + φ0). In order to determine the response, we need the modulus
and argument of the frequency response. Using the notation RC = τ one obtains
that

| H(ω) | =
∣∣∣∣ 1

iωτ + 1

∣∣∣∣ = 1√
1 + ω2τ2

,

arg(H(ω)) = − arg(iωτ + 1) = − arctan(ωτ).

The response of the system to u(t) is thus

y(t) = a√
1 + ω2τ2

cos(ωt − arctan(ωτ) + φ0).

As we can see, the amplitude becomes small for large ω. One could consider this
network as a low-pass filter. �

In figure 5.2 a simple mechanical mass–spring system is drawn. An external force,EXAMPLE 5.5

A
V m

F(t) = u(t)

0 y

W

FIGURE 5.2
A simple mechanical mass–spring system.

the input u(t), acts on a mass m, which can move in horizontal direction to the left
and to the right over a horizontal plane. A spring V connects m with a fixed point A.
Furthermore, a frictional force W acts on m. The displacement y(t) is considered
as output. The force that the spring exerts upon the mass m equals −cy(t) (c is
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the spring constant). The frictional force is equal to −αy′(t). The corresponding
differential equation is then

u(t) = my′′(t) + αy′(t) + cy(t),

having as characteristic equation ms2+αs+c = 0. For α > 0, the roots are real and
negative or they have a negative real part −α/2m. We are then dealing with a stable
system. If, however, α = 0, then the system has an eigenfrequency ωr = √

c/m and
a periodic eigenfunction with frequency ωr , and so the system is no longer stable.
The response to the periodic input cos(ωr t) is not periodic. Resonance will then
occur. �

As a final example we treat an application of Parseval’s identity for periodic
functions.

The electric network from figure 5.3 is considered as an LTC-system with inputEXAMPLE 5.6
the voltage u(t) across the voltage generator and output the voltage y(t) across the
resistor. In this network the quantities C , L , R satisfy the relation R = √

L/C . The

u(t) R
C

+

–

L

y(t)

L

C

FIGURE 5.3
Electric network from example 5.6.

relation between the input u(t) and the corresponding output y(t) is given by

y′′ − (2/RC)y′ + (1/LC)y = u′′ − (1/LC)u.

The frequency response follows immediately from (5.4). If we put α = 1/RC , then
it follows from R = √

L/C that α2 = 1/LC and so

H(ω) = (iω)2 − α2

(iω)2 − 2iαω + α2
= iω + α

iω − α
.

If u(t) is a periodic input with period T and line spectrum un , then, owing to
| a + ib | = | a − ib |, the amplitude spectrum | yn | of the output is equal to

| yn | = | H(nω0)un | =
∣∣∣∣ inω0 + α

inω0 − α
un

∣∣∣∣ =
∣∣∣∣ inω0 + α

inω0 − α

∣∣∣∣ | un | = | un | .

Apparently, the amplitude spectrum is not altered by the system. This then has
consequences for the power of the output. Applying Parseval’s identity for periodic
functions, we can calculate the power P of y(t) as follows:

P = 1

T

∫ T

0
| y(t) |2 dt =

∞∑
n=−∞

| yn |2 =
∞∑

n=−∞
| un |2 = 1

T

∫ T

0
| u(t) |2 dt.

We see that the power of the output equals the power of the input. Systems having
this property are called all-pass systems (see also chapter 10).All-pass system �
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EXERCISES

A stable LTC-system is described by a differential equation of the form (5.3). Let5.1
x(t) be an eigenfunction of the system. Show that limt→∞ x(t) = 0.

For an LTC-system the relation between an input u(t) and the corresponding re-5.2
sponse y(t) is described by y′ + y = u. Let u(t) be the periodic input with period
2π , which is given on the interval (−π, π) by

u(t) =
{

1 for | t | < π/2,
0 for | t | > π/2.

Calculate the line spectrum of the output.

For an LTC-system the frequency response H(ω) is given by5.3

H(ω) =
{

1 for | ω | ≤ π ,
0 for | ω | > π .

a Can the system be described by an ordinary differential equation of the form
(5.3)? Justify your answer.
b We apply the periodic signal of exercise 5.2 to the system. Calculate the power
of the response.

To the network of example 5.6 we apply the signal u(t) = | sin t | as input. Calculate5.4
the integral (1/π)

∫ π
0 y(t) dt of the corresponding output y(t). This is the average

value of y(t) over one period.

For an LTC-system the relation between an input u(t) and the output y(t) is de-5.5
scribed by the differential equation

y′′ + 2y′ + 4y = u′′ + u.

a Which frequencies do not pass through the system?
b Calculate the response to the input u(t) = sin t + cos2 2t .

Given is the following differential equation:5.6

y′′ + ω2
0 y = u with | ω0 | �= 0, 1, 2, . . ..

Here u(t) is the periodic function with period 2π given by

u(t) =
{

t + π for −π < t < 0,
−t + π for 0 < t < π .

Does the differential equation have a unique periodic solution y(t) with period 2π?
If so, determine its line spectrum.

5.2 Partial differential equations

In this section we will see how Fourier series can be applied in solving partial dif-
ferential equations. For this, we will introduce a method which will be explained
systematically by using a number of examples wherein functions u(x, t) occur, de-
pending on a time-variable t and one position-variable x . However, this method can
also be applied to problems with two, and often also three or four, position-variables.
Here we will confine ourselves to the simple examples of the one-dimensional heat
equation and the one-dimensional wave equation.
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5.2.1 The heat equation

In Fourier’s time, around 1800, heat conduction was already a widely studied phe-
nomenon, from a practical as well as from a scientific point of view. In the industry
the phenomenon was important in the use of metals for machines, while in science
heat conduction was an issue in determining the temperature of the earth’s interior,
in particular its variations in the course of time. The first problem that Fourier (1761
- 1830) addressed in his book Théorie analytique de la chaleur from 1822 was the
determination of the temperature T in a solid as function of the position variables
x , y, z and the time t . From physical principles he showed that the temperature
T (x, y, z, t) should satisfy the partial differential equation

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
.

Here k is a constant, whose value depends on the material of the solid. This equa-
tion is called the heat equation. The same equation also plays a role in the diffusionHeat equation
of gases and liquids. In that case the function T (x, y, z, t) does not represent tem-
perature, but the local concentration of the diffusing substances in a medium where
the diffusion takes place. The constant is in that case the diffusion coefficient and
the equation is then called the diffusion equation. We now look at the equation in aDiffusion equation
simplified situation.

Consider a thin rod of length L with a cylinder shaped cross-section and flat ends.EXAMPLE 5.7
The ends are kept at a temperature of 0◦ C by cooling elements, while the side-
surface (the mantle of the cylinder) is insulated, so that no heat flows through it. At
time t = 0 the temperature distribution in the longitudinal direction of the rod (the
x-direction; see figure 5.4) is given by a function f (x). So for fixed value of x , the
temperature in a cross-section of the rod is the same everywhere. This justifies a
description of the problem using only x as a position variable. The variables y and z
can be omitted, and so we can consider the temperature as function of x and t only:
T = T (x, t). The preceding equation then changes into

∂T

∂t
= k

∂2T

∂x2
for 0 < x < L and t > 0.

We call this partial differential equation the one-dimensional heat equation.
In the remainder of this chapter we will denote the function that should satisfy a

partial differential equation by u(x, t). For the partial derivatives we introduce the
following frequently used notation:

∂u

∂x
= ux ,

∂2u

∂x2
= uxx ,

∂u

∂t
= ut ,

∂2u

∂t2
= utt . (5.7)

With this notation the one-dimensional heat equation looks like this:

ut = kuxx for 0 < x < L and t > 0. (5.8)

Since the temperature at both ends is kept at 0◦ C for all time, starting from t = 0,
one has the following two boundary conditions:Boundary condition

u(0, t) = 0, u(L , t) = 0 for t ≥ 0. (5.9)

Finally we formulate the situation for t = 0 as an initial condition:Initial condition

u(x, 0) = f (x) for 0 ≤ x ≤ L . (5.10)
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0
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T(x,t)

x
L

0°

f(x)

FIGURE 5.4
Thin rod with temperature distribution f (x) at t = 0.

Here f (x) is a piecewise smooth function. This situation is shown in figure 5.4. The
partial differential equation (5.8) is an example of a linear homogeneous equation.
That is to say, when two functions u(x, t) and v(x, t) satisfy this equation, then so
does any linear combination of these two functions. In particular the null-function
satisfies the equation. The boundary conditions (5.9) have the same property (verify
this). This is why these conditions are also called linear homogeneous conditions.Linear homogeneous

condition Constructing a solution of equation (5.8) satisfying conditions (5.9) and (5.10) will
consist of three steps. In the first two steps we will be using separation of vari-
ables to construct a collection of functions which satisfy (5.8) as well as the linear
homogeneous conditions (5.9). To this end we must solve a so-called eigenvalue
problem, which will take place in the second step. Next we construct in the third
step, by means of an infinite linear combination of the functions from this collection,
or, put differently, by superposition, a solution which also satisfies the inhomoge-
neous condition (5.10). In this final step the Fourier series enter, and so we will have
to deal with all kinds of convergence problems. If we ignore these problems during
the construction, then it is said that we have obtained a formal solution, for which,Formal solution
in fact, one still has to show that it actually is a solution, or even a unique solution.

Separation of variablesStep 1
Using separation of variables we will construct a collection of functions satisfying
the partial differential equation (5.8) and the linear homogeneous conditions (5.9)
and having the form

u(x, t) = X (x)T (t), (5.11)

where X (x) is a function of x only and T (t) is a function of t only. If we substitute
(5.11) into (5.8), then we obtain the relation

X (x)T ′(t) = k X ′′(x)T (t).

After a division by k X (x)T (t) the variables x and t are separated:

T ′(t)
kT (t)

= X ′′(x)

X (x)
.
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Here the left-hand side is a function of t and independent of x , while the right-hand
side is a function of x and independent of t . Therefore, an equality can only occur
if both sides are independent of x and t , and hence are equal to a constant. Call this
constant c, then

T ′(t)
kT (t)

= X ′′(x)

X (x)
= c.

The constant c is sometimes called the constant of separation. We thus have

X ′′(x) − cX (x) = 0, (5.12)

T ′(t) − ckT (t) = 0. (5.13)

Substitution of (5.11) into the linear homogeneous boundary conditions (5.9) gives
u(0, t) = X (0)T (t) = 0 and u(L , t) = X (L)T (t) = 0 for t ≥ 0. We are not
interested in the trivial solution T (t) = 0 and so X (0) = 0 and X (L) = 0. Together
with (5.12) this leads to the problem

X ′′ − cX = 0 for 0 < x < L , X (0) = 0, X (L) = 0, (5.14)

where X (x) and c are to be determined. First we will solve problem (5.14) and
subsequently (5.13). Problem (5.14) obviously has the trivial solution X (x) = 0,
which is of no interest. We are therefore interested in those values of c for which
there exists a non-trivial solution X (x). These values are called eigenvalues andEigenvalue
the corresponding non-trivial solutions eigenfunctions. Determining the eigenvaluesEigenfunction
and their corresponding eigenfunctions is the second step in our solution method.

Calculating eigenvalues and eigenfunctionsStep 2
When we try to solve problem (5.14) we have to distinguish two cases, namely c �= 0
and c = 0.
a For c = 0 equation (5.14) becomes X ′′ = 0, which has general solution X (x) =
αx + β. From the boundary conditions it follows that X (0) = β = 0 and X (L) =
αL = 0. Hence, β = α = 0. We then obtain the trivial solution and this means that
c = 0 is not an eigenvalue.
b For c �= 0 the characteristic equation s2 − c = 0 corresponding to (5.14) has
two distinct roots s1 and s2 with s2 = −s1. Note that these roots may be complex.
The general solution is then

X (x) = αes1x + βe−s1x .

The first boundary condition X (0) = 0 gives α + β = 0, so β = −α. Next we
obtain from the second boundary condition X (L) = 0 the equation

α(es1 L − e−s1 L ) = 0.

For α = 0 we get the trivial solution again. So we must have es1 L − e−s1 L = 0,
implying that e2s1 L = 1. From this it follows that s1 = inπ/L , where n is an integer
and n �= 0. This gives us eigenvalues c = s2

1 = −(nπ/L)2. The corresponding
eigenfunction X (x) is X (x) = 2iα sin(nπx/L). However, since α is arbitrary, we
can say that eigenvalue c = −(nπ/L)2 corresponds to the eigenfunction

Xn(x) = sin(nπx/L),

where we may now assume that n is a positive integer.
For c = −(nπ/L)2 the first-order differential equation (5.13) has the fundamen-

tal solution

Tn(t) = e−(nπ/L)2kt .
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We have thus found the following collection of fundamental solutions satisfyingFundamental solution
equation (5.8) and conditions (5.9):

un(x, t) = Tn(t)Xn(x) = e−n2π2kt/L2
sin(nπx/L) for n = 1, 2, . . .. (5.15)

Superposition of fundamental solutionsStep 3
Since (5.8) is a linear homogeneous differential equation and (5.9) are linear ho-
mogeneous conditions, it is possible to take linear combinations of fundamental
solutions, or, as it is often put by scientists, to form new solutions of (5.8) and (5.9)
by superpositions. Each finite linear combination a1u1 + a2u2 + · · · + anun of
fundamental solutions also satisfies (5.8) and (5.9). However, in general we cannot
expect that a suitable finite linear combination will give us a solution which also
satisfies the remaining inhomogeneous condition. We therefore try an infinite linear
combination of fundamental solutions, still called a superposition of fundamental
solutions. It has the form

u(x, t) =
∞∑

n=1

Ane−n2π2kt/L2
sin(nπx/L). (5.16)

If this superposition is to satisfy the inhomogeneous condition (5.10), then u(x, t)
should be equal to the function f (x) for t = 0 and hence

u(x, 0) =
∞∑

n=1

An sin(nπx/L) = f (x) for 0 ≤ x ≤ L .

The coefficients An can thus be found by determining the Fourier sine series of
f (x). The result is

An = 2

L

∫ L

0
f (x) sin(nπx/L) dx .

Substitution of these coefficients in (5.16) finally gives us a formal solution of the
heat conduction problem. Since we required f (x) to be piecewise smooth, and we
also assumed that f (x) equals the average value of the left- and right-hand limit
at jumps, f (x) is equal to the sum of its Fourier sine series on the interval [0, L].
Hence, u(x, 0) = f (x). It it also easy to see that for x = 0 and x = L the sum of
the series in (5.16) equals 0, since all terms are 0 then. The homogeneous conditions
are thus also satisfied. To show, however, that the series (5.16) also converges for
other values of x and t > 0, and that its sum u(x, t) satisfies differential equation
(5.8), requires a detailed analysis of the convergence of the series in (5.16). We
will content ourselves here with stating that in the case when f (x) is piecewise
smooth, one can prove that u(x, t) found in this way is indeed a solution of the heat
conduction problem that we have posed, and even that it is the unique solution. �

In the preceding example the temperature at both ends of the rod was kept at 0◦ C.
This resulted in linear homogeneous conditions for the heat conduction problem.
We will now look at what happens with the temperature of a rod whose ends are
insulated.

Insulation of the ends can be expressed mathematically as ux (0, t) = 0 andEXAMPLE 5.8
ux (L , t) = 0. The heat conduction problem for this rod is thus as follows:

ut = kuxx for 0 < x < L , t > 0,
ux (0, t) = 0, ux (L , t) = 0 for t ≥ 0,
u(x, 0) = f (x) for 0 ≤ x ≤ L .
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Going through the three steps from example 5.7 again, we find a difference in step
1: instead of problem (5.14) we obtain the problem

X ′′ − cX = 0 for 0 ≤ x ≤ L ,
X ′(0) = 0, X ′(L) = 0.

For c = 0 we find that X (x) is a constant. So now c = 0 is an eigenvalue
as well, with eigenfunction a constant. For c �= 0 we again find the eigenval-
ues c = −(nπ/L)2 with corresponding eigenfunctions Xn(x) = cos(nπx/L) for
n = 1, 2, . . .. Hence, the eigenfunctions are

Xn(x) = cos(nπx/L) for n = 0, 1, 2, 3, . . ..

Note that n now starts from n = 0. The remainder of the construction of the col-
lection of fundamental solutions is entirely analogous to the previous example. The
result is the collection of fundamental solutions

un(x, t) = e−n2π2kt/L2
cos(nπx/L) for n = 0, 1, 2, . . ..

Superposition of the fundamental solutions in step 3 gives

u(x, t) = 1
2 A0 +

∞∑
n=1

Ane−n2π2kt/L2
cos(nπx/L).

Since u(x, 0) = f (x) for 0 ≤ x ≤ L , the coefficients An are equal to

An = 2

L

∫ L

0
f (x) cos(nπx/L) dx for n = 0, 1, 2, 3, . . ..

These Fourier coefficients arise by determining the Fourier cosine series of f (x).
Substitution of these coefficients in the series for u(x, t) then gives a formal solution
again. Since f (x) is piecewise smooth, one can prove once more that this is a unique
solution. �

If we look at the solution for t → ∞, then all terms in the series for u(x, t) tend
to 0, except for the term A0/2. One can indeed prove that limt→∞ u(x, t) = A0/2.
It is then said that in the stationary phase the temperature no longer depends on t
and is everywhere equal to the average temperature

A0

2
= 1

L

∫ L

0
f (x) dx

at t = 0 on the interval [0, L]. Figure 5.5 illustrates this result.

5.2.2 The wave equation

We now consider the example of a vibrating string of length L and having fixed ends.
Just as in the heat conduction problem, we will not discuss the physical arguments
needed to derive the wave equation.

The equation describing the vertical displacement u(x, t) of a vibrating string isEXAMPLE 5.9

utt = a2uxx for 0 < x < L , t > 0. (5.17)

Here a is a constant which is related to the tension in the string. This equation is
called the wave equation. Since the ends of the string are fixed, one has the followingWave equation
boundary conditions:

u(0, t) = 0, u(L , t) = 0 for t ≥ 0. (5.18)
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FIGURE 5.5
Temperature distribution in a rod with insulated ends.
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u

x
L

u(x, 0)

FIGURE 5.6
Displacement of a vibrating string.

In figure 5.6 we see the displacement of the string at time t = 0. We thus have the
initial condition

u(x, 0) = f (x) for 0 ≤ x ≤ L . (5.19)

Moreover, it is given that at t = 0 the string has no initial velocity. So as a second
initial condition we have

ut (x, 0) = 0 for 0 ≤ x ≤ L . (5.20)
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Analogous to the heat conduction problem in a rod we will derive a formal solution
in three steps.

Separation of variablesStep 1
We first determine fundamental solutions of the form u(x, t) = X (x)T (t) that sat-
isfy the partial differential equation and the linear homogeneous conditions. Substi-
tution of u(x, t) = X (x)T (t) into (5.17) gives XT ′′ = a2 X ′′T . Dividing by a2 XT
leads to

T ′′
a2T

= X ′′
X

= c,

where c is the constant of separation. From this we obtain the two ordinary differ-
ential equations

X ′′ − cX = 0, T ′′ − ca2T = 0. (5.21)

Conditions (5.18) and (5.20) are linear homogeneous conditions. Substitution of
u(x, t) = X (x)T (t) in condition (5.18), and using that u(x, t) should not be the
trivial solution, leads to the conditions X (0) = 0 and X (L) = 0. Subsequently
substituting u(x, t) = X (x)T (t) in condition (5.20) gives the relation T ′(0)X (x) =
0 for 0 ≤ x ≤ L . Hence T ′(0) = 0.

Calculating eigenvalues and eigenfunctionsStep 2
For the function X (x) we derived in step 1 the following differential equation with
boundary conditions:

X ′′ − cX = 0 for 0 < x < L ,
X (0) = 0, X (L) = 0.

So here we again find the eigenvalues c = −(nπ/L)2 for n = 1, 2, . . . and the
corresponding eigenfunctions

Xn(x) = sin(nπx/L) for n = 1, 2, 3, . . ..

In order to find the fundamental solutions we still have to determine T (t). From the
eigenvalues we have found, we obtain from (5.21) the differential equation

T ′′ + n2π2a2

L2
T = 0.

Its general solution is

T (t) = α cos(nπat/L) + β sin(nπat/L),

which has as derivative

T ′(t) = nπα

L
(−α sin(nπat/L) + β cos(nπat/L)) .

Substitution of the condition T ′(0) = 0 gives β = 0 and so we obtain for the
eigenvalue −(nπ/L)2 the following fundamental solution:

Tn(t) = cos(nπat/L) for n = 1, 2, 3, . . ..

We have thus found the following fundamental solutions:

un(x, t) = Tn(t)Xn(x) = cos(nπat/L) sin(nπx/L) for n = 1, 2, 3, . . ..
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SuperpositionStep 3
Superposition of the fundamental solutions gives the series

u(x, t) =
∞∑

n=1

An cos(nπat/L) sin(nπx/L). (5.22)

By substituting the remaining initial condition (5.19), a Fourier series arises:

u(x, 0) = f (x) =
∞∑

n=1

An sin(nπx/L) for 0 ≤ x ≤ L .

For the Fourier coefficients An one thus has

An = 2

L

∫ L

0
f (x) sin(nπx/L) dx .

The series (5.22) together with these coefficients give the formal solution of our
problem. One can indeed show that the formal solution thus obtained is the unique
solution, provided that f (x) is piecewise smooth. �

In many cases the assumption of an initial velocity ut (x, 0) = 0 is artificial. This
assumption made it possible for us to find a simple solution for Tn(t). For a string
which is struck from its resting position, one takes as initial conditions u(x, 0) = 0
and ut (x, 0) = g(x). When both the initial displacement and the initial velocity
are unequal to 0, then we are dealing with a problem with two inhomogeneous con-
ditions. As a consequence, the functions Tn(t) will contain sine as well as cosine
terms. We must then determine the coefficients in two distinct Fourier series. For
detailed results we refer to Fourier series, transforms and boundary value problems
by J. Hanna and J.H. Rowland, pages 228 – 233. In the same book, pages 219 – 227,
one can also find the derivation of the wave equation and the heat equation, as well
as the verification that the formal solutions constructed above are indeed solutions,
which moreover are unique.

EXERCISES

A thin rod of length L with insulated sides has its ends kept at 0◦ C. The initial5.7
temperature is

u(x, 0) =
{

x for 0 ≤ x ≤ L/2,
L − x for L/2 ≤ x ≤ L .

Show that the temperature u(x, t) is given by the series

u(x, t) = 4L

π2

∞∑
n=0

(−1)n

(2n + 1)2
e−(2n+1)2π2kt/L2

sin((2n + 1)πx/L).

Both ends and the sides of a thin rod of length L are insulated. The initial tem-5.8
perature of the rod is u(x, 0) = 3 cos(8πx/L). Write down the heat equation for
this situation and determine the initial and boundary conditions. Next determine the
temperature u(x, t).

For a thin rod of length L the end at x = L is kept at 0◦ C, while the end at x = 05.9
is insulated (as well as the sides). The initial temperature of the rod is u(x, 0) =
7 cos(5πx/2L). Write down the heat equation for this situation and determine the
initial and boundary conditions. Next determine the temperature u(x, t).
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Determine the solution of the following initial and boundary value problem:5.10

ut = uxx for 0 < x < 2, t > 0,
ux (0, t) = 0, u(2, t) = 0 for t ≥ 0,

u(x, 0) =
{

1 for 0 < x < 1,
2 − x for 1 ≤ x < 2.

A thin rod of length L has initial temperature u(x, 0) = f (x). The end at x = 0 is5.11
kept at 0◦ C and the end at x = L is insulated (as well as the sides). Write down the
heat equation for this situation and determine the initial and boundary conditions.
Next determine the temperature u(x, t).

Determine the displacement u(x, t) of a string of length L , with fixed ends and5.12
initial displacement u(x, 0) = 0.05 sin(4πx/L). At time t = 0 the string has no
initial velocity.

A string is attached at the points x = 0 and x = L and has as initial displacement5.13

f (x) =
{

0.02x for 0 < x < L/2,
0.02(L − x) for L/2 ≤ x < L .

At time t = 0 the string has no initial velocity. Write down the corresponding initial
and boundary value problem and determine the solution. One could call this the
problem of the ‘plucked string’: the initial position is unequal to 0 and the string is
pulled at the point x = L/2, while the initial velocity is equal to 0.

A string is attached at the points x = 0 and x = 2 and has as initial displacement5.14
u(x, 0) = 0. The initial velocity is

ut (x, 0) = g(x) =
{

0.05x for 0 < x < 1,
0.05(2 − x) for 1 < x < 2.

Write down the corresponding initial and boundary value problem and determine
the solution. This problem could be called the problem of the ‘struck string’: the
initial position is equal to 0, while the initial velocity is unequal to 0, and the string
is struck at the midpoint.

Determine the solution of the following initial and boundary value problem, where5.15
k is a constant:

ut = a2uxx for 0 < x < π , t > 0,
ux (0, t) = 0, ux (π, t) = 0 for t > 0,
ut (x, 0) = 0, u(x, 0) = kx for 0 < x < π .

S U M M A R Y

In this chapter Fourier series were first applied to determine the response of an LTC-
system to a periodic input. Here the frequency response, introduced in chapter 1,
played a central role. It determines the response to a time-harmonic input. Since the
input can be represented as a superposition of time-harmonic signals, using Fourier
series, one can easily determine the line spectrum of the output by applying the
superposition rule. This line spectrum is obtained by multiplying the line spectrum
of the input with the values of the frequency response at the integer multiples of the
fundamental frequency of the input:

yn = H(nω0)un .
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Here yn is the line spectrum of the output y(t), un the line spectrum of the input
u(t), H(ω) the frequency response, and ω0 the fundamental frequency of the input.
For real inputs and real systems the properties of the time-harmonic signals are taken
over by the sinusoidal signals.

Systems occurring in practice are often described by differential equations of the
form

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a0 y = bn

dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b0u.

In order to determine a periodic solution y(t) for a given periodic signal u(t), it is
important to know whether or not there are any periodic eigenfunctions. These are
periodic solutions of the homogeneous differential equation arising from the dif-
ferential equation above by taking the right-hand side equal to 0. Periodic eigen-
functions correspond to zeros s = iω of the characteristic polynomial A(s) =
amsm + am−1sm−1 + · · · + a0, and these lie on the imaginary axis. When the
period of a periodic input coincides with the period of a periodic eigenfunction,
then resonance may occur, that is, for a given u(t) the differential equation does not
have periodic solutions, but instead unbounded solutions.

When the differential equation describes a stable system, then all zeros of A(s)
lie in the left-half plane and the frequency response is then for all ω equal to

H(ω) = B(iω)

A(iω)
,

with B(s) = bnsn +bn−1sn−1 +· · ·+b0. For real systems this means that there are
no sinusoidal eigenfunctions, that is, no sinusoidal signals with an eigenfrequency.

Secondly, Fourier series were applied in solving the one-dimensional heat
equation

ut = kuxx ,

and the one-dimensional wave equation

utt = a2uxx .

Using the method of separation of variables, and solving an eigenvalue problem,
one can obtain a collection of fundamental solutions satisfying the partial differen-
tial equation under consideration, as well as the corresponding linear homogeneous
conditions, but not yet the remaining inhomogeneous condition(s). By superposi-
tion of the fundamental solutions one can usually construct a formal solution which
also satisfies the inhomogeneous condition(s). In most cases the formal solution is
the solution of the problem being posed. In the superposition of the fundamental so-
lutions lies the application of Fourier series. The fundamental solutions describe, in
relation to one or several variables, sinusoidal functions with frequencies which are
an integer multiple of a fundamental frequency. This fundamental frequency already
emerges when one calculates the eigenvalues. The superposition is then a Fourier
series whose coefficients can be determined by using the remaining inhomogeneous
condition(s).

S E L F T E S T

For the frequency response of an LTC-system one has5.16

H(ω) = (1 − e−2iω)2.
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a Is the response to a real periodic input real again? Justify your answer.
b Calculate the response to the input u(t) = sin(ω0t).
c What is the response to a periodic input with period 1?

For an LTC-system the relation between an input u(t) and the corresponding output5.17
y(t) is described by the differential equation y′′ + 4y′ + 4y = u. Let u(t) be the
periodic input with period 2π , given on the interval (−π, π) by

u(t) =
{

π t + t2 for −π < t < 0,
π t − t2 for 0 < t < π .

Determine the first harmonic of the output y(t).

For an LTC-system the relation between an input u(t) and the output y(t) is de-5.18
scribed by the differential equation y′′′ + y′′ + 4y′ + 4y = u′ + u.
a Does the differential equation determine the periodic response to a periodic in-
put uniquely? Justify your answer.
b Let u(t) = cos 3t and y(t) the corresponding output. Calculate the power of the
output.

A thin rod of length L has constant positive initial temperature u(x, 0) = u0 for5.19
0 < x < L . The ends are kept at 0◦ C. The so-called heat-flux through a cross-
section of the rod at position x0 (0 < x0 < L) and at time t > 0 is by definition
equal to −K ux (x0, t). Show that the heat-flux at the midpoint of the rod (x0 = L/2)
equals 0.

Consider a thin rod for which one has the following equations:5.20

ut = kuxx for 0 < x < L , t > 0,
u(0, t) = 0, u(L , t) = 0 for t ≥ 0,

u(x, 0) =
{

a for 0 ≤ x ≤ L/2,
0 for L/2 < x ≤ L ,

where a is a constant.
a Determine the solution u(x, t).
b Two identical iron rods, each 20 cm in length, have their ends put against each
other. Both of the remaining ends, at x = 0 and at x = 40 cm, are kept at 0◦ C. The
left rod has a temperature of 100◦ C and the right rod a temperature of 0◦ C. Cal-
culate for k = 0.15 cm2s−1 the temperature at the boundary layer of the two rods,
10 minutes after the rods made contact, and show that this value is approximately
36◦ C.
c Calculate approximately how many hours it will take to reach a temperature
of 36◦ C at the boundary layer, when the rods are not made of iron, but concrete
(k = 0.005 cm2s−1).

Given is the following initial and boundary value problem:5.21

utt = a2uxx for 0 < x < L , t > 0,
u(0, t) = 0, u(L , t) = 0 for t > 0,
u(x, 0) = sin(πx/L) for 0 < x < L ,
ut (x, 0) = 7 sin(3πx/L) for 0 < x < L .

Show that the first two steps of the method described in section 5.2 lead to the
collection of fundamental solutions

un(x, t) = (An sin(nπat/L) + Bn cos(nπat/L)) sin(nπx/L),

and subsequently determine the formal solution which is adjusted to the given initial
displacement and initial velocity.





Part 3

Fourier integrals and distributions

I N T R O D U C T I O N T O P A R T 3

In part 2 we have developed the Fourier analysis for periodic functions. To a periodic
function f (t) we assigned for each n ∈ Z a Fourier coefficient cn ∈ C. Using these
Fourier coefficients we then defined the Fourier series, and under certain conditions
on the function f this Fourier series converged to the function f . Schematically this
can be represented as follows:

periodic function f (t) with period T and frequency ω0 = 2π/T

↓

Fourier coefficients cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt for n ∈ Z

↓

Fourier series f (t) =
∞∑

n=−∞
cneinω0t .

Often, however, we have to deal with non-periodic phenomena. In part 3 we now
set up a similar kind of Fourier analysis for these non-periodic functions. To a non-
periodic function we will assign for each ω ∈ R a number F(ω) ∈ C. Instead of a
sequence of numbers cn , we thus obtain a function F(ω) defined on R. The function
F(ω) is called the Fourier transform of the non-periodic function f (t). Next, the
Fourier series is replaced by the so-called Fourier integral: instead of a sum over
n ∈ Z we take the integral over ω ∈ R. As for the Fourier series, this Fourier
integral will represent the original function f again, under certain conditions on f .
The scheme for periodic function will in part 3 be replaced by the following scheme
for non-periodic functions:

non-periodic function f (t)

↓

Fourier transform F(ω) =
∫ ∞

−∞
f (t)e−iωt dt for ω ∈ R

↓

Fourier integral f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω.
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We will start chapter 6 by showing that the transition from the Fourier series to
the Fourier integral can be made quite plausible by taking the limit T → ∞ of the
period T in the theory of the Fourier series. Although this derivation is not mathe-
matically correct, it does result in the right formulas and in particular it will show
us precisely how the Fourier transform F(ω) should be defined. Following the for-
mal definition of F(ω), we first calculate a number of standard examples of Fourier
transforms. Next, we treat some fundamental properties of Fourier transforms.

In chapter 7 the fundamental theorem of the Fourier integral is proven: a function
f (t) can be recovered from its Fourier transform through the Fourier integral (com-
pare this with the fundamental theorem of Fourier series from chapter 4). We finish
the theory of the Fourier integral by deriving some important additional properties
from the fundamental theorem, such as Parseval’s identities for the Fourier integral.

A fundamental problem in the Fourier analysis of non-periodic functions is the
fact that for very elementary functions, such as the constant function 1, the Fourier
transform F(ω) does not exist (we will show this in chapter 6). In physics it turned
out that useful results could be obtained by a symbolic manipulation with the Fourier
transform of such functions. Eventually this led to new mathematical objects, called
‘distributions’. Distributions form an extension of the concept of a function, just as
the complex numbers form an extension of the real numbers. And just as the com-
plex numbers, distributions have become an indispensable tool in the applications of
Fourier analysis in, for example, systems theory and (partial) differential equations.
In chapter 8 distributions are introduced and some basic properties of distributions
are treated. The Fourier transform of distributions is examined in chapter 9.

Just as in part 2, the Fourier analysis of non-periodic functions and distributions
is applied to the theory of linear systems and (partial) differential equations in the
final chapter 10.
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CHAPTER 6

Fourier integrals: definition
and properties

I N T R O D U C T I O N

We start this chapter with an intuitive derivation of the main result for Fourier in-
tegrals from the fundamental theorem of Fourier series. A mathematical rigorous
treatment of the results obtained is postponed until chapter 7. In the present chapter
the Fourier integral will thus play a minor role. First we will concentrate ourselves
on the Fourier transform of a non-periodic function, which will be introduced in
section 6.2, motivated by our intuitive derivation. After discussing the existence of
the Fourier transform, a number of frequently used and often recurring examples are
treated in section 6.3. In section 6.4 we prove some basic properties of Fourier trans-
forms. Subsequently, the concept of a ‘rapidly decreasing function’ is discussed in
section 6.5; in fact this is a preparation for the distribution theory of chapters 8 and
9. The chapter closes with the treatment of convolution and the convolution theorem
for non-periodic functions.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the definition of the Fourier transform
- can calculate elementary Fourier transforms
- know and can apply the properties of the Fourier transform
- know the concept of rapidly decreasing function
- know the definition of convolution and know and can apply the convolution

theorem.

6.1 An intuitive derivation

In the introduction we already mentioned that in order to make the basic formu-
las of the Fourier analysis of non-periodic function plausible, we use the theory of
Fourier series. We do emphasize that the derivation in this section is mathemati-
cally not correct. It does show which results are to be expected later on (in chapter
7). It moreover motivates the definition of the Fourier transform of a non-periodic
function.

So let us start with a non-periodic function f : R → C which is piecewise
smooth (see chapter 2 for ‘piecewise smooth’). For an arbitrary T > 0 we now
consider the function fT (t) on the interval (−T/2, T/2) obtained from f by taking
f equal to 0 outside this interval. The function values at the points −T/2 and
T/2 are of no importance to us and are left undetermined. Next we extend fT (t)
periodically to R. See figure 6.1. In this way we obtain a function with period T
to which we can apply the theory of Fourier series. Since this periodic function
coincides with the original function f on (−T/2, T/2), one thus has, according to

138
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T/20 T 3T/2 2T  5T/2–T/2–T–3T/2

T/20–T/2 t

T/20–T/2 t

t

f(t)

fT (t)

FIGURE 6.1
How a periodic function arises from a non-periodic function.

the fundamental theorem of Fourier series (see theorem 4.3),

f (t) =
∞∑

n=−∞
cnein�ωt for t ∈ (−T/2, T/2) and with �ω = 2π

T
,

where cn is the nth Fourier coefficient of f . Instead of ω0, used in part 2, we write
�ω here. From the definition of cn it then follows that

f (t) =
∞∑

n=−∞

(
1

T

∫ T/2

−T/2
f (τ )e−in�ωτ dτ

)
ein�ωt

and hence

f (t) =
∞∑

n=−∞
1

T

∫ T/2

−T/2
f (τ )ein�ω(t−τ)dτ, (6.1)

where always t ∈ (−T/2, T/2). Of this last expression we would like to determine
the limit as T → ∞, since in that case the identity will hold for all t ∈ R, giving us
a result for the original non-periodic function f . Let us write

G(ω) =
∫ ∞

−∞
f (τ )eiω(t−τ)dτ, (6.2)

then

1

2π

∞∑
n=−∞

G(n�ω) · �ω = �ω

2π

∞∑
n=−∞

∫ ∞

−∞
f (τ )ein�ω(t−τ)dτ (6.3)

seems to be a good approximation for the right-hand side of (6.1). If we now let
T → ∞, so �ω → 0, then the left-hand side of (6.3) looks like a Riemann sum,
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∆ω0 ω–∆ω 2∆ω 7∆ω–5

G(ω)

∆ω

FIGURE 6.2
An approximation of 1

2π

∫ ∞
−∞ G(ω) dω by 1

2π

∑∞
n=−∞ G(n�ω) · �ω.

which will be a good approximation for

1

2π

∫ ∞

−∞
G(ω) dω. (6.4)

This is illustrated in figure 6.2. Formulas (6.2) and (6.4) combined suggest that for
T → ∞ the identity (6.1) will transform into

f (t) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (τ )e−iωτ dτ

)
eiωt dω. (6.5)

Formula (6.5) can be interpreted as follows: when a function f (τ ) is multiplied by
a factor e−iωτ and is then integrated over R, and when subsequently the resulting
function of ω is multiplied by eiωt and then again integrated over R, then, up to a
factor 2π , the original function f will result.

This important result will return in chapter 7 as the so-called fundamental the-
orem of the Fourier integral and it will also be proven there. This is because the
intuitive derivation given here is incorrect in two ways. First, (6.3) is only an approx-
imation of the right-hand side of (6.1) since G(n�ω) is an integral over R instead
of over (−T/2, T/2), as was the case in the right-hand side of (6.1). Furthermore,
the right-hand side of (6.3) may certainly not be considered as an approximating
Riemann sum of the integral in (6.4). This is because if we consider the integral in
(6.4) as an improper Riemann integral, then we recall that by definition this equals

lim
a→−∞,b→∞

1

2π

∫ b

a
G(ω) dω.

Hence, the integral over R is not at all defined through Riemann sums, but using the
limit above. There is thus no real justification why (6.3) should transform into (6.4)
for T → ∞. In chapter 7 we will see, however, that the important result (6.5) is
indeed correct for a large class of functions.

6.2 The Fourier transform

Motivated by the results from the previous section we now define, for a function
f : R → C, a new function F(ω) (for ω ∈ R) by the inner integral in (6.5).
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For a given function f : R → C the function F(ω) (for ω ∈ R) is defined byDEFINITION 6.1
Fourier transform or
spectrum F(ω) =

∫ ∞

−∞
f (t)e−iωt dt, (6.6)

provided the integral exists as an improper Riemann integral. The function F(ω) is
called the Fourier transform or spectrum of f (t).

Sometimes F(ω) is called the spectral density of f (t). The mapping assigning
the new function F(ω) to f (t) is called the Fourier transform. We will sometimesFourier transform
write (F f )(ω) instead of F(ω), while the notation (F f (t))(ω) will also be useful,
though not very elegant. In the mathematical literature F(ω) is usually denoted
by f̂ (ω). Often, f (t) will represent a function depending on time, while F(ω)

usually depends on frequency. Hence, it is said that f (t) is defined in the timeTime domain
domain and that F(ω) is defined in the frequency domain. Since e−iωt is a complex-Frequency domain
valued function, F(ω) will in general be a complex-valued function as well, so
F : R → C. Often F(ω) is then split up into a real part and an imaginary part. One
also regularly studies | F(ω) |, the so-called amplitude spectrum (sometimes calledAmplitude spectrum
spectral amplitude density) of f , and arg F(ω), the so-called phase spectrum of f .Phase spectrum
Finally, in signal theory one calls | F(ω) |2 the energy spectrum or spectral energyEnergy spectrum

Spectral energy density
density of f (t).

The definition of F(ω) closely resembles the one given for the Fourier coeffi-
cients cn . Here, however, we take ω ∈ R instead of n ∈ Z and in addition we
integrate the function f (t) over R instead of over a bounded interval (of length one
period). The fact that we integrate over R causes lots of problems. For the function
f (t) = 1 on (−T/2, T/2) for example, one can determine the Fourier coefficients,
while for the function f (t) = 1 on R the Fourier transform F(ω) does not exist.
The function introduced in our next example, re-appearing quite regularly, also has
no Fourier transform.

Let ε(t) be the function defined byEXAMPLE 6.1
Unit step function

Heaviside function ε(t) =
{

1 for t ≥ 0,
0 otherwise.

See figure 6.3. This function is called the unit step function or Heaviside function.
The Fourier transform of ε(t) does not exist, because∫ ∞

−∞
ε(t)e−iωt dt =

∫ ∞

0
e−iωt dt = lim

A→∞

∫ A

0
e−iωt dt.

Since (e−iωt )′ = −iωe−iωt (see example 2.11), it follows that∫ ∞

−∞
ε(t)e−iωt dt = 1

−iω
lim

A→∞
[
e−iωt

]A

0
= i

ω

(
lim

A→∞
e−iωA − 1

)
.

10 t

1
�(t)

FIGURE 6.3
The unit step function ε(t).
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However, the limit limA→∞ e−iωA does not exist, since limA→∞ sin Aω (and also
limA→∞ cos Aω) does not exist. �

Next we introduce an important class of functions for which F(ω) will certainly
exist.

A function f : R → C is called absolutely integrable (on R) if
∫ ∞
−∞ | f (t) | dtDEFINITION 6.2

Absolutely integrable exists as an improper Riemann integral.

When f (t) is absolutely integrable and F(ω) is as in (6.6), then

| F(ω) | =
∣∣∣∣
∫ ∞

−∞
f (t)e−iωt dt

∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣ f (t)e−iωt
∣∣∣ dt

=
∫ ∞

−∞
| f (t) |

∣∣∣ e−iωt
∣∣∣ dt,

and since
∣∣∣ e−iωt

∣∣∣ = 1 it then follows from definition 6.2 that

| F(ω) | ≤
∫ ∞

−∞
| f (t) | dt < ∞. (6.7)

This shows that F(ω) exists when f (t) is absolutely integrable. Not all functions
that we will need are absolutely integrable. This explains the somewhat weaker
formulation of definition 6.1.

On the basis of the intuitive result (6.5) we expect that for each t ∈ R the function
value f (t) can be recovered from the spectrum F(ω) using the formula

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω. (6.8)

The right-hand side of (6.8) is called the Fourier integral of f . Formula (6.8) does
however pose some problems. Even when f (t) is absolutely integrable, F(ω) need
not be absolutely integrable. In section 6.3.1 we will see an example. On the other
hand we can still make sense of (6.8), even if F(ω) has no improper Riemann in-
tegral! And when the integral in (6.8) does exist (in some sense or other), then its
value is not necessarily equal to f (t). We will return to all of these problems in
chapter 7. In the meantime we will agree to call the right-hand side of (6.8) the
Fourier integral of f (t), provided that it exists. In chapter 7 it will be shown that,Fourier integral
just as for Fourier series, the Fourier integral does indeed exist for a large class of
functions and that (6.8) is valid.

If we now look at the Fourier series of a periodic function again, then we see
that only integer multiples n�ω of the frequency �ω = 2π/T occur (we write �ω

here, instead of ω0 as used in part 2). In this case the spectrum is a function on Z,
which is a so-called discrete set. Therefore, it is said that a periodic function has a
discrete or line spectrum (see also section 3.3). However, in the Fourier integral allDiscrete or line spectrum
frequencies ω occur, since we integrate over R. Hence, a non-periodic function leads
to a continuous spectrum. Note, though, that this does not mean that the functionContinuous spectrum
F(ω) is a continuous function, but only that F(ω) depends on a continuous variable
ω.

The transition from a discrete to a continuous spectrum can be illustrated quite
nicely with the same sort of process as in section 6.1. Let f : R → C be piecewise
smooth and zero outside an interval (−T/2, T/2) (using the terminology of section
6.1 we thus have fT (t) = f (t)). Then the corresponding F(ω) certainly exists,
since we only integrate over the bounded interval (−T/2, T/2). If we now extend
f periodically, precisely as we did in section 6.1, then we can determine the Fourier
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coefficients cn (n ∈ Z) of this periodic extension. Since the periodic extension coin-
cides with f on (−T/2, T/2), and f itself is zero outside (−T/2, T/2), it follows
that

cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt = 1

T

∫ ∞

−∞
f (t)e−inω0t dt = 1

T
F(nω0), (6.9)

where ω0 = 2π/T . We thus have

cn

ω0
= 1

2π
F(nω0).

Hence, if we ‘normalize’ the Fourier coefficients with the factor 1/ω0, we obtain for
ever increasing values of T , so for ever decreasing values of ω0, an approximation of
the function F(ω)/2π that keeps improving. This is because we know the function
values F(nω0)/2π at points that get closer and closer to each other. In figure 6.4 the
functions | F(ω) | /2π and | F(nω0) | /2π = cn/ω0 are represented for decreasing
values of ω0. In the limit T → ∞, or ω0 → 0, we thus indeed expect that the
discrete spectrum will change into the continuous spectrum F(ω)/2π .

EXERCISE

Show that the function f (t) = 1 (for all t ∈ R) has no Fourier transform.6.1

0 ω1 2 5

ω 0 = 1/4

0 ω1 2 5

ω 0 → 0

0 ω1 2 5

ω 0 = 1

0 ω1 2 5

ω 0 = 1/2

|F(1)|
2π

|F(1/2)|
2π

|F(1/4)|
2π

|F(ω)|
2π

FIGURE 6.4
The normalized line spectrum approximates the continuous spectrum.
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6.3 Some standard Fourier transforms

In this section the Fourier transforms of a number of frequently used functions are
determined. The most important results of this section are included in table 3 at the
back of the book.

6.3.1 The block function

As a first example we consider for a fixed a > 0 the block function or rectangularBlock function

Rectangular pulse function pulse function pa(t) of height 1 and duration a defined by

pa(t) =
{

1 for | t | ≤ a/2,
0 otherwise.

(6.10)

See figure 6.5. Note that pa(t) is certainly absolutely integrable. For ω �= 0 one
has

(F pa)(ω) =
∫ ∞

−∞
pa(t)e−iωt dt =

∫ a/2

−a/2
e−iωt dt =

[
−e−iωt

iω

]a/2

−a/2

= eiaω/2 − e−iaω/2

iω
= 2 sin(aω/2)

ω
,

while for ω = 0 one has

(F pa)(0) =
∫ ∞

−∞
pa(t)dt =

∫ a/2

−a/2
dt = a.

From the well-known limit limx→0 sin x/x = 1 we obtain limω→0(F pa)(ω) =
limω→0 2 sin(aω/2)/ω = a. Although pa(t) is itself not continuous, we see that

(F pa)(ω) = 2 sin(aω/2)

ω
(6.11)

is continuous on R. Also, F pa is a real-valued function here. And finally we
have that limω→±∞(F pa)(ω) = 0. All these remarks are precursors of general
results to be treated in the chapters to come. In figure 6.5 we have sketched pa
and F pa . Finally we state without proof that the function g(x) = sin x/x (and so
F(ω) as well) is not absolutely integrable (see, for example, Fourier analysis by

ω0

a

t0

1

2π
a

–2π
a

4π
a

–4π
a

pa(t)
(F  pa)(ω)

a b

–
2

a
2

a

FIGURE 6.5
The block function pa(t) (a) and its spectrum (b).
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T.W. Körner, Example 46.4). Hence, this is an example of an absolutely integrable
function with a spectrum which is not absolutely integrable.

6.3.2 The triangle function

For a fixed a > 0 the triangle function qa(t) of height 1 and duration 2a is definedTriangle function
by

qa(t) =
{

1 − | t |
a

for | t | ≤ a,

0 otherwise.
(6.12)

See figure 6.6a. Note that qa(t) is absolutely integrable. We now have

(Fqa)(ω) =
∫ ∞

−∞
qa(t)e−iωt dt =

∫ ∞

0
qa(t)e−iωt dt +

∫ 0

−∞
qa(t)e−iωt dt,

and since qa(t) = qa(−t), we substitute u = −t in the second integral and subse-
quently replace u by t again, which results in

(Fqa)(ω) =
∫ ∞

0
qa(t)e−iωt dt +

∫ ∞

0
qa(u)eiωudu

=
∫ ∞

0
qa(t)(e−iωt + eiωt )dt = 2

∫ ∞

0
qa(t) cos ωt dt.

From the definition of qa in (6.12) it then follows that

(Fqa)(ω) = 2
∫ a

0

(
1 − t

a

)
cos ωt dt.

For ω = 0 we have cos ωt = 1 and so

(Fqa)(0) = 2

[
t − 1

2a
t2

]a

0
= a.

For ω �= 0 it follows from integration by parts that

(Fqa)(ω) = 2

ω

∫ a

0

(
1 − t

a

)
(sin ωt)′ dt

= 2

ω

[(
1 − t

a

)
sin ωt

]a

0
+ 2

aω

∫ a

0
sin ωt dt,

since (1 − t/a)′ = −1/a. The first term in this sum is zero and so

(Fqa)(ω) = 2

aω

∫ a

0
sin ωt dt = − 2

aω2
[cos ωt]a

0 = 2

aω2
(1 − cos aω).

But 1 − cos aω = 2 sin2(aω/2), so

(Fqa)(ω) = 4 sin2(aω/2)

aω2
. (6.13)

As in the previous example, we have limω→0(Fqa)(ω) = a, which means that
Fqa is a continuous function on R. Again Fqa is a real-valued function here and
limω→±∞(Fqa)(ω) = 0. In figure 6.6 qa and Fqa have been drawn.
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ω0

a

t–a 0

1

2π
a

–2π
a

4π
a

–4π
a

a

qa(t)

(F qa)(ω)

a b

FIGURE 6.6
The triangle function qa(t) (a) and its spectrum (b).

6.3.3 The function e−a| t |

We will now determine the spectrum F(ω) of the function f (t) = e−a| t |, where
a > 0 is fixed. Since for fixed x, y ∈ R one has (e(x+iy)t )′ = (x + iy)e(x+iy)t (see
example 2.11), it follows that

F(ω) =
∫ ∞

0
e−at e−iωt dt +

∫ 0

−∞
eat e−iωt dt

= −
[

e−(a+iω)t

a + iω

]∞

0

+
[

e(a−iω)t

a − iω

]0

−∞
.

Now limR→∞ e−(a+iω)R = limR→∞ e−a Re−iωR = 0, since |e−iωR | = 1 and
limR→∞ e−a R = 0 for a > 0. Similarly one has limR→−∞ e(a−iω)R = 0. Hence

F(ω) = 1

a + iω
+ 1

a − iω
= 2a

a2 + ω2
. (6.14)

Again F(ω) is a continuous real-valued function with limω→±∞ F(ω) = 0.
Figure 6.7 shows f (t) and F(ω).

00

1

1

(F e–a|t|)(ω)2/a

1

e–a|t|

t

a b

ω

FIGURE 6.7
The function e−a| t | (a) and its spectrum (b).
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Closely related to this example is the function g(t) defined by

g(t) =
{

e−at for t ≥ 0,
0 otherwise,

where a ∈ C with Re a > 0. A convenient way of expressing g(t) uses the unit step
function from example 6.1, since g(t) = ε(t)e−at . As before one quickly shows for
g(t) that

G(ω) = 1

a + iω
= a − iω

a2 + ω2
.

The function G(ω) is now complex-valued. For a > 0 the function G(ω) has real
part a/(a2+ω2) = F(ω)/2 and imaginary part ω/(a2+ω2). Note that ω/(a2+ω2)

is not improper Riemann integrable.

6.3.4 The Gauss function

To conclude, we determine the spectrum F(ω) of the function f (t) = e−at2
for

fixed a > 0. The function f (t) is called the Gauss function. In order to determineGauss function
F(ω) directly from the definition, one would need a part of complex function theory
which falls outside the scope of this book. There is, however, a clever trick to find
F(ω) in an indirect manner. To do so, we will assume the following fact:∫ ∞

−∞
e−x2

dx = √
π (6.15)

(for a proof see for example Fourier analysis by T.W. Körner, Lemma 48.10). As
a matter of fact, (6.15) also shows immediately that the function f (t) is absolutely
integrable. Since f (t) = f (−t) it follows as in section 6.3.2 that

F(ω) =
∫ ∞

−∞
e−at2

e−iωt dt = 2
∫ ∞

0
e−at2

cos ωt dt.

We will now determine the derivative of F(ω). In doing so, we assume that the
differentiation may be carried out within the integral. It would lead us too far to even
formulate the theorem that would justify this step. The result of the differentiation
with respect to ω within the integral is as follows:

F ′(ω) = −2
∫ ∞

0
te−at2

sin ωt dt.

Integrating by parts we obtain

F ′(ω) = 1

a

∫ ∞

0

(
e−at2

)′
sin ωt dt

= 1

a

[
e−at2

sin ωt
]∞

0
− ω

a

∫ ∞

0
e−at2

cos ωt dt.

The first term in this difference is equal to 0, while the second term equals −ωF(ω)/

2a. Hence we obtain for F(ω) the (differential) equation

F ′(ω) = (−ω/2a)F(ω).

If we now divide left-hand and right-hand sides by F(ω), then

F ′(ω)

F(ω)
= − ω

2a
, that is,

d

dω
ln | F(ω) | = − ω

2a
.
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But also d
dω

(−ω2/4a) = −ω/2a and thus apparently ln | F(ω) | = −ω2/4a + C
for an arbitrary constant C . It then follows that

| F(ω) | = eC e−ω2/4a .

This in fact states that F(ω) = De−ω2/4a , where D is an arbitrary constant (note
that eC is always positive). If we substitute ω = 0, then we see that D = F(0).
Now change to the variable x = t

√
a in (6.15), then it follows that

D = F(0) =
∫ ∞

−∞
e−at2

dt = 1√
a

∫ ∞

−∞
e−(t

√
a)2√

a dt =
√

π

a
.

The spectrum of the Gauss function is thus given by

F(ω) =
√

π

a
e−ω2/4a . (6.16)

This is again a continuous real-valued function with limω→±∞ F(ω) = 0. It is
quite remarkable that apparently the spectrum of e−at2

is of the same form as
the original function. For a = 1/2 one has in particular that (Fe−t2/2)(ω) =√

2πe−ω2/2, so up to the factor
√

2π exactly the same function. In figure 6.8 the
Gauss function and its spectrum are drawn.

t0

1

1

(F e–at2)(ω)

a

ω0 1

b

e–at 2

π/a√

FIGURE 6.8
The Gauss function (a) and its spectrum (b).

For the moment this concludes our list of examples. The most important results
have been included in table 3. In the next section some properties of the Fourier
transform are established, enabling us, among other things, to calculate more Fourier
transforms.

EXERCISES

Consider for fixed a ∈ C with Re a > 0 the function g(t) defined by g(t) =6.2
ε(t)e−at (also see section 6.3.3).
a Show that for the spectrum G(ω) one has: G(ω) = (a − iω)/(a2 + ω2).
b Take a > 0. Show that the Fourier integral for the imaginary part of G(ω) (and
hence also for G(ω) itself) does not exist as an improper integral.
c Verify that for the limit a → 0 the function g(t) transforms into ε(t), while
G(ω) for ω �= 0 transforms into −i/ω. This seems to suggest that ε(t) has the func-
tion −i/ω as its spectrum. This, however, contradicts the result from example 6.1.
We will return to this in chapters 8 and 9 on distribution theory.
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Determine the Fourier transform of the function6.3

f (t) =
{

cos t for −π/2 ≤ t ≤ π/2,
0 otherwise.

Determine the spectrum G(ω) and verify that G(ω) is continuous when g(t) is given6.4
by

g(t) =
{ | t | for −1 ≤ t ≤ 1,

0 otherwise.

a Let a > 0 be fixed. Determine the spectrum F(ω) of the function6.5

f (t) =



1 for 0 ≤ t ≤ a/2,
−1 for −a/2 ≤ t < 0,
0 otherwise.

b Show that F(ω) is continuous at ω = 0.

6.4 Properties of the Fourier transform

A large number of properties that we have established for Fourier series will return
in this section. Often the proofs are slightly more difficult, since in Fourier analysis
on R we always have to deal with improper (Riemann) integrals. The theory of im-
proper integrals has quite a few difficult problems and we will not always formulate
the precise theorems that will be needed. In section 6.3.4, for example, an improper
integral and differentiation were ‘interchanged’, without formulating a theorem or
giving conditions justifying this. A more frequently occurring problem is reversing
the order of integration in a repeated integral. For example, even when∫ ∞

b

(∫ ∞

a
f (x, y) dx

)
dy and

∫ ∞

a

(∫ ∞

b
f (x, y) dy

)
dx

both exist, then still they do not necessarily have the same value (see exercise 6.6).
Theorems on interchanging the order of integration will not be presented here. The
interested reader can find such theorems in, for example, Fourier analysis by T.W.
Körner, Chapters 47 & 48. When we interchange the order of integration in the
proof of a theorem, we will always give sufficient conditions in the theorem such
that the interchanging is allowed.

After these preliminary remarks we now start examining the properties of the
Fourier transform.

6.4.1 Linearity

Linear combinations of functions are carried over by the Fourier transform into the
same linear combination of the Fourier transforms of these functions. We formulate
this linearity property in a precise manner in the following theorem.

Let f (t) and g(t) be two functions with Fourier transforms F(ω) and G(ω) respec-THEOREM 6.1
Linearity of the Fourier
transform

tively. Then aF(ω) + bG(ω) is the Fourier transform of a f (t) + bg(t).

Proof
This theorem follows immediately from the linearity of integration:∫

(a f1(t) + b f2(t)) dt = a
∫

f1(t) dt + b
∫

f2(t) dt



150 6 Fourier integrals: definition and properties

for arbitrary functions f1 and f2 and a, b ∈ C. Now take f1(t) = f (t)e−iωt and
f2(t) = g(t)e−iωt . �

Because of this property, the Fourier transform is called a linear transformation.

6.4.2 Conjugation

For the complex conjugate of a function one has the following theorem.

Let f (t) be a function with spectrum F(ω). Then the spectrum of the function f (t)THEOREM 6.2
Spectrum of the complex
conjugate

is given by F(−ω).

Proof
This result follows immediately from the properties of definite integrals of complex-
valued functions (see section 2.3):

(F f (t))(ω) =
∫ ∞

−∞
f (t)e−iωt dt =

∫ ∞

−∞
f (t)eiωt dt = F(−ω).

�

When in particular the function f (t) is real-valued, so f (t) = f (t), then theorem
6.2 implies that F(−ω) = F(ω), or F(−ω) = F(ω).

6.4.3 Shift in the time domain

For a given function f (t) and a fixed a ∈ R, the function f (t − a) is called the
function shifted over a. There is simple relationship between the spectra of these
two functions.

Let f (t) be a function with spectrum F(ω). Then one has for any fixed a ∈ R thatTHEOREM 6.3
Shift in the time domain (F f (t − a))(ω) = e−iωa F(ω).

Proof
By changing to the new variable τ = t − a one obtains

(F f (t − a))(ω) =
∫ ∞

−∞
f (t − a)e−iωt dt =

∫ ∞

−∞
f (τ )e−iω(τ+a)dτ

= e−iωa F(ω).
�

So when a function is shifted over a in the time domain, its spectrum is multiplied
by the factor e−iωa . Note that this only changes the phase spectrum and not the
amplitude spectrum. The factor e−iωa is called a phase factor.Phase factor

6.4.4 Shift in the frequency domain

For a shift in the frequency domain there is a result similar to that of section 6.4.3.

Let f (t) be a function with spectrum F(ω). Then one has for a ∈ R thatTHEOREM 6.4
Shift in the frequency domain (Feiat f (t))(ω) = F(ω − a).

Proof

F(ω − a) =
∫ ∞

−∞
f (t)e−i(ω−a)t dt =

∫ ∞

−∞
eiat f (t)e−iωt dt = (Feiat f (t))(ω).

�
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As an application of theorem 6.4 we mention the so-called modulation theorem:Modulation theorem
when F(ω) is the spectrum of f (t), then

(F f (t) cos at)(ω) = F(ω − a)

2
+ F(ω + a)

2
. (6.17)

Since cos at = eiat/2 + e−iat/2, (6.17) follows from theorem 6.4 combined
with the linearity from theorem 6.1: (F f (t) cos at)(ω) = ((F f (t)eiat )(ω) +
(F f (t)e−iat )(ω))/2 = F(ω − a)/2 + F(ω + a)/2. If f (t) is a real-valued sig-
nal, then f (t) cos at describes a so-called amplitude modulated signal (this relates
to AM on a radio: amplitude modulation).

For f (t) = pa(t) it follows from the results of section 6.3.1 thatEXAMPLE

(F pa(t) cos bt)(ω) = sin(a(ω − b)/2)

ω − b
+ sin(a(ω + b)/2)

ω + b
.

�

6.4.5 Scaling

We now describe the effect of scaling, or dilation, in the time domain.

Let f (t) be a function with spectrum F(ω). Then one has for c ∈ R with c �= 0 thatTHEOREM 6.5
Scaling in the time domain (F f (ct))(ω) = | c |−1 F(c−1ω).

Proof
We assume that c > 0 (give the proof yourself for the case c < 0). By substituting
τ = ct it follows that

(F f (ct))(ω) =
∫ ∞

−∞
f (ct)e−iωt dt = c−1

∫ ∞

−∞
f (τ )e−iωτ/c dτ

= c−1 F(c−1ω).
�

Consider the block function pa(t) defined by (6.10), whose spectrum is given byEXAMPLE
(6.11). According to the scaling property one then has for c > 0

(F pa(ct))(ω) = 1

c

2 sin(aω/2c)

ω/c
= 2 sin(aω/2c)

ω
.

This also follows at once from the fact that pa(ct) equals pa/c(t). �

A special case of scaling is the so-called time reversal, that is, replacing t by −tTime reversal
in the function f (t). Applying theorem 6.5 with c = −1 we obtain that

(F f (−t))(ω) = F(−ω). (6.18)

6.4.6 Even and odd functions

A function f : R → C is called even when f (−t) = f (t) for all t ∈ R and odd
when f (−t) = − f (t) for all t ∈ R (also see section 3.4). The function cos t and the
functions pa and qa from sections 6.3.1 and 6.3.2 are examples of even functions,
while the function sin t is an odd function. If we replace the function qa(t) in the
first part of section 6.3.2 by an arbitrary even function f (t), then we obtain

F(ω) = 2
∫ ∞

0
f (t) cos ωt dt. (6.19)



152 6 Fourier integrals: definition and properties

One now calls the integral in the right-hand side (so without the factor 2) the FourierFourier cosine transform
cosine transform of the even function f (t); we denote it by Fc(ω), so F(ω) =
2Fc(ω). Since cos(−ωt) = cos ωt , the function F(ω) is in this case an even
function as well. This also follows from (6.18) since F(−ω) = (F f (−t))(ω) =
(F f (t))(ω) = F(ω). If, in addition, we know that f (t) is real-valued, then it fol-
lows from (6.19) that F(ω) is also real-valued. We already saw this in sections 6.3.1
and 6.3.2 for the functions pa and qa . Hence, for an even and real-valued function
f (t) we obtain that F(ω) is also even and real-valued.

When a function f (t) is only defined for t > 0, then one can calculate the Fourier
cosine transform of this function using the integral in (6.19). This is then in fact the
ordinary Fourier transform (up to a factor 2) of the function that arises by extending
f to an even function on R; for t < 0 one thus defines f by f (t) = f (−t). The
value at t = 0 is usually taken to be 0, but this is hardly relevant.

There are similar results for odd functions. If g : R → C is odd and if we use
the fact that sin ωt = (eiωt − e−iωt )/2i , then we obtain, just as in the case of even
functions,

G(ω) = −2i
∫ ∞

0
g(t) sin ωt dt. (6.20)

One then calls the integral in the right-hand side (so without the factor −2i) the
Fourier sine transform of the odd function g(t); we denote it by Gs(ω), so G(ω) =Fourier sine transform
−2iGs(ω). Now G(ω) is an odd function. Again this also follows from (6.18). If,
in addition, we know that g(t) is real-valued, then it follows from (6.20) that G(ω)

can only assume purely imaginary values.
If a function g(t) is only defined for t > 0, then one can calculate its Fourier sine

transform using the integral in (6.20). This is then the ordinary Fourier transform
(up to a factor −2i) of the function that arises by extending g to an odd function on
R; for t < 0 one defines g by g(t) = −g(−t) and g(0) = 0.

Consider for t > 0 the function f (t) = e−at , where a > 0 is fixed. Extend thisEXAMPLE
function to an even function on R. Then the Fourier transform of f equals the
function 2a/(a2 + ω2). This is because the even extension of f is the function
e−a| t | and the Fourier transform of this function has been determined in section
6.3.3. Because of the factor 2, the Fourier cosine transform is given by a/(a2 +ω2).
In exercise 6.14 you will be asked to determine the Fourier transform of the odd
extension of f (for the case a = 1). �

6.4.7 Selfduality

The selfduality derived in this section is a preparation for the distribution theory
in chapters 8 and 9. First we observe the following. Until now we have always
regarded f (t) as a function of the time t and F(ω) as a function of the frequency
ω. In fact f and F are just two functions from R to C for which the name of the
variable is irrelevant.

Let f (t) and g(t) be piecewise smooth and absolutely integrable functions withTHEOREM 6.6
Selfduality spectra F(ω) and G(ω) respectively. Then

∫ ∞

−∞
f (x)G(x) dx =

∫ ∞

−∞
F(x)g(x) dx .
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Proof
From the definition of spectrum it follows that∫ ∞

−∞
f (x)G(x) dx =

∫ ∞

−∞
f (x)

(∫ ∞

−∞
g(y)e−i xy dy

)
dx

=
∫ ∞

−∞

∫ ∞

−∞
f (x)g(y)e−i xy dydx .

We mention without proof that under the conditions of theorem 6.6 one may inter-
change the order of integration. We then indeed obtain∫ ∞

−∞
f (x)G(x) dx =

∫ ∞

−∞
g(y)

(∫ ∞

−∞
f (x)e−i xy dx

)
dy =

∫ ∞

−∞
g(y)F(y) dy.

�

6.4.8 Differentiation in the time domain

Important for the application of Fourier analysis to, for example, differential equa-
tions is the relation between differentiation and Fourier transform. In this section we
will see how the spectrum of a derivative f ′ can be obtained from the spectrum of
f . In particular it will be assumed that f (t) is continuously differentiable, so f ′(t)
exists on R and is continuous.

Let f (t) be a continuously differentiable function with spectrum F(ω) and assumeTHEOREM 6.7
Differentiation in time
domain

that limt→±∞ f (t) = 0. Then the spectrum of f ′(t) exists and (F f ′)(ω) =
iωF(ω).

Proof
Since f ′ is continuous it follows from integration by parts that

lim
A→−∞,B→∞

∫ B

A
f ′(t)e−iωt dt

= lim
A→−∞,B→∞

[
f (t)e−iωt

]B

A
+ lim

A→−∞,B→∞
iω

∫ B

A
f (t)e−iωt dt

= lim
B→∞

f (B)e−iωB − lim
A→−∞

f (A)e−iωA + iωF(ω),

where in the last step we used that F(ω) exists. Since limt→±∞ f (t) = 0, it follows
that limB→∞ f (B)e−iωB = 0 and limA→−∞ f (A)e−iωA = 0. Hence, (F f ′)(ω)

exists and we also see immediately that (F f ′)(ω) = iωF(ω). �

Of course, theorem 6.7 can be applied repeatedly, provided that the conditions are
satisfied in each case. If, for example, f is twice continuously differentiable (so f ′′
is now a continuous function) and both limt→±∞ f (t) = 0 and limt→±∞ f ′(t) =
0, then theorem 6.7 can be applied twice and we obtain that (F f ′′)(ω) =
(iω)2 F(ω) = −ω2 F(ω). In general one has: if f is m times continuously dif-
ferentiable and limt→±∞ f (k)(t) = 0 for each k = 0, 1, 2, . . . , m − 1 (where f (k)

denotes the kth derivative of f and f (0) = f ), then

(F f (m))(ω) = (iω)m F(ω). (6.21)

We will use the Gauss function to illustrate theorem 6.7; it is the only continuously
differentiable function among the examples in section 6.3.

The derivative of the function f (t) = e−at2
is given by the continuous functionEXAMPLE 6.2

f ′(t) = −2ate−at2
. Moreover, limt→±∞ e−at2 = 0. Theorem 6.7 can thus be
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applied and from (6.16) we obtain

(F(−2ate−at2
))(ω) = iω

√
π

a
e−ω2/4a .

�

6.4.9 Differentiation in the frequency domain

In section 6.4.8 we have seen that differentiation in the time domain corresponds to
multiplication in the frequency domain. The converse turns out to be true as well.

Let f (t) be an absolutely integrable function with spectrum F(ω). If the functionTHEOREM 6.8
Differentiation in frequency
domain

t f (t) is absolutely integrable, then the spectrum F(ω) is differentiable and F ′(ω) =
−(F i t f (t))(ω).

Proof
In order to show that F(ω) is differentiable, we determine

lim
h→0

F(ω + h) − F(ω)

h
= lim

h→0

∫ ∞

−∞
f (t)

e−i(ω+h)t − e−iωt

h
dt

= lim
h→0

∫ ∞

−∞
f (t)e−iωt e−iht − 1

h
dt.

Again we mention without proof that the limit and the integral may be interchanged.
Furthermore, one has

lim
h→0

e−iht − 1

h
= lim

h→0

(
cos ht − 1

h
− i

sin ht

h

)
= −i t

(apply for example De l’Hôpital’s rule) and so

lim
h→0

F(ω + h) − F(ω)

h
=

∫ ∞

−∞
(−i t f (t))e−iωt dt.

According to our assumption, the function t f (t) (and so −i t f (t) as well) is abso-
lutely integrable, which implies that the limit indeed exists. This shows that F(ω)

is differentiable and we also immediately obtain that F ′(ω) = −(F i t f (t))(ω). �

Again, this rule can be applied repeatedly, assuming that in each case the condi-
tions are met. When, for example, f (t), t f (t) and t2 f (t) are absolutely integrable,
then F(ω) is twice differentiable and F ′′(ω) = (F(−i t)2 f (t))(ω). In general one
has: if tk f (t) is absolutely integrable for k = 0, 1, 2, . . . , m, then F(ω) is m times
differentiable and

F(m)(ω) = (F(−i t)m f (t))(ω). (6.22)

The function tpa(t) satisfies the conditions of theorem 6.8 and henceEXAMPLE 6.3

(F tpa(t))(ω) = −1

i
F ′(ω) = i

(
2 sin(aω/2)

ω

)′

= i
a cos(aω/2)

ω
− i

2 sin(aω/2)

ω2
.

�
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6.4.10 Integration

Finally we will use the differentiation rule in the time domain to derive a rule for
integration in the time domain.

Let f (t) be a continuous and absolutely integrable function with spectrum F(ω).THEOREM 6.9
Integration in time domain Assume that limt→∞

∫ t
−∞ f (τ ) dτ = 0. Then one has for ω �= 0 that(

F
∫ t

−∞
f (τ ) dτ

)
(ω) = F(ω)

iω
.

Proof
Put g(t) = ∫ t

−∞ f (τ ) dτ . Since f is continuous, it follows that g is a continuously
differentiable function. Moreover, g′(t) = f (t) (fundamental theorem of calcu-
lus). Since, according to our assumptions, limt→±∞ g(t) = 0, theorem 6.7 can
now be applied to the function g. One then obtains that (F f )(ω) = (Fg′)(ω) =
iω(Fg)(ω) and so the result follows by dividing by iω for ω �= 0. �

Note that limt→∞ g(t) = ∫ ∞
−∞ f (τ ) dτ = 0. But

∫ ∞
−∞ f (τ ) dτ is precisely

F(0), and so the conditions of theorem 6.9 apparently imply that F(0) = 0.

6.4.11 Continuity

We want to mention one final result which is somewhat separate from the rest of
section 6.4. It is in agreement with a fact that can easily be observed: all spectra
from section 6.3 are continuous functions on R.

Let f (t) be an absolutely integrable function. Then the spectrum F(ω) is a contin-THEOREM 6.10
Continuity of spectra uous functions on R.

Since theorem 6.10 will not be used in the future, we will not give a proof (see
for example Fourier analysis by T.W. Körner, Lemma 46.3). For specific functions,
like the functions from section 6.3, the theorem can usually be verified quite easily.

The function sin t/t is not absolutely integrable (this was noted in section 6.3.1).
In exercise 7.5 we will show that the spectrum of this function is the discontinuous
function πp2(ω).

EXERCISES

In this exercise we will show that interchanging the order of integration is not al-6.6
ways allowed. To do so, we consider the function f (x, y) on {(x, y) ∈ R

2 | x > 0
and y > 0} given by f (x, y) = (x−y)/(x+y)3. Show that

∫ ∞
1 (

∫ ∞
1 f (x, y) dx) dy

and
∫ ∞

1 (
∫ ∞

1 f (x, y) dy) dx both exist, but are unequal.

Use the linearity property to determine the spectrum of the function f (t) =6.7
3e−2| t | + 2iqa(t), where qa(t) is the triangle function from (6.12).

Use the modulation theorem to determine the spectrum of the function f (t) =6.8
e−7| t | cos π t .

a Let F(ω) be the spectrum of f (t). What then is the spectrum of f (t) sin at6.9
(a ∈ R)?
b Determine the spectrum of

f (t) =
{

sin t for −π ≤ t ≤ π ,
0 otherwise.
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Let b ∈ R and a ∈ C with Re a > 0 be fixed. Determine the Fourier transform of6.10
the function f (t) = ε(t)e−at cos bt and g(t) = ε(t)e−at sin bt .

Prove the scaling property from theorem 6.5 for c < 0.6.11

Verify that for an odd function f (t) one has F(ω) = −2i
∫ ∞

0 f (t) sin ωt dt .6.12

a Let f (t) be a real-valued function and assume that the spectrum F(ω) is an even6.13
function. Show that F(ω) has to be real-valued.
b Let f (t) be a real-valued function. Show that | F(ω) | is even.

For t > 0 we define the function f (t) by f (t) = e−t . This function is extended6.14
to an odd function on R, so f (t) = −et for t < 0 and f (0) = 0. Determine the
spectrum of f .

Consider for a > 0 fixed the function6.15

f (t) =
{

1 for 0 < t ≤ a,
0 for t > a.

a Determine the Fourier cosine transform of f .
b Determine the Fourier sine transform of f .

Determine in a direct way, that is, using the definition of F(ω), the spectrum of the6.16
function tpa(t), where pa(t) is given by (6.10). Use this to check the result from
example 6.3 in section 6.4.9.

Consider the Gauss function f (t) = e−at2
.6.17

a Use the differentiation rule in the frequency domain to determine the spectrum
of t f (t).
b Note that t f (t) = − f ′(t)/2a. Show that the result in part a agrees with the
result from example 6.2, which used the differentiation rule in the time domain.

Give at least three functions f whose Fourier transform F(ω) is equal to k f (ω),6.18
where k is a constant.

Determine the spectrum of the function ε(t)te−at (for a ∈ C with Re a > 0).6.19

6.5 Rapidly decreasing functions

In this section the results on differentiation in the time domain from section 6.4.8
are applied in preparation for chapters 8 and 9 on distributions. To this end we will
introduce a collection of functions V which is invariant under the Fourier transform,
that is to say: if f (t) ∈ V , then F(ω) ∈ V . We recall that, for example, for the
absolutely integrable functions this is not necessarily the case: if f (t) is absolutely
integrable, then F(ω) is not necessarily absolutely integrable. If we now look at the
differentiation rules from sections 6.4.8 and 6.4.9, then we see that differentiation
in one domain corresponds to multiplication in the other domain. We thus reach the
conclusion that we should introduce the collection of so-called rapidly decreasing
functions. It will turn out that this collection is indeed invariant under the Fourier
transform. Let us write f (t) ∈ C∞(R) to indicate that f can be differentiated
arbitrarily many times, that is, f (k)(t) exists for each k ∈ N. It is also said that f is
infinitely differentiable.

A function f : R → C in C∞(R) is called rapidly decreasing if for each m andDEFINITION 6.3
Rapidly decreasing function n ∈ N the function tn f (m)(t) is bounded on R, that is to say, there exists a constant

M > 0 such that |tn f (m)(t)| < M for all t ∈ R.
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In this definition the constant M will of course depend on the value of m and n.
The term ‘rapidly decreasing’ has a simple explanation: for large values of n ∈ N

the functions | t |−n decrease rapidly for t → ±∞ and from definition 6.3 it follows
for m = 0 that | f (t) | < M | t |−n for each n ∈ N. Hence, the function f (and even
all of its derivatives) has to decrease quite rapidly for t → ±∞.

The collection of all rapidly decreasing functions will be denoted by S(R) or
simply by S. For f ∈ S it follows immediately from the definition that c f ∈ S as
well for an arbitrary constant c ∈ C. And since∣∣∣ tn( f + g)(m)(t)

∣∣∣ =
∣∣∣ tn f (m)(t) + tn g(m)(t)

∣∣∣ ≤
∣∣∣ tn f (m)(t)

∣∣∣ +
∣∣∣ tn g(m)(t)

∣∣∣ ,
it also follows that f + g ∈ S whenever f ∈ S and g ∈ S.

Now this is all quite nice, but are there actually any functions at all that belong to
S, besides the function f (t) = 0 (for all t ∈ R)?

The Gauss function f (t) = e−at2
(a > 0) belongs to S.THEOREM 6.11

Proof
First note that f is infinitely differentiable because f (t) = (h ◦ g)(t), where g(t) =
−at2 and h(s) = es are infinitely differentiable functions. From the chain rule it
then follows that f ∈ C∞(R). By repeatedly applying the product rule and the

chain rule again, it follows that (e−at2
)(m) is a finite sum of terms of the form

ctke−at2
(k ∈ N and c a constant). Hence, tn(e−at2

)(m) is also a finite sum of

terms of the form ctke−at2
for each m and n ∈ N, and we must show that this is

bounded on R. It now suffices to show that tke−at2
is bounded on R for arbitrary

k ∈ N, since then any finite sum of such terms is bounded on R. The boundedness

of tke−at2
on R follows immediately from the fact that tke−at2

is a continuous

function with limt→±∞ tke−at2 = 0. �
By multiplication and differentiation one can obtain new functions in S: for

f (t) ∈ S one has tn f (t) ∈ S for each n ∈ N and even (tn f (t))(m) ∈ S for
each m and n ∈ N. For the proof of the latter statement one has to apply the product
rule repeatedly again, resulting in a sum of terms of the form tk f (l)(t), which all
belong to S again because f ∈ S. The same argument shows that the product f · g
also belongs to S when f, g ∈ S.

If f (t) ∈ S, then F(ω) ∈ S.THEOREM 6.12
S is invariant under Fourier
transform Proof

First we have to show that F(ω) ∈ C∞(R). But since f ∈ S, it follows that
t p f (t) ∈ S for each p ∈ N and so, according to the remark above, t p f (t) ∈ S
is absolutely integrable for each p ∈ N. The differentiation rule in the frequency
domain can now be applied arbitrarily often. Hence, F(ω) ∈ C∞(R) and (6.22)
holds. We still have to show that ωn F(m)(ω) is bounded on R for every m, n ∈ N.
According to (6.22) one has

ωn F(m)(ω) = ωn(F(−i t)m f (t))(ω). (6.23)

We now want to apply the differentiation rule in the time domain repeatedly. In
order to do so, we first note that tm f (t) ∈ S, which implies that this function is
at least n times continuously differentiable. Also (tm f (t))(k) ∈ S for each k =
0, 1, . . . , n − 1 and so we certainly have limt→±∞(tm f (t))(k) = 0. Hence, the
differentiation rule in the time domain can indeed be applied repeatedly, and from
(6.21) it then follows that

(iω)n(Fg(t))(ω) = (F(g(t))(n))(ω), (6.24)
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where g(t) = (−i t)m f (t). Combining equations (6.23) and (6.24) shows that
(iω)n F(m)(ω) is the Fourier transform of (g(t))(n) = ((−i t)m f (t))(n), which is
absolutely integrable. The boundedness of (iω)n F(m)(ω), and so of ωn F(m)(ω),
then follows from the simple relationship (6.7), applied to the function (g(t))(n).
This proves that F(ω) ∈ S. �

Let us take the Gauss function f (t) = e−at2 ∈ S (a > 0) as an example. From
(6.16) it indeed follows that F(ω) ∈ S. This is because F(ω) has the same form as
f (t).

EXERCISES

Indicate why e−a| t | (a > 0) and (1 + t2)−1 do not belong to S.6.20

Consider the Gauss function f (t) = e−at2
(a > 0).6.21

a Verify that for arbitrary k ∈ N one has limt→±∞ tke−at2 = 0.
b Determine the first three derivatives of f and verify that these are a finite
sum of terms of the form ctl f (t) (l ∈ N and c a constant). Conclude that
limt→±∞ f (k)(t) = 0 for k = 1, 2, 3.

Let f and g belong to S. Show that f · g ∈ S.6.22

6.6 Convolution

Convolution of periodic functions has been treated in chapter 4. In this section we
study the concept of convolution for non-periodic functions. Convolution arises, for
example, in the following situation. Let f (t) be a function with spectrum F(ω).
Then F(ω) is a function in the frequency domain. Often, such a function is multi-
plied by another function in the frequency domain. One should think for instance of
a (sound) signal with a spectrum F(ω) containing undesirable high or low frequen-
cies, which we then send through a filter in order to remove these frequencies. We
may remove, for example, all frequencies above a fixed frequency ω0 by multiply-
ing F(ω) by the block function p2ω0(ω). In general one will thus obtain a product
function F(ω)G(ω) in the frequency domain. Now the question is, how this alters
our original signal f (t). In other words: which function has as its spectrum the
function F(ω)G(ω)? Is this simply the product function f (t)g(t), where g(t) is a
function with spectrum G(ω)? A very simple example shows that this cannot be the
case. The product of the block function pa(t) (now in the time domain) with itself,
that is, the function (pa(t))2, is just pa(t) again. However, the product of (F pa)(ω)

(see (6.11)) with itself is 4 sin2(aω/2)/ω2, and this does not equal (F pa)(ω). We
do recognize, however, the Fourier transform of the triangle function qa(t), up to
a factor a (see (6.13)). Which operation can turn two block functions into a trian-
gle function? The solution of this problem, in the general case as well, is given by
convolution.

The convolution product (or convolution for short) of two functions f and g, denotedDEFINITION 6.4
Convolution by f ∗ g, is defined by

( f ∗ g)(t) =
∫ ∞

−∞
f (τ )g(t − τ) dτ for t ∈ R,

provided the integral exists.

Before we discuss the existence of the convolution, we will first of all verify that
(pa ∗ pa)(t) indeed results in the triangle function qa(t), up to the factor a.
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One hasEXAMPLE

(pa ∗ pa)(t) =
∫ ∞

−∞
pa(τ )pa(t − τ) dτ,

and this integral equals 0 if τ < −a/2, τ > a/2, t − τ < −a/2 or t − τ > a/2, so
if τ < −a/2, τ < t − a/2, τ > a/2 or τ > t + a/2.
For t > a or t < −a these conditions are fulfilled for each τ ∈ R and so (pa ∗
pa)(t) = 0 in this case. In the boundary cases t = a or t = −a the conditions
are fulfilled for each τ ∈ R, except for one point (when, for example, t = a then
we have the condition τ > a/2 as well as τ < a/2 and only τ = a/2 does not
satisfy this). Since one point will never contribute to an integral, we again have
(pa ∗ pa)(t) = 0.
Now if 0 ≤ t < a, then

(pa ∗ pa)(t) =
∫ a/2

t−a/2
dτ = a − t = a

(
1 − t

a

)
,

and if −a < t ≤ 0, then

(pa ∗ pa)(t) =
∫ t+a/2

−a/2
dτ = a + t = a

(
1 + t

a

)
.

We thus have indeed (pa ∗ pa)(t) = aqa(t). In figure 6.9 we show once more,
for various ‘typical’ values of t , the intervals such that the functions pa(τ ) and
pa(t −τ) are non-zero. One only has a contribution to the integral (pa ∗ pa)(t) when
the uppermost interval has an overlap with the other intervals sketched
below it. �

pa(τ)
0

pa(t–τ)

–a a

tt – t +

tt – t +

tt – t+

tt – t +

0

0

0

0

t > a

t < –a

0 ≤ t < a

–a < t ≤ 0

a
2

a
2

a
2

a
2

a
2

a
2

a
2

a
2

a
2

a
2

FIGURE 6.9
Integration intervals in the calculation of (pa ∗ pa)(t) for typical values of t .

If we now return to the general situation, then the convolution of two functions f
and g will certainly exist if one of these functions, say f , is absolutely integrable,
while the other function is bounded on R. For in this case one has

| ( f ∗ g)(t) | =
∣∣∣∣
∫ ∞

−∞
f (τ )g(t − τ) dτ

∣∣∣∣ ≤
∫ ∞

−∞
| f (τ )g(t − τ) | dτ

≤ M
∫ ∞

−∞
| f (τ ) | dτ,
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where M is chosen such that | g(t) | ≤ M on R. Since f is absolutely integrable,
it then follows that | ( f ∗ g)(t) | < ∞, in other words, f ∗ g exists for each t ∈ R.
Moreover, we see that f ∗g is bounded on R. Note that the preceding conditions are
certainly satisfied when f and g belong to S. Another condition which guarantees
the existence of f ∗ g is that f and g should be absolutely integrable and that, in
addition,

∫ ∞
−∞ | f (t) |2 dt < ∞ and

∫ ∞
−∞ | g(t) |2 dt < ∞. We will not prove this.

Functions satisfying this condition form an important class of functions; we will
return to this in chapter 7.

A simple property of convolution is commutativity, so f ∗ g = g ∗ f . This is
because changing to the variable u = t − τ gives

( f ∗ g)(t) =
∫ ∞

−∞
f (τ )g(t − τ) dτ =

∫ ∞

−∞
f (t − u)g(u) du = (g ∗ f )(t). (6.25)

We will now prove the important result that the spectrum of ( f ∗ g)(t) is the product
F(ω)G(ω). This result is called the convolution theorem.

Let f (t) and g(t) be piecewise continuous functions which, in addition, are abso-THEOREM 6.13
Convolution theorem lutely integrable and bounded. Let F(ω) and G(ω) be the spectra of f and g. Then

f ∗ g is absolutely integrable and

F( f ∗ g)(ω) = F(ω)G(ω). (6.26)

Proof
We have just seen that f ∗ g exists and is bounded on R, since g is bounded and f
is absolutely integrable. Next we note that

∫ ∞

−∞

(∫ ∞

−∞
| f (τ )g(t − τ) | dt

)
dτ =

∫ ∞

−∞
| f (τ ) |

(∫ ∞

−∞
| g(t − τ) | dt

)
dτ

=
∫ ∞

−∞
| f (τ ) | dτ

∫ ∞

−∞
| g(u) | du < ∞,

since f and g are absolutely integrable. Under the conditions of the theorem one
may interchange the order of integration. We then obtain

∫ ∞

−∞
| ( f ∗ g)(t) | dt ≤

∫ ∞

−∞

(∫ ∞

−∞
| f (τ )g(t − τ) | dτ

)
dt < ∞,

in other words, f ∗ g is absolutely integrable. In particular, F( f ∗ g)(ω) exists and
from the definitions we see that

F( f ∗ g)(ω) =
∫ ∞

−∞
( f ∗ g)(t)e−iωt dt

=
∫ ∞

−∞

(∫ ∞

−∞
f (τ )e−iωτ g(t − τ)e−iω(t−τ)dτ

)
dt.

Again one may interchange the order of integration and therefore

F( f ∗ g)(ω) =
∫ ∞

−∞
f (τ )e−iωτ

(∫ ∞

−∞
g(t − τ)e−iω(t−τ)dt

)
dτ.



6.6 Convolution 161

If we now put u = t − τ , then the inner integral equals
∫ ∞
−∞ g(u)e−iωudu = G(ω),

and so we finally obtain

F( f ∗ g)(ω) = G(ω)

∫ ∞

−∞
f (τ )e−iωτ dτ = G(ω)F(ω).

�

An example of this theorem has already been mentioned: for the spectrum of
(pa ∗ pa)(t) = aqa(t) one indeed has (F pa)2(ω) = a(Fqa)(ω).

Closely related to convolution are the concepts cross-correlation and autocorre-
lation. The cross-correlation ρ f g of two functions f and g is defined by ρ f g(t) =Cross-correlation

(g ∗ f̃ )(t), where f̃ is the function f̃ (t) = f (−t). Taking g = f here one obtains
the so-called autocorrelation ρ f f (t) = ( f ∗ f̃ )(t) of the function f .Autocorrelation

EXERCISES

Calculate the convolution (ε ∗ ε)(t), where ε(t) is the unit step function from exam-6.23
ple 6.1. Is (ε ∗ ε)(t) absolutely integrable?

The functions f (t) and g(t) are defined by6.24

f (t) =
{

t−1/2 for 0 < t < 1,
0 elsewhere,

g(t) =
{

(1 − t)−1/2 for 0 < t < 1,
0 elsewhere.

a Show that f and g are both absolutely integrable.
b Show that ( f ∗g)(1) = ∫ 1

0 τ−1 dτ and hence that the convolution does not exist
for t = 1. So in general the absolute integrability of f and g is not sufficient for the
existence of the convolution product.

Let f and g be two functions with f (t) = g(t) = 0 for t < 0. Functions with this6.25
property are called ‘causal functions’ (see section 1.2.4). The unit step function ε(t)
is an example of a causal function. Show that ( f ∗ g)(t) = 0 for t < 0 (so f ∗ g is
again causal) and that for t ≥ 0 one has

( f ∗ g)(t) =
∫ t

0
f (τ )g(t − τ) dτ.

a Show that (e−| v | ∗ e−| v |)(t) = (1 + | t |)e−| t |.6.26
b Use theorem 6.13 to determine the spectrum of (1 + | t |)e−| t |.
c Determine in a direct way the spectrum of (1 + | t |)e−| t | (use the properties of
the Fourier transform).

S U M M A R Y

The Fourier transform or spectrum F(ω) of a function f (t) : R → C is defined by

F(ω) =
∫ ∞

−∞
f (t)e−iωt dt for ω ∈ R,

provided the integral exists as improper Riemann integral. This integral certainly
exists as improper Riemann integral when f (t) is absolutely integrable. In that
case, F(ω) is actually a continuous function on R. The mapping f (t) → F(ω) is
the Fourier transform F .

For a number of frequently used functions (the block function pa(t), the triangle

function qa(t), the function e−a| t |, and the Gauss function e−at2
) we determined

the spectrum; these have been included in table 3.
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Subsequently, we derived a number of properties. In succession we treated lin-
earity, conjugation, shift in the time domain and the frequency domain, scaling, even
and odd functions, selfduality, differentiation in the time and in the frequency do-
main, and integration in the time domain. These properties can be found in table 4.

As an application of the differentiation rule it was shown that the set S of rapidly
decreasing functions is invariant under the Fourier transform: if f (t) ∈ S, then
F(ω) ∈ S.

The convolution product f ∗ g is given by

( f ∗ g)(t) =
∫ ∞

−∞
f (τ )g(t − τ) dτ,

provided the integral exists. One has f ∗ g = g ∗ f . If f and g are absolutely
integrable, piecewise continuous, and bounded, then the convolution theorem holds:
F( f ∗ g)(ω) = F(ω)G(ω).

S E L F T E S T

Consider the function g(t) = ε(t)e−2t .6.27
a Sketch the graph of g(t) and determine the spectrum G(ω). Also give the real
and imaginary part of G(ω).
b Determine the spectrum of (g ∗ g)(t).
c Show that (g ∗ g)(t) = ε(t)te−2t by calculating the convolution and subse-
quently determine the spectrum of ε(t)te−2t .
d Give the relationship between the spectrum of the function ε(t)te−2t and G(ω)

in terms of differentiation. Obtain in this way the spectrum of ε(t)te−2t again and
compare the result with part b.

Consider the Gauss function g(t) = e−t2/2 with Fourier transform G(ω) =6.28 √
2πe−ω2/2. Now determine the Fourier transform of the following functions:

a f1(t) = ∫ t
−∞ τg(τ ) dτ ,

b f2(t) = t2g(t),

c f3(t) = (t2 − 2t + 1)e−t2/2+t−1/2,
d f4(t) = sin 4t

∫ t
−∞ τg(τ ) dτ ,

e f5(t) = e−8t2
.

Define the function T (t) by6.29

T (t) =



1 for | t | ≤ 1,
2 − | t | for 1 < | t | ≤ 2,
0 for | t | > 2.

a Sketch the graph of the function T (t); it is called the trapezium function.Trapezium function
b Show that T (t) = (p1 ∗ p3)(t), where pa is the block function on the interval
(−a/2, a/2). (Hint: from the definition of T (t) we see that we have to distinguish
between the cases t > 2, t < −2, 1 < t < 2, −2 < t < −1 and −1 < t < 1.)
c Determine the spectrum of T (t).
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CHAPTER 7

The fundamental theorem of the
Fourier integral

I N T R O D U C T I O N

Now that we have calculated a number of frequently used Fourier transforms and
have been introduced to some of the properties of Fourier transforms, it is time to
return to the Fourier integral

1

2π

∫ ∞

−∞
F(ω)eiωt dω.

It is quite reasonable to expect that, analogous to the Fourier series, the Fourier in-
tegral will in general be equal to f (t). In section 6.1 this has already been derived
intuitively from the fundamental theorem of Fourier series. Therefore, we start this
chapter with a proof of this crucial result, which we will call the fundamental the-
orem of the Fourier integral. It shows that the function f (t) can be recovered from
its spectrum F(ω) through the Fourier integral. We should note, however, that the
integral should not be interpreted as an ordinary improper Riemann integral, but as
a so-called ‘Cauchy principal value’.

Using the fundamental theorem we subsequently prove a number of additional
properties of the Fourier transform. One of the most famous is undoubtedly Parse-
val’s identity∫ ∞

−∞
| f (t) |2 dt = 1

2π

∫ ∞

−∞
| F(ω) |2 dω,

which has an important interpretation in signal theory: if a signal has a ‘finite
energy-content’ (meaning that

∫ ∞
−∞ | f (t) |2 dt < ∞), then the spectrum of the

signal also has a finite energy-content.
The fundamental theorem from section 7.1, together with its consequences from

section 7.2, conclude the Fourier analysis of non-periodic functions. The final sec-
tion then treats Poisson’s summation formula. Although not really a consequence
of the fundamental theorem, it forms an appropriate closing subject of this chapter,
since this formula gives an elegant relationship between the Fourier series and the
Fourier integral. Moreover, we will use Poisson’s summation formula in chapter 9
to determine the Fourier transform of the so-called comb distribution.

164
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the Riemann–Lebesgue lemma and know its interpretation for non-periodic

functions
- know the concept of Cauchy principal value
- know and can apply the fundamental theorem of the Fourier integral
- know the uniqueness theorem for the Fourier transform
- know and can apply the reciprocity property
- know and can apply the convolution theorem in the frequency domain
- know and can apply Parseval’s identities
- know the concepts of energy-content and of energy-signal
- can calculate definite integrals using the fundamental theorem and Parseval’s iden-

tities
- know and can apply Poisson’s summation formula∗.

7.1 The fundamental theorem

In this section we give a precise meaning to the Fourier integral in (6.8). We will
prove that, under certain conditions on the function f in the time domain, the Fourier
integral converges and, just as in the case of Fourier series, will produce the original
function f . Hence, through the Fourier integral the function f (t) can be recovered
from its Fourier transform F(ω). The result is crucial for the remainder of the
Fourier theory and so we will present a proof of this result in this book. Before we
can give this proof, some preparatory results will be derived, although these are also
of interest in themselves. A first step is the so-called Riemann–Lebesgue lemma
on R. For the concepts absolutely integrable and piecewise continuous we refer to
definitions 6.2 and 2.3 respectively.

Let f (t) be an absolutely integrable and piecewise continuous function on R. ThenTHEOREM 7.1
Riemann–Lebesgue lemma

lim
ω→±∞ F(ω) = lim

ω→±∞

∫ ∞

−∞
f (t)e−iωt dt = 0. (7.1)

Proof
Let ε > 0. Since f is absolutely integrable, there exist A, B ∈ R such that∫ ∞

B
| f (t) | dt +

∫ A

−∞
| f (t) | dt < ε/2.

On the remaining bounded interval [A, B] we use the Riemann–Lebesgue lemma
from section 4.1 (theorem 4.2): there exists a G > 0 such that for | ω | > G one has∣∣∣∣∣
∫ B

A
f (t)e−iωt dt

∣∣∣∣∣ < ε/2.

By applying the triangle inequality repeatedly, it follows that∣∣∣∣
∫ ∞

−∞
f (t)e−iωt dt

∣∣∣∣
≤

∣∣∣∣∣
∫ A

−∞
f (t)e−iωt dt

∣∣∣∣∣ +
∣∣∣∣
∫ ∞

B
f (t)e−iωt dt

∣∣∣∣ +
∣∣∣∣∣
∫ B

A
f (t)e−iωt dt

∣∣∣∣∣
≤

∫ A

−∞
| f (t) | dt +

∫ ∞

B
| f (t) | dt +

∣∣∣∣∣
∫ B

A
f (t)e−iωt dt

∣∣∣∣∣ ≤ ε/2 + ε/2 = ε
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for | ω | > G, where in the second step we used that
∣∣ ∫ g(t) dt

∣∣ ≤ ∫ | g(t) | dt and∣∣∣ e−iωt
∣∣∣ = 1. This proves theorem 7.1. �

Since e−iωt = cos ωt − i sin ωt , it follows immediately that (7.1) is equivalent to

lim
ω→±∞

∫ ∞

−∞
f (t) sin ωt dt = 0 and lim

ω→±∞

∫ ∞

−∞
f (t) cos ωt dt = 0. (7.2)

As a matter of fact, the Riemann–Lebesgue lemma is also valid if we only assume
that the function f is absolutely integrable on R. This more general theorem will not
be proven here, since we will only need this result for absolutely integrable functions
that are piecewise continuous as well; for these functions the proof is easier.

Theorem 7.1 has a nice intuitive interpretation: when we integrate the function f
against ever higher frequencies, so for increasing ω, then everything will eventually
cancel out. This is because the function f will change little relative to the strong
oscillations of the sine and cosine functions; the area of juxtapositioned oscillations
of f (t) sin ωt , for example, will cancel each other better and better for increasing ω.

Besides theorem 7.1 we will use the following identity in the proof of the funda-
mental theorem:∫ ∞

0

sin t

t
dt = π

2
. (7.3)

This identity has been proven in section 4.4.1. Using theorem 7.1 and formula (7.3)
we can now prove the fundamental theorem. It will turn out, however, that the
Fourier integral will not necessarily exist as an improper Riemann integral. Hence,
to be able to formulate the fundamental theorem properly, we need the concept of a
Cauchy principal value of an integral.

The value of limA→∞
∫ A
−A f (t) dt is called the Cauchy principal value of the inte-DEFINITION 7.1

Cauchy principal value gral
∫ ∞
−∞ f (t) dt, provided that this limit exists.

The difference between the Cauchy principal value and the improper Riemann
integral is the fact that here the limits tend to ∞ and −∞ at the same rate. We
recall that in the improper (Riemann) integral we are dealing with two independent
limits B → ∞ and A → −∞ (also see the end of section 6.1). When a function
has an improper integral, then the Cauchy principal value will certainly exist and it
will have the same value as the improper integral (just take ‘A = B’). The converse
need not be true, as the next example shows.

The improper integral
∫ ∞
−∞ t dt does not exist, but the Cauchy principal value is 0EXAMPLE

since
∫ A
−A t dt = 0 for each A > 0 and hence also for A → ∞. �

Since the Cauchy principal value of the Fourier integral is equal to

lim
A→∞

1

2π

∫ A

−A
F(ω)eiωt dω,

it seems plausible to investigate for arbitrary A > 0 the integral

1

2π

∫ A

−A
F(ω)eiωt dω = 1

2π

∫ A

−A

(∫ ∞

−∞
f (s)e−iωs ds

)
eiωt dω (7.4)

more thoroughly. If we may interchange the order of integration (we will return to
this in the proof of the fundamental theorem), then it would follow that

1

2π

∫ A

−A
F(ω)eiωt dω = 1

2π

∫ ∞

−∞
f (s)

(∫ A

−A
eiω(t−s) dω

)
ds.
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The inner integral can be calculated (as a matter of fact, it is precisely the Fourier
transform of the block function p2A at s − t ; see section 6.3.1) and it then follows
that

1

2π

∫ A

−A
F(ω)eiωt dω = 1

π

∫ ∞

−∞
f (s)

sin A(t − s)

t − s
ds.

By changing to the variable τ = t − s we finally obtain the important formula

1

2π

∫ A

−A
F(ω)eiωt dω = 1

π

∫ ∞

−∞
f (t − τ)

sin Aτ

τ
dτ. (7.5)

This result is important because it shows us why the Fourier integral will converge
to the value f (t) for A → ∞ (assuming for the moment that f is continuous at t).
To that end we take a closer look at the function DA(τ ) = sin Aτ/τ (for A > 0).
The value at τ = 0 is A, while the zeros of DA(τ ) are given by τ = kπ/A with
k ∈ Z (k �= 0). For increasing A the zeros are thus getting closer and closer to each
other, which means that the function DA(τ ) has ever increasing oscillations outside
τ = 0. This is shown in figure 7.1. This makes it plausible that at a point t where
the function f is continuous we will have

lim
A→∞

1

π

∫ ∞

−∞
f (t − τ)

sin Aτ

τ
dτ = f (t), (7.6)

under suitable conditions on f . The reason is that for large values of A the strong
oscillations of DA(τ ) outside τ = 0 will cancel everything out (compare this with
the interpretation of the Riemann–Lebesgue lemma), and so only the value of f at

0 τ

A

π
A

DA(τ) = sin Aτ
τ

FIGURE 7.1
The function DA(τ ) for a large value of A.
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the point τ = 0 will contribute to the integral (of course, this is not a proof of (7.6)).
The constant π−1 in the left-hand side of (7.6) can easily be ‘explained’ since (7.3)
implies that

∫ ∞
−∞ sin Aτ/τ dτ = π for every A > 0 and hence also for A → ∞;

but this is precisely (7.6) if we take for f the constant function 1.
It now becomes clear how we shall proceed with the proof of the fundamental

theorem. First we need to prove (7.6); combining this with (7.5) then immediately
gives the fundamental theorem of the Fourier integral. As a matter of fact, the
assumption that f should be continuous at t was only for our convenience: in the
following theorem we will drop this assumption and so we get a slightly different
version of (7.6).

Let f (t) be an absolutely integrable and piecewise smooth function on R. Then oneTHEOREM 7.2
has for each t ∈ R that

lim
A→∞

1

π

∫ ∞

−∞
f (t − τ)

sin Aτ

τ
dτ = 1

2
( f (t+) + f (t−)) .

Proof
In order to get a well-organized proof, we divide it into two steps.

By splitting the integral in the left-hand side at τ = 0, and changing from τ toStep 1
−τ in the resulting integral over (−∞, ∞), we obtain

lim
A→∞

1

π

∫ ∞

−∞
f (t − τ)

sin Aτ

τ
dτ

= lim
A→∞

1

π

∫ ∞

0
( f (t − τ) + f (t + τ))

sin Aτ

τ
dτ. (7.7)

Now note that by replacing Aτ by v , and so τ by v/A, and applying (7.3), it follows
that

lim
A→∞

∫ 1

0

sin Aτ

τ
dτ = lim

A→∞

∫ A

0

sin v

v
dv = π

2
.

If we multiply this equality by ( f (t+) + f (t−)) /π we obtain

1

2
( f (t+) + f (t−)) = lim

A→∞
1

π

∫ 1

0

sin Aτ

τ
( f (t+) + f (t−)) dτ (7.8)

(in fact, f (t+) + f (t−) does not depend on τ ). If we now look at the result to be
proven, it is quite natural to study the difference

1

π

∫ ∞

0
( f (t − τ) + f (t + τ))

sin Aτ

τ
dτ − 1

π

∫ 1

0
( f (t+) + f (t−))

sin Aτ

τ
dτ

of the right-hand sides of (7.7) and (7.8) for A → ∞. If we can show that this
difference tends to 0 for A → ∞, then the theorem is proven. We will do this in
step 2.

If we split the first integral in this difference at τ = 1, then we see that theStep 2
difference can be rewritten as I1 + I2 with

I1 = 1

π

∫ 1

0

f (t − τ) − f (t−) + f (t + τ) − f (t+)

τ
sin Aτ dτ,

I2 = 1

π

∫ ∞

1

f (t − τ) + f (t + τ)

τ
sin Aτ dτ.
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We will now show that both I1 and I2 tend to 0 as A → ∞. To tackle I1 we define
the auxiliary function g(τ ) by

g(τ ) =



f (t − τ) − f (t−) + f (t + τ) − f (t+)

τ
for 0 ≤ τ ≤ 1,

0 otherwise,

and thus

I1 = 1

π

∫ ∞

−∞
g(τ ) sin Aτ dτ.

Note that outside the point τ = 0, the function g(τ ) is certainly piecewise contin-
uous. Since we assumed that f is piecewise smooth, theorem 2.4 implies that the
limits limτ↓0( f (t + τ) − f (t+))/τ and limτ↓0( f (t − τ) − f (t−))/τ , occurring
in g(τ ), both exist and are equal to f ′(t+) and − f ′(t−) respectively. The function
g is thus piecewise continuous at t = 0, and so on R. Moreover, g is certainly ab-
solutely integrable and so it follows from the Riemann–Lebesgue lemma (theorem
7.1) that limA→∞ I1 = 0. We now apply a similar reasoning to I2. To that end we
define the auxiliary function h(τ ) by

h(τ ) =



f (t − τ) + f (t + τ)

τ
for τ ≥ 1,

0 otherwise,

and so

I2 = 1

π

∫ ∞

−∞
h(τ ) sin Aτ dτ.

The function h is certainly piecewise continuous on R and also absolutely integrable
since 1/τ < 1 if τ > 1 and the function f is absolutely integrable. We can therefore
apply the Riemann–Lebesgue lemma again to obtain that limA→∞ I2 = 0. This
proves theorem 7.2. �

If, in particular, the function f in theorem 7.2 is continuous at a point t , then we
obtain (7.6). By combining theorem 7.2 with (7.5) we now immediately obtain the
fundamental theorem.

Let f (t) be an absolutely integrable and piecewise smooth function on R and letTHEOREM 7.3
Fundamental theorem of the
Fourier integral

F(ω) be the Fourier transform of f . Then the Fourier integral converges for each
t ∈ R as a Cauchy principal value and

1

2π

∫ ∞

−∞
F(ω)eiωt dω = 1

2
( f (t+) + f (t−)) . (7.9)

Here f (t+) = limh↓0 f (t + h) and f (t−) = limh↑0 f (t + h).

Proof
Without proof we mention that under the conditions of theorem 7.3 interchanging
the order of integration, which was used to derive (7.5) from (7.4), is indeed allowed.
From (7.5) it then follows that

lim
A→∞

1

2π

∫ A

−A
F(ω)eiωt dω = lim

A→∞
1

π

∫ ∞

−∞
f (t − τ)

sin Aτ

τ
dτ.

If we now apply theorem 7.2 to the right-hand side, then we obtain

lim
A→∞

1

2π

∫ A

−A
F(ω)eiωt dω = 1

2
( f (t+) + f (t−)) ,
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proving theorem 7.3: the Fourier integral converges as a Cauchy principal value to
( f (t+) + f (t−))/2. �

The Fourier integral should in the first instance always be considered as a Cauchy
principal value. However, in many cases it is immediately clear that the integral
also exists as an improper Riemann integral, for example when F(ω) is absolutely
integrable. Nevertheless, one should not jump to conclusions too easily, and as a
warning we present a simple example showing that the Fourier integral can certainly
not always be considered as an improper integral.

Let f (t) be the function defined by f (t) = ε(t)e−t , where ε(t) is the unit stepEXAMPLE 7.1
function (see example 6.1). This function satisfies all the conditions of theorem 7.3
and F(ω) = 1/(1+iω) (see table 3). For t = 0 it then follows from the fundamental
theorem that∫ ∞

−∞
1

1 + iω
dω = π,

since ( f (t+) + f (t−))/2 = 1/2 for t = 0. This integral must be considered as
a Cauchy principal value since it does not exist as an improper Riemann integral.
This is because the imaginary part of 1/(1 + iω) is −ω/(1 + ω2) and∫ B

A

ω

1 + ω2
dω = 1

2

(
ln(1 + B2) − ln(1 + A2)

)
,

which means that the limit does not exist for A → −∞ (or B → ∞). �

For a continuous function f (t), the right-hand side of (7.9) equals f (t) since in
this case f (t+) = f (t−) for each t ∈ R. Let us give another example.

Take f (t) = e−a| t |, then F(ω) = 2a/(a2 + ω2) (see table 3). The function fEXAMPLE 7.2
satisfies all the conditions of the fundamental theorem and it is also continuous (and
even). For each t ∈ R we thus have

e−a| t | = 1

2π

∫ ∞

−∞
2a

a2 + ω2
eiωt dω. (7.10)

Since F(ω) is even, this can also be written as a Fourier cosine transform (see sec-
tion 6.4.6):

e−a| t | = 2

π

∫ ∞

0

a

a2 + ω2
cos ωt dω.

�

Formula (7.9) is called the inversion formula for the Fourier transform on R. TheInversion formula
name ‘inversion formula’ is clear: if the conditions of theorem 7.3 are met, then one
can recover the original function f (t) from its spectrum F(ω) using (7.9). There-
fore, the function f (t) is called the inverse Fourier transform of F(ω).Inverse Fourier transform

Here we have proven the fundamental theorem under the condition that f is
piecewise smooth and absolutely integrable. There are many other conditions for
which the theorem remains valid. It is, however, remarkable that up till now there
are no known conditions for absolutely integrable functions that are both necessary
and sufficient (in other words, a minimal condition) for the inversion formula (7.9)
to be valid.

A well-known continuous function which doesn’t satisfy the conditions of the fun-EXAMPLE 7.3
damental theorem is f (t) = sin t/t . Although this function is piecewise smooth
(and even continuously differentiable), it is not absolutely integrable, as was men-
tioned in section 6.3.1. �
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If f (t) is an even function, then F(ω) is also even (see section 6.4.6). Since one
then has for any A > 0 that∫ A

−A
F(ω) cos ωt dω = 2

∫ A

0
F(ω) cos ωt dω and

∫ A

−A
F(ω) sin ωt dω = 0,

it follows that∫ ∞

−∞
F(ω)eiωt dω = 2

∫ ∞

0
F(ω) cos ωt dω

as a Cauchy principal value. For even functions we thus obtain the following version
of the fundamental theorem:

Fundamental theorem for
even functions

2

π

∫ ∞

0
Fc(ω) cos ωt dω = 1

2
( f (t+) + f (t−)) , (7.11)

where

Fc(ω) =
∫ ∞

0
f (t) cos ωt dt

is the Fourier cosine transform of f (see section 6.4.6). Note that the integral in
(7.11) is now an ordinary improper integral. When a function f (t) is only defined
for t > 0, then, just as in section 6.4.6, one can extend the function f to an even
function on R which will be denoted by f (t) again; formula (7.11) then holds for
this even extension.

For an odd function g(t) the function G(ω) is odd and one obtains in a similar
fashion a version of the fundamental theorem for odd functions:

Fundamental theorem for odd
functions

2

π

∫ ∞

0
Gs(ω) sin ωt dω = 1

2
(g(t+) + g(t−)) , (7.12)

where

Gs(ω) =
∫ ∞

0
g(t) sin ωt dt

is the Fourier sine transform of f (see section 6.4.6). When a function is only
defined for t > 0 and we extend it to an odd function on R, then (7.12) will hold for
this odd extension. Of course, the conditions of the fundamental theorem should be
satisfied in all of the preceding statements.

Now that we have done the hard work in proving the fundamental theorem, we
will reap the fruits of it in the next section.

EXERCISES

Verify for the spectra from the exercises in section 6.3 that the Riemann–Lebesgue7.1
lemma holds.

Show that the Fourier transform of the block function p2A at the point ω = s − t7.2
equals 2 sin(A(t − s))/(t − s) (see the derivation of (7.5) from (7.4)).

Show that for arbitrary C > 0 one has7.3

lim
A→∞

∫ C

0

sin Au

u
du = π

2

(see step 1 in the proof of theorem 7.2).
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Calculate in a direct way (so in contrast to example 7.1) the Cauchy principal value7.4
of∫ ∞

−∞
1

1 + iω
dω.

a Check that the block function pa(t) satisfies the conditions of the fundamental7.5
theorem and give the inversion formula.
b Use (7.3) to show that the integral in the fundamental theorem of part a exists as
improper integral.

Let the function f (t) be given by (see exercise 6.9b)7.6

f (t) =
{

sin t for | t | ≤ π ,
0 elsewhere.

a Check that f (t) satisfies the conditions of the fundamental theorem and that
F(ω) exists as improper integral.
b Prove that

f (t) = 1

π

∫ ∞

0

cos(π − t)ω − cos(π + t)ω

1 − ω2
dω.

Show that for an odd function the fundamental theorem can be written as in (7.12).7.7

Consider the function7.8

f (t) =
{

1 for 0 < t ≤ a,
0 for t > a.

a Use the Fourier sine transform of the function f (t) (see exercise 6.15b) to show
that for t > 0 (t �= a) one has

f (t) = 2

π

∫ ∞

0

1 − cos aω

ω
sin ωt dω.

b To which value does the right-hand side of the identity in part a converge for
t = a?

The ordinary multiplication of real numbers has a unit, that is to say, there exists a7.9
number e (namely the number 1) such that ex = x for all x ∈ R. Now take as mul-
tiplication of functions the convolution product f ∗ g. Use the Riemann–Lebesgue
lemma and the convolution theorem (theorem 6.13) to show that the convolution
product has no unit. In others words, there does not exist a function e such that
e∗ f = f for all f . (All functions are assumed to be bounded, absolutely integrable
and piecewise smooth.)

7.2 Consequences of the fundamental theorem

In this section we use the fundamental theorem to derive a number of important
additional properties of the Fourier transform.

7.2.1 Uniqueness

From the fundamental theorem we immediately obtain the uniqueness of the Fourier
transform.
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Let f (t) and g(t) be absolutely integrable and piecewise smooth functions on RTHEOREM 7.4
Uniqueness theorem with spectra F(ω) and G(ω). If F(ω) = G(ω) on R, then f (t) = g(t) at all points

where f and g are continuous.

Proof
Let t ∈ R be a point where f and g are both continuous. Since F(ω) = G(ω), it
then follows from the fundamental theorem that

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω = 1

2π

∫ ∞

−∞
G(ω)eiωt dω = g(t).

�
The uniqueness theorem is often applied (implicitly) when addressing the follow-

ing frequently occurring problem: given F(ω), find a function f (t) with spectrum
F(ω). Let us assume that on the basis of a table, and perhaps in combination with
the properties of the Fourier transform, we know a function f (t) indeed having
F(ω) as its spectrum. (In most cases a direct calculation of the Fourier integral is
not a very clever method.) Theorem 7.4 then guarantees that the function we have
found is the only possibility within the set of absolutely integrable and piecewise
smooth functions. This is up to a finite number of points (on an arbitrary bounded
interval) where we can give the function f an arbitrary (finite) value (see figure 7.2).
This is because if f and g are two functions with the same spectrum, then we can
only conclude that ( f (t+) + f (t−))/2 = (g(t+) + g(t−))/2 at the points where
f and/or g are not continuous. These exceptional points are of little importance;
however, in order to formulate results like the fundamental theorem accurately, one
should keep them in mind. In some of the literature these exceptional points are
avoided by assuming that at a point t ∈ R where a piecewise smooth function is
not continuous, the function value is always defined as ( f (t+) + f (t−))/2. In that
case, theorem 7.4 is thus correct on R. This is the case, for example, for the function
h in figure 7.2.

We are looking for a function with spectrum F(ω) = 1/(1 + iω)2. This function isEXAMPLE
the product of 1/(1 + iω) with itself and from table 3 it follows that g(t) = ε(t)e−t

has as its spectrum precisely 1/(1 + iω). From the convolution theorem (theorem
6.13) it then follows that f (t) = (g ∗ g)(t) has F(ω) as its spectrum. It is easy to
calculate the convolution product (see exercise 6.27) and from this it follows that
f (t) = ε(t)te−t . According to theorem 7.4 this is the only absolutely integrable
and piecewise smooth function with spectrum F(ω). �

The uniqueness theorem gives rise to a new notation. When f (t) is absolutely
integrable and piecewise smooth, and when F(ω) is the spectrum of f (t), then we
will write from now on

f (t) ↔ F(ω).

This expresses the fact that f and F determine each other uniquely according to
theorem 7.4. As before, one should adjust the value of f in the exceptional points,
where f is not continuous, as before. Often the following equivalent formulation of
theorem 7.4 is given (we keep the conditions of the theorem): when F(ω) = 0 on R,
then f (t) = 0 at all points t where f is continuous. This formulation is equivalent
because of the linearity property (see section 6.4.1).

7.2.2 Fourier pairs

In section 6.3 the Fourier transforms were calculated for a number of frequently used
functions. Using the fundamental theorem it will follow that Fourier transforms
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0 t

f(a+)

a

f(a–) f

0 ta

g

0 ta

h

(h(a+) + h(a–))1
2

FIGURE 7.2
Three functions f , g and h with the same spectrum.

usually occur in pairs, which immediately doubles the number of examples. Let
us assume that a function f (t) with spectrum F(ω) satisfies the conditions of the
fundamental theorem. For convenience we also assume that f (t) is continuous, and
according to theorem 7.3 we then have for each t ∈ R that

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω.
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Let us moreover assume that this integral exists as an improper integral (which usu-
ally is the case). Both t and ω are just variables for which one may as well choose
another symbol. In particular we may interchange the role of t and ω, and it then
follows that

f (ω) = 1

2π

∫ ∞

−∞
F(t)eiωt dt.

If we now change from the variable t to the variable −t we obtain

f (ω) = 1

2π

∫ ∞

−∞
F(−t)e−iωt dt. (7.13)

But this last integral is precisely the Fourier transform of the function F(−t)/2π .
Summarizing, we have proven the following theorem.

Let f (t) be an absolutely integrable and piecewise smooth function on R with spec-THEOREM 7.5
trum F(ω). Assume that f is continuous and that the Fourier integral exists as an
improper Riemann integral. Then

F(−t) ↔ 2π f (ω).

Hence, Fourier transforms almost always occur in pairs. This property is called
the duality or the reciprocity of the Fourier transform and is included as propertyDuality

Reciprocity 11 in table 4. Do not confuse ‘duality’ with the ‘selfduality’ from section 6.4.7. If
the function f (t) is not continuous, but merely piecewise continuous, then (7.13)
and the duality property will still hold, with the exception of the points where f is
not continuous (there the left-hand side of (7.13) has to be adjusted). A special case
arises when f is an even function. Then F is also an even function, from which it
follows that in this case F(t) ↔ 2π f (ω).

Take f (t) = e−a| t | as in example 7.2. This is an even and continuous function andEXAMPLE 7.4
F(ω) is absolutely integrable. From theorem 7.5 we then obtain

a

a2 + t2
↔ πe−a| ω |, (7.14)

and so we have found a new Fourier transform. �

We called the mapping assigning Fourier transforms to functions the Fourier
transform. For the distribution theory in chapters 8 and 9 it is important to know
the image under the Fourier transform of the set S (S is the set of rapidly decreas-
ing functions; see section 6.5). In theorem 6.12 it was already shown that F(ω) ∈ S
for f (t) ∈ S. In other words, the Fourier transform maps the space S into itself.
Moreover, functions in S certainly satisfy the conditions of the uniqueness theorem;
the Fourier transform is thus a one-to-one mapping in the space S. With the duality
property one can now easily show that the image of S is the whole of S, in other
words, the Fourier transform is also a mapping from S onto S.

The Fourier transform is a one-to-one mapping from S onto S.THEOREM 7.6

Proof
For a given function f ∈ S we must find a function in the time domain having f as
its spectrum. Now let F(ω) be the spectrum of f (t). By theorem 6.12 the function
F belongs to S and so it is certainly absolutely integrable (see the remark preceding
theorem 6.12). All conditions of theorem 7.5 are thus satisfied and it follows that
the function F(−t)/2π ∈ S has the function f (ω) as its spectrum. We have thus
found the desired function and this proves theorem 7.6. �
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Sometimes theorem 7.6 is also formulated as follows: for each F(ω) ∈ S there
exists a (unique) f (t) ∈ S such that F(ω) is the spectrum of f (t). We recall that
f (t) is called the inverse Fourier transform of F(ω) (see section 7.1). In particular
we see that the inverse Fourier transform of a function in S belongs to S again (the
‘converse’ of theorem 6.12). In the next example we apply theorem 7.6 to derive a
well-known result from probability theory.

Application of the reciprocity property to the Gauss function e−at2
will not resultEXAMPLE 7.5

in a new Fourier transform, since the spectrum of the Gauss function has a similar
form. Still, we will have a closer look at the Gauss function and the Fourier pair

e−at2 ↔
√

π

a
e−ω2/4a and

1

2
√

πa
e−t2/4a ↔ e−aω2

. (7.15)

From (6.15) it follows that∫ ∞

−∞
1

2
√

πa
e−t2/4adt = 1.

Functions with integral over R equal to 1, which moreover are positive on R, are
called probability distributions in probability theory. If we now writeProbability distribution

Wa(t) = 1

2
√

πa
e−t2/4a,

then Wa is a positive function with integral over R equal to 1 and so a probability
distribution. It is called the normal distribution. As an application of our results, weNormal distribution
can now prove a nice and important property of the normal distribution, namely

(Wa ∗ Wb)(t) = Wa+b(t). (7.16)

(For those familiar with stochastic variables, this result can be reformulated as fol-
lows: if X and Y are two independent stochastic variables with normal distributions
Wa and Wb, then X + Y has normal distribution Wa+b.) To prove this result, we
first apply the convolution theorem from section 6.6 and then use (7.15):

F(Wa ∗ Wb)(ω) = (FWa)(ω)(FWb)(ω)

= e−aω2
e−bω2 = e−(a+b)ω2 = (FWa+b)(ω).

Since F(Wa ∗ Wb) ∈ S, the inverse Fourier transform Wa ∗ Wb will also belong to
S. Hence, both Wa ∗ Wb and Wa+b belong to S and (7.16) then follows from the
uniqueness of the Fourier transform on the space S (theorem 7.6). �

7.2.3 Definite integrals

Using the fundamental theorem one can also calculate certain definite integrals. As
an example we take the block function pa(t) with spectrum 2 sin(aω/2)/ω (see
table 3). Applying the fundamental theorem for t = 0, it follows that∫ ∞

−∞
sin(aω/2)

ω
dω = π.

Next we change to the variable t = aω/2 and use that the integrand is an even
function. We then obtain∫ ∞

0

sin t

t
dt = π

2
,
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which proves (7.3) again. Note, however, that in proving the fundamental theorem
we have used (7.3), which means that we cannot claim to have found a new proof of
(7.3). For other choices for the function f (t), the fundamental theorem can indeed
provide new results that may be much harder to prove using other means. Let us
give some more examples.

Let qa(t) be the triangle function with spectrum 4 sin2(aω/2)/(aω2) (see table 3 orEXAMPLE 7.6
section 6.3.2). Applying theorem 7.3 for t = 0 we obtain

1

2π

∫ ∞

−∞
4 sin2(aω/2)

aω2
dω = 1.

Now change to the variable t = aω/2 and use that the integrand is an even function.
We then find∫ ∞

0

sin2 t

t2
dt = π

2
. (7.17)

�

Take f (t) = e−a| t |. All preparations can be found in example 7.2: if we take t = 0EXAMPLE 7.7
and a = 1 in (7.10), and change to the variable t = ω, we obtain∫ ∞

−∞
1

1 + t2
dt = π.

(This result can easily be obtained in a direct way since a primitive of the integrand
is the well-known function arctan t .) Now write for a > 0

Pa(t) = 1

π

a

a2 + t2
.

Then Pa is a positive function with integral over R equal to 1 and so Pa is a proba-
bility distribution (see example 7.5); it is called the Cauchy distribution.Cauchy distribution �

7.2.4 Convolution in the frequency domain

In section 6.6 the convolution theorem (theorem 6.13) was proven: if f (t) ↔ F(ω)

and g(t) ↔ G(ω), then ( f ∗g)(t) ↔ F(ω)G(ω). The duality property suggests that
a similar result should hold for convolution in the frequency domain. Under certain
conditions on the functions f and g this is indeed the case. Since these conditions
will return more often, it will be convenient to introduce a new class of functions.

A function f : R → C is called square integrable on R if
∫ ∞
−∞ | f (t) |2 dt exists asDEFINITION 7.2

Square integrable improper Riemann integral.

If a function f is absolutely integrable, then it need not be square integrable. For
example, the function f (t) = p2(t) | t |−1/2 is absolutely integrable, but not square
integrable since | t |−1 is not integrable over the interval −1 ≤ t ≤ 1. One now has
the following convolution theorem in the frequency domain.

Let f (t) and g(t) be piecewise smooth functions which, in addition, are absolutelyTHEOREM 7.7
Convolution theorem in the
frequency domain

integrable and square integrable on R. Then

f (t)g(t) ↔ (2π)−1(F ∗ G)(ω).

Proof
We give the proof under the simplifying assumption that the spectra F(ω) and G(ω)

exist as improper Riemann integrals. Since (a + b)2 = a2 + 2ab + b2 ≥ 0, we
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see that | f (t)g(t) | ≤ 1
2 (| f (t) |2 + | g(t) |2) for all t ∈ R. Since f and g are

square integrable, it now follows that f (t)g(t) is absolutely integrable. Hence, the
spectrum of f (t)g(t) will certainly exist. According to the fundamental theorem we
may replace f (t) in

F( f (t)g(t))(ω) =
∫ ∞

−∞
f (t)g(t)e−iωt dt

by

1

2π

∫ ∞

−∞
F(τ )eiτ t dτ,

where we may consider this integral as an improper Riemann integral (the excep-
tional points, where f (t) is not equal to this integral, are not relevant since we
integrate over the variable t). It then follows that

F( f (t)g(t))(ω) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
F(τ )g(t)e−i(ω−τ)t dτ dt

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
g(t)e−i(ω−τ)t dt

)
F(τ ) dτ,

where we have changed the order of integration. We state without proof that this
is allowed under the conditions of theorem 7.7. We recognize the inner integral as
G(ω − τ). This proves theorem 7.7, since it follows that

F( f (t)g(t))(ω) = 1

2π

∫ ∞

−∞
F(τ )G(ω − τ) dτ = 1

2π
(F ∗ G)(ω).

�

For complicated functions one can now still obtain the spectrum, in the form of a
convolution product, by using theorem 7.7. In some cases this convolution product
can then be calculated explicitly.

Suppose we need to find the spectrum of the function (1+ t2)−2. In example 7.4 weEXAMPLE
showed that 1/(1+t2) ↔ πe−| ω | and since all conditions of theorem 7.7 are met, it
follows that (1+t2)−2 ↔ (π/2)(e−| τ | ∗e−| τ |)(ω). By calculating the convolution
product (see exercise 6.26a), it then follows that (1+t2)−2 ↔ (π/2)(1+| ω |)e−| ω |.

�

7.2.5 Parseval’s identities

In theorem 7.7 it was shown that∫ ∞

−∞
f (t)g(t)e−iωt dt = 1

2π

∫ ∞

−∞
F(τ )G(ω − τ) dτ

and at the point ω = 0 this gives the identity∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F(τ )G(−τ) dτ.

Now replace g(t) by g(t) and use that g(t) ↔ G(−ω) (see table 4), then it follows
that∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F(ω)G(ω) dω. (7.18)
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This result is known as the theorem of Parseval or as Parseval’s identity and it thusParseval’s identity
holds under the same conditions as theorem 7.7 (taking the complex conjugate has
no influence on the conditions). Since zz = | z |2 for z ∈ C, formula (7.18) reduces
for f (t) = g(t) to∫ ∞

−∞
| f (t) |2 dt = 1

2π

∫ ∞

−∞
| F(ω) |2 dω. (7.19)

In order to distinguish between formulas (7.18) and (7.19) one often calls (7.19)
Plancherel’s identity. We shall not make this distinction: both identities will bePlancherel’s identity
called Parseval’s identity. (Compare (7.18) and (7.19) with Parseval’s identities for
Fourier series.) Note that in (7.19) it is quite natural to require f (t) to be square
integrable.

Identity (7.19) shows that square integrable functions have a Fourier transform
that is again square integrable. In signal theory a square integrable function is
also called a signal with finite energy-content or energy-signal for short. The valueEnergy-signal ∫ ∞
−∞ | f (t) |2 dt is then called the energy-content of the signal f (t) (also see chap-Energy-content

ter 1). Identity (7.19) shows that the spectrum of an energy-signal has again a finite
energy-content.

Parseval’s identities can also be used to calculate certain definite integrals.

Again we consider the block function pa(t) from section 6.3.1 having spectrumEXAMPLE
2 sin(aω/2)/ω. The function pa satisfies the conditions of theorem 7.7 and from
(7.19) it then follows that∫ ∞

−∞
| pa(t) |2 dt = 1

2π

∫ ∞

−∞
4 sin2(aω/2)

ω2
dω.

The left-hand side is easy to calculate and equals a. Changing to the variable t =
aω/2 in the right-hand side, we again obtain the result (7.17) from example 7.6. �

In (7.18) we take f (t) = pa(t) and g(t) = pb(t) with 0 ≤ a ≤ b. It then followsEXAMPLE
that∫ ∞

−∞
pa(t)pb(t) dt = 1

2π

∫ ∞

−∞
4 sin(aω/2) sin(bω/2)

ω2
dω.

The left-hand side equals a (since a ≤ b), while the integrand in the right-hand side
is an even function. Hence,∫ ∞

0

sin(aω/2) sin(bω/2)

ω2
dω = π

4
a.

Now change to the variable t = aω/2, then it follows for any c (= b/a) ≥ 1 that∫ ∞

0

sin t sin ct

t2
dt = π

2
.

The previous example is the case a = b = 1. �

EXERCISES

Show that theorem 7.4 is equivalent to the following statement: if F(ω) = 0 on R,7.10
then f (t) = 0 at all points t where f is continuous.

Use the duality property to determine the Fourier transform of the function7.11
sin(at/2)/t . Also see exercise 7.5, where we already verified the conditions.

Use the duality property to determine the Fourier transform of the function7.12
sin2(at/2)/t2.
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Use the convolution theorem in the frequency domain to determine the spectrum of7.13
the function sin2(at/2)/t2 (see section 6.6 for pa ∗ pa). Check your answer using
the result from exercise 7.12 and note that although sin(at/2)/t is not absolutely
integrable, theorem 7.7 still produces the correct result.

According to table 3 one has for a > 0 that ε(t)e−at ↔ 1/(a + iω). Can we now7.14
use duality to conclude that 1/(a + i t) ↔ 2πε(−ω)eaω?

Verify that the duality property applied to the relation7.15

e−at2 ↔
√

π

a
e−ω2/4a leads to the result

1

2
√

πa
e−t2/4a ↔ e−aω2

.

Then show that the second relation is a direct consequence of the first relation by
changing from a to 1/(4a) in the first relation. Hence, in this case we do not find a
new Fourier transform.

Determine the Fourier transform of the following functions:7.16
a f (t) = 1/(t2 − 2t + 2),
b f (t) = sin 2π(t − 3)/(t − 3),
c f (t) = sin 4t/(t2 − 4t + 7),
d f (t) = sin2 3(t − 1)/(t2 − 2t + 1).

Determine the function f (t) having the following function F(ω) as its spectrum:7.17
a F(ω) = 1/(ω2 + 4),
b F(ω) = p2a(ω − ω0) + p2a(ω + ω0) for a > 0,
c F(ω) = e−3| ω−9 |.

Let f and g be two functions in S. Use the convolution theorem (theorem 6.13) and7.18
theorem 7.6 to show that f ∗ g belongs to S.

Let Pa(t) be as in example 7.7. Show that Pa ∗ Pb = Pa+b. Here one may use that7.19
Pa ∗ Pb is continuously differentiable (Pa is not an element of S; see exercise 6.20).

Consider the Fourier transform on the space S. Use the reciprocity property to show7.20
that F4 is the identity on S (up to a constant): F4( f (t)) = 4π2 f (t) for any f ∈ S.

For t > 0 we define the function g(t) by g(t) = e−t . Extend this function to an odd7.21
function on R. The spectrum of g has been determined in exercise 6.14.
a Use the fundamental theorem to show that for t > 0 one has∫ ∞

0

x sin xt

1 + x2
dx = π

2
e−t .

Why is this identity not correct for t = 0?
b Next use Parseval’s identity to show that∫ ∞

0

x2

(1 + x2)2
dx = π

4
.

Use the function e−a| t | to show that7.22 ∫ ∞

0

1

(a2 + x2)(b2 + x2)
dx = π

2ab(a + b)
.

a Determine the spectrum of the function sin4 t/t4 using the convolution theorem7.23
in the frequency domain.
b Calculate∫ ∞

−∞
sin4 x

x4
dx .
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Find the function f (t) with spectrum 1/(1 + ω2)2 and use this to give a new proof7.24
of the identity from exercise 7.22 for the case a = b = 1.

7.3 Poisson’s summation formula∗

The material in this section will only be used to determine the Fourier transform
of the so-called comb distribution in section 9.1.3 and also to prove the sampling
theorem in chapter 15. Sections 7.3 and 9.1.3 and the proof of the sampling theorem
can be omitted without any consequences for the remainder of the material.

With the conclusion of section 7.2 one could state that we have finished the the-
ory of the Fourier integral for non-periodic functions. In the next two chapters we
extend the Fourier analysis to objects which are no longer functions, but so-called
distributions. Before we start with distribution theory, the present section will first
examine Poisson’s summation formula. It provides an elegant connection between
the Fourier series and the Fourier integral. Moreover, we will use Poisson’s summa-
tion formula in chapter 9 to determine the Fourier transform of the so-called comb
distribution, and in chapter 15 to prove the sampling theorem. We note, by the way,
that in the proof of Poisson’s summation formula we will not use the fundamental
theorem of the Fourier integral.

In order to make a connection between the Fourier series and the Fourier integral,
we will try to associate a periodic function with period T with an absolutely inte-
grable function f (t). We will do this in two separate ways. First of all we define the
periodic function fp(t) in the following obvious way:

fp(t) =
∞∑

n=−∞
f (t + nT ). (7.20)

Replacing t by t + T in (7.20), it follows from a renumbering of the sum that

fp(t + T ) =
∞∑

n=−∞
f (t + (n + 1)T ) =

∞∑
n=−∞

f (t + nT ) = fp(t).

Hence, the function fp(t) is indeed periodic with period T . There is, however,
yet another way to associate a periodic function with f (t). First take the Fourier
transform F(ω) of f (t) and form a sort of Fourier series associated with f (note
again that f is non-periodic):

1

T

∞∑
n=−∞

F(2πn/T )e2π int/T . (7.21)

(We will see that this is in fact the Fourier series of fp(t).) If we replace t by
t + T , then (7.21) remains unchanged and (7.21) is thus, as a function of t , also pe-
riodic with period T . (We have taken F(2πn/T )/T instead of F(n) since a similar
connection between Fourier coefficients and the Fourier integral has already been
derived in (6.9).) Poisson’s summation formula now states that the two methods to
obtain a periodic function from a non-periodic function f (t) lead to the same result.
Of course we have to require that the resulting series converge, preferably abso-
lutely. In order to give a correct statement of the theorem, we also need to impose
some extra conditions on the function f (t).

Let f (t) be an absolutely integrable and continuous function on R with spectrumTHEOREM 7.8
Poisson’s summation formula F(ω). Let T > 0 be a constant. Assume furthermore that there exist constants

p > 1, A > 0 and M > 0 such that | f (t) | < M | t |−p for | t | > A. Also assume
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that
∑∞

n=−∞ | F(2πn/T ) | converges. Then

∞∑
n=−∞

f (t + nT ) = 1

T

∞∑
n=−∞

F(2πn/T )e2π int/T (7.22)

(with absolutely convergent series). In particular

∞∑
n=−∞

f (nT ) = 1

T

∞∑
n=−∞

F(2πn/T ). (7.23)

Proof
Define fp(t) as in (7.20). Without proof we mention that, with the conditions on the
function f (t), the function fp(t) exists for every t ∈ R and that it is a continuous
function. Furthermore, we have already seen that fp(t) is a periodic function with
period T . The proof now consists of the determination of the Fourier series of fp(t)
and subsequently applying some of the results from the theory of Fourier series.

For the nth Fourier coefficient cn of fp(t) one has

cn = 1

T

∫ T

0
fp(t)e−2π int/T dt = 1

T

∫ T

0

∞∑
k=−∞

f (t + kT )e−2π int/T dt.

Integrating term-by-term we obtain

cn = 1

T

∞∑
k=−∞

∫ T

0
f (t + kT )e−2π int/T dt.

From the conditions on the function f (t) it follows that this termwise integration is
allowed, but again this will not be proven. Changing to the variable τ = t + kT in
the integral, it then follows that

cn = 1

T

∞∑
k=−∞

∫ (k+1)T

kT
f (τ )e−2π inτ/T e2π ink dτ.

For k, n ∈ Z one has e2π ink = 1. Furthermore, the intervals [kT, (k+1)T ] precisely
fill up all of R when k runs through the set Z, and so

cn = 1

T

∫ ∞

−∞
f (τ )e−2π inτ/T dτ = 1

T
F(2πn/T ). (7.24)

This determines the Fourier coefficients cn of fp(t) and because of the assumption
on the convergence of the series

∑∞
n=−∞ | F(2πn/T ) | we now have that

∞∑
n=−∞

| cn | converges.

Since
∣∣∣ cne2π int/T

∣∣∣ = | cn |, it then also follows that the Fourier series of fp(t)

converges absolutely (see theorem 4.5). For the moment we call the sum of this
series g(t), then g(t) is a continuous function with Fourier coefficients cn . The
two continuous functions fp(t) and g(t) thus have the same Fourier coefficients and
according to the uniqueness theorem 4.4 it then follows that fp(t) = g(t). Hence,

∞∑
n=−∞

f (t + nT ) = fp(t) = g(t) = 1

T

∞∑
n=−∞

F(2πn/T )e2π int/T ,
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which proves (7.22). For t = 0 we obtain (7.23). �
In the proof of theorem 7.8 a number of results were used without proof. All

of these results rely on a property of series – the so-called uniform convergence –
which is not assumed as a prerequisite in this book. The reader familiar with the
properties of uniform convergent series can find a more elaborate proof of Poisson’s
summation formula in, for example, The theory of Fourier series and integral by
P.L. Walker, Theorem 5.30.

We will call both (7.22) and (7.23) Poisson’s summation formula. From the proof
we see that the right-hand side of (7.22) is the Fourier series of fp(t), that is, of the
function f (t) made periodic according to (7.20). The occurring Fourier coefficients
are obtained from the spectrum F(ω) using (7.24). In this manner we have linked
the Fourier series to the Fourier integral. It is even possible to derive the fundamental
theorem of the Fourier integral from the fundamental theorem of Fourier series using
Poisson’s summation formula. This gives a new proof of the fundamental theorem
of the Fourier integral. We will not go into this any further. In conclusion we present
the following two examples.

Take f (t) = a/(a2 + t2) with a > 0, then F(ω) = πe−a| ω | (see table 3). We wantEXAMPLE 7.8
to apply (7.23) with T = 1 and so we have to check the conditions. The assumption
about the convergence of the series

∑∞
n=−∞ | F(2πn) | is easy since

∞∑
n=−∞

e−2πa| n | = 1 + 2
∞∑

n=1

e−2πan,

which is a geometric series with ratio r = e−2πa . Since a > 0 it follows that
| r | < 1, and so the geometric series converges (see section 2.4.1). In this case we
even know the sum:

∞∑
n=−∞

e−2πa| n | = 1 + 2
e−2πa

1 − e−2πa
= 1 + e−2πa

1 − e−2πa
.

The condition on the function f (t) is also easy to verify: for t �= 0 one has | f (t) | ≤
a/t2 and so the condition in theorem 7.8 is met if we take p = 2, M = a and A > 0
arbitrary. Poisson’s summation formula can thus be applied. The right-hand side of
(7.23) has just been calculated and hence we obtain

∞∑
n=−∞

1

a2 + n2
= π

a

1 + e−2πa

1 − e−2πa
. (7.25)

By rewriting (7.25) somewhat, it then follows for any a > 0 that

∞∑
n=1

1

a2 + n2
= π

2a

1 + e−2πa

1 − e−2πa
− 1

2a2
.

Now take the limit a ↓ 0, then the left-hand side tends to
∑∞

n=1 1/n2, while a little
calculation will show that

lim
a↓0

(
π

2a

1 + e−2πa

1 − e−2πa
− 1

2a2

)
= lim

a↓0

πa(1 + e−2πa) − (1 − e−2πa)

2a2(1 − e−2πa)
= π2

6

(apply, for example, De l’Hôpital’s rule three times). This gives a new proof of the
famous identity (also see exercise 4.8)

∞∑
n=1

1

n2
= π2

6
.

�
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Every rapidly decreasing function f (t) (see section 6.6) satisfies the conditions ofEXAMPLE 7.9
theorem 7.8. First of all, it follows straight from the definition of the notion ‘rapidly
decreasing’ that the condition on the function f (t) is met, since for f (t) one has,
for example, that there exists a constant M > 0 such that | f (t) | < M/t2 for all
t �= 0 (so we can choose p = 2 and A arbitrary positive). It only remains to be
shown that the series

∑∞
n=−∞ | F(2πn/T ) | converges. Now it has been proven in

theorem 6.12 that the spectrum F(ω) of f (t) is again a rapidly decreasing function.
In particular, there again exists a constant M > 0 such that | F(ω) | < M/ω2 for all
ω �= 0. Hence,

∞∑
n=−∞

| F(2πn/T ) | = | F(0) | +
∞∑

n=1

| F(2πn/T ) | +
−1∑

n=−∞
| F(2πn/T ) |

< | F(0) | + 2
MT 2

4π2

∞∑
n=1

1

n2
< ∞,

since
∑∞

n=1 n−2 converges. All the conditions of theorem 7.8 are thus satisfied
and so Poisson’s summation formula can be applied to any f ∈ S. This result will
be used in section 9.1.3 to determine the Fourier transform of the so-called comb
distribution. �

EXERCISES

Show that (see example 7.8)7.25∗

lim
a↓0

πa(1 + e−2πa) − (1 − e−2πa)

2a2(1 − e−2πa)
= π2

6
.

Indicate why Poisson’s summation formula may be applied to the function f (t) =7.26∗
e−at2

(a > 0). Then prove that for every x > 0 one has

∞∑
n=−∞

e−πn2x = x−1/2
∞∑

n=−∞
e−πn2/x .

Prove the following generalization of (7.25) (here sinh x = (ex − e−x )/2 and7.27∗
cosh x = (ex + e−x )/2):

a

π

∞∑
n=−∞

1

a2 + (n + t)2
= sinh 2πa

cosh 2πa − cos 2π t
.

S U M M A R Y

For an absolutely integrable and piecewise continuous function f (t) on R with spec-
trum F(ω) one has limω→±∞ F(ω) = 0 (Riemann–Lebesgue lemma). Using this
important property, the fundamental theorem of the Fourier integral was proven:

1

2π

∫ ∞

−∞
F(ω)eiωt dω = 1

2
( f (t+) + f (t−))

for any absolutely integrable and piecewise smooth function f (t) on R (from now
on, all functions in the time domain will be assumed to be absolutely integrable and
piecewise smooth on R). Here the Fourier integral in the left-hand side converges
as a Cauchy principal value.
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From the fundamental theorem the uniqueness of the Fourier transform on R

immediately follows: if F(ω) = G(ω) on R, then f (t) = g(t) at all points t where
f and g are continuous.

In many cases the Fourier integral will exist as an improper integral as well,
resulting in the duality or reciprocity property:

F(−t) ↔ 2π f (ω).

Because of this, Fourier transforms almost always occur in pairs. The duality prop-
erty certainly holds for rapidly decreasing functions and this was used to show that
the Fourier transform is a one-to-one mapping onto the space S of rapidly decreas-
ing functions.

For square integrable functions f and g on R, the fundamental theorem was used
to prove the convolution theorem in the frequency domain:

f (t)g(t) ↔ (F ∗ G)(ω)/2π.

From this, Parseval’s identities immediately follow:∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F(ω)G(ω) dω

and∫ ∞

−∞
| f (t) |2 dt = 1

2π

∫ ∞

−∞
| F(ω) |2 dω.

Both the fundamental theorem and Parseval’s identities can be used to determine
definite integrals.

Finally, Poisson’s summation formula

∞∑
n=−∞

f (t + nT ) = 1

T

∞∑
n=−∞

F(2πn/T )e2π int/T

(where T > 0 is a constant) provided a link between Fourier series and the Fourier
integral. This formula can, for example, be applied to any f ∈ S.

S E L F T E S T

The function f (t) is defined by7.28

f (t) =
{

sin t for 0 ≤ t ≤ π ,
0 elsewhere.

(see exercise 6.9 for a similar function).
a Determine the spectrum F(ω) of f (t).
b Show that for each t ∈ R one has

f (t) = 1

π

∫ ∞

0

cos(π − t)ω + cos tω

1 − ω2
dω.

c Prove that∫ ∞

0

cos(πx/2)

1 − x2
dx = π

2
.

d Finally show that∫ ∞

0

cos2(πx/2)

(1 − x2)2
dx = π2

8
.
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Let the function f (t) = sin at/(t (1 + t2)) (a > 0) with spectrum F(ω) be given.7.29
Find F(ω) explicitly as follows.
a Show that g(t) = (p2a(v) ∗ e−| v |)(t) has as spectrum G(ω) = 4 f (ω).
b Determine g(t) explicitly by calculating the convolution from part a.
c Verify that the duality property can be applied and then give F(ω).

Let qa(t) be the triangle function and pa(t) the block function (a > 0), then it is7.30
known that (see table 3)

qa(t) ↔ 4 sin2(aω/2)

aω2
and pa(t) ↔ 2 sin(aω/2)

ω
.

a For which values of t ∈ R does the Fourier integral corresponding to qa(t)
converge to qa(t)? Does this Fourier integral converge only as Cauchy principal
value or also as improper integral? Justify your answers.
b Use Parseval’s identity to show that∫ ∞

0

sin3 x

x3
dx = 3π

8
.
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CHAPTER 8

Distributions

I N T R O D U C T I O N

Many new concepts and theories in mathematics arise from the fact that one is con-
fronted with problems that existing theories cannot solve. These problems may
originate from mathematics itself, but often they arise elsewhere, such as in physics.
Especially fundamental problems, sometimes remaining unsolved for years, decades
or even centuries, have a very stimulating effect on the development of mathemat-
ics (and science in general). The Greeks, for example, tried to find a construction
of a square having the same area as the unit circle. This problem is known as the
‘quadrature of the circle’ and remained unsolved for some two thousand years. Not
until 1882 it was found that such a construction was impossible, and it was discov-
ered that the area of the unit circle, hence the number π , was indeed a very special
real number.

Many of the concepts which one day solved a very fundamental problem are now
considered obvious. Even the concept of ‘function’ has one day been heavily de-
bated, in particular relating to questions on the convergence of Fourier series. Prob-
lems arising in the context of the solutions of quadratic and cubic equations were
solved by introducing the now so familiar complex numbers. As is well-known, the
complex numbers form an extension of the set of real numbers.

In this chapter we will introduce new objects, the so-called ‘distributions’, which
form an extension of the concept of function. For twenty years, these distributions
were used successfully in physics, prior to the development, in 1946, of a mathe-
matical theory which could handle these problematic objects. It will turn out that
these distributions are an important tool, just as the complex numbers. They are
indispensable when describing, for example, linear systems in chapter 10.

In section 8.1 we will show how distributions arise in the Fourier analysis of
non-periodic functions. We will first concentrate on the so-called delta function – a
misleading term by the way, since it is by no means a function. In section 8.2 we
then present a mathematically rigorous introduction of distributions, and we treat our
first important examples. We will show, among other things, that most functions can
be considered as distributions; hence, distributions form an extension of functions
(although not every function can be considered as a distribution).

It is remarkable that distributions can always be differentiated, as will be estab-
lished in section 8.3. In this way, one can obtain new distributions by differentiation.
In particular one can start with an ordinary function, consider it as a distribution, and
then differentiate it (as a distribution). In this manner one can obtain distributions
from ordinary functions, which themselves can then no longer be considered as
functions. For example, the delta function mentioned above arises as the derivative
of the unit step function. In the final section of this chapter two more properties
will be developed, which will be useful later on: multiplication and scaling. Fourier
analysis will not return until chapter 9.

188
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know and can apply the definition of distributions
- know how to consider functions as distributions
- know the definition of a number of specific distributions: the delta function, the

principal value 1/t
- know how to differentiate distributions
- can add distributions and multiply them by a constant
- can multiply distributions by polynomials and some more general functions
- can scale distributions and know the concept of time reversal for distributions
- know the concepts even and odd distributions.

8.1 The problem of the delta function

Without any doubt, the most famous distribution is the ‘delta function’. Although
the name suggests otherwise, this object is not a function. This is because, as we
shall see in a moment, a function cannot have the prescribed properties of the delta
function. A precise definition of the delta function will be given in section 8.2. First
we will show that the notion of the delta function arises naturally in the Fourier
analysis of non-periodic functions.

In section 6.2 we already noted that the constant function f (t) = 1 has no Fourier
transform. However, a good approximation of f is the block function p2a(t) for
very large values of a and in fact we would like to take the limit a → ∞. Since the
spectrum of p2a(t) is the function 2 sin aω/ω, we will be inclined to believe that
from this we should get the spectrum of the function f (t) = 1 as a → ∞. But what
precisely is lima→∞ 2 sin aω/ω? When this is considered as a pointwise limit, that
is, for each ω ∈ R fixed, then there is no value of ω such that the limit exists, since
limx→∞ sin x does not exist. If we want to obtain a meaningful result, we need to
attach a different meaning to the limit lima→∞ 2 sin aω/ω. Now in theorem 7.2 we
have shown that for an absolutely integrable and piecewise smooth function one has

lim
a→∞

1

π

∫ ∞

−∞
sin aτ

τ
f (t − τ) dτ = f (t), (8.1)

where we assume for convenience that f is continuous at t . By substituting t = 0
and changing from the variable τ to −ω, we obtain that

lim
a→∞

1

π

∫ ∞

−∞
sin aω

ω
f (ω) dω = f (0) (8.2)

when f is continuous at t = 0. This enables us to give a new interpretation for
lima→∞ 2 sin aω/ω: for any absolutely integrable and continuously differentiable
function f (ω) formula (8.2) is valid. Only within this context will the limit have a
meaning. There is no point in asking whether we may interchange the limit and the
integral in (8.2). We have come up with this new interpretation precisely because
the original limit lima→∞ 2 sin aω/ω had no meaning. Still, one often defines the
symbol δ(ω) by

δ(ω) = 1

2π
lim

a→∞
2 sin aω

ω
, (8.3)

and then the limit and the integral are interchanged in (8.2). For the new object δ(ω)

one then obtains∫ ∞

−∞
δ(ω) f (ω) dω = f (0). (8.4)
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Formulas (8.3) and (8.4) should not be taken literally; the limit in (8.3) does not
exist and (8.4) should only be considered as a symbolic way of writing (8.2). Yet, in
section 8.2 it will turn out that the object δ(ω) can be given a rigorous mathematical
meaning that is very close to (8.4). And although δ(ω) is called the delta function,
it will no longer be a function, but a so-called ‘distribution’. The general theory of
distributions, of which the delta function is one the most important examples, will
be treated in a mathematically correct way in the next section.

We recall that studying the limit lima→∞ 2 sin aω/ω was motivated by the search
for the spectrum of the constant function f (t) = 1. Since we can write 2πδ(ω) =
lima→∞ 2 sin aω/ω, taking (8.3) as starting point, it is now plausible that 2πδ(ω)

will be the spectrum of the constant function f (t) = 1.
Conversely, it can be made plausible in a similar way that the spectrum of the

delta function δ(t) is the constant function F(ω) = 1. To do so, we will take a closer
look at (8.4) (which, by the way, is often taken as the defining property in much
of the engineering literature). For example, (8.4) should be valid for absolutely
integrable and piecewise smooth functions which, moreover, are continuous at t =
0. The function

f (t) =
{

1 for a < t < b,
0 elsewhere,

satisfies all these conditions as long as a �= 0 and b �= 0. From (8.4) it then follows
that

∫ b
a δ(ω) dω = f (0) for all a, b ∈ R with a �= 0, b �= 0 and a < b. If we now

take a < 0 and b > 0, then f (0) = 1 and so
∫ b

a δ(ω) dω = 1. This suggests that
the integral of the delta function over R equals 1, that is,∫ ∞

−∞
δ(ω) dω = 1. (8.5)

If, on the other hand, we take a < b < 0 or 0 < a < b, then f (0) = 0 and so∫ b

a
δ(ω) dω = 0 for all a, b ∈ R with a < b < 0 or 0 < a < b. (8.6)

A function satisfying both (8.5) and (8.6) must have a very extraordinary behaviour!
(Based on (8.5) and (8.6) one can, for instance, conclude that there is not a single
point in R where δ(ω) is continuous.) Sometimes this is solved by describing the
delta function as a function being 0 everywhere, except at the point ω = 0 (in order
for (8.6) to hold) and in addition having integral over R equal to 1 (in order for (8.5)
to hold). However, such a function satisfying (8.5) and (8.6) cannot exist since an
integral does not change its value if the value of the integrand is changed at one
point. Hence, the value of δ(ω) at the point ω = 0 is not relevant for the integral as
a whole, which means that the integral will be 0 since δ(ω) = 0 outside the point
ω = 0.

The above description of the delta function still has some useful interpretations.
Let us consider the block function a−1 pa(t) of height a−1 and duration a for ever
decreasing a (see figure 8.1). (For small values of a we can interpret a−1 pa(t)
physically as an impulse: a big force applied during a short time.) For a ↓ 0 we
obtain an object equal to 0 everywhere except at the point t = 0 where the limit
will be ∞; moreover, the integral over R of a−1 pa(t) will equal 1 for all a > 0,
and so in the limit a ↓ 0 the integral over R will equal 1 as well. We thus obtain
an object satisfying precisely the description of the delta function given above. It is
then plausible that

lim
a↓0

∫ ∞

−∞
a−1 pa(t) f (t) dt = f (0), (8.7)
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FIGURE 8.1
Block functions approximating the delta function.

and looking at (8.4) we are thus led to believe that

lim
a↓0

a−1 pa(t) = δ(t). (8.8)

As a matter of fact, one can prove that (8.7) is indeed correct, under certain con-
ditions on the function f (t). Formulas (8.7) and (8.8) now present us with a sit-
uation which is entirely analogous to the situation in (8.2) and (8.3). We can use
this to make it plausible that the spectrum of the delta function δ(t) is the con-
stant function F(ω) = 1. This is because the spectrum of a−1 pa(t) is the function
(2 sin aω/2)/aω and for arbitrary ω ∈ R one has lima↓0 sin aω/aω = 1. We thus

indeed find that the spectrum of δ(t) = lima↓0 a−1 pa(t) will equal the constant
function F(ω) = 1 (this also follows if we interchange limit and integral in (8.7)
and take e−iωt for the function f (t)). Also note that the duality or reciprocity prop-
erty of the Fourier transform seems to hold for the delta function as well: δ(t) ↔ 1
and 1 ↔ 2πδ(ω).

Of course, all the conclusions in this section rest upon intuitive derivations. In the
next section a mathematically rigorous definition of distributions, and in particular
of the delta function, will be given. In chapter 9 all of the results on the Fourier
analysis of the delta function described above will be proven and the more general
theory of the Fourier transform of distributions will be treated.
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EXERCISE

There are many ways to obtain the delta function as a symbolic limit of functions.8.1
We have already seen two of these limits (in (8.3) and (8.8)). Now consider the
function Pa(t) from example 7.7:

Pa(t) = a

π(a2 + t2)
.

a Sketch π Pa(t) for a = 1 and a = 1/4.
b Show that lima↓0 Pa(t) = 0 for t �= 0, while the limit equals ∞ for t = 0.
Since the integral of Pa(t) over R is 1 (see example 7.7), it is plausible that δ(t) =
lima↓0 Pa(t).
c Determine the limit of the spectrum of Pa(t) for a ↓ 0 and conclude that it is
plausible that the constant function 1 is the spectrum of δ(t).

8.2 Definition and examples of distributions

8.2.1 Definition of distributions

Loosely speaking, a complex-valued function f is a prescription assigning a value
f (t) ∈ C to every t ∈ R. Complex-valued functions are thus mappings from R

to C. In section 8.1 we have seen that the expression lima→∞ 2 sin aω/ω only
makes sense in the context of the integral in (8.2). In fact, (8.2) assigns the value
2π f (0) to every absolutely integrable and, say, continuously differentiable func-
tion f (ω). Here we have discovered an important new principle: the expression
lima→∞ 2 sin aω/ω (written symbolically as 2πδ(ω)) can be considered as a map-
ping assigning to every absolutely integrable and continuously differentiable func-
tion f (ω) a certain complex number (namely 2π f (0)). This new principle will be
used to give a mathematically rigorous definition of distributions.

Keeping in mind the Fourier analysis of distributions, it turns out that it is not
very convenient to work with continuously differentiable functions. In order to get
a nice theory it is necessary to use a set of functions which is mapped into itself
by the Fourier transform. We already know such a set of functions, namely the set
S of rapidly decreasing functions (see sections 6.5 and 7.2.2). Now distributions
will be mappings assigning a complex number to every f ∈ S. The choice of S is
determined by its usefulness in Fourier analysis. It is quite possible to define certain
distributions as mappings from other sets of functions to C, for example from the set
of all continuous functions, or the set of all continuously differentiable functions, to
C. However, we will mainly confine ourselves to mappings from S to C.

One additional condition is imposed on these mappings: linearity. We will illus-
trate this using our example from section 8.1. If we replace f in (8.2) by c f , where
c is an arbitrary complex constant, then c can be taken outside the integral as well
as outside the limit. Hence, we assign to the function c · f the complex number
c · 2π f (0). So, if we multiply f by c, then the complex number 2π f (0) assigned to
f is also multiplied by c. Next we replace f in (8.2) by a sum g+h of two functions
g and h. Then

lim
a→∞

∫ ∞

−∞
2 sin aω

ω
(g + h)(ω) dω

= lim
a→∞

∫ ∞

−∞
2 sin aω

ω
g(ω) dω + lim

a→∞

∫ ∞

−∞
2 sin aω

ω
h(ω) dω

= 2πg(0) + 2πh(0).
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Hence, we assign to the sum g + h the sum 2π(g + h)(0) of the complex numbers
2πg(0) and 2πh(0). Together, these two properties show that the mapping is lin-
ear (see also chapter 1 on linear systems). This finally brings us to the following
definition of the concept of distribution.

A distribution T is a linear mapping assigning a complex number to every rapidlyDEFINITION 8.1
Distribution decreasing function φ.

We denote the image of a φ ∈ S under the mapping T by 〈T, φ〉; note that
〈T, φ〉 ∈ C. A distribution is thus a mapping T : S → C satisfying
〈T, cφ〉 = c 〈T, φ〉,
〈T, φ1 + φ2〉 = 〈T, φ1〉 + 〈T, φ2〉,
where φ, φ1 and φ2 are elements of S and c ∈ C.

One uses the notation 〈T, φ〉 to prevent confusion with functions. For the same
reason it is customary in distribution theory to denote elements in S with the Greek
symbols φ, ψ , etc. In section 8.2.3 we will see that many functions can be consid-
ered as distributions; it would then be very confusing to use the symbols f , g, etc.
for elements in S as well. Although a distribution T is a linear mapping on S, we
will nevertheless often write T (t) to express the fact that T acts on functions that
depend on the variable t .

8.2.2 The delta function

Of course, our first example of a distribution should be the delta function δ(t). In
section 8.1 we have argued that (8.4) is the crucial ‘property’ of δ(t): to a function
φ(t) the value φ(0) is assigned. This will be taken as the definition of the delta
function.

The delta function δ(t) (or δ for short) is the distribution defined byDEFINITION 8.2
Delta function 〈δ(t), φ〉 = φ(0) for φ ∈ S.

Let us verify that δ is indeed a distribution. It is clear that δ is a mapping from S
to C since φ(0) ∈ C. One also has

〈δ, cφ〉 = (cφ)(0) = c · φ(0) = c 〈δ, φ〉
and

〈δ, φ1 + φ2〉 = (φ1 + φ2)(0) = φ1(0) + φ2(0) = 〈δ, φ1〉 + 〈δ, φ2〉 ,

which proves the linearity of δ. The delta function is thus indeed a distribution. In
many books 〈δ, φ〉 = φ(0) is written as∫ ∞

−∞
δ(t)φ(t) dt = φ(0), (8.9)

just as we have done in (8.4) in connection with (8.2). Relation (8.9) is often called
the sifting property of the delta function; the value of φ at the point 0 is ‘siftedSifting property
out’ by δ. The graphical representation of the delta function in figure 8.2 is also
based on this property: we draw an arrow at the point 0 of height 1. If we agree
that the integral in (8.9) is a symbolic representation, then there is no objection.
Of course, one cannot prove results about the delta function by applying properties
from integral calculus to this integral. This is because it is only a symbolic way
of writing. However, calculating in an informal way with the integral (8.9) may
provide conjectures about possible results for the delta function. As an example one
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can get an impression of the derivative of the delta function by using integration by
parts (see example 8.8).

The delta function was introduced explicitly for the first time by the English
physicist P.A.M. Dirac in 1926. He was certainly not the first, nor the only one,
to have some notion of a delta function. The classical result (8.2) for example, is
already very close to how the delta function operates. Dirac was the first, however,
to give an explicit meaning to the delta function and to introduce a separate notation
for it. For this reason the delta function is often called the Dirac function or Dirac
delta function. In the years following the introduction of the delta function, its useDirac delta function
produced many results, which in physical practice turned out to be correct. Not until
1946 was a rigorous distribution theory developed by the French mathematician
L. Schwartz.

A slightly more general delta function is obtained by assigning to a function
φ ∈ S not the value φ(0), but the value φ(a), where a ∈ R is fixed. This distribution
is denoted by δ(t − a), so

〈δ(t − a), φ〉 = φ(a). (8.10)

We will call δ(t − a) the delta function at the point a. If we choose 0 for the pointDelta function at a
a, then we simply call this the delta function. Symbolically (8.10) is sometimes
written as∫ ∞

−∞
δ(t − a)φ(t) dt = φ(a). (8.11)

We represent the distribution δ(t − a) graphically by an arrow of height 1 at the
point a. See figure 8.2.

0

1

a t

δ(t) δ(t – a)

FIGURE 8.2
The delta function at 0 and at a.

At the start of this section it was noted that in order to define a distribution it is
not always necessary to confine ourselves to the space S. The definition of δ(t − a)

for example, and in particular of δ, is also meaningful for any continuous function
φ. Hence, definition 8.2 and (8.10) are often given for all continuous functions φ.

8.2.3 Functions as distributions

Distributions are often called generalized functions because they form an extensionGeneralized functions
of the concept of ‘function’. Just as any real number can be considered as a complex
number, a function apparently can be considered as a distribution. This comparisonFunction as distribution
with R as a subset of C is not entirely correct, since not all functions can be consid-
ered as distributions. If, however, the function f (t) is absolutely integrable, then it
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can certainly be considered as a distribution T f by defining

〈
T f , φ

〉 =
∫ ∞

−∞
f (t)φ(t) dt for φ ∈ S. (8.12)

First, it has to be shown that the integral in (8.12) exists. But for φ ∈ S one has in
particular that φ(t) is bounded on R, say | φ(t) | ≤ M . It then follows that∣∣∣∣
∫ ∞

−∞
f (t)φ(t) dt

∣∣∣∣ ≤
∫ ∞

−∞
| f (t)φ(t) | dt ≤ M

∫ ∞

−∞
| f (t) | dt,

and since f is absolutely integrable, the integral exists. Next we have to show that
T f is indeed a distribution. For each φ ∈ S the integral in (8.12) gives a complex
number. Hence, T f is a mapping from S to C. The linearity of T f follows imme-
diately from the linearity of integration (see also, for example, section 6.4.1) and so
T f is indeed a distribution. In this way one can consider any absolutely integrable
function f as a distribution. But now a problem arises. How do we know for sure
that two different functions f and g also lead to two different distributions T f and
Tg? This ought to be true if we consider distributions as an extension of functions.
(Two real numbers that are unequal will also be unequal when considered as com-
plex numbers.) But what do we actually mean by ‘unequal’ or ‘equal’ distributions?

Two distributions T1 and T2 are called equal if 〈T1, φ〉 = 〈T2, φ〉 for all φ ∈ S. InDEFINITION 8.3
Equality of distributions this case we write T1 = T2.

We now mention without proof that T f = Tg implies that f = g at the points
where both f and g are continuous. When no confusion is possible, the distribution
T f is simply denoted by f . It is then customary to use the phrase ‘ f as distribution’.

We close this section with some examples of distributions that will often return.
Among other things, these examples will show that many functions which are not
absolutely integrable still define a distribution T f through (8.12).

The constant function f (t) = 1 is not absolutely integrable over R. Still it definesEXAMPLE 8.1
The function f (t) = 1 precisely as in (8.12) a distribution, simply denoted by 1:

〈1, φ〉 =
∫ ∞

−∞
φ(t) dt for φ ∈ S. (8.13)

Since φ ∈ S, there exists a constant M such that (1 + t2) | φ(t) | ≤ M . Then the
integral in (8.13) exists since∣∣∣∣
∫ ∞

−∞
φ(t) dt

∣∣∣∣ ≤
∫ ∞

−∞
| φ(t) | dt ≤ M

∫ ∞

−∞
1

1 + t2
dt < ∞.

It is now rather easy to show that 1 is indeed a distribution (that is, a linear mapping
from S to C). In chapter 9 it will turn out that 1 is the spectrum of the delta function.
This has been already been made plausible in section 8.1. �

The unit step function ε(t) (see example 6.1) defines a distribution, again denotedEXAMPLE 8.2
Unit step function by ε(t), or ε for short, by

〈ε, φ〉 =
∫ ∞

−∞
ε(t)φ(t) dt =

∫ ∞

0
φ(t) dt for φ ∈ S.

Note that (8.12) is again applied here. Further details are almost the same as in
example 8.1. �



196 8 Distributions

The sign function sgn t is defined byEXAMPLE 8.3
Sign function

sgn t =



1 for t > 0,
0 for t = 0,
−1 for t < 0.

This function defines a distribution sgn t by

〈sgn t, φ〉 =
∫ ∞

−∞
sgn tφ(t) dt =

∫ ∞

0
(φ(t) − φ(−t)) dt for φ ∈ S.

Here (8.12) is again applied. Further details are the same as in the previous two
examples. �

The function f (t) = | t | also defines a distribution using (8.12), and again it willEXAMPLE 8.4
The function f (t) = | t | simply be denoted by | t |:

〈| t | , φ〉 =
∫ ∞

−∞
| t | φ(t) dt =

∫ ∞

0
t (φ(t) + φ(−t)) dt for φ ∈ S.

In order to show that the integral exists, we use in this case that there exists a constant

M > 0 such that
∣∣∣ t (1 + t2)φ(t)

∣∣∣ ≤ M on R. From here on, the proof is exactly the

same as in example 8.1. �

The function 1/t is not absolutely integrable on R and even φ(t)/t with φ ∈ SEXAMPLE 8.5
may not be absolutely integrable on R since the point t = 0 may cause a problem.
Hence, for 1/t we cannot use (8.12) to define a distribution. This problem can be
solved by resorting to a variant of the Cauchy principal value from definition 7.1.
Loosely speaking, in this case we let the limits at t = 0 tend to zero at the same
rate; the distribution arising in this way is denoted by pv(1/t) (pv from ‘principalPrincipal value 1/t
value’). The precise definition of the distribution pv(1/t) is as follows:〈
pv

1

t
, φ

〉
= lim

α↓0

∫
| t |≥α

φ(t)

t
dt = lim

α↓0

(∫ ∞

α

φ(t)

t
dt +

∫ −α

−∞
φ(t)

t
dt

)
(8.14)

for φ ∈ S. The existence of the right-hand side is again the most difficult step
in proving that pv(1/t) is a distribution. To this end we split the integral in the
right-hand side of (8.14) as follows:∫
α≤| t |≤1

φ(t)

t
dt +

∫
| t |≥1

φ(t)

t
dt. (8.15)

First look at the second integral in (8.15). Since | 1/t | ≤ 1 for | t | ≥ 1, it follows
that∣∣∣∣
∫
| t |≥1

φ(t)

t
dt

∣∣∣∣ ≤
∫
| t |≥1

| φ(t) | dt ≤
∫ ∞

−∞
| φ(t) | dt,

and in example 8.1 it was shown that the last integral exists for φ ∈ S. Hence, the
second integral in (8.15) exists. For the first integral in (8.15) we note that for any
α > 0 one has∫
α≤| t |≤1

φ(0)

t
dt =

∫ 1

α

φ(0)

t
dt +

∫ −α

−1

φ(0)

t
dt = 0,

since 1/t is an odd function. Hence,∫
α≤| t |≤1

φ(t)

t
dt =

∫
α≤| t |≤1

φ(t) − φ(0)

t
dt.
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Now define ψ(t) = (φ(t) − φ(0))/t for t �= 0 and ψ(0) = φ′(0). Then ψ is
continuous at the point t = 0 since

lim
t→0

ψ(t) = lim
t→0

φ(t) − φ(0)

t − 0
= φ′(0) = ψ(0).

It then follows that

lim
α↓0

∫
α≤| t |≤1

φ(t)

t
dt = lim

α↓0

∫
α≤| t |≤1

φ(t) − φ(0)

t
dt = lim

α↓0

∫
α≤| t |≤1

ψ(t) dt.

Since ψ is continuous at t = 0, the limit α → 0 exists and it follows that

lim
α↓0

∫
α≤| t |≤1

φ(t)

t
dt =

∫ 1

−1
ψ(t) dt.

Since ψ is a continuous function on the closed and bounded interval [−1, 1], it then
follows that this final integral, and so the right-hand side of (8.14), exists. �

EXERCISES

Let δ(t − a) be defined as in (8.10).8.2
a Show that δ(t − a) is a distribution, that is, a linear mapping from S to C.
b Derive the symbolic notation (8.11) by interchanging the limit and the integral
in (8.1) (hint: also use that δ(−t) = δ(t), which is quite plausible on the basis of
(8.3) or (8.8), and which will be proven in section 8.4).

Show that T f as defined in (8.12) is a linear mapping.8.3

Show that 1 as defined in (8.13) is indeed a distribution.8.4

Prove that the integral in example 8.2 exists and check that ε is a distribution.8.5

Do the same as in exercise 8.5 for the distribution sgn t from example 8.3.8.6

Prove that | t | from example 8.4 defines a distribution.8.7

For fixed a ∈ R we define T by 〈T, φ〉 = φ′(a) for φ ∈ S. Show that T is a8.8
distribution.

Let the function f (t) = | t |−1/2 be given.8.9
a Show that f is integrable on the interval [−1, 1]. Is f integrable on R?
b Show that f defines a distribution by means of (8.12). In particular it has to be
shown that the defining integral exists (hint: for | t | ≥ 1 one has | t |−1/2 ≤ 1).

Prove for the following functions that (8.12) defines a distribution:8.10
a f (t) = t ,
b f (t) = t2.

8.3 Derivatives of distributions

Switching on a (direct current) apparatus at time t = 0 can be described using the
unit step function ε(t). This, however, is an ideal description which will not occur
in reality of course. More likely there will be a very strong increase in a very short
time interval. Let u(t) be the function describing the switching on in a realistic way.
The ideal function ε(t) and a typical ‘realistic’ function u(t) are drawn in figure 8.3.
We assume for the moment that u(t) is differentiable and that u(t) increases from
the value 0 to the value 1 in the time interval 0 ≤ t ≤ a. The derivative u′(t) of
u(t) equals 0 for t < 0 and t > a, while between t = 0 and t = a the function
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FIGURE 8.3
The ideal ε(t), the realistic u(t) and the derivative u′(t).

u′(t) quickly reaches its maximum and then decreases to 0 rapidly. The graph of a
typical u′(t) is also drawn in figure 8.3. If we now take the limit a ↓ 0, then u(t)
will transform into the function ε(t), while u′(t) seems to tend towards the delta
function. This is because u(t) will have to increase faster and faster over an ever
smaller interval; the derivative will then attain ever increasing values in the vicinity
of t = 0. In the limit a ↓ 0 an object will emerge which is 0 everywhere, except at
the point t = 0, where the value becomes infinitely large. Since, moreover,

∫ ∞

−∞
u′(t) dt =

∫ a

0
u′(t) dt = [u(t)]a

0 = 1

for every a > 0, (8.5) is valid as well. We thus obtain an object fitting precisely
the description of the delta function from section 8.1. Hence, it is plausible that the
derivative of ε(t) will be the delta function.
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In order to justify these conclusions mathematically, we should first find a def-
inition for the derivative of a distribution. Of course, this definition should agree
with the usual derivative of a function, since distributions are an extension of func-
tions. Now let f be an absolutely integrable function with continuous derivative f ′
being absolutely integrable as well. Then f ′ defines a distribution T f ′ and from an
integration by parts it then follows for φ ∈ S that

〈
T f ′ , φ

〉 =
∫ ∞

−∞
f ′(t)φ(t) dt = [ f (t)φ(t)]∞−∞ −

∫ ∞

−∞
f (t)φ′(t) dt.

Since φ ∈ S, one has limt→±∞ φ(t) = 0 (for | φ(t) | ≤ M/(1 + t2)). Moreover,
the final integral can be considered as the distribution T f applied to the function
φ′(t). We thus have〈
T f ′ , φ

〉 = − 〈
T f , φ

′〉 . (8.16)

There is now only one possible definition for the derivative of a distribution.

The derivative T ′ of a distribution T is defined byDEFINITION 8.4
Derivative of distributions 〈

T ′, φ
〉 = − 〈

T, φ′〉 for φ ∈ S.

Note that
〈
T, φ′〉 will certainly make sense because T is a distribution and φ′ ∈ S

whenever φ ∈ S. From the linearity of T and of differentiation the linearity of T ′
immediately follows; hence, T ′ is indeed a distribution. This means in particular that
T ′ has a derivative as well. As for functions this is called the second derivative of
T and it is denoted by T ′′. Applying definition 8.4 twice, it follows that

〈
T ′′, φ

〉 =〈
T, φ′′〉. This process can be repeated over and over again, so that we reach the

remarkable conclusion that a distribution can be differentiated an arbitrary number
of times. Applying definition 8.4 k times, it follows that the kth derivative T (k) of a
distribution T is given by〈
T (k), φ

〉
= (−1)k

〈
T, φ(k)

〉
for φ ∈ S. (8.17)

In particular it follows that any absolutely integrable function, considered as a dis-
tribution, is arbitrarily often differentiable. This gives us an obvious way to find
new distributions. Start with a function f and consider it as a distribution T f (if
possible). Differentiating several times if necessary, one will in general obtain a
distribution which no longer corresponds to a function. In the introduction to this
section we have in fact already seen a crucial example of this process. For we have
argued there that the derivative of the unit step function ε(t) should be the deltaDerivative of ε(t)
function. This can now be proven using definition 8.4. For according to definition
8.4 the distribution ε′ is given by

〈
ε′, φ

〉 = − 〈
ε, φ′〉 = −

∫ ∞

0
φ′(t) dt = −[φ(t)]∞0 ,

where in the second step we used the definition of ε (see example 8.2). For φ ∈ S
one has limt→±∞ φ(t) = 0 and so it follows that〈
ε′, φ

〉 = φ(0) = 〈δ, φ〉 for φ ∈ S. (8.18)

According to definition 8.3 we then have ε′ = δ. The informal derivation in the
introduction to this section has now been made mathematically sound.

In order to handle distributions more easily, it is convenient to be able to multiply
them by a constant and to add them. The definitions are as follows.



200 8 Distributions

Let S and T be distributions. Then cT (c ∈ C) and S + T are defined byDEFINITION 8.5
〈cT, φ〉 = c 〈T, φ〉 for φ ∈ S,
〈S + T, φ〉 = 〈S, φ〉 + 〈T, φ〉 for φ ∈ S.

The distribution cδ(t − a) is given by 〈cδ(t − a), φ〉 = cφ(a). For c ∈ REXAMPLE 8.6
this is graphically represented by an arrow of height c at the point t = a. See
figure 8.4. �

0

c

a t

cδ(t – a)

FIGURE 8.4
The distribution cδ(t − a).

The distribution 2ε(t) + 3iδ(t) is given byEXAMPLE 8.7

〈2ε(t) + 3iδ(t), φ〉 = 2
∫ ∞

0
φ(t) dt + 3iφ(0) for φ ∈ S.

�

We close this section by determining some derivatives of distributions.

We have just shown that ε′ = δ, considered as distribution. Differentiating again,EXAMPLE 8.8
Derivative of δ(t) we obtain that ε′′ = δ′. Just as for δ, there is a simple description for the distribution

δ′:〈
δ′, φ

〉 = − 〈
δ, φ′〉 = −φ′(0) for φ ∈ S. (8.19)

Hence, the distribution δ′ assigns the complex number −φ′(0) to a function φ. Note
also that δ′ is still well-defined when applied to continuously differentiable functions
φ. Symbolically one writes (8.19) as∫ ∞

−∞
δ′(t)φ(t) dt = −φ′(0). (8.20)

This expression can be derived symbolically from (8.9) by taking the function φ′
instead of φ in (8.9) and performing a formal integration by parts. This example can
be extended even further by repeated differentiation. Then the distributions δ′′, δ(3),
etc. will arise. �

Let f be a function with continuous derivative f ′ and assume that both f and
f ′ can be considered as a distribution through (8.12). The distribution T f then has
the distribution (T f )

′ as derivative; if our definitions have been put together well,
then (T f )

′ = T f ′ should be true. For then the two concepts of ‘derivative’ coincide.
Using (8.16) the proof reads as follows:

〈
T f ′ , φ

〉 = − 〈
T f , φ

′〉 = 〈
(T f )

′, φ
〉

for all
φ ∈ S. When no confusion is possible, one often simply writes f ′, when actually
T ′

f is meant. Most often we then use the phrase f ′ as distribution.
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The distribution | t | has the distribution sgn t as its derivative (see examples 8.3 andEXAMPLE 8.9
8.4):

〈| t |′ , φ〉 = − 〈| t | , φ′〉 = −
∫ ∞

0
tφ′(t) dt +

∫ 0

−∞
tφ′(t) dt

= − [tφ(t)]∞0 + [tφ(t)]0−∞ +
∫ ∞

0
φ(t) dt −

∫ 0

−∞
φ(t) dt

= 〈sgn t, φ〉 for φ ∈ S.

Here we have used integration by parts and the fact that limt→±∞ tφ(t) = 0 (since
φ ∈ S). �

Consider the function g(t) = ε(t) cos t . Since | cos t | ≤ 1, one proves precisely asEXAMPLE 8.10
in example 8.2 that g(t) defines a distribution. Note that g is not continuous at the
point t = 0, since there is a jump of magnitude 1 at this point. We determine the
derivative of g as distribution:

〈
(ε(t) cos t)′, φ

〉 = − 〈
ε(t) cos t, φ′〉 = −

∫ ∞

0
cos t φ′(t) dt for φ ∈ S.

From an integration by parts and the fact that φ ∈ S it follows that this equals

[−φ(t) cos t]∞0 −
∫ ∞

0
sin t φ(t) dt = φ(0) −

∫ ∞

−∞
ε(t) sin t φ(t) dt

= 〈δ, φ〉 − 〈ε(t) sin t, φ〉 .

From definition 8.5 (and definition 8.3) it then follows that

(ε(t) cos t)′ = δ(t) − ε(t) sin t.

This identity is graphically represented in figure 8.5. �
We now derive a general rule having the result ε′ = δ, as well as the examples

8.9 and 8.10, as special cases. Let f be a function, continuously differentiable on R,
except at one point a where f has a finite jump. By f ′ we will mean the derivative of
f except at this point a. Assume that both f and f ′ define distributions T f and T f ′
by means of (8.12). This situation occurs for instance in the examples mentioned
above. One then has for any φ ∈ S that

〈
T ′

f , φ
〉
= −

∫ ∞

−∞
f (t)φ′(t) dt = −

∫ a

−∞
f (t)φ′(t) dt −

∫ ∞

a
f (t)φ′(t) dt,

and from an integration by parts we then obtain

〈
T ′

f , φ
〉

= − [ f (t)φ(t)]a−∞ +
∫ a

−∞
f ′(t)φ(t) dt

− [ f (t)φ(t)]∞a +
∫ ∞

a
f ′(t)φ(t) dt

= − f (a−)φ(a) + f (a+)φ(a) +
∫ ∞

−∞
f ′(t)φ(t) dt

= ( f (a+) − f (a−)) 〈δ(t − a), φ〉 + 〈
T f ′ , φ

〉
.

This proves the following jump-formula:Jump-formula

T ′
f = T f ′ + ( f (a+) − f (a−)) δ(t − a). (8.21)
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FIGURE 8.5
The function ε(t) cos t and its derivative, considered as distribution.

If we take for f the function ε(t), then a = 0 and ε(0+) − ε(0−) = 1. Moreover,
ε′(t) = 0 for t �= 0, so T f ′ = 0. It then follows from (8.21) that ε′ = δ, considered
as distribution, in accordance with previous results. In a similar way one obtains
examples 8.9 and 8.10 from (8.21).

EXERCISES

Let T ′ be defined as in definition 8.4. Show that T ′ is a linear mapping from S to8.11
C.

a Which complex number is assigned to φ ∈ S by the distribution 2δ(t) −8.12
i
√

3δ′(t) + (1 + i)sgn t?
b Show that the function f (t) = at2 + bt + c with a, b and c ∈ C defines a
distribution through (8.12).

a Show that for distributions S and T one has (S+T )′ = S′+T ′ and (cT )′ = cT ′.8.13
Hence, differentiation of distributions is linear.
b Show that for the constant function f (t) = c one has f ′ = 0 as distribution.

a Which complex number is assigned to φ ∈ S by the distribution δ(3)?8.14
b To which set of functions can one extend the definition of δ(3)?

a Calculate the derivative of the distribution sgn t in a direct way, using the defi-8.15
nition of the derivative of a distribution.
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b Verify that sgn t = 2ε(t) − 1 for all t �= 0 and then use exercise 8.13 to deter-
mine the derivative of sgn t again.
c Determine the second derivative of | t |.
Show how examples 8.9 and 8.10 arise as special cases of the jump-formula (8.21).8.16

Determine the derivative of the following distributions:8.17
a pa(t),
b ε(t) sin t .

The (discontinuous) function f (t) is given by8.18

f (t) =



t + 1 for t < 1,
π for t = 1,
t2 − 2t + 5 for t > 1.

a Verify that f (t) defines a distribution by means of (8.21) (also see exercises 8.10
and 8.12b).
b Determine the derivative of f (t) as distribution.

Let a ≤ 0 be fixed and consider f (t) = ε(t)eat . Prove that f ′(t) − a f (t) = δ(t)8.19
(considered as distributions).

Define for fixed a ∈ R (a �= 0) the function g(t) by g(t) = ε(t)(sin at)/a. Prove8.20
that g′′(t) + a2g(t) = δ(t) (considered as distributions).

8.4 Multiplication and scaling of distributions

In the previous section it was shown that distributions can be added and multiplied
by a complex constant. We start this section with a treatment of the multiplication of
distributions. Multiplication is important in connection with convolution theorems
for the Fourier transform. This is because the convolution product changes into an
ordinary product under the Fourier transform. If we want to formulate similar results
for distributions, then we ought to be able to multiply distributions. However, in
general this is not possible (in contrast to functions). The function f (t) = | t |−1/2,
for example, is integrable on, say, the interval [−1, 1] and thus it defines a distri-
bution through (8.12) (see exercise 8.9). But f 2(t) = 1/ | t | is not integrable on
an interval containing 0; hence, one cannot define a distribution using (8.12). Still,
multiplication is possible in a very limited way: distributions can be multiplied by
polynomials. As a preparation we will first prove the following theorem.

Let φ ∈ S and p be a polynomial. Then pφ ∈ S.THEOREM 8.1

Proof
A polynomial p(t) is of the form antn + an−1tn−1 +· · ·+ a1t + a0 with ai ∈ C. If
φ ∈ S, then certainly cφ ∈ S for c ∈ C. The sum of two elements in S also belongs
to S. Hence, it is sufficient to show that tkφ(t) ∈ S for φ ∈ S and k ∈ N. But this
has already been observed in section 6.5 (following theorem 6.11). �

We can now define the product of a distribution and a polynomial.

Let T be a distribution and p a polynomial. The distribution pT is defined byDEFINITION 8.6
Product of distribution and
polynomial 〈pT, φ〉 = 〈T, pφ〉 for φ ∈ S. (8.22)
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Theorem 8.1 shows that the right-hand side of (8.22) is meaningful, since T is a
distribution and pφ ∈ S. Since T is linear, it immediately follows that pT is linear
as well:

〈pT, cφ〉 = 〈T, p(cφ)〉 = 〈T, c(pφ)〉 = c 〈T, pφ〉 = c 〈pT, φ〉
and

〈pT, φ1 + φ2〉 = 〈T, p(φ1 + φ2)〉 = 〈T, pφ1 + pφ2〉
= 〈T, pφ1〉 + 〈T, pφ2〉 = 〈pT, φ1〉 + 〈pT, φ2〉 .

This proves that pT is indeed a distribution.

For a polynomial p one hasEXAMPLE 8.11

p(t)δ(t) = p(0)δ(t).

This is because according to definitions 8.6 and 8.2 we have 〈pδ, φ〉 = 〈δ, pφ〉 =
(pφ)(0) = p(0)φ(0) for any φ ∈ S. But p(0)φ(0) = p(0) 〈δ, φ〉 = 〈p(0)δ, φ〉
and according to definition 8.3 the distributions pδ and p(0)δ are thus equal. In
particular we have for p(t) = t :

tδ(t) = 0.

Similarly one has for the delta function δ(t − a) that

p(t)δ(t − a) = p(a)δ(t − a).
�

Often a distribution can be multiplied by many more functions than just the poly-
nomials. As an example we again look at the delta function δ(t), which can be
defined on the set of all continuous functions (see section 8.2.2). Now if f is aProduct of δ and a

continuous function continuous function, then precisely as in (8.22) one can define the product f δ by

〈 f δ, φ〉 = 〈δ, f φ〉 ,

where φ is an arbitrary continuous function. From the definition of δ(t) it follows
that 〈 f δ, φ〉 = f (0)φ(0) = f (0) 〈δ, φ〉 and so one has

f (t)δ(t) = f (0)δ(t)

for any continuous function f (t). For the general delta function δ(t − a) it follows
analogously for any continuous function f (t) that

f (t)δ(t − a) = f (a)δ(t − a) for a ∈ R. (8.23)

Similarly one can, for example, multiply the distribution δ′ by continuously differ-
entiable functions.

The reason why we are constantly working with the space S lies in the fact that
S is very suitable for Fourier analysis. Moreover, it can be quite tedious to find
out exactly for which set of functions the definition of a distribution still makes
sense. And finally, it would be very annoying to keep track of all these different
sets of functions (the continuous functions for δ, the continuously differentiable
functions for δ′, etc.). We have made an exception for (8.23) since it is widely used
in practical applications and also because in much of the literature the delta function
is introduced using continuous functions.

We close this section with a treatment of the scaling of distributions. As in the
case of the definition of the derivative of a distribution, we first take a look at the
situation for an absolutely integrable function f (t). For a ∈ R with a �= 0 one has
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for the scaled function f (at) that∫ ∞

−∞
f (at)φ(t) dt = | a |−1

∫ ∞

−∞
f (τ )φ(a−1τ) dτ for φ ∈ S.

This follows by changing to the variable τ = at , where for a < 0 we should pay
attention to the fact that the limits of integration are interchanged; this explains the
factor | a |−1. If we consider this result as an identity for the distributions associated
with the functions, then it is clear how scaling of distributions should be defined.

Let T be a distribution and a ∈ R with a �= 0. Then the scaled distribution T (at) isDEFINITION 8.7
Scaling of distributions defined by

〈T (at), φ(t)〉 = | a |−1
〈
T (t), φ(a−1t)

〉
for φ ∈ S. (8.24)

According to definitions 8.7 and 8.2 one has for the scaled delta distribution δ(at):EXAMPLE 8.12

〈δ(at), φ(t)〉 = | a |−1
〈
δ(t), φ(a−1t)

〉
= | a |−1 φ(0) = | a |−1 〈δ(t), φ(t)〉

for any φ ∈ S. Hence,

δ(at) = | a |−1 δ(t).
�

A special case of scaling occurs for a = −1 and is called time reversal. ForTime reversal of distribution
the delta function one has δ(−t) = δ(t), which means that the delta function re-
mains unchanged under time reversal. We recall that a function is called even when
f (−t) = f (t) and odd when f (−t) = − f (t). Even and odd distributions areEven and odd distribution
defined in the same way. A distribution T is called even when T (−t) = T (t) and
odd when T (−t) = −T (t). The delta function δ(t) is thus an example of an even
distribution.

EXERCISES

In example 8.10 it was shown that (ε(t) cos t)′ = δ(t)− ε(t) sin t . Derive this result8.21
again by formally applying the product rule for differentiation to the product of ε(t)
and cos t . (Of course, a product rule for differentiation of distributions cannot exist,
since in general the product of distributions does not exist.)

Show that for the delta function δ(t − a) one has p(t)δ(t − a) = p(a)δ(t − a),8.22
where p(t) is a polynomial and a ∈ R.

The derivative δ′ of the delta function can be defined by
〈
δ′, φ

〉 = −φ′(0) for the set8.23
of all continuously differentiable functions φ. Let f (t) be a continuously differen-
tiable function.
a Give the definition of the product f (t)δ′(t).
b Show that f (t)δ′(t) = f (0)δ′(t) − f ′(0)δ(t).
c Prove that tδ′(t) = −δ(t) and that t2δ′(t) = 0.

Show that for the scaled derivative of the delta function one has δ′(at) =8.24
a−1 | a |−1 δ′(t) for a �= 0.

Show that the product t · pv(1/t) is equal to the distribution 1.8.25

Show that a distribution is even if and only if one has 〈T, φ(t)〉 = 〈T, φ(−t)〉 for8.26
all φ ∈ S, while T is odd if and only if 〈T, φ(t)〉 = − 〈T, φ(−t)〉.
a Show that the distributions sgn t and pv(1/t) are odd.8.27
b Show that the distribution | t | is even.
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S U M M A R Y

Distributions are linear mappings from the space of rapidly decreasing functions S
to C. The delta function δ(t − a), for example, assigns the number φ(a) to any
φ ∈ S (a ∈ R). Many ordinary functions f can be considered as distribution by

φ →
∫ ∞

−∞
f (t)φ(t) dt for φ ∈ S.

Examples of this are the constant function 1, the unit step function ε(t), the sign
function sgn t and any absolutely integrable function. Like the delta function, the
distribution pv(1/t) is not of this form.

Distributions are arbitrarily often differentiable. The delta function is the deriva-
tive of the unit step function. More generally, one has the following. Let f be a
function with a jump of magnitude c at the point t = a. Then the derivative of f (as
distribution) contains the distribution cδ(t − a) at the point t = a.

Distributions can simply be added and multiplied by a constant. In general they
cannot be multiplied together. It is possible to multiply a distribution by a polyno-
mial. Sometimes a distribution can also be multiplied by more general functions.
For example, for the delta function one has f (t)δ(t − a) = f (a)δ(t − a) (a ∈ R)
for any continuous function f (t). Finally, one can scale distributions with a real
constant a �= 0. For a = −1 this is called time reversal. This also gives rise to the
notions even and odd distributions.

S E L F T E S T

Given is the function f (t) = ln | t | for t �= 0.8.28
a Show that 0 ≤ ln t ≤ t for t ≥ 1 and conclude that 0 ≤ ln | t | ≤ | t | for
| t | ≥ 1.
b Show that f is integrable over [−1, 1]. Use part a to show that f defines a
distribution by means of (8.12).
c Prove that f defines an even distribution.

The continuous function f (t) is given by8.29

f (t) =
{

t2 for t ≥ 0,
2t for t < 0.

a Prove that f can be considered as a distribution.
b Find the derivative of f as distribution.
c Determine the second derivative of f as distribution.

Consider the second derivative δ′′(t) of the delta function.8.30
a For which set of functions f (t) can one define the product f (t)δ′′(t)?
b Prove that f (t)δ′′(t) = f ′′(0)δ(t) − 2 f ′(0)δ′(t) + f (0)δ′′(t).
c Show that t2δ′′(t) = 2δ(t) and that t3δ′′(t) = 0.
d Show that for a �= 0 one has for the scaled distribution δ′′(at) that δ′′(at) =
a−2 | a |−1 δ′′(t).
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CHAPTER 9

The Fourier transform of distributions

I N T R O D U C T I O N

In the previous chapter we have seen that distributions form an extension of the fa-
miliar functions. Moreover, in most cases it is not very hard to imagine a distribution
intuitively as a limit of a sequence of functions. Especially when introducing new
operations for distributions (such as differentiation), such an intuitive representation
can be very useful. In section 8.1 we applied this method to make it plausible that
the Fourier transform of the delta function is the constant function 1, and also that
the reciprocity property holds in this case.

The purpose of the present chapter is to develop a rigorous Fourier theory for
distributions. Of course, the theory has to be set up in such a way that for functions
we recover our previous results; this is because distributions are an extension of
functions. This is why we will derive the definition of the Fourier transform of
a distribution from a property of the Fourier transform of functions in section 9.1.
Subsequently, we will determine the spectrum of a number of standard distributions.
Of course, the delta function will be treated first.

In section 9.2 we concentrate on the properties of the Fourier transform of dis-
tributions. The reciprocity property for distributions is proven. We also treat the
correspondence between differentiation and multiplication. Finally, we show that
the shift properties also remain valid for distributions.

It is quite problematic to give a rigorous definition of the convolution product
or to state (let alone prove) a convolution theorem. Let us recall that the Fourier
transform turns the convolution product into an ordinary multiplication (see section
6.6). But in general one cannot multiply two distributions, and so the convolution
product of two distributions will not exist in general. In order to study this problem,
we start in section 9.3 with an intuitive version of the convolution product of the
delta function (and derivatives of the delta function) with an arbitrary distribution.
We then look at the case where the distributions are defined by functions. This
will tell us in which situations the convolution product of two distributions exists.
Finally, the convolution theorem for distributions is formulated. The proof of this
theorem will not be given; it would lead us too far into the theory of distributions.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know and can apply the definition of the Fourier transform of a distribution
- know the Fourier transform of the delta function and the principal value 1/t
- can determine the Fourier transform of periodic signals and periodic signals that

are switched on
- know and can apply the properties of the Fourier transform of distributions
- know and can apply the convolution product and the convolution theorem for dis-

tributions in simple cases
- know the comb distribution and its Fourier transform∗.

208
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9.1 The Fourier transform of distributions: definition and examples

It should come as no surprise that we will start section 9.1.1 with the definition of the
Fourier transform of a distribution. In section 9.1.2 we then determine the Fourier
transform of a number of standard distributions. We also discuss how the Fourier
transform of periodic signals (considered as distributions) can be determined. Fi-
nally, we treat the so-called comb distribution and its Fourier transform in section
9.1.3.

9.1.1 Definition of the Fourier transform of distributions

In section 8.1 we sketched an intuitive method to obtain the Fourier transform of a
distribution. First, a distribution is considered symbolically as a limit of functions
fa whose Fourier transforms Fa are known. Next, the limit of these functions Fa
is determined. So when the distribution T is given by T = lim fa (for a → ∞ for
example) and fa ↔ Fa , then the Fourier transform of T is given by FT = lim Fa
(for a → ∞). Mathematically, however, this method has some serious problems.
What is meant by the symbolic limits T = lim fa and FT = lim Fa? Is the choice
of the sequence of functions fa (and hence Fa) uniquely determined? And if not, is
FT uniquely determined then? One can solve all of these problems at once using
the rigorous definition of distributions given in the previous chapter. The only thing
still missing is the rigorous definition of the Fourier transform – or spectrum – of a
distribution. Of course, such a definition has to be in agreement with our earlier def-
inition of the Fourier transform of a function, since distributions form an extension
of functions. Precisely as in the case of the definition of the derivative of a distribu-
tion, we therefore start with a function f that can be considered as a distribution T f
according to (8.12). Is it then possible, using the properties of the Fourier transform
of ordinary functions, to come up with a definition of the Fourier transform of the
distribution T f ? Well, according to the selfduality property in section 6.4.7 one has
for any φ ∈ S

∫ ∞

−∞
F(t)φ(t) dt =

∫ ∞

−∞
f (t)�(t) dt,

where � is the spectrum of φ and F is the spectrum of f . From theorem 6.12 it
follows that � ∈ S and so the identity above can also be considered as an identity
for distributions: 〈TF , φ〉 = 〈T f , �〉. From this, it is obvious how one should define
the Fourier transform (or spectrum) of an arbitrary distribution.

For a distribution T the Fourier transform or spectrum FT is defined byDEFINITION 9.1
Fourier transform or
spectrum of distributions 〈FT, φ〉 = 〈T, �〉, (9.1)

where � is the Fourier transform of φ ∈ S.

We recall once again theorem 6.12, which established that � ∈ S for φ ∈ S.
Hence, the right-hand side of (9.1) is well-defined and from the linearity of T it
follows immediately that FT is indeed a distribution. The mapping assigning the
spectrum FT to a distribution T is again called the Fourier transform. In section
9.1.2 we determine the Fourier transform of a number of distributions.
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9.1.2 Examples of Fourier transforms of distributions

First of all, we will use definition 9.1 to determine the Fourier transform of the delta
function. We have

〈Fδ, φ〉 = 〈δ, �〉 = �(0) =
∫ ∞

−∞
φ(t) dt for φ ∈ S,

where in the last step we used the definition of the ordinary Fourier transform. From
example 8.1 it then follows that 〈Fδ, φ〉 = 〈1, φ〉, which shows that the spectrum ofSpectrum of δ(t)
δ is indeed the function 1. A short symbolic proof is obtained by taking e−iωt for φ

in (8.9). It then follows that∫ ∞

−∞
δ(t)e−iωt dt = 1, (9.2)

which states precisely (but now symbolically) that the spectrum of δ(t) is the func-
tion 1. Figure 9.1 shows δ(t) and its spectrum.

0

1

t

δ(t)

0

1 F δ(ω)

ω

FIGURE 9.1
The delta function δ(t) and its spectrum.

Conversely, the spectrum of the function 1 is determined as follows:

〈F1, φ〉 = 〈1, �〉 =
∫ ∞

−∞
�(ω) dω.

For φ ∈ S the inversion formula (7.9) certainly holds. Applying it for t = 0, it
follows that

〈F1, φ〉 =
∫ ∞

−∞
�(ω) dω = 2πφ(0) = 2π 〈δ, φ〉 = 〈2πδ, φ〉 for φ ∈ S.

Hence, the spectrum of the function 1 (as distribution) is given by the distributionSpectrum of 1
2πδ(ω). Symbolically, this is sometimes written as∫ ∞

−∞
e−iωt dt = 2πδ(ω). (9.3)
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(Note that the integral in the left-hand side does not exist as an improper integral;
see exercise 6.1.) The results that have been derived intuitively in section 8.1 have
now all been proven. Note that δ(t) ↔ 1 and 1 ↔ 2πδ(ω) constitute a Fourier
pair in the sense of section 7.2.2. In section 9.2.3 we will prove that indeed the
reciprocity property for distributions remains valid. In the next example the delta
function at the point a is treated (see (8.10) for its definition).

The spectrum of δ(t−a) is the function e−iaω (considered as distribution of course).EXAMPLE 9.1
Spectrum of δ(t − a) The proof is similar to the case a = 0:

〈Fδ(t − a), φ〉 = 〈δ(t − a), �〉 = �(a) =
∫ ∞

−∞
φ(t)e−iat dt for φ ∈ S.

If we now call the variable of integration ω instead of t , then the result follows:

〈Fδ(t − a), φ〉 =
〈
e−iaω, φ

〉
. Conversely, one has that 2πδ(ω − a) is the spectrum

of the function eiat :Spectrum of eiat

〈Feiat , φ〉 = 〈eiat , �〉 =
∫ ∞

−∞
eiat�(t) dt

and according to the inversion formula (7.9) it then follows that 〈Feiat , φ〉 =
2πφ(a) = 〈2πδ(ω − a), φ〉 (φ ∈ S), which proves the result. We thus again have a
Fourier pair δ(t − a) ↔ e−iaω and eiat ↔ 2πδ(ω − a). Also note that the function
eiat is a periodic function with period 2π/a. �

Just as for the Fourier transform of functions, the Fourier transform of distribu-
tions is a linear mapping. For distributions S and T and a, b ∈ C one thus has
F(aS + bT ) = aF S + bFT .

Since the Fourier transform is linear, it follows from example 9.1 that the spectrumEXAMPLE 9.2
of cos at = (eiat + e−iat )/2 is the distribution π(δ(ω − a) + δ(ω + a)). This is
represented graphically in figure 9.2. �

For the Fourier transform of distributions one has the following result.

The Fourier transform is a one-to-one mapping on the space of distributions.THEOREM 9.1

Proof
Because of the linearity of the Fourier transform, it is sufficient to show that FT = 0
implies that T = 0. So let us assume that FT = 0, then 〈FT, φ〉 = 0 for all φ ∈ S.
From definition 9.1 it then follows that 〈T, �〉 = 0 for all φ ∈ S. But according to
theorem 7.6 one can write any ψ ∈ S as the spectrum � of some φ ∈ S. Hence,
〈T, ψ〉 = 0 for all ψ ∈ S, which means that T = 0 (definition 8.3). �

Theorem 9.1 is often used (implicitly) in the following situation. Let a distribu-
tion U be given. Suppose that by using some table, perhaps in combination with the
properties of the Fourier transform, we have found a distribution whose spectrum
is the given distribution U . We may then conclude on the basis of theorem 9.1 that
we have found the only possibility. For a given distribution T there is thus only one
distribution U which is the spectrum of T . As for functions, T ↔ U will mean
that U is the spectrum of T and that the distributions T and U determine each other
uniquely.

Suppose that we are looking for a distribution T whose spectrum is the distributionEXAMPLE 9.3
U = 4δ(ω − 3)− 2δ(ω + 2). In example 9.1 it was shown that eiat ↔ 2πδ(ω − a).
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0

1

t

cos at

π
2a

π
a

0

π

ω

πδ(ω – a) + πδ(ω + a)

a–a

FIGURE 9.2
The function cos at and its spectrum.

From the linearity of the Fourier transform it then follows that T = (2/π)e3i t −
(1/π)e−2i t is a distribution with spectrum U . Theorem 9.1 guarantees that it is the
only one. �

In the next example the spectrum of the distribution pv(1/t) will be determined.

The spectrum of the distribution pv(1/t) from example 8.5 is the distributionEXAMPLE 9.4
Spectrum of pv(1/t) −π isgn ω. A mathematically rigorous proof of this result would lead us too far

into the theory of distributions. Instead we will only give the following formal proof
(using a certain assumption, one can give a rigorous proof; see exercise 9.23).

〈Fpv(1/t), φ〉 = 〈pv(1/t), �〉 = lim
α→0

∫
| t |≥α

�(t)

t
dt for φ ∈ S.

Now apply the definition of spectrum for �(t), then

〈Fpv(1/t), φ〉 = lim
α→0

∫
| t |≥α

1

t

(∫ ∞

−∞
φ(ω)e−iωt dω

)
dt.
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Next, we (formally) interchange the order of integration and write the limit inside
the integral (again formally). We then obtain

〈Fpv(1/t), φ〉 =
∫ ∞

−∞
φ(ω)

(
lim
α→0

∫
| t |≥α

e−iωt

t
dt

)
dω. (9.4)

The inner integral can easily be calculated since∫ ∞

α

e−iωt

t
dt +

∫ −α

−∞
e−iωt

t
dt =

∫ ∞

α

e−iωt − eiωt

t
dt = −2i

∫ ∞

α

sin ωt

t
dt.

Here we changed from the variable t to the variable −t in the second integral of the
left-hand side. Now use that∫ ∞

0

sin ωt

t
dt = π

2
sgn ω.

For ω > 0 this follows from theorem 4.11 (or from (7.3)) by changing from the
variable ωt to the variable t , while for ω < 0 an additional minus sign enters because
the limits of integration will be reversed; for ω = 0 we have sin ωt = 0. The limit
for α → 0 of the inner integral in (9.4) thus exists and

lim
α→0

∫
| t |≥α

e−iωt

t
dt = −π isgn ω.

From (9.4) (and example 8.3) it then follows for every φ ∈ S that

〈Fpv(1/t), φ〉 = −π i
∫ ∞

−∞
sgn ω φ(ω) dω = 〈−π isgn ω, φ(ω)〉 ,

which proves that pv(1/t) ↔ −π isgn ω. This is shown in figure 9.3. Note that
−π isgn ω assumes only imaginary values; in figure 9.3 this is emphasized by the
dashed lines for the corresponding curves. �

0

1

t

pv(1/t)

0

–πi

–πi sgn ω

1

πi

ω

FIGURE 9.3
The distribution pv(1/t) and its spectrum.

We end section 9.1.2 by determining the spectrum of a periodic signal using theSpectrum of periodic
functions result (Feiat )(ω) = 2πδ(ω − a) (see example 9.1). So let f be a periodic function
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with a converging Fourier series:

f (t) =
∞∑

k=−∞
cke2π ikt/T =

∞∑
k=−∞

ckeikω0t ,

where ω0 = 2π/T . Assume, moreover, that f defines a distribution by means of
(8.12). The Fourier series then also defines a distribution and the spectrum of this
distribution can be calculated as follows:

F
( ∞∑

k=−∞
ckeikω0t

)
=

∞∑
k=−∞

ckF
(

eikω0t
)

= 2π

∞∑
k=−∞

ckδ (ω − kω0) . (9.5)

Here we assumed that the Fourier transform F and the summation may be inter-
changed. We will not prove that this is indeed allowed.

In fact, (9.5) shows once again that a periodic function f (t) has a line spectrum:
the spectrum consists of delta functions at the points ω = kω0 (k ∈ Z) with ‘weight’
equal to the kth Fourier coefficient ck (also see section 3.3).

9.1.3 The comb distribution and its spectrum∗

The material in this section can be omitted without any consequences for the re-
mainder of the book. Furthermore, we note that Poisson’s summation formula from
section 7.3∗ will be used in an essential way.

The main reason that we treat the comb distribution is the fact that it is widely
used in the technical literature to represent the sampling of a continuous-time signal
(see later on in this section).

The comb or shah distribution is defined byComb or shah distribution

〈
, φ

〉 =
∞∑

k=−∞
φ(k) for φ ∈ S. (9.6)

First we will have to show that is well-defined, that is, the series in the right-hand
side of (9.6) converges. But for φ ∈ S there exists a constant M > 0 such that
(1 + t2) | φ(t) | ≤ M . Hence, it follows that (compare with example 8.1)

∞∑
k=−∞

| φ(k) | ≤ M
∞∑

k=−∞

1

1 + k2
= M + 2M

∞∑
k=1

1

1 + k2
.

But 1 + k2 > k2 for k > 0 and
∑∞

k=1 k−2 converges. Hence,∣∣∣∣∣
∞∑

k=−∞
φ(k)

∣∣∣∣∣ ≤
∞∑

k=−∞
| φ(k) | < M

(
1 + 2

∞∑
k=1

k−2

)
< ∞.

It now immediately follows that defines a distribution. Since one has 〈δ(t − k),

φ〉 = φ(k) (see (8.10)), we obtain from (9.6) that

〈
, φ

〉 =
∞∑

k=−∞
〈δ(t − k), φ〉

for every φ ∈ S. Because of this, one often writes = (t) as

(t) =
∞∑

k=−∞
δ(t − k)
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and calls a train of delta functions. The distribution is then graphically repre-Train of delta functions
sented as in figure 9.4a. Often, is used to represent the sampling of a continuous-

0

1

t

(t)

0

2π

ω

(ω /2π)

–2π 2π

1 2 3 4 5 6 7–1–2–3–4–5

4π

a

b

FIGURE 9.4
The impulse train (a) and its spectrum (b).

time signal (for example in Van den Enden and Verhoeckx (1987), chapter 3 (in
Dutch)). For when f (t) is a bounded continuous-time signal, then the product
f (t) (t) exists (we state this without proof) and one has (as in definition 8.6)

〈
f (t) (t), φ

〉 = 〈
(t), f φ

〉 =
∞∑

k=−∞
f (k)φ(k) =

∞∑
k=−∞

〈 f (k)δ(t − k), φ〉

for all φ ∈ S. Hence we obtain that

f (t) (t) =
∞∑

k=−∞
f (k)δ(t − k).

The right-hand side of this can indeed be interpreted as the sampling of the functionSampling
f (t) at times t = k (k ∈ Z); see figure 9.5.

After this short intermezzo on sampling, we now determine the spectrum of the
comb distribution . From the definition of it follows that

〈
F , φ

〉 = 〈
, �

〉 =
∞∑

k=−∞
�(k) for φ ∈ S.

From example 7.9 it follows that Poisson’s summation formula (7.23) is valid for
functions in S. If we apply it with T = 2π , then it follows that

〈
F , φ

〉 =
∞∑

k=−∞
�(k) = 2π

∞∑
k=−∞

φ(2πk) = 〈
(ω/2π), φ

〉
for every φ ∈ S (in the last step we used the scaling property for distributions
with scaling factor 1/2π ; see definition 8.7). We have thus proven that F =

(ω/2π), where (ω/2π) is the scaled comb distribution ; the spectrum of the
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FIGURE 9.5
A continuous-time function f (t) and the sampling f (t) (t).

Spectrum of comb distribution is thus again a comb distribution:

(t) ↔ (ω/2π). (9.7)

In the notation of the impulse train, (9.7) becomes

∞∑
k=−∞

δ(t − k) ↔ 2π

∞∑
k=−∞

δ(ω − 2πk), (9.8)

and one then expresses this by saying that the spectrum of an impulse train is again
an impulse train. See figure 9.4b.

EXERCISES

Let T be a distribution. Show that FT as defined by (9.1) is a linear mapping from9.1
S to C. Conclude that FT is a distribution.
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Let S and T be distributions with spectra U and V respectively. Show that for9.2
a, b ∈ C the spectrum of aS + bT equals aU + bV . The Fourier transform of
distributions is thus a linear mapping.

Determine the spectrum of the following distributions:9.3
a δ(t − 4),
b e3i t ,
c sin at ,
d 4 cos 2t + 2ipv(1/t).

Determine the distribution T whose spectrum is the following distributions:9.4
a δ(ω + 5),
b 2πδ(ω + 2) + 2πδ(ω − 2),
c sgn ω + 2 cos ω.

Show that the spectrum of an even (odd) distribution is again an even (odd) distri-9.5
bution.

a Verify that defines a distribution.9.6∗
b Define the distribution

∑∞
k=−∞ eikω by

〈 ∞∑
k=−∞

eikω, φ

〉
=

∞∑
k=−∞

〈
eikω, φ

〉
for φ ∈ S.

Show that F = ∑∞
k=−∞ eikω.

9.2 Properties of the Fourier transform

Most of the properties of the Fourier transform of functions, as derived in section
6.4, can easily be carried over to distributions. In this section we examine shifting,
differentiation and reciprocity (in exercise 9.9 scaling is considered as well).

9.2.1 Shift in time and frequency domains

First we treat the shifting property in the time domain. We will show that for a
distribution T with spectrum U one has T (t − a) ↔ e−iaωU (ω) (a ∈ R), just
as for functions (see section 6.4.3). Apart from the proof of this property, there
are two problems that we have to address. Does the product of U (ω) and e−iaω

exist? And what do we mean by the shifted distribution T (t − a)? We start with
the first problem. The product e−iaωU (ω) can be defined precisely as in (8.22) by〈
e−iaωU (ω), φ

〉
=

〈
U (ω), e−iaωφ

〉
(φ ∈ S). This definition makes sense since it

follows immediately from the product rule for differentiation and from
∣∣∣ e−iaω

∣∣∣ = 1

that e−iaωφ ∈ S. This solves the first problem. We now handle the second problem
and define the shifted distribution T (t − a).

For a distribution T (t) the distribution T (t − a) shifted over a ∈ R is defined byDEFINITION 9.2
Shifted distribution 〈T (t − a), φ(t)〉 = 〈T (t), φ(t + a)〉.

As before (for example, for differentiation, scaling and the Fourier transform),
this definition is a direct generalization of the situation that occurs if we take T
equal to a distribution T f , where f is a function (see (8.12)).
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As is suggested by the notation, the delta function δ(t − a) at the point a is in-EXAMPLE
deed the shifted delta function δ(t). This is proven as follows: 〈δ(t − a), φ(t)〉 =
〈δ(t), φ(t + a)〉 = φ(a), which is in agreement with the earlier definition of δ(t −a)

in (8.10). �

We can now prove the shifting property for distributions. When T (t) is a distri-
bution with spectrum U (ω), then

〈F(T (t − a)), φ(t)〉 = 〈T (t − a), �(t)〉 = 〈T (t), �(t + a)〉 for φ ∈ S.

From the shifting property in theorem 6.4 it follows that

〈T (t), �(t + a)〉 =
〈
T (t),F(e−iatφ(t))

〉
=

〈
U (ω), e−iaωφ(ω)

〉
.

Hence, 〈F(T (t − a)), φ(t)〉 =
〈
e−iaωU (ω), φ(ω)

〉
, proving that

Shift property T (t − a) ↔ e−iaωU (ω). (9.9)

Since δ(t) ↔ 1, it follows from the shifting property that δ(t − a) ↔ e−iaω, inEXAMPLE
accordance with example 9.1. �

In a similar way one can prove the shifting property in the frequency domain (see
exercise 9.15):

eiat T ↔ U (ω − a) (9.10)

9.2.2 Differentiation in time and frequency domains

For the ordinary Fourier transform, differentiation in one domain corresponded to
multiplication (by −i t or iω) in the other domain (see sections 6.4.8 and 6.4.9). This
is also the case for the Fourier transform of distributions. We start by determining
the spectrum of the derivative δ′(t) of the delta function. Successively applyingSpectrum of δ′(t)
definitions 9.1, 8.4 and 8.2, we obtain that〈
Fδ′, φ

〉 = 〈
δ′, �

〉 = − 〈
δ, �′〉 = −�′(0) for φ ∈ S.

According to theorem 6.8 one has �′(ω) = F(−i tφ(t))(ω) and so

〈
Fδ′, φ

〉 = F(i tφ(t))(0) =
∫ ∞

−∞
i tφ(t) dt = 〈i t, φ〉 for φ ∈ S.

The variable t in the integral – and in the distribution – is irrelevant; by changing to
the variable ω we have thus shown that δ′ ↔ iω. In general one has for an arbitrary
distribution T with spectrum U that T ′ ↔ iωU . In fact, as for the spectrum of the
derivative of the delta function, it follows that〈
FT ′, φ

〉 = 〈
T ′, �

〉 = − 〈
T, �′〉 = 〈T,F(i tφ(t))〉 = 〈U, i tφ(t)〉 .

In the last step we use that T ↔ U . Again, the variable t is irrelevant and if we
consider the distribution U as acting on functions in the variable ω, then we may
also write

〈
FT ′, φ

〉 = 〈U, iωφ(ω)〉. From definition 8.6 of the multiplication of
distributions by polynomials, we then finally obtain that

〈
FT ′, φ

〉 = 〈iωU, φ(ω)〉,
which proves the result. More generally, one has (see exercise 9.8c):

Differentiation in time
domain

T (k) ↔ (iω)kU when T ↔ U. (9.11)
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Similarly, one can prove the differentiation rule in the frequency domain (see
exercise 9.10c):

Differentiation in frequency
domain

(−i t)k T ↔ U (k) when T ↔ U (9.12)

(compare with section 6.4.9). This rule is mainly used to determine the spectrum of
tk T when the spectrum of T is known.

We know from section 9.1.2 that 1 ↔ 2πδ(ω). From (9.12) (for k = 1 and k = 2)EXAMPLE
it then follows that t ↔ 2π iδ′(ω) and t2 ↔ −2πδ′′(ω). �

9.2.3 Reciprocity

The Fourier pair δ ↔ 1 and 1 ↔ 2πδ suggests that the reciprocity property also
holds for distributions. This is indeed the case: if U is the spectrum of T , then
2πT (ω) is the spectrum of U (−t), or

Reciprocity U (−t) ↔ 2πT (ω) (9.13)

(where U (−t) is the scaled distribution from definition 8.7 with a = −1). For
its proof we first recall the reciprocity property for functions: if φ ↔ �, then
�(−t) ↔ 2πφ(ω). Hence, it follows that

〈2πT (ω), φ(ω)〉 = 〈T (ω), 2πφ(ω)〉 = 〈T (ω),F(�(−t))〉 = 〈U (t), �(−t)〉 .

Formula (9.13) is then proven by applying definition 8.7 of scaling. For then it
follows for every φ ∈ S that

〈2πT (ω), φ(ω)〉 = 〈U (−t), �(t)〉 = 〈FU (−t), φ(ω)〉 .

For T we take the delta function, so U is the function 1. Since 1 is an even distribu-EXAMPLE
tion, it follows from (9.13) that 1 ↔ 2πδ, in accordance with our previous results
from section 9.1.2. �

The distribution sgn t is odd (see exercise 8.27a). Applying (9.13) to the result ofEXAMPLE 9.6
example 9.4, we obtain that the spectrum of π isgn t is the distribution 2πpv(1/ω),Spectrum of sgn t
that is,

sgn t ↔ −2ipv(1/ω). (9.14)

Since ε(t) = (1 + sgn t)/2, where ε(t) is the unit step function, it follows thatSpectrum of ε(t)

ε(t) ↔ πδ(ω) − ipv(1/ω), (9.15)

where we used the linearity of the Fourier transform. The function ε(t) and its
spectrum are shown in figure 9.6; imaginary values are represented by dashed curves
in this figure. �

We know from (8.18) that ε′ = δ. From (9.11) it then follows that Fδ = Fε′ =EXAMPLE 9.7
iωFε. Apparently, iωFε = 1. Now we have shown in example 9.6 that Fε =
πδ(ω) − ipv(1/ω) and indeed we have iω(πδ(ω) − ipv(1/ω)) = π iωδ(ω) +
ωpv(1/ω) = 0 + 1 = 1 (see example 8.11 and exercise 8.25). �

At the end of section 9.1.2 we determined the spectrum of periodic functions. One
can use (9.15) to determine the spectrum of periodic functions that are ‘switched on’.
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FIGURE 9.6
The unit step and its spectrum.

Let f (t) be a periodic function with period T and converging Fourier series

f (t) =
∞∑

k=−∞
cke2π ikt/T .

We will call ε(t) f (t) a switched-on periodic signal. In (9.15) the spectrum of ε(t)Switched-on periodic signal
has been determined, and from the shifting property (9.10) it then follows that

ε(t)eiktω0 ↔ πδ(ω − kω0) − ipv(1/(ω − kω0)),

where ω0 = 2π/T . If we now assume, as in section 9.1.2, that the Fourier transform
and the summation may be interchanged, then it follows that the spectrum of aSpectrum of switched-on

periodic signal switched-on periodic signal ε(t) f (t) is given by

∞∑
k=−∞

ck

(
πδ(ω − kω0) − ipv

1

ω − kω0

)
. (9.16)
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EXERCISES

The spectrum of sgn t is −2ipv(1/ω) (see example 9.6). Verify that ε(t) = (1 +9.7
sgn t)/2 (t �= 0) and that the spectrum of ε(t) is given by πδ(ω)− ipv(1/ω) (as was
stated in example 9.6).

a Determine in a direct way (without using (9.11)) the spectrum of δ′′.9.8
b Let T be a distribution with spectrum U . Show that T ′′ ↔ −ω2U .
c Prove (9.11): T (k) ↔ (iω)kU when T ↔ U .

a Let T be a distribution with spectrum U . Show that for a �= 0 the scaled distri-9.9
bution T (at) has | a |−1 U (ω/a) as its spectrum.
b Determine the spectrum of δ(4t + 3).

a Show that −i tT ↔ U ′ when T ↔ U .9.10
b Use part a to determine the spectrum of tδ(t) and tpv(1/t); check your answers
using example 8.11 and exercise 8.25.
c Show that (−i t)k T ↔ U (k) when T ↔ U .

Determine the spectrum of tδ′(t) and tδ′′(t) using (9.12); check your answers using9.11
exercises 8.23 and 8.30.

From the identity ε′ = δ it follows that Fε′ = Fδ = 1. The differentiation rule9.12
(9.11) then leads to iωFε = 1. Hence, Fε = 1/ iω, where we have to consider
the right-hand side as a distribution, in other words, as pv(1/ω). Thus we obtain
Fε = −ipv(1/ω). Considering the result from example 9.6 (or exercise 9.7), this
cannot be true since the term πδ(ω) is missing. Find the error in the reasoning given
above.

Let T be a distribution. Define for a ∈ R the product eiat T by
〈
eiat T, φ

〉
=9.13 〈

T, eiatφ
〉
. Show that eiat T is a distribution.

Let T f be a distribution defined by a function f through (8.12). Show that for this9.14
case, definition 9.2 of a shifted distribution reduces to a simple change of variables
in an integral.

Prove (9.10): eiat T ↔ U (ω − a) when T ↔ U .9.15

Determine the spectra of the following distributions:9.16
a ε(t − 1),
b ε(t)eiat ,
c ε(t) cos at ,
d δ′(t − 4) + 3i ,
e π i t3 + ε(t)sgn t .

Determine the distribution T whose spectrum is the following distributions:9.17
a pv(1/(ω − 1)),
b (sin 3ω)pv(1/ω),
c ε(ω),
d δ(3ω − 2) + δ′′(ω).

9.3 Convolution

Turning the convolution product into an ordinary multiplication is an important
property of the Fourier transform of functions (see the convolution theorem in sec-
tion 6.6). In this section we will see to what extent this result remains valid for
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distributions. We are immediately confronted with a fundamental problem: in gen-
eral we cannot multiply two distributions S and T . Hence, the desired property
F(S ∗ T ) = F S · FT will not hold for arbitrary distributions S and T . This is
because the right-hand side of this expression will in general not lead to a meaning-
ful expression. If we wish to stick to the important convolution property, then we
must conclude that the convolution product of two distributions is not always well-
defined. Giving a correct definition of convolution is not a simple matter. Hence,
in section 9.3.1 we first present an intuitive derivation of the most important results
on convolution. For the remainder of the book it is sufficient to accept these intu-
itive results as being correct. For completeness (and because of the importance of
convolution) we present in section 9.3.2 a mathematically rigorous definition of the
convolution of distributions as well as proofs of the intuitive results from section
9.3.1. Section 9.3.2 can be omitted without any consequences for the remainder of
the book.

9.3.1 Intuitive derivation of the convolution of distributions

As we often did, we first concentrate ourselves on the delta function δ(t). Let us
return to the intuitive definition of the delta function from section 8.1. If we inter-
change limit and integral in (8.1), then we obtain the symbolic expression∫ ∞

−∞
δ(τ ) f (t − τ) dτ = f (t). (9.17)

Changing from the variable t − τ to τ in the integral leads to∫ ∞

−∞
f (τ )δ(t − τ) dτ = f (t) (9.18)

(also see the similar formula (8.11) and exercise 8.2, although there we also used that
δ(−t) = δ(t)). If we now pretend that the delta function is an ordinary absolutely
integrable function, then we recognize in the left-hand sides of (9.17) and (9.18)
precisely the convolution of δ and f (see definition 6.4) and so apparently (δ ∗
f )(t) = f (t) and ( f ∗ δ)(t) = f (t). This is written as δ ∗ f = f ∗ δ = f for
short. If we now consider δ and f as distributions again, then one should have for
an arbitrary distribution T that

δ ∗ T = T ∗ δ = T . (9.19)

In a similar way one can derive an intuitive result for the convolution of δ′ with a
distribution T . For the delta function δ′(t − a) one has

〈
δ′(t − a), φ

〉 = −φ′(a) for
each φ ∈ S. This can again be symbolically written as∫ ∞

−∞
δ′(τ − a) f (τ ) dτ = − f ′(a),

where, as in (9.17) and (9.18), we now write f instead of φ (for a = 0 this is (8.20)).
Now δ′(τ −a) is an odd distribution (see exercise 9.18), so δ′(τ −a) = −δ′(a − τ),
and if we also write t instead of a, then we see that∫ ∞

−∞
δ′(t − τ) f (τ ) dτ = f ′(t).

The left-hand side can again be interpreted as the convolution of δ′ with f and
apparently one has (δ′ ∗ f )(t) = f ′(t). By changing from the variable t − τ to τ it
also follows that ( f ∗ δ′)(t) = f ′(t). If we consider δ′ and f as distributions, then
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one should have for an arbitrary distribution T that

δ′ ∗ T = T ∗ δ′ = T ′. (9.20)

Analogously, one can derive for the higher order derivatives δ(k) of the delta function
that

δ(k) ∗ T = T ∗ δ(k) = T (k). (9.21)

In section 9.3.2 we will define convolution of distributions in a mathematically rig-
orous way and we will prove formulas (9.19) – (9.21).

We will close this subsection by showing that the convolution theorem (theorem
6.13) is valid in the context of formulas (9.19) and (9.20), that is to say,

F(δ ∗ T ) = Fδ · FT and F(δ′ ∗ T ) = Fδ′ · FT . (9.22)

First of all, the first identity in (9.22) follows immediately from δ∗T = T and Fδ =
1 since F(δ ∗ T ) = FT = Fδ · FT . To prove the second identity in (9.22) we first
note that (9.11) implies that FT ′ = iωFT . But iω = Fδ′ (see section 9.2.2) and
hence it follows from (9.20) that indeed F(δ′ ∗ T ) = FT ′ = iωFT = Fδ′ · FT .
Similarly, one can show that the convolution theorem also holds for higher order
derivatives of the delta function. Finally, in this manner one can also verify that
the convolution theorem in the frequency domain, that is, S · T ↔ (U ∗ V )/2π

when S ↔ U and T ↔ V , is valid whenever the delta function or a (higher order)
derivative of the delta function occurs in the convolution product. In section 9.3.2
we will discuss in some more detail the convolution theorems for distributions and
we will formulate a general convolution theorem (theorem 9.2).

9.3.2 Mathematical treatment of the convolution of distributions∗

In this section we present a mathematically correct treatment of the convolution of
distributions. In particular we will prove the results that were derived intuitively in
section 9.3.1. As mentioned at the beginning of section 9.3, section 9.3.2 can be
omitted without any consequences for the remainder of the book.

In order to find a possible definition for S ∗ T , we start, as usual by now, with two
functions f and g for which we assume that the convolution product f ∗ g exists
and, moreover, defines a distribution by means of (8.12). It then follows for φ ∈ S
that

〈
T f ∗g, φ

〉 =
∫ ∞

−∞
( f ∗ g)(t)φ(t) dt =

∫ ∞

−∞

(∫ ∞

−∞
f (τ )g(t − τ) dτ

)
φ(t) dt.

Since we are only looking for the right definition, we might as well assume that we
may interchange the order of integration. We then see that

〈
T f ∗g, φ

〉 =
∫ ∞

−∞
f (τ )

(∫ ∞

−∞
g(t − τ)φ(t) dt

)
dτ

=
∫ ∞

−∞
f (τ )

(∫ ∞

−∞
g(t)φ(t + τ) dt

)
dτ (9.23)

(change the variable from t − τ to t in the last step). For each fixed τ ∈ R the
latter inner integral can be considered as the distribution Tg applied to the function
φ(t + τ). Here φ(t + τ) should be considered as a function of t with τ kept fixed.
In order to show this explicitly, we denote this by

〈
Tg(t), φ(t + τ)

〉
; the distribution

Tg(t) acts on the variable t in the function φ(t + τ). Now
〈
Tg(t), φ(t + τ)

〉
is

a complex number for each τ ∈ R and we will assume that the mapping τ →
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〈
Tg(t), φ(t + τ)

〉
from R into C is again a function in S; let us denote this function

by ψ(τ). The right-hand side of (9.23) can then be written as the distribution T f
applied to this function ψ(τ), which means that (9.23) can now be written as〈
T f ∗g, φ

〉 = 〈
T f (τ ), ψ(τ)

〉 = 〈
T f (τ ),

〈
Tg(t), φ(t + τ)

〉〉
.

This finally gives us the somewhat complicated definition of the convolution of two
distributions.

Let S and T be two distributions and define for τ ∈ R the function ψ(τ) byDEFINITION 9.3
Convolution of distributions ψ(τ) = 〈T (t), φ(t + τ)〉. If for each φ ∈ S the function ψ(τ) belongs to S, then

the convolution product S ∗ T is defined by

〈S ∗ T, φ〉 = 〈S(τ ), ψ(τ)〉 = 〈S(τ ), 〈T (t), φ(t + τ)〉〉 . (9.24)

The condition that ψ(τ) should belong to S is the reason that often S ∗ T cannot
be defined.

For T take the delta function δ(t), then the function ψ(τ) is given by ψ(τ) =EXAMPLE 9.8
〈T (t), φ(t + τ)〉 = 〈δ(t), φ(t + τ)〉 = φ(τ), because of the definition of δ(t).
Hence, we have ψ(τ) = φ(τ) in this case and so we certainly have that ψ ∈ S. The
convolution S ∗ δ thus exists for all distributions S and 〈S ∗ δ, φ〉 = 〈S(τ ), φ(τ )〉
(φ ∈ S). This then proves the identity S ∗ δ = S in (9.19). �

For each distribution T we have that T ∗ δ′ exists and T ∗ δ′ = T ′. In fact,EXAMPLE 9.9 〈
T ∗ δ′, φ

〉 = 〈
T (τ ),

〈
δ′(t), φ(t + τ)

〉〉 = 〈
T (τ ), −φ′(τ )

〉
, because of the action of

δ′ (see (8.19)). Hence T ∗ δ′ exists and
〈
T ∗ δ′, φ

〉 = 〈
T, −φ′〉 = 〈

T ′, φ
〉

for all
φ ∈ S (in the last step we used definition 8.4). This proves the identity T ∗ δ′ = T ′
in (9.20). �

Convolution of distributions is not easy. For example, for functions f and g we
know that f ∗ g = g ∗ f , in other words, the convolution product is commutative
(see section 6.6). This result also holds for distributions. But even this simplest
of properties of convolution will not be proven in this book; it would lead us too
far into the theory of distributions. Without proof we state the following result: if
S ∗ T exists, then T ∗ S also exists and S ∗ T = T ∗ S. In particular it follows from
examples 9.8 and 9.9 that for an arbitrary distribution T one has T ∗ δ = δ ∗ T = T
and T ∗ δ′ = δ′ ∗ T = T ′. In exactly the same way one obtains more generally that
for any distribution T and any k ∈ Z

+ one has

T ∗ δ(k) = δ(k) ∗ T = T (k). (9.25)

Convolution of distributions is also quite subtle and one should take great care using
it. For functions the convolution product is associative: ( f ∗ g)∗ h = f ∗ (g ∗ h) for
functions f , g and h. For distributions this is no longer true. Both the convolutions
(R ∗ S) ∗ T and R ∗ (S ∗ T ) may well exist without being equal. An example: one
has (1 ∗ δ′) ∗ ε = 1′ ∗ ε = 0 ∗ ε = 0, while 1 ∗ (δ′ ∗ ε) = 1 ∗ ε′ = 1 ∗ δ = 1!

Finally, we treat the convolution theorems for distributions. However, even the
formulation of these convolution theorems is a problem, since the convolution of
two distributions may not exist. Hence, we first have to find a set of distributions for
which the convolution exists. To do so, we need a slight extension of the distribution
theory. We have already noted a couple of times that distributions can often be
defined for more than just the functions in S. The delta function δ, for example,
is well-defined for all continuous functions, δ′ for all continuously differentiable
functions, etc. Now let E be the space consisting of all functions that are infinitely
many times differentiable. All polynomials, for example, belong to the space E . Any
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function in S belongs to E as well, since functions in S are in particular infinitely
many times differentiable (see definition 6.3).

Now let T be a distribution, so T is a linear mapping from S to C. Then it could
be that T is also well-defined for all functions in E , which means that 〈T, φ〉 is also
meaningful for all φ ∈ E (note that more functions belong to E than to S: S is a
subset of E). If this is the case, then we will say that T is a distribution that can beDistribution on E
defined on E . Such distributions play an important role in our convolution theorems.

The delta function and all the derivatives of the delta function belong to the distri-EXAMPLE
butions that can be defined on E . �

(This example uses the comb distribution from section 9.1.3∗.) The comb distribu-EXAMPLE
tion cannot be defined on the space E . This is because the function φ(t) = 1
is an element of E (the function 1 is infinitely many times differentiable with all
derivatives equal to 0) and

〈
, φ

〉 = ∑∞
k=−∞ φ(k) = ∑∞

k=−∞ 1 diverges. �

Distributions that can be defined on E form a suitable class of distributions for
the formulation of the convolution theorem.

Let S and T be distributions with spectra U and V respectively. Assume that S isTHEOREM 9.2
Convolution theorem for
distributions

a distribution that can be defined on the space E . Then U is a function in E , both
S ∗ T and U · V are well-defined, and S ∗ T ↔ U · V .

We will not prove this theorem. It would lead us too far into the distribution
theory. However, we can illustrate the theorem using some frequently occurring
convolution products.

Take for S in theorem 9.2 the delta function δ. The delta function can certainly beEXAMPLE 9.10
defined on the space E . The spectrum U of δ is the function 1 and this is indeed a
function in E . Furthermore, F(δ ∗ T ) = Fδ ·FT according to theorem 9.2. But this
is obvious since we know that δ ∗ T = T and Fδ = 1 (also see section 9.3.1). �

One can define δ′ on the space E as well. Furthermore, we showed in section 9.2.2EXAMPLE 9.11
that δ′ ↔ iω. Note that the spectrum U of δ′ is thus indeed a function in E . Apply-
ing theorem 9.2 establishes that δ′ ∗ T ↔ iωV when T ↔ V . This result can again
be proven in a direct way since we know that δ′ ∗ T = T ′ and T ′ ↔ iωV when
T ↔ V (also see section 9.3.1). �

Often, the conditions of theorem 9.2 are not satisfied in applications. If one
doesn’t want to compromise on mathematical rigour, then one has to check case
by case whether or not the operations used (multiplication, convolution, Fourier
transform) are well-defined. The result S ∗ T ↔ U · V from theorem 9.2 will then
turn out to be valid in many more cases.

Finally, we expect on the basis of the reciprocity property that a convolution
theorem in the frequency domain exists as well (compare with section 7.2.4). We
will content ourselves with the statement that this is indeed the case: S · T ↔
(U ∗ V )/2π , if all operations occurring here are well-defined. This is the case
when, for example, U is a distribution that can be defined on the space E .

Take for S the function eiat , considered as a distribution. The spectrum U of S isEXAMPLE 9.12
2πδ(ω − a) (see example 9.1) and this distribution can indeed be defined on the
space E . For an arbitrary distribution T with spectrum V it then follows from the
convolution theorem in the frequency domain that the spectrum of eiat T is equal to
(2πδ(ω − a) ∗ V )/2π . Hence, eiat T ↔ δ(ω − a) ∗ V when T ↔ V . Note that
according to the shift property in the frequency domain one has eiat T ↔ V (ω − a)

(see exercise 9.15). Apparently, δ(ω − a) ∗ V = V (ω − a). �
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EXERCISES

Show that δ′(t − a) is an odd distribution.9.18

Show that δ′ ∗ | t | = sgn t .9.19

Let T (t) be a distribution and a ∈ R. Show that T (t) ∗ δ(t − a) exists and that9.20∗
T (t) ∗ δ(t − a) = T (t − a) (see example 9.12).

Prove that δ(t −b)∗ δ(t −a) = δ(t − (a +b)) (a, b ∈ R). Look what happens when9.21∗
you apply the convolution theorem to this identity!

Let the piecewise smooth function f be equal to 0 outside a bounded interval; say9.22∗
f (t) = 0 for | t | ≥ A (where A > 0 is a constant).
a Prove that the spectrum F of f exists (in the ordinary sense). Hint (which also
applies to parts b and c): the function f is bounded.
b Show that f defines a distribution by means of (8.12).
c Show that the distribution defined in part b is also well-defined on E .
d Let T be an arbitrary distribution with spectrum V . We simply write f and F
for the distributions defined by the functions f and F . Conclude from part c that
f ∗ T exists and that f ∗ T ↔ F · V .
e Determine the spectrum of p2 ∗ ε (p2 is the block function, ε the unit step
function).
f Determine the spectrum of

∫ t
−∞ f (τ ) dτ = ( f ∗ ε)(t).

For functions the only solution to f ′(t) = 0 (for all t ∈ R) is the constant function9.23∗
f (t) = c. In this exercise we assume that the same result is true for distributions:
the only distribution T with T ′ = 0 is the distribution T = c (c a constant). Using
this assumption one can determine the spectrum U of the distribution pv(1/t) in a
mathematically rigorous way.
a Use the result t · pv(1/t) = 1 from exercise 8.25 to show that U satisfies the
equation U ′ = −2π iδ(ω).
b Show that all solutions of the equation S′ = δ are necessarily of the form S =
ε + c, where c is a constant. (Hint: when both S1 and S2 are solutions to S′ = δ,
what then will S1 − S2 satisfy?) Conclude that U (ω) = −2π i(ε(ω) + c).
c Conclude from exercise 8.27a that U is odd. Use this to determine the constant
c from part b and finally conclude that U (ω) = −π isgn ω.

S U M M A R Y

The Fourier transform FT of a distribution T is defined by 〈FT, φ〉 = 〈T, �〉,
where � is the Fourier transform of φ ∈ S. In this way the Fourier transform is
extended from functions to distributions. The most well-known Fourier pair for dis-
tributions is δ(t) ↔ 1 and 1 ↔ 2πδ(ω). More generally one has δ(t − a) ↔ e−iaω

and eiat ↔ 2πδ(ω − a). The latter result can be used to determine the spec-
trum, in the sense of distributions, of a periodic signal which defines a distribution
and, moreover, has a convergent Fourier series. Another important Fourier pair is
pv(1/t) ↔ −π isgn ω and sgn t ↔ −2ipv(1/ω), from which it follows in particular
that ε(t) ↔ πδ(ω) − ipv(1/ω). Finally, we mention the comb distribution or im-
pulse train (t), whose spectrum is again a comb distribution, but scaled by 1/2π :

(t) ↔ (ω/2π), or
∑∞

k=−∞ δ(t − k) ↔ 2π
∑∞

k=−∞ δ(ω − 2πk).
Quite a few of the properties of the ordinary Fourier transform remain valid for

distributions. When U is the spectrum of T , then 2πT (ω) is the spectrum of U (−t)
(reciprocity). Furthermore, one has the differentiation properties T (k) ↔ (iω)kU
and (−i t)k T ↔ U (k), as well as the shift properties T (t − a) ↔ e−iaωU (ω) and
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eiat T (t) ↔ U (ω − a). Since the spectrum of ε(t) is known, the latter property can
be used to determine the spectrum of switched-on periodic signals.

Convolution theorems do not hold for arbitrary distributions. In general, mul-
tiplication as well as convolution of two distributions are not well-defined. When
S and T are distributions with spectra U and V , then the convolution theorems
S ∗ T ↔ U · V and S · T ↔ (U ∗ V )/2π are correct whenever all the opera-
tions occurring are well-defined. One has, for example, that δ(k) ∗ T (k ∈ Z

+)
is well-defined for each distribution T and that δ(k) ∗ T = T ∗ δ(k) = T (k) and
δ(k) ∗ T ↔ (iω)kU when T ↔ U . A list of some standard Fourier transforms
of distributions and a list of properties of the Fourier transform of distributions are
given in tables 5 and 6.

S E L F T E S T

Determine the spectra of the following distributions:9.24
a δ(t − 3),
b cos t δ(t + 4),
c t2ε(t),
d (2ε(t) cos t)′,
e (δ(7t − 1))′,
f π

2 − 2
π

∑∞
k=−∞(2k + 1)−2e(2k+1)i t .

Find the distributions whose spectrum is given by the following distributions:9.25
a δ(ω − 1) − δ(ω + 1),
b ω2,
c eiω/2/4,
d ω3 sin ω,
e cos(ω − 4).

Consider the distribution U = (ω − 1)2 in the frequency domain.9.26
a Use the shift property to determine a distribution whose spectrum is U .
b Use the differentiation property to determine a distribution whose spectrum is
the distribution ω2 − 2ω + 1.
c Note that U = ω2 − 2ω + 1; the answers in parts a and b should thus be the
same. Give a direct proof of this fact.

Let T be a distribution with spectrum U .9.27
a Use the convolution theorem to determine the spectrum of T ∗ δ′′ in terms of U .
Check the result by applying the differentiation property to the distribution T ′′.
b The function | t | defines a distribution. Let V be the spectrum of | t |. Show that
δ′′ ∗ | t | = 2δ and prove that V satisfies ω2V = −2.
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CHAPTER 10

Applications of the Fourier integral

I N T R O D U C T I O N

The Fourier transform is one of the most important tools in the study of the transfer
of signals in control and communication systems. In chapter 1 we have already dis-
cussed signals and systems in general terms. Now that we have the Fourier integral
available, and are familiar with the delta function and other distributions, we are
able to get a better understanding of the transfer of signals in linear time-invariant
systems. The Fourier integral plays an important role in continuous-time systems
which, moreover, are linear and time-invariant. These have been introduced in chap-
ter 1 and will be denoted here by LTC-systems for short, just as in chapter 5.

Systems can be described by giving the relation between the input u(t) and the
corresponding output or response y(t). This can be done in several ways. For
example, by a description in the time domain (in such a description the variable
t occurs), or by a description in the frequency domain. The latter means that a
relation is given between the spectra (the Fourier transforms) U (ω) and Y (ω) of,
respectively, the input u(t) and the response y(t).

In section 10.1 we will see that for LTC-systems the relation between u(t) and
y(t) can be expressed in the time domain by means of a convolution product. Here
the response h(t) to the unit pulse, or delta function, δ(t) plays a central role. In fact,
the response y(t) to an input u(t) is equal to the convolution product of h(t), the so-
called impulse response, and u(t). Hence, if the impulse response is known, then
the system is known in the sense that the response to an arbitrary input can be deter-
mined. Properties of LTC-systems, such as stability and causality, can then imme-
diately be derived from the impulse response. Moreover, applying the convolution
theorem is now obvious and so the Fourier transform is going to play an important
role.

In section 10.2 we will see that the frequency response H(ω) of a system, which
we introduced in chapter 1, is nothing else but the Fourier transform of the impulse
response, and that a description of an LTC-system in the frequency domain is simply
given by Y (ω) = U (ω)H(ω), where U (ω) and Y (ω) are the spectra of, respectively,
the input u(t) and the corresponding output y(t). Properties of a continuous-time
system can then also be derived from the frequency response. For an all-pass system
or a phase shifter, for example, which is an LTC-system with the property that the
energy-content of the output is equal to the energy-content of the corresponding
input, the modulus of the frequency response is constant. Another example is the
ideal low-pass filter, which is characterized by a frequency response being 0 outside
a certain frequency band.

Continuous-time systems occurring in practice usually have a rational function
of ω as frequency response. Important examples are the electrical RCL-networks
having resistors, capacitors and coils as their components. The reason is that for
these systems the relation between an input and the corresponding response can

229



230 10 Applications of the Fourier integral

be described in the time domain by an ordinary differential equation with constant
coefficients. These will be considered in section 10.3.

Applications of the Fourier transform are certainly not limited to just the trans-
fer of signals in systems. The Fourier integral can also be successfully applied to
all kinds of physical phenomena, such as heat conduction, which can be described
mathematically by a partial differential equation. These kinds of applications are
examined in section 10.4.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the concepts of impulse response and step response of an LTC-system and

can determine these in simple cases
- know the relation between an input and the corresponding output and can apply it

to calculate outputs
- can determine the stability and causality of an LTC-system using the impulse re-

sponse
- know the concept of frequency response and can determine it in simple cases
- know the relation between the input and the output in the frequency domain and

can apply it to calculate outputs
- know what is meant by an all-pass system and an ideal low-pass filter
- can determine the impulse response of a stable and causal LTC-system described

by a linear differential equation with constant coefficients
- can apply the Fourier transform in solving partial differential equations with initial

and boundary conditions.

10.1 The impulse response

In order to introduce the impulse response, we start, as in chapter 1, with an example
of a simple continuous-time system, namely the electrical network from figure 1.1
in chapter 1, consisting of a series connection of a voltage source, a resistor and a
coil. The relation between the voltage and the current in this network is described by
(1.1), which we will recall here. We denote the voltage by u(t), however, since we
will consider it as an input, and the current by y(t), being the corresponding output.
Relation (1.1) mentioned above then reads as follows:

y(t) = 1

L

∫ t

−∞
e−(t−τ)R/L u(τ ) dτ. (10.1)

In chapter 1 we have seen that this relation allows us to consider the network as
a continuous-time system which is linear and time-invariant. We recall that we
denote this by LTC-system for short. First we will show that relation (10.1) betweenLTC-system
the input u(t) and the corresponding output y(t) can be written as a convolution
product. For this we utilize the unit step function ε(t). Since ε(t −τ) = 0 for τ > t ,
it follows that∫ t

−∞
e−(t−τ)R/L u(τ ) dτ =

∫ ∞

−∞
e−(t−τ)R/Lε(t − τ)u(τ ) dτ.

From definition 6.4 of the convolution product we then obtain that

y(t) = (h ∗ u)(t),

where h(t) is the signal

h(t) = 1

L
e−t R/Lε(t).
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If we now take as input the unit pulse or delta function δ(t), then it follows from
(9.19) that h(t) = (h ∗ δ)(t) and so we can view h(t) as the output corresponding
to the unit pulse. We will show that for LTC-systems in general, the response to the
unit pulse plays the same important role. To this end we first use property (9.19) to
write an input u(t) in the form

u(t) = (u ∗ δ)(t) =
∫ ∞

−∞
u(τ )δ(t − τ) dτ.

We say that the signal u(t) is now written as a (continuous) superposition of shiftedSuperposition
unit pulses δ(t −τ). Now if h(t) is the response to δ(t), then, by the time-invariance
of the system, the response to δ(t − τ) is h(t − τ). Next, we tacitly assume that for
LTC-systems the linearity property can be extended to the so-called superpositionSuperposition rule
rule. By this we mean that the linearity property not only holds for finite sums of
inputs, but also for infinite sums of inputs, and even for ‘continuous sums’, that is,
for integrals. Applying this superposition rule gives for a system L:

y(t) = Lu(t) = L

∫ ∞

−∞
u(τ )δ(t − τ) dτ =

∫ ∞

−∞
u(τ )Lδ(t − τ) dτ

=
∫ ∞

−∞
u(τ )h(t − τ) dτ.

The signal h(t) is called the impulse response of the system L. Hence,Impulse response

δ(t) �→ h(t). (10.2)

We have now established the following important property for LTC-systems.

Let u(t) be an input of an LTC-system L with impulse response h(t). Then

Lu(t) = (h ∗ u)(t). (10.3)

A continuous-time system is called distortion free when the response y(t) to anEXAMPLE 10.1
Distortion free system input u(t) is given by

y(t) = K u(t − t0),

where K and t0 are constants with K ≥ 0. Compared to the input, the response is
of the same form and is shifted over a time t0. This system is an LTC-system. The
linearity can easily be verified. The time-invariance follows from

u(t − t1) �→ K u(t − t1 − t0) = y(t − t1) for all t1.

Also note that the given system is causal if t0 ≥ 0. The impulse response is the
response to δ(t) and thus equal to h(t) = K δ(t − t0). According to (10.3) the
response y(t) to an input u(t) is then given by

y(t) = (h ∗ u)(t) = K
∫ ∞

−∞
u(τ )δ(t − t0 − τ) dτ = K u(t − t0).

�

By (10.3), an LTC-system is completely determined by the impulse response.
Hence, all properties of an LTC-system can be derived from the impulse response.
For instance, an LTC-system is real if and only if the impulse response is real (see
exercise 10.1b) and an LTC-system is causal if and only if the impulse response is
causal (see exercise 10.1a). Another property, important for the physically realizable
systems, is stability as defined in definition 1.3. Using the impulse response one can
verify this property in the following way.
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An LTC-system with impulse response h(t) (h(t) being an ordinary function) is sta-THEOREM 10.1
ble if and only if

∫ ∞
−∞ | h(t) | dt is convergent, in other words, if h(t) is absolutely

integrable.

Proof
Let

∫ ∞
−∞ | h(t) | dt be convergent and let the input u(t) be bounded, that is to say,

there exists a number M such that | u(t) | ≤ M for all t . For the corresponding
response it then follows from (10.3) that

| y(t) | =
∣∣∣∣
∫ ∞

−∞
u(τ )h(t − τ) dτ

∣∣∣∣ ≤
∫ ∞

−∞
| u(τ ) | | h(t − τ) | dτ

≤ M
∫ ∞

−∞
| h(τ ) | dτ.

The output is thus bounded and so the system is stable.
Now let

∫ ∞
−∞ | h(t) | dt be divergent. Take as input

u(t) =




h(−t)

| h(−t) | for h(−t) �= 0,

0 for h(−t) = 0.

This signal is bounded: | u(t) | ≤ 1. Using (10.3) we find for the corresponding
response y(t) at t = 0:

y(0) =
∫ ∞

−∞
u(τ )h(−τ) dτ =

∫ ∞

−∞
| h(τ ) | dτ = ∞.

The response is not bounded and so the system isn’t stable. �

Strictly speaking, we cannot apply this theorem when instead of an ordinary func-
tion h(t) is a distribution, so for example when h(t) = δ(t). In fact, for a distribution
the notion ‘absolute integrability’ has no meaning. Consider for example the dis-
tortion free system from example 10.1. The impulse response is the distribution
K δ(t − t0). Still, this system is stable, as follows immediately from definition 1.3
of stability. For if | u(t) | ≤ M for all t and a certain M , then one has for the corre-
sponding response that | y(t) | = K | u(t − t0) | ≤ K M , so the response is bounded
as well.

For systems occurring in practice the impulse response will usually consist of
an ordinary function with possibly a finite number of shifted delta functions added
to this. In order to verify the stability for these cases, one only needs to check
the absolute integrability of the ordinary function. We will demonstrate this in the
following example.

A system L is given for which the relation between an input u(t) and the responseEXAMPLE 10.2
y(t) is given by

y(t) = u(t − 1) +
∫ t

−∞
e−2(t−τ)u(τ ) dτ.

In exercise 10.2 the reader is asked to show that L is an LTC-system. The impulse
response can be found by substituting the unit pulse δ(t) for u(t), resulting in h(t) =
δ(t − 1) + r(t), where r(t) = e−2t ε(t). The response y(t) to an input u(t) can be
written as y(t) = u(t − 1) + y1(t), where y1(t) is the response to u(t) of an LTC-
system with impulse response h1(t) = r(t). Since∫ ∞

−∞
| h1(t) | dt =

∫ ∞

0
e−2t dt = 1

2 < ∞,
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the system is stable according to theorem 10.1. So if | u(t) | ≤ M , then | y1(t) | ≤ L
for some L and we thus have

| y(t) | ≤ | u(t − 1) | + L ≤ M + L .

This establishes the stability of the LTC-system. �

An LTC-system for which the relation between an input u(t) and the correspondingEXAMPLE 10.3
Integrator output y(t) is given by

y(t) =
∫ t

−∞
u(τ ) dτ

is called an integrator. Since∫ t

−∞
δ(τ ) dτ = ε(t),

the impulse response of the integrator is equal to the unit step function ε(t). Accord-
ing to property (10.3) we thus have y(t) = (ε ∗ u)(t). The unit step function ε(t) is
not absolutely integrable. Hence, it follows from theorem 10.1 that the integrator is
unstable. �

We close this section with the introduction of the so-called step response a(t) of
an LTC-system. The step response is defined as the response to the unit step functionStep response
ε(t), so

ε(t) �→ a(t). (10.4)

From property (10.3) it follows that a(t) = (ε ∗ h)(t), where h(t) is the impulse
response of the system. Convolution with the unit step function is the same as
integration (see example 10.3 of the integrator), so

a(t) =
∫ t

−∞
h(τ ) dτ. (10.5)

This relation implies that h(t) is the derivative of a(t), but not in the ordinary sense.
Thanks to the introduction of the distributional derivative, we can say that h(t) is the
distributional derivative of a(t): a′(t) = h(t). Apparently, the impulse response fol-
lows easily once the step response is known and using (10.3) one can then determine
the response to an arbitrary input.

EXERCISES

Given is an LTC-system L.10.1
a Show that the system L is causal if and only if the impulse response h(t) of L is
a causal signal.
b Show that the system L is real if and only if the impulse response h(t) of L is a
real signal.

The relation between an input u(t) and the corresponding response y(t) of a system10.2
L is given by

y(t) = u(t − 1) +
∫ t

−∞
e−2(t−τ)u(τ ) dτ.

a Show that L is a real and causal LTC-system.
b Determine the step response of the system.
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Given is an LTC-system L with step response a(t). Determine the response to the10.3
rectangular pulse p2(t).

Given is a stable LTC-system with impulse response h(t).10.4
a Show that the response to the constant input u(t) = 1 is given by the constant
output y(t) = H(0) for all t , where

H(0) =
∫ ∞

−∞
h(τ ) dτ.

b Let u(t) be a differentiable input with absolutely integrable derivative u′(t) and
for which u(−∞), defined by limt→−∞ u(t), exists. Show that u(t) = u(−∞) +
(u′ ∗ ε)(t).
c Show that for the response y(t) to u(t) one has y(t) = H(0)u(−∞)+(u′∗a)(t).

For an LTC-system the step response a(t) is given by a(t) = cos(2t)e−3t ε(t).10.5
a Determine the impulse response h(t).
b Show that the system is stable.

Given are the LTC-systems L1 and L2 in a series connection. We denote this so-10.6
called cascade system by L2L1. The response y(t) to an input u(t) is obtained as
indicated in figure 10.1.

u(t)
L1

y(t)
L2

FIGURE 10.1
Cascade system of exercise 10.6.

a Give an expression for the impulse response h(t) of L2L1 in terms of the impulse
responses h1(t) and h2(t) of, respectively, L1 and L2(t) .
b Show that if both L1 and L2 are stable, then L2L1 is also stable.

10.2 The frequency response

In the previous section we saw that for an LTC-system the relation between an in-
put and the corresponding output is given in the time domain by the convolution
product (10.3). In this section we study the relation in the frequency domain. It
is quite natural to apply the convolution theorem to (10.3). Since we have to take
into account that delta functions may occur in u(t) as well as in h(t), we will need
the convolution theorem that is also valid for distributions. We will assume that for
the LTC-systems and inputs under consideration, the convolution theorem may al-
ways be applied in distributional sense as well. As a result we obtain the following
important theorem.

Let U (ω), Y (ω) and H(ω) denote the Fourier transforms of, respectively, an inputTHEOREM 10.2
u(t), the corresponding output y(t), and the impulse response h(t) of an LTC-system.
Then

Y (ω) = H(ω)U (ω). (10.6)

Property (10.6) describes how an LTC-system operates in the frequency domain.
The spectrum of an input is multiplied by the function H(ω), resulting in the spec-
trum of the output.
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The impulse response of the integrator (see example 10.3) is the unit step functionEXAMPLE 10.4
ε(t): h(t) = ε(t). The Fourier transform of h(t) is 1/(iω) + πδ(ω) (see table 5;
−ipv(1/ω) is written as 1/(iω) for short). Hence, according to (10.6) the integrator
is described in the frequency domain by

Y (ω) = (1/(iω) + πδ(ω)) U (ω) = U (ω)/(iω) + πU (ω)δ(ω)

= U (ω)/(iω) + πU (0)δ(ω).

In the last equality we assumed that U (ω) is continuous at ω = 0. �

In this example of the integrator we see that substituting ω = 0 is meaningless.
The reason for this is the instability of the integrator. For stable systems the impulse
response h(t) is absolutely integrable according to theorem 10.1 and H(ω) will then
be an ordinary function, and even a continuous one, defined for all ω (see section
6.4.11).

Now consider in particular the time-harmonic signal u(t) = eiωt with frequency
ω as input for an LTC-system. According to property (10.3) the response is equal to

y(t) = (h ∗ u)(t) =
∫ ∞

−∞
h(τ )eiω(t−τ) dτ = H(ω)eiωt .

Hence,

eiωt �→ H(ω)eiωt . (10.7)

This is nothing new. In chapter 1 we have derived that the response of an LTC-system
to a time-harmonic signal is again a time-harmonic signal with the same frequency.
In this chapter the frequency response H(ω) has been introduced through property
(10.7). We conclude that the following theorem holds.

The frequency response H(ω) of an LTC-system is the spectrum of the impulse re-THEOREM 10.3
Frequency response sponse:

h(t) �→ H(ω). (10.8)

For an LTC-system the impulse response is given by h(t) = e−t ε(t). The system isEXAMPLE 10.5
stable since∫ ∞

−∞
| h(t) | dt =

∫ ∞

0
e−t dt = 1 < ∞.

The Fourier transform of h(t) can be found in table 3: H(ω) = 1/(1 + iω). The
response to the input eiωt is thus equal to eiωt/(1 + iω). �

From chapter 1 we know that the frequency response H(ω) is also called the
transfer function or the system function of an LTC-system. Apparently, an LTC-Transfer function

System function system can be described in the frequency domain by the frequency response H(ω).

As an example we consider the so-called ideal low-pass filter with frequency re-EXAMPLE 10.6
Ideal low-pass filter sponse H(ω) given by

H(ω) =
{

e−iωt0 for | ω | ≤ ωc,
0 for | ω | > ωc.

Hence, only frequencies below the cut-off frequency ωc can pass. By an inverse
Fourier transform we find the impulse response of the filter:

h(t) = 1

2π

∫ ∞

−∞
H(ω)eiωt dω = 1

2π

∫ ωc

−ωc

eiω(t−t0) dω = sin(ωc(t − t0))

π(t − t0)
.
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The function h(t) is shown in figure 10.2. The impulse response h(t) has a maxi-
mum value ωc/π at t = t0; the main pulse of the response is concentrated at t = t0
and has duration 2π/ωc. Note that h(t) is not causal, which means that the system
is not causal. The step response of the filter follows from integration of h(t):

a(t) =
∫ t

−∞
h(τ ) dτ =

∫ t

−∞
sin(ωc(τ − t0))

π(τ − t0)
dτ = 1

π

∫ ωc(t−t0)

−∞
sin x

x
dx,

where we used the substitution ωc(τ − t0) = x . Using the sine integral (see chapter
4), the step response can be written as

a(t) = 1

2
+ 1

π
Si(ωc(t − t0)).

Note that a(t0) = 1
2 and that the initial and final values a(−∞) = 0 and a(∞) = 1

are approached in an oscillating way (see figure 10.2b). The maximal overshoot
occurs at t = t0 +π/ωc and amounts to 9% (compare this with Gibbs’ phenomenon
in chapter 4). In this example we will also determine the response to a periodic

0 tt0 0 tt0

h(t) a(t)
1

0.5

1.09

a b

π
ωc

π
ωc

ω
π

c

FIGURE 10.2
Impulse response (a) and step response (b) of ideal low-pass filter.

signal u(t) given by the Fourier series

u(t) =
∞∑

n=−∞
cneinω0t ,

where ω0 = 2π/T . According to property (10.7), the response to einω0t equals

H(nω0)einω0t =
{

einω0(t−t0) for | nω0 | ≤ ωc,
0 for | nω0 | > ωc.

Here we assume that ωc is not an integer multiple of ω0. Let N be the integer
uniquely determined by Nω0 < ωc < (N + 1)ω0. For the response y(t) to the
periodic input u(t) it then follows that

y(t) =
N∑

n=−N

cneinω0(t−t0) = uN (t − t0),

where uN (t) denotes the N th partial sum of the Fourier series of u(t). �

The frequency response can also show us how the energy-content (see section
1.2.3) of an input is effected by an LTC-system. When an energy-signal u(t) is
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applied to an LTC-system, then by Parseval’s identity (see (7.19)) one has for the
energy-content of the corresponding output y(t) that∫ ∞

−∞
| y(t) |2 dt = 1

2π

∫ ∞

−∞
| Y (ω) |2 dω = 1

2π

∫ ∞

−∞
| H(ω) |2 | U (ω) |2 dω.

Note that for LTC-systems whose amplitude response | H(ω) | is identical to 1, the
energy-content of the output equals the energy-content of the input. Such a system
is called an all-pass system.All-pass system

For an LTC-system the frequency response H(ω) is given byEXAMPLE 10.7

H(ω) = ω − i

1 + iω
e−iωt0 .

Here t0 is real. Since

∣∣∣∣ ω − i

1 + iω
e−iωt0

∣∣∣∣ =
∣∣∣∣ ω − i

1 + iω

∣∣∣∣ =
√

ω2 + 1

1 + ω2
= 1,

the system is an all-pass system. �

In this section we have established the importance of the frequency response for
LTC-systems. An important class of LTC-systems in practical applications has the
property that the frequency response is a rational function of ω. Examples are the
electrical networks. In the next section we will examine these in more detail.

EXERCISES

For an LTC-system L the impulse response is given by h(t) = δ(t) + te−t ε(t).10.7
a Determine the frequency response of the system L.
b Determine for all real ω the response of the LTC-system to the input u(t) = eiωt .

For an LTC-system L the frequency response is given by10.8

H(ω) = cos ω

ω2 + 1
.

a Determine the impulse response h(t) of the system L.
b Determine the response to the input u(t) = δ(t − 1).

For a low-pass filter the frequency response H(ω) is given by the graph of10.9
figure 10.3.

0 ω

1

H(ω)

–ωc = 3
2

ωc = 3
2

FIGURE 10.3
Frequency response of the low-pass filter of exercise 10.9.
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0 t2π

1
u(t)

ππ/2 3π/2

FIGURE 10.4
Periodic signal u(t) of exercise 10.9.

0 ω

1 H(ω)

ωc 2ωc–ωc–2ωc

FIGURE 10.5
Band-pass filter of exercise 10.10.

a Determine the impulse response of the filter.
b To the filter we apply a periodic signal u(t) with period 2π which, on the time
interval [0, 2π), is given by the graph of figure 10.4. Find the response to this
periodic signal u(t).

For an ideal band-pass filter the frequency response is given by the graph of10.10
Band-pass filter figure 10.5.

a Determine the impulse response of the filter.
b Use the sine integral to determine the step response of the filter.

For an LTC-system the frequency response H(ω) is given by10.11

H(ω) = iω + 1

iω − 1
· iω − 2

iω + 2
.

a Determine the impulse response of the system.
b Is the system causal? Justify your answer.
c To the system we apply a signal u(t) with a finite energy-content. Show that
the energy-content of the response y(t) to u(t) is equal to the energy-content of the
input u(t).

An LTC-system with frequency response H(ω) is given. To the system we apply10.12
Band-limited signal a so-called band-limited signal u(t). This means that the spectrum U (ω) satisfies

U (ω) = 0 for | ω | ≥ ωc for some ωc > 0.
a Show that the output y(t) is also band-limited.
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b For the band-limited signal the values u(nT ) for n ∈ Z are given, where T is
such that ωs = 2π/T > 2ωc. In chapter 15 we will derive that this signal can then
be written as

u(t) =
∞∑

n=−∞
u(nT )

2 sin( 1
2ωs(t − nT ))

ωs(t − nT )
.

Show that for the response y(t) one has

y(t) =
∞∑

n=−∞
u(nT )ha(t − nT ),

where ha(t) is the signal given by

ha(t) = 1

ωs

∫ ωs/2

−ωs/2
H(ω)eiωt dω.

10.3 Causal stable systems and differential equations

An example of an LTC-system, occurring quite often in electronics, is an electric
network consisting of linear elements: resistors, capacitors and inductors, whose
properties should not vary in time (time-invariance). For these systems one can
often derive a differential equation, from which the frequency response can then be
determined quite easily (see theorem 5.2). From this, the impulse response can be
determined by using the inverse Fourier transform, and subsequently one obtains the
response to any input by a convolution. Let us start with an example.

In figure 10.6 a series connection is drawn, consisting of a voltage source, a resistorEXAMPLE 10.8
with resistance R and a capacitor with capacitance C . This circuit or network can
be considered as a causal LTC-system with input the voltage u(t) drop across the
voltage source and with output the voltage drop y(t) across the capacitor. We will

u(t)

R

C

+

–

i(t)

y(t)

+

–

FIGURE 10.6
An RC-network.

now determine the impulse response. The frequency response can be obtained as
follows. Let i(t) be the current in the network, then it follows from Kirchhoff’s
voltage law and Ohm’s law that

u(t) = Ri(t) + y(t).

The voltage–current relation for the capacitor is as follows:

y(t) = 1

C

∫ t

−∞
i(τ ) dτ.
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By differentiation it follows that the relation between u(t) and y(t) can be described
by the following differential equation:

RC
dy

dt
+ y(t) = u(t).

From theorem 5.2 it then follows that the frequency response H(ω) is equal to

H(ω) = 1

1 + iωRC
.

Finally, the impulse response is obtained by an inverse Fourier transform. From
table 3 we conclude that

h(t) = 1

RC
e−t/RCε(t).

By (10.3), the response to an arbitrary input u(t) then equals

y(t) = (u ∗ h)(t) = 1

RC

∫ t

−∞
u(τ )e−(t−τ)/RC dτ.

�

In this section we will consider causal and stable LTC-systems described in the
time domain by an ordinary differential equation with constant coefficients. Exam-
ples are the electrical networks with resistors, capacitors and inductors, the so-called
RLC-networks, having one source (a voltage or current source); see also chapter 5.
Using Kirchhoff’s voltage law and the voltage–current relations for the resistor, ca-
pacitor and inductor, one can derive that the relation between the input u(t) and
the response y(t) in such networks can always be described by a linear differential
equation with constant coefficients of the form

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a1

dy

dt
+ a0 y

= bn
dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b1

du

dt
+ b0u (10.9)

with n ≤ m. Causal and stable systems described by (10.9) are of practical impor-
tance because they can physically be realized, for example as an electric network.

If we have a complete description of a system, then the response y(t) to a given
input u(t) must follow uniquely from the given description. For periodic signals
this problem has already been discussed in chapter 5, section 5.1. However, if u(t)
is known in (10.9) (and so the right-hand side is known), then we know from the
theory of ordinary differential equations that a solution y(t) still contains m (the
order of the differential equation) unconstrained parameters. Apparently, more data
from the output or the system are required to determine y(t) uniquely for a given
u(t). If, for example, y(t) and all the derivatives of y(t) up to order m −1 are known
at t = 0, that is to say, if the initial values are known, then it follows from the theory
of ordinary differential equations that y(t) is uniquely determined for all t .

In this chapter we will assume that the differential equation (10.9) describes a
causal and stable LTC-system. The impulse response is then causal and, after re-
moving delta functions that might occur (see example 10.2), absolutely integrable.
Using this, one is able to find a unique solution for the impulse response by sub-
stituting u(t) = δ(t) in (10.9). It is easier, though, to first calculate the frequency
response (see theorem 5.2). According to theorem 5.2 one can use the characteris-
tic polynomial A(s) = amsm + am−1sm−1 + · · · + a1s + a0 and the polynomial
B(s) = bnsn + bn−1sn−1 + · · · + b1s + b0 to write the frequency response as

A(iω)H(ω)eiωt = B(iω)eiωt .
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We now impose the condition that A(iω) �= 0 for all real ω, which means that the
polynomial A(s) has no zeros on the imaginary axis. Dividing by A(iω)eiωt is then
permitted, which leads to the result

H(ω) = bn(iω)n + bn−1(iω)n−1 + · · · + b1(iω) + b0

am(iω)m + am−1(iω)m−1 + · · · + a1(iω) + a0
= B(iω)

A(iω)
. (10.10)

The frequency response is thus a rational function of ω. Because we assumed that
n ≤ m, the degree of the denominator is at most equal to the degree of the numerator.
The impulse response follows from the inverse Fourier transform of the frequency
response. To that end we apply the partial fraction expansion technique, explained
in chapter 2, to the rational function B(s)/A(s). Let s1, s2, . . . , sm be the zeros of
the polynomial A(s) and assume, for convenience, that these zeros are simple. Since
n ≤ m, the partial fraction expansion leads to the representation

H(ω) = c0 +
m∑

k=1

ck

iω − sk
,

where c0, c1, . . . , cm are certain constants. Inverse transformation of c0 gives the
signal c0δ(t). Inverse transformation for Re sk < 0 gives (see table 3)

esk t ε(t) ↔ 1

iω − sk
,

while for Re sk > 0 it gives (use time reversal)

−esk t ε(−t) ↔ 1

iω − sk
.

Finally, when Re sk = 0, so sk = iω0 for some ω0, then

1

2
eiω0t sgn t ↔ 1

i(ω − ω0)
.

We have assumed that the system is causal and stable. This then implies that for
k = 1, 2, . . . , m the zeros sk must satisfy Re sk < 0. Apparently, the zeros of A(s)
lie in the left-half plane Re s < 0 of the complex s-plane. The impulse response
h(t) of the LTC-system then looks as follows:

h(t) = c0δ(t) +
m∑

k=1

ckesk t ε(t).

We conclude that for a description of a causal and stable system by means of a
differential equation of type (10.9), the zeros of A(s) must lie in the left-half plane
of the complex s-plane. Hence, there should also be no zeros on the imaginary axis.
We formulate this result in the following theorem.

When an LTC-system is described by an ordinary differential equation of type (10.9),THEOREM 10.4
then the system is causal and stable if and only if the zeros s of the characteristic
polynomial satisfy Re s < 0.

Consider the RC-network from figure 10.7. The input is the voltage drop u(t) acrossEXAMPLE 10.9
the voltage source and the output is the voltage drop y(t) between nodes A and B
of the network. The network is considered as an LTC-system. The relation between
u(t) and y(t) is described by the differential equation

RC
dy

dt
+ y = −RC

du

dt
+ u.
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u(t)

R

C

+

y(t)

A

R

C

B

–

FIGURE 10.7
An RC-network.

Substituting u(t) = eiωt gives y(t) = H(ω)eiωt with H(ω) equal to

H(ω) = 1 − iωRC

1 + iωRC
.

We see that | H(ω) | = 1. Hence, the amplitude spectrum is identical to 1. Appar-
ently, the network is an example of an all-pass system. Furthermore, we see that
A(s) = 1 + s RC has a zero at s = −1/RC . This zero lies in the complex left-half
plane and so the system is causal and stable. The impulse response follows by an
inverse transform of H(ω), resulting in

h(t) = 2

RC
e−t/RCε(t) − δ(t).

�

EXERCISES

In the circuit of figure 10.8 we have L = 2R2C . The circuit is considered as an10.13

u(t) C
+

–

y(t)

+L

R

–

FIGURE 10.8
Circuit with L = 2R2C of exercise 10.13.

LTC-system with input the voltage drop u(t) across the voltage source and output
the voltage drop y(t) across the resistor R. The relation between u(t) and y(t) is
given by the differential equation

d2 y

dt2
+ ω0

√
2

dy

dt
+ ω2

0 y = d2u

dt2
+ ω2

0u, where ω0 = 1√
LC

.
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u(t)

R
+

–

y(t)

+

R

C

–

FIGURE 10.9
RC-network of exercise 10.14.

a Determine the frequency response H(ω).
b Determine the response to u(t) = cos(ω0t).
c Determine the response to u(t) = cos(ω0t)ε(t).

The RC-network from figure 10.9 is considered as an LTC-system with input the10.14
voltage drop u(t) across the voltage source and output y(t) the voltage drop across
the resistor and the capacitor. The relation between u(t) and y(t) is given by the
differential equation

2
dy

dt
+ 1

RC
y = du

dt
+

(
1 + 1

RC

)
u.

a Determine the frequency response and the impulse response of the system.
b Consider the so-called inverse system, which takes y(t) as input and u(t) as
response. Determine the transfer function H1(ω) and the impulse response h1(t) of
the inverse system.
c Determine (h ∗ h1)(t).

For an LTC-system the impulse response h(t) is given by h(t) = tne−at ε(t). Here10.15
n is a non-negative integer and a a complex number with Re a > 0. Show that the
system is stable.

10.4 Boundary and initial value problems for partial differential
equations

In the previous sections it has been shown that the Fourier transform is an important
tool in the study of the transfer of continuous-time signals in LTC-systems. We
applied the Fourier transform to signals f (t) being functions of the time t , and
the Fourier transform F(ω) could then be interpreted as a function defined in the
frequency domain. However, applications of the Fourier transform are not restricted
to continuous-time signals only. For instance, one can sometimes apply the Fourier
transform successfully in order to solve boundary and initial value problems for
partial differential equations with constant coefficients. In this section an example
will be presented. The techniques that we will use are the same as in section 5.2 of
chapter 5. By a separation of variables one first determines a class of functions that
satisfy the differential equation as well as the linear homogeneous conditions. From
this set of functions one subsequently determines by superposition a solution which
also satisfies the inhomogeneous conditions.
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Again we take the heat equation from chapter 5 as an example, and we will also
use the notations introduced in that chapter:

ut = kuxx for x ∈ R and t > 0. (10.11)

The function u(x, t) describes the heat distribution in a cylinder shaped rod at the
point x in the longitudinal direction and at time t . Now consider the conditions

u(x, 0) = f (x) for x ∈ R and t > 0,
u(x, t) is bounded.

This means that we assume that the rod has infinite length, that the heat distribution
at time t = 0 is known, and that we are only interested in a bounded solution. A
linear homogeneous condition is characterized by the fact that a linear combination
of functions that satisfy the condition, also satisfies that condition. In our case this
is the boundedness condition. Verify this for yourself.

Separation of variables gives u(x, t) = X (x)T (t), where X is a function of x
only and T is a function of t only. In section 5.2 of chapter 5 we derived that
this u(x, t) satisfies the given heat equation if for some arbitrary constant c (the
separation constant) one has

X ′′ − cX = 0,

T ′ − ckT = 0.

In order to satisfy the linear homogeneous condition as well, X (x)T (t) has to be
bounded, and this implies that both X (x) and T (t) have to be bounded functions.

From the differential equation for T (t) it follows that T (t) = αeckt for some α.
And since T (t) has to be bounded for t > 0, the constant c has to satisfy c ≤ 0.
(Unless α = 0, but then we obtain the trivial solution T (t) = 0, which is of no
interest to us.) We therefore put c = −ω2, where ω is a real number.

For ω = 0 the differential equation for X (x) has as general solution X (x) =
αx + β. The boundedness of X (x) then implies that α = 0. For ω �= 0 the
differential equation has as general solution X (x) = αeiωx +βe−iωx . This function
is bounded for all α and β since

| X (x) | ≤ | α |
∣∣∣ eiωx

∣∣∣ + | β |
∣∣∣ e−iωx

∣∣∣ = | α | + | β | .

From the above it follows that the class of functions we are looking for, that is,
satisfying the differential equation and being bounded, can be described by

X (x)T (t) = eiωx e−kω2t , where ω ∈ R.

Now the final step is to construct, by superposition of functions from this class,
a solution satisfying the inhomogeneous condition as well. This means that for a
certain function F(ω) we will try a solution u(x, t) of the form

u(x, t) =
∫ ∞

−∞
F(ω)e−kω2t eiωx dω.

If we substitute t = 0 in this integral representation, then we obtain that

f (x) =
∫ ∞

−∞
F(ω)eiωx dω.

We can now apply the theory of the Fourier transform. If we interpret ω as a fre-
quency, then this integral shows that, up to a factor 2π , f (x) equals the inverse
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Fourier transform of F(ω). Hence, F(ω) is the Fourier transform of f (x), up to a
factor 2π :

F(ω) = 1

2π

∫ ∞

−∞
f (x)e−iωx dx .

We have thus found a solution of the heat conduction problem for the infinite rod,
however, without worrying about convergence problems. In fact one should verify
afterwards that the u(x, t) we have found is indeed a solution. We will omit this
and express this by saying that we have determined a formal solution. When, forFormal solution
example, f (x) = 1/(1 + x2), then it follows from table 3 that F(ω) = 1

2 e−| ω | and
so a formal solution is given by

u(x, t) = 1
2

∫ ∞

−∞
e−| ω |e−kω2t eiωx dω.

EXERCISES

Let f (x) = 1/(1 + x2). Determine formally the bounded solution of the following10.16
problem from potential theory:

uxx + uyy = 0 for −∞ < x < ∞ and y > 0,
u(x, 0) = f (x) for −∞ < x < ∞.

Determine formally the bounded solution T (x, t) of the heat conduction equation10.17

Txx = Tt for −∞ < x < ∞ and t > 0

with initial condition

T (x, 0) =
{

T1 for x ≥ 0,
T2 for x < 0.

S U M M A R Y

The Fourier transform is an important tool in the study of linear time-invariant
continuous-time systems (LTC-systems). These systems possess the important prop-
erty that the relation between an input u(t) and the corresponding output y(t) is
given in the time domain by means of the convolution product

y(t) = (h ∗ u)(t),

where h(t) is the response of the LTC-system to the delta function or unit pulse
δ(t). The signal h(t) is called the impulse response. An LTC-system is completely
determined when the impulse response is known. Properties of an LTC-system can
be derived from the impulse response. For example, an LTC-system is stable if the
impulse response, ignoring possible delta functions, is absolutely integrable.

The step response a(t) is defined as the response to the unit step function ε(t).
The derivative of the step response as distribution is equal to the impulse response.

The frequency response H(ω), introduced in chapter 1, turned out to be equal to
the Fourier transform of the impulse response h(t). The frequency response has the
special property that the LTC-system can be described in the frequency domain by

Y (ω) = H(ω)U (ω).
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Here U (ω) and Y (ω) are the spectra of, respectively, the input u(t) and the corre-
sponding output y(t). Hence, an LTC-system is known when H(ω) is known: in
principle the response y(t) to any input u(t) can then be determined.

An ideal low-pass filter is characterized as an LTC-system for which H(ω) = 0
outside the pass-band −ωc < ω < ωc. An LTC-system for which H(ω) = 1 for all
ω is called an all-pass system. An all-pass system has the property that the energy-
content of the output equals the energy-content of the corresponding input.

For practical applications the causal and stable systems are important, for which
the relationship between u(t) and y(t) can be described by an ordinary differential
equation

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a1

dy

dt
+ a0 y

= bn
dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b1

du

dt
+ b0u.

Examples are the electrical networks consisting of resistors, capacitors and induc-
tors, whose physical properties should be time-independent. The frequency re-
sponse is a rational function. Stability and causality can be established by looking
at the location of the zeros of the denominator of the frequency response. These
should lie in the left-half plane of the complex plane.

The Fourier transform can also successfully be applied to functions depending on
a position variable. Particularly for boundary and initial value problems for linear
partial differential equations, the Fourier transform can be a valuable tool.

S E L F T E S T

A system is described by10.18

y(t) =
∫ t

t−1
e−(t−τ)u(τ ) dτ.

a Determine the frequency response and the impulse response.
b Is the system causal? Justify your answer.
c Is the system stable? Justify your answer.
d Determine the response to the block function p2(t).

For an LTC-system the step response a(t) is given by a(t) = e−t ε(t).10.19
a Determine the impulse response.
b Determine the frequency response.
c Determine the response to the input u(t) = e−t ε(t).

The frequency response of an ideal low-pass filter is given by10.20

H(ω) =
{

1 for | ω | ≤ ωc,
0 for | ω | > ωc.

Determine the response to the periodic input u(t) with period T = 5π/ωc given by
u(t) = t for 0 ≤ t < T .

For an LTC-system the frequency response H(ω) is given by10.21

H(ω) =




1 − | ω |
ωc

for | ω | ≤ ωc,

0 for | ω | > ωc.
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a Determine the impulse response.
b Show that the step response a(t) is a monotone increasing function.

The RCL-network of figure 10.10 is considered as an LTC-system with the voltage10.22
drop u(t) across the voltage source as input and the voltage drop y(t) across the ca-
pacitor as output. The quantities R, L and C are expressed in their respective units
ohm, henry and farad. The relation between u(t) and y(t) is given by the differential

u(t)

R = 1

+

–

y(t)

+

C = 1

L = 1

R = 1

–

FIGURE 10.10
RCL-network of exercise 10.22.

equation

d2 y

dt2
+ 2

dy

dt
+ 2y = du

dt
+ u.

a Determine the impulse response and the step response.
b Determine the response to the input u(t) = e−t ε(t).

For an LTC-system L the frequency response is given by10.23

H(ω) = iω − 1 − i

iω + 1 − i
e−iωt0 where t0 > 0.

a Show that L is an all-pass system.
b Determine the impulse response.
c Is the system stable? Justify your answer.
d Determine the response to the periodic input u(t) = 1 + 2 cos t .

Determine formally the bounded solution u(x, y) of the following boundary value10.24
problem:

uxx − 2uy = 0 for −∞ < x < ∞ and y > 0,
u(x, 0) = xe−xε(x) for −∞ < x < ∞.





Part 4
Laplace transforms

I N T R O D U C T I O N T O P A R T 4

In the previous two parts we considered various forms of Fourier analysis: for peri-
odic functions in part 2 and for non-periodic functions and distributions in part 3. In
this part we examine the so-called Laplace transform. On the one hand it is closely
related to the Fourier transform of non-periodic functions, but on the other hand it
is more suitable in certain applied fields, in particular in signal theory. In physical
reality we usually study signals that have been switched on at a certain moment in
time. One then chooses this switch-on time as the origin of the time-scale. Hence,
in such a situation we are dealing with functions on R which are zero for t < 0,
the so-called causal functions (see section 1.2.4). The Fourier transform of such a
function f is then given by

F(ω) =
∫ ∞

0
f (t)e−iωt dt,

where ω ∈ R. A disadvantage of this integral is the fact that, even for very simple
functions, it often does not exist. For the unit step function ε(t) for example, the
integral does not exist and in order to determine the spectrum of ε(t) we had to
resort to distribution theory. If we multiply ε(t) by a ‘damping factor’ e−σ t for
an arbitrary σ > 0, then the spectrum will exist (see section 6.3.3). It turns out
that this is true more generally: when f (t) is a function that is zero for t < 0
and whose spectrum does not exist, then there is a fair chance that the spectrum of
g(t) = e−σ t f (t) does exist (under certain conditions on σ ∈ R). Determining the
spectrum of g(t) boils down to the calculation of the integral∫ ∞

0
f (t)e−(σ+iω)t dt

for arbitrary real σ and ω. The result will be a new function, denoted by F again,
which no longer depends on ω ∈ R, but on σ + iω ∈ C. Hence, if we write
s = σ +iω, then this assigns to any causal function f (t) a function F(s) by defining

F(s) =
∫ ∞

0
f (t)e−st dt.

The function F(s) is called the Laplace transform of the causal function f (t) and
the mapping assigning the function F(s) to f (t) is called the Laplace transform.
When studying phenomena where one has to deal with switched-on signals, the
Laplace transform is often given preference over the Fourier transform. In fact, the
Laplace transform has a better way ‘to deal with the switch-on time t = 0’. Another
advantage of the Laplace transform is the fact that we do not need distributions very
often, since the Laplace transform of ‘most’ functions exists as an ordinary integral.
For most applications it therefore suffices to use only a very limited part of the
distribution theory.
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Another noticeable difference with the Fourier analysis from parts 2 and 3 is the
role of the fundamental theorem. Although the fundamental theorem of the Laplace
transform can easily be derived from the one for the Fourier integral, it will play
an insignificant role in part 4. In order to recover a function f (t) from its Laplace
transform F(s) we will instead use a table, the properties of the Laplace transform
and partial fraction expansions.

To really understand the fundamental theorem of the Laplace transform would
require an extensive treatment of the theory of functions from C to C. These func-
tions are called complex functions and the Laplace transform is indeed a complex
function: to s ∈ C the number F(s) ∈ C is assigned (we recall that, in contrast,
the Fourier transform is a function from R to C). For a rigorous treatment of the
Laplace transform at least some knowledge of complex functions is certainly neces-
sary. We therefore start part 4 with a short introduction to this subject in chapter 11.
A thorough study of complex functions, necessary in order to use the fundamental
theorem of the Laplace transform in its full strength, lies beyond the scope of this
book.

Following the brief introduction to complex functions in chapter 11, we continue
in chapter 12 with the definition of the Laplace transform of a causal function. A
number of standard Laplace transforms are calculated and some properties, most of
which will be familiar by now, are treated.

Chapter 13 starts with a familiar subject as well, namely convolution. However,
we subsequently treat a number of properties not seen before in Fourier analysis,
such as the so-called initial value and final value theorems. We also consider the
Laplace transform of distributions in chapter 13. Finally, the fundamental theorem
of the Laplace transform is proven and a method is treated to recover a function
f (t) from its Laplace transform F(s) by means of a partial fraction expansion. As
in parts 2 and 3, we apply the Laplace transform to the theory of linear systems and
(partial) differential equations in the final chapter 14.

Pierre Simon Laplace (1749 – 1827) lived and worked at the end of an epoch that
started with Newton, in which the study of the movement of the planets formed an
important stimulus for the development of mathematics. Theories developed in this
period were recorded by Laplace in the five-part opus Mécanique Celeste, which
he wrote during the years 1799 to 1825. The shape of the earth, the movements of
the planets, and the distortions in their orbits were described in it. Another major
work by Laplace, Théorie analytique des probabilités, deals with the calculus of
probabilities. Both standard works do not only contain his own material, but also
that of his predecessors. Laplace, however, made all of this material coherent and
moreover wrote extensive introductions in non-technical terms.

Laplace’s activities took place in a time where mathematicians were no longer
mainly employees of monarchs at courts, but instead were employed by universities
and technical institutes. Previously, mathematicians were given the opportunity to
work at courts, since enlightened monarchs were on the one hand pleased to have
famous scientists associated with their courts, and on the other hand because they
realized how useful mathematics and the natural sciences were for the improvement
of production processes and warfare. Mathematicians employed by universities and
institutes were also given significant teaching tasks. Laplace himself was professor
of mathematics at the Paris military school and was also a minister in Napoleon’s
cabinet for some time. He considered mathematics mainly as a beautiful toolbox
which could benefit the progress of the natural sciences.

In Laplace’s epoch the idea prevailed that mathematics was developed to such
an extent that all could be explained. Based on Newton’s laws, numerous different
phenomena could be understood. This vision arose from the tendency to identify
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mathematics mainly with astronomy and mechanics. It led Laplace to the follow-
ing famous statement: “An intelligence which could oversee all forces acting in
nature at a specific moment and, moreover, all relative positions of all parts present
in nature, and which would also be sufficiently comprehensive to subject all these
data to a mathematical analysis, could in one and the same formula encompass the
movements of the largest bodies in the universe as well as that of the lightest atom:
nothing would remain uncertain for her, and the future as well as the past would
be open to her.” Hence, any newly developed mathematics would at best be more
of the same. However, in the first decades of the nineteenth century mathemati-
cians, such as Fourier, adopted a new course. In the twentieth century, the view
that mathematics could explain everything was thoroughly upset. First by quantum
mechanics, which proved that the observer always influences the observed object,
and subsequently by chaos theory, which proved that it is impossible to determine
the initial state of complex systems, such as the weather, sufficiently accurately to
be able to predict all future developments. Notwithstanding, the Laplace transforms
remain a very important tool for the analysis and further development of systems
and electronic networks.
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CHAPTER 11

Complex functions

I N T R O D U C T I O N

In this chapter we give a brief introduction to the theory of complex functions. In
section 11.1 some well-known examples of complex functions are treated, in partic-
ular functions that play a role in the Laplace transform. In sections 11.2 and 11.3
continuity and differentiability of complex functions are examined. It will turn out
that both the definition and the rules for continuity and differentiability are almost
exactly the same as for real functions. Still, complex differentiability is surpris-
ingly different from real differentiability. In the final section we will briefly go into
this matter and treat the so-called Cauchy–Riemann equations. The more profound
properties of complex functions cannot be treated in the context of this book.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the definition of a complex function and know the standard functions zn , ez ,

sin z and cos z
- can split complex functions into a real and an imaginary part
- know the concepts of continuity and differentiability for complex functions
- know the concept of analytic function
- can determine the derivative of a complex function.

11.1 Definition and examples

The previous parts of this book dealt almost exclusively with functions that were de-
fined on R and could have values in C. In this part we will be considering functions
that are defined on C (and can have values in C).

A function f is called a complex function when f is defined on a subset of C andDEFINITION 11.1
Complex function has values in a subset of C.

Note that in particular C itself is a subset of C. It is customary to denote the
variable of a complex function by the symbol z. The set of all z ∈ C for which a
complex function is well-defined is called the domain of the function. The range ofDomain

Range a complex function f is the set of values f (z), where z runs through the domain of
f .

The function f (z) = z is a complex function with domain C and range C. TheEXAMPLE 11.1
function assigning the complex conjugate z to each z ∈ C, has domain C and range
C as well. In fact, since z = z, it follows that z ∈ C is the complex conjugate
of z ∈ C. In figure 11.1 the function f (z) = z is represented: for a point z the
image-point z is drawn. �

253
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FIGURE 11.1
The function z → z.
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FIGURE 11.2
The function z → 1/z.

Consider the function g assigning the complex number 1/z to z ∈ C, that is, g(z) =EXAMPLE 11.2
1/z. According to section 2.1.1 the number 1/z exists for every z ∈ C with z �= 0.
The domain of g is C \ {0}. The image of g also is C \ {0}. In fact, if z ∈ C and
z �= 0, then one has for w = 1/z that g(w) = 1/w = z. In figure 11.2 the function
1/z is represented; here φ = arg z. �

Just as for real functions, one can use simple complex functions to build ever
more complicated complex functions. The simplest complex functions are of course
the constant functions f (z) = c, where c ∈ C. Next we can consider positive
integer powers of z, so f (z) = zn with n ∈ N. By adding and multiplying by
constants, we obtain the polynomials p(z) = anzn + an−1zn−1 + · · · + a1z + a0,Polynomial
where ai ∈ C for each i . Finally, we can divide two of these polynomials to obtain
the rational functions p(z)/q(z), where p(z) and q(z) are polynomials. As in theRational function
real case, these are only defined for those values of z for which q(z) �= 0.

In section 2.1.1 we have seen that C can also be represented as points in R
2: the

complex number z = x + iy is then identified with the point (x, y) ∈ R
2. If we now

write f (z) = f (x + iy) = u + iv with u, v ∈ R, then u and v will be functions of
x and y. Hence,

f (z) = u(x, y) + iv(x, y),
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where u and v are functions from R
2 to R. The functions u and v are called, respec-

Real and imaginary part of
complex function

tively, the real and imaginary part of the complex function f .

The function f (z) = z has the function u(x, y) = x as real part and v(x, y) = y asEXAMPLE
imaginary part. �

The function f (z) = 1/z has real part u(x, y) = x/(x2 + y2) and imaginary partEXAMPLE 11.3
v(x, y) = −y/(x2 + y2). In fact (also see section 2.1.1):

1

z
= 1

x + iy
= x − iy

(x + iy)(x − iy)
= x − iy

x2 + y2
= x

x2 + y2
− i

y

x2 + y2
.

�

Consider the complex function g(z) = z2. One has (x + iy)2 = x2 − y2 + 2i xy.EXAMPLE 11.4
Hence, the real part of g is u(x, y) = x2 − y2, while the imaginary part is given by
v(x, y) = 2xy. �

The most important function in Fourier analysis is without any doubt the complex-
valued function eiy = cos y + i sin y, y ∈ R (see definition 2.1). In the Laplace
transform the role of this function is taken over by the complex function ez . In
section 2.1.1 we have already defined ez for z ∈ C, since we regularly needed the
complex-valued function ezt . Here z ∈ C is fixed and t ∈ R varies. The following
definition is, of course, in accordance with definition 2.1, but it emphasizes the fact
that we now consider ez as a complex function.

For z = x + iy we define ez byDEFINITION 11.2
Complex exponential

ez = ex eiy = ex (cos y + i sin y). (11.1)

When z = iy with y ∈ R, then this coincides with definition 2.1 given earlier in
section 2.1.1; when z = x with x ∈ R, then the definition agrees with the usual (real)
exponential function ex . By the way, it immediately follows from the definition that
ez = u(x, y) + iv(x, y) with u(x, y) = ex cos y and v(x, y) = ex sin y. The
definition above ensures that the characteristic property ea+b = eaeb of the real
exponential function remains valid.

The function ez has the following properties:THEOREM 11.1
a ez+w = ezew for all w, z ∈ C;

b
∣∣∣ ex+iy

∣∣∣ = ex ; in particular one has ez �= 0 for all z ∈ C.

Proof
Let z = a + ib and w = c + id with a, b, c, d ∈ R. Then we have ez+w =
e(a+c)+i(b+d) = ea+cei(b+d). In (2.7) it was shown that ei(b+d) = eibeid , while
for the real exponential function one has ea+c = eaec. Hence, it follows that
ez+w = eaeceibeid = ea+ibec+id = ezew . This proves part a. For part b we

use that | wz | = | w | | z | (see (2.4)). It then follows that
∣∣∣ ex+iy

∣∣∣ =
∣∣∣ ex eiy

∣∣∣ =∣∣ ex
∣∣ ∣∣∣ eiy

∣∣∣ = ex since
∣∣∣ eiy

∣∣∣ = 1 for y ∈ R and ex > 0 for x ∈ R. In particular we

see that
∣∣∣ ex+iy

∣∣∣ > 0 and so ez �= 0 for all z = x + iy ∈ C. �

In contrast to the real exponential function ex (x ∈ R), the complex function ez

is by no means one-to-one. We recall, for example, that e2π ik = 1 for all k ∈ Z (see
(2.12)). Using theorem 11.1a it then follows that ez+2π ik = ez for all k ∈ Z and
z ∈ C.

The definition of ez for z ∈ C also enables us to extend the sine and cosine func-
tions to complex functions. In (2.11) we already noted that sin y = (eiy − e−iy)/2i
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and cos y = (eiy + e−iy)/2 for y ∈ R. Since eiz is now defined for z ∈ C, this
suggests the following definition.

For z ∈ C we define sin z and cos z byDEFINITION 11.3
Complex sine and cosine

sin z = eiz − e−i z

2i
, cos z = eiz + e−i z

2
.

When z = y ∈ R, these definitions are of course in accordance with the real
sine and cosine. Many of the well-known trigonometric identities remain valid for
the complex sine and cosine. For example, by expanding the squares it immediately
follows that sin2 z + cos2 z = 1. Similarly one obtains for instance the formulas
cos 2z = cos2 z − sin2 z and sin 2z = 2 sin z cos z. However, not all results are the
same! For example, it is not true that | sin z | ≤ 1: for z = 2i we have | sin 2i | =
(e2 − e−2)/2 > 3.

EXERCISES

Determine the domain and range of the following complex functions:11.1
a f (z) = z,
b f (z) = z3,
c f (z) = z − 4 + i ,
d f (z) = (3i − 2)/(z + 3).

Determine the real and imaginary part of the complex functions in exercise 11.1.11.2

Show that sin2 z + cos2 z = 1 and that sin 2z = 2 sin z cos z.11.3

Prove that sin(−z) = − sin z and that sin(z + w) = sin z cos w + cos z sin w .11.4

For x ∈ R the functions hyperbolic sine (sinh) and hyperbolic cosine (cosh) are11.5
Hyperbolic sine

Hyperbolic cosine

defined by sinh x = (ex − e−x )/2 and cosh x = (ex + e−x )/2.
a Prove that sin(iy) = i sinh y and cos(iy) = cosh y.
b Use part a and exercise 11.4 to show that the real part of sin z equals sin x cosh y
and that the imaginary part of sin z equals cos x sinh y.

11.2 Continuity

In this section the concept of continuity is treated for complex functions. Just as for
real functions, continuity of a complex function will be defined in terms of limits.
However, in order to talk about limits in C, we will first have to specify exactly what
will be meant by ‘complex numbers lying close to each other’. To do so, we start
this section with the notion of a neighbourhood of a complex number z0.

In section 2.1.1 we noted that the set of complex numbers on the unit circle is
given by the equation | z | = 1. The set of complex numbers inside the unit circle
will be called the unit disc. The complex numbers in the unit disc are thus givenUnit disc
by the inequality | z | < 1. In the same way all complex numbers inside the circle
with centre 0 and radius δ > 0 are given by the inequality | z | < δ. Finally, if
we shift the centre to the point z0 ∈ C, then all complex numbers inside the circle
with centre z0 and radius δ > 0 are given by the inequality | z − z0 | < δ. We call
this a neighbourhood of the point z0. When the point z0 itself is removed from a
neighbourhood of z0, then we call this a reduced neighbourhood of z0; it is given by
the inequalities 0 < | z − z0 | < δ. See figure 11.3. We summarize these concepts
in definition 11.4.
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FIGURE 11.3
A neighbourhood (a) and a reduced neighbourhood (b) of z0.

Let δ > 0. A neighbourhood of z0 is defined as the setDEFINITION 11.4
Neighbourhood {

z ∈ C

∣∣∣ | z − z0 | < δ
}

.

A reduced neighbourhood of z0 is defined as the setReduced neighbourhood {
z ∈ C

∣∣∣ 0 < | z − z0 | < δ
}

.

Continuity of a complex function can now be defined precisely as for real func-
tions. First the notion of a limit is introduced and subsequently continuity is defined
in terms of limits.

Let f be a complex function defined in a reduced neighbourhood of z0. ThenDEFINITION 11.5
Limit in C limz→z0 f (z) = w means that for all ε > 0 there exists a δ > 0 such that for

0 < | z − z0 | < δ one has | f (z) − w | < ε.

Hence, the value f (z) is close to w when z is close to z0. Geometrically this
means that the numbers f (z) will be lying in a disc which is centred around the
point w and which is getting smaller and smaller as z tends to z0.

Let f be a complex function defined in a neighbourhood of z0 ∈ C. Then f is calledDEFINITION 11.6
Continuity in C continuous at z0 if limz→z0 f (z) = f (z0). The function f is called continuous on

a subset G in C when f is continuous at all points z0 of G; this subset G should be
a set such that every point z0 ∈ G has a neighbourhood belonging entirely to G.

Loosely speaking: when f is continuous at z0, then the value f (z) is close to
f (z0) when z is close to z0. The condition on the subset G in definition 11.6 is quite
natural. This is because continuity at a point z0 can only be defined if the function is
defined in a neighbourhood of the point z0; hence, together with the point z0 there
should also be a neighbourhood of z0 belonging entirely to G. This explains the
condition on the set G. Definitions 11.5 and 11.6 are completely analogous to the
definitions of limit and continuity in the real case. Considering this great similarity
with the real case, a warning is justified. In the real case there are only two different
directions from which a limit can be taken, namely from the right and from the left.
Continuity at a point x0 of a function f defined on R is thus equivalent to

lim
x↑x0

f (x) = f (x0) = lim
x↓x0

f (x).
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For a complex function the situation is completely different. The points z may
approach z0 in a completely arbitrary fashion in the complex plane, as long as
the distance | z − z0 | from z to z0 decreases. Hence, for a complex function it is
often much harder to prove continuity using definition 11.6. However, the rules
for limits and continuity of complex functions are indeed precisely the same as for
real functions. Using these rules it is in most cases easy to verify the continuity
of complex functions. The proofs of the rules are also exactly the same as for real
functions. This is why we state the following theorem without proof.

Let f and g be complex functions defined in a reduced neighbourhood of z0. IfTHEOREM 11.2
limz→z0 f (z) = a and limz→z0 g(z) = b, then

lim
z→z0

( f (z) ± g(z)) = a ± b,

lim
z→z0

( f (z) · g(z)) = a · b,

lim
z→z0

( f (z)/g(z)) = a/b if b �= 0.

If limw→a h(w) = c and if the function h is defined in a reduced neighbourhood of
the point a, then limz→z0 h( f (z)) = c.

From theorem 11.2 one then obtains, as in the real case, the following results.
Here the set G is as in definition 11.6.

When f and g are continuous functions on a subset G of C, then f + g and f · gTHEOREM 11.3
are continuous on G. Moreover, f/g is continuous on G, provided that g(z) �= 0 for
all z ∈ G. If h is a continuous function defined on the range of f , then (h ◦ f )(z) =
h( f (z)) is also a continuous function on G.

As for real functions, theorem 11.3 is used to prove the continuity for ever more
complicated functions. The constant function f (z) = c (c ∈ C) and the function
f (z) = z are certainly continuous on C (the proof is the same as for real functions).
According to theorem 11.3, the product z · z = z2 is then also continuous. Repeated
application then establishes that zn is continuous on C for any n ∈ N and hence
also that any polynomial is continuous on C. By theorem 11.3 rational functions are
then continuous as well, as long as the denominator is unequal to 0; in this case one
has to take for the subset G the set C with the roots of the denominator removed
(see section 2.1.2 for the concept of root or zero of a polynomial). Without proof
we mention that such a set satisfies the conditions of definition 11.6.

EXERCISES

a Show that lim
z→z0

( f (z) + g(z)) = a + b if lim
z→z0

f (z) = a and lim
z→z0

g(z) = b.11.6

b Use part a to prove that f + g is continuous on G if f and g are continuous on
G (G is a subset of C as in definition 11.6).

Use the definition to show that the following complex functions are continuous on11.7
C:
a f (z) = c, where c ∈ C is a constant,
b f (z) = z.

On which subset G of C is the following function continuous?11.8

g(z) = 3z − 4

(z − 1)2(z + i)(z − 2i)
.
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11.3 Differentiability

Just as for continuity, the definition of differentiability of a complex function can be
copied straight from the real case.

Let f be a complex function defined in a neighbourhood of z0 ∈ C. Then f is calledDEFINITION 11.7
Differentiability in C differentiable at z0 if

lim
z→z0

f (z) − f (z0)

z − z0

exists as a finite number. In this case the limit is denoted by f ′(z0) or by (d f/dz)(z0).

When a complex function is differentiable for every z ∈ C, then f is not called
‘differentiable on C’, but analytic on C. The following definition is somewhat more
general.

Let f be a complex function, defined on a subset G of C. Then f is called analyticDEFINITION 11.8
Analytic function on G if f is differentiable at every point z0 of G (here the subset G should again

be a set as in definition 11.6). The function f ′ (now defined on G) is called the
derivative of f .Derivative

Although these definitions closely resemble the definitions of differentiability and
derivative for real functions, there still is a major difference. Existence of the limit
in definition 11.7 is much more demanding than in the real case; this is because the
limit now has to exist no matter how z approaches z0. In the real case there are
only two possible directions, namely from the right or from the left. In the complex
case there is much more freedom, since only the distance | z − z0 | from z to z0
has to decrease and nothing else is assumed about directions (compare this with the
remarks following definition 11.6). Yet, here we will again see that for the calcula-
tion of derivatives of complex functions one has precisely the same rules as for real
functions (see theorem 11.5). As soon as we have calculated a number of standard
derivatives, these rules enable us to determine the derivative of more complicated
functions. In the following examples we use definition 11.7 to determine our first
two standard derivatives.

Consider the constant function f (z) = c, where c ∈ C. Let z0 ∈ C. Since f (z) −EXAMPLE 11.5
f (z0) = c − c = 0 for each z ∈ C, it follows that f ′(z0) = 0. As for real constants
we thus have that the derivative of a constant equals 0. Put differently, the function
f (z) = c is analytic on C and f ′(z) = 0. �

The function f (z) = z is analytic on C and has as its derivative the function 1. InEXAMPLE 11.6
fact, for z0 ∈ C one has f (z)− f (z0) = z − z0 and so ( f (z)− f (z0))/(z − z0) = 1
for each z ∈ C. This shows that f ′(z0) = 1 for each z0 ∈ C. �

Quite a few of the well-known results for the differentiation of real functions
remain valid for complex functions. The proofs of the following two theorems are
exactly the same as for the real case and are therefore omitted.

Let f be a complex function and assume that f ′(z0) exists at the point z0. Then fTHEOREM 11.4
is continuous at z0.

Let f and g be analytic on a subset G of C (G as in definition 11.6). Then theTHEOREM 11.5
following properties hold:
a a f + bg is analytic on G for arbitrary a, b ∈ C and (a f + bg)′(z) = a f ′(z) +Linearity
bg′(z);
b f · g is analytic on G and the product rule holds: ( f · g)′(z) = f ′(z)g(z) +Product rule
f (z)g′(z);
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c if g(z) �= 0 for all z ∈ G, then f/g is analytic on G and the quotient rule holds:Quotient rule (
f

g

)′
(z) = f ′(z)g(z) − f (z)g′(z)

(g(z))2
;

d if h is analytic on the range f (G) of G under f , then the function (h ◦ f )(z) =Chain rule
h( f (z)) is analytic on G and the chain rule holds: (h ◦ f )′(z) = h′( f (z)) f ′(z).

Using theorem 11.5 and examples 11.5 and 11.6 one can determine the derivative
of any polynomial and any rational function. As a first step we calculate the deriva-
tive of z2 using theorem 11.5b and example 11.6: (z2)′ = (z · z)′ = zz′ + z′z =
z + z = 2z. By a repeated application of this rule it then follows that (zn)′ = nzn−1,
just as in the real case. If we now use theorem 11.5a, it follows that any poly-
nomial anzn + an−1zn−1 + · · · + a1z + a0 is analytic on C and has derivative
nanzn−1 + (n − 1)an−1zn−2 + · · · + a1. Subsequently one can apply the quotient
rule from theorem 11.5c to conclude that a rational function is analytic on C if we
remove the points where the denominator is equal to zero.

The real exponential function ex has as its derivative the function ex again. We
will now show that the complex function ez is analytic on C and has as its deriva-
tive the function ez again. This gives us an important new standard derivative and
although this result will probably come as no surprise, its proof will require quite an
effort.

As a preparation we will first consider certain limits of functions of two real
variables x and y. Let us consider, for example, the limit

lim
(x,y)→(0,0)

y3

x2 + y2
.

Here (x, y) → (0, 0) means that the distance from (x, y) ∈ R
2 to the point (0, 0)

keeps decreasing, that is to say, x2 + y2 → 0 (if we write z = x + iy, then this
means precisely that | z | → 0). Now introduce polar coordinates, so x = r cos φ

and y = r sin φ (this means precisely that z = r cos φ + ir sin φ = reiφ , the well-
known expression (2.6)). We then have x2 + y2 = r2 and hence

lim
(x,y)→(0,0)

y3

x2 + y2
= lim

r→0

r3 sin3 φ

r2
= lim

r→0
r sin3 φ.

Since
∣∣∣ sin3 φ

∣∣∣ ≤ 1, it follows that

lim
(x,y)→(0,0)

y3

x2 + y2
= 0.

The same method can be applied to the quotient x3/(x2 + y2) or xy2/(x2 + y2). In
general one has for k, l ∈ N that

lim
(x,y)→(0,0)

xk yl

x2 + y2
= 0 if k + l ≥ 3. (11.2)

In fact, by changing to polar coordinates it follows that

lim
(x,y)→(0,0)

xk yl

x2 + y2
= lim

r→0

rk+l cosk φ sinl φ

r2
= lim

r→0
rk+l−2 cosk φ sinl φ = 0,

since k + l − 2 ≥ 1 and
∣∣∣ cosk φ sinl φ

∣∣∣ ≤ 1. We use (11.2) in the proof of the

following theorem.
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The function ez is analytic on C andTHEOREM 11.6

(ez)′ = ez . (11.3)

Proof
Take z ∈ C arbitrary, then

lim
w→z

ew − ez

w − z
= lim

w→z

ez(ew−z − 1)

w − z
= ez lim

w−z→0

ew−z − 1

w − z
,

where we used the important property in theorem 11.1a. If we now show that
limu→0(eu − 1)/u = 1 for arbitrary u ∈ C, then it follows that ez is differentiable
at every point z ∈ C and that the derivative at that point equals ez . The function ez

is then analytic on C and (ez)′ = ez .
In order to show that indeed limu→0(eu − 1)/u = 1, we note that for u = x + iy

eu − 1

u
= ex (cos y + i sin y) − 1

x + iy
=

(
(ex cos y − 1) + iex sin y

)
(x − iy)

(x + iy)(x − iy)
.

Now expand numerator and denominator and note that u → 0 is equivalent to
(x, y) → (0, 0). It then follows that limu→0(eu − 1)/u = 1 equals

lim
(x,y)→(0,0)

(xex cos y − x + ex y sin y) + i(xex sin y − ex y cos y + y)

x2 + y2

= lim
(x,y)→(0,0)

x(ex cos y − 1) + ex y sin y

x2 + y2

+ i lim
(x,y)→(0,0)

xex sin y + y(1 − ex cos y)

x2 + y2
.

These two limits are now calculated separately by applying (11.2). To this end we
develop the functions ex , sin y and cos y in Taylor series around the point x = 0 and
y = 0 respectively (see (2.23) – (2.25)):

ex = 1 + x + x2/2 + · · · ,
sin y = y − y3/6 + · · · ,
cos y = 1 − y2/2 + · · · .

We now concentrate ourselves on the first limit. From the Taylor series it follows
that

ex cos y − 1 = −1 + (1 + x + x2/2 + · · ·)(1 − y2/2 + · · ·)
= −1 + 1 − y2/2 + x + x2/2 + · · · ,

from which we see that

ex cos y − 1 = x + terms of the form xk yl with k + l ≥ 2.

In the same way we obtain

ex sin y = (1 + x + · · ·)(y − · · ·)
= y + terms of the form xk yl with k + l ≥ 2.
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For the first limit it then follows that

lim
(x,y)→(0,0)

x(ex cos y − 1) + ex y sin y

x2 + y2

= lim
(x,y)→(0,0)

x2 + y2 + terms of the form xk yl with k + l ≥ 3

x2 + y2

= lim
(x,y)→(0,0)

1 + terms of the form xk yl with k + l ≥ 3

x2 + y2
= 1,

where we used (11.2) in the final step. The second limit is treated in the same way

1 − ex cos y = −x + terms of the form xk yl with k + l ≥ 2,

and, with the expression for ex sin y as before, we thus find that

xex sin y + y(1 − ex cos y)

= xy − yx + terms of the form xk yl with k + l ≥ 3.

Hence, the numerator in the second limit only contains terms of the form xk yl with
k + l ≥ 3, since xy − yx = 0. From (11.2) it then follows that the second limit
equals 0. This proves that limu→0(eu − 1)/u = 1. �

From theorem 11.6 (and theorem 11.5) it also follows that the functions sin z and
cos z are analytic on C. This is because sin z = (eiz − e−i z)/2i and cos z = (eiz +
e−i z)/2 and from the chain rule it then follows that (sin z)′ = (iei z + ie−i z)/2i =
cos z and similarly (cos z)′ = − sin z.

We close this section with an example of a complex function which is not differ-
entiable.

Consider the function f (z) = z from example 11.1. We will show that f is notEXAMPLE 11.7
differentiable at z = 0, in other words, that the limit

lim
z→0

f (z) − f (0)

z − 0
= lim

z→0

z

z

from definition 11.7 does not exist. First we take z = x with x ∈ R; then z = x and
so limz→0 z/z = limx→0 x/x = 1. Next we take z = iy with y ∈ R; then z = −iy
and so limz→0 z/z = limy→0(−iy)/ iy = −1. This shows that the limit does not
exist. �

EXERCISES

Use definition 11.7 to prove that the function f (z) = z2 is analytic on C and deter-11.9
mine its derivative.

Let f and g be analytic on the subset G of C. Show that f + g is analytic on G and11.10
that ( f + g)′(z) = f ′(z) + g′(z).

Determine on which subset of C the following functions are analytic and give their11.11
derivative:
a f (z) = (z − 1)4,
b f (z) = z + 1/z,
c f (z) = (z2 − 3z + 2)/(z3 + 1),

d f (z) = ez2 + 1.

Show that (cos z)′ = − sin z.11.12
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We have seen that many of the rules for complex functions are precisely the same11.13
as for real functions. That not all rules remain the same is shown by the following
Bernoulli paradox: 1 = √

1 = √
(−1)(−1) = √

(−1)
√

(−1) = i · i = i2 = −1.
Which step in this argument is apparently not allowed?

11.4 The Cauchy–Riemann equations∗

The material in this section will not be used in the remainder of the book and can
thus be omitted without any consequences.

The proof of theorem 11.6 clearly shows that in some cases it may not be easy
to show whether or not a function is differentiable and, in case of differentiability,
to determine the derivative. The reason for this is the fact, mentioned earlier, that
a limit in C is of a quite different nature from a limit in R. In order to illustrate
this once more, we close with a theorem whose proof cleverly uses the fact that a
limit in C should not depend on the way in which z approaches z0 in the expression
limz→z0 . The theorem also provides us with a quick and easy way to show that a
function is not analytic.

Let f (z) = u(x, y) + iv(x, y) be a complex function. Assume that f ′(z0) exists atTHEOREM 11.7
a point z0 = x0 + iy0. Then ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y exist at the point
(x0, y0) and at (x0, y0) one has

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= − ∂v

∂x
. (11.4)

Proof
In the proof we first let z = x + iy tend to z0 = x0 + iy0 in the real direction
and subsequently in the imaginary direction. See figure 11.4. It is given that the

0 Re z

Im z

z 0 = x0 + iy0

z = x0 + iy

z = x + iy0

FIGURE 11.4
The limit in the real and in the imaginary direction.

following limit exists:

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
.

We first study the limit in the real direction. We thus take z = x + iy0, which means
that z → z0 is equivalent to x → x0 since z − z0 = x + iy0 − x0 − iy0 = x − x0.
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Moreover, we then have

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0

= lim
x→x0

u(x, y0) + iv(x, y0) − u(x0, y0) − iv(x0, y0)

x − x0

= lim
x→x0

u(x, y0) − u(x0, y0)

x − x0
+ i lim

x→x0

v(x, y0) − v(x0, y0)

x − x0
.

Since f ′(z0) exists, both limits in this final expression have to exist as well. But
these limits are precisely the partial derivatives ∂u/∂x and ∂v/∂x at the point (x0, y0),
which we denote by (∂u/∂x)(x0, y0) and (∂v/∂x)(x0, y0). Hence,

f ′(z0) = ∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

Next we study the limit in the imaginary direction. We thus take z = x0 + iy, which
means that z → z0 is equivalent to y → y0 since z − z0 = x0 + iy − x0 − iy0 =
i(y − y0). As before, it then follows that

f ′(z0) = lim
y→y0

u(x0, y) + iv(x0, y) − u(x0, y0) − iv(x0, y0)

i(y − y0)

= 1

i
lim

y→y0

u(x0, y) − u(x0, y0)

y − y0
+ lim

y→y0

v(x0, y) − v(x0, y0)

y − y0
.

Hence,

f ′(z0) = ∂v

∂y
(x0, y0) − i

∂u

∂y
(x0, y0).

From these two expressions for f ′(z0) it follows that at the point (x0, y0) we have

∂u

∂x
+ i

∂v

∂x
= ∂v

∂y
− i

∂u

∂y
.

If we compare the real and imaginary parts in this identity, then we see that indeed
∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x at the point (x0, y0). �

The equations ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x from (11.4) are called the
Cauchy–Riemann equations. They show that for an analytic function the real partCauchy–Riemann equations
u(x, y) and the imaginary part v(x, y) have a very special relationship. One can
thus use theorem 11.7 to show in a very simple way that a function is not analytic.
Indeed, when the real and imaginary part of a complex function f do not satisfy the
Cauchy–Riemann equations from theorem 11.7, then f is not analytic.

Consider the function f (z) = z. The real part is u(x, y) = x , while the imaginaryEXAMPLE
part is given by v(x, y) = −y. Hence ∂u/∂x = 1 and ∂v/∂y = −1. Since the
Cauchy–Riemann equations are not satisfied, it follows that f is not analytic on C

(see also example 11.7). �

Even more important than theorem 11.7 is its converse, which we will state with-
out proof: when ∂u/∂x , ∂u/∂y, ∂v/∂x and ∂v/∂y exist and are continuous on a
subset G of C and when they satisfy the Cauchy–Riemann equations (11.4) on G,
then f (z) = u(x, y) + iv(x, y) (z = x + iy) is analytic on G. This gives us a very
simple method to show that a function is analytic!

For the function f (z) = ez one has u(x, y) = ex cos y and v(x, y) = ex sin y. ItEXAMPLE
then follows that ∂u/∂x = ex cos y, ∂u/∂y = −ex sin y, ∂v/∂x = ex sin y and
∂v/∂y = ex cos y. The partial derivatives thus exist and they are continuous on R

2.
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Moreover, they satisfy the Cauchy–Riemann equations. Hence, the function ez is
analytic on C and f ′(z) = ∂u/∂x + i∂v/∂x = ex cos y + iex sin y = ez . Compare
the ease of these arguments with the proof of theorem 11.6. �

EXERCISES

We know that the function f (z) = z2 is analytic on C (see exercise 11.9 or the text11.14∗
following theorem 11.5). Verify the Cauchy–Riemann equations for f (see example
11.4 for the real and imaginary part of f ).

Use the Cauchy–Riemann equations (and the results of example 11.3) to show that11.15∗
f (z) = 1/z is analytic on C − {0}.

S U M M A R Y

Complex functions are functions from (a subset of) C to C. By identifying C with
R

2, one can split a complex function into a real part and an imaginary part; these are
then functions from R

2 to R. A very important complex function is ez = ex+iy =
ex (cos y + i sin y). It has the characteristic property ez+w = ezew for all w, z ∈
C. Using ez one can extend the sine and cosine functions from real to complex
functions.

Continuity and differentiability of a complex function f can be defined by means
of limits, just as for the real case: f is called continuous at z0 ∈ C when
limz→z0 f (z) = f (z0); f is called differentiable when

lim
z→z0

f (z) − f (z0)

z − z0

exists as a finite number. A complex function f is called analytic on a subset G
of C when f is differentiable at every point of G. The well-known rules from real
analysis remain valid for the complex functions treated here. The function ez , for
example, is analytic on C and has as derivative the function ez again.

S E L F T E S T

Consider the complex function f (z) = cos z.11.16
a Is it true that | cos z | ≤ 1? If so, give a proof. If not, give a counter-example.
b Show that cos(w + z) = cos w cos z − sin w sin z.
c Determine the real and imaginary part of cos z.
d Give the largest subset of C on which f is analytic. Justify your answer.

Determine on which subset G of C the following functions are analytic and give11.17
their derivative:
a (z3 + 1)/(z − 1),
b 1/(z4 + 16)10,
c ez/(z2 + 3),
d sin(ez).
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CHAPTER 12

The Laplace transform: definition and
properties

I N T R O D U C T I O N

Signals occurring in practice will always have been switched on at a certain moment
in time. Choosing this switch-on moment equal to t = 0, we are then dealing with
functions that are zero for t < 0. If, moreover, such a function is multiplied by a
damping factor e−at (a > 0), then it is not unreasonable to expect that the Fourier
transform of e−at f (t) will exist. As we have seen in the introduction to part 4, this
leads to a new transformation, the so-called Laplace transform. In section 12.1 the
Laplace transform F(s) of a causal function f (t) will be defined by

F(s) =
∫ ∞

0
f (t)e−st dt.

Here s ∈ C is ‘arbitrary’ and F(s) thus becomes a complex function. One of the
major advantages of the Laplace transform is the fact that the integral is convergent
for ‘a lot of’ functions (which is in contrast to the Fourier transform). For example,
the Laplace transform of the unit step function exists, while this is not the case for
the Fourier transform.

In section 12.1 we consider in detail the conditions under which the Laplace
transform of a function exists. This is illustrated by a number of standard examples
of Laplace transforms. Because of the close connection with the Fourier transform,
it will hardly be a surprise that for the Laplace transform similar properties hold.
A number of elementary properties are treated in section 12.2: linearity, rules for a
shift in the time domain as well as in the s-domain, and the rule for scaling.

In section 12.3 the differentiation and integration rules are treated. These are
harder to prove, but of great importance in applications. In particular, the rule for
differentiation in the time domain proves essential for the application to differential
equations in chapter 14. The differentiation rule in the s-domain will in particu-
lar show that the Laplace transform F(s) of a causal function f (t) is an analytic
function on a certain subset of C.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know and can apply the definition of the Laplace transform
- know the concepts of abscissa of convergence and of absolute convergence
- know the concept of exponential order
- know and can apply the standard examples of Laplace transforms
- know and can apply the properties of linearity, shifting and scaling
- know and can apply the rules for differentiation and integration.

267
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12.1 Definition and existence of the Laplace transform

The following definition has been justified in the introduction (and in the introduc-
tion to part 4). For the notion ‘causal function’ or ‘causal signal’ we refer to section
1.2.4.

Let f (t) be a causal function, so f (t) = 0 for t < 0. The Laplace transform F(s)DEFINITION 12.1
Laplace transform of f (t) is the complex function defined for s ∈ C by

F(s) =
∫ ∞

0
f (t)e−st dt, (12.1)

provided the integral exists.

We will see in a moment that for many functions f (t) the Laplace transform F(s)
exists (on a certain subset of C). The mapping assigning the Laplace transform F(s)
to a function f (t) in the time domain will also be called the Laplace transform.Laplace transform
Furthermore, we will say that F(s) is defined in the s-domain; one sometimes callss-domain
this s-domain the ‘complex frequency domain’ (although a physical interpretation
can hardly be given for arbitrary s ∈ C). Besides the notation F(s) we will also
use (L f )(s), so (L f )(s) = F(s). Often the notation (L f (t))(s), although not very
elegant, will be useful in the case of a concrete function.

In this part of the book we will always tacitly assume that the functions are causal.
The function t , for example, will in this part always stand for ε(t)t ; it is equal to
0 for t < 0 and equal to t for t ≥ 0. In particular, the constant function 1 is
equal to ε(t) in this part. Moreover, for all functions it will always be assumed
that they are piecewise smooth (see definition 2.4). In particular it then follows that∫ R

0 f (t)e−st dt will certainly exist for any R > 0. The existence of the integral in
(12.1) then boils down to the fact that the improper Riemann integral over R, that
is, limR→∞

∫ R
0 f (t)e−st dt , has to exist.

Note also that for s = σ + iω with σ, ω ∈ R it immediately follows from the
definition of the complex exponential that

F(s) =
∫ ∞

0
f (t)e−σ t e−iωt dt. (12.2)

This is an interesting formula, for it shows that the Laplace transform F(s) of f (t)
at the point s = σ +iω is equal to the Fourier transform of ε(t) f (t)e−σ t at the point
ω, provided all the integrals exist. This is the case, for example, if ε(t) f (t)e−σ t is
absolutely integrable (see definition 6.2). For the moment, we leave this connection
between the Laplace and Fourier transform for what it is, and return to the question
of the existence of the integral in (12.1), in other words, the existence of the Laplace
transform. As far as the general theory is concerned, we will confine ourselves to
absolute convergence.

An integral
∫ b

a g(t) dt with −∞ ≤ a < b ≤ ∞ is called absolutely convergent ifDEFINITION 12.2
Absolutely convergent ∫ b

a
| g(t) | dt < ∞.

This concept is entirely analogous to the concept of absolute convergence for
series (see section 2.4.2). Since

∣∣ ∫ g(t) dt
∣∣ ≤ ∫ | g(t) | dt (as in (2.22)), we see

that an absolutely convergent integral is also convergent in the ordinary sense. The
converse, however, need not to be true, just as for series. Note that for the absolute
convergence of the integral in (12.1) only the value of σ = Re s is of importance,
since |eiωt | = 1 for all ω ∈ R. In the general theory we will confine ourselves to
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absolute convergence, since proofs are easier than for the case of ordinary conver-
gence. For concrete cases it is usually quite easy to treat ordinary convergence as
well. To get some feeling for the absolute and ordinary convergence of the integral
in (12.1), we will first treat two examples.

Let ε(t) be the unit step function. The Laplace transform of ε(t) (or the function 1)EXAMPLE 12.1
Laplace transform of 1 is given by the integral∫ ∞

0
e−st dt = lim

R→∞

∫ R

0
e−σ t e−iωt dt

if s = σ + iω. We first consider absolute convergence. The absolute value of the
integrand is equal to e−σ t and for σ �= 0 one has∫ R

0
e−σ t dt =

[
− 1

σ
e−σ t

]R

0
= 1

σ
(1 − e−σ R).

The integral thus converges absolutely if limR→∞ e−σ R exists and of course this
is the case only for σ > 0. Hence, the Laplace transform of ε(t) certainly exists
for σ > 0, so for Re s > 0. We will now show that the integral also converges in
the ordinary sense precisely for all s ∈ C with Re s > 0. For s = 0 we have that
limR→∞

∫ R
0 1 dt does not exist. Since (e−st )′ = −se−st (here we differentiate

with respect to the real variable t ; see example 2.11), it follows for s �= 0 that∫ R

0
e−st dt =

[
−1

s
e−st

]R

0
= 1

s
(1 − e−s R).

Hence, the Laplace transform of ε(t) will only exist when limR→∞ e−s R =
limR→∞ e−σ Re−iωR exists. Since |e−iωR | = 1, the limit will exist precisely
for σ > 0 and in this case the limit will of course be 0 since limR→∞ e−σ R = 0 for
σ > 0. We conclude that the integral converges in the ordinary sense precisely for
all s ∈ C with Re s > 0 and that the Laplace transform of 1 (or ε(t)) is given by 1/s
for these values of s. Note that in this example the regions of absolute and ordinary
convergence are the same. �

Let a ∈ R. The Laplace transform of the function eat (hence of ε(t)eat ) is given byEXAMPLE 12.2

Laplace transform of eat ∫ ∞

0
eat e−st dt = lim

R→∞

∫ R

0
e−(σ−a)t e−iωt dt

if s = σ + iω. Again we first look at absolute convergence. The absolute value of
the integrand is e−(σ−a)t and for σ �= a one has∫ R

0
e−(σ−a)t dt = 1

σ − a

(
1 − e−(σ−a)R

)
.

Hence, the integral converges absolutely when limR→∞ e−(σ−a)R exists and this is
precisely the case when σ −a > 0, or Re s > a. We will now determine the Laplace
transform of eat and moreover show that the integral also converges in the ordinary
sense for precisely all s ∈ C with Re s > a. For s = a the Laplace transform will
certainly not exist. Since (e−(s−a)t )′ = −(s − a)e−(s−a)t , it follows for s �= a that∫ ∞

0
eat e−st dt = lim

R→∞

[
− 1

s − a
e−(s−a)t

]R

0
= 1

s − a
− 1

s − a
lim

R→∞
e−(s−a)R .

As in example 12.1, we have limR→∞ e−(s−a)R = limR→∞ e−(σ−a)Re−iωR = 0
precisely when σ − a > 0. Hence, there is ordinary convergence for Re s > a and
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the Laplace transform of e−at is given by 1/(s − a) for these values of s. For a = 0
we recover the results of example 12.1 again. �

It is not hard to prove the following general result on the absolute convergence of
the integral in definition 12.1.

Let f (t) be a causal function and consider the integral in (12.1).THEOREM 12.1
a If the integral is absolutely convergent for a certain value s = σ0 ∈ R, then the
integral is absolutely convergent for all s ∈ C with Re s ≥ σ0.
b If the integral is not absolutely convergent for a certain value s = σ1 ∈ R, then
the integral is not absolutely convergent for all s ∈ C with Re s ≤ σ1.

Proof

We first prove part a. Write s = σ + iω. Since
∣∣∣ eiωt

∣∣∣ = 1 and e−σ t > 0, it follows

from 12.2 that∫ ∞

0

∣∣ f (t)e−st ∣∣ dt =
∫ ∞

0
| f (t) | e−σ t dt.

For Re s = σ ≥ σ0 one has that e−σ t ≤ e−σ0t for all t ≥ 0. Hence,∫ ∞

0

∣∣ f (t)e−st ∣∣ dt ≤
∫ ∞

0
| f (t) | e−σ0t dt.

According to the statement in part a, the integral in the right-hand side of this in-
equality exists (as a finite number). The integral in (12.1) is thus indeed absolutely
convergent for all s ∈ C with Re s ≥ σ0. This proves part a.

Part b immediately follows from part a. Let us assume that there exists an s0 ∈ C

with Re s ≤ σ1 such that the integral is absolutely convergent after all. According
to part a, the integral will then be absolutely convergent for all s ∈ C with Re s ≥
Re s0. But Re σ1 = σ1 ≥ Re s0 and hence the integral should in particular be
absolutely convergent for s = σ1. This contradicts the statement in part b. �

From theorem 12.1 we see that for the absolute convergence only the value
Re s = σ matters. Note that the set { s ∈ C | Re s = σ } is a straight line per-
pendicular to the real axis. See figure 12.1.

Using theorem 12.1 one can, moreover, show that there are precisely three possi-
bilities regarding the absolute convergence of the integral in (12.1):

a the integral is absolutely convergent for all s ∈ C;
b the integral is absolutely convergent for no s ∈ C whatsoever;

0 Re s

Im s

Re s  = σ

σ

FIGURE 12.1
The straight line Re s = σ (for a σ > 0).
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c there exists a number σa ∈ R such that the integral is absolutely convergent for
Re s > σa and not absolutely convergent for Re s < σa.

In case c there is no statement about the absolute convergence for Re s = σa. It is
possible that there is absolute convergence on the line Re s = σa, but it is equally
possible that there is no absolute convergence. In example 12.1 we have seen that
σa = 0; in this case there is no absolute convergence for Re s = σa = 0.

Strictly speaking, we have not given a proof that these three possibilities are the
only ones. Intuitively, however, this seems quite obvious. Suppose that possibilities
a and b do not occur. We then have to show that only possibility c can occur. Now
if a does not hold, then there exists a σ1 ∈ R such that the integral is not absolutely
convergent (we may assume that σ1 is real, since only the real part is relevant for
the absolute convergence). According to theorem 12.1b, the integral is then also not
absolutely convergent for all s ∈ C with Re s ≤ σ1. Since also b does not hold,
there similarly exists a σ2 ∈ R such that the integral is absolutely convergent for all
s ∈ C with Re s ≥ σ2 (we now use theorem 12.1a). In the region σ1 < Re s < σ2,
where nothing yet is known about the absolute convergence, we now choose an
arbitrary σ3 ∈ R. See figure 12.2. If we have absolute convergence for σ3, then we

0 Re s

Im s

σ1 σ2σ

no
absolute
convergence

absolute
convergence

Re s = σ1 Re s = σ2

3

FIGURE 12.2
Regions of absolute convergence.

can extend the region of absolute convergence to Re s ≥ σ3. If there is no absolute
convergence, then we can extend the region where there is no absolute convergence
to Re s ≤ σ3. This process can be continued indefinitely and our intuition tells us
that at some point the two regions will have to meet, in other words, that possibility
c will occur. That this will indeed happen rests upon a fundamental property of the
real numbers which we will not go into any further. The above is summarized in the
following theorem.

For a given causal function f (t) there exists a number σa ∈ R with −∞ ≤ σa ≤THEOREM 12.2
∞ such that the integral

∫ ∞
0 f (t)e−st dt is absolutely convergent for all s ∈ C

with Re s > σa, and not absolutely convergent for all s ∈ C with Re s < σa. By
σa = −∞ we will mean that the integral is absolutely convergent for all s ∈ C.
By σa = ∞ we will mean that the integral is absolutely convergent for no s ∈ C

whatsoever.

The number σa in theorem 12.2 is called the abscissa of absolute convergence.Abscissa of absolute
convergence The region of absolute convergence is a half-plane Re s > σa in the complex plane.

See figure 12.3. The case σa = ∞ (possibility b) almost never occurs in practice.
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FIGURE 12.3
The half-plane Re s > σa of absolute convergence.

This is because functions occurring in practice are almost always of ‘exponential
order’.

The causal function f : R → C is called of exponential order if there are constantsDEFINITION 12.3
Exponential order α ∈ R and M > 0 such that | f (t) | ≤ Meαt for all t ≥ 0.

Functions of exponential order will not assume very large values too quickly. The
number α in definition 12.3 is by no means unique, since for any β ≥ α one has
eαt ≤ eβt for t ≥ 0.

The unit step function ε(t) is of exponential order with M = 1 and α = 0 sinceEXAMPLE 12.3
| ε(t) | ≤ 1. �

Let f (t) be a bounded function, so | f (t) | ≤ M for some M > 0. Then f is ofEXAMPLE
exponential order with α = 0. The function ε(t) is a special case and has M = 1.�

Consider the function f (t) = t . From the well-known limit limt→∞ te−αt = 0,EXAMPLE 12.4
for α > 0, it follows that | f (t) | ≤ Meαt for any α > 0 and some constant M > 0.
Hence, this function is of exponential order with α > 0 arbitrary. However, one
cannot claim that f is of exponential order with α = 0, since it is not true that
| t | ≤ M . �

We now recall example 12.2, where it was shown that the Laplace transform of
eat exists for Re s > a. The following result will now come as no surprise.

Let f be a function of exponential order as in definition 12.3. Then the integral inTHEOREM 12.3
(12.1) is absolutely convergent (and so the Laplace transform of f will certainly
exist) for Re s > α. In particular one has for the abscissa of absolute convergence
σa that σa ≤ α.

Proof
Since | f (t) | ≤ Meαt for all t ≥ 0, it follows that∫ ∞

0

∣∣ f (t)e−st ∣∣ dt =
∫ ∞

0
| f (t) | e−σ t dt ≤ M

∫ ∞

0
e−(σ−α)t dt,

where s = σ + iω. As in example 12.2 it follows that the latter integral exists for
σ −α > 0, so for Re s > α. Finally, we then have for σa that σa ≤ α. For if σa > α,
then there will certainly exist a number β with α < β < σa. On the one hand it
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would then follow from β < σa and the definition of σa that the integral does not
converge absolutely for s = β, while on the other hand β > α would imply that
there is absolute convergence. �

The unit step function ε(t) is of exponential order with α = 0. From theorem 12.3 itEXAMPLE
follows that the Laplace transform will certainly exist for Re s > 0 and that σa ≤ 0.
As was shown in example 12.1, we even have σa = 0. �

In example 12.4 it was shown that the function t is of exponential order for arbitraryEXAMPLE 12.5
α > 0. From theorem 12.3 it then follows that the Laplace transform of t certainly
exists for Re s > 0 and that σa ≤ 0. In example 12.9 we will see that σa = 0. �

In the preceding general discussion of convergence issues, we have confined our-
selves to absolute convergence, since the treatment of this type of convergence is
relatively easy. Of course one can wonder whether similar results as in theorem
12.3 can also be derived for ordinary convergence. This is indeed the case, but these
results are much harder to prove. We will merely state without proof that there
exists a number σc, the so-called abscissa of convergence, such that the integralAbscissa of convergence ∫ ∞

0 f (t)e−st dt converges for Re s > σc and does not converge for Re s < σc.
Since absolute convergence certainly implies ordinary convergence, we see that
σc ≤ σa. In most concrete examples one can easily obtain σc.

In example 12.1 it was shown that the Laplace transform of ε(t) exists preciselyEXAMPLE 12.6
when Re s > 0. Hence, in this case we have σa = σc = 0. �

The shifted unit step function ε(t − b) in figure 12.4 is defined byEXAMPLE 12.7

ε(t − b) =
{

1 for t ≥ b,
0 for t < b.

where b ≥ 0. The Laplace transform of ε(t − b) can be determined as in

b0 t

�(t – b)
1

FIGURE 12.4
The shifted unit step function ε(t − b) with b ≥ 0.

example 12.1. For s = 0 the Laplace transform does not exist, while for s �= 0
it follows that∫ ∞

0
e−st ε(t − b) dt =

∫ ∞

b
e−st dt = lim

R→∞

[
−1

s
e−st

]R

b

= e−bs

s
− 1

s
lim

R→∞
e−s R .

Again the limit exists precisely for Re s > 0 and it equals 0 then. Here we again
have σa = σc = 0. Furthermore, we see that for Re s > 0 the Laplace transform of
ε(t − b) is given by e−bs/s. �
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From example 12.2 it follows that for the function ebt we have that σa = σc = b.EXAMPLE 12.8
For Re s > b the Laplace transform is given by 1/(s − b). �

We now determine the Laplace transform of the function f (t) = t . For s = 0 theEXAMPLE 12.9
Laplace transform does not exist, while for s �= 0 it follows from integration by
parts that (from example 12.5 we know that σa ≤ 0):

F(s) =
∫ ∞

0
te−st dt =

∫ ∞

0
− t

s
(e−st )′ dt

= lim
R→∞

[
− t

s
e−st

]R

0
+ 1

s

∫ ∞

0
e−st dt

= −1

s
lim

R→∞
Re−s R + lim

R→∞

[
− 1

s2
e−st

]R

0

= −1

s
lim

R→∞
Re−s R − 1

s2
lim

R→∞
e−s R + 1

s2
.

As before, one has for Re s = σ > 0 that limR→∞ e−s R = 0. Since for σ > 0 we
have limR→∞ Re−σ R = 0 as well, it also follows that limR→∞ Re−s R = 0 for
Re s > 0. This shows that F(s) = 1/s2 for Re s > 0. We also see that the limits do
not exist if Re s ≤ 0; hence, σa = σc = 0. �

The previous example is a prototype of the kind of calculations that are usually
necessary in order to calculate the Laplace transform of a function: performing an
integration by parts (sometimes more than once) and determining limits. These
limits will in general only exist under certain conditions on Re s. Usually this will
also immediately give us the abscissa of convergence, as well as the abscissa of
absolute convergence. In all the examples we have seen so far, we had σa = σc. In
general, this is certainly not the case; for example, for the function et sin(et ) one
has σa = 1 while σc = 0 (the proof of these facts will be omitted). There are even
examples (which are not very easy) of functions for which the integral in (12.1)
converges for all s ∈ C (so σc = −∞), but converges absolutely for no s ∈ C

whatsoever (so σa = ∞)! As a matter of fact, for the application of the Laplace
transform it almost always suffices to know that some half-plane of convergence
exists; the precise value of σa or σc is in many cases less important.

We close this section by noting that besides the Laplace transform from definition
12.1, there also exists a so-called two-sided Laplace transform. For functions on RTwo-sided Laplace transform
that are not necessarily causal, this two-sided Laplace transform is defined by∫ ∞

−∞
f (t)e−st dt,

for those s ∈ C for which the integral exists. Since in most applications it is as-
sumed that the functions involved are causal, we have limited ourselves to the ‘one-
sided’ Laplace transform from definition 12.1. Indeed, the one-sided and two-sided
Laplace transforms coincide for causal functions. Also note that∫ ∞

−∞
f (t)e−st dt =

∫ ∞

0
f (t)e−st dt +

∫ ∞

0
f (−t)e−(−s)t dt.

Hence, the two-sided Laplace transform of f (t) is equal to the (one-sided) Laplace
transform of f (t) plus the (one-sided) Laplace transform at −s of the function
f (−t). There is thus a close relationship between the two forms of the Laplace
transform.
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EXERCISES

a Indicate why the limit limR→∞ e−iωR does not exist for ω ∈ R.12.1
b For which σ, ω ∈ R is it true that limR→∞ e−σ Re−iωR = 0?

In example 12.2 it was shown that the Laplace transform of eat (a ∈ R) is given by12.2
1/(s − a) for Re s > a. Show that for a ∈ C the same result holds for Re s > Re a.

Consider the causal function f defined by f (t) = 1 − ε(t − b) for b ≥ 0.12.3
a Sketch the graph of f .
b Determine the Laplace transform F(s) of f (t) and give the abscissa of absolute
and ordinary convergence.

Show that the Laplace transform of the function t2 (hence, of ε(t)t2) is given by12.4
2/s3 for Re s > 0.

Determine for the following functions the Laplace transform and the abscissa of12.5
absolute and ordinary convergence:
a e−2t ,
b ε(t − 4),
c e(2+3i)t .

Determine a function f (t) whose Laplace transform is given by the following func-12.6
tions:
a 1/s,
b e−3s/s,
c 1/(s − 7),
d 1/s3.

12.2 Linearity, shifting and scaling

From (12.2) it follows that (L f )(σ + iω) = (Fε(t) f (t)e−σ t )(ω), provided that all
the integrals exist. It will then come as no surprise that for the Laplace transform L
and the Fourier transform F similar properties hold. In this section we will examine
a number of elementary properties: linearity, shifting, and scaling. It will turn out
that these properties are quite useful in order to determine the Laplace transform of
all kinds of functions.

12.2.1 Linearity

As for the Fourier transform, the linearity of the Laplace transform follows imme-
diately from the linearity of integration (see section 6.4.1). For α, β ∈ C one thus
has

Linearity of L L(α f + βg) = αL f + βLg

in the half-plane where L f and Lg both exist. Put differently, when F and G are the
Laplace transforms of f and g respectively, then α f +βg has the Laplace transform
αF +βG; if F(s) exists for Re s > σ1, and G(s) for Re s > σ2, then (αF +βG)(s)
exists for Re s > max(σ1, σ2). This simple rule enables us to find a number of
important Laplace transforms.

The Laplace transform of eit is given by 1/(s − i) for Re s > Re i , hence forEXAMPLE 12.10
Re s > 0 (see exercise 12.2). Similarly one has that (Le−i t )(s) = 1/(s + i) for
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Re s > 0. Since sin t = (eit − e−i t )/2i , it then follows from the linearity property
that

(L sin t)(s) = 1

2i

(
(Leit )(s) − (Le−i t )(s)

)
= 1

2i

(
1

s − i
− 1

s + i

)
= (s + i) − (s − i)

2i(s − i)(s + i)

= 2i

2i(s − i)(s + i)
= 1

s2 + 1
.

For Re s > 0 we thus have

(L sin t)(s) = 1

s2 + 1
. (12.3)

�
For the function sinh t (see also exercise 11.5) one hasEXAMPLE 12.11

(L sinh t)(s) = 1

2

(
(Let )(s) − (Le−t )(s)

) = 1

2

(
1

s − 1
− 1

s + 1

)

provided Re s > 1 and Re s > −1 (see example 12.2). Hence it follows for Re s > 1
that

(L sinh t)(s) = 1

s2 − 1
. (12.4)

�

12.2.2 Shift in the time domain

The unit step function is often used to represent the switching on of a signal f at
time t = 0 (see figure 12.5a). When several signals are switched on at different
moments in time, then it is convenient to use the shifted unit step function ε(t − b)

(see example 12.7 for its definition). In fact, when the signal f is switched on at time
t = b (b ≥ 0), then this can simply be represented by the function ε(t − b) f (t − b).
See figure 12.5b. Using the functions ε(t − b) it is also quite easy to represent

0 t b0 t

�(t – b)f(t – b)

a b

�(t)f(t)

FIGURE 12.5
A signal f (t) switched on at time t = 0 (a) and at time t = b (b).

combinations of shifted (switched on) signals. Figure 12.6, for example, shows the
graph of the causal function f (t) = 3 − 2ε(t − 1)(t − 1) + 2ε(t − 3)(t − 3). In
fact, f (t) = 3 for 0 ≤ t < 1, f (t) = 3 − 2(t − 1) = 5 − 2t for 1 ≤ t < 3 and
f (t) = 3 − 2(t − 1) + 2(t − 3) = −1 for t ≥ 3.

There is a simple relationship between the Laplace transform F(s) of f (t) (in
fact ε(t) f (t)) and the Laplace transform of the shifted function ε(t − b) f (t − b).
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0 t1 2 3 4 5

1

2

3

–1

FIGURE 12.6
Graph of the causal function 3 − 2ε(t − 1)(t − 1) + 2ε(t − 3)(t − 3).

Let f (t) be a function with Laplace transform F(s) for Re s > ρ and let b ≥ 0.THEOREM 12.4
Shift in the time domain Then one has for Re s > ρ that

(Lε(t − b) f (t − b)) (s) = e−bs F(s). (12.5)

Proof
By changing to the variable τ = t − b we obtain that

(Lε(t − b) f (t − b)) (s) =
∫ ∞

b
f (t − b)e−st dt =

∫ ∞

0
f (τ )e−sτ−bs dτ

= e−bs(L f )(s),

where we assumed that Re s > ρ. This proves the theorem. �

In example 12.1 we have seen for f (t) = ε(t) that F(s) = 1/s for Re s > 0.EXAMPLE
According to theorem 12.4, the function Lε(t − b) is then given by e−bs/s for
Re s > 0, which is in agreement with the result of example 12.7. �

Let g(t) = ε(t −2) sin(t −2); the graph of g is drawn in figure 12.7. From exampleEXAMPLE
12.10 and theorem 12.4 it follows that (Lg)(s) = e−2s(L sin t)(s) = e−2s/(s2 +1)

for Re s > 0. �

Let f (t) = ε(t − 3)(t2 − 6t + 9). Since t2 − 6t + 9 = (t − 3)2, it follows fromEXAMPLE
theorem 12.4 and exercise 12.4 that F(s) = 2e−3s/s3. �

12.2.3 Shift in the s-domain

We now consider the effect of a shift in the s-domain.

Let f (t) be a function with Laplace transform F(s) for Re s > ρ and let b ∈ C.THEOREM 12.5
Shift in the s-domain Then one has for Re s > ρ + Re b that(

Lebt f (t)
)

(s) = F(s − b). (12.6)
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0

1

t2

2 + π

� (t – 2) sin(t – 2)

3π
2

2 +

2 + π
2

–1

FIGURE 12.7
Graph of ε(t − 2) sin(t − 2).

Proof
Since F(s) exists for Re s > ρ, it follows that F(s − b) exists for Re(s − b) > ρ,
that is, for Re s > ρ + Re b. For these values of s one has

F(s − b) =
∫ ∞

0
f (t)e−(s−b)t dt =

∫ ∞

0
ebt f (t)e−st dt =

(
Lebt f (t)

)
(s).

�

For b < 0 the factor ebt corresponds to a ‘damping’ of the function f (t); in the
s-domain this results in a shift over b. Therefore, theorem 12.5 is sometimes called
the damping theorem.Damping theorem

Since (L sin t)(s) = 1/(s2 + 1) (see (12.3)), it follows from theorem 12.5 thatEXAMPLE
(Le−2t sin t)(s) = 1/((s + 2)2 + 1) = 1/(s2 + 4s + 5). �

Suppose that we are looking for a function f (t) with F(s) = 1/(s − 2)2. FromEXAMPLE
example 12.9 we know that (Lt)(s) = 1/s2, and theorem 12.5 then implies that
(Lte2t )(s) = 1/(s − 2)2. Hence, f (t) = te2t . At present we do not know whether
or not this is the only possible function f having this property. We will return to
this matter in section 13.5. �

12.2.4 Scaling

The following theorem describes the effect of scaling in the time domain.

Let f (t) be a function with Laplace transform F(s) for Re s > ρ and let b > 0.THEOREM 12.6
Scaling Then one has for Re s > bρ that

(L f (bt)) (s) = 1

b
F

( s

b

)
. (12.7)

Proof
By changing to the variable τ = bt for b > 0, we obtain that

(L f (bt)) (s) =
∫ ∞

0
f (bt)e−st dt = 1

b

∫ ∞

0
f (τ )e−sτ/b dτ = 1

b
F

( s

b

)
.

Note that F(s/b) exists for Re(s/b) > ρ, that is, for Re s > bρ. �
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In example 12.10 it was shown that (L sin t)(s) = 1/(s2 + 1) for Re s > 0. FromEXAMPLE
theorem 12.6 it then follows for a > 0 that

(L sin at)(s) = 1

a

1

(s/a)2 + 1
= a

s2 + a2
for Re s > 0.

Since sin(−at) = − sin at , it follows from the linearity of L that for any a ∈ R we
have

(L sin at)(s) = a

s2 + a2
for Re s > 0. (12.8)

This result can also be obtained using the method from example 12.10. �

EXERCISES

a Let F(s) for Re s > σ1 and G(s) for Re s > σ2 be the Laplace transforms of12.7
f (t) and g(t) respectively. Show that (αF + βG)(s) is the Laplace transform of
(α f + βg)(t) for Re s > max(σ1, σ2).
b Determine the Laplace transform of f (t) = 3t2 − i t + 4.

a Use the formula cos t = (eit + e−i t )/2, exercise 12.2, and the linearity of L to12.8
determine the Laplace transform of cos t .
b Determine also, as in part a, L cos at for a ∈ R.
c Similarly, determine L cosh at for a ∈ R.

Determine L cos(at + b) and L sin(at + b) for a, b ∈ R. (Suggestion: use the12.9
addition formulas for the sine and cosine functions.)

Determine the Laplace transform F(s) of the following functions:12.10
a f (t) = 10t2 − 5t + 8i − 3,
b f (t) = sin 4t ,
c f (t) = cosh 5t ,
d f (t) = t + 1 − cos t ,
e f (t) = e2t + e−3t ,
f f (t) = sin2 t ,
g f (t) = sin(t − 2),
h f (t) = 3t .

The function f is given by f (t) = 1 − ε(t − 1)(2t − 2) + ε(t − 2)(t − 2).12.11
a Sketch the graph of f .
b Determine F(s) = (L f (t))(s).

Draw the graph of the function g(t) = cos t − ε(t − 2π) cos(t − 2π) and determine12.12
G(s) = (Lg(t))(s).

For Re s > 0 one has (L1)(s) = 1/s. Use the shift property in the s-domain to12.13
determine the Laplace transform of ebt for b ∈ C. Compare the result with exercise
12.2.

Use the scaling property and L cos t to determine L cos at (a ∈ R) again, and com-12.14
pare the result with exercise 12.8b.

Let f (t) be a function with Laplace transform12.15

F(s) = s2 − s + 1

(2s + 1)(s − 1)
for Re s > 1.

Determine the Laplace transform G(s) of g(t) = f (2t).
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Determine the Laplace transform F(s) of the following functions:12.16
a f (t) = te2t ,
b f (t) = ε(t − 1)(t − 1)2,
c f (t) = e−3t sin 5t ,
d f (t) = ebt cos at for a ∈ R and b ∈ C,
e f (t) = ε(t − 3) cosh(t − 3),
f f (t) = t2et−3.

Draw the graph of the following functions and determine their Laplace transform12.17
F(s):
a f (t) = ε(t − 1)(t − 1),
b f (t) = ε(t)(t − 1),
c f (t) = ε(t − 1)t .

Consider the (causal) function12.18

f (t) =
{

t for 0 ≤ t < 1,

0 for t ≥ 1.

Write f as a combination of shifted unit step functions and determine the Laplace
transform F(s).

Determine a function f (t) whose Laplace transform F(s) is given by:12.19
a F(s) = 2/(s − 3),
b F(s) = 3/(s2 + 1),
c F(s) = 4s/(s2 + 4),
d F(s) = 1/(s2 − 4),
e F(s) = e−2s/s2,
f F(s) = se−3s/(s2 + 1),
g F(s) = 1/((s − 1)2 + 16),
h F(s) = (3s + 2)/((s + 1)2 + 1),
i F(s) = −6/(s − 3)3,
j F(s) = (s − 2)/(s2 − 4s + 8),
k F(s) = se−s/(4s2 + 9).

12.3 Differentiation and integration

In this section we continue our investigation into the properties of the Laplace trans-
form with the treatment of the differentiation and integration rules. We will examine
differentiation both in the time domain and in the s-domain. For the application of
the Laplace transform to differential equations (see chapter 14) it is especially im-
portant to know how the Laplace transform behaves with respect to differentiation
in the time domain. Differentiation in the s-domain is complex differentiation. In
particular we will show that F(s) is analytic in a certain half-plane in C. And finally
an integration rule in the time domain will be derived from the differentiation rule in
the time domain. The rule for integration in the s-domain will not be treated. This
rule isn’t used very often and a proper treatment would moreover require a thorough
understanding of integration of complex functions over curves in C.

12.3.1 Differentiation in the time domain

In section 6.4.8 we have seen that differentiation in the time domain and multipli-
cation by a factor iω in the frequency domain correspond with each other under the
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Fourier transform. A similar correspondence, but now involving the factor s, exists
for the Laplace transform.

Let f be a causal function which, in addition, is differentiable on R. In a half-planeTHEOREM 12.7
Differentiation in the time
domain

where L f and L f ′ both exist one has

(L f ′)(s) = s(L f )(s). (12.9)

Proof
Let s ∈ C be such that L f and L f ′ both exist at s. By applying integration by parts
we obtain that

(L f ′)(s) =
∫ ∞

0
f ′(t)e−st dt = [

f (t)e−st ]∞
0 + s

∫ ∞

0
f (t)e−st dt.

Since f is differentiable on R, f is certainly continuous on R. But f is also causal
and so we must have f (0) = limt↑0 f (t) = 0. From this it follows that

(L f ′)(s) = lim
R→∞

f (R)e−s R + s(L f )(s).

Since (L f ′)(s) and s(L f )(s) exist, the limit limR→∞ f (R)e−s R must also exist.
But then this limit has to equal 0, for (L f )(s) = ∫ ∞

0 f (t)e−st dt exists (here we
use the simple fact that for a continuous function g(t) with limR→∞ g(R) = a,
where a ∈ R and a �= 0, the integral

∫ ∞
0 g(t) dt does not exist; see exercise 12.20).

This proves the theorem. �

Using the concept of a ‘function of exponential order’ (see definition 12.3), one is
able to specify the half-planes where L f and L f ′ both exist. If we assume that the
function f (t) from theorem 12.7 is of exponential order for a certain value α ∈ R,
then L f exists for Re s > α (see theorem 12.3). One can show that in this case L f ′
also exists for Re s > α. We will not go into this any further.

By repeatedly applying theorem 12.7, one can obtain the Laplace transform of the
higher derivatives of a function. Of course, the conditions of theorem 12.7 should
then be satisfied throughout. Suppose, for example, that a causal function f (t) is
continuously differentiable on R (so f ′ exists and is continuous on R) and that f ′
is differentiable on R. By applying theorem 12.7 twice in a half-plane where all
Laplace transforms exist, it then follows that

(L f ′′)(s) = s(L f ′)(s) = s2(L f )(s).

Now, more generally, let f (t) be a causal function which is n−1 times continuously
differentiable on R (so the (n − 1)th derivative f (n−1)(t) of f (t) exists and is con-
tinuous on R) and let f (n−1)(t) be differentiable on R (in the case n = 1 we have
f (0)(t) = f (t) and by a ‘0 times continuously differentiable function’ we simply
mean a continuous function). In a half-plane where all Laplace transforms exist, we
then have the following differentiation rule in the time domain:Differentiation in the time

domain
(L f (n))(s) = sn(L f )(s). (12.10)

For f (t) = t2 we have f ′(t) = 2t . The function ε(t)t2 is indeed differentiable onEXAMPLE
R and according to (12.9) we thus have s(Lt2)(s) = 2(Lt)(s). From example 12.9
we know that (Lt)(s) = 1/s2 for Re s > 0, and so (Lt2)(s) = 2/s3 for Re s > 0.
Compare this method with exercise 12.4. �

The method from the example above can be used to determine Ltn for every
n ∈ N with n ≥ 2. In fact, the function ε(t)tn satisfies the conditions of
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theorem 12.7 for n ∈ N with n ≥ 2 and so it follows from (12.9) that

(Lntn−1)(s) = s(Ltn)(s).

Since limt→∞ tne−αt = 0 for every α > 0, it follows just as in the examples 12.4
and 12.5 that Ltn exists for Re s > 0 (n ∈ N). Hence,

(Ltn)(s) = n

s
(Ltn−1)(s) for Re s > 0

(this result can also easily be derived by a direct calculation). Applying this result
repeatedly, we find that

(Ltn)(s) = n

s
· n − 1

s
· . . . · 1

s
(L1)(s) for Re s > 0.

Now finally use that (L1)(s) = 1/s for Re s > 0 to establish the following important
result:

(Ltn)(s) = n!

sn+1
for Re s > 0, (12.11)

where n! = 1 · 2 · 3 · . . . · (n − 1) · n. Note that (12.11) is also valid for n = 1 and
n = 0 (0! = 1 by convention).

Theorem 12.7 cannot be applied to an arbitrary piecewise smooth function. This
is because the function in theorem 12.7 has to be differentiable on R and so it can
certainly have no jump discontinuities. In section 13.4 we will derive a differen-
tiation rule for distributions, which in particular can then be applied to piecewise
smooth functions.

12.3.2 Differentiation in the s-domain

On the basis of the properties of the Fourier transform (see section 6.4.9) we expect
that here differentiation in the s-domain will again correspond to a multiplication by
a factor in the time domain. It will turn out that this is indeed the case. Still, for the
Laplace transform this result is of a quite different nature, since we are dealing with
a complex function F(s) here and so with complex differentiation. As in the case of
the Fourier transform we will thus have to show that F(s) is in fact differentiable.
Put differently, we will first have to show that F(s) is an analytic function on a
certain subset of C. One has the following result.

Let f be a function with Laplace transform F(s) and let σa be the abscissa ofTHEOREM 12.8
Differentiation in the
s-domain

absolute convergence.Then F(s) is an analytic function of s for Re s > σa and

d

ds
F(s) = −(Lt f (t))(s). (12.12)

Proof
We have to show that limh→0(F(s + h) − F(s))/h (with h → 0 in C; see section
11.2) exists for s ∈ C with Re s > σa. Now

F(s + h) − F(s) =
∫ ∞

0
f (t)e−(s+h)t dt −

∫ ∞

0
f (t)e−st dt

=
∫ ∞

0
f (t)(e−ht − 1)e−st dt,

which means that we have to show that

lim
h→0

∫ ∞

0
f (t)

(
e−ht − 1

h

)
e−st dt
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exists. We now assume that under the condition mentioned in the theorem we may
interchange the limit and the integral. Note that we thus assume in particular that
the integral resulting from the interchange will again exist. From definition 11.7,
theorem 11.6, and the chain rule it follows that

lim
h→0

e−ht − 1

h
=

(
d

ds
e−st

)
(0) = −t.

This shows that

lim
h→0

F(s + h) − F(s)

h
=

∫ ∞

0
(−t f (t))e−st dt,

or

d

ds
F(s) = −(Lt f (t))(s).

�
The difficult step in this theorem is precisely interchanging the limit and the inte-

gral, which in fact proves the existence of the derivative (and thus proves that F(s)
is analytic). It takes quite some effort to actually show that the interchanging is
allowed (see e.g. Körner, Fourier analysis, 1990, Theorem 7.5.2). If we compare
theorem 12.8 with theorem 6.8 for the Fourier transform, then it is remarkable that
in theorem 12.8 we do not require in advance that the Laplace transform of t f (t)
exists, but that this fact follows as a side result of the theorem. It also means that the
theorem can again be applied to the function −t f (t), resulting in

d2

ds2
F(s) = (Lt2 f (t))(s)

for Re s > σa. Repeated application then leads to the remarkable result that F(s) is
arbitrarily often differentiable and that for Re s > σa

Differentiation in the
s-domain

dk

dsk
F(s) = (−1)k(Ltk f (t))(s) for k ∈ N. (12.13)

We will call this the differentiation rule in the s-domain. Usually, (12.13) is applied
in the following way: let F(s) = (L f (t))(s), then

(Ltk f (t))(s) = (−1)k dk

dsk
F(s) for k ∈ N.

Hence, this rule is sometimes referred to as multiplication by tk .Multiplication by tk

Since (L sin t)(s) = 1/(s2 + 1) for Re s > 0, it follows thatEXAMPLE 12.12

(Lt sin t)(s) = − d

ds

(
1

s2 + 1

)
= 2s

(s2 + 1)2
for Re s > 0.

�

We know that (Le−3t )(s) = 1/(s + 3), soEXAMPLE

(Lt2e−3t )(s) = d2

ds2

(
1

s + 3

)
= 2

(s + 3)3
.

This result also follows by noting that (Lt2)(s) = 2/s3 and subsequently using the
shift property from theorem 12.5. �
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12.3.3 Integration in the time domain

From the differentiation rule in the time domain one quickly obtains the following
result.

Let f be a causal function which is continuous on R and has Laplace transformTHEOREM 12.9
Integration in the time
domain

F(s). Then one has in a half-plane contained in the region Re s > 0(
L

∫ t

0
f (τ ) dτ

)
(s) = 1

s
F(s). (12.14)

Proof
Define the function g(t) by g(t) = ∫ t

−∞ f (τ ) dτ = ∫ t
0 f (τ ) dτ , then g is the

primitive of f with g(0) = 0 and g(t) = 0 for t < 0. Since f is continuous, it
follows that g is differentiable on R. According to theorem 12.7 one then has, in
a half-plane where both Laplace transforms exist, that (Lg′)(s) = s(Lg)(s). But
g′ = f and so

s

(
L

∫ t

0
f (τ ) dτ

)
(s) = F(s).

In a half-plane where both Laplace transforms exist and which lies to the right of
Re s = 0, one may divide by s and so the result follows. �

The causal function sin t is continuous on R and since
∫ t

0 sin τ dτ = 1 − cos t , itEXAMPLE 12.13
then follows from theorem 12.9 that

(L(1 − cos t))(s) = 1

s
(L sin t)(s) = 1

s(s2 + 1)
.

This result is easy to verify since we know from table 7 that (L cos t)(s) = s/(s2+1)

and (L1)(s) = 1/s. Hence,

(L(1 − cos t))(s) = 1

s
− s

s2 + 1
= (s2 + 1) − s2

s(s2 + 1)
= 1

s(s2 + 1)
.

�

As in the case of theorem 12.7 one can use the concept ‘function of exponential
order’ to specify the half-planes where the Laplace transforms exist. If a function
f (t) is of exponential order for a certain α ∈ R, then one can show that the result
from theorem 12.9 is correct for Re s > max(0, α). We will not go into this matter
any further.

Theorem 12.9 can also be applied in the ‘opposite direction’. When we are look-
ing for a function f (t) whose Laplace transform is F(s), then we could start by first
ignoring factors 1/s that might occur in F(s). In fact, such factors can afterwards
be re-introduced by an integration.

Let g(t) be a function with Laplace transform G(s) = 4/(s(s2 + 4)). If we ignoreEXAMPLE 12.14
the factor 1/s, then we are looking for a function h(t) having Laplace transform
H(s) = 4/(s2 + 4). This is easy: h(t) = 2 sin 2t . Integrating h(t) we find g(t):

g(t) =
∫ t

0
2 sin 2τ dτ = [− cos 2τ ]t

0 = 1 − cos 2t.

�

EXERCISES

Let g(t) be a continuous function on R. Show that
∫ ∞

0 g(t) dt does not exist if12.20
limR→∞ g(R) = a where a ∈ R and a �= 0.
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Show that limt→∞ tne−αt = 0 for any n ∈ N and α > 0 and use this to show that12.21
the function tn is of exponential order with α > 0 arbitrary. Conclude that (Ltn)(s)
exists for Re s > 0.

Use the definition to show that for any n ∈ N one has12.22

(Ltn)(s) = n

s
(Ltn−1)(s) for Re s > 0.

One has that (L1)(s) = 1/s for Re s > 0. Use the differentiation rule in the s-12.23
domain to show that (Ltn)(s) = n!/sn+1 for Re s > 0.

In example 12.12 we used the differentiation rule in the s-domain to show that12.24
(Lt sin t)(s) = 2s/(s2 + 1)2 for Re s > 0. Since t sin t = (tei t − te−i t )/2i , one
can also derive this result quite easily using the shift property. Give this derivation.

Consider the function f (t) = tneat for a ∈ C and let F(s) = (L f (t))(s).12.25
a Determine F(s) using a shift property.
b Determine F(s) using a differentiation rule.

Determine the Laplace transform G(s) of g(t) = ∫ t
0 τ cos 2τ dτ .12.26

One has that (L sinh at)(s) = a/(s2 − a2) for Re s > a (a ∈ R). Which function12.27
f (t) has a/(s(s2 − a2)) as its Laplace transform?

Determine the Laplace transform F(s) of the following functions:12.28
a f (t) = t2 cos at ,
b f (t) = (t2 − 3t + 2) sinh 3t .

Determine a function f (t) whose Laplace transform F(s) is given by:12.29

a F(s) = d2

ds2

(
1

s2 + 1

)
,

b F(s) = 1

s2(s2 − 1)
.

S U M M A R Y

The Laplace transform F(s) of a causal function f (t) is defined for s ∈ C by

F(s) =
∫ ∞

0
f (t)e−st dt.

There exists a number σa ∈ R with −∞ ≤ σa ≤ ∞, such that the integral is ab-
solutely convergent for all s ∈ C with Re s > σa and is not absolutely convergent
for all s ∈ C with Re s < σa. The number σa is called the abscissa of absolute
convergence. The case σa = ∞ almost never occurs in practice, since most func-
tions are of exponential order, so | f (t) | ≤ Meαt for certain M > 0 and α ∈ R.
For ordinary convergence there are similar results; in this case we have a abscissa of
convergence σc. For the unit step function ε(t) one has, for example, σa = σc = 0;
for Re s > 0 the Laplace transform of ε(t) is given by 1/s. A number of standard
Laplace transforms, together with their abscissa of convergence, are given in table 7.

There is a simple relationship between the Laplace and the Fourier transform:
(L f )(σ + iω) = (Fε(t) f (t)e−σ t )(ω). Therefore, the properties of the Laplace
transform are very similar to the properties of the Fourier transform. In this chap-
ter the following properties were treated: linearity, shifting in the time and the s-
domain, scaling in the time domain, differentiation in the time and the s-domain,
and integration in the time domain. These properties are summarized in table 8. In
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particular it was shown that the Laplace transform is an analytic function in a certain
half-plane in C.

S E L F T E S T

Consider the function12.30

f (t) =
{

2t for 0 ≤ t < 1,

t for t ≥ 1.

a Sketch the graph of f and write f as a linear combination of functions of the
form ε(t − a) and ε(t − b)(t − b).
b Determine the Laplace transform F(s) of f (t).
c Determine f ′ (at all points where f ′ exists) and determine L f ′.
d Is the differentiation rule in the time domain valid in this case? Explain your
answer.

In this exercise F(s) is the Laplace transform of a certain piecewise smooth causal12.31
function f (t).
a Determine L f (t) sin at , where a ∈ R.
b Determine Le−2t f (3t) when F(s) = e−s/s.
c Determine L

∫ t
0 τ3 f (τ ) dτ when it is also given that f (t) is continuous on R.

Determine the Laplace transform F(s) of the following functions:12.32
a f (t) = 3et−2 + ε(t − 2),
b f (t) = (t − 1)2,
c f (t) = e2t ε(t − 4),
d f (t) = e−t (cos 2t + i sin 2t),
e f (t) = et+3ε(t − 2) sin(t − 2),
f f (t) = 3t cos 2t ,

g f (t) =




1 for 0 ≤ t < 1,

0 for 1 ≤ t < 2,

1 for 2 ≤ t < 3,

0 for t ≥ 3.

Determine a function f (t) whose Laplace transform F(s) is given by the following12.33
functions:
a F(s) = (1 − e−s)/s,
b F(s) = (s3 + 3)/s4,
c F(s) = 1/(s + 1)2 + 1/(s2 − 4) + (1 + e−πs)/(s2 + 1),
d F(s) = (3s − 2)/(s2 − 4s + 20),
e F(s) = (s + 3)/(s2 + 8s + 16),
f F(s) = e−4s/(s − 2)3,
g F(s) = e−s/(s(s2 + 9)).



Contents of Chapter 13

Further properties, distributions, and the fundamental theorem

Introduction 288

13.1 Convolution 289
13.2 Initial and final value theorems 291
13.3 Periodic functions 294
13.4 Laplace transform of distributions 297
13.4.1 Intuitive derivation 297
13.4.2∗ Mathematical treatment 300
13.5 The inverse Laplace transform 303

Summary 307

Selftest 308



CHAPTER 13

Further properties, distributions, and
the fundamental theorem

I N T R O D U C T I O N

In the first three sections of this chapter the number of properties of the Laplace
transform will be extended even further. We start in section 13.1 with the treatment
of the by now well-known convolution product. As for the Fourier transform, the
convolution product is transformed into an ordinary product by the Laplace trans-
form.

In section 13.2 we treat two theorems that have not been encountered earlier in
the Fourier transform: the so-called initial and final value theorems for the Laplace
transform. The initial value theorem relates the ‘initial value’ f (0+) of a function
f (t) to the behaviour of the Laplace transform F(s) for s → ∞. Similarly, the final
value theorem relates the ‘final value’ limt→∞ f (t) to the behaviour of F(s) for
s → 0. Hence, the function F(s) can provide information about the behaviour of
the original function f (t) shortly after switching on (the value f (0+)) and ‘after a
considerable amount of time’ (the value limt→∞ f (t)).

In section 13.3 we will see how the Laplace transform of a periodic function can
be determined. It will turn out that this is closely related to the Laplace transform of
the function which arises when we limit the periodic function to one period.

In order to determine the Laplace transform of a periodic function, it is not neces-
sary to turn to the theory of distributions. This is in contrast to the Fourier transform
(see section 9.1.2). Still, a limited theory of the Laplace transform of distributions
will be needed. The delta function, for example, remains an important tool as a
model for a strong signal with a short duration (a ‘pulse’). Moreover, the response
to the delta function is essential in the theory of linear systems (see chapter 14). The
theory of the Laplace transform of distributions will be developed in section 13.4.
In particular it will be shown that the Laplace transform of the delta function is
the constant function 1, just as for the Fourier transform. We will also go into
the relationship between the Laplace transform of distributions and differentiation,
and we will treat some simple results on the Laplace transform and convolution of
distributions.

In section 13.5 the fundamental theorem of the Laplace transform is proven. In
the theory of the Laplace transform this is an important theorem; it implies, for
example, that the Laplace transform is one-to-one. However, in order to apply the
fundamental theorem in practice (and so recover the function f (t) from F(s)), a
fair amount of knowledge of the theory of complex integration is needed. This
theory is beyond the scope of this book. Therefore, if we want to recover f (t) from
F(s), we will confine ourselves to the use of tables, the properties of the Laplace
transform, and partial fraction expansions. This method will be illustrated by means
of examples.

288
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know and can apply the convolution of causal functions and the convolution theo-

rem of the Laplace transform
- know and can apply the initial and final value theorems
- can determine the Laplace transform of a periodic function
- know and can apply the Laplace transform of some simple distributions
- know and can apply the differentiation rule for the Laplace transform of distribu-

tions
- can apply the convolution theorem for distributions in simple cases
- know the uniqueness theorem for the Laplace transform
- can find the inverse Laplace transform of complex functions by using a table, ap-

plying the properties of the Laplace transform, and applying partial fraction ex-
pansions.

13.1 Convolution

We have already encountered the convolution product of two functions f and g :
R → C in definition 6.4. When, moreover, f and g are both causal (which is
assumed throughout part 4), then one has for t > 0 that

Convolution of causal
functions

( f ∗ g)(t) =
∫ ∞

−∞
f (τ )g(t − τ) dτ =

∫ t

0
f (τ )g(t − τ) dτ,

since the integrand is zero for both τ < 0 and t − τ < 0. For the same reason one
has ( f ∗g)(t) = 0 if t ≤ 0 (also see exercise 6.25). If, moreover, we assume that the
causal functions f and g are piecewise smooth, then the existence of the convolution
product is easy to prove. In fact, for fixed t > 0 the function τ → f (τ )g(t − τ)

is then again piecewise smooth as a function of τ and such a function is always
integrable over the bounded interval [0, t]. Hence, for two piecewise smooth causal
functions f and g, the convolution product exists for every t ∈ R and f ∗ g is again
a causal function. One now has the following convolution theorem (compare with
theorem 6.13).

Let f and g be piecewise smooth and causal functions. Let the Laplace transformsTHEOREM 13.1
Convolution theorem for L F = L f and G = Lg exist as absolutely convergent integrals in a half-plane

Re s > ρ. Then L( f ∗ g) exists for Re s > ρ and

L( f ∗ g)(s) = F(s)G(s). (13.1)

Proof
Since f (t) = g(t) = 0 for t < 0, it follows for Re s > ρ that

F(s)G(s) =
∫ ∞

−∞
f (t)e−st dt

∫ ∞

−∞
g(u)e−su du.

Since the second integral does not depend on t , we can write

F(s)G(s) =
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(u)e−s(t+u) du

)
dt.

Now change to the new variable t + u = τ , then

F(s)G(s) =
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(τ − t)e−sτ dτ

)
dt.
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Without proof we mention that under the conditions of theorem 13.1 we may change
the order of integration. We then obtain:

F(s)G(s) =
∫ ∞

−∞
e−sτ

(∫ ∞

−∞
f (t)g(τ − t) dt

)
dτ.

As indicated above, the inner integral is the convolution product of the two causal
functions f and g. Hence, L( f ∗ g) exists and L( f ∗ g)(s) = F(s)G(s). �

In theorem 13.1 a half-plane is mentioned for which the Laplace transforms F
and G exist as absolutely convergent integrals. If f (t) and g(t) are of exponential
order for α ∈ R and β ∈ R respectively, then more can be said. For we then know
from theorem 12.3 that the integrals for F(s) and G(s) are absolutely convergent
for Re s > α and Re s > β. Hence, in this case both Laplace transforms exist as
absolutely convergent integrals in the half-plane Re s > ρ, where ρ = max(α, β).

Let f (t) = et and g(t) = t , then F(s) = 1/(s − 1) and G(s) = 1/s2 (see table 7),EXAMPLE 13.1
so F(s)G(s) = 1/(s2(s − 1)). From the convolution theorem it then follows that
L(ev ∗ v)(s) = 1/(s2(s − 1)). The convolution theorem can easily be verified in
this case by calculating the convolution product and then determining its the Laplace
transform. We calculate the convolution product using integration by parts:

(ev ∗ v)(t) =
∫ t

0
eτ (t − τ) dτ = [

eτ (t − τ)
]t
0 +

∫ t

0
eτ dτ

= −t + [
eτ

]t
0 = −t + et − 1.

Furthermore, we have L(et − t − 1)(s) = 1/(s − 1) − 1/s2 − 1/s and a simple
calculation will show that this result is indeed equal to 1/(s2(s − 1)). �

Let f (t) be an arbitrary (causal) function and g(t) = ε(t). ThenEXAMPLE

( f ∗ g)(t) =
∫ t

0
f (τ )ε(t − τ) dτ =

∫ t

0
f (τ ) dτ,

while F(s)G(s) = F(s)/s. Hence, in this case the convolution theorem reduces to
the integration rule (12.14) from section 12.3.3. �

Suppose one is asked to determine a function f with (L f )(s) = F(s) = 1/(s2 +EXAMPLE
1)2. From table 7 we know that (L sin t)(s) = 1/(s2 + 1) and by virtue of the
convolution theorem we thus have f (t) = (sin v ∗ sin v)(t). It is not so hard to
calculate this convolution using the trigonometric identity 2 sin α sin β = cos(α −
β) − cos(α + β):

(sin v ∗ sin v)(t) =
∫ t

0
sin τ sin(t − τ) dτ = 1

2

∫ t

0
(cos(2τ − t) − cos t) dτ

= 1
2

[
1
2 sin(2τ − t)

]t

0
− 1

2 cos t [τ ]t
0 = 1

2 sin t − 1
2 cos t.

Check for yourself that indeed (L(sin t − t cos t)/2)(s) = 1/(s2 + 1)2. �

EXERCISES

Show that (cos v ∗ cos v)(t) = (sin t + t cos t)/2. Use this to verify the convolution13.1
theorem for the functions f (t) = g(t) = cos t . (Suggestion: use the trigonometric
identity 2 cos α cos β = cos(α + β) + cos(α − β).)

a Determine a function f with (L f )(s) = F(s) = 1/(s − a), where a ∈ C.13.2
b Use the convolution theorem to determine a function g(t) such that
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(Lg)(s) = 1/((s −a)(s −b)). Calculate the obtained convolution product explicitly
and verify the convolution theorem for this case.

Verify the convolution theorem for the functions f (t) = t2 and g(t) = et .13.3

Determine a convolution product ( f ∗ g)(t) whose Laplace transform is given by13.4
the following complex function:
a 1/(s2(s + 1)),
b s/((s + 2)(s2 + 4)),
c s/(s2 − 1)2,
d 1/(s2 − 16)2.

13.2 Initial and final value theorems

In this section we treat two theorems that can give us information about a function
f (t) straight from its Laplace transform F(s), without the need to determine f (t)
explicitly. The issues at stake are the limiting value of f at the point t = 0, so
immediately after the ‘switching on’, and the limiting value of f for t → ∞, that
is, the final value after ‘a long period of time’. These two results are therefore called
the initial and final value theorems. As a matter of fact, they can also be used in the
opposite direction: given f (t), one obtains from these theorems information about
the behaviour of F(s) for s → 0 and for s → ∞, without having to determine F(s)
explicitly.

A brief explanation of the notation ‘s → ∞’ is appropriate here, since s is com-
plex. In general it will mean that | s | → ∞ (so the modulus of s keeps increasing).
In most cases this cannot be allowed for a Laplace transform F(s) since we might
end up outside the half-plane of convergence. By lims→∞ F(s) we will therefore
always mean that | s | → ∞ and that simultaneously Re s → ∞. In particular, s will
lie in the half-plane of convergence for sufficiently large values of Re s (specifically,
for Re s > σc).

Similar remarks apply to the limit s → 0, which will again mean that | s | → 0
(as in section 11.2). If the limit for s → 0 of a Laplace transform F(s) is to exist,
then F(s) will certainly have to exist in the half-plane Re s > 0. When the half-
plane of convergence is precisely Re s > 0, then the limit for s → 0 has to be taken
in such a way that Re s > 0 as well. By lims→0 F(s) we will therefore always mean
that | s | → 0 and that simultaneously Re s ↓ 0.

Before we start our treatment of the initial value theorem, we will first derive the
following result, which, for that matter, is also useful in other situations and will
therefore be formulated for a somewhat larger class of functions.

For the Laplace transform F(s) of a piecewise continuous function f (t) we haveTHEOREM 13.2

lim
s→∞ F(s) = 0,

where the limit s → ∞ has to be taken in such a way that Re s → ∞ as well.

Proof
If s → ∞ such that Re s → ∞ as well, then lims→∞ e−st = 0 for any fixed t > 0.
In fact, for s = σ + iω we have e−st = e−σ t e−iωt and limσ→∞ e−σ t = 0 for any
t > 0. Hence we obtain that

lim
s→∞ F(s) = lim

s→∞

∫ ∞

0
f (t)e−st dt = 0,
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if we assume that we may interchange the integral and the limit. When the function
f (t) is of exponential order, then the problem of the interchanging of the limit and
the integral can be avoided. For if | f (t) | ≤ Meαt , then

| F(s) | ≤
∫ ∞

0
| f (t) | e−σ t dt ≤ M

∫ ∞

0
e(α−σ)t dt = M

α − σ

[
e(α−σ)t

]∞
0

for all σ �= α. We also agreed that Re s = σ → ∞ and for sufficiently large σ one
will have that σ > α, so α − σ < 0. It thus follows that[
e(α−σ)t

]∞
0

= lim
R→∞

e(α−σ)R − 1 = −1,

which proves that | F(s) | ≤ M/(σ − α). In the limit s → ∞ with Re s = σ →
∞, the right-hand side of this inequality tends to zero, from which it follows that
lims→∞ F(s) = 0 as well. �

For f (t) = ε(t) we have F(s) = 1/s. Indeed, lims→∞ F(s) = 0.EXAMPLE �

The constant function F(s) = 1 cannot be the Laplace transform of a piecewiseEXAMPLE 13.2
continuous function f (t). This is because lims→∞ F(s) = 1. �

We recall that for a piecewise smooth function f (t) the limit f (0+) = limt↓0 f (t)
will always exist. The initial value theorem is a stronger version of theorem 13.2
and reads as follows.

Let f (t) be a piecewise smooth function with Laplace transform F(s). ThenTHEOREM 13.3
Initial value theorem

lim
s→∞ s F(s) = f (0+), (13.2)

where the limit s → ∞ has to be taken in such a way that Re s → ∞ as well.

Proof
We will not prove the theorem in its full generality. However, if we impose an
additional condition on the function f (t), then a simpler proof of the initial value
theorem can be given using theorem 13.2. We therefore assume that in addition f (t)
is continuous for t > 0. Let f ′ be the derivative of f at all points where f ′ exists.
As in the proof of theorem 12.7, it then follows from an integration by parts that

(L f ′)(s) = lim
R→∞

f (R)e−s R − f (0+) + s F(s) = s F(s) − f (0+),

since limR→∞ e−s R = 0 (see the proof of theorem 12.7). The difference with
theorem 12.7 is the appearance of the value f (0+) because f is not necessarily
continuous at t = 0. If we now apply theorem 13.2 to f ′(t), then it follows that
lims→∞(L f ′)(s) = 0. Hence we obtain that lims→∞(s F(s) − f (0+)) = 0,
which proves the theorem, under the additional condition mentioned earlier. �

Theorem 13.3 can be used in both directions. When F(s) is known and f (t) is
hard to determine explicitly, then one can still determine f (0+), provided that we
know that f is piecewise smooth. When on the other hand f (t) is known and F(s)
is hard to determine, then theorem 13.3 reveals information about the behaviour of
F(s) for s → ∞.

The function ε(t) has the function F(s) = 1/s as Laplace transform. Indeed, 1 =EXAMPLE
ε(0+) = lims→∞ s F(s). �

Consider the function f (t) = e−bt cosh at . Then f (0+) = 1 and the LaplaceEXAMPLE
transform F(s) exists, so lims→∞ s F(s) = 1. This can easily be verified since
F(s) = (s + b)/((s + b)2 − a2) (see table 7). �
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We now move on to the final value theorem, which relates the final value f (∞) =
limt→∞ f (t) (a notation which will be used henceforth) to the behaviour of F(s)
for s → 0.

Let f (t) be a piecewise smooth function with Laplace transform F(s). WhenTHEOREM 13.4
Final value theorem f (∞) = limt→∞ f (t) exists, then

lim
s→0

s F(s) = f (∞), (13.3)

where the limit s → 0 has to be taken in such a way that Re s ↓ 0 as well.

Proof
Again, theorem 13.4 will not be proven in full generality. If we impose a number of
additional conditions on the function, then a simpler proof can be given, as was the
case for theorem 13.3. We first of all assume that in addition f (t) is continuous for
t > 0. As in the proof of theorem 13.3, it then follows that (L f ′)(s) = s F(s) −
f (0+). Next we will assume that this result is valid in the half-plane Re s > 0. For
the limit s → 0 (with Re s ↓ 0) we then have

lim
s→0

s F(s) = f (0+) + lim
s→0

∫ ∞

0
f ′(t)e−st dt.

Now, finally, assume that the limit and the integral may be interchanged, then we
obtain that

lim
s→0

s F(s) = f (0+) +
∫ ∞

0
f ′(t) dt.

Since f is piecewise smooth and continuous for t > 0 and since, moreover,
limt→∞ f (t) exists, we have finally established that

lim
s→0

s F(s) = f (0+) + [ f (t)]∞0 = lim
t→∞ f (t) = f (∞).

This proves theorem 13.4, using quite a few additional conditions. �

We note once again that F(s) in theorem 13.4 must surely exist for Re s > 0, be-
cause otherwise one cannot take the limit s → 0. When F(s) is a rational function,
then this means in particular that the denominator cannot have any zero for Re s > 0
(see example 13.3).

One cannot omit the condition that limt→∞ f (t) should exist. This can be shown
using a simple example. The function f (t) = sin t has Laplace transform F(s) =
1/(s2 + 1). We have lims→0 s F(s) = 0, but limt→∞ f (t) does not exist.

Theorem 13.4 can again be applied in two directions. When F(s) is known,
f (∞) can be determined, provided that we know that f (∞) exists. If, on the other
hand, f (t) is known and f (∞) exists, then theorem 13.4 reveals information about
the behaviour of F(s) for s → 0.

The function ε(t) has Laplace transform F(s) = 1/s and indeed we have 1 =EXAMPLE
limt→∞ ε(t) = lims→0 s F(s). �

Consider the function f (t) = e−at with a > 0. Then limt→∞ f (t) = 0 and soEXAMPLE 13.3
lims→0 s F(s) = 0. This can easily be verified since F(s) = 1/(s + a). Note that
for a < 0 the denominator of F(s) has a zero for s = −a > 0, which means that in
this case F(s) does not exist in the half-plane Re s > 0. This is in agreement with
the fact that limt→∞ f (t) does not exist for a < 0. Of course, the complex function
F(s) = 1/(s + a) remains well-defined for all s �= −a and in particular one has
for a �= 0 that lims→0 s F(s) = 0. However, the function F(s) is not the Laplace
transform of the function f (t) for Re s ≤ (−a). �
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EXERCISES

Can the function F(s) = sn (n ∈ N) be the Laplace transform of a piecewise13.5
continuous function f (t)? Justify your answer.

Determine the Laplace transform F(s) of the following functions f (t) and verify13.6
the initial value theorem:
a f (t) = cosh 3t ,
b f (t) = 2 + t sin t ,
c f (t) = ∫ t

0 g(τ ) dτ , where g is a continuous function on R.

In the proof of theorem 13.3 we used the property (L f ′)(s) = s(L f )(s) − f (0+).13.7
Now consider the function f (t) = ε(t − 1) cos(t − 1).
a Verify that the stated property does not hold for f .
b Show that the initial value theorem does apply.

Determine the Laplace transform F(s) of the following functions f (t) and verify13.8
the final value theorem:
a f (t) = e−3t ,
b f (t) = e−t sin 2t ,
c f (t) = 1 − ε(t − 1).

Determine whether the final value theorem can be applied to the functions cos t and13.9
sinh t .

For the complex function F(s) = 1/(s(s − 1)) one has lims→0 s F(s) = −1. Let13.10
f (t) be the function with Laplace transform F(s) in a certain half-plane in C.
a Explain, without determining f (t), why the final value theorem cannot be
applied.
b Verify that F(s) = 1/(s − 1) − 1/s. Subsequently determine f (t) and check
that f (∞) = limt→∞ f (t) does not exist.

13.3 Periodic functions

In general, the Laplace transform is more comfortable to use than the Fourier trans-
form since many of the elementary functions possess a Laplace transform, while
on the contrary the Fourier transform often only exists when the function is consid-
ered as a distribution. For a periodic function the Fourier transform also exists only
if it is considered as a distribution (see section 9.1.2). In this section we will see
that the Laplace transform of a periodic function can easily be determined without
distribution theory. Since we are only working with causal functions in the Laplace
transform, a periodic function f (t) with period T > 0 will from now on be a func-Causal periodic function
tion on [0, ∞) for which f (t + T ) = f (t) for all t ≥ 0. In figure 13.1a a periodic
function with period T is drawn. Now consider the function φ(t) obtained from
f (t) by restricting f (t) to one period T , so

φ(t) =
{

f (t) for 0 ≤ t < T ,
0 elsewhere.

See figure 13.1b. Using the shifted unit step function, the function φ(t) can be
written as

φ(t) = f (t) − ε(t − T ) f (t − T ).
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FIGURE 13.1
A periodic function f (a) and its restriction φ (b).

If we now apply the shift property in the time domain (theorem 12.4), then it follows
that

	(s) = F(s) − e−sT F(s) = (1 − e−sT )F(s),

where 	(s) and F(s) are the Laplace transforms of φ and f respectively. If s =
σ + iω and σ > 0, then

∣∣∣ e−sT
∣∣∣ = e−σ T < 1, and hence 1 − e−sT �= 0. For

Re s > 0 we may thus divide by 1 − e−sT and it then follows that

F(s) = 	(s)

1 − e−sT
, where 	(s) =

∫ ∞

0
φ(t)e−st dt =

∫ T

0
f (t)e−st dt.

Note that for a piecewise continuous function the preceding integral over the
bounded interval [0, T ] exists for every s ∈ C; for the function φ the abscissa
of convergence is thus equal to −∞. For the periodic function f the abscissa of
convergence is equal to 0 and hence the Laplace transform F(s) exists for Re s > 0.
We see here that the Laplace transform of a periodic function can be expressed in
a simple way in terms of the Laplace transform of the function restricted to one
period. These results are summarized in the following theorem.

Let f be a piecewise smooth and periodic function with period T and let 	(s) be theTHEOREM 13.5
Laplace transform of periodic
functions

Laplace transform of φ(t) = f (t)− ε(t − T ) f (t − T ). Then the Laplace transform
F(s) of f (t) is for Re s > 0 given by

F(s) = 	(s)

1 − e−sT
, where 	(s) =

∫ T

0
f (t)e−st dt. (13.4)

Consider the periodic block function f (t) with period 2 defined by f (t) = 1−ε(t −EXAMPLE 13.4
1) for 0 ≤ t < 2; so f (t) = 1 for 0 ≤ t < 1 and f (t) = 0 for 1 ≤ t < 2. See
figure 13.2. We then have φ(t) = 1 − ε(t − 1) and from tables 7 and 8 we see
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FIGURE 13.2
Periodic block function.

that (Lφ(t))(s) = 	(s) = 1/s − e−s/s. Using theorem 13.5 we thus find for the
Laplace transform F(s) of f (t) that

F(s) = 1 − e−s

s(1 − e−2s)
= 1

s(1 + e−s)
.

�

EXERCISES

Let f (t) for t ≥ 0 be a periodic function with period T .13.11
a Can we apply the final value theorem to the periodic function f ? Justify your
answer.
b Show that

lim
s→0

s F(s) = 1

T

∫ T

0
f (t) dt.

In other words, in this case the limit lims→0 s F(s) equals the average value of f
over one period. (Suggestion: use the definition of the derivative of the complex
function e−zT at the point z = 0.)
c Verify the result from part b for the function f (t) from example 13.4.

In figure 13.3 the graph is drawn of a periodic block function f (t) with period 2a,13.12
defined for 0 ≤ t < 2a by

f (t) =
{

1 for 0 ≤ t < a,
−1 for a ≤ t < 2a.

a Define φ(t) as the restriction of f to the period [0, 2a). Show that φ(t) =
ε(t) − 2ε(t − a) + ε(t − 2a). Determine the Laplace transform F(s) of f (t).
b Show that F(s) = (tanh(as/2))/s, where tanh z = sinh z/ cosh z = (ez −
e−z)/(ez + e−z).

The periodic sawtooth function f with period 2 is given by f (t) = t (ε(t) − ε(t −13.13
2)) − 2(ε(t − 1) − ε(t − 2)) for 0 ≤ t < 2.
a Sketch the graph of f .
b Determine F(s) = (L f )(s).

Let f be the periodic function with period 2 given by f (t) = t for 0 ≤ t < 2. Show13.14
that (L f )(s) = F(s) = (1 + 2s)/s2 − 2/(s(1 − e−2s)).
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FIGURE 13.3
Periodic block function of exercise 13.12.

13.4 Laplace transform of distributions

Up till now we have been able to avoid the use of the theory of distributions in
the Laplace transform. For every function we could always calculate the Laplace
transform using the defining integral (12.1). Still, we will need a limited theory of
the Laplace transform of distributions. This is because the delta function will remain
an important tool in the theory of linear systems: in the application of the Laplace
transform the impulse response again plays an essential role (see chapter 14).

In section 13.4.1 the main results will be derived in an intuitive way. For the
remainder of this book it will suffice to accept these results as being correct. In
section 13.4.2 we treat the mathematical background necessary to give a rigorous
definition of the Laplace transform of a distribution. This will enable us to prove
the results from section 13.4.1. Section 13.4.2 may be omitted without any conse-
quences for the remainder of the book.

13.4.1 Intuitive derivation

To get an intuitive idea of the Laplace transform of the delta function δ(t), we con-
sider the causal rectangular pulse rb(t) of height 1/b and duration b > 0. Hence,
rb(t) = (ε(t) − ε(t − b))/b. See figure 13.4. Note that

∫ ∞
−∞ rb(t) dt = 1 for every

b > 0. For b ↓ 0 we thus obtain an object which, intuitively, will be an approxima-
tion for the delta function (see section 8.1). Since (Lrb)(s) = (1 − e−bs)/sb, we
expect that for b ↓ 0 this will give us the Laplace transform of the delta function.
When b ↓ 0, then also −sb → 0 for any s ∈ C. Now write z = −sb, then we
have to determine the limit limz→0(ez − 1)/z. But this is precisely the derivative
of the analytic function ez at z = 0. Since (ez)′ = ez , we obtain for z = 0 that
(ez)′(0) = 1 and hence limb↓0(Lrb)(s) = 1. As for the Fourier transform, we
thus expect that the Laplace transform of the delta function will equal the constant
function 1.

We will now try to find a possible definition for the Laplace transform of a dis-
tribution. First we recall that a function f (t) can be considered as a distribution T f
by means of the rule

〈
T f , φ

〉 =
∫ ∞

−∞
f (t)φ(t) dt for φ ∈ S. (13.5)
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FIGURE 13.4
The rectangular pulse function rb(t) for some values of b.

(See (8.12).) If we now take for φ the function e−st , then it follows for a causal
function f (t) that

〈
T f , e−st 〉 =

∫ ∞

0
f (t)e−st dt = F(s). (13.6)

The definition of the Laplace transform U = LT of a distribution T now seems
quite obvious, namely as the complex function

U (s) = 〈
T (t), e−st 〉 . (13.7)

Note that T (t) acts on the variable t and that s is always an (arbitrary) fixed com-
plex number. Furthermore, the Laplace transform of a distribution is no longer a
distribution, but just a complex function. When f (t) is a causal function defining a
distribution T f , then it follows from (13.6) that the definition in (13.7) results in the
ordinary Laplace transform F(s) of f (t) again:

(LT f )(s) = F(s) (13.8)

(assuming that F(s) exists in a certain half-plane of convergence).
Two problems arise from definition (13.7). First of all it is easy to see that the

function e−st is not an element of the space S(R) of rapidly decreasing functions;
hence,

〈
T, e−st 〉 is not well-defined for an arbitrary distribution T . A second prob-

lem concerns the analogue of the notion ‘causal function’ for a distribution, since
(13.6) is only valid for causal functions. Of course we would like to call the distri-
bution T f ‘causal’ if f is a causal function. But what shall we mean in general by
a ‘causal distribution’? This will have to be a distribution being ‘zero for t < 0’.
In section 13.4.2 we will return to these problems and turn definition (13.7) into a
rigorous one. In this section we use (13.7) for all distributions that are ‘zero for
t < 0’ according to our intuition. Examples of such distributions are the delta func-
tion δ(t), the derivatives δ(n)(t) (n ∈ N), the delta function δ(t −a) with a > 0, and
the derivatives δ(n)(t − a) (a > 0 and n ∈ N).

From formula (13.7) and definition 8.2 of δ(t) it follows that (Lδ(t))(s) =EXAMPLE 13.5 〈
δ(t), e−st 〉 = 1 since e−st = 1 for t = 0. Hence, Lδ = 1. �
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For the delta function δ(t −a) with a > 0 it follows from formulas (13.7) and (8.10)EXAMPLE 13.6
that (Lδ(t − a))(s) = 〈

δ(t − a), e−st 〉 = e−as . Hence, (Lδ(t − a))(s) = e−as . �

For the derivative δ(n)(t) it follows from formulas (13.7) and (8.17) thatEXAMPLE 13.7
(Lδ(n)(t))(s) =

〈
δ(n)(t), e−st

〉
= (−1)n

〈
δ(t), (e−st )(n)

〉
. But (e−st )(n) =

(−s)ne−st and so (Lδ(n)(t))(s) = sn 〈
δ(t), e−st 〉 = sn . This proves that

(Lδ(n)(t))(s) = sn . �

The properties of the Laplace transform of distributions are similar to the proper-
ties of the Laplace transform of functions (and to the properties of the Fourier trans-
form). The simplest property is linearity. It follows immediately from the definitionLinearity
in (13.7) and definition 8.5 of the addition of distributions and the multiplication of
a distribution by a complex constant.

The Laplace transform of 3iδ(t − 4) + 5 sin t is given by the complex functionEXAMPLE
3ie−4s + 5/(s2 + 1). �

Besides linearity, the most important property will be the differentiation rule inDifferentiation in the time
domain the time domain: when T is a distribution with Laplace transform LT , then

(LT (n))(s) = sn(LT )(s) (13.9)

for n ∈ N. (Compare this with the differentiation rule in the time domain in (12.10).)
The proof of (13.9) is easy and follows just as in example 13.7 from formulas (13.7)
and (8.17):

(LT (n))(s) =
〈
T (n), e−st

〉
= (−1)n

〈
T, (e−st )(n)

〉
= sn 〈

T, e−st 〉
= sn(LT )(s).

We know from example 13.5 that Lδ = 1. From (13.9) it then follows thatEXAMPLE
(Lδ(n)(t))(s) = sn , in agreement with example 13.7. �

Formula (13.9) can in particular be applied to a causal function f defining a
distribution T f , and so it is much more general than the differentiation rule in the
time domain from theorem 12.7. We will give some examples.

The Laplace transform F(s) of f (t) = ε(t − 1) is given by F(s) = e−s/s. OfEXAMPLE
course, the function ε(t − 1) is not differentiable on R, but considered as a distribu-
tion we have that ε′(t − 1) = δ(t − 1). According to (13.9) with n = 1 one then
obtains that (Lδ(t − 1))(s) = s(Lε(t − 1))(s) = e−s . This is in accordance with
example 13.6. Applying (13.9) for n ∈ N it follows that (Lδ(n−1)(t − 1))(s) =
sn(Lε(t − 1))(s) = sn−1e−s . It is not hard to obtain this result in a direct way (see
exercise 13.16). �

For the (causal) function f (t) = cos t one has (cos t)′ = δ(t) − sin t , considered asEXAMPLE 13.8
a distribution (see example 8.10). From formula (13.9) with n = 1 it then follows
that (L(δ(t) − sin t))(s) = s(L cos t)(s). This identity can easily be verified since
Lδ = 1, (L sin t)(s) = 1/(s2 + 1) and (L cos t)(s) = s/(s2 + 1). �

In example 13.8 we encounter a situation that occurs quite often: a causal func-
tion f (t) having a jump at the point t = 0, being continuously differentiable
otherwise, and defining a distribution T f . Let us assume for convenience that
f (0) = f (0+), in other words, let us take the function value at t = 0 equal to
the limiting value f (0+). The magnitude of the jump at t = 0 is then given by
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the value f (0). We moreover assume that the Laplace transforms of f and f ′ ex-
ist (in the ordinary sense), and according to (13.8) we thus have LT f = L f and
LT f ′ = L f ′. For the derivative T ′

f of f , considered as a distribution, one has,

according to the jump formula (8.21), that T ′
f = f ′(t) + f (0)δ(t), where f ′(t) is

the derivative of f (t) for t �= 0. Hence,

(LT ′
f )(s) = (L f ′)(s) + f (0)(Lδ)(s).

Since Lδ = 1 it then follows from (13.9) that

(L f ′)(s) = (LT ′
f )(s) − f (0) = s(L f )(s) − f (0),

where we used LT f = L f . Applying this rule repeatedly, we obtain for a causal
function f (t) being n times continuously differentiable for t ≥ 0 that

(L f (n))(s) = sn(L f )(s) −
n∑

k=1

sn−k f (k−1)(0). (13.10)

Here f (k) is the kth derivative of f (t) for t �= 0 and it is assumed that all Laplace
transforms exist in the ordinary sense. Formula (13.10) is used especially for solv-
ing differential equations by means of the Laplace transform. In addition to an
unknown function f (t) satisfying a differential equation, only the values f (k)(0)

(k = 0, 1, . . . , n − 1) are given (see chapter 14).
We close with some elementary results on the Laplace transform of a convolutionLaplace transform and

convolution product of distributions. From section 9.3 it is known that the convolution product
δ ∗ T exists for any distribution T and that δ ∗ T = T (see (9.19)). If the Laplace
transform LT of T exists, then this implies that L(δ ∗ T ) = LT , and since Lδ = 1
we thus see that L(δ ∗ T ) = Lδ · LT . This shows that in this particular case the
convolution theorem for the Laplace transform also holds for distributions. Using
the same method one can verify in a direct way the convolution theorem for distri-
butions for a limited number of other cases as well. Let us give a second example.
In (9.20) we saw that δ′ ∗ T = T ′ for a distribution T . Since (LT ′)(s) = s(LT )(s),
it follows that L(δ′ ∗ T )(s) = s(LT )(s). But (Lδ′)(s) = s and so we indeed have
L(δ′ ∗ T ) = Lδ′ · LT .

In most cases these simple results on the Laplace transform of convolution prod-
ucts will suffice in the applications.

13.4.2 Mathematical treatment∗

In section 13.4.1 it was pointed out that the definition in (13.7) of the Laplace trans-
form of a distribution gives rise to two problems. First of all it was noted that the
function e−st is not an element of the space S. For Re s < 0, for example, we have
that e−st → ∞ for t → ∞. This problem is solved by simply allowing a larger
class of functions φ in (13.5). To this end we replace S by the space E defined as the
set of all C∞-functions on R (this space of arbitrarily often differentiable functions
has previously been used towards the end of section 9.3). As a consequence of this
change, the number of distributions for which we can define the Laplace transform
is reduced considerably. However, this is unimportant to us, since we will only need
a very limited theory of the Laplace transform of distributions (in fact, only the delta
function and its derivatives are needed). Note that the complex-valued function e−st

indeed belongs to E .
The second problem involved finding the analogue of the notion of causality for

a distribution. This should be a distribution being ‘zero for t < 0’. If the function
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f in (13.5) is causal and we choose a φ ∈ S such that φ(t) = 0 for t ≥ 0, then it
follows that〈
T f , φ

〉 =
∫ ∞

−∞
f (t)φ(t) dt =

∫ ∞

0
f (t)φ(t) dt = 0.

We can now see that the definition of a causal distribution should be as follows.

Let T be a distribution. We say that T = 0 on the interval (−∞, 0) when 〈T, φ〉 = 0DEFINITION 13.1
Causal distribution for every φ ∈ S with φ(t) = 0 for t ≥ 0. Such a distribution is called a causal

distribution.

If f is a causal function defining a distribution T f , then T f is a causal distribution.EXAMPLE
This has been shown earlier. �

The delta function δ is a causal distribution since 〈δ, φ〉 = φ(0) = 0 for φ ∈ S withEXAMPLE
φ(t) = 0 for t ≥ 0. More generally we have that the delta function δ(t − a) with
a ≥ 0 is a causal distribution. In fact, it follows for φ ∈ S with φ(t) = 0 for t ≥ 0
that 〈δ(t − a), φ〉 = φ(a) = 0 since a ≥ 0. �

The causal distributions, which moreover can be defined on the space E , will now
form the set of distributions for which the definition of the Laplace transform of a
distribution in (13.7) makes sense.

Let T be a distribution which can be defined on the space E of all C∞-functions onDEFINITION 13.2
Laplace transform of a
distribution

R. Assume moreover that T is causal. Then the Laplace transform U = LT of T is
defined as the complex function U (s) = 〈

T (t), e−st 〉.
As was noted following (13.7), the Laplace transform U (s) of a distribution is a

complex function. From definition 13.2 we see that U (s) is defined on the whole
of C. One even has that U (s) is an analytic function on C! The proof of this result
is outside the scope of this book; we will not need it anyway. Also, in concrete
examples this result will follow from the calculations. We will give some examples.

The delta function is a causal distribution which can be defined on the space E , sinceEXAMPLE
〈δ, φ〉 = φ(0) has a meaning for every continuous function φ (see section 8.2.2).
Hence, the Laplace transform of δ is well-defined and as in example 13.5 it follows
that Lδ = 1. Note that the constant function 1 is an analytic function on C. �

Consider the delta function δ(t − a) at the point a for a > 0. Then Lδ(t − a) isEXAMPLE
again well-defined and (Lδ(t − a))(s) = e−as (see example 13.6). This is again an
analytic function on C. �

For all derivatives of the delta function δ(t) the Laplace transform is also well-EXAMPLE
defined and as in example 13.7 it follows that (Lδ(n)(t))(s) = sn . The function sn

is again an analytic function on C. �

Many of the properties that hold for the Laplace transform of functions, can be
translated into properties of the Laplace transform of distributions. The linearity and
the differentiation rule for the Laplace transform of distributions have already been
treated in section 13.4.1. The shift property in the s-domain and the scaling rule
also remain valid for distributions, but because of the limited applicability of these
rules, we will not prove them. As an illustration we will prove the shift property in
the time domain here.

Let T (t) be a distribution whose Laplace transform U (s) exists (so T is causal
and defined on E). Then one has for a ≥ 0 that

Shift in the time domain (LT (t − a))(s) = e−asU (s), (13.11)
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where T (t − a) is the distribution shifted over a (see definition 9.2). In order to
prove this rule, we first show that T (t −a) is causal. So let φ ∈ S with φ(t) = 0 for
t ≥ 0. Then 〈T (t − a), φ(t)〉 = 〈T (t), φ(t + a)〉 = 0 for t ≥ 0 since T is causal
and t + a ≥ 0 (because a ≥ 0 and t ≥ 0). Hence, T (t − a) is causal. It also follows
immediately that T (t − a) is defined on E , since T is defined on E and the function
ψ(t) = φ(t + a) belongs to E when φ(t) ∈ E . Hence, the Laplace transform of
T (t − a) exists and from definition 13.2 it then follows that

(LT (t − a))(s) = 〈
T (t − a), e−st 〉 =

〈
T (t), e−s(t+a)

〉
= e−as 〈

T (t), e−st 〉 = e−asU (s),

proving (13.11).

We know that Lδ = 1. From (13.11) it then follows that (Lδ(t − a))(s) = e−as ,EXAMPLE
which is in accordance with example 13.6. �

Some simple results on the convolution in relation to the Laplace transform of
distributions have already been treated in section 13.4.1. As for the Fourier trans-
form, there are of course general convolution theorems for the Laplace transform of
distributions. A theorem comprising all the examples we have treated earlier reads
as follows.

Let S and T be causal distributions which can be defined on the space E . Then S ∗TTHEOREM 13.6
Convolution theorem is a causal distribution which can again be defined on the space E and L(S ∗ T ) =

LS · LT .

Proof
The proof that S ∗ T is a causal distribution which can be defined on E is be-
yond the scope of this book. Assuming this result, it is not hard to prove that
L(S ∗ T ) = LS · LT . For s ∈ C one has L(S ∗ T )(s) = 〈

(S ∗ T )(t), e−st 〉 =〈
S(τ ),

〈
T (t), e−s(τ+t)

〉〉
, where we used definition 9.3 of convolution. It then fol-

lows that L(S ∗ T )(s) = 〈
S(τ ),

〈
T (t), e−st e−sτ 〉〉

. For fixed τ , the complex number
e−sτ does not depend on t . The number e−sτ can thus be taken outside of the ac-
tion of the distribution T (t). This results in L(S∗T )(s) = 〈

S(τ ),
〈
T (t), e−st 〉 e−sτ 〉

.
But now

〈
T (t), e−st 〉 is, for fixed t , a complex number which does not depend on τ

and so it can be taken outside of the action of the distribution S(τ ). This gives the
desired result: L(S ∗ T )(s) = 〈

S(τ ), e−sτ 〉 〈
T (t), e−st 〉 = (LS)(s) · (LT )(s). �

All the examples in section 13.4.1 satisfy the conditions of theorem 13.6. This
is because the delta function and all of its derivatives are causal distributions which
can be defined on the space E .

EXERCISES

Consider the function fa(t) = ae−at ε(t) for a > 0 and let Fa(s) = (L fa)(s).13.15
a Sketch the graph of fa(t) and show that

∫ ∞
−∞ fa(t) dt = 1.

b Show that lima→∞ fa(t) = 0 for every t > 0 and that lima→∞ fa(t) = ∞ for
t = 0. Conclude from parts a and b that the function fa(t) is an approximation of
the delta function δ(t) for a → ∞.
c Determine Fa(s) and calculate lima→∞ Fa(s). Explain your answer.

Use formula (13.7) to determine the Laplace transform of the nth derivative13.16
δ(n)(t − a) of the delta function at the point a for a ≥ 0.

Show that the Laplace transform of distributions is linear.13.17
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Verify the convolution theorem of the Laplace transform for δ(m) ∗ T (m ∈ N),13.18
where T is a distribution whose Laplace transform exists. Hence, show in a direct
way that L(δ(m) ∗ T ) = Lδ(m) · LT .

Determine the Laplace transform of the following distributions (and combinations13.19
of functions and distributions):
a δ(t) + sin t ,
b δ′(t) + 3δ′′(t),
c ε(t) + δ(t − 2) + 2iδ′′(t − 4),
d δ(3)(t) ∗ δ(t − a).

Determine a combination of functions and/or distributions whose Laplace transform13.20
is given by the following complex functions:
a F(s) = s + 3 − e−2s ,
b F(s) = (s − 2)2 + 1/(s − 2),
c F(s) = e−2s/(s2 + 1) + e−2ss3,
d F(s) = s2/(s2 + 1).

Let T be a distribution with Laplace transform U and consider for a ≥ 0 the shifted13.21∗
distribution T (t − a) (see definition 9.2). Verify the convolution theorem for T (t) ∗
δ(t − a). (Hint: see exercise 9.20.)

13.5 The inverse Laplace transform

In this final section on the theory of the Laplace transform we consider the problem
of the inverse of the Laplace transform. We start with the proof of the fundamental
theorem of the Laplace transform, which describes how a function f (t) in the time
domain can be recovered from its Laplace transform F(s). By using the connec-
tion between the Fourier and the Laplace transform, the proof of the fundamental
theorem is quite easy.

Let f (t) be a piecewise smooth (and causal) function of exponential order α ∈ R.THEOREM 13.7
Fundamental theorem of the
Laplace transform

Let F(s) be the Laplace transform of f (t). Then one has for t ≥ 0 and s = σ + iω
with σ > α that

lim
A→∞

1

2π

∫ A

−A
F(s)est dω = 1

2
( f (t+) + f (t−)) . (13.12)

Proof
Write s = σ + iω and define g(t) = ε(t) f (t)e−σ t . Note that g(t) is absolutely
integrable for σ > α since f (t) is of exponential order α ∈ R (see the proof of
theorem 12.3). The Fourier transform of g(t) thus exists for σ > α and according
to (12.2) we then have F(s) = (Fg)(ω). Since f is piecewise smooth, g is also
piecewise smooth and, moreover, absolutely integrable. The fundamental theorem
of the Fourier integral (theorem 7.3) can thus be applied to the function g and since
(Fg)(ω) = F(σ + iω), it then follows from (7.9) that

1

2π

∫ ∞

−∞
F(σ + iω)eiωt dω = 1

2
(g(t+) + g(t−)) .

Here the integral should be interpreted as a Cauchy principal value, hence as
limA→∞

∫ A
−A . . .. For t ≥ 0 we have g(t+) = ε(t+) f (t+)e−σ t+ = f (t+)e−σ t

and similarly g(t−) = f (t−)e−σ t , which leads to

lim
A→∞

1

2π

∫ A

−A
F(σ + iω)eiωt dω = 1

2
( f (t+) + f (t−)) e−σ t .
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If we now multiply the left- and right-hand sides by eσ t , then (13.12) indeed follows,
valid for σ > α and t ≥ 0. �

Note that in (13.12) we only integrate over ω and that the value of σ is irrelevant
(as long as σ > α). As for the Fourier transform (see section 7.2.1), the fundamental
theorem immediately implies that the Laplace transform is one-to-one.

Let f (t) and g(t) be two piecewise smooth functions of exponential order and letTHEOREM 13.8
The Laplace transform is
one-to-one

F(s) and G(s) be the Laplace transforms of f (t) and g(t). When F(s) = G(s) in a
half-plane Re s > ρ, then f (t) = g(t) at all points where f and g are continuous.

Proof
Let t ∈ R be a point where both f and g are continuous. Since F(s) = G(s) for
Re s > ρ, it follows from the fundamental theorem that (in the following integrals
we have s = σ + iω with σ > ρ)

f (t) = lim
A→∞

1

2π

∫ A

−A
F(s)est dω = lim

A→∞
1

2π

∫ A

−A
G(s)est dω = g(t).

�

This theorem is often used implicitly if we are asked to determine the function
f (t) whose Laplace transform F(s) is given. Suppose that an f (t) is found within
the class of piecewise smooth functions of exponential order. Then we know by
theorem 13.8 that this is the only possible function within this class, except for
a finite number of points on a bounded interval (also see the similar remarks on
the uniqueness of the Fourier transform in section 7.2.1). Without proof we also
mention that the Laplace transform of distributions is one-to-one as well.

Theorem 13.7, and the resulting theorem 13.8, are important results in the the-
ory of the Laplace transform. As for the Fourier transform, theorem 13.7 tells us
precisely how we can recover the function f (t) from F(s). Obtaining f from F is
called the inverse problem and therefore theorem 13.7 is also known as the inversionInversion theorem
theorem and (13.12) as the inversion formula. We will call the function f the inverseInversion formula

Inverse Laplace transform Laplace transform of F . Still, (13.12) will not be used for this purpose. In fact, cal-
culating the integral in (13.12) requires a thorough knowledge of the integration of
complex functions over lines in C, an extensive subject which is outside the scope
of this book. Hence, the fundamental theorem of the Laplace transform will not be
used in the remainder of this book, except in the form of the frequent (implicit) ap-
plication of the fact that the Laplace transform is one-to-one. Moreover, in practice
it is often a lot easier to determine the inverse Laplace transform of a function F(s)
by using tables, applying the properties of the Laplace transform, and using partial
fraction expansions.

Partial fraction expansions have been treated in detail in section 2.2 and will be
used to obtain the inverse Laplace transform of a rational function F(s). It will
be assumed that F(s) has real coefficients; in practice this is usually the case. We
will now describe in a number of steps how the inverse Laplace transform of such a
rational function F(s) can be determined.

If the degree of the numerator is greater than or equal to the degree of the denomina-Step 1
tor, then we perform a division. The function F(s) is then the sum of a polynomial
and a rational function for which the degree of the numerator is smaller than the
degree of the denominator. The polynomial gives rise to distributions in the inverse
Laplace transform since sn = (Lδ(n)(t))(s).

We want to determine the function/distribution f (t) having Laplace transformEXAMPLE
F(s) = (s3 − s2 + s)/(s2 + 1). Since the degree of the numerator is greater than
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the degree of the denominator, we first divide: F(s) = s − 1 + 1/(s2 + 1). Now
Lδ = 1, Lδ′ = s and (L sin t)(s) = 1/(s2 + 1), so f (t) = δ′(t) − δ(t) + sin t . �

From step 1 it follows that henceforth we may assume that F(s) is a rational functionStep 2
for which the degree of the numerator is smaller than the degree of the denominator.
From the results of section 2.2 it then follows that F(s) can be written as a sum of
fractions of the form

A

(s + a)k
and

Bs + C

(s2 + 2bs + c)l
,

with k, l ∈ N and where all constants are real and s2 + 2bs + c cannot be factorized
into factors with real coefficients. This latter fact means that the discriminant of
s2 + 2bs + c is negative. We will now determine the inverse Laplace transform for
each of these fractions separately.

From table 7 we immediately obtain the inverse Laplace transform of A/(s + a)k :Step 3

(Ltk−1e−at )(s) = (k − 1)!

(s + a)k
. (13.13)

Determine the function f (t) with (L f (t))(s) = F(s) = 1/(s2 + 3s + 2). TheEXAMPLE
discriminant of the denominator is positive and so it can be factorized into two real
linear factors: s2 + 3s + 2 = (s + 1)(s + 2). From a partial fraction expansion it
follows that F(s) = 1/(s + 1) − 1/(s + 2). Hence, f (t) = e−t − e−2t . Compare
this with the use of the convolution theorem in exercise 13.2. �

Determine the inverse Laplace transform f (t) of F(s) = 1/(s3 + 4s2 + 3s). NoteEXAMPLE
that s3 + 4s2 + 3s = s(s2 + 4s + 3) and that the quadratic form has a positive
discriminant; it follows that s3 + 4s2 + 3s = s(s + 3)(s + 1) and from a partial
fraction expansion it follows that

F(s) = 1

3s
+ 1

6(s + 3)
− 1

2(s + 1)
.

From (13.13) we then obtain that f (t) = (2 + e−3t − 3e−t )/6. �

The denominator of the function F(s) = 1/((s + 1)3(s − 2)2) has two multipleEXAMPLE
zeros. The partial fraction expansion of this function will take some effort, but will
eventually result in

F(s) = 1

27

(
3

(s + 1)3
+ 2

(s + 1)2
+ 1

s + 1
+ 1

(s − 2)2
− 1

s − 2

)
.

From (13.13) we then see that the inverse Laplace transform of F(s) is given by
f (t) = e−t ( 3

2 t2 + 2t + 1)/27 + e2t (t − 1)/27. �

In order to determine the inverse Laplace transform of (Bs + C)/(s2 + 2bs + c)l ,Step 4
we complete the square in the denominator: s2 + 2bs + c = (s + b)2 + (c − b2).
For convenience we write the positive constant c − b2 simply as c2 (for some new
constant c), which means that we want to determine the inverse Laplace transform
of the function

Bs + c

((s + b)2 + c2)l
for l ∈ N. (13.14)
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For l = 1 we obtain the inverse Laplace transform of this function from (13.14) by
taking a suitable linear combination of the following results from table 7:

(Le−bt sin ct)(s) = c

(s + b)2 + c2
, (Le−bt cos ct)(s) = s + b

(s + b)2 + c2
. (13.15)

Determine the function f (t) with Laplace transform F(s) = 1/(s2 − 2s + 17).EXAMPLE
The discriminant of the denominator is negative and so we complete the square:
s2 −2s +17 = (s −1)2 +16. From (13.15) it then follows that f (t) = (et sin 4t)/4
(also see exercise 12.19g). �

Determine the function f (t) with Laplace transform F(s) = 1/(s(s2+1)). A partialEXAMPLE
fraction expansion leads to F(s) = 1/s−s/(s2+1) = (L1)(s)−(L cos t)(s). From
a very simple case of (13.15) it then follows that f (t) = 1−cos t . In example 12.13
we used the integration rule to prove this. �

Determine the function f (t) with Laplace transform F(s) = 1/((s2 + 4)(s2 + 16)).EXAMPLE
Since F(s) is a function of s2, we put y = s2 and apply partial fraction expansion
to the function 1/((y + 4)(y + 16)), resulting in 1/(12(y + 4)) − 1/(12(y + 16)).
Hence, F(s) = 1/(12(s2 + 4)) − 1/(12(s2 + 16)) and then it again follows from a
simple case of (13.15) that f (t) = (sin 2t)/24 − (sin 4t)/48. �

Determine the inverse Laplace transform f (t) of the function F(s) = (2s + 5)/EXAMPLE
(s2 + 9). Since

2s + 5

s2 + 9
= 2

s

s2 + 9
+ 5

3

3

s2 + 9
,

it follows from (13.15) that f (t) = (6 cos 3t + 5 sin 3t)/3. �

Determine the inverse Laplace transform f (t) of the functionEXAMPLE

F(s) = e−4s(s + 1)

s2(s + 5)
+ s + 2

s2 + 2s + 5
.

Since the discriminant of s2 +2s +5 is negative, we complete the square: s2 +2s +
5 = (s + 1)2 + 4. To the first term we apply partial fraction expansion:

F(s) = e−4s
(

1

5s2
+ 4

25s
− 4

25(s + 5)

)
+ s + 1

(s + 1)2 + 4
+ 1

(s + 1)2 + 4
.

Using (13.13), (13.15) and the shift property in the time domain we obtain f (t) =
ε(t − 4)(5(t − 4) + 4 − 4e−5(t−4))/25 + e−t (2 cos 2t + sin 2t)/2. �

Larger values of l in (13.14) can be obtained by a repeated application of the dif-
ferentiation rule in the s-domain, although the calculations become increasingly te-
dious. For a simple case we refer to example 12.12. The final example of this section
will show that even for the case l = 2 calculations can be quite complicated.

Determine the inverse Laplace transform f (t) of the function F(s) = (6s−4)/(s2+EXAMPLE
4s + 8)2. First complete the square in the denominator: s2 + 4s + 8 = (s + 2)2 + 4.
Starting from (13.15) with b = 2 and c = 2 we want to apply the differentiation
rule in the s-domain. A bit of calculation will show that

d

ds

1

(s + 2)2 + 4
= −2s − 4

((s + 2)2 + 4)2
,

d

ds

s + 2

(s + 2)2 + 4
= −(s + 2)2 + 4

((s + 2)2 + 4)2
.
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Writing −(s + 2)2 + 4 = −((s + 2)2 + 4) + 8 will reveal that

d

ds

s + 2

(s + 2)2 + 4
= − 1

(s + 2)2 + 4
+ 8

((s + 2)2 + 4)2

and thus

a
d

ds

1

(s + 2)2 + 4
+ b

(
d

ds

s + 2

(s + 2)2 + 4
+ 1

(s + 2)2 + 4

)
= −2as − 4a + 8b

((s + 2)2 + 4)2
.

The right-hand side is equal to F(s) for a = −3 and b = −2 and hence

F(s) = −3
d

ds

1

(s + 2)2 + 4
− 2

d

ds

s + 2

(s + 2)2 + 4
− 2

(s + 2)2 + 4
.

Using (13.15) and the differentiation rule in the s-domain we can then finally de-
termine the inverse Laplace transform: f (t) = (3te−2t sin 2t)/2 + 2te−2t cos 2t −
e−2t sin 2t . �

EXERCISES

Determine the inverse Laplace transform f (t) of the following complex functions:13.22
a s/(s2 + 5s + 6),
b 1/(s2 + 6s + 10),
c s/((s − 1)(s + 2)(s + 3)),
d (s2 + 1)/((s2 − 4)(s2 − 1)),
e (s2 + 7)/((s + 1)2(s − 1)),
f 1/(s2 − 1)2,
g (s3 + 4)/((s2 + 4)(s − 1)),
h e−2s(s6 + s2 − 1)/(s2(s2 − 1)).

For integer k we define Fk(s) = 1/(sk − 1). Determine the inverse Laplace trans-13.23
form fk(t) of Fk(s) for k = 1, 2, 3, 4 and −1.

S U M M A R Y

First, a number of additional properties of the Laplace transform were treated in this
chapter.

It was shown that the convolution product of two causal functions f and g is
again a causal function and that, under certain conditions, the convolution theorem
holds: L( f ∗ g)(s) = (L f )(s) · (Lg)(s).

In general one has for the Laplace transform F(s) that lims→∞ F(s) = 0. If
f (t) is a piecewise smooth function, then lims→∞ s F(s) = f (0+) according to
the initial value theorem. If the final value limt→∞ f (t) = f (∞) exists, then the
final value theorem states that lims→0 s F(s) = f (∞).

For a periodic function f (t) with period T there is a simple relationship between
F(s) and the Laplace transform of the function restricted to one period. When
φ(t) = f (t) − ε(t − T ) f (t − T ) has Laplace transform 	(s), then

F(s) = 	(s)

1 − e−sT
with 	(s) =

∫ T

0
f (t)e−st dt.

For distributions T the Laplace transform LT is defined as the complex func-
tion (LT )(s) = 〈

T (t), e−st 〉. One then has, for example, that Lδ = 1 and (Lδ(t −
a))(s) = e−as . The differentiation rule for distributions reads as follows:
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(LT (m))(s) = sm(LT )(s) and so one has in particular (Lδ(m))(s) = sm . For cer-
tain classes of distributions the convolution theorem remains valid, so L(S ∗ T ) =
LS · LT . One has, for example, that L(δ ∗ T ) = LT and L(δ′ ∗ T ) = s(LT )(s).

From the fundamental theorem of the Fourier transform one immediately obtains
the fundamental theorem of the Laplace transform. From this fundamental theorem
the uniqueness of the Laplace transform follows: when f (t) and g(t) are two piece-
wise smooth functions of exponential order and F(s) = G(s) in a certain half-plane
in C, then f (t) = g(t) at all points where f and g are continuous. For distributions
the uniqueness of the Laplace transform remains valid. In practical problems the
inverse Laplace transform is usually determined by using tables, properties of the
Laplace transform and partial fraction expansions.

S E L F T E S T

Let f (t) be the function with Laplace transform F(s) = s/(s2 + 4)2.13.24
a Determine a convolution product (g ∗ h)(t) with Laplace transform F(s).
b Determine f (t) by calculating the convolution from part a.
c Calculate the derivative of 1/(s2 + 4) and use the differentiation rule in the
s-domain to determine f (t) once again.

Consider the function f (t) = t − ε(t − 2)(t − 2) having Laplace transform F(s).13.25
a Determine lims→0 s F(s) and lims→∞ s F(s) without calculating F(s).
b Calculate F(s) and verify the results from part a.

Let f (t) be a function with Laplace transform F(s). Determine the function f (t)13.26
for each of the functions F(s) given below and verify the final value theorem, or
explain why the final value theorem cannot be applied.
a F(s) = (s + 5)/(s(s2 + 2s + 5)).
b F(s) = s2/((s2 − 1)(s2 + 4)).

Let f (t) be the (causal) periodic function with period 2 defined for 0 ≤ t < 2 by13.27

f (t) =
{

t2 for 0 ≤ t < 1,

0 for 1 ≤ t < 2.

a Sketch the graph of f and show that f (t) = t2(ε(t) − ε(t − 1)) for 0 ≤ t < 2.
b Determine (L f )(s) = F(s).

Determine the inverse Laplace transform f (t) of the following complex functions13.28
F(s):
a F(s) = (1 − e−3s)/(s(s + 1)),
b F(s) = (s2 + 1)/(s2(s − 1)2),
c F(s) = (1 + e−πs(s5 − 4s4 − 8s + 64))/(s2(s2 + 4)).
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CHAPTER 14

Applications of the Laplace transform

I N T R O D U C T I O N

The greater part of this chapter consists of section 14.1 on linear time-invariant
continuous-time systems (LTC-systems). The Laplace transform is very well suited
for the study of causal LTC-systems where switch-on phenomena occur as well: at
time t = 0 ‘a switch is thrown’ and a process starts, while prior to time t = 0 the
system was at rest. The input u(t) will thus be a causal signal and since the system
is causal, the output y(t) will be causal as well. Applying the Laplace transform
is then quite natural, especially since the Laplace transform exists for a large class
of inputs u(t) as an ordinary integral in a certain half-plane Re s > ρ. This is in
contrast to the Fourier transform, where distributions are needed more often. For
the Laplace transform we can usually restrict the distribution theory to the delta
functions δ(t − a) with a ≥ 0 (and their derivatives). As in chapter 10, the response
h(t) to the delta function δ(t) again plays an important role. The Laplace transform
H(s) of the impulse response is called the transfer function or system function. An
LTC-system is then described in the s-domain by the simple relationship Y (s) =
H(s)U (s), where Y (s) and U (s) are the Laplace transforms of, respectively, the
output y(t) and the input u(t) (compare this with (10.6)).

In this chapter we will mainly limit ourselves to systems described by ordinary
linear differential equations with constant coefficients and with initial conditions all
equal to zero (since the system is at rest at t = 0). The transfer function H(s) is
then a rational function of s and the impulse response can thus be determined by a
partial fraction expansion and then transforming this back to the time domain. As
we know, the response y(t) of the system to an arbitrary input u(t) is given by the
convolution of h(t) with u(t) (see section 10.1). In order to find the response y(t)
for a given input u(t), it is often easier first to determine the Laplace transform U (s)
of u(t) and subsequently to transform H(s)U (s) back to the time domain. This is
because U (s), and hence Y (s) = H(s)U (s) as well, is a rational function for a large
class of inputs. The inverse Laplace transform y(t) of Y (s) can then immediately be
determined by a partial fraction expansion. This simple standard solution method is
yet another advantage of the Laplace transform over the Fourier transform.

If we compare this with the classical method for solving ordinary linear differen-
tial equations with constant coefficients (using the homogeneous and the particular
solution), then the Laplace transform again has the advantage. This is because it
will turn out that the Laplace transform takes the initial conditions immediately into
account in the calculations. This reduces the amount of calculation considerably,
especially for higher order differential equations. As a disadvantage of the Laplace
transform, we mention that in general one cannot give a straightforward interpreta-
tion in terms of spectra, as is the case for the Fourier transform.

For the differential equations treated in section 14.1, all the initial conditions will
always be zero. In section 14.2 we will show that the Laplace transform can equally

310
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well be applied to ordinary linear differential equations with constant coefficients
and with arbitrary initial conditions. In essence, nothing will change in the solution
method from section 14.1. Even more general are the systems of several coupled
ordinary linear differential equations with constant coefficients from section 14.3.
Again these can be solved using the same method, although in the s-domain we
have not one equation, but a system of several equations. For convenience we con-
fine ourselves to systems of two differential equations. Finally, we briefly describe
in section 14.4 how the Laplace transform can be used to solve partial differential
equations with initial and boundary conditions. By applying the Laplace transform
to one of the variables, the partial differential equation becomes an ordinary differ-
ential equation, which is much easier to solve.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the concept of transfer function or system function of an LTC-system
- can determine the transfer function and the impulse and step response of a causal

LTC-system described by an ordinary linear differential equation with constant
coefficients

- know the relation between the input and the output in the s-domain using the
transfer function and can use it to calculate outputs

- can verify the stability using the transfer function
- can apply the Laplace transform in solving ordinary linear differential equations

with constant coefficients and arbitrary initial conditions
- can apply the Laplace transform in solving systems of two coupled ordinary linear

differential equations with constant coefficients
- can apply the Laplace transform in solving partial differential equations with initial

and boundary conditions.

14.1 Linear systems

14.1.1 The transfer function

The basic concepts from the theory of LTC-systems (linear time-invariant continuous-
time systems) have been treated extensively in chapter 1 and section 10.1. Let us
summarize the most important concepts.

An LTC-system L associates with any input u(t) an output y(t). One also calls
y(t) the response to u(t). When h(t) is the impulse response, that is, h(t) is the
response to δ(t), then it follows for an arbitrary input u(t) that

y(t) = Lu(t) = (h ∗ u)(t) (14.1)

(see (10.3)). An LTC-system is thus completely determined by the impulse response
h(t). Besides the impulse response we also introduced in section 10.1 the step re-
sponse a(t), that is to say, the response of the system to the unit step function ε(t).
We recall that h(t) is the derivative of a(t) (considered as a distribution, if neces-
sary). Using the convolution theorem of the Laplace transform one can translate
relation (14.1) to the s-domain. To this end we assume, as in section 10.2, that for
the LTC-systems under consideration we may apply the convolution theorem, in the
distribution sense if necessary. If U (s), Y (s) and H(s) are the Laplace transforms
of u(t), y(t) and h(t) respectively, then it follows from the convolution theorem that

Y (s) = H(s)U (s). (14.2)
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The function H(s) plays the same important role as the frequency response from
chapter 10.

Let h(t) be the impulse response of an LTC-system. Then the system function orDEFINITION 14.1
System function
Transfer function

transfer function H(s) of the LTC-system is the Laplace transform of h(t) (in the
distribution sense, if necessary).

Consider the integrator from example 10.3 with impulse response h(t) = ε(t). TheEXAMPLE 14.1
Laplace transform of ε(t) is 1/s (see table 7) and so H(s) = 1/s. Hence, the
response y(t) of the integrator to an input u(t) is described in the s-domain by
Y (s) = U (s)/s. �

In practical situations we are usually dealing with systems where switch-on phe-
nomena may occur: at time t = 0 a system, being at rest, is switched on. The inputsSwitched-on system
are then causal and when the LTC-system is causal, then the output will be causal as
well (theorem 1.2). In this chapter we will limit ourselves to causal LTC-systems
and, moreover, we will always assume that all inputs u(t), and thus all outputs y(t)
as well, are causal: u(t) = y(t) = 0 for t < 0. Here we will also admit distri-
butions ‘which are zero for t < 0’: the delta functions δ(t − a) with a ≥ 0 and
their derivatives (see section 13.4). In particular the impulse response will also be
a causal signal. If now the Laplace transform H(s) exists in a certain half-plane
Re s > ρ with ρ < 0, then we can take s = iω and since h(t) is causal, it then
follows that

H(iω) = (Lh)(iω) =
∫ ∞

0
h(t)e−iωt dt =

∫ ∞

−∞
h(t)e−iωt dt = (Fh)(ω).

Hence, in this case we see that the frequency response from section 10.2 is given by
H(iω). Many Laplace transforms only exist in a half-plane contained in Re s > 0.
Of course, substituting s = iω is then not allowed. Because of this, the term ‘fre-
quency response’ for the function H(s) is misplaced: in general H(s) is a complex
function having no interpretation in terms of frequencies.

Consider the integrator from example 10.3 with system function H(s) = 1/s (forEXAMPLE 14.2
Re s > 0). The frequency response is not given by the function 1/ iω, but by 1/ iω+
πδ(ω) (see example 10.4). �

In section 10.3 we already noted that a large and important class of LTC-systems
occurring in practice (such as RLC-networks) can be described by ordinary linear
differential equations with constant coefficients of the form (10.9) (also see (14.5)).
From now on we confine ourselves to such systems. In section 14.1.2 we will first
explain the fundamental principle underlying the application of the Laplace trans-
form to linear differential equations with constant coefficients. In essence, this prin-
ciple remains unchanged throughout the remainder of this chapter.

14.1.2 The method of Laplace transforming

Using an elementary example we will illustrate how the Laplace transform can be
used to obtain solutions to linear differential equations with constant coefficients.
Moreover, we will show the difference between the method using the Laplace trans-
form and the ‘classical’ solution method using the homogeneous and particular so-
lutions. This classical solution method has already been explained in section 5.1 and
can also be found in many introductions to this subject. In the following example
we first solve a certain initial value problem using the classical method.
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Consider for the unknown function y = y(t) the initial value problemEXAMPLE 14.3

y′′ − y = 2t, (14.3)

y(0) = y′(0) = 0. (14.4)

The corresponding homogeneous equation y′′ − y = 0 has characteristic equation
λ2 − 1 = 0 and so λ = ±1. Hence, the solution yh of the homogeneous equation
is yh(t) = αet + βe−t , where α and β are arbitrary constants. To find a particular
solution yp, we try yp(t) = bt + c. Substituting this into (14.3) gives c = 0 and
b = −2. The general solution is thus

y(t) = yh(t) + yp(t) = αet + βe−t − 2t.

Substituting the initial values (14.4) gives α + β = 0 and α − β − 2 = 0. Solving
this system of two equations in the two unknowns α and β we obtain that α = 1 and
β = −1. The solution to the initial value problem is thus given by

y(t) = et − e−t − 2t.
�

Characteristic for this classical method is the fact that we first determine the gen-
eral solution to the differential equation (y(t) in example 14.3) and then determine
the unknown constants in the general solution from the initial values (α and β fol-
low from y(0) and y′(0) in example 14.3). For an mth order linear differential equa-
tion with constant coefficients it is known that a solution is uniquely determined by
specifying (for example) m initial conditions (say y(0), . . . , y(m−1)(0)). With the
m initial conditions one can determine the m unknown constants in the general so-
lution, by solving a system of m linear equations in m unknowns. For m ≥ 3 this
is a tedious calculation. Another disadvantage of the classical method is finding a
particular solution. This is not always easy and may again require some tedious cal-
culations. We will now use the Laplace transform to solve the initial value problem
from example 14.3.

Apply the Laplace transform to both sides of the differential equation (14.3). As-EXAMPLE 14.4
sume that Y (s) = (Ly)(s) exists in a certain half-plane and that moreover the
differentiation rule in the time domain ((12.10) or table 8) can be applied. Then
(L(y′′ − y))(s) = s2Y (s) − Y (s) and since (Lt)(s) = 1/s2, the initial value prob-
lem transforms into

(s2 − 1)Y (s) = 2

s2
.

Note that instead of a differential equation for y(t) we now have an algebraic equa-
tion for Y (s). Solving for Y (s) and applying a partial fraction expansion we obtain
that

Y (s) = 2

s2(s2 − 1)
= 2

s2 − 1
− 2

s2
.

The inverse Laplace transform y(t) of Y (s) follows from table 7:

y(t) = 2 sinh t − 2t = et − e−t − 2t.

This is in accordance with the result from example 14.3. One can easily verify
that the (causal) function y(t) satisfies the differential equation (14.3) and the initial
conditions (14.4) (in general it is necessary to verify the result since a number of
assumptions have been made in order to find the solution). �
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Before we pass on to a comparison of the classical method with the method from
example 14.4, we first summarize the most important steps of the solution method
in example 14.4.

The Laplace transform is applied to the differential equation for y(t). Here weStep 1
assume that the Laplace transform Y (s) of the unknown function y(t) exists and that
the differentiation rule in the time domain may be applied (either in the ordinary
sense or in the sense of distributions). From the differential equation for y(t) we
obtain an algebraic equation for Y (s) which is much easier to solve.

The algebraic equation in the s-domain is solved for Y (s).Step 2

The solution we have found in the s-domain is then transformed back into theStep 3
t-domain. For this we use tables, the properties of the Laplace transform and partial
fraction expansions (see section 13.3). For the solution y(t) found in this way, one
can verify whether it satisfies the differential equation and the initial conditions.

This procedure is represented once more in figure 14.1.

differential equation
for y(t)  in the 
t-domain

algebraic equation
for Y (s) = (Ly) (s)
in the s-domain

solution y (t)

Laplace transform

solution Y (s)

inverse Laplace
      transform

solve

FIGURE 14.1
Global procedure for the application of the Laplace transform in solving differential
equations.

If we now compare the method from example 14.4 with the classical method from
example 14.3, then the advantage of the new method is not obvious yet. In general
the advantages increase as the order of the differential equation increases and/or the
right-hand side of the differential equation gets more complex. This is because the
Laplace transform immediately leads to the desired solution, without the need to
determine the general solution first. Solving a system of m linear equations in m
unknowns afterwards (for an mth order differential equation), is no longer necessary.
This is caused by the fact that the Laplace transform immediately takes the initial
conditions into account in the calculations (which is not very visible in example 14.4
since we have initial conditions y(0) = y′(0) = 0). Besides this, finding a particular
solution is not necessary since again the right-hand side of the differential equation
is immediately taken into account in the calculations by the Laplace transform.

14.1.3 Systems described by differential equations

We now return to the general theory of the causal LTC-systems described by an
ordinary linear differential equation with constant coefficients of the form

am
dm y

dtm + am−1
dm−1 y

dtm−1
+ · · · + a1

dy

dt
+ a0 y

= bn
dnu

dtn + bn−1
dn−1u

dtn−1
+ · · · + b1

du

dt
+ b0u, (14.5)

where n ≤ m (also see (10.9)). Here u(t) is the input and y(t) the output or response.
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At first sight one could think that any differential equation of the form (14.5)
describes an LTC-system. This, however, is not the case since a differential equation
on its own admits a large class of solutions. If sufficient additional conditions are
supplied, for example initial conditions, then we may have reduced the number of
solutions to just one, but in general the linearity property of linear systems (see
definition 1.1) will not be fulfilled then. We illustrate this with an example.

Consider the system described by the differential equation y′′ − y = u(t) (also seeEXAMPLE 14.5
example 14.3) with two different initial conditions:

y(0) = 0, y′(0) = −2 and y(0) = 0, y′(0) = 0.

The system having y(0) and y′(0) both equal to zero (the ‘right-hand system’) will
be called a system at ‘initial rest’. Now take as input u(t) = u1(t) = 2t (as in
example 14.3). The response y1(t) of these two systems is given by, respectively,

y1(t) = −2t and y1(t) = et − e−t − 2t.

For both situations we now take another input, namely u(t) = u2(t) = t2. The
response y2(t) of these two systems is then given by, respectively,

y2(t) = 2e−t − t2 − 2 and y2(t) = et + e−t − t2 − 2.

If we add the inputs, then the linearity of the system should guarantee that we obtain
as output the sum of the separate outputs. We will verify this for both situations.
The response y3(t) to the input u1(t) + u2(t) = 2t + t2 is given by, respectively,

y3(t) = et + e−t − t2 − 2t − 2 and y3(t) = 2e−t − t2 − 2t − 2.

We see that for the left-hand and right-hand system we have, respectively,

y3(t) �= y1(t) + y2(t) and y3(t) = y1(t) + y2(t).
�

If we now look at how these differences in example 14.5 arise, then we observe
that the right-hand system is at initial rest, that is to say, y(0) = y′(0) = 0. This
is in contrast to the left-hand system, where y′(0) = −2. For the solutions y1 and
y2 one then has y′

1(0) = y′
2(0) = −2, so (y1 + y2)′(0) = −4, while y′

3(0) = −2.
From this we immediately see that y3 �= y1 + y2.

For a system described by a differential equation of the form (14.5) we now define
in general the condition of initial rest byInitial rest

y(0) = y′(0) = . . . = y(m−1)(0) = 0. (14.6)

Example 14.5 suggests that the condition of initial rest is sufficient to ensure that
a system described by a differential equation of the form (14.5) is linear. This is
indeed the case. In fact, if an input u1(t) with response y1(t) satisfies differential
equation (14.5), and an input u2(t) with response y2(t) also satisfies differential
equation (14.5), then (ay1 + by2)(t) will satisfy differential equation (14.5) for the
input (au1 + bu2)(t) because differentiating is linear. When, in addition, both y1

and y2 satisfy the condition of initial rest, then (ay1 + by2)(k)(0) = ay(k)
1 (0) +

by(k)
2 (0) = 0 for k = 0, 1, . . . , m − 1. Hence, ay1 + by2 also satisfies the condition

of initial rest. Moreover, since solutions are uniquely determined by the m initial
conditions in (14.6), it follows that (ay1 + by2)(t) must be the response to the input
(au1 + bu2)(t). Thus, the system is linear.
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For a causal LTC-system described by differential equation (14.5) and condition
of initial rest (14.6) we now apply the Laplace transforming method from section
14.1.2.

Assume that the Laplace transform Y (s) of the unknown function y(t) exists and ap-Step 1
ply the Laplace transform to all terms in the differential equation (14.5). We do this
under the assumption that we may apply the differentiation rule (12.10) in the time
domain. The (causal) function y(t) should then be m − 1 times continuously differ-
entiable on R and y(m−1) should be differentiable on R. Note that in this case the
conditions of initial rest are automatically satisfied since for k = 0, 1, . . . , m − 1 it
follows from the continuity of y(k) that y(k)(0) = y(k)(0−) = 0 (for y(k) is causal).
Similar remarks can be made for the function u(t). From (12.10) it then follows
that, after Laplace transforming, the differential equation (14.5) is transformed into
the algebraic equation

amsmY (s) + · · · + a1sY (s) + a0Y (s) = bnsnU (s) + · · · + b0U (s),

where U (s) is the Laplace transform of u(t).

The algebraic equation in the s-domain is solved for Y (s). Using the polynomialsStep 2

A(s) = amsm + am−1sm−1 + · · · + a1s + a0,

B(s) = bnsn + bn−1sn−1 + · · · + b1s + b0, (14.7)

we can write the algebraic equation for Y (s) as A(s)Y (s) = B(s)U (s). Solving for
Y (s) gives

Y (s) = B(s)

A(s)
U (s). (14.8)

The function y(t) we are looking for is the inverse Laplace transform of Y (s). InStep 3
many cases U (s) will be a rational function with real coefficients and the differential
equation (14.5) will have real coefficients as well. It then follows from (14.8) that
Y (s) is also a rational function with real coefficients. The partial fraction expansion
method from section 13.3 can then be applied. One can then verify whether the
solution y(t) we have found satisfies both the differential equation and the initial
conditions.

A system satisfying the condition of initial rest is described by the differential equa-EXAMPLE 14.6
tion y′′−3y′+2y = u(t). We want to determine the response to the signal u(t) = t .
Let Y (s) be the Laplace transform of y(t). Since (Lt)(s) = 1/s2, it follows that
(s2 − 3s + 2)Y (s) = 1/s2, or

Y (s) = 1

s2(s2 − 3s + 2)
.

But s2 − 3s + 2 = (s − 1)(s − 2) and a partial fraction expansion gives

Y (s) = 1

4(s − 2)
− 1

s − 1
+ 3

4s
+ 1

2s2
.

From table 7 we obtain y(t) = (e2t − 4et + 3 + 2t)/4. It is easy to check that y(t)
satisfies the differential equation and the initial conditions. �

By combining (14.8) and (14.2) we obtain the following important result for the
transfer function:

H(s) = B(s)

A(s)
, (14.9)
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where B(s) and A(s) are the polynomials from (14.7). These two polynomials fol-
low immediately from the form of the differential equation: to get the transfer func-
tion H(s) we do not have to calculate the impulse response h(t) explicitly! Equation
(14.9) can also be obtained by taking the delta function δ(t) as input in (14.8). Since
in this case U (s) = (Lδ)(s) = 1 and Y (s) = H(s) (definition 14.1), it then indeed
follows from (14.8) that H(s) = B(s)/A(s).

For the system in example 14.6 we take as input u(t) = δ(t). Since (Lδ)(s) = 1,EXAMPLE 14.7
it follows from y′′ − 3y′ + 2y = δ(t) that (s2 − 3s + 2)H(s) = 1. The transfer
function H(s) is thus given by H(s) = 1/(s2 − 3s + 2). Let us also determine the
impulse response h(t). From the partial fraction expansion it follows that H(s) =
1/(s − 2) − 1/(s − 1) and so h(t) = e2t − et . It is easy to check that h(t) satisfies
the differential equation, provided that we differentiate in the distribution sense! �

In most of the engineering literature one is quite happy with the derivation of
(14.9) based on the input δ(t). However, using example 14.7 it is easy to show that
this derivation is not quite rigorous. For this we note that the impulse response h(t)
from example 14.7 does satisfy h(0) = 0, but that h′(0) does not exist. There is
even a jump of h′(t) at t = 0! This is because h′(0−) = 0, since h′ is causal,
while h′(0+) = 1, since h′(t) = 2e2t − et for t > 0. Indeed, the function h′(t)
must have a jump at t = 0, since otherwise no delta function would occur in the
input. The conclusion must be that h(t) does not satisfy the condition of initial rest.
This problem can be solved by applying the differentiation rule for distributions
in (13.9) (or table 10). In fact, as we have already mentioned in example 14.7,
differentiation should be taken in the distribution sense. The condition of initial rest
is then irrelevant, since in general distributions have no meaning at all at t = 0. If
we take as input u(t) = δ(t) in differential equation (14.5), then it indeed follows
from (Lδ(k))(s) = sk and the differentiation rule for distributions in (13.9) that
H(s) = B(s)/A(s), where B(s) and A(s) are the polynomials from (14.7).

Besides the impulse response one often uses the step response as well. Here
similar phenomena occur as for the impulse response: although strictly speaking
the differentiation rule in the time domain cannot be applied, one can again justify
the result with the differentiation rule for distributions. We will not go into this any
further and instead present another example.

For the system from example 14.6 we take as input u(t) = ε(t). Since (Lε)(s) =EXAMPLE 14.8
1/s, it follows from y′′ − 3y′ + 2y = ε(t) that (s2 − 3s + 2)Y (s) = 1/s, so
Y (s) = 1/(s(s2 − 3s + 2)) (of course, this also follows straight from (14.2) since in
this case U (s) = (Lu)(s) = 1/s). A partial fraction expansion leads to

Y (s) = 1

2s
+ 1

2(s − 2)
− 1

s − 1
,

and so the step response is given by y(t) = (1 + e2t − 2et )/2. Note that y(0) =
y′(0) = 0 and that indeed y′(t) = h(t), with h(t) the impulse response from exam-
ple 14.7. Since in this case the impulse response had already been determined, the
step response could of course also have been calculated using (14.1):

y(t) = (h ∗ ε)(t) =
∫ t

0
h(τ ) dτ =

∫ t

0
(e2τ − eτ ) dτ = 1

2 (1 + e2t − 2et ).

�

Let us now assume in general that for a certain system the impulse response h(t)
is known. Using (14.1) one can then calculate the output y(t) for any input u(t).
In example 14.8, for instance, it is clear that the step response follows quite easily
from the impulse response using (14.1). In general the convolution in (14.1) is not
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so easy to calculate and so the Laplace transforming method is applied for each
input u(t) separately (as we have done in example 14.8 in order to determine the
step response). Here the input u(t) may be any arbitrary piecewise smooth (causal)
function, or even a distribution (being zero for t < 0). Assuming the condition of
initial rest, we state without proof that the method outlined above always leads to the
desired result. When the input contains the delta function δ(t), or derivatives δ(k)(t),
then we should keep in mind that a number of initial conditions will be irrelevant,
since we are then dealing with an output for which one or several of the derivatives
has a jump at t = 0. If we want to verify afterwards that the solution y(t) we have
found satisfies the differential equation, then we should interpret the derivatives in
the sense of distributions.

For the system from example 14.6 we take as input u(t) = 2δ(t −1). Since (Lδ(t −EXAMPLE 14.9
1))(s) = e−s , it follows from (14.2) and the expression for H(s) in example 14.7
that

Y (s) = 2e−s H(s) = 2e−s

s − 2
− 2e−s

s − 1
.

Since (Le2t )(s) = 1/(s − 2) and (Let )(s) = 1/(s − 1), it follows from the shift
property in the time domain that y(t) = 2ε(t − 1)(e2t−2 − et−1). �

The advantages of the Laplace transform, compared to both the classical method
and the Fourier transform, now become clear. Towards the end of section 14.1.2 it
was already noted that the Laplace transform immediately takes the initial condi-
tions into account. Afterwards we do not have to use the initial conditions to solve
a number of constants from a system of linear equations. A second advantage is the
fact that the Laplace transform exists as an ordinary integral for a large class of func-
tions. We only need a limited distribution theory. Finally we note that for a large
class of inputs the Laplace transform Y (s) of the response y(t) is given by a rational
function with real coefficients. The response y(t) can then be found by a partial
fraction expansion followed by an inverse transform. A disadvantage of the Laplace
transform is the fact that there is no obvious interpretation of the Laplace trans-
form in terms of the spectrum of the input (also see example 14.2 and the remarks
preceding it).

14.1.4 Stability

Again it will be assumed that all systems are causal LTC-systems described by a
differential equation of the form (14.5) and with condition of initial rest (14.6). In
section 14.1.3 it was shown that the transfer function H(s) of such a system is
given by the rational function B(s)/A(s), where B(s) and A(s) are the polynomials
in (14.7). We will now show that the stability of the system (see definition 1.3)
immediately follows from the location of the zeros of A(s).

First note that the degree n of the numerator B(s) is less than or equal to the
degree m of the denominator A(s) since n ≤ m in (14.5). From the theory of partial
fraction expansions (see chapter 2) it then follows that H(s) is a linear combination
of the constant function 1 and fractions of the form

1

(s − α)n ,

where n ∈ N and α ∈ C is a zero of the denominator of H(s), so A(α) = 0. We re-
call that the zeros of the denominator of a rational function are called the poles of the
function (see chapter 2). Note that the constant function occurs when n = m, that
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is to say, when the degree of the numerator equals the degree of the denominator.
The inverse Laplace transform of the function 1 is the delta function δ(t), and the
inverse Laplace transform of 1/(s − α)n is given by the function tn−1eαt/(n − 1)!
(see table 7), and hence we conclude that the impulse response h(t) is a linear com-
bination of the delta function δ(t) and terms of the form tn−1eαt , where n ∈ N and
α ∈ C. According to theorem 10.1, the system is stable if and only if h(t) is abso-
lutely integrable. Since for a causal system the function h(t) is causal, this means
that we have to check whether

∫ ∞
0 | h(t) | dt is convergent. Here we may ignore

possible delta functions (see the remarks following the proof of theorem 10.1). Now
take a term of the form tn−1eαt with n ∈ N and α ∈ C, then we thus have to check
whether

∫ ∞
0 tn−1eαt dt is absolutely convergent. But∫ ∞

0
tn−1eαt dt = (Ltn−1)(−α),

and we know that the abscissa of absolute convergence of the function tn−1 is equal
to 0 (see examples 12.4 and 12.5 for the case n = 2 and section 12.3.1 for the
general case). Since the function tn−1eαt is not absolutely integrable for Re α = 0
(for then

∣∣∣ tn−1eαt
∣∣∣ = tn−1 for t > 0 and tn−1 is not integrable), it thus follows

that the function tn−1eαt is absolutely integrable precisely for Re(−α) > 0, so for
Re α < 0. The impulse response h(t) is thus absolutely integrable when in each of
the terms of the form tn−1eαt one has Re α < 0. We summarize the above in the
following theorem.

Let H(s) be the transfer function of a causal LTC-system described by a differentialTHEOREM 14.1
Stability equation of the form (14.5) and satisfying the condition of initial rest (14.6). Then

the system is stable if and only if the poles of H(s) lie in the half-plane Re s < 0.

Consider the system from example 14.6. From example 14.7 it follows that theEXAMPLE 14.10
poles of the transfer function are given by s = 1 and s = 2. They do not lie in
the half-plane Re s < 0. Hence, according to theorem 14.1 the system is not stable.
In example 14.7 it was shown that h(t) = e2t − et and indeed this function is not
absolutely integrable (we even have h(t) → ∞ if t → ∞). �

We close this section on the application of the Laplace transform to linear systems
with the treatment of an example which is known as the ‘harmonic oscillator’.

14.1.5 The harmonic oscillator

In figure 14.2 an RLC-network is drawn consisting of a series connection of a re-
sistor of resistance R, an inductor of inductance L , a capacitor of capacity C and a
voltage source generating a voltage v(t). Assume that L > 0, C > 0 and R ≥ 0.
As a consequence of the voltage v(t) there will be a current i(t) in the network
after closing the switch S at time t = 0. We assume that the network is at rest at
the moment of switching on. For such systems one can use Kirchhoff’s laws (see
section 5.1) to obtain the following relationship between the voltage v(t) and the
current i(t):

Li ′(t) + Ri(t) + 1

C

∫ t

−∞
i(τ ) dτ = v(t).

Now let q(t) be the charge on the capacitor, then q(t) = ∫ t
−∞ i(τ ) dτ and so i(t) =

q ′(t). From this we obtain for q(t) the differential equation

Lq ′′(t) + Rq ′(t) + 1

C
q(t) = v(t). (14.10)
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FIGURE 14.2
RLC-network.

The system described by differential equation (14.10) is known as the harmonic
oscillator (exactly the same differential equation occurs in the study of so-calledHarmonic oscillator
mass–dashpot systems; see the end of section 5.1). Since we assumed that the net-
work was at rest, the condition of initial rest holds: q(0) = q ′(0) = 0. Applying the
Laplace transform to (14.10) we obtain that

(Ls2 + Rs + 1/C)Q(s) = V (s),

where Q(s) and V (s) are the Laplace transforms of q(t) and v(t) respectively. From
this it follows in particular that the transfer function H(s) is given by H(s) =
1/(Ls2 + Rs + 1/C). The denominator of H(s) is a quadratic polynomial with
real coefficients and discriminant R2 − 4L/C . Let s1 and s2 be the roots of Ls2 +
Rs + 1/C , then Ls2 + Rs + 1/C = L(s − s1)(s − s2) with

s1 = −R +
√

R2 − 4L/C

2L
and s2 = −R −

√
R2 − 4L/C

2L
.

We assume from now on that R > 0 and determine the impulse response of the
system in the following three cases.
Case 1: R2 − 4L/C < 0; then s1 and s2 are complex and s1 = s2.
Case 2: R2 − 4L/C = 0; then s1 and s2 are real and s1 = s2.
Case 3: R2 − 4L/C > 0; then s1 and s2 are real and s1 �= s2.

The partial fraction expansion of H(s) givesCase 1

H(s) = 1

L(s − s1)(s − s2)
= 1

L(s1 − s2)

(
1

s − s1
− 1

s − s2

)
, (14.11)

and by an inverse transform it then follows from table 7 that

h(t) = 1

L(s1 − s2)

(
es1t − es2t ) . (14.12)

Now put

ω0 = 1

2L

√
4L

C
− R2 and σ = − R

2L
,

then it follows that s1 = s2 = σ + iω0, and using this we can write (14.12) as

h(t) = 1

2Lω0i

(
e(σ+iω0)t − e(σ−iω0)t

)
= 1

Lω0
eσ t eiω0t − e−iω0t

2i
.
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Hence,

h(t) = 1

Lω0
eσ t sin ω0t (14.13)

with σ < 0. The impulse response is a damped sinusoidal with frequency ω0. See
figure 14.3a. This case is called a ‘damped vibration’ and is also called ‘undercritical
damping’.

Put σ = −R/2L = s1. Since H(s) = 1/(L(s − σ)2) it immediately follows fromCase 2
table 7 that h(t) = teσ t/L with σ < 0. In figure 14.3b h(t) is sketched. This case
is called ‘critical damping’.

Since s1 �= s2, the partial fraction expansion of H(s) is exactly the same as inCase 3
(14.11) and so h(t) is again given by (14.12). Since L > 0 and C > 0 it follows
that R >

√
R2 − 4L/C and so s2 < s1 < 0. We thus see that h(t) is the sum of

two exponentially damped functions. Now put

ω0 = 1

2L

√
R2 − 4L

C
and σ = − R

2L
,

then s1 = σ + ω0 and s2 = σ − ω0. As in case 1 we can write h(t) as

h(t) = 1

Lω0
eσ t sinh ω0t = 1

2Lω0
e(σ+ω0)t

(
1 − e−2ω0t

)

with σ < 0. The impulse response is a damped hyperbolic sine (it is damped
since σ + ω0 = s1 < 0). See figure 14.3c. This case is called ‘overdamped’ or
‘overcritical damping’.

EXERCISES

The impulse response h(t) of an LTC-system is given by h(t) = δ(t) + te−t (also14.1
see exercise 10.7).
a Determine the transfer function H(s) of the system.
b Can we obtain the frequency response of the system by substituting s = iω in
H(s)? Justify your answer.
c Determine the response to the input u(t) = e−t sin t in two ways: first by apply-
ing (14.1), then by determining U (s) = (Lu)(s) and calculating the inverse Laplace
transform of H(s)U (s) (see (14.2)).

For a system at rest it is known that the response to the input u(t) = t is given by14.2
y(t) = t − cos 2t . Determine the impulse response.

a Verify that the function y(t) = et − e−t − 2t obtained in example 14.4 is14.3
indeed a solution of the initial value problem given by (14.3) and (14.4). Check in
particular that y(t) satisfies the differential equation (14.3), whether we consider the
differentiations in the ordinary sense or in the sense of distributions.
b Verify that the impulse response h(t) from example 14.7 satisfies the differential
equation if we consider the differentiations in the sense of distributions.
c Do the same for the response y(t) from example 14.9.

Use the Laplace transform to determine the solution of the initial value problem14.4
y′′ + 4y = 12 sin 4t with the condition of initial rest.
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0 t2π/ω0

Lω0

1

Lω0

–1

Lω0

1 eσt sin ω0th(t) =

π/ω0

a

0 t

σLe
–1

L
1 teσth(t) =

–1/σ

b

0 t

c

Lω
1 eσt sinh ω0th(t) =

0

FIGURE 14.3
The impulse response in case of undercritical damping (a), critical damping (b), and
overcritical damping (c).

Consider the causal LTC-system described by the differential equation y′′ − 5y′ +14.5
4y = u(t).
a Determine the transfer function H(s) and determine whether the system is
stable.
b Determine the impulse response h(t). Is h(t) absolutely integrable?
c Determine the step response a(t).
d Determine the response to the input u(t) = e2t .
e Determine the response to the input u(t) = 3δ(t − 1).

We consider the harmonic oscillator with the condition of initial rest and with L > 0,14.6
C > 0 and R > 0. Verify for the three different cases from section 14.1.5 whether
the system is stable or not.

The RC-network in figure 14.4 with resistance R > 0 and capacitance C > 0 is14.7
considered as an LTC-system with input the voltage v(t) and output the charge q(t)
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v(t)

R

C

+

i

S

–

FIGURE 14.4
RC-network from exercise 14.7.

of the capacitor. At time t = 0, while the system is at rest, we close the switch. One
has that Rq ′(t) + C−1q(t) = v(t). Furthermore, let E > 0 be a constant.
a Determine the transfer function and verify whether the system is stable.
b Determine the charge q(t) of the capacitor when v(t) = E . Also determine the
current i(t).
c Determine the response to the input v(t) = E sin at .
d Determine the response to the input v(t) = Eδ(t − 3).

The RL-network in figure 14.5 with resistance R > 0 and inductance L > 0 is14.8
considered as an LTC-system with input the voltage v(t) and output the current i(t).

v(t)

R
+

i

S

L
–

FIGURE 14.5
RL-network from exercise 14.8.

At time t = 0, while the system is at rest, we close the switch. One has that
Li ′(t) + Ri(t) = v(t).
a Determine the transfer function and the impulse response. Is the system stable?
b Determine the step response.
c Determine the response to the input v(t) = ε(t − a) with a > 0.

14.2 Linear differential equations with constant coefficients

In section 14.1 the Laplace transform was applied to linear differential equations
with constant coefficients and with the condition of initial rest. The method de-
scribed in section 14.1.2 can also be used when arbitrary initial conditions are al-
lowed. We confine ourselves in this section to the case n = 0 of (14.5) (this is not an
essential limitation since by taking linear combinations of several functions u(t) we
can always obtain the right-hand side of (14.5)). We will still call the functions u(t)
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and y(t) in (14.5) the input and the output or response respectively, and as always
we will assume that u(t) and y(t) are causal functions. The initial conditions will be
certain given values for y(0), y′(0), . . . , y(m−1)(0). If y(k)(0) �= 0 then this implies
that the function y(k)(t) has a jump at t = 0. The condition for y(k)(0) should then
be interpreted as y(k)(0+), and when applying the differentiation rule one should
now use (13.10) instead of (12.10). We start with a simple example.

Consider the differential equation y′′ − y = 2t with initial conditions y(0) = 0 andEXAMPLE 14.11
y′(0) = −2 (also see example 14.5). Apply the Laplace transform to both sides of
the differential equation, then (13.10), applied to the function y for n = 2, implies
that(

s2Y (s) − sy(0) − y′(0)
)

− Y (s) = 2

s2
,

where Y (s) is the Laplace transform of y(t). Now substitute the initial conditions
y(0) = 0 and y′(0) = −2 and solve the equation for Y (s). We then obtain

Y (s) =
(

2

s2
− 2

)
1

s2 − 1
= 2 − 2s2

s2(s2 − 1)
= − 2

s2
.

The inverse Laplace transform of this is given by y(t) = −2t . Let us check that this
solution satisfies all the conditions that were imposed. It is obvious that y(0) = 0.
Interpreting y′(0) = −2 as y′(0+) = −2, we see that all the initial conditions are
satisfied. Since for t > 0 we have y′(t) = −2 and y′′(t) = 0, we also see that
y(t) satisfies the differential equation for t > 0. Here it is essential that we do not
differentiate in the sense of distributions at the point t = 0. For if we consider y(t)
as a distribution, then y′′(t) = −2δ(t). This is certainly not what we want, since
y(t) will then no longer satisfy the original differential equation, but instead it will
satisfy y′′ − y = 2t − 2δ(t). �

From example 14.11 it is immediately clear that in general the initial condi-
tions y(0), y′(0), . . . , y(m−1)(0) should indeed be considered as the limiting values
y(0+), y′(0+), . . . , y(m−1)(0+) and that we are looking for a function y(t) satis-
fying the differential equation for t > 0 and having the right limiting values. One
should not interpret the differentiations at t = 0 in the sense of distributions. For
then the initial conditions y(0+), y′(0+), . . . , y(m−1)(0+) would in general have
no meaning and the input would have to contain distributions at t = 0.

We finally mention without proof that (13.10) can also be used to obtain the
desired solution when the input u(t) is an arbitrary piecewise smooth function. As
a second example we therefore choose an input which is not continuous.

Consider the differential equation y′ + 2y = 1 − ε(t − 1) with initial conditionEXAMPLE 14.12
y(0) = 2. Applying the Laplace transform and using (13.10) leads to the following
equation for Y (s):

(sY (s) − y(0)) + 2Y (s) = 1

s
− e−s

s
.

We then substitute the initial condition and find, after some calculations, that

Y (s) = 1

s(s + 2)
− e−s

s(s + 2)
+ 2

s + 2
. (14.14)

Now apply a partial fraction expansion to the first term in (14.14):

1

s(s + 2)
= 1

2s
− 1

2(s + 2)
.
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Since (L1)(s) = 1/s and (Le−2t )(s) = 1/(s +2), it follows from the shift property
in the time domain (theorem 12.4 or table 8) that

L(ε(t − 1)(1 − e−2(t−1)))(s) = e−s
(

1

s
− 1

s + 2

)
= 2e−s

s(s + 2)
.

The inverse Laplace transform y(t) is thus given by y(t) = 1
2 − 1

2 e−2t − ε(t − 1)

( 1
2 − 1

2 e−2(t−1)) + 2e−2t . This can also be written as

y(t) =



1
2 + 3

2 e−2t for 0 ≤ t < 1,

3
2 e−2t + 1

2 e−2(t−1) for t ≥ 1.

The result is shown in figure 14.6. Note that y(t) is not differentiable at t = 1
and that at t = 0 we do not differentiate in the sense of distributions, since other-
wise delta functions at t = 0 would occur and y(t) would then no longer satisfy
the differential equation. Moreover, the initial condition would no longer make
sense. �

10

1

2 3

2

t

y(t)

FIGURE 14.6
Response to the input 1 − ε(t − 1).

Even if the input contains distributions of the form δ(t − a) or δ(k)(t − a) with
a > 0 (!), one can prescribe arbitrary initial conditions and still find the solution
using (13.10).

Consider the differential equation y′′ − 3y′ + 2y = δ(t − 2) with initial conditionsEXAMPLE 14.13
y(0) = 0 and y′(0) = 1. When Y (s) is the Laplace transform of y(t), then it follows
from (13.10) and table 9 that (s2Y (s) − 1) − 3sY (s) + 2Y (s) = e−2s . Solving for
Y (s) we obtain

Y (s) = 1 + e−2s

s2 − 3s + 2
.

In example 14.7 we have seen that the inverse Laplace transform of 1/(s2 − 3s + 2)

is e2t − et . From the shift property in the time domain it then follows that

L
(
ε(t − 2)(e2(t−2) − et−2)

)
(s) = e−2s

s2 − 3s + 2
.

Hence, y(t) = e2t − et + ε(t −2)(e2t−4 − et−2). Let us verify that y(t) satisfies all
the conditions. Note that y(0) = 0 and that y has no jump at t = 2, which implies
that y′(t) = 2e2t −et +ε(t−2)(2e2t−4−et−2) for t > 0 in the sense of distributions.
We now see that y′(0) = 1 and that y′ has a jump at t = 2 of magnitude 1. Hence,
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y′′(t) = 4e2t − et + ε(t − 2)(4e2t−4 − et−2) + δ(t − 2) for t > 0 in the sense
of distributions. Using this it is now easy to check that y(t) satisfies the differential
equation, provided that we differentiate in the sense of distributions for t > 0. Note
that again we do not differentiate in the sense of distributions at t = 0. �

If we do not have the condition of initial rest, then we will not allow delta func-
tions δ(t) and/or derivatives of δ(t) in the input u(t). For then it is no longer clear
whether or not we should differentiate the solution y(t) in the sense of distributions
at t = 0. One can resolve this issue by dropping the causality of y(t). We will not
go into this any further, since situations like these will not be considered in this book
(but see exercise 14.15).

In summary one can use (13.10) to solve linear differential equations with con-
stant coefficients and arbitrary initial conditions y(0) = y(0+), y′(0) = y′(0+),
. . . , y(m−1)(0) = y(m−1)(0+) whenever the (causal) input u(t) consists of a piece-
wise smooth function and/or delta functions δ(t − a) or δ(k)(t − a) with a > 0.
The solutions then satisfy the differential equation for t > 0 if we differentiate in
the sense of distributions. At t = 0 we should not differentiate in the sense of
distributions.

EXERCISES

a Verify that the solution y(t) from example 14.12 satisfies the differential equa-14.9
tion y′ + 2y = 2δ(t) + 1 − ε(t − 1) (instead of the original differential equation
y′ + 2y = 1 − ε(t − 1)) if we differentiate in the sense of distributions at t = 0.
b Give the differential equation that is satisfied by the solution y(t) from example
14.13 if we differentiate in the sense of distributions at t = 0.

Use the Laplace transform to solve the following initial value problem:14.10
y′′ + y = t with y(0) = 0 and y′(0) = 1.

Use the Laplace transform to solve the following initial value problem:14.11
y′′ + 4y = 0 with y(0) = 1 and y′(0) = 2.

Use the Laplace transform to solve the following initial value problem:14.12
y′′ − 4y′ − 5y = 3et with y(0) = 3 and y′(0) = 1.

Use the Laplace transform to solve the following initial value problem:14.13
y′′ + y = u(t) with y(0) = 1 and y′(0) = 0 and

u(t) =
{

t for 0 ≤ t < 2,
2 for t ≥ 2.

Use the Laplace transform to solve the following initial value problem:14.14
y′′ + 2y′ + 5y = 2δ(t − 2) + 1 with y(0) = 2 and y′(0) = −2.

In this exercise we show for a simple differential equation which kinds of phenom-14.15
ena may occur if we take δ(t) as input without having the condition of initial rest.
Consider the initial value problem y′′ − y = δ(t) with y(0) = 1 and y′(0) = 0.
a Show that the well-known solution method using the Laplace transform leads to
the function y(t) = cosh t + sinh t .
b Verify that y(t) from part a does not satisfy the original differential equation,
but instead satisfies the differential equation y′′ − y = 0 if we do not differentiate
in the sense of distributions at t = 0.
c Verify that y(t) from part a does not satisfy the original differential equation, but
instead satisfies the differential equation y′′ − y = δ(t)+ δ′(t) if we do differentiate
in the sense of distributions at t = 0.
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d Consider the function y(t) = cosh t + ε(t) sinh t on R (so this is not a causal
function!). Show that this function does satisfy the original initial value problem, if
indeed we consider y′(0) as y′(0−) (and hence not as y′(0+)).

14.3 Systems of linear differential equations with constant coefficients

Using the Laplace transform one can also solve systems of several coupled ordinary
linear differential equations with constant coefficients. We confine ourselves here
to systems of two such coupled differential equations, since these can still be solved
relatively easy without using techniques from matrix theory. Systems of more than
two coupled differential equations will not be considered in this book. We merely
note that they can be solved entirely analogously, although matrix theory becomes
indispensable.

In general, a system of two coupled ordinary linear differential equations with
constant coefficients and of first order has the following form:{

a11x ′ + a12 y′ + b11x + b12 y = u1(t),
a21x ′ + a22 y′ + b21x + b22 y = u2(t),

with initial conditions certain given values for x(0) and y(0). Similarly, one can
describe the general system of second order with initial conditions x(0), x ′(0), y(0)

and y′(0) (for higher order and/or more differential equations the vector and ma-
trix notation is much more convenient). The solution method based on the Laplace
transform again consists of Laplace transforming all the functions that occur, and
then solving the resulting system of linear equations with polynomials in s as co-
efficients. As far as the initial conditions are concerned, the same phenomena may
occur as in sections 14.1 and 14.2. We will not go into this any further and confine
ourselves to two simple examples. For a more extensive treatment of this subject we
refer to the literature (see for example Guide to the applications of Laplace trans-
forms by G. Doetsch, sections 15–19).

Consider the systemEXAMPLE 14.14 {
7x ′ + y′ + 2x = 0,

x ′ + 3y′ + y = 0,

with initial conditions x(0) = 1 and y(0) = 0. Let X (s) and Y (s) be the Laplace
transforms of x(t) and y(t). According to (13.10) one then has

L(7x ′ + y′ + 2x)(s) = 7(s X − x(0)) + (sY − y(0)) + 2X,

and by substituting the initial conditions one obtains that 7(s X −1)+ sY +2X = 0,
or (7s + 2)X + sY = 7. Transforming the second differential equation of the
system in a similar way, we see that the Laplace transform turns the system into the
algebraic system{

(7s + 2)X + sY = 7,

s X + (3s + 1)Y = 1.

Solving this system of two linear equations in the unknowns X = X (s) and Y =
Y (s), we find that

X (s) = 7(3s + 1) − s

(3s + 1)(7s + 2) − s2
= 20s + 7

(4s + 1)(5s + 2)
,

Y (s) = 7s − (7s + 2)

s2 − (7s + 2)(3s + 1)
= 2

(4s + 1)(5s + 2)
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(X (s) is found by multiplying the first and the second equation by, respectively, 3s+
1 and s and subtracting; Y (s) follows similarly). Using partial fraction expansions
we obtain that

X (s) = 8

3(4s + 1)
+ 5

3(5s + 2)
= 2

3(s + 1/4)
+ 1

3(s + 2/5)
,

Y (s) = 8

3(4s + 1)
− 10

3(5s + 2)
= 2

3(s + 1/4)
− 2

3(s + 2/5)
,

and by inverse transforming this we see that the solution to the system is given by{
x(t) = 2

3 e−t/4 + 1
3 e−2t/5,

y(t) = 2
3 e−t/4 − 2

3 e−2t/5.

It is easy to verify that x(t) and y(t) satisfy the system of differential equations
for t > 0 and that x(0+) = 1 and y(0+) = 0 (note that at t = 0 we should not
differentiate in the sense of distributions). �

Systems of coupled differential equations occur, for example, in RCL-networks
having more than one closed loop. This is because, according to Kirchhoff’s laws,
there is then a differential equation for every closed loop. We close this section with
an example of such a situation.

Consider the RL-network from figure 14.7. At the node K, the current i splits intoEXAMPLE 14.15
two currents i1 and i2. In the closed loop containing R and L we have Ri + Li ′1 =

v(t)

R
+

i

L R

i1 i2

K

–

FIGURE 14.7
RL-network described by a system of two differential equations.

v(t), while in the closed loop containing the two resistors R we have Ri + Ri2 =
v(t). We want to determine the step response, that is, v(t) = ε(t), with the system
being at initial rest. Since i = i1 + i2, hence Ri2 = Ri − Ri1, we have to solve the
following system in the unknown functions i(t) and i1(t):{

Ri + Li ′1 = ε(t),
2Ri − Ri1 = ε(t),

with initial conditions i(0) = i1(0) = 0. Laplace transforming leads to{
RI + sL I1 = 1/s,
2RI − RI1 = 1/s,

where I = Li and I1 = Li1. It is not hard to solve this for I (multiply the first
equation by R, the second by sL , and add) and then to apply a partial fraction
expansion:

I = 1

R

R + sL

s(R + 2sL)
= 1

R

(
1

s
− 1

2(s + R/2L)

)
.



14.3 Systems of linear differential equations 329

After inverse transforming this we see that the step response is given by the function
a(t) = (2 − e−Rt/2L )/2R. �

EXERCISES

Use the Laplace transform to solve the following system with initial conditions14.16
x(0) = −1 and y(0) = 0:{

x ′ + y = 2 cos 2t,
y′ + x = sin 2t.

Use the Laplace transform to solve the following system with initial conditions14.17
x(0) = 0, x ′(0) = 2, y(0) = −1 and y′(0) = 0:{

x ′′ + y′ = 0,

y′′ − x ′ = 0.

Use the Laplace transform to solve the following system with initial conditions14.18
x(0) = 1 and y(0) = −1:{

2y′ + y + 5x ′ − 2x = 2e−t ,

−y′ − 2x ′ + x = sin t.

Consider the RCL-network from figure 14.8 with resistors R, inductor L and capac-14.19
itor C . At time t = 0 we close the switch S while the network is at rest. In the

u(t)

R

+

i

L

R

i1 i2

S

C

–

FIGURE 14.8
RCL-network from exercise 14.19.

closed loop containing the two resistors one has Ri + Li ′1 + Ri1 = u(t) and since
i = i1+i2 it follows that Ri2+Li ′1+2Ri1 = u(t). In the closed loop containing the
capacitor and the inductor one has C−1 ∫ t

−∞ i2(τ ) dτ − Ri1 − Li ′1 = 0. We now
take R = 1 ohm, L = 1 henry, C = 1 farad and u(t) = 1.
a Use the Laplace transform to solve the resulting system{

i2 + 2i1 + i ′1 = 1,∫ t
−∞ i2(τ ) dτ − i1 − i ′1 = 0

in the unknown functions i1 and i2 (the initial conditions are i1(0) = i2(0) = 0).
(Hint: since i2(0) = 0, the function i2 will be continuous on R and so the integration
rule in the time domain can be applied.)
b Calculate the voltage drop y(t) = ∫ t

−∞ i2(τ ) dτ across the capacitor. Now note
that here we are studying the same network as in exercise 10.22 and so compare the
answer with the step response found in exercise 10.22a.
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14.4 Partial differential equations

Up till now we have only studied ordinary differential equations in this chapter: the
unknown functions depended only on one variable, which was mostly associated
with time. In partial differential equations the unknown function depends on several
variables. As in chapters 5 and 10, we only consider partial differential equations
for functions u(x, t) of two variables. Just as in chapter 5, we will denote the partial
derivatives of the function u(x, t) with respect to x and t by ux , ut , uxx , etc. The
t-variable will again be interpreted as time, while the x-variable will be associated
with position. The switch-on moment is chosen as being t = 0 in the time domain,
and the conditions at t = 0 (for example u(x, 0) or ut (x, 0)) will be called the
initial conditions. Conditions in the position domain x (such as u(0, t) or ux (0, t))Initial condition
will be called boundary conditions (although sometimes this term is also used for allBoundary condition
conditions taken together). In sections 5.2 and 10.4 we have seen how the Fourier
transform can be used to solve partial differential equations. In this section we
will show how this can be done using the Laplace transform. Again, the method
is essentially the same as in the previous sections, having the same advantages.
However, in partial differential equations we are dealing with functions depending
on two variables. Since the Laplace transform can only be applied to one variable,
we will have to make a choice. In most cases one chooses a transform with respect
to the t-variable. From the function u(x, t) one then obtains for each x a Laplace
transform depending on s. This will be denoted by U (x, s), so

(Lu(x, t))(s) =
∫ ∞

0
u(x, t)e−st dt = U (x, s). (14.15)

Similarly, we have initial conditions for each x , like u(x, 0) or ut (x, 0), which again
should be interpreted as limiting values u(x, 0+) or ut (x, 0+) if necessary. All pre-
vious results, in particular the differentiation rules in the time domain from (12.10)
and (13.10), can now be applied in the t-variable for fixed x . Concerning the differ-
entiations in the x-variable, we will assume that differentiation and Laplace trans-
form may be interchanged, for example:

(Lux (x, t))(s) =
∫ ∞

0

∂u

∂x
(x, t)e−st dt = ∂

∂x

(∫ ∞

0
u(x, t)e−st dt

)

= ∂

∂x
(Lu(x, t))(s) = Ux (x, s).

We will now show how the Laplace transform can be used to solve partial differential
equations with initial and boundary conditions.

Consider a half-infinite string being at rest at time t = 0 along the positive x-axis.EXAMPLE 14.16
Half-infinite string We let the string vibrate by moving the left end at x = 0 once up and down in the

following way:

u(0, t) = f (t) =
{

sin t for 0 ≤ t ≤ 2π ,
0 elsewhere.

Of course, an infinitely long string does not exist in reality, but we use it as a math-
ematical model for a long string or a long piece of rope. From experience we know
that if we move a piece of rope once up and down, a travelling wave in the rope
will arise. See figure 14.9. It is known that the equation of motion of the string is
given by

utt = c2uxx for x > 0 and t > 0, (14.16)
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x

u(0, t) π  2π

–1

FIGURE 14.9
Travelling wave in a half-infinite string.

where c > 0 is a physical constant. Because of the state of rest at t = 0, we have the
initial conditions u(x, 0) = 0 and ut (x, 0) = 0 for x ≥ 0. The second initial condi-
tion indicates that the initial velocity of the string at t = 0 is zero. Since the string
has infinite length in the positive x-direction, we have limx→∞ u(x, t) = 0 for
t ≥ 0 (such a condition will be called a boundary condition as well). Summarizing,
the initial and boundary conditions are given by




u(x, 0) = ut (x, 0) = 0 for x ≥ 0,
limx→∞ u(x, t) = 0 for t ≥ 0,
u(0, t) = f (t) for t ≥ 0.

We now assume that the Laplace transform U (x, s) of u(x, t) exists and that all the
operations we will be performing are allowed. Once a solution u(x, t) has been
found, it has to be verified afterwards that it indeed satisfies the partial differential
equation and all the initial and boundary conditions. We will not go into this any
further and omit this verification.

If we apply the Laplace transform with respect to t to the partial differential
equation (14.16), then it follows from (13.10) that

s2U (x, s) − su(x, 0) − ut (x, 0) = c2(Luxx )(s).

Since we assumed that differentiations with respect to x and the Laplace transform
may be interchanged, it follows that (Luxx )(s) = Uxx (x, s). Substituting the initial
conditions u(x, 0) = ut (x, 0) = 0, we obtain that s2U (x, s) = c2Uxx (x, s), or
Uxx − (s2/c2)U = 0. We have thus transformed the partial differential equation for
u(x, t) into the ordinary differential equation

U ′′ − s2

c2
U = 0 (14.17)

for U (x, s) as function of x (s being constant), which is a considerable simplifica-
tion. The general solution of differential equation (14.17) is

U (x, s) = Aesx/c + Be−sx/c,

where A and B can still be functions of s. To determine A and B, we translate the
remaining boundary conditions to the s-domain by Laplace transforming them.
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From the condition limx→∞ u(x, t) = 0 it follows that

lim
x→∞ U (x, s) = lim

x→∞

∫ ∞

0
u(x, t)e−st dt =

∫ ∞

0

(
lim

x→∞ u(x, t)
)

e−st dt = 0,

where we assume that the limit and the integral may be interchanged. Since U (x, s)
exists in a certain half-plane, it will in particular be defined for values of s ∈ C with
Re s > 0, and so having Re s/c > 0 as well (because c > 0). Using this we see that
limx→∞ esx/c does not exist and so A = 0.

If we now apply the Laplace transform to the remaining boundary condition
u(0, t) = f (t), then it follows that B = U (0, s) = F(s) with F(s) = (L f )(s).
Hence, the solution in the s-domain is now completely determined:

U (x, s) = F(s)e−sx/c.

The shift property in the time domain (table 8) finally gives us the function u(x, t) =
ε(t − x/c) f (t − x/c) as the inverse Laplace transform. With our choice for the
function f this means that the solution is given by

u(x, t) =
{

sin(t − x/c) for x/c < t < x/c + 2π ,
0 elsewhere.

This is a sinusoidal wave, travelling to the right with speed c. A point x remains at
rest until t = x/c, the time necessary to reach this position. The motion of the point
x is then identical to the motion of the left end x = 0. �

In summary, the most important steps in solving partial differential equations
using the Laplace transform are as follows:

Each term of the partial differential equation for u(x, t) is Laplace transformed withStep 1
respect to one of the variables, mostly the time variable t . For the Laplace trans-
form U (x, s) we obtain an ordinary differential equation, since only derivatives of
U (x, s) with respect to x occur in the transformed equation. Moreover, this equation
contains all the initial conditions.

The ordinary differential equation is solved using all known means. To do so, weStep 2
must also determine the boundary conditions for U (x, s). These can be found by
transforming the boundary conditions for u(x, t).

The solution obtained in the s-domain is transformed back into the t-domain. For theStep 3
solution u(x, t) thus found, one can verify whether it satisfies the partial differential
equation and all the conditions.

EXERCISES

A string attached at x = 0 and x = 1 is given the initial position u(x, 0) = 2 sin 2πx14.20
at time t = 0 and is then released. Let u(x, t) be the position of the string at point x
and time t . The equation of motion of the string is given by utt = 4uxx (0 < x < 1,
t > 0). The initial and boundary conditions are given by


u(0, t) = u(1, t) = 0 for t ≥ 0,
ut (x, 0) = 0 for 0 < x < 1,
u(x, 0) = 2 sin 2πx for 0 ≤ x ≤ 1.

Solve this problem using the Laplace transform.

An insulated rod is fixed at x = 0 and x = π and has initial temperature u(x, 0) =14.21
4 sin x . Let u(x, t) be the temperature at position x and time t . The ends of the rod
are cooled and kept at a temperature of 0 degrees, so u(0, t) = 0 and u(π, t) = 0.
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The temperature distribution is described by the heat equation ut = uxx (0 < x <

π , t > 0). Find the temperature distribution u(x, t) using the Laplace transform (in
the calculations for this exercise you may use the complex function

√
s in a formal

way; this function has not been treated in chapter 11 since the ‘multivaluedness’
problem arises here: for one value of s there are two values w ∈ C with w = √

s).

Consider for u(x, t) the partial differential equation ut = uxx − 6u (0 < x < π ,14.22
t > 0) with initial condition u(x, 0) = cos(x/2) (0 ≤ x ≤ π ) and boundary
conditions u(π, t) = 0 (t ≥ 0) and ux (0, t) = 0 (t > 0). Solve this problem using
the Laplace transform.

S U M M A R Y

The Laplace transform is very well suited for the study of causal LTC-systems for
which switch-on phenomena occur. If h(t) is the impulse response of such a sys-
tem, then the transfer function or system function is given by the Laplace transform
H(s) of h(t). If u(t) is an input with (Lu)(s) = U (s) and y(t) the response with
(Ly)(s) = Y (s), then Y (s) = H(s)U (s).

An important class of causal LTC-systems is described by an ordinary linear dif-
ferential equation with constant coefficients (in the form of (14.5)) and with the
condition of initial rest (as in (14.6)). In this case the system function is given by
the rational function

H(s) = bnsn + · · · + b1s + b0

amsm + · · · + a1s + a0
,

where n ≤ m. After a partial fraction expansion, one can obtain the impulse re-
sponse h(t) from this by an inverse transform. The response y(t) to an arbitrary
input is then given by y(t) = (h ∗ u)(t). Calculating this convolution is in general
not very easy. Instead, one can also immediately apply the Laplace transform for a
given input u(t). The differential equation, including the initial conditions, is then
transformed into an algebraic equation for Y (s). This equation is easy to solve and
for a large class of inputs, Y (s) is again a rational function of s with real coefficients.
Using a partial fraction expansion and an inverse transform, one then obtains y(t).

The stability of the system follows from the location of the poles of H(s): these
should lie in the half-plane Re s < 0.

In exactly the same way one can apply the Laplace transform to ordinary linear
differential equations with constant coefficients and having arbitrary initial condi-
tions. The input may be any combination of piecewise smooth functions and distri-
butions δ(t − a) or δ(k)(t − a) with a > 0. The obtained solution should not be
differentiated in the sense of distributions at t = 0.

We can also apply the Laplace transform to a system of coupled ordinary linear
differential equations with constant coefficients. Transforming it will turn it into a
system of linear equations having polynomials in s as coefficients. From this, the
unknowns in the s-domain can be solved. An inverse transform then leads to the
solution of the system of differential equations.

Finally, the Laplace transform can also be used to solve certain partial differential
equations with initial and boundary conditions. Transforming this will lead to an
ordinary differential equation containing the initial conditions. By also transforming
the remaining boundary conditions, one can solve the ordinary differential equation.
The solution in the s-domain thus obtained can be transformed back to the t-domain.
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S E L F T E S T

For an LTC-system it is known that the step response a(t) is given by a(t) =14.23
cosh 2t − 2 cos t + e−t .
a Determine the impulse response and the transfer function.
b Determine the response to the input u(t) = 2δ(t − 1).
c Determine the response to the input u(t) = t .

Consider the harmonic oscillator with the condition of initial rest and with L > 0,14.24
C > 0 but R = 0. We are then dealing with an LC-network as in figure 14.10.
At t = 0 we close the switch S. The network is considered as an LTC-system with

v(t)

+

i

S

C

L

–

FIGURE 14.10
LC-network from exercise 14.24.

input the voltage v(t) and output the charge q(t) of the capacitor. One has that
Lq ′′(t) + C−1q(t) = v(t) with q(0) = q ′(0) = 0.
a Determine the transfer function and the impulse response.
b Is the system stable or not? Justify your answer.
c Determine the charge q(t) of the capacitor if v(t) = e−at with a > 0.
d Determine the response q(t) to v(t) = cos at with a �= (LC)−1/2.
e Put ω0 = (LC)−1/2. Determine the response q(t) to v(t) = 2 cos ω0t . Verify
that limt→∞ | q(t) | = ∞ and sketch q(t).

Use the Laplace transform to solve the following initial value problem:14.25
y′′ + y′ − 2y = u(t) with y(0) = 1 and y′(0) = 1 and with u(t) given by:

a u(t) =
{

cos t for 0 ≤ t < π ,
0 for t ≥ π .

b u(t) = 3δ(t − 2) + 6δ′(t − 3).

Consider the RL-network from figure 14.11 with the three resistors R, 2R and 2R,14.26
the inductors L and 2L , and the voltage source v(t). At time t = 0 we close the
switch S, while the network is at rest, so i(0) = i1(0) = i2(0) = 0. By considering
the closed loops ABEF and BCDE, one obtains the following system of differential
equations in the unknown functions i1 and i2 (use that i = i1 + i2):{

2Ri2 + 3Ri1 + Li ′1 = v(t),
2Li ′2 + 2Ri2 − Ri1 − Li ′1 = 0.

Use the Laplace transform to determine the currents i(t), i1(t) and i2(t) when the
voltage v(t) is given by:
a v(t) = E , with E a constant,
b v(t) = sin 2t .
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FIGURE 14.11
RL-network from exercise 14.26.

A string at rest is attached at x = 0 and x = 2. Let u(x, t) be the position of14.27
the string at point x and at time t . At t = 0 the string is given an initial velocity
ut (x, 0) = 2 sin πx . The equation of motion of the string is given by utt = 4uxx
(0 < x < 2, t > 0). The initial and boundary conditions are given by


u(0, t) = u(2, t) = 0 for t ≥ 0,
u(x, 0) = 0 for 0 ≤ x ≤ 2,
ut (x, 0) = 2 sin πx for 0 < x < 2.

Solve this problem using the Laplace transform.





Part 5

Discrete transforms

I N T R O D U C T I O N T O P A R T 5

In the previous chapters we have seen how the Fourier transform of a continuous-
time signal can be calculated using tables and properties. However, it is not al-
ways possible to apply these methods. The reason could be that we only know the
continuous-time signal for a limited number of moments in time, or simply that
the Fourier integral cannot be determined analytically. Starting from a limited set
of data, one then usually has to rely on numerical methods in order to determine
Fourier transforms or spectra. To turn a numerical method into a manageable tool
for a user, it is first transformed into an algorithm, which can then be processed by a
digital computer. The user then has a program at his/her disposal to calculate spectra
or Fourier transforms. Calculating the spectrum of a continuous-time signal using a
computer program can be considered as signal processing. When an algorithm for
such a program is studied in more detail, then one notices that almost all calcula-
tions are implemented in terms of numbers, or sequences of numbers. In fact, the
continuous-time signal is first transformed into a sequence of numbers (we will call
this a discrete-time signal) representing the function values, and subsequently this
sequence is processed by the algorithm. One then calls this digital signal process-
ing. It is clear that because of the finite computing time available, and the limited
memory capacity of a digital computer, the spectrum can only be determined for a
finite number of frequencies, and is seldom exact. Moreover, when transforming
the continuous-time signal into a discrete-time signal, there will in general be loss
of information. However, because of the rapid development of the digital computer,
especially the capacity of memory chips and the processor speed, capabilities have
increased enormously and disadvantages have diminished. This is one of the rea-
sons why the field of digital signal processing has aroused increasing interest (as is
witnessed by the growing literature, e.g. Digitale signaalbewerking by A.W.M. van
den Enden and N.A.M. Verhoeckx (in Dutch)).

Applications of digital signal processing can nowadays be found in several fields.
For the consumer we have, for example, the compact disc and high definition tv.
In industry digital computers are used to control industrial processess (robotics),
photos originating from satellites are being analysed using so-called digital imaging
techniques. In the medical sciences, digital processing is used in cardiology, for
instance.

An important subject in the field of digital signal processing is the discrete trans-
form of signals, that is, transforms defined for discrete-time signals. They have
many similarities with the Fourier and Laplace transforms of continuous-time sig-
nals, treated in the previous parts.

Chapter 15, the first chapter of this part, focusses mainly on the problem of the
transformation of a continuous-time signal into a discrete-time signal. One would
like to minimize the loss of information which is always introduced by this transfor-
mation in various kinds of applications.
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In chapter 16 the so-called discrete Fourier transform is treated. This transform
is often used when analysing spectra of signals. The fast algorithms to calculate
the discrete Fourier transform are collectively known as the Fast Fourier Transform,
FFT for short. In chapter 17 we treat a frequently used example of an FFT algorithm.

The so-called z-transform, the subject of chapter 18, is a valuable tool used to de-
scribe discrete-time systems. For example, the frequency response of a discrete-time
system (see chapter 1) can easily be obtained from the z-transform of the impulse
response.

Finally, chapter 19 treats in particular the applications of discrete-time transforms
to discrete-time systems. In chapter 1 these discrete-time systems have already been
discussed in general terms. As such, one can consider chapter 19 as the closing
chapter of this final part on discrete transforms.
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CHAPTER 15

Sampling of continuous-time signals

I N T R O D U C T I O N

In chapter 1 signals were divided into continuous-time and discrete-time signals.
Ever since, we have almost exclusively discussed continuous-time signals. This
chapter, being the first chapter of part 5, can be considered as sort of a transition from
the continuous-time to the discrete-time signals. In section 15.1 we first introduce
a number of important discrete-time signals, which are very similar to well-known
continuous-time signals like the unit pulse or delta function. Subsequently, we pay
special attention in section 15.2 to the transformation of a continuous-time signal
into a discrete-time signal (sampling) and vice versa (reconstruction), leading to
the formulation and the proof of the so-called sampling theorem in section 15.3.
The sampling theorem gives a lower bound (the so-called Nyquist frequency) for the
sampling frequency such that a given continuous-time signal can be transformed into
a discrete-time signal without loss of information. We close with the treatment of the
so-called aliasing problem in section 15.4. This problem arises when a continuous-
time signal is transformed into a discrete-time signal using a sampling frequency
which is too low.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- can describe discrete-time signals using unit pulses
- can describe periodic discrete-time signals using periodic unit pulses
- can explain the meaning of the terms sampling, sampling period and sampling

frequency
- can explain the sampling theorem and can apply it
- can understand the reconstruction formula for band-limited signals
- can describe the consequences of the aliasing problem.

15.1 Discrete-time signals and sampling

In chapter 1 a discrete-time signal was defined as a complex-valued function having
as domain the set Z of integers (see section 1.2.1). To make a clear distinction with
continuous-time signals, we will denote discrete-time signals with square brackets
enclosing the argument, so f [n], g[n], etc. By the way, the term discrete-time in
signal theory is somewhat misleading. It suggests, as for continuous-time signals,
that this refers to time as being the independent variable. This is not necessarily
always the case.

In practice the signals will only be given on a limited part of Z. In fact, the signal
then consists of a finite sequence of numbers. The domain can then be extended to
all integers by adding zeros to the sequence or by extending it periodically.

340



15.1 Discrete-time signals and sampling 341

We will often omit the adjective ‘discrete-time’ whenever it is clear from the
context that we are dealing with discrete-time signals.

For a given periodic continuous-time signal with period T and line spectrum cn weEXAMPLE 15.1
can define a discrete-time signal by

f [n] = cn for n ∈ Z.

Here it is clear that the term discrete-time is misleading. Rather one should call this
a discrete-frequency signal. �

For a given continuous-time signal f (t) and a positive number T we define aEXAMPLE 15.2
discrete-time signal by

f [n] = f (nT ) for n ∈ Z.
�

The signal f [n] from example 15.2 is called a sampling of the signal f (t) atSampling
the points 0, ±T, ±2T, . . .. The positive number T is called the sampling period,Sampling period
1/T the sampling frequency, and the values f (nT ) the samples of the sampling.Samples
In this book, however, we mainly use angular frequencies and so here the sampling
frequency ωs is defined asSampling frequency

ωs = 2π

T
. (15.1)

Sampling of the signal f (t) = sin(ω0t), where ω0 is a given positive frequency,EXAMPLE 15.3
with the following sampling frequencies leads to the corresponding discrete-time
signals:

frequency signal

ωs = ω0 f [n] = sin(2πn) = 0

ωs = 8ω0 f [n] = sin(nπ/4)

ωs = πω0 f [n] = sin(2n).

Note that sampling with ωs = 8ω0 results in a periodic discrete-time signal f [n] =
f (nπ/4ω0) having period N = 8 (see figure 15.1). For ωs = πω0 however, we see
that despite the periodicity of f (t), the sampling is no longer periodic. �

An elementary signal is the so-called discrete unit pulse δ[n], also called the
Kronecker delta function, which is defined as follows.

The discrete unit pulse δ[n] is defined byDEFINITION 15.1
Discrete unit pulse

δ[n] =
{

1 for n = 0,
0 for n �= 0.

The discrete unit pulse has a nice and simple property, which is formulated in our
following theorem.

For an arbitrary discrete-time signal f [n] one hasTHEOREM 15.1

f [n] =
∞∑

k=−∞
f [k]δ[n − k] for n ∈ Z. (15.2)

Proof
Note that in the infinite sum in the right-hand side all terms are zero, except for the
term with k = n. The latter equals f [n]. The sum is thus equal to f [n] as well. �
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t

1 sin ω0t

π/(2ω0) π/ω0

–π/(2ω0)–π/ω0

FIGURE 15.1
Sampling of sin(ω0t) with frequency 8ω0.

Put into words, the theorem above states that an arbitrary discrete-time signal can
be written as a superposition of shifted unit pulses.

The signal f [n] defined byEXAMPLE 15.4

f [n] =




1 for n = 0,
−1 for n = 1,
2 for n = −1,
0 elsewhere,

can also be written as follows:

f [n] = 2δ[n + 1] + δ[n] − δ[n − 1].

In figure 15.2 this signal f [n] is represented by a graph. �

n–1

1

2 3–2–3

1

2

0

f [n]

–1

FIGURE 15.2
The signal f [n] = 2δ[n + 1] + δ[n] − δ[n − 1].

Besides in the form of formula (15.2), a periodic discrete-time signal f [n] with
period N , that is, f [n + N ] = f [n] for all n ∈ Z (see section 1.2.2), can also be
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written in another way as a superposition. To this end we first introduce the so-called
periodic train of discrete unit pulses.

Let N be a positive integer. The periodic train of discrete unit pulses δN [n] withDEFINITION 15.2
Periodic train of discrete unit
pulses

period N is given by

δN [n] =
{

1 if n is an integer multiple of N ,
0 otherwise.

In figure 15.3 a graph of δ3[n] is drawn. It is easy to express an arbitrary periodic
signal with period N as shifted trains of discrete unit pulses.

n–1 1 2 3–2–3 40

δ3[n]

–4

FIGURE 15.3
Periodic train of discrete unit pulses.

Let f [n] be a periodic discrete-time signal with period N. ThenTHEOREM 15.2

f [n] =
N−1∑
k=0

f [k]δN [n − k] for n ∈ Z.

Proof
In the right-hand side of the sum above, each of the terms represents a periodic
signal with period N . It is then easy to see that the sum itself also represents a
periodic signal with period N . We thus only need to prove the equality for the
values n = 0, 1, 2, . . . , N − 1. But this follows immediately from the definition of
δN [n]. �

The signal f [n] given byEXAMPLE 15.5

f [0] = 1, f [1] = 0, f [2] = −1, f [3] = 0,

and furthermore periodic with period 4, can also be written as

f [n] = δ4[n] − δ4[n − 2].
�

We close this section with the introduction of the discrete version of the unit step
function ε(t).

The discrete unit step function ε[n] is defined byDEFINITION 15.3
Discrete unit step function

ε[n] =
{

1 for n ≥ 0,
0 for n < 0.

The graph of ε[n] is drawn in figure 15.4. The signal ε[n] is thus an example of
a causal signal. If f [n] is an arbitrary discrete-time signal, then the signal f [n]ε[n]
is a causal signal coinciding with the signal f [n] for n ≥ 0.
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n–1 1 2 3–2–3 40

1
�[n]

–4

FIGURE 15.4
The discrete unit step function.

EXERCISES

A discrete-time signal is given by f [n] = ε[n − 4] − ε[n + 1]. Describe the signal15.1
as a superposition of discrete unit pulses.

A periodic discrete-time signal with period 5 is given by f [−2] = 1, f [−1] = 0,15.2
f [0] = 1, f [1] = 0, f [2] = 1. Describe the signal as a superposition of periodic
trains of unit pulses.

Let the complex number z = 1
2 (

√
3 + i) be given. Consider the discrete-time signal15.3

f [n] = zn . Show that f [n] is periodic.

Show that ε[n] =
∞∑

k=0

δ[n − k].15.4

Sketch the graph of the signal f [n] = 2δ4[n − 1] + ε[n + 1].15.5

15.2 Reconstruction of continuous-time signals

Sampling turns a continuous-time signal into a discrete-time signal. Of course it
is clear that this may result in loss of information. The loss will be reduced to
zero if, for a given sampling, we are able to get a complete reconstruction of the
continuous-time signal. Hence, the discrete signal must be converted back into a
continuous-time signal. This process is called reconstruction. Several reconstruc-Reconstruction
tion methods exist. A simple method, based on linear interpolation, will be treated
in this section. However, it will turn out that this method has some disadvantages.
In section 15.3 we will treat a better method which, under certain conditions, will
recover the original continuous-time signal.

In a linear interpolation one constructs from a given sampling f [n] = f (nT ) a
continuous-time signal fr(t) having the following properties (see figure 15.5):

t–T T 2T 3T–2T–3T 0

FIGURE 15.5
Linear interpolation.
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t

1 sin ω0t

π/ω0

–π/ω0

–1

FIGURE 15.6
Reconstruction of sin(ω0t) after sampling.

a f (nT ) = f [n] for all integer n;
b between the two consecutive points nT and (n + 1)T the graph of fr(t) consists
of a straight line.
We now say that for t ∈ (nT, (n + 1)T ) the values fr(t) are obtained from the
values f [n] and f [n + 1] by linear interpolation. Reconstruction of the periodicLinear interpolation
signal sin(ω0t) for sampling frequency ωs = 8ω0 leads to the signal consisting of
the line elements as drawn in figure 15.6. A signal fr(t) obtained by linear interpo-
lation from a sampling f [n] can be written in a very nice way as a superposition of
triangular pulses. To this end we will use the triangular pulse function qT (t) (see
(6.12), where we called it the triangle function). This signal also arises as the recon-
struction by linear interpolation of the discrete unit pulse δ[n] with sampling period
T . The shifted signal qT (t − kT ) can be considered as a reconstruction of δ[n − k]
(see figure 15.7). Since according to theorem 15.1 we have

f [n] =
∞∑

k=−∞
f [k]δ[n − k],

(k – 1)T kT (k + 1)T t

FIGURE 15.7
The triangular pulse function as linear interpolation of the discrete unit pulse.
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one may thus expect that reconstructing an arbitrary signal f (t) by linear interpola-
tion will result in the following representation of the signal fr(t):

fr(t) =
∞∑

k=−∞
f [k]qT (t − kT ).

That this is indeed the case is expressed by the following theorem.

Let f [n] be the sampling of f (t) with sampling period T and let fr(t) be theTHEOREM 15.3
continuous-time signal obtained from f [n] by linear interpolation. Then

fr(t) =
∞∑

k=−∞
f [k]qT (t − kT ).

Proof
We have to show that on an interval I of the form [nT, (n + 1)T ] the graph of
fr(t) consists of the line element connecting the points (nT, f (nT )) and
((n + 1)T, f ((n + 1)T )). Note that on the interval I only the triangular pulses
qT (t − kT ) with k = n and k = n + 1 are unequal to 0. Hence one has for t ∈ I
that

fr(t) = f [n]qT (t − nT ) + f [n + 1]qT (t − (n + 1)T ).

The graph of fr(t) on the interval I is thus a straight line and we have, moreover,
that

fr(nT ) = f [n]qT (0) + f [n + 1]qT (−T ) = f [n],

fr((n + 1)T ) = f [n]qT (T ) + f [n + 1]qT (0) = f [n + 1].

This proves the theorem. �

Consider the signal f (t) = sin(αt)

t
with α > 0. When sampled with samplingEXAMPLE 15.6

frequency ωs = 2α, and then reconstructed by linear interpolation, it will lead to
the following signal fr(t):

f [n] = α sin(nπ)

nπ
= 0 for n �= 0,

f [0] = α,

fr(t) = α qT (t).
�

From figure 15.6 we can see that linear interpolation can result in a reasonable ap-
proximation of f (t) if the sampling frequency is sufficiently large. A disadvantage
is the fact that the graph of the signal fr(t) may have sharp turns at t = nT , which
will lead to non-negligible contributions to the high-frequency components in the
spectrum of fr(t) (see section 4.2 in chapter 4). These high-frequency components
may not even occur at all in the spectrum of the original signal f (t). Even if the
reconstruction in the time domain is satisfactory at high sampling frequencies, there
may still be considerable deviations in the frequency domain. Especially for signals
with spectrum F(ω) = 0 for | ω | greater than some specific value, linear interpo-
lation will usually give a bad approximation in the frequency domain. In the next
section we will derive that for these signals, the so-called band-limited signals (see
definition 15.4), there exists a reconstruction method which, for a sufficiently high
sampling frequency, yields exactly the original signal, meaning that fr(t) = f (t)



15.3 The sampling theorem 347

for all t ∈ R. Here, the reconstruction formula again has the form

fr(t) =
∞∑

k=−∞
f [k]�(t − kT ).

However, the signal �(t) is no longer the triangular pulse function qT (t), but a
signal that is band-limited as well.

EXERCISE

Let pT (t) be the rectangular pulse function defined in (6.10) and let f (t) be a15.6
continuous-time signal. Consider the reconstruction formula

fr(t) =
∞∑

k=−∞
f [k]pT (t − kT ).

Sketch the graph of fr(t). Note: this reconstruction formula is sometimes called
zero-order interpolation.

15.3 The sampling theorem

In this section we will derive a reconstruction formula which, for a sufficiently high
sampling frequency, gives an exact reconstruction for band-limited signals. Band-
limited signals are defined as follows.

A signal f (t) with spectrum F(ω) is called band-limited if there exists an ωc suchDEFINITION 15.4
Band-limited signal that F(ω) = 0 for | ω | > ωc.

The signal f (t) = sin(αt)

t
with α > 0 has spectrum F(ω) = πp2α(ω) (see tableEXAMPLE 15.7

3). This signal is band-limited: F(ω) = 0 for | ω | > α. This band-limited signal
sin(αt)/t will be used repeatedly in the reconstruction of signals, just as we have
used the triangular pulse function qT (t) in the previous section. �

When a continuous-time signal f (t) does not contain frequencies greater than
ωc, that is, if F(ω) = 0 for | ω | > ωc, then it will turn out that in a sampling with
sampling frequency ωs > 2ωc there is no loss of information. This then means that
f (t) can be recovered completely from the values f [n], in other words, that the
signal f (t) is uniquely determined by the sampling f [n].

If ωc is the smallest non-negative frequency such that F(ω) = 0 for | ω | >

ωc, then 2ωc is called the Nyquist frequency. The condition ωs > 2ωc is calledNyquist frequency
the sampling condition. The limiting value ωs = 2ωc has the following plausibleSampling condition
explanation. For the signal f (t) = sin(ωct) the spectrum F(ω) is (see table 5)

F(ω) = π

i
(δ(ω − ωc) − δ(ω + ωc)) .

The signal is band-limited: F(ω) = 0 for | ω | > ωc. When we sample this signal
with sampling frequency ωs = 2ωc, then f [n] = sin(nωcT ) = sin(2nπωc/ωs) =
sin(nπ) = 0 for all integer n. Hence, the sampling f [n] is equal to the sampling of
the null signal. However, the null signal is also band-limited. This means that f (t)
is not uniquely determined by the samples if we use sampling frequency 2ωc, and
so we have to choose a higher sampling frequency.

Loosely formulated, the Nyquist frequency equals twice the highest frequency
occurring in a signal. If the sampling frequency is higher than the Nyquist fre-
quency, then f (t) can be reconstructed completely from the sampling f [n]. For the
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reconstruction one uses the function sin(αt)/t . This is formulated in the following
theorem, which is called the sampling theorem or Shannon’s theorem.

Let f (t) be a band-limited signal with Nyquist frequency 2ωc and let f [n] be theTHEOREM 15.4
Sampling theorem sampling of f (t) at sampling frequency ωs and sampling period T = 2π/ωs. If the

sampling frequency ωs satisfies the sampling condition ωs > 2ωc, then

f (t) =
∞∑

n=−∞
f [n]

2 sin(ωs(t − nT )/2)

ωs(t − nT )
for t ∈ R. (15.3)

Proof ∗
The proof is divided into a number of steps. The proofs of any of these steps can be
omitted without loss of continuity. One then only gets a general idea of the proof of
the sampling theorem.

Introduce the functionStep 1

Fs(ω) =
∞∑

k=−∞
F(ω − kωs).

The function Fs(ω) is a periodic function of ω with period ωs and fundamental
frequency 2π/ωs = T (see section 7.3). As an illustration we have drawn the
graphs of Fs(ω), for a certain given F(ω), in figure 15.8. In figure 15.8a we have
ωs > 2ωc, while this is not the case in figure 15.8b. For the case ωs > 2ωc we see

–ωc ωc

F(ω)

b

ωc

Fs(ω)

–ωc ωc

F(ω)

a

ωc

Fs(ω)

ω

ω

ωs
2

ω

ω
ω
2

s

FIGURE 15.8
The spectrum Fs(ω) for ωs > 2ωc (a) and ωs < 2ωc (b).

that Fs(ω) is nothing else but the periodic extension of F(ω) with period ωs to the
entire ω-axis, and so we have Fs(ω) = F(ω) for −ωs/2 < ω < ωs/2. In all cases
we have on the interval [−ωs/2, ωs/2] that Fs(ω) is a sum of finitely many shifted
copies of F(ω).

Prove thatStep 2

Fs(ω) = T
∞∑

n=−∞
f (nT )e−inT ω. (15.4)



15.3 The sampling theorem 349

This result can be obtained by applying Poisson’s summation formula (7.22) to the
function Fs(ω):

Fs(ω) = T
∞∑

n=−∞
f (−nT )einT ω = T

∞∑
n=−∞

f (nT )e−inT ω.

The identity in step 2 is valid for all ωs > 0 and for any band-limited signal whose
spectrum is piecewise smooth.

Our next step is to multiply the function Fs(ω) by the rectangular pulse pωs(ω).Step 3
This gives rise to the function Fr(ω) = Fs(ω)pωs(ω).

Prove that fr(t) ↔ Fr(ω), whereStep 4

fr(t) =
∞∑

n=−∞
f [n]�(t − nT ) with �(t) = 2 sin(ωst/2)

ωst
.

By applying some properties, transforming Fr(ω) back to the time domain results in
the following signal fr(t):

sin(ωst/2)

π t
↔ pωs(ω),

sin(ωs(t − nT )/2)

π(t − nT )
↔ e−inωT pωs(ω),

∞∑
n=−∞

f (nT )
2 sin(ωs(t − nT )/2)

ωs(t − nT )
↔ T

∞∑
n=−∞

f (nT )e−inωT pωs(ω),

fr(t) ↔ Fr(ω).

If ωs > 2ωc, then Fr(ω) = F(ω) and so fr(t) = f (t).Step 5
In this last step we have to show that fr(t) = f (t) for all t ∈ R. To show this, we
will finally use the sampling condition ωs > 2ωc. Under this condition we have that
Fs(ω) = F(ω) on the interval [−ωs/2, ωs/2] (see figure 15.8a). Hence, F(ω) =
Fs(ω)pωs(ω) for all ω. From the uniqueness of the Fourier transform (theorem 7.4)
it then follows immediately from an inverse transform that fr(t) = f (t).

In this proof we have assumed that F(ω) is a piecewise smooth function contain-
ing no delta components. The sampling theorem also holds under less restrictive
conditions. For example, F(ω) may contain a number of delta components. We will
no go into this any further. �

The signal f (t) defined by f (t) = sin2(π t)

π t2
has spectrum F(ω) = πq2π (ω), whereEXAMPLE 15.8

q2π (ω) is the triangular pulse function being 0 outside the interval [−2π, 2π ]. The
Nyquist frequency is thus equal to 4π . Hence, using a sampling with sampling
frequency ωs > 4π it is possible to give an exact reconstruction of the signal. For
the sampling period T one then has 2π/T > 4π , so T < 1/2. This is satisfied by
T = 1/4. For this value of T the reconstruction formula reads as follows:

f (t) = 16
∞∑

n=−∞
sin2(nπ/4)

πn2

sin(4π(t − n/4))

4π(t − n/4)

= 16

π2

∞∑
n=−∞

(−1)n sin2(nπ/4) sin(4π t)

n2(4t − n)
.

�
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The continuous-time signal f (t) = cos(ω0t + φ0) is sampled with sampling fre-EXAMPLE 15.9
quency ωs. Next, the signal is recovered from the samples using the reconstruction
formula from the sampling theorem. The spectrum of f (t) can easily be obtained
using some properties. The result is: F(ω) = π [eiφ0δ(ω −ω0)+ e−iφ0δ(ω +ω0)].
The signal f (t) is thus band-limited with Nyquist frequency 2ω0. From the sam-
pling theorem it then follows that for ωs > 2ω0 the reconstruction will give us the
original signal back again. �

Human hearing will only register sound signals having frequencies that in generalEXAMPLE 15.10
do not exceed the 20 kHz limit. This means that audible sound signals can approxi-
mately be considered as band-limited signals with a Nyquist frequency 80 000π . In
order to sample audio signals without loss of information, one should use at least
40 000 samples per second. A compact disc, which essentially contains a sampling
of an audio signal, will have to satisfy this condition. �

In principle, all the information in a band-limited signal should be contained
in a sampling, provided that the sampling frequency is sufficiently large. A nice
illustration of this fact is the energy-content. Let us assume that a given band-limited
signal is an energy-signal. One should then be able to express the energy-content in
terms of f [n]. This can be done as follows. Parseval’s identity for continuous-time
signals states that (see (7.19))

∫ ∞

−∞
| f (t) |2 dt = 1

2π

∫ ∞

−∞
| F(ω) |2 dω.

The signal is band-limited and ωs > 2ωc, and using the functions introduced in the
proof of the sampling theorem we can thus write down the following identity for the
energy-content E :

E = 1

2π

∫ 1
2 ωs

− 1
2 ωs

| F(ω) |2 dω = 1

T ωs

∫ 1
2 ωs

− 1
2 ωs

| Fs(ω) |2 dω.

The function Fs(ω) is periodic with period ωs and so we can again apply Parseval’s
theorem, but now for periodic functions, which results in:

E = 1

T

∞∑
n=−∞

| cn |2 .

In step 2 of the proof of the sampling theorem we saw that cn = T f (−nT ). From
this we then obtain the desired expression:

E = T
∞∑

n=−∞
| f (−nT ) |2 = T

∞∑
n=−∞

| f [n] |2 .

Up to the factor T this is the energy-content of the discrete-time signal f [n].

EXERCISES

Let a band-limited signal φ(t) be given. Show that for any signal f (t) the convolu-15.7
tion product (φ ∗ f )(t) is also band-limited.

The spectrum F(ω) of a signal is given by F(ω) = qπ (ω). Give a sketch of Fs(ω)15.8∗
for ωs = 3π/2.
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The spectrum F(ω) of a signal is given by F(ω) = P(ω)pωs(ω). Here P(ω) is a15.9
periodic function with period π and Fourier coefficients cn given by

cn =
{

1 for | n | = 1,
0 otherwise.

Calculate the inverse Fourier transform of F(ω).

Given is the signal f (t) with spectrum F(ω) = (pπ ∗ p2π )(ω). For which values15.10
of the sampling period T can one reconstruct the signal from the sampling without
loss of information?

15.4 The aliasing problem∗

In this section we will look at the consequences of a sampling with a sampling
frequency which is too low. This is a situation occurring often in practice. We will
start with a simple example.

Using a tv-camera we record a rotating wheel having angular velocity ω0, that isEXAMPLE
to say, having a speed of f0 = ω0/2π revolutions per second. We assume that the
camera has frequency 25 Hz. This means that the camera produces 25 images per
second of the wheel. If we also have f0 = 25 Hz, then the camera always produces
the same image. We do not see the rotation of the wheel; the angular frequency of the
observed wheel is then equal to 0. If the angular velocity ω0 of the wheel changes,
then the direction of the observed rotation may even be opposite to the actual rotation
of the wheel. The phenomenon occurring in this simple example can be considered
as a consequence of a sampling with a sampling frequency which is too low. In order
to understand this, we associate the continuous-time signal eiω0t with the rotating
wheel. The sequence of images produced by the camera can be considered as a
sampling of this signal with sampling frequency ω0 = 50π . This is the camera
frequency converted to an angular frequency. Finally, we consider the observed
rotation as a reconstruction of this sampling. Apparently, the reconstruction leads to
a signal having a different angular frequency. �

In this example the sampling condition is not satisfied. This is because the
Nyquist frequency of eiω0t is 2ω0 and in this example we have ωs < 2ω0. We
can determine which frequency is observed by consulting, for example, the proof of
the sampling theorem. In step 4 it says that the spectrum of the reconstructed signal
fr(t) is given by

fr(t) ↔ Fr(ω) = Fs(ω)pωs(ω) where Fs(ω) =
∞∑

k=−∞
F(ω − kωs).

Due to the construction of Fs(ω), high-frequency components in F(ω) may end up
in the interval I = [−ωs/2, ωs/2] by the shifts over a distance kωs. The problem
thus arising is called the aliasing problem. The function Fs(ω) of our example isAliasing problem
drawn in figure 15.9. By shifting over a distance kωs, the frequency component
with frequency ω0 ends up in the interval I at position ωr. (We will not consider
the situation where components end up in the endpoints of the interval.) The recon-
structed signal is a signal containing only the frequency ωr. The frequency ωr can
be interpreted as the angular frequency of the observed wheel.

In practice, when sampling audio for example, one will first lead the signal
through a low-pass filter with a cut-off frequency, that is, the highest frequency
that will pass through the filter, equal to half the sampling frequency. This avoids
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ωr0 ωs /2 ωs ω0–ωs/2–ωs
ω

FIGURE 15.9
Reconstruction of eiω0t .

the annoying aspect of the ‘seeping through’ of high-frequency components that are
present in the original signal. Here one should take in mind, for example, a music
recording in a room where a bat is present, but remaining unnoticed. Without the
low-pass filter this could lead to a hum in the recording.

EXERCISES

The periodic signal f (t) = cos(ω0t +φ0) is sampled with sampling frequency ωs =15.11∗
3ω0/2 and then reconstructed with the reconstruction formula from the sampling
theorem. Determine the reconstruction.

Given is a signal f (t) with spectrum F(ω) = pπ (ω). The signal is sampled with15.12∗
different sampling periods T and then reconstructed using the reconstruction for-
mula from the sampling theorem. Determine the reconstruction fr(t) for each of the
following sampling periods:
a T = 4/3,
b T = 2,
c T = 8/3.

S U M M A R Y

Discrete-time signals can in general be described as a superposition of shifted dis-
crete unit pulses. In particular, the periodic discrete-time signals can be described
as a superposition of periodic trains of discrete unit pulses. Of importance are the
discrete-time signals arising from a sampling of a continuous-time signal. Such a
discrete-time signal is given by f [n] = f (nT ), where T is the sampling period and
ωs = 2π/T is the sampling frequency.

One of the important problems in signal theory is choosing the sampling fre-
quency in such a way that the continuous-time signal f (t) can be reconstructed from
the samples f [n] without loss of information. That this is possible for band-limited
signals is expressed by the so-called sampling theorem or Shannon’s theorem. It
states that if the sampling frequency ωs satisfies the sampling condition ωs > 2ωc,
where ωc is the highest frequency occurring in the signal, then

f (t) =
∞∑

n=−∞
f [n]

2 sin(ωs(t − nT )/2)

ωs(t − nT )
.

The frequency 2ωc is called the Nyquist frequency. According to the sampling con-
dition the Nyquist frequency should be a lower bound for the sampling frequency.
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In practice the sampling condition is often not satisfied. Problems arising from
this are called aliasing problems. High-frequency components in the original sig-
nal can end up as low-frequency components in the reconstruction. It is therefore
important to know how the reconstruction proceeds in the frequency domain. By
first leading the continuous-time signal through a low-pass filter, one can avoid the
aliasing problem.

S E L F T E S T

Given is a linear time-invariant system with frequency response H(ω) = qπ (ω).15.13
a Determine the impulse response.
b To the system we apply a band-limited signal u(t) with Nyquist frequency π .
Show that the response y(t) is also band-limited. In which band lie the frequencies
of the output signal? Justify your answer.
c For an input a sampling u[n] with sampling period T = 1 is available, given by

u[n] =
{

1 for n = 0, | n | = 1,
0 otherwise.

Calculate the response y(t).

The spectrum F(ω) of a signal f (t) is represented by the graph of figure 15.10.15.14∗
a Calculate f (t).
b The signal is sampled with sampling frequency ωs. For which values of ωs can
one reconstruct the signal without loss of information? Justify your answer.

π /20 π 3π/2 5π/2–π/2––3π/2–5π/2

1

7π/2–7π/2 π

FIGURE 15.10
The spectrum F(ω)of exercise 15.14.

c Let T = 1 be the sampling period and f [n] = f (nT ). Calculate the reconstruc-
tion fr(t) given by

fr(t) =
∞∑

n=−∞
f [n]�(t − nT ) with �(t) = 2 sin(ωst/2)

ωst
.

A periodic signal f (t) with period 2π is sampled with sampling period T = π/2.15.15
a Show that

f [n] =
3∑

k=0

f [k]δ4[n − k].

b The given periodic signal is band-limited with Nyquist frequency 3. Moreover,
it is given that f (−π/2) = f (π/2) = 1, f (0) = f (π) = 0. Show that f (t) is
completely determined by these values.
c Show that the line spectrum cn of f (t) satisfies cn = 0 for | n | ≥ 2.
d Calculate c0.
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The spectrum F(ω) of the continuous-time signal f (t) is given by F(ω) =15.16
p2π (ω) cos ω. The signal is sampled with sampling period T = 2/3.
a Is it possible to reconstruct f (t) completely using the sampling f [n] = f (nT )?
Justify your answer.
b Determine the sampling f [n] for n = 0, ±1, ±2, . . ..
c Show that∫ ∞

−∞
f (t) dt = T

∞∑
n=−∞

f [n].

d Calculate the energy-content of f (t).
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CHAPTER 16

The discrete Fourier transform

I N T R O D U C T I O N

From parts 2 and 3 it is obvious that Fourier series and Fourier integrals play an
important role in the analysis of continuous-time signals. In many cases we are
forced to calculate the Fourier coefficients or the Fourier integral on the basis of a
given sampling of the signal. We are therefore interested in a transformation that
will transform a discrete-time signal, in this case a sampling, directly into the fre-
quency domain. In general, such transformations are called discrete transforms. A
particularly important discrete transform is the so-called discrete Fourier transform,
abbreviated as DFT, and it will be the central theme of the present chapter. It arises
naturally if one approximates the Fourier coefficients of a periodic continuous-time
signal numerically using the trapezoidal rule. This is the subject of the first section
of this chapter, which also introduces the DFT as a transform defined for periodic
discrete-time signals. In the next section we introduce the inverse DFT in the so-
called fundamental theorem of the discrete Fourier transform, which very much
resembles the fundamental theorem of Fourier series. In the remaining sections, all
kinds of properties of the DFT are treated, and again we will encounter many sim-
ilarities with Fourier series and Fourier integrals. For example, one can formulate
a Parseval theorem for periodic discrete-time signals. Following the introduction of
the so-called cyclical convolution we can derive convolution theorems, which look
very similar to the ones derived for continuous-time signals. Further applications of
the DFT will not be considered until the next chapter, where we pay special attention
to an efficient algorithm for the calculation of the DFT.

LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the definition of the discrete Fourier transform (DFT)
- can relate the DFT to the Fourier coefficients
- can formulate and prove the fundamental theorem of the discrete Fourier transform
- can apply the most frequently occurring properties of the DFT
- can calculate the DFT for some simple signals
- know the definition of the cyclical convolution
- can formulate, prove and apply the convolution theorems in the n-domain and the

k-domain
- know Parseval’s theorem for periodic discrete-time signals and can apply it to

calculate the power of a periodic discrete-time signal.

16.1 Introduction and definition of the discrete Fourier transform

In this section we introduce a discrete transform for periodic discrete-time signals.
Periodic discrete-time signals can for instance be obtained by sampling a periodic

356
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continuous-time signal with period T using a sampling frequency ωs equal to an
integer multiple of the fundamental frequency ω0 = 2π/T of f (t), so ωs = Nω0
for some integer N > 0. There are then N samples in the interval [0, T ) and the
sampling f [n] = f (nT/N ) is, moreover, periodic with period N . Note that the
sampling period is then equal to T/N . Using the sampling f [n] we would now like
to give an approximation for the Fourier coefficients ck of the signal f (t). For this
we use the trapezoidal rule for the numerical approximation of integrals.

16.1.1 Trapezoidal rule for periodic functions

Let g(t) be a periodic function with period T whose integral over the interval [0, T ]
needs to be calculated. We start by dividing the interval of integration [0, T ] into
the subintervals In of equal length T/N :

In =
[

(n − 1)T

N
,

nT

N

]
for n = 1, 2, . . . , N .

On each subinterval In we replace g(t) by the linear interpolation by the linear
function ln(t) given by

ln(t) = N

T

(
g[n − 1]

(
nT

N
− t

)
+ g[n]

(
t − (n − 1)T

N

))
.

Note that in the case when g(t) is real-valued, the graph of ln(t) consists of the
line element connecting the points ((n − 1)T/N , g[n − 1]) and (nT/N , g[n]) (see

(n – 1)T/N tnT/N

g(t)

ln(t)

In

FIGURE 16.1
Approximation of a function by linear interpolation.

figure 16.1). Next we approximate the integral of g(t) over the interval In by∫ nT/N

(n−1)T/N
g(t) dt ≈

∫ nT/N

(n−1)T/N
ln(t) dt = T

2N
(g[n − 1] + g[n]).

By summing all of these approximations over the interval [0, T ] we obtain the so-
called trapezoidal rule:Trapezoidal rule ∫ T

0
g(t) dt =

N∑
n=1

∫ nT/N

(n−1)T/N
g(t) dt ≈

N∑
n=1

T

2N
(g[n − 1] + g[n])

= T

2N
(g[0] + 2g[1] + · · · + 2g[N − 1] + g[N ]).

Now it is given that g(t) is periodic, so g[0] = g[N ], and hence∫ T

0
g(t) dt ≈ T

N
(g[0] + g[1] + · · · + g[N − 1]). (16.1)
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Observe that in (16.1) we have an elementary Riemann sum in which all function
values have been taken in the left endpoint of the subintervals. We know that for
Riemann integrable functions the Riemann sums will converge to the value of the
Riemann integral if we let the length of the subintervals decrease. But piecewise
smooth functions are Riemann integrable. For piecewise smooth signals we thus
have

T

N
(g[0] + g[1] + · · · + g[N − 1]) →

∫ T

0
g(t) dt when N → ∞. (16.2)

Hence, (16.1) gives an approximation of the integral over one period, starting from
a sampling g[n] of the function g(t).

16.1.2 An approximation of the Fourier coefficients

The Fourier coefficients of a periodic function f (t) can be calculated from (see
section 3.2.2)

ck = 1

T

∫ T

0
f (t)e−ikω0t dt.

Applying the trapezoidal rule (16.1) with the integrand being the periodic function
g(t) = f (t)e−ikω0t with ω0 = 2π/T , we obtain the following approximation for
the Fourier coefficient ck :

ck ≈ 1

T

T

N

N−1∑
n=0

f [n]e−ikω0nT/N = 1

N

N−1∑
n=0

f [n]e−2π ink/N .

The sum is written as F[k], so

F[k] =
N−1∑
n=0

f [n]e−2π ink/N ,

and hence it follows that

ck ≈ 1

N
F[k]. (16.3)

From (16.2) we know that F[k]/N → ck if N → ∞. For a given value of k
the quotient F[k]/N will be a good approximation of ck for sufficiently large N .
However, how large N should be in order to get a specific degree of accuracy for
the approximation of ck will in general not only depend on f (t) but also on the
value of k. We do not intend to go into this matter any further in this book. It is
immediately clear however, that after a value of N is chosen, F[k]/N cannot be a
good approximation of ck for all k. This is because the sequence F[k] is periodic
with period N , while for piecewise smooth signals we have ck → 0 for | k | → ∞.

The periodicity of the sequence F[k] can be verified by a substitution:

F[k + N ] =
N−1∑
n=0

f [n]e−2π in(k+N )/N =
N−1∑
n=0

f [n]e−2π ink/N = F[k].

Here we used the relation

e−2π in(k+N )/N = e−2π ink/N e−2π in = e−2π ink/N .
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In the following example we approximate the Fourier coefficients of a periodic func-
tion by applying (16.3).

Consider the periodic continuous-time signal f (t) with period 2π , given on theEXAMPLE 16.1
interval [0, 2π ] by

f (t) = 1 − | t − π |
π

.

It is easy to verify that this is an even signal. For this signal the Fourier coefficients
can be calculated explicitly (perform these calculations yourself). They have the
following values:

ck =




− 2

(πk)2
for k odd,

1
2 for k = 0,

0 for k �= 0 and even.

We want to compare these Fourier coefficients with the numbers F[k]/N corre-
sponding to the sampling at the points 2πn/N with N = 128 and calculated ac-
cording to (16.3). The results are listed in table 16.1.

TABLE 16.1 The Fourier coefficients ck and the approximation F[k]/N .

k ck F[k]/N

00 +0.500 00 +0.500 00
01 −0.202 64 −0.202 64
03 −0.022 51 −0.022 56
05 −0.008 11 −0.008 15
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
59 −0.000 06 −0.000 12
61 −0.000 05 −0.000 12
63 −0.000 05 −0.000 12

The values given here were rounded off after the fifth decimal place. The Fourier
coefficients with an even index unequal to 0 have been omitted since these are all
0. After all, the signal is even. Here we also have F[k] = F[−k] for all k ∈ Z, as
is the case for the Fourier coefficients in this example. In section 16.3 we will see
that this follows from a symmetry property. Note that for small values of k we get a
good approximation. �

In general, the numbers F[k]/N with | k | ≤ N/2 are used as an approximation
for ck . It is important, though, that at the points where f (t) has a jump the sampling
is given the value ( f (t+) + f (t−))/2. For example, f [0] = ( f (0+) + f (T −))/2.

16.1.3 Definition of the discrete Fourier transform

We have seen that the sequence F[k] plays an important role in the approximation
of the Fourier coefficients of a periodic signal f (t) from a sampling f [n]. But its
importance is not restricted to the determination of the Fourier coefficients. Else-
where in signal theory, one will often encounter this sequence as well. There is thus
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ample reason to study this sequence in more detail and also to give it a name, as will
be done in the following definition.

Let f [n] be a periodic discrete-time signal with period N. The sequence F[k] de-DEFINITION 16.1
N-point discrete Fourier
transform

fined by

F[k] =
N−1∑
n=0

f [n]e−2π ink/N for k ∈ Z (16.4)

is called the N -point discrete Fourier transform of f [n].

The transform assigning the N -point discrete Fourier transform F[k] to the signal
f [n] is called the N -point discrete Fourier transform, which is abbreviated as DFT.N-point DFT
If it is clear from the context what the number of points in the DFT should be, then
we will usually omit the additional ‘N -point’.

We have seen that the sequence F[k] is periodic with period N . Hence, consid-
ered as a discrete signal, F[k] is again a periodic discrete signal. Hence, the DFT
converts a periodic discrete signal into a periodic discrete signal again having the
same period.

In the next section it will be shown that the signal f [n] can be recovered from
F[k] by means of the inverse DFT. Hence, if F[k] is known, then in principle f [n]
is also known. We will call F[k] the description of the signal in the so-called k-k-domain
domain, and f [n] the description in the n-domain or time domain. Because of then-domain
close relationship of F[k] with the Fourier coefficients, the k-domain is also called
the frequency domain, and F[k] the discrete spectrum of f [n]. Finally, as for theFrequency domain

Discrete spectrum continuous-time signals, we denote the transform pair f [n], F[k] by

f [n] ↔ F[k].

It is easy to show that the DFT is a linear transformation. Hence, if

f1[n] ↔ F1[k] and f2[n] ↔ F2[k],

then one has for arbitrary complex a and b that

a f1[n] + b f2[n] ↔ aF1[k] + bF2[k]. (16.5)

We close this section with a property of periodic discrete-time signals that may
sometimes be useful when calculating the F[k]. The property implies that if the
values of the signal over one full period are added together, then the outcome is the
same regardless of the starting point of this summation over one full period. This
property is formulated in the following lemma.

Let g[n] be a periodic discrete signal with period N. Then one has for any integerLEMMA 16.1
j that

j+N−1∑
n= j

g[n] =
N−1∑
n=0

g[n].

Proof
Let the integers l and m be given by the relationship j = m N + l, where 0 ≤ l ≤
N − 1. Note that this determines l and m uniquely. Because of the periodicity of
g[n] one then has

j+N−1∑
n= j

g[n] = g[ j] + g[ j + 1] + · · · + g[ j + N − 1]

= g[l] + · · · + g[N − 1] + g[N ] + · · · + g[N + l − 1]
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= g[l] + · · · + g[N − 1] + g[0] + · · · + g[l − 1]

= g[0] + g[1] + · · · + g[N − 1] =
N−1∑
n=0

g[n].

�

Lemma 16.1 can immediately be applied to the DFT since the general term in
the representation of F[k] as a sum is periodic, as a function of n, with period N .
Among other things it implies that the DFT for N = 2M + 1 can also be given by

F[k] =
M∑

n=−M

f [n]e−2π ink/N .

A periodic discrete-time signal f [n] with period 5 is given by f [−2] = −1,EXAMPLE 16.2
f [−1] = −2, f [0] = 0, f [1] = 2, f [2] = 1. The 5-point DFT can be calcu-
lated as follows:

F[k] = −e4π ik/5 − 2e2π ik/5 + 2e−2π ik/5 + e−4π ik/5

= −2i sin(4πk/5) − 4i sin(2πk/5).
�

Note that the DFT in example 16.2 is purely imaginary. This has to do with the
fact that f [n] is an odd and real signal. Just as for the Fourier coefficients, the DFT
has similar symmetry properties, as will be shown in section 16.3.

EXERCISES

Show that for the 2-point DFT of a periodic discrete-time signal f [n] with period 216.1
one has F[k] = f [0] + (−1)k f [1].

Calculate the 2-point and 4-point DFT of the discrete-time signal f [n] = (−1)n for16.2
n ∈ Z.

The periodic continuous-time signal f (t) with period T is given on the interval16.3
[0, T ] by the graph of figure 16.2. Calculate the Fourier coefficients of f (t) and
compare c0 with the value F[0] of the N -point DFT of f [n].

T/20 tT

1

FIGURE 16.2
Graph of the periodic function from exercise 16.3.

The periodic continuous-time signal f (t) with period T is given by the graph from16.4
figure 16.3. Calculate the Fourier coefficients of f (t) and compare c0 with the value
F[0] of the N -point DFT of f [n].

In the previous two exercises 16.3 and 16.4, the continuous-time signals only differ16.5
at the jump discontinuity. Which of the values at these jumps do you prefer? Justify
your answer.



362 16 The discrete Fourier transform

T/20 tT

1

1/2 1/2

FIGURE 16.3
Graph of the periodic function from exercise 16.4.

A periodic discrete-time signal f [n] with period 4 is given by f [−2] = 1, f [−1] =16.6
0, f [0] = 2, f [1] = 0. Calculate the 4-point DFT of f [n].

16.2 Fundamental theorem of the discrete Fourier transform

In the previous section the notation f [n] ↔ F[k] already alluded to the fact that a
periodic discrete-time signal f [n] can be reconstructed completely from its discrete
spectrum F[k] or, formulated differently, that an inverse DFT exists. This is indeed
the case, as will be shown in the present section. For this we will use an elegant
property of the N th roots of unity. These have been defined in section 2.1.2 as the
roots in the complex plane of the equation zN = 1. If we now put w = e2π i/N ,
then the N distinct roots z j ( j = 0, 1, . . . , N − 1) of this equation are given by

z j = e2π i j/N = w j where j = 0, 1, . . . , N − 1.

For arbitrary integer n one then has

1

N

N−1∑
k=0

e2π ink/N = 1

N

N−1∑
k=0

wnk

=




1 if n is an integer multiple of N ,

1

N

1 − wnN

1 − wn = 0 otherwise.

Note that because of the definition of the periodic train of unit pulses (see definition
15.2), this property can also be written as

δN [n] = 1

N

N−1∑
k=0

e2π ink/N for n ∈ Z. (16.6)

We use this property to prove the following theorem. In this theorem we introduce
the inverse DFT.

Let f [n] be a periodic discrete-time signal with period N and DFT F[k] given byTHEOREM 16.1
Fundamental theorem of the
discrete Fourier transform

F[k] = ∑N−1
n=0 f [n]e−2π ink/N . Then one has for all integer n that

f [n] = 1

N

N−1∑
k=0

F[k]e2π ink/N . (16.7)
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Proof
Substitution of F[k] into the sum in the right-hand side of (16.7) gives

1

N

N−1∑
k=0

F[k]e2π ink/N = 1

N

N−1∑
k=0

N−1∑
l=0

f [l]e2π ik(n−l)/N

= 1

N

N−1∑
l=0

f [l]
N−1∑
k=0

e2π ik(n−l)/N

=
N−1∑
l=0

f [l]δN [n − l] = f (n).

Here we have used (16.6) following the change in the order of summation. This
completes the proof. �

Identity (16.7) shows how the signal f [n] can be recovered from F[k]. The trans-
formation assigning the signal f [n] to F[k] is called the inverse discrete FourierInverse DFT
transform. From identity (16.7) it also follows that an arbitrary periodic discrete-
time signal f [n] with period N can be written as a linear combination of the time-
harmonic signals gk [n] = e2π ink/N , where k = 0, 1, . . . , N − 1, which are them-
selves periodic with period N .

The fundamental theorem of the DFT is very similar to the fundamental theorem
of Fourier series. In the latter theorem, a periodic continuous-time signal with pe-
riod T and fundamental frequency ω0 = 2π/T is written as a superposition of the
time-harmonic continuous-time signals eikω0t , where k ∈ Z. For periodic discrete-
time signals it is now quite appropriate to call the quantity 2π/N the fundamentalFundamental frequency
frequency. The discrete signal e2π ink/N , considered as function of n, then has fre-
quency 2πk/N , which is an integer multiple of 2π/N . Since

e2π in(k+N )/N = e2π ink/N for all n ∈ Z,

only finitely (N ) many frequencies can be distinguished in the discrete-time situa-
tion. Hence, the sum occurring in the fundamental theorem of the DFT only con-
tains a finite number of terms, which is in contrast to the Fourier series of a periodic
continuous-time signal.

As a first example we consider the periodic train of unit pulses δN [n]. The DFT ofEXAMPLE 16.3
δN [n] follows immediately from the definition of δN [n] (verify this), and results in

δN [n] ↔ F[k] = 1. (16.8)

We see here that the DFT of the periodic train of discrete unit pulses is equal to
the constant discrete signal 1. The Fourier coefficients of the periodic train of delta
functions with period 2π are also mutually equal (verify this). Again we note the
similarity between the DFT and the Fourier coefficients. Applying theorem 16.1
gives

δN [n] = 1

N

N−1∑
k=0

e2π ink/N .

Here we see (16.6) re-appearing. �

Calculating the DFT of the periodic discrete-time signal fl [n] = e2π inl/N withEXAMPLE 16.4
period N is an immediate application of (16.6). The result is

fl [n] = e2π inl/N ↔ NδN [l − k].
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Applying theorem 16.1 then gives:

fl [n] =
N−1∑
k=0

δN [l − k]e2π ink/N = e2π inl/N .

This indeed recovers fl [n]. �
In general, F[k] will of course be complex. As for continuous-time signals we

call the modulus | F[k] | of the spectrum F[k] the amplitude spectrum and arg F[k]Amplitude spectrum
the phase spectrum of f [n]. The phase spectrum is determined up to a multiple ofPhase spectrum
2π .

In the next section we consider some properties of the DFT. We will show, for
example, that a shift in the n-domain does not change the amplitude spectrum of a
discrete-time signal.

EXERCISES

Calculate the 4-point inverse DFT of the discrete signal F[k] with period 4 given by16.7
F[0] = 1, F[1] = 0, F[2] = 0, F[3] = 1.

For a periodic discrete-time signal f [n] with period 4 the amplitude and phase spec-16.8
trum are given by | F[k] | = 2 and arg F[k] = πk/2 respectively. Calculate f [n]
for n = 1, 2, 3, 4.

Given is the complex number z with z �= 0. The periodic discrete-time signal f [n]16.9
with period N is given by f [n] = zn for n = 0, 1, . . . , N −1. Calculate the N -point
DFT of f [n].

16.3 Properties of the discrete Fourier transform

A large number of properties that we have encountered in the theory of Fourier series
and integrals will return here. They will be treated in the present section. Moreover,
they are summarized in table 12 at the back of the book.

16.3.1 Linearity

In the previous section we have already noted that the DFT is a linear transformation
(see (16.5)).

16.3.2 Reciprocity

As in the case of the Fourier transform of continuous-time signals, the formulas for
the DFT and the inverse DFT show a great similarity. As a consequence we can again
formulate a reciprocity rule for the DFT. Let F[k] be the DFT of f [n]. We will now
calculate the DFT of F[n]. The expression for the inverse DFT reads as follows:

f [n] = 1

N

N−1∑
k=0

F[k]e2π ink/N .

From this it follows, by interchanging the variables n and k, that

f [k] = 1

N

N−1∑
n=0

F[n]e2π ink/N .
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Replacing k by −k in this identity, we obtain the expression

N−1∑
n=0

F[n]e−2π ink/N = N f [−k].

Apparently, the DFT of F[n] is equal to N f [−k]. We formulate this as the reciprocityReciprocity
rule for the DFT:

F[n] ↔ N f [−k]. (16.9)

The DFT of the signal δN [n] is the constant signal 1 (see (16.8)), so δN [n] ↔ 1.EXAMPLE 16.5
From the reciprocity rule it follows that 1 ↔ NδN [−k]. Since δN [n] is an even
signal (verify this yourself), we obtain that 1 ↔ NδN [k]. Written out in full this
gives the expression

N−1∑
n=0

e−2π ink/N = NδN [k]

and, after interchanging the variables, (16.6) again re-appears. �

16.3.3 Time reversal

By time reversal we will mean the operation in the n-domain which replaces n byTime reversal
−n, which implies that a reversal in time takes place. The result in the k-domain is
easy: there will also be a reversal in frequency, which is summarized in

f [−n] ↔ F[−k]. (16.10)

In fact, the DFT of the signal f [−n] equals

N−1∑
n=0

f [−n]e−2π ink/N =
N−1∑
n=0

f [N − n]e2π i(N−n)k/N =
N∑

n=1

f [n]e2π ink/N

= F[−k].

Note that we used lemma 16.1 for the final equality in the calculation above. As a
consequence we have for an even or odd periodic discrete-time signal that the DFT
is also even or, respectively, odd. When, for example, f [n] is even, then f [−n] =
f [n] for all integer n and so we have F[−k] = F[k] for all integer k.

16.3.4 Conjugation

The discrete spectrum of the complex conjugate f [n] of a signal f [n] can be found
by a direct calculation:

N−1∑
n=0

f [n]e−2π ink/N =
N−1∑
n=0

f [n]e2π ink/N = F[−k].

Conjugation in the n-domain thus implies a conjugation in the k-domain and a re-Conjugation
versal of frequency, that is to say,

f [n] ↔ F[−k]. (16.11)
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For real signals this rule implies that the amplitude spectrum is an even function of
k and that the phase spectrum is an odd function of k. In fact, if f [n] is real, then
f [n] = f [n] and so F[−k] = F[k], which means that

| F[−k] | = ∣∣ F[k]
∣∣ = | F[k] |

and

arg F[−k] = − arg F[−k] = − arg F[k].

Moreover, real signals have the advantage that the amount of computation necessary
to determine the DFT can be halved. Since F[k] is periodic with period N , one has
for real signals f [n] that F[N − k] = F[−k] = F[k]. This means that it suffices to
calculate F[k] for 0 ≤ k ≤ N/2. The values of F[k] for N/2 < k < N then follow
by conjugation.

In this example we return to section 16.1. In example 16.1 the Fourier coefficientsEXAMPLE 16.6
of a periodic continuous-time signal have been determined using a 128-point DFT
F[k] (see table 16.1). Since the signal f (t) in example 16.1 is real and even, these
properties also hold for the sampling f [n] and this implies that F[−k] = F[k] and
F[−k] = F[k]. We conclude that F[k] is also real and even. �

16.3.5 Shift in the n-domain

A discrete-time signal has been introduced as a function defined on the integers.
Therefore, we can only allow a shift in the n-domain over an integer, say l. This
is because if f [n] is a discrete-time signal, then for integer l the signal f [n − l] is
again a discrete-time signal. A shift in the n-domain has the following consequenceShift in the n-domain
in the k-domain:

f [n − l] ↔ e−2π ilk/N F[k]. (16.12)

One can prove this property as follows:

N−1∑
n=0

f [n − l]e−2π ink/N =
N−1−l∑
n=−l

f [n]e−2π i(n+l)k/N

= e−2π ilk/N
N−1∑
n=0

f [n]e−2π ink/N = e−2π ilk/N F[k].

In this calculation we have applied lemma 16.1.

In this example we consider a sum of periodic trains of discrete unit pulses given byEXAMPLE 16.7

f [n] =
m∑

l=−m

δN [n − l],

where we assume that 2m < N . A graph of f [n] is shown in figure 16.4. To
calculate the DFT of f [n], we first use the linearity property (16.5). This means that
for each term occurring in the description of f [n] we take the DFT. By adding these,
we obtain the DFT of f [n]. The DFT of δN [n − l] immediately follows from (16.8)
and the shift property (16.12) and results in

δN [n − l] ↔ e−2π ilk/N .
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0 n1–1

1

–2–3–4 2 3 4 5–5

FIGURE 16.4
Sum of periodic trains of discrete unit pulses for m = 2 and N = 10.

Hence,

f [n] ↔ F[k] =
m∑

l=−m

e−2π ilk/N .

This sum can be calculated explicitly. If, for convenience, we put z = e−2π ik/N ,
then F[k] is the sum of a finite geometric series with initial term z−m , ratio z and
final term zm . Hence, the sum F[k] equals

F[k] =




2m + 1 if k is a multiple of N ,

e2π imk/N − e−2π i(m+1)k/N

1 − e−2π ik/N
otherwise.

We rewrite the second expression as follows:

e2π imk/N − e−2π i(m+1)k/N

1 − e−2π ik/N
= eπ i(2m+1)k/N − e−π i(2m+1)k/N

eπ ik/N − e−π ik/N

= sin(π(2m + 1)k/N )

sin(πk/N )
.

The final result for F[k] is then

F[k] =




2m + 1 if k is a multiple of N ,

sin(π(2m + 1)k/N )

sin(πk/N )
otherwise.

�

From the shift property (16.12) it follows that the amplitude spectrum does not
change under a shift in the n-domain, since

∣∣∣ e−2π ilk/N F[k]
∣∣∣ = | F[k] | .

The phase spectrum changes in a simple way:

arg(e−2π ilk/N F[k]) = arg(F[k]) − 2πlk/N .

The change −2πlk/N is linear in k. We then say that a shift in the n-domain causes
a linear phase shift.Linear phase shift
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16.3.6 Shift in the k-domain

Similar to the n-domain, a shift in the k-domain will result in a multiplication by aShift in the k-domain
complex exponential in the n-domain. Derive for yourself the following rule:

e2π inl/N f [n] ↔ F[k − l]. (16.13)

EXERCISES

The periodic continuous-time signal f (t) with period 2π from example 16.1 satis-16.10
fies the relation f (t) + f (t + π) = 1 for all t ∈ R.
a Prove this relation.
b Show that for the given sampling with N = 128 one has f [n]+ f [n+ N/2] = 1
(n ∈ Z).
c Prove that the previous relation implies that F[k] = 0 for even k, except when
k is an integer multiple of 128. What is F[k] when k is an integer multiple of 128?

The periodic discrete-time signal f [n] is given by16.11

f [n] =




2m + 1 if n is a multiple of N ,

sin(π(2m + 1)n/N )

sin(πn/N )
otherwise.

Determine the DFT of f [n].

Given is a real periodic discrete-time signal f [n] with period 4. For the 4-point DFT16.12
F[k] of f [n] it is known that F[0] = 1, F[1] = i , F[2] = 0. Calculate f [n] for
n = 0, 1, 2, 3.

16.4 Cyclical convolution

For both the Fourier series and the Fourier integrals we have encountered the convo-
lution product, or convolution for short. In both cases the corresponding convolution
theorems showed that the convolution operation in the time domain is related to a
multiplication in the frequency domain. For the DFT we will again come across a
convolution.

Let the periodic discrete-time signals f [n] and g[n] with period N and DFT F[k]
and, respectively, G[k] be given. We are then looking for a periodic discrete-time
signal in the n-domain whose spectrum equals the product F[k]G[k]. This signal
can be found as follows. Using definition 16.1 for the DFT we see that

F[k]G[k] =
N−1∑
l=0

f [l]G[k]e−2π ilk/N .

The product F[k]G[k] is written here as a linear combination of the signals
f [l]G[k]e−2π ilk/N . We subsequently apply the shift property (16.12), which re-
sults in

g[n − l] ↔ G[k]e−2π ilk/N .

The linearity property then gives

N−1∑
l=0

f [l]g[n − l] ↔ F[k]G[k].
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It is now clear how to define the convolution for periodic discrete-time signals. Since
the convolution product is in the first instance meant for periodic signals, this prod-
uct will be called the cyclical convolution product or cyclical convolution for short.

The cyclical convolution product of two periodic discrete-time signals f [n] and g[n]DEFINITION 16.2
Cyclical convolution with period N is the discrete-time signal ( f ∗ g)[n] defined by

( f ∗ g)[n] =
N−1∑
l=0

f [l]g[n − l]. (16.14)

The corresponding convolution theorem, which has already been proven, can be
formulated as follows.

Let f [n] and g[n] be periodic discrete-time signals with period N. Let F[k] be theTHEOREM 16.2
Convolution in the n-domain DFT of f [n] and G[k] the DFT of g[n]. Then one has for the cyclical convolution

product ( f ∗ g)[n] that

( f ∗ g)[n] ↔ F[k]G[k]. (16.15)

From theorem 16.2 it follows that cyclical convolution is commutative, that is to
say,

( f ∗ g)[n] = (g ∗ f )[n] for n ∈ Z. (16.16)

In fact, the ordinary product in (16.14) is commutative, and so the left-hand and
right-hand sides of (16.16) have the same DFT.

In theorem 15.2 of chapter 15 we have seen that for a periodic discrete-time signalEXAMPLE 16.8
with period N one has

f [n] =
N−1∑
l=0

f [l]δN [n − l] for n ∈ Z.

This result also follows easily from the convolution theorem. In the right-hand side
we have the cyclical convolution of the signals δN [n] and f [n]. Since δN [n] ↔ 1,
we have, according to theorem 16.2,

N−1∑
l=0

f [l]δN [n − l] ↔ F[k] · 1 = F[k].

Theorem 15.2 now follows from the inverse transform. �

Because of the close relationship between the DFT and the inverse DFT, we may
expect that the DFT of a product f [n]g[n] in the n-domain will result in a convolu-
tion product in the k-domain. This is indeed the case, as is stated in the following
theorem.

Let f [n] and g[n] be periodic discrete-time signals with period N. Let F[k] be theTHEOREM 16.3
Convolution in the k-domain DFT of f [n] and G[k] the DFT of g[n]. Then

f [n]g[n] ↔ 1

N
(F ∗ G)[k]. (16.17)

Proof
We apply the inverse DFT to F[k], which results in

f [n]g[n] = 1

N

N−1∑
l=0

F[l]e2π iln/N g[n].
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We have thus written the product f [n]g[n] in the n-domain as a linear combination
of the signals F[l]e2π iln/N g[n]. For these signals one can obtain the DFT by means
of the shift property. We then find that

F[l]e2π iln/N g[n] ↔ F[l]G[k − l].

Applying the linearity property, (16.17) follows, proving the theorem. �
Let f [n] = e2π in/N and let g[n] be an arbitrary periodic discrete-time signal withEXAMPLE 16.9
period N . Assume that g[n] ↔ G[k]. Since e2π in/N ↔ NδN [k − 1], it follows
from the convolution theorem in the k-domain that

e2π in/N g[n] ↔ 1

N

N−1∑
l=0

NδN [l − 1]G[k − l] = G[k − 1].

As a matter of fact, this result can be obtained more quickly by applying the shift
property (16.13) in the k-domain. �

As the final subject of this chapter we consider the power of a periodic discrete-Power
time signal. This has been introduced in chapter 1 as the quantity P satisfying

P = 1

N

N−1∑
n=0

| f [n] |2 .

From the inverse DFT we know that a periodic discrete-time signal f [n] can be
written as a linear combination of the signals e2π ink/N (see (16.7)):

f [n] = 1

N

N−1∑
k=0

F[k]e2π ink/N .

The power of the signal F[k]e2π ink/N /N in the n-domain equals | F[k] |2 /N 2

(check this yourself). An important consequence of our next theorem will be that
the power of f [n] is equal to the sum of the powers of the individual terms in the
above expression for f [n] (see (16.19)).

Let f [n] and g[n] be periodic discrete-time signals with period N. Let F[k] be theTHEOREM 16.4
Parseval’s theorem DFT of f [n] and G[k] the DFT of g[n]. Then

N−1∑
n=0

f [n]g[n] = 1

N

N−1∑
k=0

F[k]G[k]. (16.18)

Proof
In the left-hand side of (16.18) we substitute for f [n] the inverse DFT of F[k] and
we then change the order of summation, resulting in:

N−1∑
n=0

f [n]g[n] = 1

N

N−1∑
n=0

g[n]
N−1∑
k=0

F[k]e2π ink/N

= 1

N

N−1∑
k=0

F[k]
N−1∑
n=0

g[n]e2π ink/N

= 1

N

N−1∑
k=0

F[k]
N−1∑
n=0

g[n]e−2π ink/N

= 1

N

N−1∑
k=0

F[k]G[k].



16.4 Cyclical convolution 371

This proves the theorem. �

Replacing g[n] by f [n] we obtain from the theorem above that

N−1∑
n=0

| f [n] |2 = 1

N

N−1∑
k=0

| F[k] |2 . (16.19)

Let f [n] be the periodic discrete-time signal with period N given by f [n] =EXAMPLE 16.10
sin(2πn/N ). By changing to complex exponentials it follows that f [n] =
(e2π in/N − e−2π in/N )/2i . From this representation we immediately obtain the
DFT of f [n]:

F[−1] = −N/2i,

F[1] = N/2i,

F[0] = F[2] = F[3] = . . . = F[N − 2] = 0.

According to (16.19) the power of f [n] is then equal to

P = 1

N 2

(
N 2

4
+ N 2

4

)
= 1

2
.

�

EXERCISES

Let the periodic discrete-time signal f [n] be given by f [n] = δN [n] + δN [n − 1].16.13
Calculate the cyclical convolution product of f [n] with f [n].

For the periodic discrete-time signal f [n] with period N the N -point DFT is given by16.14
F[k] = cos(2πk/N ) sin(4πk/N ). Determine f [n] using the convolution theorem
16.2.

Let f [n] and g[n] be periodic discrete-time signals with period N and with f [n] ↔16.15
F[k] and g[n] ↔ G[k]. Prove the following duality property:

N−1∑
n=0

f [n]G[n] =
N−1∑
k=0

F[k]g[k].

Determine the power of the periodic discrete-time signal f [n] whose DFT is given16.16
by F[k] = cos2(πk/N ).

Determine the power of the periodic discrete-time signal f [n] with period N given16.17
by

f [n] =




2m + 1 if n is a multiple of N ,

sin(π(2m + 1)n/N )

sin(πn/N )
otherwise.

Here m is a positive integer with m < N/2.

S U M M A R Y

The discrete Fourier transform (DFT) assigns to a periodic discrete-time signal f [n]
with period N , given in the time domain or n-domain, a periodic discrete signal
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F[k] in the frequency domain or k-domain:

F[k] =
N−1∑
n=0

f [n]e−2π ink/N .

The DFT, also called the (discrete) spectrum of f [n], arises in a natural way if we
pose the problem of approximating the Fourier coefficients of a periodic continuous-
time signal using the trapezoidal rule.

Through the inverse DFT one can recover a periodic discrete-time signal f [n]
from its spectrum F[k]:

f [n] = 1

N

N−1∑
k=0

F[k]e2π ink/N .

When deriving the inverse DFT, an important role is played by the fundamental
property

δN [n] = 1

N

N−1∑
k=0

e2π ink/N .

The DFT has similar properties to the Fourier transform of continuous-time sig-
nals. An overview of these properties can be found in table 12 at the back of this
book. Another similarity with the Fourier theory of continuous-time signals is the
convolution product, which is called cyclical convolution in the case of periodic
discrete-time signals, and which is defined by

( f ∗ g)[n] =
N−1∑
l=0

f [l]g[n − l].

The corresponding convolution theorem (the cyclical convolution theorem in the
n-domain) states that the DFT of the cyclical convolution product is equal to the
ordinary product of the DFTs of f [n] and g[n]. Apart from a convolution theorem
in the n-domain, there is also a cyclical convolution theorem in the k-domain, which
states that the DFT transforms the ordinary product f [n]g[n] in the n-domain into
the cyclical convolution in the k-domain, up to a factor 1/N .

Finally, one can also formulate the following Parseval identity for periodic
discrete-time signals:

N−1∑
n=0

f [n]g[n] = 1

N

N−1∑
k=0

F[k]G[k],

where F[k] and G[k] are the DFTs of, respectively, f [n] and g[n]. From this identity
one can then obtain the power of a periodic discrete-time signal in the k-domain.
One has the following result:

N−1∑
n=0

| f [n] |2 = 1

N

N−1∑
k=0

| F[k] |2 .

S E L F T E S T

For a periodic continuous-time signal f (t) with period T and fundamental fre-16.18
quency ω0, the Fourier coefficients are given by c−2 = c2 = 1, c−1 = c1 = 2,
c0 = 1. The other Fourier coefficients are equal to zero. Let g[n] be the periodic
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discrete-time signal with period 5 such that g[−2] = c−2, g[−1] = c−1, g[0] = c0,
g[1] = c1, g[2] = c2.
a Calculate the 5-point DFT G[k] of g[n].
b Show that f (2πm/5ω0) = G[−m] for m ∈ Z.
c Prove that

1

T

∫ T

0
| f (t) |2 dt = 1

5

4∑
k=0

| G[k] |2 .

The periodic discrete-time signals f [n] and g[n] with period N are given, for all16.19
integer n, by

f [n] = δN [n + 1] − δN [n] + δN [n − 1],

g[n] = cos(4πn/N ).

a Determine the N -point DFT of f [n].
b Calculate the cyclical convolution product of f [n] and g[n].
c Calculate the power of g[n].

Given is a periodic discrete-time signal f [n] with period T . This discrete-time16.20
signal is a sampling of the periodic continuous-time signal f (t) with period T . The
sampling period is equal to T/5. The signal f (t) is even and real. Let F[k] be the
5-point DFT of f [n].
a Show that F[k] is also even and real.
b It is given that F[0] = 1, F[1] = 2, F[2] = 1. Determine f [n] for all integer n.
c Let furthermore be given that f (t) is band-limited, with bandwidth 10π/T . For
which values of k do we have ck = F[k]/5? Here the numbers ck are the Fourier
coefficients of f (t). Justify your answer.
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CHAPTER 17

The Fast Fourier Transform

I N T R O D U C T I O N

The N -point discrete Fourier transform (DFT) was defined in chapter 16 as a trans-
formation converting a periodic discrete-time signal f [n] in the n-domain into a
periodic discrete signal F[k] in the k-domain according to the relation

F[k] =
N−1∑
n=0

f [n]e−2π ink/N

= f [0] + f [1]e−2π ik/N + · · · + f [N − 1]e−2π ik(N−1)/N .

If we now want to compute F[k] for a certain value of k, then in general one will
need N −1 (complex) multiplications and N −1 (complex) additions to do so. If we
call a multiplication or an addition in the complex plane an elementary operation,
then in general we will thus need 2N − 2 elementary operations to compute F[k]
for any given k. If we want to determine F[k] for all k ∈ {0, 1, . . . , N − 1}, then
in first instance we expect that this would require 2N2 − 2N elementary operations.
We then say that in a direct calculation of an N -point DFT the number of elemen-
tary operations is of order N 2, for large N . In applications we will often have to
compute DFTs based on a large number of points. This will then result in many
elementary operations, and thus in a large number of round-off errors and a consid-
erable computing time. Fortunately, one has come up with algorithms that reduce
the number of elementary operations substantially. Most often, these algorithms are
based on the factorization of N into prime numbers, and are known collectively as
Fast Fourier Transform, abbreviated as FFT. In the most popular versions, N is a
power of 2.

If N can be written as a product of integers, say N = N1 N2, then it will be
derived in section 17.1 that the computation of the N -point DFT can be reduced to
the computation of a number of N1-point DFTs and N2-point DFTs. We get a much
better overall picture of this reduction if we interpret the N1 N2-point DFT as an
operation on matrices. When N1 and N2 can be factorized as well, then we can
again reduce the number of points in the DFTs to be calculated. In this way an FFT
algorithm arises. A Fast Fourier Transform is thus not a transform, but in fact an
efficient numerical implementation of the DFT.

In section 17.2 special attention is paid to an FFT where N is a power of 2, so
N = 2m . An FFT algorithm then boils down to a repeated computation of 2-point
DFTs.

In the final section we will treat some applications of the FFT. These are, of
course, applications of the DFT. We will examine the calculation of the spectrum
of a continuous-time signal, the calculation of the cyclical convolution product, and
the calculation of the so-called cross-correlation of two discrete-time signals.

375
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the relation between an N -point DFT and the N th roots of unity
- can interpret an N1 N2-point DFT as an operation on matrices
- can describe the importance and the advantage of an FFT
- can give a global description of an FFT algorithm based on N = 2m points
- know the meaning of the term butterfly in an FFT algorithm
- can describe how an FFT can be used to calculate the spectrum of a continuous-

time signal
- can indicate the advantage of the FFT for the calculation of a cyclical convolution
- know the concepts of cross-correlation, autocorrelation and power spectrum
- know the relationship between autocorrelation and power spectrum
- can indicate the advantage of the FFT for the calculation of a cross-correlation or

an autocorrelation.

17.1 The DFT as an operation on matrices

In this section we will examine how an N -point DFT, where N can be written as a
product of positive integers (so N = N1 N2 with N1 ≥ 2, N2 ≥ 2), can be inter-
preted as an operation on an N1 × N2-matrix. Such an interpretation is important in
order to get a good grasp of an FFT algorithm.

At the basis of an FFT algorithm lies the relationship between an N -point DFT
and the so-called N th roots of unity, which have already been introduced in chapter
2 as the N distinct roots in the complex plane of the equation zN = 1. To begin
with, we introduce the N th root of unity w N as follows:

w N = e2π i/N . (17.1)

In chapter 2 we have seen that the N th roots of unity consist of integer powers of
w N . Since w−nk

N = e−2π ink/N for integer n and k, it follows from definition 16.1
that the DFT of a discrete-time signal f [n] can also be written as

F[k] =
N−1∑
n=0

f [n]w−nk
N . (17.2)

We can subsequently write this in a very compact way by introducing the following
polynomials PN (z):

PN (z) =
N−1∑
n=0

f [n]zn . (17.3)

From (17.2) it now immediately follows that

F[k] = PN (w−k
N ). (17.4)

Computing an N -point DFT can apparently be viewed as the calculation of the values
of a complex polynomial, where for z we take the N th roots of unity.

Let N = 3, f [0] = 1, f [1] = 0 and f [2] = 1. From (17.1) it follows thatEXAMPLE 17.1
w3 = e2π i/3 = (−1 + i

√
3)/2 and then the third roots of unity 1, w−1

3 , w−2
3

are given by 1, −(1 + i
√

3)/2, −(1 − i
√

3)/2 respectively. Because of (17.3), the
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polynomial P3(z) has the form P3(z) = 1 + z2. Hence, it follows from (17.4) that

F[0] = P3(1) = 2,

F[1] = P3(− 1
2 (1 + i

√
3)) = 1

2 (1 + i
√

3),

F[2] = P3(− 1
2 (1 − i

√
3)) = 1

2 (1 − i
√

3).
�

If N can be written as a product of two integers, so N = N1 N2 with N1 and N2
integer and greater than or equal to 2, then there are simple relations between the
roots of unity w N1 , w N2 and w N . Verify for yourself that the following relations
hold:

w N2
N = w N1 and w N1

N = w N2 . (17.5)

One can use these relations cleverly in order to calculate the N1 N2-point DFT. To
this end we assign in a unique way to each k ∈ {0, 1, . . . , N − 1} the integers µ1
and µ2 according to

k = µ1 N2 + µ2 where 0 ≤ µ2 < N2. (17.6)

Hence, the number µ1 is the result of the so-called integer division (division with
remainder) of k by N2, and µ2 is the remainder in this division. In the same way we
assign to each integer n ∈ {0, 1, . . . , N − 1} the integers ν1 and ν2 according to

n = ν2 N1 + ν1 where 0 ≤ ν1 < N1. (17.7)

The numbers ν1 and ν2 thus arise from the integer division of n by N1. Since both
k and n lie between 0 and N − 1, we have

0 ≤ µ1, ν1 < N1 and 0 ≤ µ2, ν2 < N2.

Now consider (17.2) for the N -point DFT and substitute here for k and n the expres-
sions in, respectively, (17.6) and (17.7). First note that the sum

∑N−1
n=0 an is equal

to the repeated sum
∑N1−1

ν1=0
∑N2−1

ν2=0 aν2 N1+ν1 . In addition we will use relations

(17.5) and the identity w N1 N2
N = w N

N = 1. The calculation of the DFT then reads as
follows:

F[k] = F[µ1 N2 + µ2] =
N1−1∑
ν1=0

N2−1∑
ν2=0

f [ν2 N1 + ν1]w−(µ1 N2+µ2)(ν2 N1+ν1)
N

=
N1−1∑
ν1=0

w−µ1ν1
N1

w−µ2ν1
N

N2−1∑
ν2=0

f [ν2 N1 + ν1]w−µ2ν2
N2

=
N1−1∑
ν1=0

w−µ2ν1
N c[ν1, µ2]w−µ1ν1

N1
,

where

c[ν1, µ2] =
N2−1∑
ν2=0

f [ν2 N1 + ν1]w−µ2ν2
N2

. (17.8)

We have now found that

F[µ1 N2 + µ2] =
N1−1∑
ν1=0

w−µ2ν1
N c[ν1, µ2]w−µ1ν1

N1
. (17.9)
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At first, it may seem very complicated to calculate a DFT using (17.8) and (17.9).
Still, it will be precisely these formulas that will give us a first clue how to determine
a DFT efficiently. In order to get a good insight into the operations occurring in these
formulas, we introduce a number of matrices consisting of N1 rows and N2 columns:

M f =




f [0] f [N1] . . . f [N − 2N1] f [N − N1]
f [1] f [N1 + 1] . . . f [N − 2N1 + 1] f [N − N1 + 1]
...

...
. . .

...
...

f [N1 − 2] f [2N1 − 2] . . . f [N − N1 − 2] f [N − 2]
f [N1 − 1] f [2N1 − 1] . . . f [N − N1 − 1] f [N − 1]




(17.10a)

C =




c[0, 0] c[0, 1] . . . c[0, N2 − 2] c[0, N2 − 1]
c[1, 0] c[1, 1] . . . c[1, N2 − 2] c[1, N2 − 1]

...
...

. . .
...

...

c[N1 − 2, 0] c[N1 − 2, 1] . . . c[N1 − 2, N2 − 2] c[N1 − 2, N2 − 1]
c[N1 − 1, 0] c[N1 − 1, 1] . . . c[N1 − 1, N2 − 2] c[N1 − 1, N2 − 1]




(17.10b)

MF =




F[0] F[1] . . . F[N2 − 2] F[N2 − 1]
F[N2] F[N2 + 1] . . . F[2N2 − 2] F[2N2 − 1]

...
...

. . .
...

...

F[N − 2N2] F[N − 2N2 + 1] . . . F[N − N2 − 2] F[N − N2 − 1]
F[N − N2] F[N − N2 + 1] . . . F[N − 2] F[N − 1]




(17.10c)

The element M f (µ, ν) in row µ (µ = 0, 1, . . . , N1 − 1) and column ν (ν =
0, 1, . . . , N2 − 1) is thus given by

M f (µ, ν) = f [νN1 + µ]. (17.11)

The element MF (µ, ν) in row µ (µ = 0, 1, . . . , N1 − 1) and column ν (ν =
0, 1, . . . , N2 − 1) is given by

MF (µ, ν) = F[µN2 + ν]. (17.12)

Having introduced these matrices, we return to (17.8) and (17.9). On the basis of
(17.8) we note that for fixed ν1 the row c[ν1, 0], . . . , c[ν1, N2 − 1] is the N2-point
DFT of the row f [ν1], f [N1 + ν1], . . . , f [(N2 − 1)N1 + ν1]. For fixed µ2 we can
interpret (17.9) as the N1-point DFT of the column


c[0, µ2]
w−µ2

N c[1, µ2]
...

w−(N1−2)µ2
N c[N1 − 2, µ2]

w−(N1−1)µ2
N c[N1 − 1, µ2]




.

This is column µ2 of matrix C , however, with its elements multiplied by the factors
w−µ2ν1

N . These factors are called twiddle factors. Formula (17.9) and the definitionTwiddle factors
of the matrix MF also show us that the N1-point DFT of this column can be found
in column µ2 of matrix MF .
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Summarizing, we have now derived a method for the calculation of the N1 N2-
point DFT of a discrete-time signal f [n], which consists of the following steps:

- Construct the N1 × N2 matrix M f from the discrete signal f [n].Algorithm for an N1 N2-point
DFT - Calculate the N2-point DFT of row µ (µ = 0, 1, . . . , N1 − 1) of matrix M f and

put this in row µ of a new matrix C .
- Multiply the elements of matrix C by the twiddle factors, that is to say, multiply

c[µ, ν] by w−µν
N ; call the new matrix Ct .

- Calculate the N1-point DFT of column ν (ν = 0, 1, . . . , N2 − 1) of matrix Ct
and put this in column ν of matrix MF ; then finally matrix MF represents the
N1 N2-point DFT of f [n].

As an illustration of this method we calculate the 6-point DFT of the discrete-timeEXAMPLE 17.2
signal f [n] with f [0] = 1, f [1] = 1, f [2] = 0, f [3] = 0, f [4] = 1, f [5] = 1. We
take N1 = 3 and N2 = 2. The matrix M f then looks as follows:

M f =
( f [0] f [3]

f [1] f [4]
f [2] f [5]

)
=

( 1 0
1 1
0 1

)
.

Next we have to take the 2-point DFT of the rows of this matrix. We are then dealing
with the root of unity w2 = −1 of z2 = 1. Applying (17.4) in this situation is
easy. For example, to calculate the 2-point DFT of the first row, we have to use the
polynomial P2(z) = f [0] + f [3]z. We subsequently substitute the values z = 1
and z = −1, resulting in the row ( f [0] + f [3], f [0] − f [3]) as the 2-point DFT of
the row ( f [0], f [3]). Hence, determining a 2-point DFT is simply a calculation of
the sum and the difference of the values of the signal. In this example the matrix C
then looks as follows:

C =
( c[0, 0] c[0, 1]

c[1, 0] c[1, 1]
c[2, 0] c[2, 1]

)
=

( f [0] + f [3] f [0] − f [3]
f [1] + f [4] f [1] − f [4]
f [2] + f [5] f [2] − f [5]

)
=

( 1 1
2 0
1 −1

)
.

We multiply the elements of this matrix by the twiddle factors. This means that the
element in row µ and column ν is multiplied by w−µν

6 . In the row with µ = 0 and

the column with ν = 0 nothing changes, since w−µν
6 = w0

6 = 1 in these cases.
In this example the element c[1, 1] also remains unchanged since it was already
equal to 0. The element c[2, 1] is multiplied by w−2·1

6 = (e2π i/6)−2 = e−2π i/3 =
−(1 + i

√
3)/2. The matrix Ct arising in this way looks as follows:

Ct =
( 1 1

2 0
1 1

2 (1 + i
√

3)

)

We finally have to take the 3-point DFT of the columns of this matrix (as in example
17.1). We then obtain the 6-point DFT in the following matrix:

( F[0] F[1]
F[2] F[3]
F[4] F[5]

)
=


 4 1

2 (3 + i
√

3)

− 1
2 (1 + i

√
3) 0

− 1
2 (1 − i

√
3) 1

2 (3 − i
√

3)


 .

�

Calculating the DFT using this method will only lead to an advantage for large
values of N . We will verify this by calculating the number of elementary opera-
tions. In doing so we will assume that the N1-point DFT and the N2-point DFT are
determined by a direct calculation.
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Determining the matrix C means that we have to calculate a total of N1 DFTsNumber of operations of
N1 N2-point DFT based on N2 points. For this we need 2N1(N 2

2 − N2) elementary operations (see
the introduction to this chapter). After this, the elements of C have to be multiplied
by the twiddle factors. Since the twiddle factors are 1 for the first row and the first
columns, we need another (N1 − 1)(N2 − 1) elementary operations to calculate the
matrix Ct . Finally, to determine the matrix MF we have to calculate N2 DFTs based
on N1 points. This requires yet another 2N2(N 2

1 − N1) elementary operations. We
conclude that the described method requires a total of

2N1 N2(N1 + N2) − 3N1 N2 − N1 − N2 + 1

elementary operations. For large N this is of order N1 N2(N1 + N2). In the intro-
duction to this chapter we have already noted that for large N a direct calculation of
the N -point DFT requires a number of elementary operations of the order N 2. With
the method described above we thus benefit by a factor N1 N2/(N1 + N2).

When, moreover, N1 or N2 can be factorized even further, then we can again
obtain a reduction when calculating the N1-point DFT or the N2-point DFT. We will
then benefit even more.

We have already seen that the calculation of a 2-point DFT is extremely simple.
Now if N is a power of 2, then the above implies that the N -point DFT can be
calculated by a repeated application of 2-point DFTs. In the next section we will
treat this case explicitly.

EXERCISES

Use (17.2) to show that the relation between f [n] and the 5-point DFT F[k] can be17.1
represented as follows (here w = e2π i/5):


1 1 1 1 1
1 w−1 w−2 w−3 w−4

1 w−2 w−4 w−1 w−3

1 w−3 w−1 w−4 w−2

1 w−4 w−3 w−2 w−1







f [0]
f [1]
f [2]
f [3]
f [4]


 =




F[0]
F[1]
F[2]
F[3]
F[4]


 .

Determine the inverse of the matrix from exercise 17.1 by applying the inverse DFT.17.2

As in example 17.2, determine the 6-point DFT of the discrete signal given in exam-17.3
ple 17.2. However, now take N1 = 2 and N2 = 3.

Use a repeated 2-point DFT to calculate the 4-point DFT of the periodic discrete-time17.4
signal f [n] with period 4 given by f [−1] = 1, f [0] = 2, f [1] = 0, f [2] = 2.

17.2 The N -point DFT with N = 2m

In this section we pay special attention to the N -point DFT where N is a power of 2,
so N = 2m for some integer m ≥ 1. In the previous section we discussed a method
to reduce the calculation of an N -point DFT to a calculation of DFTs on a smaller
number of points. We will study that method again for the special case N = 2m .
Put N1 = 2 and N2 = 2m−1. The 2 × 2m−1 matrix M f (see (17.10a)) then looks
as follows:

M f =
(

f [0] f [2] . . . f [N − 2]
f [1] f [3] . . . f [N − 1]

)
.

To each row of this matrix we first have to apply the N/2-point DFT in order to
calculate the matrix C . This means that we have to calculate the N/2-point DFT of
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the discrete-time signals f [2n] and f [2n + 1], which are both periodic with period
N2 = N/2. Let us assume that in the k-domain this leads to the signals A[k] and
B[k] respectively, so

f [2n] ↔ A[k] and f [2n + 1] ↔ B[k]. (17.13)

The matrix C then looks as follows:

C =
(

A[0] A[1] . . . A[ν] . . . A[N2 − 1]
B[0] B[1] . . . B[ν] . . . B[N2 − 1]

)
.

The next step is to multiply the elements of this matrix by the twiddle factors. The
element in row µ and column ν is multiplied by the twiddle factor w−µν

N . The first
row (µ = 0) and the first column (ν = 0) do not change. Hence, the matrix Ct
looks like this:

Ct =
(

A[0] A[1] . . . A[ν] . . . A[N2 − 1]

B[0] w−1
N B[1] . . . w−ν

N B[ν] . . . w−(N2−1)
N B[N2 − 1]

)
.

Finally, we have to determine the 2-point DFT of the columns of this matrix. We
have already seen that the calculation of a 2-point DFT is nothing else but taking
sums and differences. The 2-point DFT of column ν of matrix Ct gives column ν of
matrix MF , which finally gives us the N -point DFT of the signal f [n]:

MF =
(

F[0] F[1] . . . F[ν] . . . F[N2 − 1]
F[N2] F[N2 + 1] . . . F[N2 + ν] . . . F[N − 1]

)
,

with(
F[ν]

F[N2 + ν]

)
=

(
A[ν] + w−ν

N B[ν]

A[ν] − w−ν
N B[ν]

)
for ν = 0, 1, . . . N2 − 1. (17.14)

To determine A[k] and B[k] we have to calculate the N/2-point DFT of the signals
f [2n] and f [2n+1] respectively. For this one can use the same method, by changing
to N/4-point DFTs. One can repeat this process until only 2-point DFTs remain.
This results in an FFT algorithm for which we now want to determine the number of
elementary operations.

Let φ(m) be the number of elementary operations necessary to calculate a 2m -Number of operations for
2m-point DFT point DFT according to the method described above. For the calculation of A[k]

and B[k] one thus needs 2φ(m − 1) elementary operations. In order to determine
F[k] from this, using (17.14), we see that two elementary operations are necessary
to calculate F[0] and F[N2], and that three elementary operations are necessary
to calculate F[ν] and F[N2 + ν] for ν = 1, 2, . . . , N2 − 1. This gives a total of
2 + 3(N2 − 1) = 3 · 2m−1 − 1 elementary operations. From this we obtain a
recurrence relation for φ(m):

φ(m) = 2φ(m − 1) + 3 · 2m−1 − 1.

Since the calculation of one 2-point DFT requires one addition and one subtraction,
we know that φ(1) = 2. By induction one can then show that

φ(m) = (3m − 2)2m−1 + 1.

Hence, for the FFT executed in the way described earlier, the number of elementary
operations is of order m · 2m = N (2 log N ). Compared to N 2 this is a considerable
reduction for large values of N .

The calculation of F[ν] and F[N2 + ν] from A[ν] and B[ν] according to (17.14)
and using the twiddle factors w−ν

N is sometimes called a butterfly and can be repre-Butterfly
sented by the scheme in figure 17.1. This scheme should be interpreted as follows.
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A[ν]

B [ν]

F [ν]

F [N2 + ν]

w -ν
N

FIGURE 17.1
An FFT butterfly.

The term B[ν] is multiplied by w−ν
N . Next, the sum and difference of A[ν] and

B[ν]w−ν
N give, respectively, F[ν] and F[N2 + ν]. One uses the term ‘butterfly’

because the scheme has the shape of a butterfly. An FFT algorithm for the calcu-
lation of a 2m -point DFT thus consists of a repeated application of butterflies. In
figure 17.2 the butterfly-scheme is given for N = 8. In this scheme we recognize

f [0]

f [4]

w 0
8

f [2]

f [6]

w 0
8

f [1]

f [5]

w 0
8

f [3]

f [7]

w 0
8

w 0
8

w -2
8

w 0
8

w -2
8

w 0
8

w -1
8

w -3
8

w -2
8

F [0]

F [1]

F [2]

F [3]

F [4]

F [5]

F [6]

F [7]

DFT
(N = 2) combine combine

FIGURE 17.2
The 8-point FFT butterfly.

that one uses the first coefficients of the two 4-point DFTs to determine F[0] and
F[4]. To determine the latter two, we in turn use the first coefficients of the 2-point
DFTs, etc. In figure 17.2 we see that at the start the sequence f [0], f [1], . . . , f [7] is
mixed up. If we represent the numbers 0, 1, . . . , 7 as 3-digit binary numbers, then
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changing the order from 0, 1, . . . , 7 into 0, 4, 2, 6, 1, 5, 3, 7 can be represented in
the binary system as follows:

decimal binary bit reversal decimal
number representation representation

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Note how the new ordering arises by reversing the bitrow in the binary representa-
tion. We call this bit reversal. One can show for general N = 2m that the start-Bit reversal
ing sequence of the butterfly scheme can be obtained by representing the numbers
0, 1, . . . , N − 1 as binary numbers with m digits and then applying bit reversal. We
will not go into this any further.

EXERCISES

Give the butterfly scheme for the calculation of a 4-point DFT and use this to de-17.5
termine the 4-point DFT of the periodic discrete-time signal with period 4 given by
f [−1] = 2, f [0] = i , f [1] = 1, f [2] = i .

Given is a periodic discrete-time signal f [n] with period N and f [2n + 1] = 117.6
for all integer n. Moreover, the N/2-point DFT A[k] of the signal f [2n] is given.
Calculate the N -point DFT of f [n].

Given is a periodic discrete-time signal f [n] with period 4N . For the signals f [4n],17.7
f [4n + 1], f [4n + 2], f [4n + 3] the N -point DFTs are given by, respectively, A[k],
B[k], C[k], D[k]. Calculate the 4N -point DFT of f [n].

17.3 Applications

In the introduction we have already noted that an application of the FFT is in fact
an application of the DFT. In chapter 16 we have seen an application of the DFT,
namely, the calculation of Fourier coefficients. Applying the DFT is now becoming
much more attractive since we have fast algorithms available to compute it. For this
we prefer DFTs where the number of points is a power of 2. This implies that for the
calculation of the Fourier coefficients of a periodic signal f (t) with period T , the
number of samples in [0, T ) should also be a power of 2.

Apart from this, it is quite natural to look at possible applications of the DFT to the
calculation of the Fourier integral, or the spectrum, of a non-periodic continuous-
time signal.

17.3.1 Calculation of Fourier integrals

The Fourier transform or spectrum F(ω) of a continuous-time signal f (t), or, put
differently, of a function defined on R, has been defined in chapter 6 as the improper
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Riemann integral

F(ω) =
∫ ∞

−∞
f (t)e−iωt dt.

In order to calculate this integral, we are first of all confronted with the problem
of improper integration, in this case integration over R. If the signal is absolutely
integrable, then∣∣∣∣∣ F(ω) −

∫ T

−T
f (t)e−iωt dt

∣∣∣∣∣ =
∣∣∣∣
∫
| t |≥T

f (t)e−iωt dt

∣∣∣∣
≤

∫
| t |≥T

| f (t) | dt → 0 for T → ∞. (17.15)

Hence, for sufficiently large T and arbitrary ω, the integral

FT (ω) =
∫ T

−T
f (t)e−iωt dt (17.16)

will be a good approximation of F(ω). We can also write (17.16) in the form∫ T

−T
f (t)e−iωt dt =

∫ ∞

−∞
f (t)p2T (t)e−iωt dt.

The integral in (17.16) represents the spectrum of f (t)p2T (t), where p2T (t) is the
rectangular pulse function with duration 2T (see (6.10)). We now say that f (t) is
multiplied by a rectangular time window with width 2T . In the frequency domainTime window
this corresponds to a convolution of F(ω) with

2 sin T ω

ω
.

Multiplication by a time window introduces a first error when we determine the
spectrum F(ω) in this way. By (17.15), this error is small if the time window is
chosen sufficiently wide.

Next we want to calculate the integral in (17.16), after a suitable choice of T ,
using a sampling of f (t) with 2N samples in the interval [−T, T ]. The sampling
period is thus equal to T/N . We put tn = nT/N . Applying the trapezoidal rule (see
section 16.1) to the integral in (17.16) leads to

FT (ω) ≈ T

2N

(
f (−T )eiωT + f (T )e−iωT + 2

N−1∑
n=1−N

f (tn)e−iωtn

)
. (17.17)

In order to use the DFT based on 2N points, we now define a periodic discrete-time
signal f p[n] with period 2N as follows:

f p[−N ] = 1
2 ( f (−T ) + f (T )),

f p[n] = f (tn) for n = −N + 1, −N + 2, . . . , N − 1.
(17.18)

Substitution of ω = kπ/T in (17.17) gives

FT

(
kπ

T

)
≈ T

N

N−1∑
n=−N

f p[n]e−2π ikn/2N . (17.19)

Up to the factor T/N , the right-hand side equals the 2N -point DFT of f p[n]; see
definition 16.1. Since FT (ω) is an approximation of the spectrum F(ω), (17.19)
shows us how a DFT can be used to approximate the spectrum of a non-periodic
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continuous-time signal. However, as in the case of the Fourier coefficients, this will
not result in a reliable approximation for all k. In general one will get good results
for | k | < N/2, with an error of the order of (T/N )2. We will not go into this
any further. We do, however, want to make the following remark. The choice of
the width 2T of the time window apparently results in a distance π/T between two
consecutive frequencies for which the spectrum is being determined. The number
of frequencies for which the spectrum can be determined with a specific degree of
accuracy is thus related to the number of samples in the chosen time window.

As an example of the use of a DFT to approximate the spectrum of a continuous-timeEXAMPLE 17.3
signal, we consider the causal signal f (t) given by f (t) = e−2t ε(t). The spectrum
F(ω) of this signal is known (see table 3):

F(ω) = 1

2 + iω
.

We choose a time window with width 2T = 10. This introduces a first error in the
calculation of the spectrum, which can easily be estimated as follows:

| F(ω) − F5(ω) | ≤
∫
| t |≥5

| f (t) | dt =
∫ ∞

5
e−2t dt ≈ 2.3 · 10−5.

Next we determine the discrete-time signal f p[n] according to (17.18). Special
attention has to be paid to the discontinuity of f (t) at t = 0. For f p[0] we have to

choose (see section 16.1.2): f p[0] = 1
2 ( f (0+) + f (0−)) = 1

2 . We take N = 128
and determine the 2N -point DFT of the signal f p[n]. Multiplying this DFT by T/N
then gives an approximation of the spectrum at the frequencies kπ/T . In table 17.1
these approximations are given, together with the exact values accurate to 4 decimal
digits.

TABLE 17.1 Approximation using a 256-point DFT and the exact values of the
spectrum of a non-periodic signal.

k approximation exact

00 0.5002 0.5000
01 0.4554 − 0.1429i 0.4551 − 0.1430i
02 0.3587 − 0.2252i 0.3585 − 0.2251i
03 0.2651 − 0.2493i 0.2648 − 0.2496i
...

...
...

63 0.0016 − 0.0200i 0.0013 − 0.0252i
64 0.0015 − 0.0195i 0.0012 − 0.0248i
65 0.0015 − 0.0195i 0.0012 − 0.0244i
...

...
...

126 0.0008 − 0.0002i 0.0003 − 0.0126i
127 0.0008 − 0.0005i 0.0003 − 0.0125i
128 0.0008 − 0.0007i 0.0003 − 0.0124i

It is useless to tabulate F[k] for k > 128. The signal f (t) is real, so F[k] =
F[−k] = F[256 − k]. As far as the quality of the approximation is concerned, we
note that the approximation is only satisfactory for relatively small values of k. In
practice this is usually sufficient. �
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The signal f (t) in example 17.3 is causal since f (t) = 0 for t < 0. Hence,

FT (ω) =
∫ T

−T
f (t)e−iωt dt =

∫ T

0
f (t)e−iωt dt.

Applying the trapezoidal rule to the integral in the right-hand side and substituting
ω = 2kπ/T gives

FT

(
2kπ

T

)
≈ T

N

(
f (0+) + f (T −)

2
+

N−1∑
n=1

f (tn)e−2π ink/N

)
. (17.20)

From this we conclude that the spectrum at 2kπ/T can be calculated with an N -
point DFT. However, the values thus calculated correspond exactly with the values
calculated with the 2N -point DFT using (17.19) with k replaced by 2k:

FT

(
2kπ

T

)
≈ T

N

N−1∑
n=−N

f p[n]e−2π ikn/N

= T

N

(
f p[−N ] +

N−1∑
n=0

f p[n]e−2π ikn/N

)
.

Now according to (17.18) we have f p[−N ] = f (T )/2 and f p[0] = f (0+)/2
(since f p[0] = ( f (0+) + f (0−))/2 and f is causal) and if we substitute this in the
preceding formula, then we obtain precisely (17.20).

In this section we used the DFT to calculate the spectrum of a signal f (t), af-
ter applying a time window, for a number of specific frequencies. By utilizing an
FFT algorithm to compute the DFT, a spectrum can thus be approximated quite effi-
ciently.

17.3.2 Fast convolution

According to definition 16.2, the cyclical convolution product of two periodic discrete-
time signals f [n] and g[n] with period N is given by

( f ∗ g)[n] =
N−1∑
l=0

f [l]g[n − l] for n ∈ Z.

In order to calculate the convolution product for a specific value of n, it seems
that we have to perform N − 1 additions and N multiplications; that is, 2N − 1
elementary operations in total. A straightforward calculation of the convolution
product for n = 0, 1, . . . , N −1 would then require 2N 2−N elementary operations.
For large N the number of operations is thus of the order N 2. Again, this number
of elementary operations can be reduced considerably by using an FFT algorithm.
Here the convolution theorem plays an important role. First we calculate the N -
point DFT of f [n] and g[n]. Let us denote these by F[k] and G[k] respectively. By
the convolution theorem 16.2, the N -point DFT of the convolution product is simply
the product of F[k] and G[k]. By an inverse DFT of F[k]G[k] to the n-domain,
we obtain the convolution product. Calculating the convolution product in this way
requires fewer elementary operations than the direct method. For if we assume
that the calculation of an N -point DFT using an FFT algorithm requires N (2 log N )

elementary operations, then the total number of elementary operations to calculate
the convolution product equals 2N (2 log N )+ N + N (2 log N ) = 3N (2 log N )+ N .
Here we assumed that the inverse DFT is also calculated using an FFT algorithm.
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Compared to the number of the order N 2, this is still a considerable reduction for
large values of N . Calculating a convolution product using the FFT is also called
fast convolution.Fast convolution

17.3.3 Fast correlation

An operation on signals that is related to convolution is the so-called cross-correlation.

The cross-correlation of two periodic discrete-time signals f1[n] and f2[n] withDEFINITION 17.1
Cross-correlation period N is defined by

ρ1,2[n] =
N−1∑
l=0

f1[l] f2[n + l]. (17.21)

Contrary to the convolution product, the cross-correlation is not commutative (verify
this yourself).

For the calculation of the cross-correlation ρ1,2[n] we will again use the DFT. Let
f1[n] ↔ F1[k] and f2[n] ↔ F2[k]. According to the shift property we then have
f2[n + l] ↔ e2π ilk/N F2[k]. Next we use the linearity of the DFT to obtain that

ρ1,2[n] ↔
N−1∑
l=0

f1[l]e2π ilk/N F2[k] = F1[k]F2[k]. (17.22)

In order to calculate ρ1,2[n] in practice for large values of N , we see that, just as
for the convolution, transforming it to the k-domain can result in a considerable
advantage. Check for yourself that the number of elementary operations needed for
the calculation of the cross-correlation by means of an FFT algorithm is equal to the
number of elementary operations needed for the calculation of the fast convolution.

When f1[n] = f2[n] = f [n] in formula (17.21), then we call ρ1,2[n] the
autocorrelation of the signal f [n]. From (17.22) it follows that the N -point DFTAutocorrelation
of the autocorrelation is given by

ρ[n] ↔ F[k]F[k] = | F[k] |2 .

The spectrum of the autocorrelation is called the power spectrum of the periodicPower spectrum
discrete-time signal f [n].

EXERCISES

Given is the causal continuous-time signal f (t) = e−2t ε(t). In example 17.3 we17.8
used a 2N -point DFT to approximate the spectrum at the frequencies kπ/T . After-
wards we noted that the spectrum at the frequencies 2kπ/T could be approximated
using an N -point DFT. Find out whether the spectrum at the frequencies (2k+1)π/T
can also be approximated using an N -point DFT.

Given is a continuous-time signal f (t) with the properties: f (t) = 0 for | t | > T for17.9
some T > 0, f (t) is continuous and odd. For f (t) a sampling f [n] is available with
sampling period T/N . Give an efficient way to approximate the spectrum of f (t),
assuming that you can use efficient algorithms to calculate DFTs with an arbitrary
number of points.

Calculate the autocorrelation of the periodic discrete-time signal with period N17.10
given by f [n] = cos(2πn/N ), and use this to determine the power spectrum
of f [n].
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Calculate the cross-correlation ρ1,2 of f1[n] = δN [n] + δN [n − 1] and f2[n] =17.11
δN [n] + δN [n + 1] using the DFT.

Let the two sequences of complex numbers a1, a2, . . . , aN and b1, b2, . . . , bN be17.12
given. Indicate how the sum

∑N
n=1 anbn can be calculated using the DFT.

S U M M A R Y

An N -point DFT can be computed efficiently if we use a factorization of N into
integers. Calculating an N1 N2-point DFT is then reduced to a calculation of N1-
point and N2-point DFTs. This can be accomplished using properties of the N th
roots of unity w N = e2π i/N . This is because a DFT can be interpreted as the
determination of a complex polynomial at the N th roots of unity. The reduction
method of an N1 N2-point DFT to N1-point and N2-point DFTs can be represented
in a convenient way by considering the N1 N2-point DFT as a matrix calculation
together with a multiplication by certain factors, called twiddle factors.

Efficient algorithms for the calculation of the DFT are collectively known as Fast
Fourier Transform, abbreviated as FFT. Popular versions have the number of points
in the corresponding DFT equal to a power of 2. In this situation the algorithm is
based on a repeated application of 2-point DFTs. In comparison to a direct calcu-
lation of an N -point DFT, which requires a number of complex multiplications and
additions of the order N 2, an FFT algorithm with N = 2m requires a number of
multiplications and additions of the order N (2 log N ). This is a considerable reduc-
tion.

Applications of the FFT are in fact applications of the DFT. The Fast Fourier
Transform is used, for example, to calculate Fourier coefficients and Fourier inte-
grals. Using the convolution theorem, one can also calculate the cyclical convolution
product efficiently, for large values of N , by means of the FFT. Closely related to
the cyclical convolution product is the cross-correlation of two periodic discrete-
time signals. There is a simple expression of the DFT of a cross-correlation as a
product of the DFTs of the signals involved (only a conjugation enters). As a con-
sequence, one can also calculate a cross-correlation efficiently using an FFT. The
cross-correlation of a signal with itself gives the autocorrelation. The autocorrela-
tion has the special property that its DFT equals the power spectrum of the signal.

S E L F T E S T

Given is a periodic discrete-time signal f [n] with period 3. Let w = 1
2 (−1 − i

√
3).17.13

Show that the three-point DFT F[k] of f [n] is given by F[k] = f [0] + wk( f [1] +
wk f [2]).

Given is a periodic discrete-time signal f [n] with period 3N . The N -point DFTs of17.14
the signals f [3n], f [3n + 1], f [3n + 2] are given by A[k], B[k], C[k] respectively.
Calculate the 3N -point DFT of f [n].

Describe a method to calculate an N -point DFT efficiently for N = 3m .17.15

Given are the causal discrete-time signals f [n] and g[n] with f [n] = 0 and g[n] =17.16
0 for n > N and some N > 0. Indicate how one can use the DFT to calculate the
sums

N∑
l=0

f [l]g[n − l]
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for integer n. Is it useful, as far as the number of additions and multiplications is
concerned, to use the FFT? Justify your answer.

Given is a periodic discrete-time signal f [n] with period 4. Moreover, the signal is17.17
even and real. Show that for the 4-point DFT one has

F[0] = f [0] + 2 f [1] + f [2],

F[1] = f [0] − f [2],

F[2] = f [0] − 2 f [1] + f [2],

F[3] = F[1].
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CHAPTER 18

The z-transform

I N T R O D U C T I O N

The discrete Fourier transform, in the first instance intended for periodic discrete-
time signals, arose in chapter 16 in a natural way in the context of the calculation
of the Fourier coefficients of periodic signals. Calculating the spectrum of a non-
periodic signal introduces in a similar way a Fourier transform that can be applied
to non-periodic discrete-time signals. This transform can also be considered as a
special version of the so-called z-transform, which will be studied first in the present
chapter.

The z-transform assigns a function F(z) to a discrete signal f [n] and is defined
in the complex z-plane as the sum of the ‘two-sided’ series

F(z) =
∞∑

n=−∞
f [n]z−n .

The z-transform plays an important role in the analysis of discrete systems, which
will be examined in the next chapter.

The treatment of the z-transform will follow the same path as the treatment of any
of the other transforms in this book. First we present the definition, with appropriate
attention being given to convergence problems (section 18.1). We subsequently
establish a number of important properties (section 18.2).

However, there is also a difference. We will not formulate a fundamental theorem
for the z-transform. The reason is that for a proper treatment of such a theorem,
showing how a signal can be recovered from its z-transform, we would have to use
some advanced theorems from the theory of integration of functions defined in the
complex plane. This theory is outside the scope of this book. Reconstructing a
signal from a given z-transform will therefore almost always be limited to situations
frequently occurring in practice, which means that the z-transform is given as a
rational function of z. In section 18.3 we will see how the technique of the partial
fraction expansion can lead us to the original signal then.

As for almost every other signal-transform, the z-transform gives rise to the defi-
nition of a convolution product in the n-domain, and also to a corresponding convo-
lution theorem. This is the subject of section 18.4. We will not formulate a Parseval
theorem for the z-transform. In relation to the z-transform it is less appropriate and
it is better suited for the Fourier transform of discrete signals.

Finally, in section 18.5, the Fourier transform of non-periodic discrete-time sig-
nals is treated. This arises from the z-transform by substituting the value eiω for z.
The variable ω can then be interpreted as a frequency. Treating this transform, we
will see that we can use the theory of the Fourier series to our advantage.

391
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the definition of the z-transform and can indicate the region of convergence
- can readily apply some of the most frequently occurring properties of the z-

transform
- can calculate the z-transform of some elementary signals
- know the definition of the convolution product for the z-transform and can formu-

late the corresponding convolution theorem
- know the definition of an absolutely summable signal and of a signal with a finite

switch-on time
- can determine an absolutely summable discrete-time signal, or a signal with a

finite switch-on time, whose z-transform is a given rational function
- know the definition of the Fourier transform of discrete-time signals
- can relate the Fourier transform to the z-transform and to Fourier series
- can derive the most frequently occurring properties of the Fourier transform from

the theory of the Fourier series, and can apply these
- know Parseval’s theorem for the Fourier transform and can apply it to the energy-

content of a discrete-time signal.

18.1 Definition and convergence of the z-transform

In chapter 16 a Fourier transform has been introduced for periodic discrete-time
signals, the so-called discrete Fourier transform, abbreviated as DFT. In this chap-
ter we consider discrete-time signals f [n] that are non-periodic. A transformation
having some similarity with the DFT is the discrete transform which assigns to the
non-periodic signal f [n] the Fourier series

∞∑
n=−∞

f [n]e−inω for ω ∈ R.

The foundation of this transform is the so-called z-transform, which will be treated
first. Specifically, if we substitute z = eiω in the Fourier series above, then we
obtain the series

∞∑
n=−∞

f [n]z−n,

which can then be considered for general complex z. In definition 18.1 the sum
of this series will be called the z-transform of f [n]. Of course, this series is only
meaningful for those values of z for which the series converges.

Let f [n] be a discrete-time signal. The z-transform of f [n] is defined byDEFINITION 18.1
z-transform

F(z) =
∞∑

n=−∞
f [n]z−n, (18.1)

for those values of z for which the series converges.

We note that the z-transform can be considered as some sort of two-sided power
series, having not only positive integer powers of z, but also negative integer powers
of z. For such series one has similar convergence properties as for power series.
In order to find these properties, we will split the z-transform into two parts, the
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so-called causal part given by the seriesCausal part

∞∑
n=0

f [n]z−n, (18.2)

and the anti-causal part given by the seriesAnti-causal part

−1∑
n=−∞

f [n]z−n . (18.3)

Note that the anti-causal part can be rewritten as

−1∑
n=−∞

f [n]z−n =
∞∑

n=1

f [−n]zn,

which transforms it into a power series in z with coefficients f [−n].
Convergence of the z-transform means that the series

N∑
n=−M

f [n]z−n

should converge for M → ∞ and N → ∞, independently from each other. Conse-
quently, the z-transform converges if and only if both the causal and the anti-causal
part converge. We denote the sum of the causal part by F+(z) and the sum of the
anti-causal part by F−(z). Hence, in the case of convergence we have

F+(z) =
∞∑

n=0

f [n]z−n,

F−(z) =
−1∑

n=−∞
f [n]z−n, (18.4)

F(z) =
∞∑

n=−∞
f [n]z−n = F−(z) + F+(z).

It is thus important to find out for which values of z both parts converge. The
anti-causal part is a power series in z. If we put w = 1/z, then we see that the
causal part is a power series in w . Complex power series

∑∞
n=0 anzn have a radius

of convergence R (see chapter 2) for which we have one of the following three
possibilities:

a when R = 0, the power series converges only for z = 0;
b when R = ∞, the power series converges absolutely for all complex z;
c when R > 0, the power series converges absolutely for | z | < R and diverges
for | z | > R.

Now let R2 be the radius of convergence of the anti-causal part and R−1
1 the radius of

convergence of the power series
∑∞

n=0 f [n]wn . Then the anti-causal part converges
absolutely for | z | < R2 and the causal part converges for | z | > R1.

- If R1 < R2, then we may conclude that the z-transform converges in the ring
R1 < | z | < R2 (see figure 18.1). For | z | > R2 the causal part converges while
the anti-causal part diverges, and so the z-transform is divergent. For | z | < R1
the anti-causal part converges while the causal part diverges, and so again the
z-transform is divergent. We will call the ring R1 < | z | < R2 the region ofRegion of convergence
convergence of the z-transform. The region of convergence does not necessarily
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FIGURE 18.1
Region of convergence of the z-transform.

coincide with the set of all z for which the z-transform converges. Specifically,
the z-transform may well be convergent at some of the points on the boundary of
the ring. We will not go into this any further.

- If R1 > R2, then the z-transform diverges for every complex z and so the region
of convergence is empty.

- If R1 = 0 (which means that the causal part converges for every z �= 0), then
the region of convergence is the interior of the circle with radius R2, with the
exception of z = 0. If all terms of the causal part are zero, with the possible
exception of the term with n = 0, then z = 0 also belongs to the region of
convergence.

- If R2 = ∞, then the region of convergence is the exterior of the circle with radius
R1.

In practice we are usually dealing with signals that have been switched on at a
certain moment in time. Such signals will be called signals with a finite switch-onSignals with a finite

switch-on time time. For these signals there exists an N such that f [n] = 0 for all n < N . The
anti-causal part then consists of only a finite number of non-zero terms and so this
part converges for all z, implying R2 = ∞. The region of convergence is then the
exterior of a circle with radius R1 (see figure 18.2). Examples of this are of course
the causal signals. The mapping assigning the z-transform F(z) to f [n] is called

0 Re z

Im z

R1

iR1

FIGURE 18.2
Region of convergence of a signal with a finite switch-on time.
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the z-transform, and when V is the region of convergence, then we denote this byz-transform
the transform pairTransform pair

f [n] ↔ F(z) for z ∈ V .

We will also call F(z) the description of the signal f [n] in the so-called z-domain.z-domain
The z-domain is the complex plane.

Let f [n] be the signal given byEXAMPLE 18.1

f [n] =



1/n for n > 0,
0 for n = 0,
2n for n < 0.

The anti-causal part is the power series

−1∑
n=−∞

2nz−n =
∞∑

n=1

( z

2

)n
.

This is a geometric series which is convergent for | z | < 2 and divergent for | z | ≥ 2.
The causal part is the series

0 +
∞∑

n=1

z−n

n
=

∞∑
n=1

1

n

(
1

z

)n
.

This series can be considered as a power series in 1/z, which converges for | 1/z | <

1 (see chapter 2). Hence, the causal part converges for | z | > 1 and diverges for
| z | < 1. The region of convergence of the z-transform of the signal f [n] is thus the
ring 1 < | z | < 2. �

Let f [n] be the causal signal given by f [n] = anε[n], where a ∈ C, a �= 0. SinceEXAMPLE 18.2
f [n] = 0 for n < 0, all terms of the anti-causal part of the z-transform are zero, and
so this part converges for every complex z. Hence, R2 = ∞. The causal part is a
geometric series:

∞∑
n=0

anz−n =
∞∑

n=0

(a

z

)n
.

This geometric series converges for | z | > | a |. The region of convergence is thus
the exterior of the circle in the complex plane with radius | a |. The sum of the
geometric series is equal to z/(z − a). We have now found that

anε[n] ↔ z

z − a
for | z | > | a |. (18.5)

�

Let f [n] be the discrete-time signal defined byEXAMPLE 18.3

f [n] =
{

0 for n ≥ 0,
−an for n < 0.

Here a ∈ C, a �= 0. All the terms in the causal part of the z-transform are zero, and
so the causal part converges for every complex z and has sum 0. The anti-causal
part is found as follows:

−1∑
n=−∞

(−anz−n) = −
∞∑

n=1

( z

a

)n
.
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Again this is a geometric series with ratio z/a, convergent for | z | < | a | and with
sum z/(z − a). The region of convergence is thus the interior of the circle in the
complex plane with radius | a |. We have now found that

f [n] ↔ z

z − a
for | z | < | a |.

�
The z-transform of the discrete unit pulse δ[n] is easy to calculate. A direct substi-EXAMPLE 18.4
tution gives

∞∑
n=−∞

δ[n]z−n = 1,

and this series converges for every complex z. We thus have

δ[n] ↔ 1 for all z ∈ C. (18.6)

Apparently, the region of convergence is the whole complex plane. �
Examples 18.2 and 18.3 illustrate how important it is to indicate the region of

convergence of the z-transform. We see that in both of the examples the z-transform
equals z/(z − a), while the signals f [n] are different. Fortunately, the regions of
convergence also differ.

From the above it should be clear that f [n] is not uniquely determined when only
F(z) is given. In order to determine f [n] uniquely one must also know the region of
convergence. Determining an inverse z-transform thus requires us to be very careful,
and in addition one will also need a mathematical tool that is outside the scope of
this book. However, we have seen that for signals with a finite switch-on time, such
as causal signals, the region of convergence is the exterior of a circle. In that case
we can recover the signal f [n] from the sum F(z) only. We will return to this in
section 18.3.

EXERCISES

Determine the region of convergence of the z-transform of a discrete-time signal18.1
f [n] having only finitely many values f [n] unequal to zero.

Sketch the region of convergence of the z-transform of the signal f [n] given by18.2
f [n] = (2−n + 3−n)ε[n].

Sketch the region of convergence of the z-transform of the following signals:18.3
a f [n] = (2n + 3n)ε[−n],
b f [n] = cos(nπ/2)ε[n],
c f [n] = cos(nπ/2)ε[n] + (2n + 3n)ε[−n].

18.2 Properties of the z-transform

The properties or rules that are treated here will use the transform pairs f [n] ↔
F(z) and g[n] ↔ G(z). An overview of the properties can be found in table 14 at
the back of this book.

18.2.1 Linearity

From definition 18.1 it follows immediately that the z-transform is a linear transfor-Linearity
mation. This means that for all complex a and b we have

a f [n] + bg[n] ↔ aF(z) + bG(z). (18.7)
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18.2.2 Time reversal

By time reversal we mean the operation in the n-domain whereby n is replaced byTime reversal
−n. This has the following consequence for the z-transform:

f [−n] ↔ F

(
1

z

)
. (18.8)

Prove this property yourself.

18.2.3 Conjugation

The z-transform of f [n] can be found using the following direct calculation:

∞∑
n=−∞

f [n]z−n =
∞∑

n=−∞
f [n](z)−n = F(z).

This implies the conjugation propertyConjugation

f [n] ↔ F(z). (18.9)

If the signal f [n] is real, so f [n] = f [n], then it follows from (18.9) that F(z) =
F(z). Conversely, if F(z) = F(z), then we can show that the signal f [n] has to be
real.

If f [n] is a real signal and a is a zero of F(z), then a is also a zero of F(z). This
follows from F(a) = F(a) = 0, so F(a) = 0. Hence, the zeros lie symmetrically
with respect to the real axis (see figure 18.3).

*

*

*

*

*

*
0 Re z

Im   z

FIGURE 18.3
Zeros of the z-transform of a real signal.

18.2.4 Shift in the n-domain

In section 16.3.5 it was already noted that shifting in the n-domain is only allowed
for an integer l. The corresponding operation in the z-domain can be derived as
follows:

∞∑
n=−∞

f [n − l]z−n =
∞∑

n=−∞
f [n]z−(n+l) = z−l F(z).

From this we obtain the shift property of the z-transform:Shift in the n-domain

f [n − l] ↔ z−l F(z). (18.10)
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Using the discrete unit pulse, we can describe a discrete-time signal f [n] havingEXAMPLE 18.5
f [n] �= 0 for only finitely many values of n by the finite sum

f [n] =
N∑

l=−N

f [l]δ[n − l].

Here N is chosen such that f [n] = 0 for | n | > N . Since δ[n] ↔ 1, applying the
shift property (18.10) and the linearity (18.7) gives

F(z) =
N∑

l=−N

f [l]z−l .

What shows up here is nothing else but definition 18.1 of the z-transform of the
given signal. �

18.2.5 Scaling in the z-domain

Instead of a shift in the z-domain, we now consider a scaling in the z-domain. This
is because a shift in the z-domain will lead to a complicated and not very useful
operation in the n-domain.

Scaling in the z-domain means that we replace z by z/a, where a ∈ C, a �= 0.
We have

F
( z

a

)
=

∞∑
n=−∞

f [n]
( z

a

)−n =
∞∑

n=−∞
an f [n]z−n .

From this, the following rule for scaling in the z-domain immediately follows:Scaling in the z-domain

an f [n] ↔ F
( z

a

)
. (18.11)

18.2.6 Differentiation in the z-domain

Complex power series have similar properties to real power series. One of these
concerns the termwise differentiation of a power series (see chapter 2). We for-
mulate this as follows. When the complex power series

∑∞
n=0 anzn has radius of

convergence R and when S(z) is the sum for | z | < R, then S(z) is differentiable for
| z | < R (see chapter 11 for differentiability of complex functions) and, moreover,

d

dz
S(z) =

∞∑
n=1

nanzn−1 for | z | < R. (18.12)

We will not prove this property. This property can be extended in an obvious way
to the two-sided power series

∑∞
n=−∞ anzn that we encounter in the z-transform.

Termwise differentiation is then allowed in the region of convergence, which is
mostly a ring in the complex plane. Term-by-term differentiation gives

d

dz

∞∑
n=−∞

f [n]z−n = −
∞∑

n=−∞
n f [n]z−n−1.

From this we obtain the differentiation rule for the z-transform:Differentiation in the
z-domain

n f [n] ↔ −z
d

dz
F(z). (18.13)
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Calculating the z-transform of a signal will in general consist of applying one or
more of the above properties, and using a number of frequently occurring transform
pairs, some of which have been included in table 13. In the following example we
will derive two such important transform pairs.

The z-transform of the discrete step signal ε[n] equals F(z) = z/(z − 1), withEXAMPLE 18.6
the convergence region being | z | > 1 (see example 18.2 with a = 1). From the
differentiation rule it follows that

nε[n] ↔ −z
d

dz

z

z − 1
= z

(z − 1)2
for | z | > 1.

Applying the shift property gives (n − 1)ε[n − 1] ↔ 1/(z − 1)2. Again applying
the differentiation rule leads to

n(n − 1)ε[n − 1] ↔ −z
d

dz

1

(z − 1)2
= 2z

(z − 1)3
for | z | > 1.

Note that n(n − 1)ε[n − 1] = n(n − 1)ε[n]. This process can be repeated over and
over again, say k times, which eventually results in the following transform pair:

n(n − 1) · . . . · (n − k + 1)ε[n] ↔ k!
z

(z − 1)k+1
for | z | > 1.

Using the binomial coefficients we can also express this transform pair as follows:(
n

k

)
ε[n] ↔ z

(z − 1)k+1
for | z | > 1.

The binomial coefficients are defined, as usual, by(
n

0

)
= 1,

(
n

k

)
= n(n − 1) · . . . · (n − k + 1)

k!
for k = 1, 2, . . ..

Note that
(n
k
) = 0 for k > n. Applying the scaling property (18.11) we finally obtain

for a �= 0 and k = 0, 1, 2, . . . the transform pair

(
n

k

)
anε[n] ↔ ak z

(z − a)k+1
for | z | > | a |. (18.14)

We can subsequently use the time reversal rule (18.8) to derive for a �= 0 and
k = 0, 1, 2, . . . that

(
n

k

)
anε[−n − 1] ↔ −ak z

(z − a)k+1
for | z | < | a |. (18.15)

In exercise 18.6 you are asked to derive this result. �

EXERCISES

Determine the z-transform F(z) for each of the signals f [n] given below, and de-18.4
termine the region of convergence as well:
a f [n] = 2nε[n − 2],
b f [n] = 2nε[−n − 2],
c f [n] = (−1)nε[−n],
d f [n] = ε[4 − n],
e f [n] = (n2 + n4n)ε[n].
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Determine the z-transform F(z) for each of the following signals:18.5
a f [n] = cos(nπ/2)ε[n],
b f [n] = sin(nπ/2)ε[n],
c f [n] = einφε[n] + 2neinφε[−n], for a given φ.

Derive formula (18.15).18.6

18.3 The inverse z-transform of rational functions

In the introduction we remarked that we will not present an inverse of the z-transform.
This does not mean that an inverse z-transform does not exist. In its most general
form, the inverse z-transform requires a rather advanced mathematical tool. How-
ever, in practice one often encounters z-transforms that are rational functions of z.
We will therefore confine ourselves to these functions when determining an inverse.
A rational function F(z) can be written in the form

F(z) = anzn + an−1zn−1 + · · · + a1z + a0

bm zm + bm−1zm−1 + · · · + b1z + b0
. (18.16)

The numerator and the denominator contain polynomials in the complex variable
z. Denote the numerator by P(z) and the denominator by Q(z). We assume that
an �= 0 and bm �= 0. Hence, the degree of P(z) is n and the degree of Q(z) is
m. Moreover, we will assume that numerator and denominator have no common
factors, which means that there is no polynomial D(z) with a degree greater than
or equal to 1 which is a divisor of both P(z) and of Q(z). Now the problem is to
find a discrete-time signal f [n] with f [n] ↔ F(z). We know that if the region
of convergence is not indicated, the signal f [n] is not uniquely determined. The
distinct regions of convergence playing a role here can be derived from the location
of the zeros of Q(z), which are called the poles of F(z). In chapter 2 we notedPole
that every polynomial in the complex plane can be completely factorized into linear
factors, so

Q(z) = c(z − z1)ν1(z − z2)ν2 · . . . · (z − zl )
νl , (18.17)

where c ∈ C, ν1, ν2, . . . , νl are integers greater than or equal to 1, and z1, z2, . . . ,
zl are the distinct zeros of Q(z). The point z j is then called a pole of F(z) of orderOrder of a pole
ν j . We now state without proof that the distinct regions of convergence that can
play a role in the inverse transform of F(z) are the rings bounded by the circles
in the complex plane having radius

∣∣ z j
∣∣ with j = 1, 2, . . . , l (see figure 18.4),

including the exterior of the largest circle and the interior of the smallest circle. For
each ring another inverse transform can be obtained. This means that a signal f [n]
can be found whose z-transform is equal to the given F(z) and whose region of
convergence is equal to the given ring.

Let F(z) = z/(z−1). There is only one pole at z = 1 of order 1. One can distinguishEXAMPLE 18.7
two regions of convergence, namely | z | > 1 and | z | < 1. From example 18.2 it
follows that the signal f [n] = ε[n] corresponds to the region of convergence | z | >

1; from example 18.3 it follows that the signal f [n] = −ε[−n − 1] corresponds to
the region of convergence | z | < 1. �

In practice one usually works with signals having a finite switch-on time. For
such signals the region of convergence of the z-transform is always the exterior of a
circle in the complex plane, as we have already noted in section 18.1. In the theory of
discrete systems we will encounter signals h[n] whose z-transform is again a rational
function and, moreover, having the property that the circle | z | = 1 belongs to the
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FIGURE 18.4
Regions of convergence of the z-transform.

region of convergence. This implies that the series
∑∞

n=−∞ h[n]z−n is absolutely
convergent for | z | = 1. We will call signals h[n] having this property absolutelyAbsolutely summable
summable. Hence, a signal f [n] is absolutely summable if

∞∑
n=−∞

| f [n] | < ∞. (18.18)

Determining the inverse z-transform will be limited to absolutely summable signals
and to signals with a finite switch-on time. We will use some examples to show how
these signals can be obtained by using a partial fraction expansion in combination
with a frequent application of (18.14) and (18.15).

Let the function F(z) be given byEXAMPLE 18.8

F(z) = z3

z2 − 1
.

Motivated by (18.14) and (18.15), both containing a factor z in the numerator, we
do not expand F(z) in partial fractions, but instead F(z)/z:

F(z)

z
= z2

z2 − 1
= z2

(z − 1)(z + 1)
.

We cannot start with a partial fraction expansion immediately, since the degree of
the numerator (2 in this case) is not smaller than the degree of the denominator
(again 2 in this case). However, it is easy to see that z2 = 1 · (z2 − 1) + 1. Hence,

z2

z2 − 1
= 1 + 1

z2 − 1
.

A partial fraction expansion of 1/(z2 − 1) gives

1

z2 − 1
= 1

2

(
1

z − 1
− 1

z + 1

)
.
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We thus obtain that

F(z)

z
= 1 + 1

2

(
1

z − 1
− 1

z + 1

)
, or F(z) = z + 1

2

(
z

z − 1
− z

z + 1

)
.

The poles of F(z) are located at z = 1 and z = −1. There is thus no region of con-
vergence containing the unit circle. The inverse z-transform of F(z) corresponding
to the region of convergence | z | > 1 results in the signal f [n] with a finite switch-
on time. We can now determine the signal f [n] by applying the inverse transform
to each of the terms in the above expression for F(z), taking into account the re-
gion of convergence. The term z is easy: it arises from the discrete signal δ[n + 1];
use example 18.4 and apply a shift in the n-domain. Since the region of conver-
gence is | z | > 1, we use formula (18.14) for the remaining terms. This results in
f [n] = δ[n + 1] + 1

2 ε[n] − 1
2 (−1)nε[n]. �

Let the function F(z) be given byEXAMPLE 18.9

F(z) = z

(z − 1
2 )(z − 2)

.

A partial fraction expansion of F(z)/z leads to

F(z) = 2

3

(
z

z − 2
− z

z − 1
2

)
.

The rational function F(z) has poles at z = 2 and z = 1
2 . First, we are interested

in the absolutely summable signal f [n] having z-transform F(z). This means that
the region of convergence has to contain the unit circle. We should keep this in
mind when determining the inverse transform of the terms of F(z). We therefore
use (18.14) for the inverse transform of the term z/(z − 1

2 ) and (18.15) for the term
z/(z − 2). This guarantees that the unit circle belongs to the region of convergence.
For we then have

2−nε[n] ↔ z

z − 1
2

for | z | > 1
2 ,

2nε[−n − 1] ↔ − z

z − 2
for | z | < 2.

The absolutely summable signal is therefore given by

f [n] = 1
3 (−2−n+1ε[n] − 2n+1ε[−n − 1]).

When, on the other hand, we are interested in the signal with a finite switch-on time
having z-transform F(z), then the region of convergence is the exterior of the circle
| z | = 2. In this case the inverse transform of the term z/(z−2) has to be determined
using (18.14) as well. It then follows that

2nε[n] ↔ z

z − 2
for | z | > 2.

Hence, we now obtain that

f [n] = 1
3 (2n+1 − 2−n+1)ε[n].

�

Let the function F(z) be given byEXAMPLE 18.10

F(z) = 1

z(z − 2)2
.
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We calculate the causal signal f [n] whose z-transform is the given function F(z).
The poles of F(z) are at z = 0 (order 1) and at z = 2 (order 2). A partial fraction
expansion of F(z)/z gives

F(z) = 1

4

(
1 + 1

z
− z

z − 2
+ z

(z − 2)2

)
.

Since we are looking for a causal signal, we use (18.14) to determine the inverse
transform of the terms in the above expression for F(z), resulting in

f [n] = 1
4 (δ[n] + δ[n − 1] − 2nε[n] + n2n−1ε[n]).

�

We close this section with an example of a denominator having complex zeros.

Let the function F(z) be given byEXAMPLE 18.11

F(z) = z4 + z3 − 2z + 1

z2 + 2z + 2
.

The following steps will lead to the signal f [n] with a finite switch-on time whose
z-transform equals the given F(z). Motivated by (18.14) and (18.15), both having a
factor z in the numerator, we divide F(z) by z, as in examples 18.8 – 18.10:

F(z)

z
= z4 + z3 − 2z + 1

z(z2 + 2z + 2)
.

Since the degree of the numerator is greater than or equal to the degree of the de-
nominator, we use a division to write the numerator in the form z4 + z3 − 2z + 1 =
(z − 1)(z3 + 2z2 + 2z) + 1 and hence

F(z)

z
= z − 1 + 1

z(z2 + 2z + 2)
.

Factorizing the denominator gives the poles of F(z): z(z2 + 2z + 2) = z(z + 1 +
i)(z + 1 − i). Next we apply a partial fraction expansion:

1

z(z2 + 2z + 2)
= A

z
+ B

z + 1 + i
+ C

z + 1 − i
.

In order to determine the constants A, B and C we note that

1 = A(z2 + 2z + 2) + Bz(z + 1 − i) + Cz(z + 1 + i).

Successive substitution of the poles z = 0, z = −1 − i , z = −1 + i gives A = 1/2,
B = −(1 + i)/4, C = −(1 − i)/4. Hence,

F(z) = z2 − z + 1

2
− (1 + i)z/4

z + 1 + i
− (1 − i)z/4

z + 1 − i
.

The signal f [n] with a finite switch-on time can now be obtained using (18.14)
again, which results in

f [n] = δ[n + 2] − δ[n + 1] + 1
2 δ[n]

− 1
4 (−1)n(1 + i)n+1ε[n] − 1

4 (−1)n(1 − i)n+1ε[n]

= δ[n + 2] − δ[n + 1] + 1
2 δ[n] − 1

4 (−1)n((1 + i)n+1 + (1 − i)n+1)ε[n].

Note that the rational function F(z) has real coefficients. From this it follows
that F(z) satisfies the relation F(z) = F(z) (verify this yourself). In section
18.2.3 we have noted that f [n] has to be a real signal then, although this is not
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immediately clear from the previous expression for f [n]. However, if we write
1 ± i = √

2e±π i/4, then it follows from

(1 + i)n+1 + (1 − i)n+1 =
(√

2
)n+1

(ei(n+1)π/4 + e−i(n+1)π/4)

=
(√

2
)n+3

cos 1
4 (n + 1)π

that

f [n] = δ[n + 2] − δ[n + 1] + 1
2 δ[n] +

((
−

√
2
)n−1

cos 1
4 (n + 1)π

)
ε[n].

�

EXERCISES

Determine the real and absolutely summable signal f [n] whose z-transform is given18.7
in example 18.10.

Determine the signal f [n] with a finite switch-on time whose z-transform F(z) is18.8
given by F(z) = 1/(z2 + 4).

Determine the absolutely summable signal f [n] whose z-transform is given by18.9
F(z) = 1/(z2 + 4).

Determine the signal f [n] with a finite switch-on time whose z-transform is given18.10
by F(z) = z3/((z + 1

2 )(z + 3)).

Determine the absolutely summable signal f [n] whose z-transform is given by18.11
F(z) = z3/((z + 1

2 )(z + 3)).

18.4 Convolution

For each transform considered up to now, we were able to define, for two signals
in the time domain, a convolution product whose transform was equal to the ordi-
nary product of the transforms of the signals involved. This can also be done for
the z-transform. Let us assume that for two discrete signals f [n] and g[n] the z-
transforms are given by, respectively, F(z) and G(z). We then want to find a signal
h[n] in the n-domain whose z-transform is equal to the ordinary product F(z)G(z).
We are thus trying to find a discrete-time signal h[n] such that

∞∑
n=−∞

h[n]z−n =
∞∑

l=−∞
f [l]z−l

∞∑
k=−∞

g[k]z−k .

In the right-hand side of this expression we have a product of two infinite series. In
order to find an expression for h[n], we will expand this product in a formal way
and then sort the terms with respect to equal powers of z. By ‘formal’ we mean that
we will not worry about possible convergence issues at the moment. The coefficient
h[n] of z−n is then equal to an infinite sum:

h[n] =
∞∑

l=−∞
f [l]g[n − l].

The series in the right-hand side arises by multiplying the coefficient of z−l in the
series for F(z) by the coefficient of z−n+l in the series for G(z) and then summing
this over all l. It is now clear how we should define the convolution product of two
discrete-time signals for the z-transform.
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For two discrete-time signals f [n] and g[n] the convolution product ( f ∗ g)[n] isDEFINITION 18.2
Convolution product of
discrete-time signals

defined by

( f ∗ g)[n] =
∞∑

l=−∞
f [l]g[n − l]. (18.19)

In exercise 18.16 you will be asked to show that, similar to any of the other con-
volution products, the convolution product of discrete-time signals is commutative.

The expression in (18.19) is an infinite sum and so special attention should be
given to convergence. We will not go into this in much detail here, and confine
ourselves to the situation where the regions of convergence of the z-transforms of
f [n] and g[n] are both non-empty. The product F(z)G(z) is then certainly defined
on the intersection of these two regions of convergence, and therefore we will sub-
sequently assume that the intersection is also non-empty. In this situation one can
show that the series in (18.19) even converges absolutely. The proof of this, as well
as the proof of the following convolution theorem, will be omitted.

Let f [n] and g[n] be discrete-time signals having z-transforms F(z) and G(z) re-THEOREM 18.1
Convolution theorem spectively, and let V be the intersection of the regions of convergence of these z-

transforms. Then

( f ∗ g)[n] ↔ F(z)G(z) for z ∈ V . (18.20)

Let the discrete-time signals f [n] and g[n] be given by f [n] = 2−nε[n] and g[n] =EXAMPLE 18.12
ε[−n]. The z-transform of f [n] follows immediately from (18.14): F(z) = z/(z −
1
2 ) with region of convergence | z | > 1

2 . The z-transform of g[n] follows from
(18.15): G(z) = 1/(1 − z) with region of convergence | z | < 1. The intersection of
these two regions of convergence is the ring 1

2 < | z | < 1. This region is non-empty
and the convolution product is thus well-defined:

( f ∗ g)[n] =
∞∑

l=−∞
2−lε[l]ε[l − n] =

∞∑
l=0

2−lε[l − n].

In this case one can determine the convolution product in a direct way. For n < 0 it
equals

∑∞
l=0 2−l = 2 and for n ≥ 0 it equals

∑∞
l=n 2−l = 21−n . Using ε[n] this

can be written as

( f ∗ g)[n] = 2ε[−1 − n] + 21−nε[n].

One can also determine the convolution product using the convolution theorem. Ac-
cording to the convolution theorem, the z-transform of ( f ∗ g)[n] equals

F(z)G(z) = z

(z − 1
2 )(1 − z)

.

By transforming this back to the n-domain one can obtain the convolution product
as well. A partial fraction expansion gives

z

(z − 1
2 )(1 − z)

= 2z

z − 1
2

+ 2z

1 − z
.

In order to write the two terms in the right-hand side as sums of power series, we
have to take into account that the ring 1

2 < | z | < 1 should be the region of con-
vergence for these series. Both terms can then be written as a sum of a geometric
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series, converging in the indicated ring, as follows:

2z

z − 1
2

= 2

1 − (2z)−1
=

∞∑
n=0

21−nz−n for | z | > 1
2 ,

2z

1 − z
=

∞∑
n=0

2zn+1 =
−1∑

n=−∞
2z−n for | z | < 1.

Hence, for 1
2 < | z | < 1 we have

F(z)G(z) =
−1∑

n=−∞
2z−n +

∞∑
n=0

21−nz−n .

From this one immediately obtains the previously found expression for the convo-
lution product. �

In practice we are often dealing with signals in the n-domain having a finite
switch-on time. In the previous section we have seen that the region of convergence
of the z-transform of such signals is the exterior of a circle. The convolution product
of these kinds of signals is again such a signal, and so the region of convergence of
the z-transform is then again the exterior of a circle. This can be shown as follows.
When f [n] and g[n] are discrete signals such that f [n] = g[n] = 0 for n < N and
some N (N may also be negative), then the convolution product can be written as

( f ∗ g)[n] =
∞∑

l=−∞
f [l]g[n − l] =

∞∑
l=N

f [l]g[n − l].

If n < 2N , then n − l < 2N − N = N for l ≥ N and so all terms in the above series
are 0. The convolution product is thus a signal which is zero for n < 2N . Moreover,
the series in the convolution product contains only a finite number of terms unequal
to zero. This is because if l > n − N we have g[n − l] = 0. We may thus conclude
that

( f ∗ g)[n] =
(

n−N∑
l=N

f [l]g[n − l]

)
ε[n − 2N ].

In particular, if f [n] and g[n] are causal signals (which corresponds to N = 0), then
the convolution product is causal as well and

( f ∗ g)[n] =
(

n∑
l=0

f [l]g[n − l]

)
ε[n].

Let the causal signals f [n] and g[n] be given by f [n] = 2−nε[n] and g[n] =EXAMPLE 18.13
3−nε[n], then

( f ∗ g)[n] =
(

n∑
l=0

2−l 3−(n−l)

)
ε[n] = 3−n

(
n∑

l=0

(
3

2

)l
)

ε[n].

Hence,

( f ∗ g)[n] = (3 · 2−n − 2 · 3−n)ε[n].

The convolution product can also be found in a different way. By the convolu-
tion theorem, the z-transform of the convolution product equals F(z)G(z), where
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F(z) = z/(z − 1
2 ) and G(z) = z/(z − 1

3 ). Hence (after a partial fraction expansion),

( f ∗ g)[n] ↔ 3z

z − 1
2

− 2z

z − 1
3

.

An inverse transform gives us the same convolution product as before. �
EXERCISES

We call N the switch-on time of a signal f [n] if f [n] = 0 for n < N and f [N ] �= 0,18.12
and we call M the switch-off time of f [n] if f [n] = 0 for n > M and f [M] �=
0. Let f [n] and g[n] be discrete-time signals with switch-on times N1 and N2
respectively, and switch-off times M1 and M2 respectively. Give the switch-on and
switch-off time of the convolution product of f [n] and g[n].

a Calculate the causal signal f [n] whose z-transform is given by F(z) =18.13
z/(z2 + 1).
b Use the convolution theorem to calculate the causal signal h[n] whose
z-transform is given by H(z) = z2/(z2 + 1)2.

Show that ( f ∗ ε)[n] = ∑n
l=−∞ f [l].18.14

Use the convolution theorem to show that ( f ∗ δ)[n] = f [n].18.15

Show that the convolution product (18.19) is commutative.18.16

18.5 Fourier transform of non-periodic discrete-time signals

In this section we will meet a Fourier transform for non-periodic discrete-time sig-
nals. In section 18.1 we have already noted that for a discrete-time signal f [n] the
infinite series

∞∑
n=−∞

f [n]e−inω (18.21)

could serve as the Fourier transform of a non-periodic discrete-time signal f [n]. In
this section we will see that this is indeed the case. To start with, we note that if
F(z) is the z-transform of f [n], then the above series arises by substituting for z the
complex number z = eiω, which lies on the complex unit circle, into the series for
the z-transform. Hence,

F(eiω) =
∞∑

n=−∞
f [n]e−inω.

An expression like this is well-known to us. In the right-hand side we have a com-
plex Fourier series whose sum equals the function F(eiω). This function is periodic
with period 2π . It is then possible to recover f [n] from F(eiω) using the well-
known formula (3.9) for the Fourier coefficients. Applying this formula gives (note
the sign!)

f [n] = 1

2π

∫ π

−π
F(eiω)einω dω. (18.22)

We can now also interpret (18.22) by comparing it with the inverse Fourier transform
of a continuous-time signal f (t):

f (t) = 1

2π

∫ ∞

−∞
Fa(ω)eiωt dω.
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Here Fa(ω) is the spectrum of f (t). The signal f (t) is written here as a (continu-
ous) superposition of the continuous-time harmonic signals eiωt with frequency ω.
Formula (18.22) will now be interpreted in the same way. The discrete signal f [n]
is written here as a (continuous) superposition of the discrete-time harmonic signals
einω with frequency ω. Analogous to the continuous-time situation, it is now quite
natural to call F(eiω) the Fourier transform or spectrum of the signal f [n].

Let f [n] be a discrete-time signal. The Fourier transform or spectrum of f [n] is theDEFINITION 18.3
Fourier transform or
spectrum of a discrete-time
signal

function F(eiω) defined by

F(eiω) =
∞∑

n=−∞
f [n]e−inω for ω ∈ R. (18.23)

The transform assigning the spectrum F(eiω) to the function f [n] is called the
Fourier transform for discrete signals. This should be distinguished from the DFT,
which in first instance was created for periodic discrete-time signals.

Because of the strong similarity with the Fourier series and the z-transform, the
Fourier transform for discrete-time signals will have a number of analogous prop-
erties. Of course, there is still the convergence issue. However, we will confine
ourselves to discrete signals f [n] that are absolutely summable, that is, for which∑∞

n=−∞ | f [n] | < ∞. Then the z-transform of f [n] converges absolutely on the
unit circle in the complex plane.

We will now list a number of properties of the Fourier transform of discrete sig-
nals. We omit the proofs since these properties are directly related to similar prop-
erties of Fourier series or of the z-transform. In fact, these properties are simply
reformulations of what we already know. In this listing of the properties, we use the
transform pairs f [n] ↔ F(eiω) and g[n] ↔ G(eiω).

Linearity a f [n] + bg[n] ↔ aF(eiω) + bG(eiω), (18.24)

Conjugation f [n] ↔ F(e−iω), (18.25)

Shift in the n-domain f [n − k] ↔ e−ikω F(eiω), (18.26)

Shift in the ω-domain einψ f [n] ↔ F(ei(ω−ψ)), (18.27)

Convolution in the n-domain ( f ∗ g)[n] =
∞∑

l=−∞
f [l]g[n − l] ↔ F(eiω)G(eiω), (18.28)

Convolution in the ω-domain f [n]g[n] ↔ 1

2π

∫ π

−π
F(ei(ω−u))G(eiu) du, (18.29)

Parseval’s identity
∞∑

n=−∞
f [n]g[n] = 1

2π

∫ π

−π
F(eiω)G(eiω) dω. (18.30)

From Parseval’s identity it immediately follows that the energy-content of a
discrete-time signal (see section 1.2.3) is given by

Energy-content
∞∑

n=−∞
| f [n] |2 = 1

2π

∫ π

−π

∣∣∣ F(eiω)

∣∣∣2 dω. (18.31)



18.5 Non-periodic discrete-time signals 409

Let f [n] be the causal signal given by f [n] = 2−nε[n]. The z-transform F(z)EXAMPLE 18.14
equals F(z) = z/(z − 1

2 ). The Fourier transform equals F(eiω). According to the
left-hand side of (18.31), the energy-content of f [n] equals

∞∑
n=−∞

| f [n] |2 =
∞∑

n=0

4−n = 4

3
,

and according to the right-hand side it equals

1

2π

∫ π

−π

∣∣∣ F(eiω)

∣∣∣2 dω = 1

2π

∫ π

−π

eiω

(eiω − 1
2 )

e−iω

(e−iω − 1
2 )

dω

= 1

2π

∫ π

−π

1

5/4 − cos ω
dω.

We have thus found that∫ π

−π

1

5/4 − cos ω
dω = 8π

3
.

�

EXERCISES

Given is a discrete-time signal f [n] with spectrum F(eiω). Show that18.17

n∑
l=−∞

2l−n f [l] = 1

π

∫ π

−π

F(eiω)

2eiω − 1
einω dω.

Show that the spectrum F(eiω) of a real signal f [n] satisfies F(eiω) = F(e−iω).18.18
Is the converse statement also true?

Calculate the energy-content of the signal f [n] whose spectrum is given by18.19
F(eiω) = cos ω.

The autocorrelation ρ[n] of a discrete-time signal f [n] is defined by18.20

ρ[n] =
∞∑

l=−∞
f [l] f [n + l].

Calculate the spectrum of ρ[n].

Show that δ[n] = 1
2π

∫ π
−π einω dω.18.21

S U M M A R Y

In this chapter the z-transform F(z) = ∑∞
n=−∞ f [n]z−n has been introduced as

an operation on non-periodic discrete-time signals. In general, the region of conver-
gence of the z-transform is a ring in the complex plane, whose boundary is deter-
mined by the radius of convergence of the anti-causal part and of the causal part.

The properties of the z-transform are very similar to the other transforms that have
been treated earlier. A table of properties is included at the back of this book (see
table 14). For the reconstruction of a signal from a given z-transform it is important
that the region of convergence is known. In practice, mainly signals occur whose
z-transform is a rational function of z. If we then know that the signal is absolutely
summable, or that it has a finite switch-on time, then we can recover the original
signal by means of a partial fraction expansion. The absolutely summable signals
will play a role in the study of stable discrete-time signals in chapter 19.
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From the z-transform F(z) of a signal f [n] one obtains the Fourier transform of
f [n] by substituting z = eiω. The quantity ω is then called the frequency, and the
Fourier transform F(eiω) the spectrum of f [n]. Properties of the Fourier transform
follow immediately from the theory of the Fourier series, since the Fourier transform
of f [n] represents a Fourier series. Using Parseval’s identity for periodic functions
one can then easily obtain the energy-content of the signal f [n].

S E L F T E S T

A discrete-time signal f [n] is given by f [n] = 2−nε[n + 2].18.22
a Determine the region of convergence of the z-transform F(z) of f [n] and cal-
culate F(z).
b Calculate the signal g[n] given by g[n] = ∑n

l=−∞ f [l].
c Determine the Fourier transform of f [n].

For a discrete-time signal f [n] the z-transform F(z) is given by18.23

F(z) = z2

z + 2
.

a Calculate f [n] if in addition it is given that f [n] is absolutely summable.
b Determine the Fourier transform of f [n].
c Calculate the spectrum of 2n f [n].

For a causal discrete-time signal f [n] the z-transform F(z) is given by18.24

F(z) = 1

z(4z2 + 1)
.

a Show that f [n] is absolutely summable and determine the spectrum of f [n].
b Calculate f [n].
c Is the signal f [n] real? Justify your answer.

For a discrete-time signal f [n] it is given that18.25

f [n] =
n∑

l=0

g[l]g[n − l].

Here g[n] is a real and causal signal whose spectrum is given by

G(eiω) = 1

4 + cos(2ω)
.

Determine the z-transform of f [n].
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CHAPTER 19

Applications of discrete transforms

I N T R O D U C T I O N

Applications of discrete transforms can mainly be found in the processing of dis-
crete signals in discrete-time systems. In chapter 1 we have already discussed such
systems in general terms. Since we now have certain discrete transforms available,
we are able to get a better understanding of the discrete systems. Hence, in the
present chapter we we will focus on a further analysis of the discrete-time systems.

In systems theory we distinguish inputs and the corresponding outputs or re-
sponses of the system. For discrete-time systems these signals are discrete-time
signals. A system can be described by giving the relation that exists between the in-
puts and the outputs. This can be done in several ways. For example, by describing
the relation in the n-domain, or in the z-domain, or, just as important, by describing
it in the frequency or ω-domain. In the latter case we have the relationship between
the spectra of the input and outputs in mind.

Discrete transforms play a special role in linear time-invariant discrete systems,
similar to the role played by the Fourier integral in continuous-time systems (see
chapter 10). Linear time-invariant systems have already been introduced in chapter
1 (see section 1.3.2). Discrete-time systems that are linear and time-invariant will
henceforth be called LTD-systems for short. In section 19.1 we will see that for an
LTD-system the relationship between an input and the corresponding output can be
described in the n-domain by means of a convolution product. The response to the
discrete unit pulse, the so-called impulse response, is of fundamental importance
here. In fact, an LTD-system is completely determined by the impulse response.
Hence, all kinds of properties of a system can be derived from the impulse response.
Some of these properties, such as stability and causality of systems, will be exam-
ined in section 19.1.

From the convolution theorem of the z-transform it will follow that for LTD-
systems the relationship in the z-domain between the input and the output is simply
a multiplication by the so-called transfer function. The behaviour of the system
is completely determined by this transfer function. Hence, all kinds of properties
of a discrete-time system can then be derived from the transfer function as well.
Restricting the transfer function to the unit circle in the complex plane leads for
stable systems to the well-known frequency response of a system, which has already
been introduced in chapter 1. It shows precisely how the spectrum, or the Fourier
transform, of a discrete-time signal is effected by a linear time-invariant system. The
transfer function and the frequency response will be treated in section 19.2.

Next we consider in section 19.3 LTD-systems described by difference equations.
These LTD-systems are of practical importance because precisely these systems can
be realized by means of computers. These systems have a rational transfer func-
tion. The stability of an LTD-system follows from the location of the poles of this
function.

412
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LEARNING OBJECTIVES
After studying this chapter it is expected that you
- know the concepts of impulse response and step response of an LTD-system and

can determine these in simple situations
- know and can apply the relationship between an input and the corresponding out-

put using the impulse response
- can use the impulse response to verify the stability and the causality of an LTD-

system
- know the importance of the concepts of transfer function and frequency response

of an LTD-system
- can use the transfer function to verify the stability and the causality, in particular

for a rational transfer function
- know the importance of the transfer function in relation to the response of an LTD-

system to the input zn

- can analyse causal LTD-systems described by a difference equation.

19.1 The impulse response

In this section we introduce the impulse response of an LTD-system and we show its
importance in relation to LTD-systems. Therefore we will start with the definition of
the impulse response.

The impulse response h[n] of an LTD-system is the response to the discrete unit pulseDEFINITION 19.1
Impulse response δ[n]. This is denoted by

δ[n] �→ h[n]. (19.1)

As a first illustration of the importance of the impulse response, we consider a simple
LTD-system, which calculates a weighted average of an input u[n] in the following
way:

y[n] = u[n] + 2u[n − 1] + u[n − 2]

3
for n ∈ Z. (19.2)

At time n the output y[n] is equal to a weighted average of the previous three values
of the input u[n] (a running average). It is not difficult to show that this defines
an LTD-system (see exercise 19.1). For convenience we repeat the definitions of aLTD-system
linear and time-invariant system here (see definitions 1.1 and 1.2).

A discrete-time system L is called linear if for all complex a and b and all inputs
u[n] and v[n] one has

au[n] + bv[n] �→ a(Lu)[n] + b(Lv)[n] for n ∈ Z.

A discrete-time system L is called time-invariant if for all integer l and all inputs
u[n] one has

u[n − l] �→ (Lu)[n − l].

Time-invariant systems have the property that a shift in time in the input results in
the same shift in the output. Apparently, the system consists of components whose
operation does not vary in time. Keep in mind, for example, an electric network
where, among other things, the capacity of a capacitor, or the inductance of an
inductor, does not depend on time.
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We now determine the impulse response h[n] of the system defined by (19.2).
Substitution of δ[n] = u[n] in (19.2) gives

h[n] = δ[n] + 2δ[n − 1] + δ[n − 2]

3
.

We conclude from this that

h[0] = 1
3 , h[1] = 2

3 , h[2] = 1
3 , h[n] = 0 for n �= 0, 1, 2.

Therefore, relation (19.2) can also be written as

y[n] = h[0]u[n] + h[1]u[n − 1] + h[2]u[n − 2] =
∞∑

l=−∞
h[l]u[n − l].

Apparently, the output y[n] is nothing else but the convolution product of the signal
h[n] and the input u[n]. We will now show that this property holds in general for all
LTD-systems. In doing so, we tacitly assume, as for LTC-systems (see chapter 10),
that LTD-systems satisfy the superposition rule (see section 10.1), that is to say, the
linearity property is not only valid for finite series of inputs, but also for convergent
infinite series.

Let u[n] be an arbitrary input of an LTD-system. Using the representation (see
chapter 15, (15.2))

u[n] =
∞∑

l=−∞
u[l]δ[n − l],

the input u[n] has been written as a superposition of shifted discrete unit pulses.
The system is time-invariant, so the response to δ[n − l] is h[n − l]. Applying the
superposition rule, we find the following relation for the response y[n] to the input
u[n]:

y[n] =
∞∑

l=−∞
u[l]h[n − l].

This establishes the following important property of LTD-systems.

For an LTD-system with impulse response h[n], the response y[n] to an input u[n]
is given by

y[n] = (h ∗ u)[n]. (19.3)

If we know the impulse response of an LTD-system, then the above implies that the
response to any arbitrary input can be determined by calculating a convolution prod-
uct. Apparently, an LTD-system is completely characterized by its impulse response.

An LTD-system for which the relationship between an input u[n] and the responseEXAMPLE 19.1
y[n] is given by

y[n] = u[n − 1]

is called a time-delay unit. The impulse response of the time-delay unit thus equalsTime-delay unit
h[n] = δ[n − 1]. By (19.3), the relation between y[n] and u[n] can then also be
written as

y[n] =
∞∑

l=−∞
u[l]δ[n − l − 1].

�
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Let a ∈ C. The LTD-system for which the relationship between an input u[n] andEXAMPLE 19.2
the response y[n] is described by

y[n] = au[n]

is called a multiplier. The impulse response equals h[n] = aδ[n]. By (19.3), y[n]Multiplier
can also be written as

y[n] = a
∞∑

l=−∞
u[l]δ[n − l].

�

The time-delay unit and the multiplier are important components in LTD-systems
that can be realized by digital computers. We will not go into this any further in
this book. Relation (19.3) between an input u[n] and the response y[n] of an LTD-
system is one of the important applications of the convolution product. Here we
state without proof that the condition for the existence of the convolution product is
satisfied if we confine ourselves to bounded inputs and, moreover, assume that the
impulse response is absolutely summable, that is to say (see (18.18)),

∞∑
n=−∞

| h[n] | < ∞.

In this situation one can show that the series arising when we expand the convolution
product in (19.3) is also absolutely convergent. Moreover, an LTD-system with an
absolutely summable impulse response is stable (see theorem 19.1 below). Stability
of systems has been defined in chapter 1 (definition 1.3) and means that bounded
inputs result in bounded outputs. For LTD-systems this property can be verified
using the impulse response, as is shown in the following theorem.

An LTD-system with impulse response h[n] is stable if and only ifTHEOREM 19.1
Stability ∞∑

n=−∞
| h[n] | < ∞. (19.4)

Proof
First assume that h[n] is absolutely summable and that

∑∞
n=−∞ | h[n] | = I < ∞.

If u[n] is now a bounded input with | u[n] | ≤ L for all integer n and some L > 0,
then

| y[n] | =
∣∣∣∣∣

∞∑
l=−∞

h[l]u[n − l]

∣∣∣∣∣ ≤ L
∞∑

l=−∞
| h[l] | = L · I.

Hence, the output is bounded as well and it has upper bound L · I . Therefore the
system is stable.

Next let us assume that the given LTD-system is stable. A response to a bounded
input is then bounded. The discrete unit pulse is a bounded signal. The response to
this, the impulse response h[n], is thus a bounded signal. Now consider the bounded
input u[n] given by

u[n] = exp(−i arg h[−n]).

By the stability, the corresponding output y[n] is then also bounded and y[0] has the
value

y[0] =
∞∑

l=−∞
exp(−i arg h[−l])h[−l] =

∞∑
l=−∞

| h[l] | .
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Apparently, the series in the right-hand side is convergent and has sum y[0]. This
proves the theorem. �

We note here that the choice u[n] = exp(−i arg h[−n]) in the proof above is a
consequence of the assumption that the impulse response may be complex-valued.
Since h[−l] = | h[−l] | exp(i arg h[−l]), one has that

exp(−i arg h[−l])h[−l] = exp(−i arg h[−l]) | h[−l] | exp(i arg h[−l])

= | h[−l] | .

The time-delay unit is a stable system with h[n] = δ[n −1]. For, δ[n] �→ δ[n −1] =EXAMPLE 19.3
h[n] and

∞∑
n=−∞

| h[n] | =
∞∑

n=−∞
| δ[n − 1] | = δ[0] = 1.

Verify for yourself that the stability of the time-delay unit can easily be checked in
a direct way using definition 1.3. �

The multiplier is a stable system with h[n] = aδ[n]. For, δ[n] �→ aδ[n] = h[n] andEXAMPLE 19.4

∞∑
n=−∞

| h[n] | =
∞∑

n=−∞
| aδ[n] | = | a | .

The stability of the multiplier is also easy to verify using the definition. �

Consider the system u[n] �→ y[n] defined byEXAMPLE 19.5

y[n] =
n∑

l=−∞
u[l].

The impulse response h[n] equals

h[n] =
n∑

l=−∞
δ[l] = ε[n].

This system can therefore be described by

y[n] =
n∑

l=−∞
u[l] =

∞∑
l=−∞

u[l]ε[n − l] = (ε ∗ u)[n].

The system is an LTD-system, but it is not stable since

∞∑
n=−∞

| ε[n] | = ∞.

Also prove the instability using the definition. �

We have seen that the stability of an LTD-system is determined by the absolute
summability of the impulse response. This is not very surprising. Property (19.3)
states that an LTD-system is determined by the impulse response. This means that
one should somehow be able to derive all kinds of properties of an LTD-system from
the impulse response. For example, the causality of an LTD-system can also easily
be checked using the impulse response, as our next theorem will show. Causality of
a system was defined in chapter 1 (definition 1.4). For LTD-systems causality means
that the response to a causal input is again causal. Recall that a signal f [n] is causal
if f [n] = 0 for n < 0.
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An LTD-system is causal if and only if the impulse response h[n] is a causal signal.THEOREM 19.2
Causality

Proof
We will be using theorem 1.2 from chapter 1. From that theorem it follows that an
LTD-system is causal if and only if the response to an arbitrary causal input is again
causal.

First assume that the LTD-system is causal. Since δ[n] = 0 for n < 0, the discrete
unit pulse is a causal signal and so the response h[n] is causal as well.

Let us now assume that h[n] is a causal signal and let u[n] be a causal input. Then
the causality of h[n] and (19.3) imply that

y[n] =
∞∑

l=−∞
u[l]h[n − l] =

n∑
l=−∞

u[l]h[n − l].

Since u[l] = 0 for all l < 0, all terms in the above series are zero for n < 0. Hence,
y[n] = 0 for n < 0, which means that y[n] is a causal signal. This finishes the
proof. �

Both the time-delay unit and the multiplier are examples of causal LTD-systems.
Useful systems are usually required to be stable and causal.

Besides causality and stability one can also require a system to be real. A discrete-
time system is called a real system if the response to any real input is again real.Real discrete-time system
Show for yourself that an LTD-system is real if and only if the impulse response is
real. The time-delay unit is an example of a real system, but the multiplier is a real
system only if the number a is real.

In the above we have seen that one can obtain all kinds of properties of an LTD-
system from the impulse response. Another special response that one may encounter
in LTD-systems is the response to the discrete unit step function ε[n]. This response
is called the step response and is denoted by a[n], soStep response

ε[n] �→ a[n]. (19.5)

If we know the step response of an LTD-system, then the impulse response is ob-
tained in the following way. Since δ[n] = ε[n] − ε[n − 1], the linearity and the
time-invariance of the system imply that

h[n] = a[n] − a[n − 1].

Hence, once the step response is known, one can use the impulse response and
(19.3) to determine the response to an arbitrary input. We close this section with
an example of an LTD-system that is known as a detection filter, which allows us to
detect signals.

Let x[n] be a given discrete-time signal with x[n] = 0 for | n | > N and someEXAMPLE 19.6
Detection filter N > 0. Consider the discrete-time system L given by

u[n] �→ y[n] =
∞∑

m=−∞
u[m]x[m − n].

The linearity of this system is easy to check. The time-invariance follows from

u[n − l] �→
∞∑

m=−∞
u[m − l]x[m − n] =

∞∑
m=−∞

u[m]x[m − (n − l)].

The impulse response h[n] of the system is equal to h[n] = x[−n]. Since only a
finite number of terms of x[n] are unequal to zero, it follows from theorem 19.1 that
the system is stable. Moreover, theorem 19.2 implies that the system is causal if and
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only if x[n] = 0 for n > 0. Finally, we also note that the system is real if the signal
x[n] is real. We call this LTD-system L a detection filter because of the following.
From the Cauchy–Schwarz inequality (see exercise 19.7) it follows that

| y[0] | =
∣∣∣∣∣

N∑
m=−N

u[m]x[m]

∣∣∣∣∣ ≤
N∑

m=−N

| u[m] | ∣∣ x[m]
∣∣ =

N∑
m=−N

| u[m] | | x[m] |

≤
√√√√ N∑

m=−N

| u[m] |2
N∑

m=−N

| x[m] |2.

In addition, we know that in this inequality there is an equality if and only if for
some α ∈ C

u[n] = αx[n] for n ∈ Z,

independent of n. Hence, when a number of signals is applied to the system, in-
cluding the signal x[n] itself, then one can detect whether the input agrees with the
signal x[n] by measuring y[0]. �

EXERCISES

Show that the system defined by (19.2) is an LTD-system.19.1

Determine the impulse response of the LTD-systems given below and verify property19.2
(19.3):
a y[n] = ∑n−1

l=−∞ 2l−nu[l],
b y[n] = (u[n − 1] + u[n + 1])/2,
c y[n] = ∑∞

l=n 2l−nu[l].

Which of the discrete-time systems given in exercise 19.2 are causal and which of19.3
them are stable? Justify your answer.

For an LTD-system the impulse response is given by h[n] = δ[n] − 2δ[n − 1] +19.4
δ[n − 2].
a Determine the step response.
b Determine the response to an arbitrary input u[n].

For an LTD-system the step response is given by a[n] = 2−nε[n] − 3−nε[n − 1].19.5
Determine the response to the input u[n] = 4−nε[n].

For a system L the response y[n] to an input u[n] is given by y[n] = a0u[n] +19.6
a1u[n − 1] + · · · + aN u[n − N ].
a Show that the system L is an LTD-system.
b Show that the system L is causal and stable.
c Under which conditions is the system L real? Justify your answer.
d Show that property (19.3) holds.

In this exercise the Cauchy–Schwarz inequality is derived for sequences of complex19.7∗
numbers. Given are the (finite) sequences of complex numbers a1, a2, . . . , am and
b1, b2, . . . , bm . The Cauchy–Schwarz inequality reads as follows:∣∣∣∣∣

m∑
n=1

anbn

∣∣∣∣∣ ≤
√√√√ m∑

n=1

| an |2 ·
√√√√ m∑

n=1

| bn |2.

Here we have an equality-sign if and only if there exists an α ∈ C such that

an = αbn for n = 1, 2, . . . , m.
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a Show that for all complex λ one has

m∑
n=1

| bn − λan |2 =
(

m∑
n=1

∣∣∣ a2
n

∣∣∣
)

| λ |2 − 2Re

(
λ

m∑
n=1

anbn

)
+

m∑
n=1

∣∣∣ b2
n

∣∣∣ ≥ 0.

b Let φ = arg(
∑m

n=1 anbn) and λ = βe−iφ with β arbitrary real. Show that for
all real β one has

m∑
n=1

∣∣∣ a2
n

∣∣∣ β2 − 2β

∣∣∣∣∣
m∑

n=1

anbn

∣∣∣∣∣ +
m∑

n=1

∣∣∣ b2
n

∣∣∣ ≥ 0.

c Show that part b implies that

∣∣∣∣∣
m∑

n=1

anbn

∣∣∣∣∣ ≤
√√√√ m∑

n=1

| an |2 ·
√√√√ m∑

n=1

| bn |2.

d Show that if we have an equality-sign in the above inequality, then a β ≥ 0
exists such that

m∑
n=1

∣∣∣ a2
n

∣∣∣ β2 − 2β

∣∣∣∣∣
m∑

n=1

anbn

∣∣∣∣∣ +
m∑

n=1

∣∣∣ b2
n

∣∣∣ = 0.

e Show that for the value of β found in part d one has

m∑
n=1

∣∣∣ bn − βeiφan

∣∣∣2 = 0.

From this it follows that bn = βeiφan for all n. Hence, in the case of an equality
the sequence bn is a (complex) multiple of the sequence an .

19.2 The transfer function and the frequency response

In the previous section we have seen that property (19.3) gives an important descrip-
tion of an LTD-system in the n-domain. In this section we study the relation between
the input and the output in the z-domain, which will lead to the introduction of the
so-called transfer function. Moreover, we will study how an LTD-system effects the
spectrum of an input. Here the frequency response of an LTD-system, introduced in
chapter 1 ((1.8)), comes into play.

It is quite obvious to apply the convolution theorem to (19.3). When U (z) and
H(z) denote the z-transforms of the signals u[n] and h[n] respectively, then it fol-
lows from the convolution theorem that the z-transform Y (z) of the output y[n] is
given by

Y (z) = H(z)U (z). (19.6)

Apparently, the relation between the input and the output has a simple description
in the z-domain. It consists of an ordinary multiplication by the z-transform H(z)
of the impulse response h[n], which we will call the transfer function of the system.

The transfer function H(z) of a system is defined byDEFINITION 19.2
Transfer function

H(z) =
∞∑

n=−∞
h[n]z−n, (19.7)
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for those values of z ∈ C for which the series converges.

The transfer function H(z) of the time-delay unit, as given in example 19.1, is equalEXAMPLE 19.7
to the z-transform of the impulse response δ[n−1], and so H(z) = 1/z for z �= 0. �

The transfer function H(z) of the multiplier, as given in example 19.2, is equal toEXAMPLE 19.8
the z-transform of the impulse response h[n] = aδ[n], and so H(z) = a for all
z ∈ C. �

The transfer function H(z) of the detection filter, as given in example 19.6, is equalEXAMPLE 19.9
to the z-transform of the impulse response h[n] = x[−n], where x[n] is a discrete-
time signal with x[n] = 0 for | n | > N . When X (z) denotes the z-transform of
x[n], then it follows from properties (18.8) and (18.9) that H(z) = X (1/z). �

Since an LTD-system is completely determined by the transfer function H(z),
one should be able to derive all kinds of properties of the system from the transfer
function. The first property we consider is the causality of an LTD-system. An LTD-
system is causal if and only if h[n] is causal. Then the z-transform H(z) consists of
only the causal part

H(z) =
∞∑

n=0

h[n]z−n,

and we know that the region of convergence is then the exterior of a circle in the
complex plane. Moreover, from the z-transform it can be derived that

lim
| z |→∞

H(z) = h[0]. (19.8)

One can show that the converse is also true. This means that we have the following
theorem.

Let an LTD-system with transfer function H(z) be given. The LTD-system is causalTHEOREM 19.3
if and only if:
a the region of convergence of H(z) is the exterior of a circle;
b lim| z |→∞ H(z) exists.

Theorem 19.3 has some special consequences for LTD-systems whose transfer
function is a rational function of z, so H(z) = P(z)/Q(z), where P(z) and Q(z) are
polynomials in z without common zeros. The region of convergence is the exterior
of a circle. For a rational function H(z) this is the circle passing through a pole of
H(z) with maximal distance to the origin. Since H(z) has a limit for | z | → ∞,
this implies that the degree of the numerator P(z) cannot be greater than the degree
of the denominator Q(z).

Next we consider the stability of a system. From theorem 19.1 we know that a
system is stable if and only if

∑∞
n=−∞ | h[n] | < ∞. But since

∞∑
n=−∞

| h[n] | =
∞∑

n=−∞

∣∣ h[n]z−n ∣∣ for | z | = 1,

we may conclude that an LTD-system is stable if and only if the transfer function is
absolutely convergent on the unit circle | z | = 1 in the complex plane. As a con-
sequence we have the following theorem for causal LTD-systems having a rational
transfer function.

Let L be a causal LTD-system with a rational transfer function H(z) = P(z)/Q(z),THEOREM 19.4
where P(z) and Q(z) are polynomials of degree n and m respectively, and without
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common zeros. Then the following statements hold:
a n ≤ m;
b the system is stable if and only if the poles of H (z) lie inside the unit circle in
the complex plane.

Proof
Statement a follows from theorem 19.3, as we have already noted. We now prove
statement b.

First assume that L is stable. The region of convergence of H(z) must then con-
tain the unit circle. Theorem 19.3 then implies that the region of convergence is the
exterior of a circle. For a rational function H(z) this is the circle passing through
a pole of H(z) with maximal distance to the origin. Hence, all poles of H(z) lie
inside the unit circle.

Now assume that the poles lie inside the unit circle. By the causality, the region of
convergence is the exterior of a circle. This must contain the unit circle. Therefore
the system is stable. �
For a causal LTD-system L the transfer function H(z) is given byEXAMPLE 19.10

H(z) = z

4z2 + 1
.

Because of the causality of the system, the impulse response is a causal signal. The
region of convergence of H(z) is thus the exterior of a circle in the complex plane.
Since H(z) is a rational function with poles at z = ±i/2, we conclude that the
region of convergence is | z | > 1/2. This contains the unit circle and so the causal
system is stable. The impulse response can be found by an inverse transform of
H(z), resulting in

h[n] = 2−n−1 sin(nπ/2)ε[n].
�

The transfer function plays an important role in the response to the special input

u[n] = zn with z ∈ C.

If z belongs to the region of convergence of H(z), then

zn �→ H(z)zn . (19.9)

This can immediately be derived from (19.3) as follows:

y[n] =
∞∑

l=−∞
h[l]zn−l =

( ∞∑
l=−∞

h[l]z−l

)
zn .

Because of (19.9), the signal zn is sometimes called an eigenfunction of the LTD-Eigenfunction
system, and H(z) the corresponding eigenvalue.Eigenvalue

In chapter 1 the frequency response H(eiω) of an LTD-system has been defined
using the response of an LTD-system to the input einω:

einω �→ H(eiω)einω. (19.10)

We now see that this rule follows immediately from (19.9) by substituting z = eiω.
This then justifies the notation H(eiω) for the frequency response of an LTD-system.
Apparently one has the following important property:

The frequency response is equal to the spectrum of the impulse response:Frequency response

H(eiω) =
∞∑

n=−∞
h[n]e−inω. (19.11)
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Now the spectrum of h[n] is only defined for those frequencies for which the series
in the right-hand side of (19.11) converges. However, if the system is stable, then
h[n] is absolutely summable and the above series is therefore absolutely convergent
for all real ω since |h[n]e−inω| = | h[n] |. Hence, for stable systems the frequency
response is defined for all frequencies ω. One can even show that the function
H(eiω) is a continuous function of ω.

Since H(eiω) is complex, we can write

H(eiω) =
∣∣∣ H(eiω)

∣∣∣ ei	(ω). (19.12)

As usual we call |H(eiω)| and 	(ω), respectively, the amplitude and phase spec-Amplitude spectrum

Phase spectrum trum. The phase spectrum is determined up to a multiple of 2π . The significance of
the amplitude and phase spectrum for LTD-systems will now be demonstrated for a
real and stable system by looking at the response to the following sinusoidal signal
u[n] for a positive frequency ω:

u[n] = A cos(nω + φ).

Here A, φ and ω are real constants and ω > 0 is the frequency of the signal. By
changing to complex exponentials, we can write the input as

u[n] = 1
2 A(eiφeinω + e−iφe−inω).

Applying the linearity of the system and property (19.10) leads to the following
expression for the output y[n]:

y[n] = 1
2 A(eiφ H(eiω)einω + e−iφ H(e−iω)e−inω).

Now check for yourself that for real systems one has

H(e−iω) = H(eiω),

and then note that this implies that y[n] = A Re(H(eiω)eiφeinω). Finally we use
(19.12) to write y[n] as follows:

y[n] = A
∣∣∣ H(eiω)

∣∣∣ cos(nω + φ + 	(ω)). (19.13)

The output has the same frequency as the input, only the amplitude is multiplied by
a factor |H(eiω)| and there is a phase shift 	(ω).

Often, LTD-systems are described by indicating what the frequency response is
like. When U (eiω) is the spectrum of u[n] and Y (eiω) is the spectrum of the corre-
sponding output y[n], then it follows from (19.6) that

Y (eiω) = H(eiω)U (eiω). (19.14)

This property shows us how the LTD-system effects the spectrum of an input. If we
know the frequency response, then by (18.22) the impulse response h[n] is

h[n] = 1

2π

∫ π

−π
H(eiω)einω dω, (19.15)
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and so the LTD-system is again completely determined. The output can then be
found using (19.14) and again (18.22):

y[n] = 1

2π

∫ π

−π
H(eiω)U (eiω)einω dω. (19.16)

From (19.16) we conclude that if u[n] contains the components U (eiω)einω, then
y[n] contains the components H(eiω)U (eiω)einω. The component having fre-
quency ω gets a phase shift 	(ω) and is amplified by a factor |H(eiω)|.
Consider an LTD-system whose frequency response on the interval (−π, π) isEXAMPLE 19.11

Ideal low-pass filter given by

H(eiω) =
{

1 for | ω | < ωc < π ,
0 for ωc < | ω | < π .

(19.17)

1

ω–ωc 0 ωc π

H(eiω)

–π

FIGURE 19.1
Frequency response of an ideal low-pass filter.

A graph of the frequency response is drawn in figure 19.1. The LTD-system defined
by (19.17) is called an ideal low-pass filter since the components of an input u[n]
with frequencies ω in the pass-band (−ωc, ωc) can pass undisturbed, while the other
components are blocked completely. The impulse response follows from (19.15)
and in our example it is equal to

h[n] = 1

2π

∫ ωc

−ωc

einω dω = sin(nωc)

nπ
.

�

The problem with the ideal low-pass filter is that the frequency response cannot
be written as a rational function of eiω, in other words, that the transfer function is
not a rational function of z. In practice this implies that an ideal low-pass filter can
only be approximated. In this book we will not go into this any further and so we
refer to the relevant literature (e.g. Digitale signaalbewerking by A.W.M. van den
Enden and N.A.M. Verhoeckx (in Dutch)).

The LTD-systems with a rational transfer function are important, because they
can be realized using time-delay units, multipliers and adders and, moreover, can be
described by means of so-called difference equations. In the next section we will
study these LTD-systems described by difference equations.

EXERCISES

For an LTD-system the impulse response is given by h[n] = 2−n cos(nφ)ε[n]. Here19.8
φ is a real constant. Calculate the transfer function of the system and verify whether
the system is stable.
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For a stable LTD-system the transfer function is given by19.9

H(z) = z2

9z2 + 6z + 1
.

a Determine the impulse response.
b Calculate the response to the input u[n] = sin(nπ/2).

For a causal LTD-system the transfer function is given by19.10

H(z) = z + 1

(z − 1)(2z + 1)
.

a Determine the impulse response h[n].
b Is the system stable? Justify your answer.

For a stable LTD-system the frequency response is given by H(eiω) = 1+2 cos(2ω).19.11
a Determine the response to the input u[n] = δ[n − 2].
b Is the system causal? Justify your answer.

Show that the amplitude and phase spectrum of a real LTD-system are, respectively,19.12
an even and an odd function of the frequency ω.

For a discrete band-pass filter the frequency response is given by the graph from19.13
figure 19.2. Determine the impulse response of the filter.

H(eiω)1

ω–ωb 0 ωb π–π –ωa ωaa

FIGURE 19.2
Frequency response of the ideal band-pass filter from exercise 19.13.

Let L be a stable LTD-system with frequency response H(eiω) and u[n] an input19.14
with finite energy-content and spectrum U (eiω). Show that the energy-content of
the output y[n] is given by

1

2π

∫ π

−π

∣∣∣ H(eiω)U (eiω)

∣∣∣2 dω.

19.3 LTD-systems described by difference equations

An LTD-system can be specified by describing the relationship between an input
u[n] and the corresponding response y[n]. As we have seen, this can be done in
several ways. For example, in the n-domain by using the impulse response h[n],
or in the z-domain by means of the transfer function H(z). In this section we will
examine an important class of LTD-systems, namely the LTD-systems that can be
described by difference equations. We have seen that the time-delay unit, introduced
in example 19.1, can be described by the equation

y[n] = u[n − 1].
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A somewhat less elementary example of an LTD-system is obtained by also adding
u[n] and other delays of u[n] to such an equation. More generally, one can consider
the following equation:

y[n] = a0u[n] + a1u[n − 1] + · · · + aN u[n − N ]. (19.18)

An example of this is the LTD-system that calculates a weighted average of an input
according to (19.2). When the input u[n] is known, then the output y[n] can easily
be calculated by substituting u[n], u[n − 1], . . . , u[n − N ] into (19.18). In exercise
19.6 you were asked to show that (19.18) does indeed define an LTD-system, being
causal as well.

A slightly more complicated equation is obtained by allowing in addition delays
of y[n]. The most general situation considered by us is described by

y[n] + b1 y[n − 1] + · · · + bM y[n − M] = a0u[n] + · · · + aN u[n − N ]. (19.19)

We call (19.19) a difference equation. Here the signal u[n] is considered as a givenDifference equation
signal. A difference equation is thus an equation of type (19.19) for the unknown
signal y[n] and with u[n] given. Equation (19.18) is a special case of (19.19): for
b1 = b2 = . . . = bM = 0 one obtains (19.18). In order to determine y[n] from
(19.18) we only need the signal u[n]. This is in contrast to (19.19). In the latter
equation we also need y[n − 1], y[n − 2], . . . , y[n − M] in order to determine y[n].Non-recursive system
A system described by (19.18) is called a non-recursive system. A system describedRecursive system
by (19.19) is called a recursive system.

There is yet another complication when defining a system by means of (19.19).
For a given u[n] there will, in general, be several solutions y[n] satisfying (19.19).
If we know the values of the output y[n] for n = −1, −2, . . . , −M , as the result of a
given input u[n], then we see that substituting n = 0 in (19.19) will lead to the value
y[0]. By subsequently substituting n = 1, we obtain the value y[1]. This process
can be repeated, and so we see that eventually y[n] will be uniquely determined for
every n ≥ 0. When, for example, the system is causal and u[n] is a causal input,
then the output y[n] is causal and so y[−1] = 0, y[−2] = 0, . . . , y[−M] = 0.
Consequently, y[n] is uniquely determined by the difference equation.

We will confine ourselves to causal LTD-systems described by (19.19). First we
will show that a causal LTD-system is completely determined by (19.19). To this
end we apply the z-transform to the left- and right-hand side of (19.19). If we put

u[n] ↔ U (z) and y[n] ↔ Y (z),

then it follows from the linearity and the shift property (18.10) for the z-transform
that

(1 + b1z−1 + · · · + bM z−M )Y (z) = (a0 + a1z−1 + · · · + aN z−N )U (z).

The transfer function H(z) is thus equal to

H(z) = Y (z)

U (z)
= a0 + a1z−1 + · · · + aN z−N

1 + b1z−1 + · · · + bM z−M
. (19.20)

This shows that the transfer function is a rational function:

H(z) = zM−N aN + aN−1z + · · · + a0zN

bM + bM−1z + · · · + zM
.

In order to give a complete description of the LTD-system, we also have to know the
region of convergence of the transfer function. However, the system is causal and
for a causal system with a rational transfer function we have by theorem 19.4 that the
degree of the numerator of H(z) is not greater than the degree of the denominator.
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One can easily verify that this is satisfied for all M and N . Moreover, the region of
convergence is the exterior of the circle in the complex plane passing through a pole
of H(z) with maximal distance to the origin. Therefore, the region of convergence
is known. Hence, there is only one causal LTD-system described by (19.19).

A causal system is described by the difference equationEXAMPLE 19.12

y[n] − 3y[n − 1] + 2y[n − 2] = u[n] + u[n − 1].

The transfer function can immediately be read off from the difference equation:

H(z) = 1 + z−1

1 − 3z−1 + 2z−2
= z + z2

z2 − 3z + 2
= z + z2

(z − 1)(z − 2)
.

This has poles at z = 1 and z = 2. Because of the causality of the system, the region
of convergence is the exterior of the circle | z | = 2. As we have seen in section 18.3,
the impulse response can now be found by a partial fraction expansion. The result
is

h[n] = (3 · 2n − 2)ε[n].
�

As a matter of fact, the LTD-system in the example above is not stable. For stable
LTD-systems with a rational transfer function, the unit circle must be contained in
the region of convergence, according to theorem 19.4. In example 19.12 this is not
the case.

A causal LTD-system is given byEXAMPLE 19.13

y[n] − 3y[n − 1] + 3y[n − 2] − y[n − 3] = u[n − 2].

We determine the step response a[n] as follows. The transfer function of the given
LTD-system can easily be read off from the difference equation:

H(z) = z−2

1 − 3z−1 + 3z−2 − z−3
= z

(z − 1)3
for | z | > 1.

The step response a[n] is the response to the discrete signal ε[n], whose z-transform
equals z/(z − 1). By (19.6) we have

a[n] ↔ z

(z − 1)3
· z

z − 1
= z2

(z − 1)4
for | z | > 1.

The step response can now be found by an inverse transform, after first applying the
partial fraction expansion technique. We then find that

a[n] ↔ z2

(z − 1)4
= z

(z − 1)3
+ z

(z − 1)4
for | z | > 1.

An inverse transform then gives

a[n] =
((

n

2

)
+

(
n

3

))
ε[n].

The system is not stable, though. The unit circle is not contained in the region of
convergence. Also note that the step response is not bounded, while the input ε[n]
is bounded. �
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EXERCISES

A causal LTD-system is described by the following difference equation:19.15
y[n] + 1

2 y[n − 1] = u[n].
a Calculate the impulse response of the system.
b Calculate the response to the input u[n] = ( 1

2 )nε[n].
c Is the system stable? Justify your answer.

A causal LTD-system is described by the following difference equation:19.16
y[n] − y[n − 2] = u[n − 1].
a Calculate the transfer function of the system.
b Is the system real? Justify your answer.
c Calculate the response to the input u[n] = cos(nφ). Here φ is a real constant.

A causal system is described by the following difference equation:19.17
y[n] − 1

4 y[n − 2] = u[n] + u[n − 1].
a Calculate the impulse response of the system.
b Is the system stable? Justify your answer.
c Calculate the step response.
d Calculate the response to the input u[n] = ε[n] + ε[n − 2].

S U M M A R Y

The LTD-systems are very well suited for the application of the z-transform and the
Fourier transform of discrete-time signals. An important role in the theory of LTD-
systems is played by the impulse response, the transfer function, and the frequency
response. In the time domain or n-domain the relation between an input u[n] and
the corresponding response y[n] is described by the convolution product

y[n] = (h ∗ u)[n].

Here h[n] is the response to the discrete unit pulse δ[n]. The response h[n] is called
the impulse response. Applying the convolution theorem for the z-transform to the
convolution product above immediately leads to the relation

Y (z) = H(z)U (z),

which can be regarded as a description of the LTD-system in the z-domain. Here
H(z) is the z-transform of the impulse response h[n]; H(z) is called the transfer
function. An LTD-system is thus completely determined by the impulse response,
or by the transfer function. One has, for example, that an LTD-system is stable or
causal if and only if the impulse response is absolutely summable or, respectively,
causal. Since the transfer function is the z-transform of the impulse response, the
stability also follows from the region of convergence of H(z). If the unit circle
in the complex plane is contained in the region of convergence of H(z), then the
corresponding LTD-system is stable. For an LTD-system the transfer function H(z)
can also be interpreted as the eigenvalue with eigenfunction the signal zn . In par-
ticular, we have for stable systems that the response to the input einω, containing
the single frequency ω, is equal to H(eiω)einω. The function H(eiω) is called the
frequency response. The significance of the frequency response for an LTD-system
can especially be seen in the spectra of the input and the output. This is because

Y (eiω) = H(eiω)U (eiω).

In practice, an important category of LTD-systems is those systems that can be de-
scribed by difference equations. The transfer function is then a rational function of
z. If its poles lie inside the unit circle, then the system is stable.
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S E L F T E S T

For a causal LTD-system the transfer function H(z) is given by19.18

H(z) = z + 1

4z2 + 4z + 1
.

a Calculate the impulse response h[n].
b Calculate the response to the input u[n] = (−1)n , where n ∈ Z.
c Is the system stable? Justify your answer.
d Is the system real? Justify your answer.
e Let u[n] be an input with spectrum U (eiω) = cos 2ω. Calculate the response
y[n] to u[n].

Given is a stable LTD-system. We apply a periodic input u[n] with period N to the19.19
LTD-system.
a Show that the response y[n] to u[n] is also periodic with period N .
b Let U [k] and Y [k] be the N -point DFT of u[n] and y[n] respectively, and let
H(z) be the transfer function of the system. Prove that Y [k] = H(e2π ik/N )U [k].

For an LTD-system the frequency response is given by H(eiω) = cos 2ω.19.20
a Calculate the impulse response h[n].
b To the LTD-system a periodic discrete-time signal u[n] with period 4 is applied,
whose 4-point DFT F[k] is given by F[0] = 1, F[1] = −1, F[2] = 0, F[3] = 1.
Calculate the response y[n] to the input u[n].

For a stable LTD-system the step response is given by a[n] = n2( 1
2 )nε[n].19.21

a Calculate the transfer function and the impulse response of the system.
b Is the system causal? Justify your answer.
c Calculate the response to the input u[n] = einω (ω a real constant).

A causal LTD-system is described by the following difference equation:19.22
y[n] − 1

2 y[n − 1] = u[n − 1] + u[n − 2].
a Determine the step response a[n] for n ≥ 0.
b Is the system stable? Justify your answer.

A causal LTD-system is described by the following difference equation:19.23
6y[n] − 5y[n − 1] + y[n − 2] = 6u[n] − 6u[n − 2].
a Calculate the impulse response h[n] of the system.
b Determine the frequency response of the system.
c Describe the inputs u[n] that are completely blocked by the system, that is to
say, whose response y[n] is identically zero.

For a stable LTD-system the frequency response is given by H(eiω) = 1+2 cos ω+19.24
cos 2ω.
a Calculate the impulse response h[n] of the system.
b To the system we apply the input u[n] whose spectrum U (eiω) is given by
U (eiω) = 1 + sin ω + sin 2ω. Let y[n] be the response to the given input u[n].
Calculate the energy-content of the signal y[n].
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There is an overwhelming amount of literature available on Fourier and Laplace
transforms. In it, one can roughly distinguish two main trends. On the one hand the
theoretical literature for a mathematically oriented audience, on the other hand the
literature where the applications play a central role. In much of the literature aimed
at the applications, the results are presented without precise conditions or proofs.
The mathematical literature, however, is mostly of a very theoretical nature and
assumes quite a lot of prerequisites, such as the so-called Lebesgue integral. In the
following survey one will find very few books from the latter category. A number
of the books mentioned below do require a mathematical background which goes
beyond what we have assumed for this book. Two rather elementary standard books
on mathematical analysis, which could be consulted in order to obtain the required
background, are for example (these books are available in several editions):

Apostol, T.M., Mathematical analysis. Reading, Addison-Wesley, 1957.
Kaplan, W., Advanced calculus. Boston, Addison-Wesley, 1984, 3rd ed.

We do hope that the books listed here offer a good opportunity for a more elaborate
study of the many different aspects of both the theory and the applications of the
Fourier and Laplace transforms.

Bracewell, R.N., The Fourier transform and its applications. New York, McGraw-
Hill, 1986, 2nd ed., revised.

A real classic (the first edition is from 1965), and generally considered as one of
the standard works in the field of the applications of the Fourier integral, especially
in signal theory. More specifically, it contains applications to filters, sampling, con-
volution, imaging (antennas and television), and sound (noise). The discrete Fourier
transform and the Fast Fourier Transform (FFT) are also treated extensively.

Brigham, E.O., The fast Fourier transform. Englewood Cliffs, Prentice-Hall, 1974.
After a rather sketchy treatment of the Fourier integral and convolution, the de-

termination of the discrete Fourier transform using the FFT is then treated very thor-
oughly. This book is a standard work on the FFT.

Churchill, R.V. and J.W. Brown, Fourier series and boundary value problems. New
York, McGraw-Hill, 1978, 3rd ed.

Applying Fourier analysis to boundary value problems (see sections 5.2 and 10.4)
is the central issue. Although emphasis is put on Fourier series, more general series
of orthogonal functions and the Fourier integral are treated as well.

Doetsch, G., Einführung in Theorie und Anwendung der Laplace Transformation.
Basel, Birkhäuser Verlag, 1958 (in German).
Doetsch, G., Guide to the applications of Laplace transforms. London, Van
Nostrand, 1961.
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The book mentioned first gives a very thorough treatment of the Laplace trans-
form. Although only the Riemann integral is used, this book does assume a solid
mathematical background. The Laplace transform of distributions is also treated,
but it is assumed that the reader is familiar with the theory of distributions. Appli-
cations to differential equations are treated extensively. The second book is in fact
a very compact version of the first one. The most relevant results are given without
proof. The book then concentrates on the applications to differential and difference
equations.

Dym, H. and H.P. McKean, Fourier series and integrals. New York, Academic
Press, 1972.

This book requires a good mathematical background and uses the so-called
Lebesgue integral (the only book in this survey which does), although this theory is
explained in the first chapter. We mention this book mainly because it is considered
as one of the standard works as far as the theory of Fourier series and Fourier inte-
grals is concerned. It also contains a whole range of applications of Fourier analysis
in mathematics and physics.

Enden, A.W.M. van den and N.A.M. Verhoeckx, Digitale signaalbewerking. Over-
berg (gem. Amerongen), Delta Press, 1987 (in Dutch).

This book (in Dutch) treats in a well-organized manner discrete systems and sev-
eral discrete transforms. The theory is then applied to the design of discrete filters.
Moreover, problems are discussed that arise when processing signals of finite word
length. These are discrete signals whose values are discrete as well. The book is
clearly aimed at the applications. The style is clear and it points the reader at impor-
tant aspects of several of the transforms. Mathematical rigour is comparable to what
is normally seen in mathematics books for engineers. When studying part 5 of our
book, van den Enden and Verhoeckx is recommended to those who are interested in
the style of the people who apply this material.

Hanna, J. and J.H. Rowland, Fourier series, transforms and boundary value
problems. New York, Wiley, 1990.

A clearly written introduction to partial differential equations, mainly aimed at
students in the technical sciences and engineering. Clear physical motivations are
given of the equations under consideration, as well as of the interpretations of the
obtained solutions. One also discusses, for example, existence and uniqueness of
the solutions of the heat equation and the wave equation at an elementary level.

Körner, T.W., Fourier analysis. Cambridge, Cambridge University Press, 1990.
A book covering a wide variety of subjects and consisting of some hundred short

chapters (‘essays’). Alternately the theories of Fourier series and the Fourier integral
are developed and a large number of different applications is treated (a small sample:
approximation, the age of the earth, the transatlantic cable, the heat equation).

Papoulis, A., Circuits and systems. New York, Holt, Rinehart & Winston, 1980.
Of the large number of books on linear systems we only mention here this well-

known book by Papoulis. It is quite comprehensive and treats both analogue and
digital systems, and all transforms treated by us occur in it (Laplace transform,
z-transform, Fourier series, Fourier integral, discrete Fourier transform, and FFT).
There is a strong emphasis on the practical applications in electrical circuits and
networks.

Papoulis, A., Signal analysis. Singapore, McGraw-Hill, 1984.
Again we only mention the book by Papoulis as one of the standard works in the

vast amount of literature on signal analysis. Again all transforms treated by us occur
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in it. Here there is a strong emphasis on the applications in signal analysis: filters,
windowing and data smoothing are some of the main subjects.

Senior, T.B.A., Mathematical methods in electric engineering. Cambridge,
Cambridge University Press, 1986.

In this book the emphasis is on the Laplace transform and the applications to
systems theory. The theory of complex functions, necessary in order to use the fun-
damental theorem of the Laplace transform (see section 13.5), is treated extensively.
Besides this, Fourier series and the Fourier integral are treated in some detail.

Spiegel, M.R., Schaum’s outline of theory and problems of Fourier analysis with
applications to boundary value problems. New York, McGraw-Hill, 1976.
Spiegel, M.R., Schaum’s outline of theory and problems of Laplace transforms. New
York, McGraw-Hill, 1965.

These are two books from the well-known ‘Schaum’s outline’ series. After a
short summary of the most well-known results from the theory and the applications,
worked examples follow, together with a large number of exercises. In the first book
the emphasis is on Fourier series, the Fourier integral and the applications to bound-
ary value problems (as in the previously mentioned book by R.V. Churchill and J.W.
Brown). In the second book the emphasis is on the Laplace transform and the appli-
cation to differential equations. Complex function theory is also treated briefly. Part
of the material on Fourier series and the Fourier integral from the first book can also
be found in the second book. These books are very suitable as practising material.

Tolstov, G.P., Fourier series. New York, Dover, 1962.
This book is mainly devoted to a thorough treatment of the theory of the Fourier

series. Still, it is of an elementary character, meaning that one can read it with a
minimum of mathematical prerequisites. Besides Fourier series, the Fourier integral
is treated briefly, as well as other series of orthogonal functions.

Walker, P.L., The theory of Fourier series and integral. Chicester, Wiley, 1986.
One of the few books on Fourier series and the Fourier integral in this survey

with a theoretical character, but which does not use the so-called Lebesgue integral.
Therefore, this book is also intended for engineering students.

Zemanian, A.H., Distribution theory and transform analysis. New York, Dover,
1987.

It is quite hard to find an elementary book on distribution theory. This book
contains a very comprehensive treatment of the distribution theory that is still very
accessible. Besides the general theory, both the Fourier transform and the Laplace
transform of distributions are treated.
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TABLE 1 Fourier coefficients of periodic functions with period
T = 2π/ω0

no. f (t) cn = 1

T

∫ T/2

−T/2
f (t)e−inω0t dt condition(s)

1 pa,T (t)
2 sin(nω0a/2)

nω0T
, c0 = a

T
0 ≤ a ≤ T

2 qa,T (t)
4 sin2(nω0a/2)

n2ω2
0aT

, c0 = a

T
0 < a ≤ T/2

3 2t/T
i(−1)n

πn
, c0 = 0

432
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TABLE 2 Properties of the Fourier transform of periodic functions

no. f (t), g(t) cn, dn condition(s)

1 a f (t) + bg(t) acn + bdn a, b ∈ C

2 f (t) c−n

3 f (t − t0) e−inω0t0 cn t0 ∈ R

4 f (−t) c−n

5 f (t) even and real cn even and real

6 f (t) odd and real cn odd and imaginary

7 f (t)g(t)
∞∑

k=−∞
ckdn−k

8 ( f ∗ g)(t) cndn

9
∫ t

−T/2
f (τ ) dτ

cn

inω0
c0 = 0

10 f ′(t) inω0cn

11
1

T

∫ T/2

−T/2
f (t)g(t) dt =

∞∑
n=−∞

cndn

12
1

T

∫ T/2

−T/2
| f (t) |2 dt =

∞∑
n=−∞

| cn |2
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TABLE 3 Fourier transforms of non-periodic functions

no. f (t) F(ω) =
∫ ∞

−∞
f (t)e−iωt dt condition(s)

1 pa(t)
2 sin(aω/2)

ω
a > 0

2
sin at

t
πp2a(ω) a > 0

3 qa(t)
4 sin2(aω/2)

aω2
a > 0

4
sin2 at

t2
πaq2a(ω) a > 0

5 e−a| t | 2a

a2 + ω2
a > 0

6
1

a2 + t2

π

a
e−a| ω | a > 0

7 ε(t)e−at 1

a + iω
Re a > 0

8 ε(t)te−at 1

(a + iω)2
Re a > 0

9 ε(t)e−at sin bt
b

(a + iω)2 + b2
Re a > 0, b ∈ R

10 ε(t)e−at cos bt
a + iω

(a + iω)2 + b2
Re a > 0, b ∈ R

11 e−at2
√

π

a
e−ω2/4a a > 0
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TABLE 4 Properties of the Fourier transform of non-periodic functions

no. f (t), g(t) F(ω), G(ω) condition(s)

1 a f (t) + bg(t) aF(ω) + bG(ω) a, b ∈ C

2 f (t) F(−ω)

3 f (t − a) e−iωa F(ω) a ∈ R

4 eiat f (t) F(ω − a) a ∈ R

5 f (at) | a |−1 F(a−1ω) a ∈ R, a �= 0

6 f (t) even and real F(ω) even and real

7 f (t) odd and real F(ω) odd and imaginary

8 f (n)(t) (iω)n F(ω)

9 (−i t)n f (t) F(n)(ω)

10
∫ t

−∞
f (τ ) dτ

F(ω)

iω
F(0) = 0

11 F(−t) 2π f (ω)

12 ( f ∗ g)(t) F(ω)G(ω)

13 f (t)g(t)
1

2π
(F ∗ G)(ω)

14
∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F(ω)G(ω) dω

15
∫ ∞

−∞
| f (t) |2 dt = 1

2π

∫ ∞

−∞
| F(ω) |2 dω

16
∞∑

n=−∞
f (nT ) = 1

T

∞∑
n=−∞

F

(
2πn

T

)
(T > 0)
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TABLE 5 Fourier transforms of distributions

no. T (t) U (ω) = 〈U, φ〉 = 〈T,Fφ〉 condition(s)

1 δ(t) 1

2 1 2πδ(ω)

3 δ(t − a) e−iaω a ∈ R

4 eiat 2πδ(ω − a) a ∈ R

5 cos at π(δ(ω − a) + δ(ω + a)) a ∈ R

6 sin at −π i(δ(ω − a) − δ(ω + a)) a ∈ R

7 (t)
( ω

2π

)

=
∞∑

k=−∞
δ(t − k) = 2π

∞∑
k=−∞

δ(ω − 2πk)

8 pv(1/t) −π isgn ω

9 sgn t −2ipv(1/ω)

10 ε(t) πδ(ω) − ipv(1/ω)

11 δ(n) (iω)n

12 tn 2π inδ(n)(ω)
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TABLE 6 Properties of the Fourier transform of distributions

no. T (t), S(t) U (ω), V (ω) condition(s)

1 aT (t) + bS(t) aU (ω) + bV (ω) a, b ∈ C

2 T (t − a) e−iaωU (ω) a ∈ R

3 eiat T (t) U (ω − a) a ∈ R

4 T (at) | a |−1 U (a−1ω) a ∈ R, a �= 0

5a T (t) even U (ω) even

5b T (t) odd U (ω) odd

6 T (n)(t) (iω)nU (ω)

7 (−i t)n T (t) U (n)(ω)

8 U (−t) 2πT (ω)

9 (T ∗ S)(t) U (ω)V (ω)

10 T (t)S(t)
1

2π
(U ∗ V )(ω)
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TABLE 7 Laplace transforms of causal functions

no. f (t) F(s) = (L f )(s) half-plane of condition(s)

= ∫ ∞
0 f (t)e−st dt convergence

1 1
1

s
Re s > 0

2 eat 1

s − a
Re s > Re a a ∈ C

3 tn n!

sn+1
Re s > 0

4 sin at
a

s2 + a2
Re s > 0 a ∈ R

5 cos at
s

s2 + a2
Re s > 0 a ∈ R

6 sinh at
a

s2 − a2
Re s > a a ∈ R

7 cosh at
s

s2 − a2
Re s > a a ∈ R

8 sin(at + b)
a cos b + s sin b

s2 + a2
Re s > 0 a, b ∈ R

9 cos(at + b)
s cos b − a sin b

s2 + a2
Re s > 0 a, b ∈ R

10 tne−at n!

(s + a)n+1
Re s > Re (−a) a ∈ C

11 ε(t − a)
e−as

s
Re s > 0 a > 0
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TABLE 8 Properties of the Laplace transform of causal functions

no. f (t), g(t) F(s), G(s) condition(s)

1 a f (t) + bg(t) aF(s) + bG(s) a, b ∈ C

2 ε(t − a) f (t − a) e−as F(s) a ≥ 0

3 eat f (t) F(s − a) a ∈ C

4 f (at) a−1 F(a−1s) a > 0

5 f (n)(t) sn F(s)

6 (−1)ntn f (t) F(n)(s)

7
∫ t

0
f (τ ) dτ

F(s)

s

8 ( f ∗ g)(t) F(s)G(s)

9 f (t)

∫ T
0 f (t)e−st dt

1 − e−sT
f (t + T ) = f (t)

10 lim
s→∞ s F(s) = f (0+)

11 lim
t→∞ f (t) = lim

s→0
s F(s)
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TABLE 9 Laplace transforms of distributions

no. T (t) U (s) = 〈
T (t), e−st 〉 condition(s)

1 δ(t) 1

2 δ(n)(t) sn

3 δ(t − a) e−as a > 0

4 δ(n)(t − a) sne−as a > 0

TABLE 10 Properties of the Laplace transform of distributions

no. T (t), S(t) U (s), V (s) condition(s)

1 aT (t) + bS(t) aU (s) + bV (s) a, b ∈ C

2 T (t − a) e−asU (s) a ≥ 0

3 T (n)(t) snU (s)

4 (T ∗ S)(t) U (s)V (s)

TABLE 11 Discrete Fourier transforms of periodic discrete-time signals with
period N

no. f [n] F[k] = ∑N−1
n=0 f [n]e−2π ink/N condition(s)

1 δN [n] 1

2 e2π inl/N NδN [k − l]

3
m∑

l=−m

δN [n − l]




2m + 1 if k is a multiple of N

sin((2m + 1)kπ/N )

sin(kπ/N )
otherwise

0 ≤ m < N
2
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TABLE 12 Properties of the discrete Fourier transform of
periodic discrete-time signals

no. f [n], g[n] F[k], G[k] condition(s)

1 a f [n] + bg[n] aF[k] + bG[k] a, b ∈ C

2 f [n] F[−k]

3 f [n − l] e−2π ilk/N F[k] l ∈ Z

4 e2π iln/N f [n] F[k − l] l ∈ Z

5 f [−n] F[−k]

6 F[n] N f [−k]

7 ( f ∗ g)[n] F[k]G[k]

8 f [n]g[n]
1

N
(F ∗ G)[k]

9
N−1∑
n=0

f [n]g[n] = 1

N

N−1∑
k=0

F[k]G[k]

10
N−1∑
n=0

| f [n] |2 = 1

N

N−1∑
k=0

| F[k] |2
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TABLE 13 z-transforms of non-periodic discrete-time signals

no. f [n] F(z) =
∞∑

n=−∞
f [n]z−n

conver-
gence
region

condition(s)

1 δ[n] 1 z ∈ C

2 anε[n]
z

z − a
| z | > | a | a ∈ C

3 anε[−n − 1]
−z

z − a
| z | < | a | a ∈ C

4

(
n

k

)
anε[n]

ak z

(z − a)k+1
| z | > | a | a ∈ C, k ∈ N

5

(
n

k

)
anε[−n − 1]

−ak z

(z − a)k+1
| z | < | a | a ∈ C, k ∈ N

6 cos(ω0n + φ0)ε[n] z2 cos φ0−z cos(φ0−ω0)

z2−2z cos ω0+1
| z | > 1 ω0, φ0 ∈ R

TABLE 14 Properties of the z-transform of non-periodic discrete-time signals

no. f [n], g[n] F(z), G(z) condition(s)

1 a f [n] + bg[n] aF(z) + bG(z) a, b ∈ C

2 f [−n] F(1/z)

3 f [n] F(z)

4 f [n − l] z−l F(z) l ∈ Z

5 an f [n] F(z/a) a �= 0

6 n f [n] −z
d

dz
F(z)

7 ( f ∗ g)[n] F(z)G(z)
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TABLE 15 Properties of the Fourier transform of non-periodic discrete-time
signals

no. f [n], g[n] F(eiω) =
∞∑

n=−∞
f [n]e−inω, G(eiω) condition(s)

1 a f [n] + bg[n] aF(eiω) + bG(eiω) a, b ∈ C

2 f [n] F(e−iω)

3 f [n − k] e−ikω F(eiω) k ∈ Z

4 e−inω0 f [n] F(ei(ω+ω0)) ω0 ∈ R

5 f [−n] F(e−iω)

6 ( f ∗ g)[n] F(eiω)G(eiω)

7 f [n]g[n]
1

2π

∫ π

−π
F(ei(ω−u))G(eiu) du

8
∞∑

n=−∞
f [n]g[n] = 1

2π

∫ π

−π
F(eiω)G(eiω) dω

9
∞∑

n=−∞
| f [n] |2 = 1

2π

∫ π

−π

∣∣∣ F(eiω)

∣∣∣2 dω
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abscissa
of absolute convergence, 271
of convergence, 273

absolute convergence, 47
absolute value, 29
absolutely

convergent, 268
integrable, 142
summable, 401

algorithm for an N1 N2-point DFT,
379

aliasing problem, 351
all-pass system, 121, 237
amplitude, 12, 13, 68
amplitude response, 19
amplitude spectrum, 71, 141, 364, 422
analytic function, 259
anti-causal part, 393
argument, 12, 30
autocorrelation, 161, 387, 409

band-limited signal, 238, 347
band-pass filter, 238
Bernoulli paradox, 263
Bessel’s inequality, 87
bit reversal, 383
block function, 144
blocked frequency, 119
boundary condition, 123, 330
bounded function, 42
bounded signal, 20
butterfly, 381

Cartesian coordinates, 29
Cartesian form, 29
cascade system, 23, 234
Cauchy distribution, 177
Cauchy principal value, 166
Cauchy–Riemann equations, 264
causal, 16, 417

distribution, 301
part, 393
periodic function, 294
system, 21

chain rule, 41, 260
characteristic equation, 117

characteristic polynomial, 116

circle of convergence, 54

comb distribution, 214

comparison test, 47

complex

conjugate, 29

cosine, 256

exponential, 255

Fourier coefficients, 69

Fourier series, 69

function, 253

plane, 29

signal, 11

sine, 256

complex-valued function, 39

conjugation, 77, 150, 365, 397, 408

continuity, 41

in C, 257

of spectrum, 155

continuous spectrum, 142

continuous-time signal, 11

continuous-time system, 17

convergence

absolute, 47

circle, 54

of sequence, 45

of series, 46

pointwise, 50

radius, 54

region, 393

tests, 47

uniform, 183

convolution, 158

cyclical, 369

fast, 387

in k-domain, 369

in n-domain, 369, 408

in ω-domain, 408

of causal functions, 289

of discrete-time signals, 405

of distributions, 224

of periodic functions, 97

convolution theorem, 160, 302

for distributions, 225

in frequency domain, 177

Laplace transform, 289
z-transform, 405

critical damping, 321
cross-correlation, 161, 387
cut-off frequency, 235
cyclical convolution, 369

D’Alembert’s ratio test, 49
damped vibration, 321
damping theorem, 278
De Moivre’s formula, 31
definite integral, 43
delta function, 193
delta function at a, 194
derivative, 259

left-hand, 42
of δ(t), 200
of distribution, 199
of ε(t), 199
right-hand, 42

detection filter, 417
DFT, 360
difference equation, 425
differentiability, 41

in C, 259
differentiation

in frequency domain, 154, 219
in s-domain, 282, 283
in time domain, 153, 218, 281, 299
in z-domain, 398
of Fourier series, 101

diffusion equation, 123
dilation, 151
Dirac delta function, 194
Dirichlet kernel, 89
discrete Fourier transform, 360

fundamental theorem, 362
discrete spectrum, 71, 142, 360
discrete unit pulse, 341
discrete unit step function, 343
discrete-time signal, 11
discrete-time system, 17
distortion free system, 231
distribution, 193

causal, 301
convolution, 224

444
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convolution theorem, 225
derivative, 199
equality, 195
even, 205
Fourier transform, 209
Laplace transform, 301
odd, 205
on E , 225
product with polynomial, 203
scaling, 205
shifted, 217
spectrum, 209
time reversal, 205

divergence of sequences, 45
domain, 253
duality, 175, 371

eigenfrequency, 117
eigenfunction, 117, 125,

421
eigenvalue, 125, 421
electric network, 8
energy spectrum, 141
energy-content, 179, 408

continuous-time, 15
discrete-time, 15

energy-signal, 179
continuous-time, 15
discrete-time, 15

equality of distributions,
195

Euler’s formula, 12, 31
even function, 72, 151
exponential form, 31
exponential order, 272

fast convolution, 387
filter, 119

band-pass, 238
detection, 417
low-pass, 235, 423

final value theorem, 293
forced series development, 81
formal solution, 124, 245
Fourier coefficients, 66

complex, 69
of convolution product, 98
of product, 96

Fourier cosine series, 80
Fourier cosine transform, 152
Fourier integral, 142

fundamental theorem, 169
Fourier series, 66

complex, 69
differentiation, 101
fundamental theorem, 90
integration, 100

Fourier sine series, 80
Fourier sine transform, 152
Fourier transform, 66, 141, 209

discrete-time signal, 408
of distribution, 209

frequency, 12, 13
blocked, 119
cut-off, 235
fundamental, 61, 363
Nyquist, 347
sampling, 341

frequency domain, 71, 141,
360

frequency response, 19, 235,
421

function as distribution, 194
fundamental

frequency, 61, 363
homogeneous solution, 117
solution, 126

fundamental theorem
even functions, 171
odd functions, 171
of discrete Fourier transform,

362
of Fourier integral, 169
of Fourier series, 90
of Laplace transform, 303

Gauss function, 147
generalized functions, 194
geometric series, 46
Gibbs’ phenomenon, 105

half-infinite string, 330
harmonic oscillator, 320
harmonic series, 47
heat equation, 123, 244
Heaviside function, 141
homogeneous solution, 117
hyperbolic cosine, 256
hyperbolic sine, 256

ideal low-pass filter, 235, 423
imaginary axis, 29
imaginary part, 28

of complex function, 255
impulse response, 231, 413
infinitely differentiable, 156
initial

condition, 123, 330
phase, 12, 13, 68
rest, 315

initial value theorem, 292
integration

in time domain, 155, 284
of Fourier series, 100

integrator, 233
invariant under Fourier transform,

157
inverse DFT, 363
inverse Fourier transform, 170
inverse Laplace transform, 304
inverse system, 243
inversion formula, 170, 304
inversion theorem, 304

jump-formula, 201

k-domain, 360

Laplace transform, 268
and convolution, 300
distribution, 301
fundamental theorem, 303
of periodic function, 295
one-to-one, 304
two-sided, 274

left-hand derivative, 42
left-hand limit, 41
limit

in C, 257
left-hand, 41
of complex-valued function, 40
right-hand, 41

line spectrum, 71, 142
linear

homogeneous condition, 124
interpolation, 345
phase shift, 367
system, 17
time-invariant system, 18

linearity, 76, 149, 259, 275, 299, 396,
408, 413

low-pass filter, 235, 423
LTC-system, 114, 230
LTD-system, 413

mechanical system, 9
modulation theorem, 151
modulus, 12, 29
multiplication by tk , 283
multiplicity, 32
multiplier, 415
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n-domain, 360

neighbourhood, 257

non-recursive system, 425

normal distribution, 176

N -point DFT, 360

N -point discrete Fourier transform, 360

nth harmonic, 67

nth roots of unity, 33

null-signal, 11

number of operations

2m -point DFT, 381

N1 N2-point DFT, 380

Nyquist frequency, 347

odd function, 72, 151

order

of differential equation, 115

of pole, 36, 400

orthogonal, 64

overcritical damping, 321

overdamped, 321

overshoot, 105, 107

Parseval’s identity, 99, 179, 408

Parseval’s theorem, 370

partial sum, 46

particular solution, 117

pass-band, 423

periodic

block function, 72

continuous-time signal, 12

discrete-time signal, 12

extension, 62

train of discrete unit pulses, 343

phase factor, 150

phase response, 19

phase spectrum, 71, 141, 364, 422

piecewise continuous function, 41

piecewise smooth function, 42

Plancherel’s identity, 179

pointwise convergence, 50

Poisson’s summation formula, 181

polar coordinates, 29

polar form, 29

pole, 36, 400

order, 36

polynomial, 32, 254

power, 370

continuous-time, 15

discrete-time, 15

periodic continuous-time, 15

periodic discrete-time, 15

power of piecewise smooth periodic
function, 99

power series, 52
power spectrum, 387
power-signal

continuous-time, 15
discrete-time, 15

principal value 1/t , 196
probability distribution, 176
product rule, 259

quotient rule, 260

radius of convergence, 54
range, 253
rapidly decreasing function, 156
ratio test, 49
rational function, 254
real

axis, 29
signal, 11
system, 20, 119, 417

real part, 28
of complex function, 255

reciprocity, 175, 219, 365
reconstruction, 344
rectangular pulse function, 144
recursive system, 425
reduced neighbourhood, 257
region of convergence, 393
resonance, 118
response, 10

amplitude, 19
frequency, 19, 235, 421
impulse, 231, 413
phase, 19
step, 233, 417

Riemann–Lebesgue lemma, 88, 165
right-hand derivative, 42
right-hand limit, 41
root, 32
running average, 413

samples, 341
sampling, 215, 341

condition, 347
frequency, 341
period, 341

scaling, 278
in time domain, 151
in z-domain, 398
of distribution, 205

Schwartz, 194

s-domain, 268
selfduality, 152
separation of variables, 124
shah distribution, 214
shift

in frequency domain, 150
in k-domain, 368
in n-domain, 366, 397, 408
in ω-domain, 408
in s-domain, 277
in time domain, 78, 150, 277, 301
property for distributions, 218

shifted distribution, 217
sifting property, 193
sign function, 196
signal, 9

band-limited, 238, 347
bounded, 20
causal, 16
complex, 11
continuous-time, 11
discrete-time, 11
energy-, 15, 179
finite switch-on time, 394
null-, 11
periodic continuous-time, 12
periodic discrete-time, 12
power-, 15
real, 11
sinusoidal, 12
switched-on periodic, 220
time-harmonic continuous-time, 13
time-harmonic discrete-time, 13

simple zero, 32
sine integral, 106
sinusoidal function, 61
sinusoidal signal, 12
spectral amplitude density, 141
spectral density, 141
spectral energy density, 141
spectrum, 71, 141

amplitude, 71, 141, 364, 422
complex conjugate, 150
continuous, 142
discrete, 71, 142, 360
discrete-time signal, 408
energy, 141
line, 71, 142
of 1, 210
of δ(t), 210
of δ(t − a), 211
of δ′(t), 218
of distribution, 209
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of ε(t), 219

of eiat , 211

of periodic function, 213

of pv(1/t), 212

of sgn t , 219

of , 215

of switched-on periodic signal, 220

phase, 71, 141, 364, 422

power, 387

square integrable, 177

stable system, 20, 119, 319, 415

stationary phase, 127

step response, 233, 417

sum of a series, 46

superposition, 231, 342

of fundamental solutions, 126

superposition rule, 115, 231

switch-on time, 16

switched-on

periodic signal, 220

system, 312

system, 10

all-pass, 121, 237

cascade, 23, 234

causal, 21

continuous-time, 17

discrete-time, 17

distortion free, 231

inverse, 243

linear, 17

linear time-invariant, 18

LTC-, 114, 230

LTD-, 413

non-recursive, 425

real, 20, 119, 417

recursive, 425

stable, 20, 119, 319, 415

switched-on, 312

time-invariant, 18

system function, 19, 235, 312

time domain, 71, 141

time reversal, 79, 151, 365, 397

of distribution, 205

time window, 384

time-delay unit, 414

time-harmonic

continuous-time signal, 13

discrete-time signal, 13

time-invariant, 413

time-invariant system, 18

train of delta functions, 215

transfer function, 19, 235, 312, 419
transform pair, 395
trapezium function, 162
trapezoidal rule, 357
triangle function, 145
triangle inequality, 30
trigonometric polynomial, 62
trigonometric series, 62
trivial solution, 117
twiddle factors, 378
two-sided Laplace transform, 274

undercritical damping, 321
uniform convergence, 183
uniqueness theorem, 93, 173
unit circle, 29
unit disc, 256
unit step function, 141, 195

wave equation, 127

z-domain, 395
zero, 32

multiplicity, 32
simple, 32

zero-order interpolation, 347
z-transform, 392, 395


	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	Introduction
	Part 1 Applications and foundations
	CHAPTER 1 Signals and systems
	INTRODUCTION
	1.1 Signals and systems
	1.2 Classification of signals
	1.2.1 Continuous-time and discrete-time signals
	1.2.2 Periodic signals
	1.2.3 Power and energy signals
	1.2.4 Causal signals
	EXERCISES

	1.3 Classification of systems
	1.3.1 Continuous-time and discrete-time systems
	1.3.2 Linear time-invariant systems
	1.3.3 Stable systems
	1.3.4 Real systems
	1.3.5 Causal systems
	1.3.6 Systems described by differential equations
	1.3.7 Systems described by difference equations
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 2 Mathematical prerequisites
	INTRODUCTION
	2.1 Complex numbers, polynomials and rational functions
	2.1.1 Elementary properties of complex numbers
	2.1.2 Zeros of polynomials
	EXERCISES

	2.2 Partial fraction expansions
	EXERCISES

	2.3 Complex-valued functions
	EXERCISES

	2.4 Sequences and series
	2.4.1 Basic properties
	2.4.2 Absolute convergence and convergence tests
	2.4.3 Series of functions
	EXERCISES

	2.5 Power series
	EXERCISES

	SUMMARY
	SELFTEST


	Part 2 Fourier series
	INTRODUCTION TO PART 2
	CHAPTER 3 Fourier series: definition and properties
	INTRODUCTION
	3.1 Trigonometric polynomials and series
	3.2 Definition of Fourier series
	3.2.1 Fourier series
	3.2.2 Complex Fourier series
	EXERCISES

	3.3 The spectrum of periodic functions
	EXERCISES

	3.4 Fourier series for some standard functions
	3.4.1 The periodic block function
	3.4.2 The periodic triangle function
	3.4.3 The sawtooth function
	EXERCISES

	3.5 Properties of Fourier series
	3.5.1 Linearity
	3.5.2 Conjugation
	3.5.3 Shift in time
	3.5.4 Time reversal
	EXERCISES

	3.6 Fourier cosine and Fourier sine series
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 4 The fundamental theorem of Fourier series
	INTRODUCTION
	4.1 Bessel’s inequality and Riemann–Lebesgue lemma
	EXERCISES

	4.2 The fundamental theorem
	EXERCISES

	4.3 Further properties of Fourier series
	4.3.1 Product and convolution
	4.3.2 Parseval’s identity
	4.3.3 Integration
	4.3.4 Differentiation
	EXERCISES

	4.4 The sine integral and Gibbs’ phenomenon
	4.4.1 The sine integral
	4.4.2 Gibbs' phenomenon
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 5 Applications of Fourier series
	INTRODUCTION
	5.1 Linear time-invariant systems with periodic input
	5.1.1 Systems described by differential equations
	EXERCISES

	5.2 Partial differential equations
	5.2.1 The heat equation
	5.2.2 The wave equation
	EXERCISES

	SUMMARY
	SELFTEST


	Part 3 Fourier integrals and distributions
	INTRODUCTION TO PART 3
	CHAPTER 6 Fourier integrals: definition and properties
	INTRODUCTION
	6.1 An intuitive derivation
	6.2 The Fourier transform
	EXERCISE

	6.3 Some standard Fourier transforms
	6.3.1 The block function
	6.3.2 The triangle function
	6.3.3 The function e-a| t |
	6.3.4 The Gauss function
	EXERCISES

	6.4 Properties of the Fourier transform
	6.4.1 Linearity
	6.4.2 Conjugation
	6.4.3 Shift in the time domain
	6.4.4 Shift in the frequency domain
	6.4.5 Scaling
	6.4.6 Even and odd functions
	6.4.7 Selfduality
	6.4.8 Differentiation in the time domain
	6.4.9 Differentiation in the frequency domain
	6.4.10 Integration
	6.4.11 Continuity
	EXERCISES

	6.5 Rapidly decreasing functions
	EXERCISES

	6.6 Convolution
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 7 The fundamental theorem of the Fourier integral
	INTRODUCTION
	7.1 The fundamental theorem
	EXERCISES

	7.2 Consequences of the fundamental theorem
	7.2.1 Uniqueness
	7.2.2 Fourier pairs
	7.2.3 Definite integrals
	7.2.4 Convolution in the frequency domain
	7.2.5 Parseval’s identities
	EXERCISES

	7.3 Poisson's summation formula
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 8 Distributions
	INTRODUCTION
	8.1 The problem of the delta function
	EXERCISE

	8.2 Definition and examples of distributions
	8.2.1 Definition of distributions
	8.2.2 The delta function
	8.2.3 Functions as distributions
	EXERCISES

	8.3 Derivatives of distributions
	EXERCISES

	8.4 Multiplication and scaling of distributions
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 9 The Fourier transform of distributions
	INTRODUCTION
	9.1 The Fourier transform of distributions: definition and examples
	9.1.1 Definition of the Fourier transform of distributions
	9.1.2 Examples of Fourier transforms of distributions
	9.1.3 The comb distribution and its spectrum
	EXERCISES

	9.2 Properties of the Fourier transform
	9.2.1 Shift in time and frequency domains
	9.2.2 Differentiation in time and frequency domains
	9.2.3 Reciprocity
	EXERCISES

	9.3 Convolution
	9.3.1 Intuitive derivation of the convolution of distributions
	9.3.2 Mathematical treatment of the convolution of distributions
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 10 Applications of the Fourier integral
	INTRODUCTION
	10.1 The impulse response
	EXERCISES

	10.2 The frequency response
	EXERCISES

	10.3 Causal stable systems and differential equations
	EXERCISES

	10.4 Boundary and initial value problems for partial differential equations
	EXERCISES

	SUMMARY
	SELFTEST


	Part 4 Laplace transforms
	INTRODUCTION TO PART 4
	CHAPTER 11 Complex functions
	INTRODUCTION
	11.1 Definition and examples
	EXERCISES

	11.2 Continuity
	EXERCISES

	11.3 Differentiability
	EXERCISES

	11.4 The Cauchy–Riemann equations
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 12 The Laplace transform: definition and properties
	INTRODUCTION
	12.1 Definition and existence of the Laplace transform
	EXERCISES

	12.2 Linearity, shifting and scaling
	12.2.1 Linearity
	12.2.2 Shift in the time domain
	12.2.3 Shift in the s-domain
	12.2.4 Scaling
	EXERCISES

	12.3 Differentiation and integration
	12.3.1 Differentiation in the time domain
	12.3.2 Differentiation in the s-domain
	12.3.3 Integration in the time domain
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 13 Further properties, distributions, and the fundamental theorem
	INTRODUCTION
	13.1 Convolution
	EXERCISES

	13.2 Initial and final value theorems
	EXERCISES

	13.3 Periodic functions
	EXERCISES

	13.4 Laplace transform of distributions
	13.4.1 Intuitive derivation
	13.4.2 Mathematical treatment
	EXERCISES

	13.5 The inverse Laplace transform
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 14 Applications of the Laplace transform
	INTRODUCTION
	14.1 Linear systems
	14.1.1 The transfer function
	14.1.2 The method of Laplace transforming
	14.1.3 Systems described by differential equations
	14.1.4 Stability
	14.1.5 The harmonic oscillator
	EXERCISES

	14.2 Linear differential equations with constant coefficients
	EXERCISES

	14.3 Systems of linear differential equations with constant coefficients
	EXERCISES

	14.4 Partial differential equations
	EXERCISES

	SUMMARY
	SELFTEST


	Part 5 Discrete transforms
	INTRODUCTION TO PART 5
	CHAPTER 15 Sampling of continuous-time signals
	INTRODUCTION
	15.1 Discrete-time signals and sampling
	EXERCISES

	15.2 Reconstruction of continuous-time signals
	EXERCISE

	15.3 The sampling theorem
	EXERCISES

	15.4 The aliasing problem
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 16 The discrete Fourier transform
	INTRODUCTION
	16.1 Introduction and definition of the discrete Fourier transform
	16.1.1 Trapezoidal rule for periodic functions
	16.1.2 An approximation of the Fourier coefficients
	16.1.3 Definition of the discrete Fourier transform
	EXERCISES

	16.2 Fundamental theorem of the discrete Fourier transform
	EXERCISES

	16.3 Properties of the discrete Fourier transform
	16.3.1 Linearity
	16.3.2 Reciprocity
	16.3.3 Time reversal
	16.3.4 Conjugation
	16.3.5 Shift in the n-domain
	16.3.6 Shift in the k-domain
	EXERCISES

	16.4 Cyclical convolution
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 17 The Fast Fourier Transform
	INTRODUCTION
	17.1 The DFT as an operation on matrices
	EXERCISES

	17.2 The N-point DFT with N = 2m
	EXERCISES

	17.3 Applications
	17.3.1 Calculation of Fourier integrals
	17.3.2 Fast convolution
	17.3.3 Fast correlation
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 18 The z-transform
	INTRODUCTION
	18.1 Definition and convergence of the z-transform
	EXERCISES

	18.2 Properties of the z-transform
	18.2.1 Linearity
	18.2.2 Time reversal
	18.2.3 Conjugation
	18.2.4 Shift in the n-domain
	18.2.5 Scaling in the z-domain
	18.2.6 Differentiation in the z-domain
	EXERCISES

	18.3 The inverse z-transform of rational functions
	EXERCISES

	18.4 Convolution
	EXERCISES

	18.5 Fourier transform of non-periodic discrete-time signals
	EXERCISES

	SUMMARY
	SELFTEST

	CHAPTER 19 Applications of discrete transforms
	INTRODUCTION
	19.1 The impulse response
	EXERCISES

	19.2 The transfer function and the frequency response
	EXERCISES

	19.3 LTD-systems described by difference equations
	EXERCISES

	SUMMARY
	SELFTEST


	Literature
	Tables of transforms and properties
	Index



